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Zusammenfassung

Nach der Entdeckung der ersten Planeten, die um sonnenähnliche Sterne kreisen, ist die
Untersuchung dieser Exoplaneten zu einem neuen Feld in der Astronomie geworden, das
sich steigender Beliebtheit erfreut. Die Suche nach neuen Welten mit der Hoffnung letztlich
einen Planeten ähnlich der Erde zu entdecken treibt die Entwicklung neuer Instrumente an.
Einige dieser sind Weltraumteleskope wie Kepler, die Photometrie von Transit-Ereignissen
mit bemerkenswerter Genauigkeit liefern. Dies machte es möglich mehr als tausend neue
Exoplaneten zu entdecken; mehrere tausend Kandidaten müssen nun noch bestätigt werden.

Die Untersuchung von Transits offenbart nicht nur Eigenschaften der Planeten, sondern
bietet auch die Möglichkeit Eigenschaften ihrer Zentralsterne zu untersuchen. Während
des Transits wird die Helligkeitsverteilung der Sternoberfläche abgetastet. Dies beinhaltet
Aktivitätsindikatoren wie Flecken und Fackeln, aber auch die Randverdunkelung. Letzteres
ist ein geometrischer Effekt und hängt von Eigenschaften der Photosphäre ab, wie z.B. der
Effektivtemperatur. Bei der Modellierung von Transits in schlechter Datenqualität muss die
Randverdunkelung aus Modellatmosphären angenommen werden. Allerdings ist es bisher
nicht geklärt, ob diese Vorhersagen realistisch sind. Der Vergleich zwischen gemessenen und
vorhergesagten Randverdunkelungen ist eines der Hauptziele dieser Arbeit.

Für die Untersuchung der Randverdunkelung nutze ichKepler Photometrie von 48 Hauptreihen-
sternen verschiedener Effektivtemperaturen. Diese Objekte werden von Planeten bedeckt, was
zu typischen Lichtkurven führt. Im Gegensatz zur Verwendung von Randverdunkelungsvorher-
sagen für die Modellierung dieser Transits, erlaubt die hohe Datenqualität eine direkte Messung
zusammen mit den übrigen Transitparametern. Diese Messungen sind die präzisesten in der
Geschichte der Randverdunkelungsforschung entfernter Sterne.

Die Vorhersage der Randverdunkelung erfordert genaue Kenntnis der stellaren Parameter,
z.B. Effektivtemperatur und Oberflächengravitation. Diese Größen können aus Spektren
abgeleitet werden. Ich verwende hochaufgelöste VLT/UVES Spektren von zwei Sternen
(ε Eridani und CoRoT-2A) zur Demonstration der Bestimmung dieser Größen mit Hilfe
eines Programms, das auf synthetischen Spektren beruht. Der Vergleich dieser Parameter
mit denen aus der Literatur offenbart wie verlässlich diese Methode ist um die erhaltenen
Parameter zur Erstellung von Modellintensitäten zu verwenden. Die präzisesten verfügbaren
Messungen der Randverdunkelung – die der Sonne – eignen sich ausgezeichnet zum Vergleich
mit solchen Vorhersagen. Ich präsentiere einen direkten Vergleich und führe eine Skalierung
der Modellintensitäten ein, die systematische Abweichungen reduziert.

Die bisherige Verwendung von Randverdunkelungsgesetzen in Transitmodellen ist zu einem
gewissen Grad willkürlich. Deshalb entwickle ich einen numerischen Transitalgorithmus,
der Randintensitäten direkt aus den Modellatmosphären verwendet. Dies eröffnet neue
Möglichkeiten der Transiterzeugung, wie z.B. in beliebigenWellenlängen oder Filtern. Darüber
hinaus können beliebige Planetenformen und Bilder von der Sonne verwendet werden.
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Abstract

After the discovery of the first planets orbiting solar-like stars at the end of the last century, the
study of these exoplanets has become a new field in astronomy with increasing popularity.
The search for new worlds with the hope to discover a planet similar to the Earth drives
the development of new instruments. Some of these are space-based observatories like
Kepler which offer photometry of transit events with a remarkable precision. These modern
instruments made it feasible to discover more than a thousand new exoplanets; several thousands
of planetary candidates are yet to be confirmed.

The study of transit light curves not only reveals properties of the planets, but also provides the
opportunity to investigate properties of their host stars. During its transit the planet probes the
star’s surface brightness distribution. This includes activity indicators like spots and faculae,
as well as the limb darkening. The latter is a line-of-sight effect and depends on properties
of the photosphere, like the effective temperature. In the case of modeling transits with poor
photometric quality the limb darkening has to be assumed based on model atmospheres,
which have already proven their accuracy in spectral synthesis. However, whether these model
predictions are realistic or not is not conclusively answered. The comparison between measured
and predicted limb darkening is one of the main goals of this thesis.

For the study of the limb darkening I use Kepler’s high precision photometry of 48 main-
sequence stars with different effective temperatures. These objects are eclipsed by orbiting
planets causing typical transit signatures in the light curves. In contrast to the use of limb-
darkening predictions in modeling these transits, the high quality of the data allows to measure
the limb darkening together with the remaining transit parameters. These measurements are
the most precise in the history of limb-darkening studies on stars other than the Sun.

For the prediction of limb darkening a precise knowledge of stellar parameters, e.g., the
effective temperature and the surface gravity, is required. These parameters can be deduced from
spectroscopic data using line-ratio measurements or synthetic spectra. I use high resolution
VLT/UVES spectra of two well studied planet host stars (ε Eridani and CoRoT-2A) to present
the determination of these parameters using a software tool based on spectral synthesis. The
comparison of the parameters to those found in the literature reveals how reliable the used
method is for synthesizing model limb intensities based on the resulting parameters. The
most precise limb-darkening measurements available – those of our Sun – are well suited to
compare them to such limb-darkening predictions. I present a direct comparison and introduce
a rescaling of the model limb intensities that reduces systematic differences.

The current usage of limb-darkening laws in transit modeling is at least to some degree arbitrary.
Therefore, I employ numerical methods to develop a highly efficient transit algorithm which is
capable of directly using limb intensities from model atmospheres. Using this method opens
up new possibilities for transit modeling, like simulating transits in any wavelength or filter
band. Moreover arbitrary shapes of the planet and images of the Sun can be used as input.
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1 Introduction

Studies of other stars than the Sun are by nature more difficult since these objects are too far
away to be resolved in observations. Although there are a few exceptions where the surface can
directly be resolved using interferometry (e.g., Haubois et al., 2009) or Doppler imaging (e.g.,
Nesvacil et al., 2012), the information on the majority of stars can only be taken indirectly
from the light which reaches us. We know that this light is powered by nuclear fusion deep
inside the stars. However, the light that we can observe originates from the outermost part
of the stars called the stellar atmosphere. Stellar characteristics like age, spectral class, and
conclusions about their interior are driven by studies of the light coming from this region.

1.1 Stellar atmospheres

The stellar atmosphere contains hot gas and plasma and can be characterized by the temperature
and the density as a function of height. As illustrated by Fig. 1.1, the temperature and density
structure of the Sun’s atmosphere allows dividing it into different layers. These layers are
named (from bottom to the top) as photosphere, chromosphere, and corona. The corona – the
largest part of the stellar atmosphere – can reach an extent of several stellar radii, depending
on the state of magnetic activity. Certainly, only very little optical light is coming from this
region of the atmosphere. For instance, the Sun’s corona is only visible during solar eclipses
or when a coronograph is used. The temperature of the coronal plasma is higher than one
million degree, while the heating mechanisms are still not fully understood. At the bottom
of the corona we find the transition region to the upper chromosphere, which is identified by
a steep decrease in temperature down to the chromosphere, together with a rapid increase
of the density. The position and the structure of this transition region is still under debate
and depends on the magnetic activity causing coronal loops or holes. The thickness of the
chromosphere itself is therefore also varying, but typically in the range of about 2500 km;
compared to the size of the corona, this is not even one percent. The photosphere is the
smallest part of the atmosphere. As visible in Fig. 1.1, the Sun’s photosphere is only about
500 km thick. On stars other than the Sun its thickness can differ depending on the surface
gravity, the temperature, and the composition of the hot gas (metallicity). The photosphere
is also often called the stellar surface in visible light, because it is the region where the star
becomes optically thick. Stellar spots and the granulation can be found here. Although this is
the smallest region of the atmosphere, most of the observed light is coming from this layer.
This includes the optical spectral absorption lines and the continuum, while in contrast most
emission lines originate in the chromosphere. Due to the low amount of light, the other layers
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Figure 1.1: Temperature and
density structure of the Sun’s
atmosphere. The height is
measured from the top of the
photosphere. Different parts
of the atmosphere are labeled.
For comparison some tem-
perature and density regions
are marked: Numbered lines
(lower left corner) give the
melting point of gold (1) and
iron (2), and the boiling point
of silver (3). The temperatures
of an acetylene welding flame
and an iron welding arc are
marked with (4) and (5). Let-
tered lines (top) indicate the
densities of the Earth’s atmo-
sphere at hight of 50 km (A)
and 90 km (B), a mechanical
vacuum pump (C), diffusion
pump (D), and an ion pump
(E). Information taken from
picture reference.

of stellar atmospheres are much more difficult to study on stars further away than the Sun.
Only with great technical effort using space-based X-ray observatories it is, e.g., possible to
study stellar coronae. Nevertheless, today it is even possible to study the stellar interior. For
instance, the region right below the photosphere sometimes called the sub-photosphere (e.g.,
Gray, 1976), which takes part in spot creation and evolution. These measurements are carried
out using the techniques of helioseismology (e.g., Komm et al., 2013), which require high
temporal resolution and an outstanding photometric precision.

Beside measurements another important part of modern stellar astrophysics is the simulation
of their atmospheres. These simulations are, e.g., based on the absorption and transmission of
light in hot gas or plasma. On the one hand, the theory is used to simulate the physics in stars
to reproduce observations and, on the other hand, the theory also predicts observables which
then could be proved by measurements. The first stellar model atmosphere was created by
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1.1 Stellar atmospheres

McCrea (1931) who used a numerical integration to get the total number of neutral atoms and
the electron pressure at a given optical depth. This made it possible to predict a more precise
absorption than before, namely not only for hydrogen but also including other elements. Since
then the numerical simulations got more and more complex and computationally demanding,
which now require super computers with hundreds or even thousands of CPUs. Over the
decades many model atmosphere codes were developed, e.g. PANDORA (Avrett & Loeser,
1992), MULTI (Carlsson, 1992), ATLAS (Kurucz, 2005), and PHOENIX (Hauschildt &
Baron, 2010) just to mention some of them. These codes lead, e.g., to very precise model
predictions and reproductions of observed stellar spectra. Therefore, they make important
contributions to the further understanding of convection, radiation, and spectral line formation
in the atmospheres of stars.

Both, observations and simulations of stellar atmospheres are irreplaceable astrophysical
tools. Only their combination provides a fundamental understanding about stars and their
development. The study of stars also helps us to understand the nature and processes of our
own Sun. This thesis is mainly based on the analyses of light coming from the photosphere,
except for a few examples to be found in Chapter 6. This includes spectral observations and
photometry of transiting exoplanets. The spectral analysis is then carried out to determine
fundamental stellar parameters, like their effective temperatures, by using synthetic spectra
generated from model atmospheres. The photometric data is analyzed by transit modeling
to measure the surface brightness distribution of these stars and to compare these results to
predictions given by model atmospheres. Therefore, this work can give new insights to the
quality and precision of the most recent available stellar model atmospheres.

1.1.1 The origin of stellar limb darkening

When observing the Sun in visual wavelengths one can see a decrease in brightness from
disk center toward the limb (Fig. 1.2). Additionally, the limb of the Sun appears more red
when compared to the center. These phenomena are summarized as limb darkening and can
easily be observed using small telescopes or even by eye when using filters. In earlier days of
astronomy the solar limb darkening was not known and even Galilei and also Huygens were
of the opinion that the Sun has a homogeneous brightness distribution. The German Jesuit
priest Christoph Scheiner, who lived at the time of Galilei, seems to be the first who found the
Sun to be dimmer at the limb (G. Müller, 1897). However, the first quantitative measurements
were made in the middle of the 18th century by Pierre Bouguer. He determined the normalized
intensity at 0.75 solar radii away from the center to about 73% (Bouguer, 1760). Ghacornac
(1859) then was the first who found that disk center and limb are different in color, which was
later quantitatively measured by Vogel (1877) using spectroscopic observations. Naturally,
there are much more astronomers who provided pioneering observations of the brightness
distribution of the solar disk who I am not going to mention here. Instead, I recommend
the book of G. Müller (1897) where one can find a short historical introduction about the
observations and methods used to determine the solar brightness distribution across the disk.
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Figure 1.2: Colorized image of the solar photo-
sphere. The limb darkening is clearly visible as
well as prominent spot groups. The limb appears
also more red compared to the center.

Figure 1.3: The reason of limb darkening. Col-
ored ring represents the photosphere with hot
(blue) and cool layers (red). Dashed curve indi-
cates unit optical depth in direction of the line-
of-sight. See also, e.g., Gray (1976, Fig. 9.2).

The knowledge about the fact that the Sun is not only a simple glaring sphere but rather
surrounded by an atmosphere is essential for the understanding of limb darkening. We have
seen in Fig. 1.1 that the photosphere is the lowest part of the Sun’s atmosphere and it is the
origin of the visible light and actually of the limb darkening. Like the Earth’s atmosphere, the
photosphere shows extinction that means it scatters light and also absorbs a certain amount of
it. Therefore, the optical depth τν =

∫ b

a
κν ρ dx is introduced. κν is the frequency dependent

absorption coefficient and ρ the density of the material. The optical depth describes the fraction
of radiation that is scattered or absorbed on a path a to b. In other words τν is a measure of
transparency for a given frequency ν of the light. For values of τν � 1 we say the atmosphere
is optically thick and the mean free path of the photons is smaller than their wavelength. For
τν � 1 the atmosphere is optically thin and the mean free path of the photons is larger than
the wavelength. An optical depth of τν = 1 reduces the intensity of the radiation to 1/e. In the
scheme of radiative transfer theory it is appropriate to use the optical depth as a measure of the
geometrical depth in stellar atmospheres. At the stellar surface the optical depth is zero and in
the center of the star it is infinity. The change of emergent intensity Iν with optical depth is
then given by

dIν
dτν
= Iν − Sν , (1.1)

which is a basic form of the radiative transfer equation. Sν is called the continuum source
function that describes the ratio of emission and absorption. However, Eq. 1.1 describes only
the change of intensity perpendicular to the surface along the τν-axis. As indicated by Fig. 1.3
this is only appropriate for light coming from disk center. For other disk positions the light
seen by an observer has an exit angle θ with respect to the surface normal. Equation 1.1 is
intuitively adapted to account for that angle and the radiative transfer equation then reads

cos(θ)
dIν
dτν
= Iν − Sν . (1.2)
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Figure 1.4: Solar limb darkening in different wavelengths (labels). Data taken from Pierce & Slaughter
(1977) and Pierce et al. (1977), and plotted against the radial disk coordinate r (left) and using the limb
angle µ (right). All profiles are individually normalized to corresponding disk center intensities.

For θ = 90° an observer looks parallel to a photospheric element with constant τν and sees
no change in intensity. This would be the case for a position at the disk limb. For disk center
(θ = 0°) this equation becomes the same as Eq. 1.1. The integrated form of Eq. 1.2 yields

Iν (0, θ) =

∞∫

0

Sν e−τν sec(θ)sec(θ) dτν , (1.3)

which is the emergent intensity at the surface (e.g., Gray, 1976). The exponential factor is the
extinction which scales with −τν sec(θ). We see that the intensity is massively influenced by
that angle dependent extinction, since the secant reaches infinity for θ = 90°. Consequently,
the optical depth in the direction of the line of sight

τ′ν = τν sec(θ) , (1.4)

reaches unity much earlier than the radial optical depth τν . This is illustrated by the dashed
line in Fig. 1.3. This hypothetical τ′ν = 1 surface moves upward closer to the stellar surface for
increasing θ. This means that an observer looks at higher photospheric layers at the limb than
compared to the center. Due to the outward decreasing source function higher photospheric
layers are less bright and also cooler which is in the end the reason for the limb darkening.

Since Bouguer (1760) the solar limb darkening has been measured with increasing accuracy.
One of themost precisemeasurements of the last century is shown in Fig. 1.4. Themeasurements
were made for a wide wavelength range covering optical and infrared spectral regimes. It
is easily visible that the brightness decreases toward the disk limb (r/RS = 1) and that
this darkening is more pronounced for shorter wavelengths. The stronger extinction in short
wavelengths together with the lower temperature at higher photospheric layers is the reason for
the color dependence of the limb darkening. Therefore, measuring the limb darkening can also
be used to determine the temperature structure of the photosphere.
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Table 1.1: Summary of the most common limb-darkening laws.

Name Equation Reference
linear I (µ)/I (1) = 1 − u(1 − µ) Schwarzschild (1906)
parabolic a) I (µ)/I (1) = 1 − a(1 − µ) − b(1 − µ2) Chalonge & Kourganoff (1946)
quadratic b) I (µ)/I (1) = 1 − u1(1 − µ) − u2(1 − µ)2 Kopal (1950)
3-term log. I (µ)/I (1) = 1 +

∑3
k=1 ck ln(µ)k Sykes (1953)

cubic I (µ)/I (1) = 1 − v(1 − µ) − v′(1 − µ)3 van’t Veer (1960)
logarithmic c) I (µ)/I (1) = 1 − A(1 − µ) − Bµ log(µ) Klinglesmith & Sobieski (1970)
P5 I (µ)/I (1) =

∑5
n=0 An µ

n Pierce & Slaughter (1977)
square root I (µ)/I (1) = 1 − c(1 − µ) − d(1 − √µ ) Diaz-Cordoves & Gimenez (1992)
nonlinear I (µ)/I (1) = 1 −∑4

k=1 ak (1 − µk/2) Claret (2000)
exponential I (µ)/I (1) = 1 − g(1 − µ) − h(1 − eµ )−1 Claret & Hauschildt (2003)
3 para. nonlin. I (µ)/I (1) = 1 −∑4

k=2 ck (1 − µk/2) Sing et al. (2009)

Notes: a) Original form: A + Bµ + Cµ2, with A = 1 − a − b. b) Many authors refer to Kopal (1950)
as the inventor of this law, but it seems to me that his presented equation is a different form of the
parabolic law. The earliest source I can confirm for the quadratic law is van’t Veer (1960, Eq. 18 a).
c) The authors used a logarithm to the base 10, several others the ln(µ), e.g. Orosz & Hauschildt (2000)
and Claret (2000). Using the LDCs from the authors to create the limb profiles verifies this statement.

Because of the secant in Eq. 1.3 the measurement of the intensity close to the limb is difficult.
The brightness drops off rapidly and for accurate measurements one has to acquire more points
at the limb region. For a clearer illustration of the extreme limb regions it is appropriate to
choose a different coordinate to express the disk position. When assuming τ′ν = 1 we can
directly infer from Eq. 1.4 that

τν = cos(θ) ≡ µ . (1.5)

The µ-value is used as an abbreviation and often called the limb angle. At disk center is µ = 1
and at the limb we find µ = 0. Due to the nonlinear nature of µ, regions close to the limb
are stretched as can be seen in the right panel of Fig. 1.4. This µ-axis is commonly used in
limb-darkening studies and has, eventually, a physical meaning. Furthermore, the geometry of
the problem (Fig. 1.3) allows us to express µ as a function of the radial coordinate, namely

µ =
√
1 − r2 = cos[sin−1(r)] , (1.6)

which offers the opportunity to easily transform µ into the radial coordinate r and vice versa.

The empirical limb darkening as shown in Fig. 1.4 is usually approximated by a function of
µ. Such a function is, e.g., used when modeling photometric time series data of eclipsing
binaries. The simplest limb darkening description used for that purpose is a linear function.
However, we have seen in Fig. 1.4 that the limb darkening is not linear and shows at
most wavelengths a significant curvature. Hence, functions with higher orders are needed
for appropriate intensity descriptions. I summarize in Table 1.1 some of the commonly
used limb-darkening parameterizations proposed over the years. Of course there exist more

6



1.1 Stellar atmospheres

limb-darkening descriptions not mentioned here, like Barban et al. (2003) who presents a
generalization of the cubic equation. However, all of these equations are only approximations
to the real intensity distributions, although they are called limb-darkening laws. The diversity
of the available laws implies that one is still uncertain about the correct description of stellar
intensity distributions. In this regard, Neckel (2003) stated that among all laws the fifth order
polynomial, P5, is the best description of the solar intensity distribution available.

All limb-darkening laws share the characteristic that they need a certain number of coefficients,
which are called limb-darkening coefficients (LDCs). In contrast to the simple linear law, e.g.,
the quadratic law introduces a second coefficient that causes a curvature, which leads to a
much better description of the limb darkening. When looking at the derivatives

dI
dµ
= u1 + 2u2(1 − µ) , (1.7)

d2I
dµ2
= −2u2 , (1.8)

we can see that the curvature is only adjusted by u2 while the gradient is influenced by both
coefficients. However, the influence of u2 is changing with the limb angle and it is more
pronounced for positions close to the limb. To achieve a darkening the coefficients can only
be adjusted in a certain range. As already shown by Kipping (2013) one can give physical
constraints on the values of u1 and u2 by applying the assumptions that the intensity and the
gradient have to be always positive. Together with the derivatives he shows that

u1 + u2 < 1 , u1 + 2u2 > 0 , u1 > 0 . (1.9)

The strength of the limb darkening can, however, be estimated by calculating the integral of
the quadratic limb-darkening law

1∫

0

I dµ = 1 − u1
2
− u2

3
. (1.10)

Low values of this integral indicate strong limb darkening which is mainly caused by a high
value of u1. If we look at cooler photospheric layers, e.g., using a red filter or observing through
interstellar dust causing extinction, we will see weaker limb darkening but with a stronger
curvature toward the stellar limb (cf. Fig. 1.4). Translated into limb-darkening coefficients,
when using the quadratic law, one would see smaller values for u1 und larger values for u2,
compared to hotter photometric layers where the limb darkening is stronger and also more
linear. I will show later on that this quadratic law is quite accurate and a good choice, e.g., in
transit modeling.

The limb-darkening coefficients are the base of all reasoning in modeling of the limb darkening
and in general they are unknown. To measure the limb darkening and to acquire the coefficients
by fitting, we have to observe the intensity distribution across the stellar disk. Due to the
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distances it is a challenging task to directly measure the limb darkening on other stars than the
Sun. Therefore, most techniques available are only indirect methods where the information
about the stellar surface is drawn from light curves. For instance, a second object passes the
line of sight blocking light coming from specific parts of the stellar surface. This is given in
the case of eclipsing binaries (e.g., Claret, 2008) or planetary transits (e.g., Knutson et al.,
2007), which are the most common methods to acquire limb-darkening information. A more
elaborate technique is the observation of microlensing events (Zub et al., 2011). Thereby light
from different parts of the stellar surface are magnified by a foreground moving gravitational
lens. However, these events are quite rare and provide only a limited precision. A method to
directly measure the surface brightness distribution is optical interferometry. This method
tries to image the stellar surface, which is only feasible for close stars with large radii. Using
this method, Haubois et al. (2009) present the determination of the limb darkening over a few
surface elements of Betelgeuse. In principle, it is also possible to determine the limb darkening
from the shape of spectral lines, which appears as an additional broadening as mentioned by
Frisch (1975). However, other broadening mechanisms (see Chapter 2) have to be known in
detail to use this method.

I showed above that limb darkening is the visible result of the outward changing source
function Sν (τ). To find the source function is not a trivial task and part of radiation transport
theory and, therefore, part of stellar model atmospheres. Consequently, there exists no exact
analytical solution for describing the limb darkening. In the next subsection I will present
some approximations developed by several authors.

1.1.2 Theoretical approach to the limb darkening

Karl Schwarzschild introduced the concept of radiative equilibrium (Schwarzschild, 1906),
which should occur in an atmosphere where the exchange of energy is dominated by radiation.
Before this groundbreaking idea, it was believed that the Sun’s atmosphere is in adiabatic
equilibrium, which means energy is mainly transported by convection. In his work he showed
that the radiation F into one direction can be written as

F (i) =
A0
2

(1 + 2 cos i) , F (0) =
3A0
2

, (1.11)

with i describing the angle between the direction of the radiation and the surface normal. The
underlying geometry is the same like demonstrated in Fig. 1.3. Thus, this equation can be
interpreted as a prediction of the brightness distribution on the solar disk, with F (0) being the
radiation seen at disk center. Normalized by the disk center radiation this yields a theoretically
introduced limb-darkening law of the form

F (i)
F (0)

=
1
3
+
2
3
cos i = 1 − 2

3
+
2
3
cos i = 1 − 2

3
(1 − µ) . (1.12)

This is in fact a linear description of the limb-darkening, with a constant coefficient (u = 2/3).
Compared to measurements, Eq. 1.12 was the best approach available in these days, which
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1.1 Stellar atmospheres

Schwarzschild commented as an empirical justification of the concept of radiative equilibrium.
Consequently, the Sun’s atmosphere is not in adiabatic equilibrium, which shows by theory an
normalized intensity distribution equal to cos i.

An even more precise approximation of the radiation field in the solar atmosphere was
developed by Arthur Eddington (Eddington, 1926, § 226). He assumed that the intensity could
be split into an inward and an outward component, which both are constant at any optical
depth. This leads to an emergent intensity of

IE(µ) =
3
4π
σT4

eff

(
µ +

2
3

)
, (1.13)

see, e.g., Hubeny & Mihalas (2014, p. 571) for more details. Is this solution again normalized
by the disk center intensity, then the constants vanish and we get

IE(µ)
IE(1)

=
3
5

(
µ +

2
3

)
= 1 − 3

5
(1 − µ) . (1.14)

This is again a linear limb-darkening description, but with a smaller coefficient than found in
Eq. 1.12. Hence, this relation yields a slightly weaker limb-darkening prediction. Nevertheless,
as mentioned before in Section 1.1.1 the actual limb darkening is by no means linear. As a
consequence we need more accurate approximations, which can be obtained by introducing
the Λ-operator. This operator is essential to approximate the angle averaged intensity

J =
1
4π

∫

4π

I dω, (1.15)

for a given source function S. We write

J (τ) ≡ Λτ[S(t)] = Λτ[J (t)] , with Λτ[ f (t)] ≡ 1
2

∞∫

0

f (t) E1( |t − τ |) dt . (1.16)

In this scheme we have to make an initial guess of the source function and derive then the
integral shown in Eq. 1.16. The result is then again used as an initial value to calculate
the integral again. This process is called Λ-iteration and repeated until J (τ) converges.
For simplicity we now only perform one Λ-iteration, using Eq. 1.13 from the Eddington
approximation together with Eq. 1.15, as an initial value. This leads to a mean intensity over
which we integrate analogous to Eq. 1.3 to get the emergent intensity. The normalized result is
not as short as the previous examples and written as

I1E(µ)

I1E(1)
=

7
12 +

1
2 µ + ( 13 µ +

1
2 µ

2) ln([1 + µ]/µ)
13
12 +

5
6 ln(2)

. (1.17)

This equation is obviously not strictly linear anymore and predicts a normalized intensity of
0.35 at the limb. This value is about 13% lower than achieved from the simple Eddington
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approximation, but only 5% higher than provided by Schwarzschild’s approach. This is caused
by a weak curvature provided by this prediction found close to the limb. In contrast to the
intensities at the limb, the deviation from the Eddington distribution is negligibly small for
most µ-values. Thus, Eq. 1.17 provides only a bit stronger limb darkening than Eq. 1.14.
For more details about the presented limb-darkening approximation and the used Λ-iteration
method, see Hubeny & Mihalas (2014).

Beyond these examples of approximations, there exist an exact solution of the problem
predicting the emergent intensity, provided by Eberhard Hopf (Hopf, 1934, § 25). His solution
is fairly complicated and available in different forms. Here I present the form

H (µ) =
1√

1 + µ
exp



1
π

π/2∫

0

θ tan−1(µ tan θ)
1 − θ cot θ dθ


, (1.18)

given in Hubeny & Mihalas (2014, Eq. 17.35), and leave it unnormalized for the purpose of
clarity. The value of the disk-center intensityH (1) to be used as normalization constant is
≈ 2.91. For µ = 0 this equation predicts a normalized intensity of 0.34, which is compared to
the previous example again an indication for a slightly stronger limb-darkening prediction. The
shape of the distribution is comparable with the one achieved when using Eq. 1.17 and it is
hard to distinguish between them for µ > 0.3. For a comparison of the shapes of all mentioned
limb-darkening predictions I put them together in Fig. B.1.

The presented Equations 1.12, 1.14, 1.17 and 1.18 are solutions for a planar gray atmosphere
in local thermodynamic equilibrium. This means that the geometry and the equations are only
one-dimensional, the opacity is independent of wavelength, and the gradients of the physical
conditions of the material are small in observed time scales. This is obviously a simplified
assumption of the Sun’s atmosphere. The assumed unrealistic opacity also implies that the
limb darkening should not show any color dependence. Moreover, the absence of spectral lines
in this theory is a great simplification. We know that millions of spectral lines have a crucial
influence on the atmosphere’s opacity, which is called line blanketing. Therefore, the actual
limb darkening is also dependent on the presence of spectral lines and could only be predicted
when accounting for them. Including, e.g., spectral lines and wavelength dependent opacities
require numerical methods, which is actually one reason why we rely on model atmosphere
codes to predict the limb darkening.

1.1.3 Influence of stellar parameters on the limb darkening

I showed in the above subsections that limb darkening is an inherent property of the photosphere.
Consequently, we expect a connection between the characteristics of the photosphere, like
chemical composition or temperature, and the limb darkening. To examine the parameter space
and the influence on the limb darkening it is appropriate to use a grid of model atmospheres
and, e.g., to study the changes of the limb darkening coefficients for one specific law. Claret
(2000) already presented such analysis of the coefficients for the nonlinear limb-darkening law.

10



1.1 Stellar atmospheres

Figure 1.5: Influence of the surface gravity (top) and the metallicity (bottom) on the quadratic
limb-darkening coefficients. The curves show differences between coefficients determined with different
values for log g and [M/H] (labels) and predictions for log(g) = 4.5 and [M/H] = 0.0. The models are
based on ATLAS atmospheres in Johnson-V band. See text for details and Fig. B.2 for the effect of the
microturbulence.

I will concentrate on the quadratic law because it plays a major role in this thesis and we will
see that it is accurate enough for most applications.

For the analysis I used limb-darkening coefficients provided by Claret & Bloemen (2011)
based on ATLAS model atmospheres. This multi-dimensional grid of coefficients depends on
the effective temperature, the surface gravity, the microturbulent velocity, and the metallicity.
To get the coefficients for one specific set of stellar parameters, I linearly interpolated on
that grid. In Fig. 1.5 I show the effect of log g and [M/H] on the quadratic coefficients for a
reasonable effective temperature range. Shown are the differences, e.g., between u1 determined
for log(g) = 4.5 and [M/H] = 0.0, and values of u1 determined for higher and lower values of
these parameters. This is almost the same approach I showed in Müller et al. (2013, Sect. A)
where I used the Kepler bandpass. However, this time I show the limb-darkening dependence as
seen in a Johnson-V filter, change the sign of the differences for a more intuitive interpretation
of the results, and present u2. One can clearly see that the influence of the varied parameters
is temperature dependent. There exists a temperature range (≈ 4500K to ≈ 7500K) where
almost no influence of log(g) is visible. In contrast, for stars cooler than ≈ 4500K we see
a strong sensitivity on log(g). If we look at the bottom panels of Fig. 1.5 we see that the
metallicity has a stronger effect on the limb darkening and also for a wider temperature range.
However, I chose rather extreme values for the metallicity, since according to Casagrande
et al. (2011) the metallicities of most stars in the solar neighborhood lie in the interval of
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[M/H] = ±0.2. For such metallicities the coefficients show only a change of ±0.02 at 5500K
and, therefore, the metallicity behaves similar like log(g) and is only important for cooler
stars. The microturbulent velocity does not show a clear temperature dependence like log(g)
or [M/H] and has only a weak influence on the limb darkening at all (see, Fig. B.2). For the
chosen temperature range the deviation from the coefficients determined with ξ = 2.0 km s−1
never exceeds ±0.015 for both coefficients.

As already stated above, the presented curves are generated for a Johnson-V filter band. If we
would repeat this analysis in different spectral bands we would see slightly different sensitivities
of the limb darkening on the presented parameters. Like the limb darkening that becomes
weaker when observed in red light also the influence of the discussed parameters becomes
weaker in, e.g., a Johnson-I filter. In the case of log(g) = 4.5 the peak value of the difference in
u1 is only ±0.09. For a metallicity of [M/H] = 0.5 the peak value is below ±0.2. The situation
changes if we consider a Johnson-U filter. Compared to the curves in Fig. 1.5 the influence
of log(g) is not stronger but also significant for temperatures of about 5000K. For higher
temperatures log(g) introduces a similar behavior to the coefficients like the metallicities in
Fig. 1.5 with a maximum difference of both coefficients of ±0.02. If we consider the influence
of the metallicity in this filter band, we see that the significant peaks around 4000K are gone.
However, the limb darkening now seems to be slightly more sensitive to [M/H] around 6000K
when compared to Fig. 1.5 and shows a peak difference of about ±0.04 for [M/H] = ±0.2.

From the presented analysis we can infer that higher surface gravities and lower metallicities
both lead to weaker limb darkening. On the one hand, the circumstance that the limb darkening
depends on fundamental stellar parameters makes it necessary to have a reasonable estimate
of these parameters, before one can rely on predicted limb darkening for modeling. On the
other hand, we are able to learn something about the fundamental parameters of stars by
studying their limb darkening (see Neilson & Lester, 2012). Figure 1.5 allows us to estimate
the sensitivity of the limb darkening on these stellar parameters. The dependence of the limb
darkening on the effective temperature is not shown here. However, it will be part of some
figures in Chapter 4 and can be summarize as it is stronger for cool stars and decreases with
temperature.

1.2 Extrasolar planets

During the last few decades the observations and studies of planets orbiting other stars than
the Sun have become a popular field in astronomy. Especially in the last five to ten years
this development was mainly driven by space-based missions (CoRoT and Kepler) searching
for undiscovered transiting extrasolar planets. The determination of the physical parameters
of these exoplanets, such as their temperatures, radii, and densities, is only possible with a
precise knowledge of the parameters of their parent stars. These stellar parameters are mainly
deduced using spectroscopic observations, partially introduced later on in Chapter 2. However,
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exoplanets can be for their part a new tool to study properties of stars, like the center-to-limb
brightness distribution, which also includes spots and faculae.

In the following subsections I will give a brief introduction to the discovery of the first
exoplanets and the most important detection methods. At least some of these methods are
influenced by the center-to-limb brightness distribution of their host stars. For instance, the
transit method on which I will concentrate in this thesis. In Section 1.3 I will then discuss the
transit method in more detail.

1.2.1 First planet detections and their definition

The ancient astronomers had to rely on their eyes for observations, thus they were limited
to bright celestial bodies. This included the Sun, the Moon, comets, bright stars and objects
which we know as our solar system planets. Originally, depending on their movements at the
sky these objects were all classified as either stars or planets. The latter term has its origin
in the early Greek astronomy where they invented the word πλανητης (planetes), which
means “wandering star”. The development of the first small telescopes and the concept of the
heliocentrism gave rise to a more modern definition of planets being objects orbiting the Sun.
Further progress in the instrumentation made it feasible to discover much fainter planets than
before. This concerns Uranus (1781, W. Herschel), Neptune (1846, J. G. Galle), and – almost
85 years later – Pluto (1930, C. Tombaugh), which was previously predicted by distortions
of the orbits of Uranus and Neptune (Unsöld & Bascheck, 2005). After that more and more
so-called trans-neptunian objects (TNOs) were found. It is believed that most of them are still
undiscovered and that at least some of them could be even more massive than Pluto. Therefore,
the International Astronomical Union (IAU) invented a new class of planets, which should
include all “planet-like” solar system bodies historically not counted as planets, such as Ceres
and all TNOs. This new class is called dwarf planets and to be distinguished from the classical
planets according to the following characteristics (IAU, 2006):

- A planet is a celestial body, which a) orbit’s around the Sun, b) accreted enough mass to
be in hydrostatic equilibrium (almost round shape), and c) has cleared the neighborhood
of its orbit from smaller bodies.

- A dwarf planet is a celestial body, that a) same as planet, b) same as planet, c) has not
cleared the neighborhood of its solar orbit, and d) is not a satellite.

- Small solar-system bodies are all other objects that are neither a planet nor a dwarf
planet, except satellites, also orbiting the Sun.

According to this definition Pluto lost its planetary status and was from now on counted as
a dwarf planet. This IAU resolution is controversial not least because Pluto is not a planet
anymore, but also because there were a few more or different characteristics proposed (Basri &
M. E. Brown, 2006), e.g., taking their formation or mass into account. In the end, the found
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consensus solves the immediate problem of an increasing number of solar system planets
caused by new discoveries of TNOs.

Since the development of the telescope and the motivation of the Copernican model, the
only known planets were those of our own solar system, divided into the inner, small and
rocky planets (Mercury, Venus, Earth and Mars), and the outer gas giants (Jupiter, Saturn,
Uranus and Neptune). In the year 1992 things changed due to the discovery of a planetary
system orbiting a neutron star (Wolszczan & Frail, 1992). This neutron star was detected two
years before by Aleksander Wolszczan as a millisecond radio pulsar with a pulse period of
6.2ms. The authors found periodicities in the pulse period, which they attribute to at least
two orbiting planets with 2.8 MEarth and 3.5 MEarth. The remarkable idea is that the planets
have formed after the super-nova explosion. This assertion is also provided by their relatively
small distances from the pulsar of about 0.5AU and 0.4AU. At these distances they should
not have survived even the red-supergiant phase of their host star. Nevertheless, this was the
first distinct detection of planets outside of our solar systems. However, there was already a
claimed exoplanet detection in 1989, but rejected because it was believed that this object is
a brown dwarf. These objects are too light to start hydrogen core fusion, but they are heavy
enough to start deuterium or lithium fusion. The limit for this kind of energy production is
in the range of 13 − 75 MJup, where the lower value defines the border at which deuterium
burning can occur. More recent observations indicate that the object discovered in 1989 could
actually be a real planet with a mass just below the deuterium burning limit (Kane et al., 2011).
Beyond this revised planet detection, the first most unambiguous detection of a extrasolar
planet was reported by Mayor & Queloz (1995). They measured a periodic velocity shift of
51 Pegasi in the direction of the line of sight caused by the orbiting planet. With at most 2 MJup
and an orbital period of 4.2 days this planet was for a long time the first known exoplanet
orbiting a solar-like star.

The discovery of more exoplanets and planetary systems will help to answer important
questions about our own solar system, like how it was formed and how unique the structure is.
In the end it will also help to answer the most challenging question: do habitable exoplanets
comparable to the Earth exist?

1.2.2 Detection methods

There are several different methods for the detection of exoplanets that are continuously
improved by new instrumentation. Almost all of them are indirect methods, so that the
planet is not resolved in observations. Only by analyzing the light coming from the stars and
searching for periodicities, we are able to draw conclusions about the existence of low-mass
objects orbiting these stars. I will give here a short introduction into some important detection
techniques and comment on their advantages or disadvantages. For a more general introduction
I recommend the work of Perryman (2014), who provides an excellent overview of all detection
methods.
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Direct imaging

© [Chauvin et al., 2004] © [Kuzuhara et al., 2013] © [ESO/J. Rameau, 2013]

Figure 1.6: Three exoplanets detected by direct imaging. Left: First direct imaging planet 2M1207 b
red and its host (a Brown Dwarf) blue. Center: GJ 504 b small dot at the upper right. Its host star is
removed by image processing. Right: HD 95086 b blue dot at the lower left. Host star also removed by
image processing. Position indicated by the white symbol. The blue line marks size of Neptune’s orbit.

Direct imaging is the most intuitive detection method of exoplanets. The basic idea is to
take an image of the planet on its orbit around the star. This is not to be understand as
catching a resolved image of the planets surface, but rather the reflected star light or its
own emission. The instrumental requirements for this method are very high. For instance
the telescopes are operated using adaptive optics to reduce effects caused by the Earth
atmosphere or tiny coronographs placed into the optical path to reduce the light coming from
the host star. The required resolution of these instruments, to separate stellar and planetary
point-spread-functions, can be determined by using the definition of the parallax

sin$ =
a
d
. (1.19)

If the distance d is given in parsec and the semimajor axis a of a hypothetical planet in
astronomical units, then $ is measured in arcseconds. Using this relation we estimate that
the angular distance between Jupiter’s orbit and the Sun would be 0.17′′, when seen from a
distance of 30 pc. Actually, the Very Large Telescope (VLT) is able to provide a resolution of
typically 0.05′′/px using adaptive optics1. However, the resolution is not the only problem to
solve. The more challenging part is to deal with the brightness contrast between star and planet.
In optical wavelengths Jupiter is 109 times fainter than the Sun, while in the infrared this ratio
is only 104. This is caused by Jupiter’s self radiation that exceeds the reflected Sun light in the
infrared. Therefore, this detection method is biased toward young and still hot planets, with
large semimajor axes2 of the order of 102 − 103 AU. Unfortunately, the masses of such planets
are hard to determine and normally estimated with evolution models. These masses have large
uncertainties and in some cases detected objects turned out to be brown dwarfs.

1http://www.eso.org/sci/facilities/paranal/instruments/naco/overview.html
2http://exoplanet.eu
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Radial velocity

© [ESO, 2007]

Figure 1.7: Illustration of the radial velocity method.
The planet and its host star are orbiting around their
barycenter. This leads to a back and forth movement
measurable as a Doppler shift of the star’s light. Blue
waves indicate blue shifted light when the star moves
toward the observer, while red waves are measured when
the stars moves in the opposite direction.

A totally different method is the radial velocity method. In contrast to direct imaging, this
method does no try to detect planets by taking images. For the observations we need high
resolution spectrographs to analyze the velocity component of the presumed host stars that is
parallel to the line of sight. If a planet orbits a star, both bodies orbit around their center of
mass. If the orbital plane is not oriented face-on, we will be able to measure a periodic change
in the star’s radial velocity. Therefore, this method belongs to the group of the indirect planet
detection methods, since we only measure the influence of one or more orbiting masses on the
host star. This is actually a spectral line shift caused by the Doppler effect written as

∆λ

λ
=

v

c
sin i =

1
c
2πrS

P
sin i . (1.20)

Due to the unknown inclination angle i of the orbital plane, the measured velocity is just a
lower limit of the actual stellar motion induced by the orbiting planet. With the orbital period
P and Kepler’s third law, we can calculate the semimajor axis a of the planet’s orbit, if we
assume that the mass of the host star is known from stellar models. The distance of the star
from the center of mass rS is given by

rS = a
MP

MS + MP
, (1.21)

which allows us to estimate the planetary mass. This mass is obviously again only a lower
limit, because the value of sin i remains unknown. If we take Jupiter as an example, the Sun
shows a radial velocity shift of at most 12.5m s−1, when an observer would look edge-on to
Jupiter’s orbit. The major problem would be to observe the whole orbit, since Jupiter’s orbit
lasts almost twelve years. Therefore, this method is well suited for close-in planets with short
orbital periods and massive planets or light stars which cause large radial velocity amplitudes.
Additionally, to achieve enough signal-to-noise in the spectral observations, bright stars are
preferred, as well as inactive stars with many spectral lines. Today’s instrumentation is able to
detect radial velocity shifts of at least 50 cm s−1. However, stellar intrinsic oscillations can
cause velocity shifts on the same order and, therefore, the limitations of this method are not
given by instrumentation (Mayor et al., 2003).
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Planetary transits

© [Hetlage, 2012]

Figure 1.8: Colorized Hα image of
the Sun during the Venus transit 2012.
The Venus is visible as the black dot
at the upper right part.

Figure 1.9: Illustration of a transit event.Dashed curvemarks
the planetary orbit, while the solid curve below shows the
measured phase-dependent flux. The dotted curve represents
the stellar flux without reflected light from the planet. Figure
inspired by Winn (2009, Fig. 1).

A detection method of still increasing popularity is the observation of planetary transit light
curves. During the last years this method was especially driven by the two space-based
observatories CoRoT and Kepler. These instruments perform photometric observations to
monitor the brightnesses of stars. If an orbiting planet eclipses its host star, the planetary disk
blocks a part of the stellar light and the measured stellar flux is decreased by that amount. The
relative flux change depends on the stellar surface area, which is covered during the eclipse,
and can simply be expressed by the squared ratio of the involved radii,

∆F
F ≈

(
RP
RS

)2
. (1.22)

This value is an approximation and only correct when limb darkening is negligible. Otherwise
more light would be blocked at disk center and the transit depth, δ, increases. In Fig. 1.9 I
present a typical transit event together with its light curve. During its orbit the planet shows
phases because the planet reflects stellar light from its day-side into the direction of the line
of sight. This reflected light contributes to the total flux measured from the system. This
contribution is increasing until the planet starts to disappear behind the star which leads to a
secondary transit.

The idea to search for periodic dimming of stars to detect exoplanets is quite obvious. Therefore,
it is not easy to find out who first proposed this method. Otto von Struve mentioned in a
proposal for radial velocity measurements (Struve, 1952) that it might be possible to observe
eclipses of planet-like bodies. However, he concluded that radial velocity measurements would
be more accurate when using the available instrumentation in these days. Almost 20 years later
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Rosenblatt (1971) presented an additional detection method based on the color dependence of
the stellar limb darkening. Due to the fact that the limb darkening is stronger in the blue than in
the red light, the star appears slightly more blue when the planet is at the limb, blocking mostly
red light. This effect vanishes while the planet moves toward the center of the stellar disk
and becomes again pronounced when approaching the opposite limb. Borucki & Summers
(1984) picked up the idea of searching for planetary transits and presented an estimate of the
needed observing time and instrumentation. Nevertheless, no detection of a planetary transit
was announced in these days. It took additional 16 years until the first detection of a transiting
exoplanet was reported by Charbonneau et al. (2000).

As indicated by Eq. 1.22, this method is biased toward small stars and big planets, because the
ratio RP/RS then maximizes. As an example Jupiter would cause a relative flux change of 1%
when it is eclipsing the Sun. For the Earth this value is of course much smaller. In that case
we are searching for a transit with a depth of only 0.08‰. When we are looking at smaller
stars, e.g., M-dwarfs, the detection of small planets becomes much more feasible caused by
the much deeper transit signal. In contrast, transit detections in front of giant stars with, e.g.,
1AU radius are challenging, because the hypothetical transit depth would be 2.3 · 10−7 for a
Jupiter-size planet or even 1.6 · 10−9 for an Earth-size planet. This is still beyond the precision
of modern, even space-based photometry. Another also important fact is the dependence of the
radii on the wavelength in which the objects are observed. Equation 1.22 is then written as

p2 =
(

RP(λ)
RS(λ)

)2
≈ δ. (1.23)

If we think about the Earth seen in visual wavelengths, in which the atmosphere has a high
transparency, the limb of the Earth is simply given by the surface. In X-rays, where the optical
thickness of the Earth’s atmosphere is quite high, the radius is larger by about 100 km. For
other planets this effect could be more pronounced depending on their atmospheres, causing a
deeper transit signal.

The obvious disadvantage of this detection method is that the orbital plane has to be oriented
close to edge-on. Otherwise there is no eclipse detectable by the observer. This is in contrast
to the radial velocity method where in principle all inclination angles between almost 0° and
90° would cause a Doppler shift. The inclination window at which an observer would be able
to detect a planetary transit is related to the planet’s semimajor axis a. For convenience the so
called system impact parameter

b =
a
RS

cos i ≈ 1 − √δ tdur
τ

(1.24)

is introduced by many authors, e.g., Winn (2009). The value τ denotes the transit ingress
duration until the full planetary disk is in front of the star. For all values of b between zero and
one a planetary eclipse is observable (Fig. 1.10).

The limiting values for the inclination are then calculated by

ilimit = cos−1
(±1RS

a

)
. (1.25)
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Figure 1.10: Schematic illustration of the impact
parameter. The observer looks from the right onto
the inclined orbital plane (dotted line). Dashed
lines indicate the limiting impact parameters for
transit observations.
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Figure 1.11: Allowed inclination angles expect-
ing a visible stellar eclipse as a function of semi-
major axis a (blue area). Lines for some impact
parameters b are also given (blue and gray lines).

In this simplified solution I assumed RP � RS and grazing transits are omitted. Figure 1.11
visualizes this equation and we can see that the inclination range at which we can observe
transits rapidly decreases with a. This illustrates that the probability to detect a transiting
planet which is far away from its host star is significantly lower than for close-in planets. The
actual transit probability, Ptr, is just the ratio RS/a (e.g., Winn, 2010). It follows that the transit
probability of a planet orbiting at 1AU around a solar-like star is about 0.5%. This value
is based on the assumption that the orientations of the orbital planes (cos i) are uniformly
distributed and that all stars actually have such planets.

1.3 Modeling of planetary transits

The analysis of transit light curves will be the major part of the presented thesis. Therefore,
I will go into some more details about the transit parameters and how they are determined.
There are a few parameters that in principle can be determined from the light curve without the
prior knowledge of a transit model. This includes the transit depth δ, the time of first transit
center t0, and the transit duration tdur. If there are more than one transit observed, we can also
determine the orbital period Porb. Except for δ, we can, e.g., use a linear regression of the
transit flanks to determine all mentioned parameters.

In Fig. 1.12 I present simulated transits for different color bands. It is visible that the different
strength of limb darkening leads to different transit shapes. For stronger limb darkening the
transit is deeper since a larger fraction of the stellar light is blocked at disk center compared
to the case with weaker limb darkening. Thus, the transit shape is massively influenced by
the limb darkening. On the one hand, this means that further parameters deduced from the
light curve are influenced by the stellar intensity distribution. Especially δ is not directly
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Figure 1.12: Left: Model transit light curves in different Johnson filter bands (labels). I used quadratic
limb-darkening coefficients obtained by a fit to a PHOENIX atmosphere (Table A.9, “µ-rescaled”).
Right: Model transits for different sets of quadratic coefficients (labels). The dashed curve represents a
transit without limb darkening. Parameters used: p = 0.1, i = 90°, a/RS = 11.2, POrb = 4.32 d. See
also Knutson et al. (2007) for different bandpasses.

related to p anymore, as it would be the case when no limb darkening is present. Consequently,
one has to account for limb darkening in transit modeling by relying on laws (Table 1.1)
and the corresponding coefficients. On the other hand, the planet acts as a probe and transit
light curves can be used to study structures of stellar atmospheres including the real limb
darkening of other stars than the Sun. Therefore, planetary transits can be used to compare
real measurements of the limb darkening to theoretical predictions.

For a precise transit study we need an analytical light curve formulation such as provided by
Pál (2008). Actually there already exist easy to use codes for creating transit light curves. For
my thesis I use the occultquad3 and occultnl routines (Mandel & Agol, 2002) that provide
transit models with linear, quadratic, and nonlinear limb darkening. The code is provided in
FORTRAN, which results in faster computation times compared to other implementations. The
major input parameter for these routines is the time-dependent sky-projected distance z of the
two bodies. It can be shown that for circular orbits z can be written as

z(t)2 = a2
[
cos2(i) cos2(ωt) + sin2(ωt)

]
, (1.26)

where ωt is the phase angle ϕ (ϕ = 0° in transit center). The remaining input parameters
are the radii ratio and the limb-darkening coefficients. Therefore, this code can be used to
determine p, i, a, and the corresponding limb-darkening coefficients u1 and u2, e.g., by using
a χ2 minimization algorithm. The time of the transit center tc and the orbital period Porb
have to be known for the modeling. As mentioned at the beginning of this section, they can
be determined by using model independent methods. Consequently, they can be set as fixed
parameters in transit modeling.

By using simple geometry it can be shown that the transit duration is given by

tdur = cos−1


1
sin(i)

√
1 −

(
1 + p

a

)2 
· Porb
π

, (1.27)

3http://www.astro.washington.edu/users/agol/
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with the semimajor axis a measured in stellar radii. The transit ingress or egress duration, τ,
can now also simply be determined by using the relation

2τ = tdur − ton , (1.28)

where ton denotes the duration in which the full planetary disk is in front of the star. This value
can be calculated by simply exchanging the 1 + p by 1 − p in Eq. 1.27. Now we are able to
analytically determine all transit times (t1...t4).

For simulations, which I will present later on, it is sometimes of special interest to add some
noise to the model. If we assume Poisson noise, the final simulation should be defined by

Fsim(ti ) = Fmod(ti ) + N (ti |σ) · √Fmod(ti ) , (1.29)

where N (ti |σ) is the normally distributed noise vector with zero mean and standard deviation
σ. By using this equation, we account for decreasing absolute errors during the transit, caused
by the decreasing flux. The scatter of the simulation is now time-dependent as it is the case in
real data (see Section 4.4). Therefore, this equation is indispensable for realistic simulations.

1.3.1 Markov chain Monte Carlo sampling

I presented in the previous subsection the used routine and minimum set of parameters for
transit modeling (p, i, a). These parameters are highly correlated due to the complexity of
the transit model. For instance, the transit duration as defined by Eq. 1.27 depends on these
three parameters. Therefore, each of these parameters influences at least the width of a transit.
By introducing limb darkening as a free model parameter the problem becomes even more
complex. Depending on the chosen parametrization of the limb darkening the model gets
additional parameters further increasing the degrees of freedom. Under these circumstances it
is possible that a minimization algorithm gets stuck in a local minimum, leading to incorrect
or even unphysical results. A Markov chain Monte Carlo method (MCMC) can deal with these
problems and additionally yields a reliable error estimate of the correlated parameters. The
MCMC method is based on Bayesian statistics and, therefore, I will give a brief introduction
to that field and to the MCMC sampling approach I used. For a detailed introduction into
Bayesian statistics I recommend, e.g., Bernardo (2003) or Loredo (1992) with an astrophysical
context.

