PERSISTENT IDENTIFIERS FOR EARTH
SCIENCE DATA MANAGEMENT

DISSERTATION

with the aim of achieving a doctoral degree
at the Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics of Universitit Hamburg

submitted by

Tobias Weigel

2015 in Hamburg

doi:10.2312/WDCC/tr_d_1

Day of oral defense:

October 19, 2015

The following evaluators recommend the admission of the disserta-
tion:

Prof. Dr. Thomas Ludwig
Prof. Dr.-Ing. Norbert Ritter

ABSTRACT

The advent of widespread developments colloquially subsumed
under the notion of data-intensive science poses challenges for data
management and end-user applications. The observed increase in
volume, variety and number of data objects requires large data
infrastructures used for research data management today to further
automate their operating workflows. Not only in the Earth sciences,
data infrastructures typically rely on distributed middleware services,
which must become more scalable and provide more trustworthy
and precise information. A widely discussed approach for addressing
these challenges is to employ persistent identifiers, traditionally used
in the library sciences and scholarly publishing. Such identifiers give
globally unique names to digital objects, making them referenceable
and possibly accessible independent from their actual storage loca-
tion. They can also be used by both human and machine agents to
retrieve essential state information about the objects.

However, the concept of persistent identification has so far not
evolved enough to adequately address data infrastructure chal-
lenges. Therefore, this thesis presents a conceptual framework for
understanding persistent identifiers in this new context, facilitat-
ing solutions that unify access to state information and increase
interoperability between distributed identifier systems. Based on a
formal model, the conceptual framework defines distinct classifi-
cation criteria that clarify the differences between identifier usage
scenarios and can shape suitable policies of identifier providers.
To facilitate interoperability and support scenarios geared towards
machine agents, the framework further advocates the use of types to
structure state information and to construct digital object collections
with unified operations. Existing solutions are shown to partially
match the conceptual framework or be adequately extendable, and
exemplary Earth science data management usage scenarios can be
enabled through its mechanisms. The framework contributes to
ongoing international efforts to establish a coherent digital object
infrastructure driven by practical needs. In the context of Linked Data,
the framework can provide a foundational unification layer and foster
the adoption of persistent identifiers for web-based applications.

iii

KURZFASSUNG

Im Rahmen von Entwicklungen unter dem Schlagwort der daten-
intensiven Wissenschaften ergeben sich neue Herausforderungen an
die Verwaltung von Forschungsdaten. Die beobachtete Zunahme an
Volumen, Vielfalt und Anzahl von Datenobjekten verlangt von den
heutzutage verwendeten Dateninfrastrukturen, ihre Arbeitsabldufe
starker zu automatisieren. Nicht nur in den Geowissenschaften setzen
Dateninfrastrukturen typischerweise auf verteilte Dienste, welche
skalierbarer werden miissen und dem Nutzer zuverldssigere und
prézisere Informationen bereitstellen miissen. Ein vielfach disku-
tierter Losungsansatz hierfiir beruht auf der Verwendung von persis-
tenten Identifikatoren, welche als global eindeutige Namen fiir digi-
tale Objekte dienen und fiir ihre dauerhafte Referenzierbarkeit und
potentielle Zugreifbarkeit unabhéngig vom tatsdchlichen Speicherort
sorgen. Dariiber hinaus kénnen Nutzer und Software-Agenten glei-
chermafien essentielle Zustandsinformationen tiber Objekte abrufen.
Das Konzept persistenter Identifikatoren ist jedoch bisher nicht
umfassend genug gewesen, um den Anforderungen von Datenin-
frastrukturen angemessen zu begegnen. Diese Arbeit stellt daher
ein konzeptionelles Rahmenwerk vor, welches Identifikatoren in
diesem neuen Einsatzgebiet definiert sowie Losungsansitze unter-
stiitzt, die den Zugriff auf Zustandsinformationen vereinheitlichen
und zur Interoperabilitit zwischen Identifikationssystemen beitra-
gen. Ausgehend von einem formalen Modell werden Klassifika-
tionskriterien entwickelt, welche die Unterschiede zwischen Ein-
satzszenarien von Identifikatoren verdeutlichen und zur Entwick-
lung von angemessenen Richtlinien fiir Identifikationssysteme beitra-
gen konnen. Um Interoperabilitit zu fordern und Einsatzszenar-
ien fiir Software-Agenten zu unterstiitzen setzt das Rahmenwerk
auf die Typisierung von Zustandsinformationen und den Aufbau
von Objektkollektionen mit einheitlichen Operationen. Bestehende
Losungen passen auf das Rahmenwerk mindestens teilweise oder
lassen sich entsprechend erweitern, und die vorgestellten Mechanis-
men erlauben die Umsetzung beispielhafter Anwendungsfille in der
geowissenschaftlichen Datenverwaltung. Das Rahmenwerk triagt zu
fortschreitenden internationalen Bemiihungen um eine einheitliche
Infrastruktur fiir digitale Objekte bei, die in der Praxis umgesetzt
wird. Im Zusammenhang mit Linked Data kann das Rahmenwerk
ferner zu einer stabilen Basisschicht beitragen und den Einsatz von
persistenten Identifikatoren in Webanwendungen erleichtern.

ACKNOWLEDGMENTS

Creating this thesis would not have been possible without the critical
support of a number of people. First, I would like to thank Prof.
Thomas Ludwig for supervising me, for giving me counsel whenever
needed and for setting essential pointers in unexplored terrain. I am
also grateful for the support I received from Michael Lautenschlager,
who provided a challenging topic and always kept me involved.
I kindly thank Stephan Kindermann for giving profound critical
feedback throughout the various development phases of this thesis.
I would also like to thank Joachim Biercamp for his support early on.

My gratitude also goes to those with whom I have had extensive
contact with over the past three years, especially within the context
of the Research Data Alliance. Particularly worth mentioning are
Peter Wittenburg, Larry Lannom and Mark Parsons, whose insight
and unbroken enthusiasm encouraged me to follow yet unpaved
pathways. I would also like to thank Tim DiLauro for sharing the
challenges of a guinea pig working group, for his witty humor and his
ability to bring a spirit of lightheartedness into potentially stressful
situations (including apple pie!), and Tom Zastrow for providing
feedback on early chapter drafts and sharing a highly rememberable
soccer game.

Last, but not least, I am grateful for the both productive and
enjoyable working conditions at DKRZ. My colleagues have always
been open for in-depth discussions and shared lunches. Thank you!

vii

CONTENTS

1

INTRODUCTION 1
1.1 Problem statement 3
1.2 Research questions 4
1.3 Methodology 5
1.4 Contribution and relevance 6
STATE OF THE ART 9
2.1 Digital preservation 9
2.2 Thedatalifecycle. 11
2.2.1 The Digital Curation Center model 12
2.2.2 The curation continuum model 14
2.3 E-science and data infrastructues 15
2.4 Digitalobjects 16
2.4.1 Identifiers and locators 19
2.4.2 Towards persistent identifiers 21
2.4.3 Persistent identifiers fordata 23
2.4.4 The relationship between technology and policies 24
25 Conclusions L o L 25
USE CASES 29
3.1 The Earth System Grid Federation 29
3.2 Referencing preliminary data 32
3.3 Access to specific versions of a dataset 32
3.4 Referencing custom data slices 33
3.5 Provenancetracing 34
3.6 Discussion 35
CONCEPTUAL FRAMEWORK 37
4.1 Formalmodel 37
4.1.1 Describing identification 38
4.1.2 Describing PID records 39
4.1.3 Furtheraspects 41
4.2 Persistencylayer. 42
4.2.1 Fundamental criteria 43
422 PIDsystemclasses 48
4.2.3 Defining the Persistent Entity 49
4.2.4 Abstract data type definitions 52
43 Typinglayer 54
4.3.1 Typing of identified objects 54
4.3.2 Typing of PID record entries 55
4.3.3 The type registry and type governance 62
4.4 Collectionlayer 64
4.4.1 Definitions and terminology 65
4.4.2 The collection process 66
4.4.3 Fundamental structural criteria for collections . 68

ix

X CONTENTS

4.4.4 Common operations on collections 70

4.5 Discussion o 70

5 IMPLEMENTATION CONCEPTS 75
5.1 DPersistencylayer. 75
5.1.1 Review of individual PID systems 76

5.1.2 Scalability aspects 79

52 Typinglayer 79
52.1 Typeregistry 80

5.2.2 Typing layer service 82

5.3 Collectionlayer, 84
5.4 Discussion L. 87

6 ANALYSIS 89
6.1 Referencing preliminary data 89
6.2 Access to specific versions of a dataset 91
6.3 Referencing custom data slices 92
6.4 Provenancetracing 93
6.5 Discussion 0000 95

7 RELATED WORK 99
71 LinkedData 99
7.2 The Entity Name System 101

7.3 Approaches for providing actionable collections 103
7.4 Research Objects 104

75 Discussion 105

8 CONCLUSIONS 107
81 Futurework L 108

BIBLIOGRAPHY 111

LIST OF FIGURES

Figure 1
Figure 2

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

The PID layer cake 7
The Digital Curation Center’s data life-cycle

model 12
ESGF website: Faceted search interface 30
ESGF website: Dataset with individual files . . 31
Sets and relations in the formal model 40
The PID redirection layer 44
Architecture of the typing layer 8o
Cycle of referenceabledata. 90

Process flowchart for versioning and provenance 94
Versioning, provenance and organizational hi-
erarchy, 95

LIST OF TABLES

Table 1
Table 2

Table 3
Table 4

ACRONYMS

Type registry datamodel 60
Evaluation of PID systems with fundamental

criteria Lo 76
Property types for collections 85
Exemplary property types for the use cases . . 98

ADT Abstract Data Type

API Application Programming Interface

ARK Archival Resource Key [52]

cMIP Coupled Model Intercomparison Project

CNRI Corporation for National Research Initiatives

DNS Domain Name System

DOI Digital Object Identifier [73]

Xi

Xii ACRONYMS

ESGF Earth System Grid Federation

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IPCC Intergovernmental Panel on Climate Change
iRODS Integrated Rule-Oriented Data System [76]

netCDF Network Common Data Form, a file format and set of
service libraries widely used in the Earth sciences

OAIS Open Archival Information System [70]
OCLC Online Computer Library Center

PID Persistent Identifier

PURL Persistent URL

RDA Research Data Alliance

RDF Resource Description Framework

REST REpresentational State Transfer [29]
URI Uniform Resource Identifier [12]

URL Uniform Resource Locator [12]

URN Uniform Resource Name [12]

w3C World Wide Web Consortium

INTRODUCTION

In October 2010, the European Commission’s High Level Expert Group
on Scientific Data published a seminal report entitled “Riding the
wave: How Europe can gain from the rising tide of scientific data”
[79]. In this report, the experts summarize the current state of
the art of European activities regarding large-scale scientific data
management and identify the upcoming and unaddressed challenges
for the European scientific community. The report advocates the
development of a “Collaborative Data Infrastructure”, the further
construction of scientific e-infrastructures and the recognition of data
as primary research output.

The 2010 report clearly identifies the necessary techniques and
requirements for scientific e-infrastructures. Among other things,
the ideal wish list includes persistent identifiers as a critical base-
layer component: “Persistent identification, allowing data centers
to register a huge amount of markers to track the origins and
characteristics of the information” [79, p. 20]. In the summary of
challenges for e-infrastructures [79, p. 22], several related items stand
out as well:

COLLECTION: “How can we make sure that data are collected
together with the information necessary to reuse them?”

TRUST: “How can we make informed judgements about whether
certain data are authentic and can be trusted? [...]”

INTEROPERABILITY: “How can we implement interoperability with-
in disciplines and move to an overarching multi-disciplinary
way of understanding and using data? [...] How can automated
tools find the information needed to tackle unfamiliar data?”

In the time after the report was published, several related initiatives
emerged that take up the report’s themes. In 2012, the need for
international collaboration on addressing the practical issues in
research data management led to the foundation of the Research
Data Alliance (RDA), a global initiative that aims to enable data
interoperability across boundaries between countries, disciplines,
producers and consumers of data [91]. Persistent identifiers (PIDs),
roughly defined as names for objects that are stable throughout
changes of object location or ownership and are usually globally
resolvable, were a central topic among the first set of working groups
at the official launch meeting in Goéteborg in March 2013, directly
reflected for example in the theme of the working group on PID

INTRODUCTION

Information Types'. The European Commission also funded the
European Data Infrastructure (EUDAT) project in 2011 and tasked
it with the development of the Collaborative Data Infrastructure
envisioned in the report.

The history of persistent identification per se goes back much fur-
ther. In the mid of the 1990s, memory institutions such as the national
libraries saw the need to expand their mission of preserving cultural
artifacts to the contents of the emerging World Wide Web. It was
quickly discovered that the dynamic, ungoverned and decentralized
nature of the web poses a serious challenge for preservation tasks,
not least due to the unstable nature of its Uniform Resource Locators
(URLs). A concept for identification and retrieval of digital objects
was sought that could meet common preservation requirements. In
this setting, the idea of persistent identifiers was born, and several
approaches emerged. Among these contemporary PID systems or PID
infrastructures, the most popular ones that are not bound to a specific
scientific discipline include Uniform Resource Names (URNs) [63,
71], Digital Object Identifiers® (DOIs)? [71, 73] via the DOI System®,
Handles® via the Handle System®3 [45], Persistent URLs (PURLs)*
and Archival Resource Keys (ARKs) [52]. Although first used for
digital articles, it also became clear that the general concept could
be applied to data objects as well. With the rising recognition of
data as valuable research output, the concept of data citation was
promoted, and after a year-long process, the DataCite organization>
was established in 2009 to offer a formal data citation service based on
DOIs. Moreover, initiatives emerge that target persistent identification
of entities other than digital articles and data, for example personal
identifiers for individual researchers (ORCID)® or physical samples
(International Geo Sample Number, IGSN?).

A prime example for an e-science infrastructure in the Earth system
sciences is the international Earth System Grid Federation (ESGF).
Originally emerging from a series of US-funded projects, the earlier
Earth System Grid (ESG) finally transformed into ESGF as a global
open source initiative with partners and funding from the United
States, the European Union, Australia and others. Today, ESGF offers
a globally distributed infrastructure dedicated to serving the global
Earth system science research community. The largest collaborative
undertaking in Earth system modeling and an important scientific
quality control mechanism are the phases of the Coupled Model
Intercomparison Project (CMIP), coordinated by the Working Group

1 The RDA Working Group on PID Information Types was co-chaired by Tobias Weigel
and Timothy DiLauro.

2 http://www.doi.org, last checked Feb. 27, 2015

3 http://www.handle.net, last checked Feb. 27, 2015

4 http://purl.org, last checked Feb. 27, 2015

5 http://www.datacite.org, last checked Feb. 27, 2015

6 http://www.orcid.org, last checked Feb. 27, 2015

7 http://www.igsn.org, last checked Feb. 27, 2015

http://www.doi.org
http://www.handle.net
http://purl.org
http://www.datacite.org
http://www.orcid.org
http://www.igsn.org

1.1 PROBLEM STATEMENT

on Coupled Modeling (WGCM) of the World Climate Research
Programme (WCRP)®. Since 1995, CMIP coordinates a set of stan-
dardized experiments performed by multiple international modeling
groups every couple of years. Because the amount of produced data
has increased exponentially, no single institution is able to serve
the complete data output anymore today, so that the results of the
titth phase of the project (CMIPs5) [88] have been distributed through
ESGF as a community effort for the first time. CMIP5 data finally
also formed the basis for the Fifth Assessment Report (AR5) of the
Intergovernmental Panel on Climate Change (IPCC)? published in
2014. Planning for the next project phase (CMIP6) has already begun
[61] and it is agreed that the ESGF e-infrastructure will again serve as
the distribution point for model data.

The ESGF infrastructure also faces developments that are evident
in all sciences and colloquially set under the umbrella term of data-
intensive science [38]: As it becomes easier to produce data, either
through observation or computational processes [1], the challenges
shift towards evaluating and managing data. The climate sciences are
no exception, and although techniques including data compression
can alleviate some of the data volume [51], the pressure of automating
data distribution processes increases and further solutions for data
management must be found.

1.1 PROBLEM STATEMENT

All CMIP5 data received DataCite DOIs, however the process was
less than optimal and scalability issues are already foreseen for the
CMIP6 process. From the users’ perspective, the process was far too
slow and data could not be cited properly when the first documents
had to be submitted for recognition in the IPCC working groups. At
the infrastructure side, replication and version management suffered
from the lack of a flexible and unified identification mechanism and
accompanying policies that aim to ensure timely and safe replication
and accurate version tracking. A coordinated application of PIDs
and services integrating identifiers, data and metadata may be a way
out, however the conceptual details are unclear because there are no
proper models for managing data through PIDs, including questions
of what to preserve and how to deal with inevitable changes of data
objects and ultimately object removal. At the same time, the EUDAT
infrastructure makes extensive use of PIDs at its middleware layers,
but the solutions are still insular, tied to a specific implementation
and infrastructure design and not interoperable across PID systems.
A general framework for use of PIDs in e-infrastructures is sought

8 http://www.wcrp-climate.org, last checked Feb. 27, 2015
9 http://www.ipcc.ch, last checked Feb. 27, 2015

http://www.wcrp-climate.org
http://www.ipcc.ch

INTRODUCTION

that takes into account the requirements of users, infrastructure
providers and preservation institutions.

These issues also hint at a general development at a larger scale.
The adoption of web-based solutions continues throughout society
and also affects the field of scientific data management. Rather than
talking about the management of files in file systems, discussions start
to revolve around mere digital objects. These objects are decoupled
from actual storage and are moved and replicated without user’s
notice. This is particularly evident from the user interfaces of modern
mobile devices such as smartphones and tablet computers, where
the notions of files and directories become increasingly obsolete. In
the area of scientific data management, such objects are managed
by automated procedures since the very limited amount of human
resources cannot stem the tide of data anymore. These digital objects
however still carry some elemental properties which are essential for
their proper management. The concept of persistent identification
and particularly the notion of Digital Objects as described by Kahn
and Wilensky [45] lies at the heart of these recent developments.

While the Semantic Web community has developed a wide variety
of solutions for metadata exposition on the World Wide Web, inclu-
ding the notion of making explicit machine-interpretable statements
about the relations between web resources commonly denoted as
Linked Data, such approaches have not seen much practical adoption
in Earth science e-science infrastructures such as ESGF for internal
data interlinking. The potentially wide range of third-party appli-
cations thriving on information exposed as Linked Data remains
however a factor that can hardly be ignored. Exposing persistent
identifiers and associated information about the Digital Objects be-
hind them as Linked Data may bridge the gap between management
solutions and external re-use, yet the role of identifiers and their
associated information with respect to Linked Data remains unclear
today.

1.2 RESEARCH QUESTIONS

The research conducted answers the following major questions:

What is the relationship between identifiers, data objects, identifier records
and metadata? What is the role of organizations and their services towards
these entities?

The traditional approach for persistent identification puts emphasis
on identifier name schemas and the long-term availability of resolvers.
Metadata catalogs may be extended to include identifier information,
yet there is no common approach to bind metadata, identifiers and
identified objects together. Practical scenarios call for the proliferation

1.3 METHODOLOGY

of metadata at a more reliable and scalable service level than can be
provided by typical scientific metadata catalogs. However, identifier
providers are often not in a position that allows them to safeguard the
persistency of metadata catalogs along with the objects. They usually
cannot sustain the same level of detail in their services as institutional
repositories or e-science infrastructures closer to scientific users.

How do we achieve interoperability between identifier systems or providers,
particularly regarding the additional information associated with a PID?

A fair number of identifier systems has evolved over the last 20 years
with applications in the scholar community. Each of them follows a
distinct approach, and there are fine differences in their conceptual
design, fitness for particular application scenarios and policies on
persistency and the type of objects that should be identified. Some of
these differences are poorly understood however, such as when it is
appropriate to assign multiple identifiers, how to assure persistency
and how to incorporate relevant metadata.

How can we use identifiers in automated e-science workflows in a scalable
and efficient way? How do we deal with increasing numbers of identifiers
without compromising their inherent quality? How can we encode and use
relationships between large numbers of objects under the constraint that
identifiers may only be accessible on an individual basis?

Large data infrastructures are interested in persistent identification
of their managed objects to accommodate user needs such as data
citation and to reap the benefits of decoupling identification from
storage location, particularly if objects are moved or replicated
across repositories. However, traditional approaches for assigning
and managing persistent identifiers rely on workflows designed with
human interaction in mind. Data infrastructures crucially depend
on actionability of their process steps through machine agents, yet
identifier systems currently fail to address these use cases, particu-
larly in view of scalability for possibly millions of data objects and
a large variety of object types from disparate scientific communities.
Management at such a scale requires efficient bulk operations and
treating data objects with respect to their context and associated
entities.

1.3 METHODOLOGY

There are a lot of practical use cases from both Earth sciences and
other disciplines that can potentially be enabled through the use
of PIDs. Chapter 3 presents an exemplary selection of such use
cases which highlights recurring constraints a PID-based solution

INTRODUCTION

has to meet. Together with a careful analysis of the history and
existing work in the area of PIDs and scientific data management,
this leads to the formulation of a layered conceptual framework for
persistent identification of data. The framework can be implemented
as a PID service architecture with exchangeable components which
is described in chapter 4. Chapters 5 and 6 review the conceptual
framework against the motivating use cases to demonstrate how
its mechanisms can be applied. Possible benefits and disadvantages
compared to alternative solutions are discussed in chapter 7. Chapter
8 closes with some final overarching thoughts and points out areas of
future work.

1.4 CONTRIBUTION AND RELEVANCE

This thesis presents a foundational model for distinguishing identi-
fiers, their target objects and associated information and provide clear
definitions that can help the actors with defining their roles more
adequately in possible future scenarios. If the responsibilities for
different aspects of identification and associated services are clearly
defined, different actors can achieve a level of independence with
respect to their core responsibilities, while the solution as a whole
is still able to satisfy core requirements for persistent identification.
This includes information associated with PIDs and available at a
primary level of preservation independent from the availability of
target objects.

Although the final decision what metadata deserve to be more
closely associated with identifiers can only be adequately addressed
from a user perspective, a set of distinct stages of information can
be identified and help in making such decisions. The framework
is based on the themes of organizing information and services in
an architecture with abstraction layers dedicated to fundamental
requirements and persistency, typing and iterable collections (see
figure 1). All layers rely on individual PIDs as binding elements and
the main mode of access. The framework can enable interoperability
between PID providers, including interoperability of essential PID-
related metadata typically stored in PID records.

From the representative use cases it is evident that the management
of object identifiers relies on workflows that can be modeled through
applications of fundamental abstract data types such as lists, sets
and graphs. These concepts have been known in computer science
for a long time, and they are sufficiently generic to be applied to
the processes in data infrastructures. The central idea is to enable
machine-actionability of identifiers and understand the persistent
entities which they refer to as instantiations of a generic abstract data
type with a set of clearly defined methods enabled across identifier
providers and independent from the object types. A practical aspect

1.4 CONTRIBUTION AND RELEVANCE

[Applications J

l

7 Typing layer

Collection layer

Persistency layer

Figure 1: Applications may enter the architectural layer cake at any layer as
appropriate for the specific use case.

of the framework is thus to enable actionable identifier collections
where identifiers are treated as first-class entities while black-boxing
the associated metadata and target objects.

Although the framework can possibly be transferred to other
disciplines, the motivating use cases originate in application scenar-
ios from a discipline-specific data infrastructure (ESGF). The use
cases put special emphasis on processes concerning data replication,
versioning and provenance tracing. Basing core processes of data
infrastructures on identifiers also requires a set of tools for analyzing
identifiers, the structures built with them and associated metadata.
Chapter 6 includes concepts for implementing such tools based on
the developed conceptual framework.

Aside from the use of identifiers in current e-infrastructures such
as EUDAT and ESGF, there are a lot of recent international initiatives
related to persistent identification. For example, the ODIN project
aims at building interconnecting services between DataCite and
ORCID. The administrative responsibility of the Handle System is
also in a transition process to being handed over to the newly
founded Digital Object Numbering Authority (DONA) under the
auspices of the International Telecommunication Union (ITU). A
generalized framework on persistent identification of digital objects
that takes into account the needs of e-infrastructures on automated
data and metadata management may prove to be valuable to these
initiatives.

7

STATE OF THE ART

The dissemination, archival and identification of research output
requires a broad understanding of the processes, technologies and
conceptual models involved. This chapter provides a comprehensive
literature review to determine the essential concepts of digital preser-
vation, the data life cycle, persistent identifiers and digital objects,
and illustrates how the defining aspects of persistent identifiers are
shaped by practical concerns. Special emphasis is put on the historical
development of the concept of persistent identification, which is
tightly interwoven with the history of Uniform Resource Identifiers
and the World Wide Web.

2.1 DIGITAL PRESERVATION

With the advent of information technology, institutions charged with
the archiving of research output recognized that digital objects must
be preserved just like physical objects, spawning activities under the
umbrella of digital preservation. A definition for the activity of digital
preservation is for example given in the Open Archival Information
System (OAIS) reference model [70]:

“Long Term Preservation: The act of maintaining infor-
mation, in a correct and Independently Understandable
form, over the Long Term.”

This definition emphasizes a key issue of preservation: information
remains useful only if it can be understood independent from the
original issuers or authors whose full interpretative knowledge is
expected to become unavailable over time. The exact time span for
preservation (“long term”) is a matter of policy and shaped by a
number of practical and idealistic considerations. Typical time spans
given in the literature vary from 10 years [24] to even potentially
indefinite time [70]. Digital preservation has also been described as
“communication with the future” by Moore [64, p. 64]. This is re-
flected in another definition for digital preservation provided by Jantz
and Giarlo [44]. Based on a report by the Online Computer Library
Center (OCLC) [92], Jantz and Giarlo define digital preservation as:
“the managed activities necessary: 1) For the long term maintenance
of a byte stream (including metadata) sufficient to reproduce a
suitable facsimile of the original document and 2) For the continued
accessibility of the document contents through time and changing

technology.” [44, p. 136]

10

STATE OF THE ART

The world wide web has increased production, distribution and
re-use of digital objects, which presents a particular challenge to
the preservation efforts, and in particular the problem of broken
web links has been detected early on [59]. In 1996, a US task force
report (see [75]) was published which set the initial conditions for the
developments in digital preservation ever since. It recognized that
there are several levels of sophistication for digital preservation, with
the lowest level simply focusing on preserving the bit-stream. As
the report states, the pure technical view of a preserved bit-stream
is however often not sufficient for ensuring future usefulness. Such a
view neglects encoding formats and other structural dependencies on
changing technology — there is additional context associated with a
digital object that needs to be preserved as well, which resonates with
the notion of an “Independently Understandable form” as stated in
the OAIS definition above. At a higher level of abstraction, digital
archives therefore aim to preserve “content in terms of the knowledge
or ideas the object contains” [75, p. 19], which requires migration
strategies to cope with technological advancement.

Digital preservation thus aims to preserve more than just the
bit-stream. The additional information for a digital object is often
described through its metadata, though as Giaretta [32] remarks,
the term “metadata” is highly overloaded and issues such as what
“types” of metadata are relevant and “how much” metadata is
required are unclear. A well-accepted model for digital preservation
that includes metadata aspects is the aforementioned OAIS Reference
Model, which was endorsed as an ISO standard in 2003. The OAIS
reference model defines a group of metadata types (the “preservation
description information”): “The information which is necessary for
adequate preservation of the Content Information and which can
be categorized as Provenance, Reference, Fixity, Context and Access
Rights Information.” [70] These concepts are similar to the features
already mentioned in the 1996 task force report: “In the digital
environment, the features that determine information integrity and
deserve special attention for archival purposes include the following:
content, fixity, reference, provenance, and context.” [75, p. 10]

Reducing digital preservation to purely technical aspects is how-
ever a misconception. As explained in a more recent report from 2013
[27], digital preservation always relies on management and organiza-
tional policies; technology in itself cannot ensure preservation. This
is also reflected by the notion of a “Trusted Digital Repository”* as
defined by the OCLC, which requires conformance with the OAIS
reference model but also several policy aspects including reliable
administration and financial and organizational sustainability [92].

1 also see http://www.trusteddigitalrepository.eu, last checked Feb. 27, 2015

http://www.trusteddigitalrepository.eu

2.2 THE DATA LIFE CYCLE

2.2 THE DATA LIFE CYCLE

Curation processes required for research data go far beyond the scope
of digital preservation [3]. This extended view is also known under
the term digital curation [103, 7], which spans the entire life cycle of
digital information. But what exactly is this life cycle? To answer this
question, it is necessary to first examine the overarching concept of
digital curation and its history.

Beagrie [7] explains the history of the term and concept of digital
curation. Digital curation stems from the earlier concept of digital
preservation, but transcends it as an activity that provides some form
of added value, such as building library or museum-like collections,
building long-term knowledge about the objects and providing
context for further use. Digital curation also tries to involve data
creators and researchers in activities that are neglected in the more
limited scope of preservation and archiving. In this respect, Beagrie
explains how preservation was commonly perceived as an “end-of-
project activity” that may lead to fragmented preservation and “data
mortuaries” [7, p. 5]. To extend the scope of digital curation beyond
these limitations, Beagrie and others mentioned by him (such as the
JISC) argue for a more holistic view on the data life cycle, where
preservation is just one activity among others. This culminates in
a definition of digital curation as “the actions needed to maintain
digital research data and other digital materials over their entire life-
cycle and over time for current and future generations of users”?[7,
p- 4l

Yakel [103] provides an insightful review of major activities and
reports published around 2007 when there was a significant research
interest accumulating in the general area. She identifies five charac-
teristic common concept or activity areas for digital curation, all of
which target the long term [103, p. 338]:

1. Life cycle/continuum management of the materials
perhaps even reaching back to the creation of the
record keeping system.

2. Active involvement over time of both the records
creators and potentially digital curators.

3. Appraisal and selection of materials.
4. Development and provision of access.

5. Ensuring preservation (usability and accessibility) of
the objects.

Primary references given by Beagrie include the JISC at http://www.jisc.
ac.uk/uploaded_documents/6-03%20Circular.doc (unavailable) and the DCC at
http://dev.dcc.rl.ac.uk/twiki/bin/view/Main/DCCApproachToCuration (unavail-
able); last checked Feb. 27, 2015

11

http://www.jisc.ac.uk/uploaded_documents/6-03%20Circular.doc
http://www.jisc.ac.uk/uploaded_documents/6-03%20Circular.doc
http://dev.dcc.rl.ac.uk/twiki/bin/view/Main/DCCApproachToCuration

12

STATE OF THE ART

CONCEPTUALISE

\&\G“"‘E

PRESERVE

ry
RESERVATION ACTION

Figure 2: Graphical representation of the Digital Curation Center’s data life
cycle model (taken from [40, p. 136]).

Yakel also remarks how (at the time of publishing) digital curation
was becoming an umbrella concept for the interrelated areas of digital
preservation, data curation, digital asset management and electronic
records management.

Various models exist in the literature for describing the general
data life cycle. Typically, a data life cycle model will define specific
stages through which data proceeds over time.

2.2.1 The Digital Curation Center model

The curation life cycle model of the Digital Curation Centre (DCC),
presented by Higgins [40] (also see figure 2), is widely used and
referenced model. As is also clearly stated on the DCC website, the
model is idealized, and “[i]n reality, users of the model may enter at
any stage of the life cycle depending on their current area of need.”3
Nonetheless, the stages included in the model are useful enough to
cover a broad range of disciplines.

The entities the DCC Model aims to curate are separated into
two rough categories: Digital Objects and databases [40, p. 137]. The
digital objects are further subdivided into simple objects and more
complex ones that are created by combining other digital objects.

http://www.dcc.ac.uk/resources/curation-lifecycle-model, last checked Feb.
27, 2015

http://www.dcc.ac.uk/resources/curation-lifecycle-model

2.2 THE DATA LIFE CYCLE

Databases are characterized as structured collections of records or
data.

