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Abstract

Cosmic inflation not only sets the initial conditions for the evolution of the uni-

verse but also provides the origin of structure formation. It is hence both from a

theoretical and observational point of view a highly successful paradigm. Preci-

sion measurements of the cosmic microwave background constrain inflation to be

effectively driven by a single scalar field whose potential maintains an approximate

and continuous shift symmetry V ∼ const. sufficiently far from its minimum. In

effective field theory, such a shift symmetry amounts to tuning an essentially infi-

nite number of coefficients of all higher dimensional operators involved. Here, we

study different realisations of shift-symmetric inflaton potentials to examine if the

amount of fine tuning can be reduced. We begin by considering a UV example and

find that underlying parameters do not evade tuning as the intrinsic suppressions

do not suffice. Continuing to study non-canonical dynamics, we formulate a condi-

tion on the non-canonical kinetic term equivalent to the potential shift symmetry

and provide expressions for universal corrections and phenomenological imprints

resulting from a broken shift symmetry. Studying modified gravity, we derive all

order expressions for broken shift symmetries that allow for observationally viable

inflation to occur. Finally, we study scalar field dynamics non-minimally coupled

to gravity. After developing an understanding of the phenomenological implica-

tions of different types of shift symmetry breaking, we propose a mechanism that

realises a sufficient intermediate shift symmetry for inflation to occur by essentially

only tuning one parameter. This parameter sets the spectral index as well as the

normalisation of the cosmic microwave background temperature spectrum and is

found to satisfy both observational constraints while at the same time pushing all

higher order terms sufficiently far away in field space.
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Zusammenfasung

Kosmische Inflation bestimmt nicht nur die Anfangsbedingungen des Universums

sondern liefert auch den Ursprung der Strukturbildung. Sie ist sowohl aus theo-

retischer als auch experimenteller Sicht ein erfolgreiches Paradigma. Präzisions-

messungen der kosmischen Mikrowellenstrahlung deuten darauf hin, dass Inflation

durch ein einziges Skalarfeld verursacht wird, dessen Potential eine kontinuier-

liche Symmetrie V ∼ konst. besitzt, die hinreichend weit vom Minimum entfernt

ist. In effektiver Feldtheorie bedeutet solch eine Symmetrie das Einstellen aller

Koeffizienten der höher dimensionalen Operatoren, die zur Wirkung beitragen. In

dieser Arbeit geht es um verschiedene Realisierungen dieser Symmetrie hinsichtlich

einer möglichen Reduzierung der einzustellenden Parameter. Zuerst untersuchen

wir ein UV Beispiel, in dem die beitragenden Parameter nach wie vor eingestellt

werden müssen, da die aus dem UV Bereich sich ableitenden Unterdrückungen

nicht ausreichen. Darauf folgend untersuchen wir nicht-kanonische Dynamiken.

Wir formulieren eine Entsprechung zur genannten Symmetrie in nicht-kanonischer

Sprache und leiten universelle Korrekturen und phänomenologische Effekte her, die

aus einer Symmetriebrechung resultieren. In modifizierter Gravitation können wir

die Koeffizienten aller Terme höherer Ordnung bestimmen, sodass Inflation im Ein-

klang mit den Beobachtungen stattfinden kann. Schliesslich untersuchen wir Feld-

dynamiken nicht-minimal gekoppelter Felder. Nachdem wir verschiedene Arten

der Symmetriebrechung untersucht haben, entwickeln wir einen Mechanismus, der

ein hinreichendes Inflationspotential realisiert, wofür effektiv nur ein Parameter

eingestellt werden muss. Dieser Parameter bestimmt sowohl den spektralen Index

als auch die Normalisierung des Temperaturspektrums der Hintergrundstrahlung.

Ist er in Übereinstimmung mit den Messungen eingestellt, schützt er das Infla-

tionspotential vor allen Korrekturtermen höherer Ordnung.
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Introduction

The cosmological concordance model (ΛCDM) successfully describes the universe

as we observe it today.1 Among its main predictions is a cosmic microwave back-

ground (CMB) radiation originating from a primordial plasma that became trans-

parent due to cooling caused by the expansion of space. Often coined the ‘echo’

of the big bang, this observation is a crucial probe of primordial dynamics. CMB

experiments [4–7] beautifully confirm the predictions of the ΛCDM concordance

model. Moreover, not only do they probe the predicted dynamics but also the

initial conditions. In principle, initial conditions are not expected to be part of

a physical theory, the theory should merely predict the correct dynamics given

a certain choice of boundaries. However, if the dynamics observed are such that

they may only result from extremely tuned input parameters, the initial condi-

tions seem to require a physical mechanism on their own in order to explain the

observed dynamics.

CMB experiments measure the universe to be spatially flat and isotropic with

anisotropies in the CMB temperature spectrum of the order of ∆T/T ∼ O(10−5).

Spatial flatness is not an attractor of ΛCDM cosmology.2 Furthermore, the CMB

comprises roughly 105 regions that have never been in causal contact according

to ΛCDM dynamics, yet they display only the aforementioned small anisotropies.

An unsatisfying choice is simply to accept the high degree of fine tuning of the

initial conditions required to match observations. A more intriguing route to take

is the study of the inflationary paradigm. In its simplest version, a single scalar

field ϕ is postulated to play the role of a dynamical cosmological constant in

the early universe [8–12]. This is achieved by having a potential such that the

1For a comprehensive review, see e.g. [1–3].
2We will explain this in more detail by means of expression (1.14).
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x INTRODUCTION

field ϕ is dominated by its potential rather than kinetic energy. The field then

has an equation of state of a cosmological constant. This causes the universe to

undergo accelerated expansion which not only drives the curvature small but also

ensures that all patches of the CMB sky have been in causal contact. Eventually,

the inflaton ϕ settles in its minimum and the effective dynamical cosmological

constant is hence switched off.

The CMB is a rich resource for inflationary cosmology as it not only provides

the incentive to study the inflationary mechanism in the first place but also con-

straints inflationary models. Measurements imply that inflation is driven by a po-

tential displaying an approximate shift symmetry ϕ→ ϕ+ ϕ0, i.e. V (ϕ) ∼ const.

for some regime of ϕ. Interestingly, the same dynamics can be achieved when

adding a hidden scalar degree of freedom in the form of a term quadratic in the

Ricci scalar to the Einstein-Hilbert action.3 While a shift-symmetric potential re-

quires higher order terms to be sufficiently suppressed, the same holds for higher

order curvature scalar terms. There are hints in the CMB data that the temper-

ature power spectrum is slightly suppressed at large angular scales corresponding

to earlier inflationary dynamics. This could signal the onset of a shift-symmetry

breaking at larger fields. It is the realisation of a shift-symmetric inflaton potential

and the possible breaking at larger fields that is the topic of this work.

In the first chapter after the introduction, i.e. chapter two, we study an explicit

UV example. Compactified extra dimensions enter the four-dimensional (4D) ef-

fective theory as scalar fields. At first, these moduli are free fields and there hence

exist numerous flat directions in field space. Employing a combination of per-

turbative and non-perturbative effects, we generate a potential that stabilises the

overall compactification volume while at the same time allowing for a lifted but suf-

ficiently flat direction for a combination of moduli serving as the effective inflaton

upon canonical normalisation. The canonical potential can be tailored to maintain

an approximate shift symmetry V ∼ const. for intermediate fields provided the

parameters involved are appropriately tuned. As the potential terms come with

different powers of volume suppression, there exists a restoration of the no-scale

3It is noteworthy that it was the formalism of modified gravity in which a first model of infla-
tion was formulated [9]. Moreover, this was also the model to which cosmological perturbation
theory was first applied in order to link the temperature fluctuations of the CMB to quantum
fluctuations of the inflaton field [13].
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property in the decompactification regime, i.e. at parametrically large volume. It

is this feature that descends into the effective Lagrangian at lower volume in form

of intrinsic suppressions of potentially dangerous terms. However, this mechanism

is not sufficient to realise a shift symmetry for a sufficing field range. Thus, the

necessity to tune parameters cannot be evaded. Allowing for tuning, we find a

mini landscape of viable slow-roll potentials where inflation can occur by rolling

down each side of a prolonged hilltop potential.

Since UV examples usually yield non-canonical kinetic terms as an intermediate

result, we turn to an extensive study thereof in chapter three. We recall how a

potential shift symmetry can be realised if the kinetic function has a pole and the

non-canonical field is placed in vicinity of it. Given pole and potential minimum

do not coincide, the Lagrangian has a plateau potential in canonical fields. We

continue to study universal corrections to the pole structure and derive leading

order corrections to the inflationary observables. Driven by the observational hint

for power suppression at large angular scales, we construct a toy model where

moving the kinetic pole to the complex domain naturally realises a shift-symmetry

breaking at larger canonical fields. The complex pole proves to be a realisation

of the universal corrections obtained before and induces an inflection point in

the potential that in principle may blueshift the spectral index ns and suppress

power at low multipoles. We then outline how a perturbed pole structure could

be obtained from UV scenarios.

Turning to a rival paradigm in chapter four, we focus on modified gravity or

shortly f(R). The main objective is to understand whether or not shift symmetry

breaking that is hinted at by power loss at low-`, can be realised as an extension of

e.g. R2 inflation. We begin with the study of non-integer powers of the Ricci scalar

and find how logarithmic f(R) theories translate to chaotic large field inflationary

scenarios in the Einstein frame. Breaking an Einstein frame shift symmetry with

rising exponentials, we obtain closed form and approximate f(R) duals that do

not display the leading order quadratic term any longer. Closed form expressions

of the function f(R) that break the shift symmetry at larger fields are to leading

order Rn with n < 2 and have the quadratic term only survive as part of their

series expansion. We further demonstrate that the correspondence between f(R)

and Einstein frame only allows for exact dual formulations of the dynamics pro-
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vided the shift-symmetry breaking does not involve higher powers in the rising

exponentials. Otherwise, the duality can only be cast in different regimes but not

over the whole domain of the scalar degree of freedom. At last, we match modified

gravity to specific UV models and find that regions of the models can only be

matched separately. We modify the compactification volumes involded and con-

clude that whether or not a Kähler modulus scenario allowing for an exact dual

f(R) description can be constructed, remains to be seen.

In the fifth chapter, we study the dynamics of a scalar field non-minimally

coupled to gravity. The strategy employed is allowing for higher order terms in

the Jordan frame potential and investigating their effect when transformed to the

Einstein frame. First, we consider toy models and focus on the phenomenology of

different powers of higher order Jordan frame terms. While higher powers in prin-

ciple can induce a larger suppression, their placement in the effective Lagrangian

has to be tuned for the effect to be visible within the observable range of e-folds

while at the same time not violating the observational bounds on the spectral

index at horizon crossing. Nevertheless, lower powers have universal imprint in

the CMB and studying power suppression may be understood as a tool of EFT

spectroscopy.

In a second part, we generalise our ansatz to arbitrary series in the non-minimal

coupling as well as the potential and find that if the field is stabilised and the non-

minimal coupling is an arbitrary series expansion starting with some linear term,

an Einstein frame effective shift symmetry will be realised regardless of any infinite

number of higher order terms. The precise length of the inflationary plateau is

governed by the non-minimal coupling strength. An analytic analysis as well as a

numerical scan both pinpoint the non-minimal coupling strength to a value that

at the same time sets the normalisation of the CMB temperature spectrum in

accordance with PLANCK. This hence proves to be an effective one parameter

ansatz satisfying all observational bounds while being robust against all higher

order corrections.

In conclusion, this thesis presents different approaches to realise the effective

shift symmetry in the inflaton potential hinted at by observations. While often

tuning is involved, we also present a universal mechanism by invoking a non-

minimal coupling. The results presented in this work have previously been pub-
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lished in [14–18]. While this work emphasises the fact that observations strongly

favour shift symmetric inflaton potentials, a recent astronomical measurement [19]

claims to observe the Hubble parameter of today H0 to be higher than the one

obtained from CMB experiments. The situation remains unresolved at time of

writing, but provided H0 were indeed larger, the spectral index ns of the CMB

temperature spectrum would be blueshifted, thus deviating from vanilla plateau

inflationary predictions.4 However, as we will argue in the conclusion, a mere

blueshifting of ns can most naturally be accommodated for within the scenarios

presented, if not to say would be more natural than the current ns measurement.

We will discuss this in more depth in the final chapter of this work.

Conventions: Unless stated otherwise, we will work in units of c , ~ , 8πG = 1.

The metric signature is taken to be (+,−,−,−). Greek indices run from 0 to 3

whereas Roman ones run from 1 to 3. Furthermore, use of the Einstein summation

convention is implied.

4The central panel of Figure 3 of [20] demonstrates how the value of the spectral index ns
depends on a combination of the baryon density and the reduced Hubble parameter. The spectral
index increases for larger H0.





Chapter 1

Inflation

1.1 Foundations

This chapter aims to provide the foundations and notation on which the subse-

quent work is built. We will begin with a review of the bare essentials of space

and time and continue to describe the shortcomings of conventional hot big bang

cosmology.5 This serves as the motivation to introduce the inflationary paradigm.6

We will review the physics driving inflation and outline extensions of the conven-

tionally used formalism. To connect theory with observation, we will introduce the

cosmic microwave background (CMB) as a powerful probe of primordial physics.

The study of higher order effects within the CMB will prove to be a useful tool

in examining pre-inflationary dynamics, or more generically, physics beyond the

horizon.

Spacetime geometry

The universe has a length scale above which it is statistically homogeneous and

isotropic. This is known as the cosmological principle and may be seen as the

modern form of the Copernican principle. While local departures from homo-

geneity and isotropy may be identified [22,23], the cosmological principle remains

unchallenged due to its statistical nature. In fact, if we assume not to inherit any

5For a more comprehensive review, see e.g. [21].
6The foundational works of the inflationary paradigm are [9, 12].
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2 CHAPTER 1. INFLATION

special position in the universe, or more generically that all observers are equal,

it suffices to postulate isotropy about three non-colinear points to prove that the

universe must also be homogeneous.7 Mathematically, isotropy and homogeneity

respectively imply that the spatial line element may only be rescaled by a time

dependent function and that the 3-space has to be maximally symmetric.8 Thus

the metric suitable to describe the universe is the Friedmann-Robertson-Walker

(FRW) metric

ds2 = gµνdx
µdxν = dt2 − a(t)2dx2 , (1.1)

where t denotes coordinate time labelling a spacelike hypersurface, a(t) is the

scale factor and x are comoving coordinates of the maximally symmetric 3-space.

Considering an observer with four-velocity uµ and the energy-momentum tensor

of a perfect fluid

T µν = (ρ+ P )uµuν − Pgµν , (1.2)

in the above spacetime with ρ and P being density and pressure respectively and

requiring conservation of energy-momentum∇µT
µν = 0, one obtains the continuity

equation
dρ

dt
+ 3

ȧ

a
(ρ+ P ) = 0 . (1.3)

Furthermore, combining ansatz (1.1) with the Einstein equations

Gµν ≡ Rµν −
1

2
gµνR = Tµν , (1.4)

where Rµν is the Ricci curvature tensor, R the Ricci scalar and Tµν the energy-

momentum tensor of a perfect fluid, one obtains the Friedmann equations

H2 ≡
(
ȧ

a

)2

=
1

3
ρ− k

a2
, H2 + Ḣ =

ä

a
= −1

6
(ρ+ P ) . (1.5)

7Consider three non-colinear points P, Q and R. Consider lines through P but not Q. Any
inhomogeneity along the lines becomes an anisotropy when viewed from Q (contradiction). So
space must be homogeneous except for the line PQ. But now view from R. This implies homo-
geneity from isotropy about three non-colinear points.

8The above mentioned scale of homogeneity decreases for earlier times. The Friedmann-
Robertson-Walker metric may hence be applied to small patches when considering dynamics
very close to the initial singularity.
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Here, k denotes whether the universe is open (k = −1), flat (k = 0) or closed

(k = +1). The continuity equation (1.3) and the Friedmann equations (1.5) are

sufficient to describe the dynamics of the universe given the equation of state of

the dominant matter content. For non-relativistic matter (MD), radiation (RD)

and a constant vacuum energy density (Λ), the scale factor evolution for k = 0

can be summarised as:

P (ρ) ρ(a) a(t)

RD ρ/3 a−4 t1/2

MD 0 a−3 t2/3

Λ −ρ a0 eΛ t

We now turn to the causal structure of spacetime. Introducing conformal time

dτ = dt/a(t) and only considering propagation along a radial direction dx2 =

dr2 = (1− kr2)dχ2, metric (1.1) reads

ds2 = a2(τ)
(
dτ 2 − dχ2

)
. (1.6)

For a light ray, i.e. a null geodesic ds2 = 0, we get the solution

χ(τ) = τ + constant . (1.7)

The comoving and physical distance distance a light ray travels in an interval of

coordinate time hence are

∆χ =

∫ t2

t1

dt

a(t)
, ∆χphys = a(t2)

∫ t2

t1

dt

a(t)
. (1.8)

The behaviour of the above integrals determines whether or not two observers can

be in causal contact. Provided there exists an initial singularity which may serve

as the lower limit of integration, the expressions (1.8) yield the maximum width

of the past light cone (particle horizon) and hence the maximum distance of past

causal interaction. Likewise, sending the upper limit of integration to infinity gives

the range of possible future interactions (event horizon).
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Initial conditions

Observations indicate that the CMB is nearly isotropic with fluctuations in the

temperature of ∆T/T ∼ O(10−5) [5, 7, 24]. However, given the conventional hot

big bang paradigm, there are roughly 105 regions in the CMB sky we observe

today, that do not have overlapping past light cones, i.e. they have never been in

causal contact. This means that there are 105 causally disconnected regions that

nevertheless display nearly the same properties. While in principle it does not

constitute a failure of a theory if it does not predict its own initial conditions, it

remains highly unsatisfying to accept such a high degree of fine tuning. This is

called the horizon problem.

In technical terms, the expression for comoving distance of (1.8) evaluated at

CMB decoupling tdec

∆χ(tdec) =

∫ tdec

t1

dt

a(t)
(1.9)

ought to allow for some t1 → ti such that all events of CMB photon emission share

a common causal past. In other words, to solve the horizon problem we want

the above integral to potentially diverge when t1 is sent back as far as physically

possible.9 Consider recasting the above as

∆χ(tdec) =

∫ tdec

t1

dt

a(t)
=

∫ adec

a1

1

ȧ a
da . (1.10)

The advantage of the above substitution is that we can now consider the univer-

sal lower bound a1 → 0 instead of differentiating between the two cases for the

coordinate time. The integral (1.10) diverges for a1 → 0 when

d

da

(
1

ȧ

)
< 0 . (1.11)

From this, we find
d

da

(
1

ȧ

)
=

d

dt

(
1

ȧ

)
dt

da
< 0 , (1.12)

which, as ȧ > 0 for an expanding spacetime, readily implies the requirement of an

9In case of an initial singularity, integral (1.9) ought to diverge for t1 → ti = 0, otherwise for
t1 → −∞.
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accelerating inflationary phase

ä > 0 . (1.13)

Note that we derived this from the simple requirement of having a diverging parti-

cle horizon (1.9) at time of CMB decoupling tdec. Any scale factor satisfying (1.13)

can hence solve the horizon problem.

A second motivation to study inflation is the flatness problem. Consider intro-

ducing a density parameter ρcrit = 3H2, where H = ȧ/a. Rescaling the density

of the matter component in (1.5) with the inverse of ρcrit as Ω ≡ ρ/ρcrit simplifies

the first Friedmann equation to

Ω− 1 =
k

ȧ2
. (1.14)

Observations [7, 24] indicate that Ω − 1 < O(10−3). Considering that during

matter and radiation dominated periods ä < 0, Ω ought to diverge as the universe

evolves. Current observations do imply that Ω − 1 < O(10−16) during big bang

nucleosynthesis [25]. The question hence arises why the universe was so extremely

flat to begin with. Obviously, we stated earlier that k = −1, 0,+1 and hence

could simply have been k = 0 from the start. Thus, the flatness problem seems to

require less fine tuning than the horizon problem. Nevertheless, considering ä > 0

also drives the right side of (1.14) to zero. Hence, spatial flatness is an attractor

during inflation.

Furthermore, there are arguments that some UV theories predict e.g. magnetic

monopoles [3] which so far have not been observed. Inflation is then invoked to

drastically reduce the density of such defects that way explaining the lack of obser-

vation. More intriguingly, we will later see that inflation provides a mechanism of

structure formation [13]. While this was never thought of as a problem before, the

realisation that inflation seeds the primordial density perturbation makes inflation

not only theoretically appealing but also highly predictive.

Overall, an inflationary phase with ä > 0 may be invoked to set the initial

conditions for the evolution of the universe as we observe it today. Also, it can be

deduced [2,3] that the inflationary phase has to last for roughly 60− 70 e-folds in

order to provide the necessary initial conditions for the evolution of the universe,

meaning the scale factor a has to grow by a factor of e60 − e70.



6 CHAPTER 1. INFLATION

Physics of inflation

We now seek a physical mechanism responsible for the inflationary phase ä > 0.

We begin by introducing two new parameters which have to satisfy given conditions

for inflation to be realised. Rewriting (1.12) as

d

da

(
1

ȧ

)
= −1

a
(1− ε) < 0 , where ε = − Ḣ

H2
, (1.15)

we find inflation to occur for ε < 1. Inflation has to last for a sufficient amount of

e-folds in order to set the initial conditions observed, we hence seek a measure of

the change of ε and write the fractional change of ε per scale factor growth as

η ≡ d ln ε

d ln a
=

ε̇

εH
, (1.16)

where the last equality follows from the definition H = ȧ/a and hence Hdt = d ln a.

Thus η < 1 ensures ε < 1 for a sufficient amount of e-folds. Combining the second

Friedmann of (1.5) equation with (1.15), one obtains

ε =
3

2

(
1 +

P

ρ

)
< 1 , and therefore ω ≡ P

ρ
< −1

3
. (1.17)

Thus the physical mechanism responsible for the inflationary phase must violate

the strong energy condition, i.e. has to have negative pressure. A prime example

realising ω < −1/3 is a cosmological constant Λ. Adding a constant term Λ gµν

to the Einstein equations (1.4) without matter yields an energy-momentum tensor

from which the equation of state PΛ = −ρΛ can readily be read off. This hence

satisfies the constraint on ω. However by definition, a cosmological constant is

non-dynamical, implying a never ending inflationary phase which is clearly at

odds with observations. We hence seek a dynamical mechanism mimicking the

behaviour of a cosmological constant for intermediate times.

Consider a scalar field ϕ minimally coupled to gravity with Lagrangian

L√
−g

=
1

2
R− 1

2
(∂ϕ)2 − V (ϕ) , (1.18)

where we assume the background spacetime to be of Friedmann-Robertson-Walker
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type.10 From the expression for the energy-momentum tensor, one obtains

ωϕ ≡
Pϕ
ρϕ

=
1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

, (1.19)

which satisfies ωϕ ∼ −1 when the potential dominates over the kinetic term and

hence mimics a cosmological constant. Substituting for ρ in the first Friedmann

equation and deriving the equation of motion for ϕ from Lagrangian (1.18), one

has

H2 =
1

3

[
1

2
ϕ̇2 + V (ϕ)

]
, ϕ̈+ 3Hϕ̇+

dV

dϕ
= 0 , (1.20)

from which we obtain dH/dϕ = −ϕ̇/2. Inserting this into expression (1.15) and

using the result to evaluate (1.16), we arrive at

ε =
1

2

(
ϕ̇

H

)2

, η = −
(

ϕ̈

Hϕ̇
+

1

H

d lnH

dϕ

)
. (1.21)

To realise ωϕ ∼ −1 we now impose ϕ̇2 � V (ϕ) and ϕ̈ � Hϕ̇. This simplifies

expressions (1.20) and has the parameters (1.21) evaluate to

ε ≈ 1

2

(
d lnV (ϕ)

dϕ

)2

≡ εV , η ≈ 1

V (ϕ)

d2V (ϕ)

dϕ2
≡ ηV , (1.22)

which defines the potential slow-roll parameters. For successful inflation, one re-

quires εV , ηV � 1. Hence a scalar field has to maintain a potential satisfying

these conditions to be a possible inflaton candidate. Furthermore, we can quickly

deduce from the first expression of (1.20) that during slow roll, the scale factor is

a(t) ∝ eHt which self-consistently has ä > 0. The duration of inflation is quantified

in terms of the number of e-folds

Ne(ϕ) ≡ ln
af
ai

=

∫ tf

ti

Hdt ≈
∫ ϕf

ϕi

1√
2εV

dϕ , (1.23)

as Hdt = d ln a. In the CMB, the observable window of inflation comprises the

last 60 to 40 e-folds before the end of inflation, we henceforth write NCMB ∼ 60.