The most fundamental equation in Bayesian statistics is

P(A|B) =
P(B |A)P(A)

P(B)
=

P(B |A)P(A)
P(B |A)P(A) + P(B | Ā)P( Ā)

, (1.30)

called Bayes’ theorem. In this scheme A and B are events of a statistical process. P(A|B) is the
probability that event A becomes true given that B is true. For instance, the observed statistical
process is tossing a dice, where one could define A to be the event when the result is an even
number and B the result is bigger than two. Ā is the complement of A, that means event Ā is
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true if the result is an odd number. This equation can be used in various statistical contexts,
e.g., to evaluate the reliability of a medical test for diseases (see e.g., Niemi, 2013).

For the task of parameter estimation, e.g., in transit modeling we can use Bayes’ theorem and
write

p(x |D) =
p(D |x)p(x)

p(D)
=

p(D |x)p(x)∫
p(D |x)p(x) dx

. (1.31)

Note that I rewrote the capital P from Eq. 1.30 to a small p, now denoting probability
distributions. Instead of the introduced events A and B, we now consider a parameter vector x
that corresponds to some model function that we use to describe our observed data D. The left
part of this equation, p(x |D), reads as the probability distribution of the parameters given the
data and is called the posterior probability distribution. The determination of the posterior
is essential for the estimation of the parameters and their uncertainties. The factor p(D |x)
is called the likelihood. In the case of measurements di with errors σi that are normally
distributed, the logarithm of the likelihood can be written as

ln(p(D |x)) =
∑

i

*
,
− ln(2πσ2

i ) − (di − m(x, ti ))2

2σ2
i

+
-
= C − 1

2
χ2. (1.32)

In transit modeling we search for a set of transit parameters x that maximizes the likelihood.
This is achieved if the error-weighted quadratic difference between model mi and data becomes
as small as possible. Under the chosen conditions for Eq. 1.32 this would be identical to a χ2
minimization. The second factor in the numerator of Eq. 1.31, p(x), is the prior probability
distribution. This distribution holds information about the parameters known prior to the
measurement, e.g., if one parameter is determined from a different experiment or known to
be always positive, like the semimajor axis. In the case of my transit modeling, I will always
use a uniform prior which means that all values in a certain interval between a lower and an
upper limit have the same probability. The denominator, p(D), is the probability distribution
of the data itself called prior predictive. It gives the distribution of our observed data before
we actually started the observation.

As mentioned above, for the parameter estimation we have to determine the posterior. This
is in most cases not a trivial task and depends also on the complexity of the proposed
model function. Note that in the case of transit modeling the posterior is a multidimensional
probability density function. This function has to be integrated to get the individual marginal
probability distributions of the parameters:

p(x j |D) =
∫

V

p(x |D)
∏

i, j

dxi . (1.33)

Instead of an analytical integration we can use numerical methods in particular sampling
from the posterior using a Monte Carlo approach. However, a basic Monte Carlo algorithm
which samples the whole parameter space by generating random variables is not very efficient.
Therefore, we need a Monte Carlo technique which creates the samples in a different way. A
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common approach is to use an algorithm which generates a sequence of random variables that
are created by a random walk with some certain starting point. This sequence of samples is
then called aMarkov Chain. Obviously, there is no improvement by using a simple random
walk since it would sample the whole parameters space like before. The process generating
the Markov Chain has to be adapted so that the samples follow the posterior probability
distribution. It is reasonable to achieve more steps where the posterior distribution is high
and fewer where it is low. This is provided by the Metropolis-Hastings algorithm (Metropolis
et al., 1953) which introduces a proposal distribution, q(zi+1 |zi ), for the next step. A typical
distribution is the Gaussian distribution and holds the probability of jumping to point zi+1
given the point zi . Clearly, the choice of the proposal distribution has an influence on the
convergence of the algorithm which could require a much higher number of performed samples.
To account for this issue the adaptive Metropolis-Hastings algorithm (Haario et al., 2001) was
introduced. In this algorithm the proposal distribution is updated after every accepted step of
the sampler. This has the advantage that the step size varies during the sampling based on the
cumulatively determined covariance.

For my work I used the PyMC (Patil et al., 2010) MCMC algorithm included in the
PyAstronomy4 that provides both, the adaptive and non-adaptive Metropolis-Hastings algo-
rithm. However, after some tests I decided to use only the adaptive algorithm for my analyses.
In Fig. 1.13 I present the accepted proposals of the sampling from the posterior of one of my
studied objects (see Chapter 4). The marginal distributions of the parameters can now simply
be determined by plotting the accepted parameter samples as histograms. The mean values of
the individual marginal probability distributions yield – in the case of Gaussian distributions
and uniform priors – the set of parameters that maximizes the likelihood. Consequently, these
are the expected values of the parameters.

The final and probably most important step is the determination of reliable estimates of the
parameter uncertainties. Given the marginal distributions we are able to obtain credibility
intervals from them. Such an interval covers a defined portion of the marginal distribution, e.g.,
95%. If we consider one of our used model parameters, xi , the covered portion calculates as

b∫

a

p(xi |D) dxi = 0.95 . (1.34)

The integration limits are commonly chosen in a way so that the interval between a and b
covers the highest portions of the marginal probability distribution. This interval is then called
the highest probability-density credibility interval.

In addition to the parameter estimates and their credibility intervals we can directly infer
information about the parameter correlations. The point clouds in Fig. 1.13 illustrate that for
the used example all parameters are correlated with each other. This means, if one parameter
is changed all others react on this change. We can also see that six out of ten parameter
4provided by Stefan Czesla on https://github.com/sczesla/PyAstronomy

23

https://github.com/sczesla/PyAstronomy


1 Introduction

Figure 1.13: Point clouds and histograms of 106 accepted MCMC samples for the five modeled
transit parameters (p, i, a/RS, u1, and u2) using the light curve of Kepler-7b. The point density is color
coded and can be estimated by the given histograms (200 bins).

combinations show an anti-correlation. As a prominent example, u2 always decreases when u1
is increased (Fig. 1.13, panel in the lower right corner). This can be interpreted as a decrease in
the curvature of the limb profile when the slope is increased and vice versa. For an analytical
approach to the correlation of u1 and u2, see Müller et al. (2013, Sect. B.4).

1.3.2 Impact of the data quality on fit results

As in almost all scientific measurements the data quality is defined by the signal strength
compared to the statistical and instrumental noise, which is then often defined as a ratio
between these values and called the signal-to-noise ratio S/N . Nevertheless, for transit studies
this value is not very descriptive. For a specific photometric signal-to-noise the transit signature
of a Jupiter-like planet could be well resolved while an Earth-sized planet could be hidden
in the noise. Therefore, it is meaningful to take the transit event as the signal of interest,
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Figure 1.14: Estimation of the needed transit signal-to-noise ratio (δ/N) for fitting the quadratic
limb darkening. Dots: fitted quadratic LDCs of simulated transits with different δ/N values. Blue lines
indicate the values used for synthesizing the transits (u1 = 0.48, u2 = 0.22). The remaining orbital
parameters were chosen as p = 0.105, i = 88°, a = 11.2 RS, which lead to a transit duration of about 3
hours. The error bars correspond to 68% credibility intervals.

not the continuum level. For this approach we need to know the transit depth δ, which can
be approximated by p2. As already outlined for Eq. 1.23 this value is correct when no limb
darkening is given. For all other cases I prefer to measure the depth in the transit center to get
a more precise value and to be independent of transit models including the orbital inclination.
Interpreting the transit depth as the signal we end up with a transit signal-to-noise ratio, which
I denote as δ/N .

For the measurement of the stellar limb-darkening using transit light curves, we have to know
which transit signal-to-noise is sufficient to achieve significant results. To give a reasonable
assumption I simulated individual transit light curves for different planet sizes (1.02 RJup,
1.32 RJup, 1 REarth) and added normally distributed noise (Eq. 1.29). The noise was different
for each planet size, but corresponds to δ/N values in the range from 5 to 150 for each planet
size. These light curves were then fitted with respect to five transit parameters, namely the
semimajor axis a/RS, the inclination i, the planet-to-star radii ratio p, and two limb-darkening
coefficients using the quadratic limb-darkening law. In addition I used an MCMC sampling
algorithm (Section 1.3.1) to perform 105 iterations and discarding a burn-in of 10 000. The most
probable parameters are then given by the mean values of the parameter traces. The resulting
limb-darkening coefficients for the transits simulated using a planet radius of 1.02 RJup are
presented in Fig. 1.14. As expected, the transit depth compared to the noise has a crucial
influence on the measurement of the limb-darkening coefficients. Although we can see that
almost all of these fit results are consistent with the values used for the simulations within their
error bars, we should aim for results where the mean value of the parameter traces lies close to
them. Therefore, my simulations show that one would need a transit signal-to-noise ratio of at
least 60 to achieve credible results when only a single transit light curve is observed. For this
planet size (1.02 RJup) this can be translated into a photometric signal-to-noise ratio of about
5000. This value is today still unreached by most ground-based instruments. The results for
the other chosen planet sizes are quite comparable and shown in Fig. B.3, but they are plotted
against the photometric signal-to-noise ratio.
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Figure 1.15: Effect on the transit shape, in-
duced by long integration times. Black dots rep-
resent 25 phase folded transits, while the white
diamonds show only one of these. The integra-
tion time (30 minutes) is indicated by horizontal
error bars. The transit model with infinite time
resolution is given as a red curve. Only the first
half of the transit is shown. See also Kipping
(2010, Fig. 1) for a trapezoid light curve.

Another important aspect of the data quality is the time resolution of the light curve. This time
resolution is, e.g., defined by the integration time needed to reach a satisfying signal-to-noise
ratio. For faint host stars or poor instrumentation this time interval is longer than for bright
objects and good instruments. Variability which occurs during one exposure is not resolved by
the measurement and included in one single data point. This data point can be understood as
a mean value of the flux during the given integration time. In the case of the popular space
telescopes CoRoT and Kepler these integration times are in the order of seconds. Unfortunately,
these satellites have a limited data transfer rate, which makes it necessary to combine multiple
exposures into a single one before sending them to Earth. This procedure is known as binning
(or re-binning) and also frequently performed to reduce the visible noise in light curves or
other kinds of data. However, this re-binning should always be avoided because there is no
gain in information although the noise is reduced. In fact the opposite is the case: information
is destroyed.

In the case of transit data the re-binning of the light curve has a crucial influence on the transit
shape. This can easily be understood when looking at Fig. 1.15 where I compare 25 simulated
and phase folded transits to the corresponding initial model. Before phase folding the synthetic
data was binned down from one to thirty minutes. Obviously, this causes the transit ingress to
occur significantly earlier than given by the model. The reason for this is that the binned data
points are mean values of the flux in a time interval of thirty minutes, which is illustrated by the
data points shown with horizontal error bars. Thus, the information of the actual transit start is
smeared out and the whole transit shape is deformed. However, someone could argue that it
might be a better idea to phase fold the transits first and perform the rebinning afterwards,
e.g., to one minute. But this is in fact not recommend since the bin time is almost never a
multiple of the orbital period. This leads to a different number of data points contributing to
new individual bins and to systematic effects like red noise (Section 4.4).

For the purpose of transit modeling and acquiring precise limb-darkening measurements it is
important to know whether data binning influences the resulting parameter estimates. It is
obvious that a light curve with a crude time resolution contains less information than compared
to one with short time binning. Therefore, we cannot expect a fit of the transit parameters to
lead to the correct values. To provide an estimate on the size of the expected discrepancies
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1.3 Modeling of planetary transits

Figure 1.16: Fit results of simulated transit data, which was binned according to typical integration
times. Blue horizontal lines indicate the parameter values used for the simulated transits. Empty circles
show the best fit solutions for an overbinned model taking into account the finite integration time. The
impact parameter b is deduced from the results of the inclination and the semimajor axis. The error
bars mark the 95% credibility intervals. Signal strength: S/N = 10 000, δ/N ≈ 130.

between real and fitted transit parameters, I simulated transit light curves with different bin
sizes and fitted the five transit parameters p, i, a, u1, and u2. These values were then again used
for 105 MCMC iterations. The results of the sampling are shown in Fig. 1.16. We can clearly
see that for bin sizes larger than two minutes the best-fit parameters substantially deviate from
the values used for the simulations (blue lines). In general one would tend to measure larger
planet-to-star radii ratios, more inclined orbits, but smaller semimajor axes with increasing
bin sizes. Most notably, the fit results of the limb-darkening coefficients u1 and u2 reach their
physical limits at a bin size of about 30 minutes. This behavior of the parameter fits is quite
impressive and indeed relevant for transit analyses. The reason for this is that the transit model
used for the fitting approach has by definition an infinite time resolution (or in other words
it is unbinned), but it is only evaluated at points in time of the binned data. Kipping (2010)
showed in his work “Binning is sinning” that it is necessary to evaluate the model function
at a significantly smaller bin size to obtain correct planetary parameters in the case of long
integration times. Such an overbinned model is then rebinned to the larger bin size of the data
and used for the fitting process. This would mean that the model is now binned in the same way
like the observed data. Using this approach, I gathered the resulting fit values shown as empty
circles in Fig. 1.16. These values almost perfectly coincide with the initial model parameters,
even in the case of the longest integration time of 30 minutes. This method is thus essential to
achieve correct fit values, especially in the case of long cadence data obtained by the Kepler
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mission, where the resulting time binning is 30 minutes. Unfortunately, this procedure leads to
substantially longer computation times (factor of 16 for the presented simulations) and bigger
uncertainties when compared to an analysis of unbinned data.

The effects of binned data are of course not limited to time resolved measurements and, e.g.,
also important for spectral data. It is everywhere of interest where a steep flux decrease or
increase occurs, which is then smeared out in time (or wavelength) by the binning. Thus, the
influence becomes most problematic for short ingress and egress durations found together
with short transit durations. For comparison, the transit duration of my presented simulations
(Figs. 1.15 and 1.16) is almost three hours which is a value often found in real data or even
shorter for hot Jupiters. Although I showed that it is possible to achieve correct fit parameters
using an overbinned fit model as proposed by Kipping (2010), I recommend to use photometry
with integration times not larger than two minutes for transit durations of three hours or
shorter. Otherwise, the fitted parameters are incorrect. The situation is even more complex if
the integration time is changed during the transit observation, e.g. due to changing weather
conditions. In that case the fit model has to be adapted to that circumstance. Furthermore,
depending on the photometric signal-to-noise or the δ/N value, the resulting uncertainties of
the fit parameters could be unsatisfactory when an overbinned fit model is used.

1.3.3 Which limb-darkening law should be used?

Due to the diversity of the available limb-darkening laws we have to face the question, which
law we should use for our analysis. In many cases the decision is influenced by the complexity
of the used model function or the data quality. Many authors tend to use the “simple” two
parameter laws instead of more complicated descriptions. Even in some cases we still find the
linear law in use, e.g., in Doppler imaging (e.g., Nesvacil et al., 2012), although it is often
considered to be inadequate and outdated (see Claret (2000) and references there). The question
arises how to decide which law is poor, which is excellent, and do we actually need laws with
at least four coefficients or are two enough. Some authors argue that a limb-darkening law is
declared to be good when it fits the model intensity distribution best. Therefore, some of these
laws were intentionally invented to reduce the residuals between them and intensities obtained
from model atmospheres. It seems that today’s primary purpose of most of these laws is to
be a good approximation of the model intensities and not of the real center-to-limb variation
of stars. Unfortunately, only a few limb-darkening functions were explicitly developed to
describe real observational data, like the polynomials given by Pierce & Slaughter (1977) or
Neckel & Labs (1994). These laws are the only ones to which we can refer if we ask for “the
correct” limb-darkening function. Obviously, such precise and direct measurements of the
limb darkening are nowadays only available for the Sun. In most other cases we have to rely
on indirect methods like transit studies. In this subsection I will present an analysis that should
simplify the decision which limb-darkening law we should use in transit analysis. The prior
assumption to be made is if transits using the individual laws do not differ much, then fits to
real observational data using these laws do not differ much either.
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1.3 Modeling of planetary transits

Figure 1.17: Minimum transit signal-to-noise
ratio (δ/N) needed to detect residuals between
transits with different limb-darkening laws as
a function of the planet-to-star radii ratio. The
labels show which model transits are compared.
Red dots indicate comparison of transits with
linear and quadratic limb darkening, while the
blue symbols result from transits with quadratic
and nonlinear descriptions.
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For a given set of transit parameters the choice of different limb-darkening functions will result
in slightly different transit shapes. If the differences are larger than the noise, we constitute
that these differences are significant. In that case we expect that transit fits would yield
different results depending on the used limb-darkening law, caused by the high correlation
between the limb darkening and the remaining transit parameters. To estimate to which
extent the results actually differ and which level of photometric noise is needed to distinguish
between different limb-darkening laws, I present simulations. I used the four parametric
nonlinear limb-darkening law (Claret, 2000) and created transit light curves for different
planet-to-star radii ratios, p, with one minute cadence. I denote this transit model as mnl. The
orbital inclination and the semimajor axis were set to 88.5° and 11.2 a/Rs, respectively. This
procedure is repeated with the same parameters using the linear and quadratic limb-darkening
laws, resulting in the models ml and mq. The limb-darkening coefficients were taken from
Claret & Bloemen (2011) for Teff = 5800K and log g = 4.5 in a Johnson-V filter using a
PHOENIX atmosphere. The residuals between these three transit models are now only caused
by their differing limb-darkening descriptions. The maximum of these residuals defines an
upper limit of the noise at which we would just be able to detect differences induced by the
chosen limb-darkening law. In Fig. 1.17 I present the transit depth, δ, divided by the maximum
of the absolute value of the residuals occurring between transits using the nonlinear and the
quadratic law (mnl(ti ) − mq(ti )), as well as the quadratic and the linear law (mq(ti ) − ml(ti )).
The individual points could be interpreted as the minimum transit-signal-to noise (δ/N) needed
to detect residuals at a 1σ level between transits created with the particular limb-darkening
laws. If we look at the red dots we can say that for values of δ/N below that points the residuals
between a transit using the linear law and one using the quadratic law are hidden in the noise
and, therefore, not significant. The same is the case for the residuals between the transits with
nonlinear and quadratic laws but at a significantly higher transit signal-to-noise level (blue
diamonds). The additional information that we can draw from Fig. 1.17 is that for small planets
the effect of a poor limb-darkening description is seen at smaller δ/N than it is the case for
larger planets. Therefore, the choice of the limb-darkening model is more important for small
planets. This is actually what we expect since a small planet acts as a more precise probe of
the stellar surface in contrast to a larger one.
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Table 1.2: Fit results of a simulated transit using different limb-darkening laws.

Model p i/° a/RS LDCs a) χ2/ν

nonlinear 0.10000 88.50 11.20 a1,..., a4
linear fixed 0.09978+0.00006−0.00006 88.52+0.03−0.03 11.20+0.02−0.02 u = 0.6838 3.79
quad. fixed 0.09989+0.00005−0.00005 88.54+0.03−0.03 11.21+0.02−0.02 u1 = 0.5624, u2 = 0.1627 1.16
linear free 0.10069+0.00006−0.00006 88.32+0.02−0.03 11.12+0.02−0.02 0.6437+0.0014−0.0013 1.20
quad. free 0.10003+0.00009−0.00011 88.51+0.04−0.04 11.21+0.03−0.02 0.5996+0.0050−0.0046, 0.0982

+0.0096
−0.0115 0.92

Notes: The first row shows the input values of the synthetic transit, which should be reproduced by the
model fits. a) In the cases where the limb-darkening coefficients are fixed they are taken from Claret &
Bloemen (2011), for Teff = 5800K, log g = 4.5 in Johnson-V filter using a PHOENIX atmosphere.
Errors are deduced from a MCMC sampling (68.5% highest probability density).

In the example presented above I compared transit models with the same parameters and
fixed limb-darkening coefficients. This approach is useful to estimate the occurring residuals
between these transits, only caused by the different limb-darkening laws. However, this is not
very close to the actual problem. In real observational data at least the parameters p, i, and a
would be fitted during transit modeling. This results in smaller residuals but also different
transit parameters depending on the limb-darkening law. How these fitted parameters differ
from the correct values can be estimated by transit modeling. My investigation relies on the
synthetic transit created with the nonlinear law with p = 0.1 and added Gaussian noise to
achieve a δ/N of 400. As we can see in Fig. 1.17 this value is twice as high as required to
see residuals between the quadratic and nonlinear law. Therefore, we expect clear residuals
and different transit parameters after the modeling. This transit was then fitted using a transit
model with the linear and the quadratic law, first using fixed limb-darkening coefficients and
then leaving them free. In Table 1.2 we find the results of this fitting procedure. Overall the
fitted parameters do not differ much from the correct values, however, we can identify some
characteristics. In the case of the linear limb darkening we see that the resulting parameters
differ more from the correct values when the limb-darkening coefficient was also allowed
to vary during the fit. Especially the inclination and the semimajor axis are significantly
smaller. If the quadratic limb darkening is used, the parameters show a better match when
the limb-darkening is fitted together with the other parameters. Additionally, the reduced χ2

value offers valuable clues to the accuracy of the used model. The linear limb darkening
is inadequate and leads to residuals, especially present when the coefficient is fixed to the
predicted value. The inaccuracy of the linear law is also shown in the work by Raetz et al.
(2014), where a fit of transits of TrES-2b leads to clear residuals. In contrast, Table 1.2 reveals
that the quadratic limb darkening results in a much better fit, even when the coefficients are
set to the predicted values. In the case where the quadratic limb darkening is fitted together
with the transit parameters, we end up with an excellent fit expressed by an optimal χ2/ν.
This result is essential, because the chosen δ/N value is high enough that there would be
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significant residuals. However, after a fit of all parameters the residuals are gone and the transit
parameters were only slightly adjusted, namely p by 0.3‰, the inclination by 0.1‰, and the
semimajor axis by 0.9‰.

Based on the shown results I conclude that it is reasonable to use the quadratic limb-darkening
law in transit modeling. For a given transit signal-to-noise of 400 – this is equivalent to a noise
level of 3 · 10−5 together with p = 0.1 (cf. Table A.6) – higher orders of the limb-darkening
description are not necessary. The occurring deviances of the parameters using the quadratic
law compared to when using the nonlinear law are below the one permil level and smaller than
the parameter uncertainties. Especially for observations with lower photometric accuracy, e.g.
ground-based observations, the quadratic limb-darkening law offers a sufficient precision.

1.4 Thesis outline

We have seen in the foregoing sections that a detailed knowledge of the stellar limb darkening is
indispensable for the study of various kinds of measurements in photometric and spectroscopic
data. The treatment of the problem as a theoretically predictable phenomenon has been
established in all fields where limb darkening plays a crucial role. The investigator relies on
limb-darkening “laws”, which are only approximations to the actual intensity distribution.
The coefficients of these “laws” can only in a few exceptions be determined by using high
quality observations. Thus, in most cases the coefficients are determined by fitting model
atmospheres, which are on their own again only approximations to real stellar atmospheres.
Whether these coefficients and laws are valid or not is still unknown. Consequently, the study
of the limb darkening in a greater sample of stars could provide an empirical basis to answer
that question.

The intention of this thesis is to provide a consistent analysis of the limb darkening in a greater
sample of stars, starting with the determination of the needed stellar parameters. The major
part of my work is therefore devoted to planetary transit studies and the determination of the
limb darkening from these light curves. The results improve our knowledge about the validity
of the limb-darkening coefficients, their laws, and about the underlying model atmospheres.

This thesis is divided into eight chapters, which in principle could be read independently. The
only exception could be Chapter 4, which should be read after reading my publication (Müller
et al., 2013). However, if chapters are read individually, I assume a prior knowledge of transit
light curves, their main parameters and modeling, the orbit geometry of transiting exoplanets,
and about the Kepler space mission.

Following the introduction presented in Chapter 1, Chapter 2 deals with spectroscopic
observations partly obtained by myself and the analysis of the spectra. The main focus is set
on the determination of the fundamental stellar parameters like the effective temperature,
the surface gravity, and element abundances by using synthetic spectra based on model
atmospheres. This is the first step to give an estimate of the star’s limb darkening. As a side

31



1 Introduction

effect we will see how accurate the spectral synthesizing based on model atmospheres is
today. In Chapter 3 I introduce the Kepler space telescope, because a major part of my thesis
is based on the analysis of data coming from this instrument. This includes an overview of
the instrumental layout, a mission overview, and its capabilities to detect small earth-sized
planets. This might be of interest for those who are not familiar with this instrument and its
data acquisition. This chapter is followed by Chapter 4 in which I present my limb-darkening
studies of high-quality transit light curves obtained by the Kepler space mission. They lead
to the most precise measurements available of the limb-darkening of other stars than the
Sun, published in the journal Astronomy & Astrophysics. In this chapter I also give some
supplementary information not found in my publication (Müller et al., 2013). Chapter 5 is
dedicated to a comparison of the precisely measured limb darkening of the Sun and predictions
from model atmospheres. This will also allow to discuss the accuracy of the common fits
to the limb intensities of model atmospheres and to introduce an alternative fit approach. In
Chapter 6 I introduce an efficient numerical code to synthesize transit light curves independent
of any limb-darkening "law" by directly taking disk intensities from model atmospheres. To
show the capabilities of my code I present some simulations including transit light curves in
different wavelength regimes with the Sun as a host star. Chapter 7 provides an overview of my
contributions to refereed scientific journal articles. This also includes a complete version of my
accepted first author publication High-precision stellar limb-darkening measurements (Müller
et al., 2013). Finally, I close with Chapter 8 where I summarize my work. Each chapter is
treated individually with a short outline about the methodology followed by my found results.
At the end of this thesis I provide appendices with tables and figures.
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2 Spectral Observations and Analyses

We have seen in Section 1.1.3 that the stellar limb darkening depends on several stellar
parameters, such as the effective temperature. The knowledge of these parameters is thus
indispensable for modeling transit light curves. The determination of these parameters requires
additional data, at least in different color bands. This allows us to determine the B-V color
index and, hence, an estimate of the effective temperature. For more precise analyses one
preferably acquires spectroscopic observations. Together with line analysis methods and
spectral synthesis using model atmospheres, it becomes possible to determine a whole bunch
of stellar parameters with sufficient precision.

In this chapter I present own spectroscopic and photometric observations of a planet hosting
star as well as the inspection of high-resolution spectra with a widely used software tool. First,
the emphasis is set on the instrumentation and the observation method. For the selected object
all transit parameters are well known from space-based observations and the limb darkening
remains as the parameter of interest. I will show the resulting photometry and comment on
occurred problems. In the case of the spectral analysis I will concentrate on the determination
of the stellar parameters, like Teff and log g. The main purpose of this part will be to test the
capabilities of the used software. In the end I will compare the resulting stellar parameters to
values found in the literature.

2.1 Spectro-photometry of the CoRoT-2 system

CoRoT-2A (Alonso et al., 2008), a very active planet host star, was discovered by the CoRoT
space telescope. The optical light curve shows remarkable spot induced variabilities, modulated
by the stellar rotation (Fig. 2.1). Additionally, the light curve shows sharp dips that are caused
by the occultation of the stellar disk by the transiting hot Jovian planet CoRoT-2b. Due to
the amazing light curve with its periodic oscillations, CoRoT-2A is often referred to as the
prototype of a new class of active stars. The great advantage of this system is the transiting
planet that offers the opportunity to study the active host star in a totally new way. During
its occultation the planet probes a well defined path on the stellar surface, thus features like
spots and faculae can be resolved from transit light curves. The reconstruction of such surface
features is also called planetary eclipse mapping (e.g., Huber et al., 2009).

The center-to-limb intensity distribution is an important input parameter of transit modeling.
As shown in Section 1.3, it has its major influence on the transit shape and on the central depth.
If the disk intensity distribution is distorted by spots or faculae, then transit light curves will
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Figure 2.1: Light curve of CoRoT-2A
normalized to its median value. The
data was rebinned to half an hour. Dots
below the light curve indicate planet
eclipses. Data obtained by CoRoT.

reflect these features. If dark areas are transited by the planet, the disk-integrated intensity
rises and causes bumps in the transit (e.g., Wolter et al., 2009). In the case of bright areas
occulted by the planet, we observe additional dips in the transit. In contrast, if neither spots
nor faculae are occulted during eclipses, although they are present beyond the transit path, the
total transit depth varies according to the activity of the host star. Therefore, also not occulted
active regions directly influence the size estimates of the planet (Czesla et al., 2009). However,
in this case we are not able to learn something about the physical properties of these surface
structures, which is conversely possible when they are transited. The size of a bump (or dip) in
such a transit depends on the spatial dimensions of the underlying spot and the temperature
contrast between spot and photosphere. Having spectral or at least multi color data of these
regions would open up the possibility to directly measure the temperature of such features
on other stars than the Sun. CoRoT-2A is a well suited target for that purpose, because a
significant number of observed transits show spot induced perturbations. Even if no active
regions are sampled by the planetary disk, the limb darkening of this young and active star
could differ significantly from rather inactive stars with a comparable effective temperature
like the Sun. In both cases transit observations provide a promising opportunity to study the
wavelength-dependent center-to-limb intensity distribution on this young and active star.

2.1.1 Used instrumentation and observations

The following analysis is based on data obtained by Uwe Wolter and myself in June 2009
during my diploma thesis. For our observations we used the Potsdam Multi Aperture
Spectrophotometer (PMAS) (Roth et al., 2005) mounted at the 3.5m telescope at the Calar
Alto Observatory, Almeria, Spain. The instrument was set up in PPak mode (Kelz et al., 2006).
PPak is an integral field unit (IFU) for PMAS. It consists of 331 science fibers with a round
shape arranged in a hexagon (Fig. 2.2). The instrument covers a field of view of 74′′ × 64′′
with a filling factor of the sky area of 60%. Each fiber has a diameter of 2.7′′, with a small
gap between them of about 0.9′′. The fibers are then fed into a grating spectrograph, providing
a spectrum for each fiber corresponding to different positions on the sky. The spectrograph
can be equipped with different gratings to change the wavelength resolution to up to R ≈ 8000.
We used a low-resolution grating (300 lines per mm) to cover the whole optical wavelength
regime (here 4815Å to 8050Å). The acquired resolution was R ≈ 1800, which should be
enough to measure the center to limb intensity distribution in B, V, and R band.
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2.1 Spectro-photometry of the CoRoT-2 system

Figure 2.2: PPak raw images of our target field. Acquired counts (× 100) are color coded. The exposures
were taken for three slightly different sky positions (dithering). The positions were changed according
to the offsets (∆α,∆δ) = {(1.56′′,0.78′′),(0.0′′,−1.56′′),(−1.56′′,0.78′′)}. Images are produced during
a quick-look reduction with E3D (see text for details).

The observations were carried out in two nights1 with good weather conditions. Only at
the beginning of the second observing night we had to close the dome due to clouds and
high humidity. In both nights we had moderate atmospheric seeing between 1.1′′ and 1.4′′.
It was planed to observe CoRoT-2b during a transit and simultaneously take photometric
and spectroscopic data. To obtain a suitable photometric calibration a second star had to
be placed into the field of view that is sufficiently bright. The only object close enough
is USNO-B1.0 0913-00447626 (mR = 11.4mag) that is slightly brighter in R band than
CoRoT-2A (mR = 12.2mag). Because of the relatively large angular distance between these
two stars (52′′) it was necessary to place both of them close to the edges of PPak’s hexagonal
field of view. Unfortunately, a rotation of the instrument around the optical axis, to achieve a
better positioning of the targets, is not possible.

For the observations we chose an integration time of 300 s for the first night and 200 s during
the second night. Given the expected transit duration of about 7900 s we would have been
able to hypothetically catch about 26 and 39 data points during the transit event. These
estimates are however slightly optimistic, because I neglected time overheads, e.g. caused
by the CCD readout. For this instrument the readout time is on the order of 100 s, which
is relatively high. However, this was in the end not the only reason that reduced the time
resolution of the observations. The instrument expert and night astronomer Sebastian Sánchez
highly recommended to perform the observations in “dither mode”. In this mode the telescope
pointing is manually shifted after every exposure. The resulting pointing pattern is a triangle
which should account for systematic flux losses between the PPak fibers. Consequently, three
individual exposures were then combined into one, leading to an effective time resolution
of ≈ 1200 s per data point for the first night. Due to the shorter integration time during the
second night, the achieved time resolution is slightly better with ≈ 900 s per data point. In
Fig. 2.2 I show the images of the three individual exposures. One can clearly see both stars
in the field of view and the slightly different positions caused by the changing telescope
orientations. Beside the dithering, we had to make exposures for the wavelength calibration.
121.06.2009 and 28.06.2009. Dates denote the starting night.
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For that purpose we used ThAr and HgHe lamps. Those emission lines are used to determine
the individual dispersion of each fiber. The calibration exposures had to be repeated almost
every hour because the dispersion is dependent on the fiber orientation and therefore on the
telescope’s pointing. These calibration exposures again reduced the final time resolution by
about 150 s per hour. At the end of each observing night we took spectra of a spectroscopic
standard star (HR 7596 and G 24-92) to be able to perform an absolute flux calibration. Finally,
we were able to acquire 21 spectra in the first night and 22 in the second night, then combined
to 6 and 7 data points, respectively.

2.1.2 Data analyses and results

The data reduction of spectra obtained with an IFU is a whole thesis on its own and, therefore,
not described in detail here. Although the reduction is carried out with a partially automated
reduction software called R3D (Sánchez, 2006), some of the steps have to be done manually.
This includes the correction for different start and end points of each fiber spectrum on the
CCD. This behavior leads to CCD images curved perpendicular to the dispersion axis (see
Kelz et al., 2006, Fig. 14). I had to define by eye some nodes used for a polynomial fit, which
is used to correct the shifts of all fiber spectra. Another important step is the correction
of the non-linear dispersion of the spectrograph using the ThAg and HgHe emission lines.
Like before, the reduction software needs some manual interaction, by defining nodes for
a polynomial fit. In both cases the orders of the polynomials are defined arbitrarily by the
investigator. In fact, this step should be repeated for different orders of the polynomials and,
depending on the goodness of the fits, the order should be set to the one that provides the best
solution. All recorded files have to be treated in this way, which makes the reduction really
time-consuming. In addition to the mentioned steps I had to perform a cosmic removal, which
is also not implemented in the reduction software. Therefore, I wrote a script that calculates
the ratio of two individual CCD images and determines the sliding pixel difference (line
by line) of this ratio image. The sliding difference is compared to the median value in 150
preceding differences. If the difference exceeds the median by 15% the pixel value is replaced
by normal noise (Fig. B.4). Of course, there exist different or even much better methods to
remove cosmics, but in this early stage of my PhD thesis and with respect to the final outcome
of this analysis, my described method is absolutely sufficient.

After the reduction of all data files I continued by using the analysis software E3D (Sánchez,
2004). This software is specially designed to analyze IFU spectra and is able to generate data
cubes out of the observations. A data cube has two spatial dimensions (the image of the sky)
and one dimension for the spectral information. Hence, one slice from this cube represents a
sky image in one specific wavelength. Also important for my observations is the ability to
combine three images resulting from the mentioned dithering to one final cube. One resulting
image slice is shown in the left panel of Fig. 2.3. The target star CoRoT-2A and the photometric

2It turned out that G 24-9 is an eclipsing binary system. An absolute calibration was not performed anyway.
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2.1 Spectro-photometry of the CoRoT-2 system

Figure 2.3: PPak’s field of view after combining three dithered images. Left: Science image with
CoRoT-2A in the upper right corner and USNO-B1.0[...] at the middle left. Counts are color coded in
logarithmic scale. Right: Pixel map with reconstructed point-spread functions. The contour levels mark
0.15, 1.0, 10 and 45% of the respective maximum flux.

calibrator are now better visible compared to Fig. 2.2. Again, each pixel of this image delivers
a whole low resolution spectrum.

Having these final cubes I am in principle able to obtain wavelength-resolved relative
photometry of CoRoT-2A. Therefore, I can choose any arbitrary wavelength point in the
observed range to study CoRoT-2b transits. However, as already visible in Fig. 2.3, CoRoT-2A
was placed too close to the edge of the field of view that caused a non-negligible flux loss
during observation. The angular distance between CoRoT-2A and the photometric calibrator
made it impossible to solve this problem. To estimate the flux loss I modeled the instrumental
point spread function (PSF) with a two dimensional Gaussian, which also allows for elliptical
shapes (Fig. 2.3, right panel). I found a time- and color-dependent flux loss of the order of
a few percent. As a consequence, the accuracy required for a detailed spectro-photometric
analysis of less than one percent is not provided. Also conspicuous is the changing shape of
the PSF when looking at different final data cubes. Sometimes the shape of CoRoT-2A is
significantly elongated toward PPak’s edge. This behavior could suggest pointing inaccuracies
of the telescope on scales relevant for observations of point sources. Thus, it can happen that
the position of the stars on the fibers is not the same for one specific dither position. Indeed,
an inspection of the fits-headers yield a mean pointing inaccuracy of 0.7′′ during the dithering.
Therefore, the modeling of the flux loss at the edge of the field of view is not sufficient to
reconstruct the stellar flux.

Despite the mentioned problems, I used the six final data cubes of the first night and the seven
of the second night to apply a simple aperture photometry of CoRoT-2A. I selected 94 pixels
in a rectangular shape around CoRoT-2A and summed up all pixel values. This value was then
divided by the corresponding value of the photometric calibrator (130 pixels) which led to a
ratio of roughly 0.7. The resulting light curves of both nights are shown in Fig. 2.4. I chose
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Figure 2.4: Normalized PPak light curves of CoRoT-2A in four color bands (red: 6975Å - 8050Å,
green: 5895Å - 6975Å, blue: 4815Å - 5895Å, black: 4815Å - 8050Å). The error bars indicate the
1σ uncertainties of the black dots, others are not shown for clarity. Dashed lines: Transit model of
CoRoT-2b. Left: First observing night, detrended by linear fit. Right: Second observing night, last data
point left out. See text for details.

three different wavelength regions (see caption) in which I simply summed up the light. As
usual the light curves had to be normalized by the out-of-transit flux level. In the first night we
were only able to catch one data point inside the transit and five after the eclipse. Therefore,
I used a simple linear fit to the last five data points, to remove a decreasing trend and to
normalize the light curve. This was repeated for each of the chosen wavelength regions. In the
second night we were only able to acquire two usable data points outside of the transit. Thus, I
used the mean of these points to normalize the light curve. Due to the lack of measurements
before both transits the normalization and detrending is unreliable. I present for interest the
first light curve without the applied detrending and the second together with the left out last
data point in Fig. B.6. The errors of the data points are determined by assuming a Poisson
statistic. The relatively large uncertainties and the scatter of the data points are striking for both
nights. Unfortunately, the presumably visible lower flux during the transit events in Fig. 2.4 is
not significant. Especially for the second night where the light curves obtained in the blue and
the red light show contrary trends during the transit.

The obtained light curves are quite unsatisfactory. Due to the crude time resolution, the high
amount of flux loss at the edge, and the pointing errors of the telescope, I was neither able to
study the wavelength dependent limb darkening nor photospheric features like spots. We were
not able to achieve the time resolution required for this kind of analysis (see Section 1.3.2). The
time consuming dithering and the calibration exposures make the used instrument inadequate
for our intended purpose. It was originally designed to study extended objects such as galaxies
or clusters and not for photometry of point sources. Although it turned out that the observations
were insufficient to reach our planned goals, the data presented in Fig. 2.4 can give hints which
photometric precision and time resolution could be reached by this instrument. In the end, the
observations and the analysis could be understood as a kind of a feasibility study, especially
because we were the first who tried to observe a transit light curve using an IFU.
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2.2 Spectral analyses of two planet hosting stars

Spectral observations are important for the determination of various stellar characteristics,
for instance the spectral class. Among others we use stellar spectra to measure fundamental
photospheric properties like the effective temperature or the radial velocity. The determination
of the effective temperature from a spectrum can e.g. be carried out by the measurement of
line equivalent widths. Sousa et al. (2010) present an empirical relation between ratios of
some specific equivalent widths and the effective temperature of 451 stars. The preferred
spectral lines are those of iron and its first ionization state (Fe I, Fe II). The measurement of the
equivalent widths ratios of Fe I to Fe II has the advantage that iron shows plenty of spectral
lines distributed over the whole optical wavelength range and beyond. The high number of
lines makes this analysis statistically significant and independent of cosmics or instrumental
issues.

In contrast to the measurement of line equivalent widths, we can also obtain the stellar
parameters by directly fitting synthetic spectra to the observed data. For my investigations I
used the spectroscopic analysis tool Spectroscopy Made Easy (SME) (Valenti & Piskunov,
1996), which uses this approach. It relies on a line list from the VALD project3 (Piskunov
et al., 1995) and on a grid of model atmospheres. I used the preset Kurucz model atmosphere
grid, but in principle other atmospheres could be used if the file formats would be changed to
an SME-readable form.

In the following, I present the determination of stellar parameters using high resolution
spectra. These spectra belong to two planet host stars (ε Eridani4 and CoRoT-2A5) and were
obtained by our group using the VLT UVES instrument. The resulting stellar parameters will
be compared to values found in the literature to give a general assessment of the accuracy
of the used software. According to Section 1.1.3, the limb darkening is influenced by stellar
parameters, especially by the effective temperature. Therefore, an easy and also precise method
to determine these parameters is of great interest to model low signal-to-noise transit light
curves when using limb-darkening predictions. In the case of CoRoT-2A the results of the
parameter fits and the comparison to other methods are published in cooperation with S.
Schröter (Schröter et al., 2011).

2.2.1 Using SME to determine stellar parameters

The spectral analysis tool SME is able to determine a whole bunch of stellar parameters from
an observed spectrum by minimizing the χ2 between data and model. For convenience the
available parameters can be divided into three groups. First, the global parameters that have an
influence on all absorption lines, second, the line parameters which influence individual lines,
3VALD2 http://vald.astro.univie.ac.at/~vald/php/vald.php, used in this thesis, VALD3 http://vald.
astro.uu.se also includes some molecular lines.

4Program ID: 383.D-1002(A), PI: Wolter (Nov. 2009)
5Program ID: 385.D-0426(A), PI: Wolter (Jun. 2010), Observer: Huber
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and last the individual element abundances. The parameters that belong to the second group
are the absorption oscillator strength log(g f ) and the van-der-Waals damping γ6. These should
only be fitted if the focus lies on some specific lines or elements. Especially for improving the
accuracy of the abundance measurements, the oscillator strengths of the corresponding lines
should be calibrated by using a solar spectrum6. Nevertheless, such a detailed investigation
should only be carried out after the determination of the global parameters. These parameters
are Teff , log g, [M/H], the microturbulence ξ, the macroturbulence ζ , the projected rotation
velocity of the star v sin i, and a global γ6 factor. Before I present the fit results of these
parameters when using the mentioned high resolution spectra I will comment on a few steps
which have to be done to achieve proper stellar parameters. The general usage of SME is
explained in the available handbook (Valenti et al., 2012), and therefore not explained in detail
here. However, in the following we will also see some implemented features and how SME
has to be operated.

First of all, the observed spectrum has to be normalized before it is read into the software.
Although, SME is able to handle data that is given in absolute flux units, I recommend this
step to achieve most reliable results. If a simple detrending after the normalization process is
still needed, SME can also perform a linear fit to the continuum on its own. When no further
detrending or normalization is necessary, we have to determine the spectral resolution (λ/∆λ)
of the data. This is absolutely necessary especially for low resolution spectra. Similar as the
bin time for transit light curves (see Fig. 1.15), the limited spectral resolution broadens the
absorption lines. Consequently, the SME software has to account for this circumstance in
the spectral modeling to achieve correct fit values. In fact SME generates a highly resolved
synthetic spectrum, which is broadened by convolution with a Gaussian corresponding to the
given spectral resolution of the data. The minimization process is then performed between
this broadened spectrum and the data. This approach is quite similar to the overbinned fit
model used in transit modeling. After assigning the spectral resolution we can proceed with
the object’s radial velocity (vrad). It causes a relative Doppler shift of the spectrum with
respect to the observer, thus, vrad has to be known otherwise the spectral synthesis of SME
would not fit the data anyway. There exist different methods how to determine vrad, e.g. using
cross-correlation, but it is also possible to use SME. In this case SME fits a synthetic spectrum
to the data by applying a Doppler shift. For this fit we have to guess values for the global
parameters. Actually, it is not necessary to be close to the correct values of the star, though it
is more important to keep the broadening of the lines equal or below that found in the data. In
this way SME is able to find a global match of the line center positions.

After we have performed the three initial steps explained above we can in principle start a
global fit leaving all the associated parameters free. This is, however, not recommended due to
correlations between the parameters. It would be more appropriate if we could perform a fit of
only one of these parameters. Therefore, we select spectral lines which are mainly sensitive
to only one or at least weakly sensitive to the remaining parameters. For the estimation of
Teff we e.g. use the Hα and Hβ lines. Their line wings are primarily sensitive to the effective

6Piskunov, private communication
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temperature (e.g., Fuhrmann, 2004) and only slightly influenced by the other parameters like
log g. When using the Balmer lines we have to leave out the line cores during the fitting
approach, because they are affected by chromospheric emission. After that fit we can set Teff
to the value achieved and fix it for all further modeling. For the surface gravity we proceed in
a similar way. We select the NaD lines, which show a clear sensitivity to log g (e.g., Gray,
1976) and perform a fit of log g with SME keeping all other parameters fixed. It is important
to first achieve a proper effective temperature before fitting for the gravity, since the NaD lines
are also known to be significantly affected by Teff . By the determination of Teff and log g, we
reduced the number of parameters to be fitted to five, which are finally fitted together. The
introduced steps, first fitting Teff followed by log g and finally a fit of the remaining parameters,
should be the normal approach when modeling observed data using SME.

As an interesting byproduct, SME can also be used to generate synthetic spectra. Depending
on the line list used, the resulting spectrum consists of only one element or a full set of all
available elements together with some molecular lines. Furthermore, these spectra could
be synthesized for almost any parameter combinations. I used this feature to create a grid
of almost 80 synthetic spectra in the range of 5500Å to 9000Å. For the initial parameter
set I used arbitrary values: Teff = 5500K, log g = 4.44, ξ = 1.1 km s−1, ζ = 0.0 km s−1,
v sin i = 2.0 km s−1, and [M/H] = 0.0. For each following parameter set of the grid I varied
one specific parameter and kept the remaining fixed to the initial values. The resulting grid
is excellent to see the effects of e.g. the effective temperature or the surface gravity on the
spectrum and to find absorption lines sensitive to specific parameters. In Fig. 2.5 I show five
different spectral lines of my SME grid for which these effects are well pronounced. As we
can see, the influence of the effective temperature on the Hα line profile is clearly visible
for the chosen temperature range. For each increased temperature (400K per step) the line
becomes deeper and the wings extend further. The width of the line core also increases with
Teff . At 4000K the influence is limited to ±5Å away from the line center, while at 6000K the
continuum is suppressed in a range of about ±50Å. The surface gravity has a similar effect on
the NaD lines. The line wings are significantly pressure broadened, but there is almost no
change in line depth. In contrast to Teff and log g the Doppler broadening caused by the v sin i
has the same influence on all lines. The upper right panel of Fig. 2.5 illustrates the broadening
and decreasing of the line depth for typical velocities. At high velocities spectral lines which
are located close to each other are merged and cannot be individually resolved anymore. Two
further broadening mechanisms are the micro- and macroturbulences. In the concept of the
microturbulence the size of the turbulent cells is smaller than the mean-free photon path.
Photons emitted in one cell can reach another cell and will be absorbed there. Due to the
relative velocities between these cells, a photon emitted in the line core is then absorbed at a
Doppler shifted wavelength, e.g. in the line wing. Thus the microturbulence ξ broadens the
line and increases the equivalent width. In the case of macroturbulence ζ the turbulent cells are
larger than the mean-free photon path. The photons are emitted and absorbed in the same cell.
The velocities relative to the observer are now relevant. Consequently, the macroturbulence
broadens the line together with a constant equivalent width. For weak spectral lines both
turbulences are not distinguishable, which should be illustrated by the small Mo I line in the
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Figure 2.5: Synthetic absorption lines generated with SME for different stellar parameters. The center
wavelengths, the designations, and each varied parameter are given in the labels. Teff : 4000 − 6000K,
log g: 3.0 − 5.0, v sin i: 2 − 20 km s−1, ξ: 0.2 − 3.0 km s−1, ζ : 0.25 − 5.0 km s−1, [M/H]: −0.3 − 0.3.

upper left corner of these panels. The influence of the metallicity on the spectral lines is shown
in the bottom right panel of Fig. 2.5. Higher metallicities lead to stronger lines, which can
easily be seen by an increasing depth and an almost constant line width. This means that the
line equivalent widths increase with metallicity due to a higher number of absorbers in the
line of sight, which is the concept of the curve of growth.

Another interesting feature of SME is the option to define a set of limb angles µ, for which the
spectrum is synthesized. By default the number of different µ-values is set to seven, but it is
possible to define an arbitrary number or even only one single limb angle. The synthesis for
different µ-values is important, since limb darkening occurs as an additional line broadening
mechanism with rather U-shaped lines at the limb and more V-shaped at disk center (e.g.
Frisch, 1975). Beside the normalized intensities SME also provides the specific intensities for
the generated spectrum. Therefore, it is possible to get the specific intensities for individual
µ-values. I used SME to generate model spectra at 15 individual limb angles between 0.0001
and 1.0 together with solar values for the global parameters. The resulting spectra were then
convolved with Johnson-R and -V filter functions. To determine the intensity for each µ-value
I calculated the sum of the filter-convolved specific intensities. Finally, these are normalized
by the disk-center value (µ = 1.0) and visualized in Fig. 2.6. The shown limb intensity profiles
could in principle be used to determine limb-darkening coefficients in any photometric pass
band. However, a by eye inspection reveals that these profiles are not compatible with any
model limb darkening available in Claret & Bloemen (2011) or Claret et al. (2013), especially
for the Sun. The curvature is too strong, which leads to an overestimation of the intensities for
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Figure 2.6: Limb darkening simulated with
SME. The limb intensity profiles shown are
generated for two Johnson filters (labels). The
limb angle µ was varied between 0.0001 and 1.0
(crosses). For each limb angle a spectrum was
synthesized. See text for details.
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almost all µ-values. A fit of these profiles in the range of µ = 0.01 to 1.0 leads to quadratic
limb-darkening coefficients of u1 = 0.16 and u2 = 0.52 for Johnson-R, and u1 = 0.25 and
u2 = 0.50 for the Johnson-V filter. Due to the curvature the values for u2 are quite high and
consequently u1 is small. Such a combination cannot be found in the mentioned publications,
neither for solar-like parameters nor in more extreme temperature regimes.

2.2.2 Fit results for ε Eridani and CoRoT-2A

After the introduction of the usage and capabilities of SME above, I now present the analysis
of real data. For that purpose I use the observations of the two planet hosts ε Eridani and
CoRoT-2A mentioned above. To follow the introduction I started with the normalization of
the spectra using the class ContiInteractive from the PyAstronomy. This class allows
estimating the continuum manually by defining a set of points in an interactive plot window.
The decision where to set these points is supported by a highly resolved synthetic spectrum.
The usage of this tool is easy and the spectra are well normalized and rectified. Hence, I can
now determine the spectral resolution (λ/∆λ) of both observations, which I carry out by fitting
a Voigt profile to telluric lines. For both objects I chose five different, deep, and distinct telluric
lines in the region 6900Å to 7300Å (see Table A.3). The full width at half maximum (FWHM)
of the fitted Voigt profiles is then taken as ∆λ. The mean spectral resolution calculated from
these five individual lines is 55 248 ± 2587 in the case of ε Eridani, and 65 832 ± 2540 for the
CoRoT-2A spectrum.

In contrast to the approach mentioned in the previous subsection, I started with a global
parameter fit instead of individual fits for Teff and log g using the Hα and NaD lines. In this
way we will see whether the results significantly deviate from the individual line fits and if
it is worth to make these additional steps. To reduce the number of free parameters I fixed
the macroturbulence ζ in the case of ε Eridani to 1.3 km s−1. This value is found according to
Saar & Osten (1997), who give a relation between spectral index and ζ . They also show that
the macroturbulence is higher for active stars. CoRoT-2A is known to be highly active and,
therefore, I chose the value determined by Valenti & Fischer (2005a), (Eq. 1). Their equation
provides an upper limit of the macroturbulence, which leads to 3.1 km s−1 for CoRoT-2A.
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Figure 2.7: Comparison of observed (black) and best-fit synthetic spectra (blue) of ε Eridani (top)
and CoRoT-2A (bottom). The region around Ca I at 6162.2Å is shown. Most lines are labeled, only a
few weak lines are not included. Shaded areas mark spectral regions used for the optimization process,
while white areas are neglected. Graphs produced with SME.

According to their work the macroturbulence is mostly correlated to the line broadening caused
by the stellar rotation and that is why they fixed v sin i to zero for their investigations. For
my global fit I leave v sin i as a free fit parameter, but additionally fixed the van-der-Waals
damping constant γ6 to 1.0. My simulations showed that in the range between 1.0 and 2.5,
which is reasonable for iron lines, this value has only marginal effects on all spectral lines.
The remaining number of parameters for a global fit were now reduced to five. For these I set
common initial values: Teff = 5500K, log g = 4.5, v sin i = 2.5 km s−1, ξ = 1.5 km s−1, and
[M/H] = 0.0. The stellar rotation velocity of CoRoT-2A is obviously higher than my chosen
initial value and so I estimated 11.25 km s−1 by using the visible major variability of 4.5 days
(see Fig. 2.1). For both spectra I marked regions with strong telluric contamination to be left
out during the optimization process.