At the highest organizational level, the model introduces four
overarching so-called “full life cycle actions” and a number of
more fine-granular sequential actions. The overarching actions span
the life cycle, while the sequential actions are more low-level and
address distinct steps or stages. The collective of sequential actions
therefore cannot exist independently from the larger overarching
concerns. Instead, the sequential stages are rather implementations
of the overall goals expressed by the overarching concepts. These
full life cycle actions include: to describe and represent information,
to establish management and administration plans for preservation,
to maintain a community watch and participation strategy and to
execute curation and preservation actions according to the plans.
More detailed descriptions for the actions can be found in [40].

The individual sequential actions listed as the outermost rim in
figure 2 together form a collective characterization of the stages data
passes through during its life-time. As Higgins explains, the actions
are taken in order, but not all of them may be applicable to every
domain. Instead, the model should be used to arrange actions in a
proper order, identify gaps and decide if particular actions can be
omitted or are inapplicable for a specific domain. The set of sequential
actions is quite exhaustive; the interested reader can find more in-
depth descriptions of the individual steps in [40].

In addition to the sequential actions, the model also encompasses
a few “occasional actions”. In contrast to the sequential actions,
occasional actions express alternate flows that are only taken if certain
conditions are met. For example, the “dispose” action is particularly
important for triage of data — not all data will be selected for
further curation, and consequently the dispose action offers a proper
exit point for such data. This means in particular that even the
disposal of data must be well managed to assure data quality. Other
occasional actions include to reappraise data if they fail validation
before entering storage and to migrate data to new formats, after
which the data must be subjected to a new cycle to be allowed into
the preservation process in a controlled manner.

One observation to make at this point is that the DCC model
does not specifically include a possibility to share data and enable
reuse before preservation actions are taken that imply a goal of
long-term archival. Such scenarios are however quite common in
everyday science workflows and e-science in particular; data are re-
used after some controlled metadata gathering and QA processes
have taken place but before they enter long-term archival stages. A
particular example for this is the ESGF workflow (also see chapter
3), where quality-controlled data products enter a data infrastructure
geared towards distribution and re-use that however does not aim to

13

14

STATE OF THE ART

provide long-term archival. Such a scenario effectively replaces the
preservation and storage stages with a much less controlled and less
accountable environment, though this does not exclude such stages
from taking place at a later point in time. In contrast, the DCC model
only offers re-use of data objects that have been preserved. These
different viewpoints and realizations are not outright conflicting, but
should rather be seen as the possible ends of a spectrum, where each
discipline, infrastructure and strategic approach may be located in.

As indicated by Higgins [40], the DCC model may be modified
by particular domains to accommodate specific needs. For climate
community processes, Lautenschlager [54] states that the most rele-
vant sequential actions are creation, processing, archival and re-use.
The archival stage may also be omitted if long-term archival is not
desired or done later (also see the ESGF use cases in chapter 3).
Another relevant contribution is presented in [27]. Here, the cycle
model is a simplified descendant of the DCC model. This model
includes only six sequential actions: planning/creation, selection,
ingest, storage/infrastructure, preservation, access/usage. The set of
overarching concerns is however more detailed and also includes
for example legal and ethical concerns, financial concerns (including
long-term cost models) and issues of unique identification. This latter
point is particularly significant, as it calls for processes and policies
that must be put in place to include PIDs in a quality-assured manner
across the life cycle stages.

2.2.2 The curation continuum model

Treloar and Harboe-Ree [9o] describe how curated data have a broad
range of management features. They identify several distinct continua
or dimensions: metadata, item count and size, item dynamicity,
responsibility for curation divided between researchers and orga-
nizations, degree of preservation, wideness of access, exposure or
searchability. Each curated object will be located somewhere in this
multi-dimensional space, but the particular location may change as
the object passes the stages of its life cycle.

Given the multi-dimensional space, Treloar and Harboe-Ree pro-
ceed to identify three distinct domains and boundaries between them,
ranging from the private research domain over a shared research
domain towards a public domain. Data passes through these domains
in general from private to public over its life-time. Transitions
between the domains often mark crucial phases in the life cycle
of a data object which for example involves shifts in requirements
or in the responsibility for curation. The domains are defined by
their respective coverage on each of the dimensions, e.g. whether
there is more metadata available or less or whether objects tend
to be numerous and voluminous or small, static and distinct. As

2.3 E-SCIENCE AND DATA INFRASTRUCTUES

Treloar and Harboe-Ree remark, their tripartite arrangement is just
one possible example for defining such a set of domains (although
one that has apparently been picked up by the larger community in
a favorable way).

The practical application of the model finally is to map existing
solutions to the domains. Each of the specific domains has its
own preferred generic class of repositories and supporting systems,
though Treloar et al. emphasize that there is no strict one-to-one
relationship towards actual systems. One operative repository system
may for example be used for two or even all domains, though such
setups are unlikely to work out in practice.

The Radieschen project [47] proposed to include a fourth domain,
described as the “access domain”, because in their view, the model
with three domains does not work well for cross-disciplinary work-
flows and cases where there is non-public long-term archival. They
also differ from Treloar and Harboe-Ree in their definition of the other
three domains since they relocate the boundaries between public and
private aspects. Unfortunately, they do not provide a more exhaustive
definition of these domains in terms of how it covers the continua
identified by Treloar and Harboe-Ree.

2.3 E-SCIENCE AND DATA INFRASTRUCTUES

According to Hey and Trefethen [39], e-science can be characterized
as the change in methods and tools employed in some major scientific
disciplines that is driven by the deluge of data available from
high-performance computing experiments, sensor networks, satellite
surveys and so on. These changes in working mode and consequently
in the needs of scientific users put development pressure on the
general IT development for science, requiring more sophisticated
search and cataloging facilities with automated metadata creation,
data mining and visualization tools. These various elements of IT-
related development have been collated under umbrella terms such as
e-science infrastructures or cyberinfrastructures that also build upon
the earlier “science grid” developments (see e.g. [9, 30]). As Hey and
Trefethen remark, e-science is not a new scientific discipline in its own
right; rather, the e-science infrastructure offers fundamental support
for scientist to practice faster, better or different forms of research.
Later, in 2010, Gray [38, p. xviii] goes as far as proclaiming e-
science to be a new fourth paradigm of science, an extension of the
scientific method originally consisting of empirical, theoretical, and
computational paradigms. Other terms in use for this latest evolution
of the methodological changes and aspects of the area where “IT
meets scientists” (as Gray calls it) are data-intensive science, data
science and to some extent big data with a focus on science. Gray
also describes how data analysis and delivery in particular pose to

15

16

STATE OF THE ART

be a problem and motivates to move queries to the data as opposed
to the former default scenario of moving the data to the scientist’s
workbench. The challenges are also by far not confined to the physical
science domains which have a tradition of producing and analyzing
large amounts of data. Social sciences dealing with data face similar
challenges [46] with very diverse, complex and heterogeneous data
[43].

At earlier life cycle stages, the problem of data delivery has
given rise to some extensive e-science infrastructures geared towards
data access, cataloged search and initial integrated data analysis
and processing capabilities. One popular example from the domain
of high-energy physics is the Large Hadron Collider computing
grid (LHC grid) [53, 80]. The challenges are not limited to the
physical sciences, however, as the example of the Digital Research
Infrastructure for the Arts and Humanities (DARIAH) illustrates.

In climate science, an e-science infrastructure with similar goals
to the LHC grid was the US-based Earth System Grid [13], later
succeeded by the international Earth System Grid Federation (ESGF)
[100] which continues to operate and provide services for the CMIP5
and future CMIP6 data. Budich and Hiller [18, p. 1] point out that a
particular problem in the Earth system modeling domain not present
in other domains is the necessity to provide data to a massively
growing community of researchers and laymen due to the interest
in climate change and its impact, which goes beyond simply dealing
with the increase in data volume and variety.

The quality control process employed in ESGF for the CMIP5 data
described by Stockhause et al. [85] illustrates how the challenges
of data-intensive science also spread across the stages of the data
life cycle. Stockhause et al. describe how the preservation of large
amounts of research data is a challenge that requires automation
of central processes so that the digital curation of research data
continues to scale well in view of limited personnel resources.

2.4 DIGITAL OBJECTS

There are many definitions for digital objects in the literature.

A quite straightforward and general definition is given by the OAIS
reference model [70], which defines a digital object as “an object
composed of a set of bit sequences.” This definition is quite broadly
applicable, yet it does not specify more details about the composition
of a digital object or its more specific usefulness and interpretability.

In contrast, Thibodeau defines digital objects with much more
distinct aspects: “Every digital object is a physical object, a logical
object, and a conceptual object, and its properties at each of those
levels can be significantly different. A physical object is simply an
inscription of signs on some physical medium. A logical object is an

2.4 DIGITAL OBJECTS

object that is recognized and processed by software. The conceptual
object is the object as it is recognized and understood by a person, or
in some cases recognized and processed by a computer application
capable of executing business transactions.” [89, p. 6]

This definition accounts for the complex meaning of a digital
object for human and machine actors, and also provides a possible
distinction between bit-stream preservation and efforts beyond that.

Thibodeau also states that a logical object may be a composite
of other logical objects. If the composite is (physically) broken into
parts, i.e. if the individual logical objects are extracted and stored as
distinct physical objects, keeping the whole composite intact requires
setting links in the logical composite object to provide references to
its parts. “The way they are stored is irrelevant at the logical level”
[89, p. 8], which is an expression of layering and decoupling the
physical storage from the logical aspect. Thibodeau concludes that
such a scenario prerequisites that “every logical object have its own
persistent identifier, and that the location or locations where each
object is stored be specified.” [89, p. 8]

An important question is what distinguishes a logical object from
a conceptual object. Thibodeau states: “The conceptual object is the
object we deal with in the real world: it is an entity we would
recognize as a meaningful unit of information ...” [89, p. 8]. “In the
digital realm, a conceptual object may also be one recognized by a
business application, that is, a computer application that executes
business transactions.” [89, p. 8] Thibodeau emphasizes that the
conceptual structure may differ substantially from the structure of the
logical object. Thibodeau also describes how there are relationships
from one-to-one up to many-to-many between any two levels of
physical, logical and conceptual objects. Thibodeau concludes that
“in order to preserve a digital object, we must be able to identify
and retrieve all its digital components”, which are “the logical and
physical objects that are necessary to reconstitute the conceptual
object.” He also concludes that “digital preservation is not a simple
process of preserving physical objects but one of preserving the
ability to reproduce the objects”, while objects here should mean
conceptual objects. [89, p. 12]

Allison et al. [2] compare digital objects with classic physical
documents and argues that just as there are means to proof the
authenticity of physical documents, so there must be an analogon
for digital objects. According to Allison et al., authenticity concerns
include prevention of forgery, making transactions (changes, copying,
transfer of ownership) on a document verifiable and managing
documents through a reliable registry. They point out that a digital
object, in contrast to a physical object, cannot be perceived directly
by human observers, but must be subjected to a chain of stages
and processes to be perceivable, and thus the actual impression is

17

18

STATE OF THE ART

influenced by changes to this chain in addition to the changes in the
digital object’s actual bit-stream.

The work by Kahn and Wilensky, commonly referred to through
a paper published in 2006 [45], is in fact much older. As stated in
the preamble of the 2006 paper, the original text is as old as 1993 to
1995, a time where the concepts for digital preservation of objects
available through the Internet were relatively young. The Handle
System, part of the Digital Object Architecture envisioned by Kahn,
has been operational since 1994.

Kahn and Wilensky define digital objects as tuples consisting of
digital material, key-metadata and a handle included in the key-
metadata, which persistently identifies the digital object. The exact
definition is as follows [45, p. 117]:

“Formally, a digital object is an instance of an abstract
data type that has two components, data and key-metadata.
The data is typed, as is described below. The key-metadata
includes a handle, i.e., an identifier globally unique to the
digital object; it may also include other metadata, to be
specified.”

The definition puts particular focus on the persistent identifier, the
handle, which is intrinsically tied to the digital material and the overall
digital object. Overall, this is a much more technical definition than
the definitions reflected above. Kahn and Wilensky do not describe
what kind of metadata is associated with the digital material [45,

p- 117]:

“No attempt is made in this paper to delineate how
much of the metadata should be included in the key-
metadata, other than requiring that it include the manda-
tory handle.”

In the Flexible and Extensible Digital Object and Repository
Architecture (FEDORA)* [74], based on the Kahn and Wilensky
framework, a “DigitalObject” is described as conceptually consisting
of two parts: “(1) a structural kernel, which encapsulates content
as opaque byte stream packages and, (2) an interface, or behavior,
layer that gives contextual meaning to the data in the DigitalObject.”
[74, p- 42] The outer layer must be understood as providing content
dissemination functionality, components which can transform the
kernel data to diverse information entities for particular audiences
and contexts. FEDORA also defines a number of service requests
for whole digital objects, including replication and transfer of objects
between repositories.

Also known as FEDORA Commons, http://fedora-commons.org, last checked Feb.
27, 2015

http://fedora-commons.org

2.4 DIGITAL OBJECTS

The Open Archives Initiative Object Reuse and Exchange specifica-
tions (OAI-ORE) describe compound information objects as “aggrega-
tions of distinct information units that when combined form a logical
whole”>. The distinct units may be different representations of the
same content, but also items that thematically belong together. All
internal components and the whole object are identifiable through
URIs and machine-interpretable relations between components and
also between different information objects.

2.4.1 Identifiers and locators

As already seen in some of the conceptualizations revolving around
digital objects, the question of how to identify an object is elemental.
In some models, such as the Kahn and Wilensky framework, the
identifier is integral part of the digital object. To understand how
the two issues of digital objects and identification are related, it is
important to look at the history of identifiers, and first to understand
the issues of identifiers and locators.

The problem of “link rot” or “URL decay” [49, 55, 83, 41, 101]
did not become evident until the actual creation of the World Wide
Web and URLs as the means to locate objects. With URLs also
came the distinction between URIs, URLs and URNSs. These historic
developments must be outlined first to understand the historic
context in which early PID systems (Handle, ARK) were created.
The concepts of URLs and URNs appeared together at about the
same time and complement each other. The first solid distinctions
regarding URIs, URLs and URNSs can be found in IETF RFC 1630
[10] from 1994, which most particularly specifies URLs as responsible
for object access over protocols and URNs as more persistent names
than URLs. A more thorough formal definition for URNs appeared a
bit later in 1997 in IETF RFC 2141 [63], where URNss are defined as
serving as persistent, location-independent resource identifiers.

The 1996 report [75] falls in the historic context of early URL, URI
and URN discussions. It states that to ensure information integrity,
objects must have a consistent means of reference. The authors see
systems for citation as one solution to provide consistent references;
such systems stem from the library science area rather than the web
science area. URLs are seen rather critical since they are location
specific and frequently change as objects are moved. At that point
in time, the potential location-independent alternative, namely URNSs,

6

http://www.openarchives.org/ore/documents/CompoundObjects-200705.html,
last checked Feb. 27, 2015

As URLs are in the context of this thesis considered to be rather unstable, their
usage here is of course a peculiar and slightly ironic topic of concern. Lacking
the trustworthiness of proper PID systems, all URLs given in this thesis have been
judged individually by the author in terms of how far he trusts the responsible
maintainers to ensure their long-term resolvability.

19

http://www.openarchives.org/ore/documents/CompoundObjects-200705.html

20

STATE OF THE ART

was still a very academic concept not put into wide practical adoption,
as is stated in the report as well. The later history shows that in fact
URNSs have stayed at a rather neglected state of practice ever since
and by far did not achieve a comparable level of adoption like URLs
(i.e. “http:” URISs, see below) with the notable exception of use in the
library and archival community.

The respective roles of URIs, URLs and URNs were clarified later
in 1998 with RFC 2396 [11], where URLs and URNSs are seen as
subclasses of URIs, which are not necessarily disjunct. This finally
culminated in a revised view expressed in RFC 3305 [60] from
2002, which acknowledges the practical development of the world
wide web and the way in which URLs have been used since their
inception. URIs are defined as providing a generic syntax (defined
in RFC 2396 [11], which was superseded by RFC 3986[12]7), part
of which are specific URI schemes. A URI can be further classified
as a locator, a name, or both [11]. URNs are names, expressions
of one of the possible URI schemes: “urn:”. A URL (a locator-type
URI) is redefined as “a type of URI that identifies a resource via
a representation of its primary access mechanism (e.g., its network
“location”).” A URL can thus be seen as an identifier of a location.
An important criterion to note is the primary access mechanism, an
example for which is the “http:” scheme of a typical web-URL. The
mandatory specification of a primary access mechanism is a main
conceptual distinction from the classical view on URNs: URNs do
not imply that a resource can be accessed using the URN, because an
access mechanism may be unknown or even not existing or because
the resource may become nonexistent [11].

As Paskin [73] points out, the URI and URN specifications do
not provide implemented infrastructures and accompanying services.
While the Domain Name System works well for URL resolution,
a similar implemented system for global URN resolution is still
missing. The total set of all URNs is subdivided into so-called URN
namespaces which do not overlap. Some national libraries have been
establishing URN resolution services for the particular namespace of
National Bibliography Numbers (NBNs).

A contemporary view on identifiers and locators with particular
emphasis on object replicas and application to Earth system science
data is given by Duerr et al. [26]. They see identifiers and locators as
being defined by the respective requirements of location independence
and location invariance. According to their definitions, a location
independent identifier identifies every copy of an object, no matter
where it is located, and is potentially contained within each object.
A location invariant locator points to an object, but is not necessarily

RFC 3986 [12] provides more elaborate considerations on the meaning and definition
of a URI, but does not change or contradict the definitions given in the earlier RFC
obsoleted by it [11].

2.4 DIGITAL OBJECTS

located within it, and also does not point to any arbitrary copy of an
object, but to a specific (authoritative) one.

Duerr et al. also require for a location independent identifier to
be generated at the time an object is created, to be placed within
the object itself and to be referenced within related information
about the record such as a metadata record. These are additional
requirements, however it is unclear why the location independence
implies them. Thus they must stand as separate but nonetheless
useful requirements. The same applies to an additional requirement
from the geosciences mentioned by Duerr et al. that a location inde-
pendent identifier must not require a naming authority, motivated by
the idea that such an identifier should be available during fieldwork
where Internet access is unavailable and that the identifier should be
persistent, i.e. not modified after initial assignment.

Kunze [52] puts emphasis on the association (the binding) between
an identifier and its target, in this case an information object, which
incorporates a record of associated information in addition to the
referenced object.

2.4.2 Towards persistent identifiers

The problem of decaying URLs and broken links is certainly as old
as the world wide web itself and, unsurprisingly, the attempts to
overcome this problem have been going on for almost two decades.
Within these two decades, various attempts have been put forward,
yet the problem remains unsolved at a broader scale. The concept of
a persistent identifier expresses the wish for an ideal solution where
the same name can be used over time to retrieve a resource, no matter
where it currently resides or who owns it, and thus stands in contrast
to the supposedly fragile URLs.

The term persistent identifier (abbreviated as PIDs or, more rarely,
PIs) has been around for quite a while. Starting with the DOI
system, contemporary literature uses the term for a concept that
seems quite clear at a first glance. In detail, there are however
important requirements inherent in different views. Most notably,
the term identifier, as opposed to a locator, seems to be set — a
“persistent locator” is somewhat unheard of. As described further
below, resolvability is largely implicit in viewpoints that simply talk
about “persistent” identifiers.

Perhaps as a symptom of the remaining level of ambiguity in
the academic discussion, literature dealing with persistent identifiers
frequently tries to disambiguate the concept by putting more precise
adjectives in front of the ambiguous noun “identifier”. As a result,
there are unique, resolvable, persistent, interoperable, or even citable
identifiers. Paskin [73] makes an attempt to define these adjectives,
which are implicit requirements for identifiers, more precisely:

21

22 STATE OF THE ART

UNIQUENESS : This can be read in two ways. According to Paskin,
it may mean that “one string denotes one and only one entity”,
which does not necessarily imply that every entity has at most
one identifier pointing to it. An equivalent description is that
there should be only one namespace. Coyle [21] contrasts this
with the notion that within a defined context, uniqueness may
in fact mean that “each entity has one and only one identifier”.
Even for the case where uniqueness refers to a single entity
being identified, it is again context dependent what this means;
does an ISBN, for example, identify a book edition or every
physical copy of it?

RESOLUTION: For a resolvable identifier there must be a service that
takes the identifier string as input and returns a specific output
related to the identified entity.

PERSISTENCE: Once assigned, an identifier denotes the same entity
indefinitely.

INTEROPERABILITY: An interoperable identifier can be used in
services outside the direct control of the identifier assigner.
Assumptions made on assignment must be provided.

Paskin [73] points out that specifications such as URN and URI are
just that — specifications, but not implemented infrastructure and
accompanying policies. Paskin suggests to employ identifiers that
fulfill all four criteria to overcome the problem of decaying locators.
The four criteria are at the core of the DOI system design, which
Paskin helped to establish.

Other requirements seen in the literature are:

CITABILITY: Duerr et al. require that citable identifiers “need to be
broadly accepted and used by journal publishers” [26, p. 143].
Although there are also technical requirements for citability —
according to Duerr et al., a citable identifier must be unique,
location invariant and point to the current location of the data
— the signifying criterion for citability is given by such policies
with the publishers. The identified object must also be subjected
to digital preservation (e.g. through a long-term archive) [48].

ACTIONABLE: Kunze [52] and Paskin [72] define an actionable identi-
fier as one that in the context of a particular infrastructure, e.g.
the world wide web, can be interacted with by an end-user in a
straightforward way, for example in a web browser, to directly
or indirectly gain access to the referenced object. The last mile of
this interaction process may be extended through HTTP content
negotiation to adequately serve human and machine agents.

Jantz and Giarlo describe the concept of a persistent identifier
as follows: “We would like to assign a globally unique name to a

2.4 DIGITAL OBJECTS

digital object, a name that can be used, in perpetuity, to refer to
and retrieve the digital object.” [44, p. 140] This can be rephrased
as requiring an identifier to be unique, persistent and resolvable
according to the definitions given above. It can also imply that the
entity is never deleted and that resolvability requires the entity to
be returned and not just related output. However, these two things
are strictly speaking not concerned with the core mechanisms of
identifying an entity, but rather focus on retrieval aspects of digital
preservation that go beyond identification. An entity can be deleted
and still the persistent identifier remains, since the name of an entity
does not disappear when the entity does.

2.4.3 Persistent identifiers for data

What are the digital objects PIDs are assigned to? One popular PID
system with a long history is the Handle System. Since its conception,
it has been proposed and used in various areas, including content
from the media industry and the U.S. military. One particularly
large community, not just for the Handle System, but for PID
systems in general, has been the scientific publishing community.
Here, the problem of decaying URLs raised serious concerns when
scholarly communication started to use the Internet as a mainstream
medium [41]. The DOI Foundation is therefore still the perhaps most
prominent customer of the Handle System.

More recently, interest has risen within the scientific community
to assign identifiers to objects other than scholarly articles. The first
milestone in this development is the DataCite initiative, officially
founded in 2009 as the final outcome of collaborative effort going
on since the early 2000s [17], where identifiers are assigned to
scientific datasets with the explicit goal to make them citable at the
same level as articles, the more traditional research product. More
recent examples are identifiers for people, academic researchers in
particular, represented by activities such as ORCID, or identifiers
for physical objects in science such as the International Geo Sample
Number (IGSN).

While classic PID systems and literature discussions focus on the
notion of identification, redirection and occasionally naming schemes
(as stand-ins for actual implementations), there is also a fundamental
discussion that revolves around the notion of additional information
associated with such identifiers. While the intent to identify and
ultimately locate an object over its lifetime and through changes in
location or ownership is still present, being able to retrieve additional
context information on the object using the same identifier is seen
as increasingly useful. This resonates with questions and intentions
present at the earlier days as well, and subsequently reflected in the

23

24

STATE OF THE ART

OAIS metadata types to provide accountability and verifiability of
objects.

The implications of such a view are manifold. A view focused on
identifier names and schemes for them cannot cover the additional
information adequately, since that would require to look more deeply
into aspects of how this information is stored and accessed.

On identifier names, Jantz and Giarlo remark that “the PID naming
convention should generally be free of technology dependencies, pro-
tocols, and local naming conventions” [44, p. 141], because technology
and naming conventions change over time. A more detailed analysis
of such intelligent identifiers, which enable some interpretation outside
their registration domain via the identifier name, is given by Paskin
[72] with a similar conclusion, which largely advises against semanti-
cally rich identifier names.

A particular issue is that of object fixity [75], i.e. providing
mechanisms that can validate that an object has not been altered.
For valuable resources which are in fact continuously updated,
the complete record of changes should be maintained. The report
describes this in terms of databases only, however the concept is
applicable in general (not every dynamic object today is residing
in a database). The report authors also admit that providing such
level of detail reliably can be expensive to maintain. The OAIS model
includes such fixity and provenance information.

2.4.4 The relationship between technology and policies

The solution to overcome the URL decay problem is not primarily
of a technical nature. In the case of HTTP URLs for example, the
actual mechanisms that can enable stability of the binding over
longer time spans have been known for quite some time now: the
HTTP specification [28] lists several methods for redirecting look-up
requests, each with its own distinct semantics. The PURL system
in particular makes use of these mechanisms. Beyond HTTD, there
are also various other technical methods, from server configuration
options down to the low level mechanisms of the Domain Name
System. So if all those technical mechanisms exist, why is the problem
still unsolved?

According to Hilse and Kothe [41], URLs break due to two reasons:
either documents no longer exist or they do exist, but were relocated
to a different path or domain. Hilse and Kothe continue to explain
that, from a theoretical perspective, these problems are largely due to
inadequate administration of the respective servers. In practice, the
problem is more complex particularly due to the domain name being
part of the URL. Domain names change because they are bound to
trademarks, companies or individual departments, and these changes
cannot be prevented easily. Hilse and Kothe therefore conclude that

2.5 CONCLUSIONS

persistence is a function of organization and administration, not of
technology.

So an obvious answer to the question stated above is that estab-
lishing the concept of PIDs is not achievable by technical means
only. Rather, social and legal policies, quality-controlled management
processes, contingency strategies and not only a general awareness,
but somewhat collaborative responsibility for the issue are needed.
Von der Hude [42] lists a reliable resolution service, a commitment
to long-term archival and usage policies as the main requirements
for URN persistence in particular. Nicholas et al. [69] point out that
dependency on particular technologies may actually turn out to be a
hindrance for persistence, since technological progress must be dealt
with as well.

One strategy to at least ease the costs of maintaining persistence
is to provide the technical means to support such policies. Plain
URLs in general do not bear information on the level of commitment
regarding the persistence or time span of validity. Kunze [52] there-
fore argues for introducing a commitment statement and presents
an insight that clarifies a potential socioeconomic factor. In his view,
a simple indirection layer is an inferior solution compared to a
commitment statement, because this puts an inversion to the value
of the things identified: Although a bad DNS entry may be fixed at
high priority, an individual object’s identifier is regarded with much
less value and thus remains unfixed. If a provider is instead obliged
to provide a commitment statement, the user can transparently see
what the preservation policy of the issuer is and in the best case
expect the identifier not to break. By making the preservation policy
explicit, the provider is exposed to the pressure by potential future
users, who may eventually demand that the policy is enforced.

Technology can support such policies, for example by providing a
mechanism for depositing commitment statements whenever a PID
is issued. As Kunze further points out, this has been realized as
part of the ARK system; still, persistence in the end depends on the
participating parties obliging with the social policies. Even if they
are made explicit by technological means, they cannot be enforced
by them. At a larger scope, this resonates well with a common
misconception in computer science and technology debates — the
often naive assumption that technology (and its progress) will be
a sufficient solution for all problems, blandly ignoring the human
factors.

2.5 CONCLUSIONS

From the literature it is evident that the idea of persistent identifi-
cation emerged out of practical needs. As a result, the definitions
and more conceptual literature dealing with PIDs still cling very

25

26

STATE OF THE ART

much to the behavioral aspects and aim to define the concept by
describing what you can do with a proper implementation of it:
resolve identifiers over time and location changes. One could argue
that the definition of identifier persistence stated as denoting (giving
a name for) an entity indefinitely is just the same as the idea of
identification per se: Every identifier is persistent. This however
appears to be untrue for real-world objects. A simple example may
be the name for a mountain or an important archaeological artifact.
There is no guarantee that these names stay forever, since society
evolves and so there is always the possibility for a change in name.

The contemporary notion of a persistent identifier is therefore
highly bound to the technical background its applications stem from.
Making an identifier persistent denotes a clear practical purpose
(use case): Ensuring that the same entity is identified for a longer
time span (indefinitely, in theory). Because the distinctions are purely
based on such a behavioral view, it might be impossible to define
a distinct conceptual class of persistent identifiers as a subclass of
identifiers. The difference may be purely in the pragmatic behavior
and as such, another definition cannot be found. If one was to subtract
all the practical purposes, requirements and intentions, there may
be no difference between a persistent identifier and any kind of
identifier.

Therefore, PIDs are a social construct. This is the most important
characteristic distinguishing a PID from primary keys in a generic
relational database or the entries in a large distributed hash table.
Technically, there is not a lot of difference, other than the specific
use of information values that redirect to final objects. The Handle
System, for instance, is an enabling technology that may make it
easier to uphold the social construct, while technically, it is a set of
interconnected hash tables. The policies constructed around the look-
up and redirection facilities are thus essential. They define the re-
sponsibilities, regulate the issues of persistency, establish contingency
plans so the application value of PIDs can be ensured over long time
spans.

The brief history of persistent identification already shows a
detectable shift in PID usage from simple redirection to storing addi-
tional context information closely associated with them. Technically,
providing context information can be achieved through conventional
databases, yet the social frameworks must evolve as well so they
apply to maintenance of both identifiers and associated information.
The literature also indicates a long-standing academic conflict be-
tween the schools of web-based URIs and the PID concepts favored
by memory institutions such as libraries and archives. Attempts to
unify these conflicting schools of thoughts have been made, yet as of
today, the discussion appears far from being consolidated.

2.5 CONCLUSIONS

In general, the view that technology alone cannot overcome the
fundamental issue of breaking links but that policies are required is
important for the effectiveness of practical solutions. However, there
are technological choices which make preservation easier or harder
to achieve. A solution which makes the possible breakage of links
a standard scenario should offer technical functions that support
adequate policies.

27

USE CASES

As stated in the motivation on page 4, a framework for persistent
identification must take into account various user requirements,
including concerns of data curation and long-term preservation, the
needs of e-science infrastructure maintainers and the original data
providers. This chapter therefore introduces a set of practical usage
scenarios that cover different user aspects but also indicate current
issues in the practice of PID usage and scientific data management.
Some of the scenarios are extensions of contemporary practice that
hint at future developments. Since PID assignment and curation are
accompanied by additional costs, the usage scenarios also indicate
areas where added value can be provided by further exploitation of
the identifiers assigned.

3.1 THE EARTH SYSTEM GRID FEDERATION

After many years of development and maturing, the Earth System
Grid Federation (ESGF) [100, 20, 99] is today an open source
project organized collaboratively by the global Earth system modeling
community. The continued dependency of the CMIP5 and IPCC
processes on it and the future perspective for CMIP6 have guided
its development and shape the requirements and, last but not least,
the goals associated with funding. ESGF is based on a distributed
and federated architecture currently consisting of more than twenty
nodes at individual modeling centers all around the globe. Figures 3
and 4 show exemplary screenshots of the ESGF end-user website and
illustrate a data selection workflow..

ESGF is commonly considered to be situated at a dissemination
stage of the data life cycle, situated after initial generation of data
and partially reaching into archival and re-use stages. Some data
served through ESGF is provided by long-term archives, however this
is not necessarily the case for all data and most notably was not true
during the evaluation phase of CMIP5 data. The use cases further
below describe the ESGF process in more detail.

