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Introduction

Queueing networks with product-form steady-state distribution have found many fields of
applications, e.g. production systems, telecommunications, and computer system model-
ing. The success of this class of models and its relatives stems from the simple structure
of the steady-state distribution which provides access to easy performance evaluation
procedures. Starting from the work of Jackson [Jac57] various generalizations have been
developed.
In real world queueing systems are not isolated and interact with their environment.

Adding a random environment to a model usually makes the model more realistic but also
more complex to analyze. Nevertheless, under some conditions it is still possible to obtain
analytical results. A branch of research which recently has found interest are queueing
networks in a random environment with product form steady-state distributions.
In this thesis we develop a general theory that comprise models with stationary product-

form distribution in inventory theory in [Sch04] and Jackson networks with unreliable
nodes with stationary product-form distribution in [Sau06]. An important property of
the resulting general model is that the queueing system and the environment interact in
both directions: the queues can influence the environment and the environment influences
the queues.
In Part I we analyze single-queue systems. In Section 1 we introduce a loss system.

In Section 2 we generalize product form lost-sales inventory models from [Sch04] and
several other published papers with related models as a loss system with exponential
service time. The term loss means that customers get lost when the environment stays in
some special states – the blocking states. In Section 2.1.4 we develop an approximation
method for system without loss of customers based on loss systems. In Section 2.2 we
apply our loss system results in fields different from inventory management: we analyze
in detail an unreliable server with preventive maintenance in Section 2.2.4, a node of
a wireless sensor network in Section 2.2.5, and a crusher station in open-pit mining
in Section 2.2.6.
In Section 3 we analyze the Markov chain embedded at departure instants of the loss

system. The embedded Markov chains are an important tool for analyzing queueing sys-
tem with general service times – the M/G/1/∞ queues. The famous and frequently used
result in classicalM/G/1/∞ theory is that the steady-state distribution of anM/G/1/∞
system as continuous time process and as embedded Markov chain, observed at depar-
ture times, are the same. We show that this is in general not true for the steady-state
distribution of loss systems. We use an embedded Markov chain analysis to extend our
results from Section 2 to some loss systems with general service times.
In Part II we extend our results for a single-queue loss system to Jackson networks in

a random environment. We replace the concept of loss of customers by special rerouting
regimes. We establish a connection between these rerouting regimes and randomized ran-
dom walks. In Section 8 we consider systems where the interaction between environment
and queuing system depend on the number of customers in the system. This exten-
sion finally allows us to include results about Jackson networks with unreliable nodes
from [Sau06] as special cases.

viii
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Notations and conventions:

• R+
0 = [0,∞), R+ = (0,∞), N={1,2,3,. . . }, N0 = {0} ∪ N.

• K is a field, either R or C.

• A value is said to be positive if it is greater than zero. A value said to be negative
if it less than zero. Sometimes we will use the terms strictly positive or strictly
negative to emphasizes that the corresponding values are not zero. We call a value
non-negative if it is greater than or equal to zero.

• A ⊂ B means A is a subset of B. A ( B means A is a proper subset of B.

• We write C = A ]B to emphasize that C is the union of disjoint sets A and B.

• 1[expression] is the indicator function which is 1 if expression is true and 0 otherwise.

• δxy := 1[x=y] is the Kronecker-Delta.

• For any quadratic matrix V we define diag(V ) as the matrix with the same diagonal
as V , while all other entries are 0.

• e is a vector whose all elements are 1. The dimension of e will always be clear from
the context.

• Empty sums are 0 and empty products are 1.

• We call a generator a matrix M ∈ RK×K with countable index set K, whose all
off-diagonal elements are non-negative and all row sums equal zero. From this
definition the diagonal elements are finite.

• We call a matrix M ∈ [0, 1]K×K with countable index set K stochastic if the row
sums are one.

• We call a matrix M ∈ [0, 1]K×K with countable index set K substochastic if the
row sums are less or equal one.

• All random variables and processes occurring henceforth are defined on a common
underlying probability space (Ω,F , P ).

• We call a process in continuous time regular if it is non-explosive, its transition
intensity matrix is conservative (row sums are 0) and all diagonal elements of the
transition intensity matrix are finite.

• In this thesis, we assume that all stochastic processes in continuous time are regular
and that a version with right continuous paths with left limits (cadlag) is given.

• If we use ·/ · /1/N notation for queueing systems with one server and N waiting
places, the maximal number of customers in this queuing system is N + 1.

• In diagrams, we use three different symbolic representations of queues shown in
Figure 0.2 on page x.
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• In diagrams, we use big circles to represent sever of the queues, a queue can have
multiple servers. In the circle we write the service rate of each server. See Figure
0.1 on page x.

µ

(a) ·/·/1/∞ queue with constant
service rate µ

µ(n)

(b) ·/ · /1/∞ queue with ser-
vice rate µ(n) depending on
number of customers in the
system

µ

µ

(c) ·/ · /2/∞ queue with two
servers where each server has
constant service rate µ

Figure 0.1.: Different symbolic representations of servers at a queue with infinite number
of waiting places

(a) queue with infinite number
of waiting places

(b) queue with two waiting
places

(c) queue with finite but un-
known or large number of
places

Figure 0.2.: Different symbolic representation of the queues.

x
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1. Introduction

Product form networks of queues are common models for easy to perform structural and
quantitative first order analysis of complex networks in Operations Research applica-
tions. The most prominent representatives of this class of models are the Jackson [Jac57]
and Gordon-Newell [GN67] networks and their generalizations as BCMP [BCMP75] and
Kelly [Kel76] networks, for a short review see [Dad01].
Standard mathematical description of this class of models is by time homogeneous

Markovian vector processes, where each coordinate represents the behaviour of one of
the queues. Product form networks are characterized by the fact that in steady state (at
any fixed time t) the joint distribution of the multi-dimensional (over nodes) queueing
process is the product of the stationary marginal distributions of the individual nodes’
(non Markovian) queueing processes. With respect to the research described in this note
the key point is that the coordinates of the vector process represent objects of the same
class, namely queueing systems.

In Operations Research applications queueing systems constitute an important class
of models in very different settings. Nevertheless, in many applications those parts of,
e.g., a complex production system which are modeled by queues interact with other sub-
systems which usually can not be modeled by queues. We will describe two prototype
situations which will be considered in detail throughout the paper as introductory exam-
ples. These examples deal with interaction of (i) a queueing system with an inventory, and
(ii) a queueing system with its environment, which influences the availability of the server.

Introductory example (i): Production-inventory system. Typically, there is a
manufacturing system, (machine, modeled by a queueing system) which assembles deliv-
ered raw material to a final product, consuming in the production process some further
material (we will call these additional pieces of material “items” henceforth) which is hold
in inventories.

Introductory example (ii): Availability of a production system. The manu-
facturing system (machine, modeled by a queueing system) may break down caused by
influences of its environment or by wear out of its server and has to be repaired.

Our present research is motivated by the observation that in both situations we have
to construct an integrated model with a common structure:

• A production processes modeled by queueing systems and

• an additional relevant part of the system with different character, e.g., inventory
control or availability control.

In both models the components strongly interact, and although the additional feature are
quite different, we will extract similarities. This motivates to construct a unified model

3



1. Introduction

which encompasses both introductory examples and as we will show, many other examples
in different fields. For taking a general nomenclature we will subsume in any case the
“additional relevant part of the system” attached to the queueing model as “environment
of the queue”.
Our construction of “queueing systems in a random environment” will result in a set

of product form stationary distributions for the Markovian joint queueing-environment
process, i.e., in equilibrium the coordinates at fixed time points decouple: The station-
ary distribution of the joint queueing-environment process is the product of stationary
marginal distributions of the queue and the environment, which in general cannot be
described as a Markov process of their own. The key point is that the coordinates of the
vector process represent very different classes of objects.
Product form stationary distributions for the introductory examples have been found

only recently.
(i) Schwarz, Sauer, Daduna, Kulik, and Szekli [SSD+06] discovered product forms for
the steady-state distributions of an M/M/1/∞ under standard order policies with lost
sales. Further contributions to product form results in this field are by Vineetha [Vin08],
Saffari, Haji, and Hassanzadeh [SHH11], and Saffari, Asmussen, and Haji [SAH13]. An
early paper of Berman and Kim [BK99] can be considered to contribute to integrated
models with product form steady state.
(ii) For classical product form networks of queues in [SD03a] the influence of breakdown
and repair of the nodes was studied and it was proved that under certain conditions a
product form equilibrium for such networks of unreliable servers exists. The Markovian
description of the system encompasses coordinates describing (possibly many) queues and
an additional coordinate to indicate the reliability status of the system, for more details
see [Sau06].
Related research on queueing networks in a random environment is by Zhu [Zhu94],
Economou [Eco03, Eco04, Eco05], Tsitsiashvili, Osipova, Koliev, Baum [TOKB02], and
Balsamo, Marin [BM13]. There usually the environment is a Markov process of its
own, which is the case neither in our model nor in the motivating results in [SSD+06]
and [SD03a], which consider our introductory examples. A queueing network in a random
environment can be modelled as a quasi birth-death (QBD) process whose level describes
the length of one particular queue and whose phase describes the environment state and
the state of the other queues. In [LR99, Chapter 15], Latouche and Ramaswami and,
in [RT96], Ramaswami and Taylor analyzed product form QBD. They derived necessary
and sufficient conditions for the product-form steady-state distribution and applied the
results to various product-form queueing systems.
An important common aspect of the interaction in both introductory examples leads

to the term loss system for our general interacting system: Whenever for the queue,
respectively,

• the inventory is depleted (i),

• the machine is broken down (ii),

service at the production unit is interrupted due to stock out (i), resp. no production
capacity available (ii). Additionally, during the time the interruption continues no new
arrivals are admitted to both systems, due to lost sales and because customers prefer to
enter some other working server.

4



Note, that this loss of customers is different from what is usually termed loss systems
in pure queueing theory, where loss of customers happens, when the finite waiting space
is filled up to maximal capacity.

Following the above description, in our present investigation of complex systems we
always start with a queueing system as one subsystem and a general attached other
subsystem (the environment) which imposes side constraints on the queueing process and
in general interacts in both directions with the queue. In typical cases there will be a part
of the environment’s state space, the states of which we shall call “blocking states”, with
the following property: Whenever the environment enters a blocking state, the service
process will be interrupted and no new arrivals are admitted to enter the system and are
lost to the system forever.
The interaction of the components in this class of models is that jumps of the queue may

enforce the environment to jump instantaneously, and in the other direction the evolving
environment may interrupt service and arrivals at the queue, by entering blocking states,
and when leaving the set of blocking states service is resumed and new customers are
admitted again.

We describe our exponential system in Section 2.1.1 and start our detailed investigation
in Section 2.1.1.1. Our main result (Theorem 2.1.5) is that, although production and
environment strongly interact, asymptotically and in equilibrium (at fixed time instants)
the production process and the environment process seem to decouple, which means that
a product form equilibrium emerges.
This shows that the mentioned independence results in [SSD+06], [SD03a], [SHH11],

[SAH13], and [Vin08] do not depend on the specific properties of the attached second
subsystem. Furthermore, we will show that the theorem can be interpreted as a strong
insensitivity property of the system: As long as ergodicity is maintained, the environment
can change drastically without changing the steady-state distribution of the queue length.
And, vice versa, it can be seen that the environment’s steady state will not change

when the service capacity of the production will change.
We shall discuss this with related problems and some complements to the theorem in

more detail in Section 2.1.1.1 after presenting our main result there. In Section 2.1.2 we
investigate the case of finite waiting space at the queue, so in the classical loss system
we introduce additional losses due to the impact of the environment on the production
process. Astonishingly, there occur new structural problems when product form steady
states are found.
In Section 2.2 we present a bulk of applications of our abstract modeling process to

systems found in the literature. We show especially, that our main theorem allows to gen-
eralize rather directly many of the previous results. In Section 3.1 we consider the systems
(which live in continuous time) at departure instants only, which results in considering
an embedded Markov chain. We find that the behaviour of the embedded Markov chain
is often considerably different from that of the original continuous time Markov process
investigated in Section 2. Especially, it is a non trivial task to decide whether the sta-
tionary distribution of the embedded Markov chain (at departure instants) is of product
form as well.
For exponential queueing systems we show that there is a product form equilibrium

under rather general conditions. We provide this stationary distributions explicitly in

5



1. Introduction

Theorem 3.1.16, showing that the marginal queue length distribution of the embedded
chain is the same as in continuous time, and discuss the relation relation between the
respective marginal environment distributions, which are not equal but related by a trans-
formation which we determine explicitly.
To emphasize the problems arising from the interaction of the two components of in-

tegrated systems, we remind the reader, that for ergodic M/M/1/∞ queues the limiting
and stationary distribution of the continuous time queue length process and the Markov
chains embedded at either arrival instants or departure instants are the same. In connec-
tion with this, we revisit some of Vineetha’s [Vin08] queueing-inventory systems, using
similarly embedded Markov chain techniques.
A striking observation is moreover, that for a system which is ergodic in the continuous

time Markovian description the Markov chain embedded at departure instants may be
not ergodic. The reason for this is two-fold. Firstly, the embedded Markov chain may
have inessential states due to the specified interaction rules. Secondly, even when we
delete all inessential states, the resulting single positive recurrent class may be periodic.
We study this problem in depth in Section 3.1.2.
In Section 3.2 we show that for systems with non-exponential service times more restric-

tive constraints are needed, which we prove by a counter example where the environment
represents an inventory attached to anM/D/1 queue. Such integrated queueing-inventory
systems are dealt with in the literature previously, e.g. in [Vin08]. Further applications
are, e.g., in modeling unreliable queues.
In Section 3.3 we present further applications and discuss the differences between the

stationary distributions of the continuous time process and the embedded Markov chain.
In Section A.1 we provide some useful lemmata on invertibility of matrices which seem

to be of interest for their own.
Related work: We have cited literature related to our introductory examples which

deal with product form stationary distributions above. Clearly, there are many investiga-
tions on queueing systems with unreliable servers without this separability property, for
a survey see the introductions in [SD03a] and [Sau06].
In classical Operations Research the fields of queueing theory and inventory theory are

almost disjoint areas of research. Recently, research on integrated models has found some
interest, a survey is the review in [KLM11].
In a more abstract setting, we can describe our present work as to develop a frame-

work for a birth-death process in a random environment, where the birth-death process’
development is interrupted from time to time by some configurations occurring in the
environment. On the other side, in our framework the birth-death process influences the
development of the environment.
There are many investigations on birth-death processes in random environments, we

shall cite only some selected references. Best to our knowledge our results below are
complementary to the literature. A stream of research on birth-death processes in a
random environment exploits the interaction of birth-death process and environment as
the typical structure of a quasi-birth-death process. Such “QBD processes” have two
dimensional states, the “level” indicates the population size, while the “phase” represents
the environment. For more details see Chapter 6 (Queues in a Random Environment)
in [Neu81], and Example C in [Neu89][p. 202, 203].
Related models are investigated in the theory of branching processes in a random

environment, see Section 2.9 in [HJV05] for a short review. An early survey with many
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references to old literature is [Kes80].
Another branch of research is optimization of queues under constraints put on the

queue by a randomly changing environment as described e.g. in [HW84].
While the most of the annotated sources are concerned with conventional steady-state

analysis, the work [Fal96] is related to ours two-fold: A queue (finite classical loss system)
in a random environment shows a product form steady state.

environment Y (t)

queueing system X(t)

λ(n)

lost

µ(n)

serverqueue

may
stop/resume

may change
environment state

Figure 1.0.1.: Loss system
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2. Loss systems in continuous time

Parts of this section are published in [KD15a]. The final publication is available
at link.springer.com.

2.1. The exponential model

2.1.1. The M/M/1/∞ model

We consider a two-dimensional process Z = (X,Y ) = ((X(t), Y (t)) : t ∈ [0,∞)) with
state space E = N0 × K. K is a countable set, the environment space of the process,
whereas the queueing state space is N0.
We assume throughout that Z = (X,Y ) is regular and irreducible (unless specified

otherwise).
According to our introductory example the environment space of the process is par-

titioned into disjoint components K := KW ] KB. In the framework of K describing
the inventory size KB describes the status “stock out”, in the reliability problem KB de-
scribes the status “server broken down”. So accordingly KW indicates for the inventory
that there is stock on hand for production, and “server is up” in the other system.
The general interpretation is that whenever the environment process enters KB the

service process is “BLOCKED”, and the service is resumed immediately whenever the
environment process returns to KW , the server “WORKS” again.
Whenever the environment process stays in KB new arrivals are lost.
Obviously, it is natural to assume that the set KW is not empty, while in certain

frameworksKB may be empty, e.g. no break down of the server in the second introductory
example occurs.
The server in the system is a single server under First-Come-First-Served regime

(FCFS) with an infinite waiting room.
The arrival stream of customers is Poisson with rate λ(n) > 0, when there are n

customers in the system.
The system develops over time as follows.
1) If the environment at time t is in state Y (t) = k ∈ KW and if there are X(t) = n

customers in the queue then service is provided to the customer at the head of the queue
with rate µ(n) > 0. The queue is organized according First-Come-First-Served regime
(FCFS). As soon as his service is finished he leaves the system and the environment
changes with probability R(k,m) to state m ∈ K, independent of the history of the
system, given k. We consider R = (R(k,m) : k,m ∈ K) as a stochastic matrix for the
environment driven by the departure process.
2) If the environment at time t is in state Y (t) = k ∈ KB no service is provided to

customers in the queue and arriving customers are lost.
3) Whenever the environment at time t is in state Y (t) = k ∈ K it changes with rate

v(k,m) to state m ∈ K, independent of the history of the system, given k.

9
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2. Loss systems in continuous time

Note, that such changes occur independent from the service and arrival process, while
the changes of the environment’s status under 1) are coupled with the service process.
From the above description we conclude that the non-negative transition rates of (X,Y )

are for (n, k) ∈ E

q((n, k), (n+ 1, k)) = λ(n), k ∈ KW ,

q((n, k), (n− 1,m)) = µ(n)R(k,m), k ∈ KW , n > 0,

q((n, k), (n,m)) = v(k,m) ∈ R+
0 , k 6= m,

q((n, k), (i,m)) = 0, otherwise for (n, k) 6= (i,m).

Note, that the diagonal elements of Q := (q((n, k), (i,m)) : (n, k), (i,m) ∈ E) are deter-
mined by the requirement that row sum is 0.
Remark 2.1.1. It is allowed to have positive diagonal entries R(k, k). R needs not be
irreducible, there may exist closed subsets in K.
v(k, k) = −

∑
m∈K\{k} v(k,m) is required for all k ∈ K such that

V = (v(k,m) : k,m ∈ K)

is a generator matrix.
The Markov process associated with V may have absorbing states, i.e., V then has zero

rows.
Remark 2.1.2. We will visualize the dynamics of the environment by environment tran-
sition and interaction diagram consisting of colored nodes and colored arrows. We will
use the following conventions:

• Square nodes describe the environment states from K.

• Red nodes describe the blocking states, i.e., states from KB.

• Blue arrows describe possible environment changes independent from the queueing
system and correspond to the positive rates of the V matrix.

• Black arrows describe environment changes after services and correspond to the
positive entries of the R matrix.

For example the diagrams Figure 2.2.2a on page 44 and Figure 2.2.2b on page 44 describe
the behaviors of two different lost-sales systems.

2.1.1.1. Steady-state distribution

Our aim is to compute for an ergodic system explicitly the steady-state and limiting
distribution of (X,Y ). We can not expect that this will be possible in the general system
as described in Section 2.1.1, but fortunately enough we will be able to characterize those
systems which admit a product form equilibrium.

Definition 2.1.3. For a loss system (X(t), Y (t)) in a state space E := N0 ×K, whose
unique limiting distribution exists, we define

π := (π(n, k) : (n, k) ∈ E := N0 ×K),

π(n, k) := lim
t→∞

P (X(t) = n, Y (t) = k)

10



2.1. The exponential model

and the appropriate marginal limiting distributions

ξ := (ξ(n) : n ∈ N0) with ξ(n) := lim
t→∞

P (X(t) = n),

θ := (θ(k) : k ∈ K) with θ(k) := lim
t→∞

P (Y (t) = k).

Remark 2.1.4. It will be convenient to order the state space in the way which is common
in matrix analytical investigations, where X is the level process and Y is the phase
process. Take on N0 the natural order and fix a total (linear) order 4 on K and define
on E = N0 ×K the lexicographic order ≺ by

(m, k), (n, l) ∈ E then
(
(m, k) ≺ (n, l) :⇐⇒

[
m < n or (m = n and k 4 l)

])
. (2.1.1)

Some notation which will be used henceforth: IW is a matrix which has ones on its
diagonal elements (k, k) with k ∈ KW and 0 otherwise. That is

(IW )km = δkm1[k∈KW ].

Theorem 2.1.5. (i) Denote for n ∈ N0

Qred(n) := (qred(n; k,m) : k,m ∈ K) = λ(n)IW (R− I) + V. (2.1.2)

Then the matrices Qred(n) are generator matrices for some homogeneous Markov
processes and their entries are

qred(n; k,m) = λ(n)R(k,m)1[k∈KW ] + v(k,m), k 6= m,

qred(n; k, k) = −
(

1[k∈KW ]λ(n)(1−R(k, k)) +
∑

m∈K\{k}

v(k,m)
)
. (2.1.3)

(ii) For the process (X,Y ) the following properties are equivalent:

(a) (X,Y ) is ergodic with product form steady-state distribution

π(n, k) = C−1
n−1∏
i=0

λ(i)

µ(i+ 1)︸ ︷︷ ︸
=:ξ(n)

θ(k). (2.1.4)

(b) The summability condition

C :=
∞∑
n=0

n−1∏
i=0

λ(i)

µ(i+ 1)
<∞ (2.1.5)

holds, and the equation
θ ·Qred(0) = 0 (2.1.6)

admits a unique strictly positive stochastic solution θ = (θ(k) : k ∈ K) which
solves also

∀n ∈ N : θ ·Qred(n) = 0. (2.1.7)
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2. Loss systems in continuous time

Before proving the theorem some remarks seem to be in order.

Remark 2.1.6. Irreducibility : Communication between environment states is governed
by the matrices Qred(n), see (2.1.3). This representation indicates that irreducibility of
(X,Y ) is the result of an interplay between the one step transition matrix R and the
generator matrix V . Neither R nor V is required to be irreducible for its own. An
important example where the interplay of two absorbing processes, governed by R and V
generate irreducible movements of an inventory, which is represented as an environment,
is described in Example 2.2.2 below.
We emphasize that if V = 0 then R is irreducible and if R is identity matrix then V

must be irreducible.
Furthermore, R(k, k) > 0 is allowed, i.e. the environment may not change at a depar-

ture instant.

Remark 2.1.7. Independence: If Z = (Z(t) : t ≥ 0) is stationary, i.e., for t ≥ 0 holds
P (Z(t) = (n, k)) = π(n, k) = ξ(n)θ(k), for all n, k ∈ E, then for any fixed time instant
t0 we have a product form distribution

π(n, k) = ξ(n) · θ(k), (n, k) ∈ E.

Note, that this does not mean that the marginal Processes X and Y are independent.
Especially X in general is not Markov for its own, although its stationary distribution is
identical to that of a birth-death process with birth rates λ(n) and death rates µ(n), i.e.

ξ =

(
ξ(n) := C−1

n−1∏
i=0

λ(i)

µ(i+ 1)
: n ∈ N0

)
. (2.1.8)

The observation (2.1.8) is remarkable not only because X in general is not a birth-death
process, but also because neither the λ(i) are the effective arrival rates (expected number
of arrivals per time unit) for queue length i nor the µ(i + 1) the effective service rates
(expected maximal number of departures per time unit) for queue length i + 1. In case
of a pure birth-death process without an environment λ(i), µ(i + 1) are the respective
rates.
The conclusion is that both rates are diminished by the influence of the environment

by the same portion. It seems to be contra intuition to us that the reduction of λ(i) goes
in parallel to that of µ(i + 1), while in the running system under queue length i due to
Y entering KB arrivals at rate λ(i) are interrupted in parallel to services of rate µ(i).
The similar problem was noticed already for the case of queueing-inventory processes

with state independent service and arrival rates in [SSD+06, Remark 2.8], but in this
setting clearly the problem of λ(i) versus µ(i+ 1) is still hidden.

Remark 2.1.8. Insensitivity : The statement (2.1.4) of the theorem can be interpreted
as a strong insensitivity property of the system: As long as ergodicity is maintained,
the environment can change drastically without changing the steady state of the queue
length at any fixed time point. An intuitive interpretation of this result seems to be hard.
Especially, this insensitivity can not be a consequence of the form of the control of the
inventory or the availability.

Interpretation: We believe that there is an intuitive explanation of a part of the result.
The main observation with respect to this is:
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2.1. The exponential model

Whenever a customer is admitted to the queue, i.e. not lost, he observes the service
process as that in a conventional M/M/1/∞ queue with state dependent service and
arrival rates, as long as the blocking periods are skipped over.
Saying it the other way round, whenever the environment enters KB and blocks the

service process, the arrival process is blocked as well, i.e. the queueing system is completely
frozen and is revived immediately when the environment enters KW next.
Skipping the problem of i versus i+1 discussed in Remark 2.1.7 this observation might

explain the form of the marginal stationary distribution of the customer process X, but
it does by no means explain the product form of limiting distribution π(n, k) = ξ(n)θ(k).

A similar observation was utilized in [SAH13] in a queueing-inventory system (with
state independent service and arrival rates) to construct a related system which obviously
has the stationary distribution ofX and it is argued that from this follows that the original
system shows the same marginal queue length distribution.
The proven insensitivity does not mean, that the time development of the queue length

processes with fixed λ(n) and µ(n) is the same under different environment behaviour.
This can be seen by considering the stationary sojourn time of admitted customers, which
is strongly dependent of the interruption time distributions (= sojourn time distribution
of Y in KB).
Similarly, multidimensional stationary probabilities for (X(t1), X(t2), . . . , X(tn)) will

clearly depend on the occurrence frequency of the event (Y ∈ KB).

Proof of Theorem 2.1.5 (i). Utilizing the stochastic matrix property Re = e and gener-
ator property V e = 0 we get:

Qred(n)e = (λ(n)IW (R− I) + V ) e = λ(n)IW ( Re︸︷︷︸
=e

− Ie︸︷︷︸
=e︸ ︷︷ ︸

=0

) + V e︸︷︷︸
=0

= 0. (2.1.9)

Using the fact that all entries of R and all non-diagonal entries of V are non-negative
we see that for all k 6= m it holds

(Qred(n))km =

λ(n)IWR︸ ︷︷ ︸
≥0


km

− (λ(n)IW I)km︸ ︷︷ ︸
=0

+ (V )km︸ ︷︷ ︸
≥0

≥ 0. (2.1.10)

(2.1.9) and (2.1.10) together show that the Qred(n) are generator matrices. The explicit
representation (2.1.3) of the matrix Qred(n) is calculating directly.

(ii) (b) ⇒ (a):
The global balance equations of the Markov process (X,Y ) are for (n, k) ∈ E

π(n, k)

1[k∈KW ]λ(n) +
∑

m∈K\{k}

v(k,m) + 1[k∈KW ]1[n>0]µ(n)


= π(n− 1, k)1[k∈KW ]1[n>0]λ(n− 1) +

∑
m∈KW

π(n+ 1,m)R(m, k)µ(n+ 1)

+
∑

m∈K\{k}

π(n,m)v(m, k).

(2.1.11)
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2. Loss systems in continuous time

Inserting the proposed product form solution (2.1.4) for π(n, k) into the global bal-
ance (2.1.11) equations, canceling C−1 yields

θ(k)
n−1∏
i=0

λ(i)

µ(i+ 1)

1[k∈KW ]λ(n) +
∑

m∈K\{k}

v(k,m) + 1[k∈KW ]1[n>0]µ(n)


= θ(k)

n−2∏
i=0

λ(i)

µ(i+ 1)
1[k∈KW ]1[n>0]λ(n− 1) +

∑
m∈KW

θ(m)
n∏
i=0

λ(i)

µ(i+ 1)
R(m, k)µ(n+ 1)

+
∑

m∈K\{k}

θ(m)
n−1∏
i=0

λ(i)

µ(i+ 1)
v(m, k),

(2.1.12)

and multiplication with
∏n−1
i=0

(
λ(i)
µ(i+1)

)−1
yields

θ(k)

1[k∈KW ]λ(n) +
∑

m∈K\{k}

v(k,m) + 1[k∈KW ]1[n>0]µ(n)


= θ(k)

µ(n)

λ(n− 1)
1[k∈KW ]1[n>0]λ(n− 1) +

∑
m∈KW

θ(m)
λ(n)

µ(n+ 1)
R(m, k)µ(n+ 1)

+
∑

m∈K\{k}

θ(m)v(m, k)

⇐⇒ θ(k)

1[k∈KW ]λ(n) +
∑

m∈K\{k}

v(k,m) + 1[k∈KW ]1[n>0]µ(n)


= θ(k)µ(n)1[k∈KW ]1[n>0] +

∑
m∈KW

θ(m)λ(n)R(m, k)

+
∑

m∈K\{k}

θ(m)v(m, k)

⇐⇒ 0 = −θ(k)

1[k∈KW ]λ(n) +
∑

m∈K\{k}

v(k,m)


+
∑

m∈KW

θ(m)λ(n)R(m, k) +
∑

m∈K\{k}

θ(m)v(m, k)

⇐⇒ 0 = θ(k)

−
1[k∈KW ]λ(n)(1−R(k, k)) +

∑
m∈K\{k}

v(k,m)

︸ ︷︷ ︸
=:qred(n,k,k)

+
∑

m∈K\{k} θ(m)
(
λ(n)R(m, k)1[m∈KW ] + v(m, k)

)︸ ︷︷ ︸
=:qred(n,m,k)

(2.1.13)
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2.1. The exponential model

⇐⇒ θQred(n) = 0,

which is (for all n ∈ N0) the condition (2.1.6) and (2.1.7).
By assumption (2.1.6) there exists a stochastic solution to θ · Qred(0) = 0, which

according to requirement (2.1.7) is a solution of θQred(n) = 0.
Taking this θ in (2.1.12) provides a solution of the global balance equations (2.1.11).

Thus, with π(n, k) = C−1
∏n−1
i=0

λ(i)
µ(i+1)θ(k) we found a positive stochastic solution π of

the global balance equations (2.1.11). By assumption the process (X,Y ) is regular and
irreducible, therefore this π is the unique steady-state distribution of (X,Y ).
(ii) (a) ⇒ (b):

Because π is stochastic, summability (2.1.5) holds. Insert the stochastic vector of product
form (2.1.4) into (2.1.11). As shown in the part (b)⇒ (a) of the proof this leads to (2.1.13)
and we have found a solution of (2.1.6) which solves (2.1.7) for all n ∈ N as well.

Proposition 2.1.9. For a loss system the following three statements are equivalent

(a) Q is irreducible.

(b) All matrices Qred(n) n ∈ N0 are irreducible.

(c) IW (R− I) + V is irreducible.

Proof. To simplify notation we abbreviate in this proofM := IW (R−I)+V ,M ∈ RK×K .
Consider the directed transition graph of M , with vertices K and edges E defined by
km ∈ E ⇐⇒ Mkm > 0. We will call a finite path from k0 to kN in M a sequence of
vertices (k0, ..., kN ), whereMki,ki+1

> 0 for all i ∈ {0, . . . , N−1}. The length of this path
– number of edges – is N . Similarly we define a path in matrices Qred(n) and Q.
(b) ⇔ (c): For any k,m ∈ K and λ(n) ∈ R+ it holds

(IW (R− I) + V )km > 0⇐⇒ (λ(n)IW (R− I) + V )km > 0.

(a) ⇒ (c): Let k and m be arbitrary but fixed states from K with k 6= m. Because Q
is irreducible, there exists a finite path of length N ≥ 1(

(n0, k0), ..., (nN , kN )
)

with (n0, k0) := (1, k) and (nN , kN ) := (1,m), such that q ((ni, ki), (ni+1, ki+1)) > 0 for
all i ∈ {0, ..., N−1}. In a loss system, there are only three possibilities for positive entries
q ((ni, ki), (ni+1, ki+1)):

q ((ni, ki), (ni+1, ki+1)) = λ(ni) > 0 in case ni+1 = ni + 1, ki = ki+1,

and ki ∈ KW ,

q ((ni, ki), (ni+1, ki+1)) = µ(ni)R(ki, ki+1) > 0 in case ni+1 = ni − 1, and ki ∈ KW ,

q ((ni, ki), (ni+1, ki+1)) = v(ki, ki+1) > 0 in case ni = ni+1 and ki 6= ki+1.

Therefore for the sequence (k0, ..., kN ) with k0 = k and kN = m andM := IW (R−I)+V
it hold for all ki 6= ki+1

Mki,ki+1
= 1[ki∈KW ]R(ki, ki+1) + v(ki, ki+1) ≥

{
R(ki, ki+1) > 0 if ni+1 = ni − 1,

v(ki, ki+1) > 0 if ni+1 = ni.
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2. Loss systems in continuous time

Removing all ki with ki = ki+1 from the sequence (k0, ..., kN ) we get a finite path
(k
′
0, ..., k

′
N ′) in M from k to m.

(c) ⇒ (a): We have to prove, that for any n, ` ∈ N0 and any k,m ∈ K with (n, k) 6=
(`,m) there exists a finite path

(
(n0, k0), . . . , (nN , kN )

)
from (n, k) to (`,m) in Q i.e

(n0, k0) = (n, k), (nN , kN ) = (`,m) and q ((ni, ki), (ni+1, ki+1)) > 0 for all i ∈ {0, ..., N −
1}. Before we will prove this statement for any states (n, k) 6= (`,m) we show how to
construct finite paths in E for particular states.

(i) For any k and any m with k 6= m and Mkm > 0 and any n ∈ N0 it is possible to
construct a path of maximal length 2 from (n, k) to (n,m) in Q: If v(k,m) > 0
take the path

(
(n, k), (n,m)

)
since it holds q((n, k), (n,m)) = v(k,m) > 0. If

v(k,m) = 0 and Mkm > 0 then it must hold (IW (R − I))km > 0. This implies
k ∈ KW and R(k,m) > 0. In this case, use the path

(
(n, k), (n + 1, k), (n,m)

)
in

E. For this path it holds q((n, k), (n+ 1, k)) = λ(n) > 0 and q((n+ 1, k), (n,m)) =
1[k∈KW ]µ(n+ 1)R(k,m) > 0.

(ii) For any k ∈ K and m ∈ K with k 6= m and any n ∈ N0 there is a finite path(
(n0, k0), . . . , (nN , kN )

)
from (n, k) to (n,m) in Q: Because M is irreducible there

is a finite path (k0, . . . , ks) from k = k0 to m = ks. A path in M means that for
each edge (ki, ki+1) it holdsMki,ki+1

> 0. Using construction of path in Q described
in (i) for each edge (ki, ki+1), we construct a path in Q from (n, k0) to (n, ks). Its
size is less or equal 2s.

(iii) For any k ∈ K and any n ∈ N0 there exists some state m ∈ K with a finite path
from (n, k) to (n + 1,m) in Q: If k ∈ KW then m = k and the path in Q is(
(n, k), (n + 1, k)

)
. It holds q((n, k), (n + 1,m)) = λ(n) > 0. If k ∈ KB take any

m ∈ KW and construct a path
(
(n0, k0), . . . , (nN , kN )

)
from (n, k) to (n,m) using

method (ii). Finally paste (n+ 1,m) to the path.

(iv) For any k ∈ K and any n ∈ N there exists some statem ∈ K with a finite path (n, k)
to (n−1,m) in Q: If k ∈ KW then take any m such that R(k,m) > 0 and the path
in Q is

(
(n, k), (n−1,m)

)
. It holds q((n, k), (n−1,m)) = 1[k∈KW ]µ(n)R(k,m) > 0.

If k ∈ KB take any m′ ∈ KW and m ∈ K such that R(m′,m) > 0. Construct a
path (n1, k1), . . . , (nN , kN ) from (n, k) to (n,m′) using method (ii). Finally add
(n− 1,m) to the path.

Let n, ` ∈ N0 and k,m ∈ K arbitrary states with (n, k) 6= (`,m). If n = ` we can use the
method (ii) to construct a path from (n, k) to (`,m). If n < ` then we use the method
(iii) `−n times to construct a path to some element (`,m′) and then append a path from
(`,m′) to (`,m) constructed by the method (ii) to it. Similarly, if n > ` then we use the
method (iv) n− ` times to construct a path to some element (`,m′) and then append a
path from (`,m′) to (`,m) constructed by the method (ii) to it.

Most of the examples in this thesis deal with loss systems with constant arrival rate λ.
To simplify analysis for these systems we summarize the results for this special case of
Theorem 2.1.5 and some results Proposition 2.1.9 in the next corollary.
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2.1. The exponential model

Corollary 2.1.10. 1Consider the framework of Theorem 2.1.5 with a Poisson-λ arrival
stream (which is interrupted when the environment process stays in KB) i.e. λ(n) = λ
for all n ∈ N0.

(i) Denote
Qred := λIW (R− I) + V. (2.1.14)

Then the matrix Qred is an irreducible generator matrix for some homogeneous
Markov processes

(ii) For the process (X,Y ) the following properties are equivalent:

(a) (X,Y ) is ergodic with product form steady-state distribution

π(n, k) = ξ(n)θ(k) (n, k) ∈ E, (2.1.15)

with
ξ(n) := C−1 λn∏n−1

i=0 µ(i+ 1)
. (2.1.16)

(b) The summability condition

C :=
∞∑
n=0

λn∏n−1
i=0 µ(i+ 1)

<∞ (2.1.17)

holds, and the equation

θ (λIW (R− I) + V )︸ ︷︷ ︸
=Qred

= 0. (2.1.18)

admits a unique strictly positive stochastic solution.

Proof. (i) Qred is a generator according to Theorem 2.1.5 (i). By assumption Q is irre-
ducible, from Proposition 2.1.9 follows Qred(0) = Qred is irreducible.
(ii) follows from Theorem 2.1.5 (ii). Because of λ(n) = λ for all n holdsQred(0) = Qred(n)

and the condition (2.1.7) is trivially valid. Equation (2.1.18) is the condition (2.1.6) ex-
pressed via matrix representation (2.1.2) of Qred(0).

Lemma 2.1.11. For an ergodic loss system (X(t), Y (t)) with finite set K it holds for all
n ∈ N0

lim
t→∞

P (X(t) = n|Y (t) ∈ KW ) =

∑
k∈KW π(n, k)∑

n∈N0

∑
k∈KW π(n, k)

= C−1
n−1∏
i=0

λ(i)

µ(i+ 1)

and

C :=
∞∑
n=0

n−1∏
i=0

λ(i)

µ(i+ 1)
<∞.

1The implication (b) ⇒(a) is published as [KD15a, Theorem 1].
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2. Loss systems in continuous time

Proof. Summation of the global balance equations over k ∈ K leads to

∑
k∈K

π(n, k)

1[k∈KW ]λ(n) +
∑

m∈K\{k}

v(k,m)

︸ ︷︷ ︸
−v(k,k)

+1[k∈KW ]1[n>0]µ(n)


=
∑
k∈K

π(n− 1, k)1[k∈KW ]1[n>0]λ(n− 1) +
∑
k∈K

∑
m∈KW

π(n+ 1,m)R(m, k)µ(n+ 1)

+
∑
k∈K

∑
m∈K\{k}

π(n,m)v(m, k)

⇐⇒
∑
k∈KW

π(n, k)
(
λ(n) + 1[n>0]µ(n)

)
=
∑
k∈KW

π(n− 1, k)1[n>0]λ(n− 1) +
∑

m∈KW

π(n+ 1,m)
∑
k∈K

R(m, k)︸ ︷︷ ︸
=1

µ(n+ 1)

+
∑
m∈K

π(n,m)
∑
k∈K

v(m, k)︸ ︷︷ ︸
=0

⇐⇒
∑
k∈KW

π(n, k)
(
λ(n) + 1[n>0]µ(n)

)
=
∑
k∈KW

π(n− 1, k)1[n>0]λ(n− 1) +
∑

m∈KW

π(n+ 1,m)µ(n+ 1).

We decide the last equation by
∑

`∈N0

∑
k∈KW π(`, k) and get with

ξW (n) :=

∑
k∈KW π(n, k)∑

`∈N0

∑
k∈KW π(`, k)

.

⇐⇒ ξW (n)
(
λ(n) + 1[n>0]µ(n)

)
= ξW (n−1)1[n>0]λ(n−1)+ξW (n+1)µ(n+1). (2.1.19)

Equation (2.1.19) is the steady-state equation for a some irreducible birth-and-death
process with positive birth rates λ(n), positive death rates µ(n), and positive normalized
solution ξW (n).
It therefore holds ξW (n) =

∏n−1
i=0

λ(i)
µ(i+1)ξW (0). Therefore C =

∑∞
n=0

∏n−1
i=0

λ(i)
µ(i+1) =∑∞

n=0
ξW (n)
ξW (0) = 1

ξW (0) <∞.

Remark 2.1.12. In Lemma 2.1.11 we required the set K to be finite in order to keep the
proof simple. The problem with an infinite set K lies in the expression∑

k∈K
π(n, k)

∑
m∈K\{k}

v(k,m)

︸ ︷︷ ︸
−v(k,k)
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2.1. The exponential model

on the LHS of the very first equation in the proof. We need to prove that this expression
is finite. In this case all the sums in equations are absolute convergent series and we
can use the same proof as for finite K. For example this expression is bounded if V is
uniformizable, i.e. if it holds

sup
k∈K
|v(k, k)| <∞. (2.1.20)

Therefore the statements Lemma 2.1.11 are also true for infinite set K if (2.1.20) holds.

The following corollary states that, for ergodic loss systems with constant arrival rate
λ and finite set K, the product-form distribution (2.1.15) with particular ξ and θ follows
directly. The conditions (2.1.17), (2.1.16) and (2.1.18) are in this case redundant.

Corollary 2.1.13. Given an ergodic loss system with constant arrival rate λ and finite
set K then it holds

π(n, k) = ξ(n)θ(k)

with ξ defined in (2.1.16) and with θ the unique positive stochastic solution of the equa-
tion (2.1.18).

Proof. From Lemma 2.1.11 we have summability condition (2.1.17). According to Corol-
lary 2.1.10 (i) Qred ∈ RK×K is an irreducible generator matrix. K is finite therefore there
exists a unique positive stochastic solution of the equation (2.1.18). The particular prod-
uct form of π in (2.1.15) with (2.1.16) and (2.1.18) follows from Corollary 2.1.10 (ii).

Corollary 2.1.14. Given an ergodic loss system with finite set K with product-form
steady-state distribution, then it holds

π(n, k) = ξ(n)θ(k)

with ξ defined in (2.1.4) and θ is unique positive stochastic solution of the equations (2.1.7).

Proof. If the steady-state distribution has a product form then it holds for any n ∈ N0

ξ(n) = lim
t→∞

P (X(t) = n) = lim
t→∞

P (X(t) = n|Y (t) = k)
Lemma 2.1.11

= C−1
n−1∏
i=0

λ(i)

µ(i+ 1)
.

Applying Theorem 2.1.5 (ii) proves that θ is unique positive stochastic solution of the
equations (2.1.7).

The next examples comment on different forms of establishing product form equilibrium
which may arise in the realm of Theorem 2.1.5.

Example 2.1.15. 2There exist non-trivial ergodic loss systems with non constant (i.e.,
state dependent) arrival rates λ(n) in a random environment which have a product form
steady-state distribution. This is verified by the following example.
In any ergodic loss system with finite environment state space K and V = 0 it holds

for the stochastic solutions θn of the equations (2.1.6) and (2.1.7)

θn (λ(n)IW (R− I) + V ) = 0⇐⇒ θnIW (R− I) = 0.

2This is a more detailed version of [KD15a, Example 1] but with a finite environment state space.
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2. Loss systems in continuous time

Because the process is ergodic and V = 0, R must be irreducible and IW = I. The
stochastic vectors θn are then the unique positive stochastic solution of the equations

θn(R− I) = 0 ∀n ∈ N0.

Therefore θn = θ0 =: θ for all n. The condition C :=
∑∞

n=0

∏n−1
i=0

λ(i)
µ(i+1) < ∞ follows

from Lemma 2.1.11.

Example 2.1.16. 3There exist a non-trivial ergodic loss system in random environments
which has a product form steady-state distribution if and only if the arrival rates are
independent of the queue lengths, i.e. λ(n) ≡ λ . This is verified by the following example
(which describes a queueing-inventory system under (r, S) policy with (r = 1, S = 2), as
will be seen in Section 2.2.1, Definition 2.2.1). We have an environment

K = {0, 1, 2}, with blocking set KB = {0},

stochastic matrix R and and the generator matrix V given as

R =

 1 0 0
1 0 0
0 1 0

 , V =

 −ν 0 ν
0 −ν ν
0 0 0

 .

If this system has a product form steady-state distribution then according to Corollary
2.1.14 this distribution has the form (2.1.4) and we can apply (2.1.7) here.
Clearly, if λ(n) ≡ λ are equal, the equations

θ ·Qred(n) = 0, n ∈ N0, (2.1.21)

with

Qred(n) =

 −ν 0 ν
λ(n) −(λ(n) + ν) ν

0 λ(n) −λ(n)


have a common stochastic solution.
On the other hand, the solutions of (2.1.21) are

θn = (θn(0), θn(1), θn(2)) = C−1
n

(
λ(n)

ν
, 1,

λ(n) + ν

λ(n)

)
, n ∈ N0 . (2.1.22)

We conclude

∀n ∈ N0 : θn = θn+1 =⇒ θn(0)

θn(1)
=
θn+1(0)

θn+1(1)
⇐⇒ λ(n) = λ(n+ 1).

Remark 2.1.17. In Section 2.1.2 we will show in the course of proving a companion of
Theorem 2.1.5 for loss systems with finite waiting room that more restrictive conditions
on the environment are needed. It turns out that the construction in the proof of the
Theorem 2.1.18 will provide us with more general constructions for examples as those
given here, see Remark 2.1.22 below.

3This is a [KD15b, Example 2], but with a more general statement. In this thesis the statement is about
any product form instead of a particular product form in [KD15b, Example 2].
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2.1. The exponential model

2.1.1.2. Limiting case

Consider a process Z as described in Section 2.1.1 and set the service times to zero.
That means the service rate becomes infinite. Obviously the system will never hold
customers in the queue once it became empty. Therefore, for the long-term-behavior
analysis we can restrict the state space to Eµ=∞ := {0}×K, and consider a non-explosive
irreducible process Zµ=∞ = (X,Y ) = ((X(t), Y (t)) : t ∈ [0,∞)) on Eµ=∞ with generator
Qµ=∞ := (qµ=∞ ((0, k), (0,m)) : (0, k), (0,m) ∈ Eµ=∞)

qµ=∞((0, k), (0,m)) = λ(0)R(k,m), k ∈ KW , n > 0, (2.1.23)
qµ=∞((0, k), (0,m)) = v(k,m) ∈ R+

0 , k 6= m, (2.1.24)
qµ=∞((0, k), (0,m)) = 0, otherwise for (0, k) 6= (0,m).

(2.1.23) means that, as soon a customer arrives to the empty and not blocked queue
with rate λ(0) he is immediately served and the environment changes from k to m with
probability R(k,m). (2.1.24) means that the environment changes its state from k to m
with rate v(k,m).
The process Zµ=∞ = (X,Y ) = ((X(t), Y (t)) : t ∈ [0,∞)) is ergodic if and only if there

exists a unique positive steady-state distribution πµ=∞ with

πµ=∞Qµ=∞ = 0.

The matrix Qµ=∞ is related to matrix Qred(0) := (λ(0)IW (R − I) + V ) defined in
Theorem 2.1.5, namely every entry Qµ=∞

(
(0,m), (0, k)

)
equals the entry Qred(0)(k,m).

According to Theorem 2.1.5, in an ergodic system the matrix Qred(0) := (λ(0)IW (R −
I)+V ) has a unique strictly positive steady-state solution θ of the equation θQred(0) = 0.
Therefore for any ergodic loss system Z with finite service rates and R, V , K, KW as
Zµ=∞ which has product-form steady-state distribution π(n, k) = ξ(n)θ(k), and the same
parameters λ(0), it holds

θ(k) = πµ=∞(0, k) ∀k ∈ K.

Thus, for loss systems with finite service rates defined in Section 2.1.1, a system with zero
service times can be used to discover the marginal distribution θ. In [KN13] and [KML13]
the authors use this fact to obtain the marginal steady-state distribution of an inventory.
An interesting property of the distribution πµ=∞ is that it corresponds to a limiting case

of steady-state distribution of a loss system with positive service time when µ(1)→∞.
We demonstrate this by looking at the limit of queuing distribution ξ(n) as function of
µ(1)

lim
µ(1)→∞

ξ(n) = lim
µ(1)→∞

∏n−1
i=0

λ(i)
µ(i+1)∑∞

n=0

∏n−1
i=0

λ(i)
µ(i+1)

=

{
1 for n = 0,

0 otherwise.
(2.1.25)

Consequently it holds

πµ=∞(0, k) = θ(k) = lim
µ(1)→∞

ξ(0)θ(k) = lim
µ(1)→∞

π(0, k). (2.1.26)
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2. Loss systems in continuous time

Remark. Let Z be an ergodic loss system with finite service rates µ := (µ(n) : n ∈ N) as
defined in Section 2.1.1 and with steady-state distribution π. Let (µu)u∈N0 be a sequence
of service rate vectors with elements from (R+)N, e.g. µu = (µu ∈ R+ : u ∈ N0), such
that µ0 = µ and

µu(n) = µ(n), ∀u,∀n > 1, and µu(1)↗∞ for u→∞.

We construct a sequence of processes Zu from Z =: Z0, by changing service rate param-
eters from µ to µu. The resulting processes Zu are ergodic, each with a unique positive
steady-state distribution πu. There exists a pointwise limiting measure of the sequence
(πu : u ∈ N0) which we denote by

π∞ := lim
u→∞

πu.

Using the same calculation as we performed for πµ=∞ in (2.1.25) and (2.1.26) we see that

π∞(n, k) = lim
u→∞

πu(n, k) =

{
θ(k), for n = 0 ,∀k,
0, for ∀n > 0 ,∀k.

That means the discrete measure π∞ is stochastic with support {0} × K and is equal
πµ=∞ on {0}×K. From point-wise convergence limu→∞ πu(n, k) = π∞(n, k) we conclude
weak convergence πu −→ π∞.

2.1.2. Finite capacity loss systems

In this section we study the systems from Section 2.1.1 under the additional restriction
that the capacity of the waiting room is finite. That is, we now consider loss systems
in the traditional sense with the additional feature of losses due to the environment’s
restrictions on customers’ admission and service
Recall, that for the pure exponential single server queueing system with state dependent

rates and N ≥ 0 waiting places the state space is E = {0, 1, . . . , N,N + 1} and the
queueing process X is ergodic with stationary distribution π = (π(n) : n ∈ E) of the
form

π(n) = C−1
n−1∏
i=0

λ(i)

µ(i+ 1)
, n ∈ E. (2.1.27)

If the queueing system with infinite waiting room and the same rates λ(i), µ(i) is ergodic,
the stationary distribution π in (2.1.27) is simply obtained by conditioning the stationary
distribution of this infinite system onto E. (Note, that ergodicity in the finite waiting
room case is granted by free, without referring to the infinite system.)
We will show, that a similar construction by conditioning is in general not possible for

the loss system in a random environment. The structure of the environment process will
play a crucial role for enabling such a conditioning procedure.
We take the interaction between the queue length process X and the environment

process Y of the same form as in Section 2.1.1, with R and V of the same form, and
λ(i) > 0 for i = 0, . . . , N , and µ(i) > 0 for i = 1, . . . , N + 1. The state space is
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2.1. The exponential model

E := {0, . . . , N + 1} ×K. The non-negative transition rates of (X,Y ) are for (n, k) ∈ E

q((n, k), (n+ 1, k)) = λ(n), k ∈ KW , n < N + 1,

q((n, k), (n− 1,m)) = µ(n)R(k,m), k ∈ KW , n > 0,

q((n, k), (n,m)) = v(k,m) ∈ R+
0 , k 6= m,

q((n, k), (i,m)) = 0, otherwise for (n, k) 6= (i,m) ∈ E.

The first step of the investigation is nevertheless completely parallel to Theorem 2.1.5.

Theorem 2.1.18. 4

(i) Denote for n ∈ {0, . . . , N + 1}

qred(n, k,m) = λ(n)R(k,m)1[k∈KW ] · 1[n∈{0,...,N}] + v(k,m), k 6= m

qred(n, k, k) = −
(

1[k∈KW ] · 1[n∈{0,...,N}]λ(n)(1−R(k, k)) +
∑

m∈K\{k}

v(k,m)
)

(2.1.28)
and

Qred(n) = (qred(n, k,m) : k,m ∈ K).

Then the matrices Qred(n) are generator matrices for some homogeneous Markov
processes.

(ii) If the process (X,Y ) is ergodic denote its unique steady-state distribution by

π = (π(n, k) : (n, k) ∈ E := {0, . . . , N + 1} ×K).

Then the following three properties are equivalent:

(a) (X,Y ) is ergodic on E with product form steady-state distribution

π(n, k) = C−1
n−1∏
i=0

λ(i)

µ(i+ 1)
θ(k) n ∈ {0, . . . , N + 1}, k ∈ K. (2.1.29)

(b) The equation
θ ·Qred(0) = 0 (2.1.30)

admits a strict positive stochastic solution θ = (θ(k) : k ∈ K) which solves also

∀n ∈ {0, . . . , N + 1} : θ ·Qred(n) = 0. (2.1.31)

(c) The equation
η · V = 0 (2.1.32)

admits a strict positive stochastic solution.
The set KW ⊂ K is a closed set for the Markov chain on state space K with
transition matrix R, i.e.,

∀k ∈ KW :
∑

m∈KW

R(k,m) = 1,

4The implication (iii)⇒(i) is published as [KD15a, Theorem 2].
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2. Loss systems in continuous time

and the restriction η(W ) := (η(m) : m ∈ KW ) of η to KW solves the equation

η(W ) = η(W ) ·R(W ), (2.1.33)

where
R(W ) := (R(k,m) : k,m ∈ KW ) (2.1.34)

is the restriction of R to KW .

Proof. The proof of (i) is similar to that of Theorem 2.1.5 (i), and in (ii) the equivalence
of (a) and (b) is proven in almost identical way as that of Theorem 2.1.5 (ii) (with the
obvious slight changes due to having the X-component finite) and are therefore omitted.

We next show
(ii) (a) ⇒ (c):

The global balance equations of the Markov process (X,Y ) are for (n, k) ∈ E

π(n, k)

1[k∈KW ] · 1[n∈{0,...,N}]λ(n) +
∑

m∈K\{k}

v(k,m) + 1[k∈KW ]1[n>0]µ(n)


= π(n− 1, k)1[k∈KW ]1[n>0]λ(n− 1) +

∑
m∈KW

π(n+ 1,m)R(m, k)µ(n+ 1) · 1[n∈{0,...,N}]

+
∑

m∈K\{k}

π(n,m)v(m, k).

(2.1.35)
Inserting the proposed product form solution (2.1.29) for π(n, k) into the global balance

equations (2.1.35) and proceeding in the same way as in the proof of Theorem 2.1.5 yields

0 = −θ(k)

1[k∈KW ] · 1[n∈{0,...,N}]λ(n) +
∑

m∈K\{k}

v(k,m)


+
∑

m∈KW

θ(m)λ(n)R(m, k) · 1[n∈{0,...,N}] +
∑

m∈K\{k}

θ(m)v(m, k).

(2.1.36)

For n→ N + 1 (2.1.36) turns to

θ(k)

 ∑
m∈K\{k}

v(k,m)

 =
∑

m∈K\{k}

θ(m)v(m, k), (2.1.37)

which verifies (2.1.32) with η := θ.
For n < N + 1 (2.1.36) turns to

θ(k)1[k∈KW ]λ(n)+θ(k)
∑

m∈K\{k}

v(k,m)

︸ ︷︷ ︸
(∗)

=
∑

m∈KW

θ(m)λ(n)R(m, k)+
∑

m∈K\{k}

θ(m)v(m, k)

︸ ︷︷ ︸
(∗∗)

where from (2.1.37) the expressions (∗∗) and (∗) cancel and we arrive at

θ(k)1[k∈KW ]λ(n) =
∑

m∈KW

θ(m)λ(n)R(m, k). (2.1.38)
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2.1. The exponential model

Because (X,Y ) is ergodic, θ is strictly positive, and we conclude (set k ∈ KB in (2.1.38)
which makes the left side zero)

R(m, k) = 0, ∀m ∈ KW , k ∈ KB,

which shows that KW is a closed set for the Markov chain governed by R.
Now set k ∈ KW in (2.1.38) which makes the left side strictly positive and realize that

this after canceling λ(n) is exactly (2.1.33).
This part of the proof is finished.

(ii) (c)⇒ (b):

For proving the reversed direction we reconsider the previous part (a) ⇒ (c) of the
proof: The strict positive stochastic solution of

η · V = 0, (2.1.39)

which is given by assumption (2.1.32), yields the required solution for n→ N + 1 of

θ ·Qred(N + 1) = 0.

If KW ⊂ K is a closed set for the Markov chain on state space K with transition matrix
R we obtain

R(m, k) = 0, ∀m ∈ KW , k ∈ KB,

and therefore for all n ∈ {0, 1, . . . , N}

θ ·Qred(n) = 0

reduces for k ∈ KB to the respective expression in

η · V = 0.

It remains for all n ∈ {0, 1, . . . , N} and for k ∈ KW to show that for k ∈ KW the
respective expression in

θ ·Qred(n) = 0

is valid. This follows by considering

η(k)1[k∈KW ]λ(n)+η(k)
∑

m∈K\{k}

v(k,m)

︸ ︷︷ ︸
(∗)

=
∑

m∈KW

η(m)λ(n)R(m, k)+
∑

m∈K\{k}

η(m)v(m, k)

︸ ︷︷ ︸
(∗∗)

and remembering that the expressions (∗∗) and (∗) cancel. The residual terms are equal
by the assumption (2.1.33).
This finishes the proof.