The results of this global fit are shown in Fig. 2.7 and in Table 2.1 in the case of ε Eridani
and in Table 2.2 for CoRoT-2A. For the plot in Fig. 2.7 I arbitrarily chose a spectral region
near the Ca I line at 6162.2Å. The agreement between the synthetic best-fit model and the
observed data is amazingly good for both stars. Most notably the region close to the mentioned
Ca I line, which has broad line wings with additional absorption lines located there, is also
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Table 2.1: Stellar parameters of ε Eridani.

Source Teff / K log g v sin i / km s−1 ξ / km s−1 ζ / km s−1 [M/H]
SME global fit a) 5084 ± 44 4.68 ± 0.06 2.42 ± 0.50 1.39 1.3 fixed -0.09
SME Hα , NaD a) 5066 ± 89 4.51 ± 0.06 2.79 1.34 1.3 fixed -0.07
Valenti b) 5146 4.57 2.40 0.00
Gonzales c) 5032 ± 48 4.30 2.50 0.60 -0.01
Tsantaki d) 5049 ± 48 4.45 ± 0.09 0.83 ± 0.10 -0.15

Notes: Comparison of SME’s best-fit stellar parameters to values found in the literature. a) This work,
b) Valenti & Fischer (2005b), c) Gonzalez et al. (2010), d) Tsantaki et al. (2013).

well reproduced by the model. The wavelength region shown is a good example for the whole
spectral range available. This means that we find well looking matches between model and
data everywhere in the spectrum, but also lines which are not reproduced by the model, and
lines which are predicted by the model but not present in the data. For instance, the Si I line
(6152.3Å) at the left of Fig. 2.7 or Fe I line (6164.5Å) close to the middle of the image
are both predicted by the model but not visible in the data. The opposite is the case for the
strong Fe I line at 6169.6Å. This line is present in the spectra of both objects, with almost
the same strength, but totally underestimated by the model. Both phenomena – line strengths
overestimated or underestimated by theory – are probably caused by incorrect oscillator
strengths provided by the line list. The overall agreement between model and data is good after
the optimization and the major difference between these two observations is the broadening of
the lines caused by different stellar rotation velocities. In the case of CoRoT-2A this causes
some lines to be blended by neighbors, e.g. visible in the right line wing of the mentioned Ca I

line. Nevertheless, this region is also well reproduced by the model. The resulting parameters of
this global fit are listed in the mentioned tables. Unfortunately, the determination of parameter
errors is not implemented in SME. For the global fit I thus used the statistical errors provided
by Valenti & Fischer (2005a). Compared to the other values found in the literature my global
fit parameters of ε Eridani are quite reasonable. For the effective temperature my result is in
agreement to the literature values when 2σ intervals are assumed. In contrast to the others, my
global fit leads to a significantly higher surface gravity. The v sin i values are all in an interval
of ±400m s−1, that is smaller than the assumed uncertainty. My fit also yields a sub-solar
metallicity, as most of the other values publically available. It seems that the precision of a
simple global parameter fit is sufficient to determine the stellar parameters. Nevertheless, we
should have a look at fit results when first the individual line fits are carried out to determine
Teff and log g separately. As already mentioned above, I will use the Hα line to estimate the
effective temperature and the NaD lines to determine the surface gravity. For the Hα line fit it
is important to include enough surrounding “continuum”, because of the broad line wings.
This way we increase the sensitivity of the fit. In the case of ε Eridani I selected an interval
from 6550Å to 6580Å. For the NaD lines the selection for the fit is rather similar. Both
wavelength ranges are shown in Fig. 2.8 together with the best-fit models. The Hα line profile
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2 Spectral Observations and Analyses

Figure 2.8: Comparison of observed (black) and best-fit synthetic spectra (blue) of ε Eridani. Left:
Hα region for the determination of Teff . Right: NaD lines to measure log g. White areas are neglected
during the optimization process.

is not perfectly reproduced by the model, especially the line core. However, a perfect fit of the
Hα line is not to be expected when only using LTE models. More important is an agreement
between model and data further away from the line core, which is reasonably good in the
presented case. The NaD lines show in contrast a really good agreement between model and
data. The values for Teff and log g are now a little bit lower than for the global fit, but still
compatible with the other values listed in Table 2.1. The given 1σ errors are determined over
the χ2 statistics and now twice as high for Teff . The remaining parameters v sin i, ξ, and [M/H]
are fitted after setting the temperature and the gravity to the values found in the individual
fits. ξ and [M/H] show no appreciable difference. The v sin i has increased but only in the
range of the uncertainty of the value achieved by the global fit. It is only conspicuous that
I found higher values for the microturbulence than the given values from the literature. For
the remaining parameters there are no significant discrepancies between the values found in
the literature and when SME was used. Conclusively, in the case of ε Eridani it is reasonable
to perform a global parameter fit. The additional effort of the individual fits for the effective
temperature and the surface gravity seems to be not necessary.

The discussion of the values achieved for CoRoT-2A can be found in Schröter et al. (2011)
and, therefore, is not reviewed in detail here. Nevertheless, we can see in Table 2.2 that the
estimates of the effective temperature show a larger scatter as it is the case for ε Eridani. The
values span a range of 150K in contrast to 114K. This range is 32% larger than found for
ε Eridani, most probably caused by CoRoT-2A’s activity. If we look at the metallicity, we see
positive and negative values, while we only found negative values in the case of ε Eridani.
Between minimum and maximum metallicity we see a range of 0.13, which is almost the
same as in Table 2.1. The discrepancy of the microturbulences seen in the case of ε Eridani
is not present for CoRoT-2A. All presented values are more or less in the 1σ range given
by Ammler-von Eiff et al. (2009). Therefore, it can be assumed that it was not a systematic
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2.2 Spectral analyses of two planet hosting stars

Table 2.2: Stellar parameters of CoRoT-2A.

Source Teff / K log g v sin i / km s−1 ξ / km s−1 ζ / km s−1 [M/H]
SME global fit a) 5475 ± 44 4.62 ± 0.06 10.79 ± 0.50 1.52 3.1 fixed -0.06
SME Hα , NaD a) 5510 ± 90 4.53 ± 0.18 10.78 1.47 3.1 fixed 0.00
Bouchy b) 5625 ± 120 4.30 ± 0.20 11.25 ± 0.45 0.00
Ammler c) 5608 ± 37 4.71 ± 0.20 1.49 ± 0.04 0.07
Torres d) 5575 ± 66 4.51 ± 0.04 10.30 ± 0.90 -0.04

Notes: Comparison of the resulting SME stellar parameters and values found in the literature. a) This
work, published in Schröter et al. (2011), b) Bouchy et al. (2008), c) Ammler-von Eiff et al. (2009),
d) Torres et al. (2012).

behavior of SME to overestimated ξ of ε Eridani. If we look at the results obtained by the
individual fits for Teff and log g we see that they also do not differ significantly from the global
fit, as it was the case before for ε Eridani.

We have seen in the foregoing examples that the software tool SME is able to determine stellar
parameters, which are comparable with values determined with other methods of spectral
analyses. In the end this is not necessarily surprising, because SME is e.g. already used for the
determination of stellar parameters of Kepler targets (Batalha et al., 2013) and today widely
used in astronomy. The resulting parameters are thus well suited to help estimating the limb
darkening from theoretical models or tables. Furthermore, I showed that the differences of the
parameters determined with a global parameter fit or after a individual fit for Teff and log g are
not significant. Therefore, a simple global fit – where all important parameters are set free at
the same time – is enough for determining the stellar parameters. This makes SME a handy
tool to easily determine the fundamental stellar parameters with reasonable accuracy.
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3 The Kepler Space Mission

The Kepler space telescope is a project developed by the American space agency NASA. It
was especially designed for the search for earth-sized planets near or in the habitable zone of
solar-like stars (cf. Borucki et al., 2010). The mission is named after the German astronomer
Johannes Kepler (b 1571, d 1630), who invented fundamental celestial laws by analyzing
precise position measurements of Mars made by Tycho Brahe. Today his laws are known as
the three Kepler-laws which describe the orbital motion of the solar system bodies with great
accuracy (e.g. Unsöld & Bascheck, 2005; NASA, 2009), of course neglecting small relativistic
effects known nowadays. Kepler was the first who found that the planets move on elliptical
paths around the Sun, which was also a proof for a heliocentric solar system. His landmarking
laws can obviously be applied to other stellar systems far away from ours and, therefore, it is a
tribute to name this NASA mission after him.

3.1 Instrumental layout

To search for new exoplanets the Kepler telescope looks for periodic dimming of the emitted
light of stars in the field of view which is also often referred to as transit method (Section 1.2.2).
To achieve such transit data Kepler measures simultaneously the brightness of a greater
number of stars over a long period. This is necessary to account for the transit probability (also
discussed in Section 1.2.2) and for long lasting orbital periods to accumulate a representative
number of transiting exoplanets.

The Kepler space telescope (Fig. 3.1) is a Schmidt-type telescope used as a photometer with a
primary mirror which has a diameter of 1.4m. The aperture has a diameter of 0.95m The
overall length is 4.7m and it has a total diameter of 2.7m. The main camera is placed in
the focal plane of the primary focus (Fig. 3.2). This camera is build as a CCD array of 42
individual CCDs with a resolution of 2200 × 1024 pixels each. The quantum efficiency curve
lies in the optical regime and reaches its maximum of ≈ 85% at λ ≈ 600 nm. The total spectral
response of the photometer is slightly shifted to the blue, since it is a combination of all
optical components, e.g. the transmissivity of the Schmidt-corrector and the reflectivity of
the primary mirror. The maximum spectral response of 73% is located at λ ≈ 590 nm. The
photometer provides a bandpass between 440 nm and 830 nm at FWHM1. The whole array is
cooled down to −85℃ reducing the dark current to less than 1 e−px−1s−1 making it completely
negligible compared to stray- and zodiacal light which is on the order of 102 e−px−1s−1. The
1Full width at half maximum
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© [NASA & Ball Aerospace, 2008]

Figure 3.1: Overview of important elements
of the Kepler flight segment. The lens tube con-
tains the Kepler photometer while the hexagonal
structure is the spacecraft. (Minor modifications
applied).

© [NASA, 2006]

Figure 3.2: Cross-section of the Kepler pho-
tometer. The lens tube is strengthened by graphite
rings (black). (Labels added by thesis author ac-
cording to NASA (2005)).

total field-of-view achieved by this camera is about 115 square degrees. This covers almost
0.3% of the whole sky in which stars with a visual magnitudes between 9 and 15 were planed
to be observed. In the end also stars with visual magnitudes down to ≈ 5.5m and up to ≈ 20m
were observed. The resulting guidance accuracy of the spacecraft is better than 0.009′′ which
is much better than the given pixel scale of 3.98′′. This accuracy is achieved by two star
trackers (see Fig. 3.1) in combination with four small additional CCDs located in the corners
of the main CCD array. Roll and pointing movements are performed by small thrusters and
four reaction wheels (also Fig. 3.1). The advantage of reaction wheels in contrast to thrusters
is obvious; they do not need any propellant and work only with electric power provided by the
solar modules to induce gyroscopic forces. (Cf. NASA, 2009; Van Cleve & Caldwell, 2009;
Bryson et al., 2010a).

The data acquisition and the total number of observed stars are limited by the bandwidth
of the telemetry downlink to Earth and by the applied amount of onboard data storage. In
general all 42 CCDs are read out every 6.54 s after an exposure time of 6.02 s, which results
in over 13 000 shots per day. This would produce a tremendous amount of data. To restrain
this problem only a selection of target pixels is stored instead of the full images, whereas
the amount of target pixels depends on brightness of the target objects. The average aperture
size is 85 pixels, however, overexposed targets can also be scientifically used by applying
a saturation model to all involved pixels, including adjacent pixels contaminated by charge
bleeding (Van Cleve & Caldwell, 2009). All data is then added up into observations with
almost 30 minutes bin time and named as Long Cadence (LC) data. This approach makes
it possible to acquire nearly continuous observations of more than 160 000 stars at the same
time. For measurements where high temporal resolution is needed, e.g. the search for transit
timing variations or in my case limb-darkening analyses, the data of at most 512 targets can
be added into observations of one minute bin time then called Short Cadence (SC) data. In
this mode nine integrations are combined into one time bin. Beside the target pixels it is
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3.1 Instrumental layout

Figure 3.3: Kepler’s field-of-view and CCD
array. Each point represents a target star observed
by Kepler, 207 607 in total. Separations between
the 40 CCDs are clearly visible, only between
the two centered CCDs the gap is filled up due to
clock-wise quarterly rolls. Dark areas represent
higher density of selected target stars.

necessary to store sets of background and reference pixels. The background pixels (378 kpx
in total) are used to remove zodiacal light and two-dimensional instrumental artifacts, while
96 000 pixels are collected as reference pixels to examine the health status of the CCDs
and readout electronics. The are downloaded every four days. In contrast to the amount of
background and reference pixels only 43 520 pixels are available for targets observed in SC
mode. This clearly illustrates the importance of the background and reference pixels to achieve
scientifically usable data. (Cf. Van Cleve & Caldwell, 2009; Borucki et al., 2010; Bryson et al.,
2010a).

In Fig. 3.3 I show all stars observed with Kepler through the whole main mission life time
(Section 3.2). Each point represents a set of celestial coordinates read out from the headers of
the corresponding FITS files. This illustration visualizes Kepler’s field-of-view and the layout
of the CCD array. Visible narrow and broad separations are caused by gaps between the CCDs.
This makes it possible to simply identify the 42 individual CCDs, although the narrow gap of
the two centered CCDs is filled up with stars. This is due to Kepler’s 90° clock-wise rotation
around the optical axis performed every three months (see Section 3.2). Dark areas correspond
to a higher spatial density of selected stars which not necessarily translates into the real spatial
density of stars at the sky. Usually there are more stars in a given region than selected by the
Kepler team, e.g. this is supported by the “dark spot” at δ ≈ 46.5° with a diameter of nearly
one degree. There is indeed the open star cluster NGC 6811 located, but it has only a diameter
of less than a half minor tickmark. A similar selection pattern was applied to the positions of
the open star cluster NGC 6866 (α = 301°, δ = 44.2°) and to the two open star clusters slightly
hard to identify in this figure NGC 6791 (α = 290.2°, δ = 37.7°) and NGC 6819 (α = 295.3°,
δ = 40.2°). Overall Kepler gathered light curves of 207 607 stars of which 5328 are observed
additionally in SC mode. Note that the slightly curved structure visible in Fig. 3.3 results from
the coordinate transformation of Cartesian-CCD coordinates to celestial coordinates and not
from the convex shape of the focal plane needed for a Schmidt-telescope.
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Figure 3.4: Details of Kepler full frame images of four different CCD channels (left to right: 56, 41,
43 and 15). Stars are visible as bright dots. All images have almost the same orientation towards the
celestial coordinates (white arrows).

The FITS files themselves are publically available through the NASA Mikulski Archive for
Space Telescopes (MAST2). In addition to the light curve data, so called Kepler full frame
images (FFI) are also available, providing CCD images of the target field. Each CCD is
thereby divided into two channels consecutively numbered (see Fig. B.9). To investigate the
performance of this implementation of a Schmidt-telescope, I selected FFI channels from the
center and from the edges of the focal plane and plotted arbitrary details of the target field
(Fig. 3.4). Starting to count from the left, the second and third image show circular stars. The
left and the right image show deformed, elongated stars. This is remarkable, since the images
in the middle are gathered from near the center of the focal plane, while both outer images are
selected from near its edge. Actually the elongation increases in radial direction and shows an
alignment towards the center of the focal plane. That implies for the left image the elongation
to be parallel to the declination axis and in the right image parallel to the right-ascension
axis (cf. Fig. B.9), which is almost the case. Such a behavior of the point-spread-function
(PSF) hints at coma, an aberration typical for wide field-of-views but normally corrected when
using a Schmidt-telescope. Of course, without further knowledge of the instrumentation this
can be only an assumption since there are several possible sources of this deformation under
discussion. For a deeper look into the behavior of the PSF or the pixel response function I
recommend the work of Bryson et al. (2010b).

It is worth to mention that the region close to Kepler’s target field has already been observed
by a Schmidt-telescope. In the year 1931 Bernhard Schmidt himself made one of his first
observations with his new invented coma-free telescope (Schmidt, 1938). In Fig. 3.5 I present
a digital copy of the original 55 × 170mm photographic plate, stored in the large plate archive
of Hamburg Observatory3. The field of view is 15° in diameter, and all stars are sharp round
dots, also far away from the center of the focal plane! Although, the Kepler field is not included
in this image (it is located above the upper edge), it is an exciting coincidence. Because 78
years later, a small telescope is orbiting the Sun, the first using Schmidt’s groundbreaking
concept in space, searching for exoplanets close to this observation.

2http://archive.stsci.edu/kepler/; renamed after Barbara A. Mikulski. Old name was Multimission Archive
at the Space Telescope Science Institute.

3http://plate-archive.hs.uni-hamburg.de/index.php/en/, D. Groote, private communication.
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3.2 Mission timeline and overview

Figure 3.5: Original photographic plate of the Cygnus region, observed by B. Schmidt in 1931 with
his new coma-free telescope. This image is rotated around the horizontal axis. The lines indicate the
Cygnus constellation (labels and lines added by thesis author). Text on the plate: “1931 März 20 Schwan
30 min”.

3.2 Mission timeline and overview

The Kepler mission can be divided into three main phases: launch, commissioning, and
science operations. Ahead of these, the star field was selected by fulfilling the constraints to
be continuously observable through the whole mission and to be star rich. A continuously
observable star field means in this sense, that the line of sight is never blocked by any solar
system body. Obviously, the Earth, the Sun and the Moon are the most problematical ones
due to their large apparent diameter and their contribution to stray light. Therefore, the
remaining directions for this mission lie significantly above or below the ecliptic. Finally,
the region near the constellations Cygnus and Lyra in the northern sky was selected since it
has slightly more stars than the field in the southern sky, and additionally all ground-based
telescopes available for follow-up programs are located on the northern hemisphere. Another
important task performed before the launch was the classification of the stars in this field.
This time-consuming photometric observations were carried out during a five year program
using ground-based telescopes providing different color bands. The gathered results of this
program, e.g. effective temperatures, surface gravities, metallicities and apparent magnitudes
of more than 13 · 106 stars were summarized in the Kepler Input Catalog (KIC) (T.M. Brown
et al., 2011). Most of them (11.4 · 106) lie in the region of the chosen target field near Cygnus
and Lyra (boundaries of Fig. 3.3), whereby 4.5 · 106 of these are imaged onto the CCD array.
The remaining 1.6 · 106 stars are spread over different areas of the sky. The key aim of this
program was to distinguish between dwarf and giant stars as well to remove giants from the
target list (Borucki et al., 2010). The resulting transit signal would be too weak for Kepler to
find Earth-sized planets (see Section 3.3). Nevertheless, there are giants in the target list so
long as the found stellar parameters are reliable, e.g. the effective temperature and log g are
believed to be credible within ±200K and ±0.4, respectively (T.M. Brown et al., 2011).

The launch of the Delta II rocket carrying the Kepler telescope was on March 7, 2009 at
03:49:57 UTC (March 6, 2009 10:49:57 p.m. EST (NASA, 2013a)), 400 years after the
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© [NASA & DGK, 2008]

Figure 3.6: Schematic of Kepler’s heliocentric
orbit, trailing the Earth. View from ecliptic north
pole.

© [NASA, 2010]

Figure 3.7: Depiction of 90° clock-wise rota-
tions of Kepler’s focal plane during the seasons.
Two defective CCDs sensors indicate the new
orientation.

publication of Johannes Kepler’s book Astronomia Nova, 1609 (Kepler & Caspar, 1929) in
which he presented his first two laws of planetary motion. The spacecraft was brought to an
orbit following the Earth on it’s way around the Sun (Fig. 3.6), since the premise of a never
blocked field-of-view to acquire continuous observations is then efficiently achieved. At this
orbit the influence of the magnetic field and gravitational potential of the Earth is very small,
which would otherwise lead to torques on the spacecraft hampering accurate pointing. The
orbital speed of Kepler is a little bit slower then the Earth’s speed so the spacecraft needs 371
days for a complete orbit around the Sun leading to a slowly increasing distance to Earth. Due
to this heliocentric orbit geometry, Kepler needs to perform 90° rolls around the optical axis
almost every three month to keep Sunlight on the solar panels. After such a quarterly roll,
each target star is than observed by a different CCD. This leads to different flux count rates
measured from the same objects probably caused by different CCD sensitivities.

The Kepler mission was designed for three and a half years of science operations after a
commissioning phase of 60 days with the possibility to extend the mission until 2016. The first
observation of the target field was announced on April 16th 2009. Since then Kepler spend
over 16004 days in space, of which 1425 where used for observations, divided into quarters
from 0 to 17. In January 2010, during quarter four, two CCDs were broken, whereby 5%
of the field-of-view were lost; but by reason of the quarterly rolls always a different portion
of the target field is not observed by these CCDs as indicated by Fig. 3.7. Therefore, some
objects have periodic quarterly gaps in their light curves, e.g. TrES-2b (O’Donovan et al.,

4As of September 2013
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2006) which is the first detected transiting exoplanet in the Kepler field. From then on Kepler’s
focal plane comprised 40 individual CCD detectors, operating well for all remaining quarters.
Unfortunately, this was not the only failure Kepler had to deal with. In July 2012 one of the
four reaction wheels failed, which are used for fine pointing movements of the spacecraft (see
Fig. 3.1). In principle these reaction wheels can induce torques to the three spacial axes of the
spacecraft. By the time the anomaly occurred, large pointing jitter affected the observations,
thus six days of science data were lost. After several tests the Kepler-team decided to deactivate
the corrupted wheel #2, since the spacecraft remained fully operational with only three of
them. In contrast to other satellites in an earth-near orbit, Kepler’s distance to Earth is too large
to provide a service mission. Consequently, a failure of one or more of the three remaining
reaction wheels would lead to the inability of an accurate pointing, and therefore, to the end of
Kepler’s search for transiting planets. After almost ten months of observations with only three
functional reaction wheels, the spacecraft was found in thruster-controlled self-protecting
mode to stabilize it’s attitude. This was already an evidence for another reaction wheel to fail.
However, the reason for the safe mode was yet unknown and the Kepler team was able to
transition the spacecraft from thruster-control into reaction wheel control, continuing the data
acquisition. Only a few days later on May 14, 2013, the spacecraft was found in a dramatic
situation. Kepler was rotating around the axis perpendicular to the optical axis, the solar
panels always oriented towards the Sun. Thus, the telemetry and communication link was
periodically interrupted, since the high gain antenna (see Fig. 3.1) was rotationally induced not
permanently directed to Earth anymore. The ground team was able to stop the rotation using
Kepler’s thrusters. It shall be deemed pretty sure that a failure of the bearing of reaction wheel
#4 caused Kepler to be in this critical situation. After months of testing the engineers were
not able to transition the spacecraft back to reaction wheel control. Therefore, Kepler lost its
initial pointing stability necessary to search for planets in the designated target field. However,
the Kepler team made a call for scientific white papers to determine astrophysical studies to be
carried out in the spacecraft’s current condition. This led to the “K2 mission” (Howell et al.,
2014) with lower pointing accuracy observing different parts of the sky. (Cf. NASA, 2013b).

Despite the sudden mission ending at the beginning of quarter 17, Kepler was already able to
complete its planed prime mission of 3.5 years of nearly continuous observations of the same
target field in November 2012. Of the four years of extended mission only nine months were
achieved. Nevertheless, it can be referred to the Kepler mission as a complete success, not
only by reason of 4696 planetary candidates and 1030 confirmed new transiting exoplanets
(NASA, 2013c), but also due to the excellent and never before reached photometric precision.
One Earth-sized planetary candidate was detected in the habitable zone (PHL, 2013), but one
has to keep in mind that Earth-sized is not to be confused with Earth-like (see Section 1.2).
Kepler also yields data for the study of asteroseismology (e.g., Doǧan et al., 2013), which
render it possible to examine the interior of stars. The end of the Kepler mission does not imply
the end of new insights and discoveries provided by this mission, since there is enough data
gathered to constitute the basis for many years of analysis. In particular one has to be curious
about further confirmations of the large number of planetary candidates, then accomplished
by follow-up programs, maybe finding a potentially habitable planet.
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3.3 Detection capabilities

In the previous sections I introduced the main characteristics of the Kepler instrument,
but I did not comment on the acquired data quality and the resulting detection capability.
The signal-to-noise ratio of a given data set is one of the most important properties of an
astronomical instrument. This value is in principle easy to determine and holds the information
how significant a measured signal is compared to the noise. Therefore, the signal-to-noise
ratio is a descriptive value, which in the case of the Kepler mission says something about the
instrument’s ability to find small, rocky planets. For my further investigations I will often use
the inverse of this value, which is also known as the photometric precision, and comparable to
the expected transit depth.

According to Eq. 1.22 the transit depth of an earth-sized planet eclipsing in front of a solar-like
star is 0.08‰. This is the order of precision we are aiming at. Since the transit center is the
deepest part of a transit light curve, we should be able to detect at least this dip. In fact, we
better need a photometric precision of 4 · 10−5 otherwise the transit dip would be hidden in the
noise and, therefore, statistically not significant. To estimate Kepler’s detection capabilities
I will in the following determine the signal-to-noise ratio of a reasonable number of light
curves and in the end I will give a short comparison between the two landmarking space-based
planetary transit searchers: CoRoT and Kepler.

3.3.1 Photometric quality

The easiest way to demonstrate the accuracy of Kepler’s photometry is to compare its light
curves to ground-based photometry. I have access to photometric observations carried out at
Hamburg Observatory (Fig. 3.8, left panel) of one of the Kepler targets: TrES-2b (O’Donovan
et al., 2006). The direct comparison of these observations clearly illustrates the awesome
performance of Kepler’s photometer. The Hamburg Oskar Lühning Telescope (OLT) and
Kepler are about the same size and the bin times of these observations are 56 s and 59 s,
respectively. To quantify the difference in photometric quality, I determined the noise level as a
simple standard deviation in parts of the light curve surrounding the transit. For the OLT light
curve I get 3.1 · 10−3 and for this Kepler transit I get 2.4 · 10−4. This is a factor of 13 higher
signal-to-noise provided by Kepler. The poorer signal-to-noise provided by the OLT is mainly
caused by the Earth’s atmosphere, nicely illustrating the advantage of space-based observations.
Additionally, we also have to keep in mind that the shown example is only one observed transit
light curve, with its original time binning of one minute. But Kepler observed a few hundred
transits of this object in the same quality. This obviously further increases the photometric
precision provided by Kepler, e.g. if these transits are phase-folded and rebinned.

Besides this astonishing example, Kepler successfully gathered many light curves of transiting
exoplanets (see Table 3.2). Therefore, it is reasonable to study the signal-to-noise of a greater
number of objects. Hence, I chose objects which should be interesting for my work, which
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Figure 3.8: A single transit light curve of TrES-2b, plotted in phase. Flux is normalized to continuum
level. Transit observed with the Hamburg 1.2m Oskar Lühning Telescope (OLT) (left) and spaced-based
with Kepler (right). OLT observations carried out by D. Mislis.

means objects announced as planetary candidates (STScI, 2012), and determined the signal-
to-noise. Obviously, the signal-to-noise is a function of the apparent magnitude of the host star.
For an easy overview I plot the determined signal-to-noise values against the Kepler magnitude
in Fig. 3.9. We can see a clear decrease in the signal-to-noise value with increasing magnitude,
which is not surprising. More interesting is that most objects used here show a signal-to-noise
of smaller than 2000. This means that the photometric precision of these objects is not high
enough to detect a transiting earth in front of a solar-like star, since we would need at least
12 500. However, we know that Kepler observed significantly more than one transit event per
object, which allows us to calculate a cumulative signal-to-noise given as

(S/N )c =
√

NT · σ−1Ph , (3.1)

or its inverse what I call cumulative detection limit. The parameter NT denotes the number of
detected transits. If we assume that NT is, e.g. 200, which is a reasonable value for objects
with an orbital period of, say, 7 days, we end up with 3.5 · 10−5 and, therefore, an Earth-sized
planet could be detected. In contrast, the detection of Earth-sized planets in the habitable zone
around a solar-like star is not possible, since Kepler would only have recorded up to 4 transits,
which leads to a cumulative detection limit of 2.4 · 10−4 (or a signal-to-noise ratio of “only”
4000). In conclusion, the determined signal-to-noise values shown in Fig. 3.9 are important for
short lived signatures like spots probably only present in one transit. If there are more transits
available, we can also use this figure to give an assumption of the total detection limit. In the
end, Kepler found 7 nearly Earth-sized planetary candidates in the habitable zone around their
stars, and 233 nearly Earth-sized planets in total (Fig. B.5). These numbers are the best proof
of the data quality provided by Kepler. For more information about the detection statistics, I
recommend Borucki et al., 2011.
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Figure 3.9: Data quality of Kepler short cadence planetary candidates. From left to right: Frequency
distribution of the apparentmagnitude ofKepler planetary candidate host stars, instrumental performance
in the sense of signal-to-noise ratio as a function of apparent magnitude, and frequency of high quality
light curves.

3.3.2 Comparison of CoRoT and Kepler

The CoRoT space telescope (Baglin & COROT Team, 1998) was launched two years before
Kepler and also designed to search for planetary transits. It was the first space-based program
to search for exoplanets. The mission was also announced as a search for Earth-size planets
(e.g., Deleuil et al., 1997) and, therefore, a direct comparison of these two instruments is
obvious.

Both missions differ in instrumental characteristics as well as in the chosen orbit geometry. In
contrast to Kepler the CoRoT satellite was launched into a polar Earth orbit. For that reason it
was necessary that the spacecraft performs a 180° rotation every half year, otherwise the Sun
would move into the field-of-view. After such a rotation CoRoT was then observing in the
opposite direction. Consequently, the CoRoT mission has two different target fields, one in the
direction of the galactic center, both observed for almost 150 days. The most eye-catching
differences between both instruments are on the one hand the diameters of the main mirrors and
on the other hand the number of used CCD cameras. For instance, the effective light-gathering
surface area of CoRoT’s main mirror is 12.4 times smaller than Kepler’s. I summarize the
most important instrumental differences in Table 3.1.

The diverse instrumental characteristics inherently bare differing detection capabilities for
planetary transit light curves. Also the fact that CoRoT was only able to observe the same
target field for 150 days implies, that the detection of transiting planets with long lasting orbital
periods (e.g., ≥ 1 year) was quite improbable and only feasible by chance. In addition, CoRoT
has a significantly smaller field-of-view, which indirectly forces the CoRoT ground team to
change the target field after every semiannual rotation, to increase the total number of observed
stars and, therefore to increase the number of detected exoplanets. These points were clear
advantages of Kepler, which was able to observe the same target field for the whole mission
life time. To get an impression of the performance of both telescopes I contrast among others
the discovered exoplanets in Table 3.2, which clearly demonstrates that Kepler is preeminent.
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Table 3.1: Comparison of the instruments CoRoT and Kepler.

CoRoT Kepler

Mirror-∅ 27 cm 95 cm (140 cm Schmidt)
FOV 0.0012 sr 0.0352 sr

Pixel-scale 2.32′′ 3.98′′
Camera a) 2 CCDs 42 CCDs
Cadence 32 s / 512 s 59 s / 1766 s

S/N b) 670 2700

Notes: Informations are taken from Auvergne et al. (2009) in the case of CoRoT and Van Cleve &
Caldwell (2009) for Kepler values. a) The CoRoT camera box is equipped with 4 CCDs of which
two were used for asteroseismology. b) S/N calculations are based on a 12 mag star (CoRoT-2b). For
Kepler’s value see Section 3.3.1.

We have to keep in mind that the number of confirmed planets could be biased by a more
intense follow-up program in the case of Kepler planetary candidates.

Table 3.2: Comparison of planet detections made by CoRoT and Kepler.

CoRoT Kepler

Days Observed 2136 a) 1425 d)

Planetary Candidates 530 b) 4696 e)

Confirmed Planets 32 c) 1030 e)

Detection Rate 0.2 d−1 3.3 d−1
Confirmation Rate 5.5 a−1 264 a−1

Notes: The detection- and confirmation rates are estimated using the number of observed days, which
are in the case of CoRoT slightly overestimated, since these are the mission days. For Kepler this
number is simply determined using observational data. a) CNES (2013), b) Moutou et al. (2013), c) DLR
(2013), d) Table A.2, e) NASA (2013c).

Nevertheless, the CoRoT mission was groundbreaking and set new benchmarks in the sense of
high quality photometry together with its high time resolution. The nearly continuous light
curves with a duration of about 150 days made it possible to get new insights into transiting
exoplanets, stellar activity, and star spots of planet hosters (e.g., Huber et al., 2009, 2010). The
Kepler telescope was the more modern one with lower photometric noise, larger field-of-view
(≈ 29 times lager than CoRoT’s), and all CCDs dedicated for the planetary transit search.
Therefore, Kepler represents another milestone in optical photometry.
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As already outlined in Section 1.3, transit light curves can be a great tool to measure the limb
darkening of other stars than our own Sun. However, the data quality needs to meet some
special requirements, like low photometric noise and high time resolution, because the limb
darkening can only be determined from the light curve together with the remaining transit
parameters p, i, and a. Due to strong correlations, these parameters tend to show relatively
large uncertainties, especially if the mentioned requirements are not fulfilled. The Kepler space
telescope introduced before, offers an outstanding opportunity to acquire light curves with
high signal-to-noise ratios and in many cases also with high time resolution. Since the satellite
was specially designed for the detection of transit like events, the publicly available data holds
a remarkable number of transiting exoplanets, well suited for high precision transit studies.

In the following sections I present the analyses and the results of my selected Kepler targets.
My main focus is set on the measurements of the limb-darkening coefficients (LDCs) for the
linear and the quadratic limb-darkening law, which I then compare to theoretical predictions.
These predictions are taken from tables provided by Claret & Bloemen (2011) based on 1D
plane-parallel PHOENIX and ATLAS model atmospheres. In the case of my short cadence
target sample I also take quadratic LDCs into account, which are provided by Claret et al. (2013).
These are determined from spherically symmetric PHOENIX model atmospheres, using the
quasi-spherical approach (see Claret & Hauschildt, 2003, or Section 5.1.4). I interpolated
linearly on the given tables to get theoretical LDCs which I use for my comparisons. In the
case where the measured LDCs are shown in figures, the predictions originate from model
atmospheres with a surface gravity of log(g) = 4.5, solar metallicity [M/H] = 0.0, and
micro-turbulent velocity ξ = 2.0 km s−1.

In Section 4.1 I comment on the selection of suitable objects, the applied data preparation,
and the necessary transit normalization. Section 4.2 provides the results of my first target
sample which was observed in long cadence (LC) mode, while Section 4.3 is related to the
results obtained from modeling of short cadence (SC) data, which are mainly discussed in my
paper (Müller et al., 2013). Therefore, this section is to be understood as a supplement to my
published work. In Section 4.4 I present details of my analysis of time-correlated noise in the
short cadence target sample and discuss different white noise predictions.

61



4 Measuring LD using Kepler Data

4.1 Selection of suitable targets and data priming

4.1.1 Object selection

For the Kepler mission all light curves, which are publicly available, can be obtained from
the NASA Mikulski Archive for Space Telescopes. The data releases are divided into Kepler
quarters (Q0-Q17, Table A.2), where new quarters are released after several months of data
analysis by NASA scientists. If a planetary candidate was detected, all important system
parameters, like Teff or signal-to-noise values (see Borucki et al., 2011, Table 2 and Chap. 4),
were added to the publicly released Kepler Planetary Candidates list (KPCL) (STScI, 2012),
on which my work is based. Today, this list is not updated anymore and all planet candidates
can be found in the Kepler objects of interest (KOI) table in the NASA Exoplanet Archive
(NASA, 2014).

At the beginning of my transit studies there were slightly more than 1200 planetary candidates
discovered in the quarters Q0 to Q3, but only a limited number of these objects (≈60) were
observed in short cadence mode. According to their photometric signal-to-noise ratio, all
objects get an especially defined value describing the “total S/N of all transits detected”
(Borucki et al., 2011), which can be found in the KPCL. This value is deemed to be the
transit’s significance, because it is determined over all detected and phase folded transits and
using the transit depth as signal. Borucki et al. (2011) simply divide the transit depth by the
photometric noise σ and then multiply it with the square root of the total number of transit
data points Np. To distinguish between this value and the simple photometric signal-to-noise, I
denote the total signal-to-noise ratio of all transits detected as SNR like found in the KPCL.
Following my simulations (Section 1.3.2, δ/N ≈ 60, Np = 180) and an inspection of some
objects, a SNR value of higher than 1000 turned out to be reasonable for fitting the limb
darkening. Unfortunately, only four1 candidates observed in SC had a SNR > 1000 and only
one additional object is found if SNR > 500 is considered. In the LC sample 18 objects fulfilled
the first and 7 the second criterion. This circumstance was the reason why I first chose the best
25 objects observed in LC mode.

After the release of new Kepler quarters, it became possible to look for further suitable objects
in the SC data sample. Over the mission life time the number of discovered planet candidates
increased to 2321 (Q0-Q6). Now there were 322 planetary candidates observed in SC mode.
In the data of the first seven Kepler quarters I found 26 planetary candidate target stars with
SNR ≥ 1000. These objects constitute my high signal-to-noise target sample discussed in my
paper (Müller et al. (2013), see Chapter 7).

During my analysis it turned out that it would be interesting to study objects with high transit
impact parameters (b ≥ 0.8) like TrES-2b. Objects, which exhibit such a system property,
would show a systematic behavior of the determined LDCs, like previously outlined by
Howarth (2011). Therefore, analyzing such objects would be a good opportunity to verify his
1TrES-2b, KIC 9631995, Kepler-12b, KIC 9631995 and Kepler-13b
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Figure 4.1: Hertzsprung-Russel diagram of
2312 planetary candidate host stars. The luminos-
ity is calculated using the stellar radii and effec-
tive temperatures given in the KPCL, normalized
by the luminosity of the Sun. The colored sym-
bols indicate my selected Kepler target stars
(colors are related to Teff). Eight diamonds mark
objects only available in long cadence mode.
Objects available in short and long cadence are
marked as circles.
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predictions empirically. To get a reasonable number of objects I had to select objects with a
SNR ≥ 150, which led to twelve additional target stars.

In the end, I selected and analyzed 46 different Kepler planetary candidates, which are listed
in Table 4.1. I analyzed seventeen of them in both SC and LC mode, while 21 are unique to my
SC sample. This sample shows stars spanning a wide range of effective temperatures, but most
objects are clearly found in the regime between 5500K and 6500K, which makes them at least
in the sense of effective temperature comparable to our Sun. Furthermore, a comparison with
all planetary candidates in a Hertzsprung-Russel diagram (Fig. 4.1) shows that these objects
are in their hydrogen burning phase on the main sequence. The effective temperature, which is
the most important parameter for my limb-darkening studies, is determined with an accuracy
of about ±200K or better. For a description of how the fundamental stellar parameters are
determined see Batalha et al. (2013) and Appendix A of Müller et al. (2013). Out of this
selection, 25 objects have been confirmed as real exoplanets as of 26.03.2015. Due to the
excellent preselection the false positive rate among the planetary candidates is believed to be
small, in the order of 10% (Fressin et al., 2013).

4.1.2 Transit normalization

After my selection process I had to normalize and detrend the transit light curves of all objects.
This procedure is necessary because, on the one hand, the light curves can be influenced by
intrinsic flux trends such as caused by spots and, on the other hand, by some instrumental
peculiarities like residuals left by the reduction process which are visible as jumps and
exponential decays. Both intrinsic and instrumental variabilities can be relevant on transit
time scales. For that purpose I performed a second order polynomial fit to the continuum
surrounding every single transit light curve. All transit data points were simply divided by this
polynomial function. A linear fit is clearly insufficient to remove the mentioned variabilities,
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Table 4.1: My selected Kepler target stars ordered by increasing Teff .

Identifier Teff/K log g Identifier Teff/K log g Identifier Teff/K log g
Kepler-45b a) 3948 4.72 Kepler-19b 5541 4.53 Kepler-412b a) 5912 4.44
3749365 4601 4.66 Kepler-41b a) 5585 4.49 Kepler-7b a) 5934 4.04
HAT-P-11b 4766 4.59 3935914 5690 4.49 8684730 5952 4.19
Kepler-94b 4786 4.49 9166862 5714 4.50 Kepler-422b a) 5972 4.41
11391018 4787 4.58 Kepler-423b a) 5722 4.55 Kepler-12b a) 6011 4.23
5084942 4915 4.55 Kepler-77b a) 5731 4.45 Kepler-8b 6025 4.11
Kepler-428b 4915 4.63 7849854 5734 4.45 Kepler-43b a) 6082 4.37
Kepler-425b a) 5087 4.59 7023960 5768 4.50 3762468 6094 4.41
9115800 5181 4.47 Kepler-15b a) 5786 4.42 Kepler-25c 6103 4.07
12105051 5425 4.50 Kepler-17b 5787 4.45 10019708 a) 6214 4.41
5771719 5425 4.21 Kepler-68b 5793 4.28 HAT-P-7b 6264 3.79
11414511 5431 4.43 TrES-2b a) 5814 4.38 Kepler-5b 6297 3.99
8544996 5463 4.61 12019440 a) 5826 4.49 3861595 6391 3.81
8845026 5490 4.49 Kepler-6b 5826 4.42 Kepler-13b a) 8848 3.94
BOKS-1b a) 5504 4.54 8456679 5838 4.42
6849046 a) 5541 4.32 8554498 5861 4.19

Notes: Objects given in black constitute my short cadence sample (Section 4.3); results published in
Müller et al. (2013). Objects given in gray were exclusively analyzed in LC mode (Section 4.2). Objects
marked by a) were analyzed in both cadence modes. Teff and log(g) are taken from the mentioned
KPCL. Unconfirmed planets are identified by their KIC numbers.

which leads to prominent residuals. Caused by the additional degrees of freedom, higher order
polynomials tend to be instable or in extreme cases start fitting the noise. Therefore, a second
order polynomial seems to be the best choice under the given circumstances.

The important question, which now arises is, how well are all transits normalized? Of course,
due to the enormous amount of more than 3000 individual transit light curves in my sample,
it is almost impossible to create a normalization algorithm which can handle all occurring
variations of different shape-distorting effects, at least not in a reasonable time frame. Thus,
there remains a number of normalized transits, which exhibit abnormal distortions clearly
visible during a by eye inspection of some objects. So I had to find a solution to increase the
quality of my set of normalized transit light curves by not refining the normalization process.
Therefore, I invented a filter algorithm for poorly normalized transit light curves, which allows
me to automatically discard individual transits. The basic idea is to apply three linear fits to
the continuum parts after normalization. The gradients of these fits should be close to zero,
in the case of a well normalized transit. The first fit is applied to both continuum parts, left
and right beside each transit. This fit should depict whether there is a global trend left on the
transit time scales. The second and the third fit include the left and the right continuum parts
individually. They are needed, if the transit passes the first fit, but shows remaining curvature
in the continuum. This method introduces two parameters, which are the gradient thresholds
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of the linear fits. In practice, I had to determine these thresholds by testing. Good results were
achieved, if all transits showed a gradient of the first fit lower than 1.5 · 10−7 d−1, and lower
than 1.5 · 10−3 d−1 for the two latter fits. However, it was necessary to manually discard some
transits, namely in the case where the transits are well normalized, but significantly distorted
by starspot crossings, like it is the case in the transits of HAT-P-11b (see Sanchis-Ojeda &
Winn, 2011). Overall, the automatic procedure performed quite well, and together with the
manual method only 9% of all transits were discarded.

To further increase the data quality and to get reliable reduced χ2 values, I removed outliers
inside the transit light curves. Outlier removal during the transit occultation is complicated,
since the real transit depth and shape is normally not known beforehand. To get rid of some
insistent outliers I used a sliding median filter with a window size of 10 minutes and rejected
all points detected at a 4σ level or higher. I assured that the number of deleted data points is
small compared to the number of transit data points (< 5%).

In the case of outliers, which cannot be attributed to the statistical population of the signal of
the host star, the determination of the standard deviation itself is influenced by these outliers.
To identify such outliers and to determine a reliable σ value, I used the median absolute
deviation (MAD) within the selected continuum parts and set 0.6745−1MAD as 1σ error
(Hampel, 1974). This method delivers a robust estimator of the standard deviation, comparable
to a Gaussian-fit to a histogram of the residuals. Both methods are weighted by the number of
data points, like the median, while in contrast the mean and the normal standard deviation are
weighted by the actual flux values and, therefore, more susceptible to outliers.

For further details about my data handling, the normalization process and a complete list of
discarded transits, see Section 2 and Table B.1 of Müller et al. (2013). All data I used for this
part of my work was processed by Kepler’s photometric analysis pipeline (releases 4 to 7; see
data release notes2 for more information). This pipeline has been changed during different
data releases. In the most recent data release (23) a few transits are deleted by default and not
available anymore, such as transits 19 and 26 of TrES-2b, which were previously detected by
my filter algorithm.

4.2 Long cadence data

My first approach to indirectly measure the stellar limb darkening using planetary transit
light curves was based on Kepler long cadence data. As outlined in Section 1.3.2, the crude
time resolution of the LC data makes it necessary to use an overbinned fit model, since the
shape of the sampled transit light curves is systematically broadened, which has already been
shown using Kepler data for TrES-2b by Gilliland et al. (2010). It is obvious that transits
which have a crude time binning hold less information on the host star’s disk compared to data
with high time resolution. The overbinning procedure, which is definitely needed to model

2http://archive.stsci.edu/kepler/release_notes/, visited in April 2014.
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objects, discussed in text.

data with time binning longer than one to two minutes, is a really time consuming part of the
transit modeling, especially in the case of data containing many transit light curves. I used an
overbinning factor of 30, leading to a transit model being evaluated at one minute bin time,
and then rebinned down to the 30 minutes bin time of the Kepler LC data. I expected that the
resulting uncertainties would be rather large, which is the reason why I started fitting the limb
darkening using the linear law

I (µ)
I (1)

= 1 − u(1 − µ) , (4.1)

which introduces only one additional fit parameter, the linear coefficient u. This is the simplest
approach to the limb darkening among the equations introduced in Table 1.1. If this would not
lead to credible results, then it would not make any sense to use further, more complicated
limb-darkening descriptions for this kind of data.

The orbital period Porb and the transit center time t0 are needed for transit modeling and they
are given in the KPCL. However, I had reasons to suspect that they are not as precise as required
for my investigations, because they led to characteristic residuals if the transits were shown
phase folded, and they were not updated with the release of new Kepler quarters. Therefore, I
first fitted Porb and t0 using a downhill simplex algorithm setting all other parameters to the
values found in the KPCL. After that I started the transit modeling with four free parameters:
the planet-to-star radii ratio p, the inclination angle i, the semi major axis a/RS, and the linear
limb-darkening coefficient u.

For all my transit investigations I used the Fortran occultquad routine (Mandel & Agol,
2002). To obtain a linear limb darkening the quadratic LDC is set to zero. After fitting
the parameters, using again a downhill simplex algorithm, I used an MCMC sampling
algorithm (see Section 1.3.1), performing 106 iterations. I interpreted the mean values of the
parameter traces as the expectation values of the parameters together with their 68.3% highest
probability-density (HPD) intervals as a reliable 1σ estimate.

I present the resulting linear LDCs of my sampling approach in Fig. 4.2 together with the
predicted LDCs of Claret & Bloemen (2011) for ATLAS and PHOENIX atmospheres. The
dotted lines represent LDCs obtained by a flux conserving fit method forcing the integrated flux
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under Eq. 4.1 to be equal to that determined from the model atmosphere (Claret, 2000). There
is a remarkable difference visible between the LDCs obtained by this method and a normal
least squares (LS) fit to the intensity distribution of the atmospheres, especially pronounced for
increasing effective temperatures. This means that the LS method underestimates the overall
emitted stellar flux, resulting in stronger prediction of the limb darkening (I will discuss this
effect later on in Chapter 5). For now, we concentrate on the predictions determined by the LS
method (solid and dashed lines).

We can clearly see that only four or five objects are consistent with the model predictions.
Three of these lie directly on the PHOENIX values, the fourth object is TrES-2b (diamond
symbol), and the fifth object is the second coolest in this sample, barely consistent with the
predictions. All other objects, as those showing quite small error bars, lie clearly below the
predicted LDCs. Considering now the predictions made by the flux conserving method, I
found six objects consistent with these predictions, but the majority of objects still lie below
theory. At this point I can state that the predicted LDCs for the linear law are inconsistent with
my measurements.

To quantify the difference between models and measurements, I first have to discuss some
of the objects which should not be considered. The three objects marked with triangles,
with significantly weaker limb darkening in comparison to the others, and TrES-2b should
be neglected due to their high impact parameter causing the measured limb darkening to
be unreliable (see Section 6.5, and Müller et al. (2013)). Starting with the coolest of these
objects (Kepler-45b), the obtained LDC is not necessarily incompatible with theory, because
in this temperature regime the LDCs strongly depend on the log(g) and the stellar metallicity
(Section 1.1.3). This object is also available in short cadence data and will be discussed there
(Section 4.3). The other two objects (KIC 9115800, KIC 3935914) cannot be explained in the
same way, but their light curves show stellar variability most likely induced by starspots. The
influence of starspots on the determination of the limb darkening is beyond the scope of my
work, but in principle all objects of this sample with larger uncertainties except TrES-2b show
spot induced rotational modulations in

The median values of the residuals between measurements and predictions lead to deviations
of ∆uP = −0.10 and ∆uA = −0.08 in the case of the least-square fit method for PHOENIX and
ATLAS, respectively. If the flux conserving method is considered, the deviations are to be
found as ∆u

′
P = −0.06 and ∆u

′
A = −0.03. In general, the predictions of the flux conserving fit

method are not preferred, since they lead to significantly poorer fits to the intensity distribution
of the model atmospheres (see Claret, 2000). However, in the demonstrated case (Fig. 4.2)
these theoretical LDCs would be the better choice for transit modeling or other kinds of data
where a linear limb-darkening prediction is used (e.g. Ohta et al., 2005). It is also noteworthy
that the objects with the smallest error bars seem to follow the global trend of the predictions
(weaker limb darkening with increasing temperature).

As a next step, I decided to repeat the fitting and MCMC sampling approach, this time setting
also the quadratic coefficient u2 free, since the uncertainties of most of the objects in Fig. 4.2
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Figure 4.3: Fit results of the quadratic LDCs for my long cadence target sample (see Table 4.1). Left:
linear coefficient u1, right: quadratic coefficient u2. Green solid lines: predictions based on PHOENIX,
red dashed lines based on ATLAS atmospheres. Diamond indicates TrES-2b. Triangles mark same
objects as in Fig. 4.2. 68.3% HPD error margins.

are promisingly small. Now, the limb-darkening law

I (µ)
I (1)

= 1 − u1(1 − µ) − u2(1 − µ)2 , (4.2)

has two coefficients (u1, u2) and, therefore, the number of fitted transit parameters increases to
five. The measured LDCs for this sample are shown in Fig. 4.3. Unfortunately, the uncertainties
of the coefficients are large, which is not unexpected due to the additional degree of freedom
and the strong correlation between u1 and u2. In comparison to Fig. 4.2, where only one limb-
darkening parameter was fitted, the error bars are now more than twice as large. Nevertheless,
I found five objects with small error bars, four in the region around 6000K (Kepler-423b,
Kepler-7b, Kepler-422b, Kepler-12b), and the fifth is the hottest host star in my sample
(Kepler-13b). These objects are also available in my short cadence sample and therefore
discussed there. It is notable that nine objects with small to moderate error bars lie significantly
below both predictions of the quadratic coefficient u2. The median value of the quadratic
coefficient of these objects is −0.18 ± 0.05, which translates into an offset from the used
PHOENIX prediction of ∆u2 = −0.36 ± 0.05. In contrast, there are only three objects which
lie significantly above u1. All other objects are consistent with at least one of the model
atmospheres, caused by their large errors. All measured coefficients and transit parameters of
this sample can be found in Table A.5. Due to the large uncertainties caused by the insufficient
time resolution, I omit a further discussion about the question which model atmosphere should
be preferred in transit modeling. To give more significant results with smaller error margins, I
had to wait for the release of new Kepler light curves, including high signal-to-noise short
cadence measurements.
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4.3 Short cadence data

After the release of new Kepler quarters, I was able to find suitable short cadence targets for
fitting the limb-darkening. Due to the higher time resolution, the transit light curves contain
more spatial information on the stellar disks and, therefore, the fit results of the limb darkening
are expected to be more reliable. The results of my short cadence target sample are mainly
discussed in my paper (Müller et al., 2013), so I will only summarize the results here and give
some further details not included in the paper.

The analysis of the short cadence data was carried out like outlined for the long cadence data.
In detail, this means I started with a normalization and detrending of all transits, a proper fit of
t0 and Porb, an outlier removal, and a downhill simplex fit of all transit parameters. I continued
with a Markov chain Monte Carlo approach to sample the parameter space using the best-fit
values determined before as start parameters. Additionally, I carried out an analysis searching
for red noise, i.e. time correlated noise in the data. Because of the complexity of this topic, I
will discuss this analysis in a separate section (Section 4.4).

