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Summary 
 

Deciphering the structures of biological macromolecules is essential to understand their 

function in cellular processes and their role in human diseases. Macromolecular X-ray 

crystallography is the most successful and widely used technique for such studies. However, large 

macromolecules and their assemblies usually do not provide crystallographic data at an atomic 

level of detail and the resulting electron density maps are insufficiently informative. This makes 

their automatic interpretation more difficult and less accurate. While methods for the extension of 

fragmented protein models have been developed in the past, more complete models are not 

necessarily more correct. It is therefore imperative to validate crystallographic models not only 

before depositing them to a databank but also during the model-building procedure. 

In this thesis, this issue is addressed at two levels. The main one concerns the development of 

a validation tool that is not only useful at the later stages of the crystallographic experiment but 

also during protein model building. The most commonly used methods for the validation of 

protein backbone conformation are based on the two-dimensional distribution of its dihedral 

angles. Based on the premise that molecular conformation can be defined by the relative position 

of atoms in the three-dimensional space and by the chirality of asymmetric atomic groups, a three-

dimensional space, DipSpace, was developed which allows the description of protein 

stereochemistry and highlights residues in an unusual conformation that may not be detectable 

with other approaches. It was implemented within a tool, DipCheck, which can be used for the 

general validation of protein models but is also used by ARP/wARP during automated protein 

model building. DipCheck evaluates any protein model, pointing to problematic residues and 

providing an overall score of protein backbone quality. Following a modification of the 

ARP/wARP protein model building protocol, the quality of protein models built at a resolution 

between 2.5 and 3.0 Å by ARP/wARP is now improved. 

The second level concerns the study and the implementation of changes to the ARP/wARP 

protocol for protein automated model building at medium-to-low resolution, including the 

geometrisation of identified dipeptide units and the application of density shape descriptors for the 

identification of side-chains, but also the improvement in the automated building of bound 

ligands. In this last case, the inclusion of an energetic term during the ranking of possible ligands 

for a given binding site proved helpful for the validation of already deposited protein-ligand 

complexes and also for the correct identification of the ligand in a given density cluster. 
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Zusammenfassung  
 

Die Kenntnis der Strukturen biologischer Makromoleküle ist von zentraler Bedeutung für das 

Verständnis ihrer Funktion in zellulären Prozessen und ihrer Rolle bei Erkrankungen des 

Menschen. Makromolekulare Röntgenkristallographie ist die erfolgreichste und am weitesten 

verbreitete Technik für solche Studien. Allerdings können insbesondere bei großen 

Makromolekülen und deren Komplexen oft keine hinreichend hoch aufgelösten 

kristallographischen Daten gemessen werden, und die daraus resultierenden 

Elektronendichtekarten sind nicht ausreichend informativ. Dies macht ihre automatische 

Interpretation schwieriger und weniger präzise. Während die in der Vergangenheit entwickelten 

Verfahren zur Erweiterung von fragmentierten Proteinmodellen zwar vermeintlich vollständigere 

Modelle ergeben, sind diese nicht notwendigerweise richtiger. Es ist daher zwingend notwendig, 

kristallographische Modelle nicht nur dann zu validieren, wenn diese in Datenbanken 

veröffentlicht werden, sondern bereits während das Model in die Elektronendichtekarten gebaut 

wird. 

Die vorliegende Arbeit befasst sich mit diesem Problem auf zwei Ebenen. Die erste und 

wichtigere Ebene betrifft die Entwicklung eines Validierungswerkzeuges, das sowohl in den 

späteren Phasen des kristallographischen Experimentes, als auch während der 

Proteinmodellierung nützlich ist. Die am häufigsten verwendete Methode zur Validierung der 

Konformation des Protein-Rückgrats basiert auf der zweidimensionalen Verteilung der 

Torsionswinkel. Unter der Annahme, dass die molekulare Konformation durch die relative 

Position der Atome im dreidimensionalen Raum und die Chiralität von asymmetrischen 

Atomgruppen definiert ist, wurde DipSpace entwickelt. DipSpace ist ein dreidimensionaler Raum, 

der die Beschreibung der Protein-Stereochemie ermöglicht, wobei Aminosäuren in 

ungewöhnlicher Konformation auffallen, welche mit anderen Methoden nicht erkannt werden 

können. Das DipSpace-Konzept wurde als Software-Werkzeug implementiert – genannt 

DipCheck - welches für die allgemeine Validierung von Proteinmodellen verwendet werden kann, 

aber auch von ARP/wARP während der automatisierten Proteinmodellierung aufgerufen wird. 

Durch die entsprechende Anpassung von ARP/wARP, konnte die Qualität von Proteinmodellen 

mit einer Auflösung zwischen 2,5 und 3,0 Å deutlich verbessert werden. 

Die zweite Ebene betrifft die Analyse und die Umsetzung von Änderungen an verschiedenen 

ARP/wARP Protokollen zum automatisierten Modellbau für Proteine bei mittlerer bis niedriger 

Auflösung. Dies schließt die Geometrisierung der identifizierten Dipeptideinheiten, die 

Anwendung von Deskriptoren für die dreidimensionale Form der Dichteverteilung zur 
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Identifizierung von Seitenketten, sowie die Verbesserung der automatisierten Modellierung von 

gebundenen Liganden ein. 

 Für den letzten Fall wurde die Bindungsenergie zwischen Protein und Ligand für die 

Bewertung von möglichen Liganden für eine bestimmte Bindungsstelle als zusätzlicher Term 

eingeführt, was sich als hilfreich für die Validierung bereits bekannter Protein-Ligand-Komplexe 

erwiesen hat aber auch die korrekte Identifizierung eines Liganden in einem Dichte-Cluster 

unterstützt. 
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Chapter 1 

Introduction 

"Almost all aspects of life are engineered at the molecular level, and without understanding 

molecules we can only have a very sketchy understanding of life itself." 

— Francis Crick  

 

Proteins are essential components of life [1]. Over more than 3.5 billion years, they evolved to 

the complex machines observed today [2], with their three-dimensional structure defining their 

function and building up most of the “cell machines” [3]. Their structural characterisation is 

important for understanding the molecular mechanisms that underlie biological function and 

evolution, which can be further used in biotechnology, pharmaceutical industry and medicine. In 

this chapter, the basis of protein three-dimensional structure and the methods to obtain structural 

information are outlined. Special focus is given to macromolecular X–ray crystallography (MX) 

and to the ARP/wARP software project (http://www.arp-warp.org), which provides an automated 

interpretation of experimental electron density maps derived from MX data and, in turn, an 

automated building of macromolecular structures.    

1.1. The Three-Dimensional Structure of Proteins 

Proteins are linear polymers of amino acids (Figure 1a) and, out of several hundred, there 20 

common natural amino acids that are used for their construction [4], [5]. These have a common 

central alpha-carbon atom (Cα), an amino group (-NH2), a carboxyl group (-COOH), and a side-

chain (-R). These four groups are chemically distinct in all amino acids except glycine. Therefore, 

all non-glycine amino acids are chiral molecules that can exist in two different isomeric forms with 

different ‘hands’ (the L- and D-forms; exemplified in Figure 17) [4], [5]. Protein chains are formed 

by consecutive condensation reactions between amino acids (Figure 1a). Within a living cell, this 

process is governed by the ribosome, which has adapted to use only the L-form of the amino acids 

for protein synthesis [6].  

The link between the carboxyl group of one amino acid and the amino group of another, the 

peptide bond, has a partial-double bond nature due to electronic resonance [7]. Therefore, there is 

hardly any rotation around it and can be found in two distinct isomerisation states: cis- or trans- 

(Figure 2). In the trans- form, the two Cα atoms are approximately 3.8 Å apart, while in the cis- 

form they are closer to each other (about 3.0 Å). Due to the close proximity between the groups 
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attached to the Cα atoms (Figure 2b), the cis-form is energetically less favourable than the trans- 

configuration and occurs rarely, mainly preceding a proline [8]–[10]. Therefore, more than 99% of 

the peptide bonds are in the trans-configuration [8], [9], [11]. 

 
FFigure 1 The different levels of protein structure. (a) The basic building blocks of proteins are amino 

acids. To form a protein chain, the amino acids condense with each other by forming a peptide bond. (b) The 

successive sequence of amino acids is the primary structure. (c) The local folding of small stretches forms the 

secondary structure and (c) the global orientation of these secondary structural elements makes the tertiary 

structure. (e) The arrangement of multiple protein polypeptide chains in a multi-subunit complex forms the 

quaternary structure. 

 
Figure 2 The peptide bond. (a) Trans-peptide bond/unit. (b) Cis-peptide bond/unit. 

Since different amino acids have side-chains with different chemical properties, the sequence 

by which they are connected defines the protein’s primary structure (Figure 1b). Geometrically, 

protein polypeptide chains can be represented by a sequence of planes, the peptide units, defined by 

the atoms involved in the formation of the peptide bond (Figure 1b and Figure 2). The interaction 

between main-chain and side-chain atoms allows the polypeptide chain to fold and to form regular 

structures. This makes the protein secondary structure (Figure 1c), the general three-dimensional 

form of local segments of the chain, formed by the establishment of hydrogen bonds between 

amine hydrogen and carbonyl oxygen atoms of adjacent residues in the protein main-chain.  
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There are two main types of secondary structural elements that can be observed in proteins: 

helices (Figure 1c) [7] and β-strands [12]. In the first, the protein main-chain follows a helical path 

(Figure 1c) [7]. The most common are α-helices, with a periodicity of 3.6 residues per turn [7], 

[13]. Variations are denoted as π- (4.1 residues per turn) [14], [15] and 310-helices (3 residues per 

turn) [16]. Only in α-helices the main-chain atoms are ideally packed to provide a stable structure, 

in π- and 310-helices they are packed either too loosely or too tightly. Residues fold into 310-helices 

in about 4% of the cases and typically are found at the N- or C-termini of α-helices [17]. π-Helices 

are rare [18] and usually appear as a result of an insertion of one residue in an α-helix [15]. On the 

other hand, β-Strands form an almost fully extended conformation with the side-chains of adjacent 

residues pointing to opposite directions [12]. They interact with each other in a parallel or an anti-

parallel manner forming a β-sheet, through an extensive hydrogen bond network [12], [19].  

Most protein structures are built up from the combination of secondary structural elements 

connected by loop regions of various lengths and shapes. Examples are the β-hairpins and turns, 

which are often three to five residues long and connect two adjacent anti-parallel secondary 

structural elements [20]. Longer loops are in general long coiled segments without any specific 

hydrogen bonding network [21]. Secondary structural elements arrange themselves in simple 

motifs by packing side-chains from adjacent helices and strands close to each other. Several of 

these motifs may be combined to form a compact three-dimensional structure (the tertiary 

structure; Figure 1d) intimately related to protein function [22]–[25]. Some proteins contain two or 

more polypeptide chains, which can be identical or different, forming a functional multi-subunit 

complex. This arrangement constitutes the fourth level of protein structure, the quaternary 

structure (Figure 1e). The association of several protein chains can serve various proposes: it 

allows the stabilisation of proteins that are not functional alone, the regulation of several protein 

functions as well as building up large complexes, for example virus capsids, transmembrane 

channels, or large macromolecular machines [1].  

The fold space, occupied by all possible protein folds, is vast [24]–[26] and allows the 

classification of proteins into different classes [22], [23]. The sequence space is much larger [27], 

so that different sequences can adopt similar three-dimensional structures. At the same time, there 

are also many sequences for which no structure has yet been determined or correspond to 

disordered proteins [28]–[30].  

1.2. Description of Protein Main-Chain Conformation 

The mathematical description of protein main-chain conformation allows the understanding 

and classification of the overall space occupied by the atoms in the protein backbone, providing 

means for the validation and modelling of protein structures. The first mathematical representation 
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of protein backbone was developed by Linus Pauling in 1951 [7] as a set of well-defined 

interatomic distances and angles. In 1953, Francis Crick [31] derived three equations for the 

computation of the Cartesian coordinates of the Cα atoms of proteins in a coiled-coil structure. Ten 

years later, Ramachandran and colleagues proposed the use of two main-chain torsion angles - φ 

(Ci-1-Ni-Cαi-Ci) and ψ (Ni-Cαi-Ci-Ni+1) [32]. The concept behind the Ramachandran plot and the 

joint use of torsion angles became the basis for the development of further tools for the description 

of protein conformational space (Figure 3). 

 

 
FFigure 3 Representations of the protein polypeptide main-chain. (a) All-atom representation, described by 

the two Ramachandran φ and ψ angles (in red); the ω torsion and τ stretching angles are also shown (in 

green). (b) Cα representation described by one pseudo-torsion and two pseudo-stretching angles (in red). The 

joint distribution of the θ and τ angles was adapted from Kleywegt 1997 [33]. (c) 5-atom (double-plane) 

representation, described by the two Ramachandran-like φd and ψd dihedral angles (in red) and the τd 

stretching angle (in green). The general Ramachandran plot as well as the Ramachandran-like plot were 

calculated for the set of structures used in this thesis, with two different shades of blue representing the 

allowed (lighter) and favoured (darker) regions as defined by Lovell et al. [34]. The proposed nomenclature 

[35] for different Ramachandran regions  are shown.  
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1.2.1. All-Atom Representation and The Ramachandran Angles 

The Ramachandran approach (Figure 3a) is based on the assumption that while there are four 

covalent bonds in the protein main-chain, only two are relevant for its stereochemistry. The 

carbonyl C=O double bond cannot affect the conformation of the chain and the C-N bond can 

define only two different conformers (the cis- and the trans-forms; Figure 2). However, the rotation 

around the single bonds N-Cα and Cα-C changes protein backbone conformation, as described by 

the φ and ψ dihedral angles (Figure 3a). Ramachandran and colleagues explored the energetic 

landscape associated with these rotations and showed that only about one quarter of the φ/ψ space 

is energetically favoured [32]. 

The two-dimensional distribution of these two dihedral angles is denoted the Ramachandran 

plot and is usually divided into several areas: ‘favoured’, ‘allowed’, ‘generously allowed’ and 

‘disallowed’ (Figure 3a). It was originally drawn only for amino acids other than glycine and 

proline: glycine (due to the absence of the side-chain) is much more flexible while proline (due to 

the presence of the heterocyclic ring) is too rigid. Therefore, the favoured stereochemistry of 

glycine and proline differ from that of the other 18 L-amino acids [32]. With the rapid increase of 

protein structures in the Protein Data Bank (PDB) [36] (about 113,000 models as of September 

2016), the details of the Ramachandran plot have been refined, using for example the information 

derived from crystal structures determined at very high resolution [37], and several software 

approaches to compute these dihedral angles have been developed (e.g. Procheck [38] and 

MolProbity [39]). The Ramachandran plot has thus become one of the most important main-chain 

quality indicators for a protein model [34], [37], [40].  

Procheck [38] regions of the Ramachandran plot were developed in 1992 [41] for a set of 

121,870 residues from 463 protein structures based on the calculation of the number of residues in 

blocks (10o×10o areas) of the conformational space. Procheck defines four main regions: the ‘core’ 

region which includes all blocks with more than 100 residues, the ‘allowed’ regions with more than 

eight residues, the ‘generous’ regions expanded out by 20o all around the allowed region, and the 

‘outside’ region as the space left. MolProbity [39] boundaries were defined a decade later by 

Lovell et al. [34] for a set of about 100 000 residues from 500 structures solved at resolution better 

than 1.8 Å. The ‘favoured’ region contains 98% of the data, the ‘allowed’ 99.95% and the 

‘disallowed’ the remaining 0.05%.  

According to the frequency of residues in protein structures with a given φ/ψ combination, 

several structural regions of the Ramachandran plot have been defined. The β-region occupies a 

large fraction of the -φ/+ψ quadrant (Figure 3a) and is divided into two separate zones: the β-area 

(occupied by residues that are found in β-strands) and the PII-regions, occupied by residues that 

form polyproline II spirals, characterised by the absence of hydrogen bonds between the N-H 
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residue of a residue and the C=O group of one of the following residues [35], [42]. From this 

region, two “peninsulas” are observed: the γ-region is relatively low populated but comprises 

residues in γ-turns (which have an Oi-NHi+2 hydrogen bond) [43] while the ζ-region is dominated 

by residues preceding prolines [44]. Right-handed α-helices cluster in a very narrow region around 

(-63,-43), with 310- and π-helices in a close vicinity [35] (Figure 3a). An area close to the α-region 

is referred as the δ-region or the “bridge sector” as it bridges α- and β-regions. It comprises 

residues found in a broad variety of turns and is characterised by an NHi+1→Ni π-interaction and an 

opening up of the bond angle τ (Ni-Cαi-Ci) [44]. At positive φ and extreme ψ (180 and -180) there 

is the ε-region, which is sparely populated mostly by glycines [35] 

In addition to these regions, there are their mirror images, marked by adding a prime (Figure 

3a). Any pair of points on the Ramachandran plot related by a point inversion around (0,0) (i.e, 

(φ,ψ) and (-φ,-ψ)) are mirror-imaged conformations. Given the preference for L-amino acids, 

protein backbone usually prefers negative values of the φ angle (Figure 3a). With the exception of 

the γ’-regions, which is more populated than the γ-region, all of the other mirror-image zones are 

little populated [35]. With the increase of protein structural information in the PDB it became 

possible to relate the protein backbone conformation to the conformation of the side-chains [45], 

[46] and hence to the protein sequence [44], [47]–[49] so that a specific Ramachandran plot can be 

computed for some residue types [35]. For example, residues preceding proline often populate the 

ζ-region while prolines themselves have a preference for the PII and the α-helical regions. Glycines 

can acquire many more conformations, including the ε-regions [35]. 

Although the Ramachandran plot is one of the most important tools for the description and 

validation of protein backbone stereochemistry, it is a simplification of a multi-dimensional 

dependence. For example, the dependence of the φ/ψ angles on the bond angle τ (Ni-Cαi-Ci) 

(Figure 3a) is not accounted for. For an sp3 C atom with a perfectly tetrahedral coordination the 

value of this angle should be 109.5o [37], in proteins it generally ranges from 107.5o to 114.0o [50] 

and averages at about 110o [37]. Similarly, the planarity of the peptide bond can be described by 

the value of the ω angle (Figure 2 and Figure 3). In the trans-configuration, this angle acquires a 

value close to 180o while in the cis-configuration its value is about 0o. However, surveys over 

known protein three-dimensional models and short polypeptides showed that deviations can be up 

to about 6o for the trans-configuration and 20o for the cis-configuration [9], [41], [51]. 

1.2.2. Cα-only Representation  

While the local conformation of Cα atoms in most of the secondary structures found in 

proteins can be described by the Ramachandran dihedral angles, additional descriptors are required 

for secondary structural elements with longer-range interactions (e.g., the β-turns). In 1978, 

Rackovsky and Scheraga [52] introduced the differential-geometrical representation, considering 
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four consecutive Cα atoms as the next level above the φ/ψ representation (Figure 3b), as a four-Cα 

unit is the smallest segment of polypeptide backbone that can be said to be folded [53]. Assuming 

only trans-peptide units (Figure 2a), they suggested the use of two angles to describe the 

conformation of a four-Cα unit (Figure 3b): κ (Cαi+2-Cαi-1-Cαi+1), describing the way in which the 

chain changes its direction, and τ (Cαi-1-Cαi-Cαi+1-Cαi+2), describing the backbone twist [52], [53]  

Other studies suggested the use of three angles [54], [55]:  the defined above pseudo-torsion 

angle τ together with θ1 (Cαi-1-Cαi-Cαi+1) and θ2 (Cαi-Cαi+1-Cαi+2) angles (Figure 3b). The joint 

distribution of these three angles for a set of 83 structures collected from the PDB presents well-

defined regions and shows that only about 30% of the total conformational space is occupied with 

two main peaks corresponding to the helical and the stranded conformations. A number of minor 

peaks represent different types of turns and transitions between the Ramachandran plot regions 

[55]. One advantage of this description is the possibility to describe β-turns, as they are defined as 

a sequence of four consecutive Cα where the distance between Cαi and Cαi+3 is less than 7.0 Å 

[55]. Another application concerns the validation of Cα-only protein models (e.g., from low 

resolution experiments) [33]. 

1.2.3. Other Approaches 

More recently, methods independent of angles have been proposed. Peng et al. [56] suggested 

a three-dimensional approach for the localisation of all backbone atoms from their relative position 

with respect to the Cα atoms. It is based on a miniature observer that travels through the Cα trace 

and “looks around” within a sphere for other atoms composing the main- and the side-chains. This 

sphere shows different clusters corresponding to different secondary structural elements and 

depends only on the Cα coordinates, providing purely geometric and direct visual information on 

the statistically expected all-atom structure in a given protein model [56].  

The method proposed by Penner et al. [57] describes protein main-chain conformation around 

hydrogen bonds, which can be non-local along the backbone. It is based on the spatial rotation 

between hydrogen bonded peptide planes and the descriptor is a three-dimensional vector used to 

derive a position inside a sphere called the rotational space. It describes the geometry of the 

hydrogen bond and can be useful for the annotation of protein secondary and tertiary structure and 

the classification of protein folds [57]. 

1.3. Macromolecular X-Ray Crystallography 

Several methods are available for obtaining spatial information about macromolecules in 

different states, including macromolecular X-ray crystallography – MX, nuclear magnetic 

resonance - NMR, electron microscopy – EM and small angle X-ray scattering – SAXS [58], [59]. 
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MX is the most widely used technique for proteins and protein-ligand interactions as it is capable 

to deliver structural information at an atomic level of detail of macromolecules from a wide range 

of sizes [59] and has provided more than 90% of all entries in the PDB (Figure 4a), 98% of which 

are proteins or protein/nucleic acid complexes. 

 
FFigure 4  PDB statistics since 1994. (a) Annual growth of all structures and those determined by X-ray 

crystallography. (b) Total number and percentage of deposited crystallographic structures at a resolution 

worse than 3.5 Å, per yea. 

X-rays have a very broad spectrum (0.01 to 50 nm) and can be used to resolve atoms. The 

method used for X-ray macromolecular structure determination is based on the interpretation of 

diffraction patterns that are produced when macromolecular crystals are irradiated with the beam 

[58] (Figure 5). X-rays are scattered in several directions by the electrons and the scattered beams 

are recorded on a detector (e.g., photographic films, imaging plates, charge-coupled devices (CCD) 

[60], or direct pixel detectors [61]). The overall shape, symmetry and detailed structure of the 

crystal define the directions of the diffracted beams while their intensities define the mutual 

locations of atoms in the macromolecule [62].  

The ability of crystalline solids to produce patterns from reflected X-rays was first explained 

by William Lawrence Bragg and his father William Henry Bragg 100 years ago [63]. A crystal can 

be seen as many sets of discrete parallel planes separated by a constant distance d (Figure 5b). If 

the reflections of an incident X-ray beam interfere constructively, they produce intense spots at 

specific angles. This occurs when the path length differences of reflected X-ray beams equals to an 

integer multiple of the wavelength, referred as the Bragg’s Law (eq. 1):  

 !" � �# ��� $ (1) 

where λ is the radiation wavelength, θ is the angle between the incident beam and the crystalline 

planes, d is the spacing between the planes and n is any integer. The reflection angle for a 

diffracted beam can be calculated from the distance r between the diffracted spot on the detector 

and the position where the incident beam hits the detector (Figure 5a). From equation 1, an increase 

of the θ angle is equivalent to a decrease of the spacing between the crystal planes (d).  
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FFigure 5 Diffraction of X-rays by a crystal. (a) Relationship between the angle θ and the position of the 

reflection spot on the detector. A is the sample-to-detector distance and r the distance between the spot and 

the beam centre. (b) Representation of a crystal as a set of parallel planes illustrating the Bragg’s law. The 

crystal is in yellow, the incident X-ray beam in red and the diffracted beam in green. The path length 

difference between the waves is coloured in blue. d is the distance between the crystal planes. 

What is measured in the diffraction experiment are the intensities of the waves diffracted from 

the crystal planes at the coordinates of the reciprocal space denoted as hkl, where the amplitude of 

the wave |Fhkl| is proportional to the square root of the diffracted intensity. In a unit cell volume V, 

the electron density ρxyz at location (x,y,z) corresponds to the summation of the amplitudes of the 

structure factors Fhkl and the associated phase angle ahkl in reciprocal space [64] (eq. 2):  

 !"#$ �
�
% &ℎ'( ��� �) ℎ" � '# � ($ � *ℎ'(

('ℎ

 (2) 

The electron density in real space and the diffraction pattern in the reciprocal space are then related 

through a three-dimensional Fourier Transform. While |Fhkl| can be derived from the intensity of 

the diffraction spot, the phase cannot be obtained directly. This is known as the phase problem and 

presents a significant challenge in structure determination [65].  To obtain an electron density map, 

one needs to recover the phase information, as discussed in the next section. The obtained 

crystallographic models are the interpretation of the time- and space-averages of the electron 

density over the whole crystal [59].  

The minimum distance to resolve two point atoms in three-dimensional electron density maps, 

the resolution limit of the data DL, relates to dmin by a factor of ~0.9 (eq. 3) [66]:

 +, � �����-./0� (3) 

Therefore, the higher the angle θ, the smaller the minimum distance and the higher the resolution 

limit. The effective resolution of the data is a measure of the extent, quality and completeness of 

the X-ray diffraction data. In MX, peaks of density are also affected by thermal motion and 

disorder and, therefore, the effective resolution can be lower than the estimate obtained with 

equation 3 [67]. 

The first globular protein structure obtained using MX was that of sperm whale myoglobin at 

5.0 Å resolution by John Kendrew and colleagues in 1958 [68], [69]. Since then, the number of 
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protein crystal structures has been increasing exponentially, from 10 known structures in 1973 to 

102 166 in September 2016 (Figure 4a). This is a result of the emerging sophisticated techniques 

developed over the last 20-30 years: robotics, advanced sample handling as well as synchrotron 

beamlines. Coupled with the continuously improved software for data interpretation, modelling and 

validation, MX makes it nowadays possible to acquire data for cases where no structural 

information could have been obtained before [58], [59], [62]. 

1.3.1. The Crystallographic Experiment and Map Calculation 

A macromolecular crystallographic experiment starts in the wet-lab, by the overexpression 

and purification of a sufficient amount of the target macromolecule (Figure 6). The next step is the 

identification of conditions in which crystals diffracting to a resolution sufficient to answer the 

scientific question posed are formed. Although the parameters governing the process of protein 

crystallisation are now better understood, it is still impossible to predict the conditions under which 

a particular protein will crystallise [59], [70]. These steps are labour-intensive and time-consuming 

and can take months [59]. After a well-diffracting crystal is obtained, it is irradiated with a beam of 

X-rays and rotated in order to obtain a set of diffraction patterns. Initially, X-rays were generated in 

various types of vacuum tubes, where highly accelerated electrons bombarded anode targets made 

of metals, leading to the emission of characteristic X-rays with wavelengths dependent on the 

anode material [70]. In mid-70s, these tubes were superseded by synchrotron radiation, which 

increased the attainable fluxes of X-rays by many orders of magnitude and allowed the selection of 

any wavelength in the range within 0.5 - 3.0 Å [70]. 

 
FFigure 6 General workflow of a macromolecular crystallography experiment.  

Data processing leads from diffraction patterns to a set of structure factors and comprises three 

main steps. The first is indexing, where the crystal geometry and its orientation is determined, 

allowing the spots in the diffraction pattern to be assigned Miller Indices (h,k,l). The second is the 
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integration of the data, where the intensities of the diffracted reflections, I, are determined. Finally, 

the intensities of the same reflections measured at different images are combined into one scaled 

set, from which structure factor amplitudes and their associated standard deviations, σ(F), are 

derived.  

In order to calculate the electron density [64] one needs to obtain the missing phase 

information. The approaches include direct methods, isomorphous replacement (IR), multiple and 

single anomalous dispersion (MAD and SAD) and molecular replacement (MR) [71]. Direct 

methods allow the ab initio determination of phase information from the measured amplitudes 

alone. They are based on phase relationships between the normalised structure factors, implying 

that once the phases of some reflections are known, or can be given a variety of starting values, the 

phases of other reflections can be determined [65].  Their application is limited by the model’s size 

and the data’s resolution, being suited for smaller systems than for macromolecules [64]. IR, MAD 

and SAD use the positions of a few (heavy) atoms to derive the initial phase information. IR 

exploits additional data collected from the same structure but with one or a few electron-rich atoms 

added. These give rise to measurable intensity changes, which are then used to compute the 

positions of these heavy atoms [72]. In MAD and SAD the signal of anomalously scattering atoms 

present in the macromolecules (e.g., sulphur and phosphorous) or added to them (halides or heavy 

atoms) is used to derive their positions [73], [74]. 