The interesting insight is that from the existence of the product form steady-state
distribution π on E = {0, . . . , N + 1} × K implicitly restrictions on the form of the
movements of the environment emerge which are not necessary in the case of infinite
waiting rooms. (As indicated above, such restrictions are not necessary too in the pure
queueing system framework.)
The proof of Theorem 2.1.18 has brought out the following additional, somewhat sur-

prising, insensitivity property.
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Corollary 2.1.19. 5Whenever (X,Y ) is ergodic with product form steady-state distribu-
tion

π(n, k) = C−1
n−1∏
i=0

λ(i)

µ(i+ 1)
θ(k) n ∈ {0, . . . , N + 1}, k ∈ K

for some (positive) parameter setting (λ(i) : i = 0, 1, . . . , N), (µ(i) : i = 1, . . . , N+1) with
an environment characterized by (K,KB, V,R), then for this same environment (X,Y )
is ergodic with product form steady-state distribution with the same θ for any (positive)
parameter setting for the arrival and service rates.

Proof. This becomes obvious at the step where we arrived at (2.1.38) and we see that the
specific shape of the sequence of the λ(i) do not matter. The specific µ(i) are canceled
in the early steps of the proof already.

Example 2.1.20. We describe a class of examples of environments which guarantee that
the conditions of Theorem 2.1.18 are fulfilled. The construction is in three steps.
Take for V a generator of an irreducible Markov process on K with stationary distri-

bution θ, which fulfills for all k ∈ KW the partial balance condition

θ(k)
∑

m∈KW

v(k,m) =
∑

m∈KW

θ(m)v(m, k) (2.1.40)

and sup(−v(k, k) : k ∈ KW ) <∞.
Denote by V (W ) the restriction of V ontoKW which has stationary distribution θ(W ) :=

(θ(k)/(
∑

m∈KW θ(m)) : k ∈ KW ), see [Kel79, Exercise 1.6.2, p. 27].
Take for R(W ) (see (2.1.34)) a uniformization chain of V (W ), see [Kei79, Chapter 2,

Section 2.1], e.g., (with I the identity matrix on KW )

R(W ) := I + sup(−v(k, k) : k ∈ KW )−1V (W ),

which is stochastic and has equilibrium distribution θ(W ) := (θ(k)/(
∑

m∈KW θ(m)) : k ∈
KW ) as well.
(R(k,m) : k ∈ KB,m ∈ K) can be arbitrarily selected, e.g. the identity matrix on KB.
This construction ensures that the restriction η(W ) := (η(m) : m ∈ KW ) of η to KW

solves the equation (2.1.33)
η(W ) = η(W ) ·R(W ).

Remark 2.1.21. The construction in Example 2.1.20 may seem to produce a narrow class of
examples, but this is not so: All reversible V fulfill the partial balance condition (2.1.40).

Remark 2.1.22. The construction above produces another example contributing to the
discussion at the end of Section 2.1.1.1 on the question which particular product forms
can occur, and which form of the environment and the arrival and service rate patterns
may interact to result in product form equilibrium for loss systems with infinite waiting
room. We only have to notice that the equations for n < N + 1 are exactly those which
occur for all n ∈ N0 in the setting of Theorem 2.1.5.
The cautious reader will already have noticed that the conditions in (ii) (iii) of Theorem

2.1.18 provide a similar more abstract example for the discussion on Theorem 2.1.5 at
the end of Section 2.1.1.1.

5published as [KD15a, Corollary 1 in Section 3]
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Remark 2.1.23. We should point out that in [SSD+06, Section 6] queueing-inventory
models with finite waiting room are investigated with a resulting “quasi product form”
steady-state distribution. The respective theorems there do not fit into the realm of
Theorem 2.1.18 because the state space is not a product space as in Theorem 2.1.18,
where we have irreducibility on E = {0, 1, . . . , N,N + 1}.
The difference is that in [SSD+06, Section 6] the element (in notation of the present

paper) (N + 1, 0) is not a feasible state.
The results there can be considered as a truncation property of the equilibrium of the

system with infinite waiting room onto the feasible state space under restriction to finite
queues.

2.1.3. Loss systems and matrix-geometric methods

In this section we will analyze loss systems from the point of view of matrix-geometric
methods and – related to them – the operator-analytic methods. The matrix-geometric
method is a universal and powerful tool to analyze quasi birth-death (QBD) processes.
They were popularized in 1970s and are of increasing importance in applied probability
nowadays. Loss systems are special cases of QBD processes if the queue length is called
level and the environment states are called phase.
We start with loss system with constant arrival rates λ and constant service rate µ.

The resulting loss system is then a level-independent QBD process. We also restrict the
number of environment states to be finite, in order to apply the results of [Neu81] and
[LR99] directly.

Definition 2.1.24 (Level-independent QBD with finite number of phases). Let Z =
(X(t), Y (t) : t ∈ R0) be a level-independent quasi birth-death process on a state space
N0 ×K, where X(t) ∈ N0 describes a level and Y (t) ∈ K describes a phase. The set K
is finite. The generator Q of Z has tridiagonal matrix block form.

Q =


A

(0)
1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


with matrices A0, A

(0)
1 , A1, A2 ∈ RK×K . The generator Q is assumed to be irreducible.

We call this system a level-independent QBD-process with finite number of phases.
We define the generator

A := A2 +A1 +A0

which plays an important role in stability analysis of QBD processes.

Definition 2.1.25. For many of the statements in this Section 2.1.3 it is convenient to
partition π ∈ [0, 1]N0×K – the stochastic solution of the equation πQ = 0 – by levels

π = (π(0), π(1), π(2), . . . ) (2.1.41)

with
π(n) := (π(n, k) : k ∈ K), n ∈ N0. (2.1.42)
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2. Loss systems in continuous time

Definition 2.1.26 (Loss system as level-independent QBD with finite number of phases).
Consider a loss system Z = (X(t), Y (t) : t ∈ R+

0 ) as defined in Section 2.1.1 with
irreducible generator Q, finite set K of environment states, constant arrival rate λ, and
constant service rate µ. Then we have a special case of QBD defined in Definition 2.1.24
with

A
(0)
1 = −λIW + V,

A2 = µIWR, A1 = −(µ+ λ)IW + V, A0 = λIW

and A := µIWR− (µ+ λ)IW + V + λIW = µIW (R− I) + V.

Lemma 2.1.27. Given a loss system as in Definition 2.1.26, then the matrix A is irre-
ducible.

Proof. For any m ∈ K and any k ∈ K with m 6= k it holds

(IW (R− I) + V )km > 0⇐⇒
(
µIW (R− I) + V

)
km︸ ︷︷ ︸

=Akm

> 0.

Therefore matrix A is irreducible if and only if matrix IW (R− I) +V is irreducible. The
irreducibility of IW (R− I) + V follows from irreducibility of Q according to Proposition
2.1.9.

Proposition 2.1.28. A loss system as defined in Definition 2.1.26 is positive recurrent
if and only if µ > λ, it is null recurrent if and only if µ = λ, and it is transient if and
only if µ < λ.

Proof. According to Lemma 2.1.27 the matrix A is irreducible, therefore we can apply
[LR99, Theorem 7.2.4], which says, that the process is positive recurrent if and only if

xA2e > xA0e

where x is the unique stochastic solution of the equation xA = 0. For the proposition
statement we do not need to know x exactly, it is sufficient to know that it is stochastic
and positive. It is positive because A is irreducible and finite. We substitute A2 = µIWR
and A0 = λIW in the inequality above

xµIW Re︸︷︷︸
=e

> xλIWe⇐⇒ µ (xIWe)︸ ︷︷ ︸
>0

> λ (xIWe)︸ ︷︷ ︸
>0

.

Similarly according to [LR99, Theorem 7.2.4] the process is null recurrent if and only if

xA2e = xA0e⇐⇒ µ = λ

and it is transient if and only if

xA2e < xA0e⇐⇒ µ < λ.
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2.1. The exponential model

Loss systems defined in Definition 2.1.26 are special case of level-dependent QBD with
product form steady-state probability, where level is independent from phase, analyzed
in [LR99]. We establish a link between our results and a more general result [LR99,
Theorem 15.1.3]. The following Theorem 2.1.29 is from [LR99, Theorem 15.1.3] adopted
to our notations and definitions.

Theorem 2.1.29 ([LR99, Theorem 15.1.3]). The continuous time QBD is positive re-
current, and the level and phase are independent in steady state if and only if there exists
a positive vector θ with θe = 1 and a positive scalar η with η < 1 such that

θ(A0 + ηA1 + η2A2) = 0 (2.1.43)

and
θ(A

(0)
1 + ηA2) = 0. (2.1.44)

Then, we have that π(n) = (1− η)ηnθ.

Proof. See [LR99, proof of Theorem 15.1.3].

For the loss system from Definition 2.1.24 we have η = λ
µ . The value η is less than 1 if

and only if λ < µ which is the criterion for positive recurrence in Proposition 2.1.28, as
well as the summability condition (2.1.5) in Theorem 2.1.5.
The matrix (A

(0)
1 + ηA2) in (2.1.44) is matrix Qred in (2.1.18):

A
(0)
1 + ηA2 = −λIW + V +

λ

µ
µIWR = λIW (R− I) + V = Qred.

The matrix A0 + ηA1 + η2A2 is λ
µQred with η = λ

µ :

A0 + ηA1 + η2A2 =λIW +
λ

µ
(−(µ+ λ)IW + V ) +

λ2

µ2
µIWR

=
λ

µ
(λIW (R− I) + V ) =

λ

µ
Qred.

Therefore θ in Theorem 2.1.29 and θ in Theorem 2.1.5 are the same.
Now we analyze the general case, where λ and µ may depend on the number n of

customers and K can be infinite.

Definition 2.1.30. Let Z = (X(t), Y (t) : t ∈ R+
0 ) be a level-dependent quasi-birth-death

process on a state space N0×K where X(t) ∈ N0 describes a level and Y (t) ∈ K describes
a phase. K is a countable set. Let Q be the generator of Z which has tridiagonal matrix
block form

Q =


A

(0)
1 A

(0)
0

A
(1)
2 A

(1)
1 A

(1)
0

A
(2)
2 A

(2)
1 A

(2)
0

. . . . . . . . .


with matrices A(n)

0 , A
(n)
1 , A

(n)
2 ∈ RK×K for all n.
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2. Loss systems in continuous time

Definition 2.1.31. Consider a loss system Z = (X(t), Y (t) : t ∈ R0) as defined in Section
2.1.1 with generator Q, countable set of environment states K, arrival rates λ(n), and
service rates µ(n) where n is the current number of customers in the system or the current
level in terms of QBD-processes. Then we have a special case of QBD from Definition
2.1.30 with

A
(0)
1 := −λ(0)IW + V, A

(0)
0 = λ(0)IW ,

A
(n)
2 := µ(n)IWR, A

(n)
1 = −(µ(n) + λ(n))IW + V, A

(n)
0 = λ(n)IW , n ≥ 1.

(2.1.45)

The following Proposition 2.1.35 is generalization of [RT96, Corollary 2.1 and Corollary
2.2] without irreducibility Assumption 2.1.32. But before going to Proposition 2.1.35 we
will summarize some important results from [RT96] adapting them to our notations and
definitions.

Assumption 2.1.32 (Irreudiciblity assumption from [RT96, p. 123]).

A
(0)
1 +A

(0)
0 is irreducible (2.1.46)

and
A

(n)
0 +A

(n)
1 +A

(n)
2 are irreducible for all n ≥ 0. (2.1.47)

Proposition 2.1.33 ([RT96, pp. 123–124]). Given a regular, irreducible continuous time
Markov process Z(t) as in Definition 2.1.30 and assume that the irreducibility Assumption
2.1.32 is satisfied. Then Z(t) is positive recurrent if and only if the system of equations

x0

[
A

(0)
1 +R0A

(1)
2

]
= 0 (2.1.48)

has a positive solution x0 such that

x0

[ ∞∑
n=0

n−1∏
`=0

R`

]
e <∞ (2.1.49)

where the family of matrices (Rn)n∈N0 is the minimal non-negative family that satisfies
the equations

A
(n)
0 +RnA(n+1)

1 +RnRn+1A
(n+2)
2 = 0, ∀n ∈ N0. (2.1.50)

Then, when conditions 2.1.48 and 2.1.49 are satisfied, the stationary distribution π is of
the form

π(n) = π(0)
n−1∏
`=0

R` (2.1.51)

with the vector π(0) the same as x0 but normalized so that πe = 1.

Proof. For the proof, in [RT96, p. 123] the authors refer to [BT95].
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2.1. The exponential model

Remark 2.1.34. In the paper [BT95] preceding [RT96], the authors do not require As-
sumption 2.1.32. Also, in [RT96], the Assumption 2.1.32 is mentioned only once but is
not referred to explicitly later. The purpose of Assumption 2.1.32 in [RT96] is not clear.
If it would be possible to remove Assumption 2.1.32 from Proposition 2.1.33, this new
proposition would cover most of the product form systems in this thesis. On the other
side many of our main examples violate the Assumption 2.1.32.

The original proofs of [RT96, Corollary 2.1 and Corollary 2.2] rely on Proposition 2.1.33
and use direct or indirect the matrix family (Rn)n∈N0 . In contrast to [RT96] we will use
neither results from Proposition 2.1.33 nor the matrix family (Rn)n∈N0 , but instead, we
will directly substitute a product form for π into equation πQ = 0.

Proposition 2.1.35. Given a regular irreducible quasi-birth-death process Z as in Defi-
nition 2.1.30. Then the following statements are equivalent:

(a) Z is positive recurrent and its steady-state distribution π has a product form
π(n, k) = ξ(n)θ(k) with positive stochastic vectors ξ and θ.

(b) There exists a positive stochastic solution θ of

θ(A
(0)
1 + η0A

(1)
2 ) = 0 (2.1.52)

and positive numbers ηn, n ∈ N0 such that

∞∑
n=0

n−1∏
`=0

η` <∞ (2.1.53)

and
θ
(
A

(n)
0 + ηnA

(n+1)
1 + ηnηn+1A

(n+2)
2

)
= 0 ∀n ≥ 0. (2.1.54)

If (b) holds, then the steady-state distribution has the form

π(n) = C−1

(
n−1∏
`=0

η`

)
θ (2.1.55)

with normalization constant C−1, i.e π(n) = ξ(n)θ with ξ(n) = C−1
(∏n−1

`=0 η`

)
.

Proof. (a)⇒(b) Let π(n, k) = ξ(n)θ(k) with positive stochastic vectors ξ and θ be the
product form solution of a positive recurrent system with generator Q as defined in
Definition 2.1.30. Then π is positive and the equation πQ = 0 holds. Given with π(n) :=
ξ(n)θ is for n = 0

π(0)A
(0)
1 + π(1)A

(1)
2 = 0⇐⇒ θA

(0)
1 +

ξ(1)

ξ(0)
θA

(1)
2 = 0. (2.1.56)

The equation (2.1.56) is equivalent to (2.1.52) with η0 := ξ(1)
ξ(0) if we can use the distribu-

tive law, which is not always possible with any arbitrary infinite matrices A(n)
1 and A(n)

2

from RK×K . But in our case we can do it, because every k-th element of the left side of the
equation (2.1.56) is an absolute convergent series

∑
`∈K θ(`)A

(0)
1(`,k)+

∑
`∈K θ(`)

ξ(1)
ξ(0)A

(1)
2(`,k).
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2. Loss systems in continuous time

To prove the absolute convergence, we use the fact that the only negative element in the
sum is A(0)

1(k,k)∑
`∈K

∣∣∣θ(`)A(0)
1(`,k)

∣∣∣+
∑
`∈K

∣∣∣∣θ(`)ξ(1)

ξ(0)
A

(1)
2(`,k)

∣∣∣∣
=

(∑
`∈K

θ(`)A
(0)
1(`,k) +

∑
`∈K

θ(`)
ξ(1)

ξ(0)
A

(1)
2(`,k)

)
︸ ︷︷ ︸

=0

−2θ(k)
ξ(1)

ξ(0)
A

(1)
1(k,k) <∞.

For all n ≥ 0 we have

π(n)A
(n)
0 + π(n+1)A

(n+1)
1 + π(n+2)A

(n+2)
2 = 0

⇐⇒ θA
(n)
0 + θ

ξ(n+ 1)

ξ(n)
A

(n+1)
1 + θ

ξ(n+ 2)

ξ(n)
A

(n+2)
2 = 0 (2.1.57)

⇐⇒ θ

(
A

(n)
0 +

ξ(n+ 1)

ξ(n)
A

(n+1)
1 +

ξ(n+ 2)

ξ(n)
A

(n+2)
2

)
= 0. (2.1.58)

For the equivalence between (2.1.57) and (2.1.58) we use distributive law with the
similar argumentation as for n = 0: Every k-th element of the right side of the equa-
tion (2.1.57) is an absolute convergent series∑

`∈K θ(`)A
(n)
0(`,k)+

∑
`∈K θ(`)

ξ(n+1)
ξ(n) A

(n+1)
1(`,k) +

∑
`∈K θ(`)

ξ(n+2)
ξ(n) A

(n+2)
2(`,k) because the only neg-

ative element in the sum is A(n+1)
1(k,k). We estimate

∑
`∈K

∣∣∣θ`A(n)
0(`,k)

∣∣∣+
∑
`∈K

∣∣∣∣θ` ξ(n+ 1)

ξ(n)
A

(n+1)
1(`,k)

∣∣∣∣+
∑
`∈K

∣∣∣∣θ` ξ(n+ 2)

ξ(n)
A

(n+2)
2(`,k)

∣∣∣∣
=

(∑
`∈K

θ`A
(n)
0(`,k) +

∑
`∈K

θ`
ξ(n+ 1)

ξ(n)
A

(n+1)
1(`,k) +

∑
`∈K

θ`
ξ(n+ 2)

ξ(n)
A

(n+2)
2(`,k)

)
︸ ︷︷ ︸

=0

−2θk
ξ(n+ 1)

ξ(n)
A

(n+1)
1(k,k) < 0.

Setting ηn := ξ(n+1)
ξ(n) in (2.1.58) we get the equations (2.1.54).

Due to construction of ηn from positive stochastic vector ξ, the summability condition
(2.1.53) holds

∞∑
n=0

n−1∏
`=0

η` =
∞∑
n=0

n−1∏
`=0

ξ(`+ 1)

ξ(`)
=

1

ξ(0)

∞∑
n=0

ξ(`)︸ ︷︷ ︸
=1

< 0.

Finally we show that vector π(n) can be represented in the form (2.1.55) with proposed
ηn:

π(n) = ξ(n)θ = ξ(0)︸︷︷︸
=:C−1

n−1∏
`=0

η`θ.
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2.1. The exponential model

(b)⇒(a) Assume we have a regular irreducible process with generator Q as defined
Definition 2.1.30 such that there exist positive ηn and positive stochastic vector θ such
that the equations (2.1.52) and (2.1.54) hold and the summability condition (2.1.53)
is satisfied. Then π :=

(
π(n) : n ∈ N0

)
with π(n) := C−1

(∏n−1
`=0 η`

)
θ for all n with

normalization constant C =
∑∞

n=0

(∏n−1
`=0 η`

)
is a positive probability measure and it

solves the equations

π(0)A
(0)
1 + π(1)A

(1)
2 = 0⇐⇒ C−1θA

(0)
1 + C−1η0θA

(1)
2 = 0

and

π(n)A
(n)
0 + π(n+1)A

(n+1)
1 + π(n+2)A

(n+2)
2 = 0

⇐⇒

(
C−1

n−1∏
`=0

η`

)
θA

(n)
0 +

(
C−1

n−1∏
`=0

η`

)
ηnθA

(n+1)
1 +

(
C−1

n−1∏
`=0

η`

)
ηnηn+1θA

(n+2)
2 = 0.

Because Q is irreducible the proposed positive stochastic solution π is the unique sta-
tionary probability of the process. Because π is finite and positive, the process is positive
recurrent.

Remark 2.1.36. In [RT96], all the subsequent corollaries and theorems are derived from
or based on [RT96, Theorem 2.1] and their proofs can be traced back to the equations
and inequality in Proposition 2.1.33 where these equations are said to be valid under
irreducibility Assumption 2.1.32. In loss systems, irreducibility of A(0)

1 +A
(0)
0 is equivalent

to irreducibility of matrix V :

A
(0)
1 +A0

0 = (V − λ(0)IW ) + λ(0)IW = V.

Often the matrix V is not irreducible, see for example inventory models with (r,Q) policy
in Example 2.2.2 and (r, S) policy in Example 2.2.3, systems with finite buffer in Section
2.2.3, and unreliable systems with N ≥ 1 in Section 2.2.4.

Example 2.1.37. A special case of a loss system with reducible V is a tandem system of
twoM/M/1/∞ nodes represented as a loss system where the first node is modeled by the
queue and the second one, with rate ν, is modeled as an environment. The corresponding
generator V has the form

V =


0 1 . . .

0 0 0
1 ν −ν
...

. . . . . .

 .

Remark 2.1.38. An ergodic loss system is a special case of systems with product-form
steady-state distributions described in Proposition 2.1.35. When we substitute A(0)

1 and
η0A

(1)
2 from (2.1.45) and η0 := λ(0)

µ(1) into (2.1.52) we get

θ

(
−λ(0)IW + V +

λ(0)

µ(1)
µ(1)IWR

)
= 0
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2. Loss systems in continuous time

which corresponds to the equation θQred(0) = 0 in Theorem 2.1.5. Substituting A(n)
2 ,

A
(n)
1 , A(n)

0 from (2.1.45) and ηn := λ(n)
µ(n+1) into (2.1.54) leads to

θ

(
λ(n)IW +

λ(n)

µ(n+ 1)

(
−
(
µ(n+ 1) + λ(n+ 1)

)
IW + V

)
+

λ(n)

µ(n+ 1)

λ(n+ 1)

µ(n+ 2)
µ(n+ 2)IWR

)
= 0, ∀n ≥ 0

⇐⇒ λ(n)

µ(n+ 1)

(
λ(n+ 1)IW (R− I) + V︸ ︷︷ ︸

=Qred(n+1)

)
= 0, ∀n ≥ 0

which is equivalent to the equations θQred(n) = 0 for all n ≥ 1 in Theorem 2.1.5.
The condition (2.1.53) is the summability condition (2.1.5) in Theorem 2.1.5.

Remark 2.1.39 (Special case with constant λ, KW = K and irreducible V ). A special
case of loss systems in Definition 2.1.31 with constant λ, KW = K and irreducible V
is a special case of the system in [RT96, Corollary 2.3]. Constant λ is required to keep
the matrices A(n)

0 constant for all n and KW = K is necessary to keep the matrices A(n)
2

stochastic. Irreducibility of V is required by Remark 2.1.36.

2.1.4. Approximation of systems with no loss

We consider anM/M/1/∞ queue in a non-autonomous random environment with service
interruptions due to environment conditions. The queue may change the environment
state each time a served customer leaves the system. In case of service interruption
there is NO customer loss on arrival and newly arriving customers join the queue. A
simple version of such a system is an M/M/1/∞ queue with breakdowns, which has an
autonomous environment with only two states – blocking and non-blocking. See [CM96,
p. 269] for application of this principle for Jackson networks.
In [WC58, pp. 90–91], White and Christie derived the steady-state distribution of queue

length of a M/M/1/∞ system with exponential breakdown and repair times. In [AN63,
Model A], Avi-Itzhak and Naor analyzed a system with general service and repair times
and derived formulas for average waiting time and average queue length. In [MA68],
Mitrani and Avi-Itzhak analyzed M/M/N/∞ systems with exponential repair times and
gave explicit formulas for the moment generating function of the queue size for N ≤ 2.
According to Chakka and Mitrani in [CM96, p. 269], the finding of the joint or marginal
distribution of a queue size was still an open problem for N > 1 at that time.
A classical way to approximate a queue with breakdowns in an autonomous environ-

ment is the reduced work-rate approximation. For this method one first calculates break-
down probability for the environment, then replaces the original queue with environment
by a queue with a smaller service rate without environment. The smaller service rate is
the original service rate multiplied by the complement of the breakdown probability. It
is based on an idea that the overall service capacity of both systems remains the same.
See for example [CM96, pp. 267–269].
The aim of this section is to create an approximation methods which uses loss systems.

In contrast to the reduced work-rate approximation in our approximation method we
will keep the service rate, but adjust the throughput instead. We will also allow the
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2.1. The exponential model

environment to be non-autonomous and the resulting approximation will contain both,
the queue and the environment.
We will focus our analysis on systems with constant input rate λ, constant service

rate µ, and finite environment state space. This class of systems contains systems like
the previously mentioned system with an autonomous two-state environment, a tandem
system with finite buffer in Section 2.2.6, and inventory systems with (r,Q)-policy and
backordering [SD05].

Notation We will use subscript NL (No Loss) for the systems, whose customers are not
lost due to blocking, in order to distinguish them from loss systems, whose customers are
lost due to blocking.

Definition 2.1.40. Consider a non-explosive irreducible continuous-time Markov process
ZNL := ((XNL(t), YNL(t)) : t ≥ 0) describing a queueing system XNL(t) ∈ N0 in a random
environment YNL(t) ∈ K on a finite state space K = KW ]KB with irreducible generator
QNL = (qNL ((n, k), (n′, k′)) : n, n′ ∈ N, k, k′ ∈ K):

qNL((n, k), (n+ 1, k)) = λNL, k ∈ K,
qNL((n, k), (n− 1,m)) = µR(k,m), k ∈ KW , n > 0,

qNL((n, k), (n,m)) = v(k,m) ∈ R+
0 , k 6= m,

qNL((n, k), (i,m)) = 0, otherwise for (n, k) 6= (i,m).

with constant arrival rate λNL ∈ R+, constant service rate µ ∈ R+, non-empty set
KW ⊂ K, stochastic matrix R, and generator V := (v(k,m) : k,m ∈ K). We call this
kind of systems a system with no loss or system without loss.

Remark 2.1.41. Note that for the system defined in Definition 2.1.40 the irreducibility of
the whole system is equivalent to irreducibility of the matrix IW (R− I) + V .
The system in Definition 2.1.40 can be interpreted as

1. an M/M/1/∞ queue XNL in a random environment YNL, or as

2. a level-independent QBD process where XNL describes the level and YNL describes
the phase.

We will use the first interpretation to construct the associated loss system and the second
interpretation for stability analysis.

2.1.4.1. Stability of the model with no loss

We introduce a function f which connects the steady-state analysis of system with no
loss and system with loss having the same parameters K, KB, µ, V and R.

Definition 2.1.42. For given finite state space K, stochastic matrix R ∈ [0, 1]K×K ,
generator V ∈ RK×K , and non-empty set of working states KW ⊂ K, such that IW (R−
I) + V is irreducible, we define a function

f : R+ −→ (0, 1]K

x 7→ f(x)
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environment Y (t)

queueing system X(t)

λNL

lost

µ

serverqueue
λeff = λNL

stops/resumes
service only

changes
environment state

(a) System with no loss.

environment Y (t)

queueing system X(t)

λ

lost

µ

serverqueue
λeff = λNL

λeff ≤ λ

stops/resumes
service and input
simultaneously

changes
environment state

(b) Loss-system approximation.

Figure 2.1.1.: A system with no loss approximated by a loss system

which maps a positive value x to the unique stochastic solution f(x) of the equation

f(x) (xIW (R− I) + V ) = 0. (2.1.59)

The function f is well defined:

• For any x ∈ R+, any entry of matrix xIW (R − I) + V is positive (negative, zero)
if and only if an entry with the same position in matrix IW (R− I) + V is positive
(negative, zero). Further IW (R − I) + V is irreducible by definition. Therefore
xIW (R− I) + V is irreducible.

• For any x ∈ R+, matrix xIW (R− I) + V is a generator, because of
(xIW (R− I) + V )e = xIW (Re− Ie)︸ ︷︷ ︸

=0

+ V e︸︷︷︸
=0

= 0.

Because xIW (R − I) + V is irreducible for any x, there exists a unique strictly positive
stochastic solution f(x) of (2.1.59).

Remark 2.1.43. The vector f(µ) plays an important role in stability analysis of systems
without loss, as we will show in the following Proposition 2.1.45. It also holds f(λ) = θ
where θ is the marginal distribution of the environment of the corresponding loss system
with arrival rate λ, the same matrices R and V , and the same subset KB as the system
without loss. That means, we may reuse many of our results for loss systems – for
example inventory models in Section 2.2.1 or systems with finite buffer in Section 2.2.3 –
for stability analysis of corresponding systems with no loss. To do this, we only need to
replace λ in θ by x and we will get f(x) for free.

Lemma 2.1.44. Function f from Definition 2.1.42 is continuous.

Proof. Let x be an arbitrary fixed strictly positive value x ∈ R+. We define

G := (gkm)k,m∈K := xIW (R− I) + V
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2.1. The exponential model

and
G̃ := (g̃km)k,m∈K = (x+ δ)IW (R− I) + V.

Both generators G and G̃ are irreducible.
We estimate the distance between any non-diagonal entry of the matrix G̃ and the

corresponding entry of the matrix G for some small δ with |δ| < x.

|g̃km − gkm| = |1[k∈KW ](k)δr(k,m)|

≤ |δ|
x

∣∣1[k∈KW ](k)xr(k,m) + 1[k∈KW ](k) v(k,m)︸ ︷︷ ︸
≥0

∣∣
=
|δ|
x
gkm ∀m 6= k.

According to [O’C93, Corollary 1] it holds for stochastic solution f(x)G = 0 and
f(x+ δ)G̃ = 0

|f(x+ δ)(k)− f(x)(k)| ≤

(1 + |δ|
x

1− |δ|x

)|K|
− 1

 f(x)(k) ∀k ∈ K.

The limit for δ → 0 of the right side of the inequality is zero for any x ∈ R+and any
k ∈ K therefore f is continuous.

Proposition 2.1.45. Given the Markov process ZNL := ((XNL(t), YNL(t)) : t ≥ 0) with
no loss as defined in Definition 2.1.40. Then the system is positive recurrent if and only
if

µ
∑
k∈KW

f(µ)(k) > λNL,

it is null recurrent if and only if

µ
∑
k∈KW

f(µ)(k) = λNL,

and it is transient if and only if

µ
∑
k∈KW

f(µ)(k) < λNL.

Proof. The generator QNL has the form

QNL =


A

(0)
1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where

A
(0)
1 = −λNLI + V,
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2. Loss systems in continuous time

A2 = µIWR, A1 = −µIW − λNLI + V, A0 = λNLI.

For A := A2 +A1 +A0 it holds

A = µIWR− µIW − λNLI + V + λNLI = µIW (R− I) + V. (2.1.60)

From irreducibility of IW (R − I) + V follows irreducibility of A. According to [Neu81,
Theorem 3.1.1] or [LR99, Theorem 7.2.3] the system is positive recurrent if and only if
αA2e > αA0e where α is a stochastic solution of the equation αA = 0. With (2.1.60)
and f(µ) defined as the stochastic solution of the equation f(µ) (µIW (R− I) + V ) = 0
we immediately have α = f(µ). Therefore the system is positive recurrent if and only if

f(µ)A2e > f(µ)A0e⇐⇒ f(µ)µIW Re︸︷︷︸
=e

> f(µ)λNL Ie︸︷︷︸
=e

⇐⇒ µ
∑
k∈KW

f(µ)(k) > λNL.

Similarly, according to [LR99, Theorem 7.2.3], the system without loss is null recurrent
if and only if

αA2e = αA0e⇐⇒ µ
∑
k∈KW

f(µ)(k) = λNL

and it is transient if and only if

αA2e < αA0e⇐⇒ µ
∑
k∈KW

f(µ)(k) < λNL.

2.1.4.2. Loss system approximation

In this subsection we will investigate whether it is possible to construct for an ergodic no
loss system from Definition 2.1.40 an ergodic loss system on the same state space N0×K
and with the same parameters µ, R, V , KW and the same effective arrival rate as the
system without loss.

Proposition 2.1.46. For an ergodic system defined in Definition 2.1.40 there exists a
corresponding ergodic loss systems as defined in Section 2.1.1 with adjusted λ, with the
same parameters K, KW , µ, R and V and with the same throughput in steady state. This
is equivalent to have the same effective arrival rate in steady state, both equal to λNL:

λ
∑
n∈N0

∑
k∈KW

π(n, k) = λNL (2.1.61)

where π(n, k) is the steady-state distribution of the loss system.

Proof. The main idea of the proof is that equation (2.1.61) can be written as
λ
∑

k∈KW f(λ)(k) = λNL. Using the intermediate value theorem we will show that there
exists λ which solves the equation λ

∑
k∈KW f(λ)(k) = λNL and that the loss system with

an input rate λ is ergodic.
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2.1. The exponential model

The system without loss is ergodic, therefore it is positive recurrent. According to
Proposition 2.1.45 it holds

µ
∑
k∈KW

f(µ)(k) > λNL > 0.

Together with
lim
x→0

x
∑
k∈KW

f(x)(k)︸ ︷︷ ︸
≤1

= 0

and continuity of the mapping x 7→ x
∑

k∈KW f(x)(k) using intermediate value theorem
we conclude the existence of some λ ∈ (0, µ) such that

λ
∑
k∈KW

f(λ)(k)︸ ︷︷ ︸
θ(k)

= λNL. (2.1.62)

See Figure 2.1.2 on page 40.
We choose any λ satisfying (2.1.62) as arrival rate for the corresponding loss system.

Because λ < µ, the summability condition (2.1.5) from Theorem 2.1.5

C : =
∞∑
n=0

(
λ

µ

)n
<∞

is satisfied. The matrix Qred = λIW (R − I) + V inherits its irreducibility property
from A and has a unique positive stochastic solution θ = f(λ). According to Corollary
2.1.10 the corresponding loss system is ergodic with product form steady-state probability
π(n, k) = ξ(n)θ(k). We multiply the left side of (2.1.62) with

∑
n ξ(n) = 1 and finally

prove the equation (2.1.61):

λ
∑
n

ξ(n)
∑
k∈KW

θ(k) = λNL ⇐⇒ λ
∑
n

∑
k∈KW

ξ(n)θ(k)︸ ︷︷ ︸
=π(n,k)

= λNL.

Proposition 2.1.47. Given a system with no customer loss as in Definition 2.1.40 such
that x

∑
k∈KW f(x)(k) is strictly monotone increasing in x. Then the following statements

are equivalent:

(a) The system without loss is ergodic.

(b) There exists a corresponding ergodic loss system with the same parameters K, KW ,
µ, R and V and effective arrival rate in steady state λNL.

Furthermore the corresponding loss system is unique.

Remark 2.1.48. The strictly monotone increasing property of the function
x
∑

k∈KW f(x)(k) can be interpreted as “the faster the service, the higher input rate a
system without loss can process staying stable”. This follows from condition
µ
∑

k∈KW f(µ)(k) > λ for positive recurrence. Many systems have this monotonicity
property – see for example Corollary 2.2.37 in Section 2.2.6 – but we can construct a
system with no loss which penalize fast service by large delays as we will show in Example
2.1.49.
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2. Loss systems in continuous time

Figure 2.1.2.: Idea of the proof of Proposition 2.1.46. An example of x
∑

k∈KW f(x)(k)
function for given parameters R, V and KW . If parameters µ and
λNL belong to an ergodic system with no loss, then the horizontal line
µ
∑

k∈KW f(µ)(k) lies above the line λNL.

Proof of Proposition 2.1.47. (a)=⇒(b): According to Proposition 2.1.46, if the system
without loss is ergodic then there exists a corresponding ergodic system with the same
effective arrival rate. The uniqueness of the ergodic loss system follows from the require-
ment λ

∑
k∈KW θ(k) = λNL which is equivalent to λ

∑
k∈KW f(λ)(k) = λNL, see Remark

2.1.43. The last equation has a unique solution λ for given λNL due to strict monotonicity
of λ

∑
k∈KW f(λ)(k).

(b)=⇒(a): We will prove this by contradiction.
Assume the corresponding system without loss is not ergodic but there exists a corre-

sponding ergodic loss system with

λ
∑
n∈N0

∑
k∈KW

π(n, k) = λ
∑
k∈KW

θ(k) = λNL (2.1.63)

and λ < µ. According to Proposition 2.1.45 for all non-ergodic systems without loss it
holds

µ
∑
k∈KW

f(µ)(k) ≤ λNL
(2.1.63)⇐⇒ µ

∑
k∈KW

f(µ)(k) ≤ λ
∑
k∈KW

θ(k)︸︷︷︸
=f(λ)(k)

str. mon. inc.⇐⇒ µ ≤ λ.

So, we obtained a contradiction to µ > λ.

The next example shows that strict monotonicity of x
∑

k∈KW f(x)(k) in x, required
in Proposition 2.1.47, is not always given.

40



2.1. The exponential model

Example 2.1.49. Assume we have a system with three environment states: 1 - normal,
2 - sensible, and 3 - blocking.

After each service in normal state 1 the system immediately changes to the sensible
state 2. After each service in the sensible state 2 the system immediately switches to the
blocking state 3 and stops service.
The environment has an exponential distributed timer, which expires in state 2 with a

fast rate α. After timeout the timer will put the environment from sensible state 2 back
to the normal state 1. If the environment is in blocking state, it will change to a normal
state with a very slow rate β.
We can model this system using following parameters: K = {1, 2, 3}, KW = {1, 2},

R =


1 2 3

1 1
2 1
3 1

 , V =


1 2 3

1
2 α −α
3 β −β

 .

The irreducible matrix xIW (R− I) + V is

xIW (R− I) + V =


1 2 3

1 −x x
2 α −α− x x
3 β −β

 .

For f(x) the stochastic solution of the equation f(x) (xIW (R− I) + V ) = 0 it holds

f(x)(1) =
α+ x

x
· β
x
f(x)(3), f(x)(2) =

β

x
f(x)(3), f(x)(3) =

x2

x2 + 2βx+ αβ
.

For g(x) := x
∑

k∈KW f(x)(k) it holds

g(x) = x

1−
∑
k∈KB

f(x)(k)

 =
xβ(2x+ α)

x2 + 2βx+ αβ
.

Finally we choose the parameter α = 10 (very fast) and β = 0.1 (very slow) in such a
way, that the function g(x) is not monotone. See Figure 2.1.3 on page 42.

2.1.4.3. Properties of the loss-system approximation

Consistency and small blocking probability If there are no blocking states in the sys-
tem, i.e. KW = K, a system without loss and input rate λNL defined in Definition 2.1.40
is a loss system. So, we would expect that our loss-system approximation with the same
throughput λNL proposed in Proposition 2.1.46 is consistent and the approximation is
exact. In fact, this is the case. By definition, the parameters K, KW , µ, R and V remain
the same, and for the adjusted λ it holds

λ
∑
n∈N0

∑
k∈KW

π(n, k) = λNL ⇐⇒ λ
∑

n∈N0,k∈K
π(n, k) = λNL ⇐⇒ λ = λNL.

That means, that the original system without loss and its loss-system approximation are
identical.
From the practical point of view we can expect loss-system approximation to be good

if the blocking probability of the original system without loss is small.
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2. Loss systems in continuous time
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Figure 2.1.3.: g(x) = x
∑

k∈KW f(x)(k) from Remark 2.1.48 with with α = 10 and β =
0.1.

Very fast service rate and non-negligible blocking probability An important example
when the loss-system provides bad approximation is when someone tries to estimate the
average number of customers in the system.

Definition 2.1.50. Given an value x and its approximation xappx. Then we will call the
value xappx − x the signed absolute error . And we will call the value xappx−x

x the signed
relative error .
Assume we have a system with no loss, and non-empty set of blocking states, similar

to a system defined in Definition 2.1.40, but with zero service time. In steady state, this
system will have an empty queue when it is not blocked, but it can have a non-empty
queue, when it is blocked. The average queue size in steady state E(XNL,µ=∞) is strictly
positive. If we will approximate this system with a loss system, then after a finite period
of time, the loss system will have no customers. In this case the average queue size in
steady state E(Xµ=∞) is zero.
The signed relative error(E(Xµ=∞)− E(XNL,µ=∞)) /E(XNL,µ=∞) is then −1 and the

absolute error is −E(XNL,µ=∞).
From previous thoughts, we can expect that the loss-system approximation is not suit-

able to estimate the queue length when the service rate µ is large and the blocking
probability is not negligible. Especially when the average size of the queue of the original
system is expected to be significant larger than zero.

Insensitivity of θ Another important property of loss-system approximation is that the
steady-state probability θ of the approximation does not depend on µ. See Remark 2.1.8.
As a result, according to (2.1.62), the adjusted parameter λ

λ =
λNL∑

k∈KW θ(k)
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does not depend from µ too. We should be careful and take in account this property, if
we want to approximate the environment steady-state probability of a system without
loss, whose steady-state distribution of the environment significantly depends on µ.

2.2. Applications

2.2.1. Inventory models

In the following we describe an M/M/1/∞-system with inventory management as it is
investigated in [SSD+06].

Definition 2.2.1. An M/M/1/∞-system with inventory management is a single server
with infinite waiting room under FCFS regime and an attached inventory.
There is a Poisson-λ-arrival stream, λ > 0. Customers request for an amount of service

time which is exponentially distributed with mean 1. Service is provided with intensity
µ > 0.
The server needs for each customer exactly one item from the attached inventory. The
on-hand inventory decreases by one at the moment of service completion. If the inventory
is decreased to the reorder point r ≥ 0 after the service of a customer is completed, a
replenishment order is instantaneously triggered. The replenishment lead times are i.i.d.
with distribution function B = (B(t); t ≥ 0). The size of the replenishment depends
on the policy applied to the system. We consider two standard policies from inventory
management, which lead to an M/M/1/∞-system with either (r,Q)-policy (size of the re-
plenishment order is always Q > r) or with (r, S)-policy (replenishment fills the inventory
up to maximal inventory size S > r).
During the time the inventory is depleted and the server waits for a replenishment

order to arrive, no customers are admitted to join the queue (“lost sales”).
All service, inter-arrival and lead times are assumed to be independent.
Let X(t) denote the number of customers present at the server at time t ≥ 0, either
waiting or in service (queue length) and let Y (t) denote the on-hand inventory at time
t ≥ 0. Then

(
(X(t), Y (t)), t ≥ 0

)
, the queueing-inventory process is a continuous-time

Markov process for the M/M/1/∞-system with inventory management. The state space
of (X,Y ) is E = {(n, k) : n ∈ N0, k ∈ K}, where K = N0 or K = {0, 1, . . . , κ}, where
κ <∞ is the maximal size of the inventory at hand.

The system described above generalizes the lost sales case of classical inventory man-
agement where customer demand is not backordered but lost in case there is no inventory
on hand (see Tersine [Ter94, p. 207]).

The general Theorem 2.1.5 produces as special application the following results on
product-form steady-state distribution in integrated queueing inventory systems which
are described in [SSD+06].
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queueing system X(t)

λ(n)

lost

µ(n)

queue

inventory Y (t)

delivery

inventory

ν

items
decrements
inventory

empty inventory
interrupts service

and leads to
lost sales

Figure 2.2.1.: M/M/1/∞ inventory model with lost sales.
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(a) M/M/1/∞ system with
(r = 2, S = 5)-policy and lost
sales.
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(b) M/M/1/∞ system with
(r = 2, Q = 3)-policy and
lost sales.

Figure 2.2.2.: Environment transition and interaction diagram for lost sales environment
systems. The environment process counts the number of items in inventory.
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Example 2.2.2. [SSD+06]M/M/1/∞ system with (r, S)-policy, exp(ν)-distributed lead
times, and lost sales. The inventory management process under (r, S)-policy fits into the
definition of the environment process by setting

K = {0, 1, . . . , S}, KB = {0},

R(0, 0) = 1, R(k, k − 1) = 1, 1 ≤ k ≤ S, v(k,m) =

{
ν, if 0 ≤ k ≤ r,m = S,

0, otherwise for k 6= m.

The queueing-inventory process (X,Y ) is ergodic iff λ < µ. The steady-state distribution
π = (π(n, k) : (n, k) ∈ E) of (X,Y ) has product form

π(n, k) =

(
1− λ

µ

)(
λ

ν

)n
θ(k),

where θ = (θ(k) : k ∈ K) with normalization constant C is

θ(k) =


C−1(λν ), k = 0,

C−1(λ+ν
λ )k−1, k = 1, . . . , r,

C−1(λ+ν
λ )r, k = r + 1, . . . , S.

(2.2.1)

Example 2.2.3. [SSD+06]M/M/1/∞ system with (r,Q)-policy, exp(ν)-distributed lead
times, and lost sales. The inventory management process under (r,Q)-policy fits into the
definition of the environment process by setting

K = {0, 1, . . . , r +Q}, KB = {0},

R(0, 0) = 1, R(k, k−1) = 1, 1 ≤ k ≤ S, v(k,m) =

{
ν, if 0 ≤ k ≤ r,m = k +Q,

0, otherwise for k 6= m.

The queueing-inventory process (X,Y ) is ergodic iff λ < µ. The steady-state distribu-
tion π = (π(n, k) : (n, k) ∈ E of (X,Y ) has product form

π(n, k) =

(
1− λ

µ

)(
λ

ν

)n
θ(k),

where θ = (θ(k) : k ∈ K) with normalization constant C is

θ(0) = C−1λ

ν
,

θ(k) = C−1

(
λ+ ν

λ

)k−1

, k = 1, . . . , r,

θ(k) = C−1

(
λ+ ν

λ

)r
, k = r + 1, . . . , Q,

θ(k +Q) = C−1

(
λ+ ν

λ

)r
−
(
λ+ ν

λ

)k−1

, k = 1, . . . , r.
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2. Loss systems in continuous time

Example 2.2.4. Recently Krishnamoorthy, Manikandan, and Lakshmy [KML13] ana-
lyzed an extension of the (r, S) and (r,Q) inventory systems with lost sales where the
service time has a general distribution, and at the end of the service the customer receives
with probability γ one item from the inventory while and with probability (1 − γ) the
inventory level stays unchanged. The authors calculate the steady-state distribution of
the system, which has a product form, and give necessary and sufficient condition for sta-
bility. In the case of exponential service time our model from Section 2.1.1 encompasses
this system.

Remark 2.2.5. At a first glance, it seems that the steady-state results from Example 2.2.2,
Example 2.2.3 and Example 2.2.4 can be easily extended to models with multiple servers
M/M/m/∞ if we define µ(n) = min(n,m)µ where µ is a service rate of each server and
if we assume

∑∞
n=0C

−1 λn∏n−1
i=0 µ(i+1)

< ∞. According to Corollary 2.1.10, the extended
versions of these inventory models with m servers, modeled as single server with stat
dependent server rate, has the steady-state distribution

π(n, k) = C−1 λn∏n−1
i=0 µ(i+ 1)

θ(k)

with the same θ as in the model with a single server. The problem we are faced with is
weather this state dependent service model reflects our motivating production-inventory
system. It turns out that this is not the case: Consider a system with two customers in
the queue. When there are two items in the inventory, the total service rate is 2µ, but
if there is only one item in the inventory, only one server can be active and the total
service rate is µ. The service rate in this model depends on the environment in a more
complex way than in the loss-system defined in Section 2.1.1. Therefore we cannot apply
Corollary 2.1.10 or Theorem 2.1.5.
In [KMD15], the authors analyze a multiserver version of Example 2.2.4, they calculate

a product-form steady-state distribution for a system with m = 2 servers but conjecture
that there is no analytical solution for a system with m ≥ 3 server.

Example 2.2.6. Recently Jung Woo Baek and Seung Ki Moon [BM14] analyzed an
extension of the (r,Q) inventory system with lost sales, where they added an internal
production process to the production-inventory system. Their system has two suppliers:
the external one with (r,Q) policy and the internal one which always fills the inventory
with a constant rate β < λ. The size of the inventory is unlimited. They calculated the
steady-state distribution, which has a product form, and analyzed the long run costs.
This model is a special case of a loss system introduced in Section 2.1.1.

Example 2.2.7. 6This example is taken from [KN13], the notation is adapted to that
used in Section 2.1.1: The authors study an inventory system under (r, S)-policy, which
provides items for a server who processes and forwards the items in an on-demand pro-
duction scheme. The processing time of each service is exponentially-µ distributed. The
demand occurs in a Poisson-λ stream.
If demand arrives when the inventory is depleted it is rejected and lost to the system

forever (lost sales).

6published as [KD15a, Example 7]
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The complete system is a supply chain where new items are added to the inventory
through a second production process which is interrupted whenever the inventory at hand
reaches S. The production process is resumed each time the inventory level goes down
to r and continues to be on until inventory level reaches S again. The times required to
add one item into the inventory (processing time + lead time) when the production is
on, are exponential-ν random variables.
All inter arrival times, service times, and production times are mutually independent.
For a Markovian description we need to record the queue length of not fulfilled demand

(∈ N0), the inventory on stock (∈ {0, 1, . . . , S}), and a binary variable which indicates
when the inventory level is in {r + 1, . . . , S} whether the second production process is
on (=1) or off (= 0). (Note, that the second production process is always on, when the
inventory level is in {0, 1, . . . , r}, and is always off, when the inventory level is S.)
To fit this model into the framework of Section 2.1.1 we define a Markov process (X,Y )

in continuous time with state space

E := N0×K, withK := {0, 1, . . . , r} ∪ {S} ∪ ({r+ 1, . . . , S − 1}× {0, 1}) andKB = {0}.

The environment therefore records the inventory size and the status of the second pro-
duction process, and blocking of the production system occurs due to stock out with lost
sales regime.

Starting from Example 2.2.3, Saffari, Haji, and Hassanzadeh [SHH11] proved that
under (r,Q) policy the integrated queueing-inventory M/M/1/∞ system with hyper-
exponential lead times (= mixtures of exponential distributions) has a product-form dis-
tribution. The proof is done by solving directly the steady-state equations. In [SAH13],
Saffari, Asmussen, and Haji generalized this result to general lead time distributions.
The proof of product form uses some intuitive arguments from related simplified systems
and the marginal probabilities for the inventory position are derived using regenerative
arguments.

In the following example we show that our models encompasses queueing-inventory
systems with general replenishment lead times under (r, S) policy. This will allow us
directly to conclude that for the ergodic system the steady state has product form and this
will enable us to generalize the theorem (here Example 2.2.2) of [SSD+06] to incorporate
generally distributed lead times.
In a second step we will show that the results of Saffari, Haji, and Hassanzadeh [SHH11]

and of Saffari, Asmussen, and Haji [SAH13] for queueing-inventory systems under (r,Q)
policy can be obtained by our method as well and can even be slightly generalized.

We will consider lead time distributions of the following phase-type which are sufficient
versatile to approximate any distribution on R+ arbitrary close.

Definition 2.2.8 (Phase-type distributions). For k ∈ N and β > 0 let

Γβ,k(s) = 1− e−βs
k−1∑
i=0

(βs)i

i!
, s ≥ 0,

denote the cumulative distribution function of the Γ–distribution with parameters β and
k. Parameter k is a positive integer and serves as a phase-parameter for the number of
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independent exponential phases, each with mean β−1, the sum of which constitutes a
random variable with distribution Γβ,k. (Γβ,k is called a k-stage Erlang distribution with
shape parameter β.)
We consider the following class of distributions on R+, which is dense with respect to

the topology of weak convergence of probability measures in the set of all distributions on
(R+,B+) ([Sch73], section I.6). For β ∈ (0,∞), L ∈ N, and probability b on {1, . . . , L}
with b(L) > 0 let the cumulative distribution function

B(s) =
L∑
`=1

b(`)Γβ,`(s), s ≥ 0, (2.2.2)

denote a phase-type distribution function. With varying β, L, and b we can approximate
any distribution on (R+,B+) sufficiently close.

To incorporate replenishment lead time distributions of phase-type we apply the sup-
plemented variable technique. This leads to enlarging the phase space of the system, i.e.
the state space of the inventory process Y . Whenever there is an ongoing lead time, i.e.,
when inventory at hand is less than r+1 we count the number of residual successive i.i.d.
exp(β)-distributed lead time phases which must expire until the replenishment arrives at
the inventory.
The state space of (X,Y ) then is E = N0 ×K with

K = {r + 1, r + 2, . . . , S} ∪ ({0, 1, . . . , r} × {L, . . . , 1}) ,

and (X,Y ) is irreducible on E.

Proposition 2.2.9. 7M/M/1/∞ system with (r, S)-policy, phase-type replenishment lead
time, state dependent service rates µ(n), and lost sales.
The lead time distribution has a distribution function B from (2.2.2). We assume that

(X,Y ) is positive recurrent and denote its steady-state distribution by

π = (π(n, k) : n ∈ N0 ×K).

The steady-state distribution π of (X,Y ) is of product form. With normalization con-
stant C

π(n, k) = C−1
n−1∏
i=0

λ

µ(i+ 1)
· θ(k) (2.2.3)

where θ = (θ(k) : k ∈ K) is for r = 0

θ(j, `) = G−1

(
λ+ β

λ

)j−1 L∑
i=`

b(i)

(
β

λ+ β

)i−`(i− `+ r − j
r − j

)
,

j = 1, 2, . . . , r, ` = 1, . . . , L,

(2.2.4)

θ(0, `) = G−1λ

β

 L∑
i=`

 L∑
g=i

b(g)

( β

λ+ β

)i−`(i− `+ r − 1

r − 1

) , (2.2.5)

` = 1, . . . , L,

θ(r + 1) = θ(r + 2) = · · · = θ(S) = G−1

(
λ+ ν

λ

)r
, (2.2.6)

7published as [KD15a, Proposition 1 in Section 4 ]
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where the normalization constant G is chosen such that∑
k∈K

θ(k) = 1.

For r = 0 we obtain θ = (θ(k) : k ∈ K) with normalization constant G as

θ(0, `) = G−1λ

β

[
L∑
i=`

b(i)

]
, ` = 1, . . . , L, (2.2.7)

θ(1) = θ(2) = · · · = θ(S) = G−1. (2.2.8)

Proof. The inventory management process under (r, S)-policy with distribution function
B of the lead times fits into the definition of the environment process by setting

K = {r + 1, r + 2, . . . , S} ∪ ({0, 1, . . . , r} × {L, . . . , 1}) , KB = {0} × {L, . . . , 1}.

The non-negative transition rates of (X,Y ) are for (n, k) ∈ E

q((n, k), (n+ 1, k)) = λ, k ∈ KW , n ≥ 0,

q((n, k), (n− 1,m)) = µ(n)R(k,m), k ∈ KW ,m ∈ K,n > 0,

q((n, k), (n,m)) = v(k,m) ∈ R+
0 , k 6= m, k,m ∈ K,

q((n, k), (i,m)) = 0, otherwise for (n, k) 6= (i,m) ∈ E;

where

R(k, k − 1) = 1 if k ∈ {r + 2, ..., S},
R(r + 1, (r, `)) = b(`) if ` ∈ {L, . . . , 1},

R((j, `), (j − 1, `)) = 1 if (j, `) ∈ {1, . . . , r} × {L, . . . , 1},
R(k, j) = 0 if k, j ∈ K, otherwise,

and

v((j, `), (j, `− 1)) = β if j ∈ {0, 1, . . . , r}, ` ∈ {L, . . . , 2}
v((j, 1), S) = β if j ∈ {0, 1, . . . , r},

v(k, j) = 0 if k, j ∈ K, otherwise.

Because λ(n) = λ for all n and K is finite, Lemma 2.1.11 applies and we know that
the steady state of the ergodic system is of product form

π(n, k) = C−1 λn∏n−1
i=0 µ(i+ 1)

θ(k) n.k) ∈ E. (2.2.9)

We have to solve (2.1.18). By definition this is (with R(k, k) = 0, ∀k ∈ K\{0},
R(0, 0) = 1)

θ(k)

1[k∈KW ]λ+
∑

m∈K\{k}

v(k,m)


=

∑
m∈KW \{k}

θ(m) (λ(n)R(m, k) + v(m, k)) +
∑

m∈KB\{k}

θ(m)v(m, k).

(2.2.10)
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2. Loss systems in continuous time

(I) For r > 0, (2.2.10) translates into

θ(S) · λ =

r∑
j=0

θ(j, 1) · β, (2.2.11)

θ(k) · λ = θ(k + 1) · λ, k = r + 1, . . . , S − 1, (2.2.12)
θ(r, `) · (λ+ β) = θ(r + 1) · λb(`) + θ(r, `+ 1) · β, 1 ≤ ` < L, (2.2.13)
θ(r, L) · (λ+ β) = θ(r + 1) · λb(L), (2.2.14)
θ(j, L) · (λ+ β) = θ(j + 1, L) · λ, 1 ≤ j < r, (2.2.15)
θ(j, `) · (λ+ β) = θ(j + 1, `) · λ+ θ(j, `+ 1) · β, 1 ≤ j < r, 1 ≤ ` < L, (2.2.16)

θ(0, `) · β = θ(1, `) · λ+ θ(0, `+ 1) · β, 1 ≤ ` < L, (2.2.17)
θ(0, L) · β = θ(1, L) · λ. (2.2.18)

From (2.2.12) follows
θ(S) = θ(S − 1) = · · · = θ(r + 1), (2.2.19)

and from (2.2.14) and (2.2.15) follows

θ(j, L) = θ(r + 1)b(L)

(
λ

λ+ β

)r+1−j
. (2.2.20)

From (2.2.20) (for j = r) and (2.2.13) follows directly

θ(r, `) = θ(r + 1)
λ

λ+ β

L∑
i=`

b(i)

(
β

λ+ β

)i−`
, 1 ≤ ` < L. (2.2.21)

Up to now we obtained the expressions on border lines of the array (θ(j, `) : 1 ≤ j ≤
r, 1 ≤ ` ≤ L) which can be filled step by step via (2.2.16). The proposed solution is

θ(r − h, `) = θ(r + 1)

(
λ

λ+ β

)h+1 L∑
i=`

b(i)

(
β

λ+ β

)i−`(i− `+ h

h

)
, (2.2.22)

for h = 0, 1, . . . , r − 1, ` = 1, . . . , L fits with (2.2.21) (h = 0 with
(
i−l
0

)
= 1) and (2.2.20).

Inserting (2.2.22) into (2.2.16) verifies (2.2.22) by a two-step induction with help by the
elementary formula

(
a
n

)
+
(
a

n−1

)
=
(
a+1
n

)
.