In Fig. 4.4, I present phase folded transit light curves of three objects together with my best-fit
models. I chose these objects according to their transit signal-to-noise ratio (δ/N) to show

Figure 4.4: Examples of phase folded transit light curves of my short cadence target sample, together
with my best-fit models (red lines). Bottom panels show the residuals and the residuals rebinned to one
minute bin time in red. For additional information I give the KIC identifier, the reduced-χ2 value, and
the system impact parameter at the top of the images. Revised figure of Müller et al. (2013, Fig. B.2).

the whole range of transit-event significance found in my sample. In the left panel we see the
transit of TrES-2b, which has the highest ratio of transit depth to photometric noise (60.6)
in the whole Kepler sample. The middle panel of this figure shows the transit light curve of
Kepler-77b which is an example of objects with intermediate δ/N values (12.2), while in the
right panel the observed transits are only slightly deeper than the photometric noise (1.4).
Although the transit signal of the last object shown is really weak compared to the noise,
we have to keep in mind that the whole light curve consists of 114 recorded transit events,
which increases the significance by

√
NT and, therefore, it is possible to measure the orbital

parameters and the limb darkening with reasonable accuracy. I summarize the δ/N values
together with the total photometric precision for all objects in my short cadence sample in
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Figure 4.5: Fit results of the quadratic LDCs for my short cadence target sample (see Table 4.1).
Left: linear coefficient u1, right: quadratic coefficient u2. Model predictions are drawn as lines and
crosses (labels, see text for references). Triangle marks the M-dwarf in my sample, shown together
with ATLAS model prediction for log g = 5.0 (gray dashed lines). Objects with b > 0.7 are removed
from this plot, but included in Fig. 4.7.

Table A.6. As a measure for the goodness of the fit I determined the reduced χ2 values, where
the degrees of freedom are defined by ν = n − f − 1. The number of data points is given by
n and f is the number of fitted parameters (u1, u2, p, i, a), i.e. five. I found that for all of
my objects χ2/ν is close to one, which is a clear indication that the fits are really good. To
confirm the precision of the fits, I show the residuals after subtracting the best-fit models in
the bottom panels of Fig. 4.4. Furthermore, I rebinned these residuals down to one minute bin
time. Even after rebinning, there are no systematics visible. At this point we have to remember
that according to Section 1.3.2 the rebinning of the data before fitting the parameters is not
recommended. There is no gain in information if the light curve would be rebinned, in fact
information is destroyed. However, after the determination of all parameters the rebinning can
be helpful, e.g. for illustrating the residuals.

The results of my transit modeling are summarized in Table 3 of Müller et al. (2013). There
we can find measured limb-darkening coefficients including the 1σ error estimates, as well as
the predicted PHOENIX coefficients. For the following discussion, I plot again the measured
coefficients together with the model predictions of PHOENIX and ATLAS (Fig. 4.5), but
this time also including more recent predictions (Claret et al., 2013). All predictions coming
from the flux-conserving fit method are neglected. Compared to Fig. 4.3, the limb-darkening
measurements show an amazing precision. Nevertheless, as already outlined in my publication,
there were some objects which have remarkably large error bars and a clear deviation from
the predictions. According to my analysis, their systematic behavior can be attributed to their
high system impact parameters, on which I will comment in the next subsection. Therefore, I
removed these three objects3 from this figure. I further identified only one remaining object
which is an “outlier” in both u1 and u2. This object is a K-dwarf according to the given effective
temperature of only ≈ 4000K. As we know from Section 1.1.3, the limb darkening is very
3TrES-2b, Kepler-412b, Kepler-8b
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sensitive to, e.g., the surface gravity log g in this temperature regime. Thus, the theoretical
predictions used here (log g = 4.5) are a bad choice for this object, and I additionally present
the ATLAS predictions for higher surface gravity (log g = 5.0, common for late K-dwarfs) in
that figure. This shows that this object is no outlier and also consistent with theory.

One of my major results is that the measured coefficients show deviations from the theories.
Although I found that the measurements of the linear coefficient u1 show partially good
agreement with one of the models at a time, my results show that on average the measured
coefficients deviate from both predictions, u1 andu2. I measured this deviance in the temperature
range 5300K to 6500K, where most objects of my sample are located, by calculating the
median values of the residuals after subtracting the individual model values. The resulting
differences are summarized in Table 4.2. Looking at ∆u1 we see that my found values lie below

Table 4.2: Measured mean deviations from model predictions.

Model ∆u1 ∆u2
PHOENIX 1D a) −0.05 ± 0.01 −0.03 ± 0.01
ATLAS a) +0.04 ± 0.01 −0.10 ± 0.01
PHOENIX qs b) −0.03 ± 0.01 −0.04 ± 0.01

Notes:Differences are calculated for the fitting results of my high signal-to-noise target sample (b < 0.7,
Fig. 4.5), in the temperature range 5300K to 6500K. a) Claret & Bloemen (2011), b) quasi-spherical
(qs) predictions Claret et al. (2013).

the PHOENIX 1D predictions and almost the same amount above the ATLAS values. This
result also proves what we can see in Fig. 4.5 where the measurements seem to sample the gap
between the model predictions. In contrast, ∆u2 shows a different behavior. The measurements
lie clearly below both model predictions. Therefore, the predictions given for u2 are in both
cases significantly too high, which is also visible in the right panel of Fig. 4.5, but in any case
the ATLAS predictions are far too high. The quasi-spherical predictions are slightly closer
to the results of u1 compared to PHOENIX 1D and ATLAS, but slightly further away in u2
than PHOENIX 1D. A calculation of χ2 yields that χ2P 1D is four times smaller than χ2A in
the case of u2 predictions. For both coefficients I find that χ2P 1D is still a factor of 1.4 smaller
than χ2A. This leads to the conclusion that at least for these objects, together with this specific
photometric passband, the PHOENIX prediction is the better choice for transit modeling.

Besides the obtained differences of my measurements to the model predictions, it would also
be interesting to compare the underlying limb intensities and to see the actual effect on the
transit profile. For clarity I decided to select the results of objects found in a sharp solar-like
temperature range (5750K to 5850K), where I found five objects (see Müller et al., 2013,
Table 1). According to the accuracy of the given effective temperatures (±200K), these objects
have virtually the same temperatures and should be comparable to the Sun. The limb-intensity
profiles of these objects are slightly different, as visible as a gray area in the left panel of
Fig. 4.6. Additionally, I show the limb profiles predicted for this temperature range by ATLAS,
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Figure 4.6: Left: Limb-intensity profiles of solar-like Kepler targets (gray) together with predicted
profiles using ATLAS (red), PHOENIX 1D (green), and PHOENIX qs (blue) for the temperature
interval of 5750K to 5850K. Right: Simulated transits using the shown limb intensities of the left panel
and a planet-to-star radii ratio of p = 0.1. Bottom panel: Maximum and minimum transit residuals
determined by subtracting model transit of my Kepler measurements from transits created using model
predictions. Müller et al. (2013).

PHOENIX 1D, and PHOENIX qs. Clearly, all models predict too strong limb darkening,
which is also visible at intermediate limb angles (zoom-in). However, the ATLAS predictions
are found in between the measurements, whereas the PHOENIX predictions lie at the lower
edge of the measured profiles or below, especially the quasi-spherical models. The fact of
over predicted limb darkening will play a role in the analysis of the solar limb darkening in
Chapter 5.

Transit light curves generated with the measured limb intensities of the five selected objects
show slightly different shapes, as illustrated in the right panel of Fig. 4.6. For instance, the
deepest transit is based on the limb intensity model which holds the strongest limb darkening:
here the PHOENIX qs prediction. The residuals show the differences between transits generated
using model predictions and those relying on my measurements. We can see that the PHOENIX
qs prediction leads to the strongest residuals, with a peak amplitude of 4 ·10−4, closely followed
by PHOENIX 1D. The ATLAS models lead to residuals with nearly half of this value, and it
seems to be the better choice for modeling transits. This result is in contrast to the χ2 values
found above, where I stated that the PHOENIX models are closer to my measurements. We
have to keep in mind that the results are achieved for this specific and sharp temperature
interval and might look different for other temperatures. Notably, the found residuals are in the
order of 10−4, which is detectable by Kepler (cf. σc in Table A.6). This is a self-consistent
proof of my method, because if the simulated residuals would have been below Kepler’s
detection limit, the transit fits should lead to the same results, e.g. indicated by larger errors,
which is at least not the case for the objects chosen here. The influence of the chosen model
prediction on the fitted transit parameters is discussed in Section 4.3.3.
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Figure 4.7: Quadratic LDCs determined by transit modeling of objects included in my high impact
parameter sample (Müller et al., 2013, Table 2). Dots: Objects which have an impact parameter b < 0.6
according to my transit modeling. Diamonds: Results for objects with high impact parameters of
b > 0.8. Triangles: Objects removed from Fig. 4.5 with b > 0.7.

4.3.1 Results for high impact parameters

During my studies of Kepler transit light curves it turned out that the results achieved from
transiting systems which are highly inclined are special. TrES-2b, the object with the highest
transit signal-to-noise ratio (δ/N , see Table A.6) in the whole Kepler sample, but with an
impact parameter of b = 0.85, shows limb-darkening coefficients with remarkably large errors
when compared to objects with lower signal-to-noise. To further investigate the effects on
the measured limb-darkening coefficients, presumably caused by high impact parameters, I
searched for objects in the Kepler planetary candidate list, which had to fulfill the criterion
of an impact parameter larger than 0.8. This value was somewhat arbitrarily chosen, but was
motivated by the value found for TrES-2b. I found 12 additional objects with significantly lower
signal-to-noise ratios than given in my first sample. These objects constitute my high-impact-
parameter sample, although I found that actually only seven objects have b > 0.8 according to
my transit modeling, the remaining five have significantly smaller values (see Müller et al.,
2013, Table 3). The determined limb-darkening coefficients for this sample are shown in
Fig. 4.7, where I added TrES-2b and two more objects from my high-signal-to-noise sample
with b > 0.7, as previously mentioned. At first glance nearly all objects with a low impact
parameter (b < 0.7, dots) show good agreement with the model predictions, while the objects
with a high impact parameter exhibit a systematic behavior: they show huge uncertainties and
they lie below or above their predictions of u1 and u2, respectively. Howarth (2011) introduced
the systematic behavior seen for the deviations using simulations (I will discuss this later on in
Section 6.5). His predictions are nicely reproduced by my measurements and, therefore, his
findings are verified empirically for the first time. However, he neglected an investigation of
the errors, which I included in my studies.

I was able to measure the behavior of the standard errors of u1 and u2 as a function of the
system impact parameter due to the variety of different b values given in my sample. I presented
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the values for 2σu1 + 2σu2 in Fig. 9 of my paper. This plot illustrates that the errors are steeply
increasing if b > 0.8. This result is very important, because it says that it becomes much more
difficult or even impossible to measure the limb darkening in such systems. This can easily be
explained by the planet’s path over the stellar disk, which does not sample the full brightness
distribution but only a part of it, and, therefore, this information is not fully included in the
light curves. Beyond this empirical result, there exists an analytical solution for this error
behavior, presented in Appendix B of my paper. Using Bayesian statistics, we need to know
the posterior probability distribution (cf. Eq. 1.31) to obtain the uncertainties (or credibility
intervals) of the coefficients. In the given case, the likelihood L is a function of χ2 and we
can write the posterior as

P(u1,u2 |D) =
P(u1,u2)L( χ2)

!

P(u1,u2)L( χ2) du1 du2
. (4.3)

We know that for an estimate of a 68% confidence interval of two correlated parameters, the
∆χ2 has to be set to 2.3 (e.g. Press et al., 2002). We can rewrite the posterior and get the
expression

P(∆u1,∆u2 |D) = L0 · e−1/2(∆χ2 (∆u1,∆u2)) , (4.4)

with L0 being a normalization constant. For instance, we can derive the expectation value

E(∆u2i ) = L0

"

∆ui∆ui · e−1/2(∆χ2 (∆u1,∆u2)) d(∆ui ) d(∆ui ) . (4.5)

It can be shown that the square root of the expectation value E(∆u2i ) corresponds to 1σ. The
behavior of the credibility intervals can now be predicted for arbitrary impact parameters by
evaluating the function ∆χ2. The results are plotted in Figs. 11 and B.1 (left panel) in my
paper. As shown by my measurements using Kepler objects with high orbital inclinations,
this analytical solution reproduces the steep increase for impact parameters of 0.8 or larger as
well as smallest errors for low impact parameters. Actually, the analytical solution illustrates
that the uncertainties of u1 and u2 do not increase monotonically, but decrease slightly after a
local maximum at b ≈ 0.5. Furthermore, this prediction shows that u1 is always slightly better
constrained than u2.

In conclusion, I can say that it is impossible to measure the individual limb-darkening
coefficients u1 and u2 in systems with high impact parameters. However, it actually remains
possible to measure the combination of the coefficients uC = u1 + u2. I plotted this sum
for the objects discussed above (b > 0.7) in Fig. 4.8. We can see in this figure that the
systematic behavior of the individual coefficients is gone and that the deviations from the
model predictions are much smaller. In some cases the summed values even lie directly on the
model predictions. In addition, the combination uC shows much smaller uncertainties than the
two coefficients alone. For instance, TrES-2b, the object with the deepest transit compared to
the photometric noise (δ/N) in the Kepler sample with an impact parameter of b = 0.85, now
shows the smallest error bars in Fig. 4.8. This object was also studied by Schröter et al. (2012),
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Figure 4.8: Sum of the linear and quadratic
coefficients (uC = u1 + u2) for objects with an
impact parameter b > 0.7 in comparison to the
summed model predictions (labels). See also
Figs. 6 and 10 in my paper. Symbols are the
same as in Fig. 4.7.
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who pointed out that the quadratic limb-darkening law can be approximated by a constant
function

I
I (1)

= 1 − (u1 + u2) , (4.6)

under the assumption that the planet only probes disk areas where µ � 1. Thus, a transit fit
would only be sensitive to the sum u1 + u2. However, the maximal µ-value achieved during the
transit occultation (transit center) is 0.53 for TrES-2b. This value can be calculated using the
equation

µmax =
√
1 − b2 (4.7)

(cf., Eq. 1.6), and this clearly does not comply with µ � 1. Nonetheless, the idea of a constant
intensity function expressed by the sum of the coefficients is not necessarily bad and I claim
that the “median” limb angle sampled by the planet in such systems is even zero, which I will
justify in the following. Obviously, sampled values of µ ≈ 0 would lead directly to Eq. 4.6
again.

In Fig. 4.9 I illustrate simulated transit light curves of the TrES-2 system, first, with an
impact parameter of b = 0 (left panel) and, second, with its original impact parameter. The
limb-darkening coefficients were set to the PHOENIX 1D prediction and additionally I show
hypothetical transits for the same orbital parameters, but without limb darkening (uniform
source). In the case of b = 0 we can see that a relatively short transit ingress phase is followed by
a distinct mid-transit phase (t2 to t3, green area), in which the complete planet is in front of the
stellar disk. In contrast, in transiting systems where the orbital geometry appears highly inclined,
such as for TrES-2b, the ingress phase takes the major portion of the transit event (we remember
Eq. 1.24 in this context). In the example shown here the ingress phase is even longer than the
complete mid-transit phase. This is an important fact to substantiate the allegation that µ ≈ 0,
since during the transit ingress or egress phase the outermost limb (µ = 0 contributes to the light
curve. After t2 the contribution of non-zero µ-values (0 < µ ≤ µmax) is only given in a relatively
short time frame. Therefore, Eq. 4.6 is an appropriate approximation to describe the sampled
limb darkening. This means that a transit fit mainly measures the intensity at the stellar limb,
which is equivalent to a constant difference to the central brightness I (1). It should bementioned
that due to the size of the planet Eq. 4.7 is only an approximation, and one could argue that the
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Figure 4.9: Simulated transit light curves using quadratic LD (dashed) and no LD (uniform source,
solid). Colored areas indicating transit phases discussed in text. Blue: transit ingress and egress phases,
green: whole planet is in front of the stellar disk, magenta: flux change during full-planet occultation.
Transits generated using system parameters of TrES-2b, left: simulated impact parameter b = 0, right:
original impact parameter b = 0.85.

planet even samples larger values than µmax. This is actually true, but due to the non-linearity
of µ the planetary disk covers a greater portion of µ < µmax than µ > µmax (see Fig. B.8).

Another clearly visible difference between these inclination scenarios is the change in transit
depth during mid-transit phase.While the transit with an inclination of 90° shows a significantly
different flux value between t2 and transit center, the highly inclined version shows an almost
constant flux. Again, this also supports the assumption that the planet samples a constant
intensity difference to the central brightness as described by Eq. 4.6. In contrast, when assuming
a uniform source, the transits show always the same depth independent of the impact parameter,
as long as they are not grazing. Consequently, the difference between a highly inclined transit
with limb darkening and a transit without limb darkening is only marginal, and they look very
similar especially when some noise is given.

The phenomenon of smaller error margins visible for uC as mentioned above can be explained
using the simple error propagation. I know from my MCMC sampling that u1 and u2 are
strongly anti-correlated which requires a slightly adapted error propagation for correlated
variables, which can be expressed by

σ2
uC = σ

2
u1 + σ

2
u2 + 2Cu1,u2 . (4.8)

The last term of this equation is the covariance (Cu1,u2 = %u1,u2σu1σu2) with % to be the
correlation coefficient. This coefficient can directly be determined from the parameter traces
sampled by the MCMC algorithm or analytically using Eq. B.20 of my paper. The analytical
solution delivers the dependence of %u1,u2 on the impact parameter, which is shown in Fig. B.1
(right panel) in my paper, and this confirms that the correlation between u1 and u2 is always
negative. Therefore, Eq. 4.8 translates to

σ2
u1 + σ

2
u2 − 2σu1σu2 = (σu1 − σu2 )2 , (4.9)
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assuming for simplicity an impact parameter of b = 1. This means that the combination uC is
always better constrained than the individual coefficients, independent of the impact parameter.
This is also visible in Figs. 11 and B.1 (middle panel) in Müller et al. (2013). Pál (2008)
delivers a more detailed analysis of the correlations between the limb-darkening coefficients,
e.g. for different planet-to-star radii ratios p.

4.3.2 Comparison of public transit parameters and my fits

As an additional byproduct, I compare the transit parameters published by the Kepler team to
my results determined using the MCMC method. In Fig. 4.10 I show the planet-to-star radii
ratios p, the orbital inclinations i, and the semimajor axis of the orbits a. It is clearly visible
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Figure 4.10: Comparison of measured transit parameters. Dots: Results of my MCMC sampling, red
diamonds: public Kepler data (NASA, 2014). Error bars indicate the 1σ credibility intervals. Results
left from the blue vertical line belong to my high signal-to-noise target sample, and on the right side of
that line I present the results of my high impact parameter sample. Both samples sorted by Teff (Müller
et al., 2013, Table 3). See Fig. B.14 for residuals and a larger view.

that the MCMC results of most objects are not congruent with the parameters provided by
the Kepler team. Due to the small uncertainties for most of these objects, I have to say that
these deviations are significant. The main disparities are found in the orbital inclination and
radii ratio, while the semimajor axis does not show pronounced differences for most objects.
Looking at the radii ratios p, I assert that the Kepler team tends to measure slightly smaller
values compared to mine. Out of 38 objects the radii ratios of 24 objects are on average 4%
smaller than those determined by my fitting approach, and only seven are identical in the
range of their 1σ errors. The inclination angle shows a different behavior. Here 21 of my
measurements lie clearly below the public Kepler values, and 11 are comparable. However,
for 16 objects the Kepler team states the same inclination angle of 89.95°, which seems not
likely to be fitted. For the values of the semimajor axis I found that 15 of the Kepler values
are compatible with my results. 23 objects deviate significantly from each other, 17 are lying
above mine , and 6 below. In the end, less than half of the objects here studied show almost
the same parameters as published by the Kepler team. Especially the values of the inclination
angle given by the Kepler team seem conspicuous to me. Therefore, I conclude that the transit
parameters determined in my study are more reliable.

77



4 Measuring LD using Kepler Data

4.3.3 Evaluation of orbital parameters using their correlations

I showed in Table 4.2 that my measured quadratic limb-darkening coefficients show a deviation
from theory, most significant for the quadratic coefficient u2. Therefore, we now have an
impression of how reliable these theoretical predictions are. The important question not
answered yet is, which systematic influence would be introduced to the orbital parameters,
if the limb darkening would be fixed to the predicted values in transit modeling. This can
be answered by determining how the remaining parameters (p, i, a) deviate from my best-fit
values, if the theoretical limb darkening would be chosen. This does not mean that I fix the
limb-darkening coefficients and fit all transits again, this is actually not necessary. Fortunately,
the parameter traces of the chosen MCMC approach hold all information I need to evaluate
the mentioned parameters for all combinations of u1 and u2. This subsection is a supplement
to Appendix B.5 of my paper (Müller et al., 2013), where I present a detailed theoretical
background. I will now concentrate on the unpublished individual results, and present a
procedure how the parameter evaluation can easily be implemented in a small algorithm.

My used MCMC sampler provides the parameter traces for every object in my sample, on
whose basis the correlation coefficients between all parameters can be estimated. Together
with the determined standard deviations we reach the covariance matrix C of the parameters.
By definition, the inverse of the covariance matrix yields the Hessian matrix H written as

H =

*...........
,

∂2 f
∂p∂p

∂2 f
∂p∂i

∂2 f
∂p∂a
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∂2 f
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+///////////
-

. (4.10)

The determination of H is an important step, since it can be shown that the gradient of the
posterior probability distribution, P, can be written as

∇ ln(P) = −H∆x , with ∆x = ∆y + δ . (4.11)

∆x is a column vector, in which we can set one or more entries to fixed offsets δi , and adjust
the remaining parameter offsets ∆yi so that the posterior P reaches again its maximum. In the
case discussed here, I want to fix the offsets of the limb darkening coefficients. The parameter
offsets ∆yi then represent the changes of the orbital parameters, expected if theoretical values
for u1 and u2 are used in transit modeling. To achieve these parameter changes we first define
the vector δ containing the deviation from theory, found by my transit modeling (Table 4.2).
This leads to the simple form

δ = (0,0,0,∆u1,∆u2)T. (4.12)
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This vector is then multiplied with the Hessian matrix, which results in a new vector b = Hδ:

b =

*..........
,

∂2 f
∂p∂u1

∆u1 +
∂2 f
∂p∂u2

∆u2
∂2 f
∂i∂u1

∆u1 +
∂2 f
∂i∂u2

∆u2
∂2 f
∂a∂u1

∆u1 +
∂2 f
∂a∂u2

∆u2
∂2 f
∂u1∂u1

∆u1 +
∂2 f
∂u1∂u2

∆u2
∂2 f
∂u2∂u1

∆u1 +
∂2 f
∂u2∂u2

∆u2

+//////////
-

. (4.13)

We now remove the elements from b and H pertaining to the limb-darkening coefficients,
which are the last two entries of b and the last two rows and columns of H , and we obtain b′

and H ′. The inverse of H ′ yields a new covariance matrix C ′ as if u1 and u2 where fixed to
theoretical values during transit modeling. The vector of the absolute parameter changes ∆y ′
is than calculated by multiplying the new covariance matrix with δ′,

∆y ′ = H ′−1 · (−b′) , (4.14)

which “self-re-maximizes” the posterior.

I repeated this procedure for every object in my sample, which resulted in 38 parameter offsets
for each orbital parameter (p, i, a). I normalized these offsets by the individual fit results
of the parameters and show them in Fig. 4.11. We can see that the scatter of the points is
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Figure 4.11: Individual relative parameter changes if LDCs are set as fixed parameters in transit
modeling, after applying an constant offset to the theoretical LDCs. Blue solid line indicates the
mean value of all points and the dashed line marks the median value. Points are sorted by effective
temperature.

relatively large. For clarity I mark the mean and median values in the plots, which reveals
that the semimajor axis reacts most sensitively to changes of the limb darkening. Depending
on the chosen model prediction I get slightly different results for the mean parameter offsets,
summarized in Table 4.3. The errors are on the oder of 1%, which is not surprising when
looking at the scatter visible in Fig. 4.11. Nonetheless, these values can serve as estimators for
the systematic errors to be expected when theoretical limb-darkening coefficients are used.
In any case, despite the large uncertainties we can see a trend of the parameters, e.g. that p
tends to be smaller and this could be interpreted as smaller planet radii. This can probably be
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Table 4.3: Relative parameter changes, if theoretical LDCs are used in transit modeling.

Model ∆p/p in % ∆i/i in % ∆a/a in %
PHOENIX 1D a) −0.7 ± 0.8 0.5 ± 0.5 1.6 ± 1.7
ATLAS a) −0.5 ± 0.4 0.3 ± 0.2 0.9 ± 1.2
PHOENIX qs b) −0.6 ± 0.7 0.4 ± 0.4 1.4 ± 1.5

Notes: Parameter changes are determined as described in text. Error estimates are determined as simple
standard deviations from individual relative parameter changes of all 38 objects. a) Claret & Bloemen
(2011), b) Claret et al. (2013).

explained by the fact that the limb darkening seems to be overestimated by theory, as already
mentioned in the context of Fig. 4.6. Transits in front of stars with strong limb darkening are
deeper than those with weak limb darkening. When comparing these results to the differences
given in Table 4.2, it is conspicuous that the ATLAS predictions lead to smaller parameter
offsets, although they show larger deviations from my measurements, at least when expressed
in χ2 values. This again demonstrates how complicated the search for an answer to the question
“which model prediction is the most reliable” is.

We have to keep inmind that I used high quality space-based photometry to achieve these results.
The discussion outlined here is therefore only of interest, if the data quality is comparable or
even better, because in these cases the observer should fit the limb darkening during transit
modeling. Especially in the case of ground-based observations the photometric quality is
almost always at a level where the limb darkening should be fixed to the predicted values.
The introduced systematic errors to the transit parameters would be small compared to errors
caused by the normal noise of the data.

4.4 Time-correlated noise

At some point, most observers have to deal with the phenomenon of time-correlated noise,
in fact in the case of time-series data, such as radial velocity measurements of the Rossiter-
McLaughlin effect or – as in my case – observations of transit light curves. A simple
example, where time-correlated noise can occur, is an increasing or decreasing airmass during
observations. Thereby, the induced variation in signal strength then, consequently, causes a
variation in the data-point errors. This example illustrates the time dependence of the errors,
which also implies that the error σi depends on the error σi−1 of the previous data point. This
fact introduces long-range correlations in the time domain of the data set (see e.g., Beran et al.,
2013).

There exist numerous sources of time-correlated noise, such as instrumental effects like aging,
but also changing atmospheric conditions caused by clouds or dust particles, temperature
and humidity drifts. The latter two are more important for spectroscopic observations than
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4.4 Time-correlated noise

Figure 4.12: Simulated data with different
kinds of noise. The bottom panel illustrates white
noise data with a red noise contribution, such as
a light curve of a slightly spotted star. In this case
I added the red noise (middle panel) to Gaussian
distributed data (top panel). See text for details.
The axes are arbitrarily scaled. This figure is
inspired by Pont et al. (2006, Fig. 2).
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for photometric time series. Of course, stellar intrinsic variabilities like spots or oscillations
engender time-correlated errors as well. If we think of normally distributed data the most
probable error of individual data points can be derived from the Gaussian probability
distribution. When this data set is modulated by an oscillation or influenced by other processes
the individual data points can still be normal deviates (e.g., Deserno, 2002). However, if
their variances are defined by Poisson statistic, then they are now time-dependent due to the
oscillation. A histogram over the whole data set would not have a Gaussian shape anymore,
which can be evidence of time-dependent noise in the data.

Normally distributed data has usually no correlation in time. A frequency analysis of such
data would reveal that all frequencies have the same spectral power, or in other words: the
power spectral density (PSD) is constant. Analogous to light, such a noise distribution is called
“white noise”. Noise which shows a time dependence has a PSD changing with frequency,
such as “red noise” or “pink noise”, which has a PSD of 1/ f 2 or 1/ f , respectively, where f
denotes the frequency. In both cases, high frequencies (short periods) have less power than
low frequencies (long periods).

There exist some numerical methods to generate pure red noise. For instance we can compute
the running sum of Gaussian distributed random data. This is, obviously, the integral of the
data. This integral introduces a factor of f −1 into the Fourier transform and therefore a factor
of 1/ f 2 if the power is considered (see e.g., J. A. Barnes & Allan, 1966; Press, 1978). This
new data set represents a random walk, also known as Brownian motion, which is the reason
why red noise is also often called Brownian or Brown noise. However, in Fig. 4.12 (middle
panel) I show simulated red noise data for which I used a different method. I sampled 300
normally distributed data points and calculated the Fourier transform of this data set. The
resulting power spectrum was then multiplied by a filter function which has the form 1/ f 2,
normalized by the lowest frequency. This new power spectrum is than transformed back to
the time domain. Now, in Fig. 4.12 (middle panel) no high frequencies are visible anymore,
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although they are still present. The amplitudes of these high frequencies are now strongly
suppressed. The bottom panel of Fig. 4.12 shows the superposition of the top and middle panel.
The result of this procedure is a data set with colored noise similar to a light curve of a spotted
star often visible in high quality photometry.

The problem of time-correlated noise is well discussed in the literature and also in astronomical
contexts (e.g., Press, 1978; Pont et al., 2006; Carter & Winn, 2009). However, in the following
sections I go into some details of the analysis of colored noise in the case of transit light curves,
especially if the data exhibits gaps and missing continuum parts between the planet eclipses.

4.4.1 Analyses of time-correlated noise in simulated data

There exist different methods to search for colorful noise in data sets; see e.g. Carter & Winn
(2009) for a comparison of different methods. In this subsection I present correlated-noise
analyses of simulated light curves using the so called “time-averaging” method, as outlined
by Winn et al. (2007), which is based on the work of Pont et al. (2006). The basic idea of
this method is to calculate the standard deviation of the residuals between observed and
modeled data, denoted as σ1, and also to calculate the standard deviations of these residuals
after they were averaged over n points into M bins, denoted as σn . The forecasted behavior
of the standard deviation of the binned residuals in the absence of colored noise should be
σn ≈ σ1/

√
n , which is a good approximation in the case of a larger number of M (we will

see what “a large number of M” means in this sense). If the data set exhibits colored noise,
the determined standard deviations σn would be larger than the predicted ones by factors
named βn . These factors are of special interest, since they are suggested to increase the error
estimates of the model parameters. In practice, the investigator determines the mean of a set
of βn , according to a range ∆n, which is in the case of transit photometry 10 to 30 minutes,
which corresponds to transit ingress and egress times (Winn et al., 2007; Carter & Winn,
2009). However, it should be noted that the predicted σn has a slightly different form than
stated above. Winn et al. (2008, Eq. 2) presented the form

σn =
σ1√

n

(
M

M − 1
)1/2

, (4.15)

the last factor arising probably from private communication between J. Winn and G. Kovacs
without any further statements. Obviously, this equation is not defined when averaging over
the whole data set; resulting M to be equal to one. The important question is, which values of
M will appear in this analysis. Naturally, this depends on the important time scales in which
we are interested. If we assume 30 minutes as relevant time scale and an arbitrary but not
uncommon transit duration of the order of 2.5 hours (data cadence one minute), the lowest
value of M necessary for the analysis would be set to five. Thus, the last factor of Eq. 4.15
would increase the predicted standard error by typically 12% in the last bin step.

To get an impression of this specific red-noise analysis, I created some simple test cases using
the occultquad code (Mandel & Agol, 2002) to generate a reasonable number of transit
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Figure 4.13: Correlated noise analysis of simulated data. Determined standard deviations of the
residuals (black dots) plotted against bin size. White noise expectation is given as cyan colored line.
Left panel: Result for a data set with pure white noise.Middle panel: Error behavior for a light curve
with added sinusoidal oscillation. Right panel: White noise light curve with deleted continuum parts
between transits.

light curves comparable to my chosen Kepler targets. In fact I generated a dataset with 80
transit events, with one minute cadence, and added some Gaussian distributed noise by using
Eq. 1.29 with a standard deviation of σ1 = 0.0005 (see Table A.4 for a detailed parameter list).
The chosen value for σ1 is also comparable to my chosen Kepler targets and leads to a transit
signal-to-noise ratio (δ/N) of about 27. The resulting error behavior with increasing bin size
is visualized in the following plots (Figs. 4.13 to 4.15).

The first simulated dataset is a whole light curve without any gaps, including continuum
between all transits. The determined standard deviations σn follow the predicted error behavior
quiet nicely (Fig. 4.13, left panel), as expected for pure white noise. This figure is similar to
the one achieved by Kipping & Bakos (2011, Fig. 2) of Kepler photometry of TrES-2b using
the same method as described above. I arbitrarily chose the upper value of the bin size (180
minutes), which is a small number for this simulated data set but made it feasible to use the
same x-axis for all of my simulated light curves.

In my second simulation I added a sinusoidal oscillation to the data with a period of 60 minutes
and an amplitude of 0.0003. This amplitude corresponds to a signal-to-noise (S/N) of only
0.6 and it is 45 times smaller than the transit depth, barely visible by eye in the light curve.
Both values, period and amplitude, are arbitrarily chosen to fit my test and plot conditions best.
Among the great variety of observable stellar oscillations and variabilities (see e.g., Aerts
et al., 2010), these values are not uncommon and at least possible. The analysis of this light
curve shows a significant deviation of the determined σn from the white noise prediction,
depending on the bin size (Fig. 4.13, middle panel). The values of σn show an oscillating
behavior with clearly visible local minima and maxima. The first local minimum is located at
a bin size of 60 minutes, which is consistent with the chosen period of the added sinusoidal
oscillation. This minimum is followed by minima at every harmonic of this period: 120 and
180 minutes (at the edge of this plot). The half of the period and those harmonics are visible as
local maxima. The first two of them, located at bin sizes of 30 and 90 minutes, show singular
points lying clearly above the course of the remaining standard deviations. At these bin sizes
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Figure 4.14: Correlated noise analysis of simulated data, continued. Left panel: individual results of
80 transits without continuum nor correlated noise.Middle panel: calculated mean values of the left
panel. Right panel: distribution of σn for a light curve with added sinusoidal oscillation but removed
continuum, using the same approach as used for the middle panel.

the scatter of the binned residuals increases significantly, since only halves of the introduced
oscillation are combined into individual bins and, therefore, the involved data points are clearly
lying above or below the mean of the data. Notably, the overall shape and the position of the
local maxima and minima of this curve, do not depend on the phase of the oscillation, e.g. if a
cosine is used to add oscillations to the data.

In comparison to real data, these previous examples are not very realistic, not least because
of the idealized continuity of the light curves without any gaps. Real photometry results in
most cases in non-evenly spaced data points, due to removed outliers or small differences
in integration time or instrumental duty cycles, and also probably exhibits time-dependent
noise. Obviously, the Earth’s rotation makes a continuous observation of most positions of
the sky impossible, at least in the optical wavelengths. Space based observations reduced
these issues, but they were not able to eliminate them. In my case, where the main interest
is focused on transit events, the investigated data normally consists only of the transit light
curves, plus some short continuum parts for normalization issues. In ground based photometry
this is automatically caused by the limited observation time. In space based observations the
investigator often selects only transits from the light curve, neglecting most of the surrounding
data. This can produce - depending on the orbital period - gaps of the order of days. Therefore,
I deleted the continuum between the simulated transit events, leaving only one hour at every
side of these transits. The analyzed behavior of the standard deviations σn , which constitutes
my third test case, is shown in Fig. 4.13 (right panel). This result reveals, that almost all σn

lie above the white noise prediction, with an increasing trend of the deviation towards larger
bin sizes together with also increasing scatter. Thus, it seems to be likely to suppose that the
data exhibits time-dependent noise, although this is not the case, since I generated the data
only with white noise. This result can be explained by how the binning algorithm used for this
analysis works. It averages all points in a time interval, which is moved in steps of the interval
width through the whole data set. Thereby, the number of points n per bin M is not constant
in time, since the bin size is almost never a multiple of the orbital period. Especially at the
beginning and the end of the transit light curves the bins can consist of only a few data points,
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Figure 4.15: Correlated noise analysis of simulated data, con-
tinued. Resulting behavior of σn for light curve with added
red-noise to every transit light curve individually. Continuum
parts are deleted before analysis.
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causing these bins to scatter in y-direction, increasing the determined standard deviations.
This behavior is clearly a flaw of this method, and it has to be considered when analyzing data
with significant gaps. Therefore, my idea was to carry out this time-averaging method for each
transit light curve individually, forcing the algorithm to have the same number of points in
every bin. For my simulated data set this approach yields 80 σn curves, plotted together in
Fig. 4.14 (left panel). Depending on the also individually determined σ1 values, the expectation
of the standard deviations is now visible as a broad band. Due to a relatively strong scatter of
every single σn curve, the error behavior also appears as spread over a wide y-range, especially
for increasing bin sizes. My next step was to calculate the mean of these σn values for every
single bin size. This leads to one σn curve with very low scatter, displayed in Fig. 4.14 (middle
panel). The white noise expectation (Eq. 4.15) now shows a step-like structure together with an
increasing trend, clearly visible for bin sizes larger than 50 minutes. The increase is caused by
the last factor of Eq. 4.15, in this case M = 2. The steps are induced by the fact that the number
of bins M does not evenly decrease with the bin size, since M is constant until the bin size
reaches a value where not enough data points are left to fill the last bin exactly with n points.

Figure 4.14 (right panel) shows the resulting σn profile of the data set with the added sinusoidal
oscillation, this time also with deleted continuum parts, using the aforementioned method.
Clearly, this result comprises the same structure as given before in Fig. 4.13 (middle panel). I
checked that both results are almost congruent, in error amplitude and period. Only the two
prominent data points in Fig. 4.13 are not visible anymore, and the curve shows a slight scatter.
We have to keep in mind that the orbital period (see Table A.4) is not a multiple of the added
oscillation. As a consequence, the sinusoidal variations are phase shifted with respect to, say,
the first transit point. This phase shift is of course different for every transit. So this plot can
serve as a support of my introduced binning procedure.

In my last test case, I added some pure red noise to the simulated transit light curves, by
calculating the cumulative sum of some Gaussian distributed random data with zero mean.
These random data is generated for each transit event individually. The resulting values of
the cumulative sum are arbitrarily multiplied by 0.05 before adding them to my data, just to
keep the introduced variations as realistic as possible. The analyzed error behavior (Fig. 4.15)
shows a clear difference to the prediction for all studied bin sizes. In addition the curve shows
a clear sawtooth wave like shape, more pronounced at larger bin sizes. Thus, it is proven that
this method is capable of detecting red-noise contributions.
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Another important behavior of the determined standard deviations, is the fact that the values
show a decreasing trend below the prediction with increasing bin size, as visible in Fig. 4.14
(middle panel). On closer inspection, the σn values begin to lie below the prediction at bin
sizes around ten minutes. It is totally self-explanatory that it makes no sense to find the σn

values below the white noise expectation. As I mentioned before, the ratio between σn and
the expectation (β) is used to increase the parameter errors in the presence of time-correlated
noise. However, the discussed phenomenon leads to a systematic underestimation of β and in
some cases – depending on the time range we are interested in – to values of β < 1, which
would be equivalent to decreasing the parameter errors. This described visible characteristic
can also be found in the works of some other authors inspecting real data (e.g., Campo et al.,
2011; Cubillos et al., 2013; von Essen et al., 2013), unfortunately they do not comment on
this issue. Of course, this behavior is not visible in Fig. 4.13, where the whole continuum
is included in the analysis, but this is only due to the still relatively large number of bins M
for the chosen bin sizes n. It seems that theory systematically over-predicts the white noise
error, especially when only a low number of bins is involved in the calculation of the standard
deviation. If there is only one bin left, than it would not be possible to compute a standard
deviation anymore. In this special case it would only be possible to compute the error of the
mean, because the leftover bin is the mean of the whole residuals. In contrast, if there are two
bins left, it is of course feasible to derive the standard deviation, but in principle we try now to
determine the width of a Gaussian distribution out of only two points. It is then questionable
how reliable this value is to represent the uncertainty of the individual bins.

There is a number of bins M for which it is not adequate anymore to calculate the standard
deviation, if we try to determine the most probable error of one bin. However, in principle
we are not interested in determining the real uncertainty of one bin. In fact, we are more
interested in the amount of scatter of the binned residuals at a given bin size. The standard
deviation serves in this sense as an estimator of the scatter, which has nothing to do with the
real error of one bin. Therefore, the more important question is, how does the expectation of
the determined standard deviations have to look like. In Fig. 4.16 I show again the results of
the analysis of my white noise dataset together with two additional white noise expectations.
To be consistent with my simulations discussed above, I show in cyan the error behavior as
predicted by Eq. 4.15, while the gray and magenta lines represent
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Figure 4.17: Comparison of
different error expectations (col-
ored lines) to the mean of the
mean-errors sbi (left) and corre-
sponding residuals (right). See
text for more details.
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σn =
σ1√

n
and σn =

σ1√
n

(
M − 1

M

)1/2

, (4.16)

respectively. Note that I invented the last factor of Eq. 4.16 by just inverting the fraction in
the brackets of Eq. 4.15. Astonishingly, Fig. 4.16 bares that Eq. 4.16 is not such a bad guess,
which gives a much better fit to the determined standard deviations. Actually the last factor
is needed to achieve an unbiased estimator of the variance σ2. However, as pointed out by
Roesslein et al. (2007) it is an often neglected fact that this factor is not sufficient to correct
the estimator of the standard deviation for bias. Due to the nonlinearity of the square root,
the square root of the unbiased variance leads to a biased standard deviation! To achieve an
unbiased estimator of σ one has to apply a correction factor mentioned by Kenney & Keeping
(1951). In the specific case shown here this factor has the form

(b(M))−1 =
√

M − 1
2

Γ( M−12 )

Γ( M2 )
. (4.17)

Nevertheless, this correction is in my case also not perfect for the prediction of the binned
white noise error. It leads to slightly overestimated errors for a wide range of bin sizes. So
I have to conclude that neither of the here mentioned white noise expectations are able to
predict the behavior of the found standard deviations. Probably, the reason for this is that the
measured standard deviations (dots in the figures) are not representing the real bin errors, but
at least the prediction σ1/

√
n does. To prove this assertion my idea was to compute the real

error of every single bin bi , which is the error of a mean sbi , since every bin is a mean of n
points. In the case where only one bin is left this would lead to one error value, but in all other
cases this results in M mean errors. To get only one error per bin size I simply calculated the
mean of all errors using

sbi =
1
M

M∑

i=1



1
n(n − 1)

n∑

j=1
(y j, i − bi )2



1/2

, (4.18)

where y j, i stands for the j-th residual point in the i-th bin b. This equation should be a better
representation of the probable error of one single bin when only a few bins are left, in contrast
to the standard deviation. Figure 4.17 nicely illustrates the behavior of sbi . These error values
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follow directly the expectation σ1/
√

n for large bin sizes. Of course, Eq. 4.18 is a bad choice if
a greater number of bins is left, which can be seen as a vast deviance from theory at bin sizes
from 1 to ≈ 4 minutes. As we know, the standard deviation behaves contrarily. This brings me
back to the point where I introduced the white noise expectation, which I quoted as a good
approximation in the case of a large number of bins. Maybe sbi starts to follow the prediction
σ1/
√

n where σn starts to deviate significantly from this prediction. This would be the point
at which the white noise prediction is not appropriate enough for the σn values. To determine
this point I show in Fig. 4.16 (right panel) the residuals between the expectations and the
determined standard deviations. We clearly see that the σn values start to lie significantly
below the prediction σ1/

√
n (gray) around bin sizes of 50 minutes, while the cyan prediction

(Eq. 4.15) overestimates the standard error starting at bin sizes of 7 minutes. Therefore, the
cyan line lies mainly below zero in this figure. In the right panel of Fig. 4.17 I present the
residuals of the sbi values, which begin to lie close to the prediction σ1/

√
n , also near to

bin sizes of 50 minutes. From this point on sbi starts to represent the real bin error and σn

stops to be an appropriate estimator for the bin error. The corresponding number of bins M
of that point is given by the number of visible step like structures, start counting from the
right with M = 2. According to my simulations this leads to M > 7 where σ1/

√
n is a good

approximation to describe the behavior of the white noise error.

The presented problems and phenomena, like gaps in the data or, e.g., an overestimated noise
expectation if Eq. 4.15 is considered, have to be accounted for in real data sets. Otherwise, the
analysis would lead to an incorrect parameter error correction. In the next subsection, I will
comment on the way in which I am dealing with these issues.

4.4.2 Correlated-noise analyses in Kepler light curves

As outlined in the previous subsection, a comprehensive analysis whether the observed
data exhibits time-correlated noise is essential. Therefore, I made an analysis searching for
time-dependent noise in the light curves of the 38 planetary candidates selected for my short
cadence target sample. Kipping & Bakos (2011) carried out a comparable analysis of the
Kepler photometry of TrES-2b (Q0 and Q1), including the unocculted continuum parts of this
light curve. They conclude that there is no evidence for time-correlated noise in that data.

In contrast to the work of Kipping & Bakos (2011), I do not present the analysis of the
continuum parts for which you need some kind of model describing the global variations,
at least for every single Kepler quarter. I am only interested in the transit light curves of
my selected objects, since only here I can find the sampled limb-darkening information.
Consequently, my data sets have long gaps between the transit events and I have to account
for them in the correlated noise analysis by investigating every single transit per object, as
introduced in the previous subsection. The needed residuals are determined by subtracting the
best-fit model from every transit light curve. The binning of the residuals is then repeatedly
performed until the number of points per bin n reaches a value where only two bins are left
per transit light curve.
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Figure 4.18: Some resulting σn curves of my colored noise analysis (dots). Transit ingress or egress
durations are marked by blue vertical lines. Cyan lines indicate the white noise expectation (Eq. 4.15).
The name of the specific Kepler target is given in the labels. The maximum bin size leading to M = 2
is additionally declared on the x-axis.

In Fig. 4.18, I present a few of the resulting σn curves, while all curves of the remaining
objects can be found in the appendix (Figs. B.15 and B.16). The visible shapes shown here
represent the variety of all remaining σn curves quite well. The scaling of the plot axes varies
between the shown plots, especially the y-axis, caused by the different photometric noise
of these objects. The x-axes are similar, thanks to the logarithmic scaling. In the end the
axis-scaling is not so important, but more important is the shape of the σn curves and the
relative deviation from the white noise prediction. Thus, a mutual comparison of these curves
makes only sense if the shape is considered. In the left panel of Fig. 4.18 I show an example,
where the analysis reveals that (almost) no correlated noise is present in the data. The σn

values follow the prediction until they start to drop off somewhere near to transit ingress/egress
duration. This result is similar to my white noise simulations shown in Fig. 4.14. In contrast,
the middle panel is a good example where the data are affected by time-correlated noise. All
points are clearly located above the predicted error behavior, except for the first one. This point
is by definition equal to σ1. And lastly, in the right panel I present a resulting curve, where
the points lie only slightly over the prediction, and show a stronger scatter compared to the
others. I have to mention, that significant scatter (especially at M = 2 or 3) is always visible in
the σn curves of my objects, if only a low number of transits are considered for the analysis
(Ntransit ≤ 10). Thus, stronger scatter is not necessarily a sufficient criterion for the presence of
time-correlated noise in my selected transit light curves.

Now, for the assessment of the amount of correlated noise in the data relevant for my transit
studies, I have to determine the aforementioned correction factor β, and if time dependent
noise is present, to increase the parameter errors by this factor. As outlined in the previous
subsection, β is found as a mean of values βn , which are in turn defined as ratios of the found
σn to the white noise prediction. The mean is then determined over bin sizes, relevant for
the analysis. Explicitly, I chose bin sizes between five minutes and the corresponding transit
ingress duration. There are a few exceptions4, where the transit ingress durations are exactly

4KIC 10318874, KIC 5084942, Kepler-68b, KIC 8456679
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Figure 4.19: Determined βn graphs for the objects given in Fig. 4.18. Cyan lines: ratios of measured
σn to Eq. 4.15. Black lines: ratios of measured σn to determined σn of simulations. The blue areas
marking the bin sizes used for determination of βW (Winn) and βM (Müller).

five minutes or even smaller. For these cases I included bin sizes starting at one minute in
the calculation of β. I determined the transit ingress durations by using Eq. 1.28 and the
corresponding best-fit parameters. The resulting βn curves, which I present in Fig. 4.19 for the
objects shown in Fig. 4.18, serve as a neat indicator whether the light curves are affected by
time-dependent noise. Again all curves of the remaining objects are shown in the appendix in
Fig. B.17. This time the scaling of the y-axis is the same in all plots, to ensure a better, direct
comparison among all objects.

We learnt in the previous subsection that the presented theory tends to systematically overpredict
the white noise error behavior. Consequently, the determined βn values are underestimated.
KIC 5357901 (Fig. 4.19 left panel) is a great example for this problem. The calculated βn
values (cyan line) tend to lie below one, leading to β = 0.99, which definitely makes no
sense. This also clearly illustrates that it is not advisable to account larger bin sizes in the
determination of β than the ingress duration, because this would lead to an even stronger
underestimation of this factor (see, for interest, also first column of Fig. B.15). To deal with
this issue, I have to find a better method to describe the white noise prediction. One possible
solution, is to simply generate a simulated data set using my best-fit planetary parameters and
than just perform the same correlated noise analysis as for the real data sets. It is important to
use the time axis of the real data set and the same photometric noise. This method has the
great advantage that also small gaps are considered in this new prediction, and that a β < 1
is not possible anymore. The βn values are now easily determined by dividing the standard
deviations of the binned residuals of the real data by the σn values of the simulated data, like

βM,n =
σn (data)
σn (simul)

, (4.19)

now given as black lines in Fig. 4.19. The needed correction factor β is determined like before.
From this point on, I denote the correction factor as βM if it is determined like introduced
above, or βW if it depends on Eq. 4.15.

As expected, the βn values determined in this new way lead to a more realistic correction
factor, and they now show no decreasing trend anymore (Fig. 4.19 left panel). Therefore, I
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Table 4.4: Overview of the determined β-factors.

Identifier βW βM Identifier βW βM Identifier βW βM

Kepler-45b 1.04 1.05 TrES-2b 1.07 1.16 10318874 1.00 1.01
HAT-P-11b 1.43 1.34 12019440 1.01 1.05 5084942 1.00 1.03
11391018 1.08 1.17 Kepler-6b 1.05 1.09 12105051 1.04 1.09
5357901 0.99 1.04 Kepler-412b 1.03 1.09 5771719 1.73 1.75
8845026 1.36 1.42 Kepler-7b 1.07 1.13 Kepler-19b 1.09 1.14
BOKS-1b 1.15 1.24 9631995 1.09 1.13 Kepler-68b 1.07 1.08
6849046 1.00 1.06 Kepler-12b 1.05 1.10 8456679 1.01 1.01
Kepler-41b 1.03 1.10 Kepler-8b 1.04 1.09 8554498 1.08 1.20
9651668 1.19 1.25 Kepler-43b 1.09 1.15 8684730 1.70 1.90
8359498 1.05 1.09 10019708 1.05 1.11 3762468 1.18 1.19
7023960 1.10 1.10 HAT-P-7b 1.50 1.55 Kepler-25b 1.22 1.28
Kepler-15b 1.13 1.18 Kepler-5b 1.12 1.19 3861595 1.87 1.98
Kepler-17b 1.58 1.62 Kepler-13b 1.33 1.36

Notes: Objects listed in gray color show βW ≤ 1.25. Objects with βW > 1.25 and not discussed in my
paper are set in italic. Third column: objects according to my high impact parameter sample (b ≥ 0.8).

conclude that the creation of a simulated data set is the better choice for the determination
of a white noise prediction. On average my βM is 4% larger than the widely used βW (see
Table 4.4). However, it is also possible that my found correction factor βM is smaller than
βW, like it is the case for HAT-P-11b (middle panel). The analysis of the simulated data set
produces σn values lying above the white noise prediction (Eq. 4.15). It seems that this time
my method overpredicts the white noise error, but this is not the case. This can easily be
explained by the fact that my simulation also accounts for gaps, since it uses the same time axis
as the original data set. We have seen in Fig. 4.13, that significant gaps cause the measured
standard deviations to lie conspicuously above the theoretical prediction, although the data
are by creation normally distributed. In the special case of HAT-P-11b these small gaps are
caused due to deleted outliers inside the transit light curves, leading to σn lying 7% above the
theoretical prediction.

The last object of this row (KIC 7023960, right panel) belongs to a group of objects, where
the determined correction factors βW and βM do not differ significantly from each other. The
found β factors reveal, that the correlated noise in the data is not as prominent as expected,
if Fig. 4.18 right panel is compared to the left panel. Furthermore, this result also clearly
displays, that the visible decreasing trend, if Eq. 4.15 is considered, is gone, although the
measured σn of the real data exhibit relatively strong scatter.

With respect to Fig. 4.18, the results of my correlated noise analysis can by eye be divided into
three groups: first, 17 objects showing no abnormal shapes and/or no significant deviation
from the expectation; second, 11 data sets present prominent deviation from the white noise
prediction; third, 10 remaining objects are only slightly deviant from the expectation. For a
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4 Measuring LD using Kepler Data

further inspection and discussion only objects were considered, where βW ≥ 1.25, because
lower values would have led to a barely visible increase in the error bars. In the end most
of my selected targets (30) show a βW < 1.25 while eight have significant colored noise
contributions. Six of them are already discussed in my paper (Müller et al. (2013)). The
remaining two, KIC 8684730 and KIC 5771719, belong to my target sample with large impact
parameters (b ≥ 0.8). Anyway, this class of objects show extraordinary large errors of all fit
parameters, which is why a deeper look into both light curves is omitted.

A slight difference between the correction factors published in my paper and those given here, is
explained by my improved bin-method of the residuals, unfortunately applied after publication.
Nevertheless these differences are negligible and they do not influence my results.