10This makes the field ϕ only dependent on time.
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Leaving the Einstein frame

One may also consider and study a scalar field φ non-minimally coupled to gravity.

An exemplary Lagrangian is

LJ√
−gJ

=
1

2
Ω(φ)RJ −

1

2
(∂φ)2 − VJ(φ) , (1.24)

where the subscript J denotes that we refer to the above Lagrangian as being

formulated in the Jordan frame as opposed to the minimally coupled case, which

is called the Einstein frame. The metric can be rescaled with the non-minimally

coupling or frame function

gEµν = Ω(φ)gJµν . (1.25)

In order to reduce to ordinary General Relativity (GR) at low energies, one has

Ω(φ) > 0 , ∀φ.11 Lagrangian (5.1) then becomes

LE√
−gE

=
1

2
RE −

1

2

[
1

Ω
+

3

2

(
∂ ln Ω

∂φ

)2
]

(∂φ)2 − VJ
Ω2

. (1.26)

If the frame function Ω is sufficiently large such that the first term of the kinetic

function in the above is suppressed, canonical normalization yields

Ω(ϕ) = eκϕ , (1.27)

where κ =
√

2/3. Provided Ω(φ) is invertible, the potential VJ/Ω
2 can then be

recast in terms of the Einstein frame field ϕ and a conventional analysis of e.g.

the slow-roll parameters (1.22) can be done. Likewise, one may also consider

scenarios where a scalar degree of freedom is hidden within an extension of the

Einstein-Hilbert term R of the Lagrangian. This will be introduced in section 4.1.

11Note that Ω(〈φ〉) = c, c = constant with c > 0 and c 6= 1 implies a rescaling of the Planck
mass.
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1.2 Phenomenology

After having introduced a physical mechanism able to drive inflation, we now

quickly review how to connect theory with observations. While we have introduced

the inflaton ϕ as being only dependent on time, it features quantum fluctuations

ϕ→ ϕ̂(τ,x) = ϕ̄(τ) + δϕ̂(τ,x) , (1.28)

where we have split the field ϕ into a time-dependent (given in conformal time

dτ = dt/a) background value and quantum fluctuations that depend on both space

and time. The quantum fluctuations do not alter any of the results presented

previously but eventually induce the curvature perturbation ζ = z−1aδϕ with

z = 2a2ε serving as the seed of all structure we observe in the universe today.12

Deriving the equation of motion for a classical δϕ in an FRW background

is lengthy. Thus we will merely outline the steps involved.13 Ansatz (1.28) per-

turbs the energy-momentum tensor (1.2) which then can be related to the Einstein

equations (1.4). This yields relations between a perturbed FRW metric and the

background value ϕ̄ as well as the perturbation δϕ. Using these relations, one may

insert the perturbed FRW metric into the Klein-Gordon equation for the inflaton

ϕ to eventually obtain an equation of motion for the rescaled variable f = aδϕ.

In Fourier space, the result reads

f ′′k +

(
k2 − y′′

y

)
fk = 0 , (1.29)

where k now labels a Fourier mode and should not be confused with the curvature

parameter of (1.5), primes denote derivatives with respect to conformal time, and

we have further introduced y = (a ∂tϕ̄)/H. This is the Mukhanov-Sasaki equation

and resembles a simple harmonic oscillator with time-dependent mass. In de Sitter

12Note that while we have introduced δϕ̂ as a quantum fluctuation, the curvature perturbation
ζ is given as a classical object. This is because the fluctuations undergo a quantum to classical
transition, see e.g. [26].

13While the original result is presented in [13], an instructive derivation can be found in [2]
or [21]. Issues of gauge fixing that we have neglected in our outline are thoroughly treated in the
given references.
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space, y′′/y → a′′/a = 2/τ 2 and the general solution to the above is

fk(τ) = Ak
e−ikτ√

2k

(
1− i

kτ

)
+Bk

eikτ√
2k

(
1 +

i

kτ

)
, (1.30)

where we impose normalisation |Ak|2 − |Bk|2 = 1. Recalling that the inflaton

perturbation is introduced as being a quantum object δϕ̂, one may quantise (1.29)

and impose the Minkowski vacuum on (1.30) at the infinite past

lim
τ→−∞

fk(τ) =
1√
2k
e−ikτ . (1.31)

This is called the Bunch-Davies vacuum.14 We hence set Ak = 1, Bk = 0 and thus

fix the mode function of the rescaled inflaton fluctuation f̂ = a δϕ̂ as

fk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
. (1.32)

To extract an observable quantity, we calculate the two-point function for the field

δϕ̂ = a−1f̂ to be

k3

2π2
〈0|δϕ̂†kδϕ̂k′|0〉 →

(
H

2π

)2

for kτ → 0 . (1.33)

This result shows that the power spectrum of the inflaton fluctuations freezes once

they have crossed the (event) horizon. In eternal de Sitter, i.e. without inflation

ending, the spectrum would remain exactly scale invariant (i.e. independent of the

Fourier mode k). The inflaton fluctuation δϕ seeds a curvature perturbation ζ =

z−1aδϕ. It is this curvature perturbation whose power spectrum we observe today

in form of the temperature spectrum of the CMB. Similarly, inflaton fluctuations

also cause tensor fluctuations. The explicit form of these spectra given by

∆2
s(k) =

1

8π2

H2

ε

∣∣∣∣
k=aH

, ∆2
t (k) =

2

π2
H2

∣∣∣∣
k=aH

. (1.34)

14While often found in literature, the Bunch-Davies vacuum must not be imposed at kτ → −∞
but only at τ → −∞. Given an inflationary phase which does not extend to the infinite past,
this immediately poses the question whether or not the Bunch-Davies vacuum may consistently
be imposed in such a scenario. As of now, a true consensus has not been established.
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These spectra are evaluated for each scale at horizon crossing k = aH. We may

immediately infer that the ratio of tensor and scalar fluctuations is r ≡ ∆2
t/∆

2
s =

16 ε. As inflation is not eternal de Sitter but has slight time dependence, the time

of horizon crossing for each k is different. Thus it is the time dependence of the

background that induces a k dependence to the power spectrum of the curvature

perturbation and the tensor fluctuations.15 The scale dependence of ∆2
s(k) can be

quantified in terms of the spectral index ns which is defined as

ns − 1 =
d ln ∆2

s

d ln k
. (1.35)

When demanding the slow-roll conditions εV , ηV � 1 to hold, the quoted results

of this section can be recast and summarised as

∆2
s(k) ≈ 1

24π2

V

εV

∣∣∣∣
k=aH

, ns = 1 + 2ηV − 6εV , r = 16 εV . (1.36)

The above three parameters are the powerful observables of inflationary cosmology.

If all three were measured, one could reconstruct the inflationary potential in the

vicinity of ϕCMB as scale, first and second derivative of the potential were known.

The latest results from the Planck collaboration (PLANCK) [7, 20,27] are

ln
(
1010∆2

s

)
= 3.094± 0.034 , ns = 0.968± 0.006 , and r < 0.1 , (1.37)

which - as the last measurement only yields an upper bound - leaves room for

speculation about the inflationary potential. Recalling that ns = 1 + 2ηV − 6εV

and r = 16εV , we note that the above quoted results imply a hierarchy between

the two slow-roll parameters |ηv| and |εV |. Concretely,

|εV | ∼ O(10−3) , and hence |ηV | ∼ O(10−2) . (1.38)

It is this hierarchy that motivates us to consider a certain type of inflaton potential

as we will outline in section 1.3.

15In eternal de Sitter spacetime, the power spectrum of the curvature perturbation diverges
as z ∼ ε vanishes. This resembles the fact that the curvature perturbation can only be defined
for a slowly time varying background.
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While the results (1.37) may be used to sufficiently reconstruct an inflationary

potential, there are higher order effects in the CMB temperature spectrum which

can indicate possible features of the inflationary evolution beyond the horizon.

Namely, the running αs = dns/d ln k of ns can hint at a sufficiently fast change of

the slow-roll parameters implying a certain behaviour of the inflationary potential.

The observable effect is the following: At large angular scales, the temperature

power spectrum of the primordial curvature perturbation is given by [21]

l(l + 1)CTT
l ∝ ∆2

s(k) ∝
(
k

k∗

)ns−1

, (1.39)

where k∗ is a pivot scale which we take to have left the (event) horizon 55 e-folds

before the end of inflation. When the spectral index increases with decreasing k,

the temperature power becomes suppressed at low multipoles. Indeed, observa-

tions [7, 20, 27, 28] measure a percent level power loss of 3-5% at scales ` . 40 as

compared to a spectrum with ns = 0.968 and no running. This had already been

noted in the first CMB measurement [5]. Cosmic variance [29] limits any mea-

surement of the c` to ∆c` ∼ (2` + 1)−1/2. At low-`, the Planck temperature data

already reaches this limit. At smaller scales, ∆c` is not yet reached experimentally

everywhere, and adding future data may still lead to slight variations of the value

of ns. Adding future polarization data will provide additional independent data at

low-`. Moreover, future large-scale structure surveys and 21-cm tomography may

provide even more modes at low-` due to an increased sample volume compared

to the CMB alone [30]. Thus the significance of the observed power loss may still

change considerably in the future. We now review how to study power loss at

low-` numerically [30–35]. To obtain power loss within the first observable e-folds,

we require ns to fall sufficiently fast. We thus parametrise the scalar field equation

in terms of the number of e-folds Ne = ln(a/aend) with a = aende
Ht, where the

precise value of aend depends on the details of reheating and shall not concern us
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any further.16 One has

∂2ϕ

∂N2
e

+
1

2

[
6−

(
∂ϕ

∂Ne

)2
](

∂ϕ

∂Ne

+
∂ lnV

∂ϕ

)
= 0 . (1.40)

In slow roll, ∂2
Ne
ϕ� ∂Neϕ and thus ∂Neϕ ≈ −∂ϕ lnV . Hence (1.40) may be solved

numerically to give ϕ(Ne). We can then evaluate the slow-roll parameters εV and

ηV on the numerical solution to investigate whether ns falls off sufficiently fast.

At last, to identify Ne with the wave number k, we recall that a mode k exits

the horizon when k = akHk, where Hk denotes the inverse event horizon during

inflation and ak is the size of the scale factor at horizon exit. Thus

k = akHk = aende
NeHk , (1.41)

where Ne < 0. Rearranging, we find

Ne(k) = log

(
k

a0H0

)
− log

(
aend

Hk

H0

)
, (1.42)

in terms of Hubble parameter of today. The second term on the right hand side

is ∼ 62, the exact value again depending on the details of reheating and the

inflationary energy scale. From expression (1.42) we find that the scale k∗ = 0.05

Mpc−1 left the horizon at Ne ∼ −55. Having a relation between wave number k

and number of e-folds Ne, we may investigate (1.39) with ns being dependent on k

through Ne. To obtain the percentage of suppression %(Ne), we can then compare

∆2
s(k) at the onset of observable e-folds to a spectrum with no running of ns.

If the running of the spectral index ns is also tractable analytically, the above

procedure does not have to be invoked. Recalling ns − 1 = d ln ∆2
s/d ln k, it then

suffices to study the expression

δ∆2
s(δns)

∆2
s

∣∣∣∣Ne
Ne+∆Ne

=

Ne∫
Ne+∆Ne

δns (Ne) , (1.43)

16We approximate inflationary spacetime as de Sitter space, thus a ∝ eHt with H being the
Hubble parameter during inflation. Ne is taken negative throughout inflation and becomes zero
at the end of inflation. As a shorthand, ns(62) means ns at Ne = −62.
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provided the change δns of the spectral index can be cast in terms of the number

of e-folds Ne. We will make use of this in section 3.4.

1.3 Shift symmetry primer

Having outlined the fundamentals of the inflationary paradigm and observational

manifestations thereof, we know turn to classify which kind of inflaton potentials

are currently favoured from an experimental point of view. We begin by recalling

hierarchy (1.38), namely |ηV | being roughly one order of magnitude larger than

|εV |. A possible ansatz naturally satisfying this hierarchy is assuming the potential

to approximate a constant value at large fields as

V (ϕ) ∼ 1− e−κϕ + . . .→ const. for ϕ→ large , (1.44)

where the dots denote subleading terms in the region V → const. It can be shown

that for such a potential, the slow roll parameters scale as

ηV = − 1

Ne

+ . . . , and εV =
1

2κ2N2
e

+ . . . , (1.45)

which readily satisfies the observational hierarchy constraint for Ne ∼ NCMB. We

hence conclude that a field with a potential of plateau type (1.44) is a natural

inflaton candidate. In other words, the potential energy driving inflation has to

have, at least for intermediate fields, an approximate and continuous shift sym-

metry ϕ→ ϕ + ϕ0. The inflaton potential not only has to mimic the equation of

state of a cosmological constant, but also the form of the potential energy, despite

a weak breaking to ensure a graceful exit of inflation.

Considering an arbitrary and minimally coupled scalar field

L√
−g

=
1

2
R− 1

2
(∂ϕ)2 − V0(ϕ) , (1.46)

we recall that integrating out heavy fields or generally radiative contributions lead

us to generically expect an infinite series of higher order corrections to V0(ϕ),
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containing in particular pieces of the form

∆V = V0(ϕ)
∑
n≥1

cn
ϕn

Mn
P l

. (1.47)

In the spirit of Wilsonian effective field theory (EFT) we assume cn = O(1) ∀ n.

Then corrections to the ηV -parameter will generically be expected as

∆ηV |ϕ=∆ϕ =
∑
n≥2

cnn(n− 1)
∆ϕn−2

Mn−2
Pl

& 1 (1.48)

and are readily greater than unity as soon as ∆ϕ & 1MPl, i.e. when the field is

trans-Planckian. We thus generically expect terms spoiling a controlled inflation-

ary regime and inflation mostly never acquires a sufficient amount of e-folds to

solve the horizon and flatness problems. An inflationary model that successfully

addresses the problems inflation needs to solve while at the same time being in

accordance with latest observations, hence must first address the above described

ηV -problem. Controlling such trans-Planckian field excursions effectively requires

cn . η0
1

n2

Mn−2
Pl

∆ϕn−2
. 1 (1.49)

to be put in either by hand or through some mechanism from the UV. The potential

needs to be tuned flat if no protective UV symmetry is at hand.

While the ηV -problem as such is not defined in the framework of modified

gravity, the same shift symmetry requirement is evident in the structure of f(R)-

gravity versions producing inflation models close to the R+R2 Starobinsky model.

If one allows for arbitrary powers of the Ricci scalar in the Einstein-Hilbert action

f(R) = R +
c2

M2
Pl

R2 +
∑
n≥3

cn

M2n−2
Pl

Rn (1.50)

with c2 � 1, there are stringent limits on higher order terms from solar system

requirements, i.e. weak field limits of GR and constraints on 5th force measure-

ments. Combining those limits with the f(R) properties for a successful inflation-

ary phase, i.e. the existence of an enhanced R2 term, one may effectively cast the
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shift symmetry structure as

cn

cn−1
2

� 1

cn−1
2

� 1 ∀ n ≥ 3 . (1.51)

Then the exponential approach to a shift-symmetric plateau potential

V (ϕ) ∼ 1− e−
√

2/3ϕ + . . . (1.52)

for the associated canonically normalised scalar ϕ dominates the resulting scalar

potential at least for intermediate fields relevant during horizon exit of CMB scales.

Condition equation (1.51) again marks the pattern of an effective weakly broken

shift symmetry.

Furthermore, a breaking of the shift symmetry at large field values correspond-

ing to the onset of observable e-folds can induce an inflection point in the infla-

tionary potential. Inflection points in an approximately shift-symmetric potential

mostly maintain d2V/dϕ2 > dV/dϕ but d2V/dϕ tends to be large. Hence the

spectral index is very sensitive to inflection points. This can manifest itself in

a large running αs of the spectral index and thus lead to the aforementioned

power-suppression at low angular multipoles. Again, as we naturally expect the

shift symmetry to be broken for some field values, the effect of power loss can be

readily accommodated for provided the breaking appears in the vicinity of NCMB.

It is the topic and task of this thesis to study different realisations of effec-

tive shift-symmetries in order to realise inflation. We will begin by embedding

inflationary dynamics within a UV framework. Here, the shift symmetry derives

mainly from tuning the parameters involved. In a second approach, we consider

non-canonical inflation. We derive conditions on the pole structure of the kinetic

function and describe the shift-symmetry breaking in a universal way. Turning to

modified gravity, we give f(R) duals corresponding to intermediate Einstein frame

shift-symmetries and are thus able to determine the coefficients in an all order

expansion of the function f(R). At last, we will provide a minimalist and univer-

sal mechanism to realise effective shift-symmetries. While the other approaches

always invoke some amount of tuning, this mechanism effectively only depends on

one parameter for which two independent observational indications exist.



Chapter 2

UV example

In this chapter, we describe the realisation of an effective shift symmetry V ∼
const. of the inflaton to drive inflation within a UV framework [17]. As we will

consider a part of the UV theory where no inherent shift-symmetries exits, con-

structing observationally viable inflaton potentials will amount to balancing and

tuning the parameters and coefficients of the higher dimensional operators in-

volved. We will be working in the Large Volume Scenario (LVS) of IIB Calabi-

Yau flux compactifications [36–39]. Depending on the specific geometry under

consideration, the F-Term scalar potential for the Kähler moduli generated by

non-perturbative effects leaves flat directions for certain combinations of moduli.

It is these flat directions in field space that are of interest for inflationary model

building. Different perturbative effects may be used to lift the flat directions and

hence to generate potentials capable of driving observationally viable slow-roll in-

flation. We will be employing a combination of string loop effects and recently

computed higher derivative α′-corrections. Inflation is then driven by a Kähler

modulus whose inflationary potential arises from the latter correction, while we

use the inclusion of string-loop effects only to ensure the existence of a graceful exit

and Minkowski minimum. The effective shift symmetry required and thus control

over higher corrections relies in part on tuning underlying microscopic parameters

by hand, and in part on intrinsic suppressions. The intrinsic part of control arises

as a leftover from an approximate effective shift symmetry at parametrically large

volume. Precisely, the potential recovers its no-scale property at infinite volume.

17
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The rest of the chapter is structured as follows; we start with a review of the

bare essentials of the Large Volume Scenario. We continue to quote the perturba-

tive corrections we will employ to generate the inflaton potential in section 2.2 and

describe the resulting inflationary dynamics in section 2.3. Following a discussion

of theoretical parameter bounds, we turn to the extraction of inflationary observ-

ables in section 2.4 and continue to significantly constrain the parameter space by

considering higher order observables.

2.1 Large Volume Scenario in a nutshell

We begin with a short review of the Large Volume Scenario (LVS) [36–39]. While

this was originally studied with moduli stabilisation in mind [36], it was quickly

discovered [39–41] that, for certain geometries, flat directions within a compact

field space remained; or in other words that not all moduli involved we readily

stabilised. It is these flat directions that are of interest in order to realise slow-roll

inflation.

The results we will primarily base our construction on are the large volume limit

of the low-energy 4D N = 1 - effective action of type IIB Calabi-Yau-orientifold

compactifications with background fluxes [42,43] including the leading order (α′)3-

corrections to the bulk fields [42] and non-perturbative corrections from gaugino

condensation on wrapped D7-branes or from Euclidean wrapped D3-branes. The

background fluxes stabilise the dilaton and complex structure moduli so that,

once having replaced these fields with their respective minima in the effective

Lagrangian, the theory is specified by the Kähler and Superpotential

K = −2 log

(
V +

ξ̂

2

)
and W = W0 +

∑
i

Aie
−aiτi , (2.1)

where ξ̂ parametrises the leading order α′-corrections [42], W0 is the Gukof-Vafa-

Witten superpotential and Ai, ai can be seen as constants depending on the specific

mechanism generating the non-perturbative contributions. The volume modulus
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V describes the total volume of the compactification geometry and is given as

V =
1

6
kijkt

itjtk , (2.2)

with kijk denoting the triple intersection numbers and ti the two-cycle volumes.

The variables of 4D N = 1 theories however are the four-cycle volumes which

descend from the real parts of the Kähler coordinates as

1

2

(
Ti + T̄i

)
≡ τi =

∂V
∂ti

=
1

2
kijkt

jtk , (2.3)

where the last equality relates two- and four-cycle volumes.

In the original work [36], the compactification volume was taken to be controlled

by a single four-cycle. When a blow-up cycle is added for which non-perturbative

effects are assumed to exist, the resulting F-term scalar potential features a mini-

mum for the volume modulus at exponentially large volume. While such a scenario

suffices in terms of moduli stabilisation, no flat directions of phenomenological in-

terest remain in this minimal set-up. Kähler modulus inflation [40] went beyond

the minimal set-up to include an additional blow-up four-cycle. One blow-up then

served to stabilise the volume while a sub-leading dependence of the F-term scalar

potential on the remaining blow up was used to effectively lift the leading order flat

direction of the additional blow-up. This realised a potential viable for slow-roll

inflation. Yet string-loop effects quickly introduced the η-problem to that set-up.

We will consider a compactification geometry for which the volume is stabilised

at exponentially large values and a flat direction exists which can be lifted in a

controlled way. Adding a blow-up cycle to the K3-fibered threefold CP4[1, 1, 2, 2, 6]

which has h1,1 = 2, the volume in terms of the four-cycles is of the form

V = λ1t1t
2
2 + λ2t

2
3 = α

(√
τ1τ2 − γτ 3/2

3

)
with λi = const. , (2.4)

where τ1 is associated with the volume of the K3-fibre, τ2 controls the overall

volume, τ3 denotes the blow-up and we identify α = 1/(2
√
λ1), γ = 2

3

√
λ1/(3λ2).

Large volume implies that τ1, τ2 � τ3. This hierarchy shuts off all non-perturbative
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contributions to the superpotential except those for the blow-up τ3; one has

W → W = W0 + A3e
−a3τ3 . (2.5)

Thus the resulting F-term scalar potential has the form

V LV S(V , τ3) = gs

(
8a2

3A
2
3

3αγ

√
τ3

V
e−2a3τ3 − 4W0a3A3

τ3

V2
e−a3τ3 +

3ξ̂W 2
0

4V3

)
(2.6)

This does not depend on τ1 and τ2 but only on the particular combination of the

two controlling the overall volume. V LV S has minima to stabilise

〈τ3〉 =

(
ξ̂

2αγ

)2/3

, 〈V〉 =
3αγ

4a3A3

W0

√
〈τ3〉ea3〈τ3〉 , (2.7)

which demonstrates that the volume is driven towards an exponentially large value.

Note how this construction manages to fix two of the three degrees of freedom

involved; τ3 is stabilised directly and a combination of τ1, τ2 is fixed through the

volume V . The remaining scalar degree of freedom may hence play the role of the

inflaton. Note that τ1 is massless at tree level. Therefore, we expect corrections

that lift the flat direction to induce terms which are subleading with respect to

V LV S, i.e. we expect τ1 to remain the lightest modulus and hence to be a prime

inflaton candidate. In what follows, we will lift the flat direction of τ1 with new

α′-corrections and string loop-effects.