MR is an alternative to the experimental methods [75]. Here, the approximate phase 

information is obtained from a homologous macromolecule, or its fragment, oriented and 

positioned so that its calculated structure factors fit the observed data. The initial phase estimates 

are taken from these calculated structure factors. With the increase of the number of protein 

structures deposited in the PDB, MR has become one of the most used phasing techniques [76]. A 

number of programs and pipelines have been developed that allow obtaining a starting model and 

the calculation of an initial electron density map. These use different types of models, ranging from 

the complete models taken from the PDB to small decoys obtained by homology or ab initio 

modelling. Example software approaches include AMoRe [77], MOLREP [78], Phaser [79], 

MrBUMP [80], BALBES [81], AMPLE [82] and ARCIMBOLDO [83], [84]. 

Typically the experimentally determined phases are insufficiently accurate to give a fully 

interpretable electron density map and further phase improvement is needed. Phases can be 

improved by density modification, including solvent flattening, histogram matching and non-

crystallographic symmetry averaging [65], [85]–[87]. It is often realised in an iterative manner, 

involving back-transformation of the modified electron-density map to produce modified phases, 

their recombination with the experimental phases and calculation of a new map for the next round 

of density modification. This continues until convergence [65]. 
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1.3.2. Map Interpretation and Model Building 

The ultimate result of a macromolecular X-ray crystallography experiment is the electron 

density map and it is its interpretation that allows the building of the macromolecular model 

(Figure 6) [62], [70]. The electron density is interpreted in terms of atoms and bonds based on the a 

priori knowledge of the chemical nature of the molecule. As the full protein main chain can be 

determined to a high degree of accuracy by the positions of the Cα atoms alone [88] and side-chain 

placement is dependent on the main chain, protein model building is often seen as a problem of 

locating the Cα positions, a pattern recognition problem that becomes more difficult with the 

decrease in the information that can be deduced from the electron density map.  

In the early years of MX, crystallographers printed slices of electron density maps onto 

plexiglass sheets, which were glued to wooden frames and stacked in order to build a three-

dimensional representation of sections of the density. Brass or balsa wood were then used to build 

models that followed the main-chain path [68], [89]. Forests of rods were used in the 1960s to build 

the models of myoglobin [90] and haemoglobin [91], where coloured clips attached to more than 

1,000 vertical 2 meters-long rods marked the electron density and guided the model building. 

Around the same time, Frederic Richards invented the Richard’s box [92], used to build the 

medium-resolution model of RNAse S by projecting an electron density map upon the model with 

semi-transparent mirrors, reducing the size of the model and improving its adjustment, movement 

and analysis. With the advances in computer graphics, plexiglass and rulers were replaced by 

molecular graphics programs such as FRODO [93], O [94], XtalView [95] and COOT [96], [97]. 

Although molecular graphics stimulated the use of the manual interpretation of electron density, it 

has been still a labour-intensive and subjective process. The need to speed up macromolecular 

structure determination and to provide some objectivity into the model building process gave rise 

to automated model building procedures (Figure 7). 

Perhaps the first step towards automation was the skeletonisation of the electron density map, 

developed by Jonathan Greer [98] (Figure 7a). It is based on placing points at density peaks and 

connecting them following the density paths, reducing the 3D electron density to a set of connected 

line segments. The obtained skeletal representation can then be used to derive potential Cα 

positions, and QUANTA [99], [100] and CAPRA [101], [102] are examples of programs that use 

this approach. QUANTA identifies regions that correspond to α-helices and β-strands by principal 

component analysis (PCA) of the skeleton representation. The identified segments are used to 

define plausible Cα positions in order to build the protein backbone. CAPRA predicts Cα positions 

by using a range of rotation-invariant electron density numerical features and connects them into 

chains by a heuristic search method. This has been implemented in the TEXTAL software, by 

coupling it with the sequence alignment and real space refinement [103]–[105]. 
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FFigure 7 Methods for the automated interpretation of MX electron density maps. (a) Skeletonisation as 

introduced by Jonathan Greer [98], (b) template convolution, by a search for secondary structural elements, 

as introduced by Kleywegt and Jones [106] and (c) the representation of the electron density map as a set of 

free atoms without any chemical identity, as introduced by Isaacs and Agarwal [107]. 

Another method is based on a search for known small motifs within the electron density using 

template convolution. ESSENS [106] was developed by Kleywegt and Jones in 1997, and used 

penta-alanine templates in an ideal α-helical and β-stranded conformations (Figure 7b). FFFEAR 

[108] follows the same concept by computing the target function for nine-residue long search 

fragments in reciprocal Fourier space to reduce the computation time. This search function is used 

by BUCCANEER [109] to locate possible Cα atoms which are subsequently refined before 

extension into chains. BUCCANEER uses then an exhaustive search over the Ramachandran plot 

and assigns a probability for each amino acid type. The software phenix.resolve [110]–[112], a part 

of the PHENIX project [87], [113], [114], employs a search function similar to FFFEAR. 

The next approach is based on the representation of the electron density as a set of ‘free’ 

atoms without chemical identity (Figure 7c) as introduced by Isaacs and Agarwal in 1985 [107] and 

implemented for protein model building in ARP/wARP [115]–[117] (described in detail in section 

1.4). Depending on data quality, resolution limits and accuracy of the phase estimates, the locations 

of free atoms may be quite close to corresponding positions in the final structure [118]. The free-

atoms set is used to search for peptide planes and dipeptide units using the distance and density 

information and extended to build longer protein backbone fragments, which are subsequently 

decorated with side-chains and connected by short loops.  

The ACMI (Automatic Crystallographic Map Interpreter) method employs probabilistic 

inference to compute a probability distribution of the coordinates of each amino acid given the 

electron density map [119] and constructs all-atom models by stepwise extension of incomplete 

models drawn from this distribution using a statistical method called particle filtering [120]. 

a b c

Skeletonisation Template convolution Free atom representation
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All these methods use related techniques, mimicking the steps a crystallographer would take 

when building the model manually. They differ in the search patterns or density shapes and often 

result in models built to a different extent of completeness for the same crystallographic data. 

Therefore, a model built in an automated way should not be regarded as truly final but better be 

inspected visually together with the electron density.  

1.3.3. Model Refinement 

To produce an accurate model, crystallographic refinement and model rebuilding is carried out 

in an iterative manner, gradually approaching the final model. Refinement can be accomplished in 

real or reciprocal space aiming at an optimisation of the agreement between the model and the 

observed experimental data.  

The agreement in real space can be measured by the real space R-value (RSR) (eq. 4) [121]: 

 !"! � #$%& � #'()'
#$%& � #'()'

� (4) 

It is computed for a group of atoms, where the observed (#$%&) and calculated (#'()') electron 

densities are sampled on a grid that covers them. Currently, several versions of the RSR exist, and 

different programs can output different RSR for the same data. Another measure is the real space 

correlation coefficient (RSCC) (eq. 5) [121]: 

 !"** � ����#$%&� #'()'�
����#$%&� � ����#'()'�

� (5) 

which is a standard linear sample correlation coefficient where var(⋅) is the sample variance and 

cov(⋅) the sample covariance.  

While RSR varies from 0 (‘good’) to 1 (‘bad’), the RSCC is good at values close to 1 and bad 

close to 0. Both represent a quantitative measure of how well a residue (or any other group of 

atoms) fits its local density and sum over all map-grid points that are near this group. While these 

can be used to improve the model built, they also have important application for model validation 

[121]. Calculated for each residue in a protein model, they may highlight problematic regions that 

do not agree with the density. However, by using the information about the electron density, they 

account for both structure factor amplitudes and phases, and are, therefore, affected by the quality 

of both [62]. 

Reciprocal space refinement aims at optimising the agreement between the structure factors 

calculated from the model parameters (Fcalc) and the experimental data (Fobs). It is typically 

followed by monitoring the R-factor (eq. 6): 
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Model parameters that are subject to the optimisation include atomic positional coordinates 

complemented with individual, group or overall atomic displacement parameters (ADPs), overall 

scale factors, bulk solvent, twin fractions, etc. [122]. In cases when the number of parameters 

exceeds the number of experimental observations (usually at lower resolution, as discussed in 1.5) 

additional information is needed in a form of restrains or constrains. These include a priori 

structural knowledge about protein stereochemistry, chirality and planarity of atomic groups, NCS 

between molecular fragments or substructures, etc. [123], [124]. Well-refined macromolecular 

models are expected to have R < 20%, subject to the resolution of the data. When R is above 30%, 

the model should be regarded with a high degree of caution because at least some of its parts may 

be incorrect [62]. 

Despite the use of stereochemical restraints, it is possible to overfit the model. Thus, an 

unbiased factor similar to the R-factor was introduced to control the accuracy of the models, the 

Rfree [125], [126]. It gives a less biased quality index as it is computed from a small subset of 

structure factors, usually 5% of the data, that is not used during refinement and model building 

[125]. Therefore, only changes to the model that lead to a better explanation of the experimental 

data will improve Rfree. It is always higher that the R-factor but should not exceed it by more than 

about 7% [62]. 

The refinement of a macromolecular model is a complex optimisation problem. In many 

refinement methods each atom was described by a coordinate in a 3D space and an atomic 

displacement parameter indicating how far the atom moves around its equilibrium position [127]. 

The use of structural information was introduced later, by rotating the atomic groups around 

rotatable bonds while keeping the stereochemistry fixed [128]. In both cases, least-squares 

procedures in real and reciprocal space were applied to minimise the residual between the observed 

and the calculated data [129], [130]. The need to account for the uncertainty in model parameters 

led to the use of maximum likelihood methods. REFMAC5 [122], [131] is an example of a 

refinement software that efficiently employs this approach to maximise the probability of 

observing the current model given the set of observations, together with the additional knowledge 

of protein stereochemistry.  

Likelihood target functions may differ and depend on the input diffraction data and their 

resolution. The target function (ftotal) has two main components: the one utilising geometry (or prior 

knowledge; fgeom) and a component describing the experimental X-ray data (fx-ray) (eq. 7): 

 ������ � ����� � � � ������ (7) 
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The optimum weight w defining the relative contributions of these two components can be selected 

automatically on-the-fly. From a probabilistic point of view, these functions are described by eq. 8, 

9 and 10: 

 ������ � � ��� ���������� ������ ���  (8) 

 ����� � � ��� ������ ����� � (9) 

 ������ � � ��� ����������� ��������� � (10) 

Different refinement programs differ in their target functions and optimisation techniques and, 

therefore, may lead to different results and values of R-factors. Phenix.refine [124], from the 

PHENIX project, for example, has two target functions, one for the coordinates (Txyz, eq. 11) and 

another for ADPs (Tadp, eq. 12): 

 ���� � �������� ������������� � �������������������� � (11) 

 ���� � �������� ������������� � �������������������� � (12) 

where Texp is the crystallographic term that relates the experimental data to the model structure 

factors and can be a least-squares target, an amplitude-based maximum likelihood target or a 

phased maximum-likelihood target. It can also be defined in real space for the refinement of 

coordinates against the given density map. Txyz_restraints and Tadp_restraints are restraints terms that 

introduce the a priori knowledge. Weights wxcscale, wxc, wc, wxuscale, wxu and wu balance the 

relative contributions of the experimental and restraints terms and are defined automatically [124]. 

Refinement procedures were first used during the final stages of MX structure determination. 

Currently, they are often used to improve partial models and to obtain better electron density maps 

for subsequent rounds of model building. Therefore, model building and refinement programs are 

used hand-in-hand in MX structure solution, as for example in ARP/wARP [117] or 

phenix.autobuild [132].  

1.3.4. Ligand Building and Identification 

Even after multiple successful rounds of protein model building and refinement, some of the 

density may remain uninterpretable due to a manifold of reasons. For example, proteins may 

crystallise in the presence of small molecules or nucleic acids to which they can bind. Small 

molecules can be known (e.g., in drug design projects) or unknown (e.g., buffer components). 

While for protein and nucleic acids the model building procedure depends on the known sequence 

of the macromolecule and the completeness and quality of the data itself, ligand building presents 

several challenges: (1) the universe of compounds that interact with macromolecules is vast, 

accommodating different complexities, shapes and topologies (as of September 2016, there are 
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more than 20 000 ligand entries in the PDB); (2) ligands can be partially disordered; and (3) can 

even ‘cooperate’ with other ligands. Therefore, the automated modelling of ligands has always 

been less advanced than that for proteins. The increasing interest in structure-based drug design has 

promoted an increase in the number of methods and software packages for the automated building 

of small molecules in electron density maps. 

ARP/wARP [133], PHENIX [87], [113], [114] and COOT [96], [134] are examples of 

academic software packages widely used for ligand fitting into MX electron density maps. 

PRIVATEER [135], from the developers of BUCCANEER [109], is specifically designed for the 

fitting and validation of carbohydrate molecules. All of these packages use different methods and 

approaches that maximise the fit of the ligand to a density cluster. ARP/wARP (described in detail 

in section 1.4.3) identifies atomic features in the given density cluster and interprets them in terms 

of connectivity [136] and possible conformational space [137]. PHENIX searches for rigid parts of 

the ligand and then attempts their extension following the density shape [138]. COOT works by 

identifying the density that fits a predefined conformation of the ligand and then adjusts the ligand 

conformation in order to maximize the fit [96].  

These programs also provide tools for the identification of possible binding sites (when a 

ligand is known but the correspondent density cluster is not) and the guessing of possible ligands 

fitting into a known density cluster when the identity of the ligand is unknown. ARP/wARP ligand 

guess and the identification of the binding site are described in detail in section 1.4.3. PHENIX 

methods find all possible binding sites by identifying contiguous regions of density and matching 

them to the most likely ligand (currently, from a database of 200 small molecules) by fitting each 

ligand into the density clusters and choosing the one with the best fit and complementarity to the 

atoms surrounding the binding site [114], [139]. COOT can screen a cocktail of ligands [134]. 

1.3.5. Model Validation 

After building and refinement, the complete macromolecular model may still contain errors. 

These can be a result of incorrect tracing of chain fragments or flexible loops, presence of peptide 

flips, incorrect side-chain conformation, etc. [140], [141]. Therefore, it is important to validate the 

model and to ensure that it makes sense from a biochemical point of view [142], [143]. During 

refinement, only geometrical restraints, derived from the analysis of the X-ray structures of amino 

acids, peptides and small molecules in the Cambridge Structural Database (CSD) [123], [144], are 

used. Neither the conformational attributes of the macromolecule, nor energetic terms are taken 

into account [51].  

The most widely used protein backbone validation method is the Ramachandran plot (Figure 

3a), and several validation tools exist that use it for the identification of conformational problems 
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in protein models. Procheck [38], MolProbity [39] and WHAT_CHECK [145] are three main 

examples. Procheck provides a detailed check of the protein stereochemistry by computing the 

Ramachandran plot for several residue types and a number of plots for side-chain conformational 

parameters, main-chain and side-chain bond lengths and main-chain angles [38]. MolProbity is 

similar to Procheck but also includes clash analysis from interatomic contacts, providing evaluation 

independent of refinement targets [39], [146]. While it can be used as a stand-alone tool, PHENIX 

makes use of MolProbity for the validation of automatically built protein models [147]. 

WHAT_CHECK was developed as part of the WHAT_IF package and provides a series of Z-

scores for several conformational features of proteins models, including packing, Ramachandran 

plot, side-chain rotamers, backbone conformation and bond lengths and angles [145], [148]. For 

example, the Ramachandran appearance Z-score tells how many standard deviations the overall 

distribution of φ/ψ angles for a given protein model deviates from the distribution observed for a 

set of reference structures. To calculate it, WHAT_CHECK divides the Ramachandran plot into 

several 10o×10o bins and counts the number of residues that fall in each bin for a set of protein 

models. The higher the population of the bin, the higher the likelihood of the conformation to be 

correct. This is carried out for a set of 3×20 Ramachandran plots, corresponding to three main 

types of secondary structural elements and to each residue type. A Z-score is then calculated for 

each residue in the protein model and an overall protein model score C calculated as the average of 

all these computed Z-scores. A Z-score is further calculated for C by calculating its deviation from 

the mean <C> calculated for a set of good quality models [149]. 

Concerns have been raised regarding the quality of the protein models deposited in the PDB 

[142], [143]. Validation reports are now generated automatically during the deposition of a 

macromolecular model [40]. The mandatory deposition of experimental data allows the validation 

of the deposited MX models, and such reports can be found for each PDB entry. A further step was 

taken by Robbie Joosten with the PDB_REDO project, making use of the deposited X-ray data to 

automatically re-refine and re-build all models from the PDB according to the current standards 

and software [150], [151]. Such re-refinement shows that the geometric validation scores can be 

improved for many PDB entries [151]. 

More recently, efforts are being put into the improvement and validation of the deposited 

protein-ligand complexes too, as shown by the recent CCP4 study weekend held in January 2016 

fully dedicated to protein-ligand building, refinement and validation. This was raised by the 

identification of several deposited small molecule models with incorrect ligand geometry or lack of 

supporting density [141], [152]–[154]. In MX, ligand validation has always been performed in real 

space by using RSCC or RSR. From a streochemical side, several tools allow the verification of the 

proposed conformation and binding mode [40]. COOT [134] incorporates tools for the 2D 

representation of the binding mode, ligand binding pocket layout and scoring of ligand 
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conformation with the CCDC program Mogul [155]. PHENIX uses MolProbity and the 

complementarity of the ligand atoms with the binding pocket [39], [147]. Ligand geometry can be 

optimised with PRODRG [156], but also compared with another instances of the same ligand in the 

PDB with ValLigURL [157].. 

1.4. The ARP/wARP Project 

ARP/wARP (www.arp-warp.org) has been a collaborative development led by the Lamzin 

group since the early 90’s at the EMBL in Hamburg [118], [133], with the aim of automatically 

build complete and accurate protein [116], [117], [158]–[163], nucleotide [164] and small molecule 

[136], [137], [165], [166] models from the automatic interpretation of an MX electron density map. 

It is based on the idea of combining the interpretation of an electron density map with the iterative 

model rebuilding and refinement of the atomic parameters [115], [118] and on the application of 

the ‘free atom’ concept [107] for the identification of likely atomic positions (Figure 8a). 

 

 
FFigure 8 Main-chain tracing by ARP/wARP. (a) Parameterisation of the electron density as a set of free 

atoms, (b) identification of putative Cα-Cα pairs (in grey), (c) search for potential dipeptide units and (d) 

calculation of the positions of oxygen atoms (in red). After geometrisation, (e) the dipeptide conformation is 

checked against the Ramachandran-like plot. 

1.4.1. Main-chain tracing  

To find the best subset of free atoms that looks like a protein, a list of possible connections is 

generated by evaluating the distances between all free atoms, followed by a peptide-shape density 

analysis. If two free atoms are 3.8 ± 1.0 Å (Figure 8b and Figure 9a) apart and there is reasonable 

density around the peptide plane, these two free atoms are marked as a putative pair of Cα atoms. 

At this stage, putative peptide units are composed of two Cα atoms only and, given the presence of 

supporting density between them, the position of the oxygen atom can be estimated  (Figure 8d). 
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Peptide units that share one Cα atom and have the same direction can be connected to form a 

dipeptide unit (Figure 8c). These are described by five atoms, Cαi-1-Oi-1-Cαi-Oi-Cαi+1, and their 

conformational space is described by the Ramachandran-like plot (Figure 3c and Figure 8e). The 

Cα atoms in putative peptide units sampled by ARP/wARP may have a deviation up to 1.0 Å from 

the standard value of 3.8 Å. Therefore, before evaluating the conformation of resulting dipeptide 

units, they have to be geometrised so that the inter-atomic distances within the peptide plane are 

closer to the expected geometry (Figure 9c) [118]. In one round, three Cαi-Oi-Cαi+1 atoms from an 

ideal peptide are least-squares-superimposed on each of the two peptide units; the resulting two 

positions of the middle Cαi atom are then averaged.   

 
Figure 9 Chain path selection and geometrisation during main-chain tracing. (a) Pairs of atoms separated 

by 3.8 ± 1.0 Å (the ones inside the blue ring) are identified. (b) The connectivity of the built peptides is 

searched; often peptide units can have more than one possible incoming or outgoing connection. (c) Peptide 

units are geometrised so that the peptide plane approximates the geometry of perfect trans-peptide planes. If 

two peptide units share the same Cα atom, this geometrisation will move the common Cα atom to two 

different positions, which coordinates are then averaged.  

Dipeptide units with valid conformations can be connected to build up the polypeptide chains. 

When the longest possible fragments are found, dipeptide units that give rise to steric clashes are 

removed. Iteratively, every next-longest chain is considered until no more chains longer than five 

Cα atoms can be found [118], [159]. If there is sufficient density support, four types of side-chains 

(glycine, alanine, serine and valine) are built. The chain fragments are then geometrised and real-

space fit to the density. Since only a part of the free atoms is recognised as a set of polypeptide 

chains, the result is a ’hybrid model’, incorporating chemical information from the partially built 

model and the free atoms, which continue to interpret the electron density in areas where no model 

is built. The restrained refinement of the chemically assigned parts helps improve the phases, 

allowing the building of more chemically assigned fragments in a better electron density map. 

Therefore, ARP/wARP combines model building and refinement in a scheme of restraints and ‘free 
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atoms’ that are iteratively updated and result in a hybrid model that converges towards the final 

model [117], [159], [160]. 

1.4.2. Side-Chain Building and Loop Fitting 

After main chain tracing, side-chains are built according to the available protein sequence 

[117], [160], [161], [163]. A feature vector is used that represents possible connectivity between 

the free atoms in the vicinity of each Cα (including the atoms of the guessed four types of side-

chains during the main-chain tracing), and then compared to all full-chain connectivity vectors of 

the 20 possible residues. The sequence can be assigned by matching the assigned connectivity 

vectors to a matrix of connectivity vectors known for the 20 proteinogenic amino acids (Figure 

10a) [160], [167]. After the sequence is docked, the best rotamers from a rotamer database are built 

and refined [160].  

 
FFigure 10 Sequence docking using connectivity vectors. (a) A feature vector is used to represent 

possible connectivity between the free atoms in the vicinity of each Cα atom and is compared with the 

connectivity vectors of the 20 residue types. (b) At lower resolution, the atomic positions are not so easy to 

find in the electron density; therefore, the connectivity may be different.  

At the completion of automated model building, some loop regions may still be missing. 

ARP/wARP attempts to build them, up to 14-residues long, in most likely conformation by using 

structural and electron-density information [168]. By comparing the sequence of the fragments to 

the protein sequence, ARP/wARP identifies the fragments to be connected, fits Cα atoms of several 

template penta-peptides to the fragments’ termini and extends the peptide segment iteratively. 

Subsequently, backbone conformations are constructed and the electron density correlation used to 

select the best loop. In the presence of non-crystallographic symmetry (NCS), ARP/wARP detects 

NCS-relations between the modelled fragments and uses them for chain extension [169]. 

1.4.3. Building and Fitting of Bound Ligands 

ARP/wARP also allows the building and identification of ligands and ligand-binding sites, 

helping the crystallographer in several possible scenarios. The simplest case is when both the 

search ligand and the binding site are known. ARP/wARP represents the density region by a mesh 
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of free atoms and tries to match the ligand topology to it [136]. As protein chain tracing, ligand 

fitting in ARP/wARP is organised as a pipeline of core modules for specific sub-tasks. It starts by 

preparing the ligand topology and a sparse grid representation of the binding site density (Figure 

11a and b) and then constructs an ensemble of ligand models in plausible conformation to fit the 

sparsed grid. To address the different ligand sizes and complexities encountered, ARP/wARP uses 

two different ligand construction methods [137].  

 
FFigure 11 Retinoic acid (PDB ID: 1cbs) fitting with ARP/wARP. (a) Density representation as a set 

of free atoms, which (b) make a three-dimensional mesh with some connectivity. (c) The mesh is searched to 

find the mesh points that allow the full extension of the ligand. (d) The identified free atoms are used to fit 

the ligand. (e) The optimisation of ligand geometry and its fit to the density. 

The first, label swapping [136], is an exhaustive graph search where the ligand is expanded on 

the sparse density, preserving its connectivity and not allowing steric clashes, trying every point of 

the sparse grid in turn as a starting point. All possible models are scored by their fit to the density 

and their expected stereochemistry. The models with the best fit and the longest expansion on the 

sparse grid are selected (Figure 11c and d). In parallel, a metropolis search on the ligands’ 

conformational space is performed [137]. Here, the ligand rigid groups are rotated in order to 

maximise the fit to the density, while keeping all the rigid groups intact and penalising clashes. A 

combination of this method with label swapping provides better results than any of them alone 

[137]. Finally, real space refinement is employed to optimise the fit to the density and the ligand 

geometry (Figure 11e). 

If the binding site is not known, ARP/wARP uses the fragmentation-tree method [137], which 

captures the dependence of the volume of the difference density blob on the change of the contour 

level. Contiguous regions of electron density higher than the contouring level represent density 

clusters and upon increase of the density-contouring threshold, the clusters of bound compounds 

reduce in their volume so that the ligand density areas are recognised from characteristic, 

approximately linear stretches [137]. Several clusters can be identified as possible binding sites. In 

order to decide which one is more likely, ARP/wARP uses shape matching to compare an electron 
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density map calculated from the ligand to be fit to each potential density cluster (Figure 12a). This 

is accomplished using seven shape features that provide concise description of an object and the 

highest-scoring match taken for further ligand fitting [137].  

 
FFigure 12 Shape descriptors in (a) retinoic acid (PDB ID: 1cbs) binding site identification and (b) 

ligand guessing. Coloured bars depict the shape descriptor fingerprint calculated for a set of density clusters 

and ligands. Ligands and density clusters with the same shape descriptor fingerprint correspond to each other. 

Another common situation in MX is when a density cluster not explained by the protein model 

is observed but no ligand was expected. In this case, ARP/wARP can propose a possible ligand by 

comparing the density shape to those from a database with an approach similar to the shape 

matching method (Figure 12b) [166]. The shape of the mesh of the known density cluster is 

represented by 22 features, and these are compared to a database of 82 common crystallographic 

ligands in up to 200 conformations. Ligands in the database are then ranked according to their 

match to the density features and the top-ranking ligands in their best conformation superimposed 

on the sparse grid of the density map. Real-space refinement is then performed, and the ligand 

candidates are ranked by their fit to the density. 

1.5. Limiting Factors in Crystallographic Protein Model Building 

Given the fact that MX model building relies on the identification of known patterns in 

electron density maps, the resolution limit and the phase quality are the main limiting factors 

affecting the performance of automated approaches. While the phases can be improved, the 

resolution and the completeness of the experimental diffraction data stay.  

As discussed in section 1.3, the resolution limit refers to the amount of information obtained in 

an MX experiment, which for a given crystal can be characterised by the total number of collected 

unique diffraction intensities. The higher the number of reflections, the more complete the data is, 

also in terms of the resolution (Figure 5a) [170]. Crystallographers struggle to obtain the 
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experimental data to the highest possible resolution, but it is usually the crystal and the nature of 

the protein that defines the resolution limit. In particular, crystals of large proteins and their 

complexes, due to a lower surface-to-volume ratio (and thus less lattice contacts per molecule), 

higher flexibility and reduced number of molecules per crystal volume, tend to diffract to lower 

resolution than smaller proteins [171].  

 

 
FFigure 13 Electron density maps at different resolutions. (a) 1.0, (b) 2.0, (c) 3.0, (d) 4.0 and (e) 5.0. 

The maps were calculated from the final model of the human β-defensin-1 (f, PDB id 2nls). For the first 5 

panels, the protein and Cα trace shown in grey thick lines and the map as transparent solid green-cyan. 

At resolution lower than 3.5 Å, the number of observations available for structure refinement 

and calculation of an electron density is considerably smaller than the number of parameters to 

optimise [172], which requires then the use of additional data in a form of constraints or restraints. 

