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Abstract

The Cloud technology offers several attractive features for a number of applications.
Nevertheless, managing, controlling processes and resources are among the serious ob-
stacles that Cloud application developers need to overcome. These issues increase when
the execution of processes needs to exploit services from different Cloud providers to
fulfill application requests and requirements. In this case, Cloud application developers
need to deal with some critical problems like communication, coordination, collabo-
ration and heterogeneity between all kinds of participants. Designing, building and
managing Cloud systems and applications running in the Cloud are challenging issues.
Powerful and expressive software systems have to be provided, which are required to
handle the complexity of such Cloud systems.

This dissertation contributes at different stages to enhance the development of Cloud-
based applications with an emphasis on processes. Several contributions provided here
concerns the modeling phase. New modeling techniques and tools based on Petri net
formalisms are provided. Furthermore, agents and workflows provide intuitive and
powerful concepts to bring more intelligence and structure to the Cloud system. The
features of agents and workflows are suitable for designing and implementing software
systems that operate in distributed and open environments such as the Clouds. The
main goal of this thesis is to propose means like modeling techniques, methods, tools
and architectural design to facilitate the integration of Cloud and multi-agent systems
concepts and technologies for managing workflows in distributed service-oriented
environments, explicitly, in an Inter-Cloud environment.
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Zusammenfassung

Die Cloud Technologie bietet zahlreiche, attraktive Funktionen für eine Reihe von
Anwendungen. Nichtsdestotrotz sind sowohl schwierige Verwaltung, als auch die
komplizierte Handhabung von Prozessen und die jeweiligen Ressourcen noch Hin-
dernisse, die die Entwickler von Cloud Anwendungen überwinden müssen. Diese
Probleme treten vermehrt auf, wenn das Verfahren in seiner Ausführung auf Dienste
unterschiedlicher Cloud Anbieter zugreifen muss, um die Anwendungsanfragen und
-anforderungen zu gewährleisten. Zu diesem Zweck sollten Entwickler von Cloud
Anwendungen sich eingehend mit solch kritischen Problemen beschäftigen, indem
man dem Zusammenspiel von Kommunikation, Koordination, Zusammenarbeit und
Heterogenität der TeilnehmerInnen nachgeht. Die Aufmachung des Designs, die Art
und Weise der Implementierung und Verwaltung von Cloud Systemen, als auch die
einzelnen Anwendungen, die in der Cloud laufen, sind herausfordernde, wichtig zu
gestaltende Kernpunkte. Ziel müssen leistungsstarke Softwaresysteme sein, die in der
Lage sind solch komplizierte Systeme zu unterstützen.

Diese Dissertation leistet einen Beitrag zu den unterschiedlichen Entwicklungsstufen
von Cloud Anwendungen mit Betonung auf den Prozessen. Mehrere Abschnitte der
vorliegenden Arbeit befassen sich mit der Phase der Modellierung. Hierzu werden neue
Techniken und Werkzeuge der Modellierung auf der Basis von Petrinetzformalismen
vor- und zur Verfügung gestellt. Darüber hinaus bieten Agenten und Workflows die
Möglichkeit sowohl intuitive, als auch leistungsstarke Konzepte zu entwickeln, die
erhöhte Intelligenz und verbesserte Struktur der Cloud Systeme bewirken. Die Ausstat-
tungen der Agenten und Workflows sind auf den ersten Entwurf und die spätere Im-
plementierung von Softwaresystemen ausgerichtet, die, wie Cloud, für verbreitete und
offene Umgebungen geeignet sind. Das Ziel dieser Arbeit ist mittels Modellierungstech-
niken, Methodiken, Werkzeugen und architekturellen Entwürfen, für die Integration
von Cloud- und Multiagentensysteme, die Konzepte und Technologien der Verwaltung
von Workflows in verteilten, dienstorientierten Umgebungen, insbesondere Inter-Cloud
Systemen, zu erleichtern.
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Chapter 1

Introduction

This chapter introduces the context of the research, motivates this study and details
the contributions of the thesis. It is structured as follows: Section 1.1 presents the
problem, which is addressed in this work. Section 1.2 introduces a use case, which
will be used through the thesis to show the usability of the contributions. Section 1.3
defines the goals objectives of the thesis. Section 1.4, outlines the contributions of this
thesis. Section 1.5 presents the structure of this manuscript.

1.1 Problem Statement and Scope

Service Oriented Computing (SOC) is the field of computer science that revolves around
the concept of "service": Web and Cloud services. The latter are currently the most
common forms of service for implementing service-oriented computing [Koehler and
Alonso, 2007]. While Cloud services provide the foundation for the distributed execu-
tion of complex applications using a standardized and stateful service interface, Web
services provide the basis for the development and execution of workflows that are
distributed over the network and available via standard interfaces and protocols.

Based on the Internet, Cloud computing provides on-demand computing and storage
capacities to individuals and businesses in the form of heterogeneous and autonomous
services. Furthermore, recently there is an emergence of Inter-Cloud Computing, which
could be seen as a Cloud of Clouds [Kelly, 2007]. The reason lies in the fact that
a single Cloud infrastructure does not have unlimited resources to satisfy complex
application requirements and the latter may receive requested services from different
Cloud providers [Buyya et al., 2010]. This new computing paradigm needs to deal with
the problem of heterogeneity, communication, coordination and collaboration among
all participants.

Hence, the construction of such complex systems remains a problem as soon as there
are several independent / autonomous partners involved in the design and execution
of these systems. Currently mainly data is stored in the Cloud. (Web) services in the
Cloud are designed to be realized in a static fashion. Missing is the support of processes
in this environment. For complex systems with independent partners expressive and
powerful software systems have to be provided.
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Multi-Agent Systems (MAS) and workflow concepts are strong candidates to address
this issue. On the one hand, common characteristics of agents are social ability, auton-
omy, pro-activity, adaptability and mobility [Jennings, 2000]. Also in this perspective,
according to the literature, mobile agents are used to construct a Cloud computing
federation mechanism to permit portability and interoperability among different Cloud
computing platforms [I. Foster, 2004, M. Spata, 2011a, Zhang and Zhang, 2009]. On the
other hand automation of processes and efficient coordination and collaboration among
various entities are some advantages of workflow concepts.

However, Workflow Management Systems (WfMSs) usually do not address the spe-
cial aspects of Cloud-based systems. Current inter-organizational WfMSs are designed
to control the autonomous entities (agents or Web services) from another location. So it
is not embedded within the systems. This causes problems with respect either to the
autonomy of the participating partners or their efficient coordination. New concepts
and constructs to overcome this problem are necessary.

Therefore, this thesis provides a conceptual and technical solution for the modeling
and design of complex systems in Cloud-like environments with a special emphasis
on processes. The aim is to provide concepts, techniques and tools to design and to
implement agent-based WfMSs, which support definition, deployment and monitoring
of distributed inter-organizational workflows for independent complex partners within
Cloud environments.

Usually autonomy for Web services is not a desired property. A Centralized process
management system to control the execution of cross-organizational processes is often
neither technically nor organizationally desired [Zaplata et al., 2009, Zaplata, 2012].
For Inter-Cloud applications each Cloud should keep its (relative) autonomy, so that
autonomy in this context is an inherent property. In order to execute an overall applica-
tion within the Inter-Cloud environment, autonomy of Clouds must be possible or even
supported.

Moreover, the proposed modeling concepts and techniques as well as their tools
facilitate the integration between Cloud environment and MAS for an efficient man-
agement and execution of workflows in environments qualified to be distributed and
scalable. Specifically, that means that, concepts and technologies from agents, work-
flows and Clouds field are coupled to offer a powerful environment to the users for the
deployment of applications based on multiple Cloud platforms.

In this work techniques, models and tools, which are a part of the Petri net-based,

Agent- and Organization-oriented Software Engineering (Paose) approach are
exploited. On the basis of high-level Petri nets the above mentioned concepts like
agents, workflows or services are integrated. The Multi-Agent Nets (Mulan) architec-
ture [Cabac, 2010] and the Reference NetsWorkshop (Renew) [Cabac et al., 2016] tool1

developed at Theoretische Grundlagen der Informatik (TGI) group at the University
of Hamburg2 provide the technical background for this.

1http://www.renew.de/
2http://www.informatik.uni-hamburg.de/TGI/
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1.2. Motivating Example

1.2 Motivating Example

In order to give an overview of the objectives of this thesis and to present the contri-
butions, a working example related to the remote sensing domain is provided. First
and foremost, it is noteworthy to mention that scientific workflows are considered in
this work. The reason behind considering scientific workflows as use case is related
to the nature of tasks and their dependencies3. In contrast to business workflows
(see Chapter 4), scientific workflows contain usually compute and storage intensive
tasks. Thus it is recommended to distribute the execution of these tasks across many
computing nodes. The following scenario will be utilized in several chapters of the
thesis as a showcase. It shows the applicability of the proposed concepts, techniques
and tools to real scenario.

Consider the scenario from Figure. 1.1, it is modeled by Petri nets, where the
transitions represent the tasks to be performed. It represents a simple processing
workflow of a satellite imagery. The workflow calculates the Normalized Difference
Vegetation Index (NDVI) from two raster data files (NIR and Red images). The input to
the workflow are the two images and the output is a single image containing the NDVI
values. The complete implementation of the NDVI workflow is described in Chapter 8.

Due to the lack of resources at local site4, workflow can not be executed. Thus
users should move the execution of the whole workflow or some of its tasks to other
available computing nodes, for example in an Inter-Cloud environment. Through a
graphical user interface (GUI)5 workflow definitions as well as the required data are
uploaded/submitted to the execution target. Consequently, the entity (software) that
calculates the NDVI values as well as the required data are hosted in the Cloud.

The life-cycle of this workflow can be summarized as follows:

• (T1) Workflow definitions are uploaded as well as all required images to the
Cloud.

• (T2) On the selected Cloud, specific softwares or Web services calculate the NDVI
values and generate an image as output.

• (T3) In parallel with (T2), the original image is stored in a Cloud-based database.

• (T4) The calculated NDVI values are displayed or transmitted to the entity initiat-
ing the workflow.

3Data and other resources required for the execution.
4The lack of resources may take several forms. For example, unavailability of required softwares or

performance issues.
5Web or desktop are both possible.
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Figure 1.1: Cloud-based Image Processing Workflow

Even if the workflow described above seems to be straightforward in terms of
complexity, moving the execution of workflows to the Cloud is not trivial. In fact,
executing workflow tasks in a Cloud environment or invoking Cloud services requires
special skills and must be based on a solid strategy. Adopting a Cloud solution has also
many challenges. Which Cloud provider is appropriate for the execution of workflow?
How to find and invoke services from different Cloud providers? are some of the
questions that should be investigated prior moving to the Cloud. These issues apply
for both Cloud developers and Cloud consumers. Furthermore, functions of the WfMS
should be adapted to the Cloud. According to [Yu and Buyya, 2005], there are build-
time and run-time functions. The build-time functions are concerned with defining
and modeling workflow tasks and their dependencies; while the run-time functions
are concerned with managing the workflow execution and interactions with resources
for processing workflow applications. In contrast to Grid computing, these functions
need to be adapted to the Cloud environment. Especially at the modeling level there
are different criteria that should be considered to cover the special nature of the Cloud
environment. This can for example include costs or performance parameters (see
Chapter 10). Moreover, all required software must be installed and configured at the
execution target (Cloud instance). Mechanisms should be provided in order to ease the
provision of Cloud instances.

Concerning the example scenario, transitions T1, T2 and T3 require Cloud services.
In order to retrieve these services, an appropriate selection mechanism needs to be
available in order to select the suitable Cloud provider that fits their requirements.
Furthermore, Cloud consumers should be able to express the requirements of their ap-
plications properly (at design time). Another important issue is Cloud interoperability.
With the growth of the Cloud computing technology there are currently plenty of Cloud
providers. Nevertheless, each of these providers has its own data models, interfaces as
well as authentication and authorization mechanisms. Thus programming against the
Cloud is arduous. Adopting applications to be executed in a Inter-Cloud environment
There should be a strategy to communicate with different Cloud providers. A run-time
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API (vendor independent) is the appropriate solution for this issue. The contributions
presented in this thesis strive to overcome the issues mentioned above and to provide a
user-friendly environment for the development of Cloud-based applications.

1.3 Goals and Objectives

As mentioned above, the aim of this thesis is to propose means like modeling techniques,
methods, tools and architectural design. The contributions presented in this thesis
facilitate the integration between Cloud systems and MAS for an efficient management
and execution of workflows in environments qualified to be distributed and scalable.
The description and implementation of this work are carried out in several steps/phases,
which are iteratively applied to have several prototypes. Firstly, an accurate state of
the art is elaborated to evaluate the existing conceptual basis of the presented work
and technological solutions. The basic research areas are: Cloud computing, workflow
management systems, modeling techniques and tools, agent systems and Petri nets. In
the next step new requirements are defined for modeling workflow execution in complex
environments. The focus is on the actual problems in Inter-Cloud environments such as
heterogeneity, communication, coordination and collaboration between the participants.

Taking into account the newly defined requirements appropriate modeling tech-
niques and concepts are proposed. They should constitute a conceptual basis for the
management of Inter-Cloud applications. The Unified Modeling Language (UML) and
Petri nets are the major modeling techniques that are investigated to elaborate the new
proposed techniques. This step also includes provisioning semantics based constructs
that allow for an efficient design of process management of Inter-Cloud applications.

In order to evaluate and validate the results, direct modeling tools support are
introduced, which will be implemented on the basis of Renew for the elaborated
techniques. Most of prototypes are based just on Renew in terms of a drawing and
simulation tool for Petri nets and Uml models.

Moreover, the integration of the proposed tool support within the Paose approach
is considered. This allows for simulation and execution of agents system using the
Mulan and the Concurrent Agent Platform Architecture (Capa) framework. Due
to the Foundation for Intelligent Physical Agents (FIPA) compliance also distributed
execution is possible. An extension for workflows is provided by [Jacob et al., 2002] for
Petri nets and by [Reese, 2009] and [Wagner and Moldt, 2011] for workflow and WfMS.

As a prove of concept for the conceptual solution proposed in the dissertation, a
prototype distributed over above mentioned prototypes will allow for the investigation
of heterogeneous implementation of the MAS approach for the management of workflow
in an Inter-Cloud environment.
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1.4 Contributions

This thesis provides several contributions towards improving the development life-
cycle of (Inter-) Cloud-based applications and towards advancing the accessibility to
the Cloud environment. The major contributions are as follows:

1. This thesis provides an accurate state of the art, which evaluates the existing
conceptual basis of this work and technological solutions. Part I presents different
concepts, fundamental techniques and tools that are essential to this work. It
gives a deep insight of Service Oriented Computing (SOC) and Grid/Cloud com-
puting. It defines the key workflow concepts: process, business process, scientific
workflows, WfMS. Moreover, an overview of the Paose approach and its related
frameworks is given.

2. This thesis investigates the migration of workflow applications to the Cloud. Based
on [Strauch et al., 2013, Han et al., 2010], different scenarios are analyzed and
extensions are proposed. The study in Chapter 7 represents the conceptual basis
of the work presented in Part II and Part III. A framework named ICWorkflow is
implemented for the development of (Inter-) Cloud-based workflows. It provides
the required layer for the ICNets. It covers several steps when modeling and
executing workflows in the (Inter-) Cloud.

3. This thesis defines the requirements for modeling and executing workflows in
complex environments. Moreover, it proposes appropriate modeling techniques
and concepts that should constitute a conceptual basis for the management of
Inter-Cloud applications. There is a strong emphasis on modeling in this thesis.
For instance, RenewGrass (see Chapter 8) is a tool that allows the specification
of image processing workflows by Petri nets. The Cloud Task Transition (Ctt)
and the Inter-Cloud Nets (ICNets) (see Chapter 10) are significant contributions.
The objective is also to enhance the modeling of Cloud-based workflows by Petri
nets. The Ctt is a new modeling concept, which consists of introducing a special
kind of Petri net transitions. These transitions have the ability to communicate
with Cloud providers and invoke services. Also in this direction, ICNets ((see
Section 10.3)) are predefined Petri net models that can be used to perform Cloud
operations such as database transactions.

4. This thesis investigates the relation between Cloud computing and workflows
concepts. In Part II, different prototypical implementations are provided to show
how Cloud technology can benefit from the integration of workflows and vice
versa. The relation between workflows and Clouds is addressed in two different
ways. On the one hand, this thesis proposes and provides new mechanisms to
enable workflow execution in the Cloud (see Chapter 9). On the other hand,
Clouds need structured and mature workflow concepts and high level languages
to handle issues like managing complex task and data dependencies.

5. This thesis elaborates a multi-agent approach for the management of workflows
in an Inter-Cloud environment. The concept of a Drop-Engine (DE) is presented
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in Part III, which shows the impact of integrating the agent metaphor to the
development of Cloud-based applications.

1.5 Structure of the thesis

The thesis is organized in three main parts: the objective of Part I is to elaborate a
state of the art of the concepts, techniques and tools which are used to achieve the
contributions. Part II addresses the notion of Cloud-based workflow management, it
constitute the basics of this work. Part III shows the applicability of the agent concepts
to the results obtained in Part II.

After a short introduction to the notion of SOC, Part I provides a deep understanding
of (Inter-) Cloud computing, workflows and Petri nets. The part emphasizes specifically
on modeling techniques. It also introduces agents and multi-agent systems. The
Paose approach and the related Mulan/Capa framework are also presented. This part
concludes with a brief summary.

Part II presents the essential contributions of the thesis. Here the relation between
Clouds and workflows is clearly demonstrated. In this work the relation is shown
through different implementations covering the execution of workflows in the Cloud.
The first chapter of Part II can be seen as state-of-the-art introduction on how to enable
the migration of existing systems to the Cloud. A plug-in named RenewGrass for the
implementation of image processing workflows by Petri nets is presented. Next, two
important topics are addressed, namely: Cloud computing for workflow execution
and workflow concepts for the Cloud. Finally, the ICWorkflow plug-in for Renew is
presented, which enables the specification and execution of Petri nets-based workflows
for the Cloud. A summary concludes this part. Part III shows how agent concepts
and techniques participate in the management of Cloud-based workflows. The works
presented in Part II are extended to fit to the Paose approach techniques. Part IV
presents a summary of the presented work. It includes a description of the achieved
contributions and future work.
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Introduction

The work presented in this dissertation is based on several concepts, fundamental
techniques and tools. For instance: Multi-agent systems, workflow modeling, Petri nets.
These concepts, techniques and tools proved their efficiency for modeling, verifying and
executing processes, that can either run on-premises or in distributed environments
such as Grids or Clouds. In the following chapters an overview of the basic concepts
and the key techniques are given. The Foundations part represents the conceptual and
the technical background of all proposed solutions and implemented tools in order to
ensure the success of a Cloud-based workflow management strategy.

The structure of this part is organized as follows: Chapter 2 gives an insight to
Service Oriented Computing (SOC) and its core paradigms. It presents the concept of
Service Oriented Architecture (SOA) and the related technologies such as Web services
and service composition principles. With respect to process execution, (Inter)-Clouds
are selected as the execution target. Clouds (and also Grids) are described in Chapter 3.
This chapter answers questions like: what is Cloud computing? What are the different
types of Clouds? Existing Cloud standards and formal aspects of Cloud computing are
also outlined.

Chapter 4 concerns all concepts and techniques related to the notion of process
management and workflow. It defines the key workflow concepts: Process, business
process, scientific workflows. Afterward, a general overview of a workflow management
system and its structure is given. Mainly, the workflow reference model from the WfMC
is described.

Specification (modeling), deployment and execution of workflows in Cloud-like
environments fills a huge part of this dissertation. New techniques and tools have
been developed in this direction. Furthermore, since there is a strong emphasis on
the modeling of workflows by Petri nets, Chapter 5 deals exactly with this topic. As
already mentioned in the introduction, this dissertation exploits techniques, concepts
and tools from the Paose approach. Chapter 6 gives an overview about Mulan and
the Paose approach. Furthermore, the chapter provides also an overview of agents and
multi-agent systems. The description of the different concepts is strongly based on the
FIPA specifications.
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Chapter 2

Service Oriented Computing (SOC)

This chapter describes the fundamental basic concepts and technologies that enable
SOC. It includes definitions of SOC and explains the SOA paradigm as well as Web
service technology.

2.1 Introduction

Nowadays, the key technologies in distributed systems are SOA, Web services and
Cloud computing. These three technologies can be encapsulated under the global term,
SOC. SOC is a paradigm that is changing the way modern software is designed and
developed. It utilizes software services as fundamental elements for developing and
deploying distributed software applications. Services are autonomous entities that
can be dynamically discovered and composed to provide more complex systems. SOC
and Cloud computing have many similarities and challenges such as maintaining high
service availability, providing end-to-end secure solutions, managing longer-standing
service workflows and service discovery through federated Clouds [Wei and Blake,
2010]. Cloud computing provides the processing of services, and SOC offers services for
computing. All along the thesis, the notion of (Cloud) services is frequently mentioned.
This chapter provides a description of the technologies enabling SOC, whereas Cloud
computing will be described in Chapter 3. The reason behind introducing SOC is that
several architectures and implemented tools in this thesis follow the SOA paradigm. For
instance, Web services have been used to explain the concept of synchronous channels
(see Chapter 5) and the deployment of RenewGrass in a Cloud environment (see
Chapter 8).

2.2 Definitions

SOC is a cover term to design a distributed computing platform based on services.
The latter are utilized in order to support the development of rapid, low-cost and
easy composition of distributed applications even in heterogeneous environments
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[Papazoglou et al., 2007]. According to [Francisco et al., 2006], SOC is defined as
follows:

”Service-Oriented Computing (SOC) is a new computing paradigm that
utilizes services as the basic construct to support the development of rapid, low-
cost and easy composition of distributed applications even in heterogeneous
environments. The visionary promise Service-Oriented Computing is a world of
cooperating services where application components are assembled with a little
effort into a network of services that can be loosely coupled to create flexible
dynamic business processes and agile applications that may span organisations
and computing platforms.” [Francisco et al., 2006]

At the heart of service-oriented computing are services that are autonomous, loosely
coupled software components with publicly available interfaces that can be invoked
by a client or composed by a third party to achieve a more complex goal. According
to [MacKenzie et al., 2006] a service is:

“a mechanism to enable access to a set of one or more capabilities, where
the access is provided using a prescribed interface and is exercised consistent
with constraints and policies as specified by the service description. A service is
provided by one entity – the service provider – for use by others, but the eventual
consumers of the service may not be known to the service provider and may
demonstrate uses of the service beyond the scope originally conceived by the
provider.”

In the following sections, some background is given about service-oriented architec-
tures, Web services and service composition.

2.3 Service-Oriented Architecture

Most system architectures follow a service-oriented approach and Cloud computing
is no exception. SOC is mainly driven SOA. SOA is an architectural style for building
software systems based on services. Services are loosely coupled components that can
be discovered and composed. SOA is not an architecture in itself, but it instead leads to
a concrete architecture. Hence, SOA is rather a paradigm than a standard. Thus there
are several definitions of SOA [Oasis, 2012, Erl, 2005, Mimoso, 2004]. Generally, one
can say that SOA is a style of designing large distributed information systems based on
autonomous, QoS-capable, vendor diverse, inter-operable, discoverable and potentially
reusable service. Early examples of technologies that at least partly service-oriented are
CORBA, DCOM, J2EE or .NET.

In considering the term service-oriented architecture, it is useful to review the key
terms:

• An architecture is a formal description of a system, defining its purpose, func-
tions, externally visible properties, and interfaces. It also includes the description
of the system’s internal components and their relationships, along with the princi-
ples governing its design, operation, and evolution.
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• A service is a software component that can be accessed via a network to provide
functionality to a service requester.

• The term service-oriented architecture refers to a style of building reliable dis-
tributed systems that deliver functionality as services, with the additional empha-
sis on loose coupling between interacting services.

Figure 2.1: Service Oriented Architecture

• Logical view: The service is an abstract, logical view of actual programs, databases,
business processes, etc., defined in terms of what it does, typically carrying out a
business-level operation.

• Message orientation: The service is formally defined in terms of the messages
exchanged between provider and requester agents, and not the properties of the
agents themselves.

• Description orientation: A service is described by machine-processable meta
data.

• Granularity: Services tend to use a small number of operations with relatively
large and complex messages.

• Network orientation: Services tend to be oriented toward a use over a network.

• Platform neutral: Messages are sent in a platform-neutral, standardized format
delivered through the interfaces, Extensible Markup Language (XML) is the most
obvious format that meets this constraint.
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2.4 Web Services

The term Web services is a set of technologies based on XML, for creating distributed
software components, describe their interfaces and use them regardless of the chosen
implementation language and the hosting platform. One of the most important objective
of Web services, is to achieve interoperability.

"A Web Service is a software system designed to support inter-operable machine to machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web Service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards." [Booth et al., 2004].

In the following section technologies that are used to implement Web services will
be presented. Restful implementation style also described as well as the Web services
composition.

2.4.1 SOAP Web Services

The key specifications used by Simple Object Access Protocol (SOAP) Web services are:

• XML (eXtensible Markup Language) A markup language for formatting and ex-
changing structured data. XML is one of the most widely used formats for sharing
structured information among programs. It includes the following concepts:

– XML document (data object): a composition of declarations, elements, com-
ments, character, references and processing instructions

– XML namespaces: are used to uniquely identify named elements and at-
tributes in an XML document. XML, the default namespace is defined by
using the xmlns attribute in the start tag of an element

– Characters: a character is an atomic unit of text

– Markup: is a series of characters in XML document. It can be distinguished
from text because it always begins either with the character < (in which case
it ends with the character >) or the character & (in case it ends with the
character ;)

– Character data: a text other than markup

– Entities: they are identified by a name and have contents. Each XML docu-
ment has a unique entity called document entity which serves as the root of
the tree and a starting point for the XML processor

– XML processor: it is a software module that is used to read XML documents
and provide access to their content and structured

– Parsed data: this term refers to the entities that are processed or read by the
XML processor. A parsed entity contains a sequence of characters, called
text.
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• SOAP: This specification describes the basic format of an exchanged message
between two Web services. A message is an XML document composed by two
different parts: the header and the body. The former part is an optional part which
can contain special control information which characterize the communication
such as, e.g., security references for retrieving cryptographic keys or reliabil-
ity tags for guaranteeing message delivery, whereas the latter part contains the
information to be communicated.

• Universal Description, Discovery and Integration (UDDI): This specification deals
with the programming interface exhibited by a discovery registry which is a
particular kind of service that allows for the retrieving of Web service depending
on their functionalities. The Uddi specification introduces the concept of dynamic
discovery of a Web service.

• Web Services Description Language (WSDL): This specification deals with the
description language which allows for the standard definition of a Web service
interface. It is a fundamental specification which fixes the basic communication
primitives, the operations, exploited by a Web Services for exchanging messages.

2.4.2 RESTful Web Services

Representational State Transfer (Rest) is a software architecture style first described in
a doctoral dissertation by a researcher named Roy Fielding [Fielding, 2000] that turns
around the transmission of data over HTTP. Rest has received a lot of attention recently
as architectural style for distributed systems made up of loosely coupled resources.

RESTful architectures adhere to the following basic principles:

• Application state and functionality are divided into resources

• Resources are addressable using standard Unified Resource Identifiers (URIs) that
can be used as hypermedia links

• All resources use only the four Hypertext Transfer Protocol (HTTP) methods

– DELETE to delete resources

– GET it queries the representation of a resource

– POST to change the state of a resource

– PUT to create new resources or to replace the content of existing ones

• All resources provide information using the Multipurpose Internet Mail Exten-
sions (MIME) types supported by HTTP

• The protocol is stateless

• The protocol is cachebale

• The protocol is layered
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By now, many developers are using a REST approach because it is easy to use and
background knowledge about WSDL, Common Object Request Broker Architecture
(CORBA), or Remote Method Invocation (RMI) is not required. They can easily be
called from Java, Hypertext Preprocessor (PHP), Ruby, Python, C#, or even a shell
script. Petri nets are an adequate modeling technique for Web services behavior and
can be used as a composition model and language for RESTful Web services [Alarcón
et al., 2010] [Decker et al., 2008]. In the Mulan/Capa framework (see Chapter 6),
RESTful architecture is followed to create a gateway architecture that makes it possible
to interconnect multi-agent systems and Web services [Betz et al., 2011]. Furthermore,
several of the prototypes in this work are based on RESTful Web services. Concerned
are mainly front-end applications provided for the Cloud consumers to interact with
the Cloud provider.

2.5 Service Composition

Different services are often required to work together to complete a task. A service
composition is an aggregate of services collectively composed to automate a common task.
Figure. 2.2 illustrates a service composition that highlights which service capabilities
are being invoked in a particular sequence.

Service A is acting as the service consumer of Service B, C and D. The arrows indicate
a sequence of modeled message exchanges. When taking part in a composition, services
can perform different roles depending on how they are positioned within the overall
composition configuration. As a composition controller, the service is located at the head
of a composition hierarchy. This happens when the service capability that is being
executed contains and carries out logic that invokes capabilities in other services (see
Service A in Figure. 2.2)1.

On the other side, a composition member, represents a service being composed by
another. As shown in Figure. 2.2, it is the fact that the service’s capability is being
invoked by another service that places the service into this role. A composition member
may compose other compositions members, which can, in turn, compose others as well
(see Figure. 2.3)2.

1Capability A of Service A composes two other services. This assigns the Controller’s role to Service
A. Capability A of Service B does not compose other services but is composed. This places it as a Member
role

2Service B is placed into the role of controller because Capability B composes two other services.
Service C fulfills both the controller and the member role because its Capability B is composed by Service
B and also composed by Service D
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Figure 2.2: A Service Composition comprised of four Services (adapted from [Erl et al.,
2012])

Figure 2.3: Composition Members and Controllers (adapted from [Erl et al., 2012])

There are two terms (i) orchestration and (ii) choreography which explain two features
of workflow creation from composite Web services. Furthermore, in the current work
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there is more focus on orchestration then choreography. For instance, the prototypes
presented in Part II makes use of services from different Cloud providers. Invoking
these services is performed by Petri nets transitions.

Concerning the implication of Petri nets or specifically High Level Petri Nets (HLPN)
like reference nets (see Chapter 5) several research works addressed this topic [Moldt
et al., 2004, Offermann, 2003, Hamadi and Benatallah, 2003, Cardinale et al., 2013].
In [Hamadi and Benatallah, 2003], the authors proposed a Petri net-based algebra for
modeling Web service control flows and composing Web services (WS). The formal
semantics of the composition operators is expressed in terms of Petri nets by providing
a direct mapping from each operator to a Petri net construction. In [Cardinale et al.,
2013] an overview is presented. It shows how Petri Nets have been used in all phases
of WS composition (specification phase, verification, validation, and evaluation phase,
automatic selection phase and execution phase). The authors in [Moldt et al., 2004]
propose a modeling technique and a framework based on high level Petri nets (refer-
ence nets). In the work of [Offermann, 2003] a model is introduced for the dynamic
composition of Web services based on reference nets.

2.5.1 Web Service Orchestration

The objective of modeling service composition is usually the definition of collaborative
processes (business processes or workflows)based on service oriented architecture. The
process logic of the orchestration contains the order and the execution conditions to
invoke services and manages in a controlled way the messages exchanged between
involved parties. Figure. 2.4 illustrates how can different services be orchestrated to
a process, which in turn becomes a complex service and can be accessed via its own
service interface.

The term orchestration is used for workflow (business process) that is executable
and interacted with both internal and external Web services. The interaction is done at
the message level containing business logic and task execution order. In orchestration,
there is control from one party. while choreography is concerned with all parties’
involvement and their roles played in the interaction process. In order to meet changing
business needs in organizations, Web services orchestration is required to be dynamic,
flexible, and adaptable. An orchestration engine is responsible for overall process
flows, calling the appropriate Web services and determining what steps to complete
as well as separation of process logic and Web services which support flexibility. The
Business Process Execution Language (BPEL) is the de-facto standard for the implemen-
tation of business processes using Web services. Implemented business processes are
classified in several different scenarios: for automating scientific applications and for
orchestrating Grid services [Bendoukha et al., 2012b, Turner and Tan, 2007, Emmerich
et al., 2005]. [Bendoukha et al., 2012b] provide JASMIN, a framework for the modeling
and execution of workflows in Grid-like environments. The modeling is based on the
UML activity diagrams and the composition of services is based on BPEL. They also
provide a framework to translate the diagrams into BPEL executable processes. In
the work of [Emmerich et al., 2005] the authors investigate the use of BPEL for the
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specification of scientific workflows. These workflows rely on Grid services, which need
to be orchestrated in order to achieve other tasks. A brief introduction to BPEL is given
in Chapter 5.

Figure 2.4: Orchestration (adapted from [Peltz, 2003])

2.5.2 Web Services Choreography

A choreography (Figure. 2.5) describes the tasks and the interaction of several processes
under the cooperation aspect. It can be seen as a description of an abstract communica-
tion protocol between the different parties. Each participant has its own process which
is referred to as an orchestration process. Choreography is responsible for the message
sequence tracking among various parties and sources. Choreography is concerned with
all partie’s involvement and their roles played in interaction process. Each part acts in
an individual way. Here too are some interesting works dealing with the choreography
of Web services by Petri nets. Authors in [Caliz et al., 2011] propose a model based
on Colored Petri Nets (CPN) to analyze the Web Services Choreography Description
Language (WS-CDL). The work consists of generating a CPN model from the WS-CDL
document. The CPN model generated is then analyzed using the formal verification
environment and simulation capability provided by CPN-Tools. [Vidal et al., 2012]
proposes a Petri net-based approach for modeling the choreography of semantic Web
services, which are described following the OWL-S specification. The aim of the work is
to translate each OWL-S service to a Petri net and to use it for checking the correctness
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of its choreography model and/or for facilitating agents (or clients) to coordinate the
execution of the service processes through a chore of messages.

Figure 2.5: Choreography (adapted from [Peltz, 2003])

2.6 Web Services and Paose

As stated above, the majority of software systems follows a service oriented architecture.
The Paose approach (see Chapter 6) is no exception. In fact, a gateway is implemented
in order to interconnect FIPA-compliant multi-agent systems and RESTful Web services.
Concretely, it creates a bridge between Petri net-based (Mulan) agents with arbitrary
Web service providers or clients [Betz et al., 2011, Betz et al., 2013]. The gateway
architecture, its message routing core and its multi-agent interface are modeled and
implemented in Java reference nets.

A possible integration is even planed to provide the ICWorkflow plug-in (see
Chapter 11) with WebGateway agents. A WebGateway agent has two different kind of
interfaces. An internal interface which is responsible for the communication between
agents. This is performed via the FIPA compliant communication infrastructure of the
Mulan framework (see Chapter 6). The external interface controls the communication
with Web service platforms, generally in form of a Web server. In the case of Mulan
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framework, a Jetty3 servlet container has been integrated. For each Mulan host there is a
Web server and for Mulan platform a correspondent WebGateway agent. A Mulan host
may include multiple agent platforms. The above description is depicted in Figure. 2.6.

Figure 2.6: The Mulan Gateway Architecture (from [Betz et al., 2011])

2.7 Conclusion

In this chapter, the concept of SOC is presented. The different concepts and technolo-
gies enabling SOC are outlined. Moreover, in Chapter 8, the deployment of image
processing services into the Cloud is based on Web services. Web services, (SOA) and
Cloud computing are strongly related to each oder. Web services cover Cloud comput-
ing because it uses those services for enabling different connections between several
entities. Nowadays, most system architectures follow a service-oriented approach and
Cloud computing is no exception. A service provider can be in the Cloud or not. The
main system architecture can involve both Cloud and non Cloud service providers.
Web services and their related technologies play an important role in the approaches
proposed in this thesis. Many proposed solutions have been implemented based on
Web services. For instance, the example to illustrate the features of reference nets
(see Chapter 5) uses both REST Web services and Cloud-based storage service. In the
following chapter, Grids and Clouds are described in details.

3http://www.eclipse.org/jetty
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Chapter 3

Grid and Cloud Computing

In this thesis it is considered that the processes are deployed and executed on external
resources rather than on-premises. The reason is seek for more performance and
efficiency that can be missing in local sites. As an execution platform, Clouds have
been chosen to run long-running processes1. This chapter presents an overview of the
Cloud/Grid technology with a major emphasis on (Inter-) Cloud computing. It includes
definitions and architectures that are relevant for the contributions presented in this
thesis. Moreover, a possible formalization of Cloud computing is also discussed.

3.1 Introduction

The last few years have seen the emergence of a new generation of distributed systems
that scale over the Internet, operate under decentralized settings and are dynamic in
their behavior, where participants can leave or join the system at any time. Cloud com-
puting is a recent computing paradigm, in which distributed resources are dynamically
provisioned based on a pay-per-use model. There is no doubt that Cloud computing
has evolved from Grid computing. Both Grids and Clouds offers huge storage and
computing capabilities to different stakeholders. Concerning the work presented in this
dissertation, Cloud services are invoked from the process model, exactly from Petri net
transitions. Several contributions in form of modeling techniques, deployment and exe-
cutions mechanisms are provided to (i) specify Cloud-based workflows (by Petri nets)
(ii) deploy and (iii) execute processes on Cloud resources. Most of these contributions
are presented in Part II. Also in Part II, migration issues are also discussed and solutions
to solve them are provided. It is important to mention that the use of Grids is optional
and out of scope of the current work. Nevertheless, in the context of a Magister thesis,
new concepts have been introduced and tools implemented to specify and execute
processes in Cloud/Grid-like systems. The main difference with the current work is
the modeling techniques2. This chapter aims to give a deep introduction to Cloud

1Later on the term workflow is used to designate a process execution life-cycle.
2As modeling techniques UML activity diagrams are used. For more information see the work

of [Bendoukha et al., 2012b, Bendoukha et al., 2012a]
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computing. The information mentioned in this chapter are essential to understand the
contributions presented in Part II.

3.2 Grid Computing

Although Grid computing is the ancestor of Cloud computing, the main reason to
include it in this work is that a Grid node or a service can be also considered as a
Cloud resource and provided on-demand. Not all concepts and tools related to Grid
computing are presented, but only the notion of resource and topology since they are
related to the Inter-Cloud concept addressed in Chapter 10. Typically, applications
that are good candidates for a Grid implementation take many hours (possibly days or
weeks) to execute (large problem sizes). In general, an application should posses one
or more of the following characteristics to be considered a good candidate for a Grid
implementation:

• Problem to be solved results in a long execution time.

• Problem to be solved involves many replicated runs of the same fundamental
tasks. These types of problems are massively parallel.

• Problem to be solved requires processing vast amounts of data.

• The problem to be solved allows the decomposition into multiple execution units
and/or subsets.

3.2.1 Grid Concepts

Grid computing was developed in 1998 by Ian Foster and Carl Kesselman [Foster,
2002]. The term Grid has its origin in comparison to the electricity Grid (Electrical
Power Grid). Grid computing is a form of distributed computing in which the use of
disparate resources such as compute nodes, storage, applications and data, often spread
across different physical locations and administrative domains, is optimized through
virtualization and collective management.

3.2.1.1 Definitions

The term “Grid” was first formalized in 1999 in the book The Grid: Blueprint for a New
Computing Infrastructure:

”A computational Grid is a hardware and software infrastructure that provides de-
pendable, consistent, pervasive, and inexpensive access to high-end computational capa-
bilities” [Kesselman and Foster, 1998]. This early definition of Ian Foster and Carl
Kesselman is very general and focuses on a hardware and software infrastructure. At
this time, the Grid was not yet realized. A second refined definition was given by the
same authors in 2001:

”Grid computing is coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations” [Foster et al., 2001].
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The final official definition of the Grid computing is given by [Foster and Kesselman,
2004], in which Ian Foster refined the earlier definitions of Grids to include resource
sharing among a set of participating parties.

In [Foster, 2002], a Grid is described as a system that: (i) Coordinates resources that
are not subject to centralized control, (ii) uses standard open, general-purpose protocols
and interfaces and (iii) delivers nontrivial qualities of service Before going too much
further, let’s take a quick look at a computer’s resources.

3.2.1.2 Grid Resources

A Grid computing system enables the sharing of a variety of resources and the load
across multiple computers to complete tasks more efficiently and quickly.

• Central Processing Unit (CPU): A CPU is a microprocessor that performs math-
ematical operations and directs data to different memory locations. Computers
can have more than one CPU.

• Memory: In general, a computer’s memory is a kind of temporary electronic stor-
age. Memory keeps relevant data close at hand for the microprocessor. Without
memory, the microprocessor would have to search and retrieve data from a more
permanent storage device such as a hard disk drive.

• Storage: In Grid computing terms, storage refers to permanent data storage
devices like hard disk drives or databases.

Grid computing systems link computer resources together forming a integrated
system to provide end users with excellent computing power and storage capacities for
the special tasks. To the individual user, it’s as if the user’s computer has transformed
into a supercomputer [Foster et al., 2001].