Due to the modular system design, ESGF nodes may differ in
the set of features offered. A typical node will however contain at
least a data services module to publish local datasets. Publication
here means to make it visible within the federation, which is not
the same as formal data publication with a DOI, which usually
happens at a much later stage as described further below. Aside
from the CMIP5 data, a lot of other modeling and observational data

29

30 USE CASES

wertmpenrvom

& is-enes @l?“ J"JS““”"”@ DKRZ
s, s e und Forschung recuee

DEUTSEHES
KLIMARECHENZENTRUN

current Selections Jemporal Search

o Search Clesrsearch constraings
remove all and datacart
Examples: tampersture, "suface temperature”, climate AND project CIMIPS AND variable: bus, Search Help
) projec: CM B3 Search Contralled
() model MPLESKM-LR To download data: add datasets to your Data Cart, then click on Expand or wget. e —
(x) experiment:abruptdCOZ [CIsearch All Sites [Show All Replicas Show All Versions
x) realm:atmos
() time frequency:maon <15 displaying 1ta5 of 5 search results

Display 10 El datasets per page

Add All Displayed to Datacart ~ Remaove All Displayed from Datacart

Search Categories

Project Results Data Cart
Institute project=CMIPS, model=MPI-ESK-L R, Max Planck Institute for Meteorology (MPLM), experiment=abrupt
Wodel X002, time_frequency=mon, modeling realm=atmaos, ensemble=sr{i1p, version=20120602
Data Mode: brbfipcc-arg. dkrz.de
Versiom: 20120602
Description: MPI-ESM-LR madel autput prepared for CMIPS shrupt 4XC02

Further options: Add To Cart Model Docurnentation

Instrument
Experiment Family

Experiment
project=CMIPS, model=MPLES-LR, Max Planck Institute for Meteoralogy (MPI-M). experiment=atrupt

Time Frequency 4XC02, time_frequency=mon, modeling realm=atmos, ensemble=r1ilp1, version=20120315

Product Data Mode: bmbf-ipce-arg. dkrz.de

Versiom: 20120315
Realm Description: MPI-ESMLR model output prepared for CMIPS skrupt 44002

Further options: Add To Cat Model Documentation
Variable
) project=CMIPS, model=tPLESM-LF, Max Planck Institute for Meteorology (MPEMY, esperiment=abrupt

Variable Long Name

4XC02, time_frequency=mon, modeling realm=atmos, ensernble=rlitpl, version=20111119
CMIP Table

Data Mode: bmbf-ipce-ars dkrz.de
Versiomn: 20111119
Description: MPI-ESMLR model output prepared for CMIPS sbrupt 44002

CF Standard Name

Ensemble Further options: Add To Cat Model Documentation

Domain project=CMIP5, model=MPFESK-LE, Max Planck Institute for Meteoralogy (MPIM), experiment=abrupt
4xC02 time_frequency=mon, modeling realm=atmos, enserble=rlitpl, version=20111003

Driving Model
Data Mode: brbfipoe-arh. dkrz de

Downscaling realisation Version: 20111005

Description: MPI-ESMALR model output prepared for CMIPS sbrupt 4XC02

Data Node Further options: Add To Cart Model Docurmnentation

Figure 3: The Earth System Grid Federation portal websites provide faceted
search facilities. In this example from the ESGF node at http:
//esgf-data.dkrz.de (last checked Feb. 27, 2015), the currently
selected facets are shown in the top-right corner: CMIP5 data from
an Earth system model used by the Max Planck Institute for Me-
teorology, CMIP5 experiment abrupt4xCOz2, monthly atmospheric
data. The four entries displayed are consecutive versions of the
same data with the final version at the top.

http://esgf-data.dkrz.de
http://esgf-data.dkrz.de

3.1 THE EARTH SYSTEM GRID FEDERATION 31

Results Data Cart

Globus Online All WGET Al

i R Al
@ Show all Filter over text Selected elocted Brmove
emip5.output!.MPLW.MPI- Hicle Files | Remove
ESM-LR.abruptdxCOZ.mon.atmos.Amon.r1ilp1.v201

20602|bmbf-ipcc-ars.dkrz.de
(Total Murnber of Files for All Variables: 201)

cmip5.outputt.MPL-M.MPI-

ESM-LR.abruptdxCO2.mon.atmos. Amon.r1i1p1.u20120602.c

Iwvi_Amon_WPI-

ESM-LR_abrupt4xCo2_r1i1p1_135001-199912.nc_2[bmbf- HTTP Globus Online OPENDAP
ipcc-ar5.dkrz.de

traching_id: 26Ti17M7-Tbat-4729-9799-280¢ 72479759

checksum: 36dB100225a1d37dBFI9BT51 22793635 (MDS)

cmip5.outputt.MPL-M.MPI-

ESM-LR.abruptdxCO2.mon.atmos.Amon.r1i1p1.u20120602.c

ct_Amon_MPI-

ESM-LR_abrupt4xC02_r1i1p1_185001-199912.nc_2[bmbf- HTTP Globus Online OPENDAR
ipcc-ar5.dkrz.de

traching_id: 4bdecaBe-biS-497a-a174-253502 155205

checksum: 115:28813b90c 7 bAELA0C06 10686 162 (MD5)

cmip5.outputt.MPL-M.MPI-

ESM-LR.abruptdxCO2.mon.atmos.Amon.r1i1p1.u20120602.t

s_Amon_MPI-

ESM-LR_abrupt4xCo2_r1i1p1_135001-199912.nc_2[bmbf- HTTP Globus Online OPENDAP
ipcc-ar5.dkrz.de

tracking i (2555¢ 6460641 24-9605-9944ddc 25566

126468 (WD)

Figure 4: In this example, the first dataset from the result list in figure 3 has
been selected. The dataset consists of 201 files (3 shown), a total
data volume of about 50 GB. Each file bears a tracking ID and a
checksum (see text). Additional metadata (such as the size) can be
retrieved for datasets and files (not shown). The dataset is part of
an experiment data publication bearing a dedicated DataCite DOI
[33], which is one quite coarse aggregation level above the dataset
level.

projects have recently decided to employ ESGF as a distribution infra-
structure. Examples include modeling results of the WCRP-endorsed
Coordinated Regional Climate Downscaling Experiment (CORDEX)
and observational data from satellites (e.g. the “obsgMIPS” datasets).
Typically, netCDF files will be published, and the metadata contained
in their headers will be fed into the local metadata catalog. At every
node, data can be searched, and the search will be federated across
all nodes, so that in the end, remote datasets are visible in addition to
the ones published at the local node. Access to them and download
options will however only be given at the hosting node. Some datasets
(e.g. CMIP5 core data) are replicated to more than one node to gain
more efficient access by local users. A central access point to the
ESGF data space are the web pages at the individual node, which
offer complex searching and browsing facilities over the published
datasets.

The following sections contain descriptions of four exemplary use
cases from the ESGF application domain that may also be applied to
other scenarios. The core use cases of ESGF, such as data publishing,
searching and browsing, can already be handled by existing ESGF
services and are not described in further detail. Similar use cases have
also been described for example in [98, 97, 102].

32

USE CASES

3.2 REFERENCING PRELIMINARY DATA

The full process for eventually publishing a final dataset within ESGF
is quite complex and covers far more than the technical publication
aspects. A significant part of the process is subject to extensive quality
control (QC) with several stages [85]. As part of these QC checks, both
technical and conceptual aspects of the data are assessed. Technical
aspects include for instance whether variable values are within valid
bounds and whether the metadata entries are complete. At the final
stage, the original authors of data must approve of the publication,
and only after this has been done, the dataset is considered stable
and a proper DataCite DOI is assigned. Due to the complexity of
typical Earth system modeling outputs, the full process from first
preliminary publication of a dataset on ESGF until DOI assignment
can take considerable time, ranging from several months to more than
a year. Errors in initially submitted data are quite common and in
fact a central purpose of preliminary publication is to enable sharing
and peer-review of data in order to correct them. In the worst case,
whole simulations may eventually need to be re-run on the respective
computational machinery, stalling the final publication process for
considerable time.

However, scientific activities move at their own pace, and partic-
ularly the submission deadlines for the IPCC reports are tightly set.
Scientists wish to refer to the preliminary datasets in an unambiguous
way when discussing results with their peers or when preparing and
submitting articles in time so they can be considered for the IPCC
working group reports. In terms of Treloar and Harboe-Ree [90], such
cases happen at the boundary between the private and the shared
research domain. Yet, as long as a dataset is not ultimately stable
and subjected to digital preservation, a full DOI cannot be assigned,
as doing so would violate a fundamental policy of the DOI process,
namely to keep objects available on the long-term. At creation of such
an object it is unknown whether it will undergo the full life cycle or be
disposed before reaching the archival stage. Short of making drastic
changes to DOI policies, an alternative to the current usage of DOIs
is thus required. A possibility for this is an identifier that is subject to
different policies than a DOI, however it is unclear how and in what
respect such an identifier can be considered persistent if the dataset
may be withdrawn and which other consequences may result.

3.3 ACCESS TO SPECIFIC VERSIONS OF A DATASET

A further variation of the problem described above concerns the
versioning practices of ESGF data. As shown in figure 3 in the context
of CMIPs5, there can be multiple versions of a dataset published over
the course of several month. Imagine that indeed publication of a

3.4 REFERENCING CUSTOM DATA SLICES

dataset has been stalled after the initial stage because some errors
were detected or some files were still missing. Now the dataset has
been fixed by for example reprocessing still available raw data or
re-running the model. In the meantime, a user may have already
used the data, such as for further processing and analysis. Before
publishing an article, such a user should obviously check whether the
data used contain any errors discovered after initial retrieval. The user
may now submit the data files to a specific service or extract some
information from them in order to look up the associated information
in ESGF and ultimately discover that there actually is a new version
of the dataset. The user may choose to retrieve the latest version, and
in any case the user will want to know when and why the original
data have been replaced.

This scenario can be further generalized outside the scope of ESGE.
Data that are subject to frequent or infrequent changes should be
uniquely identified across these changes, so that there is always a
method available to retrieve the latest version of the data through
a dedicated persistent identifier. This is useful for example for
continuous processing of real-time sensor data. At the same time,
however, it is also important to keep references to older versions and
make them discoverable so that third parties can investigate possible
changes.

3.4 REFERENCING CUSTOM DATA SLICES

Earth system models generate complex data products that cannot be
easily categorized along a single hierarchy. Although it may seem to
be a natural way to arrange all CMIP5 data along the organizational
axis top-down from experiments over simulations to the time series of
individual variables (see figure 4), this does not reflect the manifold
axes along which different users understand CMIP5 data products.
For searching data at ESGF nodes, the issue is mitigated through a
faceted search interface at the node websites (see figure 3). However,
the purpose of model intercomparison is to mix and match data
from various models, simulation runs and modeling centers, and
also possibly include observational data. Referencing such a colorful
mixture of data both completely and precisely is quite difficult given
the current DOI assignment and usage policies. There is a certain
practical limit to the number of DOIs citable in a reference list, and
often, these DOIs are assigned at a quite coarse level of granularity
and for a thematic grouping not adequate to precisely define the base
data of the particular work conducted.

Ideally, a user will therefore fill a “data shopping basket”: Before
submitting an article on an intercomparison analysis of model results,
the user presents all data used as a big bundle to a specific service.
The service verifies that all data are still available and of the latest

33

34

USE CASES

version. It then provides the user with a single unique identifier for
the bundled data. At a later point, looking up this identifier allows
a third party to assess exactly which datasets have been used. It
should also be possible to request more information on them, such
as whether data are in a stable form and if not, whether (and where)
there are new versions of them. Ultimately, it may even be possible to
recompute any results in the article if the shopping basket contains
all input data and references a proper executable workflow. Such data
reproducibility aspects are discussed further below in the context of
provenance.

As a further expansion of the idea, the data basket from a
model analysis effort may even contain products from different
e-infrastructures, such as model output data from ESGF and obser-
vational data from the Global Earth Observation System of Systems
(GEOSS) portal. Even if all data bear PIDs, they may be issued
through different PID systems depending on what the particular
e-infrastructures use. A solution will therefore ultimately have to
bridge PID systems as well as e-infrastructures to enable users to
reference the full context of the scientific work conducted.

As a further generalization, the use case of referencing a custom
data basket is not bound to ESGF or the geosciences. Ultimately, the
service to receive a data basket and assign a PID to it may be offered
by scientific publishers that ultimately also govern the acceptance of
PIDs in articles if not in reference lists. Of course, the publishers will
try to avoid dealing with individual data objects and information
about them (e.g. displayed on specific landing pages) themselves.
This can however be easily delegated to the original data holders as
they also provide the individual PIDs aggregated in the basket and
will thus most likely offer rich information on their own.

3.5 PROVENANCE TRACING

Another use case that by its very nature spans several infrastruc-
tures such as EUDAT, ESGF and other community-specific solutions
concerns cross-system provenance tracing. Provenance information
forms an important part of scientific metadata as it facilitates quality
and validity assessments of data and allows third parties to under-
stand the processes which lead to the creation of a particular data ob-
ject [65, 67, 82]. Research on provenance-related topics has produced
significant output on topics such as provenance encoding formats [68,
66] and assembling provenance information from scientific workflow
engines [81]. A particularly useful view of provenance as described by
Moreau [65] is to model it as a directed acyclic graph of data objects
that are derived from each other.

When a data object is re-used and processed, it may be published
at a location different from the original repository. If this happens

3.6 DISCUSSION

multiple consecutive times, the provenance trace of the object runs
into a high risk of becoming interrupted if one of the intermediate
repositories becomes unavailable or if objects are deleted because
they were not covered by a long-term archival policy. Even if there
are provenance documents e.g. produced by a workflow engine,
these will become inaccessible if the cross-repository trace is broken.
Therefore, a solution is required that allows users to trace back
the acyclic provenance graph of data objects across repositories and
temporary states that may already be gone at the time of investigation.
As also mentioned in [98], it is preferable to ensure some form of
graceful degradation, meaning that upon partial information loss, as
much as possible of the remaining provenance trace and context
information remains meaningful.

Duerr et al. [26] also state that indeed there may be value in
keeping some context information intact even if the data objects are
already gone, justifying the additional preservation costs. Ultimately,
rich provenance information may enable the recomputation of data
products from the original inputs, particularly if data have been
produced by means of a scientific workflow system that fully cap-
tures all production steps in machine-interpretable form (exemplary
solutions are presented for example by Van Gorp and Mazanek [93]
or Koop et al. [50]). This goes beyond the scope of this simple use
case, where the user only wants to discover the original sources that
were used in creating a final data product, even if they are located
at separate repositories. Nonetheless, discovering the initial inputs
and intermediate data products can help users to acquire workflow
descriptions that eventually enable recomputation. With additional
information available on intermediate products, such as checksums,
the execution results may also be verified.

3.6 DISCUSSION

For resolvable PIDs, the most important use is resolution. Kahn and
Wilensky [45] describe this as a process where a user submits a
PID to a resolver and the resolver will return the network names
or addresses of repositories in which the digital object is stored.
Ensuring reliable resolution of identifiers over long time spans is a
fundamental requirement across all use cases presented here, even
though they illustrate usage beyond simple resolution.

Not only in ESGF, but also in application scenarios from other
European e-science infrastructures, such as the Common Languages
Resources and Technology Infrastructure (CLARIN) or the aforemen-
tioned Digital Research Infrastructure for the Arts and Humanities
(DARIAH), there are recurring questions of how to deal with PIDs
when they occur in massive numbers, are used across infrastructures
and last but not least identify different kinds of entities: there are

35

36

USE CASES

already solutions for identifiers for scientific articles and data objects
and more recently also for people, organizations and geological
samples. Machine agents acting in infrastructures designed to deal
with massive numbers of data and other objects will be unable to
properly perform automated tasks if they do not know the essential
properties of the resource behind an identifier, most importantly
what major category it falls into. An identifier is supposed to be an
opaque string (cf. [72]), thus the resource will have to be analyzed
to provide the necessary context for the agent to act. But such a
solution does not scale well if large numbers of objects must be
assessed in a limited time frame and it is also unsuited for objects
stored at remote locations as is typical in the context of contemporary
distributed systems. In digital preservation, there is also the notion
of dark archives where access is impossible or extremely difficult and
expensive. The context of the resource must therefore be available in
a rapid fashion and it should be sufficient to define the fundamental
type or class of a resource.

CONCEPTUAL FRAMEWORK

This section first introduces a formal model that defines fundamental
notions such as an identifier, PID systems and PID records. The
formal model provides the basis for a conceptual framework for iden-
tifiers and associated information. The framework consists of three
abstraction layers, where each higher layer relies on functionality
provided by lower layers (see figure 1). If an upper layer is lost, the
information and operations provided by a lower layer must continue
to be useful and coherent. Applications may choose to work on top of
any of these layers, depending on the complexity of tasks that need
to be accomplished.

The bottommost layer is called the persistency layer because it
ensures that the most fundamental aspects of persistent identifiers
and the relations expressed in the formal model are obeyed. It also
offers a set of criteria useful to classify different PID systems. Its top
interface is provided through the concept of a Persistent Entity that
is essential to define how identifiers can remain persistent if their
objects are not preserved and how essential information can remain
available beyond the lifetime of an object. The typing layer describes
PID records in more detail with the goal to enable the classification
of objects by typing the information within their PID records. The
collection layer finally steps beyond a view of singular identifiers and
objects by providing persistent mechanisms for aggregating objects
and enabling efficient operations on such aggregations.

Since practical applications may not require all facilities offered
by higher layers, two broader models are referred to throughout
the framework. In the full model, all layers are present. The simpler
preservation-centric model may be easier to understand and applied
by users interested purely in digital preservation aspects: It focuses
on the Persistent Entity and does not include the aspects of typing
and collections. It is up to the reader to decide which model fits a
particular purpose best; in any case, both share the same foundations.

4.1 FORMAL MODEL

The formal model aims to describe the relationship between identi-
fiers, objects and PID record contents. The relations defined in the
model also cover changes to object location and PID record contents
over time. A more detailed model may describe such changes in
further detail, for example through sequences of discrete states, yet
the level of detail pertaining to such a view is not required to

37

38

CONCEPTUAL FRAMEWORK

address the initial research questions and lay the foundation for the
framework layers described through the course of this chapter. Also
note that the question of how exactly object identity is defined is
considered to remain open with two possible answers: Objects may
be bit-identical, sympathetic to a view of bit-stream preservation, or
considered to be equal from a domain sciences viewpoint, which
involves curative actions such as file format migrations. This is further
discussed in the context of criterion 6 further below.

4.1.1 Describing identification

To describe identification as the basic element of the formal model,
let us begin with a very simple world view where there is a finite set
[36] of data objects, D, and a finite set of identifiers, P, with |P| > |D|.
The goal of identification then is to construct a relation between these
two sets. Let us name this relation D$P, circumscribed as “an object
is identified by an identifier”. To be practically useful, ¢ will however
have to fulfill some properties.

The most essential property originates from the problem that an
identifier is not very useful if it identifies more than one object.
Specifically this is what it means to be a unique identifier: there should
not be two pairwise distinct objects being identified by the same
identifier. In consequence, ¢ must be injective.

Definition 1 (Unique identification relation) Let D be a finite set of
data objects (bit-streams). Let P be a finite set of identifiers. Then an injective
relation D$P is called a unique identification relation.

The injectivity of ¢ is described as follows:

Ve,deD, ¥peP: coprddp=c=d (1)

The definition of the unique identification relation allows us to have
a look at another, stronger interpretation of uniqueness. In practice,
it may ultimately be desirable to assign not more than one identifier
to any particular object (as is, for example, described in [21, 6]). This
can be defined as follows: A unique identification relation is strictly
unique if and only if it is functional (univalent). Note however that
such a scenario can hardly be enforced in practice and may also
have undesirable consequences. In the following, we will therefore
only assume simple (non-strict) uniqueness of ¢ unless explicitly
stated otherwise. The Entity Name System presented by Bazzanella
et al. [6] aims to enforce strict uniqueness, however it exhibits some
fundamental flaws which are discussed later in section 7.2.

There is also an equivalent view. Consider the following logical
statement: If two identifiers are identical, then their referenced

4.1 FORMAL MODEL

objects are identical. This is equivalent to the non-strict uniqueness
interpretation. The strict uniqueness is expressed as an equivalency:
If and only if two identifiers are identical, then and only then their
referenced objects are identical. This allows us to infer from the
uniqueness of objects to the uniqueness of their identifiers. In practice,
such a strict interpretation often cannot be assumed.

For practical purposes, we also often do not want to look at ¢
and its properties, but rather at its inverse relation, ¢~ ': p ~— d,
paraphrased as “an identifier identifies an object”. This relation
is essential for practical retrieval of an object if we only have an
identifier. This directly brings us into the scope of a PID system:

Definition 2 (PID system and identifier resolution relation) Let D be
a finite set of data objects. Let P be a finite set of identifiers. Let D$P be an
injective unique identification relation. Then S = (P,D,$™") is called a
PID system with P as the set of identifiers of D. P~ 1D is the inverse of ¢
and is called the identifier resolution relation.

Since ¢! is the inverse relation of ¢, it follows from (1) that ¢!
is functional, also called a (partially defined) function [77]. Using (1)
with the inverse of ¢ gives us the common definition of a functional
relation:

VpeP,Ve,deD: pd leapdpld=c=d (2)

The value of ¢~ can be undefined in cases where the data object d
is already gone but the identifier is preserved, thus ¢ ' may be only
partially defined. Vice versa, if ¢ is strictly unique (i.e., functional),
¢~ is also injective. Finally, the goal of persistent identification then
is to control changes to ¢!, essentially minimizing them. This will
later be expressed in the persistency layer as the first criterion.

4.1.2 Describing PID records

In the simplest understanding, a PID record is a mapping — a
function — from keys to values. To keep things simple, we use natural
numbers as keys and leave the exact definition of values open without
loss of generality.

Definition 3 (PID record function) Let V be a set of values. Then a
partial function w: k — v, k € IN, v € V, is called a PID record function.

We will examine the definition and properties of w in more detail
and see that in general we cannot assume it to be surjective or
injective.

Let us assume that a particular key should only point to at most
one value, because that is the foremost use of PID records for access

39

40

CONCEPTUAL FRAMEWORK

Figure 5: Sets and relations for an extended PID system. P is the set of
identifiers, D the set of data objects, ¢~ is the identifier resolution
operation. In case of non-strict identifier uniqueness, ¢! need
not be injective: both p1 and p; can be related to the same d. PID
records are described as members of the function set R, an example
for which is w. The PID record resolution relation o associates
a PID with a PID record. w may be partially defined: There is
no image for k4. w need not be surjective: vz and v4 have no
equivalent in k. w need not be injective: k; and k3 map to the
same value v;.

and storage of information®'. Consequently, w should be a function.
However, in practice, the size of PID records, i.e. the number of keys
in a particular record, is quite variable, and not every PID record will
contain a value for every key; thus, w is usually only partially defined.
Also, different keys may map to the same value, perhaps because
the dates for its creation and last access are identical; thus, w is not
necessarily injective. The image of w may also be a very small subset
of V because of the large number of values possible (e.g. character
strings of arbitrary length), thus w is not necessarily surjective.

Essentially, the notion of a PID record is more precisely expressed
as a concrete instance of a PID record function.

In much the same way as, given an identifier, the resolution relation
provides us with an object, we can also describe a similar relation for
PID records. By extending the notion of a PID System, it becomes
possible to handle identified objects and PID records based on a
common structure.

Definition 4 (Record resolution relation and extended PID system)
Let S = (P,D,d~") bea PID system. Let V be a set of values and R be a set
of PID record functions. Then a functional relation 0: p — w,pe P, w e

Other scenarios are possible where e.g. a record contains multiple text fields, all
keyed to be a “description”. w will then not be functional.

4.1 FORMAL MODEL

R, is called a PID record resolution relation. $* = (P,D,V,R, ¢~ 1, 0) is
an extended PID system.

The relation o is functional (within the scope of a distinct PID
system) to ensure that there are not multiple records stored for a
single identifier. Note that the identifier p is in general not part of
the PID record. Thus, the relation o is not necessarily injective: two
different identifiers can be associated with the same PID record (i.e.,
the same values as expressed by the mapping function w). This may
particularly be the case if there is a “default” or “empty” record. Note
that o is not required to be a total function at this point, covering
scenarios where a PID record is unavailable even while the identified
object still exists.

All sets, relations and functions described so far are also summa-
rized in figure 5.

4.1.3 Further aspects

Duerr et al. [26] define the purpose of unique identification as to
identify an object unambiguously, no matter which copy a user has.
This leads to the question of how to define identity and determine
differences. If there are multiple copies of an object, then the defining
difference between the copies is their location. For this reason,
Duerr et al. require that an identifier (as opposed to a locator) is
independent of location.

On the other hand, there are use cases which require identification
also of different copies of the same object. A good example for this
is replication: even though replicas are just copies of the same object,
bit-identical with it, their location is different, and typical use cases
requires that each copy is uniquely identified for purposes of its
management locally at the replication repository. What is needed at
this point is a mechanism that enables identification of the object
as a whole, being able to determine its identifier from any copy
and identification of each individual copy including a mechanism
to locate it (for example for verification). Such a mechanism can be
enabled through adequate use of collections as practically discussed
in chapter 6.

The relationship between the PID record and metadata is quite com-
plex, and the formal model alone cannot address these adequately.
Generally, the information stored in the PID record is part of an
object’s overall metadata. However, not all metadata is suitable to
be included in a PID record. Section 4.2.3 further discusses such
metadata aspects.

There are also viewpoints that state that the distinction between
data and metadata is artificial because someone’s metadata can
become data for purposes of statistical analysis, recombination and
so on. This is however very much depending on the specific discipline

41

42

CONCEPTUAL FRAMEWORK

considered. For the Earth system modeling community, there is a very
differentiated and clear distinction between data and metadata; for
purposes of clarity, the remainder of this thesis uses the expression
“domain metadata” where applicable.

4.2 PERSISTENCY LAYER

The use cases demonstrate that there are various applications for
context information closely associated with persistent identifiers. Two
major themes characterize the information possibly stored in PID
records:

1. PID records are built on the idea of rapid resolution: Associated
context information is available from a high performance sys-
tem and without having to retrieve the identified object that
may be large and reside in a system with less efficient access.
The target object may also be a metadata object, which contains
a lot more sophisticated and semantically rich information than
the PID records at additional costs that should be avoided in
tavor of rapid look-up.

2. There is value in keeping some information beyond the lifetime
of the identified object, so that it is persistently available given
an identifier and an adequate resolution system (cf. [26]).

One important question is whether these two fundamental use
cases cover the same or at least similar kinds of information. Another
question is how to organize the information in a way so that it is both
suitable for rapid look-up and interpretation and maintainable on a
longer time scale to address the need for persistency. The persistency
layer is thus situated at the challenge of providing some first answers,
while a full understanding will emerge through the full layer model.
The persistency layer is characterized by following a view focused
on single PIDs, PID records and objects, and ensuring the adequate
access to information according to the two goals of rapid resolution
and persistent access to PID records and potentially resources. A
notable fundamental requirement and base assumption important
for later implementation is that PID record information is accessed
through keys, and that access can be served in constant asymptotic
time. This is in line with the earlier definition of the PID record
function.

A central idea of the persistency layer is to define criteria that can
be used to classify PID systems. The criteria defined further below are
based on strict requirements initially described in [98], however these
particularly lack the formal foundations presented earlier, although
they remain valid for their particular use case. A view that makes
the criteria explicit as strict requirements, obligatory for any PID

4.2 PERSISTENCY LAYER

system, would not adequately reflect that different approaches can co-
exist with varying sets of requirements as shaped by their particular
use cases. It is therefore useful to reformulate the requirements as a
choice of criteria. A PID system may then conform to any number
of these fundamental criteria, effectively using such a subset as
requirements without demanding conformance to all possible criteria.
Certain combinations may still turn out to be more useful than others,
which is reflected in three archetypical scenarios defined in section
4.2.2.

The criteria are not of a purely technical nature; several of them can
only be met by enforcing certain policies, which was also an insight
described by Paskin [73]. A PID system is therefore a conceptual
entity consisting of a known number of concrete resolution services,
a defined schema for PID names and a set of policies that are
enforced by the resolution service provider. This is not in conflict
with definition 4. Naturally, the resolution services should only
resolve identifiers considered persistent, or, in other terms, the user
expects any identifier successfully resolved through the system to
be a persistent one. Most notably, this excludes the Domain Name
System as a top-level resolver, because it resolves URLs that are not
considered to be persistent per se (see section 2.4.2). The naming
schema must define the syntax for identifiers, allowing human users
or machine agents both to check any given identifier for conformance
and to generate new names. It must also be specific enough so that
a user will know how to dereference the identifier. This is mostly a
question of adoption: today, DOI names are encountered by a large
enough number of scientists that the question of how to dereference
them is easily answered (e.g. through a short web search).

There are two fundamental types of resolution operations enabled
by a PID system as also described in [98]. Given an identifier, a
resource resolution operation will return the target object. In practice,
this operation exceeds the scope of the PID system in the strictest
sense, since it also relies on the actual storage mechanism for the
object. A record resolution operation will return the contents of the PID
record associated with the identifier. These two operations can be
affected by the fundamental criteria.

4.2.1 Fundamental criteria

There are different approaches for designing and using PID systems
and different expectations regarding their reliability. The criteria can
be used to classify existing approaches (also see section 5.1) and as
requirements they shape the technical solutions and management
policies of PID systems to maintain a desired level of quality. Note
that all criteria must be interpreted in terms of a single particular
PID system, because the namespace of identifiers P is always bound

43

44

CONCEPTUAL FRAMEWORK

Identifier name

stable
unstable
Location t; 1 Location t3
Location t; Target resource

Figure 6: PIDs establish a layer of redirection: From an external point of
view, a change in resource location does not affect the resolution,
it is stable. The internal logistics are unstable, separated from the
external view through an abstraction or interface.

to a particular system to ensure uniqueness. Also, all criteria only
apply to resolvable identifiers: There must be at least one resolution
service.

Criterion 1 The link to the resource that an identifier identifies can be
changed: If the resource is relocated, it is possible to reflect this for the
identifier in the resolution services without changing the identifier name.
The resource resolution operation continues to be performed successfully.

This criterion is formulated more precisely as the corresponding re-
quirement in [98, p. 17] which did not further specify the relationship
to the identifier name and resolution services. The criterion captures
the most essential characteristic of a persistent identifier; a system
not conforming to it is in fact not a PID system. Vice versa, a system
conforming only to this criterion is a PID system, making the criterion
a necessary and sufficient condition.

To further understand the criterion, consider a non-persistent
identifier. This identifier may be resolvable at some point in time, but
if the identified object relocates, it will be impossible to retrieve the
object, even with the help of a resolver service if that service knows
only the former address of the object. The most essential characteristic
of a persistent identifier is thus that it continues to be resolved
through changes in object location or ownership (also see section
2.4.2). This can also be expressed as the metaphor that PIDs establish
a layer of redirection (see figure 6). In terms of the formal model,
the criterion aims to ensure the integrity of ¢~ over time. Note that
¢! associates identifiers with data objects, independent from their
location; as explained earlier, a more detailed model would formally
encode the changes of location, which is inherent in the concrete
expression of ¢~". The first criterion simply aims to maintain the
association from p to the same d.

4.2 PERSISTENCY LAYER

Criterion 2 A registered identifier is globally unique: The result returned
by a successful resolution operation of the same registered identifier is
identical for any two non-identical resolution services.

This criterion is equivalent to the corresponding requirement given
in [98, p. 17] as it captures a fundamental user expectation. If a user
encounters an identifier and submits it to a resolver, it should not mat-
ter where or how this identifier was encountered and consequently
which resolver it was submitted to — the user expectation is that it
should resolve to the same result independently of those factors. In
terms of the formal model, fulfilling this criterion requires that the
manifestation of ¢p~' does not vary within a particular PID system.

If the PID system offers the ability to define multiple namespaces
(and the current or expected usage is of course to employ more
than a singular namespace), some issues must be analyzed to be
sure the criterion is fulfilled. Namespaces are defined by the PID
system’s naming schema. If there is more than one namespace, then
a precise indication which namespace a particular identifier belongs
to is required, and thus the identifier naming schema must include
this as a mandatory part. Otherwise there may be identical identifier
names that belong to different namespaces but this will not be visible
solely from their names.