In addition, reduction of the resolution causes smoothing of density maps and a simultaneous loss 

of detectable features (Figure 13): at 4 Å peptide groups cannot be seen anymore, at 6-7 Å helices 

look as tubes and β-sheets as walls of density with no indication where the individual strands might 

be. It is thus difficult to trace the peptide main chain, taking into account that there are ambiguities 

in the direction of the chain and in the number of residues that make up various sections of the 

structure. The model building methods were historically developed with high-resolution diffraction 

data, and pattern-recognition-based map interpretation can be more intuitively applied at higher 

resolution. Automated protein model building in the medium-to-low resolution regime at best 

generates incomplete, inaccurate and fragmented macromolecular models [172] (Figure 14). 

a b c

d e f



 Chapter 1. Introduction 

25

 
FFigure 14 Conceptual effect of the resolution limit on the quality of protein models built by 

ARP/wARP. (a) Estimation of the model correctness, completeness and fragmentation at different resolution 

limits. (b) Schematic representation of how a low-resolution limit affects each of these quality indicators.  

1.6. Challenges and Demands

There is an urgent need for efforts in the improvement of automated model building at 

medium-to-low resolution. The percentage of such entries in the PDB, although small, is rising, 

with the absolute numbers increasing rapidly (Figure 4b), demonstrating a growing interest and a 

need for structural information even at low levels of detail. A large number of important questions 

that structural biology attempts to address concern large macromolecules and their assemblies, and 

understanding of how their components interact. This does not necessarily require structures at 

near-atomic resolution, although it would clearly be more desirable to obtain them if possible 

[171], [172]. Availability of novel methodology and its robust software implementation for 

obtaining structural information from the low-resolution data will, in turn, increase the percentage 

of low-resolution models deposited in the PDB, and may also provide further uncovering of 

unknown parts of the protein folding space [30]. 

Often impressive results are reported for low-resolution structure determination, although 

seldom can a complete structure be built without user intervention (Figure 14). For example, with 

phenix.autobuild a completeness higher than 80% can be obtained for protein structures with data 

extending to resolution around 2.8 Å [87], dropping to about 60% at a resolution of 3.3 Å. 

BUCCANEER can build up to 87% of the model at resolution up to 3.2 Å and 76% of the model at 

resolution up to 3.6 Å [109], [173]. A similar behaviour has been observed for ARP/wARP [117], 

[133], [160] and the estimates from the ARP/wARP remote model-building web service suggest 

that protein model completeness of more than 90% is observed for resolution up to 2.5 Å, 

decreasing to 75% at 3.0 Å and 65% at 3.5 Å (Figure 14a).  
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Previous developments show that the combination of structural bioinformatics and modern X-

ray data interpretation software is beneficial for the improvement of the completeness of 

automatically built protein models at a resolution worse than 2.5 Å. An example is the 

implementation of the structure extension module (PNSextender) in ARP/wARP, utilising NCS for 

dealing with fragmented protein models at a resolution range of 2.0-3.5 Å [169]. It is based on the 

observation that throughout structure determination of a protein with NCS, the NCS-related parts 

may be differently pronounced in the electron density. This results in the modelling of molecular 

fragments of variable length and accuracy, which can then be used to identify NCS relations and to 

extend other fragmented parts of the model. Another example is the FittOFF module, not yet 

implemented in ARP/wARP, that allows the extension of fragmented models and loop fitting in the 

absence of NCS and sequence docking [174]. Based on the prediction of the protein secondary 

structural content, the method identifies fragments that should be extended and connected by loops. 

Given the increased uncertainty of the atomic positions at this range of resolution, the 

extension of fragmented models is of low value if the fragments are incorrectly built. It is necessary 

to first validate these models, mainly at the main-chain level. Automated protein model building 

softwares can provide that during main-chain tracing by selecting putative main-chain routes that 

show a conformation allowed in the Ramachandran plot. While this approach may be good at high-

resolution, at lower resolution the higher coordinate error can lead the automated tracing 

algorithms selecting chains that do not follow the correct route (Figure 14b). It is important to 

develop tools that allow the automated protein model building to validate the built protein models 

on-the-fly. Such a method would most likely provide an increase of the model quality and 

completeness. Better models at early stages of model building provide useful information for the 

refinement, promoting an improvement of the electron density maps. This, in turn, can improve the 

identification of side-chains and the extension of fragments by the loop-building module. 

1.7. Scope of This Thesis 

The main aim of this thesis project is the development of computational methodologies within 

the ARP/wARP project for the improvement of the correctness and the accuracy of built models 

building at medium-to-low resolution. This was approached from two different sides: (1) research 

and development of a new general method for the validation of protein main-chain conformation 

that accounts for the coordinate error and the full range of degrees of freedom of trans-peptide Cα 

positions (DipCheck) and (2) technological implementation of novel developments into various 

ARP/wARP modules at medium-to-low resolution. 

Although the development of DipCheck was performed within the ARP/wARP project, it can 

be used for general protein validation purposes. The project was triggered by the observation that 

the two Ramachandran-like angles represented by the Ramachandran-like plot are not informative 
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enough, as they lack information about the angular geometry around each Cα in a dipeptide unit 

(Figure 3c). The improvement of ARP/wARP model building protocols at medium-to-low 

resolution was performed in several steps and in several points of the ARP/wARP protein model-

building pipeline. Still in the scope of combined model building and validation, a small leap was 

also taken to the ligand Universe with a different method for the scoring of ligand molecules in 

electron density maps, which can be used for the validation of fitted ligands and as an additional 

scoring function during the fitting and guessing of ligands in density clusters. 
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Chapter 2 

Introduction to Methodology 

"Molecules are the intellectual property of chemists and geometry is the province of 

mathematicians." 

— Tim Havel and Gordon Crippen 

2.  

The development of computational methods to deal with molecular structural data relies on 

mathematical and computational approaches that facilitate the extraction of chemical and 

structural information as a set of unique parameters. From a simplistic point of view, molecules 

can be seen as graphs [175] (Figure 16): the atoms are the vertices of the graph and the bonds are 

the edges. The information about the molecule (e.g., topology, distances) can be stored in a 

matrix, which can be mathematically treated to obtain further information. This chapter presents 

an introduction to the mathematical concepts and tools used in this thesis.  

2.1. Matrices, Eigenvalues and Eigenvectors 

An n×m matrix M is a rectangular array of numbers arranged in n rows and m columns. If the 

number of rows and columns is the same, the matrix is said to be square. The individual items Mij, 

in row i and column j in a matrix are called its elements. If Mii ≠ 0 and Mij = 0, the matrix is called 

diagonal. If Mij = Mji, it is symmetric [176]. Given an n×n square matrix A, a set of scalars 

(eigenvalues) and vectors (eigenvectors) that highlight geometrical properties of the matrix can be 

calculated [177], [178]. A scalar λ is an eigenvalue of A if there is a non-zero column (n×1) vector 

v such that: 

 �� � �� (13) 
v is then the eigenvector of matrix A associated with the eigenvalue λ. The eigenspectrum of the 

matrix A is the set of all its eigenvalues and has the same units as the elements of A. The absolute 

value of the largest eigenvalue is called the spectral radius ρ(A) of the matrix (eq. 14) [178], [179]: 

 � � � ��� �� � �� �� � �� �  (14) 

The decomposition of a matrix A into its eigenvalues and respective eigenvectors is called 

eigen-decomposition of A [178]. From equation 13, it follows that: 

 � � �� � � � (15) 
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Where I is the n×n identity matrix. Equation 15 has a non-zero v solution if and only if the 

determinant of the matrix (A - λI) is zero and, therefore, the eigenvalues of A are the values of λ 

that satisfy equation 16: 

 � � �� � � (16) 

This results in a polynomial function of degree n on the variable λ, called the characteristic 

polynomial of A (eq. 17): 

 
���� � ������ ��� ����� � �� � �� 

� � � �� � � �� � � � �� � � 
(17) 

It has a maximum of n solutions and, therefore, a matrix of order n has a maximum of n different 

eigenvalues. The eigenvectors of A can then be computed with equation 15. 

Geometrically, a matrix performs a linear transformation on vectors. An eigenvector 

corresponding to a real non-zero eigenvalue of a given matrix points in a direction that is re-scaled 

by the matrix (without rotation), with the eigenvalue as the factor of the re-scaling. If the 

eigenvalue is negative, the direction is reversed. For symmetric matrices (as the ones dealt with in 

this thesis), all eigenvalues are real and the respective eigenvectors are orthogonal to each other, 

spanning an n-dimensional real space encompassing all the information within the matrix [178].  

The sum of all diagonal entries of a square matrix A is called the trace and it is proven to be 

equal to the sum of its eigenvalues (eq. 18, 19) [176], [180]: 

 �� � � ��� � ��� ��� ��� � ���
�

���
 (18) 

 �� � � �� � �� ��� �� � ��
�

���
� (19) 

If a square matrix has all its diagonal entries equal to zero, it will have in general both positive 

and negative eigenvalues. If a matrix has at least one zero eigenvalue, it is referred to as singular 

and cannot be inverted [178]. The number of linearly independent rows (or columns) in a matrix is 

called rank and corresponds to the dimensionality of the Euclidean space that represents the 

matrix [181]. For square matrices the number of non-zero eigenvalues is equal to its rank [182]. 

2.2. Principal Component Analysis 

Principal component analysis (PCA) is a statistical procedure that seeks the best summary of a 

dataset (followed by the second best and so on) by looking for new axes that can explain the 

maximum variance in the data [183]–[185]. The goal is to convert a set of correlated variables into 

a set of linearly uncorrelated variables, the principal components (Figure 15). The first principal 
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component corresponds to the direction (vector) in the feature space along which the data vary 

most, with the second principal component giving the second direction, and so on. If the number 

of principal components is lower than the initial dimensionality of the data, the data can be 

transformed into a new coordinate system of uncorrelated variables with a lower number of 

dimensions. PCA can, thus, be used for data dimensionality reduction [185], [186].  

 
FFigure 15 Principal component analysis (PCA) over (a) a multi-dimensional (in this case, two-

dimensional; x,y) data set for dimensionality reduction or (b) over atomic coordinates to identify the main 

axes of inertia Ii of a molecule and compute the radius of gyration Rg. 

2.2.1. Getting a New Set of Axes 

As reviewed by Morris [186], PCA is performed as the eigen-decomposition of the covariance 

matrix C of the data. Assuming a d-dimensional dataset X, with a total of d columns xi, the 

covariance matrix is given as: 

 � �
��� ��� �� � ��� ��� ��

� � �
��� �� � �� � ��� �� � ��

 (20) 

where the covariance Cov(⋅) can be estimated as the sample covariance cov(⋅): 

��� �� � �� � ��� �� � �� � �
� � � ��� � �� ��� � ��

�

���
 (21) 

and !" is the average value over all points, !"#, for the variable xi. It is then a d×d square 

symmetric real matrix with a rank of d and eigenvalues λi and eigenvectors pci [186]: 
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 �� � ���� � � � �� � �� (22) 

 ��� � ������� � ���� ���� (23) 

The eigenvector pc1 with the largest eigenvalue λ1 is the direction with the largest variance of 

the projected data and is, therefore, the first principal component. The eigenvector pc2 with the 

second largest eigenvalue λ2 is the second principal component, and so on [186]. When the 

eigenvalues of the covariance matrix are normalised by their sum, the explained variance of each 

principal component axis is obtained with equation 24: 

 exp. variance ��� � ��
���

���
 (24) 

If it falls below a given threshold (e.g., 0.001; corresponding to 0.1% of the explained variance), 

pcj can be neglected without a significant loss of information [186]. 

The data can be transformed into the new space described by the main principal components by 

rotation of the data [186]. If one places all the eigenvectors as rows in a matrix R, representing a 

d×D rotation matrix with d columns and D rows, the transformed data X’ = [x1’,…, xd’] centred at 

the mean of each column of X can be obtained by applying the following operation (eq. 25):  

 �� � � � � � (25) 

where ! � "��� � "#  is the vector of all means of the elements of X. 

2.2.2. Principal Component Analysis of Molecular Coordinates 

PCA can be applied to the three-dimensional coordinates of a molecule to obtain information 

about conformational changes, protein-ligand interactions, etc. [187]. Let us consider a molecule 

M with n atoms a = [x1, y1, z1] in three-dimensional space (Figure 15b). We thus have a dataset 

made of three columns x, y, z with n lines. The covariance matrix CM of this dataset is (eq. 26): 

 �� �
cov��� �� cov��� �� cov��� ��
cov��� �� cov��� �� cov��� ��
cov��� �� cov��� �� cov��� ��

 (26) 

a 3×3 square symmetric real matrix with a rank 3 for a three-dimensional object. The eigen-

decomposition of CM provides three eigenvectors, representing the three axis of variation of the 

coordinates. They are the three main principal components of the molecule, the three axes of 

inertia Ii, and the eigenvalues γi correspond to their squared lengths.  

Given that the coordinates of the atoms in the molecule have Å units, the entries of CM are in 

Å2. The sum of its eigenvalues equals to the square of the molecule’s radius of gyration Rg [188] 

(eq. 27): 
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 ��� � ��
�

���
 (27) 

The Rg is a simple measure of the overall shape of an object (Figure 15b) and is defined as the 

root-mean-square distance from all its points to the centre of mass (eq. 28): 

 �� �
�
� �� � � �

�

���
 (28) 

Where � are the coordinates of the centre of mass.  

2.3. Distance Geometry and Molecular Conformation 

The conformation of a molecule is defined by the relative position of all its atoms. If we know 

all distances between all atoms in a molecule, their relative positions and, therefore, the molecular 

structure can be derived (Figure 16b). This is the concept behind distance geometry [189] and is in 

widespread use in structural biology and chemistry, including NMR structure solution [189], 

protein structure prediction methods [190] and structure-based drug design [191]. However, 

different enantiomers of chiral molecules will present exactly the same inter-atomic distances.  

Thus, a distance-geometry based approach for the description of molecular conformation is 

always coupled with a chirality measure that is able to easily separate mirror-imaged 

conformations of the same molecule [189]. In the next sections the use of distances to describe 

molecular conformation will be discussed. Common chirality measures will be discussed later.  

2.3.1. From Distances to Features 

Euclidean distance matrices are !�! matrices representing the spacing of a set of n points in 

Euclidean space [189], [192], [193]. If D is a Euclidean distance matrix and the points p1, p2, 

p3,…, pn are defined in m-dimensional space, then the elements of D are given by: 

 � � ����� (29) 

 ��� � �� � ��
� � (30) 

where �  denotes the Euclidean norm on Rm. Therefore, the element aij describes the square of 

the distance between the ith and jth points, D is symmetric (i.e., aij = aji) and for any object in the 3-

dimensional space, the elements of D are given by equation 31: 

 ��� � �� � ��
� � �� � ��

� � �� � ��
�
 (31) 

It is, therefore, a symmetric matrix with null diagonal and ��������  unique entries. 
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FFigure 16 Graph representation of Phe480 from leyshmanolysin (PDB ID 1lml) and the two types of 

matrices used in this thesis. (a) Molecular graph concept, showing the nodes and edges and the adjacency 

matrix computed. (b) Distance geometry concept, highlighting some variable (dashed red) and fixed (green) 

distances and the distance matrix computed.  

For a given molecule, we can consider two types of distances: “fixed” and “variable” (Figure 

16b). Fixed distances are formed between chemically bonded atoms that do not vary significantly 

from a reference value [123]. These may include atoms that are not forming a chemical bond with 

each other. For example, the atoms in the peptide plane are constrained by the planarity of the 

peptide bond and, therefore, their interatomic distances do not vary freely (Figure 2). The same 

applies to atoms in aromatic rings (Figure 16b). Variable distances between atoms are those that 

alter upon conformational changes. 

Any n×n distance matrix (Euclidean or not) has one positive and n-1�negative eigenvalues 

and the rank of any Euclidean distance matrix D in m-dimensional space is given by eq. 32 [194]: 

 ������� � � � � (32) 

Hence, the maximum rank of any n×n Euclidean distance matrix in 3-dimensional space is 5, 

which means that there are 5 or less non-zero eigenvalues. For a non-planar molecule, there are 4 
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negative eigenvalues of matrix D (λ1, λ2, λ3, λ4) and 1 positive eigenvalue (λmax). Given that all 

elements on the diagonal of D are zero, the trace of D is zero and the absolute sum of all 4 

negative eigenvalues of D is equal to the positive eigenvalue (eq. 33): 

 
����� � � �� � ��� � ��� � ��� � ���� 

� �� � � �� � � �� � � �� � ���� 
(33) 

with 

 �� � �� � �� � ��  (34) 

Therefore, at least some of the information contained in the matrix D can be conveniently 

described by the four negative eigenvalues. Euclidean matrices can be calculated for any molecule 

and their eigenvalues and corresponding eigenvectors used as descriptors of molecular geometry 

[166], [190]. 

2.3.2. From Distances to Coordinates 

The computation of the three-dimensional coordinates of each atom in a molecule can be 

preformed by a linear transformation of the Euclidean distance matrix, generating a Gram matrix 

G (eq. 35) [195]. Considering P as the matrix encompassing each p1, p2, p3,…, pn as defined in the 

previous section, with P = [p1, p2, p3,…, pn ], G is expressed as:  

 � � ��� �
���
�

���
�� � �� �

�� � ����� �����
����� �� � �����
����� ����� �� �

� �����
� �����
� �����

� � �
����� ����� �����

� �
� �� �

 (35) 

From expanding the norm in equation 30, the entries aij of the Euclidean distances matrix D can 

also be expressed as [193]: 

 ��� � �� � ��
� �� � �� � �� � � ������ � ��

�
 (36) 

Therefore, the entries gij of the Gram matrix G and the entries aij of the Euclidean distances matrix 

D relate by equation 37: 

 ��� � ���� � ���� � ���� (37) 

The matrix G can be obtained from matrix D by equation 38, assuming that p1 is at the origin 

[193]: 

 � � � �� � � ���� � ����  (38) 

where a1 is the first column of D and 1 the column vector of all ones. 
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Equation 38 allows the computation of the Gram matrix from the distances alone by 

considering that p1 is at the origin, and is the eigen-decomposition of G that allows the 

computation of the point set P. G is an n×n square symmetric matrix with all eigenvalues λi being 

non-negative and λ1, λ2 > … > λn. It has as many non-zero eigenvalues as the dimensionality m of 

the point set P, and: 

 ! �
�� �
� ��

� �
� �

� �
� �

� �
� ��

�� (39) 

where d is the number of non-zero eigenvalues and U is the set of eigenvalues of G [193]. 

2.4. Estimation of Molecular Chirality 

Chirality is a geometrical property of a molecule [1]. Four different substituents bonded to a 

tetrahedral (sp3) carbon can have two different configurations (Figure 17), yielding two 

enantiomers that may have similar chemical properties but differ in physical and biological 

properties. These atoms are classified as asymmetric and, therefore, are referred to as chiral 

centres. They show exactly the same topology and inter-atomic distances (and, consequently, 

distance and Gram matrices) but are non-superimposable, as they are the mirror images of each 

other.  

 
FFigure 17 The two generic enantiomer forms of the asymmetric Cα atom in a general amino acid 

(not applicable to glycine). The priority given to each of the four substituents (1 is higher; 4 is lower), with 

an arrow depicting the direction of priority decrease [196], and the handedness of each enantiomer 

according to each nomenclature system is shown. (+) and (-) depict a clockwise or counter-clockwise 

rotation. 

A molecule with only one chiral centre can have two enantiomers; when two or more (n) are 

present, there can be 2n enantiomers. Enantiomers have nearly identical chemical reactivity but 

differ in a characteristic physical property; they rotate the plane of polarised light in opposite 

directions, while molecules without chiral centres do not [197]. Enantiomers that rotate polarised 

light to the left are referred as levorotatory (L-enantiomer) while those to the right as 
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dextrorotatory (D-enantiomer), with this direction referred as their handedness. Given the 

chemical importance of stereochemistry, Cahn, Ingold and Prelog developed a set of priority rules 

that help on the nomenclature of different enantiomers [196]. Here, to each group attached to a 

chiral centre a priority is assigned, from 1 (highest) to 4 (lowest). If the priority of the groups 

reduces (from 1 to 4) in clockwise order, the configuration is (R), as from the Latin rectus; if in 

counter-clockwise order, the configuration is (S), as from the Latin sinister. A molecule with a 

single chiral centre, as an amino acid, can be named by either convention (Figure 17) [1]. 

Mathematically, enantiomers can be distinguished by several methods [189], [198].  

2.4.1. Oriented and Chiral Volumes

The oriented and chiral volumes of asymmetric atoms are the simplest methods to distinguish 

between the two enantiomeric forms of a chiral centre. They are defined for a set of four points 

(e.g., atoms) and correspond to the volume of the tetrahedron defined by them (e.g., adjoining the 

central one) (oriented volume; Figure 18a) or to the volume of the parallelepiped formed when 

each of them mark its vertices (chiral volume; Figure 18b), with their sign representing the 

handedness of the asymmetric atom [189]. Although conceptually the same, they are computed 

differently and differ in their absolute values and signs. 

 
FFigure 18 The solids for which the volume is computed with the (a) oriented volume and the (b) 

chiral volume, formed by a set of four substituent groups around an asymmetric chiral center.

The oriented volume (VO) of a given central tetrahedral asymmetric centre is calculated as a 

determinant (eq. 40): 

 �� ����������� � �
�� ���

� �
�� ��

� �
�� ���� ��

�� ��
�� ��
�� ��

 (40) 

With pi = [xi, yi, zi] being the vector that assigns to a substituent atom with a priority i its Cartesian 

coordinates. Its absolute value is independent on the particular embedding p used to define it but 

its sign provides a criterion to obtain the enantiomer handedness. The oriented volume is invariant 

under rotations and translations, the only way to change its sign is by reflecting the molecule by a 

plane without changing the orientation of the coordinate system. By definition, the coordinate 
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system is seen as dextrorotatory and, with that, D-enantiomers have a positive (+) oriented volume 

and L-enantiomers a negative (-) one [189]. 

The chiral volume (VC) is usually used as a stereochemical restraint in macromolecular 

refinement and computational chemistry [199], [200]. For the same system of points, it is given by 

equation 41: 

 �� ����������� � �� � �� � �� � �� � �� � ��  (41) 

Its absolute value is then six times the absolute of the oriented volume, and their signs are 

inversely related. If the labels of the substituents are in concordance with the Cahn-Ingold-Prelog 

system, the chiral volume will be negative (-) for the D-enantiomers and positive (+) for the L-

enantiomers [200]. 

2.4.2. Chiral Index and Chiral Invariant 

Chiral molecules can have more than one chiral centre. If there are two such centres and all 

interatomic distances are known, only the sign of one chiral volume is necessary to define the 

chirality of the molecule [189], but if more than two are present, this can be more complicated. A 

chirality measure can be viewed as a tool for quantifying the difference in shape between the 

object and its mirror image [201]. The universal chiral index (GO), derived by Osipov et al. [202], 

measures the chirality of a given object by an analogy with the optical activity of different 

enantiomers and has been used in the classification of protein secondary structure of short three-

dimensional peptide fragments [203], [204]. Representing the molecule by a density distribution 

ρ(r), a set of delta functions for a molecule consisting of point atoms, a universal chiral index is 

computed by the integration over all possible combinations of sets of four points in space, r1, r2, r3 

and r4 (eq. 42): 

 
�� �

������� � ��� ��� � ��� ��� � ���
��������� �����

 

�� �� � �� � �� � �� ������������ 

(42) 

where �� � �� � �� � �� �, ��� � �� � ��, ��� � ��� , and a and b arbitrary integers. When a = 2 and 

b = 1, GO is dimensionless. It changes sign under the space inversion and, therefore, is zero for 

achiral objects  (which are invariant under this inversion). It is negative for D-enantiomers and 

positive for L-enantiomers. 

The calculation of a universal chiral index is limited by the size of the object and the number 

of point atoms in the molecule. In order to overcome this, Hattne and Lamzin [198] derived the 

chiral invariant (CI), which is based on the use of moment invariants computed from the object, 

also represented as a density function. For any non-negative integers l, m and n, the raw moments 
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(Mlmn) of order l+m+n of a three-dimensional density distribution function ρ(x,y,z) are computed 

as (eq. 43): 

 ���� � ������� �� �� �
�

��

�

��

�

��
������ (43) 

The central moments (µlmn), invariant under translation, are then taken with reference to the mean 

of the object (eq. 44): 

 ���� � � � � � � � � � � � � �� �� �� �
�
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�

��

�

��
������ (44) 

The chiral invariant CI is expressed then as a sum of products of four moments (eq. 45): 

 �� � ������� ��������������������� (45) 

The chiral invariant is invariant under translation, rotation and scale of the object, and is zero 

for achiral objects. As the chiral index, it is negative for D-enantiomers and positive for L-

enantiomers. It was shown to be useful for the understanding of protein backbone handedness and 

for an assessment of the quality of crystallographic electron density maps [198]. Therefore, the 

magnitude of both these chiral measures can serve as a description of the overall shape of the 

object, while their sign distinguishes two different mirror-imaged forms [198]. 

2.5. Graph Spectra and Molecular Topology 

The topology of a molecule describes how atoms are forming chemical bonds between each 

other. It does not provide information about the three-dimensional structure of the molecule but 

about the connectivity and can be used to estimate chemical properties of the molecule itself 

[205]. The topology of a molecule can be represented as a graph (Figure 16a). Mathematically, a 

graph G can be defined as a pair (V,E) where V is a set of vertices representing the nodes (e.g, the 

atoms of the molecule) and E is a set of edges representing the connections between the nodes 

(e.g., the chemical bonds) [206]. Each element of E contains a pair i,j of elements of V. Two 

nodes are said to be adjacent if they are joined by an edge and two edges are adjacent if a node 

joins them. The degree of a node v is equal to the number of edges incident in it. 

According to the relationships between edges and nodes, graphs can be classified into 

different categories (Figure 19) [207]. Graphs can be said to be directed or undirected if the 

direction of the edges is important or not, respectively. Graph nodes can be labelled or unlabelled 

and also be classified according to their degree. A complete graph is a graph such that every pair 

of vertices is joined by an edge, containing therefore all possible edges and a degree equal to the 

number of nodes minus 1. A regular graph is a graph in which each node has exactly the same 

number of edges and thus the same degree. A connected graph is a graph that has at least one edge 
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connecting all nodes. A simple graph is an undirected graph in which multiple edges connecting 

the same pair of nodes and loops connecting one node to itself are disallowed. A bipartite graph is 

a graph whose vertices can be divided into two disjoint sets such that every edge connects a vertex 

in each set. A molecular graph is, therefore, a simple connected undirected labelled graph, where 

each node has its own identity (Figure 16a).  

 
Figure 19 Example classes of graphs, as described in the text. 

A graph can be represented using a set of different matrices, whose eigenspectra provide 

information about the graph structure [207]. The two main matrices used in graph theory for the 

representation and study of graphs are introduced below. 

2.5.1. Adjacency Matrix 

An adjacency matrix A is a matrix used to represent a finite graph, in which each entry 

indicates whether a pair of vertices is adjacent or not [208]. In the case of a finite simple 

undirected graph, such as a molecular graph, it is a symmetric (0,1)-matrix (eq. 46), where: 

 ��� �
� if��� � ��
�� otherwise

 (46) 

For a graph with n nodes it is, therefore, an n×n symmetric real matrix with zeros on its diagonal 

(Figure 16). The set of individual eigenvalues, and their respective multiplicity, of an adjacency 

matrix A of a graph G is referred to as the spectrum of G, and is commonly used to evaluate the 

isomorphism of two graphs [209]. Two isomorphic graphs have the same spectra (they are 

isospectral), but two isospectral graphs do not necessarily need to be isomorphic. Relabeling the 

graph nodes does not alter its structure and, therefore, its set of eigenvalues and eigenvectors 

remain the same.  

Complete undirected  
graph

Complete directed  
graph

Regular  
graph

Labeled directed  
graph

Connected  
graph

Disconnected  
graph

Simple  
graph

loop

Bipartite 
graph

a b

c

de

f

Node 
(vertice)

Edge

Connected 
elements



 Chapter 2. Introduction to Methodology 

 41 

The adjacency matrix of a graph G with n number of vertices has a maximum of n non-zero 

real eigenvalues, which sum up to zero [210], with: 

 �� � ���� � � � �� � �� (47) 

Any eigenvalue of A lies in the interval [-dmax, dmax], where dmax is the maximum degree of any 

node in the graph and, therefore, equal to n-1 [210]. The largest eigenvalue (λ1) is the spectral 

radius of the graph and relates to its average degree by equation 48 [211]: 

 � � �� � ���� (48) 

Where � is the average degree of all nodes. If the graph is complete, λ1 = dmax. The multiplicity of 

λ1 relates to the connectivity of the graph, with the graph being connected if λ1 has a multiplicity 

of 1 (e.g., only appears once) [212].  