3.2.2 Grid Topologies

Topologies are essential to design and configure any Grid system. There are three
types of Grid topologies: Intra-Grid, Extra-Grid and Inter-Grid. These topologies are
depicted in Figure. 3.1. They are better defined as evolution steps. The complexity
when designing a Grid system is related to the number of organizations that the Grid is
intended to support. It is also related to geographical and administrative constraints.
As more organizations require access to Grid resources, the requirements for increased
security, higher availability become more and more complicated. The resource sharing
is not only a simple file exchange but rather direct access to softwares, data and other
resources, as is required by many collaborative problem-solving in industry, science
and engineering.
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Figure 3.1: Grid Topologies

3.2.2.1 Intra-Grid

The Intra-Grid refers to Grid environments, which are internal to some existing organi-
zations, which define policies to share, access and use the resources. It is the simplest
one of the three topologies. It consist of set of basic services within single organizations
only. Resources are shared easily between organizations in static fashion. There is one
single security provider and the bandwidth is high and always available.

3.2.2.2 Extra-Grid

The Extra-Grid is a combination of two or more Intra-Grid (multiple organizations) and
resulting from the pooling of resources across organizational entities that did not follow
common architectural guidelines to deploy their IT infrastructures. This assumes that
connectivity between the two enterprises is through some trusted service, such as a
private network or virtual private network. The main features of such a Grid is the
presence of a heterogeneous interconnection network and broadband (LAN / WAN),
several different security domains, and a more or less dynamic resources.

3.2.2.3 Inter-Grid

The notion of Inter-Grid consists of the ability that one provider allows access into
one other provider. It allows a dynamic integration of applications, resources, and
services with partners, customers and organizations that will obtain access to the Grid
via the Internet. It Provides the ability to share resources across the network. The main
component in this topology is the Gateway that mediates the access to the resources of
participating Grids. Furthermore, it is also useful for the deployment of applications in
different Grids.
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3.2.3 Grid vs Cloud

From a technological view, Grid computing is the most related technology to Cloud
computing. Though, they differ in many aspects, such as the idea of resource sharing.
In this section, a short comparison between Grid and Cloud computing from various
angles is given.

• Grid and Cloud computing both are designed upon service-oriented architectures

• Grid computing provides access to mostly scientifically used compute resources
and data

• Cloud computing is a commercially-driven, recently emerging technology that
offers services to access compute power, platforms, and software solutions

In the literature, there is no common Cloud architecture. Nevertheless, Ian Foster
et al. [Foster et al., 2008] proposed a four layer architecture for Cloud computing (see
Figure. 3.3) based on the five layer Grid architecture (see Figure. 3.2). This architecture
has been well-received by many researchers and practitioners.

Figure 3.2: Grid Architecture (adapted from [Foster et al., 2001])
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Figure 3.3: Cloud Architecture (adapted from [Foster et al., 2008])

The hardware layer consists of raw hardware resources, such as computing units,
memory and network bandwidth. It is similar to Grid computing, most of the resources
are heterogeneous. The infrastructure (unified resource) layer represents the resources
which are usually abstracted/encapsulated by using virtualization tools so that they can
be exposed to upper layer and end users as integrated resources, for example, a virtual
computer/cluster, a logical file system, a database system, etc. On top of the unified
resources, there is the platform layer, it contains a set of resource management tools,
middleware and services to provide a development and/or deployment platform. For
instance, a Web hosting environment, a scheduling service, etc. Finally the application
layer consists of user applications that would be executed in the Cloud, such as Cloud-
based workflows, social networking tools and e-commerce.

3.3 Cloud Computing

Cloud computing is a model for enabling ubiquitous, convenient and on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services). According to Figure. 3.4, an overview
of Cloud computing is presented. In the following section, several definitions and
architectures are given.
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Figure 3.4: Overview of Cloud computing (from [Keith and Burkhard, 2010])

3.3.1 Definitions and Architectures

Giving a definition to "Cloud" or "Cloud computing" is not trivial, [Vaquero et al., 2008]
reviewed more then 22 different definitions. This difficulty comes from the fact that (i)
there are many interpretations of these terms and (ii) that Cloud computing is not a new
technology, but it is related to other concepts or technologies such as Grid computing,
utility computing, virtualization, etc.

After taking a look at severals definitions and interpretations of the term “Cloud”
[Buyya et al., 2009] [Buyya et al., 2010] [Hoffa et al., 2008] [MEDIA, 2008], the definition
given by the National Institute of Standards and Technology (NIST) is adopted. It
includes all aspects of the Cloud computing features.

NIST’s definition of Cloud computing:

“Cloud computing is a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.” [Peter Mell,
2011].
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While not all Cloud services are freely available, users must in this case to subscribe
to the service and establish a Service Level Agreement (SLA) with the service provider
defining the Quality of Service (QoS) parameters under which the service is delivered.
This issue is clearly expressed by [Buyya et al., 2008]:

”A Cloud is a type of parallel and distributed system consisting of a collection
of interconnected and virtualized computers that are dynamically provisioned
and presented as one or more unified computing resources based on service level
agreements established through negotiation between the service provider and
consumers”.

Delivering the computer power as a utility is not a new idea but already mentioned
by John MacCarthy in the 1960’s [Zhang et al., 2010] or by Leonard Kleinrock in 1969
when he stated [Kleinrock, 2003]:

”As of now, computer networks are still in their infancy, but as they grow up
and become sophisticated, we will probably see the spread of, ”computer utilities”,
which, like present electric and telephone utilities, will service individual homes
and offices across the country”.

Ian Foster et al. in [Foster et al., 2008] defines the Cloud as:

”A large-scale distributed computing paradigm that is driven by economies of
scale, in which a pool of abstracted, virtualiz ed, dynamically-scalable, managed
computing power, storage, platforms, and services are delivered on demand to
external customers over the Internet”.

In other words, Cloud computing is:

• Informatics as a service

• Often based on the virtualization

• Composed of three layers (see Section. 3.3.2):

Infrastructure (IaaS: Infrastructure as a Service)

Platform (PaaS: Platform as a Service)

Application (SaaS: Software as a Service)

• “Self-service” or pay as you go

• Abstraction, virtualization and dynamic physical resources allocation.

Cloud computing permits elasticity3 and flexibility. These features are beneficial
not only for providers but also for customers and allow for scaling of applications to

3Capabilities can be rapidly and elastically provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer, the capabilities available for provisioning
often appear to be unlimited and can be purchased in any quantity at any time [Peter Mell, 2011].
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handle peak loads. Thus, the computing power and storage capacity could be easily
improved by provisioning new OS instances or allocating hardware resources to an
end user it can appear infinite. Within a Cloud computing environment there are two
roles of service provider: The infrastructure providers who manage Cloud platforms and
lease resources according to a usage-based pricing model, and service providers, who
rent resources from one or many infrastructure providers to serve the end users [Zhang
et al., 2010].

3.3.1.1 NIST Cloud Computing Reference Architecture

Since 2008, the NIST is a recognized organism, that leads an international activity on
defining conceptual and standard base in Cloud computing. Definitions and standards
provided by the NIST are widely accepted. The following documents create a solid base
for Cloud services development and offering:

• NIST SP 800-145, a NIST Definition of Cloud Computing [Peter Mell, 2011].

• NIST SP 500-292, Cloud Computing Reference Architecture [Liu et al., 2011].

• NIST SP 800-146, Cloud Computing Synopsis and Recommendations
[Lee Badger and Voas, 2011].

A high level architecture from the NIST [Liu et al., 2011] is depicted in Figure. 3.5. It
defines the different actors4 (Cloud Consumer, Cloud Service Provider, Cloud Auditor,
Cloud Broker and Cloud Carrier) and their activities and functions in Cloud computing.
In the following, a brief overview of these entities:

4An actor is an entity, that can be either a person or an organization.
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Figure 3.5: NIST Cloud Computing Reference Architecture(from [Liu et al., 2011])

• Cloud consumer The Cloud consumer can be a person or organization and may
request Cloud services from a Cloud provider directly or via a Cloud broker.

• Cloud Service Provider A Cloud provider builds the requested software/plat-
form/ infrastructure services, manages the technical infrastructure required for
providing the services, provisions the services at agreed upon service levels, and
protects the security and privacy of the services.

• Cloud Auditor A Cloud auditor conducts independent audits and may contact
the other actors to collect necessary information.

• Cloud Broker A Cloud broker is an entity that manages the use, performance, and
delivery of Cloud services and negotiates relationships between Cloud providers
and Cloud consumers. This entity can provide services in three categories: Service
Intermediation, Service Aggregation and Service Arbitrage (see [Liu et al., 2011]
for further explanation).

• Cloud Carrier It provides connectivity and transport of Cloud services to Cloud
Service Providers and their customers.

3.3.1.2 IBM’s Cloud Computing Reference Architecture

The IBM’s Cloud Computing Reference Architecture [Behrendt, 2014] defines three
main roles typically encountered in any Cloud system (see Figure. 3.6):
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1. Cloud Service Creator: It uses service development tools to develop new Cloud ser-
vices. This includes both the development of runtime artifacts and management-
related aspects (e.g., monitoring, metering, provisioning, etc.).

2. Cloud Service Provider: runs the created Cloud services and provides them to
service consumers, which can also be IT systems. They deliver the Cloud Services
to the clients. They consist of basic models (see Section. 3.3.2):

(a) Infrastructure-as-a-Service

(b) Platform-as-a-Service

(c) Software-as-a-Service

3. Cloud Service Consumer or Clients: It can be billed for all (or subset of) their
interactions with Cloud services and the provisioned service instances.

Figure 3.6: IBM’s Cloud Computing Reference Architecture (from [Behrendt, 2014])

3.3.1.3 DMTF Architecture and Life Cycle Model

The objective of the Distributed Management Task Force (DMTF) Cloud Management
Initiative5 is to develop inter-operable Cloud infrastructure management standards and
to promote adoption of those standards in the industry. The DMTF Cloud Management
Initiative has published three interesting white papers about Cloud computing, The first
one focuses on Cloud Interoperability [DMTF, 2009], the second on Cloud Architecture
and Management [DMTF, 2010a] and the third one on Use Cases for Cloud Management
[DMTF, 2010b]. A summary of the important Cloud aspects as well as the relevant
terms are outlined [DMTF, 2010a]:

5www.dmtf.org
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• Cloud service: a publicly available service or a private service that is used within
an enterprise.

• Provider interface: an interface through which Cloud service consumers access
and monitor their contracted services.

The interface also covers service level agreement (SLA) negotiation, service access,
service monitoring and billing. This interface is also the interface through which a
Cloud service developer interacts with a Cloud service provider to create a service
template that is added to the service catalogue.

Figure 3.7: DMTF Cloud Service Reference Architecture [DMTF, 2010a]

The Figure. 3.7 shows the key components such as actors, interfaces, data artifact
and profiles with the relations among them. The DMTF introduces several stages and
artifacts (see Figure. 3.8) around Cloud services and derive use cases and management
functionality from these artefacts. The six life cycle stages are:

• Template: A developer defines the service in a template that describes the content
of and interfaces to a service.

• Offering: A provider applies constraints, costs and policies to a template to create
an offering available for request by a consumer.
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• Contract: A consumer and provider enter into a contract for services, including
agreements on costs, SLAs, etc.

• Provision Service: A provider deploys (or modifies) a service instance per the
contract with the consumer.

• Runtime Maintenance: A provider manages a deployed service and all its re-
sources, including monitoring resources and notifying the consumer of key situa-
tions.

• End of Service: A provider halts a service instance, including reclaiming resources
for redeployments to support other service.
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Figure 3.8: DMTF Service Artefacts [DMTF, 2010b]

The use cases introduced in [DMTF, 2010b] are related to the different stages of
the latter life cycle. The use cases are specified through textual descriptions, sequence
charts, detailed class diagrams of the Unified Modeling Language (UML).

3.3.1.4 CCUCDG Cloud Computing Taxonomy

The role of the Cloud Computing Use Case Discussion Group (CCUCDG) is to highlight
the capabilities and requirements that need to be standardized in a Cloud environment to
ensure interoperability, ease of integration and portability [Group, 2010]. The use cases
presented in the white paper should:
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• Provide a practical, customer-experience-based context for discussions on interop-
erability and standards.

• Make it clear where existing standards should be used.

• Focus the industry’s attention on the importance of Open Cloud Computing.

• Make it clear where there is standards work to be done. If a particular use case
can’t be built today, or if it can only be built with proprietary APIs and products,
the industry needs to define standards to make that use case possible.

The CCUCDG introduces a Cloud taxonomy (see Figure. 3.9) in which service consumers
use the services provided through the Cloud, service providers manage the Cloud
infrastructure and service developers create the service themselves.

Figure 3.9: Cloud Computing Taxonomy (from [Group, 2010])

Figure. 3.10 shows the three actors categories (Cloud service consumer, provider
and developer) defined by the CCUCDG.
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Figure 3.10: Cloud Actors (from [DMTF, 2010b]

1. Service Consumer: This is the end user or company that actually uses the Cloud
service, whether it is software, platform or infrastructure as a service. Depending
on the type of service and their role, the consumer works with different user
and programming interfaces. Some of these user interfaces can be ordinary
applications (he does not need to have knowledge about Cloud technology when
using the application) or other administrative functions such as starting and
stopping virtual machines, etc.

2. Service Provider: It delivers the service to the consumer. It also depends on the
type of the service. For SaaS (see Section. 3.3.2): the provider installs, manages and
maintains the software. For PaaS (see Section. 3.3.2): the provider manages the
infrastructure for the platform, typically a framework for a particular application.
For IaaS (see Section. 3.3.2): the provider maintains the storage (databases) and
compute (CPUs) capabilities.

3. Service Developer: The service developer creates, publishes and monitors the
Cloud service. These are typically "line-of-business" applications that are deliv-
ered directly to end users via the SaaS model.

3.3.2 Layers of Cloud computing (A Business Model)

Cloud computing can be viewed as a collection of services, which can be presented
as a set of loosely-coupled layers. The NIST identifies three service models for Cloud
computing: Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure
as a Service (IaaS) [Peter Mell, 2011]. These service models are closely related and can
be seen as three layers, as it shown in Figure. 3.11.
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Figure 3.11: Layers of Cloud computing (Adapted from [Zhang et al., 2010])

• Infrastructure (IaaS) Also known as the virtualization layer, this is an abstracted
layer which gives the users a view on the hardware. the infrastructure layer
creates a pool of storage and computing resources by partitioning the physical
resources using virtualization technologies such as Xen6, KVM7 and VMware8.
The infrastructure layer is an essential component of Cloud computing, since
many key features, such as dynamic resource assignment, are only made available
through virtualization technologies. Examples: Amazon Elastic Compute Cloud
(Amazon EC2)9 (which is one of the most widely used infrastructure), GoGrid10.

• Platform (PaaS) This layer allows the users to deploy their applications on the
provider’s infrastructure, these applications have to be based on programming
languages and tools supported by the provider. The user has no control over the
underlying infrastructure (servers, storage, operating systems, networks,...) but
has control over the deployed applications.
Examples: Force.com11, Google App Engine12, Windows Azure13.

• Application (SaaS) Applications are available at distance and run on the provider’s
infrastructure and are accessed via a web browser. Users have no control over the
infrastructure of the Cloud whatsoever on the technical (data center, network,
servers, storage,...) or functional aspects (application version, available features,
etc.). Only a limited layer of customization is available to users.
Examples: Rackspace14 and Salesforce15.

Thesis focuses on a special kind of Cloud named Inter-Cloud.
6XenSource Inc, Xen (http://www.xensource.com.)
7Kernal Based Virtual Machine (http://www.linux-kvm.org/page/MainPage).
8VMWare ESX Server (http://www.vmware.com/products/esx).
9Amazon Elastic Computing Cloud (aws.amazon.com/ec2).

10GoGrid (http://www.gogrid.com).
11Force.com (http://www.salesforce.com/platform).
12Google App Engine (http://code.google.com/appengine).
13Windows Azure (http://www.microsoft.com/azure).
14Rackspace Cloud (http://www.rackspacecloud.com).
15Salesforce CRM (http://www.salesforce.com/platform).
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3.3.3 Types of Clouds (Deployment Models)

Cloud computing offers several deployment options:

• Public Cloud (or external Cloud) (see Figure. 3.12) is a Cloud in which service’s
providers offer their resources as services to the general public. These resources
are dynamically provisioned over the network. A public Cloud is an IaaS, PaaS
or a SaaS proposed and hosted by a third party. Amazon, Google and Microsoft
offers a public Cloud in which any individual or any company can host their
applications, services or data.

Figure 3.12: Public Cloud (from [Waschke, 2012])

• Community Cloud (see Figure. 3.13) the infrastructure is shared by several orga-
nizations and supports a specific community that generally has shared concerns
(e.g., mission, security requirements, policy, and compliance considerations). It
may be managed by the organizations or a third party [Peter Mell, 2011]. The
Cloud infrastructure could be either a solely-owned data center or a network
(federation or community) of (smaller) data centres [Keith and Burkhard, 2010].
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Figure 3.13: Community Cloud (from [Waschke, 2012])

• Private Cloud (or internal Cloud) (see Figure. 3.14) in this type of Cloud services
and infrastructure are maintained on a private network. The Cloud infrastructure
is operated only by a single organization. It may be managed by the organization
or a third party, and may exist on the premises or off the premises.
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Figure 3.14: Private Cloud (from [Waschke, 2012])

• Hybrid Clouds (see Figure. 3.15) a Hybrid Cloud is the use of multiple Clouds,
public or private. Applications can be pushed to a public Cloud that will con-
sume the data stored and exhibited in a private Cloud, or to communicate two
applications hosted in two separate private Clouds, or consume multiple services
hosted in various public Cloud.

A possible configuration for a hybrid Cloud is represented by a private Cloud that
scales out into a public Cloud.
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Figure 3.15: Hybrid Cloud (from [Waschke, 2012])

3.3.4 Cloud Standardization

Many researchers are working on Cloud computing standards. Loutas et al. [Loutas
et al., 2010] identified the following working groups as the most active: CloudAudit16,
the Cloud Security Alliance (CSA)17, the Distributed Management Task Force (DMTF)18,
the European Telecommunications Standards Institute Technical Committee (TSI TC
Cloud)19, the Open Grid Forum (OGF)20, the Object Management Group (OMG)21, the
Open Cloud Consortium (OCC)22, the OASIS Topology and Orchestration Specification
for Cloud Applications (TOSCA TC)23, the Storage Networking Industry Association
(SNIA)24, the Open Group Cloud Work Group25, the Cloud Computing Interoperability

16http://www.CloudAudit.org/
17http://www.cloudsecurityalliance.org/
18http://www.dmtf.org/home
19http://www.etsi.org/WebSite/Technologies/GRID_CLOUD.aspx
20http://www.ogf.org/
21http://www.omg.org/
22http://openCloudconsortium.org/
23https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
24http://www.snia.org/home
25http://www.opengroup.org/Cloudcomputing/
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Forum (CCIF)26, the Cloud Standards Coordination Working Group27. The OCCI Work-
ing Group of OGF develops mainly a practical specification related to IaaS. This API
introduces three fundamental concepts: compute, storage and network. The Cloud Man-
ifesto28 is an initiative supported by several companies arguing that Cloud computing
should capitalize on standards. The DMTF’s Open Cloud Standards Incubator (OCSI)
and focuses on standardizing interactions between Cloud environments by developing
resource management protocols.

The Open Virtualization Format (OVF)29 is a DMTF standard that describes virtual
appliances for deployment across heterogeneous virtualization platforms (i.e differ-
ent hypervisor), allowing the users to deploy their virtual appliances at every Cloud
provider. The CDMI is a SNIA standard for data management specifying a functional
manner on how applications create, retrieve, update, delete data from the Cloud. These
two standards are the most widely adopted by the Cloud community [Petcu, 2011].

3.3.5 Related technologies

Cloud computing is not a new technology, but is related to other concepts and technolo-
gies (see Figure. 3.16) such as Grid computing, utility computing, virtualization, etc.
These technologies are briefly introduced.

• Grid computing (see Section 3.2) consists of the exploitation of underutilized re-
sources (PCs and servers). It is a kind of distributed computing, permits dynamic
resources sharing between participants, organizations and enterprises in order to
allow intensive computing applications to be executed or important data volumes
to be treated.

• Utility computing defines a "pay-per-use" model for using computing services.
Cloud computing implements the idea of utility computing, which was first
suggested by John McCarthy in 1961, where computing is viewed as a public
utility. It adopts a utility-based pricing model in which users only pay for what
they use.

• Virtualization forms the foundation of Cloud technology and provides virtualized
resources for high-level applications. Virtualization is the technology that cre-
ates a layer between Hardware and operating system. It includes virtualization
technologies such as: Xen, KVM and VMware.

• Autonomic computing is an initiative started by IBM in 2001. The objective was
to develop computer systems capable of self-management and to overcome the
management complexity of IT systems. In other words, the primary goal of auto-
nomic computing is that “systems manage themselves according to an Administrator’s
goals ...” [IBM, 2001].

26http://www.Cloudforum.org/
27http://Cloud-standards.org/wiki/index.php
28http://www.openCloudmanifesto.org/index.htm
29http://www.dmtf.org/standards/published_documents/DSP0243_1.1.0.pdf
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Furthermore, there are other technologies and concepts that help the development
of Cloud-based applications and systems such as Web services and Service-Oriented
Architecture, workflows, Web 2.0 and Mashups30 [Keith and Burkhard, 2010].

Figure 3.16: Overview of Cloud Computing (Adapted from [Keith and Burkhard, 2010])

3.3.6 Formal Models of the Cloud

There is currently a very limited community working on formal aspects of Cloud
computing. This due principally to the technical implication of Clouds into the process
management . They are tackled only as external resources, that should be mapped to
workflow tasks. Although Petri nets have a strong mathematical basis, it is out of scope
of this dissertation to provide a formal description of Cloud computing. In Chapter 10,
a semantic for a refined Petri net transition called Cloud Transition is proposed.In the
following section, a state-of-the-art introduction towards defining a Cloud ecosystem
by Petri nets (or other modeling techniques) is presented. The proposed model can be
in the future extended and improved to establish a robust modeling strategy that takes
into account all participating entities. This ranges from clients, workflows to Cloud
providers and services.

30Mashup is a Web page or application that combines data from two or more external on-line sources.
Their data may be obtained in various ways, including, but not limited to APIs and XML feeds.
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3.3.6.1 The Axiomatic Cloud Theory

Several formal models of sequential and distributed processes are established. For
example: finite state automata, Turing machines and Petri nets. In the following, a
mathematical Cloud system, process definitions and Cloud axioms are proposed.

The author in [Weinman, 2011] is the first to introduce the term Axiomatic Cloud
Theory. He tackles the Cloud environment from a different angle that is not used often.
The idea is to abstract Cloud computing participants (clients, providers) using a formal
model. Even if this model is suitable for Cloud computing, it can be applicable to other
dynamic domains where distributed resources are shared and dynamically allocated
and usually priced. However, there exists no transformation of it so far. The model is
based on well-known disciplines such as: metric spaces, measure theory, linear algebras,
graph theory etc. [Weinman, 2011] defines a Cloud as a 6-tuple structure (S, T, G, Q, σ ,
q0) and satisfying five formal axioms (1) commons, (2) location-independent, (3) online,
(4) utility, (5) on-demand:

• S is space,

• T is time,

• G = (V, E) is a directed graph,

• V is a set of vertices,

• E is a set of edges, E ⊆ V ×V , and (u,v) ∈ E implies (v,v) < E and (v,u) < E,

• Q is a set of states where each state combines assignments of resource capacity
and demand, resource allocations, node location, and pricing;

• q0 is an initial state; and

• σ is a transition function that determines state trajectories over time: mapping
resources, allocations, locations and pricing to a next state of resources, allocations,
locations and pricing.

Figure. 3.17 shows a possible scenario that can use the previous model [Weinman,
2011]. The figure shows 4 vertices (Atlanta, Boston, Carolyn, Dave) and connected
by three edges with correspondent distance. The resources are denoted by <proces-
sor,storage> which can have positive or negative values. Atlanta < 5,3 > means that this
node has 5 cores and 3 GB and Dave <-2,-2> means that this node needs 2 cores and
two GB. The notion of distance plays an critical role regarding the resource allocation,
the node Dave changed its location. Hence, conditions change and pricing also changes.
Therefore, having intermediary nodes or brokering agents is of high necessity. In this
work, the matching process is handled using an SLA-based technique with respect to
QoS constraints.
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Figure 3.17: Possible Scenario (from [Weinman, 2011])

The main problem that the model in [Weinman, 2011] strives to solve is: matching
the demand of the Cloud customers with resources capacity available at the Cloud
providers. In this dissertation the problem is also tackled but from different angle
including cooperation and collaboration between different partners. Two situations
are addressed: Not all Cloud providers are available to all Cloud customers and there
is a need to collaborate multiple Cloud services from different Cloud providers to
satisfy the customers. In the current work, this idea is explicitly named as Inter-Cloud
(see Part II). Some elements of the formal model can be used to enhance the current
approach especially the parameters for the Cloud transition, for example the notion of
distance between the customer and the provider.

The Cloud scenario is modeled as a directed graph (see Figure. 3.18) where each
customer has some level of demand di , and each Cloud provider si has some level of
resources ri .
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Figure 3.18: The Cloud Computing Graph (from [Weinman, 2011])

The Inter-Cloud scenario can be also modeled using the above model (see Fig-
ure. 3.19).

Figure 3.19: The Inter-Cloud Scenario (from [Weinman, 2011])
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3.3.6.2 The Inter-Cloud Nets (ICNets)

In opposite to the formal aspects discussed above, a new kind of Petri net constructs
are proposed and will be later presented. In this dissertation, solution named Inter-
Cloud Nets (ICNets) is introduced. ICNets are predefined Petri net models that allows
not only the modeling of Cloud-based workflows but also the management of those
workflows in an Inter-Cloud environment. They allows more performance during the
execution of processes, avoidances Cloud vendor Lock-in and the interoperability issues.
ICNets are explained in detail in Chapter 10.

3.4 Inter-Cloud Computing

This section introduces the notion of Inter-Cloud computing which adds a supplemen-
tary management layer to the classical Cloud computing architecture.

3.4.1 Preliminaries

The long term vision of Cloud computing is that IT services are traded as
utilities in an open market, without technological and legal barriers. In this Cloud
marketplace, Cloud service providers and consumers, trading Cloud services as
utilities, play a central role [Buyya et al., 2013, p.3].

..., the discovery of such services is mostly done by human intervention: a
person (or a team of people) looks over the Internet to identify offerings that meet
his or her needs. We imagine that in the near future it will be possible to find the
solution that matches our needs by simply entering our request in a global digital
market that trades Cloud computing services [Buyya et al., 2013, p.3].

The existence of such a market will enable the automation of the discovery
process and its integration into existing software systems, thus allowing users to
transparently leverage Cloud resources in their applications and systems [Buyya
et al., 2013, p.3].

For some years, the Inter-Cloud notion has emerged, which could be seen as Cloud
of Clouds [Kelly, 2007]. The notion of Inter-Cloud is discussed much more and cited in
many research papers [Petcu, 2011, Papazoglou, 2012a, Bernstein et al., 2009, Nuñez
et al., 2011, Buyya et al., 2010]. The ability of one Cloud to participate in managing
another Cloud becomes critical to scaling a Cloud. It provide a means for a private
Cloud to temporarily use the resources of a public Cloud as part of an elastic resource
capacity strategy. It also will make possible to more immediately share functionality,
information, and computing resources.

As the short history of Cloud computing shows, Cloud services may be unavailable
for a short, or even for an extended period of time; such an interruption of service is
likely to impact negatively the organization and possibly diminish, or cancel completely,
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the benefits of utility computing for that organization. The potential for permanent
data loss in case of a catastrophic system failure poses an equally greater danger.

The other reason lies in the fact that one Cloud infrastructure does not have un-
limited resources to satisfy client’s requirements and the latter may receive requested
services from different Cloud servers [Buyya et al., 2010]. Thus, cooperation between
multiple Clouds (Inter-Cloud) is desired to make the Cloud able to satisfy consumer’s
requests and permits to ensure a high quality of service availability and performance
(see Figure. 3.20).

Figure 3.20: Inter-Cloud Vision (Adapted from [Grozev and Buyya, 2012a])

The alternative in this case is to switch to another provider; unfortunately, this
solution could be very costly due to the large volume of data that needs to be transferred
from the old to the new provider. Transferring tera or possibly peta bytes of data over
the network takes a fairly long time, it incurs substantial charges for the bandwidth
used and requires substantial manpower.

3.4.2 Definitions

As stated in Chapter 3, there are several definitions for Cloud computing and this
terminological ambiguity still remain. The Inter-Cloud is no exception to the rule
due to it’s infancy. The question that also remains is who is attempting to initiate the
Inter-Cloud- the Cloud provider or the Cloud client.

The authors in [GICTF, 2010] define the Inter-Cloud as : A Cloud model that, for the
purpose of guaranteeing service quality, such as the performance and availability of each
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service, allows on-demand reassignment of resources and transfer of workload through a
interworking of Cloud systems of different Cloud providers based on coordination of each
consumer’s requirements for service quality with each provider’s SLA and use of standard
interfaces.

Definitions by [Bernstein et al., 2009] and [Buyya et al., 2010] are implicitly similar.
Papazoglou et al. [Papazoglou, 2012b], introduce the notion of federated31 Clouds
without using explicitly the term “Inter-Cloud”. He shows how individual services
which are provided by diverse Cloud’s providers can be combined to offer a Business
Process as a Service (BPaaS).

There are other terms to design the Inter-Cloud: Federation and Multi-Cloud. The
term Federation is used when a group of Cloud providers decide voluntarily to share
their resources among each other [Rochwerger et al., 2009, Arjuna Agility, 2014]. The
Multi-Cloud notion is used to design a situation when different Clouds are used by
a client or a service. This means that Cloud clients are responsible for managing
provisioning and scheduling of the Cloud resources. The Hybrid Cloud is also used as
a type of Inter-Cloud, which means that two or more different Cloud (a private and
a public Cloud) are composed together. This situation occurs when for example the
local resources are insufficient. In [Petcu et al., 2011, Keahey et al., 2009], the authors
invoke the term Sky Computing, which almost represent Cloud environments that allow
interconnection and inter operation of Cloud resources from multiple providers.

3.4.3 Participating Actors

There are different actors participating in the interactions:

Inter-Cloud users, who are the actors that request resources and services, such as
human users, external applications (e.g., an IT application from a company),
internal applications or Cloud providers.

Inter-Cloud service providers, who are Cloud providers that are able to offer services
or resources to Inter-Cloud users.

Inter-Cloud identity providers, who are Cloud providers that are able to authenticate
Inter-Cloud users and to share the result of this authentication to Inter-Cloud
service providers. They are also responsible for issuing, certifying and managing
the identity information of their associated Inter-Cloud users.

3.4.4 Standards for Inter-Cloud

In July 2009, the Inter-Cloud Technology Forum (GICTF) was established, for the
investigation of possible Inter-Cloud’s schemes and to promote appropriate technology
standards. It has also the objective of studying different functional requirements and
use cases for Inter-Cloud computing. In addition, a number of other initiatives exist

31A Cloud federation uses both external (under the control of a vendor) and internal (under the control
of the enterprise) Cloud capabilities
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in relation to the technical problems in the context of the Inter-Cloud computing.
One of the important projects is RESERVOIR (Resources and Services Virtualization
without Barriers) which aims to develop systems and service technologies, utilizing
virtualization and Grid-technologies across administrative domains [Celesti et al., 2010,
Rochwerger et al., 2011]. Another related project is one led by the DTMF (Distributed
Management Task Force) Industry Consortium which includes also Cisco, EMC and
Microsoft. The objective of the Consortium is to focus on the interoperability and
portability issues and standardization of the interactions between different Cloud
environments [DMTF, 2009, DMTF, 2010a].

Besides manufacturers eg. Cisco, Vmware, the idea is to establish a standardization
for the exchange of computing. In 2011, the IEEE sets off a technical standards called
P2302- Standard for Inter-Cloud Interoperability and Federation (SIIF) (see Figure. 3.21).
The objective as stated by the working group is to establish a standard as such:

“The standard defines topology, functions and governance for Cloud-to-Cloud inter-
operability and federation. Topological elements include Clouds, roots, exchanges (which
mediate governance between Clouds), and gateways (which mediate data exchange between
Clouds). Functional elements include names spaces, presence, messaging, resource ontolo-
gies (including standardized units of measurements), and trust infrastructure. Governance
elements include registration, Geo-independence, trust anchor, and potentially compliance
and audit. The standard does not address Intra-Cloud (within Cloud) operation, as this is
Cloud implementation-specific, nor does it address proprietary hybrid-Cloud implementa-
tions” [SIIF, 2011].

Figure 3.21: Elements of an Inter-Cloud Standard (adapted from [SIIF, 2011])

3.5 Conclusion

This chapter provides a deep understanding of what (Inter-) Cloud/Grid computing
is. It focuses more on Cloud computing, since it is the chosen storage and computing
technology required for the execution the workflows. Nevertheless, approaches from
Grid domain can also be exploited to resolve problems in Clouds such as service
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composition or workflow scheduling. The chapter starts by a general description of
Grid computing, its concepts, topologies and applications. Then, it tackles Cloud
computing. Here, architectures, layers and types of Clouds are presented. Furthermore,
some formal models of Cloud computing are discussed. The next chapter is devoted to
all what concern the notion of workflow: concepts, workflow management systems and
the reference model from the WfMC.
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Chapter 4

Process Management and Workflows

Workflows and their management in Cloud-like environments are the area of interest of
this dissertation. Concepts, techniques and tools are provided in order to facilitate the
specification of complex Cloud-based workflows and their management (deployment
and execution). This chapter aims to provide first an introduction of workflows in
general and furthermore Cloud-based workflows. The objective is to define the main
workflow concepts and the class of workflow, which is used in this work.

4.1 Introduction

Workflows (Figure. 4.1)1 have been initially introduced in companies to automate
administrative procedures in which documents move between different services. Subse-
quently, they reached the field of software engineering for the management of business
processes. For some years, the scope of workflows has been broadened to scientific
applications, such as astronomy, bio-informatics, ecology, meteorology, etc, these appli-
cations are expressed as scientific workflows [Griphyn, 2010, Stevens et al., 2003, Kepler,
2012]. These last are seen as an adaptation of the first models for the conception of dis-
tributed applications, typically intensive computing on massive data and for dynamic
allocation of resources. Scientific workflows are characterized as long-running and
compute/storage intensive. With the significant advance of distributed systems, the
Cloud technology is the most suitable technology for running these kinds of workflows.
On the one hand, Clouds afford workflows with a considerable number of resources
(software and hardware) with easy access to support their deployment and execution.
On the other hand, workflows serve concepts and techniques for the Cloud to support
processes in all stages. For instance, workflow systems provides development tools to
build up applications by using modeling techniques (Petri nets or DAG based modeling)
instead of script-based workflow specification.

In this dissertation, several prototypes cover the remote sensing domain, especially
processing of satellite imagery, which are considered as scientific workflows. Therefor, a
tool named RenewGrass has been implemented (see Chapter 8). Its role is to support

1This workflow is already explained in the introduction (see Chapter 1).
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users to model and execute their image processing workflows by Petri nets and using
external GIS software. In addition to the definitions and the description of different
workflow types, an overview of the theme workflow is given. It includes supplementary
the general structure of a Workflow Management System (WfMS). Furthermore, a
state-of-the-art introduction is provided and addresses the notion of Cloud (Grid)-
based workflows. In this chapter, the objective is not to lead a deep study of workflow
technology. The objective is to put the emphasis on fundamental concepts of workflow.

Figure 4.1: Example of a Workflow

4.2 Definitions

The workflow concepts are summarized by the "3Rs" of Marshak [Marshak, 1994]:

• Routes are the flows or decisions that connect the steps and define the path that
an entity will take throught the process. Routing or movement of documents,
information or tasks was the first major function of workflows.

• Rules are the second major function of the workflow. It is complementary to the
first concept as far as the route of a process depends on rules, which define both
the nature of information and method of transition from one activity to another.
These rules can be simple or complex, but they are essential in the workflow
execution. Generally speaking, they take care of delivering the right piece of work
to the right resource at the right time.

• Roles (the capability of various participants) the third major function of the
workflow is the assignment of roles to the workflow’s users (who complete steps
in the process). A role is associated with the realization of one or more tasks. It
can be assigned to several users and one user may perform several roles.
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The following sections present some of the basic terminologies, which are mentioned
in this thesis. Most of the terminologies are taken from the Workflow Management
Coalition (WfMC)2. The WfMC established a document containing technical definitions
used to describe the concepts and a general structure of a workflow management
system [WfMC, 1999].

4.2.1 Process

A process is a formalized view of a business process, represented as a coordinated
(parallel and/or serial) set of process activities that are connected in order to achieve
a common goal. It consists of a number of tasks (which are connected in a form of a
directed graph) that need to be carried out and a set of conditions that determine the
order of the task.

4.2.2 Task

A Task is a logical single unit of work that is carried out as a single whole by one
resource3. Four distinct types of task are denoted: atomic, block, multiple-instance and
multiple-instance block. A definition has been given to these tasks by [Nicholas Charles,
2007]. An atomic task has a simple, self-contained definition (i.e. one that is not
described in terms of other tasks) and only one instance of the task executes when it
is initiated A block task is a complex action which has its implementation described in
terms of a subprocess. When it starts, it passes control to the corresponding subprocess,
which when finished gives the control back to the block task. The multiple-instance block is
the one that may have multiple distinct execution instances running concurrently within
the same process instance. Finally, a multiple-instance task is a task that may have
multiple distinct execution instances running concurrently within the same process
instance. Each of these instances executes independently.

4.2.3 Work Item

A Work Item is the term to design the invocation of a task. Generally there is a Work
Item initiated for each task in a given case. However, in case of a multi-instance task,
there may be several associated work items created when the task is instantiated.

4.2.4 Case

A Case is the executing instance of a process model. Furthermore, there may be multiple
cases of a particular process model running simultaneously, however each of these is
assumed to have an independent existence and they typically execute without reference
to each other.

2The WfMC has been founded primary to provide a reference model to develop a WfMS with the
objective that vendor-independent modules, which are linked together and operate with each other.

3A resource is a generic name for a person, machine or software that can perform specific tasks.
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Another important term is the Activity, which designs a Work Item being executed
by a specific resource. The authors in [van der Aalst and van Hee, 2004] present the
relation of all these concepts. This is shown in Figure. 4.2. Work items link cases and
tasks. Activities link cases, tasks, and resources.

Figure 4.2: A Three Dimensional View of a Workflow
(from [van der Aalst and van Hee, 2004])

4.2.5 Business Process

A business process is a set that includes one or more linked procedures or activi-
ties. which collectively realize a business objective or policy goal, normally within
the context of an organizational structure defining functional roles and relation-
ships [Hollingsworth, 1995]. Examples of business processes are: Bank Loan, Ap-
plication for Building Permit submitted to a public authority or the development of a
software. It is a business transaction of business entity with a defined start and end,
which may take a different path between the start and the end, respectively, and thus
different functions are executed. A business process is initiated by an event and is a
sequence of activities that are logically connected. The flow of the business process is
influenced by the input of required data entries as well as internal and external events.
These entries are carried out by the activities.
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4.2.6 Workflow

A business process is technically supported by a workflow. A Workflow is defined by
the WfMC as [Hollingsworth, 1995]: ”The automation of a business process, in whole or
parts, where documents, information or tasks are passed from one participant to another to
be processed, according to a set of procedural rules”. That is, not all modeled activities
must be supported by a WfMS, but can also be organizationally performed by deployed
software tools. A workflow runs always according to the same or at least a similar
schema. After a successful execution of the activities, the workflow must return to a
defined state. The activities are performed by different users (roles), which are provided
by necessary software tools and informations.

The WfMC distinguishes four basic workflow types:

• Ad-hoc Workflow: supports single or strongly varying processes that are little
structured and not predictable.

• Collaborative Workflow: supports the joint development of a result; this term is
also used as a synonym for groupware. It has high business value to the company
and involves a single large project and possibly many individuals.

• Administrative Workflow: supports structured routines that are not strategic, rarely
critical in time and cost. It refers to enterprise activities such as internal book-
keeping, database management, and maintenance scheduling,

• Production Workflow: supports fixed structured and pre-definable operations,
most of which are time critical and strategic.

