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Abstract – English
The human brain is one of the most complex dynamic systems that enables us to
communicate (and externalise) information by natural language. Our languages
go far beyond single sounds for expressing intentions – in fact, human children
already join discourse by the age of three. It is remarkable that in these first years
they show a tremendous capability in acquiring the language competence from the
interaction with caregivers and their environment. However, our understanding
of the behavioural and mechanistic characteristics for the acquisition of natural
language is – as well – in its infancy. We have a good understanding of some
principles underlying natural languages and language processing, some insights
about where activity is occurring in the brain, and some knowledge about socio-
cultural conditions framing the acquisition. Nevertheless, we were not yet able to
discover how the mechanisms in the brain allow us to acquire and process language.

The goal of this thesis is to bridge the gap between the insights from linguistics,
neuroscience, and behavioural psychology, and contribute an understanding of the
appropriate characteristics that favour language acquisition, in a brain-inspired
neural architecture. Accordingly, the thesis provides tools to employ and improve
the developmental robotics approach with respect to speech processing and object
recognition as well as concepts and refinements in cognitive modelling regarding the
gradient descent learning and the hierarchical abstraction of context in plausible
recurrent architectures. On this basis, the thesis demonstrates two consecutive
models for language acquisition from natural interaction of a humanoid robot
with its environment. The first model is able to process speech production over
time embodied in visual perception. This architecture consists of a continuous
time recurrent neural network, where parts of the network have different leakage
characteristics and thus operate on multiple timescales (called MTRNN), and
associative layers that integrate embodied perception into continuous phonetic
utterances. As the most important properties, this model features compositionality
in language acquisition, generalisation in production, and a reasonable robustness.
The second model is capable to learn language production grounded in both,
temporal dynamic somatosensation and temporal dynamic vision. This model
comprises of an MTRNN for every modality and the association of the higher level
nodes of all modalities into cell assemblies. Thus, this model features hierarchical
concept abstraction in sensation as well as concept decomposition in production,
multi-modal integration, and self-organisation of latent representations.

The main contributions to knowledge from the development and study of these
models are as follows: a) general mechanisms on abstracting and self-organising
structures from sensory and motor modalities foster the emergence of language
acquisition; b) timescales in the brain’s language processing are necessary and
sufficient for compositionality; and c) shared multi-modal representations are
able to integrate novel experience and modulate novel production. The studies in
this thesis can inform important future studies in neuroscience on multi-modal
integration and development in interactive robotics about hierarchical abstraction
in information processing and language understanding.
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Abstract

Zusammenfassung – Deutsch
Das Gehirn des Menschen ist eines der komplexesten dynamischen Systeme, welches uns
ermöglicht, Informationen in natürlicher Sprache zu kommunizieren. Unsere Sprachen ge-
hen weit über einzelne Laute, um Intentionen auszudrücken, hinaus – vielmehr sind bereits
Kinder im Alter von drei Jahren in der Lage, einen Diskurs zu führen. Erstaunlicherweise
zeigen sie in diesen ersten Jahren die außerordentliche Fähigkeit, sich Sprachkompetenz
durch die Interaktion mit den Eltern und der Umgebung anzueignen. Unser Verständnis
von den Verhaltens- und Mechanistischen Merkmalen des Erwerbs natürlicher Sprache
steckt aber ebenfalls noch in den Kinderschuhen. Wir haben ein gutes Verständnis von
einigen Prinzipien der natürlichen Sprache und der Sprachverarbeitung, Erkenntnisse
darüber, wo Aktivität dafür im Gehirn auftritt, und Wissen über die sozio-kulturellen
Rahmenbedingungen für den Spracherwerb. Trotzdem waren wir bisher nicht in der Lage
aufzudecken, wie die Mechanismen im Gehirn es dem Menschen ermöglichen, Sprache zu
erwerben und zu verarbeiten.

Diese Dissertation hat zum Ziel, die Brücke zwischen den Erkenntnissen aus der Lin-
guistik, Neurowissenschaft und Verhaltenspsychologie zu schlagen und dazu beizutragen,
unser Verständnis über geeignete Merkmale in einer vom Gehirn inspirierten neuronalen
Architektur, welche den Spracherwerb begünstigt, zu verbessern. Dazu stellt die Disserta-
tion Werkzeuge zur Verfügung, um den Ansatz der Developmental Robotics anzuwenden
und bezüglich Spracherkennung und Objekterkennung weiterzuentwickeln. Außerdem
präsentiert sie Konzepte sowie Verbesserungen zur kognitiven Modellierung im Bezug
auf das Gradientenabstiegsverfahren und die hierarchische Abstraktion von Konzepten
in rekurrenten Architekturen. Auf dieser Grundlagen demonstriert diese Dissertation
aufeinander aufbauende Modelle für den Spracherwerb über natürliche Interaktion eines
humanoiden Roboters mit dessen Umgebung. Das erste Modell ist fähig, über die Zeit
Sprachproduktion durch Einbettung in visuelle Wahrnehmung zu verarbeiten. Diese
Architektur besteht aus einem zeitlich-kontinuierlich rekurrentem neuronalen Netz, in
dem Segmente verschiedene Leakage-Egenschaften aufweisen und so auf verschiedenen
Zeitskalen arbeiten (genannt: MTRNN) und dabei assoziative Schichten der körperlichen
Wahrnehmung in die kontinuierlichen phonetischen Aussagen integrieren. Die wichtigsten
Eigenschaften dieses Modells sind die Kompositionalität im Spracherwerb, Generali-
sierung in der Produktion und eine gewisse Robustheit. Das zweite Modell ist fähig,
Sprachproduktion, welche in zeitlich dynamischer Somatosensorik und zeitlich dynami-
schem Sehen eingebettet ist, zu erlernen. Dieses Modell besteht aus einem MTRNN für
jede Modalität und assoziiert die Knoten aller Modalitäten auf höherem Level in Cell
Assemblies. Dadurch bietet das Modell die hierarchische Abstraktion von Konzepten
in der Wahrnehmung und auch die Dekomposition von Konzepten in der Produktion,
multi-modale Integration sowie Selbstorganisation von verborgenen Repräsentationen.

Wichtigste Beiträge zum Wissen aus Entwicklung und Untersuchung dieser Modelle
sind Folgende: a) Emergenz vom Spracherwerb wird von generellen Mechanismen zur
Abstraktion und Selbstorganisation von Strukturen aus sensorischen und motorischen
Modalitäten, unterstützt; b) Zeitskalen in der Sprachverarbeitung im Gehirn sind notwen-
dig und hinreichend für Kompositionalität; und c) geteilte multi-modale Repräsentationen
können neue Wahrnehmungen integrieren und neue Produktionen modulieren. Die Unter-
suchungen können zukünftige Studien der Neurowissenschaften im Bereich multi-modaler
Integration und die Entwicklung von interaktiven Robotern bezüglich hierarchischer
Abstraktion in Informationsverarbeitung und Sprachverstehen motivieren.
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Chapter 1

Introduction

The human brain is one of the most complex dynamic systems in the world.
Humans can build precise machines as well as instruments and write essays about
consciousness as well as the higher purpose of life, because they reached a state
of specialisation and knowledge by externalising information and by interaction
with each other. We not only utter short sounds to indicate an intention, but also
describe complex procedural activity and share abstract declarative knowledge or
may even completely think in language [61, 78, 112]. For humans it is extremely
easy as well as extremely important to share information about matter, space, and
time in complex interactions through natural language. Often it is claimed that
language is the cognitive capability that differentiates most humans from other
beings in the animal kingdom.

However, humans’ natural language processing perhaps is the most mysterious
and less well understood cognitive capability. The main reason for this is the
uniqueness of human language and therefore our inability to observe and study
this capability in less complex but related species. Especially for humans, we avoid
to look into the mechanistic processes in the brain for both, complexity as well as
ethical reasons. For many other complex capabilities such as the multifaceted human
vision or the astonishing precision in the human hand movements we gathered
a good understanding including detailed models for the behavioural as well as
the mechanistic characteristics, because we were able to study analogies in other
mammals. Another reason is that the neural wiring in the human brain probably is
not the only component, which is necessary for language development. In primate
studies it was found that chimpanzees – in principle – are able to learn a limited
language as well but would need a human-like environment to develop a need
for more complex communication. It seems that socio-cultural principles are as
well important, and only the inclusion of all factors may allow us to understand
language processing. Nevertheless, it is our brain that enables humans to acquire
perception capabilities, motor skills, language, and social cognition. The capability
for language acquisition thus may result from the concurrence of general mechanisms
on information processing in the brain’s architecture.

1



Chapter 1. Introduction

Research Objective

Because natural language is so important for us, the research community puts a lot
of effort into its study and approaches language from many research directions for
already more than a century: linguistics looks into the regularities of the languages
we used and are currently using, neuroscience examines the brains neural code
in using language, and behavioural psychology studies the developmental and
cognitive conditions for the usage and the shaping of language. Between those
pillars, computer scientists and mathematicians aim at bridging the large gaps
between the approaches by connecting models, building computer simulations, and
reconstructing the usage of language in robotic platforms to provide less complex
but related creatures that finally allow for understanding the behavioural and
mechanistic characteristics as well as their connection. The most pressing research
questions are, how is language processed in the brain on a spatial and temporal
dynamic level, and how can we build language processing modules, which are based
on the understanding of the humans’ processing apparatus, into robots and agents
that are supposed to communicate, interact, and collaborate with us in daily life.

This thesis aims at joining the effort at the interface of language interaction
and neural models to narrow the gap between our knowledge of how language
processing is functioning on a neural level and how we use language. In particular
in recent studies in neuroscience it was found that the brain indeed includes both
hemispheres and all modalities in language processing, and the embodied develop-
ment of representations might be the key in language acquisition [15, 103, 125, 225].
Furthermore, hierarchical dependencies in connectivity – including different but
specific delays in information processing – were identified. In linguistic accounts
and behavioural studies a number of important principles – including composi-
tional and holistic properties in entities, body-rationality, and social interaction –
have been found that might ease or actually enable the acquisition of a language
competence [145, 263, 264]. In the light of the mechanistic conditions of the brain
and the enabling factors of how we learn language and other higher cognitive func-
tions, the key objective is to understand the characteristics of a brain-inspired
appropriate neural architecture that facilitates language acquisition.

Contribution to Knowledge

The contribution to knowledge is a more detailed understanding of the connectionist
and plasticity attributes of the human brain that allowed for the emergence and
development of languages. Results from analytical as well as empirical studies with
computer simulations and interactive humanoid robots will reveal the importance of
self-organisation as well of specific timing in information processing through different
parts of the brain in processing speech and multi-modal sensory information.
The contribution laid out in this thesis includes informing future neuroscientific
studies about important aspects to look at and informing robotic engineers about
cognitive architectures that may allow building accompanying robots, which are
able to interact with humans and at the same time extend their domain-specific
knowledge by interaction.

2



Thesis Organisation

This thesis is approaching the research objective from a broad angle. Since the
position of the thesis is that language processing in general and language acquisition
in particular depends on all components involved – including neural information
processing and socio-cultural conditions – the objective must be well founded in
understandings from different disciplines. Therefore, we will review in detail in
chapter 2 the recent research on language processing in the brain but also the
research on the principles working on language acquisition. This review will include
the emerging field of developmental robotics, which particularly aims at bridging
the gap between the traditional research fields. On this basis, we can detail specific
research questions, examine their impact, and discuss the methodology of the
approach, chosen for this thesis.

The chapters 3 and 4 will lay the foundations to address the research questions
from a technical and from a modelling perspective. For this each chapter offers both,
examining the state of development as well as to contribute original research to push
the development towards feasible building blocks for the computational models that
will be described in further chapters. Firstly, in chapter 3 we will inspect technical
challenges and opportunities in employing the approach of developmental robotics
on the research objective. This includes considering current hardware options in
terms of robotic platforms as well as software necessities to enable the robot to
interact with an environment and to communicate in natural language. Secondly,
in chapter 4 we will elaborate techniques and concepts in cognitive modelling and
examine fundamental models and architectures that have been adopted from recent
neuroscientific studies and thoroughly tested. In addition, we will investigate specific
capabilities of suitable recent architectures and how we can overcome the central
problem of plasticity in those architectures.

On this basis, the chapters 5 and 6 will provide and analyse models for language
understanding with increasing complexity. First of all, in chapter 5 we will consider
embodied language acquisition with a recurrent neural model that integrated visual
perception into speech production. The neural model will include characteristics of
the temporal dynamics, as found in the brain, and will be embedded in a robotic
platform that is supposed to learn language from interaction with its environment.
We will study the architecture’s capabilities in acquiring a language and examine
the developing internal representations and mechanisms in depth. In the second
part, chapter 6, we will inspect a cortical recurrent neural modal in acquiring
speech production capability from temporally dynamic visual perception, from
speech comprehension as well as from both, visual and sensorimotor perception.
With in-depth analyses we will inspect taxonomy, scalability, and robustness for
the temporal dynamic single modality architectures as well as emerging shared
representation for the multi-modal architecture.

Finally in chapter 7, the research approaches and results are discussed in the
light of the introduced research questions. In particular, we will follow up on the
contribution to knowledge in detail.
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Chapter 2

Approaching Multi-modal
Language Acquisition

In this chapter we will review how the study of language acquisition across and
among the fields Theoretical Linguistics, Computational Neuroscience, and Behavi-
oural Psychology revealed key principles of developing competence in processing
natural language. We will discuss how Developmental Robotics with its methods
available today provides a link between these fields and how this thesis, coming
from Computer Science, is able to bridge the efforts. On this basis, we will narrow
down central research questions and the consequentially most pressing hypotheses
as well as why this is important and which methods are appropriate.

2.1 Three Pillars of Natural Language Research
Research on language acquisition is approached in different disciplines by means of
complementary methods and research questions. In linguistics researchers investig-
ated different aspects of language in general and complexity of artificial languages in
particular. Ongoing debates in nature versus nurture and symbol grounding led to
valuable knowledge of yet-to-be-understood principles of learning and mechanisms
of information fusion in the brain that facilitate language competence. Recent
research suggested the principle of statistical frequency and of compositionality
underlying building up a language.

Computational neuroscience researchers looked bottom-up into the where and
when of knowledge processing and refined the map of activity across the brain in
language comprehension and production. New imaging methods allow for much
more detailed studies on both, temporal and spatial level, and led to a major
paradigm shift in our understanding of language acquisition. The hypothesis of
embodied language – embedded in most, if not all senses, and thus integrated
in information processing across the cortex – currently introduces very different
explanations of development in language competence. Recent research also suggests
the cell assemblies and time scales in information processing as shaping natural
parameters and priming as organising principle for language.
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Researchers in different fields related to behavioural psychology studied top-down
both the development of language competence in growing humans and the reciprocal
effects of the interaction with their environment. Findings on developmental phases
suggest that humans acquire language through distinct stages and by the support
of competent language teachers. Additionally, recent research revealed high-level
capabilities like the ease of segmentation and high-level principles like an inherent
body-centred perspective as well as a competence to understand and support that
perspective in others.

2.1.1 Theoretical Complexity in Linguistics
Linguistics is the scientific field that aims at describing existing and ancient language
in spoken, written, or otherwise expressed form. In fact, linguistics regards language
as too complex to study language acquisition on whole, but divided in distinct
disciplines such as Phonology, Morphology, Syntax, Semantics, Pragmatics, and
Semiotics. With all this effort put forward during the last century we now have a
good understanding on languages in general and complexity in artificial languages
in particular. We have a number of rules for both the form as well as the meaning
in language. However, for the origin of language and more precisely for how humans
acquire language the debate is still ongoing.

One particular theory, which vastly dominated the field of linguistics for the
last fifty years, was the proposal by Chomsky that the human brain has principles
for a universal language [48, 50]. In this innate language acquisition architecture
the general structure like order of words as well as word roles is given. A child only
needs to learn the parameters of this structure and role fillers for its environment.

The Generativist versus Constructivist Debate

Chomsky’s perspective on natural language thus is one view of the language
acquisition debate. The fundamental belief is that language must be innate and pre-
wired in the human brain and is free from stimulus control. The central arguments
of this nature perspective are a) the Poverty of Stimulus (POS) and b) the brain
has not significantly changed in the period when language was developed [4, 70].
The first argument (a) essentially states that language is just too complex and a
child is not exposed to enough examples of that language to be able to deduce a
language understanding from it [49]. The second argument (b) claims that for the
last 50,000 to 80,000 years the capacity for language in the brain has not evolved,
although in this period humans made tremendous progress in using language from
simple sounds to complex phrases [278]. With an innate language the brain is set
up to use a set of formal rules to generate an infinite set of grammatical sentences.

The complementary view on language acquisition understands the development
of language competence as a constructive process. A fundamental basis is the
acquisition of form in language by determining statistical regularity and the ac-
quisition of meaning by grounding in stimuli. This nurture perspective, in contrast,
argues that the nature perspective cannot be maintained because of findings in
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neuroscience and psychology that a) the used natural language does not fit into
complexity considerations of formal languages and b) children rely on a number
of general principles to build up language competence step by step [4, 23]. The
argumentation of (a) directly contradicts the POS assumption [222]. On the one
hand humans are not capable of infinite recursions and infinite sentence generation.
Usually we are able to insert up to three, in rare cases four sub-clauses into a
sentence and also develop a finite vocabulary of 5,000 up to 50,000 morphemes and
a finite set of used and preferred rules. On the other hand it was found that for
instance the Swiss-German language in fact has aspects beyond a context-free gram-
mar, which means that (at least) some used natural languages are nondeterministic.
The argumentation of (b) provides a different interpretation for the small develop-
ment of the brain architecture. First of all, the biological (or genetic) evolution is
only one process that shapes the development of humans. Since humans developed
to live in a large and close-knit society, socio-cultural mechanisms shaped the
human environment and thus changed the selection pressure that acts on humans as
well [61]. Current theories discuss whether over the last 50,000 years the evolution
of complex cognitive functions like the humans’ natural language have been driven
by culture itself [27]. General predispositions in the brain that favour and facilitate
a broad range of cognitive processes in terms of learning and reasoning might be an
important key principle [280]. Additionally, particular socio-cultural mechanisms
developed between mother and child led to a intensive and adaptive interaction
between that caregiver and the learner, which is unique in nature and facilitates
(if not even enables) constructing language competence [112]. We will discuss this
aspect further in section 2.1.3 of this chapter.

A Recent View on the Symbol Grounding Problem

A problem that arises from the constructivist perspective is how engrams (or
words)1 get their meaning. Harnad formulated this symbol grounding problem as
the task of finding the intrinsic link between an internal symbolic description and
the referent in terms the real word experience [113] (or even the embodied internal
state [39]). A symbolic system can consist of any arbitrary form of purely syntactic
tokens or strings, as well as compositions of tokens. He suggested to solve the
problem “from the ground up” [113, p. 12], meaning from the sensory projection
towards categorical interpretation, within a hybrid architecture e.g. of symbolic-
neural nature. This perspective implies that the symbols in natural language are
not (entirely) arbitrary, but partially linked to internal states. However, Sloman
warns for researchers in robotics or AI to take care to not misconceive this theory
and restrict language learning agents to somatic concepts only and to ignore the
structured nature of the environments [262]. For language acquisition this means
that we need to find and understand the mechanism that maps best the real
world2 perception into a taxonomic and efficient representation.

1In these classical terms the focus indeed is not exactly on the smallest units of meaning
(morphemes), but instead on arbitrary (smallest) identifier.

2The real word may seem chaotic, but certainly has systematicity.
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Word Contiguities and Latent Semantics

If we now scale up the used language to the phrase level, the problem of how
combinations of words lead to the formation of extended meaning. In ideal cases
(like correct written sentences) we can easily derive the grammatical structure, and
role fillers. Given we can address ambiguity issues we are thus able to easily infer
the overall meaning. However, for spoken natural language or incorrect phrases this
is difficult3. Suggestions to solve this problem range from basically determining
association in tuples of words4, determining the latent semantics in set of words
by various metrics, or determining a meaning of a phrase as a function over the
meaning of the words by structured vector representations [52, 154]. As an example
Wettler et al. showed that finding associations just by co-occurrences of words
in reasonable large data of linguistic experience can lead to a concept-formation
that is similar between individuals [295]. Overall, this means that the principle of
statistical frequency is sufficient for determining the concept of phrases [164, 265].
In particular, statistical learning is necessary for the acquisition of rules underlying
the language, such as a grammar or any other compositional structure.

Compositionality

To further scale up, in classical views language is seen as generative following the
principle of compositionality. In general, compositionality is defined as the inherent
characteristic of composing or decomposing the whole from the reusable parts [75].
Debates are ongoing for the word level, whereby linguists argue for both lexical
decomposition [153] and lexical atomism [82], as well as for complex expression
level. The first position refers to composition of syllables or sounds into words,
while the last position includes atoms even on the level of holo-phrases.

At least for artificial languages it is argued that a complex meaningful expression
– like a sentence – can be fully determined by the meaningful entities in terms
of the lexical semantics and the structure in terms of the syntax [140]. This is
considered as valid, because regular up to context-free languages are productive and
systematic. Productivity characterises that the meaning of a complex expression
can be inferred from the knowledge about the constituents and a set of rules, while
systematicity describes that the rules or patterns can be inferred from the meaning
of similar complex expressions.

However, the principle of compositionality is seen as generally invalid for natural
(nonformal) language in those strict terms. According to Arbib, natural language is
not compositional, but has some compositionality [6]. The key aspect of that view is
that the meaning of entities can contribute to the meaning of a complex expression,
but not necessarily fully determine it. In particular, he argues that we can observe

3Currently symbolic parsers are still considered state of the art in role labelling and determining
semantic predicates on valid and regular sentences – unmatched by any neural architecture that
induces from input [182, 183]. However, parsers are limited in incremental and spoken (natural)
language processing, and the discussion for neurocognitive plausibility is open. Nevertheless, the
plausibility of parsers and other linguistic tools is not within the scope of this thesis.

4Often called bag-of-tokens or bag-of-words approach or representation.
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holistic characteristics in natural language. Since in the holistic view an entity
and its properties are defined by the relationship to other entities and properties,
compositionality is contradicted. In general, the constructive view proposes that
the principles of continuity and fluency interplay with compositionality and that
compositionality is self-organised by means of the individual development and
the social context [263, 294].

2.1.2 Bottom-up in Neuroscience
Neuroscience is the academic discipline that is dedicated to establish and test
theories for the function of the brain. By means of determining activity patterns
for patterns of perception or action of the organism the goal is to explain spatial,
temporal, and functional as well as plasticity roles.

Because of the immense complexity of the brain structure, studies on brain
function are usually bound to a very specific region or to a specific process with
coarse information on the spatial and temporal dimensions. This is particularly
the case for language processing and language acquisition, because language in
the existing extent of expressiveness seems to be unique in humans and specific to
and also distributed over the whole human brain [78]. However, based on strong
improvements in the methodology and the increasing availability of imaging and
recording devices and processes, cognitive neuroscience often raised two fundamental
research questions for language processing with respect to the vast set of existing
theories from theoretical linguistics [222]:

• Where are particular language processes located in the brain?

• When do particular processes occur with respect to other processes?

The Classical Biology of Language

For nearly a century the basis of assessment for these research issues was prominently
and resiliently the hypothesis that two areas in the left–dominant hemisphere of the
human brain are the key to language processing. The inferior frontal lobe Broca’s
area that takes care of production and the superior temporal lobe Wernicke’s
area that deals with comprehension. At the end of the 19th century Lichtheim
fused these key areas in an overall map for language in the brain based on aphasia
studies [166].

Following this paradigm a number of studies have been conducted and led to a
continuation of the label and conquer5 approach through the brain to obtain rough
knowledge about involved regions and rough estimates for interdependencies. The
main method often mostly was to test with lesions, meaning to test for effects on
language after a temporary disabling or a permanently aphasia or paralysis of a
specific region in the brain.

5Originating from Phrenology, researchers aimed at mapping areas on the cortex with certain
cognitive functions.
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The result was a decent knowledge about a map of the involvement of different
brain areas around the sylvian fissure as well as across the frontal cortex in language
processing. In most views, language processing was strongly lateralised to the left–
dominant hemisphere of the brain with the exception of the sensory input of sounds
and the motor output (for summaries, compare [19] or [96], figure 2.1 provides an
overview over the brain regions involved in language processing).

An additional result was the establishment of early models about the temporal
dependencies of the most important regions for language in the brain. For example
the influential Geschwind model states that for the task of repeating a word, sounds
are first processed in the Primary Auditory Cortex (A1), get further analysed in the
Wernicke’s area, get transmitted via Arcuate Fasciculus (ARF) nerve fibres to the
Broca’s area, where they get associated, further mapped to sequential articulations
in the PreMotor Cortex (PMC), and finally fed to the muscles for the lips, tongue
and most importantly the larynx6 via the Primary Motor Cortex (M1) [100].

dorsal

ventral
anterior

posterior

PMC

M1

pIFG

IFG

aIFG

aSTG

aMTG

pMTG

STG

A1

pSTG

MTG

STS

ITS

Figure 2.1: A map of the human brain (dominant-left hemisphere) with regions involved
in language processing. For orientation the map is coloured: the cortex’ temporal lobe in
green, frontal lobe in red, parietal lobe in blue, and occipital lobe in light grey as well
as cerebellum and medulla in dark grey. Highlighted regions are the Primary Auditory
Cortex (A1), Superior Temporal Gyrus (STG) (including anterior and posterior parts),
Superior Temporal Sulcus (STS), Middle Temporal Gyrus (MTG) (including anterior and
posterior parts), Inferior Temporal Sulcus (ITS), Inferior Frontal Gyrus (IFG) (including
anterior and posterior parts), PreMotor Cortex (PMC), and Primary Motor Cortex (M1).

6The larynx is an organ in the neck that contains the vocal cords and manipulates pitch and
volume of sounds.
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However, during the last decades neuroscientists started to reject these models
as well as the locationists’ view of language processing because of both anatomic
and linguistic underspecification [255]. Instead, researchers proposed the view
that language processing is distributed widely across the cortex, involves various
cognitive processes in parallel, and applies mechanisms for processing language on
more than word-level [15, 125, 147, 222, 292].

Two Streams in Language Processing: Re-defining a Fine-grained Map

For a number of cognitive functions in the human brain we have obtained substantial
knowledge by studying those functions in depth in individuals from the animal
kingdom, where the brain architecture as well as the cognitive processes are similar.
This is in particular true for the vision system, for which we have a superb
understanding about the processing steps and neural architectures from the receptor
cells in the retina, which just capture the activation differences of a specific receptive
field, up to the neurons in the posterior Inferior Temporal Cortex (ITC), which
represent complex 3D-shape information [150]. However, because natural language
is unique in humans, we currently have no methods at hand to have a detailed look
at the neural processes and wiring in the human brain. For good reason we do not
want to conduct invasive studies, where we employ measuring devices in a healthy
brain, nor do we have a sufficient number of opportunities to measure on single cell
level in cases where a patient needs to undergo a brain surgery for other reasons
(for example [211]).

Recent advances in Functional Magnetic Resonance Imaging (fMRI)7 as well as
the combination with ElectroEncephaloGraphy (EEG) or Near Infrared Spectroscopy
(NIRS) allow for detecting brain activity on good spatial or temporal resolutions.
Still, all techniques are inherently limited to being precise in one of these dimensions.
Nevertheless, during the last decades the initially sparse map of language processing
in the brain has been filled with a large number of puzzle pieces, assembling nearly
the full cortex being involved in language processing.

In particular, based on numerous fMRI and Magnetoencephalography (MEG)
studies Hickok and Poeppel hypothesised that two streams are involved in speech
processing on word level [124, 125]. Incoming acoustic signals are processed first
in the A1, the dorsal surface of the Superior Temporal Gyrus (STG) in both hemi-
spheres, and are analysed on spectro-temporal level. Afterwards, these information
get mapped to phonetic representations around the mid-posterior Superior Temporal
Sulcus (STS). Both, the A1 and STS, then project to two streams:
• A ventral stream maps the phonological representation onto lexical repres-

entations in the posterior Middle Temporal Gyrus (MTG) and the posterior
Inferior Temporal Sulcus (ITS). This mapping already happens in parallel
routes across the brain: On a) a fast route with a signalling rate in gamma
range (around 20-50 ms) in both hemispheres and b) a slower route with a
rate in theta range (around 150-300 ms) strongly in the right hemisphere.

7Other methods like Positron Emission Tomography (PET) and Magnetoencephalography
(MEG) also had both a tremendous development and important impact on neural data recording.
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The authors claim this to be the result of the strong bias of the right hemi-
sphere in general sound (and music) processing as well as the notable part of
complex sounds being involved in natural language. From lexical representa-
tions (and supposedly low-level syntactic operations) the signals are processed
again in parallel further a) in the anterior middle temporal regions (both
the MTG and the ITS) in the left hemisphere, where first syntactic and
grammatical (combinatory) operations take place, as well as b) to various
regions on the whole cortex, where conceptual meanings are mapped.

• A dorsal stream maps phonological representations onto a sensorimotor
hub in the posterior STG (part of the Wernicke area) that in parallel a)
maps the signal to the Inferior Frontal Gyrus (IFG), but also b) integrates
multi-modal information from other sensors. Further processing involves the
motor integration on the sequence level as well as on the level of segments in
the sequence in the IFG as well as in the PMC8. Based on development (for
this thesis more precisely: previous learning) segments of the sequence are
either activated as motor chunks or can require incremental motor coding.

Overall, the ventral stream captures the recognition of auditory signals like speech
in natural language, while the dorsal stream integrates auditory signals with motor
actions (see figure 2.2). Similar to the hypothesis on a What path and a visuomotor
integration path9 hypothesis in visual processing [193] these streams differentiate
between ‘what’ in a semantic sense and the sensorimotor integration in terms
of an articulatory representation. In addition the authors suggest connectivity
within both streams in feed-forward as well as in feed-back links and the important
involvement of a conceptual network that interconnects motor representations with
lexical representations across the whole cortex. Both, the lexical representations as
well as the associations, involve both hemispheres similarly [25].

dominant
-left

nondominant
-right

Figure 2.2: Speech processing hypothesis proposed by Hickok and Poeppel (based on [125]).

8Actually also the neurons in the M1 for tongue and larynx muscles are excited in listening to
speech [76].

9In traditional views the visuomotor integration path was called the Where path, but according
to [125] the function is much more general. For example activation was also measured, if an
appropriate motor action was conducted for an object that was no longer visible [234].
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For the comprehension of sentences, Friederici et al. suggested that the
ventral stream consists of even two structural as well as functional different pathways
that also extend with fibre tracts from the temporal gyri and sulci to the prefrontal
regions [85, 87, 88]. From both, the phonological word form in the STS and the
lexical word form in the MTG the syntactic analyses in the anterior STG obtains
phrase structures and word dependencies. The information is further projected via
the Uncinate Fasciculus (UNF) tracts to the Frontal OPerculum (FOP)10 and from
there to the posterior IFG for higher-level syntactic processing including hierarchical
ordering of arguments and phrases. In parallel the semantic processing is proceeded
from the anterior MTG, via the Extreme Capsule Fiber System (ECFS) to the
anterior regions of the IFG11. The authors also suggested that the dorsal stream
from the posterior IFG to the posterior STG is highly bi-directional and provides
feedback from the syntactic analysis to the recognition of new incoming words12.
Figure 2.3 visualises the comprehension hypothesis.

dominant
-left

nondominant
-right

Figure 2.3: Comprehension of sentences according to the hypothesis by Friederici et al.
(based on [85, 87, 88]).

For the production of words, Indefrey and Levelt suggested a similar processing
across the cortex, but added distinct temporal dependencies and functional roles
between different areas (compare figure 2.4) [133]. The first activation occurs in
the anterior MTG (around 175 ms after onset of an stimulus in a picture naming
task) and is supposed to instantiate a conceptual lexical representation. Afterwards
activation is mapped to the MTG for a lemma selection (around 250 ms after onset)
and further processed in both, the posterior MTG and the STG, for retrieving the
lexical phonological code and its segmentation (around 330 ms). Via ARF fibres
the activation is then spread to the IFG, where a sequential order of phonological
syllables and words is formed (around 450 ms), and finally to the M1 where

10Note, among other fibres the UNF may be involved in these connections, but temporarily
disabling these connections does not necessarily lead to an impairment in language processing [68].

11Although the connecting fibres are close to each other, a distinct functionality was found,
e.g. in processing correct sentences compared to processing sentences that are only structurally
valid [86].

12For example, it was found that a shorter distance between a verb and it’s argument decreases
the activity in the phonological working memory [190].
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Figure 2.4: Word production hypothesis suggested by Indefrey, Levelt, and Hagoort
(based on [111, 133]).

articulatory patterns are triggered (around 600 ms). It is important to note, that
parts of this processing pathway have been found in other word production tasks as
well: for example for a word reading task, activation starts (after a visual recognition
of the word) mostly in the STG, while the reading of pseudo-words mostly starts in
the IFG. In recent reflections Hagoort and Levelt also claim an additional activation
of the IFG for all processes that involve lemma selection, lexical phonological code
retrieval, segmentation and phonetic encoding [111]. In fact, Amunts et al. argued
for at least ten distinct subdivisions of the IFG (here again named Broca’s area) in
the antero-posterior axis [5], which should imply, according to [219], that at least
the same amount of distinct operations is performed in this hub of the brain.

Towards Embodied Language Processing

In the discussed hypotheses above we have seen that processing of speech activates
conceptual networks and that activity in conceptual networks precedes the pro-
cesses in production. A crucial open question is how precisely concepts are represen-
ted. Concerning this important point Barsalou claimed that the representations for
semantic entities (“symbols”) are the key and that core representations in cognition,
including language processing, are not amodal symbols and data structures [14, 15].
On the contrary the sources of information and representation – that ground cog-
nition – encompass the environment and embodied simulations of perceptions
and actions. Evidence was found that both perceptual systems and in particular
action simulations are activated in word and sentence processing [102, 103, 254].
In addition, regions that code for entities in perceptions are activated previous to
word and sentence production [107, 133].

Pulvermüller defines embodiment as the overall term for the theory that cognitive
processes including language processing are semantically grounded in sensation,
action and bodily experience [224]. He claims that cognition originates in bodily
interactions with the environment. Furthermore, even higher cognition is affecting
sensorimotor variables and the brain’s modal system. For language processing
he argues that action-perception circuits are a necessary and important part in
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semantic processing. This applies to semantic concepts of physical entities in the
world, for words on actions that modify entities, and for higher concepts.
Examples are:

• Words that are shape-related show strong activity in regions for visual shape
processing, mostly ventral in the posterior fusiform area (where 2D shape
processing takes place), but also in dorsolateral regions (where 3D shape
information and relation is processed) and similarly colour-related words have
activity also in vision area around the ventral fusiform area [225].

• Words that are related to body parts like arm- or leg-related words show
strong activity also in the somatomotor cortex around these spots were motor
commands for arm or leg movements are executed [226].

• Words that are rather abstract, like beauty or free, supposedly show activity
in higher vision areas in the inferior temporal cortex or the higher body-
action areas in the prefrontal cortex, both as part of a complex circuit on the
cortex [224].

In processing words, these action-perception circuits can be observed in conjunction
with a basic spoken word form that activates areas in STG as well as IFG regions
(compare figure 2.5). The specific activity within the action-perception circuits
for words as well as for phrases is mainly depending on the location of specific
perceptual nodes that respond to the actual perception or action of that entity
and can be spread across both hemispheres (for an example on the shape-related
action-perception circuit see figure 2.6) [223, 227].

(a) spoken (b) arm (c) shape (d) colour

Figure 2.5: Conceptual webs in terms of activity pattern for different word forms
according to Pulvermüller and Fadiga. From left to right: basic spoken form, arm-related
word, shape-related word, and colour-related word (based on [225]).

In line with these findings Borghi et al. claimed that the sensorimotor system is
supposed to be involved during perception, action and language comprehension [30].
In their review and meta-analysis they added that actions as well as words and
sentences which are referring to actions are firstly encoded in terms of the overall goal
(the overall concept) and then of the relevant effectors. In addition, Pulvermüller
et al. suggested that for specific combinations of lexical and semantic information
a combination of areas, including auditory, motor, or olfactory cortices, can act as
binding sites [223, 224, 229].
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Figure 2.6: Activity pattern (indicative major foci) for a “form” (visual shape) related
phrase according to Pulvermüller et al. (based on [223, 227]).

Biology of Language Revisited: Perspective of Distributed Language
Processing

In summary, the research in speech processing, speech production, and language
comprehension vastly revised the view on processing in the brain during the
last two decades. The evidence emerged substantiated the idea that language
processing is not taking place in the dominant-left-hemisphere only and is not
mainly centred in the Broca and Wernicke area. We now have the knowledge that
the right hemisphere is strongly involved in all aspects: in analysing sensory input in
posterior regions, in comprehending input, and initiating the production of output
in frontal regions [28, 53]. Also we have a good understanding that numerous strong
interconnections – or fibre bundles – across the brain connect various areas in the
brain that are spatially distant [110]. Additionally, in some brain regions, like in the
IFG and the Sylvian Parietal-Temporal (SPT), small areas are supposedly working
as central hubs for information, mainly interacting with a large number of regions
on the cortex [124]. With these data, neuroscientists redraw the map of language
on the cortex, although there exists no coherent theory yet. On a more detailed
level we can summarise the involvement in language as follows:

• A1 and anterior part of the STG – both hemispheres: maps sounds to phono-
logical representations,
• STS: phonological network,
• Anterior ITS: combinatorial network,
• Posterior ITS – both hemispheres: interface to lexical mappings,
• SPT, partially overlapped with Wernicke’s area (posterior superior temporal

gyrus): interface for multi-modal sensory input,
• IFG, also named Broca’s area: acoustic associations and low-level syntax,
• PMC: articulations, sequence thoughts, involved in action-perception circuits,
• M1: muscular control for speech, involved in action-perception circuits,
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• Extrastriate gyrus (V3, V4, V5): shape recognition (mainly in V4) and visual
symbol/word recognition, involved in action-perception circuits.

With this more fine-grained map neuroscience could provide answers to the initial
questions about the “Where” and “When”, but directly opened up two more central
questions:

• How does a particular cognitive process operate on neural level?

• Why are particular neural architectures the ideal solution for the process
from a biological perspective?

Accounts on spatial processing hierarchies as well as on action-perception circuits
and embodied language processing gave us valuable information about connectivity
in the brain. In particular, evidence for distinct timescales in both, processing
perception as well as producing speech, might indicate an architectural characteristic
that may be crucial for language. In addition, the memory traces or cell assemblies
in action-perception circuits can contribute information of varying degree in natural
language phrases (both will be discussed later in chapter 4.1).

However, neuroscience could not provide sufficient data or feasible models on
functional details like plasticity and temporal dynamics yet [228]. In a recent
reflection Poeppel added that for linguistic operations, higher than the sound to
phoneme mappings, models for architecture of the neural circuits are currently
“pure speculation” [219]. In particular, for combinatorics and compositions we have
neither theory nor model. it is critical that models of the sensorimotor system differ
in varying degree from the human one [30]. This might allow understanding which
aspects of the humans’ neural and sensorimotor system are critical.

Phonological and Lexical Priming

Another impact of the neuronal wiring are priming effects in language processing.
In general, priming is understood as the activation of related circuits after the
initial activation of a specific sound or engram. The result of this priming is a
faster processing of expected traces of activity. In more detail, two different forms
of priming have been suggested and supported with reasonable evidence for both,
processing incoming speech as well as producing speech.

On the one hand, a phonological priming takes places in young children (up
to 18 months of age) [186]. After a specific incoming sound is perceived, cohorts
of engrams (mostly words) are activated (in the mental lexicon) that follow up
on the same sound (syllable). For example after the processing of the sounds
ca a cohort of known words of candidates like candle, candy, and carrot are
activated. For production, Levelt et al. in fact showed that after the phonological
code for a lemma is selected, sounds are produced incrementally and in turn prime
competing (semantic) forms of the lemma with similar phonology [161]. On the
other hand, a semantic-lexical priming can be observed in older children up to
adults [159, 180, 267]. In this setting, a primer is not only the previous sound,
but the sounds including the lexical meaning of the engrams processed before.
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For example, Spivey et al. showed in a hand pointing study, that the reaction in
deciding for a scene is faster towards the correct scene after an incoming word
describing that scene – in contrast to a distractor – was perceived [267]. Similarly
for production Levelt suggested that after selecting and triggering the first lemma
for a context, the upcoming lemmas in the mental lexicon are accessed faster in
comparison to distractor lemmas [160]. This means that for a language learned
with a larger vocabulary the cohort activation shifts to the lexical level as a much
stronger influence on the upcoming processing.

Although the threshold of the transition between stronger impact of phonolo-
gical priming to semantic priming is still debated, both are believed to build an
important organising principle for the engrams (words) in the developing mental
lexicon [172, 180]. Phonological and lexical priming not only effects the efficiency
by pruning unlikely sequences but also reinforces the neural circuits that represent
an engram or a context.

Introducing the Neural Binding Problem

With all the principles discusses so far we have observed that information processing
can get influenced and in a sense implement a gradient of entropy in the noisy data
of sensory experience. Central and still missing is the problem of how items (or
again engrams) are integrated and meaning emerges. This is often called the binding
problem, but the formulation varies within the neuroscience domain [139]. Originally
Malsburg described this problem as the lack of understanding how encodings of
said items within distinct brain circuits are integrated to determine a decision or
action [179]. Feldman specifies the neural binding problems over complementary
dimensions: activity coordination or temporal synchrony, subjectivity in perception,
visual feature-binding, and variable binding [79].

For example, the visual feature binding concerns how spatially distant neurons
that code the same feature fuse a meaning. Here, the problem is seen solved
by e.g. the theory of synchrony of cell firing. For instance Engel et al. showed
that networks of neurons communicate by firing patterns [73, 74]. In particular,
it was shown that neurons that both respond to the same visual stimuli (could be
vertical orientation) fire in synchrony and that meaning is coded by oscillations in
the firing.

As second example – central to this thesis – the neural variable binding
concerns the relation of items in a temporal sequence that need to be bound
into a meaningful concept. Transferring the idea of synchrony to the temporal
dimensionality was demonstrated e.g. in the SHRUTI model [256, 257]. Therein
the temporal stream is divided in phase cycles, and items within this stream may
fire in synchrony with previous items and thus bind roles (or specific role fillers).
However, so far neither clinical studies nor simulations to support this concept in
variable binding are available [78, 79]. Thus we still need to find an appropriate
neural mechanism to acquire roles and concepts in processing natural language
sequences.
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2.1.3 Top-down in Behavioural Psychology
Behavioural psychology is the scientific field focused on explaining and predicting
behaviour. In particular, cognitive psychology and developmental psychology aim
at explaining mental processes in humans and how they change over time.

For language both disciplines describe processing and acquisition in light of
human interaction and observable stimuli as well as effects. Developmental psy-
chology is particularly important, because it studies the socio-cultural principles
shaping the language acquisition13. Central findings are the phases of language
development all children undergo consistently14 and the impact the environment as
well at the caregiver – or more precisely the language teacher – have. Cognitive
psychology studies mental mechanisms and principles in perception and production.
Especially findings on the learners body-centric modelling as well as on statistical
characteristics of feedback are of particular importance.

Children’s Development in Natural Language

For language acquisition the first year after birth is most crucial. In contrast to
other mammals the human child15 is not born mobile and matured, but develops
capabilities and competencies postnatal [145]. The development of linguistic com-
petence occurs in parallel – and highly interwoven – with the cognitive development
of other capabilities such as multi-modal perception, attention, motion control, and
reasoning, while the brain matures and wires various regions [78, 145]. In this process
of individual learning the child undergoes several phases of linguistic comprehension
and production competence, ranging from simple phonetic discrimination up to
complex narrative skills [106, 145]:

• Prenatal: auditory system gets tuned to the mother’s voice and its phonetics
(vowels).
• 0 – 5 months: perception of sounds, rhythm and prosody; production of

reactive sounds and imitation of vowels.
• 5 – 9 months: inter-modal perception; canonical babbling, imitation of inton-

ation, and production of vowels.
• 9 – 12 months: perception organised toward a phonological structure (map in

A1 [231]) and segmentation and comprehension of words; production of first
words; also pointing and iconic gestures are used as a pre-lingual method to
express desires before the correct vocalisation is acquired.
• 12 – 16 months: comprehension with a corpus around 100 to 150 words and

simple holo-phrases; production of around 20 to 30 words to name or request
objects or actions.

13Or as discussed above, more precisely enable the acquisition in the first place.
14Individual variability and underlying factors can be determined reasonably fine-grained [55].
15As a convention we use “child” to refer to a language learner of any age ranging over new-born

baby, infant, toddler, and preschooler.
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• 16 – 20 months: establishment of the comprehension of word categories;
production of two word combinations and undergoes a vocabulary spurt.
• 20 – 24 months: comprehension of word relations and word order; reorganise

phonological production.
• 24 – 36 months: comprehension of complex sentences and inference of gram-

matical rules for own production.
• 35+ months: start comprehension of metalanguage; syntax and morphology

tuned in production.
During this development the child is exposed to steady streams of perceptual-
cognitive information from the environment and its interaction with it. This can
include both the perception of physical entities in the environment as well as a
stream of spoken natural language for describing it and leads to the association of
a sequence of sounds with that entity – a preposition for reference.

Smith and Yu showed that infants can indeed deal with an infinite number of
possible referents in learning the first words by means of rapidly evaluating the
statistical co-occurrences of words and scenes [265]. They revealed in their study
that 12 – 14 month old infants can solve the uncertainty16 across several trials with
many words and many referents (e.g. objects). The authors claim that the learners
actual make use of the complexity of the natural environments in terms of tracking
multiple word-referent co-occurrences and their underlying regularities.