This also demands that either the location of a resolution service
must not be part of the identifier name or that every resolution service
can resolve any identifier that is bound to a foreign resolver, e.g. by
forwarding requests.

Note that the criterion specifically addresses successful resolution
operations. If a resolution operation is unsuccessful, but the identifier
is registered, then there will be at least one other resolver that will
resolve it successfully, albeit the user may not know its address.
The essential motivation of defining this criterion is therefore not to
evaluate alternative resolution paths, but to judge whether there is
coherence among the results of resolution operations by decoupling
the questions of identification and resolution from the particular user
context.

Criterion 3 All record resolution operations continue to succeed, even if a
resource becomes unavailable.

Aside from the notion of a PID record instead of generic metadata,
this criterion is equivalent to the requirement from [98, p. 18]. This
is the criterion that characterizes the specific behavior desired for
records being directly associated with identifiers. As explained earlier,
only a specific usage model of identifiers will require records to be
kept past an object’s life time. If records are considered expendable
once a resource is gone, fulfilling this criterion is actually undesirable.

A system striving to fulfill this criterion as an essential requirement
can in consequence ensure that inter-identifier links remain resolvable

45

46

CONCEPTUAL FRAMEWORK

(i.e. to the PID records of their respective identifiers) even if both the
source and the target resource become unavailable. Since practically
no PID system will be able to track the global usage of its identifiers,
meeting the criterion may be considered an integral part of the service
concept defined in any system’s policies to uphold the trust in all
identifiers served through it. Even if a resource is deleted, causing
future resource resolution operations to fail, there will still be a
record available by querying the PID system. This also implies that
no identifier can be purposefully deleted (unregistered). In practice,
this can of course happen accidentally or during test phases.

In the formal model, this criterion describes the record resolution
relation o and how it remains unaffected by possible changes to ¢!
over time.

Criterion 4 All registered identifiers are globally discoverable: There is at
least one globally accessible resolution service that directly or indirectly
resolves all registered identifiers.

This criterion is equivalent to the corresponding requirement from
[98, p. 17]. To understand the motivation for this criterion, imagine
how a machine agent will perform tasks. The agent aims to resolve
a particular identifier but lacks any further information, such as
its original issuer, and cannot deduct this knowledge on its own.
Let us assume that the criterion does not hold, i.e. there is no
central resolution service, and that the agent has a list of resolvers.
Then it cannot be assumed that this list is complete: Since resolvers
can change location or be decommissioned, it may be practically
impossible to maintain a complete list for every agent dealing with
identifiers. Thus, if a resolver responds with a failure upon resolution,
the machine agent can only assume that this particular resolver does
not know the identifier. Even if the agent queries all resolvers from
its list, it cannot be sure to have a definite answer because its list will
be incomplete.

A single omniscient resolver whose location is known to all agents
will solve the issue. There are also alternatives, indicated by the idea
of indirect resolution, such as federating queries between resolvers
that know each other or building a meta-resolver that supplies a
single omniscient instance, possibly based on querying individual
resolvers. However, the entity providing the meta-resolver will still
have to make sure it has complete knowledge about resolvers. How to
practically achieve this, e.g. through policies or federated algorithms,
shall not be of concern here. The exemplary PID systems discussed
in section 5.1 employ individual strategies to deal with this issue.

In terms of the formal model, this criterion demands that there is a
resolver service which can provide all images of ¢—'.

The criterion also demands that policies are put in place that
ensure that such a resolver continues to exist beyond the lifetime

4.2 PERSISTENCY LAYER

of its maintainer, for example by transferring its responsibilities to
a different resolver.
Criterion 4 can be extended:

Criterion 5 Any globally accessible resolution service that successfully
resolves one identifier is able to resolve any registered identifier.

This criterion is equivalent to the corresponding requirement from
[98, p. 17], however lacking the explanations as given by the formal
model. Conformance to it can be described colloquially as requiring
that all resolvers (of the same PID system) behave in the same way,
each of them providing all images of ¢~'. A system fulfilling this
criterion may be designed in one of several possible ways.

There may simply be just one resolver (or a handful of identical
mirrors) that redirects requests to a known set of more specialized
nodes. The effort then lies in maintaining the nodes or the association
with them in case they are not unified under an umbrella organiza-
tion. This may be done for example by maintaining a list of all known
nodes at the central resolver, and putting policies in place that control
the introduction and decommissioning of nodes. As also stated for
criterion 4, this may be practically impossible to uphold.

Alternatively, there may be many resolvers, which will appear to
be redundant from a functional point of view. However, such redun-
dancy may be desirable for load-balancing and reliability purposes.
It is also beneficial for users unfamiliar with the PID system. They
may be unaware of a change in resolver ownership or location, or
they may be used to a particular resolver, perhaps set up for their
individual project, and will be confused if they attempt to use an
identifier external to their project with this resolver, expecting it to be
resolved but getting a failure. Making all resolvers equivalent as to
the set of identifiers they can resolve will eliminate such problems.

Note that it is not possible to fulfill this criterion without fulfilling
criterion 4 as well, making criterion 4 a necessary condition.

Criterion 6 A successful resource resolution operation returns the same
response given the same identifier indefinitely.

In contrast to the requirement given in [98, p. 18], there is no
notion of a separate record resolution operation purely aimed at
immutable metadata here. To fulfill this criterion, a resource must
not be modified once an identifier has been registered for it, which
is a requirement essential to digital preservation. As also described
in [98], if a registered identifier is ever deleted (unregistered), it may
never be reassigned to a different resource. Again, it is important
to remember that it is not desirable to meet all criteria for all use
cases, and this is a particularly good example requiring careful
consideration. If interpreted as a strictly enforced requirement (e.g.
through adequate policies), it may have unwanted consequences. For

47

48

CONCEPTUAL FRAMEWORK

example, conformance implies that if a resource is versioned, i.e., if a
new or revised version of the resource is published, the old identifier
cannot be reused. Conformance to the criterion does not demand
however that resources are never deleted — it only covers successful
resolution operations. In terms of the formal model, if a resource is
deleted, the particular d associated with p may become irretrievable,
yet conceptually it remains identified. A more detailed formal model
may be able to describe the particular point in time when such an
event occurs.

As also pointed out in [98], this of course raises the question of how
the identity of resources is defined and, consequently, the difference
between resources. As mentioned earlier, the formal model remains
agnostic with respect to constraints pertaining to specific domains
and use cases. In the area of digital preservation, for example,
distinctions are made between bit-stream preservation, where any
change to stored data is disallowed, and approaches that aim to
provide long-term readability, which may involve format conversions.
From an infrastructural, technical perspective, a notion of bitwise
identity may appear beneficial because it is easier to assess, but this
is not always desired. Each scientific community may have its own
interpretation and existing policies for defining resource identity, and
for this reason, the exact answer of object identity must remain open
at this point.

4.2.2 PID system classes

If the criteria are interpreted as requirements, it is possible to define
general classes of PID systems based on which criteria are minimally
fulfilled. The motivation for each of these system classes emerges
from practical usage scenarios that emphasize differing aspects. The
criteria determined for each type are the required minimum for the
desired functionality; of course, a particular system may fulfill any
number of additional requirements.

A PID system is automatable if it conforms to criteria 1-4. Its
purpose is to be used by automated tasks or software agents with the
goal to minimize the additional contextual knowledge required from
them to perform their actions. An example is the Handle System if
combined with policies that cover node decommissioning.

A PID system is preserving if it conforms to criteria 1-3 and 6. Its
purpose is to ensure reliable access to both resources and records
on a long-term scale. An example is the URN system if combined
with policies that ensure long-term archival of resources, e.g. through
libraries.

A PID system is resolver-independent if it conforms to criteria 1,
2, 4 and 5. Its purpose is to minimize the difficulty of resolution tasks
by providing a unified access layer. An example is a distributed hash

4.2 PERSISTENCY LAYER

table. Policies regarding preservation of resources or records can be
minimalistic.

4.2.3 Defining the Persistent Entity

The foundational criteria frame the reliable context of PID systems.
While there is a notion of a persistent PID record, the components
introduced so far are only loosely coupled. This is adequate for many
traditional applications of PIDs where there is no broader use of PID
records beyond purely internal administrative aspects; yet, for more
extensive use, a model is sought that establishes a more rigid frame
in which to formulate persistency of metadata, objects and relations
between them.

The top-level interface of the persistency layer is therefore de-
scribed through two central entities: the Persistent Entity (PE) and
the Digital Object. These also characterize the difference between
the preservation-centric model and the full model. In the full model,
the Persistent Entity and Digital Object act as the primary interface
for the more sophisticated layers, while the persistency layer relies
on a particular context made up from the criteria describe so far.
Both Persistent Entity and Digital Object are defined based on the
formal model. The operations of an abstract data type interpretation
of the Persistent Entity are essential to the preservation-centric model
because they provide the necessary facilities to differentiate between
a primary and a secondary level of preservation. In [98], a similar
concept for a Persistent Entity based on an understanding of it as
an abstract data type has been presented, including the notion of
two distinct preservation layers. This concept is extended here in
accordance with the formal model and the layered framework.

Using the formal model, both a Persistent Entity and a Digital
Object are precisely defined in the following way:

Definition 5 Let ST = (P,D,V,R, ¢, o) be an extended PID system.
Then every 2-tuple (p, w) where o(p) = w is called a Persistent Entity,
and every 3-tuple (p, d, w) where ¢~ '(p) = dand o(p) = w is called a
Digital Object with p e P,w e R,d € D.

The value of ' (p) has no effect on the Persistent Entity, and thus
the defining mechanism — the resolution functionality — is covered
by o(p); this relation must be preserved at the primary level, which is
in accordance with criterion 3. We can also deduct that every Digital
Object has at least one directly associated Persistent Entity. There can
be several Persistent Entities associated with a Digital Object because
there can be multiple identifiers for the data object (assuming non-
strict uniqueness) and each of the identifiers may be associated with
an individual PID record.

49

50

CONCEPTUAL FRAMEWORK

The definition has implications on the notion of equality of Digital
Objects or Persistent Entities. If there is no assumption of strict
uniqueness, i.e., if there can be several identifiers for the same data
object, then these form individual Digital Objects. This also leads
to situations where there are several identifiers with individual PID
records associated with the same data object.

The initial motivation to formulate the Persistent Entity stems
from a particular conceptual model associated with criterion 3. Some
context information about a resource should be stored as persistently
as possible and beyond the resource’s lifetime; good examples are re-
source provenance and inter-identifier links to related context objects.
If a system fulfills this criterion and the most valuable information
is put in the PID record, a distinct primary level of preservation
emerges [98]. The secondary level of preservation then consists of the
target resources. The two fundamental resolution operations are
directly associated with these levels. Through the separated levels
of preservation, context information can be preserved even if the
preservation of resources at the secondary level fails.

The primary level of preservation is particularly valuable when
individual PIDs are not isolated entities: The more relations between
PIDs are established at the primary level, the more useful the infor-
mation becomes. This does not only cover the relations themselves,
but also any other context information that consequently becomes
discoverable as well. Section 7.1 discusses such aspects in more detail
with respect to Linked Data.

The definition of the Persistent Entity provides the notion for an
entity that exists beyond the lifetime of a resource and also extends
the merely resolution-focused capabilities of the persistent identifier.
The PID is simply an access tool: If the PID is understood as just
the identifier name (and a tightly associated promise to keep it
resolvable), then maintaining the identifier does not cover the context
information. It certainly is an important factor, but not sufficient to
cover the full scope of preserving the resource context. Speaking of
“preserving the persistent identifier” is not an adequate formulation.
Instead, the object that is preserved beyond the resource’s lifetime
and thus different from both the resource and the PID is the Persistent
Entity. This is also not precisely the same as the PID record, i.e. the
stored information. The PID record is essential to the Persistent Entity,
but the PE must address more than the question of storage; most
importantly, the PID record as a storage structure does not address
the association with the identifier, the process of record resolution
and the potential retrieval of the actual resource.

A more pragmatic interpretation of the Persistent Entity definition
emphasizes its interpretation as an abstract data type (ADT) (cf. [98]).
Because the Persistent Entity forms the top-level access interface
for the preservation-centric model, it is beneficial to understand the

4.2 PERSISTENCY LAYER

Persistent Entity as an actionable object, something that provides
operations that machine agents can execute; this is not limited to
the user’s viewpoint of being able to use an identifier e.g. by calling
it in a web browser as described by Kunze [52] and Paskin [72].
According to common textbook definitions [56], an ADT is purely
defined by its operations; thus, in fact, the PID record is not a defining
part of it, but rather a tool for implementing such an ADT. Other
possible implementation pathways exist, e.g. through a separate meta-
database and appropriate preservation policies. The fundamental
criteria must however be respected; a Persistent Entity can only be
served through a preserving PID system.

There is also a promise involved in the general motivation for
the PE, namely to keep it resolvable through the PID. This is not
the same as preserving the resource, because the PE is a distinct
entity that can be preserved separately at potentially much lower
costs. Considering the actual metadata provided via a PE, there is,
in principle, no limitation to the type of information available. In
the broadest understanding, it is entirely up to the generator of a
PE what to provide. The use cases presented in chapter 3 give some
indications. One distinction is that the Persistent Entity aggregates
all information that is deemed to be important enough to preserve
beyond the lifetime of the identified object or that must be available
at a level of rapid access that is considerably faster than accessing
the object or a separate metadata storage. In more detail, information
possibly available from a PE falls into two broad categories:

DOMAIN METADATA provided by the original issuer of a PE. In-
dividual scientific disciplines or communities typically design
and use their own metadata standards to describe the scientific
context of their data, occasionally in elaborate detail. On the
other hand, some of this information may be targeted towards
the interdisciplinary, useful for actors from outside the realm
of the original issuer and thus perhaps encoded via cross-
domain metadata standards or well-accepted ontologies. The
more interdisciplinary such information becomes, the more
useful it should be considered to be included within a PE.
This information may not be required to be rapidly available,
however.

OBJECT MANAGEMENT METADATA which enables some access and
management tasks independent from knowledge about the
domain meaning of the resource. A good metaphor for this is
the ‘envelope’” metaphor of e-mail delivery through the Simple
Mail Transfer Protocol (SMTP) or any other form of ‘black box’
metaphor (also cf. [95]): What has to be written on the outside
of the container so any agent dealing with it knows how to
perform a specific task without having to look inside, which

51

52

CONCEPTUAL FRAMEWORK

may be a very costly action? Typical interpretation tasks include
to trace the provenance of the object (or another, possibly still
existing object whose trace this object is part of) or determine
objects that stand in a close relationship, such as a parthood
relation. In [98], this was generalized in the form of inter-
identifier links, a notion that subsumes aspects of the typing
and the collection layers. Given larger numbers of objects, it may
be desirable to have this type of information available much
more rapidly than domain metadata.

4.2.4 Abstract data type definitions

As mentioned above, the preservation-centric model relies on a
notion of a Persistent Entity as an abstract data type, a pragmatic
interpretation of the more formal definition. In the full model,
this Persistent Entity ADT will be present as an agglomeration of
functionality from different layers, resembling a facade for some of
the full stack functionality. The ADT can only be provided through
preserving PID systems, i.e., criteria 1-3 and 6 must be met.

The Persistent Entity ADT consists of the following atomic oper-
ations; naturally, the same operations apply to Digital Objects. A
description with slightly different scope can also be found in [98],
which does however not fully reflect the distinction between layers
described in this chapter.

CREATE INSTANCE: This operation’s parameters are an identifier
name, resource location and PID record metadata. The opera-
tion fails if the identifier violates criterion 2, i.e., if the identifier
is already globally resolvable.

SET RESOURCE LOCATION: The central idea of PIDs to establish a
layer of redirection (cf. figure 6) relies on an operation to modify
the location of a resource after a PID has been assigned to it
(criterion 1). As also described in [98], the operation should
confirm that the resource at the new location is identical to
the one at the old location, to prevent violation of criterion 6.
This may for example be done by verifying a checksum in the
PID record, provided on initial assignment. Since the resource
at the old location may already be unavailable at this point,
verification may however be not be possible at all times. Even
with a checksum present, policies are required that make sure
the process is quality-controlled — if there is a procedure in
place that ignores the checksum verification, the criterion will
be easily violated.

GET RESOURCE LOCATION: In simple terms, this operation returns
the last parameter to the ‘set resource location” operation or the

4.2 PERSISTENCY LAYER

‘create instance” operation. Note that because the resource is not
part of the Persistent Entity, it is not possible to offer a full ‘get
resource’ operation. Whether the resource still resides at the
location is intentionally not a concern of the Persistent Entity.

SET PID RECORD: The information contained in the PID record is
subject to possible change in many situations. As explained
earlier, the scope of metadata cannot be restricted at this point.
It may be worthwhile for an implementation to differentiate
between protected or immutable metadata and mutable meta-
data. Typical protected metadata includes for example the
checksum, the date of object creation and original creator. If
the metadata contains relations to other objects, these should
be Persistent Entities, so that the operation can verify that
the given identifiers are actually resolvable. Otherwise, the
resulting graph will be broken. The actual availability of the
target resource may be ignored if the given object is a proper
Persistent Entity ensuring criterion 3.

GET PID RECORD: This operation simply returns the PID record
contents set earlier.

Another possible and typical operation is to remove the instance.
However, this would cause a violation of criterion 3, resulting in the
identifier becoming unresolvable, and thus it is not part of the ADT
definition.

Finally, to make the ADT model complete, it must be possible
to retrieve actual PE instances. This can be described by a rather
simplistic resolution service ADT with only one operation, as also
described in [98]:

RESOLVE IDENTIFIER: Given an identifier, this operation either re-
turns an instance that bears the given identifier or fails if no
instance with the given identifier exists [98]. Here, it is beneficial
to employ a PID system conforming to criterion 5, but this is not
strictly required.

As mentioned earlier, two abstract operations can be distinguished:
resource resolution and record resolution. The Persistent Entity ADT
provides the record resolution operation. The resource resolution
operation is a bit more complex as it must combine the resolver’s
‘resolve identifier” operation, the instance’s ‘get resource location” op-
eration, and some additional operation at the secondary preservation
level to actually retrieve the data. This transcends the scope of our
ADT definitions, and thus it is up to actual implementations to fully
enable this operation.

53

54

CONCEPTUAL FRAMEWORK

4.3 TYPING LAYER

The formal model and the persistency layer address fundamental
questions on terminology, persistency, system requirements and trust,
but they do not describe the actual contents of PID records available
through the dedicated Persistent Entity ADT operation. A central
question put towards PID systems by user applications concerns
the nature of the objects if only their identifier is available. With
PID records, there is a chance to provide more information without
having to retrieve the object, and part of this information should help
in determining the fype of object at hand. The goal of the typing
layer is to address this typing problem. Perhaps unsurprisingly, the
means to achieve a suitable solution is the application of subtyping
or inheritance principles. In [45], the notion of types of digital objects
was introduced along with the notion of a type registry, which are
further extended in the following.

Earlier, PID records were defined in terms of a mapping from keys
to values, but there were no further details on the nature of either
keys or values. The typing layer refines this model so that there
is additional information available about the characteristics of each
value such as its value type.

This section adheres to the following internal methodology. Two
main practical interpretations for the use of types in relation to
persistent identifiers are the typing of objects and the typing of PID
records. In terms of organizing the contents of PID records, two
practical organizational models are possible that differ in complexity
and relate to different interpretations of properties, types and profiles.
These practical observations shape a formal terminology based on
registered properties and profiles. For practical adoption, it is also
required to define the elemental roles of the type registry and a type
governance process.

4.3.1 Typing of identified objects

When talking about types, the most elemental use case is concerned
with the type of the identified object. Does it represent a scientific
data file, a metadata record, a digital document? And what are the
defining characteristics for classifying it as a specific type? Does its
contents, for example, follow a particular data format?

If the object bears a PID and the PID is associated with a PID
record, then the simplest solution for enabling quick determination
of the object type and potentially preserving this type beyond the
object’s lifespan is to include essential information in the PID record.
This information may offer some fundamental categorization (data
object, metadata object, document and so on). For some use cases
such information is already sufficient. If, for example, an automated

4.3 TYPING LAYER

operation merely needs to filter out all objects that are data objects
from a diffuse collection, a simple categorization may suffice. Another
service may discover that an object that was deleted a while ago was
a data object, but its related metadata record may still be available at
another location.

However, in some real-world scenarios the capabilities of a simple
classification scheme are quickly exceeded as already indicated in
section 3.6. For example, a service may rely on a distinction between
data and metadata objects that is not easily determinable through a
single generic categorization. Some services may only work on data
objects that follow much more specialized characteristics, and require
conversion for others or reject them as input. Such a complex notion
of the “type of an object” may thus not be determinable from a single
entry in the PID record, but require a specific pattern of multiple
values being present. A type description is the formalization of such
a pattern, and determining the type of an object comes down to
querying whether its PID record conforms to the formalized pattern.
In contrast to a simple categorization approach, this provides more
flexibility on the typing because it is not any more the sole task of
the PID record generator to make a best guess, which is in principle
a hard or impossible task to perform due to the generator’s very
limited knowledge about a priori unknown but possible future use
cases. Rather, the stated goal of a typing mechanism should be to
enable classification actions by the specific actors examining the PID
record without contact to the record generator.

The typing of identified objects is also important if the scope of
identification is extended beyond data objects, to include e.g. schol-
arly articles (e.g. DOI), people (e.g. ORCID), organizations (e.g. ISNI),
samples (e.g. IGSN), geospatial features and so on. Currently, there
are usually different and unconnected identifier systems used for the
different entities which allows for decisions based on the particular
naming scheme. If there is a move towards a more comprehensive
identification system in the future, then the naming scheme cannot
be used anymore to determine the fundamental type of an unknown
entity purely by looking at its identifier name.

4.3.2 Typing of PID record entries

Complex typing of objects may work through creating and detecting
specific patterns in PID records. Until now, the contents of a PID
record was treated as a black box, with the single exception that it
usually contains a link to the location of a bit-stream and often some
form of metadata. The structure of PID records must therefore be
examined in more detail. When trying to formalize patterns in the
PID records so that they can serve categorization purposes, both keys
and values need to be considered. The following basic terminology

55

56

CONCEPTUAL FRAMEWORK

on the PID record entries has proved useful in the discussions within
RDA as well and is similar to efforts made in the early days of the
DOI System that led to the definition of “DOI Application Profiles”
[25, chapter 5.5].

A PID record consists of properties, each encoded as a key-value
pair. The property key may not be unique for a single PID record;
multiple values for the same key may be present. The property
key should be a persistent identifier which can be resolved to a
persistent property definition record or registered property in a registry.
The property definition is identified through a PID and specifies at
least the property name meaningful to humans and the property range
(value type) which should be a PID as well. Possible optional entries
(as are used by the Type Registry prototype) include: information
about the creator of the property, a description text explaining the
usage of the property intended by the creator and arity constraints.
Without the property definition, a PID record relying on it may
become incomprehensible. The property definition must therefore be
subject to digital preservation, meaning that both its identifier and
contents must be preserved for at least as long as the PID records
employing them. Since the entity preserving the property definitions
cannot know all PID records in existence, it has to plan for long-
term preservation of the definitions. The PID system that redirects
to registry entries must be a preserving PID system.

Typical property ranges include “string”, “boolean”, “integer”,
“date”, “time” and “geolocation”, similar to the common primitive
data types of programming languages. A special property range is
“identifier”. The difference between identifier and string ranges is
that an identifier conveys an inherent promise that the property value
is resolvable. This is an assurance given by the record’s creator, which
can only be verified by an actual resolution action. Using a preserving
PID system may increase trust.

In an alternative model, the property range is part of each PID
record entry: A PID record consists of properties, encoded as key-
value pairs, where the value consists of a value type and value
data. Property keys may be persistent identifiers, which can be
resolved to property definition records as stated above but without
a unified property range. Doing so will however lead to insular non-
interoperable adoption and conflict with the stated goal to support
a strong governance mechanism. This is even more the case if
properties are not registered, so that provenance information is less
easily obtainable and verifiability suffers.

4.3.2.1 Structure of typed information

Out of practical discussions came two concrete models for structuring
typed information: the property-type-profile model and the simpler
type-profile model. These models reflect the different mindsets

4.3 TYPING LAYER

and disciplinary backgrounds the RDA working group participants
came from. The two competing but not necessarily incompatible
views provide important insight into the practical expectations and
requirements. They should be understood before a conceptual unifi-
cation can be made that takes some of the practical considerations
into account. Note that as a consequence of the actual practical
discussions, the internal terminology in the next paragraphs is
slightly inconsistent; particularly, the terms type and profile are heavily
overloaded. Both models are also described in the working group’s
final report, also to appear as an RDA recommendation [96]; more
context on the practical discussions can be found there.

In the property-type-profile model, a type consists of a number
of properties, which are subdivided into mandatory and optional
and referenced by their respective PIDs. Every type is registered
in the type registry and bears a PID along with a description text
and additional information. If a PID record contains all mandatory
properties of a type, it conforms to the type. A profile consists
of several types and thus offers a second aggregation level. Types
can also be classified as mandatory or optional with regard to a
specific profile. A PID record conforms to a profile if it provides
all mandatory properties of any constituent mandatory type. The
complementary view is true as well: If a service answering profile
conformance queries replies with a positive result and if the caller
trusts the service’s general assessments, the caller can be sure that
a certain set of properties is available from a given record without
having to parse the record in detail.

There are also two minor distinctions between profile implemen-
tations. A profile may be registered so that it bears a PID and
is globally discoverable. If this is not the case, a profile is only
“local”, e.g. only known to a distinct community or implemented
service. It may even be understood and emulated as a simple list
of type identifiers. This lowers the barrier for using profiles, but
such profiles are less shareable and re-useable. Registered profiles,
in contrast, can be used by third parties, such as other disciplines
or community e-infrastructures, and provide better accountability
through the additional information available from the registry. Such
can be useful for example to dispel doubts whether a profile is fit for
the purposes of a specific community if it was not designed by them.

The motivation to employ profiles may also be of a non-technical
nature, hinting at the desire for a practical governance mechanism
in some form. One motivation for using profiles, particularly for
registering them globally, is to preclude the proliferation of types
that may occur if e.g. a community intends to reuse a predefined type
but actually requires only one additional property to be present. The
proliferation can however not be prevented completely, as there are
also semantic differences to consider even if two types list identical

57

58

CONCEPTUAL FRAMEWORK

properties. Another motivation is the frequently expressed wish of
communities such as EUDAT, CLARIN or DARIAH to have exactly
this kind of profiles mechanism in order to mark PID records as
originating in the particular community and thus being able to
enforce some form of internal standardization and external branding.

The property-profile model is simpler insofar as it offers only one
aggregation level. The overall concept can be traced back to linguistic
communities (DARIAH, CLARIN) with considerable history in using
PIDs and internal use by CNRI in its original Handle System concepts.
A different terminology has been used traditionally in these domains:
The particular understanding is that the elements of PID records
are typed, and the types may be registered in the type registry. To
provide some form of aggregation, also in view of usage by particular
communities that will work with a distinct set of types, the notion
of a profile is introduced, sometimes even called a “community
profile”. Given this background, the model may be termed a “type-
profile” model, but this may cause even more confusion given
the previously defined terminology with properties as the atomic
elements of a PID record. The complexity of an additional layer
as in the property-type-profile model was perceived as being too
cumbersome and unnecessary, thus the preference for a model with
only one aggregation layer.

In any of the models, a service may require the presence of a
specific type or profile on PID records it works with, and reject
those that do not conform. Aside from the potential for solving
interoperability issues, this is a functionality often mentioned as
being valuable in practical implementations.

4.3.2.2 The generalized model

The generalized model structures the PID records and provides a
mechanism that covers what has been called typing in the described
practical scenarios. The model includes two distinct type hierarchies,
one for the types of property values in the PID records and one to
aggregate the properties themselves into structured entities that can
be the target of conformance queries. These are termed profiles in
view of the discussions of the previous section. Profiles are typically
assembled according to criteria that are meaningful for application
use cases.

The fundamental elements of the property type hierarchy are
registered properties. A registered property is a 3-tuple of a name,
a property identifier (which is a PID) and a value type. The property
name is a simple string, the value type is referenced through its
PID. Instances of registered properties are expressed through the
individual key-value pairs of actual PID records. The elemental
properties can be further organized according to one of two models:
subtyping and aggregation.

4.3 TYPING LAYER

The key concept behind subtyping is given by Liskov and Wing
[57]: A subtype preserves the behavior of a supertype’s methods,
its invariants and history properties. Invariants are properties that
are true for all object states, while history properties are true for
all sequences of states. Preserving a type’s behavior means that its
method pre- and postconditions must remain intact through any
subtyping.

A profile can only be a subtype of properties, and not vice
versa, because otherwise the behavior of conformance queries is
inconsistent: A record may conform to a property (carrying its single
value), but not a profile (carrying all of its mandatory values). When
understanding a profile as a subtype of several registered properties,
the behavior of the supertype must be preserved, meaning that the
profile must provide the same methods. Profiles and properties are
however different in usage and it is unclear whether all methods can
be easily provided. Two possible solutions come to mind. The naive
solution would be to parametrize the methods of each registered
property, such as “get value” and “set value”, so that they carry the
semantics of a specific PID record element like “checksum” in their
signature (“get checksum value”). This seems rather cumbersome and
hardly scalable. Alternatively, a type hierarchy can be constructed
where properties and profiles are subtypes of a common supertype
such as “registered structural object”. This will however not solve the
problem because then profiles are not a subtype of properties and the
intention to employ subtyping seems inadequately matched.

In the aggregation model, a set interpretation is used which
resembles the state extension model explained in [57]. A PID record
then consists of property instances. Each property instance is a 2-
tuple of a registered property PID (the key) and a value. Many
property instances can be associated with one registered property,
resembling the concept of instances of a type or class. A registered
property is a 3-tuple of a PID, a name and a value type. A registered
profile is a 3-tuple of a PID, a name and a set of registered properties.
It aggregates multiple registered properties and through them the
property instances of a given PID record. A registered property is not
an instance of a registered profile, and the registered profile is con-
sequently not a metaclass. Instead, the nature of this relationship is
that of an aggregation where the aggregated elements maintain their
identity and existence independent from the aggregation. Definitions
for properties and profiles are registered in a type registry, an activity
through which they receive their respective PIDs.

To use profiles to construct new, more complex profiles, their
respective sets of properties are merged. Special precaution must be
taken to store information about which profiles were used, because
this will not be inferable from the result. If the intersection between
the profiles is not empty, i.e. if there are properties of same name,

59

60

CONCEPTUAL FRAMEWORK

ENTITY MANDATORY ELEMENTS

Registered property = property identifier; property name (label);
value type identifier
Registered profile profile identifier; set of property identifiers

Registered value type value type identifier; value type name (la-
bel)

Table 1: Minimal data model for the type registry. A registered property
record may also specify a cardinality (cf. section 5.2)

it must be verified that they express the same semantics. This mech-
anism of constructing new profiles is essential because it addresses
the need to aggregate elements in a hierarchy as expressed in the
property-type-profile model.

In conclusion, the subtyping metaphor may be more familiar to
past users but could also cause a lot of confusion. Is it always intuitive
to use a profile instance in place of a single property instance? With
respect to the described issue of methods and inheritance, this is
questionable, and thus the typing layer relies on the aggregation
interpretation for constructing registered properties and hierarchies
of profiles. Because the ultimate intent of the typing layer is to
type the object behind the PIDs, using the notion of typing appears
reasonable even if subtyping is not applicable in the strictest sense.
Also note that there is no theoretical limit on the number of profiles
and hierarchical depth one can define; the limitation of the exemplary
models to one or two levels is pragmatic but completely arbitrary.