4.2.7 Scientific Workflows

In the current work a special kind of workflows called Scientific Workflows is addressed.
A scientific workflow is a flow of tasks, mostly computational tasks, that are part
of a scientific experiment. Scientific workflows are usually executed on distributed
systems because of their great deal of demand of computation power [Qin and Fahringer,
2012]. Scientists and scientific applications impose new requirements on the employed
workflow technology. One of the obstacles that the application of the traditional
WfMS to scientific workflow faces, is that a scientific workflow is mostly considered
data/compute centric and time consuming. The major goal of scientific workflow is
enabling scientists to focus on domain-specific (science) aspects of their work, rather
than dealing with complex data management and software issues. They deal with huge
amounts of data and/or complex calculations and hence utilize large storage capacities
and computing resources. They do not have a rich control flow structure. The control
flow found in business workflows may not be expressive enough for highly concurrent
scientific workflows and data. Thus scientific workflows are often executed in a cluster
or Grid/Cloud environment. There are several techniques and tools developed for
business workflows that can be used for scientific workflows. Nevertheless, there are
differences between the two concepts. There is obviously a gap between the features

81



Chapter 4. Process Management and Workflows

business workflows provide and the requirements scientists and scientific applications
have [Sonntag et al., 2010b]. There are a several research works to exploit the business
workflow technology in the scientific field [Sonntag et al., 2010a, Wassermann et al.,
2007]. The objective of this section is to give an overview of scientific workflows.
Ludäscher et al. define scientific workflows as:

”networks of analytical steps that may involve, e.g., database access and query-
ing steps, data analysis and mining steps, and many other steps including com-
putationally intensive jobs on high performance cluster computers.” [Ludäscher
et al., 2006].

In [Qin and Fahringer, 2012] the authors give a detailed definition of scientific work-
flows. They describe it as: "a distributed application that consists of a set of activities that
are processed in a well-defined order to accomplish a specific goal." A scientific workflow w
is formalized as a pair:

w = (A,
−→
D ), where A is a set of activities, and

−→
D is a set of dependencies. Each

dependency
−→
d ∈ −→D is either a control flow dependence or a data flow dependence

associated with an ordered pair of activities (am,an), where am,an ∈ A.
An activity a ∈ A in a scientific workflow is a computational task. It may refer to a

computational entity, which will be invoked or executed when the scientific workflow
is executed.

A computational entity is a logical resource such as a Web service, an executable, a
shell script, a software component, a Java class, etc. that can be assembled in a scientific
workflow as an activity.

The composition of a scientific workflow refers to the process of the identification
of the activities of a workflow, and the establishment of necessary control flow and
data flow dependences among identified activities. Such that a specific goal, e.g., to get
resulted NDVI image of a satellite imagery (see Chapter 8), can be fulfilled in case the
scientific workflow is correctly executed.

4.3 Workflow Management System

A WfMS is according to the WfMC subdivided in three functional areas (see Figure. 4.3).
These areas are oriented towards the creation, operation and control of a process. A dis-
tinction is made amongst these functionality: Build-Time, Run-Time Process Control and
Run-Time Activity Interaction. With Build-Time functionalities, processes are translated
from the real world into a computer-readable definition, this is performed after the
process is analyzed, optimized and modeled. For the instantiation and the management
the process is the Run-Time Process Control responsible, and for the interaction be-
tween the user and the computer-supported process, the Run-Time Activity Interaction.
The Workflow Reference Model defines these functions (see Section 4.3.1) and gives a
good overview of what the WfMC aims.
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Figure 4.3: WfMS Character

WfMS are increasingly being used to manage business processes associated with
distributed global enterprises. A WfMS4 supports the functionality of workflows
through three important modules: modeling, execution and monitoring. The first
module provides a set of modeling and definition tools needed to define the following
components: activities, entities as well as the control flow between activities and the
pre-conditions or post-conditions. The nesting of workflows is also part of this module.

When designing a WfMS, the challenge is to design an environment in which various
technologies, from databases to distributed processing, must be integrated in a simple
and flexible way. In fact, every technology involved in the operation of a workflow has
its structural and functional characteristics. Therefore, issues of interoperability5 arise
again.

A definition of a WfMS is given by the Workflow Management Coalition (WfMC):

"A Workflow Management System is the computerized execution of a process
definition." [Hollingsworth, 1995].

There are two main concepts: process definition and computerized execution. More-
over, the WfMS is a software entity that can be used to support the definition, manage-
ment and execution of workflow processes.

A WfMS is also defined as:

"A system that defines, creates and manages the execution of workflows
through the use of software, running on one or more workflow engines, which is
able to interpret the process definition, interact with workflow participants and,
where required, invoke the use of IT tools and applications." [Lawrence, 1997].

4In this work, there is an emphasis on processes perspective rather then data and resources
5As general term, interoperability is a property referring to the ability of diverse systems and

organizations to work together (inter-operate).
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There are many advantages by using a WfMS, these can be summarized as follows:

• Ability to visualize the overall process and interdependencies amongst various
tasks,

• Automation of the processes, and

• Automated coordination and collaboration among various business entities.

The workflow system is adaptable in three ways: i) from the process perspective (the
most dominant one) in which the process model can be changed dynamically and ii)
from the resource perspective, the choosing of a particular resource could be done at
run time based on the history data and iii) from individual task/activity point of view
where an appropriate service can be invoked on the fly.

4.3.1 Workflow Reference Model

The aim of a WfMS is to define business processes in order to support their computerized
execution. To implement this functionality, the WfMC defines a WfMS architecture
that is widely adopted. Figure. 4.4 shows the basic components of the reference model
of a workflow and the interfaces among these components. The reference model is
considered to be an effort for standardize terminology in the area and define a series of
interfaces for various aspects of workflow systems thus vendors could adopt to promote
the opportunity for interoperability between distinct offerings. A brief overview about
the WfMS architecture is given below.

Figure 4.4: Workflow Reference Model (from [Hollingsworth, 1995, page 20])
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The reference model of a workflow defines five components:

• Process Definition Tools: these tools are used to specify in an abstract notation
the execution logic of the process. Process definition tools can use any visual
modeling language such as Petri nets [Salimifard and Wright, 2001] or Directed
Acyclic Graph (DAG) [van der Aalst and van Hee, 2002] to model a workflow
process. These tools are integrated for linking resources to specific activities in
the process definition.

• The Workflow Enactment Service: is the component in a workflow system, re-
sponsible of processes and workflows management. It consists of one or several
workflow engines and is in this way able to produce, manage and execute workflow
instances in the engines.

• The Workflow Engine: is the heart of a the workflow management system and
responsible for the design and runtime control of workflow instances. It maintains
all the data about the available and running processes. It is located within the
Workflow Enactment Service. It can be a single workflow engine, or a collection
of several workflow engines.

• Workflow Client Application: provides an interface for end-users to the WfMS.
This allows the user to take and edit tasks. Moreover, it can thus instantiate
workflows. The workflow client application is divided into a worklist handler and
an user interface. The worklist handler interacts with the user’s worklist, which is
maintained in the Workflow Enactment Service. The user interface displays tasks
to the user and gives him tools for editing.

• External Applications: definition of workflow interoperability models and the
corresponding standards to support interworking. Business processes are made
of many different functions. These functions are performed by applications and
must communicate its state to the workflow engine. A specific set of functions is
defined for applications that are invoked.

• Administration and Monitoring Tools: A monitoring tool allows one to query
the detailed results from the workflow management database. All the information
about the business process is stored in the administration tool for analysis. An
ideal monitoring tool permits to retrieve selective views of performance and to
handle predictions.

The Process definition tool is used to create the process descriptions. The Workflow
enactment service:

• interprets the process description

• controls the instantiation of processes, sequencing of activities, adding work items
to the user work lists and invoking application tools as necessary.
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The above is done through one or more co-operating workflow management engines,
which manage(s) the execution of individual instances of the various processes.
The reference model of a workflow has five interfaces between its components:

• Interface 1 (Server-Designer) enables to use a process definition as an input to
a workflow engine. It defines a point of separation between the build-time and
run-time workflow environment.

• Interface 2 (Client-Server) supports interactions between an application and the
workflow engine.

• Interface 3 (Invoked Application) defines an interface for calling an application
to handle an activity. The invoked application may be local to the workflow engine
or located on a separate network accessible platform.

• Interface 4 (Server-Server) enables one workflow system to pass a work item
seamlessly to another workflow system. This allows multiple workflow engines to
work together on achieving the goal of a business process.

• Interface 5 this interface includes the following operations: user management,
resource control, process supervisory functions and process status functions.

4.3.2 Workflow Perspectives

Next to the control flow, workflows can model other aspects. These perspectives of
workflow modeling will be shown here. The modeling of workflows is not limited to the
modeling of possible sequences, but also requires the consideration of; on the one hand
data plus information and on the other hand the resources. For this reason, most of the
workflow modeling tools have established different views of a workflow. [Weske and
Puhlmann, 2005,Jablonski Stefan (Hrsg.), 1997,Aalst, 1999,Scheer, 2002] designate five
different views. [Jablonski Stefan (Hrsg.), 1997] emphasizes, however, that in a concrete
application case, these views must be extended by other views.

The Figure. 4.5 is adapted from [Scheer, 2002] and represents the ARIS-House,
which is considered as a model for the modeling with the ARIS tool and which shows
the different views. However, the views (in [Scheer, 2002]) are slightly different than
those shown here.
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Figure 4.5: Workflow Perspectives (from [Scheer, 2002, p. 610])

The Activities-, task- or function view characterizes the activities and sub-workflows
that must be processed during the execution of the workflow. This view also describes
how workflows are partitioned into complex (sub-workflows) and atomic workflows
[Weske and Puhlmann, 2005]. This is often represented by a hierarchical structure
based on a tree. In the following, the perspectives from [Weske and Puhlmann, 2005]
are described:

• Functional Perspective: concerns the functional decomposition of the workflow,
often represented by a hierarchical structure. It determines which activities have
to be executed. It specifies what has to be done during the workflow execution but
does not specify how, when or under which conditions the tasks are performed. It
specifies who performs a given task and which data and applications are used.

• Behavioral (or process) Perspective: This perspective designs the constraints on the
functions performed in a workflow. One of the important components of this
perspective is the control flow constraints. It specifies under which conditions the
sub-workflows are executed during workflow execution. Therefore, the WfMS has
to take into account the interrelationships of the workflow’s tasks.
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• Informational Perspective: concerns the data and means the modeling of the rel-
evant application data of the workflow. It controls the transfer of the generated
(control), e.g., variables as well as the processed (production) data by the activities.
Such a form of data dependency is called data flow and it is important to guide
and control data transfer between related workflow tasks.

• Organizational Perspective: It gives an overview of the organizational structure and
the structure of the resources available to a workflow. The main objective of this
perspective is to enhance the efficiency of application processes by assigning work
to resources. For this, the WfMS need information about the organizational and
the technical environment in which the workflow is executed. Often, the word
role resolution is used and designs the selection of one or more persons (software
in case of automated workflows), which are allowed to perform the task.

• Operational Perspective: The operational perspective covers mainly technical issues.
It describes the elementary operations performed by resources and applications.
For example, entering customer and credit request data is typically done by
forms-based softwares.

4.4 Workflow Patterns

Workflow patterns address comprehensive workflow functionality. In [Moldt and Rölke,
2003], authors showed that Reference nets are suitable to model the workflow patterns
in an elegant and easy way. They developed a plug-in for the Renew Petri net editor to
support the construction of workflows by simply putting workflow patterns together
in a drag-and-drop manner. In the following are, six categories of workflow patterns
addressed from a reference net view:

• Basic control patterns

– sequence,

– parallel split (and),

– synchronization (parallel, and),

– choice and

– simple merge (exclusive, xor)

• Branching and Synchronization patterns

– multi-choice (or),

– synchronizing merge (or)

– multi-merge

– discriminator

• Structural patterns
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– arbitrary cycles (loop)

– implicit termination

• Multiple instance patterns

– multiple instances without synchronization (fork)

– multiple instances with a Priori design time knowledge

– Multiple Instance with a Priori Runtime Knowledge

– Multiple Instance without a Priori Runtime Knowledge

• State-based patterns

– Deferred Choice (implicit choice)

– Interleaved Parallel Routing

– Milestone

• Cancellation patterns

– Cancel Activity

– Cancel Case (Instance)

The authors in [Moldt and Rölke, 2003] investigate how these patterns are supported
in the modeling tool Renew.

4.5 Workflow and Cloud Computing

In contrast to traditional execution scenarios, the aim of this dissertation is to investigate
the integration of both workflow concepts and the Cloud technology and later on with
the agent paradigm. This is addressed exclusively in Part II. To combine workflow
and Cloud computing, two research directions are distinguished and will be presented
in Part II. On the one hand, the applicability of the Cloud technology to workflow
execution is investigated. Here, the objective is to increase the performance of the whole
execution system, by using Cloud resources as execution targets. For this purpose,
mechanisms are provided to deploy and enact workflows in Cloud environments (see
Chapter 9). On the other hand, workflow concepts for Cloud computing are introduced.
They help researchers and practitioners in the design, development and execution
of their application in the Cloud. It also includes among others improved modeling
techniques based on Petri nets for the management of Cloud-based workflows. The
contributions covering this research are exclusively presented in Chapter 10.

The following sections outline some important works, which are somehow related to
the proposed approaches in this dissertation. Furthermore, since Grids and Clouds are
strongly related in term of resource sharing and allocation as well as data management,
it is also included a short overview about Grid-based WfMSs.
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4.6 Grid- and Cloud-based Workflow Management Sys-
tems

Over the past years, several works have been dedicated to the use of workflow for
scientific applications. Yu et al. give a detailed taxonomy of workflow management
systems [Yu and Buyya, 2005] based on workflow design, workflow scheduling, fault
management and data movement. The study includes also a characterization and classi-
fication of different approaches for building and executing workflows on Grids. The
authors also outline existing Grid workflow systems with key features and differences.

Figure 4.6: Workflow Management in Grid (from [Kuropka et al., 2006])

Korupa et al. [Kuropka et al., 2006] give a model of grid workflow management.
Figure. 4.6 shows how the workflow management systems are related to grid nodes. The
latter register their services in the grid information service to perform role resolution.
The WfMSs belong to different organizations and they are responsible of scheduling
and monitoring of their own tasks. It is the same for the grid nodes which perform local
scheduling on the basis of the work lists they receive from the WfMSs. In this model,
one resource can holds several work lists. Hence, further scheduling parameters need
to be included such as priorities and deadlines.

The development of distributed scientific workflow systems with grid paradigm has
significantly grown during the last decade. Workflow enactment service can be built on
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top of the low level grid middleware (e.g. Globus Toolkit6, UNICORE7 and Alchemi8),
through which the workflow management system invokes services provided by grid
resources [Yu and Buyya, 2005]. At both the build-time and the run-time phases, the
state of the resources and applications can be retrieved from grid information services.
There are actually many grid workflow management systems in use. Following are a
few examples of such systems: ASKALON9, GridAnt10, Pegasus11, Taverna12, Kepler13,
GridBus14, GridFlow15, GrADS16 and Triana17.

In [Yu and Buyya, 2005], is a comparison of several Grid workflow management
systems given. It takes into account scheduling architecture, decision making, planning
scheme, scheduling strategy and performance estimation.

4.6.1 JASMIN: Applications Management in Service-oriented Grid
Systems

JASMIN [Bendoukha et al., 2012a], is another interesting grid-based WfMS. JASMIN18

is a visual framework to make grids more efficient and more transparent to both experts
and not- experienced users, by making easy interaction between them and the grid
environment. For workflow modeling, the JASMIN framework is based on UML activity
diagrams, the latter is converted to a BPEL process, which will be executed on a BPEL
engine (like ActiveBPEL). To realize this work, many UML refinements have been made
especially for mapping the UML activity diagrams into BPEL [Bendoukha et al., 2012b].

4.6.1.1 The JASMIN Architecture

JASMIN framework covers workflow definition, service composition and enactment.
Figure. 4.7 shows the architecture of JASMIN and its components. There are two main
layers [Bendoukha et al., 2012a, Bendoukha et al., 2012b]:

Workflow Definition JASMIN framework provides a tool for the specification of
workflow tasks and their dependencies. As modeling techniques, it uses UML activity
diagrams. All the interactions between users and JASMIN are supported by a graphical
user interface. The result of this layer is a model (in form of activity diagram).

6http://www.globus.org/toolkit/
7http://www.unicore.eu/
8http://www.cloudbus.org/∼alchemi/
9http://www.askalon.org/

10http:// www.globus.org/cog/projects/gridant/
11http://pegasus.isi.edu/
12http://www.taverna.org.uk/
13https://kepler-project.
14http://www.gridbus.org/
15http://gridflow.ca/
16http://www.iges.org/grads/
17http://www.trianacode.org/
18I participated actively to this project since it was related to my Magister thesis, which was in

cooperation with the GRID Computing Laboratory of the University of Calabria (Italy) (http://gridlab.
dimes.unical.it/)
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Service Composition , the role of this layer is to take the BPEL model generated
above and to transform it into an executable script. There are specific tools which are
responsible of the transformation. In order to convert the model, the activity diagram
elements are mapped into BPEL elements. Therefore, a library called UML2BPEL has
been implemented. This layer is also considered as the gateway to the grid resources.

Figure 4.7: The architecture of the JASMIN framework
(from [Bendoukha et al., 2012a])

4.6.1.2 The JASMIN Scenario

In this section, the life-cycle of a workflow using the JASMIN framework is described.
In order to specify the workflow tasks and their dependencies, the framework provides
a Workflow Model Editor based on UML activity diagrams. Since the workflow tasks
involve Web services that need to be orchestrated using BPEL, modeling a workflow takes
all required information into account. For example, Partner Link Types, Endpoints
references and variables following the BPEL specifications [Juric, 2006, OASIS, 2007].
Furthermore, the editor provides predefined workflow patterns such as Sequential, Fork,
Join and Switch. These are dedicated especially to non-expert users during the modeling
step.
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The generated model can not be directly executed. Therefore, it is converted to an
executable BPEL document. This is achieved by the UML2BPEL, which converts each
UML construct to a BPEL element. JASMIN uses Globus Toolkit19 as grid middleware.
Such middleware allows hosting grid services in a container.

4.6.2 Cloud-based Workflow System Architecture

Based on the discussion in the section 3.2.3, Xiao Liu et al. [Liu et al., 2010] proposed a
general architecture for Cloud-based workflow (see Figure. 4.8). It is considered as a
mapping of the Cloud system architecture (see Figure. 3.3).

Figure 4.8: Cloud Workflow System Architecture (from [Liu et al., 2010])

The application layer contains the Cloud-based workflows (business processes). The
platform layer includes the Cloud workflow functionalities such as workflow manage-
ment, Cloud resource management and QoS management. The unified resource layer
consists of software and and hardware services which are required for the execution
of the Cloud workflow. These services are encapsulated and delivered as VMs (virtual
machines). The fabric layer contains low level hardware resources such as computing,
storage and network resources.

As shown in Figure. 4.8, the unified layer and fabric layer are usually maintained
by external Cloud service providers. The application layer and the platform layer are
usually self-maintained by the business organization.

19http://toolkit.globus.org/toolkit/s
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4.6.3 Amazon Simple Workflow Service

Launched in 2012, Amazon Simple Workflow Service (SWF)20 (see Figure. 4.9) is
an orchestration service for building scalable applications. Amazon recognized the
usefulness of workflow concepts to develop Cloud-based applications. It maintains the
execution state of the workflow in terms of consistency and reliability. It permits to
structure various processing steps in an application that runs across one or more systems
as a set of tasks21. These systems can be Cloud-based, on-premises, or both. Amazon
SWF manages dependencies between the tasks, schedules the tasks for execution, and
runs any logic that needs to be executed in parallel. The service also stores the tasks,
reliably dispatches them to application components, tracks their progress, and keeps
their latest state. Nevertheless, the important drawback of SWF is its incompatibility
with other workflow systems. Amazon provides SDKs for different programming
languages like Java, Ruby, etc. The following terminology is taken from the original
documentation of SWF [OASIS, 2014]. A workflow in SWF ”is a set of activities that
carry out some objective, together with logic that coordinates the activities.”. Each workflow
runs in an AWS resource called a domain. An Amazon SWF Actors can be workflow
starters, deciders, or activity workers. A decider is an implementation of a workflow’s
coordination logic. Deciders control the flow of activity tasks in a workflow execution.
A workflow starter is any application (event) that can initiate workflow executions. An
activity worker is a process or thread that performs the activity tasks that are part of
the workflow. Activity tasks need to be registered using the Amazon SWF console.

20aws.amazon.com/swf
21There are two types of tasks in Amazon SWF: Activity task that tells an activity worker to perform its

function, such as to check inventory or charge a credit card. The activity task contains all the information
that the activity worker needs to perform its function. Decision task that tells a decider that the state of
the workflow execution has changed so that the decider can determine the next activity that needs to be
performed. The decision task contains the current workflow history.
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Figure 4.9: The Amazon Simple Workflow Service [Amazon, 2012]

4.6.4 The SwinDeW-C Architecture

The Swinburne Decentralized Workflow for Cloud (SwinDeW-C) system [Liu et al.,
2010] is for running large scale workflow applications. It inherits many features of its
ancestor SwinDeW-G [Yang et al., 2007] but with significant modifications to accommo-
date the novel Cloud computing paradigm. The architecture of SwinDeW-C is depicted
in Figure. 4.10, it is composed of four basic layers from top to bottom: application
layer (user applications), platform layer unified resource layer (abstracted/encapsu-
lated resources by virtualisation) and fabric layer (physical hardware resources). They
cover three aspects of large-scale workflows: QoS management, Data management
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and Security management. At build-time, workflow applications are modeled by a
cloud modeling tool (Web portal) as Cloud workflow specifications (consist of such as
task definitions, process structures and QoS constraints). These specifications are next
submitted to the coordinator peers on the platform layer. Afterwards, workflow tasks
will be assigned to suitable peers through peer to peer based communication between
SwinDeW-C peers.

Figure 4.10: The SwinDeW-C Architecture (from [Liu et al., 2010])

4.7 Conclusion

In this chapter, workflow concepts have been presented. The first sections concern
the terminologies used in this dissertation. Moreover, a special emphasis is made on
scientific workflows. The rest of the chapter covers the relation between workflows and
Cloud computing. It is stated that this relation can be addressed in different ways. On
the one hand, there is Cloud for workflow which consists of using Cloud resources to
execute complex workflow tasks especially scientific workflows [Hoffa et al., 2008] [Juve
et al., 2009]. Such kind of workflows are more resource-centric and focus on the
computational tasks. On the other hand, designing Cloud ecosystems needs structured
and mature workflow concepts and high-level languages to handle issues like managing
complex task and data dependencies. In this dissertation, both scenarios are tackled by
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providing new concepts and techniques for modeling, deployment and execution of
Cloud-based workflows. The next chapter tackles workflow specification techniques
and tools. It will concentrate on Petri nets-based modeling since it is the modeling
techniques used in the current work.
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Chapter 5

Workflow Modeling: Techniques and
Tools

Workflow modeling plays an important role in this dissertation. Most of the effort has
been dedicated to provide appropriate modeling techniques for Cloud-based workflows.
Furthermore, existing techniques and tools have been improved in order to adapt
them for new execution environments (Clouds). In this research work Petri nets are
exclusively used as a modeling technique. The objective of this chapter is first to address
workflow specification in general. Next, a detailed introduction to Petri nets as well as
related technologies are given.

5.1 Introduction

Defining workflows or processes is an essential step towards the design and the devel-
opment of Cloud-based applications and their management. It allows understanding
the functionality of each entity taking part to the management system. The main role
of a process definition is to model routing patterns (sequence, iteration, parallelism
and selection). It describes the order of the tasks that should be performed and the
dependencies among them. Moreover, it also allows the verification of the workflow
model to detect (semantic) errors like deadlocks. Process definition permits also the re-
usability of the workflow model several times and by other workflow engines, that can
be hosted on different Cloud providers. Workflow modeling helps analyzing the whole
system and its components. This chapter is composed of two main sections. Firstly,
an introduction is given to differentiate between script-like and graph-based workflow
description languages. After that, some existing workflow specification languages and
tools are presented such as BPEL, BPMN and Petri nets. The latter are explained in
details in the second part of the this chapter. The most important are:

• Petri nets (see Section 5.4): In this section, Petri nets are defined and classified
into three categories (Elementary nets, P/T nets and high level petri nets). The
basic formalisms and operations of P/T nets are presented.
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• Workflow nets (see Section 5.4.3): They are a special sub class of Petri nets used
for modeling and verification of business processes.

• Reference nets (see section 5.4.4): Reference nets are based on the nets-in-nets
paradigm and play an important role in this thesis, especially in Chapter 10. This
formalism are explained through a working example (DropBox Storage nets).

• Renew (see Section 5.5): Renew is the chosen tool for modeling and simulating
different kinds of Petri nets. In this section, the Renew Editor, Renew Simulator
and the Plug-in system are presented.

5.2 Workflow Specification

Workflow specification or definition is an important step and strives to provide a process
description that can be interpreted by the software to support the corresponding process.
It defines a collection of tasks and the order of task invocation.

In general, users can define applications using definition languages and tools. Exist-
ing workflow description languages can be regrouped into two categories
[Hoheisel and Alt, 2007, page. 13]. Script-like workflow descriptions using a textual
“programming language” that has complex semantics and extensive syntax, and graph-
based workflow description languages. In terms of script-based definition language,
markup language, such as Extensible Markup Language (XML) [W3C, 2012] is widely
used specially for workflow specification as it facilitates information description in a
nested structure. Therefore, many XML-based application definition languages have
been adopted in Grids. Some of these languages, such as WSDL [Chinnici et al., 2012]
and BPEL [OASIS, 2007] have been standardized by the industry and research commu-
nity (i.e. W3C [W3C), 2012]), whereas some of them, such as xWFL [Rajkumar Buyya,
2009] and AGWL [Fahringer et al., 2005b] are customized according to the requirements
of the system.

Although language-based definition of applications is convenient for expert users,
it requires users to learn a lot of language-specific syntax. However, the general
users prefer to use graph-based definition languages and support tools for application
definition, where the application composition is better visualized. This graphical
representation is later converted into other forms for further manipulation.

5.3 Workflow Specification Languages

Although a standard workflow language like the Business Process Execution Language
(BPEL) is defined [OASIS, 2007, Juric, 2006], some workflow systems developed their
own workflow model for making it possible users to specify workflows. Besides BPEL,
other formalisms like UML Activity Diagrams [OMG, 2015], Petri nets [Petri, 1962, Alt
et al., 2006], Business Process Modeling Notations (BPMN) [OMG, 2013] and XML-
based languages [Fahringer et al., 2005b] are also used to define workflows. This
makes it difficult sharing workflow models between different partners and diminishes
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the interoperability of the workflow applications when trying to use different work-
flow management systems. The following sections provide a short overview of these
specification languages.

5.3.1 WS-BPEL

The Business Process Execution Language for Web service known as BPEL4WS, more
recently as WS-BPEL (or BPEL for short) is a widely used standard for implementing
business processes that are based on SOAP services and a standard workflow language.
It is a domain specific, imperative programming language for the definition of exe-
cutable business processes. BPEL is also classified in the group of service orchestration
languages. Although one can understand BPEL as a programming language, this is not
"programmed" but "modeled". For this reason, no text editor (although it is possible)
is utilized, but “modeling tool” that supports the configuration of the Web service
details. This also assumes the creation and updating of individual files (BPEL, WSDL,
XSD) so that the developer can focus on the business logic. Each element in the BPEL
process is called an activity. An activity can be either primitive or structured. Primitive
activities allow invoking operations on a Web service, waiting for a message from an
external source, copying data from source to target, etc. The structured activities permit
for example to define the execution order, grouping and routing activities, etc. The
BPEL specification distinguishes explicitly between executable and abstract processes
and defines which details in abstract models can be omitted. Unlike conventional
programming, business processes are typically long running, concurrent programs,
where the control- and data flow are specified and interpreted (by a Workflow engine)
differently.

The reason mentioning BPEL here is related to a previous research work (Magister
thesis). The objective was to build a Grid-based Workflow Management System called
Jasmin (see the previous Chapter 4). It supports workflow modeling, deployment
and execution in Grid-like environments with an emphasis on the specification level.
Therefor, a modeling tool based on UML activity diagrams has been implemented. The
next step of the project was to translate the activity diagrams into executable BPEL-
based processes, which are deployed after in a BPEL engine. The BPEL engine runs on
a container as a Grid service. More details about this work can be found in [Bendoukha
et al., 2012a].

5.3.2 UML Activity Diagrams

UML Activity Diagrams are used to specify the control flow of a workflow. An activity
diagram consists of a set of nodes [Qin and Fahringer, 2012], which can be classified
as: Action nodes (see Figure. 5.1a), Control nodes (see Figure. 5.1b, c, e-h) and Object
nodes (see Figure. 5.1d, i). Actions nodes or Action states represent the performance of a
step within a workflow. Control nodes indicate the control and data flow. Object nodes
contain the data that circulate through the graph. A control flow edge (see Figure. 5.1i)
indicates the dependency relationship between two interconnected nodes. An Object
node specifies the flow of objects along interconnected Action nodes. As stated before,
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UML Activity Diagrams have been chosen to specify Grid-based workflows. A tool has
been implemented to allow the specification of workflows and then their deployment
and enactment in a Grid environment [Bendoukha et al., 2012b].

Figure 5.1: UML-based Scientific Workflow Modeling
(from [Qin and Fahringer, 2012])

5.3.3 Business Process Model and Notation (BPMN)

The process description language Business Process Modeling Notation (BPMN) provides
a graphical representation of process models (see Figure. 5.2). It has become one of the
most widely used languages to model business processes and includes since version
2.0 an executable XML representation. BPMN is supported by many tool vendors and
has been standardized by the Object Management Group (OMG). The aim of the current
version of the process description language Business Process Model and Notation [OMG,
2013] is to avoid as far as possible the gap between the strategic-operational modeling
at the business level and the executable descritpion at the technical level.

This goal is also laid out in the standards documents, which states that ”The primary
goal of BPMN is to provide a notation that is readily understandable by all business users,
from the business analysts that create the initial drafts of the processes, to the technical
developers responsible for implementing the technology that will perform those processes,
and finally, to the business people who will manage and monitor those processes. Thus,
BPMN creates a standardized bridge for the gap between the business process design and
process implementation.“ [OMG, 2013, page 1]. On that point, a graphical modeling
language by the BPMN version 2.0.2, to support various human experts, and which can
be transfered directly into a corresponding machine readable XML-format. Following
BPMN, a process consists of a number of flow objects (tasks, gateways and events),
connecting objects (sequence flows and message flows), distribution objects (pools and
swimlanes) and other artifacts (data objects and groups, etc.) [Barkhordarian et al.,
2012].
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Figure 5.2: Example of a Simple Business Process (from [White, 2008])

5.3.4 Petri Nets

Petri nets are used for modeling and analyzing workflows. They can serve as a solid
foundation for Business Process Management and workflow management. Workflow
Petri nets (see Section. 5.4.3) are a class of Petri nets used for the representation,
validation and verification of processes following the principles laid out in [van der
Aalst, 1997]. More specifically the reference net formalism [Kummer, 2002] is extended
with a specialized workflow task transition [Jacob et al., 2002] (see Section. 5.4.4). Petri
nets can model different activities in a distributed system; a transition may model the
occurrence of an event, the execution of a computational task, the transmission of a
packet, a logic statement, and so on. The input places of the Cloud Task Transition
model the pre-conditions of an event, the input data for the computational task. The
output places of the transition model the postconditions associated with an event, the
results of the computational task. Petri nets are presented with more details within
next sections (see Section 5.4).

5.4 Petri Nets

Petri net formalisms are used for modeling complex systems thanks to their advantages
in supporting concurrency and their capacity to offer both operational semantics (vali-
dation) and formal semantics (verification). They were designed by Carl Adam Petri in
1962 in his PhD thesis: “Kommunikation mit Automaten”. Petri nets (see Figure. 5.3) are
widely seen as the scientific fully functional workflow modeling method [van der Aalst,
1997]. They are a special class of directed graphs that can model sequential, parallel,
loops and conditional execution of tasks. A vast number of algorithms and tools for
Petri Nets analysis have been developed along the years. There are several kinds of Petri
nets. A classification was elaborated by [Bernardinello and De Cindio, 1992, page. 306],
who distinguishes between three levels of Petri nets:

• Level 1: Petri nets that are characterized by places that can represent Boolean
values; i.e., a place is marked by one unstructured token. Examples of level 1
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nets are Condition/Event (C/E) systems, Elementary nets (EN) systems and State
Machines (SMs).

• Level 2: Petri nets characterized by places that can represent Integer values; i.e., a
place is marked by a number of unstructured tokens. Examples of level 2 Petri
nets are Place/Transition (P/T) nets and Free Choice nets.

• Level 3: Petri nets characterized by places that can represent high-level values;
i.e., a place is marked by a multi-set of structured tokens. Examples of high-level
Petri nets are Colored Petri nets (CPN).

First, the basic formalisms and operations of Petri nets (P/T nets) are presented.
A special subclass of Petri nets called Workflow nets are used to model and to verify
business processes and other structured processes. For the modeling and the imple-
mentation the reference nets formalism is used [Kummer, 2002]. In reference nets, nets
can be used as marking in other nets, whereby a large expressive power for modeling
complex systems is given.

5.4.1 P/T Nets

Petri nets consist of three types of net elements: places, transitions and arcs. Places and
transitions are connected by edges represented by Arrows. These arcs always go from
one place to a transition or from a transition to a place, never between two net elements
of similar type. Places may contain tokens that may move to other places by executing
(“firing”) actions.

Figure 5.3: Petri Net
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Definition 1 (Net) A net is a triple N = (P, T, F) where:

• P is the set of places of N

• T is the set of transitions

• P ∩ T = ∅

• F ⊆ (P × T )∪ (T × P ) is the flow relation

A marking of N is a multi-set of places m ∈ NP . The firing of a transition is rep-

resented by m
t−→m´. Firing sequences are represented by m

t1...tn−−−−→m´. The set of the

reachable markings is defined as RS(m) = {m´ | ∃t1...tn: m
t1...tn−−−−→m´}.

The preset of a node (a place or a transition) y is •y := {x | xFy}. The post-set of a node y
is y• :={x | yFx}.

P/T nets extend the above definition of Petri nets by adding capacities to places, an
initial marking function and weights to arcs.

Definition 2 (P/T Net) A P/T Petri net (PN ) is a 5-tuple, PN = (P ,T ,F,W ,M0),
where:

• P = {p1,p2, ...,pm} is a finite set of places

• T = {t1, t2, ..., tn} is a finite set of transitions

• P ∩ T = ∅

• F ⊆ (P × T )∪ (T × P ) is a set of arcs (flow relation)

• W : F→ {1,2,3, ...} is a weight function

• M0 : P → {0,1,2,3, ...} is the initial marking

In this work, Petri nets are used to enable the combination of agents and workflows,
which are solid and proven models ( [Rölke, 2004] for agent and Multi-agent systems
and [van der Aalst, 1997] for workflow and workflow systems).

5.4.2 Nets-in-Nets Formalism

The nets-in-nets formalism was introduced by Rüdiger Valk (see [Valk, 1998, Valk,
2004]) and will be briefly described in this section. The given formal definition of the
Elementary Object System (EOS) by Valk describes a two-level system architecture: At
the first level there is the so called System Net and at the secong level all contained Object
Nets therein. Each of these nets is a P/T net and use usual black tokens unlike the system
net’s places, which are marked with either black tokens or object nets. The underlying
conceptual idea is applicable to any nested Object Nets. Michael Köhler [Köhler, 2004]
elaborated a further formalization of the object nets. The concept of nets-in-nets can in
principle (under certain constraints) be interpreted as a variant of the hierarchy of Petri

105



Chapter 5. Workflow Modeling: Techniques and Tools

nets. This paradigm allows tokens in a Petri net place to be interpreted as a net again.
It can occur any number of object net tokens with different markings in a system net.
In their simple form such as the Elementary Object System (EOS), the object net tokens
hold the same net’s structure (transitions, places and arcs). In the complex form the
object nets may appear in different structures.

Figure 5.4: Net as a Token

Definition 3 (EOS): An Elementary Object System (EOS) is a tuple OS = (N̂ ,N, d, l)
such that:

• N̂ is a P/T net, called the system net

• N is a finite set of disjoint P/T nets, called object nets

• d: P̂ → N is the typing of the system net places

• l = (l̂,(lN ) N∈N) is the labeling

Another detailed example is given by [Heitmann and Köhler-Bußmeier, 2011] and
depicted in Figure. 5.5. It shows an EOS with the system net N̂ and the object nets N =
N1, N2. The system has four net-tokens: two on place p1 and one on p2 and p3 each. The
net-tokens on p1 and p2 share the same net structure, but have independent markings.

Figure 5.5: An Elementary Object Net System
(from [Heitmann and Köhler-Bußmeier, 2011])
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5.4.3 Workflow Petri Nets

A Petri net which models the process aspect of a workflow, is called Workflow Net
(WF-net) [van der Aalst, 2011b]. A WF-net is a reference net with one source place and
one sink place (see Figure. 5.6), It is a workflow description technique with powerful
modeling and formal analysis. Formally, a net N = (P, T, F,W,mo) is a workflow net if
and only if there exist places i,o ∈ P such that •i = ∅ = o•, m0(P)=1 for p=i and m0(P)=0
otherwise, and the net Ñ= (P,T∪{r}, F∪{(o,r),(r.i)},W∪{(o,r)7→1,(r,i)7→1},mo) where r < T,
is strongly connected.

A firing sequence ω of a workflow net N is a run if m0
ωr−−→m0 in Ñ. The runs of N

are the formalization of the use cases of the business process modelled by the workflow
net. [] denotes a simple black token.

Figure 5.6: Workflow Petri net

5.4.4 Reference Nets

Reference nets were introduced in 2002 by Olaf Kummer (see [Kummer, 2002]). Refer-
ence nets are modeled and simulated using Renew the editor and simulation tool, both
are presented in the Renew manual1. In reference nets, tokens can be anonymous, basic
data types, Java objects or reference nets.

Firing a transition can also create a new instance of a subnet in such a way that a
reference to the new net will be put as a token into a place. This allows for a specific,
hierarchical nesting of nets, which is helpful for building complex systems in these
formalisms. The creation of instances is similar to object instances in object-oriented
programming languages and the usage of references allows to construct reference net
systems, whose structures are not fixed at the build time. New net instances can be
created by transitions that carry creation inscriptions, which consist of a variable name,

1The latest version of Renew, documentation and articles are published on the Internet
(http://www.renew.de)
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a colon (:), the word new and the name of the net. Net instances can be created destroyed
dynamically at the run time.

One main idea is that two transitions can be connected via a named channel. If this
is the case, both transitions can fire simultaneously and synchronously, but only if they
were both activated before. During firing there is also a bidirectional information/data
exchange possible, so that input data from one transition can be used as output data
of the other transition. Connecting two transitions with a synchronous channel can be
seen as fusing them together for the firing process.

Synchronous channel inscriptions consist of two types of inscriptions, up-links
and down-links. Synchronous channels between reference net instances are specified
in [Christensen and Hansen, 1994]. They consist of at least two transitions where one
of the transitions is seen as the initiator of the communication having a down-link
inscription. Transitions can have only one down-link and multiple up-links. Channels
are designated by a string :channelname(parameters), in which the parameters are the
object/token/variable that is transmitted through the channel. Synchronous channels
play an important part in reference nets and the multi-agent architectures Mulan

/Capa.

Working Example To show how Reference nets are created, Figure. 5.7 shows two
separate nets that can communicate. The net (a) represents the Web authentication
step to the DropBox service [DropBox, 2012], which consist of (i) getting request token
(ii) having the user authorize the application and finally getting an access2 token from
a request token. The class DropTransition abstracts the three authentication steps
mentioned above. Net (b) is using information from Net (a) to perform an upload of
files to the repository (DropBox). The second transition in Net (a) fires and creates new
instance of Net (b).

In Java the reserved word this denotes the object whose method is currently executed.
In Reference nets this denotes the net instance in which a transition fires. It is used
when in the case where two net instances within the same net synchronize.

Channels can also take a list of parameters. Although there is a direction of invoca-
tion, this direction need not coincide with the direction of information transfer. Indeed
it is possible that a single synchronization transfers information in both directions.
Figure. 5.7 shows that the Net (b) needs information from Net (a). These information
can be transmitted as a parameter.

2For clarity there is no relation with Petri net token.
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Figure 5.7: (a) The System Net, (b) The Sub-net Upload

The Reference net formalism is used to build workflow systems [Jacob et al., 2002,
Moldt and Rölke, 2003], especially in scientific workflows [Tolosana-Calasanz et al.,
2012]. In the latter, the authors used reference nets to model the montage of workflow
using cloud infrastructures (see Figure. 5.8).

Figure 5.8: A Reference net model for Cloud-based Workflow
(from [Tolosana-Calasanz et al., 2012])
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5.5 Renew

Renew is a graphical tool for creating, editing and simulating reference nets. It is
maintained by the TGI group (see http://www.renew.de/). With Renew it is possible to
draw and simulate Petri nets and reference nets. Nets can be drawn comfortably using
the graphical user interface and loaded nets can be executed directly in Renew.

5.5.1 Renew Editor

The Renew editor provides features to facilitate the creation of Petri net models. Fig-
ure. 5.9 shows the editor’s graphical user interface, it contains several icons and a status
bar. The first level of the icons provides features that can be added to the net model
for more clarity. These features are ignored and not taken into account during the
simulation. The second level concerns really the Petri net creation (transitions, places,
arcs, tokens and inscriptions).

