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This thesis consists of two seperate parts. Each part has a seperate introduction and

table of contents.

PART I: Log-geometric invariants of degenerations with a view toward symplectic

cohomology : the Tate curve

This part is my own work.

PART II: On the real locus in the Kato-Nakayama space of logarithmic spaces with

a view toward toric degenerations

This part is joint work with Bernd Siebert, which grew out from my MSc thesis

(2013) ”Lagrangian submanifolds in Kato-Nakayama spaces” that I pursued under his

supervision. There I had studied the topology of Kato-Nakayama spaces. In particular,

studied the Kato-Nakayama space over the central fiber of a toric degeneration of K3

surfaces and investigated the real locus Lagrangian in this set-up. Afterwards we

wanted to introduce the framework of real log schemes and then to generalize these

results to arbitrary dimensions. Bernd provided a draft for the first part on real log

schemes, in which I filled in some details and proofs and merged it together with the

results of my MSc thesis. He afterwards went through it and provided generalizations

for many of the results. Moreover, all discussions involving gluing data are contributed

by him.
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Introduction.

Based on a proposal by Mohammed Abouzaid and Bernd Siebert, we suggest an

algebraic geometric approach to the Fukaya category in terms of (log) Gromov-Witten

theory. Our aim is to understand the symplectic Fukaya category which involves La-

grangians and holomorphic disks and does not appear to be amenable to the refined

and computationally effective methods of algebraic geometry. Contrary to such expec-

tations we suggest that a version of log Gromov-Witten theory applied on a certain

algebraic-geometric degeneration of the symplectic manifold sometimes does this job.

We work in the set up of toric degenerations ([GS3]). We suggest that the Lagrangian

Floer theory of the general fiber of a toric degeneration is equivalent to the punctured

log Gromov-Witten theory of the central fiber. We work out this correspondence on

the easiest non-trivial example of a (Z-quotient of) a toric degeneration, the Tate

curve. The method in principle can however be applied to any variety with a toric

degeneration in the sense of the Gross-Siebert program [GS2].

The general fiber of the Tate curve is an elliptic curve and the central fiber is topo-

logically a pinched torus. To study the Lagrangian Floer theory of the elliptic curve we

look at the tropical Morse category introduced by Abouzaid, Gross and Siebert. The

idea is to approximate holomorphic disks between Lagrangians by structures arising

from combinatorial objects, so called tropical Morse trees. The equivalence of the Trop-

ical Morse category and the Fukaya category, for the elliptic curve has been worked out

by M. Gross in [C]. Roughly speaking, a tropical Morse tree is the tropical analogue

of the gradient flow tree in Morse theory. To be able to use enumerative techniques

of traditional tropical geometry we introduce objects which we call tropical corals and

show the correspondence between tropical Morse trees in S1 and tropical corals in the

truncated cone CS1 over S1 ([A]).

We then define algebraic geometric objects which we call log corals whose tropi-

calizations give tropical corals. These are stable log maps with some non-complete

components mapping to the central fiber of the ”degenerate” Tate curve, a product of

the affine line A1 with the central fiber of the Tate curve itself. We set up the counting

problems for tropical corals as well as log corals on a defined stable range. Our main

result is the following.

Theorem 0.1. (5.11)

Choosing incidence conditions in a certain stable range, the count of log corals is well-

defined (and each log coral in the count is unobstructed). Moreover, the number of

tropical corals agrees with the number of log corals.
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Then we show that log corals in the central fiber of the ”degeneration” of the Tate

curve actually correspond to certain ”punctured” stable log maps in the central fiber of

the Tate curve itself. Hence, at the end we have the following correspondences where

the ones with dashed lines are conjectural.

Lagrangian Floer Theory of the Tropical Morse trees

in S1

Tropical Corals

in CS1General fiber of the Tate curve

Log Gromov-Witten theory
on the central fiber of a
degeneration of the Tate curve

log Gromov-Witten theoryPunctured

on the central fiber of the Tate curve

Symplectic cohomology of the total space
of the Tate curve minus the central fiber

Log Gromov-Witten theory
on the total space of the Tate curve

[C]

A.

A.

A.

Thus, we arrive at a correspondence between the Lagrangian Floer theory of the general

fiber of the Tate curve and the punctured log Gromov-Witten theory of its central fiber.

We believe, once a suitable version of symplectic cohomology theory for the total space

minus the central fiber of the Tate curve is set up, we can deform our log corals from

the central fiber of the degenerate Tate curve to the general fiber of it (which is the

Tate curve itself) and hence find the correct analytic versions for the cylinders one

needs to approximate in symplectic cohomology. The Tate curve minus its central

fiber is topologically the mapping torus of a Dehn twist. The relatively similar case of

symplectic cohomology of Hamiltonian mapping tori have been considered in [F]. For

cases similar as ours with non-Hamiltonian isotopies, there is no explicit description

yet.

One of our main interests in an approach to define a version of symplectic cohomology

in terms of log Gromov-Witten invariants is this: The mirror construction of [GS2],

using a scattering procedure on an integral affine manifold, in which the scattering

functions have enumerative meanings in terms of log Gromov-Witten invariants ([GPS])

produces a mirror family for a given log Calabi-Yau. It appears that the coordinate ring

of the mirror family can be constructed directly by the symplectic cohomology ring SH∗

as conjectured in the first preprint version of [GHK] and in the presentation of Bernd

Siebert at the string math conference whose slides are available at [S], where the ring

SH∗ is suggested to be described in terms of punctured log Gromov-Witten invariants

[ACGS]. Note that in [GHK], the structure coefficients that arise in the scattering

procedure are constructed tropically. For a geometric interpretation one needs to study

the corresponding punctured log Gromov-Witten invariants that correspond to the

tropical invariants. Throughout this paper, we study the relation of these log geometric
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invariants to tropical geometry for the case of the Tate curve in detail and discuss the

Floer theoretic perspectives.

Conventions. We work in the category of schemes of finite type over the complex

number field C, though in general one can work over any algebraically closed field k of

characteristic 0. We fix

N = Zn, NR = N ⊗Z R, M = Hom(N,Z), MR = M ⊗Z R

If Σ is a fan in NR then X(Σ) denotes the associated toric C-variety with big torus

IntX(Σ) ' G(N) ⊂ X(Σ), whose complement is referred to as the toric boundary of

X(Σ).

For a subset Ξ ⊂ NR, L(Ξ) ⊂ NR referred to as the linear space associated to Ξ,

denotes the linear subspace spanned by differences v − w for v, w in Ξ.

An integral affine structure on an n-dimensional manifold B is given by an open

cover {Ui} of B along with coordinate charts ψi : Ui → Rn, whose transition functions

ψi◦ψ−1
j lie in ZnoGLn(Z). An integral affine manifold with singularities is a topological

manifold B, admitting an integral affine structure on a subset B \ ∆ ⊆ B for some

set ∆ ⊂ B with the property that ∆ is a locally finite union of codimension ≥ 2

submanifolds of B.

Given a monoid P , define the monoid ring

C[P ] :=
⊕
p∈P

Czp

where zp is a symbol and multiplication is determined by zp · zp′ = zp+p
′
.
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1. The Tate curve and its degeneration

The Tate curve is a degeneration of elliptic curves; a family T → D where D can be

viewed either as the unit disc

D = {u ∈ C | |u| < 1}

or in the category of schemes,

D = SpecC[u]

where C[u] is the ring of formal power series in u with coefficients in C. Throughout

this paper, we will restrict our attention to the latter case and view the Tate curve as

a curve over the complete discrete valuation ring

R := C[u]

The construction of the Tate curve is a special case of a construction of Mumford for

degenerations of abelian varieties ([Mu]). For the details of the construction we also

refer to ([C],8.4).

In this section, we will first build the unfolded Tate curve and its degeneration,

where both are particular cases of a toric degeneration of a toric variety. We first

review roughly how this construction works ([GS3],[NS]).

The initial data consists of an integral affine manifold B ⊆ NR, possibly with non-

empty boundary ∂B, together with a polyhedral decomposition P of B, which is a

covering P = {Ξ} of B by convex polyhedra such that

i. If Ξ ∈P and Ξ′ ⊂ Ξ is a face, then Ξ′ ∈P.

ii. If Ξ,Ξ′ ∈P, then Ξ ∩ Ξ′ is a common face of Ξ and Ξ′.

For each Ξ ∈P let C(Ξ) be the closure of the cone spanned by Ξ× {1} in NR × R:

(1.1) C(Ξ) =
{
a · (n, 1)

∣∣ a ≥ 0, n ∈ Ξ
}

Note that taking the closure here will be important in case Ξ is unbounded. We use

the convex polyhedral cone C(Ξ) to define the fan

Σ̃P :=
{
σ ⊂ C(Ξ) face

∣∣Ξ ∈P
}

which we refer to as the fan associated to P. By construction, the projection onto the

second factor

NR × R→ (NR × R)/NR = R

defines a non-constant map of fans from the fan Σ̃P to the fan {0,R≥0} of A1, hence

a flat toric morphism

π : X −→ A1
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where X is the toric variety associated to the fan Σ̃P . Throughout this paper we will

say “X is obtained from a polyhedral decomposition P of B” or “π : X → A1 is the

degeneration associated to (P, B)” referring to this process of constructing π : X → A1.

Note that π : X → A1 is a degeneration of toric varieties. To describe the general

fiber of π, we first identify NR with NR×{0} ⊂ NR×R and define the asymptotic fan

using Lemma 3.3 in [NS] as

ΣP =
{
σ ∩ (NR × {0})

∣∣σ ∈ Σ̃P

}
.

as a fan in NR. Let XP be the toric variety associated to the fan ΣP . By Lemma 3.4

of [NS] we have

π−1(A1 \ {0}) = XP × (A1 \ {0})
and the closed fibers of π over A1 \ {0} are all pairwise isomorphic. Thus, the toric

variety

Xt := XP

is the general fiber of π : X → A1. To describe the central fiber

π−1(0) = X0

observe that for Ξ ∈P the set of adjacent Ξ′ ∈P define a fan ΣΞ by

(1.2) ΣΞ =
{
R≥0 · (Ξ′ − Ξ) ⊂ NR/L(Ξ)

∣∣Ξ′ ∈P,Ξ ⊂ Ξ′
}
.

in NR/L(Ξ), where L(Ξ) ⊂ NR is the linear subspace associated to Ξ. Let XΞ be the

toric variety associated to the fan ΣΞ. By Proposition 3.5 in [NS], there exist closed

embeddings XΞ → π−1(0), Ξ ∈P compatible with morphisms XΞ → XΞ′ for Ξ′ ⊂ Ξ,

inducing an isomorphism

π−1(0) ' lim−→
Ξ∈P

XΞ

Now, to construct the unfolded Tate curve, we take B = R and endow it with a

b-periodic polyhedral decomposition Pb defined as follows.

Definition 1.1. Let

Ξj := [jb, (j + 1)b], j ∈ Z
be a closed interval of integral length b in R. Let

Ξ′j := Ξj ∩ Ξj+1

be a common face of two such intervals. The integral b-periodic polyhedral decomposition

Pb of R is the covering

Pb := {Ξj} ∪ {Ξ′j}
of R, where j ∈ Z. We refer to each Ξj and Ξ′j as a face of Pb. The maximal cells of

Pb are the faces Ξj, j ∈ Z and the vertices of Pb are the 0-faces Ξ′j, j ∈ Z.
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The following figure illustrates Σ̃Pb
together with the map Σ̃Pb

→ {0,R≥0}.
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B = R

Note that each face Ξj ∈Pb is bounded and the cone C(Ξj) is given as

C(Ξj) = R≥0 · (Ξj × {1}).

The toric fan

(1.3) Σ̃Pb
:= {σ ⊂ C(Ξj) face | Ξj ∈Pb}

associated to Pb has support in (R × R>0) ∪ {(0, 0)}. The projection R2 → R2/R =

R onto the second factor defines a map of fans Σ̃Pb
→ {0,R≥0} which induces the

morphism

π : X −→ A1

referred to as the unfolded Tate curve.

Remark 1.2. The b-periodic polyhedral decomposition Pb of R is obtained by rescaling

the 1-periodic polyhedral decomposition P1 of R by b. The degeneration associated

to (Pb,R) is obtained from the degeneration associated to (P1,R) by the base change

u 7→ ub.

Since each Ξj ∈Pb is bounded, the asymptotic fan ΣPb
consists of the single point

(0, 0) ∈ R2. Therefore, the degeneration π : X → A1 associated to (R,Pb) satisfies

(1.4) π−1(A1 \ {0}) = Gm × (A1 \ {0})

where Gm is the algebraic torus and hence the general fiber of π : X → A1 is

Xt = Gm

Define the central fiber X0 of π : X → A1 as follows. For each vertex v ∈Pb let

Σv = {R≥0 · (Ξ− v) ⊂ R | Ξ ∈P, v ∈ Ξ}

So, Σv is the fan of the toric variety

Xv = P1

Similarly, each closed interval Ξ ∈Pb defines a fan ΣΞ for the toric variety XΞ which

is a point of intersection of Xv and Xv′ where v and v′ denote the vertices adjacent
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to Ξ. Hence, we obtain X0 as an infinite chain of projective lines P1, glued pairwise

together along an Ab−1 singularity in X:

X0 :=
⋃
∞

P1

Remark 1.3. Let B ⊆ NR be an integral affine manifold, endowed with a polyhedral

decomposition P and let Ξ ∈ P be a maximal cell. Let ρ1, . . . , ρn be the edges of

the cone C(Ξ) = R≥0 · (Ξ × {1}) and let uρi be the generator of ρi ∩ (N ⊕ Z), which

is referred to as the ray generator of ρi for i = 1, . . . , n. Then we use the notational

convention

C(uρ1 , . . . , uρn) := {λ1uρ1 + . . . ,+λnuρn | λ1, . . . , λn ≥ 0} ⊂ NR × R

for C(Ξ) = C(uρ1 , . . . , uρn).

Fix a b-periodic polyhedral decomposition Pb of R and let Ξ := [a, a+ b] ⊂ R be a

maximal cell of Pb, so that

(1.5) C(Ξ) = C((a, 1), (a+ b, 1))

The dual cone C(Ξ)∨ ⊂MR is given by

(1.6) C(Ξ)∨ = C((1,−a), (−1, a+ b))

The generators of the associated monoid ring C[C(Ξ)∨ ∩M ] are

{z(1,−a), z(−1,a+b), z(0,1)}

We have an isomorphism

ϕ : C[C(Ξ)∨ ∩M ] −→ C[x, y, u]/(xy − ub)

z(1,−a) 7−→ x

z(−1,a+b) 7−→ y

z(0,1) 7−→ u

Hence, an affine cover for the total space of the unfolded Tate curve is given by a

countable number of copies of

(1.7) SpecC[x, y, u]/(xy − ub)

Remark 1.4. To define the Tate curve, observe that Z acts on the fan Σ̃Pb
associated

to the b-periodic integral polyhedral decomposition Pb of R, by translation by b. This

action induces a Z-action on the unfolded Tate curve π : X → A1, which is properly
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discontinuous in the analytic topology once restricting to the unit disc D = {u ∈
C | |u| < 1}. Taking the quotient defines the analytic Tate curve

Π : T → D

The fibre Tu of Π : T → D over u ∈ D \ {0} is the elliptic curve E := C∗/(z ∼ ub · z)

viewed as a complex manifold. The central fiber T0 is the nodal elliptic curve.

0
D A1

0 uu

⋃
∞ P1

C×

The unfolded Tate curve X → A1The analytic Tate curve T → D

As we would like to stay on the category of schemes for technical reasons, we first

define the formal scheme

X̂ = limXk

where Xk is the k-th order thickening of π−1(0), that is, the subscheme of the unfolded

Tate curve π : X → Spec[u] defined by the equation uk+1 = 0. Then the quotient X̂/Z
makes sense as a formal scheme. There is a map of formal schemes

T̂ : X̂/Z→ Â

induced by π. Here Â = SpfC[u] is the ringed space consisting of the point 0 and

the ring C[u]. Since, there is an ample line bundle L over X̂/Z ([C], pg. 620),

Grothendieck’s Existence Theorem ([Gr], 5.4.5) ensures that X̂/Z is obtained by the

formal completion of the genuine scheme

T→ SpecC[[u]]

which we refer to as the Tate curve.

Note that the generic fibre of the Tate curve in this case, is an elliptic curve over

C((u)) and the central fiber is the nodal elliptic curve.

In section 6, we will see that the invariants on the Tate curve lift uniquely to the

unfolded case, so we will disregard the Z-quotient for computational convenience in

the next sections.

Next we will construct a degeneration of the unfolded Tate curve. For this we first

need the following definitions.
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Definition 1.5. Let B ⊂ NR be an integral affine manifold endowed with a polyhedral

decomposition P. For a cell Ξ ∈P, let C(Ξ) be as in (1.5). If Ξ1 ⊂ Ξ2 taking cones

we obtain C(Ξ1) ⊆ C(Ξ2). Now, we can define the cone C(B) over B as

C(B) =
⋃

Ξ∈P

C(Ξ)

Note that C(B) ⊆ NR×R admits an integral affine structure with a singularity at the

origin in NR×R ([GHKS] , 4.11). The truncated cone CB over B is the manifold with

boundary with underlying topological space

CB := {(x, h) ∈ C(B) | h ≥ 1}

in the cone C(B), endowed with the induced affine structure. It admits a polyhedral

decomposition CP with cells

CΞ := {(x, h) ∈ C(Ξ) | h ≥ 1,Ξ ∈P}

The maximal cells of CP are the cells CΞ such that Ξ is a maximal cell of P.

Now, our initial data to build the degeneration of the unfolded Tate curve is given

by the tuple (CR, CPb). Here, CR is the truncated cone over R endowed with the

polyhedral decomposition CPb with maximal cells CΞ, where Pb is the b-periodic

polyhedral decomposition of R. Let C(CΞ) be the cone over CΞ The toric fan

Σ̃CPb
:= {σ ⊂ C(CΞ) face | CΞ ∈ CPb}

has support in

R≥0 · (R× R≥1 × {1})
The projection map

(pr2, pr3) : R× R× R −→ R× R

(x, y, z) 7−→ (x, y)

onto the second and third factors defines a map of fans

(pr2, pr3) : Σ̃CPb
−→ {0,R≥0} × {0,R≥0}

(1.8)

which induces the morphism

π̃ : Y → SpecC[s, t]

referred to as the degeneration of the unfolded Tate curve, where Y is the toric variety

associated to the fan Σ̃CPb
. The following figure illustrates Σ̃CPb

together with the

projection map (pr2, pr3).
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The truncated cone

pr3

pr2

C(Ξ)

The cone C(C(Ξ)) over the truncated cone

ΣA1
t

ΣA1
s

The central fiber Y0 of the degeneration of the unfolded Tate curve Y → SpecC[s, t]

over t = 0 is constructed as follows. For any cell CΞ ∈ CPb, define ΣCΞ analogously

to (1.2) and denote by YCΞ the toric variety associated to ΣCΞ. Then, for a vertex

v ∈Pb, the truncated cone Cv over v is the fan of the toric variety

YCv = P1 × A1

Recall that any maximal cell Ξ ∈Pb is a closed interval of R. The fan ΣCΞ associated

to CΞ is the fan of the toric variety

YΞ = {q} × A1

where {q} × A1 is a component of the singular locus, given by the intersection of YCv
and YCv′ for the cells Cv,Cv′ ∈ CPb adjacent to CΞ. Hence, Y0 is obtained as the

product of the affine line with the central fiber X0 of the unfolded Tate curve. So, we

have

Y0 := A1
s ×

⋃
∞

P1 = A1
s ×X0

Now, let Ξ := [a, a+ b] be a maximal cell of Pb so that

C(C(Ξ)) = C((a, 1, 1), (a+ b, 1, 1), (a+ b, 1, 0), (a, 1, 0))

Its dual C(C(Ξ))
∨

is given by

(1.9) C(C(Ξ))
∨

= C((0, 1,−1), (−1, a+ b, 0), (0, 0, 1), (1,−a, 0))
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We have an isomorphism

ϕ̃ : C[C(CΞ)∨ ∩ (M ⊕ Z)] −→ C[x, y, s, t]/(xy − (st)b)

z(1,−a,0) 7−→ x

z(−1,a+b,0) 7−→ y

z(0,1,−1) 7−→ s

z(0,0,1) 7−→ t

Hence, an affine cover for the total space Y of the degeneration of the unfolded Tate

curve is given by a countable number of copies of

(1.10) SpecC[x, y, s, t]/(xy − (st)b

The main theorem of this section is the following.

Theorem 1.6. Let π : X → SpecC[u] and π̃ : Y → SpecC[s, t] be the degenerations

associated to (Pb,R) and (CPb, CR) respectively. Then, π̃ : Y → SpecC[s, t] is

obtained from π : X → SpecC[u] by the base change u 7→ st.

Proof. Let Ξ := [a, a+b] ⊂ R be a maximal cell of Pb and let CPb be the corresponding

maximal cell in CΞ. Then, we have the projection map

(pr1, pr2) : NR × R× R −→ NR × R

C(CΞ) 7−→ C(Ξ)

whose dual induces the embedding

j : C(Ξ)∨ ↪→ C(CΞ)∨

(m1,m2) 7→ (m1,m2, 0)

With Equation 1.6 and Equation 1.9, we obtain

C(CΞ)∨ = j(C(Ξ)∨) + R≥0(0, 1,−1) + R≥0(0, 0, 1)

Let

φj : C[C(Ξ)∨ ∩M ]→ C[C(CΞ)
∨ ∩M ⊕ Z]

be the map induced by j : C(Ξ)∨ ↪→ C(CΞ)
∨

on the level of monoid rings. Explicitly,

we have

φj : C[C(Ξ)∨ ∩M ] −→ C[C(CΞ)
∨ ∩M ⊕ Z]

x := z(1,−a) 7−→ z(1,−a,0) = x

y := z(−1,a+b) 7−→ z(−1,a+b,0) = y

u := z(0,1) 7−→ z(0,1,0) = z(0,1,−1) · z(0,0,1) = st
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Hence, we obtain

ϕ̃ ◦ φj ◦ ϕ : C[x, y, u]/(xy − ub) −→ C[x, y, s, t]/(xy − (st)b)

x 7−→ x

y 7−→ y

u 7−→ st

where ϕ is the isomorphism defined in 1.7 and ϕ̃ is the isomorphism defined in 1.10.

Note that the projection (pr1, pr2) : NR × R × R → NR × R defines a map of fans

from the fan Σ̃Pb
defined in 1.3 and Σ̃CPb

defined in 1.8. Hence, the compatibility of

the gluing of affine patches follows by Theorem 1.13 in [Oda]. Therefore, we obtain

π̃ : Y → SpecC[s, t] from π : X → SpecC[u] by the base change u 7→ st. �

Remark 1.7. Consider the Tate curve

T→ SpecC[u]

The base change u 7→ st induces the map

C[u]→ C[s][t]

where C[s][t] is the ring of formal power series in t, admitting coefficients in the poly-

nomial algebra C[s]. So, we obtain the degeneration

T̃ −→ C[s][t]

of the Tate curve in the category of schemes. It will be important to have the s-variable

not as a formal variable if one wants to consider deformation theory of the log geometric

invariants on the central fiber over t = 0 of the degeneration of the Tate curve, which

we introduce in the next sections.

Our final aim in this section is to investigate the charts for the log structure αY0 :

MY0 → OY0 on the central fiber Y0 → SpecC[s] over t = 0 of the degeneration of the

unfolded Tate curve. For the definition of a log structure and a chart for a log structure

see A.11 and A.28. We will refer to the charts for the log structure on Y0 often in the

next sections, to study the log geometric invariants.