The difference between λ1 and λ2 is called the spectral gap and is always smaller or equal to 

the number of real eigenvalues n (eq. 49) [210]:  

 �� � �� � �� (49) 

The spectral gap characterises the robustness of the graph due to its relation to the algebraic 

connectivity. It is closely related to the number of graph cuts, the number of partitions of the 

graph vertices necessary to create two disjoint subsets of nodes. The smaller this value, the fewer 

the vertexes need to be removed in order to create a disconnected graph. Therefore, if the spectral 

gap is close to zero, the multiplicity of λ1 is close to two and the graph is disconnected. The same 

way, the larger the spectral graph, the higher the connectivity of the graph [213]. 

The sum over all spacings between two consecutive eigenvalues equals to the difference 

between the largest and the smallest (λn) eigenvalues (eq. 50) [210]:  

 �� � ����
���

���
� �� � �� (50) 

This is useful because a graph is bipartite if and only if its spectrum is symmetric about the origin, 

which means [211]: 

 �� � ��� (51) 

With the sum over all spacings equalling 2λ1. The ratio between the largest and the smallest 

eigenvalues of connected graphs can be used to estimate the lower boundary of the chromatic 

number of G, ����, by (eq. 52) [214], [215]: 

 � � ��
��

� � � � � � �� (52) 
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The chromatic number of a graph represents the smallest number of colours one would need to 

colour the nodes of G so that no two adjacent nodes share the same colour. It then represents the 

number of partitions, with a bipartite graph having a chromatic number of 2. 

Finally, the number of distinct eigenvalues of A (N) can be used to estimate the diameter (ρ) 

of the graph G (eq. 53) [209], [210]: 

 ! � � � � (53) 

The diameter of a graph G is the “longest shortest path” between any two nodes in the graph. In 

other words, it is the largest number of nodes that must be traversed in order to travel from one 

node to another when paths that backtrack, detour or loop are excluded from consideration. 

2.5.2. Laplacian Matrix 

The Laplacian matrix L of an undirected and unweighted simple graph G is an n×n 

symmetric matrix with one row and column for each node defined by (eq. 54) [209]: 

 � � � � � (54) 

where A is the adjacency matrix of G and D the degree matrix. D is a diagonal n×n matrix that 

contains information about the degree of each vertex (eq. 55), where: 

 ��� � ��������     if�� � �
��            otherwise

 (55) 

The diagonal elements Lii of L are, therefore, equal to the degree of vertex vi, off-diagonal 

elements Lij are -1 if vertex vi is adjacent to vertex vj and zero otherwise (eq. 56): 

 ��� �
�������� if�� � �
�� if��� � ��
� otherwise

 (56) 

The Laplacian matrix measures the extent to which a graph differs at one vertex from its values at 

nearby vertices. For a graph with multiple connected components, L is a block-diagonal matrix, 

where each block is the respective Laplacian matrix for each component. 

The Laplacian matrix of a graph G with n number of vertices has a maximum of n-1 non-zero 

real eigenvalues with: 

 �� � ���� � � � �� � �� (57) 

All eigenvalues of L are equal to or larger than zero and their sum is equal to twice the number of 

edges m of G (eq. 58): 

 �� � � �� �� � � ��
�

���
� �� (58) 
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Every row sum and column sum of L is zero. In consequence, !" = 0. The multiplicity of the null 

eigenvalue corresponds to the number of connected components in the graph [209]. A connected 

component of an undirected graph is a subgraph in which two vertices are connected to each other 

by paths and which is not connected to any additional vertices (Figure 19). A connected graph 

will, therefore, have only one zero eigenvalue. The second smallest eigenvalue is the algebraic 

connectivity, representing how well connected the overall graph is, and is non-zero only for 

connected graphs. The smallest non-zero eigenvalue is the spectral gap [216]. 
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Chapter 3 

Development of New Protein Main-Chain 

Conformational Descriptors 

3.  9 

 

The use of only two parameters for the conformational description of each residue in the 

protein main-chain, as represented by the Ramachandran and Ramachandran-like plots, is 

insufficient [44], [50], [217]. When the polypeptide chain is seen as a combination of peptide 

planes connected at each Cα position and its conformation is described by the rotation of the two 

adjacent peptide planes, this dipeptide unit has three degrees of freedom (Figure 20a). Each of the 

nine atoms composing any dipeptide unit has a three-dimensional coordinate, totalling to 

��� � �� parameters. Excluding rigid-body rotations and translations, these reduce to �� � � �
� � ��. The lengths of the four covalent bonds in each peptide plane (Cα-C’, C’-O, C’-N and N-

Cα), and four angle-bonded distances can, from a conformational point of view, be seen as fixed 

[123] thus reducing the number of degrees of freedom to �� � �� � � � � �. Assuming the 

planarity of the peptide unit, or that the ω does not vary much from a standard value, we arrive to 

the two possible configurations of the peptide plane: the trans (ω ≈ 180°) and the cis (ω ≈ 0°) 

(Figure 2).  

Given that the trans-configuration is the more abundant, encompassing more than 99% of the 

peptide planes in the PDB [8], [9], [11], the number of degrees of freedom of a dipeptide unit 

reduces to three. If the first two are the Ramachandran dihedral angles, then the third degree of 

freedom is related to a variation of the τ(N-Cα-C’) stretching angle (Figure 20a). This angle in 

refined protein structures varies in a narrow region, from 107.5° to 114.0° [50] and, therefore, 

could have been regarded of low importance. However, its value depends on the secondary 

structure to which the dipeptide unit belongs to [50] and on the chemical nature of the residue’s 

side-chain [217].  

Analogously, 5-atom dipeptide units used by ARP/wARP to assemble protein main-chain 

also have 3 degrees of freedom: the two dihedral angles and the τd(Oi-1-Cαi-Oi) stretching angle 

(Figure 20b). Since the τd angle varies in a broader range compared to the τ angle due to the 

different vectors involved, it would be expected to be very informative for the description of the 
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dipeptide units’ conformation. However, the disadvantage of a direct use of the stretching angle is 

its dependence on the values of the two dihedral angles [50].  

 
Figure 20 The degrees of freedom of (a) full atom and (b) 5-atom (in trans configuration) dipeptide 

units. Black lines mark the fixed distances and angles. Green arrows represent the degrees of freedom 

described by the (a) Ramachandran and (b) Ramachandran-like plots. Red arrows represent the additional 

degree of freedom of dipeptide units in the trans- configuration. 

Consequently, novel descriptors of protein geometry that would be independent or at least 

weakly correlated with each other were investigated. The dipeptide unit was looked at from a 

different perspective, independent from angles. The applicability of a distance geometry-based 

approach, grounded on the eigenvalues of Euclidean distance matrices as described in 2.3, for the 

derivation of a set of uncorrelated dipeptide unit conformational descriptors was then studied, as 

described in the next sections. The main focus was given to the 5-atom model of a dipeptide unit 

for two reasons: (1) this is the simplest model of a dipeptide unit and (2) this is the model used by 

ARP/wARP during main-chain tracing, so that developed results could be more straightforwardly 

incorporated into a computational tool.  

This investigation was performed in three steps: (1) the collection of a reliable set of 

dipeptide units from the PDB; (2) the identification of three uncorrelated geometrical descriptors 

able to discriminate dipeptide units with a different geometry; and (3) the identification of the best 

chirality measure to separate between dipeptide units that are mirror-images of each other. 
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3.1. Methods 

3.1.1. Assembly of A Set of Dipeptide Units  

For the collection of a set of dipeptide units, they were required to represent well the 

conformations present in the PDB and the structures used to extract them to be of sufficient 

geometrical quality. Protein chains with a pairwise sequence identity below 50% were obtained 

from the PDB [36] (as of September 30, 2014) using the PDB50 clusters [218], according to Table 

1. For each chain, a DSSP file, containing its secondary structural content, was downloaded from 

the DSSP databank [219], [220]. Each selected protein chain was then broken into 5-atom 

dipeptide units, excluding those with atoms having high positional uncertainty or being in 

implausible conformations, based on the dipeptide units’ interatomic distances (Table 1). 

Table 1 Selection criteria for protein chain and dipeptide sampling from the PDB.  

Selection parameter Criterion 

Protein chains  

    Experimental method X-ray crystallography 

    Resolution Better than 2.5 Å 

    R-factor Lower than 0.25 

    R-free – R-factor difference Lower than 0.05 

    Clashscore and Ramachandran Outliers Percentiles Higher than 40% 

Dipeptides  

    Occupancy for Cα and O atoms Equal to 1.00 

    ADP for Cα and O atoms Lower than 80 Å2 

    Fixed distances  µ ± 3σ 

    Variable distances Interval with 99.8% of the points 
 

Filtering by bond-angle (fixed) distances  

The “fixed distances” between atoms in the same peptide plane (Figure 21a), due to the 

chemical constraints affecting atomic bond geometry, should not vary much from their expected 

values, and these variations are expected to follow a Gaussian distribution. Bond lengths (as well 

as bond angles) and their respective standard deviation were already surveyed and are used as 

standard restraints in protein crystallography [123], [221]. However, in a 5-atom dipeptide unit, 

the atoms are ‘angle-bonded’. Therefore, the expected angle-bonded distances were estimated 

using the tabulated bond distances and angles surveyed by Engh and Huber in 2006 [123] and 

then compared to those estimated by different statistical methods. 
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Figure 21 Distance geometry-based approach for the description of dipeptide unit geometry. 5-atom 

dipeptide units can be described by a combination of two different classes of distances: (a) fixed and (b) 

flexible distances. (c) When introduced into a distance matrix, these distances define two regions: the rigid 

region, including the information on coordinate error (green), and the flexible region, including the 

information on main-chain conformation (red). 

For each of the peptide planes in the initially collected set of dipeptide units, all fixed 

distances were computed. Their mean, estimated standard deviation (SD), median and median 

absolute deviation (MAD) [222] were also computed. MAD is a very robust scale estimator, and 

is not much affected by the presence of extreme values in the data, compared to the standard 

deviation σ. Depending on the population distribution, the MAD value is multiplied by a 

consistency constant ! (1.4826 for Gaussian distributions) being then referred to as MADe [222]. 

Given that in a Gaussian distribution approximately 99.8% of the data lie within 3σ from the 

mean, the 3SD and 3MADe intervals for each distance distribution were also calculated. 

Additionally, the normalmixEM function from the mixtools R-package was used to 

investigate whether the fixed distance distributions could be described as a mixture of Gaussian 

distributions [223]. This function uses the EM (Expectation-Maximization) algorithm for 

Gaussian mixtures and starts by estimating a complete set of parameters for the given model and 

then proceeds by iteratively updating them until convergence. From this, the mean (µ), standard 

deviation (σ) and final mixing proportions (ν) for each Gaussian distribution composing the 

proposed model were obtained and compared to the expected values. 

Filtering by variable distances  

The ‘variable distances’ between atoms in different peptide planes (four per dipeptide unit; 

Figure 21b) are affected by the relative position of the peptide planes with respect to each other. 

These reflect the dipeptide unit conformation, and their distribution is not expected to follow a 

Gaussian distribution. As the SD and MAD approaches [222] are not suitable for non-symmetric 

distributions, they cannot be used for outlier removal from variable distances distributions. Here, 

the Highest Density Region (HDR) method, based on the estimation of the data density function, 

as implemented in the hdrcde R-package [224], was used. The R hdr function estimates the data 

density by a Kernel density function estimation [225], [226], with automatic bandwidth selection 

using the Samworth and Wand algorithm [227], and then finds the best region of highest density 
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at the desired confidence level α (in this case α = 0.002). This region should occupy the smallest 

possible volume in the sample space and every point inside the region should have the probability 

density at least as high as every point outside the region [224]. The 99.8% HDR was calculated 

for each variable-distance distribution and only those dipeptide units where all variable distances 

fall inside the correspondent HDR were accepted.  

3.1.2. Obtaining The Sampled Space and Dipeptide Unit Structural and 

Chiral Information 

To obtain the sampled space, describing the three-dimensional real space occupied by each 

atom in the dipeptide unit, all collected dipeptide units were aligned so that each Cαi-1 was on the 

positive x axis, Cαi at the origin and Oi-1 in the first quadrant of the xy plane. The three axes of 

inertia of each dipeptide unit were obtained by eigen-decomposition of its 3×3 variance-

covariance coordinate matrix. The radius of gyration was computed as described in 2.2.2. The 

likely secondary structure class assigned by DSSP to the residue corresponding to the central Cα 

atom (Cαi) and the precedent one (Cαi-i) in each dipeptide unit was stored. A dipeptide unit was 

marked to be a part of a secondary structural element if and only if both residues were assigned to 

the same secondary structural class. Moreover, all dihedral (Ramachandran, Ramachandran-like 

and ω) as well as stretching (τ and τd) angles were computed. The chirality was evaluated by 

calculating the chiral volume of the first peptide (with atoms Cαi-1, Oi-1, Cαi and Oi), and the 

second peptide (with atoms Oi-1, Cαi, Oi and Cαi+1), and the chiral invariant of the entire 5-atom 

dipeptide unit, as shown in Figure C.4a. 

3.1.3. Eigen-decomposition of Distance-Squared Matrices and The 

Transformation to The DipSpace 

For each dipeptide unit collected, a 5×5 Euclidian distance-squared matrix was computed and 

eigen-decomposed using the ARP/wARP software library (Figure 21c). The absolute values of the 

four negative eigenvalues were stored and referred as λ1 > λ2 > λ3 > λ4. Their square root was then 

taken to set their magnitudes on the Å scale. In order to evaluate whether their dimensionality 

could be reduced to three uncorrelated variables, they were subject to PCA over the entire set.  

As described in section 3.2.5 and shown in Figure C.4c-d, three main principal components 

were obtained, which make the transformation matrix R (eq. 59): 

 ! �
������ ����� ������ �����
����� ������ ������ �����
����� ������ ����� �����

 (59) 

These describe the three axes of the new protein backbone conformational space, the DipSpace, 

and for a given dipeptide unit its coordinates in this space (P) can be calculated using equation 60: 
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 ! � " # � #  (60) 

Where L is the vector of the four square-rooted eigenvalues (Λi) for the given dipeptide unit  (eq. 

61): 

 # � $�� �$�� �$�� �$�  (61) 

and # is the vector of their means in the collected set (eq. 62): 

 # � ������ �����������������  (62) 

The square-rooted eigenvalues of distance matrices were divided into two groups following 

the sign of the chiral volume of the first or the second peptide or the sign of the chiral invariant. 

PCA was carried out over these new sets in order to check which chirality measure separated 

mirror-imaged dipeptide units without altering the DipSpace axes, but dividing the DipSpace into 

two ‘parallel’ subspaces. 

3.1.4. Conformational Description by The DipSpace Axes 

To relate the DipSpace axes to the Ramachandran plot, a set of dipeptide units and 

corresponding Ramachandran angles were inspected using two different approaches. Firstly, from 

the collected set of dipeptide units, five representatives from the negative subset that were 

approximately equally spaced along each DipSpace axis were selected so that they represent a 

route connecting highly populated regions in DipSpace and, at the same time, show a continuous 

path when projected on the Ramachandran plot. Target coordinates (t1, t2, t3) in the DipSpace were 

estimated between the minimum and maximum of each principal component, equally spaced, and 

the best representative in the set (pc1, pc2, pc3) identified by weighted least-squares minimisation 

(eq. 63): 

 %� � �
� &'�()' � *'��

�

'��
 (63) 

With the weight wi of each principal component calculated as the inverse of its variance over the 

entire dataset (σi
2) (eq. 64): 

 &' �
�

+'
� (64) 

For the path along the pc1 axis, the pc2 and pc3 coordinates were set to 0.7 and 0.3, 

respectively. For the path along pc2, both pc1 and pc3 were set to zero. For the path 

along pc3, pc1 and pc2 were set to -0.7 and -0.2, respectively. 

In the second approach, the first peptide plane in a dipeptide unit was aligned to lie in the xy 

plane with its Cαi atom placed at the origin. The sampling was not restrained to any continuous 
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path in the Ramachandran plot, the coordinates of the Cαi+1 atom were placed on 196,418 nearly 

uniformly distributed points on a sphere with a radius of 3.8 Å using the Fibonacci sphere 

sampling method [228], [229], which allows an optimal and evenly distributed sampling of any 

number of points on the surface of a sphere [230]. For each of the coordinates of the Cαi+1 atom, 

the second peptide unit was rotated around the Cαi-Cαi+1 axis with an angular increment of 0.46˚. 

For each of the generated dipeptide units (in total ~150 million unique conformations), their 

coordinates in the DipSpace were evaluated. The dipeptide units were selected along each 

DipSpace axes if their one coordinate was closest to -1.5, -1.4, …, 1.5 while other two coordinates 

were closest to zero. Dipeptide units in a low populated area of the DipSpace (measured as the 

DipScore, described in chapter 4) were excluded, leading to the fact that the change of the 

conformations in the mapped dipeptides is discontinuous. The procedure was done separately for 

the positive and the negative subspaces and the conformations combined to generate three movies, 

available in the electronic version of this thesis and whose legends are listed in Appendix D. 

3.1.5. Estimation of The Noise Level  

In order to evaluate whether the DipSpace shape reflects the traces of the procedure used to 

obtain the eigenvalues and to carry out their PCA, dipeptides representing different noise models 

were also computed. A total of 30 000 dipeptide units were computed for each of the five different 

noise models. All interatomic distances and angles were stored, their distance-squared matrices 

computed, eigen-decomposed and transformed to the DipSpace, as described in 3.1.3 (Figure 28).  

For Set A, 5 random coordinates (three Cα and two O atoms) inside a sphere of 4 Å radius 

centred at the origin were sampled. These represent the complete conformational space that can be 

occupied by 5 atoms inside the sphere delimited by the dipeptide sampling space when no 

restrains or constraints on the interatomic distances are present. For Set B, all fixed distances were 

constrained to their ideal values, by fixing the first peptide unit in the !" plane and fixing Cαi at 

the origin. Therefore, Cαi+1 positions are represented by the surface of a sphere with 3.8 Å radius 

and Oi-1 positions by the surface of a sphere of 2.4 Å radius. This set represents the 

conformational space that can be occupied by all combinations of geometrised dipeptide units 

when no additional constraints are present. Sampling of Set C was obtained as for Set B, but with 

the minimum distance between Cαi-1 and Cαi+1 constrained to be less than the value currently 

accepted during automated protein model building with ARP/wARP (4.72 Å). Set D was sampled 

by adding a further constraint on the Cαi-1-Oi, Oi-1-Cαi+1 and Oi-1-Oi distances by limiting them to 

the intervals determined for filtering of the fixed distances. Set E is similar to Set C but the Cαi-

Cαi+1 distance was allowed to vary by 1.0 Å from its ideal value and the oxygen coordinates 

calculated accordingly by keeping the three fixed distances. This set represents incorrectly 

geometrised dipeptide units.  
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3.2. Results and Discussion 

3.2.1. The Distances of The Sampled Dipeptide Units 

A total of 4 639 chains were collected from the PDB, each representing a different PDB50 

cluster. From these, a total of 1 392 719 dipeptide units were obtained before any distance-based 

filtering. Their average and median fixed distances are approximately the same and close to the 

trans-peptide theoretical values but show different associated deviations (Table 2). Their joint 

distribution is composed by two main clouds: one centred at the median value of each fixed 

distance distribution represents 99.6% of the data and comprises the space occupied by the trans-

peptide units (Figure 22a-c); another at shorter Cαi-Cαi+1 distances and longer Cαi+1-Oi distances 

represents about 0.3% of the data and comprises the space occupied by the cis-peptide units 

(mainly cis-prolines) (Figure 22a-c). Around these two clouds, some sparse points are found too, 

representing about 0.1% of the data and comprising peptide units with abnormal interatomic 

distances or non-standard residue numbering (Figure 22a-c). Therefore, more than 99% of the data 

is composed by trans-peptide units, explaining why the mean and the median fixed distances are 

closer to the trans-peptide theoretical values and the SD is always larger than the MADe.  

Table 2 Theoretical and experimental first and second moments of Cαi-1-Oi-1-Cαi-Oi-Cαi+1 bond-angle 

distances distributions. Theoretical values calculated based on [123]. 

 Theoretical µ (Å) Experimental moments (Å) 

 
Cis  

peptide 
Trans  

peptide 
Mean SD Median MADe 

Cαi-Oi 2.391 2.391 2.399 0.018 2.399 0.013 

Cαi-Cαi+1 2.802 3.804 3.807 0.052 3.808 0.021 

Oi-Cαi+1 3.539 2.748 2.776 0.062 2.774 0.037 

 

The condensed core of the trans-peptide cloud suggests two types of peptide unit populations, 

probably arising from different weights applied to the geometrical restraints at different 

crystallographic resolutions or different model refinement software used (e.g., REFMAC5 or 

phenix.refine). All fixed distance distributions, and consequently the ω angle, can be well 

described by a sum of two Gaussian functions with different standard deviations (Figure 22d-f and 

Table B.1). The Cαi-Oi distance distribution can be explained by a mix of two Gaussians, which 

are centred at the same value of 2.4 Å but have different standard deviations (Figure 22d). The 

distribution that contributes most, with a mixing proportion parameter of 0.64, has a σ value of 

0.010 Å, which is very close to the MADe value. Thus, when the MADe method is applied for the 

estimation of the population σ, it detects only the contribution of the condensed central core of 
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that distribution, ignoring the second population. The second distribution, with a mixing 

proportion parameter of 0.36, has a σ value of 0.026 and is partially caught by the standard 

deviation method, as the average standard deviation of these distributions is 0.018. 

 
FFigure 22 Distribution of the fixed distances in peptide units. (a-b) Joint distribution of Cαi-Oi and 

Cαi-Cαi+1 distances, and Oi-Cαi+1 and Cαi-Cαi+1 distances. Dashed lines mark the median value of each 

distribution. (c) The two main classes of peptide units with their corresponding frequency and characteristic 

fixed distances. (d-f) Normal mixed-model description of the distributions. The histogram shows the 

distribution of each fixed distance and continuous lines the Gaussian functions describing the data; orange 

represents the major component of the data (with mixing proportions of about 0.7), red are intermediate 

(with mixing proportions of about 0.3) and blue only a fraction (with mixing proportions less than 0.04).  

For the other two fixed distances, three Gaussian functions are needed to describe the data. 

Two of them, with mixing proportions of 0.7 and 0.3, are centred at the mean value of the first 

cloud, and the third distribution (with a mixing proportion of 0.03) is centred at the mean value of 

the cis-peptide cloud (Figure 22e and f). Here the σ value of the distribution describing most of 

the density is also close to the MADe value, but the mean σ for both distributions is farther from 

the distribution SD due to the presence of cis-peptides. Therefore, the µ ± 3σ interval was applied 

to each fixed distances using the µ and σ values of the Gaussian distribution centred at the trans-

peptide cloud with the largest σ (the red distributions in Figure 22d-f). 

The four variable distances in the dipeptide units do not follow a Gaussian distribution and 

their distributions are multimodal (Figure 23b). One can identify two maxima for each variable 

distance, representing the two main secondary structural elements. Even after applying the fixed 
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distance filtering, these four distributions still contain some outliers. By keeping 99.8% of the 

points for each distribution, a total of 1 360 370 dipeptides were selected, comprising 98% of the 

initial set. 

 
FFigure 23 The variable distances. (a) The dipeptide unit atoms involved in them. (b) Histograms 

showing their one-dimensional distribution after filtering by the fixed distances. The distributions are 

multimodal, being influenced by the secondary structural preferences of the main-chain. The distributions 

can be divided into main two regions, the helical (red) and the stranded (orange) regions. Vertical dashed 

lines in each distribution mark the boundaries of the interval containing 99.8% of the points as determined 

using the HDR method [227]. (c) Their mapping on the sampled space.     

3.2.2. The Angles of The Sampled Dipeptide Units 

Comparing the two computed stretching angles, τ shows a unimodal distribution, while τd is 

bimodal (Figure C.1a and Figure C.2a). Among the collected dipeptides, the τ angle averages at 

111.3°, ranging from about 85° to 135°. τd shows two peaks, corresponding to the helical and 

extended conformations (Figure C.2a) and spans 60° to more than 170°. It correlates with the Oi-1-

Oi+1 distance and shows a similar distribution shape. The distribution of the radius of gyration of 

the dipeptide units is also bimodal (Figure C.2a). The sampled Ramachandran and 

Ramachandran-like dihedral angles show a multimodal distribution (Figure C.1 and Figure C.2), 

with a sharp peak for the helical conformations and a good sampling of the allowed and favoured 

regions of the Ramachandran plot. Thus, the dipeptide unit sampling procedure although based 

only on the distances, indicates the conformational preferences of the protein backbone. 
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3.2.3. The Sampled Space 

When the selected dipeptide units were moved to the same origin and their first peptide plane 

aligned at the first quadrant of the xy plane, the space occupied by the 5 atoms on the dipeptide 

unit describes the sampled space (Figure 24). It is a three-dimensional space showing the 

preferences of the atoms in the peptide planes composing the dipeptide unit. The space resembles 

half of a sphere, with two shells: the inner shell comprising all Oi atoms positions and the outer 

shell with all Cαi+1 atoms (Figure 24a). In comparison with the Ramachandran plot, where mirror-

imaged main-chain conformations are related by an inversion of the φ and ψ angles [35], here 

these are separated by the xy plane.

 
FFigure 24 The sampled space coloured by (a) atom type, (b-c) secondary structure (according to the 

secondary structure annotated by DSSP) and (d) sampling frequency.  

Specific areas of the sampled space are differently sampled and populated by distinct 

secondary structural elements (Figure 24b and c).  There is a preference for the positive part of the 

z axis, with most of the dipeptide units being sampled in this area (Figure 24d). There is a strong 

cluster in the α-helical area, as expected from the distributions of distances and angles. By 

mapping the flexible distances onto the sampled space, a graphical representation of how the 

different flexible distances and their combinations describe the dipeptide unit conformation is 

obtained (Figure 23c). One important observation is that all distributions in the sampled space are 

mirrored by the xy plane, illustrating the notion that the interatomic distances alone are 

insufficient to describe dipeptide unit conformation [189], [200]. Although the description of the 

dipeptide units by the coordinates of their Oi and Cαi+1 atoms in the sampled space provides 

already a good overview of dipeptide conformation, it lacks the information about the atoms in the 

first peptide plane as well as the coordinate error. The same can be said about the use of only 

variable distances because that would assume a too rigid view of the fixed distances, which also 

vary (Figure 22). 

3.2.4. The Four Eigenvalues of Euclidean Distance Matrices 

In order to derive a set of protein backbone conformational descriptors that are independent 

on each other, the eigenvalues of Euclidean distance-squared matrices were used. Their 
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distributions have some resemblance to the distributions of the variable distances indicating that 

they contain information about the dipeptide unit shape but do not separate between mirror-

imaged objects (Figure 25). It was suggested that the dominant eigenvalue of a Euclidean distance 

matrix is proportional to the mean squared distance of the points from the centre of mass and that 

the next three eigenvectors and their associated eigenvalues are then the principal components of 

the object [190]. This means that the largest eigenvalue, the positive λmax eigenvalue, is 

proportional to the squared radius of gyration Rg2 of the object. Since Rg2 corresponds to the sum 

of the three principal lengths of the inertia ellipsoid of the object [188], λ4 is then left without 

physical meaning. 

 
FFigure 25 The four independent Euclidean distance matrix eigenvalues. (a) Histogram showing their 

one-dimensional distribution, depicting the contribution of the structural preferences of the main-chain 

(helices and strands). (b) Their mapping on the sampled space.    

No significant linear correlation was found between the eigenvalues and the variable 

distances or the principal components dipeptide units’ coordinates (Table B.2). Only λ1 correlates 

strongly with the first axis of inertia of a dipeptide unit and Rg2, and its square root with the Oi-1-

Cαi+1. λ2 correlates with the second axis of inertia and its square root with the Cαi-1-Cαi+1 distance.  