For computing the residual boundary probabilities θ(0, `) we need some more effort.
The proposed solution is for ` = 1, . . . , L

θ(0, `) = θ(r + 1)

(
λ

λ+ β

)r λ
β

 L∑
i=`

L∑
g=i

b(g)

(
β

λ+ β

)i−`(i− `+ r − 1

r − 1

) . (2.2.23)

From (2.2.18) and (2.2.20) we obtain

θ(0, L) = θ(r + 1)

(
λ

λ+ β

)r λ
β
b(L), (2.2.24)
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which fits into (2.2.23), and it remains to check the recursion (2.2.17). This amounts to
compute

θ(1, `) · λ
β

+ θ(0, `+ 1)

= θ(r + 1)

(
λ

λ+ β

)r L∑
i=`

b(i)

(
β

λ+ β

)i−`(i− `+ r − 1

r − 1

)
· λ
β

+

+θ(r + 1)

(
λ

λ+ β

)r λ
β

 L∑
i=`+1

L∑
g=i

b(g)

(
β

λ+ β

)i−(`+1)(i− (`+ 1) + r − 1

r − 1

)

= θ(r + 1)

(
λ

λ+ β

)r λ
β


L∑

i=`+1


L∑
g=i

b(g)

(
β

λ+ β

)i−(`+1)( =(i−1)−`︷ ︸︸ ︷
i− (`+ 1) +r − 1

r − 1

)

+b(i− 1)

(
β

λ+ β

)(i−1)−`((i− 1)− `+ r − 1

r − 1

)}
+

+b(L)

(
β

λ+ β

)L−`(L− `+ r − 1

r − 1

)]

= θ(r + 1)

(
λ

λ+ β

)r λ
β

 L∑
i=`+1


L∑

g=i−1

b(g)

(
β

λ+ β

)(i−1)−`((i− 1)− `+ r − 1

r − 1

)
+b(L)

(
β

λ+ β

)L−`(L− `+ r − 1

r − 1

)]

= θ(r + 1)

(
λ

λ+ β

)r λ
β

L−1∑
i=`


L∑
g=i

b(g)

(
β

λ+ β

)i−`(i− `+ r − 1

r − 1

)
+b(L)

(
β

λ+ β

)L−`(L− `+ r − 1

r − 1

)]
= θ(0, `).

Setting

θ(r + 1) = G−1

(
λ+ ν

λ

)r
completes the proof in case of r = 0.
(II) For r > 0, (2.2.10) translates into

θ(S) · λ = θ(0, 1) · β, (2.2.25)
θ(k) · λ = θ(k + 1) · λ, k = 1, . . . , S − 1, (2.2.26)

θ(0, `) · β = θ(1) · λ · b(L) + θ(0, `+ 1) · β, 1 ≤ ` < L, (2.2.27)
θ(0, L) · β = θ(1) · λ · b(L). (2.2.28)

From (2.2.26) follows
θ(S) = θ(S − 1) = · · · = θ(1), (2.2.29)
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2. Loss systems in continuous time

and we will show that

θ(0, `) = θ(1) ·
(
λ

β

)[ L∑
i=`

b(i)

]
, ` = 1, . . . , L, (2.2.30)

holds. For ` = L this is immediate from (2.2.28), and for ` < L it follows by induction
from (2.2.27). Setting θ(1) = G−1 completes the proof in case of r = 0.

Remark 2.2.10. For r > 0 we can write (2.2.5) as

θ(0, `) = G−1λ

β

 L∑
i=`

 L∑
g=i

b(g)

( β

λ+ β

)i−`(i− `+ r − 1

i− `

) ,
` = 1, . . . , L,

and can extend this formula to the case r = 0. This yields with
(−1

0

)
= 1 explicitly

θ(0, `) = G−1λ

β

[
L∑
i=`

b(i)

]
, ` = 1, . . . , L.

Corollary 2.2.11. 8In steady state the marginal probabilities for the inventory at hand
have the following simple representation.
Denote by ν−1 the expected lead time.
Let U denote a random variable distributed according to b = (b(`) : 1 ≤ ` ≤ L), and let

Ue denote a random variable distributed according to the ”equilibrium distribution” of U ,
resp. b, i,e.

P (Ue = i) =
1

E(U)

L∑
g=i

b(g), 1 ≤ i ≤ L.

Let W (u, α) denote a random variable distributed according to a negative binomial
distribution Nb0(u, α) with parameters u ∈ N and α ∈ (0, 1), i.e.,

P (W (u, α) = i) =

(
i+ u− 1

u− 1

)
αu(1− α)i, i ∈ N.

Let I denote a random variable distributed according to the marginal steady-state proba-
bility for the inventory size. Then for j = 1, . . . , r

P (I = j) = G−1

(
λ+ β

λ

)r
· P
(
W

(
r + 1− j, λ

λ+ β

)
< U

)
, (2.2.31)

and
P (I = 0) = G−1λ

ν

(
λ+ β

λ

)r
· P
(
W

(
r,

λ

λ+ β

)
< Ue

)
. (2.2.32)

For j = r + 1, . . . , S (2.2.6) applies directly:

P (I = r + 1) = · · · = P (I = S) = G−1

(
λ+ ν

λ

)r
.

8published as [KD15a, Corollary 2 in Section 4]
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Proof. For j = 1, . . . , r we have

P (I = j) = G−1

(
λ+ β

λ

)j−1 L∑
`=1

L∑
i=`

b(i)

(
β

λ+ β

)i−`(i− `+ r − j
r − j

)

= G−1

(
λ+ β

λ

)j−1 L∑
i=1

b(i)
i∑

`=1

(
β

λ+ β

)i−`(i− `+ r − j
r − j

)

= G−1

(
λ+ β

λ

)j−1 L∑
i=1

b(i)

i−1∑
g=0

(
β

λ+ β

)g (g + r − j
r − j

)

= G−1

(
λ+ β

λ

)j−1(λ+ β

λ

)r+1−j

L∑
i=1

b(i)

i−1∑
g=0

(
g + (r + 1− j)− 1

(r + 1− j)− 1

)(
λ

λ+ β

)r+1−j ( β

λ+ β

)g

= G−1

(
λ+ β

λ

)r L∑
i=1

b(i) · P (W (r + 1− j, λ

λ+ β
) < i),

and for j = 0 we have

P (I = 0) = G−1

(
λ

β

) L∑
`=1

L∑
i=`

L∑
g=i

b(g)

(
β

λ+ β

)i−`(i− `+ r − 1

r − 1

)

= G−1

(
λ

β

) L∑
i=1

i∑
`=1

(
β

λ+ β

)i−`(i− `+ r − 1

r − 1

) L∑
g=i

b(g)

= G−1

(
λ

β
· E(V )

)
︸ ︷︷ ︸

=λ/ν

(
λ+ β

λ

)r

·
L∑
i=1

 1

E(U)

L∑
g=i

b(g)


︸ ︷︷ ︸

=:P (Ve=i)

i−1∑
f=0

(
f + r − 1

r − 1

)(
λ

λ+ β

)r ( β

λ+ β

)f

= G−1

(
λ

ν

)(
λ+ β

λ

)r
P

(
W

(
r + 1− 1,

λ

λ+ β

)
< Ue

)
.

We now revisit the results from [SHH11] and [SAH13] for queueing-inventory systems
under (r,Q) policy. We allow additionally the service rate of the server to depend on the
queue length of the system. We assume that the lead time distribution is of phase type.
We enlarge the phase space of the system, i.e. the state space of the inventory process Y .

Whenever there is an ongoing lead time, i.e., when inventory at hand is less than r+1, we
count the number of residual successive i.i.d. exp(β)-distributed lead time phases which
must expire until the replenishment arrives at the inventory.
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2. Loss systems in continuous time

The state space of (X,Y ) then is E = N0 ×K with

K = {r + 1, r + 2, . . . , r +Q} ∪ ({0, 1, . . . , r} × {L, . . . , 1}) ,

and (X,Y ) is irreducible on E.

Proposition 2.2.12. 9M/M/1/∞ system with (r,Q)-policy, phase-type replenishment
lead time, state dependent service rates µ(n), and lost sales.
The lead time distribution has a distribution function B from (2.2.2). We assume that

(X,Y ) is positive recurrent and denote its steady-state distribution by

π = (π(n, k) : n ∈ N0 ×K).

The steady-state distribution π of (X,Y ) is of product form. With normalization constant
C

π(n, k) = C−1
n−1∏
i=0

λ

µ(i+ 1)
· θ(k), (2.2.33)

where θ = (θ(k) : k ∈ K) can be obtained from formula (3) in [SAH13], and the subsequent
formulas (4) - (10) there.

Proof. The proof is in its first part similar to that of Proposition 2.2.9 because the in-
ventory management process under (r,Q)-policy with distribution function B of the lead
times fits into the definition of the environment process by setting

K = {r + 1, r + 2, . . . , r +Q} ∪ ({0, 1, . . . , r} × {L, . . . , 1}) , KB = {0} × {L, . . . , 1}.

Because λ(n) = λ for all n and K is finite, Lemma 2.1.11 applies and we know that
the steady state of the ergodic system is of product form

π(n, k) = C−1 λn∏n−1
i=0 µ(i+ 1)

· θ(k), (n, k) ∈ E. (2.2.34)

Thus the product form statement is proven with the required marginal queue length
distribution.
In a second part we have to compute the θ(k) which is to solve (2.1.18). This equation

is independent of n, especially independent of the µ(n).
Therefore the solution in the case of state independent service rates (µ(n) → µ)

from [SAH13] must be the solution in the present slightly more general setting as well.

2.2.2. Unreliable servers

In [SD03a] networks of queues with unreliable servers were investigated which admit
product form steady states in twofold way: The joint queue length vector of the system
(which in general is not a Markov process) is of classical product form as in Jackson’s
Theorem and the availability status of the nodes as a set valued supplementary variable
process constitutes an additional product factor attached to the joint queue length vector.
We show for the case of a single server which is unreliable and breaks down due to

influences from an environment that a similar product form result follows from our The-
orem 2.1.5. We allow for a much more complicated breakdown and repair process as that
investigated in [SD03a].

9published as [KD15a, Proposition 2 in Section 4][KD15a, Proposition 2 in Section 4]
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Example 2.2.13. 10There is a single exponential server with with Poisson-λ arrival
stream and state dependent service rates µ(n). The server acts in a random environment
which changes over time. The server breaks down with rates depending on the state of
the environment and is repaired after a breakdown with repair intensity depending on
the state of the environment as well. Whenever the server is broken down, new arrivals
are not admitted and are lost to the system forever.
The system is described by a two-dimensional Markov process (X,Y ) = ((X(t), Y (t)) :

t ∈ [0,∞)) with state space E = N0 ×K. K is the (countable) environment space of the
process, whereas N0 denotes the queue length. (X,Y ) is assumed to be irreducible.
The environment space of the process is partitioned into disjoint nonempty components

K := KW ] KB, and whenever Y enters KB the server breaks down immediately, and
will be repaired when Y enters KW again.
The non-negative transition rates of (X,Y ) are for (n, k) ∈ E

q((n, k), (n+ 1, k)) = λ, k ∈ KW ,

q((n, k), (n− 1,m)) = µ(n)R(k,m), k ∈ KW , n > 0, (2.2.35)
q((n, k), (n,m)) = v(k,m) ∈ R+

0 , k 6= m,

q((n, k), (l,m)) = 0, otherwise for (n, k) 6= (l,m),

and from Corollary 2.1.14 we directly obtain in case of ergodicity the product form
steady-state distribution if the set K is finite. For an infinite set K, we additionally
require summability condition (2.1.17) and that the equation (2.1.18) has a unique posi-
tive stochastic solution. Then we get the unique product form distribution according to
Corollary 2.1.10.
An interesting observation is, that we can model general distributions for the successive

times the system is functioning and similarly for the repair times.
By suitably selected structures for the v(·, ·) we can incorporate dependent up and

down times.

The distinctive feature which sets the difference to the breakdown mechanism in [SD03a]
is that breakdowns can be directly connected with expiring service times via the stochas-
tic matrix R, which is visible from (2.2.35). This widens applicability of the mechanism
considerably.

2.2.3. Tandem system with finite intermediate buffer

Modeling11 multi-stage production lines by serial tandem queues is standard technique.
In the simplest case with Poisson arrivals and with exponential production times for one
unit in each stage the model fits into the realm of Jackson network models as long as the
buffers between the stages have infinite capacity. Consequently, ergodic systems under
this modeling approach have a product form steady-state distribution.
With respect to steady-state analysis the picture changes completely if the buffers

between the stages have only finite capacity, no simple solutions are available. Direct
10This is an improved version of [KD15a, Example 9]. We explicitly point out here the summability

condition (2.1.17) and existence of a unique positive stochastic solution of equation (2.1.18) if the set
K is infinite.

11published as [KD15a, Subsection 4.2.2]
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2. Loss systems in continuous time

numerical analysis or simulations are needed, or we have to resort to approximations.
A common procedure is to use product form approximations which are developed by
decomposition methods. A survey on general networks with blocking is [BDO01], special
emphasis to modeling manufacturing flow lines is given in the survey [DG92].
The same class of problems and solutions are well known in teletraffic networks where

finite buffers are encountered, for surveys see [Onv90] and [Per90].
A systematic study of how to use product form networks as upper or lower bounds

(in a specified performance metric) is given in [Dij93]. A closed 3-station model which is
related to the one given below is discussed in [Dij93, Section 4.5.1], where product form
lower and upper bounds are proposed.

Van Dijk [Dij11, p.44] describes a tandem system with µ(n) = µ, ν(k) = ν which leads
to a product form. We extend this model by allowing more general service rates µ(n)
and νk.

queueing system X(t)

λ(n)

lost

µ(n)

server 1queue

items in buffer Y (t)

buffer
νn

server 2

full buffer interrupts service and arrival at server 1 / resumes otherwise

increments buffer contents

Figure 2.2.3.: Tandem system with finite intermediate buffer of size N .

0 1 2 ... N N + 1

νN+1
νNν3ν2ν1

Figure 2.2.4.: Environment transition and interaction diagram ofM/M/1/∞ tandem sys-
tem with finite intermediate buffer of size N .

We consider a two-stage single server tandem queueing system where the first station
has ample waiting space while the buffer can contain maximal N waiting units, N <∞,
i.e. there can at most N + 1 units be stored in the system which have been processed
at the first stage. It follows that for the system must be determined a blocking regime,
which enforces the first station to stop production when the intermediate buffer reaches
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its capacity of N waiting units. We apply the blocking-before-service regime [Per90,
p. 455]: Whenever the second station is full, the server at the first station does not
start serving the next customer. When a departure occurs from the second station, the
first station is unblocked immediately and resumes its service. Additionally, we require
that the first station, when blocked, does not accept new customers, i.e., it is completely
blocked.
The arrival stream is Poisson-λ, service rates are state dependent with µ(n) at the

first station and νk at the second. To emphasize the modeling of the second server as an
environment we use the notation νk instead of well known from the literature notation
ν(k) for the service rate of the second server with k present customers. The standard
independence assumption are assumed to hold, service at both stations is on FCFS basis.
This makes the joint queue length process (X,Y ) Markov with state space E := N0 ×
{0, 1, . . . , N,N + 1}.
The non-negative transition rates are

q((n, k), (n+ 1, k)) = λ, k ≤ N,
q((n, k), (n− 1, k + 1)) = µ(n), n > 0, k ≤ N,

q((n, k), (n, k − 1)) = νk, 1 ≤ k ≤ N + 1,

q((n, k), (j,m)) = 0, otherwise for (n, k) 6= (j,m).

We fit this model into the formalism of Section 2.1.1 by setting

K = {0, 1, ..., N + 1}, KB = {N + 1},

R(k, k + 1) = 1, 0 ≤ k ≤ N, R(N + 1, N + 1) = 1,

v(k,m) =

{
νk, if 1 ≤ k ≤ N + 1, and m = k − 1,

0, otherwise for k 6= m.

From Corollary 2.1.13 we conclude that for the ergodic process (X,Y ) the steady-state
distribution has product form

π(n, k) = C−1 λn∏n−1
i=0 µ(i+ 1)

θ(k), (n, k) ∈ E, (2.2.36)

with probability distribution θ on K and normalization constant

C =
∞∑
n=0

λn∏n−1
i=0 µ(i+ 1)

.

It remains to determine θ from Corollary 2.1.10, which is (2.1.18).
So, the Qred matrix is explicitly

Qred =



0 1 2 N N + 1

0 −λ λ
1 ν1 −(ν1 + λ) λ

2 ν2
. . . . . .
. . . . . . . . .

N
. . . −(νN + λ) λ

N + 1 νN+1 −νN+1


.
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2. Loss systems in continuous time

This is exactly the transition rate matrix of an M/M/1/N queue with Poisson-λ arrivals
and service rates νk and we have immediately

θ(k) = G−1
k∏

h=1

λ

νh
, 0 ≤ k ≤ N + 1, (2.2.37)

with normalization constant

G =

N+1∑
h=0

(
k∏

h=1

λ

νh

)
.

Remark 2.2.14. The result

π(n, k) = C−1
n−1∏
i=0

λn

µ(i+ 1)
·G−1

k∏
h=1

λ

νh
, (n, k) ∈ E,

is surprising, because it looks like an independence result with marginal distributions
of two queues fed by Poisson-λ streams. Due to the interruptions, neither the arrival
process at the first station nor the departure stream from the first node, which is the
arrival stream to the second, is Poisson-λ. There seems to be no intuitive explanation of
the results.

2.2.4. Unreliable M/M/1/∞ queueing system with control of repair and
maintenance12

In her PhD-thesis [Sau06, Section 3.2] Cornellia Sauer introduced degradable networks
where failure behaviour was coupled with a service “counter”. The counter is a special
environment variable which is decreased right after a service and can be reseted by a
repair or a preventive maintenance depending on its current value. Sauer discussed in
Remark 3.2.8 there similarities between degradable network models with service counter
and networks with inventories.
In this section we will analyze a queueing system, which utilizes a counter to control

repair and preventive maintenance and for modeling of failure behaviour.
We consider a queueing system, where the server wears down during service. As a

consequence the failure probability can change. We do not require the failure probability
to increase. In some systems it is observed that whenever the server survives an initial
period its reliability stays constant or even increases.
When the system breaks down it is repaired and thereafter resumes work as good

as new. Furthermore, to prevent break downs, the system will be maintained after a
prescribed (maximal) number N of services since the most recent repair or maintenance.
During repair or maintenance the system is blocked, i.e., no service is provided and no
new job may join the system. These rejected jobs are lost to the system.
Subject to optimization is N – the maximal number of services, after which the system

needs to be maintained.

12The content of this section is published in [KD15b].
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queueing system X(t)

λ(n)

lost

µ(n)

queue

counter/maintenance/repair (Y (t))

service
counter

repare

maintenance

starts

on failure

resets when finished

resets when finished

increments

interrupts during
repair or maintanance,

thereafter resumes

Figure 2.2.5.: M/M/1/∞ unreliable loss system.
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1

2

...

N − 1

bm

br

νm

ν0 ν1

ν2νN−1

νr

Figure 2.2.6.: Environment transition and interaction diagram for the M/M/1/∞ unre-
liable system. The environment describes the service counter, repair state
and maintenance state.
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2. Loss systems in continuous time

2.2.4.1. Model

We consider a production system which is modeled as anM/M/1/∞ loss system. That is
with λ Poisson input rate, service rates ~µ := (µ(n) : n ∈ N) depending on the number of
customers in the system, FCFS service regime, and environment states K = KW +KB.
The state space of the system is E = N0 × ({0, 1, . . . , N − 1} ∪ {bm, . . . , br}). The

environment states KW = {0, 1, . . . , N − 1} indicate the number of services completed
since the last repair or maintenance (service counter). N is the maximal number of
services before maintenance is required. The additional environment statesKB = {bm, br}
indicate when there is an ongoing maintenance (bm) or repair (br).
We define a stochastic matrix R ∈ [0, 1]K×K which determines the behaviour of the

“service counter”. Transition rates R(k, k + 1) = 1 for 0 ≤ k ≤ N − 2 govern counter
increment and transition rate R(N − 1, bm) = 1 enforces mandatory maintenance after
N services.
We use infinitesimal generator V ∈ RK×K to control failure, maintenance, and repair

rates: v(k, br) = νk are failure rates after k complete services, v(bm, 0) = νm is the
maintenance rate and v(br, 0) = νr is the repair rate.
We define by Z = (X,Y ) the joint queue length and environment process of this system

and make the usual independence assumptions for the queue and the environment. The
Z is Markov process, which we assume to be ergodic.
The total costs of the system is determined by specific cost constants per unit of time:

maintenance costs cm, repair costs cr, costs of non-availability cb, and waiting costs in
queue and in service per customer cw. Therefore the cost function per unit of time in the
respective states is

f : N0 ×K −→ R

f(n, k) =


cw · n+ cb + cm, k = bm,

cw · n+ cb + cr, k = br,

cw · n, k ∈ K\{bm, br}.

Our aim is to analyze the long-run system behaviour and to minimize the long-run
average costs.

Proposition 2.2.15. 13The steady-state distribution of the system described above is

lim
t→∞

P (X(t) = n, Y (t) = k) =: π(n, k) = ξ(n)θ(k), with

ξ(n) =

n∏
i=1

λ

µ(i)
ξ(0), and

θ(k) =

k∏
i=1

(
λ

νi + λ

)i
θ(0), 0 ≤ k ≤ N − 1,

θ(bm) =
λ

νm
θ(N − 1) =

λ

νm

N−1∏
i=1

(
λ

νi + λ

)i
θ(0),

13published as [KD15b, Theorem 1]
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θ(br) =

(
(ν0 + λ)

νr
− λ

νr

N−1∏
i=1

(
λ

νi + λ

)i)
θ(0),

θ(0) =
1(

(ν0+λ)
νr

+
(
λ
νm
− λ

νr

)∏N−1
i=1

(
λ

νi+λ

)i)
+
∑N−1

k=0

∏k
i=1

(
λ

νi+λ

)i .
Proof. The M/M/1/∞ system with unreliable server, maintenance and repair is a loss
system in a random environment with

V =

0 1 2 . . . N − 3 N − 2 N − 1 bm br
0 −ν0 0 0 0 0 0 0 ν0
1 0 −ν1 0 0 0 0 0 ν1
2 0 0 −ν2 0 0 0 0 ν2

.

.

.
. . .

.

.

.
N − 3 0 0 0 . . . −νN−3 0 0 0 νN−3
N − 2 0 0 0 . . . 0 −νN−2 0 0 νN−2
N − 1 0 0 0 . . . 0 0 −νN−1 νN−1
bm νm 0 0 . . . 0 0 −νm 0
br νr 0 0 . . . 0 0 0 −νr


and

R =

0 1 2 . . . N − 3 N − 2 N − 1 bm bb
0 0 1 0 . . . 0 0 0 0 0
1 0 0 1 0 0 0 0 0

2 0 0 0
. . . 0 0 0 0 0

.

.

.
. . .

.

.

.
N − 3 0 0 0 . . . 0 1 0 0 0
N − 2 0 0 0 . . . 0 0 1 0
N − 1 0 0 0 . . . 0 0 0 1 0
bm 0 0 0 . . . 0 0 0 1 0
br 0 0 0 . . . 0 0 0 0 1


.

The matrix Qred from Corollary 2.1.10 is

Qred = λIW (R− I) + V =

0 1 2 . . . N − 3 N − 2 N − 1 bm br
0 −ν0 − λ λ 0 0 0 0 0 ν0
1 0 −ν1 − λ λ 0 0 0 0 ν1

2 0 0 −ν2
. . . 0 0 0 0 ν2

.

.

.
. . .

. . .
.
.
.

N − 3 0 0 0 . . . −νN−3 − λ λ 0 0 νN−3
N − 2 0 0 0 . . . 0 −νN−2 − λ λ 0 νN−2
N − 1 0 0 0 . . . 0 0 −νN−1 − λ λ νN−1
bm νm 0 0 . . . 0 0 0 −νm 0
br νr 0 0 . . . 0 0 0 0 −νr


and the steady-state solution of the system has a product form with marginal distribution
θ solving θQred = 0.
We now solve the equation θQred = 0.
For k ∈ {1, 2, . . . , N − 1} it follows directly

λθ(k − 1)− (νk + λ)θ(k) = 0

=⇒ θ(k) =
λ

νk + λ
θ(k − 1)

=⇒ θ(k) =

k∏
i=1

(
λ

νi + λ

)i
θ(0).
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2. Loss systems in continuous time

For k = bm we have

λθ(N − 1)− νmθ(bm) = 0

θ(bm) =
λ

νm
θ(N − 1) =

λ

νm

N−1∏
i=1

(
λ

νi + λ

)i
θ(0).

Finally, for k = 0 we obtain

−(ν0 + λ)θ(0) + νmθ(bm) + νrθ(br) = 0

=⇒ θ(br) =
(ν0 + λ)

νr
θ(0)− νm

νr
θ(bm)

=

(
(ν0 + λ)− λ

N−1∏
i=1

(
λ

νi + λ

)i) 1

νr
θ(0).

This leads to

θ(0) =
1(

(ν0+λ)
νr

+
(
λ
νm
− λ

νr

)∏N−1
i=1

(
λ

νi+λ

)i)
+
∑N−1

k=0

∏k
i=1

(
λ

νi+λ

)i .

2.2.4.2. Average costs

We will analyze average long term costs of the system with different N - the maximal
number of services, after which system needs to be maintained. In order to distinguish
the steady-state distribution of the systems with different parameters N we will denote
them πN and θN .

Lemma 2.2.16. The optimal solution for the problem described in Section 2.2.4.1 is

arg min(g(N))

with
g(N) := (cb + cm) θN (bm) + (cb + cr) θN (br).

Proof. Due to ergodicity it holds

lim
T→∞

1

T

ˆ T

0
f (X(ω)t, Yt(ω)) dt =

∑
(n,k)

f(n, k)πN (n, k) =: f̄(N), P -a.s.

Using product form properties of the system we get

f̄(N) = (cb + cm) θN (bm) + (cb + cr) θN (br) + cw

∞∑
n=1

nξ(n)︸ ︷︷ ︸
independent of N

=⇒ arg min(f̄(N)) = arg min(g(N)).
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Example 2.2.17. We consider two unreliable systems with parameters λ = 1, µ = 1.5,
νm = 0.3, νr = 0.1, costs cm = 1, cr = 2, cb = 1 and different linear increasing functions
νk determining wearout.
In case νk = 0.01k, the optimal number of services after which maintenance should be

performed N = arg min(g(N)) = 6. See Figure 2.2.7a on page 65.
In the case νk = 0.001k the optimal value is N = 23. See Figure 2.2.7b on page 65.

The case of constant failure rate ν (independent of k, i. e., of no aging) is often of
particular interest. For example it is common practice to substitute complex varying
system parameters by average values. In the following corollary and the remark we will
investigate the properties of such a system in detail.

Corollary 2.2.18. If ν is constant the function g(N) is either strictly monotone increas-
ing, or strictly monotone decreasing, or constant. For each type of these monotonicities
there exists parameters which generate this type.

Proof. We analyze the difference

g(N + 1)− g(N) = (cb + cm) (θN+1(bm)− θN (bm)) + (cb + cr) (θN+1(br)− θN (br)) .

We calculate θN (0) for constant νi ≡ ν, we will use a :=
(

λ
ν+λ

)
to simplify the notation

θN (0) =
1(

(ν+λ)
νr
−
(
λ
νm
− λ

νr

)
aN−1

)
+
∑N−1

k=0 ak

=
1(

(ν+λ)
νr

+
(
λ
νm
− λ

νr

)
aN−1

)
+ (1−aN )

(1−a)

=
(1− a)(

(v+λ)
νr

+
(
λ
νm
− λ

νr

)
aN−1

)
(1− a) + (1− aN )

.

Using the result above we calculate θN (bm)

θN (bm) =

λ
νm

(
λ

ν+λ

)N−1
(1− a)(

(v+λ)
νr

+
(
λ
νm
− λ

νr

)
aN−1

)
(1− a) + (1− aN )

=

=:Nom(N,bm)︷ ︸︸ ︷(
λ

νm
aN−1

)
(1− a)(

(v0 + λ)

νr
+

(
λ

νm
− λ

νr

)
aN−1

)
(1− a) +

(
1− aN

)
︸ ︷︷ ︸

=:Den(N)

=
Nom(N, bm)

Den(N)
,

θN+1(bm)− θN (bm) =
Nom(N + 1, bm)Den(N)−Nom(N, bm)Den(N + 1)

Den(N + 1)Den(N)
.

63



2. Loss systems in continuous time

The common denominator of the difference Den(N + 1)Den(N) is positive, therefore we
focus on nominator Nom(N + 1, bm)Den(N)−Nom(N, bm)Den(N + 1) =

=
λ(1− a)aN−1

νmνr

(
−a2ν + 2aν − ν + aνr − vr − λa2 + 2λa− λ

)
Similarly we analyze the sign of the difference θN+1(br)− θN (br):

θN (br) =

(
(ν + λ)

νr
− λ

νr

(
λ

ν + λ

)N−1
)
θN (0)

=

(
(v+λ)
νr
− λ

νr
aN−1

)
(

(ν+λ)
νr
− λ

νr
aN−1

)
+ λ

νm
aN−1 +

∑N−1
k=0 ak

=

=:Nom(N,br)︷ ︸︸ ︷(
(v + λ)

νr
− λ

νr
aN−1

)
(1− a)(

(v + λ)

νr
+

(
λ

νm
− λ

νr

)
aN−1

)
(1− a) +

(
1− aN

)
︸ ︷︷ ︸

=:Den(N)

.

θN+1(br)− θN (br) =
Nom(N + 1, br)Den(N)−Nom(N, br)Den(N + 1)

Den(N + 1)Den(N)

with Nom(N + 1, br)Den(N)−Nom(N, br)Den(N + 1) =

(1− a)aN−1

νmνr

(
a2νmν−aνmν+λa2ν−2λaν+λν+λa2νm−2λaνm+λνm+λ2a2−2λ2a+λ2

)
and therefore

g(N + 1)− g(N)

=
(1− a)aN−1

νmνrDen(N + 1)Den(N)
·[

(cb + cm)λ(−a2ν + 2aν − ν + aνr − νr − λa2 + 2λa− λ)

+ (cb + cr) · (a2νmν − aνmν + λa2ν − 2λaν + λν

+ λa2νm − 2λaνm + λνm + λ2a2 − 2λ2a+ λ2)
]
.

(2.2.38)

The sign of the difference depends only on the expression in the square brackets which
is independent of N .
The results can be explained by the memoryless property of the exponential failure

time distribution: If the failure rate is constant, the system behaviour stays the same,
no matter how much time elapsed (or how many services are completed) since the last
maintenance.
There exist parameters of the system such that the expression in squared brackets

in (2.2.38) is negative, positive or zero. Consider for example λ = 1, ν = 0.04, νm = 0.3,
νr = 0.1, cm = 1, and cb = 1. For cr = 2 this expression is negative, for cr = 10 this
expression is positive. According to Bolzano’s theorem there exist 2 < cr < 10 such that
the value of the polynomial function in square brackets is zero.
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Remark 2.2.19. The most important consequence of Corollary 2.2.18 is that the costs
function determines only three type of solutions:

• Maintain after the first service (cost function is strictly monotone increasing).

• Never maintain (cost function is strictly monotone decreasing).

• Maintain at any time (cost function stays constant).

As a consequence we see that models with constant failure rate are not well suited for
drawing conclusions about, e.g., models with linear failure rates, see Example 2.2.17.
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Figure 2.2.7.: Function g(N) for linear break down rates νk in Example 2.2.17.

65



2. Loss systems in continuous time

2.2.5. Modeling and performance analysis of a node in fault tolerant
wireless sensor networks

The content of this section is published in [KD14]. The final publication is available at
link.springer.com.

2.2.5.1. Introduction

Modeling fault tolerant (disruption tolerant) wireless sensor networks (DSN) is a chal-
lenging task due to the specific constraints imposed on the network structure and the
principles the nodes have to follow to maintain connectedness of the network. The com-
plexity of the models increases furthermore if the nodes are mobile and if energy efficiency
is required. A typical way to resolve the latter problem is to reduce energy consumption
by laying a node in sleep status whenever this is possible. In sleep status all activities of
the node are either completely or almost completely interrupted. Clearly, this will have
implications for availability of connections in the network.
In active mode the node undertakes several activities: Gathering data and putting the

resulting data packets into its queue, receiving packets from other nodes which are placed
in its queue (and relaying these packets when they arrive at the head of the node’s queue),
and processing the packets in the queue. Mobility requires routing decisions and routing
evaluation which is connected with localization procedures.
Analytical performance analysis of DSN found in the literature usually follows a two-

step procedure. (1) Investigate a single (”referenced”) node, and (2) combine by some
approximation procedure the interacting nodes to a separable network, for a review
see [WDW07]. More detailed study of a specific node model is [Li11], other typical
examples for the two-step procedure are [LTL05], [ZL11].
Our study is in part motivated by research in [WWDL07]. The protocol for the perva-

sive information gathering and processing described there (for more details on this proto-
col see [WWDL07]) consists basically on two “key components”, (i) for data transmission,
governed by “nodal delivery probabilities”, and (ii) for queue management, governed by
“message fault tolerances”. Both of these components are complex and their interaction
is a challenging problem for any modeling procedure.
[WWDL07] proceed as follows: In a first part “an overview of the dynamic delay/fault-

tolerant mobile sensor network data delivery scheme” is provided with detailed recipes
for the update procedure of the “nodal delivery probability” and the “message fault tol-
erance”. In a second part complexity even of the single node’s model is drastically re-
duced by not including the dynamics of these characteristics into the detailed analytical
model. The authors argue: “While it is desirable to accurately analyze the data delivery
scheme. . . , this is not practical given its complexity in data transmission and queue man-
agement” [WWDL07, p. 3290]. Consequently, for characterizing the behavior of a sensor
node, (i) they fix for the node the nodal delivery probability as a constant depending
mainly on the number of other nodes in its one-hop neighborhood, and (ii) the message
fault tolerances are set to constant = 1, which means that no copy of a sent out message
is kept by the sending node.
The aim of our presentation is to show that at least modeling of a single node and its

bidirectional interaction with the network, can be done much more detailed than
described in the cited literature, while still upcoming with closed formulas for the steady-
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state behavior and important structural theorems for the interaction between node and
the network in equilibrium. An main observation will be that it is possible to reduce the
complexity of the interacting processes in a similar way by separability of the steady
state as complexity is reduced in the celebrated Jackson and Gordon-Newell networks.
Our result will not rely on a specific version of a DSN setting, and we will explain how

to adapt our procedure with the selected model from [WWDL07] to other settings. We
believe that the principles of our modeling procedure are rather generally to apply. Our
procedure is:
Starting from the detailed description of a dynamic disruption/fault-tolerant mobile sen-
sor node’s data delivery scheme in [WWDL07], we develop an analytical model of a single
node, the “referenced node” (RN) in the spirit of [WWDL07], [LTL05], and [ZL11], and
others. The key component of our sensor node model is a queueing system of M/M/1-
type for the message queue management. Development of this queue is influenced by
other processes which represent the specific features of the DSN. These processes will be
considered as an environment for the queue with a vice-versa interaction.
We point out that we will make modeling simplifications as well, especially we will focus

on the first key component, the data transmission, and will only include marginal parts
of the queue management. To reduce technical effort we will discretize all state spaces.
This simplification can be removed leading to Markov processes with general state spaces.

Related work: There are two main approaches for analytical modeling of DSN.
The first is by direct construction of Markov processes and numerically solving the bal-
ance equation to obtain performance metrics from this. Typical examples are [CG06]
and [CLWY07]. Jiang and Walrand studied the closely related CSMA protocol for the
IEEE 802.11 Wireless Networks, and found explicit expressions for the stationary dis-
tribution of the network, see [JW10] and the references there. A single node and its
environment is described in [Li11], exploiting matrix-geometrical methods.
The second approach is by utilizing stochastic network models with product form steady

state. From this it is easy to obtain performance metrics. One often pays with oversimpli-
fication. But experience with the OR models for classical computer and communications
systems is, that many systems are robust against deviations from, e.g., assumptions on
service distributions. Using product form models usually one usually proceeds in the two-
step construction, described above. For an idealized sensor network with sleep and active
periods of the nodes Liu and Tong Lee [LTL05] applied this procedure. Mehmet Ali and
Gu [MAG06] used a generalized Jackson network with unreliable nodes to model a DSN.
From the product form steady state in [SD03b] the authors derive relevant performance
metrics. Wu, Wang, Dang, and Lin [WWDL07] used a classical Jackson network to model
“delay/fault-tolerant mobile sensor networks”. A detailed analysis of a DSN with the aid
of queueing network models is performed by Qiu, Feng, Xia, Wu, and Zhou [QFX+11].
The networks are not of product form but similar to Mehmet Ali and Gu [MAG06] it is
assumed that separability can be applied.
Our research in this paper is part of an ongoing project which focusses on investiga-

tions of queueing networks in a random environment. The aim is to find structures which
show the asymptotic properties of separable networks (a) for the internal structure of
Jackson-type or BCMP networks, and (b) for the interaction of the service network with
the environment. Predecessors of our present work are e.g., [SD03a] (environment deter-
mines the availability of unreliable network nodes), [SSD+06] (environment consists of
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an attached inventory, where stock-out lets the service process break down until replen-
ishment arrives). A survey on related queueing-inventory systems is [KLM11]. Recent
results on single nodes are in [KD12], [KD13b], with more relevant references.
The paper is structured as follows. In Section 2.2.5.2 we describe in detail the features

of transmission and queue management protocols which we will incorporate into our
model. Section 2.2.5.3 contains the main result on separability of the queue-environment
interaction. In Section 2.2.5.4 we present details which can be further incorporated into
the model, as well as possibilities to reduce complexity for easier computations. Some
examples are presented in detail.

2.2.5.2. Model description

We consider a single mobile sensor node in a DSN (disruption tolerant wireless sensor
network). Due to mobility and changing external conditions, this “referenced node” (RN)
observes a varying environment with which the RN strongly interacts The functioning
of the RN is governed by the following principles which select the relevant features and
incorporate several interacting processes.

• Length of the packet queue of the RN (∈ N0),

• number of active nodes in the one-hop neighborhood (the “outer environment”) and
the nodal delivery status of these neighbors,

• nodal delivery status of the RN (part of the “inner or local environment”),

• modus of the RN (active = 1, sleep = 0) (part of the “inner environment”).

It follows that the referenced node RN can communicate with other nodes if and only if
RN is active (= 1) and the number of active nodes in the outer environment is > 0 (for
short we say, the outer environment then is on (> 0)).
When RN is active (= 1) and outer environment on (> 0), the stream of packets arriving

at the packet queue of RN is the superposition of data gathering and receiving packets
from other nodes. Following [WWDL07][p. 3291] we assume that the superposition
process is a Poisson-λ process, and processing a packet in the queue needs an exponential-
µ distributed time. The inter arrival times and service times are an independent set of
variables.
Whenever RN is in sleep mode or the outer environment is off, all sensing, relaying,

and sending activities of RN are frozen. This assumption is posed for simplicity, and is
different from e.g. [LTL05], who allow during this periods data gathering by the node,
but is in line with e.g. [ZL11].
Whenever RN is ready to send, it sends a packet to a one-hop neighbor. The routing

decision is made on the basis of the nodal delivery status of the neighbors. The packet
is send to the neighbor node with maximal nodal delivery value, say ζ, if there are ties
these are broken by a pure random decision (with equal probability).
The nodal delivery values are on a scale D := {1, 2, . . . , d} with d <∞ the highest

value. Whenever RN has send a packet to a node with delivery value ζ, it updates its
own delivery value ξ as follows

ξ →


ξ + 1, if ξ < ζ,
ξ − 1, if ξ > ζ,
ξ, if ξ = ζ.

(2.2.39)
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Moreover, RN maintains a timer to adjust its nodal delivery value [WWDL07][p. 3288]:
Whenever there has been no transmission within a time interval ∆̄, a timeout occurs and
the delivery value ξ is updated (because RN could not transmit data during an interval
∆̄) as follows

ξ →
{
ξ − 1, if ξ > 1,
ξ, if ξ = 1.

(2.2.40)

The length of the interval ∆̄ is Erlang-distributed with phase parameter δ and T ≥ 1
phases (approximating a deterministic timer [WWDL07]). Whenever a transmission of
RN occurs, the running timer is interrupted and immediately restarted. The phases are
counted in decreasing order T, T − 1, . . . , 1. When the timer expires (the last phase,
counted = 1, ends), it is reset to its maximal value T . The successive sampled timer
intervals are independent and independent of the other activities.
Remark: In [WWDL07, p. 3288] the nodal delivery values are probabilities, i.e., on scale
[0, 1], our rescaling is only for technical simplifications.
Message fault tolerances for the packets are introduced to estimate the importance

of a stored (replication of a) message. Replications of some sent packets are stored for
another transmission sometime later on. Whenever a copy of the sent message is stored
at the end of the local queue, its message fault tolerance value is increased depending on
the delivery values of the receiver. This will make the DSN less vulnerable against packet
losses and will on the other hand not flood the network with too much messy packets.
Handling “message fault tolerance” is suppressed in the analytical single node model

in [WWDL07]. We incorporate a simplified scheme in our model by the
Assumption on generating redundancy: Whenever RN has send a packet, it will

store that packet with probability f > 0 at the end of its local queue. The storage
decision is independent of the past. We assume in our first approach that f = 0 holds
(as in [WWDL07]), f > 0 will be dealt with in Section 2.2.5.4.

Definition 2.2.20. The “outer environment process” describes the development of N
nodes, which constitute the one-hop neighborhood of RN, and is assumed to be an irre-
ducible homogeneous Markov process

O = (O(t) : t ≥ 0), with state space Eo := ({0} ∪D)N ,

where 0 in coordinate number k stands for “the k-th node is not available for RN”, while
ηk > 0 in coordinate k stands for “the k-th node is available for RN and has a nodal
delivery value ηk ∈ D”.
The generator of O is denoted by Qo = (qo(y, y

′) : y, y′ ∈ Eo) and the unique steady-
state distribution of O is denoted by θo = (θo(y) : y ∈ Eo).
We abbreviate for η = (η1, . . . , ηN ) ∈ Eo: g(η) := max{η1, . . . , ηN}, and shall say that

the outer environment is “quiet” if g = 0 holds.

RN can communicate with other nodes iff RN is active = 1 and g 6= 0 holds.

Example 2.2.21. Several properties and components of the following environment pro-
cess are taken from the model in [WWDL07]. (1) Reduction to a fixed cell where all other
sensors are accessible, i.e., the one-hop neighborhood with N nodes is sufficient. (2) In-
dependence of sensor nodes in the cell, which leads to (2.2.41) below and to the processes
describing the behavior of the neighbors of RN are independent Markov processes with
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2. Loss systems in continuous time

state space {0, 1, 2, . . . , d}. (3) Retrials are independent with identical success probability
which is expressed in (2.2.41).
In the model [WWDL07, Section III] is not incorporated that as long as a node, say node

j, is active its nodal delivery value evolves as a random walk on D as indicated by (2.2.39)
and (2.2.40) which are taken from [WWDL07, Section II.A.(1)]. For simplicity, we assume
that this random walk is Markov for its own, with upward jump rate w+

j (ηj) for node j
in state ηj < d, and downward jump rate w−j (ηj) in state ηj > 1. Its steady state is with
normalization Gj

pj(ηj) = G−1
j

ηj∏
k=2

w+
j (k − 1)

w−j (k)
, ηj = 1, . . . , d.

With the help of these steady-state probabilities and constant rates aj , bj > 0 we incor-
porate additionally the active/sleep behavior (see Definition 2.2.22 below) of the nodes
in the neighborhood into the positive local transition rates for node j as

qoj(0, ηj) = bj · pj(ηj), and qoj(ηj , 0) = aj , ηj = 1, . . . , d .

The positive transition rates of O are for j = 1, . . . , N, and ηj ∈ {1, . . . , d}

qo((η1, . . . , ηj−1, 0, ηj+1, . . . , ηN ); (η1, . . . , ηj−1, ηj , ηj+1, . . . , ηN )) = bj · pj(ηj),
and qo((η1, . . . , ηj−1, ηj , ηj+1, . . . , ηN ); (η1, . . . , ηj−1, 0, ηj+1, . . . , ηN )) = aj .

(2.2.41)
The environment process O is ergodic with steady-state probabilities

θo(η1, . . . , ηN ) =

N∏
j=1

(
aj

aj + bj

)1(ηj=0)
(

bj
aj + bj

· pj(ηj)
)1(ηj 6=0)

, (η1, . . . , ηN ) ∈ Eo.

The outer environment is quiet with probability θo(0, . . . , 0) =
∏N
j=1(aj/(aj + bj)), and

for k = 1, . . . , d the probability that {g ≥ k} holds is

1−
N∏
j=1

 aj
aj + bj

+
bj

aj + bj

k−1∑
ηj=1

pj(ηj)

 . (2.2.42)

Definition 2.2.22. The inner (local) environment of RN is a stochastic process, which
is not Markov for its own

I = (I(t) : t ≥ 0), with state space Ei := ∆×D,

where (t, ξ) ∈ ∆×D indicates that the timer is in phase t and the nodal delivery status
of RN is ξ. Recall: 1 stands for lowest, d for highest delivery value, ∆ := {1, . . . , T} are
the possible residual exponential-δ phases of the running timer.
Active and sleep phases of RN are governed by an alternating renewal process

A = (A(t) : t ≥ 0), with state space Ea := {0, 1},

where 1 stands for “active” and 0 stands for “sleep”. The dwell time in the active status
is exponential-α, whereas in sleep status exponential-β. The unique steady-state distri-
bution of A is θa = (θa(0), θa(1)) = (β/(α+ β), α/(α+ β)).
During RN’s sleep times all its activities are frozen: Sending, receiving, timer.
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Definition 2.2.23. The queue length process of RN is a process, which is not Markov
for its own

X = (X(t) : t ≥ 0), with state space N0,

where X(t) counts the number of packets stored in RN, either under transmission (in
service) or waiting. Whenever RN is sleeping or the outer environment is quiet, there
is no service possible,the packet on the service place is stored there, and no new ar-
rival is admitted until RN becomes active again and there are active nodes in the outer
environment.
Note, that whenever RN is in active mode, its timer is running, irrespective of the

status of the outer environment O.

Assumption 2.2.24. We make the following natural assumption: The processes O and
A are independent and independent of the set of inter arrival and service times, and of
the timer intervals.

Note, that independence of A and O from the timer is for free if the timer is determin-
istic. A direct consequence of the definitions and Assumption 2.2.24 is

Proposition 2.2.25. With Y := (A, I,O) the process Z := (X,Y ) = (X,A, I,O) is a
homogeneous Markov process, which is irreducible on state space

E := N0 × Ea × Ei × Eo = N0 × {0, 1} ×∆×D × ({0} ∪D)N .

We denote the generator of Z by Q = (q(z, z′) : z, z′ ∈ E), and, when it exists, the (then
uniquely defined) steady-state distribution of Z, by π = (π(z) : z ∈ E).

In general the queue length process X and its environment Y are strongly dependent.
In one direction, the environment can shut down the service and arrival process, while
in the other direction transmission of a message changes the nodal delivery value and
resets the timer. We emphasize that in the first case the environment changes and the
queue length stays at its present value, while in the second case the queue length and
the environment jump concurrently. This property is discussed in Remark 2.2.28 below
in comparison with the literature.

2.2.5.3. Steady-state behavior

We assume in the following that the node and its environment can stabilize in the long
run, i.e., the joint process Z = (X,Y ) is ergodic, which implies that a steady state of
Z exist. Recall from p. 68: When RN is able to communicate, the arrival rate is λ, the
service rate is µ.

Proposition 2.2.26. Z is ergodic on E iff λ < µ. Then its unique stationary distribution
π fulfills for all (n, a, t, ξ, η) ∈ N0 × {0, 1} ×∆×D × ({0} ∪D)N

π(n, a, t, ξ, η) =

(
1− λ

µ

)(
λ

µ

)n
· θ(a, t, ξ, η) , (2.2.43)

where θ is a (unique) probability distribution on {0, 1} ×∆×D × ({0} ∪D)N .

71



2. Loss systems in continuous time

Proof. In the balance equations for Z we abbreviate −qo(η, η) =: qo(η), η ∈ Eo, and
when no restriction is posed, a variable runs through all admissible values. Recall g(η) :=
max(η1, . . . , ηN ).
For g(η) 6= 0, t < T , a = 1:

π(n, 1, t, ξ, η)[λ+ µ1(n>0) + α+ δ + qo(η)]

= π(n− 1, 1, t, ξ, η)λ1(n>0) + π(n, 0, t, ξ, η)β + π(n, 1, t+ 1, ξ, η)δ

+
∑

γ∈Eo\{η}

π(n, 1, t, ξ, γ)qo(γ, η).
(2.2.44)

For g(η) 6= 0, a = 1:

π(n, 1, T, ξ, η)[λ+ µ1(n>0) + α+ δ + qo(η)]

= π(n− 1, 1, T, ξ, η)λ1[n>0] + π(n, 0, T, ξ, η)β +
∑

γ∈Eo\{η}

π(n, 1, T, ξ, γ)qo(γ, η)

+π(n, 1, 1, ξ, η)δ1[ξ=1] + π(n, 1, 1, ξ + 1, η)δ1[ξ<d] +
T∑
s=1

π(n+ 1, 1, s, ξ, η)µ1[ξ=g(η)]

+
T∑
s=1

π(n+ 1, 1, s, ξ − 1, η)µ1[0<ξ−1<g(η)]

+
T∑
s=1

π(n+ 1, 1, s, ξ + 1, η)µ1[d≥ξ+1>g(η)>0].

(2.2.45)
For η with g(η) = 0, t < T , a = 1:

π(n, 1, t, ξ, η)[α+ δ + qo(η)]

= π(n, 0, t, ξ, η)β + π(n, 1, t+ 1, ξ, η)δ +
∑

γ∈Eo\{η}

π(n, 1, t, ξ, γ)qo(γ, η). (2.2.46)

For η with g(η) = 0, a = 1:

π(n, 1, T, ξ, η)[α+ δ + qo(η)] = π(n, 0, T, ξ, η)β +
∑

γ∈Eo\{η}

π(n, 1, T, ξ, γ)qo(γ, η)

+π(n, 1, 1, ξ, η)δ1[ξ=1] + π(n, 1, 1, ξ + 1, η)δ1[ξ<d].
(2.2.47)

For a = 0:

π(n, 0, t, ξ, η)[β + qo(η)] = π(n, 1, t, ξ, η)α+
∑

γ∈Eo\{η}

π(n, 0, t, ξ, γ)qo(γ, η). (2.2.48)

Inserting π(n, a, t, ξ, η) =
(

1− λ
µ

)(
λ
µ

)n
· θ(a, t, ξ, η) into equations (2.2.44)–(2.2.48)

reveals that the queue length terms
(

1− λ
µ

)(
λ
µ

)n
cancel completely, which yields the

following set of reduced equations.
For g(η) 6= 0, t < T , a = 1:

θ(1, t, ξ, η)[λ+α+δ+qo(η)] = θ(0, t, ξ, η)β+θ(1, t+1, ξ, η)δ+
∑

γ∈Eo\{η}

θ(1, t, ξ, γ)qo(γ, η).
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For g(η) 6= 0, a = 1:

θ(1, T, ξ, η)[λ+ α+ δ + qo(η)]

= θ(0, T, ξ, η)β +
∑

γ∈Eo\{η}

θ(1, T, ξ, γ)qo(γ, η) + θ(1, 1, ξ, η)δ1[ξ=1]

+θ(1, 1, ξ + 1, η)δ1[ξ<d] +
T∑
s=1

θ(1, s, ξ, η)λ1[ξ=g(η)]

+
T∑
s=1

θ(1, s, ξ − 1, η)λ1[0<ξ−1<g(η)] +
T∑
s=1

θ(1, s, ξ + 1, η)λ1[d≥ξ+1>g(η)>0].

For η with g(η) = 0, t < T , a = 1:

θ(1, t, ξ, η)[α+ δ + qo(η)] = θ(0, t, ξ, η)β + θ(1, t+ 1, ξ, η)δ +
∑

γ∈Eo\{η}

θ(1, t, ξ, γ)qo(γ, η).

For η with g(η) = 0, a = 1:

θ(1, T, ξ, η)[α+ δ + qo(η)] = θ(0, T, ξ, η)β +
∑

γ∈Eo\{η}

θ(1, T, ξ, γ)qo(γ, η)

+θ(1, 1, ξ, η)δ1[ξ=1] + θ(1, 1, ξ + 1, η)δ1[ξ<d].

For a = 0:

θ(0, t, ξ, η)[β + qo(η)] = θ(1, t, ξ, η)α+
∑

γ∈Eo\{η}

θ(0, t, ξ, γ)qo(γ, η).

With elementary, but tedious computations it can be shown that this is a “generator
equation”, i.e., there exists some continuous time Markov process on the finite state space
K := {0, 1} ×∆×D × ({0} ∪D)N with generator matrix Qred = (qred(y, y′) : y, y′ ∈ K
such that the reduced system of equations is θ ·Qred = 0. The main effort is to show that
the row sums of Qred are zero.
This generator equation has a unique probability solution because K is finite and Qred

is irreducible.

The result of Proposition 2.2.26 is surprising. Obviously, the queueing process X which
is the central unit of the message handling and transmission management system and the
environment process Y strongly interact. Nevertheless, in steady state and in the long
run the joint steady-state distribution for a fixed time instant is the independent coupling
of the respective marginal steady-state distributions. This resembles the independence
of the marginal queue lengths in a stationary Jackson network [Jac57]. The new feature
here is that X and Y are processes of very different structure, while in Jackson’s theorem
the queue lengths are processes of similar nature.
Similarly, as it is well known in the case of Jackson networks, our result does not say

that X and Y are independent processes. There are correlations over time in (Z(s), Z(t))
for 0 ≤ s < t and for different time instants there are correlations between X(s) and
Y (t). The investigation of this correlation structure is part of our ongoing research.
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2. Loss systems in continuous time

Another remarkable property of the system following from Proposition 2.2.26 is an
invariance property: Whenever for a pair λ, µ with λ < µ we have computed the marginal
environment steady state θ, this is the θ as function of λ (not of µ!) for all other pairs
with λ < µ. This is of interest in cases of a complicated environment, where θ ·Qred = 0
may be not easy to obtain.

Remark 2.2.27. From the very definition of the active-sleep process A and the outer
environment process O and Assumption 2.2.24 it follows that the marginal distribution
of A is θa given in Definition 2.2.22 and the marginal distribution of O is θo indicated in
Definition 2.2.20.
The solution θ of θ ·Qred = 0, found in the proof of Proposition 2.2.26 in general does

not factorize further. But even if we cannot factorize θ further it is helpful by reducing
an infinite linear system of equations to a finite system.

Remark 2.2.28. Boucherie [Bou94] considered vector processes of independent coordi-
nates, where restriction on the transitions are imposed as follows: A coordinate process,
say Sj , by entering a specified subset Aj of its state space, where he competes with a
second process, say Sk for resources (which can be used by only one process at a time)
shut down Sk completely, as long as it stays in Aj . This is similar to our “vector process”.
The difference is: In [Bou94] it is assumed that only one coordinate of the vector process
can change at time, and the starting point are independent Markov processes. Neither
property is required here: Not all processes used for the construction are independent,
and there occur simultaneous jumps of the queue and the environment, as can be seen
in (2.2.45).

2.2.5.4. Extensions and refinements

Modeling the outer environment
The Markov process O to describe the development of the outer environment is con-
structed in Definition 2.2.20 in the spirit of the neighborhood construction of [WWDL07].
Note, that there dynamics of the nodal delivery values are substituted by a fixed value.
Into our process O we have incorporated dynamics of nodal delivery values without much
effort, still obtaining explicit expressions.
Our modeling procedure offers to incorporate much more versatile dynamical schemes.

This can be seen from the proof of Proposition 2.2.26: It is not necessary that the set
{g = 0} ⊂ Eo is single valued. There may be more states of the outer environment which
do not allow RN to communicate with its neighbors for different reasons.
On the other side this flexibility offers model reductions. Starting from a complex

environment space E′o with rates q′o(k, `) and some “decision function” (other than the
simple maximum) g′ : U ′ → {0, 1, . . . , d} we can reduce complexity via U ′′ := g(U ′) :=
{0, 1, . . . , d} and assume that the functional process g(O) is Markovian itself. Reasonable
(approximate) transition rates then are

q′′o (k, `) := S(k, `)−1
∑

η∈U,g′(η)=k

∑
ζ∈U,g′(ζ)=`

q′o(η, ζ),

where S(k, `) =
∑

η∈U ′,g′(η)=k

∑
ζ∈U ′,g′(ζ)=` 1[q′o(η,ζ)>0] is the number of positive transi-

tions from {g′ = k} to {g′ = `}.
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More reduction is obtained if we distinguish in the status of the outer environment only
states 0 (= no active neighbor = quiet outer environment) and 1 (= at least one active
neighbor).
In any case: The proof of Proposition 2.2.26 applies without changes.

Example 2.2.29. Consider the outer environment Eo from Definition 2.2.20. Then
g(Eo) = {0, 1, . . . , d} and from (2.2.42) the probability of {g = 0} is
p(0) =

∏N
j=1(aj/(aj + bj)), while the maximal nodal delivery value in the neighborhood

is k ≥ 1 (i.e., {g = k}) with probability p(k) :=

N∏
j=1

 aj
aj + bj

+
bj

aj + bj

k∑
ηj=1

pj(ηj)

− N∏
j=1

 aj
aj + bj

+
bj

aj + bj

k−1∑
ηj=1

pj(ηj)

 .

A kernel to generate dynamics for this equilibrium is with positive transition rates

q(i, i+ 1) = `(i), i = 0, 1, . . . , d− 1, and q(i, i− 1) = m(i), i = 1, . . . , d,

with `(i) = 1/p(i) for i = 0, 1, . . . , d− 1 and m(i) = 1/p(i) for i = 1, . . . , d. This yields a
reversible dynamics with the required target distribution.

Example 2.2.30. Consider the outer environment Eo from Definition 2.2.20 with D :=
{1}, i.e., we distinguish only whether the N nodes of RN’s one-hop neighborhood are
available or not. Then Eo = {(0, 1)}N and the positive transition rates for O are, for
j = 1, . . . , N , and ηj = 1

qo((η1, . . . , ηj−1, 0, ηj+1, . . . , ηN ); (η1, . . . , ηj−1, ηj , ηj+1, . . . , ηN )) = bj

and qo((η1, . . . , ηj−1, ηj , ηj+1, . . . , ηN ); (η1, . . . , ηj−1, 0, ηj+1, . . . , ηN )) = aj .