Recall that the total space of the degeneration of the unfolded Tate curve is the toric

variety Y → SpecC[s, t] associated to the fan 1.8. We endow Y with the divisorial log

structure αY :MY → OY defined as in A.17. Here, we take the divisor

D̃ := π̃−1(st = 0) ⊂ Y

Following the discussion in the appendix A.29, we use the following toric charts

for the log structure on Y throughout the text. The fan describing the toric variety
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containing Y consisted of the origin 0 and of cones C(σ) over cells σ of CPb, where

Pb is a b-periodic polyhedral decomposition of R. The origin yields a trivial chart for

the complement of Y in the toric variety and is irrelevant for our considerations. The

maximal cells of CPb are of the form CΞ for Ξ an interval in R of length b, embedded

in the lower boundary of B = CR. Thus (A.1) provides a covering system of charts of

Y of the form

(1.11) (C(CΞ))∨ ∩ (M ⊕ Z) −→ Γ(Ui,MY ),

where Ui ⊂ Y is the open subset SpecC[(C(CΞ))∨ ∩ (M ⊕ Z)] of Y defined by CΞi.

Explicitly a chart for the log structure MY is given by the map

C(CΞ)∨ ∩ (M ⊕ Z) −→ C[x, y, s, t]/(xy − (st)b)

(1,−a, 0) 7−→ x

(−1, a+ b, 0) 7−→ y

(0, 1,−1) 7−→ s

(0, 0, 1) 7−→ t(1.12)

So, by Discussion A.29, we obtain the following canonical description of the stalks of

MY .

Proposition 1.8. Let τ ⊂ B be a cell in the polyhedral decomposition CP of B and

Tτ ⊂ Y the torus of the corresponding toric stratum of Y . Then for x ∈ Tτ , the

map (1.11) induces a canonical isomorphism

MY,x '
(
(C(τ))∨ ∩ (M ⊕ Z)

)
/
(
(C(τ))⊥ ∩ (M ⊕ Z)

)
.

Since the log structure MY is fine, MY is constant along open toric strata. The

monoid Mgp

Y is constructible and MY ⊂ M
gp

Y is given by generization maps between

stalks of strata MY,η, where η denotes the generic point of the irreducible component

of a toric strata in Y (Proposition 1.1, [SS]). This holds also for the pull-back log

structureMY0 on the central fiber Y0 over t = 0. Indeed, after restricting the chart for

MY to t = 0 we obtain a chart for the log structure MY0 on the central fiber Y0 over

t = 0.

Remark 1.9. To save notation let us write

CZ := {p ∈ C ∩ Zn | C ⊂ Rn}

for the integral points of a cone C in a finitely generated free abelian group. Then, the

sections of the ghost sheaf

MY :=MY /O×Y
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are in one-to-one correspondence with the points p ∈ C(CΞ)∨Z, since for each p ∈
C(CΞ)∨Z the regular function

zp ∈ C[x, y, s, t]/(xy − (st)b)

is invertible away from the toric boundary of the affine toric variety

Yi = SpecC[x, y, s, t]/(xy − (st)b) = SpecC[C(CΞi)
∨
Z]

corresponding to a cell CΞi of CP. We use the following notational convention. Given

an integral monoid P and a point p ∈ P such that zp ∈ C[P ], we denote by sp the

corresponding section in MY and by zp the section in MY obtained as the image of

sp under the quotient map κ :MY →MY .

We will describe the stalks of the ghost sheaf MY0 on Y0 more explicitly in the

remaining part of this section. First recall the description (1.10) of the affine cover

for Y which induces by restricting to t = 0 an affine cover of Y0 that is given by a

countable union of the open sets

U = SpecC[x, y, s, t]/(xy)

The following figure illustrates U ⊂ Y0 = A1
s ×X0 together with the projection maps

pr1 : Y0 −→ A1
s

pr2 : Y0 −→
⋃
∞

P1

onto the first and second coordinates.

A1
s

A1

A1

pr2p2

p3

p4
s

x

y

pr1

p′3

p1

p′1
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We have four different types of points on U and the stalks of MY0 for each type are

given as follows.

p1 ∈ U \ {(y = 0) ∪ (s = 0)} =⇒ MY0,p1 = 〈t〉
p′1 ∈ U \ {(x = 0) ∪ (s = 0)} =⇒ MY0,p′1

= 〈t〉
p2 = x = y = 0 =⇒ MY0,p2 = 〈x, y, t | xy = t

b〉
p3 = x = s = 0 =⇒ MY0,p3 = 〈x, s, t | x = st

b〉
p′3 = y = s = 0 =⇒ MY0,p′3

= 〈y, s, t | y = st
b〉

p4 = x = y = s = 0 =⇒ MY0,p4 = 〈x, y, s, t | xy = (st)b〉

Remark 1.10. In the above description of the stalks we use the following notational

convention. When we write MY0,pi = 〈t〉, for i = 1, 2, this means there is an isomor-

phism

N −→ MY0,p1

1 7−→ t

Analogously, we present a monoid with a set of generators G and relations R among

elements of G by 〈G | R〉.
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2. A tropical counting problem

2.1. Tropical corals. Let Γ̄ be a finite, connected 1-dimensional simplicial complex.

Denote the set of vertices of Γ̄ by V (Γ̄) and the subset of vertices of valency k in V (Γ̄)

by Vk(Γ̄). The set of edges of Γ̄ is denoted by E(Γ̄). Consider the additional datum of

a function

wΓ̄ : E(Γ̄)→ N \ {0}
called the weight function on E(Γ̄). The image of e ∈ E(Γ̄) under w is referred to as

the weight of e. The set of vertices adjacent to an edge e ∈ E(Γ̄) is denoted by ∂e. A

bilateral graph is the geometric realization of Γ̄ such that:

(i) Γ̄ has no divalent vertices.

(ii) There are sets of vertices

V +(Γ̄) := {v+
1 , · · · , v+

l }

referred to as the set of positive vertices and

V −(Γ̄) := {v−1 , · · · , v−m}

referred to as the set of negative vertices such that

V (Γ̄) = V +(Γ̄) q V 0(Γ̄) q V −(Γ̄)

where V 0(Γ̄) is referred to as the set of interior vertices.

(iii) All positive vertices are univalent:

V +(Γ̄) ⊆ V1(Γ̄)

and the set of edges

E+(Γ̄) := {e+
1 , . . . , e

+
l | ∂e

+
i ∩ v+

i 6= ∅} ⊂ E(Γ̄)

is referred to as the set of positive edges of Γ̄.

(iv) Let

V −k (Γ̄) := V −(Γ̄) ∩ Vk(Γ̄)

be the set of negative vertices of Γ̄ with valency k. Then, the set of all univalent

vertices of Γ̄ is

V1(Γ̄) = V −1 (Γ̄)q V +(Γ̄)

For each v ∈ V −1 (Γ̄), let ev be the edge adjacent to v. Throughout this section

we omit the case where the cardinalities of both V −1 (Γ̄) and of E(Γ̄) are one,

as it can be treated easily in all the arguments we use. So, by connectivity of

Γ̄ for each v ∈ V −1 (Γ), there exist v′ ∈ V 0(Γ) such that

∂ev = {v, v′}
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referred to as the interior vertex associated to v.

(v) The first Betti number of Γ̄ is zero.

Remark 2.1. Note that condition (v) is necessary only if one is interested in rational

curve counts on the algebraic side that we will discuss in the next sections, but it can

be omitted to study more general cases.

Let Γ̄ be a bilateral graph and let |Γ̄| be the geometric realization of Γ̄. Define the

non-compact geometric realization of Γ̄ with positive vertices removed as

(2.1) Γ := |Γ̄| \ V +(Γ̄)

referred to as a coral graph. Note that Γ admits half-edges

E+(Γ) := {ei | ei = e+
i \ {v+

i } where e+
i ∈ E+(Γ̄) and ∂e+

i = v+
i ∈ V +(Γ̄)}

referred to as the set of positive edges of Γ. A k-labelled coral graph denoted by (Γ,E)

is a coral graph Γ together with a choice of an ordered k-tuple of positive edges

E = (E1, . . . , Ek) ⊂ E+(Γ)

We sometimes say (Γ,E) is a labelled coral graph if it is k-labelled for k ∈ N \ 0.

The sets of vertices and edges of Γ are

V (Γ) = V (Γ̄) \ {v+
1 , · · · , v+

l }

E(Γ) =
(
E(Γ̄) \ E+(Γ̄)

)
∪ E+(Γ)

The set

Eb(Γ) := E(Γ) \ E+(Γ)

is referred to as the set of bounded edges of Γ.

The set

V −(Γ) := V −(Γ̄)

is referred to as the set of negative vertices of Γ.

Note that Γ is endowed with a weight function w : E(Γ)→ N \ {0} defined by

w =

{
wΓ̄ on E(Γ̄) \ E+(Γ̄)

wΓ̄(e+
i ) on ei ∈ E+(Γ), for i = 1, . . . , l

Definition 2.2. Let (Γ, w) be a coral graph Γ endowed with a weight function w :

E(Γ)→ N \ {0}. A parameterized tropical coral in CR is a proper map

h : Γ→ CR

satisfying the following:
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(i) For all e ∈ E(Γ), the restriction h|e is an embedding and h(E) is contained in

an integral affine submanifold of CR.

(ii) For all v ∈ V 0(Γ̄);

h(v) ∈ CR \ ∂CR

where ∂CR denotes the boundary of the truncated cone CR. Moreover, the

following balancing condition holds:

k∑
j=1

w(ej)uj = 0

where

{e1, . . . , ek ∈ E(Γ) | v ∈ ∂ej for each j = 1, . . . , k}

is the set of edges adjacent to v, w(ei) ∈ N\{0} is the weight on ej and uj ∈ N
is the primitive integral vector emanating from h(v) in the direction of h(ej)

for j = 1, . . . , k.

(iii) For all v ∈ V −(Γ);

h(v) ⊂∈ CR

and there exist wv ∈ N\{0} associated to v, referred to as the weight on v such

that the following balancing condition holds:

wv · uv +
n∑
j=1

w(ej)uj = 0

{e1, . . . , ek ∈ E(Γ) | v ⊂ ∂ej for each j = 1, . . . , k}

is the set of edges adjacent to v and uv ∈ N is the primitive integral vector

emanating from h(v) in the direction of the origin in NR.

(iv) For all e ∈ E+(Γ), the restriction to h(e) of the projection map

pr2 : CR→ [1,∞)

onto the second factor is proper.

An isomorphism of tropical corals h : Γ→ CR and h′ : Γ′ → CR is a homeomorphism

Φ : Γ → Γ′ respecting the weights of the edges and such that h = h′ ◦ Φ. A tropical

coral is an isomorphism class of parameterized tropical corals. A k-labelled tropical

coral denoted by

(Γ,E, h)

is a tropical coral h : Γ→ CR together with a choice of an ordered k-tuple of positive

edges

E = (e1, . . . , ek) with ei ⊂ E+(Γ) for i = 1, . . . , k
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Remark 2.3. The definition of a tropical coral can be generalized to tropical corals in

(CB,CP)

for any integral affine manifold B endowed with a polyhedral decomposition CP.

Indeed, to study the invariants of the Tate curve, we shall apply the quotient given by

the Z-action on (R,Pb) and work over

B := C(R/Z) = CS1

Condition (iv) of the definition 2.2 will then ensure that there is no infinite wrapping

of the unbounded edges of tropical corals in CS1. We ignore the Z-quotient for the

time being for computational purposes, since the tropical corals in CS1 lift to CR, as

well as the corresponding log geometric invariants lift to the unfolded Tate curve as we

will see in section 6.

Example 2.4. The following figure illustrates a tropical coral h : Γ→ CR with

V −(Γ) = {v−1 , v−2 }

V 0(Γ) = {v0
1, v

0
2, v

0
3}

and |E+(Γ)| = 4. The origin in NR is labelled by 0.
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v0
1v0

1

v−1

v−2

v+
3

v+
4v−2

v+
5

v−1

v+
1

v+
2

The coral graph Γ = Γ̄ \ V +(Γ)

h(v0
1)

h(v−1 )

h(v0
2) h(v0

3)

h(v−2 )

A tropical coral h : Γ→ CR
0

v0
2 v0

2

A bilateral graph Γ̄

v0
3 v0

3

Definition 2.5. We call a tropical coral h : Γ→ CR general if the following conditions

hold:

(i) All vertices v ∈ V 0(Γ) are trivalent.

(ii) All vertices v ∈ V −(Γ) are univalent.

Otherwise it is called degenerate. In the following picture we illustrate a general and a

degenerate tropical coral.



LOG-GEOMETRIC INVARIANTS OF DEGENERATIONS 27

A general tropical coral A degenerate tropical coral

2.2. Incidences for tropical corals.

Definition 2.6. Let (Γ,E) be a labelled coral graph. Let

F (Γ) = {(v, e) | e ∈ E(Γ) and v ∈ ∂e}

be the set of flags of Γ. The tuple (Γ, u) consisting of Γ and a map

u : F (Γ) q V −(Γ) −→ N

F (Γ) 3 (v, e) 7−→ uv,e

V −(Γ) 3 v 7−→ uv

where uv and uv,e are primitive integral vectors in N , is referred to as the type of Γ.

Definition 2.7. The type of a tropical coral (Γ,E, h) denoted by (Γ, u) by suppressing

h and E in the notation, is the type of (Γ,E) where the map u : F (Γ) q V −(Γ)→ N

is given by assigning to each (u, v) ∈ F (Γ) the primitive integral vector uv,e ∈ N

emanating from h(v) in the direction of h(e) and assigning to each v ∈ V −(Γ) the

primitive integral vector uv ∈ N emanating from h(v) in the direction of the origin.

We denote the set of tropical corals of type (Γ, u) by

T(Γ,u) := {h : Γ→ CR tropical coral | h has type (Γ, u)}

To set up the counting problem we need to define tropical incidence conditions,

(∆, λ)(2.2)

where ∆ is referred to as the degree and λ is referred to as an asymptotic constraint,

which we define in a moment.

Throughout the next sections we use the following conventions:

N0 := {n ∈ N | pr2(n) = 0}

N>0 := {n ∈ N | pr2(n) > 0}

N<0 := {n ∈ N | pr2(n) < 0}
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where N = Z2. Moreover, given a set A we denote by |A| the cardinality of A.

Now we are ready to define the degree ∆ of a tropical coral h : Γ → CR, as a map

∆ : N \N0 → N.

Definition 2.8. The degree of a type (Γ, u) of a coral graph Γ, denoted by

∆ := (∆,∆)

is the map ∆ : N \N0 → N of finite support given by

∆ =

{
∆ on N>0

∆ on N<0

where

∆(n) :=
∣∣ {(v, e) | e ∈ E+(Γ) and w(e) · u(v,e) = n

} ∣∣
where we consider E+(Γ) as a subset of F (Γ), w(e) is the weight on e ∈ E(Γ) and

u(v,e) := u((v, e)). Similarly,

∆(n) :=
∣∣ {v ∈ V −(Γ)

∣∣wv · uv = n
} ∣∣

where wv ∈ N \ {0} is the weight on v ∈ V −(Γ) and uv := u(v).

Definition 2.9. The degree of a tropical coral h : Γ → CR, denoted by ∆ := (∆,∆)

by suppressing h in the notation, is the degree of its type.

In other words, the degree of a tropical coral is the abstract set of directions of

unbounded edges together with their weights, with repetitions allowed.

Remark 2.10. Note that ∣∣ ∆
∣∣:= ∑

n∈N>0

∆(n)

is equal to the cardinality of the set of unbounded edges of h and∣∣ ∆
∣∣:= ∑

n∈N<0

∆(n)

is equal to the number of negative vertices of h.

Definition 2.11. An asymptotic constraint of k-incidences for a k-tuple of integral

vectors (u1, . . . , uk) ⊂ NR is a k-tuple

λ = (λ1, . . . , λk) ∈
k∏
i=1

NR/R · ui

Let (Γ, u) be the type of a k-labelled coral graph (Γ,E) where

E = (e1, . . . , ek) with ei ⊂ E+(Γ) for i = 1, . . . , k
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Assume ∂ei = vi ∈ V 0(Γ) and let

ui := u((vi, ei)) ⊂ N

be the associated primitive integral vector to ei. Recall from the definition of the degree

of (Γ, u) that each ui ∈ N for i = 1, . . . , k is determined by the degree ∆ of (Γ, u).

Then, an asymptotic constraint of k-incidences for the degree ∆ of (Γ, u) is an as-

ymptotic constraint for the k-tuple of integral vectors (u1, . . . , uk) ⊂ NR associated to

E = (e1, . . . , ek).

An asymptotic constraint λ = (λ1, . . . , λk) ∈
∏k

i=1NR/R · ui for a tropical coral

h : Γ→ CR, is an asymptotic constraint for its type. Given an asymptotic constraint

for h : Γ→ CR, we say h matches λ if

qi(h(ei)) = {λi}

for all i = 1, . . . , k under the quotient map

qi : NR −→ NR/ui · R

Let λ = (λ1, . . . , λk) be an asymptotic constraint for the type (Γ, u) of a tropical

coral and assume the degree of the type (Γ, u) is ∆ = (∆,∆). Then, we call λ general

for ∆ if the following conditions are satisfied

(i) k =
∣∣ ∆

∣∣ −1.

(ii) Any tropical coral of degree ∆ = (∆,∆) with k = |∆|−1, matching λ is general.

We denote the set of tropical corals of type (Γ, u) matching an asymptotic constraint

λ by

T(Γ,u)(λ) := {h : Γ→ CR tropical coral | h has type (Γ, u) and h matches λ}

Next we will discuss how to set up suitable constraints to obtain the cardinality

|T(Γ,u)(λ)|

as a finite number. For this we need to define a stable range of constraints and good

constraints in this stable range.

The stable range of constraints is related to the issue of rescalings of tropical corals,

which we discuss in a moment. First note that there is a length function on E(Γ)

defined as follows.

Definition 2.12. Let e ∈ E(Γ) be an edge such that h(e) has integral affine length Le
in CR, endowed with the polyhedral decomposition CPb for fixed b ∈ N \ {0} and let
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w(e) be the weight on e. Define the function l : E(Γ)→ R≥0 referred to as the length

function on E(Γ) by

l(e) := Le ·
b

w(e)

From the definition of the length function it follows that a tropical coral h : Γ→ CR
rescales the length of each edge e ∈ E(Γ) by w(e)

b
.

Now, let h : Γ→ CR be a tropical coral. The rescaled coral

s · h : Γ→ CR

is the tropical coral obtained from h : Γ→ CR by rescaling each Le by s ≥ 1. We refer

to this process of obtaining s · h from h as rescaling h by s.

Assume h matches the asymptotic constraint λ = (λ1, · · · , λk). Rescale each of the

incidence conditions λi simultaneously with s ∈ R≥1 to obtain

s · λ = (s · λ1, · · · , s · λk)

Then, the rescaled coral s · h matches s · λ.

Remark 2.13. Note that if λ is a general constraint for a tropical coral h, then s · λ
with s ∈ R≥1 is a general constraint for the rescaled coral s · h.

2.3. Extending a tropical coral to a tropical curve. In this section we describe

how to construct the extension h̃ : Γ̃→ R2 of a tropical coral h : Γ→ CR.

Construction 2.14. Let h : Γ→ CR be a tropical coral and let Γ̃ be the (geometric

realization of the) graph

Γ̃ :=
(
Γ \ V −1 (Γ)

) ⋃
E−n>1

where the set

E−n>1 = {e edge | ∂e = v for v ∈ V −n>1}
consists of abstract half-edges e which are inserted at a negative vertex v ∈ V −n of

valency n > 1 and ∂e = {v}. We refer to each such e as the edge inserted at v ∈ V −n
for n > 1.

Let E−1 (Γ) the set of edges adjacent to univalent negative vertices of the coral graph

Γ. Define

E−1 (Γ̃) := {ev | ev = ev− \ v−, for ev− ∈ E−1 (Γ)}
the set of edges obtained by omitting v− ∈ V −1 (Γ) from ev− ∈ E−1 (Γ). and refer to

E−(Γ̃) := E−1 (Γ̃)
⋃

E−n>1

as the set of negative edges of Γ̃. The set

E+(Γ̃) := E+(Γ)
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is referred to as the set of positive edges of Γ̃. and the set

E∞(Γ̃) := E+(Γ̃)
⋃

E−(Γ̃)

is referred to as the set of unbounded edges of Γ̃.

Now, given a tropical coral h : Γ → CR, we describe how to construct a map

h̃ : Γ̃ → R2. Let uv ∈ N and Uv ∈ N be the primitive integral vectors associated to

edges ev ∈ E−1 (Γ̃) and Ev ∈ E−n>1(Γ̃) respectively, defined as follows.

For each ev ∈ E−1 (Γ̃), let v be the interior vertex adjacent to v and let uv be the

primitive integral vector emanating from h(v) in the direction of the origin in NR.

Let Ev ∈ E−n>1 be an edge inserted at v and let Uv be the primitive integral vector

emanating from h(v) in the direction of the origin in NR.

Now define h̃ : Γ̃→ R2 as

h̃ =


h on Γ̃ \ E−(Γ̃)

uv · R≥0 for ev ∈ E−1 (Γ̃)

Uv · R≥0 for Ev ∈ E−n>1

The map h̃ : Γ̃ −→ R2 is referred to as the tropical extension of h.

Note that the origin is not a vertex of V (Γ̃) and hence the Betti number of Γ̃ is the

same as the Betti number of Γ which is zero.

Example 2.15. The following figure illustrates the tropical coral h : Γ→ CR together

with its extension h̃ : Γ̃→ R2.

h̃ : Γ̃→ R2h : Γ→ CB

Remark 2.16. Let h̃ : Γ̃→ R2 be the tropical extension of a tropical coral h : Γ→ CR.

Let w : E(Γ)→ N \ {0} be the weight function on the bilateral graph Γ.

Recall that for each edge ev ∈ E−1 (Γ̃), we have ev = ev− \ v− for v− ∈ V −1 (Γ) and

ev− ∈ E−1 (Γ). And for each edge Ev ∈ En>1, we have v ∈ V −(Γ) \ V −1 (Γ) such that Ev
is adjacent to v. Let wv ∈ N \ {0} be as in Definition 2.2, (iii).
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Then the weight function

w̃ : E(Γ̃)→ N \ {0}

on E(Γ̃) is given by

w̃ :=


w on E(Γ̃) \ E−(Γ̃)

w(ev−) for Ev ∈ E−1 (Γ̃)

wv for Ev ∈ En>1

Let h : Γ→ CR be a tropical coral of type

(Γ, u)

Then the tropical extension h̃ : Γ̃→ R2 is a particular type of a tropical curve defined

as in ([NS], Definition 1.1). The of type of

(2.3) (Γ̃, ũ)

is the graph Γ̃ together with the map

ũ : F (Γ̃)→ N

given by

ũ :=

{
u on F (Γ) \ V −1 (Γ)

Uv for each Ev ∈ E−n>1

where we view F (Γ) \ V −1 (Γ) and E−n>1 as subsets of F (Γ̃) and Uv is defined as in 2.14.

Note that, given a tropical extension h̃ : Γ̃ → R2 of type (Γ̃, ũ) of a tropical coral

h : Γ → CR, the restriction h̃ : Γ̃ → CR of h̃ : Γ → CR to h̃−1CR is clearly equal to

h : Γ→ CR. The type (Γ, u) is determined by the restriction of ũ to F (Γ̃).

A tropical coral h : Γ→ CR has degree

∆ := (∆,∆)

if and only if the tropical extension h̃ : Γ̃→ R2 of h has degree

(2.4) ∆̃ := ∆

Finally, observe that h : Γ→ CR matches the general constraint

λ = (λ1, . . . , λk) ∈
k∏
i=1

NR/R · ui

if and only if the tropical extension h̃ : Γ̃→ R2 matches the general constraint

(2.5) λ̃ = (λ1, . . . , λk, 0, . . . , 0) ∈
k∏
i=1

NR/R · ui ×
m∏
j=1

NR/u
−
j · R
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where

m =
∣∣ V −(Γ)

∣∣
We refer to (∆̃, λ̃) as the tropical incidences on the extension and denote by

T(Γ̃,ũ)(λ̃)

the set of tropical curves of type (Γ̃, ũ) matching a constraint λ̃.

Lemma 2.17. The map given by

T(Γ,u)(λ) −→ T(Γ̃,ũ)(λ̃)

h 7−→ h̃

where h̃ : Γ̃→ R2 is the tropical extension of h : Γ→ CR, is injective.