3.2.5. The DipSpace 

The four eigenvalues calculated for each dipeptide unit vary in a correlated manner for the set 

of dipeptide units given that when PCA was carried out over the set of four eigenvalues calculated 

for units collected from the PDB, less than four Principal Components (pci) were obtained, with 

the main principal component containing approximately 90% of the information. Although the 

four eigenvalues have very different ranges and magnitudes (Figure 25b), this does not make any 

one of them less informative than the other. By carrying out PCA [186] over the square-rooted 
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eigenvalues three principal components were identified, which in total account to 99.6% of the 

total variance (Figure C.4c-d). These define the basis of a three-dimensional space on the Å scale, 

denoted as DipSpace (Dipeptide unit Space) (Figure 26 and Figure 27) and with axes pc1, pc2 and 

pc3. A variation of the data along the pc1 axis of the DipSpace correlates with the length of the 

first principal component of the dipeptide unit (r = 0.96) and somewhat weaker with Rg (r = 0.93), 

suggesting that it describes the extension of the dipeptide unit. The pc2 and the pc3 axes of the 

DipSpace correlate weakly with the second (r = -0.64) and the third (r = -0.50) principal 

components of the dipeptide unit, respectively.  

Overall, the three dimensions of the DipSpace embed the information about the dihedral and 

the stretching angles. Their mapping on the Ramachandran plot is shown in Figure 27b. Similarly, 

the mapping of various dihedral and torsion angles on the DipSpace shows their relation to each 

other (Figure C.3). Both show that a continuous walk through the DipSpace is not necessarily a 

continuous walk through the Ramachandran plot (Figure C.3c). The meaning of the DipSpace 

axes is further illustrated by fixing two DipSpace coordinates to a given value while varying the 

other from its minimum to the maximum (Figure 27). The pc1 axis describes the extension of the 

dipeptide unit, e.g. the transition between a PII-spiral and a β-strand [35] (Figure 27a and Video 

D.1) or a helical and extended conformation. The pc2 direction describes the twist of the two 

peptide planes with respect to each other – as exemplified by the transition between a PII-spiral 

and a γ’-turn [35] (Figure 27a and Video D.2) and the pc3 axis describes the dipeptide bending – 

e.g., a transition between a helical conformation and a δ-turn [35] (Figure 27a and Video D.3).  

The distribution of the conformations in the DipSpace resembles the shape of a hand with a 

flatter palm, a cylindrical thumb and a thin connecting layer (Figure 26a). The thumb lobe is 

highly condensed in one extremity and is mainly populated by helical conformations, with 

variable τ and φ angles but with ψ close to zero (Figure C.3). These dipeptide units have a 

moderate span of the twist but variable extension and bending (Figure 26b). The separation of 310- 

and π-helical conformation reflecting the change in the τ angle is shown in Figure 26c and Figure 

C.3c. The palm lobe is populated by turns and extended stranded conformations, with variable τ 

and φ angles but with ψ close to -180° and 180° (Figure C.3). The dipeptide units there have a 

moderate span of their bending but the twist and the extension vary considerably (Figure 26b). 

Since the most abundant conformation for a protein residue is α-helical, the DipSpace is centred 

close to the very condensed core of the thumb lobe and all other conformations can be seen 

relative to it.  

Glycines and prolines (the identity of the residue linked to the middle Cαi atom of the 

dipeptide unit) are also distributed distinctively. Glycines are almost everywhere in the DipSpace 

cloud while prolines and residues preceding them fall into three very specific clusters, mainly in 

regions corresponding to lower τ angles (Figure 26d).  
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FFigure 26 Projections of the three-dimensional DipSpace. (a) Joint distribution of pc1 (extension) 

and pc2 (twist), pc1 (extension) and pc3 (bending), and pc2 (twist) and pc3 (bending). The two main lobes are 

marked by dashed lines. Distribution of the (b-c) main secondary structural elements (α-helices and 

extended strands, as annotated by DSSP) and (d) glycine and pre-proline residues (the identity 

corresponding to the middle Cα atom of the dipeptide unit).  
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FFigure 27 Description of the dipeptide unit geometry by the three DipSpace axes. (a) Representative 

dipeptide units selected by fixing two DipSpace axes in the negative subspace and allowing the other axis to 

vary between its minimum (blue) and maximum (red), so that they follow a continuous path in the 

Ramachandran plot.  Target values for each axis are depicted in parentheses. (b) Projection of the DipSpace 

axes on the Ramachandran plot (the general limits, as described by Lovell [34], are shown). Stars mark the 

path highlighting the conformational transitions between different regions of the Ramachandran plot 

described by the dipeptide units in (a). The nomenclature follows Hollingsworth and Karplus [35], where β: 

β-strands; α: α-helices, γ’: γ’-turns; δ: bridge region, several types of turns, PII: PII-spirals.  

3.2.6. Separating Mirror-Imaged Dipeptide Units 

Two different measures of object chirality were tested – the chiral volume of asymmetric 

atoms [200] and the dipeptide units chiral invariant [198] (Figure C.4). Since the magnitude of 

these values is dependent on the interatomic distances, only their sign is necessary to separate 

between mirror-imaged objects. A set of four points in three-dimensional Euclidean space has, 

generally, one chiral centre. 5-atom dipeptide units have two asymmetric points, one at the first 

peptide unit and another in the second peptide unit (Figure C.4a), but only the sign of one is 

needed, as the information about the other is embedded in the variable distances [189]. The 

distribution of the three chirality measures in the sampled space (Figure C.4b) suggests that the 

sign of the first peptide unit’s chiral volume is the most intuitive to use, as it divides the sampled 

space into two mirrored subspaces. 
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FFigure 28 The different sets of randomly generated dipeptides. (a) Schematic representation of the 

different generated sets and applied constrains and restraints. (b) Corresponding sampled space and (c) 

distribution over the first two DipSpace axes.  

However, if the dipeptide units had been aligned by their second peptide, it would be likely 

the sign of the second peptide unit chiral volume that would provide this separation. One would 

expect that the signs of the chiral volumes would correlate with the two Ramachandran-like 



 Chapter 3. Development of New Protein Main-Chain Conformational Descriptors 
 

 61 

angles. While this is observed for the magnitude of chiral volume of the second peptide unit and 

the ψd angle (r = -0.94), that is not observed for the first peptide unit chiral volume and φd  (r = -

0.57). Still, there is a perfect correlation between their signs (r = -1). Only when the dataset was 

separated according to the chiral volume sign of the first peptide the resulting principal 

components were the same as (or close to) the ones observed when the complete dataset is taken 

(Figure C.4c and d), meaning that it separates the space into two without changing it.  

3.2.7. Separating ‘Signal’ From ‘Noise’ 

The DipSpace highlights conformationally plausible dipeptide units and indicates the 

frequency of their occurrence. However, its shape may reflect the traces of the procedure used to 

obtain the eigenvalues and to carry out their PCA. In order to account for that, five different sets 

of dipeptide units were constructed (Figure 28). By starting from a random sampling of 5 atoms 

inside a 4.0 Å-radius sphere (Set A) and adding constraints to approximate these to atomic 

positions in fully geometrised dipeptide units (until Set D), the sampling space goes from a full 

sphere of oxygen and carbon atoms to two semi-shells resembling the sampled space observed for 

the PDB-derived data. The volume occupied by the Set A dipeptide units in the DipSpace (Figure 

28c) marks the boundaries of the possible geometrical space occupied by 5 atoms inside the 

sphere marked by the sampled space limits. When the dipeptide units are geometrised and 

restrained to the allowed flexible distances intervals, their DipSpace volume decreases, and its 

shape becomes closer to the PDB-derived dipeptide units cloud. When the fixed and flexible 

distances of these dipeptide units are allowed to vary and differently restrained (set E), the 

sampled space looks “fuzzy” and the cloud in the DipSpace is extended.  

Given this, dipeptide units in a plausible conformation are separated from those with a likely 

incorrect geometry in the DipSpace. Therefore, the DipSpace has a potential to be used for the 

validation of protein backbone.  

3.3. Concluding Remarks 

The obtained results suggest that distance geometry is also useful for the description of 

protein backbone conformational space. The presented method provides geometrical information 

about the backbone atoms around each Cα atom in a protein model within a unified orthogonal 

Euclidean three-dimensional space where the three axes are on the same scale and account for all 

degrees of freedom of 5-atom dipeptide units. The obtained DipSpace has the potential to be used 

as a validation tool of protein backbone geometry. Given that dipeptide units in a random 

conformation have a different distribution in the DipSpace, one can suggest that for a given Cα 

position in a protein backbone, its overall conformation can be evaluated by its coordinate in the 

DipSpace and the sign of the chiral volume of its first peptide unit. If this dipeptide unit falls in an 
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area of the DipSpace populated by dipeptide units with good conformations and the same 

chirality, it will most likely have a correct geometry. In the opposite case, its conformation will 

most likely be incorrect.  

The advantage of the developed descriptors compared to the presently used angular 

description of protein stereochemistry is that they are harder to manipulate and are affected by the 

distances between the atoms. One can imagine that the same set of dihedral angles can be 

calculated for a given set of points and another set with much larger distances. Their coordinates 

in the DipSpace, however, will be different. One would then expect it to be harder to ‘twinkle’ a 

protein model to force it to be in a highly populated area of the DipSpace by mere manipulation of 

the dihedral angles: the model will have to be properly geometrised and refined too. The 

application of the DipSpace as a validator of protein backbone conformation has the potential to 

allow and complement the detection of conformational problems otherwise not detected without 

the combination of different tools. 
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Chapter 4 

Development of A New Protein Main-Chain 

Validation Method 

4.   

 

The main goal of using DipSpace within the framework of the ARP/wARP software is to 

detect dipeptide units that are unlikely to be in correct conformation and exclude them from the 

model building process. At the same time, the DipSpace can also be used as a general validation 

tool. This is described in this chapter, alongside with the development of two scoring functions for 

local and overall protein backbone quality assessment.  

One way to evaluate whether a given dipeptide unit is in a likely correct or incorrect 

conformation would be to check if it falls inside the cloud highly populated by dipeptide units 

from the PDB (Figure 26). However, there are areas of the DipSpace that are more populated than 

others both in the PDB-derived set and in the noise models. This leads to the idea of calculating 

the probability of a dipeptide unit to be in a likely correct conformation based on its location in 

the DipSpace, the denoted as DipScore. For a given position in the DipSpace, it is calculated from 

the relative densities of the PDB-derived points (dPDB) and those from a noise model (drandom) (eq. 

65): 

 �������� � !"#$
!"#$ � !%&'!()

 (65) 

The values of dPDB are determined from either the negative or the positive subspace, depending on 

the sign of the first chiral volume of the dipeptide unit, by counting the number of neighbours 

within a given distance and dividing it by the total number of points in the chiral subspace. The 

noise model – the values of drandom – are computed similarly from a chosen noise model, which is 

the same for both subspaces. This allows a dipeptide unit to be given a score that varies from 0 to 

1 and reflects the validity of its conformation. A DipScore value close to 1.0 indicates a well-

populated region of the PDB cloud with little contribution of the noise model. A dipeptide unit 

with such a DipScore is most likely in correct conformation. Conversely, a dipeptide unit with a 

DipScore close to zero is in a very unusual or incorrect conformation.  
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The overall geometry of the protein model can then be assessed by the shape of the 

distribution of the DipScores for the whole model. It would be expected that a good model has a 

negatively skewed distribution, with an average DipScore much higher than 0.5. The variance and 

the kurtosis of the distribution will depend on the variability of the DipScores. Therefore, for a 

given DipScore distribution, the average (m1), variance (m2), skewness (m3) and kurtosis (m4), can 

be computed. It would be expected that for a set of good models, these moments would follow a 

Gaussian distribution, allowing the calculation of four Z-scores (Zi) using equation 66: 

 !" �
#" � $ #"

% #"
 (66) 

Where µ(mi) is the mean and σ(mi) the standard deviation of each moment mi, calculated from a 

set of good protein models. 

Z-scores follow a standard normal distribution, with zero mean and unit variance. If they are 

independent, the square root of a sum of their squares (eq. 67): 

 !"
�

�
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 (67) 

follows a χ-distribution with the number of degrees of freedom equal to the number of summed Z-

scores. However, in our case the four Zi values computed for a given DipScore distribution are 

correlated since their underlying four first order moments are not independent. They can be 

uncorrelated by PCA, reducing the number of degrees of freedom to n. The n uncorrelated Z-

scores Zci share the same mean (of zero) but will now have different variance, with σ2(Zc1) > 

σ2(Zc2) > … > σ2(Zcn). By dividing each Zci by the variance of the largest component (σ2(Zc1)), 

their combination (eq. 68): 
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 (68) 

follows a χ-distribution with %� !'"
(
"��
%� !'�

 degrees of freedom. 

Z-scores calculated using equation 67 have a sign, indicating whether the respective moment is 

lower or higher than the average. Therefore, one would expect a perfect model to show a positive 

Z-score for the mean and the kurtosis, and a negative Z-score for the variance and the skewness.  

However, the squares in equation 68 remove that sign difference. By multiplying equation 68 by 

the sign of the highest uncorrelated component Zc1 a signed chi-score χscore, which differentiates 

between good and bad models (eq. 69), is obtained: 
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It follows that models with a positive χscore are better than the average while those with a negative 

χscore are worse. 

This approach for the validation of protein models was implemented as a standalone tool, 

DipCheck. The DipScore and χscore thresholds had to be determined, as well as the parameters 

necessary to uncorrelate the Z-scores. This is presented in the next sections. 

4.1. Methods 

4.1.1. DipScore Calculation 

The DipSpace was binned in two three-dimensional grids spanning -1.975 through 1.975 

with a step of 0.05 Å, each representing a chiral subspace and containing in total 512 000 data 

points (Figure 29a). The value inside each bin was assigned to the number of points located within 

an empirically defined radius of 0.09 Å from the centre of the bin, allowing the overlap between 

the bins and thus smoothening the transition between them (Figure 29a). The number of 

neighbours was then normalised by the total number of the PDB-derived dipeptide units in the 

corresponding subspace. The same procedure was carried out for the Set A noise model (section 

3.1.5) built of 1 200 000 randomly generated dipeptide units, resulting in the density of the noise 

model (Figure 29b). The DipScore for each bin was then calculated using equation 65. For a given 

dipeptide unit, its DipScore was calculated by computing its DipSpace coordinate in the 

corresponding subspace (as described in 3.1.3) and applying a parabolic 3×3×3 three-dimensional 

interpolation [231] on the three-dimensional grid.  

 
FFigure 29 DipScore calculation and the DipScore thresholds. (a-b) Schematic two-dimensional grid 

representation for the calculation of the density of (a) PDB-derived dipeptide units and (b) Set A randomly 

generated dipeptide units for a given DipSpace chiral subspace. (c) Cumulative distribution, in percentage, 

of the DipScores calculated for each dipeptide unit used to compute the DipSpace. A zoom in the low 

DipScore region and the boundaries for each DipScore threshold are shown. 
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In order to define the DipScore thresholds, the DipScore was computed for each dipeptide 

unit selected in section 3.1.1 as described in the previous paragraph. The cumulative distribution 

of the DipScores in the complete set of 1 360 370 dipeptide units was obtained and the limits 

encompassing 98% (favoured), 99.8% (allowed) and 99.95% (generously allowed) of the data 

determined (Figure 29c). All dipeptide units with a DipScore lower than the generously allowed 

(the remaining 0.05% of the data) are then classified as outliers. 

4.1.2. χ-Score Calculation 

538 protein chains longer than 50 residues were randomly selected from the initial set of 

chains collected from the PDB in section 3.1.1. The chains comprised 17% all-alpha, 21% all-beta 

and 57% mixed alpha and beta (α/β and α+β) models, corresponding well to the proportion of 

folds found in the PDB according to SCOPe [232] (Figure 30). The DipScores for each residue in 

each model, excluding cis-peptides and the residue preceding them, together with the first four 

moments of their distribution - mean (m1), variance (m2), skewness (m3) and kurtosis (m4) – were 

calculated. In order to access the differences between models with different folds, a two-sided t-

test was carried out for the comparison between means (H0: the means are equal; H1: the means 

are different; H0 rejected when p < 0.005), as implemented in the t.test R function [233]. 

 
FFigure 30 Frequency of protein chain folds according to SCOPe [232] in (a) the PDB (as of  March 

2016) and (b) the set of 538 chains randomly selected from the total of 4 639 chains as in section 3.1.1. 

The median and the median absolute deviation (MADe) were used to estimate the population 

mean and standard deviation, respectively, for the distribution of each moment. 22 chains with at 

least one moment being further than 4.0 MADe away from the median were excluded. The mean 

(µi) and the standard deviation (σi) for the four first moments (mi) of the remaining 516 chains 

were used to calculate a Z-score (Zi) using equation 66. PCA was carried out to uncorrelate the Z-
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scores, as described in section 4.2.3. Two main principal components were obtained, using the 

transformation matrix R’ (eq. 70): 

 !� � ������ ������� ������� ������
������ ������� ������ �������  (70) 

so that uncorrelated moments Z-scores (Zci) can be calculated using equation 71: 

 "# � !�" (71) 

where Z is the vector of the four Z-scores (Zi) for the given model  (eq. 72): 

 " � "��"��"��"�  (72) 

Over the set of 516 chains, Zc1 and Zc2 have a mean value of zero but different variance (σ 2(Zc1) 

= 3.322 and σ2(Zc2) = 0.585). Their combination (eq. 73): 

 "#�� � "#��

$� "#�
 (73) 

is expected to follow a χ-distribution with $� "#� �$� "#�
$� "#�

� �����  degrees of freedom 

(Figure 31). The χscore can then be computed using equation 69, where a sign is introduced based 

on the sign of Zc1 and n = 2. Favoured (98%), allowed (99.8%) and generously allowed (99.95%) 

χscore thresholds were computed in the same way as for the DipScores (Figure 31c). 

 
Figure 31 The χ-distribution with 1.176 degrees of freedom. (a) Cumulative density function (CDF) 

of a χ-distribution with 1.176 degrees of freedom, equivalent to the PDF of the absolute of the χscore, in 

comparison to the CDF of the absolute χscore computed for the set of 516 chains (experimental). (b) 

Cumulative density function (CDF) of the χscore, modelled as the mixture of two χ-distributions mirrored at 

zero, in comparison to the CDF of the χscore computed for the set of 516 chains (experimental).  

4.1.3. Test case Selection 

The coordinates of five test cases (PDB IDs 1bef, 1lml, 1n7s, 1qjp and 2fdq) were taken from 

the PDB. The experimental data for the 1lml entry were downloaded from the Uppsala Electron 

Density Server (EDS) [234] and refinement was carried out using REFMAC5 [122], applying 
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default settings. The PDB_REDO report for the 2fdq model and the coordinates of the rebuilt 

structure were obtained from the PDB_REDO databank [219]. The WHAT_CHECK [145] and 

the PDB validation [40] reports for each model were obtained from the PDBe [235]. The number 

of non-glycine/non-proline Ramachandran plot outliers were computed using MolProbity [39]. 

The limits of the Ramachandran plot allowed and favoured areas were taken from 

http://kinemage.biochem.duke.edu/ [34], with a binning of 5˚. 

4.2. Results and Discussion 

4.2.1. The DipScore Thresholds 

The overall distribution of DipScores calculated for the full set of 1,360,370 dipeptide units 

is highly negatively skewed (γ1 = -2.6), with a mean value of 0.89 (Figure 29c). Following the 

classification suggested for the Ramachandran plot by Lovel et al. and Morris et al. in [34], [41], a 

residue is referred to be in a favoured region of the DipSpace if its DipScore is above 0.24, in an 

allowed region if its DipScore between 0.24 and 0.033 (Figure 29c) and in an generously allowed 

region if between 0.033 and 0.010. A residue with DipScore below 0.010 is regarded as an outlier. 

4.2.2. Effect of Fold Class and Secondary Structural Content on DipScore 

Distribution 

One would expect the DipScore distribution of a model to be not only affected by its 

stereochemical quality but also by the frequency and type of secondary structural elements that 

make the model. For example, a fully-helical model without any problematic residues may have 

most of its Cα atoms in the condensed core of the DipSpace thumb lobe (Figure 26a-b), which 

have a DipScore close to 1.0. On the contrary, Cα atoms in an all-beta model without geometrical 

problems have a broader area of allowed coordinates in the DipSpace, which are less populated 

than the helical region and, therefore, have lower DipScore values. Consequently, the DipScore 

distribution of an all-alpha model has different moments from that of an all-beta model but also 

mixed-alpha-beta models (Table B.3-7 and Figure 32). All-alpha models tend to show a more 

negatively skewed (γ1 = -3.1) and peaked (γ2 = 11) distribution, with a higher average (! = 0.92) 

DipScore than all-beta and other fold classes. The variance, however, does not seem to be 

significantly affected (Table B.6). All-beta models, on the other hand, show a less negatively 

skewed (γ1 = -2.7) and less peaked (γ2 = 8) distribution, with a consequently lower DipScore 

average (! = 0.90), but not a statistically different variance.  

Coiled-coils stand out as extreme folds, pushing the DipScore distribution to its limits. Only 

four chains in a coiled-coil fold were used, representing only 1% of the set of chains, but all show 

a very high average DipScore, statistically different from any other fold class, even higher than 
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all-alpha models (Figure 32). The variance, skewness and kurtosis are also extreme (very low 

variance, very negative skewness and high kurtosis), but given the small number of test cases, the 

differences to other fold classes are not statistically significant. This comes from the fact that 

coiled-coils are full helical structures, without loops or turns, while all-alpha models are 

composed by helical backbone stretches with loops and bends in between. The presence of these 

irregular structures allows the DipScore distribution to vary, while all coiled-coil residues are 

placed in highly populated areas of the DipSpace.  

 
FFigure 32 Distributions of the four central moments of DipScore distributions calculated for the set 

of 538 protein chains. The contribution of the different fold classes is depicted for (a) all-alpha and all-beta, 

(b) mixed-alpha-beta structures and (c) multidomain, transmembrane, small and coiledcoiled protein chains.  
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With all folds combined, the mean DipScore distribution for the 538 chains averages at 0.91, 

with a variance of 0.027, is negatively skewed (γ1 = -2.9) and peaked (γ2 = 9; leptokurtic) (Table 

B.3), following the same shape as the mixed models (Figure 32). These moments represent the 

shape of the DipScore distribution in the set of models and can be used for a comparison to the 

DipScore distribution of a given protein model. Given that the overall moment distributions show 

long tails, they cannot be used for direct Z-score calculation. 22 chains, which were more than 4.0 

MADe away from the median for any of their four moments, were excluded. The mean (µi) and 

the standard deviation (σi) were re-calculated for the distributions (Table B.9) and used for the 

calculation of the Chi-score (χscore), as described in the next section. 

4.2.3. The Chi-Score Parameters and Thresholds 

The four Z-scores computed with the moments of the average model DipScore distribution 

follow a standard normal distribution but are correlated, as shown in Table 3. By carrying out 

eigen-decomposition of the Z-scores variance-covariance matrix, two principal uncorrelated 

components - Zc1 (83.2%) and Zc2 (14.7%) - with the same mean (µ = 0) and different variance 

(σ2(Zc1) > σ2(Zc2)) were obtained. An increase of Zc1 implies an increase in the mean and the 

kurtosis, with a decrease in the variance and the skewness (eq. 70). Therefore, Zc1 ‘points’ in the 

direction of the perfect models and a model with a positive Zc1 is better than the average while a 

model with a negative Zc1 represents a structure worse than the average. Multiplying equation 69 

by the sign of Zc1 allows the separation between ‘better’ and ‘worse’ models.  

The combination of these two uncorrelated parameters (eq. 73) follows a χ-distribution with 

1.176 degrees of freedom and when the sign is introduced (eq. 74) the probability function 

describing the density of χscore, characterising the deviation of the DipScore distribution for the 

model in question from the ‘average’ DipScore distribution, is symmetric around zero (Figure 31). 

From this, a model is annotated as favoured if the χscore is higher than -2.16 (this covers 98% of the 

distribution), as allowed if the score is between -2.16 and -2.97 and generously allowed if the 

score is between -2.97 and -3.38; otherwise it is an outlier.  

Table 3 Correlation matrix of the four Z-scores (Zi) calculated for the four first central moments of 

DipScore distributions for the 516 selected protein chains.  

 Average (Z1) Variance (Z2) Skewness (Z3) Kurtosis (Z4) 

Average (Z1) 1 -0.889 -0.803 0.776 

Variance (Z2) - 1 0.584 -0.609 

Skewness (Z3) - - 1 -0.983 

Kurtosis (Z4) - - - 1 
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4.2.4. Good, Bad and Ugly Structures 

To demonstrate the applicability of the DipSpace, DipScore and χscore to the validation of 

protein models, 5 test cases representing different scenarios in protein structural analysis were 

selected (Figure 33a and Table 4).  

Table 4 Main-chain quality indicators for the five test cases (glycines and prolines are excluded). 

Dipeptide units that fall in allowed areas of the general Ramachandran plot are referred to as allowed (All.), 

and those that fall outside the allowed and favoured regions as outliers (Out.). Dipeptide units with a 

DipScore below 0.01 are outliers (Out.) and those with a score between 0.01 and 0.24 are allowed (All.; 

combining allowed and generously allowed). Their percentage is shown in parentheses. The model overall 

χscore and WHAT_CHECK Ramachandran Z-score are also given.  

 
1LML  
Alpha-

beta 

1QJP  
Purely  
Beta 

1BEF  
Fabricated 

2FDQ  
Before 

PDB_REDO 

2FDQ  
After 

PDB_REDO 

1N7S 
 Purely 
helical 

Ramachandran (% is shown in parentheses)  

Out. 0 (0.0) 0 (0.0) 1 (0.8) 12 (5.2) 0 (0.0) 1 (0.4) 

All. 8 (2.1) 0 (0.0) 6 (4.6) 62 (26.8) 12 (5.3) 2 (0.8) 

DipSpace (DipScore) (% is shown in parentheses)  

Out. 0 (0.0) 0 (0.0) 1 (0.8) 13 (5.6) 0 (0.0) 0 (0.0) 

All. 5 (1.3) 1 (1.0) 3 (2.3) 41 (17.7) 7 (3.1) 1 (0.4) 

Model χscore (overall DipScore distribution)  

χscore -1.05 2.22 -4.13 -12.89 -0.46 9.97 

Ramachandran Z-score 

Z-score -1.43 -0.301 -5.41 -6.69 -0.54 3.99 
 

The armadillo acyl-CoA-binding protein (ACBP) [236] (PDB ID 2fdq) is (as of November 

2015) the protein model with the highest geometrical improvement obtained by running 

PDB_REDO [219]. This is an all-alpha protein complex refined at 3.5 Å resolution. It has a 

WHAT_CHECK Ramachandran Z-score of -6.69, with 12 Ramachandran outliers out of 225 non-

glycine/non-proline residues. The DipScore indicates 13 DipSpace outliers, mainly in helical 

conformations, which are not the same as the Ramachandran outliers (Table B.10). For example, 

Tyr31C is located in a favoured helical region of the Ramachandran plot, but has a τ angle of 

106.8o and is an outlier in the DipSpace due to too short variable distances (Cαi-1-Cαi+1 of 4.9 and 

Oi-Cαi+1 of 3.6 Å; Figure 33c and Figure 23). On the other hand, Thr64A is a Ramachandran 

outlier but DipSpace favoured (Figure 33c). This is because the dipeptide interatomic distances 

fall in the peaks of their distributions, except Oi-1-Oi (2.6 Å), pulling the residue to the DipScore 

favoured region. In the Ramachandran plot this short Oi-1-Oi distance pulls it to the border of the 

allowed region (Figure 33b).  
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After rebuilding with PDB_REDO, the ACBP model showed no outliers, neither in the 

Ramachandran plot nor in the DipSpace (Figure 33a and Table 4). The short Oi-1-Oi distance 

around Thr64A increased by about 1.0 Å without a distortion of other intra-dipeptide distances. 

The τ angle for Tyr31C increased to 110.5°, with a concurrent increase of the Cαi-1-Cαi+1 and Oi-

Cαi+1 distances. The improvement of the ACBP backbone is also shown by the distribution of its 

DipScore (Figure 33d) and the overall χscore (Figure 33a and Table 4).  