Psycholinguistics found a number of further critical principles working in lan-
guage acquisition, including segmentation, body-relationality17 and social
cognition [41, 106].

Segmentation: From Sounds to Utterances

The principle of segmentation is found very early in children’s development, as the
new-borns are believed to instantly learn to segment vocals within the melodies
of the mother’s speech [145]. With more clear evidence Saffran et al. found that
infants in fact are able to learn language statistically [243, 244]. In their studies
they showed that 8-month infants can learn to segment words solely based on
the frequency of co-occurring syllables within continuous streams of speech that
contained no further information on word boundaries like pauses or other acoustic
or prosodic cues. Tenenbaum and Xu suggested that the early word learning
follows the Bayesian inference principle [279]. In their study they proposed that
correct word-referent mappings can develop fast by formulating and evaluating of
hypotheses. For example, a wrong hypothesis formed in a first learning step could
be corrected in a second learning step (again in an ambiguous scene) thus providing
dis-confirming evidence. As a result this means that children can learn to segment
words mostly by the usage. In this way they also learn novel words by exploiting
highly familiar adjoining words.

16Originally referred to as indeterminacy problem in deriving meaning.
17Smith and Gasser originally named it the embodiment principle [264], but the definition for

embodiment as given above is much more specific and central to this thesis.
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Body-rationality: The Egocentric View on the World

As discussed earlier, the human intelligence in general and language competence
in particular is strongly driven by the rational integration of the body in the
environment. Sixty years ago Piaget suggested that any representations, which
children might form, should have developed through sensorimotor level environ-
mental interactions accompanied by goal-directed actions [216]. According to Smith
and Gasser the physical world indeed contains rich regularities that constrain the
human brain in perceiving and acting [264]. In developmental studies18 they found
that knowledge can be realised by the body in a way that relative links to entities
in the environment are available. In turn the knowledge can be stored and obtained
just by the relation of aspects of the body to the link. For example linking objects
to locations (and thus by a specific perception for that relative location) and linking
events to the location and thus the object is sufficient to bind objects and predicates.
In fact, Smith and Gasser claim that the embodiment is the necessary precondition
for building up higher thoughts.

Social Cognition: Language Learning Through Interaction

As introduced in section 2.1.1 the development of language was only possible
by interaction of a child with a developing brain and a teacher that provides
digestible amounts of spoken language [280]. Tomasello calls this inter-subjectivity
and claims that the human is not only building up thoughts by linking the body
to the environment, but also developed an awareness for the body-rational view
on the world of others. Humans developed a profound competence to respond to
motives and interests behind motions of others including to support expressing
them. Hayes and Ahrens found from large data collections of natural conversations
between children and their mothers that the mother provides an age-dependent
simplification of grammar and focuses on more common words [114]. The word
choice is supposedly based on the context of the common conversations and meant
to kept lexically undemanding. In particular, Grimm refers to the mother-child
interaction as a didactic system accompanying the development phases [106]:

• 0 – 12 months, baby talk: exaggerated intonation, long pauses between phrases,
and simple words to support prosody and phonology,
• 12 – 24 months, scaffolding: joint attention and introduction of specific words

to support the vocabulary (e.g. by pointing and active labelling [112]),
• 24+ months, motherese: model-language and questionnaires to support gram-

matical competence.

Overall this means that the postnatal development of the processes of thought
together with an appropriate interaction of the teacher enables the acquisition of
language.

18Studies included the Baldwin task, in which 24-month-old children name objects correctly, for
which they learned the labels under the condition of visual occlusion, but specific location [264].
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2.2 Bridging the Gap: Developmental Robotics
In between the aforementioned areas of research, Linguistics, Neuroscience and Be-
havioural Psychology, a new interdisciplinary field is emerging. Aiming at providing
massive data corpora, vast simulations, and roughly realistic robotic re-enactments
of mother and child scenarios for learning a language in natural environments,
Developmental Robotics (DR) was initiated as the interdisciplinary interface
between, but not limited to the three established fields [7, 43, 291]. More specifically
Cangelosi and Schlesinger describe Developmental Robotics (DR) as

“the interdisciplinary approach to the autonomous design of behavioural
and cognitive capabilities in artificial agents (robots) that takes direct
inspiration from the developmental principles and mechanisms observed
in the natural cognitive systems of children.” [41, p. 4]

The general approach in DR is to study integration and complexity opposed to the
conventional approach used in the established fields to divide a phenomenon into the
smallest and simplest entities and study these entities profoundly in hope of shedding
light on the bigger picture. For doing so, the core methodology is to construct
computational models and robotic architectures of language representation, language
processing and language learning to test and combine linguistic hypotheses that are
difficult to get verified by the other fields alone because of the inherent limitations
of their methods and most importantly the complexity of language in whole:

• Where behavioural studies can only hardly dissect the child’s reasoning and
cognitive processing, traces of computational results can be analysed.
• What neuroscience measurements can obtain in 40 years, computer simulation

can generate in two hours [108].
• When theoretical accounts get criticised for difficult assumptions and con-

straints, which may be hard to maintain in noisy and cluttered real situations,
robotic interactions can be tested in real environments.

The biggest strength of the DR approach is that studying in real world scenarios
a) inherently forces to avoid oversimplifications and thereby reduce underspe-
cification as well as b) fosters to include the uncertainty that human children
have to deal with, in the real world.

2.2.1 Adopted Principles of Language Acquisition
In bridging the gap, DR heavily builds on top of findings of and relies on constant
input from the other fields (compare figure 2.7). DR borrows insights of child psy-
chology research, in particular developmental and cognition studies from behaviour
psychology. To neuroscience DR ows insights provided by new imaging technology
in brain science and theoretical accounts on internal mechanisms. From linguistics
DR adopts theories on language construction and its origins.
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Figure 2.7: Developmental Robotics approach: adopting principles found in language
acquisition from natural and social sciences. Robots or agents are constructed based
on theories from linguistics, behavioural psychology, and neuroscience and are tested
through interactions with an environment.

For example in language acquisition studies, the developing robot could borrow
an inherent predisposition for reference and employ algorithms for preprocessing
(segmentation) as well as for rational robot-centric representations. Robotic learners
often inherit a social cognition paradigm to utilise some kind of shared attention
or cooperation mechanism [280]. According to Cangelosi and Schlesinger, develop-
mental robotics often relies among others things on basic principles of cognition such
as similarity (a label for a entity is generalised to similar entities), conventionality
(individuals in a close community use the same word for certain meanings), and
mutual exclusivity (noun labels refer to exclusive object categories, and categories
have only one label) [41, 51]. Depending on the level of looking at language acquisi-
tion from first sounds to complex linguistic constructions, other principles or biases
in development from the classical fields are included or subject to examination.

2.2.2 The Case of Neurobotics

Neurobotics is a special case within developmental robotics, where a robotic con-
troller is designed bottom-up from a neural system. This robot is supposed to
demonstrate the effect of the neural architecture for input data in particular or
the reaction of the neural system in a specific natural task in general. Opposed to
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mainly developmental-psychological driven approaches in developmental robotics,
where the system is designed top-down with the aim of understanding what caused
a specific behaviour, the neurological robotics (for brevity often written as neuro-
botics) seeks to understand which effects emerge from a specific neural structure.
Research in neurobotics adds the noise and uncertainty of real world experiments
to neurosimulation.

2.2.3 Contribution of Related Studies in Developmental
Robotics

Most studies on language processing, which adopted the DR approach, focused on
the development of robotic agents that are grounded in real world scenarios. By
means of inspiration from neural mechanisms, this particular approach allows to
study the characteristics of language learning in computational models to solve
the grounding problem by neural binding. For example, one of the first of such
models addressed the fusion of language and multi-modal perception and aimed at
bridging the gap between formal linguistics and bio-inspired systems [239]. Models
with increasing complexity followed, addressing the grounding of proto-words
(‘symbols’) in object manipulation and robot movement [39, 292], the grounding of
a symbolic representation in learned actions that in turn can be generated with
affordances, goals, and policies [203], the grounding of higher-order symbols in
action primitives and in sensorimotor experience [270], and the grounding of words
in both object-directed actions and visual object sensations [77].

As an exemplary bridging contribution, Wermter et al. described two models
for neural grounding of language processing in actions, embedded in a robotic
platform [292]. The authors developed single-layer and hierarchical architectures
which consist of a Helmholtz machine-based associator network with language,
high-level vision and motor action inputs. The robots, on which these architectures
have been implemented, were supposed to learn and perform on command three
behaviours: go, pick, and lift. The single-layer architecture relied on a competitive
winner-take-all coding scheme, while the hierarchical architecture combined a sparse
and distributed coding scheme on the lower layer and a winner-takes-all coding
on the top layer. In both models, the authors followed the mirror neuron system
concept, which was suggested for the human and primate F5 brain region. As a result,
their models recreated the neuroscience evidence on word representation (compare
section 2.1.2 and [226]) and contributed some insights on the organisation and
activation of sensorimotor schemata from a computational modelling perspective.
Hence, the particular contributions are predictions on the mechanisms behind the
observations made in neuroscience, based on embedding and testing the model in
the real world.

The related work on grounding, binding, and multi-modal integration is of
particular interest for this thesis. Further specific studies, however, will be discussed
in detail in the chapters 5 and 6.
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2.3 Objective and Research Question
With the findings and general state of the art discussed, we now can refine the goal
of this thesis. The principles and hypotheses that we learned from recent research
studies in neuroscience, behavioural psychology, and linguistics should influence
both, the brain-inspired architecture as well as the environment and mechanisms of
the language acquisition.

With the methods from computer science, the objective is to develop and study
a neural architecture based on the human brain for processing sequences of sounds
over time, but also to include the processing of perception from the environment.
This architecture is supposed to learn natural language and also to generalise. Based
on the developed architecture, studies will include observing how the language
is represented internally and which factors lead to a successful acquisition of the
language. Specifically, the key research questions for this thesis are:

• How can natural language emerge from a neural architecture that comprises
hierarchical abstraction and timescales in information processing?

• How can an embodied but compositional representation self-organise solely by
processing sequences of natural language and reference candidates in terms
of sensory context?

• How can a multi-modal embodied context foster developing a language com-
petence?

• How can similar representations for concepts emerge in speech comprehension
as well as production?

To support the acquisition of language on a level beyond holo-phrases, both
body-relative and by means of social interaction, the research also must include
technical means to embed a physical (robotic) learning agent into a real environment
and to actually learn from language examples. This includes that the learning robotic
agent is able to pick up language from a mother-like teacher and to ground the
acoustic information in visual or both, visual as well as sensorimotor stimuli.
Additionally, the neural architecture must be enabled to self-organise upon the
data. Those needs lead to two further research questions:

• How can we enable a robot to learn from speech in human-robot interaction
as well as from uni- or multi-modal sensory input?

• How can we train a cortical recurrent deep neural architecture with large
sequences of natural language?

The focus for the research questions lays in fundamental research, which means
the emphasis is stronger for understanding the mechanisms in the brain and not so
strong for the utilisation in applications.
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2.4 Impact and Timeliness
Although research about language acquisition has a long history, we still have no
clear idea of how humans develop language competence. With the new developments
in imaging methods in neuroscience, we now have a much better means to investigate
how language emerges in the brain. Nevertheless, we are currently looking at the
what, where, and when, but cannot measure how. With the proposed objectives, this
thesis aims at contributing to this specific gap. Using the approach of developmental
robotics, the important contribution is to assemble the missing pieces in the puzzle
to understand how language is represented and acquired given the facilitating or
hindering characteristics of the human brain’s structure.

Succeeding at this point could provide new research questions for fundamental
research in neuroscience and developmental psychology towards connectivity char-
acteristics or learning mechanisms. Important for research in neuroscience could
be an insight in dynamics and self-organisation in neural models. First of all, a
developmental model could test how architectural characteristics influence, whe-
ther a language competence can be acquired. Accordingly, an architecture can
adopt spatial but also temporal hierarchical dependencies on certain processing
stages (sounds, lexical access, concepts) from recent neuroscientific theories (see
section 2.1.2). In turn the model can report specific architectural constraints and
predict certain activity patterns that can define the focus of future imaging studies.

Secondly, another model could test embodiment integrated in language on
several levels and study how the architectural characteristics foster the language
acquisition. Such an architecture might reproduce multi-modal integration and
provide information about how distributed conceptual representations form under
temporal dynamic conditions (compare section 2.1.2). Future research endeavours
thus can measure the processing of information in the brain in language tasks
for different conditions of multi-modal input. For the research in developmental
psychology, the developmental robotics models are able to inform about the im-
portance of certain multi-sensory perception in language learning to develop new
strategies for supporting language learning of infants. Additionally, results from
the models can motivate further studies on how the learning of holo-phrases and
short utterances is organised in humans (compare section 2.1.3). Finally, for the
debate in linguistics on generativism versus constructivism, the models can provide
support for either of the positions (compare section 2.1.1).

For application however, this could open up and set the basis for a completely
new interpretation of language processing in human-like machines that are supposed
to support humans in daily life. On the one hand, speech recognising architectures
that operate on the human-level concept of language could be considered opposed
to relying on the current pipeline approach based on artificial modules for models
and hypothesis search. On the other hand, machines could be developed that
would be able to learn language with a human-like body-rationality and thus could
understand new tasks in real, but unknown environments. Such a robot could
exchange the right information, understand situations to react with proper actions,
or even collaborate in tasks with the human.
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The need for the latter is already emerging: Robotic companions’ hardware
can be produced for reasonable prices with reasonable capabilities, while the need
for companions in daily life, in particular in health care, is getting pressing. Just
recently, the Bundesministerium für Bildung und Forschung (BMBF) (ministry
of science and development of the German government) emphasised this goal by
announcing the research programme “Technik zum Menschen bringen” (“taking
technology to the people” [38]) with the focus on Human-Technology Interaction
(HTI) as a central innovation strategy for Germany. Key research questions are
how to integrate robots safely in the daily environment, how to develop reliable
cooperation partners, and how to secure trustfully interaction. The iconic image
for this program is a human communicating with a humanoid robot as depicted
in figure 2.8a. At the same time, the International Federation of Robotics (IFR)
already plans ahead and forecasts a tremendous increase of service robots getting
employed in daily life [134]. As shown in figure 2.8b, predictions quantify an
increase of household robots from 3.3 million in 2014 to 25.9 million in 2015–2018
and of entertainment and leisure robots from 1.3 million in 2014 to 9.0 million
in 2015–2018.

Overall, research in the area of DR to develop cognitive systems in general and
architecture for language acquisition in particular is very timely and of substantial
relevance for both, fundamental research and application. A computational model
can boost to shape theories on language acquisition and to build robot prototypes
capable of human-like natural communication.

(a) HTI view by the BMBF [38].
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(b) Service robots forecast by IRF.

Figure 2.8: Timeliness of research on language acquisition for human-robot interaction:
current view on Human-Technology Interaction (HTI) by the Bundesministerium für
Bildung und Forschung (BMBF) (based on [38]), and a recent trend of the need for
service robots in households as well as for entertainment and leisure by the International
Federation of Robotics (IFR) (* indicates a forecast; based on [134]).
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2.5 Methods and Demarcations of this Thesis
The central method to approach the research questions are neurobotic experiments
with data drawn from real-world human-robot and robot-environment interactions.
For the robot interaction, methods have been developed and improved for natural
speech recognition as well as object perception and are described in more detail
in chapter 3. For the robot’s neural architecture, neural network properties and
training methods have been examined as well as improved and are described in
chapter 4. Respective details and metrics for evaluation are presented at appropriate
position.

To reach the goal of this thesis, some aspects need to be excluded that seem
related to the posed research questions. In some scientific views communication with
body postures or gestures is strongly related to language acquisition. On the one
hand, there is a substantial body of work showing that a) grasping gestures are used
to indicate a desired object in a very early development stage (5–12 months) and b)
pointing gestures are usually strongly connected with achieving joint attention [41].
On the other hand, many researchers in language acquisition see gestures as an
early and simple substitute of vocalising needs, before the phonetic competence has
been acquired [78]. Beyond that point, gestures are often seen as a social artefact
and are used very differently among cultures. For this reason and due to the own
complexity of this field, nonverbal forms of expressing communication are excluded
from this thesis.

Since for this thesis a central aim is to avoid less plausible assumptions and
technological short-cuts, the results may seem limited when it comes to directly
applying the suggested architectures in service robots for language learning from
scratch. However, the studied characteristics supposedly will be an important
stepping stone for developing such a prototype in future endeavours, as suggested
in the recently approved TRR project19.

In addition, even with developmental robotics we are not limitless when it
comes to mimicking human experience in the real world. For this thesis we need
to acknowledge that available robotic platforms, compared to children, still show
discrepancies in sensory and actuator capabilities. Moreover, the computational
capabilities are limited in terms of to learning in neural architectures. As a con-
sequence, real world experiments need a reasonable simplification. Nevertheless, it
will be argued why specific setups are feasible and substantial to draw the respective
conclusions.

Finally, this thesis aims at in-depth analysis of architectures in question and
may seem come short for broader comparison with alternative methods (in par-
ticular in terms of network architecture and training methods) that are based on
difficult assumptions, but may be advantageous regarding efficiency. To reduce
these concerns, we will discuss in detail at appropriate position why a comparison
seems not feasible and why different methods still have their place.

19Collaborative Research Centre TRR169, funded by the DFG [http://dfg.de].
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Chapter 3

Developing Foundations for
Natural Human-Robot
Interaction

This chapter is focused on describing several methods that have been adapted or
developed to allow for studying neural architectures in a neurobotic setup. For this,
we will discuss briefly the developmental robotics approach in conjunction with
the neurobotics approach and review the state of current robotic opportunities to
study systemic functionality and behaviour in the real word. In further reports it
will be described in detail, how speech recognition and visual object recognition
methods can be applied and made plausible for Human-Robot Interaction (HRI) in
language acquisition.

3.1 About Developmental Robotics and the Real
World Factor

In chapter 2, we discussed the methodology of Developmental Robotics (DR) in
general and learned that this approach is fundamentally different from conventional
research of phenomena in language acquisition. The crucial shift in perspective is
that we are interested in providing an informed controlling architecture, which is
able to develop by interaction with its environment instead of programming a
controlling architecture with all necessary knowledge and capabilities.

To fulfil the condition of having the environment driving the robot’s develop-
ment, it is quite crucial that we enable the robot to access the environment as
unconstrained and realistic as possible. In general, when it comes to studying
human cognitive functions, current DR research relies on humanoid robots with
human-like senses [22, 41]. A humanoid robot most centrally has an anthropo-
morphic body-plan on a child-size scale. Central to this body is a head and torso
structure that allows for naturally addressing the robotic learner in communication
and joint attention. Senses often include cameras for vision, multiple microphones
for speech and sound, arms for nonverbal communication as well as feasible in-
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teraction with the environment, and multiple sensors in the body for distance or
pressure measurements. Bi-pedal movement as well as human-like sensitive skin
can be added for certain research questions, but it is currently difficult to achieve
budget- and labour-wise [7, 41].

For language acquisition in particular the robot learner needs to be able to sense
environmental properties and perceive auditory information on a low level and close
to real time with controlled or avoided distortions of the realistic noise [291]. In
studies on grounding for example, the DR platform must provide feasible resolution
in space and time in auditory input and other senses with minimal overhead to
supply a plausible link between the inputs.

3.1.1 Neurological Robotics and Uncertainty
The requirements for our neurobotic1 language learner thus are a preprocessing
and encoding of information towards neural activity in the brain’s primary sensory
cortices [291]. For auditory information this means that with any cortical model
we should not assume more than a structured map of phonemes getting activated
sparsely and perhaps in parallel when time passes (compare section 2.1.2). Regarding
visual information, we need to make simple visual features for different properties of
entities in the environment available. For example, a plausible preprocessing should
make simple and unlabelled form (shape) and texture (colour features) features
available for objects in the field of view in parallel to auditory information (compare
section 2.1.2). Moreover for motor feedback – or more specifically sensorimotor
information – a robotic platform must provide to generate information of body
states while physically interacting with the objects and to make this information
available in terms of a somatosensory map.

Children, whose development is driven by the integration of the body in the
environment, are inherently exposed to the environments regularities, but also to its
uncertainty and imprecision (compare chapter 2.1.3). For example speech processing
is immanently uncertain due to referential ambiguities and sensory noise [10, 265].
When taking the noisy characteristics of the real world into account, the filters of
the platform’s sensory devices must be fully controllable to acquire data including
natural sensory degrading by environmental auditory noise and changing light
condition.

3.1.2 Platforms for Developmental Robotics
To enable this research approach, it is a central prerequisite to employ a robotic
system that is – in most or in the focused aspects – capable to perceive, act, or
interact in its environment as a human does, from a technical perspective [41].
Ideally, this means that the robot (the developing artificial agent) has both, the
physical conditions and the interfaces for the mental condition of a human for the
respective desired developmental state.

1For definition see chapter 2.2.
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Admittedly, approaching this ideal includes a large number of substantial tech-
nical challenges. To present some examples, a robot supposedly visually experiencing
a real environment would perhaps need a stereoscopic vision with high resolution
and speed; a robot manipulating objects would need hands with fine-grained
fingers and pressure sensors in the finger tips; and a robot acquiring language may
need to comprehend and produce speech. Integrating these exemplary capabilities
into a bi-pedal moving robot includes the handling of large quantities of additional
noise and uncertainty due to shaking (in vision), high dimensionality (in body ac-
tion), or ego-noise (in speech). A robotic platform that could handle these demands
would be extremely hard to build (and thus expensive) and excessively laborious
to maintain. However, a number of international research teams and companies are
making a constant effort to develop robots that fulfil those requirements in varying
quality.

Central for DR is the Cognitive Universal Body (iCub) robot, which is the
result of an international research consortium funded by the European Union with
the aim of developing a child-like robot that could be the central and commonly
used platform among the research community [189]. The robot provides human-like
body proportions, movable stereo-vision cameras and (in parts) a soft-sensitive
skin. However, since the development is focused on manipulation and mobility
research, which makes the robot particularly precise in hands, head, and torso,
the amount and positions of complicated motors make the robot repair intensive
and exceptionally expensive. Other significant platforms are the Advanced Step
in Innovative Mobility (ASIMO) robot by Honda2, which is a teen-size humanoid
robot, with focuses on walking or other tasks in the setting of acting with and like
humans, and the Child-robot with Biomimetic abilities (CB2) robot as the result
of the Asada lab, which excels in bio-mimicking the whole body, particularly the
skin [8, 192].

Other robots that partially fulfil the requirements are robots developed for
RoboCup or RoboCup@home [271]. Opposed to developmental robotic research,
here the aim is solve simple realistic tasks from human daily life and within the
complex human environment with every technical means necessary. Although robotic
and software approaches are often inspired by nature and by humans in general,
the focus is to make use and push forward existing technologies. The robots from
small labs often differ vastly. They are specialised for specified tasks that change
annually, but are generally more affordable. As one example the Nimble Robot
Open Platform (NimbRo-Op)3 abstracts a human-like body shape in a light, but
sturdy case and includes a basic wide-angle camera, replaceable Robotis Dynamixel4
motors in all joints, and current computation capabilities on-board for autonomous
behaviour.

2The company-driven robot and developed frameworks are limited in accessibility.
3The NimbRo-Op is the product of long-term research at the Universität Bonn related to the

DFG project Lernende Humanoide Roboter (BE 2556/2 2004-2012) [253].
4Dynamixel motors are cheap servo motors that include potentiometer to measure the motor’s

state developed by [https://robotis.com].
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3.1.3 The NAO Humanoid Robot
In between these examples exists the NAO humanoid robot (NAO) [104]. On the
one hand, its general characteristic is its humanoid shape with proportions inspired
by the human child: the height is about 58 cm, movements are based on bi-pedal
walking, environment perception is realised by microphones and cameras in the
head as well as pressure sensors in the feet, and the palm of the hand. On the other
hand, technical short-cuts have been done in terms of cameras are centred in the
head (no stereo vision), body stabilisation is realised with two gyroscopes and an
accelerometer in the chest, and the capabilities of the hand are reduced to a tendon-
based gripping. With this design the NAO is not ideal for studying the human
development in whole, but feasible for investigating a number of specific and fairly
constraint cognitive functions and their effect in a medium-range environment. Many
modules for control are available and easy interfaced, for example vocalising speech
(text-to-speech) or keeping track of sensory perception, particularly somatosensory
feedback (hall effect sensors in the motors). Moreover, the platform is overall
physically quite robust and precise, thus allowing to reproduce certain actions or
behaviour without much calibration.

Figure 3.1 shows the NAO robot (a) with a focus on physical characteristics,
used for this thesis (b). The NAO is the ideal choice, because auditory, visual,
and sensorimotor sensation and movement action capabilities are available with a
reasonable abstraction, allowing to adapt and to develop preprocessing methods
with reasonable demand, while the robot is overall robust, reliable, and affordable.

(a) The NAO robot. (b) NAO’s arm and head characteristics.

Figure 3.1: The NAO humanoid robot provides inter alia 5 Degrees Of Freedom (DOFs) in
the arm (hand excluded), 2 DOFs in the head, a VGA camera and 58 dBA microphones.
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3.2 Natural Speech Recognition

For interacting with a learning robotic agent via natural language, it is desirable to
use a natural speech input. Natural in this strict sense means without constraints
on correct linguistic structure and form. The most important reasons are to teach a
robotic learner from a mother’s perspective and to be able to describe arising scenes
with appropriate utterances rapidly. For example in the scaffolding and motherese
phases mothers would also use single words or holo-phrases5.

However, with the current state of development in Automated Speech Recognition
(ASR) an acceptable recognition rate can be achieved only if the system has been
adapted to a user or a specific domain and if the system works under low-noise
conditions [165, 246]. This is in particular problematic in the language teaching
scenario that is related to Human-Robot Interaction (HRI) or Ambient Intelligence
Environments (AmIE), where a-priori adaptation for particular speaker is not
desired, the usage of close-range microphones like in a headset or cellphone are
inconvenient, and robust methods for far-distant microphones are needed [144, 206].
A microphone built into the robot or placed on the ceiling, a wall, or a table
would allow for free movement, but would also reduce the quality of speech signals
substantially, because of larger distances to the person and therefore more back-
ground noise. The central example related to this thesis is the NAO robot, which is
equipped with low quality microphones and would be more than one meter distant
to a human in interaction.

For these particular high-noise conditions most ASR systems usually cannot
handle the low Signal to Noise Ratio (SNR) well and result in too low probabilities
for the correct chain of phonemes, thus are more likely to determine a false positive
utterance. When aiming at natural speech, like in our holo-phrase example, language
models inherently offer limited prediction. This is the case for both, open-source
systems like Sphinx that offer many options for adaptations and adjustments as
well as closed-source system like Google Voice Search (GVS) that operate on much
better data and high computational capabilities and inherently offer very good
acoustic models, but no options for adjustments [249, 285].

For approaching the research goals of this thesis – employing the DR ap-
proach – it therefore is a technical necessity to further improve the available
ASR systems with respect to reducing word-error and sentence-error rates to ac-
ceptable levels. In the following, we will discuss two approaches that have been
developed in conjunction with the main focus this research project. In the first
approach, the idea is to combine a domain-specific language model (Tri-Gram)
with a domain-specific grammar-based decoder in an open-source ASR. In the
second approach, the suggestion is to also make use of the acoustic models from a
closed-source system and post-process these results further with domain-specific
knowledge.

5Compare chapter 2.1.3.
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3.2.1 Speech Recognition Background in Short
Before we can dive into the details of the proposed improvements, we first need
to look at some relevant fundamentals of a statistical speech recognition system
and the architecture of a common single-pass decoder [246]. The input of a speech
recogniser is a complex series of changes in air pressure, which through sampling
and quantisation can be digitalised to a pulse-code-modulated audio stream. From
an audio stream the features or the characteristics of specific phonemes can be
extracted. A statistical speech recogniser, which uses a Hidden Markov Model
(HMM), can determine the likelihoods of those acoustic observations.

With a statistical language model or a finite grammar, a search space can be
constructed, which consists of HMMs determined by the acoustic model. Both,
language model and grammar are based on a dictionary, defining which sequence
of phonemes constitutes which words. Language models are trained statistically,
based on the measured frequency of a word preceding another word. With so-called
N -Grams, dependencies between a word and the (N − 1) preceding words can be
determined. Since N -Grams of higher order need substantially more training data
Bi-Grams or Tri-Grams are often used in current open-source ASR systems. A
grammar, in contrast, defines a state automaton of predefined transitions between
words, including the transition probabilities.

During the processing of an utterance, a statistical speech recogniser searches
the generated graph for the best fitting hypothesis. In every time frame, the possible
hypotheses are scored. With a best-first search, or a suitable search algorithm like
the Viterbi Algorithm, hypotheses with low scores are pruned. The result usually
is the highest scored hypothesis or a limited list of nh best hypotheses.

Both introduced methods, the Tri-Gram decoder as well as the Finite State
Grammar (FSG) based decoder, have specific advantages and limitations.
• With an N -Gram decoder, an ASR system is more flexible and can get decent

results, if the quality of the audio signal is high and the data set for training
the language model is sufficiently large. However, since Tri-Grams mainly
take the last two most probable words into account, they can deal with
long-range dependencies only indirectly. Therefore, even if the word accuracy
is reasonably high, the sentence accuracy as a cumulative product is fairly
moderate [246]. Larger N -Grams are often not possible due to the need for
vast data collections and computational capacities.

• An FSG decoder can be very strict, allowing valid sentences without fillers
only. Unfortunately, such an FSG tries to map the recognised utterances to
valid sentences only. Even if the speaker is just putting words together at
random, the decoder will produce a valid sentence and therefore – very often
– a false positive.

In general, these methods offer a trade-off between low accuracy and specifying the
domain. Another common trade-off with respect to accuracy is to also train the
acoustic model for a limited set of speakers, thus degrading the speech recognition
results for all others.
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3.2.2 Combining Language Model and Grammar-based
Decoder

Since the N -Gram language model approach is unlikely to produce correct results
on sentence level and the FSG can produce large numbers of false positives, we
can combine the FSG with the classical N -Gram decoder to reject unlikely results.
Such a multi-pass decoder could be applied to prone-to-noisy speech input devices
such as a ceiling boundary microphone or microphones, installed in a robot.

Various approaches for combining FSG and N -Grams decoding processes have
been proposed. In particular, for spotting key-phrases in longer sentences, Lin
et al. employed N -Gram decoding to cover surrounding phrases of a sentences
of interest and FSG decoding, if a start word of the grammar was found by the
N -Gram decoder [168]. Levit et al. used an FSG decoder as a fast and efficient
baseline recogniser, capable of recognising only a limited number of utterances and
a second decoder for augmenting the first decoder by testing for utterances with a
similar meaning [163]. Doostdar et al. proposed an approach where an FSG and a
N -Gram decoder processed speech data independently based on a common acoustic
model, but they did not test for any non-headset conditions [64]. In contrast, Sasaki
et al. investigated the usability of a command recognition system using a ceiling
microphone array by detecting and separating a sound source and used the input
of the ideal microphone for a conventional speech recogniser [248].

However, these approaches tested a very specially optimised decoder set-up for
a particularly small-scale problem, they did not test in non-headset conditions,
or they avoided the noise conditions mainly by additional microphones. To ad-
dress problem with regard to the DR approach, a speech recognition approach of
combining a language model and grammar-based decoder in a home environment
will be presented to address the research question of the effect of the novel multi-
pass decoder in the far-field. We will evaluate the usability in HRI and discuss
the conducted investigation of the effect of different microphones, including the
microphones of the NAO humanoid robot and a boundary microphone, placed at
the ceiling, compared to a standard headset.

Multi-Pass Decoder

The core idea of the multi-pass decoder is to actually elevate the drawbacks of both
conventional decoders on the utterance (or sentence) level. Firstly, the Tri-Gram
decoder is used – which is able to back-off to Bi-Grams or Uni-Grams – to produce a
reasonably large list of best hypotheses. Even if the best hypothesis of the Tri-Gram
decoder is not appropriate, there is a good chance that one of the similar sentences
are. Secondly, the FSG decoder is used to produce the most likely hypothesis, even
if an out-of-domain utterance is recognise with a valid result. In the next step,
the list of nh-best hypotheses of the Tri-Gram decoder is compared with the best
hypothesis of the FSG decoder. If a match is found, this sentence can be accepted,
otherwise it will be rejected. Figure 3.2 illustrates the HMM-based ASR system
using the multi-pass decoder.
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Figure 3.2: General architecture of a multi-pass decoder.

Speech Recogniser and its Adaptation

For testing this approach, we can use the ASR framework Pocketsphinx, because
it is open source and has been ported and optimised for hand-held devices [131].
In comparison to other promising systems [158, 241], it provides the advantage of
being an effective research tool on the one hand and being applicable to devices and
robots with moderate computing power on the other hand. Pocketsphinx can be
used with a speaker-independent acoustic model ‘HUB4’ based on English broadcast
news, but it allows plugging in other acoustic models as well.

Since it is our aim to keep the system speaker-independent, it was decided
for the test, to limit the vocabulary and to reduce the format of a sentence to
a simpler situated grammar or command grammar, as it can be useful in HRI.
Devices and robots in our AmIE are supposed to be used for a specific set of tasks,
while the scenario can have different interacting humans. The acoustic-model HUB4
was trained with a very large set of data (140 hours) including different English
speakers [81]. With a vocabulary and a grammar for the respective domain or
scenario, an appropriate FSG automaton can be generated on the one hand and a
domain-specific language model can be trained on the other hand. For the training
of the language model, the complete set of possible sentences is usually used, which
can be produced from a designed grammar by tools offered for Pocketsphinx. In
summary, Pocketsphinx can be adapted easily to any scenario, allowing employing
various decoders.
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Testing Scenario and Scripted Corpus Collection

The scenario to test the multi-pass decoder was an ambient intelligent home en-
vironment, where a human is supposed to instruct, inform or question a robotic
platform or intelligent device. This scenario allows to test the ASR under realistic
teacher-learner conditions and to relate the approach to other scenarios of humanoid
robots in home environments with strong noise conditions and the need for interac-
tion via natural language [197, 291]. In particular, EU research projects like KSERA
aimed to develop a social assistive robot, which supports elderly people [220].

The available AmIE is a lab room of 7x4 meters, which is furnished like a standard
home without specific equipment to reduce noise or echoes, and is equipped with
particular technical devices like a ceiling boundary microphone and a NAO H25
humanoid robot. A human user is supposed to interact with the environment and
the NAO robot and therefore should be able to communicate in spoken language
(location of the speaker is at a distance of 2.0 meter to the ceiling microphone as
well as to the NAO robot). The scenario is presented in detail in figure 3.3.

Speaker

Figure 3.3: Scripted corpus recording: Speech is recorded in parallel by a headset, a
ceiling microphone and the four microphones in the head of the NAO robot.
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For the corpus, a grammar for prototypical robot commands over a reduced
vocabulary of 100 words was designed6. The grammar allows for short answers like
‘yes’ or ‘incorrect’, for more complex descriptions of the environment like ‘nao
banana has colour yellow’ as well as according questions like ‘nao where is
phone’. In general the aim was to allow for generating a corpus that includes in all
of these categories a large number of permutations. This is in particular interesting,
when the corpus is utilised to test for generalisation and to systematically compare
different devices or decoder7.

The set of data to test the approach was collected under natural conditions
within our AmIE. Different nonnative English mixed male and female test subjects
were asked to read a random sentence, produced from our grammar. All sentences
were recorded in parallel with a headset, a ceiling microphone and the NAO robot
in a 16-bit format and a sample rate of 48,000 Hz. In summary, 592 recorded
sentences were collected each, which led to 1,776 audio files. For the remainder of
this thesis we will refer to this data collection as Scripted corpus.

Evaluation Result Summary

The multi-pass decoder was evaluated comprehensively with focus on the envir-
onmental conditions. In particular the question was pursued, how the decoder
performs under the open-space conditions of distant microphones with regard to
false positives. The specified empirical evaluation method as well as detailed results
can be found in appendix D.2.

In summary, we can observe that using a multi-pass decoder reduces the number
of produced false positives significantly. For low-noise headsets as well as for
boundary microphones and inexpensive microphones installed on a mobile robot,
reducing the false positives to a large degree does not lead to a substantial reduction
of true positives. The overall recognition rates with the NAO were insufficient,
while the ceiling microphone worked with a reasonable rate using the multi-pass
decoder. An important difficulty in relying on the NAO microphones is the inherent
low SNR due to the limited technical property and the strong ego noise, which is
induced by the fan in the head of the NAO. The signal offers weak features on the
important frequency components for speech, even for applying either the build in
noise reduction or the noise filters in Pocketsphinx.

A good value for the number of best hypotheses nh depends on the hypotheses
space and the utilised microphone, but using nh = 10 is sufficient for our AmIE
scenario. Larger values for nh are likely to lead to better results, if the expected
quality is moderate and the vocabulary as well as the number of possible sentences
are high. Smaller values for nh are beneficial, if the primary aim is to maximally
reduce false positives. In fact, setting nh = 1 would mean to accept a hypothesis
only, if it was found by both decoder, the Tri-Gram and the FSG, as the best result.
Nevertheless the multi-pass decoder is not particularly sensitive to this parameter.

6The full grammar and dictionary is given in appendix D.1.
7A further use case will be given for another approach within this section.
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3.2.3 Cloud-based Models and Domain-specific Decoders

For open-source ASR frameworks, the observation was that even with combining
multiple decoders an acceptable performance is hard to achieve under noisy condi-
tions. A central limitation for systems is to use an acoustic model that either was
prepared for general purpose based on the usually limited datasets available for
science or trained on individual data. For example, as of today the 1993 acoustic-
phonetic continuous speech corpus Timit is still used as a notable data set for both,
building acoustic models as well as benchmarking ASR systems [94]. In contrast,
large corporations like Google, Apple, or Microsoft are able to offer very good and
easily retrievable cloud-based ASR services, because they can collect and access
vast amounts of data and also process recognition steps on powerful servers [249].
As a consequence, the used acoustic models are excellent and get improved
constantly.

One particular option is the GVS developed by Google Inc. that works as
a distributed speech recognition system. While Voice Activity Detection (VAD)
and feature extraction may be performed on the client (depending on the client’s
capabilities), the computationally expensive decoding step of speech recognition is
performed on Google’s servers, which then returns a list of hypotheses back to the
client. The system employs acoustic models derived from GOOG-4118, but it has
been supposedly improved with Timit data and additional data collected in the
Search by Voice framework. However, given this origin, a disadvantage of Search by
Voice is the language model, which is optimized for web searches. In addition, there
is no public interface to change GVS to a custom domain-dependent vocabulary,
grammar, or statistical language model. Therefore, the benefit of good acoustic
models cannot be exploited well in domain-specific projects [195]. For example, false
positives, in particular out-of-vocabulary errors for custom-made natural language
understanding components, may be higher with such generic services than with the
less reliable open-source speech recognition solutions.

To address this gap, we can combine the output from GVS with the domain-
specified sub-language of a particular scenario by using a simple post-processing
technique based on phonetic similarity. In particular, the result string from the
GVS service can be transformed back to a sequence of phonemes which can then
get re-scored and aligned to a language model. We can consider phonemes to be
the appropriate level of detail that (a) can still be recovered from ASR result
strings, and (b) remains relatively stable to different ASR errors that are caused
by inadequate language modelling. This method can be realised e.g. with Sphinx-4
and hence works with various kinds of language specifications such as language
models, grammars, or blends of both kinds [285]. The approach was developed in
collaboration with Twiefel, Baumann, and Wermter from the Universität Hamburg
and implemented in the DOmain- and Cloud-based Knowledge for Speech recognition
(DOCKS) system by Twiefel [281].

8GOOG-411 was a telephony service operated by Google Inc.[117]. Collected acoustic training
data comprises about 5,000 hours business telephone and web search communication until 2010.
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The DOCKS System

The GVS system does not allow to adjust the recognition to a specific domain
directly. However, a preliminary test showed that there is hidden knowledge con-
tained in the raw results returned by the service. The words for both, reference
text and recognition hypothesis, were transformed to phonemes and aligned with
the standard Levenshtein distance9. It was found that the Phoneme Error Rate
(PER) is much smaller compared to the Word Error Rate (WER). For example
the word ‘learn’ was often misrecognised as ‘Lauren’, which, despite being quite
different graphemically, differs only marginally phonemically. Hence, we can make
use of knowledge in a phonetic representation for post-processing in the DOCKS
system as illustrated in figure 3.4.
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Figure 3.4: Components of the DOCKS system.

Assuming that GVS’s acoustic models are adequate to the task, the first
step in finding alternative word hypotheses is to recover the phoneme sequence
that underlies the ASR hypothesis. It is insufficient using a simple pronunciation
dictionary to map every word’s graphemic to its phonemic representation, because
of the unknown and presumably very large vocabulary of the GVS. Thus the
grapheme to phoneme converter SequiturG2P was integrated into the Sphinx4
package and trained to enable the system to generate plausible phonemisations
for any incoming word. Overall, the open-source framework Sphinx-4 can be used,
because it is highly modularised to combine state-of-the-art algorithms for the ASR
tool, and the same acoustic models as previously used in Pocketsphinx [131, 285].

9The Levenshtein distance is a metric of disparity for two sequences based on the sum of costs
for entity substitutions (replacing an entity with another from the same alphabet), insertions
(inserting a missing entity) and deletions (removing an expendable entity) [162]. This distance
measure is similar to the Edit distance that is often used in linguistics and genomics, but it
assumes a fixed cost of 1.0 for substitutions, 1.0 for insertions, and 1.0 for deletions [245].
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To compare the phoneme sequences of the GVS output and the hypotheses
based on domain knowledge the Levenshtein distance is used for scoring, since this
metric is frequently used to compare hypotheses e.g. on the word level to compute
the WER. Unfortunately the plain Levenshtein distance is insufficient to be used
in a time-synchronous Viterbi search, as the binary costs (0 for matches, 1 for
insertion, deletion or substitution) are too strict. We therefore use a cost of 0.1
for matches and 0.9 for all other edit operations to determine the most likely full
sentence from a given set of sentences, or the replacements of every recognized
word by the most similar word in a given vocabulary. Integrating more informed
strategies, e.g. using the classifications of phonemes in terms of place and manner
of articulation and phonation10, has not proven beneficial (compare [281]).

To finally integrate domain knowledge, we have a number of options, for the used
decoder. In fact, we can model domain knowledge with a number of increasingly
specific definitions of the linguist in Sphinx-4 or a plain list of desired results:

• Word-list: a word-by-word post-processing scheme, in which every word in
the incoming (best) hypothesis is compared to the vocabulary and the best-
matching word is considered as the target word.

• Sphinx-4 N -Gram language model: e.g. a Tri-Gram trained with all expected
linguistic constructs.

• Sphinx-4 Grammar: an FSG with valid permutations over the vocabulary.

• Sphinx-4 Sentence-list: provides a sentence list to the front-end.

• Sentence-list: directly compute the Levenshtein distances between the GVS
results and all target sentences.

The increasing specification, again, means a trade-off between low accuracy and
domain restriction, but on an overall higher level of accuracy.

Testing Scenarios and Spont Corpus Collection

For testing the DOCKS system, three different scenarios were considered. First
of all, the Scripted corpus (headset only) was used to test again the system
for the proposed teacher-learner scenario. In addition, DOCKS with the TIMIT
Core Test Set (called Timit corpus) was tested to provide a generally comparable
ASR test [94]. Furthermore another data set was collected, because it was realised
that in realistic HRI scenarios the human subjects often interact with a robotic
system, which presumably is capable of understanding natural language, in a very
unexpected way: In preliminary user studies in the framework of student projects it
was observed that subjects often spontaneously deviated from specific commands
towards free speech in terms of not communicating an order, but describing a desire.
To account for this observation, a scenario was defined in which a test subject
is informed about the goal and some keywords of a robot action and is asked to

10E.g. the classification provided in the International Phonetic Association (IPA) table [135].
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vocalise robot commands as free speech. The audio data was recorded by a binaural
head that has acoustic characteristics similar to the characteristics of the human
head, to test in natural HRI conditions, with a distance of 1.5 meters to the speakers
(see figure 3.5). Compared to the Scripted corpus, the conditions are similar to the
ones of the NAO robot, but with a reduced distance and higher quality microphones.
Altogether, 97 audio files from 15 different native and nonnative English speakers
from various countries were collected. Since speech was not restricted and very
varied, no grammar could be captured. Further reference to this data collection is
made as Spont corpus.

Speaker

Figure 3.5: Spont corpus recording: speech is recorded with a binaural head mimicking
the characteristics of the human head (comparable to the NICU head) under controllable
conditions.

Evaluation Results Summary

The DOCKS system was evaluated in detail on introduced post-processing tech-
niques: GVS+Sentence-list, GVS+Word-list, and the GVS+Sp4 combined in com-
parison to the raw GVS and conventional Sphinx-4 speech recognition. Detailed
results can be found in appendix D.3. In sum, the results show clearly the advantage
of supplying domain knowledge to speech recognition (the more the better). The
combined Sphinx-based solution handles Levenshtein-based phoneme alignment in
an identical way as standard speech recognition using the Viterbi algorithm. In
contrast to simpler list-based (vocabulary or allowed sentences) post-processing
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methods, which, in turn, do not require expert knowledge to set up, the Sphinx-
based approach is able to operate with varying degrees and representations of
domain knowledge. Overall, the DOCKS system offers the opportunity to extend
interaction capabilities of intelligent systems, e.g. in known HRI scenarios.