2.2 Perturbative corrections and inflation

We now turn our attention to the perturbative corrections we will employ to lift

the previously flat directions in field space.

2.2.1 Higher-derivative corrections

First, we will consider a recently computed α′-correction [44]. This correction

was derived by matching higher derivative terms in N = 1 superspace to Kaluza-

Klein reduced α′-corrections from ten dimensions (10D). While overall, there are
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additional two- and four-derivative terms in the effective action, we will only focus

on the contribution to the F-term scalar potential, which reads

V(1) = −g2
s λ̂
|W0|4

V4
Πit

i , (2.8)

where λ̂ = λ(α′)3g
−3/2
s with λ being an undetermined combinatorial constant. The

Πi are integer numbers encoding geometric information and always have the same

sign.

In a first step, we consider the inflationary dynamics of the LVS F-term scalar

potential with the additional α′-correction, i.e.

V (τ1) = V LV S + V(1) . (2.9)

For the geometry (2.4), the correction reads

V(1) ' −g2
s λ̂
|W0|4

V4

(
Π1
V
τ1

+ Π2λ
−1/2
1

√
τ1

)
, (2.10)

where we have omitted τ3 dependent terms; this is because correction (2.8) is 1/V
suppressed with respect to (2.6), we thus do not expect the stabilisation of τ3 to

be significantly altered. Moreover, while there may be subleading corrections to

the vev of τ3, the blow-up modulus will certainly remain stabilised and hence will

not be dynamical during inflation. Thus, we write the potential as

V (τ1) = V LV S(〈τ3〉, 〈V〉)− g2
s λ̂
|W0|4

〈V〉4

(
Π1
〈V〉
τ1

+ Π2λ
−1/2
1

√
τ1

)
. (2.11)

Before we turn to the features of the above potential, let us consider canonical

normalisation of the particular combination of moduli that will take the role of

the inflaton in our subsequent discussion. Recalling that the complexified Kähler

moduli are Ti = τi + ibi, the kinetic part of the Lagrangian is

Lkin = Kij̄∂µTi∂
µT̄j =

1

4

∂2K

∂τi∂τj
(∂µτi∂

µτj + . . .) . (2.12)

Hence upon replacing τ2 → τ2(τ1, τ3,V) via the expression for the compactification
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Figure 2.1: Left: Exemplary potential (2.15) where λ̂ and Πi share the same sign.
While this is observationally viable plateau inflation, the potential is unbounded
from below. Right:When λ,Πi have opposite sign, the resulting potential can drive
inflation and ensures a graceful exit and hence the start of reheating. However, the
inflationary observables for this potential are excluded by observations as demon-
strated by expression (2.18).

geometry, the kinetic terms are

Lkin ⊃ −
3

8τ 2
1

(∂µτ1∂
µτ1) +

1

2τ1V
(∂µτ1∂

µV)− 1

2V2
(∂µV∂µV) + . . . . (2.13)

The canonical inflaton is then defined as

τ1 = eκϕ and hence ϕ = κ−1 log τ1 , (2.14)

with κ = 2/
√

3. Potential (2.11) then becomes

V (ϕ) = V LV S(〈τ3〉, 〈V〉)− g2
s λ̂
|W0|4

〈V〉4
(

Π1〈V〉e−2/
√

3ϕ + Π2λ
−1/2
1 eϕ/

√
3
)
. (2.15)

If λ̂ and both Πi have the same sign, the above potential features a global max-

imum and is unbounded from below. While such a Hilltop potential can drive

observationally viable slow-roll inflation, it remains highly unsatisfying that the

inflaton stays eventually unstabilised after inflation. If λ̂ and both Πi have the op-

posite sign, the potential manages to stabilise the inflaton due to the minimum as

well as to provide an inflationary phase. In this case however, inflation is effectively
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driven by a single rising exponential

V (ϕ) ∼ eνϕ , (2.16)

for which it is readily verified that

ns = 1− ν2 and r = 8 ν2 . (2.17)

For potential (2.15), one has ns = 2/3, r = 8/3 which is clearly incompatible

with PLANCK [20]. Moreover, eliminating the coefficient ν from the above set of

equations, the resulting line

ns = 1− r

8
(2.18)

in an (ns, r) plot is never inside the bounds set by PLANCK, i.e. no coefficient ν in

the exponent of (2.16) can remedy this situation. Figure 2.1 depicts the explained

scenarios.

2.2.2 String-loop effects

We now turn to a second class of perturbative corrections, namely string-loop

effects [45]. These perturbative corrections arise from the exchange of closed strings

carrying Kaluza-Klein momentum and winding strings between stacks of branes.

While explicit results are lacking, their general form is conjectured to be

δKKK
(gs) ∼ gs

h1,1∑
i=1

CKK
i (aijt

j)

V
and δKW

(gs) ∼
h1,1∑
i=1

CW
i (aijt

j)−1

V
, (2.19)

where the first term denotes the contribution from the exchange of closed strings

between D3 and D7 branes and the latter the exchange of winding strings between

D7 branes. While aij are combinatorial constants, CKK
i , CW

i are functions of the

complex structure moduli. It was shown in [46] that without fine-tuning, one

expects

CKK
i ' CW

i ' O
(

1

128π4

)
, (2.20)
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which we will assume for the following discussion. The string-loop corrections to

the scalar potential for the compactification geometry (2.4) are [39]

δV(gs) '
gs|W0|2

V2

(
g2
s

(CKK
1 )2

τ 2
1

+ 2g2
s(αC

KK
2 )2 τ1

V2

)
. (2.21)

Note that we omitted the contribution to the blow-up τ3 as we take τ3 to be fixed

during inflation by the leading order LVS potential. Furthermore, we purposefully

did not include corrections from winding strings. This is the first occurrence of an

explicit tuning; as a winding mode contribution to the four-cycle τ1 comes with

the same gs and V dependence as correction (2.10), we have to

• either tune the coefficient CW
1 small by making assumptions about the sta-

bilisation of the complex structure moduli,

• or simply to postulate a brane configuration where the D7 branes only wrap

those four-cycles associated with τ2, τ3 and where therefore winding-mode

contributions are absent,

for the winding-mode not to spoil the inflationary dynamics driven by (2.10). To

ease the subsequent analysis, we opt for the latter case.

The string-loop corrections in (2.21) are suppressed by additional powers of

g
5/2
s with respect to V(1) in (2.10). The typical size of the topological numbers and

the constant λ was inferred in [44] to be Πi ∼ O(10 . . . 100) and |λ| ∼ ζ(3)/(16π3).

Combining this with the estimate (2.20) we find that

|CKK
1 |2∼ |CKK

2 |2� |λ||Πi| . (2.22)

Thus, for moderately small gs . 10−1 and W0 & 1 the string-loop corrections

are suppressed with regard to V(1) for some domain of τ1. However, for sufficiently

small as well as large τ1 the contributions δV KK
(gs),1

and δV KK
(gs),2

will become important

and eventually dominate over the terms in V(1). Since δV KK
(gs),1

and δV KK
(gs),2

are

strictly positive, the potential will thus globally be bounded from below. In the

intermediate τ1 regime the string-loop effects will remain subleading compared to

V(1). Hence, we now do not need to worry about instabilities of the potential and
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the V(1)-correction may be invoked to drive inflation in some intermediate regime

of the modulus τ1.

The resulting scalar potential for the modulus τ1 hence reads

V (τ1) = V LV S + V(1) + δV(gs) + δup , (2.23)

where we have included an uplifting term δup = ε/Vp with p = 1 . . . 3, which may

be induced by numerous mechanisms (see e.g. pp. 134 in [47]). Upon canonical

normalisation and having absorbed the uplift term into the τ1-independent V LV S,

the full inflationary potential reads

V (ϕ) = V LV S
δup + V0

(
−C1e

−2/
√

3ϕ − C2e
ϕ/
√

3 + Cloop1 e−4/
√

3ϕ + Cloop2 e2
√

3ϕ
)
, (2.24)

where we have defined

V0 = g2
s

|W0|4

V4
, C1 = λ̂Π1V > 0 , C2 = λ̂Π2λ

−1/2
1 > 0 ,

Cloop1 =
V2

|W0|2
gs(C

KK
1 )2 > 0 , Cloop2 =

2gs
|W0|2

(αCKK
2 )2 > 0 . (2.25)

While the Cloopi are always positive, we have now explicitly chosen scenarios where

λ̂ and the Πi have the same sign to fix also the Ci > 0; the rationale behind this is

that if the Ci were allowed to be negative, then inflation will effectively be driven

by potential (2.16), regardless of the inclusion of further perturbative corrections.

As we have explicitly shown that inflation driven by a positive exponential is not

in agreement with observations, we are hence - by experiment - directed only to

consider scenarios in which λ̂Πi > 0, ∀i.
Realising observationally viable inflation within the Kähler moduli sector by

invoking known perturbative corrections thus means balancing the exponentials

of (2.24), i.e. tuning the parameters in the definition of the coefficients (2.25).

Provided these can be set to suitable values, configurations of falling and rising

exponentials may then provide the approximate and continuous shift symmetry

V ∼ const. in the inflaton potential to drive inflation compatible with PLANCK.
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Figure 2.2: Left: Potential (2.24), where the parameters have been chosen such
that the inflaton rolls to the left. The thick line is effectively captured by expression
(2.40). The dashed line is the second falling exponential. Both falling exponentials
are eventually stabilised by string loops. Right:The thick blue line resembles po-
tential (2.32). Now, inflation occurs for growing fibre.

2.3 Inflationary dynamics

As observations require to choose

C1 = λ̂Π1V > 0 , C2 = λ̂Π2λ
−1/2
1 > 0 , (2.26)

for inflation not to be driven by a single rising exponential (2.16), we will eventually

have two minima towards which the inflaton may roll. The relevant terms of the

potential during inflation are

Vinf ∼ −
C1

τ1

− C2

√
τ1 (2.27)

in non-canonical fields. Without the inclusion of string-loops, each term would

quickly drive the potential to large negative values. Hence, as depicted in Figure

2.2 the set-up allows for two minima, one of which has to be tuned Minkowskian

through the uplift. We hence seek only to drive inflation with one of the terms

in potential (2.27), namely the one which in combination with string-loops and

uplift has the inflaton settle in the Minkowski minimum. Hence, we have a mini-

landscape of inflation being possible by rolling to the left or to the right. Thus,

we want the observable ∼ 60 e-folds of inflation to occur when the terms in Vinf
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are not of the same order. They are of equal order of magnitude for

τ c1 ∼
(
C1

C2

)2/3

. (2.28)

Now, depending on whether inflation is occurring by the inflaton rolling to the

left or right as depicted in Figure 2.2, we have to ensure that the plateau appears

around values τ c1 > τ1 or τ c1 < τ1. In order to have the potential sufficiently flat,

there are bounds on the Ci and Cloopi coming from the running of the spectral index,

which have to be obeyed when considering viable models of inflating to the right

or the left. These are subject of subsection 2.4.2 and will be found in expression

(2.56) and (2.60) respectively.

In what follows, we will in a first step work in non-canonical fields to establish

the bounds on the parameter space and turn to canonical fields in a second step

in order to confront the parameters with constraints from observations.

2.3.1 Inflation to the right

We first consider the inflaton rolling to the right, i.e. we have inflation driven by

the C2-term and the stabilisation ensured by the Cloop2 -term. The inflaton has to

be initially placed on the right side of the stationary point τ c1 and to the left of

the minimum. The leading terms in the potential hence are

V R
inf ∼ V0

(
−C2

√
τ1 + Cloop2 τ1

)
, τ1 > τ c1 . (2.29)

Uplifting the above by its value at the minimum, we obtain

V R
inf = Ṽ R

0

(
1− βR

2

√
τ1

)2

, βR ≡
4 Cloop2

C2

= 2
g

5/2
s (CKK

2 )2

λ |W0|2Π2

, Ṽ R
0 =

V0

βR
. (2.30)

For V R
inf to exhibit an approximate shift symmetry V R

inf ∼ const., we require

βR
√
τ1 � 1 ↔ τ1 � β−2

R , i.e. we need βR � 1 to have a plateau at τ1 � 1.

Recalling expressions (2.25), βR � 1 may may be satisfied and hence ensures an

inflationary plateau. Further, as we want the minimum to be on the right side of
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τ c1 in (2.28), we require

τmin1 > τ c1 ⇒ Cloop2 <

(
C4

2

C1

)1/3

, (2.31)

which can easily be satisfied using (2.22). Turning to canonical variables via

(2.14) and shifting the canonical scalar ϕ by the vacuum expectation value ϕ →
ϕ− 2κ−1 log(βR/2), we arrive at the effective inflaton potential

V R
inf (ϕ) = Ṽ R

0

(
1− e

κ
2
ϕ
)2
, (2.32)

where we recall that κ = 2/
√

3. Having canonically normalised, we now confront

our set-up with observational bounds (1.33) arising from the normalisation of the

scalar density perturbations [20,48]

1

8π2

H2

εV

∣∣∣
∗
∼ 2.2× 10−9, and thus

(
1

8π

Vinf
εV

)1/4
∣∣∣∣∣
∗

= 0.027MPl , (2.33)

where the star denotes evaluation at horizon exit which we assume to occur 55

e-folds before the end of inflation. Thus, when inflating to the right, we have

Ṽ R
0 = 8π 0.0274M4

Pl εV
∣∣
∗ = 5.7× 10−9 , (2.34)

where we have set MP = 1 in the last equality. This hence sets

Ṽ R
0 ≡

g2
s |W0|4

V4

C2
2

4 Cloop2

∼ λ2 |W0|6

V4
g−2
s (CKK

2 )−2 !
= 5.7× 10−9 , (2.35)

which is in accordance with natural choices for gs, V and W0. We thus summarise

the demands and resulting bounds for a viable inflationary regime as follows:

demand resulting bound

plateau at τ1 & 1 βR � 1

τmin1 > τ c1 Cloop2 <
(
C42
|C1|

)1/3

COBE λ2 |W0|6 V−4g−2
s (CKK

2 )−2 ∼ 5× 10−9
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If these requirements are met, inflation is fully captured and described by po-

tential (2.32). Note that this scenario corresponds to an increasing fibre at fixed

compactification volume.

2.3.2 Inflation to the left

Given the perturbative corrections induce a mini landscape where the inflaton may

roll in two different directions, we now study the inflationary dynamics for the field

rolling towards small values. The terms responsible for the inflationary plateau

and minimum are

V L
inf = V0

(
−C1

τ1

+
Cloop1

τ 2
1

)
. (2.36)

To be able to safely neglect non-perturbative correction for the fibre modulus we

require that

τmin1 & 1 , (2.37)

thus the minimum of potential (2.36) has to be at values sufficiently greater than

unity. Again Minkowski uplifting the potential by its value at the minimum, one

has

V L
inf = Ṽ L

0

(
1− βL

2τ1

)2

, βL =
4 Cloop1

C1

= 4
Vg5/2

s (CKK
1 )2

|W0|2λΠ1

, Ṽ L
0 =

V0

βL
. (2.38)

We find τmin1 = βL/2. hence we require βL & 1 to keep control over the theory.

Recalling (2.25) and given reasonable choices for V , gs and W0 we find βL & 1 to

be readily satisfied. Also, as inflation now occurs for the field rolling to the left,

we seek

τmin1 < τ c1 ⇒ Cloop1 <
C5/3

1

2 C2/3
2

, (2.39)

which is easily fulfilled using (2.22) and V � 1. Canonical normalisation yields

V L
inf (ϕ) = Ṽ L

0

(
1− e−κϕ

)2
, (2.40)

where we have shifted the field ϕ to ϕ→ ϕ+ κ−1 log(βL/2) with κ = 2/
√

3. Con-

fronting the set-up with the normalisation of the curvature perturbations (2.33),
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we find the condition

Ṽ L
0 = 8π 0.0274M4

Pl εV
∣∣
Ne=55

= 1.5 · 10−9 , (2.41)

or equivalently

Ṽ L
0 ≡

g2
s |W0|4

V4

C2
1

4 Cloop1

∼ λ2 |W0|4

V4
|W0|2g−2

s (CKK
1 )−2 !

= 1.5 · 10−9 , (2.42)

which may be satisfied given reasonable choices of the involved parameters. We

thus summarise the demands and resulting bounds for a viable inflationary regime

as follows:

demand resulting bound

minimum at τ1 & 1 βL ∼ g
5/2
s V(CKK

1 )2 & 1

τmin1 < τ c1 Cloop1 < 1
2

(
2
C2

)2/3

C5/3
1

COBE λ2 |W0|6 V−4g−2
s (CKK

1 )−2 ∼ 10−9

Last but not least, in both cases - inflating for increasing or shrinking fibre - the

inflaton has to remain the lightest scalar in the effective theory. We have already

pointed out in the discussion about LVS (section 2.1) that the leading order flat

direction for τ1, i.e. τ1 being massless at tree level, should in principle lead to

a natural mass hierarchy in which, when lifted by perturbative corrections, τ1

remains the lightest scalar.

In technical terms, fluxes and the stabilisation at large volume yield masses for

the complex structure moduli, the axio-dilaton and the blow-up τ3 respectively as

m2
cs ∼ m2

S ∼ m2
τ3
∼ gs
|W0|2

V2
. (2.43)

The volume modulus is 1/V suppressed with respect to the above masses. In order

for the volume modulus not to be as light as the inflaton, we hence require

V
L/R
inf ∼ H2 � m2

V ∼ gs
|W0|2

V3
. (2.44)
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For inflating with increasing and decreasing fibre respectively, the above translates

to
W 2

0

V
λΠ2 �

√
gsβR , and W 2

0 λΠ1 �
√
gs , (2.45)

where it is noteworthy that already βR < 1/20 in the inflationary regime.

2.4 Inflationary observables

Having outlined the set-up for inflating with increasing and decreasing fibre as well

as having given bounds on the parameter space, some from theoretical concerns

and some from observations, we now study the phenomenology of the models

presented. After giving the leading order results, we will loosen our requirement

that only one term of potential (2.27) be responsible for the inflationary phase and

will therefrom derive further constraints on the parameter space.

2.4.1 Leading order results

Recall the effective inflationary potentials (2.32) and (2.40)

V R
inf (ϕ) = Ṽ R

0

(
1− e

κ
2
ϕ
)2
, V L

inf (ϕ) = Ṽ L
0

(
1− e−κϕ

)2
. (2.46)

The predictions for a potential of type

Vinf = V0

(
1− e±νϕ

)2
(2.47)

for the spectral index ns and the tensor to scalar ratio r can be cast in terms of

Ne via expressions (1.45) and are approximated by

ns ∼ 1− 2

Ne

+ . . . , r ∼ 1

ν2

8

N2
e

+ . . . ,

respectively, where Ne denotes the number of e-folds before the end of inflation

and we have omitted sub-leading terms in 1/Ne for conciseness. The coefficient

of the O(1/N3
e ) term can be obtained analytically (see e.g. [49]) but we omit its

tedious and lengthy form here. Its numerical value differs between our two model
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classes of ‘inflation to the left’ and ‘inflation to the right’, which explains the split

in the values for r in Table 2.1, where the first order phenomenological fingerprint

is shown. Note how the predictions of inflating to the right are in line with [39].

ns(50) ns(60) r(50) r(60)

right 0.960 0.967 0.0077 0.0055

left 0.960 0.967 0.0024 0.0016

Table 2.1: Numerical values for the spectral index ns and the tensor-to-scalar ratio
r calculated at 50 and 60 e-folds before the end of inflation.

When inflating to the left however, the tensor to scalar ratio decreases whereas

the value of the spectral index remains universal. This is because for ‘inflation to

the right’ the exponential term forming the inflationary plateau is the square-root

of the analogous term when inflating to the left.

2.4.2 Higher order analysis

We now reconsider the inflationary part of the potential, but do not require the

inflaton to be placed sufficiently far away from the stationary point (2.28) such

that only one of the terms of (2.27) dominates the inflationary dynamics. Now,

we allow for both terms to contribute.

Considering inflation corresponding to increasing fibre, the inflationary poten-

tial with the C1-term included reads

V R
inf ∼ V0

(
−C1

τ1

− C2

√
τ1 + Cloop2 τ1

)
. (2.48)

The inflaton inflates to the right while the C1-term may break the plateau at

smaller τ1 and induce a local maximum. We consider the C1-term arising from V(1)

to be of importance while we have still omitted the string loop induced Cloop1 -term.

The reasoning is that first the string loop term is τ−1
1 suppressed with regard to

the higher derivative term. Second, for typical values of CKK
1 as given in (2.20),

the C loop
1 -term will be additionally suppressed. At last, while the string loop term

scales with gs, the higher derivative term is g
−3/2
s enhanced. The canonically
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normalised and uplifted potential hence receives a falling correction at large e-

foldings, i.e.

V R
inf (ϕ) ∼ Ṽ R

0

(
1− 2e

κ
2
ϕ − ε2e−κϕ

)
, ε2 =

C1

4 C2

β3
R , (2.49)

where we have already expanded the inflationary potential and have omitted the

string loop induced term for notational ease.17 From the above we may already

infer that ε2 � 1 for the inflationary plateau not to be spoiled. The slow-roll

parameters (1.22) then receive ε2 dependent corrections of the form

εV =
1

2

(
V ′

V

)2

=
1

2

(
−κ e

κ
2
ϕ + κ ε2e−κϕ

)
, (2.50)

ηV =
V ′′

V
= −1

2
κ2e

κ
2
ϕ − κ2ε2e−κϕ , (2.51)

where we have taken the potential to be slowly varying during inflation, i.e. V R
inf ∼

const. Recalling (1.23) dNe = (2εV )−1/2dϕ, i.e.

Ne ∼ 2κ−2e−
κ
2
ϕ +O(ε2) , (2.52)

we hence arrive at the expression for the spectral index ns including higher order

corrections

ns = 1− 2

Ne

− 3 ε2κ4Ne +
ε2κ6

2
N2
e + . . . . (2.53)

The above suggests that there is a further phenomenological fingerprint in the

form of running of the spectral index. Considering the next-to-leading correction

to the spectral index

δns = −3 ε2κ4Ne +
ε2κ6

2
N2
e , (2.54)

and requiring δns . 0.008 for Ne = 55, which is the 2-σ range for the ns measure-

ment from Planck, we find an upper bound on ε2 to be

ε2 =
|C1|
4 C2

β3
R . 2.4× 10−6 . (2.55)

17During inflation, the term ensuring the existence of the minimum is negligible.
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This is in agreement with earlier works employing exponential corrections to the

inflationary plateau [14,30–33,35,50,51].18 The bound on ε2 also restricts

|C1|
4 C2

β3
R ∼ λ−3 V g15/2

s Π1 Π−4
2 (CKK

2 )6 . 2.4× 10−6 (2.56)

and hence gives a constraint that has to be fulfilled in the first place when consid-

ering observationally viable inflation to the right.19

Considering the scenario where inflation occurs for the inflaton rolling to the

left, we now start with the potential

V L
inf ∼ V0

(
−C1

τ1

+
Cloop1

τ 2
1

+ C2

√
τ1

)
. (2.57)

The C2-term destroys the plateau. Again, we have omitted the string loop induced

term as it is suppressed with regard to the higher derivative C2 term by similar

reasoning as was employed when justifying the omission of the Cloop1 -term when

studying inflation to the right. The canonically normalised and uplifted potential

hence receives a falling correction at large e-foldings, i.e.