In contrast to the property hierarchy, the value type hierarchy
conforms well to the subtyping requirements. It starts from types
such as “string”, “boolean”, “integer” and similar. A subtype of
particular importance for thematic linking between objects is the
“identifier” subtype of “string”. One can construct further subtypes
of “identifier” that are defined by constraints on the identifier’s
record, e.g. conformance of the record to a specific profile. This
is all in line with typical examples of type hierarchies as are also
given by Liskov and Wing [57]. The type registry will store value
type identifiers, names for them (that effectively constitute a simple
controlled vocabulary) and possibly further restrictions on the syntax
of conforming values, which remains undefined at this point.

Table 1 presents an overview of the type registry data model.

4.3.2.3 Conformance queries

Conformance queries constitute the main mechanism employed to
determine the type of an identified object. Colloquially, a confor-
mance query will tell whether a given PID record conforms to a

4.3 TYPING LAYER

given registered profile; conformance towards single properties is
also possible, but less useful. The conformance method is an integral
part of the typing layer and its top interface. But how should profiles
be designed so that the conformance queries are practically useful?
There are two possible models for conformance query semantics:

WEAK CONFORMANCE: A PID record conforms to a profile if it
provides all property keys specified in the profile and if there is
a value associated with each of these keys.

STRONG CONFORMANCE: A PID record conforms to a profile if it
weakly conforms to it and if each value is valid in the range of
the respective property.

A typing layer implementation must be able to confirm weak
conformance but may be unable to assess strong conformance, be-
cause the range of valid values may be indeterminable for it without
consulting the third party that defined the respective property range.
This is particularly true for more complex subtypes of “string”; it may
already occur for example for simple dates due to the multitude of
possible encodings.

A profile may be designed to contain all essential properties of a
specific type of object. In simple applications with clearly defined
object categories and no or insignificant external factors such as PIDs
from third parties, this may suffice. In more complex scenarios, the
variety of use cases and, in consequence, the variety of actions to
be performed on objects may quickly lead to the development of a
profile hierarchy, where each profile only covers a certain aspect of
an object type. The definition of a profile thus depends on both the
type of object and particular use cases. Conformance queries are then
essential to filter the currently valid actions from the set of all actions
possible in the application.

4.3.2.4 Inter-identifier links

Functionality valuable to higher layers is to establish typed links —
binary relations — between identified objects, close to the notion of
Linked Data. In [98], inter-identifier links were defined to be a part of
general metadata at the persistency layer. As also described there, a
more sophisticated model will extend this to the notion of an identifier
graph. With a dedicated typing layer, linking functionality would be
offered as an implementation of the typing facilities by subtyping the
“identifier” value type. Such subtypes then classify different links; the
result is a graph of identified objects, where the PIDs (representing
identified objects) are the nodes and the links between them are the
edges. Section 7.1 provides a more in-depth comparison and possible
convergence of these concepts with Linked Data.

61

62

CONCEPTUAL FRAMEWORK

In terms of the typing layer, some aspects must already be
mentioned at this point however. The subtypes of the “identifier”
value type act as labels on the edges. Because value types are bound
to registered properties and these can be used in multiple profiles, the
edges are always directed. The object at the source of such a directed
edge is not entirely constrained, because the record may conform
to more than one profile specifying the property. If a PID record is
extended with more properties, the number of conforming profiles
may increase, and thus the type of object at the source of the link
is not entirely fixed. The type of object at its target may however be
specified in the registered property record and verified by the typing
layer. The property record may also include edge weights or other
annotation information valid for all respective links; it is not possible
to specify edge weights on individual links unless the PID records
are enhanced accordingly.

4.3.3 The type registry and type governance

As described earlier, value types, properties and profile descriptions
should be registered so that they can be globally referenced and
retrieved by PIDs. The original motivation goes even further: Object
types should be registered so they can be disambiguated. Domain
data object type examples are “ESM output data”, “Temperature
measurement time series data” or “Remote sensing dataset”. Regis-
tered high-level profiles, possibly as agglomerations of several other
more specific profiles, may effectively stand in for such object types.
Accessing the profile definition through the type registry will then
help to verify the object’s fitness for purpose through conformance
queries. The type registry should also provide some metadata on the
profiles and properties, such as information on the creator, currently
responsible party and intended purpose. Initially, it may provide a
small set of approved value types, and even some generic properties.
But who registers new value types, profiles and properties, who is
responsible for maintaining them, and may additional effort to build
a central governance structure be justified?

Registration of new value types, properties and profiles may be
done by users who generate PID records. This may include users
from a community e-science infrastructure, libraries, publishers and
similar. It is also possible that larger cross-disciplinary initiatives
such as RDA contribute to the registry. The type registry may be set
up in a distributed manner, where each community or other entity
interested runs their own instance and an overarching service takes
care of global resolution (cf. criterion 4). The question then is how the
multitude of registered properties can form a coherent whole when
they are principally defined and registered independent from each

4.3 TYPING LAYER

other, e.g. by different communities. Some properties or value types
may be equal or overlapping in definition.

Two approaches can alleviate the problem: mappings and central
governance. Colloquially, these may be described as “free market”
and “regulated market” models. In the mapping approach, mappings
between between individual value types and properties (or even
profiles) defined at different type registry instances may enable inter-
operability if exposed at each of the mapped registries. This is similar
to semantic mapping approaches known from the Semantic Web (see
e.g. [37, section 6.3.2]). The fundamental problem of this approach is
that the original creators of the types may not feel responsible for
defining such mappings since usage of properties within a single
adequately coherent community can work well without mappings. It
is only when use cases span communities (i.e., type registry instances)
that mappings are required. Those actors interested in enabling such
use cases may not have the deep knowledge about the types the
original creators have and will thus be more challenged to make
correct mappings. The advantage of such an approach can be far
easier adoption because there will be no regulations on defining
properties or profiles.

The alternative solution may be a central governing authority that
enforces business processes for all newly registered value types and
properties, which ultimately require some form of approval. This
may slow down adoption, but will at least increase the likelihood
that some of the value types, properties and profiles are shared and
re-used. To achieve this, it may be worthwhile to provide end-user
search facilities and overarching documentation about the ecosystem
of types already registered. Profiles may also be split to reach
agreement on smaller aspects. An open question is who will provide
the resources for maintaining the central governance structure.

Aside from the two approaches described above, a variety of
mixed cases may emerge. Ultimately, however, the type registry
lies in a conflict zone as it strives to fulfill two fundamentally
conflicting requirements: first, to provide some level of unification
and interoperability among the types, so that potentially pieces of
information are interpretable by third parties, and second, to ensure
that every community can precisely define the types that match their
needs best because they are usually best suited to judge the fitness for
their use cases. Interoperability may eventually be better achievable
at a higher layer, for instance through Semantic Web applications
mediating between types. This is however not a core concern of the
type registry which first and foremost aims to provide persistent
identifiers and maintain the type definitions over longer time spans
and only secondarily addresses content issues. The justification for
establishing a centrally governed type registry system then stems

63

64

CONCEPTUAL FRAMEWORK

from the estimation that the anchoring of types is required to achieve
interoperability as a depending goal.

The type registry cannot assume knowledge about the actual use
of the properties and profiles that are registered with it, because it
cannot know the entirety of PID records. At a technical level, the type
registry must therefore use a preserving PID system: It must ensure
that the definitions are provided over long time-spans, and even
if some definitions are deleted, the PIDs should be resolvable to a
notification marker. It therefore depends on a lower preservation and
foundation layer just as the PID records that make use of the types.
The underlying implementations may be completely separate, e.g. if
different PID systems are used. The type registry should therefore
be seen as a service external to a typing layer implementation
as it is also in principle exchangeable (also see later in figure 7).
It must also adhere to high standards on Quality of Service and
preferably be established as a highly distributed, highly available
system. On the other hand, its records may be assumed to be static
over significant time scales, and therefore local caching at typing layer
implementations may work well.

Finally, the type registry should be agnostic towards the entities
it registers, but since the typing layer relies on an understanding of
registered value types, properties and profiles, these in fact make up
some first elemental types. If all profiles are known, e.g. because there
is only one type registry instance designed as a coherent distributed
database, the typing layer could offer methods such as listing all
profiles a PID record conforms to.

The typing layer presented here in this form is independent from
the particular implementations of the lower layers. It relies on the
persistency layer to continually resolve PIDs and return the PID
record contents. The criteria of the persistency layer can ensure that
this information is reliably available over time and trustworthy. The
type registry forms an external dependency that in consequence also
depends on its own persistency layer.

4.4 COLLECTION LAYER

Collections? of digital objects provide support for steps in a number
of use cases presented earlier. The overall purpose of collections in
this sense can be summarized as follows:

¢ Collections enable machine-orchestrated operations across mul-
tiple objects.

¢ Collections can make implicit parthood relationships between
digital objects explicit.

2 The term collection is in common use in communities and projects employing PIDs.

4.4 COLLECTION LAYER

* Collections provide abstraction: Depending on the context,
either an identifiable whole may be addressed or, at other
times, individual objects. The composition of the whole may
even change over time, but through the abstraction, an agent
referring to the whole can remain oblivious to such internal
changes.

The definition of collections, their composition and defining prop-
erties can be explained by a brief formal model. This also includes
a description of a general process for the creation of collections and
possible changes over time. Some essential characteristics can help to
classify different usage scenarios for collections. Some of the usage
scenarios are also constrained by the criteria of the persistency layer.
Finally, collections are actionable constructs, and therefore operations
on them can be defined, following similar intentions as with the
ADT interpretation of the Persistent Entity. In [97], a comparable
notion of actionable collections as ADT instances was explained
with particular emphasis on a practical implementation with Handle
System identifier records, however lacking the more fundamental
aspects including a life cycle approach to collections as described in
the following.

4.4.1 Definitions and terminology

In the simplest view, a collection is a set: an object which consists of
a number of elements. This has also been indicated by Kahn and
Wilensky in [45] by describing entities such as a “set-of-handles”
and a “set-of-digital-objects”. Every collection element has its own
identity and exists independent from the collection. Only collections
that consist of digital objects are considered here; thus, the space of
collection elements is the space of digital objects, and every collection
element bears a PID.

The simple view is however not adequate to describe the change of
collections over time. An adequate model is the notion of a particular
state of a collection at a given point in time. Then, a collection consists
of a sequence of collection states, and each collection state is a set
(or multiset, see below) of digital objects. In reality, such a sequence
will be finite and consist of a number of states growing over time. A
collection with a single state is called a static collection. A collection
with more than one state is called a dynamic collection. The first
sequence element always describes the initial set of objects in the
collection when it was formally created. A collection with an empty
state sequence is called an empty collection and of little practical
value except as a transitional object before its first state is defined.
When talking about the elements or items of a collection colloquially,
a specific collection state is usually meant.

65

66

CONCEPTUAL FRAMEWORK

In some cases, we would like a collection to be ordered, meaning
that the elements of collection states should be ordered. This is useful,
for instance, to review the order in which elements were added to
the collection, or to encode an ordered sequence of versioned digital
objects. The ordering can be described by stating that there is an
order relation defined on the cross-product of the element space.
The order may be partial or — perhaps more typical in practice —
total. An ordered collection then consists of a sequence of collection
states and an associated order. We can even imagine a more complex
situation where there is a sequence of orders, each element of which is
associated with at least one collection state, and each collection state
is associated with exactly one order. Such a situation may however
be less useful to study since many use cases require that the order
remains constant over time so that changes between collection states
can be described in terms of e.g where new objects were inserted.

Introducing ordering to collections also quickly leads to the notion
of having a collection state with several identical elements at different
positions. This can be easily expressed by generalizing the notion of
a collection state to be a multiset of digital objects.

4.4.2 The collection process

A collection is subject to a process with several stages over its lifetime,
ranging from defining the collection properties, its initial members,
to extending it and possibly fixation. The collection life cycle can be
aligned to the data life cycle models presented in section 2.2.

4.4.2.1 Defining the collection properties

A principal property of a collection is whether its elements are or-
dered or unordered. Although it is theoretically possible to transform
an unordered collection into an ordered one after elements have
already been added, the additional information required to order the
elements in hindsight may be impossible to attain. This property is
thus such a fundamental one that it is best defined at a very early
stage before adding actual collection elements. The opposite situation
is much easier to cover: An ordered collection may be turned into an
unordered one if we define unordered collections on multisets.

A collection may be defined according to thematic criteria that
describe which elements belong to it and how they relate to each
other. Note that this is strictly optional: To enable the review of the
thematic criteria by third parties, they must be encoded as part of
the collection’s metadata. This may not be done for every collection,
possibly due to reasons such as the costs involved in formally
encoding the criteria or because the collection is created as the output
of an automated process that does not have the necessary information
or sophistication.

4.4 COLLECTION LAYER

Defining the essential properties of a collection is usually a task
taken at a stage in the data life cycle just prior to when data are shared
with third parties for the first time, e.g. just at the entrance boundary
to the shared research domain as defined by Treloar and Harboe-Ree
[90] or at the receive or appraisal stage of the DCC model.

4.4.2.2 Determining the initial set of elements

At this stage, the initial set of collection elements is compiled, the
‘proper” collection is created, i.e., the first collection state. If an
element does not bear a PID, it must be given one as part of
the joining process. The collection may receive an individual PID,
however this is not strictly required as seen further below.

A principal decision to take at the collection creation stage is

whether the administrative responsibility of member objects changes.

The administrative responsibility for the object determines who
maintains its identification relation and the object contents. If respon-
sibility is transferred to the collection creator, preservation of the
collection and its elements is certainly easier as it does not cross
administrative boundaries. If responsibility is not transferred, the
collection is virtual: Its elements may originate from administrative
domains different from both the collection and each other. This leads
to a possibly difficult challenge in digitally preserving the collection
and all its contents.

In both cases of administrative responsibility, several nuances in
the strictness of preservation can be distinguished. At the strictest
level, all member objects are preserved, requiring a preserving PID
system. At the intermediate level, only the PIDs are required to
remain resolvable to at least some essential information (requiring
criterion 3 to be fulfilled). At the lowest level, there are no constraints
on the preservation of PIDs or resources.

In any case, the collection object must be preserved, which most
notably includes its metadata that describe which elements belong
to it by referencing their PIDs. The collection object is therefore a
Persistent Entity: By establishing relations to the Persistent Entities
of its member resources, a collection can remain intact even if some
of the member resources are gone. In terms of the data life cycle, the
task of determining the initial set of elements is made at an ingest or
publish stage when sharing data.

4.4.2.3 Extending a dynamic collection

If elements are added to the collection after its initial creation stage,
the collection becomes a dynamic collection with a sequence of
collection states. Elements that are added must observe the same
conditions that are valid for the initial elements; they receive PIDs
and are subject to the same preservation rules. Depending on the

67

68

CONCEPTUAL FRAMEWORK

implementation, it may be impossible to add elements to a collection
that was created in a static fashion; however, this is not a hard
conceptual restriction.

Some procedures may have to be performed after extending a
collection. For example, if there is a mechanism defined that provides
a checksum over all elements, the checksum may have to be updated.
If the collection bears a PID, the corresponding system will not be
able to ensure criterion 6, which is however quite intentionally.

Regarding the data life cycle, extending a dynamic collection may
be part of the iterative cycle of reusing and repurposing data, but
also occur at a general publication stage for example in the case of
continuous time series.

4.4.2.4 Collection fixation

Eventually, a dynamic collection may undergo a specific fixation stage
and no longer receive additional elements. This process may involve
for example to set administrative flags in the collection properties that
prevent future extensions or to calculate a final checksum. In terms of
the data life cycle, fixation will happen at a preservation stage, after
which no changes are possible anymore.

4.4.3 Fundamental structural criteria for collections

A collection implementation can offer functionality at different levels
of sophistication. Such essential functionality can be characterized
through a set of criteria. The criteria can be used to classify different
implementations and, accordingly, their fitness for purpose in view
of exemplary use cases. In the end, conformance to specific criteria
also determines which operations are possible on collections and their
members. The criteria do not depend on particular process stages
as discussed above; an implementation should be evaluated whether
it matches a specific criterion across all stages. As described in [97],
such criteria can also be interpreted as fixed design requirements for a
particular solution with respect to a limited set of use cases. However,
not every solution will have to conform to all criteria at all times as
not every driver use case will require this.

The criteria are equivalent to the corresponding requirements in
[97, p. 196-197] and reformulated to better match the notion of col-
lections presented here; the last criterion is formulated significantly
more precisely.

Collection Criterion 1 Multiple membership: Every digital object may be
an element of two or more distinct collections simultaneously.

If the implicit relation between collections and member elements
is assumed to be injective, this criterion remains unmatched. If the

4.4 COLLECTION LAYER

criterion is fulfilled, the relation is not injective and thus the collection
states may overlap, i.e., element sets of two distinct collections can
have common elements. If the criterion is not matched, it can be
safely assumed that the intersection of any two distinct element sets
is empty.

The notion of simultaneous membership is important with respect
to dynamic collections. Imagine a case where there are two collections
and a digital object that is member of each of them consecutively, but
not simultaneously. Such a situation may be supported by an imple-
mentation that does not provide simultaneous membership in both
collections. The criterion thus includes the notion of simultaneous
membership.

Collection Criterion 2 Nesting: Any collection can be nested as an ele-
ment in any other collection.

This has only been hinted at in the base model, but it is a
valid practical requirement and has large impact on the level of
sophistication possible when serving specific use cases. Being able
to construct collections that have other collections as their members
— possibly including recursion — provides a powerful tool, but also
requires a higher level of sophistication from the implementation
and possibly raises scalability and operation complexity concerns.
Fulfilling the nesting criterion is a necessary condition to construct
trees of objects. An implementation may choose to enforce a policy
that restricts the nesting depth.

Collection Criterion 3 Dedicated PID: Every collection bears a dedicated
PID identifying the whole object apart from its members.

It may seem surprising at first, but it is not strictly required that a
collection bears a dedicated PID. An implementation may not provide
such head PIDs and still offer the facilities to bind objects together
and operate on the whole, for instance through distinct metadata
records. For the criterion to be fulfilled, every collection must bear
at least one head PID; possibly more (see equation 1). Having a head
PID available for every collection also makes it easier for collection
operations to refer to them.

Collection Criterion 4 Full navigability: Given an element PID, it is
possible to navigate to the collection object and to any other element of the
same collection.

There is also the notion of simple navigability, expressed as being
able to get all elements PID for a given collection. Simple navigability
is an essential requirement for any notion of a collection, because
it is a defining feature. Note that due to the simple navigability
requirement, being able to navigate to the collection object is already

69

70

CONCEPTUAL FRAMEWORK

sufficient to match this criterion, because by going through the
collection entity first, all siblings can be reached. Note that it is
not strictly required to fulfill collection criterion 3 at the same time,
although it may be quite useful.

4.4.4 Common operations on collections

The notion of a collection is very close to the common principles
of typical abstract data types (ADTs), originally presented by Liskov
and Zilles [56] and nowadays an integral part of typical higher-level
programming languages or their standard libraries. In this restricted
view, the notion of an identifier is also similar enough to that of
a pointer to a memory location. Common ADTs include lists, sets,
multisets or bags, trees, graphs and maps, and the notion of a
Collection is particularly familiar to users of the Java programming
language. Unsurprisingly, common operations on collections are
strongly related to the typical operations possible on the aforemen-
tioned ADTs and include adding or inserting an element, removing
elements and retrieving all elements of a collection or iterating over
them. If collection criterion 4 is fulfilled, we may also retrieve one
or several collection objects for a given element and iterate over all
sibling elements. If this criterion is not fulfilled, it is not possible to
navigate to the collection object; however, it may still be possible to
navigate to other elements (for instance if the collection is a linked
list).

4.5 DISCUSSION

The framework presented in this chapter transcends the mere redi-
rection layer based view of persistent identification (see section 2.4.2)
by integrating PID records as an essential component and enabling
higher-level services based on them. For scenarios where the full
layer model is perceived to be too complex because some of the more
sophisticated facilities such as typing and collection building are not
used, an alternative view is possible by following the preservation-
centric model that emphasizes the Persistent Entity abstract data type
as an interaction tool and through it a distinction between two levels
of preservation.

The typing layer provides an essential component to triage un-
known objects and making decisions independent from a particular
object origin, location or PID system. Through the typing profiles
mechanism, such objects may in fact be typed in several different
ways simultaneously, for instance to reflect different interpretation
and requirements from individual communities. With typed and
interoperable information available from PID records, it is not nec-
essary anymore to include meaningful elements in PID names, a

4.5 DISCUSSION

practice that can lead to serious issues when considering long-term
preservation perspectives. Inter-identifier links, but also collection
information, gather elemental context information about scientific
data, and because they are preserved at the primary level, they can
persist beyond the existence of the data objects involved.

The choice of layers is of course not entirely fixed and alternatives
are possible. The most important alternative concerns the use of inter-
identifier links. Conceptually, one may introduce a specific linking
layer between the typing and the collection layers, the purpose of
which would be to provide a notion of typed links between resources
that are both rapidly accessible and in principle available beyond the
resource’s lifetime. Linking-related operations include, for example,
to verify link stability, i.e. to confirm that all records are still available,
and if a type constraint on the target object is defined, this may
include verification of the the constraint, using the typing layer’s
profile definition and target PID record. Such functionality may
however also be provided by the typing layer at its top interface
because it already contains all required facilities. The three-layer
model is based on the estimation that typed links are an application
of typing, but not distinct enough to justify a separate layer. In view of
Linked Data applications, there may be more justification to introduce
this as a separate layer, but so far, it does not seem adequate, also
considering ongoing related efforts further described in chapter 7.

An open question is how the equality of two Digital Objects or
Persistent Entities is defined. The persistency layer describes that
PIDs are an integral part of both Persistent Entities and Digital
Objects, resulting in the PID becoming an essential part of their
identity: if a Digital Object is created with the intention to use several
PIDs for the same data and PID record, this will result in several
distinct Digital Objects. In the formal model, this is necessary to
adequately describe situations where there are e.g. ‘default” or ‘empty’
PID records associated with a larger number of PIDs or where the
same data may not only receive multiple identifiers but where also
the records may intentionally differ. This is a quite typical practical
scenario for instance if a data object receives additional identifiers
when it is copied to other repositories, e.g. within the scope of
the EUDAT infrastructure. In contrast, if we consider a model that
explicitly describes such events, multiple PIDs for the same data can
be described as a sequence associating them to the same data (and
Digital Object), possibly leading to an adequate definition of object
equality. Future work that aims to describe the equality of Digital
Objects in a more formal way beyond looking at the identity of data
objects should therefore provide such a more detailed formal model.

A particularly powerful concept emerges from the combination of
typed records, typed links, and collections, all preserved as part of the
Persistent Entity: the notion of a PID graph. The fundamental graph

71

72

CONCEPTUAL FRAMEWORK

is constructed with the individual PIDs of objects forming its nodes.
The typed information available from their associated records may
contain typed references to other PIDs; these form the graph edges.
The edges are always directed, and of course the graph may contain
cycles and any number of typed edges between a pair of nodes in any
direction.

Based on this common understanding, there are two fundamental
models of how a graph of PIDs can be further constructed. The
difference between the models stems from how collections are
integrated in the graph. In the first model, the collections are
dismantled and their members included in the graph as nodes,
preferably typed accordingly. The collection membership relation is
then just an additional type of edge label. This model does not
break if an identified object is member of multiple collections (cf.
collection criterion 1): the subgraph will simply not be a tree with
a single root. In the second model, the collections are seen as atomic
objects, each collection forming a node with the membership relations
and individual members not represented in the graph. Multiple
membership will not be visible.

Such a PID graph has broad applicability considering the use cases
from chapter 3. It also strongly relates to the notion of Linked Data,
which is further discussed in section 7.1. The view of provenance
as a directed acyclic graph (cf. [65]) is well suited for the low-level
approach linked PIDs with associated records provide. Such a graph
can be constructed by connecting the persistently identified input
and output objects of a process with provenance-typed edges, e.g.
‘predecessor’ and ‘successor’. In this form of encoding, the prove-
nance graph does however reside at the lower end of expressivity;
it does not facilitate reproducibility of the respective processes, nor
does it mandate any form of documentation beyond registering input
and output data. A layer-based approach which extends such a
basic provenance graph with a rich metadata overlay may enable
reproducibility, while keeping the provenance DAG as a fallback
option in case the more sophisticated overlay information is lost.

If the model of the Persistent Entity is followed, loss of resources
will not cause loss of connectivity in the graph, which could po-
tentially break provenance traces. The graph will also benefit from
typing, because typing of its resources (through the typed PID
records) will allow agents to distinguish types of nodes from each
other, e.g. provenance trace nodes, versioned of object states and data
from metadata objects.

While PID systems have traditionally provided PID resolution
services and can continue to do so as part of the preservation layer
functionality, there may be more advanced resolution services that
enable the higher-layer functionality, for instance to offer collection-
related methods. Technically, such a resolution service would be

4.5 DISCUSSION

situated between the fundamental PID system services and the
resources so that it can access the additional information record and
perform e.g. further redirection actions depending on the PID record
contents.

73

IMPLEMENTATION CONCEPTS

The framework presented in chapter 4 is shaped by the use cases
and characterized by a layered design. To enable the use cases, an
implementation is required for all layers together or individually.
This chapter presents distinct approaches for implementing each
layer, based on the notion that each layer shares an interface with
its neighbors which can enable a proper modular service design
in practice. The number of possible implementations is potentially
larger than can be addressed here, including solutions yet to be de-
signed as part of future activities. Wherever possible, the individual
sections discuss whether existing solutions are suitable to implement
the different layer services. Popular PID systems fulfill some but not
all of the preservation layer criteria presented in chapter 4. In some
cases, full conformance may be achieved by additionally providing
essential policies and an organizational framework or business model.
A typing layer implementation must offer a set of operations, some
of which can be provided by a Type Registry prototype' under
development by CNRI.

5.1 PERSISTENCY LAYER

The best candidates for implementing the persistency layer are
existing PID systems. As indicated earlier, these can be evaluated in
terms of how they meet the criteria and what steps could be taken
to improve their conformance. A good overview on the DOI, Handle,
Persistent URL (PURL), Archival Resource Key (ARK) and generic
URL-based systems with particular focus on the Earth sciences is also
given by Duerr et al. [26].

Table 2 summarizes the conformance results. Overall, the DOI Sys-
tem appears to have the best conformance to the criteria, underlining
its position as the leading PID system for scientific results.

At first glance, criterion 1 is met by every system listed in the
table. This is not surprising since criterion 1 is a necessary condition
for a PID system as it captures the fundamental ability of PIDs to
point to resources that can relocate while keeping the same identifier.
The Domain Name System does not match this criterion and is not
included in the table, but instead briefly discussed further below.
Criterion 2 is met by every system under consideration, reflecting the
idea that a persistent identifier is implicitly globally unique, because
otherwise its practical value is diminishing drastically. Who would

1 See http://typeregistry.org, last checked Feb. 27, 2015

75

http://typeregistry.org

76

IMPLEMENTATION CONCEPTS

CRITERIA
PID SYSTEM 1 2 3 4 5 6
The Handle System v v v 2
The DOI System v v v v
URNSs with local metadata catalogs v o vo?roo- -7
The ARK System v v 7 7
PURLs v v -2

Table 2: Evaluation of common PID systems along the fundamental criteria.
The question marks indicate at least non-conformance in the
strictest sense, but they also indicate cases where there is either
insufficient information available, e.g. due to a lack of explicitly
stated policies, or where the policies followed by the PID system
maintainers are intentionally left open. The latter cases are dis-
cussed in further detail in the text.

use a persistent identifier if objects identified by it can relocate to
locations outside its scope?

Only the Archival Resource Key (ARK) System emphasizes policies
that meet criterion 3. This reflects the design philosophy of the ARK
System, which is specifically designed around the idea to ensure
persistent access not only to objects, but also to their metadata.
Criteria 4 and 5 target the design and behavior of resolution services;
these are examined individually for the systems. Criterion 6 heavily
relies on policies; in the strictest sense, an authority is required that
has some (perhaps contractual) leverage on individual institutions
that maintain resolution services or provide storage facilities to
enforce the policies.

The following section discusses each system in more detail and
points out those aspects that remain unclear or where other criteria
are not met.

5.1.1 Review of individual PID systems

The Handle System [45] is constructed through a set of distributed
servers with a hierarchical identifier namespace. In the past, there
has been a single service at CNRI, called the Global Handle Registry®,
which maintains the first leg of the namespace. The sub-namespaces
are then served through servers at various institutions. These individ-
ual Handle servers will not be able to resolve all identifiers, so that
resolution requests usually go through the global server. Criterion 5
is therefore not met. Criterion 3 may be met quite easily because the
Handle System provides sophisticated technical facilities to associate
PID records with the identifiers. However, the question how these
records are kept is a matter of organizational policy, which is not

5.1 PERSISTENCY LAYER

covered by installing a Handle Server and agreeing to its usage
policies. The same applies to criterion 6: The resources identified
through the Handle System are outside its scope. If meeting the
criterion is desired, a policy is required that determines whether this
is the responsibility of the institution maintaining the identifier, the
agent requesting an identifier, or a third party providing long-term
archival services.

The DOI System [73] shares many features of the Handle System
as it is its largest customer and prime application. The institutions
issuing DOIs maintain a set of policies which target the persistency
of resources over longer time spans and prohibit the uncontrolled
exchange of identified resources. There is also a process in place
where users can alert the International DOI Foundation of broken
DOIs. Typical customers of the DOI System include scientific publish-
ers who have their own interests in maintaining the resources and
given the wide adoption of DOIs, peer pressure is likely to ensure
that policy violations are treated seriously. In view of these diverse
social and even economic factors, criterion 6 is met. Criterion 5 is
met by the DOI System because its resolution services work on the
second tier of the Handle namespace, and thus all its resolvers are
able to resolve any DOI. The exemplary central resolver ensuring that
criterion 4 is met is quite well-known (http://dx.doi.org).

As explained in section 2.4.1, URNSs [71, 63] have been around
since the early days of the World Wide Web, yet never reached
as much adoption as the Domain Name System and the URLs
based on it. Notable current users of URNSs are the national and
scientific libraries. Such an institution may maintain an individual
URN resolution service, while the complete space of URNS, divided
into individual namespaces, is controlled by the Internet Assigned
Numbers Authority (IANA). A global resolver across all URN names-
paces is however missing; as explained by Paskin [73], URNSs in the
strictest form are merely a specification, but not an implemented
infrastructure and accompanying policies. Thus the URN system
fails to conform to criterion 4. This also means that criterion 5
cannot be met, because each individual URN resolver only knows
its own institutional namespace. Since there is no concept of records
associated with URNs, we must consider a solution consisting of a
local URN resolver and an institutional metadata repository to assess
criterion 3. The core question then is whether these records are kept
even if the resources maintained by the institution are gone. This
seems quite possible, also given that URN policies (cf. [71, p. 1212])
specifically include the notion that a URN should remain resolvable
beyond the lifetime of the resource, but in the end, the policies are
only enforced at the institutional level, but not by a larger authority
such as IANA. Criterion 3 should therefore be considered to be met
only partially. Criterion 6 may be fulfilled, because the URN policies

77

http://dx.doi.org

78

IMPLEMENTATION CONCEPTS

require that an object should not be exchanged, however it remains
unclear as well how this policy can be enforced.

As explained above, the ARK system [52] can meet criterion 3 quite
well if one trusts its policies and the mechanisms to enforce them.
ARK resolution services are provided by individual institutions, and
each institution will be assigned its own namespace by the California
Digital Library (CDL) on request, similar to the Handle System. As
indicated by Duerr et al. [26], there are concepts for a negotiation
mechanism that allows resolvers to contact other ARK providers in
case a given identifier does not belong to the particular institution’s
namespace; however, this has not been implemented so far, and since
a global resolver is missing as well, criteria 4 and 5 are not met.
There is a policy at least promoted by the CDL that demands that no
identifier shall be assigned to a different resource, at least supporting
criterion 6; however, the CDL will most likely be unable to enforce
such policies due to the informal nature of the ARK collaboration.
Whether criterion 6 is met at the same level of quality as for example
in the case of the DOI System is therefore open.