3.2.4 Intermediate Discussion

Both approaches achieved an improving of ASR by means of combining concepts
and technologies. The multi-pass decoder offers to combine the characteristics of
N -Gram language models and grammars to improve the overall reliability. The
DOCKS system offers to combine powerful cloud-based, but domain-independent
speech recognition systems by using domain knowledge in phonetic distance-based
post-processing to improve the overall accuracy.

We can acknowledge an increasing impact for the made improvements, but
must also recognise that the ambitions for relying on speech recognitions decreased:
While with the first data collection (Scripted corpus) the aim was to talk to our
cost-efficient NAO robot on arbitrary positions in the room, the far-field condition
was limited to 1.5 meters for the second data collection (Spont corpus) and
good quality microphones in terms of the SNR ratio were demanded. Even with
strong integration of closed-source services, which are built on top of excellent
data collections, ASR research is far from achieving acceptable recognition results
for natural scenarios that would be comparable with mother-child interactions for
teaching and learning language.

For thesis the argument is that the fundamental reason for the shortcomings of
ASR systems lays in the pipeline approach itself. ASR systems still are designed
as a tool chain of artificial methods, which solve specific subtasks well, but fail to
solve the language recognition task as a whole, integrating all information that is
available. The main problem, in fact, might be neglecting the context on several
levels: (a) dynamic time warping algorithms that assume different rhythms in
speech actually as an issue and aim at aligning phoneme transitions; (b) well-
trained language models that can only indirectly take long-term dependencies of
words into account; (c) acoustic models that are trained to provide the single
best match of phonemes and thus are ignoring all information that might lay in
the varied prosody; and most importantly; (d) the information a speaker emits
with other modalities like mimics, gestures, or specific actions. We can observe
a number of approaches aiming at mitigating these gaps, e.g. through improving
conventional HMM-based acoustic models with context-dependent pre-trained deep
neural networks [57], through probabilistic language models based on recurrent
neural networks with varying architectural characteristic [105, 191], through using
an acoustic model plus prosodic features on syllable and word level for enhancing
a language model [91], or through modifying language models in real time by
visual information [238], still an overall solution is not in sight. However, the claim
made here is that we cannot push speech recognition much further, if we have not
understood speech comprehension in the human brain.
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3.3 Neuro-plausible Visual Object Perception

In chapter 2.1.2 we discussed the involvement of the brain’s posterior regions of
the Inferior Temporal Cortex (ITC) in language processing. Moreover, the ITC,
in particular the posterior Inferior Temporal Sulcus (ITS), is part of the ventral
pathway in visual processing, being involved in representing visual information
in the process of recognising objects11 by primarily integrating shape and colour
features received from the Visual Cortex Four (V4) area [150, 204]. The shape
representation12 codes the discrimination of objects by combining a number of
contour fragments described as the curvature-angular position relative to the objects’
center of mass [212, 304]. The colour representation codes hue (and saturation)
information of the object invariant to luminance changes [97, 277]. To allow a
neurocognitively plausible learning robot to visually observe an object in the
environment, it is a necessary condition to include an object recognition that can
capture these representations found in the V4 area and provide this information
for a neural model mimicking the integration.

To learn and capture visual object characteristics fast and efficient, Lowe pro-
posed the Scale Invariant Feature Transform (SIFT) feature-based approach [171].
In SIFT, a concept for key locations is introduced that basically seeks local minima
and maxima to the eight surrounding pixels and compares them with extremes
on layers of increased levels of scaling. The key locations are local descriptors of
gradients for salient points in the image, which get filtered, weighted, and ordered
in bins of orientation histograms. Overall, the result is a vector of (usually 128)
features, which are stored for an object and used for later comparison. In Speeded
Up Robust Features (SURF), the same features are used, but the filter-step is done
on integral images and the key locations are determined by the Hessian matrices
instead of calculating the gradients, which further accelerates the approach [18].
Other efficient approaches are based on or combined with a) Haar-like features,
whereby combinations of salient pixels (e.g. L-shaped) are associated with specific
locations of an image patch; b) Histogram of Gradients (HOG) features, where
salient points are described by most occurring orientations of gradients (similar to
SIFT); or c) Principle Component Analysis (PCA) features, which define salient
points by the most important eigenvectors in a feature sub-space [58, 80, 213].

The discussed approaches are widely used in vision for robotics. However, they
share the main drawback in terms of describing objects by a number of relative
global or sub-space features of the image, but not necessarily by combining features
of the physical entity alone. The resulting representation thus can differ vastly from
the representation in V4/posterior ITS. As an alternative, the approach developed
for this thesis captures objects by determining salient points on the contour of an
object represented as normalised distances to the center of mass as well as constant
hue values for the area within the contour. The steps of this approach make use of
conventional visual perception methods and are shown in figure 3.6.

11Objects recognition defines perceiving known objects or objects with known components.
12Findings mainly based on studies of the Macaque brain.

44



3.3. Neuro-plausible Visual Object Perception

npos,1

ncol,1

nsha,16

nsha,01

Position (x,y)

FieldDofDView MeanShift CannyDEdge SalientDPoints Perception

d

&DContour
Distances

0 1

⋮

Colour (R,G,B )

Shape
=d

A
z

⋮

Figure 3.6: Schematic process of visual perception and encoding. The input is a single
frame taken by the NAO camera, while the output is the neural activity over N neurons,
with N being the sum over shape + colour + position features.

Visual Perception and Encoding

At first the mean shift algorithm is employed for segmentation on an image taken
by the robotic learner [54]. The algorithm finds good segmentation parameters by
determining modes that describe best the clusters in a transformed 3-D feature
space13 by estimating best matching Probability Density Functions (PDFs). Secondly
the Canny edge detection as well as the OpenCV14 contour finder are applied for
object discrimination [44, 273]. The first algorithm basically applies a number
of filters to find strong edges and their direction, while the second determines a
complete contour by finding the best match of contour components. Thirdly, the
centre of mass and 16 distances to salient points around the contour are calculated.
Here, salient means for example the largest or shortest distance between the center
of mass and the contour within intervals of 22.5◦. Finally, the distances are scaled
by the square root of the object’s area and ordered clockwise – starting with the
largest. The resulting encoding of 16 values in [0, 1] represents the characteristic
shape, which is invariant to scaling and rotation.

Encoding of the perceived colour is realised by averaging the three R, G, and B
values of the area within the shape. Other colour spaces e.g. based on only hue
and saturation could be used as well, but they are in this step mainly a tech-
nical choice. Additionally, the perceived relative position of the object is encoded
by measuring the two values of the centroid coordinate in the field of view to
allow for tests on interrelations between multiple objects later. For an overview
figure 3.7a shows some of the used objects, figure 3.7b displays the prototyp-
ical objects from the perspective of the robotic learner, and figure 3.7c provides
two example results of the perception process. The objects have been designed
via 3D-print to possess similar masses despite different shapes and similar colour
characteristics across the shapes to provide for robustly and controllably perceivable
characteristics.

13E.g. the L∗u∗v∗ colour space (colourimetri) that aims to describe the human colour perception
as defined by the International Commission on Illumination (CIE) [235].

14OpenCV for open source computer vision is a library of recent computations, algorithms, and
machine learning mechanisms for computer vision [33].
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(a) Some objects of interest.

(b) The robot’s view. (c) Prototypical perceived shapes.

Figure 3.7: Exemplary objects and results for visual perception.

Approach Summary

Overall, the approach for object perception can be applied easily to the video stream
of the NAO robot as well as other robot platforms. While recording data, frame
rates up to 5 Frames Per Second (FPS) were measured on a standard remotely
connected PC due to the expensive computations of the mean shift algorithm plus
finding the contour, which makes the approach not perfect for real time. However,
the process works quite robust for objects with a simple texture and a reasonable
level of noise. We can observe quite similar shape, colour, and position features for
our objects on plain and on moderately structured backgrounds, but inconsistent
features only for objects with diverse texture (e.g. a cup with multi-colour logos).

Nevertheless, other approaches have been proposed with the purpose of closely
reproducing the humans’ visual system. The attention model by Itti et al. extracts
salient features of a scene inspired by the visual system in primates [137]. In
contrast to the approach used in this thesis, the authors proposed an architecture
of center-surround processing units that result in relations between regions in a
scene and therefore helps to either find particularly salient parts in that image
or to provide a description of a whole scene. With the Hierarchical Model and X
(HMAX) algorithm, Riesenhuber and Poggio proposed to determine object features
by a hierarchy of alternating simple and complex cells [233]. In those layers the
simple features like edge orientations in small patches of an image are composed
and then pooled, e.g. by basic linear summation or nonlinear maximization. The
results are again translation and scale invariant features that describe parts of
the image and can be used to compare new image patches. In a similar approach
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Borghetti Soares et al. integrated 3D-point-clouds for objects into a hierarchical
convolution architecture [29]. This framework inherently captures features from the
largest connected surface in the field of view and represents distinctive features
by geometrical relations to each other. In particular, a coherent representation is
build up based on multiple viewpoints to determine a mental 3D-representation.
However, for our goal of finding an invariant description of a specific shape with
potentially little diversity in the texture, the method developed for this thesis is
computationally sufficient and similarly plausible.

3.4 Summary
Within this research project, several technical methods have been adapted and
developed to approach modelling of language acquisition in the DR paradigm.
Humanoid robots such as the NAO offer a good compromise between complexity in
terms of movement and sensing capabilities and technical overhead. Using the ROS
middleware, the robot, a neural controller, and several preprocessing modules such
as speech recognition and object detection can be seamlessly integrated.

The speech recognition mechanisms developed in this project allow for a first
step in using a natural spoken input in interaction scenarios. Despite the proposed
improvements, however, ASR has not proven as reliable. Language models need
to get adapted as close as possible to the desired domain, while acoustic models
need to get trained with vast data and computational effort to achieve feasible
performance. The current tool chain in ASR includes many highly specialised and
independent modules that each come with a number of assumptions and short-cuts.
All in all, in ASR it is still neglected that in speech processing the sum of all parts
as well as the context is of particular importance. Furthermore, we need to take into
account that there are huge differences between spoken and written language and
that language models need to capture this. In sum, speech perception should be an
integral part of human interaction setups, but the available as well as improved
methods are insufficient.

The developed object recognition is a feasible short-cut to obtain visual feature
information that allow us to discriminate object shapes and textures (colours). The
features are invariant to scaling and rotation (axial with respect to the line of sight)
and can be easily encoded in small and sparse representations. The methods are
efficient and allow for application on humanoid robots with their simple cameras
and limited processing capabilities, although the main computation should be
executed on capable machines to make close-to-real-time processing possible.

Overall, the available or adaptable technical advances allow us to study the
interaction of a learning real world agent with some objects in its environment
in addition to a humanoid teacher in a quite natural fashion, while acknow-
ledging limitations in ASR. Thus, the developmental neurobotic approach enables
us to reproduce developmental steps that are reasonably similar compared to
the developmental process in human children. This is a fundamental basis for
this thesis.
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Chapter 4

Developing Foundations for
Embodied Cognitive Modelling

In this chapter, we will discuss the level of granularity in modelling that is most
suitable to approach our research questions. This will include to elaborate vari-
ous conventional as well as very recent models from single neurons to cortex-level
network architectures and to justify the arising assumptions. We will discuss formal-
isations that allow for implementation and choices for plasticity that are admissible,
efficient, and robust. Based on those foundations we will develop and justify a
central architecture to build upon in the upcoming chapters. From additional
conducted preliminary experiments we can obtain insights on the capability of
central architectures and the efficiency and robustness of training choices.

4.1 Neuro-cognitive Foundations
The functionality of the computation units in the brain is well researched and
led to a number of fine-grained models for single cells as well as the information
processing between multiple cells. Due to valuable research, e.g. by Kandel in snails,
we have been able to learn how the smallest units in the organisms ‘brains’ compute
and wire [269]. Those smallest functional cells called neurons consist of a cell
body named soma, which includes the cell nucleus and the synthetic machinery
for processing the lipids, proteins, and sugars for both the neural cytoplasm and
the cell membranes. Different shapes of the neurons’ soma exist in the brain, with
strong difference on the proximal-distal axis of the cortex, from simple glia cells
in the ventricular zone up to cortical pyramidal neurons in the cortical plate.
Pyramidal cells connect to other (higher) cortical areas and are considered as the
most important neural cell in the cortex of the mammalian brain [60, 230]. From
the neuron a pole called axon reaches out as synaptic output to other neurons,
while a tree of branches called dendrites connects from other neurons as synaptic
input. The cell membranes are spanned by ion channels that regulate ions like Na,
Ca, K, and Cl flowing into and out of the cell in response to internal and external
signals and voltage changes. In a resting state the inner membrane potential is
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polarised (negative with around −70 mV), while a depolarisation (current flowing
into the cell), in which the membrane potential rises over a specific threshold level,
generates an action potential. On a neural level the action potential is a massive
electrical fluctuation (around 100 mV) that causes a spike to other neurons and can
in fact propagate over long distances across the brain. The spike usually is followed
up by a refractory period that inhibits another immediate spike.

In computational neuroscience thus the starting point for most accurate models
is indeed the processing within a single neuron, where 108 ions per cubic micron are
held responsible for the flow of information. This large quantity of electro-chemical
processes is leading to complex computations, and a reasonable detailed model for
neuronal activity could easily involve thousands of coupled differential equations to
solely describe the single spike of activity [60, 95]. In machine learning, we often
start looking at neuronal activity in the brain on the levels of individual neurons
and the interconnectivity with other cells. Estimated with 109 neurons and 6 · 1013

connections the brain is immensely complex. Reflecting a cortex-level architecture
in a neural model would add up another large quantity of coupled differential
equations to reproduce the dynamics in that architecture [115, 258].

In modelling and studying natural language processing – the cognitive process
that we considered to utilise large parts of the human brain1 – the resulting
tremendous complexity can and should not be handled for three important reasons:

1. Limits in computation: Although nowadays we have access to powerful
machines and programming paradigms that allow for massive parallelisation,
the computations that can be done in feasible time are still limited.

2. Limited methods for plasticity: For a given model with a large but finite
number of calculations we are able to compute activity on cell up to on cortex
level. However, since dynamics in cortical models should allow for Super-Turing
complexity2, we cannot determine but only verify the individual parameters
of a neural model [259, 260]. Even if we would elevate this constraint and only
search for nonlinear functions that we can determine in polynomial time, we
would end up with either nonfeasible computing time (because of reason 1) or
with suboptimal accuracy. As a result all currently possible training methods
are inherently limited in up-scaling model complexity, no matter if they are
highly complex and accurate or highly approximate.

3. Limits in interpretability: For studies aiming at understanding dynamics in
neural models as opposed to finding best model for application, it is of prime
importance to understand cause and effect. Because of the large number
of parameters in models with large complexity, it is difficult to empirically
interpret effects and to expose causes in terms of (hyper)variables, input or
output characteristics, and systematic behaviour. This is particularly the case
for interpreting activity in latent (hidden) cells of nonlinear models.

1Compare section 2.1.2.
2Super-Turing refers to computation beyond the Turing limit or to models of computing that

can describe non-Turing-computable functions (further discussion in section 4.2.3).
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4.1.1 Spatial and Temporal Hierarchical Abstraction
The neurons are organised in up to six layers horizontally in the cortex, but they
also connect to adjacent as well as distant areas across the cortex3 [96, 230]. While
direct connections to adjacent layers are apparent, distant areas like the Superior
Temporal Gyrus (STG) and the Inferior Frontal Gyrus (IFG) are also directly
connected [68, 110]. Instances of sensory input information, which are processed
across the cortex, often get filtered or convoluted on the pathways through the
brain. This is particularly well understood for visual perception, where objects get
detected through the ventral pathway4 [150, 193]. By this the sensory information is
abstracted from raw stimuli of sensory neurons on receptive fields to higher features
merely by the spatial hierarchy across the cortex.

Timescales in Neural Information Processing

In addition, the neural information processing also seems to occur on differing
temporal hierarchies and comparably occur for sensory input as well as motor
output. Although some delays in processing are to be expected because of the
chemical processes in nested cortical layers obeying the power law, the delays or
timescales are quite large for certain processes or areas [47, 184]. In particular,
connections between sensory areas and higher cognitive areas show largely different
timescales, while also within the neurons of a local population different temporal
dynamics take place.

For processing motor actions Badre and D’Esposito claimed a distinct increase
in timescale on the caudal-rostral axis in the frontal lobe5 [11, 12] (compare
appendix D.4): a faster processing in the Primary Motor Cortex (M1) and PreMotor
Cortex (PMC) (where the rule execution takes place), a slower processing in the
caudal PreFrontal Cortex (PFC) (where the response-sequence selection happens),
and a slow processing in the mid-dorsolateral PFC (where the super-sequence
selection and task switching is processed). The authors suggest that the execution
of motor sequences occurs temporally hierarchical, but for other functions abstract
action rules also compose from certain low level rule sets [12].

Nevertheless, similar observations have been made for higher processing of
visual input [250, 266]: Although the Visual Cortex Four (V4), which detects
parts of objects with medium complexity, is not higher in the cortical hierarchy in
terms of connectivity than the Medial Superior Temporal (MST), which processes
visual motion gradients, activity in V4 occurs much later, thus slower6. This
shows that the degree of complexity in V4 highly correlates with the timescale
in processing. Likewise for lower auditory processing different timescales can be
observed depending on the context [37, 282]. The neural activity for a sound of a
certain frequency in coupled neurons on the Primary Auditory Cortex (A1) can be

3Compare chapter 2.1.2.
4Compare chapter 3.3.
5Compare figure 2.1.
6Research conducted on macaques.
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variable in time depending on another particular sound that was processed before7.
This is highly related to priming, as discussed in chapter 2.1.2, since the induced
temporal dynamic can enhance or diminish the period for the information of a
sound being processed further [37].

Overall, it seems that layers of neurons in higher level areas8 process on slow
dynamics and high abstraction, whereas neurons in sensory or motor areas process
on fast dynamics. Nevertheless, the connectivity profile, e.g. weaker backward
than forward connections within columns of neurons, can be sufficient for differing
temporal dynamics [47].

4.1.2 Cell Assemblies
In higher stages of the processing hierarchy (both spatial and temporal), neurons
in the brain are organised in Cell Assemblies (CAs). These are tightly coupled
networks that may be distributed over different cortical areas or even across
hemispheres [34, 35]. The spatio-temporal structure of the assemblies is characterised
by the activity of the neurons that are included. On the cortex, each of these
assemblies supposedly represents a concept or a complex percept. According to
Braitenberg and Schüz, the overlapping CAs can form an associative memory [35].
Due to such an overlap, the CAs might lead to a functional merging and the
emergence of multiple convergence zones – or hubs – that bind between modal
information and semantic concepts [59, 207].

Garagnani et al. recently developed a neurocognitively plausible model to
describe the functional webs that are believed to emerge between the A1 and the
M1 in the human brain [93]. Presenting action and perception patterns of a word
to the A1 (auditory perception) and M1 (articulation) regions of the model leads to
the emergence of CAs in hidden layers as a result of action-perception correlations.
Over the course of training the model, various and distributed connections are
recruited and consolidated, which converge in stable representations for different
words. Regarding the brain, these neural correlates or CAs have been suggested
to represent concepts on word level or higher (see also chapter 2.1.2). A valuable
observation from the model in simulation mode is that an ignition of a CA starts first
in the central areas [92]. Garagnani and Pulvermüller suggest that the characteristic
of the connectivity is causing this spread of activation: cells in those central hubs
have a larger degree of interconnectivity, and thus higher-association areas in the
brain like the PFC might “lead” just because of their structure.

In sum, this indicates that higher level concepts can form by the activation
of large and highly distributed CAs of neurons that are strongly and reciprocally
connected. Other CAs can take on the role of mediators between those concept-CAs
and smaller CAs, which represent specific semantics of morphemes and lemmas9 in
language processing [160].

7Studies carried out on cats.
8Note that in this study we do not adopt any notion of amodal areas, but we discuss areas of

higher abstraction in a possibly embodied processing.
9Levelt uses ‘lemma’ as the syntactic description of a lexical item [160].
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4.2 Neural Network Models
In defining an appropriate architecture for language processing, we nevertheless
must start to consider the neuron as the smallest unit in information processing to
keep assumptions acceptable. In the following, we will build up the cognitive neural
model, adopted for this thesis, step by step. With the research question motivated in
neurocognitive plausibility, we review functional descriptions of neural architectures
that allow us to model language processing on the cortex level, potentially including
processing of sound-level auditory, feature-level visual, and raw sensorimotor in-
and output.

Based on the analysis of the neurons in mammals’ brains, those central units
can be understood as small electrical circuits [60, 99, 138, 176]. A (membrane)
capacitor is charged based on (synaptic) input current with respect to parallel
resistance. The capacitance and the potential (voltage) determine the charge of the
circuit that can be released in a pulse. Basic descriptions for such a neuro-electrical
circuit are called single-compartment integrate-and-fire models, because they define
the membrane potential as a single variable, but closely approximate charging and
pulsing characteristics.

4.2.1 Integrate-and-fire Models
In the following, we will build up this model based on the formulations10 suggested
by Dayan and Abbott [60] as well as Maass and Bishop [176]. With the notations
of an electrical circuit we can define how much current is needed to charge the
membrane potential at a specific rate. Since the current flowing into the circuit v is
equal to the time derivative of the charge q, the membrane capacitance dM can be
determined as:

dM
dv
dt = −dq

dt . (4.1)

Based on Ohm’s law (∆V = I · R) the membrane potential will shift by ∆V
with respect to the input current and the membrane resistance (for consistency
throughout this thesis the small letter variables v = V , z = I, and r = R are used
in the following). For single-compartment models the charge that builds up over
time consists of both, the membrane conductances and the synaptic conductances.
With respect to the total surface area A of the cell these currents add up as follows:

dM
dv
dt = −ẑM + z

A
, (4.2)

where z denotes the synaptic current.

10The formal descriptions that we develop in the following will deviate slightly from some
traditional identifiers for the sake of a consistent formalisation throughout this thesis. In case of
doubt, please compare the glossary in appendix A.
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The membrane current per unit area of the cell membrane ẑM results from summing
the different channels into the cell membrane j:

ẑM =
∑
j

gj(v − v̂j) , (4.3)

where the inputs (conductances) from the different channels are noted by a function g
over the current and the channels’ reversal potentials v̂j. A specific model for
describing all ion flows into and out of the membrane was proposed by Hodgkin
and Huxley 60 years ago [60]. For combining the characteristics the first simplest
model can ignore the active membrane conductances, including the synaptic inputs
and describe the membrane conductance as a single leakage term.

Leaky Integrate-and-Fire Model

This so called Leaky Integrate-and-Fire (LIF) model only includes the passive leak-
age ḡL(v − v̂L) that describes the resting potential of the neural circuit [60, 176].
When multiplying the membrane capacitance and the membrane resistance, we
can obtain a time constant τM = dMrM that is independent of the area. Assuming
a specific membrane resistance (r̂M = 1/ḡL) and deriving the total membrane
resistance from the surface area rm = r̂M/A, we result in:

τM
dv
dt = v̂L − v + rM · z . (4.4)

The definition of our neural circuit model yields a fair abstraction of the
function within a single passive and linear neuron. Assumptions made so far are
that ion pumps function at steady rates and the refractory characteristic is within
a certain margin. From these basic models the description of neural circuits can
scale into a nonlinear model that includes voltage dependent parameters and a
spike response model that is based on spike time dependent parameters. Thus, with
both generalisations of the LIF model we can describe larger networks of neurons.

Nonlinearity and Synaptic Currents

According to Gerstner and Kistler, we can replace the resting potential by a voltage-
dependent decay function gd and the resistance rM by a voltage-dependent input
resistance function gR [99]:

τM
dv
dt = −gd(v) + gR(v) · z . (4.5)

With this nonlinear form we can shape the pulsing behaviour of the neuron more
towards the biological archetype without describing channel details as we would do
with a multi-compartment model, for example the Hodgkin and Huxley model [60].
A notable variant is the quadratic nonlinear model, which already provides an
action potential shape [98, 138].
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Considering the neuron as part of a network of neurons, the synaptic current
of one of these neurons zi can be modelled as generated by the activity of the
presynaptic neurons. The total synaptic current of neuron i is the sum over all
pulses generated by connected neurons j ∈ IPre,i:

zi =
∑

j∈IPre,i

ŵi,j · xj , (4.6)

xj =
∑

tj,k∈Sj

h(t− tj,k) , (4.7)

where the factor ŵi,j denotes the efficacy of the synapse from neuron j to neuron i,
while h denotes a function over the spike pulses generated by a presynaptic neuron
j. In particular, if the presynaptic neuron j fires a spike at tj,k the postsynaptic
membrane conductance is changed within a certain time course h(t − tj,k) – the
pulse. The set of firing times Sj = {tj,1, . . . , tj,n} characterises the spike train of
neuron j. With good approximation the spike pulses can be described for example
as idealised spikes of the Dirac δ-function [60, 98].

Spike Response Model

Based on the function over pulses11, Gerstner suggested the Spike Response Model
(SRM) that describes the response to spikes of the sending as well as the receiving
neuron [98, 99]:

gd,SRM =
∑

ti,k∈Si

hϑ(t− ti,k) +
∑

j∈IPre,i

ŵi,j ·
∑

tj,k∈Sj

h%(t− tj,k) , (4.8)

where hϑ is the refractory period function describing the response to own spikes
and h% the postsynaptic potential function describing the response to presynaptic
spikes. The central idea is to describe the effect from synaptic input on the soma
gd,SRM

12 of neuron i based on the refractory period and the postsynaptic potential.
We can embed this kernel into the integrate-and-fire model and describe the reset
of the membrane potential after firing as an outgoing pulse ẑi of current with a
negligible width13 gO:

τM
dv
dt = gd(v) + gR(v) · z + gR(v) · z̃ , (4.9)

z̃i = gO(v − v̂L) ·
∑

ti,k∈Si

hδ(t− ti,k) . (4.10)

The function hδ in the outgoing pulse ẑi again describes the spike pulses, exemplary
specified with the Dirac δ-function. This definition allows capturing the adaptiveness
and both, the absolute as well as the relative refractory period of a biological neuron.

11Again, the pulse denotes how the synaptic current affects the membrane.
12In the author’s original notation the function gd(v) is expressed as a function over the

current v(·) and the resistor r is not particularly specified as nonlinear [98].
13The pulse can be discretised as idealised constant current with a certain width on a temporal

dimension.
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4.2.2 Firing-rate Models
From this simple spiking neuron model the development can continue into two
directions:

• Considering more biophysical precision in studying ion channel physics,
additional channels, or different (membrane) geometries.

• Considering large networks of neurons for studying fundamental dynamics
(e.g. in cortical models) and allowing for analytical tractability.

The central research questions in this thesis prompt to look into architectural
characteristics that are specific in humans. For this reason it is not desirable with
respect to the limit in computation to achieve a more detailed model in terms of
neuron conductances and morphology. In the following, we will therefore consider
network topologies for large numbers of connected neurons.

Spike Trains or Population Code

In modelling networks of neurons usually the discussion emerges whether information
processing should be described as spike trains or pooled as a certain coding over
populations of neurons [60, 66, 98, 174]. The main idea behind such a pooled
population code is that instead of describing a spike sequence exactly by the neural
response function, we use an approximate description of the mean firing-rate.
This is considered as valid, if two constrains can be fulfilled [60]:

• The network of neurons is reasonably large, thus every neuron has a large
number of inputs. In this way the firing rate constitutes an trial-averaging of
incoming spike trains.

• The presynaptic inputs to a neuron are uncorrelated. Therefore in summing
over many presynaptic inputs, the mean of the total input grows linearly with
the number of inputs, while the standard deviation grows as a square-root of
that number only.

For such a mean firing rate y, in contrast to our pulse dependent current v, we
basically need a function fcount for counting the number of spikes in a certain time
window twin and for dividing them by the length of the window:

y = fcount(twin)
|twin|

. (4.11)

For populations of neurons, which are not further specified in terms of conductance
and morphology, we can observe that our pulse code from equation 4.7 actually is
quite close to a rate code (full proof see appendix C.1 [98]).

In addition, an issue that emerges from modelling networks of spiking neurons is
the lack of methods for plasticity. For nonlinear networks with a complex topology, it
is difficult to determine the change of the efficacy of a synapse. Essentially, Hebbian
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learning or specific variants like the Spike-Timing-Dependent Plasticity (STDP)
have been suggested and are currently mainly used, which lead to strengthening or
weakening a synapse based on the co-occurrence or shortly precede of a presynaptic
spike and postsynaptic pulse [99]. Although for spiking models the learning of
both, pattern matching and sequence generation has been shown, solving the
differential equation is highly demanding [60]. Estimating spike trains by rate codes
or stochastic rate codes14 allows employing a large variety of plasticity rules with
Hebbian, covariance, or delta rule origins. We will discuss further considerations on
plasticity mechanisms later in this chapter’s section 4.3.

Overall the position suggested in this thesis is that we do not have to decide
whether to model spike trains or population code, but that we have an abstraction
from spiking neurons to rate codes that is natural and appropriate, because we can
maintain the made constraints and need to start with feasible plasticity mechanisms
in cortical models on language acquisition.

Feed-forward and Recurrent Networks

With the definition of the mean firing-rate, described in equation 4.11, we can
formulate the complete firing-rate model over the sum of firing rates by integrating
the function of the spike pulses h in equation 4.7:

zi =
∑

j∈IPre,i

wi,j · xj , (4.12)

where we can substitute the synaptic efficacy as synaptic weight w by the relation
of the efficacy ŵi,j and the resistance and thus can replace the resistance function
gR by a function of the steady-state firing-rate f :

τ
dyi
dt = −yi + f(zi) . (4.13)

This function is called the activation function and denotes a saturation function.
As basic example we can use a linear function (f = flin(zi− b̂)) with constant firing
on a certain value, after the threshold b̂ has been reached. Alternatively, we can
replace the threshold by assuming a threshold at zero and adding a variable bias b to
the sum of inputs. This bias would allow both, to use sensory or presynaptic input
on any positive or negative value ranges15 and model inhibitory as well as excitatory
neuron characteristics. Moreover with a bias the saturation function can be chosen
as a sigmoidal function fsig that introduces the property of differentiability, which
is important for error propagation in some plasticity rules and for some network
analysis options. Overall, this firing-rate model describes a Feed-Forward Network
(FFN) over presynaptic input x and activity output y.

For the presynaptic input, so far, we have not distinguished between sensory
input and input from the same population of neurons. In fact, a neuron i can have

14In fact, currently research is ongoing in studying neurons and populations of neurons with
stochastic coding properties and appropriate plasticity rules [17, 196].

15Thereby easing computation or preprocessing without simplifying the model.
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synaptic connections to neighbouring neurons. More generally, we can even model
a synaptic connection to itself and allow for full recurrence in connectivity:

zi =
∑
j∈IIn

wi,j · x̃j +
∑
k∈IRec

wi,k · yk , (4.14)

where the presynaptic input IPre,i = IIn ∪ IRec includes the sensory input x̃ and the
recurrent input from the postsynaptic firing rate y. In our sets of neurons we can
omit the identifier i, because we allow for full connectivity. Thus our descriptions
can assume the same sets as presynaptic inputs for all i.

In computational literature on neural network we often find sums of weights
and inputs ∑wjxj expressed as the dot product w · x of a weight vector and input
vector [115, 149]. For clarity, we will keep the subscripted form, adopted from
neuroscience literature, for the remainder of this thesis.

4.2.3 Continuous Time Recurrent Neural Networks
With the ingredients from the neuroscientific foundations and the firing-rate models
at hand, we can define a network model that can process information continuously
over time and implements the central features of biological neurons and connectivity.
By combining the firing-rate model with nonlinearity and recurrence, we arrive at
the Continuous Time Recurrent Neural Network (CTRNN):

τ
dyi
dt = −yi + f

∑
j∈IIn

wi,jxj + bi +
∑
k∈IRec

wi,kyk

 . (4.15)

The CTRNN is the most general of a computational network model as it allows us
to define arbitrary input, output, or recurrence characteristics within one horizontal
layer. Because of the recurrent connections, the network is arbitrarily deep, based
on the continuous information that is processed over time. For sampling cases16, we
can define the time constant as a neuron or unit-dependent variable τi and solve
the equation with respect to a time step t:

yt,i = fsig (zt,i) , (4.16)

zt,i =
(

1− ∆t
τi

)
zt−∆t,i + ∆t

τi

∑
j∈IIn

wi,jxt,j + bi +
∑
k∈IRec

wi,kyt−∆t,k

 . (4.17)

With respect to the simple spiking neuron model as considered earlier, the para-
meterisation with individual time constants allows to vary the decay rate as a time
window for integrating presynaptic currents between neurons in the network.

Although we can derive the CTRNN from the LIF model and thus from a
simplification of the Hodgkin-Huxley model from 1952, the network architecture
was suggested independently by Hopfield and Tank in 1986 as a nonlinear graded-
response neural network and by Doya and Yoshizawa in 1989 as an adaptive neural

16E.g. for discretised sequence processing in a von Neuman computer.
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oscillator [66, 130]. Overall, the CTRNN can be understood as a generalisation of
the Hopfield Network [129] with continuous firing rates and arbitrary leakage in
terms of time constants. In robotics and modelling, the CTRNN gained popularity
by exploration and analytical studies on the networks dynamics by Yamauchi and
Beer [20, 21, 303]. Nevertheless, during the decades a small dissent was kept whether
the (sensory) input to the network should be viewed as additional weighted input
to (all) neurons of the network or if a subset of the neurons integrates over the
unweighted input plus weighted recurrence. However, this is mostly due to practical
reasons concerning the task or the mode of the network (e.g. generation versus
mapping). In general, the computational (or artificial) Recurrent Neural Network
(RNN) architecture is considered throughout the disciplines as a biological plausible
model that can approximately describe universal dynamics [69, 90].

The Universality of Recurrent Neural Networks

In the neuroscientific introduction we already discussed the complexity of the human
brain as a computing device. With the model of a CTRNN as our plausible neural
computing architecture at hand, we can now assess the computational complexity
of RNNs in general.

According to Funahashi and Nakamura, a CTRNN is a universal dynamics
approximator [90]. More specifically, any finite sequence within an n-dimensio-
nal Euclidean space Rn (with arbitrary, but finite n) can be approximated by
a CTRNN. The central argument is that we can model the dynamical system in Rn

as a superset of differential equations that can be matched by the set of differential
equations possible with the CTRNN using a sigmoidal function. We can prove this
by finding a CTRNN (over n output units, m hidden units17 and a certain initial
state of the network) that deviates from the desired solution for any fixed but
arbitrary margin greater zero (for full proof compare [90]).

Siegelmann argues that if we compare the RNN with a Turing Machine (TM),
where we compute a problem with infinite time, infinite energy, but finite memory
registers, we will notice an important difference [259, 260]: The memory of neurons
– the synaptic efficacy in biological neurons and the synaptic weight in our model –
codes for infinite real values. We can prove that we are able to simulate an RNN with
discrete weights as a TM and vice versa in polynomial time. By allowing real value
weights, we can mimic linear precision, but we can also code for nondeterministic
solutions – chaos in our artificial brain [274] – and thus can compute problems
beyond the Turing limit – so called Super-Turing problems (for a formal proof
please compare [260]).

In sum, this means that a recurrent neural network both, in continuous time
as well as discrete nonlinear, can solve any problem in theory, as long as the
architecture scales with the problem instances (finite but arbitrary number of units
and connections in an RNN, analogous to finite but arbitrary program length in a
TM). However, finding the appropriate weights by a learning method is the real

17At this point, hidden units are defined as parallel, but not connected as output.
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issue. Since finding the right solution (weight setting) for a Super Turing problem is
nondeterministic, we can only approximate this ideal solution with a deterministic
(algorithmic) approach. For the training methods this implies that we need to
find a) means to self-organise a network for the problem instances (data) and b)
appropriate predispositions of the architecture to foster self-organising towards
an optimal setting.

4.2.4 Comparing Recurrent Neural Network Variants
To overcome the issue of optimising a (general) RNN to a specific range of problems,
researchers proposed a large variety of artificial neural architectures, which derive
from a CTRNN or a discrete RNN, but bring in specific characteristics. The position
argued for in this thesis is that these specific RNN variants are not superior to the
computational complexity of a CTRNN (or discrete RNN respectively), but are
easier to train for a specific behaviour. To approach the appropriate architecture for
a language acquisition model, different categories of network architectures have been
investigated. We will discuss particular architectures that make use of interesting
properties in the following (for a visualisation compare figure 4.1).

Simple Recurrent Network (SRN)

Proposed by Elman in 1988, the SRN or Elman Recurrent Neural Network (ERNN)
was among the first18 network architectures that added recurrence to a Multi Layer
Perceptron (MLP) architecture, but could also be trained by a delta rule-based
training method [71, 72]. The SRN consists of two feed-forward layers and recurrent
connections at the hidden layer. Compared to the CTRNN, this architecture is
simpler, since a fixed time constant (1.0) is assumed for all neurons19. Thus the
network is discrete and inferior in expression [302]. The SRN was established as an
early neural method to reproduce sequential relationships, but it cannot get trained
easily for long-term or hierarchical dependencies in complex structures.

Recurrent Plausibility Network (RPN)

Suggested by Wermter in 1992, the RPN is a generalisation of the SRN as it
allows arbitrary many hidden layers (vertical) as well as arbitrary many nested
context layers per hidden layer (horizontal) [288, 289]. The network was proposed
as an alternative to other special variants of the SRN at that time, like cascaded,
compressor, or gestalt networks, since it allows to shape the specific network
structure according to tasks of interest and to apply the suggested general delta
rule-based learning mechanism. In its initial version the RPN, was also described
as a discrete model, but later an extension comprised to characterise the model’s
neurons20 by a hysteresis variable ϕ es well [290]. This parameter introduced

18The ERNN was not the first recurrent McCulloch-Pitts network, but the suggested BPTT
variant led to a tremendous popularity and adoption of the architecture for further research [300].

19More precisely the time constant is entirely omitted in the formal description [72].
20Specifically suggested with a certain hysteresis value per context layer [290].
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two interesting aspects: a) analogous to the CTRNN, but with a different value
range (ϕ ≡ 1/τ), the neurons’ leakage allows to capture continuous time; and b)
compared to the original proposed model, the ϕ-RPN can approximate arbitrary
many horizontal context layers by a suitable optimised value for ϕ. To notice this,
we need to examine what the weights represent in a trained RPN: the first context
layer is a copy of the last time step’s hidden layer, thus the set of weights back
to the hidden layer modulates the full information of time step t− 1. The second
context layer is a copy of the first context layer and therefore modulates the full
information of time step t− 2 back to the hidden layer, and so on. While training
the network, an optimal balance is found between the contribution of the different
steps in the past, based on the characteristics of the training data. However, since
the defined context layers get filled in terms of a sliding window, the weights can
never be trained to contribute strongly to arbitrary but specific parts of the past
(e.g. t− 2 and t− 7 in case of eight context layers). Thus they only can capture
a skew to long-term or to short-term features. In the long-term case we can yet
observe a logarithmic increase in contributions from short to long-term information.
By carefully adjusting the hysteresis for a single horizontal context layer in the
ϕ-RPN, we can achieve the same skew with a similar logarithmic outreach to the
past. Overall, we would trade off a massive computational demand in training
against a need for expert knowledge in setting the hysteresis21 for both variants of
the RPN.

Long-Short Term Memory (LSTM)

In 1997 Hochreiter and Schmidhuber proposed an architecture particularly aiming at
capturing long-term dependencies [127, 128]. The LSTM network includes memory
blocks for maintaining or forgetting information based on the activation of gating-
nodes within these blocks. These memory blocks usually replace or add to the
hidden layer in a network and are in general considered as an explicit additional
memory to maintain long-term dependencies in the particular RNN. However, the
architecture is not rooted in observations from biology, but is deliberately easing
the gradient descent learning (will be discussed below). Thus, LSTM blocks are
particularly useful for machine learning tasks, but not desirable for a neuro-cognitive
model. Moreover, the network eases the training by shifting the optimisation from
the weights in general to the gates of the LSTM blocks, which brings in additional
(architectural) meta parameter that are difficult to obtain. In particular, in case of
successful applications, the analysis and discussion of these critical parameters was
rarely pursued, during the last decade.

Echo State Network (ESN)

Reservoir networks, such as Jaeger’s ESN from 2001 [141] or Maass’s Liquid State
Machine (LSM) from 2002 [177], include a layer of randomly and sparsely connected

21Although similar to the CTRNN, it is also possible to make the ϕ subject to optimisation by
the learning method.
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neurons with fixed weights and add nonlinearity as well as high dimensionality
to the network. Only the readout weights from the reservoir layer to the output
neurons are trained, leading to a powerful and effective method for extracting a
linear output from a nonlinear and temporal dynamic representation. Compared to
the SRN, the network architecture has a similar universal computational power,
but is easier to train for some known complex problems (see [173] for a review on
ESN with respect to SRN). Although a conventional ESN is discrete, variants of
the network rate have been suggested that include neurons with a leakage [143].
However, this architecture is basically built around a black box of neural activity for
short-cutting training, but by demanding a number of additional meta-parameters,
which are difficult to control and need to tuned finely to the particular instance of
the problem. Overall, this hinders studying and exploiting the representation that
would actually emerge to be the most appropriate for the input.

Recurrent Neural Network with Parametric Bias (RNNPB)

Tani and Ito suggested in 2003 to extend the SRN22 with Parametric Bias (PB)
units reflecting a distributed representation scheme [136, 275]. With the PB units
connected as a constant input to the context layer, while training the network
can abstract and self-organise the dynamic pattern from sequences into said units.
By modulating the PB units, infinite varying instances of the learned dynamic
patterns can be generated. In this way the PB units can be understood as a general
context for the sequences that can store a number of nonlinear mappings between
a constant vector of parameters and the corresponding sequences. The RNNPB
can abstract well from re-occurring patterns, but suffers similar to the SRN from
information vanishing in longer sequences.

Multiple Timescale Recurrent Neural Network (MTRNN)

Inspired by the brains hierarchical neuro-anatomy (compare section 4.1.1) in 2008
Yamashita and Tani proposed a special case of the CTRNN with multiple predefined
time constants [302]. The authors divided the general layer of the CTRNN into
several horizontally parallel layers with restricted connectivity. Thus each layer’s
neurons are fully connected with all other neurons in the same layer, but are
connected only with other neurons in adjacent neighbouring layers. Starting from
one out-most layer called Input-Output (IO) layer the neurons time constants are set
to an increasing timescale. Accordingly the fastest layer called Context-fast (Cf)
reflects the short reoccurring patterns, while the slower layer (e.g. a Context-slow
(Cs) layer) is able to compose long sequences by these patterns. Thus the neurons
have an increasing slowness in terms of adapting the activity to new input. In fact,
this enables the network to learn and generate long sequences based on shorter
pattern primitives.

22The authors proposed the RNNPB as an extension of a Jordan RNN (at this point, the
context would be connected with the output units), but actually the context is derived from the
hidden units [56].
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Figure 4.1: Structural comparison of considered recurrent neural architectures: Elman
Recurrent Neural Network (ERNN), Recurrent Neural Network with Parametric Bias
(RNNPB), Recurrent Plausibility Network (RPN), Continuous Time Recurrent Neural
Network (CTRNN), and Multiple Timescale Recurrent Neural Network (MTRNN).
Networks are organised in layers (rounded grey boxes), whereby solid lines indicate
weighted connections, dashed lines show copy connections, rounded diamonds represent
discrete neurons, and circles depict continuous neurons.

Various other variants of these recurrent architectures exist and differ in special-
isation or in learning methods. Benefits in plasticity are often bound to a certain
sequence structure in general or task in particular.

Time Constants in Continuous Networks

Viewing the leakage as a very simple model for deliberate reverberation or hyster-
esis of information, allows us to approach the cortex level timescale characteristic
in acceptable abstraction from biological foundation [2, 302]. In computation, both
effects of maintaining a fraction of previous information (thus processing new
information slower) as well as accumulation information over time are related to
dissipation in thermodynamics and to elastoplastic response in mechanics [36, 188].
Thus in a computational continuous network model, the leakage by means of time
constants can capture very well the timescales in information processing as meas-
ured on cortex level in the brain – in addition to the connectivity that might play
an important role as well [12, 47].
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4.3 Learning and Self-organisation in Recurrent
Neural Networks

Plasticity or learning in RNNs is difficult, because the search space for optimal
weights – the parameters in RNNs – is huge. In biology the synaptic connection is
plastic, dependent on the activity and gradually adapts over time [60, 116, 269].
In computational networks we are similarly interested in optimising the weights
gradually with respect to the activity drawn from the data. Currently we can
identify three general approaches in optimising our weights:

• Hebbian learning: Inspired by the observation that in the brain’s network
the synapses’ efficacies get indeed potentiated by co-occurring activity, Hebb
suggested that the synapses should change in proportion to the correlation of
the activities of the presynaptic and postsynaptic neurons [116, 301]:

τw
dwi,j
dt = yi · xj , (4.18)

where the time constant τw describes the duration of the potentiation. If
we want to apply this basic Hebb-rule in a gradual process to our CTRNN
described in equation 4.17, we need to introduce a learning rate η and rewrite
the equation with respect to an absolute training step u:

wu,i,j = wu−1,i,j + η (yi · xj) . (4.19)

Alternative rules have been suggested, for example the Covariance rule that –
compared to the Hebb rule, which only describes the Long-Term Potentiation
(LTP) – is also able to reflect the Long-Term Depression (LTD) between
neurons in realistic models [60, 301]. Other rules are the Oja rule that also
normalises the weights, and the Artola-Bröcher-Singer rule that can even cover
the post-synaptic depolarisation [93]. This kind of optimisation is closely
related to unsupervised learning, where the learning process is driven by
coinciding features forming a common representation, but can be adapted as
well for supervised tasks.