Proof. The result is an immediate consequence of the construction of tropical extension

2.14. �

2.4. The count of tropical corals. In this section we define the count of tropical

corals of degree ∆ matching a general asymptotic constraint λ.

Proposition 2.18. For any map ∆ ∈ Map(N \ {N0},N) of finite support, there are

only finitely many types of tropical corals of degree ∆.

Proof. Let h̃ : Γ̃→ R2 be the extension of h : Γ→ CR. Then, h̃ has degree ∆̃ = ∆. By

Proposition 2.1 in [NS] there are only finitely many types of tropical curves of degree

∆̃. Since h is obtained by the restriction of h̃, the result follows. �

Example 2.19. In the following figure we illustrate two tropical corals with the same

degree but different types.

Two different types of tropical corals of the same degree

The number of types of tropical corals of same degree ∆ can be enumerated by integral

subdivisions of an integral polygon so that the tropical coral is realized as the dual

graph of the subdivision, analogously to the case of tropical curves ([M],§4).
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Our main aim in this section is to define a range of asymptotic constraints such that

the count of tropical corals of a given degree matching an asymptotic constraint in

this range is well-defined. More specifically, we would like to show that all tropical

curves with a given degree and matching certain constraints are obtained as extensions

of tropical corals of the same degree.

Now for any ∆ ∈ Map(N \ N0,N) we first would like to establish the structure of

the moduli space T(Γ,u) of fixed type matching degree ∆.

We first endow T(Γ,u) with an integral affine structure as follows. Let (h : Γ →
CB) ∈ T(Γ,u) be a general tropical coral with m negative vertices and l unbounded

edges. Since h : Γ → CB is general from definition 2.5 it follows that the number of

its bounded edges which are not connected to a negative vertex is equal to l +m− 3.

Label these edges by by {e1, . . . , el+m−3} and let ρ(ei) be the affine length of ei. For

an arbitrary vertex v ∈ V (Γ) \ V −(Γ) define

Φ : T(Γ,u) ↪→ NR × Rl+m−3
≥0

Γ 7→ (h(v), ρ(e1), . . . , ρ(el+m−3))(2.6)

The negative vertices are fixed by fixing the degree. Fixing one vertex that is not

negative and the affine lengths of all bounded edges not adjacent to negative vertices in

a tropical coral determines it uniquely. So, Φ is injective and determines an embedding

T(Γ,u) into NR × Rm+l−3
≥0

∼= Rm+l−1
≥0 . This induces a natural integral affine structure on

T(Γ,u). Now, our aim is to prove the following main theorem of this section.

Theorem 2.20. Let (Γ, u) be a general type of tropical corals of fixed degree ∆ with l

unbounded edges

e1, . . . , el

with ∂ei = vi for vi ∈ V (Γ) 1. Let ui be the primitive integral vector in NR emanating

from vi in the direction of h(ei). Assume T(Γ,u) is non-empty. Then for any sequence

of indices 1 ≤ i1 < . . . < ik ≤ l with k ≤ l − 1 the map

evi1,...,ik : T(Γ,u) −→
k∏

µ=1

NR/R · uiµ

h 7−→
(
[h(vi1)], . . . , [h(vik)]

)
(2.7)

is an integral affine submersion.

We will first generalize the concept of tropical corals and introduce tropical bouquets

and discuss their main features. We afterwards will provide the proof of Theorem 2.20

for tropical bouquets, so the result in particular will hold for tropical corals.

1Not all vi may be distinct, repetitions are allowed
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Definition 2.21. Let Γm,l be a coral graph with

V −(Γ) := {v−1 , . . . , v−m}

E+(Γ) := {e1, . . . , el}

A tropical bouquet h : Γm,l → R2 is a proper map such that

(i) h satisfies all conditions of the definition of a parameterized tropical coral except

some of the unbounded edges e ⊂ E+(Γ) can be contained in R2 rather than in

CR and it is possible that the projection pr2 : R2 → R onto the second factor

is not proper on e.

(ii) Let 0 be the origin in R2, then

0 /∈ h(e) for any e ∈ E+(Γ)

Note that tropical corals are particular types of tropical bouquets, in which the image

of all unbounded edges lie in CR and the projection of each unbounded edge onto the

second factor is proper.

Definition 2.22. We call a tropical bouquet h : Γm,l → R2 general if the following

conditions hold:

(i) All vertices v ∈ V 0(Γm,l) are trivalent.

(ii) All vertices v ∈ V −(Γm,l) are univalent.

Otherwise it is called degenerate.

Example 2.23. The following picture illustrates a general tropical bouquet h : Γ5,6 →
R2.

v−1 v−2 v−3 v−4 v−5

The type of a tropical bouquet h : Γm,l → CR2 is defined analogously to the type of

a tropical coral and is denoted by (Γm,l, u). The set of isomorphism classes of tropical

bouquets of a given type (Γm,l, u) is denoted by T(Γm,l,u).
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We describe the gluing process of two tropical bouquets as follows. Let

(h1 : Γ1
m1,l1

→ R2) ∈ T(Γm1,l1
,u1)

(h2 : Γ2
m2,l2

→ R2) ∈ T(Γm2,l2
,u2)

and assume there exist edges

e1 ∈ E+(Γm1,l1) such that e1 is adjacent to v1 ∈ V 0(Γm1,l1)

e2 ∈ E+(Γm2,l2) such that e2 is adjacent to v2 ∈ V 0(Γm2,l2)

Let

w1 : E(Γm1,l1) → N \ {0}

w2 : E(Γm2,l2) → N \ {0}

be the weight functions and assume furthermore we have

w1(e1) = w2(e2)

Assume that

ue1 = −ue2
where uei denotes the primitive integral vector emanating from vi in the direction of

ei. Let

NR/Ru := NR/Rue1 = NR/Rue2
Then the maps

f1 : T(Γm1,l1
,u1) → NR/Rue1
h1 7→ [h1(v1)]

f2 : T(Γm2,l2
,u2) → NR/Rue2
h2 7→ [h2(v2)](2.8)

induces the map

f : T(Γm1,l1
,u1) × T(Γm2,l2

,u2) → NR/Ru

(h1, h2) 7→ [h1(v1)− h2(v2)]

Assume

f(h1, h2) = 0 ∈ NR/Ru
and

h(v1)− h(v2) = λ · u1 for λ ∈ R>0

Then we can define a glued tropical bouquet

h12 : Γm,l → R2
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as follows. Define the vertex set V (Γm,l) as the disjoint union

V (Γm,l) := V (Γ1)q V (Γ2)

and the edge set E(Γm,l) as

E(Γm,l) := E(Γ1) \ {e1} q E(Γ2) \ {e2} q {e12}

where e12 is the edge such that

∂e12 = {v1, v2}

Define E12 to be the line segment in CR such that

∂E12 = {h(v1), h(v2)}

Now, define the map h12 : Γm,l → R2 by

h12 :=


h1 on V (Γ1

m1,l1
) ∪ E(Γ1

m1,l1
) \ {e1}

E12 on e12

h2 on V (Γ2
m2,l2

) ∪ E(Γ2
m2,l2

) \ {e2}

We refer to h12 : Γm,l → R2 as the gluing of h1 and h2 along the edges e1 and e2.

Lemma 2.24. Any tropical bouquet (h12 : Γm,l → R2) ∈ T(Γm,l,u) where m > 1, can be

obtained by gluing two tropical bouquets

h1 ∈ T(Γm1,l1
,u1)

h2 ∈ T(Γm2,l2
,u2)

such that

m = m1 +m2

and

l = (l1 − 1) + (l2 − 1) = l1 + l2 − 2

Proof. Choose two vertices

vi, vj ∈ V −(Γm,l)

Since Γm,l is a tree by the definition of a coral graph, we have a path Pn given by a

union of n bounded edges in E(Γm,l) connecting vi to vj. By connectedness of h(Γm,l)

it follows that there exists at least one edge

e ∈Pn such that 0 /∈ L(h(e))

where O denotes the origin and L(h(e)) the affine line containing h(e). Take a point

p ∈ e \ ∂e
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Then

Γm,l \ {p} = Γm1,l1 q Γm2,l2

where Γm1,l1 and Γm2,l2 are two trees with non-compact edges

e1 ∈ E+(Γm1,l1)

e2 ∈ E+(Γm2,l2)

such that

e \ {p} = e1 q e2

Define h1 : Γm1,l1 → R2 and h2 : Γm2,l2 → R2 by

h1 := h
∣∣
Γm1,l1

h2 := h
∣∣
Γm2,l2

Note that we apply an extension to h1(e1) and h2(e2) to half-lines in R2 and by abuse

of notation denote the new maps again by h1 and h2.

Then, h : Γm,l → R2 is obtained by gluing h1 and h2 along the edges e1 and e2. �

Example 2.25. The following images illustrate tropical bouquets obtained by the

gluing two tropical bouquets along their labelled edges.

glue =⇒

=⇒glue

Proof of Theorem 2.20: We will prove the theorem for tropical bouquets of general

type (Γm,l, u) of degree ∆. By Lemma 2.24, any such tropical bouquet (h : Γm,l →
R2) ∈ T(Γm,l,u) is obtained by gluing two tropical bouquets

h1 ∈ T(Γm1,l1
,u1)

h2 ∈ T(Γm2,l2
,u2)
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along edges e1 ∈ E+(Γm1,l1 , u1) with ∂e1 = v1 and e2 ∈ E+(Γm2,l2 , u2) with ∂e2 = v2 so

that

E(Γm,l, u) = E(Γm1,l1 , u1) \ {e1} q E(Γm2,l2 , u2) \ {e2} q e

with ∂e = {v1, v2}. Let

{e1} ∪ {eir , . . . , eir | r ≤ l1 − 1} ⊆ E+(Γm1,l1 , u1)

{e2} ∪ {eir+1 , . . . , eik | k − r ≤ l2 − 1} ⊆ E+(Γm2,l2 , u2)}

Now, we will use induction on l. For l = 1, we need to have a unique negative vertex.

Let v be the negative vertex and e ∈ E(Γm,l) be the edge with ∂e = v. Extend e,

to obtain the tropical curve h̃ : Γ̃ml → R2. In this case the result follows from ([M]

Proposition 2.14, [NS] Proposition 2.4).

Assume the theorem is true for any 2 ≤ li < l. Let ui be the direction vector for

ei, that is the primitive integral vector emanating from hi(vi) in the direction of hi(ei)

for i = 1, 2. Define the direction vectors uiµ for the unbounded edges eiµ analogously.

Then, by the induction hypothesis we have submersions

T(Γm1,l1
,u1) −→

r∏
µ=1

NR/R · uiµ

h1 7−→ ([h1(vi1)], . . . , [h1(vir)])

T(Γm2,l2
,u2) −→ NR/R · u2 ×

k∏
µ=r+1

NR/R · uiµ

h2 7−→
(
[h2(v2)], ([h2(vir+1)], . . . , [h2(vik)])

)
Hence, we obtain a submersion

F : T(Γm1,l1
,u1) ×NR/Ru T(Γm2,l2

,u2) −→
r∏

µ=1

NR/R · uiµ ×
k−1∏

µ=r+1

NR/R · uiµ

(h1, h2) 7−→
(
[h1(vi1)], . . . , [h1(vir)], [h2(vir+1)], . . . , [h2(vik−1

)]
)

where

NR/Ru := NR/Ru1 = NR/Ru2

and the fibered coproduct is defined via the morphisms in Equation (2.8). Define

G : T(Γm1,l1
,u1) ×NR/Ru T(Γm2,l2

,u2) −→ R

(h1, h2) −→ λ

where λ ∈ R is defined by

h(v2)− h(v2) = λ · ue1
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Then, by the construction of gluing of bouquets we obtain

(2.9) T(Γm,l,u) = G−1(R>0)

Hence, the inclusion G−1(R>0) ⊂ T(Γm1,l1
,u1)×NR/Ru T(Γm2,l2

,u2) followed by the submer-

sion F gives the desired submersion evi1,...,ik .

Corollary 2.26. The set T(Γm,l,u) of isomorphism classes of general tropical bouquets

of a given type (Γm,l, u) forms the interior of a convex polyhedron of dimension l − 1

where l is the number of unbounded edges of Γ.

Proof. The fact that T(Γm,l,u) is a convex polytope follows by its description in equation

(2.9) and the induction hypothesis.

By Theorem 2.20 we obtain a submersion

F|G−1(R>0) : T(Γ,u) −→
k∏
i=1

NR/R · ui

where 1 ≤ k ≤ l − 1. Hence, for k = l − 1 the result follows. �

Corollary 2.27. The set T(Γ,u) of isomorphism classes of general tropical corals of a

given type (Γ, u) forms the interior of a convex polyhedron of dimension l − 1 where l

is the number of unbounded edges of Γ.

Proof. A tropical coral is a special type of a tropical bouquet in which all unbounded

edges have positive direction vectors. Hence, the result follows. �

Remark 2.28. By Theorem 2.20 there is no dependence among the general asymptotic

constraints and hence if there exist a general constraint λ for the degree of (Γ, u) such

that the set T(Γ,u)(λ) of tropical corals of a type (Γ, u) matching λ is non-empty then

the cardinality |T(Γ,u)(λ)| is equal to 1.

Remark 2.29. A non-general tropical coral can always be deformed into a general

tropical coral analogously to the case of tropical curves ([M],§2). This is possible since

non-general types of tropical corals are obtained by taking the limit of the lengths of

some edges in general types of tropical corals to zero. It follows that the non-general

tropical corals form a lower dimensional strata of the moduli space TΓ,u similar to ([M],

Proposition 2.14). Hence, the types of the non-general corals form a nowhere dense

subset in the space of constraints. This ensures the existence of general constraints.

Before setting up the tropical counting problem we define a range of constraints

λ which will ensure that we get a well-defined count, independent of the constraints

chosen within this range. We first need a couple of lemmas for this.
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Let λ be an asymptotic constraint and assume the set of tropical corals of type (Γ, u)

matching λ is empty. After rescaling λ by s ∈ R>0 it is possible to obtain a non-empts

set of tropical corals of type (Γ, u) matching s · λ as illustrated in the following figure,

where by O we denote the origin in NR.

Rescale

00

To obtain a well-defined count we want to choose our constraints such that we also

avoid the possibility of obtaining new tropical corals after rescaling.

Lemma 2.30. Fix the degree ∆ ∈ Map(N \N0,N). Let (Γ, u) be the type of a tropical

coral of degree ∆. Then ∀λ such that λ is a general asymptotic constraint for (Γ, u)

one of the following holds.

(i) ∀s ≥ 1, T(Γ,u)(s · λ) = ∅.
(ii) ∃s0 ≥ 1 such that ∀s ≥ s0, |T(Γ,u)(s · λ) = 1|

Proof. If there exists a tropical coral h ∈ T(Γ,u) matching a general asymptotic con-

straint λ, then the rescaled coral s · h with s ≥ 1 matches s · λ. This operation clearly

does not change the type. Moreover, since λ is general for h, then s · λ is general for

s · h. Hence, the result follows. �

We need the following definition to show the count we define will be independent of

the choice of the constraint.

Definition 2.31. Let ∆ = (∆,∆) be the degree of type (Γ, u) of a coral graph and

E+(Γ) = {e1, . . . , ek+1}

be the set of positive edges of Γ with ∂ei = vi and u((vi, ei)) = ui for i = 1, . . . , k + 1.

Define the cone

C∆ := {a1u1 + . . .+ akuk + ak+1uk+1 | a1, . . . , ak+1 ∈ R≥0} ⊂ NR

so that the image of C∆ in NR/R · ui ∼= R is a half-space for ui ∈ ∂C∆ and otherwise it

is all of NR/Rui. Then,

λ = (λ1, . . . , λk) ∈
k∏
i=1

NR/R · ui
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is called a good constraint for ∆ if in the former case

λi ∈ int(C∆/R · ui) ⊂ NR/R · ui

Lemma 2.32. Let λ be a good general constraint. Then any tropical curve h̃ : Γ̃→ R2

of degree ∆ matching the constraint

λ̃ = (λ, 0, . . . , 0)

where the last m entries are 0, is obtained as an extension of a tropical coral h : Γ→ CR
of degree ∆ matching λ after a possible rescaling, where Γ has m negative vertices.

Proof. It is enough to show that the images h̃(V (Γ̃)) of vertices of Γ̃ lie inside the cone

C∆ defined in 2.31, since then either

h̃(V (Γ̃)) ⊂ CR ∩ C∆

and the restriction of h̃ is already a tropical coral, or by rescaling h̃ with some s ∈ R≥1,

we can ensure all vertices will be in CR ∩ C∆.

Now assume there exist a vertex v of Γ̃ such that h(v) /∈ C∆. Then it follows that

there exists at least one unbounded edge e of Γ̃ with direction vector ue emanating

from h(v) in the direction of h(e) with ue /∈ C∆: If v is the only vertex of Γ̃ with h(v)

not included in CΓ then this is obvious by the balancing condition at v. If not, then

take a longest path from v to a vertex v′ of Γ̃ such that h(v′) /∈ CΓ, which exists since

Γ is connected. In this case v′ must be adjacent to an unbounded edge e of Γ̃ such that

the direction vector ue /∈ C∆ by the balancing condition at v′. But the existence of such

an edge e contradicts that h̃ : Γ̃→ R2 has degree ∆. Hence, the result follows. �

Remark 2.33. Recall general constraints exist as non-general types of tropical corals

form a nowhere dense subset in the space of constraints (Remark 2.29). Note that

good constraints form an open set inside the set of constraints. Hence, the existence

of good general constraints follows.

To avoid the possibility of obtaining new tropical corals after rescaling that match

a given constraint we will need the following definition.

Definition 2.34. Let ∆ ∈ Map(N \N0,N) be a map of finite support. Define the stable

range S of constraints for ∆ as the set of asymptotic constraints λ for ∆ satisfying

(i) λ is a good general asymptotic constraint for ∆.

(ii) For any type (Γ, u) of degree ∆, if T(Γ,u)(λ) = ∅, then T(Γ,u)(s · λ) = ∅, ∀s ≥ 1.

Now we are ready to define the tropical count. Let ∆ ∈ Map(N \ N0,N) be a map

of finite support. Then there are only finitely many types of tropical corals

(Γ1, u1), · · · , (Γn, un)
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of degree ∆ by Proposition 2.18.

Let C∆ be as in Definition 2.31, so that all all good general constraints lie inside the

interior of C∆. Recall that good general constraints for ∆ exist (2.33). Fix one good

general constraint λ.

For each type of tropical coral (Γi, ui), let Si be the stable range defined as in

Definition 2.34 for i = 1, · · · , n. By Lemma 2.30, there exists si ≥ 1 such that

si · λ ⊂ Si

for i = 1, . . . , n. Now define

S :=
⋂
i

Si

referred to as the stable range for ∆. Then S is non-empty, since by taking the

maximum

s0 = max{si | i = 1, . . . , n}

we ensure T(Γi,ui)(s0λ) is non-empty if it becomes non-empty after further rescaling by

any positive real number, for all i = 1, . . . , n. Hence, we have s0λ ∈ S. So, either

T(Γi,ui)(s0λ) = ∅

or ∣∣ T(Γi,ui)(s0λ)
∣∣= 1

for i = 1, · · · , n by Remark 2.28. Assume we are in the latter case and the count is

non-zero, so that hi : Γi → CR for i = 1, . . . , k for k ∈ N is a list of general tropical

corals of type (Γi, ui) matching s0λ ∈ S. 2 Define the tropical count N trop
∆,λ as follows.

Let V (Γi)\V −(Γi) be the set of all non-negative vertices of Γi, so that each v ∈ V (Γi)

is trivalent. For each v ∈ V (Γi)\V −(Γi) define the multiplicity at v as follows. Choose

two arbitrary edges e1 and e2 adjacent to v. Let u1 and u2 denote the primitive integral

vectors emanating from v in the direction of e1 and e2 respectively. Let w1, w2 ∈ N\{0}
be the associated weights to e1, e2. Then we define the multiplicity of v as

Mult(v) := w1 · w2 · |det(u1, u2)|

The multiplicity of Γ (Definition 2.16,[M]) is defined to be the product

Mult(Γi) :=
∏

v∈V3(Γi)

Mult(v)

2We fix b ∈ N \ {0} defining the polyhedral decomposition CPb of CR, sufficiently big such that

all vertices of hi(Γi) are integral.
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Then, the tropical count is defined by

(2.10) N trop
∆,λ :=

n∑
i=1

1∏
jdij

1∏
keik
·Mult(Γi)

where dij’s are the weights of the unbounded edges and eik’s are the weights of the

edges adjacent to a negative vertex of Γi.

Lemma 2.35. Let λ be a general good constraint in the stable range S for ∆. Then

the tropical count N trop
∆,λ is independent of the choice of λ.

Proof. Any tropical coral with m negative vertices of degree ∆ matching λ has a unique

extension which is a tropical curve of degree ∆ matching (λ, 0 . . . , 0) where the last m

entries are zero by Lemma 2.17.

Moreover, any tropical curve of degree ∆ matching (λ, 0 . . . , 0) is obtained as the

extension of a tropical coral of degree ∆ matching λ after a possible rescaling by

Lemma 2.32 since λ is a good constraint. By condition ii of Definition 2.34 we avoid

the possibility of rescaling, hence any tropical curve is obtained as the extension of a

tropical coral.

Therefore, the count of tropical curves of degree ∆ matching λ̂ = (λ, 0 . . . , 0) which

are extensions of tropical corals is equal to the count of tropical corals of degree ∆

matching λ which is given by equation (2.10) (Theorem 3.4 in [GPS]). Note that

in the extension of a tropical coral, we omit the divalent vertices which correspond to

negative vertices of the tropical coral. So, there is a one-to-one correspondence between

the unbounded edges of an extension of a tropical coral that pass through the origin

with the edges of the tropical coral that are adjacent to negative vertices with the

corresponding weights preserved.

The cardinality of the set of tropical curves of degree ∆ matching λ̂ is independent

of the choice of the constraint by [GM]. Hence, the result follows. �
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3. A curve counting problem

3.1. Log corals. The central topic in this section is to define and count algebraic

geometric objects that correspond to tropical corals. We assume familiarity with log

Gromov-Witten theory.

Recall from [GS4], [AC] that Gromov-Witten theory has been generalised to the set-

ting of logarithmic geometry. One works over a base log scheme (S,MS). The scheme

S in practice could be the spectrum of a discrete valuation ring with the log structure

induced by the closed point (one-parameter degeneration), or it could be Spec k, for k
an algebraically closed field of characteristic zero, endowed with the trivial log struc-

ture (absolute situation), or Speck endowed with the standard log structure (central

fibre of one-parameter degeneration). The standard log structure up to isomorphism

is given uniquely by a monoid Q with Q× = {0} giving rise to the log structure

Q⊕ k× −→ k, (q, a) 7−→

a, q = 0

0, q 6= 0.

on Spec k. We will restrict our attention to the latter case and take the log point

endowed with the standard log structure as a base scheme. Throughout this paper we

assume

k = C and Q := N

and denote the standard log point by

SpecC† := (SpecC,N⊕ C×).

One generalises the notion of a stable map to the log setting as follows. Consider an

ordinary stable map with a number, say `, of marked points. Thus we have a proper

curve C with at most nodes as singularities, a regular map f : C → X, a tuple

x = (x1, . . . , x`)

of closed points in the non-singular locus of C. Moreover the triple (C,x, f) is supposed

to fulfill the stability condition of finiteness of the group of automorphisms of (C,x)

commuting with f . To promote such a stable map to a stable log map amounts to endow

all spaces with (fine, saturated) log structures and lift all morphisms to morphisms of

log spaces. Then C → SpecC is promoted to a smooth morphism of log spaces

π : C† −→ SpecC†.

and we have a log morphism (Definition A.34)

f : C† −→ X†.
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where X† denotes the log scheme (X,MX), endowed with a log structure αX :MX →
OX and C† denotes the log scheme C, endowed with a log structure αC :MC → OC .

Given a morphism of log spaces f : C† −→ X†, we denote by f : C −→ X the

underlying morphism of schemes as well as the underlying morphism on topological

spaces.