To evaluate Persistent URLs [94, 4, 26], it must first be determined
how this PID system is defined. There are two broad choices on
this. In the first model, PURL identifiers are understood as the
full URLs, which includes the location of the resolution service,
such as “http://purl.org”. The PURL homepage lists several other
PURL providers, and thus this is not the only resolution service. If
the resolution server name is thus part of the identifier name, the
primary resolution system will be the Domain Name System. This
results in a contradiction, because a PID system is required to only
resolve proper PIDs and this does not cover arbitrary HTTP-URLs
as explained in sections 2.4.2 and 4.2. The alternative model, which
is also the one shown in the summary table, interprets the PURL
system as consisting of a number of mutually independent resolvers.
The identifier names will not contain the resolver name. Then, such
an identifier will not be globally unique, violating criterion 2, and
there will also not be a coherent, single namespace and no central
resolution service, violating criteria 4 and 5. As with the other PID
systems, criteria 3 and 6 depend on enforcing adequate policies. The
official web pages and available literature do not include indications
on such policies, thus conformance with criteria 3 and 6 remains
open.

A preserving PID system is required to implement a Persistent En-
tity. None of the systems discussed meets all of the necessary criteria
for this, often due to a lack of PID record facilities. Where these are
missing, local databases storing metadata may be used instead. The
Handle System and the ARK System stand out because they provide
a notion of PID records as part of their design philosophies. If a
solution for PID records is provided, introducing a set of policies and

5.2 TYPING LAYER

establishing an authority that can enforce them should then suffice
to implement the required ADT operations. In some cases, however,
this may be easier achieved than in others. Particularly for the DOI
System, the criteria may be met fairly easily if the policies for the
persistency of metadata records in case resources are lost or deleted
are clarified.

5.1.2 Scalability aspects

The research questions mention a particular aspect regarding scalabil-
ity in terms of how to deal with huge numbers of PIDs. The pivotal
element in answering this question is the ability of PID systems to
scale. First, this concerns the aspect of resolution. The Handle and
DOI Systems aim to achieve this through a multi-tier architecture
with root servers that redirect to individual sub-namespace servers,
which again can serve requests through an arbitrary number of
mirroring servers (also cf. the Handle protocol specification [87]).
Secondly, there must be asymptotic constant-time access to the values
of individual PID record keys. This can be ensured for example if
PID records are stored in a relational database solution with indices
optimized for identifier name and key-based access. In general, a PID
system with PID records can be seen as a set of nested hash tables.

5.2 TYPING LAYER

As explained in section 4.3.3, an implementation of a typing layer
has an external dependency on a proper type registry. This type
registry should be centrally governed and in full control of the type
registration process. The type registry must offer methods to register
and retrieve properties, value types and profiles. A user concerned
with the PID layers only will not want to deal with the type registry
directly, and thus, some of its methods should also be available
through the typing layer interface as well. The type registry must
also offer the most elemental value types as part of its initial state.
The interactions between applications, the type registry, the typing
layer service implementation and PID systems are shown in figure 7.
A typical implementation will realize the interfaces as RESTful [29]
web service endpoints.

The interface descriptions presented here are also based on the
concepts described in the RDA PID Information Types Working
Group recommendation [96].

79

8o IMPLEMENTATION CONCEPTS

[Client applications]

)

| Typing layer interface |

.- Typing layer
> service implementation

Type registry
service implementation ¢

Type registry
interface

I I
: | Persistency layer interface | Persistency layer interface | :
I I
I I
I I
| . . 1
| Preserving Preserving |
I PID system PID system I
I |
I |

Figure 7: The typing layer relies on both a type registry and a preserv-
ing PID system, properly decoupled through separate interfaces.
Client applications will usually work with the typing layer service,
but may also query the type registry directly. The PID systems and
persistency layer interfaces used may be identical or separate.

5.2.1 Type registry

The top-level type registry interface must offer a set of mandatory
methods, some of which are duplicated in the typing layer. The
methods are as follows:

REGISTER PROPERTY: The method registers a property under a new
PID given the PID of its value type (the property range) and
a name label. Other entries may be included as well, such
as a maximum cardinality constraint indicating how often the
property may be instantiated in a PID record.

REGISTER VALUE TYPE: Registers a value type under a new PID
given a name label and a human-readable description. A
type registry may also store additional machine-interpretable
constraints.

REGISTER PROFILE: Registers a new profile under a new PID. Two
sets of property PIDs must be given (mandatory and optional);
each of them may be empty, however, a profile with only
empty sets is not very useful. Optionally, a type registry
may encourage community adoption by supporting community
namespaces as additional parameters for searching profiles. Ad-
ditional metadata may include a human-readable description

5.2 TYPING LAYER

of the intended use of the profile and provenance information
such as the profile creator, creation date, and possibly related or
predecessor profiles.

MERGE PROFILES (OPTIONAL): As described in section 4.3.2.2, new
profiles may be constructed from existing ones by merging their
respective property sets. Such a method will accept any number
of profiles and create a new profile with a new PID that is
based on the union of all respective mandatory and optional
property sets. Additional metadata should be provided as well,
but most notably, the method must store a reference to the
ancestor profile PIDs.

QUERY REGISTERED PROPERTY: Given a property PID, the method
returns the name and value type PID of the registered property.

QUERY VALUE TYPE: Given a value type PID, the method returns
the definition of the value type.

QUERY REGISTERED PROFILE: Given a profile PID, the method re-
turns the set of mandatory and optional properties contained in
the profile, referencing their PIDs and any additional metadata.

In the strictest sense, the PID names assigned by the type registry
should adhere to the principles mentioned in section 2.4.3 regarding
intelligent identifiers, i.e. they should not indicate the intended
meaning or purpose of the respective property, value type or profile.
Although it can be argued that the elemental value types are usually
quite stable, and the same may be true for properties, the safest
solution remains to employ a naming mechanism based on purely
random UUIDs.

In contrast to creation, update operations for properties, value
types and profiles are rather difficult. The requirement that a type
registry conforms to the fundamental PID system criterion 6 prevents
any updates to the actual definitions of properties, value types
and profiles. This is important because the meaning of PID records
employing specific properties will change without notice if property
definitions are modified. It is impossible to know and consequently
update all PID records that use a particular property or value type.
On the other hand, the registered properties and profiles are usually
the result of community processes, and therefore they are subject
to an initial phase of changes particularly during early adoption.
The type registry must deal with these conflicting goals as part
of its type governance process and may for instance decide to
offer preliminary namespaces or meticulously track the version of
registered definitions.

81

82

IMPLEMENTATION CONCEPTS

5.2.2 Typing layer service

A typing layer service implementation offers a top interface to
determine the type of entries in a particular PID record and the
overall object type derived from this. Since there may be several
typing layer implementations, it is useful to define a generic API to
query types. This API should offer the following methods, some of
which are the same as for the underlying type registry:

QUERY REGISTERED PROPERTY: Same as for the type registry.
QUERY VALUE TYPE: Same as for the type registry.
QUERY REGISTERED PROFILE: Same as for the type registry.

WRITE PROPERTY TO PID RECORD: This method will write or up-
date a single property in a PID record. Its parameters are the
target record PID, the property PID and a value. All PIDs must
be checked and the method must fail if the property is not
registered. If the type registry provides machine-interpretable
descriptions for value type constraints, the method may verify
the given value and fail on boundary violations. This may
include verification of a link target PID if the property range
is another PID record (i.e., a Persistent Entity). If the PID record
already contains a value for the given property, the method
will overwrite it. Obviously, variations of this method may be
provided to replace a complete PID record.

QUERY PROPERTY FROM PID RECORD: Given an object PID and a
property PID, the method returns the associated property value
or fails if there is no such value defined for this object.

QUERY PID RECORD BY PROFILE: Given an object PID and a profile
PID, the method returns all mandatory and optional properties
that are available from the given PID record. Essentially, this is
a PID record sub-setting operation. The method may fail if the
record does not provide values for all mandatory properties. In
this regard, the method doubles as a weak conformance check.

WEAK PROFILE CONFORMANCE CHECK: Given a profile PID, the
method returns true if all property keys specified in the profile
are present in the PID record and if there is a value associated
with each of these keys. This method provides the essential
facility to type objects.

STRONG PROFILE CONFORMANCE CHECK: Given a profile PID, the
method returns true if, in addition to weak conformance, the
property values are in the correct range of the respective
registered properties. This method is optional since a typing
layer implementation will only be able to answer such queries

5.2 TYPING LAYER

if the value ranges available from the type registry are described
in an interoperable and machine-interpretable manner.

DETERMINE PID CLASS: Since the typing layer introduces PIDs for
different kinds of objects, it must also be able to tell a client
which kind of object a given PID identifies. Such a method may
thus rely on the typing facilities itself to distinguish registered
properties, profiles, value types and arbitrary objects from each
other.

From an operational perspective, scalability is a potential issue. If
there are large numbers of PIDs registered and a lot of queries are
issued to the typing layer to determine object types, an implemen-
tation should locally cache the type registry contents. This should
work well because the type registry contents can assumed to be static
over sufficiently long time spans. Additionally, an implementation
should be constructed as a distributed system, independent from
the requirement to have a single overseeing authority, to offer load-
balancing and high availability.

At the organizational level, the entity maintaining the type registry
may choose to enforce a central type governance process as described
in section 4.3.3. This will then be similar to a continuous and long-
lasting ontology engineering exercise; user communities must be
involved to mediate conflicts between registered and proposed types,
and the goal of preventing too large a diversion between types must
be emphasized without sacrificing too much of the specific commu-
nity use cases. To support these processes, it should offer searching
facilities across a full catalog of registered properties, profiles and
value types. In principle, the type registry should be open to anyone
wishing to register types, since usage of PID systems is often a
bottom-up process. Role models for the central overseeing authority
are for instance the IANA controlling the IP address namespace and
the ITU-T controlling telephone number country codes. The Digital
Object Numbering Authority (DONA) which is currently taking over
responsibilities for Handle System administration is also a good
candidate.

As part of the RDA Working Group initiatives, a type registry
prototype that offers some of the required functionality has been pro-
posed by CNRI and is still under development at the time of writing.
This prototype offers generic methods to register types and retrieve
their definitions, and it appears likely that it can provide at least a
value type mechanism as described. However, it is unclear whether
it will provide all of the necessary functionality for properties and
profiles. The typing API prototype developed during the course of
the RDA Working Group on PID Information Types therefore relies
on this prototype but also offers additional mechanisms to feed
property and profile descriptions into the type registry prototype. For

83

84

IMPLEMENTATION CONCEPTS

security reasons, it does not offer public methods to register profiles,
properties and value types. The question whether such methods
are really required at an automatable web service level very much
depends on the scale of adoption by communities.

Some concrete type examples can be found in the next section as
well as in table 4 in chapter 6.

5.3 COLLECTION LAYER

As mentioned in section 4.4, collections should ultimately be im-
plemented as common Abstract Data Types. This section briefly
discusses exemplary ADT implementations that can conform to
all of the collection criteria. In Weigel et al. [97], a stand-alone
implementation has been presented that provides List, Set and Map
instances based on Handle System records, but does not use the
typing facilities presented here. The registered properties introduced
in this section are also summarized in table 3.

The particular ADT implementation must be determined at the
first stage of the collection process, because some of the ADTs
are ordered (lists) and others are unordered (sets). Another factor
for the concrete choice of implementation is the desired trade-off
on operational complexity. Linked lists offer constant-time insert
and extension operations, but linear-time access by index, while
arrays offer indexed access in constant time but linear-time inserts.
Sets and maps are best implemented as hash maps. All of these
implementations share the requirement that the structural contents
of instances must be served through PID records, so that if the
secondary level of preservation (section 4.2.3) fails, the instances are
still fully functional in accordance with a PID system that fulfills
criterion 3. This also means that every collection object receives an
individual head PID, fulfilling collection criterion 3.

All implementations assume that the persistency layer offers a
constant-time method to access PID record entries through their keys.
All implementations obey the fundamental requirement that access
occurs primarily via single PIDs, which is a core assumption for the
whole work (cf. section 1.2).

For set and map implementations, a hash map is stored in the head
PID record, encoded through the key-value pairs. The values will be
the member PIDs, while the keys will not be registered properties, but
used as integer hash keys for open addressing hash mapping with
simple linear probing so that constant-time look-up is ensured. The
member PID names act as the input to the hash function. Because PID
names may be very similar to each other, particularly if a collection
is generated from sequential output, the hash function should try to
avoid collisions on very small self-similar input strings. This is not
necessarily true for the map implementation, because here, the input

PROPERTY NAME RANGE CARDINALITY PURPOSE

COLLECTION-TYPE String or CV 1 Indicates for a head PID which type of collection instance is managed
through it. Possible values for a controlled vocabulary (CV) include set,
map, linked list and array.

MEMBER - OF Identifier N Points from any member to the head PID of a collection.

LINKED-LIST-PREDECESSOR Identifier N Points to the predecessor in a linked list.

LINKED-LIST-SUCCESSOR Identifier N Points to the successor in a linked list.

LIST-HEAD Identifier 1 Points from a head PID record to the first element in a linked list. May
also be useful for array instances to support interoperability.

LIST-TAIL Identifier 1 Points from a head PID record to the last element in a linked list. May
also be useful for array instances to support interoperability.

TOTAL-NUMBER-OF -ELEMENTS Integer 1 Stores the total number of elements of a collection of any type in its head
PID.

READ-ONLY Boolean 1 If set to true on a head PID, indicates that modification methods should

refuse to further change the collection.

Table 3: Summary of all registered properties required to maintain collections. Instead of accessing their values directly, users will call the
appropriate collection methods. If collection criterion 1 need not be fulfilled, the cardinality of MEMBER-OF, LINKED-LIST-PREDECESSOR and

LINKED-LIST-SUCCESSOR will be 1.

86

IMPLEMENTATION CONCEPTS

strings will be arbitrary values given by the user. To ensure collection
criterion 4, any insert operation must modify the member PID records
so it points to the head PID. Ensuring criterion 1 requires that at each
element, the type of implementation is recorded as well. This will
result in specific registered properties such as MEMBER-OF and possibly
derived properties to indicate the implementation type.

A doubly linked list implementation will store predecessor and
successor PIDs in the PID records of the member elements to enable
constant-time iterations, using specific registered properties such
as LINKED-LIST-PREDECESSOR and LINKED-LIST-SUCCESSOR. A linked
list implementation may work particularly well without requiring
collection criterion 3 to be matched. While persistently referencing
the full collection will then not be possible, the common operations
such as insert, iteration and removal will be possible if at least
one element of the linked list is known. If a head PID is assigned,
the corresponding PID record should point to the head and tail
elements of the linked list to allow flexible iteration from both ends.
Also, the record should contain information on the total number
of elements. The registered properties for this will be LIST-HEAD,
LIST-TAIL and TOTAL-NUMBER-OF-ELEMENTS. If collection criterion 1
should be fulfilled so that a list element can be member of two or
more linked lists at the same time but without assigning a head PID,
there must be an indication in the record which predecessor and
successor links refer to which list instance.

An array implementation will use the keys of a head PID record as
array indices to store the respective element PIDs. A MEMBER-OF value
must be stored at element records to fulfill collection criterion 4. The
head record may also contain a TOTAL -NUMBER-OF - ELEMENTS property.

All implementations described are able to work as dynamic collec-
tions providing collection states after initial creation. If a head PID
record is available, a READ-ONLY property with Boolean value type
may be set to mark the fixation stage. All insert, append and remove
operations must check the flag and fail if it is active. The head record
should also contain a property COLLECTION-TYPE to make it easier
for services to offer the adequate set of collection methods. Because
linked lists and arrays are implementations of the same concept — an
ordered collection — it may be possible to migrate from one to the
other even after collection creation at the dynamic extension stage.
This is however not strictly true (lacking additional knowledge on
item ordering) for migrating e.g. a set instance to a linked list or
array.

A full exemplary implementation is described in [97]. The imple-
mentation is based on the Handle System and makes extensive use of
its Handle Index fields to provide constant-time access to PID record
values. Because the requirements listed in [97] are equivalent to the

5.4 DISCUSSION

collection criteria defined in section 4.4.3, the exemplary prototype
fulfills all of them.

5.4 DISCUSSION

For each of the layers described in chapter 4, possible implementa-
tions exist or can be developed. The persistency layer and with it
the preservation-centric model are in the responsibility of typical PID
systems and their providing entities. Popular existing PID systems
exhibit differences in conformance to the fundamental criteria of the
persistency layer, though sometimes explicit policies are missing. The
widespread ambiguity in meeting criteria 3 and 6 should be seen
as an invitation to PID system providers to clearly state their take
on the relevant issues such as continued record resolution, identifier
re-assignment and change management of identified resources. If
the typical uses cases for the individual systems do not demand
conformance to a particular criterion and may actually be inhibited
by it, such as in the case of acceptable resource replacement, this
should be advertised unambiguously, also in view of the functionality
provided by typing and collection layer implementations.

A solution fulfilling all criteria can be implemented for example by
the DOI System with additional policies that ensure the resolution
of PID records. The Handle System is also a good candidate if a
set of policies similar to the DOI System is enforced and a proper
organizational framework is defined. A possible role model for this
is the European Persistent Identifier Consortium (EPIC), which is
expected to formulate adequate policies in the future. In conclusion,
most of the reasons why criteria may not be met are indeed due
to policy issues revolving around the persistency of records and
resources, and ensuring these requires a central and well-accepted
overseeing authority. An evaluation along the criteria is therefore
also always qualitative and informed by weighing different aspects.
A technical aspect not described by the fundamental criteria is that
any PID system that aims to provide services for huge numbers of
PIDs must provide some form of practical scalability both in terms of
PID resolution to resources and to PID records. PID records should
also exhibit key-based constant look-up times.

A typing layer implementation relies on a system architecture that
includes a type registry, an overseeing authority and underlying PID
systems. An exemplary prototypical implementation of this architec-
ture is available through the outcomes of the RDA working groups
on PID Information Types and Type Registries. The most important
non-technical aspect for a sustainable typing layer implementation
lies in the governance process of the type registry and the acceptance
of its authoritative role.

87

88

IMPLEMENTATION CONCEPTS

A collection layer implementation can be implemented through
typical actionable abstract data type instances such as lists and sets.
As is typical for ADT implementations, no optimal solution for
ordered lists can be found as efficiency trade-off decisions between
insert and look-up operations must be made. A core benefit of such
an approach is however that the concept of ADTs is well-known to
any programmer, and chances are that such a solution is well-received
by adopters that do not want to get involved in the intricacies of PID
systems.

The implementations presented in this chapter also obey the
fundamental principles of the layer cake, where underlying layers
are functionally independent from higher layers. PID systems have
been around for a long time and work well without type registries.
The typing architecture (see figure 7) makes use of the persistent
identification facilities of the lower layer. The collection layer finally
employs a number of types to maintain the structure of the ADT
implementations and relies on the constant look-up time of keys
in PID records. The rather loose coupling of the layer components
through interfaces is quite intentional to allow modular exchange and
support an approach where there are distinct service providers for
separate layers. The type registry and separate PID systems are a first
example for this.

Finally, a sophisticated collection-enabled PID resolver would not be
situated at the preservation layer, but instead make use of function-
ality from all three layers. As described in section 4.2, PID systems
(as persistency layer implementations) provide two fundamental
operations: resolution of PIDs to resources and to PID records.
ADT instances that offer head PIDs are identified through them. A
collection-enabled PID resolver offers both the low-level operations as
well as generic read-only collection operations. Because the necessary
properties to hold collection information are registered in the type
registry, the resolver will be able to interpret them independent
from the original PID generator. For list head PIDs, the resolver can
provide access to the first and last element, the list size and access to
elements by index. For list elements, it can provide access to previous
and next elements. For set head PIDs, it can provide the set size.

ANALYSIS

The mechanisms presented in chapter 4 and 5 can be evaluated in
terms of how they can enable the use cases presented in chapter 3.
In some cases, decisions must be made on important trade-offs and
implementation alternatives. A set of overarching tools can finally
demonstrate the added value that may be necessary to encourage
wide adoption of the conceptual framework presented in chapter 4.

6.1 REFERENCING PRELIMINARY DATA

To provide persistent references for preliminary data that may not be
preserved on longer timescales, PIDs can be used if the model of the
primary and secondary levels of preservation is observed. Figure 8
generalizes the process described in the use case. When a dataset is
ready to be published on ESGF, the publication process scripts should
automatically register a PID with a preserving PID system. The
initial assignment generates a Persistent Entity that can eventually
last longer than the Digital Object that includes the data. The PID
does not fulfill the common criteria to be citable (see section 2.4.2)
since the data it refers to is deliberately not guaranteed to persist
and the identifier may not be widely accepted by publishers and
scientists as part of a formally correct reference list. Most importantly,
there will not be a standardized set of citation-relevant metadata
associated with the identifier, such as author information, dataset
title and publisher name (cf. [22]), as these are rather unstable
or difficult to obtain at this early phase. A registered property
PUBLICATION-DATE may however be part of the PID record as it
contains static information easy to record automatically as part of
the ESGF publishing process.

The PIDs for preliminary data, while not citable, still serve signif-
icant practical purposes as indicated in the use case description. If
a scientist wishes to refer unambiguously to an ESGF dataset at a
more fine-granular level than available through the DOIs assigned,
current practice would be to use its name (which is not necessarily
unambiguous or consistent across projects publishing on ESGF) or
surrogate identifiers such as the “file tracking ID” (also see figure
4), a low-level technical identifier that is unique but not subject to
any form of governance and may vanish easily because it can only
be resolved through the ESGF metadata catalogs. The automatic
assignment of PIDs during ESGF publishing fills this gap.

89

90

ANALYSIS

data production

re-use / \ registration
° °
.ana|y5|s

citable @) \ ®) referenceable
data \ data
°

preservation

Figure 8: An abstract model of the ESGF data cycle with states and transition
actions. Data that leaves the production stage will be registered
with a PID so that it becomes referenceable. Further analysis
may cause the data to be re-computed, closing the cycle short.
Eventually, data passes the final QC checks and is subjected to
preservation, usually causing a DOI to be assigned so that it
becomes citable and may re-enter the production phase as part
of subsequent re-use.

To ensure that the data remain unchanged as long as they are
available (criterion 6), certain policies must be enforced within ESGF.
The first step for this is to include a CHECKSUM property in the PID
record to make it possible to detect impermissible changes. As data
pass certain gateways throughout the ESGF processes, the checksum
must be verified automatically and upon verification failure, data
must be rejected. Secondly, the PID should be included in the netCDF
header data of the respective files to make detection easier. A user
who retrieved a file from the ESGF data space and stored it locally
should be able to access the associated metadata records on ESGF
using the PID as well. Both aspects are also important for the solution
for the versioning use case described further below.

The established process of assigning DataCite DOIs at the eventual
preservation phase remains unaffected by the additional identifiers
since the unique identification relation is not considered to be
functional (cf. section 4.1). To distinguish the early PIDs from the
fully citable ones, a globally registered property CITABLE should be
included in the respective PID records as a marker entry. Additionally,
preservation statements may be included as are for example used
by the ARK system. Alternatively, the referenceable PIDs may be
converted directly into DOIs, keeping the same identifier name,
which is a process currently unclear with both technical and orga-
nizational challenges remaining unsolved. Technically, the inclusion
of single Handles in the continuous DataCite namespace is difficult

6.2 ACCESS TO SPECIFIC VERSIONS OF A DATASET

because the Handle System uses the prefix/suffix concept to separate
namespaces, yet the referenceable PIDs will not share the same prefix.
Organizationally, the hand-over of responsibility for the particular
PIDs must be clearly defined.

6.2 ACCESS TO SPECIFIC VERSIONS OF A DATASET

The initial problem of the versioning use case can be described with
figure 8 when a dataset has gone through the small cycle at least once
and enters the registration action again. For versioning to be properly
controlled, the publication process must be able to recognize whether
a previous version existed. This may be done either by submitting
the PID of the old dataset or — if still available — an old file whose
header will contain the PID. It might also be done through a separate
database, which will entail additional maintenance effort, or through
an ESGF catalog search, which may however return ambiguous
results and should therefore be avoided.

The process specific to ESGF that takes care of the new publication
will do the following steps:

1. Register a PID for the new dataset because the data have
changed (cf. criterion 6). Usually also include a CHECKSUM
property in the record.

2. Optional: Retract the old data from the ESGF data space, but
keep the PID. The target resource of the PID will thus become
invalid.

3. Put a Boolean flag property TOMBSTONED in the old PID record
to mark that the resource has been purposefully removed.

4. In the old record, include a property NEXT-VERSION with the
new PID as value and a property 0BSOLESCENCE-DATE with the
current date.

5. Optional: Put a property PREVIOUS-VERSION in the new PID
record with the old PID as value. This is not strictly required to
access the latest version of a dataset, however it is easily done
and may still be useful in view of e.g. provenance tracing tools.

When a user accesses the PID of a dataset that is obsolete, the
resolution will fail because the resource is gone. The capabilities of
the application-level resolution service must therefore be extended
so that it checks the resource before redirecting the user to it and if
it recognizes that the resource is gone, it further processes the PID
record. Because the properties of the record are globally registered,
the service can interpret them correctly even across infrastructures
and PID generators. It will recognize the tombstone marker and

91

92

ANALYSIS

inform the user that the dataset has been deleted on purpose and
that a new version can be found at the alternative location given by
the NEXT-VERSION property value. It will also include other useful
information such as the obsolescence date. The service may even
follow the consecutive chain of PIDs recursively until it encounters
a record where no tombstone marker is set and present its resource
location to the user.

The use case also describes an additional scenario where it is
possible to always retrieve the latest version of a dataset through
a separate PID. A solution that covers this case is to extend the
implicit notion of a linked list made from the PREVIOUS-VERSION and
NEXT-VERSION entries to a full ADT instance with a separate head
PID (collection criterion 3 must be met). This ADT instance must
be created when the first version is published, so that the head
PID can already be used. The head PID record will not point to
an actual target resource, but instead contain a behavioral marker
flag REDIRECT-TO-LAST-ELEMENT. When resolving the head PID, the
resolution service will recognize the ADT instance from the type
information in the record, encounter the marker flag and redirect to
the last list element accordingly. If collection criterion 4 is not met,
it will be impossible to navigate to the head PID from an element
PID. In a linked list, this will only cause the look-up operation of the
latest version from any arbitrary element to take linear time rather
than constant time. If instead an array implementation is chosen,
navigating to the latest element will become impossible because array
elements are not linked through each others” PID records.

The ESGF workflow described above can be further generalized for
cases where there is an arbitrary repository receiving a new dataset
that may be either a new version of existing data with the same
purpose or a derived data product with a different purpose. This
scenario is described for the provenance use case in more detail in
section 6.4.

63 REFERENCING CUSTOM DATA SLICES

The key component to enable this use case is the bundler service
to which the user submits a large number of PIDs for data from
various sources. This can be done for instance by providing the list of
PIDs directly or submitting a directory containing netCDF files from
whose headers the service can glean the PIDs. The bundler service
will create a set ADT instance and add all PIDs provided to it. If
the collection properties are registered in the type registry and other
e-infrastructures offer collection layer implementations as well, the
bundle can easily cover input across them. The set ADT instance must
bear a head PID (collection criterion 3) so that a single identifier can
be included in an article’s reference list as opposed to a large number

6.4 PROVENANCE TRACING

of DOIs. Because the bundler service works on demand for individual
users’ requests, the same data product may be included in multiple
bundles. Therefore, collection criterion 1 must be met. If it should be
possible for a user to bind together bundles already created earlier
by other users, the collection layer implementation must conform to
collection criterion 2.

If the versioning use case is covered, the bundler can confirm
that every PID provided points to the latest version of a dataset
by accessing the PID record and determining whether there is a
NEXT-VERSION property present. Accidental cases where there are two
elements that are related by a chain of versions can be easily filtered
out as well. It can also verify access to the resource simultaneously
and may even retrieve the dataset and verify it against the CHECKSUM
property value.

Later, when a third party resolves the head PID, a specialized
application service queries its PID record, detects the set instance and
returns a listing of all member PIDs. It can also access the member
PID records and use the mechanisms of the versioning use case to
provide information on the resource status and possible follow-up
versions that have been published since the bundle was created.

A possible danger for such a solution is of course that any user
can request an arbitrary number of PIDs. To prevent misuse and
exploitation through malicious bots, adequate security measures
must be implemented. A quite sophisticated solution could also hash
the identifier names used for creating a particular set and deposit the
hash in a database. Later, when a collection for the same set of objects
is requested, the existing collection can be reused.

64 PROVENANCE TRACING

As described in the use case, derived data objects may be published
at repositories different from those hosting the source objects, and
this can happen multiple consecutive times. Let us assume that every
repository assigns individual PIDs to the derived objects. To record
provenance, typed properties should be written in the respective PID
records. The generic process is the same as for the versioning use
case (see figure 9). The defining difference between versioning and
provenance scenarios lies in the intended purpose of the data. A new
version of a dataset has the same purpose as the original data; for
provenance, the purposes differ. Because the process cannot infer
this from the available information, it must be determined a priori
whether the data is regarded as a derivation and the provenance
scenario applies. This may be easier if the process is performed by
data derivation tools rather than by the receiving repositories because
by using such a tool, it is clear that the result will be a product with
a new purpose.

93

94 ANALYSIS

[New data object at reporitory]

l

Does the data

[Retrieve PID record] bear a PID?

[Query user for old PID]

l

YES Has the user
provided a PID?

Y
NO

Does the PID record NO
contain a checksum?

Does the checksum

match the data?

Y Y

Assign a new PID Assign a new PID and include Assign a PID without

indicating a replica a relation to the old data a relation to the old data

Figure 9: When a new data object arrives at a repository, different outcomes
are possible regarding the assignment of a new PID for it. Because
the generic process is the same for versioning and provenance
scenarios, the particular meaning must be determined a priori.

6.5 DISCUSSION 95

Obsolete versions

< N 7
\\ Va
N < //
Predecessors | <——11 < Successors

Va N\,

7 N\
<’ / \ N

Organizational hierarchies

Figure 10: In combination, the use cases for versioning, provenance and
custom slices generate a PID graph with three main axes. The
relations may be encoded as typed links either stand-alone or as
part of collection instances. Successors may not be available in all
cases.

Figure 9 describes the process at the repository or tool in more
detail. Data may bear a PID e.g. in the form of a netCDF header field
value. The provenance relation stored in the new PID recorded is a
property of type PREDECESSOR. If the user supplies multiple former
PIDs, all of them should be included as predecessors.

The graph resulting from these predecessor relations will be a
proper directed acyclic provenance graph as described by Moreau
[65]. All its edges will point to predecessor objects, and thus, it will be
possible to navigate the graph structure to all ancestors, but not to any
descendant. To achieve this, the publication process must generate
SUCCESSOR property entries in the original objects” PID records as
well. This may cause issues if some objects are re-used so often that
the number of successor entries may become too large to manage
adequately. In any case, a generic service tool can be implemented
that relies solely on the registered properties to trace the provenance
of data across disciplinary and infrastructural boundaries. Additional
provenance records, e.g. from workflow engine logs, may be pulled
in if they are referenced in the PID records as well through a distinct
property. If the two levels of preservation are observed, resources and
even whole repositories may become inaccessible without breaking
the provenance graph.

6.5 DISCUSSION

If all use cases are combined, the resulting structure embedded in
the PID records forms a proper PID graph. Figure 10 explains how
the different use cases generate edges between data objects along
three thematic axes for versioning, provenance and custom slices.
The use case dealing with custom slices may be further abstracted to
generally reflect the multiple organizational hierarchies in which data

96

ANALYSIS

may be organized as already indicated by the use case description
in section 3.4. The individual solutions for the use cases already
contain some essential added-value services, such as a service that
redirects to the latest version of a dataset or a generic provenance
tracing service. One can easily imagine that either more of such
specialized services could be created for other use cases or that a
common “PID information service” can be created that interprets
the PID records based on the most commonly used and registered
properties. Such a service should allow a user to navigate to later and
possibly former versions, move along the provenance graph, and to
dig down into possible sub-elements. Where individual resources are
not available anymore, the service should offer tombstone pages with
the remaining information.