• Gradient descent learning: Rooted in the perceptron learning, but also
in optimisation in economy, the gradient descent learning is based on an
error-correction rule [215, 240]. Starting with an initial guess for the weights
of a network, the neuron’s i activity yi is calculated and compared to a
desired activity y∗i . The error (ei = y∗i − yi) is used to determine the partial
derivatives for all specific weights to that neuron to gradually update them
to the opposite direction:

wu,i,j = wu−1,i,j − η
(
∂herror

∂wi,j

)
, (4.20)

where herror denotes an error function over the employed activation function
as well as the range of data that could be taken into account for the error.
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A special case for such a function is the delta rule, which makes use of the
first-order derivative f ′sig of the employed differentiable sigmoidal function:

∆wu,i,j = ∂herror

∂wi,j
= ei · f ′sig(zi) · xj . (4.21)

Using partial derivatives for the weight changes means, however, to only
estimate the ideal weight change, thus to follow a gradient steeper. Indeed,
for first-order calculations, we only derive the Jacobian, thus the directions of
the changes. With expensive and nontrivial calculations for the second order
derivatives, the inverse Hessian, we could also determine the length.
For deep networks like FFNs with (several) hidden layers or recurrent net-
works, the error of the activity with respect to the desired output is not
necessarily available for all layers except the output layer. In this case, the
delta rule allows us to use the partial derivatives for determining the approx-
imate desired activation of the neurons one layer below – we therefore do
a Backpropagation (BP) of our errors. This approach is mostly associated
with supervised learning, e.g. matching the processed output with a desired
output for an input pattern.

• Evolutionary optimisation: Modelled after the evolutionary process in
nature, where individuals undergo a fitness evaluation in an environmental
search space and recombine towards new individuals, synapses in a individual
network can be randomly initialised and recombined with other structural
identical networks [20, 178]. At this point, the optimisation is driven by
external measures on the performance of the individual network rather than
specific neurons activity driven by specific synaptic weights. Thus in general,
the optimisation of the weights is deliberately disconnected from direct
correlation of data and weights. This range of methods could be employed for
both, supervised and unsupervised learning tasks, but is seen quite successful
with semi-supervised or reinforcement learning problems.

From experiences made in the work for this thesis, the major hurdle in cognitive
modelling with recurrent networks are indeed the limitations of plasticity rules. In
most variants of Hebbian learning the optimisation does not scale well for recurrence.
For particularly deep networks like RNNs the activity, which is propagated between
especially remote sensory input and output, vanishes or gets potentiated. Since
in an RNN a context connection accounts for multiple calculations within the
nonlinear function (the RNN is supposed to approximate), we would mostly trade
off a weight value explosion in basic Hebbian versus a weight vanishing in regulated
Hebbian learning with respect to other weights in the context connections.

The gradient descent learning, first of all, suffers from the vanishing gradient
problem [24, 210]. By determining the partial derivatives, we constantly neglect
precise information about the error. Mathematically this means that we basically
determine the most important eigenvalues (more precisely usually the diagonal
matrix) from the weight matrices with values in [0, 1[ and multiply them again
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and again. At some points we arrive at values smaller than the smallest number
greater 0.0 that we can express with accurate precision in our limited number space
(usually used are floats or doubles) and our error vanishes. For SRNs with basic
BP of a delta error mostly five to ten steps are the limit, although we can tune
this bound a bit with well thought activation functions and by using mechanisms
to additionally inject more accurate error values at any time step. Secondly, there
is currently no evidence for a similar learning rule in the brain, thus the gradient
descent learning may not be viewed biological plausible.

For evolutionary optimisation the search space for the ideal weight setting
does not scale well for networks with a large number of weights. While networks
with 100 weights might still be feasible, cortical models with larger number of
neurons and thus 10,000 or more weights are difficult. Since evolutionary algorithms
are probabilistic generate-and-test methods, we usually would trade off very slow
convergence versus low chances to find an optimum.

Network architectures that make use of clever characteristics to short-cut the
learning are difficult with respect to the biological plausibility or our central need
for interpretability. As discussed above, for ESNs it is not clear how the spectral
radius and the sparsity parameters can be obtained from the brain’s architecture.
Moreover, it is disputed how the architecture help to explain the brain structure
rather than replicating it as a black box [142, 209]. Similarly for LSM, although the
properties of the neurons and the liquid reservoir stem from biological inspiration,
the analysis of the randomly connected circuits is not feasible [175]. For LSTM
cells it is particularly difficult to inspect the role of the gates in processing neural
activity for a certain task. However, those architectures elevate the vanishing
gradient problem by the network characteristic itself. In the ESN, for example, this
is done by simply avoiding deep training at all (training the output layer only, e.g.
by ridge regression [142, 173]). In the LSTMs a neural cell (the LSTM cell) can
maintain a specific information over time, if a certain activity is present on the
gates to that cell (called the error carousel). While training this cell feeds the error
to weights outside this cell at a precise time step, because the error carousel (by
constantly multiplying with 1.0) maintained the precise error value. We can find a
similar effect inherent in our more bio-plausible MTRNN neurons with a higher
timescale. The error for weights to certain neurons in the IO layer is maintained by
a slowly changing activity in the Cf layer and vice versa in the IO layer.

Overall, this means that for training a cognitive model the choice is limited
between suboptimal approaches. Although the model should mostly aim at biological
plausibility, for this thesis we will rely on the gradient descent approach. On
the one hand, for a cortical model on language acquisition we must scale up to
long and complex sequences. On the other hand, for finding the (brain’s) most
appropriate characteristics of the neural architecture we cannot assume properties,
which are shown as effective for application purposes, but are not found in biology.
In addition for biological plausibility, Dayan and Abbott argue that the gradient
descent approach can be seen as a two-phase Hebbian learning between an awake
forward simulation and a sleep backward adaptation [60]. In the following, we will
discuss how we can employ and improve this approach effectively to deep RNNs.
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4.3.1 Backpropagation and Backpropagation Through Time
The central mechanism in gradient descent learning is the BP of errors along
the connections from the output to either an initial state or to a certain level of
depth. The BP algorithm was first suggested by Werbos in 1974 for fixed-point
connectionist models [286, 287] and then studied in depth by many researchers
in the 1980’s [214, 240, 298]. One of the first successful attempts to make use of
the continuous variant of the BP algorithm named Backpropagation Through Time
(BPTT) in an RNN that processed sequences without a fixed point was made in
the ERNN [72].

In general, the BPTT processes sequences forward through the network and
determines all neuron’s activities for all time steps in a forward pass. In a backward
pass from a certain last time step backwards the errors are calculated and the
respective necessary weight changes derived and accumulated. The weight changes
are depending on the learning rates, the horizon of the sequence processing, and the
mechanisms of how to make use of the training data to shape the learning process.

Stochastic Gradient Descent or Batch Learning

With regard to the training data we usually differentiate between stochastic learn-
ing, batch learning or combinations thereof [31, 156]. In stochastic gradient descent23

training samples are generated or chosen randomly, depending on a suitable Probab-
ility Density Function (PDF), and weight updates are done directly. The advantage
is to have a better chance for avoiding local minima in the search space, while
convergence is slow and cannot be guaranteed.

In batch learning, all available training data is used at once to accumulate
weight updates and then to change the weights epoch-wise. Usually, the training
time for convergence is shorter, but for more complex problems or very diverse
training patterns training can easily get stuck in a suboptimal weight set based on
the initialisation.

From the task perspective, stochastic gradient descent is normally preferred for
its good generalisation property on large data sets where data points are reasonable
homogeneous with respect to the features [31]. For little but very heterogeneous
data, which is particularly the case in processing complex sequences, the effectiveness
is reduced and mechanisms towards batch learning are favoured [32].

Variants of the Backpropagation

The general process of BP can be modified based on the task the architecture is
supposed to solve. While the simplest version is the pure recurrent BP for a fixed
point, like a classification at the end of a sequence, the BPTT derives the gradients
from the errors made in every time step [72, 215, 298]. This is especially important
if an RNN needs to learn the complex temporal behaviour over a certain interval

23Stochastic learning is sometimes identified as on-line learning, since for some tasks it may be
convenient to make use of data samples on the fly when they are generated.
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or sequence. In Real-time Recurrent Learning (RTRL) we can even determine the
gradients in the forward pass and update weights directly to process infinite or
continuous streams, but with higher computational costs.

Despite our first objection of the gradient descent method as not being biological
plausible, the BPTT offers an interesting characteristic: Since we are always looking
for the steepest gradient to follow, the BPTT learning is usually following a weight
adaptation towards the highest entropy. The algorithm thus searches for the simplest
local attractor to approximate the globally best set of parameters. This can lead to
the emergence of distinct internal representations latent in the hidden or context
layers [169, 240]. In particular for the research questions pursued in this thesis the
algorithm eases to compare how (biological) architectural characteristics influence
the capability of our RNN.

Compared to BP in FFNs the BPTT in RNNs is particularly unstable, because
it is unlikely that the RNN weight space forms a convex plane with respect to any
error function [149, 169]. The major issue is that a weight in a recurrent network
may contribute different functions in different time steps of the same sequence.
Thus a convergence cannot be guaranteed, and many well-understood methods for
optimising and speeding up the training in FFN are difficult to transfer.

4.3.2 Activation Functions and Error Functions
One of the most crucial parameter in neural architectures with gradient descent is
the used activation function [67, 115]. As discussed earlier we are interested in a
saturation function that is a) differentiable, b) computationally efficient, and c)
reflects the simple step-like activation as explained for biological neurons24.

Sigmoidal Functions

Functions that fulfil those conditions are the family of sigmoidal functions. The
most used option is the logistic function:

y = fsig (z) = flogistic (z) = 1 + 2κh

1 + exp (−κwz)
− κh , (4.22)

with parameters κh for range and κw for slope. A particularly interesting property
of this function is the simple first derivative:

f ′logistic (z) = κw

1 + 2κh
(y + κh) (1− y + κh) . (4.23)

Another option is using the hyperbolic tangent function with similar parameters ιh
for range and ιw for slope:

y = fsig (z) = fhyptan (z) = ιh tanh (ιwz) , (4.24)

f ′hyptan (z) = ιw
1 + 2ιh

(y + ιh) (1− y + ιh) . (4.25)

24Compare section 4.2.2 on the firing-rate model.
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Both functions are in fact equivalent (for full proof see appendix C.2), but have a
slightly different form when omitting the slope and range parameters. The basic
hyperbolic tangent function has a more steep saddle point, while the basic logistic
function is rather approaching a linear function for small negative and positive
values. More importantly, the generally steeper hyperbolic tangent peeks in the
first derivative twice as high as the logistic function in the same activity range, thus
leading to a slower vanishing of the gradient. However, the basic logistic function
provides a positive range of values, which is seen more plausible with respect to
biological neurons [60].

In general we can differentiate between synchronous and asynchronous activation
functions (compare figure 4.2): Synchronous functions have a saddle point around
0.0 and usually range between −1.0 and 1.0, while asynchronous functions project
between 0.0 and 1.0. When taking the shaping parameter into account, we can
adapt both functions to our desired representation, but also optimise the functions
for more effective training. For example, LeCun et al. suggested a synchronous
hyperbolic tangent with ιh = 1.7159, ιw = 2/3 for faster convergence in association
tasks [156]. The interesting property is that the derivative is overall much higher,
thus providing that the worst errors propagate well.

However, the steepness of the LeCun function leads only to a moderate error
in case the weighted sum of inputs is actually too high, which would be the
fact when the weights are diverging. Thus depending on the data25, a less steep
function may be appropriate as well. Since both, the hyperbolic tangent function is
computationally more expensive26 and a asynchronous function is desired, a logistic
function with κh = 0.35795, κw = 0.92 was developed for this thesis. The pattern of
the function is less steep, but the asymptotic curve for the first derivative develops
smoother, thus provides a better error propagation in unstable training.

Decisive Normalisation Function

For input and output representations we can pre-/and post-process the activity or
simply use and shape sigmoidal activation functions appropriately. Alternatively,
we can use the decisive normalisation that is found in the brain for populations
of neurons that preprocess sensory information such as in the Superior Culliculus
(SC) or the A1 [16, 231]. In these areas, the activity of one neuron in the population
is highest, while the activity of the other neurons scales down. A suitable option
here is the well-known softmax function:

yi = fsoftmax (zi) = exp (zi)∑
j∈IAll

exp (zj)
. (4.26)

Generally, we could also shape the softmax function, but since a normalisation is
deliberately aimed at, we should leave the range in [0.0, 1.0]. The softmax function

25Without knowing and analysing the data a priori, we can not necessarily guarantee a mean
around the saddle point of any chosen activation function with respect the all inputs.

26For example in OpenCL, a successor of CUDA in parallel programming for GPUs, the tanh(·)
function is implemented by using several exp(·) functions [https://khronos.org/opencl/].
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Figure 4.2: Comparison of considered activation functions: logistic and hyperbolic
tangent functions can be shaped similarly for synchronous and asynchronous applications.
The proposed logistic function (κh = 0.35795, κw = 0.92) has similar characteristics for
the first derivative, as the function suggested in [156], but a smoother shape.

is a generalisation of the logistic function for n = |IAll| instead of two classes. The
derivative is a bit more complex, since we would need to take the whole population
into account:

∂yi
∂yj∈IAll

= yi (δi,j − yi) , (4.27)

but we can use the Kronecker δ-function as a valid simplification [26]. We simply
compare, if the neuron is of that class (= 1) or is not of that class (= 0) and derive
according to the two-class problem:

f ′softmax (zi) = yi (1− yi) . (4.28)

Overall, the choice of activation functions is vast and well-studied and more
complex, but also more flexible functions exist (see [67] for a review). In particular,
for machine learning other functions are considered such as the Tensor-product,
Radial-basis, or Gaußian-like functions, which provide a variety of interesting
properties like a smaller parameter space or other locality constraints. However,
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for this thesis the use of simple functions is favoured since the interest lays in the
general characteristics and also the comparability of the developed model and less
in an optimal solution.

4.3.3 Error Functions for Gradient Descent Learning
To drive the gradient descent learning, we need to define the cost function or error
rules in accordance to the employed activation function and the structure of the
connections. Since several summed weighted inputs contribute to the activity, we
are interested in finding the best parameter setting on the polynomial surface of
the weight space [26, 168]. The aforementioned delta rule is a special case of the
Least Mean Square (LMS) rule. It is a summed squared error function suggested
by Widrow and Hoff in 1960 as an adaptive filter, applicable e.g. in perceptron
learning with a linear activation function [296]:

herror(W ) = herror,LMS(W ) = 1
2
∑
i∈IAll

(y∗i − yi)
2 . (4.29)

We can simply determine the partial derivative for this error rule by using the
first-order derivative of the activation function (f ′lin(z) = 1):

∂herror

∂wi,j
= ∂

∂wi,j

1
2 (y∗i − yi)

2

= ∂

∂yi

1
2 (y∗i − yi)

2 ∂yi
∂wi,j

= − (y∗i − yi)
∂yi
∂wi,j

= − (y∗i − yi) f ′sig(zi)xj . (4.30)

When we look back to our initial linear case (fsig = flin, f ′lin(z) = 1), we can make
the interesting observation of the derivative getting very simple:

∂herror

∂wi,j
= ∂

∂wi,j

1
2 (y∗i − yi)

2 = − (y∗i − yi) f ′lin(zi)xj = − (y∗i − yi)xj , (4.31)

With the LMS we basically maximise the likelihood of the network (defined by w)
to generate the desired output y∗ under the Gaußian noise assumption.

Cross-Entropy Error

For our general case, we can calculate the error function for the sigmoidal functions
analogously. From our initial considerations of a differentiable step-function we can
approach the function as a cross-entropy between two classes – either the neuron
should fire (1.0) or the neuron should not fire (0.0):

herror(W ) = herror,CEE(W ) =
∑
i∈IAll

y∗i · log
(

1
yi

)

=
∑
i∈IAll

(y∗i log(yi) + (1− y∗i ) log(1− yi)) . (4.32)
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When computing the partial derivatives again by the first-order derivatives, the
derivatives of (both discussed) sigmoidal functions cancel out:

∂herror

∂wi,j
= ∂

∂wi,j
(y∗i log(yi) + (1− y∗i ) log(1− yi))

= ∂

∂yi

y∗i
yi

∂yi
∂wi,j

+ ∂

∂yi

1− y∗i
1− yi

∂yi
∂wi,j

= y∗i
yi
f ′logisticxj + 1− y∗i

1− yi
f ′logisticxj

= y∗i
yi
yi(1− yi)xj + 1− y∗i

1− yi
yi(1− yi)xj = y∗i (1− yi)xj + (1− y∗i )yixj

= − (y∗i − yi)xj , (4.33)

rendering the Cross-Entropy Error (CEE) as a quite computational efficient error
function.

Kullback-Leibler Divergence

For the error in the decisive normalisation, we can generalise the cross-entropy to
n = |IAll| classes and result in the Kullback-Leibler Divergence (KLD) [152]:

herror(W ) = herror,KLD(W ) =
∑
i∈IAll

y∗i · log
(
y∗i
yi

)
. (4.34)

For determining the partial derivatives, we can split up the function, which consti-
tutes a relative entropy [151], into the cross-entropy and the entropy:

∑
i∈IAll

y∗i · log
(
y∗i
yi

)
=
∑
i∈IAll

y∗i · log
(

1
yi

)
+
∑
i∈IAll

y∗i · log (y∗i ) . (4.35)

Since the entropy (of the desired activity y∗) is constant, we only need to maximise
the cross-entropy again and result in the same derivatives:

∂herror

∂wi,j
= ∂

∂wi,j

∑
i∈IAll

y∗i · log
(

1
yi

) = − (y∗i − yi)xj . (4.36)

4.3.4 First-order or Second-order Partial Derivatives
With the LMS rule our BPTT algorithm is reasonable fast when using sigmoidal
activation and respective error functions. Unfortunately, reasonable only means
that the computation costs are low for a single iteration in the gradient descent. For
large networks and complex tasks, like long sequences in RNNs the convergence can
be quite slow, because we may need iterations in ranges up to one million epochs
or even oscillate at some point during the training [31, 156]. The important issue
is that so far we only determined the direction of our weight change and not its
length. Thus to speed up the learning, we must update this step size or in other
terms our learning rate η.
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From the theory on gradient descent convergence, we can adopt that for the
quadratic error functions the ideal step size η∗ can be obtained by the inverse
Hessian H [115, 156]. The eigenvectors of H point to the most important axes
of the inputs. Thus the eigenvalues give us the steepness for our quadratic error
function:

η∗i,j∆wi,j = H−1
i,j ·

∂herror

∂wi,j
=
(
∂2herror

∂wi ∂wj

)−1

· ∂herror

∂wi,j
, (4.37)

where η∗i,j denotes the ideal individual learning rate of a certain weight. Unfortu-
nately, calculating H−1, for example with Newton’s method, is computationally
very demanding (O(n3), n = |IAll|). More importantly, we can use this method only
if H is positive definite, which cannot be guaranteed for weight matrices in RNNs,
because we might have weights with zero values or even not convex curved error
surfaces.

Approximating Second-Order Derivatives

To overcome this issue, researchers proposed a number of methods to approximate
the second-order derivative and thus to closely estimate the ideal step size. For our
nonlinear RNNs a good approximation is feasible with Quasi-Newton approaches
that make use of different functions to iteratively approach the inverse Hessian.

For example, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm first
determines the gradient (the first-order derivatives) and then employs an iterative
line search for the length that starts with a first guess on an approximated inverse
Hessian. In the BFGS this matrix is then used to minimise an objective function
that assumes that the convex surface around the minimum has the shape of a
quadratic Taylor expansion. Unfortunately, the BFGS, reduces the computation
only to O(n2) and cannot guarantee a convergence. An alternative is the Levenberg-
Marquardt Algorithm (LMA), which will converge, but again needs up to O(n3)
computation time. At this point the H−1 is approximated by using a square of
the Jacobian and doing the hill-climbing on an objective function that directly
minimises the squared error. Thus, the iteration is done on a substitute of our
original optimisation problem. A similar recent algorithm is called Natural Gradient
Descent (NGD) and makes use of the KLD as the objective function [3, 208, 237].
Since this approximation is also only depending on multiplying the Jacobian with
its transposition instead of computing a full Hessian, it can be used very effectively
for optimising one model at a time (e.g. a single data point of sequence) instead for
the full data and thus the underlying nonlinear function.

Another set of examples are Conjugate Gradient Descent (CGD) algorithms
that also first derive the gradient (the first-order derivatives) and then iterate the
length by a line search. In those algorithms, the search is done by iterating over
conjugate directions, which are directions orthogonal to the gradient pointing to
the space of the identity Hessian matrix. For determining the conjugates, a number
of functions have been suggested that differ in robustness for convergence based
on the chosen error function. A recent variant of the CGD is the Hessian-Free
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Optimisation (HFO) [187, 252], where the quadratic expansion is assumed as Taylor
expansion of our chosen error function and CGD iteration is truncated after a
fixed but arbitrary number. Computing the Hessian is avoided by just multiplying
the gradient with some vector that can be obtained but just approximating the
directional derivative, thus by just approximating the differences of the contributing
weights. Compared to the NGD, the Hessian is not approximated, but instead a
reduction is computed accurately in a large number of iteration. Since for practical
problems the CGD progresses well, a truncation is feasible already in the first
iterations.

Second-order Approximation or Conjugates in RNNs

However, the complexity is rather high for both Quasi-Newton as well as Conjugate
Gradient approaches, and general analytical accounts for RNNs have yet not been
pursued. In machine learning we can find many further variants of Quasi-Newton
methods that make use of estimates for the gradients by keeping the processing
time moderate. Important directions are the Natural Gradient-based methods that
explicitly make estimates or predictions based on small quantities of the overall
data.

Overall, with the methods for approaching the second-order derivatives, we
can gather informed estimates about the magnitude to change our weights. Those
methods are usually best used in stochastic variants of the BP, which are feasible,
if the task contains large amounts of data, where data points are reasonable
homogeneous with respect to the features [208]. For little but very heterogeneous
data, the effectiveness is reduced, and we would consider batch-learning. In this
case, second-order methods are often prone to fall in local optima, because of
missing random perturbations. As an alternative to the informed methods we can
make heuristic estimates for the learning step.

4.3.5 Speeding Up First-order Gradient Descent
Enhancing first-order gradient descent with estimates of step sizes is particularly
feasible in RNNs processing long sequences, where the training time is usual high
and the weight changes would – on average – tend to point into the same directions
for several epochs. Computing an optimal step size27 would not be desirable, because
we certainly would end up in a local but not global optimum, depending on the
initial guess on our weights. While approaching an optimum with an estimated
step size, the gradient descent approach could lead to exploring the weight space
slightly different in every epoch. A heuristic estimate thus must allow for both,
large jumps and small optimisations. In case the number of learning steps is still
high, we are able to make use of more general techniques for a clever speeding
up: steering the error by teacher forcing in gradient descent, imitating stochastic
deviation of training steps by adding stochastic noise to the training samples, or

27Just for the sake of argument though keeping in mind that this is not possible and computa-
tional costs would be tremendously high.
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implementing gradient descent in the computing machines by exploiting parallel
processing architectures.

Linear and Logarithmic Decreasing Learning Rates

The simplest method is to estimate the learning rates based on the networks
dimensions and the experience made with the task or data. For this we could
decrease the learning rates from a good initial guess, e.g. ηmax = 1/|IAll|2 to a small
rate ηmin, appropriate for the desired maximal error ε [148, 157]. This can be done
linearly or logarithmically28 based on good guesses for the maximal number of
training epochs θ:

wu,i,j = wu−1,i,j −
(
ηmin + ηmax − ηmin

θ
(θ − u)

)
∆wi,j , (4.38)

wu,i,j = wu−1,i,j −
(
ηmin + ηmax − ηmin

u

)
∆wi,j . (4.39)

Velocity in Learning Rates Using Momentum

For a more informed estimate, we can use the history of learning steps. A particularly
successful strategy is to actually sum up the directions of previous steps and thus
increase the velocity of the gradient descent in certain directions [221, 272]. Based on
the analogy to physics, we can include the momentum of previous weight changes:

wu,i,j = wu−1,i,j − (ρ∆wu−1,i,j + η∆wu,i,j) , (4.40)

where the momentum term ρ ∈ [0, 1] regulates the magnitude of the previous
weight update added to current weight update. For convex optimisation, we can also
consider the Nesterov momentum that includes a correction of poor gradients [272].
Compared to FFNs, we would choose the momentum rather small (around ρ = 0.1)
and individual for every weight to avoid divergence, and would not assume convex
functions.

Adaptive Resilient Learning Rates for RNNs

Another very successful heuristic optimisation method for FFNs is the Resilient
Propagation (RPROP) algorithm suggested by Riedmiller and Braun [232]. For
every individual weight the learning step is adapted based on the direction change of
the first-order derivative with respect to the previous epoch. In particular, individual
learning rates η and β are adaptive based on the local gradient information.

For this thesis, this approach was adopted for RNNs to also conservatively
speed up the training over epochs, where the gradient is steadily descending to the
same minimum. In contrast to the original RPROP, learning rates are adapted and
multiplied directly with the partial derivatives instead of only using the sign of the

28Often called “gain scheduled”.
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partial derivatives to determine the change of the learning step:

ηu,i,j =



min (ηu−1,i,j · ξ+, ηmax) iff
(
∂herror,u

∂wi,j
· ∂herror,u−1

∂wi,j

)
> 0

max (ηu−1,i,j · ξ−, ηmin) iff
(
∂herror,u

∂wi,j
· ∂herror,u−1

∂wi,j

)
< 0

ηu−1,i,j otherwise

, (4.41)

βu,i =



min (βu−1,i · ξ+, ηmax) iff
(
∂herror,u

∂bi
· ∂herror,u−1

∂bi

)
> 0

max (βu−1,i · ξ−, ηmin) iff
(
∂herror,u

∂bi
· ∂herror,u−1

∂bi

)
< 0

βu−1,i otherwise

, (4.42)

where ξ+ ∈ ]1,∞] and ξ− ∈ ]0, 1[ are the increasing or decreasing factors respectively
and ηmax > ηmin are upper and lower bounds for both learning rates η and β. If the
partial derivative of the current epoch u is pointing to
the same direction as in the former epoch u − 1, then the learning rate is in-
creased. If the direction of the partial derivative is pointing to the other direction,
then the minimum has been missed and the learning rate is decreased.

Similarly to the RPROP in FFNs, the adapted approach for RNNs cannot
guarantee for global convergence and might be slow for complex problems [13]. For
this reason it is important to choose the parameter more conservatively. Rather
then adopting the original parameter values (ξ+ = 1.2 and ξ− = 0.5), more careful
speed-ups (e.g. ξ+ = 1.01 and ξ− = 0.96) should be considered [242]. In particular,
since in an RNN one weight might not only be important for a number of patterns
but also for a number of time steps, such a careful setting is necessary when training
many complex sequences.

Teacher Forcing

A generally very effective method to control the vanishing of gradients in RNNs is
to artificially provide an error with respect to the desired activity in every training
step [65, 299]. This is achieved by forcing the desired activity of the output neuron
into the actual activity within the forward pass of the BP approach and thus
determine an error for the respective time step as if the processing up to this time
step would have been correct:

x = (α)x∗ + (1− α)x , (4.43)

where the Teacher Forcing (TF) term α ∈]0, 1[ adjusts the feedback rate of the
desired activity x∗, which is forced into the output, in proportion to the actual
output activity. An experience made during the work for this thesis is that a small
forced desired activity suffices to drive a successful training (around α = 0.1).
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Noise and Jitter

In information processing in the brain, noise is inherently present. Particularly
single neurons respond to incoming spikes only to a small fraction, but patterns
of spikes usually correlate within populations [170, 251]. Reasons for individual
variability – or noise – are manifold, ranging from simple sensor noise by changing
physical properties (bending hair cells or saccades), over synaptic fluctuations,
up to dynamics in columns of cells. Small sources of noise easily add up and the
number of potential activity patterns is usually exponential. A model that has
been proven accurate for tuning functions of neurons across the brain is assuming
Gaußian noise with a certain width or variance σ [16, 57].

In machine learning it is a well-established method to add Gaußian white noise
to the data while training [26, 247, 306]. In this field it is often called jitter, since
the input moves within the feature space, e.g. based on a Gaußian PDF G:

xu,t,i = xt,i + xnoise | xnoise ∈ Gµ=0,σ , (4.44)

where the mean µ is set to zero and the variance σ is chosen appropriately for the
architecture and task. It is difficult to determine a good variance analytically29,
thus the standard procedure is to determine the variance carefully and progressively
from small values. The result is generating more data from the existing data set
and overall increasing the generalisation, if the perturbation of the input by noise
occurs on the important features. For adding noise to the data, it is important that
the noise added on a data point is independent from the noise added to other data
points in the same epoch as well as from the same data point in other epochs.

In cognitive modelling, noise is particularly interesting for mimicking the un-
certainty within columns or layers of neurons. Perturbation, both in activity or
synaptic efficacy, can change the self-organisation of the internal representation,
which could be of key importance [176]. On the one hand, for an appropriate inform-
ation processing mechanism, a certain latent pattern should emerge despite variable
noise. On the other hand, activity trajectories are deviated from the patterns of
noiseless reference activity. In this way, the inherent chaos and fluctuation can also
be captured in firing-rate models.

Parallel Implementation in GPUs

Programming frameworks that enable researchers to use the massive number of
cores in Graphical Processing Units (GPUs) have been made available30 during the
last years. By vectorising expensive matrix manipulations like in gradient descent to
spread the computations over more than 1,000 cores reduces the computation time
drastically. In addition, these frameworks facilitate a parallel thinking in developing
plausible neural architectures which are, in fact, supposed to be massively parallel.

29Note that it is possible to estimate an overall good noise pattern, but this involves developing
a model of the distribution of the data set with respect to employed features and classes.

30E.g. OpenCL or CUDA: [https://khronos.org/opencl, https://developer.nvidia.com].
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4.4 Multiple Timescale Recurrent Neural Network
To explore the MTRNN architecture, which we discussed in section 4.2.3, Tani
et al. replicated the learning of motor actions in a experimental setup along the
developmental robotic approach [201, 276, 302]. Based on robot movements during
the manipulation of a box, which were inducted by a human teacher, a number of
sequences were recorded. The sequences included permutations of manipulations
like grasping, shaking or releasing the object in different chronological orders and
lengths, and spatial positions. MTRNNs were specified by three layers – the IO
layer, the Cf layer, and the Cs layer – with variable timescales and have been trained
with a gradient descent method for the sequences. The analysis revealed that for a
trained network, which could reproduce the sequences best (merely indicated by
converging to the smallest training error)31, the patterns in the different layers were
self-organised towards a decomposition of the body movements. The researchers
were able to interpret from neural activity that the Cf layer always coded for the
same short primitive, while the Cs layer patterns were unique per sequence, but
consisted of slow changing values functioning as triggering points for primitives.

MTRNN with Context Bias

In those original experiments the researchers were able to train an MTRNN for the
reasonably diverse and long sequences by initialising the network’s neural activity
at the first time step with specific values of the experimenter’s choice [200, 302].
These initial states were kept for training of each specific sequence and represented
the (nonlinear) association of a constant (starting) value and the dynamic pattern.
In later experiments Nishide et al. adapted and integrated the idea of the PB units
into the MTRNN [9, 199]. Therein, the bias units were part of the Cs layer and
parameterised the motion sequence with a certain characteristic (e.g. which tool
is used in a certain action), while other initial neural activity was not specified.
However, for these bias or Context-controlling (Csc) units only an initialisation
before the training was also necessary, while the values of these units could self-
organise during training. Similar to the RNNPB, these initial states can be seen as
the general context of a sequence. By modulating these internal states, differing
other sequences can be generated. Overall, for the conducted experiments on motor
primitives, the slow context codes for the general concept of a certain motion.

By combining the characteristics of the various experiments on CTRNNs with
multiple timescales and context bias properties (similar to parametric bias but also
changing over time), we arrive at a general description of the MTRNN as illustrated
in figure 4.3. For certain contexts, provided as initial states to some of the neurons
with the highest timescale ICsc ⊂ ICs (slowest neurons), the network is processing
certain sequences over time. The constraints on connectivity and relative timescale
setting are inspired by the brain and have been challenged in developmental robotics
studies to confirm a hierarchical compositionality e.g. in body motion. For further

31The best network during the experiments was shaped by timescale values of 1.0 for the IO,
5.0 for the Cf, and 70.0 for the Cs layers [302].
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Context-fast
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Figure 4.3: The overall Multiple Timescale Recurrent Neural Network (MTRNN) archi-
tecture with exemplary three horizontally parallel layers: Input-Output (IO), Context-fast
(Cf), and Context-slow (Cs), with increasing timescale τ , where the Cs layer includes
some Context-controlling (Csc) units. While the IO layer processes dynamic patterns
over time, the Csc units at first time step (t = 0) contain the context of the sequence,
where a certain concept can trigger the generation of the sequence.

models we can process dynamic sequences in terms of discretised time steps (e.g.
for linguistic processing of smallest graphemic or phonetic units, or visual and
sensorimotor processing with a certain sampling rate), but can regard any task as
continuous by means of absolute variability of the timescales.

Information Processing in the MTRNN

With the notation developed above32, we now can also describe our special CTRNN
in detail: In the MTRNN information is processed continuously with a unit-specific
firing rate as a sequence of T discrete time steps. Such a sequence s ∈ S is
represented as a flow of activations of the neurons in the IO layer (i ∈ IIO). The
input activation x of a neuron i ∈ IAll = IIO ∪ ICf ∪ ICs at time step t is calculated
as:

xt,i =


0 iff t = 0 ∧ i /∈ IIO,input

x∗t,i iff t ≥ 1 ∧ i ∈ IIO,input

y∗t−1,i iff t ≥ 1 ∧ i ∈ IIO,output

yt−1,i iff t ≥ 1 ∧ i /∈ IIO

, (4.45)

where we can either project (sensory) input to the IO layer (IIO,input) or read out the
output of the IO layer (IIO,output), depending on how the architecture is employed
in a task. The internal state z of a neuron i at time step t is determined by:

zt,i =


0 iff t = 0 ∧ i /∈ ICsc

c0,i iff t = 0 ∧ i ∈ ICsc(
1− 1

τi

)
zt−1,i + 1

τi

( ∑
j∈IAll

wi,jxt,j + bi

)
otherwise

, (4.46)

32Compare section 4.2.3 and section 4.3.
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where c0,i is the initial internal state of the Csc units i ∈ ICsc ⊂ ICs (at time
step 0), wi,j are the weights from the jth to the ith neuron, and bi is the bias of
neuron i. The output (activation value) y of a neuron i at time step t is defined by
an arbitrary activation functions:

yt,i = fsoftmax⊕sig (zt,i) , (4.47)

depending on the representation for the neurons in IO and on the desired shape of
the activation for the postsynaptic neurons.

Learning in the MTRNN

During learning the MTRNN can be trained with sequences, and self-organises the
weights and also the internal state values of the Csc units. The overall method can
be a variant of the BPTT, speeded up with appropriate measures based on the
task characteristics.

For instance, if the MTRNN produces continuous activity (IO) we can modify
the input activation with a TF signal of the desired output y∗ together with the
generated output y of the last time step:

xt,i =


0 iff t = 0
(α)y∗t−1,i + (1− α)yt−1,i iff t ≥ 1 ∧ i ∈ IIO

yt−1,i iff t ≥ 1 ∧ i /∈ IIO

. (4.48)

In the forward pass, an appropriate error function herror is accumulating the error
between the activation values (y) and the desired activation values (y∗) of the
IO neurons at every time step based on the employed activation function. In the
second step the partial derivatives of the calculated activation (y) and the desired
activation (y∗) are derivated in a backward pass. In the case of sigmoidal or decisive
normalisation functions, we can specify the error on the internal states of all neurons
as follows:

∂herror

∂zt,i
=


yt,i − y∗t,i +

(
1− 1

τi

)
∂herror

∂zt+1,i
iff i ∈ IIO∑

k∈IAll

wk,i
τk

∂herror

∂zt+1,k
f ′sig (zt,i) +

(
1− 1

τi

)
∂herror

∂zt+1,i
otherwise

, (4.49)

where the gradients are 0 for the time step T + 1. Importantly, the error propagated
back from future time steps is particularly dependent on the (different) timescales.

Finally, the weights w but also the biases b are updated with the determined
gradients:

wu,i,j = wu−1,i,j − ηi,j
∂herror

∂wi,j
= wi,j − ηi,j

∑
t

1
τi

∂herror

∂zt,i
xt,j , (4.50)

bu,i = bu−1,i − βi
∂herror

∂bi
= bi − βi

∑
t

1
τi

∂herror

∂zt,i
, (4.51)
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where the partial derivatives for w and b are respectively the accumulated sums of
weight and bias changes over the whole sequence, and η and β denote the learning
rates for the weight and bias changes. To facilitate the application of different
methods for speeding up the learning, we can use individual learning rates for all
weights and biases to allow for individual modifications of the weight and bias
updates respectively.

The initial internal states c0,i of the Csc units define the behaviour of the
network and are also updated as follows:

cu,0,i = cu−1,0,i − ζi
∂herror

∂c0,i
= c0,i − ζi

1
τi

∂herror

∂z0,i
iff i ∈ ICsc , (4.52)

where ζi denotes the learning rates for the initial internal state changes.

Adaptive Learning Rates

If we make use of methods for speeding up the learning that result in different
individual learning rates η and β, we must adapt the learning rates ζ for the update
of the initial internal states c0,i as well. In the approach developed for this thesis
the learning rates ζ are adapted proportionally to the average learning rates η of
all weights that are connected with unit i and neurons of the same (Cs) and the
adjacent (Cf) layer:

ζi ∝
1

|ICf |+ |ICs|
∑

j∈(ICf∪ICs)
ηi,j . (4.53)

Since the update of the c0,i depends on the same partial derivatives (time step t = 0)
as the weights, we do not need additional parameters in this adaptive mechanism.

4.5 Evaluation of RNN Capabilities
For a cognitive model adopting the CTRNN architecture, we first must explore
the general capability of covering tasks related to language acquisition. Assuming
the universal approximation capability for RNNs, we still must a) test if we can
reasonably overcome the vanishing gradient problem; and b) investigate if the
timescale characteristic of the MTRNN in general can ease capturing certain tasks.

For RNNs, the theoretical analysis of the dynamics in the networks and the
effects on certain tasks or problems are usually limited due to the complexity and
the inherent approximate characteristics of the employed learning methods. In
particular, for RNNs with different time constants or leakage rates we have little
insight of the capabilities of certain network architectures on different complex
problem at hand. For the simple networks like the discrete ERNN, a good body
of work exists, which allows to put the following comparisons on the continuous
CTRNN into perspective [83, 127, 173].

As a preliminary and general study, the MTRNN has been compared to the
conventional CTRNN on the following tasks:
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• cosine task: predict cosine waves with different amplitude and shift.

• ltDep5 task: predict a certain symbol despite large time lag.

• noise-ltDep5 task: predict a certain symbol despite large time lag and
additional noise.

For all networks, the same input-output representations were chosen based on the
task and activation functions, TF parameter, and learning methods were chosen
identically. Basic meta-parameter exploration for size and initial weights has been
conducted for all tasks and are omitted for brevity.

Central metrics used for comparing the performance are a) the error of the
training mechanism; b) the true positive rate for counting accurately reproduced se-
quences; and c) the edit distance33 to count incorrect symbols in symbolic sequences.
To capture the relative quality, the edit distance is measured as follows:

qedit-dist = fedit−distance (s1, s2, ϑdel, ϑins, ϑsub) / length(s1) , (4.54)

where s1 is the target sequence for s2 and the costs are set to ϑdel = 1.0 for
deletion, ϑins = 1.0 for insertion, and ϑsub = 2.0 for substitution. For comparing
the effectiveness of the training, the mean training error of certain epochs is used.
The edit distance is related to the Total Quantisation Error (TQE) of a quantised
signal, but measures in a discretised space (compare [297]).

4.5.1 Cosine Functions
In the cosine task, the objective is to learn to predict two opposed cosine waves
over the length of 4π. The function is discretised in π/8 step sizes leading to 33
time steps:

fcosine,x1(t) = 0.5 + cos
(
t
π

8

)
· κs , ∀t ∈ {0 . . . 32} , κs ∈ {0, 5, 1.0} , (4.55)

fcosine,x2(t) = 1− fcosine,x1(t) , (4.56)

where κs is a modulation of the amplitude to provide different sequences. In this
test, four sequences were generated: aa, ab, ba, bb. We can abbreviate a 2π-period
on full amplitude by the symbol a and a 2π-period on half amplitude by the
symbol b. For example, ab represents a modulation of 1.0 for the first cosine and 0.5
for the last two cosine (a visualisation of the sequences is provided in appendix D.5).
The difficulty in this task is to memorise the ambiguous switch to the half or full
amplitude.

From the results, presented in figure 4.4, we can obtain that the MTRNN
can be trained to solve the task effortlessly, while the basic CTRNN struggles to
capture the different shifts of the second phase (t = 16). Both, the CTRNN and the
MTRNN were specified with two input neurons and eight parallel context neurons
(Cf), which were connected with four additional context neurons (Cs) (CTRNN: no
timescale, which is equivalent to τ = 1; MTRNN: using τIO = 1, τCf = 8, τCs = 32).

33Compare chapter 3.2 and [245].
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Figure 4.4: Comparing RNN capabilities on the sequence learning task (cosine): mean
error with the interval of the standard error over training epochs u and over 100 runs (a–b);
Hinton diagrams for representative trained weight matrices (c–d, two examples each) – a
square represents a connection weight from a neuron (horizontal dimension) to another
neuron (vertical dimension) with strong connections shown towards black (omitting the
sign to increase readability) – showing stronger weights for Cf in MTRNN; reproduction
of activity x1 for sequences ab and ba over 100 runs (e-h, dark/blue represent the target
and bright/red shows the mean and interval of the standard error of the reproduction).
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4.5.2 Long-term Dependencies
To test for long-term dependencies, a task inspired by the long-term lag test by
Hochreiter and Schmidhuber was defined [127]: a sequence produced from a regular
grammar includes an arbitrary long middle section of symbols b distracting from
the symbols a:

S → aa(bb)naa , n = 2k, ∀k ∈ {1 . . . 8} , (4.57)

where the parameter k provides a squared increase of the length of the distraction.
For example, with a length of k = 5 we obtain a sequence of length 68, calling
the task ltDep5. For the networks, the sequence was represented as an input to
two neurons for a and b with activity 0.9 for the occurrence of the symbol and 0.1
otherwise, while for learning the CEE was employed.

The experiment revealed that the CTRNN can learn the sequence well for a
length up to k = 4 (getting best results for 16 and two neurons in non-IO context,
the Cf and Cs respectively). For k = 5, the conventional architecture struggles34 and
solves the task only in rare cases (compare figure 4.5). The MTRNN (using τCf = 4,
τCs = 36) is able to solve35 this length well and decently scale up to k = 7 (timescale
parameter variation performed on coarse measures), but they show difficulties for
k = 8 or longer sequences.

4.5.3 Long-term Dependencies with Noise
In the noise-ltDep5 task the aim is again to learn sequences, but disturbed by
Gaußian noise:

gnoise,Gauß(x, σ) = max(0.0,min(1.0, x+ xnoise)) | xnoise ∈ Gµ=0,σ . (4.58)

For this test the length of the sequence was fixed to k = 5, and noise was varied as
listed in table 4.1 on the CTRNN and the MTRNN. From the results presented in
figure 4.6, we can observe that for all networks the adding of noise is decreasing
the training time for smaller values of σ, while for larger σ more networks tend
to get unstable. This effect is stronger for the CTRNN, while for the MTRNN
divergence only takes place for larger noise. For the CTRNN, certain larger noise
values (σ = 0.001) increase the performance considerably, whereas for the MTRNN
an increase is notable but small (σ = 0.0005).

Table 4.1: Parameter variation of the noise in the noise-ltDep5 test.

Perturbation Parameter Values

Gaußian noise variance σ {1, 2, 5 · 10−l}, l ∈ {4, 5, 6}

34Despite using the suggested activation function from section 4.3.2 and an optimised TF.
35Compared to the CTRNN, the MTRNN seem to only need some leaky neurons in the fast

and slow context layer, which maintain the information about when to switch the symbols.
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Figure 4.5: Comparing RNN capabilities on the long-term dependencies task (ltDep5):
mean error with the interval of the standard error over training epochs u and over 100
runs (a–b); Hinton diagrams for representative trained weight matrices (c–d, two examples
each) – a square represents a connection weight from a neuron (horizontal dimension)
to another neuron (vertical dimension) with strong connections shown towards black
(omitting the sign to increase readability) – showing similar strength per context layer (Cf
or Cs) in both architectures but a much larger sparseness in the MTRNN; true positive
rate – applying argmax (e) and mean edit distance (f) with bars of the standard error
over 100 runs for some varied k.
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Figure 4.6: Comparing RNN capabilities on the long-term dependencies task (noise-
ltDep5): mean error with the interval of the standard error over training epochs u and
over 100 runs for low and for high noise (a–d), mean edit distance for the varied parameter
σ, with error bars reflecting the standard error (e–f), over 100 runs respectively. Including
the edit distance of larger noise has been omitted, because instability progressively
decreased, with only negative impact on the performance.
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4.6 Evaluation of Training Methods for CTRNNs
To employ a robust and efficient training, the above discussed heuristic speed-ups
for gradient descent learning were compared in a preliminary study. For this the
MTRNN was trained on the cosine and ltDep5 tasks with parameter variations
as listed in table 4.2. The MTRNN was specified with |ICf | = 8, τCf = 8, |ICs| = 4,
τCf = 32 (cosine task) and |ICf | = 16, τCf = 4, |ICs| = 2, τCf = 36 (ltDep5 task),
using the suggested activation function (section 4.3.2) and a TF rate of α = 0.1
(for comparisons see appendices D.7–D.6). Dynamic learning rates (in momentum
or adaptive RPROP learning) were individual for every weight and bias.