V L
inf (ϕ) ∼ Ṽ L

0

(
1− 2e−κϕ − ε2e

κ
2
ϕ
)
, ε2 =

C2√
2 C1

β
3/2
L , (2.58)

where we have again expanded the inflationary potential and have omitted the

string loop induced term as it plays no role on the inflationary plateau. Similarly

to the rolling to the right case above, we can derive ns and obtain

ns = 1− 2

Ne

− 3
√

2ε2κ√
Ne

+
ε2κ3
√
Ne√

2
− 3

2
ε4κ4Ne + . . . . (2.59)

Considering the 2-σ bounds by PLANCK, i.e. requiring δns . 0.008 at Ne = 55,

18Note that potential (2.49) may not account for power loss at low-` in the CMB temperature
spectrum as the correction comes with a minus sign and hence induces a local maximum and not
an inflection point as would be required for power suppression.

19For V ∼ 103 and Π1 ∼ Π2 the bound requires βR . 10−3, thus placing a stronger constraint
on βR than the minimal required length of the plateau.
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we obtain the upper bound

ε2 ∼ λ−3/2 V−1
(
g5/2
s V

)3/2
Π2 Π

−5/2
1 (CKK

1 )3/2 . 10−3 . (2.60)

Given the bounds on ε2 induced by the data-compatible range of δns, we also

find that the contribution of the δns to the magnitude of running dns/d ln k =

−dns/dNe is typically . O(10−4) and hence at least an order of magnitude smaller

than the contribution to the running from n
(0)
s − 1 = −2/Ne which is about

dn
(0)
s /d ln k ∼ −10−3. Finally, let us provide one example of parameter choices

for a model of inflation with shrinking fibre τ1 in Table 2.2.

W0 gs V τmin1 Π1 Π2 CKK
1 CKK

2 ns
L1 2 0.3 460 3 100 1 0.163 0.0288 0.966

Table 2.2: Example of compactification parameters and inflationary observables
for inflation to the left (L1).

In this chapter, we have presented a way to realise an effective shift symme-

try by tuning and balancing different perturbative corrections against each other.

While a part of the effective shift symmetry derives from an intrinsic one at para-

metrically large volume, this could not serve to protect the inflaton potential

against higher orders in the parameter regime required to drive observationally

viable slow-roll inflation Hence balancing and tuning terms had to be invoked.





Chapter 3

The non-canonical point of view

Embedding inflation in some UV theory usually yields a non-canonical kinetic

term in the effective Lagrangian in an intermediate step (as an example, recall

the kinetic Lagrangian (2.13) of chapter 2). Conventionally, inflationary dynamics

are studied once the kinetic term is canonically normalised. However, obtaining a

non-canonical kinetic term as an intermediate step suggests to analyse the kinetic

function directly and hence to - independently of the specifics of the potential - use

the non-canonical kinetic term as a short cut to the inflationary dynamics. In this

non-canonical language, recent work established a reformulation of plateau-type

inflaton potentials in terms of a certain pole structure of the kinetic function [52].

In this chapter we enhance these ideas by establishing an extended duality

between a kinetic function with a certain pole structure and shift symmetry of the

Einstein frame canonically normalised inflaton potential [16]. Moreover, we study

the breaking of the shift symmetry at large fields. Since non-canonical kinetic

terms are a generic consequence of compactifications of higher-dimensional models

such as string theory, this may provide a new avenue of constructing this set of

phenomenologically promising models from more fundamental embeddings. One

of the main aims of this chapter is to provide the analogue formulation of this shift

symmetry for non-canonical models of inflation, to which we turn next.

The rest of the chapter is structured as follows. First, we recall the formulation

of inflation where the inflationary dynamics’ complexity has been shifted in parts

to the kinetic term rather than the potential. Given a suppression hierarchy for

37
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poles of increasing order, we continue to describe corrections to the aforementioned

formalism and derive leading order corrections to the inflationary observables.

Assuming the corrections to follow the pattern of shift symmetry in an EFT sense,

we then study an infinite tower of corrections and demonstrate that the leading

order corrections coincide with the structure obtained before. After outlining

phenomenological fingerprints deriving from the corrections, we attempt to embed

the previous considerations into some UV theory. Following a generic argument

as to what the coarse structure of the UV candidate Kähler potential might be,

we give perturbative and exact examples which reproduce the kinetic functions

under study in this work. We then turn our attention to String Theory and argue

that the necessary terms may be obtained. Specifically, we recall that the more

general form of string loop corrections to the volume moduli Kähler potential in

string compactifications spoil the log-structure of the Kähler potential, and we

hence expect them to break the shift symmetry at large field ranges. We conclude

by discussing our results, and point out that our steepening corrections generically

produce a moderate loss of CMB power at large angular scales for which we give

an analytical estimate.

3.1 Pole inflation

We begin with a quick recapitulation of the formalism presented in [52] and provide

extensions in order to translate the results presented to canonically normalised

fields.

3.1.1 Laurent expansion

If the kinetic term may be cast as a Laurent series and given reasonable assump-

tions about the potential, one can study and understand inflationary dynamics

mostly in terms of the leading order pole of the Laurent expansion and its residue,

as we will now recall. Consider an Einstein frame Lagrangian of the form

L√
−g

=
1

2
R− 1

2
KE(ρ) (∂ρ)2 − VE (ρ) , KE(ρ) =

(
ap
ρp

+ . . .

)
, (3.1)
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where we assume the kinetic function KE(ρ) to be given by a Laurent series with

a pole of order p at ρ = ρ0 = 0 (without loss of generality) plus sub-leading terms,

which are higher-order in ρ (not higher order in ρ−1) and are thus irrelevant close

to the pole.20 In principle, higher order terms in ρ−1, i.e. higher orders in the pole,

are of increasing importance when ρ→ 0. We will neglect those terms for now to

ease our analysis of the first pole and give a condition which has to be satisfied in

order to do so in (3.13).

The location of the pole corresponds to a fixed point of the inflationary tra-

jectory, which is therefore characterised almost completely by this point. Upon

canonical normalisation, the fixed point translates into a nearly shift-symmetric

plateau in the potential. As the inflationary behaviour will be determined by the

trajectory of the non-canonical field in the vicinity of the pole, one may approxi-

mate VE(ρ) to be

VE = V0(1 + cρ+ . . .) , (3.2)

where we may leave the coefficient c unspecified. Our results will not depend on

any choice of c as we will later demonstrate. All higher order terms may also have

arbitrary coefficients as they will be sub-dominant close to the pole ρ0 = 0.

The crucial assumption in Lagrangian (3.1) is that kinetic pole and potential

minimum do not coincide.21 In other words, scenario (3.1) and (3.2) may also be

recast - by means of a field redefinition ρ→ ρ+ ρ0 - to read

KE(ρ) =
1

(ρ− ρ0)p
+ . . . , VE(ρ) = V0(ρn + . . .) . (3.3)

with n ≥ 1. Going back to ρ→ ρ−ρ0, the above will become VE ∼ 1 + cρ . . . with

c = −n/ρ0 in the vicinity of the pole ρ0 and hence results in the same inflationary

dynamics as scenario (3.1) and (3.2). For n = 2, this argument may also be

understood in the following sense; if the specifics of a scalar field potential are

unknown, as long as the scalar field is stabilised at ρmin and the kinetic function

has a pole ρ0 6= ρmin, inflation compatible with PLANCK will be realised.

20We can move any pole ρ0 to ρ0 → ρ0 = 0 by means of a field redefinition ρ→ ρ−ρ0 without
changing the dynamics of the system.

21If the potential also had a minimum at ρmin = ρ0 = 0, expansion (3.2) would obviously not
be suitable. This issue was not mentioned explicitly in the original work. We will revisit this
when turning to perturbations of the pole structure in section 3.2.
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For simplicity, we now assume the pole to be located at ρ0 = 0 and the potential

hence to be given by (3.2). For this non-canonical set-up, the slow-roll parameters

(1.22) are

εV =
1

2KE(ρ)

(
1

VE(ρ)

∂VE(ρ)

∂ρ

)2

, and

ηV =
1

KE(ρ)V (ρ)

[
∂2V (ρ)

∂ρ2
− ∂VE(ρ)

∂ρ

1

2KE(ρ)

∂KE(ρ)

∂ρ

]
, (3.4)

where ϕ is the canonically normalised inflaton and KE(ρ) is the kinetic function

of Lagrangian (3.1). An explicit calculation then yields

εV =
1

2ap
ρp , ηV = − p

2ap
ρp−1 . (3.5)

The number of e-folds Ne is obtained as

Ne =

∫
1√
2 εV

dϕ =

∫
KE(ρ)VE(ρ)

(
∂VE(ρ)

∂ρ

)−1

dρ . (3.6)

Sufficiently close to the pole at ρ = 0, i.e. at large Ne, the number of e-folds hence

evaluates to

Ne =
ap

(p− 1)ρp−1
, and thus ρ =

(
ap

(p− 1)Ne

) 1
p−1

. (3.7)

Since we assume p > 1, indeed the number of e-folds increases as the field ρ

approaches the pole. At lowest order in 1/Ne, the inflationary predictions for this

model are therefore given by

ns = 1− p

p− 1

1

Ne

, r =
8a

1
p−1
p

(p− 1)
p
p−1

1

N
p
p−1
e

, (3.8)

where ap is the leading coefficient of the Laurent expansion as in (3.1). The above

derivation is indeed independent of the linear coefficient c of (3.2).

Putting all of this together, we observe that the presence of a fixed point of

the kinetic function that does not coincide with the minimum of the potential
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translates to an effective shift symmetry of the canonically normalised inflaton

at large field values, provided that all higher-order poles in the kinetic function

beyond the leading-order pole defining the fixed point have successively suppressed

coefficients as in equation (3.13) below. This provides us with a new handle on

finding regimes where inflaton potentials show an effective shift symmetry via

analysing the local structure of the non-canonical kinetic function. In other words,

vastly enhancing the kinetic term such that it becomes dominant with regard to the

potential - e.g. with a pole in the kinetic function as above - enters the canonical

normalisation such that, given reasonable assumptions about the specific potential,

the canonically normalised field will slowly roll down its effective potential which

will be of plateau type.

The case p = 2 is special for a number of reasons. First of all, this gives rise to

a value of the spectral index that agrees exceedingly well with PLANCK. Secondly,

from a theoretical perspective, large classes of models with different interactions

actually give rise to nearly identical predictions (3.8) with p = 2. In what follows,

we will therefore focus on corrections to p = 2 poles.

To finish the discussion, we now turn to canonical variables. We begin by

demonstrating that the coefficient c may indeed be kept arbitrary when studying

the inflationary dynamics also in canonical fields. Recalling potential VE = V0(1 +

cρ . . .) and the pole ρ0 = 0, we observe that for

c < 0 , ρ > 0 and thus Ne →∞ for ρ→ 0+ ,

c > 0 , ρ < 0 and thus Ne →∞ for ρ→ 0− , (3.9)

where inflation occurs for decreasing (c < 0) or increasing (c > 0) field ρ. For the

exemplary case p = 2, canonical normalisation introduces

ρ ∝ e±ϕ/
√
ap and ρ ∝ −e±ϕ/

√
ap (3.10)

for c < 0 and c > 0 respectively.22 The sign of the exponent is arbitrary and

22For p = 2, canonical normalisation ∂ρ/ρ = ∂ϕ evaluates to log |ρ| = ϕ+ ϕ0. For ρ > 0, this
is solved by the first term of (3.10) while for ρ < 0, it is solved by the second. The constant of
integration ϕ0 may be tuned to absorb any value |c|.
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simply reflects whether inflation occurs for increasing (plus sign) or decreasing

(minus sign) canonical field ϕ. Moreover, any value |c| can be absorbed by means

of a field redefinition, i.e. choosing a suitable integration constant ϕ0. We hence

see that also the potential in canonically normalised fields is independent of the

linear coefficient c and universally reads

V0(ϕ) =


V0

(
1− Aϕ

2
2−p

)
, p 6= 2

V0

(
1− e

− ϕ√
ap

)
, p = 2

(3.11)

where A =
(

2−p
2
√
ap

) 2
2−p

. This shows the plateau at ρ → 0 occurring for ϕ → ∞ if

p ≥ 2 and for ϕ→ 0 otherwise. The higher powers in ρ of V0(ρ) beyond the linear

term are irrelevant due to the fact that the pole structure has inflation taking place

for ρ→ 0. Higher powers in the Laurent expansion of KE(ρ)

KE(ρ) =
ap
ρp

+
∑
q>p

aq
ρq

(3.12)

will perturb V0(ρ) → V (ρ) = V0(ρ) + ∆V (ρ). Therefore, an extended plateau

in the potential equation (3.11) requires us to restrict to the regime where the

following condition holds
aq
ρq
� ap

ρp
∀ q > p . (3.13)

Similar to the suppression of higher-dimension operators in some scalar potential,

there is a priori no reason why condition (3.13) should hold. We hence propose con-

dition (3.13) as a statement dual to the requirement to suppress higher-dimension

operators in the canonical picture and will give a toy model realisation of (3.13) in

section 3.2 and specifically via expression (3.32). This suppression pattern of the

residues of the Laurent expansion dictated by the approximate shift symmetry on

the plateau forms a complete analogue of the two known requirement to suppress

higher order terms in the canonical formulation.



3.1. POLE INFLATION 43

3.1.2 Universal corrections

Above, we discussed how a real pole corresponding to a fixed point in field space

translates to an approximately shift-symmetric plateau upon canonical normal-

isation. We now perturb the duality between fixed points and shift symmetry.

Consider a higher-order pole with small coefficient aq (i.e. imposing (3.13)):

KE(ρ) =
aq
ρq

+
ap
ρp

+ . . . , (3.14)

while the scalar potential is still given by the Taylor expansion, and the dots

represent less singular terms in ρ. This gives rise to the relation

Ne =
aq

(q − 1)ρq−1
+

ap
(p− 1)ρp−1

(3.15)

for the field ρ close to the pole. However, to invert this relation, one has to assume

that the perturbation is small with respect to the original term:

aq
ρq
� ap

ρp
. (3.16)

We thus rediscover condition (3.13). As an expansion, we then obtain the solution

ρ = ρ0 + δρ , δρ =
aq

ap(q − 1)
ρp−q+1

0 , (3.17)

where the subscript zero refers to the unperturbed respective result of the previous

section. The corrections to the slow-roll parameters become

δε = −(q − p− 1)

2(q − 1)

aq
a2
p

ρ2p−q
0 , δη = −(q − p)(q − p− 1)

2(q − 1)

aq
a2
p

ρ2p−q−1
0 , (3.18)

at lowest order in aq. We therefore obtain

δns = − aq

ap
q−1
p−1

(q − p)(q − p− 1)

(q − 1)(p− 1)
q−1
p−1
−2
N

q−1
p−1
−2

e ,

δr = − 8aq

ap
q−2
q−1

(q − p− 1)

(q − 1)(p− 1)
2p−q
p−1

N
q−2p
p−1
e . (3.19)
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These are universal corrections deriving from a perturbation of the shift symmetry

at large field values of the canonically normalised inflaton field.

Motivated by observational evidence, we now restrict ourselves to the case

p = 2. Other cases are qualitatively identical. For p = 2 the expressions for ns

and r reduce to

ns = 1− 2

Ne

− aq
apq−1

(q − 2)(q − 3)

(q − 1)
N q−3
e , r =

8ap
N2
e

− 8aq

ap
q−2
q−1

(q − 3)

(q − 1)
N q−4
e .

(3.20)

These are the universal corrections to the cosmological attractor predictions pro-

vided the corrections respect the effective shift symmetry structure of equation

(3.13). They should be understood as a double expansion, both in 1/Ne as well as

in aqN
q−2
e . The latter requirement follows from the approximation to obtain ρ(Ne)

(and is given by aqN
q−p
p−1 in general). Here we have assumed that ap is of order one.

In terms of these expansion parameters, the correction term to the spectral index

is bilinear in both, while the correction to the tensor-to-scalar ratio is an order in

1/Ne higher. Corrections bilinear in Ne will become of increasing importance for

larger Ne. This will nicely be illustrated in the next subsection when transforming

to canonical fields.

3.1.3 Canonical formulation

We will now turn to a description of the corrections to the plateau potential arising

from the least suppressed residue aq in the Laurent expansion. Starting from the

perturbed Laurent expansion with two poles (3.14), we find the relation ρ(ϕ) for

the canonically normalised field ϕ for p 6= 2 to leading order in aq to be

ρ(ϕ) = Aϕ
2

2−p +
aq

2
√
ap
A

p−2(q−2)
2 ϕ

2
2−p (p−q+1) . (3.21)

For the special case p = 2 the relation becomes exponential and we get

ρ(ϕ) = e
− ϕ√

ap + 1
4
aqe

(q−3) ϕ√
ap , q > p = 2 . (3.22)
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We obtain the resulting canonical scalar potential V (ϕ) = V0(ρ(ϕ)) to O(aq) by

plugging expressions (3.21) and (3.22) into the original potential (3.2)

V (ϕ) =


V0

(
1− Aϕ

2
2−p − aq B ϕ

2
2−p (p−q+1)

)
, p 6= 2

V0

(
1− e−

ϕ√
ap − 1

4
aqe

(q−3) ϕ√
ap

)
, p = 2 .

(3.23)

Here, the correction coefficient B for p 6= 2 has the form B = 1
2
√
ap
A

p−2(q−2)
2 . Con-

sequently, for aq < 0 the plateau potential universally acquires a rising correction,

increasing for ϕ→∞ for p ≥ 2, and for p < 2 rising towards ϕ = 0. We see that

if all microscopic parameters ap, p, q take O(1) values, then A,B = O(1) as well,

and their precise values are irrelevant for the general arguments given here. The

only relevant quantities are:

• p which determines the leading functional form of the plateau potential,

• aq � 1 which controls the magnitude of the correction, and

• the difference q − p which controls the functional dependence of the first

correction in the scalar potential.

This structure of the scalar potential allows for two observations. First, the case

q = p+ 1 (3.24)

leads to a rather curious observation. Namely, the corrections to the scalar poten-

tial are constant. For this reason, they only serve to redefine the constants in the

original form (3.11):

Ã =
A

1− aqB
, Ṽ0 = V0 (1− aqB) , p 6= 2 (3.25)

Ṽ0 = V0 (1− 1
4
aq) , p = 2 . (3.26)

This can be understood as follows: We look again at the kinetic function, writing

KE(ρ) =
ap
ρp

+
ap+1

ρp+1
+
∑
q>p+1

aq
ρq
. (3.27)
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Now perform a field redefinition ρ→ ρ+ ε, and insert this into KE. We get

KE(ρ+ ε) =
ap

(ρ+ ε)p
+

ap+1

(ρ+ ε)p+1
+ . . . =

ap
ρp
− papε

ρp+1
+
ap+1

ρp+1
+ . . . (3.28)

Hence, by adjusting the field definition to ε = ap+1/(pap) we can always absorb the

pole of order p + 1, but not other poles of higher-order at the same time. This is

the reason why a pole at order p+1 does not contribute at that order to the scalar

potential. Beyond leading order, the field redefinition generates contributions to

poles at order p + 2 and higher. Consequently, we expect a pole in KE at order

p + 1 to contribute at higher sub-leading orders to the scalar potential. At the

next order, i.e. for

q = p+ 2 (3.29)

the correction scales as the inverse of the leading plateau potential term. The

cases p = 1, 2, 3 form illustrative examples for this situation

V (ϕ) =



V0

(
1− Aϕ2 − aq B

ϕ2

)
, p = 1

V0

(
1− e−

ϕ√
ap − 1

4
aqe

ϕ√
ap

)
, p = 2

V0

(
1− A

ϕ2 − aq B ϕ2
)

, p = 3 .

(3.30)

3.2 Complex poles

The above analysis only considers a single correction. In order to further link the

above discussion with our argument in section 1.3, we will now consider an infinite

tower of corrections to the leading pole of a kinetic function and hence readily

demonstrate that in order not to spoil the inflationary dynamics, a hierarchy be-

tween the corrections reminiscent of the EFT argument has to arise. To that end,

consider higher powers in the Laurent expansion of KE(ρ)

KE(ρ) =
ap
ρp

+
∑
q>p

aq
ρq
. (3.31)
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Figure 3.1: Pole structure of KE. Left: A pole of order p = 2, localised in the
real part of ρ. Right: The perturbed case, showing the split of the original pole
in two complex poles of order one. The non-canonical inflaton may now move
over the hilltop along the real line which corresponds to shift symmetry breaking in
canonical fields.

As an example, we will assume the above to arise from a toy model of the closed

form

KE(ρ) =
ap

ρ2 + ε2
, (3.32)

where ε2 � 1. The perturbation ε2 affects the pole structure, moving the pole at

ρ0 = 0 from the real to the complex plane at ρ0 → ±iε, as shown in Figure 3.1.

It is important to note that the function KE(ρ) does not become complex itself at

any point, it merely contains a complex pole.

The inflationary predictions from the presence of a complex pole follow at

lowest order from the universal corrections that we derived earlier: expanding the

complex pole

KE =
ap
ρ2
− apε

2

ρ4
+
apε

4

ρ6
+ . . . , (3.33)

it is clear that at lowest order in ε2 the form of the kinetic function, and hence

the inflationary predictions, is exactly that of the perturbed Laurent expansion

considered previously with p = 2 and q = 4. As a consequence, the inflationary

predictions are given by (3.20) with q = 4 and aq = −apε2. Note that the latter

always corresponds to a blue-shifting of the spectral index at large Ne. Further
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note how (3.33) realises (3.31) with aq � ap ∀ q > p, i.e. satisfies (3.13). This

suppression pattern of the residues of the Laurent expansion dictated by the ap-

proximate shift symmetry on the plateau is in complete analogy to the known

earlier cases given in section 1.3.

If the above kinetic term only has a complex pole (and no sub-leading cor-

rections), the transition to a canonical inflaton field ϕ can be done exactly and

reads

ρ = e−ϕ/
√
ap − 1

4
ε2eϕ/

√
ap . (3.34)

The scalar potential around the would-be pole reads

VE = V0(1− e−ϕ/
√
ap + 1

4
ε2eϕ/

√
ap + . . .) . (3.35)

Again, the nearly shift-symmetric plateau of the canonically normalised inflaton

is broken at large field values, the exact value depending on the perturbation ε2

of the kinetic pole structure.

Note how the above argument assumed ρ0 = 0 and the minimum of the poten-

tial to be at ρmin 6= ρ0. As argued in section 3.1.1, the same dynamics may also

be found when perturbing a pole ρ0 6= 0 and only considering the potential in the

vicinity of its minimum, as we will now show. Consider the kinetic function and

potential (for the exemplary case p = 2)

KE(ρ) =
ap

(ρ− ρ0)2 + ε2
, V (ρ) = V0(ρ2 + . . .) , (3.36)

where again the argument readily extends to scenarios V ∼ ρn with n ≥ 1. Canon-

ical normalisation can be done exactly and yields

ρ =
1

2

(
2ρ0 − e−ϕ/

√
ap + ε2eϕ/

√
ap
)
. (3.37)

Upon field transformations, the leading order scalar field inflationary potential in

the vicinity of ρ0 is precisely given by (3.35).
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3.3 Towards a UV embedding

Within the framework of non-canonical inflation, the complexity of the inflation-

ary dynamics has been shifted to the kinetic function. Poles in the kinetic function

then translate to nearly shift-symmetric potentials and complex poles or higher

order terms in 1/ρ break the shift symmetry at large fields. It is therefore an im-

portant question whether one can embed kinetic functions with the aforementioned

structure into a UV theory. We start with a general observation.