Due to the less significant results and intrinsically larger error margins of the results obtained
from my long cadence sample (Section 4.2), the analysis searching for time-correlated errors
was not performed for these objects. The crude time resolution would only allow to obtain a
few bin steps of the transit residuals, and for most objects even the ingress/egress durations are
not resolved by the data sampling.
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5 Limb Darkening of the Sun

The object which is predestinated to study the limb darkening, because it can easily be
spatially resolved in observations and provides a very high signal-to-noise ratio, is our Sun. In
principle, the limb-darkening effect can be seen by hobby or amateur astronomers, but the
precise measurement is more difficult. Since the limb darkening of our Sun is well studied,
a comparison between predictions and the solar limb darkening is self-evident. This could
eventually give new insights about the credibility of the model atmospheres. On the other side,
it also offers the great opportunity to check the validity of the different limb-darkening laws
and their coefficients (e.g. determined by Claret & Bloemen (2011)).

In the following sections I will compare the measured solar limb darkening e.g. presented by
Neckel & Labs (1994) to that obtained from a recent PHOENIX atmosphere (Table A.11). I
will continue with the comparison of these measurements to the intensity distributions when
using Claret & Bloemen (2011) limb-darkening coefficients. Differences will be quantified and
I will come up with a special treatment of the intensity distribution of the actual PHOENIX
model atmospheres.

5.1 Ground-based measurements compared to predicted LD

5.1.1 Adapting the results of Neckel & Labs

Between the years 1986 and 1990, Heinz Neckel and Dietrich Labs observed the solar limb
darkening using the McMath Solar Telescope at National Solar Observatory/Kitt Peak. They
gathered more than 5600 individual center-to-limb measurements of which every measurement
in the years ’86 and ’87 has 30 different wavelengths in the range from 3033Å to 10 990Å.
The whole observation campaign covers half a solar cycle (from minimum to maximum),
and the authors state that there are no detectable variations which could influence the solar
limb darkening. Small-scale variations like spots, faculae and also the granulation show an
influence on the center-to-limb intensity distribution, but in the final mean these effects do not
play any role.

The authors fitted the measured solar intensity distribution with a fifth order polynomial

P5(µ) = A0 + A1µ + A2µ
2 + A3µ

3 + A4µ
4 + A5µ

5, (5.1)

in the range between µ ' 0.1 (≈ 7′′ away from the limb) and µ = 1.0. As a result they present
six limb-darkening coefficients for each of the 30 wavelengths. I used Eq. 5.1 to present the
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Figure 5.1: Normalized solar limb darkening for
30 wavelengths (3033Å - 10 990Å) using Eq. 5.1
with six LDCs provided by Neckel & Labs (1994)
for each wavelength.
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Figure 5.2:Absolute solar intensity as a function
of µ using Eq. 5.2 for the same wavelength as
in Fig. 5.1. Results are weighted with Johnson-V
transmission coefficients.

different intensity profiles in Fig. 5.1. The color dependence of the solar LD is clearly visible,
where longer wavelengths show a weaker LD (top) in contrast to shorter wavelengths which
show a stronger LD (bottom). On the one hand, strictly speaking, all intensities at µ < 0.1 are
only extrapolated values, since these regions were not included in the fits. On the other hand,
Neckel (2005) found that these values at the limb (µ = 0.0) lead to absolute limb intensities,
which can be translated into temperatures at the limb. These limb temperatures are found to
be almost the same for each studied wavelength, as expected for a black body, and in good
agreement with theory. This implies that the extrapolation of the intensities down to the stellar
limb leads to correct values, which also have a physical sense.

Since the limb darkening is color dependent, the theoretical LDCs are determined for
different passbands/astronomical filters (e.g. Johnson-Cousins UBVRI filters (Bessell, 1990)
or instrumental response/transmission functions, like for the Kepler instrument (Van Cleve &
Caldwell, 2009)). For a direct comparison of observed and predicted intensity distributions
using theoretically determined LDCs and LD laws, I have to choose at least one of these
passbands. The solar intensity distributions shown in Fig. 5.1 are individually normalized to
the emitted flux at the solar disk center at the given wavelength. Therefore, these intensities
have to be weighted, to achieve an intensity distribution as seen through, e.g., a Johnson-V
filter. The unnormalized but weighted intensity at a wavelength λi can be written as

I (µ, λi ) = P5(µ) |λi · πB(λi,T ) · fFilter(λi ) , (5.2)

where B is Planck’s law and fFilter is the amount of transmitted light through the chosen filter at
the given wavelength. For the Johnson-Cousins UBVRI filter functions I linearly interpolated
between the transmission coefficients given in Bessell (1990). The resulting distributions of
all wavelengths given by Neckel & Labs (1994) using this approach for a Johnson-V filter are
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5.1 Ground-based measurements compared to predicted LD

Figure 5.3: High resolution PHOENIX spectra
for different limb angles (lables). Intensity is
weighted by Johnson-V filter transmission curve.
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Figure 5.4: Limb intensities gathered from the
mentioned PHOENIX spectrum. For comparison
a few different wavelengths were chosen.

shown in Fig. 5.2. To get the normalized intensity profile I use the relation

I (µ)
I (1)

=

∫
I (µ, λ) dλ

∫
I (1, λ) dλ

≈
∑

i I (µ, λi )∑
i I (1, λi )

, (5.3)

inwhich the integral is approximated by a sumof discretewavelength intervals. Thewavelengths
chosen by Neckel & Labs (1994) cover the color dependence of the LD quite well, without
any significant gaps or discontinuities (as we can see in Fig. 5.1). That implies that Eq. 5.3,
which simply sums up all intensities and normalizes the result by its maximum, leads to a
good description of the actual solar limb darkening as visible in Johnson-V filter band.

5.1.2 Comparison of Neckel, PHOENIX and Claret intensities

For the further investigations, I took a highly resolved model spectrum file which provides
µ-dependent spectra, calculated using a spherical 3D PHOENIX-ACES model atmosphere
(Table A.11 and Hauschildt & Baron (2010)). The parameters of this atmosphere are almost
solar-like with an effective temperature of 5800K, surface gravity of log(g) = 4.5 and solar
metallicity. In total there are 78 spectra included for different limb angles ranging from
µ = 0.02 to µ = 1. To give a consistent comparison between the distribution calculated
from Eq. 5.3 and these model intensities, I have to apply the same filter function fFilter to all
78 spectra, like I did for the intensities provided by Neckel & Labs (1994). Three resulting
spectra for different limb angles using a Johnson-V filter are shown in Fig. 5.3. The decreasing
intensity at lower µ values is clearly visible. In this wavelength range (4700Å - 7000Å)
PHOENIX provides more than 20 000 wavelength points with a resolution of 0.1Å to 0.3Å.
Each wavelength point provides its own center-to-limb intensity profile. Figure 5.4 shows six
different limb profiles near the limb at arbitrarily chosen wavelengths.
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Figure 5.5: Comparison of the solar LD determined fromNeckel & Labs (1994) (solid) and determined
from a quasi-spherical PHOENIX atmosphere (dashed). Solar intensity distribution plotted against the
limb angle µ (left), and plotted against the radial coordinate r (right).

In Fig. 5.5 I show the comparison between the LD calculated using Eq. 5.3 and the mentioned
PHOENIX model atmosphere, both now weighted with a Johnson-V filter transmission curve.
The eye-catching edge of the PHOENIX distribution near the limb, also clearly visible in
Fig. 5.4, is a result of the spherical geometry of the model atmosphere. Plane-parallel model
atmospheres do not show this significant drop off near the limb, and show – in contrast to the
spherical models – a non-zero intensity at the limb. The steep decrease in intensity arises
from the fact that spherical models predict much less material at the stellar limb (Orosz &
Hauschildt, 2000), which leads to weaker extinction and scattering of light toward the observer,
and to a weaker overall radiation at the limb. In principle this gap is negligible for a comparison
between Neckel & Labs (1994) and PHOENIX, because the visible offset (∆µ ≈ 0.055) only
corresponds to ∆r ≈ 1.5 · 10−3 RS. Expressed as an angular distance observed from Earth, this
gap would span 1.4′′. The right panel of Fig. 5.5 illustrates how small this gap actually is
when the solar intensity is plotted against the radial coordinate instead of using the limb angle.
The more interesting part lies in the range of µ ≈ 0.2 − 0.6, which translates into almost 20%
of the solar radius, where the intensity seems to be underestimated by the model atmosphere.
In this range the PHOENIX distribution shows on average 3.6% less intensity than Neckel &
Labs (1994). To quantify the total divergence, I need to determine the disk-integrated flux of
both distributions. Needless to say that it is necessary to integrate the intensities in r-space

Sdisk =

RS∫

0

2π∫

0

I (r, ϕ)r dϕ dr, (5.4)

otherwise the resulting unit would be physically meaningless. The integration along ϕ can be
executed directly and simplifies the equation to

Sdisk = 2π
RS∫

0

I (r)r dr . (5.5)
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Figure 5.6: Comparison of limb intensity profiles at different wavelengths (labels). PHOENIX profiles
are determined as a combination in wavelength intervals of ±0.15Å around the given wavelengths.
Blue curves are measurements of the Sun, plotted using Eq. 5.1 with LDCs taken from Neckel & Labs
(1994).

This integration is performed numerically using the composite Simpson’s rule (see, e.g.,
Mathews & Kurtis, 2004) and reveals that the distribution gathered from the PHOENIX
atmosphere leads to 1.44% less disk-integrated flux than virtually measured by Neckel &
Labs (1994) in Johnson-V filter band.

The wavelength resolution of the PHOENIX spectra makes it possible to directly compare the
limb darkening in each single wavelength measured in the observations, without applying any
Planck- or filter functions like Eq. 5.2 does. This would exclude systematic effects possibly
introduced by my approach. Due to the high wavelength resolution of the Neckel & Labs
(1994) observations (< 0.1Å) the given limb profiles calculated using Eq. 5.1 correspond
to wavelength intervals with negligible size. Now it becomes necessary to transform the
vacuum wavelengths given in the PHOENIX spectrum to those as measured in air, to get nearly
the same spectral positions for comparison (for this transformation see Morton (2003) and
references there). Of course, especially in the infrared regime the wavelength resolution of this
PHOENIX spectrum is up to 0.3Å, thus it is quite unlikely to find the same wavelength points
as given by Neckel & Labs (1994) for the comparison. It is more likely, that each required
wavelength is found between two PHOENIX wavelength points. For this reason I combine
the PHOENIX limb intensities in wavelength intervals of ±0.15Å for every wavelength given
in Neckel & Labs (1994) before normalizing them. For almost all of the 30 wavelengths the
limb intensities of the PHOENIX atmosphere lie below those that were directly measured
on the Sun. Out of these, the differences amount to 0.29 - 2.28% with a median value of
1.42%, quite comparable with the value found in the Johnson-V filter band. I show three of
them in Fig. 5.6 (left). All remaining profiles look very similar. This result emphasizes that
PHOENIX really tends to underestimate the limb intensity of the Sun, as previously seen in
the Johnson-V filter band and it is also assured that my approach introduces no significant
systematic errors.
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Figure 5.7: Comparison of the solar LD determined from Neckel & Labs (1994) (blue solid) and
distributions generated using LDCs from Claret & Bloemen (2011) (red and green), both determined
from plane-parallel PHOENIX atmospheres. Solar intensity distribution plotted against the limb angle
µ (left) and plotted against the radial coordinate r (right).

At two wavelengths, namely 3740.86Å and 4019.70Å, the limb intensities of the PHOENIX
atmosphere actually show higher values as those measured at the Sun. In the case of the
limb profile at 4019.70Å, the disk-integrated flux of the PHOENIX model is only 0.23%
higher, but at 3740.86Å this value is larger than 4.5%. The deviation from the measurement is
clearly pronounced at this wavelength, as I show in the right panel of Fig. 5.6. In this case this
wavelength point lies between two solar emission lines in the PHOENIX spectrum contributing
significantly to the intensity at µ < 0.6. Since the resolution of this model spectrum is not
high enough, the requested wavelength point for comparison is not included and thus both
adjacent points were taken for determining the limb profile causing both emission lines to
contribute to it. In the second case the problem is very similar, but this time only one emission
line is included in the creation of this limb profile. Additionally, two continuum points are
included in my used interval of 0.3Å, leading to a weaker deviation from the measurement.
For a complete list of all deviations in disk-integrated flux at the used 30 wavelengths, given in
percent, see Table A.7.

Figure 5.7 shows the comparison between solar LD and the intensity distribution calculated
using quadratic and nonlinear LD laws together with LDCs taken from Claret & Bloemen
(2011). The quadratic solution lies clearly below the measured solar distribution, even more
distinctly than the previously shown PHOENIX distribution. Therefore, the quadratic LDCs
from Claret & Bloemen (2011) lead to limb profiles which significantly underestimate the
solar intensity distribution. The relative deviance in disk-integrated flux, again determined
using Eq. 5.5 for both intensity profiles, amounts to 2.07%. The intensity profile created
using a nonlinear LD law actually lies slightly below the profile created with a quadratic law,
as visible in the right panel of Fig. 5.7, which leads to an even stronger aberrance from the
measurement (2.30%). It is also worth mentioning that the quadratic LDCs taken from Claret
et al. (2013), which are determined by fitting quasi-spherical PHOENIX atmospheres, also
lead to intensity distributions showing a limb darkening which is too strong. In the presented
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5.1 Ground-based measurements compared to predicted LD

example of the Johnson-V filter band, these distributions show a slightly weaker deviation
from the solar measurement. Expressed in disk integrated flux they predict about 1.7% less
than the measurements. For a complete list of differences in disk integrated flux in several
filter bands, see Table A.8.

5.1.3 Rescaling of the µ-axis

Looking at the eye-catching gap of the limb intensities predicted by the PHOENIX atmosphere
the question arises where the real limb of the stellar disk is located. Indeed, I showed that
this gap is small compared to the whole stellar radius, but it should have an influence on
transit start and end times if observed in front of such an atmosphere. To stay in my chosen
example of the Johnson-V filter band, the found gap of ∆r ≈ 1.5 · 10−3 RS corresponds to an
11 s shorter transit duration if a total duration of two hours and an impact parameter of zero is
assumed. This difference in transit duration is clearly detectable with the accuracy of todays
measurements and would have its major influence on the semimajor axis of the planetary
system. Obviously, the solar and stellar radii depend on the wavelength range in which they
are observed (see, e.g., Fig. 5.4). Due to the fact that the µ-dependent PHOENIX spectra are
calculated for a wide wavelength range, we can actually inspect the variation in the visual
stellar radius as a function of the wavelength.

To account for the smaller visual stellar radius in the determination of the limb darkening
from a model atmosphere with spherical geometry, my idea was to rescale the µ-axis by
setting µ = 0.0 at the “real” stellar limb as seen by an observer using one specific photometric
passband. In my definition this “real” limb is located at the minimum µi, j for which the
intensity I (µi, j, λ j ) has a specific non-zero value. This minimum µi, j is found at a wavelength
λ j which is included in the chosen passband and then called µmin. In practice I had to first
normalize every single limb profile available in the specific wavelength range by its own disk
center intensity. Then I listed all µ-values found at a normalized intensity value of 1/e for
each wavelength λ j . Out of these I determined the smallest µ-value which corresponds to the
biggest visual stellar radius. Figure 5.8 illustrates this approach. I used the found µ-value to
rescale the whole µ-axis according to

µnew =
µ − µmin
1 − µmin

. (5.6)

This leads to a slightly stretched PHOENIX intensity distribution with (1 − µmin)−1 = 1.021
as the stretching factor for the V-band. The result, again in Johnson-V filter band, is shown in
Fig. 5.9. Now, the gap is significantly smaller as seen before in Fig. 5.5 and only amounts to
∆r ≈ 3.1 · 10−4 RS (∆µ ≈ 0.025), which corresponds to 0.3′′ as seen from Earth. The duration
of a transit in front of this rescaled model distribution would last only 2 s shorter compared to
the measured distribution, with the same conditions as assumed above. As a side effect, the
stretching also reduces the gradient of the limb profile, which leads to a slightly weaker LD
and therefore the PHOENIX limb profile is now in good agreement with the measurements of
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5 Limb Darkening of the Sun

Figure 5.8: Illustration of the determination of
µmin. Dashed lines indicate the selection crite-
rion for µmin, found for a Johnson-V filter, at the
intensity I (µ)/I (1) = 1/e.

0.0 0.2 0.4 0.6 0.8 1.0
µ

0.0

0.2

0.4

0.6

0.8

1.0

I(
µ

)/
I(

1)

Johnson-V
Neckel & Labs
PHOENIX

Figure 5.9: Comparison of the LD measured by
Neckel & Labs (1994) and the rescaled PHOENIX
model prediction using Eq. 5.6.

Neckel & Labs (1994) and the major intensity difference at intermediate limb angles seen in
Fig. 5.5 is gone. In this way I reduced the difference in disk-integrated flux to 0.2%, which
is now smaller by a factor of seven. I can reproduce this result using Johnson-UBRI filter
functions. In all of them the PHOENIX distribution lies below those computed from Neckel &
Labs (1994) as it is the case in almost every single wavelength measured by the authors. A
rescaling of the µ-axis of the PHOENIX predictions reduces this discrepancy in disk-integrated
flux for all passbands except for the Kepler instrumental response function. In this case the
unscaled PHOENIX distribution lies only marginally below the computed one (0.1%), thus a
rescaling even leads to a slightly overestimated disk-integrated flux (0.6%). The reason for
the small deviation without having rescaled the µ-axis is that the Kepler response function is
really broad and includes wavelength regions strongly suppressed in the Johnson filters, which
show weaker limb darkening like 6800 − 7400Å. I will discuss the influence of the rescaling
on the quadratic LDCs in the next subsection in more detail. The limb profiles determined for
each of the mentioned passbands can be found in Fig. B.19. A detailed list of differences in
disk-integrated flux is given in Table A.8.

I have to mention that the normalized intensity value of 1/e, at which I search for the biggest
stellar radius, is in principle arbitrarily chosen. Although this value produces reasonable results,
smaller or bigger values would also be possible. Furthermore, this value is not applicable
to single wavelength points or narrow wavelength ranges, especially at shorter wavelengths
(ultra violet or shorter). At these wavelengths the limb darkening is more pronounced and the
normalized flux value of 1/e is reached far beyond this gap (see Fig. 5.6, left panel), leading to
rather overestimated values of µmin. In broader wavelength ranges like in my used passbands,
this is no problem, because some wavelength points always show significantly weaker limb
darkening (Fig. 5.6, right panel) where enough intensity is given at this gap to determine the
“real” limb of the star using 1/e as an intensity threshold.
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5.1.4 Determining quadratic LDCs from the limb profiles

We have seen in the previous subsections that the predicted limb darkening, as given by
coefficients taken from Claret & Bloemen (2011) or Claret et al. (2013), underpredicts the
intensity profile when compared to the measurements of Neckel & Labs (1994). Also the used
PHOENIX atmosphere tends to predict a stronger limb darkening than expected from the
measurements on the Sun. In other words, the predicted limb darkening in the studied cases is
too strong to follow the solar intensity distribution.

I have shown that a rescaling of the µ-axis leads to a weaker limb darkening in all considered
passbands. In general, this should manifest in lower values of the quadratic LDCs when
determined from the model atmosphere, at least of u1 (see Eq. 1.10). To get some specific
values, I follow in principle the approach of Claret, performing a simple least squares fit
to the model distributions. The remarkable intensity drop off near the limb of the spherical
PHOENIX models now plays a crucial role and has certainly an influence on the fitted LDCs.
The major question is how to account for this gap in the fit approach. As usual, there is more
than one possible solution for this problem. Presumably, the simplest solution introduced by
Claret & Hauschildt (2003), is the concept of “quasi”-spherical models. For the fit all points in
the drop-off region are neglected, by defining a cut-off value µ ≥ 0.1 regardless of the used
photometric passbands (Claret et al., 2012). This seems to me rather unphysical and I will
now propose a different but also simple method, without neglecting the intensity points in the
drop-off region.

First of all, I linearly interpolate between the intensity values of the model distribution. Since
the PHOENIX model holds the major part of the µ-values in the drop-off region (58 out of
73), the linear interpolation provides an accurate description of this massively curved region.
As the second and most important step I evaluate the model intensities at µ = cos[sin−1(r)]
(Eq. 1.6), with r being an evenly spaced array from 0 to 1. In this way I achieve a µ-axis, which
is not evenly spaced, but rather holds an increasing density of points with increasing µ-values.
In contrast, the limb region is now covered by much less points than before. A simple fit to
this distribution is now weighted toward higher µ-values and the drop-off region at the limb
has only a weak influence. This weighting at larger µ-values can be interpreted as sampling
this distribution in r-space, like a transiting planet would do. I prefer this approach, because it
is more closely related to the actual problem of measuring LDCs using transit modeling.

I performed the fit of the PHOENIX model distribution as introduced here and additionally
using the conventional method with an evenly spaced µ-axis. I present the resulting quadratic
LDCs in Table 5.1. In the case of the PHOENIX model, the two ways of fitting the distribution
lead to different LDCs and to a marginally weaker limb darkening when an evenly spaced
r-axis is used, although u1 shows a slight increase. The curvature of a profile using these LDCs
has decreased due to a lower value of u2 compared to a fit using an evenly spaced µ-axis. These
differences have only a weak influence on transit shapes, but for my further investigations I
will only rely on the more elaborate way of fitting the intensity profiles using an evenly spaced
r-axis transformed to µ, as introduced above.
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5 Limb Darkening of the Sun

Table 5.1: Comparison of quadratic LDCs in Johnson-V passband.

Model u1 u2 u1w u2w
Claret11 0.5624 0.1627
Claret13 qs 0.5426 0.1825
PHOENIX 0.5237 0.2012 0.5345 0.1791
PHOENIX µrescaled 0.5114 0.1820 0.5187 0.1678

Notes: Values in the first two columns are gathered from Claret & Bloemen (2011) (Claret11) and
Claret et al. (2013) (Claret qs) quasi-spherical models or fitted to the used PHOENIXmodel distribution.
In the latter case the last two columns hold fit values (u1w , u2w) using the described weighting of the
µ-axis. See text for more details.

The rescaling of the µ-axis as outlined in Section 5.1.3 leads to a weaker limb darkening,
finally confirmed by smaller LDCs. The rescaled PHOENIX distribution holds ca. 1% more
disk-integrated flux than the unscaled model. Certainly one could argue that my rescaling
of the µ-axis is also not physically motivated, but precisely this rescaling leads to a good
agreement with limb profiles determined using measurements of the Sun. A limb-darkening
law, which is also capable of fitting the drop-off region like the exponential law (Claret &
Hauschildt, 2003, Eq. 8) does not provide this advantage. Moreover, since this law is especially
designed to keep the gap at the limb, transit modeling with this would lead to incorrect transit
durations mostly correlated to the semimajor axis of the planet’s orbit as already pointed out
in the previous subsection.

The limb darkening of the Sun as seen in the Kepler passband is of special interest in my work.
A comparison of my measured limb darkening using Kepler objects with intensity profiles or
quadratic LDCs as determined from measurements of the Sun or from a model atmosphere
would be reasonable. Therefore, I first have to determine the quadratic LDCs of a measured
“mean” limb darkening of a sample of my target stars, with an effective temperature close to
that of the Sun. For that purpose I chose a narrow temperature interval of 5750K to 5850K. In
this temperature region I found 5 objects1 in my high signal-to-noise target sample. The LDCs
corresponding to the “mean” limb darkening are then found by simply calculating the mean of
the corresponding LDCs. I verified that this leads to the same result as if I would first combine
the individual limb profiles of these objects, and then fitting the quadratic limb-darkening
law to this resulting distribution. The fitted mean LDCs for this tight solar-like temperature
range are ū1 = 0.46 ± 0.02 and ū2 = 0.13 ± 0.02. In the same way I also fitted the limb profile
deduced from the measurements of the Sun (Neckel & Labs, 1994). All resulting pairs of
LDCs are summarized in Table 5.2. In principle, the limb darkening decreases in this table
from left to right and also from top to bottom. In the Kepler passband this is not the case. Here,
the quadratic fit to the calculated distribution based on Neckel & Labs’ measurements holds
surprisingly the strongest limb darkening. Additionally, it is also unusual that in this passband
Claret11 shows the weakest limb darkening of all considered theoretical ones, closely followed
1KIC 7023960, Kepler-15b, Kepler-17b, KIC 12019440 and Kepler-6b
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5.1 Ground-based measurements compared to predicted LD

Table 5.2: Comparison of fitted quadratic LDCs in different filter bands.

Model Johnson-V Kepler Johnson-R
u1 u2 u1 u2 u1 u2

Claret11 0.5624 0.1627 0.4729 0.1871 0.4439 0.2058
Claret13 qs 0.5426 0.1825 0.4883 0.1822 0.4526 0.1891
PHOENIX 0.5345 0.1791 0.4950 0.1723 0.4519 0.1743
PHOENIX µrescaled 0.5187 0.1678 0.4849 0.1642 0.4427 0.1658
Neckel & Labs 0.4778 0.2241 0.4709 0.2176 0.3975 0.2317
Mean LDCs (ū1, ū2) 0.46 0.13

Notes: LDCs for Claret11 and Claret13 qs are taken from tables (see Table 5.1 for references). LDCs
for the remaining models are determined in this work by fitting a quadratic LD law to the distributions,
as described in text. The mean LDCs (ū1, ū2) are calculated using measured LDCs from Kepler objects
(Chapter 7). For a more complete listing for more photometric passbands, see Table A.9.

by the quadratic fit to the rescaled PHOENIX distribution, although it predicts the strongest
limb darkening in all other passbands. The weakest limb darkening in the Kepler passband is
given by my mean LDCs.

I will now only concentrate on the four sets of LDCs important for my work, namely Claret
11, PHOENIX µrescaled, Neckel & Labs and the mean LDCs. In Fig. 5.10 I visualize the
limb profiles using these fitted coefficients and the resulting transit light curves using the
occultquad routine (Mandel & Agol, 2002). The differences of these limb profiles are clearly
visible. The quadratic description of the rescaled PHOENIX model and the Claret & Bloemen
(2011) profile do not deviate much from each other in this photometric passband. Of course,
these profiles lead to four different transit shapes, which is most prominent in the transit center.
In the end we have to consider that these profiles only represent quadratic fits to the “real”
intensity distributions. For a comparison of the underlying limb intensities, see Fig. B.19.

More important than the actual transit shapes is the influence of the quadratic LDCs determined
here on the orbital and planetary parameters which I can calculate according to Section 4.3.3, if
they are set as fixed parameters in transit modeling. Since this method is based on the covariance
matrices of the five mentioned Kepler objects, the resulting changes in the parameters are
related to these objects and amount to roughly −1% of the measured radii ratio p. This result is
consistent with the simulated transit profiles in Fig. 5.10, which shows that all LDCs used lead
to deeper transits when compared to the one generated with the mean LDCs. This has to be
compensated, e.g, by a decreasing p. The individual values depending on the used LDCs are
given in Table 5.3. The parameter changes expected when (ū1, ū2) are set as fixed coefficients
should by constructionem be zero, which is the case. As also shown in Section 4.3.3 the
1σ errors in the fitted orbital parameters are often below 1%, and in the special case of the
objects chosen here, the standard error amounts to 0.3%. This leads to the conclusion that the
choice of the LDCs has a significant influence on the resulting orbital parameters and has to
be considered as a systematic error in transit modeling. According to Table 5.3 my fit to the
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Figure 5.10: Left: four different limb profiles for a solar-like star observed in Kepler passband,
produced by using the quadratic LD law. The sources of the LDCs are given as labels (ū1, ū2: mean
LDCs of solar-like Kepler targets, Pµ q-fit: fit to the rescaled PHOENIX model, C11: LDCs from
Claret & Bloemen (2011), NL q-fit: fit to the limb profile deduced from the measurements of Neckel &
Labs (1994)). Right: simulated transit light curves using the aforementioned LDCs. Bottom panel:
transit residuals in relation to NL q-fit.

rescaled PHOENIX limb profile provides LDCs leading to the smallest parameter changes if
they are used in transit modeling.

We have to keep in mind that the only two cases in which the LDCs are determined by
measurements are Neckel & Labs and my calculated mean LDCs. Therefore, it is even more
remarkable that these results show the strongest mutual deviation when compared to the rest.
This behavior in this photometric passband is in contradiction to the previous subsections
where I found that the measurements of Neckel & Labs (1994) provide limb profiles, which
always lie above those predicted by PHOENIX. Figure 5.10 clearly shows the opposite behavior.
One possible explanation for this is that the prediction computed from the measurements by
Neckel & Labs (1994) using Eq. 5.3 is not an adequate approximation in the broad Kepler
passband. This assertion is supported by the fact that in the red wavelength regime (7000Å
to 9000Å) only four out of thirty limb profiles are measured by the authors. Together with
an increasing spacing between the chosen wavelengths points, I assume an inappropriate
weighting of this wavelength range in my approach used to calculate filter-specific limb profiles
from their measurements.
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Table 5.3: Average relative parameter changes for solar-like Kepler objects.

Model ∆a/a in % ∆p/p in % ∆i/i in %
Claret11 0.480 −0.784 0.599
Claret13 qs 0.616 −0.980 0.761
PHOENIX 0.624 −0.978 0.766
PHOENIX µrescaled 0.458 −0.721 0.563
Neckel & Labs 0.479 −1.134 0.774
Mean LDCs (ū1, ū2) −0.001 0.002 −0.001

Notes: These mean parameter changes are re-maximizing the posterior of the selected five Kepler
objects, if the fixed LDCs (Table 5.2) are used in transit modeling. See for more details Section 4.3.3.

5.2 Space-based measurements compared to predicted LD

In the previous section, I showed the comparison between high-quality ground based measure-
ments of the solar limb darkening and model predictions. Since there exist also space-based
observations of the Sun, e.g. carried out by the satellites SOHO2, STEREO3 and SDO4, which
have performed an almost continuous monitoring of the Sun in various spectral bands, it is
appropriate to investigate these data concerning the solar limb darkening. Out of the mentioned
spacecrafts, SDO is the newest, which is the reason why my following investigations are
limited to this instrument.

5.2.1 Data acquisition and preparation

For my analysis I retrieved observations made by the Solar Dynamics Observatory (SDO)
(Pesnell et al., 2012) found in the public data archive provided by the Joint Science Operations
Center (JSOC)5. SDO carries different instruments like the Atmospheric Imaging Assembly
(AIA). The AIA instrument (Lemen et al., 2012) produces full-disk images of the Sun in
several passbands, most of them in the extreme ultraviolet, centered on iron lines. For the
investigation of the disk intensity distribution comparable to the previous sections, I chose a
passband located at a spectral position of the solar continuum (4500Å). In total, I took 46
Fits-images spread over two days (19.07. and 23.07.2012). For the selection of these dates I
ensured that no active regions were near the solar equator or the disk-center meridian.

The images have a resolution of 1024×1024 pixels and the Sun is always positioned in the
center. To get the intensity distribution in one direction over the solar disk, we simply choose
one central pixel row or column and get all pixel values as a function of the radial coordinate.
2http://sohowww.nascom.nasa.gov/
3http://stereo.gsfc.nasa.gov/
4http://sdo.gsfc.nasa.gov/
5http://jsoc2.stanford.edu/data/aia/
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Figure 5.11: Solar limb darkening observed by SDO. Left: Image of the SDO AIA 4500Å instrument
(continuum, photosphere). Orientation: top north, right east. Green lines marking pixel rows used for
the determination of the spatial brightness distribution. Right: Limb profiles resulting from the left
image (red: horizontal pixel row, green: vertical pixel column, blue: mean of 21 horizontal columns).

I present the resulting limb profiles (in r-space) in Fig. 5.11 for two different directions. While
on the left side of these profiles the north-to-south distribution lies considerably above the
one achieved in the west-to-east direction, it lies below on the right side. This illustrates
the asymmetric brightness distribution found in all images, more pronounced on the left
side of this graph, visible as a clear gap between both profiles. The asymmetric brightness
distribution is also visible in the left panel of Fig. 5.11. Most likely, this asymmetry is caused
by instrumental or reduction effects. To reduce the scatter of the data, which is induced by
solar granulation, I averaged over 21 horizontal rows around the central row. The resulting
mean distribution is additionally plotted in Fig. 5.11. Beside a spatial average, I will in the
following rely on a time average using the mentioned 46 individual observations.

Due to the mentioned asymmetry of the north-to-south profiles, I will take into account only
the profiles which are acquired from horizontal pixel rows. Therefore, I averaged over five
central rows in each of the 46 observations, to finally calculate the time average of these
profiles. The reduction in scatter by using this approach can clearly be seen in Fig. 5.12. To
check the symmetry, the profile of the eastern hemisphere is mirrored at disk center (pixel 513).
Both profiles are almost congruent, except the regions at the edges of every image, where the
west part shows more intensity, which is also visible in Fig. 5.11. Averaging these profiles does
not introduce a systematic error like it would be the case for the north-to-south distribution.

To get the final limb profile we have to define a correct µ-axis, which is again – like discussed
in the previous sections – a question of finding the real solar limb. This time I adopted the
proposed method by Orosz & Hauschildt (2000), where the limb is found at the point where
the slope of the intensity is the largest. In contrast to their Eq. 11, I determine the slope in
r−space, because the measurements are obviously performed in this coordinate system. This
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5.2 Space-based measurements compared to predicted LD

Figure 5.12: Solar disk intensity pro-
files of pixel rows of the western- and
eastern hemisphere as measured by
SDO’s AIA4500 instrument. Profiles
result from an average over 46 individ-
ual measurements. Dashed lines indi-
cate the point with the largest slope.
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leads to the expression,

dI
dr

����i
≈ I (i) − I (i − 1)

r (i) − r (i − 1)
, with i ∈ N∗. (5.7)

With the assumption ∆r = const., which is the case if the instrument introduces no aberration,
the denominator is always constant and can in principle be neglected for the determination of
the largest slope. I found pixel number 118 to be the point where to define the limb of the Sun
(µ = 0). The µ-axis is then defined by Eq. 1.6, where r is evenly spaced with r = 0 at pixel
512, and r = 1 at pixel 118.

5.2.2 Comparison to other LD descriptions

After the combination of disk-intensity measurements and the determination of the solar limb
in the previous subsection, I am now able to compare the resulting limb darkening to some other
limb-darkening laws, predictions, and measurements. For that purpose I chose the PHOENIX
3D model intensities using my “µ-rescaling” (Section 5.1.3) and the quadratic limb-darkening
law together with coefficients taken from Claret & Bloemen (2011) in Strömgren-b filter. For
the PHOENIX intensities I used a 10Å wide rectangular filter function. Since the 4500Å
channel is centered on a continuum part of the solar spectrum, the resulting distribution
should be also comparable to those measured by Neckel & Labs (1994) near this wavelength.
Therefore, I opted for their coefficients corresponding to their measurement at 4451.25Å and
used Eq. 5.1 to create the corresponding limb profile. All resulting limb profiles are plotted
together in Fig. 5.13.

The SDO profile lies significantly below all other intensity distributions and shows a positive
curvature in the region where the divergence is strongest. Only in areas near the limb - at
µ = 0.1 - this profile almost agrees with the quadratic limb darkening and the one measured
by Neckel & Labs. The difference to the limb darkening obtained from the PHOENIX model
atmosphere, visible for almost the whole limb-angle range, is not related to the chosen
rectangular filter function. I proved that it makes no difference to the PHOENIX profile, if a
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Figure 5.13: Comparison of measured solar limb darkening determined from Neckel & Labs (1994)
(blue) and SDO (orange). The quadratic distribution is generated using LDCs from Claret & Bloemen
(2011) in Strömgren-b filter (green), and rescaled PHOENIX intensities (black) are determined in a
rectangular filter function.

Strömgren-b transmission curve is used, like for the quadratic limb-darkening law. To quantify
the differences, I used again Eq. 5.5 to determine the disk-integrated fluxes of all profiles
and additionally I determined quadratic LDCs by a least-squares fit (Table 5.4). The values

Table 5.4: Fitted quadratic LDCs and relative differences in disk-integrated flux.

Model u1 u2 ∆SSDO / %
Claret11 0.7321 0.0749 −2.67
Neckel & Labs 0.6497 0.1365 −4.72
PHOENIX µrescaled 0.6304 0.1564 −5.28
SDO AIA 4500Å 0.9018 −0.1638 0.00

Notes: I define ∆SSDO = (SSDO/Smodel) − 1. The disk-integrated fluxes of the given distributions are
denoted as Smodel. The LDCs are taken from Claret & Bloemen (2011) in the case of “Claret11”
(Strömgren-b filter), and determined by a fit in all other cases. A negative sign in the flux differences
indicates a percentage below the corresponding distribution.

of the relative flux differences confirm what we have seen in Fig. 5.13. The limb intensities
determined using SDO observations underestimate the disk-integrated flux of the Sun in this
specific spectral region by almost 5%, when compared to the measurements of Neckel & Labs.
The difference to the rescaled PHOENIX limb intensities is even larger. Therefore, it cannot be
expected that the fitted limb-darkening coefficients agree. It is also remarkable that the SDO
profile shows a positive curvature for a wide range of limb angles and the others do not. Thus,
this profile is the only one showing a u2 value which is clearly negative. I have to mention that
these coefficients lead to a profile which is a good fit for values in the range µ = 0.2 − 1.0,
but of course a bad fit for the region close to the limb (µ = 0.0 − 0.2). On the one hand, this
is due to the fact that there are only nine data points in this region. So the fit is dominated
by intensity values near disk center. On the other hand, a quadratic law with a negative u2
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5.2 Space-based measurements compared to predicted LD

has, according to Eq. 1.8, always a positive curvature and is not able to describe the predicted
limb darkening given by the used models, since they all show a negative curvature. The best
“agreement” between a model and the SDO limb darkening can be seen for the quadratic limb
darkening using Claret coefficients for a Strömgren-b filter, but in the end I conclude that none
of the used models are really compatible with the found SDO profile.

The discrepancy of the SDO limb profiles and the other descriptions can probably be explained
by systematic errors, e.g. induced by the instrument, or the data reduction. There are two
arguments supporting this assumption: First, the asymmetry found for the north-to-south profile
is unlikely for the Sun; second, the pixel intensities at the edges of the images, clearly visible
in Fig. 5.12 (pixel 0-118), are significantly different for each side, showing a step-like structure
on closer inspection, and are constant in the time frame used. Without any further knowledge
about the instrument and the reduction process these issues remain unresolved. Furthermore,
if only the north hemisphere would be taken into account, the resulting limb profile would bear
more intensity at intermediate limb angles, because in Fig. 5.11 the intensities lie clearly above
the values from the west hemisphere. Due to the asymmetry a more detailed investigation is
omitted. Although the obtained limb profile is not compatible with, e.g., the one measured by
Neckel & Labs (1994), I showed that it is actually possible to get low noise and low scatter
disk intensity values of the Sun using space-based observations.
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6 A new Numerical Transit Algorithm

Modeling of extrasolar planet transit light curves can be done by an analytical approach, if
the stellar disk is assumed as a uniform source without any limb darkening. The simple idea
behind it, is to integrate the fraction of overlapping circles as a function of time. In the case of
a limb-darkened source, the problem leads to elliptic integrals for which no analytical solution
exists. Therefore, these integrals have to be approximated numerically, as it is the case in the
routines of Mandel & Agol (2002) (see references in their routines). This semi-analytical
solution is fast and accurate enough to use it in fitting and minimization approaches within
this transit model.

With a permanently increasing accuracy of the photometry, it becomes possible to study
system properties, such as the oblateness of planets or star spots, which were hidden in the
noise before. Such circumstances make the required model approach more complicated and in
the case of elliptical planets or stars even a transit in front of a non-limb-darkened source has
no analytical solution anymore. Theses problems ask for numerical methods to compute and
model transit light curves.

In the field of modeling extrasolar planet transit light curves there exist some works introducing
numerical methods. For example Silva (2003) used an image of the Sun to simulate planetary
transits in front of star spots. Tusnski & Valio (2011) have already simulated the effects
of planetary rings and exomoons on transit light curves and Huber et al. (2010) presented
planetary eclipse maps and the evolution of star spots by modeling space-based photometry.
Nevertheless, there exists no work containing numerical analyses with different limb-darkening
laws comparing them to conventional Mandel & Agol models, to the Sun, or to model
atmospheres, especially for different impact parameters. Such an investigation based on an
efficient fast Fourier transform (FFT) method has not been carried out yet.

I will first give an introduction of the theoretical and numerical methods used. Then I explain
the process of creating the numerical counter parts of the star and the planet together with the
transformation of the orbital parameters into this numerical algorithm. After that I will validate
the precision of my algorithm by comparing the resulting light curves to those calculated using
the occultquad routine (Mandel & Agol, 2002). Finally, to demonstrate the capabilities of
my code, I select some observations of the Sun to generate transit light curves.
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6 A new Numerical Transit Algorithm

6.1 The numerical approach

The need for a numerical transit algorithm is mostly motivated by the idea to determine how a
transit with “real” limb darkening is different from one generated with theoretical coefficients.
The only question to be answered is, what actually is the real limb darkening. The great
advantage of numerical methods is that this limb-darkening information can be drawn directly
from a model atmosphere without the use of any coefficients or approximations formally
known as limb-darkening “laws”.

Limb intensities of model atmospheres have already been used directly in the synthesis of
light curves of eclipsing binaries (see Orosz & Hauschildt, 2000). Nevertheless, the direct
use of these limb intensities in the process of planetary transit light curve synthesis is new.
Such a numerical algorithm should be efficient in the sense of short computation times. This
is necessary if the algorithm should be used in a fitting approach where the model has to be
evaluated many times during the minimization process. In the following subsections I will
introduce a fast and accurate way to synthesize transit light curves numerically based on fast
Fourier transforms.

6.1.1 Image convolutions and fast Fourier transforms

The convolution of two functions f (x) and g(x) can be interpreted as a weighting of all points
in f with g(x − ξ). As formally known, the convolution is defined as

( f ∗ g)(x) =

+∞∫

−∞
f (ξ) · g(x − ξ) dξ = h(x) (6.1)

(e.g., Butz, 2012). Because of the changing shift x in the argument of g, we say that the
function g is slided over f . The convolution yields a new function h(x) which describes the
value of the integral evaluated at the point x. Therefore, we can also interpret the function
h(x) as the amount of x-dependent overlap of f and g.

As an often used example in the literature, we find the convolution of two identical square
functions. The resulting function h(x) is in this case a simple triangle function which describes
the x-dependent fraction of the overlap between these functions as already mentioned above.
To go one step further, I created two square signals with different lengths and unlike signs,
according to

f (x) =



1 if 141 ≤ x ≤ 230,
0 all other cases,

and g(x) =



−1 if 1 ≤ x ≤ 45,
0 all other cases.

(6.2)

The square signal defined by function f (x) is twice as long as the one defined by g(x), namely
90 elements in contrast to 45 for g(x). In the case of numerical simulations or measured
data, such continuous functions are often not defined. They are replaced by sampled data sets
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(vectors f and g) with a finite number of elements M . Hence, the continuous convolution of
Eq. 6.1 is now given by the summation of discrete products written as

( f ∗ g)x =
M−1∑

ξ=0
fξ · gx−ξ . (6.3)

This discrete convolution of the square signals in f and g leads to a negative trapezoid with a
depth of −45, which is the maximum amount of overlap area of both signals. The negative sign
is induced by the negative data values in g. This value can easily be verified by using Eq. 6.3,
inserting some suitable values for x and ξ where neither f nor g are zero. For example, this
is fulfilled for x = 141 + 45 and 141 ≤ ξ ≤ 185 (cf. Eq. 6.2), and the discrete convolution
yields

( f ∗ g)186 =
185∑

ξ=141
fξ · g186−ξ = 45 [1 · (−1)] . (6.4)

In my example this value has no unit and would depend on the number of data points sampled
in the square signals. To get a more descriptive value of the depth we can apply a reasonable
normalization. Thus, I chose the area of the square signal sampled in f (with ∆x = 1 px)
which then translates Eq. 6.3 into

hx =
1
z

M−1∑

ξ=0
fξ · gx−ξ , with z =

M−1∑

x=0
f x , (6.5)

and gives −0.5 as the result of the convolution for x = 186 like chosen above. The convolution
of my assumed data sets now leads to a negative trapezoid whose depth is normalized, and its
absolute value can be interpreted as the maximum fraction of signal f covered by signal g. I
created this example, because a negative trapezoid is rather similar to a transit light curve. Sure,
the occulted stellar flux cannot lead to negative values in the light curve, but this should not be
a problem. I can find a different normalization which fits this physical boundary condition. For
my goal of synthesizing planetary transits, I claim the resulting data set to be one where no
occultation is taking place and the depth should be related to the total amount of light blocked.
This is achieved by adding 1 to Eq. 6.5 and we obtain

hx = 1 +
1
z

M−1∑

ξ=0
fξ · gx−ξ . (6.6)

In Fig. 6.1 I illustrate both test samples used and the normalized result. The square signals
can now be interpreted as slices of the occulted star and the eclipsing planet. The widths of
these slices can be attributed to one of the spacial dimensions of the objects. If these slices are
the disk-center slices, then the widths are equal to the diameters. In my example the height
of the source signal f is one at every point on the hypothetical disk slice, which translates
into a uniform source without limb darkening. The summation over all f x is in any case
the “slice-integrated” flux, which is partially blocked by the shutter signal. As illustrated in
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Figure 6.1: Example of the convolution of two
square signals. The graphs can be interpreted as
follows: the green curve represents the “source
signal”, the blue one is the “shutter” and the black
one is the normalized result of the convolution
following Eq. 6.6.

Fig. 6.1, the result of the convolution using Eq. 6.6 is a trapezoid with a depth of exactly 50%.
Under the given conditions, this is the anticipated result, since a hypothetical planet which has
half the area of the star should also block half of the integrated flux in “transit center”.

Although the presented example is simple, there are only a few steps missing to convert the
trapezoid into a real transit light curve. One of them is the introduction of a limb-darkened
source. The limb-darkening information can here easily be applied to the source signal f
which can be done by any analytical function or data set. Another problem is the lack of
geometric information of the bodies like their sizes and shapes because up to now my example
has obviously only one spatial dimension. The expansion of the example into two dimensions
requires the discrete convolution to be defined in two dimensions. As given in the literature
(e.g., Kim & Casper, 2013) the expansion is performed by introducing an additional index.
The two-dimensional discrete convolution is then written as

(S ∗ P)x,y =
N−1∑

φ=0

M−1∑

ξ=0
Sξ,φ · Px−ξ,y−φ , (6.7)

where the vectors f and g are now given as images (matrices), where in my case S maps the
surface brightness distribution of the eclipsed star (Fig. 6.2) and P represents the planetary
disk. As in the one-dimensional case, we can now imagine that one image is shifted pixel by
pixel over the other. The result of this convolution is then also an image. However, for the
application of creating planetary transits, we expect only a one-dimensional result namely,
a light curve. Because we have the additional information that the planet passes along a
well-defined path in front of the stellar disk, defined by the system impact parameter, it should
be possible to simplify this equation. In fact it would make sense to limit one sum in Eq. 6.7 to
the rows (or columns) which are occulted during transit, and additionally fix y to the central
row of the planet’s path. To end up with a normalized transit light curve, I apply a similar
normalization than given in Eq. 6.6

tx = 1 +
1
z

B∑

φ=A

M−1∑

ξ=0
Sξ,φ · Px−ξ,y−φ , with z =

N−1∑

x=0

M−1∑

y=0
Sx,y . (6.8)
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Figure 6.2: Illustration of the 2D matrix S, showing a simulation of a limb-darkened star. For the
limb darkening I used Eq. 5.1 (P5(µ)), together with coefficients determined for the Johnson-V filter
band (Table A.10). Left: 3D projection of the disk intensity distribution. One row (or column) is similar
to f (x) in Fig. 6.1, but now with limb darkening. Right: image of the generated star.

A and B depend on the choice of y and the diameter of the planet, and z is proportional
to the disk-integrated flux. Now the result would be only one-dimensional and contains a
transit light curve in front of a limb-darkened source. Nevertheless, each row or column in
the image resulting from Eq. 6.7 actually represents an individual transit light curve, namely
for all possible impact parameters! Only the proper normalization is missing. In addition to
all possible impact parameters, it delivers also all possible directions over the stellar disk,
such as from north to south or east to west (see Fig. 6.3). This is pretty neat in the case of
non-rotational symmetric stellar disk intensities or arbitrary spot distributions, but it is more
efficient to limit the computation to one impact parameter as in Eq. 6.8.

So far I showed that it is possible to generate numerical transit light curves via a convolution,
but until now I did not comment on the accuracy. However, it is obvious that the accuracy of
this method is related to the precision of the input images and therefore depending on their
resolutions. To get “enough” precision it is reasonable to aim at several 106 or 107 pixels; I
will discuss the accuracy’s dependence on the resolution later on in Section 6.2. The straight
forward summations of the pixel-by-pixel products in Eq. 6.8 become now computationally
intensive. A further increased resolution would lead to even longer computation times and this
asks for an improvement of this method. As proven in several books about functional analysis
(e.g., Butz, 2012), the convolution can be reduced to the calculations of simple products by
transforming both functions or data sets into the Fourier-space. The relation

tx = ( f ∗ g)x ↔ H j = F j · G j , (6.9)

is called convolution theorem, where F and G are the Fourier transforms of f and g. For
sampled data the one-dimensional discrete Fourier transform (DFT) and its inverse (iDFT) are
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given by

F j =
1
N

N−1∑

x=0
f x e−2πix j/N ↔ f x =

N−1∑

j=0
F j e2πix j/N . (6.10)

The two-dimensional expansion is again achieved by adding a set of indices for the additional
direction, which introduces an extra summation to be performed and is written as

Fu,v =
1

M N

M−1∑

x=0

N−1∑

y=0
Sx,y e−2πi(

ux
M +

vy
N ) ↔ Sx,y =

M−1∑

u=0

N−1∑

v=0
Fu,v e2πi(

ux
M +

vy
N ) . (6.11)

In comparison to Eq. 6.7 it seems that the Fourier transform is not a great step towards
an improvement in the performance of the convolution, because we have now to calculate
3N4 sums and products instead of only N4 (for M = N). This includes the DFT of S and
P, and the inverse transformation of Hu,v back to the spatial domain. To bring the Fourier
transform in a form which is computationally efficient, it is now time to introduce the concept
of the fast Fourier transform (FFT). There exist some different implementations of it, but
the most commonly used is based on the work made by Cooley & Tukey (1965). The main
idea is to apply a signal decomposition, which splits the data into two halves, namely into
data belonging to the even and odd indices, respectively. This is repeated as often as the
data set can be divided by two. Obviously, this signal decomposition requires the number of
sampled data points to be N = 2γ , with γ = log2 N to be an integer, which is the number
of steps needed for the decomposition. For each step of the decomposition there are N/2 so
called butterfly computations with two summations each. The total number of computations
relevant for the computation time is proportional to N log2 N . Because the further details of
this algorithm are rather complex by itself and not important for my work, I would like to
refer to, e.g., Brigham (1974) and Smith (1997) who describe the used FFT algorithm in great
detail. However, I showed that the computation time of the FFT is proportional to N log2 N ,
or in my two-dimensional case proportional to N2 log2 N2. For the example of the image
convolution shown in Fig. 6.3 the overall computation time is approximately proportional to
3(N2 log2 N2), neglecting the calculation of the products Fu,v · Gu,v . In contrast to Eq. 6.7
with N4 additions, the FFT convolution requires a factor of about 17 000 less computations, if
N is set to 1000. This makes the FFT a highly efficient tool to calculate the convolution of
large data sets or images.

I introduced above that the convolution of two images, namely of a star and a planet, can
produce transit light curves. The possibilities of such a numerical transit algorithm are diverse
and now only a question of the underlying images, and not of equations anymore. For the
shapes of some transiting objects, such as asteroids or comets, no analytical descriptions are
available. Therefore, numerical algorithms are predestinated to handle arbitrary shapes of the
occulting objects. By utilizing the fast Fourier transform, this convolution becomes a highly
efficient way of synthesizing such transit light curves. In the next subsection I will comment
on the implementation in detail, e.g., how the conversion of the common transit parameters is
performed as well as about some further optimizations.
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↓FFT ↓FFT ↑iFFT

· =

Figure 6.3: Illustration of creating numerical transits by image convolution. Top panels: Input images
of the star and the planet (left and middle panel), and the resulting transit image shown in 3D projection
(right). Every line in the right image represents a transit light curve for different directions over the
star and different impact parameters. Bottom panels: Corresponding amplitudes (

√
a2 + ib2 ) in the

frequency domain after performing a fast Fourier transform of the top panels. The spectra are centered
and in logarithmic scale.

6.1.2 Creating stars, planets, and numerical transits

In the previous subsection I introduced the principles of a technique to numerically generate
transit light curves. I showed that a convolution of a star and planet image delivers an image
which holds transit light curves for all possible inclinations and directions over the stellar
disk (Fig. 6.3, upper right panel). The whole process can be divided into a few steps: creating
star and planet images, defining a stellar stripe as transit path for a given impact parameter,
convolution, normalizing, and creation of a proper time axis. I will now walk through these
steps to describe some important details of my algorithm.