A collection layer implementation that conforms to all collection
criteria is not required for all use cases. Of course, an ideal solution
would provide functionality that matches all criteria. However, such
a solution is the most expensive one to build, and therefore, a simpler
solution may work well if only parts of the use cases must be met. The
detailed descriptions provided in this chapter should help to decide
on such trade-offs. For example, the versioning use case can work
very well with a solution that does not support multiple membership
of elements (collection criterion 1).

Table 4 summarizes the registered properties required to enable
all use cases. Cardinalities may be stored in the registration records
along with the property names and can be used by verification tools
to warn about inconsistent PID records. Alternatively, it is possible to
include the cardinalities as part of specific profiles for the individual
usage scenarios. This may be beneficial for example to describe the
versioning of source code states where there is more than one prior
version due to a merge action of two converging branches. Source
code may be persistently identified to exactly define the model used
to compute a particular data object.

The question of what other information to store in a PID record
and access via registered properties always depends on the specific
disciplinary use cases and therefore poses a wider area for future
cross-disciplinary activities. A good rule of thumb to decide on the
inclusion of a particular property may be to estimate whether its
value changes over time, because modifying existing PID records
is best avoided, but also to focus on cross-disciplinary usage and
machine agents. In addition to the detailed properties listed in the
table, further suggestions include the owner of an object (a string or
even an identifier, e.g. provided through ORCID), the license terms
for the object and the data format or encoding (both preferably as
controlled vocabulary terms).

Typically, provenance information is stored in the form of more or
less formal documents, forming a spectrum from simple log files to

6.5 DISCUSSION

standardized formalizations such as the W3C PROV standard [66].

Such solutions are often insular, and there is no coherent workflow
trace. Missier et al. [62] describe an abstract model for provenance
traces that can provide a continuous trace across systems if the
connections between the different input and output objects can be
established. Their solution is to use a common provenance model and
map each individual trace to it. As they correctly remark, identifying
the common elements of the individual system traces is however
challenging if the same objects in different traces have different
names. Their solution to this challenge is to record the possible
changes that take place unobserved by provenance tracing, such as
copying data from a local to a global store, must be recorded as

additional relations in a provenance trace of the data sharing process.

When PIDs are assigned to objects and interlinked by relations in
the PID records, these relations will be available so that a service
capable of mapping individual traces can produce a continuous trace
as described by Missier et al.

97

PROPERTY NAME RANGE CARDINALITY PURPOSE

CHECKSUM String 1 Stores a checksum calculated over the referenced data, enabling authenticity
checks. The type of checksum should be indicated in the registered
property’s record. Multiple checksums (e.g. MD5, SHA-1, SHA-2) may exist
for a resource as separate properties with distinct names.

CITABLE Boolean 1 Indicates whether the PID should be cited in formal reference lists, subject
to diverse policies.

NEXT - VERSION Identifier 1 Points to the next version of a data object.

PREVIOUS-VERSION Identifier 1 Points to the previous version of a data object.

REDIRECT-TO-LAST-ELEMENT Boolean 1 If set, indicates that upon resolution of a list head PID, the user should be
redirected to its last element.

PUBLICATION-DATE Date 1 Indicates when the PID was assigned.

OBSOLESCENCE-DATE Date 1 Indicates when the referenced object has been obsoleted by a new version.

TOMBSTONED Boolean 1 If the referenced data object is missing and the value is true, indicates that
it was deleted on purpose. If false, this may be a sign for a broken resource
or archive.

PREDECESSOR Identifier N Points to one of the data object’s predecessors.

SUCCESSOR Identifier N Points to derived data.

Table 4: Possible registered property types for implementing the use cases as described in this chapter.

RELATED WORK

Exemplary PID systems have been discussed in section 5.1. This
chapter focuses on applications of these and other systems in a
broader context.

7.1 LINKED DATA

The Resource Description Framework (RDF) [78] is a series of W3C
specifications that describe in its core a graph-based data model
for representing information about web resources. RDF documents
consist of large number of triples, each of which is a statement
consisting of a subject, a predicate and an object, which are usually
URIs. Objects may also be literals to convey values of a specified
data type. The essential data types include many of the standard
XML Schema data types, but custom data types may also be defined.
RDF is principally independent from a particular encoding, however
such a serialization is required so that RDF data can be read and
exchanged. The W3C has standardized two encodings, RDF/XML
and RDFa (RDF triples embedded in HTML documents).

The goal of Linked Data is, roughly, to create typed links between
data from different sources on the web [14, p. 2]. Such data should
be machine-readable, linked to data from third parties and linkable
by them and have its semantics explicitly defined. This is achieved
by using RDF triples whose constituents come from different names-
paces and where the predicates form the typed links. The idea of
Linked Data is usually summarized in the four so-called Linked Data
principles [14, p.2]*, which are stated literally as:

1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information,
using the standards (RDF, SPARQL)

4. Include links to other URIs, so that they can discover more
things

Adhering to the principles should allow anyone to publish rich
machine-interpretable information using the World Wide Web as

1 Also originally formulated by Berners-Lee (2006): Linked Data — Design Issues, http:
//www.w3.0rg/DesignIssues/LinkedData.html, last checked Feb. 27, 2015

99

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

100

RELATED WORK

the transport medium and conforming to its fundamental architec-
ture and standards. The fundamental model builds on top of the
decentralized nature of the World Wide Web, where registration
and governance of RDF documents and the URIs used in them
is intentionally not required. The early adopters of Linked Data
whose collective data forms a single continuous RDF graph have
been summarized under the popular notion of the Linked Open Data
(LOD) cloud.

So although there is no central coordination and governance,
Guéret et al. [35] detect a small number of nodes whose failure
may very likely break the overall data graph. For the 2010 study
and state of the Linked Data graph, the top three host name nodes
were xmlns.com, dbpedia.org and PURL.org. xmlns.com is the home
namespace of the “Friend of a Friend” (FOAF) RDF vocabulary [34]*
which can be used to encode information about individuals and their
relationships and DBpedia is a large RDF dataset of information from
Wikipedia across multiple languages [5].

For scientific publications, RDF/XML encoded metadata is pro-
vided by Crossref.org via content negotiation mechanisms when
resolving DOIs through http://data.crossref.org. DataCite offers
a similar service at http://data.datacite.org for at least parts of
its metadata. While Linked Data does not follow the preservation
policies motivating the use of persistent identifiers, RDF-encoded
relations between resources are a flexible enough concept that can
also work on top of the information contained in the collection and
typing layers.

The notion of a PID graph discussed in section 4.5 can ulti-
mately bridge the gap between the basic information available from
Persistent Entities and the rich and possibly machine-interpretable
information available through Linked Data. The PID graph can be
encoded through RDF properties and with a proper HTTP-URI based
interface implementation, PIDs can act as RDF subjects and objects.
Making the information contained in the PID graph available to use
by third parties can potentially enable a vast range of usage scenarios
found in literature on Linked Data, including provenance tracing
and recombination of data. Due to the underlying foundational layer,
information present in this “PID cloud” should be suitable to address
the sustainability concerns raised by Guéret et al. While by far not all
data available from the LOD cloud today may be served as part of con-
text information from typing and collection layer implementations,
the PID cloud information can act as a reliable fall-back for the most
essential binding elements. A necessary precondition for establishing
such a solution is however a unification of the relation information
available from type registries and commonly used ontologies.

The latest vocabulary specification may be found at http://xmlns.com/foaf/spec,
last checked Feb. 27, 2015

http://data.crossref.org
http://data.datacite.org
http://xmlns.com/foaf/spec

7.2 THE ENTITY NAME SYSTEM

7.2 THE ENTITY NAME SYSTEM

The Entity Name System (ENS) is described in a PhD thesis [86]
and a series of articles [15, 16, 6] as a comprehensive identification
solution that aims to combine principles and advantages from both
Linked Data and PID systems. As Bazzanella et al. [6] remark, there
are important differences between Linked Data URIs and Persistent
Identifiers, and, as the authors state, one may even detect a “subtle
underlying hostility” between the two approaches and schools of
thought that have developed in parallel since the mid of the 1990s.
The Entity Name System aims to provide interoperability not only
across PID providers, thus addressing a concern of this thesis’
original questions, but also between the PID world and the Linked
Data world. Bazzanella et al. emphasize that the issue of persistent
identification can only be adequately approached when including
issues of policies and responsibilities that underlie the maintenance
of PID systems, a factor which is claimed to have been ignored in the
Semantic Web community so far [15, 86].

Bazzanella et al. compare PID and Linked Data solutions in
large detail. The article provides a good overview of the different
viewpoints from the possibly conflicting schools of thought. The most
important differences in view of the discussion provided in this thesis
can be summarized as follows:

NAMING AUTHORITIES AND TRUST: PIDs inherently rely on nam-
ing authorities that establish the necessary trust framework for
long-term PID resolution, while Linked Data URIs thrive on
the decentralized and ungoverned nature of the World Wide
Web: Anyone can publish Linked Data URIs. Bazzanella et al.
however fail to note that to provide URIs in the first place,
one has to acquire (register, buy) a name within the Domain
Name System. This act is concededly simpler and comes with
less contractual obligations than acquiring a PID from e.g. the
DOI system, but it still cannot be ignored in terms of resources
to spend.

CROSS LINKAGE: A defining goal of Linked Data is to establish
machine-interpretable formal relations between resources, which
Bazzanella et al. describe as missing in the contemporary PID
systems.

BUSINESS MODELS: Some PID systems (most notably, the DOI Sys-
tem) require some costs to be covered before PIDs can be
assigned, while Bazzanella et al. state that Linked Data URIs
come virtually free of charge. This must however be examined
a bit more critical than in the article by Bazzanella et al. Usually,
resolving HTTP URIs requires a web server to be maintained
and a domain name to be acquired as already mentioned above.

101

102

RELATED WORK

These costs may not be visible to the individual developer, but
cannot be ignored on the longer term. As explained in section
2.4.2, URIs do not qualify as persistent identifiers because the
responsibilities for long-term maintenance are unclear. Neglect-
ing these responsibilities certainly reduces the costs involved,
but does not adequately address the question of total costs.

PERSISTENCY: Bazzanella et al. discuss the possible stability of
Linked Data URIs in detail and refer to a notion originally
described by Tim Berners-Lee in 1998 that URIs should be
stable by designing them adequately3. Although this, in prin-
ciple, shows some intention shared with persistent identifiers,
Bazzanella et al. continue to describe the drawbacks to this ap-
proach from the standpoint of the traditional PID users. Besides
the issue of lacking a trusted naming authority, this includes the
problem that web resources may change uncontrolled if they are
dynamic (cf. criterion 6).

A central design constraint for the ENS has been the motivation
to avoid multiple identifiers for the same object (cf. [15, p. 554]), an
interpretation of strict uniqueness (see section 4.1). This is done by
checking the essential characteristics of a resource prior to assigning
a new identifier for it. The ENS requests and stores the characteristics
in the form of metadata that are analyzed whenever an identifier
is requested and if the characteristics match, the existing identifier
will be returned. Central to this is the notion of entity types such as
“person”, “organization” and “event” [15, p. 557]. These resemble a
form of typing layer profiles which have to be agreed upon first or,
alternatively, are brought in by referencing external schemata. The
actual information characterizing an entity is gathered upon first
assignment of an identifier and may be extended later on. As Bouquet
et al. [15] remark, this may invalidate the original decisions about the
identity of two requested objects in hindsight, which in consequence
causes new equivalence relations to be established between objects
formerly considered separate or divides formerly identical objects.
Although Bouquet et al. describe that such a process may be difficult
due to external use of the identifiers in the wild, they unfortunately
do not explain further how such an approach matches the original
intention to avoid multiple identifiers for the same entity. Given
the available literature, it remains unclear whether this is actually
practically achievable with the proposed system since there are no
long-term quantitative studies available. An alternative but weaker
description of the central service offered by the ENS is therefore that
it provides assertions (which may change over time) on the possible
equivalence of resources given a set of identifiers.

The original source may be found at http://www.w3.0rg/Provider/Style/URI, last
checked Feb. 27, 2015

http://www.w3.org/Provider/Style/URI

7.3 APPROACHES FOR PROVIDING ACTIONABLE COLLECTIONS

From the literature it remains unclear exactly which characteristics
are essential for stating that two resources are identical. The algo-
rithm for matching entities is based on syntactic rather than semantic
analysis [16, p. 263]. The notion of an entity description consisting
of a set of key-value pairs [86, p. 33] is similar to the notion of PID
records and it may be made accessible from the outside given an
identifier known to the system.

As Bazzanella et al. state, the ENS does not aim to be another fully-
fledged identifier system, but should instead provide interoperability
between existing approaches. Therefore, it is unsurprising that some
of the criteria of the foundational layer are not met, most importantly
1 since ENS identifiers are also used as the resource locators. The ENS
thus in fact does not qualify as a PID system as defined throughout
chapter 4 — it does not facilitate redirection. Criterion 2 is met since
the ENS uses full URIs as identifier names; in consequence, criteria 4
and 5 are met due to the Domain Name System as the central resolver
(still not providing redirection). Assuming that access to the entity
descriptions can be provided as a separate service, criterion 3 may be
met, a definite answer remains however open as the literature lacks
more specific details. Criterion 6 is not met because the ENS does not
impose restrictions on keeping identified resources intact.

But although the ENS is not designed to be a full PID system, it
is a possible candidate for a typing layer implementation. Its notion
of fundamental entity types characterized by the entity descriptions
provides the essential typing service, however, it remains incomplete
with respect to an ideal typing layer since the notions of registered
fine-granular properties and a canonical type registry are missing.
Regarding the collection layer, the ENS does not offer any notion of
actionable collection ADT instances.

7.3 APPROACHES FOR PROVIDING ACTIONABLE COLLECTIONS

At a first glance, some of the navigational capabilities of collection
ADT implementations can be offered through structured metadata.
The DataCite metadata kernel 3.1 [22], for example, offers a set of
elements that establish relations between a DataCite resource and any
other entity that bears one of the commonly used identifiers. Starr
and Gastl [84] provide a comprehensive discussion of the possible
relation types, which includes specifically relations for subsets and
versions that are also present in the kernel 3.1. The use cases of
versioning and providing custom data slices may be covered by these
relations for final datasets that receive such DOIs. However, although
a head identifier will be effectively available for the subset case,
there is no notion of dedicated ADT operations. A DataCite-specific
collection layer implementation may reuse the existing relations, but
also requires dedicated services that provide such operations.

103

104

RELATED WORK

The integrated rule-oriented data system (iRODS) [76] aims to
facilitate management of distributed scientific data, covering multiple
phases across the data life cycle for sharing, publishing and also
preserving data. The notion of collections is a central element in
iRODS, as all data objects managed by it are arranged in collections
which can then be shared. Elements and collections are individually
identified. Context information such as provenance records and
information on the preservation policies are provided along with
the collections. Although a distinct set of ADT implementations with
their characterizing complexity trade-offs is not offered by iRODS,
iRODS management operations may be directly mapped to common
ADT operations if an underlying implementation can offer these.
In terms of interoperability, translating the iRODS mechanisms to
a collection layer interface may enable the interchangeable use of
different PID systems as the basis for iRODS data collections.

7.4 RESEARCH OBJECTS

Bechhofer et al. [8] argue that Linked Data does not adequately meet
the requirements of scientists producing and sharing data, because
publishing scientific datasets as Linked Data does not provide enough
context to ensure scientific reproducibility. As a solution, Bechhofer
et al. present the notion of Research Objects (ROs), which are
semantically rich compound artifacts that bind together data and
context information, most importantly provenance. While all content
of a Research Object (data and context) is published as Linked
Data, the Research Object metaphor aims to ensure that the overall
structure is preserved even if the constituents are distributed across
disparate locations and refer to each other through their respective
URLs. Bechhofer et al. also describe added-value services that act
on whole Research Objects instead of potentially incomplete Linked
Data resources. Among the use cases for ROs, Bechhofer et al. also
include versioning and basic management routines for ROs (create,
retrieve, update, delete) [8, p. 12].

Bechhofer et al. name exemplary parts of a RO, which besides the
actual result data includes information on original research questions,
methodology, organizational or funding information, input data and
result evaluation reports. ROs are also dynamic, as they proceed
through the scientific data life cycle, and thus exhibit distinct stages
of work in progress, and published or archived work. Bechhofer et
al. describe these in terms of three stereotypes: “Live Objects”, “Pub-
lication Objects” and “Archived Objects” [8, p. 17]. Archive Objects
need not be citable, however both Publication and Archive Objects
are described as immutable, and thus other defining differences
remain unclear. Bechhofer et al. emphasize that ROs are versioned,
however they allow for different models on how this may be achieved,

7.5 DISCUSSION 105

most notably by either modifying the RO contents while retaining
its identity (“in-place update”) or by creating a new RO with new
identity [8, p. 18]. A third option is implied through the life cycle
process from live to archived or published objects.

Bechhofer et al. emphasize that ROs do not aggregate content
through duplication but by referencing elements from different
sources, following the same ideas that underlie a conformance to
collection criterion 1. A RO should also be uniquely identified,
similarly to a head PID (see collection criterion 3). Bechhofer et
al. describe an implementation of ROs based on Linked Data and
“resource maps” from the Open Archive Initiative Object Reuse and
Exchange protocol (OAI-ORE)+.

The facilities offered by the collection and typing layers can provide
a suitable framework to construct Research Objects as well. The
defining difference between the in-place versioning strategy and
versioning by creation of new instances can be described with the
conformance of the underlying PID system to criterion 6. If the
criterion is enforced, the successively created objects should be
arranged in a linked list instance or at least be related to each
other with registered types. The RO compound must bear a head
PID (collection criterion 3 must be met) and can be implemented
for instance as a set ADT instance that aggregates multiple other
objects, each with a distinct type given through a registered profile
to distinguish e.g. input data, result data and methodology or
provenance information. A more sophisticated solution may use a
map instance with the registered profiles as keys. The constituent
objects can then be either opaque objects retrievable through a PID or
further collection instances if nesting is possible (collection criterion
2). The whole complex compound object can then be published by an
application layer on top of the collection layer that exposes the typed
links and inherent collection relations as RDF-encoded Linked Data
relations between PID-based URIs.

7.5 DISCUSSION

The existing approaches presented in this chapter typically cover
parts of the overall layered functionality presented in chapter 4, but
are not as concise and do not take the particular requirements of
persistent identification into full account. Nonetheless, all presented
approaches could benefit in some way from a coherent underlying
PID framework, or vice versa, the uptake of persistent identifiers
and in particular associated essential metadata can benefit from the
more sophisticated functionality that particularly Linked Data and
Research Objects provide.

4 www.openarchives.org/ore/1.0/datamodel, last checked Feb. 27, 2015

www.openarchives.org/ore/1.0/datamodel

CONCLUSIONS

This thesis introduces a formal model and a set of conceptual and
practical solutions that make it possible to understand persistent
identification of digital objects not only as a means to name and
retrieve an object over time but also to put it into a persistent
context independent from its current storage location. Today, there
are numerous activities in computer science dealing with increased
virtualization, and further abstraction from storage is one of the
possible aspects matching the concepts presented here. An essential
part of the abstraction is achieved by relating a persistent identifier
with other objects and making the relations interpretable by machine
agents. A central design criterion that also sets the presented concepts
apart from conventional approaches is that data objects are regarded
as being not necessarily persistent, but their identifiers must be
kept even beyond their lifetime. In consequence, preservation can
be subdivided into a primary and a secondary level, where context
information resides at the former and the identified object at the latter.
Preserving the identifier however is not an adequate metaphor for
preserving the full context. As a solution, the notion of a Persistent
Entity has been defined which can be easily preserved even if the
identified object is gone. The Persistent Entity provides all means to
be dereferenceable through an identifier, keep essential metadata and
the relations to other objects.

A second important design factor also mentioned in the EU report
from 2010 [79] has been the expectation that persistent identifiers will
be created for an increasingly large number of objects. Aside from the
facilities to relate objects to each other, the notion of actionable collec-
tions of identified objects provides a mechanism to deal with large
numbers of objects in automated workflows. Actionable collections
are based on the idea of commonly known abstract data types such
as lists and sets with the intention to make adoption easier for those
familiar with higher-level programming languages and to provide
an implementation-agnostic abstract interface. This is particularly
important for use cases spanning communities, e-infrastructures and
even PID systems. Particularly with respect to interoperability across
PID systems, the notion of collections and the role of a type registry
and its registered properties are crucial.

The motivating use cases have been taken from the domain of
Earth system model data management, where the Earth System
Grid Federation (ESGF) is the state-of-the-art e-infrastructure for
global distribution of model and increasingly observational data

107

108

CONCLUSIONS

products. The abstract concepts for PIDs, typing and collections can
be exploited to implement the use cases and illustrate a number of
tools that provide added value to users, such as provenance and
version tracing or a custom “shopping basket model” approach for
referencing heterogeneous data collections. Such tools may turn out
to be elemental to encourage adoption of persistent identifiers within
ESGF and beyond if users demand that such services be provided at
larger scale and an adequate level of quality.

8.1 FUTURE WORK

Throughout the chapters, some areas for possible future conceptual
and practical development have been already been identified and are
summarized in the following.

The use cases presented in chapter 3 have motivated the conceptual
design of the framework, yet the concept of persistent identification
is not at all bound to the Earth sciences. The framework may be
transferred to other domains and even form the basis for a discipline-
agnostic solution as also indicated in the problem statement. Whether
this can work in practice can only be determined after evaluation by
other disciplines.

The formal model defined in section 4.1 is adequate to answer the
original research questions and address the selected use cases. Yet a
more sophisticated model describing the evolution of identifiers, PID
records and referenced objects explicitly over time may be required
to address a wider range of use cases or preservation workflows.
A possible approach may be to enhance the definitions of ¢ and
o so that they describe sequences of discrete states. The concepts
underlying the architectural layers must however be respected, such
as the fundamental criteria and the coherence of collections over time.
The implications of an enhanced model may finally have impact
on operational policies to be enforced by stakeholders such as PID
providers and long-term archives in order to uphold the validity
of the formal constraints. A related issue is the question of how
the equivalency of digital objects is defined, and how to deal with
the differences in understanding it from a discipline-specific or a
preservation perspective (i.e. preserving the bit-stream or the content
across format changes). The exemplary ESGF use cases assume bit-
identity, motivated for example by the consequent use of checksums
for replication and version checks, but this cannot be assumed for
every other application scenario and scientific discipline. It remains
open whether and how far a more sophisticated formal model for
digital objects can address these issues.

As discussed in section 7.1, offering information associated with
persistent identifiers as Linked Data can offer a wide range of third-
party applications, particularly with regard to the PID graph that

8.1 FUTURE WORK

contains relations between Persistent Entities and collections. For
this to work in practice, a proper foundation with formal ontologies
underlying the exposed information is required. Since the relations
are implemented through properties from the type registry, the type
registry contents must be exposed as a proper formal ontology.
This is however not a simple technical interface, since the quite
sophisticated knowledge required to build a coherent ontology may
only be implicit in the type registry contents. It therefore remains
unclear how sophisticated such an ontology can be and, in fact,
there may be several emerging interconnected ontologies if different
communities implement their own type registry instances. Practical
adoption must carefully coordinate these processes so that the
information available in a Linked Data encoding remains meaningful
with respect to the combination with other Linked Data datasets.
From the perspective of Linked Data, including persistent identifiers
with additional context information in the overall information graph
is a valuable achievement as this addresses concerns of information
stability in the LOD cloud where loss of a few essential nodes may
have vast impact.

Related to this, the initial registered properties summarized in
table 3 and table 4 form the nucleus around which other properties
and aggregating profiles should be defined with interdisciplinary
applications in mind. Section 4.3.3 discussed possible models for
implementing a type governance process, yet the ultimate operational
structure of a type registry federation remains open. Actionable
collections of persistently identified objects may eventually be aligned
to mechanisms in other existing systems (e.g. iRODS).

With possibly millions of persistent identifiers being envisioned for
applications in EUDAT and the CMIP6 data to be served by ESGEF,
practical concerns regarding identifier resolution performance and
access to PID records must be addressed. It remains unclear how
far existing PID systems such as the Handle System will be able to
scale to these numbers, particularly if a large number of PIDs must
be created in the very short time frame of a few seconds or if a
massive number of objects is relocated and location information must
be updated for possibly millions of PIDs. A first alternative approach
for this may be to use key-value stores that offer eventual consistency
such as Dynamo [23] or Apache Cassandra and that are optimized
for largely static information that is frequently extended such as
in BigTable [19]. The essential conceptual distinction of persistent
identifiers that such an approach should exploit are the largely static
nature of PID records and the identifier-based singular mode of
access. Typically, information is not queried across identifier records;
the design of actionable collections presented in section 4.4 respects
this view as well. A pragmatic solution should also be lightweight
enough so that it can be seamlessly integrated with existing e-science

109

110

CONCLUSIONS

services, which are often based on REST-style APIs. In this regard,
a transparent REST interface that provides highly efficient access to
distributed key-value stores may be a promising approach [31].

Another option for a fully distributed PID system that is able
to address the scalability challenges may be to use peer-to-peer
networking technologies. Bolikowski et al. [58] present an exemplary
approach with additional trust mechanisms that aim to prevent
forgery. Important questions for implementing such a system include
how to ensure its longevity, possibly by building up a critical
mass of nodes, how to integrate existing PID systems and how to
come to a viable business model that finds the balance between
openness of identifier assighment and covering, for example, the
most fundamental costs of maintaining the software stack. In terms
of the conceptual framework, it would most likely be possible to
provide a persistency layer implementation at individual nodes and
accordingly provide interoperability with other PID systems.

In general, practical adoption of the presented framework should
be made across existing PID systems. Eventually, this may also
include identifier systems that do not focus solely on digital data
or articles, such as ORCID or IGSN. In this respect, people or
geophysical samples can form new elemental types, profiles to be
registered with their own sets of properties, and be arranged in
interoperable collections with far different entities. The collection
layer does not inhibit such usage and a type registry federation
should enable such broad usage scenarios as well. In the end, the
notion of persistent identification is neither bound to digital objects
nor the Earth sciences.

BIBLIOGRAPHY

[1]

Panagiotis Adamidis, Irina Fast, and Thomas Ludwig. “Per-
formance Characteristics of Global High-Resolution Ocean
(MPIOM) and Atmosphere (ECHAMS6) Models on Large-Scale
Multicore Cluster.” In: Parallel Computing Technologies. Ed.
by Victor Malyshkin. Vol. 6873. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011, pp. 390—403. DpoI:
10.1007/978-3-642-23178-0_34.

Arthur Allison, James Currall, Michael Moss, and Susan
Stuart. “Digital identity matters.” In: Journal of the American
Society for Information Science and Technology 56.4 (Feb. 2005),
pp- 364—372. ISSN: 1532-2882. DOI: 10.1002/as1.20112.

Reinhard Altenhoner, Harry Enke, Bernadette Fritzsch, Jens
Klump, Michael Lautenschlager, Jens Ludwig, and Heike
Neuroth. Digitale Forschungsdaten bewahren und nutzen — fiir die
Wissenschaft und fiir die Zukunft. Network of Expertise in Long-
Term Storage of Digital Resources (nestor), 2009.

William Y. Arms. “Uniform resource names: handles, PURLs,
and digital object identifiers.” In: Communications of the ACM
44.5 (May 2001), p. 68. 1SSN: 0001-0782. DOI: 10.1145/374308.
375358.

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann,
Richard Cyganiak, and Zachary Ives. “DBpedia: A Nucleus
for a Web of Open Data.” In: The Semantic Web. Ed. by Karl
Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-
Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana
Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe
Cudré-Mauroux. Vol. 4825. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
Chap. 52, pp. 722—735. ISBN: 978-3-540-76297-3. DOI: 10.1007/
978-3-540-76298-0_52.

Barbara Bazzanella, Stefano Bortoli, and Paolo Bouquet. “Can
Persistent Identifiers Be Cool?” In: International Journal of
Digital Curation 8.1 (June 2013), pp. 14—28. ISSN: 1746-8256. DOI:
10.2218/ijdc.v8il.246.

Neil Beagrie. “Digital Curation for Science, Digital Libraries,
and Individuals.” In: International Journal of Digital Curation 1.1
(Dec. 2008), pp. 3—16. 1SSN: 1746-8256. DOI: 10.2218/ijdc.v1il.
2.

111

http://dx.doi.org/10.1007/978-3-642-23178-0_34
http://dx.doi.org/10.1002/asi.20112
http://dx.doi.org/10.1145/374308.375358
http://dx.doi.org/10.1145/374308.375358
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.2218/ijdc.v8i1.246
http://dx.doi.org/10.2218/ijdc.v1i1.2
http://dx.doi.org/10.2218/ijdc.v1i1.2

112

Bibliography

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Bechhofer, J. Ainsworth, J. Bhagat, I. Buchan, P. Couch,
D. Cruickshank, D. D. Roure, M. Delderfield, I. Dunlop, M.
Gamble, C. Goble, D. Michaelides, P. Missier, S. Owen, D.
Newman, and S. Sufi. “Why Linked Data is Not Enough for
Scientists.” In: Sixth IEEE International Conference on e-Science.
Brisbane, Australia: IEEE, Dec. 2010, pp. 300-307. ISBN: 978-1-
4244-8957-2. DOI: 10.1109/escience.2010.21.

Fran Berman, Geoffrey C. Fox, and Anthony J. G. Hey, eds.
Grid Computing: Making the Global Infrastructure a Reality. Wiley,
2003. ISBN: 978-0-47085-319-1.

T. Berners-Lee. RFC 1630: Universal Resource Identifiers in
WWW. IETF, 1994.

T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396: Uniform
Resource Identifiers (URI): Generic Syntax. IETF, 1998.

T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986: Uniform
Resource Identifier (URI): Generic Syntax. IETF, 2005.

D. Bernholdt, S. Bharathi, D. Brown, K. Chanchio, M. Chen,
A. Chervenak, L. Cinquini, B. Drach, I. Foster, P. Fox,].
Garcia, C. Kesselman, R. Markel, D. Middleton, V. Nefedova,
L. Pouchard, A. Shoshani, A. Sim, G. Strand, and D. Williams.
“The Earth System Grid: Supporting the Next Generation of
Climate Modeling Research.” In: Proceedings of the IEEE 93.3
(2005), pp. 485—495. DOI: 10.1109/jproc.2004.842745.

C. Bizer, T. Heath, and T. Berners-Lee. “Linked Data — The
Story So Far.” In: Special Issue on Linked Data, International
Journal on Semantic Web and Information Systems 5.3 (2009). Ed.
by T. Heath, M. Hepp, and C. Bizer, pp. 1—22. ISSN: 1552-6283.

P. Bouquet, H. Stoermer, C. Niederee, and A. Maa. “Entity
Name System: The Back-Bone of an Open and Scalable Web
of Data.” In: Semantic Computing, 2008 IEEE International
Conference on. IEEE, Aug. 2008, pp. 554-561. ISBN: 978-0-7695-
3279-0. DOI: 10.1109/icsc.2008.37.

Paolo Bouquet, Heiko Stoermer, and Barbara Bazzanella. “An
Entity Name System (ENS) for the Semantic Web.” In: The
Semantic Web: Research and Applications. Ed. by Sean Bechhofer,
Manfred Hauswirth, Jorg Hoffmann, and Manolis Koubarakis.
Vol. 5021. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2008. Chap. 21, pp. 258-272.
ISBN: 978-3-540-68233-2. DOL: 10.1007/978-3-540-68234-9_21.

Jan Brase, Michael Lautenschlager, and Irina Sens. “The Tenth
Anniversary of Assigning DOI Names to Scientific Data and a
Five Year History of DataCite.” In: D-Lib Magazine 21.1/2 (Jan.
2015). ISSN: 1082-9873. DOL: 10.1045/january2015-brase.

http://dx.doi.org/10.1109/escience.2010.21
http://dx.doi.org/10.1109/jproc.2004.842745
http://dx.doi.org/10.1109/icsc.2008.37
http://dx.doi.org/10.1007/978-3-540-68234-9_21
http://dx.doi.org/10.1045/january2015-brase

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Bibliography

Reinhard Budich and Wolfgang Hiller. “ESM Data Archives
in Times of the Grid.” In: Earth System Modelling — Volume
6. SpringerBriefs in Earth System Sciences. Springer Berlin
Heidelberg, 2013, pp. 1-3. DOI: 10.1007/978- 3 - 642 - 37244 -
5_1.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. “Bigtable: A Distributed Storage
System for Structured Data.” In: ACM Transactions on Computer
Systems 26.2 (June 2008), pp. 1—26. ISSN: 0734-2071. DOL 10 .
1145/1365815.1365816.