 
FFigure 33 Local and overall protein model validation using the DipSpace. (a) Cartoon representation 

of the test cases, coloured by the local DipScore. PDB ID and the resolution of the models are indicated. (b) 

General (non-glycine/non-proline) Ramachandran plot for the ACBP model before rebuilding and 

refinement using PDB_REDO. The allowed (grey) and favoured (dark grey) boundaries according to Lovell 

[34] are marked. The points are coloured according to the corresponding DipScore. Outliers (DipScore < 

0.010) are circled in black and those in allowed and generously allowed regions (DipScore between 0.010 

and 0.240) in light grey. (c) Ball-and-stick representation of ACBP Tyr31C and Thr64A dipeptide units, 

highlighting their DipScore and problematic distances. (d) DipScore histograms for the ACBP models 

before and after PDB_REDO. Arrows mark the model’s average DipScore. 
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The crystallographic model of the dengue virus NS3 serine protease (PDB ID 1bef) was 

retracted from the PDB as a fabricated case and presented several geometrical problems [62]. It is 

an all-beta model according to SCOPe, with a Ramachandran Z-score of -5.41 but with only one 

Ramachandran outlier (Table 4). In spite of the low number of Ramachandran and DipSpace 

outliers, this model shows an unusual DipScore distribution, with an average DipScore of 0.83, 

about five standard deviations lower than the expected average of 0.91 (Table B.3) and a broad 

DipScore variance (0.056; four standard deviations higher than the expected value), being then 

flatter and less skewed than the average protein model, thus supporting its classification as a 

problematic model.  

The crystallographic models of Leishamolysin (PDB ID 1lml), the outer membrane protein A 

(OMPa; PDB ID 1qjp) and the truncated neuronal SNARE complex (PDB ID 1n7s) have no major 

geometrical problems but different fold classifications (Table 4 and Figure 33a). Leyshmanolysin 

is an alpha-beta protein with both favoured χscore and Ramachandran Z-score. Given its mixed 

nature, it shows a score lower than the all-beta OMPa and the all-alpha SNARE models. The 

SNARE complex, being a perfect helical bundle, shows a remarkably high χscore, as it would be 

expected.   

4.2.5. DipCheck: A New Tool for The Validation of Protein Models 

Given the applicability of the DipSpace as a validation tool for protein backbone geometry 

and stereochemistry, the developed scoring methods and functions were implemented in a 

standalone tool: DipCheck (Figure 34). The tool is available as a web service (http://cluster.embl-

hamburg.de/dipcheck; Figure 35).  

DipCheck only requires on input a PDB or a CIF file of the protein model to be evaluated. It 

then extracts all dipeptide units, but excludes those with at least one cis-peptide plane (Figure 2 

and Table 2). For each dipeptide unit a DipScore is computed using a uniform noise model (as 

described in 4.1.1). The DipScore distribution is evaluated and a χscore computed for each chain in 

the model but also for the whole model. The output of DipCheck contains a list of DipScores for 

each residue, the number of Cα atoms in the model and the number of those evaluated, the number 

and the percentage of residues in favoured, allowed, generously allowed and disallowed DipSpace 

areas, and the moments of the DipScore distribution, with their corresponding expected values and 

Z-scores. Optionally, DipCheck generates a PDB file with the coordinates of the full-atom model, 

excluding the residues not evaluated, where the B-factor column is replaced by the DipScores 

computed for each residue. A figure can then be generated with any visualisation software (e.g., 

UCSF Chimera [237], Pymol, etc.), where the model is residue-coloured according to the 

DipScores, providing a quick visualisation of the local geometrical quality. 
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FFigure 34 General DipCheck workflow. The yellow box marks the elimination of cis-peptides and 

those preceding them. 

 

 
Figure 35 The DipCheck web service (a) main page and (b) results page.  

a b
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The main page of the DipCheck web service (Figure 35a) includes a brief description of the 

DipScore and χscore thresholds, and a link to the upload of the input pdb file. The results page 

(Figure 35b) shows summary statistics as well as a half-wheel scheme indicating the classification 

of the model according to the overall χscore and an interactive window showing the model coloured 

by local DipScore (red: 0.0; white: 0.5; blue: 1.0). From this page, the detailed results file as well 

as the modified pdb file can be downloaded.  

4.3. Concluding Remarks 

The DipScore for a residue can be straightforwardly obtained from the DipSpace and while it 

is sufficiently informative on its own, it complements other tools, such as the Ramachandran plot. 

The overall χscore provides a measure of the overall model quality, both at the conformation and 

geometrisation levels. Although it may be seen related to, for example, the WHAT_CHECK 

Ramachandran Z-score [149], it uses different information and has other statistical properties: 

while Z-scores are distributed normally, the χscore follows a Chi-distribution where a sign is 

introduced to separate models which are better or worse than the average. The method can 

therefore be used for the detection of protein models with regions of unusual conformations or 

geometry of trans-peptide units. One would generally expect the models with a poor 

Ramachandran Z-score to also display a poor DipSpace χscore but variations can be observed, as 

shown by the five test cases presented (Table 4).  

The presented way to compute the DipScore does not differentiate the identity of the residue. 

It will certainly be of interest to investigate the DipScore distributions for glycines, prolines and 

cis-prolines. Another direction to pursue could be the addition of weights or deliberate narrowing 

of the distributions of the intra-dipeptide distances, so that the DipSpace becomes tuned to a 

particular geometrical feature, for example the Oi-1-Oi distance. The use of other noise models 

could also adjust the method towards different approaches for model building and validation.  
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Chapter 5 

Improvement of Automated Model Building 

Protocols at Medium-to-Low resolution 

5.   

 

The aim of this project was the development of tools and computational methodologies that 

would allow the improvement of automated model building and the interpretation of MX electron 

density maps at medium-to-low resolution. Therefore, a considerable part of the work was 

devoted to the implementation of the developments in ARP/wARP. This work was performed in 

several steps and is described below. 

5.1. The Effect of Resolution on ARP/wARP Automated Protein Model Building 

In order to understand what is needed to improve automated protein model building at 

medium-to-low resolution, three main questions where addressed:  

• How does the quality of the final model change with a decrease in the resolution of the X-ray 

data?   

• How does the model evolve over the cycles of model building?   

• Do the fragments built in each cycle differ considerably from those built in previous cycles?   

5.1.1. Selection of Test Cases and Benchmark Analysis 

Two jobs submitted to the EMBL cluster with a non-confidential dissemination level were 

used as test cases with diffraction data truncated to different resolution between 1.6/1.8 Å and 5.0 

Å. All calculations were carried out with the beta-version of the ‘classic protein model building’ 

protocol of ARP/wARP 7.4 (as of March 2013) [117] implemented in ArpNavigator [238]. The 

data contained experimental phases, which were used to build the initial free-atoms model. The 

first dataset selected (referred to as 06234) extended to a resolution of 1.8 Å and corresponded to 

a homo-tetramer, with 104 residues per chain, totalling to 416 residues. The second dataset 

(referred to as 14417) extended to a resolution of 1.6 Å and corresponded to a protein with 407 

residues. 
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Automated protein model building was carried out at 8 different resolutions of the data 

(Figure 36 and Figure 37), using default parameters. The total number of residues and fragments 

built, and the model correctness as estimated by ARP/wARP were stored and analysed. The 

estimated correctness of the model is an empirical score based on the number and lengths of built 

fragments and the resolution of the data. Model completeness was calculated as the ratio of the 

number of residues built to the total number of expected residues. In order to monitor which parts 

of the model were built at each model building cycle, the ARP/wARP watercomp routine was 

used, which calculates the nearest-neighbour root-mean-square deviation (N.N.r.m.s.d.) between 

two models taking into account symmetry transformations. Here, the comparison was done 

between a partially built protein model and the final model at high resolution. Only distances 

below 2.0 Å were considered for calculation as they were deemed to represent the correct 

Cα(model1)-Cα(model2) correspondences.   

5.1.2. Understanding The ‘Effect of Resolution’ 

Figure 36 and Figure 37 show that at reduced resolution the models are built to a lower 

completeness, become more fragmented and are estimated to be less accurate. However, different 

behaviour is observed for each dataset. For the test case 06234 (Figure 36), either with or without 

the use of the PNSextender module, the completeness of the built model and the estimated 

correctness are higher than 90% at better than 3.0 Å resolution, but drops rapidly to zero 

correctness and 40% completeness at worse than 3.5 Å resolution. The number of chain fragments 

stays below 10 for the entire model at <3.0 Å resolution, and increases to 30-40 fragments at >3.5 

Å resolution. This clearly demonstrates that there is a need to improve model building at 

resolution worse than 3.0 Å.  

However, for the test case 14417 (Figure 37) the estimated model correctness falls from 

100% at 1.6 Å to around 40% at 3.0 Å and further to 0% at 3.5 Å. Model completeness drops 

dramatically from 98% at 1.6 Å to around 50% at 2.0 Å, although generally at this resolution 

ARP/wARP builds more than 90% of the structure. The investigation on how the three parameters 

(model fragmentation, completeness and estimated correctness), as well as the crystallographic R-

factor, evolve along the model building cycles (Figure 38) shows that at high resolution (Figure 

38a) (1) the model built at the first cycle contains about 30 fragments, which represent 45% of the 

protein, with an estimated correctness of over 90%; (2) then, at each cycle there is a steady 

increase in model completeness and estimated correctness, with a concurrent decrease in the 

fragmentation and a decrease in R-factor, with the jumps corresponding to the steps where the 

model is re-built; (3) at the end, the model is fully complete and correct, and consists of one 

fragment. 
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FFigure 36 The quality of the final model for the test case 06234, evaluated at different resolution. 

Solid lines indicate protocols involving PNSextender; faded lines without it.  

 
Figure 37 The quality of the final model for the test case 14117, evaluated at different resolution. 

Solid lines indicate protocols involving PNSextender; faded lines without it. 
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and accurate models, which are less fragmented. However, during the next building cycles the 

structure deteriorates, resulting in a model similar or even worse compared to the one built in the 

first cycle. Finally, at 4.0 (Figure 38d) and 5.0 Å resolution, there is an overall decrease in the 

model completeness and estimated accuracy, although the fragmentation has slightly improved. 

Still, having about 30 fragments (with 5.5 residues per fragment on average) is not much help for 

subsequent manual model completion. At this resolution range, the model correctness is zero 

already after the first building cycle, and this does not improve at further cycles. It is also 

noteworthy that the zipper-type pattern of R-factor reduction is not observed. This indicates that it 

is getting difficult for ARP/wARP to build any model at this resolution. Once again, one would

expect this behaviour since ARP/wARP was not designed to build protein models at 5.0 Å 

resolution.  

 
FFigure 38 Evolution of the model building for the test case 14417 at (a) 1.6 Å, (b) 2.0 Å,  (c) 3.0 Å 

and (d) 4.0Å resolution. 
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or increase in size and connect to other built fragments, or (2) their location is not retained and 

they are re-built at other places in the sequence space. 

 

 
FFigure 39 Evolution of the model building for the test case 14417, modelled at (a) 1.6, (b) 2.0 and 

(c) 3.0 Å resolution. SecStr: secondary structure (green line: loop; red cylinder: helix; yellow arrow: strand), 

as in the final model at 1.6 Å, annotated by DSSP [239].  
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At 1.6 Å, the fragments become, indeed, elongated at each round; at the same time new 

fragments are modelled (Figure 39a). This means that at each cycle the modelled fragments 

correspond to previously built fragments in the same sequence space and are becoming connected 

by newly-modelled loops. Therefore, at each cycle the number of fragments decreases while their 

length increases, converging to a complete model in a single chain. Conversely, at 2.0 Å (Figure 

39b), there is an increase in the number of modelled fragments during the first two cycles, but no 

further positive evolution: all the fragments during subsequent cycles are roughly the same as 

those modelled in the second cycle. In fact, the model built in the last round has fewer fragments 

due to disappearance of some previously modelled fragments. At 3.0 Å (Figure 39c), the quality 

of the model is low so that it is difficult to compare the intermediate models to the final model at 

1.6 Å resolution. Correspondences of 30 residues were only found in the N-terminal part of the 

protein, one region always well modelled at 1.6 and 2.0 Å. However, in other places almost every 

correspondence is randomly associated to a protein fragment, yielding a fragmented pattern that 

would suggest a random (in the sequence space) fragment building process at each cycle.  

Figure 39 also shows that there are regions which are always built in each round at any 

resolution, others that are never built at 2.0 and 3.0 Å, and even regions that are never built at 2.0 

Å but are at 3.0 Å. In order to obtain a deeper understanding, the region between residues 50 and 

90, which folds into a small motif composed by two small and one long helices connected by two 

loops, was looked in more detail (Figure 39 and Figure 40a). At 1.6 Å, this region is initially 

modelled in four fragments, which are then extended during subsequent cycles; at the 5th cycle 

the longest helix is built and the motif is modelled in two fragments separated by a gap of 7 non-

modelled residues. Although the connection between both fragments is not yet built at this cycle, 

one can see that the electron density in the connecting region is improved and a higher number of 

free atoms is placed at or near the correct Cα positions (Figure 40a).  

At 2.0 Å (Figure 40b) there is a steady improvement in map quality at each round, although 

the density remains poor in the region corresponding to the missing fragment. In fact, this region 

is formed by blobs of density that are filled with free atoms placed too far from the correct Cα 

positions and do not form a traceable part of the structure. At 3.0 Å resolution (Figure 40c), three 

small fragments composed of 2 to 3 residues are first built. However, they are not located close to 

each other. In the subsequent cycles, three fragments are modelled close to each other and 

comprise the beginning of the longest helix and the small helix, which are always built at higher 

resolution (Figure 40). Contrasting with what happens at higher resolution, there is no 

improvement of the electron density: it remains fairly the same but more ‘blobby’ and 

discontinuous. Additionally, there is also a reduction in the number of free atoms placed in the 

region corresponding to the non-built linker.  
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FFigure 40 Close-up view of fragment evolution for the test case 14417 between residues 50 and 90, 

modelled at (a) 1.6, (b) 2.0 and (c) 3.0 Å resolution. Cα trace of main-chain fragments is represented in 

black thick lines with free atoms as red points. Maps are in blue, drawn at 1.5σ above the mean (0.789 

e/Å3). 
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5.1.4. Possible Directions for The Improvement of ARP/wARP Protein 

Model Building Protocol 

These results indicate that one problem relates to the inaccuracy (with respect to the true 

atomic positions) with which the free atoms are placed into the map at lower resolution. This has 

two consequences: (1) the likelihood of identifying correct main-chain paths is reduced; (2) during 

the sequence docking the identification of the correct connectivity vectors becomes more difficult. 

From the ARP/wARP workflow (section 1.4), there are three main points of action (Figure 41): 

1. Improvement of the accuracy of the peptide units, which are identified from the free 

atoms during main-chain tracing; this may be attempted during the geometrisation of the 

identified peptide units. One would expect that the deeper the level of geometrisation, the closer to 

the target geometry the peptide units converge, and the more accurate the final protein model 

could be. 

2. Improvement of the main-chain conformation by supplementing the use of the 

Ramachandran-like plot with the DipSpace and the DipCheck model validation. Given the fact 

that at medium-to-lower resolution the main-chain third degree of freedom, represented by the τd 

angle, becomes significant for the description of protein main-chain conformation, the application 

of the DipSpace as a validation tool should improve the quality of the built models. 

3. Improvement of the sequence docking by replacing a one-dimensional connectivity vector 

with a more elaborate method. One way to do this could be a use of a density shape-based method 

similar to those applied for the identification of ligands and ligand binding sites.  

In the next sections the main focus is given to the first two action points, although 

preliminary results obtained for the third one are also presented. 

5.2. Geometrical Analysis of Candidate Dipeptide Units 

Geometrisation of a dipeptide unit is an important step in automated protein model building 

with ARP/wARP. The pipeline as of version 7.4 uses the Ramachandran-like plot, which was 

obtained from properly geometrised polypeptide chains. As ARP/wARP builds a putative peptide 

units on two free atoms that are 3.8±1.0 Å apart and then finds a putative dipeptide unit if two 

peptide units share one Cα and follow each other, the candidate dipeptide units may be based on 

an object with geometrical properties far from their ideal values. Therefore, geometrisation of the 

dipeptide is needed before its conformation can be evaluated. As a default, only one round of 

geometrisation has been implemented in the ARP/wARP version 7.4.  

Although the geometry of the dipeptide unit is already good after one round of 

geometrisation, the fact that the position of the central Cα (Cαi) atom is obtained by averaging its 



 Chapter 5. Improvement of Auto. Model Building Protocols at Medium-to-Low Res. 
 

85

position from connecting peptides, may disturb the overall geometry of the dipeptide unit (Figure 

9c). By performing additional geometrisation rounds, new middle Cα positions are generated and 

the new average is taken. The dependence between the level of geometrisation and the number of 

correctly traced residues was then studied. One would expect that, the higher the level of 

geometrisation, the better the geometry of the fragments and the resulting ARP/wARP models 

could be (Figure 42). At the same time, too many rounds of geometrisation may result in a 

dipeptide being driven too far from the initial free atoms positions. 

 
FFigure 41 Main points of action for the improvement of protein automated model building at 

medium-to-low resolution with ARP/wARP. (a) General ARP/wARP workflow (described in detail in 

section 1.4). Yellow rectangular boxes mark the main two steps that should be focused on. (b) Zoom into 

the two main steps, highlighting the three main points of action, numbered according to their sequential 

order in the ARP/wARP pipeline. 
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FFigure 42 Effect of the level of geometrisation on the number of correctly built peptides in the first 

round of model building, total residues built and the correctly built residues in the final model, as well as the 

overall correctness of the finally built model. The absolute improvement for each model for (a) the high-

resolution data, (b) the low-resolution data, (c) the average improvement over no rounds of geometrisation 

(rounds = 0) represented by bars and the minimum and the maximum improvement denoted by lines. 
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5.2.1. Test Case Selection and Benchmark Analysis 

A number of jobs submitted to the EMBL cluster (as of September 2014) with a non-

confidential dissemination level, at a resolution higher than 4.0 Å and a reference structure found 

in the PDB, were selected as test cases. The reference structure was identified using blastp [240] 

against the PDB, provided that the sequence identity was higher than 99%, the test case and the 

reference structure had the same number of chains and the total number of residues did not differ 

by more than 5%. A total of 22 test cases were selected, with the resolution of the data ranging 

from 1.2 to 3.7 Å, containing 91 to 930 residues in 1 to 4 chains in the asymmetric unit (Table 

A.1). These were further divided in the high-resolution group (comprising 10 cases with the data 

better that 2.5 Å) and the low-resolution group (the remaining 12). 

For each case, 11 different model-building jobs were executed with different number of 

geometrisation rounds: ranging from 0 (no geometrisation at all) through 1 (default in ARP/wARP 

7.4) up to 10; and the number of identified dipeptides and the final model quality were compared. 

In order to evaluate the model correctness, the built model was compared to the reference 

structure by using ARP/wARP peptcomp, which denotes a residue as correctly built if the 

displacement of its Cα atom with respect to the correct one is not higher than 1.0 Å, the chain 

direction is correct and the O atom is located in the correct ‘hemisphere’ of the peptide unit. It 

outputs the number of correctly and incorrectly built residues allowing an estimation of the model 

completeness and correctness as follows: 
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with !"#$%&'#$ as the total number of built residues, ("#$%&'#$ the expected number of residues and 

)"#$%&'#$ the number of correctly built residues. 

5.2.2. The Optimum Level of Geometrisation 

Looking at the averages of the benchmarking tests, it is not straightforward to point to the 

optimum level of geometrisation, as the effect is highly dependent on the individual test cases 

(Figure 42). It is evident that an increase in the number of geometrisation rounds promotes an 

increase in the number of dipeptides identified in correct conformation as defined by the 

Ramachandran-like plot (around 1.0% improvement). This has a higher effect on the low-

resolution cases, but given the variations observed the observation is not statistically significant. 

From 0 to 3-4 geometrisation rounds there is an overall increase in the number of dipeptides 

found, reaching a plateau with additional rounds (Figure 42). With this, there is an increase in the 
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number of residues built by 20% on average for the low-resolution cases and 15% for the high-

resolution group, but not the number of correctly built residues or the overall model correctness. 

The average change in the total number of residues built is always positive in overall, except for 

the high-resolution group at the fourth round of geometrisation (Figure 42c).  

Closer inspection showed that this negative influence is only due to test case A (Figure 42a). 

When it is ignored, the average effect becomes positive and higher than the previous levels. The 

same is observed for the average change in the number of correctly built residues and model 

correctness. This may be due to the data itself or an indication that this level of geometrisation is 

already too high for the atomic detail of the map at 1.2 Å resolution. At this resolution regime, the 

free atoms are already placed close to the real atomic positions and this level of geometrisation 

may be too high already and drives the free atoms to positions too far from the real atomic 

positions. Another factor affecting the model correctness may be the 1.0 Å displacement threshold 

used with peptcomp for the classification of a dipeptide to be correct, which may be too stringent 

at lower resolution. The level of 4 rounds of geometrisation was then implemented in ARP/wARP 

(as of version 7.5). This level provides the maximum improvement for the test cases studied in the 

number of correctly built residues, both at low and high resolution. It is evident, that further 

investigation on this topic is required in the future.  

5.3. Validation of The Conformation of Dipeptide Units During Protein 

Automated Model Building 

Within the ARP/wARP pipeline, the Ramachandran–like plot is used in two steps of 

autotracing (Figure 41 and Figure 43): hmain and pept, but as discussed in chapter 3 it lacks 

important conformational information. ARP/wARP hmain searches for putative peptide planes 

located on the free-atoms mesh representation of the electron density and evaluates their 

conformation (Figure 43a). The best fragments are selected by pept according to their length and 

conformation, breaking potentially incorrect links (circular fragments or Cα candidates that have 

more than one incoming or outgoing connections, etc; Figure 43b). With this, the possibility of 

improving the quality of the automatically traced protein models by complementing the use of the 

Ramachandran-like plot with the use of a DipScore threshold was tested.  

5.3.1. Implementation of The DipSpace-Based Validation Method 

The DipSpace 3-dimensional space described in section 4.1.1 was implemented to be used by 

both ARP/wARP hmain and pept in order to compute the DipScore for each possible dipeptide 

unit. While pept as well as DipCheck use a random uniform noise model, hmain uses the noise 

model represented by set E (Figure 28): a random sampling of not yet geometrised dipeptide units. 

With this, for a given dipeptide unit, its coordinate in the DipSpace and the sign of the chiral 
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volume of the first peptide unit are computed and the DipScore of the corresponding point in the 

DipSpace subspace is then obtained using 3D parabolic interpolation. If the DipScore value is 

below a given threshold, the dipeptide unit is excluded from further consideration.  

 
FFigure 43 ARP/wARP auto-tracing. (a) The concept behind hmain. The connectivity of the 

individual peptide units is checked so that if two peptides form a dipeptide unit with an unlikely 

conformation, their connectivity (in red) is excluded from further consideration. (b) The concept behind 

pept. After all possible routes for the main chain are found and the fragments built, overlapping links and 

alternative routes are eliminated if a given dipeptide unit formed by two linking peptides has improbable 

conformation. (c) The decision-making based on the calculation of the distance geometry-derived 

conformational descriptors and the derived DipScore from the noise model and the PDB-derived DipSpace 

clouds. If the DipScore is below a given threshold, the dipeptide unit is excluded (in red). 

5.3.2. Test Case Selection and Benchmark Analysis 

In order to test the ARP/wARP performance with the different DipScore thresholds for both 

pept and hmain, a set of real test data was used. The set included the jobs submitted to the EMBL 

cluster (as of November 2015) with a non-confidential dissemination level, a resolution higher 

than 3.0 Å and a reference structure found in the PDB. A total of 16 test cases were selected, 

ranging from 1.2 to 3.0 Å resolution, having 1 to 4 chains in the asymmetric unit and the total 

number of residues ranging from 91 to 888. This set was further divided into two the high-

resolution group (better or equal to 2.5 Å) and the low-resolution group with a resolution worse 

than 2.5 Å. A summary of the test cases used is given in Table A.2. 

In chapter 4, three DipScore thresholds were defined (the favoured, allowed and generously 

allowed limits). These values cannot be used by ARP/wARP given the different noise models 

implemented. Consequently, the effect of different hmain and pept DipScore thresholds on the 

quality of the protein models built with ARP/wARP was evaluated. Starting from a zero threshold 

(no DipScore-based exclusion), DipScore thresholds up to 0.05 were tested with a step of 0.005. 
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For each of the 16 test cases, a total of 121 ARP/wARP jobs were run, using default 

parameters and the NCS-based extension [169] of fragmented models. At each cycle of model 

building, the obtained model was compared to the reference structure with the ARP/wARP 

peptcomp routine. Given the likelihood of an improvement of the model geometry at the first 

stages of model building to also affect the placement of the side-chains, model completeness and 

correctness were estimated with equations 74 and 75 together with the average fragment size and 

sequence coverage with equations 76 and 77: 

 ��������������������� � !"#$%&'#$
!(ℎ*%+$

 

�
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where !"#$%&'#$ is the total number of built residues, ,"#$%&'#$ the number of correctly docked 

amino acids and !(ℎ*%+$ the number of built fragments.  

For each model, the χscore (eq. 69) was computed with DipCheck, the percentage of the 

Ramachandran outliers with MolProbity [39] and the N.N.r.m.s.d. between the built models and 

the reference structure with the ARP/wARP watercomp routine using the maximum distance of 

2.0 Å around each atom. Comparison was performed for both the main-chain only and all atom 

models, excluding solvent, ligand and free atoms. For each measure, the median deviation was 

used to evaluate how the different DipScore combinations affect the model building. 

5.3.3. Optimisation of DipScore Thresholds 

One would expect that an increase in the DipScore threshold in hmain would promote an 

improvement of the model correctness and a reduction of the main-chain r.m.s.d. to the reference 

structure. An increase in the pept DipScore threshold would, on the other hand, affect the 

fragmentation and the overall completeness, but also improve model correctness. The results from 

the carried out benchmarking are summarised in Figure C.5-7. The first observation is that a 

gradual change of the pept and hmain thresholds does not translate to a smooth change in the 

model parameters. However, an improvement in the median model correctness (evaluated by 

peptcomp), the r.m.s.d. of Cα positions, the χscore and the percentage of Ramachandran outliers is 

always observed for all threshold combinations (Figure C.6-6). This is more prominent for the 

lower resolution cases than for the higher resolution set, as the models built with high resolution 

data even without the DipSpace validation methods are already more than 90% complete and 

correct, have a low r.m.s.d. to the reference model and consist of long fragments. 

The choice for the best combination of the thresholds was based on a compromise between 

model completeness, average fragment size, correctness and proper geometry, as the variation of 
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each parameter within each combination tested is always very high (e.g., Figure 44). Applying a 

higher DipScore threshold in pept than in hmain would not make much sense, as hmain performs 

its task before pept and, therefore, a lower threshold in hmain could result in building less 

plausible fragments. On the contrary, by using a higher DipScore threshold in hmain, unlikely 

peptide unit connections are filtered at the first stage and pept then only needs to find which 

overlapping fragments have to be disconnected. With this, a DipScore threshold of 0.035 was 

implemented in hmain and 0.010 in pept (Figure C.5-7 and Figure 44).  

 
Figure 44 Boxplots depicting the effect of use of the different DipSpace thresholds on the quality of 

the protein models built with ARP/wARP for the high (< 2.5 Å) and lower (> 2.5 Å) resolution.  

5.3.4. Effects at High and Medium-to-Low Resolution 

The selected combination of the DipScore thresholds does not affect the quality of the 

models built from high-resolution data (Figure 44). The median model completeness stays, 

although it varies more when DipSpace is activated. The median model correctness increases 

slightly and most of the test cases have a correctness higher than 95%, with a lower local r.m.s.d., 

a  χscore close to zero and a very low percentage of the Ramachandran outliers. More striking 
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results are obtained for the lower resolution set. The use of the DipSpace promoted a median 

increase of the model correctness of lower resolution models from approximately 60% to 90%, 

with a corresponding reduction of the Cα r.m.s.d. to the reference model, but also with a slight 

increase of the model completeness. The median χscore also improved drastically from about -10 to 

-5, with lower variation and a concurrent reduction in the percentage of the Ramachandran 

outliers. Another noticeable result is a considerable improvement in the docked sequence from 

about 50% to more than 90% in the lower resolution set, and the reduction of the all-atom r.m.s.d. 

(Figure 44). While DipSpace does not affect the sequence docking directly, the more correct 

tracing of the main-chain is essential for the sequence docking, which can be explained by the fact 

that the current ARP/wARP sequence docking is based on the location of the free atoms and on 

the density quality around Cα positions [162].  

5.3.5. An Extreme Test Case 

From the benchmark analysis, for one of the medium-to-low resolution test cases an extreme 

improvement was obtained when DipSpace was used with the selected thresholds: test case O 

(Table A.2). It has 100% sequence identity to the chicken C-Src kinase domain (PDB ID 2oiq). 