The most fundamental part of the algorithm is to provide input images, which are representing
the stellar intensity distribution and the planet as an occulting mask. In principle we can do this
in two different ways, namely creating these images on our own or preparing real observations
for input. For the second option only the image of the eclipsing object has to be prepared in
the way that the background intensity should be zero and the object “intensity” itself has to be
−1 according to Section 6.1.1 (other values may also be possible1, e.g., for eclipsing binaries
or brown dwarfs, but not discussed here). The creation of the input images depends on the
chosen resolution of the star, which I denote as DS. This value gives the diameter of the star in
pixels and also defines the resolution of the planetary array, which is calculated from the radii

1Negative values indicate opaque objects, zero totally transparent, and positive values simulate emission.
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ratio p according to

DP = DS · p ⇐⇒ p =
DP
DS
=

RP
RS

. (6.12)

This relation implies that the value of DS should not be set too small, otherwise this would
lead to a crude sampling of the planetary disk and in the end to an inaccurate light curve. After
this simple definition of the image sizes, both objects are now generated in a similar way, just
by using a simple equation for defining a circle

r =
√

x2 + y2 . (6.13)

Thereby x and y are pixel coordinates with the point of origin set to the image centers. For the
planetary disk this means that all pixels in the range smaller or equal to

√
x2 + y2 = DP/2

are set to −1 and all other to zero. For the stellar image this is the same process, but in
addition we want to add some limb darkening. For instance, this can be done by any arbitrary
limb-darkening law. Together with Eq. 6.13 we can write

I (µ)
I (1)

= 1 − u1(1 −
√
1 − r2 ) − u2(1 −

√
1 − r2 )2. (6.14)

As introduced in Chapter 5, it is now by far more interesting to directly use the limb intensities
obtained from a model atmosphere, instead of using an arbitrary function whose coefficients
are somehow determined by a fit to the “same” model intensities. As in the Chapter mentioned,
I linearly interpolate between the model limb intensities to account for the significantly higher
disk resolution of my stellar image. By directly using model limb intensities we have the
opportunity to evaluate transit light curves in any wavelength range, together with arbitrary
filters or instrumental response functions. Even transits in individual lines are now possible.

In contrast to the previous subsection, the input images are now created with different sizes
(DS and DP). This means that both objects fit directly into these images without any spacing
border. For the process of the FFT convolution this has the consequence that the resulting
transit light curves are sampled without transit start and end times. To understand this behavior
we can imagine that the whole planet is placed on and at the edge of the stellar image and then
slided over the disk to end up at the opposite edge. Hence, for some central impact parameters
the convolution always starts with the planet in front of the star, which leads to already occulted
parts of the stellar disk. Consequently, I need to add an additional border to one of the images
with at least the width of the planet’s diameter, to cover t1 and t4 in the creation of the transits.
The amount of pixels D f to add on every side can be obtained from

D f = f DP with f ≥ 1 . (6.15)

So at least the first and the last data point after convolution are now continuum points,
independent of the given impact parameter.

Although the convolution of these images leads to an image which provides transits for all
possible inclinations, I want to limit the convolution to only one impact parameter. This
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Figure 6.4: Image of the stellar stripe used for the FFT convolution. The planet “start” position is
indicated by a white circle. The planetary disk is then virtually shifted in the direction of the arrow over
the disk. The white vertical line indicates the pixel position where the convolution is stopped.

reduces the computation time and allows increasing the resolution of the input images due to
lower memory consumption. The definition of the stellar stripe in front of which the planetary
disk passes depends on the planet’s size (in pixel) and of course the system impact parameter
b. This value can easily be translated into the needed pixel coordinates, since we know that
the path over the stellar disk center (at DS/2) is given for b = 0, and for the case where the
planet center touches the stellar limb during transit center (at DS) if b = 1 is given. The pixel
positions (start counting at zero) of (bm) and the upper and lower boundaries are then defined
as

bm =
DS
2
+

bDS
2
− 1, b1 = bm − DP

2
, b2 = b1 + DP. (6.16)

This defines the stellar stripe Sx,[b1,b2], which I show in Fig. 6.4. At this point all important
input parameters are implemented in the algorithm. The limb darkening is included in the
stellar image, the radii ratio p is given by the size ratio of the images, the inclination i and the
semimajor axis a are included in the impact parameter b. Hence, we can start synthesizing
transit light curves by image convolution.

For the convolution of this stripe with the planet I used the routine fftconvolve from the
publically available SciPy package (Jones et al., 2001). This algorithm does exactly what I
showed in Fig. 6.3; it computes an FFT of both images, multiplies them, and performs an
inverse FFT. Additionally, this routine can handle input images which do not have the same
size by adding as many zeros as needed to the smaller image and then cutting some parts off in
the convolved result. The normalization of the output is performed as shown in Eq. 6.8, by
summing up all pixel values of the whole stellar image, which is the disk-integrated flux in
arbitrary units, dividing the output by this value and adding one. The number of transit data
points resulting from this convolution depends only on the sizes of the input images and can
be estimated by

NTP = (DS + 2D f − DP) + 1 ≈ DS . (6.17)

For small values of DP, the number is roughly the same as the number of pixels of the stellar
diameter DS. Normally this should be of the order of several thousand points. Compared to
observational data, this is an enormous amount of data points. Although, we probably would
need only a few hundred for modeling an observed transit, we have to keep in mind that the
accuracy of the simulation strongly depends on the image resolutions.

The computation time of the convolution and the accuracy of the result depend on the number
of elements in the input images. Due to the symmetry it is possible to nearly halve the
computation time by cutting off almost half of the stellar stripe defined above (vertical line
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in Fig. 6.4). This would result in a half transit light curve and the second half is created
by a flipped copy of the first half. This is of course only possible in simple cases, e.g., for
spotless stellar disks, where the expected transit event is symmetric around the transit center.
To estimate the numerical performance of this optimized convolution, which means transit
data points per second, I generated numerical transits for different input image resolutions and
measured the computation time of the convolution. In Fig. 6.5 I plotted the computation time
against the number of data points in one transit, by using Eq. 6.17. As mentioned before, the

Figure 6.5:Numerical performance ofmy code.
Computation time needed for the convolution of
the arrays, plotted against the resulting amount
of transit data points. The red curve is the approx-
imation of the computation time with C = 2 ·109
as system specific constant of proportionality.
The plot is valid for an Intel® Pentium Core™2
Duo CPU with 3GHz.

computation time of the FFT convolution is proportional to 3(N2 log2 N2). The used algorithm
always fulfills the requirement that the number of data points has to be 2γ needed for the FFT,
by adding zeros to both input images. What we see in Fig. 6.5 is compatible with this assertion.
At every point where the number of elements of the input arrays are rounded to the next higher
value of γ, the computation time makes a clear jump. Although, these values are relatively
high for modeling a single transit light curve, this method of generating synthetic transit light
curves has a great advantage: the process of the FFT convolution can be parallelized. This
means that the convolution of every single pixel row of the input images can be performed on
a single CPU. This is maybe not practical, especially if DP ≈ 400. However, if needed, we can
go one step further and compute the convolution on graphics cards. These are optimized for
image processing and nowadays there are thousands of processing units on one single graphics
card. As shown by Podlozhnyuk (2007) the image convolution has already been performed
with NVidia CUDA, but without using the FFT.

The last important item missing is the definition of a time axis for the resulting transit light
curve. Until now, every transit data point represents one step of shifting the planetary disk over
the stellar image. This leads to data points which are sampled with the same mutual spacing.
Just adding an equidistant time axis would be inappropriate because due to the curved orbit
the sky-projected velocity of the planet is not constant in front of the stellar disk. Therefore,
the new time axis has to be computed by using

ti = cos−1


1
sin(i)

√

1 − z2i
a2


ω−1 with zi = x2i + b2, (6.18)

which is in principle the inversion of the sky-projected distance between the object centers
z(ti ) (Eq. 1.26), since we here know the distance z(ti ) and want to know the corresponding
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time. Although this equation accounts for a curved transit path over the stellar disk, the image
convolution has an obvious disadvantage: the transit paths are straight lines for all inclinations.
According to Eq. 1.26, tilted orbital planes lead to planetary traces which are seen in projection
as parts of ellipses, so they are slightly curved. The convolution cannot account for this
behavior. However, this is actually a negligible issue and we will see in the next subsection
that the resolution of the input images are significantly more important for the accuracy of
the synthesized transit light curves. Especially for large semimajor axes the approximation of
a straight transit path is excellent. In this sense large semimajor axes mean all values larger
than 4 RS. See for interest Fig. B.13 where I compare hypothetical transit paths for different
semimajor axes.

6.2 Comparison to a semi-analytical model

The most important question to be answered beside the computational speed of my algorithm is
the accuracy when compared to transits generated using a semi-analytical approach. Obviously,
like the computation speed the accuracy is expected to be a function of the resolution of my
input arrays. The more precise the stellar and planetary images, the higher is the accuracy of
the resulting transit light curves. To quantify this precision, I compare my numerical transits
to those generated with the widely used occultquad routine (Mandel & Agol, 2002), which
I also used for my analyses of Kepler objects. I synthesized a numerical transit light curve
with the transit parameters of KIC 5084942 and quadratic limb-darkening, and I used the
same parameters for the creation of the semi-analytical transit model. Then I determined the
residuals between the two models and determined the maximum of the absolute values. To get
the evolution of the accuracy as a function of the image resolution I repeated this procedure
again with increasing DS like before in Section 6.1.2 and visualize the result in Fig. 6.6. As

Figure 6.6: Precision of my numerical transit algorithm.
Maximum deviation from a semi-analytical transit model
plotted against the resolution of the stellar input array
(diameter of the stellar disk in pixels, DS). Y-axis is
in logarithmic scale. Red horizontal line indicates the
order ofKepler’s cumulative detection limit (Section 3.3).
Shown are 3000 points.
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expected, we can see that the maximum deviation from the semi-analytical model decreases
as the resolution of the stellar input array is increased, which is equivalent to an increasing
accuracy of my algorithm. This plot is promising in the sense that it shows that the accuracy
achieved is comparable to the photometric precision of the Kepler photometer. Especially
those values found at resolutions larger than DS ≈ 3000 indicate residuals which should not
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Figure 6.7: Individual parameter accuracy of my numerical code. Differences between the fitted and
the initial parameters plotted against increasing image resolution. From left to right: Radii ratio p,
inclination angle i, and semimajor axis a. Y-axis is in logarithmic scale. Red horizontal lines indicate
the smallest individual parameter errors of my Kepler target sample: σmin,p = 4 · 10−5, σmin, i = 0.03°,
σmin,a = 6 · 10−3 RS (Müller et al., 2013, Table 3).

be resolved by Kepler because they are in the order of 5 · 10−6 and thus they should be hidden
in the noise. In contrast, resolutions around DS ≈ 1000 would give rise to residuals at the 1σ
level of Kepler’s accuracy.

The maximum of the absolute values of the difference between the Mandel & Agol model and
the numerical transit is not necessarily the best value to describe the accuracy of my numerical
transit. It can only serve as an estimator for the expected residuals and whether they would
be detectable with a specific photometric instrument, e.g., Kepler. The influence on transit
parameters resulting by a fit, when using my numerical code, is much more interesting. To
study this, I created numerical transits (of course without noise) and then fitted these transit
light curves with the occultquad code. The differences between the fitted parameters and
the initial values of my numerical transit model show the total systematic error which is
caused by the numerical accuracy of my code. In the present case I set the two limb-darkening
coefficients as fixed and let the planet-to-star radii ratio p, the inclination angle i, and the
semimajor axis a as free parameters in the fitting approach. The fitting code used is based on
the downhill simplex algorithm. To check the convergence characteristics of this fit algorithm
in this particular situation and to test whether it is able to find the input values, I first created
a test case in which I fitted a transit created with occultquad. It turned out that the fitted
parameters are the same as the input values and hence I continue using this fit algorithm. In
particular, I generated roughly 3000 individual numerical transit light curves with increasing
input array resolution, but this time each of these transits were fitted. The resulting differences
between the input parameters and the fit results (Fig. 6.7) can be interpreted as a more precise
measure of the accuracy of my code. If these differences are smaller than the smallest error
found for these parameters in my Kepler sample, then I reached a resolution of the input arrays
where my numerical code produces synthetic light curves which are accurate enough to model
Kepler data. In Fig. 6.7 we can see that the differences between the fit values and the input
parameters are clearly decreasing with increasing image resolution and at some point indeed
starting to be smaller than the parameter errors. We also see a scatter in these differences, like
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in Fig. 6.6, which is caused by rounding errors and the finite quantization of these parameters.
Remember that, e.g., the impact parameter is quantized, due to the finite amount of pixels
defining the radius of the stellar disk (DS/2). Although we can see that the differences are
already rather small for resolutions between 1000 to 3000 pixels, such as for ∆p in the order
of 10−6 to 10−8, we have to consider the upper most boundaries of these point clouds as the
achieved accuracy. If we look at Fig. 6.7 we can see that the inclination angle i is well enough
determined by a resolution of DS ≈ 1000 px. This is a small value compared to the other
parameters. Looking at the planet-to-star radii ratio, which shows the smallest absolute errors
of these parameters, an image resolution around 5000 pixels would be enough to generate
transit light curves to which a fit shows smaller deviations from the input parameters than the
smallest errors of my Kepler target sample.

The analyses shown above proved that my numerical transit algorithm is accurate and
comparable to semi-analytical models. It is worth to mention that the chosen Kepler object
(KIC 5084942), whose parameters were used here for the simulations, has one of the smallest
planet-to-star radii ratios in my sample. That my numerical code is even able to accurately
synthesize transit light curves of such small planets is in the end the most credible indicator of
its numerical precision. Furthermore, in contrast to a semi-analytical approach my numerical
algorithm has some advantages which I present in the following.

6.3 Oblateness and planets with rings

Most transiting exoplanets known today orbit close to their host stars (probably biased by the
detection method). Hence, it can be assumed that their spin rotation is slowed down due to tidal
forces or even tidally locked to their host stars. Nevertheless, there is an increasing number
of detected Jupiter-like planets which are further away from their host stars, undergoing
significantly less tidal interaction. These planets could rotate fast enough to show oblateness
because their equatorial diameter is increased by centrifugal forces. We know from our own
solar system that, for instance, Jupiter is an oblate spheroid due to its fast rotation which lasts
only about 10 hours. This results into an equatorial diameter which is almost 7% larger than
the polar diameter. In contrast to our solar system planets the spin rotation of exoplanets is so
far mostly unknown, since it is hard to measure, but as reported by Snellen et al. (2014) there
exists at least one measurement of the rotation rate of a fast rotating exoplanet, β Pictoris b. It
shows a rotation period of only eight hours, which is faster than Jupiter’s, and, therefore, this
planet should exhibit a significant amount of oblateness. During a transit event such planets do
not act as a simple circular shutter anymore, but rather as an ellipse.

The effects of oblateness on planetary transit light curves have been discussed by J.W. Barnes &
Fortney (2003). I have shown that my numerical approach has a high precision when compared
to the occultquad routine, therefore, I will use the planetary oblateness to demonstrate some
capabilities of my code and try to reproduce some of their results. The capability to simulate
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Figure 6.8: Comparison of transit light curves
of a Jupiter-like planet with different amount
of oblateness. Top: Numerically simulated tran-
sits. Bottom: Residuals (simulation minus best
fit). Simulated Jupiter-like oblateness given in
blue (bell/aell = 0.935), two extreme examples
bell/aell = 0.4 (red) and bell/aell = 0.2 (green).
Porb = 2.47 d, u1 = 0.5187, u2 = 0.1678.

oblate planets is simply implemented in my numerical algorithm by introducing an ellipse
equation of the form

r2 =
x2

a2
ell
+

y2

b2ell
, (6.19)

to create an elliptical planet. The semimajor and semiminor axis of the planet shape are
denoted as aell and bell, respectively. To achieve a Jupiter-like oblateness, I set the ratio bell/aell
to 0.935 and used a stellar resolution of 25Mpx (DS = 5000 px) together with limb-darkening
coefficients from Table 5.2 (PHOENIX µ-rescaled, Johnson-V). For simplicity I chose an
impact parameter of zero. The differences between a transit with and without Jupiter-like
oblateness are hard to detect and only visible in the residuals of Fig. 6.8. These are determined
by subtracting a best-fit transit light curve of this simulated data set. As pointed out by J.W.
Barnes & Fortney (2003) this is the only way to determine appropriate residuals. Using a
model of a circular planet which has the same orbital parameters and also blocks the same
amount of light (same disk area as the planet with oblateness) is questionable, because the
investigator has no prior information on the system and normally has to leave all parameters
free in the fitting process. In this way the simulation yields residual signatures which would
probably be found in real data sets. I fitted p, i, and a, while I set the limb darkening as fixed
parameters under the assumption that it is known from model atmospheres. We can see that the
major effect occurs during transit ingress and egress, mainly caused by the slightly increased
transit duration. This signature is the same for transit start and end, because I neglected a tilt
of the planet’s rotation axis in relation to the orbital plane, otherwise this would not be the
case. To visualize changes in the transit shape I generated two additional transit events with
rather extreme values of bell/aell (see caption of Fig. 6.8), with the constraint to cover the same
amount of stellar surface area. This leads to almost the same transit depth and also to nearly
the same residuals. According to my simulation one would need a photometric precision of
about 4 · 10−5 to detect these signatures (2σ level). This is in agreement with the findings
of J.W. Barnes & Fortney (2003) and, furthermore, could be detected in Kepler data (see
Section 3.3).
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Figure 6.9: Transits and residuals for different ring properties. Left: Simulations for different ring tilts
(labels). Right, top: Residuals for different optical thicknesses τ = 0.105 (magenta), τ = 0.511 (yellow),
and τ = 1.609 (blue). Middle: Results after varying the radius of the inner ring edge Rin = 2.3 RP
(cyan), Rin = 1.8 RP (orange), and Rin = 1.4 RP (gray) (Rout = 2.39 RP). Bottom: Residuals achieved
using a hypothetical planet with identical orbital parameters but larger radius to occult same amount of
disk area of the host star (no fit).

The second promising test case is the simulation of transits where the planet has rings, like
Saturn. Like planets with oblateness, planets with rings are more likely to be found far away
from their host stars since tidal interactions would hamper the formation of rings. We know
from our solar system that all gas-giant planets have more or less pronounced ring systems
from which we might infer that exoplanets could have rings as well. The detection of rings
around exoplanets would give insights to planetary formation and about the life times of their
rings. However, up to know there is no discovery reported.

Although there already exists some work inspecting simulated ring-induced transit signatures
and estimations of the detection limits (J.W. Barnes & Fortney, 2004; Ohta et al., 2009), I will
again present some similar results using my numerical approach. As input parameters I used a
Saturn-like planet and varied the viewing angle of the ring plane θ between 90° (face on) and
10° (nearly edge on). In contrast to the mentioned publications, I will simulate Saturn’s rings
including the Cassini Division. For the ring dimensions I used the values given by IAU &
USGS (2014). For simplicity I set the optical thickness of the A and B ring to infinity and
of the Cassini Division to zero. In principle my code would be able to set arbitrary opacities
for different parts of the rings, but it is not implemented yet, hence, the A and B ring have
the same. We will see later on that for the detection of ring signatures it is actually more
important in which photometric passband the transit will be observed. For my simulations I
used the same conditions as before in the case of oblateness. The resulting transits (Fig. 6.9)
remarkably differ in transit depth, depending on the ring’s orientation. Due to the smaller
projected occulting area in the tilted case, the transit depth decreases with θ, down to an
amount only induced by the planet size. Consequently, the biggest effect on a transit light
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curve is introduced by a face-on ring system. This means that planetary rings erroneously lead
to an abnormal planet size, because they are normally not included in transit modeling and
signatures are hidden in the noise. However, the face-on ring system does not introduce the
strongest residuals. In my test case a tilt angle of θ = 40° leads to slightly stronger signatures
in the residuals and, therefore, it is easier to be detected than a face-on ring (see Fig. 6.9,
left). This is surprising but consistent with the findings of J.W. Barnes & Fortney (2004)
and caused by the subtracted best fit planet model, where no ring is included. It becomes
coherent when looking again at the light curves in Fig. 6.9, where we can clearly see that a
face-on ring induces only very slight distortions to the transit flanks. The planet-ring system is
circular and therefore symmetric in this case. If we look at the slightly tilted case (θ = 10°)
the occulting shape is not rotational symmetric with respect to the line of sight. This leads
under this planetary conditions to marginally deeper dips in the residuals than in the face-on
case. Obviously, in this geometry some parts of the rings do not contribute to the light curve
because they are hidden behind or lying in front of the planetary disk. For values of θ where
this is given, it is not to be expected that the signature in the residuals becomes largest. For
Saturn this condition is indeed fulfilled, if θ is about 40°. I tested several other ring radii and
different combinations of Rin and Rout which lead to different values of θ at which the residuals
are maximized. In some cases the best detectability was even achieved when parts of the ring
were hidden (e.g., Rin = 2.3 RP, Rout = 1.3 RP, θ ≈ 10°), which shows that the problem is
more complicated and needs a deeper investigation.

We know from observations that the solar system planetary rings show various optical
thicknesses. To go one step further than the mentioned publications I will compare the
residuals when using different opacities of the rings leaving the geometry face on. I chose
arbitrary transmissivities of 90%, 60%, and 20% and show the residuals in Fig. 6.9 (right,
top panel). The most transparent test case shows obviously the weakest influence on the transit
light curve and has therefore the lowest detectability compared to the others. The peak value
in the residuals is found at 3.2 · 10−4. In contrast, the ring with the highest optical thickness
produces only somewhat larger residuals (3.5 · 10−4), which is unexpected. One would rather
expect that the detectability increases continuously with optical thickness, but at least for my
ring properties this is not the case. I found the largest residuals for a transmissivity of about
60%, which translates into 5.1 · 10−4.
As the planetary rings in the solar system, rings around exoplanets could have various spatial
dimensions, which set constraints on the detection limits. In the middle panel of Fig. 6.9 I show
the residuals of my third test case, where I simulated planetary rings with different radii of the
inner ring edge Rin. I set the outer ring edge Rout to 2.39 RP, which causes a decrease in ring
width when Rin is increased. The ring with a moderate width causes the strongest residuals
(4.4 · 10−4), while the broadest and the thinnest rings show weaker signals (≈ 3.4 · 10−4).
These results indicate that a pronounced inner gap and also a ring with a significant width
have a positive impact on the detectability.

The residuals determined without subtracting a best fit model, but a simulated transit using a
ring-less planet with the same orbital conditions, increased in size to cover the same amount
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Figure 6.10: Transit residuals for limb darkening of different intensities. Left: Residuals when u1 is
varied and u2 fixed to 0.1. Right: Residuals when u2 is varied and u1 fixed to 0.5. For all simulations
the ring tilt was set to face on (θ = 90°). Small dip near phase −0.024 and the small bump in the third
dip are caused by the Cassini Division.

of surface area, are shown in Fig. 6.9 (bottom panel). These signatures are only caused by the
rings and the later transit ingress and the earlier egress. Compared to the others shown above,
they show an amplitude which is up to a factor of 3 larger and largest for the face on geometry
and smallest for the slightly tilted case. Nevertheless, as already pointed out one would never
see these residuals, because one would perform a ring-less fit without any a priori information
about the system, which would lead to the previously shown weaker residuals. In the end,
to give a 2σ detection of the ring-induced signatures of a Saturn-like planet, I determine a
photometric precision of 2 · 10−4 or better, which is similar to that found by, e.g, Ohta et al.
(2009). Actually, Kepler delivered photometry with a comparable precision (Section 3.3),
which offers the opportunity to detect rings around exoplanets. To detect the Cassini Division
we would need a photometric accuracy of about 10−5, which is four times smaller than the
signatures caused by, e.g., Jupiter’s oblateness and, therefore, beyond Kepler’s range. These
results lead to the conclusion that it could be possible that some exoplanets which are believed
to be highly inflated may actually have unresolved rings.

More important for my work than the influence of the ring size or orientation on the residuals
is to study the influence of limb darkening on the detectability of planetary rings. Therefore, I
created a number of numerical transits of a Saturn-like planet (ring face-on) and varied the
limb-darkening coefficients of the host star. I started with varying u1 and set u2 to 0.1 and
continued with varying u2 and set u1 to 0.5. All transit light curves were again fitted (limb
darkening was fixed and set to the given values). I present the transit residuals in Fig. 6.10
together with the used coefficients. Due to the symmetry in my simulations I only show the
residuals of the transit ingress. The second half of the transits show identical signatures. If we
look at the left panel of Fig. 6.10 we can see that different values of u1 lead to clearly different
residuals. The major effect reveals a change in the amplitude, namely an increasing value of u1
causes smaller residuals and, therefore, a decreased detectability. In the case of u1 = 0.6 the
peak value of the residuals reaches only 33% of that reached when the linear coefficient is
set to 0.1. In the right panel of Fig. 6.10 this effect is less pronounced but also present. The
signature generated with u2 = 0.1 has a peak value which is 15% smaller than u2 = 0.0 and
only 1% larger than the one with u2 = 0.3. In principle we can interpret increasing values
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of the coefficients as a stronger limb darkening. u1 has a greater effect on the strength, while
u2 mainly defines the curvature (Eqs. 1.8 and 1.10), and this explains the weaker differences
of the residuals seen in the right panel. Eventually, we learn from these results that a weaker
limb darkening has a positive influence on the detectability of rings. This is caused by the
higher contrast at the limb (no light/light) when the planet starts to occult the star. In the more
limb-darkened case the transition between minimum and maximum occulted intensities lasts
longer and causes the ring information to be smeared out in time. We can see that even the
third dip in these residuals almost vanishes when the limb darkening increases and the peak
positions are shifted to higher phase values. Therefore, the choice of the photometric passband
plays a role which means that transit observations in the infrared would be the best opportunity
to detect rings around exoplanets, because we know that in these wavelength regimes the
stellar limb darkening is significantly weaker (see, e.g., Knutson et al., 2007). However, a high
signal-to-noise ratio remains the most important premise to detect planetary rings.

My simulations demonstrate only some aspects of the effects on transit light curves introduced
by planetary rings, to show the remarkable capabilities of my numerical code. For a deeper
look into this topic I recommend the publications mentioned above. For example, they also
include tilt angle dependent ring opacities, which I neglected in my simulations, because I
used only a face-on ring when the opacity was changed or an infinite optical depth if θ or
the limb-darkening coefficients were changed. Furthermore, J.W. Barnes & Fortney (2004)
included diffraction depending on the particle’s size, which is not possible with my code.
Nevertheless, I showed that my code is able to simulate structures like the Cassini Division
and that they are very difficult to detect and require a remarkable photometric precision not
achieved today.

6.4 Numerical transits and the Sun

The outstanding advantage of my numerical approach is not only that any arbitrary shape of
the occulting body can be simulated but also various properties of the occulted object can
be assumed. Among others these could be the intensity distributions obtained from model
atmospheres in any filter band, spot/surface maps, or specific shapes, e.g., oblateness on fast
rotating stars. Beside simulations, my method is also capable of using real observations of the
Sun. In the following I will present some numerically generated transit light curves using such
observations and investigate differences, e.g., when compared to a model atmosphere.

6.4.1 Comparing PHOENIX and Neckel intensities

In Chapter 5 I showed different limb-darkening models compared to the limb intensities found
for the Sun (Neckel & Labs, 1994). I fitted these intensities using a quadratic limb-darkening
law, to create simulated transits with the resulting coefficients for comparison. Now I go one
step further and create transit light curves which do not have to rely on any limb-darkening
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Figure 6.11: Numerical transit light curves us-
ing different solar-like limb-darkening models
(labels), all in Johnson-V filter. P indicates LD in-
formation from the mentioned PHOENIX model
atmosphere, Pµ the corresponding rescaled distri-
bution, and NL Neckel & Labs (1994) intensities.
Bottom panel shows the residuals.
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Figure 6.12: Zoom-in to the transit ingress
phase of some numerical transits using different
limb-darkening descriptions (labels: PHOENIX,
PHOENIX µrescaled, Neckel & Labs (1994)) in
Johnson-V passband. Vertical line marks the late
transit start (t1) in the case of the 3D PHOENIX
atmosphere (see Section 5.1.3).

law. Instead I use the disk intensity distribution taken directly from a model atmosphere.
No systematic error related to an inaccurate fit or model function is present anymore in this
approach. Furthermore, the often discussed question whether the fit should be flux conserving
or not becomes obsolete.

For my show cases and for the comparison to transits using measured limb darkening of the
Sun, I chose a Jupiter-sized planet and generated transit light curves in the Johnson-V filter. I
used the intensity distribution of a 3D PHOENIX atmosphere, as introduced in Chapter 5, and
created the stellar disk with 5000 pixels in diameter. For simplicity I set the impact parameter
to zero, letting the planet pass directly in front of the stellar equator. In Fig. 6.11 I show
the resulting transit light curves when using slightly different limb-darkening descriptions
of the Sun. In detail these are the mentioned PHOENIX atmosphere, the distribution after
rescaling the µ-axis (Section 5.1.3), and the disk intensity distribution created by using a
fifth-order polynomial (Eq. 5.1) based on the measurements of Neckel & Labs (1994). For the
latter one the coefficients are taken from Table A.10. On the one hand, this plot allows me
to investigate the effects of my rescaling of the µ-axis on transit shapes, or in other words,
which systematics are introduced by the unscaled PHOENIX model. On the other hand, I
can compare the resulting transits directly to a transit based on real measurements of the
Sun. This is more relevant for planetary transit observers than only looking at the differences
between the underlying limb intensities. Here I prefer to inspect the residuals determined in
relation to the transit using the rescaled PHOENIX distribution. This means that I subtracted
this transit from the others. We can clearly see in these residuals that the transits are not
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congruent. This is of course not surprising because also the limb intensities are not congruent.
The differences are visible during the transit ingress and egress phase but more expanded in
time when the complete planet is in front of the the star, heading toward the disk center. The
strongest deviation is given in the case of the unscaled PHOENIX distribution with a peak
value of 1.3 · 10−4. In contrast, the deviation to the transit generated with the Neckel & Labs
distribution is only half as large (0.5 · 10−4). This leads to the conclusion that the PHOENIX
distribution which is rescaled with my described method is the better choice when deriving
limb-darkening predictions. The easiest way to compare these transits is to look at their transit
center depths (visible in the inset of Fig. 6.11). In the here chosen photometric passband
the unscaled PHOENIX distribution yields the deepest transit, while the Neckel & Labs
distribution shows the most shallow transit. This order is the same in all tested photometric
systems except for Kepler’s response function. If we think of the results of Section 5.1.2 and
those summarized in Table A.8, then this order is self-evident. I found that the limb profiles
produced by PHOENIX lead to less disk-integrated flux than those measured by Neckel &
Labs in almost all of their studied wavelength intervals (Table A.7). In the rescaled case this
effect is still there but significantly weaker. Stellar disks synthesized using this stronger limb
darkening predicted by PHOENIX are slightly darker in total (except for the disk center: here
the normalized intensity is by definition always one) and, therefore, the planet seems to be
larger by causing a deeper transit.

Although we talk about small effects the photometric precision of Kepler actually allows us
to detect residuals of the presented magnitude. For instance, to hide the resulting signatures
caused by the unscaled PHOENIX distribution in the noise, the photometric precision has to be
worse than≈ 2.6 ·10−4. The amplitude of the residuals mentioned above would then be only half
the size of the noise. For the residuals measured to the transit model generated with a Neckel
& Labs distribution I determine a limit of ≈ 10−4 for the photometric precision. If light curves
with a higher signal-to-noise are given, then we have to ask which limb-intensity prediction is
the more accurate one. For lower accuracies this is irrelevant since the measurement of the
Sun and the rescaled PHOENIX prediction cannot be distinguished. The differences between
transits, using them as limb-darkening information, would be hidden in the noise and, therefore,
these models would be virtually the same. In fact, both limits mentioned above are detectable
by Kepler, but not in today’s ground-based photometry. Therefore, a fit of the limb darkening
is not only possible but necessary for many objects in the Kepler data, simply because we
do not know which theoretical limb-darkening prediction is correct. The question whether
we should use a “more accurate” limb-darkening law than the quadratic law in the transit
modeling, such as the nonlinear law, is not relevant. The difference between a transit using the
quadratic law and one using the nonlinear law is in the order of 10−6 which is not detectable
by Kepler.

Beside the effects introduced by the stronger limb darkening of the PHOENIX predictions, I
also reported the effect induced by the pronounced gap of the spherical symmetric models
at the outermost limb in Section 5.1.3. I found that the duration of a planetary occultation
will be shorter by about ten seconds, depending on the orbit’s inclination and semimajor axis.
In Fig. 6.12 I show a zoom-in to the transit ingress phase of the numerical transits discussed
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above. This plot nicely visualizes the later ingress caused by the PHOENIX model prediction
(P) compared to the ingress of a transit using the measurements of the Sun (NL). For the orbital
parameters used here the transit duration using the PHOENIX model is two times 5.2 seconds
shorter. This is 1.1‰ of the transit duration. Some of my selected Kepler objects show a
transit duration with an uncertainty of less than 10 seconds (e.g., HAT-P-7b) or a relative error
of only 0.4‰. As visible, the rescaled PHOENIX model (Pµ) is much more accurate and has
almost the same transit start time like the one based on NL. Hence, the PHOENIX model
introduces a systematic error when set as limb-darkening information, which has a measurable
effect on the transit duration and, therefore, on all remaining orbital parameters. This has the
consequence that all limb-darkening “laws”, which try to fit the steep drop-off region at the
limb of the spherical model intensities (e.g., Claret & Hauschildt (2003, Eq. 8)), introduce this
systematic error as well. My recommended rescaling of PHOENIX’s limb intensities does not
lead to such a systematic influence or only to a negligible amount not resolved with Kepler’s
photometry.

In the end I conclude from the shown comparison that the rescaled PHOENIX limb profile
holds the more elaborate disk intensity distribution than the unscaled one. The differences
between transits, which rely on Neckel & Labs measurements and the rescaled PHOENIX
intensities, reach their maximum during transit ingress or egress and transit center, and remain
undetected for a Jupiter-sized planet if the signal-to-noise is less than ≈10 000. For the unscaled
distribution this limit is reached earlier (S/N ≈ 3800). Furthermore, my numerical approach
made it feasible to visualize the effect of the pronounced gap at the limb of the spherically
symmetric PHOENIX models on transit light curves, which in fact has a measurable influence
on transit durations. For this reason I do not recommend to use the “pure” intensity distribution
or limb-darkening laws intended to fit this gap in transit modeling.

6.4.2 Synthetic transits using space-based observations

Modern monitoring of the Sun is often carried out by satellites, which are able to produce
high quality images of different parts of the solar atmosphere. These images are convenient to
use them for simulated planet eclipses and they can directly be used as input for my numerical
transit algorithm. The only requirement which has to be fulfilled is that the images must show
the whole Sun.

To create a numerical transit light curve using space-based observations I chose data collected
by SDO, like before in Chapter 5. I start with a FITS file from the AIA 4500Å instrument,
whose wavelength corresponds to a continuum part of the solar spectrum (photosphere). In
contrast to the previous sections the resolution is now fixed to that given by the observation.
With the solar limb found at pixel 118 (Section 5.2.1) and the image resolution of 1024×1024
pixels, this leads to a solar disk diameter of 788 pixels. As a consequence, the number of
out-of transit points is now a function of the planet-to-star radii ratio p (N = 2(118 − 788p)).
If the planetary radius is chosen too large (p > 118/788), it would be impossible to generate a
complete transit light curve without adding some extra black pixels to the edges of the AIA
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Figure 6.13: Numerical transit light curves us-
ing a SDO/AIA 4500Å FITS-image (orange,
19.07.2012) and the µ-rescaled PHOENIX atmo-
sphere (dashed). Also given: a semi-analytical
transit (occultquad) with a quadratic LD law
(u1 ≈ 0.90, u2 ≈ −0.16, Table 5.4, dotted).
Bottom panel: residuals in relation to the SDO
transit.

image. In my case this should not be a problem, because for my synthetic transits I will use
p = 0.1 to simulate a Jupiter-like planet.

In Fig. 6.13 I present the resulting numerical transit light curve together with some other
synthetic transits. I used the same parameters as in the previous subsection and an observation
with no active regions near or in areas occulted by the planet. The resulting transit shape looks
quite normal, but flux values before transit ingress and after egress are not one. This is caused
by the unphysical pixel values in the dark image areas around the Sun, seen in Figs. 5.11
and 5.12. These parts of the light curve are not important and can be neglected in a comparison
to other transit models. Hence, we can limit our attention to phase values between ±0.022,
where this transit, compared to the one generated using the PHOENIX atmosphere in a narrow
spectral region (4500Å± 5Å), deviates most in the transit center. This is clearly visible in
the residuals, which shows that there is also a slight mismatch of the overall transit shapes.
However, this is not surprising, because we saw in Section 5.2 that both limb darkenings
significantly deviate from each other. I stated that instrumental effects or residuals of the
reduction process are the most probable reasons for the incorrect disk intensity distribution.
For further comparison of the SDO transit I additionally used the occultquad routine to
create a transit with the limb-darkening coefficients fitted in Section 5.2.2. Actually, the SDO
transit is described quite well by this transit and the residuals are much smaller compared to
the PHOENIX model. Yet, this model also gives no perfect match to the numerical transit of
the SDO observation, which can probably be explained by the fact that the quadratic fit to the
limb intensities in Section 5.2.2 is influenced by instrumental peculiarities.

Much more interesting than planet eclipses of totally quiet regions are transits in front of, e.g.,
spots or faculae. For that purpose I chose SDO observations taken on the 26th of September
2011, where some active regions north of the solar equator were seen as a spot group in
the 4500Å image. I changed the orbital inclination to i = 89° to fully cover the spots by
the hypothetical planet, which corresponds to an impact parameter of b = 0.14. I show the
resulting numerical transit light curve together with its transit path in front of the solar disk in
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Figure 6.14: Numerical transit light curves in front of solar active regions (white). Dashed lines
marking the transit path (i = 89°). The background images are taken from the SDO image archive2.
Left: Narrow-band image in 4500Å (photosphere), right 1700Å (temperature minimum, photosphere).
Wavelength information taken from Lemen et al. (2012).

Fig. 6.14. As expected, the transit signature shows a nice bump at the phase position where
the planet passes in front of the spot group. Such signatures have already been observed
and modeled on active planet hosts, such as HD189733 (Pont et al., 2007) and CoRoT-2
(Wolter et al., 2009). Therefore, my numerical transit method gives an opportunity to test
spot-modeling algorithms, e.g., if the resulting parameters like spot size, shapes, and orientation
are reasonable. Furthermore, my algorithm is capable to simulate real spot evolution scanned
by the transiting planet, just by using more than only one SDO observation as input, which are
separated by multiples of the orbital period.

The great advantage of the simulations using SDO observations is that I am able to synthesize
the same transit in different wavelengths, which would in real observations only be possible
by performing multi-color photometry or spectro-photometry. Hence, I simply chose SDO
observations made with the AIA instrument at 1700Å. I show the resulting numerical transit
light curve in Fig. 6.14 (right). This transit shows an uncommon shape and has a depth of
δ ≈ 1.8%which is clearly deeper compared to the one generated using the 4500Å observations
(δ ≈ 1.4%). The shape and depth can be explained by faculae visible as bright areas in the
image. They cover a larger fraction of the solar disk than the spots. This is the reason why
the bump, when the spots are being passed by the planet, is not visible anymore. Instead of
creating bumps, the faculae are producing dips when being occulted by the planet, which is
nicely demonstrated by the deepest point in that light curve.

To demonstrate an even more extreme case, I took an SDO observation made at the same
date, which was acquired at 94Å corresponding to soft X-ray emission of the solar corona. To
2http://sdo.gsfc.nasa.gov/assets/img/browse/
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simulate transit light curves in X-rays might sound a little bit far-fetched, but actually there
already exist real transit observations in X-rays of HD189733b as reported by Poppenhaeger
et al. (2013). My numerical light curve presented in Fig. 6.15 shows no similarity to a common
transit light curve anymore and by high chance it would not be identified as such an event. The
unusual shape is a result of the irregular spatial brightness distribution of the corona and, in
contrast to observations in the optical wavelength regime, it is reasonable to observe a longer
transit duration caused by the extended corona. This easily explains why we do not see any
out-of transit data points in the figure. This can simply be changed by adding black areas
around the Sun, but my intention was to leave the FITS-files unchanged. The deepest point of
this light curve shows a transit depth of almost 6%, which is produced by occultation of the
most prominent light source in this images, which corresponds to the spot group visible in
the optical. It is important to mention that one also sees considerably bright active regions
in this X-ray image, which do not have prominent optical counter parts (cf. Fig. 6.14, left).
Therefore, a quiet optical transit light curve is no proper indicator for the absence of bright
coronal regions visible in X-rays.

At coronal wavelengths one expects to see limb brightening in the transit light curve as reported
by Poppenhaeger et al. (2013). Actually, in the presented example this is not the case, since the
variations due to the active coronal regions dominate the brightness distribution. To simulate
a transit which shows clear limb brightening, I changed the orbital inclination of my model
to achieve a transit path over a less active region. In fact, I used the same impact parameter
as before, but this time the transit path lies south of the solar equator. This numerical transit
light curve clearly has a shallower profile and the parts before and after transit center are more
symmetric (Fig. 6.15, dotted line). We are now also able to see some kind of limb brightening,
visible as almost equally deep dips at transit ingress and egress, and an increased flux level
between them. Additionally, the transit shows some variations, which are induced by coronal
holes and brighter areas from the active regions projected into this transit path. See also
Llama & Shkolnik (2015) who created similar results in parallel to my thesis.

134



6.5 The effect of highly inclined orbits

The image of the Sun presented in Fig. 6.15 nicely illustrates the brightness distribution in soft
X-rays and shows us that the intensity is of course not evenly distributed over the solar disk.
When the Sun is in an active phase a transiting planet would produce a light curve, which is
most likely distorted by bright active regions. This is supported by the spatial extent of the
active regions, because they are larger in X-rays than in optical wavelengths. Therefore, it is
unlikely to observe a typical limb brightened transit, this is only possible if the Sun is in an
inactive phase. Furthermore, we know that the Sun is not a very active star, especially when
compared to, e.g., CoRoT-2 or HD189733, where the spot coverage is significantly larger than
on the Sun. From these insights I assume that it is even more unlikely to observe the typical
limb brightened transit shape and the real transit depth on these active stars. For some more
numerical transit light curves in different AIA narrow-band images see Fig. B.20.

6.5 The effect of highly inclined orbits

I. D. Howarth already discussed the influence of large system impact parameters on fitted
limb-darkening coefficients in transit modeling (Howarth, 2011, Fig. 4). He generated transit
light curves using the four parameter nonlinear limb-darkening law and fitted them using a
transit model with the quadratic limb-darkening representation. He found that the coefficients
determined in this way indeed depend on the impact parameter.

I already confirmed his findings with empirical studies of Kepler objects in Müller et al.
(2013) and Section 4.3.1, but I now want to go one step further. The question I want to answer
is whether I can extend his results using a more precise description of the limb intensities
in contrast to a least squares fit to model intensities using some arbitrary “law”. For this
purpose my numerical transit model is predestinated to generate a transit light curve with
making use of limb intensities obtained directly from a spherically-symmetric 3D-PHOENIX
atmosphere. In detail, I followed his approach by creating transit light curves with different
system impact parameters varied between 0 and 0.9. The planet-to-star radii ratio and the
semimajor axis was arbitrarily set to and 7.9 RS, respectively. The resolution was set to 2500
rows, which yielded roughly 2900 transit data points. To achieve comparable results, I used the
same solar like model atmosphere as in the previous chapter and applied my rescaling of the
µ-axis (Section 5.1.3). As a photometric filter function, I chose the Johnson-V transmission
curve. These light curves were then fitted with the mentioned occultquad routine using a
downhill-simplex algorithm. For a reliable error estimate all fit values were used as initial
values for a MCMC sampling. The resulting quadratic LDCs are shown in Fig. 6.16. The
determined pair of coefficients for b = 0 is only consistent with the quadratic coefficient u2
(1D-PHOENIX). For u1 the result lies more or less directly between both model predictions.
However, one should mention that these values are totally consistent with my obtained fit results
of this limb profile in Table 5.2. With increasing impact parameter the resulting coefficients
show an increasing deviation from these values. Also clearly visible is the increase in the 1σ
uncertainties. This behavior is already discussed in my paper (Müller et al., 2013) and also
seen in the studies of Howarth (2011), but he did not carry out an investigation of the statistical
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Figure 6.16: Fitted quadratic LDCs (dots) of simulated numerical transit light curves with increasing
system impact parameters. The numerical transits use a 3D PHOENIX atmosphere as LD information.
Colored lines indicate predicted LDCs for the Sun taken from Claret & Bloemen (2011) (green/solid:
PHOENIX, red/dashed: ATLAS). Diamonds: verification of my numerical transit and fit method,
see text. Empty circles: fitted LDCs of a simulated transit produced semi-analytically with nonlinear
limb-darkening information.

errors. Due to the huge uncertainties the decrease in deviation from the initial values implied
at b = 0.9 is insignificant, but also slightly visible in the work of Howarth.

Finally, I am able to reproduce his findings using a numerical transit algorithm together with
limb intensities directly obtained from a model atmosphere. This is in contrast to the use
of an arbitrary limb-darkening law which has no physical foundation. However, Howarth
made a more complete analysis using more photometric systems and also including the linear
limb-darkening law.

To test the validity of my approach, I created a numerical transit using the quadratic limb-
darkening law together with coefficients predicted for the Sun (green lines in Fig. 6.16). I fitted
this transit using a semi-analytical transit model again with quadratic limb-darkening law. The
resulting coefficients reproduce the values used for the numerical light curve (diamond symbols
in Fig. 6.16). This proves that the analytical limb darkening is implemented correctly in the
algorithm and that the fit method is able to determine the correct limb darkening. However, as
visible in Fig. 6.16 the fitted quadratic coefficients do not agree with the predicted coefficients
anymore when the transit light curves are generated using a PHOENIX atmosphere or if they
are generated semi-analytically using a four parametric nonlinear limb-darkening law (dots
and circles).
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7.1 The corona and companion of CoRoT-2a. Insights from
X-rays and optical spectroscopy

S. Schröter, S. Czesla, U. Wolter, H.M. Müller, K. F. Huber, and J.H.M.M. Schmitt
Astronomy & Astrophysics, Volume 532, id.A3, 12 pp. (Aug. 2011)

The CoRoT-2 system, consisting of a very active G-dwarf orbited by a hot Jupiter and a
gravitationally bound companion, most likely an inactive K-dwarf, is one of the most interesting
planet hosting systems to date. The optical light curve of CoRoT-2A shows periodic variations
caused by a significantly spotted surface. CoRoT-2b, the transiting hot Jupiter, makes it feasible
to study its host star’s surface, e.g. using planetary eclipse mapping (e.g., Huber et al., 2010).

The characterization of the whole system and especially of the host star CoRoT-2A is
indispensable to understand the development and phenomena in this system. In the work of
Schröter et al. (2011), in which I participated, we determined e.g. the effective temperature and
surface gravity of CoRoT-2A using high resolution optical spectroscopy. The optical spectra
were obtained by Klaus F. Huber using the UVES spectrograph at the Very Large Telescope.
The whole data reduction of the spectra was carried out by Sebastian Schröter, who afterwards
begun with individual line analyses to determine Teff and log g. At this point we started the
cooperation. To provide a more comprehensive study of the fundamental stellar parameters, we
used the software tool Spectroscopy Made Easy (Valenti & Piskunov, 1996). My expertise on
this tool, acquired during a visit to Professor N. Piskunov in Uppsala, Sweden, was essential for
the whole spectral analysis (see also Chapter 2 of this thesis). Therefore, the published values
for Teff , log g, ξ, and the individual element abundances were obtained in close cooperation of
S. Schröter and me. However, this work is not included in my thesis, because I am not the
main author and the major contribution to the publication is clearly provided by S. Schröter.
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7.2 A consistent analysis of three years of ground- and
space-based photometry of TrES-2

S. Schröter, J.H.M.M. Schmitt, and H.M. Müller
Astronomy & Astrophysics, Volume 539, id.A97, 10 pp. (Mar. 2012)

The transiting exoplanet TrES-2b is one of the best studied objects. Not only because it is
included in the Kepler field, but also because of the high number of ground-based observations.
Due to the high impact parameter of the orbiting planet the system is of special interest.
Deduced transit parameters should be sensitive to orbital changes, e.g. caused by undetected
additional planets around TrES-2A. I tried to obtain multi-band photometry with the BUSCA
instrument at the 2.2m telescope at Calar Alto myself in 2010. The observations were proposed
by Dimitris Mislis, who previously observed TrES-2 with the Oskar-Lühning-Teleskop of
Hamburg observatory and also with BUSCA (Mislis et al., 2010). However, the data I acquired
is not usable due to bad weather conditions during both granted observation nights.

The work by Schröter et al. (2012) aims to rule out previously proposed inclination changes of
TrES-2b’s orbital plane (Mislis et al., 2010). Therefore, Sebastian Schröter combined ground-
and space-based observations and modeled all available transits individually. His approach is
in contrast to my work, since I model all available transits in parallel. However, he also used an
MCMC sampling as I do, to account for strong correlations and to get reliable error estimates.
As an improvement he proposed to use the Adaptive Metropolis algorithm (Haario et al., 2001)
(see also Section 1.3.1 of this thesis). To ensure that this modified Metropolis algorithm yields
the same results as the normal Metropolis-Hastings algorithm, I simulated transit light curves
and used both sampling approaches. The results were compared to each other and it turned out
that they are consistent. I also repeated this procedure with the Kepler data of TrES-2, with the
same result. The major contribution to Schröter et al. (2012) was delivered by S. Schröter and,
therefore, this work is also not included in this thesis.

7.3 High-precision stellar limb-darkening measurements

H.M. Müller, K. F. Huber, S. Czesla, U. Wolter, and J.H.M.M. Schmitt
Astronomy & Astrophysics, Volume 560, id.A112, 20 pp. (Dec. 2013)

The following work (Müller et al., 2013) is the result of an in-depth transit analysis of the best
available light curves of transiting exoplanets provided by the Kepler mission. As already
outlined in Chapter 4, the study comprises seven Kepler quarters, namely quarters zero to six.
Most notably, the data is recorded with high time resolution (short-cadence mode), with a bin
time of about one minute. This work concentrates on transit modeling to determine the stellar
limb darkening as well as the orbital parameters. The resulting limb-darkening coefficients are
compared to widely used predictions and significant deviations are discussed. Furthermore,
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the work provides simulations and an analytical approach to the correlation and error behavior
of the measured limb-darkening coefficients as a function of the system impact parameter.

As main author I delivered the major contribution to this work. That includes amongst others
the target selection, the data handling, and the analysis. For that, I programmed a Python class
that has the ability to read in all available light curves of any Kepler object and that normalizes
and fits all observed transits. The coauthors helped me to interpret the results and provided
contributions to the theoretical approach and the simulations to be found in the appendix.

The publication included here is reproduced with kind permission from A&A, ©ESO.
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ABSTRACT

Context. Planetary transit light curves are influenced by a variety of fundamental parameters, such as the orbital geometry and the
surface brightness distribution of the host star. Stellar limb darkening (LD) is therefore among the key parameters of transit modeling.
In many applications, LD is presumed to be known and modeled based on synthetic stellar atmospheres.
Aims. We measure LD in a sample of 38 Kepler planetary candidate host stars covering effective temperatures between 3000 K and
8900 K with a range of surface gravities from 3.8 to 4.7. In our study we compare our measurements to widely used theoretically
predicted quadratic limb-darkening coefficients (LDCs) to check their validity.
Methods. We carried out a consistent analysis of a unique stellar sample provided by the Kepler satellite. We performed a Markov
chain Monte Carlo (MCMC) modeling of low-noise, short-cadence Kepler transit light curves, which yields reliable error estimates
for the LD measurements in spite of the highly correlated parameters encountered in transit modeling.
Results. Our study demonstrates that it is impossible to measure accurate LDCs by transit modeling in systems with high impact
parameters (b & 0.8). For the majority of the remaining sample objects, our measurements agree with the theoretical predictions,
considering measurement errors and mutual discrepancies between the theoretical predictions. Nonetheless, theory systematically
overpredicts our measurements of the quadratic LDC u2 by about 0.07. Systematic errors of this order for LDCs would lead to an
uncertainty on the order of 1% for the derived planetary parameters.
Conclusions. We find that it is adequate to set the commonly used theoretical LDCs as fixed parameters in transit modeling.
Furthermore, it is even indispensable to use theoretical LDCs in the case of transiting systems with a high impact parameter, since the
host star’s LD cannot be determined from their transit light curves.

Key words. stars: atmospheres – planetary systems – methods: data analysis – techniques: photometric

1. Introduction

Since the early studies of eclipsing binary light curves the center-
to-limb intensity distribution of stellar disks has played an im-
portant role in photometric analyses (e.g., Russell & Shapley
1912). For optical wavelengths this distribution shows a darken-
ing toward the stellar limb, which is easily seen on the Sun. This
so-called limb darkening (LD) depends on the surface tempera-
ture of the underlying stars and is difficult to measure when the
stellar disk remains unresolved. In the early stages of LD stud-
ies, this intensity trend was theoretically described by a linear
formula provided by Schwarzschild (1906). This linear descrip-
tion has been used to model a verity of observed data, such as
eclipsing binary light curves, and it is still in use in analyses of
the Rossiter-McLaughlin effect (Ohta et al. 2005) or in Doppler
imaging (e.g., Nesvacil et al. 2012). More complicated descrip-
tions of LD have been proposed (e.g., Kopal 1950) and adopted
by several other authors. Although these models are commonly
referred to as limb-darkening “laws”, they are only approxima-
tions of the real stellar LD.

When modeling LD in, say, transit light curves, the LD laws
are parameterized by some sets of coefficients. These are ei-
ther left as free fit parameters during data analysis or deter-
mined beforehand by model atmospheres and kept fixed in the

⋆ Table 3 and appendices are available in electronic form at
http://www.aanda.org

actual light curve modeling. The determination of LD coeffi-
cients (LDCs) for a variety of different laws using model at-
mospheres has been carried out by many authors (e.g., Wade &
Rucinski 1985; van Hamme 1993; Sing 2010; Howarth 2011a;
Claret & Bloemen 2011). Whether these theoretical LDCs are
used and fixed or freely fitted in light curve models can have
significant effects on the results. Although it clearly is prefer-
able to fix parameters in a fit that can be determined in some
other way, it is not clear how reliable these theoretical LDCs
are. After all, they only represent approximations to model at-
mospheres. Direct measurements of LD can only be carried out
for a few exceptional stars with a spatially resolved surface, such
as Betelgeuse (Haubois et al. 2009) using interferometric obser-
vations or, most notably, our Sun (Neckel & Labs 1994).