Throughout this paper we will assume that the arithmetic genus of the domain curve

C is zero;

g(C) = 0

and thus will work on the Zariski site, rather than the étale site which would be needed

for more general cases.

Let x ∈ X be a closed point in and let f [x : MX,f(x) → MC,x be the morphism of

monoids induced by f : C† −→ X†. Then, by the definition of a log morphism we

obtain the following commutative diagram on the level of stalks

(3.1) MX,f(x)

f[x //

αX,f(x)

��

MC,x

αC,x

��
OX,f(x)

f]x // OC,x

Let κ : MX

/O×X−−→ MX be the quotient homomorphism. By the commutativity of the

above diagram there is a morphism induced by f on the level of ghost sheaves, denoted

by

f
[

x :MY0,f(x) →MC,x

for a closed point x ∈ C. By abise of notation morphism

f
[

x :Mgp

Y0,f(x) →M
gp

C,x

on group level is also denoted by f
[

x.

We demand the morphism f : C† → SpecC† to be log smooth. This means locally

on C and X, we have the following commutative diagram

(3.2) C //

��

SpecZ[P ]

��
SpecC // SpecZ[N]

such that

(i) The horizontal maps induce charts P → MC and N → N ⊕ C× for the log

structures on C and SpecC respectively.

(ii) The right vertical arrow is induced by a map of toric monoids N→ P .
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(iii) The induced morphism

C → SpecC×SpecZ[N] SpecZ[P ]

is a smooth morphism of schemes.

We furthermore demand that the regular points of C where π is not strict are exactly

the marked points. We will recall the precise shape of such log structures on nodal

curves instantly.

Remark 3.1. After a moment of thought one may conclude that an algebraic stack

based on this notion of a stable log smooth map over the log point (Spec k, Q ⊕ C×)

can never be of finite type, because for a given stable log map one can always enlarge

the monoid Q, for example by embedding Q into Q ⊕ Nr. To solve this issue, a basic

insight in [GS4], [AC] is that there is a universal, minimal choice of Q. In this basic

monoid there are just enough generators and relations to lift f : C → X to a morphism

of log spaces while maintaining log smoothness of C† → Spec k†. After the usual fixing

of topological data (genus, homology class etc.) the corresponding stack of basic stable

log maps turns out to be a proper Deligne-Mumford stack.

For the present paper this general theory is both a bit too general and still a bit too

limited. It is too general because we will end up with a finite list of unobstructed stable

log maps over the standard log point. In particular, there is always a distinguished

morphism

(SpecC,N)→ (SpecC, Q)

from any of our stable log maps to the corresponding log map with the basic monoid

just coming from our degeneration situation. Therefore, throughout this paper we

comfortably assume the basic monoid Q is given by the natural numbers Q := N.

Moreover, there is no need for working with higher dimensional moduli spaces or with

virtual fundamental classes, as the moduli space of the stable log maps over SpecC†

form a proper Deligne-Mumford stack of finite type ([GS4], §3).

The general theory is also too restricted because we will have to admit non-complete

domains. The presence of non-complete components requires an ad hoc treatment of

compactness of our moduli space that is special to our situation.

In this section we define and discuss the properties of the special kind of stable

log maps with non-complete components which we refer to as log corals. In the next

sections we show that these types of stable log maps over the standard log point C†

yield tropical corals. We first recall a couple of definitions from [GS4].

Definition 3.2. A log smooth curve over the standard log point

SpecC† := (SpecC,N⊕ C)
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consists of a fine saturated log scheme

C† := (C,MC)

with a log smooth, integral morphism

π : C† → SpecC†

of relative dimension 1 such that every fibre of π is a reduced and connected curve.

Note that we do not demand C to be proper which is the case in ([GS4], Defn. 1.3).

If we specify a tuple of sections x := (x1, · · · , xl) of π so that over the non-critical

locus U ⊂ C of π we have

MC |U ' π∗MSpecC† ⊕
⊕
i

xi∗NSpecC

then we call the log smooth curve C† marked and denote it by

(C/SpecC†,x, f).

Before going through more details we would first like to make a few remarks on the

local structure of log smooth curves π : C† → SpecC† over the standard log point

SpecC†. Let 0 ∈ SpecC be the closed point. Then we have an isomorphism

MSpecC,0 −→ N

t
a 7−→ a

Let σ : N→MSpecC,0 be the chart for the log structure on SpecC around 0 ∈ SpecC,

given by

σ(q) =

{
1 if q = 0

0 if q > 0

Now, we state the following crucial theorem, which is a special case of a theorem due

to Kato ([Kf, p.222]), as we are restricting our attention to log smooth curves over the

standard log point.

Theorem 3.3. Locally C is isomorphic to one of the following log schemes V over

SpecC.

(i) Spec(C[z]) with the log structure induced from the homomorphism

N −→ OV , q 7−→ σ(q).

(ii) Spec(C[z]) with the log structure induced from the homomorphism

N⊕ N −→ OV , (q, a) 7−→ zaσ(q).
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(iii) Spec(C[z, w]/(zw− t)) with t ∈ m, where m is the maximal ideal in C and with

the log structure induced from the homomorphism

N⊕N N2 −→ OV ,
(
q, (a, b)

)
7−→ σ(q)zawb.

Here N → N2 is the diagonal embedding and N → N, 1 7→ ρq is some homo-

morphism uniquely defined by C → SpecC. Moreover, ρq 6= 0.

In this list, the morphism C† → SpecC† is represented by the canonical maps of charts

N → N, N → N ⊕ N and N → N ⊕N N2, respectively where we identify the domain N
always with the first factor of the image.

Remark 3.4. In Theorem 3.3 cases (i), (ii), (iii) correspond to neighbourhoods of general

points, marked points and nodes of C respectively. Thus, we have the following table

describing the local structure of MC for all possible types of points on C.

Points x on C MC,x

x = η a generic point N
x = p a marked point N2

x = q a node N⊕N N2

Note that the base moniod N, together with the choice of ρq 6= 0 at each node q ∈ C,

determines the log structure αC :MC → OC .

Definition 3.5. Nodes and marked points of a log smooth curve C† → SpecC† are

referred to as special points of C.

Throughout this paper we work with log maps to the central fiber over t = 0 of the

degeneration of the unfolded Tate curve

Y0 = A1
s ×

⋃
∞

P1

where the charts for the log structure on MY0 are given in 1.12. The advantage on

working with Y0 is as follows. Since the total space Y is a toric variety, the log structure

Mgp

Y is globally generated. In particular, for every closed point x ∈ Y0

Γ(Y0,M
gp

Y0
) �Mgp

Y0,x

is surjective. Now we are ready to generalise the notion of a log map over SpecC†

([GS4], 1.2) to the case where the domain includes some special non-complete compo-

nents.

Definition 3.6. Let (C/ SpecC†,x, f) be a marked log smooth curve and let

Y †0 = (Y0,MY0)
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be the central fiber of the unfolded Tate curve over t = 0 endowed with the log structure

induced by the embedding of Y0 into the toric variety Y . A morphism of log schemes

f : C† → Y0 is called a log map over SpecC† if the following holds:

i.) The morphism f fits into the following commutative diagram

C†
f
//

π %%

(X,MY0)

��

SpecC†

ii.) For each non-complete irreducible component C ′ ⊂ C, there is an isomorphism

C ′ ∼= A1.

iii.) The map s ◦ f
∣∣
C′

: C ′ → A1 is dominant, where

s : Y0 → A1
s

is the projection map.

iv.) For each marked point pi ∈ C

f(pi) ∈ (Y0)s=0

where (Y0)s=0 is the fiber over 0 ∈ A1
s under the map s : Y0 → A1.

v.) The automorphism group Aut(C/SpecC†,x, f) is finite.

Before proceeding, we will take a little time to discuss the log structure on the

non-complete components of the domain of log maps in more detail.

Let f : C† → Y †0 be a stable log map. Let C ′ ⊂ C be a non-complete component

with generic point η. Denote the function field of C ′ = A1 by

OC′,η = k(z)

Let Z ⊂ Y0 be the smallest toric stratum containing f(C ′). Then, we have one of the

two following cases.

i) dimZ = 2: in this case we call f transverse at C ′. A chart for the log structure

MY0 around f(η) is given by

MY0|U →MY0|U
t 7→ st(3.3)

for an open neighbourhood U of f(η). The coordinates on U are given either

by

{x, t, s | x = (st)b}
or by

{y, t, s | y = (st)b}
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where t is fixed. Throughout this section without loss of generality we assume

the former. The morphism

f [η :MY0,f(η) −→ MC,η

sx 7−→ ϕx(z)

ss 7−→ ϕs(z)

is only determined by ϕx, ϕs ∈ k(z)\{0} which are determined by f ]η : OY0,f(η) →
OC,η.

ii) dimZ = 1: in this case we call f non-transverse at C ′. A chart for the log

structure MY0 around f(η) is given by

MY0|U −→ MY0|U
x 7−→ sx

y 7−→ s−bsy

t 7−→ st(3.4)

for an open neighbourhood U of f(η), where x · y = t
b
. The coordinates on U

are given by {x, y, s, t | xy = (st)b}. The morphism

f [η :MY0,f(η) −→ MC,η

sx 7−→ ϕx(z) · tα

sy 7−→ ϕy(z) · tβ

ss 7−→ ϕs(z)

is determined by ϕx, ϕy, ϕs ∈ k(z) \ {0} and α, β ∈ N \ {0} such that α+ β = b

and ϕxϕy = ϕbs.

To set up the log counting problem in the next section, analogously as in the tropical

counting problem, we restrict our attention to general log maps defined as follows.

Definition 3.7. A stable log map f : C† → Y0
† is called general if each non-complete

component C ′ ⊂ C has only one special point and each complete component contains

at most three special points.

Note that for a general stable log map if a non-complete component C ′ ⊂ C admits

a marked point as the unique special point, then by the connectivity of C there can not

exist any other component. Since this case can be treated easily in all arguments we

use, we omit it and assume the unique special point on each non-complete component

on a general coral is a node.
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Let f : C† → Y0
† be a general log coral. Let C ′ = SpecC[z] ⊂ C be a non-complete

component with generic point η and

OC′,η = C(z)

Take charts for the log structure MY0 as in 1.12. Then, we have one of the following

two cases.

(i) If f is transverse at C ′: We have a section

sx ∈ Γ(U ,MY0)

for an appropriate open subset U ⊂ Y0 of Y0 with f(C ′) ⊂ U so that

αY0(sx) = x ∈ O×Y0(U).

Let

f−1αY0 : f−1MY0 → f−1OY0
be the morphism between the inverse image sheaves of monoids on C and let

f−1sx ∈ Γ(f−1(U), f−1MY0|C′)

be the section of f−1MY0|C′ induced by sx. Then we obtain a rational function

ϕx ∈ k(z) \ {0}

on C ′ given by

(3.5) ϕx = f−1αY0(f
−1sx).

ii.) If f is non-transverse at C ′: We have

sxβ/yα ∈ Γ(U ,Mgp
Y0

)

for an appropriate open subset U ⊂ Y0 with f(C ′) ⊂ U and α, β ∈ N \ {0} are

as in 3.5. Then

f bηsxβ/yα ∈ Γ(C ′, f−1Mgp
Y0
|C′)

is a section of f−1Mgp
Y0
|C′ . By 3.5,

f bηsxβ/yα = ϕβx/ϕ
α
y

is a rational function.

Now, let C ′ = P1 \ {∞} ⊂ C be as above. Then, we have the following important

condition, which will give us the tropical balancing condition on the negative vertices

of a tropical coral as we will see in section 4.

Definition 3.8. Let val∞ : k(z)→ Z be the valuation at z =∞. We call f asymptot-

ically parallel at C ′ if the following holds.
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i) val∞(ϕx) = 0, if f is transverse at C ′.

ii) val∞(ϕβx/ϕ
α
y ) = 0, if f is non-transverse at C ′ .

Finally, we are ready to define log corals.

Definition 3.9. A log map f : C† → Y0
† over C† is called a log coral if f is asymptot-

ically parallel at C ′ for each non-complete component C ′ ⊂ C.

We will sometimes replace Y0 by an open subset of it containing im f or by the

Z-quotient of it. The definition of log corals then still makes sense with the obvious

modifications.

Remark 3.10. Let f : C† → Y0
† be a stable log map and let C ′ ⊂ C be a non-complete

component. Assume q = C ′ ∩ P1 is a nodal point of C ′ mapping to (Y0)s=0. If f is

transverse at C ′, let ϕx ∈ k(z) \ {0} be as in (3.5). Assume

p = f(q).

Then, we have

ϕx(q) = x(p)

which is the position of the intersection point f(q) = f(C ′) ∩ (Y0)s=0 on (Y0)s=0.

If f is non-transverse at C ′, let Ỹ0 be the weighted blow-up of Y0 at x = y = 0

with weights α, β ∈ N \ {0}. By [AW] the count of stable log maps is invariant under

blowing-up, thus generally we restrict our attention to log maps f : C† → Y0
† lifting

to f̃ : C† → Ỹ †0 . Let ϕβx/ϕ
α
y ∈ k(z) \ {0} be as in 3.5. Assume

p̃ = f̃(q).

Then, we have

ϕβx/ϕ
α
y (q) = xβ/yα(p̃)

which is the position of the point of intersection of f̃(C ′) with the exceptional divisor

on Ỹ0.

Let A1 × P1 ⊂ Y0 be an irreducible component of Y0, compactified to P1 × P1 along

D∞ = P1 to which we refer to as the divisor at infinity. Let

q∞ = ϕ̃(pC′) ∈ D∞.

Then we refer to as q∞ the point at infinity. See the following figure for an illustration

of it.
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f̃ |C ′

pr2

pr1

D∞

pC ′

p∞

P1

A1

q∞

A1

Before proceeding in the next section with tropicalizations, we would like to make a

couple of more remarks concerning the position of the point q∞ on D∞. Let f : C† →
Y0
† be a log coral and C ′ ⊂ C be a non-complete irreducible component of C. The

restriction f |C′ factors over an irreducible component A1 × P1 ⊂ Y0. Hence we have a

morphism f ′ : C ′ → A1 × P1 fitting into the following diagram.

(3.6) C ′
f |C′ //

f ′ $$

Y0

A1 × P1
?�

OO

Let

pr1 : A1 × P1 → A1

pr2 : A1 × P1 → P1

be the projection maps and let

ϕ := pr1 ◦ f ′ : C ′ → A1

φ := pr2 ◦ f ′ : C ′ → P1

A1

C ′
f ′
// A1 × P1 ⊂ Y0

pr1

88

pr2

&&
P1

Note that the map ϕ : A1 → A1 is identically equal with s ◦ f |C′ as in 3.6, so it is

dominant. Thus, it extends uniquely to a morphism ϕ̃ : P1 → P1 where the domain of
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ϕ̃ is the completion

{pC′} ∪ C ′ ∼= P1

of C ′ along the point at infinity pC′ on C ′ and

ϕ̃(z) :=

ϕ(z) for z ∈ C ′

q∞ for z = pC′

By the Hurwitz formula ϕ̃ : P1 → P1 is a covering totally branched at infinity. The

branching order is defined as follows.

Definition 3.11. Let f : C† → Y †0 be a log coral with a non-complete component

C ′ ⊂ C and let ϕ = s ◦ f |C′ be defined as in (Defn. 3.6,(iii)). We say C ′ has branching

order w ∈ N \ {0} if the degree of the covering ϕ̃ : P1 → P1 equals w.

We will describe the position of q∞ on D∞ in a moment. Recall ϕx is given as in

(3.5) if f is transverse at C ′ and ϕβx/ϕ
α
y if f is non-transverse at C ′.

Definition 3.12. Let

υ : SpecC[w] \ {0} → SpecC[z] \ {0}

w 7→ 1

z

be the morphism which induces the map between fraction fields given by

υ∗ : C(z) → C(w)

r 7→ r ◦ υ

Let

ϕx := υ∗(ϕx) and ϕβx/ϕαy := υ∗(ϕβx/ϕ
α
y )

Then, the value over w = 0 given by

i.) ϕx(0) if f is transverse at C ′

ii.) ϕβx/ϕαy (0) if f is non-transverse at C ′

gives the position of q∞ ⊂ D∞ which we refer to as the virtual position at infinity.

3.2. The set up of the counting problem. In this section we set up the counting

problem for log corals f : C† → Y0
†. The count depends on the notions of coral degree

∆, degeneration order λ and log constraint ρ that we will define in a moment.

Recall the charts for MC are described using Theorem 3.3. For generic points we

have the isomorphism

Mgp

C,η → Z

t̄a 7→ a
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and for marked points p of C have the isomorphism

Mgp

C,p → Z⊕ Z

(t̄a, z̄b) 7→ (a, b)

and throughout this section we denote by pri : Mgp

C,p → Z the projection to the i-th

factor for i = 1, 2.

Explicitly, we take the following charts for MC around generic and marked points.

(i) For a generic point η of an irreducible component of C;

MC,η −→ MC,η

t̄ 7−→ st

(ii) For a marked point p of C;

MC,p −→ MC,p

t̄ 7−→ st

z̄ 7−→ sz

Throughout this section we assume the charts for the log structure MY0 on the

central fiber Y0 over t = 0 of the unfolded Tate curve are given as in 1.12.

We first discuss how to assign an element of N to marked points and to non-complete

irreducible components of the domain C of a log coral f : C† → Y †0 . This will lead us

to the definition of the coral degree ∆ and degeneration order λ.

Let f : C† → Y †0 be a log coral with marked points (p1, . . . , pl+1). Following the

general scheme in [GS4], for each marked point pi we now define an element of N

recording the logarithmic contact order of pi with Y0 as follows. Let Ξ ∈ P be the

interval such that the corresponding toric chart

(C(CΞ))∨ ∩ (M ⊕ Z) −→ Γ(UΞ,MY )

covers f(pi). Composing with f [ and restricting to pi thus yields a homomorphism of

monoids

(C(CΞ))∨ ∩ (M ⊕ Z) −→MY,f(pi)

f[pi−→MC,pi = N⊕ N.

The two factors of N⊕N inMC,pi are generated by the smoothing parameter st and by

the equation defining pi in C, respectively. Taking the composition with the projection

to the second factor thus defines a homomorphism

ui : (C(CΞ))∨ ∩ (M ⊕ Z) −→ N,

that is, an element of C(CΞ) = ((C(C))∨)∨. Since by definition this homomorphism

maps (0, 1) ∈M ⊕ Z to 0, it lies in (0, 1)⊥ = N ⊕ {0} ⊂ N ⊕ Z. Moreover, identifying
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N ⊕{0} with N , the intersection of C(CΞ) with NR⊕{0} agrees with the asymptotic

cone of CΞ. We have thus defined, for each marked point pi ∈ C, an element ui ∈ N
contained in the asymptotic cone of the relevant cell of CP.

Now, given a log coral f : C† → Y †0 , again following [GS4], each unbounded compo-

nent C ′ ' A1 of C determines an integral point in B = CR as follows. Let Ξ ∈P be

the interval with the corresponding log chart containing f(η). The composition of the

chart with the restriction to the stalk at η defines a homomorphism

φη : (C(CΞ))∨ ∩ (M ⊕ Z) −→MY,f(η)

f[η−→MC,η = N.

Since f is a log morphism relative to the standard log point, φη(0, 1) = 1. Thus viewed

as an element of N ⊕ Z, we have φη ∈ N ⊕ {1}. Define

(3.7) uη = φη − (0, 1)

as an element of N = N ⊕{0} ⊂ N ⊕Z. Moreover, φη(s) = 0 for C ′ does not lie in Y0.

This means φη ∈ C(Ξ× {1}) = C(∂B), and in turn uη maps to an element of N \ {0}
under the projection N = Z⊕ Z→ Z to the height.

To define the coral degree for C ′, we need to multiply uη with the contact order

at infinity. This contact order is simply defined by pulling back s ∈ O(Y ) to C ′ and

taking the negative of the valuation at ∞, the missing point of C ′ ' A1 ⊂ P1:

wη = − val∞(f ](s))(3.8)

Note that wη ∈ N \ {0} since f ](s) is a non-constant regular function on C ′ ' A1.

Now, under these conventions we can define the coral degree as follows.

Definition 3.13. The coral degree (C-degree) with `+1 positive and m negative entries

is a tuple

∆ := (∆
`+1
,∆m) ⊂ N l+1 ×Nm

of elements in the lattice N with

pr2(∆i) > 0

pr2(∆j) < 0

for all i, j where by pr2 : N = Z ⊕ Z → Z we denote the projection onto the second

factor.

Definition 3.14. A log coral f : C† → Y0
† with `+ 1 marked points

{p0, p1, . . . , p`}

and m non-complete components

C ′1, · · · , C ′m
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is said to be of coral degree ∆ := (∆
`+1
,∆m) if the following conditions hold

(i) For each marked point pi of C, the composition

pr2 ◦ (f
[

f(pi)
)gp :Mgp

Y0,f(pi)
→Mgp

C,pi
→ Z

equals ∆i.

(ii) For each non-complete component C ′ ⊂ C with generic point ηj, the morphism

wj · uj defined by Equations (3.7) and (3.8) equals ∆j.

Example 3.15. Let f : C† → Y0
† be a log coral. Let η be the generic point of a

non-complete component C ′ ⊂ C and let p ∈ C be a marked point. Take charts for

the log structures MC around p and η as in 3.2.

If f is transverse at C ′, then the map f̄ [f(η) :MY0,f(η) −→MC,η is given by t̄ 7−→ s̄t.

Assume f is non-transverse at C ′ and let f̄ [f(η) be given by

f̄ [f(η) :MY0,f(η) −→MC,η

x̄ 7−→ s̄αt

ȳ 7−→ s̄βt

t̄ 7−→ s̄bt(3.9)

where α, β ∈ N \ {0} such that α + β = b. Then fixing the coral degree of f , fixes α

and β.

Therefore, the map f̄ [f(η) is determined by the degree at generic points η of a non-

complete component of C.

Now, assume p is a marked point and take a chart for MY0 around f(p) as follows.

MY0,f(p) −→MY0,f(p)

x 7−→ sx

y 7−→ sy

s 7−→ ss

t 7−→ st

where

xy = (st)b in MX,f(p)

is induced by the equation

sxsy = (ssst)
b in MY0



LOG-GEOMETRIC INVARIANTS OF DEGENERATIONS 59

Let f̄ [f(p) :MY0,f(p) →MC,p be given as

f̄ [f(p) :MY0,f(p) −→ MC,p

x̄ 7−→ t̄f · z̄e

ȳ 7−→ t̄h · z̄g

s̄ 7−→ t̄d · z̄c

t̄ 7−→ t̄

where f, h, d ∈ N \ {0} and e, g, c ∈ N. Fixing the coral degree of f fixes the z-powers

e, g, c. To obtain a finite number of possibilities for the morphism f̄ [ : f−1MY0,f(p) →
MC,p on the level of ghost sheaves we need more constraints also regarding the t-powers,

which we define in the following definition.

Definition 3.16. Let f : C† → Y0
† be a log coral of coral degree ∆ := (∆

`+1
,∆m). Let

{p0, . . . , p`} ⊂ C be the set of marked points on C, such that pj ∈ Cj for a complete

component Cj of C. Let ηj denote the generic point of Cj and let

λ := (λ1, · · · , λ`) ∈
∏̀
i=1

N/(N ∩ R∆j)

We say f : C† → Y †0 has degeneration order λ if the image of

(f̄ηj :MY0,f(ηj) →MC,ηj
∼= N) ∈ N

under the quotient map

N → N/(N ∩ R∆j)

is equal to λj for all j = 1, . . . , `.

Note that the degeneration order describes a constraint on all but one marked points.

So far we have defined incidence conditions on the level of ghost sheaves which we

will see all have tropical analogues. We will observe in the section 4 that fixing the coral

degree of a log coral f : C† → Y0
† corresponds to fixing the degree of the corresponding

tropical coral h : Γ → CR and fixing the degeneration order of f corresponds to

fixing asymptotic constraints for h. Therefore, given a scheme theoretic morphism

f : C → Y0, the finiteness of the possibilities for the morphisms on the level of ghost

sheaves f
[

: f−1MY0 → MC follows from the fact that the number of tropical corals

with a fixed degree matching asymptotic constraints on all but one of its unbounded

edges is finite which we had seen in section 2.4.