The environment process O is ergodic and the steady-state probabilities are

θo(η1, . . . , ηN ) =

N∏
j=1

(
aj

aj + bj

)1[ηj=0]
(

bj
aj + bj

)1[ηj=1]

, ∀(η1, . . . , ηN ) ∈ Eo.

The outer environment is quiet with probability θo(0, . . . , 0) =
∏N
j=1(aj/(aj + bj)).

Modeling fault tolerance
The introduction of fault tolerance values for any message and its updating in course
of transmitting a message and possibly restoring it in the message queue of RN tries to
support the resilience of the network without flooding it with messages. Modeling this in
a detailed way would need to introduce for the messages different types which change over
time and, if we follow the details of the protocol in [WWDL07], type-dependent priorities
and reordering of the packets according to the fault tolerance values. As the authors in
that paper noticed, such scheme probably can not be modeled analytically in full detail.
So message replication is skipped in their model.
A simple way to incorporate the effect of increasing queue lengths by a randomized

message replication is to estimate an overall replication probability f ∈ [0, 1] for sent
messages and consider the message queue as a feedback queue: If a message is served,
it is fed back with feedback probability f > 0 to the tail of the queue. We immediately
obtain the
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Corollary 2.2.31. Let the message queue be a feedback queue with feedback probability
f > 0. Z is ergodic on E iff λ < µ(1 − f). Then its unique stationary distribution πf
fulfills for all (n, a, t, ξ, η) ∈ N0 × {0, 1} ×∆×D × ({0} ∪D)N

πf (n, a, t, ξ, η) =

(
1− λ

µ(1− f)

)(
λ

µ(1− f)

)n
· θ(a, t, ξ, η),

with θ the distribution on {0, 1} ×∆×D × ({0} ∪D)N from Proposition 2.2.26.

The result says that with replication probability f the load of the referenced node is the
same as without replication but with a prolongation of the transmission time according
to service rate µ(1− f).
Although with the corollary we are in a position to adapt the load of the message

queue better to the situation with message replication we have to pay for this with a
slight drawback, which may be not obvious. The protocol in [WWDL07] declares that
the nodal delivery value is updated every time a message is sent out. In the model
described in Corollary 2.2.31 updating is formally done only when a message is sent out
and no feedback occurs.
Without going into the details we mention only that we can remedy this drawback

by introducing an additional update process which updates RN’s nodal delivery value
according to the scheme (2.2.39) at time points generated by a Poisson-µf process when
RN is active.
Intensity of the arrival process
In [WWDL07], [LTL05], [ZL11]), the arrivals at the message queue of RN are assumed to
be generated by two independent Poisson processes. A Poisson-r process generates the
data for RN, while a Poisson-` process is generated by the nodes in the neighborhood
of RN. The intensity of the Poisson-` process is determined by the states of the outer
environment. ` is typically computed as a gross value on the basis of the environments
steady state. An example is given in [WWDL07, p. 3291]. In a similar way we can,
starting from the information decoded in the distribution θ from Proposition 2.2.26,
estimate the overall arrival rate ` at RN from the outside. We then set λ := r + `.
Reducing the dimension of the environment process
The reduction of complexity described above leave the dimension of the state space of Z
invariant while diminishing the sizes of components. Further reduction can be obtained
by incorporating the effects of the outer environment into the transition regime of the
inner environment and by canceling thereafter the component process O. The resulting
process Z := (X,Y ) = (X,A, I) will be a homogeneous irreducible strong Markov process
on E := N0×Ea×Ei = N0×{0, 1}×∆×D. The development of the nodal delivery status
of RN is governed by the timer ∆̄ as before via (2.2.40) and by the rule that whenever
RN has send a packet, it updates its delivery value ξ as follows

ξ →


ξ + 1, with probability r+(ξ) if ξ < d,

ξ − 1, with probability r−(ξ) if ξ > 1,

ξ, with probability 1− r+(ξ)1[ξ<d] − r−(ξ)1[ξ>1] if 1 ≤ ξ ≤ d.

As in Proposition 2.2.26 then follows for the system with no replication of sent messages
(f = 0) the first part of the next statement, while the second part is again surprising.
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2.2. Applications

Corollary 2.2.32. Z is ergodic on the reduced state space E = N0 × Ea × Ei = N0 ×
{0, 1} ×∆×D iff λ < µ. Then its unique stationary distribution π fulfills

π(n, a, t, ξ) =

(
1− λ

µ

)(
λ

µ

)n
· θ(a, t, ξ), ∀(n, a, t, ξ) ∈ N0 × {0, 1} ×∆×D,

where θ is a uniquely defined probability distribution on {0, 1} ×∆×D.
Moreover, θ factorizes completely for (a, t, ξ) ∈ {0, 1} ×∆×D according to

θ(a, t, ξ) =

(
β

α+ β

)a
·
(

α

α+ β

)1−a
·
(

δ

λ+ δ

)T−t
K−1

∆ · ψ(ξ). (2.2.49)

Here K∆ = δ
λ

(
λ+δ
δ −

(
δ

λ+δ

)T−1
)

is the normalization for the timer distribution, and ψ

is a probability on D, the marginal nodal delivery value distribution.

Proof. Whenever there is no restriction for a variable indicated, it runs through all ad-
missible values. The steady-state equations for Z are then
For t < T , a = 1:

+π(n, 1, t, ξ)[λ+ µ1[n>0] + α+ δ]

= π(n− 1, 1, t, ξ)λ1[n>0] + π(n, 0, t, ξ)β + π(n, 1, t+ 1, ξ)δ.

For a = 1:

π(n, 1, T, ξ)[λ+ µ1[n>0] + α+ δ]

= π(n− 1, 1, T, ξ)λ1[n>0] + π(n, 1, 1, ξ)δ1[ξ=1]

+
T∑
s=1

π(n+ 1, 1, s, ξ − 1)µr+(ξ − 1)1[ξ>1] + π(n, 1, 1, ξ + 1)δ1[ξ<d]

+
T∑
s=1

π(n+ 1, 1, s, ξ + 1)µr−(ξ + 1)1[ξ<d]π(n, 0, T, ξ)β

+
T∑
s=1

π(n+ 1, 1, s, ξ)µ
[
1− r+(ξ)1[ξ<d] − r−(ξ)1[ξ>])

]
.

For a = 0:
π(n, 0, t, ξ)β = π(n, 1, t, ξ)α.

Inserting π(n, a, t, ξ) =
(

1− λ
µ

)(
λ
µ

)n
·
(

β
α+β

)a
·
(

α
α+β

)1−a
·φ(t, ξ), where φ is a function of

(t, ξ) only, into these equations reveals that the terms
(

1− λ
µ

)(
λ
µ

)n
·
(

β
α+β

)a
·
(

α
α+β

)1−a

cancel completely, yielding a set of reduced equations:
For t < T :

φ(t, ξ)[λ+ δ] = φ(t+ 1, ξ)δ,

77



2. Loss systems in continuous time

φ(T, ξ)[λ+ δ] = φ(1, ξ)δ1[ξ=1] +
T∑
s=1

φ(s, ξ − 1)λr+(ξ − 1)1[ξ>1]

+φ(1, ξ + 1)δ1[ξ<d] +
T∑
s=1

φ(s, ξ + 1)λr−(ξ + 1)1[ξ<d]

+
T∑
s=1

φ(s, ξ)λ
[
1− r+(ξ)1[ξ<d] − r−(ξ)1[ξ>1]

]
.

For t = 1, . . . , T , the first equation yields φ(t, ξ) = φ(T, ξ) (δ/(λ+ δ))T−t, and we set

φ(t, ξ) =
(

δ
λ+δ

)T−t
K−1

∆ · ψ(ξ) for some function ψ(ξ). The first equation is solved
obviously by this expression, and the second turns into ψ(ξ)[λ+ δ] =

ψ(ξ)

(
δ

λ+ δ

)T−1

δ1[ξ=1] +
T∑
s=1

ψ(ξ − 1)

(
δ

λ+ δ

)T−s
λr+(ξ − 1)1[ξ>1]

+ ψ(ξ + 1)

(
δ

λ+ δ

)T−1

δ1[ξ<d] +
T∑
s=1

ψ(ξ + 1)

(
δ

λ+ δ

)T−s
λr−(ξ + 1)1[ξ<d]

+
T∑
s=1

ψ(ξ)

(
δ

λ+ δ

)T−s
λ
[
1− r+(ξ)1[ξ<d] − r−(ξ)1[ξ>1]

]
.

Recall that
∑T

s=1

(
δ

λ+δ

)T−s
= K∆ and 1

λ+δK∆λ = δ

[
λ+δ
δ −

(
δ

λ+δ

)T−1
]
. Dividing by

λ+ δ and utilizing this property yields ψ(ξ) =

ψ(ξ)

(
δ

λ+ δ

)T
1[ξ=1] + ψ(ξ − 1)

(
1−

(
δ

λ+ δ

)T)
r+(ξ − 1)1[ξ>1]

+ ψ(ξ + 1)

(
δ

λ+ δ

)T
1[ξ<d] + ψ(ξ + 1)

(
1−

(
δ

λ+ δ

)T)
r−(ξ + 1)1[ξ<d]

+ ψ(ξ)

(
1−

(
δ

λ+ δ

)T)[
1− r+(ξ)1[ξ<d] − r−(ξ)1[ξ>1]

]
.

Taking ψ(1) as unknown, this is a two-term recursion for the ψ(ξ), which are uniquely
determined up to the factor ψ(1), which is determined from ψ(1) + . . .+ ψ(d) = 1. This
must hold, because the proposed product form for θ, respectively π, is by ergodicity of Z
a probability.

Comments: The marginal timer distribution reveals that the most probable timer value
is T . The geometrical decay of the residual timer state probabilities is faster when the
arrival intensity increases. This reflects the timer policy: The timer is reset to T whenever
a message is sent out.
It is not intuitive that (i) the timer distribution is independent of α and β, because the

timer is interrupted whenever RN is in sleep mode, and (ii) the timer and the active-sleep
processes are at fixed times independent.
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2.2. Applications

Corollary 2.2.33. In the setting of Corollary 2.2.32 in steady state the throughput of
RN is

TH(RN) = λ

(
1− β

α+ β
− ψ(0)

α

α+ β

)
.

2.2.6. Crusher station in open-pit mining

In this section we will analyze a crusher station from [ZW09, Section 2] and approximate
it by a loss system. This crusher station is a part of an open pit mining system, were
loaded trucks drive to two discharging positions. There, the trucks discharge their loads
into a bin with a crusher and drive away. The bin buffers the loads between trucks and
the crusher. The capacity of the bin is limited to N loads. The capacity of the crusher
is limited to a single truck load. When the bin and the crusher are full, the discharging
stations are blocked. When discharging position is occupied by a truck or is blocked,
new arriving trucks wait on the road forming a queue. Each truck carries a single load,
therefore for the whole system it is sufficient to focus only on a flow of truck loads from
arriving into the queue at discharging positions until complete processing by the crusher.
The original queuing model from [ZW09, Section 2] is a tandem system where a first

node of type M/M/2/∞ models two discharging positions and the second node of type
M/D/1/N models14 a crusher with capacity 1 and a bin with capacity N . See Figure
2.2.8 on page 80. The authors discovered by stochastic simulations that for a system with
N = 2

“. . . with the defined parameters, the mean number of trucks in the queue
starts increasing sharply after the average truck arrival rate reaches 28 per
hour, and approaches a very high number when the average truck arrival rate
reaches the throughput of the crusher, 35 truck loads per hour.” [ZW09, p. 3]

The aim of this section is to reproduce this qualitative behavior using a loss-system
approximation from Section 2.1.4.
The original model in [ZW09, Section 2] has two discharging positions, each with

service rate µorgn and exponential service times, and a crusher with service rate ν and
deterministic service times. Instead of this, we will use a simplified version with single
discharging position with service rate µ = 2 ·µorgn and a crusher with exponential service
times. This simplification allows us to use loss-system approximation developed in Section
2.1.4.

2.2.6.1. Model without loss

Recall that we use subscript NL (No Loss) for the systems whose costumers are not lost
due to blocking.

Definition 2.2.34 (Crusher station without loss). Given a tandem system with two
nodes. The service times at both nodes are exponential. The stochastic process
14In [ZW09] the ·/ · /1/N queues have N maximal number of customers. In contrast to [ZW09], here,
·/ · /1/N queues have N waiting positions and their maximal number of customers is N + 1.
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2. Loss systems in continuous time

discharging platform
M/M/2/∞

λNL

µorgn

µorgn

bin+crusher YNL(t)
·/D/1/2

ν

full crusher blocks discharging / resumes otherwisefull crusher blocks discharging / resumes otherwise

Figure 2.2.8.: Original model of a crusher station in open-pit mining with maximal ca-
pacity of the second node N = 2.

discharging platform XNL(t)
M/M/1/∞

λNL µ

bin+crusher YNL(t)
·/M/1/2

ν

full crusher blocks discharging / resumes otherwise

(a) without loss according to Definition 2.2.34

discharging platform X(t)
M/M/1/∞

λ

lost

µ

bin+crusher YNL(t)
·/M/1/2

ν

full crusher blocks discharging / resumes otherwise

(b) with loss according to Definition 2.2.35

Figure 2.2.9.: Model of a crusher in station.
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2.2. Applications

(XNL(t) : t ≥ 0) with XNL(t) ∈ N0 describes the number of truck loads at the first node.
The stochastic process (YNL(t) : t ≥ 0) with YNL(t) ∈ K := {0, 1, 2, 3} describes number
of truck loads in the second node. The first node models a discharging platform with
service rate µ and infinite number of waiting places. The second node models a crusher
with service rate ν with two additional waiting places in a bin. It can contain maximal
three truck loads. The truck loads arrive in a Poisson stream with rate λNL at the first
node. When the second node is full, the first node interrupts service. This blocking
mechanisms is called blocking-before-service [Per90, p. 455]. See Figure 2.2.9a on page
80. When the first node is blocked, newly arriving truck loads are not lost, but wait in
the queue of the first node.
The whole system is described by a continues-time Markov process

ZNL = ((XNL(t), YNL(t))) : t ≥ 0) with generator QNL = (q(i, j) : i, j ∈ N×K) =



(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) (2, 2) (2, 3) . . .
(0, 0) ? λNL
(0, 1) ν ? λNL
(0, 2) ν ? λNL
(0, 3) ν ? λNL
(1, 0) µ ? λNL
(1, 1) µ ν ? λNL
(1, 2) µ ν ? λNL
(1, 3) ν ? λNL
(2, 0) . . . . . . . . . . . . . . . . . . . . . . . .

...


.

Here ? is a placeholder for diagonal elements calculated according to the formula
qNL(i, i) = −

∑
j∈(N0×K)\{i} q(i, j).

The generator QNL has a block-tridiagonal form

QNL =


A

(0)
1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


with

A
(0)
1 =


0 1 2 3

0 −λNL
1 ν −(ν + λNL)
2 ν −(ν + λNL)
3 ν −(ν + λNL)

 ,

A0 =


0 1 2 3

0 λNL
1 λNL
2 λNL
3 λNL

 , A2 =


0 1 2 3

0 µ
1 µ
2 µ
3

 ,
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2. Loss systems in continuous time

A1 =


0 1 2 3

0 −(µ+ λNL)
1 ν −(µ+ ν + λNL)
2 ν −(µ+ ν + λNL)
3 ν −(ν + λNL)

 .

Using parameters K, KW , R and V from Definition 2.1.40 we have K := {0, 1, 2, 3},

KW := {0, 1, 2}, R :=


0 1 2 3

0 1
1 1
2 1
3

 , and V :=


0 1 2 3

0
1 ν −ν
2 ν −ν
3 ν −ν

 .

Following Section 2.1.4.2, we construct a loss system with the same parameters K, KW ,
µ, R and V as in Definition 2.2.34, and with λ adjusted in such a way, that the loss
system and the system without loss have the same throughput λNL.

Definition 2.2.35 (Crusher station with loss). Given a tandem system with two nodes.
The service times at both nodes are exponential. The stochastic process (X(t) : t ≥ 0)
with X(t) ∈ N0 describes the number of truck loads at the first node. The stochastic
process (Y (t) : t ≥ 0) with Y (t) ∈ K := {0, 1, 2, 3} describes number of truck loads in
the second node. The first node models a discharging platform with service rate µ and
infinite number of waiting places. The second node models a crusher with service rate ν
with two additional waiting places in a bin. It can contain maximal three truck loads.
The truck loads arrive in a Poisson stream with rate λ at the first node such that the
throughput in steady state is λNL from Definition 2.2.34:

λ := λ
∑
n∈N0

∑
k∈{0,1,2}

π(n, k) = λNL

where π(n, k) is the steady-state distribution of the loss system. When the second node
is full, the first node interrupts service and newly arriving truck loads to the first node
are lost.
The generator of the system Q = (q ((n, k), (n′, k′)) : n, n′ ∈ N, k, k′ ∈ K) is

q((n, k), (n+ 1, k)) = λ, k ∈ {0, 1, 2}, n ∈ N0,

q((n, k), (n− 1, k + 1)) = µ, k ∈ {0, 1, 2}, n > 0,

q((n, k), (n, k − 1)) = v ∈ R+
0 , k ∈ {1, 2, 3}, n ∈ N0,

q((n, k), (i,m)) = 0, otherwise for (n, k) 6= (i,m).

In order to test, weather the additional computation effort for adjusting of λ is worth-
while, we also construct a very simple model where we completely ignore the blocking
problem and that both queues may influence each other. The resulting simple model
consists of independent M/M/1/∞ and M/M/1/2 queues.
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2.2. Applications

Definition 2.2.36 (Crusher station’s subsystems as independent queues). Given a sys-
tem with two dependent nodes. The service times at both nodes are exponential. The
stochastic process (Xsimple(t) : t ≥ 0) with Xsimple(t) ∈ N0 describes the number of truck
loads at the first node. The stochastic process (Ysimple(t) : t ≥ 0) with Ysimple(t) ∈ K :=
{0, 1, 2, 3} describes number of truck loads in the second node. The first node models
a discharging platform with service rate µ and infinite number of waiting places. The
second node models a crusher with service rate ν with two additional waiting places in a
bin. It can contain maximal three truck loads. If the second node is full the new arriving
truck loads to the second node are lost. The arrival rate at both nodes is λNL. See Figure
2.2.10 on page 83.
The generator of the system Qsimple = (qsimple ((n, k), (n′, k′)) : n, n′ ∈ N, k, k′ ∈ K) is

qsimple((n, k), (n+ 1, k)) = λNL, k ∈ {0, 1, 2, 3}, n ∈ N0,

qsimple((n, k), (n− 1, k)) = µ, k ∈ {0, 1, 2, 3}, n > 0,

qsimple((n, k), (n, k + 1)) = λNL, k ∈ {0, 1, 2}, n ∈ N0,

qsimple((n, k), (n, k − 1)) = v ∈ R+
0 , k ∈ {1, 2, 3}, n ∈ N0,

qsimple((n, k), (i,m)) = 0, otherwise for (n, k) 6= (i,m).

discharging platform Xsimple(t)
M/M/1/∞

λNL µ

bin+crusher Ysimple(t)
·/M/1/2

λNL ν

Figure 2.2.10.: Discharging point and crusher as a simple model from Definition 2.2.36.

Corollary 2.2.37. The system without loss defined in Definition 2.2.34 is ergodic if and
only if

µ
ν3 + ν2µ+ νµ2

ν3 + ν2µ+ νµ2 + µ3
> λNL. (2.2.50)

An appropriate ergodic loss system with the same effective arrival rate λNL as defined in
Definition 2.2.35 exists if and only if the system without loss is ergodic. The loss system
approximation is unique.
For the ergodic loss system holds:

• Stationary distribution π is

π(n, k) =

(
1− λ

µ

)
λn

µn
ν3

ν3 + ν2λ+ νλ2 + λ3

(
λ

ν

)k
. (2.2.51)
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2. Loss systems in continuous time

• The mean number of truck loads at discharging station in steady state is

E(X) =

λ
µ

1− λ
µ

=
λ

µ− λ
.

• The mean number of truck loads at crusher in steady state is

E(Y ) =
ν2λ+ 2νλ2 + 3λ3

ν3 + ν2λ+ νλ2 + λ3
.

Proof. The loss system approximation of the crusher station model is a special case of
a tandem network defined in Section 2.2.3. So we can obtain f(x) just by replacing λ
through x in θ in (2.2.37)

G = 1 +
x

ν
+
x2

ν2
+
x3

ν3
=
ν3 + ν2x+ νx2 + x3

ν3
,

f(x)(k) = G−1
(x
ν

)k
=

ν3

ν3 + ν2x+ νx2 + x3

(x
ν

)k
.

It also holds

x
∑
k∈KW

f(x)(k) = x
(
1− f(x)(3)

)
= x

ν3 + ν2x+ νx2

ν3 + ν2x+ νx2 + x3

and
∂

∂x

x ∑
k∈KW

f(x)(k)

 =
v4
(
ν2 + 2νx+ 3x2

)
(ν3 + ν2x+ νx2 + x3)

> 0.

According to Proposition 2.1.45 the tandem system without loss, as defined in Defini-
tion 2.2.34, is positive recurrent if and only if

µ ·
(
1− f(µ)(3)

)
> λNL.

This is equivalent to (2.2.50).
Because ∂

∂x

(
x
∑

k∈KW f(x)(k)
)
is positive for all x, the function x

∑
k∈KW f(x)(k) is

monotone increasing in x. We can apply Proposition 2.1.47 which states that the system
without loss is ergodic if and only if the corresponding loss system with the same effective
arrival rate is ergodic.
Substituting ξ(n) =

(
1− λ

µ

)
λn

µn and θ = f(λ) in π(n, k) = ξ(n)θ(k) we obtain (2.2.51).
The mean number of truck loads in the loss system corresponds to the mean number of
customers an M/M/1/∞ queue with arrival rate λ and service rate µ. It is λ

µ−λ . The
mean number of truck loads at the crusher is θ(1) + 2θ(2) + 3θ(3).
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2.2. Applications

capacity of the bin N
0 1 2 3 4 5 ∞

λNL,critical 24.877 31.314 33.561 34.424 34.767 34.906 ν = 35

Table 2.1.: λNL,critical

2.2.6.2. Evaluation of loss-system approximation

In the following example we will compare a particular system without loss with its loss-
system approximation. The parameters are derived from parameters of a real world
system analyzed in [ZW09]. The steady-state distribution of the system without loss is
calculated numerically with matrix-geometric methods.

Example 2.2.38. Consider a system without loss as defined in Definition 2.2.34, with
µ = 2 ·µorgn = 2 ·43 and ν = 35. The service rate µ = 2 ·43 approximates service rates of
the original M/M/2/∞ system in [ZW09] where each server has service rate µorgn = 43.
The service rate ν corresponds to the value which the authors in [ZW09] call “throughput
of the crusher” or “crusher’s crushing capacity”. For us the most plausible interpretation
of this value is the service rate.
We calculate critical arrival rate λNL,critical. That means, a system without loss with

arrival rate λNL is positive recurrent if and only if λNL < λNL,critical. Using the for-
mula (2.2.50) with “>” replaced by “=” and λNL replaced by λNL,critical we calculate

λNL,critical ≈ 33.56144

We also compute input rates λNL,critical for different capacity of the bin at the crusher.
See Table 2.1 on page 85.
We see that λNL,critical ≈ 33.56144 with bin capacity of two loads is pretty close to the

maximal throughput ν. Under assumption that our simplified tandem with the nodes of
typeM/M/1/∞ and ·/M/1/2 behaves similarly to the original system from [ZW09] with
M/M/2/∞ and ·/D/1/2 nodes, the choice of the bin capacity of only two loads for the
original system is optimal.
The plots in Figure 2.2.11 on page 86 show a steep increase of the mean truck loads

number of both systems when they approach the critical arrival rate λNL,critical. The plots
in Figure 2.2.12 on page 87 show zoomed in section of data of the same systems when
the average number of customers is not large.
We see that the loss-system approximation from Definition 2.2.35, constructed accord-

ing to Section 2.1.4, in general does not approximate well the average number of loads at
the discharging platform and total number of loads of the system without loss defined in
Definition 2.2.34, despite same service rates and effective arrival rates in both systems.
There is a small interval – approximately [0, 10] – where the loss system approximation is
quite good. This good approximation results were expected according to Section 2.1.4.3
due to small blocking probability, see Figure 2.2.13a on page 88. But, we also need to take
into account that on interval [0, 10] this approximation is nearly as good as the simple
model with independent queues from Definition 2.2.36. So we can conclude that in this
particular example the loss system approximation is not worth for estimation of mean
number of truck loads at the discharging point and in the whole system.
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(c) Mean number of truck loads in the system.

Figure 2.2.11.: Mean number of truck loads in crusher station with µ = 2 · 43, ν = 35.
Gray line indicates the critical value of λNL. At and on the right of this
gray line the system without loss and the approximating loss system are
not more stable.

We also cannot see sharp increasing of the mean number of trucks in the queue after
the average truck arrival rate reaches 28 as it is stated in [ZW09, p. 3]. Nevertheless
both systems become instable with the same parameter λNL as it was proved in Corollary
2.2.37.
We see that the average number of loads at the crasher is well approximated, but their

contribution to the total number of loads is negligible.
An interesting property is that the mean number of customers in Figure 2.2.11 on

page 86 and in Figure 2.2.12 on page 87 of the loss-system approximation is always lower
than the mean number of customers in the system without loss. This behavior can be a
topic for future research, because this may indicate that the loss-system approximation
generates strict lower bounds for systems without loss.
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Figure 2.2.12.: Mean number of truck loads in crusher station with µ = 2 · 43, ν = 35
only region for λNL ≤ 25 and the corresponding signed relative errors.
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Figure 2.2.13.: Blocking probability for crusher station with µ = 2 · 43, ν = 35 and the
corresponding signed relative errors.
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We continue our investigations of single-queue systems in a random environment from
Section 2. The systems live in continuous time and we now observe them at departure
instants only, which results in considering an embedded Markov chain. We find that the
behaviour of the embedded Markov chain is often considerably different from that of the
original continuous time Markov process investigated in Section 2.
Our aim is to identify conditions which guarantee that even for the embedded Markov

chain a product form equilibrium exists at the discrete observation time points as well.
For exponential queueing systems we show that there is a product form equilibrium

under rather general conditions. For systems with non-exponential service times more
restrictive constraints are needed, which we prove by a counter example where the envi-
ronment represents an inventory attached to anM/D/1 queue. Such integrated queueing-
inventory systems are dealt with in the literature previously, see [KLM11]. Further ap-
plications are, e.g., in modeling unreliable queues.
For investigating M/G/1/∞ queues embedded Markov chains provide a standard pro-

cedure to avoid using supplementary variable technique. Embedded chain analysis was
applied by Vineetha [Vin08] who extended the theory of integrated queueing-inventory
models with exponential service times to systems with service times which are i.i.d. and
follow a general distribution. Our investigations which are reported in this section were
in part motivated by hers.
In Section 3.2 we revisit some of Vineetha’s [Vin08] queueing-inventory systems, using

similarly embedded Markov chain techniques. In the course of these investigations we
found that there arise problems even for purely exponential systems, which we describe
in Section 3.1.1 and Section 3.1.2 first, before describing the M/G/1/∞ queue in a ran-
dom environment and its structural properties.

To emphasize the problems arising from the interaction of the two components of
integrated systems, we remind the reader, that for ergodicM/G/1/∞ queues the limiting
and stationary distribution of the continuous time queue length process and the Markov
chains embedded at departure instants are the same.
Our first finding is, that even in the case ofM/M/1/∞ queues with attached inventory

this in general does not hold. This especially implies, that the product form results
obtained in Section 2 do not carry over immediately to the case of loss systems in a
random environment observed at departure times from the queue (downward jumps of
the generalized birth-death process).
A striking observation is that for a system which is ergodic in the continuous time

Markovian description the Markov chain embedded at departure instants may be not
ergodic. The reason for this is two-fold. Firstly, the embedded Markov chain may have
inessential states due to the specified interaction rules. Secondly, even when we delete all
inessential states, the resulting single positive recurrent class may be periodic.
We study this problem in depth in Section 3.1.2 for purely exponential systems, and
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3. Embedded Markov chains analysis

provide a set of examples which elucidate the problems which one is faced with. Our
main result in this section proves the existence of a product form steady-state distribu-
tion (which is not necessary a limiting distribution) for the Markov chain embedded at
departure instants and provides a precise connection between the steady states of the
continuous time process and the embedded chain (Theorem 3.1.16).
It turns out, that a similar result in the setting withM/G/1/∞ queues is not valid. We

are able to give sufficient conditions for the structure of the environment, which guarantee
the existence of product form equilibria (Theorem 3.2.25).
Unfortunately enough, an analogue to Theorem 3.1.16 is not valid for systems with

non exponential service times. We prove this by constructing a counterexample which is
an M/D/1/∞ queue with an attached environment in Proposition 3.2.8 in Section 3.2.

3.1. M/M/1/∞ queueing system in a random environment

Recall, that the paths of Z are cadlag. With τ0 = σ0 = ζ0 = 0 and

τn+1 := inf(t > τn : X(t) < X(t−)), n ∈ N,

denote the sequence of departure times of customers by τ = (τ0, τ1, τ2, . . . ), and with

σn+1 := inf(t > σn : X(t) > X(t−)), n ∈ N,

denote by σ = (σ0, σ1, σ2, . . . ) the sequence of instants when arrivals are admitted to the
system (because the environment is in states of KW , i.e., not blocking)
and with

ζn+1 := inf(t > ζn : Z(t) 6= Z(ζn)), n ∈ N,

denote by ζ = (ζ0, ζ1, ζ2, . . . ) the sequence of jump times of Z.

The following lemma will be used in the sequel. It refers to the structure of the
continuous time process. We emphasize that the generator V is not necessarily irreducible.

Lemma 3.1.1. For any strictly positive η ∈ R+ the matrix (−diag(V ) + ηIW ) is invert-
ible.

Proof. For any k ∈ KW the corresponding diagonal element of the matrix (−diag(V ) +
ηIW ) is greater than η because −v(k, k) ≥ 0.
If k ∈ KB, we utilize the ergodicity of Z in continuous time and apply Lemma A.2.1

with K̃B := {k}. The lemma implies that there is some m 6= k with v(k,m) > 0. It
follows −v(k, k) > 0.
We conclude that the diagonal matrix (−diag(V ) + ηIW ) has only strictly positive

values on its diagonal and therefore it is invertible.

3.1.1. Observing the system at departure instants

Recall that the paths of Z are cadlag and that τ = (τ0, τ1, τ2, . . . ) with τ0 = 0 denotes the
sequence of departure times of customers. Then with X̂(n) := X(τn) and Ŷ (n) := Y (τn)
for n ∈ N0 it is easy to see that

Ẑ = ((X̂(n), Ŷ (n)) : n ∈ N0) (3.1.1)
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3.1. M/M/1/∞ queueing system in a random environment

is a homogeneous Markov chain on state space E = N0×K. If Ẑ has a unique stationary
distribution, this will be denoted by π̂.

Definition 3.1.2. If the embedded Markov chain
((
X̂(n), Ŷ (n)

)
: n ∈ N0

)
of the loss

system in a random environment with state space E := N0×K has a unique steady-state
distribution, we denote this distribution

π̂ := (π̂(n, k) : (n, k) ∈ E := N0 ×K).

and the marginal steady-state distributions

ξ̂ := (ξ̂(n) : n ∈ N0), ξ̂(n) :=
∑
k∈K

π̂(n, k),

θ̂ := (θ̂(k) : k ∈ K), θ̂(k) :=
∑
n∈N0

π̂(n, k).

It will turn out that this Markov chain exhibits interesting structural properties of the
loss systems in random environments. E.g., with ξ from (2.1.8) we will prove that

π̂(n, k) = ξ̂(n) · θ̂(k) with ξ̂(n) = ξ(n)

holds, but in general we do not have π̂(n, k) > 0 on the global state space E, because
θ̂(k) = 0 may occur. Especially, in general it holds θ 6= θ̂.
The reason for this seems to be the rather general vice-versa interaction of the queueing

system and the environment. Of special importance is the fact that we consider the
continuous time systems at departure instants where we have the additional information
that right now the influence of the queueing systems on the change of the environment is
in force (described by the stochastic matrix R).
The dynamics of Ẑ will be described in a way that resembles the M/G/1 type matrix

analytical models. Recall that the state space E carries an order structure, see Remark
2.1.4, which will govern the description of the transition matrix and, later on, of the
steady-state vector.

Definition 3.1.3. We define the one-step transition matrix P of Ẑ by(
P(i,k),(j,m) : (i, k), (j,m) ∈ E

)
:= (P (Z(τ1) = (j,m)|Z(0) = (i, k)) : (i, k), (j,m) ∈ E) ,

and introducing matrices A(i,n) ∈ RK×K and B(n) ∈ RK×K by

B
(n)
km := P (Z(τ1) = (n,m)|Z(0) = (0, k)) (3.1.2)

A
(i,n)
km := P (Z(τ1) = (i+ n− 1,m)|Z(0) = (i, k)), 1 ≤ i, (3.1.3)

for k,m ∈ K, the matrix P has the form
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3. Embedded Markov chains analysis

P =


B(0) B(1) B(2) B(3) . . .

A(1,0) A(1,1) A(1,2) A(1,3) . . .

0 A(2,0) A(2,1) A(2,2) . . .

0 0 A(3,0) A(3,1) . . .
...

...
...

...

 , (3.1.4)

which exploits the structure of the state space as a product of level variables in N0 and
phase variables in K.

For the loss system in a random environment we will solve the equation

π̂P = π̂ (3.1.5)

for a stochastic solution π̂ which is a steady-state distribution of the embedded Markov
chain Ẑ. Because Ẑ is in general not irreducible on E there are some subtleties with
respect to the uniqueness of a stochastic solution of this equation.
For further calculations it will be convenient to group π̂ according to the queue length:

Definition 3.1.4. We write π̂ as

π̂ = (π̂(0), π̂(1), π̂(2), . . . ) (3.1.6)

with
π̂(n) = (π̂(n, k) : k ∈ K), n ∈ N0. (3.1.7)

Especially we write for (n, k) ∈ E

π̂(n)(k) := π̂(n, k).

An immediate consequence of this definition is that the steady-state equation (3.1.5)
can be written as

π̂(0)B(n) +
n+1∑
i=1

π̂(i)A(i,n−i+1) = π̂(n), n ∈ N0. (3.1.8)

3.1.2. Steady state for the system observed at departure instants

The main idea in this section is to show that π̂(n, k) = ξ̂(n)θ̂(k) with ξ̂ = ξ, θ̂ = c−1θIWR
and normalization constant c solves the steady-state equation (3.1.5). The expression
θ̂ = c−1θIWR originally comes from our previous investigations, where in [KD13b] we
directly computed θ̂ under the assumption that (λIW − V )−1 exists. Later on we proved
that θ̂ = c−1θIWR.
An explanation for the special form of θ̂ was given to us by an anonymous reviewer in

a report on a previous version of this section submitted to the journal Queuing Systems.
The text within angle 〈〉 braces was adjusted to present references and bibliography keys:

“The process (X(t), Y (t)) is a (level-dependent) QBD process, as is also
mentioned by the authors, with a particular structure in which transitions
from level n to level n + 1, n and n − 1, are governed by matrices A0 =
λIW , A1(n) = V − A0 − diag(A2(n)e), and A2(n) = µ(n)IWR respectively.

92



3.1. M/M/1/∞ queueing system in a random environment

So the stationary distribution embedded at service completions is just the
distribution of the QBD at hand upon moving down one level, which is easily
derived from π. In particular we have

π̂(n, k) ≡ P (X̂ = n, Ŷ = k) = c−1
∑
`∈K

P (X = n+ 1, Y = `)A2(n+ 1)`,k

(3.1.9)
here c follows from normalization. Using the product-form for π as found
in 〈[KD12]〉, namely π(n, k) = ξ(n)θ(k), see 〈(2.1.4)〉, this leads to

π̂(n, k) = c−1ξ(n+ 1)µ(n+ 1)
∑
`∈K

θ(`)[IWR]`,k

which reduces to c−1λξ(n)
∑

`∈K θ(`)[IWR]`,k. This proves the main state-
ments in 〈Theorem 3.1.16 (a)〉, namely the product form in 〈(3.1.39)〉 to-
gether with the fact 〈(3.1.40)〉 that ξ̂(n) = ξ(n), and the particular form of
θ(k) in 〈(3.1.41)〉 . The result 〈(3.1.38) in Proposition 3.1.14〉 then follows
immediately from 〈(3.1.41)〉 (θk = 0 when k /∈ L).”

The formula (3.1.9) provided by the reviewer points to an other intuitive explanation for
the special form of the π̂. Let Z(t) = (X(t), Y (t)) be an ergodic stationary process with
generator Q and Ẑ = (X̂, Ŷ ) be the corresponding embedded chain at departure times.
The average number of jumps to state (n, k) directly from level n+ 1 is

E[Number of jumps into (n, k) directly from level n+ 1]

= µ(n+ 1)
∑
`∈KW

π(n+ 1, `)R`,k

= ξ(n+ 1)︸ ︷︷ ︸
=ξ(n)λ/µ(n+1)

µ(n+ 1)
∑
`∈KW

θ(`)[IWR]`,k

= λξ(n)
∑
`∈KW

θ(`)[IWR]`,k + λξ(n)
∑
`∈KB

θ(`)[IWR]`,k︸ ︷︷ ︸
=0 for `∈KB

= λξ(n)
∑
`∈K

θ(`)[IWR]`,k.

The probability π̂(n, k) is the proportion of the jumps into (n, k) directly from level
n+ 1 in unit of time

π̂(n, k) =
E[Number of jumps into (n, k) directly from level n+ 1]∑

(i,m)∈N0×K E[Number of jumps into (i,m) directly from level i+ 1]

=
λξ(n)

∑
`∈K θ(`)[IWR]`,k

λ
∑
i∈N

ξ(i)︸ ︷︷ ︸
=1

∑
m∈K

∑
`∈K

θ(`)[IWR]`,m︸ ︷︷ ︸
=:c

= ξ(n) c−1θ(k)
∑
`∈KW

[IWR]`,k︸ ︷︷ ︸
=:θ̂(k)

.

Both ideas for the special form of θ̂ are not rigorous proofs and still require a careful
construction of all involved stochastic processes. Nevertheless they deliver interesting
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insights to the embedded chains. The main advantages of both approaches are the sim-
plicity of the solution as soon as their formula is mathematically justified, they do not
require the matrix P from (3.1.4), and they do not require the special assumption about
invertibility of the matrix (λIW − V ). The disadvantage of both approaches is that it
requires the knowledge of the steady-state solution π(n, k) in continuous time, which is
not alway available. In our version of the proof we will use a hybrid approach: we will
analyze the matrix P and show that the proposed π̂(n, k) = ξ(n)θ̂(k) with θ̂ = c−1θIWR
solves the steady-state equation π̂P = π̂. The reasons for us to favor the hybrid approach
are

1. The analysis of the matrix P provides insight into the embedded processes and we
will use it to calculate steady-state distribution for some M/G/1/∞ systems where
the continuous time probability π(n, k) is not available.

2. We do not need to assume about invertibility of (λIW −V ) in contrast to the direct
approach in [KD13b].

Assumption 3.1.5 (Overall assumption for Section 3). In this section we will frequently
use matrix operations for matrices from RK×K , where K is the environment state space.
We assume that matrix multiplication is associative. When K is finite, the associativity of
matrix multiplication is granted, but when K is infinite, problems may occur. The reason
for these problems is the fact, that in the case of infinite K, each matrix multiplication
creates a new matrix whose elements are infinite series. The value of these series can
depend on the summation order.

In a first step we analyze the dynamics incorporated in the matrix A(i,n) and B(n).
We start our investigation with a detailed analysis of the one-step transition ma-

trix (3.1.4) and will express the matrices B(n) and A(i,n) from Definition 3.1.3 by means
of auxiliary matrices W and U (i,n), which reflect the dynamics of the system.

Lemma 3.1.6. Recall that τ1 denotes the first departure instant, that σ1 denotes the first
arrival instant of an admitted customer, and that Y (σ1) ∈ KW holds.
For k ∈ K,m ∈ KW , we define the matrix U (i,n), whose entries U (i,n)

km are probabil-
ities for the system starting with i customers and environment state k to admit n new
customers and being in environment state m right before the first service is finished.

U
(i,n)
km := P

((
X(τ1), Y (τ−1 )

)
= (i+ n− 1,m)|Z(0) = (i, k)

)
, 1 ≤ i, n ∈ N0,

(3.1.10)
and for k ∈ K and m ∈ KB we prescribe by definition U (i,n)

km = 0.
Similarly, for k ∈ K,m ∈ KW , we define the matrix W , whose entries Wkm are

probabilities for the empty system starting in environment state k to be in environment
state m when the first customer is admitted to the system.

Wkm := P (Z(σ1) = (1,m)|Z(0) = (0, k)), (3.1.11)

and for k ∈ K and m ∈ KB prescribe by definition Wkm = 0.
Then it holds for A(i,n) and B(n) from Definition 3.1.3

A(i,n) = U (i,n)R, (3.1.12)

B(n) = WA(1,n) = WU (1,n)R. (3.1.13)
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3.1. M/M/1/∞ queueing system in a random environment

Proof. Using the fact, that the paths of the system in continuous time almost sure have
left limits, we get for i > 0, n ≥ 0 and k,m ∈ K

A
(i,n)
km = P ((X(τ1), Y (τ1)) = (i+ n− 1,m)|Z(0) = (i, k))

=
∑
h∈K

P
((
X(τ1), Y (τ−1 )

)
= (i+ n− 1, h)|Z(0) = (i, k)

)
R(h,m)

=
∑
h∈K

UkhR(h,m),

which in matrix form is (3.1.12).
For the property (3.1.13) we will use the fact, that if the system starts with an empty

queue, then the first arrival occurs always before the first departure, P (σ1 < τ1) = 1. We
will also use the strong Markov (SM ) property of Z. We obtain for n ≥ 0 and k,m ∈ K

B
(n)
km :=P ((X(τ1), Y (τ1)) = (n,m)|Z(0) = (0, k))

=
∑
h∈K

P ((X(τ1), Y (τ1)) = (n,m) ∩ Z(σ1) = (1, h)|Z(0) = (0, k))

=
∑
h∈K

P ((X(τ1), Y (τ1)) = (1 + n− 1,m)|Z(σ1) = (1, h) ∩ Z(0) = (0, k))

· P (Z(σ1) = (1, h)|Z(0) = (0, k))

SM
=
∑
h∈K

P ((X(τ1), Y (τ1)) = (1 + n− 1,m)|Z(0) = (1, h))︸ ︷︷ ︸
=A

(1,n)
hm

· P (Z(σ1) = (1, h)|Z(0) = (0, k))︸ ︷︷ ︸
=Wkh

=
∑
h∈K

WkhA
(1,n)
hm ,

which proves (3.1.13).

The proof of Lemma 3.1.6 reveals that the stochastic matrix W describes the system’s
development (queue length X̂ and environment Ŷ process) if it is started empty, until
the first customer enters the system.
The matrix U (i,n) describes the system’s development from start of the ongoing service

time of the, say, n-th admitted customer, until time τ−n ; to be more precise, we describe
an ongoing service and the subsequent departure but without the immediately following
jump of the environment triggered by R.
We will use the following properties of the system and its describing process Z:

• the strong Markov (SM ) property of Z,

• skip free to the left (SF ) property of the system

P (Z(ζ1) = (n+ j,m)|Z(0) = (n, k)) = 0 ∀j ≥ 2, (3.1.14)

• cadlag paths; in particular we are interested in the values of Y (τ−1 ), just before
departure instants.
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In the proofs of the following Proposition 3.1.8 and Proposition 3.1.9 we will often use
distributive law for matrix addition and multiplication. It holds obviously for finite
dimensional matrices, but for infinite dimensional matrices it is not always applicable
and we need Lemma 3.1.7.

Lemma 3.1.7. Let M ∈ [0, 1]K×K be arbitrary substochastic matrix on a countable state
space K, V := (v(k,m) : k,m ∈ K) ∈ RK×K be an arbitrary generator and a ∈ R any
constant. Then it holds

(−diag(V ) + aIW )M − (V − diag(V ))M = (aIW − V )M. (3.1.15)

Proof. Each (k,m)-th entry of the matrix on the left side of the equation (3.1.15) is an
absolute convergent series(

−v(k, k) + a1[k∈KW ]

)
Mkm −

( ∑
h∈K\{k}

v(k, h)Mhm

)
.

To prove the absolute convergence we use the fact that all non-diagonal values of V
are positive, that the diagonal elements of V are bounded, that the row sum of V is zero
and that each entry of the stochastic matrix M is bounded by 1.

|
(
−v(k, k) + a1[k∈KW ]

)
Mkm|+

( ∑
h∈K\{k}

|v(k, h)Mhm|
)

≤ | (−v(k, k) + a) · 1|︸ ︷︷ ︸
<∞

+
( ∑
h∈K\{k}

|v(k, h) · 1|

︸ ︷︷ ︸
=v(k,k)<∞

)
.

Because of the absolute convergence the difference on the left side of the equation
(3.1.15) is well defined and we can use distributive law

(−diag(V ) + aIW )M − (V − diag(V ))M = ((−diag(V ) + aIW )− (V − diag(V )))M

to obtain the right side of the equation.

Proposition 3.1.8. For the matrix W = (Wkm : k,m ∈ K) from Lemma 3.1.6 it holds

(λIW − V )W = λIW . (3.1.16)

Proof. Recall that σ1 denotes the arrival time of the first customer which is admitted to
the system, which implies that at time σ1 the environment is in a non-blocking state, and
ζ1 is the first jump time of the system which can be triggered only by V or by an arrival
conditioned on Ŷ being in KW . It follows for m ∈ KW

Wkm = P (Z(σ1) = (1,m)|Z(0) = (0, k))

=
∑

h∈K\{k}

P (Z(σ1) = (1,m) ∩ Z(ζ1) = (0, h)|Z(0) = (0, k))

+δkmP (Z(ζ1) = (1,m)|Z(0) = (0, k))

=
∑

h∈K\{k}

P (Z(σ1) = (1,m)|Z(ζ1) = (0, h), Z(0) = (0, k))

·P (Z(ζ1) = (0, h)|Z(0) = (0, k))

+δkmP (Z(ζ1) = (1,m)|Z(0) = (0, k))
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SM
=

∑
h∈K\{k}

P (Z(σ1) = (1,m)|Z(0) = (0, h))︸ ︷︷ ︸
Whm

P (Z(ζ1) = (0, h)|Z(0) = (0, k))︸ ︷︷ ︸
=

v(k,h)
−v(k,k)+λ1[k∈KW ]

+δkm P (Z(ζ1) = (1,m)|Z(0) = (0, k))︸ ︷︷ ︸
= λ
−v(k,k)+λ1[k∈KW ]

1[k∈KW ]

⇐⇒Wkm =
1

−v(k, k) + λ1[k∈KW ]

(∑
h∈K

vkh(1− δkh)Whm + δkmλ1[k∈KW ]

)
.

The equations above can be written in matrix form

W = (−diag(V ) + λIW )−1 ((V − diag(V ))W + λIW )

⇐⇒ (−diag(V ) + λIW )W = (V − diag(V ))W + λIW

⇐⇒ (−diag(V ) + λIW )W − (V − diag(V ))W = λIW (3.1.17)
Lemma 3.1.7⇐⇒ (λIW − V )W = λIW . (3.1.18)

Proposition 3.1.9. For the matrices U (i,n) = (U
(i,n)
km : k,m ∈ K) from Lemma 3.1.6 it

holds
((λ+ µ(i))IW − V )U (i,0) = µ(i)IW (3.1.19)

and
((λ+ µ(i))IW − V )U (i,n+1) = λIWU

(i+1,n). (3.1.20)

Proof. Note that τ1 is the first departure time and ζ1 is the first jump time of the system,
and if this jump is triggered by a departure than ζ1 = τ1.
For U (i,0) with i > 0 it holds for k ∈ K and m ∈ KW :

U
(i,0)
km

= P
((
X(τ1), Y (τ−1 )

)
= (i− 1,m)|Z(0) = (i, k)

)
=

∑
h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (i− 1,m) ∩ Z(ζ1) = (i, h)|Z(0) = (i, k)

)
+δkmP

((
X(τ1), Y (τ−1 )

)
= (i− 1, k)|Z(0) = (i, k)

)
=

∑
h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (i− 1,m)|Z(ζ1) = (i, h), Z(0) = (i, k)

)
·P (Z(ζ1) = (i, h)|Z(0) = (i, k))

+δkmP
((
X(τ1), Y (τ−1 )

)
= (i− 1, k)|Z(0) = (i, k)

)
SM
=

∑
h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (i− 1,m)|Z(0) = (i, h)

)︸ ︷︷ ︸
=U

(i,0)
hm

v(k, h)

−v(k, k) + (λ+ µ(i))1[k∈KW ]

+δkm
µ(i)

−v(k, k) + (λ+ µ(i))1[k∈KW ]
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⇐⇒ U
(i,0)
km

=
1

−v(k, k) + (λ+ µ(i))1[k∈KW ]

(∑
h∈K

v(k, h)(1− δkh)U
(i,0)
hm + δkmµ(i)1[k∈KW ]

)
.

We write the equation above in a matrix form

U (i,0) =
(
− diag(V ) + (λ+ µ(i))IW

)−1 ·
(

(V − diag(V ))U (i,0) + µ(i)IW

)
⇐⇒

(
− diag(V ) + (λ+ µ(i))IW

)
U (i,0) = (V − diag(V ))U (i,0) + µ(i)IW (3.1.21)

Lemma 3.1.7⇐⇒
(
(λ+ µ(i))IW − V

)
U (i,0) = µ(i)IW . (3.1.22)

Next we calculate for n ≥ 0 and 1 ≤ i the elements of the matrix U (i,n+1)
km

U
(i,n+1)
km

= P
((
X(τ1), Y (τ−1 )

)
= (i+ n+ 1− 1,m)|Z(0) = (i, k)

)
=

n+1∑
j=0

∑
h∈K

1[(j,h)6=(i,k)]P
((
X(τ1), Y (τ−1 )

)
= (i+ n,m) ∩ Z(ζ1) = (j, h)|Z(0) = (i, k)

)
SF
=

∑
h∈K\{h}

P
((
X(τ1), Y (τ−1 )

)
= (i+ n,m) ∩ Z(ζ1) = (i, h)|Z(0) = (i, k)

)
+P

((
X(τ1), Y (τ−1 )

)
= (i+ n,m) ∩ Z(ζ1) = (i+ 1, k)|Z(0) = (i, k)

)
=

∑
h∈K\{h}

P
((
X(τ1), Y (τ−1 )

)
= (i+ n,m)|Z(ζ1) = (i, h), Z(0) = (i, k)

)
·P (Z(ζ1) = (i, h)|Z(0) = (i, k))

+P
((
X(τ1), Y (τ−1 )

)
= (i+ n,m)|Z(ζ1) = (i+ 1, k), Z(0) = (i, k)

)
·P
((
X(τ1), Y (τ−1 )

)
= (i+ 1, k)|Z(0) = (i, k)

)
SM
=

∑
h∈K\{h}

P
((
X(τ1), Y (τ−1 )

)
= (i+ n,m)|Z(0) = (i, h)

)
·P ((Z(ζ1) = (i, h)|Z(0) = (i, k)))

+P
((
X(τ1), Y (τ−1 )

)
= (i+ n,m)|Z(ζ1) = (i+ 1, k)

)
·P (Z(ζ1) = (i+ 1, k)|Z(0) = (i, k))

=
∑

h∈K\{h}

P (
(
X(τ1), Y (τ−1 )

)
= (i+ n,m)|Z(0) = (i, h))︸ ︷︷ ︸
=U

(i,n+1)
hm

· v(k, h)

−v(k, k) + (µ(i) + λ)1[k∈KW ]

+P
((
X(τ1), Y (τ−1 )

)
= (i+ n+ 1− 1,m)|Z(0) = (i+ 1, k)

)︸ ︷︷ ︸
=U

(i+1,n)
km

·1[k∈KW ]
λ

−v(k, k) + (µ(i) + λ)1[k∈KW ]
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U
(i,n+1)
km =

1

−v(k, k) + (µ(i) + λ)1[k∈KW ]

·

(∑
h∈K

v(k, h)(1− δkh)U
(i,n+1)
hm + λ1[k∈KW ]U

(i+1,n)
km

)
.

The last equation can be written in matrix form as

U (i,n+1) = (−diag(V ) + (λ+ µ(i))IW )−1 ·
(

(V − diag(V ))U (i,n+1) + λIWU
(i+1,n)

)

⇐⇒ (−diag(V ) + (λ+ µ(i))IW )U (i,n+1) = (V − diag(V ))U (i,n+1) + λIWU
(i+1,n)

(3.1.23)

Lemma 3.1.7⇐⇒ ((λ+ µ(i))IW − V )U (i,n+1) = λIWU
(i+1,n). (3.1.24)

Corollary 3.1.10. If the matrices (λIW − V )−1 are invertible for any positive λ then it
holds

W = λ(λIW − V )−1IW . (3.1.25)

Proof. (3.1.25) follows directly from (3.1.16).

We are now ready to evaluate the steady-state equations (3.1.8) of Ẑ. Because we have
a Poisson-λ arrival stream, the marginal steady state (2.1.8) of the continuous time queue
length process X is

ξ =

(
ξ(n) := C−1

n∏
i=1

λ

µ(i)
: n ∈ N0

)
.

Recall (3.1.8)

π̂(0)B(n) +
n+1∑
i=1

π̂(i)A(i,n−i+1) = π̂(n), n ∈ N0,

and the decomposition from Lemma 3.1.6:

A(i,n) = U (i,n)R and B(n) = WU (1,n)R.

The conjectured product form steady state will eventually be realized as

π̂(n, k) = ξ(n) · θ̂(k), for (n, k) ∈ E, and π̂n = ξ(n) · θ̂, for n ∈ N0,

with θ̂(k) = 0 for some k ∈ K.
The idea of the proof is: The steady-state equation is transformed into

ξ(n) · θ̂ = ξ(0) · θ̂ ·W · U (1,n) ·R+

n+1∑
i=1

ξ(n) · θ̂ · U (i,n−i+1) ·R, ∀n ∈ N0. (3.1.26)
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We insert ξ(n), cancel C−1, and obtain the “environment equations”

(
n∏
i=1

λ

µ(i)

)
· θ̂ = θ̂ ·W · U (1,n) ·R+

n+1∑
i=1

 i∏
j=1

λ

µ(i)

 · θ̂ · U (i,n−i+1) ·R ∀n ∈ N0,

(3.1.27)

which we may consider as a sequence of equations with vector of unknowns θ̂. Then, using
properties of the matrices W and U (i,n) we show that the proposed θ̂ = (θIWe)−1 · θIWR
solves these environment equations.

Lemma 3.1.11. Let θ be a positive stochastic solution of the equation
θ (λIW (R− I) + V ) = 0, where λ, IW , R and V are parameters of an ergodic loss system
in continuous time. Then the vector

y := (θIWe)−1 · θIWR (3.1.28)

is stochastic and it holds

y = (θIWe)−1 · 1

λ
θ (λIW − V ) . (3.1.29)

Proof. The vector y = (θIWe)−1 ·θIWR is stochastic because θ is stochastic, IWR is sub-
stochastic, and (θIWe) = (θIW Re︸︷︷︸

=e

) is the appropriate positive normalization constant.

For finite set K the property (3.1.29) follows from the obvious transformations

θ (λIW (R− I) + V ) = 0⇐⇒ θλIWR− θλIW + θV = 0⇐⇒ λθIWR = θ (λIW − V )
(3.1.30)

and multiplying both sides with (θIWe)−1 1
λ . But when K is infinite, we need to prove

that we can use distributive law for θ:
Each k-th vector element of vectors θ (λIW (R− I) + V ), θλIWR−θλIW +θV , λθIWR,

and θ (λIW − V ) in (3.1.30) is absolute convergent series, whose sum of absolute terms
is bounded by∑

h∈K
|λθ(h)R(h, k)| 1[k∈KW ] + |θ(k)λ1[k∈KW ]|+

∑
h∈K
|θ(h)v(h, k)|,

which is bounded too:∑
h∈K
|λθ(h)R(h, k)| 1[h∈KW ] + θ(k)λ1[k∈KW ] +

∑
h∈K
|θ(h)v(h, k)|

= λ
∑
h∈K

(θ(h)(R(h, k)− δhk) 1[h∈KW ] + 2θ(k)λ1[k∈KW ] +
∑
h∈K

θ(h)v(h, k)− 2θ(k)v(k, k)

= λ
∑
h∈K

θ(h)(R(h, k)− δhk)1[h∈KW ] +
∑
h∈K

θ(h)v(h, k)︸ ︷︷ ︸
=0

+ 2λθ(k)1[k∈KW ] − 2θ(k)v(k, k)︸ ︷︷ ︸
<∞

.

Therefore the transformation (3.1.30) is valid also for infinite K.
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Lemma 3.1.12. Let θ be a positive stochastic solution of the equation
θ (λIW (R− I) + V ) = 0, where λ, IW , R and V are parameters of an ergodic loss
system in continuous time. Then y = (θIWe)−1 · θIWR solves the environment equa-
tions (3.1.27), that is(

n∏
i=1

λ

µ(i)

)
·y = y ·W ·U (1,n) ·R+

n+1∑
i=1

 i∏
j=1

λ

µ(i)

·y ·U (i,n−i+1) ·R, ∀n ∈ N0. (3.1.31)

Proof. From Lemma 3.1.11 follows that y is a stochastic vector. Vector y and every matrix
on the right side of the equation (3.1.31) contain only non-negative elements, additionally
all series on the right side are bounded by the finite values

(∏n
i=1

λ
µ(i)

)
y(k) on the left

side, therefore the following transformation is the same for finite and infinite K(
n∏
i=1

λ

µ(i)

)
· y =

y ·W · U (1,n) +

n+1∑
i=1

 i∏
j=1

λ

µ(i)

 · y · U (i,n−i+1)

 ·R. (3.1.32)

From Lemma 3.1.11 follows y = (θIWe)−1θ 1
λ (λIW − V ). We insert y = (θIWe)−1 ·

θ 1
λ (λIW − V ) into the right side of equation (3.1.32), insert y = (θIWe)−1 · θIWR into

the left side of the equation (3.1.32) and multiply both sides with (θIWe)λ.