Parameter Optimisation per Training Method

The mean error rates (depending on the task either the KLD or CEE) are plotted in
figure 4.7a–f and figure 4.8a–d. As expected, small fixed learning rates (either fixed
overall or for a priori fixed certain epoch) lead in general to a slow convergence,
while too large rates yield instability up to divergence. Momentum training in RNNs
tends to diverge quickly, if the parameter is chosen too large: values of ρ = 0.2 or
smaller are best, given a good choice of η. For the adaptive RPROP, the suggested
parameter for MLPs are too large, leading to larger instability, while too small
values are not remarkably speeding up the learning. A good setting for both tasks
is ξ+ = 1.01, ξ− = 0.96 and also more conservative ηmax = 1.0.

Comparing Training Methods

As presented in figure 4.8e–f, the adaptive RPROP provides the most efficient
training for the MTRNN. Compared to momentum, the provided stability is much
better in general, while conventional fixed or decreasing methods tend to slowly
converge to smaller mean errors, if the parameters were chosen ideally. For both
methods, more networks tend to diverge at some point. Since in the test deliberately
only the number of epochs as the termination criteria were used for comparison,
it should be added that in a real training we would as well use other criteria to
terminate when the error is lowest.

Table 4.2: Parameter variation in evaluating training methods.

Method Parameter Values

Naive fixed η {0.1, 0.05, 0.1, 0.005, 0.001}

Linear dec. (ηmin, ηmax) {(0.1, 0.01), (0.1, 0.005), (0.05, 0.005), (0.5, 0.001), (0.01, 0.001)}

Gain sched. (ηmin, ηmax) {(0.1, 0.01), (0.1, 0.005), (0.05, 0.005), (0.5, 0.001), (0.01, 0.001)}

Momentum ρ {0.1, 0.05, 0.1, 0.005, 0.001}

Gain sched. (ξ+, ξ−) {(1.2, 0.5), (1.05, 0.75), (1.02, 0.9), (1.01, 0.96), (1.001, 0.98)}
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(c) Linear dec. (ηmax, ηmin), cosine task.
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(d) Linear dec. (ηmax, ηmin), ltDep5 task.
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(e) Gain schedule (ηmax, ηmin), cosine task.
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(f) Gain schedule (ηmax, ηmin), ltDep5 task.

Figure 4.7: Comparison of the mean error e development on the MTRNN over training
epochs u for varied parameters per training method, part 1/2. The comparison is shown
in parallel for the cosine task and the ltDep5 task, while each plot presents the mean
over 100 runs.
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0 20 40 60 80 1000.0

0.004

0.008

0.012

0.016

0.02

Training epoch u (in 1, 000)

M
ea
n
er
ro
r
e
(C

EE
)

(b) Momentum (ρ) η = 0.01, ltDep5 task.
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(c) Adap. RPROP (ξ+, ξ−), cosine task.
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(d) Adap. RPROP (ξ+, ξ−), ltDep5 task.

Naive Momentum Adapt. RPRop Linear dec. Gain sched.

0 20 40 60 80 1000.0

0.002

0.004

0.006

0.008

0.01

Training epoch u (in 1, 000)

M
ea
n
er
ro
r
e
(K

LD
)

(e) All training methods, cosine task.
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(f) All training methods, ltDep5 task.

Figure 4.8: Comparison of the mean error e development on the MTRNN over training
epochs u for varied parameters per training method, part 2/2. The comparison is shown
in parallel for the cosine task and the ltDep5 task, while each plot presents the mean
over 100 runs.
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4.7 Intermediate Discussion
In this chapter, we looked at fundamental models for describing and deriving
information processing in the brain and studied well-known as well as recent
neural architectures that can process or learn to process sequences over time. With
three limiting principles on computation, plasticity, and interpretability we arrived
at the rate-based continuous time recurrent neural network architecture at the
level of abstraction suitable for cortex-level processes like language production or
comprehension. Like other RNNs, the CTRNN is capable to approximate universal
tasks, but stems from a fair abstraction of a neuroscientific model for individual brain
cells. In particular, the time constant or leakage – in similar concepts sometimes
called timescale or hysteresis – appears to be an important characteristic in this
network. From neuro-cognitive mechanisms found in the frontal cortex of mammals,
we know in fact, that those timescales are increasingly slow for processing sequential
information of certain tasks like motor or sound sequences. A network architecture
that explicitly adopts constraining the general neural architecture by increasing
timescales is the MTRNN.

For RNNs in general and the MTRNN in particular, we found that the major
issue still is plasticity. With gradient descent as the single paradigm allowing to
train large networks, we looked into several options to achieve the learning in
RNNs despite aiming at complex and long sequences like utterances to particularly
address the vanishing gradient problem in sequences with long-term dependencies.
The preliminary experiments showed that indeed differing timescales in the neural
architecture can facilitate the learning of longer sequences. Indeed we observed that
by simply using a different timescale in some context neurons we can solve some
difficult tasks like amplitude switching in the cosine or long-term dependencies in
the ltDep5 despite relying on gradient descent. Of course, there is a chance of a
conventional CTRNN or discrete RNN to capture the concurrence of neural activity
despite longer time lag up to a certain length as well, but the predisposition of the
MTRNN allows shifting this length further.

To make the gradient descent more efficient, we looked into some measures that
have proven effective for shallow neural networks, but surprisingly most heuristic
methods seem to struggle in particularly deep networks like RNNs. During the
work for this thesis, the RPROP algorithm has been adapted for the MTRNN. An
interesting observation made in preliminary experiments was that the RPROP, in
principle, is doing a simple form of a line search over a couple of epochs in which
the direction of the gradient does not change. Although this is done uninformed
just by the heuristic of success and not determined by second-order estimates, this
can be roughly seen related to the CGD. An issue of RPROP we acknowledge is
that it cannot guarantee a global convergence, since the Wolfe condition is not
necessarily met [13], opposed to HFO approaches that are currently emerging [208].
However, the adapted RPROP is computationally quite cheap and results in the
preliminary experiments are showing good results, when the parameters are set to
conservative values. Thus, for training a cortical recurrent deep neural architecture
with large sequences of natural language this approach is particularly appealing.
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Chapter 5

Embodied Language
Understanding in a Recurrent
Neural Model

In the previous chapters 3 and 4 we provided the tools to approach the thesis’s
objective of studying a neural architecture that can learn and generalise language.
In this chapter we will investigate the characteristics of such an architecture and
examine a model based on the Multiple Timescale Recurrent Neural Network
(MTRNN), which is extended by embodied visual perception, and tested in a
real world scenario. We will demonstrate that such an architecture can learn the
meaning of utterances with respect to visual perception and which it can produce
verbal utterances that correctly describe previously unknown scenes. In addition,
we will discuss rigorous studies on the timescale mechanism as well as the internal
representation and explore the impact of the architectural connectivity as well as
noise in the language acquisition task.

5.1 Developing an Embodied Language
Understanding Model

In chapter 2 we discussed recent advances on the neural theory of language processing
and recent findings for theoretical underpinnings of language and socio-cultural
factors in acquisition. For this thesis the central hypothesis is adopted that language
is embodied in most – if not all – sensory and sensorimotor modalities and that
the brain’s architecture facilitates the emergence of language. A model for such
an architecture must ground the processing and the representation of language in
the sensory and sensorimotor experience. On the behaviour level the model must
account for binding a specific sequence of sounds to a certain entity, e.g. visually
perceived from its environment.

For a neural model to actually proof valid it must be able to reproduce a certain
behaviour and must – following Occam’s razor – not offer any simplification, which
does not reduce this capability. Apart from that this means that the behaviour
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to-be-reproduced should not be simplified too much to avoid invalidating the model.
With the approach of Developmental Robotics (DR) including human interaction
we are actually able to simulate the conditions for natural language comprehension
in a controllable and repetitive manner. In this way we implicitly take the uncertain
characteristics of sensory observations in a natural environment as well as the
socio-cultural principles of language acquisition into account.

5.1.1 Previous Studies on Binding and Grounding
In the past, researchers have suggested valuable models to explain the binding of
language to experience or learned instances of certain roles, but also to ground
language in embodied perception and action based on recent neuroscientific data and
hypotheses. Recent computational models aimed at mimicking certain abstractions
of circuits in the brain and tested them for instances of the binding and the
grounding problem [113, 139].

To investigate systematicity in language processing, Frank empirically studied
to what extent a neural architecture can bind learned words to novel roles (trained
grammatical roles for which those words have not been trained) [83, 84]. For an
Echo State Network (ESN) with an additional hidden layer, a corpus of sentences
was tested that stems from a small context-free grammar, which allows including
recursions of relatives clauses. Compared to other Recurrent Neural Networks
(RNNs) the ESN has a similar complexity in processing, but allows for easier
training at the expense of a more difficult in-depth analysis (compare chapter 4.2.3).
In the study it was found that language can be learned compositionally and that
RNNs show strong systematicity, or in other words: generalisation for structural
coarsely related sentences, both syntactically and semantically.

In various experiments Cangelosi investigated the grounding of symbols in a
computational model [39, 40, 42]. With the hypothesis that language can emerge
from embodied interaction within an environment and a simultaneous exposure
to words or “symbols”, a number of simulations were conducted. Firstly, stick-
figure robots were supposed to perform actions with a number of proto-objects for
which they also perceived names. The study showed that the underlying neural
feed-forward architecture can be trained to ground the label in the sensorimotor
perception to produce a name for a perceived action or vice versa. Additionally, an
analysis revealed that the architecture self-organised to a semantic representation
in the hidden layer. Secondly, a Cognitive Universal Body (iCub) robot was set up
to perform similar interaction tasks with increased complexity. In this experiment
a similar neural architecture was tested, and it was shown that the labels for an
object can be grounded in visual perception. The robots in these approaches do not
have full linguistic and compositional abilities, but they can enrich their lexicon
with simple mechanisms mimicking compositionality. Those models are inspired
by research from developmental psychology and neuroscience to provide a better
understanding of the emergence of complex cognitive and perceptual structures.
Moreover, by employing the DR approach they provide the basis to test novel
algorithms and methodologies for the development of effective interaction between
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humans and also autonomous robotic systems. Both sets of studies emphasised the
importance of integrating language and embodied perception.

In addition, early models captured the fusion of language and multi-modal
perceptions or aimed at bridging the gap between formal linguistics and bio-
inspired systems. For those approaches the idea is a certain abstraction of the
environment and its representation in testing for language learning.

For instance, with the Cross-modal Early Lexical Learning (CELL) framework,
Roy and Pentland proposed a model of embodied word acquisition [239]. CELL
is based on a multi-modal learning scheme where semantic categories and object
labels are learned simultaneously. Sequences of phonemes that are detected in a
short time window are interpreted as words and associated with visual prototypes,
which are represented by a histogram for the object’s shape. The learning takes
place semi-supervised using a short-term memory for identifying the reoccurring
pairs of acoustic and visual sensory data, which are later passed to a long-term
representation of extracted audio-visual objects. In an experiment with data from
caregiver-infant interactions it was shown that the system is able to pick up the
ideal link of sounds forming a word (or in rare cases an onomatopoeic sound) for
an object shape and thus to associate a meaning with certain chains of phonemes.
Although the model shows that language learning is much more effective, if the
learning is grounded in visual perception, it is constrained to the abstraction of
words from input phonemes and the association of the words with shapes.

Based on the assumption that human “language is unlimited in any practical
sense”, van der Velde and de Kamps proposed the NBA model for processing
language on a combinatorial level [284]. In this architecture word assemblies are
bound to specific roles or specific fillers and are connected with gates that can
establish a temporary connection between certain word assemblies and thereby
form a structure of words. These bound assemblies can account as sub-assemblies
for higher level structures such as sentences. Yet, the model is implicitly assuming
a word representation as a starting point and suggests that preprocessors can
determine a word in a sentence and can determine the grammatical role of a word.
The assumption includes a decoupled processing of sounds to words as well as the
connecting with special (amodal1) binding units.

Due to the vast complexity of language, however, some models rely on well-
understood Chomskyan formal theories, which are difficult to maintain in the light
of recent neuroscientific findings, e.g. of non-infinite-recursive mechanisms and the
evident involvement of various – if not all – functional areas in the human brain in
language [222, 225]. A substantial number of studies indicate that the cognitive
processes – including language processing – originate in multi-modal interactions
with the environments and are encoded in terms of the overall goal involving all the
relevant effectors [15, 30]. Other integrating or constructive models are constrained
to single words, neglecting the temporal aspect of language, e.g. that both, the
representation on the level of speech sounds and the processing with a multi-time
resolution are important [62, 125].

1Compare chapter 2.1.2.
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5.1.2 Language Acquisition in a Recurrent Neural Model

In a recent study, Hinoshita et al. claimed that for human language acquisition
just an “appropriate” architecture is sufficient and provided a model based on
the MTRNN [126]. The network model learns language from continuous input of
sentences composed of words and characters that stem from a small grammar.
For the model no implicit information is provided on word segmentation and on
roles or categories for words. Instead, the input is modelled as streams of spike-like
activities on character level. During training, the architecture self-organises to
the decomposition of the sentences hierarchically, based on the explicit structure
of the inputs and the specific characteristic of some layers. The authors found
that the characteristics, e.g. the information processing on different timescales,
indeed leads to a hierarchical decomposition of the sentences in a way that certain
character orders form words and certain word orders form the sentences. Although
the model was reproducing learned symbolic sentences quite well in the study,
generalisation was not possible to test, because the generation of sentences was
initiated by the internal state of the Context-controlling (Csc) units, which had to
be trained individually for every sentence in the model.

Recurrent Neural Model with Embodied Perception

From the hypotheses on language processing in the brain2, we can obtain that a
neural model for natural language production should include a horizontal processing
from conceptual level over lexical representation and lemma selection up to phon-
ological encoding. Additionally, conceptual representations should be distributed
over the full context in general and the involved sensory modalities (on a certain
abstraction) in particular.

We can follow up on the MTRNN as a model for language production and
incorporate embodied perception based on real world data. For both, the verbal
utterances and the perception, input and output representations should be employed
that are neurocognitively plausible. Furthermore, it should be avoided to directly
provide structural information about the language to study how the architecture
acquires this language. Important properties of our model would be to generalise
and to show some compositionality based on statistical composition of sounds (as
shown by [126]) as well as word contingency formation during learning (compare
chapter 2.1.3). To acquire real world data and test the model in a language
acquisition task in an embodied and situated agent, a NAO humanoid robot (NAO)
should be utilised and is supposed to learn language in interaction with a teacher
and its environment (in terms of different shaped and coloured objects).

Overall the goal of this model is a) to narrow down temporal dynamics and
connectivity characteristics for an appropriate architecture and b) to study the
conceptual representation embedded in sensory information.

2Compare section 2.1.2.
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5.2 Extended MTRNN Model
To fulfil the aforementioned requirements and test for plausible characteristics
for the semantic processing of verbal utterances in an embodied language un-
derstanding model, both specific hypotheses3 are incorporated into one model
called embMTRNN: a) speech is processed on a multiple-time resolution, and b)
semantic circuits are involved in the processing of language. The neural circuit
is overall modelled as an Continuous Time Recurrent Neural Network (CTRNN)
to achieve a reasonable neurocognitive plausibility, but also to be able to analyse
the networks behaviour on cortex level. More precisely, for the proposed model
an MTRNN is defined to process verbal utterances over time [302], extended by
several feed-forward layers to integrate embodied perceptions during the processing
of utterances.

The MTRNN part4 is compiled of an Input-Output (IO) layer and two context
layers called Context-fast (Cf) and Context-slow (Cs). The extension part consists
of an Embodied Input (EI) layer, an Embodied Fusion (EF) layer, and an Embodied
Controlling (EC) layer. Figure 5.1 provides an overview of this architecture.

Figure 5.1: Architecture of the embMTRNN model: a Multiple Timescale Recurrent
Neural Network (MTRNN) extended by embodied perception from the scene. A sequence
of phonemes (verbal utterance) is processed over time, while the perceived embodied and
situated information is constantly present.

The central hypothesis for this model on computational level is that during
learning, the MTRNN layers self-organise to the decomposition of a semantic
meaning into a verbal utterance on phoneme level over time, while the feed-forward
layers associate the meaning with the embodied perception. For the production of
utterances the feed-forward layers supposedly have to abstract the meaning from
the embodied input, whereas the MTRNN functions as a predictor of the next
phoneme based on the context information and the previous sequence of phonemes.

3Compare chapter 4.1.1 and chapter 2.1.2.
4Compare chapter 4.4.
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5.2.1 Information Processing
The neurons in the EI layer provide a constant input of visual shape, colour, and
position information of a certain scene s into the architecture, while neurons in the
IO layer produce a continuous stream of phonemes to generate verbal utterances.
From the embodied perception, input activity is fused and convoluted into the EC
layer and then copied into the initial internal states c0(s) of the Csc units at time
step t = 0. From the internal states c0(s) the production of phonemes is initiated.

To cope with a continuous stream of phonemes – one at a time – the neurons
in the IO layer are specified by a decisive normalisation function (softmax), while
for the neurons in the remaining layers the proposed5 logistic function flogistic with
parameters κh = 0.35795 for range and κw = 0.92 for slope is used. As a baseline,
the MTRNN layers are specified by increasing timescale values of τ = 2, τ = 5, and
τ = 70 for the IO, Cf, and Cs layers respectively, based on previous work [126, 302],
indicating that these settings work well for language learning scenarios. In later
sections of this chapter we will discuss experiments investigating these parameters
comprehensively (upcoming in section 5.4.3).

Learning

While training the architecture, the MTRNN learns verbal utterances describing
the scenes and self-organises the weights as well as the internal state values of the
Csc units. These self-organised values are then transferred backwards to the EC
layer and associated with the present embodied perception in the EI layer. For
training the MTRNN, an adaptive variant of the Backpropagation Through Time
(BPTT) algorithm is used6. Specifically, the BPTT is based on the Kullback-Leibler
Divergence (KLD) as respective error function, but it also receives correcting errors
by the Teacher Forcing (TF) signal. While training, the gradients are also used to
update the internal states c0(s) of the Csc units7.

For training the association of the EC layer with the EI layer, the Least Mean
Square (LMS) is employed as well, specifying the error on the internal states of the
neurons in the extensions as follows:

∂herror

∂zi
=


(yi − y∗i )f ′sig (zi) iff i ∈ IEC

f ′sig (zi)
∑

k∈IEC

wk,i
∂herror

∂zk
iff i ∈ IEF

, (5.1)

where the desired output y∗ corresponds to the activity derived from the c0 values:

y∗i = fsig(ci) ∀i ∈ IEC . (5.2)

The adaptation of the weights and biases are analogue to adaptations for the
weights and biases in the MTRNN part.

5Compare chapter 4.3.2.
6Compare chapter 4.3.
7Compare chapter 4.4.
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Production

During testing, a perceived embodied input is fed into the EI layer and subsequently
EC values are abstracted. From the EC, the corresponding values of Csc units are
calculated using the inverse of equation 5.2, which in turn initiate the generation
of a corresponding verbal utterance. Those processing steps are carried out in a
single set of computation – no additional training or adaptation is necessary.

In this way, the abstracted embodied perception is modulating the production
of a verbal utterance. The values of the EC (or the Csc units respectively) form
the latent representation for perceived scene. While producing a sequence forward
from the Csc units, we can inspect the neural activity on all layers to study how,
for example, a stream of phoneme is formed by the intermediate layer.

5.3 Embodied Language Acquisition Scenario

Our scenario for this model is the interaction between a human teacher and a
robotic learner, which is supposed to learn language from scratch by grounding
utterances in its embodied experience, but also is supposed to use its learned
language to describe novel situations. In this thesis the position is supported that
it is important to test the learning in a real environment to face the influence of
natural noise and uncertainty of perception8.

A NAO is placed in a scene and receives an utterance from the teacher, who
describes the scene, e.g. ‘the apple has colour green’. Based on the neural
architecture the robot should learn, in a self-organised way, how to bind the visual
scene information (such as the specific combination of the visual properties) with
this verbal expression to be able to describe another scene like ‘the banana has
colour green’ correctly. Generalisation should emerge by using possibly learned
components.

To control the setup, the robot is fixed in front of a table with the field of view
covering only the table (see figure 5.2c). For every scene a single object of four
distinct shapes (apple, banana, phone, or dice) and four colours (blue, green, red,
or yellow) is placed either on the center or towards the borders of the field of view
(top, bottom, left, or right). The rotation of the object or a precise placement is
not prescribed. All verbal utterances for the descriptions are taken from a small
symbolic grammar as presented in figure 5.2a. However, every symbolic sentence
is transformed into a phonetic utterance based on phonemes from the ARPA-
bet9 and four additional signs to express pauses and intonations in propositions,
exclamations, and questions: B = {‘AA’, ..., ‘ZH’} ∪ {‘SIL’, ‘PER’, ‘EXM’, ‘QUM’},
with size |B| = 44. The full corpus of the used and encoded utterances can be
found in appendix D.8.

8Compare chapter 2.2.
9ARPAbet is a general American English phone set transcribed in ASCII symbols that was

developed in the 1976 Speech Understanding Project by the Advanced Research Projects Agency.
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S → INFORM.
INFORM → POS is a OBJ
INFORM → OBJ has colour COL
COL → blue | green | red | yellow
OBJ → apple | banana | dice | phone
POS → above | below | left | right

(a) Grammar.
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(b) Encoded utterance.
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(d) Encoded visual perception.

Figure 5.2: Scenario and encoded representations of embodied language learning in
human-robot interaction.

5.3.1 Utterance Encoding

To encode an utterance into a sequence s = (p1, . . . , pT ) of neural activation over
time, a phoneme-based adaptation of the encoding scheme suggested by Hinoshita et
al. is used [126]: The occurrence of a phoneme pk is represented by a spike-like neural
activity of a specific neuron at relative time step trel. In addition, some activity
is spread backwards in time (rising phase) and some activity is spread forwards
in time (falling phase), represented as a Gaußian function g over the interval
[−ω/2, . . . ,−1, 0,+1, . . . , ω/2]. All activities of spike-like peaks are normalised by
a decisive normalisation function for every absolute time step t over the set of
input neurons. Over absolute course of time t the peaks mimic priming effects
in articulatory phonetic processing. For example, the previous occurrence of the
phoneme ‘P’ could be related to the occurrence of the phoneme ‘AH’ leading to an
excitation of the respective neuron for ‘AH’, when the neuron for ‘P’ was activated.
A sketch of the utterance encoding is shown in figure 5.3.
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Figure 5.3: Schematic process of utterance encoding. The input is a symbolic sentence,
while the output is the neural activity over |IIO| neurons times Ta time steps.

The Gaußian g for pk is defined by:

g(pk, trel, i) =


exp

(
−t2rel
2σ2

)
iff pk = Bi

0 otherwise
, (5.3)

where trel = 0 is the mean and the variance σ represents the filter sharpness factor.
A peak occurs for the neuron i ∈ IIO with |IIO| = |B|, if the phoneme pk is equal
to the ith phoneme in the phoneme alphabet B. From the spike-like activities the
internal state z of a neuron i at time step t is determined by:

zt,i =

λ ·max
(
g(pk=1...|s|, trel = −ω/2 . . . ω/2, i)

)
iff t = γ + kν + trel

0 otherwise
, (5.4)

λ = ln
( 0.9

1.0− 0.9 (|IIO| − 1)
)

, (5.5)

where ω is the filter width, γ is a head margin to put some noise to the start of the
sequence, ν is the interval between two phonemes, and λ is a scaling factor for the
neuron’s activity y∗. The scaling factor depends on the number of IO neurons and
scales the activity to y∗ ∈ ]0, 0.9] for the specified decisive normalisation function:

y∗t,i = fsoftmax(zt,i) = exp (zt,i)∑
j∈IIO

exp (zt,j)
. (5.6)

For the scenario, the constants are set to γ = 4, ω = 4, σ2 = 0.3, and ν = 2. The
ideal neural activation for an encoded sample utterance is visualised in figure 5.2b.

The developed utterance encoding is neurocognitively plausible, because it
reflects both, the neural priming effects (discussed in chapter 2.1.2) as well as the
fluent activation on a spatially distinct phonetic map [231]. Although research on
neural spatial organisation of phoneme coding is in its infancy, there is evidence
for an early organisation of the Primary Auditory Cortex (A1) and the Superior
Temporal Sulcus (STS) forming a map for speech related and speech unrelated
sounds [45, 62, 167]. The input representation is also in line with an ideal input
normalisation to the mean of the activation function, as suggested in [156].
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5.3.2 Visual Perception Encoding
The aim for encoding the visual perception is to capture a representation that
is neurocognitively plausible, but on a level of abstraction of shapes as found
in the posterior infero-temporal (PIT)/V4 area. Specifically, the shape, colour,
and position encoding of the object in NAO’s field of view is determined by the
object perception method described in in chapter 3.3 (compare figure 3.6). The
measured and normalised shape, colour, and position features (Fsha, Fcol, and Fpos)
are invariant to rotation and scaling and capture the shape persistently over time.
Nevertheless this scenario relies on embodied perception as the context for the scene
that is constantly present, thus – for now – only the initial snap-shot is necessary.
A sketch of the visual perception encoding is shown in figure 5.2d.

5.4 Evaluation and Analysis
To understand the dynamics of the architecture in this study, we are interested in
evaluating the generalisation capabilities and the role of some key characteristics
like connectivity and timescales. It is also aimed at analysing the network behaviour
in generating utterances for known as well as for novel scenes and the influence of
perturbations in the verbal utterances.

To test and analyse the model, a data set was collected consisting of all possible
scenes and their respective verbal description. From the grammar 32 different
combinations can be obtained, which were set up as scenes and in turn used for
collecting different examples. The corresponding verbal utterances are reasonably
complex sequences with a length of 30 to 46 time steps (compare figure 5.2b).
Although the model captures priming effects, the neural activity between two
adjacent time steps is sparsely dependent, thus leading to a vast solution space for
sequences generated from the context. Subsequently, a series of experiments was
conducted for which the data was divided carefully, but randomly, into a training set
and a test set (50:50) – making sure that every scene is included only in one of these
sets – and trained ten randomly initialised systems. For every setup this process
was repeated ten times with different distributions of data in training and test set
(10-fold cross-validation) to arrive at 100 runs for analysis. The parameters of the
network and the meta-parameters were mostly chosen based on the experience,
made in chapter 4.5 as well as in [126] and are detailed in table 5.1. The number of
neurons in the input layers |IIO| and |IEC| are given by the input representations.
The size of EC depends on and is equal to the size of Csc, which was determined
with |ICsc| = d|ICs|/2e. As the termination criteria for the learning10, a maximum
number of epochs was used with θ = 50,000 and minimal average KLD and CEE
on the IO and EI layers with εIO = 5.0 × 10−4 and εEI = 5.0 × 10−6. Using fixed
termination criteria (based on preliminary experiments) is favoured over using
validation sets to allow for comparisons on the meta-parameters.

10Optimisation of learning methods and parameters was done in preliminary experiments that
are been reported in chapter 4.6 or are omitted for brevity.
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Table 5.1: Standard parameter settings for evaluation.

Parameter Description Domain Baseline Value

|IIO| Number of IO neurons |B| 44
|ICf | Number of Cf neurons N>0 80
|ICs| Number of Cs neurons N>0 23

|ICsc| Number of Csc units N[1,...|ICs|] 12
|IEC| Number of EC neurons |ICsc| 12
|IEF| Number of EF neurons N>0 18

|IEI| Number of EI neurons |Fsha|+ |Fcol|+ |Fpos| 21
W0 Initial weights range R[−1.0,1.0] ±0.025
C0

0 Initial Csc values range R[−1.0,1.0] ±0.01

τIO Timescale of IO neurons N>0 2
τCf Timescale of Cf neurons N>τIO 5
τCs Timescale of Cs neurons N>τCf 70

α Teacher forcing R[−1.0,1.0] 0.1
ηmax Maximal learning rate R]0.0,10.0] 1.0
ηmin Minimal learning rate R]0.0,ηmax] 1.0× 10−6

ξ+ Increasing factor R>1.0 1.01
ξ− Decreasing factor R]0.0,1.0[ 0.96

η0, β0, ζ0 Initial learning rates R]0.0,10.0] 0.05

5.4.1 Generalisation
To be able to compare the generalisation capabilities, the F1 score quality measure
is used, which is determined by precision and recall and defined as follows [283]:

qprecision = tp

tp+ fp
, qrecall = tp

tp+ fn
,

qF1-score = 2 · qprecision · qrecall

qprecision + qrecall
, (5.7)

where all syntactically correct and matching utterances were specified as tp (true
positives), all correct, not matching utterances as fp (false positives), and strictly
all incorrect utterances as fn (false negatives). Compared to the Word Error Rate
(WER) this measure provides a better insight on confusion of syntactically correct
utterances as well. To also compare resulting utterances with desired utterances
on phoneme level, the Edit distance11 was used to determine the Phoneme Error
Rate (PER), via setting the costs to 1.0 for deletions, 1.0 for insertions, and 2.0 for
substitutions [245].

11Compare chapter 3.2.
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Table 5.2: Parameter variation in the generalisation experiment.

Dimension Parameter Values

1 〈|ICf |, |ICs|〉 {〈40, 47〉, 〈40, 23〉, 〈80, 23〉, (160, 23〉, 〈160, 11〉}

In the first experiment, the proportions of the Cf and Cs layers were tested with
respect to the size of the phonetic alphabet (thus the IO layer size) and each other
respectively (compare table 5.2 for the varied parameters). The results in table 5.3
and table 5.4 show that the architecture can be trained perfectly in most cases, and
also produces correct utterances for new scenes on a moderate level: for a suitable
parameter setting, networks reach an qF1-score of up to 1.0 on the training set and
0.476 (edit distance down to 0.406) on the test set with an average over all random
seeds of 0.998 on the training set and 0.171 (edit distance down to 0.66) on the test
set. From the same results for the test set only, as shown in the chart in figure 5.4,
we can learn that the proportions of the network dimension are important for ideal
generalisation capabilities.

Table 5.3: Comparison of F1-score for different network dimensions.

|ICf |/|ICs| 40/47 40/23 80/23 160/23 160/11

training set best 1.000 1.000 1.000 1.000 1.000
test set best 0.400 0.400 0.476 0.400 0.400
training set best average * 1.000 1.000 1.000 1.000 1.000
test set best average * 0.246 0.256 0.337 0.238 0.224
training set average 0.982 0.954 0.999 0.991 0.986
test set average 0.108 0.111 0.171 0.079 0.076
* Averaged over all best networks of all data set distributions.

Table 5.4: Comparison of mean edit distance for different network dimensions.

|ICf |/|ICs| 40/47 40/23 80/23 160/23 160/11

training set best 0.000 0.000 0.000 0.000 0.000
test set best 0.504 0.591 0.406 0.412 0.510
training set best average * 0.000 0.000 0.000 0.000 0.000
test set best average * 0.616 0.659 0.553 0.571 0.588
training set average 0.008 0.008 0.008 0.009 0.008
test set average 0.743 0.768 0.660 0.684 0.692
* Averaged over all best networks of all data set distributions.
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Figure 5.4: Comparison of the F1-score and mean edit distance on the test set for the
generalisation experiment. For (a) the dark/blue bars and error bars present the mean
qF1-score and standard error of means respectively, while bright/red bars show the qF1-score
of the best network for the respective setup (larger is better). In (b) the bright/cyan bars
and the error bars reveal the average mean edit distance and the standard error of means
respectively, while dark/violet bars present the mean edit distance of the best network
for the respective setup (smaller is better, worst possible is 2.0).

The qF1-score on utterance level is much stricter than the PER, thus we can obtain
that uttering the complete meaning of the scenes is quite difficult, while single
phonemes are – in relation – less often wrong. In particular, networks with larger
Cf layer make considerably less mistakes on phoneme level although generalisation
performance decreases, while networks with smaller Cf confuse more phonemes.
Note that due to the random selection the architecture had to describe scenes for
which it had not seen any aspect (shape, colour, or position) before. This was
intended to keep the scenario realistic and observe the effects.

In the experiment, three types of errors were observed for incorrect utterances:
a) minor substitution errors in terms of a single wrong phoneme or a pause that
was too long (‘SIL SIL’ instead of ‘SIL’); b) word confusion errors; and c) phoneme
chains without any meaning. Table 5.5 provides example results for observed errors.
Errors of type (a) occurred often for networks in which the MTRNN part did not
converge well to small average errors. For errors of type (b) only few instances were
found, and in these cases the confused words were found mostly at the end of the
sentence. A reason for this error was not found in this experiment, but further
experiments (compare Sec. 5.4.3) indicate a link to the timescale parameter. The
type (c) error appeared often in cases in which the training set and the test set are
in particular structurally different, e.g. when the test scene consisted of unknown
aspects as described above.
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Table 5.5: Examples for different correct and incorrect utterances for errors (a), (b),
and (c). Incorrect phonemes are emphasised bold red.

correct
B AH N AE N AH SIL HH AE Z SIL K AH L ER SIL B L UW PER

substitution error (a)
R AY T SIL IH Z SIL AH SIL B AY S PER

substitution error (a)
B IH L OW SIL IH Z SIL SIL AH SIL AE P AH L PER

word confusion (b)
B AH N AE N AH SIL HH AE Z SIL K AH L ER SIL G R IY N PER

phoneme babbling (c)
AE P AH AE SIL AH SIL AE AE Z K P L ER EH R EH D . . .

5.4.2 The Role of Connectivity and Pathways
During training of the embMTRNN model, it was found that the connection
weights from the Cf to the Cs layer as well as from the IO to the Cf layer converged
towards zero in many cases. This means that the highly dynamic networks organised
themselves towards a directed flow of information from the context to the phonetic
output instead of a mutual exchange of information. The effect is illustrated in
figure 5.5 for a representative case.

To test the hypothesis that the MTRNN architecture might already be more
complex than necessary and should be studied with less initial connectivity, an
experiment was set up with modified connectivity comparing the following setups:

1. No modification (baseline): all neurons of a layer are connected to all neurons
of the same and of adjacent layers.

2. All neurons of a layer are connected to all neurons of the same and of adjacent
layers, but the connection weights from Cf to Cs and from IO to Cf are
initialised with 0.0 instead of ±0.025.

3. Connections from Cf to Cs and from IO to Cf are removed.

We trained the networks with the procedure and the standard parameters as
described above (see table 5.1), but increased the maximum number of epochs to
θ = 100,000 for the training, to ease the comparison of the training effort for the
modifications. The results presented in figure 5.6 show that on the test data the
qF1-score is slightly but not significantly higher for setup 2 compared to setup 1,
whereas the qF1-score is significantly (pt-test < 0.001) lower for setup 3 compared
to setup 1. However, the training effort for setup 2 is a bit but significantly
(pt-test < 0.01) smaller, and for setup 3 vastly larger (significant, pt-test < 0.001)
than for setup 1.
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 IO → Cf 

 Cf → Cs 

IO

Cf

Cs

CsCfIO

Figure 5.5: Connectivity for an example network trained with the standard parameters
and visualised as a Hinton diagram, where a square represents a connection weight from
a neuron (horizontal dimension) to another neuron (vertical dimension). The diagram has
been modified in a way that the strong connections are shown towards black (omitting
the sign to increase readability), while weak connections are shown towards white.

Note that for setup 2 a higher qF1-score, compared to setup 1, is not expected,
since in the training process all weights self-organise with respect to the partial
derivatives. However, the results indicate that the introduced bias of having low
connectivity from Cf to Cs and from IO to Cf leveraged the training process and
led to faster convergence. For setup 3 the results show that having no backward
connectivity makes the language acquisition problem much harder, indicating that
backward connections are indeed necessary.

In terms of types of errors for the incorrect utterances, considerable differences
between setup 2 and setup 1 were not found, but a larger number of substitution
errors occurred for setup 3 compared to setup 1.
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(a) F1-score on test set.
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Figure 5.6: Comparison of generalisation capability and training effort for modifications
of the MTRNN connectivity. For (a) the dark/blue bars represent the average F1-score,
while the bright/red bars show the F1-score of the best network for the respective setup.
In (b) the bright/cyan bars show the average mean edit distance, while the dark/violet
bars provide the mean edit distance of the best network for the respective setup. The
error bars denote the respective standard error of means.

5.4.3 The Role of the Timescale Parameter
In previous experiments we saw that general RNNs cannot capture long-term
dependencies well, compared to the MTRNN (compare chapter 4.5). The Elman
Recurrent Neural Network (ERNN) with additional Parametric Bias (PB) units
attached to the hidden layers (RNNPB, compare chapter 4.2.3), as well as the basic
CTRNN architecture (with no timescale mechanism) can only learn sequential data
related to language to some extent. For example, in preliminary tests the CTRNN
was able to reproduce learned utterances, but the generation of utterances for
novel scenes led to meaningless phoneme babbling. Basically those networks cannot
self-organise to the decomposition of the training sequences but to reproduce them
in whole, and thus a generalisation ability is not evident.

Because the concept of timescales was suggested to be crucial for hierarchical
abstraction in general and the language acquisition task in particular, the influence of
the timescale parameter was investigated. In a rigorous experiment, the combination
of timescale values of the neurons in the Cf and in the Cs layer was systematically
varied. More precisely the 2-fold up to 6-fold of the timescale for Cf with respect
to the timescale for IO (fixed to τIO = 2) and also the 2-fold up to 22-fold of
the timescale for Cs with respect to the timescale for Cf were tested. For every
combination, as shown in table 5.6, 100 networks in the procedure as described
above were trained, keeping all other parameters fixed. In sum, the architecture
was tested for 36 combinations leading to 3,600 trained networks.
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Table 5.6: Parameter variation in the timescale experiment.

Dimension Parameter Values

1 τCf τIO ·m, m ∈ {1, 2, 3, 4, 5, 6}

2 τCs τCf · n, n ∈ {2, 6, 10, 14, 18, 22}

Since we are interested in both, the influence on the convergence of the networks
for the given data set as well as in the generalisation capabilities, let us define a
mixed F1-score:

qF1-score,mixed =(qF1-score(training set average) + qF1-score(test set average)
+ qF1-score(training set best avg) + qF1-score(test set best avg))/4 . (5.8)

The result of the experiment is visualised in figure 5.7, where high (desired) scores
are shown in red and low scores are shown in blue. From the map we can obtain
that using increasing timescales for the different layers increases the score. However,
the scores do not differ much on a certain plateau: networks for timescale ratio
τCf/τIO of 2 and τCs/τCf of 6 or higher reached a score of > 0.6, but this score does
not increase considerably for larger timescale ratios. Among the results we can
find some peaks e.g. for τCf/τIO = 4, τCs/τCf = 14 (τCf = 8, τCs = 112), but the
differences in the score values compared to e.g. the baseline (τCf = 5, τCs = 70) are
not significant.

To investigate the differences in the results for networks with smaller timescale
ratio (both τCs/τCf and τCf/τIO) the erroneous utterances that those networks
produced on IO level were inspected. For both cases it was noticed that incorrect
words as well as substitution errors in the end of the utterances occurred more
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Figure 5.7: Mixed F1-score for different combinations of timescale values of the Cf and
the Cs neurons. Desired scores (high) are shown in red.
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often. The networks with smaller τCs/τCf ratio generated syntactically correct but
semantically not matching words more often for longer utterances, while networks
with smaller τCf/τIO in general started to generate meaningless phoneme babbling
more often. In sum, the results indicate:

• The timescale for neurons in Cf is ideally equal to the length of the number of
time steps for an average word length. For example, the average word length
in our scenario is 3.156 phonemes or 6.313 time steps, while the average inter-
word distance (distance between the beginnings of words including pauses) is
4.208 phonemes or 8.417 time steps.

• The timescale for neurons in Cs is ideally equal to or larger than the number of
time steps of the longest sequence for a high score. However, huge timescales
increase the training effort significantly. Please recall, in our scenario sequences
with length up to 46 time steps were used.

In an additional test the first indication was investigated further. The corpus
of utterances was modified in a way that all translations from words to phonemes
were changed to half the number of phonemes for the first setup and to double the
number of phonemes for the second setup. Again, the networks were trained with
different ratios τCf/τIO (compare table 5.6), while keeping the ratio fixed for the
first setup with τCs/τCf = 7 and for the second setup with τCs/τCf = 28 due to the
halved and doubled sequence lengths respectively. From the results in figure 5.8
we can take on that the estimate holds also for shorter and longer average word
lengths as well.

shorter
B AH N

G R
Z

baseline
B AH N AE N AH

G R IY N
IH Z

longer
B AH N AE N AH N AH B N AE AH

G R IY N R G IY N
IH IH Z Z

(a) Exemplary words.
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(b) Resulting mixed F1-score.

Figure 5.8: Comparison of mixed F1-score for different timescale values over shortened
and prolonged average word lengths. The timescale ratio are varied for τCf/τIO layer only.
For the first setup, all words have been artificially halved in length (to a minimal length
of one phoneme) and for the second setup, all words have been doubled in length. Results
have been normalised for each setup to increase readability.
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Figure 5.9: Training effort (number of training epochs u until termination) for different
combinations of timescale values. Desired (low) numbers are shown in red.

To also compare the difficulty in training the networks, the average number
of epochs until the training reached one of the termination criteria was examined
(see figure 5.9). For some combinations of timescale values around τCf/τIO = 2,
τCs/τCf = 10 (τCf = 4, τCs = 40) the smallest training effort was found, while for
larger timescales, both for Cf and Cs neurons the effort increases.

Combining both results, the scores on training and test data, and the training
effort can provide a rough estimate of good parameter values for practical applic-
ations. For example, in figure 5.10 a possible combination is shown, where the
proportion of the score are weighted five times over the proportion of the effort.
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Figure 5.10: Combination of mixed F1-score and training effort (5:1) for practical
applications. Desired values are shown in red and may indicate good parameters.
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5.4.4 Network Behaviour
To provide a better understanding of the embMTRNN, the neural activity of the
Cf layer was analysed for the trained networks. The aim was to test whether this
layer had organised itself to represent the words in the utterances (compare [126]).
Using Principle Component Analysis (PCA), the dimensionality was reduced to
visualise trajectories over time for specific words. The start and end point of the
trajectory were defined as the first highest activity for the first phoneme and the
last highest activity for the last phoneme of the word in the IO layer.

The results reveal several characteristics (see figure 5.11 for the trajectories of a
typical network): Firstly, the neural activity in the Cf layer is nearly identical for
the same words from trained utterances. Secondly, the same words from untrained
utterances have a quite similar activity pattern. Thirdly, words of the same type
(shape, colour, or position words) have particularly related activity patterns. From
the data we can observe that the networks self-organise to specific patterns for
certain roles. Fourthly, words with similar phonetic representations have different
activities, if the type of the word is different. Low correlation was found of activity
for phonetically similar but semantically different words.

−6 0 2 4
−4

−2

0

2

4

6

PC1

PC
2

apple
banana
phone

below
left
right

blue
red
yellow

−4 −2

(a) Words of similar type.
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AE P AH L (apple) 
K AH L ER (colour) 
IH Z ... AH (is a)

PC
2

(b) Words with similar phonetics.

Figure 5.11: Comparison of neural activation in the Cf layer for different words. The
dimensionality has been reduced from |ICf | to two dimensions (PC1 and PC2) and the
beginning (∗) as well as the end (◦) of the words have been marked. The dark/blue lines
represent words from utterances of the training set and the bright/red lines show words
from utterances of the test set. Arrows indicate the same phoneme ‘AH’.

In addition, the tendency was found that the activation of a word primes the
activation of other grammatically related words. In terms of trajectories, it can be
observed that the end point of the word ‘colour’ is close to the starting point of
all colour words, and the end point of a position word is close to the starting point
of ‘is a ...’ (compare figure 5.11a and b).
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5.4.5 Robustness under Uncertainty
To study how the embMTRNN model performs and forms internal representations
under perturbation, the training was also conducted with adding noise on the
production side. Since the noise is not added on the input, the goal is to test for the
overall robustness rather than facilitating the training. Two models for noise were
developed that add perturbation on different levels: the first is adding Gaußian
jitter12 to the desired sequence of phonemes in every epoch, time step by time
step. To maintain the representation of decisive normalisation, the activity is first
modified by noise and then again normalised as follows:

y}u,t,i = gnoise,Gauß(y∗t,i, σa) = max(0.0,min(1.0, y∗t,i + ynoise)) | ynoise ∈ Gµ=0,σa , (5.9)

y~u,t,i = gnoise,Gauß,norm(y∗t,i, σa) =
y}u,t,i∑

j∈IIO

y}u,t,j
, (5.10)

where the variance σa determines the width or strength of the jitter.
The second model is adding errors by phoneme substitution to the sequence.