Next we describe an additional constraint referred to as a log constraint, which does

not have a tropical analogue, but will be required to ensure the finiteness of the lifts

of the morphism f̄ [ : f−1MY0 →MC on the level of ghost sheaves to a log morphism
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f : C† → Y0
†. For this we first need the following definition concerning the positions

of marked points. Recall that we require the marked points on C to map to the toric

boundary of a toric stratum in Y0 under f . This is analogous to the situation treated

in [GPS].

Definition 3.17. Let f : C† → Y0
† be a log coral with marked points {p0, . . . , p`} ⊂ C,

such that pj ∈ Cj for a complete component Cj ⊂ C. Let ϕx and ϕβx/ϕ
α
y be defined

analogously to (3.5) and (??) respectively. Recall by (Defn. 3.6, (iii)) f(p) lies inside

the big torus orbit of an irreducible component the toric boundary (Y0)s=0 for any

marked point p of the domain.

i.) If f does not contract Cj ∼= P1: Then

ϕx(pj) ∈ C×

is the position of f(pj) in the big torus orbit C× ⊂ Cj.

ii.) If f contracts Cj ∼= P1 to a nodal intersection point p of two complete compo-

nents: Let E be the exceptional divisor on the (weighted) blow-up of Y0 as in

Remark 3.10. Then,

ϕβx/ϕ
α
y (pj) ∈ C×

is the position of f(pj) in the big torus orbit C× ⊂ E.

We refer to ϕx(pj) in case (i) and to ϕβx/ϕ
α
y (pj) in case (ii) as the marked point po-

sition. Note that we will discuss a more intrinsic definition for the log constraints in

the following section (5.3), which are defined in a moment in terms of marked point

positions. Once we have the intrinsic definition it will be more explicit why ϕx(pj) and

ϕβx/ϕ
α
y (pj) are indeed elements of C×.

Now, let `,m be positive integers. A tuple

ρ = (ρ`, ρm) ∈ (C×)
` × (C×)

m

is called a log constraint of order (`,m).

Definition 3.18. A log coral f : C† → Y †0 matches a log constraint ρ = (ρ`, ρm) if

i.) C has ` + 1 marked points {p0, . . . , p`} and the marked point position of pj
defined in Definition 3.17 equals ρj, for j = 1, . . . , `.

ii.) C has m unbounded components {C ′1, . . . , C ′m} and the virtual position at in-

finity defined in Definition 3.12 for C ′i is equals ρi, for i = 1, . . . ,m.

Definition 3.19. Let L∆,λ,ρ be the set of all log corals f : C† → Y †0 of coral degree

∆, degeneration order λ and matching a log constraint ρ. Define N log
∆,λ,ρ to be the

cardinality

N log
∆,λ,ρ := |L∆,λ,ρ|
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If N log
∆,λ,ρ is finite this defines a number giving us a count of log corals. In 5.11 we

will see that, indeed

N log
∆,λ,ρ = N trop

∆,λ

where N trop
∆,λ is the tropical count defined in 2.4 for λ a good asymptotic constraint on

the stable range. On the log side λ is a suitably chosen degeneration order which under

tropicalization will correspond to good asymptotic constraints on the stable range.

Remark 3.20. A priori, L∆,λ,ρ has the structure of a stack, and it is a closed substack of

a larger algebraic stack of log maps with some non-complete components. In the present

case we are in the comfortable situation that due to unobstructedness of deformations,

L∆,λ,ρ turns out to be a reduced scheme over C of finite length, hence really does not

carry more information than the underlying set.
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4. Tropicalizations

In this section we will define the tropicalization of a log scheme and explain how a

log coral f : C† → Y †0 induces a map

f trop : Trop(C†)→ Trop(Y †0 )

between the associated tropical spaces, referred to as the tropicalization of f . We

will see that actually the data (f, f
[
) given by the scheme-theoretic map f : C → Y0

together with a morphism f
[

: f−1MY0 → MC between sheaves of monoids on the

ghost sheaf level is enough to determine the tropicalization of f .

The main result we need to establish in this section is that the tropicalization of a

log coral is a tropical coral. The substantial point in this statement is that f being

asymptotically parallel implies the balancing condition also on the vertices mapping

to the lower boundary of the truncated cone CR. We assume CR is endowed with a

polyhedral decomposition CPb as in Definition 1.5 for a fixed b ∈ N \ {0}. We often

suppress CPb in the notation when referring to CR.

We first review how to define the tropicalization Trop(X) of a log scheme (X,MX)

([GS4], Appendix B.). Then, we discuss how to obtain a morphism f trop : Trop(C)→
Trop(Y0) given a log coral f : C† → Y †0 , which will give us the tropical coral obtained

by tropicalizing f .

Definition 4.1. Let X† be a log scheme endowed with the Zariski topology. The

tropical space associated to X† denoted by Trop(X) referred to as the tropicalization

of X† is defined as

Trop(X) :=

(∐
x∈X

Hom(MX,x,R≥0)

)/
∼

where the disjoint union is over all scheme-theoretic points x of X and the equivalence

relation is generated by the identifications of faces given by dualizing generization maps

MX,x →MX,x′ when x is a specialization of x′. One then obtains for each x a map

ix : Hom(MX,x,R≥0)→ Trop(X).

which is injective since MX is fine in the Zariski topology.

Now, given a log coral f : C† → Y0
† and a closed point x ∈ C, the map f̄ [x :

MY0,f(x) →MC,x induces a morphism Hom(MX,x,R≥0)→ Hom(MY,f(x),R≥0). Hence

we obtain the morphism

f trop : Trop(C)→ Trop(Y0)
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referred to as the tropicalization of f which is compatible with the equivalence rela-

tions defining Trop(C) and Trop(Y0). We will establish the one-to-one correspondence

between the data

(f, f̄ [)

and a tropical coral of a fixed degree matching a general asymptotic constraint in detail

in this section. In the following sections we will see that there will be exactly N trop log

corals f : C† → Y †0 with given tropicalization, where N trop is the tropical count defined

in section 2.4. This will show that the tropical and log counts match.

We restrict to the case of current interest that Y0 is the fibre over t = 0 of the degen-

eration of the unfolded Tate curve Y → SpecC[s, t] defined by an integral polyhedral

decomposition CPb of (part of) NR with N ' Z2 ([GS3] and [NS]). Thus the cones

of the fan defining Y are C(CΞ) ⊂ NR ⊕ R, and the morphism to A1 is defined by

projecting this fan to the last coordinate.

Given a log coral f : C† → Y †0 and a closed point x ∈ C of the domain if f(x) lies in

the big cell of the toric stratum of Y0 defined by CΞ ∈ CPb, then

MY0,f(x) = C(CΞ)∨ ∩ (M ⊕ Z)/C(CΞ)⊥ ∩ (M ⊕ Z)

Dualizing yields

M∨
Y0,f(x) ⊂ C(CΞ) ∩ (N ⊕ Z),

with M = Hom(N,Z). To save notation let us write CZ for the integral points of a

cone C in a finitely generated free abelian group.

ForM∨
C,x we have the three possibilities N, N⊕N and N⊕N N2, for x a non-special

or generic point, a marked point or a node, respectively by Theorem 3.3.

For any (scheme-theoretic) point x ∈ C, the map of log structures on the ghost sheaf

level is given by a homomorphism of toric monoids3 f
b

x :MY0,f(x) →MC,x. Dualizing

yields

(4.1)
(
f
b

x

)∨
:M∨

C,x −→M
∨
Y0,f(x).

We claim that the collection of all these data is conveniently encoded in a tropical

coral. Given the data (f, f
[
) of a scheme-theoretic map f : C → Y0 and a morphism

f
[

: f−1MY0 →MC on the level of ghos sheaves we construct a tropical coral associated

to this data, referred to as the tropicalization of f (or the tropicalization of (f, f
[
)) as

follows.

3For higher genus of C we need to work with the étale topology on C here, but since our interest

in this paper is with rational curves exclusively, the Zariski topology suffces.
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Construction 4.2. (1) (Vertices) If x = η is a generic point, (4.1) defines a map

Vη : N −→ C(CΞ)Z.

Tracing the map to the standard log point shows that Vη(1) projects to b ∈ Z
under the projection C(CΞ)Z → Z to the last coordinate. Thus Vη may be

viewed as an integral point in b ·CΞ ⊂ NR × {b}, the copy of NR at height b in

NR × R.

(2) (Edges) If x = q is a nodal point of C with local equation zw = teq , we have a

homomorphism

(f
b

q)
∨ : (N⊕N N2)∨ −→ C(CΞ)Z.

The domain of this map is the set of integral points of C([0, eq]), the cone

over an interval of integral length eq. If η1, η2 are the generic points of the two

irreducible components of C containing q (necessarily different since genus(C) =

0), then the two extremal generators (0, 1) and (eq, 1) of this cone map to Vη1 and

Vη2 , respectively (see [GS4], discussion 1.8 for details). Thus (f
b

q)
∨ is completely

determined by Vη of the adjacent irreducible components and eq. This data can

be conveniently encoded by an edge connecting Vη1 and Vη2 in NR × {b}, with

associated weight wq = eq. It can also be shown that there is an integral vector

uq ∈ N with

Vη2 − Vη1 = equq.

(3) (Marked points) If x = p is a marked point, the homomorphism is

(f
b

q)
∨ : N⊕ N −→ C(CΞ)Z.

The morphism to the standard log point generates one of the two factors of

N⊕N, say the first one. Then the second factor is generated by a local coordinate

of C at p. Then (f
b

q)
∨ is a map with domain the integral points of the two-

dimensional cone R2
≥0. The first generator (1, 0) maps to Vη, with η the generic

point of the irreducible component containing p. The second generator maps

to some element up ∈ C(CΞ) ∩ (N × {0}). Thus up can be viewed as an

element of the asymptotic cone of CΞ. We represent this element tropically by

an unbounded edge emanating from Vη in direction up with weight equal to the

divisibility of uq (the largest natural number wp with w−1
p uq ∈ N . We refer to

wp ∈ N \ {0} as the contact order of the marked point p.

(4) (Balancing) For η the generic point of a complete irreducible component of C

the adjacent edges fulfill the balancing condition∑
x∈cl(η)

wxux = 0.
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Here x runs over the set of special points p, q in the closure of η in C.

Remark 4.3. In [GS4], Proposition 1.15, a modified balancing condition is stated for

general log schemes. It is shown that for a stable log map f : C† → Y †∑
x∈cl(η)

wxux +
∑
x∈cl(η)

τx = 0.

where x runs over the set of special points p, q in the closure of η in C. Here, given an

irreducible component D ⊂ C with normalization g : D̃ → C and M := f ∗MX , the

map τx is given by the composition

τx : Γ(D̃, g∗M)→ PicD̃
deg−−→ Z

which is the morphism mapping a section m ∈ Γ(D̃, g∗M) to the degree of the corre-

sponding O×
D̃

torsor Lm ∈ M|D̃. Note that any section m ∈ Γ(D̃, g∗M) gives rise to

an O×
D̃

torsor

Lm := κ−1(m) ⊂ g∗M

for κ : M /O×−−→ M the quotient homomorphism. To adopt this result to our case we

need to show that τx vanishes identically. This actually holds in all toric situations.

Let zm ∈ K(Y ) be the rational function corresponding to m ∈ Γ(D̃, g∗M). Clearly,

the sum of the orders of poles and zeroes of zm is zero. Hence the global section of Lm
induced by zm has degree zero.

Let now f : (C,MC)→ (Y0,MY0) be a log coral. Thus Y0 is the central fibre of the

degeneration of the unfolded Tate curve and C has some non-compact components,

isomorphic to A1. The associated tropical curve then has one vertex in the interior of

C(B) for each irreducible component mapping to s−1(0) ⊂ Y0 and one vertex in the

lower boundary ∂CB for each A1-component. Each marked point of C necessarily maps

to s−1(0) and gives rise to an unbounded edge (a positive end of the associated tropical

coral). The balancing condition at the interior vertices follows from the balancing result

of [GS4]. What is not obvious from the established picture is the balancing condition

at the vertices on ∂CB. We show this at the end of this section. First let is describe

the tropicalizations of the domain C and of Y0 in more detail.

The tropicalization Trop(C) of the domain of a log coral will be given by the dual

graph of C constructed as follows.

Construction 4.4. Let f : C† → Y †0 be a map log coral. Assume g(C) = 0. Then,

the dual graph of C is constructed as follows.

i.) Define the set of vertices V (G) so that there is a vertex vj ∈ V (G) for each

irreducible component Cj ⊂ C.
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ii.) Define the set of bounded edges Eb(G) so that an edge eij ∈ Eb(G) connect-

ing two vertices vi and vj exists if and only if the corresponding irreducible

components Ci ⊂ C and Cj ⊂ C intersect.

iii.) Define the set of unbounded edges denoted by E+(G) so that for each edge ej ∈
E+(G) adjacent to a vertex vj ∈ V (G) there exist a marked point pj ∈ Cj ⊂ C

on the irreducible component Cj corresponding to vj.

We refer to a vertex v ∈ V (G) a negative vertex if v ∈ ∂CR and in this case the

corresponding component Cv ⊂ C is non-complete.

Proposition 4.5. Let f : C† → Y †0 be a log coral. Then, the tropicalization Trop(C)

of the domain C† is the cone C(G) over the dual graph G of C.

Proof. Recall from Theorem 3.3 that there are three possibilities of closed points x ∈ C,

with the stalk MC,x is either N, N ⊕ N or N ⊕N N2, for x a generic point, a marked

point or a node, respectively. Then, the vertices of G correspond to generic points

η, unbounded edges (or the flags of the graph G) correspond to the marked points

and bounded edges correspond to nodes. So, item (i) is a direct consequence of the

Definition 4.1. �

Note that there is a length function ` : Eb(G)→ Z defined as follows. Let eq ∈ Eb(G)

be a bounded edge such that eq corresponds to the node q ∈ C with

MC,q = N⊕N N2 = Se

where Se is the monoid obtained by the push-out of the diagonal map N→ N2 and the

the homothety N ·e−→ N for e ∈ N \ {0}. Define

` : Eb(G) → Z

eq 7−→ e

Now, given a log coral f : C† → Y †0 to describe the tropicalization of Y0 we first define

the tropicalization of Y .

Proposition 4.6. Let Y → SpecC[s, t] be the degeneration of the unfolded Tate curve.

And let Y0 be the central fiber over t = 0. Then,

(i) The tropicalization Trop(Y ) of Y is the cone C(CR) over the truncated cone

CR endowed with the polyhedral decomposition CPb.

(ii) Trop(Y ) = Trop(Y0)

Proof. Recall from section 1 that Y is the toric variety associated to (CPb, CR). Since

the log structure on Y is fine and constant along any open toric strata it follows from

Definition 4.1 that Trop(Y ) is the cone over the fan associated to Y . Note that this
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holds for any toric variety, hence in particular for Y . This proves (i). To show (ii),

observe that for the subvariety Y0 ⊂ Y the following holds. For any closed point x ∈ Y ,

we have x ∩ Y0 6= ∅. Therefore, (ii) follows. �

Lemma 4.7. Let f : C† → Y0
† be a log coral with associated tropicalization map

f trop : C(G) → C(CR). Then, there are height functions hC : C(G) → R≥0 and

hY0 : C(CR)→ R≥0 fitting into the following commutative diagram.

C(G)
f trop

//

hC %%

C(CR)

hY0
��

R≥0

Proof. Let SpecC† := (Spec C,N⊕ C) be the standard log pont. By Defiintion 4.1, it

follows that the tropicalization of SpecC† is

Trop(SpecC†) = R≥0

Hence, the result follows by the functoriality of the tropicalization map and the com-

mutativity if the diagram in Definition 3.6. �

By restricting f trop : C(G)→ C(CR) to h−1
C (1), we obtain a map h : Γ→ CR which

is a tropical coral.

We will discuss in more detail the correspondence between scheme theoretic maps

f : C → Y0 together with a morphism on the level of ghost sheaves f
[

: f−1MY0 →MC

and tropical corals h : Γ→ CR.

Now, we are ready to prove the main theorem of this section.

Proposition 4.8. The tropicalization of a log coral is a tropical coral.

Proof. It remains to prove the balancing condition at the lower boundary of CB. Let

f : C† → Y †0 be a log map such that C has an unbounded irreducible component

C ′ ⊂ C with generic point η and let v ∈ CB be the vertex corresponding to C ′. Define

the quotient map

πv : N → N / R · v ∩N
So, πv gives an element mv ∈ Hom(N,Z) = M . Define

xv := zmv ∈ C[M ]

Observe that f ∗(xv) = f ∗(x) if f is transverse at C ′ and f ∗(xv) = f ∗(xβ)/f ∗(yα) if f

is non-transverse at C ′ where x and α, β are as in (3.5) and 3.5. In any case, we have∑
z∈C′

valz(f
∗xv) =

∑
z∈P1\{∞}

valz(f
∗xv) = 0
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since from the asymptotically parallel condition we know val∞(f ∗xv) = 0 and the sum

of orders of poles and zeroes of the rational function f ∗xv on P1 is zero.

Let z1, . . . , zk ∈ C ′ be the special points and let the corresponding edges emanating

from V have direction vectors (with weights) ξ1, . . . , ξk. Note that if zi is a marked

point then ξi = ui and if zi is a node then zi = uq where ui, uq are defined as in (2), (3)

in the construction of the tropical data associated to a log coral in 4.2.

Then, πv(
∑k

i=1(ξi)) =
∑

z∈C′ valz(f
∗xv) = 0 and hence the tropical balancing condi-

tion is satisfied.

�

Remark 4.9. Let f : C† → Y0
† be a log coral with tropicalization h : Γ→ CR. Then it

follows from the definition of the incidence conditions on tropical and log corals that

under the tropicalization map, the coral degree of f : C† → Y0
† corresponds to the

degree of h : Γ→ CR, while the degeneration order of f : C† → Y0
† corresponds to the

asymptotic constraints on h : Γ → CR. Note also that, we fix the degeneration order

of a log coral in a way so that the corresponding tropical incidence conditions are in

the stable range, hence the tropicalization defines a general tropical coral.

Furthermore, the contact order at a marked point (4.2,(3)) corresponds to the weight

on the corresponding unbounded edge while the branching order of a non-complete

component C ′ ⊂ C (Defn. 3.11) of a general log coral corresponds to the weight

associated to the edge adjacent to the vertex vC′ ∈ CR corresponding to C ′.
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5. The log count agrees with the tropical count

In the last section 4 we have seen that a tropical coral h : Γ→ CR encodes the data

of a morphism f
[

: f−1MY0 →MC on the level of ghost sheaves on C and Y0. In this

section we discuss the number of lifts of the morphism f
[

to a log coral f : C† → Y †0 .

We refer to this number as N log. We show that the tropical count defined in section

2.4 equals N log.

For this, we will discuss the extensions of log corals which will allow us to reduce

the situation to the case treated in [NS]. We will exhibit the bijection between the log

corals f : C† → Y †0 and their extensions

fe : C
† → U0

†

for a suitably chosen open subset U0 ⊂ Y0 and completions C of C and U0 of U0 and

matching certain incidence conditions. We will first describe the construction of the

compactified target U0.

Let ∆ be a degree of a tropical coral and let λ be an asymptotic constraint. Let

I ⊂ R be a closed interval in R, chosen big enough such that the images of all tropical

corals hi : Γi → CR for i = 1, . . . , k matching (∆, λ) have support in CI ⊂ CR.

Now, let Pb be the b-periodic polyhedral decomposition of R as in section 1 for

b ∈ N \ {0} fixed. Define a polyhedral decomposition

P ′ ⊂Pb

such that cells σ′ ∈P are obtained by σ′ = σ ∩ I for a cell σ ∈P.

Let CP ′ be the polyhedral decomposition of CI induced by P ′. Consider the toric

degeneration associated to (CP ′, CI). Let U0 ⊂ Y0 be the fiber over t = 0 of this

degeneration, which by construction is an open subset of Y0 such that the image of any

log coral f : C† → Y †0 whose tropicalization is h lies inside U0.

To define the completion U0 of U0 we extend the polyhedral decomposition CP ′ of

CI to a polyhedral decomposition P̃ of R2 by applying the following steps:

1.) Add the horizontal line l := R× {1} at height 1 to |CP ′|.
2.) Extend each half line meeting l to a line which passes through the origin. This

defines a polyhedral decomposition of R2 denoted by P̃.

3.) Add 2-cells bounded by the 1-cells obtained by items 1.) and 2.), to achieve

P̃ = NR = R2.

The new polyhedral decomposition P̃ is called the extended polyhedral decomposition

of CP. Then U0 is the fibre over t = 0 of the toric degeneration U → SpecC[s, t]

associated to (NR, P̃ ). We endow U with the divisorial log structure M(U,U0). Then

U0 and U0 ⊂ U carry log structures obtained by the pull-back of M(U,U0).
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Note that U0 is a complete variety containing U0 as an open subset. Topologically,

we have

U0 =
(⋃

n

P1 × P1
)
q∪nP1 Z0

where Z0 is the complete toric variety described by the Z2 symmetric fan at the origin

whose one cells are given by m lines passing through the origin in R2, where m is equal

to the number of negative vertices of the coral graph Γ.

We define the extension fe : C
† → U0

†
of a log coral f as follows.

Definition 5.1. Let f : C† → Y †0 be a log coral with tropicalization h : Γ→ CR. Let

h̃ : Γ̃→ R2 be the tropical extension of h : Γ→ CR constructed as in 2.14. We call a

stable log map fe : C
† → U0

†
a log extension of f if fe|C = f and the tropicalization of

fe is h̃.

It follows from the definition of a log extension fe : C
† → U0

†
of a log coral f : C† →

Y †0 that the domain C is obtained from C as follows.

1.) For each non-complete component C ′ ⊂ C, take the completion C ′ of C ′ at the

point at infinity qC′ .

2.) Attach transversally a copy of P1 for each non-complete component C ′ ⊂ C

such that

qC′ = C ′ ∩ P1

is the nodal intersection point.

Note that the log extension of a log coral is a particular type of a stable log map in

the sense of [GS4]. Our next aim is to set up a counting problem for stable log maps

f : C̃ → U0 that extend log corals uniquely. So, let C̃ be a proper log smooth curve

over SpecC†, which is the case treated in [GS4]. We also assume g(C) = 0 throughout

this section. To set up the counting problem for stable log maps f : C → U0 that

extend log corals we need to fix the data given by (∆̃, λ̃, ρ̃) analogously to section 3.2,

which we define in a moment.

The log degree ∆̃ of a stable log map is defined as follows, analogously as in Definition

3.13 of the coral degree of a log coral.

Definition 5.2. The log degree with ` + 1 positive and m negative entries is a tuple

elements in N given by

∆̃ := (∆̃
`+1

, ∆̃
m

) ⊂ N `+1 ×Nm

with

pr2(∆̃i) > 0

pr2(∆̃j) < 0
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A log map f : C̃† → U0
†

with (`+ 1) +m marked points x0, . . . , x`, p
′
1, . . . , p

′
m for some

`,m ∈ N \ {0} is said to be of log degree ∆̃ := (∆̃
`+1

, ∆̃
m

) if the following conditions

hold

(i) For i = 1, . . . , `+ 1, the composition

pr2 ◦ (f
[

f(xi)
)gp :Mgp

Y0,f(xi)
→Mgp

C,xi
→ Z

equals ∆̃i.

(ii) For j = 1, . . . ,m the composition

pr2 ◦ (f
[

f(pj)
)gp :Mgp

Y0,f(pj)
→Mgp

C,pj
→ Z

equals ∆̃j.

The degeneration order λ̃ for a stable log map is also defined analogously to 3.16.

As the definitions follow straight forward, we leave the details to the reader.