λ

(
n∏
i=1

λ

µ(i)

)
· θIWR

=

θ (λIW − V ) ·W · U (1,n) +

n+1∑
i=1

 i∏
j=1

λ

µ(i)

 · θ (λIW − V )U (i,n−i+1)

 ·R.
Using the property (3.1.16) of the matrix W we get

λ

(
n∏
i=1

λ

µ(i)

)
· θIWR =

θλIW · U (1,n) +
n+1∑
i=1

 i∏
j=1

λ

µ(i)

 · θ (λIW − V )U (i,n−i+1)

 ·R.
(3.1.33)

Now we iteratively reduce the number of the summands in the squared brackets for
n ≥ 1

θλIW · U (1,n) +

n+1∑
i=1

 i∏
j=1

λ

µ(i)

 · θ (λIW − V )U (i,n−i+1)

= θλIW · U (1,n) +
λ

µ(1)
· θ (λIW − V )U (1,n) +

n+1∑
i=2

 i∏
j=1

λ

µ(i)

 · θ (λIW − V )U (i,n−i+1)

=
λ

µ(1)

(
θµ(1)IW + θ (λIW − V )︸ ︷︷ ︸

(∗)

)
U (1,n) +

n+1∑
i=2

 i∏
j=1

λ

µ(i)

 · θ (λIW − V )U (i,n−i+1).
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We can apply distributive law for θ in (*) because every k-th element of θµ(1)IW and
θλIW is bounded and in the proof of Lemma 3.1.11 we showed that every k-th element
of θV is a an absolute convergent series

λ

µ(1)
θ (µ(1)IW + λIW − V )U (1,n) +

n+1∑
i=2

 i∏
j=1

λ

µ(i)

 · θ (λIW − V )U (i,n−i+1).

Using the property (3.1.20) of the matrix U (1,n)we get

λ

µ(1)
θλIWU

(2,n−1) +
n+1∑
i=2

 i∏
j=1

λ

µ(i)

 · θ (λIW − V )U (i,n−i+1).

Using same technique we remove the next summand for n ≥ 2

λ

µ(1)
θλIWU

(2,n−1) +

 2∏
j=1

λ

µ(i)

 · θ (λIW − V )U (2,n−2+1)

+

n+1∑
i=3

 i∏
j=1

λ

µ(i)

 · θ (λIW − V )U (i,n−i+1)

=

 2∏
j=1

λ

µ(i)

 θ (µ(2)IW + λIW − V )U (2,n−1)︸ ︷︷ ︸
=λIWU(3,n−2)

+

n+1∑
i=3

 i∏
j=1

λ

µ(i)

 · θ (λIW − V )U (i,n−i+1).

After applying this technique n− 2 more times we arrive at n∏
j=1

λ

µ(i)

 θλIWU
(n+1,0) +

n+1∏
j=1

λ

µ(i)
θ (λIW − V )U (n+1,0)

=

n+1∏
j=1

λ

µ(i)

 θ (µ(n+ 1)IW + λIW − V )U (n+1,0)

and the equation (3.1.33) can be written as

λ

(
n∏
i=1

λ

µ(i)

)
· θIWR =

n+1∏
j=1

λ

µ(i)

 θ
(

(µ(n+ 1)IW + λIW − V )U (n+1,0)
)
R

(3.1.19)⇐⇒ λθIWR = θ
λ

µ(n+ 1)
µ(n+ 1)IWR.
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Lemma 3.1.13. Let θ be a positive stochastic solution of the equation
θ(λIW (I −R) + V ) = 0, y := (θIWe)−1 ·θIWR, where λ, IW , R and V are parameters of
an ergodic loss system in continuous time and W is the matrix from Lemma 3.1.6. Then

θIW = (θIWe)yW (3.1.34)

and y is a stochastic solution of the equation

yWR = y. (3.1.35)

If (λIW − V ) is invertible then

θ =

(
y

(
IW −

1

λ
V

)−1

e

)−1

y

(
IW −

1

λ
V

)−1

. (3.1.36)

Proof. From definition of y and (3.1.29) in Lemma 3.1.11 follows

1

λ
θ (λIW − V ) = (θIWe)y. (3.1.37)

To obtain (3.1.34) we multiply both sides of (3.1.37) with W from the right and use
property (3.1.16) of the matrix W

1

λ
θ (λIW − V )W︸ ︷︷ ︸

=λIW

= (θIWe)yW.

For (3.1.35) we multiply both sides of the equation (3.1.34) with (θIWe)−1 from the
left and R from the right

(θIWe)−1θIWR = yWR⇐⇒ y = yWR.

By construction, y is stochastic.
The matrix (λIW − V ) is invertible if and only if

(
IW − 1

λV
)−1 is invertible. The

equation (3.1.36) follows if we multiply both side of equation (3.1.37) with (λIW − V )−1

from the right

θ = (θIWe)y

(
IW −

1

λ
V

)−1

.

We know that θ is stochastic. Therefore we can replace the normalization constant (θIWe)

by
(
y
(
IW − 1

λV
)−1

e
)−1

.

Proposition 3.1.14. Consider the ergodic Markov process Z = (Z(t) : t ≥ 0) which
describes the M/M/1/∞ loss system in a random environment. Let L := {k ∈ K :
∃ m ∈ KW : R(m, k) > 0} the set of states of the environment which can be reached from
KW by a one-step jump governed by R. Then the states in N0 × (K \ L) are inessential
for Ẑ and consequently for all n ∈ N0

π̂(n, k) = 0, ∀k ∈ (K \ L). (3.1.38)

The steady-state distribution π̂ is unique.
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Proof. We realize from the dynamics of the system that N0 × L are the only states that
can be entered just after a departure instant. So, if Ẑ is started in some state N0×(K \L)
these states states will never be visited again by Ẑ and are therefore inessential. And we
have (3.1.38).
The uniqueness follows from (3.1.38) and irreducibility of P on the class N0 × L. We

prove irreducibility of P on the class N0 × L as follows: Let (n, k) and (n′,m) be any
states with n, n′ ∈ N0 and k,m ∈ L then there exists m′ ∈ K such that R(m′,m) > 0.
Because Z is ergodic, there exist a finite sequence of states

(
(ni, ki)

)
i∈{0,...,s}

from (n, k)

to (n′ + 1,m′) with

(n0, k0) = (n, k) and (ns, ks) = (n′ + 1,m′)

such that
q((ni, ki), (ni+1, ki+1)) > 0 ∀i ∈ {0, . . . , s− 1}.

The sequence contains finite number of transitions downwards t ∈ N0, i.e. from some
level `+ 1 to level `. When finally, the continuous process reaches the state (n′ + 1,m′)
it jumps with positive probability 1

v(m′,m′)+λ+µ(n′+1)R(m′, k) to state (n, k). Therefore
(Pt+1)((n,k),(n′,m)) > 0.

Remark 3.1.15. In case of K \ L 6= ∅ Ẑ is not irreducible on E, hence not ergodic,
although Z is ergodic on E. Furthermore, in general Ẑ is even on the reduced state space
Ê := N0×L not ergodic. The reason is, that Ẑ may have periodic classes as the Example
3.1.18 shows.
The result (3.1.38) in Proposition 3.1.14 is rather general and also hold for M/G/1/∞

loss systems as described in Section 3.2. The proof carries over directly.

Theorem 3.1.16. Consider the ergodic Markov process Z = (Z(t) : t ≥ 0) which de-
scribes the M/M/1/∞ loss system in a random environment with steady-state probability
π from (2.1.4) with π(n, k) = ξ(n)θ(k), (n, k) ∈ E.

(a) The Markov chain Ẑ = (Ẑ(n) : n ∈ N0) embedded at departure instants of Z has
the stationary distribution π̂ of product form

π̂(n, k) = ξ(n)θ̂(k), (n, k) ∈ E. (3.1.39)

Here ξ = (ξ(n) : n ∈ N0) is the probability distribution

ξ(n) := C−1

(
n∏
i=1

λ

µ(i)

)
, n ∈ N0, (3.1.40)

with normalization constant C−1 and

θ̂ = (θIWe)−1 · θIWR (3.1.41)

which is independent of the values µ(n).

(b) θ̂ is a stochastic solution of the equation

θ̂WR = θ̂, (3.1.42)
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(c) If the matrix (λIW − V ) is invertible, for the marginal stationary distribution θ of Y
in continuous time and the marginal stationary distribution θ̂ of Ŷ of the embedded
Markov chain Ẑ it holds

θ =

(
θ̂

(
IW −

1

λ
V

)−1

e

)−1

θ̂

(
IW −

1

λ
V

)−1

. (3.1.43)

Proof. Part (a). We show that the product form distribution (3.1.39) with marginal dis-
tributions (3.1.40) and the solution θ̂ of (3.1.42) solves the steady-state equations (3.1.8).

π̂(n) = π̂(0)B(1,n) +
n+1∑
i=1

π̂(n)A(i,n−i+1)

⇐⇒ ξ(n)θ̂ = ξ(0)θ̂WU (1,n)R+

n+1∑
i=1

ξ(n)θ̂U (i,n−i+1)R

⇐⇒ ξ(n)

ξ(0)
θ̂ = θ̂WU (1,n)R+

n+1∑
i=1

ξ(n)

ξ(0)
θ̂U (i,n−i+1)R.

The last equation is (3.1.31) in Lemma 3.1.12 with y = θ̂ and ξ(n) = C−1
(∏n

i=1
λ
µ(i)

)
and

we proved that π̂(n, k) = ξ(n)π̂(k) is a solution of the steady-state equation (3.1.5).The
uniqueness of π̂ is given in Proposition 3.1.14.
Part (b) and (c). We have proven in part (a) that θ̂ = (θIWe)−1 · θIWR, so we can

apply Lemma 3.1.13 and get both (3.1.42) and (3.1.43).

Corollary 3.1.17. Consider the ergodic Markov process Z = (Z(t) : t ≥ 0) which
describes an M/M/1/∞ loss system in a random environment with steady-state proba-
bility π from (2.1.4) with finite environment space K. Then the stochastic solution of
the equation (3.1.42) is unique and it is the marginal steady-state distribution θ̂ of the
environment. The equation (3.1.42) can be written in the form

θ̂ λ(λIW − V )−1IW︸ ︷︷ ︸
=W from (3.1.25)

R = θ̂. (3.1.44)

Proof. Because the environment state space K is finite, according to Proposition A.2.2
the matrix (λIW−V ) is invertible. Using (3.1.25) in Corollary 3.1.10 the equation (3.1.42)
can be written as (3.1.44).
According to Theorem 3.1.16 the marginal distribution θ̂ solves the equation (3.1.42).

To prove the corollary we show that the equation (3.1.42) has a unique stochastic solution.
Assume that θ̂1 and θ̂2 are different non-zero solutions of the equation (3.1.42), which

is equivalent to

θ̂i λ(λIW − V )−1IW︸ ︷︷ ︸
=W from (3.1.25)

R = θ̂i (λIW − V )−1(λIW − V )︸ ︷︷ ︸
=I

⇐⇒ θ̂i(λIW − V )−1 (λIW (R− I) + V ) = 0.
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We define x1 := θ̂1(λIW − V )−1 and x2 := θ̂2(λIW − V )−1. Both x1 and x2 are
solution of the continuous time steady-state equation xi (λIW (R− I) + V ) = 0. Recall,
that due to ergodicity of the process (X,Y ), according to Corollary 2.1.10, the equation
θ (λIW (R− I) + V ) = 0 has a unique stochastic solution θ. This means that there exists
some constant c such that x1 = cx2 holds. By definition of xi it is equivalent to

x1 − cx2 = 0⇐⇒ (θ̂1 − cθ̂2)(λIW − V )−1 = 0.

Because (λIW − V )−1 is bijective on the finite dimensional state space RK , it follows
θ̂1 − cθ̂2 = 0 and thus the uniqueness of stochastic solution θ̂ of (3.1.42).

Example 3.1.18. [SSD+06](See also Section 2.2.1.) We consider an M/M/1/∞-system
with attached inventory, i.e. a single server with infinite waiting room under FCFS regime
and an attached inventory under (r, S)-policy, which is set in this example to r = 0.
There is a Poisson-λ-arrival stream, λ > 0. Customers request for an amount of service

time which is exponentially distributed with mean µ > 0.
The server needs for each customer exactly one item from the inventory. The on-

hand inventory decreases by one at the moment of service completion. If the inventory
is decreased to the reorder point r = 0 after the service of a customer is completed, a
replenishment order is instantaneously triggered. The replenishment lead times are i.i.d.
exponentially distributed with parameter ν > 0. The replenishment fills the inventory up
to maximal inventory size S > 0.
During the time the inventory is depleted and the server waits for a replenishment

order to arrive, no customers are admitted to join the queue (“lost sales”).
All service, interarrival and lead times are assumed to be independent.
X(t) is the number of customers present at the server at time t ≥ 0, and Y (t) is the
on-hand inventory at time t ≥ 0.
The state space of (X,Y ) is E = {(n, k) : n ∈ N0, k ∈ K}, withK = {S, S−1, . . . , 1, 0},

where S <∞ is the maximal size of the inventory at hand.
The inventory management process under (0, S)-policy fits into the definition of the

environment process by setting

K = {S, S − 1, . . . , 1, 0}, KB = {0},

R(0, 0) = 1, R(k, k − 1) = 1, 1 ≤ k ≤ S , v(k,m) =

{
ν, if k = 0,m = S,

0, otherwise for k 6= m.

The queueing-inventory process Z = (X,Y ) in continuous time is ergodic iff λ < µ. The
steady-state distribution π = (π(n, k) : (n, k) ∈ E) of (X,Y ) has product form

π(n, k) =

(
1− λ

µ

)(
λ

ν

)n
θ(k),

where θ = (θ(k) : k ∈ K) with normalization constant C is

θ(k) =


C−1(λν ), k = 0,

C−1(λ+ν
λ )k−1, k = 1, . . . , r,

C−1(λ+ν
λ )r, k = r + 1, . . . , S.

(3.1.45)
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For the Markov chain Ẑ embedded in Z at departure instants we have L = {0, 1, . . . , S−1}
and therefore the states N0 × {S} are inessential.
From the dynamics of the system determined by the inventory management follows

directly that Ẑ is periodic with period S and that N0×L is an irreducible closed set (the
single essential class), which is positive recurrent iff λ < µ holds. N0 × L is partitioned
into S subclasses N0 × {k} which are periodically visited

. . .→ N0 × {S − 1} → N0 × {S − 2} → . . .→ N0 × {0} → N0 × {S − 1} . . .

The following corollary and examples demonstrate the versatility of the class of models
under consideration and consequences for the interplay of θ for the continuous time setting
and θ̂ for the embedded Markov chain due to special settings of the environment.

Corollary 3.1.19. Consider an ergodicM/M/1/∞ loss system in a random environment
with any λ, µ(n), V , and R as defined in Section 2.1.1.

(a) If R = I, then the conditional distribution θ̂ of θ conditioned on L,

θ̂(k) =

{
θ(k)
θ(L) if k ∈ L,
0 if k ∈ K \ L,

with θ(L) :=
∑
m∈L

θ(m),

solves (3.1.42). This shows that the embedded chain in this case reveals only the
behaviour of the environment on L, i.e. we loose information incorporated in the
continuous time description of the process.

(b) If V = 0 then the set KB of blocking states is empty, and therefore IW = I holds.
Furthermore, R is irreducible and positive recurrent.
The marginal steady-state distribution θ of Y in continuous time is the stationary
distribution of R, i.e., the solution of θR = θ.
And finally it holds θ = θ̂, i.e., θ solves on K (3.1.42), which shows that the embedded
chain exploits in this case the full information about the possible environment of the
system.

Proof. (a) Substituting R = I into (3.1.41) leads to θ̂(k) = (θIWe)−1 · θ(k) and to
θ̂(k) > 0 ⇐⇒ k ∈ KW . From R = I we have L = KW and therefore (θIWe) =∑

m∈KW θ(m) = θ(L).
(b) If V = 0 and KB 6= ∅, then from ergodicity the environment process Y must enter

KB in finite time, but once the system entered a blocking state k it can never leave this
because of v(k,m) = 0 for all m ∈ K. Furthermore, from ergodicity of Z with a similar
argument, R must be irreducible and positive recurrent.
(2.1.18) then reduces to θ(λ(R− I)) = 0 which is the steady-state equation for R.
We substitute IW = I and V = 0 into (3.1.16) and obtain W = I. For W = I the

equation (3.1.42) reduces to θ̂R = θ̂, which from irreducibility and positive recurrence
has a unique stochastic solution θ̂.

Part (b) of Theorem 3.1.16 demonstrates the link between marginal distributions θ and
θ̂ and rises the question “How different can θ and θ̂ be?” The following theorem proves
that they can be arbitrarily different.
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3. Embedded Markov chains analysis

Theorem 3.1.20. Let θ be any positive distribution on a finite set K, KW ⊂ K any non-
empty subset of K, and θ̂ any distribution on K. Then there exists an ergodic loss system
with environment space K = KW ]KB and steady-state distribution π(n, k) = ξ(n)θ(k)
of the continuous time process, whereas π̂(n, k) = ξ(n)θ̂(k) is the steady-state distribution
of the associated Markov chain embedded at departure epochs.

Proof. We will construct an ergodic system with marginal steady-state distributions θ
in continuous time and marginal steady-state distribution θ̂ of the embedded Markov
chain for the environment. According to Theorem 3.1.16 (a) for this system the equa-
tion (3.1.41) must hold. With normalization constant c := θIWe this is

θ̂ = (θIWe)−1 · θIWR = c−1θIWR. (3.1.46)

First we construct R with identical rows equal to θ̂

R :=

 θ̂
...
θ̂

 .

For any stochastic vector x holds θ̂ = xR, in particular (3.1.46) is true for the stochastic
vector c−1θIW .
Now we construct V , λ and µ. Let λ ∈ R be any positive number with

λ <

{
mink∈K θ(k)

maxk∈K |θIW (k)−cθ̂(k)|
if θIW 6= cθ̂,

∞ if θIW = cθ̂,

and µ ∈ R be any number greater than λ.
To construct the generator matrix V , we define w := λ(θIW − cθ̂) + θ. The vector w is

positive

w(k) ≥− λ|θIW (k)− cθ̂(k)|+ θ(k){
> −mink∈K(θ(k)) + θ(k) ≥ 0 if (θIW (k)− θ̂(k)) 6= 0,

= θ(k) > 0 if (θIW (k)− θ̂(k)) = 0,

and stochastic because of

we = (λ(θIW − cθ̂) + θ)e = λ θIWe︸ ︷︷ ︸
=c

−λc θ̂e︸︷︷︸
=1

+ θe︸︷︷︸
=1

= 1.

Finally we define the stochastic matrix W :=

 w
...
w

 and the generator matrix V :=

W − I. For any stochastic vector x holds

xV = x(W − I) = w − x = λ(θIW − cθ̂) + θ − x,

and so θ is the solution of (2.1.18), which is θ(λIW (R− I) + V ) = 0

⇐⇒ λ θIWR︸ ︷︷ ︸
=cθ̂

−λθIW + θV︸︷︷︸
=λ(θIW−cθ̂)+θ−θ

= 0.
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3.2. M/G/1/∞ queueing system in a random environment

We have λ < µ, so (2.1.5) holds. Furthermore, due to construction of W all non-
diagonal matrix elements of Qred = λIW (R−I)+V are positive, hence Qred is irreducible
and a positive recurrent generator of some Markov process with unique stochastic solution
of θQred = 0. So we have proven the theorem.

Remark 3.1.21. When KW = K the process constructed in Theorem 3.1.20 is a birth-
death process in random environment with separable steady-state distribution. It has
Poisson input stream and exponentially distributed service times without interruptions.

3.2. M/G/1/∞ queueing system in a random environment

Vineetha [Vin08] extended the theory of integrated queueing-inventory models with ex-
ponential service times as described in [SSD+06] to systems with i.i.d. service times which
follow a general distribution. The lead time is exponential and during stock-out periods
lost sales occur. Her approach was classical in that she considered the continuous time
Markovian state process at departure instants of customers.
In this section we revisit some of Vineetha’s [Vin08] models. We prove some of our

results for queues with general environments from the previous sections on M/M/1/∞
systems in the M/G/1/∞ framework, which includes a partial extensions of Vineetha’s
queueing-inventory systems to queues with state dependent service speeds and with non-
exponential service times.
Our framework is as in Section 3.1: Consider the system at departure instants and

utilize Markov chain analysis.
Our main aim is to identify conditions which enforce the systems to stabilize in a way

that the queue and the environment decouple in the sense that the stationary queue
length and environment of the embedded Markov Chain behave independently for a fixed
time instant, i.e., a product form equilibrium exists.
It will come out that this is not always possible, but we are able to provide sufficient

conditions for the existence of product form equilibria.

3.2.1. M/G/1/∞ queueing systems with state dependent service intensities

We first describe a pure queueing model in continuous time which is of M/G/1/∞ type,
under FCFS regime, where the single server works with different queue length depen-
dent speeds (”service intensities”), and the customers’ service requests are queue length
dependent as well.
A review of M/G/1/∞ queueing systems with state dependent arrival and service

intensities, which are related to the model described here, and their asymptotic and
equilibrium behaviour is provided in the survey of Dshalalow [Dsh97].
The arrival stream is Poisson-λ. When a customer enters the single server seeing

n − 1 ≥ 0 customers behind him, i.e., the queue length is n, his amount of requested
service time is drawn according to a distribution function Gn : [0,∞) → [0, 1] with
Gn(0) = 0. The set of all interarrival times and service time requests is an independent
collection of variables.
The server works with queue length dependent service speeds c(n) > 0, i.e., when

at time t ≥ 0 there are X(t) = n > 0 customers in the system (n including the one
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3. Embedded Markov chains analysis

in service), and if the residual service request of the customer in service at time t is
RS(t) = r > 0, then at time t+ ε his residual service request is

RS(t+ ε) = r − ε · c(n), if this is > 0 ,

otherwise at time t+ ε his service expired and he has already departed from the system.
For X(t) = 0 we define RS(t) = 0.
It is a standard observation that the process

(X,RS) = ((X(t), RS(t)) : t ≥ 0)

is a homogeneous strong Markov process on state space N0 × R+
0 (with cadlag paths).

With τ0 = 0 we will denote as in the previous sections by τ = (τ0, τ1, . . . ) the sequence
of departure times of customers. From process definition we conclude

R(τ−n ) = 0, ∀n ≥ 1.

For τ0 = 0 we define
R(τ−0 ) = R(0−) := 0.

It is a similar standard observation that the process

X̂ = (X̂(n) := (X(τn), RS(τn−)) : n ∈ N0)

is a homogeneous Markov chain on state space N0×{0}. Because of R(τn−) = 0 ∀n ∈ N0,
we prefer to use for this Markov chain on state space N0 the description

X̂ = (X̂(n) := X(τn) : n ∈ N0).

A little reflection shows that the one-step transition matrix of X̂ is a matrix which has
the usual skip-free to the left property. The transition probabilities p̃(i, n) are defined as

p̃(i, n) := P (X(τ1) = i+ n− 1|X(0) = i) ∀i ∈ N0, n ∈ N. (3.2.1)

Because
p̃(0, n) = p̃(1, n)

the one-step transition matrix of X̂ is of the form (empty entries are zero)

P̃ :=


p̃(1, 0) p̃(1, 1) p̃(1, 2) p̃(1, 3) . . .
p̃(1, 0) p̃(1, 1) p̃(1, 2) p̃(1, 3) . . .

p̃(2, 0) p̃(2, 1) p̃(2, 2) . . .
p̃(3, 0) p̃(3, 1) . . .

 , (3.2.2)

which is an upper Hessenberg matrix. A similar one-step transition matrix arises
in [Dsh97, p. 68] where the service requests are state dependent, but no speeds are
incorporated.
So for P̃ the row index i indicates the number of customers in system when a service

commences (and the service request is drawn according to Gn), and the (varying in
row number) column index n indicates the number of customers who arrived during the
ongoing service.
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3.2. M/G/1/∞ queueing system in a random environment

Note, that although we have used an intuitive notation for the non zero entries of P̃ ,
the matrix is a fairly general upper Hessenberg matrix: The only restrictions are strict
positivity of the p̃(i, n) and row sum 1.
We define conditional probability for a system with i customer and residual service

request r to admit n new customers until departure of the first customer

p̃(i, n, r) := P (X(τ1) = i+ n− 1|X(0) = i, RS = r) , ∀i ≥ 1, n ∈ N0, r ∈ R+,

p̃(i, n, 0) := 0 ∀i ≥ 1, n ∈ N0.
(3.2.3)

For p̃(i, n) it holds

p̃(i, n) =

ˆ ∞
0

p̃(i, n, r)dGi(r). (3.2.4)

We will not go further into the details of computing P̃ , but will recall the classical result
for state independent service speeds (c(n) = 1 for all n ≥ 1) in the following subsection.

M/G/1/∞ queueing systems The classical situation is as follows (See [Kle75, 176+]).

Proposition 3.2.1. For the M/G/1/∞ queuing system with service time distribution
G : [0,∞)→ [0, 1] and constant service speeds c(n) ≡ 1, the transition probabilities p̃(i, n)
are independent of i and the transition matrix P̃ has the form

P̃ :=


p̃(0) p̃(1) p̃(2) p̃(3) . . .
p̃(0) p̃(1) p̃(2) p̃(3) . . .

p̃(0) p̃(1) p̃(2) . . .
p̃(0) p̃(1) . . .

 (3.2.5)

with
p̃(n) :=

ˆ ∞
0

e−λt
(λt)n

n!
dG(t).

With µ−1 < ∞ we denote the mean service time. Then under λµ−1 < 1 the continuous
time process and the chain embedded at departure instants are ergodic.
We denote as usual the stationary distribution of X̂ by ξ̂. ξ̂ is the unique stochastic

solution of the equation
ξ̂P̃ = ξ̂ (3.2.6)

and it is also equal to the steady-state distribution of the continuous time process X.

In this section, in Example 3.2.5, Example 3.2.6 and Proposition 3.2.8 we will analyze
properties of systems with deterministic service times. We therefore recall well known
results for standard M/D/1/∞ queues where the service time is deterministic of length
1
µ , i.e., the distribution function is G = δ 1

µ
(Dirac measure). We assume ρ := λ/µ < 1.

Then the queue length process X̂ =
(
X̂(n) : n ∈ N0

)
at departure times is an ergodic

Markov chain with one-step transition matrix (3.2.5) with

p̃(n) :=

ˆ ∞
0

e−λt
(λt)n

n!
dδ 1

µ
(t) = e

−λ
µ

(λµ)n

n!
. (3.2.7)

We will utilize later on some special values of ξ̂ (see [GH74, p. 241])

ξ̂(0) = (1− ρ), ξ̂(1) = (1− ρ) (eρ − 1), ξ̂(2) = (1− ρ) eρ(eρ − ρ− 1). (3.2.8)
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3.2.2. M/G/1/∞ system with inventory under lost sales

We analyze an M/G/1/∞ queueing system with an attached inventory, reorder point r,
random replenishment size depending on the inventory size at the replenishment time
instant, general service times, and exponential replenishment time. See e.g to the special
cases in [Sch04, Definition 1.3.16 and Definition 1.3.23], where service time is exponential
and replenishment size depends on the the current policy: (r,Q) or (r, S). We summarize
the system’s parameters:
Poisson-λ input, service time is general with finite mean value 1

µ , ρ := λ/µ < 1.
Lead times are exponential-ν. All service, interarrival, and lead times constitute an
independent family. When the inventory is depleted no service is provided and new
arrivals are rejected (lost sales).
The Markovian state process of the integrated queueing-inventory system relies on the

description of the M/G/1/∞ queueing system, given at the beginning of Section 3.2.1.
For the system’s description in continuous time we use the supplemented queue length

process (X,RS), where the process RS on R+
0 denotes the residual service time of the

ongoing service as the supplementary variable. We enlarge this process by adding the
inventory size Y .
The joint queueing-inventory process with supplementary variable RS will be denoted

by Z = (X,RS, Y ), and lives on state space N0 × R+
0 ×K. With K = {0, . . . , κ} where

κ ∈ N is the maximal inventory level. We consider the system at departure instants,
which leads to a one-step transition matrix similar to (3.2.5).
The dynamics of of the Markov chain Ẑ embedded into Z at departure instants will be

described in a way that resembles the M/G/1 type matrix analytical models.
From the structure of the embedding, we know, that RS(τ−n ) = 0 and wheneverX(τn) =

0 we see RS(τn) = 0, resp. whenever X(τn) > 0 we see RS(τn) ∼ G. We therefore can,
without loss of information, delete the R-component of the process, to obtain a Markov
chain embedded at departure times

Ẑ = (X̂, Ŷ ) =
(
(X̂(n), Ŷ (n)) : n ∈ N0

)
, with Ẑ(n) := (X̂(n), Ŷ (n)) := (X(τn), Y (τn)).

The state space of Ẑ is E = N0 × K where K is partitioned into K = KW ] KB with
KB = {0}.
We proceed with nomenclature similar to Definition 3.1.3 with the obvious modifi-

cations, which stem from the observation, that for i > 0 the probabilities P (Z(τ1) =
(n + i − 1,m)|Z(0) = (i, k)) do not depend on i, because service is provided with an
intensity which is independent of the queue length. We reuse several of the previous
notations but there will be no danger of misinterpretation in this section. Recall, that
(τn : n ∈ N0) is the sequence of departure instants

Definition 3.2.2. We introduce matrices A(n) ∈ RK×K by

A
(n)
km := P (Z(τ1) = (n+ i− 1,m)|Z(0) = (i, k)), 1 ≤ i, (3.2.9)

for k,m ∈ K. Then the one-step transition matrix P defined according to Definition
3.1.3 has the form
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3.2. M/G/1/∞ queueing system in a random environment

P =


B(0) B(1) B(2) B(3) . . .

A(0) A(1) A(2) A(3) . . .

0 A(0) A(1) A(2) . . .

0 0 A(0) A(1) . . .
...

...
...

...

 . (3.2.10)

We will clarify the structure of the solution of the equation π̂P = π̂. So, π̂ is the
steady-state distribution of the embedded Markov chain Ẑ. It will become clear that Ẑ
is in general not irreducible on E.
As in Definition 3.1.2 we will call the marginal steady-state distributions

ξ̂ := (ξ̂(n) : n ∈ N0), ξ̂(n) :=
∑
k∈K

π̂(n, k). (3.2.11)

and

θ̂ := (θ̂(k) : k ∈ K), θ̂(k) :=
∑
n∈N0

π̂(n, k).

It will be convenient to group π̂ as

π̂ = (π̂(0), π̂(1), π̂(2), . . . ) (3.2.12)

with
π̂(n) = (π̂(n, 0), π̂(n, 1), . . . , π̂(n, S)), n ∈ N0. (3.2.13)

An immediate consequence is that the steady-state equation can be written as

π̂(0)B(n) +
n+1∑
i=1

π̂(i)A(n−i+1) = π̂(n), n ∈ N0. (3.2.14)

We determine A(n), B(n) explicitly, distinguishing cases by the initial states Ẑ(0) ac-
cording to (3.2.9).

Definition 3.2.3. Consider an M/G/1/∞ system with reorder point r, and random re-
plenishment size and lost sales. The environment states represent inventory size. We have
an environment state set K = {0, . . . , κ} where κ is the maximal size of the inventory.
The replenishment time is exponential with rate ν. The replenishment order is immedi-
ately triggered, as soon as the inventory reaches or falls below r. The replenishment order
is placed as long as the inventory level stays below or equal to r. When the inventory is
empty no service is provided and new customers are lost. The arrival stream is Poisson-λ
and service time distribution G is general with mean value 1

µ and λ < µ.
We assume that the probability for the inventory to change from state k to state m

after replenishment is s(k,m), where s := (s(k,m) : k,m ∈ K) is a stochastic matrix.
We assume that after replenishment we have more items in the stock, so

s(k,m) = 0 for m ≤ k

and that the inventory size after replenishment is greater than the reorder point r, i.e.

s(k,m) = 0 for m ≤ r.

The transition probability of the embedded Markov chains of the system are determined
as follows:
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• Ẑ(0) = (i, 0), i > 0: The server waits for replenishment of inventory. The queue
length stays at i until the ordered replenishment arrives. Then the inventory is
restocked to m > 0 with probability s(0,m) and the server resumes work, stochas-
tically identical to a standard M/G/1/∞-system until the service expires. When
the served customer leaves the system, the inventory contains m− 1 item.

A
(n)
(0,m−1) = P (Z(τ1) = (n+ i− 1,m− 1)|Z(0) = (i, 0))

= s(0,m)

ˆ ∞
0

e−λt
(λt)n

n!
dG(t) = s(0,m)p̃(n).

• Ẑ(0) = (i, k), i > 0, 1 ≤ k ≤ r: A lead time is ongoing and the server is active
serving the first customer in the queue. In this case there are two possible target
state groups for the inventory when the customer currently in service leaves the
system.

– Target state k−1: The ongoing service expires before the lead time does. The
resulting inventory state after service is finished is k − 1.

A
(n)
(k,k−1) = P (Z(τ1) = (n+ i− 1, k − 1)|Z(0) = (i, k))

=

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdG(t)

(3.2.15)

– Target state m−1 ≥ k: The ongoing lead expires before the service time does,
and the inventory is filled up to m during the ongoing service. The resulting
inventory state when service expired is m − 1. (If m − 1 ≤ r, an additional
order is placed, but this does not change the state.)

A
(n)
(k,m−1) = P (Z(τ1) = (n+ i− 1,m− 1)|Z(0) = (i, k))

= s(k,m)

ˆ ∞
0

e−λt
(λt)n

n!
(1− e−νt)dG(t)

= s(k,m)

(
p̃(n)−

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdG(t)

)

• Ẑ(0) = (i, k), i > 0, r + 1 ≤ k: There are k items on stock, no order is placed
and the service is provided just as in a standard M/G/1/∞ system. The resulting
inventory state when service expired is k − 1.

A
(n)
(k,k−1) = P (Z(τ1) = (n+ i− 1, k − 1)|Z(0) = (i, k))

=

ˆ ∞
0

e−λt
(λt)n

n!
dG(t) = p̃(n)

• Ẑ(0) = (0, 0): The queue is empty, an order is placed. No customers are admitted
until replenishment of inventory. When the ongoing lead time expires, inventory
is restocked to m ≥ r with probability s(0,m). Thereafter new customers are
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admitted, and service starts immediately after the first arrival. When this customer
is served, the stock size is m− 1 ≥ r − 1.

B
(n)
(0,m−1) = P (Z(τ1) = (n,m− 1)|Z(0) = (0, 0))

= s(0,m)

ˆ ∞
0

e−λt
(λt)n

n!
dG(t) = s(0,m)p̃(n)

• Ẑ(0) = (0, k), 1 ≤ k ≤ r: The queue is empty, there are k items on stock, and an
order is placed. In this case there are two possible target states for the inventory
when the first customer who arrives is served and leaves the system.

– Target state k− 1: The ongoing inter-arrival time expires before the lead time
does. The arriving customer’s service starts immediately and is finished before
the replenishment arrives. The resulting inventory state after service is finished
is k − 1.

B
(n)
(k,k−1) = P (Z(τ1) = (n, k − 1)|Z(0) = (0, k))

=
λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdG(t)

(3.2.16)

– Target state m− 1 ≥ r − 1:

1. The ongoing lead expires before the inter-arrival time does, and the inven-
tory is filled up to m with probability s(k,m) during the ongoing inter-
arrival time. Then, until the first departure, the system acts like a stan-
dard M/G/1/∞ queue. When the first departure happens, inventory size
decreases to m− 1.

2. The ongoing inter-arrival time expires before the lead time does. The
arriving customer’s service starts immediately and the replenishment ar-
rives before the service is finished and by the replenishment the stock size
increases to m. The resulting inventory state after service is finished is
m− 1.

B
(n)
(k,m−1) =P (Z(τ1) = (n, 1)|Z(0) = (0, k))

=s(k,m)
ν

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
dG(t)

+ s(k,m)
λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
(1− e−νt)dG(t)

=s(k,m)

(
p̃(n)− λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdG(t)

)
• Ẑ(0) = (0, k), r + 1 ≤ k: The queue is empty, there are k items on stock, and an

inter-arrival time is ongoing. Until the first departure the system develops like a
standard M/G/1/∞ queue. After that departure the inventory size is k − 1.

B
(n)
(k,k−1) = P (Z(τ1) = (n, k − 1)|Z(0) = (0, k)) =

ˆ ∞
0

e−λt
(λt)n

n!
dG(t) = p̃(n)
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The remaining transition probabilities are zero.

Lemma 3.2.4. The marginal steady-state distribution of the number of customers in the
M/G/1/∞ system with inventory and random replenishment size as defined in Definition
3.2.3 is equal to the distribution of the number of the customers in a M/G/1/∞ system
with the same arrival rate and service time distribution as defined in Proposition 3.2.1.
It is unique and exists if and only if λ < µ.

Proof. From the Definition 3.2.3 it follows for all n ∈ N0:

∑
m∈K

B
(n)
(0,m) =

∑
m∈K

s(0,m)p̃(n) = p̃(n)

for 1 ≤ k ≤ r :
∑
m∈K

B
(n)
(k,m) =B

(n)
(k,k−1) +

∑
m≥k

B
(n)
(k,m)

=
λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdG(t)

+
∑
m>k

s(k,m)︸ ︷︷ ︸
=1

(
p̃(n)− λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdG(t)

)

=p̃(n), 1 ≤ k ≤ r,

for r + 1 ≤ k :
∑
m∈K

B
(n)
(k,m) =B

(n)
(k,k−1) = p̃(n), r + 1 ≤ k.

Summarizing the equations above, the row sums of the matrix B(n) are equal to p̃(n):

B(n)e = p̃(n)e. (3.2.17)

Similar we show that the row sums of the matrix A(n) are p̃(n):

∑
m∈K

A
(n)
(0,m) =

∑
m∈K

s(0,m)p̃(n) = p̃(n)

for 1 ≤ k ≤ r :
∑
m∈K

A
(n)
(k,m) =A

(n)
(k,k−1) +

∑
m≥k

A
(n)
(k,m)

=

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdG(t)

+
∑
m≥k

s(k,m)︸ ︷︷ ︸
=1

(
p̃(n)−

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdG(t)

)

=p̃(n), 1 ≤ k ≤ r,

for r + 1 ≤ k :
∑
m∈K

A
(n)
(k,m) =A

(n)
(k,k−1) = p̃(n), r + 1 ≤ k,

=⇒ A(n)e = p̃(n)e. (3.2.18)
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3.2. M/G/1/∞ queueing system in a random environment

Multiplying the steady-state equations (3.2.14) for Ẑ from the right with e and using
the row sum properties (3.2.17) and (3.2.18) lead to

π̂(0)B(n)e +

n+1∑
i=1

π̂(i)A(i,n−i+1)e = π̂(n)e =⇒ π̂(0)ep̃(0) +

n+1∑
i=1

π̂(i)ep̃(n− i+ 1) = π̂(n)e.

Using definition of ξ̂ in (3.2.11) for π̂(i)e =
∑

k∈K π̂(i, k) = ξ̂(i) the last equation can be
written as

ξ̂(0)p̃(0) +

n+1∑
i=1

ξ̂(i)p̃(n+ 1− i) = ξ̂(n)

which is the steady-state equation (3.2.6) of a M/G/1/∞ queue without environment
in Proposition 3.2.1. Because transition probabilities p̃(n) are positive for all N0, this
equation has a unique up to a constant factor solution. This solution can be normalized
if and only if λ < µ.

Example 3.2.5. M/D/1/∞ system with (r, S) policy and lost sales. It is a special case
of the system from Definition 3.2.3 with deterministic service time distribution, κ = S,
and s(k, S) = 1 for 0 ≤ k ≤ r. The positive transition probabilities are:

A
(n)
(0,S−1) = p̃(n),

A
(n)
(k,k−1) =

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t) = e

−λ+ν
µ

(λµ)n

n!
= e
− ν
µ p̃(n), 1 ≤ k ≤ r,

A
(n)
(k,S−1) =

ˆ ∞
0

e−λt
(λt)n

n!
(1− e−νt)dδ 1

µ
(t) = (1− e−

ν
µ )e
−λ
µ

(λµ)n

n!

= (1− e−
ν
µ )p̃(n), 1 ≤ k ≤ r,

A
(n)
(k,k−1) = p̃(n), r + 1 ≤ k,

B
(n)
(0,S−1) = p̃(n),

B
(n)
(k,k−1) =

λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t) =

λ

ν + λ
e
− ν
µ p̃(n), 1 ≤ k ≤ r,

B
(n)
(k,S−1) = p̃(n)− λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t)

=

(
1− λ

ν + λ
e
− ν
µ

)
p̃(n), 1 ≤ k ≤ r,

B
(n)
(k,k−1) = p̃(n), r + 1 ≤ k.

117



3. Embedded Markov chains analysis

Summarizing the results we have:

A(n) = p̃(n)



0 1 . . . r − 1 r r + 1 . . . S − 1 S

0 0 0 0 0 1 0

1 e
− ν
µ 0 1− e−

ν
µ 0

...
. . . . . .

...

r − 1 0
. . . . . . 1− e−

ν
µ

r 0 e
− ν
µ 0 1− e−

ν
µ

r + 1 0 1 0 0
...

. . . . . .

S − 1 0
. . . 0 0

S 0 1 0


and

B(n) = p̃(n)



0 1 . . . r − 1 r r + 1 . . . S − 1 S

0 0 0 0 0 1 0

1 λ
ν+λe

− ν
µ 0 1− λ

ν+λe
− ν
µ 0

...
. . . . . .

...

r − 1 0
. . . . . . 1− λ

ν+λe
− ν
µ

r 0 λ
ν+λe

− ν
µ 0 1− λ

ν+λe
− ν
µ

r + 1 0 1 0 0
...

. . . . . .

S − 1 0
. . . 0 0

S 0 1 0



.

In the special case r + 1 = S, it holds

A(n) = p̃(n)



0 1 r − 1 r S

0 0 0 0 1 0

1 e
− ν
µ 1− e−

ν
µ 0

. . .
...

r − 1
. . . 1− e−

ν
µ

r e
− ν
µ 1− e−

ν
µ 0

S 1 0


,

B(n) = p̃(n)



0 1 . . . r − 1 r S

0 0 0 0 1 0

1 λ
ν+λe

− ν
µ 0 1− λ

ν+λe
− ν
µ 0

...
. . . . . .

...

r − 1 0
. . . . . . 1− λ

ν+λe
− ν
µ

r 0 λ
ν+λe

− ν
µ 1− λ

ν+λe
− ν
µ

S 0 1 0


.
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Example 3.2.6. M/D/1/∞ system with (r,Q) policy and lost sales. It is a special case
of a system in Definition 3.2.3 with deterministic service time distribution, κ = r + Q,
and s(k, k +Q) = 1 for 0 ≤ k ≤ r. The positive transition probabilities are:

A
(n)
(0,Q−1) = p̃(n),

A
(n)
(k,k−1) =

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t) = e

−λ+ν
µ

(λµ)n

n!
= e
− ν
µ p̃(n), 1 ≤ k ≤ r,

A
(n)
(k,k+Q−1) =

ˆ ∞
0

e−λt
(λt)n

n!
(1− e−νt)dδ 1

µ
(t) = (1− e−

ν
µ )e
−λ
µ

(λµ)n

n!

= (1− e−
ν
µ )p̃(n), 1 ≤ k ≤ r,

A
(n)
(k,k−1) = p̃(n), r + 1 ≤ k,

B
(n)
(0,Q−1) = p̃(n),

B
(n)
(k,k−1) =

λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t) =

λ

ν + λ
e
− ν
µ p̃(n), 1 ≤ k ≤ r,

B
(n)
(k,k+Q−1) = p̃(n)− λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t)

=

(
1− λ

ν + λ
e
− ν
µ

)
p̃(n), 1 ≤ k ≤ r,

B
(n)
(k,k−1) = p̃(n), r + 1 ≤ k.

Summarizing the results we have:

A(n) =

p̃(n)



0, . . . , r − 1 r, . . . , Q− 1 Q, . . . , r +Q− 1 r +Q
0 0 0, . . . , 0, 1 0

1

.

.

.
r


e
− ν
µ

. . .

e
− ν
µ

 I −


e
− ν
µ

. . .

e
− ν
µ

 0

r + 1

.

.

.
Q

0


1

. . .
1

 0

Q + 1

.

.

.
r +Q

0


1

. . .
1

 0


and
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B(n) =

p̃(n)



0 . . . r − 1 r . . . Q− 1 Q . . . r +Q− 1 r +Q
0 0 0 . . . 0, 1 0

1

.

.

.
r

λ
ν+λ


e
− ν
µ

. . .

e
− ν
µ

 I − λ
ν+λ


e
− ν
µ

. . .

e
− ν
µ

 0

r + 1

.

.

.
Q

0


1

. . .
1

 0

Q + 1

.

.

.
r +Q

0


1

. . .
1

 0


.

Remark 3.2.7. The systems in Example 3.2.5 and Example 3.2.6 describe special cases of
M/G/1/∞ systems in [Vin08, Section 5.3] when service time distribution is deterministic.
Example 3.2.6 is a special case forM/G/1/∞ system with deterministic service time and
parameter γ = 1 in [KML13, Section 6].

Proposition 3.2.8. There exist parameters λ, µ, and ν such that any M/D/1/∞ inven-
tory with these parameters, reorder point r ≥ 1, and random replenishment size greater
than 1 – i.e. s(k, 0) = s(k, 1) = 0 for all k – does not have a product-form stationary
distribution for the embedded Markov chains at departure times.

Proof. We use the results from (3.2.16) and (3.2.15)

B
(n)
(1,0) =

λ

ν + λ

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t) =

λ

ν + λ
e
−λ+ν

µ

(
λ

µ

)n 1

n!
,

A
(n)
(1,0) =

ˆ ∞
0

e−λt
(λt)n

n!
e−νtdδ 1

µ
(t) = e

−λ+ν
µ

(
λ

µ

)n 1

n!
,

and B(n)
(k,0) = A

(n)
(k,0) = 0 for k 6= 1 to construct a system with a non-product-form steady-

state distribution.
According to Lemma 3.2.4 the marginal distribution of the queue size is ξ̂. Inserting

this product form π̂(n, k) = ξ̂(n)θ̂(k) into the equation for the level n = 0 and phase
k = 0, the steady-state equation (3.2.14) is transformed into∑

k∈K
π̂(0, k)B

(0)
(k,0) +

∑
k∈K

π̂(1, k)A
(0)
(k,0) = π̂(0, 0)

⇐⇒ π̂(0, 1)B
(0)
(1,0) + π̂(1, 1)A

(0)
(1,0) = π̂(0, 0)

⇐⇒ λ

ν + λ
e
−λ+ν

µ ξ̂(0)θ̂(1) + e
−λ+ν

µ ξ̂(1)θ̂(1) = ξ̂(0)θ̂(0)

⇐⇒ e
−λ+ν

µ

(
λ

ν + λ
+
ξ̂(1)

ξ̂(0)

)
θ̂(1) = θ̂(0).

Substituting the values for ξ̂(0) and ξ̂(1) from (3.2.8) yields

⇐⇒ e
−λ+ν

µ

(
λ

ν + λ
+ eρ − 1

)
θ̂(1) = θ̂(0). (3.2.19)
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The equation for level n = 1 and phase k = 0 under this product form assumption is
transformed into∑

k∈K
π̂(0, k)B

(1)
(k,0) +

∑
k∈K

π̂(1, k)A
(1)
(k,0) +

∑
k∈K

π̂(2, k)A
(0)
(k,0) = π̂(1, 0)

⇐⇒ π̂(0, 1)B
(1)
(1,0) + π̂(1, 1)A

(1)
(1,0) + π̂(2, 1)A

(0)
(1,0) = π̂(1, 0)

⇐⇒ ξ̂(0)θ̂(1)B
(1)
(1,0) + ξ̂(1)θ̂(1)A

(1)
(1,0) + ξ̂(2)θ̂(1)A

(0)
(1,0) = ξ̂(1)θ̂(0)

⇐⇒
(

λ

ν + λ
e
−λ+ν

µ
λ

µ
ξ̂(0) + e

−λ+ν
µ
λ

µ
ξ̂(1) + e

−λ+ν
µ ξ̂(2)

)
θ̂(1) = ξ̂(1)θ̂(0)

⇐⇒ e
−λ+ν

µ

(
λ

ν + λ

λ

µ

ξ̂(0)

ξ̂(1)
+
λ

µ
+
ξ̂(2)

ξ̂(1)

)
θ̂(1) = θ̂(0).

Substituting the values for ξ̂(0), ξ̂(1), and ξ̂(2) from (3.2.8) yields

⇐⇒ e
−λ+ν

µ

(
λ

ν + λ

λ

µ

1

eρ − 1
+
λ

µ
+
eρ(eρ − ρ− 1)

(eρ − 1)

)
θ̂(1) = θ̂(0). (3.2.20)

One can see that the expressions (3.2.19) and (3.2.20) are in general not compatible.
For example, with the parameters λ = 1, µ = 2 and ν = 3 the θ̂(0) from (3.2.19) is
approximately 0.122 · θ̂(1) and the θ̂(0) from the (3.2.20) is approximately 0.145 · θ̂(1).
This result differs from product properties of M/G/1/∞ inventory systems in [Vin08,

Theorem 5.3.1 and Theorem 5.3.2] when r ≥ 1.

3.2.3. M/G/1/∞ queueing systems with state dependent service
intensities and product-form steady state

In the previous section we have shown by a counterexample, that in general the steady-
state distribution of an M/G/1/∞ system with (r, S) policy and lost sales does not have
a product form. Nevertheless, there are cases where loss systems with non-exponential
service times in a random environment have product form steady states. These systems
belong to a class of generalized M/G/1/∞ loss systems, which will be discussed in this
subsection.

Definition 3.2.9. We consider an M/G/1/∞ queueing system in continuous time with
state dependent service intensities (speeds) as described at the beginning of Section 3.2.1
(page 109) and use the notation introduced there.
The supplemented queue length process (X,RS) (queue length, residual service request)

is not Markov because we additionally assume that this queueing system is coupled with
a finite environment K = KW ]KB with KW 6= ∅, driven again by a generator V and
a stochastic jump matrix R, as described at the beginning of Section 2.1.1. The state of
the environment process will be denoted by Y again.
We prescribe that the interaction of (X,RS) with the environment process Y is via the

following principles and restrictions:
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3. Embedded Markov chains analysis

(1) If the environment process is in a non-blocking state k, i.e. k ∈ KW , the queueing
system develops in the same way as an M/G/1/∞ queuing system in isolation,
governed by P̃ from (3.2.2), without any change of the environment until the next
departure happens. Holding the environment invariant during this period is guar-
anteed by v(k,m) = 0 for all k ∈ KW ,m ∈ K.

(2) If at time t a customer departs from the system, the environment state changes
according to the stochastic jump matrix R, independent of the history of the system
given Y (t).

(3) Whenever the environment process is in a blocking state k ∈ KB, it may change its
state with rates governed by the matrix V , independent of the queue length and
the residual service request.

From these assumptions it is immediate, that Z = (X,RS, Y ) is a continuous time
strong Markov process. We introduce sequences of stopping times for the process Z =
(X,RS, Y ) as before: With τ0 = σ0 = ζ0 = 0 we will denote by
τ = (τ0, τ1, . . . ) the sequence of departure times of customers,
σ = (σ0, σ1, . . . ) the sequence of arrival times of customers admitted to the system,
ζ = (ζ0, ζ1, . . . ) the sequence of jump times of the continuous time process Z.

By standard arguments it is seen that the sequence

(X(τn), RS(τ−n ), Y (τn)) : n ∈ N0)

is a homogeneous Markov chain on state space N0 × {0} ×K. Consider henceforth the
homogeneous Markov chain

Ẑ = (X̂, R̂S, Ŷ ) =
(
(X̂(n), R̂S(n), Ŷ (n)) : n ∈ N0

)
on state space N0 × {0} ×K with

Ẑ(n) := (X̂(n), R̂S(n), Ŷ (n)) := (X(τn), RS(τ−n ), Y (τn)), ∀n ∈ N0.

Because for all n ∈ N0 it holds RS(τ−n ) = 0, we can later omit the R̂S-component of Ẑ.
Nevertheless, for the intermediate system analysis and for many proofs of this section,
we will trace the value R̂S for vividness.
The following formulae follow directly from the description.
(1) =⇒ for k ∈ KW , m ∈ K

P
((
X(τ1), RS(τ−1 ), Y (τ−1 )

)
= (i+ n− 1, 0,m)

∣∣∣ (X(0), RS(0−), Y (0)
)

= (i, 0, k)
)

= δkmp̃(i, n).

(2) =⇒ for k ∈ KW , m ∈ K

P
((
X(τ1), RS(τ−1 ), Y (τ1)

)
= (i+ n− 1, 0,m)

∣∣∣ (X(0), RS(0−), Y (0)
)

= (i, 0, k)
)

=
∑
h∈K

P
((
X(τ1), RS(τ−1 ), Y (τ−1 )

)
= (i+ n− 1, 0, h)

∣∣∣ (X(0), RS(0−), Y (0)
)

= (i, 0, k)
)

·R(h,m)

= p̃(i, n) ·R(k,m)

122



3.2. M/G/1/∞ queueing system in a random environment

(3) =⇒ for i ∈ N0, k ∈ KB, m ∈ K, and r, s ∈ R+
0

P
(

(X(ζ1), RS(ζ1), Y (ζ1)) = (j, s,m)
∣∣∣(X,RS, Y )(0) = (i, r, k)

)
= δijδrs

v(k,m)

−v(k, k)
.

Note, that in the last expression k ∈ KB implies that the queueing system is frozen,
and therefore in the denominator of the right side no summands originating from arrival
or service process occur.
Although we have imposed constraints on the behaviour of the environment the model

still is a very versatile one. The class of models from Definition 3.2.9 encompasses (e.g.)
many vacation models. These are models describing a server working on primary and
secondary customers, a situation which arises in many computer, communication, and
production systems and networks. If one is mainly interested in the service process of
primary customers, then working on secondary customers means from the viewpoint of
the primary customers, that the server is not available or is interrupted. For more details
see e.g. the survey of Doshi [Dos90]. In the classification given there [Dos90, pp. 221, 222]
the above model is a single server queue with general nonexhaustive service, with non-
preemptive vacations, and general vacation rule. Our system fits into these classification
because whenever a service expires the server decides to take a vacation for serving sec-
ondary customers (a state KB is selected) or to continue to serve a customer if there is
any (a state in KW is selected).
The proposed product form property of Ẑ originates from the specific structure of the

one-step transition matrix P of (X̂, Ŷ ). With some stochastic matrix H ∈ RK×K , which
we present in all details below,

P =


p̃(1, 0)H p̃(1, 1)H p̃(1, 2)H p̃(1, 3)H . . .
p̃(1, 0)H p̃(1, 1)H p̃(1, 2)H p̃(1, 3)H . . .

0 p̃(2, 2)H p̃(2, 1)H p̃(2, 2)H . . .
0 0 p̃(3, 0)H p̃(3, 1)H . . .
...

...
...

...

 . (3.2.21)

We will use an evaluation procedure similar to that used for the M/M/1/∞ in a random
environment, by decomposing the matrices B(n) = WU (n,0)R and A(i,n) = U (i,n)R.

Assumption 3.2.10. To avoid discussion of ergodic theory for processes with states in
continuous space we also assume for Section 3.2.3:

(i) The probabilities P (X(t) = n,RS(t) ≤ r, Y (t) = k) converge to unique limiting
and steady-state probabilities limt→∞P (X(t) = n,RS(t) ≤ r, Y (t) = k) independent
from the starting probability.

(ii) It holds limt→∞ P (X(t) = n, Y (t) = k) > 0.

(iii) The steady-state probability of the embedded Markov chain (X̂(n), Ŷ (n)) exists and
it is unique.

Further to simplify the proof we assume that

(iv) The steady-state distribution ξ̂ of the pure queuing process, with the same service
time and arrival time parameters as the system from Definition 3.2.9 exists. It holds
ξ̂P̃ = ξ̂ with one-step transition matrix (3.2.2).
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3. Embedded Markov chains analysis

Remark 3.2.11. In the case of phase-type distributed service time with finite number L
of phases, Assumption 3.2.10 (i)–(iii) follow from ergodicity assumption.
The next lemma guarantees that the expressions 1

−v(k,k)+1[k∈KW ]
and (IW − V )−1 in

Lemma 3.2.14 and Lemma 3.2.18 are always well defined.

Lemma 3.2.12. For the system defined in Definition 3.2.9 it holds:

(i)
|v(k, k)| > 0, ∀k ∈ KB. (3.2.22)

Therefore the expression

1

−v(k, k) + 1[k∈KW ]
=

{
1

v(k,k) , k ∈ KB,

1, k ∈ KW ,
(3.2.23)

is well defined for any k ∈ K.

(ii) Matrix (IW − V )−1 exists.

Proof. (i) The proof uses the same idea as that of Lemma 3.1.1. Because of Assumption
3.2.10 (i) and (ii) there must be a positive rate v(k,m) > 0 to leave any blocking state
k ∈ KB. The generator property |v(k, k)| =

∑
h6=k v(k, h) of the matrix V proves the

inequality (3.2.22).
(ii) Because of Assumption 3.2.10 (i) and (ii) the system will leave any state k ∈ KB to

enter some state m ∈ KW in a finite number of jumps caused by generator V . Therefore
the matrix (IW − V ) is an essentially diagonal dominant matrix in a finite dimensional
space RK×K . It is invertible according to Lemma A.1.3.

We now define similar to (3.1.11) in Lemma 3.1.6 a matrixW and determine an explicit
representation.
Remark 3.2.13. To simplify notation we will use

{Z(t) = (n, [0, r], k)} for {X(t) = n,RS(t) ∈ [0, r], Y (t) = k}

and

{Ẑ0 = (n, 0, k)} for {X(0) = n,RS(0−) = 0, Y (0) = k}.