For a phoneme substitution13 in every time step, a phoneme in the target sequence
is replaced by another random phoneme from the alphabet B with a low probabil-
ity φ. For the experiment, both models are varied over the respective variable as
listed in table 5.7, while again keeping the baseline parameter settings fixed and
performing 100 runs each. Note, larger variances σa (normalised Gaußian jitter) and
probabilities φ (phoneme substitutions) respectively have been investigated as well,
but showed a progressive lower generalisation as well as overall slower convergence
and thus are omitted here for brevity.

For comparing the impact on the performance for training and test set, both on
sequence and on phoneme level, the mixed F1-score is used as well as a mixed edit
distance:

qedit-dist,mixed = (qedit-dist(training set average) + qedit-dist(test set average))/2 . (5.11)

Analogously to the mixed F1-score, the qedit-dist,mixed can provide an overall quality
measure in case of direct comparison of parameter settings. Comparing the course
of training in terms of the training error can visualise how the noise facilities the
training or leads to instability.

Table 5.7: Parameter variation of noise in the sequence of phonemes.

Perturbation model Parameter Values

Norm. Gaußian jitter variance σa {1, 2, 5} · 10−k, k ∈ {4, 5, 6}

Phoneme substitution probability φ {1, 2, 5} · 10−k, k ∈ {2, 3, 4}

12Compare chapter 4.3.5.
13Compare [126].

111



Chapter 5. Embodied Language Understanding in a Recurrent Neural Model

The results as presented in figures 5.12 and 5.13 show that both jitter and
phoneme substitution do not enhance the generalisation (although for both there
is a small increase notable) but leads to a graceful degrading. We can observe
that mainly the training is affected, first leading to a slight increase of epochs
until convergence for increasing noise (with respect to the desired minimal error
εIO = 5.0× 10−4) and second a transition to instability for large degrees of noise.
In fact, at some point the training oscillates around a similar smallest mean error
with a magnitude related to the noise level (compare the standard error intervals
for the mean training error). Since the noise is included in the (desired) output of
the sequence14 there will be a constant training error, although the model might
be well-trained already. In the graphs for the course of the error in training we can
detect that the oscillation takes place when the varied noise level is above the value
of the desired minimal error.

An inspection of the resulting internal representation (compare section 5.4.4)
showed no structural difference with respect to the varied noise level. With larger
levels of noise, however, the capability for decomposition decreases rapidly (for
jitter more than σa = 0.00002; for phoneme substitution more than φ = 0.005),
showing that the robustness is limited.

Overall, both noise models lead to comparable characteristics, although jitter
disturbs the precision of phoneme production, while phoneme substitutions disturb
building up a word. Since the perturbations are present on the output, the noise
is not facilitating the training or preventing over-fitting, but is causing that a
specific embodied perception is mapped to a fuzzy verbal sequence. As a sequence
is only seen as correct if produced exactly, throughout the testing the performance
is consequently dropping.

5.4.6 Summary

In sum, the experiments showed that the MTRNN can self-organise towards com-
positionality also for novel scenes. The architecture seems to be sensitive to a
certain ratio of Cf and Cs in achieving a good generalisation.

The timescale parameter played an important role for the generalisation. In the
experiment, it was possible to train the networks to some extent with equally set
timescales (thus basically using a generic CTRNN), but these networks could only
barely reproduce the trained utterances and produce arbitrary babbling for test
scenes. For a range of timescale settings the training effort reduced considerably,
indicating that the timescales could cover the training data well in terms of shorter-
time and longer-time regularities. In these cases, the weight matrices seem a
little more sparse, indicating that the parameter space was larger than needed
and therefore the network offered several optima in training. Thus on average, a
convergence was faster due to the random initialisation.

14More precisely the noise is also present in the forward processing in the IO layer due to using
TF. Depending on the parameter for TF, this is the case for a small fraction only.
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(b) Average mixed F1-score.
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Figure 5.12: Influence of perturbing output sequences by normalised Gaußian jitter on
training and generalisation: mean error (KLD) with confidence interval (standard error)
over training epochs u (a, c, e), comparison of varied variance parameter σa (b, d, f),
with error bars reflecting the standard error, each over 100 runs.
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(d) Average mixed edit distance.
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Figure 5.13: Influence of perturbing output sequences by phoneme substitutions on
training and generalisation: mean error (KLD) with confidence interval (standard error)
over training epochs u (a, c, e), comparison of varied variance parameter σa (b, d, f),
with error bars reflecting the standard error, each over 100 runs.
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5.5 Intermediate Discussion
On a broader reflection, the combination of visual perception and a recurrent
network that includes different timescales in processing verbal sequences provides
an architecture that self-organises towards the perceptual meaning of learned utter-
ances in a real world scenario. Experiments have shown that such an architecture
apparently is able to understand verbal utterances and describe novel scenes with
the correct corresponding verbal utterances. The analysis revealed that novel scenes
are described by recomposing the correct words, which have been grounded in the
perception of different shapes, colours, or positions.

Analyses of the errors for incorrect utterances revealed a) minor substitution
errors, b) word confusion errors, and c) phoneme babbling errors. In cases of type
(a) listening humans would presumably consider this a normal inaccuracy and
automatically correct the error. Errors of type (b) may indicate effects of the
memorising capacity. For the trained networks, we observed the word confusion
error mostly in such cases where timescale parameter values have been chosen
suboptimally. Neural activity in the Cs layer revealed that the networks seemingly
could not produce the correct word, because the meaning of the scene vanished
at a certain time step and the production of the most probable next word was
initiated. Further research in the brain’s information habituation could clarify this
observation. Case (c) clearly shows that generalisation was sometimes difficult.
The perceived scene could not get matched to any trained scene in the Csc space,
but also could not easily derive a modulation for this scene that results in the
production of another meaningful chain of words. For the scenario, the task was set
quite hard for controllability: there was a good chance during cross-validation for
not including a certain shape, colour, or position in the training data. Nevertheless,
for the general case it is open to clarify whether this degree of difficulty is inherent,
e.g. if the error rate is comparable to certain learning stages in young children
during early language learning [145].

During training, an observation made was that connectivity plays an important
role for the behaviour of the network. Although we saw that the connection weights
from the Cf to the Cs layer as well as from the IO to the Cf layer converged
towards zero in many cases, we learned from the experiment on connectivity that
we cannot leave out the backward connections. The experiment showed that a
more directed flow of information from the context to the phonetic output was
the result of the training, but a certain feedback seems to be important as well.
In the light of neuroscientific evidence, the directed information flow from the
conceptual network (reflected by Cs) to the articulatory areas (reflected by IO) is
indeed plausible (compare chapter 2.1.2 and [125]). Moreover, in computational
studies, researchers found that network architectures of neurocognitively plausible
integrate-and-fire-neurons tend to form a mostly feed-forward structure out of
initial randomly connected networks for recurring input patterns [132]. However,
for many cortical regions of the human brain, for example in vision, it was also
reported that certain proportions of backward (feedback) connections exist and
play an important role [89, 101].
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The examination of the timescale parameter revealed that the hysteresis mech-
anism (the timescales) is a key element for learning complex sequences like longer
phoneme chains. Firstly, the results confirm that the progressively slower temporal
dynamics may be a required architectural characteristic that favours the emergence
of language. Secondly, the results suggest that ideal parameter values are indeed
problem-dependent, but less ideal values still lead to good performances. For the
language acquisition problem, it can be suggested to choose the average word-length
in time steps as timescale value for the Cf layer and to choose the maximal length
of the sequences as timescale value for the Cs layer. These results can perhaps
get transferred to other problems where one uses the average length of the fast
dynamics and maximal length of the slow dynamics as the respective values. With
an inversion of the argument, a suggestion made for this thesis is that perhaps the
average length of words and the limit of length for utterances used by humans stem
from the inherent temporal dynamics of the human brain.

Including noise into phonetic sequences showed a minor and not significantly
positive impact on the generalisation, but for up to a fair degree of noise also only
a minor negative impact on the training effort. The architecture seems reasonable
robust, as the internal representations form similarly despite noise on different
levels, but for a certain amount of stronger noise a successful training is difficult.
Surprisingly, misspelling a word does not make a considerable difference for per-
formance or the self-organisation of the representation, compared to imprecise
phoneme production. However, the margins for noise until the architecture degrades
in performance and convergence are relatively small. Thus, the perturbation is
perhaps not entirely different from the one induced by adaptive RPROP mechanism.

The dependency that was found between the size of the architecture and the
size of the problem instance is less desirable but in line with experience from
associator networks [156]. However, additional studies could address this crucial
issue by considering mechanisms on architectural level to allow for dynamics
in connectivity as well as in size. In addition, architectures could be tested for
scalability by taking more complex scenes and verbal descriptions into account,
including interrelations of multiple objects or embodied experience of a broader set
of real world situations.

Overall, the study described in this chapter supports that the embodiment of
language in perception and a temporally dynamic hierarchical structure, with a
hysteresis mechanisms in terms of different timescales, are important aspects of
an appropriate architecture for language. With such an architecture, a humanoid
robot – mimicking a learning child – can pick up a language from sequences of
sounds by decomposing a structure in the language and ground elements into visual
perception. In the suggested recurrent neural model, the integration of embodied
sensory input is limited to a single modality and static sensation. Although this
characteristic enables generalisation, the architectural characteristics must be
refined further to capture more closely the conditions in the brain. In particular,
a refined model needs to capture temporal dynamics in sensation on a multi-model
level as well.
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Chapter 6

Multi-modal Language Grounding

In this chapter, we will build up the neural model from the last chapter and increase
the complexity on several dimensions. At first, we will examine the effects of unifying
the model towards coherent and recurrent connectivity. With this first step we
can gather an insight into the capabilities of a fully recurrent architecture that is
able to process sequences of embodied perception. Secondly, we will transfer the
model to another temporally dynamic modality, namely the perception of dynamic
auditory input. At this point, the fully recurrent architecture will allow us to study
the language acquisition capabilities from comprehending up to producing speech.
Thirdly, we will investigate the extension to multiple modalities in terms of the
temporally dynamic perceptual input of somatosensation and vision for grounding
the production of speech. This final model will enable us to build up analogies in
neurobotic agents that are grounded in real world scenarios of interaction with its
environment, to study plausible architectural characteristics [39, 293].The analogies
will allow to examine how the information processing gets structured and how
internal representations form.

6.1 Previous Studies on Grounding in Dynamic
Perception

With the insight from the previous model of an Multiple Timescale Recurrent Neural
Network (MTRNN), extended for embodied perception (the embMTRNN model1),
we are able to describe language acquisition in a small and static environment. We
learned that the recurrent connections can self-organise for the task of producing
speech and that the timescales in information processing seem crucial for language.
By refining the architecture for processing dynamic visual perception, auditory
perception (comprehension), and multi-modal perception, we can take a more
rich and realistic environment and interaction into account. For achieving this
endeavour, we will adopt additional principles as discussed in chapter 2.1 and
insight from previous studies in the respective direction.

1Compare chapter 5.
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6.1.1 Integrating Dynamic Vision

Models for grounding in dynamic visions are supposed to capture the alteration of
e.g. perceived objects in terms of morphology by changing external conditions up
to motion by self-induced manipulation. Due to the large complexity, models were
often based on a certain decoupled preprocessing or simplification of the visual
stream to achieve a feasible level of coherence in the visually perceived features.

For example, Yu developed a model that coupled lexical acquisition with object
categorisation [305]. The model learns from visual data that is simplified and
clustered towards colour, shape, and texture features and from spoken descriptions
in terms of single or a small number of words to form word-meaning associations.
In particular, visual and auditory data was recorded from subjects reading from
a picture book, while looking at its pages using a head-mounted camera. The
learning processes of visual categorisation and lexical acquisition was modelled
in a close loop and led to the emergence of the most important associations,
but also to the development of links between words and categories and thus to
linking similar fillers for a role. This development occurred over several iterations
in which probabilities for a co-occurrence were adapted and thus bootstrapped
a shared representation. Despite the aim for explaining early learning, the words
were given in whole and therefore it was not tested how combinations of sounds
(phonemes) could be composed to cover a visual category. The perception in the
visual stream stemmed from unchanging shapes in front of a plain background and
was preprocessed towards visual features that reflect little morphology over time.

Monner and Reggia modelled the grounding of language in visual object prop-
erties [194]. Their model is designed for a micro-language that stems from a small
context-sensitive grammar and includes two input streams for scene and auditory
information and an input-output stream for prompts and responses for the input
information. The scene input is based on a stream of synthetic object properties in
a localist representation, discriminating size, colour, shape and spatial relation. For
the auditory input, a stream of phonemes is fed in via a distributed representation.
For the prompts and responses, the object properties, some relation predicates, and
one out of four labels are defined. The predicates and labels get presented to the
network during training in a supervised manner, or are partially present (prompts)
and need correctly get produced (responses) while testing. In between the input
and input-output layer, several layers of LSTM blocks are employed that are able
to find statistical regularities in the data. This includes the overall meaning of
a particular scene in terms of finding the latent symbol system that is inherent
in the used grammar and dictionary. Yet, the fed in object properties are – in
principle – present as given prompts for the desired output responses. Therefore, it
could also be the case that the emerging symbols in the internal memory layers
are determined or shaped by the prompt and response data and are perhaps less
latent. The resulting problem is still complex in terms of combinatorial power, but
it is not clear how we can relate the emergence of pre-defined or latent symbols to
the problem of grounding natural language in the dynamic sensory information to
eventually understand how noisy perceived information contributes.
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In sum, the studies show that dynamic vision can be integrated as embodied
sensation, if the dynamics of the perception can be reasonably abstracted. For the
model, however, it is crucial to control the complexity in perception to attempt
explaining the emerging internal representation.

6.1.2 Speech Comprehension and Speech Production
Models for grounding in auditory perception often describe production and com-
prehension as a close loop of speech signal from external and ego origin. These
models mostly focus on a certain phase of linguistic comprehension and production
competence2 to reduce complexity.

Plaut and Kello suggested a model for phonological development from auditory
comprehension and articulatory production [218]. In an Elman Recurrent Neural
Network (ERNN)-based framework, streams of sound inputs are linked over a recur-
rent hidden layer to a recurrent phonology layer and from the phonology layer via
a hidden layer to an articulation layer. Phonetic sounds in and out the framework
are represented particularly precise. The acoustic perception is based on percep-
tual capabilities of infants and includes formant frequencies, frication, bursts and
loudness as well as the visually perceived jaw openness of the speaker. Articulatory
production is defined by oral and facial muscle movements on constriction, tongue
height and backness, and voicing. With monosyllabic nouns the framework can
trained to comprehend sounds and produce the same sounds in a closed loop. An
important insight from the model is support for the hypothesis that comprehension
is a basis to form phonological representation, which is exploited by production,
although sharing representations for acoustic perception and articulatory motor
codes might occur more complex in the human brain (compare chapter 2.1.2). With
a comparable model of reduced complexity but embedded in a social interaction
scheme of communicating agents, Oudeyer showed that a certain speech code of
sound can develop, which is comparable to human languages [205]. However, since
the studies were limited to monosyllabic words (morphemes) the formation of a
semantic concept from sequences of morphemes are not covered.

To cover an abstraction on concept level Rohde proposed a model for language
comprehension and prediction based on a similar ERNN-based framework [236]. The
semantic part of the model was trained to abstract the meaning or “the message”
of a sentence from a set of linguistic propositions, while the comprehension part
of the network learned to extract this meaning from a sequence of words, which
includes the distribution of the propositions. The network can also be used in the
opposite direction, in a way that it can predict the first word for a given meaning
and then predict the next words based on the feedback of the previous word and its
meaning. The underlying claim of the model is that humans may learn to produce
language based on the previously learned capability to formulate predictions as well
as the simultaneous comprehension of language. In this architecture, the Recurrent
Neural Network (RNN) is used as a statistical tool that can predict a sequence

2Compare chapter 2.1.3.
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based on a training with structured representation (predefined role binding) and
does not attempt to capture a self-organisation of comprehension and prediction
from temporal dynamic input on sound level. In a similar architecture Chang et al.
showed for single-clause phrases that a structural priming3 facilitates the gradual
joint development of both, comprehension and production capabilities [46].

Overall research is sparse on neural models for integrated production and
comprehension of phrases in natural language because of the inherent complexity
and the unknown dynamics in the human brain (compare chapter 2.1.2). In a recent
hypothesis, Pickering and Garrod presume a tight coupling of speech comprehension
and production and suggest an interwoven processing of either of them by means
of predictive coding [217]. Currently the degree and level of interactivity remains
unknown and is openly disputed [217, open peer commentary on p. 19ff].

6.1.3 Dynamic Multi-modal Integration
Integrating multiple modalities into language acquisition is particularly difficult,
because the linked processes in the brain are extraordinary complex – and in fact – in
large parts not yet understood. For this reason, to the best of the author’s knowledge,
there is no model available that describes the language processing integrated in
multi-modal temporally perception on full spatial and temporal resolution on
the cortex without making difficult assumptions or explicit limitations. However,
frameworks where studied that included temporally dynamic perception that form
the basis for the grounding.

Marocco et al. defined a controller for a simulated Cognitive Universal Body
(iCub) robot based on RNNs. Placed in front of a desk, the iCub was used to
push an object (ball, cube, or cylinder) and observe the reaction in a sensorimotor
way [185]. While the cylinder was not moveable, the cube was slidable and the ball
just rolled away. The iCub’s neural architecture was trained to receive a linguistic
input before the robot started to push the object. In their empirical results, the
authors showed that the robot was not only able to to distinguish between the
objects via the correct “linguistic” tags, but even without getting a linguistic input
and a correct object description, it reproduced the linguistic tag via observing
the dynamics. Despite the simplicity of the perception in the study, the authors
concluded that the meaning of the labels is not associated to a static representation
of the object, but to its dynamical properties.

Farkaš et al. modelled the grounding of words in both, object-directed actions
and visual object sensations [77]. In the model, motor sequences were learned by a
continuous actor-critic learning that integrated the joint positions with a linguistic
input and a visually perceived position of an object. These objects were learned a
priori in a Feed-Forward Network (FFN) and capture the contour and the colour of
objects in the field of view. Both networks for the action sequence and the visual
perception project on an Echo State Network (ESN) for learning a description of
the specific action. A specific strength of the approach is that the model, embedded

3Compare chapter 2.1.2.

120



6.2. Unifying the MTRNN Model

into a simulated iCub, can adapt well to different motor constellations and can
generalise to new permutations of actions and objects. However, it is not clear how
we can transfer the model to language acquisition in humans, since a number of
assumptions have been made. The action, shape and colour descriptions (in binary
form) are already present in the input of the motor and vision networks. Thus this
information is inherently included in the filtered representations that are fed into
the network for the linguistic description. Moreover, the linguistic network was
designed as a fixed-point classifier that outputs two active neurons per input: one
‘word’ for an object and one for an action. Accordingly, the output is assuming a
word representation and omits the sequential order.

In a framework for multi-modal integration, Noda et al. suggested [202] to
integrate visual and sensorimotor features in a deep auto-encoder. The employed
time delay neural network can capture features on varying timespan by time-shifts
and hence can abstract higher level features to some degree. In their study, both
modalities of features stem from the perceptions of interactions with some toys
and form reasonable complex representations in sequence of 30 frames. Although
language grounding was not pursued, the shared multi-modal representation in
the central layer of network formed an abstraction of the perceived scenes with a
certain internal structuring and provided certain noise-robustness.

6.2 Unifying the MTRNN Model

In the embodied model, which we discussed in chapter 5, the embodied context was
abstracted from a static visual perception. This is neurocognitively plausible for the
‘what’ in terms of constant object characteristics such as shape and colour as well as
relative position for a nonmoving object [150, 204]. However, this abstraction comes
short for time-variant characteristics such as changing conditions by perspective,
light conditions, motion within the environment, or sensorimotor perception of
ego-movement. To extend the previous model, we now must consider temporal
dynamic input and thus allow for continuous recurrence in perception.

At the same time, the position that the brain reuses architectural characteristics
in manifold circumstances is defended in this thesis. In particular, the spatial and
temporal hierarchical abstraction as observed for executing actions – specifically
for producing motor sequences – is also inherent in visual perception and auditory
(speech) processing (compare chapter 4.1.1). To unify our embodied model, we
should in fact make use of the same architectural characteristics for perception as
already used in production.

For fulfilling both of these requirements, the perception of input will be real-
ised by a Continuous Time Recurrent Neural Network (CTRNN) processing on
multiple-time resolution in a further refinement of the model. Specifically, the
feed-forward layers in the extended MTRNN model (embMTRNN) need to get
replaced by an MTRNN structure that can abstract the general context from
continuous input.
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6.2.1 MTRNN with Context Abstraction
To accomplish such an MTRNN architecture, we can reverse the concept of the
context bias (compare chapter 4.4) and thus reverse the processing from the context
to the Input-Output (IO) layer4. The concept of such an MTRNN with context
abstraction is visualised in figure 6.1. For certain sequential input, provided as a
dynamic pattern to the fastest neurons (with the lowest timescale) IIO, the network is
accumulating a common concept in the slowest neurons (with the highest timescale)
ICsc ∈ ICs. Since the timescale characteristic yields a slow adaptation of those
Context-controlling (Csc) units, the information in these units will accumulate
aspects pattern from the input sequence (filtered by potential neurons in an
intermediate). The accumulation is characterised by a logarithmic skew to the near
past and a reach-out to the long past depending on the timescale values τCs (and
τCf).

...
Pattern

t+1 Sequence

Input-Output
Layer

Context-fast
LayerContext-slow

Layer

Context-controlling 
Units

Context

Increasing timescale τ 

...
Concept

t=T

τ

...

Figure 6.1: The Multiple Timescale Recurrent Neural Network (MTRNN) with context
abstraction architecture providing exemplary three horizontally parallel layers: Context-
slow (Cs), Context-fast (Cf), and Input-Output (IO), with increasing timescale τ , where
the Cs layer includes some Context-controlling (Csc) units. While the IO layer processes
dynamic patterns over time, the Csc units at last time step (t = T ) abstract the context
of the sequence.

6.2.2 From Supervised Learning to Self-organisation
The MTRNN with context abstraction can be trained in supervised fashion to
capture a certain concept from the temporal dynamic pattern. This is directly
comparable to fixed-point classification with ERNNs or CTRNNs: With a gradient
descent method we can determine the error between a desired concept and the
activity in the Csc units, and propagate the error backwards through time. However,
for an architecture that is supposed to model the processing of a certain cognitive
function in the brain, we are also interested in removing the necessity of providing
a concept a priori. Instead, the representation of the concept should self-organise
based on the regularities latent in the stimuli.

4Note, in chapter 5.4.2 we observed that the MTRNN self-organised during training towards
mostly feed-forward connectivity from Context-slow (Cs) to IO.
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6.2. Unifying the MTRNN Model

For the MTRNN with parametric bias, this was realised in terms of modifying the
Csc units’ activity in the first time step (t = 0) backwards by the partial derivatives
for the weights connecting from those units. To achieve a similar self-organisation,
a semi-supervised mechanism, which allows modifying the desired concept to foster
self-organisation, is developed in this thesis. Since we aim at an abstraction from the
perception to the overall concept, the Least Mean Square (LMS) error function5 is
modified for the internal state z at time step t of neurons i ∈ IAll = IIO ∪ ICf ∪ ICs,
introducing a self-organisation forcing constant ψ as follows:

∂herror

∂zt,i
=


(1− ψ) (yt,i − f(cT,i + bi)) f ′sig (zt,i) iff i ∈ ICsc ∧ t = T∑
k∈IAll

wk,i
τk

∂herror

∂zt+1,k
f ′(zt,i) +

(
1− 1

τi

)
∂E

∂zt+1,i
otherwise , (6.1)

where f and f ′ denote an arbitrary sigmoidal function and its derivative respectively,
b and w are the biases and weights, y denotes the neurons’ output, and cT,i are
internal states at the final6 time step T of the Csc units i ∈ ICsc ⊂ ICs.

The particularly small self-organisation forcing constant allows the final internal
states cT,i of the Csc units to adapt upon the data, although they actually serve
as a target for shaping the weights of the network. Accordingly, the final internal
states cT,i of the Csc units define the abstraction of the input data and are also
updated as follows:

cu,T,i = cu−1,T,i − ψζi
∂herror

∂cT,i
= cu−1,T,i − ψζi

1
τi

∂herror

∂zT,i
iff i ∈ ICsc , (6.2)

where ζi denotes the learning rates for the changes.
Similarly to the parametric bias units, the final internal states cT,i of the Csc

units self-organise during training in conjunction with the weights (and biases)
towards the highest entropy. We can observe that the self-organisation forcing
constant and the learning rate are dependent, since changing ζ would also shift the
self-organisation – for arbitrary but fixed ψ. However, this is a useful mechanism
to self-organise towards concepts that are most appropriate with respect to the
structure of the data.

6.2.3 Evaluating the Abstracted Context
To test in a preliminary experiment how the abstracted concepts form for different
sequences, the architecture was trained for the cosine task7. Similar to the prelim-
inary experiment, reported in chapter 4.5.1, the network is supposed to learn four
sequences and is set up with |IIO| = 2, τIO = 1, |ICf | = 8, τCf = 8, |ICs| = |ICsc| = 2,
and τCs = 32. Processing a sequence by the MTRNN with context abstraction
will result in a specific pattern of the final Csc units’ activity as the abstracted

5Any other error function can be modified analogously.
6In this thesis, we use the term final to indicate the last time step of a sequence, which is in

line with using the term initial to indicate the first time step (compare chapter 4.4).
7For details compare chapter 4.5.1 and appendix D.5.
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context. For determining how those patterns self-organise, the architecture was
trained with predefined patterns (chosen randomly: ∀i ∈ ICsc, cT,i ∈ R[−1.0,1.0]) as
well as with randomly initialised patterns that adapt during training by means
of the varied self-organisation forcing parameter ψ. To measure the result of the
self-organisation, two distance measures qL2-dist,avg, and qL2-dist,rel are used:

qL2-dist(ck, cl) =
√ ∑
i∈ICsc

(ck,i − cl,i)2 , (6.3)

qL2-dist,avg = 1
(|S| − 1) · (|S|/2)

|S|−1∑
k=1

|S|∑
l=k+1

qL2-dist(ck, cl) , (6.4)

qL2-dist,rel =
|S|−1∏
k=1

|S|∏
l=k+1

(
qL2-dist(ck, cl)
qL2-dist,avg

) 1
(|S|−1)·(|S|/2)

, (6.5)

where |S| describes the number of sequences and ck = ck,T,i denotes the final Csc
units. With qL2-dist,avg, which uses the standard Lebesgue L2 or Euclidean distance,
we can estimate the average distance of all patterns, while with qL2-dist,rel we can
describe the relative difference of distances. For example, in case the distances
between all patterns are exactly the same, this measure would yield the best
possible result8 of qL2-dist,rel = 1.0. Comparing both measures for varied settings of
ψ provides an insight on how well the internal representation is distributed upon
self-organisation.

The results for the experiment are presented in figure 6.2. From the plots we
can obtain that patterns of the abstracted context show a fair distribution for no
self-organisation (the random initialisation) up to especially small values of about
ψ = 0.00001, a good distribution for values around ψ = 0.00005 and a degrading
distribution for larger ψ. The scatter plots for arbitrary but representative runs in
figure 6.2c–f visualise the resulting patterns for no (ψ = 0.0), too small (ψ = 0.0001),
good (ψ = 0.00005), and too large self-organisation forcing (ψ = 0.0002). From
inspecting the Csc units, we can learn that a “good” value for ψ leads to a marginal
self-organisation towards an ideal distribution of the concepts over the Csc space
during the training of the weights. Furthermore, a larger ψ is driving a stronger
adaptation of the Csc patterns than of the weights, thus leading to a convergence
to similar patterns for all sequences.

Concededly, the task in this preliminary experiment is quite simple, thus a
random initialisation within a feasible range of values ([−1.0, 1.0]) of the Csc
units often provides already a fair representation of the context and allows for
convergence to very small error values. However, for larger numbers of sequences,
which potentially share some primitives, the random distribution of respective
concept abstraction values is unlikely to provide a good distribution, thus self-
organisation forcing mechanism can drive the learning.

8Given the dimensionality of the Csc units is ideal with respect to the number of sequences.
For example, when representing four sequences with two Csc units, we can find an optimal
qL2-dist,rel = 0.9863.
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Figure 6.2: Effect of the self-organisation forcing mechanism on the development of
distinct concept patterns for different sequences in the cosine task: Training effort (a)
and mean qL2-dist,avg and qL2-dist,rel with standard error bars over varied ψ (b), each over
100 runs; representative developed Csc patterns (c–f) for the sequences aa (star), ab
(cross), ba (plus), and bb (hexagram) for selected parameter settings of no, small, “good”,
and large self-organisation forcing respectively.

6.3 Embodied Language Understanding with
Unified MTRNN Models

By integrating the MTRNN with context abstraction we are now able to unify
the embMTRNN and enable the processing of a sequence of visual sensation as
embodied perception. The first such refined model includes an MTRNN (with
context abstraction, called MTRNNv) to process embodied (visual) perception over
time, and an MTRNN (with context bias, called MTRNNa) to process verbal utter-
ances over time. The final abstracted context from embodied perception is directly
integrated as initial context for the production of a verbal utterance. Figure 6.3
provides an overview of this architecture, in the following called uniMTRNN
model.

The central goal of this model on a computational level is that during training,
the MTRNNv layers self-organise to compose an embodied perception on the level
of visual features into a semantic meaning, whereas the MTRNNa again self-
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Figure 6.3: Architecture of the uniMTRNN model: a Multiple Timescale Recurrent
Neural Network (MTRNN) extended by embodied perception from the scene. A sequence
of phonemes over time (verbal utterance) is processed subsequent to the sequence of
perceived embodied and situated information.

organises to decompose the semantic meaning into the utterance. Compared to the
embMTRNN model (compare chapter 5.1.2), the performance should be similar
while the model is conceptually less specific and thus simpler.

Forcing Self-organisation in the Unified MTRNN Model

A second refined model employs the same CTRNN architectures – the MTRNNv
for the visual embodied perception and the MTRNNa for the auditory production
– but in addition it includes the self-organisation forcing mechanism. In this
so-uniMTRNN model the final Csc units of the MTRNNv are not predefined
by the initial Csc units of MTRNNv during training. Instead, the final Csc are
randomly initialised and self-organise based on the training data. Both units are
associated in the simplest form of Cell Assemblies (CAs): a bijective mapping of
both Csc columns (compare figure 6.4).

Learning and Production

The information processing for the refined model is kept similar to the last study
(compare chapter 5.2.1): The neurons in the IO layer of the MTRNNa are specified
by the decisive normalisation function (softmax), while all other neurons in both,
the MTRNNa and MTRNNv – including the IO layer of the MTRNNv, process
information via the proposed9 logistic function flogistic (κh = 0.35795, κw = 0.92).
Again, for the training on both MTRNNs, the adaptive variant of the Backpropaga-
tion Through Time (BPTT) algorithm is employed10 by using as error functions
the Kullback-Leibler Divergence (KLD) on the IO layer of the MTRNNa and the
LMS on the Csc units of the MTRNNv respectively.

In case of the uniMTRNN model, the initial Csc units of the MTRNNa are the
target for the MTRNNv. For the so-uniMTRNN model, the association between

9Compare chapter 4.3.2.
10Compare chapters 4.4 and 5.2.1.
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Figure 6.4: Architecture of the so-uniMTRNN model: a Multiple Timescale Recurrent
Neural Network (MTRNN) extended by embodied perception from the scene. A sequence
of phonemes (verbal utterance) is processed over time after the self-organised semantic
context of a sequence of perceived embodied and situated information has been associated.

the Csc units is trained by the LMS rule on the activity for the internal states of
these units:

∂herror

∂zi
= (yi − fsig(ca,0,i))f ′sig (zi) , (6.6)

zi =
∑

j∈Iv,Csc

wi,jfsig(cv,T,j) + bi ∀i ∈ Ia,Csc , (6.7)

where ca,0,i and cv,T,j denote the internal states of the Csc units for the MTRNNa
and MTRNNv respectively.

For testing, the sequence of perceived embodied input is fed into the IO layer of
the MTRNNv and in turn a sequence of phonemes (a verbal utterance) is generated
as an output of the IO layer of the MTRNNa. Again, this is performed in one
operation without the need of additional adaptations in case of unknown sensory
input. Additionally, both models allow for arbitrary long sensory (perceived visual)
input before triggering a verbal (produced auditory) output.

6.3.1 Adapted Embodied Language Acquisition Scenario

To study but also to compare the refined models, the design of the scenario is
identical to the scenario in the previous study (compare chapter 5.3). The sole
adaptation made is using a continuous recording of the scenes instead of using a
single frame. The visual perception is captured over four seconds with a sample
size of 25ms per frame (16 time steps). For the encoding of the verbal utterances
and the visual perception the previously developed mechanisms are used (refer to
chapter 5.3.1 and 5.3.2).
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6.3.2 Evaluation and Analysis
The central objective for the comparison of the unified models with the previ-
ous embMTRNN models is the generalisation capability. Additionally, the self-
organisation forcing mechanism needs to be explored for both, its impact on the
overall performance of the model and the developed internal representation (the
self-organised abstracted context).

To further test the models, the data collection of the previous study was
expanded for every scene and every example by a stream of visual input. With this
data the experimental conditions of the previous study were replicated: dividing the
samples into a training set and a test set (50:50, each scene is only included in one of
the sets), training ten randomly initialised uniMTRNN as well as so-uniMTRNN
systems, and repeating this process for a 10-fold cross-validation (thus performing
100 runs for each model, experiment, or meta-parameter variation respectively).
The parameter settings (meta-parameter) for the additional MTRNNv parts of
the refined models are listed in table 6.1, while the parameters for the MTRNNa
and the training approach are kept with regard to the previous study (compare
table 5.2).

Training was done for a maximum number of θ = 50,000 epochs or reaching
a minimal average Mean Squared Error (MSE) εv,Csc = 1.0 × 10−4 on the Cscv
units. Since the visual representation has not changed, the number of neurons in
the input layer |Iv,IO| is identical to |IEC| from the previous study. The number of
Cscv units is depending on the number of Csca units in the uniMTRNN model.
For the so-uniMTRNN model the same number is kept for the sake of a fair
comparison. The timescales for the MTRNNa are based on the resulting values for
the embMTRNN model (τa,IO = 2, τa,Cf = 5, and τa,Cs = 70). For the MTRNNv the
timescales are not crucial in the case of a scenario without movements (the change
of visual perception over time is not assumed to be a composition of primitives).

Table 6.1: Standard parameter settings for evaluation of the unified MTRNN models.

Parameter * Description Domain Baseline Value

|Iv,IO| Number of IO neurons |Fsha|+ |Fcol|+ |Fpos| 21
|Iv,Cf | Number of Cf neurons N>0 40
|Iv,Cs| Number of Cs neurons N>0 23

|Iv,Csc| Number of Csc units N[1,...|Iv,Cs|] 12
W0

v Initial weights range R[−1.0,1.0] ±0.025
CT

v,T Init. final Csc values range R[−1.0,1.0] ±1.00

τv,IO Timescale of IO neurons N>0 2
τv,Cf Timescale of Cf neurons N>τv,IO 5
τv,Cs Timescale of Cs neurons N>τv,Cf 16

* Parameters for the MTRNNa and the training are identical as in table 5.2.

128



6.3. Embodied Language Understanding with Unified MTRNN Models

Nevertheless, based on the previous study a parameter search was conducted (not
shown) and confirmed a setting of τv,IO = 2, τv,Cf = 5, and τv,Cs = 16 for a progressive
abstraction.

All mechanisms and meta-parameters for training are kept from the previous
study. The sole difference is the initialisation of the internal state of the Cscv units
in the so-uniMTRNN model. Instead of starting the training with very small
values, the values are initialised in [−1.0, 1.0]. Initialising with slightly smaller or
larger value ranges of random values or with random values that subsequently have
been normalised (with respect to the Cs layer) has been tested as well, but does not
show a notable change in the properties of the model. A parameter search for good
dimensions (Context-fast (Cf) layer) in addition to good timescales (as discussed
above) has been conducted prior to the actual experiments, but is omitted here for
brevity. Compared to the sequences of phonemes, the sequences of visual perception
are undemanding, and thus these parameters are less crucial.

Generalisation with Dynamic Vision

To test if the refined models provide a similar performance, both models are
compared with the results from the previous study on the mixed F1-score as well
as the mixed edit distance. For this overall comparison, it is provided that the
appropriate meta-parameters for the architectures and the training were previously
determined. Most importantly, this includes a study on the self-organisation forcing
parameter, which will be reported in detail later within this section.

The performance of each model (using the aforementioned standard parameters)
is presented in table 6.2 and figure 6.5a–b. Additionally, for the refined models only,
the training effort regarding the visual MTRNNv is given in figure 6.5c. We can
obtain from the results that all models are able to generalise on comparable levels.

Table 6.2: Comparison of F1-score and mean edit distance for different MTRNN models.

qF1-score qedit-dist

Model * 1 2 3 1 2 3

training set best 1.000 1.000 1.000 0.000 0.000 0.000
test set best 0.476 0.476 0.476 0.553 0.545 0.540
training set best average ** 1.000 1.000 1.000 – – –
test set best average ** 0.337 0.320 0.337 – – –
training set average 0.999 0.996 0.996 0.001 0.002 0.002
test set average 0.171 0.173 0.172 0.676 0.643 0.640
mixed *** 0.626 0.620 0.627 0.338 0.322 0.321
* Models: embMTRNN (1), uniMTRNN (2), so-uniMTRNN (3).
** Averaged over all best networks of all data set distributions.
*** For definition compare equations 5.8 and 5.11.
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Figure 6.5: Comparison of MTRNN model variants in performing on the embodied
language understanding scenario: embMTRNN (1), uniMTRNN (2), so-uniMTRNN
(3). In (a) the dark/blue bars represent the mean F1-score, while the bright/red bars
show the F1-score of the best network for the respective model (larger is better). In
(b) the bright/cyan bars show the average mean edit distance with error bars for the
standard error of means, while the dark/violet bars provide the mean edit distance of the
best network for the respective model (smaller is better, worst possible: 2.0). In (c) the
training effort is measured for the MTRNNv only.

The refined models show overall a slightly better performance, with the uniMTRNN
performing marginally better on sentence level (average mixed F1 score of 0.173)
and the so-uniMTRNN slightly better on phoneme level (average mixed edit
distance of 0.321). It is remarkable that the number of errors made on phoneme
level is significantly smaller (pt-test < 0.001) for both refined models compared to the
embMTRNN model. In contrast between the uniMTRNN and so-uniMTRNN
models the error made could not be found statistically different (never determined
pt-test < 0.01). The training effort for both refined models was not found to be
crucially different: in the parameter setting for the self-organisation forcing
parameter with the best performance the training effort was notable but not
significantly smaller.

During inspecting the weights of a trained MTRNNv (for either of the refined
models) it was observed that the weights from the Cf to the IO layer as well as
from the Cs to the Cf layer converged to smaller but nonzero values, compared with
weights in the opposite direction. Since the objective during training is to minimise
the error on the Csc units, it is logical that a structure similar to the feed-forward
layers of the embMTRNN model would emerge. Nevertheless, it seems that the
existence of (small) recurrent connections might facilitate the processing of related
features in the input.
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6.3. Embodied Language Understanding with Unified MTRNN Models

Self-organised Abstracted Visual Context

To analyse how the self-organisation forcing parameter affects the internal rep-
resentation and the generalisation capability of the so-uniMTRNN model, the
parameter was varied on identical instances of the randomly initialised MTRNNv.
The central hypothesis is that the self-organisation forcing mechanism can lead to
a better distribution of the context patterns in the Csc space. This might eliminate
the necessity of a priori given set of patterns or even may yield a overall higher
performance.

For the self-organisation forcing parameter ψv was varied over the values as
listed in table 6.3 yielding the results as shown in figure 6.6a–d. Identical to the
experiments before, the F1-score and the edit distances were computed and the
training effort measured for testing the whole so-uniMTRNN model. Furthermore,
the internal states of the final Csc values of the MTRNNv, which were collected from
activating the MTRNNv with the training sequences (without additional updates of
the network). In this way the abstracted context patterns were obtained, for which
the network was trained, and could be studied by applying the previously suggested
metrics for the average and relative L2 distances. Additionally, the |ICsc|-dimensional
context patterns have been reduced to the first two principle components using
the Principle Component Analysis (PCA) to allow for a visual inspection of these
patterns11.

The results show that the performance is only marginally changing for a range of
ψv values. For ψv = 0.0005 both, the mixed F1-score and the edit distance reach the
best levels, but the difference is not significant (pt-test > 0.01). However, the relative
distances for the Csc patterns increase around this ψv value, before they degrade
for larger ψv. The visualisation of the Csc patterns of a representative network in
figure 6.6e–g shows that they were self-organised to distribute themselves better
in the Csc space, although their absolute magnitudes decreased. This effect was
observed across most runs, notably strong in well-performing networks.

At some point the, training effort is dropping and also general performance is
degrading rapidly. On the one hand, the developed target internal states of the
final Csc units cv,T tend to approach zero more quickly with a large ψv. On the
other hand, the weights of networks were initialised at random but with rather
small values, thus would result in a small summed internal state of the neurons z
due the gradient descent strategy. As a consequence, the training reached a very
small error more quickly and terminates before the weights were actually sufficiently
trained.

Table 6.3: Parameter variation of self-organisation forcing in visual perception.

Parameter Values

Self-organisation forcing ψv {1, 2, 5} · 10−k, k ∈ {2, 3, 4}

11For the parameter ψv = 0.00005 and the shown example, the first two components explain
68.62% of the variance in the patterns.

131



Chapter 6. Multi-modal Language Grounding

0.5

0.54

0.58

0.62

0.66

0.
0

0.
00

00
01

0.
00

00
02

0.
00

00
05

0.
00
00
1

0.
00
00
2

0.
00
00
5

0.
00

01
0.
00

02
0.
00

05
0.
00

1

q F
1
-s

co
re
,m

ix
ed

Self-organisation forcing ψv

(a) Mean mixed F1-score.

16

20

24

28

32

0.
0

0.
00

00
01

0.
00

00
02

0.
00

00
05

0.
00
00
1

0.
00
00
2

0.
00
00
5

0.
00

01
0.
00

02
0.
00

05
0.
00

1

N
um

be
r
of

ep
oc
hs
u
(in

1,
00

0)

Self-organisation forcing ψv

(d) Training effort.

0.31

0.33

0.35

0.37

0.39

0.
0

0.
00

00
01

0.
00

00
02

0.
00

00
05

0.
00
00
1

0.
00
00
2

0.
00
00
5

0.
00
01

0.
00
02

0.
00
05

0.
00
1

q e
di

t-
di

st
,m

ix
ed

Self-organisation forcing ψv

(b) Mean mixed edit distance.

0.8

1.0

1.2

1.4

1.6

0.9

0.92

0.93

0.94

0.95

0.
0

0.
00

00
01

0.
00

00
02

0.
00

00
05

0.
00
00
1

0.
00
00
2

0.
00
00
5

0.
00
01

0.
00
02

0.
00
05

0.
00
1

M
ea
n
q L

2
-d

ist
,a

vg
(◦
)

M
ea
n
q L

2
-d

ist
,re

l
(�
)

Self-organisation forcing ψv

(c) Mean and relative L2 distances.

−1 0 1
PC1

−1

0

1

PC
2

(e) ψv = 0.0.

−1 0 1
PC1

−1

0

1

PC
2

(f) ψv = 0.00005.

−1 0 1
PC1

−1

0

1

PC
2

(g) ψv = 0.0001.

Figure 6.6: Effect of the self-organisation forcing mechanism on the development of
concept patterns in the so-uniMTRNN model: mean mixed F1-score (a) and edit
distance (c), training effort (b), and mean of average and relative pattern distances (d)
with intervals of the standard error, each over 100 runs and over varied ψv respectively;
representatively developed Csc patterns (e–g) reduced from |ICsc| to two dimensions
(PC1 and PC2) and normalised for selected parameter settings of no, “good”, and large
self-organisation forcing respectively. Different shapes and colours are shown with different
coloured markers (black depicts ‘position’ utterance).
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6.3. Embodied Language Understanding with Unified MTRNN Models

Uncertainty in Visual Perception

While inspecting the recorded data for the dynamic visual perception, it was found
that the represented features were nearly identical in each frame. Apparently,
the combination of the developed method for visual object perception (compare
chapter 3.3) and the (visual) low-noise conditions in the environment for the data
recording led to a particularly coherent features representation of the visual shape,
colour, and position characteristics. To study how the semantic context abstraction
changes under altering morphology or general perturbation of the sensory input,
the training of the uniMTRNN model was also performed with adding noise on
that input. As the model for noise the Gaußian jitter12 was used. The parameter
variation for increasing noise σv is provided in table 6.4.

From the results, as presented in figure 6.7a–b, we can obtain that smaller
degrees of noise slightly facilitate the performance. For a noise level up to σv = 0.01
the average mixed F1-score reaches 0.631, while the average mixed edit distance
decreases to 0.321. Beyond this noise level the performance drops rapidly. In fig-
ure 6.7c a visualisation of the noisy input perception is presented, which shows the
morphology of shape and colour (by omitting position features). This inspection
shows that for noise levels larger than σv = 0.01 the shape representations – exem-
plary shown on the most distinct shapes, the banana and the apple – increasingly
get more difficult to differentiate. Similarly, the colour feature changes drastically
over the course of the sequence of visual perception, thus leading to considerable
confusion. For scenes with dice (square) or phone (rectangular) shaped as well as
for green coloured objects a differentiation is particularly difficult. As a result,
the MTRNNv learns to abstract similar characteristics that regress to the mean
of the respective feature values. With respect to the training effort (not plotted),
the variation of noise was in line with related work [247, 306]: Small degrees of
noise speed up the training slightly, while larger degree of noise first degrades the
performance and then also the convergence time.