3.3.1 Kähler potentials

Consider a toy potential of the form K = log f where the function f in the

argument of the logarithm is a real function, e.g. an arbitrary polynomial, of

Φ + Φ̄ or ΦΦ̄. Now assume that f has a real zero of order n at e.g. Φ0 = 0. Close

to the pole, the function can then be approximated as f = (Φ + Φ̄)n + . . .. The

corresponding Kähler metric takes the following form

KΦΦ̄ =
fΦfΦ̄ − fΦΦ̄f

f 2
=

n

(Φ + Φ̄)2
+ . . . . (3.38)

Upon identifying Φ = Φ̄ = ρ and n = 2ap this becomes the previously considered

Laurent expansion. The order of the pole is therefore independent of the order of

the zero in the argument of the logarithm; instead, the order of the zero determines

the residue of the pole, which always has order two. Changes to the location of

the zero of f and to its order do not affect the resulting pole structure of order

two. Note how - provided f has a zero - the denominator f 2 of KΦΦ̄ in expression

(3.38) always factorises on the real line. However, the key feature of structures

such as (3.31) and (3.32) was precisely the absence of a real pole. Hence by

construction of a logarithmic Kähler potential, one cannot obtain a Kähler metric

where the denominator does not factorise which however would be required to have

a perturbed and complex pole structure of the kinetic function.

Turning to the type of corrections corresponding to complex poles

KΦΦ̄ =
n

(Φ + Φ̄)2 + ε2
=

n

(Φ + Φ̄)2
− nε2

(Φ + Φ̄)4
+ . . . , (3.39)
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that become relevant at large field values, we first stress that the denominator

does not factorise on the real but only on the complex plane. Hence in order

to generate such Kähler potentials, we must resort to a different structure than

the one described above. A prototypical example would be f = (Φ + Φ̄)2 + ε2.

Indeed this will induce additional terms in the Kähler metric that correspond to

higher-order poles, similar to (3.39):

KΦΦ̄ =
n((Φ + Φ̄)2 − ε2)

((Φ + Φ̄)2 + ε2)2
=

n

(Φ + Φ̄)2
− 3nε2

(Φ + Φ̄)4
+ . . . . (3.40)

In order to obtain exactly the Kähler metric (3.39), we note that it can actually

be integrated to yield

K =
Φ + Φ̄

ε
tan−1

(
Φ + Φ̄

ε

)
− 1

2
ln
(
ε2 +(Φ + Φ̄)2

)
. (3.41)

Expanding the Kähler potential at small ε, we find

K = −n log(Φ + Φ̄)− nε2

6(Φ + Φ̄)2
+ . . . . (3.42)

The leading term outside the logarithm corresponds to the pole of order four

(necessarily with opposite sign, to counter the pole of order two) that is the first

to become relevant at large field values, i.e. at large Ne. As we have argued, this

gives rise to a universal signature in terms of the spectral index and tensor-to-

scalar ratio. We thus conclude that one has to resort to corrections outside of

the logarithm in order to realise shift symmetry breaking at large fields without

invoking the construction of specific features in the inflaton potential. These terms

outside of the logarithm are expected to cancel any additional terms that may

arise when constructing the argument of the logarithm without any real zero. As

a further example, consider a more general expansion of the form (3.42) with

arbitrary corrections and order:

K = −n log(Φ + Φ̄) +
n′

(Φ + Φ̄)q−2
+ . . . . (3.43)

In a way, terms outside of the logarithm may be thought of as a way to reintroduce
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the η-problem, but in a controlled way such that this only occurs at large fields.

As we have argued, this gives rise to a universal signature in terms of the spectral

index and tensor-to-scalar ratio at leading order in aq = 2−q(q − 1)(q − 2)n′.

3.3.2 Comments on matching to string theory

Which of these structures can be obtained in string theory settings? If we look at

the peculiar behaviour of non-canonical inflation with p = 2 and q = 3, we discover

by comparison a relation to a well known fact of the Kähler geometry argued for

1-loop corrections in string theory to the volume moduli Kähler potential K in

supergravity [37, 45, 53–55]. Namely, for p = 2 we can think of KE(ρ) as arising

from a logarithmic Kähler potential for a chiral modulus field χ

K0 = −2ap ln(χ+ χ̄) , χ+ χ̄ = 2ρ , (3.44)

where we get KE(ρ) = ∂χ∂χ̄K ≡ Kχ̄χ. A string loop correction to K is the

generically argued [37,45,53–55] to change K with a quantity

δK = − 2q

(q − 2)(q − 1)

aq
(χ+ χ̄)q−2

, q = 3, 4 . (3.45)

Here, we have chosen the prefactor of the loop correction such that the induced

term in Kχ̄χ matches the form eq (3.14). Hence, according to [37, 45, 53–55] the

corrections form degree −(q − 2) polynomials in K. From the general analysis

in [37, 45] we know that for constant superpotential W0 the leading-order super-

gravity scalar potential for such a modulus χ induced by the above Kähler potential

correction scales like

δV ∼ (2− q)(3− q)δK . (3.46)

Again, we see that for q = 3 the leading correction to the potential vanishes. In this

context of string loop corrections in type IIB compactifications this phenomenon

was named “extended no-scale structure” in [37, 45, 53, 54] as the above leading

correction to the no-scale potential of the Kähler moduli (which have ap=2 = 3/2)

was observed there to vanish (and hence “extend” no-scale) for all loop corrections

to K which scale with power q = 3 = p+ 1 in the resulting Kähler metric Kχ̄χ.
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Our analysis of the scalar potential above shows that for models with pole-

dominated kinetic terms this extended no-scale structure holds for kinetic functions

with an arbitrary leading pole of order p > 0 even if p 6= 2. Moreover, it has a

natural explanation as a shift redefinition of the modulus. We can now take a look

a the leading-order structure of both the string 1-loop and the leading O(α′3)-

corrections to the type IIB volume moduli Kähler potential

K = −2 ln(V + ξ/2)− C

T + T̄
− D

(T + T̄ )2
,

= −2 lnV − ξ

(T + T̄ )3/2
− C

T + T̄
− D

(T + T̄ )2
, (3.47)

with V ∼ (T + T̄ )3/2 and at lowest order in ξ. In such a simple situation of a

single Kähler modulus the above inflationary regime would correspond to working

close to T = 0 where the α′-corrections are out of control. However, the simple

toy example serves us here to point out that a comparison with string theory as

a possible UV completion fixes concrete numbers for the possible values for p and

q. Namely, from the single modulus toy example we get p = 2 and q = 3, 7/2, 4

of which the q = 3 contribution drops out of the scalar potential at leading order

as discussed above. Moreover, matching to a string example would allow us also

to compute the compute c and aq in terms of the microscopic parameters ξ, C,D.

As C,D are gs-suppressed in the string coupling compared to the tree level terms

and ξ, this may allow also for an understanding of the smallness of aq in terms

of small gs. It remains to be seen, whether an embedding of this structure in a

concrete controlled string theory setting (either away from small volume regimes,

or in a better-controlled singular regime) is possible.

3.4 Phenomenology and discussion

The topic of this chapter was non-canonical inflation. We have recalled how a

leading pole in the Laurent expansion of the kinetic function translates into a

nearly shift-symmetric plateau in the effective scalar potential of the canonically

normalised inflaton field, i.e. a fixed point of the cosmological evolution. This is a

generic feature and does not depend on the order of the pole.
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Subsequently, we have investigated higher-order poles as perturbations of the

Laurent expansion of the kinetic term. The fixed point hence vanishes which results

in the approximate shift symmetry of the inflaton potential to be broken at large

fields. Given a hierarchical suppression of higher order poles, we have outlined

the leading corrections to the inflationary predictions in terms of the number of

e-folds and the perturbation of the pole structure, and found that such corrections

induce terms with positive powers of Ne in the spectral index ns, which therefore

rise to prominence at sufficiently large-Ne (i.e. at large field values). Moreover, we

have provided an explanation of the irrelevance of the first higher-order pole and

have argued this to be an alternative way to view the extended no-scale structure

in string theory: the effect of a pole one order higher than the leading one can be

absorbed in a redefinition of the field. We can use our results for ns to analytically

estimate the power-loss at large angular scales resulting from the blue-shifting of

the spectral index. Recalling (1.43), we get

δ∆2
s(δns)

∆2
s

∣∣∣∣Ne
Ne+∆Ne

=
aq

ap
q−1
p−1

(q − p)(q − p− 1)

(q − 1)(p− 1)
q−2p+1
p−1

N
q−2p+1
p−1

e ∆Ne +O(∆N2
e ) . (3.48)

For the particular case of exponential potentials arising from p = 2 and q = 4,

setting a2 = 1 and a4 = −ε2 we obtain

δ∆2
s(δns)

∆2
s

∣∣∣∣Ne
Ne+∆Ne

=− 2

3
ε2Ne∆Ne +O(∆N2

e ) . (3.49)

Using Ne = 60 we see that a bound ε2 . 2 × 10−4 limits the shift of the spectral

index to δns . 0.008 which is the 2-σ range for the ns measurement from PLANCK.

By plugging in these numbers and the range of e-folds ∆Ne ' 5 over which power-

loss occurs we find the power loss for this case to be

δ∆2
s(δns)

∆2
s

∣∣∣∣Ne
Ne+∆Ne

= −2

3
ε2Ne∆Ne ' −0.04 , (3.50)

which is about 4%. This is in qualitative agreement with previous studies employ-

ing exponentially rising corrections [14, 30–35, 50, 51]. For order-one values of ap,

p and q, one obtains similar results.
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Finally, we have discussed the possible UV embedding of non-canonical infla-

tion. While Kähler potentials of logarithm type are bread and butter in string

theory compactifications, loop corrections can induce higher-order terms in the

Kähler potential. These would generically result in a shift symmetry breaking at

large field displacements. We leave a concrete embedding of these terms into a

reliable string theory set-up for future investigation. In particular, the properties

of complex structure moduli space close to a conifold point may provide a viable

path to embedding our structure into string theory, while working with volume

moduli close to zero volume (if one took the above toy comparison literally) is

clearly a badly controlled regime.

While elegant, rephrasing the formulation of inflationary dynamics in terms

of a non-trivial kinetic function does not reduce the severity of the need to fine

tune the scenario. Having to impose condition (3.13) is one of our central findings.

Further, one formulation may not be understood as more fundamental than the

other. However, it recasts the context in which the fine tuning has to occur such

that new insights may be possible. Concretely, since a non-canonical kinetic term

arises an intermediate step in any UV derived 4D effective theory, it is instructive

and may even provide a short cut to know which types of non-canonical kinetic

terms affect possible inflationary dynamics in what way.



Chapter 4

Shift symmetry and f (R)

Having established how current observations strongly favour models of inflation

that exhibit an approximate and continuous shift symmetry when formulated in

canonical fields and moreover providing two distinct exemplary frameworks of

realisation above, we now turn our attention to a seemingly rival paradigm to

describe early universe dynamics, namely modified gravity or hereafter simply

f(R).

In fact, one of the earliest models of inflation [9], for which also cosmologi-

cal perturbation theory was first fully worked out, was presented in the language

of a modified Einstein-Hilbert Lagrangian. As the name suggests, f(R) theories

replace the Einstein-Hilbert term in the Lagrangian with some function of the

Ricci curvature scalar. While at first this seems to provide a mechanism to change

spacetime dynamics without relying on some matter content, introducing an ar-

bitrary function of the Ricci scalar in fact adds a hidden scalar degree of freedom

to the theory. Hence, two possible avenues to analyse the resulting dynamics may

be taken: One may either vary the action to derive and then solve the modified

Einstein equations or attempt to conformally transform the theory to a formula-

tion with the conventional Einstein-Hilbert term and the additional scalar degree

of freedom made explicit.

We are precisely interested in the second route. In what follows, we will inves-

tigate the duality between f(R) and scalar field theories [15]. More precisely, we

study generic exponential plateau-like potentials to understand whether an exact

55
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f(R)-formulation may still be obtained when the asymptotic shift symmetry of

the potential is broken for larger field values. Thus, we will identify the properties

any f(R) theory has to maintain in order to drive a sufficient amount of slow-roll

inflation complying with observations.

While doing so, we further find a lean and instructive way to obtain a function

f(R) describing m2ϕ2-inflation which breaks the Einstein frame shift symmetry

with a monomial. We demonstrate how potentials with exponentials exp(−γκϕ)

with 0 < γ < 2 (i.e. effectively rescaling the exponents κ→ κ′ of the exponential)

induce corrections of type R2−γ or equivalently (at leading order if γ � 1) logR

corrections to the corresponding f(R)-dual. This is in line with the observations

made in [56], and then [57–61] that adding a term R2−ε ⊃ R2 logR can enhance

the tensor mode signal significantly over the pure R + R2 case. We show that

these models can provide for chaotic inflationary dynamics within the observable

range of e-folds. Hence, they yield f(R) duals to chaotic inflation models from

logarithmically broken scale invariance in the Jordan frame discussed in [62, 63].

Additionally, we relate the function f(R) corresponding to chaotic inflation to a

more general Jordan frame set-up. We continue to consider f(R)-duals of two given

UV examples, both from supergravity and string theory and link the considerations

of this chapter to the UV examples given previously. Finally we apply our models

with rising exponential terms to some of the aspects of the suppression of CMB

power at large angular scales. We find that the corrections to the scalar field

potential required to have a strong suppression effect on large-angle CMB power

no longer have an exact but only an asymptotic f(R)-dual.

4.1 f (R)→ R2 – Shift symmetry at large fields

We start this section with a brief review of the essentials of f(R)-theory (we refer

the reader looking for a more thorough review to e.g. [64]). Consider a modified

Einstein-Hilbert Lagrangian of the form

L√
−g

=
1

2
f(R) , (4.1)
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with the Ricci scalar and tensor given by R = gµνRµν and Rµν = Rα
µαν respectively.

Performing a conformal transformation on the metric gµν with conformal factor Ω

g̃µν = Ω gµν ,
√
−g̃ = Ω2

√
−g , (4.2)

one can show that the Ricci scalar transforms as

R = Ω
(
R̃ + 6�̃ω − 6g̃µν∂µω∂νω

)
, (4.3)

with ω ≡ (1/2) ln Ω and �̃ = ∇̃µ∇̃µ. The behaviour of the Ricci scalar under this

Weyl transformation makes the additional degree of freedom, ω, of equation (4.1)

apparent. Let us now rewrite the Jordan frame Lagrangian (4.1) as

L√
−g

=
1

2
f ′R− U , (4.4)

where the prime denotes differentiation with respect to R and we have introduced

U = (1/2)(f ′R− f). Substituting (4.3) into (4.4) and applying (4.2) yields

L√
−g̃

=
1

2
Ω−1f ′

(
R̃− 6g̃µν∂µω∂νω

)
− U

Ω2
, (4.5)

where we have omitted the �̃ω term as its contribution to the action vanishes

due to Gauss’ theorem. Defining ϕ ≡
√

3/2 ln Ω normalises the kinetic term.23

Choosing the conformal factor Ω = f ′ for f ′ > 0 brings the action to the Einstein

frame where the Lagrangian takes the form

L√
−g̃

=
R̃

2
− 1

2
g̃µν∂µϕ∂νϕ− V (ϕ) , (4.6)

with the potential for the scalar degree of freedom given by

V (ϕ) =
f ′R− f

2f ′2
. (4.7)

23We could also have chosen ϕ = −
√

3/2 ln Ω. This essentially mirrors the resulting potential
with V (ϕ)→ V (−ϕ).
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The relation between the Jordan frame scalar curvature and the canonically nor-

malised scalar field, R(ϕ), can be found by inverting ϕ =
√

3/2 ln f ′ for a given

f(R). Thus an f(R)-theory may be recast in terms of gravity with a scalar field,

provided f ′ is invertible to allow for a relation between the Ricci scalar and the

canonically normalised field ϕ. The frame function f ′ has to satisfy the same

constraints as non-minimal coupling function (1.27) given previously.

Examples

In this chapter we study the mapping between the Jordan frame f(R) and the Ein-

stein frame scalar potential V (ϕ). We first demonstrate how to obtain a potential

V (ϕ) from a given f(R) and vice-versa for the well known Starobinsky model [65]

f(R) = R + αR2 . (4.8)

Choosing f ′ = eκϕ, we find R(ϕ) = (2α)−1(eκϕ− 1). Evaluating the expression for

V (ϕ) of (4.6) then yields

V (ϕ) = V0

(
1− e−κϕ

)2
, (4.9)

where κ =
√

2/3 and V0 = 1/8α. This is the well know Starobinsky potential that

provides a model for cosmic inflation along the plateau of the potential, where

V ∼ V0.

Let us consider a small deformation of the theory (4.9) and contemplate a

potential of the form

V (ϕ) = V0

(
1− C0e

−κ
2
ϕ + C1e

−2κϕ
)
, (4.10)

with C0 − C1 = 1 to ensure V (0) = 0. The difference to potential (4.9) is that

the second exponential is no longer the square of the first. Even though this does

not significantly affect the inflationary phenomenology, the nature of the duality

changes as we will show in the following. Identifying f ′ = eκϕ, we recall the

relation between Einstein frame V (ϕ) and Jordan frame f(R), equation (4.7), and
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thus consider the differential equation

f ′R− f
2f ′2

= V0

(
1− C0√

f ′
+
C1

f ′2

)
. (4.11)

By solving this equation one may find the f(R) theory that is dual to the potential

of equation (4.10). Multiplying the above with 2f ′2 and differentiating with respect

to either R, f , or f ′ gives

f ′ − 3

4
C0

√
f ′ − 1

4V0

R = 0 , (4.12)

provided f ′′ 6= 0. This can be solved as

f ′ = 2

(
3

8
C0

)2

+
1

4V0

R± 3

4
C0

√(
3

8
C0

)2

+
1

4V0

R . (4.13)

Considering (4.11) as a boundary condition24, we can then integrate the above to

find the corresponding f(R)-theory to be

f(R) =
R

2
+

8V0

3

(
1

4
+

R

4V0

)3/2

+
R2

8V0

− V0

3
, (4.14)

where we have chosen C0 = 4/3 and C1 = 1/3 such that V (0) = 0 and the positive

sign in (4.13) so that f(R) ≥ 0 and f(0) = 0. Note that the expression (4.14)

is ∼ R2 in the large R regime but has a modified behaviour for intermediate R.

This comes as no surprise since potential (4.10) also has an approximate shift

symmetry for large field values but, as opposed to (4.9), does not display the

quadratic relation among the exponentials of the potential, which in turn influences

the behaviour of the theory at intermediate R and ϕ.

In principle, any potential V = V0(1 − 2e−
κ
n
ϕ + e−2κϕ) with n > 1, which

hence breaks the square relation of the two exponentials, has an approximate dual

f(R) ∼ R2 for large R. Similarly, breaking the square relation with the second

exponential such that V = V0(1−2e−κϕ+e−nκϕ) with n > 2 also has f(R) ∼ R2 as

24The integration constant is chosen such that the resulting function f(R) satisfies (4.11) when
inserted. Thus the information which has been lost upon differentiating (4.11) is regained.
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the large R dual when the corresponding differential equation may not be solved

explicitly any more.25 Both results are expected as the corresponding potentials

maintain an approximate shift symmetry at large field values. This can further

be demonstrated by simply considering f(R) = αR2 which reduces to a pure

cosmological constant Λ = (8α)−1 in the Einstein frame.

4.2 Logarithmic corrections to f (R)

4.2.1 Changing the coefficient κ

The line of argument given in the previous section requires the potential to contain

exponentials with a coefficient κ =
√

2/3 in the exponent.26 However, in the same

spirit that led us to deviate from the square relation between the exponentials in

V , we may now consider potential (4.9) with a change of the coefficient of the

exponent, i.e. with κ→ κ′ 6= κ:

V (ϕ) = V0

(
1− 2e−κ

′ϕ + e−2κ′ϕ
)
, (4.15)

and try to understand to what extent this deformation of the original model alters

the gravitational f(R) description. To apply the previous method, we have to

recast potential (4.15) with coefficient κ′ in terms of κ =
√

2/3. When we choose

e.g. κ′ = 2/
√

3 =
√

2κ, we write (4.15) in terms of κ as

V (ϕ) = V0

(
1− 2e−

√
2κϕ + e−2

√
2κϕ
)
. (4.16)

Rather than attempting to analytically solve a differential equation with irrational

powers in f ′, we now integrate implicitly to find

f(R) =
R2

8V0

+ α

∫
f ′1−

√
2dR− β

∫
f ′1−2

√
2dR , (4.17)

25We would like to refer the reader to appendix A.1 for a concise demonstration of these
statements.

26Applying the above procedure with f ′ = eκ
′ϕ, where κ′ 6=

√
2/3, introduces a non-canonical

kinetic term in (4.6).
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where α, β depend on V0 and the ϕ - coefficients of the exponentials in (4.15).

Considering the inflationary regime, i.e. imposing the regime of large R, we ap-

proximate f ′ ∼ R and write

f(R) =
1

8V0

R2 + c R2−
√

2 + . . . (4.18)

where c is a rescaled α due to the integration. Hence a given inflaton potential

with a rescaled exponent such as

V (ϕ) = V0

(
1− e−γ

√
2
3
ϕ
)2

, (4.19)

where 0 < γ < 2, has an approximate f(R) dual given by

f(R) =
1

8V0

R2 + cR2−γ + . . . (4.20)

up to sub-leading terms during slow-roll inflation (see appendix A.2 for an explicit

argument).

4.2.2 Chaotic inflation from f(R)-theory

Observable inflation in the Starobinsky model proceeds in the transition region

between the flat plateau and the minimum of the potential, ending at ϕ ∼ 1

MPl. Observationally, it yields a spectral index compatible with observations and

very low primordial tensor fluctuations. The phenomenologist may ask if there is

a deformation of the standard Starobinsky model that significantly changes the

observational signatures, making them more in line with those of chaotic inflation

and if so what is its corresponding gravitational dual.

Note that potential (4.19) may well approximate chaotic inflation for interme-

diate field values provided γ � 1. To see this, consider the series expansion of

(4.19) around the point ϕ = 0

V (ϕ) ≈ κ2γ2ϕ2 − κ3γ3ϕ3 +O(γ4ϕ4) . (4.21)

Hence for γ � 1, inflation occurs in the concave region of the potential, i.e. before
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Figure 4.1: The plot depicts the observable tensor to scalar ratio r for potential
(4.19) or equivalently its dual (4.20) as a function of the parameter γ in the range
0 < γ < 1. For sufficiently small γ, the value of r converges to the prediction of
m2ϕ2 inflation. The tensor to scalar ratio has been calculated 55 e-folds before the
end of inflation.

the nearly shift-symmetric plateau. Thus (4.20) can be an f(R) dual for a potential

that has a chaotic regime before approaching the shift-symmetric plateau. Hence

adding a term of type R2−γ with γ � 1 to a Starobinsky f(R) can induce a

chaotic regime and hence change the predictions for the spectral index ns and

tensor-to-scalar ratio r to those of ϕm models, depending on the specific value of γ

as depicted in Figure 4.1. This confirms the findings of [56,59,61,66] but without

omitting the R2-term in the first place. The R2-induced plateau can simply be

pushed beyond the last 60 e-foldings of inflation and hence does not influence the

inflationary predictions, yet it still determines the behaviour at large field values

or e-foldings corresponding to super-horizon scales.
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Now consider γ � 1 and expand (4.20) as

f(R) ≈ R2 +R2−γ + . . .

≈ R2
[
1 + e−γ lnR

]
+ . . .

≈ R2

[
1 +

∞∑
n=0

(−γ lnR)n

n!

]
+ . . .

≈ R2 − γR2 lnR +
γ2

2
R2 ln2R−O(γ3 ln3R) + . . . (4.22)

The first two terms of (4.22) resemble the ansatz of [57]. Revisiting Starobinsky’s

original idea, it was investigated whether or not logarithmic corrections to R2-

inflation change the inflationary observables, specifically whether a larger amount

of tensor modes is produced. It was found that even though a first-order logarith-

mic correction lifts the plateau, a significant enhancement of tensor modes does

not occur.