Note that the coral degree of a log coral defined in 3.13 immediately determines the

log degree of its extension. So, ∆ defines ∆̃ and the same holds for the degeneration

order: the degeneration order λ of a log coral determines the extended degeneration

order λ̃ of its extension.

Now we will discuss how to define the extended log constraints intrinsically from the

constraint of a tropical coral.

Discussion 5.3. We discuss an equivalent, but more intrinsic definition to the log

constraint ρ defined in 3.18.

Let u ∈ N be an asymptotic direction (one of the entries of the log-coral degree,

which corresponds to one of the entries of the degree of the tropicalization) and λ

a degeneration order. Let λ̃ ∈ N be a lift of λ under the quotient homomorphism

N → N/Z · u. Then, the pair (u, λ) defines the two-plane

Hu,λ = R · (u, 0) + R · (λ̃, 1) ⊂ NR ⊕ R.

Let mu,λ span the rank one subgroup H⊥u,λ ∩ (M ⊕ Z) of M ⊕ Z. To fix signs we ask

mu,λ to evaluate positively on (1, 0, 0). Denote by

su,λ ∈ Γ(Y0,Mgp
Y0

)

the corresponding section induced by the rational function zmu,λ on Y .

Thus for any log coral f : C† → Y †0 we obtain a section

f [(su,λ) ∈ Γ(C,Mgp
C )
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The point of the log coral to have degree u and degeneration order λ at a marked point

p is that f [p(su,λ) lies in O×C,p. It thus makes sense to evaluate at p to obtain a non-zero

complex number

f [p(su,λ)(p) ∈ C×.
Similarly, when we consider a non-complete component C ′ ⊂ C we take the two-

plane spanned by (u, 0) and (v, 1) where v is the tropical vertex on ∂B defining the

non-complete component. The monomial thus obtained is denoted su,v. Now a log

coral f : (C,MC) → (Y,MY ) with an unbounded component C ′ ⊂ C with generic

point corresponding to v is asymptotically parallel if and only if f [(su,v) extends over

the missing point ∞ of C ′ ' P1 \ {∞}. In this case we can thus obtain a well-defined

complex number as

f [p(su,v)(∞) ∈ C×.
Indeed, in the notation of Definition 3.18, f [p(su,λ) = ϕx if f is transverse at C ′ and

f [p(su,λ) = ϕxβ/yα if f is non-transverse at C ′.

Definition 5.4. We call a tuple

ρ̃ = (ρ̃
`
, ρ̃m) ⊂ (C×)

` × (C×)
m

a log constraint for a stable log map, of order (`,m). A stable log map f : C̃† → U0
†

with ` + 1 + m marked points for `,m ∈ N \ {0} as in Definition 5.2 matches a

log constraint ρ̃ = (ρ̃
`
, ρ̃m) if the following holds. C̃ has ` + 1 + m marked points

{x0, . . . , x`, p1, . . . , pm} with

i.) f [xj(su,λ)(xj) = ρ̃j, for j = 1, . . . , `, that is for all but one marked points.

ii.) f [pj(su,v)(∞) = ρ̃j, for j = 1, . . . ,m.

Definition 5.5. We refer to the incidence conditions (∆̃, λ̃, ρ̃) as the extended log

incidences.

Lemma 5.6. Let f̃ : C
† → U

†
0 be a stable log map of degree ∆, degeneration order λ

and log constraint ρ. Then the projection from the fibre product f̃×U0
U0 → U0 composed

with the open embedding U0 → Y0 is a log coral of the same degree ∆, degeneration

order λ and log constraint ρ.

Proof. The result is an immediate consequence of the definition of extended log inci-

dences and the fact that f [(su,p) is a non-zero regular function on the whole added

component, hence constant. Therefore, the extended log incidences on the additional

marked points of the log extension is immediately encoded on the non-complete com-

ponents of the log coral. �

Our main result in this section is the following theorem.
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Theorem 5.7. Let ∆, λ, ρ be degree, degeneration order and log constraint respectively.

Denote by L̃∆,λ,ρ and L∆,λ,ρ the sets of isomorphism classes of stable log maps and of

log corals of degree ∆, degeneration order λ and log constraint ρ, respectively. Then

the forgetful map

L̃∆,λ,ρ → L∆,λ,ρ

defined in Lemma 5.6, is bijective.

Before proceeding with the proof of this theorem we have a couple of remarks and

the following lemma, which will be useful.

We say the data given by the tuple (f, f
[
) consisting of a scheme-theoretic morphism

f : C → Y0 and a morphism f
[

: f−1MY0 →MC lifts to a log coral if we can define a

stable log map f : C† → Y0
† with underlying scheme-theoretic map f and compatible

with f
[

such that the pull-back log structure f ∗MY0 → OC factors over a log structure

MC → OC that is smooth over (SpecC,N ⊕ C×). That is, we have the following

commutative diagram

f ∗MY0
//

%%

OC

MC

OO

where C† is a log smooth curve over (SpecC,N⊕ C×).

Theorem 5.8. Let f : C → Y0 be a scheme-theoretic morphism and f
[

: f−1MY0 →
MC be a morphism on the level of ghost sheaves which corresponds to a tropical coral

h : Γ → CR under tropicalization as discussed in section 4. Then, f
[

: f−1MY0 → C

lifts to a log coral f : C† → Y0
†.

Proof. Since Y0 is toric, Mgp
is globally generated. Thus, for each closed point x ∈

Y0 there is a surjection Γ(Y0,M
gp

Y0
) → Mgp

Y0,x
fitting into the following commutative

diagram

Γ(Y0,M
gp

Y0
) //Mgp

Y0,x

Γ(Y0,Mgp
Y0

) //

OO

Mgp
Y0,x

OO

where the vertical arrows are given by morphisms induced by the quotient homomor-

phism

κ :MY0

/O×Y0−−−→MY0
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By abuse of notation we denote the induced morphisms Γ(Y0,Mgp
Y0

)→ Γ(Y0,M
gp

Y0
) and

Mgp
Y0,x
→Mgp

Y0,x
also by κ. The lift of f

[
: f−1MY0 →MC is uniquely determined by

f [ : f−1MY0 →MC it is enough to define the morphism between the torsors

ϕm : Lm → Lf[(m)

where the torsor Lm associated to a section m ∈ Γ(C, f−1Mgp

Y0
) is defined as

Lm := κ−1(m) ⊂ f−1MY0

and Lf[(m) is defined analogously. Any of the torsors Lm ⊂ f−1MY0 are trivial since

we are in a purely toric situation. The triviality of Lm in a toric situation follows

since the degree of Lm := κ−1(m) is by definition the sum of poles and zeroes of the

corresponding rational function zm on the total space Y → A2 of the degeneration of

the unfolded Tate curve. Thus, the degree of Lm is clearly zero.

Therefore a necessary and sufficient condition for ϕm : Lm → Lf[(m) to exist is Lf[(m)

to be trivial. Since the genus of C is zero, the torsor Lf[(m) is trivial if and only if the

degree of Lf[(m) restricted to each irreducible component Cη ⊂ C vanishes. That is,

degCη Lf[(m) = 0

Assume Cη is a complete component of the domain admitting nodal points q1, . . . , qn
and marked points p1, . . . , pm. Let the corresponding morphisms uqi , upj be defined as

in section 4 for each i = 1, . . . , n and j = 1, . . . ,m. By Remark 4.3 in [GS4] we have

degCη Lf[(m) =
∑
i

〈upi , f [(m)〉+
∑
j

〈uqi , f [(m)〉

which vanishes by the balancing condition 4.3. If Cη ⊂ C is a non-complete component

we again have the vanishing of degCη Lf[(m) as a consequence of the balancing as shown

in the proof of Proposition 4.8.

Therefore, Lf[(m) is trivial and hence a lift f [ : f−1MY0 →MC of f
[

: f−1MY0 →
MC exists. �

Note that from the proof of the above theorem it follows that any morphism on the

level of ghost sheaves lifts to a stable log map if its tropicalization is a tropical curve

with first Betti number zero.

Proof of Theorem 5.7

Let

(f : C† → Y †0 ) ∈ L∆,λ,ρ

be a log coral and with support in

U0 ⊂ Y0.
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We have to show that f has exactly one extension

f̃ : C
† → U

†
0

to a stable log map in L̃∆,λ,ρ.

The tropicalization

h : Γ→ B = CR ⊂ NR

of f has a unique extension

h̃ : Γ̃→ NR

to a tropical curve of degree ∆ and asymptotic constraint λ as discussed in section

2.3. By functoriality of tropicalizations, the tropical curve h̃ is the tropicalization of

any extension of the log coral f to a stable log map f̃ with the same log degree and

degeneration order.

If Γ has m negative vertices, the extension of the tropical coral adds m vertices, each

mapping to 0 ∈ NR, while the vertices of the tropical coral on ∂B turn into divalent

vertices of the tropical curve. Thus for the domain C of the extension f̃ , there is no

choice other than to replace each non-complete component of C, an A1, by a chain of

two copies of P1’s.

Denote by D ⊂ C one of the added components. We can determine its image f̃(D)

by consideration of the log constraints as follows. Recall from the discussion of log

constraints above (5.5) that each unbounded component of the log coral determines a

monomial zmu,λ on Y , hence a section

su,λ ∈ Γ(Y0,Mgp
Y0

)

with the property that f [(su,λ) is invertible at ∞. Moreover, the corresponding log

constraint ρ is the value

f [(su,p)(∞) ∈ C×.

For the extended stable log map f̃ , the torsor for the corresponding section f̃ [(su,λ) of

f ∗MU0
is trivial by the proof of Theorem 5.8. Indeed, since mu,λ is orthogonal to the

2-plane in NR ⊕ R spanned by the leg of h̃ in direction u, as a rational function zmu,λ

is defined on the added component Z0 ⊂ U0 and restricts to the constant function

on f(D), with value the log constraint ρ ∈ C×. From the tropical picture and the

discussion in [NS],§5.1, we see that f̃ |D : P1 → Z0 is a “divalent line”. This means that

after a toric blow up (making f(D) disjoint from zero-dimensional strata of Z0) and

removing the toric prime divisors from Z0 disjoint from f̃(D), the restriction f̃ |D is a

cover of a line

{a} × P1 ⊂ C× × P1
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branched at most over the two intersection points with the toric boundary. The covering

degree agrees with the weight w of the edges adjacent to the vertex of Γ̃ corresponding

to D, hence is determined completely by the tropical extension h̃. Now the point is

that zmu,λ restricts to the projection to the first factor C× × P1 → C×. Hence the

position a ∈ C× of the line agrees with the value of

f [(su,λ) = f ](zmu,λ)

along D which in turn agrees with the log constraint ρ of either the log coral or the

stable log map. Conversely, zmu,λ = ρ defines a rational curve in Z0, and the w-fold

branched cover defines the extension f̃ on D.

We have now found a unique extension of f : C → U0 to a stable map f̃ : C → Y 0.

It remains to extend the log structure. First, note that the extension C of C admits a

log structure MC obtained from the log structure MC on C such that MC is unique

up to isomorphism and

C
†

= (C,MC)

is a log smooth curve over the standard log point SpecC†. This follows immediately

as the extension C is obtained by adding only one node and one transversally attached

P1 component with a unique marked point on each non-complete component of C.

Each added component D ⊂ C maps into the interior of Z0. Hence the extension of

the log structure away from the added node q ∈ C is uniquely determined by strictness,

as in the torically transverse case of ([NS], Prop. 7.1). For the extension at q observe

that the stalk ofMgp

U0
at f(q) can be generated by two toric generators su, sv fulfilling

the equation

su · sv = sbt

Explicitly, since all vertices of the tropical coral h map to integral points (see footnote

in §2.4), we can write u = (a, 1) with a ∈ Z. Then

mu,λ = (−1, a, 0)

and the quotient

(M ⊕ Z)/Z ·mu,λ

can be generated by the images of (0,−1, 1) and (0, 1, 0). Let

u = z(0,−1,1) = s−1

v = z(0,1,0)

be the corresponding rational functions on U and su, sv the corresponding global sec-

tions ofMgp

U0
. If σ ∈ P̃ is the minimal cell containing (a, 1) and (0, 0), then (0,−1, 1)
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and (0, 1, 0) lie in (C(σ))∨. Thus

su, sv ∈MU0,f(q)

and they generate Mgp

U0,f(q)
up to powers of su,λ. Now su,λ becomes invertible upon

pull-back by f̃ and f̃ [(su,λ) is therefore already given by the scheme-theoretic discussion

above. Thus to extend f : (C,MC)→ (Y0,MY0) to D it remains to specify the value

of f̃ [q on su and sv in a way compatible with the structure maps to OU0,f(q and with

the equation susv = sbt . But this situation is now completely analogous to the torically

transverse case, treated in the proof of Proposition 7.1 of [NS]. The discussion shows

that f̃ [q exists uniquely as a map of log structures over the trivial log point SpecC, but

that working over the standard log point SpecC† brings in a choice of a w-th root of

unity. But there is also an action of the Galois group Z/m of the w-fold cyclic branched

cover f̃ |D : D → f̃(D) which acts simply transitively on the set of such choices. Thus

the extension is unique up to isomorphism, finishing the proof.



78 HÜLYA ARGÜZ

Example 5.9. The following figure illustrates a map f : C† → Y †0 and its log extension

fe : C
† → U0

†
together with their tropicalizations h : Γ → CR and h̃ : Γ̃ → R2

respectively.

η8

η7

η6

η1

η2

η3

η4

η5

v1

v2

v3

v4

v6v7v8

v5

II III IVI

v1

v2

v3

v4

v6v7v8

v5

II III IVI

h : Γ→ CI h̃ : Γ̃→R2

pII,III = f ((η3)) = f (η4)

pI,II = f (η1)

f (η7)

f (η8)

f (η6)

η1

η2

η3

η4

η5

P1
III = f (η5)

P1
II = f (η2)

A1
s

s

f (η′6)

f (η′7)

f (η′8)

pI,II = f (η1)

P1
II = f (η2)

P1
III = f (η5)

pII,III = f ((η3)) = f (η4)

fe

f

Extend

η8

η′8

η′7

η7

η6

η′6

f (η8)

f (η7)

f (η6)



LOG-GEOMETRIC INVARIANTS OF DEGENERATIONS 79

Our final goal is to show that the tropical count of tropical corals and the log count

of log corals match. The strategy is to use a correspondence theorem for log extensions

and tropical extensions, by reducing the situation to the torically transverse situation

in a toric degeneration of a complete toric variety already treated in [NS]. Toric

transversality ([NS], Definition 4.1) means that the image of f : C → Y0 is disjoint

from toric strata of codimension larger than one. The associated tropical curve then

can be read off as the dual intersection complex, and it maps to the 1-skeleton of the

polyhedral decomposition defining the considered degeneration.

Let fe : (C,MC)→ (U0,MU0
) be the log extension of a given log coral f : C† → Y0

†,

matching log incidences (∆̃, λ̃, ρ̃). Assume fe has tropicalization

(h̃ : Γ̃→ R2) ∈ T(Γ,u)(λ)

of degree ∆, where R2 is endowed with the extended polyhedral decomposition P̃ de-

fined in 5. Now, to ensure that the image of h̃ remains inside the 1-skeleton of the poly-

hedral decomposition P̃ refine P̃ accordingly. To obtain an appropriate refinement

we simply add Γ̃ to the 1-skeleton of P̃. We do this refinement to P̃ simultaneously

for all tropical curves h̃i : Γ̃i → R2 of degree ∆ matching λ and of type (Γ, u). Note

that by section 2.4, there are finitely many such tropical curves. This way obtain a

new polyhedral decomposition P̃ ′ of R2. Denote by W0 the fiber over t = 0 of the toric

degeneration associated to P̃ ′. So, W0 carries the natural log structureMW0 obtained

by the pull-back of the divisorail log structure on the total space given by the divisor

W0 ⊂ W .

We first construct a log smooth degeneration of (U0,MU0) to

(W0,MW0)

This statement follows from the following more general result on refinements of poly-

hedral decompositions and their associated toric degenerations of toric varieties.

Lemma 5.10. Let P be an integral polyhedral decomposition of NR and P ′ an integral

refinement. Denote by π : X → A1 and π′ : X ′ → A1 be the associated toric degen-

erations of toric varieties. Assume that P and P ′ are regular, that is, they support

strictly convex piecewise affine functions. Then there is a two-parameter degeneration

π̃ : X̃ −→ A2

with restrictions to A1 × Gm and to Gm × A1 equal to π × idGm and to idGm ×π′,
respectively.

Proof. Let ϕ, ϕ′ be strictly convex, piecewise affine functions with corner loci (or non-

differentiability loci) P, P ′, respectively. We can assume ϕ, ϕ′ are defined over the



80 HÜLYA ARGÜZ

rational numbers and hence, after rescaling, that they are defined over the integers.

Denote by Φ : NR ⊕ R>0 → R the homogenization of ϕ:

Φ : NR −→ R, Φ(x, λ) = λ · ϕ
(x
λ

)
.

Note that Φ is the restriction of a linear function on the cone Cσ for any σ ∈P. Now

the fan Σ = CP can be defined by the corner locus of Φ, that is, the maximal elements

of Σ are the domains of linearity of ϕ. Similarly, we define the homogenization Φ′ of

ϕ′.

To define a two-parameter degeneration we use the fan Σ̃ in NR ⊕R⊕R defined by

the corner locus of the following piecewise linear function:

Ψ(x, λ, µ) := Φ(x, λ) + Φ′(x, µ).

Now if

(x, λ, µ) ∈ |Σ̃|

then Ψ is linear on

(x, λ, µ) + {0} × R2
≥0.

Thus the projection

NR ⊕ R2 → R2

induces a map of Σ̃ to the fan of A2. Define X̃ as the toric variety defined by Σ̃ and

π̃ : X̃ → A2

as the toric morphism defined by the map of fans just described. The restriction of π̃

to A1×Gm is described by the intersection of Σ̃ with NR×R×{0}. This intersection

is the corner locus of

Ψ|NR×R×{0}.

But

Ψ(x, λ, 0) = Φ(x, λ),

so this corner locus defines C(P). Thus

π̃|A1×Gm = π × idGm .

Analogously we conclude

π̃|Gm×A1 = idGm ×π′

�
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With the construction of Lemma 5.10 we are now in position to show that our moduli

space of log corals (or of their extensions to stable log maps in U0) has cardinality

equal to the count of tropical corals. Given log degree ∆, degeneration order λ and log

constraint ρ define

N∆,λ,ρ := |L∆,λ,ρ|.
where L∆,λ,ρ is as in Theorem 5.7.

Theorem 5.11. N∆,λ,ρ = N trop
∆,λ,ρ

Proof. Note first that the polyhedral decomposition for the U → A1 is regular by

inspection. Recall the polyhedral decomposition P̃ ′ containing all extended tropical

curves of degree ∆ and asymptotic constraint λ in its 1-skeleton, with vertices mapping

to vertices. By further refinement and rescaling we may assume that P̃ ′ is integral

and regular. Lemma 5.10 now provides a two-parameter degeneration

π̃ : X̃ −→ A2

isomorphic to π : U → A1 over 1×A1 and to the degeneration π′ : X ′ → A1 defined by

P̃ ′ over A1×{1}. For the latter degeneration, the log constraints ρ translate into point

constraints along with multiplicities along toric divisors on the general fibre of π′. This

is the situation treated in the refinement [GPS] of [NS]. Hence all stable log curves

in the central fibre are torically transverse and the relevant moduli space of stable log

curves with incidence conditions consists of N trop
∆,λ reduced (and unobstructed) points.

By unobstructedness of deformations, the same statement is then true for stable log

maps to a general fibre of π′, or of π̃.

By deformation invariance of log Gromov-Witten invariants we obtain the same

virtual count by looking at the central fibre (U0,MU0
) of π, as a log space over the

standard log point. But in fact, by the same arguments as in [NS] it can be easily

shown that this moduli problem is unobstructed, and hence the moduli space L̃∆,λ,ρ of

extended stable log maps is a finite set of cardinality equal to the log Gromov-Witten

invariant. Finally, in Theorem 5.7 we have established a bijection between L̃∆,λ,ρ and

L∆,λ,ρ, giving the claimed result. �
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6. The Z-quotient

In this section we show the correspondence between log corals f : C† → Y0
† where

Y0 is the central fiber of degeneration of the ”unfolded” Tate curve and the log corals

f̃ : (C̃,MC̃)→ (T̃0,MT̃0
), where T̃0 is the central fiber of the degeneration of the Tate

curve obtained by taking the Z-quotient π : Y0
/Z−→ T̃0 as explained in the first section.

Given a log coral f : C† → Y0
†, one naturally obtains a log coral

f̃ = π ◦ f : (C̃,MC̃)→ (T̃0,MT̃0
)

?n the following Theorem, we show that given a log coral f̃ : (C̃,MC̃) → (T̃0,MT̃0
)

there is a lift of it to a log coral f : C† → Y0
†.

Theorem 6.1. Let f̃ : (C̃,MC̃) → (T̃0,MT̃0
) be a log coral fitting into the following

Cartesian diagram

(6.1) C̃ ×T̃0 Y0
/Z

//

f

��

C̃

f̃
��

Y0
/Z

// T̃0

The fiber product C̃ ×T̃0 Y0 is isomorphic to a disjoint union of copies of C̃, that is

C̃ ×T̃0 Y0 =
∐
Z

C̃

and f̃ =
∐

n∈Z Φn ◦f where Φn : Y0 → Y0 is the Z-action on Y0 induced by the Z-action

on the Mumford fan defined as in section 1.

Proof. It is enough to show that each connected component C ′ ⊂ C̃×T̃0Y0 is isomorphic

to C̃. This will follow from the fact that any étale proper map from a connected curve

to a nodal rational curve is an isomorphism.

The map π : C̃ ×T̃0 Y0 → C̃ is étale since Y0 → T̃0 is étale, hence it is a local

isomorphism in the étale topology.

Claim: C ′ has finitely many irreducible components.

To prove the claim it is enough to show that π−1(C̃) has finitely many irreducible

components, since C̃ has finitely many irreducible components by the definition of a

log coral.

Let ΓC′ and ΓC̃ be the dual graphs of C ′ and C̃ respectively. That is, the graph

obtained by replacing each irreducible component by a vertex, each node by a bounded

edge and each marked point by an unbounded edge. The map π|C′ : C ′ → C̃ induces

a map

Γπ : ΓC′ → ΓC̃
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which is a local isomorphism. So, for every vertex v ∈ ΓC′ , the restriction Γπ|Star(v) is

an isomorphism onto Star(Γπ(v)) where for any vertex v, Star(v) denotes the subgraph

consisting of the vertex v, edges containing v and their vertices. Since ΓC′ is connected

and ΓC̃ is a tree, Γπ is a covering map. As any covering map factors through the

universal covering and the fundamental group π1(ΓC) = 0, it follows that Γπ is an

isomorphism. Hence, the number of vertices of ΓC′ is finite and the claim follows. This

shows that the map π|C′ : C ′ → C̃ is proper.

By the Hurwitz formula we have π∗wC̃ = wC′ where wC̃ and wC′ denote the canonical

bundles over C and C ′ respectively. Applying the Riemann Roch Theorem for nodal

curves, we obtain

2g − 2 = degwC′ = d · deg(wC̃) = −2d

where g = g(C ′) = 0 as each component of C ′ is a copy of P1 and the dual graph is a

tree. Hence, d = 1. Therefore, π|C′ : C ′ → C̃ is an isomorphism. �

It follows that a log coral f̃ : (C̃,MC̃) → (T̃0,MT̃0
) lifts uniquely to a log coral

f̃ |C′ : (C ′,MC′) → Y0
†, once fixing the connected component C ′ ⊂ C̃×T̃0Y0 . The idea

here is similar to the standard fact in covering theory, that a lift of a path to the

covering space is determined uniquely once fixing an initial point. We will explain this

in more detail in the rest of this section.

Let us now discuss how to translate our results on the (degenerate) unfolded Tate

curve to its Z-quotient, hence to the degenerate Tate curve T̃0. Note that as a scheme,

T̃0 is the product of a nodal elliptic curve E with A1.

Let us first set up the counting problem on the tropical side. Denote the correspnding

affine manifold by B = B/Z, topologically

S1 × R≥0.