The reference model is an alpha-beta protein complex composed by two chains, A and B (Figure 

45a), each with about 300 residues, which was refined at a resolution of 2.1 Å. Here, the data 

extend to 2.9 Å resolution. Without the use of DipSpace the autobuilt model (Figure 45b) was 

highly fragmented, with an average fragment length of 6 residues, only 54% complete and with 

only 5.4% of the built residues identified as correct. DipCheck identified 5.3% of the residues in 

disallowed regions and 2.4% and 20.8% in generously allowed and allowed areas, respectively, 

classifying the overall model as disallowed given its χscore of -14.4. The use of DipSpace allowed 

the building of 82.2% of the model, with an average fragment size of 40 residues, a correctness of 

94% and an average r.m.s.d. of 0.5 Å to the Cα positions in the reference model (Figure 45c). 

Only two residues were now in the disallowed region of the DipSpace and 92.4% have a favoured 

DipScore. The χscore also improved considerably to -5.4. Although it is still disallowed, the 

improvement indicates that the geometry has become more favourable. 

The alignment of the autobuilt and the reference models showed three main regions with high 

r.m.s.d. (Figure 45d-h). The first one is the stretch between Glu275 and Cys277 (Figure 45d-f), in 

both A and B chains. In chain B, this region is not built, but in chain A it is modelled and was 

assigned to sequence, with Gly276 deviating by 1.5 Å from its reference position. When both the 

reference and the modelled molecules are checked against the density (Figure 45f) none of them 

fits perfectly but the automatically traced model seems to fit poorly and shows a poorer geometry. 

In the second region (Figure 45g), the automatically traced main-chain (and also side-chains) fit 

the electron density well.  
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FFigure 45 Test case O. (a) The reference model with two chains in the structure (PDB ID: 2oiq). (b) 

Automatically traced model without DipSpace. (c) Automatically traced model with DipSpace. (d) 

Alignment of the reference and the automatically traced models (with DipSpace activated). (e) Local Cα 

N.N.r.m.s.d between the reference and the automatically traced models. Orange lines correspond to the 

reference chain A and blue lines to chain B. Two black bars mark non-modelled regions where the electron 

density is absent. (f-g) Close up of the three regions with higher r.m.s.d., whose positions in the reference 

model are depicted in (e). The residues with the higher r.m.s.d. are marked in coloured bold. Orange 

corresponds to chain A and blue to chain B, darker colours to the automatically traced model and lighter 

colours to the reference model. Labels in italic correspond to the automatically traced model. 
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The third region (Figure 45h) is broken for chain A but modelled for chain B with a residue-

shift error. This region has four residues in the reference structure but was automatically traced 

with three residues only, resulting in a sequence mismatch. This region is characterised by 

somewhat broader density, which presumably confuses the main-chain tracing. One important 

observation about these three regions is that they are not equally represented in both chains: there 

is always a break in one of the chains that cannot be improved by the NCS-related parts. Also, 

there are two weak-density regions that are never built for both chains (Figure 45d-e).  

This is an extreme case in the benchmark demonstrating the potential of the DipSpace as a 

complement to the Ramachandran-like plot in ARP/wARP for building of lower resolution 

models. A deeper understanding of the effect of the DipSpace on the different stages of the model 

building process may provide means for further exploitation of its potential. It would be also 

interesting to further evaluate its effect on sequence docking.  

5.4. Eigenvalue-Based Identification of Side-Chains 

At medium-to-low resolution, the free atoms not accounted for main-chain building and 

representing the side-chains density are not necessarily placed close enough to the true atomic 

positions. More importantly, the number of such free atoms can differ from the true number of 

atoms in this part of the model (Figure 10b). Therefore, one-dimensional connectivity vectors 

used for side-chain docking are not powerful at this range of resolution. At this stage, ARP/wARP 

is faced with a mesh of k free atoms, which represents a density grid and the shape of the side-

chains density cluster. A possible alternative would be a description of topology of each amino 

acid directly by a set of density points. They can be seen as a three-dimensional graph with n 

points (with n > k) that can be mathematically treated to obtain information about the density 

shape. Distances between these points provide information about the conformation of the side- 

chain while their connectivity reveals the topology, independently on the conformation. The 

underlying idea is that a use of higher number of graph points (vertices) may compensate for the 

coordinate error in the position of each vertex. 

As overviewed in section 2.5, several matrices can be used to describe the shape of a 

molecule when we look at it as a graph. In the case of side-chain topology and electron density 

shape description, the 3-dimensional mesh is a simple, non-directional and finite graph and its 

connectivity can be described by a symmetric squared adjacency (0,1)-matrix with zeros on its 

diagonal. Given that the eigenvalue spectra of such matrices are widely used to study the 

properties of graphs (e.g., isomorphism) [241], the eigenspectra of density meshes could 

potentially be applied for the derivation of a fingerprint for each side-chain topology at a given 

resolution range.  The concept behind the proposed approach is shown in Figure 46. A given side-

chain density cluster would be first represented as a mesh of n density points, whose connectivity 
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is stored in an adjacency matrix. The eigen-decomposition of the adjacency matrix provides a set 

of n real eigenvalues; with i zero eigenvalues (corresponding to the number of connected clusters) 

and n-i non-zero eigenvalues. By comparing the number and the magnitude of the non-zero 

eigenvalues with other density clusters, a sequence identity could be given to it. The application of 

this concept for the differentiation between different density clusters corresponding to different 

side-chains at medium resolution was investigated, by calculating the eigenspectra of adjacency 

matrices for a few different side-chain topologies in a given protein model. The preliminary 

results obtained are described in the next sections. 

 
FFigure 46 The concept of the proposed new method for side-chain identification and sequence 

docking with ARP/wARP.  

5.4.1. Test Case Selection and Eigenspectra Computation 

The crystallographic model of Leishmania major leishmanolysin (PDB ID 1lml) was re-

refined with REFMAC5 [122] using default settings and cutting the highest resolution limit to 2.0 

Å. The density clusters of four side-chains with different topologies and distinct shapes were 

investigated: (1) tryptophan, characterised by a large and bulky density cluster; (2) valine, having 

a small density cluster; (3) asparagine, similar to valine but longer; and (4) arginine, a long and 

flexible side-chain that can show density clusters with a wide range of shapes.  

To obtain the density cluster for a given side-chain, a sphere of a given radius (r; different for 

different side-chains) was centred in a middle position, defined as the central atom in the side-

chain or the average position between the two most central atoms of the side-chain in real space. 

The density inside this sphere was selected using ARP/wARP mapplus. While for tryptophans, 

valines and asparagines only one sphere (r = 3.0 Å, 2.0 Å and 2.5 Å, respectively) was enough to 

obtain its density cluster without the interference of the surroundings, in the case of arginine its 

long chain had to be broken into two fragments at its Cδ-Cε bond and the process repeated for 

both fragments (as shown in Figure 47).  
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FFigure 47 Side-chain density extraction and mesh representation for (a) Trp437 and (b) Arg127 from 

the 2.0 Å resolution model of leishmanolysin. 

The obtained side-chain density clusters were then represented as a mesh of free atoms with 

the ARP/wARP mapread routine. Those with the density below 0.6 e/Å3 above the mean were 

excluded. The adjacency matrix of the collected mesh was computed and its eigenvalue spectra 

calculated. Two mesh points were marked as adjacent if the distance between them was less than 

2.0 Å (Figure 48a). A total of 5 tryptophans, 10 valines, 5 asparagines and 7 arginines were 

analysed. For each mesh, the number of non-zero (non-null) and total eigenvalues, the magnitude 

of the largest and the smallest eigenvalues as well as the spectral gap and chromatic number 

(section 2.5.1) were compared. As one would expect, some of the variations observed for the 

largest and the smallest eigenvalues, the spectral gap and the chromatic number are affected by 

the total number of nodes in the graph and vary due to the different quality of the density clusters; 

these were normalised by dividing their values by the total number of points in the mesh. In order 

to assess if there are significant differences between different side-chain meshes, two-sided t-tests 

were carried out for the difference in the means (H0: the means are equal; H1: the means are 

different), as implemented in the t.test R function [233].  

5.4.2. Side-Chain Mesh Representation and Eigenvalue Spectra 

The results obtained are summarised in Figure 48 and Table B.11-16. Meshes describing the 

density clusters of larger residues are on average composed by a larger number of points (Figure 

48b). These meshes have as many eigenvalues as the number of points (Figure 48c). Therefore, 

their adjacency matrix has its maximum rank. The largest eigenvalue (λ1), related to the meshes 

average degree [241], [242], is also always higher for larger side-chains (Figure 48d). It is, for any 

side-chain, always smaller than the number of nodes, meaning that the mesh is not a complete 

graph but a regular graph where not all nodes are connected to all others.  
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FFigure 48 Eigenspectra of side-chain electron density meshes. (a) Two-dimensional projection of the 

side-chain mesh computed for leishmanolysin Trp7, depicting the maximum distance two mesh-points 

should have in between to be considered adjacent. (b-i) Average, and respective standard deviation in 

parentheses,  (b) number of nodes (n), (c) number of nodes over the number of non-null eigenvalues (n/nø), 

(d) largest (λ1) and (e) normalised largest (λ1/n) eigenvalue, (f) smallest (λn) and (g) normalised smallest 

(λn/n) eigenvalue, (h) normalised spectral gap ((λ1-λ2)/n) and normalised chromatic number (χ(G)/n).   

While large side-chains (tryptophans and arginines) have a λ1 significantly larger than small 

side-chains (asparagines and valines), the same is not observed within each group (Table B.12). 

This is resolved by dividing the largest eigenvalue by the total number of mesh points (Figure 48e 

and Table B.14), providing also an estimate of the average percentage of mesh points that are 

adjacent to each other (Table B.11). On average, each mesh point in a tryptophan density cluster is 

adjacent to about 40% of mesh points, while in arginines this increases to 45%. In asparagines 

each mesh point is adjacent to about 60% of the points and in valines to about 70%. The spectral 

gap, related to the connectivity of the mesh [241], [242] is approximately the same for each side-

chain mesh (12 to 14). This means that all meshes are highly connected, without any disconnected 
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set of mesh points. The normalisation by the number of points shows the proportion of mesh 

points that would be disconnected by the removal of the edges and increases the difference 

between the different side-chains (Figure 48h). As one would expect, a higher proportion of mesh 

points would be disconnected for smaller side-chains, with valines and asparagines separated with 

a confidence level of 99% (Table B.16).  

The smallest eigenvalue (λn) also has a higher value for larger side-chains, almost without 

any variation for tryptophans (Figure 48f and Table B.11). This eigenvalue relates to the 

bipartiteness of the mesh [241], [242] and, as !" � !�  for all side-chains, none of them 

represents a bipartite graph: none of them can be divided into two different sets of edges without 

the removal of edges. The variation observed due to the variation in the number of mesh points 

does not allow the separation of different side-chain meshes with approximately the same size 

(Table B.13) but the normalisation by the number of points does (Figure 48g and Table B.14). The 

ratio between the largest and the smallest eigenvalue relates to the graph chromatic number by 

equation 52. As the spectral gap, it is of approximately the same value (about 6-7) for all side-

chain meshes. The normalisation by the number of points allowed a better separation of the 

different groups (large and small side-chains) but not of side-chains with approximately the same 

size (Table B.17).  

These preliminary results suggest that the eigenspectra of side-chain meshes, representing the 

shape of the electron density clusters, have a potential to be used as a fingerprint for the 

assignment of the protein sequence, with the normalised largest eigenvalue and spectral gap 

showing a stronger signal for the separation between the four different side-chains evaluated 

(Table B.14 and Table B.16). However, the population of side-chains tested was small and, 

therefore, the significance of the obtained results is yet to be proved. It would be of high interest 

to test this approach over a larger set of side-chains, and also to compare these results with those 

of the molecular graph representing the full topology of the side-chain and the same residue at 

different resolution ranges.  

5.5. Use of Energy Term For The Enhancement of Ligand Fitting 

In addition to the development and improvement of ARP/wARP protocols for the automated 

building of protein models, a short visit was made to the ‘ligands world’. This side project was 

preformed collaboratively with Dr. Daria Beshnova from the Lamzin group at the EMBL in 

Hamburg and was driven by the joint usage of validation tools and model building for the 

improvement of the quality of the small molecule models automatically built by ARP/wARP. 

Daria Beshnova implemented the method and preformed all calculations, while I contributed to 

the design of the method, the analysis and the interpretation of the results.  
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As described in section 1.3.4, a number of tools exist that provide means to study protein-

ligand interactions and MX is used as the main experimental technique for structural analysis. 

However, the methods for the automatic interpretation of the electron density representing the 

ligands are not as well developed as those for protein model building. Additionally, there is a 

consensus within the structural biology community that more attention should be devoted to the 

analysis of protein-ligand contacts and the interpretation of corresponding electron density before 

the structural model is deposited in the PDB. In particular, additional means for the validation of 

the built models are seen to be necessary [243]. 

The methods for ligand fitting and identification maximise a scoring function that takes into 

account the shape of the electron density in the ligand binding site. While this is an obvious 

approach to follow, chemically different ligands can have similar shape and, therefore, an 

incorrect ligand can be built by mistake. This is of higher importance during ligand guessing. One 

hypothesis is that by taking into account the environment in the binding site, ligand guess could be 

improved. Therefore, a novel approach, LigEnergy, for the evaluation of protein-ligand binding in 

MX was developed. It can be used either for the validation of the already built ligands or as a 

supplementary scoring function during the process of guessing the ligands and the evaluation of 

their fit to the electron density. The method is based on the estimation of the inter-molecular 

energy of the protein-ligand binding calculated as the sum of Van der Waals (VDW), H-bond and 

electrostatic interaction energy terms [244]. It offers a one-parameter estimation of the quality of 

protein-ligand models that allows the fast scanning of large databases and the identification of 

‘questionable’ structures. It also allows improving the identification and fitting of ligands into 

specified electron density with ARP/wARP, as described below. 

5.5.1. Test Case Selection 

In order to test weather the intermolecular energy of the observed binding mode can be used 

for the validation and detection of plausible or ‘questionable’ protein-ligand complexes, 100 

models were randomly selected from the PDB excluding covalently bound ligands. The ligand 

size varied from 10 to 50 atoms and the structures were solved at a maximum resolution between 

1.5 and 3.5 Å. Solvent molecules and ions were excluded. The model coordinates, 

crystallographic data and the RSCC values were obtained from the EDS [245]. The RSCC varied 

from 0.49 to 0.99, as reported by the server. The full list of PDB ID codes, 3-letter ligand 

identifiers, ligand size, maximum MX resolution and RSCC are provided in Table A.3. To test the 

approach for the identification of crystallographic ligands in a specified electron density cluster, 

three test cases (PDB IDs 1cx4, 2x4o and 2of1) were used where the ligand guess method 

implemented in ARP/wARP v.7.6 identified ligands incorrectly. 
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5.5.2. Inter-Molecular Energy Calculation and Protein-Ligand Complex 

Validation 

For all protein-ligand complexes considered, the energy of pair-wise atomic interactions (V) 

was computed using AutoDockTools, as described in [244] and given by equation 78: 
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(78) 

The first term corresponds to the 6/12 Lennard-Jones potential for the dispersion/repulsion 

interactions, with parameters A and B taken from the Amber force field [246]. The second term 

presents an H-bond energy estimated by a 10/12 potential [247]. The last term is the energy of 

electrostatic interactions, based on the Coulomb potential, with the distance-dependent dielectric 

constant ε(rij) [248]. The parameters C, D, ε(t) and optimised weights Wvdw, Whbond, Wele were 

calculated according to [244].  

The addition of hydrogen atoms and the assignment of partial charges to the ligand and the 

protein atoms are essential for the estimation of the hydrogen bonds and the electrostatic terms. 

Marsili-Gasteiger partial charges were calculated on the basis of electronegativity equilibration 

using the ‘partial equalization of orbital electronegativities’ method [249]–[251]. Since the 

positions of hydrogen atoms in structures obtained by X-ray techniques are not well defined, here 

we considered only polar hydrogen atoms, which are important for the H-bonding. After the polar 

hydrogen atoms were placed, the partial charges computed using AutoDockTools [252], [253].  

Given that larger ligands tend to have higher energy of interactions, with a linear correlation 

of 0.73 to the number of non-hydrogen atoms in the collected 100 ligands (Figure 49a), the 

calculated binding energy was normalised by the number of atoms in the ligand. This normalised 

energy was used further for the evaluation of the correctness of the ligand-binding mode, 

combined with the RSCC as an estimator of the overall fit of the model to the electron density. 

This was both used to validate the 100 protein-ligand complexes selected from the PDB but also 

to provide a final ranking of the 40 identified candidate compounds with ARP/wARP 7.6 ligand-

guess method for the three test cases. In the next release of ARP/wARP we intend to provide the 

assignment of partial charges and the addition of hydrogen atoms using local geometry [254] and 

the estimation of the protein-ligand interaction energy with equation 78. 

5.5.3. Energetic Validation of Deposited Models 

The normalised intermolecular energy computed for the test set of 100 protein-ligand 

complexes has a bell-shaped distribution (Figure 49b). The majority of the models show negative 

interaction energy, below -0.15 kcal/mol per atom, and a good fit to the density (RSCC ≥ 0.85). 

Five of them (PDB ID: 4dma, 4dt2, 4gcq, 4dkp, 3sgy) show an RSCC between 0.71 and 0.80 and 
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their detailed visual inspection didn’t reveal any unusual contacts between the ligand and protein 

atoms. Two cases (with RSCC of 0.95 and 0.49, respectively), however, showed positive or close 

to zero interatomic energy values (Figure 49b and Figure 50). These two models were, therefore, 

classified as ‘questionable’ and were considered in more detail. 

 
FFigure 49 Estimated intermolecular energy of 100 randomly selected protein-ligand complexes from 

the PDB. (a) Correlation between the number of non-hydrogen atoms in the ligand and the overall protein-

ligand interaction energy.  Two outliers with positive intermolecular energy were excluded. (b) Distribution 

of the estimated intermolecular energy per atom.   

The first complex (PDB ID 3ue8) is that of the human kynurenine aminotransferase II and 

the 09M1 ligand, regarded as a strong inhibitor of this enzyme and as a putative drug for the 

treatment of schizophrenia [255]. The ligand associated with chain A fits well into the electron 

density, with an RSCC of 0.95. However, its intermolecular energy is positive, 0.93 kcal/mol per 

atom, as a result of an unfavourable VDW contact (2.1 Å) between the O7 atom in the ligand 

phosphate group and the hydroxyl group of Tyr74B (Figure 50a). Some rotation of this phosphate 

group around its O3-P bond could eliminate this clash. The second ligand molecule (in chain B) 

looks unproblematic with good interaction energy of -0.42 kcal/mol per atom and RSCC of 0.94.  

The second complex is between the Pseudomonas aeroginosa ceramidase and C2-ceramide 

(PDB ID: 2zxc) [256]; it has an unfavourable interaction energy close to zero, 0.07 kcal/mol per 

atom. The modelled ligand, associated with chain A, has poor electron density support, with an 

RSCC of 0.49, and several unfavourable contacts (Figure 50b): 2.6 Å distance from its C4 atom to 

the Ser334A CB atom and to the N atom of Thr335A. The second ligand, associated with chain B, 

also has positive interaction energy and low RSCC of 0.41. 

While the overall normalised intermolecular energy per atom allows the detection of 

‘questionable’ structures - those with non-negative values of the overall protein-ligand interaction 
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energy - the inspection of energies for each individual atom in the ligand can also be informative. 

For example, the complex between the Drosophila class III PI3-kinase VPS34 and the 0932 ligand 

[257] (PDB id 2x6j) has an overall energy of -0.15 kcal/mol per atom. However, its chlorine atom 

has a highly positive intermolecular energy of 4.9 kcal/mol, while all the other ligand atoms have 

their energies within the 0.0 to -0.7 kcal/mol range. The reason is a close contact (2.4 Å) between 

the chlorine and the amino group of the Lys698A side-chain (Table B.18). The majority of the 

described problems can be corrected with modern refinement tools. For example, a re-refinement 

of these three models using the PDB-REDO server [258] improved their geometry and eliminated 

the interatomic clashes, reducing the computed energies to -0.4 kcal/mol per atom too.

 
FFigure 50 The binding site of the deposited models of (a) human kynurenine aminotransferase II in 

complex with 09M (2mFo-mFc map contoured at 1.4σ above the mean (0.28 e/Å3) in blue mesh) and (b) 

Pseudomonas aeruginosa ceramidase in complex with C2-ceramide (2mFo-mFc map contoured at 0.9σ 

above the mean (0.28 e/Å3) in blue mesh). The red dotted lines and the elliptical shape indicate problematic 

contacts. Grey dashed lines point to favourable interatomic interactions.   

5.5.4. Enhanced Ligand Rebuilding and Fitting 

Further investigations were carried out to test weather the intermolecular energy can be used 

to rank and identify the correct ligand in a given binding site with ARP/wARP, using therefore 

equation 78 as a second scoring function in addition to the RSCC. Three test cases where the 

ARP/wARP ligand guessing method was unable to detect the correct ligand were used (Figure 

51). The first case is the complex between the mutant of the type II beta regulatory subunit of the 

murine cAMP-dependent protein kinase and adenosine-3',5'-cyclic-monophosphate (CMP) 

(PDBID 1cx4) [259]. The ligand-guessing protocol identified adenosine-5’-diphosphate (ADP) as 

the most likely binder for this enzyme (Table B.19), a structurally similar molecule to the correct 

ligand. However, this is not the most energetically favoured ligand (Table B.19). By using the 

LigEnergy approach, the ligand with the best interaction energy (-0.36 kcal/mol per atom) was 

indeed CMP, the deposited ligand (Figure 51a and Table B.19).  
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FFigure 51 Ligand-guessing without (orange) and with (blue) the use of the estimated binding energy 

as an additional scoring function. Superposition between the two identified ligands for (a) the cAMP-

dependent protein kinase (PDB ID 1cx4; 2mFo-mFc map contoured at 2.5 σ above the mean (0.14 e/Å3) in 

blue mesh), (b) the complex of MHC class I HLA-A2.1 and HIV-1 envelope peptide ENV120-128 (PDB ID 

2x4o; 2mFo-mFc map contoured at 3.6 σ above the mean (0.25 e/Å3) in blue mesh) and (c) Staphylococcal 

nuclease variant truncated Delta+PHS I92W (PDB ID 2of1; 2mFo-mFc map contoured at 2.5 σ above the 

mean (0.21 e/Å3) in blue mesh). Dashed grey lines indicate favourable contacts.   

The second case is the complex between 2-(N-morpholino)-ethanesulfonic acid (MES) and 

the complex of MHC class I HLA-A2.1 with the HIV-1 envelope peptide ENV120-128 (PDB ID 

2x4o) [260]. The ligand-guess method identified biotin (BTN) as the most likely binder (Figure 

51b) but, according to LigEnergy (Table B.20), MES was identified instead as the best interacting 

ligand with an energy of -0.21 kcal/mol per atom. This is due to the presence of hydrogen bonds 

and electrostatic interactions formed between MES and the protein residues, which are absent in 

biotin (Figure 51b). Another indication that biotin is perhaps not the right ligand is the formation 

of several close contacts between the ligand atoms as a result of its fit into the insufficiently large 

density cluster. 

The third test case is the complex between thymidine-3',5'-diphosphate (THP) and the 

Staphylococcal nuclease variant Delta+PHS I92W (PDBID 2of1). The ligand-guessing method 

suggested adenosine-3’,5’-diphosphate (A3P) as the compound with the highest shape similarity 

to the selected protein binding site and the highest RSCC (Figure 51c and Table B.22). Using the 
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LigEnergy approach, A3P became second in the ranking and THP, the correct ligand, was 

identified instead, with the interaction energy of -0.28 kcal/mol per atom (Figure 51c and Table 

B.22). This result is particularly encouraging since THP and A3P are structurally very similar.  

5.6. Concluding Remarks 

In the beginning of this chapter, it was indicated that there are a number of areas where the 

improvement of the automated building of MX protein models by ARP/wARP could be 

attempted. The appropriate geometrisation of the identified putative dipeptide units in ARP/wARP 

proved beneficial and as from version 7.5, four rounds of geometrisation have been implemented. 

This improved the number of correctly built residues (more 15-20% on average), both for high- 

and for low-resolution cases. Further advances were obtained by complementing the 

Ramachandran-like plot with the DipSpace validation method during the protein auto-tracing step. 

Remarkable results were obtained for the test cases at a resolution lower than 2.5 Å. In this study 

only the final quality of the final model was addressed, as it is indeed the result the user aims to 

achieve, but the analysis of how the DipSpace mode and the different thresholds affect the model 

building run at each cycle and round, will most likely provide good insights for further 

improvement of the method.  

Novel approaches for the interpretation of side-chain density clusters may supersede the 

connectivity vectors currently used for sequence docking. The preliminary results indicate that the 

normalised largest eigenvalue and the spectral gap of adjacency matrices allow for the 

discrimination between the different side-chains. Further tests are required at different resolutions 

for all residue types. 

The use of a simple function to estimate the intermolecular energy of ligand binding pointed 

to problematic areas in already deposited ligand structures, and helped improve the automated 

guessing of ligand identity in a binding site. The results demonstrate that indeed the estimated 

energy of intermolecular interaction can serve as an additional scoring parameter for the 

identification of the most likely ligand for a selected site in a given protein model and that 

LigEnergy method has the potential for the improvement of a ligand-guessing protocol during the 

automated identification of ligands. Its use is appropriate at the final stage of ligand ranking, 

although in combination with other measures like the RSCC it may also be beneficial during the 

earlier stages. The joint use of the shape similarity between the ligand and the density cluster with 

the estimated intermolecular energy increases the chances of automatically identifying the most 

likely ligand representing the unknown binder. While the RSCC may not be sufficient, the energy 

should not be used by itself either, and these two important parameters should better be used 

together.  
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Chapter 6 

Conclusions and Outlook 

 

 

The aim of this project was the development of tools and computational methodologies for 

the improvement and validation of automated model building and the interpretation of MX 

electron density map at medium-to-low resolution. The main achievement was the development of 

the novel descriptor DipSpace and the associated DipScore. Complementing the Ramachandran-

like plot with the DipSpace and eliminating dipeptide units and fragment links with low DipScore, 

proved to be a promising route to follow for the improvement of the geometry of the 

automatically traced models with ARP/wARP. The fact that at medium-to-lower resolution there 

are cases that could only be built if the DipSpace is employed is an indicator that the DipSpace is 

indeed a useful addition for the automated interpretation of electron density maps. In combination 

with improved geometrisation of candidate dipeptide units, ARP/wARP is now able to build better 

models than four years ago. 

The DipSpace presents a new way of looking at the protein main-chain conformational space 

and has a potential to be used in structural biology hands-in-hands with the Ramachandran plot. 

Angles by themselves are independent on the scale and, therefore, one can design a dipeptide unit 

with perfect angular geometry but with interatomic distances that do not make sense from a 

chemical point of view. Therefore, tools that take into account the known distributions of bond 

distances are needed to better validate protein models. The DipSpace presents distance 

information in a unified three-dimensional Euclidean conformational space, which has a great 

potential for validation of protein models. The DipSpace is based on a representation of protein 

main-chain to a set of trans-peptide planes connected at the Cα positions that can be defined by 

Cα and oxygen atoms. Accounting for the coordinate error and the variation of the interatomic 

distances, it accounts for the natural variation observed in trans-peptide planes (Figure 22). This 

system allows then the faster rendering of the protein main-chain (due to the reduced number of 

points) but still includes all important geometrical information.   

Due to their rare occurrence, cis-peptides were not considered, but their location in the 

DipSpace would be interesting to evaluate in the future. They would most likely not change the 

main DipSpace axes but given their different fixed distances they would most likely populate a 
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different volume of the DipSpace. Additionally, as discussed in 3.3, the DipSpace does not 

discriminate between different amino acids. While this can certainly be considered for specific 

cases, such generality allows the application of DipSpace during early stages of model building, 

before any sequence space is considered. The DipSpace is thus a representation of all possible 

main-chain conformations and their frequency, independently on the residue type.  

These features of the DipSpace and the uniform noise model used makes all residue types to 

be scored with the same weight, without taking into account the effect of the side-chains in the 

main-chain geometry and discarding all residues in the cis- conformation. The computation and 

proper weighting of the DipSpace coordinates of different residues and noise could provide a way 

to improve the validation of protein models already deposited, but should not be used during the 

automated building of protein models where the residue identity of a given Cα position is still not 

known and would most likely affect the identification of the correct main-chain paths.  