We hence realise that although higher order terms seem to be sub-leading

at first sight, they change the inflationary dynamics drastically. Whereas a linear

logarithmic correction only causes a slight deviation in the inflationary observables,

higher-order terms can indeed make the inflationary dynamics chaotic within the

accessible range of inflationary e-folds. Thus if one assumes higher-order terms

to exist, they have to be considered. This confirms the findings of [60], where

parametric methods are used to obtain an f(R)-theory corresponding to m2ϕ2-

inflation and it is found that a linear logarithmic correction is not sufficient but a

squared term is necessary.

Moreover, hierarchy (1.38) tells us that the above scenario is not realised in

nature, as it would violate the bound r < 0.1 (the value for the spectral index is

similar). We hence conclude that corrections to the Starobinsky model ought not

to come as an expansion in logarithms. Corrections not at odds with observations

will be considered in section 4.3.
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4.2.3 Another Jordan frame

We have seen in the previous sections of this chapter how to obtain a function

f(R) describing the dynamics of chaotic inflation. However, one may also ask how

a corresponding scalar field theory being non-minimally coupled to gravity looks

like, hoping to learn something more general regarding the mapping between some

Jordan and the Einstein frame.

One can always go from the Starobinsky frame to the Einstein frame and then

try to find another Jordan frame again. We now propose how to go from the

Starobinsky frame to a specific Jordan frame directly, namely the Jordan frame

with a non-minimal coupling function

Ω(φ) = 1 + ξφ2 . (4.23)

For the remainder of this section we will use R̃ to denote the Starobinsky frame cur-

vature scalar, while R denotes scalar curvature in the new Jordan frame. We start

by first recalling a slightly rewritten Lagrangian (4.5), i.e. the Weyl-transformed

Lagrangian of some f(R̃)-theory,

L√
−g

= Ω−1f ′
[
R

2
− 3

4
(∂ log Ω)2

]
− U2

Ω2
, (4.24)

where we have rescaled the metric with the function Ω. For (4.24) to simply

reduce to the Einstein frame, we would just choose Ω = f ′. However, now we seek

a Jordan frame given by (4.23), hence in (4.24) we require

Ω−1f ′ ≡ 1 + ξφ2. (4.25)

We then have to normalise the kinetic term accordingly in order to obtain a relation

between Ω and φ. We thus write

3

4

(
1 + ξφ2

)
(∂ log Ω)2 ≡ 1

2
(∂φ)2 , (4.26)
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which, in the regime of strong coupling, i.e. ξ � 1, may be solved to yield

Ω(φ) = φ∆, (4.27)

where ∆ = κ/
√
ξ with κ =

√
2/3. Thus for strong coupling, ξ � 1⇔∆ � 1.

Combining the above with (4.25) gives

f ′ = φ∆
(
1 + ξφ2

)
. (4.28)

The resulting Jordan frame potential can then be written as

VJ(φ) =
φ−2∆

2

(
f ′R̃− f

)
, (4.29)

where R̃ denotes the Starobinsky frame curvature scalar. Then R̃ = R̃(φ) as

well as f(R̃(φ)) can be obtained from specifying a certain f(R̃) and obtaining the

relation between R̃ and φ from (4.28). The resulting Jordan frame Lagrangian is

then given as

LJ√
−g

=
(
1 + ξφ2

) R
2
− 1

2
(∂φ)2 − φ−2∆

2

[
f ′(R̃(φ))R̃(φ)− f(R̃(φ))

]
. (4.30)

In case of the Starobinsky model R̃ + αR̃2, one indeed recovers a non-minimally

coupled scalar field theory with a φ4 potential. One finds

R̃(φ) ∼ φ2+∆ , (4.31)

and therefore

VJ(φ) ∼ φ−2∆

2
R̃(φ)2 → φ4 , (4.32)

which is the leading-order potential of the well-known non-minimally coupled φ4-

inflation model [67,68].

Let us now investigate, whether we can directly find a corresponding non-

minimally coupled scalar field theory that is dual to an inflationary period driven
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by a term R̃2−γ with γ � 1. To that end, consider

f ′(R̃) = (2− γ)R̃1−γ (4.33)

as the derivative of the function f(R̃) for the range of observable e-folds.

The potential (4.29) then is

VJ(φ) =
φ−2∆

2

[
R̃(φ)2−γ − γR̃(φ)2−γ

]
, (4.34)

where the second term in the brackets is sub-leading as γ � 1. We further have

from (4.28) at large ξ

f ′ ∼ φ2+∆ (4.35)

and thus

R̃(φ) ∼ φ(2+∆)/(1−γ) . (4.36)

Inserting the above back into (4.34) gives, upon expansion of the exponent

VJ(φ) ∼ φ4φ2γ+O(γ2) . (4.37)

This can then be rewritten as

VJ(φ) ∼ φ4
[
1 + c1γ log φ+ c2γ

2 log2 φ+O(γ3)
]
, (4.38)

and hence may be understood as a quantum corrected non-minimally coupled

model of φ4 inflation27.

This demonstrates how logarithmic corrections to some function f(R) can be

directly related to logarithmic corrections to the potential in another Jordan frame.

Hence our results here close the f(R) → VJ → VE → f(R) circle started by the

analysis in [63] where such logarithmic corrections to a φ4 Jordan frame potential

were found to produce Einstein frame quadratic large-field inflation for arbitrary

frame function Ω(φ).28

27These results may easily be extended to models in which the non-minimal coupling scales as
Ω(φ) ∼

√
V (φ) such as in [69], given the frame function is to leading order of power law type.

28This can nicely be demonstrated by considering a Jordan frame Lagrangian LJ =√
−g
[
Ω(φ)R/2− 1/2 (∂φ)2 − VJ

]
with VJ ∝ [Ω(φ) log Ω(φ)]2. This is an immediate general-
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4.3 Exponential shift symmetry breaking

4.3.1 Rising exponentials

Returning to Starobinsky-esque potentials, we now want to determine functions

f(R) corresponding to a class of potentials which break the shift symmetry of the

inflationary plateau by a rising exponential at large field values. Hence consider

exemplary potential

V (ϕ) = V0

(
C3 − C0e

−κ
2
ϕ + C1e

−2κϕ + C2e
κϕ
)
, (4.39)

where C2 � C0, C1, C3 and the sum over all Ci is unity. We recall the expression for

V (ϕ) in terms of f(R) and its derivative, equation (4.7), and obtain the differential

equation

f ′2 +
2C3

3C2

f ′ − C0

2C2

√
f ′ − 1

6V0C2

R = 0 . (4.40)

As in the previous section one would like to solve this equation to determine

the exact f(R) dual to the potential of equation (4.39), however (4.40) is not

easily solvable. We hence learn that adding a rising exponential to the potential

(4.10) prevents us from finding a dual f(R) description for the entire field range.

Nevertheless asymptotic results are still within reach. Focusing just on the rising

exponential, we may now want to find the approximate f(R)-dual for potentials

that are generically

V (ϕ) ∼ V0 e
nκϕ , (4.41)

at large field values, with n ≥ 1. Recalling (4.7), we write

V0f
′n =

f ′R− f
2f ′2

, (4.42)

which we rearrange as

2V0f
′n+2 − f ′R + f = 0. (4.43)

ization of the observation made in [63]. In the Einstein frame, this theory has a purely quadratic
potential for a canonically normalised inflaton.
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Differentiating with respect to R and solving for f ′ then yields

f ′ =
1

2(n+ 2)V0

R1/(n+1) . (4.44)

Integrating, we find the leading order solution

f(R) ∼ R(n+2)/(n+1) . (4.45)

Even though the full analytic expression cannot always be found, it is possible to

give an approximate form, where the resulting f(R) is always Rn with n < 2 to

leading order. Considering a correction with very large n, we see that the resulting

f(R) corresponds to a theory where the exponent of the non-linear term may effec-

tively be understood as a perturbation around unity. Similarly, we saw above that

a term R2−γ with γ � 1 produces a chaotic regime, with the specific inflationary

signatures depending on the tuning of γ. This can be understood, as has already

been pointed out in [70–73], as a correction of an R2 term around its exponent.

Thus we see that small deviations from integer powers in a polynomial function

f(R) have a major effect on the resulting potential inflationary observables.

4.3.2 Maintaining a plateau

That a Rn term with n > 2 cannot steepen the corresponding potential could also

have been foreseen from the following argument. Consider a function f(R)

f(R) =
N∑
n=1

anR
n , (4.46)

where all an > 0. In the limit of large R, f(R) → aNR
N and hence f ′ ∼ RN−1.

We now seek the behaviour of the potential for very large ϕ and thus very large

R. Considering expression (4.7) for V (ϕ), we obtain

V (ϕ(R))→ R2−N . (4.47)
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Hence it appears that only N = 2 produces a plateau in the potential at large ϕ,

any power N < 2 curves the potential upwards whereas powers of N > 2 have it

asymptote the axis. This is in line with [74].

4.3.3 Finite order corrections

We now consider whether there is a way to steepen the potential by considering

finite higher order corrections to an R+R2 theory, where the coefficients of higher

order terms may be negative. As we established above, terms with positive coef-

ficients and power n > 2 curve the potential downwards towards the axis. Thus

consider a function f(R) such that

f(R) = R + αR2 + βR3, (4.48)

but with β < 0. We then find

ϕ =
√

3/2 ln
(
1 + 2αR− 3|β|R2

)
, (4.49)

or equivalently

R(ϕ) =
α

3|β|
±

√
1

9|β|2
+

1

3|β|
− eκϕ . (4.50)

Thus the field ϕ is only defined as long as f ′ > 0, in other words, the field space is

limited.29 Equivalently, the Ricci scalar R becomes complex when f ′ changes sign.

For f ′ → 0, we find that ϕ→ −∞. This demonstrates that the spacetime region

where f ′ < 0 is disconnected from the f ′ > 0 region as it is pushed infinitely far

away in field space. Further, it is known (see e.g. [64]) that ghosts appear once

f ′ < 0. However, a negative coefficient β will introduce some steepening over a

finite range.

We further note that higher powers in R with negative coefficients do not

increase the steepening of the potential but simply shorten the field range over

29This modification has already been investigated in [75]. Importantly, it was argued that a
universe with f ′ = 0 for some R consists of two causally disconnected regions, one in which
f ′ < 0 and one with f ′ > 0. Hence a universe with f ′ < 0 can never evolve into Minkowski
space.
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which the field ϕ is defined, as depicted in the first plot of Figure 2. Again, higher

powers are only tractable as long as (4.49) remains analytically soluble for R.

4.3.4 A full f(R) toy model

Having established result (4.45), we may now however ask if there exists a function

f(R) that is not dominated by a quadratic term at large R, but - in its series

expansion - has a quadratic term that dominates in an intermediate regime.

In the Einstein frame language this corresponds to having a scalar field po-

tential that has a plateau separating the minimum at the origin from a growing

exponential at large field values (see the right plot of Figure 4.2). Consider

V (ϕ) = V0

(
1− 2e−κϕ + e−2κϕ + δenκϕ

)
− δ V0 , (4.51)

with δ � 1 and n = 1. The subtraction of δ V0 ensures V (0) = 0. Following the

usual method we find the differential equation

f ′2 +
2

3 δ
(1− δ)f ′ − 2

3 δ
− R

6 δ V0

= 0 , (4.52)

from which we obtain an equation for R, namely

R = 6V0δf
′2 + 4V0(1− δ)f ′ − 4V0 . (4.53)

Substituting f ′ = eκϕ then yields R(ϕ) for the potential of equation (4.51). The

solution to (4.52) reads

f(R) =
δ − 1

3δ
R + 4δV0

[
(1− δ)2

9δ2
+

2

3δ
+

R

6δV0

]3/2

+K , (4.54)

where K is a constant of integration determined by a boundary condition as in

(4.11). This constitutes one of the main results of this chapter. Explicitly, the

integration constant K has to be chosen such that the function f(R) satisfies the

boundary condition (4.11)

f ′ ·R− f
2f ′2

= V0

(
1− 2e−κϕ + e−2κϕ + δenκϕ

)
− δ · V0 , (4.55)
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where again eκϕ = f ′. Satisfying (4.11) also ensures that f(0) = 0 and hence a

Taylor expansion of (4.54) recovers the Starobinsky model to leading order. Thus

adding a rising exponential to the Starobinsky potential (4.9) yields a dual f(R)

description (4.54) that is not dominated by a quadratic term at large R. Note

that the above holds for n = 1 in the rising exponential. A higher n increases the

leading power in (4.52) and induces logarithmic and inverse trigonometric terms

in the f(R) description. Analytic solutions of (4.52) in terms of f ′ only exist up

to some n. We hence focus on the case n = 1. Further note that for the above, we

find from (4.53)

R|ϕ=0 = 2δV0 , (4.56)

which is � O(10−10) in Planck units. Thus there is a lower bound on R when

ϕ = 0. We also find that

f(R|ϕ=0) = 2δV0 , (4.57)

and, as expected, f(0) = 0. Hence when the field ϕ has reached its minimum

at V (0) = 0, the corresponding f(R)-description displays a cosmological constant

type term. This is also indicated by the fact that f ′|R=0 < 1 but f ′|R=2δV0 = 1.

Importantly, switching off the perturbation by sending δ → 0 restores R|ϕ=0 = 0

and thus the Starobinsky model. This can be demonstrated by Taylor expanding

(4.54) to find the coefficient of the linear and the quadratic term in R to approach

the value of the coefficients of the Starobinsky model when δ → 0.

Let us stress that (4.54) is an f(R) theory with an infinite number of terms

in its series expansion where the term c2R
2 induces the inflationary plateau. The

infinite number of higher power terms does not curve the potential down but sums

to an contribution that is to leading order R3/2 and hence steepens the potential.

In an EFT sense, (4.54) gives the full theory and determines the coefficients of

every power.

4.4 Matching f (R) to the UV

We now turn our attention to examples of inflationary potentials with intermediate

shift symmetry that can be embedded into a candidate UV theory and study,

whether a dual f(R) formulation may be obtained.
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Figure 4.2: Left: The blue line depicts the potential dual to (4.48). The black
dashed line is the real continuation of the potential once R has become complex.
The red dashed line displays the potential dual to a finite f(R)-theory, where the
highest order term is ∼ R3 and has a positive coefficient. Right: The Einstein
frame potential dual to the f(R)-theory (4.54). Contrary to (4.48), the field range
is not limited, but the potential is lifted infinitely after the c2R

2-term induced and
intermediate plateau. In both cases, we have normalised the potential such that
V0 ∼ 10−10 in Planck units.

4.4.1 No-scale supergravity

Let us start by considering the scenario of [76], where the inflaton superfield is

described by a Wess-Zumino model. The potential for the real part of the inflaton

superfield reads

V (ϕ) = µ2 sinh2

(
ϕ√
6

)[
cosh

(
ϕ√
6

)
− 3λ

µ
sinh

(
ϕ√
6

)]2

, (4.58)

with ϕ driving inflation and µ, λ being parameters of the model. By expanding the

hyperbolic, functions the potential (4.58) can be written in terms of exponentials

as

V (ϕ) = C0e
2κϕ + C1e

κϕ + C2e
−κϕ + C3e

−2κϕ + C4 , (4.59)

where the Ci are dependent on µ, λ, the sum over all Ci is zero and κ =
√

2/3.

Judiciously choosing the coefficients of the quadratic and cubic terms in the Wess-

Zumino superpotential such that λ/µ = 1/3, the coefficients C0, C1 vanish and the

above reduces to

V (ϕ) = µ2e−
√

2/3ϕ sinh2

(
ϕ√
6

)
, (4.60)
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which is the Starobinsky potential and hence has R+αR2 as an exact dual formu-

lation. Contrary to (4.51), the above (4.59) does not allow for a simple analytic

solution for a corresponding function f(R) in the general case λ/µ 6= 1/3. How-

ever, just considering the leading term at large field values gives the differential

equation

C0f
′2 =

f ′R− f
2f ′

, (4.61)

which is easily solved to yield

f(R) ∼ R 4/3 . (4.62)

This is an example for (4.45) and shows that even though the explicit function

f(R) is hard to find over the entire range of R, it must asymptote R 4/3 for large

values.

Let us now investigate the limit of (4.58) when the ratio λ/µ is perturbed

around the value of 1/3 such that

λ/µ→ 1

3
− δ , (4.63)

where δ is infinitesimally small. From (4.58) we can infer the coefficients in (4.59)

to be

C0 =
1

4

[
1

4
− 3λ

2µ
+

(
3λ

2µ

)2
]
, C1 =

1

4

[
3
λ

µ
−
(

3
λ

µ

)2
]
, (4.64)

where the other Ci are not of interest for reasons to become clear in a moment.

Plugging (4.63) into the above, we find that30

C0/C1 ∼ δ . (4.65)

In other words, if λ/µ is perturbed with an infinitesimally small δ, the squared

rising exponential in (4.59) is drastically suppressed with respect to the C1-term.

Thus one can well approximate (4.59) by a scalar potential such as (4.51) for

30For λ/µ = 1/3, we have C0, C1 = 0. It is the fact that C0 ∼ δ2 and C1 ∼ δ, in other words,
C0 approaches zero faster than C1 which has (4.65) scale as δ even though C1(1/3) = 0.
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which the corresponding f(R)-dual (4.54) is exactly known. This scenario [76]

is not only a supergravity realisation of the vanilla R2-inflation model, but also

maintains the duality for an infinitesimal perturbation of the parameters of the

model as in (4.63).

4.4.2 Fibre inflation

We now return to the LVS [36–39]. As a representative thereof, we will consider

inflation solely being driven by string-loop effects [39]. Thus, we will now include

the winding term of (2.19) but omit the higher-derivative correction (2.8). The

canonically normalised inflaton potential then takes the form

V (ϕ) = V ′0

(
C0e

κ′ϕ − C1e
−κ′ϕ/2 + C2e

−2κ′ϕ + Cup
)
, (4.66)

with κ′ = 2/
√

3. This potential maintains an approximately shift-symmetric

plateau before a rising exponential starts to dominate. As the first negative expo-

nential is the fourth root of the second term and the coefficient in the exponent is

larger than the Starobinsky κ, this model features an enhanced gravitational wave

signal compared to the Starobinsky model, without reaching a tensor signal of

comparable order of magnitude to that of chaotic inflation. In this section we are

interested in investigating whether the fibre inflation potential has an approximate

f(R)-description. As before it is useful to recast (4.66) in terms of κ =
√

2/3. In

the low ϕ regime, where the rising exponential is negligible, one obtains

V (ϕ) = V0

(
1− C1e

− κ√
2
ϕ

+ C2e
−2
√

2κϕ
)
. (4.67)

We thus have

f(R) =
1

8V0

R2 + α

∫
f ′1−1/

√
2dR− β

∫
f ′1−2

√
2dR , (4.68)

which, upon enforcing the large R regime31, yields

f(R) =
1

8V0

R2 + α′R2−1/
√

2 + β′R2−2
√

2 + . . . , (4.69)

31Here, we require large R, yet still sufficiently small such the rising exponential has no effect.
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where α′, β′ are rescaled coefficients due to the integration. We hence find an

approximate f(R)-dual for the inflationary regime of the fibre inflation potential.

Considering the regime in which the rising exponential dominates, we have

V (ϕ) ∼ C0e
√

2κϕ . (4.70)

Using equation (4.7) we obtain

f ′1+
√

2 ∼ R , and therefore f(R) ∼ R
√

2 . (4.71)

This is in accordance with our previous findings and demonstrates that the leading

order term in an f(R)-theory corresponding to a rising exponential has to be of

type Rn with 1 < n < 2.

4.4.3 Changing the compactification

One can ask whether it is possible to modify the above set-up such that the

coefficients in the exponents are the ones required to have integer powers of f ′

in the differential equation one has to solve to find a corresponding f(R) theory.

We would then effectively have a situation such as (4.40) which though not fully

soluble, has separate analytic solutions for both the regime in which the rising

exponential dominates as well as the inflationary regime. These two solutions

would be exact and the point of matching could in principle be determined. To

answer that question, we have to take a closer look at the string construction of

fibre inflation and see how it may be modified.

The coefficient in the exponent of the exponential comes from the canonical

normalisation of the kinetic term of the fibre modulus that drives inflation.32 The

kinetic term itself is derived from the volume of the compactification which, in the

case of Fibre inflation, is given as

V = α
(√

τ1τ2 − γτ 3/2
3

)
. (4.72)

32We are excluding the possibility of manipulating the form of the string loop generated Kähler
potential. Though this is possible in principle we consider it to be less well motivated.
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This choice leads to κ′ = 2/
√

3, corresponding to the following relation between

the fibre modulus τ1 and the canonically normalised field ϕ: τ1 = eκϕ. Equation

(4.72) when combined with the conjectured form of the Kähler potential generated

by string loops on Calabi-Yau manifolds [37, 38] determines the potential (4.66)

for the lightest Kähler modulus, τ1. As we have seen above this does not allow

us to find an exact f(R) formulation for the model. One may however consider

a slightly modified volume form, where the would be inflaton is still called τ1 but

now corresponds to the volume of the base manifold rather that of the fibre as in

the original setting. This amounts to considering

V = α
(√

τ2τ1 − γτ 3/2
3

)
, (4.73)

which yields κ′ = 1/
√

3 and so once again one ends up with irrational powers of f ′

and is therefore unable to solve the associated differential equation. Alternatively

one may compactify on a torus, such that

V = α
(√

τ1τ2τ3 − γτ 3/2
3

)
, (4.74)

yielding κ′ = 1. This exhausts the set of more obvious choices for V which has

to be a polynomial of degree 3/2 in the four-cycle volumes τi. Whether or not

Fibre inflation or a variation can be modified in such a way as to maintain the

Starobinsky κ =
√

2/3 is inconclusive as of now.

4.5 Phenomenology and discussion

So far we have considered theoretical implications for a dual f(R)-description once

a rising exponential has been added to the potential V (ϕ). We found that we either

have to give up the dominating quadratic term, or that we have to limit the field

range of ϕ. We now turn our attention to a phenomenological fingerprint of a

steepened potential V (ϕ).

As discussed in various contexts [30–34, 50, 51], a steepening of the inflaton

potential in the vicinity of the point of 55 e-foldings can suppress power in the

CMB temperature spectrum at large angular scales, i.e. low-`. We now employ
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the numerical method reviewed in section 1.2. Considering potential (4.51) or

equivalently its f(R) dual (4.54), we find ns(55) = 0.970 and ns(62) = 0.975 and

the power suppression is 1.7% to 3.2% where we have chosen δ ∼ O(10−4) to allow

for a sufficient amount of e-folds and a red ns. Considering scenario (4.48), we

choose α ∼ 109, |β| ∼ 2 · 1014 to satisfy the boundary conditions for the number

of e-folds and a red ns. The spectral index takes similar values as for (4.51) and

the power suppression is 1.8% to 3.3%. Lowering the amount of observable e-folds

to N obs
e ∼ 50 by assuming intermediate reheating temperatures and adjusting

|β| → 1015 yields ns(45) = 0.978 and ns(50) = 0.985 and thus gives a suppression

of about 5%.