The importance of a correct description of LD was recog-
nized once researchers began to study light curves of transiting
extrasolar planets (Charbonneau et al. 2000). Transit light curves
are an important tool for studying the physical parameters of ex-
oplanets, such as their radii and densities. Stellar LD is often
considered as nuisance parameter in transit modeling, which is
strongly correlated to the other model parameters (Carter et al.
2008). Thus, prior knowledge of the LDCs would significantly
reduce the uncertainty in the physical parameters of the plan-
ets. However, transit light curve analysts have to choose from
a variety of LD laws and select appropriate theoretical LDCs.
These choices are often quite arbitrary, and incorrect coefficients
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can introduce large errors in the derived model parameters; this
is one of the reasons why many researchers tend to leave their
LDCs as free fit parameters.

There is an ongoing debate whether theoretical LDCs and
LD laws are accurate enough to describe the real stellar bright-
ness distribution. Today, high-precision transit light curves of
planets and eclipsing binaries render it feasible to study stel-
lar LD for a substantial number of stars with high accuracy.
Some studies measure LD using eclipsing binary stars (e.g.,
Heyrovský 2007; Claret 2008) and found disagreements between
empirical and predicted LDCs using the linear limb-darkening
law. Knutson et al. (2007) note in their study of HD 209458b
that even the four parametric nonlinear LD law leads to clear
residuals when they use the predicted LDCs. Southworth (2008)
used up to five different LD laws in planetary transit mod-
els and stated that “the solutions of all but the highest-quality
transit light curves are not adversely affected by the choice of
LD law”. Southworth also tested the effects of setting LDCs to
predicted values for some objects and found that the resulting
planetary parameters show no significant differences from leav-
ing the LDCs free; however, he also found the same disagree-
ments for HD 209458A as Knutson et al. (2007). Other authors
found further disagreements between theoretical and measured
LDCs, as e.g. Kipping & Bakos (2011a) for Kepler-5b, also in-
cluded in our analysis, and Sing (2010) for seven CoRoT targets.
On the one hand these studies seem to suggest that it is necessary
to fit the LDCs when modeling light curves, as already claimed
by other authors (e.g., Southworth 2008; Csizmadia et al. 2013);
on the other hand, there are also objects which show good agree-
ment with the theoretical LDCs (Bordé et al. 2010) and one al-
ways has to keep in mind that the determined LDCs usually have
rather large errors.

There are 3D hydrodynamic atmospheric models that pre-
dict a slightly weaker limb darkening than 1D models, poten-
tially indicating a systematic deficiency of the 1D approach. As
demonstrated by Asplund et al. (2009), these 3D models suc-
cessfully reproduce the solar LD (see also, Trampedach et al.
2013). The deviation between the solar 1D and 3D models com-
pared by Asplund et al. (2009) amounts to roughly 10% in terms
of flux at intermediate limb angles in the visible, which corre-
sponds to a 10% deviation in the LDCs. Hayek et al. (2012),
who apply similar 3D models to exoplanet host stars, ascribe the
weaker limb darkening to a shallower temperature gradient in the
photosphere. However, this behavior has not been reproduced in
the 3D solar models computed by Hauschildt & Baron (2010),
who combine the radiative transfer of the PHOENIX code with
a snapshot of a hydrodynamic model of the photosphere (Caffau
et al. 2007; Wedemeyer et al. 2004).

In the end, the core question is still not conclusively an-
swered: Are the theoretical LDCs compatible with empirical
ones? The aim of this work is to take another step toward a
consistent answer to this question. Although today it is hardly
possible to directly observe LD for many stars, some dozen light
curves of the Kepler space telescope show sufficient precision to
indirectly analyze stellar LD with high accuracy. Furthermore,
using only one instrument with one spectral response function
allows us to consistently analyze the stellar LD with a wide di-
versity of parameters.

In this paper we present measurements of the quadratic
limb-darkening coefficients using high-quality space-based tran-
sit light curves of 38 Kepler planetary candidate host stars di-
vided into 26 target stars with highest signal-to-noise ratios
(SNRs) and 12 objects with large system impact parameters. We
concentrate on how well our determined LDCs agree with the

theoretically predicted coefficients from commonly used model
atmospheres for main sequence stars (PHOENIX and ATLAS).
In Sect. 2 we explain our selection criteria of Kepler objects,
our data preparation, and our transit normalization. Section 3
provides information on the used routines, on the modeling ap-
proach, and the error analysis. Section 4 is dedicated to objects
showing time correlated noise or other anomalies presumably
caused by instrumental effects, while in Sect. 5 we present our
results and compare them to predictions. In Sect. 6 we summa-
rize our results and provide conclusions concerning the treat-
ment of limb darkening in transit modeling.

2. Data priming and selection of suitable objects

2.1. Target selection

For our analysis we retrieved the Kepler data of quarters Q0
to Q6 from the NASA Mikulski Archive for Space Telescopes
(MAST1). Kepler produces photometric light curves in two dif-
ferent sampling modes: long cadence (LC) and short cadence
(SC) with sampling rates of about half an hour and one minute,
respectively. The data consist of different data releases from re-
lease 4 to 7, depending on the quarter and the sampling mode.
The raw data have been processed using Kepler’s photometric
analysis (PA) pipeline, which includes barycentric time correc-
tion, detection of cosmic ray events, and background removal.
This leads to the raw aperture photometry (SAP) flux. We used
the corrected aperture photometry (PDCSAP) flux for our inves-
tigations, which is the result of Kepler’s pre-search data condi-
tioning (PDC) pipeline applied to the raw flux. In addition to the
PA, the PDC corrects for systematic errors, such as jumps and
exponential decays caused by the instrument, and removes ex-
cess flux within the target apertures which could be induced by
background or foreground stars in crowded fields or by physi-
cally bound companions. Such a third light contribution can af-
fect planet parameters in transit modeling, e.g. mentioned for
CoRoT-2b (Alonso et al. 2008) or TrES-2b (Daemgen et al.
2009). Further information on the reduction process is presented
in the data release notes provided by the Kepler Data Analysis
Working Group2.

As of February 2013, the Kepler space mission has discov-
ered 2321 planetary candidates, 322 of them are observed in
SC mode. The false positive rate among the planetary candi-
dates, although still under debate (see Fressin et al. 2013, and
references there), appears to be low, of the order of 10%. Due
to the longer integration time of LC data, the resulting transit
light curves contain less spatial information on the host star than
those observed in SC mode. For this reason we restrict our in-
vestigation to the planetary candidates recorded in SC mode be-
cause we need the highest temporal resolution available to spa-
tially resolve LD on the stellar disk. For all selected light curves
we removed invalid data points and all points marked by the
SAP_QUALITY flag, and we used Kepler’s TIME axis in BJD
(adding the BJDREFI value contained in the FITS-header).

2.1.1. High signal-to-noise target sample

For an appropriate analysis of limb darkening we require transit
light curves with extremely high SNRs, many data points dur-
ing the occultations, and short orbital periods to gather as many
transits as possible. These are idealized requirements and light

1 http://archive.stsci.edu/kepler/
2 http://archive.stsci.edu/kepler/release_notes
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Fig. 1. Kepler signal-to-noise ratios (SNR) of short cadence planetary
candidates as of 2012/02/27, versus number of transit data points per
day (Np). Large markers indicate our target selection. Diamonds: high
signal-to-noise sample (SNR ≥ 1000), big circles: sample with high
impact parameters b ≥ 0.8 (SNR ≥ 150).

curves combining them are rare in real data sets. We made use
of the public released Kepler planetary candidates list3 (KPCL)
to select light curves which fulfill these conditions best. This
list provides each light curve’s SNR (see Borucki et al. 2011,
Table 2 and Chap. 4) and important system parameters, such as
orbital period and transit duration, for all planetary candidates.
To illustrate our selection procedure we show in Fig. 1 the SNR
value plotted against the number of transit data points per day
of each object Np = (tdur/tcad)P−1

orb, where tdur denotes the transit
duration and tcad represents Kepler’s cadence of data acquisition
(≈60 s). Most objects are found at SNR values <∼200 and with
less than 50 transit data points per day. To obtain the most reli-
able results, we only select the 26 objects with a SNR larger than
1000 which constitute our high signal-to-noise sample. These
objects are listed in Table 1.

2.1.2. Targets with a high impact parameter

Measurements of LDCs strongly depend on the spatial informa-
tion contained in the transit light curve. In the case of highly
inclined transiting systems, synonymous with a large impact pa-
rameter, the planet crosses only a limited part of the stellar sur-
face at the limb and the transit does not contain information on
the brightness distribution at the disk center. The impact param-
eter b = (a/RS) cos i characterizes the path of the transit across
the stellar disk. It depends on the semimajor axis a, normalized
by the stellar radius RS, and the inclination angle i. An impact
parameter of b = 0 corresponds to an inclination angle of 90◦,
i.e., a transit passing across the center of the disk, for b = 1, the
center of the planet touches the stellar limb at transit center.

Howarth (2011b) simulated the effect of an increasing im-
pact parameter on measured LDCs. He showed for different
passbands that the measured LDCs show a systematic deviation
from the model prediction. This means that a large impact pa-
rameter must be accounted for when fitting transit light curves
and interpreting the results; most likely the LDCs of such sys-
tems will show much larger uncertainties even for very high SNR

3 http://archive.stsci.edu/kepler/planet_candidates.
html

Table 1. Our high signal-to-noise target sample ordered by increas-
ing Teff .

Kepler ID δ/N Teff/K log g Name Ntransit

5794240 11.5 3948 4.72 Kepler-45b 23
10748390 45.6 4766 4.59 HAT-P-11b 18
11391018 15.1 4787 4.58 7
5357901 10.7 5087 4.59 68
8845026 15.6 5490 4.49 1
9595827 11.3 5504 4.54 BOKS-1b 22
6849046 8.9 5541 4.32 63
9410930 8.9 5585 4.49 Kepler-41b 141
9651668 15.7 5722 4.55 86
8359498 12.2 5731 4.45 97
7023960 15.6 5768 4.50 6
11359879 13.6 5786 4.42 Kepler-15b 70
10619192 17.3 5787 4.45 Kepler-17b 154
11446443 60.6 5814 4.38 TrES-2b 167
12019440 8.8 5826 4.49 74
10874614 17.2 5826 4.42 Kepler-6b 133
7877496 9.4 5912 4.44 153
5780885 15.7 5934 4.04 Kepler-7b 70
9631995 13.6 5972 4.41 47
11804465 22.0 6011 4.23 Kepler-12b 82
6922244 9.9 6025 4.11 Kepler-8b 120
9818381 9.3 6082 4.37 Kepler-43b 114
10019708 6.9 6214 4.41 75
10666592 40.4 6264 3.79 HAT-P-7b 206
8191672 10.7 6297 3.99 Kepler-5b 121
9941662 41.7 8848 3.94 Kepler-13b 92

Notes. Teff and log(g) are taken from the Kepler planetary candidates
list. δ/N is our mean SNR for the transit signal calculated in Sect. 2.3
and Ntransit gives the number of transits used for our modeling.

because the brightness distribution from the center to the limb is
not covered by the data.

Following the work of Howarth (2011b) and studies made
by our group for TrES-2 (Schröter et al. 2012), we also investi-
gate systems with high impact parameters. Since TrES-2 is the
only system in our high signal-to-noise sample with an impact
parameter larger than 0.8, we decreased our SNR threshold from
1000 to 150 and selected all objects with an impact parameter
b ≥ 0.8 from the KPCL. This leads to 13 additional systems.
One object of this sample turned out to be a highly active binary
system and was rejected from the list, leaving the high impact
parameter sample with 12 members listed in Table 2.

2.2. Light curve normalization

The Kepler data show irregular variability caused by instrumen-
tal effects and residuals of the reduction process including vari-
ations between different Kepler quarters. Furthermore, some ob-
jects show intrinsic variability, e.g. caused by starspots. Hence
every transit light curve requires an individual normalization
which we perform by fitting a second order polynomial to the
surrounding out-of transit measurements. A simple linear fit is
insufficient to properly remove stellar or instrumental variations
while higher orders turned out to result in instable fits. We chose
a duration of ∆tconti = 4.5 h for the off-transit parts which leads
to ≈540 data points used for the normalization of each transit.
Equation (2) yields the lower and upper boundary times of the
normalization interval calculated relative to the nth transit cen-
ter tc,n. We used the time of the first recorded transit center t0
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Table 2. High-impact-parameter sample (see Sect. 2.1.2).

Kepler ID δ/N Teff/K log g Name Ntransit

10318874 2.5 4786 4.49 131
5084942 1.4 4915 4.55 114
12105051 2.7 5425 4.50 135
5771719 10.5 5425 4.21 12
2571238 2.2 5541 4.53 Kepler-19b 37
11295426 2.6 5793 4.28 Kepler-68b 39
8456679 2.0 5838 4.42 165
8554498 3.4 5861 4.19 91
8684730 4.3 5952 4.19 2
3762468 3.6 6094 4.41 9
4349452 6.0 6103 4.07 Kepler-25b 17
3861595 4.2 6391 3.81 29

Notes. Ntransit denotes the total number of transits used for our modeling.

(BJD-2 454 900) and the orbital period Porb given in the plane-
tary candidates list to determine the transit center times tc,n:

tc,n = t0 + 54 900 + nPorb (1)

tconti,± = tc,n ±
( tdur

2
+ ttol + ∆tconti

)
. (2)

To account for inaccurate transit durations and orbital pe-
riods possibly contained in the planetary candidates list,
we adopted a tolerance ttol of 0.5 h, which results in a
buffer of about 30 data points before the start of the tran-
sit t1 = tc,n − tdur/2 and after its end t4 = tc,n + tdur/2, respec-
tively. Both off-transit parts around a transit had to contain at
least four data points each, otherwise the transit was discarded.
The total number Ntotal of accepted transit light curves is listed
in Table B.1.

Even after removing the data points flagged by the pipeline,
a few outlying data points remain that cannot be attributed to
noise and should not be taken into account for the normalization
process. To identify such outliers we determined the median ab-
solute deviation (MAD) within the selected continuum parts and
set 0.6745−1MAD as 1σ error (Hampel 1974), which is a robust
estimator of the standard deviation of normally distributed data
in the presence of outliers; all data points 3σ away from the me-
dian of the continuum flux were filtered out.

All transit light curves were normalized by dividing them by
a second order polynomial according to

Fnorm(t) =
F (t)

at2 + bt + c
· (3)

The coefficients a, b, and c were determined using a down-
hill simplex algorithm on the intervals [tconti,−, t1 − ttol] and
[t4 + ttol, tconti,+] minimizing χ2.

2.3. Assessment of transit data quality

In this section, we revisit the light curve normalization and ana-
lyze white and red noise in our transit light curves.

2.3.1. Refining the normalization

To search for poorly normalized transit light curves, we devel-
oped a filter algorithm which applies three linear fits to the nor-
malized continuum. The first fit includes the whole 9 h of con-
tinuum selected for the normalization. The absolute value of the
resulting gradient had to be lower than 1.5× 10−7 d−1. Transits

with higher values were discarded. For the remaining transits
the left and right continuum parts were fitted separately. We set a
gradient threshold of 1.5× 10−3 d−1 which must not be exceeded
by the fits. The threshold values were determined by eye after
the inspection of normalized transit light curves; transits show-
ing higher values displayed significant inconsistencies in their
normalization.

In addition to this automatic method, it was necessary to dis-
card transits manually, such as in the case where the transits
are well normalized but distorted by starspots (HAT-P-11b) or
where individual transit light curves show a much larger disper-
sion of data points than the majority of the other transits. The
transit light curves rejected by these two methods are listed in
Table B.1. The remaining number of transits used in our analy-
sis is given by Ntransit in Tables 1 and 2.

2.3.2. Outlier removal and signal to noise

Outlier removal inside transit light curves is difficult if the real
transit depth and shape are unknown. To remove prominent out-
liers, we used a sliding median filter of window size 10 min and
rejected all points more than 4σ away.

The transit quality was measured by calculating the mean
SNR per transit (δ/N) for each object in our sample. We deter-
mine the difference between the continuum level (=1) and the
median flux value at transit center Fmin determined in a 10 min-
utes interval around the transit center; this difference was defined
to be our transit depth δ and the signal of the planet. We prefer
this definition of the transit depth because it does not depend
on the transit model. One could also use the radius ratio p re-
sulting from a model fit as an estimator for the transit depth;
however, this fit parameter would be correlated to other parame-
ters, especially the LDCs. The noise value was calculated using
0.6745−1MAD in the corresponding continuum levels. The re-
sulting mean signal-to-noise values are listed in Tables 1 and 2.
We emphasize that these δ/N values are not to be confused with
the SNR which is used to estimate the photometric quality of a
data set (see Fig. 1). The δ/N estimates how much stronger the
transit signal is than the photometric noise; for all objects in our
samples δ/N is much smaller than the SNR values given in the
KPCL.

2.3.3. Correlated noise analysis

Parameter estimates based on transit light curve modeling can be
severely impeded by red (i.e., correlated) noise, whose sources
are manifold including unaccounted for stellar variability and in-
strumental effects. However, the latter are likely small on transit
timescales in the Kepler data. Kipping & Bakos (2011b) thor-
oughly study red noise in the Kepler light-curve of TrES-2 and
find “no strong evidence for correlated noise”.

To check whether our transit light curves are affected by red
noise, we follow the approach of Pont et al. (2006), which is
based on a comparison of unbinned and binned residuals (see
Carter & Winn 2009, Eq. (36)). In this approach red noise, if
present, is accounted for in a conventional white-noise analy-
sis by multiplying the measurement errors with a correction fac-
tor β.

Our analysis shows that the assumption of uncorrelated noise
is justified in 32 of our 38 sample stars. In the remaining six
objects we find red noise and correct the error estimates. They
are discussed in Sect. 4.
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3. Determination of transit parameters

3.1. Analytic transit model

When fitting transit data one has to determine at least five param-
eters: the center time of the first observed transit t0, the orbital
period Porb, the ratio of the stellar and planetary radii p, the in-
clination angle i, and the semimajor axis a/RS. Fitting the stellar
limb darkening requires additional fit parameters depending on
the adopted limb-darkening law. Here, we choose the quadratic
limb-darkening law

I(µ)
I(1)
= 1 − u1(1 − µ) − u2(1 − µ)2, (4)

introducing two additional parameters u1 and u2. The variable
µ is defined as cos θ where θ is the angle between the line of
sight and the inward surface normal pointing to the occulted sur-
face area. Hence, I(1) is the intensity at the disk center where
θ = 0◦. To model each transit light curve with the given param-
eters, we used the FORTRAN routine occultquad4 developed
and provided by Mandel & Agol (2002), which generates a semi-
analytical transit model. We assumed circular orbits (e = 0) for
all objects in our selection.

3.2. Transit timing and parameter determination

A precise knowledge of the orbital period Porb and time of the
transit center t0 is essential in the fitting process. Clearly, inac-
curate values of Porb and t0 make a correct determination of the
remaining transit parameters impossible. Hence, it is essential to
determine Porb and t0 as accurately as possible.

As a first step we used the transit model introduced in
Sect. 3.1 to fit these two parameters for each object using a
downhill simplex algorithm, keeping all other parameters fixed
to the values given in KPCL. The initial values for Porb and t0
were also taken from that list. The results of this fitting method
were used as initial values for an MCMC sampling algorithm
(Sect. 3.3).

After determining Porb and t0, we fitted the remaining param-
eters: the ratio of the star-planet radii p, the inclination angle i,
the semi major axis a, and the quadratic LDCs u1 and u2. Again
we started with a downhill simplex algorithm with initial param-
eter values taken from KPCL on the MAST website; afterward,
we used these fit results as initial values for our MCMC sam-
pling described in the following. We neither bin nor phase-fold
the transit light curves during the fitting process.

3.3. MCMC modeling

We used a Markov chain Monte Carlo (MCMC) approach to
sample from the posterior distribution of the parameters us-
ing 106 iterations of the sampler and discarding a burn-in of
40 000 iterations. The mean values of the parameter traces were
then interpreted as the most probable parameters. We used the
68.3% highest probability density intervals (HPD) as our error
estimate. For those parameters which require error propagation,
such as the impact parameter b, we applied the corresponding
equation to the MCMC parameter traces; then the HPD of the
parameter can be determined from that new distribution.

The computation time for our 106 iterations per object was
up to 15 h, depending mainly on the amount of transit light
curves. All MCMC calculations make extensive use of routines

4 http://www.astro.washington.edu/users/agol

Fig. 2. Normalized and phase-folded transit light curve of HAT-P-11b.
The manually deleted transit light curves are included, clearly visible
above our best-fit model shown in red. This model only uses 18 out of
95 transits (see Table B.1).

of PyAstronomy5, a collection of Python routines providing an
interface to fitting and sampling algorithms of the PyMC (Patil
et al. 2010) and SciPy (Jones et al. 2001) packages.

4. Objects requiring special consideration

Some objects in our sample require special treatment, due to in-
strumental or other peculiarities such as red noise. Their analysis
is detailed below.

4.1. HAT-P-11 (KIC 10748390)

HAT-P-11b (KIC 10748390), first reported on by Bakos et al.
(2010), shows some transit light curves which cannot be prop-
erly normalized using Eq. (3). This is due to the fact that the
continuum flux seems to be biased by an additive offset, which
differs between the affected transits. The additive term influences
the relative transit depth, in particular, higher absolute flux levels
lead to a lower value of 1 − Fmin.

The affected transits can be identified in Fig. 2 by a system-
atic deviation from the transit mean greatly exceeding the statis-
tical noise. Additionally, HAT-P-11A shows starspots transited
by the planet resulting in bumps distorting at least some transit
profiles (Sanchis-Ojeda & Winn 2011).

In our analysis, we removed all transits that show detectable
starspot crossings or cannot be normalized appropriately due
to the offset problem (see Table B.1). Nonetheless, we find a
red-noise contribution in the residuals of the remaining transit
light curves, leading to a correction factor of β ≈ 1.49 (see
Sect. 2.3). We ascribe the red noise in this case to unresolved
starspot signatures.

4.2. KIC 8845026

The light curve of KIC 8845026 is modulated with a peak-to-
peak amplitude of ≈0.2% and a period of roughly 4 days, likely
due to rotational modulation. Due to the long orbital period of
≈66.5 d, our data contains only five transits. The transit duration

5 http://www.hs.uni-hamburg.de/DE/Ins/Per/Czesla/
PyA/PyA/index.html
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Fig. 3. Normalized and phase-folded transit light curve of HAT-P-7b.
Ten manually deleted transit light curves are included.

Fig. 4. Normalized and phase-folded transit light curve of KIC 9631995.
Eight manually deleted transit light curves are included in this figure.

amounts to nearly 20 h, which is comparable to the observed
variability timescales and affects the transit profile. Thus, we
find that different transits cannot be consistently normalized and
show different depths after normalization. We decided to limit
our analysis to the transit light curve showing the lowest red-
noise contribution (β = 1.36).

4.3. HAT-P-7b and KIC 9631995

Figures 3 and 4 show the normalized and phase-folded transit
light curves of KIC 10666592 (HAT-P-7b, Pál et al. 2008) and
KIC 9631995. Our filter algorithm introduced in Sect. 2.3 found
all transits to be well normalized for both objects. Also our out-
lier removal showed no inconsistencies for the transits of these
data sets. However, some transit light curves had to be removed
manually because they show outliers significantly below the av-
erage light curve and a stronger dispersion probably caused by
instrumental effects or the data reduction. While KIC 9631995
shows white noise in the remaining transit light curves, we find
red noise in HAT-P-7b and corrected for it by using β = 1.60.

4.4. Kepler-17b and KIC 3861595

Kepler-17b (KIC 10619192) shows red noise in the residuals of
our transit modeling (see Fig. B.2, last row). Its light curve has
previously been discussed by Désert et al. (2011), who report ro-
tational variability with a peak-to-peak amplitude on the order of
3% and prominent starspot crossing events. Therefore, the corre-
lated noise is likely attributable to starspots. Our analysis yields
a correction factor of β ≈ 1.65 .

The situation is similar for KIC 3861595, a member of our
high impact parameter sample, in the light curve of which we
also detect red noise, leading to β ≈ 1.94. Its light curve shows
potential rotational modulation with a peak-to-peak amplitude of
about half a percent. Consequently, the red noise may be intro-
duced by starspot crossings for this object.

4.5. Kepler-13

Kepler-13 (KIC 9941662) transits the hottest star of our sam-
ple. Its light curve has been studied by Barnes et al. (2011), who
report on an asymmetry in the model residuals which they at-
tribute to gravitational darkening. The same asymmetry is seen
in our analysis, resulting in a red noise detection (β ≈ 1.40).
Furthermore, the Kepler aperture contains a second star con-
tributing about 45% of the observed flux (Szabó et al. 2011),
which we take into account in our modeling. We argue that the
asymmetry introduced by gravitational darkening is on the order
of 10−4 and does not severely affect our analysis. Furthermore,
we verified that the limb-darkening coefficients do only slightly
depend on the third light contribution (in the order of ≈±0.01),
which is relatively well known. Therefore, we retain Kepler-13
in our sample.

5. Results and discussion

In Table 3 we show the results of our transit modeling, which
we use in the following analysis. We compare these results to
the quadratic LDCs predicted by Claret & Bloemen (2011) for
Kepler’s spectral response function. Table 3 shows all seven
determined transit parameters for all objects in our sample. In
Sect. 5.2 we provide a detailed discussion on the fitted LDCs of
our high signal-to-noise sample.

5.1. Theoretical LDCs

The key aim of our study is the comparison of our LD mea-
surements with model LDCs determined from stellar atmosphere
models. To this end we use the LDCs of Claret & Bloemen
(2011). They are given in tables6 on which we linearly inter-
polate. The coefficients are determined from 1D-plane-parallel
PHOENIX and ATLAS model atmospheres using two different
methods (Claret 2000, Chap. 2.2): a flux-conserving fit method
and a simple least squares fit to the theoretical stellar intensity
distribution. These two fit methods lead to slightly different val-
ues of u1 and u2.

In Figs. 5 and 7 we show theoretical LDCs as a function
of effective temperature derived from stellar atmosphere mod-
els with surface gravity log(g) = 4.5, metallicity [M/H] = 0.0,
and micro-turbulent velocity ξ = 2.0 km s−1, in comparison to
our measured LDCs. LDCs assigned as dotted lines come from
the flux conserving fit method.

6 http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=
J/A%2BA/529/A75
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Fig. 5. Quadratic LDCs determined by MCMC for our high signal-to-noise target sample (see Table 1). For comparison, the graphs show model
predictions based on PHOENIX (solid) and ATLAS (dashed) atmospheric models, taken from Claret & Bloemen (2011). The dotted lines show
Claret and Bloemen’s LDCs determined for the same atmospheres by different methods (see Sect. 5.1). The diamond symbol indicates TrES-2,
which has the highest impact parameter of this sample (b = 0.845). Triangles mark conspicuous objects, discussed in Sect. 5.3.

Apparently the LDCs do not only depend on the effective
temperature but also on the other stellar parameters. The param-
eters used to derive the theoretical LDCs presented in Figs. 5
and 7 may not be appropriate for all stars in our sample. To
estimate the influence of surface gravity and metallicity on the
LDCs, we investigated different parameter sets and present the
results in Figs. A.1 and A.2. We conclude that changes in metal-
licity or surface gravity in the ranges reasonable for our sample,
have only a small effect on the predicted quadratic LDCs for
stars in the temperature range of 4600 to 7800 K. Objects colder
than Teff

<∼ 4600 K show a stronger dependence on these param-
eters. This is important for the analysis of the coldest object in
our selection. The theoretical LDCs determined from PHOENIX
model atmospheres for each object, adopting the surface gravi-
ties from the KPCL, are listed in Table 3.

5.2. High signal-to-noise sample

Looking at the left panel of Fig. 5, we identify four objects
that lie significantly below the theoretical predictions and have
large error bars. Three are marked with triangles, TrES-2 is
specifically marked with a diamond symbol. They have effective
temperatures of 3948 K, 5814 K (TrES-2), 5912 K, and 6025 K,
listed in Table 1. The right panel of Fig. 5 shows the measured
values of u2. Again the same four objects lie among those with
the largest errors, we discuss them in detail in Sect. 5.3.

Out of 26 objects 21 show a good agreement, within their er-
rors, with at least one of the model predictions of u1. In contrast,
the theoretical values of u2 tend to be systematically too high in
the temperature range between 5300 to 6500 K. Subtracting an
offset of ≈0.05 leads to a significantly better agreement between
the measurements and the predictions of u2. Most of the fitted
LDCs are consistent with those determined from one of the two
model atmospheres, whereas the PHOENIX predictions seem to
be the better choice for u2 in the regime of Teff > 4600 K.

Most objects of our sample have effective temperatures be-
tween 5000 K and 6400 K, which corresponds to F-, G-, and
K-stars. Only a few exceptions, such as the ones at ≈4000 K and
≈8900 K, are lying outside of this conglomerate. Thus, our anal-
ysis of LDCs will be most reliable in the regime of solar-like
stars, where we have a significant number of objects; the two
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+

u 2

Fig. 6. Sum of the linear and quadratic limb-darkening coefficients
for objects with an impact parameter b < 0.8 of our high signal-to-
noise sample in comparison to the summed model predictions (solid:
PHOENIX, dashed: ATLAS).

exceptions can serve as indicators for the reliability of theoreti-
cal LDCs in more extreme regimes.

For a better illustration of the agreement between measured
and theoretical LDCs, we present the sum of the quadratic LDCs
u1 + u2 in Fig. 6 in the temperature range of 5300 K to 6500 K
in which most objects of our sample are located. In this case
the theoretical predictions from PHOENIX and ATLAS models
are virtually identical. If the observed u1 and u2 are indepen-
dently consistent with the models, their sum has to agree with
the theory as well. However, out of 20 objects only four lie on
the model predictions within their errors while 16 objects show
significantly lower values. The median value of the residuals is
∆u1 + u2 = −0.07 ± 0.01. As already seen for the values of u2,
there appears to be an offset between measurements and predic-
tions, which is, at least in the case of PHOENIX models, largely
caused by a systematic shift of the u2 values. This indicates that
the coefficient of the quadratic term in the LD law is slightly
overestimated by theory, as already suggested by the right panel
of Fig. 5.
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Fig. 7. Same as Fig. 5 for objects with impact parameters larger than 0.8 as given in the Kepler planetary candidates list (i.e. our high-impact-
parameter sample, see Table 2). According to our transit modeling only objects marked with diamonds truly have b ≥ 0.8 while we found
b < 0.8 for the objects indicated by dots.

5.3. Outlier objects

Figure 5 contains several points with relatively large errors. In
this section we discuss the four objects with the highest uncer-
tainties in both LDCs u1 and u2, which are also the objects with
the largest deviation from the predictions. In the left panel of
Fig. 5, these objects lie clearly below the LDC predictions and
are marked with triangles and a diamond symbol. Below, we dis-
cuss them in order of increasing effective temperature.

According to the KPCL, the first “outlier”, KIC 5794240,
has an effective temperature of 3948 K and a surface gravity of
log(g) = 4.72. Most objects in the KPCL have Teff credible to
within ±200 K and log(g) with errors of about ±0.4 (Brown et al.
2011). As already stated in Sect. 5.1, the theoretical predictions
in Fig. 5 are based on atmosphere models with log(g) = 4.5.
Although this is consistent with the estimated error of the mea-
sured log(g), the influence of log(g) on the LDCs becomes im-
portant for Teff

<∼ 4600 K (see Fig. A.1), which is the case for
KIC 5794240. In this temperature range an increase in log(g)
leads to significantly lower values of u1. An agreement with the
measurement is reached for a log(g) of about 5.0 using ATLAS
model atmospheres. Surface gravities of 5.0 or higher are not
uncommon for M5-dwarfs (see PASTEL catalog, Soubiran et al.
2010) and are fully consistent with the above error estimate.

The metallicity Z = [M/H] also has a significant influ-
ence on u1 and u2 in this temperature region (see Fig. A.2).
Potentially, the Z value of KIC 5794240 (=0.2) is poorly deter-
mined since most metallicities of the KPCL are highly uncertain
(Brown et al. 2011). A lower metallicity of, e.g., [M/H] = −0.3,
leads to theoretical LDCs consistent with the observation. In
the light of our analysis, a subsolar metallicity of KIC 5794240
seems to be more reasonable than its super-solar metallicity
stated in the Kepler Input Catalog (Brown et al. 2011).

Finally, the light curve of KIC 5794240 indicates substan-
tial stellar activity. The visible photometric variations suggest
rotational modulation due to starspots. It is reasonable to expect
that some of the spots are occulted by the planet when crossing
the disk, leading to deformations of the transit profile (see, e.g.,
Huber et al. 2010). The detailed investigation of how starspots
influence the determination of LDCs is beyond the scope of this
work, however, the strong temperature dependence of LD sug-
gests a non-negligible effect for substantially spotted stars. Thus,
the inconsistency with the model and the large uncertainties of

the measured LDCs of KIC 5794240 could also reflect the ef-
fects of stellar activity on its light curve.

The diamond symbol in Fig. 5 marks the second “outlier”,
TrES-2, an intensively studied exoplanetary system. It has the
highest SNR of all planet host stars in the Kepler sample.
Nonetheless, the uncertainties of the LDCs are large (σ ≈ ±0.2)
compared to other objects with lower SNRs, and the determined
LDCs are inconsistent with the model predictions. However,
TrES-2 has a rather large impact parameter of b = 0.85 and,
therefore a nearly grazing transit, which is the reason for the big
uncertainties of the measured LDCs and the large deviation from
theory. We investigate this behavior in Sect. 5.4 in detail.

The last two objects of our outlier sample, KIC 7877496 and
KIC 6922244 (Kepler-8b), show the same behavior as TrES-2.
The number of available and fitted transit light curves for both
objects are comparable to TrES-2. These systems also have high
impact parameters of b ≈ 0.8 (see Table 3) which causes the
strong deviation from the theoretical LDCs of these objects and
big uncertainties.

5.4. Objects with high impact parameters

As discussed in the previous section, TrES-2, Kepler-8, and
KIC 7877496 show a common behavior due to their large impact
parameters: they exhibit large uncertainties in their fitted LDCs
and lie below the theoretical models for u1 and above for u2.
A similar behavior has already been found by Howarth (2011b)
who simulated the influence of a high impact parameter on the
determination of quadratic LDCs.

To further investigate this behavior, we analyze a sample of
twelve objects with impact parameters larger than 0.8 as given
in the KPCL (see also Sect. 2.1.2 and Table 2). Our measured
quadratic LDCs are presented in Fig. 7 and compared to the same
theoretical values as in Fig. 5.

According to our transit modeling, 5 of the 12 objects actu-
ally have b < 0.8 (see Table 3). For those systems, the impact
parameters of the KPCL appear to be incorrect. These objects,
marked as dots in the figure, agree well with the model predic-
tions. The others have impact parameters of b > 0.8 (diamond
symbols) and significantly deviate from theory in the same man-
ner as those discussed in Sect. 5.3. Again we can see that u1 is
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Fig. 8. Summed quadratic deviation of measured LD coefficients from
those calculated from PHOENIX models versus impact parameter.

0.0 0.2 0.4 0.6 0.8 1.0
b

0.0

0.5

1.0

1.5

2.0

2.5

2
u 1

+2
u 2

Fig. 9. Summed width of the 68.3% HPD intervals for u1 and u2 versus
the impact parameter b as determined by MCMC. See text for details.

systematically underestimated while the values of u2 lie above
the prediction.

Figure 8 illustrates the increase in the deviation between
measurements and theory with increasing impact parameter. It
shows the sum of the squared differences between the measured
LDCs and the PHOENIX model predictions denoted by m1 and
m2 as a function of b for all objects of our study. The differences
between measurements and theory are small for impact parame-
ters up to about 0.8. However, for objects with impact parameters
b & 0.8 the deviations from the model predictions as well as the
measurement errors increase significantly. Hence, for impact pa-
rameters exceeding about 0.8 a reliable determination of LDCs
from a transit light curve fit becomes intricate.

A similar behavior as found in Fig. 8 can also be seen if only
the measurement errors are considered – independently of the
atmospheric model predictions (m1 and m2). This is shown in
Fig. 9, where we plot the summed widths of the 68.3% credibil-
ity intervals for u1 and u2, against our measured system impact
parameters. For b around 0.8 and larger, a considerable increase
in the resulting uncertainties is detectable. It seems that there
is some transition at b ≈ 0.8 where the determination of LDCs
becomes much more difficult. We discuss this behavior in more
detail in Sect. 5.6.

Setting the LDCs as free fit parameters influences the deter-
mination of the remaining transit parameters due to strong cor-
relations. This applies especially to the case of large b, as a con-
sequence it is highly inadvisable to fit the LDCs in systems with
high impact parameters.

5.5. Deviations between measured and predicted LDCs
and their influence on transit modeling

Figure 5 illustrates the key result of our study, namely the rela-
tion between the measured and predicted limb-darkening coef-
ficients. Considering the difference between the PHOENIX and
ATLAS model predictions as the systematic uncertainty of the
theoretical LDCs, we find that our values derived for the lin-
ear coefficient u1 are fully consistent with the models within
these uncertainties. Thus, the predictions of u1 span an allowed
band of coefficients confirmed by our measurements. On the
other hand, both ATLAS and PHOENIX tend to overestimate
the quadratic LDC u2 when compared to our measurements.

The typical deviation between our measurements and the
model predictions amounts to about 0.05 both in u1 and u2. We
estimated the influence of such deviations in the LDCs on the
planetary parameters derived by transit modeling: as outlined in
Sect. B.5, we derive a Gaussian approximation for the posterior
probability distribution, modify the limb-darkening coefficients
based on the alleged deviations,

Assuming that the discrepancy in ∆u1+u2 (cf., Sect. 5.2) is ex-
clusively caused by a deviation in u2, we use this approach to
derive average relative changes of ∆a/a = 1.3%, ∆i/i = 0.4%,
and ∆p/p = −0.6%. Comparing our LD measurements to the
PHOENIX predictions, we find average offsets of ∆u1 = −0.05±
0.01 and ∆u2 = −0.03±0.01. These translate into relative param-
eter changes of ∆a/a = 1.6%, ∆i/i = 0.5% and ∆p/p = −0.7%.
Hence, the deviations in the LDC found in our study result in
moderate errors on the order of one percent in relative accuracy
with the semimajor axis responding most sensitively to changes
in the LDCs.

5.6. Correlation between the quadratic LDCs and their
systematic uncertainties

In the previous sections, we have demonstrated that the quadratic
LDCs u1 and u2 can be determined with small measurement er-
rors and that the result is in reasonable agreement with theory
for small and moderate impact parameters. Our MCMC anal-
ysis shows that both LDCs are strongly correlated. If we take a
look at the combination uC = u1 + u2, we see that this parameter
has a substantially lower error than the two coefficients alone. It
seems to be an inherent property of the quadratic LD model that
the combination uC is always much better constrained than the
individual LDCs.

This is even the case for systems with b & 0.8. Here, u1
and u2 show large errors and deviations from theory, but their
sum uC shows significantly smaller errors and is still consistent
with the model predictions. The sum of u1 and u2 is presented in
Fig. 10 along with the theoretical LDCs; the deviations from the
theory are significantly smaller than in Fig. 7 for the individual
coefficients.

As already pointed out by Schröter et al. (2012, Eq. (1)), the
quadratic LD law can be approximated by a constant function

I
I(1)

= 1 − (u1 + u2) (5)
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Fig. 10. Sum of the linear and quadratic coefficients uC = u1 + u2 for
objects with an impact parameter b > 0.8 in comparison to the summed
model predictions (solid: PHOENIX, dashed: ATLAS).

under the assumption µ � 1, i.e. systems with very high impact
parameters7. Physically, this means that one only measures the
brightness at the stellar limb, which does not show a functional
relation to µ anymore but is only a constant difference to the
central brightness I(1). In such systems a transit fit would only
be sensitive to the sum of the LDCs.

Although this certainly is part of the explanation, our analy-
sis shows that the situation is more complex. We present an ana-
lytical approximation for the errors of the LDCs in Appendix B.
We find that uC is always better constrained than the individ-
ual coefficients independent of the impact parameter, which is
a general characteristic of the quadratic LD law; this result is
visualized in Fig. 11. Only for high values of b we find that the
individual LDCs are virtually unconstrained by transit modeling.

The analytical solution given in Appendix B allows investi-
gating the errors and the correlation of u1 and u2. We compare
our results to simulations using a transit model with fixed plan-
etary parameters; only the impact parameter is varied between 0
and 1. Our results are presented in Figs. 11 and B.1. The behav-
ior of the simulations is reproduced by theory: the measurement
errors of u1 and u2 are smallest for low impact parameters and
dramatically increase for b & 0.8. This resembles our observa-
tions. Interestingly, the error does not increase monotonically,
but decreases slightly after a local maximum at about b ≈ 0.5
before it rises steeply again. This means that LDCs are slightly
better constrained for values of ≈0.8 than for values of ≈0.5.

Our simulations and our analytical treatment show the same
behavior of the correlation of u1 and u2 as a function of the im-
pact parameter. Both coefficients are highly anti-correlated even
for small impact parameters. Their correlation coefficient de-
creases to −1 for b ≈ 1, where their individual errors increase
rapidly. This is the explanation for the behavior visible in Fig. 7,
where u1 and u2 values for high impact parameters have not only
much larger errors but also lie systematically below the predic-
tion for u1 and above it for u2. Their strong anti-correlation is
well visible in this regime and a shift of u1 in one direction is
compensated by a shift of u2 to the other direction.

7 For e.g. b = 0.85, the maximum value of µ transited by the planet is
µmax ≈ 0.5. Clearly, this does not comply with µ � 1.
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Fig. 11. Simulated measurement errors (dots) for the individual LDCs
u1 (cyan), u2 (purple) and for the sum u1 + u2 (green) as determined
by transit modeling. For the simulation we used fixed parameters only
the impact parameter was varied between 0 and 1. The overplotted lines
show our analytical solutions (see Appendix B for details).

6. Summary and conclusions

The measurement of stellar limb darkening (LD) is notoriously
difficult, because almost no stellar disk can be spatially resolved.
A new and promising opportunity to measure stellar LD is the
use of high-precision transit light curves. Here, the planet serves
as a scanner of the stellar brightness distribution during its disk
passage.

From the list of Kepler planetary candidates, we construct
two samples: (1) a high signal-to-noise sample with 26 ob-
jects and (2) a sample comprising 12 high impact-parameter
systems (b ≥ 0.8). However, according to our transit model-
ing, only seven of the alleged 12 planetary systems in our high
impact-parameter sample truly deserve this designation. The ma-
jority of our sample objects are late F-, G-, and early K-type
main-sequence stars spanning an effect temperature range from
4600 K to 6400 K.

We measure the quadratic LDCs u1 and u2 using a Bayesian
MCMC approach and compare them to theoretical predictions
based on PHOENIX and ATLAS stellar atmosphere models. Our
results show that reliable limb-darkening coefficients (LDCs)
can be determined using the most accurate transit observations
of the Kepler space telescope.

The differences between the PHOENIX and ATLAS model
predictions are as large as 0.1 in both LDCs in the effective-
temperature regime under consideration. For the linear coeffi-
cient, u1, our measurements are mainly distributed between the
PHOENIX and ATLAS model predictions. Interpreting the de-
viation between the models as systematic uncertainty, we argue
that our u1 measurements agree with the theoretical predictions.
In fact, they are equally consistent with either.

For the quadratic coefficient, u2, our measurements do show
a systematic offset: most of our measurements lie below the
predictions of both atmospheric models. However, on average,
u2 deviated by −0.1 from the ATLAS and by −0.03 from the
PHOENIX models. This yields χ2

PHOENIX = χ2
ATLAS/4 making

the PHOENIX models a better fit.
Nonetheless, our measurements show a slightly weaker

limb darkening than either model. Interestingly, the 3D-
hydrodynamic atmospheric models presented by Asplund et al.
(2009) predict a LD weaker by an amount comparable to our
findings (see also Hayek et al. 2012; Trampedach et al. 2013).
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However, this prediction is not universally shared among hydro-
dynamic 3D models (Hauschildt & Baron 2010).

An important factor for the measurement of LDCs is the im-
pact parameter of a system. All our measurements for objects
with high impact parameters show deviations from the theo-
retical LDCs. This has already been suggested by simulations
(Howarth 2011b). According to our Figs. 8 and 9, we find that
impact parameters in the range of b & 0.8 are critical in the sense
that for those the uncertainties in u1 and u2 increase drastically.
Only their sum u1 + u2 can still be reliably determined. This be-
havior can be reproduced in our analytical approximation of the
transit modeling with quadratic LDCs.

We note that the surface gravity log(g) and metallicity Z sig-
nificantly influence the theoretical LDCs only for effective tem-
peratures below 4500 K and in a narrow region above 7500 K.
For stars outside these temperature ranges, i.e., all but two of our
sample stars, the theoretical LDCs can be used without introduc-
ing a severe error resulting from inaccurately known log(g) and
Z values.

Although we do find a deviation between theory and mea-
surements, we estimate that the error propagated into the re-
maining fit parameters by fixing the LDCs to theoretical values
amounts to roughly one percent for the semimajor axis, inclina-
tion, and planetary radius determined by light curve modeling
and thus should be negligible for many applications.

Therefore, we conclude that the quadratic LDCs can be fixed
to theoretical values (e.g., tabulated by Claret & Bloemen 2011)
in the process of transit analysis. For high impact parameter sys-
tems (b & 0.8) or observations with significantly lower SNR than
the Kepler data, we even recommend to fix the LDCs to model
predictions, since the LDCs remain badly constrained by transit
modeling in both cases.
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Appendix A: Influence of stellar parameters
on the theoretical LDCs

Stellar limb darkening depends on fundamental stellar parame-
ters as, e.g., the effective temperature Teff and the surface grav-
ity log(g). For a plausible comparison between theoretically
determined and measured LDCs it is necessary to know the
correct stellar parameters for each studied object. While the
Kepler Input Catalog (KIC, Brown et al. 2011) already pro-
vides Teff , log(g), and metallicities Z determined using ground-
based photometric observations, the Kepler planetary candidates
list (KPCL) offers values determined using other methods, e.g.,
spectroscopic follow up observations. The fundamental parame-
ters of the Kepler stars are determined by four different methods
as described by Batalha et al. (2013). The method actually ap-
plied to the object at hand is indicated by the fTeff

-flag given in
the KPCL. They can be divided into two groups: The first group
(0, 1) uses photometric data and, e.g., matches the KIC param-
eters to Yonsei-Yale stellar evolution models (Demarque et al.
2004). The second group (2, 3) uses spectroscopic follow-up ob-
servations determining the parameters using spectroscopy made
easy SME ( fTeff

= 3, Valenti & Piskunov 1996) or the stellar pa-
rameter classification tool SPC ( fTeff

= 2, Buchhave et al. 2012),
see KOI-list8 for further details. Naturally, the stellar parameters
derived by spectroscopic methods are more reliable. None of our
target stars has an fTeff

-flag equal to 0, 14 have fTeff
= 1, and the

majority has fTeff
of equal to 2 or 3 (see Table A.1). In the case

of photometrically determined parameters ( fTeff
= 1) one has to

keep in mind that the stellar parameters, especially the metal-
licities, have the highest uncertainties. In this case, the typical
errors of Teff and log(g) are about ±200 K and 0.4, whereas Z
is basically undetermined (Brown et al. 2011). The uncertainties
decrease, especially for log(g) and Z, for parameters derived by
spectroscopic methods.

The influence of log(g), Z, and the micro-turbulent veloc-
ity ξ on the LDCs varies with effective temperature. This has
already been theoretically studied, e.g. by Claret (2000) for a
four parameter nonlinear LD law. We discuss the influence for
the parameter range relevant for our analysis by using Claret &
Bloemen (2011) LDCs (for ATLAS models). Since the quadratic
coefficient u2 shows virtually the same behavior as u1, we con-
centrate on u1. In Fig. A.1 we show the effect of log(g) on
u1 by calculating the difference between u1 determined with
log(g) = 4.5 and values of u1 for a slightly higher (4.8) and
lower (4.3) surface gravity. For effective temperatures in the
range from ≈4500 K to ≈7500 K, which covers the majority of
stars in our sample, there is no significant influence of the sur-
face gravity. However, especially for cooler stars (Teff

<∼ 4500 K)
the LD becomes sensitive to log(g).

Figure A.2 shows the result of a similar analysis, this time
varying the stellar metallicity Z. Again the effect on the LDC
is strongest for stars cooler than <∼4500 K, but there are already
significant deviations in the range between 4500 K to ≈6500 K.
A change in metallicity of ±0.5 in this temperature range results
in a maximum ∆u1 of ±0.05.

The micro-turbulent velocity has only a rather weak influ-
ence on the LDCs. The difference ∆u1 calculated between u1
determined for ξ = 0.1 km s−1 and ξ = 8.0 km s−1 never exceeds
±0.015 and, thus, is negligible.

We conclude that metallicities and surface gravities do
not have a crucial effect on predicted LDCs for stars in the

8 http://archive.stsci.edu/kepler/koi/help/columns.
html

Table A.1. fTeff
-flags of our selection sorted by Teff , as given in the

KPCL.

Kepler ID fTeff
Kepler ID fTeff

Kepler ID fTeff

5794240 1 11446443 2 10318874 3
10748390 2 12019440 1 5084942 2
11391018 1 10874614 3 5771719 1
5357901 1 7877496 1 12105051 2
8845026 1 5780885 3 2571238 3
9595827 1 9631995 3 11295426 3
6849046 2 11804465 3 8456679 2
9410930 1 6922244 3 8554498 3
9651668 1 9818381 2 8684730 2
8359498 2 10019708 1 3762468 1
7023960 1 10666592 2 4349452 3
11359879 2 8191672 3 3861595 2
10619192 2 9941662 1

Notes. See text for details. Third column: objects according to our se-
lection made in Sect. 2.1.2.
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Fig. A.1. Influence of log(g) on the LDC u1. Shown is the difference
between u1 determined with log(g) = 4.5 and values of u1 using a
higher (4.8) and lower (4.3) surface gravity, over a wide temperature
range (ATLAS models).
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Fig. A.2. Influence of the stellar metallicity on u1. Differences between
u1 determined with [M/H] = 0.0 and values of u1 using different metal-
licities are plotted against Teff (ATLAS models).
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temperature range of 4500 to 7500 K. We note that for most ob-
jects in the solar neighborhood the absolute value of Z is lower
than 0.5 (Casagrande et al. 2011) and it is appropriate to assume
that our ignorance of the metallicity of the Kepler planetary can-
didates does not introduce a significant bias for the determina-
tion of theoretical LDCs. The most important parameter is the
effective temperature which is often quite reliably determined
even when using only color indices.

Appendix B: Analytical approach
to the limb-darkening fits

In the following we provide an analytical approach to the prob-
lem of fitting limb-darkening coefficients. Our treatment aims at
a fundamental understanding of the accuracy and correlation of
limb-darkening coefficients determined from transit fits.

To simulate the measurement errors, we carried out a Monte-
Carlo simulation. In particular, we constructed transit light
curves for a hypothetical planet with a period of Porb = 2.47 d, a
semimajor axis of a = 8.4 stellar radii, and a small planet-to-star
radii ratio of p = 10−3. The small planet size is important for
our comparison of these simulations to our analytical results
which are only valid for small p (≪1). We set the values of
the quadratic limb darkening to u1 = 0.5 and u2 = 0.2. Using
these parameters, we created simulated light curves with a δ/N
of 60 (as defined in Sect. 2.3) and 85 equidistantly distributed
photometric points during the transit. Although we kept the tem-
poral cadence constant, we allowed the time axis to shift with
respect to the transit center in consecutive runs to avoid system-
atics arising from an unrealistically symmetric simulation. We
then proceeded to sample from the posterior probability distribu-
tion using an MCMC algorithm and the transit models provided
by Mandel & Agol (2002) with the LDCs as only free parame-
ters. The resulting Markov-chains allow credibility intervals for
the LDCs and the correlation coefficient ̺ to be derived. Each
point in Figs. 11 and B.1 represents an individual simulation.

B.1. Modeling the transit profile

In our approach, we consider the following simplified transit
light curve model

y(ti) = 1 −
[
1 − u1 (1 − µ(ti)) − u2 (1 − µ(ti))2

]
p2

1 − u1
3 − u2

6
, (B.1)

where ti is the ith time of measurement, µ = cos(θ) where θ is
the angle between the line of sight and the inward surface normal
of the position on the stellar surface occulted by the planet, p is
the ratio of the planetary and stellar radii, and u1 and u2 are the
linear and quadratic limb-darkening coefficients. The model de-
scribed by Eq. (B.1) considers the amount of light blocked due to
the size of the planet but it neglects all other geometrical effects
caused by the extent of the planet. In particular the planet passes
only one µ−value per time step, which is fully consistent with
our chosen small planet approximation (p ≪ 1). The numerator
accounts for the light blocked by the planetary disk, while the
denominator ensures a renormalization of the entire brightness.

Given a circular planetary orbit with a period Porb, inclina-
tion i, and a semimajor axis a, in units of stellar radii, µ(ti) is
given by

µ(ti) =
√

1 − a2
[
cos2(i) cos2(ωti) + sin2(ωti)

]

=
√

1 − z(ti)2, (B.2)

where z(ti) denotes the sky-projected distance between the cen-
ters of the planet and the star. For a large semimajor axis we can
approximate µ(ti) by

µ(ti) =
√

1 − v2t2
i − b2, (B.3)

where v = 2πaP−1
orb is the orbital velocity and b = a cos(i) is the

impact parameter, both in units of stellar radii.