Overall, the DipScore is a powerful measure of the dipeptide unit conformation, providing a 

likelihood of belonging to the same population as present in the PDB. The method can be used for 

the validation of a protein model obtained with any Structural Biology technique as long as main-

chain Cα and carbonyl oxygen atoms are present in the model. This includes MX models, but also 

NMR model ensemblies, high-resolution EM models and structures obtained using ab initio or 

homology modelling. The DipCheck tool will be freely available to the scientific community via 

its dedicated web service. It is also offered to the PDBe as an additional validation tool. A recent 

collaboration with the group of Dr. Igor Barsukov from the University of Liverpool is formed to 

develop DipCheck to deal properly with NMR protein models and to provide information that 

may help the modelling and the analysis of NMR ensembles, alongside with other validation 

tools, e.g. Procheck-NMR [261] and MolProbity [39].  

The application of the distance-geometry approach to the derivation of a protein main-chain 

conformational space opens doors for the development of other protein main-chain 

conformational spaces. One space to study could be that of the full-atom protein main chain, 

where instead of using the Cα and main-chain oxygen atom positions to represent dipeptide units, 

all main-chain atoms are taken into account, excluding then the simplified view of the peptide 

plane. The Euclidian space of the dipeptide units composed of 9 atoms may have properties 

similar to that presented in this thesis. This space could also be useful for the validation of protein 

models, but less likely for the automated model building of protein models. A very intriguing 

direction would be the construction of a conformational space for Cα-only protein models. The 

elaboration of the distance-geometry approach used in this thesis may allow the identification of a 

three-dimensional conformational space that may be of use for the validation of low-resolution 

EM models and the automated building of protein models in the low-resolution MX electron 

density maps.  
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Who says ‘main-chain conformational space’ can also say ‘side-chain conformational and 

topological space’. An approach similar to the one described in this thesis was already used for the 

description of small molecule conformation and implemented for the fitting and guessing of 

ligands in known electron density clusters [166]; in the same way it can be applied to the 

description of side-chain conformational space and ligand fingerprinting. A representation of side-

chain density clusters as a mesh of points, placed either regularly or in the density peaks, together 

with the eigenspectra of their adjacency matrices have a good potential for side-chain 

fingerprinting. It could also make the identification of side-chain density more reliable, providing 

the possibility to increase the chances of the loop extension modules to extend fragmented protein 

models, and therefore enhance the model building procedure, particularly at lower resolution. 
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Appendix A �

Test Cases 
 

 

Table A.1 The ARP/wARP web service user test cases (as of September 2014) and reference 

structures used for the determination of the optimum number of geometrisation rounds during automated 

protein model building. A dashed line divides the high resolution (<2.5 Å) from the lower (medium) 

resolution (>2.5 Å) structures. 

Test case Resolution (Å) No. residues NCS operators Reference structure 

A 1.2 91 1 1GXT 

B 1.5 744 2 3TJ4 

C 1.6 152 1 3TOW 

D 1.6 298 1 1H01 

E 1.7 318 1 2REI 

F 1.9 122 1 1H6M 

G 1.9 241 1 1H2H 

H 2.0 154 2 3ZXC 

I 2.1 260 2 3OSF 

J 2.2 852 2 3QPF 

K 2.5 129 1 1AT6 

L 2.7 424 1 3SZY 

M 2.8 561 1 2XCV 

N 2.8 332 2 4AKM 

O 2.8 930 4 3MEL 

P 2.8 339 1 4AV8 

Q 2.9 652 2 2OIQ 

R 2.9 240 1 3KWY 

S 3.0 339 1 4EXV 

T 3.0 154 2 3ZXC 

U 3.3 339 1 4AV8 

V 3.7 347 1 3ZH9 
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Table A.3 The full list of PDB ID codes, 3-letter ligand identifiers, ligand size, resolution of the X-

ray data and real-space correlation coefficients (RSCC) for 100 protein-ligand structures used in a this work 

(continues). 

PDBID Resolution Ligand 
identifier 

Number 
of atoms  

Intermolecular 
energy 

(kcal/mol per atom) 
RSCC 

1j4r 1.80 001 45 -0.24 0.93 

2fjn 2.20 073 43 -0.40 0.95 

2jfz 1.86 003 33 -0.33 0.91 

2pjl 2.30 047 25 -0.51 0.92 

2x6i 3.40 090 26 -0.32 0.92 

2x6j 3.50 093 24 -0.15 0.90 

2xyw 3.14 08S 34 -0.38 0.94 

2zxc 2.20 2ED 13 0.07 0.49 

3ckr 2.70 009 45 -0.28 0.87 

3ik3 1.90 0LI 39 -0.43 0.91 

3r2b 2.90 05B 30 -0.29 0.92 

3rcd 3.21 03P 38 -0.30 0.95 

3roa 2.30 06V 28 -0.37 0.90 

3sgy 2.60 06W 28 -0.35 0.80 

3ske 1.97 054 35 -0.27 0.98 

3skh 2.50 058 27 -0.31 0.94 

3tgs 2.70 03G 23 -0.37 0.96 

3tjc 2.40 0TP 26 -0.33 0.92 

3twj 2.90 07R 23 -0.24 0.94 

3ty0 2.00 082 36 -0.34 0.86 

3tym 2.00 08R 27 -0.26 0.94 

3u4o 1.77 08E 28 -0.32 0.96 

3ue8 3.22 09M 28 0.93 0.95 

3unz 2.80 0BZ 24 -0.36 0.97 

3uoh 2.80 0C4 24 -0.41 0.97 

3uok 2.95 0C6 25 -0.35 0.97 

3uol 2.40 0C7 26 -0.32 0.96 

3utd 1.70 0CJ 15 -0.46 0.99 

3uuo 2.11 0CV 23 -0.32 0.91 

3uuz 2.10 0CB 38 -0.29 0.92 

3uv3 1.60 0CM 13 -0.46 0.99 
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Table A.3   The full list of PDB ID codes, 3-letter ligand identifiers, ligand size, resolution of the X-

ray data and real-space correlation coefficients (RSCC) for 100 protein-ligand structures used in a this work 

(cont.). 

PDBID Resolution Ligand 
identifier 

Number 
of atoms  

Intermolecular 
energy 

(kcal/mol per atom) 
RSCC 

3uv6 1.70 0CH 14 -0.49 0.97 

3uv7 1.60 0CN 13 -0.50 0.98 

3uwk 1.91 0DF 17 -0.48 0.95 

3uwo 1.70 0DJ 20 -0.46 0.96 

3uz5 1.90 0CU 11 -0.47 0.95 

3v1s 2.33 0LH 12 -0.58 0.98 

3v5j 2.59 0F2 32 -0.33 0.96 

3v5l 1.86 0G1 31 -0.36 0.95 

3v7t 2.09 0GX 30 -0.39 0.97 

3v8s 2.29 0HD 21 -0.42 0.97 

3v8w 2.27 0G2 29 -0.32 0.96 

4d7o 1.78 0GD 25 -0.24 0.94 

4d8z 2.20 0J2 19 -0.24 0.89 

4d9m 2.50 0JO 21 -0.38 0.95 

4daf 2.50 0J4 18 -0.34 0.91 

4daj 3.40 0HK 26 -0.39 0.98 

4dce 2.03 0JF 36 -0.35 0.89 

4ddl 2.07 0JQ 31 -0.26 0.89 

4dhf 2.80 0K6 33 -0.25 0.91 

4di2 2.00 0K9 42 -0.34 0.94 

4djw 1.90 0KP 26 -0.37 0.90 

4djy 1.86 0KR 26 -0.41 0.97 

4dk7 2.45 0KS 27 -0.29 0.85 

4dk8 2.75 0KT 32 -0.37 0.89 

4dkp 1.80 0LL 24 -0.30 0.80 

4dkr 1.80 0LJ 27 -0.29 0.91 

4dma 2.30 0L8 21 -0.43 0.71 

4dt2 2.70 0LV 13 -0.19 0.74 

4dvw 2.20 0M4 23 -0.4 0.95 

4dya 2.75 0MF 39 -0.29 0.95 

4dyp 2.82 0MS 29 -0.35 0.95 
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Table A.3   The full list of PDB ID codes, 3-letter ligand identifiers, ligand size, resolution of the X-

ray data and real-space correlation coefficients (RSCC) for 100 protein-ligand structures used in a this work 

(cont.). 

PDBID Resolution Ligand 
identifier 

Number 
of atoms  

Intermolecular 
energy 

(kcal/mol per atom) 
RSCC 

4e4n 1.90 0NL 25 -0.36 0.96 

4e6q 1.95 0NV 25 -0.34 0.95 

4eb3 1.90 0O3 15 -0.34 0.96 

4edz 2.00 0O5 28 -0.33 0.81 

4ee0 1.75 0O4 27 -0.30 0.88 

4ei4 2.22 0Q2 20 -0.37 0.96 

4eo6 1.79 0S2 27 -0.33 0.96 

4eo8 1.80 0S3 27 -0.33 0.95 

4ere 1.80 0R2 35 -0.31 0.82 

4erf 2.00 0R3 32 -0.29 0.85 

4f1q 2.80 0RZ 17 -0.38 0.81 

4fam 2.00 0SZ 22 -0.39 0.98 

4fcd 2.02 0T6 25 -0.32 0.94 

4fes 2.00 0T9 31 -0.36 0.94 

4ffg 2.30 0U8 22 -0.19 0.92 

4fic 2.50 0UL 16 -0.34 0.96 

4frs 1.70 0V6 25 -0.47 0.96 

4g0k 2.56 0VS 33 -0.20 0.88 

4g2l 3.00 0WL 27 -0.32 0.94 

4gcq 2.20 0JM 26 -0.29 0.76 

4gdy 2.89 0X1 37 -0.35 0.96 

4ge4 2.41 0KE 30 -0.47 0.97 

4geb 2.15 0LD 33 -0.39 0.96 

4gid 2.00 0GH 47 -0.43 0.94 

4gj5 2.40 0LR 24 -0.50 0.96 

4gj7 2.80 0LT 33 -0.43 0.94 

4gja 2.60 0M3 34 -0.43 0.95 

4gjb 2.75 0ME 24 -0.46 0.97 

4gjc 2.40 0MJ 35 -0.43 0.94 

4gjd 2.65 0N0 41 -0.42 0.98 
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Table A.3   The full list of PDB ID codes, 3-letter ligand identifiers, ligand size, resolution of the X-

ray data and real-space correlation coefficients (RSCC) for 100 protein-ligand structures used in a this 

work. 

PDBID Resolution Ligand 
identifier 

Number 
of atoms  

Intermolecular 
energy 

(kcal/mol per atom) 
RSCC 

4gqs 2.87 0XV 21 -0.31 0.95 

4gsy 1.71 0Y5 36 -0.31 0.97 

4hbm 1.90 0Y7 30 -0.40 0.94 

4j4b 1.90 0TF 18 -0.53 0.89 

4jqc 2.80 0WE 28 -0.34 0.92 

4r09 2.62 06S 48 -0.18 0.94 

4tkg 1.95 09L 32 -0.44 0.88 

5c5p 1.75 0E0 20 -0.47 0.95 
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Supplementary Result Tables 

 

Table B.1 Parameters of the Gaussian functions describing the distribution of the three fixed 

distances and the ω dihedral angle in trans-peptide units. µ, the mean (in Å); σ, the standard deviation; ν, the 

mixing proportion. 

 Cαi-Oi Cαi- Cαi+1 Oi-Cαi+1 ω 

Major Gaussian Function  

µ 2.399 3.808 2.774 179.4 

σ 0.010 0.017 0.033 2.6 

ν 0.64 0.63 0.77 0.56 

Minor Gaussian Function  

µ 2.398 3.812 2.775 179.2 

σ 0.026 0.034 0.062 7.4 

ν 0.36 0.36 0.23 0.44 

 

Table B.2 Linear correlation coefficients (r) between the square-root of the absolute values of the 

four negative eigenvalues of Euclidean matrices and the variable distances (in Å) as well as between their 

absolute values and the three principal components of the xyz variance-covariance matrices (Dci) of 5-atom 

dipeptide units (in Å2). 

 �� �� �� �� 

Variable distances 

Cαi-1-Oi -0.297 0.864 -0.666 -0.259 

Oi-1-Oi 0.808 -0.297 0.420 -0.058 

Cαi-1-Cαi+1 0.889 -0.905 0.705 -0.077 

Oi-1-Cαi+1 0.958 -0.580 0.528 -0.423 

 λ1 λ2 λ3 λ4 

Dipeptide unit principal components (Dci) 

Dc1 1.000 -0.666 0.573 -0.161 

Dc2 -0.586 0.941 -0.657 -0.434 

Dc3 -0.705 0.216 -0.085 0.188 

Rg2 0.980 -0.533 0.525 -0.304 
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Table B.3 Average moments and associated standard deviation (in parenthesis) of the DipScore 

distributions computed for the set of 538 chains (all chains) and for the different subsets representing 

different SCOPe fold classes. 

 N Average 
(m1) 

Variance 
(m2) 

Skewness 
(m3) 

Kurtosis 
(m4) 

All chains 538 0.91 (0.02) 0.027 (0.009) -2.9 (0.5) 9 (5) 

All alpha 92 0.92 (0.02) 0.026 (0.008) -3.1 (0.6) 11 (5) 

All beta 112 0.90 (0.02) 0.028 (0.009) -2.8 (0.4) 8 (4) 

α/β 221 0.91 (0.02) 0.028 (0.009) -2.9 (0.4) 9 (3) 

α+β 85 0.91 (0.02) 0.026 (0.008) -3.0 (0.5) 10 (4) 

Coiled coil 4 0.98 (0.01) 0.008 (0.007) -5.3 (2.1) 33 (23) 
 

 

 

Table B.4 Median moments and associated median absolute deviation (MADe; in parenthesis) of the 

DipScore distributions computed for the set of 538 chains (all chains) and for the different subsets 

representing different SCOPe fold classes. 

 N Average 
(m1) 

Variance 
(m2) 

Skewness 
(m3) 

Kurtosis 
(m4) 

All chains 538 0.91 (0.02) 0.026 (0.007) -2.9 (0.4) 9 (3) 

All alpha 92 0.92 (0.02) 0.025 (0.008) -3.1 (0.5) 10 (4) 

All beta 112 0.90 (0.01) 0.028 (0.007) -2.7 (0.3) 8 (2) 

α/β 221 0.91 (0.01) 0.026 (0.006) -2.9 (0.4) 8 (3) 

α+β 85 0.91 (0.01) 0.026 (0.007) -2.9 (0.4) 9 (3) 

Coiled coil 4 0.97 (0.01) 0.009 (0.006) -5.2 (1.8) 28 (15) 

 

 

Table B.5 p-values resulting from the two-sided student t-test for the comparison between the mean 

average (m1) DipScore for each set (H0: the means are equal; H1: the means are different). 

 All alpha All beta Mixed Coiled coil 

All chains 9.5 x 10-5 2.4 x 10-4 0.60 0.002 

All alpha - 4.8 x 10-9 5.2 x 10-5 0.002 

All beta - - 0.002 9.1 x 10-4 

Mixed - - - 0.002 
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Table B.6 p-values resulting from the two-sided student t-test for the comparison between the mean 

DipScore variance (m2) for each set (H0: the means are equal; H1: the means are different). 

 All alpha All beta Mixed Coiled coil 

All chains 0.05 0.26 0.63 0.01 

All alpha - 0.02 0.03 0.01 

All beta - - 0.45 0.008 

Mixed - - - 0.01 
 
 
 
 
Table B.7 p-values resulting from the two-sided student t-test for the comparison between the mean 

DipScore skewness (m3) for each set (H0: the means are equal; H1: the means are different). 

 All alpha All beta Mixed Coiled coil 

All chains 0.002 0.002 0.30 0.10 

All alpha - 3.0 x 10-6 3.6 x 10-4 0.12 

All beta - - 0.020 0.09 

Mixed - - - 0.10 
 
 
 
 
Table B.8 p-values resulting from the two-sided student t-test for the comparison between the mean 

DipScore kurtosis (m4) for each set (H0: the means are equal; H1: the means are different). 

 All alpha All beta Mixed Coiled coil 

All chains 0.01 0.02 0.19 0.12 

All alpha - 2.8 x 10-4 0.002 0.14 

All beta - - 0.15 0.11 

Mixed - - - 0.12 
 
 
 
 
Table B.9 Target values for the calculation of the Z-scores for the first four central moments of the 

DipScore distribution.  

 

 Average (m1) Variance (m2) Skewness (m3) Kurtosis (m4) 

µ 0.9002 0.02686 -2.916 8.998 

σ 0.0156 0.00717 0.410 3.128 
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Table B.10 Non proline/glycine Ramachandran-plot or DipSpace outliers for the MX model of the 

armadillo acyl-CoA-binding protein (ACBP)[236] (PDB ID 2fdq), out of a total of 231 residues evaluated. 

Residue φ, ψ, τ (°) 
Ramachandran  

status 
DipScore 

DipCheck  
status 

Ala9A -56.3, -75.7, 105.1 Outlier 0.036 Allowed 

Glu10A -39.3, -47.2, 110.0 Allowed 0.004 Outlier 

Val12A -37.2, -39.6, 113.7 Allowed 0.000 Outlier 

Lys16A -37.9, -29.4, 118.7 Outlier 0.773 Favored 

Asp22A -35.1, -40.6, 111.3 Allowed 0.000 Outlier 

Ile39A -33.8, 137.6, 115.3 Outlier 0.990 Favored 

Thr64A -40.3, 153.5, 113.1 Outlier 0.990 Favored 

Ala20B -39.2, 157.9, 111.1 Outlier 0.984 Favored 

Asp22B -53.3, -75.8, 104.8 Outlier 0.001 Outlier 

Glu23B -32.1, -55.0, 111.3 Allowed 0.001 Outlier 

Phe26B -32.1, -54.1, 109.7 Allowed 0.001 Outlier 

Asp48B -66.3, 44.7, 108.6 Outlier 0.029 Gen. allowed 

Lys66B -29.0, -54.9, 106.7 Allowed 0.000 Outlier 

Tyr73B -47.7, -95.5, 108.7 Outlier 0.407 Favored 

Ile74B -28.0, -43.4, 110.5 Outlier 0.000 Outlier 

Ile27C -57.2, -74.8, 109.1 Outlier 0.121 Allowed 

Tyr28C -34.3, -72.8, 111.7 Outlier 0.005 Outlier 

Tyr31C -51.3, -29.8, 106.8 Favored 0.005 Outlier 

Gln33C -47.9, 2.1, 113.6 Outlier 0.857 Favored 

Lys52C -44.4, -34.8, 109.7 Favored 0.009 Outlier 

Gln60C -45.2, -31.1, 110.6 Allowed 0.004 Outlier 

Asp75C -36.0, -71.8, 107.3 Allowed 0.000 Outlier 
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Table B.11 Average, and associated standard deviation (in parenthesis), of the total number mesh 

points (n), normalised (λ1/n) and non-normalised (λ1) largest, normalised (λn/n) and non-normalised (λn) 

smallest eigenvalues, normalised spectral gap ((λ1-λ2)/n) and chromatic number (χ(G)/n) computed for the 

mesh representation of side-chains at 2.0 Å resolution. 

 N n λ1 λ1/n λn λn/n (λ1- λ2)/n χ(G)/n 

Tryptophan 5 89.0 
(7.7) 

36.0 
(2.0) 

0.41 
(0.02) 

-6.13 
(0.08) 

-0.07 
(0.01) 

0.15 
(0.02) 

0.009 
(0.001) 

Arginine 7 76.0 
(8.9) 

35.1 
(4.5) 

0.46 
(0.02) 

-6.30 
(0.90) 

-0.08 
(0.01) 

0.20 
(0.02) 

0.011 
(0.001) 

Asparagine 5 32.4 
(13.5) 

19.7 
(7.8) 

0.61 
(0.04) 

-3.77 
(1.02) 

-0.12 
(0.02) 

0.35 
(0.07) 

0.028 
(0.011) 

Valine 10 27.5 
(8.1) 

19.1 
(3.9) 

0.71 
(0.09) 

-3.59 
(0.42) 

-0.14 
(0.02) 

0.49 
(0.11) 

0.031 
(0.007) 

 
 
 
Table B.12 p-values resulting from the two-sided student t-test for the comparison between the mean 

side-chain mesh largest eigenvalue. 

 Arginine Asparagine Valine 

Tryptophan 0.65 0.008 5.2 x 10-8 

Arginine - 0.008 7.0 x 10-6 

Asparagine - - 0.88 
 
 
 
Table B.13 p-values resulting from the two-sided student t-test for the comparison between the mean 

side-chain mesh smallest eigenvalue. 

 Arginine Asparagine Valine 

Tryptophan 0.63 0.007 3.6 x 10-9 

Arginine - 0.002 8.4 x 10-5 

Asparagine - - 0.72 
 
 
 
Table B.14 p-values resulting from the two-sided student t-test for the comparison between the mean 

side-chain mesh normalised largest eigenvalue. 

 Arginine Asparagine Valine 

Tryptophan 8.2 x 10-4 3.5 x 10-5 7.5 x 10-7 

Arginine - 1.1 x 10-4 3.7 x 10-6 

Asparagine - - 0.007 
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Table B.15 p-values resulting from the two-sided student t-test for the comparison between the mean 

side-chain mesh normalised smallest eigenvalue. 

 Arginine Asparagine Valine 

Tryptophan 0.02 0.003 2.6 x 10-6 

Arginine - 0.008 1.9 x 10-5 

Asparagine - - 0.27 
 
 
 
 
 
 
 
 
 
Table B.16 p-values resulting from the two-sided student t-test for the comparison between the mean 

side-chain mesh normalised spectral gap. 

 Arginine Asparagine Valine 

Tryptophan 0.004 0.003 3.0 x 10-6 

Arginine - 0.008 1.2 x 10-5 

Asparagine - - 0.01 
 
 
 
 
 
 
 
 
 
Table B.17 p-values resulting from the two-sided student t-test for the comparison between the mean 

side-chain mesh normalised chromatic number. 

 Arginine Asparagine Valine 

Tryptophan 0.05 0.009 2.5 x 10-6 

Arginine - 0.01 2.7 x 10-6 

Asparagine - - 0.33 
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Table B.18 Individual energetic contribution computed for each atom in ligand 093 binding to the 

Drosophila class III PI3-kinase VPS34 (PDB ID 2x6j).  

Ligand atom 
VDW+H-bond+electrostatic energies 

(kcal/mol) 

CAF -0.21 

CAB -0.33 

CL 4.87 

CAC -0.42 

CAD -0.47 

CAG -0.32 

CAH -0.36 

CAI -0.34 

CAJ -0.49 

CAE -0.68 

NAK -0.61 

CAQ -0.35 

SAP -0.54 

NAR -0.37 

CAS -0.26 

OAL -0.44 

CAT -0.43 

SAN -0.03 

OAM -0.52 

OAO -0.40 

NAU -0.44 

CAV -0.16 

CAW -0.21 

OAX -0.11 
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Table B.19 The intermolecular energies calculated for the ligands identified by the ligand-guess 

method with the mutant of the type II beta regulatory subunit of cAMP-dependent protein kinase (PDB ID 

1cx4). 

Ligand 
identifier 

Number of 
atoms  

Ranking by shape 
similarity  RSCC Inter-molecular energy 

(kcal/mol per atom) 

CMP 22 9 0.88 -0.36 

LDA 16 16 0.83 -0.31 

5GP 24 15 0.92 -0.25 

P6G 19 7 0.85 -0.24 

AMP 23 1 0.82 -0.03 

SAM 27 4 0.88 0.10 

MYR 16 19 0.84 0.35 

RET 20 5 0.89 2.52 

OLA 20 12 0.75 5.41 

TYD 25 8 0.82 43.05 
 

 

 

Table B.20 The intermolecular energies calculated for ligands identified by the ligand-guess method 

with the complex of MHC class I HLA-A2.1 and HIV-1 envelope peptide ENV120-128 (PDB ID 2x4o). 

Ligand 
identifier 

Number of 
atoms 

Ranking by shape 
similarity RSCC Inter-molecular energy 

(kcal/mol per atom) 

MES 12 24 0.85 -0.21 

NHE 13 20 0.84 -0.19 

CXS 14 12 0.76 -0.17 

PG4 13 25 0.70 -0.16 

1PE 16 19 0.74 -0.15 

GSH 20 6 0.83 -0.13 

ADN 19 28 0.82 -0.13 

HC4 12 31 0.86 -0.07 

AKG 10 37 0.88 -0.04 

PLP 16 30 0.78 -0.01 
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Table B.22 The intermolecular energies calculated for ligands identified by ligand-guess method with 

the Staphylococcal nuclease variant truncated Delta+PHS I92W (PDB ID 2of1). 

Ligand 
identifier 

Number of 
atoms  

Ranking by shape 
similarity  RSCC Inter-molecular energy 

(kcal/mol per atom) 

THP 25 27 0.78 -0.28 

A3P 27 3 0.88 -0.22 

MYR 16 37 0.76 -0.21 

1PE 16 24 0.72 -0.17 

PEG 7 4 0.83 -0.15 

FPP 24 23 0.72 -0.15 

TAM 11 28 0.60 -0.15 

P6G 19 18 0.80 -0.07 

BCL 66 15 0.74 -0.01 

HEM 43 21 0.72 0.00 
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Supplementary Result Figures 

 
FFigure C.1 The three degrees of freedom of full atom trans dipeptide units. (a) Histogram showing 

their one-dimensional distribution on the collected set of dipeptide units, depicting the contribution of the 

structural preferences of the main-chain (helices and strands). (b) Their mapping on the sampled space.   

 

Figure C.2 The three degrees of freedom and the radius of gyration (Rg) of 5-atom trans dipeptide 

units. (a) Histogram showing their one-dimensional distribution on the collected set of dipeptide units, 

depicting the contribution of the structural preferences of the main-chain (helices and strands). (b) Their 

mapping on the sampled space.   
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FFigure C.3 The DipSpace coloured according to (a) the τ stretching angle, (b) the 

Ramachandran φ dihedral angle, and (c) the Ramachandran ψ dihedral angle.   
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FFigure C.4 Separating mirror imaged dipeptide units by a chirality measure. (a) The three 

different chirality measures tested and (b) the sampled space coloured according to them (Red: 

positive chirality; blue: negative chirality; light grey: close to achiral). (c) Principal components 

explained variance and (d) projections obtained when the distance-squared matrix eigenvalue 

dataset is separated into two (negative and positive chirality) according to each chiral measure and 

used for dimensionality reduction by PCA.  
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FFigure C.5 Heat maps describing the final model completeness and average fragment size for 

the (a) high resolution (< 2.5 Å) and (b) lower resolution sets (2.5-3.0 Å). A black circle marks the 

hmain/pept DipScore thresholds implemented in ARP/wARP 7.6.  

 
Figure C.6 Heat maps describing the final model correctness and Cα r.m.s.d. to the reference 

for the (a) high resolution (< 2.5 Å) and (b) lower resolution sets (2.5-3.0 Å). A black circle marks 

the hmain/pept DipScore thresholds implemented in ARP/wARP 7.6.  
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FFigure C.7 Heat maps describing the final model ChiScore and percentage of Ramachandran 

outliers for the (a) high resolution (< 2.5 Å) and (b) lower resolution sets (2.5-3.0 Å). A black 

circle marks the DipScore thresholds implemented in ARP/wARP 7.6.  

 
Figure C.8 Heat maps describing the final model percentage of correctly docked residues and 

all atom r.m.s.d. to the reference for the (a) high resolution (< 2.5 Å) and (b) lower resolution sets 

(2.5-3.0 Å). A black circle marks the DipScore thresholds implemented.  
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Legends of Supplementary Result Videos 

 

 

 

Video D.1  Conformational transition of the dipeptide units along the DipSpace pc1 axis, 

demonstrating their ‘extension’.  

 

Video D.2  Conformational transition of the dipeptide units along the DipSpace pc2 axis, 

demonstrating their ‘twist’.  

 

Video D.3  Conformational transition of the dipeptide units along the DipSpace pc3 axis, 

demonstrating their ‘bending’.  
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List of Hazardous Substances 
 

 

 

The presented work is purely theoretical. Therefore, no laboratory experiments were carried 

out and no hazardous, carcinogenic, mutagenic or toxic substances according to GHS were used. 
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