In this chapter, we investigated the duality between scalar field theories be-

ing coupled minimally and non-minimally to gravity and f(R)-Lagrangians. We

showed that any potential with an infinitely long plateau may be recast as an f(R)-

theory which is ∼ R2 to leading order. We further demonstrated how to obtain an

expression for an f(R)-Lagrangian driving chaotic inflation within the accessible

range of inflationary e-folds. Weyl-rescaling from the f(R)-frame to another Jor-

dan frame, we found a general expression relating an arbitrary f(R)-theory to a

scalar field theory non-minimally coupled to gravity and consequently established

that a series of logarithmic corrections in any Jordan frame leads to chaotic in-

flationary dynamics as becomes apparent when analysing the resulting Einstein

frame inflaton potential. Having noted the different dynamics of the inflationary

spacetime regarding the cut-off of the series of logarithmic corrections, we learn

that higher order terms of the Ricci scalar are of crucial importance and may not

be neglected if they exist. Turning to modifications of plateau-like potentials at

higher field values, we gave the example of potential (4.10) which looses its closed

form dual f(R) description once a rising correction is added. We showed that any

scalar potential which is dominated by rising exponentials at higher field values at

least allows for an f(R)-dual that is ∼ Rn with 1 < n < 2 to leading order. The

Starobinsky potential (4.9) maintains a closed form dual formulation (4.54) when a

rising exponential is considered (4.51). The important implication however is that

the leading R2-term is removed from the f(R)-dual, as expected. The resulting

f(R) theory is an infinite series which sums to an expression which is to leading

order R3/2. Furthermore, the correction may not come with arbitrary powers of
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exponential functions as (4.52) has to remain soluble to find an analytic expression

for the function f(R). Thus the form of correction to the Starobinsky potential is

strongly limited if the duality shall be given by explicit expressions obtainable in

closed form by known methods over the entire range. Only considering the limit

of large field values, approximate f(R) duals may easily be found explicitly. It is

important to note that the inability to find closed form f(R) duals does not ex-

clude the existence of a dual description in terms of a theory of modified gravity.

It merely demonstrates that the dual description is out of our reach with current

methods.

Concluding, the inflationary behaviour and predictions can be substantially

changed by considering slight corrections to the first two powers in a polynomial

f(R)-theory. Investigating only finite order corrections, we pay the price of either

having to place the inflaton on the right side of a hilltop or having a finite field

range for the inflaton ϕ, depending on the sign of the coefficient of the higher

power. Therefore, corrections to the Einstein frame potential with rising expo-

nentials - provided an f(R) dual may be found - remove the leading R2-term

whereas higher powers in R with negative coefficients limit the field range. Both

are interesting theoretical consequences. Considering concrete UV examples, we

find that scenario (4.58) can maintain an f(R)-dual (4.54) given a certain choice

of model parameters. The string inflation scenario (4.66) does not allow for an

exact f(R)-dual. Modifications of the string theory set-up, i.e. considering dif-

ferent Calabi-Yau compactifications, did not prove to be successful at a first at-

tempt. Phenomenologically, rising exponentials coming to dominate the potential

at higher field values induce some running of the spectral index ns. However, con-

sidering (4.54) the running is small and the consequent effect of power suppression

at low-` is up to ∼ 3%. Hence if the observational significance of power suppres-

sion increases and the effect is found to be & 3%, one requires corrections to an

Einstein frame potential of higher order than those that can be provided by an

exact dual f(R) description.



Chapter 5

Non-minimally coupled inflation

Until now, we have studied how to realise an effective shift symmetry first within

UV theories, then by requiring features of a non-canonical kinetic term and at last

within the framework of f(R). Already in the previous chapter, we introduced,

as a small detour, a non-minimally coupled Jordan frame field in order to demon-

strate how logarithmic corrections in generic Jordan frames give rise to chaotic,

i.e. leading order monomial inflationary potentials. In this chapter, we revisit the

Jordan frame but with the specific goal in mind to realise an Einstein frame shift

symmetry. Generically, the shift symmetries under consideration will always be in-

termediate and eventually be broken by higher order terms. Thus in a first section,

we will in detail study the phenomenology of the breaking at large fields in the

light of possible power suppression in the CMB temperature spectrum at low-` [14].

The strength of power suppression will be linked to the order of the term breaking

the inflationary plateau. With no assumptions about the UV, this can be seen

as EFT spectroscopy. In a second section, we turn our focus towards a minimal

realisation of observationally viable inflation with a non-minimally coupled scalar

field and identify properties which are in excellent agreement with observational

data [18]. This hence will describe a lean and robust mechanism to realise a shift

symmetry in a minimal way.

79
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5.1 Coupling the inflaton to gravity

We begin with a short review which also serves as our motivation by recalling a sim-

ple model of non-minimally coupled inflation. Making the underlying mechanism

apparent, Higgs inflation [67, 68] can be generalised to arbitrary potentials. This

is called the Universal Attractor (UA) [69]. The details are as follows: Consider

the Jordan frame Lagrangian of a scalar field φ

LJ√
−gJ

=
1

2
Ω(φ)RJ −

1

2
(∂φ)2 − VJ(φ) , (5.1)

with

Ω(φ) = 1 + ξf(φ), VJ(φ) = λf(φ)2 . (5.2)

The metric can be conformally transformed by rescaling it with the non-minimally

coupling function

gEµν = Ω(φ)gJµν , (5.3)

where the superscripts denote Einstein and Jordan frame respectively. As stated

in the beginning, to reduce to ordinary GR at low energies, one has Ω(φ) > 0 , ∀φ.

Lagrangian (5.1) then becomes

LE√
−gE

=
1

2
RE −

1

2

[
1

Ω
+

3

2

(
∂ ln Ω

∂φ

)2
]

(∂φ)2 − VJ
Ω2

. (5.4)

If the non-minimal coupling strength ξ is sufficiently large and provided the fol-

lowing relations are satisfied

Ω� 3

2
Ω ′ 2 , NCMB ∼

3

4
(Ω− 1) , (5.5)

where NCMB denotes the number of e-folds at horizon exit of scales now observable

through the CMB, canonical normalization

(∂ϕ)2 =
3

2
(∂ ln Ω)2 (5.6)
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yields

Ω(ϕ) = eκϕ , (5.7)

where κ =
√

2/3.33 The potential becomes

VE =
λ

ξ2

(
1− e−κϕ

)2
. (5.8)

This is conformally dual to R2-inflation [9,77]. The ratio (λ/ξ)2 sets the amplitude

of the CMB power spectrum.34 Inflationary predictions are give by the formulae

ns = 1− 2

Ne

+
3

2

log(Ne)

N2
e

+ . . . , r =
12

N2
e

− 18
log(Ne)

N3
e

+ . . . , (5.9)

where Ne denotes the number of e-folds before the end of inflation and we have

included subleading corrections from [49] to the well known leading order result.

Note that also with the first subleading terms, these expressions only provide an

approximation of the exact result which may easily be obtained numerically.

5.2 EFT spectroscopy

In this section, we will consider simple toy corrections to the UA relation (5.2).

The focus lies on the non-minimal coupling strength ξ and the steepening of the

potential induced by the corrections. As these corrections - depending on their

position in field space - can leave a clear observable fingerprint in the the CMB

temperature spectrum, we can infer which type of correction may be linked to the

observed loss of temperature power at large angular scales, or low-`.

5.2.1 Corrections

We will introduce corrections in the Jordan frame and will analyse the effect of

such corrections on the Einstein frame potential and the attractor behaviour. To

33For simple monomial potentials VJ ∼ φn with 2 ≤ n . O(10), a non-minimal coupling
ξ ∼ O(1) is sufficient for relations (5.5) to hold.

34The amplitude of the CMB temperature fluctuations (1.36) is given as As = (24π2)−1VE/ε,
where we have chosen the notation of [7] instead of [21]. For the measured value of As ∼ O(10−9),
one readily obtains ξ ∼ 105

√
λ.
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Figure 5.1: Potential (5.12) with n = 1, 2, 8 (black, blue, red from right to left).
Higher n require lower ξ if one seeks just 55 flat e-folds. The dashed line depicts
the potential without corrections.

this end, we may consider either a correction in φ with the cost of having to specify

an invertible f(φ) in order to obtain a relation φ(ϕ), or - to allow for arbitrary

f(φ) - simply parametrise a correction in terms of f(φ). Whereas the former leaves

the coefficients of the series parametrizing the corrections unspecified, the latter

maintains the beauty of the universal attractor, as any function f(φ) is allowed

(examples are chaotic, natural and induced inflation, see [69,78]; moreover, we have

verified for the chaotic case that corrections in φ or f(φ) yield similar findings).

Hence we consider the latter case and replace the attractor relation (5.2) with

V (φ) = λ2h(f(φ))2 , (5.10)

where λ2 remains a free parameter. The deviation of h(f) from a linear function

encapsulates the correction to the attractor relation. To develop a first intuition

for such corrections, we consider a toy model with a single additional term. Taking

h(f) = f(1 + cnf
n) , (5.11)
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and choosing cn ∼ O(1) in Planck units, one obtains

VE = V0

[
1 +O(1) ξ−n

(
e
√

2
3
ϕ − 1

)n]2

, (5.12)

with V0 being the unperturbed potential as in (5.8). Expanding the correction

to leading order shows that its main contribution to the potential comes from a

term (Ω/ξ)n. Hence the potential starts to deviate significantly from its plateau

when the ratio Ω/ξ is greater than unity (as illustrated in Figure 5.1). The point

at which the deviation occurs is set through requiring the inflaton ϕ to traverse a

certain distance in field space on the plateau and enters the ratio through Ω. In

other words, a minimal length of a nearly flat plateau, or equivalently a required

number of flat e-folds, translates into a lower bound of the coupling ξ that is

independent of n for larger n. For lower values of n, (Ω/ξ)n starts to contribute

earlier than for higher n, hence ξ increases in order to ensure ns(55) < 0.980. Thus

any correction of order n affects the attractor around the same point in field space

for a value of ξ that is set as to allow for at least |Ne| flat e-folds. Corrections of

higher power steepen the potential in a sharper way and thus the running of ns

increases. Hence we find a larger running of ns to come from dominating higher-

order terms in the correction.

In order to quantify the above considerations, we have calculated the percent-

age of power suppression %(Ne) of ∆2
s(k) at the onset of observable e-folds for

exemplary values of n (see Table 5.1) with the procedure presented in section 1.2.

In all cases, we have tuned ξ such that ns(55) = 0.970; this is slightly higher

than the universal value (5.9) and hence signals the onset of the pre-Starobinsky

phase of the scalar potential. Repeating this analysis for a redder or bluer ns(55)

somewhat increases or decreases the non-minimal coupling ξ respectively.

5.2.2 Examples

Understanding (5.10) not as a full UV theory but as an effective description, we

consider not just a monomial correction but a series

h(f) =
N∑
n=1

cnf
n , (5.13)
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n %(60) %(62) ξ ns(62) Ntotal

1 1.9 3.4 O(104) 0.975 272
2 2.0 3.8 O(103) 0.976 173
8 3.7 7.7 O(102) 0.981 90

Table 5.1: The effect of single higher-order corrections to the attractor relation.
The suppression increases with n. Variation of ξ compensates for the varying
sharpness of the steepening. For larger n, ξ → O(102) and Ntotal approaches ∼ 62.

where we again naturally assume all cn ∼ O(1). We find that lower order terms

dominate the steepening of the potential in the vicinity of the 55 e-folds point and

hence the running of ns is weak regardless of any higher power terms in the series.

Assuming a natural variation ∆cn ∼ O(1) of the coefficients and thereby suppress-

ing the first three terms of the series leads to an exemplary power suppression of

about 2.5% to 4.8%, given a cut-off N= 20 and a coupling ξ ∼ O(103) as to allow

for at least 55 flat e-folds with ns(55) = 0.970. In this scenario, Ntotal = 115.

Thus understanding power suppression as a tool of effective field theory spec-

troscopy, we argue that a higher suppression indicates a cancellation or suppression

mechanism of lower-order terms in the correction. To maintain numerical control,

we now seek to impose natural summation schemes in the expansion such that

higher cn are effectively suppressed. We take

h(f) = f
N∑
n=0

cn
n!
fn , (5.14)

which may be understood as requiring that higher order terms are of decreasing

importance. Without a cut-off and taking all cn = 1, the above yields

VE = V0e
2
ξ

(Ω−1) . (5.15)

Again the requirement of a minimum number of flat e-folds translates to a lower

bound on the coupling ξ. Allowing for at least 55 flat e-folds and requiring

ns(55) = 0.970 induces a running of ns such that the power suppression is about

2.0% to 3.6%. More importantly, the above translates into a value of the coupling

ξ ∼ O(105), which is, having a natural λ2 ∼ O(1), the required value to fit the
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normalisation of the power spectrum (see e.g. [79]). Hence we find the normalisa-

tion of the power spectrum as well as the level of power suppression to be linked

to the parameter ξ, which in turn is set by the amount of e-folds we require before

any significant deviation from the nearly flat plateau occurs. Here, Ntotal = 264.

Truncating (5.14) after the first 10 terms yields the same results, hence we con-

clude that higher order terms are phenomenologically negligible. In fact, provided

the first few cn are of order one and given some cutoff, higher-order coefficients

may be completely arbitrary.

To study more exemplary corrections, consider a Z2 symmetry, i.e. we only

invoke even terms in the correction. Applying this to (5.14) yields h = f cosh(f)

and

VE = V0 cosh2
[
ξ−1(Ω− 1)

]
. (5.16)

In this case, tuning ξ such that ns(55) = 0.970 gives a suppression of about 2.2% to

4.0%, where ξ ∼ O(103). Considering a natural variation ∆cn ∼ O(1) such that the

first few lower order terms are suppressed and mimicking this by omitting the first

two terms in the series expansion of the hyperbolic cosine, we find the suppression

level to be increased to 3.1% to 6.1% where ξ ∼ O(102). Hence scenarios with

stronger suppression due to omitted lower order terms in the correction yield a

sufficient amount of flat inflationary e-folds already for ξ < O(105).

Finally, we vary our ansatz for (5.10) and consider the Jordan frame potential

as a power series in f(φ), i.e.

h(f) =
N∑
n=1

cn
n!
fn . (5.17)

The example of h = ef − 1 gives a suppression of up to 3.0% and ns(55) = 0.970

for ξ ∼ O(104). Restricting to only odd terms we have h = sinh(f) and find

ns(55) = 0.970 with a suppression of up to 4.4% for ξ ∼ O(103). Considering the

first five terms of a sum as in (5.17) without suppressing coefficients gives a power

loss of up to 2.9% and ns(55) = 0.970 for ξ ∼ O(104).

Remarkably, in all examples considered in this section, the condition of 55 flat

e-foldings translates into a range for the non-minimal coupling of the order 103 up

to 105, depending on the specific correction. The upper end of this range leads to
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a power spectrum amplitude in concordance with the measured value. In contrast,

the lower end of this range would have a larger amplitude. However, these values

were obtained by requiring exactly 55 flat e-foldings and no more; tuning ξ to the

observed value around 105 would simply lead to a longer inflationary plateau in

these cases, and hence more flat e-foldings. Thus, the requirement of at least 55

flat e-foldings is remarkably consistent with the observed amplitude of the power

spectrum, for a range of different examples: none of these examples require a non-

minimal coupling of the order 106 or higher to have a sufficiently long inflationary

plateau for 55 e-foldings.

These results also apply to Higgs inflation [67, 68]. This model has a non-

minimal coupling set by f = φ2 and a scalar potential that takes the form, includ-

ing corrections of type (5.14),

VJ = λ2
[
φ4 + c6φ

6 + c8φ
8 +O(φ10)

]
. (5.18)

Taking both λ2 and the coefficients ci of order one, there is a relation between

the power normalisation and Ne. As shown in the previous section, both point

towards a large non-minimal coupling (up to 105). Claims that such a large cou-

pling leads to a cutoff scale Mp/ξ [80,81] that is problematically close to or lower

than the inflationary scale have been addressed in various ways [78, 82–84]. The

vacuum stability regarding higher-order terms was discussed in [85]. A different,

logarithmic correction was considered in the context of Higgs inflation at the criti-

cal point [86,87]. While they also rely on this correction to perturb the inflationary

plateau, their aim and results are different: the non-minimal coupling is chosen

such that the correction affects the entire observable period of the inflationary

regime. Accordingly, they require a lower ξ and end up with predictions different

from (5.9).

5.2.3 Implications for eternal inflation

If quantum fluctuations of the inflation field δφQ = H/(2π) dominate over the

classical variation δφC = φ̇/H, on average half of the fluctuations drive the field

upwards its potential. Thus if a potential supports a regime where H2/(2πφ̇) >

1, inflation globally never ends [88]. It can be shown that potentials have to
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support at least 1000 e-folds of inflation for the above scenario to be realised [89].

As demonstrated, natural corrections to the Universal Attractor yield models,

where generically Ntotal < 300, hence quantum fluctuations will always remain

sub-dominant to the classical evolution. Thus if no high energy effects restore the

flatness of the potential at large ϕ, slow-roll eternal inflation appears disfavoured

in this scenario. This is similar to the landscape [90], where Ntotal is generally not

much larger than the minimal amount of e-fold

In this section, we studied the effects of corrections to a universal class of

inflation models. Remarkably, these provide a link between the observed normal-

isation of the power spectrum and the number of flat e-foldings: both the height

and length of the inflationary plateau are determined by the non-minimal coupling

parameter ξ, which is required to be around or below 105. We stress that, given

either some cut-off or suppression mechanism, this single parameter determines

the spectral index and amplitude of the power spectrum, the tensor-to-scalar ratio

as well as the number of flat e-foldings. Moreover, for a range of corrections we

predict a power loss of a few percent at low-` in the temperature power spectrum

of the CMB.

5.3 Generic plateau inflation

Above, we have considered toy model corrections to a generic class of inflation

models. We have given a detailed account of the low-` CMB phenomenology and

emphasized how height and length of the inflationary plateau are linked by the

non-minimal coupling strength ξ. Furthermore, we found that in order to induce

the power loss observed, any correction ought to be dominated by lower order

terms in the vicinity of the field range corresponding to the scales being probed

by the CMB.

Now, we seek to turn this argument into a more general form such that we

obtain a mechanism which, when combined with a minimal set of assumptions,

automatically provides observationally viable slow-roll inflation. We will find that

we only need the Jordan frame field to have a minimum and the non-minimal cou-

pling function to have series expansion; for ξ > O(N2
e ), an effective Einstein frame

shift-symmetry appears and for the value ξ ∼ O(104), the predictions generically
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Figure 5.2: Depiction of the (ns, r) predictions of a gradually increased non-
minimal coupling ξ for VJ = eφ − 1 − φ and Ω(φ) = 1 + ξφ. While different
potentials may display a different path of convergence, ξ ∼ O(104) is sufficient
for the Starobinsky point to be reached. The point, marked as black, remains the
attractor for ξ →∞.

converge towards the ones measured by PLANCK. We hence provide a minimal

model which effectively depends on one parameter only and not just predicts the

measured observables but also automatically protects the required shift symmetry

from any correction. Figure 5.2 is an exemplary depiction of our ansatz.

5.3.1 Analytic predictions

We now demonstrate how coupling a scalar field non-minimally to gravity may

realize an approximately shift-symmetric Einstein frame potential employing a

minimal set of assumptions. The aim of this section is to explicitly show the

robustness of the inflationary potential from an arbitrary number of higher order

terms.

To that end, consider the non-minimal coupling or frame function as well as

the potential to be given by arbitrary series with the only requirement that the

Jordan frame potential and the square of the frame function share the order of
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their first zero for φ ≥ 0.35 In other words, we require the Jordan frame potential

to have a minimum and the frame function to contain a term linear in the Jordan

frame field φ. We thus write the setup in full generality as

Ω(φ) = 1 + ξ
∑
n=1

anφ
n, VJ(φ) = λ

∑
m=2

bmφ
m, (5.19)

where we have kept the factor λ to be consistent with the original work but will

assume it to take a natural value of . O(1). We have further omitted to specify

the cut-off of either series as it will not play a role in the subsequent analysis. In

principle, both series may contain an infinite number of terms. The assumption

that the Jordan frame field φ is stabilised translates into the requirement b2 > 0.

We further, as already stated, take a1 > 0, i.e. assume the non-minimal coupling

to be approximated by a polynomial series expansion around the minimum of the

potential φ = 0. This also implies that the canonical Einstein frame inflaton ϕ and

Jordan frame field φ decrease correspondingly, i.e. dϕ/dφ > 0. This is necessary

for the canonical field ϕ not to have a runaway direction in the potential which

might prevent the inflaton from gracefully exiting slow roll.

In the Jordan frame, higher order terms are sub-leading if the Jordan frame

field φ remains sub-Planckian. From this, two questions arise. First, is it possible

to generate a sufficient amount of e-folds within one Planck distance in the Jordan

frame field. Secondly, how does this argument carry over to the Einstein frame

and the non-minimal coupling strength ξ.

For set-up (5.19), and for now assuming to be in the regime φ < 1, the expres-

sion for the number of e-folds of (5.5) obtains corrections as

Ne ∼
3

4
Ω− b3 Ω

8 b2a1

(
Ω2

ξ

)
+O(2)

(
Ω2

ξ

)
= Ω

[
3

4
− b3

8 b2a1

(
Ω2

ξ

)
+ . . .

]
, (5.20)

which may be understood as an expansion in Ω2/ξ. Given that we seek a mech-

anism yielding inflationary dynamics compatible with PLANCK, we require the

corrections to the leading order term of the above to be sub-dominant. This is

the case for Ω2 << ξ, and hence leads to a self-consistent expansion. Setting

35We are only considering zeroes and not poles in this set-up.
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Ne ≡ NCMB ∼ O(60), where NCMB denotes the number of e-folds at horizon exit

of scales now observable through the CMB, we thus find that the lower bound on

the non-minimal coupling strength for generating a sufficient amount of inflation

within ∆φ < 1 is

ξ > O(N2
e ) . (5.21)

The following discussion hence assumes this lower bound. This result is crucial as

it demonstrates that the predictions of the general ansatz (5.19) begin to converge

towards the universal predictions (5.9) when the non-minimal coupling strength is

of the order of the amount of e-folds minimally required.

In the regime φ < 1 the first zeros in both series of (5.19) are leading. We

hence infer that non-canonical field and frame function may be related as

φ ∼ 1

a1ξ
(Ω− 1) . (5.22)

It is readily verified from ansatz (5.19) that the Einstein frame potential then

becomes

VE =
λ

a2
1ξ

2

(
1− 1

Ω

)2
[
b2 +

∑
k=1

bk+2

(
Ω− 1

a1ξ

)k]
. (5.23)

First we note that as long as the summand is less than unity, the series of all

corrections converges. We conclude that making ξ sufficiently large can, regardless

of an infinite tower of higher order corrections with order one coefficients, induce a

Starobinsky-like inflationary plateau over a finite field range. This is the Einstein

frame manifestation of the fact that during inflation, φ < 1 and hence all higher

order terms in the Jordan frame potential are sub-leading.

In other words, the effect of higher order terms can simply be pushed far away in

field space by sufficiently enlarging the non-minimal coupling strength ξ. Thus the

inflationary dynamics are independent of whether or not the tower of higher order

corrections is truncated at some order. Hence we see that, given inflation occurs

for the non-canonical field φ < 1 which can be ensured via having ξ & O(N2
e ),

the set-up is independent of the truncation of the potential, and the non-minimal

coupling strength ξ therefore protects a finite plateau. Another way to look at

this is the following: The expression for the displacement of the non-canonical
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Figure 5.3: Left: The plot shows a scatter plot with ξ = 104, MΩ = 1 and
MV = 10 containing 5000 trajectories. The red dot represents the Starobinsky
point ns(50) = 0.962, r = 0.004. The green line in the upper left displays chaotic
signatures. The slope of the line in the vicinity of the Starobinsky point is, as
predicted, δr/δns ∼ 0.1. Right: An ns density plot, on a linear scale, for different
values of MV . The plot peaks around the Starobinsky value.

field during inflation reads to leading order

∆φ ∼ 1

ξ
∆Ω , (5.24)

where ∆Ω denotes the change of the frame function between horizon exit of CMB

scales and the end of inflation and is typically ∆Ω ∼ O(60). One immediately

understands that an increase in ξ can force ∆φ sub-Planckian as ∆Ω is fixed

through NCMB.