Each direction of positive or negative ends (the directions associated to positive edges

and to edges adjacent to negative vertices of a coral graph) that enter the definition of

the degree of a tropical coral is now only defined up to the Z-action. Thus specifying

a degree ∆ on B amounts to choosing an equivalence class under the Z-action of the

corresponding data on B. If for given degree ∆ and asymptotic constraint ρ on B,

we look at tropical corals with a fixed number of positive and negative ends, but each

direction and asymptotic constraint restricted only to an equivalence class under the Z-

action, there will always be infinitely many such tropical corals or none. Indeed, given

any tropical coral fulfilling the given constraints on its ends, the composition with the

action of any integer on B will produce another one. These tropical corals related bvy

the Z-action induce equal tropical objects on B. Thus we should rather restrict to

Z-equivalence classes of tropical corals. A simple way to break the Z-symmetry is to
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choose one representant of the Z-equivalence class of directions of one of the ends, say

the first one.

Another source of infinity in the count is more fundamental and is part of the nature

of the problem. It is related to the fact that the counting problem in symplectic

cohomology produces an infinite sum with single terms weighted by the symplectic

area of the pseudo-holomorphic curve with boundary. The logarithmic analogue runs

as follows. For a log coral f : C† → Y †0 look at the underlying scheme theoretic

morphisms and take the composition

C → Y 0 → X0 = E × A1

This morphism extends uniquely to a morphism

C̃ → E × P1

from a complete curve C̃ to E×P1. The algebraic-geometric analogue of the symplectic

area is the degree of the composition

C̃ → E × P1 → E.

Since “degree” is already taken for something else, let us call the degree of C̃ → E the

log-area of the log coral. For a fixed log-area A, the moduli space of log corals of given

degree ∆, degeneration order λ and log constraint ρ is then again finite. Denote the

corresponding cardinality by

N∆,λ,ρ(A).

We may then define the count of log corals on (X0,MX0) as the formal power series

(6.2) N∆,λ,ρ(X0,MX0) =
∑
A∈N

N∆,λ,ρ(A)qA ∈ C[q].

The tropical analogue of the area is given by a tropical intersection number ([AR]) as

follows. For each vertex (a · b, 1) of Pb we have the line

La = R · (a, 1) ⊂ NR

through the origin. Each tropical coral has a well-defined intersection number with La.

Define the tropical area of a tropical coral as the sum of the intersection numbers of

its extension to a tropical curve in NR with La, for all a ∈ Z. The tropical intersection

number bounds the number of crossings of the tropical coral with unbounded 1-cells

of the polyhedral decomposition of B. Hence, with the Z-action moded out as before,

we also obtain a finite tropical count

N trop
∆,λ (A)



LOG-GEOMETRIC INVARIANTS OF DEGENERATIONS 85

of tropical corals in CB of fixed tropical area A for tropical corals of fixed degree ∆

and matching ageneral asymptotic constraint λ. We then have the following tropical

analogue of (6.2)

N trop
∆,λ (CB) =

∑
A∈N

N trop
∆,λ (A)qA ∈ C[q].

where N trop
∆,λ (CB) denotes the count of tropical corals in CB with degree ∆, matching

the asymptotic constraint λ. Our results on the unfolded Tate curve readily give

N trop
∆,λ (A) = N∆,λ,ρ(A)

for any A ∈ N, ∆, λ and ρ. Summing over A ∈ N we obtain our main result for the

Tate curve:

Theorem 6.2. N∆,λ,ρ(X0,MX0) = N trop
∆,λ (CB).

Hence, we have the equivalence of the tropical count of corals in CB and log corals

in X0.
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7. The punctured invariants of the central fiber of the Tate curve

In this section we will see how the log corals on the central fiber of the ”degeneration”

of the Tate curve describe punctured invariants on the central fiber of the Tate curve

itself. For the theory of punctured log Gromov-Witten invariants we refer to [ACGS],

for which a brief summary can also be found in [GS6]. Here we just give the definitions

of punctured invariants by simply adopting it to our situation.

As discussed in section 6, since log corals on the Tate curve lift to the unfolded Tate

curve, for convenience we again work on the unfolded case and show the correspondence

between log corals f : C† → Y0
† and f ◦ : (C◦,MC◦)→ (X0,MX0). Recall from section

1 that Y0 is the central fiber of the degeneration of the unfolded Tate curve given by

Y0 = A1 ×
⋃
∞

P1 = A1 ×X0

and the fiber over 0 ∈ A1
s under the dominant map s : Y0 → A1

s, denoted by (Y0)s=0 is

equal to

(Y0)s=0 = X0

where X0 is the central fiber of the unfolded Tate curve.

Throughout this section we will restrict our attention to general log corals. The

following proposition states an important property for such corals.

Proposition 7.1. Let f : C† → Y0
† be a general log coral and let C ′ ⊂ C be a non-

complete component. Then, the map pr2 ◦f̃|C′ : C ′ ∼= A1 → P1 defined as in 3.6 is

constant.

Proof. Let f̃(z) : P1 → P1 be the extension of pr2 ◦f̃|C′ : C ′ ∼= A1 → P1 as in 3.6. If f

is non-transverse at C ′, the result follows trivially. Assume f is transverse at C ′, then(
f̃|C′(C

′) ∩ (Y0)s=0

)
⊂ P1 \ {0,∞}

where by {0,∞} we denote the lower dimensional toric strata in P1. Furthermore,

by the asymptotically parallel condition the point at infinity intersects the divisor at

infinity at a point

f̃C′(pC′) = q∞ ∈ C× ⊂ P1

Hence we have f̃(C ′∪pC′) ∈ P1 \{0} affine. Since a morphism from a complete variety

to an affine variety is constant, φ̃(z) is constant, hence the result follows. �

Thus, the non-complete components C ′ ⊂ C do not carry any additional information

except at the position of the node q∞. Thus, we can trade the whole component f̃|C′

by f(q) = f(C ′) ∩ (Y0)s=0 which will carry us to X0 = (Y0)s=0. On the tropical side
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this corresponds to restricting the tropicalization h : Γ → CR of f : C† → Y0
† to

h−1(CR \ ∂(CR)).

Definition 7.2. Let h : Γ→ CR be a tropical coral. The restriction

h◦ := h|h−1(CR\∂(CR)) : Γ◦ → CR \ ∂(CR)

is called the restricted tropical coral.

Note that omitting the vertices corresponding to the non-complete components of

a log coral trades each non-complete component C ′ ⊂ C with a marked point on the

P1-component adjacent to C ′ on the scheme-theoretic level. Let f : C† → Y0
† be a log

coral and let Ck ⊂ C for k = 1, . . . ,m be the non-complete components of C such that

C =
m∐
k=1

C ′k qpk C̃

where for each k = 1, . . . ,m there exists a single point pk ∈ C ′k
⋂

C̃.

To investigate the punctured log Gromow-Witten invariants

f̃ : (C̃,M◦
C̃

)→ (X0,MX0))

we first need to define a suitable log structure α◦ : M◦
C̃
→ OC̃ , which we will do by

using two log structures on C̃ that we are already familiar with.

First note that since C† → (SpecC,N⊕C×) is a smooth log curve over the standard

log point (SpecC,N ⊕ C×) so is (C̃,MC̃). Consider each marked point pk ∈ C̃ as a

smooth section pk : SpecC→ C̃. Around each pk, the log structureMC̃ on C̃ is given

as in (3.3, (iii)). Away from points pk, define αC̃ :MC̃ → OC̃ as the restriction of the

log structure α :MC → OC on C to C̃.

We have a second familiar log structure on C̃ described by the divisorial log structure.

Observe that the images im(pk) ⊆ C̃ under the maps pk : SpecC→ C̃ define a Cartier

divisor in C̃ and hence associated to C̃ there is the divisorial log structure which we

denote by αP : P → OC̃ where P denotes the sheaf of monoids on C̃ which is given by

the regular functions on C̃ vanishing at D :=
⋃
k pk ∈ C̃.

Now, we can define M◦
C̃

as follows. Let M◦
C̃
⊆ MC̃ ⊕O×

C̃

P gp be the sheaf of

monoids on C̃ such that a section s of MC̃ ⊕O×
C̃

P gp over an étale open set U → C̃

is a section of M◦
C̃

if for all x ∈ U and representatives (tx, t
′
x) ∈ MC̃,x ⊕O×

C̃

P gp
x

of sx ∈ (MC̃ ⊕O×
C̃

P gp)
x
, we have t′x ∈ Px unless αC̃(tx) = 0 ∈ OC,x×. By this

construction we obtain M◦
C̃

as the largest subsheaf of MC̃ ⊕O×
C̃

P gp to which the sum

of homomorphisms αC̃ : MC̃ → OC̃ and αP : P → OC extends. The morphism
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α◦ :M◦
C̃
→ OC̃ is then given by

α◦
C̃

:M◦
C̃
→ OC̃

(t, t′) 7→ αC̃(t) · αP (t′)

where the product is interpreted to be zero if αC̃(t) = 0, even if αP (t′) is undefined.

Remark 7.3. Punctured curves can allow negative contact orders. Given a log morphism

f : (C̃,M◦
C̃

)→ (X0,MX0) we obtain a composed map

upk :MX0,f(pk) →M◦
C̃,pk
⊆ N⊕ Z pr2−−→ Z

This is clearly analogous to the case in the non-punctured situation, but now it is

possible that the image of up does not lie in N.

We define incidence conditions for punctured maps f̃ : (C̃,M◦
C̃

) → (X0,MX0)

analogously to the case of extended log corals as in 5.5. We define ∆◦ := ∆̃, λ◦ := λ̃.

A slight difference occurs in the definition of the log constraint ρ̃ := (ρ̃, ρ̃). We define

ρ◦ := (ρ◦, ρ◦) such that ρ◦ := ρ̃. However, one needs to pay attention to the definition

of ρ◦ as the marked points pj ∈ Ce
j on extended log corals in the punctured situation

are traded by marked points pk on the P1-component connected to the non-complete

component C ′k ⊂ C. Therefore the log constraint ρ◦ is the marked point position of

pk ∈ P1 which is identical with the virtual position of the point at infinity qkC′ of C ′k by

7.1.

Denote the set of stable log maps f̃ : (C̃,M◦
C̃

) → (X0,MX0) matching (∆◦, λ◦, ρ◦)

by L◦∆◦,λ◦,ρ◦ .

Lemma 7.4. The forgetful map

L∆,λ,ρ −→ L◦∆◦,λ◦,ρ◦

f 7→ f̃

is a bijection.

Proof. We only need to show given a punctured map f̃ : (C̃,M◦
C̃

) → (X0,MX0), we

can extend it to a log coral f : C† → Y0
†. As a scheme theoretic morphism define

f =

{
f̃ on C̃ ↪→ C

f̃(pk) on each Ck ∼= A1 ⊂ C \ C̃

which naturally lifts to a log morphism ([ACGS]). �
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8. Floer theoretic perspectives

The Tropical Morse Category, introduced by Abouzaid, Gross and Siebert provides

an approach to the homological mirror symmetry conjecture. The idea is to relate both

the Fukaya category on one side and the category of coherent sheaves on the other side

to the tropical Morse category. For the case of the Elliptic curve these relations are

studied in detail in ([C], §8).

The structure coefficients in the Tropical Morse category are given by tropical Morse

trees which we will review in a moment. Then we will describe how to associate

a tropical coral of a given type to a tropical Morse tree. We obtain a one-to-one

correspondence between tropical Morse trees and the types of tropical corals. Hence,

each tropical Morse tree gives an n − 1 dimensional moduli space of tropical corals

h : Γ→ CR (2.26) where n denotes the number of positive edges of Γ.

Definition 8.1. A metric ribbon tree S is a connected tree with a finite number

of vertices and edges, with no bivalent vertices, with the additional data of a cyclic

ordering of edges at22 each vertex and a length assigned to each edge in (0,∞).

We refer to the external vertices of a ribbon tree S as leaves. We call S rooted if

there is one external distinguished vertex referred to as the root vertex. We assume in a

rooted Ribbon tree all edges are directed towards the root vertex. We refer to the root

vertex as the outgoing vertex and all other external vertices as incoming vertices. We

refer to edges adjacent to a vertex v as incoming edge if the assigned direction points

towards v and outgoing edge if the direction points outwards. The cyclic ordering on

the ribbon tree S specifies an embedding S ↪→ R2 up to isotopy. This given a Ribbon

tree with n external vertices we obtain a decomposition of R2 into n regions.

Definition 8.2. Let S be a rooted ribbon tree with d + 1 external vertices giving a

decomposition of R2 into d + 1 regions. Choose n0, . . . , nd ∈ Z to label each region

respecting the cyclic orientation. Then assign to each edge e lying between regions

labelled by ni and nj the integer ne := nj − ni respecting the cyclic order. We refer to

the ribbon tree whose edges are labelled with the assigned integers as decorated.

We also label each external vertex of the ribbon tree adjacent to the edge lying

between regions labelled by ni and nj as vij.

Example 8.3. The following figure illustrates a ribbon graph with 4 incoming leaves,

giving a decomposition of the plane into 5 regions assigned with numbers n0, . . . , n4.

The integers ne = ni − nj are written on each edge e.
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3

1

−2

−6

2−8

−5

v0,4

n4 = −5 n0 = 0

n1 = −2

n2 = 1

n3 = 3

w

v0,1v1,2v2,3
v3,4

Definition 8.4. Let B be an integral affine manifold and S be a ribbon tree with d+1

external vertices. Let n0, . . . , nd ∈ Z be the set of integers describing a decoration on

S as in 8.2 so that to each edge e we assign ne ∈ Z. Identify each edge e of S with

[0, 1] with coordinate s and the orientation on e pointing from 0 to 1. A tropical Morse

tree is a map φ : B → S satisfying the following:

i.)

φ(v) :=

pi,i+1 if v is the i−th external incoming vertex

p0,d if v is the root vertex

where φ(v) := pi,i+1 for

pi,i+1 ∈ B
( 1

ni+1 − ni
Z
)

and

p0,d ∈ B
( 1

nd − 0
Z
)

ii.) For an edge e of S, φ(e) is either an affine line segment not necessarily integral

or a point in B.

iii.) For each edge e, there is a section ve ∈ Γ(e, (φ
∣∣
e
)∗TB) satisfying

1) ve(v) = 0 for each external vertex v adjacent to the edge e.

2) For each edge e ∼= [0, 1] and s ∈ [0, 1], we have ve(s) is tangent to φ(e) at

φ(s), pointing in the same direction as the orientation on φ(e) induced by

that on e. By identifying (φ
∣∣
e
)∗TB with the trivial bundle over e using the

affine structure, we have

d

ds
ve(s) = neφ∗

∂

∂s

3) If v is an internal vertex of S with incoming edges e1 . . . , ep and outgoing

edge eout, then

veout(v) =

p∑
i=1

vei(v)
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Remark 8.5. In the original definition of tropical Morse trees ([C], Definition 8.19)

there is an extra assumption to ensure the existence of a map from the moduli space

of tropical Morse trees to the moduli space of ribbon graphs,which we skip as it is

inessential for our purposes.

We refer to ve as the velocity and to ne as the acceleration. By the assumption

that ve(v) = 0 on each external edge we can classify all contracted edges. Namely we

contract an edge if we are in one of the two cases

1. An edge e such that e is an external edge adjacent to an incoming vertex and

ne < 0

2. The edge e is adjacent to the root vertex and ne > 0

The incoming external leaves with negative acceleration are being contracted to ensure

the velocity increases starting from zero along the adjacent edges. The edge adjacent

to the root vertex gets contracted if the acceleration is positive as we want the velocity

to be zero again once arriving at the root vertex.

Now we describe how to assign a polygon to a tropical Morse tree. The general

construction is described in ([C], 8.4.4). We restrict our attention to the case B = S1

andX(B) = E where E denotes the elliptic curve and show that to every tropical Morse

tree φ : S → B where B = R/dZ for d the number of leaves of S there corresponds a

piecewise linear disk bounded by the Lagrangian sections of the elliptic curve E.

Identify E with TB/Λ where Λ ⊆ TB is the sheaf of integral tangent vectors. We

denote the coordinate on B = R/dZ by y and the fiberwise coordinates by x, so that

coordinates on E = TB/Λ are given by {x, y}. Define a section B → E via

σn(y) = (y,−n · y)

and set Ln := σn(B). Let e be an edge of S labelled by nj − ni for j > i. Define

Re : e× [0, 1]→ E

(s, t) 7→ σni(φ(s))− t · ve(s)(8.1)

where t ·ve(s) is viewed as a tangent vector at φ(s). Let vin and vout denote the vertices

of e such that the assigned direction on e is from vout to vin. Then Re(vin×{1}) ⊆ Lnj
implies Re(e× {1}) ⊆ Lnj (for details see [C], pg 631).

Remark 8.6. For convenience we work with the lifts of a tropical Morse trees φ : R →
S1 = R/dZ to φ : R → R, which by abuse of notation we also denote by φ.

Example 8.7. The following figure is a tropical Morse tree from the ribbon graph we

had seen in example 8.3 onto R. We illustrate the image on three copies of R which

are identified along vertical projection. The reason we use two copies is that the image
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is not injective and we go back and forth in the direction assigned with arrows. We

choose

p01 = 8 =
y

3
∈ 1

3
Z

p12 = 12 =
z

2
∈ 1

2
Z

p23 = 0 ∈ 1

2
Z

p34 = 6 =
x

8
∈ 1

2
Z

Now for the image φ(w) ∈ R we have a 1-parameter family of possibilities, which will

be the reason of the associated polygon to be non-convex. We want the following

equalities to be satisfied to ensure balancing: Let right side velocities be the sum of

velocities assigned to the the images of edges with acceleration n1−n0, n2−n1, n2−n0

and let left side velocities be the sum of velocities assigned to the the images of edges

with acceleration n4 − n3, n3 − n2, n4 − n2 and let

i The right side velocities should be positive;

2 · x
8
− 6 · (φ(w)− x

8
) > 0

ii The left side velocities should be positive;

φ(w)− z
2

+ 3 · ( z
2
− y

3
) > 0

where we had chosen x, y, z as above. Hence we need to have;

x− 6 · (φ(w)) > 0 =⇒ 8 > φ(w)

φ(w) + z − y > 0 =⇒ φ(w) > 0

We choose φ(w) = 7. Then by the balancing condition we get p04 = 28
5
∈ 1

5
Z.

v3,4
v2,3 v1,2

v0,4

n4 = −5 n0 = 0

n1 = −2

n2 = 1

n3 = 3

w

v0,1

φ

A tropical Morse tree φ : S → R

φ(w)

−5

−62

p3,4p2,3

1 3

p1,2
p0,1

p0,4

The image of φ in R

R

R

R

The associated polygon is illustrated in the following picture. Note that in this situation

it is not convex.
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0 6 7 8 12

L1

L2

L0

L4

L3

We will in a moment explain how to associate a tropical coral h : Γ→ CR to a given

tropical Morse tree φ : R → R.

Mark the position of each pij = φ(vij) on the boundary ∂CR, as well as the position

of the image of the root vertex φ(w) ∈ ∂CR. Then take the inverse image of each pij
and of φ(w) under the radial projection map

πuij : CR→ CR/R · uij

where uij denotes the vector 〈pij, 1〉 as well as

πuw : CR→ CR/R · uw

where uw is the vector 〈φ(w), 1〉. We denote the rays obtained on the truncated cone

CR by

Rpij := π−1
uij

(pij) and Rφ(w) := π−1
uw (φ(w))

Then we assign a direction vector to each ray given by

u =

{
(nj − ni) · 〈pij, 1〉 for each Rpij

(nk − n0) · 〈φ(w), 1〉 for Rφ(w)

The rays Rpij will form all unbounded edges together with the edges connected to

negative vertices. Note that to the assigned direction vector of the rays there is an
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orientation we determine compatibly with the orientation of the polygon we had dis-

cussed. The idea is to patch these rays together (in cases they correspond to the edges

adjacent to negative vertices we just take the restriction onto a finite part of them),

by adding additional bounded segments to ensure the balancing at each vertex holds

to form the associated tropical coral.

We start by choosing a point pw such that pw ∈ Rφ(w) is far up from the boundary

∂CR. This will at the end correspond to an interior vertex of the associated tropical

coral. Paying attention to the cyclic order encoded in the tropical Morse tree, we

patch the rays together with some possible additional segments ensuring balancing.

This procedure will become clear once illustrated in a couple of examples.

Example 8.8. We illustrate the tropical coral associated to the tropical Morse tree of

example 8.7.

12840 121086420−26

Rp23

Rp04

Rp34
Rφ(w)

Rp01

Rp12

p34 p23 p12p01p04 p34

p23
p01 p12

p04

(−20, 1)

(36, 3)

(−16, 2)

(−48,−6)

(−28,−5)

(0, 2)

(−48,−8)

Let us step by step explain how we draw it. Take a point pw ∈ Rφ(w) which will

correspond to an interior vertex of the tropical coral. To determine the edges adjacent

to pw, observe that there are three edges of the ribbon graph adjacent to w ∈ R.

Denote each edge with assigned acceleration nj −ni by eij and assign a velocity vector

to each edge by balancing condition;

ue02 + (−2) · (p01, 1) + 3 · (p12, 1) = 0 =⇒ ue02 = (−20, 1)

ue24 + (−1) · 2 · (p23, 1) + (−8) · (p34, 1) = 0 =⇒ ue24 = (−48,−6)(8.2)

As w ∈ R is adjacent to e02, e24 and the edge connected to the root vertex v04, in

the corresponding tropical coral pw will be adjacent to the edges with degree vector

ue02 , ue24 and (n4−n0)·(p04, 1). Patch these together paying attention to the orientation.

Note that the orientation on the tropical coral should be compatible with the flow on

the tropical Morse tree where everything flows towards the root vertex. Continue this

procedure and patch all edges to obtain the tropical coral.
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Appendix A. A glance at logarithmic geometry

We give basic definitions and a few results we had used throughout the paper on

logarithmic geometry which is a pretty broad area of study ([Kk], [Kf], [O]).

Monoids play a crucial role in the theory of logarithmic geometry. We first review

quickly some basics on monoids. For a detailed study of monoids in log geometry see

[O].

Definition A.1. A monoid is a set M with an associative binary operation with a

unit. The monoid operation is usually written additively, in which case we will denote

the identity by 0. All monoids we will consider will be commutative monoids.

The basic example of a monoid is the set of natural numbers N together with the

operation addition.

Definition A.2. A homomorphism of monoids is a function β : P → Q between

monoids such that β(0) = (0) and β(p+ p′) = β(p) + β(p′).

Definition A.3. The Grothendieck group of a monoid P is the abelian group gener-

ated by a monoid P, denoted by Pgp defined as follows.

Pgp := {P ×P/ ∼}

with the eqquivalence relation compatible with the monoid operation defined as (x, y) ∼
(x′, y′) if and only if there exists an element p ∈P such that pxy′ = pyx′.

Note that the there is a natural map from P to its associated Grothendieck group

Pgp sending an element p ∈P to the equivalance class (p, 1) denoted by p/1. So, for

any abelian group G and a monoid P, we have HomMon(P, G) = HomAb(Pgp, G).

Considering the basic example of a monoid N we have Ngp = Z. In general, Pgp will

be the smallest group containing P.

Definition A.4. A monoid P is called integral if the map P →Pgp is injective.

For a monoid to be integral is equivalent to say that the cancellation law holds. That

is a monoid P is injective if p+ q = p′ + q ⇒ p = p′.

Definition A.5. A monoid P is called fine if it is finitely generated and integral.

P is called saturated if it is integral and whenever p ∈ Pgp such that mp ∈ P then

p ∈P. P is called toric if it is fine, saturated and Pgp is torsion free.

Example A.6. Consider the semigroup generated by 2 and 3 in N. This gives the

monoid P = {0, 2, 3, 4, ...}. Then we have 1 ∈ Pgp = Z, but 1 /∈ P. So, P is not



96 HÜLYA ARGÜZ

saturated. The associated C-algebra to P is R = C[x2, x3]. Then the corresponding

variety will be SpecR = V (y2 − x3) ∈ A2 which is clearly not normal. We see that in

order to get a normal variety at the end, one must start with a saturated monoid.