Figure 5.9: Renew Editor

5.5.2 Renew Simulator

In Renew, reference nets can be created as “shadow net system” files (.sns) or as graphi-
cal files (.rnw). Shadow nets are used for simulation and are basically an abstraction of
the graphical nets. Shadow nets strip all unnecessary information such as color, position
of net elements and leave only the needed information for use in the simulation. Those
nets are required when moving simulation to the Cloud (see Chapter 9). A graphical
file can be compiled in Java. After compilation of the graphical file a simulation can
be started. During the simulation, a net instance is created and can be viewed in a
separate window as its active transitions fire. Simulation is used in Renew to view
firing sequences of active transitions in reference nets. Simulation can run in a one step
modus where users can progress in steps where only one transition fires. Renew also
offers the possibility to set breakpoints to hold the simulation process. Breakpoints can
be set to places as well as to transitions. By changing the compiler, Renew can also
simulate P/T nets, timed petri nets, WF-nets and boolean nets, etc.

5.5.3 Plug-in System

Renew is built on a plug-in architecture since version 1.7. The Renew plug-in archi-
tecture, which was developed and introduced in [Schumacher, 2003]. It allows the
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extension of Renew with additional functionality through the use of interfaces from
Renew components without changing the core of Renew. Additional functionality can
be added to Renew through providing the classes of the new plug-in. This means to
literally add the Java archive of the classes to the “plug-ins” folder inside the Renew

application folder structure. Plug-ins can be included after Renew has started with
load command. The Java archive has to be present in the “plug-ins” folder at the start
of Renew.

5.6 Conclusion

There are several techniques to specify workflows such as the UML Activity Diagrams,
BPEL and Petri nets. Petri nets and Renew represent the conceptual and technical
background of the current work. They are selected among others thanks to their
capability in term of modeling complex systems [van der Aalst, 1998]. This chapter
concerned workflow specification in general with an emphasis on Petri nets. It started
by defining the importance of workflow definition (see Section 5.2). Then in Section 5.3
important workflow specification techniques are presented. Section 5.4 gives a deep
understanding overview of Petri nets. The last concepts that need to be presented
concerns agent and multi-agents systems (see Chapter 6). It focuses on the Petri net-

based, Agent- and Organization-oriented Software Engineering (Paose) approach
and particularly on the Mulan (Multi-Agent Nets)/ Concurrent Agent Platform Capa

framework.
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Chapter 6

Multi-agent systems; Mulan and the
Paose Approach

Agent-based systems have emerged significantly during the last two decades. The
development of such systems includes, among others, artificial intelligence, distributed
systems and software engineering. In this dissertation, the contributions concern both
distributed systems and software engineering. This chapter presents an introduction
to the concept of agents and multi-agent systems. Agent concepts are defined first,
followed by an introduction to multi-agent systems. Furthermore, the Multi-Agent Nets
(Mulan) [Rölke, 2004], the Concurrent Agent Platform Architecture (Capa) [Duvigneau
et al., 2003] and the Paose approach [Moldt, 2006] are described.

6.1 Introduction

One of the objectives of this dissertation is to investigate the integration of Cloud, agents
and workflows on a conceptual and technical level. The combination of individual agent
and workflow concepts is being addressed in a parallel research work (see [Wagner,
2012, Wagner and Moldt, 2011]). Relative to earlier work, more current work empha-
sizes a greater deal on the integration between Clouds and workflow concepts. The
advantages of Cloud computing for different domains are already well defined (see
Chapter 3). Concerning the relation between Clouds and agents, it is clear that both
can benefit from each other. Cloud computing offers a reliable and scalable infras-
tructure for the execution of complex processes especially in terms of modeling and
simulating. In other side, agents have attractive features like: autonomy, pro-activity,
cooperation and mobility. These features help to handle Service Level Agreement (SLA)
negotiation, Cloud service discovery and composition, etc. Thus, agents can be used
as basic components to bring intelligence in Cloud systems, in order to make them
more adaptive, flexible in both resource management, service discovery/provisioning
and running complex applications. The most relevant references in this area are [Talia,
2012, Sim, 2012, Aversa et al., 2010, M. Spata, 2011a, I. Foster, 2004, Jander and Lamers-
dorf, 2013, Braubach et al., 2011]. For example, in [Aversa et al., 2010], the notion of
Cloud agency is presented. Authors used a mobile agent platform that permitted the

113



Chapter 6. Multi-agent systems; Mulan and the Paose Approach

user to dynamically add and configure services on the virtual clusters provide by the
Cloud. Multi-agent systems were also used to construct a Cloud computing federation
mechanism to permit portability and interoperability among different Grid/Cloud
computing platforms (see [M. Spata, 2011a] and [Foster and Kesselman, 2004]).

An overview of the investigation can be found in [Bendoukha et al., 2013,Bendoukha,
2014]. Furthermore, in Part III, the notion of a Drop-Engine is introduced. Its purpose
is to provide support to Cloud administrators and developers to move the execution of
processes to the Cloud or to invoke Cloud services from workflow models. Moreover,
a generic agent-based Cloud architecture is proposed in Chapter 12. It focuses on the
system architecture, leaving most of Cloud management services (pricing, accounting
and virtualization) and other functional modules aside.

The results obtained in Part II, which concerns mainly the relation between Clouds
and workflows will certainly enhance the development of Cloud-based application
following the agent paradigm. The integration of all these concepts and technologies
is investigated particularly in Part III. In the latter, the concept of a Drop-Engine is
presented as an example for a general process execution engine that is specifically
developed for Cloud environments.

The main objective of this chapter is to understand the Mulan/Capa framework (see
Section 6.4). It describes the four layers namely the Infrastructure, the Agent platform,
Mulan Agents and Mulan Protocols. Following the four layers, the concurrent agent
platform (Capa), which is an extension of the Mulan architecture is presented. After,
the Paose approach and it’s six steps are explained: Requirements analysis, coarse
design, ontology implementation, role implementation, interaction implementation
and integration. The notion of team organization is also presented, which is a central
concept of the Paose approach.

6.2 Agents and Multi-agent Systems

A multi-agent system is an association of synchronized, autonomous agents, which
interact with each other to achieve common goals (objectives). In order to address the
research topics mentioned above, the area of multi agent systems is introduced here.

Other properties that an agent may have is the ability to learn, to perceive and
influence an environment as well as to interact with other agents or human users of
a computer system. Although the notion of agents is central for an agent-oriented
approach of software development, there are different views about what constitutes an
agent. In [Wooldridge, 2009], the author states that autonomy is a central feature of an
agent. To achieve its goals, the actions of the agent can be performed in response to a
perceived state of the environment or be proactively initiated by the agent.

6.2.1 Definitions

There are several definitions for the notion of agent, on which multi-agent systems are
based [Wooldridge, 1997, Ferber, 1999].
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”An agent is an encapsulated computer system that is situated in some envi-
ronment, and that is capable of flexible, autonomous action in that environment
in order to meet its design objectives” [Wooldridge, 1997].

According to Ferber [Ferber, 1999, p. 9] An agent is a physical or virtual entity
which:

• is capable of acting in an environment,

• can communicate directly with other agents,

• is driven by a set of tendencies,

• possesses resources of its own,

• is capable of perceiving its environment

• has only a partial representation of this environment

• possesses skills and can offer services,

• may be able to reproduce itself,

and whose behavior tends towards satisfying its objectives, taking account of the
resources and skills available to it and depending on its perceptions, its representations
and the communications it receives.

An agent is defined as an autonomous software entity, embedded in the environment
and maybe proactive or cooperative. It is important to keep in mind that an agent,
unlike other programs, must be at least simultaneously:

1. Located: it perceives the world / environment in which it is situated;

2. Autonomous: it makes decisions and acts on its environment to achieve its goal;

3. Interactive: it has the ability to interact with other agents.

Below are some of the characteristics of agents [Talia, 2012]:

• Autonomy: is the ability to behave autonomously on behalf of users or other
programs.

• Pro-activity: the ability to pursue their own individual set goals, including by
making decisions as result of internal decisions.

• Re-activity: the ability to react to external events and adapt their behavior and
make decisions to carry out their tasks.

• Communication and Cooperation: the ability to communicate and interact with
other agents to achieve a goal.

• Learning: the capability to improve performance and decision making when
interacting with external environment.
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6.2.2 Types of Software Agents

In order to systematically consider the term agent, several taxonomies have been pro-
posed that try to classify the aspect of agents into categories. The most common
taxonomy comes from Franklin et al. [Franklin and Graesser, 1997], it is inspired from
the biological model. At the first level, there are living creatures biological agents,
Artifacts (Robotic agents) and abstract concepts (Computational). At the next level,
Artificial Life Agents are distinguished from software agents. The difference between
these two types is primarily in the environment, in which they find themselves. Soft-
ware agents exist in a computer system, which fulfill its own purpose. Artificial Life
agents "live" in an artificial world that was created specifically for these agents, eg for
research purposes (simulation). Agents are further classified into Task-specific agents,
entertainment agents and computer viruses.

Figure 6.1: Agents Taxonomy [Franklin and Graesser, 1997]

6.2.3 Multi-Agent Systems

Multi-agent systems are one of the latest generation of intelligent systems. They arose
from the research in distributed artificial intelligence in the 80’s. Multi-agent systems
are distributed computing systems and like all distributed systems, they are composed
of a number of interacting computational entities. However, unlike classical distributed
systems they, and their constituent entities, are intelligent.

Again, Ferber [Ferber, 1999] delivers an useful definition: The term multi-agent
system (MAS) is applied to a system comprising the following elements:

1. An environment, E, that is, a space which generally has a volume.

2. A set of objects, O. These objects are situated, that is to say, it is possible at a given
moment to associate any object with a position in E. These objects are passive, that is,
they can be perceived, created, destroyed and modified by the agents.
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3. An assembly of agents, A, which are specific objects (A ⊆ O), representing the active
entities of the system.

4. An assembly of relations, R, which link objects (and thus agents) to each other.

5. An assembly of operations, Op, making it possible for the agents of A to perceive,
produce, consume, transform and manipulate objects from O.

6. Operators with the task of representing the application of these operations and the
reaction of the world to this attempt at modification, which we shall call the laws of the
universe.

[Ferber, 1999, p. 31]
As stated in [Sycara, 1998], characteristics of MASs are that:

• each agent has incomplete information or capabilities for solving a problem and,
thus, has a limited viewpoint of the global task to be done;

• there is no system global control;

• data are decentralized; and

• computation is asynchronous.

6.3 Foundation for Intelligent Physical Agents

The Foundation for Intelligent Physical Agents (FIPA) is a standardization committee,
which was established in 1996 in Switzerland and belongs to the Institute of Electrical
and Electronics Engineers (IEEE). The goal of FIPA is to define common standards
for agent systems to enable interoperability between different systems. Specifications
are focused on the basic structure and main components of an agent system, and the
communication between agents. A description of the individual components and their
relationships have been summarized in an abstract architecture ( [FIPA, 2002a]). It
represents a collection of concepts which are developed for the integration of agents and
agent systems of various concrete architectures and software systems. A more detailed
description of this abstract architecture can be gleaned in [Duvigneau, 2002]. The next
two sections deal with the administration of agents and of the agent communication.

6.3.1 Agents Management

The specification [FIPA, 2004] specifies the abstract architecture and defines a reference
model, and summarized all the ingredients to an agent platform. This agent platform is
used to manage agents and provides an infrastructure in which agents can act. Below,
the components of the Agent Management Reference Model are described (see Figure. 6.2).

Agent Agents are the basic unit of an agent platform according to FIPA. They
communicate via the Message Transport System (MTS) in the Agent Communication Act.
FIPA agents have a unique global identifier, an Agent Identifier (AID), and has to be
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assigned at least to one owner. This can include, for example, a human user or an agent.
As indicated in Figure. 6.2 agents can also access other softwares when needed.

Agent Management System The Agent Management System (AMS) must be exactly
one time present for each agent platform. It manages and controls the life-cycle of the
agent and the access to the platform. Agents must register at the AMS. Registering is
necessary different actions, for example, if they want to unsubscribe or if they want
to migrate to/from another platform or its execution is completed. When registering,
the AMS also awards the valid agent identifier and stores it along with the associated
addresses. Via the AMS, it is possible to search an agent platform and furthermore
information about registered agents can be requested.

Directory Facilitator The Directory Facilitator (DF) is an optional element of the
agent platform. Agents can register their offered services at the DF, which will be via
the yellow pages-like form accessible for other agents. The DF is constantly trying to
have accurate and current information about the registered agents.

Message Transport System The Message Transport System (MTS) is used for agent’s
communication within and outside the agent platform, and consists of several compo-
nents The Message Transport Service is the communication service for agents, they can
with each other communicate internally and externally to the agent platform. This ser-
vice is offered by the Agent Communication Channel (ACC) and through it the messages
are exchanged. Each agent must be registered with at least one such ACC. Messages are
sent via the Message Transport Protocol using the Agent Communication Language (ACL).
The structure of the ACL message is described in the next section.

Figure 6.2: FIPA Agent Management reference Model(from( [FIPA, 2004]))
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Parameter Description

per-formative communicative act that will be executed with this message

sender sender of the message

receiver one or more receivers of the message

reply-to receiver of a reply to this message

content message content

language content language

ontology that is used for the message

Table 6.1: Structure of an ACL-message

6.3.2 Agent Communication

Agents in multi-agent system (MAS) must be able to interact and communicate with each
other. This usually requires a common language, an Agent Communication Language,
or ACL. In order to communicate, agents must be able to:

• Deliver and receive messages - at this physical level, agents must communicate
over agreed physical and network layers to be able to deliver and receive strings
or objects that represent messages

• Parse the messages - at the syntactic level, agents must be able to parse messages
to correctly decode the message to its parts, such as message content, language,
sender

• Understand the messages - at the semantic level, the parsed symbols must be
understood in the same way

An ontology describing the symbols must be shared or explicitly expressed and
accessible to be able to decode the information contained in the message. A message
content ontology helps agents to describe facts, beliefs, hypotheses and predication
about a domain. Ontologies range in abstraction from very general terms to terms that
are restricted to specific domain of knowledge [Singh, 1998].

Message-based communication between agents is an important component for an
agent system. Messages are represented in form of a FIPA-compliant speech acts. Verbs
like (’inform’, ’ask’, etc.) are called performatives. The structure of a message is defined
by the [FIPA, 2002c] specification and uses the Agent Communication Language (ACL).
Accordingly, an ACL consists of a set of parameters, which are represented as key /
value pairs. A selection of the most common parameters are listed in Table 6.1.

The only non-optional parameter is the per-formative and must appear in each
message. It specifies the purpose of the message and helps the agent to detect what
kind of communicative act it is. On the basis of these acts, the agent decides what
actions to perform. The content of a message is specified in a certain language that is
determined by the parameter ’language’. A possible content language is specified by the
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FIPA is Semantic Language (SL) [FIPA, 2002d]. In the specification [FIPA, 2002b] the
given communicative acts are described using formal modes (Sl) with the appropriate
performative.

6.4 Mulan/Capa and Paose Approach

Mulan represents the conceptual reference architecture. Capa represents the technical
embedding of Mulan and is also used for the technical framework. Paose is the whole
approach of the development of agent-based systems in the context of Mulan and Capa.
In the following, a brief overview of Mulan/Capa as well as the Paose approach is
given.

6.4.1 Mulan/Capa Framework

Mulan (Multi-Agent Nets) [Cabac, 2010] is a reference architecture of a multi-agent
system which is based on Renew and modeled in reference nets. Mulan is a speci-
fication for multi-agent systems that was presented by Heiko Rölke [Rölke, 2004] in
his dissertation (for the first version of Mulan see his diploma thesis: [Rölke, 1999]).
The resulting architecture is strongly based on the abstract architecture of FIPA [FIPA,
2002a] and extends it to the concept of agent platform [FIPA, 2004]. Figure. 6.3 shows
the structure of Mulan and includes four layers Infrastructure, Agent Platform, Agent
and Protocol.

6.4.1.1 Infrastructure

The top level (labeled with Infrastructure) represents the Agent system and connects
the agent platforms with each other. Each place of the Infrastructure net contains an
agent platform (more specifically a reference to the platform), the transitions and arcs
represent the communication channels to provide cross-platform communication. In
this way agents can communicate with agents from different platforms and can also
migrate to another platform.

6.4.1.2 Agent Platform

The structure of an agent platform is displayed at the top right (labeled as “Agent
Platform”). At the place in the middle of the net, all agents of the platform are stored
(only their references). Transitions of the platform manage the agent’s life-cycle and
can also create and terminate agents. In addition, the platform offers communication
channels for internal and cross-platform messages.
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Figure 6.3: Mulan Architecture (from( [Cabac, 2010]))

6.4.1.3 Mulan Agents

The third layer is shown in Figure. 6.4 is a simplified version of the agent layer. Mulan

agents reside on platforms. Each place of the platform holds all the agents of that
platform. Mulan agents can receive or send messages to other agents over the platforms
in which they are situated. The incoming and outgoing synchronous channels of the
agent provide this functionality.
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Figure 6.4: Mulan Agent

The three central places represent the state of the agent, the top place contain the
agent’s knowledge base, the middle one contains the protocols and the bottom one
contains instantiated protocols that was started as conversations. The two central tran-
sitions with the labels re and pro are responsible for the instantiation of the protocols.
They represent the actions of the agent and can fire either re-actively (re) to a received
message or pro-actively (pro). To act pro-actively, the necessary preconditions have to be
agreed in the knowledge base. Then, a suitable protocol is instantiated and stored on
the conversation’ s place. Reactive action requires a received message, which belongs to
no existing conversation. With the help of the knowledge base, the agent determines
which of the available protocols is adapted to react to the message. The selected protocol
is instantiated as a proactive action and stored at the conversation’s place. Messages
of the agent platform reaches the agent via the transition receive. According to the
incoming message on an ongoing conversation can the transition in fire and forwards
the messages to the appropriate protocol net. Via the transition out, a protocol instance
can send messages. The knowledge base serves as a central repository of all data and
should be available to the agent persistence. It is a special protocol that is only once
instantiated and during the creation of the agent and has to be active during the lifetime.
The content of the knowledge base is individual for each agent and equipped with a
basic knowledge at the initialization. From the protocols, entries from the knowledge
base can be read, added and removed.

6.4.1.4 Mulan Protocols

Mulan protocols are Reference nets which define the behavior of the agents during
the communication. They control the communication between agents. They define
the activities of each participating agent at a certain time. They include sequence,
concurrency or decisions. An agent can use numerous protocols and instantiate multiple
instances of various protocols at the same time. Figure. 6.5 shows an abstract Petri net
model to illustrate a simple scenario. With each communication, Mulan agents have
to instantiate a protocol net and messages are transmitted via a medium provided by
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agents. In case the agents are hosted in the same platform, TCP/IP protocols are not
used.

Figure 6.5: Mulan Protocols (from( [Cabac, 2010]))

6.4.1.5 Capa

Capa is an extension of the Mulan architecture to reach the FIPA-compliance. It
especially focuses on communication between different agent platforms. The objective
of Michael Duvigneau in his master thesis was the adaptation of Mulan to the FIPA’s
standards. Thereby Capa makes mainly adaptations to the top two levels of the Mulan

architecture and leaves the other levels almost unchanged. Agents are hosted in several
platforms that are connected through a technical communication infrastructure and
together build the multi-agent system as whole. The communication between agents is
performed in terms of agent communication language FIPA-ACL and domain specific
ontology. Agents can be either service providers or consumers. A (distributed) directory
service is used to identify the other partners. In order to comply to FIPA, Capa has
to provide for its agents the management and directory services Agent Management
System (AMS) and Directory Facilitator (DF), a local Message Transport System (MTS)
and an interface for communication with external platforms, the Agent Communication
Channel (ACC).
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Figure 6.6: Capa-Platform (from( [Duvigneau, 2002]))

6.4.2 Paose

For developing agent-based applications, the Paose approach is exclusively followed.
This approach will be presented in the following sections. For more information about
the Paose approach, it is recommended to refer to [Cabac, 2010].

6.4.2.1 Overview

First approaches of agent-oriented software development led to the development of the
agent platform Mulan [Rölke, 1999]. Based on this, and on the extension Capa [Duvi-
gneau, 2002], various teaching projects were accomplished. The Paose development
approach was formulated from the experience that have been made over a number
of teaching projects. This approach consists of a framework(Renew/Mulan/Capa)
and there are continuously developing tools thanks to the plug-in system already
introduced.

The Paose
1 (Petri net-based Agent-Oriented Software Engineering) approach joins

the benefits of Petri nets and software engineering paradigms. It follows the multi-agent
paradigm to structure complex distributed systems in a comprehensible manner. It
allows modeling the processes explicitly and on the same level of importance as the
system structure. Paose not only covers technical issues of implementing multi-agent

1In alternative interpretations of the P stands for Processes or Persons and the O for Organizations.
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systems with Petri nets, but it also provides methods, techniques and tools that build
upon the multi-agent paradigm and Petri net theory to guide the development process.

Figure 6.7: Overview of the Paose Approach (from [Cabac, 2010])

In the Paose approach the development process is sketched by six tasks types:

1. Requirements analysis

2. Coarse design

3. Ontology implementation

4. Role implementation

5. Interaction implementation

6. Integration

During the development of multi-agent systems with Capa, three types of software
techniques artifacts have to be generated:

• Agents, characterized by their knowledge base and their protocols;

• Interactions between agents, specified in form of agent protocols and AUML;

• Ontology’s classes, to describe the concepts that occur in the multi-agent system,
and over which the agents communicate with each other.
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6.4.2.2 Team Organization

A central concept in the Paose approach is the organization of the development team
according to the concepts identified in the development of multi-agent systems. Accord-
ingly, there is an allocation of tasks to different agents/roles, as well as to the identified
interactions. This leads to a matrix organization, where in one dimension appear the
different agent’s roles and in others the interactions. Figure. 6.8 shows an example of
such a matrix.

Figure 6.8: Matrix Organization (from [Cabac, 2010])

A circle in the diagram indicates that the corresponding role is involved in the
interaction. The developer of the role must coordinate with the developers of the
interactions in which their agents are involved. The development and maintenance of
the ontology represents another dimension, which is also orthogonal to the above men-
tioned dimensions. Coordination at the intersections and the respective responsibilities
must be clearly understood. Within the development of an interaction, the creator has
the responsibility of the agent protocols and messages that will be exchanged. The
processing and the decision-finding within the agent is then the responsibility of the
agent creator who cares about the knowledge base and the decision components. Also
the registration of the protocol in the knowledge base falls within its scope. However, it
is difficult to precisely determine the boundary.

6.5 Conclusion

This chapter contains the last concepts, that are used in this dissertation. It includes
an introduction to the the notion of agents and multi-agent systems. Based on this
introduction, the Mulan/Capa framework is presented. This framework is exclusively
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used to design and build agent-based applications following the Paose approach, which
is also described in this chapter. Part III serves the purpose of demonstrating how an
agent can help develop Cloud-based applications. The next chapter concludes Part I
and summarizes all the conceptual and technical background already presented.
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Summary

This chapter gives a summary of the first part. The contributions brought by concepts,
techniques and technologies (Web services, Cloud computing, Petri nets and multi-
agent systems) are outlined. Part I provides an introduction to SOC, Clouds, Petri
nets and multi-agent systems as conceptual and technical background of this work.
In Chapter 2 SOC and its related concepts: Web services and SOA are presented.
Web services, service-oriented architectures (SOA) and Cloud computing are strongly
related to each other. Web services cover Cloud computing because the latter uses
those services to enable different connections between several entities. Nowadays, most
system architectures follow a service-oriented approach and Cloud computing is no
exception. A service provider can be in the Cloud or not. The main system architecture
can involve both Cloud and non Cloud service providers. Web services and their
related technologies play an important role in the proposed approaches and are used
in different part of thesis. Many proposed solutions have been implemented based on
Web services. For example, Web services have been applied in Chapter 5 and Chapter 8
to explain the notion of synchronous channels and implement some prototypes. Here,
the objective is to demonstrate how external Web services can be invoked from Petri net
models.

In Chapter 3, both Grid and Cloud computing are introduced. Also the similarities
between these two computing paradigms have been presented. Approaches from
Grid domain can also be exploited to resolve problems in Clouds such as service
composition or workflow scheduling. Middlewares2 are crucial entities when designing
and developing Grid applications. It is considered to be out of scope to mention them
since they are not related to the current work.

Chapter 4 and Chapter 5 concern process management and workflow modeling. Petri
nets and related concepts/tools such as reference nets and Renew editor are presented in
detail. In Chapter 6, agents, multi-agent systems and Mulan are presented.

In the following part, the relationship between Clouds and workflow concepts is
deeply investigated. There are three main topics that will be addressed. First, a state-of-
the-art study is elaborated to detect the issues when deploying processes to the Cloud.
Second, the question: How Cloud computing can support developers when developing
complex and large-scale workflows is investigated. Finally, workflow concepts will be
introduced to improve building workflows in terms of modeling and execution.

2A Grid Middleware Distribution is a software stack or a set of cooperating components, services and
protocols which enable users access to the distributed resources of a grid.
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Introduction

According to [Bell et al., 2009]: ”In the future, the rapidity with which any given discipline
advances is likely to depend on how well the community acquires the necessary expertise
in database, workflow management, visualization, and Cloud computing technologies”.
The latter citation characterizes approximately the work described in this part. In fact,
introduced approaches and methodologies cover the following issues: data management,
workflow management and visualization of results.

This part presents the relation between Cloud computing and workflows and the
contributions of the current work that enable this relation. It shows how Cloud technol-
ogy can benefit from the integration of workflow concepts and vice versa. The relation
between workflow and Cloud can be addressed in different ways. On the one hand,
there is Cloud for workflow which consists of using Cloud resources to execute workflows
and especially scientific workflows [Hoffa et al., 2008] [Juve et al., 2009]. Such works
are more resource-centric and focus on the computational tasks. On the other hand,
Clouds needs structured and mature workflow concepts and high level languages to
handle issues like managing complex task and data dependencies. Existing workflow
architectures need to be adapted into the Cloud and workflow management systems
should be integrated with Cloud infrastructure and resources [Pandey et al., 2011a].

This part introduces techniques and tools as means for enabling an efficient integra-
tion between workdflows and Clouds. The focus in this part is on the techniques and
tools that support Cloud application developers to specify, deploy and execute work-
flows in Cloud and later in Inter-Cloud environments. Chapter 7 gives an introduction
to the challenges that one is confronted to, when moving applications to the Cloud. Pat-
terns are also presented, which shows different scenarios of moving data, activities and
process engine to the Cloud. The chapter discusses existing approaches and scenarios
to deploy applications in one of the three deployment modes of Clouds, (infrastructure,
platform and software) Moreover, the chapter shows how the implemented prototypes
fit to the the existing approaches.

Chapter 8 presents the first technical contribution of the thesis. It consists of the
RenewGrass plug-in for Renew. The reason behind the implementation of the plug-in
is related to the intention to have a use case to showcase the features delivered by other
contributions. In fact, several examples are based on RenewGrass. RenewGrass allows
modeling and execution of scientific workflows by reference nets with Renew. The
domain of application of RenewGrass is remote sensing.

Chapters 9 and 10 present several essential contributions, which are the Cloud

Task Transition (CTT), Inter-Cloud Nets (ICNETS) and the ICWorkflow plug-in.
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Chapter 9 presents how one can execute workflows specified by Renew in the Cloud.
It introduces techniques to allow Cloud instances support the simulation of Petri net
models. The notion of CTT is first introduced (see Chapter 10). It follows the concept
of the workflow task transition [Jacob et al., 2002] and extends it to adopt the Cloud
computing technology. After that, ICNets are presented. ICNets are predefined Petri
net-based models that allows the specification of Cloud-based workflows and their
execution. A tentative towards the formalization of the ICNets is also presented.
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Chapter 7

Moving Processes to the Cloud

This chapter focuses on the notion of moving the execution of processes to the Cloud.
In the current work, processes are Petri net-based. The investigation is driven by the
following works [Anstett et al., 2009,Han et al., 2010,Strauch et al., 2013]. It is necessary
to note that the emphasis of the current work is on enabling execution of workflows
in the Cloud. Since workflows are specified by Petri nets with Renew, the objective
is concretely to move Renew from on-premise to the Cloud. Migrating applications
between Clouds or communicating different workflows with each other is out of scope.
However, a conceptual as well as technical solution is provided to overcome this issue.
This chapter is essential to understand the contributions presented within the next
chapters.

7.1 Introduction

Cloud computing is currently one of the most important technology trends. The word
Cloud covers the IT services as well as the compute- and storage capacities, which
are configured and delivered dynamically and adapted for application requirements.
Nowadays, Business Process Management (BPM)/Workflow management in the Cloud
is a hot topic. There is a lot of research on how to deploy a part or all the components
of the WfMS into the Cloud. In this chapter migration issues and methodologies are
discussed. Several approaches have been proposed to manage workflows in the Cloud,
each of them focuses on different perspectives of the workflow.

For now, most worflow systems are based on a single Cloud. Workflow tasks are
executed on a Cloud provider, which is in priori selected. This has a limitation in term
of performance and flexibility working with different Cloud providers.

In this dissertation, an emphasis is made on the process view. Coupling Cloud
technology and workflow concepts has different aspects, which are addressed in this
work. It concerns the following topics:

• Invoking Cloud services to execute workflow tasks

• Moving existing workflow applications to the Cloud, to get more performance
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• Provision of adapted modeling techniques for Cloud-based workflows

Based on the work of [Anstett et al., 2009, Han et al., 2010, Strauch et al., 2013]
an investigation is made on the challenges when developing workflow management
solutions for the Cloud. The main issue is which entity and functionality should be
moved to the Cloud? The security aspect of the migration process is also crucial, but it
is out of scope of this dissertation.

7.2 BPM (Workflow Management) in/for the Cloud

Despite several attractive features that the Cloud technology offers, moving an existing
application to the Cloud should be based on a solid strategy. It is necessary that these
applications should be adapted to the new computing paradigm. There are many issues
when putting the business management system (or WfMS) or a part in the Cloud. For
example, Cloud users could lose control of their own data in case of a solution based
fully on the Cloud. Some activities, which are not compute-intensive can be executed
on-premise rather than moving them to the Cloud. This transfer can be time- and
cost-consuming because of the pay-per-use model.

In [Anstett et al., 2009], different ways of moving an application to one of the
Cloud service model (Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS)) are investigated. In the following sections, the scenarios
presented in Figure. 7.1, Figure. 7.2 and Figure. 7.3 are discussed.

7.2.1 Business Process Infrastructure as a Service (BPIaaS)

In that case, the Cloud users are responsible for the applications, the operating system
and the middleware. This situation is similar to working on-premise, i.e the Cloud
user is free to install the required softwares for his BPM system. Additionally, security
matters should be taken into consideration to avoid attacks, by locking ports and
enforcement of access control policies.

Figure 7.1: BPIaaS (Adapted from [Anstett et al., 2009])
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7.2.2 Business Process Platform as a Service (BPPaaS)

In the platform layer, Cloud users have no control over the underlying infrastructure
(servers, storage, operating systems) but have control over the deployed applications.
Unlike in the IaaS solution, the PaaS providers own the operating system, middleware
(process engine) and the hardware. From confidentiality perspective, both configuration
data such as the process models and runtime data (which are processed by the the
business process) need to be encrypted and signed order to avoid an unauthorized
transactions in the system. This ensures that the process models are only readable for
the authorized entities and not from the intruders. The access to the data base can
also be a problem because the process engine read and store process models and also
instances. Such data need an encryption too.

Figure 7.2: BPPaaS (Adapted from [Anstett et al., 2009])

7.2.3 Business Process Software as a Service (BPSaaS)

The provider does not have to worry about the middleware, operating system and even
the application itself. Nevertheless, offering an application to multiple leads to two
kind of architectures (single- and multi-tenant). The first one implies the installation of
one process engine for each process model. In the multi-tenant architecture, the process
engine can serve multiple process models (or Cloud users). There are here also many
issues related to the security and solutions are discussed in [Anstett et al., 2009].

Figure 7.3: BPSaaS (Adapted from [Anstett et al., 2009])
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7.3 Combination

In a normal situation, BPM solutions and their correspondent entities such as process
engine, activities and required data are on the same platform. Later when Cloud
solution is adopted, these entities are either on the user side or hosted in the Cloud.
In [Han et al., 2010], the authors propose a model for a distributed BPM in the Cloud.
Based on [Han et al., 2010] and [Anstett et al., 2009] an analogy is made with the
contributions provided by this thesis. It will be the basis background for different
prototypes developed within the next chapters. In the works cited above, there are
three main questions, which are investigated:

1. where to enact processes?

2. where to execute the activities?

3. where to store the data?

They introduce a PAD model (see Figure. 7.4), the P designates Process enactment
engine (responsible for the execution and the monitoring of the activities), A designates
the Activities that need to be executed by the business process and D designates the
Data that are required by the business process.

Figure 7.4: Patterns for Cloud-based BPM (Adapted from [Han et al., 2010])

The first pattern is to design a BPM system where all the components are in the same
side precisely in the user side. The second pattern represents a case when the business
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process contains computation-intensive activities, so they are moved to Cloud to offer
more performance. The third pattern design a situation, where the end-users do not
have a BPM system, so they use a Cloud-based BPM system that is utilized on-demand.
In the latter case, the non computation-intensive activities can be executed locally. The
fourth situation (pattern) is used when the whole BPM strategy is based on a Cloud
solution, i.e that all the activities, the data and BPM system is hosted on a Cloud.

A first observation on the previous model is the absence of some scenarios. For
instance, a situation where the process engines are both on-premise and on the Cloud.
There might be also a cooperation between these process engines during the execution
of workflows. This scenario is very significant for the current work. This is due to
the aim of creating an Inter-Cloud environment, where services from different Cloud
providers are invoked. In that scenario, different activities (tasks) can be distributed
over the Cloud resources.

The authors in [Han et al., 2010] proposes an architecture of a Cloud-based BPM
system with respect to user-end distribution (see Figure. 7.5). There is an emphasis
on the data-flow aspect of the application. They started from the fact that data might
contain sensitive data. Therefore, the management system deployed in the Cloud
should be able to protect this data. They propose to use an encrypted tunnel to transfer
data between local site and the Cloud. Sensitive data is stored at the user-end and
non-sensitive data is stored in the Cloud.

Figure 7.5: Architecture of Cloud-based BPM combined with user-end distribution [Han
et al., 2010]
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7.4 Execution Scenarios

The migration to the Cloud as defined in this thesis takes different forms and progress
in terms of complexity. The prototypes implemented within the next chapters cover
multiple execution scenarios. Based on concrete examples from the developed proto-
types, different execution scenarios and their relation with above mentioned patterns
are presented. The RenewGrass plug-in for image processing of satellite imagery will
be frequently used as use case to give more details about the scenarios.

7.4.1 Local Execution

The first scenario (see Figure. 7.6) concerns a classical case, where all entities are hosted
on-premise. There is no need to perform the execution of the workflow on external
nodes. Concerning image processing, Renew, RenewGrass and data are all hosted
on-premise. The contribution here consists of the implementation of the RenewGrass

plug-in (see Chapter 8).

Figure 7.6: Local Execution

7.4.2 Local Execution with Local Distribution

This scenario concerns a situation where Renew simulations are performed on VM’s
but always on the same host. This is the first step towards moving to the Cloud. The
first challenge is to enable Renew simulations on the remote host. Therefore, a whole
mechanism is developed to create VM’s and provision them with required softwares.
Even this solution does not show clearly the advantage of using distributed systems
for workflow execution. However, it can serve for testing purposes before moving to
the Cloud. Another reason is purely related to Renew. In fact, since VM’s can run
different operating systems, so it is possible to evaluate Renew simulations on different
OS. More details about enabling Renew simulations on external machines is described
in Chapter 9.
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Figure 7.7: Local Execution within External Resources

7.4.3 Execution in the Cloud

This scenario concerns a situation where all the entities (data. activities and process
engine) are hosted in the Cloud. It corresponds to the last case presented in Section 7.2.3
and to the third pattern from Figure. 7.9 (Cloud execution and local distribution). There
are here different scenarios, which are presented below.

7.4.3.1 Renew Simulations in the Cloud

The objective is mainly to gain more performance in case there is not enough power in
local site. The idea consists of the execution of Renew processes (Petri nets) in the Cloud.
The problem with this scenario is that the target Cloud execution platforms are generally
not able to execute such kind of processes. First mechanisms should be implemented
to allow Cloud instances to support Renew models. Figure. 7.8 shows the the big
picture of the presented idea. The prototype is based on OpenStack Cloud. Cloud
instances can be configured to be equipped by Renew and other required softwares.
Furthermore, in that work the notion of interfaces is introduced and discussed. Different
kinds of interfaces are proposed, from simple to complex. This is explained in depth in
Chapter 9.
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Figure 7.8: Renew Simulation in the OpenStack Cloud

7.4.3.2 RenewGrass in the Cloud

RenewGrass is a tool for Renew, which allows the specification and execution of image
processing workflows related to the remote sensing domain. To show the relation
between the approaches from Section 7.2 and Section 7.3, Renew is the process engine,
the activities are the geoprocessing tasks (performed by the Grass services), which are
related to the satellite images (data). The latter (data and Grass GIS) can be either on-
premise or hosted in the Cloud. Based on these elements and the illustration presented
above, Figure. 7.9 presents an overview of the diverse approaches (patterns) to design
the workflow system based on the Cloud technology.

Figure 7.9: Patterns for Cloud-based Workflow Systems (Adapted from [Han et al.,
2010])
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Figure 7.10: A Pattern Designing Multiple Process Engines Integration

Figure. 7.10 shows approximately how this scenario looks like. The proposed so-
lution consists of the idea to transfer the data and to execute the process by another
process engine. In order to provide an explicit understanding, this has been applied
to the RenewGrass plug-in (see Chapter 8). In [Bendoukha et al., 2015b], issues and
migration patterns are discussed. They concern moving applications and application
data to the Cloud. Based on these patterns, an agent-based architecture proposed to
integrate the current implementation in Cloud-like environments, i.e., the components
making up the workflow management system are mapped into services provided by
specific agents. In general, agent concepts are employed for improving Cloud service
discovery, composition and Service Level Agreement (SLA) management. The elabo-
rated architecture is based on the Mulan/Capa framework and following the Paose

approach. The objective is that agents perform the Cloud management functionali-
ties such as brokering, workflow submission and instance control. Technically, the
OpenStack framework was adopted for the creation and the management of the Cloud
instances. The architecture is presented in Part III.

7.4.3.3 Cloud services to Workflow Tasks

The scenario addressed in this section corresponds to the first case (see Section 7.2.1 and
to the second pattern (see Section 7.3). It includes the work presented in Chapter 10
and Chapter 11, respectively ICNets and ICWorkflow. In both contributions, the
objective is to enable invoking services from different Cloud providers in order to
execute workflow tasks. This is the first difference with the solutions presented above.
In fact, not the whole workflow is concerned by Cloud integration, but only some of its
tasks. For each workflow task it is possible to specify the Cloud service to use as well
as the required data that need to be processed. ICNets provide conceptual as well as
technical solutions. They are based on reference nets and support Cloud application
developers when building Cloud-based workflows and also their management. In
this scenario the process engine (Renew) and the data are at local site. The activities
(workflow tasks) are also executed on-premise. On the other side, the ICWorkflow

plug-in in Renew provides ICNets with means to communicate with the Cloud.
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7.5 Conclusion

In this chapter moving processes to the Cloud is investigated. It is proved that moving
local executions to the Cloud is not trivial and should be based on a solid strategy. One
of the obstacles is security of data that need to be transfered to the Cloud. However,
despite the security of data, there are several ways to technically enable the migration
to the Cloud. After presenting existing approaches based on the work of [Anstett et al.,
2009, Han et al., 2010, Strauch et al., 2013], contributions from this dissertation are
briefly introduced. These contributions prove that several scenarios concerning the use
of Cloud computing and workflows are supported. With respect to the above study,
one can perceive that both [Anstett et al., 2009] and [Han et al., 2010] do not address
all possible situations. For instance, the following situation has been not addressed:
the process engine is available on the user side but due to circumstances (internal
failure, not sufficient compute or storage resources), remote process engines need to be
integrated and remotely invoked. The next chapter (see Chapter 8) presents the first
technical contribution of the dissertation. It consists of the RenewGrass plug-in for
Renew.
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Image Processing with Renew: The
RenewGrass Plug-in

In this chapter, a new plug-in for Renew named RenewGrass is presented. It allows
the development of image processing workflows based on the Geographic Resource
Analysis Support System (Grass) Geographic Information System (GIS).