To obtain a value for ξ that ensures the corrections to be sufficiently far away

from the minimum of the inflaton potential and to have inflation matching obser-

vations by PLANCK, it is most useful to study the inflationary observables and

their dependence on the infinite tower of higher order terms. To leading order, the
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expressions for the inflationary observables ns and r of (5.19) and thus (5.23) are

ns = 1− 2

Ne

+ 8κ6 b3

b2

(
Ne

a1ξ

)
+O(2)

(
1

Ne

,
Ne

a1ξ

)
,

r =
12

N2
e

+ 32κ4 b3

b2

(
1

a1ξ

)
+ 32κ8

(
b3

b2

)2(
Ne

a1ξ

)2

+O(3)

(
1

Ne

,
Ne

a1ξ

)
, (5.25)

where again κ =
√

2/3. Expressions (5.25) are expansions in 1/Ne and Ne/(a1ξ).

For the spectral index ns, the leading order terms are the linear contributions of

the 1/Ne and the Ne/(a1ξ) expansions. For the tensor to scalar ratio r, the leading

order terms are the quadratic and bilinear expressions of both expansions. Sub-

leading terms stem from cross terms and higher orders in 1/(a1ξ) and Ne/(a1ξ) and

are denoted by O(n). Note that we have omitted the subleading corrections of [49],

i.e. higher order terms in 1/Ne, for clarity. For ns and r to be dominated respec-

tively by the linear and quadratic term in 1/Ne, i.e. for prolonging the Einstein

frame potential’s intermediate plateau, we quickly identify that

ξ > O
(
N2
e

)
, (5.26)

provided a1 ∼ O(1). This hence marks the onset of a convergence of the inflation-

ary predictions towards the values measured.

Considering that we eventually seek to study models with random an, bm, ex-

pressions (5.25) predict a range of ns, r pairs where however the slope of a scatter

plot r vs. ns ought to be independent of the random draws as the leading order

corrections, i.e. the next to leading order terms, both come with the same a1, b2, b3

dependence. Thus consider the ratio of the next to leading order terms

δr

δns
=

6

Ne

∼ O (0.1) (5.27)

forNe ∼ NCMB. Note that this implies a scatter plot of (ns, r) pairs to demonstrate

a 1/Ne scaling in the slope at the Starobinsky point, i.e. scatter plots for different
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values of Ne will show a different slope. Generally, this predicts that in the vicinity

of the Starobinsky point, there will be signatures to the bottom left and top right,

roughly aligned with a slope of O(0.1) for Ne ∼ NCMB. In other words, given

(5.25), we see that when b3 is positive the effect of steepening corrections is to

increase the spectral index and the tensor to scalar ratio. Thus if coefficients are

arbitrary and a large ξ not automatically protects the plateau fully against higher

order terms, we expect signatures to appear in the ns, r plot that are higher than

and to the right of the Starobinsky point. This corresponds to an upward curve

in the potential plateau, roughly indicating the onset of a monomial dominated

chaotic phase. Allowing for the first higher order coefficient b3 to be negative,

potential (5.23) may obtain a hilltop feature. This means that the first order

correction of (5.25) now comes with a minus sign. We hence expect signatures to

appear below and to the left of the Starobinsky point. The left panels of Figures

5.3 and 5.4 nicely depict this behaviour. Note that a1 and b2 have to be positive

to guaranty the positivity of the frame function and the potential around the

minimum.

For higher order terms not to spoil the value of ns observed by PLANCK, i.e.

for the observables to enter the Planck contours, we consider the 2-σ bound by

PLANCK of δns < 0.008 at Ne = 55 and find, given a1, b2, b3 ∼ O(1),

ξ & O
(
104
)
. (5.28)

This hence sets, given order one coefficients, a lower bound on the non-minimal

coupling strength ξ to realize observationally viable slow-roll inflation.

A few comments are in order. Not only does a fixed value of ξ prevent all

higher order terms from becoming important before very roughly

ϕ ∼ κ−1 log (a1ξ) (5.29)

but also is the value of ξ obtained from the requirement of matching the observed

spectral index ns similar to the value needed to match COBE normalization (pro-

vided λ . O(1)). Thus two independent observational indications - in technical

terms the spectral index ns and the amplitude As - hint towards an otherwise ad
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hoc value of the theory’s parameter. The length and the height of the inflationary

plateau are correctly set by the single parameter ξ. The rare case that coefficients

an, bm are randomly drawn such that bi � b2, b3 for i > 2 and hence that higher

order terms evade the ξ induced flattening will be discussed in appendix B.

5.3.2 Numerical study

The above argument considered all coefficients to be around unity. However, to

make the statement about the robustness of the inflationary plateau for given

values of the non-minimal coupling stronger, we now introduce random coefficients

in order to study whether or not our previous findings hold.36 We will hence study

ansatz (5.19) with coefficients randomly chosen (drawn) from some interval.

Our setup is Lagrangian (5.19), where we now draw an ∈ [−1/n!, 1/n!],∀n >
1 and bm ∈ [−1/m!, 1/m!],∀,m > 2. We invoke a factorial suppression of the

coefficients to maintain numerical control over large series of corrections and will

later consider non-suppressed coefficients in appendix B. We perform a Monte

Carlo analysis based on the procedure of [91–94]. We work with a non-canonical

kinetic term in the Einstein frame. The slow-roll parameters (1.22) hence become

εV =
1

2K

(
1

VJ

∂VJ
∂φ
− 2

Ω

∂Ω

∂φ

)2

, (5.30)

ηV =
Ω2

K VJ

[
∂2

∂φ2

(
VJ
Ω2

)
− 1

2K

∂K

∂φ

∂

∂φ

(
VJ
Ω2

)]
, (5.31)

in terms of the non-canonical kinetic function

K =
1

Ω
+

3

2

(
∂ ln Ω

∂φ

)2

. (5.32)

Here, ϕ is the Einstein frame canonical inflaton and φ is the non-canonical Jordan

frame field. The number of e-folds then follows as

Ne =

∫
1√
2εV

dϕ =

∫ √
K√

2εV
dφ . (5.33)

36We still impose a1 , b2 > 0 for the same reasons as given in the previous section.
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With the above expressions, we proceed as described in the following way: Iterating

106 times, we draw parameters an and bm of Lagrangian (5.19) being distributed

uniformly.37 For each draw the slow-roll parameters and the number of e-folds

are calculated in order to check whether or not the resulting Lagrangian yields

slow-roll inflation at all. We classify the resulting trajectories according to their

late time behaviour and - provided the effective potential maintains at least 50 e-

folds - calculate the inflationary observables ns and r. Three late-time behaviours

can occur: If εV approaches 1 for decreasing non-canonical field φ and eventually

becomes unity, inflation gracefully ends. Following the terminology of [92], we

hereafter refer to this as a non-trivial ending. In case the potential behaves as

just described but does not feature a sufficient amount of e-folds, we call the

scenario insuf. Unphysical trajectories occur when there appears a zero in the

frame function or when the Jordan frame potential becomes negative. Those are

labelled Ω, V -negative. Finally, a very small fraction of the models does not include

an inflation phase at all, but this fraction is negligibly small for the values of ξ

discussed in this work. In what follows, we will focus on the non-trivial trajectories.

As computation resources are limited, it is crucial to understand if Lagrangian

(5.19) yields dynamics that prove to be independent of the truncation of either se-

ries. Fortunately, at the ξ values we are considering, it is computationally possible

to include a sufficient number of terms in both the non-minimal coupling and the

scalar potential to render the results truncation independent. This is illustrated in

the right panel of Figure 5.4. In what follows, we will consider the specific case of

MV = 10 and MΩ = 5, but none of our results depend on these specific numbers.

The outcome of the numerical simulations is as follows; the scatter plot of Figure

5.4 depicts the (ns, r) pairs for two different choices of the non-minimal coupling

strength ξ, where the red dot denotes the Starobinsky point. Clearly, there are

hilltop and plateau signatures visible.38 Two observations are noteworthy: First,

the predictions clearly converge towards a pronounced line when increasing ξ by

two orders of magnitude. Secondly, the slope in the vicinity of the Starobinsky

point is precisely captured by expression (5.27). As the finite point size blurs infor-

mation about the true spectrum of (ns, r) pairs, we now turn to density plots. This

37We constrain a1, b2 > 0.
38Chaotic signatures will be subject of appendix B.
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Figure 5.4: Left: Scatter plot of 5000 trajectories with MΩ = 5 and MV = 10 for
ξ = 102 in green and ξ = 104 in blue. The red star represents the Starobinsky point
ns ≈ 0.962, r ≈ 0.004 at Ne = 50. Right: An r density plot on a linear scale for
different values of MΩ with MV = 10 and ξ = 104. For MΩ > 2 the system is
truncation independent.

means binning the data in small bins of either δns or δr and counting the number

of points in each bin. The resulting curve is a rough measure of the probability

distribution of the variable, due to the number of points over which is sampled

is large.39 To normalise we calculated the number of points in a bin and divided

by the total number of points. This in principle depends on the chosen binsize;

however, our conclusions are not binsize dependent. Density plots for ns and r

are shown in Figure 5.5. For ξ = 102, no peak around the Starobinsky point is

visible. When ξ = 104 a peak clearly has emerged and this peak sharpens when ξ

increases, just as the analysis in section 5.3.1 demonstrated. This centering around

the Starobinsky point is a continuous process, starting from around ξ ≈ N2
e . At

last, we want to study the occurrence of different scenarios outlined before, i.e.

we seek to count how many of the 106 random draws actually feature a sufficient

amount of observationally viable slow-roll inflation. To probe this we plot the

percentage of the number of outcomes in Figure 5.6. The probability that a model

ends non-trivially indeed increases when ξ increases, and the number of models

39Note that that the leading order corrections to the inflationary observables (5.25) depend on
ratios of now random coefficients. Strictly speaking, the moments of ratio distributions are not
defined, we thus refrain from projecting true statistical meaning onto the density plots.
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Figure 5.5: Density profiles (on a log-scale) for different values of ξ for ns (left)
and r (right). The bottom frames zoom in on the Starobinsky peak.

with insufficient e-folds to account for the observations (insuf ) and the number

of models with negative potential and/or frame function during inflation (Vneg)

decrease. Figure 5.6 demonstrates a maximal increase in observationally viable

models once ξ ∼ N 2
e ∼ 103 for Ne = 50. This is in line with our predictions.

For ξ ∼ O(104), roughly nine in ten draws feature Starobinsky type inflation. We

hence conclude that the lower bound ξ & 104 appears first from CMB normaliza-

tion arguments and our toy model analysis in subsection 5.3.1 and follows to be a

special value also in the numerical study.

We revisited non-minimally coupled inflation models in the spirit of [67–69].

Our interest was whether there exists a value of the non-minimally coupling
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Figure 5.6: The occurrence of different late-time behaviours as a function of ξ.
The circles denote actual data points, the lines are only to guide the eye.

strength that is preferred not only by matching COBE normalisation. We recalled

how the non-minimal coupling ξ may be used to induce an effective shift-symmetry

which is protected against a possibly infinite tower of higher order corrections. The

size of the non-minimal coupling determines the field range of this Einstein frame

shift-symmetry. We continued to parametrise non-minimal coupling functions and

potentials as arbitrary series with a minimal set of assumptions. Drawing the se-

ries coefficients randomly, we examined the resulting Einstein frame potentials to

find out whether observationally viable slow-roll inflation occurs. We found that

with increasing non-minimal coupling ξ, the number of Starobinsky-like inflation

trajectories increases. Remarkably, ξ ∼ O(104) is the value when the number of

Starobinsky-like trajectories increases the fastest. Thus a non-minimal coupling ξ

can induce a shift-symmetry protected against all higher order terms (i.e. length

of an inflationary plateau) while also matching COBE normalization (i.e. height

of the inflationary plateau). An analysis with all coefficients an, bm ∼ O(1) as

well as an analysis with all coefficients random both point towards a preferred

value of ξ ∼ O(104). This result may also be obtained when choosing the random

interval [−1, 1], i.e. without factorial suppression. Appendix B considers such a

scenario. Following the argument of CMB normalisation, this chapter provides

a further way to pinpoint the non-minimal coupling strength ξ and describes a

minimal mechanism realising observationally viable slow-roll inflation.



Chapter 6

Conclusion and Outlook

CMB measurements find a hierarchy between the slow-roll parameters εV and

ηV . The latter is roughly one order of magnitude larger than the former. Poten-

tials maintaining a shift symmetry V ∼ const. naturally satisfy this constraint.

However, from the point of effective field theory, an approximate shift symmetry

amounts to suppressing, i.e. tuning the coefficients of all higher dimensional oper-

ators. Higher order coefficients in an EFT expansion may be specified if the UV

is known. Otherwise, the suppression could be understood as ad hoc. This work

considered different approaches to realise an approximate shift symmetry of the

inflaton potential in order to investigate whether or not the amount of tuning can

be reduced or the need to tune avoided at all. We discussed different scenarios and

found that tuning cannot be entirely avoided in most cases. In the UV, parameters

have to be carefully balanced. Corrections to non-canonical dynamics must also

be under control. Considering modified gravity, a suppression pattern akin to that

of potential suppression surfaced. Nevertheless we were able to provide f(R) toy

models explicitly specifying an infinite number of higher order coefficients. Finally,

we provided a minimal mechanism to realise an effective shift symmetry by means

of a non-minimal coupling. This mechanism can be made robust against an infi-

nite number of higher order terms via the coupling strength. Having the coupling

strength satisfy CMB temperature spectrum normalisation, observationally viable

slow-roll inflation is realised as all corrections can be pushed sufficiently far away

in field space.
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Recently, the claim surfaced that the value of the Hubble parameter today is

roughly eight percent larger than the one inferred from CMB measurements [19].40

It is not the first time that CMB data has been critiqued for being at odds with

astronomical measurements [95]. A single measurement [19] leaves the situation

inconclusive for now. However, it has to be noted that a larger H0 blueshifts

the spectral index ns. If H0 indeed turns out to be larger, would this imply that

inflation is driven by potentials adhering a paradigm other than that of an approx-

imate shift symmetry? Quite the opposite: It can readily be shown that allowing

for symmetry breaking at larger fields, ns is blueshifted while r increases only

slowly. Considering a potential with a ε suppressed rising exponential breaking

the plateau at larger fields (i.e. ε � 1) and recalling expressions (5.25), we im-

mediately see that ns obtains corrections δns ∼ O(εNe) while r is corrected as

δr ∼ O(ε2N2
e ). Corrections to an approximate shift symmetry are natural and

expected. A larger spectral index ns would merely imply that the shift-symmetry

breaking occurs for slightly lower ϕ but would still favour shift-symmetric inflaton

potentials discussed in this thesis.

As a final remark let us note the following: The most simple attempt to realise a

quantum theory of gravity, quantising the Einstein equations (1.4), fails due to the

non-renormalisability of the resulting theory (see e.g. [96]). However, when linking

the quantum fluctuations to metric perturbations in order to induce the primordial

density perturbation, one implicitly assumes that gravity can safely be quantised

on the perturbative level. Measuring tensor modes in the CMB hence would be the

first experimental handle on perturbative quantum gravity. The absence of such a

measurement has been the main motivation to study potentials that only induce

a small tensor signal, i.e. shift-symmetric potentials. Nevertheless, a minimalist

interpretation of the non-detection could in principle question whether or not the

quantisation of tensor modes is realised in nature in the first place. However, as it

was already argued in the original work on gravitational waves [97], if gravitational

waves exist, they ought to be quantised similar to the electromagnetic case as

otherwise, particle orbits would be unstable. We thus believe the perturbative

approach to the quantisation of gravity to hold in the inflationary scenario and

the study of shift-symmetric potentials therefore to be well motivated.

40I would like to thank David Ciupke for making me aware of this result.
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Appendix A

More on f(R)

In this appendix, we will explicitly derive some of the claims made in chapter 4.

The following sections further serve to demonstrate the way first order differential

equations of rank 2 have been solved in this work.

A.1 The f (R) dual for V ∼ V0

Recall the potentials V = V0(1 − 2e−
κ
n
ϕ + e−2κϕ) with n > 1 and V = V0(1 −

2e−κϕ + e−nκϕ) with n > 2. Both potentials have the exponentials departing from

their square relation characteristic of the R2 dual Starobinsky potential. The aim

of this appendix is to prove the claim made in section 4.1, namely that regardless

of the specific values chosen for n, both potentials will always admit at least an

approximate f(R) dual which is to leading order R2. Essentially, one may argue

that the potential mimics a cosmological constant for large field values and hence

all one has to do is finding the f(R) dual to general relativity with a free scalar

and a cosmological constant. To that extent, consider that both potentials display

a shift symmetry in the inflationary region, i.e. one may well approximate both of

the above as

V (ϕ) ∼ V0 (A.1)

during inflation. We recall equation (4.7) and hence write

V0 =
f ′R− f

2f ′2
, (A.2)
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which, upon rearranging, may be recast as

2V0f
′2 − f ′R + f = 0. (A.3)

Differentiating the above with respect to R gives, for f ′′ 6= 0,

4V0f
′ −R = 0 , (A.4)

which may then simply be integrated to yield

f(R) =
1

8V0

R2 . (A.5)

The integration constant has been set to zero by considering the boundary con-

dition (A.2). We thus see that any potential which approximates a cosmological

constant, i.e. V ∼ V0 , may be recast in terms of a leading order R2 f(R) formu-

lation. The same argument also applies vice-versa, i.e. the scale invariant theory

f(R) = αR2 may readily be recast in terms of an Einstein-Hilbert Lagrangian with

a cosmological constant Λ = (8α)−1.

When considering e.g. the full potential V (ϕ) = V0(1 − 2e−
κ
n
ϕ + e−2κϕ) with

n > 1, one has, according to expression (4.7),

f ′R− f
2f ′2

= V0

(
1− 2f ′−

1
n + f ′−2

)
, (A.6)

where we have identified f ′ = eκϕ. Rearranging and differentiating with respect

to R gives

f ′ =
R

4V0

+

(
2− 1

n

)
f ′1−

1
n . (A.7)

For large values of R, we hence approximate f ′ ∼ O(R). Therefore, we insert

f ′ ∼ R into (A.7) to obtain

f(R) =
R2

8V0

+R2− 1
n + . . . , (A.8)

where the dots denote sub-leading terms during inflation and indicate that the

above was obtained iteratively. We thus find that the leading order behaviour is
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indeed R2. Applying the same procedure to the potential V = V0(1−2e−κϕ+e−nκϕ)

with n > 2 yields as a first iterative step

f(R) =
R2

8V0

+
1

2
R2−n + . . . , (A.9)

where again the dots denote sub-leading terms. For the above, one might wonder

whether or not the function f(R) becomes singular for small R. However, expres-

sion (A.9) was explicitly obtained with a method relying on limiting the range of

validity of the solution to the large R regime. Thus it is found that the enhanced

R2 term dominates, as was foreseen from expressions (A.1) to (A.5).

A.2 An explicit derivation

Recall the potential

V (ϕ) = V0

(
1− e−γκϕ

)2
, (A.10)

with κ =
√

2/3 and 0 < γ < 2. By considering (4.7), we write

V0

(
1− 2e−γκϕ + e−2γκϕ

)
=
f ′R− f

2f ′2
, (A.11)

which, upon identifying f ′ = eκϕ and multiplying by 2f ′2, can be rewritten as

2V0

(
f ′2 − 2f ′2−γ + f ′2−2γ

)
+ f − f ′R = 0 . (A.12)

Differentiating with respect to R yields

2V0

[
2f ′ − 2(2− γ)f ′1−γ + (2− 2γ)f ′1−2γ

]
−R = 0 , (A.13)

where, as always, we are taking f ′′ 6= 0. Having reduced the rank of the differential

equation, we may now rearrange terms and integrate to write

f(R) =
1

8V0

R2 + (2− γ)

∫
f ′1−γdR − (1− γ)

∫
f ′1−2γ dR . (A.14)
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This establishes that for large R, f ′(R) may be approximated as being of order

∼ R. We hence state the approximate f(R) dual to potential (A.10) as

f(R) =
1

8V0

R2 +R2−γ − 1

2
R2−2γ + . . . (A.15)

up to sub-leading terms where the above solution may be understood as the first

result of an iterative approach. Connecting to the expressions (4.68) in the text,

we thus identify

α = 2− γ , β = γ − 1 , c = 1 . (A.16)



Appendix B

Evading ξ

In this appendix, we briefly summarise the phenomenology of non-minimally cou-

pled models, where a random draw of coefficients evades the otherwise generic

ξ-induced flattening. The presented analysis in section 5.3 has demonstrated that

given a1, b2, b3 ∼ O(1) and ξ > O(N2
e ), inflation occurs with a leading order

Starobinsky (or Hilltop) signature and a value of ξ & O(104) can serve to push all

higher order corrections sufficiently far away in field space to arrive at an obser-

vationally viable model. We hence find an inflationary regime independent of the

truncation of either series in (5.19).

However, due to the randomness of the coefficients an, bm, it could in principle

happen that terms bmφ
m,m > 2 in the potential evade the ξ-induced flattening

and influence the inflationary dynamics. Changing our set-up to an, bm ∈ [−1, 1],

we now examine whether or not the set-up remains truncation independent when

the coefficients are drawn such that terms bmφ
m for m > 2 are important, i.e.

greater than unity, during inflation; in other words, the Jordan frame field φ is

trans-Planckian to maintain the required amount of e-folds. Having the coefficients

an, bm resemble a factorial suppression pattern, the non-canonical field has to be

φ & O(M) during inflation (M is the order of the frame function’s truncation) for

higher order terms to be non-negligible. Simply taking an, bm ∈ [−1, 1], the non-

canonical field has to be φ & O(1) during inflation to feel the effect of higher order

terms. In what follows, we study the case an, bm ∈ [−1, 1] and φ & O(1) but the

argument readily extends to the scenario an, bm ∈ [−1/n!, 1/n!] and φ & O(M).
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Figure B.1: Density profile for r with ξ = 104, MΩ = 1 and with coefficients bm
that are not factorially suppressed.

Consider

Ω(φ) = 1 + ξ
M∑
n=1

anφ
n, VJ(φ) = λ

2M+∆∑
m=2

bmφ
m, (B.1)

where ∆ is a positive integer and hence parametrizes how much the highest order

term of the Jordan frame potential departs from a square relation with the highest

order term in the non-minimal coupling function Ω. When φ > 1, we obtain the

effective potential

VE ∼
λ

a2
Mξ

2

[
b2M +

∆∑
k=1

b2M+k

(
Ω

aMξ

) k
M

]
. (B.2)

If the potential departs from the square relation between potential and frame

function at highest order, the Einstein frame potential in principle feels this effect.

While also this effect can be made negligible by tuning ∆ or simply pushing it

away in field space by enlarging ξ, it could as such play an important role when

the coefficients bm are drawn such that terms of the order > 2M become dominant

in the inflationary region of the Einstein frame potential.



109

As coefficients bm>2M may have either sign, the effect of these higher order

terms on the inflationary dynamics can either be to curve the potential upwards

and hence increase the number of chaotic signatures in the ns, r plot or to induce a

hilltop and thus to enlarge the number of signatures with redder ns and very small

r. We conjecture that a large ∆ will increase the number of hilltop signatures while

chaotic signatures may only be visible when ∆ ∼ O(1) and M is not too large.

This is because a large ∆ will allow for an interplay of coefficients bm>2M with

possibly different signs such that hilltops occur whereas if there exists just one or

two higher order terms, a positive highest order coefficient could be sufficient to

steepen the potential before lower order terms will have induced a hilltop. The

phenomenology of this analysis is depicted in figure B.1. This shows how chaotic

signatures are only visible for ∆ ∼ O(1).

We thus find that once sufficiently large ξ & O(N2
e ) drives the non-canonical

field displacement sub-Planckian, the form of the higher order coefficients is mostly

irrelevant for the inflationary predictions.
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[97] A. Einstein, “Näherungsweise Integration der Feldgleichungen der Grav-
itation,” Sitzungsberichte der Königlich Preußischen Akademie der Wis-
senschaften (Berlin), Seite 688-696., 1916.



Eidesstattliche Erklärung
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