Overall, the results show that the model is quite robust with respect to perception
perturbation as long as noise is not leading to an overlap of the visual feature
patterns. To successfully associate with an internal representation, which was
formed for the language production, it seems sufficient to differentiate the entities
on the available dimensions. Increasing the dimensionality of features thus could
allow for a good scaling-up of different perceived scenes, despite reasonably small
perturbation by noise.

Table 6.4: Parameter variation of noise in visual perception.

Perturbation model Parameter Values

Gaußian jitter variance σv {1, 2, 5} · 10−k, k ∈ {1, 2, 3, 4}

12Defined in chapter 5.4.5; also compare chapter 4.3.5.
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Figure 6.7: Influence of perturbing visual input sequences by Gaußian jitter on training
and generalisation: comparison of mixed F1-score and edit distance of varied variance
parameter σv (a–b) with error bars reflecting the standard error, each over 100 runs
respectively; comparison of visualised input perception with added noise (c) for arbit-
rarily but representatively chosen time steps (4, 8, and 12) and scenes (red banana and
yellow apple, omitting position).
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6.3.3 Summary

In summary, the model of embodied language understanding has been refined
towards a unified uniMTRNN model, consisting of an MTRNN processing visual
perception over time for abstracting a context as well as an MTRNN processing the
production of a verbal utterance over time. In a second variant of the refinement
– the so-uniMTRNN model – the abstracted context from the forward processing
of the visual input is self-organised and associated with the self-organised context
that initiates the forward processing of the auditory output.

The results showed that the previous embMTRNN model and the refined
uniMTRNN as well as so-uniMTRNN models provide a similar performance of
capturing a set of scenes that are visually perceived and verbally described as well
as of generalising from the trained to novel scenes. Although the novel parts for the
visual processing are recurrent architectures, they develop weight structures that
are related to the feed-forward architecture of the previous embMTRNN model.
Nevertheless, they maintain recurrent links to a small degree and thus allow both:
adding up the perception to an abstract context in the slow Csc units and capturing
short-term and mid-term dependencies in the input sequences. In fact, the refined
models are able to process changing morphologies of the visual perception over
time and are robust against perturbations of those perceptions until the perceived
entities factually cannot get differentiated any more.

Decoupling the abstracted context of the visual Csc units from the context bias
of the auditory Csc, however, allows for the self-organisation of representations
that arise from the data of the respective modality. The additional association
of these decoupled Csc spaces into simple CAs13 did not reduce the performance.
Conceptually, this allows for integrating multiple concept spaces (this will be
discussed further in section 6.5).

For the development of an internal representation (the abstracted context
within the final states of the Csc units), the employed scenario seemingly provided
a complexity that could be handled already by random Csc patterns. Testing
the developed self-organisation forcing mechanism showed only a slight yet not
significant improvement of the models’ capabilities, although a better distribution
of Csc patterns self-organised. The mechanism is reasonably sensitive regarding
the self-organisation forcing parameter with respect to other parameters for the
training like the number of epochs until convergence and the magnitude of the
(average) learning rate.

All in all, the refinement of the previous embMTRNN model showed that
we can extend the grounding of language in temporal dynamic perception. In
addition, we associate self-organised internal representations to generate a shared
representation for language production and (grounded) perception. In the next
step we can now transfer the model to other uni-modal sensations that is more
complex with respect to the temporal resolution and dynamics or to multi-modal
and perhaps complementary stimuli.

13Compare chapter 4.1.2.
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6.4 From Language Comprehension to Language
Production

With the aforementioned unified and self-organising so-uniMTRNN model at
hand, we are able to test associating language processing with other modalities as
well. In particular, this includes modalities that are more complex on the temporal
dynamics and are suggested to include hierarchical composition14 as well.

For example, we can look into the coupled problem of binding speech compre-
hension with semantic meaning – or in a simplified approach with abstract context
– and abstract context with speech production. As a model for this closed loop of
language processing15 an architecture including an MTRNN with context bias for
production and an MTRNN with context abstraction for comprehension allows to
study if a similar (de)composition of language can emerge in both.

Such a model is derived from the so-uniMTRNN model by substituting the
embodied perception by auditory comprehension from verbal utterances. This
model is further referenced as CPuniMTRNN and specified by a MTRNNc for
comprehension, a MTRNNp for production, and a small CAs formed by the associ-
ation of the Csc units of both recurrent structures (see figure 6.8). The information
processing and training is mostly identical to the procedure described for the
previous so-uniMTRNN model16 with the sole difference of using the decisive
normalisation for the IO layer of the MTRNNc part as well.
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Figure 6.8: Architecture of the CPuniMTRNN model: a Multiple Timescale Recurrent
Neural Network (MTRNN) with context bias connected via associative links with an
MTRNN with context abstraction. In a closed loop a sequence of phonemes (verbal
utterance) is produced over time and comprehended over time.

14Compare chapter 4.1.1.
15To carefully differentiate between the levels of language processing in this section, the

processing of low-level sounds related to a language is referred to as speech, while the processing
on higher-level towards a meaning of a phrase or an utterance is described as language.

16Compare chapter 5.2.1 and section 6.3 within this chapter.
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6.4.1 Scenario and Experimental Setup
The scenario for this model is the comprehension and production of the verbal
utterances used in the embodied language acquisition. For this, the robotic learner
is not supposed to ground the utterances in any additional embodied perception.
Admittedly, the scenario is thus reduced to a synthetic simulation of symbol-
like abstraction and production. However, the aim of this study is to test if
generalisation can occur and to explore a potential compositionality emerging in a
CTRNN architecture that reverses the direction of processing from our previous
embMTRNN model.

In particularly, the simulated learner is supposed to learn to comprehend
and produce the verbal utterances that stem from previously introduced grammar
(compare figure 5.2a and appendix D.8. Since the CAs in the model are a bottleneck,
reducing (or compressing) information on the temporal dynamic, this task is not
trivial. Again, the generated sentences are encoded into an ARPAbet phoneme
representation (compare chapter 5.3.1). For further experimentation, the same
phoneme sequences are used as the desired output of the auditory production and
as the input for the auditory comprehension.

6.4.2 Evaluation and Analysis
The main aim in analysing the CPuniMTRNN model is to investigate if a similar
decomposition of the sequences into primitives – specifically into words – occurs
during training. In the evaluation, the first step for this is to compare generalisation
taking place for the architecture. If the model can produce the correct counterpart
from the comprehension of a novel utterance, thus a novel combination of words,
then an indication is found that a decoupled composition and decomposition takes
place. A second step is to compare how a trained network behaves for different
utterances that include certain words in a different sequential order.

The interest in this experiment also lays in a challenging condition for the
emergence of generalisation. Again the samples are divided into a training set and
a test set (50:50, each scene is only included in one of the sets), and training is
conducted on ten randomly initialised CPuniMTRNN systems multiplied by a
10-fold cross-validation (thus performing 100 runs). The parameter-settings for
the MTRNNp and the training approach are kept identical to the study on the
embMTRNN model (compare table 5.2), while the parameters of the additional
MTRNNc part are defined as listed in table 6.5. The termination criteria for the
MTRNNc were a maximum number of epochs θ = 100,000 or reaching a minimal
average MSE17 εc,Csc = 1.0× 10−4 on the Cscc units.

For the MTRNNc the timescales as well as the sizes of the Cf and Cs layers are
chosen identical to the MTRNNp and are based on the experiences made in the
earlier experiments (compare chapters 5.4.1 and 5.4.3).

17Note, the internal state of the Csc units can have an arbitrary value around zero, thus the
(desired!) activity of these neurons is not predominant close to zero or to one. Therefore, the
MSE is preferred over the Cross-Entropy Error (CEE).
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Table 6.5: Standard parameter settings for the CPuniMTRNN model.

Parameter * Description Domain Baseline Value

|Ic,IO| Number of IO neurons |B| 44
|Ic,Cf | Number of Cf neurons N>0 80
|Ic,Cs| Number of Cs neurons N>0 23

|Ic,Csc| Number of Csc units N[1,...|Ic,Cs|] 12
W0

c Initial weights range R[−1.0,1.0] ±0.025
C0

c,T Init. final Csc values range R[−1.0,1.0] ±1.00

τc,IO Timescale of IO neurons N>0 2
τc,Cf Timescale of Cf neurons N>τc,IO 5
τc,Cs Timescale of Cs neurons N>τc,Cf 70

* Parameter for the MTRNNp and the training are identical as in table 5.2.

Generalisation and Self-organised Abstracted Context

The performance of the model was once again measured using the mixed
F1-score – plus the F1-score on the test set – and the mixed edit distance. This
measurement was conducted on models that were trained with varying values of
the self-organisation forcing parameter (see table 6.6).

From the results, as presented in figure 6.9, we can obtain two major observations.
On the one hand, the model is able to learn the corpus flawlessly (with a high
number of training epochs necessary for convergence) and also to generalise to a good
degree to novel scenes. In fact, the average performance for a good parameter choice
is better than the results measured with the embMTRNN or so-uniMTRNN
models (slightly higher mixed F1-score of 0.649 and much lower mixed edit distance
of 0.15). Particularly noticeable is that the trained systems have a smaller variability
in terms of low and high performance and overall produce less often wrong single
phonemes. Thus, it seems that the comprehended verbal utterances could better
provide an abstracted context for the scenes compared to visual perception, although
the input data for both is similarly unambiguous.

On the other hand, the self-organisation of the abstracted context, governed
by the self-organisation forcing was not leading to a better distribution and a
better performance. The analysis of the resulting final Csc units revealed that
the spreading of context values representing the scenes slightly develops, but the
parallel shrinking towards very small context values occurs more quickly.

Table 6.6: Parameter variation of self-organisation forcing in auditory comprehension.

Parameter Values

Self-organisation forcing ψc {1, 2, 5} · 10−k, k ∈ {2, 3, 4}
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Figure 6.9: Effect of the self-organisation forcing mechanism on the development of
concept patterns in the CPuniMTRNN model: training effort (a), mean mixed F1-
score (b) and edit distance (c), mean of average and relative pattern distances (d),
with intervals of the standard error, each over 100 runs and over varied ψv respectively;
representative developed Csc patterns (e–g) reduced from |ICsc| to two dimensions (PC1
and PC2) and normalised for selected parameter settings of no, “good”, and large self-
organisation forcing respectively. Different words for shapes and colours are shown with
different coloured markers (black depicts ‘position’ utterance).
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Comparing Network Behaviour for Comprehension and Production

For the analysis of the emerging network behaviour, the neural activity within
the Cf layer was analysed for both, the MTRNNp and the MTRNNc. Based on
the previous experiment (compare chapter 5.4.4), the hypothesis is posed that if a
compositional internal structure emerges successfully, then the words of the same
class of words should be represented similarly in the Cf layer. In particular, the
words of a specific class should be represented with similar or overlapping values
for the beginning and end of the words, and a word should be similarly represented
independent from the position in the utterance.

A visualisation of the internal representation of the Cf layer during the input of
specific words was determined by reducing the activity to two dimensions using
PCA and is presented in figure 6.10. In the Cf layer of the auditory production,
trajectories of activities again emerge similarly represented for words within a class.
Nevertheless, in the Cf layer of the auditory comprehension, the trajectories differ
for different utterances. We can observe a marginal clustering of trajectory patterns
for the occurred word classes, but the indications are weak, whether the network
in fact learned the regularity of the word usage or merely the start of word at a
certain time step. In particular, for words concerning the shape (the words can
occur in the beginning and at the end of the utterance) the Cf representations seem
to self-organise towards two forms of activity patterns with a notable difference.
However, such a distinction is even stronger for colour words (always at the end
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(a) Words in the Cfp layer.
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(b) Words in the Cfc layer.

Figure 6.10: Comparison of neural activation in the Context-fast (Cf) layers for produc-
tion and comprehension. The dimensionality is reduced from |ICf | to two dimensions (PC1
and PC2), PC2 is mirrored for better comparison with figure 5.11, and the beginning (∗)
as well as the end (◦) of the words are marked. The dark/red, bright/blue, and black
lines represent words from the shape, colour, and position category respectively, with
multiple trajectories stemming from the same word in training and test set.
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6.4. From Language Comprehension to Language Production

of the utterance), which might suggest that the self-organisation is developing
some degree of compositionality but not of a quality comparable to the emerged
(de)compositionality in production.

A Few Words on Scaling-up

To test how the architecture scales up, additional larger language corpora have been
tested as well. Each corpus stemmed from an extended version of the grammar,
which was used in the previous studies18, generating 64, 256 and 1,024 utterances of
a length up to 72 time steps. Network dimensions and timescales were deliberately
kept on parameter settings that were obtained in previous experiences19.

The explorative tests showed that a) the training is exceptionally demanding
for the MTRNNc, and b) the MTRNNc does not compose the data well, if the
utterances have limited irregularities (some details are provided in appendix D.9).
Generalisation was measured for the corpora up to 256 sentences on a good level,
while generalisation was low for the corpus with 1,024 sentences due to severe
difficulties in achieving convergence20. For the smaller corpora, the regularity in
the sequences was quite high, offering too little variance of the word positions to
easily pick up word boundaries. Inspecting the training process for the 1,024 corpus
revealed that despite adaptive BPTT, good activation functions and the inherent
timescale characteristic of the recurrent structure the gradient descent approach
was insufficient. In particular since no Teacher Forcing (TF) could be used21, the
gradients, in fact, vanished. As an abstract result, this test emphasised that other
mechanisms for handling the vast complexity need to be considered as well.

6.4.3 Summary
Overall, the CPuniMTRNN model provided some insight into a unified MTRNN
model for complex temporal dynamic input as well as complex temporal dynamic
output. Abstracting the context from input of verbal utterances introduces the
need capturing the reoccurring features from the whole sequence to achieve a
good generalisation. For the CPuniMTRNN model the generalisation was on
comparable level for the sentence level yet producing significantly less incorrect
phonemes in the inaccurate utterances. In the analysis, however, we found that a
full decomposition does not emerge from the training. A tendency for clustering
activity patterns for words in the Cfc layer is notable, but it is not clear, whether
this is only the result of memorising a time step in the sequence for the occurrence
of a certain word, or the result from self-organisation towards some regularity in
the usage of the word forms as well.

18Compare figure 5.2a.
19Compare chapters 5.4.1 and 5.4.3.
20Despite employing efficient parallel implementations in OpenCL for training on GPUs and

employing high-end hardware, a good convergence could not be achieved within several weeks.
21Conceptually, the TF mechanism is supposed to inject error at all time steps for generating

or predicting a sequence. However, the IO layer in the MTRNNc is not supposed to contribute to
a fixed-point classification and thus should not be forced to project a correct prediction on itself.
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Chapter 6. Multi-modal Language Grounding

6.5 Interactive Language Understanding
Previous models on language processing – including the embMTRNN model,
as studied in chapter 5 – provided insight for the architectural characteristics
of language production, grounded in some perception. In recent neuroscientific
studies, we learned about the importance of conceptual networks that are activated
in processing speech and that most of the involved processes operate in producing
speech as well (compare chapter 2.1.2 and [30, 103, 133, 160, 224]). Central findings
include that the sensorimotor system is involved in these conceptual networks in
general and in action and language comprehension in particular.

For the action comprehension phenomenon, these networks supposedly seem to
involve multiple senses. As an example, for actions perceived from visual stimuli,
Singer and Sheinberg found that there is a tight connection between perceiving
the form and the motion of an action [261]. A sequence of body poses is perceived
as an action if the frames are integrated within 120 milliseconds. Additionally,
they found that the visual sequence is represented best as an action if both cues
are present, but that in such a case the representation is mostly based on form
information. Since body-rational motion information is hierarchically processed in
proprioception as well, an integration of visual form and somatosensory motion
seems more important. These multi-modal contributions – visual and somato-
sensory – are suggested to be strictly hierarchically organised (compare [89, 268]
and chapter 4.1.1).

The structure of integration in a conceptual network seems to derive from spatial
conditions of the areas on the cortex that have been identified for higher abstraction
from the sensory stimuli. These areas, for example the Superior Temporal Gyrus
(STG), but also the Inferior Frontal Gyrus (IFG)22, are connected more densely,
compared to the sensory regions, but they also show a high interconnectivity with
other areas of higher abstraction. From the studies on CAs we obtained that
such a particularly dense connectivity, on the one hand can form general concepts
(for example about a certain situated action) and on the other hand may invoke
activation first (compare chapter 4.1.2).

Recurrent Neural Model with Multi-modal Integration

From these recent findings, hypotheses and the previous related work, we can
adopt that the computational neural model for natural language production should
be embedded in an architecture that integrates multiple modalities of contrib-
uting perceptual (sensory) information. The perceptual input should also get
processed horizontally from sensation encoding over primitive identification (if
compositional) up to the conceptual level. Highly interconnected neurons between
higher conceptual areas should form CAs and thus share the representations for
the made experiences.

22Due to the strong link between the STG and the IFG via the Arcuate Fasciculus (ARF) fibre
bundles (compare chapter 2.1.2).
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6.5. Interactive Language Understanding

Identical to the development of the embMTRNN model, the multi-modal
perception should be based on real world data. Both, the perceptual sensation
as well as the auditory production should be represented neurocognitively plaus-
ible. By again employing the developmental robotics approach, an embodied and
situated agent should be created that acquires a language by interaction with its
environment (in this case in terms of different shaped and coloured objects that are
experienced in temporal dynamic manipulation) as well as a verbally describing
teacher.

Properties of such a model should be generalisation despite complex embodied
perception and disambiguation of the – on their own inherently focused but limited
– uni-modal sensation by the multi-modal integration. All in all, the goals of
this model are a) to refine the connectivity characteristics that foster language
acquisition and b) to investigate the merged conceptual representation.

6.5.1 Multi-modal MTRNNs Model

In order to meet the requirements of such a multi-modal model, the following
hypotheses are added to the previous embMTRNN model into a novel model
named MultiMTRNNs: a) somatosensation and visual sensation are processed
hierarchically by means of multiple-time resolutions, and b) higher levels of ab-
stractions are encoded in CAs that are distributed over the sensory and motor
(auditory production) areas. As a refinement of the previous model, the neural
circuits for processing the perceptions are modelled each as an MTRNN with
context abstraction23, analogously to the uniMTRNN model24. The first one,
called MTRNNs, processes somatosensation, specifically proprioceptive perception,
while the second one, named MTRNNv, processes visual perception. The processing
recurrent neural structures are again a specification of a CTRNN to maintain
neurocognitive plausibility25. The Csc units of all MTRNNs (within the layers with
the highest timescale Cs) are linked as fully connected associator neurons that
constitute the CAs for representing the concepts of the information.

Regarding the notation of the previous model, in the novel components of the
MultiMTRNNs, the IO, Cf, and Cs layers stand for the input, the fusion (fusion of
primitives), and the context of both modalities, somatosensory and vision, respect-
ively. An overview of the architecture is presented in figure 6.11. The central hypo-
thesis for the computational model is that during learning a composition of a general
feature emerges, which is invariant to the length of the respective sensory input.
A second hypothesis is that the features are ambiguous, if the uni-modal sensa-
tions are ambiguous for a number of overall different observations, but that the
association can provide distinct representation for the production of a verbal
utterance.

23Compare section 6.2.1.
24Compare section 6.3.
25Compare chapter 4.2.3.
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Figure 6.11: Architecture of the multi-modal MTRNN model, consisting of an MTRNN
with context bias for auditory, two MTRNNs with context abstraction for somatosensory
as well as visual information processing, and Cell Assemblies (CAs) for representing and
processing the concepts. A sequence of phonemes (utterance) is produced over time,
based on sequences of embodied multi-modal perception.

Information Processing, Training, and Production

For every scene, verbal utterances are presented together with sequences of the
proprioceptive and visual stimuli of an action sequence. During training of the
system, the somatosensory MTRNNs and the visual MTRNNv self-organise the
weights and also the internal states of the Csc units in parallel, for the processing of
an incoming perception. For the production of utterances, the auditory MTRNNa
self-organises the weights and also the internal states of Csc units. The important
difference is that the MTRNNs and the MTRNNv self-organise towards the final
internal states of the Csc (end of perception), while the MTRNNa self-organises
towards the initial internal states of the Csc (start of utterance). Finally, the activity
of the Csc units of all MTRNNs get associated in the CAs. The output layers
of the MTRNNa are specified by the decisive normalisation (softmax), while all
other neurons are set up with the proposed26 logistic function flogistic (κh = 0.35795,
κw = 0.92). This particularly includes the neurons in the IO layers of the MTRNNs
and MTRNNa as well.

For the training of the auditory MTRNNa the procedure and the mechanisms
are kept identical to the training in all previous models: the adaptive BPTT
variant is employed, by specifying the KLD and the LMS as the respective error
functions. The training of the MTRNNs and MTRNNv is conducted similarly, but
for both it includes the suggested self-organisation forcing mechanism as described

26Compare chapter 4.3.2.
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in equation 6.1 (section 6.2.2). For these MTRNN with context abstraction, again
the error is measured on randomly initialised (desired) activities of the Csc units at
the final time step and is used for self-organising both, the weights and the desired
internal Csc states. For the CAs, the associations between the Csc units of the
MTRNNs, MTRNNa, and MTRNNs are trained with the LMS rule on the activity
of the Csc units, analogously to equation 6.7 (section 6.3).

With a trained network the generation of novel verbal utterances from proprio-
ception and visual input can be tested. The final Csc values of the MTRNNs and
MTRNNv are abstracted from the input sequences respectively and associated
with initial Csc values of the auditory MTRNNa. These values in turn initiate the
generation of a phoneme sequence. Generating novel utterances from a trained
system by presenting new interactions only depends on the calculation time needed
for the preprocessing and encoding, and can be done in real time. No additional
training is needed.

Multi-modal Language Acquisition Scenario

In this study the scenario is also based in the interaction of a human teacher with a
robotic learner to acquire and ground language in embodied and situated experience.
For testing the refined model, our NAO humanoid robot (NAO) is supposed to
learn to describe the manipulation of objects with various characteristics to be able
to describe novel actions with correct novel verbal utterances. Manipulations are
to be done by the NAO’s effectors and thus to be observed by its motor feedback
(proprioception) and visual perception (see figure 6.12a for an overview). In this
study, for the developmental robotics approach it is particular important to include
the influence of natural variances in interaction, which origin in varying affordances
of different objects, but also in unforeseen natural noise.

For a given scene in this scenario, the teacher guides the robot’s arm in an
interaction with a coloured object and verbally describes the action, e.g. ‘slide
the red apple’. Later, the robot should be able to describe a new interaction
composed of motor movements (proprioception) and visual experience that it

(a) Scenario overview.

S → ACT the COL OBJ.

ACT → pull | push
| show me | slide

COL → blue | green
| red | yellow

OBJ → apple | banana
| dice | phone

(b) Grammar.

Figure 6.12: Scenario of multi-modal language learning.
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may have seen before with a verbal utterance, e.g. ‘show me the yellow apple’.
The scenario should be controllable in terms of combinatorial complexity and
mechanical feasibility for the robot, but at the same time allow for analysing how
the permutation is handled. For this reason the corpus is limited to a set of verbal
utterances, which stem from the small grammar as summarised in figure 6.12b.
For every single object of the same four distinct shapes (apple, banana, phone, or
dice) and four colours (blue, green, red, or yellow), four different manipulations are
feasible with the arm of the NAO: pull, push, show me, and slide. The grammar
is overall unambiguous, meaning that a specific scene can only be described by
one specific utterance. Nevertheless, all objects have a similar mass and similar
surface conditions (friction). This way the proprioceptive sensation alone is mostly
ambiguous for a certain action on objects with differing colours, but also with
different shapes.

(a) Action teaching over time (bottom: learner’s view): ‘slide the red apple.’.

pull move the arm behind the object and
drag it towards the torso

push move the arm in front of the object and
push it away from the torso

show me point with the hand to the object

slide move the arm to the right of the object
and slide it horizontally to the left

(b) Instructions for action teaching.

Example:
‘slide the red apple.’

5 15 25
0.0

0.5

1.0

Time step ts
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Right arm joints 15

(c) Encoded proprioception.

Figure 6.13: Action recording and somatosensory representation for the multi-modal
language learning scenario: encoding shows normalised joint angles over time.
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To obtain neurocognitively-inspired auditory and visual representations, the
same utterance encoding and visual perception encoding mechanisms are used,
which have been developed for the scenario in studying the embMTRNN model
(compare chapter 5.3.1 and chapter 3.3). The utterances are encoded into a phonetic
representation based on the ARPAbet, while the temporal dynamic visual perception
is encoded into shape and colour features. Capturing motion features also in visual
perception is deliberately avoided for several reasons. First of all, from a conceptual
perspective it is desired to keep the visual sensation ambiguous on its own as well as
to study the multi-model integration on conceptual level (compare 6.5). Secondly,
an agent could experience the movement of an entity in the field of view simply by
tracking the said entity with its head or the eyes. This would shift the perception
to the somatosensory level and would introduce a redundancy with respect to the
arm sensation, which could be difficult to preclude in an analysis.

To gather and encode the proprioception of a corresponding action, the right
arm of the NAO is guided. From this steered arm movement, the joint angles of
the five joints are directly measured with a sampling rate of 20 Frames Per Second
(FPS) and the values scaled to [0, 1], based on the minimal and maximal joint
positions (see figure 6.13a for an example of the proprioceptive features Fpro). In
a data recording conducted by this scheme, the human teachers are instructed
about the four different movements as listed in figure 6.13b. Having an encoding
on the joint angle level is neurocognitively plausible, because the (human) brain
merges information from joint receptors, muscle spindles, and tendon organs into a
similar proprioception representation in the S1 area [19, 96]. Figure 6.13c shows
the encoded proprioception for the exemplary action.

6.5.2 Evaluation and Analysis

To learn from the model’s characteristics, we are interested in how the generalisation
capabilities change with regard to the embMTRNN and the so-uniMTRNN
models and the information patterns that emerges for the CAs. As a prelude for
such an analysis the self-organisation forcing mechanisms need to be inspected
further for the impact on the developed internal representation of the abstracted
proprioception.

For data collection in this study the 64 different possible interactions were
recorded four times each with the same verbal utterance and arm starting position
but with slightly varying movements and object placements. This was done by
asking different subjects27 to perform the teaching of such interactions for minimising
the experimenter’s bias. The data was again divided 50:50 into training and test
sets (all variants of a specific interaction are either in the training or in the test
set only) and used for training ten randomly initialised systems, while this whole
process was repeated 10 times as well (10-fold cross-validation) to obtain 100 runs
for analysis.

27Colleagues from the computer science department; instructions listed in figure 6.13b.

147



Chapter 6. Multi-modal Language Grounding

Table 6.7: Standard parameter settings evaluation of the MultiMTRNNs model.

Parameter * Description Domain Baseline Value

|Ia,IO| Number of IO neurons |B| 44
|Ia,Cf | Number of Cf neurons N>0 80
|Ia,Cs| Number of Cs neurons N>0 23

|Is,IO| Number of IO neurons |Fpro| 5
|Is,Cf | Number of Cf neurons N>0 40
|Is,Cs| Number of Cs neurons N>0 23

|Iv,IO| Number of IO neurons |Fsha|+ |Fcol| 19
|Iv,Cf | Number of Cf neurons N>0 40
|Iv,Cs| Number of Cs neurons N>0 23

|Ia,Csc| Number of Csc units N[1,...|Ia,Cs|] 12
|Is,Csc| Number of Csc units N[1,...|Is,Cs|] 12
|Iv,Csc| Number of Csc units N[1,...|Iv,Cs|] 12

W0 Initial weights range R[−1.0,1.0] ±0.025
C0

a,0 Initial Csc values range R[−1.0,1.0] ±0.01
C0

s,T , C0
v,T Init. final Csc values range R[−1.0,1.0] ±1.00

τa,IO Timescale of IO neurons N>0 2
τa,Cf Timescale of Cf neurons N>τa,IO 5
τa,Cs Timescale of Cs neurons N>τa,Cf 70

τs,IO Timescale of IO neurons N>0 2
τs,Cf Timescale of Cf neurons N>τs,IO 5
τs,Cs Timescale of Cs neurons N>τs,Cf 50

τv,IO Timescale of IO neurons N>0 2
τv,Cf Timescale of Cf neurons N>τv,IO 5
τv,Cs Timescale of Cs neurons N>τv,Cf 16

ψv Self-organisation forcing – visual R[0.0,1.0] 0.00005
* Parameters for training are identical to those described in table 5.1.

The MTRNNs were parametrised as follows (all parameters given in table 6.7).
The auditory MTRNNa and the visual MTRNNv were specified in size based on the
previous studies for the so-uniMTRNN model28. The somatosensory MTRNNs
was shaped similarly with |Is,Cf | = 40 and |Is,Csc| = 23, based on the experiences
acquired as well as on other work [302]. The number of IO neurons in all three
MTRNNs were based on the representations for utterances, proprioception, and

28Compare section 6.2.3 and chapter 5.4.1.
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visual perception and set to 44, 5, and 19 respectively, while the number of Csc units
were set to |ICsc| = d|ICs|/2e. All weights were initialised similarly within the inter-
val [−0.025, 0.025], while the initial Csc units (auditory MTRNNa) were randomly
taken from interval [−0.01, 0.01] and the final Csc units (somatosensory MTRNNs
and visual MTRNNv) from interval [−1.0, 1.0]. The learning mechanisms and
parameters were identically chosen as for the embMTRNN and so-uniMTRNN
models. Likewise, the timescales for the MTRNNa and the MTRNNv were based
on the resulting values for the so-uniMTRNN model29 (τa,IO = 2, τa,Cf = 5, and
τa,Cs = 70 as well as τv,IO = 2, τv,Cf = 5, and τv,Cs = 16). A good starting point for the
timescale setting of the MTRNNs were the parameters suggested in original studies
(τs,IO = 2, τs,Cf = 5, and τs,Cs = 50) to provide a progressive abstraction [201, 302].
A preliminary parameter search (not shown) confirmed these suggestions. For this
scenario, the timescales seem not particularly crucial, since the actions are not
strongly dependent on shared somatosensory primitives.

For the self-organisation forcing parameter of the visual MTRNNv, a parameter
exploration was conducted similarly to the study in section 6.3.2. This search
revealed that the self-organisation is more crucial for this data set, but that a
setting of ψv = 0.00005 again is good (detailed results are omitted, but detailed
results for the somatosensory MTRNNs will be presented within this section).

Generalisation of Novel Interactions

Based on good parameters for dimensions, timescales, and learning, a variation
of the self-organisation forcing parameter ψs of the somatosensory MTRNNs was
conducted to test the overall performance of the model. The results of the experiment
show that the system is able to generalise well: a high F1-score and a low edit
distance of 0.984 and 0.00364 on the training as well as 0.638 and 0.154 on the
test set was determined for the best network. On average over all runs an F1-score
and an edit distance of 0.952 and 0.0185 for the training as well as 0.281 and 0.417
for the test have been measured (qF1-score,mixed = 0.617, qedit-dist,mixed = 0.219). The
scenario offered a higher number of scenes and more complex temporal dynamic
perception, nevertheless the overall performance is hence higher than in the previous
study (compare chapter 5). For a parameter variation as listed in table 6.8, all
results are provided in figure 6.14a and c – the best results originated from setting
ψs = 0.0005.

Although training is challenging and rarely perfect yet not over-fitted systems
were obtained on the training data, a high precision (small number of false positives)
with a lower up to medial recall (not exact production of desired positives) was
observed on the test data. The errors made in production were mostly minor
substitution errors (single wrong phonemes) and only rarely word errors.

Using a self-organisation mechanism on the final initial Csc values for the
somatosensory and visual MTRNNs caused good abstraction from the perception
for the described scenario and the chosen ψs and ψv values. In this scenario the

29Compare chapter 5.4.3 and section 6.2.3.
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Table 6.8: Parameter variation of self-organisation forcing in somatosensation.

Parameter Values

Self-organisation forcing ψs {1, 2, 5} · 10−k, k ∈ {2, 3, 4}

mechanism is, in fact, very crucial. For both sensory modalities the performance
was significantly worse (pt-test < 0.001) when using static random values for the final
internal states of the Csc units in abstracting the sensation ψ = 0.0. In particular for
proprioception the rate of successfully described novel scenes nearly doubled when
using self-organisation forcing with ψs = 0.0005 compared to random patterns.
Based on the experience acquired in the preliminary test (compare section 6.2.3),
the obvious hypothesis is that the MTRNNs self-organised a better distribution of
the Csc patterns in the Csc space. However, measuring the Csc space by using the
L2 distance metrics revealed that the patterns are not spreading out, but rather
shrink towards small context values, regardless ψs is set too large (see figure 6.14b):
For smaller ψs the shrinking develops similar but less strong.

To find an alternative hypothesis, the patterns were inspected again in detail.
They showed some regularity for scenes including the same manipulation action.
Thus, a good performance might correlate with a self-organisation towards similar
patterns for similar manipulations. To quantify this effect, two additional measures
are used to describe the difference between patterns for scenes with the same or
with different manipulations M = {pull, push, show me, slide}:

qL2-dist,inter = 1
|M |

∑
ak∈M

qL2-dist,avg(Cak
) , (6.8)

qL2-dist,intra = 1
(|M | − 1) · (|M |/2)

|M |−1∑
k=1

|M |∑
l=k+1

qL2-dist (centroid(Cak
), centroid(Cal

)) , (6.9)

where the inter-cluster distance qL2-dist,inter is the average of all unweighted pair
distances of patterns over the scenes that include the same manipulation (e.g. pull,
push, show me, and slide) – subsequently averaged over all manipulations. The
intra-cluster distance qL2-dist,intra provides the mean of all distances of centroids for
the clusters that contain patterns of the same manipulation. The measurements of
the inter- and intra-cluster distances over the varied ψs are presented in figure 6.14c.
The plots are compared on the same absolute scale and show that the inter-distance
is decreasing rapidly with increased ψs, but the intra-distance decreases much
slower. At some point, in fact (e.g. for ψs = 0.0005), the inter-distance is smaller
than the intra-distance. This means that the patterns are indeed clustered best for
certain ψs values, before the shrinkage for the Csc patterns is too strong and the
distances vanish. In figure 6.14e–g we can visually confirm this measured clustering
on a representative example (“good” in 6.14f).
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(b) Mean and relative L2 distances.

0.19

0.27

0.35

0.43

0.51

0.
0

0.
00
00
1

0.
00
00
2

0.
00
00
5

0.
00
01

0.
00
02

0.
00
05

0.
00
1

0.
00
2

0.
00
5

0.
01

q e
di

t-
di

st
,m

ix
ed

Self-organisation forcing ψs

(c) Mean mixed edit distance.
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(d) Inter- and intra-cluster L2 distances.
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Figure 6.14: Effect of the self-organisation forcing mechanism on the development of
concept patterns in the CPuniMTRNN model: Mean mixed F1-score (a) and mixed
edit distance (b), mean of average and relative pattern distances (c), and intra- and
intra-cluster distances (d) with interval of the standard error, each over 100 runs and over
varied ψv respectively; representative developed Csc patterns (f–i) reduced from |ICsc| to
two dimensions (PC1 and PC2) for selected parameter settings of no, “good”, and large
self-organisation forcing respectively. Different words for shapes and colours are shown
with different coloured markers (black depicts ‘position’ utterance).
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Self-organisation in the Cell Assemblies

Throughout all tests of the MultiMTRNNs model but also for so-uniMTRNN
and the CPuniMTRNN models (compare sections 6.3.2 and 6.4.2), diverse patterns
of the internal states of the Csc units developed across the modalities. Nonetheless
frequently similar patterns emerged in the respective modality for similar utterances
or perceptions. This is particularly the case for the Csc units of the sensory
modalities (MTRNNs and MTRNNv), as shown in the last experiment (where
a clustering towards patterns for similar perceptions emerged), but also for Csc
units of the auditory production subsequently to the activation within the CAs.
During training, the Csc units in the auditory MTRNNa also self-organised for the
presented sequences (utterances). However, within the formation of the CAs by
means of the associations patterns emerged that are able to cover the whole space
of scenes in training and test data.

To inspect how these patterns self-organise, we can look into the generated Csc
patterns after the whole model is activated by the perception on somatosensory
and visual modalities from the training and the test data. An example for such Csc
activations is presented in figure 6.15 for well-converged architectures with a low30

generalisation rate (a, c, and e) and a high generalisation rate (b, d, and f). The
visualisation is provided by reducing the activity of the Csc units to two dimensions
using again PCA and normalising the values31 (additional components shown in
appendix D.10). The results confirm that the patterns form dense and sparse
clusters for the visual Csc (the patterns, in fact, overlap each other for different
manipulations on the same coloured and shaped object). For the somatosensory
Csc, the clusters are again reasonable distinct for the same manipulations, although
there is a notable mixing between some manipulations on certain objects. For
the auditory Csc in case of high generalisation, the patterns are also distinctly
clustered. In the example, presented in figure 6.15f, we can discover clustering by
colour (prominently on PC2), by manipulation (notable on PC1) and by shape (in
between and on lower components). The low generalisation example of figure 6.15e
shows the clusters less clear with more patterns scattered across the PC1 and PC2.

Inspecting the sensory data revealed that visual shape and colour sequences
are strikingly similar for different manipulation on the same objects, while the
proprioception sequences show some differences for some objects. For example, the
slide manipulation on banana-shaped objects was notably different than on the
other objects. Apart from that, the proprioception sensation is mostly ambiguous
with respect to the specific scene (which object of which shape was manipulated) –
which was intended in the scenario design. Thus it seems that in the CAs there is
a tendency of restructuring the characteristics (shape, colour, or proprioception),
which were overlapping for the single modalities, into a representation where all
characteristics are distributed.

30Test set F1-score: low generalisation rate 0.117, high generalisation rate 0.638.
31The first two components explain the following percentage of the variance in the patterns:

low/proprioceptive: 90.75%, low/visual: 52.42%, low/auditory: 83.34%, high/proprioceptive:
97.59%, high/visual: 43.52%, high/auditory: 65.66%.
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Figure 6.15: Activity in the Csc units after the model has been activated by proprio-
ception and visual perception for the final internal states (somatosensory and visual) and
the initial internal states (auditory), reduced from |ICsc| to two dimensions (PC1 and
PC2) and normalised, each. Visualisation a, c, e are shown for an representative example
for low and b, d, f for high generalisation.
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6.5.3 Summary

In sum, embedding MTRNNs with context abstraction and an MTRNN with
context bias into one coherent architecture allows for a composition of temporal
dynamic multi-modal perception into overall concepts and for the decomposition
into meaningful sequential actuation, e.g. in terms of a verbal description. The
proposed MultiMTRNNs model integrates hypotheses on speech processing,
hierarchical sensory abstraction, and semantic integration on the conceptual level.
Although modelling the acquisition of speech production, grounded into multi-
modal perception, the architecture attempts to keep cortex-level neurocognitive
plausible foundations in structure, processing, and input-output representations.

Based on a developmental robotics scenario with a robot manipulating objects,
the architecture was trained to learn verbal descriptions for the multi-modal
perceptions. Such a training is computationally demanding and the meta-parameter
space vast. The experiments built up on the experiences acquired in studying the
embMTRNN and the so-uniMTRNN models and thus primarily investigated a)
the role of the self-organisation forcing mechanism in abstracting the concepts from
the sensory input and b) the development of the CAs as conceptual networks. From
the results we can obtain that the self-organisation forcing indeed is facilitating
the clustering of concepts for similar perceptions by self-organising the space of the
internal states of the Csc units upon the structure of the data. Self-organising the
patterns in the CAs towards well-distributed clusters highly correlated with the
ability to generalise well.

In the MultiMTRNNs model, good clustering self-organised for the abstracted
context patterns of visual perception and also for somatosensation. For vision, this
clustering occurs in particularly dense clusters that are sparsely distributed over the
Csc space. For models that generalise well, we found that in the CAs associations
emerged that projected the Csc space of the multi-modal sensation (shape, colour,
proprioception) into a well-distributed Csc space of auditory production. This
distribution self-organised again towards sparsely-distributed dense clusters. Models
that are able to successfully describe all training data, but cannot generalise, showed
a less well-distributed auditory Csc space.

For the generalisation this means that a well-distributed (sparse) but well-
structured (conceptual clusters) auditory Csc space facilitates the grounding of
language acquisition into the temporal dynamic features. Such a Csc space allows to
modulate (on a high dimensional but temporally static representation), which motor
sequence needs to be selected to describe the perception. A good overall abstraction
of the respective perceptual features into the CAs thus fosters a correct (good)
decomposition into a chain of words and then into phonemes. As a consequence,
the CAs fuse but more importantly disambiguate single modalities, which are
ambiguous on their own, into an overall coherent representation. Since in the model
this happens temporally concurrent, it seems sufficient that different aspects of an
observation, just need to co-occur to form a rich but latent overall representation
for all modalities.
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6.6 Intermediate Discussion
For the brain it has been shown that spatial characteristics of connectivity and
temporal characteristics in processing lead to a hierarchical processing of sensation
and actuation (compare chapter 4.1.1). In previous studies, researchers adopted
these natural conditions on the cortex to constrain a CTRNN with timescales and
also integrated a context bias to model such a hierarchical processing in motor
movement and speech production aspects (compare chapter 4.4). Such an MTRNN
with context bias model can decompose an initial context into a sequence of
primitives. In this chapter, this concept was developed further and reversed to allow
for composing a sequence of primitives into an abstracted context. A mechanism
was proposed to force an entropy-based self-organisation of such a context.

The self-organisation forcing mechanism provides the development of a latent
representation of the respective abstracted context for a sequential perception,
without the need of an a priori definition. The self-organisation forcing parameter is
quite sensitive as too small values hinder a self-organisation while too large values
lead to a fast premature convergence of the architecture. The cause for the latter
case is that both, the forward activity from small weights as well as a too strong
adaptation towards this activity, lead to small errors. Thus, the internal states
of the final Csc values are self-organised to match the activity from the network
before the weights of the network are self-organised to cover the regularities of
the data. This issue could be further approached by using a regularisation for the
self-organisation or by using weight initialisations based on the eigenvalue of the
weight matrix. For the first option, it would be important to consider methods
that are independent from the direction of the gradient. For example, a simple
normalisation of the internal states of the final Csc units would only skew the
distribution and hence could lead to a convergence towards similar Csc patterns.
For the second option, a divergence could occur because the randomly initialised
Csc pattern could be by chance all similarly small or similarly large. Moreover,
although popular in learning deep FFNs [157], using a weight initialisation around
the ideal activity of an RNN can lead to additional instability during training.

The comparison of the embMTRNN model and the refined models with unified
MTRNN structures showed that these variants can acquire a language production
competence grounded in visual experience on equal level. Since in the embodied
scenario the visual stimuli were limited to nonmoving shapes and colours and
nonchanging relative positions, the task of abstracting a visual context from the
visual features was not demanding, even if these stimuli were temporally dynamic
and perturbed by noise. Thus, the similarity in performance and in developing a
feed-forward structure in the visual MTRNNs is a logical consequence.

Employing the MTRNN with context abstraction in a model for acquiring
language from auditory comprehension showed that a concept can also be abstracted
from a more complex sequence. Furthermore, the CPuniMTRNN model yields a
good level of generalisation, superseding the generalisation obtained using visual
information. Particularly remarkable is the reduction of errors occurring on phoneme
level for production, although the characteristics for the production part have been
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kept identical. It seems that the recurrent structure in the comprehension part
self-organised towards abstracting patterns for a scene (here: perceived utterance)
that are distinct enough to obtain a pattern for a novel scene, which is a reasonable
modulation of the underlying characteristic of the scene. Counter-intuitively this
performance was not achieved because a clear compositionality emerged in the
comprehension part. Although activity within the Cf layer emerged to be in part
similar for some words of a certain class, the stronger similarity occurred for words
starting at exactly the same time step, thus suggesting that the MTRNN for
comprehension was also able to determine a context just by abstracting from the
features of the whole sequence. Compared to natural language development in
children, this is a quality on holo-phrase level and reasonable for smaller corpora. It
seems that – at least for comprehension – other strategies like scaffolding32 as well as
more variable corpora might be necessary. For the latter case, merely scaling-up the
data imposes a severe difficulty in training the deep recurrent architecture. Such a
scale-up does not only multiply the effort because of more and longer sequences and
larger dimensions of the networks, but also because our gradient descent approaches
are limited and demand high numbers of iterations. In sum, it seems that even
in the case of only a small degree of compositionality in comprehension, concepts
for the temporal dynamic speech inputs can emerge by abstracting the input on
multiple timescales.

In the MultiMTRNNs model the density of the formed clusters of certain
observations was observed to be closely related to the similarity of the abstracted
sequences. This observation is logical, since the data for the somatosensory and the
visual modalities was not compositional and thus the patterns in the Csc formed
as a compression of the temporal dynamic observations. As a consequence, the
clustering of sequences is limited by the variability of the sequences, since there
is no mapping to a category within the single modalities required. By associating
the (clustered) multi-modal sensory representations with the auditory production
representations, the cell assemblies form as a direct link of the active patterns. The
resulting mappings show a close relation to the action-perception circuits measured
in the brain (compare chapter 2.1.2): the Csc space is reorganised to form specific
conceptual webs for co-occurring multi-modal patterns. Since this effect was not
build in but emerged from the entropy-based learning, it seems that the conceptual
webs are the obvious consequence of the self-organisation.