8.1 Introduction

In order to show case the functionality and the usability of the introduced approaches,
examples from the remote sensing domain have been modeled, deployed and executed
using new implemented tools. One of these tools is RenewGrass. The idea behind Re-

newGrass is that Renew is originally not adapted to handle the special kind of scientific
workflows especially image processing automatically. Renew’s users are obligated to
implement all the processing steps using Java and use them as net inscriptions, which
is arduous and not accessible to unexperienced users. Therefore, RenewGrass is a new
plug-in for Renew to exactly overcome the above issue and makes it possible modeling
and implementing image processing workflows by references nets.

Nevertheless, Renew is principally dedicated to teaching purposes (AOSE project).
It is not adapted to deal automatically with image processing workflows and by far
with concrete distributed systems such as Grids or Clouds. The domain of application
covers mostly business workflows. One of the significant works in this direction are
the development of a WfMS by [Jacob et al., 2002] and [Carl, 2004] based on reference
nets. In order to support scientific workflows, Renew users are obligated to implement
all interfaces and processing steps (Java) and use them for example as net inscrip-
tions over the transitions, which is arduous and not accessible to unexperienced users.
RenewGrass extends Renew in term of supporting new kind of workflows such as
scientific workflows. The main aspect of the plug-in is its usage of reference nets for
modeling/execution of image processing workflows. Reference nets and Renew have
been already presented in Chapter 5. As case study, remote sensing especially the
processing of satellite imagery is selected. Modeling and implementing those workfows
need specific techniques, tools and external libraries, which are unfortunately not
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available in Renew. In order to overcome these issues, RenewGrass is strongly based on
the Grass GIS [Neteler et al., 2012]. Grass is a popular open source GIS that provides
powerful raster and vector GIS capabilities. The modules of Grass (see Table. 8.1) are
now accessible from the Petri net transitions as net inscriptions. This allows users to
invoke Grass GIS modules directly in their Petri net models, which are executed later.
Furthermore, as soon as the workflow requirements become locally unsatisfied, the
workflow tasks need to be mapped to distributed resources. This issue is also taken into
account, since the long-term perspective is to provide service-oriented environment
built on top of Cloud resources and to allow flexible deployment of scientific workflows.

To summarize, the main objectives of this new plug-in are:

• Adapt Renew to handle scientific workflows

• Provide unskilled users by means for ease modeling of their workflows

• Exploit the power of the Grass GIS, in order to implement various image process-
ing workflows

• Reduce the gap between the specification of the workflow and its implementation

In Section 8.2, a prototype, which consists of calculating the Normalized Differences
Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) values is explained.
Next in Section 8.3, an overview of the Grass GIS is given as well as the integration
issues in Renew. In Section 8.4 the architecture of RenewGrass is illustrated. Grass

Net Components are introduced in Section 8.5. Section 8.8 concludes the chapter and
evaluates the obtained results.

8.2 First Prototype: The Image Processing Workflow

In order to show how RenewGrass is used in concrete development process, an imple-
mentation of the NDVI (Figure. 8.1) as well as the EVI (Figure. 8.2) workflows is given.
It was applied to a satellite imagery taken from the LANDSAT-TM7. The first workflow
is adapted from (https://trac.osgeo.org/grass/wiki/HowToTestGrass6) with the
OSGEO educational data set North Carolina. With the same manner, more complex
vegetation indexes or image processing workflows in general can be implemented. The
NDVI is a numerical indicator that uses the Red and near-infrared bands. It subtracts
the red reflectance values from the near-infrared and divides it by the sum of red and
near-infrared band.

NDVI = (NIR-Red)/(NIR+Red)

The whole process as described in
https://trac.osgeo.org/grass/wiki/HowToTestGrass6 consists of:

1. set current region/resolution to map:

$ g . region r a s t=lsat7_2002_40 −p
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2. display metadata:

$ r . in fo −h lsat7_2002_40

3. generate NDVI:

$ r . mapcalc " ndvi�=� 1.0 � *� ( lsat7_2002_40 �−� lsat7_2002_30 )
��/� ( lsat7_2002_40+� lsat7_2002_30 ) "

4. display metadata of the ndvi:

$ r . in fo −r ndvi

5. set color to ndvi:

$ r . c o l o r s ndvi c o l o r=ndvi

6. set current region/resolution to map:

$ g . region r a s t=lsat7_2002_40 −p

Figure 8.1: NDVI Calculation using RenewGrass

lsat7_2002_40 and lsat7_2002_30 are the third and fourth spectral bands. Fig-
ure. 8.1, shows the simplified net model corresponding to the NDVI workflow described
above. As it is shown, not all transitions require Grass commands, but only (T4). When
a Grass command is required (for example r.mapcalculator), the package (module)
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containing the command should be declared exactly the same in Java with import. After
the completion of the workflow, the results are displayed through the monitor. Display
command are also supported and can be called directly from the net (see Figure. 8.1).
With respect to the modules presented in Table. 8.1 raster (r.*) and display (d.*) are
required for the computation and the visualization of the NDVI value.

On the other side, the EVI is a also a numerical indicator that uses Red, Near-infrared
and Blue bands. It is an optimized index designed to enhance the vegetation signal with
improved sensitivity in high biomass regions. Figure. 8.1, shows the Peri net model
corresponding to the EVI workflow. After analyzing these two workflows, one can easily
observe that there are some tasks that are repeatable. For example, one needs always
to upload images and specify the mathematical operation that calculates the values.
The Grass modules (see Table 8.1) required are also the same: display (d.*), imagery (i.*)
and raster (r.*). To avoid that, Grass Net Component are introduced, which allow using
predefined Petri nets blocks dedicated to perform specific processing. The EVI formula
is as follows:

2.5 * (nirchan - redchan) / (nirchan + 6.0 * redchan - 7.5 * bluechan + 1.0)

Figure 8.2: The EVI Workflow Modeled and Calculated using RenewGrass

The results can be easily displayed by calling the d.mon module. Figure. 8.3 shows
both the original satellite image (left side) and the calculated NDVI on the right.
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Figure 8.3: The NDVI of a Landsat-TM Image

8.3 The Integration of Grass GIS in Renew for Remote
Sensing Applications

This section explains the process of integration of Grass GIS in Renew. First, a short
overview of the Grass GIS is given. It includes the Grass modules as well as the
required structure of a GIS project. Next, the architecture is introduced to show all the
components taking part to the integration.

8.3.1 The Grass GIS

Here an overview of the Grass GIS is given. Grass is a multi-purpose open source GIS,
which can be used for geoprocessing applications such as: geospatial data production,
analysis and mapping. It can handle raster as well vector data. The most important
specificity of the Grass GIS is its modularity, which diminishes overhead. This allows
to run only the required modules (same as Renew). These modules are organized in
categories (general GIS modules, raster modules, vector modules, etc.). Table. 8.1 shows
the modules provided by the Grass GIS [Neteler et al., 2012].
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Table 8.1: Grass GIS Commands (from [Neteler et al., 2012])
Prefix Function class Type of command

d.* display graphical output

db.* database database management

g.* general general file operations

i.* imagery image processing

m.* misc miscelaneous commands

ps.* postscript map creation in Postscript format

r.* raster 2D raster data processing

r3.* 3D raster 3D raster data processing

v.* vector 2D and 3D vector data processing

In order to allow Renew invoking these commands directly from the Petri net
transitions, RenewGrass offers a wrapping layer, which makes the Grass modules
available at runtime. Before using the modules for processing the data, the latter should
be first imported into a Grass DATABASE. Within the DATABASE, the projects are
organized as subdirectories called "LOCATIONS". Each LOCATION can have one or
more MAPSETS. Each MAPSET may represent a sub region within a given LOCATION.
These are mostly the important variables that need to be set.

8.3.2 Integration Issues

The first obstacle when trying to integrate Grass GIS with Renew is that these tools are
written in different programming languages (The Grass GIS is written in C and Renew

in Java), which makes a direct communication between them arduous. Thus the Grass

GIS needs to be adapted to the running environment of Renew. Moreover, a proper
environment variables need to be pre-specified. In order to achieve this integration,
there are two possibilities:

• Desktop integration: this means that use the Grass GIS locally and creates interfaces
to provide geoprocessing functions for Renew

• Web-based integration: in this case, the objective is to publish and execute geo-
processes over the web, following the Web Processing Service (WPS) interface
specification1 from the Open Geospatial Consortium (OGC)2

In this chapter, the first solution is chosen. The integration using the WPS is here
omitted but this is discussed in Chapter 13 and concerns moving the current work to be

1http://www.opengeospatial.org/standards/wps
2http://www.opengeospatial.org/
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executed in the Cloud. Figure. 8.4 gives a simple overview of the integration of Grass

GIS as desktop application. With Renew, scientific workflows are specified as Petri
net models. When some of workflow tasks require Grass commands, this can be easily
performed directly at the transitions (see section 8.2). In order to communicate directly
with the Grass GIS, an interface or a wrapper is necessary.

Over the last few years, some effort has been dedicated to leverage the strength
of Java and Grass GIS. There are only few works dealing with this issue. Two candi-
date projects are interesting for the current work, which are the JGrasstools3 and the
vtkGRASSBridge4. The vtkGRASSBridge provides a VTK/C++ interface to most of the
GIS GRASS raster, voxel5 and vector C library functions This library can be used to
build comprehensive 3D visualization of GIS GRASS data with Java, Python and C++.
Although the project seems promising, it was quickly rejected, due to building issues.
For this work, tools from the JGrasstools project have been taken. JGrasstools is a library
that is extracted from the Java Geographic Resources Analysis Support System (JGrass)
project6.

Figure 8.4: Grass GIS Integration in Renew

8.4 Architecture

As mentioned above, Renew’s architecture has been decomposed into several compo-
nents. Each component is characterized as a plug-in. This provides more flexibility
and extensibility. Thus new features can be easily integrated. The so called plug-
in system [Duvigneau, 2010] is responsible for adding and removing of plug-ins at
runtime.

3http://moovida.github.io/jgrasstools/
4https://code.google.com/p/vtk-grass-bridge/
5A voxel represents a value on a regular grid in three-dimensional space. Voxel is a portmanteau for

"volume" and "pixel" where pixel is a combination of "picture" and "element" (Wikipedia).
6JGrass is a free, multi platform, open source GIS based on the GIS framework (see www.jgrass.org).
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New features include some new plug-ins as for instance the Workflow and the
WFNet. which which provide workflow management functionality. An overview of
these plug-ins is given in [Jacob et al., 2002]. RenewGrass is also built following the
plug-in architecture of Renew. Figure. 8.5, shows simplified view of the position of
RenewGrass in Renew.

The Workflow and the WFNet plug-ins are not required when using RenewGrass.
They are especially used when workflow management functionality are required such as
log-in, tasks management, etc. As you can see in the figure, the RenewGrass plug-in is
built on top of the JGrassTools, which is adapted for Renew. The main requirements are
the Grass GIS installation and the Grass data. The first one provides all the modules
presented in Table 8.1. The Grass data is a directory, that holds all the required files
(raster or vector images). Both Grass GIS installation and the Grass Data path should be
specified to RenewGrass prior any utilization. The current implementation of the tool
allows local execution only, since both Renew and Grass GIS are installed on-premise.

Figure 8.5: Architecture of the RenewGrass Tool

Although RenewGrass does not require an additional graphical user interface for
the modeling and the simulation of workflows, front-end functionalities have been im-
plemented. For instance, Figure. 8.6 and Figure. 8.7 shows the Grass Nets Components
and other features, which can be selected from the Renew palette.
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Figure 8.6: RenewGrass Menu in Renew

Figure 8.7: The Grass Net Components

8.5 Grass Net Components

Image processing workflows contain often repetitive tasks, especially inputs from users.
As a use case the NDVI (see Section 8.2) is presented, transition calculating the NDVI
value always require two images (Bands) as inputs The mathematical expression still
the same. To avoid this and to reduce modeling’s time, Grass Nets Components are
provided and are based on the work of [Cabac, 2010]. Net components (NC) are Petri
net structures (subnets), which can be composed or combined to from a large net. The
net component can provide additional help, such as a default inscription or comments.
Functionality already implemented can be used without going through the the process
of ‘low level’ implementation again [Cabac, 2010]. With Net Components, it is possible
not only to model and analyze the system, but also for the implementation and to
accelerate the modeling process. Thus the model can be transformed to an implemen-
tation without the change of the formalism. Additionally, there are also Mulan Net
Components, which are designed for Mulan protocols (see Chapter 6). Net components
can be classified into two categories such as generic net components (control flow),
Mulan Protocol Specific Net Components (Protocol Management, Messaging) [Cabac
et al., 2006].

For example, Figure. 8.8 shows some of the predefined nets structure, which are
configured and added to the Renew palette. As a result, Figure. 8.9 shows the NDVI
workflow modeled using the Grass Net Components. This reduces considerably the
modeling time, especially when the workflow is more complex than the one reported
here.
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Figure 8.8: Grass Net Components

Figure 8.9: An Abstract NDVI Workflow Modeled by the Grass Net Components
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8.6 Related Work

A model is a simplified representation of a phenomenon or a system. Models in the
remote sensing domain are important to analyze and to understand the behavior of the
whole processing steps. There are different kind of models, the complete classification.
The models are classified by purpose, methodology and logic. In this work there is an
focus on Process Models, which integrate existing knowledge into a set of relationships
and equations for quantifying the physical process. These models are typically raster-
based. Most of GIS (commercial or open source) provide tools and assist scientists
creating their models created by dragging and dropping tools. A ModelBuilder is
a graphical user interface that helps creating models. In ModelBuilder, a process is
composed of input data, the tool to apply to the data and the resulting output data.
Famous existing ModelBuilders are the ArcGIS ModelBuilder ( [Armstrong, 2009])
and the Grass Graphical Modeler7. In ArcGIS, the model is represented by a flux
diagram in a graphic user interface that facilitates to create, visualize, edit, and execute
geoprocessing workflows, to use and reuse them, to share and apply them to different
geographic areas. In the other side, Grass GIS provides also commands for preparing
input variables, running and viewing the model. Figure. 8.6 shows the GUI of both
ArcGIS ModelBuilder and the Grass Graphical Modeler.

Figure 8.10: The ArcGIS ModelBuilder Figure 8.11: Grass Graphical Modeler

8.7 Further Documentation

More documentation of RenewGrass is maintained at these web sites: www.paose.net
and http://sofianeb.github.io/ respectively. Users can find technical details on
how to compile, install and use RenewGrass. A How-To is also available at the end of
the thesis (see Appendix A).

7http://grasswiki.osgeo.org/wiki/WxGUI_Graphical_Modeler
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8.8 Conclusion

RenewGrass has been implemented for a specific purpose, which is the design and the
development of remote sensing applications. In opposite to many other tools dedicated
to this purpose, RenewGrass combine the power of the Java programming language
and the use of a well-known graphical and mathematically based modeling technique,
which makes use of Petri nets. By the integration of RenewGrass in Renew, the latter
is now able to handle new kind of workflows, which are scientific workflows. The
main objective behind this integration is the test of the approaches and techniques
proposed in this thesis. Thus, in each part there is a prototype based on RenewGrass.
In the current chapter, simple image processing workflows have been provided. These
workflows are not data and computing intensive. In Part II, RenewGrass is also used to
implement workflows that are resource-centric, which means that they require external
computing and storage resources. Concretely, in this part it is about the integration of
the Cloud technology and later the notion of Inter-Cloud computing and here two other
prototypes are presented. In Part III another version of the image processing workflow
built by RenewGrass is elaborated. The management of the workflow is performed by
specific agents. The multi-agent system is designed following the Paose approach and
the Mulan/Capa framework.
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Chapter 9

Cloud Computing for Workflow
Execution

This chapter presents techniques and tools for the deployment and the execution of
Petri net-based processes in the Cloud. This concerns many aspects of the life-cycle of
a workflow like modeling of processes, configuration of Cloud instances and moving
the execution of processes to the Cloud. The main objective of the current work is
investigate the use of Cloud resources to support Petri net simulations. In addition, how
can a Cloud instance support the simulation/execution of Renew modeled processes is
investigated.

In this chapter, the idea of Cloud for workflow is introduced and questions like “why
is the Cloud technology important for application development? and how it can be
integrated in the application life-cycle?”. For the latter, the benefits that the agent-based
applications can take from the Cloud technology are outlined in Chapter 12. The
chapter is structured as follows. Section 9.2, presents the conceptual and technical
background as well as related work. Section 9.3 introduces the approach and methodol-
ogy for moving net simulations to the Cloud. Section 9.4 proposes different kinds of
interfaces. Section 9.5 discusses the approach and Section 9.6 concludes the chapter
and presents future work.

9.1 Introduction

Several long-running and high-throughput applications can be designed as complex
workflows, which describe the order and relationships between the different activities
and related data (input, output). In such scenarios, these tasks often need to be mapped
to distributed resources, possibly due to a lack of on-premise resources or failures.

Cloud computing is a recent computing paradigm. It provides an environment
that allows the user to dynamically allocate resources for the execution of workflow
tasks following an on-demand and pay-as-you-go model. In this dissertation, these
resources are used to improve the performance of the applications. These applications
are, specified as Petri nets using Renew. In order to make this possible, mechanisms
and strategies need to be provided. These mechanisms are based on the integration of
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workflow concepts and Cloud technology (and furthermore the agent paradigm). There
are different ways to address this. On the one hand, Cloud for workflow uses Cloud
resources to execute complex workflows and especially scientific workflows [Hoffa
et al., 2008] [Juve et al., 2009]. Such works are more resource-centric and focus on the
computational tasks. On the other hand, Clouds need structured and mature workflow
concepts and high-level languages to handle issues like managing complex tasks and
data dependencies. It should be noted that only moving the execution of entire nets or
systems of nets into the Cloud is concerned.

The research described in this chapter focuses more on performance issues, which
can be considerably improved by using Cloud resources. Here, an approach is presented
to provide techniques and tools to move the execution of complex workflows modeled in
Petri nets to the Cloud. The migration to the Cloud is based mainly on user requirements.
Thus Quality of Service (QoS) parameters are specified in advance. Modeling and
execution of Petri net models is performed exclusively through the Renew editor.
Furthermore, different realization possibilities are discussed. Three different types of
interfaces are examined, which define how input and output to/from the Cloud are
defined. Simple interfaces provide only basic functionality to initiate Cloud workflows
and receive results. Simulation interfaces are used to run extensive simulations of
workflows in a Cloud environment. Lastly, advanced interfaces feature advanced
mechanisms to process input and output data for the Cloud. The main avenue of
thought for the advanced interfaces is to utilize autonomous software agents and their
characteristics.

9.2 Background and Related Work

The approach for managing workflows in (Inter) Cloud-like environments is based on
several concepts, techniques and tools. In order to comply to the Paose approach, many
of the techniques are based on Petri nets. Petri/Reference nets (see Chapter 5) and agent
concepts (see Chapter 6) for example have been already presented.

Originally, WfMS were not conceived to be used in Cloud-like environments. With
the growth of Cloud computing, several traditional WfMS improved their kernel and
are now able to provide interfaces to communicate with external Cloud services. The
prevalent (scientific) WfMS are: Taverna [Oinn et al., 2004], Pegasus [Deelman et al.,
2005], Triana [Taylor et al., 2003], Askalon [Fahringer et al., 2005a], Kepler [Altintas
et al., 2004] and the General Workflow Execution Service (GWES) [Alt et al., 2006].
The originality of these systems is that they run on parallel and distributed computing
systems in order to reach a high level of performance and get access to wide range of
external resources. The Pegasus system allows scientists to execute workflows using
different resources including clusters, Grids and Clouds. This has been adapted later to
execute scientific workflows in the Cloud (within an Amazon EC2 Instance) [Nagavaram
et al., 2011]. Compared to current work, the migration to the Cloud is almost similar,
the difference lies at the modeling level, where reference nets are used as modeling
technique. GEWES is an interesting project that makes use of high-level Petri Nets
(HLPN) for the description of workflows. The GWES coordinates the composition and
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execution process of workflows in arbitrary distributed systems, such as SOA, Cluster,
Grid, or Cloud environments. In the workflow specifications, transitions represent tasks
while tokens represent data flowing through the workflow.

There have also been much more efforts to infuse Cloud and distribution aspects
into general workflow management. The ADEPT project [Dadam and Reichert, 2009,
Reichert et al., 2009] focuses on flexible and adaptive workflow management but also
deals with distribution and migration aspects to avoid performance bottlenecks in the
network. Another interesting combination of Clouds and workflows is the OpenTosca
project [Binz et al., 2013]. It utilizes management plans implemented as workflows to
configure Cloud applications for organizations. [van der Aalst, 2011a] also deals with
configuration issues but focuses explicitly on the configuration of inter-organizational
business processes in the Cloud.

9.3 Investigating Moving Net Execution to the Cloud

In this section, mechanisms and implementation issues are proposed and discussed.
They concern moving the execution of computation- and time- consuming workflows
into the Cloud. These complex workflows are specified by Petri nets, more precisely,
reference nets using the Renew tool. Cloud technology is a suitable solution to (i)
overcome the lack of resources on-premises and to (ii) improve the performance of the
whole system based on quality of service (QoS) constraints. As an execution target for
simulations, tests have been performed on an OpenStack Cloud (TryStack). Furthermore,
the integration and interfaces between workflows, Cloud computing and agent concepts
are also addressed.

9.3.1 Bringing Renew to the Cloud

Renew in the Cloud is a new computing idea, which designs the process of simulating
Petri net processes in the Cloud rather than on-premises. There are different reasons
to move (Renew) simulations to external (Cloud) platforms, but the main reason is to
seek gains in performance. Particularly, (Petri net) models that contain complex and
time consuming tasks are of interest here. In this work the design/modeling step is
performed at the user’s side since it does not require computing or storage capabilities.
After this, the models are pushed to the Cloud provider. The Cloud provider should be
able to provide instances, that support Petri net simulations. Therefore, Cloud instances
need to be provisioned by external Petri net editors and simulators. Since Renew is used
it will be installed and configured before starting the simulation. The whole process
consists of the following steps:

1. Modeling the workflow

2. Configuring the Cloud instance

3. Starting/connecting to the Cloud instance

4. Uploading the required nets
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5. Executing the simulation and getting the results

Technically, the implementation is based on the Vagrant tool1, which permits us to
create reproducible development environments. According to the Vagrant homepage,
"Vagrant is a tool for building complete development environments. With an easy-to-use
workflow and focus on automation". There are three ways to use Vagrant: with a virtual
machine, a Cloud provider, or with VMware.

9.3.2 First Prototype (with VirtualBox)

In order to run Renew and all required software on the host machine, configuration
using a Vagrantfile is required. The latter permits the provision the host machine(s)
with additional softwares (Renew).

Figure. 9.2 shows the steps to follow for the execution of a workflow (Petri net).
Initially, workflows are modeled/specified by Petri nets using Renew and have .rnw
extension. It should be noted that, for now, there is a focus on simple simulation/ex-
ecution of workflow nets in the Cloud. Workflow management aspects are currently
considered in the background. For example, human interaction with the workflow,
e.g. a user executing a task, is currently only simulated by the system. Later on, it
is possible to incorporate a WfMS in the Cloud which would support these kinds of
aspects. Workflow management within Renew implemented as a reference net (agent)
system, which would be executed in the Cloud, is already possible [Wagner, 2009a]. For
now, the vagrant machine is equipped with a Renew version without a graphical user
interface, i.e that users are obligated to run the simulation with the command line. The
correspondent console command is startsimulation. The syntax of the command is:

startsimulation <net system > <primary net> [-i]

• net system: The compiled net files (.sns files, Shadow Net System).

• primary net: The name of the net, of which a net instance shall be opened when
the simulation starts. Using the regular GUI, this equals the selecting of a net
before starting the simulation.

• -i: This must be set before starting the simulation (only for this prototype). Gen-
erally, -r is used, which means to run the whole simulation without steps. More
information about this command can be found in [Kummer et al., 2013, p.106].

For testing purposes a simple net (primary net) is created and contains a single
transition that prints a string on the screen. Since the reference net formalism allows
using Java code, this is done simply by the instruction System.print.out("message") (see
Figure. 9.3). Once the required files are prepared (.rnw and .sns), they are sent to the
Vagrant machine. Required nets are either copied into the synced directory at local host
or transferred using the scp command. There are three possibilities to start a simulation
on the guest machine: (i) by a command line (using ssh) (ii) through a Web Gui (using

1https://www.vagrantup.com/
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Figure 9.1: Run Simulation in a Vagrant Machine

NodeJS) (iii) from a reference net directly (inscribed to transitions). Figure. 9.1, shows
the process of starting a vagrant machine and launching Renew and the simulation.
Executing the command in 2, launches a new terminal and starts Renew and simulate
the net on the guest machine. (1) The Vagrant machine should be up and running (2)
The Web server (NodeJS) is started (3) Renew is launched and a simulation is started
with the required nets.

Figure 9.2: Remote Simulation with Vagrant

Figure 9.3: The Original Net (.rnw)
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9.3.3 Second Prototype (with OpenStack)

The second version of the implementation is based on a concrete Cloud environment.
Instead of being launched in virtual machine at local host, the instances are launched
in the Cloud (see Figure. 9.5). Vagrant uses specific providers. The default one is
VirtualBox2. Other built-in providers are VMWare3, Docker4 and Hyper-V5. When
executing vagrant up a virtual machine is created on the local host. If only one VM
is required then it is enough to work locally. Nevertheless, when the number of VMs
grows there is an overload due to a lack of resources. The natural solution is to look
for external resources, which are available in a Cloud. Due to financial and technical
constraints, free OpenStack based Cloud platforms are used as testbed. OpenStack is an
open source software for creating private and public Clouds. It is installed on a CentOS
Linux operating system. As a result of the plug-in architecture that Vagrant is based
on, it is possible to connect to different Cloud providers and launch the instances. This
is performed by a plug-in called vagrant-openstack-provider6. This plug-in permits to
control and provision machines within an OpenStack Cloud. Other features are for
instance: Create and boot OpenStack instances, SSH into the instances and suspend and
resume instances. The principles for running Renew simulation in the Cloud are almost
the same as presented in the previous section. The difference is at the configuration
level, which is realized by the Vagrantfile. A minimal configuration consists of the
following:

require ’ vagrant−openstack−provider ’
Vagrant . conf igure ( ’ 2 ’ ) do | conf ig |

conf ig .vm. box = ’ openstack ’
conf ig . ssh . username = ’ stack ’
conf ig .vm. provider : openstack do | os |
os . openstack \ _auth \ _url = ’ http : / / keystone−serv er . net /
v2 . 0 / tokens ’
os . username = ’ openstackUser ’
os . password = ’ openstackPassword ’
os . tenant \_name = ’ myTenant ’
os . f l a v o r = ’m1. small ’
os . image = ’ ubuntu ’
os . f l o a t i n g \ _ip \ _pool = ’ publicNetwork ’
end

end

The configuration presented above concerns only the credentials and the image used
to boot the instances. The important next step is to configure these instances to be able
to support Renew simulations. The configuration is performed exactly in the same way

2www.virtualbox.org
3www.vmware.com
4www.docker.com
5www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
6https://github.com/ggiamarchi/vagrant-openstack-provider
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as working with virtual machines (VirtualBox). Configuring of the instances plays an
important role and directly affects the performance of the system. Although, the current
work is based on a private OpenStack Cloud, the contribution can be easily integrated
within other commercial Cloud providers like Amazon7, Windows Azure8 or HP9. With
providers, Cloud consumers can configure their instances based on a pay-as-you-go
model. Resources provided by commercial Cloud providers are not free, which can
negatively affect the choice of the Cloud consumers. With respect to the application
requirements, there are different types of instances which depend on the Cloud provider.
Instance types describe the computing, memory and storage capacity of the instances
that Cloud consumers use for hosting (computing) their applications. Therefore, the
requirements for the applications should be clearly specified as QoS parameters. This
issue has been already addressed in [Bendoukha and Cabac, 2013]. QoS parameters can
be specified as inputs to the transitions. For example, with OpenStack these are called
by names such as “m1.large” or “m1.tiny”. Figure. 9.4 shows the characteristics of T2
instances.

Figure 9.4: Amazon T2 Instance Characteristics

Figure 9.5: Renew Simulation in the OpenStack Cloud

7http://aws.amazon.com/
8http://azure.microsoft.com
9http://www.hpcloud.com/
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9.4 Interfaces

The previous section describes how to enable Renew simulations in a Cloud environ-
ment. The basic technical realization bundles up and simply executes a workflow net
system and its shadow net representation. In order to practically utilize this execution
one needs to define an interface for it. Different possible interfaces are examined and
can be grouped into three categories: Simple, Simulation, Advanced. These categories
will be discussed in Sections 9.4.1 through 9.4.3.

Prototypes for the simple interfaces already exist. More features for these interfaces
as well as the simulation and advanced interfaces are currently under development.
They will be discussed on a conceptual level here.

Note that the method of calling a simulation as a Cloud functionality has been
already discussed in the previous section. Generally it can be called either via the
console, a Web interface or directly within a (local) running net system. If an interface
restricts these possibilities it will be shortly addressed.

9.4.1 Simple Interfaces

Simple interfaces offer basic, yet versatile functionality that can later be utilized in
more complex settings. The input for simple interfaces remains the workflow system
and its shadow net representation. The output options vary, but essentially any results
obtained are returned as simple data or objects. Simple interfaces do not support any
kind of intelligence or autonomy. They are simply called when needed and report back
the predefined results.

Console Interface: This interface uses either the internal Renew console or the general
system console as the output medium. Consequently it already directly works with
reference nets. By simply inscribing
a System.out.println(textVariable) to any transition of the net system being exe-
cuted in the Cloud, the String representation of the object textVariable is printed on the
console. Figure. 9.1 already shows a working prototype using such a console interface.

For very simple use cases (e.g. testing a certain outcome of the net system) this is
already sufficient, but in most cases any obtained result should automatically be made
available to the caller in a more usable way. This can be realized by reading any output
in the console and combining these outputs into a result object that is passed back
when the execution has been completed. Accordingly, more complex use cases and
computations can also be supported even with this very simple interface. One problem
with this approach is that it is not standardized or regulated by the modeling approach.
This is a general problem that will be discussed in Section 9.5.

Synchronous Channel Interface: Realizing the interface through synchronous channels
is another way of providing a simple interface. Synchronous channels, in general, are
a mechanism to allow data and object transfer between net instances. They were first
introduced in [Christensen and Hansen, 1994] and are fundamental to the reference
net formalism. Within the Cloud context, synchronous channels allow for data objects
created and modified during the execution of a workflow to be transferred back to its
initiator or even directly into other running (local or remote) net systems. Consequently,
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Figure 9.6: Synchronous Channels Interface

the full potential is realized when the Cloud call is incorporated into a net system.
There are a number of ways in which synchronous channels can be incorporated into
an interface for Cloud-based workflows. The simplest way is to explicitly inscribe an
output channel to a transition in the net. When this transition fires, the synchronous
channel is called and the specified data object is transferred to the Cloud call initiator.
By extending this to multiple transitions one can realize a kind of continuous feedback
for the initiator. Whenever a transition inscribed with the synchronous channel would
fire a result would be send to the initiator.

Figure. 9.6 illustrates the approach mentioned above. There are two main nets:
Workflow Initiator and Workflow. The Workflow Initiator manages the workflow locally
and is responsible for the communication with the Cloud provider. On the other side,
the workflow is executed in the Cloud. After modeling the workflows, the model is
saved in Renew (.rnw) and Shadow net (.sns) files. These files are required for the
workflow to be executed. The communication between both nets is possible through
synchronous channels. For instance, T1 and T4 are for sending data; T2 and T3 are
for receiving data. Furthermore, all the parameters can be put into a place instead of
synchronous channels.

There are two main problems when using synchronous channels. First of all, similar
to the console interface, this interface is not structured. Careless modelers may set
output channels to incorrect transitions, which may cause results to be invalid. Another
issue is related to the continuous update mechanism. If (possibly partial) results are
transferred back to the initiator at multiple times, it may be difficult to work with
these results. Depending on the net a modeler would have to explicitly build against
that specific interface in order to aggregate the results into a valid composition. For
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this simple interface it would be cumbersome and inefficient. This is one of the issues
addressed by the advanced interfaces described in Section 9.4.3.

Up until now, synchronous channels have only been discussed for output scenarios.
Incorporating synchronous channels for the input of the Cloud-based workflows is also
possible. In the simplest option this would only be used to incorporate initial input data.
This would not change the basic functionality all too much, as initial data can easily be
supplied via the console or simply as the initial marking of the workflows. Changing
the initial marking would make it easier. If called from a running net system the Cloud
workflow could be initiated with runtime information. A synchronous input channel
would simply pass the data object directly into the workflow in the Cloud. Without
synchronous channels a new net system with the specified initial marking would have
to be created or the console call would have to be tailored to the runtime information.

It is also possible to transfer data into the running Cloud workflow. This would
require the initiator to maintain a connection with the Cloud system. This is mostly
feasible when the Cloud call is initiated by a running net system which would continue
with its own execution and provide additional data to the Cloud net system at some
later point. Certain transitions in the Cloud net system could then be inscribed with
an input channel over which this additional data could be received. Ensuring the
correct connection and synchronization between local and Cloud net systems is the
main challenge in this context.

Using synchronous channels in the proposed ways has some disadvantages. Without
any restrictions to modeling the placement of input and output in the net would affect
any verification of workflow correctness or other Petri net properties. This is discussed
further in Section 9.5.

9.4.2 Simulation Interfaces

The simulation interfaces are not so much interfaces, as they are a utilization of Renew
in a Cloud environment. Instead of executing a net system remotely for some direct
usage these interfaces execute the net system a large number of times. The information
about these simulation runs is then reported back to the initiator. This constitutes the
output of these interfaces. The input consists, in addition of the net system and shadow
net representation, of simulation parameters (e.g. number of simulation runs). The
advantage of running these simulations in a Cloud environment is that it frees up the
modelers local machine.

Result Simulation One possibility is to run a set of simulations and have the system
report back the results of each run. With the same initial marking different simula-
tions may still produce different results. This could be due to race conditions, non-
deterministic behavior, etc. With these results the modeler could validate assumptions
about the net system or determine possible error sources.

This kind of simulation could be extended by enabling variable initial markings.
Simulating a net system with differing parameters might influence the results and help
modelers even more.
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Timed Simulation Another possibility is to run a set of simulations and compare
the time it takes to complete them. This kind of simulation is more useful for testing
the performance or new features in the runtime environment (Renew). Running the
simulation with new features enabled and comparing the results obtained without them
can yield information about new algorithms.

Focusing more on the performance of the net system, it might be of interest to the
modeler to determine the impact of different initial markings. Varying over the initial
marking of the net system could then help modelers determine performance bottlenecks.
When using (reference) Petri nets for processes in practical software engineering within
the Paose (Petri net-based, Agent- and Organization-oriented Software Engineering

[Cabac, 2007]) development approach for example, such simulations and their results
become especially useful and interesting.

9.4.3 Advanced Interfaces

The advanced interfaces go beyond simple call interfaces similar to the ones discussed
in Section 9.4.1. They utilize these simple interfaces but add another layer of abstraction
to them. This leads to additional characteristics like certain degrees of intelligence and
autonomy. They can also feature mechanisms to manage and store known net systems
so that they may even serve as a kind of directory service. They can also aggregate
results, enforce quality of service concerns or choose the best from a set of results.
Consequently, no general statements about input and output can be made.

Agent Interface Using agents for an advanced interface to the Cloud execution of
Petri net systems has a number of intrinsic advantages. Agents possess autonomy and
a certain degree of intelligence. Reactive and proactive agent behavior can also be
utilized.

In an advanced interface an agent would serve as a kind of gateway between the
local net systems and the Cloud net systems. For the Mulan and Capa agents this
would expand upon the ideas introduced by the WebGateway agent [Betz et al., 2014]
towards Cloud calls. The WebGateway agent serves as a kind of bridge between the net
execution of a Renew environment and the Web environment. Agents in Renew can
then offer their functionality as Web services and also access remote Web services.

For the Cloud context, agents would serve in a similar fashion. The idea is illustrated
in Figure. 9.7. Some agents would be responsible for the net systems. They would take
on the role of the initiator. They have the possibility of autonomously or be controlled
by a human user via some kind of user interface.

These agents would control and/or create the workflows which should be executed
in the Cloud. They would send requests and data to the gateway agent10. The gateway
agent would then use a simple interface (see above) in its internal functionality to
initiate the workflow in the Cloud on behalf of the other agents. Any result obtained in

10Alternatively the workflows could be stored in a database known to all agents. In that case the
initiator agents would simply send requests and identifiers of the workflows to the gateway agent.
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Figure 9.7: Agent Interface Illustration

the Cloud would be sent back to the gateway agent which would then forward it to the
other agents.

At this point the characteristics and advantages of software agents can be utilized.
In the following, some ideas are covered of how, starting from the relatively simple
approach described above, this can be done.

The gateway agent can aggregate the results of the Cloud calls into more informa-
tive composite results. Partial results could be incorporated into the workflows with
standardized instructions for the gateway agents to combine them after the execution
has been completed. The gateway agent can also instantiate the workflow multiple
times and choose the best (or fastest) result. Of course, the gateway agent has to be
equipped with mechanisms to aggregate or assess results in these fashions. This is,
however, simply a question for the technical implementation and not a conceptual one.
Aggregation of results is especially interesting for simulation purposes. The gateway
agent could automatically create composite results for modelers to inspect. It could
also automatically vary over the initial parameters based on the initial results (e.g. to
validate results or test certain outliers data).

The gateway agent can also react to errors or other problems occurring during the
execution in the Cloud. If the Cloud execution returns an error, the gateway agent can

170



9.4. Interfaces

retry the instantiation. If the error was caused by the call it can also adapt the call (e.g.
if input parameters had incorrect types like a string representation of an integer value).
This would happen transparently to the initiator of the call which would only have to
be invoked if the gateway agent was unable to find a solution to the problem.

Using proactive behavior the agent can also support the execution of Cloud work-
flows. For example, it could restart workflows if the returned result strongly deviated
from expected results. It could also prepare or even already initiate recurring net
executions.

The gateway agent can also handle quality of service (QoS) concerns. As stated
in 9.3.1, QoS are specified as parameters either in transitions or places. The second
scenario is the more appropriate since it uses synchronous channels. In this situation,
in addition to the workflow model (and its related files .rnw and .sns) modelers also
include QoS parameters. In this work, there is a focus on time and budget, however
modelers can include other constraints. The gateway agent can consequently play
another role, which is Cloud brokering. Brokering means that the agent looks for the
suitable Cloud provider to execute the workflow based on its requirements. This can be
useful when working with multiple Clouds.

One disadvantage of using a gateway agent for the Cloud is that it centralizes
the communication. This decouples the communication aspects from the individual
agents, but gives the system a single point of failure. Only one agent in the system, the
gateway agent, possesses the functionality and mechanisms to invoke Cloud systems.
This makes other agents more simple and possibly more efficient to execute, but if
the gateway agent fails communication with the Cloud, then it is lost. This could be
remedied by implementing a solution with multiple gateway agents and distributing
the functionality. If one gateway agent failed others could take its place.

Entity Interface The term entity describes a hybrid construct between an agent and a
workflow. Depending on the runtime needs they can act as an agent (e.g. for communi-
cation), a workflow (e.g. for task deployment and execution) or something between the
two (e.g. as a mobile process). Entities and modeling with entities is currently ongoing
research. The Cloud context enhances the capabilities of entities in many regards.

From the interface point of view an entity possesses all the characteristics of agents
and has access to the entire functionality described in the previous paragraph for an
advanced interface provided through an agent. This interface is extended even more
because of the additional possibilities gained through the workflow properties of an
entity. Entities are, in one perspective, a (workflow) process. This automatically entails
a certain behavior-centric structure and purpose to the modeling.

By structuring the calls and instantiations of the Cloud net systems as a process itself
the modeler is directly supported. While anything can be achieved through regular,
less-rigidly structured modeling, restricting the modeler into such a process perspective
is still beneficial. Considering process order, task subdivisions, processing of partial
results and other aspects of a process are direct requirements in this perspective.
Consequently they are essential to the modeler here. But that means that these aspects,
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which range from helpful to essential, can also not be ignored or omitted. This is what
the entities add on a conceptual level to the advanced interface of agents.

9.4.4 Advanced Features

Remote or distributed simulations with Renew is already tackled using RMI (Remote
Method Invocation) [Kummer et al., 2013, p.22] [Simon, 2014]. The objective of remote
simulation within Vagrant machines is not to be an alternative to RMI, but instead is
targeted to a specific type of workflows. These workflows are characterized to have long
running tasks with less external services. The simulation step is not provided at the
moment, which means that the execution of specific transitions is not possible.