Lemma 3.2.14. For the system from Definition 3.2.9 we define for k,m ∈ K and r ∈ R+
0

Wkm(r) := P
(
Z(σ1) = (1, [0, r],m)|Ẑ0 = (0, 0, k)

)
, (3.2.24)

and remark that Wkm(r) = 0 for all m ∈ KB. Then it holds

W (r) = G1(r)(IW − V )−1IW . (3.2.25)

Proof. Let k ∈ K and m ∈ KW . Recall that RS(t) = 0 if X(t) = 0 therefore
{Ẑ0 = (0, 0, k)} ⊂ {Z(0) = (0, 0, k)}. Furthermore by definition RS(0−) = 0 Therefore

{Z(0) = (0, 0, k)} ⊂ {(X,Y )(0) = (0, k)} = {(X,Y )(0) = (0, k), RS(0−) = 0}
= {Ẑ0 = (0, 0, k)}.
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Thus we have {Ẑ0 = (0, 0, k)} = {Z0(0) = (0, 0, k)}.
Basically, the matrix W has the same structure as W in Proposition 3.1.8, but we will

derive a new representation, which is more suitable in the subsequent proofs. Using a
similar transformation as in Proposition 3.1.8 we get by a first entrance argument

Wkm(r)

= P
(
Z(σ1) = (1, [0, r],m)

∣∣∣Ẑ0 = (0, 0, k)
)

= P
(
Z(σ1) = (1, [0, r],m)

∣∣∣Z(0) = (0, 0, k)
)

=
∑

h∈K\{k}

P
(
Z(σ1) = (1, [0, r],m) ∩ Z(ζ1) = (0,R+

0 , h)
∣∣∣Z(0) = (0, 0, k)

)
+δkmP

(
Z(ζ1) = (1, [0, r],m)

∣∣∣Z(0) = (0, 0, k)
)

=
∑

h∈K\{k}

P
(
Z(σ1) = (1, [0, r],m)

∣∣∣Z(ζ1) = (0,R+
0 , h), Z(0) = (0, 0, k)

)
·P
(
Z(ζ1) = (0,R+

0 , h)
∣∣∣Z(0) = (0, 0, k)

)
+δkmP

(
Z(ζ1) = (1, [0, r],m)

∣∣∣Z(0) = (0, 0, k)
)
.

Because RS(t) = 0 for X(t) = 0 for all t, it holds

{Z(ζ1) = (0,R+
0 , h)} = {Z(ζ1) = (0, 0, h)}

and therefore

Wkm(r)

=
∑

h∈K\{k}

P
(
Z(σ1) = (1, [0, r],m)

∣∣∣Z(ζ1) = (0, 0, h), Z(0) = (0, 0, k)
)

·P
(
Z(ζ1) = (0, 0, h)

∣∣∣Z(0) = (0, 0, k)
)

+δkmP
(
Z(ζ1) = (1, [0, r],m)

∣∣∣Z(0) = (0, 0, k)
)
.

Using strong Markov property we get

⇐⇒Wkm(r) =
∑

h∈K\{k}

P
(
Z(σ1) = (1, [0, r],m)

∣∣∣Z(0) = (0, 0, h)
)

·P
(
Z(ζ1) = (0, 0, h)

∣∣∣Z(0) = (0, 0, k)
)

+δkmP
(
Z(ζ1) = (1, [0, r],m)

∣∣∣Z(0) = (0, 0, k)
)

⇐⇒Wkm(r) =
∑

h∈K\{k}

P
(
Z(σ1) = (1, [0, r],m)

∣∣∣Ẑ0 = (0, 0, h)
)

︸ ︷︷ ︸
=Whm(r)

·P
(
Z(ζ1) = (0, 0, h)

∣∣∣Z(0) = (0, 0, k)
)

+δkmP
(
Z(ζ1) = (1, [0, r],m)

∣∣∣Z(0) = (0, 0, k)
)
.
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If k 6= h the expression P
(
Z(ζ1) = (0, 0, h)

∣∣∣Z(0) = (0, 0, k)
)
is v(k,h)
−v(k,k) for k ∈ KB and

0 for k ∈ KW . In both cases we will use the expression v(k,h)
−v(k,k)+1[k∈KW ]

, which is defined
for any k ∈ K (see Lemma 3.2.12 (i))

⇐⇒Wkm(r) =
∑

h∈K\{k}

Whm(r)
v(k, h)

−v(k, k) + 1[k∈KW ]

+δkmP
(
Z(ζ1) = (1, [0, r],m)

∣∣∣Z(0) = (0, 0, k)
)
.

For k ∈ KB P (Z(ζ1) =
(

1, [0, r],m)
∣∣∣Z(0) = (0, 0, k)

)
is zero. For k ∈ KW the dynam-

ics of the process is the same as for a queue without environment and the environment
states stay unchanged, i.e.

P
(
Z(ζ1) = (1, [0, r],m)

∣∣∣Z(0) = (0, 0, k)
)

= δkmG1(r)1[k∈KW ]

with distribution G1 on page 109.

⇐⇒ Wkm(r)

=
∑

h∈K\{k}

Whm(r)
v(k, h)

−v(k, k) + 1[k∈KW ]
+ δkmG1(r)1[k∈KW ]

=
∑

h∈K\{k}

v(k, h)

−v(k, k) + 1[k∈KW ]
Whm(r) + δkm

1

−v(k, k) + 1[k∈KW ]︸ ︷︷ ︸
1 for k∈KW

1[k∈KW ]G1(r).

This equation reads in matrix form

W (r) = (−diag(V ) + IW )−1 ((V − diag(V ))W (r) + IWG1(r))

and can finally be transformed into the lemma’s statement (3.2.25):

(−diag(V ) + IW )W (r) = (V − diag(V ))W (r) + IWG1(r)

⇐⇒ (IW − V )W (r) = IWG1(r)
Lemma 3.2.12 (ii)

=⇒ W (r) = G1(r)(IW − V )−1IW .

Definition 3.2.15. For i > 0, n ∈ N0, k ∈ K we define

U
(i,n)
km (r) := P

((
X(τ1), RS(τ−1 ), Y (τ−1 )

)
= (i+ n− 1, 0,m)

∣∣∣Z(0) = (i, r, k)
)
, ∀r ∈ R+

and U
(i,n)
km (0) := 0.

Lemma 3.2.16. For i > 0, n ∈ N0, and U
(i,n)
km (r) from Definition 3.2.15 it holds

U
(i,n)
km (r) =

∑
h∈K\{k}

v(k, h)

−v(k, k) + 1[k∈KW ]
U

(i,n)
hm (r) ∀k ∈ KB, r ∈ R+

0 . (3.2.26)
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Proof. For r = 0 equation (3.2.26) is obvious. For r ∈ R+ and for all n ∈ N0 we have
R(τ−n ) = 0 and U (i,n)

km (r) can be simplified to

U
(i,n)
km (r) = P

((
X(τ1), Y (τ−1 )

)
= (i+ n− 1,m)

∣∣∣Z(0) = (i, r, k)
)
.

Let k ∈ KB and r ∈ R+. Because ζ1 < σ1 and ζ1 < τ1 when k ∈ KB we have

U
(i,n)
km (r)

= P
((
X(τ1), Y (τ−1 )

)
= (i+ n− 1,m)

∣∣∣Z(0) = (i, r, k)
)

=
∑

h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (i+ n− 1,m) ∩ Z(ζ1) = (i, r, h)

∣∣∣Z(0) = (i, r, k)
)

=
∑

h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (i+ n− 1,m)

∣∣∣Z(ζ1) = (i, r, h) ∩ Z(0) = (i, r, k)
)

·P
(
Z(ζ1) = (i, r, h)

∣∣∣Z(0) = (i, r, k)
)

SM
=

∑
h∈K\{k}

P
((
X(τ1), Y (τ−1 )

)
= (i+ n− 1,m)

∣∣∣Z(0) = (i, r, h)
)

·P
(
Z(ζ1) = (i, r, h)

∣∣∣Z(0) = (i, r, k)
)

=
∑

h∈K\{k}

U
(i,n)
hm (r) · P

(
Z(ζ1) = (i, r, h)

∣∣∣Z(0) = (i, r, k)
)
.

We analyze the expression P (Z(ζ1) = (i, r, h)|Z(0) = (i, r, k)): By the model assump-
tion it is v(k,h)

−v(k,k) for k ∈ KB and zero for k ∈ KW , therefore we can write it

as v(k,h)
−v(k,k)+1[k∈KW ]

1[k∈KB ].

⇐⇒ U
(i,n)
km (r) =

∑
h∈K\{k}

U
(i,n)
hm (r)

v(k, h)

−v(k, k) + 1[k∈KW ]
, ∀k ∈ KB, r ∈ R+.

Lemma 3.2.17. For i > 0, n ∈ N0, and U
(i,n)
km (r) from Definition 3.2.15 it holds

U
(i,n)
km (r) =

1

−v(k, k) + 1[k∈KW ]
δkmp̃(i, n, r), ∀k ∈ KW , r ∈ R+

0 , (3.2.27)

with p̃(i, n, r) from (3.2.1).

Proof. For r = 0 equation (3.2.27) follows immediately from definition of U (i,n)
km (0) = 0

and p̃(i, n, 0) = 0. Let r ∈ R+. The factor 1
−v(k,k)+1[k∈KW ]

is 1 for k ∈ KW by (3.2.23).
The factor δkm follows from the model assumption that the environment cannot change

when the system is not blocked.
When the system is not blocked, its dynamics is by Definition 3.2.9 (1) the same as,

that of a queue without environment. This is determined by the transition probability
p̃(i, n, r).
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Lemma 3.2.18. In the system from Definition 3.2.9, for any i > 0, n ∈ N0, and U
(i,n)
km (r)

from Definition 3.2.15 it holds

U (i,n)(r) = p̃(i, n, r)(IW − V )−1IW . (3.2.28)

Proof. From Lemma 3.2.16 and Lemma 3.2.17 it follows any n ≥ 0, i > 0 and r > 0

U
(i,n)
km (r)

=
∑

h∈K\{k}

v(k, h)

−v(k, k) + 1[k∈KW ]
U

(i,n)
hm (r)1[k∈KB ] +

1

−v(k, k) + 1[k∈KW ]
δkmp̃(i, n, r)1[k∈KW ].

The equation above, written in matrix form, reads

U (i,n)(r) = (−diag(V ) + IW )−1
(

(V − diag(V ))U (i,n)(r) + p̃(i, n, r)IW

)
⇐⇒ (−diag(V ) + IW )U (i,n)(r) = ((V − diag(V ))U (i,n)(r) + p̃(i, n, r)IW )

⇐⇒ (IW − V )U (i,n)(r) = p̃(i, n, r)IW

⇐⇒ U (i,n)(r) =p̃(i, n, r)(IW − V )−1IW .

Lemma 3.2.19. In the system from Definition 3.2.9 we define for any i > 0, n ≥ 0,
k ∈ K, and m ∈ K

U
(i,n)
km := P

((
X(τ1), RS(τ1), Y (τ−1 )

)
= (i+ n− 1, 0,m)|Z0 = (i, 0, k)

)
.

Then it holds
U (i,n) = p̃(i, n)(IW − V )−1IW . (3.2.29)

Proof. According to the model, as soon as the first customer leaves a system, that is
right after time 0−, the new residual requested time RS is selected at time instant 0. If at
this time instant there are i customers in the system, the new value of RS is distributed
according to distribution Gi. Therefore it holds

U
(i,n)
km =

ˆ ∞
0

U
(i,n)
km (r)dGi(r)

=

ˆ ∞
0

p̃(i, n, r)(IW − V )−1IWdGi(r).

Applying (3.2.4) we get (3.2.29).

Lemma 3.2.20. In the system from Definition 3.2.9 we define for any i > 0, n ≥ 0,
k ∈ K and m ∈ K

A
(i,n)
km := P

((
X(τ1), RS(τ−1 ), Y (τ1)

)
= (i+ n− 1, 0,m)∣∣∣Ẑ0 = (i, 0, k)
)
.

Then holds
A(i,n) = U (i,n)R = p̃(i, n)(IW − V )−1IWR. (3.2.30)
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Proof. In a completely similar way as in Lemma 3.1.6 we can show the following repre-
sentations

A
(i,n)
km = P

((
X(τ1), RS(τ−1 ), Y (τ1)

)
= (i+ n− 1, 0,m)

∣∣∣Ẑ0 = (i, 0, k)
)

=
∑
h∈K

P
((
X(τ1), RS(τ−1 ), Y (τ−1 )

)
= (i+ n− 1, 0, h)

∣∣∣Ẑ0 = (i, 0, k)
)
R(h,m)

=
∑
h∈K

U
(i,n)
kh R(h,m).

Lemma 3.2.21. In the system from Definition 3.2.9 we define for any i > 0, n ≥ 0,
k ∈ K, m ∈ K and r > 0

A
(i,n)
km (r) := P

((
X(τ1), RS(τ−1 ), Y (τ1)

)
= (i+ n− 1, 0,m)∣∣∣Z(0) = (i, r, k)

)
.

Then it holds
A(i,n)(r) = U (i,n)(r)R = p̃(i, n, r)(IW − V )−1IWR. (3.2.31)

Proof. In a similar way as in Lemma 3.2.20 we show

A
(i,n)
km (r) = P

((
X(τ1), RS(τ−1 ), Y (τ1)

)
= (i+ n− 1, 0,m)

∣∣∣Z(0) = (i, r, k)
)

=
∑
h∈K

P
((
X(τ1), RS(τ−1 ), Y (τ−1 )

)
= (i+ n− 1, 0, h)

∣∣∣Z(0) = (i, r, k)
)
R(h,m)

=
∑
h∈K

U
(i,n)
kh (r)R(h,m).

Lemma 3.2.22. In the system from Definition 3.2.9 we define for any n ≥ 0, k ∈ K,
and m ∈ K

B
(n)
km := P

((
X(τ1), RS(τ−1 ), Y (τ1)

)
= (n, 0,m)

∣∣∣Ẑ0 = (0, 0, k)
)
.

Then it holds

B(n) =
(
(IW − V )−1IW

)
A(1,n) = p(1, n)

(
(IW − V )−1IW

)2
R. (3.2.32)

Proof.

B
(n)
km = P

((
X(τ1), RS(τ−1 ), Y (τ1)

)
= (n, 0,m)

∣∣∣Ẑ0 = (0, 0, k)
)

=

ˆ ∞
0

∑
h∈K

P
((
X(τ1), RS(τ−1 ), Y (τ1)

)
= (n, 0,m)∣∣∣Ẑ0 = (0, 0, k) ∩ {RS(σ1) = r, Y (σ1) = h}

)
dP
(
RS(σ1) ∈ [0, r], Y (σ1) = h

∣∣∣Ẑ0 = (0, 0, k)
)
.
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Recall that X(σ1) = 1 by definition of the stopping time σ1 if the system is stared
empty.

⇐⇒ B
(n)
km

=
∑
h∈K

ˆ ∞
0

P
((
X(τ1), RS(τ−1 ), Y (τ1)

)
= (n, 0,m)∣∣∣Ẑ0 = (0, 0, k) ∩ {X(σ1) = 1, RS(σ1) = r, Y (σ1) = h}

)
· dP

(
X(σ1) = 1, RS(σ1) ∈ [0, r], Y (σ1) = h

∣∣∣Ẑ0 = (0, 0, k)
)
.

Note, for fixed values k and h the function

P
(
X(σ1) = 1, RS(σ1) ∈ [0, r], Y (σ1) = h

∣∣∣Ẑ0 = (0, 0, k)
)

defines a measure on B+
0 .

Using strong Markov property of Z and that σ1 > 0 we get

⇐⇒ B
(n)
km

=
∑
h∈K

ˆ ∞
0

P
((
X(τ1), RS(τ−1 ), Y (τ1)

)
= (n, 0,m)∣∣∣X(0) = 1, RS(0) = r, Y (0) = h
)

· dP
(
X(σ1) = 1, RS(σ1) ∈ [0, r], Y (σ1) = h

∣∣∣Ẑ0 = (0, 0, k)
)

=
∑
h∈K

ˆ ∞
0

A
(1,n)
hm (r)dWkh(r).

Using formula (3.2.31) for A(1,n)
hm (r) and (3.2.25) for Wkh(r) we get

⇐⇒ B
(n)
km

=
∑
h∈K

ˆ ∞
0

p̃(1, n, r)
(
(IW − V )−1IWR

)
hm

d
(
G1(r)

(
(IW − V )−1IW

)
kh

)
=
∑
h∈K

(
(IW − V )−1IW

)
kh

(
(IW − V )−1IWR

)
hm

ˆ ∞
0

p̃(1, n, r)dG(r).

Using
´∞

0 p̃(1, n, r)d (G1(r)) = p̃(1, n) we can write B(n)in matrix form

B(n) =
(
(IW − V )−1IW

)
p̃(1, n)

(
(IW − V )−1IWR

)︸ ︷︷ ︸
=A(1,n)

.

We are now prepared to evaluate the transition matrix of the M/G/1/∞ system in a
random environment from Definition 3.2.9. It turns out that it has precisely the form
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3.2. M/G/1/∞ queueing system in a random environment

(3.2.21). After the construction of matrices B(n) in (3.2.32) and A(i,n) in (3.2.30) we
collected enough information for the description of the Markov chain

(
Ẑn : n ∈ N0

)
. In

particular we do not need the value R̂S(n) = RS(τ−n ) which is constant 0 for all n. Starting
from here, we focus only on the Markov chain

(
(X̂n, Ŷn) : n ∈ N0

)
.

Lemma 3.2.23. Consider the continuous time Markov state process of the system de-
scribed in Definition 3.2.9, and the Markov chain (X̂, Ŷ ), embedded at departure instants
of customers.
The one-step transition matrix P of (X̂, Ŷ )

P =


B(0) B(1) B(2) B(3) . . .

A(0,1) A(1,1) A(2,1) A(3,1) . . .

0 A(0,2) A(1,2) A(2,2) . . .

0 0 A(0,3) A(1,3) . . .
...

...
...

...

 ,

is build up by the following block matrices:

A(i,n) = p̃(i, n)H, ∀i > 0, n ∈ N0, (3.2.33)

and
B(n) = p̃(1, n)H, ∀n ∈ N0, (3.2.34)

with
H := (IW − V )−1IWR. (3.2.35)

Proof. Equation (3.2.33) follows from (3.2.30). For (3.2.34) we need to analyze matrix(
(IW − V )−1IW

)
. It has the block structure

(IW − V ) =

 KW KB

KW I 0
KB −V |KB×KW −V |KB×KB


=⇒ (IW − V )−1 =

 KW KB

KW I 0
KB (IW − V )−1|KB×KW (IW − V )−1|KB×KB


=⇒ (IW − V )−1IW =

 KW KB

KW I 0
KB (IW − V )−1|KB×KW 0

 .

By direct evaluation, this leads to the useful property

(IW − V )−1IW (IW − V )−1IW = (IW − V )−1IW . (3.2.36)

Which simplifies (3.2.32) to

B(n) = p(1, n)
(
(IW − V )−1IW

)
R = p(1, n)H.
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3. Embedded Markov chains analysis

The next step is similar to that in case of the purely exponential system.

Lemma 3.2.24. The matrix H = (IW − V )−1IWR defined in (3.2.35) is a stochastic
matrix and there exists a stochastic solution θ̂ of the steady-state equation

θ̂H = θ̂. (3.2.37)

Proof. The generator property of V leads to

(IW − V )e = IWe + V e︸︷︷︸
=0

= IWe (3.2.38)

and the stochasticity of R yields Re = e. Inserting this into the definition of H leads to

He = (IW − V )−1IWRe = (IW − V )−1IWe
(3.2.38)

= (IW − V )−1(IW − V )e = e.

Since the matrix p̃(i, n)(IW −V )−1IW describes transition probabilities, all its entries are
non-negative, therefore the matrix H is stochastic.
Finally, finiteness of K guarantees the existence of a stochastic solution of (3.2.37).

Theorem 3.2.25. Consider the M/G/1/∞ in a random environment from Definition
3.2.9 with state dependent service speeds and state dependent selection of requested service
times. For the Markov chain (X̂, Ŷ ) embedded at departure points of customers the unique
steady-state distribution denoted by π̂ exists.
Then π̂ has product form according to

π̂(n, k) = ξ̂(n)θ̂(k), (n, k) ∈ N0 ×K.

Here ξ̂ is the steady-state distribution of the Markov chain with one-step transition
matrix (3.2.2) derived for the queue length process at departure points in a system with
the same parameter as under consideration but without environment, that is a solution of

ξ̂P̃ = ξ̂, (3.2.39)

and θ̂ is a stochastic solution of the equation

θ̂H = θ̂(IW − V )−1IWR = θ̂. (3.2.40)

Proof. According to Lemma 3.2.23 the transition matrix P of the system has block form
(3.2.21), which is the tensor product of P̃ from (3.2.2) and H:

P = P̃ ⊗H.

Let ξ̂ be the steady-state solution of (3.2.39), i.e., of the pure queuing system without
environment.
Let θ̂ be the stochastic solution of the equation θ̂H = θ̂, which exists according to

Lemma 3.2.24. Then from tensor calculus of matrices [Neu81, (2.2.19) on p. 53] π̂(n, k) =
ξ̂(n)θ̂(k) solves the steady-state equation

π̂P = (ξ̂ ⊗ θ̂)P̃ ⊗H = (ξ̂P̃ )⊗ (θ̂H) = ξ̂ ⊗ θ̂ = π̂.
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3.3. Applications

We apply the results from Sections 3.1.1, 3.1.2, and 3.2 to queueing-inventory systems
which are dealt with in literature recently, see the review in [KLM11].
Note that to obtain the steady-state distribution π̂ from π using (3.1.41) could be easier

than using (3.1.42), since starting from (3.1.41) does not require to calculate the inverse
of (λIW −V ). Nevertheless, we will use (3.1.42) and calculate WR = λ(λIW −V )−1IWR
explicitly to gain more insight into the mathematical structure of the problem.
In any of the following applications the queueing system represents a production facility

where raw material arrives and to assemble a final product from a piece of raw material
exactly one item from the stock is needed. This item will formally be taken from the
stock when the production of the final product is finished.
In Proposition 3.3.1 and Proposition 3.3.2 we slightly extend the lost sales problems

from Example 2.2.2 and Example 2.2.3 by incorporating stock size dependent delivery
rate νk. The main reason of this modification is besides of having more versatile models to
demonstrate how each entry of the matrices V andR influences the transition probabilities
λ(λIW − V )−1IWR and the steady-state distribution θ̂.

3.3.1. Systems with exponential service requests

5

4

32

1

0
ν0

ν1

ν2

(a) M/M/1/∞ system with
(r = 2, S = 5)-policy and
lost sales.

5

4

32

1

0
ν0

ν1

ν2

(b) M/M/1/∞ system with
(r = 2, Q = 3)-policy and
lost sales.

Figure 3.3.1.: Environment transition and interaction diagram for the environment of
the lost sales of Proposition 3.3.1 and Proposition 3.3.2. The environment
counts the stock size of the inventory.

Proposition 3.3.1. We consider an exponential single server queue with state dependent
service rates, environment dependent replenishment rates, and an attached inventory un-
der (r, S) policy (with 0 ≤ r < S ∈ N), and lost sales when the inventory is depleted.
Using the definitions of Section 3.1.1 we set the environment state spaceK := {0, . . . , S}

with KB = {0}, X(t) is the queue length at time t, and Y (t) = k indicates that at time t
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3. Embedded Markov chains analysis

the stock contains exactly k items. The strictly positive transitions intensities are

q((n, k), (n+ 1, k)) = λ, k > 0,

q((n, k), (n, S)) = νk, 0 ≤ k ≤ r,
q((n, k), (n− 1, k − 1)) = µ(n), n > 0, 1 ≤ k ≤ S,

q((n, k), (l,m)) = 0, otherwise.

The steady-state π̂ of the Markov chain (X̂, Ŷ ) embedded at departure times has product
form

π̂(n, k) = ξ(n)θ̂(k), (n, k) ∈ N0 ×K, (3.3.1)

with

ξ(n) := C−1

(
n∏
i=1

λ

µ(i)

)
, n ∈ N0,

with normalization constant

C :=
∞∑
n=0

(
n∏
i=1

λ

µ(i)

)
and

θ̂(k) =


C−1

2 ·
∏k
i=1

(
λ+νi
λ

)i
, 0 ≤ k ≤ r,

C−1
2 ·

∏r
i=1

(
λ+νi
λ

)i
, r + 1 ≤ k ≤ S − 1,

0, k = S,

(3.3.2)

with

C2 =
r−1∑
k=0

k∏
i=1

(
λ+ νi
λ

)i
+ (S − r)

r∏
i=1

(
λ+ νi
λ

)i
.

Note that even for the constant values νk = ν the marginal distribution θ̂ in (3.3.2) differs
from the marginal stationary distribution P (Y (t) = k) of the continuous time process in
Example 2.2.2.

Proof. According to Corollary 3.1.17 the marginal distribution θ̂ is the stochastic solution
of the equation

θ̂ λ(λIW − V )−1IW︸ ︷︷ ︸
=W

R = θ̂. (3.3.3)

We calculate the matrix λ(λIW − V )−1IWR explicitly.

(λIW − V ) =

0 1 2 . . . r − 1 r r + 1 . . . S − 1 S

0 ν0 0 0 0 0 0 0 −ν0
1 0 (ν1 + λ) 0 0 0 0 0 −ν1
2 0 0 (ν2 + λ) 0 0 0 0 −ν2
...

...
...

. . .
...

r 0 0 0 . . . 0 (νr + λ) 0 . . . 0 −νr
r + 1 0 0 0 0 0 λ . . . 0 0
...

...
...

...
...

...
...

. . .
. . .

...
...

S − 1 0 0 0 . . . 0 0 λ 0
S 0 0 0 . . . 0 0 0 0 λ


,
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W = λ(λIW − V )−1IW =

0 1 2 . . . r − 1 r r + 1 . . . S − 1 S

0 0 0 0 0 0 0 0 1
1 0 λ

ν1+λ
0 0 0 0 0 ν1

ν1+λ

2 0 0 λ
ν2+λ

0 0 0 0 ν2
ν2+λ

...
...

...
. . .

...
r 0 0 0 . . . 0 λ

νr+λ
0 . . . 0 νr

νr+λ

r + 1 0 0 0 0 0 1 . . . 0 0
...

...
...

...
...

...
...

. . .
. . .

...
...

S − 1 0 0 0 . . . 0 0 1 0
S 0 0 0 . . . 0 0 0 0 1


,

R =

0 1 2 . . . S − 1 S

0 1 0 0 . . . 0 0
1 1 0 0 . . . 0 0
2 0 1 0 0 0
...

...
...

. . .
. . .

...
...

S − 1 0 0 0 . . . 0 0
S 0 0 0 . . . 1 0


,

WR = λ(λIW − V )−1IWR =

0 1 2 . . . r − 1 r r + 1 . . . S − 1 S

0 0 0 0 0 0 0 1 0
1 λ

ν1+λ
0 0 0 0 0 ν1

ν1+λ
0

2 0 λ
ν2+λ

0 0 0 0 0 ν2
ν2+λ

0
...

...
...

. . .
... 0

r 0 0 0 . . . λ
νr+λ

0 0 νr
νr+λ

0

r + 1 0 0 0 0 1 0 0 0
...

...
...

...
...

...
...

. . .
. . .

... 0

S − 1 0 0 0 . . . 0 0 0
. . . 0 0

S 0 0 0 . . . 0 0 0 1 0


.

Inserting this and (3.3.2) into (3.3.3) finishes the proof.

Proposition 3.3.2. We consider an exponential single server queue with state dependent
service rates, environment dependent replenishment rates, and an attached inventory un-
der (r,Q) policy (with 0 ≤ r < Q ∈ N), and lost sales when the inventory is depleted.
Using the definitions of Section 3.1.1 we set the environment state spaceK := {0, . . . , S}

with KB = {0}, X(t) is the queue length at time t, and Y (t) = k indicates that at time t
the stock contains exactly k items. The strictly positive transition intensities are

q((n, k), (n+ 1, k)) = λ, k > 0,

q((n, k), (n, k +Q)) = νk, 0 ≤ k ≤ r,
q((n, k), (n− 1, k − 1)) = µ(n), n > 0, 1 ≤ k ≤ r +Q,

q((n, k), (l,m)) = 0, otherwise.
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3. Embedded Markov chains analysis

The steady-state π̂ has product form

π̂(n, k) = ξ(n)θ̂(k), (n, k) ∈ N0 ×K, (3.3.4)

with

ξ(n) := C−1

(
n∏
i=1

λ

µ(i)

)
, n ∈ N0,

with normalization constant

C :=
∞∑
n=0

(
n∏
i=1

λ

µ(i)

)

and

θ̂(k) =



C−1
2 ·

∏k
i=1

(
λ+νi
λ

)i
, 0 ≤ k ≤ r,

C−1
2 ·

∏r
i=1

(
λ+νi
λ

)i
, r + 1 ≤ k ≤ Q− 1,

C−1
2

∏r
i=1

(
λ+νi
λ

)i
−
∏k−Q
i=1

(
λ+νi
λ

)i
, Q ≤ k ≤ r +Q− 1,

0, k = r +Q,

(3.3.5)

with normalization constant

C2 = (Q− r)
k∏
i=1

(
λ+ νi
λ

)i
.

Proof. According to Corollary 3.1.17 the marginal distribution θ̂ is the stochastic solution
of the equation

θ̂ λ(λIW − V )−1IW︸ ︷︷ ︸
=W

R = θ̂. (3.3.6)

We calculate the matrix λ(λIW −V )−1IWR explicitly (the remark from Proposition 3.3.1
on indexing the matrices applies here as well).

(λIW − V ) =

0 1 2 . . . r − 1 r r + 1 . . . Q 1 +Q 2 +Q . . . r +Q
0 ν0 0 0 0 0 0 −ν0 0
1 0 (ν1 + λ) 0 0 0 0 0 −ν1 0
2 0 0 (ν2 + λ) 0 0 0 0 −ν2 0

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

r 0 0 0 . . . 0 (νr + λ) 0 . . . 0 −νr
r + 1 0 0 0 0 0 λ . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
Q 0 0 0 . . . 0 0 λ 0

1 +Q 0 0 0 0 0
2 +Q

.

.

.
r +Q 0 0 0 . . . 0 0 0 0 λ


,

136



3.3. Applications

W = λ(λIW − V )−1IW =

0 1 2 . . . r − 1 r r + 1 . . . Q 1 +Q 2 +Q . . . r +Q

0 0 0 0 0 0 0 1 0 0 0
1 0 λ

ν1+λ
0 0 0 0 0 ν1

ν1+λ

2 0 0 λ
ν2+λ

0 0 0 0 ν2
ν2+λ

...
...

...
. . .

. . .
r 0 0 0 . . . 0 λ

νr+λ
0 . . . 0 νr

νr+λ

r + 1 0 0 0 0 0 1 . . . 0 0
...

...
...

...
...

...
...

. . .
. . .

...
...

Q 0 0 0 . . . 0 0 0 1 0
1 +Q 0 0 0 0 0 0 1
2 +Q 0 0 0 0 0 0 1

...
...

...
...

...
...

. . .
S 0 0 0 . . . 0 0 0 0 0 0 1



,

R =

0 1 2 . . . r − 1 +Q r +Q

0 1 0 0 0 0
1 1 0 0 0 0
2 0 1 0 0 0
...

...
...

. . .
...

...
r − 1 +Q 0 0 0 . . . 0 0
r +Q 0 0 0 . . . 1 0


,

WR = λ(λIW − V )−1IWR =

0 1 2 . . . r − 1 r r + 1 . . . Q− 1 Q 1 +Q 2 +Q . . . r +Q
0 0 0 0 0 0 0 1 0 0 0 0

1 λ
ν1+λ

0 0 0 0 0
ν1

ν1+λ

2 0 λ
ν2+λ

0 0 0
ν2

ν2+λ

.

.

.
.
.
.

.

.

.
. . .

. . .
r 0 0 0 . . . λ

νr+λ
0 0 νr

νr+λ
r + 1 0 0 0 0 1 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Q− 1 0 0 0 0 0 0
. . .

Q 0 0 0 . . . 0 0 0 1 0
1 +Q 0 0 0 0 0 0 1
2 +Q 0 0 0 0 0 0 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
r +Q 0 0 0 . . . 0 0 0 0 0 0 1 0


.

Note that even for constant values νk = ν the marginal distribution θ̂ under (r,Q)
policy differs from the marginal steady-state distribution P (Y (t) = k) in continuous time
from Example 2.2.3.
Inserting this and (3.3.5) into (3.3.6) finishes the proof.
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3.3.2. Systems with non-exponential service requests

Proposition 3.3.3. We consider a single server queue of M/G/1/∞-type, with state
dependent service speeds, state dependent selection of requested service times, exponential-
ν replenishment times, and an attached inventory under (r = 0, S) policy (with 0 <
S ∈ N), and lost sales when the inventory is depleted (see Definition 3.2.9) such that
Assumption 3.2.10 holds.
We have K = {S, S − 1, . . . , 1, 0} with KB = {0}.
The stochastic jump matrix R represents the downward jumps of the inventory

R =


0 . . . S − 1 S

0 (1, 0, . . . , 0) 0
1
...
S

 1
. . .

1

 0

 ,

and because the environment moves independently only if there is stockout, the environ-
ment generator V has only non zero entries v(0, S) = ν, v(0, 0) = −ν. So with KB = {0}
the requirement of Theorem 3.2.25 is fulfilled.

V =


0 1 . . . S

0 −ν (0, . . . , 0, ν)
1
...
S

0

 .

From Theorem 3.2.25 we conclude that the Markov chain (X̂, Ŷ ), embedded at departure
instants of customers has a stationary distribution π̂ of product form

π̂(n, k) = ξ̂(n)θ̂(k), (n, k) ∈ N0 ×K.

Here ξ̂ is the steady-state distribution of the Markov chain with one-step transition
matrix (3.2.2) derived for the queue length process at departure points in a system with
the same parameters as under consideration but without environment, i.e., a solution of
ξ̂P̃ = ξ̂, and θ̂ is for k ∈ {0, 1, . . . , S}

θ̂(k) =
1

S
k 6= S, θ̂(S) = 0. (3.3.7)

According to Theorem 3.2.25, θ̂ is a stochastic solution of the equation
θ̂(IW − V )−1IWR = θ̂. We calculate the matrix H = (IW − V )−1IWR explicitly.

(IW − V ) =


0 1 . . . S

0 ν (0, . . . , 0,−ν)
1
...
S

0
...
0

 1
. . .

1




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(IW − V )−1 =


0 1 . . . S

0 1
ν (0, . . . , 0, 1)

1
...
S

0
...
0

 1
. . .

1





(IW − V )−1IW =


0 1 . . . S

0 0 (0, 0, . . . , 1)
1
...
S

0
...
0

 1
. . .

1





H = (IW − V )−1IWR =


0 . . . S − 1 S

0 (0, 0, . . . , 1) 0
1
...
S

 1
. . .

1

 0
...
0


θ̂ defined in (3.3.7) is the unique solution of the equation (3.2.40).

Proposition 3.3.4. We consider a single server queue of M/G/1/∞-type, with state
dependent service speeds, state dependent selection of requested service times, inventory
management policy (r,Q) or (r, S), and zero lead times (see Definition 3.2.9, and note
that lost sales do not occur because of zero lead time).
In the case of (r, S) policy the inventory size after the first delivery will stay on between

r + 1 and S, therefore for long term behaviour of the system we take in account only
environment states K = {r+ 1, r+ 2, . . . , S}. The zero lead time means V = 0, KB = ∅,
and the corresponding R matrix has the form

R =


r + 1 . . . S − 1 S

r + 1 (0, 0, . . . , 0) 1
r + 2
...
S

 1
. . .

1

 0

 .

The steady-state distribution has a product form

π̂(n, k) = ξ̂(n)θ̂(k), (n, k) ∈ N0 ×K,

with

θ̂(k) =
1

S − r
, k ∈ K. (3.3.8)

Proof. According to Theorem 3.2.25 θ̂ is a stochastic solution of the equation θ̂(IW −
V )−1IWR = θ̂ We calculate the matrix H = (IW − V )−1IWR, which in the case of the
model equivalent to

θ̂ (IW − V )−1︸ ︷︷ ︸
=I

IW︸︷︷︸
=I

R = θ̂ ⇐⇒ θ̂R = θ̂
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with a unique stochastic solution (3.3.8).
For system under (r,Q) policy with zero lead times (3.3.8) holds as well, the proof is

analogous, we just set S = r +Q.

Remark. Similar results for the steady state of queueing-inventory systems with zero lead
times (without speeds) were obtained by Vineetha in [Vin08, Theorem 5.2.1] for the case
of i.i.d service times.
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Product-form networks
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Parts of Part II mainly focus on Jackson networks in random environment with constant
parameters V and R will be first published in Advances in Applied Probability Vol. 48
No 2 © 2016 by Applied Probability Trust.
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4. Introduction

Queueing networks with product-form steady-state distribution have found many fields of
applications, e.g. production systems, telecommunications, and computer system model-
ing. The success of this class of models and its relatives stems from the simple structure
of the steady-state distribution which provides access to easy performance evaluation
procedures.
Starting from the work of Jackson [Jac57] various generalizations have been developed.

A branch of research which recently has found interest are queueing networks in a random
environment with product-form steady-state distributions.
For single service stations (in isolation) there is a long history with investigations on

the behaviour of the stations under external influences, which are subsumed under the
term of an environment. Similarly birth-death processes (as generalizations of classical
M/M/1/∞ queues) in a random environment are well investigated. Most of this work
resulted in complex steady-state distributions, see e.g. [CT81], [Cog80], [Yec73], [KY12],
[Fal96]. A branch of related research is concerned with service systems under external
influences which cause the service process to break down or decreases availability of
servers, see e.g. the early paper [Zol66], and for recent survey [KPC12]. The results in
these articles most often lack the elegance of Jackson’s product-form steady state and the
simplicity of the steady states of birth-death processes.
Exceptions are [SSD+06], [KN13], and [SAH13], where the environment of a production

model (queue) is an associated inventory, and [EF98], [SD03a], where the influence of
the environment on the queue results in randomly occurring breakdowns of the server,
and [KD14], where the environment of a sensor node encompasses the node’s neighbors,
their status, etc. In these papers on queueing-environment processes it is shown that
the two-dimensional steady-state distribution factorizes into the product of the marginal
one-dimensional steady-state distributions, shortly: In equilibrium and in the long run
the steady-state distribution for the queue and the environment decouples.
Related work is by Yamazaki and Miyazawa [YM95] where the environment of a queue is

called the “set of background states” which determines transition rates of the queue and on
the other side is influenced by state changes of the queue. Yamazaki and Miyazawa prove
a decomposition property (which is in the spirit of decoupling as in Jackson’s theorem)
not for the queue and the environment but for the joint (queueing-environment
process) and some supplementary variables which are introduced for Markovisation of
the process in case of non-exponential service times and non exponential holding times
for the background states.
A first approach to find product-form steady-state distributions for Jackson networks in

a random environment seemingly was the work of Zhu [Zhu94]. Economou [Eco03, Eco04,
Eco05], Balsamo and Marin [BM13], and Tsitsiashvili, Osipova, Koliev, Baum [TOKB02]
continued the investigations. The procedure in these papers for a network of single
exponential servers is as follows (explained in terms of Zhu’s notation).
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The key ingredients for node i in classical Jackson networks are an external Poisson-
λi arrival stream, exponential-µi service times, and a Markovian routing scheme, which
produces an overall arrival rate ηi and a local marginal stationary distribution πi with

πi(n) =

(
1− ηi

µi

)(
ηi
µi

)n
, n ∈ N0. (4.0.1)

In [Zhu94] these fundamental parameters depend on the state of the external environ-
ment: If this is in state k the parameters are λi(k), µi(k), ηi(k), and with the additional
assumption that the utilizations ρi(k) := ηi(k)/µi(k) do not depend on k, i.e.

ρi(k) = ηi(k)/µi(k) = ηi/µi =: ρi, (4.0.2)

say, the local stationary distribution is (4.0.1) again. Zhu and his followers do not explain
how independence of k for utilizations emerges, i.e. no control mechanism is described
which holds ηi(k)/µi(k) invariant during changes of the environment.
In [TOKB02] the authors argue for the invariance ηi(k)/µi(k) = ηi/µi by pointing on

the fact that there exist natural control mechanisms of technical and biological systems
to react to changes of the environment.
The quest for such rules has on the other side a long history in related fields, especially

in the control of communications networks, where the term “rerouting schemes” describes
the necessity to react, e.g. to buffer overflow, broken down nodes, (partial) degrading of
transmission lines. Examples are described in [SD03a] under the heading of “skipping”,
“repeated service–random destination”, “stalling”. The first regime is called “jump-over
protocol” by other authors, see [Dij88].
To put it into a more concrete example: These schemes try to mimic by stylized policies

in communications networks an exchange of routing tables or rules for dynamic traffic
reallocation to paths as reaction to changes of the environment or the network’s load
situation, for a discussion see [NSB+03] or [GKK95].
In the range of telecommunication networks queueing networks are models for packet

oriented transmission. For circuit switched networks (loss networks) there is a rich lit-
erature on dynamic routing schemes to adjust routing in accordance with time varying
offered traffic and to provide flexibility and robustness to respond to failures or overloads,
see [GK90, Section 1] and the references given there, and [SS12].
Our investigation originates from the observation often made in stochastic networks

with blocking or with unreliable servers, that it is possible to obtain explicit product
form stationary distributions by implementing a clever rerouting regime for customers
who find at a node, selected for his next entrance, the buffer full or the node broken
down, see e.g. [SD03a] and the literature cited there. A bulk of examples can be found
in the book [Dij93] and in [BvD10, Chapt. 1, 9]. These rerouting schemes maintain the
utilization as in (4.0.2) for those nodes which are not blocked, resp. not broken down.
These results are not covered by the model of Zhu, where the ηi(k) are required to be
strictly positive.
Similar product form network models for randomized medium access control protocols

have found interest recently because of tractability of the model, see [SS12].
Overview of our results.
(I) Our first contribution is that we complement Zhu’s results by providing physically

meaningful rerouting schemes which maintain in his setting the utilizations (4.0.2).

146



(II) Our second contribution is to extend Zhu’s results in a way that the mentioned
results on networks with breakdowns in [SD03a] are covered and generalized.
We start as Zhu [Zhu94] with a Jackson network with locally queue length, ni, de-

pendent service intensities, which may depend additionally on the actual state k of the
network’s environment, µi(ni, k). The external arrival rates are λi(k), and the overall
arrival rates are ηi(k). We will construct control schemes which adapt the routing to
changes in the parameters, when the environment changes from k to m and the service
intensities from µi(ni, k) to µi(ni,m). We will prove that under these new control schemes
the respective ratios are maintained constant: ηi(k)/µi(ni, k) = ηi/µi(ni) will be inde-
pendent of k (but not of ni) as long as ηi(k) > 0 holds. Our theorems will cover the case
ηi(k) = 0 as well, which is in force e.g., if an unreliable node i is down and therefore does
neither serve nor accept new customers.
The most important consequence will be that for Jackson networks in a random envi-

ronment we obtain a product form stationary distribution, similar to [Zhu94, Theorem 1],
but under much more general assumptions.
(III) Our third contribution is an extension of the environment structures found in

the mentioned previous literature because in our setting the network process influences
the environment process as well. We emphasize that different from the mentioned work
in [Zhu94], [Eco05], [BM13], and [TOKB02], our environment process is not Markov for
its own because changes in the queue length processes may enforce the environment to
immediate changes as well. There will be a two-way interaction between the service
systems and the environment in our model.
The modifications of the random walks which we construct encompass the rerouting

schemes which are often found in the literature and are called e.g. “jump-over protocol”
or “skipping” or “blocking after service and retrial”. Therefore, our results generalize some
of those in [Zhu94], [Eco05], [BM13], and [TOKB02], and as well some of [SD03a].
(IV) We start in Section 5 with a detailed study of routing chains for the selection

of individual customers’ itineraries in the network and suitable modifications of these
in terms of general Markov chains, resp. random walks. The modification is realized
in analogy to principles occurring in Markov Chain Monte Carlo (MCMC) algorithms
by attaching to any state of the chain a (state dependent) “acceptance probability” to
operate via Bernoulli experiments on the original transition matrix of the chain, which is
considered as “candidate-generating matrix” (see [Bre99, Section 7.1]).
The jump is realized, if accepted, and the chain settles down at the selected state

for the next time slot. But other than in MCMC algorithms, “not accepted” in our
modification means not necessarily for the random walk to stay on at the departure
state. Additionally to the standard one we consider the policy that from the selected,
but not accepted state the chain tries again to find a next state, now with probabilities
from the “candidate-generating matrix” determined by the row of the not accepted state.
Thereafter acceptance is tested again, and so on.
We will show that the steady-state distributions of the original chain and the modified

chains are intimately connected and that we can express the new steady state easily in
terms of the steady state of the old chain and the acceptance probabilities.
(V) Although our research started with a quest for new rerouting schemes for Jackson

networks in case of (partial) non-availability of servers, the developed schemes seem to
be of interest for their own.
From an abstract point of view our modification of the original chain can be considered
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as a complicated change of measure for the process distribution, see [AG07, Chapter V,
1c, Example 8], which results in a surprisingly simple explicit change of measure for the
stationary distribution.
The modification algorithms which lead to this change of measure can be distinguished

according to the property to be local or global (as discussed in [SS12]) with respect to
the one-step transition graph of the original chain.
In Section 5.3 we discuss connections of our randomization algorithms to MCMC algo-

rithm and to von Neumann’s acceptance-rejection scheme for sampling from a complicated
distribution. Furthermore, we compare the different modifications of the random walk
with respect to Peskun ordering.
(VI) Our applications of the randomized random walk algorithms to stochastic net-

works is in the spirit of “Performability” [Mey84, p. 648]: “If computing system perfor-
mance is degradable, then . . . evaluation must deal simultaneously with aspects of both
performance and reliability.” A more recent compendium on these topics is [HMRT01].
We start with a standard Jackson network in Section 6 and consider in Section 6.1 the
situation where the service capacities of nodes are changed and by some network control
an optimized utilization of the nodes should be maintained. This relates our results to
problems of optimal design of networks (e.g. n [Whi85], [Sti09]).
When nodes are only degraded, the network controller’s policy is to reject a portion

of the load offered and to redistribute the admitted load. This is organized by applying
our modification algorithms for random walks to the routing chains for the customers.
Additionally to (partial) degrading we can handle with our algorithm complete breakdown
of nodes, and we even allow to speed up service at nodes, while others are degraded or
broken down. In the latter case the controller additionally offers an increased load to
the network. In any case the utilization of the nodes which are not completely down is
maintained by the control policy.
While Section 6 describes how to transform a Jackson network into another one where

service capacities are degraded and/or upgraded and routing is adapted, maintaining the
nodes’ utilization and therefore the joint product form stationary distribution, we utilize
the obtained transformation rules in Section 7 to tackle a dynamic problem: We adapt
routing by different algorithms to the impact of a dynamically changing environment.
The environment’s changes cause the nodes’ service capacities to degrade and/or upgrade,
even complete breakdown with following repair or partial repair can be handled by our
algorithms for route adaptation, which will immediately achieve the equilibrium queue
length distributions anew.
The most surprising result is an iterated product form stationary distribution of the

system process, which is a multidimensional Markov process recording jointly the envi-
ronment’s status and the joint queue lengths vector for the network process. The product
form says that

• the queue length vector and the environment status, and,

• inside of the joint queue lengths vector, the local queue lengths

asymptotically and in equilibrium decouple (are decomposable in the sense of [YM95]).
This result is remarkable as we do not require that the environment process is a Markov
process of its own, as it is necessary for the results proved in [Zhu94], [Eco05], [BM13],
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and [TOKB02]. We can handle a two-way interaction between environment which en-
forces changes of the nodes’ service capacity when it changes, and the queueing network
process, which triggers immediate jumps of the environment, when a customer departs
from the network. Such (more complicated) two-way interaction is investigated in [YM95]
and [Eco05] as well, but due to the more complicated structure they loose in their results
decoupling of the queue length and the environment status.

Notation and conventions:

• Throughout, the node set of our graphs (networks) are denoted by J := {1, . . . , J},
and the “extended node set” is J0 := {0, 1, . . . , J}, where “0” refers to the external
source and sink of the network.

• ej is the standard j-th base vector in NJ0 if 1 ≤ j ≤ J .

• n = (nj : j ∈ J) usually is the joint queue length vector of some queueing network.

• For any finite index set F = {0, 1, . . . , F} and any α = (αj : j ∈ F ) we define the
matrices Iα which is the diagonal matrix indexed by F with αi on its diagonal, i.e.

Iα :=


α0

α1

. . .
αF

 ,

and similarly we define I(1−α) indexed by F as

I(1−α) :=


1− α0

1− α1

. . .
1− αF

 .

Here and elsewhere we agree that empty entries in a matrix are read to be zero.

• For real valued functions f, g : F → R on a countable set we define f • g as their
point wise multiplication i.e. f • g(i) = f(i) · g(i), i ∈ F , and the diagonal matrix
If•g by If•g(i, j) := 1[i=j] · f(i) · g(i), i, j ∈ F .

• For x = (xj : j ∈ F ) we define ||x||∞ := supj∈F |xj |.
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5. Randomized random walks

Let X = (Xn : n ∈ N0) be a homogeneous irreducible Markov chain on a finite state space
F with one-step transition probability matrix r = (r(i, j) : i, j ∈ F ) and (unique) steady-
state distribution η = (ηi : i ∈ F ). This chain represents in our network applications the
homogeneous Markov chain that describes the random walk (routing) of the customers
on the nodes of the network. In this application scenario the routing will be modified
by a network controller as a reaction to changes of the network’s parameter due to the
impact of the environment.
The general principle is: The transition matrix r will be used as a “candidate generating

matrix” for the next state of the random walk. The candidate state will be accepted
with state dependent probabilities and we develop different policies to continue when the
proposed state is rejected.

5.1. Randomized skipping

The following modification of X with prescribed B ( F is known under the terms of
“Markov chains with taboo set B”, or “jump-over protocol for B”, or “skipping B”. In the
realm of queueing network theory this principle for modifying a Markov chain seems to be
introduced independently several times and was used to resolve blocking, see e.g. [Dij88],
[EF98] and [Ser99, Chapter 3.6], (where it is called blocking and rerouting) and the
references therein. As a general methodology skipping was already introduced by Schas-
sberger [Sch84] and later on, based on Schassberger’s result, it was used in [DS96] to
construct general abstract network processes. For networks with unreliable nodes it was
introduced in [EF98] and [SD03a].
An intuitive description of the skipping principle can be given in terms of a random

walk on F governed by r: If the random walker’s (RW) path governed by the Markov
chain is restricted by a taboo set B ( F , RW applies
Skipping B: If RW is in state i ∈ F and selects (with probability r(i, j)) its destination
j ∈ F \B, this jump is allowed and immediately performed. If (with probability r(i, k))
he decides to jump to state k ∈ B, he only performs an imaginary jump to k, spending no
time there, but jumping on immediately governed by the matrix r, i.e. with probability
r(k, l) he selects another possible successor state l; if l ∈ F \B, then the jump is performed
immediately, but if l ∈ B, RW has to perform another random choice as if he would depart
from l; and so on.
Our modification scheme forX and r is a randomized generalization of skipping. For the

states in F are given “acceptance probabilities” by some vector α = (αj ∈ [0, 1] : j ∈ F ).
The random walker selects his itinerary under r and constraints α by
Randomized skipping with acceptance probabilities α: If RW is in state i ∈ F
and selects (with probability r(i, j)) its destination j ∈ F , a Bernoulli experiment is
performed with success (acceptance) probability αj , independent of the past, given j. If
the experiment is successful (= 1), this jump is accepted, immediately performed, and
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RW settles down at j for at least one time slot. If the experiment is not successful (= 0),
this jump is not accepted and RW only performs an imaginary jump to j, spends no
time there, and jumps on immediately, governed by the matrix r, i.e. with probability
r(j, l) he selects another possible successor state l; thereafter a Bernoulli experiment is
performed with success (acceptance) probability αl, independent of the past, given l. If
the experiment is successful (= 1), this jump is accepted, immediately performed, and
RW settles down at l for at least one time slot. If the experiment is not successful (= 0),
this jump is not accepted, RW only performs an imaginary jump to l, spends no time
there, and jumps on immediately according to r; and so on.

Example 5.1.1. If for B ( F we set αj = 0 if j ∈ B, and αj = 1 if j ∈ F \B, we have
the skipping over taboo set B as described above: A jump to j ∈ B is never accepted,
while a proposed jump to j ∈ F \B, will be accepted with probability 1.
For general α the set B(α) = {j ∈ F : αj = 0} is a taboo set for the “randomized

skipping process”.

5.1.1. Transition matrix

It is easy to see that this construction of a modified chain by randomized skipping gen-
erates a new homogeneous Markov chain, the transition matrix of which will be denoted
by r(α). For simplicity of presentation we will denote a Markov chain under this regime
by X(α).
To determine the transition probabilities r(α)(i, j) we construct an auxiliary absorbing

Markov chain (X(A), Y (A)) with state space F × {0, 1} such that

• X(A) records the itinerary of RW during his (possibly many) imaginary jumps until
its candidate state is accepted – if this happened RW settles down there forever,
because the chain (X(A), Y (A)) is absorbed,

• Y (A) indicates whether a candidate state is accepted or not,

• the states in F × {1} are absorbing,

• initial states for (X(A), Y (A)) are restricted to F ×{0}, and therefore Y (A) stays at
0 until absorption of (X(A), Y (A)) in F × {1}.

The transition probabilities for (X(A), Y (A)) are for i, j ∈ F as long as at time n the
candidate state is not accepted

P (X
(A)
n+1 = j, Y

(A)
n+1 = 1|X(A)

n = i, Y (A)
n = 0) = r(i, j)αj = (r · Iα)ij , (5.1.1)

P (X
(A)
n+1 = j, Y

(A)
n+1 = 0|X(A)

n = i, Y (A)
n = 0) = r(i, j)(1− αj) = (r · I(1−α))ij , (5.1.2)

and thereafter P (X
(A)
n+1 = j, Y

(A)
n+1 = 1|X(A)

n = i, Y (A)
n = 1) = δij , (5.1.3)

P (X
(A)
n+1 = j, Y

(A)
n+1 = 0|X(A)

n = i, Y (A)
n = 1) = 0. (5.1.4)

We denote the (P -a.s. finite) first entrance time into F × {1} of (X(A), Y (A)) by

τ (A) := inf{n ≥ 1|(X(A)
n , Y (A)

n ) ∈ F × {1}} = inf{n ≥ 1|Y (A)
n = 1}. (5.1.5)
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Theorem 5.1.2. For the Markov chain X = (Xn : n ∈ N0) with transition matrix
r = (r(i, j) : i, j ∈ F ) and a non zero vector α = (αj : j ∈ F ) of acceptance probabilities
denote by X(α) the Markov chain modification of X under randomized skipping and by
r(α) the transition matrix of X(α), and by B(α) = {j ∈ F : αj = 0} ( F the taboo set
for X(α). Then from the auxiliary chain (X(A), Y (A)) we obtain

r(α)(i, j) = P
(
X(A)(τ (A)) = j|(X(A)

0 , Y
(A)

0 ) = (i, 0)
)
, i, j ∈ F . (5.1.6)

The Markov chain X(α) with state space F and transition matrix r(α) is irreducible on
F \B(α), and it holds

r(α) =
∞∑
k=0

(
rI(1−α)

)k
rIα =

(
I − rI(1−α)

)−1
rIα. (5.1.7)

Proof. Irreducibility of X(α) on F \B(α) and the first statement (5.1.6) follows directly
from the construction.
For i ∈ F , j ∈ B(α) it follows r(α)(i, j) = 0 from the definition of acceptance proba-

bility. Note, that from (5.1.2) follows

P
(
X(A)
n = k, Y (A)

n = 0, Y
(A)
n−1 = 0, . . .

. . . , Y
(A)

2 = 0, Y
(A)

1 = 0, |(X(A)
0 , Y

(A)
0 ) = (i, 0)

)
=
((
rI(1−α)

)n)
ik
.

(5.1.8)

It follows for i ∈ F , j ∈ F \B(α)

r
(α)
ij = P

(
X(A)(τ (A)) = j|(X(A)

0 , Y
(A)

0 ) = (i, 0)
)

= P
(
X(A)(τ (A)) = j, Y (A)(τ (A)) = 1|(X(A)

0 , Y
(A)

0 ) = (i, 0)
)

=

∞∑
n=1

P
(
X(A)(τ (A)) = j, Y (A)(τ (A)) = 1, τ (A) = n|(X(A)

0 , Y
(A)

0 ) = (i, 0)
)

=
∞∑
n=1

∑
k∈F

P
(
X(A)
n = j, Y (A)

n = 1, X
(A)
n−1 = k, Y

(A)
n−1 = 0, Y

(A)
n−2 = 0, . . .

. . . , Y
(A)

2 = 0, Y
(A)

1 = 0|(X(A)
0 , Y

(A)
0 ) = (i, 0)

)
(∗)
=
∞∑
n=1

∑
k∈F

P
(
X(A)
n = j, Y (A)

n = 1|X(A)
n−1 = k, Y

(A)
n−1 = 0

)
· P
(
X

(A)
n−1 = k, Y

(A)
n−1 = 0, Y

(A)
n−2 = 0, . . .

. . . , Y
(A)

2 = 0, Y
(A)

1 = 0|(X(A)
0 , Y

(A)
0 ) = (i, 0)

)
(∗∗)
=
∑
k∈F

∞∑
n=1

(rIα)kj

((
rI(1−α)

)n−1
)
ik

(∗∗∗)
=

∑
k∈F

(rIα)kj

( ∞∑
n=1

(
rI(1−α)

)n−1

)
ik

=
((
I − rI(1−α)

)−1
rIα

)
ij
,
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which is (5.1.7). Here (*) utilizes the Markov property of (X(A), Y (A)), (**) follows
from (5.1.8) and (5.1.1), and in (***) convergence of

∑∞
n=1

(
rI(1−α)

)n−1 follows from
irreducibility of r and from the substochasticity of rI(1−α), which is strict for at least one
row.

We note that the states in B(α) are inessential, because the B(α)-columns (r
(α)
ij : i ∈

F ) for j ∈ B(α) are zero.

Example 5.1.3. Consider a set F = {0, 1, 2, 3, 4} and a routing matrix

r =



0 1 2 3 4

0 1
1 1
2 0.6 0.4
3 1
4 1

 .