B.2. Expansion of χ2

Given a number of measurements, mi, with measurement er-
rors σ, the χ2-statistics is defined as

χ2 =

∑
i(y(ti) − mi)2

σ2 · (B.4)

This expression can be expanded to second order with respect to
the limb-darkening coefficients u1 and u2:

χ2 ≈ χ2(ũ1, ũ2) +
∑

j

(
u j − ũ j

) ∂
∂u j
χ2

+
1
2


∑

j

(
u j − ũ j

) ∂
∂u j

∑

l

(
ul − ũl

) ∂
∂ul
χ2

 · (B.5)

Expanding around the χ2-minimum, χ2(ũ1, ũ2), encountered for
some combination of limb-darkening coefficients ũ1 and ũ2, the
χ2-increase, ∆χ2, caused by a deviation from the best-fit param-
eters reads

∆χ2 ≈ 1
2

∆u2
1
∂2χ2

∂u2
1

+ ∆u2
2
∂2χ2

∂u2
2

+ 2∆u1∆u2
∂2χ2

∂u1∂u2



=
1
2

(
∆u2

1A1 + ∆u2
2A2 + 2∆u1∆u2A12

)
, (B.6)

where the various A coefficients are abbreviations for the second
derivatives of χ2 and with ∆u1 = u1 − ũ1 and ∆u2 = u2 − ũ2.

Equation (B.6) describes an ellipse with semimajor axis, aell,
semiminor axis, bell, and rotation angle α, which may alterna-
tively be written as

1 =


cos2 α

a2
ell

+
sin2 α

b2
ell

 x2 +


sin2 α

a2
ell

+
cos2 α

b2
ell

 y2 +

2 cosα sinα


1
a2

ell

− 1
b2

ell

 xy, (B.7)

when we rotate the Cartesian coordinate system clockwise to
achieve a counterclockwise rotation of the ellipse. Comparing
Eqs. (B.6) and (B.7), we determine

tan 2α =
2A12

A1 − A2

a2
ell =

4∆χ2

(A1 + A2) + B

b2
ell =

4∆χ2

(A1 + A2) − B
, (B.8)

where B serves as an abbreviation for
√

(A1 + A2)2 + 4A2
12. To

obtain the 68% confidence interval for two parameters of inter-
est, ∆χ2 needs to be set to 2.3 or to 6.18 for 95% confidence
interval, respectively (Press et al. 2002).
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Fig. B.1. Comparison of simulations (dots) and our analytical solutions (lines). Left and center: dependency of the measurement errors on the
system impact parameter b. Right: correlation coefficients of the LDCs with increasing b. See Sect. B.4 for details.

B.3. The derivatives of χ2

The second derivative of χ2 with respect to the limb-darkening
coefficients can be written as

∂2χ2

∂u j∂ul
=

2
σ2

∑
i

(
∂y(ti)
∂u j

∂y(ti)
∂ul

+
(
y(ti) − mi

)∂2y(ti)
∂u j∂ul

)
· (B.9)

The expressions for the partial derivatives read

∂y

∂u1
= 6

p2
(
4 + u2 − 6 µ − 3 u2 µ + 2 u2 µ

2
)

(−6 + 2 u1 + u2)2

∂y

∂u2
=
−6 p2

(
1 − 3 µ + 2 µ2

)
u1 − 6 p2

(
−5 + 12 µ − 6 µ2

)
(−6 + 2 u1 + u2)2

∂2y

∂u1∂u1
= −24

p2
(
4 + u2 − 6 µ − 3 u2 µ + 2 u2 µ

2
)

(−6 + 2 u1 + u2)3

∂2y

∂u2∂u2
= 12

p2
(
−5 + u1 + 12 µ − 3 u1 µ − 6 µ2 + 2 µ2u1

)
(−6 + 2 u1 + u2)3

∂2y

∂u1∂u2
= −6 p2

(
(14 − 2 u1 + u2 − 30 µ + 6 u1 µ)

(−6 + 2 u1 + u2)3

+
−3 u2 µ + 12 µ2 − 4 µ2u1 + 2 u2 µ

2

(−6 + 2 u1 + u2)3

)
· (B.10)

These derivatives can be evaluated for any combination of limb-
darkening coefficients. The orbit configuration and times of mea-
surement are contained in µ according to Eq. (B.3).

Especially the last term in Eq. (B.9) is a nuisance, because
it depends on the actual data set through mi. As we, however,
expand around the χ2-minimum, the expectation value of this
term equals zero, because (y(ti) − mi)σ−1 follows a standard
normal distribution. The expectation value of the absolute value,
|
∑

i(y(ti)−mi)σ−1|, is
√

2π−1
√

N, where N is the number of data
points. We use this expression to check the influence of this term
on our calculations.

B.4. Credibility intervals

To obtain credibility intervals, we need the posterior probabil-
ity distribution, i.e., the distribution of the parameters given the
data, P(u1, u2|D). Likelihood, L, and χ2 are related according to

L(χ2) ∼ e−
1
2 χ

2
· (B.11)

Applying Bayes’ theorem, we obtain the posterior probability
distribution

P(u1, u2|D) =
p(u1, u2)L(χ2)∫

u1,u2

p(u1, u2)L(χ2) du1 du2
(B.12)

=
L(χ2)∫

u1,u2

L(χ2) du1 du2
, (B.13)

where p(u1, u2) represents the prior probability distribution, and
the second equality holds for uniformly distributed priors. Using
the expansion of χ2, the likelihood can be recast as

L(∆u1,∆u2) = e−
1
2 (∆χ2(∆u1,∆u2) + χ2(ũ1,ũ2)) (B.14)

where χ2(ũ1, ũ2) represents the χ2-minimum, and the expression
for ∆χ2 has already been derived in Eq. (B.6). Hence, the poste-
rior probability distribution becomes

P(∆u1,∆u2|D) = L0 e−
1
2 (∆χ2(∆u1,∆u2))· (B.15)

Here, L0 is a constant that normalizes the posterior. It is found
by integration of Eq. (B.15) over ∆u1 and ∆u2 from −∞ to +∞,
which yields L−1

0 = 4π(A1A2 − A2
12)−1/2. We note that the lim-

its of integration are actually unphysical, because u1 and u2 are
confined to within an interval reaching from 0 to 1. Additionally,
u1 +u2 must not exceed 1, which would produce negative bright-
ness on the stellar limb. Nonetheless, we argue that the approx-
imation is appropriate as long as the ∆χ2 ellipse is sufficiently
confined.

Parameter correlation is an important aspect in model fitting
and error analysis. The correlation coefficient for u1 and u2 is
given by

%(u1, u2) =
E(∆u1∆u2)√
E(∆u2

1)E(∆u2
2)
, (B.16)
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where E denotes the expectation value. The numerator is
given by

E(∆u1∆u2) = L0

"

∆u1∆u2

×e−
1
4 (∆u2

1A1 +∆u2
2A2 + 2∆u1∆u2∆u1A12) d(∆u1) d(∆u2)

= L0

∫ −2A12
√
π

A3/2
1

∆u2
2e−

∆u2
2(A1A2−A2

12)
4A1 d(∆u2)

= − 2A12

A1A2 − A2
12

· (B.17)

Similarly, we derive

E(∆u2
1) =

2A2

A1A2 − A2
12

(B.18)

E(∆u2
2) =

2A1

A1A2 − A2
12

· (B.19)

Based on Eqs. (B.18), (B.19), and (B.17), we obtain the correla-
tion coefficient

̺(u1, u2) = − A12√
A1A2

· (B.20)

We note that the correlation between u1 and u2 is always neg-
ative just by our analytical approach and reaches maximum for
b = 1. The anti-correlated behavior in our simulations is well
reproduced by this analytical solution as can be seen in Fig. B.1.

The posterior integral over ∆u1 or ∆u2, e.g.,

p(∆u1) = L0

∫
e−

1
4 (∆u2

1A1 +∆u2
2A2 + 2∆u1∆u2∆u1A12) d(∆u2)

= L0
2
√
π√

A2
e−

∆u2
1(A1A2 − A2

12)
4A2 (B.21)

yields the marginal probability distributions of the parame-
ters. Equation (B.21) shows that the marginal distributions are
Gaussian. Therefore, the width, w, of the 68% credibility inter-

val is given by wi,68% = 2
√

E(∆u2
i ); the 95% credibility inter-

val’s width is wi,95% = 2wi,68%. Finally, we derive the width of
the credibility interval for ∆u1 + ∆u2. In particular, we calculate
the variance of ∆u1 + ∆u2

E
(
(∆u1 + ∆u2)2

)
= 2

A1 + A2 − 2A12

A1A2 − A2
12

· (B.22)

The same result is obtained when applying error propagation
considering the correlation of ∆u1 and ∆u2. The resulting error
then depends on the correlation coefficient found in Eq. (B.20),
which is always negative and close to −1. This leads to the
conclusion that the sum of the anti-correlated parameters u1 +
u2 is always better constrained than the individual parameters
(Fig. 11). For an increasing impact parameter b also the absolute
value of the anti-correlation increases toward its maximum of 1,
which leads to decreasing errors of u1 + u2.

Our result is visualized in Fig. B.1, which shows the develop-
ment of the measurement errors (left and middle panel) and the
correlation (right panel) for different impact parameters b. The
points are MCMC results coming from the simulations described

in the beginning of this section. The lines show our theoretical
predictions using the same planetary parameters and LDCs.

For a more detailed analysis of the correlations of LDCs and
other light curve parameters see Pál (2008). Although his model
is more complex, his results are consistent with our analysis.

B.5. Parameter evaluation using correlations

Based on the parameter traces obtained during the MCMC sam-
pling, the covariance matrix, C, can be estimated, whose ele-
ments are the expectation values

Ci, j = E
[
(xi − E(xi))(x j − E(x j))

]
, (B.23)

given the parameters xi and x j. Using the covariance, we locally
approximate the posterior probability distribution, P, by a mul-
tivariate Gaussian (cf., D’Agostini 2003),

P ∼ exp
(
−1

2

(
(x − E(x))TH(x − E(x))

))
(B.24)

and, therefore,

ln(P) = c − 1
2

(
∆xTH∆x

)
= c − 1

2

∑

i

∑

j

∆xi∆x jHi, j, (B.25)

where x is the column vector summarizing the parameter values,
∆x is defined as x − E(x), H denotes the Hessian matrix, and c
is a normalization constant. The Hessian matrix is the inverse of
the covariance matrix, H = C−1; both matrices are symmetric so
that Hi, j = H j,i.

The derivative with respect to the variable ∆xk reads

∂ ln(P)
∂∆xk

= −1
2

2
∑

i

Hi,k∆xi

 , (B.26)

and, therefore, the gradient can be written as

∇ ln(P) = −H∆x· (B.27)

We, now, fix one or more of the offsets, ∆xm, to a fixed value, δm,
and adjust the remaining parameters so that the posterior, P, is
again maximized. To that end, we split ∆x into two components,
∆y and δ, so that ∆x = ∆y + δ. Further, we demand that δ be
a fixed vector of offsets and ∆y contains zero entries for any
nonzero element in δ (or offsets fixed to zero). In this case, the
term ∆xTH∆x from Eq. (B.25) can be rewritten as

∆xTH∆x = ∆yTH∆y + 2yTHδ + δTHδ· (B.28)

Defining b = Hδ, we can write

∆xTH∆x =
∑

i

∑

j

∆yi∆y jHi, j + 2
∑

i

∆yibi + δ
THδ. (B.29)

By definition, those ∆yi for which δi is nonzero, i.e., the fixed
parameters, vanish. Therefore, the indices i and j in Eq. (B.29)
only need to cover the range with nonzero ∆ym. Using ∆y′, indi-
cating the vector ∆y with the zero elements removed, b′ with the
same convention, and H′ with the associated columns and rows
removed, we write

∆xTH∆x = ∆y′TH′∆y′ + 2y′Tb′ + δTHδ· (B.30)

The gradient of the posterior with respect to the variables ∆yi
becomes

∇ ln(P(∆y)) = H′∆y′ + b′· (B.31)
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Table B.1. Table of deleted transits.

Kepler ID Ntotal Deleted automatically Deleted manually Ntransit

5794240 36 1, 7, 12, 15, 16, 18, 21, 24, 28, 31, 32, 33, 34 23
10748390 95 53, 82, 94 1, 3, 5, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23 18

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39
40, 42, 44, 45, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60
61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77
78, 79, 80, 83, 84, 85, 87, 89, 91, 92, 93, 95

11391018 7 7
5357901 70 49, 61 68
8845026 5 1 2, 3, 5 1
9595827 22 22
6849046 63 63
9410930 142 26 141
9651668 101 48, 49, 69, 73, 79, 80, 92, 93, 95, 98, 100, 101 96, 97, 99 86
8359498 98 85 97
7023960 8 1, 8 6

11359879 71 29 70
10619192 178 20, 33, 60, 61, 65, 70, 79, 81, 82, 83, 84, 86 80, 91 154

87, 88, 89, 90, 94, 95, 123, 125, 133, 158
11446443 169 19, 26 167
12019440 82 3, 46, 48, 49, 51, 54, 80, 82 74
10874614 136 16, 70, 76 133
7877496 154 33 153
5780885 70 70
9631995 55 11, 12, 13, 14, 15, 16, 17, 18 47

11804465 82 82
6922244 126 1, 5, 6, 8, 9, 65 120
9818381 116 4, 12 114

10019708 83 14, 17, 23, 63, 69, 71, 75, 81 75
10666592 216 1, 2, 72, 73, 74, 75, 76, 77, 78, 79 206
8191672 122 6 119 120
9941662 96 7, 47, 73, 77 92

10318874 141 40, 44, 45, 46, 50, 56, 57, 60, 68, 70 131
5084942 114 114

12105051 135 135
5771719 13 3 12
2571238 37 37

11295426 39 39
8456679 198 2, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 19, 20, 21, 24, 29, 30 1, 3, 4, 5, 12, 13, 18, 22, 23, 25, 26, 27, 28, 31, 32, 33 165
8554498 91 91
8684730 2 2
3762468 59 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 9

19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33
34, 35, 36, 37, 38, 39, 40, 42, 43, 45, 46, 48, 49
50, 52, 53, 54, 55, 56, 57, 58, 59

4349452 17 17
3861595 29 29

Notes. Ntotal gives the total number of detected transit light curves in quarter 0 to 6, while Ntransit denotes the number of transits after discarding
bad ones as described in Sect. 2.3. The number sets indicate the specific transit number of deleted transits start counting from 1.

The maximum of the posterior is, thus, found by solving the
equation

∇ ln(P(∆y)) = 0 → ∆y′ = −H′−1b′· (B.32)

Evaluating this expression, we determine how a systematic shift
in one or more variables given by δ affects the remaining param-
eters, ∆yi.

If there are only two variables, of which we fix the first one
to δ1, we find the following expression for the change in the

second, required to maximize the posterior given this constraint:

H2,2∆y2 + δ1H2,1 = 0→ ∆y2 = −δ1 H2,1

H2,2
; (B.33)

note that we have not used primed quantities here. If the vari-
ables are entirely uncorrelated (H2,1 = 0), a change in the first
cannot be compensated by a change in the second. In case of
correlations, the remaining values need to be adapted.
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7.3 High-precision stellar limb-darkening measurements

A&A 560, A112 (2013)

Fig. B.2. Top panels: normalized, phase folded transit light curves and best-fit models for the high signal-to-noise sample (Table 1). Bottom panels:
residuals for individual data points and overplotted rebinned residuals (red) with one minute bin time. Objects ordered by increasing Teff from the
upper left to the lower right corner.
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Fig. B.2. continued.
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7.3 High-precision stellar limb-darkening measurements

A&A 560, A112 (2013)

Fig. B.3. Top panels: normalized, phase folded transit light curves and best-fit models for the object sample with high impact parameters (Table 2).
Bottom panels: residuals for individual data points and overplotted rebinned residuals (red) with one minute bin time. Objects ordered by Teff from
the upper left to the lower right corner.
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8 Summary and Outlook

In my PhD thesis simulations and measurements of the limb darkening of planet hosting
stars were presented. For the precise measurements the tool of planetary transit modeling was
utilized. Spectral observations and analyses were carried out to determine fundamental stellar
parameters, which are important for the prediction of limb darkening. As a feasibility study
spectro-photometric observations of an active host star were presented. Limb intensities of a
recent model atmosphere were compared to measurements obtained from the Sun. To account
for found differences a rescaling of the model intensities was proposed. Finally, a numerical
transit algorithm was developed to be independent of limb-darkening approximations and to
be able to use model intensities directly. Furthermore, the code is capable of using any kind of
input images, e.g., space-based observations of the Sun or a planet with rings. In the following
I will summarize the major results of my thesis and I will give an outlook on some possible
future work.

8.1 Summary and conclusions

To summarize the results of my PhD thesis I will treat the chapters individually, with a
short outline followed by the important results highlighted by blue vertical lines. From the
introduction (Chapter 1) only results from Section 1.3.2 and Section 1.3.3 will be presented,
while Chapter 3 (The Kepler Space Mission) is totally omitted.

Modeling of planetary transits

For transit modeling the data quality is of special interest. This includes the amount of noise
in the data, but also the achieved time resolution. To give an estimate about the credibility of
the resulting fit parameters in the presence of different noise levels or long integration times I
presented corresponding simulations. First, I generated transit light curves for three different
planet radii (1 REarth, 1.02 RJup, 1.32 RJup) and added Gaussian distributed noise to achieve
transit signal-to-noise ratios (δ/N) in the range from 5 to 150 for all three planet sizes. These
transits were fitted individually.

I showed in Fig. 1.14 that in the lack of photometric precision it is impossible to determine
the quadratic LDCs. One needs at least a δ/N of about 60 to get credible results. For lower
values (e.g., in most ground-based photometry) one has to fix the LDCs to values given
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8 Summary and Outlook

by predictions because a fit of the LDCs together with the remaining transit parameters
would not provide correct values. Due to strong correlations also the remaining transit
parameters would be incorrect. The limiting δ/N is independent of the planet size and,
therefore, this measure is more descriptive than the simple photometric signal-to-noise
(see Fig. B.3).

To estimate the influence of the time resolution on the parameters achieved by transit modeling
I again performed simulations. This time I generated a light curve, which holds 25 transits.
The data was rebinned to simulate different integration times in the range from one to 30
minutes. The resulting transits were then fitted like before.

The resulting model parameters were presented as a function of the bin time in Fig. 1.16.
The parameters show a clear trend for increasing bin time. For transit durations of three
hours or shorter I recommend to only use photometry with integration times of at most
two minutes. In the case of longer integration times the fitted parameters substantially
deviate from the correct values. As recommended by Kipping (2010), I also evaluated
the model at a smaller bin size (one minute), then rebinned to 30 minutes and fitted
again. This method leads to the correct fit parameters. However, the uncertainties in the
parameters are larger compared to fit results of data with short integration times.

Due to the number of the available limb-darkening laws a question often arising is which
of these laws should be used in transit modeling. I used the linear, the quadratic, and the
nonlinear limb-darkening law and created transit light curves for different planet-to-star radii
ratios. I determined the residuals between transits of the same planet-to-star radii ratio but
with different limb darkening descriptions. The residuals are now only induced by the different
limb-darkening laws. The maximum of these residuals was used as an estimator for the required
δ/N at which these residuals are significant.

Figure 1.17 reveals that the residuals between the linear and the quadratic law become
significant from a transit signal-to-noise (δ/N) of about 40, depending on the planet-
to-star radii ratio. If RS = 1 RSun is assumed, then for a planet size of 1 RJup the δ/N
should not exceed ≈ 85. For δ/N values larger than this, the quadratic law should be
used. Looking at the residuals between the quadratic and the nonlinear law, I found
that the differences become significant beyond a δ/N of about 85 (≈ 200 for 1 RJup).
Thus, the quadratic law is sufficient until a δ/N of 200 is achieved for a Jupiter-like
planet. However, even for δ/N = 400 the resulting parameters do not differ much from
the expected parameters (∆p = +0.3‰, ∆i = +0.1‰, ∆a = +0.6‰). Therefore, laws
with higher orders than the quadratic law are not necessary given today’s photometry.
Additionally, this analysis shows that transits of small planets are more affected by an
incorrect limb-darkening description than those of larger planets.
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8.1 Summary and conclusions

Spectral observations and analyses

Transiting planets offer the opportunity to study stellar surface brightness distributions. Beside
limb darkening that also includes spots and faculae. To measure the temperature of these
features one needs at least transit observations in different color bands. For that purpose I
carried out spectro-photometric observations of the active planet host star CoRoT-2A.

The obtained transit light curves were not usable for the intended purpose due to several
issues. The instrumentation used did not provide a sufficient time resolution caused by
long integration times, long lasting CCD read-outs, and performed “dithering”. The target
and reference star had to be placed at the edges of the small field-of-view, leading to a
time- and color-dependent flux loss of the target star at the percent level. Unfortunately,
there were no observations made before the transit events, which hampers a credible
normalization and detrending of the light curves.

For predictions of the limb darkening one needs to know some fundamental parameters of the
stars, such as the effective temperature or the surface gravity. These parameters can, e.g., be
determined from spectral observations. I used the spectroscopic analysis tool Spectroscopy
Made Easy (SME, Valenti & Piskunov, 1996) to analyze VLT/UVES high-resolution spectra
of two planet host stars (ε Eridani and CoRoT-2A).

The resulting values ofTeff , log g, v sin i, and ξ were presented. In the case ofTeff and log g
two different approaches were used. First, these parameters were determined together
with the other parameters in a global fit, second, they were treated individually fitting
the Hα and NaD lines. In both cases the results are quite similar and they are consistent.
All determined values were compared to those in the literature and found to be in good
agreement. In the case of CoRoT-2A the results were published in Schröter et al. (2011).

Limb darkening of Kepler objects

During my work I studied the transits of a set of 46 Kepler planetary candidate host stars.
These were selected according to their SNR value (Section 4.1) and constitute a sample of
the highest-quality transiting planets in the Kepler field. Due to the planet acting as a probe
that scans the stellar brightness distribution during its transit, I was able to measure the limb
darkening. I modeled more than 3000 individual transit light curves by using a Markov-Chain
Monte-Carlo approach to determine the most probable transit parameters for each object in
my sample. The measured coefficients of the linear and the quadratic limb-darkening law were
presented and compared to predictions. The selected target stars span a wide range of effective
temperatures from 4000K to almost 9000K and all of them are main sequence stars. However,
the majority of my sample has spectral types of late F, G, and early K. The results using Kepler
data with high temporal resolution have been published in A&A (Müller et al., 2013), while
results obtained with long cadence (LC) data are exclusively available in Section 4.2.
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LC data with high signal-to-noise is suitable to measure the linear limb darkening
coefficient. Most of these objects show small uncertainties in the determined LDCs.
The majority of the measured LDCs lies clearly below the predictions, which can be
interpreted as a significant overestimation of linear limb darkening by theory (Fig. 4.2).
The deviation amounts to −0.1 in the case of predictions determined by a least squares
fit or in the best case −0.03 when the flux conserving fit method (Claret, 2000) was
used. Thus, the LDCs predicted by the flux conserving method turned out to be more
reliable for the linear limb darkening. In contrast, the fit results of the quadratic LDCs
using LC data mostly show large uncertainties caused by the insufficient time resolution
(Fig. 4.3). Therefore, I presented the analysis of the quadratic limb darkening using short
cadence (SC) Kepler data. Differences between the measured LDCs and the PHOENIX
or ATLAS predictions were translated into systematic transit parameter errors, which
occur if theoretical LDCs are fixed in transit modeling. The induced error by using
fixed quadratic LDCs is in the order of 1% for the planet-to-star radii ratio p and the
inclination i, and slightly larger for the semimajor axis a (Table 4.3). In the case of
ground-based photometry, where the δ/N is almost always at a low level, I conclude
that the quadratic LDCs should be fixed using predictions. The systematic error in the
transit parameters is small compared to the uncertainties caused by the poor data quality.
For transiting planets with large impact parameters (definitely for b > 0.8, but setting
in already at b > 0.7) the deduced LDCs deviate systematically from theory. This was
previously recognized by Howarth (2011) and now empirically reproduced by my work.
Furthermore, the uncertainties in the quadratic LDCs in such systems are considerably
large and I presented an analytical approach to describe these behaviors. Consequently,
for transiting planets with an impact parameter of b > 0.7 the LDCs should be fixed in
transit modeling. Overall, a slightly weaker limb darkening than predicted was measured
together with a systematically weaker curvature expressed with small values of the
quadratic limb-darkening coefficient u2.

The analysis of time-correlated noise is a crucial step in studies of time-series data. In the
presence of such noise the standard approach is to increase the resulting parameter errors by a
certain factor β (Carter & Winn, 2009). This factor is determined as the ratio of measured
standard deviation, σn , and the white noise prediction. The measured standard deviation is
determined after the data set has been time-averaged over intervals relevant for the analysis
(Winn et al., 2007). I simulated transit light curves and presented a time-correlated noise
analysis based on this time-averaging method.

The used approach is capable of detecting oscillations hidden in the noise. Although the
simulated oscillation was phase shifted in each transit, this method shows characteristic
signatures, which – if seen in real data – could easily be attributed to oscillations. I
showed that gaps in the light curve, e.g., missing continuum parts, lead to σn values
significantly deviating from the white noise prediction. Therefore, the red noise analysis
has to be carried out for each transit individually and is then averaged to one result.
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However, according to my simulations the widely used white noise prediction (Eq. 4.15)
seems to be incorrect. This equation overestimates σn for a low number of remaining
bins M (Fig. 4.14). The resulting values of β are thus systematically underestimated.
I presented a more reasonable approach, which is to simulate the time-series data by
using the best fit model and adding Gaussian noise with the standard deviation of the
real data. The simulation must have the same time-axis including all gaps or missing
data points. Then the time-correlated noise analysis is performed for this simulation.
Since the simulation holds only white noise one can use the resulting σn as a reliable
white noise prediction for the analysis of the real data. By using this method one achieves
≈ 4% larger β values, which I consider more reliable. Furthermore, I empirically found
a better equation (Eq. 4.16) for the white noise prediction. I pointed out that the standard
deviation only represents the probable error of one bin, if a large number of bins is left
with a lower boundary of 7 to 8 bins. For less bins the mean of the errors of the means
(Eq. 4.18), approaches σ1/

√
N , hence, this value turned out to be a better estimator of

the bin error.

Limb Darkening of the Sun

A well suited object to compare measurements of the limb darkening to predictions is the
Sun. Its limb darkening has already been measured by several authors with high accuracy. For
comparison I used the work of Neckel & Labs (1994), which provides measurements ranging
from the UV to the near infrared and a most recent PHOENIX model atmosphere (Table A.11).
The results were presented in several Johnson filters as well as for some specific wavelengths
(Figs. 5.5 and 5.6). Systematic deviations were quantified and translated into transit parameter
changes occurring if model predictions are used in transit modeling. Finally, space-based
observations of the Sun were used to determine the solar limb darkening again.

I found that there are significant differences between models and measurements at small
and intermediate limb angles. The model intensity distributions lie systematically below
the measurements. This means that the emitted stellar flux is underestimated by theory
or, in other words, the limb darkening is overestimated. In the Johnson-V filter band
this amounts to 1.44%. Nevertheless, the overall shapes of the PHOENIX model limb
profiles are quite comparable to those measured by Neckel & Labs (1994) in almost all
individual wavelengths and all photometric passbands. Only the steep intensity drop-off
close to the limb is not shared by the measurements. Although the authors measured
only intensities for µ > 0.1, they argue that their extrapolated values down to µ = 0
are reasonable, since they have a physical meaning (Neckel, 2005). From the point of
view of transit modeling non-zero intensities at the limb are essential, because the transit
starts when light is blocked and if the line-of-sight is perpendicular to the surface normal
(cf., Eq. 1.5). I found that this predicted drop-off leads to an 11 s shorter transit duration
because the stellar disk appears 1.5 · 10−3 RS smaller for a typical total duration of two
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hours. To account for these effects I presented a rescaling of the µ-axis for the model
atmospheres. That led to an improvement in the intensity profiles with smaller deviations
frommeasurements in terms of disk-integrated fluxes. For instance, in the Johnson-V filter
this deviation was now reduced to 0.2%. The determination of LDCs from this model
distribution was then also investigated. Due to a higher amount of intensity points close
to the limb the LDC fits are mostly influenced by that region. Therefore, I recommend
to revise the original µ-axis, where it is defined as

√
1 − r2 with r to be an equi-distant

grid of radial coordinates. A fit to this distribution combined with the rescaling led to
distributions more compatible with the measurements. The outermost stellar limb in the
models (r = 1) could be determined as proposed by Orosz & Hauschildt (2000, Eq. 11) as
the point of the highest slope in r-space. When this intensity distribution is transformed
into the µ-space, I suppose that even the steep drop off is only weakly pronounced or even
not visible anymore. Although I had to rescale the intensity distribution of the PHOENIX
atmosphere, I think that the agreement of measurements and model is a clear indicator
for the excellent quality of the PHOENIX model atmospheres.

Numerical Transits

In transit modeling one important step is the choice of the limb-darkening law and, in the case
of poor photometric precision, the LDCs which belong to it. However, the limb-darkening
laws are only approximations to the real intensity distributions. There exist different fitting
approaches, e.g., least squares and flux conserving (Claret, 2000) and I showed that the
fitted LDCs depend on the underlying µ-axis. It would be more reasonable to use the model
intensities directly in transit modeling. This problem asks for numerical methods, which offer
the opportunity to compare the resulting transits to conventional transit models and to transits
using measurements of the solar disk intensity distribution. For these purposes I presented an
efficient numerical transit algorithm, which is capable of using the limb intensities directly
from a PHOENIX atmosphere as well as any other limb-darkening description.

My algorithm is based on fast Fourier transforms, providing an accuracy of 5 · 10−6 or
better when compared to a conventional transit model (Fig. 6.6). The accuracy depends
on the selected resolution, which is only limited by computational power. The algorithm
produces several thousand transit data points within a fraction of a second (Fig. 6.5).
Compared to a numerical transit algorithm where the planet is moved step by step
across the stellar disk, my method is about 80 times faster and additionally leading to
an amazingly high time resolution. Fits of transit light curves, which were generated with
my code using the quadratic limb-darkening law, led to the input values of the coefficients.
This serves as a cross-check that the transit fitting approach using the occultquad routine
does not introduce some systematics and, hence, it is justified using it for limb-darkening
studies. My algorithm is capable to generate transits based on arbitrary shapes of the
planet and the star. I presented the cases of planetary oblateness and planets with rings.

166



8.2 Looking ahead

Transit simulations of planets with rings have already been carried out by several authors,
however, my focus was set on the detectability of ring induced signatures given different
limb darkening (Fig. 6.10). It turned out that weaker limb darkening leads to a better
detectability. Furthermore, I presented the signatures of Saturn’s Cassini Division for
the first time and estimated the required photometric accuracy to about 5 · 10−6. Beyond
having introduced the first transit light curves directly using limb intensities from a model
atmosphere, I presented transits based on imagesmade by the solar space observatory SDO.
These comprise transits in optical and in shorter wavelengths like soft X-rays (Fig. 6.15).
I selected transit paths over quiet and active solar regions, which revealed that bright
active regions heavily distort the classical transit shape. Finally, I was able to reproduce
the simulated behavior of the fitted quadratic LDCs with increasing impact parameter as
presented by Howarth (2011). However, without relying on a nonlinear limb-darkening
law, but rather using the model intensities from a PHOENIX atmosphere directly.

8.2 Looking ahead

During the work on this PhD thesis I had some further ideas on how to extend my work. These
were left unfinished but could possibly be completed in future work. In this section I am going
to summarize these ideas.

Further limb-darkening measurements

In the presented work precise measurements of the stellar limb darkening were carried out
by utilizing space-based observations. The given accuracy of the quadratic LDCs is at least
for some objects higher than differences between theoretical predictions originating from
different model atmospheres. Future missions like ESA’s PLAnetary Transits and Oscillations
(PLATO)1, NASA’s Transiting Exoplanet Survey Satellite (TESS)2, and NASA’s James Webb
Space Telescope (JWST)3 will offer an even higher photometric precision than Kepler. These
data sets could then be used to study the limb darkening in even more detail. Due to the
probably higher amount of stars with high S/N available, the achieved limb darkening could
then be used to investigate the natural diversity of the stellar limb darkening with the same
or similar characteristics (Teff , log g, and so on). According to my studies such diversity is
already indicated by the scatter in the most precise measurements in my sample in the vicinity
of 5800K (Fig. 5 of Müller et al. (2013)). Furthermore, these upcoming precise measurements
possibly require the use of more complicated limb-darkening laws (δ/N > 400), especially in
the case of small Earth-sized transiting planets (cf., Fig. 1.17).

1http://sci.esa.int/plato/
2http://tess.gsfc.nasa.gov/
3http://www.jwst.nasa.gov/
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Transit observations in the infrared – where almost no limb darkening is present – would
offer the opportunity to pin down the remaining orbital parameters with high precision. These
observations already exist, e.g., using the SOFIA4 instrument or the Spitzer5 space telescope.
Follow up observations of the same objects, e.g., using PLATO could then be used to determine
only the limb darkening, keeping the other parameters fixed or at least free given precise prior
distributions for the MCMC sampling.

Transit modeling

For my limb-darkening studies I used the tool of planetary transit modeling. Even though, the
models offer a high accuracy, they are not able to generate transits without an analytical limb
darkening descriptions. For further transit simulations, with planets, moons, asteroids and
in principle bodies with any kind of shape, my numerical code should be parallelized. My
code is also capable of simulating gray planetary atmospheres or semi-opaque planetary rings.
The usage of the code in the process of transit fitting could also be the next step. Transits
for all possible impact parameters could be generated at once and only the planet properties
have to be varied. For this purpose an implementation on modern graphics cards would be
reasonable.

As an interesting aspect, I found simulated transits in different photometric pass bands to show
two points where the light curves intersect (Fig. 1.12). Furthermore, these points show a similar
normalized flux value as it would be given during a transit in front of a hypothetically non-
limb-darkened star. This leads to the conclusion that these points are only weakly dependent
on or even independent of the limb darkening. For a theoretical confirmation I use a simplified
transit model for a point-like planet and a stellar disk with quadratic limb darkening (Müller
et al., 2013, Eq. B.1), which is written as

y = 1 − p2
1 − u1(1 − µ) − u2(1 − µ)2

1 − u1
3 − u2

6
. (8.1)

By setting the quadratic coefficient, u2, to zero I obtain a transit model which is valid for the
linear limb-darkening law. This model should now be independent of u1 for one specific limb
angle µ. To determine that point I consider the partial derivative

∂y

∂u1
= p2

2
3 − µ(
1 − u1

3

)2
!
= 0 . (8.2)

This derivative is zero when µ = 2/3, which means the flux level at this position is indeed
independent of the linear limb darkening coefficient. For more complex limb-darkening
functions such a point is not guaranteed. However, I verified that the intersection of the transits
appears still in the vicinity of µ = 2/3 for the quadratic and nonlinear limb-darkening laws.
4http://www.nasa.gov/mission_pages/SOFIA/index.html
5www.spitzer.caltech.edu/

168

http://www.nasa.gov/mission_pages/SOFIA/index.html
www.spitzer.caltech.edu/


8.2 Looking ahead

Although this intersection is not totally congruent, further studies of this behavior could be
promising. If it would be true that there exist such points without any or weak limb-darkening
contribution in real transits, one would be able to determine the planet-to-star radii ratio
directly from two individual points in the light curve. This would reduce the number of fit
parameters by one. For an empirical confirmation one would need multi-band photometry
of transits, e.g., provided by CoRoT. The effect that limb intensities from atmospheres with
different Teff intersect is already known (Neilson & Lester, 2012, Fig. 1) and the presented
phenomenon could have the same or a similar origin.

At any rate, the limb darkening is a very important parameter for current and future studies,
not only of planetary transit light curves, but also for future spectroscopic observations.
Especially in the emergent field of planetary atmosphere studies, a precise knowledge of the
limb darkening will be indispensable.
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A Tables

Table A.1: Center coordinates of the chosen details from Kepler full frame images shown in Fig. 3.4.

CCD Channel α δ

15 18h 43m 11s +47°17′47′′
41 19h 28m 58s +44°08′44′′
43 19h 16m 08s +44°41′17′′
56 19h 21m 42s +51°41′31′′

Notes: Equinox 2000. Used file kplr2012179140901_ffi-cal.fits downloaded at MAST. A map
of the CCD channels is given in Fig. B.9.

Table A.2: Start-/end dates of all Kepler quarters.

Quarter Start End Duration in Days
0 May 2nd, 2009 May 11th, 2009 9.7
1 May 13th, 2009 Jun. 15th, 2009 33.5
2 Jun. 20th, 2009 Sep. 16th, 2009 88.7
3 Sep. 18th, 2009 Dec. 17th, 2009 89.3
4 a) Dec. 19th, 2009 Mar. 19th, 2010 89.8
5 Mar. 20th, 2010 Jun. 23th, 2010 94.7
6 Jun. 24th, 2010 Sep. 22th, 2010 89.8
7 Sep. 23th, 2010 Dec. 22th, 2010 89.4
8 Jan. 6th, 2011 Mar. 14th, 2011 66.7
9 Mar. 21th, 2011 Jun. 26th, 2011 97.4
10 Jun. 27th, 2011 Sep. 28th, 2011 93.4
11 Sep. 29th, 2011 Jan. 4th, 2012 97.1
12 Jan. 5th, 2012 Mar. 28th, 2012 82.6
13 Mar. 29th, 2012 Jun. 27th, 2012 90.3
14 Jun. 28th, 2012 Oct. 3th, 2012 97.2
15 Oct. 5th, 2012 Jan. 11th, 2013 97.6
16 Jan. 12th, 2013 Apr. 8th, 2013 85.8
17 Apr. 9th, 2013 May 11th, 2013 31.8

Notes: Information drawn from FITS-headers. a) For broken CCD channels only 20 days available.
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Table A.3: Values for the determination of the spectral resolution.

λ/Å λ/∆λ λ/Å λ/∆λ

6928.73 56259 6934.81 64580
6918.12 55120 6935.67 66184
7179.30 52656 6909.82 67301
7050.85 52623 6913.59 69306
7282.28 59586 6929.12 61791

Notes: This table lists the wavelengths for the chosen telluric lines and the corresponding spectral
resolution. The ∆λ is determined by a fit to the given lines using a Voigt profile (∆λ ≈ FWHM =
2
√
2 ln 2 σ). The values in the left two columns belong to the spectrum of ε Eridani and the right

columns belong to the spectrum of CoRoT-2A.

Table A.4: Transit parameters for simulated colored-noise analysis.

Parameter Value
RP/RS 0.10508
i/ ° 90.0
a/RS 9.9461
u1 0.5013
u2 0.1122
Porb/ d 4.94278
tdur/ h 4.2
tingress/ m 24.1
σ1 0.0005

Notes: This table lists the chosen system parameters to generate a simulated dataset used for the
time-correlated noise analysis (Section 4.4.1). The duration of the whole transit (tdur) and of the ingress
(tingress) are deduced values. Limb darkening coefficients are arbitrarily chosen from a 5800K star
measured in my Kepler sample (Kepler-15b).
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Table A.6: Photometric quality of my Kepler short cadence sample.

Kepler ID S/N σ δ/N (S/N )c σc

5794240 288 3.47 · 10−3 11.5 1382 7.24 · 10−4
10748390 10325 9.69 · 10−5 45.6 43804 2.28 · 10−5
11391018 685 1.46 · 10−3 15.1 1812 5.52 · 10−4
5357901 714 1.40 · 10−3 10.7 5885 1.70 · 10−4
8845026 1188 8.42 · 10−4 15.6 1188 8.42 · 10−4
9595827 500 2.00 · 10−3 11.3 2345 4.27 · 10−4
6849046 1130 8.85 · 10−4 8.9 8972 1.11 · 10−4
9410930 795 1.26 · 10−3 8.9 9437 1.06 · 10−4
9651668 828 1.21 · 10−3 15.7 7674 1.30 · 10−4
8359498 1031 9.70 · 10−4 12.2 10157 9.85 · 10−5
7023960 609 1.64 · 10−3 15.6 1491 6.71 · 10−4
11359879 1172 8.53 · 10−4 13.6 9806 1.02 · 10−4
10619192 816 1.23 · 10−3 17.3 10123 9.88 · 10−5
11446443 4236 2.36 · 10−4 60.6 54735 1.83 · 10−5
12019440 500 2.00 · 10−3 8.8 4298 2.33 · 10−4
10874614 1592 6.28 · 10−4 17.2 18365 5.45 · 10−5
7877496 884 1.13 · 10−3 9.4 10932 9.15 · 10−5
5780885 2066 4.84 · 10−4 15.7 17287 5.78 · 10−5
9631995 1281 7.81 · 10−4 13.6 8782 1.14 · 10−4
11804465 1310 7.63 · 10−4 22.0 11860 8.43 · 10−5
6922244 1061 9.42 · 10−4 9.9 11623 8.60 · 10−5
9818381 1151 8.69 · 10−4 9.3 12286 8.14 · 10−5
10019708 658 1.52 · 10−3 6.9 5657 1.77 · 10−4
10666592 6033 1.66 · 10−4 40.4 86587 1.15 · 10−5
8191672 1435 6.97 · 10−4 10.7 15786 6.33 · 10−5
9941662 9088 1.10 · 10−4 41.7 87171 1.15 · 10−5
10318874 1658 6.03 · 10−4 2.5 18974 5.27 · 10−5
5084942 1547 6.47 · 10−4 1.4 16514 6.06 · 10−5
12105051 1019 9.82 · 10−4 2.7 11834 8.45 · 10−5
5771719 902 1.11 · 10−3 10.5 3125 3.20 · 10−4
2571238 2990 3.34 · 10−4 2.2 18185 5.50 · 10−5
11295426 7735 1.29 · 10−4 2.6 48305 2.07 · 10−5
8456679 2151 4.65 · 10−4 2.0 27628 3.62 · 10−5
8554498 3570 2.80 · 10−4 3.4 34051 2.94 · 10−5
8684730 2590 3.86 · 10−4 4.3 3663 2.73 · 10−4
3762468 409 2.44 · 10−3 3.6 1227 8.15 · 10−4
4349452 5050 1.98 · 10−4 6.0 20824 4.80 · 10−5
3861595 3443 2.90 · 10−4 4.2 18544 5.39 · 10−5

Notes: Objects sorted by Teff (see, Müller et al., 2013, Tab. 3). Column notation from left to right: KIC
identifier, photometric signal-to-noise, continuum noise, transit-depth-to-noise, cumulative signal-to-
noise (Eq. 3.1), and the corresponding cumulative photometric precision.
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Table A.7: Relative differences in disk-integrated flux between PHOENIX and the Sun.

λ/Å (SP/SN − 1) /% λ/Å (SP/SN − 1) /% λ/Å (SP/SN − 1) /%
3033.27 −1.64 4279.30 −0.29 6109.75 −1.49
3108.43 −1.87 4438.85 −0.87 6409.70 −1.39
3204.68 −1.49 4451.25 −1.05 6694.00 −1.42
3298.97 −2.28 4573.45 −1.16 7008.75 −1.48
3499.47 −0.47 4774.27 −1.25 7487.10 −1.46
3658.75 −1.99 4929.05 −1.28 8117.60 −1.35
3740.86 4.56 5199.30 −2.21 8696.00 −1.52
3909.15 −1.69 5417.60 −1.41 9488.50 −1.55
4019.70 0.23 5599.50 −1.43 10 466.00 −1.12
4163.19 −0.84 5798.80 −1.48 10 989.50 −1.25

Notes:Wavelength points for comparison are taken from Neckel & Labs (1994). The disk-integrated
fluxes (SP: PHOENIX, SN: Sun) are determined by numerical integration (see Chapter 5 for details).
A negative sign indicates percentage that PHOENIX lies below the disk-integrated flux of the Sun.
Wavelengths are measured in air.

Table A.8: Disk-integrated flux aberrancies from the Sun in different filter bands.

Filter ∆SP /% ∆SPµ /% ∆SCq /% ∆SCq′ /% ∆SCn /% ∆SCn′ /%
Johnson-U −3.32 −2.34 3.95 −1.79 3.55 −1.70
Johnson-B −1.10 −0.28 −1.48 −0.76 −1.59 −0.69
Johnson-V −1.44 −0.20 −2.07 −1.66 −2.30 −1.69
Johnson-R −1.14 −0.50 −1.21 −1.22 −1.51 −1.32
Johnson-I −1.41 −0.86 −1.19 −1.47 −1.53 −1.60
Kepler −0.12 0.56 0.71 0.17 0.41 0.09

Notes: I define ∆Sx = (Sx/SN) − 1. The disk-integrated fluxes are denoted as SP: PHOENIX, SPµ :
PHOENIX µ-rescaled, SCq: quadratic and SCn: nonlinear LD (LDCs taken from Claret & Bloemen
(2011)), and SCq′ and SCn′ are also quadratic and nonlinear LD (LDCs taken from Claret et al. (2013)).
SN is the disk-integrated flux of the Sun in the given filter band; see Chapter 5 for more details. For the
corresponding limb-intensity profiles of the first three columns see Fig. B.19.
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Table A.9: Comparison of fitted quadratic LDCs in various filter bands.

Model Johnson-U Johnson-B Johnson-V
u1 u2 u1 u2 u1 u2

Claret11 0.7137 0.0387 0.7471 0.0565 0.5624 0.1627
Claret13 qs 0.8897 −0.0629 0.6975 0.1231 0.5426 0.1825
PHOENIX 0.8768 0.0249 0.6944 0.1416 0.5345 0.1791
PHOENIX µrescaled 0.8581 0.0249 0.6798 0.1357 0.5187 0.1678
Neckel & Labs 0.7517 0.1348 0.6568 0.1651 0.4778 0.2241

Model Johnson-R Johnson-I Kepler

Claret11 0.4439 0.2058 0.3335 0.2325 0.4729 0.1871
Claret13 qs 0.4526 0.1891 0.3596 0.1945 0.4883 0.1822
PHOENIX 0.4519 0.1743 0.3694 0.1572 0.4950 0.1723
PHOENIX µrescaled 0.4427 0.1658 0.3621 0.1490 0.4849 0.1642
Neckel & Labs 0.3975 0.2317 0.3023 0.2257 0.4709 0.2176
Mean LDCs (ū1, ū2) 0.4613 0.1344

Notes: LDCs for Claret11 and Claret13 qs are taken from tables (see Table 5.1 for references). LDCs
for the remaining models are determined by fitting a quadratic LD law to the distributions using a
different fitting method as used by Claret (see Section 5.1.4 for details).

Table A.10: Limb-darkening coefficients for P5(µ) (Eq. 5.1).

Filter A0 A1 A2 A3 A4 A5

Johnson-U 0.118 12 0.952 06 0.170 42 −0.565 99 0.469 12 −0.143 72
Johnson-B 0.154 43 1.241 38 −1.005 33 1.242 42 −0.898 57 0.265 68
Johnson-V 0.260 90 1.317 16 −1.458 88 1.705 47 −1.137 19 0.312 54
Johnson-R 0.328 69 1.332 83 −1.808 13 2.335 69 −1.680 11 0.491 03
Johnson-I 0.426 74 1.242 72 −1.829 60 2.326 06 −1.624 76 0.458 83
Kepler 0.273 02 1.316 29 −1.548 03 1.910 80 −1.330 85 0.378 77

Notes: These LDCs are determined by a least-squares fit to limb profiles deduced from Neckel & Labs
(1994) in several filter bands. The worst residuum is of the order of 10−15.
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Table A.11: Excerpt of the PHOENIX logfile.

Notes: This PHOENIX logfile output was generated during the computation of high-resolution spectra
for different limb angles µ. Molecular lines are included. Most of this logfile is omitted.
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Figure B.1: Theoretical limb-darkening profiles for planar gray atmospheres (left). Details of the
different predictions (labels) are discussed in Section 1.1.2. Right: Residuals of the profiles, determined
by subtracting the limb darkening predicted by Hopf. Non-linear predictions are shown in solid lines.
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Figure B.2: Influence of the micro turbulent velocity ξ on the quadratic LDCs u1 (left) and u2 (right).
Shown are the differences between theoretical LDCs determined with ξ = 2.0 km s−1 and LDCs using
different velocities (labels). (ATLAS models). See Section 1.1.3 for details.
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Figure B.3: Fitted quadratic LDCs of simulated transits with different S/N values. Blue lines indicate
the values used for synthesizing the transits (u1 = 0.48, u2 = 0.22). The remaining orbital parameters
where chosen as p = 0.105, i = 88°, a = 11.2 RS, which lead to a transit duration of about 3 hours. The
error bars correspond to 68% confidence intervals. For the simulation I used three different planet sizes
(labels), which all have the same transit signal-to-noise ratios (δ/N = 5, 10, 20, 40, 60, 80, 100, 150).
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Figure B.4: Zoom-in to PPak CCD raw images. On the left I present the image before, and on the
right after my applied cosmic removal. Cosmics are visible as white dots.
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Figure B.5: The periodic table of Kepler exoplanets. Planet radius increases from left to right. The
distance from the host star increases from top to bottom.
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Figure B.6: Normalized PPak light curves of CoRoT-2A in four color bands (red: 6975Å - 8050Å,
green: 5895Å - 6975Å, blue: 4815Å - 5895Å, black: 4815Å - 8050Å). The error bars indicate the
1σ uncertainties of the black dots, others are not shown for clarity. Dashed lines: Transit model of
CoRoT-2b. Left: First observing night Right: Second observing night.
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Figure B.7: Left: Limb-intensity profiles of five solar-likeKepler targets (black) together with predicted
profiles using ATLAS (red), PHOENIX 1D (green), and PHOENIX qs (blue) for the temperature
interval of 5750K to 5850K. See Chapter 4 for references. Right: Simulated transits using the shown
limb intensities of the left panel, and a planet-to-star radii ratio of p = 0.1. Bottom panel: Maximum
and minimum transit residuals determined by subtracting model transit of my Kepler measurements
from transits created using model predictions. Colors are chosen as above. Additionally, the gray area
indicates the difference between the transits with the strongest and the weakest measured limb darkening
in that temperature range.
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Figure B.8: Planet coverage of the stellar limb
intensity during transit center of TrES-2b. Red
area indicates the µ-values simultaneously cov-
ered by the planetary disk during transit center,
where the vertical solid line marks the center
of the planetary disk at µmax. Theoretical dis-
tribution using model LDCs (green solid) and
result of transit modeling of this highly inclined
system (blue dashed) are shown for comparison.
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Figure B.9: Display of Kepler Full Frame Im-
ages with corresponding CCD channels.
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Figure B.10: Kepler’s main camera CCD array
during assembly. The curved structure needed for
a Schmidt-type telescope is clearly visible.
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Figure B.11: Sky-projected Kepler field-of-view in the Cygnus-Lyra region. The four open star
clusters covered by the CCDs are also visible. (Cf. Fig. 3.3).
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Figure B.12: Johnson- (labels) andKepler filter (black) transmission curves. The Johnson transmission
coefficients are taken from Bessell (1990, Table 2), while the response function of the Kepler instrument
is given in the supplement of Van Cleve & Caldwell (2009). In the background a PHOENIX-ACES
spectrum of a Teff = 5800K star is shown.
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Figure B.13: Comparison of simulated transit paths (colored lines) with straight lines (black). The
stellar disk is shown in gray. The left panel shows simulated orbits for a semimajor axis of 4 RS. The
right panel shows orbits with a semimajor axis of 10 RS. The used impact parameters b are given as
labels, where be denotes the impact parameter at the edge of this plot, which are slightly smaller caused
by the curvature. For the simulated planetary traces Eq. 1.26 was used.
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Figure B.14: Comparison of measured transit parameters of my short cadence target sample.
Parameters: Black dots show results of my MCMC sampling, and the red diamonds the public
Kepler data (NASA, 2014). Residuals: Green dots indicate objects, where the parameters deviate not
significantly from each other. 1σ error bars in the residuals result from error propagation.
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Figure B.15: Measured σn curves (dots) of the correlated noise analysis made for objects of my high
S/N target sample. Transit ingress or egress durations are marked by blue vertical lines. Cyan lines
indicate the white noise prediction corresponding to Eq. 4.15. In the labels the specific target name can
be found. Objects sorted by Teff , from the upper left (coolest) to the lower right corner.
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Figure B.15 (continued)
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Figure B.16: Measured σn curves (dots) of the correlated noise analysis made for objects of my high
impact parameter (b ≥ 0.8) target sample.
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Figure B.17: Determined βn graphs for all objects of my high S/N target sample. Cyan lines: ratios
of measured σn to Eq. 4.15. Black lines: ratios of measured σn to measured σn of simulations. The
blue areas marking the bin sizes used for determination of βW and βM. See Section 4.4.2 for more
information.
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Figure B.17 (continued)
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Figure B.18: Determined βn graphs for all objects of my high impact parameter (b ≥ 0.8) target
sample.
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Figure B.19: Comparison between the solar LD as calculated from observations (Neckel & Labs,
1994) using Eq. 5.3 and model predictions. Each panel represents a different filter band. The Claret
models are calculated using a quadratic LD law with LDCs taken from Claret & Bloemen (2011).
Relative deviations in disk-integrated flux (∆Sx = (Sx/SN) − 1) with respect to the measurements of the
Sun (blue) given in percent for both predictions shown here (SPµ : PHOENIXmodel with rescaled µ-axis
(dashed), SCq: quadratic LD with Claret LDCs). Additionally, the value for the unscaled PHOENIX
model is given (SP).
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Figure B.20: Numerical transit light curves using different SDO/AIA channels. Left column: Transit
in front of active regions, right column: Transit in front of almost inactive regions. Channels from top:
1700Å continuum, 335Å FeXVI corona, 304Å He II chromosphere.
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Figure B.20 (continued): 193Å FeXII corona, 171Å Fe IX corona, and 131Å FeVIII corona (see
Lemen et al., 2012).
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