Until now, the results are displayed only in a terminal, which is not convenient.
This is resolved, by creating a Web server based on NodeJS. This Web server is for
the communication between the client (host machine) and the Vagrant machine. This
allows for more automation of the simulation process. Figure. 9.8 shows the Web GUI,
which allows the users to automatically:

• create a Vagrant machine

• upload the required nets (.rnw and .sns)

• run the simulation

• display the results

Figure 9.8: Web Gui for Vagrant-based Simulation
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The future use of this solution is to be able to provide development environments
equipped with the Paose tools: Renew and the Mulan/Capa framework. During the
yearly teaching project (AOSE), more then 15 students develop agent-based applications.
On this project, the objective is that all the students have an identical development
environments, which can be a big challenge. On the top of that, some students use
Mac while others use Windows or Linux, which means that errors can occur during the
installation of the required tools. Vagrant manages all this for the students so everyone
can focus on programming rather then their development environments.

9.5 Discussion

One issue that was raised in Section 9.4 concerned the restrictions on modeling and
the placement of input and output in a net for the interfaces. If that placement is
unrestricted it may be error-prone and puts the responsibility solely on the modeler
without any support. An effort could be made to restrict input and output to the initial
and exit places of the workflow. This would ensure only full results are returned to the
caller and make it easier to verify workflow net properties. However, there are cases
in which partial results (e.g. status updates) during the execution of a workflow net
are desirable. The restriction would preclude this. A compromise would be to allow
simple status reports from anywhere in the net (e.g. via the console), but only complete
results from the final place or transition of the workflow (e.g. via synchronous channel).
Only these complete results would then be made available for further operations in the
workflow initiator.

Without any restrictions it would also be impossible to make any statements about
the correctness of the executed workflows. For practical purposes allowing input into
already running workflows and arbitrary input/output locations might be helpful
to some use-cases. However, from a verification and validation point-of-view these
mechanisms are problematic. Incorporating concepts like workflow correctness into the
Cloud calls and interfaces is currently ongoing work but outside the scope of this thesis.

The question of restrictions raises another interesting point. This work is focused on
the execution of workflow nets. Arbitrary workflow net systems can be executed in the
Cloud. That includes scientific and inter-organizational workflows.

From a technical standpoint though, it is possible to execute any net system in
the Cloud. The only precondition is that a plug-in for the net formalism in question
is provided for the Renew instance running in the Cloud. Renew plug-ins for many
formalisms already exist (e.g. P/T nets, nets supporting time annotations) and more
can be added.

When allowing arbitrary net systems without restrictions to the interface or without
any structured modeling these arbitrary net systems might pose challenging to modelers
in terms of efficiency and manageability. For this reason it is advisable to use structured
modeling paradigms, like agents or entities, for the Cloud net systems as well. In the
following paragraphs it is examined how this would affect the advanced interfaces
described in the previous section.
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By executing the agent interface within the Cloud (as opposed to outside the Cloud
as described in Section 9.4.3) the communication can be simplified. In this scenario the
net system executed in the Cloud is a Capa agent platform with a running gateway agent.
The gateway agent is accessible for other agents via the standardized FIPA compliant
asynchronous message communication supported in Capa. This would “move” the
interface from the local execution into the Cloud, since it does not matter where the
gateway is executed to other agents. They communicate with it in the same way as any
other local or remote agent. This would lead to efficiency gains as the gateway agent
could access resources in the Cloud environment directly. The technical capabilities
of the gateway agent would also be improved. Other properties of the interface would
largely remain the same.

The entity interface would benefit in the same way as the agent interface. In addition,
it would also affect the modeling abstraction of the entity, as it could be considered a
(workflow) process in the Cloud executing other (workflow) processes. This is especially
interesting in the inter-organizational workflow setting.The entity in the Cloud could be
considered as the overall inter-organizational workflow while the workflows it controls
are the subworkflows for each involved organization.

9.6 Conclusion

This chapter tackles the first aspect of the relationship between Cloud computing
and workflow concepts. It concerns the features that Cloud providers can offer for
the execution of complex (scientific) workflows. Concretely, workflows are specified
by Petri nets, especially reference nets. Thus mechanisms have been investigated to
show how Cloud instances can support the simulation/execution of Petri net models.
The current implementation supports the OpenStack Cloud, but can be extended to
other Cloud providers. The use of OpenStack is related to the ICWorkflow plug-in
(see Chapter 11). The latter provides ICNets (see Chapter 10) with means to invoke
Cloud services deployed in OpenStack Cloud. There are several ways to improve the
current work. For example, the transfer of data to the Cloud can be performed easily
through Web interfaces rather than with command line. The research on the notion
of interfaces is still at the early stage and can be a subject of further research. The
agent aspect of the interfaces proposed in Section 9.4 can be realized following the
work of [Wagner, 2010, Reese, 2010]. The latter proposes a strong approach for the
integration between workflows and agents. The following chapter (see Chapter 10)
addresses the second research on the integration between workflows and Clouds. It
consists of the introduction of new modeling/implementation techniques to support
Cloud-based workflow management.
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Chapter 10

Workflow Concepts for (Inter-) Cloud
Computing

In this chapter, two essential contributions of this dissertation are presented. The CTT
(see Section 10.2) and the Inter-Cloud Nets (ICNets) (see Section 10.3). These introduced
concepts cover both the conceptual as well as the technical aspect of building Cloud-
based workflows. Furthermore, these contributions do not only concern single-Cloud
systems but also enable the integration of multiple Clouds into one architecture.

10.1 Introduction

The previous chapter concerns mainly the use of Cloud resources for the execution
of workflows. The objective is to take advantage of the Cloud technology in order to
enhance the performance of the system. In the current work, mechanisms are provided
to move applications to the Cloud. It is now possible that processes modeled with Petri
nets by Renew are deployed and executed in one of the famous Cloud providers (AWS
and Azure) or in open-source Cloud platforms such as Openstack. The latter is the
chosen platform for the deployment of Renew processes.

Nevertheless, the technical side is not enough to meet a complete integration be-
tween Clouds and workflows. For many simple Cloud consumers building Cloud-based
applications from scratch is arduous. Moreover, the focus on moving applications to the
Cloud should be investigated in priority, and this starts with the modeling step. Thus
in this chapter adapted modeling techniques based on reference nets are provided. The
idea is to offer a set of Petri nets models to allow both the modeling of Cloud-based
workflows and its management. With the Ctt for example, one can specify a workflow
task that requires Cloud services with respect to QoS constraints. ICNets are prede-
fined Petri nets structures that help both the design and the execution of workflows
in an Inter-Cloud environment. ICNets can also exploit the features of Ctt for model-
ing workflows. Furthermore, a Cloud-based workflow management architecture (see
Section 10.2.5) makes use of the two concepts mentioned above.
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10.2 The Cloud Task Transition (Ctt)

In this section, the concept of the Ctt is presented. The idea follows the concept of the
workflow transition from [Jacob et al., 2002]. It is based on high-level Petri nets as the
main modeling language, using reference nets [Kummer, 2002] as the implementation
basis. The basic technical matters of the tool support in Renew are described, leaving
most of the application aspects aside.

10.2.1 Preliminaries

Cloud computing provides the technical means to allow for efficient scalability for inter-
organizational or large intra-organizational implementation of distributed applications.
At the same time, agents and multi-agent systems provide a conceptual underpinning
of Cloud technology. They represent another distributed computing paradigm where
several agents interact and are able to behave intelligently.

Despite the differences between these two areas of computing they can take benefits
from each other. While Cloud computing offers a reliable and scalable infrastructure
for the execution of multi-agent systems especially in terms of modeling and simulating,
agents can be used to handle SLA (Service Level Agreement) negotiation, Cloud service
discovery and composition, etc. Using Cloud technology as the technical implementa-
tion means, Ctt is introduced, which eases the modeling of complex inter-organizational
business processes. Its role is to facilitate the specification of user’s requirements and
supports QoS management. Workflow modelers specify the requirements as parameters
to the Ctt in form of tuples (S, Q, I), which corresponds respectively to the Cloud
service (S) (can be storage or compute service), the QoS constraints (Q) (consisting of
time and costs) and input data (I) (files in case of storage and scripts in case of compute
service). Synchronous channels are used to make the connection with the WfMS, which
controls the completion of the task. It either initiates the firing or cancels it and all
input parameters are put back in the input places [Bendoukha and Cabac, 2013].

The main idea behind the Ctt is to introduce the possibility to even further abstract
from details, concentrating on necessary contexts of a business activity. Whole interac-
tion schemes, modeled by business interaction diagrams / agent interaction diagrams,
are used as input parameters for a given business task. Based on an agent oriented style
of modeling related agents (and roles), necessary artifacts as well as the normal data
sets into the business activity are also fed. Incorporating Cloud interactions into the
workflow system can be advantageous and can make things easier for users, modelers
and administrators. To see how the Ctt is used in practice, a Cloud-based workflow
architecture is introduced (see Section 10.2.5).

10.2.2 The Workflow Task Transition

The core of the workflow net formalism for Renew is the specialized task transition,
seen in Figure. 10.4. In Renew each of such transitions corresponds to one task in a
workflow. The task transition makes use of the shadow net layer, to hide technical
information about the connection to a workflow management system from the user.
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A task transition cannot fire automatically when it becomes activated. The firing is
controlled by a workflow management system (WfMS) in which users can request it
and then either confirm or cancel the task.

The upper part of that figure shows the transition as it is used in Renew. It is
represented as a transition with thick vertical bars. The inscription triple defines the
task, which is to be executed, the input parameters for to the task and the (optional)
variable, which is the result of the task. This concise representation of a task in the
workflow net is easily usable for workflow designers.

The lower part of the figure shows, how the transition is translated in the shadow
net layer of Renew. What, in the graphical interface, appears to be a single transition
is in fact, during execution, a complex net structure consisting of three transitions
and a place. The places connecting to the task transition are in fact connected to the
internal transition representing the request of the task. The synchronous channel
realizes the interface to the WfMS. Only when the WfMS initiates the firing, can fire the
task transition and the task becomes activated. Internally an object representing the
task (_WF_activity in the figure) is put on the internal place. The WfMS then (through
user input) controls the rest of the task. It either is canceled by the user and all input
data is put back onto the input places (rollback) or it is confirmed in which case the
variables on outgoing arcs from the task transition are filled with the according values.

10.2.3 Refinements

Petri nets can model different activities in a distributed system; a transition to model
the occurrence of an event, the execution of a computational task, the transmission
of a packet, a logic statement, and so on. Therefore, some refinements are proposed
with respect to the original workflow task transition. The refinements are depicted
in Figure. 10.2. New is the integration of QoS management and the communication
with multiple Cloud providers. The input places of the Cloud transition model the
pre-conditions of an event, the input data for the computational task. The output places
of the transition model the post-conditions associated with an event, the results of the
computational task. The approach uses workflow nets and draws on the workflow task
transition. The idea is to handle user requests formulated as tasks and parameters.
These requests will be treated in a transparent manner i.e. that technical information
are hidden using the shadow net layer. Clearly, through the Cloud transition users can
specify which Cloud product or service to use. A service can be a compute or a storage.
The parameters are per example authentication keys or file’s path etc. The WfMS will
then either accept the request and make the connection to the specified Cloud services
according to user inputs or reject it. The main purpose behind the proposed refinements
is to allow users to automatically execute workflows on distributed resources (see
Figure. 10.1). This will permit the connection to different infrastructure (Cloud, SOA,
grid, cluster) in a transparent manner. The Ctt is suited to make workflow more flexible
and dynamic, from build time to run time. Large scale workflows utilize distributed
resources in order to access, manage and process large amounts of data. These resources
are often limited in supply and are shared among many competing users. Workflow
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architectures need to adapt into the Cloud in order to leverage the benefits of Cloud
services.

Figure. 10.1 shows that Cloud Workflow may require services for its execution from
Amazon Web services. That is in the case if the whole workflow is executed entirely in
one Cloud. Nevertheless, in such a distributed dynamic environment, (requirements)
resources or services could be not delivered due to a failure, unavailability or saturation.
Hence, workflows require services from other Clouds. Therefore, coordination is beyond
the scope of the workflow, but involves the coordination of Cloud services.

Figure 10.1: A Simple Image Processing Workflow Using Ctt
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Figure 10.2: The Cloud Task Transition Semantic (modified from [Wagner, 2009b])

Connections to Cloud services are made possible through Cloud application pro-
gramming interfaces (APIs). A Cloud API determines the vocabulary / taxonomy that a
programmer needs to employ while using a particular set of Cloud services. Accord-
ingly, APIs are linked to conditions of use. Therefore, a classification of APIs has been
proposed by [Cohen, 2009] which stated that there are three kinds of APIs:

1. Blind APIs: Amazon Web Services
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2. Closed APIs: Google App Engine

3. OpenCloud APIs: Rackspace, Gogrid, sun

Cloud APIs allow users (software) to request data and computations from one or
more services through an interface. For example the Software-as-a-Service, it considers
the provision of software not as a product that the user installs internally on its servers,
but as an application remotely accessible as a service. Users do not pay for owning the
software itself but rather for using it. They use it either directly through an available
interface or via a provided API (often made through Simple Object Access Protocol
(SOAP) or Representational State Transfer (REST) Web services ).

By now, most developers are using a REST approach because it’s easy to use and
background knowledge about WSDL, CORBA, or RMI isn’t required. They can easily be
called from Java, PHP, Ruby, Python, C#, or even a shell script. Petri nets are an adequate
modeling technique for Web services behavior and can be used as a composition model
and language for RESTful Web services [Alarcón et al., 2010] [Decker et al., 2008].

10.2.4 Integration Issues

The technical integration into the net formalism for Renew (see [Jacob et al., 2002]) is
possible. Since workflow nets are more or less regular reference nets making use of the
task transition. Thus, Ctt can be added into this as well. The Ctt is also available at the
main menu of Renew at the bottom in form of a Cloud. Handling complex input and
output of Ctt is no problem, since the underlying reference net formalism can manage
any Java object.

The integration of the Ctt into the current Renew WfMS can be realized. Currently,
the internal transitions of the task transition communicate with the workflow engine
directly via synchronous channels. This mechanism can be adapted to also handle the
Ctt. However, this will cause considerable efforts to implement a generic solution for
general Cloud settings. Also the integration into an agent based environment causes
a certain technical overhead. The technological requirements and their solutions will
require considerable work. It is expected that performance will be a major issue here
for practical application in daily execution environments.

In addition, the technical aspect must be taken into account as well, which means the
integration of the Ctt applications into a user interface. Again it should be possible with
the current WfMS to find some good implementations. However, it will require some
adjustments in the user agents and other related parts in order to support additional
GUI elements. With these additional interface handling a smooth integration into the
agent-based WfMS shall be possible.

As the short history of Cloud computing shows, Cloud services may be unavailable
for a short, or even for an extended period of time. Such an interruption of service
is likely to impact negatively the organization and possibly diminish, or cancel com-
pletely, the benefits of utility computing for that organization. QoS (Quality-of-Service)
requirements such as time limit (deadline) and expenditure limit (budget) for workflow
execution also need to be managed by the WfMS. The WfMS should be able to identify
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and handle failures and support reliable execution in the presence of concurrency
and failures. These are the short-term technical working steps in future. A solution
is expected by the intensive use of intelligent agent application. Agents should be
supporting environments to take over the burden of the provision of proper services.

Figure 10.3: The Cloud Task Transition in Renew
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Figure 10.4: The Workflow Task Transition (from [Wagner, 2009b], originally modified
from [Jacob et al., 2002])

10.2.5 Generic Cloud-based Workflow Architecture

Many Cloud applications require the completion of multiple interdependent tasks;
the description of a complex activity involving such an ensemble of tasks is known
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as a workflow. Existing workflow architectures need to be adapted for the Cloud and
workflow management systems should be integrated with Cloud infrastructure and
resources [Pandey et al., 2011a].

According to [Wu et al., 2013], the most important aspects that differentiate a
Cloud workflow system from the conventional one is the market-oriented business
model. Furthermore, the authors state that the role of a Cloud workflow system, is
to facilitate the automation of user submitted workflow applications where the tasks
have precedence relationships defined by graph based modeling tools such as DAG
(directed acyclic graph) and Petri Nets or language-based modelling tools such as XPDL
(XML Process Definition Language). Complex workflow tasks need in some cases to
be mapped to distributed resources and involves cooperation among several partners.
Workflow management is critical to a successful long-term Cloud computing strategy.
The notion of inter-organizational workflow still needs conceptual and technical support
especially in complex and dynamic environments like Clouds. New ways to tackle
this problem have to be found. Therefore, existing workflow architectures need to be
adapted for the Cloud and workflow management systems (WfMS) should be integrated
with Cloud infrastructure and resources [Pandey et al., 2011b].

As a solution, the Inter-CloudWorkflow Petri Nets (ICWPN) is introduced, which
is an approach for enabling workflows in an (Inter)-Cloud environment. A specialized
CTT is introduced to facilitate the connection to the Cloud and to support Quality of
Service (QoS) management [Bendoukha and Wagner, 2012]. The Ctt (see Figure. 10.5)
is based on the Workflow Task Transition [Jacob et al., 2002], which is the core of the
workflow net formalism in Renew. Workflow modelers specify their requirements in
form of tuples (S, Q, I) as parameters to the Ctt. It corresponds respectively to the :

• Cloud service (S) that they want to use (it can be a storage or a compute service)

• QoS constraints (Q) consisting of deadlines or costs and input data (I) consisting
either of required files in case of a storage or scripts if they want to execute their
codes on the Cloud

Synchronous channels are used to make the connection with the WfMS, which
controls the completion of the task. It either initiates the firing or cancels it and all
input parameters are put back onto the input places.
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Figure 10.5: General Cloud Workflow Architecture(from [Bendoukha et al., 2013])

These steps are reproduced in Figure. 12.1, which represents another Cloud-based
workflow architecture that emphasizes on the use of agent concepts and techniques
especially the Mulan/Capa framework.
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10.2.6 Scenario

The scenario shows clearly how the Ctt is used in practice, in order to model and execute
Cloud-based workflows. Assuming that one is working under workflow configuration1.
As indicated in the Figure. 10.5, complex workflow tasks are modeled with the Ctt,
the parameters that should be transmitted are mentioned above. First of all, before
explaining in detail, it is important to notice that the architecture is composed of three
layers from top to bottom: user applications layer (UL), middle-ware layer (ML) and the
resource layer (RL), which consists mainly of Cloud services.

In the proposed approach the process of executing an application in an Inter-Cloud
environment is composed of 6 phases which are: (1) Users use the offered modeling
tools consisting mostly of Renew and the introduced Ctt to specify the requirements
(Cloud services, QoS constraints, specific input data) for their applications using Petri
nets models. (2) A list of requirements is created consisting of required services as well
as their related QoS constraints. (3) Make a request to the Cloud Service Repository (CSR)
which is accessible by the WfMS to achieve workflow tasks (4) Based on the above steps
(2-3) a decision is made by the Decision Maker who determines whether the workflow
tasks will be executed locally or using Cloud resources. (5) After that the workflow tasks
are mapped to the adequate resources. (6) When the workflow is deployed, information
about Cloud providers and the state of their services are constantly updated.

10.2.7 Ctt and Paose

Like the other contributions in this dissertation the objective is always to provide means
for the development of agent-based applications following the Paose approach. The use
of Ctt in such context will be discussed in Chapter 13.

10.3 Inter-Cloud Nets

The objective of this section is to propose a new Petri net model that cover some work-
flow management functionalities: modeling, deployment and execution. The solution
is named ICNets and consists of using Petri nets especially reference nets to model
Cloud-based workflows. Furthermore, the aim is to propose a formal specification to
ICNets by defining all the elements and the relation between them.

In order to give an insight to ICNets, a scenario is presented, where Cloud consumer-
s/developers are confronted to interoperability/portability and vendor lock-in issues
during the development of their applications. The scenario explains how ICNets can be
helpful for modeling and executing workflow based on services provided by different
Cloud providers. The idea of ICNets appeared when trying to design a Cloud-based
workflow management system by using the reference nets. Such complex systems
are difficult to model and to deploy in the Cloud. The problem is that Cloud-based

1the workflow configuration means that Renew is started with some additional plug-ins such as the
workflow, WFNet and Access. Other external resources might be also used such as a Web server in case
of using a browser and connexion to Cloud services.
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workflows are more data-centric. Data need to be passed (specified by a entity or left
abstract) to the tasks, which next move them to the correspondent Cloud.

10.3.1 Introduction

The Cloud technology is a recent computing paradigm, which has been defined by
NIST [Peter Mell, 2011]: ”as a model for enabling convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction”. Nevertheless, complex applications require several services
that a single Cloud is not able to satisfy. Unavailability of a Cloud service may lead
to unsatisfied contracts established between Cloud providers and Cloud consumers.
Therefore, Inter-Cloud computing is considered as the next natural evolution of Cloud
computing [Toosi et al., 2014]. The main challenges for the emerging Inter-Cloud Com-
puting identified up to now are application and data interoperability and portability,
governance and management, metering and monitoring, as well as security.

The research on the Inter-Cloud is still at an early stage of development. A semi-
automated process to guide consumers to work with different Clouds based on monitor-
ing tools for the quality of services, is unfortunately not yet technically possible.

Hence, the construction of such complex systems remains a problem as soon as
there are several independent partners involved in the design and the execution of
these systems. Missing is the support of processes in this environments. For complex
systems with independent partner expressive and powerful software systems have to
be provided.

Workflow concepts are strong candidates to address the previous issues. Their
advantage is the automation of processes and efficient coordination and collabora-
tion among various entities composing the system. However, Workflow Management
Systems (WfMS) usually do not address the special aspects of Cloud-based systems.

New concepts and constructs to overcome this problem are necessary. Therefore,
this work provides a conceptual and technical solution for the modeling and design of
complex systems in Cloud-like environments with a special emphasis on processes. The
contribution consists of the introduction of the Inter-Cloud NETS (ICNets). ICNets are
predefined Petri nets structures that allow modeling of Cloud-based workflows and the
management system. New forms of Petri net places/transitions are introduced. The latter
have specific functionalities, which consist of invoking Cloud services directly from
the net. The idea of proposing a classification of Petri nets transition and places has
been already discussed at the end of Chapter 3. The complexity of the (Inter-) Cloud
environment is hidden by a gateway layer. Furthermore, Cloud developers and Cloud
consumers will not be confronted to issues like model transformation (instantiating
the system and the processes) or interoperability. This thesis concentrates on workflow
modeling, deployment and Cloud service brokering than monitoring, security and
migration of applications among Clouds. In order to illustrate their usability, data
management operations have been implemented by ICNets. The operations include
allocating as well as accessing containers and objects in the Cloud.
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10.3.2 Towards a Formal Description for ICNets

The main objective of ICNets is to provide a separation between the model’s element
(places, transitions and arcs) in order to efficiently analyze the whole behavior as well
as to detect faults quickly in the model. Figure. 10.3.2 gives an overview of ICNets. The
principle of this approach is based on classification of places/transitions depending on
their utility in the whole model. For example, it is assumed that a workflow task can
be either compute (Tc1), storage (Ts1) or both. These tasks require (Cloud) resources
(R), which can be available or not. Furthermore, both compute and storage tasks need
inputs, which are data (for storage tasks) and script (for compute tasks). Following the
reference nets principle, there is a system net, that communicates with different object
nets through synchronous channels. For instance, firing Ts1 will create an instance of
a net that will store the data in the Cloud. Data are passed as parameter to the Ts1.
Before calling the storage net, a test should be performed to check whether the Cloud
resource (R) is available or not. As shown below, there are also special kinds of places
such as Ps1 and Tc1. These places can only communicate with specific transitions in
the net. Decomposing a workflow (net) in such manner enhances debugging as well
as analyzing the process and detects failures at earlier. Next, a formal description for
ICNets is proposed.

Figure 10.6: Inter-Cloud Nets
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10.3.2.1 Definitions

ICNets are based on reference and workflow nets and extend by special transitions and
places.

Definition (ICNET) An Inter-Cloud NET (ICNET ) is a 6-tuple, PN = (P ,T ,A,C,R,CL),
where:

• finite set P of places and T of transitions: P ∩ T = ∅, P ∪ T , ∅ and P = PG∪PS ∪PC
where PG is a set of ordinary places; PS a set of storage places and PC a set of
compute places.

T = TG ∪ TS ∪ TC where PG is a set of ordinary transitions; PS a set of storage
transitions and PC a set of compute transitions.

PS , ∅, PC , ∅.

• A ⊆ (P × T )∪ (T × P ) is a set of arcs (flow relation)

• C is a finite and non empty color set (types of tokens)

• R is a finite set of storage and compute resources R = {r1, r2, ..., rn}

• for each TS ∈ T , there is a resource Ri ∈ R

• CL is a set of Clouds. Each CLi is a collection of storage and compute resources.

The technical aspect of ICNets is discussed in the following sections. Here, they are
used in concrete use cases, where Cloud services from different Clouds are required
for the completion of workflows. Some functionalities have been also implemented
following the idea of ICNets. The scenario consists of storage in the Cloud and its
related operations such as CRUD and container management.

10.3.3 ICNets Principles and Functionality

In this section ICNets and their role in the proposed architecture are presented. As
their name indicates, ICNets are based on Petri nets. Petri nets are simple, graphical
modeling formalism with a strong mathematical basis. Their efficiency for workflow
modeling does not need to be proven [van der Aalst, 1998]. Nevertheless, traditional
Petri nets only allow modeling control flow2. Furthermore, the resulted workflow
model usually needs a translation to an intermediary (executable) model in order to
be instantiated and executed by a workflow engine. For this, a special kind of Petri
nets called reference nets [Kummer, 2002] are used, which combine the nets-in-nets
paradigm [Valk, 1998] and synchronous channels from [Christensen and Hansen, 1994].
Reference nets play an important role in this work. Firing a transition can also create a
new instance of a subnet in such a way that a reference to the new net will be put as a
token into a place. This allows for a specific, hierarchical nesting of networks, which

2A workflow schema is a combination of three essential dimensions: control flow, data flow, and
resource flow.
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is helpful for building complex systems in these formalisms. This feature is exploited
for the implementation of the architecture presented in the following section. The
components are in form of Petri nets models communicating with each other through
synchronous channels.

With respect to traditional Petri nets or even reference nets, new kind of place/tran-
sition are introduced. The new places/transition can be distinguished by their color.
Their principle role is to separate between ordinary activities and those requiring Cloud
services for their execution. For the latter, a whole mechanism has been implemented to
allow the interaction with different Cloud providers. In general, there are two categories
of places/transitions: storage places/transitions and compute places/transitions. Moreover,
there are also special arcs to rely these new elements. These arcs allow an appropriate
binding between the places and the transitions. For example a storage place can only be
bonded with a storage transition. There is also the notion of Type for the information
passed to the transitions. Storage places contain mostly data to be stored in the Cloud
and the compute places hold script file to be executed in the Cloud. The first category
concerns all workflow tasks making use of Cloud-based storage services and the second
one all tasks related to computing activities. These new places/transitions are clearly
identified in Figure. 10.7. In that example, the storage places/transitions are highlighted
with yellow color and blue color respectively.

In order to illustrate the features of ICNets, some workflows dealing with storage in
the Cloud have been implemented. These workflows consist on performing some data
transfer and management on an OpenStack Cloud. With respect to the motivating exam-
ple from Section 1.1 the data handled within the operations are satellite images. These
operations (models) can be reused on-demand and be part of another workflow. More-
over, they can communicate with each other, instantiate new nets through synchronous
channels3. A CloudGateway has been also implemented to avoid interoperability issues
and to invoke Cloud services from different Cloud providers. During the modeling
phase, developers just need to specify the Cloud provider that they require. The rest
is performed by the CloudGateway. Each operation has a number of parameters. In
the context of image processing, the important inputs are: the image and the container
where the image will store in. Figure. 10.7 shows some of the operations modeled
by the ICNets. In the proposed approach, all the behavior is captured by reference
nets. The latter should be executed/simulated to perform the Cloud operations. For
example, executing the first net (Figure. 10.7a) triggers the display of the GUI, thus
Cloud consumers can select the image to upload/retrieve and also to specify in which
container the data will be stored. After the specification of these two parameters, their
values are passed to the correspondent net. In this figure, the values are required for
the upload and the retrieve nets (Figure. 10.7c and Figure. 10.7b respectively).

For now, the operations specified by ICNets concerned only the Cloud consumers.
They allow them to model the workflow and to specify the parameters. Nevertheless,

3Synchronous channel inscriptions consist of two types of inscriptions, up-links and down-links.
Up-links are used in object nets while down-links are used in system nets. They consist of at least two
transitions where one of the transitions is seen as the initiator of the communication having a down-link
inscription.
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(a) GUI Net (b) Create/Upload Net

(c) Retrieve Net

Figure 10.7: Cloud Operations with ICNets

ICNets have another functionality, which is the design and the implementation of
the Cloud-based system, that manages the workflows. This will be illustrated in the
following section.

In other words the ICNets serve to:

• specify/implement internal behavior of the components composing the architec-
ture

• model the control and data flow of the workflow

• make it easier for modelers (developers) to orchestrate (invoke) composite Cloud
services from different Cloud providers

• avoid vendor lock-in

• make the design of complex Inter-Cloud applications simple

• use well-founded modeling techniques (Petri nets)

• reduce the gap between modeling and implementation

• automate the discovery and selection of Cloud providers
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10.3.4 Related Work

In terms of specification of Cloud-based applications and systems, the Cloud Modeling
Language (CLOUDML) is a tool-supported domain-specific language (DSL) [Ferry et al.,
2013]. It relies on model-driven techniques and methods and allows developers to
model the provisioning and deployment of a multi-Cloud application at two levels
of abstraction: (i) the Cloud Provider-Independent Model (CPIM), which specifies
the provisioning and deployment of a multi-Cloud application in a Cloud provider-
agnostic way; (ii) the Cloud Provider-Specific Model (CPSM), which refines the CPIM
and specifies the provisioning and deployment of a multi-Cloud application in a Cloud
provider-specific way [Ferry et al., 2013]. The strength of CloudML is that the descrip-
tion of the deployment is causally connected to the real running system: any change on
the description can be enacted on demand on the system, and, conversely, any change
occurring in the system is automatically reflected in the model.

The Cloud Application Modeling Language (CAML) [Bergmayr et al., 2014] enables
representing Cloud-based deployment topologies directly in the Unified Modeling
Language (UML) and refining them with Cloud offerings captured by dedicated UML
profiles. In general, the purpose of CAML is (i) to enable the representation of models
from the reverse engineering perspective plus the forward engineering perspective and
(ii) to provide guidance in terms of optimization patterns for turning Cloud independent
models into Cloud specific models from which Cloud optimized application code can
be generated as a prerequisite for the deployment on the selected Cloud environment.

The EU-funded mOSAIC4 project [Martino et al., 2011] proposes a complementary
solution based on software agents and semantic data processing. It allows transparent
and simple access to heterogeneous Cloud resources and to avoid vendor lock-in. It
fulfills this goal by its Cloud ontology that describes services and their interfaces.
Moreover, a unified cross platform API that is platform and language independent is
provided by mOSAIC. The mOSAIC platform is targeted mainly at Cloud application
developers. The mOSAIC approach is based on a Cloud Agency gathering client and
provider agents in a brokerage process working with service level agreements [Aversa
et al., 2010]. It is used as a Multi-Cloud resource management middle-ware, it plays
the role of run-time environment in the model-driven engineering project named
MODAClouds [Ardagna et al., 2012]. MODAClouds, a MOdel-Driven Approach for
the design and execution of applications on multiple Clouds that aims at supporting
system developers and operators in exploiting multiple Clouds and in migrating their
applications from Cloud to Cloud as needed. To do so, MODAClouds proposes an
advanced quality-driven design, development and operation method based on the
Model-Driven Development (MDD) paradigm.

10.4 Conclusion

This chapter represents an essential contribution of this dissertation. It tackles an
important issue in distributed systems, concretely Inter-Cloud environments. The

4http://www.mosaic-fp7.eu/
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issue concerns the design and implementation of Cloud-based workflows, that is why
chapter focuses more on modeling level. New modeling techniques are introduced.
They allows for more flexibility and easiness in the specification of workflow tasks
requiring Cloud services. First, the concept of a Cloud Task Transition is introduced
(see Section 10.2). The role of the Ctt is to help modelers to use the power of Petri
net formalisms and their high level variants to specify the flow and the dependencies
of workflow tasks. Moreover, the Ctt can be also used in agent-oriented software
development (see Chapter 13).

In the second part of the chapter the concept of ICNets (see Section 10.3) is presented.
ICNets are predefined Petri net models, whose role is twofold. On the one hand, they
serve to specify workflows for the Inter-Cloud. They offer more exact abstraction then
the Ctt, since they target the use of multiple Clouds rather then following a singe Cloud
strategy. On the oder hand, ICNets offer the ability to design Cloud-based WfMSs. The
following chapters resumes Part II, gives a summary and evaluates the results obtained
until now.
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Chapter 11

The Inter-Cloud Workflow
(ICWorkflow)

This chapter tackles two important issues: the development and the deployment of
workflows in Inter-Cloud environments. Therefore, a framework named Inter-Cloud
Workflow (ICWorkflow) is developed and integrated as a plug-in in Renew.

Several contributions of this dissertation are based on this framework. ICWorkflow

is responsible for operations running in the Cloud. This includes: authentication, access
to Cloud services (compute and storage), deployment and execution of workflows.

11.1 Introduction

Cloud technology is a recent computing paradigm, which has been defined by NIST: ”as
a model for enabling convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service provider
interaction” [Peter Mell, 2011].

Nevertheless, complex scientific applications require several services that a single
Cloud is not able to satisfy. Unavailability of a Cloud service for example may lead
to unsatisfied contracts established between Cloud providers and Cloud consumers.
Therefore, Inter-Cloud computing is considered as the next natural evolution of Cloud
computing [Toosi et al., 2014]. However, building applications in such environments
faces several obstacles, which are portability and interoperability. In this work there
is more emphasis on client-centric interoperability following the classification made
by [Toosi et al., 2014] (Multi-Cloud and Aggregated Service by Broker scenarios) (see
Figure.11.1a and Figure. 11.1b).

In fact, connections to Cloud services are made possible through Cloud application
programming interfaces (APIs). A Cloud API determines the vocabulary / taxonomy
that a programmer needs employ when using a particular set of Cloud services. Accord-
ingly, APIs are linked to conditions of use. Cloud APIs allow users (software) to request
data and computations from one or more services through an interface. They use it
either directly through an available interface or via a provided API (often made through
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Simple Object Access Protocol (SOAP) or Representational State Transfer (REST) Web
services). By now, most developers are using a REST approach because it’s easy to use
and background knowledge about WSDL, CORBA, or RMI isn’t required. They can
easily be called from Java, PHP, Ruby, Python, C#, or even a shell script. Therefore,
a framework called ICWorkflow has been implemented in order to enable workflow
creation, deployment and execution in Inter-Cloud environments. Workflows are speci-
fied by Petri nets. One of the reasons of using Petri nets is that they are an adequate
modeling technique for Web services behavior and can be used as a composition model
and language for RESTful Web services [Alarcón et al., 2010] [Decker et al., 2008].

The ICWorkflow framework provides the required layer for the ICNets (Sec-
tion 10.3) and and can be combined with the results obtained in Chapter 9. This
framework covers several steps when modeling and executing workflows in the Cloud.
For example creating customized Cloud instances and launching Renew simulations.
Furthermore, the framework is also intended to implement workflow management sys-
tems for Cloud-like environments. This chapter aims to provide a solid understanding
of the ICWorkflow framework. The following sections focus more on architectural
properties of the framework as well as the technologies used to enable the Inter-Cloud
communication. Section 11.2 provides a classification of different approaches to build
Inter-Cloud environments. In Section 11.3 the underlying technologies, which the
current work is based on are presented. The ICWorkflow framework is introduced in
Section 11.4. In Section 11.5 an approach is proposed for the management of workflows
in Inter-Cloud environments. A short introduction about ICWorkflow in Paose is
given.

11.2 Design of Inter-Cloud Systems: A Classification

There are several approaches on how to build an Inter-Cloud environment. The most
important challenge facing Cloud developers and also customers is the interaction with
multiple Clouds. Grozev et al. [Grozev and Buyya, 2012a] have realized a review of
these approaches and provided a taxonomy of Inter-Cloud architectures and brokering
mechanisms. According to [Grozev and Buyya, 2012a], Inter-Cloud is classified as (see
Figure. 11.2):

• Volunteer federation: as stated above, this is a result of a voluntarily cooperation
between a group of Cloud providers. This targets more governmental Clouds or
private Cloud portfolios.

• Independent: this occurs when an application decide in its own and without the
implication of a Cloud provider to make use of multiple Clouds.

The volunteer federation is classified into two architectural categories:

• Centralized: this is similar to a broker, which is a central entity, responsible of
the allocation of resources. It can be seen as a repository where Cloud providers
register their capabilities.
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(a) Multi-Cloud Scenario

(b) Aggregated Service Broker Scenario

Figure 11.1: Inter-Cloud Scenarios (Adapted from [Toosi et al., 2014])

• Peer-to-Peer: in this architecture, there is not mediator the communication between
the Clouds is made directly.

Independent Inter-Cloud are also classified into two categories:

• Services: it means that there is a service (hosted externally or in-house by Cloud
clients) responsible for application provisioning. Most of these services include
brokering features and provisioning process is SLA-based containing predefined
attributes.

• Libraries: Except the provisioning step, communicating with different Clouds
need special Inter-Cloud libraries that facilitate the access and the interaction in a
uniform way without the need to use specific Cloud provider APIs.
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Figure 11.2: Architectural Classification of Inter-Cloud (From [Grozev and Buyya,
2012a])

Figure. 11.3, represents the correspondent architectures taken from the taxonomy
(see Figure. 11.2).

Figure 11.3: Inter-Cloud Development Architectures (Adapted from [Grozev and Buyya,
2012a])
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Inter-Cloud System Architectures

For some time now the term Inter-Cloud is more often addressed. In this section a
state-of-the-art is given of the actual architectures for designing Inter-Cloud-based
systems. The research concerning this topic stills in his infancy.

Several researchers have already dealt with the issue. In the article [Buyya et al.,
2010] by Buyya et al., an architecture of federated Clouds named Inter-Cloud to allow
scaling applications through multiple Cloud providers and the possible interactions are
described. In this approach, two main components are provided (see Figure. 11.4):

• Cloud Exchange (CEx): The core of this model is the Cloud Exchange which makes
it possible the distribution of the executions on the Cloud resources. It is a
centralized server that aggregates information from various Cloud brokers and
looks for the available services. This is the market making component of the
architecture. It offers services that allow providers to find each other in order to
directly trade Cloud assets, as well as allowing parties to register and run auctions..
In the former case, CloudExchange acts as a directory service for the federation.
Therefore, the CloudExchange implements a Web service-based interface that
allows data centers to join and leave the federation; to publish resources they want
to sell; to register their resource requirements; to query resources and to consult
the status of a running auction.

• Cloud Coordinator (CC): It controls the interaction between the Cloud Exchange
and the Cloud Broker. This component manages domain-specific issues related
to the federation. This component is present on each party that wants to join
the federation. CloudCoordinator has front-end (elements that interact with
federation) components as well as back-end components (elements that interact
with the datacenters). Front-end components interact with the Cloud Exchange
and with other coordinators. The former allows data centers to announce their
offers and requirements, whereas the latter allows the Coordinator to learn about
the current state of the datacenter to decide whether actions from the federation
are required or not. Therefore, wherever the Coordinator detects that extra
resources are required by the data center, it triggers the process of discovery of
potential providers.

The Cloud Broker negotiates with the Cloud Exchange to find the appropriate cloud
provider for the to meet the user requirements (SLA, QoS). What is missing in this
model is billing and security issues.
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Figure 11.4: Federated Network of Clouds (from [Buyya et al., 2010])

Security plays an important role in such heterogeneous environment where multiple
partners collaborate in a joint software development or for information exchange.
A Cloud information gateway to control information exchanged between involved
partners1 is proposed by [Tsuda et al., 2012].

11.3 Testbed and Related Technologies

Before presenting the ICWorkflow framework and its functionalities, it is important to
give a short overview about the technologies taking part to its development as well as the
environment that is targeted to work on it. First, a brief introduction is given to present
OpenStack and TryStack, which are the execution platforms of Cloud-based workflows.
Second, the JClouds toolkit is presented, which is used to implement communication
and access mechanisms to connect to the Cloud. The decision to build a private Cloud
at the TGI group or to use a free Cloud platform was not random. It was based on
different parameters. The decision has been influenced principally by the financial
aspect. In fact, the current work is not a part of a supported project, which has an
important impact on the selection of a Cloud providers. Working with commercial
Cloud providers like Amazon or Windows Azure is very difficult since their services
are not free of charge. However, this has no effect on the usability or the credibility
of the results obtained in this dissertation. Although the tests have been performed
on OpenStack-based Cloud, working with other Cloud providers is not complicated.
The ICWorkflow framework itself is designed originally to work with different Cloud
providers.

1Tsuda et al. [Tsuda et al., 2012] define partner cloud as: using one or more cloud services for cooperation
between different organizations”
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11.3.1 OpenStack

In order to test the tools and prototypes that are implemented and presented in this
dissertation, the OpenStack framework2 has been selected. Openstack is the facto
reference for private Clouds. Figure. 11.5 provides a conceptual architecture of a
typical OpenStack environment. Different services cooperate with each other in order
to launch a virtual machine or an instance. The OpenStack services can be summarized
as shown in Table. 11.1. In the following a brief overview of the most important
services [Foundation, 2015].