After applying the skipping rule to r with availability vector α = (1, 1, 0.5, 1, 1) we get

r(α) =



0 1 2 3 4

0 1
1 0.5 0.3 0.2
2 0.6 0.4
3 1
4 1

 .

See Figure 5.1.1 on page 154.
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(a) original matrix r

01

22
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4

(b) modified matrix r(α)

Figure 5.1.1.: Matrix r on F = {0, 1, 2, 3, 4} and r(α) with α = (1, 1, 0.5, 1, 1) from Ex-
ample 5.1.3.

5.1.2. Stationary distribution

Recall that X is irreducible with transition matrix r on the finite state space F and has
the unique stationary distribution η = (ηj : j ∈ F ). For a non zero vector α = (αj :
j ∈ F ) the chain X(α) with state space F and transition matrix r(α) is irreducible on
F \ B(α), with B(α) = {j ∈ F : αj = 0}. We denote its stationary distribution by
η(α) = (η(α)(j) : j ∈ F ), which has support F \B(α). We will study the relation between
η and η(α).
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5.1. Randomized skipping

Proposition 5.1.4. Let x be a solution of the balance equation x · r = x then y = x · Iα
solves the steady-state equation y ·r(α) = y of the modified Markov chain with randomized
skipping.

Proof. From x · r = x we obtain

xr
(
Iα + I(1−α)

)︸ ︷︷ ︸
=I

= x⇐⇒ xrIα = x− xrI1−α ⇐⇒ xrIα = x(I − rI(1−α))

⇐⇒ x (I − rI(1−α))(I − rI(1−α))
−1︸ ︷︷ ︸

=I

rIα = x(I − rI(1−α))

and with y := x(I − rI(1−α)) follows that a required solution of y · r(α) = y is

y = x(I − rI(1−α)) = x− xI(1−α) = xIα.

Proposition 5.1.5. Let y be a solution of the balance equation y · r(α) = y then

x = y(I − rI(1−α))
−1 (5.1.9)

is a solution of the steady-state equation x · r = x and it holds

y = (αjxj : j ∈ F ). (5.1.10)

Proof. From the definition of r(α) follows

y (I − rI(1−α))
−1rIα︸ ︷︷ ︸

=r(α)

= y (I − rI(1−α))
−1(I − rI(1−α))︸ ︷︷ ︸
=I

.

So x = y(I − rI(1−α))
−1 fulfills

xrIα = x(I − rI(1−α))⇐⇒ xr
(
Iα + I(1−α)

)︸ ︷︷ ︸
=I

= x

which is x · r = x. (5.1.10) follows from x(I − rI(1−α)) = y as in Proposition 5.1.4.

Theorem 5.1.6. If η is the unique steady-state distribution of the irreducible Markov
chain X on finite state space F , then the unique steady-state distribution η(α) of the
Markov chain X(α) is, with normalization constant C(α) = (ηIαe) = 〈η,α〉 and support
F \B(α),

η(α) =
(
C(α)

)−1
(ηjαj : j ∈ F ). (5.1.11)

Proof. From Proposition 5.1.4 and Proposition 5.1.5 we know that there is a one-to-one
connection between all solutions of x · r = x and y · r(α) = y.
From the assumptions onX we know that η is the unique stochastic solution of x·r = x.

Its normalized companion is therefore (5.1.11) by (5.1.10).
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5.2. Randomized reflection

An important problem in the control of transmission networks is to react to full buffers
at receiver stations by the network provider. There are many detailed control regimes
to resolve blocking which occurs when buffers overflow. It turned out that it is usually
difficult to construct analytical network models for this problem which admit closed form
solutions for main performance metrics.
The following control principle is common to resolve blocking situations. In networks

with blocking of stations due to full buffers or blocking due to resource sharing it is called
blocking principle Repetitive Service – Random Destination (rs–rd).
For applications in modeling of communication protocols in systems with finite buffers

or for ALOHA-type protocols see [Kle76, Section 5.11]. Within the abstract framework of
reversible processes it occurs in [Lig85, Proposition II.5.10]. For networks with unreliable
nodes it was introduced in [EF98] and [SD03a].
The principle is in case of full buffer regulation, that whenever a packet is sent from

some node i to node j and it is observed that the buffer for incoming packets at j is
full, the packet is rejected (lost) and node i, who has saved a copy, tries to resend this
packet (Repetitive Service), but not necessarily to j (Random Destination). This
procedure is iterated until the packet is sent to a node with free buffer places.
We will apply this scheme to modify the homogeneous irreducible Markov chain X =

(Xn : n ∈ N0) on the finite state space F with one-step transition probability matrix
r = (r(i, j) : i, j ∈ F ) and (unique) steady-state distribution η = (ηi : i ∈ F ).
In terms of a random walk on F governed by r an intuitive description is: If the random

walker’s (RW) path governed by the Markov chain is restricted by a taboo set B ( F ,
RW applies
Reflection at B: If RW is in state i ∈ F and selects (with probability r(i, j)) its des-

tination j ∈ F \B, this jump is allowed and immediately performed. If (with probability
r(i, k)) he decides to jump to state k ∈ B, he is reflected at k and spends at least one
further time slot at node i. Thereafter he restarts the procedure possibly with another
destination node, i.e. with probability r(i, l) he selects successor state l; if l ∈ F \B then
the jump is performed immediately, but if l ∈ B RW is reflected again; and so on.
Our extended modification scheme for X and r is a randomized generalization of that

reflection scheme. For the states in F are given “acceptance probabilities” by some vector
α = (αj ∈ [0, 1] : j ∈ F ). The random walker (RW) selects his itinerary under r and the
constraints α by
Randomized reflection with acceptance probabilities α: If RW is in state i ∈ F

and selects (with probability r(i, j)) its destination j ∈ F , a Bernoulli experiment is
performed with success (acceptance) probability αj , independent of the past, given j. If
the experiment is successful (= 1), this jump is accepted, immediately performed, and
RW settles down at j for at least one time slot. If the experiment is not successful (= 0),
this jump is not accepted and RW stays on at i for at least one further time slot. If
this slot expires with probability r(i, l) RW selects another possible successor state l;
thereafter a Bernoulli experiment is performed with success (acceptance) probability αl,
independent of the past, given l. If the experiment is successful (= 1), this jump is
accepted, immediately performed, and RW settles down at l for at least one time slot. If
the experiment is not successful (= 0), this jump is not accepted and RW stays on at i
for at least one further time slot; and so on.
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Example 5.2.1. If for B ( F we set αj = 0 if j ∈ B, and αj = 1 if j ∈ F \B, we have
the reflection at taboo set B as described above: A jump to j ∈ B is never accepted,
while a proposed jump to j ∈ F \B, will be accepted with probability 1.
For general α the set B(α) = {j ∈ F : αj = 0} is a taboo set for the “randomized

reflection process”.

5.2.1. Transition matrix and stationary distribution

It is easy to see that the construction of a process by randomized reflection generates a
homogeneous Markov chain.
For the Markov chain X = (Xn : n ∈ N0) with transition matrix r = (r(i, j) : i, j ∈ F )
and a non zero vector α = (αj : j ∈ F ) of acceptance probabilities denote by X(α) the
Markov chain modification of X under randomized reflection and by r(α) the transition
matrix of X(α), and by B(α) = {j ∈ F : αj = 0} ( F the taboo set for X(α). Then

r(α)(i, j) =

{
r(i, j)αj , i, j ∈ F , i 6= j,

r(i, i) +
∑

k∈F r(i, k)(1− αj), i ∈ F , i = j.
(5.2.1)

X(α) with state space F and transition matrix r(α) may be reducible even on F \B(α).
A standard assumption in the literature for applying this reflection principle as rerout-

ing scheme is that the original routing Markov chain X, resp. its transition matrix r is
reversible for some probability measure η = (ηi : i ∈ F ). We shall set this assumption
always in force when investigating this protocol. Determining the modified transition
matrix r(α) and its stationary distribution η(α) is direct in this case.

Proposition 5.2.2. If η is the unique steady-state distribution of the reversible irreducible
Markov chain X on the finite state space F , then the Markov chain X(α) is reversible with
steady-state distribution η(α) with normalization constant C(α) = (ηIαe) = 〈η,α〉and
support F \B(α):

η(α) =
(
C(α)

)−1
(ηjαj : j ∈ F ). (5.2.2)

Proof. The proof is by directly checking the detailed balance equations for r(α):

(ηjαj)r
(α)(j, i) = (ηiαi)r

(α)(i, j)⇔ (ηjαj)r(j, i)αi = (ηiαi)r(i, j)αj , i, j ∈ F .

5.3. Discussion of randomization algorithms

A closer look on our randomization procedures, considered as algorithms to manipulate a
random walk and its stationary distribution, reveals close connections to standard simu-
lation procedures. This will be discussed in this section and we will compare furthermore
the randomization procedures.
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5.3.1. General sampling schemes

Our starting point is an ergodic random walk X on a finite set F with stationary dis-
tribution η. X is modified according to an acceptance regime α. Our aim is to study
the impact of this modification on the stationary distribution. This is different to the
standard problem of simulation, i.e. to generate samples from a given distribution, which
is known in principle, but not easy to access. We mention two simulation algorithms
which are structurally related to our procedures.
(I) Markov Chain Monte Carlo algorithms start from a target distribution η which

is usually not directly accessible for which e.g.
´
F f(x)η(dx) =

∑
x∈F f(x)ηx has to be

computed. The idea is to construct a homogeneous Markov chain with stationary dis-
tribution η and to sample from the Markov chains’ state distribution after a sufficiently
long time horizon. The construction of the one-step transition kernel following Hastings
or Metropolis (see [Bre99, Section 7.7.1]) yields a two-step scheme:

1. From the present state generate a proposal for the next state and decide about
acceptance of the proposed state,

2. if the proposal is rejected stay on at the present state and restart after a time slot.

This is a procedure as described in Proposition 5.2.2. The conclusion is that the rerout-
ing scheme rs-rd used to model transmission networks’ reaction to full buffers and its
generalization, our randomized reflection, can be seen as MCMC processes.
(II) Von Neumann’s acceptance-rejection method for sampling from a complicated

distribution η (see [Bre99, p. 292]) is related to randomized skipping. If the random walk
of Section 5.1 is an i.i.d. sequence the randomized skipping procedure is exactly sampling
from (ηjαj : j ∈ F ) by sampling from η with possible rejection.
We remark that in MCMC algorithms usually reversible chains are constructed with

acceptance probabilities which may depend on the departure state and the proposal. Such
generalization is easily constructed here as well, in our notation we would incorporate
success probabilities αij . Proposition 5.2.2 can be modified directly. A similar property
and its proof for randomized skipping for non-reversible Markov chains seems to be not
possible without loosing the simple to evaluate steady-state distribution.

5.3.2. Importance sampling

Our randomization procedures resemble obviously importance sampling procedures in
simulations, because we

• produce a weighted version of the probability distribution η on F , and

• define a modified random walk that generates this weighted distribution as its lim-
iting distribution,

and this can therefore be considered as construction of a change of measure. Such change
of measure is used to make the “more important states” more often visited by the random
walker. An important problem is to compute expectations of the form

ˆ
F
f(x)η(dx) =

∑
x∈F

f(x)ηx, (5.3.1)
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where X = (Xn : n ∈ N0) with transition matrix r is ergodic with limiting distribution
η, where η is not known or not easily accessible.
For simplicity we assume αj > 0 ∀j ∈ F and use the notation of the previous sections.

Recall the normalization constant C(α) = 〈η,α〉 of η(α). By simple manipulation

∑
x∈F

f(x)ηx =
∑
x∈F

f(x)

〈η,α〉−1
· ηx
〈η,α〉

=

∑
x∈F

f(x)
αx
· ηxαx〈η,α〉∑

x∈F
1
αx
· ηxαx〈η,α〉

.

Nominator and denominator are integrals with respect to the stationary distribution of
X(α) derived from X with acceptance probability α = (αx : x ∈ F ). X is ergodic and
αx > 0 ∀x ∈ F implies that X(α) is ergodic on F as well.
Denote by T (i) the first entrance time into i, then from the regenerative structure of

X(α) we have

∑
x∈F

f(x)

αx
· ηxαx
〈η,α〉

=

E(α)

[∑T (i)−1
n=0

f(X
(α)
n )

α
X

(α)
n

∣∣∣∣X(α)
0 = i

]
E(α)

[
T (i)|X(α)

0 = i
]

and

∑
x∈F

1

αx
· ηxαx
〈η,α〉

=

E(α)

[∑T (i)−1
n=0

1
α
X

(α)
n

∣∣∣∣X(α)
0 = i

]
E(α)

[
T (i)|X(α)

0 = i
] .

This yields eventually

∑
x∈F

f(x)ηx =

E(α)

[∑T (i)−1
n=0

f(X
(α)
n )

α
X

(α)
n

∣∣∣∣X(α)
0 = i

]
E(α)

[∑T (i)−1
n=0

1
α
X

(α)
n

∣∣∣∣X(α)
0 = i

] .
To obtain an estimator for E(α)

[∑T (i)−1
n=0 g

(
X

(α)
n

)∣∣∣X(α)
0 = i

]
denote T 0(i) ≡ 0, and

T (n+1)(i) := inf(k > T (n)(i) : X
(α)
k = i), n ≥ 0, and take the sample means of the

independent replications

1

K

K∑
k=1

 T (k)(i)∑
n=T (k−1)(i)

g
(
X(α)
n

)∣∣∣∣∣∣X(α)
0 = i

 ,

which converge a.s. to the target expression for K →∞.
So, if it is possible to simulate without too much effort the system described by the
Markov chain X(α), we can approximate the integral by the quotient of the two time
averages over the regeneration periods.
Moreover, additionally to making important states more probable to visit, for a given

initial state i we can control the expected length of the regeneration period.
If X is reversible, the one step transition matrix of the chain modified by randomized

reflection is directly accessible, see (5.2.1).
In the general case when X is modified by randomized skipping the one step transition

matrix of the modified chain is possibly not directly available, see (5.1.7). We can remedy
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5. Randomized random walks

this drawback by simulating instead the auxiliary chain (X(A), Y (A)) (with obvious mod-
ifications) which is used to find the one step transition matrix for randomized skipping in
Section 5.1.1. The modification of (X(A), Y (A)) is not to make F × {1} absorbing. The
transition rates (5.1.3) and (5.1.4) are replaced by

P (X
(A)
n+1 = j, Y

(A)
n+1 = 1|X(A)

n = i, Y (A)
n = 1) = r(i, j)αj , (5.3.2)

P (X
(A)
n+1 = j, Y

(A)
n+1 = 0|X(A)

n = i, Y (A)
n = 1) = r(i, j)(1− αj). (5.3.3)

In the time average over a regeneration period we then have to sum instead of f(X
(α)
n (ω))

the values f(X
(A)
n (ω)) · Y (A)

n (ω) and instead of 1
α
X

(α)
n (ω)

the values Y
(A)
n (ω)

α
X

(α)
n (ω)

and to divide

by the expected sojourn time in F × {1} until return to (i, 1) given start in (i, 1) (which
cancels out).

5.3.3. Comparison of randomized skipping and randomized reflection

We can compare transition matrices having the same dimension and stationary distribu-
tion by Peskun ordering (see [Pes73]) which is standard ordering in MCMC simulations.

Definition 5.3.1. Let r = (r(i, j) : i, j ∈ F ) and r′ = (r′(i, j) : i, j ∈ F ) be transition
matrices on a finite set F such that ξr = ξr′ = ξ for a probability vector ξ.
We say that r′ is smaller than r in the Peskun order, r′ ≺P r, if for all j, i ∈ F with

i 6= j holds r′(j, i) ≤ r(j, i).

Peskun used this order to compare reversible transition matrices with the same sta-
tionary distribution and their asymptotic variance. A useful interpretation is that in case
of r′ ≺P r a random walker under r explores his state space faster than under r′.

Proposition 5.3.2. Let X be irreducible with transition matrix r on the finite state space
F which is reversible for the stationary distribution η = (ηj : j ∈ F ), and α = (αj : j ∈ F )
be a non zero vector.
Denote by r(α)

skip the modification of r by randomized skipping and by r(α)
refl the modifica-

tion of r by randomized reflection. Then it holds r(α)
refl ≺P r

(α)
skip.

Claim. The proof is obvious because for all j, i ∈ F with i 6= j holds r(α)
refl(i, j) = r(i, j)·αj

and r(α)
skip(i, j) = r(i, j) · αj + possible further terms, which are all non-negative.

Consequences of r(α)
refl ≺P r

(α)
skip in Proposition 5.3.2 are

1. the asymptotic variance in the central limit theorem for a Markov chain driven by
r

(α)
skip is smaller than for a Markov chain driven by r(α)

refl although both chains have
the same limiting distribution (see [Tie98]).

2. the spectral gap of a Markov chain driven by r
(α)
refl is smaller than for a Markov

chain driven by r
(α)
skip although both chains have the same limiting distribution.

This means that the modification of X by randomized skipping converges faster to
equilibrium than the modification of X by randomized reflection.
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A further distinction between modifications of X by randomized skipping and reflection
is visible if we consider for a reversible Markov chain X with transition matrix r the
associated transition graph G = (F , E) where (i, j) ∈ E ⇔ r(i, j) > 0.
Note that from reversibility follows (i, j) ∈ E ⇔ (j, i) ∈ E . Denote by N (i) := {j ∈ F :

(i, j) ∈ E} the one-step neighborhood of i.
If we consider randomized skipping and randomized reflection as algorithms to produce

modifications of the random walk X, then the algorithm for randomized reflection is local
with respect to G because transitions out of states i are determined only on the basis of
decisions in N (i).
On the other side, randomized skipping is global with respect to G because for transi-

tions out of i we possibly must use random experiments anywhere on the graph.
Construction of local algorithms for control, scheduling, and development of complex

systems is important for key applications, e.g. wireless sensor networks or autonomous
interacting robotic systems. For mathematical investigations of this problem we refer
to [SS12], where an optimal local control algorithm for wireless sensor networks is deter-
mined by local approximation of an optimal global algorithm.
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We consider a Jackson network [Jac57] with node set J := {1, . . . , J}. Customers arrive
in independent external Poisson streams, at node j with finite intensity λj ≥ 0, we
set λ = λ1 + . . . + λJ > 0. Customers are indistinguishable and follow the same rules.
Customers request for service which is exponentially distributed with mean 1 at all nodes,
all these requests constitute an independent family of variables which are independent of
the arrival streams.
Nodes are exponential single servers with state dependent service rates and infinite

waiting room under first-come-first-served (FCFS) regime. If at node j are nj > 0
customers, either in service or waiting, service is provided there with intensity µj(nj) > 0.
Routing is Markovian, a customer departing from node i immediately proceeds to node
j with probability r(i, j) ≥ 0, and departs from the network with probability r(j, 0).
Taking r(0, j) = λj/λ, r(0, 0) = 0, we assume that the extended routing matrix r =
(r(i, j) : i, j = 0, . . . , J) is irreducible. Then the traffic equations

ηj = λj +
J∑
i=1

ηir(i, j), j = 1, . . . , J, (6.0.1)

have a unique solution which we denote by η = (ηj : j = 1, . . . , J). We extend the traffic
equation (6.0.1) to a steady-state equation for a routing Markov chain by

ηj =
J∑
i=0

ηir(i, j), j = 0, 1, . . . , J, (6.0.2)

which is solved by η = (ηj : j = 0, 1, . . . , J), where η0 := λ, the other ηj are from (6.0.1).
We use η in both meanings and emphasize the latter one by extended traffic solution

η. η is usually not a stochastic vector. Let X = (X(t) : t ≥ 0) denote the vector process
recording the queue lengths in the network for time t. X(t) = (X1(t), . . . , XJ(t)) ∈ NJ0
reads: at time t there are Xj(t) customers present at node j, either in service or waiting.
The assumptions put on the system imply that X is a strong Markov process on state
space NJ0 , we denote its generator QX = (qX(n,n

′
) : n,n

′ ∈ NJ0 ).
For an ergodic network process X Jackson’s theorem [Jac57] states that the unique

steady-state and limiting distribution ξ on NJ0 is with normalizing constants C(j) for the
marginal (over nodes) distributions

ξ(n) = ξ(n1, . . . , nJ) =

J∏
j=1

nj∏
`=1

ηj
µj(`)

C(j)−1. (6.0.3)
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6.1. Modifications: Upgraded and/or degraded service and
adapted routing

Optimal design of queueing systems is a challenging operations and research field, a
recent survey is the book of Stidham [Sti09]. One of the typical problem structures is
as follows: Given the nodes of the network and their service capacities and the external
arrival streams (load) to the network. Find an “optimal routing” for the customers such
that some optimality criterion is satisfied.
In [BS83] a set of stations with fixed service intensities µi is located in parallel, and a
Poisson arrival stream with overall load λ has to be split and routed to the stations such
that a given cost-reward function is maximized. This results in determining the routing
of arriving customers and the “optimal utilizations” λ · r(0, i)/µi (with self-explaining
notation). In [Sti09, Sect. 6.1] in addition the overall load rate λ is subject to control,
and in [Sti09, Chapt. 7] the design of general Jackson networks by control of admission
and routing is investigated.
With a slightly different setting of the Jackson networks, resp. a more general migra-

tion network, described by parameters which are essentially equivalent to ours, Whit-
tle [Whi85, Sect. 2] considered optimal “non-adaptive routing rules” (not depending on
the queue lengths as in our model as well). Optimization of routing for fixed external
arrival intensities then results (in our notation) in optimal routing probabilities r(i, j)
and in the cost function occur the optimal ratios ηi/µi(ni), resp, ηnii /(

∏ni
`=1 µi(`)).

In this section we assume that according to some optimization criterion with respect to
the local queue lengths Xj for the fixed µj(nj), j ∈ J , of the Jackson network the optimal
utilizations ηj/µj , resp, the ratios ηj/µj(nj) are determined for fixed service rates µj(nj)
by an adequate routing scheme r.
We investigate the problem how to adjust routing when service capacities change, such
that the ratios ηj/µj(nj) are maintained. This would guarantee that the optimal local
queue lengths are maintained optimally according to the original criterion.
If the service intensities µi(ni) at node i are changed by a factor γi ∈ [0,∞) for i ∈ J , we
have to react in different ways depending on the size of the γi.
It is possible that some nodes can break down completely, i.e. γ` = 0 for such node
`. Clearly, the broken down nodes should not be visited any longer, and from the side
constraint to maintain at least approximately the ratios “overall arrival rate”/“service
rates”, it is tempting to try rerouting by randomized skipping or reflection to some suitably
selected “acceptance probability vector” according to some suitable α = α(γ). (If there
is no ambiguity we will shortly write only α.)
If γi ∈ [0, 1],∀i ∈ J, i.e. nodes are degraded, the new routing has two components:

1. Part of the total external arrival rate will be rejected, and

2. the admitted load will be redistributed among the nodes which are not completely
broken down in a way to meet exactly the old ratios.

We will show that randomized reflection and skipping with acceptance probability vector
α = α(γ) work, where α0 = 1 and αi := γi, i ∈ J , constitute the vector
α(γ) = (αi, i ∈ J0) of acceptance probabilities as αi := γi.
If γj ∈ [0,∞), then we either speed up service at node j if γj > 1, or have a degraded

server at node j if γj < 1. When at least one service rate increases, i.e. when ||γ||∞ > 1,
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the mechanism to adapt the network’s load and routing is:

• We increase the total network input by a factor β = ||γ||∞ > 1 to β · λ and

• redistribute the admitted load, choose with α0 = 1 as acceptance probability vector
α = α(γ) the relative service rate changes αj =

γj
||γ||∞ , j ∈ J , for randomized

reflection and skipping.

Remarks:

(i) If γj > 1, node j can process more load without being overloaded, which is easily
seen by considering a single M/M/1/∞ queue. In a network however, this addi-
tional load departing from j can cause overload at other nodes. Therefore some of
the offered new total input of rate β · λ possibly will not be accepted after read-
justing the routing. Our randomized random walk algorithms form Section 5 will
automatically compute the rejection rates for the external arrivals at all nodes.

(ii) It was surprising to us that in the first case γi ∈ [0, 1], ∀i ∈ J we have to choose
exactly αj = γj to adjust the acceptance probability of node j precisely to the
service rate factor γj ∈ [0, 1]. It means especially that our algorithm automatically
detects the correct amount of load which is feasible to maintain the utilizations.

(iii) This observation lead us to conjecture the described α in the general case.

The modified routing matrix is in both cases (randomized skipping, resp. reflection)
denoted by r(α) = (r(α)(i, j) : i, j ∈ J0), and is given alternatively by (5.1.7), resp. (5.2.1).

Definition 6.1.1. The set of “blocked nodes” B(γ) ⊂ J is defined by j ∈ B(γ) :⇐⇒
γj = 0, and its complement in J , the set of the “working nodes” W (γ) ⊂ J , is defined by
j ∈W (γ) :⇐⇒ γj > 0.

When the service rates of a Jackson network are modified according to γ and the
routing is adjusted according to α(γ) we obtain a new network process denoted by X(γ) =

(X(γ)(t) : t ≥ 0), the vector process recording the queue lengths in the network. X(γ)
t =

(X
(γ)
1 (t), . . . , X

(γ)
J (t)) ∈ NJ0 reads: at time t there are X(γ)

j (t) customers present at node
j, either in service or waiting. The assumptions put on the system imply that X is a
strong Markov process on state space NJ0 with generator QX(γ)

=: Q(γ) = (q(γ)(n,n
′
) :

n,n
′ ∈ NJ̄0 ). The strict positive transition rates of Q(γ) are under both rerouting regimes

for n = (n1, . . . , nJ) ∈ NJ̄0

q(γ)(n,n + ei) = βλr(α)(0, i), i ∈ J0,

q(γ)(n,n− ej + ei) = 1[nj>0]γjµj(nj)r
(α)(j, i), i, j ∈ J, i 6= j,

q(γ)(n,n− ej) = 1[nj>0]γjµj(nj)r
(α)(j, 0), j ∈ J.

(6.1.1)

That the construction successfully in maintains the ratios (overall arrival rate/service
rates) show the next theorems, which will be proved simultaneously. Recall 0/0 := 0.

Theorem 6.1.2 (Modified Jackson networks: Change of service/rerouting).
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6. Modified Jackson networks

(a) [Randomized skipping]Let X be an ergodic Jackson network process as described
in Section 6 with stationary distribution ξ from (6.0.3), where the service intensities
µi(ni) at node i are changed by a factor γi ∈ [0,∞) for i ∈ J . Denote

β :=

{
1 if ||γ||∞ ≤ 1,

||γ||∞ if ||γ||∞ > 1,
(6.1.2)

α0 = 1, and αj =

{
γj if ||γ||∞ ≤ 1,
γj
||γ||∞ if ||γ||∞ > 1,

∀j ∈ J, (6.1.3)

and change routing by randomized skipping with α = (αi : i ∈ J0) according to The-
orem 5.1.2, and change the total network input by factor β. Then ξ is a stationary
distribution for X(γ) = (X(γ)(t) : t ≥ 0) as well.
Moreover, if B(γ) = ∅, then X(γ) is ergodic.
If B(γ) 6= ∅, then X(γ) is not irreducible on NJ0 and its state space is divided into
an infinite set of closed subspaces

NW (γ)
0 × {(nj : j ∈ B(γ))} ∀(nj : j ∈ B(γ)) ∈ NB(γ)

0 .

For any probability distribution ϕ on NB(γ)
0 there exists a stationary distribution

ξ
(γ)
ϕ for X(γ), which is for n = (n1, . . . , nJ) ∈ NJ̄0

ξ(γ)
ϕ (n) = ξ(γ)

ϕ (n1, . . . , nJ) =
∏

j∈W (γ)

nj∏
`=1

ηj
µj(`)

C(j)−1 · ϕ(nj : j ∈ B(γ)). (6.1.4)

(b) [Randomized reflection]If additionally to the assumptions of part (a) the rout-
ing chain r is reversible with respect to η, then the rerouting may be performed by
randomized reflection according to Proposition 5.2.2 with α = (αi : i ∈ J0). The
results and formulas of part (a) carry over word by word.

Proof. The global balance equation x ·Q(γ) = 0 for the joint queue length process X(γ)

of the modified system is in both settings for n = (n1, . . . , nJ) ∈ NJ0

x(n)

∑
j∈J

βλr(α)(0, j) +
∑
j∈J

1[nj>0]γjµj(nj)(1− r(α)(j, j))


=
∑
i∈J

x(n− ei)1[ni>0]βλr
(α)(0, i)

+
∑
j∈J

∑
i∈J\{j}

x(n− ei + ej)1[ni>0]γjµj(nj + 1)r(α)(j, i)

+
∑
j∈J

x(n + ej)γjµj(nj + 1)r(α)(j, 0).

(6.1.5)

We first consider the case B(γ) 6= ∅. Then for i ∈ B(γ) we have γi = αi = 0 and
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r(α)(j, i) = 0 for all j ∈ J0, and (6.1.5) reduces to

x(n)

 ∑
j∈W (γ)

βλr(α)(0, j) +
∑

j∈W (γ)

1[nj>0]γjµj(nj)(1− r(α)(j, j))


=

∑
i∈W (γ)

x(n− ei)1[ni>0]βλr
(α)(0, i)

+
∑

j∈W (γ)

∑
i∈W (γ)\{j}

x(n− ei + ej)1[ni>0]γjµj(nj + 1)r(α)(j, i)

+
∑

j∈W (γ)

x(n + ej)γjµj(nj + 1)r(α)(j, 0).

(6.1.6)

Inserting x(n1, . . . , nJ) =
∏
j∈W (γ)

∏nj
`=1

ηj
µj(`)

C(j)−1·ϕ(nj : j ∈ B(γ)) for any probability

density ϕ on NB(γ)
0 we see that immediately

∏
j∈W (γ)C(j)−1 · ϕ(nj : j ∈ B(γ)) cancels.

Multiplication with
(
β
∏
j∈W (γ)

∏nj
`=1

ηj
µj(`)

)−1
yields

 ∑
j∈W (γ)

λr(α)(0, j) +
∑

j∈W (γ)

1[nj>0]
γj
β
µj(nj)(1− r(α)(j, j))


=

∑
i∈W (γ)

µi(ni)

ηi
1[ni>0]λr

(α)(0, i)

+
∑

j∈W (γ)

∑
i∈W (γ)\{j}

µi(ni)

ηi
1[ni>0]

ηj
µj(nj + 1)

γj
β
µj(nj + 1)r(α)(j, i)

+
∑

j∈W (γ)

ηj
µj(nj + 1)

γj
β
µj(nj + 1)r(α)(j, 0).

Using the fact that γj/β = γj/||γ||∞ = αj for all j ∈ J we get the equation

 ∑
j∈W (γ)

λr(α)(0, j) +
∑

j∈W (γ)

1[nj>0]αjµj(nj)(1− r(α)(j, j))


=

∑
i∈W (γ)

µi(ni)

ηi
1[ni>0]λr

(α)(0, i)

+
∑

j∈W (γ)

∑
i∈W (γ)\{j}

µi(ni)

ηi
1[ni>0]

ηj
µj(nj + 1)

αjµj(nj + 1)r(α)(j, i)

+
∑

j∈W (γ)

ηj
µj(nj + 1)

αjµj(nj + 1)r(α)(j, 0).
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Reordering and canceling this yields ∑
j∈W (γ)

λr(α)(0, j) +
∑

j∈W (γ)

1[nj>0]αjµj(nj)


=

∑
i∈W (γ)

µi(ni)

ηi
1[ni>0]λr

(α)(0, i)

+
∑

j∈W (γ)

∑
i∈W (γ)

µi(ni)

ηi
1[ni>0]

ηj
µj(nj + 1)

αjµj(nj + 1)r(α)(j, i)

+
∑

j∈W (γ)

ηj
µj(nj + 1)

αjµj(nj + 1)r(α)(j, 0),

(6.1.7)

and so ∑
j∈W (γ)

λr(α)(0, j) +
∑

j∈W (γ)

1[nj>0]αjµj(nj)


=

∑
i∈W (γ)

µi(ni)

ηi
1[ni>0]λr

(α)(0, i) +
∑

j∈W (γ)

∑
i∈W (γ)

µi(ni)

ηi
1[ni>0]αjηjr

(α)(j, i)

+
∑

j∈W (γ)

ηjαjr
(α)(j, 0).

(6.1.8)

The first term on the left side and the last term on the right side equate, because of∑
j∈W (γ)

λr(α)(0, j) = λ(1− r(α)(0, 0)), and

 ∑
j∈W (γ)

ηjαjr
(α)(j, 0) + η0α0r

(α)(0, 0)


︸ ︷︷ ︸

=η0α0

−η0α0r
(α)(0, 0) = λ(1− r(α)(0, 0)),

where we used η0 = λ, α0 = 1, and that (ηjαj : j ∈ J0) is an invariant measure for r(α).
So (6.1.8) reduces to∑

i∈W (γ)

1[ni>0]αiµi(ni)

=
∑

i∈W (γ)

µi(ni)

ηi
1[ni>0]λr

(α)(0, i) +
∑

j∈W (γ)

∑
i∈W (γ)

µi(ni)

ηi
1[ni>0]αjηjr

(α)(j, i).
(6.1.9)

Take any i ∈W (γ) with ni > 0 and consider the summands with this i:

1[ni>0]αiµi(ni) =
µi(ni)

ηi
1[ni>0]λr

(α)(0, i) +
∑

j∈W (γ)

µi(ni)

ηi
1[ni>0]αjηjr

(α)(j, i),

which is

αiηi = λr(α)(0, i) +
∑

j∈W (γ)

αjηjr
(α)(j, i),
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6.1. Modifications: Upgraded and/or degraded service and adapted routing

and recalling η0 = λ, α0 = 1 and αj = 0 for j ∈ B(γ) this is

αiηi =
∑

j∈W (γ)∪{0}

αjηjr
(α)(j, i). (6.1.10)

Note, that any i will occur in such a procedure for some suitable state vector with ni > 0.
Therefore, if (6.1.10) would be true, we would eventually arrive at

(αjηj : j ∈ J0) · r(α) = (αjηj : j ∈ J0).

Now (6.1.10) is true for the setting of part (a) by Proposition 5.1.4 and α0 = 1, and for
the setting of part (b) by the proof of Proposition 5.2.2 and α0 = 1, which finishes the
parts for B(γ) 6= ∅ of the proofs.
The case B(γ) = ∅ is proved similarly.

Example 6.1.3. Consider a Jackson network on a node set J = {1, 2, 3, 4} with a
routing matrix r as in Example 5.1.3 with service rate factors γ = (1, 0.5, 1, 1). Then the
availability vector is α = (1, 1, 0.5, 1, 1) and a new modified routing matrix r(α) is as in
Example 5.1.3. See Figure 6.1.1 on page 169.

Queueing network

0

0

1

22

3

4

(a) original

Queueing network

0

0

1

22

3

4

(b) modified

Figure 6.1.1.: Original and modified according to the skipping rule Jackson networks from
Example 6.1.3.

Corollary 6.1.4. If in the setting of Theorem 6.1.2 the Jackson network process X
is ergodic with equilibrium ξ from (6.0.3), and if after modification all nodes are still
working, possibly with degraded capacity, i.e. B(γ) = ∅, then in both cases of rerouting
X(γ) = (X

(γ)
t : t ≥ 0) is ergodic with unique stationary and limiting distribution ξ.

Corollary 6.1.5. If in the framework of Theorem 6.1.2 we have r(α)(0, 0) > 0 then the
effective arrival rate after modification is βλ(1− r(α)(0, 0)).

The following result summarizes the content of part (a) and (b) of Theorem 6.1.2 and
extends both to an abstract framework.

Corollary 6.1.6 (Modified Jackson networks: Change of service, general rerouting).
Let X be an ergodic Jackson network process as described in Section 6 with stationary
distribution ξ from (6.0.3), where the service intensities µi(ni) at node i are changed by a
factor γi ∈ [0,∞) for i ∈ J . We change routing to follow some matrix r(α) with invariant
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6. Modified Jackson networks

measure y = (αjηj : j ∈ J0) and increase the total network input by a factor β, where
α0 = 1, αj and β are defined as in (6.1.3) and (6.1.2).
We denote the resulting Markovian state process on NJ0 by X(γ) = (X(γ)(t) : t ≥ 0).
Then ξ is a stationary distribution for X(γ) = (X(γ)(t) : t ≥ 0) as well.
If B(γ) = ∅, then X(γ) is ergodic.
If B(γ) 6= ∅, then X(γ) is not irreducible on NJ0 and its state space is divided into an

infinite set of closed subspaces NW (γ)
0 ×{(nj : j ∈ B(γ))} ∀(nj : j ∈ B(γ)) ∈ NB(γ)

0 and
for any probability distribution ϕ on NB(γ)

0 there exists a stationary distribution ξ(γ)
ϕ for

X(γ) given in (6.1.4).
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7. Jackson networks in a random
environment

We consider a classical Jackson network from Section 6, the development of which is
influenced by the time varying status of its external environment. On the other hand the
network may trigger the environment to change its status. The dynamic is determined
on one side by the environment as a jump process Y = (Y (t) : t ≥ 0), changes of which
result in changes of the network’s parameter, and on the other side by the network process
X = (X(t) : t ≥ 0) as jump process where some jumps of X enforce the environment to
immediately react to this jump. To be more precise:

The state (status) of the environment is recorded in a countable environment state
space K and whenever the environment at time t is in state Y (t) = k ∈ K it changes its
status to m ∈ K with rate ν(k,m).

The network process X records the joint queue length vector, as in Section 6, and
Xj(t) = nj ∈ N0 is the local queue length at node j ∈ J . Whenever the environment is
in state k ∈ K and at node j a customer is served and leaves the network, then this jump
of the local queue length triggers with probability Rj(k,m) the environment to jump
immediately from state k to m ∈ K.

Associated with environment state k ∈ K is a vector γ(k) ∈ [0,∞)J which determines
the factor by which the service capacities are changed, when the environment enters k,
similar to γ ∈ [0,∞)J in Section 6.1. This results in a state dependent service rate
µj(nj , k) = γj(k) · µj(nj) if the queue length at node j is nj and the environment is k.

The network reacts to the impact of the environment in state k by modifying the routing
according to different strategies, which we have described in Sections 5.1 and 5.2 and
possibly with admitting more customers into the network. The latter part of the control
strategy is set in force whenever in environment state k there exist some γj(k) > 1. In such
state k ∈ K the overall arrival rate to the network is increased by β(γ(k)) = ||γ(k)||∞
from λ to λ · β(γ(k)).

A schematic example of this kind of system is shown on Figure 7.0.1 on page 172.

We emphasize that neither the matrix V = (v(k,m) : k,m ∈ K), which is (with
suitable defined diagonal elements) a generator matrix nor the stochastic matrices Rj =
(Rj(k,m) : k,m ∈ K), j ∈ J , need to be irreducible or even ergodic, and furthermore
that V is not the generator of Y, which in general is not Markov.
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Queueing

network

0

0

1

22

3
4

Environ
ment

1

2

3
4

γ1(k)

γ2(k)

γ3(k)
γ4(k)

R3

direction
of impact

positive routing
entries r(i, j)

new positive routing
entries of r(α(k))(i, j)

j
partially degraded
node j

Figure 7.0.1.: Jackson network with degraded nodes – i.e. γj(k) = αj(k) ≤ 1 for all j
and k, and β ≡ 1 – in a random environment with two-way interaction.
The service rates are modified by the environment. The routing is adopted
according to the skipping rule. The customers, who leave the node 3, modify
the environment.

7.1. Rerouting by randomized skipping

In this section we consider modification of routing in reaction to the servers’ change of
capacity by randomized skipping according to Section 5.1. We investigate this case in
detail, while other modifications then can be described with less details.
We need environment dependent rerouting with acceptance probabilities α = α(γ(k)),

modified rerouting matrices r(α(γ(k))), and overall load factors β(γ(k)).
To keep notation short we write α(k) = (αj(k) : j ∈ J0), instead of α(γ(k)), r(α(k))

instead of r(α(γ(k))) and β(k) instead of β(γ(k)).
The randomized skipping according to Section 5.1 yields a routing regime r(α(k)) from

Theorem 5.1.2, and the total service input rate is changed by a factor β(k). α and β are
defined similar to (6.1.3) and (6.1.2), i.e. for k ∈ K:

β(k) :=

{
1 if ||γ(k)||∞ ≤ 1,

||γ(k)||∞ if ||γ(k)||∞ > 1.
(7.1.1)

α0(k) = 1, and αj(k) =

{
γj(k) if ||γ(k)||∞ ≤ 1,
γj(k)
||γ(k)||∞ if ||γ(k)||∞ > 1,

∀j ∈ J. (7.1.2)

We further define B(γ(k)) and W (γ(k)) similar to Definition 6.1.1 as set of completely
broken down nodes, resp. as set of nodes which, although possibly being degraded or
upgraded, can still serve customers under environment condition k.
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Definition 7.1.1. We denote the coupled process (queue lengths-environment) by
Z = (X,Y) = (Z(t) : t ≥ 0) = ((X(t), Y (t)) : t ≥ 0) on state space E := NJ0 ×K.

The dynamics of Z relies for the environment process Y on a generator matrix V =
(v(k,m) : k,m ∈ K) and stochastic matrices Rj = (Rj(k,m) : k,m ∈ K), j ∈ J . Recall
that the extended routing matrix r = (r(i, j) : i, j ∈ J0) is irreducible and that r(α(k))

from randomized skipping is irreducible on W (γ(k)) ∪ {0}.
With the standard assumptions of independence for inter-arrival and service times and

of conditional independence of routing and the jumps of the environment triggered by
departing customers the queue lengths-environment process Z is a homogeneous Markov
process on E := NJ0 ×K with generator QZ = (qZ((n, k), (n

′
, k′)) : (n, k), (n

′
, k′) ∈ E).

The strict positive transition rates of QZ are for (n, k) = ((n1, . . . , nJ), k) ∈ NJ0 ×K and
j, i ∈ J

qZ((n, k), (n + ei, k)) = β(k)λr(α(k))(0, i), (7.1.3)

qZ((n, k), (n− ej + ei, k)) = 1[nj>0]γj(k)µj(nj)r
(α(k))(j, i), i 6= j,

qZ((n, k), (n− ej ,m)) = 1[nj>0]γj(k)µj(nj)r
(α(k))(j, 0)Rj(k,m),

qZ((n, k), (n,m)) = v(k,m), m ∈ K.

Theorem 7.1.2. Assume the queue lengths-environment process Z = (X,Y) from Def-
inition 7.1.1 to be ergodic and assume that the pure Jackson network process X without
environment is ergodic with stationary and limiting distribution ξ on NJ0 from (6.0.3)

ξ(n) = ξ(n1, . . . , nJ) =

J∏
j=1

nj∏
`=1

ηj
µj(`)

C(j)−1, n ∈ NJ0 ,

with normalizing constants C(j) for the marginal (over nodes) distributions of X.
Define the reduced generator Qred as

Qred :=

V +
∑
j∈J

ηjI(γj•r(α(·))(j,0))(Rj − I)

 , (7.1.4)

where γj and r(α(·))(j, 0) are for j ∈ J real valued functions on K. Assume that the
reduced generator equation θ ·Qred = 0 has a non zero, non-negative solution.
Then Qred is irreducible on K and the reduced generator equation θ · Qred = 0 has a

strictly positive stochastic solution which we denote by θ.
Furthermore, the queue lengths-environment process Z has the unique steady-state dis-

tribution π = (π(n, k) : n ∈ NJ0 , k ∈ K) of product form:

π(n, k) = ξ(n)θ(k), n ∈ NJ0 , k ∈ K.

Remark: The reduced generator equation has a stochastic solution if |K| < ∞ holds,
but there are many other easy to identify cases. The assumption, that θ ·Qred = 0 has a
non zero, non-negative solution, rules out that Qred is transient with only the zero vector
as solution of that equation. As will be shown, the cases null-recurrent and transient with
non-zero solution are not feasible due to ergodicity of Z. This remark applies to Theorem
7.2.1 and Corollary 7.3.1 as well.
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Proof. (of Theorem 7.1.2) The global balance equation of Z is

π(n, k)

(∑
i∈J

β(k)λr(α(k))(0, i) +
∑

m∈K\{k}

v(k,m)

︸ ︷︷ ︸
−ν(k,k)

+
∑
j∈J

1[nj>0]γj(k)µj(nj)(1− r(α(k))(j, j))

)

=
∑
i∈J

π(n− ei, k)1[ni>0]β(k)λr(α(k))(0, i)

+
∑
i∈J

∑
j∈J\{i}

π(n− ei + ej , k)1[ni>0]γj(k)µj(nj + 1)r(α(k))(j, i)

+
∑
j∈J

∑
m∈K

π(n + ej ,m)γj(m)µj(nj + 1)r(α(m))(j, 0)Rj(m, k)

+
∑

m∈K\{k}

π(n,m)v(m, k).

Inserting π(n, k) = ξ(n)θ(k), adding ξ(n)θ(k) · v(k, k) on both sides, and rearranging
terms and blowing up this is

θ(k)

ξ(n)

∑
i∈J

β(k)λr(α(k))(0, i) +
∑
j∈J

1[nj>0]γj(k)µj(nj)(1− r(α(k))(j, j))


= θ(k)

∑
i∈J

ξ(n− ei)1[ni>0]β(k)λr(α(k))(0, i) (7.1.5)

+
∑
i∈J

∑
j∈J\{i}

ξ(n− ei + ej)1[ni>0]γj(k)µj(nj + 1)r(α(k))(j, i)

+
∑
j∈J

ξ(n + ej)γj(k)µj(nj + 1)r(α(k))(j, 0)


−θ(k)

∑
j∈J

ξ(n + ej)γj(k)µj(nj + 1)r(α(k))(j, 0)

+
∑
j∈J

∑
m∈K

ξ(n + ej)θ(m)γj(m)µj(nj + 1)r(α(m))(j, 0)Rj(m, k)

+
∑
m∈K

ξ(n)θ(m)v(m, k).

For each fixed environment state k the terms in squared brackets equate from Theorem
6.1.2, see (6.1.5), where for B(γ(k)) we set in modified notation (ϕ → ϕ(k)) from that
theorem the specific probabilities

ϕ(k)(nj : j ∈ B(γ(k))) :=
∏

j∈B(γ(k))

nj∏
`=1

ηj
µj(`)

C(j)−1, (nj : j ∈ B(γ(k))) ∈ NB(γ(k))
0 .
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Dividing by ξ(n) and canceling µj(nj + 1) we arrive at

0 = −θ(k)
∑
j∈J

ηjγj(k)r(α(k))(j, 0) +
∑
j∈J

∑
m∈K

θ(m)ηjγj(m)r(α(m))(j, 0)Rj(m, k)

+
∑
m∈K

θ(m)v(m, k).

Rearranging terms we have

θ(k)
∑
j∈J

ηjγj(k)r(α(k))(j, 0) =
∑
m∈K

θ(m)

v(m, k) +
∑
j∈J

ηjγj(m)r(α(m))(j, 0)Rj(m, k)

 ,

which finally leads for any prescribed k ∈ K to

0 =
∑
m∈K

θ(m)

v(m, k) +
∑
j∈J

ηjγj(m)r(α(m))(j, 0)(Rj(m, k)− δmk)

 . (7.1.6)

This can be written in matrix form as

0 = θ

V +
∑
j∈J

ηjI(γj•r(α(·))(j,0))(Rj − I)


︸ ︷︷ ︸

=:Qred

. (7.1.7)

So we have identified (7.1.4). Because the non diagonal elements of Qred are non-
negative whereas the row sum is zero, Qred is the generator matrix of some Markov
process.
Qred is irreducible because otherwise Z would not be irreducible. By assumption, (7.1.7)

has a non zero, non-negative solution. If the equation (7.1.7) has no stochastic solution
the global balance equation of Z would have a non-trivial non-negative solution which
cannot be normalized. This would contradict ergodicity. The same argument shows that
the solution of (7.1.7) must be unique.

Remark: Although the service rates µj(nj) and routing probabilities r(i, j) are locally
determined with respect to the transition graph of r, the network control may in general
be by global algorithms due to the applied randomized skipping by r(α).
Careful analysis of the proof of Theorem 7.1.2 shows the following characterization.

Corollary 7.1.3. Assume the queue lengths-environment process Z = (X,Y) from Def-
inition 7.1.1 is irreducible. Define the reduced generator as

Qred :=

V +
∑
j∈J

ηjI(γj•r(α(·))(j,0))(Rj − I)

,
Then the following statements are equivalent:
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7. Jackson networks in a random environment

(i) Z is ergodic with product form steady-state distribution

π(n, k) = ξ(n) · θ(k) =

J∏
j=1

nj∏
`=1

ηj
µj(`)

C(j)−1 · θ(k), n ∈ NJ0 , k ∈ K.

(ii) For all j ∈ J holds
∑∞

nj=0

∏nj
`=1

ηj
µj(`)

< ∞ and the reduced generator equation
θ ·Qred = 0 has a strictly positive stochastic solution.

Remark: A similar corollary for Theorem 7.2.1 and Corollary 7.3.1 is obviously valid
and will therefore not stated separately later on.

7.2. Rerouting by randomized reflection

In this section we assume that the modification of routing in reaction to the servers’
change of capacities is by randomized reflection according to Section 5.2, which yields a
routing regime r(α(k)) according to Proposition 5.2.2. We use α(k) and β(k) as defined
in (7.1.2) and (7.1.1), and take B(γ(k)) and W (γ(k)) as in Definition 6.1.1.
Recall, that the dynamics of the environment process Y is driven by a generator matrix

V = (ν(k,m) : k,m ∈ K) and stochastic matrices Rj = (Rj(k,m) : k,m ∈ K), j ∈ J,
as described on p. 171. Note, that the original extended routing matrix r = (r(i, j) :
i, j ∈ J0) is irreducible but under randomized reflection r(α(k)) may be reducible even
on W (γ(k)) ∪ {0}, which does not destroy the ergodicity of the system process Z =
(X,Y). Then the queue lengths-environment process Z = (X,Y) = (Z(t) : t ≥ 0) =

((X(t), Y (t)) : t ≥ 0) is a homogeneous Markov process on state space E := NJ0 ×K with
generator QZ = (qZ((n, k), (n

′
, k′)) : (n, k), (n

′
, k′) ∈ E), which is formally identical to

that displayed in (7.1.3).
As pointed out in Section 5.2 necessary for successfully applying randomized reflection

as rerouting regime is reversibility of r, which we now set in force.

Theorem 7.2.1. Consider the process Z = (X,Y) and assume that the extended routing
matrix r = (r(i, j) : i, j ∈ J0) is reversible for η = (ηj : j ∈ J0).
Assume Z to be ergodic and assume that the pure Jackson network process X without

environment is ergodic with stationary and limiting distribution ξ on NJ0 from (6.0.3)

ξ(n) = ξ(n1, . . . , nJ) =
J∏
j=1

nj∏
`=1

ηj
µj(`)

C(j)−1, n ∈ NJ0 .

Define the reduced generator Qred as

Qred :=

V +
∑
j∈J

ηjI(γj•r(α(·))(j,0))(Rj − I)

 ,
where γj and r(α(·))(j, 0) are for j ∈ J real valued functions on K, and assume that the
reduced generator equation θ ·Qred = 0 has a non zero, non-negative solution.
Then Qred is irreducible on K and the reduced generator equation θ · Qred = 0 has a

strictly positive stochastic solution which we denote by θ.
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7.3. Rerouting by general randomization

Furthermore, the queue lengths-environment process Z has the unique steady-state dis-
tribution π = (π(n, k) : n ∈ NJ0 , k ∈ K) of product form:

π(n, k) = ξ(n)θ(k), n ∈ NJ0 , k ∈ K.

The proof of the theorem is along the lines of the proof of Theorem 7.1.2, where we
used almost completely the general abstract notation r(α(k)) for the rerouting regime.
Only when manipulating (7.1.5) we had to refer to properties of skipping in part (a) of
Theorem 6.1.2, which is substituted now by referring to part (b) of that theorem.
Remark: The control of the customers’ routing under randomized reflection by r(α) is

by local decisions with respect to the transition graph of r. So the network process is
locally determined as well.

7.3. Rerouting by general randomization

The results of the previous sections suggests to extract general principles for randomized
rerouting. We consider modifications of routing in reaction to servers’ change of capacities
by environment dependent factors γ(k) ∈ [0,∞)J to µj(nj , k) = γj(k)µj(nj). We use the
notation introduced in Section 7.1 and α(k) and β(k) as defined in (7.1.2) and (7.1.1),
and take B(γ(k)) and W (γ(k)) as in Definition 6.1.1.
The environment processY is driven by V = (v(k,m) : k,m ∈ K) andRj = (Rj(k,m) :

k,m ∈ K), j ∈ J . For the general rerouting regimes r(α(k)), k ∈ K, for α(k) with
α0(k) = 1 and α(k) ∈ [0,∞)J0 , we only require the properties described in Corollary
6.1.6 and obtain a statement in the spirit of Zhu’s main theorem [Zhu94, p. 12], and
of Economou’s Corollary 5 [Eco05, Section 5.2], where control regimes for rerouting are
not specified. Our environment process is not Markov because of the two-way interaction
of environment and service process, while Zhu’s and Economou’s theorem requires the
environment to be Markov for its own.

Corollary 7.3.1. The queue lengths-environment process Z = (X,Y) = (Z(t) : t ≥ 0) =

((X(t), Y (t)) : t ≥ 0) is a homogeneous Markov process on state space E := NJ0 ×K with
generator QZ = (qZ((n, k), (n

′
, k′)) : (n, k), (n

′
, k′) ∈ E), which is formally identical to

that displayed in (7.1.3).
Assume that the rerouting regimes r(α(k)), k ∈ K, have invariant measures

y(k) = (αj(k) · ηj : j ∈ J0).
Assume Z to be ergodic and assume that the pure Jackson network process X without

environment is ergodic with stationary and limiting distribution ξ on NJ0 from (6.0.3).
Define the reduced generator Qred as

Qred :=

V +
∑
j∈J

ηjI(γj•r(α(·))(j,0))(Rj − I)

 ,
where γj and r(α(·))(j, 0) are for j ∈ J real valued functions on K. Assume that the
reduced generator equation θ ·Qred = 0 has a non zero, non-negative solution.
Then Qred is irreducible on K and the reduced generator equation θ · Qred = 0 has a

strictly positive stochastic solution which we denote by θ.
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7. Jackson networks in a random environment

Furthermore, the queue lengths-environment process Z has the unique steady-state dis-
tribution π = (π(n, k) : n ∈ NJ0 , k ∈ K) of product form:

π(n, k) = ξ(n)θ(k), n ∈ NJ0 , k ∈ K.

Remark: The environment dependent traffic equations η(α(k)) = η(α(k)) ·r(α(k)), k ∈ K,
have in general no strict positive solutions, because for B(γ(k)) 6= ∅ and j ∈ B(γ(k)) we
have η(α(k))(j) = 0. If there is some k′ ∈ K with B(γ(k′)) = ∅ we have η(α(k′))(j) > 0. So
the quotients η(α(k))(j)/µj(nj , k) are not independent of k, but nevertheless we obtain
the product form steady-state distribution.
This observation should be compared with the first necessary condition and formula (3)

in [Zhu94, Theorem 1] and with statements (i) and (ii) in [Eco05, Corollary 5], which prove
equivalence of the existence of product form stationary distribution and invariance of the
ratios (overall arrival rate/ service rates) under the condition that for all environment
states the solution of the traffic equations are strictly positive [Eco14].
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8. Environment changes dependent on
queue lengths

In this section we start with the model from Section 7 for Jackson networks in a random
environment and consider the situation where the generator V and the stochastic matrices
Rj depend on the queuing state n. We will analyze which additional conditions are
sufficient to keep the steady-state distribution of the system in the similar form as in
Corollary 7.3.1. The consequences of this change will be redefinition of measures ξ, θ and
normalization constant and a weakening of the product form results.

Definition 8.0.2. We denote the coupled process (queue lengths-environment) by
Z = (X,Y) = (Z(t) : t ≥ 0) = ((X(t), Y (t)) : t ≥ 0) on state space E := NJ0 ×K.

The dynamics of Z relies for the environment process Y on generator matrices V (n) =
(v(n; k,m) : k,m ∈ K) and stochastic matrices Rj(n) = (Rj(n; k,m) : k,m ∈ K), j ∈ J ,
n ∈ NJ0 .

Definition 8.0.3. For the extended routing matrices r(k) in Section 8 we only require
that for all k ∈ K there exists strictly positive vector η = (ηj : j ∈ J0) with η0 = λ and
a fixed acceptance function α(k) ∈ {1} × [0, 1]J , such that it has an invariant measure
(αj(k)ηj : j ∈ J0)

αj(k)ηj =
J∑
i=0

αi(k)ηir
(k)(i, j), ∀j ∈ J.

Example 8.0.4. It is now possible to have different extended rerouting matrices r(k)

with the same invariant measure (αj(k)ηj : j ∈ J0). Let K = {1, 2} and J0 = {0, 1, 2},
αj(k) = 1 for all k ∈ K and all j ∈ J0,

r(1) :=


0 1 2

0 1
1 1
2 1

 , r(2) :=


0 1 2

0 1
1 1
2 1

 .

The system is a tandem network which switches the direction of the customer flow de-
pending on the environment.

Definition 8.0.5. With the standard assumptions of independence for inter-arrival and
service times and of conditional independence of routing and the jumps of the environ-
ment triggered by departing customers the queue lengths-environment process Z is a
homogeneous Markov process on E := NJ0 ×K with generator QZ = (qZ((n, k), (n

′
, k′)) :

(n, k), (n
′
, k′) ∈ E). The non-negative transition rates of QZ are

for (n, k) = ((n1, . . . , nJ), k) ∈ NJ0 ×K and i, j ∈ J
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8. Environment changes dependent on queue lengths

qZ((n, k), (n + ei, k)) = β(k)λr(k)(0, i),

qZ((n, k), (n− ej + ei, k)) = 1[nj>0]γj(k)µj(nj)r
(k)(j, i), i 6= j,

qZ((n, k), (n− ej ,m)) = 1[nj>0]γj(k)µj(nj)r
(k)(j, 0)Rj(n; k,m),

qZ((n, k), (n,m)) = v(n; k,m), k 6= m.