32Compare chapter 2.1.1.
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Chapter 7

Conclusions

Communicating in natural language is one of the most fascinating capabilities that
humans developed and use in daily life. Our understanding of its behavioural and
mechanistic characteristics, however, is still in its infancy despite the enormous
achievements contributed in linguistics, neuroscience, behavioural psychology and
many other disciplines. The aim of this thesis is to join the effort and bridge the gap
between the disciplines by using the developmental robotics approach to contribute
an understanding of the characteristics of an appropriate brain-inspired neural
architecture that facilitates language acquisition.

7.1 Thesis Summary
To approach this goal, the thesis identified important building blocks in language ac-
quisition from the above mentioned disciplines and narrowed down specific research
questions on emergence, temporal dynamics, hierarchical abstraction, composi-
tional self-organisation, and multi-modal representations. Developed methods have
been presented that allow for testing models on language acquisition on robotic,
human-like agents that interact in natural environments. Also, approaches for
plausible neural architectures on the cortex level have been elaborated and refined
that allow for modelling language acquisition and for including the aforementioned
building blocks.

On this basis, two consecutive models have been presented and demonstrated
in a natural interaction of a robotic agent with its environment, in controlled and
careful but reasonable abstraction and simplification. The first model, namely a
Multiple Timescale Recurrent Neural Network (MTRNN) extended by embodied
perception, is able to learn language production, grounded in static vision and
features compositionality in the language acquisition, generalisation, and a reason-
able robustness. The second model, a multi-modal MTRNNs model, extends the
unification of the first model and is capable to learn language production grounded
in both, temporal dynamic somatosensation and temporal dynamic vision. This
model features hierarchical abstraction of all modalities, multi-modal integration,
and self-organisation of latent representations.
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Studies on these models allow transferring some characteristics, to either confirm
hypotheses on specific language phenomena or pose novel suggestions for further
research. We will discuss these aspects in the detail in the following.

7.2 Discussion
The research presented in this thesis is positioned on the interdisciplinary bridge
between linguistics, neuroscience and behavioural psychology. As a consequence,
the outcome is contributing to this interdisciplinary interface but also to machine
learning and robotics. The driving force behind the development and the study
of the aforementioned models were a set of research questions concerning the
emergence of language from brain-inspired neural architectures and multi-modal
embodied interaction as well as the developing internal structures and the factors
that facilitated the emergence1. In the following sections, we will discuss the
discovered outcomes in detail.

Robots Learning from Speech and Multi-modal Perception

To apply the Developmental Robotics (DR) approach, the first necessity was to
mimic the language acquisition in a natural environment by a robot that is capable
of perceiving speech and visual experience in a human-like fashion. At the first
glance, our technological progress appears quite advanced in building robots and
complex machines. However, producing good capabilities in actuation does not
necessarily provide good capabilities in perceptions – and most importantly making
sense of it. The experience made in this thesis is that we need to further push
research towards a) sensors that are integrated into the actuators and into the
overall embodied context and b) architectures of abstracting and merging these
rich sensations.

For speech recognition, we learned that integrating preprocessing and context
into the tool chain for determining a good hypothesis helps to improve performance
tremendously. The more rules and statistical knowledge to apply and the more
context to integrate, the better. The developed approaches for multiple decoders
and integrating domain-knowledge improved speech recognition significantly. Nev-
ertheless, for a realistic interaction in the far-field between humans and robots, the
available approaches are in general insufficient. For somatosensation, we learned
that motor feedback must not only quantify proprioception but also qualify. In case
of our multi-modal scenario, a sensation would enrich the available information that
not only measures how the motors move in experiencing the objects, but also how
these movements feel differently when handling softer or heavier objects2. For visual
object recognition, we found that a reasonable abstraction of salient features from

1Compare chapter 2.3.
2So far, we can certainly measure the electrical current as being different for heavier ob-

jects [146], but we cannot measure if a movement feels efficient or painful [198].

158



7.2. Discussion

the entities of interest in our environment facilitates to recognise them invariant to
perspective and slight changes in the morphology.

Overall, understanding how mammals and particularly humans understand
the environment can enable us to transfer these understanding capabilities into
robots, to make them act in a useful manner later on. For our aim of understanding
language acquisition, this endeavour would be tightly coupled with the development
of models that are supposed to be embedded in a human-like embodied agent.

Multiple Timescales and Context Abstraction

In approaching the development of a model on cortex level for language acquisi-
tion, the MTRNN was adopted as a neurocognitively plausible architecture that
constrains the Continuous Time Recurrent Neural Network (CTRNN) by different
timescales in processing (compare chapter 4.4). These timescales emerged from
different leakage characteristics between groups of neurons and a connection struc-
ture that was found for hierarchically dependent functional areas in the brain.
The MTRNN is able to capture long-term dependencies by finding different short-
or long-term dependencies in the data – like primitives that build up an overall
context. The idea of generating sequences with different temporal dynamics from
an overall context or bias was reversed to abstracting context from a perceived tem-
poral dynamic sequence (compare chapter 6.2.1) to allow for modelling hierarchical
abstraction in both directions: actuation and perception. A central contribution of
this thesis, the suggested self-organisation forcing mechanism, is able to reorganise
random patterns towards a structure that is capturing the regularities in the tem-
poral dynamic input. We can conceive this mechanism as an option to train such a
forward MTRNN in an unsupervised fashion, although we use first-order gradient
descent. Despite being inherently slow in terms of convergence, this combination
is shaping a latent representation based on the entropy in the data. By enforcing
“good” steps in the descent, e.g. by the developed RPROP variant, we can keep
this iterative nature but still achieve a good training time.

Emergence of Language from Temporally Hierarchical Abstraction

In the studied computational models, language emerged from the temporally hier-
archical abstraction. The characteristic of inherent temporally different processing
– or different leakage of information – led to a decomposition of the language,
which the models were supposed to learn, and thus the ability to generalise. More
specifically, composing descriptions for novel perceptions (scenes) worked best for
certain differences in the timescales that correlate with the temporal extent of the
trained language. Concerning our general question of how language developed in
humans, this could mean that our used languages are indeed a consequence of our
specific timescales in processing information in the brain. In fact, this thesis suggests
that the temporal extent of utterances as well as of words could be related to the
timescales between the Middle Temporal Gyrus (MTG) and the Inferior Frontal
Gyrus (IFG) as well as between the IFG and the PreMotor Cortex (PMC). This
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proposal also covers the fact that humans develop individual differences in their
neural information processing, since the model also showed some robustness for
some timescale ranges3. As a consequence, the length of utterances must be finite,
opposed to the proposed theory on generative languages (compare chapter 2.1.1
and for review [70]). However, this is in line with proposals and observations by
researchers arguing for constructive languages [23, 222].

On the whole, it seems that timescales are necessary and also sufficient for
language acquisition, and might have enabled that humans constructed languages
in the first place. In processing motor actions, timescales facilitate to decompose a
motor schema into primitives, which seems to be the case in speech production as
well (compare chapter 4.1.1).

Self-organising Compositional Representations

For forming a compositional representation in the studied neural models it seems
sufficient that the data contains regularities as well as irregularities. In the tested
scenarios, the models learned regularities in terms of phonemes that occur regularly
in the same sequential order and phoneme successions that occur highly irregular.
Solely by the co-occurrence of phonemes (forming words) and by the occurrence of
words in relation to other words, a representation was formed whereby words were
represented similarly if they constitute a filler for the same role in the utterances4.
This finding is in line with studies on human children, which found that irregularities
lead to segmentation of continuous speech into morphemes (words) or holo-phrases
(compare 2.1.3). In addition, just recently it was discovered that in a computational
model on speech sounds the neurons self-organised towards reoccurring patterns
– even without a training signal, suggesting that the brain is overall particularly
good at structuring the regularities of the real world perception [109].

Since the models studied in this thesis were trained with a gradient descent
approach, it seems that a compositional representation was formed solely by
minimising differing activity for similar temporal dynamic patterns (words), thus
by the entropy of different versus similar patterns. For the concepts of the whole
temporal dynamic sequences, this entropy-based descent, which is inherent in the
self-organisation forcing mechanism, led to a restructuring of the concept space
to represent similar sequences with similar temporally static concept patterns.
Thus on the whole, the regularities in the data – that are also rich in our nat-
ural environment [264] – also seem sufficient for an architecture with different
timescales.

Concept Representations in Comprehension and Production

In the model for coupling language comprehension and production, similar
representations formed for the abstracted context in comprehension compared
to the context bias in production. For each, the context self-organised towards a

3Compare chapter 5.4.3.
4Compare chapter 5.4.4 and chapter 6.4.2.
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reasonable spread in the context space to cover the overall meanings of possible
utterances in the corpora. Thereby the models successfully mapped both context
representations to allow generalising to the correct production of novel compre-
hended utterances. Nevertheless, the compositional structures that formed for
production and comprehension showed differences in the emerged representations
for the words. Words were mostly grouped for their position in the sequence and less
for their role. As discussed in chapter 6.6, this might point to a weakness in training
the model. However, this could also mean that for the tested corpora a fine-grained
compositionality was not necessary. Since the target in training was only a pseudo-
random (randomly initialised with marginal self-organisation) temporally static
representation, the entropy was highest for matching such a representation without
precisely activating primitives (words). An alternative hypothesis emerging from
this observation is that it might be sufficient for comprehension to only capture
the rough meaning of a heard utterance and map it on the representation for
production. In this way, an agent with such an architecture could understand an
infinite set of utterances by mapping it on its learned conceptually networks and
thus representing it in a finite set of ego-centric perspectives. Although testing
this hypothesis needs more rigorous studies, it is in line with studies on word
contiguities in humans [295].

Multi-modal Context Facilitates Language Acquisition

In the multi-modal model, we found that the contexts for the single modalities
indeed restructures towards a clustering of similar up to identical patterns for similar
perceptions (compare chapter 6.5). In this way, the models self-organise towards
capturing the features that were different in the otherwise ambiguous sequences.
By associating the abstracted temporally static context representations of multiple
modalities in perception with the speech production modality, cell assemblies emerge
that provided a well distributed unambiguous context space. Thereby the context
space is modulated to produce novel but correct speech productions. With regard
to the brain this relates to the finding of synchronous firing between individual
neurons, which react to the same stimulus but scaled-up to cortex level [1, 73].

Again, both, the uni-modal representations and the associations, self-organised
themselves, driven by the regularities in the data. However, the structuring in
the single modalities seems less complex and is easier to reorganise. Hence, the
hierarchical abstractions seem to operate like a filter on some features from the
rich perception. Summarising this means, that the multi-modal context is able to
abstract the important aspects of the perception on various pathways to cope with
the inherently varying temporal resolutions and information densities of the varying
modalities.

Overall, the combination of the spatial and temporal dependencies in the brain and
the regularities in our environment seem to facilitate abstraction and decomposition
by means of self-organising the “most-efficient” links between sensation, actuation
and higher context.
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Chapter 7. Conclusions

7.3 Limitations and Future Work
To fully explain language acquisition and the mechanisms in language processing,
the models studied in this thesis as well as the tested real world scenarios can be
refined in several directions. Currently, the models cannot be studied in online
learning due to the severe limitations of gradient descent in converging for large
amounts of data as well as in the mechanism of finding the best system (weight
setting) for certain data. Future research must address the possibility to continue the
training, ease the training by fuzzy characteristics of the neurons, e.g. a stochastic
variance in the neurons’ firing rate, or the recruitment of new connections without
changing the architecture’s dimension to capture new data [155, 157, 196].

In the studied models, the complexity is already high for a small scenario due
to the aim of capturing the full range from raw auditory input up to the meaning
of a whole utterance. Although this is an important feature of the model, compared
to approaches that just assume a word representation or work on abstract symbols
(compare chapter 5.1.1), this complexity might get reduced by learning a language
corpus by scaffolding (compare chapter 2.1.1) – words and holo-phrases first, and
then more complex utterances without altering the weights from a “word”-layer (e.g.
Context-fast (Cf)) to the phonetic output. This strategy was found very important
in teaching language to children (compare chapter 2.1.3) and thus might allow for
scaling-up the language learning in a further refined model as well. In addition, such
a step-by-step learning could also reveal differences and similarities in developed
internal representations.

The models make no attempt in explaining a wider range of sensorimotor contin-
gencies. For example, it has been suggested that the same conceptual networks are
involved in speech processing, motor action as well as somatosensation [103, 223].
Further refinements of the model can embed hierarchical abstraction and decom-
position in utterance comprehension and motor action as well, and test how such a
model can replicate an action for verbal descriptions, which were passively learned
before or in co-occurrence with the production of an utterance.

7.4 Closing
In conclusion, this thesis contributes the knowledge that language acquisition can
emerge naturally from our brain’s architecture and general mechanisms on self-
organising structures, which are omnipresent. Timescales in the brain’s language
processing are necessary but sufficient for compositionality. Shared representations
of abstracted multi-modal sensory stimuli and motor actions can integrate novel
experience and modulate novel production. Self-organisation might occur naturally
because of the structure of the sensorimotor data and both, the spatial and temporal
nesting that has evolved in the human brain. With this outcome we can design
novel neuroscientific experiments on discovering multi-modal integration as well as
hierarchical dependencies particularly in language processing and construct future
robotic companions that participate in fascinating discourses.
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Appendix A

Glossary of Symbols

Throughout this thesis a consistent system for symbols is used. To ease the access
for the reader, the presentation of the symbols obeys the following categories:

• Non-mathematical symbols in gothic letters,

• Constants, and meta-variables in lower-case greek letters,

• Variables (scalars) in lower-case italic roman letters,

• Vectors in lower-case boldface roman letters,

• Sets, and distributions in upper-case italic roman letters,

• Additional identifiers for all symbols in subscript lower-case gothic letters.

Deviations from this rules occur only based on important mathematical conventions,
suggested in previous work.

Ca Calcium
Cl Chlorine
K Potassium
Na Sodium
α Teacher forcing
β Learning rate for biases
γ Head margin in utterance encoding
ε Maximal error
ζ Learning rate for initial or final states of Csc units
η Learning rate for weights
θ Maximal number of training epochs
ιh, ιw Parameter for range and slope of the tanh transfer function
κh, κw Parameter for range and slope of the logistic activation function
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λ Scaling factor
ν Interval between two characters
ξ+, ξ− Increasing or decreasing factors for individual learning rates
ρ Momentum term
σ Variance or filter sharpness factor (Gaußian)
τ Timescale or specific time constant τ�
φ Substitution probability
ψ Self-organisation forcing
ω Filter width in utterance encoding
a Manipulation action
bi Bias of neuron i
c0,i Initial internal state of the Csc units i
cT,i Final internal state of the Csc units i
d Membrane capacity
e Error
f, g, h Variables indicating complex functions
i, j Loop variables over arbitrary sets
k, l Counter variables over arbitrary sets
m,n Dimensionalities of arbitrary sets
p Phoneme; also by convention pt-test: p-value of the test statistic
q� Quality measure �
r Resistance
s Sequence
t Time step
u Epoch or training step
v Potential difference (voltage)
wi,j Weight from neuron j to neuron i
w Matrix (2-dimensional vector) of weights
xi Input of a neuron i
x Vector of presynaptic input
x∗i Sensory input of a neuron i
yi Given output of a neuron i
y Vector of postsynaptic output
y∗i Desired output of a neuron i
zi Internal state of a neuron i
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A By convention, (geometric) area
B ARPAbet (alphabet of phonemes)
C Set over internal states of Csc units
F Set over perceived features (shape, colour, position, somatosensory)
G Gaußian probability density function
H Hessian matrix of second-order partial derivatives
I Set over neurons i
J Jacobian matrix of first-order partial derivatives
M Set over different manipulations
N Set over natural numbers
R Set over real numbers
S Set over sequences s
T By convention, maximal time step (scalar)
�l Variable for leakage
�M Variable for membrane
�o Variable for width of outgoing pulse
�r Variable for resistance function
�a Variable for auditory
�c Variable for auditory comprehension
�p Variable for auditory production
�s Variable for somatosensory
�v Variable for visual
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Appendix B

Glossary of Acronyms and
Abbreviations

A1 Primary Auditory Cortex 10, 11, 16, 19, 51, 52,
69, 99

AmIE Ambient Intelligence Environments 33, 36–38
ARF Arcuate Fasciculus 10, 13, 142
ASIMO Advanced Step in Innovative Mobility 31
ASR Automated Speech Recognition 33–37, 39–41, 43, 47,

177
BFGS Broyden-Fletcher-Goldfarb-Shanno 73
BP Backpropagation 65–68, 76
BPTT Backpropagation Through Time 67, 68, 72, 80, 96,

126, 144
CA Cell Assembly 52, 126, 135–137,

142–145, 147, 152,
154

CB2 Child-robot with Biomimetic abilities 31
CEE Cross-Entropy Error 72, 84, 87, 137
CELL Cross-modal Early Lexical Learning 93
Cf Context-fast 62, 66, 78, 82, 84,

95, 96, 101–110, 112,
115, 116, 128–130,
137, 138, 140, 143,
148, 162

CGD Conjugate Gradient Descent 73, 74, 90
CIE International Commission on Illumination 45
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Cs Context-slow 62, 78, 79, 82, 84,
95, 96, 101, 102, 104–
109, 112, 115, 116,
122, 128–130, 137,
138, 143, 148

Csc Context-controlling 78, 79, 81, 94, 96,
97, 100, 101, 115,
122–124, 126–128,
130, 131, 135, 136,
138, 143–145, 148–
150, 152–154, 156,
183–185

CTRNN Continuous Time Recurrent Neural Network 58–62, 64, 78, 79, 81,
82, 84, 90, 95, 106,
112, 121, 122, 126,
137, 143, 155, 159

DOCKS DOmain- and Cloud-based Knowledge for
Speech recognition

39–41

DOF Degree Of Freedom 32
DR Developmental Robotics 22, 24, 27, 29–31, 47,

92, 158
EC Embodied Controlling 95–97, 100, 101
ECFS Extreme Capsule Fiber System 13
EEG ElectroEncephaloGraphy 11
EF Embodied Fusion 95, 101
EI Embodied Input 95–97, 101
ERNN Elman Recurrent Neural Network 60, 67, 81, 106, 119,

122
ESN Echo State Network 61, 62, 66, 92, 120
FFN Feed-Forward Network 57, 65, 68, 75, 76,

120, 155
fMRI Functional Magnetic Resonance Imaging 11
FOP Frontal OPerculum 13
FPS Frames Per Second 46, 147
FSG Finite State Grammar 34, 35, 41
GPU Graphical Processing Unit 77
GVS Google Voice Search 33, 39–42, 177
HFO Hessian-Free Optimisation 73, 90
HMAX Hierarchical Model and X 46
HMM Hidden Markov Model 34
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HOG Histogram of Gradients 44
HRI Human-Robot Interaction 33, 35, 36, 41, 42
HTI Human-Technology Interaction 27
iCub Cognitive Universal Body 31, 92, 120, 121
IFG Inferior Frontal Gyrus 12–16, 51, 142, 159
IO Input-Output 62, 66, 78–80, 95,

96, 99–102, 104–107,
110, 115, 122, 126–
128, 130, 136, 138,
143, 144, 148

ITC Inferior Temporal Cortex 11, 44
ITS Inferior Temporal Sulcus 11, 12, 16, 44
KLD Kullback-Leibler Divergence 72, 73, 87, 96, 100,

126, 144
LIF Leaky Integrate-and-Fire 54, 58
LMA Levenberg-Marquardt Algorithm 73
LMS Least Mean Square 71, 72, 96, 123, 126,

127, 144
LSM Liquid State Machine 61, 66
LSTM Long-Short Term Memory 61, 66
LTD Long-Term Depression 64
LTP Long-Term Potentiation 64
M1 Primary Motor Cortex 10, 12, 13, 16, 51, 52
MEG Magnetoencephalography 11
MLP Multi Layer Perceptron 60, 87
MSE Mean Squared Error 128, 137
MST Medial Superior Temporal 51
MTG Middle Temporal Gyrus 11–13, 159
MTRNN Multiple Timescale Recurrent Neural Network 62, 66, 78–82, 84,

87–91, 94–96, 103,
104, 106, 112, 117,
121–123, 125–131,
133, 135–138, 140,
141, 143–145, 148–
150, 152, 154–157,
159, 180, 181

NAO NAO humanoid robot 32, 33, 35, 37, 38,
42, 43, 46, 47, 94, 97,
145–147, 174–176

NGD Natural Gradient Descent 73, 74
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NIRS Near Infrared Spectroscopy 11
PB Parametric Bias 62, 78, 106
PCA Principle Component Analysis 44, 110, 131, 152
PDF Probability Density Function 45, 67, 77
PER Phoneme Error Rate 40, 101, 103
PET Positron Emission Tomography 11
PFC PreFrontal Cortex 51, 52
PMC PreMotor Cortex 10, 12, 16, 51, 159
POS Poverty of Stimulus 6, 7
RNN Recurrent Neural Network 59, 60, 62, 64–68, 72–

76, 81, 87, 90, 92,
106, 119, 120, 155

RNNPB Recurrent Neural Network with Parametric
Bias

62, 78

RPN Recurrent Plausibility Network 60, 61
RPROP Resilient Propagation 75, 76, 90
RTRL Real-time Recurrent Learning 68
SC Superior Culliculus 69
SER Sentence Error Rate 177
SIFT Scale Invariant Feature Transform 44
SNR Signal to Noise Ratio 33, 38
SPT Sylvian Parietal-Temporal 16
SRM Spike Response Model 55
SRN Simple Recurrent Network 60, 62, 66
STDP Spike-Timing-Dependent Plasticity 57
STG Superior Temporal Gyrus 11–16, 51, 142
STS Superior Temporal Sulcus 11, 13, 16, 99
SURF Speeded Up Robust Features 44
TF Teacher Forcing 76, 80, 82, 84, 87, 96,

112, 141
TM Turing Machine 59
TQE Total Quantisation Error 82
UNF Uncinate Fasciculus 13
V4 Visual Cortex Four 44, 51
VAD Voice Activity Detection 39
WER Word Error Rate 40, 41, 101, 177
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Additional Proofs

Theorem C.1 (Pulse code for simple spiking neurons estimated as rate code).
The pulse code of a simple spiking neuron can be estimated by a rate code for a
certain time window.

Proof outline. (Theorem and proof based on [98]) For the proof we can reduce the
equation for the current v of the simple spiking neuron model to a single synapse
(single presynaptic neuron j) (compare equation 4.7):

τM
dv
dt = −gd(v) + gR(v) · xj , xj =

∑
tj,k∈Sj

h(t− tj,k) . (C.1)

We can ignore for now the decay and resistance of neuron i, define a function frwin
to measure the spike count as a running window at time t, and rewrite the integral:

v(t) =

∫ ∞
−∞

frwin(τM)
∑

tj,k∈Sj

h ((t− τM)− tj,k)dt∫ ∞
−∞

frwin(τM)dt
. (C.2)

For setting the function to a rectangular time windows:

frwin = frwin,rect =

1 iff twin/2 < τM < twin/2

0 otherwise
, (C.3)

the equation C.2 reduces to

v(t) = frwin(τM)(t− τM)
frwin(τM) ≈ y = fcount(twin)

|twin|
. (C.4)

If we integrate over the function of the spike pulses h, we can lift the condition of a
rectangular time window and generalise to:

v(t) = τ
∑

tj,k∈Sj

frwin (t− tj,k) , (C.5)

and thus can shape the time window as a constant τ .
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Theorem C.2 (Equality of hyperbolic tangent and logistic transfer functions).
The symmetric (in range [−1.0, 1.0]) hyperbolic tangent transfer function is equal
to a logistic transfer function with doubled range and slope, shifted to zero.

Proof by definition.

tanh(x) = sinh(x)
cosh(x) =

ex − e−x

2
ex + e−x

2

= ex − e−x

ex + e−x
= 1− e−2x

1 + e−2x (C.6)

= 2− 1− e−2x

1 + e−2x = 2
1 + e−2x −

1 + e−2x

1 + e−2x (C.7)

= 2
1 + e−2x − 1 . (C.8)

Additionally, we can introduce parameter κh for range and κw for slope:

κh tanh(κwx) = 2κh

1 + e−κw2x − 1κh . (C.9)

Theorem C.3 (Equality of logistic and hyperbolic tangent transfer functions).
The asymmetric (in range [0.0, 1.0]) logistic transfer function is equal to a hyperbolic
tangent transfer function with halved slope and width, shifted to 0.5.

Proof by definition. Analogous to Theorem C.2:

1
1 + e−x

= 1
2 tanh

(1
2x
)

+ 1
2 . (C.10)

At this point we can also introduce parameter κh for range and κw for slope:

1κh

1 + e−κwx
− κh − 1

2 = 1
2κh tanh

(
κw

1
2x
)

+ 1
2 . (C.11)
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Appendix D

Supplementary Data and
Experimental Results

D.1 Grammar for the Scripted Corpus Data
Collection

Full grammar for the test scenario used in evaluating the Multi-Pass decoder
approach as well as the DOCKS approach in speech recognition (figure D.1).

S → CONFIRMATION | (nao COMMUNICATION)
COMMUNICATION → INFORM | INSTRUCT | ASK
INSTRUCT → COMMAND | ACTION
INFORM → ((OBJECT | AGENT) close to (OBJECT | AGENT | PLACE))

| (OBJECT can be AFFORDANCE)
| (OBJECT has colour COLOUR)

ASK → (what can OBJECT) | (which colour has OBJECT)
| (where is (OBJECT | AGENT))

CONFIRMATION → yes | correct | right | (well done) | no | wrong | incorrect
COMMAND → abort | help | reset | (shut down) | stop
ACTION → HEAD_ACTION | HAND_ACTION | BODY_ACTION
HAND_ACTION → (AFFORDANCE OBJECT) | (show (OBJECT | AGENT))
BODY_ACTION → (turn body DIRECTION) | (sit down) | (walk NUMBER)

| (bring OBJECT) | (go to (AGENT | OBJECT) ) | (come here)
HEAD_ACTION → (turn head DIRECTION) | (follow AGENT)

| ((find | look at) (OBJECT | AGENT))
AGENT → nao | i | patient
OBJECT → apple | banana | ball | dice | phone | oximeter
DIRECTION → left | straight | right
NUMBER → one | two | three
AFFORDANCE → pick | drop | push
COLOUR → yellow | orange | red | purple | blue | green
PLACE → home | desk | sofa | chair | floor | wall

Figure D.1: Grammar for the Scripted corpus.
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D.2 Empirical Evaluation of the Multi-pass Decoder
For a baseline reference, the human user is wearing a headset as well. The details
of the used microphones are as follows:

1. Ceiling Microphone: The ceiling boundary microphone is a condenser micro-
phone of 85 mm width, placed three meter above the ground. It is using an
omni-directional polar pattern and has a frequency response of 30Hz - 18kHz.

2. NAO: The NAO humanoid robot (NAO) robot is configured as described
above. In particular, the microphones are placed around the head and have
an electrical bandpass of 300 Hz - 8 kHz. In its current version the NAO uses
a basic noise reduction technique to improve the quality of processed sounds.

3. Headset: The used headset is a mid-segment headset specialised for web-
communication. The frequency response of the microphone is between 100 Hz
- 10 kHz.

For the empirical validation, all collected files were converted to the monaural,
little-endian, unheadered 16-bit signed PCM audio format sampled at 16,000 Hz,
which is the standard audio input stream for Pocketsphinx.

With Pocketsphinx a speech recognition test was ran on every recorded sentence.
Since it was not the primary focus of this study to test for false negatives and true
negatives, no incorrect sentences or empty recordings were included in the test.
The result of the speech recogniser was compared with the whole desired sentence
to check for the sentence accuracy as means of comparability. If the sentence was
completely correct, it was counted as true positive, otherwise a false positive. For
example, if the correct sentence is ‘nao what colour has ball’, then ‘nao what
colour has wall’ as well as ‘nao what colour is ball’ is incorrect.

To test for statistical significance of the false positive reduction with the multi-
pass decoder, the chi-square (χ2) score over the true-positives/false-positives ratios
was calculated. If, for example, the χ2 score over the tp/fp ratio of the multi-pass in
contrast to the tp/fp ratio of the FSG decoder is very high, then we have evidence
for a high degree of dissimilarity [181].

The empirical investigation of the multi-pass decoder consists of two parts.
Firstly, the overall rate of true and false positives of the multi-pass decoder was
analysed in comparison to specific single-pass decoders. Secondly, the influence of
the size nh of the list of best hypotheses was determined. Both examinations have
been carried out in parallel for all three microphone type as described above.

Results – Effect of Different Decoders

The speech recognition was tested with the 592 recorded sentences using the FSG-
decoder and the Tri-Gram decoder in a single-pass fashion and combined in a
multi-pass fashion with an nh-best list size of nh = 10. The results are presented in
table D.1, whereby every row relates the number of correctly recognised sentences
(true positives) with the incorrectly recognised sentences (false positives).
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Table D.1: Recognition results of Tri-Gram, FSG, and Multi-pass decoder with different
microphones used respectively.

True positives False positives Tp/fp ratio

Tri-Gram decoder
Headset 380 (64.2 %) 212 (35.8 %) 64.19 %
Ceiling mic. 133 (22.5 %) 459 (77.5 %) 22.47 %
NAO robot 14 (2.4 %) 322 (54.4 %) 4.17 %

FSG decoder
Headset 458 (77.4 %) 101 (17.1 %) 81.93 %
Ceiling mic. 251 (42.4 %) 251 (50.3 %) 45.72 %
NAO robot 39 (6.6 %) 447 (75.5 %) 8.02 %

Multi-pass decoder,
nh = 10

Headset 378 (63.9 %) 24 (4.1 %) 94.03 %
Ceiling mic. 160 (27.0 %) 76 (12.8 %) 67.80 %
NAO robot 31 (5.2 %) 130 (22.0 %) 19.25 %

tp/fp ratio = tp / (tp + fp) * 100

We can obtain from the results that with a headset every decoder led to a
relatively high rate of correct sentences, counting 380 (64.2 %) with the Tri-Gram,
458 (77.4 %) with the FSG, and 378 (63.9 %) with the multi-pass decoder. The
single-pass decoders produced 212 false positives (tp/fp ratio of 64.19 %) with
Tri-Gram and 101 false positives (tp/fp ratio of 81.93 %) with the FSG, while the
multi-pass decoder produced 24 false positives (tp/fp ratio of 94.03 %).

For the ceiling microphone the rate of correct sentences was fairly moderate,
reaching 133 (22.5 %) with the Tri-Gram, 251 (42.4 %) with the FSG, and 160
(27.0 %) with the multi-pass decoder. The number of produced false positives was
relativly high for the single-pass decoder reaching 459 false positives (tp/fp ratio
of 22.47 %) with the Tri-Gram and 298 (tp/fp ratio of 45.72 %) with the FSG,
whereas the multi-pass decoder produced 76 false positives (tp/fp ratio of 67.80 %).

The rate of correct sentences for the NAO robot microphones was very low,
achieving only 14 (2.4 %) with the Tri-Gram, 39 (6.6 %) with the FSG, and 31
(5.2 %) with the multi-pass decoder. However, the single-pass decoder produced
322 false positives (tp/fp ratio of 4.17) with the Tri-Gram and 447 false positives
(tp/fp ratio of 8.02 %) with the FSG, while the multi-pass decoder produced 130
false positives (tp/fp ratio of 19.25 %).

In table D.2 some examples for the recognition results with different decoders
and microphones are presented. The results indicate that in many cases where
sentences could not be recognised correctly, some specific single words like ‘apple’
were confused by fillers of the same role. Furthermore, with the NAO robot often
only single words were recognised, showing high rates of failure. However, in most
cases, valid yet incorrect sentences were recognised by both decoders, but were
successfully rejected by the multi-pass decoder.
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Table D.2: Examples for recognised sentences with different decoders.

True positive Rejected False positive
(a) ‘nao go to oximeter’

Tri-Gram decoder FSG decoder Multi-pass decoder

Headset nao what colour oximeter nao go to oximeter nao go to oximeter

Ceiling mic. nao sit down nao sit down nao sit down

NAO robot nao be nao go to oximeter

(b) ‘nao apple close to patient’

Tri-Gram decoder FSG decoder Multi-pass decoder

Headset nao apple has close to patient

Ceiling mic. nao head close to patient nao i close to patient

NAO robot nao to patient nao find patient

(c) ‘nao which colour has ball’

Tri-Gram decoder FSG decoder Multi-pass decoder

Headset nao which colour has ball nao which colour has ball nao which colour has ball

Ceiling mic. nao where is head at phone nao where is phone

NAO robot no

(d) ‘well done’

Tri-Gram decoder FSG decoder Multi-pass decoder

Headset well done well done well done

Ceiling mic. well done well done well done

NAO robot yes

Results – Influence of Parameter nh

To determine the influence of the size of the nh-best list, the parameter nh varied
over {1, 2, 5, 10, 20, 50, 100}. Figure D.2 shows the ratio of true positives and false
positives in comparison to the rate of correctly recognised sentences for every
microphone type as described above. On the one hand, for small nh the percentage
of false positives is smaller for every microphone type. On the other hand, a small
nh results in a more frequent rejection of sentences.

Finding an optimal nh seems to depend strongly on the microphone used and
therefore on the expected quality of the speech signals. In our scenario, a larger
nh around 20 is sufficient for the use of headsets in terms of getting a good true
positives to false positives ratio while not rejecting too many good candidates. For
a moderate microphone such as the ceiling microphone, a smaller nh around 5 is
sufficient. With low-quality microphones like in the NAO robot varying nh does
not provide crucial differences in the accuracy. Overall, smaller nh result in very
few correctly recognised sentences, while larger nh result in a very low tp/fs rate.
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Figure D.2: Results of true positives/false positives ratio and true positive rates in
dependence of the nh-best list size.

D.3 Empirical Evaluation of the DOCKS System
For the validation all experiments were performed with raw Google Voice Search
(GVS) and conventional Sphinx-4 (for brevity: Sp4) speech recognition as well as
with the introduced post-processing techniques: GVS+Sentence-list, GVS+Word-
list, and our GVS+Sp4 combined post-processor with 0.1/0.9 Levenshtein costs
using an N -Gram language model, an unweighted grammar (if applicable), and a
grammar that can produce all possible sentences (thus similar restrictions compared
to the GVS+Sentencelist technique but without making use of nh-best information).
The resulting Word Error Rate (WER) and Sentence Error Rate (SER) over all
three corpora are presented in table D.3.

We can obtain from the results that speech recognition performance for Sp4
is similar to GVS, regardless of whether N -Grams, a grammar, or even the list
of possible sentences are used (some improvement in SER comes at the cost of
WER). The error rates indicate that the better acoustic models of GVS compensate
for the domain knowledge explicitly used in Sp4. Furthermore, the numbers show
that the combined systems greatly and significantly benefit from more domain
knowledge, in which the superior acoustic model (GVS) and tighter domain language
restrictions (Sp4) play together. As an example, the GVS+Sp4 N -Grams setup on
the Scripted corpus resulted in a WER of 8.0 %, which is a relative improvement
of about 85 % compared to the raw GVS (50.2 %) and Sp4 N -Gram (60.5 %)
setups. Slight improvements between GVS+Sp4 Sentences and G+Sentence-list
may indicate the advantage of using nh-best results as an option for future work.

Across the corpora, we can find lower error rates with more domain knowledge.
Specifically, using word N -Grams in combination with phonetic post-processing
radically cuts down error rates compared to using GVS Automated Speech Recogni-
tion (ASR) or Sphinx-4 N -Grams alone. However, error rates for the Spont corpus
remain high, which points to an inability of either recogniser’s acoustic model to
cope with spontaneous free speech collected with far-distance microphones.
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Table D.3: Recognition results (WER and SER) of different DOCKS settings with
different corpora (results taken from [281]).

WER in % SER in %
Scripted Timit Spont Scripted Timit Spont

Raw GVS 50.23 33.35 74.71 97.80 80.21 91.67

Sp4 N -Gram 60.46 23.95 69.06 95.10 64.06 93.75
Sp4 Grammar 65.35 * * 85.98 * *
Sp4 Sentences 65.35 52.68 85.28 85.98 54.17 86.46

GVS+Sentence-list 3.08 0.38 71.70 11.99 0.52 77.08
GVS+Word-list 23.23 30.51 71.51 57.43 79.69 90.63

GVS+Sp4 N -Gram 7.96 18.00 67.55 27.70 38.02 86.46
GVS+Sp4 Grammar 6.04 * * 19.26 * *
GVS+Sp4 Sentences 5.85 1.40 65.09 18.58 10.42 71.88

*No grammar available.

D.4 Timescales in on the Caudal-rostral Axis
See figure D.3.

Figure D.3: Increase in timescale on the caudal-rostral axis suggest temporally hier-
archical processing according to Badre and D’Esposito (based on [11, 12]).

D.5 Visualisation of Sequences Used in the on
cosine Task

See figure D.4.
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Figure D.4: Sequences used in the cosine task: The dark/blue lines represent the neural
activity for neuron x1 and the bright/red lines show neural activity for neuron x2 over 33
time steps.

D.6 Comparison of Teacher Forcing Parameter
on cosine and ltDep5 Tasks

See figure D.5a–b.

D.7 Comparison of Employed Transfer Function
on cosine and ltDep5 Tasks

See figure D.5d–f.
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(a) Teacher forcing (α), cosine task.

0 20 40 60 80 1000.0

0.004

0.008

0.012

0.016

0.02

Training epoch u (in 1, 000)

M
ea
n
er
ro
r
e
(C

EE
)

(b) Teacher forcing (α), ltDep5 task.
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(c) Synchronous (fsig), cosine task.
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(d) Synchronous (fsig), ltDep5 task.
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(e) Asynchronous (fsig), cosine task.
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(f) Asynchronous (fsig), ltDep5 task.

Figure D.5: Comparison of the mean error e development on the MTRNN over training
epochs u for varied parameters of teacher forcing and the activation function choice. The
comparison is shown in parallel for the cosine task and the ltDep5 task, while each
plot presents the average over 100 runs.

180



Appendix D. Supplementary Data and Experimental Results

D.8 Complete Corpus for Scenario to Study the
Embodied MTRNN Model

The list of sentences and its phonetic encoding as shown in table D.4 can be
generated from the grammar presented in figure 5.2a.

Table D.4: Complete corpus of utterances used to study the embodied MTRNN model.

Sentence Utterance

above is a apple. AH B AH V SIL IH Z SIL AH SIL AE P AH L PER
above is a banana. AH B AH V SIL IH Z SIL AH SIL B AH N AE N AH PER
above is a dice. AH B AH V SIL IH Z SIL AH SIL D AY S PER
above is a phone. AH B AH V SIL IH Z SIL AH SIL F OW N PER
apple has colour blue. AE P AH L SIL HH AE Z SIL K AH L ER SIL B L UW PER
apple has colour green. AE P AH L SIL HH AE Z SIL K AH L ER SIL G R IY N PER
apple has colour red. AE P AH L SIL HH AE Z SIL K AH L ER SIL R EH D PER
apple has colour yellow. AE P AH L SIL HH AE Z SIL K AH L ER SIL Y EH L OW PER
banana has colour blue. B AH N AE N AH SIL HH AE Z SIL K AH L ER SIL B L UW PER
banana has colour green. B AH N AE N AH SIL HH AE Z SIL K AH L ER SIL G R IY N PER
banana has colour red. B AH N AE N AH SIL HH AE Z SIL K AH L ER SIL R EH D PER
banana has colour yellow. B AH N AE N AH SIL HH AE Z SIL K AH L ER SIL Y EH L OW PER
below is a apple. B IH L OW SIL IH Z SIL AH SIL AE P AH L PER
below is a banana. B IH L OW SIL IH Z SIL AH SIL B AH N AE N AH PER
below is a dice. B IH L OW SIL IH Z SIL AH SIL D AY S PER
below is a phone. B IH L OW SIL IH Z SIL AH SIL F OW N PER
dice has colour blue. D AY S SIL HH AE Z SIL K AH L ER SIL B L UW PER
dice has colour green. D AY S SIL HH AE Z SIL K AH L ER SIL G R IY N PER
dice has colour red. D AY S SIL HH AE Z SIL K AH L ER SIL R EH D PER
dice has colour yellow. D AY S SIL HH AE Z SIL K AH L ER SIL Y EH L OW PER
left is a apple. L EH F T SIL IH Z SIL AH SIL AE P AH L PER
left is a banana. L EH F T SIL IH Z SIL AH SIL B AH N AE N AH PER
left is a dice. L EH F T SIL IH Z SIL AH SIL D AY S PER
left is a phone. L EH F T SIL IH Z SIL AH SIL F OW N PER
phone has colour blue. F OW N SIL HH AE Z SIL K AH L ER SIL B L UW PER
phone has colour green. F OW N SIL HH AE Z SIL K AH L ER SIL G R IY N PER
phone has colour red. F OW N SIL HH AE Z SIL K AH L ER SIL R EH D PER
phone has colour yellow. F OW N SIL HH AE Z SIL K AH L ER SIL Y EH L OW PER
right is a apple. R AY T SIL IH Z SIL AH SIL AE P AH L PER
right is a banana. R AY T SIL IH Z SIL AH SIL B AH N AE N AH PER
right is a dice. R AY T SIL IH Z SIL AH SIL D AY S PER
right is a phone. R AY T SIL IH Z SIL AH SIL F OW N PER
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D.9 Additional Corpora for Testing the
CPuniMTRNN Model

For scalability the CPuniMTRNN model was tested with larger corpora that
provide a slight increase of the vocabulary for a large number of permutations (stem
from the grammars given in figure D.6). All parameters for the model characteristics
and the training are deliberately kept identical, thus for larger corpora the task is
especially hard. The training effort for the same maximal number of training epochs
scales roughly with the number of sentences, but for convergence a drastic increase
of epochs is necessary, which yields a very limited up-scale. The performance results
for the test are given in table D.5. For tests with a limited corpus (interEmb and
interMul) the model was able to learn the utterances and generalise. Notable
the overall performance was even higher for the interMul corpus, although the
number of permutations is doubled. However, the utterances are simpler with
respect to the position of the words: in interEmb the words of class OBJ can
occur inthe beginning or in the end of the utterance, while in interMul all word
classes have a unique position in the utterances and thus can vary their position
only slightly due to different word lengths.

S → INFORM.
INFORM → POS is a OBJ
INFORM → OBJ has colour COL
COL → blue | green | red | yellow
OBJ → apple | banana | dice | phone
POS → above | below | left | right

(a) interEmb: 32 sentences; length:
30–46 time steps; effort: 9.41 processor
hours per 100,000 epochs.

S → ACT the COL OBJ.
ACT → pull | push | show me | slide
COL → blue | green | red | yellow
OBJ → apple | banana | dice | phone

(b) interMul: 64 sentences; length:
34–46 time steps; effort: 18.03 processor
hours per 100,000 epochs.

S → MOD ACT the COL OBJ.
ACT → pull | push | show | slide
COL → blue | green | red | yellow
MOD → carefully | quickly

| rapidly | slowly
OBJ → apple | banana | dice | phone

(c) interMul256: 256 sentences; length:
44–60 time steps; effort: 91.62 processor
hours per 100,000 epochs.

S → MOD ACT the CHA COL OBJ.
ACT → pull | push | show | slide
CHA → feathery | heavy | light | massive
COL → blue | green | red | yellow
MOD → carefully | quickly

| rapidly | slowly
OBJ → apple | banana | dice | phone

(d) interMul1024: 1024 sentences;
length: 54–72 time steps; effort: 543.11
processor hours per 100,000 epochs.

Figure D.6: Grammars for corpora used in testing the CPuniMTRNN model.
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Table D.5: Comparison of performance (F1-score and mean edit distance) for the
CPuniMTRNN model on different corpora.

qF1-score qedit-dist

Model in
te

rE
m

b

in
te

rM
ul

in
te

rM
ul

25
6

in
te

rM
ul

10
24

in
te

rE
m

b

in
te

rM
ul

in
te

rM
ul

25
6

in
te

rM
ul

10
24

training set best 1.000 0.984 0.862 0.121 0.000 0.011 0.078 0.418
test set best 0.667 0.877 0.720 0.100 0.149 0.055 0.145 0.436
training set avg. 0.977 0.824 0.444 0.039 0.010 0.109 0.249 0.559
test set avg. 0.306 0.585 0.380 0.035 0.290 0.247 0.286 0.567
mixed * 0.642 0.704 0.412 0.037 0.150 0.178 0.268 0.563
* For definition compare equations 5.8 and 5.11.

D.10 PC3 for Self-organisation in the Cell As-
semblies

Additional visualisation for the generated Context-controlling (Csc) patterns are
provided for the third component in figure D.7 and D.8. The first three components
explain the following percentage of the variance in the patterns: low/proprioceptive:
97.07%, low/visual: 66.55%, high/auditory: 94.48%, high/proprioceptive: 99.87%,
high/visual: 59.85%, low/auditory: 78.63%.
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Figure D.7: Activity in the Csc units after the model has been activated by proprio-
ception and visual perception for the final time step (motor and visual) and the initial
(auditory), reduced from |ICsc| to three dimensions and normalised for representative
example with low generalisation. Visualisation a, c, d are shown for PC1 against PC3
and a, c, d for PC2 against PC3.
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Figure D.8: Activity in the Csc units after the model has been activated by proprio-
ception and visual perception for the final time step (motor and visual) and the initial
(auditory), reduced from |ICsc| to three dimensions and normalised for representative
example with high generalisation. Visualisation a, c, d are shown for PC1 against PC3
and a, c, d for PC2 against PC3.
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