Table 11.1: OpenStack Services
Service Name Description

Horizon Web-based dashboard

Cinder Block storage

Glance Image management and deployment

Nova Compute virtualization

Neutron postscript

Heat Cloud applications orchestration

Keystone Authentication between Cloud services

• Horizon (OpenStack Dashboard): provides a Web-based self-service portal to
interact with underlying OpenStack services, such as launching an instance,
assigning IP addresses and configuring access controls.

• Cinder (OpenStack Block Storage): provides persistent block storage to running
instances. Cloud users can manage their storage requirements through the dash-
board. The system provides interfaces to create, attach, and detach block devices
from/to servers.

• Glance (OpenStack Image Service): provides support to store and retrieve VM
images. Specifically OpenStack Compute makes use of this during instance
provisioning.

• Nova (OpenStack Compute): manages the life-cycle of compute instances in an
OpenStack environment. Written in Python, it creates an abstraction layer for
virtualizing commodity server resources such as CPU, RAM, network adapters,
and hard drives, with functions to improve utilization and automation.

• Swift (OpenStack Object Storage): a distributed storage system primarily for static
data, such as VM images, backups, and archives. It stores and retrieves arbitrary
unstructured data objects via a RESTful, HTTP based API.

2https://www.openstack.org/
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• Neutron (OpenStack Networking): provides an API for users to define networks
and the attachments into them. Floating IP addresses allow users to assign (and
reassign) fixed external IP addresses to the VMs.

• Heat (OpenStack Orchestration): orchestrates multiple composite Cloud applica-
tions, through both an OpenStack-native REST API. It allows developers to define
application deployment patterns that orchestrate composite Cloud applications

• Ceilometer (OpenStack Metering): is a mechanism for centralized collection of
metering and monitoring data. It delivers a single point of contact for billing
systems to obtain all the usage information they need across the suite of OpenStack
components.

• Keystone (OpenStack Authentication): provides a catalog of endpoints (API access
points) of other services.
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Figure 11.5: Conceptual Architecture of OpenStack (from [Foundation, 2015])

The OpenStack-based private Cloud at the TGI group is mainly dedicated to provide
storage services. These services have been used to enable CRUD operations modeled
and implemented by ICNets (see Chapter 10). Furthermore, the private Cloud is also
useful to provide instances for running Renew simulations as discussed in Chapter 9.
Due to some technical issues, some operations can not be performed with the local
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Cloud. Therefore, another Cloud provider is used for testing purpose, which is called
TryStack3. It will be briefly presented in the next section.

11.3.2 TryStack

Few years ago, building private Clouds was not obvious and required mostly commer-
cial softwares. There was less support for Cloud developers and administrator. Thus,
in order to test the implementations of this thesis the alternative is use services from
existing (free) Cloud providers4. TryStack is a testing sandbox running OpenStack
that developers using OpenStack in their applications could use to test their imple-
mentations. It is noteworthy to note that TryStack is only for testing purposes and not
intended for production. Instances are deleted after 24h. This has no effect on the
ICWorkflow framework. For future users that want to use ICWorkflow in concrete
Cloud system, they need either to have their own Cloud (the case treated in this work)
or to get payable instances from commercial Cloud providers (Amazon, Windows Azure
and GAE). It depends on the nature of the applications that they want to perform on
the Cloud. In this work, TryStack has been used to create Cloud instances. These
instances served to perform Renew simulations in the Cloud [Bendoukha and Wagner,
2015, Bendoukha et al., 2015a]. Except the restrictions for the validity of the instances,
TryStack provides almost the same fnctionality as OpenStack in term of networking,
compute and storage.

11.3.3 Inter-Cloud Toolkits

Enabling an Inter-Cloud environment requires specific development tools. Program-
ming directly against the Cloud is not trivial and needs a strong understanding of the
Cloud platform and its APIs. One of the main problems is the vendor-lock in, which is
diminishing the freedom of Cloud consumers taking advantage from the Cloud tech-
nology. The reason lies mostly at the interaction layer. There are still many challenging
issues especially concerning portability and interoperability [Martino et al., 2015,Petcu,
2011]. Therefore, an additional abstraction layer should be provided in order to ease
the access to the Cloud and give developers the freedom to work with different Cloud
providers. There are different projects focusing on this issue such like: JClouds [JClouds,
2015], σ -Cloud [CloudSigma, 2015], LibCloud [LibCloud, 2015] and DeltaCloud [Delta-
Cloud, 2015]. In this work, JClouds has been chosen for implementing access and other
operations for the Inter-Cloud. Since JClouds is written Java, this makes it easy the
integration with Renew for the development of Cloud-based applications. The library
support several known Cloud providers like Amazon, Azure and OpenStack. JClouds is
an open source Java library that introduces abstractions aiming at the portability of ap-
plications and supports several Cloud providers including AWS, Azure and OpenStack.
The resources that one can manage with JClouds are classified in three categories:

3http://trystack.org/
4There actually only few free Cloud services. There are many disadvantages and drawbacks. There

are always limitations and can not fit the requirements.
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• ComputeService: The JClouds API offers the ability to manage instances in the
Cloud. One can start multiple machines at once. It also provides configuration
possibilities to customize instances like: the Image used to create the computing
node, he Hardware on which the instance will run, comprehensive of CPU speed,
available RAM, and disk space; the Location where the machine will run [Martino
et al., 2015].

• BlobStore: JClouds provides means for managing key-value storages from different
Cloud providers. It also offers a Map view of the container to access the data.

• LoadBalancer: JClouds offers a common interface to configure load balancers. This
functionality is still under development until now.

Concerning the ICWorkflow, JClouds has been mainly used to provide access to
the Cloud. The other functionality, which are described in Section 11.4 are not based
on the library.

11.4 The ICWorkflow Components

In this section ICWorkflow functionalities are presented. As stated above the objective
is to provide means for the deployment and execution of Cloud-based applications.
Besides the applications the objective is also to makes it easy the management of a
Cloud environment. All the work focuses on the enabling of the interactions between
Petri net processes and Cloud services. ICWorkflow is the underlying technology
behind the ICNets introduced in Chapter 10. The framework is built up from many
different components. The architecture is depicted in Figure. 11.6 and the components
are: IC-Administration, IC-Persistence, IC-GUI, IC-Instances and IC-DB. Most of the
description is based on the OpenStack terminology since it is the chosen platform to
build the testbed (see Section 11.3). In the following a description of each of these
components:
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Figure 11.6: The ICWorkflow Framework

• IC-Administration: it sets and holds all required information for authenticating
Cloud customers and configuring different contexts. A context defines the service
that will be used and represents a specific connection to a particular provider. In
case of an OpenStack Cloud, a context can be a Nova, a Swift or a BlobStore service
for example. The application creating the context should be first authenticated
connected. Generally, in most known Cloud providers such as Amazon, applica-
tions have to provide credentials, which consists mainly of the Access Key ID, the
Secret Access Key and the Endpoint address.

• IC-Instances: the role of this component is to provide information about the
instances running within a context. Most important information concerning a
Cloud instance is its state. The possible statues of a Cloud instance (or a server)
are: Building, Active, Stopped, Suspended, Paused and Deleted. The status of an
instance is stored in local data base by the IC-DB component and can be at anytime
retrieved and communicated to the user. Moreover, through the IC-Instances
component is possible to provide information about running servers for a specific
provider.

• IC-DB: this component is the most essential in the ICWorfklow framework. It
allows two different modes of storage: Object storage and Block storage as well as
the ephemeral5 storage. In order to store data (objects) containers/directories
must be created to hold the objects. The IC-DB component implements some

5The ephemeral storage as defined by http://docs.openstack.org/openstack-ops/content/

storage_decision.html The disks associated with VMs are "ephemeral," meaning that (from the user’s
point of view) they effectively disappear when a virtual machine is terminated.
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operations for the management of containers in OpenStack Cloud. For example
creating, deleting or updating containers or listing container details. Furthermore,
IC-DB allows CRUD operations on objects such like upload, download and delete
objects from the Cloud. This function is performed later by ICNets.

• IC-Persistence: as stated above, the status of a Cloud instance is stored in local
database in order to be communicated to other entities. Concretely, this concerns
the entities described in Section 11.5. This functionality is performed by local
(NoSQL) database named mongodb6. The information about a Cloud instance is
useful for example prior deploying application in it. For instance, the CloudBroker
presented in see Section 11.5 requires the status of the instance when selecting
available Clouds.

• IC-GUI: the role of IC-GUI is to provide easy to use graphical user interfaces
to Cloud customers. This enhances the usability and the accessibility of the
ICWorkflow and respectively the Cloud in general. For example handling objects
with command line is arduous for unexperienced users. IC-GUI offers forms for
downloading and uploading objects in the (OpenStack) Cloud.

Some examples describing the use of these components with an OpenStack Cloud
are available in Appendix B.1. It is noteworthy to note that all the features of the
ICWorkflow framework have been exclusively performed on private OpenStack based
Clouds. However, the ICWorkflow is designed to work with different Cloud providers.
Extending the framework to support other Cloud providers such as Amazon (EC2 or
S3) or Microsoft Azure is not complicated.

11.5 Cloud-based Workflow Management with ICNets
and ICWorkflow

In this section another important feature of ICNets is presented. It concerns the
design and the implementation of the system that manages workflows in an Inter-
Cloud environment. An architecture is proposed to describe the entities responsible of
workflow submission, deployment and execution.

The proposed architecture is depicted in Figure. 11.7. The components of the archi-
tecture are: CloudBroker, CloudPersister, CloudRegister, WorkflowGUI and the CloudGate-
way. The components and their roles will be explained gradually the architecture is
described. As mentioned in the introduction (see Chapter 1) there is an emphasis on
process management, (Cloud) service discovery and matching than security or moni-
toring issues. Before going further, an important information about the architecture
needs to be taken into account. Most of the components of the architecture and their
internal behavior (control flow) are modeled by reference nets. These nets execute tasks
only after being instantiated (simulated). The components can communicate with each
other, instantiate other components and transmit variables using synchronous channels.

6https://www.mongodb.org/
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Workflow holders start by modeling their workflows using Renew
7. Modeling a

workflow consists of specifying clearly the control and data flow of the tasks. Consid-
ering the example presented in Section 1.1, the image path as well as the the service
needed by the task (storage or compute) need to be communicated. These concrete
information can be specified either directly in the places as Strings or through the Work-
flowGUI, which provides forms (see Section 10.3.3). Such forms can also be provided
and handled by the Workflow and the WFNet plug-ins. These plug-ins are highlighted
with different color only to indicate that they are not critical for the specification of the
workflow but bring more facility during the specification phase.

The next step is to invoke the CloudBroker with the given parameters. A request
consists to mention the required Cloud service and optionally the name of the Cloud
provider. The role of the CloudBroker is to check for available Cloud providers (and
their actual status), that fit the requirements of workflow tasks. For this purpose, it
invokes the CloudPersister and gets the list of available Cloud providers. This list is
communicated to the workflow holder in order to approve the offer or to reject it. This
mechanism can be provided by the WFNet plug-in especially the Cloud Task Transition
introduced in Chapter 10.

The CloudPersister consists of a central (or distributed) data base for persistence)
that contains useful information about the Cloud providers such as: Id, Name as well
as instance and availability status. These information are obtained by the CloudRegister.
In opposite to other approaches [Buyya et al., 2010], this is the role of the CloudRegister
to communicate with the Cloud providers and request information about their status.

The CloudGateway is an essential component in the architecture. All the commu-
nication with the Cloud providers is performed through this component. Its role is
to provide an unified layer to communicate with different Cloud providers regardless
of their specifications and APIs. Therefore, advantage is taken from current technolo-
gies and techniques to hide complexity of an Inter-Cloud ecosystem. An interface is
provided to support several well-known Cloud providers (Amazon AWS, Openstack,
Windows Azure). The CloudGateway serves as a gateway for both CloudRegister and
CloudBroker. It allows the CloudBroker to check the availability of a specific Cloud
provider and permits to the CloudBroker to perform operations on different Clouds. To
illustrate this, some Cloud-based operations have been performed on a private Cloud
managed by OpenStack (see Section 10.3.3).

Figure. 11.8 shows the Petri net variant of the life-cycle of Cloud-based workflow
and the participating components. The life-cycle covers the submission of the workflow,
the selection of appropriate Cloud providers and the execution of the tasks.

As already mentioned several tasks can be performed by ICNets. For instance task
T4 is responsible of contacting the Cloud provider and get the status of the Cloud
instance. Like in the example presented in Section. 10.3 the process is coded in Java
methods that can be instantiated from the transitions. It is important to notice here
that this model does not reflect the behavior of each component. Although tasks which
are performed by the components is represented by one single transition, the concrete

7
Renew (www.renew.de) is an editor and simulation tool for different kind of Petri nets especially

reference nets.
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Figure 11.7: Cloud-based Workflow Management Architecture

Figure 11.8: Workflow Life-cycle by Petri Nets

behavior is captured by another net model that should triggered from this transition.
This is allowed by using synchronous channels, which permit the instantiation of net
models (see Section 10.3).

11.6 ICWorkflow within the Paose Approach

The architecture presented in Section 11.5 can be designed and implemented following
the Paose approach (see Chapter 6). It means adopting the agent metaphor for devel-
oping Cloud applications and their management. Agents can provide techniques and
methodologies, which are adapted to dynamic behaviors of the Cloud environment.
Functionality such as negotiating user access, automating the resource and service
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discovery, and composition of cloud services can be performed by agents. The ICWork-

flow can intervene at different level during the development process. For instance to
implement agent-internal behavior.

As a proof of concept, some functionality of the ICWorkflow have been integrated
within multi-agent applications. These applications are included in the Mulan/Capa
framework and their development follows the Paose approach. Implemented functions
can intervene at different phases when developing agent-based applications. Concretely,
storage transactions in the Cloud are now possible to use in some steps of the Paose

approach. For example within protocol nets or decision components [Cabac, 2010]. The
use case concerns the PersistenceOntology plug-in from Mulan. This work will be
described in detail in Chapter 13.

11.7 Conclusion

In this chapter the ICWorkflow framework is presented. It is integrated as plug-
in Renew and it provides means to facilitate the interaction with multiple Clouds.
It enables access, deployment and execution of workflows, which are specified by
reference nets. Functionalities of ICWorkflow can be also used to implement Cloud-
based WfMSs. As proof of concept CRUD operations have been implemented. It permits
to store different kind of data in the Cloud. As Cloud provider, a private Cloud based
on the OpenStack framework is made available at the TGI group. Furthermore, the
ICWorkflow can be also used within an agent-based development approach such the
Paose approach.
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Summary

This part presents solutions for the integration between Clouds and workflows. It
argues that the integration necessitates a precise identification of the role of both Cloud
technology and workflow concepts. There are two main topics that are investigated:
Cloud for workflows and workflow concepts for Cloud computing. Thus, the relation
between workflows and Cloud computing can be addressed in different ways. On
the one hand, there is Cloud for workflow which consists of using Cloud resources to
execute complex workflow tasks especially scientific workflows [Hoffa et al., 2008] [Juve
et al., 2009]. Such kind of workflows are more resource-centric and focus on the
computational tasks. On the other hand, designing Cloud ecosystems need structured
and mature workflow concepts and high-level languages to handle issues like managing
complex task and data dependencies.

This part covers both scenarios, mentioned above by providing new concepts and
techniques for modeling (Ctt and ICNets), deployment and execution of Cloud-based
workflows. The proposed approaches are based on a concrete study of the current issues
facing the migration to the Cloud. The approach supports both modeling and execution.
This is due to the fact that a special kind of high level Petri nets are used (reference nets).
They allows to specify workflow models and use Java code as an inscription language.
This feature is a large advantage, because it eliminates the gap between the conception
and implementation phase.

Results obtained here affect directly Part III, since they represent the conceptual as
well as the technical basis for the design and the implementation of the agent-based
architecture introduced in Chapter 12.

The following part will discuss different possibilities to deploy the contribution
obtained in Part II within agent-based approaches. Concerned are RenewGrass plug-in,
Ctt, ICNets and ICWorkflow. Discussion about the usability of agents for distributed
systems in general and for (Inter-) Cloud particularly and evaluation of the prototypes.
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Introduction

This part is one of the central results of the thesis. It shows how agent concepts can be
integrated into development process in order to design and implement a WfMS for the
Cloud. Based on the Renew and the Mulan/Capa framework, the necessary workflow
management functionality is provided for Cloud applications.

The Drop-Engine is the name given to the research discussed in this Part. The devel-
opment of the Drop-Engine is presented as an example for a general process execution
engine that is specifically developed for Cloud environments. What represents a major
contribution of this thesis.

This part is complementary to Part II. It provides extensions to the contributions
already presented. The extensions consist principally of integrating the agent metaphor
to support Cloud-based workflow management systems. Approaches and architectures
are proposed to achieve this goal. Whereas Chapter 12 tackles conceptually the relation
between Cloud computing and agents, Chapter 13 shows how agents can be used with
Ctt, ICNets and RenewGrass and ICWorkflow.
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Chapter 12

Agent-Based (Cloud) Workflow
Management

This chapter investigates the relation between Clouds and agents. The aim is to show
how these two different computing paradigms can benefit from each other. Both concep-
tual and technical basis of the integration have been presented in Part II. The focus here
is more on the advantage that one can benefit from the coupling of Cloud technology
and workflow concepts. It has been demonstrated that Cloud computing provides
workflows with large number of powerful resources while workflow concepts offer
techniques and tools for modeling and deployment of applications in the Cloud. Beside
workflow and Clouds, another aspect of the integration is the integration between work-
flows and agents, which is an important topic. The latter has been already investigated
by Christine Reese [Reese, 2010] and Thomas Wagner [Wagner, 2010,Wagner and Moldt,
2015b]. Thus, the contributions of this thesis are strong candidates to enhance the
above cited works.

12.1 Introduction

As mentioned in the introduction (see Chapter 1) the main objective of the dissertation
is to provide new and adapted concepts, techniques and tools to support agent-based
application development. The following sections give a state-of-the-art introduction to
the relation between agents and Cloud computing and also workflows. The contribution
of this dissertation to enable such an integration is discussed in Chapter 13.

12.2 Agent Paradigm for the (Inter-) Cloud

For this dissertation the relationship of the notions agent and Cloud need to be described.
The most relevant references in this area are [Talia, 2012, Sim, 2012, Aversa et al.,
2010, M. Spata, 2011a, I. Foster, 2004, Jander and Lamersdorf, 2013, Braubach et al.,
2011]. Despite the differences between multi-agent systems and Cloud technology
they can take benefits from each other. While Cloud computing offers a reliable and
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scalable infrastructure for the execution of multi-agent systems especially in terms of
modeling and simulating, agents can be used to handle Service Level Agreement (SLA)
negotiation, Cloud service discovery and composition, etc.

According to [Talia, 2012], some of the important features that agent paradigm can
bring to Cloud technology are intelligence, autonomy and adaptability at many levels
during the application life-cycle and in order to improve Cloud resource and service
management and discovery, SLA negotiation and service composition. In [Aversa et al.,
2010], the notion of Cloud agency is presented. Authors used a mobile agent platform
permitting to dynamically add and configure services on the virtual clusters offered
by the Cloud. Multi-agent systems were also used to construct a Cloud computing
federation mechanism to permit portability and interoperability between different
Grid/Cloud computing platforms (see [M. Spata, 2011a] and [Foster and Kesselman,
2004]).

Much interesting work has been devoted to investigate the possibility to integrate
agent, workflow concepts and Cloud computing. For example, Pandey et al. [Pandey
et al., 2011b] present a high-level architecture of a workflow management system for
developing distributed applications on the Cloud. Key components of the presented
architecture are: A Market-Maker broker and a workflow engine to schedule workflow
tasks to the resources based on the QoS constraints. Liu et al. [Liu et al., 2012] outline
three key issues in the design of Cloud workflow systems: system architecture that
decides how the system components are organized and how they interface with each
other, system functionality that realizes the basic workflow system’s functionality and
manages the Cloud resources, and finally QoS management. In [Liu et al., 2010],
SwinDeW-C: a peer-to-peer workflow management system for Cloud is proposed.

Concerning the Inter-Cloud, Buyya et al. [Buyya et al., 2010] present the notion of
federated Cloud (Inter-Cloud) that facilitates scalable provisioning of services under
variable conditions. In [Grozev and Buyya, 2012b], the authors provide a classification
of Inter-Cloud delivery models, which are federated Cloud and multi-cloud. The EU-
funded RESERVOIR1 project [Rochwerger et al., 2009] is the first initiative intending to
provide open source technology to enable deployment and management of complex
services across different administrative domains. The EU-funded mOSAIC2 project
[Martino et al., 2011] proposes a complementary solution based on software agents
and semantic data processing. The mOSAIC approach is based on a Cloud Agency
gathering client and provider agents in a brokerage process working with service level
agreements. It is used as a Multi-Cloud resource management middle-ware, it plays
the role of run-time environment in the model-driven engineering project named
MODAClouds [Ardagna et al., 2012].

In [Zhang and Zhang, 2009], the Mobile Agent Based Open Cloud Computing
Federation (MAB-
OCCF) is presented, where data and code are transferred from one device to another
via mobile agents. Each mobile agent is executed in a virtual machine called Mobile
Agent Place (MAP), and the mobile agents are able to move between MAPs, and also to

1http://www.reservoir-fp7.eu/
2http://www.mosaic-fp7.eu/
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communicate and negotiate with each other, realizing portability among heterogeneous
Cloud computing service providers. In [Sim, 2012], the concept of agent-based Cloud
computing is introduced. This concept is introduced to aid the development of software
tools for service operations in the Cloud using agent-based cooperative techniques.
WADE (Workflow and Agent Development Environment) [Caire et al., 2008] is a domain
independent platform built on top of JADE3, it allows to develop distributed and
decentralized applications based on the agent paradigm and the workflow metaphor.

12.3 Agents as a Workflow Management Infrastructure

In this section the objective is to give an overview about the contribution of this work
for Cloud-based workflow management. The approach is based on several concepts,
techniques and tools. An architecture is proposed and described to provide more clarity
on the objectives. Before that, some important related work, which is related to the
approach is outlined.

12.3.1 The Architecture

The architecture is depicted in Figure. 12.1. It includes three basic layers from top to
bottom:

• The User applications layer (UL): permits both managing users (access to the system)
and monitoring deployed workflows,

• The Middleware layer (ML): composed mainly of the workflow engine as well as
the task dispatcher module (see step 4).

• The Resource layer (Cloud infrastructure) (RL): This layer represents the resources
used to excute the workflow tasks. They can be either compute or storage services.
This depends on the workflow requirements.

3http://jade.tilab.com/
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Figure 12.1: Workflow Management for the Inter-Cloud (From [Bendoukha et al., 2013])

Note that in this section the focus is on the system architecture, leaving most of
Cloud management services (pricing, accounting and virtualization) and other func-
tional modules aside. As shown in Figure. 12.1, managing workflows can be broken
down into a series of steps and carried out by several components. These steps are as
follows:

1. Access the user application provided by software agents. These agents provide
some kind of (graphical) interface for a user to work with. Any authentication
authority is also enforced at this point.

2. Model the workflow using the provided/supported tools. These tools may be
incorporated into the agents or their environment, but it is also possible to use
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external tools for this. The result of this step is a workflow definition in a specific
format supported by the IC-AgWfMS.

3. Deploy the workflow definition to the IC-AgWfMS. This step includes saving
the definition into a storage available to the IC-AgWfMS (e.g. a database or
Cloud service), possibly transforming the definition into an internal format, and
performing any checks on the definition (e.g. file readability, consistency).

4. Begin enacting the workflow. This includes a number of steps in the IC-AgWfMS:

(a) Analyze the requirements of the workflow. The IC-AgWfMS needs to gather
the information about what is needed for the workflow to be completed
(e.g. which resources for task execution, what technical basis)

(b) Check available platforms and retrieve their SLAs (Discovery phase). For this,
the IC-AgWfMS gathers the SLAs from the available platforms. These are
then parsed in order to be compared.

(c) Select the platforms capable of executing the workflow tasks (Match-making
phase). The deciding factor for this is the SLA. The SLA/platform, which is
best suited for the specific requirements of the workflow, is chosen.

(d) Instantiate the workflow and distribute the tasks on the selected platforms.
The workflow definition and any necessary input information are sent to the
selected platform, which handles instantiation and management itself.

5. Execute the workflow. This is done by the resources connected to the selected
platform (Execution phase). Once all tasks4 of the workflow have been successfully
executed it can be finished. The platform then terminates it and informs the
IC-AgWfMS.

6. Notify the original modeler of the successful completion of the workflow.

The central component in the architecture is the IC-AgWfMS because most of the
work is done at this level, it has the ability to analyze the application requirements and
find the best provider that fits these requirements. Of course, applications are in form
of workflows modeled with Petri nets. So the system has to go through the net and list
the Cloud services needed by each transition.

To achieve better Quality of Service (QoS), reliability, and flexibility step (4) plays an
important role in the system. It has the responsibility of facilitating resource matching
and sharing. It involves resource planning and delivery via the use of schedulers and
load balancers (which are out of scope of this thesis). In this approach an SLA-based
mechanism for Cloud service delivery can be used. The advantage of a SLA-based
approach is that it is more transparent to Inter-Cloud clients. The latter have no
control on the provisioned resources. Therefore, there is need of a certain level of trust
between Inter-Cloud clients and the Inter-Cloud providers. As shown in Figure. 12.1, a

4A task is the central concept in workflow modeling. It is a unit of work to be performed on the
Cloud.
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centralized Inter-Cloud administration is shown. It means that the IC-AgWfMS acts as
a central entity to mediate between Inter-Cloud clients and the Inter-Cloud providers.

An Inter-Cloud is clearly a distributed environment composed of multiple heteroge-
neous partners. Collaborating workflow concepts and agent capabilities enhance the
mapping of workflows onto Cloud resources. As stated in [GICTF, 2010], one of the
Inter-Cloud use cases is disaster recovery or large scale failure. In this case, there is an
eminent need to move the execution of the workflow to another Cloud provider. The
idea is to encapsulate the workflow and its related information (specification and data)
into an agent with mobility capabilities to recover the workflow again and execute it on
another platform. This solution can be time-consuming due to the fact that switching
to another Cloud provider must follow all the steps (starting with (4)) described above.

For a better cooperation between implied partners, Cloud platforms are also con-
sidered as agent platforms. Thus, interactions between the Clouds is assured through
agent communication languages like FIPA/ACL.

12.3.2 Workflow/ Agent Integration

An area that is also investigated is the integration of agents and workflows on a concep-
tual level (see [Wagner, 2012,Wagner and Moldt, 2011,Wagner and Moldt, 2015a]). This
work is motivated by the desire to combine the inherent strengths of both the individual
agent and workflow concepts, in order to balance out their weaknesses. Agents will
benefit from the behavioral view provided by workflows, while workflows will gain
support for the structural view associated with agents. The link between these views
will be established through the shared ontology. The resulting benefits include the
transfer of the individual concepts properties to the respective other one. This means
that workflows can exhibit agent properties, like intelligence and mobility, while agents
can make use of workflow aspects, such as task atomicity. The integration efforts though
do not stop at these partial integrations, but combine agents and workflows on every
level to achieve a full integration [Bendoukha et al., 2013].

The full integration offers both agents and workflows on the same abstraction level
for modeling. Practically the integration takes place on the lowest level, which com-
bines the basic agent actions (send message, receive message, internal action) and the
operations of tasks (accept/request workitem, complete activity, abort activity). The
necessary adaption to agent and workflow management cascade throughout the system
architecture. This allows modelers to incorporate and combine any aspects of the two in-
dividual concepts on the different abstraction levels. While the integration efforts are, in
general, decoupled from the current work on Clouds and the IC-AgWfMS, the two areas
of research benefit from one another. The introduction of Cloud services into the inte-
gration offers improved scalability and flexibility, especially for the workflow aspects.
Coupling workflow concepts and agent features will provide solutions to overcome is-
sues related to moving business processes to the Cloud (Inter-Cloud). Generally, agents
improve WfMSs by adding a certain level of intelligence and mobility [Bendoukha et al.,
2013].
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12.4. Conclusion

12.4 Conclusion

This short chapter presents the features that agents can provide to support building
complex application based on Cloud resources. It also provide agent-oriented architec-
ture that cover workflow life-cycle based on Cloud resources. The following chapter
treats the topic with concrete examples. The latter are extensions to the works presented
in Part II.
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Chapter 13

Prototypes

This chapter shows how the results presented previously in Part II are applicable within
agent-oriented approaches. The contributions of this chapter differ from abstract/con-
ceptual to technical. The chapter is an essential outcome of this dissertation since it
shows the concrete usability of Ctt, RenewGrass, ICNets and ICWorkflow in building
agent-based application following the Paose approach.

13.1 Introduction

The essential objective of this dissertation as described in Chapter 1 is to provide tech-
niques and tools for Cloud application developers. The contribution covers specification
as well as deployment and execution of those applications in Cloud-like environments.
If the previous part covered the relation between workflows and Clouds, the current
chapter integrates the agent paradigm as a complementary layer. Chapter 12 already
presented the benefits that can Clouds and agents take from each other. Here it is about
concrete examples of the integration between Clouds and agents. It concerns mainly the
concepts, techniques and tools presented in Part II. Some solutions here are conceptual
and have been not implemented while others are fully functional with a real Cloud
system. In this chapter it is presented how Ctt, ICNets, ICWorkflow and RenewGrass

are deployed following an agent-based approaches and systems. Principally, some
concepts and techniques from the Paose approach such as the Mulan/Capa framework
are used. For instance some functionality of ICNets are integrated with the persistence
ontology from Mulan. Section 13.2 presents a conceptual integration of the Ctt for
agent interactions. Section 13.3 shows a concrete example of the usability of ICNets for
Cloud-based workflow management systems Section 13.4 concerns the RenewGrass

plug-in and its conceptual deployment in Cloud-like environments following agent
concepts.
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13.2 Ctt for Agents

In this section the usability of Ctt within an agent-based approach is introduced. It
concerns the use of Ctt as platform covering the whole business process execution.

13.2.1 The Cloud Task Transition for Agent Interactions

For the correct execution of the (business process) workflow there needs to be a frame.
The aim is to offer a frame which covers the whole business process. To do so, a virtual
platform for each respective business process is provided. On this platform there are
descriptions for business interaction patterns that are necessary to perform a business
process. Business interaction patterns consist of roles that interact. Overall each process
has to conform to the workflow specification which at the most abstract level defined as
an AIP.

In the context of the Paose approach all required participants in the (workflow)
process are agent-like entities acting within the platform. The Figure. 13.2 demonstrates
this where the Petri net for the producer/consumer AIP is modeled. This is just a simple
example to show the way how agent interactions are modeled using Petri nets. Usually
there are several agents (and roles) performing required tasks in a complex process.

While those parts of the AIP that belong to a business process of a certain role are
modeled by an agent protocol net, other parts are modeled in knowledge bases or so
called decision components. All relevant parts that form the whole setting of a specific
business process are combined within a set of different nets. These nets are used as
parameters of the Ctt. Figure. 13.1 shows the principle idea.

Figure 13.1: The Cloud Task Transition in Agent-based Software Development

The implementation of this idea follows the workflow transition concept (see Chap-
ter 10), indicated by the two strong bars at each side of the refined transition.
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Figure 13.2: Reference Net for Producer/Consumer AIP

However, special types of parameters will be used: AIPs, roles and data. The internal
structure in Figure. 13.1 is only a hint about the automatically generated shadow net
instance in Renew. The shadow net is generated to hide the real set of nets that can
really execute the specific business process instance. Here it reflects the separation
into two different threads which are somehow synchronized. In general a set of agents
gets a certain set of nets assigned and executed them. Depending on the availability
of the types and specific data some nets can be typed in advance and some need to be
generated at run-time via reflection mechanisms of Java.

Each role is assigned to the respective agents. The data set is partitioned according
to the roles and the ontology. The agents execute then the assigned AIP fragments
that belong to their assigned role. Cloud transitions as the platform of all these agents
(components) regulate, control and monitor the overall execution of the specific business
process instance.
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13.2.2 Related Work

Efficient inter-organizational business processes require the implication of multiple part-
ner interchange and inter-organizational process management. From a process-oriented
perspective, modeling, analysis, and automated execution of distributed workflows
gain more and more importance. Cloud computing offers a shared infrastructure for
improving business processes. Organizations and their partners can share data and
applications in the Cloud. In [Buijs et al., 2012], the term Shared Business Process Man-
agement Infrastructure (SBPMI) was introduced to support different process variations
through configuration utilizing configurable process models. In [Aversa et al., 2010],
the notion of Cloud agency is presented. Authors use a mobile agent platform permit-
ting to dynamically add and configure services on the virtual clusters offered from the
Cloud. Multi-agent systems have been used to construct a Cloud computing federation
mechanism to permit portability and interoperability between different Grid/Cloud
computing platforms (see [M. Spata, 2011b] and [I. Foster, 2004]).

This work follows the Paose approach that allows the development of multi-agent
applications on the basis of the Mulan/Capa (Multi-Agent Nets, see [Rölke, 2004];
Concurrent Agent Platform Architecture, see [Duvigneau et al., 2003]) framework.
Paose follows a multi-dimensional perspective dividing the whole setting into models
for interactions, roles and ontology. Agents’ interactions are modeled on an abstract
level using AIP (Agent Interaction Protocol Diagrams) [Cabac, 2010]. Agent Interaction
Protocol Diagrams are defined by the FIPA (Foundation for Intelligent Physical Agents)
in the AUML (Agent Unified Modeling Language). The advantage of modeling in AUML
is its intuitive graphical representation of the processes/scenarios. Using high-level
Petri nets for the operational semantics a plug-in is provided to generate reference net
models directly from the AIPs.

13.3 Integration within Agent-based Approach

In this section the usability of the ICNets and ICWorkflow in an agent-based approach
is presented. ICNets already introduced in Chapter 10 allow for the development of
(Inter) Cloud-based workflows and their management with ease. In this chapter only
the first feature of ICNets has been presented. It consists of the specification and the
execution of workflows in an Inter-Cloud environment. CRUD operations have been
implemented based on the introduced concepts.

ICNets and ICWorkflow for PersistentOntology

Here another feature of ICNets is presented and concerns the integration of the agent
flavor. As already mentioned CRUD operations have been implemented in form of Petri
nets-based models (see Chapter 10). This is performed based on the ICWorkflow plug-
in. In order to integrate the current work within an agent-based approach there is no
better then following Paose approach. Paose supports the development of MAS through
the Mulan/Capa. With respect to storage capability Mulan/Capa framework provides
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persistence for ontologies. Ontologies define a common understanding of knowledge-
entities, which they store in a knowledge base. The idea is to provide agent service for
storing, querying, updating and deleting of persistable concepts. This functionality
is performed by two agent roles, which are Depositer and Persister. The Depositer role
is assigned to each agent wishing to use persistence agent. Figure. 13.3 shows a Use-
Case that was used for the coarse design. It illustrates the two roles Depositor and
Persister who take part in the four interactions store, query, update and delete. The
communication between two agents is in form of protocols based on a special Petri net
formalism combining Java and Petri nets under reference semantics Same applies to
the agents internal reasoning, which is carried out in so called decision components
(DCs), also Java reference nets. The access to the database is wrapped by a helper class
which implements the DBHelper interface. Technically, there are two implementations,
db4o1 and recently mongodb2. Hence, this is the where ICNets and ICWorkflow can
intervene. The idea is that rather using local databases mechanisms are implemented to
allow the use a Cloud-based storage service. This allows to perform CRUD operations
in the Cloud. Thus the objective is to investigate how the PersistentOntology can benefit
from ICNets and the ICWorkflow plug-in in Renew. This opens new perspectives for
the development of Cloud-based applications based on the Mulan/Capa framework.
Figure. 13.4 shows the AIP diagram of the interaction store between Depositor and
Persister. The implementations of the interface are used by the Persister Decision
Component (Persister_DC), the agent internal persistence. The agent communicative
persistence interface is represented by the four interactions store, query, update and
delete between Depositor and Persister. The user interface can be provided by the agent
with the Depositor role or by another database access layer. Stored objects can be
viewed at the OpenStack dashboard (see Figure. 13.6). On the right side one can see the
containers and on the right the corresponding objects.

Figure 13.3: Persistent Ontology Use Case

1www.db4o.com
2www.mongodb.org
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Figure 13.4: Store AIP (Figure taken from internal project; authors are L. Cabac and D.
Mosteller)
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Figure 13.5: A Test Net for Storage in the Cloud

Figure 13.6: OpenStack Dashboard

The previous work has been achieved in order to prove the applicability of ICNets

and ICWorkflow within the Mulan/Capa framework. Nevertheless, this work does not
really reflect the real feature that these contributions can offer for complex workflows.
In fact, the role of the current work is to allow scientists to transfer large amount of
data to the Cloud. This can be applicable to the RenewGrass plug-in (see Chapter 8
and Section 13.4). A use case could be the processing of satellite imagery, which are
characterized to be data and compute intensive. There is no difficulty to perform transfer
big amount of data, ICNets handle different types of data. ICNets and ICWorkflow

could be applicable during the AOSE teaching project. During the project, students
work collaboratively to develop agent-based applications following the Paose approach.
Thus as future work, functionality of ICNets or ICWorkflow can be used as means
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to develop Cloud-based application following Paose approach. Agents will have the
ability to interact with the Cloud in order to satisfy the requirements of workflow tasks.

13.4 RenewGrass in the Cloud

RenewGrass has been successfully tested in a local environment. All the required
components are hosted on-premise (Renew, Grass GIS and the data). Nevertheless,
as soon as the number of tasks increases and the size of data become large, there is
computing and storage issues. This is due to insufficient resources on the local site. This
section presents a vision to deploy the current implementation of the RenewGrass tool
onto the Cloud services. First, different possibilities to Cloud-enable an application in
general are shortly illustrated. These possibilities are formulated in form of patterns.
The illustration is based on the work of [Han et al., 2010,Strauch et al., 2013,Anstett
et al., 2009]. They investigate and strive to answer questions like: Where to enact the
processes? Where to execute the activities? and Where to store the data? Thus the
entities taken into account are: (1) the process engine (responsible for the execution
and the monitoring of the activities) (2) the activities that need to be executed by the
workflow and (3) the data. Next, an architecture is proposed to introduce a new pattern
and an appropriate methodology to enable remote execution in the Cloud.

13.4.1 Migration Patterns

As mentioned in Chapter 7 moving an existing application to the Cloud should be
based on a solid strategy. Providing the business management system (or WfMS) or
a part in the Cloud raises a series of concerns about ensuring the security of the data
and the performance of the system. For example, Cloud users could lose control on
their own data in case of a fully Cloud-based solution. Some activities, which are not
compute-intensive can be executed on-premise rather than moving them to the Cloud.
Unfortunately, this transfer can be time and cost-consuming because of the pay-per-use
model and the nature of the workflow tasks.

In the following, the patterns from [Han et al., 2010, Anstett et al., 2009] are shortly
introduced. The first pattern designs the traditional scenario where all the components
of the workflow system are hosted at the user-side (on-premise). The second scenario
represents a case when users already have a workflow engine but the application
contains compute or data-intensive activities, so they are moved to the Cloud for
acquiring more capabilities and better performance. The third case designs a situation,
where the end-users do not have a workflow engine, so they use a Cloud-based workflow
engine, which is provided on-demand. In that case, workflow designers can specify
transfer requirements of activity execution and data storage, for example, sensitive data
and non-compute-intensive activities can be hosted on-premise, and compute-intensive
activities and non-sensitive data can be moved to the Cloud [Han et al., 2010]. The
last scenario presents a situation where all components are hosted in a Cloud and
accessed probably from a Web interface. The advantage is that users do not need to
install and configure any software on the user side. To make an analogy with the
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Figure 13.7: Patterns for Cloud-based Workflow Systems
(Adapted from [Han et al., 2010])

Figure 13.8: A Pattern Designing Multiple Process Engines Integration

elements of the proposed approach, Renew is the process engine, the activities are
the geoprocessing tasks (performed by the Grass services), which are related to the
satellite images (data). The latter (data and Grass GIS) can be either on-premise or
hosted in the Cloud. Based on these elements and the illustration presented above,
Figure. 13.7 presents an overview of the diverse approaches (patterns) to design the
workflow system based on the Cloud technology.

Both [Han et al., 2010] and [Anstett et al., 2009] do not address all possible situations.
For instance, the following situation has been not addressed: the process engine is
available on the user side but due to circumstances (internal failure, not sufficient
compute or storage resources), remote process engines need to be integrated and
remotely invoked. Figure. 13.8 shows approximately how this scenario looks like. The
solution consists on transferring the data and executing the process by another process
engine. This is discussed in the following sections.
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13.4.2 Architecture

Figure. 13.9 shows the architecture to integrate the current implementation into a
Cloud system. While RenewGrass is already implemented and successfully integrated
in Renew, most efforts are dedicated now to move the execution of the geoprocessing
tasks to the Cloud and the provision of an interface to invoke these services directly
from workflow models.