(8.0.1)

Here we use the same α, β, γ, λ, µ, J as in Section 7. The rerouting matrices r(k) are
general rerouting matrices defined in Definition 8.0.3:

γj(k) ∈ [0,∞),

β(k) :=

{
1 if ||γ(k)||∞ ≤ 1,

||γ(k)||∞ if ||γ(k)||∞ > 1,

α0(k) = 1, and αj(k) =

{
γj(k) if |γ(k)||∞ ≤ 1,
γj(k)
||γ(k)||∞ if ||γ(k)||∞ > 1,

for all k ∈ K and j ∈ J . The general rerouting regimes r(k) have unique invariant
measure (αj(k)ηj : j ∈ J0) for all k ∈ K and some strictly positive (ηj : j ∈ J0) as
specified in Definition 8.0.3.

Definition 8.0.6. Similar to Section 7.1 we define for each k ∈ K the set of “blocked
nodes” B(γ(k)) ⊂ J . It is defined by j ∈ B(γ(k)) :⇐⇒ γj(k) = 0. Its complement in J ,
the set of the “working nodes” W (γ(k)) ⊂ J , is defined by j ∈W (γ(k)) :⇐⇒ γj(k) > 0.

Before we present the main theorem, we need results for modified Jackson networks
similar to Corollary 6.1.6. In contrast to Corollary 6.1.6, we only focus on one particular,
not normalized and not necessary unique solution ξ of the equation ξQ(γ) = 0.

Lemma 8.0.7. Given generator Q(γ) = (q(γ)(n,n
′
) : n,n

′ ∈ NJ̄0 )

q(γ)(n,n + ei) = βλrG(0, i), i ∈ J0,

q(γ)(n,n− ej + ei) = 1[nj>0]γjµj(nj)rG(j, i), i, j ∈ J, i 6= j,

q(γ)(n,n− ej) = 1[nj>0]γjµj(nj)rG(j, 0), j ∈ J,

(8.0.2)

with γj ∈ [0,∞)

β :=

{
1 if ||γ||∞ ≤ 1

||γ||∞ if ||γ||∞ > 1,

α0 = 1, and αj =

{
γj if ||γ||∞ ≤ 1,
γj
||γ||∞ if ||γ||∞ > 1,

∀j ∈ J,

any stochastic routing matrix rG with invariant measure y = (αjηj : j ∈ J0), α0 = λ,
η0 = λ and ηj > 0 for all j ∈ J . Then the measure

ξ(n) := ξ(n1, . . . , nJ) =
∏
j∈J

nj∏
`=1

ηj
µj(`)

(8.0.3)

solves the global balance equation
ξQ(γ) = 0.
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Proof. The proof is similar to the proof of Theorem 6.1.2 except the routing matrix rG
can be any stochastic matrix with invariant measure y = (αjηj : j ∈ J0) and, to keep the
notational burden small, we focus only on one particular and not normalized measure ξ
defined in (8.0.3).
The global balance equation ξ ·Q(γ) = 0 for n = (n1, . . . , nJ) ∈ NJ0 is

ξ(n)

∑
j∈J

βλrG(0, j) +
∑
j∈J

1[nj>0]γjµj(nj)(1− rG(j, j))


=
∑
i∈J

ξ(n− ei)1[ni>0]βλrG(0, i)

+
∑
j∈J

∑
i∈J\{j}

ξ(n− ei + ej)1[ni>0]γjµj(nj + 1)rG(j, i)

+
∑
j∈J

ξ(n + ej)γjµj(nj + 1)rG(j, 0). (8.0.4)

Inserting ξ(n1, . . . , nJ) =
∏
j∈J
∏nj
`=1

ηj
µj(`)

and multiplication with(
β
∏
j∈J
∏nj
`=1

ηj
µj(`)

)−1
yields

∑
j∈J

λrG(0, j) +
∑
j∈J

1[nj>0]
γj
β
µj(nj)(1− rG(j, j))


=
∑
i∈J

µi(ni)

ηi
1[ni>0]λrG(0, i)

+
∑
j∈J

∑
i∈J\{j}

µi(ni)

ηi
1[ni>0]

ηj
µj(nj + 1)

γj
β
µj(nj + 1)rG(j, i)

+
∑
j∈J

ηj
µj(nj + 1)

γj
β
µj(nj + 1)rG(j, 0).

Using the fact that γj/β =

{
γj/1 = αj , γj ≤ 1

γj/||γ||∞ = αj , γj > 1
for all j ∈ J we get the equation

∑
j∈J

λrG(0, j) +
∑
j∈J

1[nj>0]αjµj(nj)(1− rG(j, j))


=
∑
i∈J

µi(ni)

ηi
1[ni>0]λrG(0, i) +

∑
j∈J

∑
i∈J\{j}

µi(ni)

ηi
1[ni>0]

ηj
µj(nj + 1)

αjµj(nj + 1)rG(j, i)

+
∑
j∈J

ηj
µj(nj + 1)

αjµj(nj + 1)rG(j, 0).
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8. Environment changes dependent on queue lengths

Reordering and canceling this yields∑
j∈J

λrG(0, j) +
∑
j∈J

1[nj>0]αjµj(nj)


=
∑
i∈J

µi(ni)

ηi
1[ni>0]λrG(0, i)

+
∑
j∈J

∑
i∈J

µi(ni)

ηi
1[ni>0]

ηj
µj(nj + 1)

αjµj(nj + 1)rG(j, i)

+
∑
j∈J

ηj
µj(nj + 1)

αjµj(nj + 1)rG(j, 0),

and so ∑
j∈J

λrG(0, j) +
∑
j∈J

1[nj>0]αjµj(nj)


=
∑
i∈J

µi(ni)

ηi
1[ni>0]λrG(0, i) +

∑
j∈J

∑
i∈J

µi(ni)

ηi
1[ni>0]αjηjrG(j, i)

+
∑
j∈J

ηjαjrG(j, 0).

(8.0.5)

The first term on the left side and the last term on the right side equate, because of∑
j∈J

λrG(0, j) = λ(1− rG(0, 0)), and

∑
j∈J

ηjαjrG(j, 0) + η0α0rG(0, 0)


︸ ︷︷ ︸

=η0α0

−η0α0rG(0, 0) = λ(1− rG(0, 0)),

where we used η0 = λ, α0 = 1, and that (ηjαj : j ∈ J0) is an invariant measure for rG.
So (8.0.5) reduces to∑

i∈J

1[ni>0]αiµi(ni)

=
∑
i∈J

µi(ni)

ηi
1[ni>0]λrG(0, i) +

∑
j∈J

∑
i∈J

µi(ni)

ηi
1[ni>0]αjηjrG(j, i) (8.0.6)

⇐⇒ 0 =
∑
i∈J

1[ni>0]

µi(ni)
ηi

λ︸︷︷︸
=η0α0

rG(0, i) +
∑
j∈J

µi(ni)

ηi
αjηjrG(j, i)− αiµi(ni)


⇐⇒ 0 =

∑
i∈J

1[ni>0]
µi(ni)

ηi

∑
j∈J0

αjηjrG(j, i)− αiηi

 .
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The difference in the parenthesis is 0 because (αjηj : j ∈ J0) is invariant measure of rG.

Lemma 8.0.8. Let rG be some rerouting matrix from Lemma 8.0.7, then

rG(j, i) = 0, if j ∈W (γ) ∪ {0} and i ∈ B(γ)

with W (γ) and B(γ) from Definition 6.1.1.

Proof. Recall that all ηj are positive. Let i be any node from B(γ), then ηiαi = 0. The
products ηjαj are positive for all j ∈W (γ)∪{0} and they are 0 for all j ∈ B(γ). Because
(αjηj : j ∈ J0) is invariant measure of rG we have for i ∈ B(γ)∑

j∈J0

ηjαjrG(j, i) = ηiαi = 0 ⇐⇒
∑

j∈W (γ)∪{0}

ηjαj︸︷︷︸
>0

rG(j, i) = 0.

Theorem 8.0.9. Assume the queue lengths-environment process Z = (X,Y) from Def-
inition 8.0.5 to be ergodic. Furthermore assume that there is non-zero and non-negative
solution θ = (θ(n; k) : n ∈ NJ0 , k ∈ K) ∈ RJ×K of the equations

θ(n)Qred(n) = 0, ∀n ∈ NJ0 ,

with
θ(n) = (θ(n; k) : k ∈ K),

and

Qred(n) :=

V (n) +
∑
j∈J

ηjI(γj•r(·)(j,0))(Rj(n + ej)− I)

 , (8.0.7)

such that
θ(n; k) = θ(n + ej ; k), ∀k ∈ K,n ∈ NJ0 , j ∈W (γ(k)). (8.0.8)

Then the steady-state solution of equation πQ = 0 is

π(n, k) = C−1ξ(n)θ(n; k), (8.0.9)

with

ξ(n) :=

J∏
j=1

nj∏
`=1

ηj
µj(`)

and the normalization constant

C =
∑
n∈NJ0

∑
k∈K

ξ(n)θ(n, k) <∞. (8.0.10)

Recall, by convention on page 149: For each j ∈ J is I(γj•r(·)(j,0)) a diagonal matrix
from RK×K with entries

I(γj•r(·)(j,0))(k, k) = γj(k)r(k)(j, 0), ∀k ∈ K,

I(γj•r(·)(j,0))(k,m) = 0, ∀k 6= m.
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8. Environment changes dependent on queue lengths

Remark 8.0.10. The expression (8.0.9) is not a true product form. Any stochastic measure
π(n, k) can be expressed as ξ(n)θ(n; k) by setting θ(n; k) = π(n, k)/ξ(n) for each k and
n.

Remark 8.0.11. The equation (8.0.8) means that θ(n; k) and θ(n′; k) must be equal if n
differs from n′ in at least one working node j. We can also write this as

∀k ∈ K,∀n,n′ ∈ NJ0 : (∃j∈J : nj 6= n
′
j ∧ γj(k) 6= 0) =⇒ θ(n; k) = θ(n′; k)

or, equivalently, for any k and all n the vector θ(n; k) is equal to some θ̃(n|B(γ(k)), k)
which only depends on the set of blocked nodes B(γ(k)).

Proof of Theorem 8.0.9. The global balance equations of Z are for (n; k) ∈ E

π(n, k)

(∑
i∈J

β(k)λr(k)(0, i) +
∑

m∈K\{k}

v(n; k,m)

︸ ︷︷ ︸
−v(n;k,k)

+
∑
j∈J

1[nj>0]γj(k)µj(nj)(1− r(k)(j, j))

)

=
∑
i∈J

π(n− ei, k)1[ni>0]β(k)λr(k)(0, i)

+
∑
i∈J

∑
j∈J\{i}

π(n− ei + ej , k)1[ni>0]γj(k)µj(nj + 1)r(k)(j, i)

+
∑
j∈J

∑
m∈K

π(n + ej ,m)γj(m)µj(nj + 1)r(m)(j, 0)Rj(n + ej ;m, k)

+
∑

m∈K\{k}

π(n,m)v(n;m, k).

(8.0.11)
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Inserting π(n, k) = C−1ξ(n)θ(n; k), canceling C−1, adding ξ(n)θ(n; k) · v(n; k, k) on
both sides, and rearranging terms and blowing up leads to

ξ(n)θ(n; k)

∑
i∈J

β(k)λr(k)(0, i) +
∑
j∈J

1[nj>0]γj(k)µj(nj)(1− r(k)(j, j))


=
∑
i∈J

ξ(n− ei)θ(n− ei; k)1[ni>0]β(k)λr(k)(0, i)

+
∑
i∈J

∑
j∈J\{i}

ξ(n− ei + ej)θ(n− ei + ej ; k)1[ni>0]γj(k)µj(nj + 1)r(k)(j, i)

+

{∑
j∈J

ξ(n + ej)θ(n + ej ; k)γj(k)µj(nj + 1)r(k)(j, 0)

−
∑
j∈J

ξ(n + ej)θ(n + ej ; k)γj(k)µj(nj + 1)r(k)(j, 0)

}

+
∑
j∈J

∑
m∈K

ξ(n + ej)θ(n + ej ;m)γj(m)µj(nj + 1)r(m)(j, 0)Rj(n + ej ;m, k)

+
∑
m∈K

ξ(n)θ(n;m)v(n;m, k).

(8.0.12)

According to Lemma 8.0.8 it holds for any k ∈ K

θ(n− ei; k)r(k)(0, i) = 0 = θ(n; k)r(k)(0, i), ∀i ∈ B(γ(k)),

θ(n− ei + ej ; k)γj(k)r(k)(j, i) = 0 = θ(n; k)γj(k)r(k)(j, i), ∀j ∈W (γ(k))

∧ i ∈ B(γ(k)).

From definition of γj(k) = 0⇐⇒ j ∈ B(γ(k)) follows

θ(n− ei + ej ; k)γj(k)r(k)(j, i) = 0 = θ(n; k)γj(k)r(k)(j, i), ∀j ∈ B(γ(k)),

θ(n + ej ; k)γj(k) = 0 = θ(n; k)γj(k), ∀j ∈ B(γ(k)).

From assumption (8.0.8) it follows

θ(n− ei; k) = θ(n; k), ∀i ∈W (γ(k)),

θ(n− ei + ej ; k) = θ(n; k), ∀i, j ∈W (γ(k)),

θ(n + ej ; k) = θ(n;m), ∀j ∈W (γ(k)).

Therefore we can replace all θ(n − ei; k), θ(n − ei + ej ; k), θ(n + ej ; k) in the global
balance equations (8.0.12) by θ(n; k) and obtain
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8. Environment changes dependent on queue lengths

θ(n; k)

[
ξ(n)

(∑
i∈J

β(k)λr(k)(0, i) +
∑
j∈J

1[nj>0]γj(k)µj(nj)(1− r(k)(j, j))
)]

= θ(n; k)

[∑
i∈J

ξ(n− ei)1[ni>0]β(k)λr(k)(0, i)

+
∑
i∈J

∑
j∈J\{i}

ξ(n− ei + ej)1[ni>0]γj(k)µj(nj + 1)r(k)(j, i)

+
∑
j∈J

ξ(n + ej)γj(k)µj(nj + 1)r(k)(j, 0)

]

−θ(n; k)
∑
j∈J

ξ(n + ej)γj(k)µj(nj + 1)r(k)(j, 0)

+
∑
j∈J

∑
m∈K

θ(n;m)ξ(n + ej)γj(m)µj(nj + 1)r(m)(j, 0)Rj(n + ej ;m, k)

+
∑
m∈K

ξ(n)θ(n,m)v(n;m, k).

(8.0.13)

In the same way as in the proof of Theorem 7.1.2 for each fixed environment state k
the terms in squared brackets are formulas (8.0.4) from Lemma 8.0.7, therefore they are
equal for the proposed measure ξ(n) =

∏J
j=1

∏nj
`=1

ηj
µj(`)

and we can cancel them.
Dividing by ξ(n) and canceling µj(nj + 1) we arrive at

0 = −θ(n; k)
∑
j∈J

ηjγj(k)r(k)(j, 0)

+
∑
j∈J

∑
m∈K

θ(n;m)ηjγj(m)r(m)(j, 0)Rj(n + ej ;m, k)

+
∑
m∈K

θ(n;m)v(n;m, k).

Rearranging terms we have

θ(n; k)
∑
j∈J

ηjγj(k)r(k)(j, 0)

=
∑
m∈K

θ(n;m)

v(n;m, k) +
∑
j∈J

ηjγj(m)r(m)(j, 0)Rj(n + ej ;m, k)

 ,

which finally leads for any prescribed k ∈ K to

0 =
∑
m∈K

θ(n;m)

v(n;m, k) +
∑
j∈J

ηjγj(m)r(m)(j, 0)(Rj(n + ej ;m, k)− δmk)

 .

(8.0.14)
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This can be written in matrix form as

0 = θ(n)

V (n) +
∑
j∈J

ηjI(γj•r(·)(j,0))(Rj(n + ej)− I)


︸ ︷︷ ︸

=Qred(n)

. (8.0.15)

So we have identified (8.0.7).
With ξ(n)θ(n; k) we found a non-zero and non-negative solution of the global balance

equations (8.0.11) of the process Z. Because Z is ergodic the normalization constant
C defined in (8.0.10) exists and π(n, k) = C−1ξ(n)θ(n; k) is the unique steady-state
distribution of the system.

Corollary 8.0.12. For any n the Qred(n) in Theorem 8.0.9 is a generator.

Proof. Qred(n) is defined as

Qred(n) := V (n) +
∑
j∈J

ηjI(γj•r(·)(j,0))(Rj(n + ej)− I). (8.0.16)

For any j ∈ J and any n ∈ NJ0 matrix ηjI(γj•r(·)(j,0))(Rj(n + ej) − I) can have negative
values only in its diagonal. Because all matrices Rj(n + ej) are stochastic the row sum
of the resulting matrix is 0:(

ηjI(γj•r(·)(j,0))(Rj(n + ej)− I)
)
e =

(
ηjI(γj•r(·)(j,0))(e− e)

)
= 0.

Therefore each matrix ηjI(γj•r(·)(j,0))(Rj(n+ej)−I) is a generator. Consequently for any

n ∈ NJ0 the matrix Qred(n), which is a sum of generators V (n) and
ηjI(γj•r(·)(j,0))(Rj(n + ej)− I), is the generator matrix of some Markov process.

In the following we will give some examples of systems with non-constant V (n) and
Rj(n). They are constructed in such a way that the solutions θ(n) of equations
θ(n)Qred(n) = 0 with Qred(n) defined by (8.0.7) have property (8.0.8).

Definition 8.0.13. We define a “masking” function ∆B which replaces nj in n by 0 if
node j is NOT blocked

∆B(n; k) :=

{
nj , γj(k) = 0⇐⇒ j ∈ B(γ(k)),

0, γj(k) 6= 0⇐⇒ j /∈ B(γ(k)).

Note, that ∆B implicitly depends on γ. Because the dependence will be clear from the
context, we omit this to simplify notation.
From the definition it follows

∆B(n; k) = ∆B(n′; k)⇐⇒ ∀j ∈ B(γ(k)) : nj = n
′
j

and
∆B(n; k) = ∆B(n + ej ; k), ∀j ∈W (γ(k)). (8.0.17)
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8. Environment changes dependent on queue lengths

Proposition 8.0.14. Given an environment set K = {1, 2} and functions

A : NJ0 ×K ×K → R+
0 ,

B : NJ0 ×K ×K → R+,

C : J × NJ0 ×K ×K → R+
0 ,

with
C(j,n, k,m) ≤ B(n, k,m), ∀j,n, k,m.

The entries of generators V (n) in Theorem 8.0.9 are set to

v(n; k,m) :=
A(∆B(n;m), k,m)

B(∆B(n; k), k,m)
for k 6= m.

The entries of stochastic matrices Rj(n) are set to

Rj(n + ej ; k,m) :=
C(j,∆B(n + ej ;m), k,m)

B(∆B(n; k), k,m)

Rj(n + ej ; k, k) := 1−Rj(n + ej ; k,m)

for k 6= m.

Then θ with

θ(n, 1) =

A(∆B(n; 1), 2, 1) +
∑
j∈J

ηjγj(2)r(2)(j, 0)C(j,∆B(n + ej ; 1), 2, 1)


·B(∆B(n; 1), 1, 2),

θ(n, 2) =

A(∆B(n; 2), 1, 2) +
∑
j∈J

ηjγj(1)r(1)(j, 0)C(j,∆B(n + ej ; 2), 1, 2)


·B(∆B(n; 2), 2, 1),

solves the equations θ(n)Qred(n) = 0 (8.0.7) and θ has property (8.0.8).

Proof. According to (8.0.7), the matrices Qred(n) ∈ RK×K are then

Qred(n) =

(
−Qred(n)12 Qred(n)12

Qred(n)21 −Qred(n)21

)
with

Qred(n)12 = v(n; 1, 2) +
∑
j∈J

ηjγj(1)r(1)(j, 0)Rj(n + ej , 1, 2)

=
A(∆B(n; 2)j , 1, 2) +

∑
j∈J ηjγj(1)r(1)(j, 0)C(∆B(n + ej ; 2), 1, 2)

B(∆B(n; 1), 1, 2)

=:
a(n, 1, 2)

b(n, 1, 2)
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and

Qred(n)21 = v(n; 2, 1) +
∑
j∈J

ηjγj(2)r(2)(j, 0)Rj(n + ej , 2, 1)

=
A(∆B(n; 1), 2, 1) +

∑
j∈J ηjγj(2)r(2)(j, 0)C(j,∆B(n + ej ; 1), 2, 1)

B(∆B(n; 2), 2, 1)

=:
a(n, 2, 1)

b(n, 2, 1)
.

For each n matrix Qred(n) has a form

Qred(n) =

(
−a(n,1,2)
b(n,1,2)

a(n,1,2)
b(n,1,2)

a(n,2,1)
b(n,2,1) −a(n,2,1)

b(n,2,1)

)
.

and vector
θ(n) := (a(n, 2, 1) · b(n, 1, 2), a(n, 1, 2) · b(n, 2, 1))

solves θ(n)Qred(n) = 0.
Using definition of a(n, 2, 1) and b(n, 2, 1) we get

θ(n, 1) =

A(∆B(n; 1), 2, 1) +
∑
j∈J

ηjγj(2)r(2)(j, 0)C(j,∆B(n + ej ; 1), 2, 1)


·B(∆B(n; 1), 1, 2),

θ(n, 2) =

A(∆B(n; 2), 1, 2) +
∑
j∈J

ηjγj(1)r(1)(j, 0)C(j,∆B(n + ej ; 2), 1, 2)


·B(∆B(n; 2), 2, 1).

We show that θ has property (8.0.8). We write a detailed proof for entries θ(n, 1). The
proof for θ(n, 2) is the same, but with 1 replaced by 2 and vice versa.
Let i ∈W (γ(1)) then it holds

θ(n + ei, 1)

=

A(∆B(n + ei; 1), 2, 1) +
∑
j∈J

ηjγj(2)r(2)(j, 0)C(j,∆B(n + ej + ei; 1), 2, 1)


·B(∆B(n + ei; 1), 1, 2). (8.0.18)

Due to property (8.0.17) of the masking function ∆B, we have for any i ∈W (γ(1)):

∆B(n + ei; 1) = ∆B(n; 1)

and ∆B(n + ej + ei; 1) = ∆B(n + ej ; 1).
(8.0.19)

Substituting (8.0.19) into (8.0.18) yields θ(n+ei, 1) = θ(n, 1) for any i ∈W (γi(1)), which
is property (8.0.8).
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8. Environment changes dependent on queue lengths

In the following Definition 8.0.15 we will model a Jackson network where a failure
of a single node immediately leads to freezing of the whole network system. Then an
exponentially distributed repair process depending only on the number of customers in
the system is started. As soon as the repair is finished, the work of the whole network in
unfrozen and the work is resumed.
Because failure (repair) and freezing (unfreezing) of the whole system happen simulta-

neously and the repair process does not need to “know” which node causes the failure, we
can only focus on freezing and unfreezing states of the network.

Definition 8.0.15 (Stalling). Given a Jackson network in a random environment from
Definition 8.0.5. The environment space K := {∅, J} describes the set of the down nodes.
Only two environment states are possible

• ∅ ∈ K if all nodes are up, the system is unfrozen.

• J ∈ K if all nodes are down , the system is frozen.

From definition of states in K, it follows γ(∅) := (1, . . . , 1) and γ(J) := (0, . . . , 0). We
assume value β ≡ 1 to be constant.
We assume the rerouting matrix r(∅)– when all nodes are up – to be irreducible. And

we require that the rerouting matrix is r(J) – when all nodes are down – is:

r(J) :=


0 (j : j ∈ J)

0 1 0

(J : j ∈ J)

 0
...
0


 1

. . .
1



 = I. (8.0.20)

Remark 8.0.16. We can choose the rerouting matrix r(J) rather general:

r(J) =

 0 (j : j ∈ J)

0 1 0

(J : j ∈ J) M0 MJ


with some stochastic matrix (M0|MJ) ∈ [0, 1]J×J0 . The important property of r(J) is
that (λ, 0, . . . , 0) is an invariant measure of r(J). For our stalling model we have chosen
the simplest version of r(J), given in (8.0.20).

Special case of the system from Definition 8.0.15 with Rj(n) = I, are Jackson networks
with stalling in described in [SD03a, Section 5.2]. That means, in [SD03a, Section 5.2],
the customers cannot enforce a breakdown of the network on departure.
In the following Corollary 8.0.17 we will use Proposition 8.0.14 to extend the model of

a degradable Jackson networks controlled by Stalling-principle from [SD03a, Section 5.2].
Using non-trivial matrices Rj(n) we will add the possibility to break down for the system
each times a customer leaves the system.

Corollary 8.0.17. Consider an ergodic degradable Jackson network on a node set J from
Definition 8.0.15.
The failure rates, which are independent from the arrival and service process, are

νfailure(n) ∈ R+
0 , the repair rates are νrepair(n) ∈ R+. The queueing system fails with the
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probability pfailure(j,n) ∈ [0, 1] at a time instant when customer leaves the network from
the node j and there were n customers in the system right before.
Then the steady-state distribution π(n, k) is

π(n, ∅) = C−1ξ(n),

π(n, J) = C−1ξ(n)
νfailure(n) +

∑
j∈J ηjr

(∅)(j, 0)pfailure(j,n + ej)

νrepair(n)
,

(8.0.21)

with the normalization constant

C =
∑
n∈NJ0

ξ(n)

(
1 +

νfailure(n) +
∑

j∈J ηjr
(∅)(j, 0)pfailure(j,n + ej)

νrepair(n)

)
<∞. (8.0.22)

Remark 8.0.18. The νrepair of the ergodic system must be positive. Assume there is some
n′ such that vrepair(n′) is 0, then the system may never leave the state (n′, J) with all
blocked nodes. The absorbing state (n′, J) contradicts the ergodicity assumption.
If all pfailure(j,n) = 0 then we have a system from [SD03a, Theorem 5.5]. In this case

also the rates νfailure must be positive. Assume there is some n′ such that νfailure(n′) = 0
then the system will never reach the inessential state (n′, J) again when it has departed
from its communicating class.

Proof of Corollary 8.0.17. With γ(∅) = (1, . . . , 1), γ(J) = (0, . . . , 0), and β = 1 it holds

α(∅) = γ(∅) = (1, . . . , 1),

α(J) = γ(J) = (0, . . . , 0).

We show that rerouting matrix r(·) satisfies routing properties from Definition 8.0.3.
We need to determine the positive vector η = (ηj : j ∈ J0) with η0 = λ and show that
(αj(k)ηj : j ∈ J0) is an invariant measure of r(k) for k ∈ {∅, J}.
The stochastic matrix r(∅) is irreducible, therefore there exists a unique positive invari-

ant measure η with ηr(∅) = η and η0 = λ. Obviously the vector (αj(∅)ηj : j ∈ J0) = η is
an invariant measure of r(∅). The vector (αj(J)ηj : j ∈ J0) = (λ, 0, . . . , 0) is an invariant
measure of the matrix r(J) = I.
Following Proposition 8.0.14 with 1=̂∅ and 2=̂J we define

A(n, ∅, J) = νfailure(n), A(n, J, ∅) = 1,

B(n, ∅, J) = 1, B(n, J, ∅) = νrepair(n)−1,

C(j,n, ∅, J) = pfailure(j,n),

C(j,n, J, ∅) = 0.

It holds

v(n; ∅, J) :=
A(∆B(n; J), ∅, J)

B(∆B(n; ∅), ∅, J)
=
A(n, ∅, J)

B(0, ∅, J)
=
νfailure(n)

1
,

v(n; J, ∅) :=
A(∆B(n; ∅), J, ∅)
B(∆B(n; J), J, ∅)

=
A(0,J, ∅)
B(n, J, ∅)

=
1

νrepair(n)−1
.
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8. Environment changes dependent on queue lengths

V (n) =

 ∅ J

∅ −νfailure(n) νfailure(n)

J νrepair(n) −νrepair(n)

 .

Rj(n + ej ; ∅, J) :=
C(j,∆B(n + ej ; J), ∅, J)

B(∆B(n; ∅), ∅, J)
=
C(j,n + ej , ∅, J)

B(0, ∅, J)
=
pfailure(j,n + ej)

1
,

Rj(n + ej ; J, ∅) :=
C(j,∆B(n + ej ; ∅), J, ∅)

B(∆B(n; J), J, ∅)
=
C(j,0, J, ∅)
B(n, J, ∅)

=
0

1
= 0.

Rj(n) =

 ∅ J

∅ 1− pfailure(j,n) pfailure(j,n)

J 0 1

 .

θ(n; ∅) =

A(∆B(n; ∅), J, ∅) +
∑
j∈J

ηj γj(J)︸ ︷︷ ︸
=0

r(J)(j, 0)C(j,∆B(n + ej ; ∅), J, ∅)


·B(∆B(n; ∅), ∅, J)

= A(0, J, ∅)B(0, ∅, J) = 1, (8.0.23)

θ(n; J) =

A(∆B(n; J)︸ ︷︷ ︸
=n

, ∅, J) +
∑
j∈J

ηj γj(∅)︸ ︷︷ ︸
=1

r(∅)(j, 0)C(j,∆B(n + ej ; J)︸ ︷︷ ︸
=n+ej

, ∅, J)


·B(∆B(n; J)︸ ︷︷ ︸

=n

, J, ∅)

=
νfailure(n) +

∑
j∈J ηjr

(∅)(j, 0)pfailure(j,n + ej)

νrepair(n)
. (8.0.24)

The solution θ is not negative and not zero: In (8.0.23) and (8.0.24) we see that all
entries of vector θ are not negative. From (8.0.23) we conclude that at least one entry of
θ, namely θ(n; ∅), is not zero.
The normalization constant is

C =
∑
n∈NJ0

∑
k∈{∅,J}

ξ(n)θ(n; k) =
∑
n∈NJ0

ξ(n)
(
θ(n; ∅) + θ(n; J)

)
.

The unique steady-state distribution (8.0.21) follows from Theorem 8.0.9.

Corollary 8.0.19 ([SD03a, Theorem 6.4]). Consider an ergodic degradable Jackson-
Network on a node set J as defined in Definition 8.0.5. The environment space K = 2J

describes the sets of the down nodes. The rerouting matrix r(∅), when all nodes are up, is
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irreducible. The rerouting matrix r(k) is r(α(k)) from Section 7.1 created from r(∅) using
the skipping regime. Furthermore we define non-negative function

A :
⋃

k∈K\∅

(
{k} × Nk

)
∪ {∅} −→ R+

0 ,

B :
⋃

k∈K\∅

(
{k} × Nk

)
∪ {∅} −→ R+

0 .

For k = ∅ we define
A(∅) := B(∅) := 1.

The generators V (n) describe break down rates

v(n; k,m) :=
A(m,nj : j ∈ m)

A(k, nj : j ∈ k)
, k ( m,

and repair rates

v(n; k,m) :=
B(k, nj : j ∈ k)

B(m,nj : j ∈ m)
, k ) m.

Here we use 0
0 = 0.

We assume that the customers cannot change environment when they leave the queueing
system:

Rj(n) = I ∀j ∈ J,n ∈ NJ .

Further we define β(k) := 1 for all k ∈ K and

γj(k) =

{
0 if j ∈ k
1 if j /∈ k

∀k ∈ K.

Therefore

αj(k) = γj(k) =

{
0 if j ∈ k
1 if j /∈ k

∀k ∈ K.

Then the steady-state distribution π has the form

π(n, k) = C−1
J∏
j=1

nj∏
`=1

ηj
µj(`)

A(k, nj : j ∈ k)

B(k, nj : j ∈ k)
(8.0.25)

with normalization constant

C−1 :=
∑
n∈NJ0

J∏
j=1

nj∏
`=1

ηj
µj(`)

(∑
k∈K

A(k, nj : j ∈ k)

B(k, nj : j ∈ k)

)
<∞.

Proof. Let η is a unique positive invariant measure of the equation ηr(∅) = η. Due to
the construction of the matrices r(k) from r(∅) using skipping rule (αj(k)ηj : j ∈ J0) is
an invariant measure of r(k). We define

θ(n, k) :=
A(k, nj : j ∈ k)

B(k, nj : j ∈ k)
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8. Environment changes dependent on queue lengths

and show that it solves the equation θ(n)Qred(n) = 0. Instead of the matrix representa-
tion of Qred(n) in (8.0.7) we show that θ(n, k) solves the equations (8.0.14) for all n and
k

0 =
∑
m∈K

θ(n;m)
(
v(n;m, k) +

∑
j∈J

ηjγj(m)r(α(m))(j, 0)(Rj(n + ej ;m, k)︸ ︷︷ ︸
=δmk

−δmk)
)

⇐⇒ 0 =
∑
m∈K

θ(n;m)v(n;m, k). (8.0.26)

The last equation (8.0.26) holds because for any k ( m

θ(n; k)v(n; k,m) = ((((((((
A(k, nj : j ∈ k)

B(k, nj : j ∈ k)
· A(m,nj : j ∈ m)

((((((((
A(k, nj : j ∈ k)

=
A(m,nj : j ∈ m)

B(k, nj : j ∈ k)
· 1

=
A(m,nj : j ∈ m)

B(k, nj : j ∈ k)
· B(k, nj : j ∈ m)

B(k, nj : j ∈ m)
= θ(n,m)v(n;m, k).

Finally for any θ(n, k) it holds

θ(n, k) :=
A(k, nj : j ∈ k)

B(k, nj : j ∈ k)
= θ(n + ej , k), ∀j /∈ k.

Because k = B(γ(k)), vector θ(n) satisfies the condition (8.0.8).
The vector θ is not zero: By definition of function A(∅) and B(∅) the value θ(n, ∅) is

1.
According to Theorem 8.0.9 for the steady-state solution of the system considered in

this corollary it holds π(n, k) = C−1ξ(n)θ(k) with normalization constant C−1.

Corollary 8.0.20 ([SD03a, Theorem 5.2]). Consider an ergodic degradable Jackson-
Network on a node set J satisfying the condition of Theorem 8.0.9. The environment
state space K, generators V (n), stochastic matrices Rj(n), functions γ(k) and β(k) as in
Corollary 8.0.19, irreducible reversible routing matrix r(∅). The rerouting matrix r(k) is
r(α(k)) from Section 7.2, constructed by applying the randomize reflection regime to r(∅).
Then the steady-state distribution of the system π(n, k) is (8.0.25) from Corollary 8.0.19.

Proof. The proof is the same as in Corollary 8.0.19, with the only difference, that we
have a reversible matrix r(∅) and construct r(k) using randomized reflection. We define
again η to be a unique solution of the steady-state equation ηr(∅) = η with η0 = λ.
Due to construction of rerouting matrices r(k), for each k it has an invariant measure
(αj(k)ηj : j ∈ J0). The rest of the proof is the same as in Corollary 8.0.19.
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A.1. General results

In our main Theorem 3.1.16 in part (c) we required the matrix (λIW −V ) to be invertible.
A.2.2 and A.2.3 provided the most important general framework for the invertibility,
referring to technical lemmata for matrix algebra which will be proved now.
These technical lemmata do not require the respective matrices to be irreducible. Since

we are interested in systems with reducible matrices V which appear e.g. in inventory
models (see Example 3.1.18, Proposition 3.3.1 and Proposition 3.3.2), we have to modify
especially the proof of invertibility for finite irreducible matrices which can be found e.g.
in [Kan05, Lemma 4.12]. The first lemma is the key to the invertibility property in case
of finite K, and is therefore of independent interest.
The following definition is equivalent to the definition of essentially diagonally dominant

matrix from [Hac91, Hac94, Definition 6.4.8] for finite matrices. We adapted it to our
notations and problems.

Definition A.1.1. Let M be a matrix from KK×K where the set K of indices is parti-
tioned according to K = KW ] KB, KW 6= ∅, whose diagonal elements have following
properties:

|Mkk| =
∑

m∈K\{k}

|Mkm| ∀k ∈ KB, (A.1.1)

|Mkk| >
∑

m∈K\{k}

|Mkm| ∀k ∈ KW , (A.1.2)

and the flow condition holds

∀K̃B ⊂ KB, K̃B 6= ∅ : ∃ k ∈ K̃B, m ∈ K̃c
B : Mkm 6= 0. (A.1.3)

Then we call the matrix M essentially diagonally dominant .

Remark A.1.2. Consider the directed transition graph of M , with vertices K and edges
E defined by km ∈ E ⇐⇒ Kkm > 0. Then the condition (A.1.3) guarantees the existence
of a path from any vertex in KB to a some vertex in KW .

Lemma A.1.3. Let M ∈ KK×K be an essentially diagonal dominant matrix with |K| <
∞ then M is invertible.

Proof. We prove the lemma by contradiction, and let x = (xk : k ∈ K) be a vector with

Mx = 0 with x 6= 0. (A.1.4)
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The property Mx = 0 leads for all k ∈ K to

−Mkkxk =
∑

m∈K\{k}

Mkmxm

=⇒ |Mkk||xk| ≤
∑

m∈K\{k}

|Mkm||xm|

=⇒ |Mkk|
|xk|
||x||∞

≤
∑

m∈K\{k}

|Mkm|
|xm|
||x||∞︸ ︷︷ ︸
≤1

≤
∑

m∈K\{k}

|Mkm|. (A.1.5)

We denote by J the set of indices of elements xk of x with the largest absolute value

J := {k ∈ K| |xk| = ||x||∞}.

Because of x 6= 0 and |K| <∞ the set J is non empty.
First we show that

∀k ∈ KW : |xk| < ||x||∞ (A.1.6)

holds, which implies
KW ⊂ Jc. (A.1.7)

For KB = ∅ the proof is complete because we have

K = KW ⊆ Jc $ K,

and so we proceed with the proof for KB 6= ∅.
From (A.1.5) and (A.1.2) it follows for all k ∈ KW

|Mkk|
|xk|
||x||∞

≤
∑

m∈K\{k}

|Mkm| < |Mkk|

=⇒ |Mkk|
|xk|
||x||∞

<|Mkk|. (A.1.8)

The inequality (A.1.8) is valid if and only if |xk|
||x||∞ is strictly less than 1, which implies

|xk| < ||x||∞ and therefore (A.1.7).

KB JJKW

Figure A.1.1.: Sets in Lemma A.1.3. The set KB is gray.

Next, we analyze the set J ⊂ KB. For k ∈ J we examine the kth row of the equation
Mx = 0.
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For all k ∈ J it follows from (A.1.5)

|Mkk| ≤
∑

m∈K\{k}

|Mkm|
|xm|
||x||∞︸ ︷︷ ︸
≤1

≤
∑

m∈K\{k}

|Mkm| ≤ |Mkk|

=⇒
∑

m∈K\{k}

|Mkm|
|xm|
||x||∞︸ ︷︷ ︸
≤1

=
∑

m∈K\{k}

|Mkm|. (A.1.9)

Because |xm|
||x||∞ is strictly less than 1 for all m ∈ Jc, the inequality (A.1.9) yields

Mkm = 0, ∀k ∈ J,m ∈ Jc.

Since KW ⊂ Jc we have a contradiction to the existence of a path of positive values
Mkm from k ∈ J ⊂ KB to KW which is guaranteed by (A.1.3).

Example A.1.4. This example provides a matrix M which fulfills the requirements of
Lemma A.1.3 and is therefore invertible It is neither irreducible nor strictly diagonal
dominant. We set λ > 0, ν > 0, all other entries are zero. Figure A.1.2 on page 198
shows the resulting flow graph according to Remark A.1.2.
M =

1 ∈ KW 2 ∈ KW 3 ∈ KB 4 ∈ KB 5 ∈ KB 6 ∈ KB

1 ∈ KW λ
2 ∈ KW (λ+ ν) −ν
3 ∈ KB −ν ν
4 ∈ KB −ν 2ν −ν
5 ∈ KB −ν ν
6 ∈ KB −ν ν


.

Note, that this matrix is of the form M = λIW − V with V =

1 ∈ KW 2 ∈ KW 3 ∈ KB 4 ∈ KB 5 ∈ KB 6 ∈ KB

1 ∈ KW 0
2 ∈ KW −ν ν
3 ∈ KB ν −ν
4 ∈ KB ν −2ν ν
5 ∈ KB ν −ν
6 ∈ KB ν −ν


,

and fits therefore exactly into the realm of our investigations of loss systems in a random
environment.

For infinite K we have the following results.

Proposition A.1.5. Let M ∈ RK×K , be a linear operator on `∞(RK). If for all k ∈ K
holds |Mkk| ≥

∑
m∈K\{k} |Mkm| + ε for some ε > 0 and supk∈K |Mkk| < ∞ ,then M is

invertible.
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KW KB

1

2

3

4

5

6

Figure A.1.2.: Graph from example according to Remark A.1.2.

Proof. (1) Assume Mkk > 0 for all k ∈ K. Define β := 1
supk∈KMkk

, then it holds

||I − βM ||∞ = sup
k∈K

|1− βMkk︸ ︷︷ ︸
≤1

|+ β
∑

m∈K\{k}

|Mkm︸ ︷︷ ︸
≤Mkk−ε

|

 (A.1.10)

≤ sup
k∈K

(1− βMkk + β(Mkk − ε)) < 1. (A.1.11)

Thus M is invertible and it holds

M−1 = β

∞∑
n=0

(I − βM)n.

(2) We define a matrix S with

Skm =


1 for k = m, Mkk > 0,

−1 for k = m, Mkk < 0,

0 otherwise.
(A.1.12)

Then S is a bounded invertible operator with S−1 = S. According to (1) SM is invertible
and it holds M−1 = (SSM)−1 = (SM)−1S−1 = (SM)−1S.

Lemma A.1.6. Let M ∈ RK×K , be a linear operator on `∞(RK) where the set of indices
is partitioned according to K = KW ]KB, KW 6= ∅, and |KB| < ∞, with the following
properties:

Flow condition: Define a directed graph (K, E) by

(k,m) ∈ E :⇔M(k,m) 6= 0.

Then for any k ∈ KB there exists some m = m(k) ∈ KW such that there exists a directed
path of finite length in (K, E) from k to m.

The sequence |Mmm|,m ∈ K, is bounded. (A.1.13)

198



A.1. General results

|Mkk| =
∑

m∈K\{k}

|Mkm|, ∀k ∈ KB. (A.1.14)

sup
k∈KW

∑
m∈K\{k}

|Mkm| =: ND(KW ) <∞. (A.1.15)

There exists some ε(KW ) > 0 such that

inf
m∈KW

|Mmm| = ND(KW ) + ε(KW ) (A.1.16)

holds.
Then M is injective.

Proof. In the case KB = ∅ the matrixM is strictly diagonal dominant and thus invertible
according to Proposition A.1.5.
Let x = (xk : k ∈ K) ∈ `∞(RK) be any vector with

Mx = 0 with x 6= 0. (A.1.17)

(a) To show that
∀k ∈ KW : |xk| < ||x||∞ (A.1.18)

holds, is a word-by-word analogue of that property in the proof of Lemma A.1.3.
(b) We show: {|xk| : k ∈ KW } is uniformly bounded away from ||x||∞ from below.
The property Mx = 0 leads for all k ∈ K to

−Mkkxk =
∑

m∈K\{k}

Mkmxm =⇒

|Mkk||xk| ≤
∑

m∈K\{k}

|Mkm||xm| ≤ ||x||∞
∑

m∈K\{k}

|Mkm| ≤ ||x||∞ND(KW ),

and therefore

|xk| inf
m∈KW

|Mmm| ≤ ||x||∞ND(KW ) =⇒

|xk| ≤
ND(KW )

infm∈KW |Mmm|
||x||∞ =

1− ε(KW )

ND(KW ) + ε(KW )︸ ︷︷ ︸
∈(0,1)

 ||x||∞.
(c) We show: J := {k ∈ K : |xk| = ||x||∞} 6= ∅ and KW ⊂ Jc.
The second property follows from (b), while the first property holds, because the set
{|xk| : k ∈ KW } is uniformly bounded away from ||x||∞ from below and KB is finite, so
there must exist some k(0) ∈ KB where |xk(0)| = ||x||∞ is attained.
(d) To show that

Mkm = 0, ∀k ∈ J,m ∈ Jc

holds, is a word-by-word analogue of that property in the proof of Lemma A.1.3. Therefore
the flow condition is violated and we have proved the theorem.
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A.2. Application to λIW − V
The proof of the following lemma and proposition exploit the the structure of matrix
(λIW − V ), where λ, IW , and V are parameters of an ergodic in continuous time loss
system . We emphasize that the generator V is not necessarily irreducible.

Lemma A.2.1. Let Z be ergodic. Then for any non-empty subset K̃B ⊂ KB the overall
V -transition rate from K̃B to its complement K̃c

B = K \ K̃B is positive, i.e.,

∀ K̃B ⊂ KB, K̃B 6= ∅ : ∃ k ∈ K̃B,m ∈ K̃c
B : v(k,m) > 0. (A.2.1)

Remark. Consider the directed transition graph of V , with vertices K and edges E defined
by km ∈ E ⇐⇒ v(k,m) > 0 . Then the condition (A.2.1) guarantees the existence of a
path from any vertex in KB to a some vertex in KW . See Remark A.1.2.

Proof. (of Lemma A.2.1) Fix K̃B and suppose the system is ergodic and it is started with
Z(0) = (0, k), for some k ∈ K̃B, i.e., with an empty queue and in an environment state k
which blocks the arrival process. From ergodicity it follows that for some m ∈ KW must
hold

P (Z(σ1) = (1,m)|Z(0) = (0, k)) > 0,

because there is a positive probability for the first arrival of some customer admitted into
the system.
Because no arrival is possible if m ∈ KB, necessarily m ∈ KW holds, and because

up to σ1− no departure or arrival could happen, the only possibility to enter m is by a
sequence of transitions triggered by V . Because Z is regular this sequence is finite with
probability 1. The path from k ∈ K̃B to m ∈ KW of the directed transition graph of V
contains an edge k1k2 ∈ E with k1 ∈ K̃B and k2 ∈ K̃c

B.

Proposition A.2.2. Let Z be ergodic with finite environment space K, and V be the
associated generator driving the continuous changes of the environment. Then for any
λ > 0 the matrix (λIW − V ) is invertible.

Proof. Follows from Lemma A.2.1 and Lemma A.1.3.

Proposition A.2.3. Let Z be ergodic with environment space K partitioned according
to K = KW ]KB, with KW 6= ∅, and with |KB| < ∞, and λ > 0 such that λIW − V is
surjective on `∞(RK).
Let the generator matrix V := (v(k,m) : k,m ∈ K) ∈ RK×K be uniformizable, i.e. it

holds infk∈K v(k, k) > −∞.
Then the matrix λIW − V is invertible.

Proof. It is immediate, that λIW − V fulfills the assumptions (A.1.14), (A.1.15), and
(A.1.16) of Lemma A.1.6 with ε(KW ) = λ. The flow condition holds in this setting from
the ergodicity of the continuous time process with arguments similar to those in the proof
of Lemma 3.1.1. We conclude that M is injective.
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Ẑ, embedded Markov chain
M/G/1/∞, inventory, 112
M/M/1/∞, 90
product-form M/G/1/∞, 122

Zµ=∞, stochastic process in continuous
time, 21

ZNL, queueing system in random envi-
ronment without loss of custo-
mers, 35

zero service time, 21
ζn, stopping time, 90, 122

213





Addenda required by §7 of the doctoral
degree regulations of the MIN Faculty

Abstract

Queueing networks with product-form steady-state distribution have found many fields of
applications, e.g. production systems, telecommunications, and computer system model-
ing. The success of this class of models and its relatives stems from the simple structure
of the steady-state distribution which provides access to easy performance evaluation
procedures. Starting from the work of Jackson [Jac57] various generalizations have been
developed.
In real world queueing systems are not isolated and interact with their environment.

Adding a random environment to a model usually makes the model more realistic but also
more complex to analyze. Nevertheless, under some conditions it is still possible to obtain
analytical results. A branch of research which recently has found interest are queueing
networks in a random environment with product form steady-state distributions.
The main theoretical contributions of this thesis are twofold: (i) We develope a general

theory that comprise models with stationary product-form distribution in inventory the-
ory in [Sch04] and Jackson networks with unreliable nodes with stationary product-form
distribution in [Sau06]. An important property of the resulting general model is that the
queueing system and the environment interact in both directions: the queues can influ-
ence the environment and the environment can influences the queues. (ii) With respect
to applications we show how different models known from literature can be interpreted in
terms of the general theory, construct new models in various applications, and develope
an approximation method.
In Part I we analyze single-queue systems. In Section 1 we introduce a loss system.

In Section 2 we generalize product form lost-sales inventory models from [Sch04] and
several other published papers with related models as a loss system with exponential
service time. The term loss means that customers get lost when the environment stays in
some special states – the blocking states. In Section 2.1.4 we develop an approximation
method for system without loss of customers based on loss systems. In Section 2.2 we
apply our loss system results in fields different from inventory management: we analyze
in detail an unreliable server with preventive maintenance in Section 2.2.4, a node of
a wireless sensor network in Section 2.2.5, and a crusher station in open-pit mining
in Section 2.2.6.
In Section 3 we analyze the Markov chain embedded at departure instants of the loss

system. The embedded Markov chains are an important tool for analyzing queueing sys-
tem with general service times – the M/G/1/∞ queues. The famous and frequently used
result in classicalM/G/1/∞ theory is that the steady-state distribution of anM/G/1/∞
system as continuous time process and as embedded Markov chain, observed at depar-
ture times, are the same. We show that this is in general not true for the steady-state
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distribution of loss systems. We use an embedded Markov chain analysis to extend our
results from Section 2 to some loss systems with general service times.
In Part II we extend our results for a single-queue loss system to Jackson networks in

a random environment. We replace the concept of loss of customers by special rerouting
regimes. We establish a connection between these rerouting regimes and randomized ran-
dom walks. In Section 8 we consider systems where the interaction between environment
and queuing system depend on the number of customers in the system. This exten-
sion finally allows us to include results about Jackson networks with unreliable nodes
from [Sau06] as special cases.
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Zusammenfassung

Warteschlangennetze, deren stationäre Verteilung eine Produktform hat, sind in unter-
schiedlichen Bereichen angewendet worden, zum Beispiel: Produktionssysteme, Telekom-
munikation und Modellierung von Rechnersystemen. Ihren Erfolg haben sie ihrer einfa-
chen Struktur der stationärer Verteilung zu verdanken. Sie vereinfacht die Analyse von
Leistungskenngrößen der zu modellierenden Systeme. Aufbauend auf der grundlegenden
Arbeit von Jackson [Jac57] wurden weitere Verallgemeinerungen entwickelt.
In der realen Welt sind Warteschlangensysteme nie isoliert. Sie befinden sich in einer

Umgebung, mit der sie interagieren. Das Hinzufügen einer Umgebung zu einem reinen
Warteschlangenmodell führt häufig zu einem besseren Gesamtmodell. Gleichzeitig wird
die mathematische Analyse dieses Modells schwieriger und komplexer. Unter speziellen
Bedingungen ist es dennoch möglich, für derartige Systeme analytische Lösungen zu er-
halten. Viele solche Systeme, gehören zu Warteschlangennetzwerken in einer zufälligen
Umgebung, deren stationäre Verteilung eine Produktform hat.
Die Hauptbeiträge dieser Dissertation liegen in zwei Bereichen: (i) Wir entwickeln eine

allgemeine Theorie, die Modelle mit stationärer Produktformverteilung aus den Lager-
haltungsmodellen aus [Sch04] und Jackson-Netzwerke mit unzuverlässigen Knoten mit
stationärer Produktformverteilung aus [Sau06] gleichzeitig umfaßt. Eine wichtige Eigen-
schaft dieses allgemeinen Modells ist, dass die Warteschlangensysteme und die Umgebung
sich gegenseitig beeinflussen: die Warteschlangen können die Umgebung beeinflussen und
die Umgebung die Warteschlangen. (ii) Auf Anwendungen bezogen, zeigen wir, dass viele
aus der Literatur bereits bekannte Modelle sich mit Hilfe dieser allgemeinen Theorie dar-
stellen lassen. Wir stellen neue Modelle für unterschiedliche Bereiche vor und entwickeln
ein Näherungsverfahren.
In Teil I untersuchen wir Systeme mit einer einzigen Warteschlange. In Abschnitt 1 stel-

len wir ein Verlustsystem (loss system) vor . In Abschnitt 2 verallgemeinern wir Lagerhal-
tungsmodelle mit Kundenverlust aus [Sch04] und mehrere ähnliche publizierte Modelle.
Diese Verallgemeinerung bezeichnen wir als Verlustsystem. Der Bergriff Verlust (loss)
bezieht sich auf die Modellannahme, dass Kunden verlorengehen, solange die Umgebung
in sogenannten blockierenden Zuständen ist. In Abschnitt 2.1.4 entwickeln wir ein Nä-
herungsverfahren für Systeme ohne Kundenverlust, das auf Systemen mit Kundenverlust
basiert. In Abschnitt 2.2 nutzen wir Ergebnisse für Verlustsysteme in anderen Bereichen
außerhalb der Lagerhaltung: wir untersuchen detailliert ein Warteschlangensystem mit
einem unzuverlässigen Bediener mit präventiver Wartung in Abschnitt 2.2.4, einen Kno-
ten in einem drahtlosen Sensornetzwerk in Abschnitt 2.2.5 und eine Zerkleinerungsanlage
im Bergbau in Abschnitt 2.2.6.
In Abschnitt 3 untersuchen wir eingebettete, zu Kundenabgangszeiten beobachtete,

Markov-Ketten von Verlustsystemen. Eingebetteten Markov-Ketten sind ein wichtiges
Werkzeug für die Untersuchung der Warteschlangensysteme mit allgemeinen Bedien-
zeitverteilungen, das heißt Warteschlangensysteme vom Typ M/G/1/∞. Ein bekann-
tes und häufig benutztes Ergebnis in der klassischen M/G/1/∞ Theorie ist, dass für
ein M/G/1/∞ System die stationären Verteilungen des Prozesses in stetiger Zeit und
dijenige der eingebetteten Markov-Kette, betrachtet zu Kundenabgangszeiten, überein-
stimmen. Wir zeigen, dass dies für die stationären Verteilungen eines Verlustsystems im
Allgemeinen nicht gilt. Wir benutzen Markov-Ketten-Methoden um unsere Ergebnisse für
exponentielle Bedienzeiten aus Abschnitt 2 in einigen Fällen auf Systeme mit allgemeiner

217



Addenda required by §7 of the doctoral degree regulations of the MIN Faculty

Bedienzeit zu erweitern.
In Teil II erweitern wir unsere Ergebnisse für Verlustsysteme mit einer Warteschlange

zu Jackson-Netzwerken in zufälliger Umgebung. Wir ersetzen das Konzept des Kunden-
verlustes durch spezielle Reroutingregeln. Wir stellen einen Zusammenhang her zwischen
unterschiedlichen Reroutingregeln und randomisierten Irrfahrten. Zum Schluss, in Ab-
schnitt 8, erlauben wir zusätzlich, dass die Wechselwirkung zwischen der Umgebung und
dem Warteschlangennetz von der Kundenzahl im Gesamtsystem abhängen kann. Diese
Erweiterung ermöglicht es, die Ergebnisse über Jackson-Netzwerke mit unzuverlässigen
Knoten aus [Sau06] als Spezialfälle der gemeinsamen Theorie zu erfassen.

218



List of publications derived from the dissertation

Parts of this thesis are or will be published as following preprints and articles:

1. [KD12] – preprint about loss systems in continuous time.

2. [KD13b] – preprint about loss systems analyzed with embedded Markov chains.

3. [KD13a] – preprint. It is extension and unification [KD12] and [KD13b]. We added
analysis of unreliable M/M/1/∞ queueing system with control of repair and main-
tenance.

4. [KD14] – paper for MMB & DFT 2014 conference. It is about application of a loss
system for modeling of a node in a wireless network.

5. [KDO14] – preprint. It is an extension of loss-system results for single-queue systems
to Jackson networks. We discuss there the connection to random walk problems
and sampling methods for simulation of stochastic processes in discrete state space.

6. [KD15a] – journal article, it is a shortened version of [KD12] (systems with constant
input rate λ).

7. [KD15b] – paper for MMBnet2015 conference. It contains the unreliableM/M/1/∞
queueing system with control of repair and maintenance from [KD13a] with some
extensions and improvements

8. [KDO16] – journal article. It contains parts from [KDO14] focused on the section
Jackson networks in a random environment.

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Hamburg, den 09.02.2016 Ruslan Krenzler

219


	Acknowledgments
	Introduction
	Birth-death-loss processes in a random environment
	Introduction
	Loss systems in continuous time
	The exponential model
	The M/M/1/ model
	Steady-state distribution
	Limiting case

	Finite capacity loss systems
	Loss systems and matrix-geometric methods
	Approximation of systems with no loss
	Stability of the model with no loss
	Loss system approximation
	Properties of the loss-system approximation


	Applications
	Inventory models
	Unreliable servers
	Tandem system with finite intermediate buffer
	Unreliable M/M/1/ queueing system with control of repair and maintenance
	Model
	Average costs

	Modeling and performance analysis of a node in fault tolerant wireless sensor networks
	Introduction
	Model description
	Steady-state behavior
	Extensions and refinements

	Crusher station in open-pit mining
	Model without loss
	Evaluation of loss-system approximation



	Embedded Markov chains analysis
	M/M/1/ queueing system in a random environment
	Observing the system at departure instants
	Steady state for the system observed at departure instants

	M/G/1/ queueing system in a random environment
	M/G/1/ queueing systems with state dependent service intensi-ties
	M/G/1/ system with inventory under lost sales
	M/G/1/ queueing systems with state dependent service intensities and product-form steady state

	Applications
	Systems with exponential service requests
	Systems with non-exponential service requests



	Product-form networks
	Introduction
	Randomized random walks
	Randomized skipping
	Transition matrix
	Stationary distribution

	Randomized reflection
	Transition matrix and stationary distribution

	Discussion of randomization algorithms
	General sampling schemes
	Importance sampling
	Comparison of randomized skipping and randomized reflection


	Modified Jackson networks
	Modifications: Upgraded and/or degraded service and adapted routing

	Jackson networks in a random environment
	Rerouting by randomized skipping
	Rerouting by randomized reflection
	Rerouting by general randomization

	Environment changes dependent on queue lengths
	Inversion of IW-V
	General results
	Application to IW-V

	Bibliography
	Index
	Addenda required by the doctoral degree regulations
	Abstract
	Zusammenfassung
	List of publications derived from the dissertation