Luca Cinquini, Daniel Crichton, Chris Mattmann, John Har-
ney, Galen Shipman, Feiyi Wang, Rachana Ananthakrish-
nan, Neill Miller, Sebastian Denvil, Mark Morgan, Zed Po-
bre, Gavin M. Bell, Charles Doutriaux, Robert Drach, Dean
Williams, Philip Kershaw, Stephen Pascoe, Estanislao Gonza-
lez, Sandro Fiore, and Roland Schweitzer. “The Earth Sys-
tem Grid Federation: An open infrastructure for access to
distributed geospatial data.” In: Future Generation Computer
Systems 36 (July 2014), pp. 400-417. ISSN: 0167739X. DOIL: 10.
1016/j.future.2013.07.002.

Karen Coyle. “Identifiers: Unique, Persistent, Global.” In: The
Journal of Academic Librarianship 32.4 (July 2006), pp. 428-431.
ISSN: 00991333. DOIL: 10.1016/j.acalib.2006.04.004.

DataCite Metadata Schema for the Publication and Citation of
Research Data, Version 3.1. Technical report. DataCite, Oct. 2014.
DOI: 10.5438/0010.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
“Dynamo: Amazon’s Highly Available Key-value Store.” In:
ACM SIGOPS Operating Systems Review 41.6 (Oct. 2007), pp. 205—
220. ISSN: 0163-5980. DOI: 10.1145/1323293.1294281.

Deutsche Forschungsgemeinschaft, ed. Sicherung guter wis-
senschaftlicher Praxis: Safequarding Good Scientific Practice. Wein-
heim: Wiley-VCH, 1998. 1sBN: 9783527606252. DOIL: 10. 1002/
3527606254.

DOI Handbook, version 5. International DOI Foundation, Aug.
2014. DOIL: doi:10.1000/182.

Ruth E. Duerr, Robert R. Downs, Curt Tilmes, Bruce Bark-
strom, W. Christopher Lenhardt, Joseph Glassy, Luis E. Ber-
mudez, and Peter Slaughter. “On the utility of identification
schemes for digital earth science data: an assessment and rec-
ommendations.” In: Earth Science Informatics 4.3 (Sept. 2011),

113

http://dx.doi.org/10.1007/978-3-642-37244-5_1
http://dx.doi.org/10.1007/978-3-642-37244-5_1
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1016/j.future.2013.07.002
http://dx.doi.org/10.1016/j.future.2013.07.002
http://dx.doi.org/10.1016/j.acalib.2006.04.004
http://dx.doi.org/10.5438/0010
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.1002/3527606254
http://dx.doi.org/10.1002/3527606254
http://dx.doi.org/doi:10.1000/182

114

Bibliography

[27]

[28]

[29]

[30]

[31]

[32]

[33]

pPpP- 139-160. ISSN: 1865-0473. DOIL: 10.1007/512145-011-0083-
6.

Harry Enke, Norman Fiedler, Thomas Fischer, Timo Gnadlt,
Erik Ketzan, Jens Ludwig, Torsten Rathmann, Gabriel Stockle,
and Florian Schintke. Leitfaden zum Forschungsdaten-Management:
Handreichungen aus dem WissGrid-Projekt. Ed. by Harry Enke
and Jens Ludwig. Gliickstadt: Verlag Werner Hiilsbusch, 2013.
ISBN: 978-3-86488-032-2.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. RFC 2616: Hypertext Transfer
Protocol — HTTP/1.1. IETF, 1999.

Roy T. Fielding. “Architectural Styles and the Design of
Network-based Software Architectures.” PhD thesis. Univer-
sity of California, Irvine, 2000.

Ian Foster, Carl Kesselman, and Steven Tuecke. “The Anatomy
of the Grid: Enabling Scalable Virtual Organizations.” In:
International Journal of High Performance Computing Applications
15.3 (Aug. 2001), pp. 200—222. ISSN: 1741-2846. DOI: 10.1177/
109434200101500302.

Felix Gessert, Steffen Friedch, Wolfram Wingerath, Michael
Schaarschmidt, and Norbert Ritter. “Towards a Scalable and
Unified REST API for Cloud Data Stores.” In: 44. Jahrestagung
der Gesellschaft fiir Informatik, Informatik 2014. Ed. by Erhard
Plodereder, Lars Grunske, Eric Schneider, and Dominik UIl.
Bonn: Gesellschaft fiir Informatik, 2014, pp. 723-734. 1SBN: 978-
3-88579-626-8.

David Giaretta. Advanced digital preservation. Springer Berlin,
2011. ISBN: 978-3-64216-808-6.

Marco Giorgetta, Johann Jungclaus, Christian Reick, Stephanie
Legutke, Victor Brovkin, Traute Crueger, Monika Esch, Kerstin
Fieg, Ksenia Glushak, Veronika Gayler, Helmuth Haak, Heinz-
Dieter Hollweg, Stefan Kinne, Luis Kornblueh, Daniela Matei,
Thorsten Mauritsen, Uwe Mikolajewicz, Wolfgang Miiller,
Dirk Notz, Thomas Raddatz, Sebastian Rast, Erich Roeckner,
Marc Salzmann, Hauke Schmidt, Reiner Schnur, Joachim
Segschneider, Katharina Six, Martina Stockhause, Joerg Weg-
ner, Heinrich Widmann, Karl-Hermann Wieners, Martin Clau-
ssen, Jochem Marotzke, and Bjorn Stevens. CMIP5 simulations
of the Max Planck Institute for Meteorology (MPI-M) based on
the MPI-ESM-LR model: The abrupt4xCOz2 experiment, served by
ESGF. World Data Center for Climate (WDCC), 2012. por: 10.
1594 /WDCC/CMIP5.MXELC2.

http://dx.doi.org/10.1007/s12145-011-0083-6
http://dx.doi.org/10.1007/s12145-011-0083-6
http://dx.doi.org/10.1177/109434200101500302
http://dx.doi.org/10.1177/109434200101500302
http://dx.doi.org/10.1594/WDCC/CMIP5.MXELC2
http://dx.doi.org/10.1594/WDCC/CMIP5.MXELC2

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Bibliography

Mike Graves, Adam Constabaris, and Dan Brickley. “FOAF:
Connecting People on the Semantic Web.” In: Cataloging &
Classification Quarterly 43.3-4 (Apr. 2007), pp. 191—202. DOI: 10.
1300/j104v43n03_10.

Christophe Guéret, Paul Groth, Frank van Harmelen, and
Stefan Schlobach. “Finding the Achilles Heel of the Web of
Data: Using Network Analysis for Link-Recommendation.”
In: The Semantic Web — ISWC 2010. Ed. by Peter F. Patel-
Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang,
Jeff Z. Pan, Ian Horrocks, and Birte Glimm. Vol. 6496. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2010,
pp- 289-304. DOI: 10.1007/978-3-642-17746-0_19.

Paul R. Halmos. Naive set theory. Springer, 1974. ISBN: 978-0-
38790-092-6.

Tom Heath and Christian Bizer. Linked Data: Evolving the Web
into a Global Data Space. Synthesis Lectures on the Semantic
Web: Theory and Technology. Morgan & Claypool Publishers,
Feb. 2011. po1: 10.2200/500334ed1v01y201102wbe0O1.

Tony Hey, Stewart Tansley, and Kristin Tolle. The fourth
paradigm: data-intensive scientific discovery. Microsoft Research,
2009. ISBN: 9780982544204.

Tony Hey and Anne E. Trefethen. “Cyberinfrastructure for e-
Science.” In: Science 308.5723 (May 2005), pp. 817-821. ISSN:
1095-9203. DOI: 10.1126/science.1110410.

Sarah Higgins. “The DCC Curation Lifecycle Model.” In: Inter-
national Journal of Digital Curation 3.1 (Dec. 2008), pp. 134-140.
ISSN: 1746-8256. DOI: 10.2218/ijdc.v3il.48.

Hans-Werner Hilse and Jochen Kothe. Implementing persistent
identifiers. Consortium on European Research Libraries, 2006.
ISBN: 9069845083.

Nicole von der Hude. “Persistent Identifier: Versionierung,
Addressierung und Referenzierung.” In: Langzeitarchivierung
von Forschungsdaten. Ed. by Reinhard Altenhoner and Claudia
Oellers. Berlin: SCIVERO Verlag, 2012, pp. 129-135. ISBN: 978-
3-944417-00-4.

Denis Huschka, Claudia Oellers, Notburga Ott, and Gert G.
Wagner. “Datenmanagement und Data Sharing. Erfahrungen
in den Sozial- und Wirtschaftswissenschaften.” In: Handbuch
Forschungsdatenmanagement. Ed. by Stephan Biittner, Hans-
Christoph Hobohm, and Lars Miiller. Bad Honnef: Bock +
Herchen, 2011. 15BN: 978-3-88347-283-6.

115

http://dx.doi.org/10.1300/j104v43n03_10
http://dx.doi.org/10.1300/j104v43n03_10
http://dx.doi.org/10.1007/978-3-642-17746-0_19
http://dx.doi.org/10.2200/s00334ed1v01y201102wbe001
http://dx.doi.org/10.1126/science.1110410
http://dx.doi.org/10.2218/ijdc.v3i1.48

116

Bibliography

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Ronald Jantz and Michael J. Giarlo. “Digital Preservation:
Architecture and Technology for Trusted Digital Repositories.”
In: Microform & Imaging Review 34.3 (Jan. 2005). ISSN: 0949-5770.
DOI: 10.1515/mfir.2005.135.

Robert Kahn and Robert Wilensky. “A framework for dis-
tributed digital object services.” In: International Journal on
Digital Libraries 6.2 (Apr. 2006), pp. 115-123. ISSN: 1432-5012.
DOI: 10.1007/s00799-005-0128- x.

Gary King. “Ensuring the Data-Rich Future of the Social
Sciences.” In: Science 331.6018 (Feb. 2011), pp. 719—721. ISSN:
1095-9203. DOI: 10.1126/science.1197872.

Jochen Klar and Harry Enke. Rahmenbedingungen einer diszi-
pliniibergreifenden Forschungsdateninfrastruktur — Report "Organ-
isation und Struktur”. Report. 2013. pOI: 10.2312/RADIESCHEN_
005.

Jens Klump, Roland Bertelmann, Jan Brase, Michael Diepen-
broek, Hannes Grobe, Heinke Hock, Michael Lautenschlager,
Uwe Schindler, Irina Sens, and Joachim Wéchter. “Data publi-
cation in the open access initiative.” In: Data Science Journal 5
(2006), pp- 79-83. DOI: 10.2481/dsj.5.79.

W. Koehler. “A longitudinal study of Web pages continued:
a consideration of document persistence.” In: Information
Research 9.2 (Jan. 2004).

David Koop, Emanuele Santos, Phillip Mates, Huy T. Vo,
Philippe Bonnet, Bela Bauer, Brigitte Surer, Matthias Troyer,
Dean N. Williams, Joel E. Tohline, Juliana Freire, and Cldudio
T. Silva. “A Provenance-Based Infrastructure to Support the
Life Cycle of Executable Papers.” In: Procedia Computer Science
4 (Jan. 2011), pp. 648-657. 1sSN: 18770509. DOIL: 10 .1016/j .
procs.2011.04.068.

Michael Kuhn, Konstantinos Chasapis, Manuel F. Dolz, and
Thomas Ludwig. “Compression by Default — Reducing Total
Cost of Ownership of Storage Systems.” In: 29th International
Supercomputing Conference, ISC 2014. Ed. by Julian M. Kunkel,
Thomas Ludwig, and Hans W. Meurer. Vol. 8488. LNCS.
Leipzig, Germany: Springer International Publishing, 2014,
pp- 508-510. ISBN: 978-3-319-07517-4.

John A. Kunze. “Towards Electronic Persistence Using ARK
Identifiers, ARK motivation and overview.” In: Proceedings of
the 3rd ECDL Workshop on Web Archives. Trondheim, Norway,
Aug. 2003.

http://dx.doi.org/10.1515/mfir.2005.135
http://dx.doi.org/10.1007/s00799-005-0128-x
http://dx.doi.org/10.1126/science.1197872
http://dx.doi.org/10.2312/RADIESCHEN_005
http://dx.doi.org/10.2312/RADIESCHEN_005
http://dx.doi.org/10.2481/dsj.5.79
http://dx.doi.org/10.1016/j.procs.2011.04.068
http://dx.doi.org/10.1016/j.procs.2011.04.068

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Bibliography

Massimo Lamanna. “The LHC computing grid project at
CERN.” In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 534.1-2 (Nov. 2004), pp. 1-6. ISSN: 01689002. DOI:
10.1016/j.nima.2004.07.049.

Michael Lautenschlager. “Institutionalisierte “Data Curation
Services”.” In: Handbuch Forschungsdatenmanagement. Ed. by
Stephan Biittner, Hans-Christoph Hobohm, and Lars Miiller.
Bad Honnef: Bock + Herchen, 2011, pp. 149-156. ISBN: 978-3-
88347-283-6.

Steve Lawrence, David M. Pennock, Gary W. Flake, Robert
Krovetz, Frans M. Coetzee, Eric Glover, Finn Arup Nielsen,
Andries Kruger, and C. Lee Giles. “Persistence of Web ref-
erences in scientific research.” In: Computer 34.2 (Feb. 2001),
pp- 26—31. I1SSN: 0018-9162. DOI: 10.1109/2.901164.

Barbara Liskov and Stephen Zilles. “Programming with ab-
stract data types.” In: Proceedings of the ACM SIGPLAN sym-
posium on Very high level languages. Vol. 9. 4. Santa Monica,
California, USA: ACM, 1974, pp. 50-59. DOIL: 10.1145/800233.
807045.

Barbara H. Liskov and Jeannette M. Wing. “A Behavioral
Notion of Subtyping.” In: ACM Trans. Program. Lang. Syst. 16.6
(Nov. 1994), pp. 1811-1841. ISSN: 0164-0925. DOI: 10 . 1145/
197320.197383.

Lukasz Bolikowski, Aleksander Nowiriski, and Wojtek Syl-
westrzak. “A System for Distributed Minting and Manage-
ment of Persistent Identifiers.” In: 1oth International Digital
Curation Conference. London, UK, 2015.

Peter Lyman. “Archiving the World Wide Web.” In: Building a
National Strategy for Digital Preservation: Issues in Digital Media
Archiving. Washington, DC: Council on Library, Information
Resources, and Library of Congress, Apr. 2002. ISBN: 1-887334-
91-2.

M. Mealling and R. Denenberg, eds. RFC 3305: Report from the
Joint W3C/IETF URI Planning Interest Group: Uniform Resource
Identifiers (URIs), URLs, and Uniform Resource Names (URNS):
Clarifications and Recommendations. IETF, 2002.

Gerald A. Meehl, Richard Moss, Karl E. Taylor, Veronika
Eyring, Ronald J. Stouffer, Sandrine Bony, and Bjorn Stevens.
“Climate Model Intercomparisons: Preparing for the Next
Phase.” In: Eos, Transactions American Geophysical Union 95.9
(2014), pp. 77-78. 1SSN: 00963941. DOIL: 10.1002/2014€0090001.

117

http://dx.doi.org/10.1016/j.nima.2004.07.049
http://dx.doi.org/10.1109/2.901164
http://dx.doi.org/10.1145/800233.807045
http://dx.doi.org/10.1145/800233.807045
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1002/2014eo090001

118

Bibliography

[62]

[63]
[64]

[65]

[66]

[67]

[68]

[69]

Paolo Missier, Bertram Ludidscher, Shawn Bowers, Saumen
Dey, Anandarup Sarkar, Biva Shrestha, Ilkay Altintas, Manish
K. Anand, and Carole Goble. “Linking multiple workflow
provenance traces for interoperable collaborative science.” In:
sth Workshop on Workflows in Support of Large-Scale Science
(WORKS). IEEE, Nov. 2010, pp. 1-8. ISBN: 978-1-4244-8989-3.
DOI: 10.1109/works.2010.5671861.

R. Moats. RFC 2141: URN Syntax. IETF, 1997.

Reagan Moore. “Towards a Theory of Digital Preservation.” In:
International Journal of Digital Curation 3.1 (Dec. 2008), pp. 63—
75. ISSN: 1746-8256. DOI: 10.2218/1ijdc.v311.42.

Luc Moreau. “The Foundations for Provenance on the Web.”
In: Foundations and Trends in Web Science 2.2-3 (Feb. 2010),
PP- 99—241. 1SSN: 1555-077X. DOIL: 10.1561/1800000010.

Luc Moreau and Paolo Missier, eds. PROV-DM: The PROV
Data Model. W3C Recommendation. World Wide Web Consor-
tium, 2013.

Luc Moreau, Bertram Ludéascher, Ilkay Altintas, Roger S.
Barga, Shawn Bowers, Steven Callahan, George Chin, Ben
Clifford, Shirley Cohen, Sarah Cohen-Boulakia, Susan David-
son, Ewa Deelman, Luciano Digiampietri, Ian Foster, Juliana
Freire, James Frew, Joe Futrelle, Tara Gibson, Yolanda Gil,
Carole Goble, Jennifer Golbeck, Paul Groth, David A. Holland,
Sheng Jiang, Jihie Kim, David Koop, Ales Krenek, Timothy
McPhillips, Gaurang Mehta, Simon Miles, Dominic Metzger,
Steve Munroe, Jim Myers, Beth Plale, Norbert Podhorszki,
Varun Ratnakar, Emanuele Santos, Carlos Scheidegger, Karen
Schuchardt, Margo Seltzer, Yogesh L. Simmhan, Claudio Silva,
Peter Slaughter, Eric Stephan, Robert Stevens, Daniele Turi,
Huy Vo, Mike Wilde, Jun Zhao, and Yong Zhao. “Special
Issue: The First Provenance Challenge.” In: Concurrency and
Computation: Practice and Experience 20.5 (2008), pp. 409—418.
DOI: 10.1002/cpe.1233.

Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda
Gil, Paul Groth, Natalia Kwasnikowska, Simon Miles, Paolo
Missier, Jim Myers, Beth Plale, Yogesh Simmhan, Eric Stephan,
and Jan V. den Bussche. “The Open Provenance Model core
specification (v1.1).” In: Future Generation Computer Systems
27.6 (June 2011), pp. 743-756. ISSN: 0167739X. DOIL: 10.1016/
j.future.2010.07.005.

Nick Nicholas, Nigel Ward, and Kerry Blinco. “A Policy
Checklist for Enabling Persistence of Identifiers.” In: D-Lib
Magazine 15.1/2 (Jan. 2009). IssSN: 1082-9873. DOIL: 10 . 1045/
january2009-nicholas.

http://dx.doi.org/10.1109/works.2010.5671861
http://dx.doi.org/10.2218/ijdc.v3i1.42
http://dx.doi.org/10.1561/1800000010
http://dx.doi.org/10.1002/cpe.1233
http://dx.doi.org/10.1016/j.future.2010.07.005
http://dx.doi.org/10.1016/j.future.2010.07.005
http://dx.doi.org/10.1045/january2009-nicholas
http://dx.doi.org/10.1045/january2009-nicholas

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

Bibliography

Open archival information system (OAIS) Reference model. ISO
Standard, ISO 14721:2012.

N. Paskin. “Toward unique identifiers.” In: Proceedings of the
IEEE 87.7 (July 1999), pp. 1208-1227. ISSN: 0018-9219. DOI: 10.
1109/5.771073.

Norman Paskin. “Components of DRM Systems Identification
and Metadata.” In: Digital Rights Management. Ed. by Eberhard
Becker, Willms Buhse, Dirk Giinnewig, and Niels Rump.
Vol. 2770. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2003, pp. 26-61. DOI: 10.1007/10941270_4.

Norman Paskin. “Digital Object Identifier (DOI) System.” In:
Encyclopedia of Library and Information Sciences, Third Edition.
Ed. by Marcia]. Bates and Mary N. Maack. Taylor & Francis,
Dec. 2010. Chap. 157, pp. 1586—1592. DOI: 10.1081/e-elis3-
120044418.

Sandra Payette and Carl Lagoze. “Flexible and Extensible
Digital Object and Repository Architecture (FEDORA).” In:
Research and Advanced Technology for Digital Libraries. Vol. 1513.
Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 1998, pp. 41-59. DOIL: 10.1007/3-540-49653-x_4.

Commission on Preservation and Access. Preserving digital
information: Report of the Task Force on Archiving of Digital
Information. 1996. ISBN: 1887334505.

Arcot Rajasekar, Reagan Moore, Chien-Yi Hou, Christopher
A. Lee, Richard Marciano, Antoine de Torcy, Michael Wan,
Wayne Schroeder, Sheau-Yen Chen, Lucas Gilbert, Paul Tooby,
and Bing Zhu. “iRODS Primer: Integrated Rule-Oriented
Data System.” In: Synthesis Lectures on Information Concepts,
Retrieval, and Services 2.1 (Jan. 2010), pp. 1-143. DOL 10.2200/
500233ed1v01y200912icr0l2.

Gunther Schmidt. Relational mathematics. Cambridge Univer-
sity Press, 2011. ISBN: 978-0-52176-268-7.

Guus Schreiber and Yves Raimond, eds. RDF 1.1 Primer. W3C
Recommendation. World Wide Web Consortium, 2014.

European Commission High Level Expert Group on Scientific
Data. Riding the wave — How Europe can gain from the rising tide
of scientific data. European Union, Oct. 2010.

Jamie Shiers. “The Worldwide LHC Computing Grid (world-
wide LCG).” In: Computer Physics Communications 177.1-2 (July
2007), pp- 219—223. ISSN: 00104655. DOI: 10.1016/] .cpc.2007.
02.021.

119

http://dx.doi.org/10.1109/5.771073
http://dx.doi.org/10.1109/5.771073
http://dx.doi.org/10.1007/10941270_4
http://dx.doi.org/10.1081/e-elis3-120044418
http://dx.doi.org/10.1081/e-elis3-120044418
http://dx.doi.org/10.1007/3-540-49653-x_4
http://dx.doi.org/10.2200/s00233ed1v01y200912icr012
http://dx.doi.org/10.2200/s00233ed1v01y200912icr012
http://dx.doi.org/10.1016/j.cpc.2007.02.021
http://dx.doi.org/10.1016/j.cpc.2007.02.021

120

Bibliography

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. “A
Framework for Collecting Provenance in Data-Centric Scien-
tific Workflows.” In: International Conference on Web Services
(ICWS), 2006. Washington, DC, USA: IEEE Computer Society,
2006, pp. 427-436. ISBN: 0769526691. DOI: 10.1109/icws.2006.
5.

Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. “A
Survey of Data Provenance in e-Science.” In: ACM SIGMOD
Record 34.3 (Sept. 2005), pp. 31—36. ISSN: 0163-5808. DOIL: 10 .
1145/1084805.1084812.

Diomidis Spinellis. “The decay and failures of web references.”
In: Communications of the ACM 46.1 (Jan. 2003), pp. 71-77. ISSN:
0001-0782. DOI: 10.1145/602421.602422.

Joan Starr and Angela Gastl. “isCitedBy: A Metadata Scheme
for DataCite.” In: D-Lib Magazine 17.1/2 (Jan. 2011). ISSN: 1082-
9873. DOI: 10.1045/january2011-starr.

M. Stockhause, H. Hock, F. Toussaint, and M. Lautenschlager.
“Quality assessment concept of the World Data Center for
Climate and its application to CMIP5 data.” In: Geoscientific
Model Development 5.4 (Aug. 2012), pp. 1023-1032. DOL 10 .
5194/gmd-5-1023-2012.

Heiko Stoermer. “OKKAM: Enabling entity-centric informa-
tion integration in the semantic web.” PhD thesis. University
of Trento, Italy, 2008.

S. Sun, S. Reilly, and L. Lannom. RFC 3651: Handle System
Namespace and Service Definition. IETF, 2003.

Karl E. Taylor, Ronald J. Stouffer, and Gerald A. Meehl. “An
Overview of CMIP5 and the Experiment Design.” In: Bulletin
of the American Meteorological Society 93.4 (Oct. 2012), pp. 485—
498. por: 10.1175/bams-d-11-00094.1.

Kenneth Thibodeau. “Overview of Technological Approaches
to Digital Preservation and Challenges in Coming Years.”
In: The State of Digital Preservation: An International Perspec-
tive. Washington, DC: Council on Library and Information
Resources, July 2002, pp. 4-31. 1SBN: 1-887334-92-0.

A. Treloar and C. Harboe-Ree. “Data management and the
curation continuum: how the Monash experience is informing
repository relationships.” In: VALA 2008. Melbourne, Feb.
2008.

Andrew Treloar. “The Research Data Alliance: globally co-
ordinated action against barriers to data publishing and
sharing.” In: Learned Publishing (Sept. 2014), pp. 9—13. ISSN:
0953-1513. DOIL: 10.1087/20140503.

http://dx.doi.org/10.1109/icws.2006.5
http://dx.doi.org/10.1109/icws.2006.5
http://dx.doi.org/10.1145/1084805.1084812
http://dx.doi.org/10.1145/1084805.1084812
http://dx.doi.org/10.1145/602421.602422
http://dx.doi.org/10.1045/january2011-starr
http://dx.doi.org/10.5194/gmd-5-1023-2012
http://dx.doi.org/10.5194/gmd-5-1023-2012
http://dx.doi.org/10.1175/bams-d-11-00094.1
http://dx.doi.org/10.1087/20140503

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Bibliography

Trusted Digital Repositories: Attributes and Responsibilities. Tech-
nical report. Mountain View, CA, USA: Research Libraries
Group, May 2002.

Pieter Van Gorp and Steffen Mazanek. “SHARE: a web portal
for creating and sharing executable research papers.” In:
Procedia Computer Science 4 (2011), pp. 589-597. ISSN: 18770509.
DOI: 10.1016/j.procs.2011.04.062.

Stuart L. Weibel and Erik Jul. “PURLs to improve access to
Internet.” In: OCLC Newsletter 218 (1995). Ed. by Nita Dean,
George Promenschenkel, and Marifay Makssour. 1ssN: 0163-
898X.

Tobias Weigel and Timothy DiLauro. “Separation of Concerns:
PID Information Types and Domain Metadata.” In: Interna-
tional Conference on Dublin Core and Metadata Applications (DC-
2013). Dublin Core Metadata Initiative. Lisbon, Portugal, 2013.

Tobias Weigel, Timothy DiLauro, and Thomas Zastrow. RDA
Recommendation: PID Information Types. Research Data Alliance,
2015. Under review.

Tobias Weigel, Stephan Kindermann, and Michael Lauten-
schlager. “Actionable Persistent Identifier Collections.” In:
Data Science Journal 12 (2013), pp. 191—206. ISSN: 1683-1470. DOI:
10.2481/dsj.12-058.

Tobias Weigel, Michael Lautenschlager, Frank Toussaint, and
Stephan Kindermann. “A Framework for Extended Persistent
Identification of Scientific Assets.” In: Data Science Journal 12
(2013), pp. 10—22. 1SSN: 1683-1470. DOI: 10.2481/dsj.12-036.

Dean Williams, ed. 4th annual Earth System Grid Federation and
Ultrascale Visualization Climate Data Analysis Tools face-to-face
conference report. Technical report LLNL-TR-666753. Livermore,
CA, USA: Lawrence Livermore National Laboratory, 2014.

Dean Williams, Gavin Bell, Luca Cinquini, Peter Fox, John
Harney, and Robin Goldstone. “Earth System Grid Federa-
tion: Federated and Integrated Climate Data from Multiple
Sources.” In: Earth System Modelling — Volume 6. SpringerBriefs
in Earth System Sciences. Springer Berlin Heidelberg, 2013,
pp. 61—77. DOI: 10.1007/978-3-642-37244-5_7.

Jonathan D. Wren. “URL decay in MEDLINE - a 4-year follow-
up study.” In: Bioinformatics 24.11 (June 2008), pp. 1381-1385.
ISSN: 1460-2059. DOI: 10.1093/bioinformatics/btnl27.

Sarah]. Wright, Wendy A. Kozlowski, Dianne Dietrich, Huda
J. Khan, Gail S. Steinhart, and Leslie McIntosh. “Using Data
Curation Profiles to Design the Datastar Dataset Registry.” In:
D-Lib Magazine 19.7/8 (July 2013). 1sSN: 1082-9873. DOIL: 10 .
1045/july2013-wright.

121

http://dx.doi.org/10.1016/j.procs.2011.04.062
http://dx.doi.org/10.2481/dsj.12-058
http://dx.doi.org/10.2481/dsj.12-036
http://dx.doi.org/10.1007/978-3-642-37244-5_7
http://dx.doi.org/10.1093/bioinformatics/btn127
http://dx.doi.org/10.1045/july2013-wright
http://dx.doi.org/10.1045/july2013-wright

122 Bibliography

[103] Elizabeth Yakel. “Digital curation.” In: OCLC Systems & Ser-
vices 23.4 (2007), pp- 335—340. ISSN: 1065-075X. DOI: 10.1108/
10650750710831466.

http://dx.doi.org/10.1108/10650750710831466
http://dx.doi.org/10.1108/10650750710831466

EIDESSTATTLICHE VERSICHERUNG

Hiermit erkldre ich an Eides statt, dass ich die vorliegende Disser-
tationsschrift selbst verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Hamburg, Feb 27 2015

Tobias Weigel

	Abstract
	Kurzfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Problem statement
	1.2 Research questions
	1.3 Methodology
	1.4 Contribution and relevance

	2 State of the Art
	2.1 Digital preservation
	2.2 The data life cycle
	2.2.1 The Digital Curation Center model
	2.2.2 The curation continuum model

	2.3 E-science and data infrastructues
	2.4 Digital objects
	2.4.1 Identifiers and locators
	2.4.2 Towards persistent identifiers
	2.4.3 Persistent identifiers for data
	2.4.4 The relationship between technology and policies

	2.5 Conclusions

	3 Use Cases
	3.1 The Earth System Grid Federation
	3.2 Referencing preliminary data
	3.3 Access to specific versions of a dataset
	3.4 Referencing custom data slices
	3.5 Provenance tracing
	3.6 Discussion

	4 Conceptual Framework
	4.1 Formal model
	4.1.1 Describing identification
	4.1.2 Describing PID records
	4.1.3 Further aspects

	4.2 Persistency layer
	4.2.1 Fundamental criteria
	4.2.2 PID system classes
	4.2.3 Defining the Persistent Entity
	4.2.4 Abstract data type definitions

	4.3 Typing layer
	4.3.1 Typing of identified objects
	4.3.2 Typing of PID record entries
	4.3.3 The type registry and type governance

	4.4 Collection layer
	4.4.1 Definitions and terminology
	4.4.2 The collection process
	4.4.3 Fundamental structural criteria for collections
	4.4.4 Common operations on collections

	4.5 Discussion

	5 Implementation Concepts
	5.1 Persistency layer
	5.1.1 Review of individual PID systems
	5.1.2 Scalability aspects

	5.2 Typing layer
	5.2.1 Type registry
	5.2.2 Typing layer service

	5.3 Collection layer
	5.4 Discussion

	6 Analysis
	6.1 Referencing preliminary data
	6.2 Access to specific versions of a dataset
	6.3 Referencing custom data slices
	6.4 Provenance tracing
	6.5 Discussion

	7 Related Work
	7.1 Linked Data
	7.2 The Entity Name System
	7.3 Approaches for providing actionable collections
	7.4 Research Objects
	7.5 Discussion

	8 Conclusions
	8.1 Future work

	Bibliography
	Eidesstattliche Versicherung