In this work, an agent-based approach is followed, i.e., many components function-
alities are performed by special agents. In summary, the role of each agent used in the
approach is described below.

1. Workflow Holder Agent: The Workflow holder is the entity that specifies the work-
flow and in consequence holds the generated Petri net models. This entity can be
either human or a software component. The specification of the image processing
workflow is performed using RenewGrass, which provides a modeling palette or
downright predefined modeling blocks.

2. Cloud Portal Agent: provides the Workflow Holder Agent a Web portal as a primary
interface to the whole system. It contains two components: Cloud Manager and
Workflow Submission Interface. The latter provides a Web interface to the workflow
holders to upload all necessary files to execute the workflow. This includes the
workflow specification (Renew formats3), input files (images). It also serves
getting notifications from the Cloud Broker Agent about the status of the workflow
or the availability of the Cloud provider. The role of the Cloud Manager is to
control the Cloud instances (start and stop or suspend).

3. Cloud Broker Agent: It is a critical component of the architecture, since it is
responsible of (i) the evaluation and selection of the Cloud providers that fits the
workflow’s requirements (e.g., data volume and computing intensities) and (ii)
mapping the workflow tasks.Both activities require information about the Cloud
provider, which are available and provided by the Cloud Repository Agent.

4. Cloud Repository Agent: The Cloud repository register the information about the
Cloud providers and the state of their services. These information are saved in a
database and are constantly updated, since they are required by the Cloud Bro-
ker Agent. To avoid failure scenarios (repository down, loss of data),distributed
databases can be used, which allows high availability and fault-tolerant persis-
tence.

5. Cloud Provider Agent: The role of this agent is to control the instances and to
manage the execution of the tasks. Regularly, the Cloud providers need to update
their status and send it to the Cloud Repository Agent. The status concerns both
the instance and the services (Grass services).

Concerning the Cloud Broker Agent, the evaluation and the selection of the Cloud
providers are critical processes for the Workflow Holders. In Cloud computing there

3
Renew supports various file formats saving (XML, .rnw, .sns, etc.)
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13.4. RenewGrass in the Cloud

Figure 13.9: The Architecture of the Cloud-based Workflow System

are various factors impacting the Cloud provider evaluation and selection [Haddad,
2011, Lee Badger and Voas, 2011] such as: computational capacity, IT security and
privacy, reliability and trustworthiness, customization degree and flexibility/scalability,
manageability/usability and customer service, geolocations of Cloud infrastructures. In
the current work, brokering factors are limited to the computational capacity and the
customization degree.

13.4.3 Cloud Configuration

Concerning the customization degree, there are some requirements for a successful
deployment onto the Cloud. In general, a common procedure to deploy applications
onto Cloud services consists of these two main steps:

1. set up the environment: this mainly consists of the provision of Cloud instances4

and the configuration the required softwares properly. Essential are the envi-
ronment variables, which differ from the local implementation such as JAVA
configuration for the Web server.

2. deploy the application: it consists of the customization of the Cloud instance with
the appropriate softwares. For this work, Renew and the Grass GIS should be
correctly and properly configured, especially the database and the installation
path.

Furthermore, the Grass commands can be invoked in different ways. Either through
a wrapper like in the original implementation of RenewGrass or provided as Web
services. For the latter, a Web-based approach is followed with respect to the Open
Geospatial Consortium (OGC) Web Processing Service (WPS) interface specification.
Thus the Grass GIS functionalities are provided as Web services instead of desktop

4The Cloud instances should be in priori customized, i.e, they need to have the Grass GIS as back-end,
the WPS server and Renew. It is assumed that the Cloud storage is a service, which is configured by the
Cloud provider itself.
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application. To achieve this, the 52North5 as a WPS server as well as the wps-grass-
bridge6 are good candidates.

13.4.4 Execution Scenario

Considering the proposed architecture and the agent roles described above, a typical
deployment scenario is broken into the following steps:

1. Workflow holders specify their image processing workflows (data and control-
flow) using Petri nets for example the NDVI workflow.

2. They send a request to the Cloud Broker via the Cloud Portal.

3. The Cloud Broker checks for available Cloud providers, which provide geoprocess-
ing tools (Grass GIS). This information is retrieved from the Cloud Repository.

4. The Cloud Broker sends a list to the Workflow Holder (through the Cloud Portal) to
accept or to reject the offer.

5. If the offer is accepted, the Workflow Holder submits the workflow specification
(.rnw + .sns) to the selected Cloud Provider.

6. Launch a customized Cloud instance with Renew and Grass GIS running in the
background.

7. After simulation/execution of the workflow, results (in the prototype it consists of
calculating the NDVI value) are transmitted to the Workflow Holder through the
Cloud Portal.

Rejecting an offer does not conclude the execution process immediately. Since the
list transmitted by the Cloud Broker is updated constantly, it might be that new Cloud
providers are available and fits the requirements. Therefore, from step (3), the process
is iterative until the satisfaction of the Workflow Holder. Regarding step (5) and (6),
Renew supports starting a simulation from the command line. This is possible by using
the command startsimulation (net system) (primary net) [-i]. The parameters to this
command have the following meaning:

• net system: The .sns file.

• primary net: The name of the net, of which a net instance shall be opened when
the simulation starts.

• -i: If you set this optional flag, then the simulation is initialized only, that is, the
primary net instance is opened, but the simulation is not started automatically.

5http://52north.org/
6https://code.google.com/p/wps-grass-bridge/
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13.5. Conclusion

13.5 Conclusion

While Part II addressed exclusively the relation between (Inter) -Cloud computing
and workflow concepts this chapter adds the agent flavor to the whole system. How
agents participate building complex workflows and their management is the question
that is addressed within the previous sections. Following the Paose approach agents
can offer a several advantages in term of process modeling, service composition and
monitoring. The contributions presented here provides concepts and tools for Cloud
developers to achieve tasks in the Cloud. Ctt for agents is a conceptual solution to
encapsulate the whole process within a special transition. The latter takes care of
the good execution of the process. It extends the original idea of Ctt introduced in
Chapter 10. ICNets are described in Chapter 10 as Petri net-based models to enable
interaction with multiple Clouds. Technically based on the ICWorkflow plug-in ICNets

make it easy implementation through modeling of Cloud-based workflows. Moreover,
an approach is proposed to deploy RenewGrass plug-in (see Chapter 8) into the Cloud.
At the end of chapter the whole work is resumed in one concept called the Drop-Engine.
The Drop-Engine is the name given to the all contributions presented in this thesis. It
provides a system to manage processes in general in the Cloud. The management covers
several phases of the life-cycle of a workflow: modeling, implementation, deployment
and execution.
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Summary

This part introduced the concept of Drop-Engine. The Drop-Engine is a vision that
consists of providing techniques and tools for the management of processes in-premise
and on the Cloud. The principle features are workflow specification by Petri nets
(ICNets, RenewGrass), deployment and execution by dedicated and implemented
plug-ins (Chapter 9). Chapter 12 investigated the relation between agents and Clouds.
It shows how Clouds and agents can benefit from each other. Section 12.3 presents an
architecture that describes the process of managing workflows in Inter-Cloud environ-
ments. Chapter 13 explains how the contributions like: the Ctt, ICNets, ICWorkflow

and RenewGrass could be deployed within an agent-based approaches and systems.
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Part IV

Conclusion
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This part summarizes the research work on managing workflows in an (Inter-) Cloud
environment presented in this thesis and outlines the main contributions. Furthermore,
it presents and discusses the open research questions and problems that still to be
investigated and outlines a list of future research works.
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Chapter 14

Summary and Outlook

This thesis addressed Cloud-based workflows from a conceptual and technical view-
point. It was shown that workflow concepts coupled with agent paradigms are suitable
to overcome many challenging obstacles that face distributed application development
like heterogeneity, collaboration and coordination. The proposed approaches covered
the application development life-cycle at different levels. This work provides concepts
and techniques for the modeling of Cloud-based workflows as well as the execution
of tasks in concrete testbeds. In the following, each Chapter is reflected and the ob-
tained results are resumed again and discussed as well as the possibilities for future
extensions/improvements are presented.

14.1 Summary

Chapter 1 provides an introduction to the topic. It describes the motivation behind
the integration of (Inter-) Cloud computing, workflow management and multi-agent
systems. The objectives of the thesis as well as the work road-map are outlined. It
is mentioned that, despite the attractive features that the Cloud technology offers,
much work still has to be devoted to the management, the control of processes and
resources. The outcome of this work is in form of modeling techniques, methods, tools
and architectural design, which support definition, deployment and monitoring of
distributed workflows within Cloud environments.

The thesis is composed of three main parts: Foundations (Part I), workflow man-
agement in the Cloud (Part II) and the Drop-Engine (Part III). In Part I, the basic
concepts, techniques and tools, which are covered by the thesis are discussed. This part
deals with the main topics: SOC (Chapter 2) and Grid/Cloud computing (Chapter 3),
process management and workflows (Chapter 4), workflow modeling (Chapter 5) and
MAS/Paose (Chapter 6). Chapter 2 presents the notion of SOC and its paradigms, to
provide the background of SOA principles, Web services and service composition. The
reason to introduce SOA principles is related to the implementations provided by this
thesis. For instance, ICWorkflow (see Chapter 11) uses Web services in order to read
Cloud Web services. Chapter 3 is about Cloud computing. It answers questions like:
What Cloud computing is? and How can Cloud computing be developed and deployed?
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Existing Cloud standards and formal aspects of Cloud computing are outlined. More-
over, Inter-Cloud Computing is introduced and an overview about grid computing is
given. It does not cover all the concepts but concentrates on the main ones: definitions,
Grid resources and Grid topologies.

Chapter 4 concerns process management and workflows. It starts by defining the
workflow concepts based mainly on the terminology provided by the WfMC: process,
business process, business workflow and scientific workflow. Afterwards, the notion of
workflow management system is tackled. Mainly, the workflow reference model from
the WfMC is described.

Much work of the thesis is devoted to modeling techniques. Therefore, Chapter 5
deals exactly with that topic. It is composed of two main sections. First, an introduction
is given to differentiate between script-like and graph-based workflow description
languages. After that, some existing workflow specification languages are presented
such as BPEL, BPMN and Petri nets. The latter are explained in details to provide the
basic concepts of Petri nets as well as the advanced features of reference nets, which are
the main modeling technique in this thesis.

Chapter 6 provides an overview about agents and multi-agent systems as well as
Mulan/Capa/Paose. It describes the specifications of the Foundation for Intelligent
Physical Agents (FIPA) concerning the agents management (Agent Management System
(AMS), Directory Facilitator (DF) and the Message Transport System (MTS)) and the
FIPA agent communication language (FIPA ACL). Since the Mulan/Capa framework is
used throughout this thesis as the underlying conceptual and technical basis all relevant
parts of the framework are described. Paose as the overall embedding approach its
fundamental contributions are described. This provides the means to address the
improvements made by this thesis. First, the four layers of Mulan are presented namely
the infrastructure, the agent platform, Mulan agents and Mulan protocols. Capa is
also described, which is an extension of the Mulan architecture. The second part of the
chapter concerns the Paose approach and its six steps: Requirements analysis, coarse
design, ontology implementation, role implementation, interaction implementation and
integration. The notion of team organization is presented, which is a central concept of
the Paose approach. Chapter 6 concludes Part I.

Part II covers the main contributions and investigates the integration of workflow
concepts and Clouds. Chapter 7 discusses and presents different scenarios and ap-
proaches concerning moving the execution of processes to the Cloud. Based on the
work of [Anstett et al., 2009,Han et al., 2010,Strauch et al., 2013] questions like: Where
to store the data? Where to execute the activities? and Where to enact processes?
are investigated. Furthermore, different execution scenarios, which are covered by
different implementations are presented. Essentially, RenewGrass is considered as a
use case. In Chapter 8 RenewGrass, a new plug-in developed throughout this thesis
for Renew, is presented. It allows the development of image processing workflows
based on the Grass GIS. The development signifies also modeling of those workflows
mainly based on Petri nets and specifically reference nets. By RenewGrass, Renew
is extended and is now able to support the processing of satellite imagery in terms
of modeling and implementation. Chapter 9 presents techniques and tools for the
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deployment and execution of Petri nets based workflows in remote resources, mainly in
the Cloud. Technically, it concerns essentially the deployment of Renew on multiple
virtual machines and to run processes modeled and implemented by Petri nets. Based
on the insights gained by building the prototypes, it is investigated and explained how
Renew simulations can be supported by Cloud instances. Different mechanisms are
made available to automatically deploy and run Renew processes in the Cloud. The
mechanisms concern the automatic configuration of Cloud instances, the transfer of
processes to the Cloud instance and launching of Renew simulations. Concerning
the infrastructure, a private Cloud has been deployed at the TGI group, based on the
OpenStack framework. Based on the Vagrant tool1 the provision of Cloud instances
by Renew and related developed plug-ins is now possible. Chapter 10 presents two
essential contributions, which are the Cloud Task Transition (Ctt) (see Section 10.2)
and the Inter-Cloud Nets (ICNets) (see Section 10.3). On the one hand, the Ctt is a
concept that consists of providing a new type of Petri net transitions. This kind of
transitions is suitable for Cloud interactions. The idea is that Petri net based processes
are enabled to invoke services provided by the Cloud without being confronted to the
complexity of Cloud APIs. The introduced concepts cover both the conceptual as well
as the technical aspect of building Cloud-based workflows. On the other hand, ICNets

are pre-defined Petri net models that serve to specify Cloud-based processes as well as
the management of Cloud-based workflows. The main objective of ICNets is to provide
a separation between the model’s element (places, transitions and arcs) in order to
efficiently analyze the whole behavior as well as to detect faults quickly in the model.
Chapter 11 presents the ICWorkflow plug-in. The latter is an important contribution
of this dissertation since it represents the technical basis to many presented concepts
and approaches. It provides means for modeling and executing workflow based on
multi Cloud resources. ICWorkflow is composed of different components, which
facilitate the management of the Cloud infrastructure as well as the applications. These
components have several functionalities that cover user management, Cloud instance
administration and most importantly the interoperability among Clouds. In order to
improve the interoperability, ICWorkflow provides a layer that allows deploying and
running processes on multiple Cloud platforms. This has benefit, like avoiding vendor
lock-in or improving the scalability. ICWorkflow is the technical basis of ICNets. Tasks
performed by ICNets or Ctt are implemented by functionality from the ICWorkflow

plug-in. Mostly, these functionalities are added as Java inscriptions over the Petri net
transitions.

Part III presents an extension to the previous contributions. While Part II deals with
the integration between Clouds and workflows, Part III adds a supplementary layer to
integrate agent concepts in the management system. This is in order to bring intelli-
gence, autonomy and better communication in Cloud-like environments. Chapter 12
shows first how Clouds and agents as two computing paradigms can benefit from each
other. A three layer architecture is proposed and described to provide more clarity
on the objectives. Next, in Chapter 13 a concrete example of the integration between

1https://www.vagrantup.com/
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Clouds, workflows and agents are presented. Concretely, it shows how Ctt, ICNets,
ICWorkflow and RenewGrass can be applied and deployed in Cloud environment.

14.2 Future Directions

Different contributions covering workflow modeling, deployment and execution of
workflows in (Inter-) Cloud like environments have been presented. Nevertheless, there
are still open research issues that could be investigated more in order to improve the
current work. In the following some of these issues are outlined.

14.2.1 Validation on Proprietary Cloud Providers

For now, all tests have been performed locally on a single Cloud platform based on
OpenStack. Regarding the validation of the results, current work should be tested on
different Cloud infrastructures. The ICWorkflow plug-in (see Chapter 11) already
provides a supplementary layer to work with multiple Cloud providers. However, some
refinements are required in order to get a fully working Inter-Cloud environment. For
instance, the IC-Administration and IC-Instances need to be adapted to a specific Cloud
provider. Deploying on different Cloud providers has many advantages and permits to
evaluate the real performance of the applications on different platforms. Concretely,
Renew simulations can be performed on multiple Cloud instances from different
providers and can then be evaluated in terms of availability and responsiveness.

14.2.2 Extending the Use Cases and Building Large Applications

The use cases used in this thesis are mostly for testing purpose. This is due to the
type of the Cloud infrastructure deployed at the TGI group. The All-in-one (AIO)
built OpenStack Cloud does not allow for developing complex applications and is not
devoted to production deployments. Applications that handle huge amount of data
or necessitate high computing power require a realistic Cloud environment as can be
provided by Amazon or Windows Azure. Thus, the features provided by ICWorkflow

and RenewGrass can not be fully reflected. The NDVI and EVI prototypes (see Chap-
ter 8) for instance, which are implemented by RenewGrass are considered as proof
of concept only. More complex workflows could be implemented and deployed in
the Cloud. An example of complex (workflow) applications would be the processing
of high-resolution satellite imagery provided by the NASA Mars Exploration Rovers
(MER)2. For this kind of application, a large volume of data needs to be stored and
processed across multiple machines. Hence RenewGrass and ICWorkflow are suit-
able to the development of those complex applications. RenewGrass provides means
for modeling and implementing image processing workflows by Petri nets, whereas
ICWorkflow offers among others mechanisms to configure Cloud instances and run
applications on different Cloud providers.

2https://aws.amazon.com/swf/testimonials/swfnasa/
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14.2. Future Directions

14.2.3 Integration within Paose Approach

Integrating the results presented in this thesis within a concrete agent-based approach
is interesting but also a challenging task. A good opportunity would be to integrate
contributions like ICNets, Ctt, RenewGrass and ICWorkflow directly (in modeling
frameworks) within the Paose approach and use them e.g. in the AOSE teaching project.
The idea is to develop Cloud-based applications following an agent metaphor. A team
of students (developers) work together to implement different kinds of Cloud-based
applications. As an application candidate the architecture proposed in Chapter 13 (Sec-
tion 13.4.2) could be implemented following the Paose approach and and Mulan/Capa
framework. The architecture is composed of different components performing different
roles: Cloud brokering, Cloud storage and image processing. These components can be
considered as agents, which have to communicate with each other in order to achieve
a certain goal. By providing the results from this thesis, the development process of
Cloud-based application is more easier. Students are not obligated to worry about
issues concerning the Cloud infrastructure or the configuration of Cloud instances.

14.2.4 Security and Privacy

Security of Cloud-based applications is a major concern. Cloud customers have fear
to expose their sensitive tasks and the corresponding data. The works in Chapter 8
and Chapter 9 address the issue, but do not provide sufficient means for securing the
data. RenewGrass handles in general satellite imagery, which are sensitive. Additional
mechanisms should be developed in order to ensure the security of the data transfered
to the Cloud. For now, the idea is to exploit the work from Chapter 9, which provides
means to move Renew nets to Cloud instances in order to be simulated/executed.
Unfortunately, the transfer of data is performed separately and not during the creation
of the instance. This means that this activity is left for the user. To overcome this,
an additional layer could be added to manage the security of the data. One solution
is investigated and consists of integrating additional authentication middleware to
NodeJS like PassportJS3.

By the support of Inter-Cloud computing through the solutions presented in this
thesis each participant can encapsulate relevant parts of the application. When interact-
ing with others, complete separation is hardly reachable. The concepts of autonomous
agents is helpful to support the autonomy of local Cloud management systems and
hence the autonomous process management. Nevertheless further improvements with
respect to security and privacy are necessary and possible.

14.2.5 Integration between Agents and Workflows

The extensions for the Petri net modeling technique allow the direct support of Cloud-
based workflow tools. In the forthcoming thesis of Wagner [Wagner, 2016] the tight
integration of agent and workflows concepts are addressed. This will provide a major

3http://passportjs.org/
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improvement for this thesis. The supporting modeling techniques and the tool support
will ease the currently very complex handling of the agent/workflow integration in Inter-
Cloud environments, since it covers especially inter-organizational process management.
At this time it will profit from the results of this thesis by using Cloud technology in
the Paose context.
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Acronyms

Capa Concurrent Agent Platform Architecture. 25

Mulan Multi-Agent Nets. 22

Paose Petri net-based, Agent- and Organization-oriented Software Engineering.
22

Renew Reference Nets Workshop. 22

Rest Representational State Transfer. 37

Amazon EC2 Amazon Elastic Compute Cloud. 61

BPEL Business Process Execution Language. 40

CCUCDG Cloud Computing Use Case Discussion Group. 58

CORBA Common Object Request Broker Architecture. 38

CPU Central Processing Unit. 47

CTT Cloud Task Transition. 135, 175, 183

DE Drop-Engine. 26

DMTF Distributed Management Task Force. 55

FIPA Foundation for Intelligent Physical Agents. 25

HTTP Hypertext Transfer Protocol. 37

IaaS Infrastructure as a Service. 60

ICWPN Inter-Cloud Workflow Petri Nets. 183

MAS Multi-Agent Systems. 22

MIME Multipurpose Internet Mail Extensions. 37
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NIST National Institute of Standards and Technology. 51

PaaS Platform as a Service. 60

PHP Hypertext Preprocessor. 38

QoS Quality of Service. 52

RMI Remote Method Invocation. 38

SaaS Software as a Service. 60

SLA Service Level Agreement. 52

SOAP Simple Object Access Protocol. 36

SOC Service Oriented Computing. 21, 33

SWF Simple Workflow Service. 94

TGI Theoretische Grundlagen der Informatik. 22

UDDI Universal Description, Discovery and Integration. 37

UML Unified Modeling Language. 25

URIs Unified Resource Identifiers. 37

WfMSs Workflow Management Systems. 22

WSDL Web Services Description Language. 37

XML Extensible Markup Language. 35, 36
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Appendix A

INSTALL GRASS 6.4 from SOURCE

Appendix A lists the required steps to compile the Grass GIS (version 6) from source.
Installing from the binaries is not sufficient to use the plug-in properly, this comes from
the fact that the wrapper will not be able to access the bin directory, which contains all
the Grass GIS modules. It also explains how to set up the required variables as well as
how to organize the data in a Grass database.

A.1 Compile and Install

Assumption: the following steps are for Ubuntu systems. First one needs to download
a copy of the source code. For this, svn (a revision control system) needs to be installed.

$ sudo apt−get i n s t a l l svn

After a successful install of svn run:

$ sudo checkout https : / / svn . osgeo . org / grass / grass / branches /
r e l e a s e \\ branch_6_4 g r a s s 6 4 _ r e l e a s e

After downloading the code, it should be compiled. There are many dependencies,
which are necessary for Grass compilation for example: PROJ.4, GEOS and GDAL.

Grass needs to be configured before running (make and make install) by executing
the configure command. This generates a file with all the variables (can/should be
adjusted according to specific needs) that they will be used in the compilation phase.

CFLAGS="−O2 −Wall " LDFLAGS="− s " . / conf igure \
−−enable− l a r g e f i l e =yes \
−−with−nls \
−−with−cxx \
−−with−proj −share=/usr / l o c a l / share / pro j / \
−−with−geos=/usr / lo \\ c a l / bin / geos−conf ig \
−−with− r e a d l i n e \
−−with−python=yes \
−−with−wxwidgets \
−−with−c a i r o \
−−with−opengl− l i b s =/usr / include /GL \
−−with−motif \
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−−with− t c l t k − inc ludes ="/ us \\ r / include / t c l 8 . 5 " \
−−with−ffmpeg=yes −−with−ffmpeg− inc ludes ="/ usr / include / l i
bavcodec / usr / include / l ibavformat / usr / include / l i b s w s c a l e

/ usr / include / l i b a v u t i l " \
−−with− f ree type=yes −−with− freetype − inc ludes ="/ usr / includ
e/ freetype2 /" \
−−with−postgres=yes −−with−postgres − inc ludes ="/ usr / includ
e/ p o s t g re s q l " \
−−with− s q l i t e =yes \
−−with−mysql=yes −−with−mysql− inc ludes ="/ usr / include /mys
ql " \
−−with−odbc=no

After ./configure ends successfully run:

$ make

$ make i n s t a l l

To run Grass (wich is not necessary, since it will be called directly from the nets)
simply use this command grass64.

A.2 Sample Data and Project Structure

Grass GIS has a location struction which needs to be respected. A LOCATION is simply
a set of directories which contains the GRASS data of a project 1 . To create the GRASS
database with sample data:

1. Find a place on your disk where you have write access and that has enough disk
space to hold your spatial data.

2. Create a subdirectory that will hold the general GRASS database
(/data/grassdata or /home/yourlogin/grassdata).

A.3 Set up the Variables

The path of the Grass installation should mentioned as well as the sample data. Other-
wise, Renew can neither call the Grass commands nor to display information about the
images. Therefore, two variables need to be set in the plugin.cfg and more better in the
.renew.properties at the home directory (or in config file in dist directory of Renew) as
follows:

de.renew.renewgrass.gisbase=”PathToGrassRelease”.
de.renew.renewgrass.mapset=“PathTosample data”.
These variables are necessary for the classes ModuleSupporter.java, GrassRun-

ner.java and GrassModuleRunnerWithScript.java. The complete documentation for
RenewGrass can be found on www.paose.net.

1http://grass.osgeo.org/grass64/manuals/helptext.html.
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Appendix B

Integrate JClouds in Renew

The jclouds toolkit is integrated successfully in Renew and provides interfaces to interact
with different cloud providers. Appendix B lists the steps to integrate jclouds in Renew.
The installation is performed using Ant, since it is the building tool used in Renew.
The jclouds is essential for the ICWorkflow plug-in discussed in chapter 11. First, the
structure of the ICWorkflow is presented in order to understand building process.
Next, this appendix explains how to make the jclouds jars recognized by Renew.

B.1 The ICWorkflow Plug-in

The ICWorkflow is a plug-in for Renew. All the operations that require cloud services
are performed through this plug-in. These operations can be storage, compute or cloud
instance management. Figure. B.1 and Figure. B.2 show the structure of the plug-in.

Figure B.1: The Structure of the Workflow Plug-in
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Figure B.2: The Structure of the Source Directory

The lib directory contain the downloaded jclouds jars as well as the mongodb1. These
jars will be copied to the plug-in directory in Renew.

B.2 How to Get the JClouds Jars

The ICWorkflow plug-in needs a lot of dependencies to work. Even if the download of
these dependencies can be in priori configured. In the following, it is explained how
to download/include all the jclouds library. In the Build.xml of the Workflow plug-in
(B.2), there are three important targets:

<?xml vers ion ="1 .0" encoding ="ISO−8859−1" ?>

<p r o j e c t name="ICWorkflow " defau l t =" d i s t " basedir = " . " xmlns : a r t i f a c t ="
urn : maven− a r t i f a c t −ant ">

<t a r g e t name=" d i s t "
depends=" i n i t , compile , j a r , l ib , copytodis t . dir , copytodis t . j a r "
d e s c r i p t i o n =" Builds the ICWorkflow plug− in completely . Prepend ’

clean ’ to build from s c r a t c h . ( de fau l t ) ">
</ target >

1The mongodb is required for NodeJS web application. In this thesis, the mongodb is used to store
the cloud provider status.
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B.2. How to Get the JClouds Jars

<t a r g e t name=" l i b "
depends=" i n i t , computeFilenames "
d e s c r i p t i o n =" copies l i b r a r i e s in to the plugin d i r e c t o r y ." >
<mkdir d i r ="$ { d i r . renew . d i s t }"/ >
<copy t o d i r ="$ { d i r . d i s t . plugin } / l i b ">
< f i l e s e t d i r ="$ { d i r . l i b }" >
<include name = " * * / * . j a r "/>
</ f i l e s e t >
</copy>

</ target >

<!−− Set property value depends on check r e s u l t −−>
<t a r g e t name="check−dir ">

<a v a i l a b l e property ="p" f i l e =" l i b " type =" di r "/>
</ target >

<!−− Create d i r ’ l ib ’ i f doesn ’ t e x i s t −−>
<t a r g e t name=" create − l ib −dir " depends="check−dir " unless ="p">

<echo message=" Create a Directory for the JClouds j a r s "/>
<mkdir d i r =" l i b "/>

</ target >

<t a r g e t name="mongodb" depends=" create − l ib −dir "
d e s c r i p t i o n ="Download the mongodb j a r s and copy them to the / l i b

d i r e c t o r y ">

<get
s r c =" https : / / github . com/downloads/mongodb/mongo− java −dr iver /

mongo−2 . 1 0 . 1 . j a r "
dest =" l i b "/>

</ target >
<t a r g e t name=" jc loud " depends=" initmvn , create − l ib −dir "
d e s c r i p t i o n ="Download a l l the j c l o u d s j a r s and copy them to the / l i b

d i r e c t o r y ">
< a r t i f a c t : dependencies f i l e s e t I d =" j c l o u d s . f i l e s e t " vers ions Id ="

dependency . vers ions ">
<dependency groupId =" org . apache . j c l o u d s " a r t i f a c t I d =" jc louds − a l l "

vers ion = " 1 . 8 . 0 " />
<dependency groupId =" org . apache . j c l o u d s . dr iver " a r t i f a c t I d =" jc louds −

s l f 4 j " vers ion = " 1 . 8 . 0 " />
<dependency groupId ="ch . qos . logback " a r t i f a c t I d =" logback− c l a s s i c "

vers ion = " [ 1 . 0 . 9 , ) " />
<dependency groupId =" org . apache . j c l o u d s . labs " a r t i f a c t I d =" openstack−

s w i f t " vers ion ="1.8.0" >
</dependency>
</ a r t i f a c t : dependencies>
<copy t o d i r =" l i b " verbose =" true ">
< f i l e s e t r e f i d =" j c l o u d s . f i l e s e t "/>
<mapper type =" f l a t t e n " />
</copy>
</ target >
<get s r c =" http : / / search . maven . org / remotecontent ? f i l e p a t h=org / apache /

maven/maven−ant− t a sks / 2 . 1 . 3 / maven−ant−tasks −2 . 1 . 3 . j a r "

263



dest ="maven−ant− t a sks . j a r "/>

</ pro jec t >

• ICWorkflow: compiles the ICWorkflow example.

• jcloud: the role of this target is to download the jars and copy them to the lib
directory of the workflow plug-in.

• lib: copy the downloaded jars to the generated jar in the plug-ins directory.

There is also another target called create-lib-dir, the role of this target is to check
whether the jars already exist or not. There are two situations:

If the ICWorkflow is used for the first time (no jars and no lib directory at all),
compile only with the ICWorkflow target is not enough and leads to many errors. In
this case, the plug-in should be compiled by running ant jcloud and then ant lib.

If the ICWorkflow is already built, there is no need to compile it again with the
jcloud and lib targets. Ant dist is enough.
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Appendix C

Configure VMs and Run Renew with
Vagrant

In this appendix important steps to deploy and run Petri net-based workflows in the
Cloud. There are in general four steps:

1. create custom virtual machine

2. configure log-in credentials

3. upload required nets

4. run simulations

C.1 Configure the instance

With Vagrant, configuration is performed with the Vagrantfile. Configuring the VM is
composed of two requirements are: Renew and Java 1.6. It might be that other software
are required but it depends on the characteristics of the VM.

Figure. C.1 presents the process of creating a customized Vagrant machine. For
creating a Vagrant machine the vagrant tool first needs to be installed as well as the
VirtualBox. For both Vagrant and VirtualBox, the installation is possible on the three
famous operating systems: Linux, Windows and Mac. Next, a configuration file called
Vagrantfile is mandatory to configure a Vagrant machine. It is a Ruby file used to
configure Vagrant and to describe virtual machines required for a project as well as
how to configure and provision these machines. Finally, the guest Vagrant host can
be started using the command vagrant up. Since Renew requires Java 6 or later, this
portion of code shows instructions that should be added in the Vagrantfile.

# I n s t a l l Java 7 for 64 b i t machines
conf ig .vm. provis ion : s h e l l , i n l i n e : ’ wget −−no−check− c e r t i f i c a t e https

: / / githu$

#Download Renew and e x t r a c t the f i l e s
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conf ig .vm. provis ion : s h e l l , i n l i n e : ’ sudo apt−get i n s t a l l unzip && wget
http : $

#Delete the zip of Renew
conf ig .vm. provis ion : s h e l l , i n l i n e : ’ sudo rm renew2 . 4 . 1 base . zip ’

If users want to work with OpenStack, there is another portion of code that needs to
be added. The most important information consist of credentials, image and ssh keys.
The following code shows an example of configuration.

conf ig . ssh . private_key_path = ’~/ . ssh / id_rsa ’

conf ig .vm. provider : openstack do | os |
os . openstack_auth_url = ’ http : / / xxx . xxx . xxx . x :5000/ v2 . 0 / tokens ’
os . username = ’ xxxxxxxxxxxxx ’
os . password = ’ xxxxxxxxxxxxx ’
os . tenant_name = ’ xxxxxxxxxxxxxxx ’
os . f l a v o r = /m1. small /
os . image = /ubuntu14.04−LTS/
os . f l o a t i n g _ i p = ’ xxx . xxx . xxx . xxx ’
os . server_name = ’ RenewCloud ’
os . secur i ty_groups = [ ’ default ’ ]
os . keypair_name = ’ keypair ’

conf ig . ssh . private_key_path = ’~/ . ssh / id_rsa ’

end

Figure C.1: Configuration of Vagrant Machine
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C.2. Run Simulations

C.2 Run Simulations

To run simulation on the created instance there is a special script. In the same directory,
where the Vagrantfile is created, a (NodeJS) Web server is installed. To start the instance
one needs to execute the command npm start. Before starting the simulation the nets
that need to be simulated should copied to the instance. This can be performed by the
following command:

$ scp net net . rnw instance_username@float ing_ip_adress :

There is a file called ssh.txt, which used to configure authentation information.

Host xxx . xxx . xxx . xxx
HostName xxx . xxx . xxx . xxx
User ubuntu
Port 22
UserKnownHostsFile /dev/ nul l
StrictHostKeyChecking no
PasswordAuthentication no
I d e n t i t y F i l e ~/. ssh / id_dsa . pub
I d e n t i t i e s O n l y yes
LogLevel FATAL
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Appendix D

Create a Cloud Environment using
PackStack

This appendix concerns the creation of an all-in-one1 private Cloud environment at the
TGI group. This has been realized by using an open-source utility called PackStack2.
Choosing an All-in-one solution is due to obstacles mentioned in Chapter 11. The
private OpenStack Cloud is useful for “proof-of-concepts!” prototypes implemented
in Chapter 9. The environment is created with CentOS 6.5 as operating system, RDO
Havana and PackStack tool. Some of the steps are similar to those in TryStack (see
Appendix E). The first step is to set set up SSH, because it will be used to access the
Cloud environment.

1. Make RDO repositories available

$ yum i n s t a l l −y http : / / rdo . fedorapeople . org /rdo− r e l e a s e . rpm

2. Install PackStack

$ yum −y i n s t a l l openstack−packstack

3. Generate an answer file for configuration

$ packstack −−gen−answer− f i l e =FILE

4. Run PackStack

$ packstack −−answer− f i l e packstack−answers . t x t

1All-in-one means that one machine is used at the same time as controller, compute and network
node.

2https://wiki.openstack.org/wiki/Packstack
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Welcome to I n s t a l l e r setup u t i l i t y
Packstack changed given value to required value / root / . ssh / id \ _rsa

. pub

I n s t a l l i n g :
Clean Up . . . [ DONE ]
S e t t i n g up ssh keys . . . [ DONE ]
Discovering hosts ’ d e t a i l s . . . [ DONE ]
Adding pre i n s t a l l manifest e n t r i e s . . . [ DONE ]
Adding MySQL manifest e n t r i e s . . . [ DONE ]
Adding QPID manifest e n t r i e s . . . [ DONE ]
Adding Keystone manifest e n t r i e s . . . [ DONE ]
Adding Glance Keystone manifest e n t r i e s . . . [ DONE ]
Adding Glance manifest e n t r i e s . . . [ DONE ]
I n s t a l l i n g dependencies for Cinder . . . [ DONE ]
Adding Cinder Keystone manifest e n t r i e s . . . [ DONE ]
.

5. Post-Install Configuration

(a) Fix Horizon (ALLOWED_HOSTS)

$ sed − i ’/^ALLOWED_HOSTS/ s /=.*/= [ " * " ] / ’ \
/ e t c / openstack−dashboard / l o c a l _ s e t t i n g s

$ s e r v i c e httpd r e s t a r t .

(b) Source admin credentials (for management tasks)

$ . / root / keystonerc_admin

(c) Create disk image

glance image−c r e a t e \
−−copy−from http : / / download . c i r r o s −cloud . net / 0 . 3 . 1 / c i r r o s

−0.3.1−x86_64−disk . img \
−− i s −public true \
−−container −format bare \
−−disk−format qcow2 \
−−name c i r r o s

(d) Create external network

$ neutron net−c r e a t e e x t e r n a l −−router : e x t e r n a l=True
$ neutron subnet−c r e a t e −−disable −dhcp e x t e r n a l 192.168.37.0/24

(e) Create a flavor for testing. This flavor consumes minimal memory and disk
so it is better than the default flavors for testing in constrained environments.

$ nova f lavor −c r e a t e m1. nano auto 128 1 1
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6. Create non-admin users

$ keystone tenant−c r e a t e −−name demo
$ keystone user−c r e a t e −−name demo −−tenant demo −−pass demo

and store the credentials in /root/keystonerc_demo

export OS_USERNAME=demo
export OS_TENANT_NAME=demo
export OS_PASSWORD=demo
export OS_AUTH_URL=http : / / i d e n t i t y \ _IP /v2 . 0 /
export PS1 = ’[\u@\h \W( keystone_demo ) ] \ $ ’
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Appendix E

Configure Instances with TryStack

In this appendix the whole process of creating, configuring and managing an instance
in TryStack is described. It concerns Chapter 9 which address the usability of Cloud
resources for the execution of workflows. It is noteworthy that TryStack is only for
testing the prototypes developed in the mentioned chapter. These steps are essential in
order to make the instances support Renew simulations. All the following is performed
using the dashboard provided by TryStack. Before going further users must be first
registered.

E.1 Create an Internal Network

These are the steps to create an internal network:

1. Go to Network > Networks and then click Create Network.

2. In Network tab, fill Network Name for example internal and then click Next.

3. In Subnet tab,

(a) Fill Network Address with appropriate CIDR, for example
192.168.37.0/24.

(b) Select IP Version with appropriate IP version, in this case IPv4.

(c) Click Next.

4. In Subnet Details tab, fill DNS Name Servers with 8.8.8.8 (Google DNS) and then
click Create.

E.2 Create an Instance

1. Go to Compute > Instances and then click Launch Instance.

2. In Details tab,
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(a) Fill Instance Name, for example Ubuntu 1.

(b) Select Flavor, for example m1.medium.

(c) Fill Instance Count with 1.

(d) Select Instance Boot Source with Boot from Image.

(e) Select Image Name with Ubuntu 14.04 amd64 (243.7 MB) if you want install
Ubuntu 14.04 in your virtual machine.

3. In Access & Security tab,

(a) Click [+] button of Key Pair to import key pair.

(b) In Import Key Pair dialog,

i. Fill Key Pair Name with your machine name (for example the content of
id_rsa.pub in /.ssh).

ii. Fill Public Key with your SSH public key. See description in Import Key
Pair dialog box for more information. If you are using Windows, you can
use Puttygen to generate key pair.

iii. Click Import key pair.

(c) In Security Groups, mark/check default.

4. In Networking tab (In Selected Networks, select network that have been created
in Step 1, for example internal).

5. Click Launch.

E.3 Create a Router

1. Go to Network > Routers and then click Create Router.

2. Fill Router Name for example router1 and then click Create router.

3. Click on your router name link, for example router1, Router Details page.

4. Click Set Gateway button in upper right:

(a) Select External networks with external.

(b) Then OK.

5. Click Add Interface button.

(a) Select Subnet with the network that you have been created in Step 1.

(b) Click Add interface.

6. To see the network topology go to Network > Network Topology.
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E.4. Configure Floating IP Address

E.4 Configure Floating IP Address

1. Go to Compute > Instance.

2. In one of your instances, click More > Associate Floating IP.

3. In IP Address, click Plus [+].

4. Select Pool to external and then click Allocate IP.

5. Click Associate.

6. Now you will get an public IP, e.g. 128.136.179.125, for your instance. Repeat
step 1-5, if you want setup floating IP to other instances.

E.5 Configure Access & Security

1. Go to Compute > Access & Security and then open Security Groups tab.

2. In default row, click Manage Rules.

3. Click Add Rule, choose ALL ICMP rule to enable ping into your instance, and
then click Add.

4. Click Add Rule, choose HTTP rule to open HTTP port (port 80), and then click
Add.

5. Click Add Rule, choose SSH rule to open SSH port (port 22), and then click Add.

6. You can open other ports by creating new rules.

E.6 Access the Instance

To access the instance one should ssh it. All the information resulted from the above
steps are necessary when configuring the instance with Renew and other required
softwares.
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