We have the following lemma due to Gordan.

Lemma A.7. Let L be a finitely generated free Z module. Let LR = L ⊗Z R. Let σ

be a strongly convex rational polyhedral cone in LR. This means σ is a cone with apex

at the origin generated by a finite number of vectors in the lattice L and it contains no

line through the origin. Then P := L ∩ σ is a toric monoid. σ is generated by P and

dimσ = rankP gp.

The standard way to obtain a toric variety X is to start with a cone σ as in A.7

generated by a toric monoid P. The dual cone σ̃ defines a fan for X. Using Laurent

monomials pass to the associated finitely generated monomial algebra R[P]. Then

Uσ := Spec(R[P]) is an affine toric variety. Note that Uσ contains a copy of (C×)n. If

we start with a fan, that is a collection of cones σ we can glue together correspond-

ing the copies of (C×)n for each cone to obtain a general toric variety. The closed

points of a toric variety X obtained from a toric monoid P correspond to semigroup

homomorphisms via the natural isomorphism SpecmR[P] = Homsg(P,C).

Example A.8. Let P = {< p1, p2, p3, p4 > | pi ∈ N for i = 1, ..., 4 and p1 + p3 =

p2 + p4 }. Clearly, P is fine and saturated. Furthermore, Pgp = Z3 which is torsion

free. Hence, P is toric and R[P] ∼= C[x, y, w, t]/(xy − wt). So, the associated toric

variety is the complex 3-dimensional conifold xy− zt. Recall that generally for a toric

variety Xσ where σ is the cone defined by a monoid P , we have ZdimCX ∼= Pgp.

Remark A.9. For a toric variety Xσ where σ is the cone defined by a monoid P , we

have ZdimCX ∼= Pgp.

Now we begin with the basic definitions and examples of log structures.

Definition A.10. Let X be an analytic space with the usual analytic topology or

generally a scheme so that the underlying space is endowed with the étale topology. A

pre log structure on X is a sheaf of monoids M on X together with a homomorphism

of monoids β :M−→ OX where we consider the structure sheaf OX as a monoid with

respect to multiplication.

Definition A.11. A pre log structure on X with the morphism of monoids α :M−→
(OX , ·) is called a log structure if α induces an isomorphism

α
∣∣
α−1(O×X)

: α−1(O×X) −→ O×X
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We will call a scheme X associated with a log structure αX :Mx −→ OX a log scheme

and denote it by (X,MX) or by X†.

Remark A.12. If X is a space carrying a log structure α : MX → O×X and a section

sm ∈ MX is mapped to an invertible section f of the structure sheaf O×X this implies

that sm is invertible and s−1
m = f−1.

Definition A.13. Given a log scheme (X,MX) we defineMX :=MX

/
O×X . We call

MX the ghost sheaf of (X,MX).

The ghost sheafMX of (X,MX) carries very important geometric information. We

will mention briefly about this in ...

Now we immediately start with the basic examples.

Example A.14. The trivial log structure.

Let X be a scheme and

MX := O×X
αX : O×X −→ OX

be the inclusion. Clearly, this defines a log structure on X, called the trivial log

structure.

Example A.15. The standard log point.

Let

X := SpecC
MX := C× ⊕ N

Define αX :MX → C as follows.

αX(x, n) :=

{
x if n = 0

0 if n 6= 0

A point SpecC together with this log structure is called the standard log point.

Example A.16. The polar log point.

Let

X := SpecC
MX := S1 × R≥0

Here, R≥0 denotes the set of nonnegative real numbers with the monoid structure given

by multiplication and S1 is the set of complex numbers of absolute value 1 again with

multiplication. Define

α : S1 × R≥0 → C
(eiφr)→ reiφ
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This is by definition a prelog structure on X. Observe that α
∣∣
α−1(C×)

is an isomorphism.

We have α−1(C×) = R>0 × S1, and

α
∣∣
α−1(C×)

: C× → R>0 × S1

z → (|z|, arg(z))

Thus, α gives a log structure on SpecC and together with this log structure SpecC is

called the polar log point.

Definition A.17. The divisorial log structure.

Let D ⊂ X be a divisor. Let j : X \D → X the embedding of the complement. Take

the sheaf of monoids on X defined as follows.

M(X,D) := j∗(O×X\D) ∩ OX
So, M(X,D) is the sheaf of regular functions on X with zeroes in D ⊂ X, namely the

regular functions on X which are units on X \D.

We have αX :M(X,D) ↪→ OX . Hence we get, α−1(O×X) = O×X ⊂M(X,D) which shows

α
∣∣
O×X

: α−1(O×X) −→ O×X is an isomorphism.

Remark A.18. There is a short exact sequence 0 −→ O×X −→M
gp
X −→M

gp
X

/
O×X −→

0. If we have a log scheme (X,M(X,D)) equipped with the divisorial log structure then

Mgp
X

/
O×X will be equal to the sheaf of non-effective Cartier divisors on X with support

in X \D.

Remark A.19. If X is a scheme with log structure MX then from the definition A.11

it follows that the only invertible section of MX :=MX

/
O×X is the identity.

Example A.20. Let X = A2 be the affine plane with coordinates x, y and let

D = (xy = 0) ⊂ X

Consider the divisorial log structure M(X,D) ↪→ OX on X. By definition M(X,D) is the

sheaf of regular functions on X with zeroes on D := {xy = 0}. The global sections of

the ghost sheaf M(X,D) are generated by

M(X,D) = 〈x, y〉

We have the following isomorphisms on stalk level

i.) For p ∈ {x = 0, y 6= 0} :

M(X,D),p −→ N

xa 7→ a
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ii.) For p ∈ {x 6= 0, y = 0}:

M(X,D),p −→ N

yb 7→ b

iii.) For p = (0, 0):

M(X,D),p −→ N2

xayb 7→ (a, b)

Definition A.21. Log structure associated to a prelog structure.

Let α : P −→ (OX , ·) be a prelog structure on X. One can force a log structure on

X as follows. Take the monoid

Pa := P ⊕O×X
/
{(p, α(p)−1)

∣∣ p ∈ α−1(O×X)
}

We will define

αa(p, h) = h · α(p)

Let us check that the pair (αa,Pa) gives a log structure on X. For this, we need to

show that the map αa
∣∣
(αa)−1(O×X)

is an isomorphism.

Clearly, αa
∣∣
(αa)−1(O×X)

: (αa)−1(O×X) → O×X is surjective, since for any a ∈ O×X we

have αa(1, a) = a.

Let (x, a) ∈ kerαa
∣∣
(αa)−1 we will show (x, a) = (1, 1). Here we use multiplicative

notation and denote the identity elements of the monoids OX and P by 1 and the

identity element of Pa by (1, 1).

αa((x, a)) = 1 ⇒ α(x) · a = 1 ⇒ (x, a) = (x, α(x)−1) and x ∈ α−1(O×X). Note

that under the equivalence relation on Pa, two sections (x, a) and (y, b) in Pa are

equal if there are local sections α(p) and α(q) of O×X such that (x, a) · (q, α(q)−1) =

(y, b) · (p, α(p)−1).

So, we get (x, a) ∼ (1, 1). Thus, (αa,Pa) is a log structure.

Remark A.22. From the definition of Pa it follows that P/α−1(O×X) is isomorphic to

Pa/O×X

Example A.23. Let us give a simple example to show how this construction works.

Let α : N2 → N be the map defined as α(x, y) = x. In this example we take additive

monoids N2 and N with identity 0. Clearly, α
∣∣
α−1(N×)

is not an isomorphism . Here,

N× = 0 and all elements {(0, 0), (0, 1), (0, 2), (0, 3) · · · } map to 0 under α. We define a

new monoid Ma as follows.

Ma := N2 ⊕ N×
/
{(x, y), α(x, y)−1

∣∣ (x, y) ∈ α−1(N×)
}
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We define the map αa :Ma → N as αa(x, y, a) = a + α(x, y). Now it is easy to check

αa
∣∣
(αa)−1(N×)

is an isomorphism. If αa(x, y, a) = a + α(x, y) = 0 we have a = 0 and

α(x, y) = 0. These are elements of the set {(0, 0, 0), (0, 1, 0), (0, 2, 0) · · · }. Notice that

all elements of this set are identified under the equivalence relation to (0, 0, 0). Hence

we have (αa)−1(0) = (0, 0, 0).

Definition A.24. Induced log structures. Let Y be an algebraic space with a log

structure αY : MY −→ OY . Let f : X → Y be a morphism of algebraic spaces.

Consider the map f−1MY → f−1OY → OX which defines a pre log structure on X.

The log structure associated to this pre log structure is called the induced log structure

or the pull back log structure on X and is usually denoted by MX = f−1MY .

In a moment we will define log charts, first introduced by Kato in [Kk]. First we

have the following definitions.

Definition A.25. A log structureM on a scheme X is called coherent if étale locally

on X there exists a finitely generated monoid P and a homomorphism PX → OX
whose associated log structure is isomorphic to M. Here PX denotes the constant

sheaf corresponding to P. M is called integral if M is a sheaf of integral monoids. If

M is both coherent and integral then it is called fine .

Remark A.26. IfM is coherent (resp. integral) the stalkMO×X,x,x
is finitely generated

(resp. integral).

Definition A.27. For a scheme X with a fine log structure M a chart for M is a

homomorphism PX → M for a finitely generated integral monoid P which induces

Pa ∼=M over an étale open subset of X. Recall that as PX we denote the constant

sheaf P on X.

Definition A.28. For morphism f : (X,M)→ (Y,N ) of schemes with fine log struc-

tures a chart for f is a triple (PX → M,QY → N ,Q → P) where PX → M,

QY → N are charts of M and N respectively and Q → P is a homomorphism for

which the following diagram commutes.

QX
h //

��

PX

��
f−1N //M

A chart of f also exists étale locally. For a fine log scheme X with log structure

M and a chart β : P → Γ(X,M) we have a natural map P
β→ M α→ OX . Let
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φ = α ◦ β be the map of monoids P → OX . SinceMX is the log structure associated

to this pre log structure by A.22 we have P/φ−1(O×X) is isomorphic to M/O×X =M.

Therefore, for a chart P of a log structure M we have a surjective map P → M.

This is surjective on the stalks. So, for a geometric point x ∈ U for some open set

U ∈ X we have the following commutative diagram.

P = Γ(U ,P)
h //

��

Γ(U ,MU)

��

P = Px
//MU ,x

where MU denotes the pull back of the sheaf M to U . Observe that this implies

Γ(U ,MU)→MU ,x is surjective.

Discussion A.29. Let

N ' Zn

be a finitely generated free abelian group and

M = Hom(N,Z)

its dual. Let X be a toric variety with fan Σ in the vector space NR, endowed with

the toric log structure MX . That is; MX =MX,D is the divisoral log structure with

D ⊂ X the toric boundary divisor. For σ ∈ Σ we have the affine toric patch

Uσ = SpecC[σ∨ ∩M ]

of X. The toric log structure MX is locally generated by the monomial functions on

this open subset, that is, the canonical map

(A.1) σ∨ ∩M −→ C[σ∨ ∩M ], m 7−→ zm

is a chart for the log structure on Uσ (see Example A.31). The minimal toric stratum

of Uσ is the algebraic torus

Tσ = SpecC[M/(σ⊥ ∩M)].

Now the following conditions are equivalent for m ∈ σ∨ ∩M :

(1) zm is invertible on Uσ;

(2) zm is invertible on the smallest dimensional toric stratum of Uσ;

(3) zm is invertible on any toric prime divisor containing Tσ;

(4) For any n ∈ N ∩ σ it holds < n,m >= 0;

(5) m ∈ σ⊥.

We thus obtain the following statement.
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Proposition A.30. For any x ∈ Tσ the toric chart (A.1) induces a canonical isomor-

phism

σ∨ ∩M/σ⊥ ∩M σ−→MX,x.

�

Example A.31. (3.19,[G]) Let X be the affine toric variety

X = SpecC[σ∨ ∩M ]

endowed with the toric log structure MX . Then M(X,D) is fine and a chart for MX

is given by A.1 as in the Discussion A.29. Denote by P := σ∨ ∩M and let PX be

corresponding constant sheaf on X = SpecC[P ]. The map P → C[P ] induces a

morphism PX → OX which factors as

P −→M(X) ↪→ OX

via p 7→ zp ∈M(X) since zp is a regular function on X invertible on the big torus orbit,

on the complement of the toric boundary divisor D. This gives a map

P ⊕O×X →M(X)

whose kernel on an open subset U ⊆ X, consists precisely of the pairs (p, z−p) such

that z−p is invertible on U .

Moreover, for a geometric point x ∈ X, a function defined in a neighbourhood U ,

which is invertible on U \D is of the form h · zp,for p ∈ P and h ∈ O×X(U)

Thus, we have a map P −→ M(X) whose associated log structure by construction

is isomorphic to M(X). This shows that A.1 is a chart for the toric log structure MX

on X.

Example A.32. Let X = Spec C[x, y, w, t]
/

(xy − wt) . A fan for X is given by the

dual cone σ̃ = R≥0(0, 1, 0) +R≥0(−1, 0, 1) +R≥0(0,−1, 1) +R≥0(1, 0, 0). Then we have

the four toric invariant divisors

D1 = (y = w = 0), D2 = (x = w = 0), D3 = (x = t = 0), D4 = (y = t = 0)

Let D be the canonical divisor. That is D = −D1−D2−D3−D4. Note that sections

Γ(X,MX,D) of the log structureMX,D are sx, sy, , sw, st where sx denotes functions

of the form xa for a ∈ N and sy, , sw, st are defined analogously. Clearly these are

regular functions having zeroes in D. We have P =< e1, · · · e4|e1 + e2 = e3 + e4 >.

Define a chart P → Γ(X,MX,D) as follows.
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P
α−→ Γ(X,MX,D)

e1 → x

e2 → y

e3 → w

e4 → t

Remark A.33. Generally a toric variety that is not neccessarily affine is a fine log

scheme. Note that a toric variety is obtained by gluing its affine patches. So, we can

define a log structure on a toric variety that will restrict to the canonical log structure

on each affine patch. This log structure is fine.

Note also that if we consider a toric variety X with the divisorial log structure

M(X,D) and if we take D to be an arbitrary divisor but not the canonical divisor, then

the log structure is not necessarily fine.

Our final few words on the brief introduction to log geometry will be concerned on

log morphisms.

Definition A.34. If X and Y are log schemes with sheafs of monoids MX and MX ,

then we define a morphism (f, f [) from (X,M) to (Y,MY ) so that f : X −→ Y is a

morphism of the underlying schemes and f [ : f−1MY −→MX is a homomorphism of

sheafs of monoids where f−1MY denotes the inverse image of the sheaf MY so that

the following diagram commutes

f−1MY

f[
//

αY
��

MX

αX

��
f−1OY

f]
// OX

We call f := (f, f [) a morphism of log schemes.

Recall that if we have a morphism f : X → Y of analytic spaces where Y is equipped

with a log structure MY there is an induced log structure on X denoted by f ∗MY .

Definition A.35. A morphism f : X → Y between log schemes (X,MX) and (Y,MY )

is called strict if MX is isomorphic to the induced log structure f ∗MY from Y .

Let (X,MX) be a fine log scheme with a chart P → Γ(X,MX). Then X →
Spec(C[P]) is a strict morphism of analytic spaces.
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Introduction.

We study real structures in the toric degenerations introduced by Gross and the

second author in the context of mirror symmetry [GS1], [GS3]. A toric degeneration

in this sense is a degeneration of algebraic varieties δ : X → T = SpecR with R a

discrete valuation ring and with central fibre X0 = δ−1(0) a union of toric varieties,

glued pairwise along toric divisors. Here 0 ∈ SpecR is the closed point. We also require

that δ is toroidal at the zero-dimensional toric strata, that is, étale locally near these

points, δ is given by a monomial equation in an affine toric variety. For an introductory

survey of toric degenerations see [GS4].

Probably the most remarkable aspect of toric degenerations is that they can be

produced canonically from the central fibre X0 and some residual information on the

family X, captured by what is called a log structure. While the reconstruction is done

Date: December 21, 2016.
106
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by an inductive procedure involving a wall structure [GS3], and is typically impossible

to carry through in practice, many features of the family are already contained in

the log structure. A simple characterization of the nature of the log structure in the

present situation has been given in [GS1], Theorem 3.27. It says that if at a general

point of the singular locus of X0 where two irreducible components meet, X is given as

xy = f · te with t ∈ R generating the maximal ideal, the log structure captures e ∈ N
and the restriction of f to x = y = 0.

An important feature of the log structure for the present paper is that the topology of

the degeneration can be read off canonically. Indeed, just as for any logarithmic space

over the complex numbers, to X0 there is a canonically and functorially associated

topological space XKN
0 , its Kato-Nakayama space or Betti realization [KN]. It comes

with a continuous map to the analytic space Xan
0 associated to X0. Moreover, in

the present case, there is a map XKN
0 → S1, coming from functoriality and the fact

that the closed point in T as a divisor also comes with a log structure, with S1 its

Kato-Nakayama space. Now it follows from the main result of [NO] that the map

XKN
0 → S1 is homeomorphic to the preimageunder δ of a small circle about 0 in T .

See the discussion at the beginning of §4.2 for details. In particular, by restricting to

the fibre over, say 1 ∈ S1, we obtain a topological space XKN
0 (1) homeomorphic to a

general fiber Xt of an analytic model X of the degeneration X.

Our primary interest in this paper are real structures in X0 and their lift to XKN
0 .

The main reason for being interested in real structures in this context is that the real

locus produces natural Lagrangian submanifolds on any complex projective manifold

defined over R. Thus assuming the analytic model X is defined over R, it comes with

a natural family of degenerating Lagrangian submanifolds. Again we can study these

Lagrangians by means of their analogues in XKN
0 . Note that if X0 is defined over R

and the functions f on the double locus defining the log structure are as well, then the

canonical family X is already defined over R, see [GS3], Theorem 5.2.

Once we have a real Lagrangian L ⊂ Xt, a holomorphic disc with boundary on L

glues with its complex conjugate to a rational curve C ⊂ Xt with a real involution.

Real rational curves are amenable to techniques of algebraic geometry and notably of

log Gromov-Witten theory of the central fibre X0. Thus real Lagrangians provide an

algebraic-geometric path to open Gromov-Witten invariants and the Fukaya category.

See [So],[PSW] and [FOOO] for previous work in this direction without degenerations.

In Section 1 we introduce the straightforward notion of a real structure on a log space

along with basic properties. Our main example is the central fibre of a degeneration

defined over R, with its natural log structure. In Section 2 we recall the definition of

the Kato-Nakayama space XKN over a log scheme X as a topological space along with
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some properties needed in later sections. We then show that the real involution on

a real log scheme lifts canonically to its Kato-Nakayama space (Section 3). Section 4

is devoted to the toric degeneration setup. We describe the Kato-Nakayama space

as glued from standard pieces, torus bundles over the momentum polytopes of the

irreducible components of the central fibre X0 ⊂ X, and in terms of global monodromy

data. Under the presence of a real structure we give a similar description for the real

locus. For real structures inducing the standard real structure on each toric irreducible

component of X0, the real locus in the Kato-Nakayama space of X0 is a branched cover

of the union B of momentum polyhedra, the integral affine manifold of half the real

dimension of a general fibre governing the inductive construction of X. For a concrete

example we study the case of a toric degeneration of quartic K3 surfaces, reproducing

a result of Castaño-Bernard and Matessi [CBM] on the topology of the real locus of an

SYZ-fibration with compatible real involution in our setup.

Conventions. We work in the category of log schemes of finite type over C with

log structures in the étale topology, but use the analytic topology from Section 2 on.

Similar discussions are of course possible in the categories of algebraic log stacks over C
or of complex analytic log spaces. Throughout this paper we assume basic familiarity

with log geometry at the level of [Kf]. For more details we encourage the reader to also

look at [Kk], [O]. The structure homomorphism of a log space (X,MX) is denoted

αX :MX → OX , or just α if X is understood. The standard log point (SpecC,N⊕C×)

is denoted by O†.

For a = reiϕ ∈ C \ {0} we denote by arg(a) = ϕ ∈ R/2πiZ and by Arg(a) = eiϕ =

a/|a|.

1. Real structures in log geometry

Recall that for a scheme X̄ defined over R the Galois group G(C/R) = Z/2Z acts

on the assoicated complex scheme X = X̄ ×SpecR SpecC by means of the universal

property of the cartesian product

X −−−→ X̄y y
SpecC −−−→ SpecR.
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The generator of the Galois action thus acts on X as an involution of schemes over R
making the following diagram commutative

(1.1)

X
ι−−−→ Xy y

SpecC conj−−−→ SpecC.

Here conj denotes the R-linear automorphism of SpecC defined by complex conjuga-

tion.

Conversely, a real structure on a complex scheme X is an involution ι : X → X of

schemes over R fitting into the commutative diagram (1.1). It is not hard to see that

if X is separated then X is defined over R with ι the generator of the Galois action

([Hr], II Ex.4.7). A pair (X, ι) is called a real scheme. By abuse of notation we usually

omit ι when talking about real schemes.

Definition 1.1. Let (X,MX) be a log scheme over C with a real structure ιX : X →
X on the underlying scheme. Then a real structure on (X,MX) (lifting ιX) is an

involution

ι̃X = (ιX , ι
[
X) : (X,MX) −→ (X,MX)

of log schemes over R with underlying scheme-theoretic morphism ιX . The data con-

sisting of (X,MX) and the involutions ιX , ι[X is called a real log scheme.

In talking about real log schemes the involutions ιX , ι[X are usually omitted from the

notation. We also sometimes use the notation ιX for the involution of the log space

(X,MX) and in this case write ιX if we want to emphasize we mean the underlying

morphism of schemes.

Definition 1.2. Let (X,MX) and (Y,MY ) be real log schemes. A morphism f :

(X,MX) → (Y,MY ) of real log schemes is called real if the following diagram is

commutative.

f−1ι−1
Y MY

f−1ι[Y−−−→ f−1MY

ι−1
X f[

y yf[
ι−1
X MX

ι[X−−−→ MX .

Here the left-hand vertical arrow uses the identification ιY ◦ f = f ◦ ιX .



110 REAL LOCUS OF KATO-NAKAYAMA SPACES

Remark 1.3. For a real morphism of real log schemes f : (X,MX) → (Y,MY ) the

following diagram commutes.

f−1ι−1
Y OY //

��

f−1OY

��

f−1ι−1
Y MY

//

��

??

f−1MY

��

??

ι−1
X OX // OX

ι−1
X MX

//

??

MX

??

In fact, commutativity on the (1) bottom, (2) top, (3) right (4) left (5) back and

(6) front faces follows from the assumptions that (1) (X,MX) is a real log scheme,

(2) (Y,MY ) is a real log scheme, (3) f is a morphism of log schemes, (4) ι−1
X applied

to the right face plus the identity f ◦ ιX = ιY ◦ f , (5) f induces a real morphism on

the underlying schemes and (6) f is a real morphism of real log structures.

Given a real log scheme (X,MX) with α :MX → OX the structure homomorphism,

for any geometric point x̄→ X we have a commutative diagram

MX,x̄
ι[−−−→ MX,ι(x̄)

ι[−−−→ MX,x̄

αx̄

y αι(x̄)

y αx̄

y
OX,x̄

ι]−−−→ OX,ι(x̄)
ι]−−−→ OX,x̄.

The compositions of the maps in the two horizontal sequences are the identity onMX,x̄

and on OX,x̄, respectively. For the next result recall that if X is a pure-dimensional

scheme and D ⊂ X is a closed subset of codimension one, then the subsheafM(X,D) ⊂
OX of regular functions with zeros contained in D defines the divisorial log structure

on X associated to D.

Proposition 1.4. Let X be a pure-dimensional scheme, D ⊂ X a closed subset of

codimension one and letMX =M(X,D) be the associated divisorial log structure. Then

a real structure ι on X lifts to MX iff ι(D) = D. Moreover, in this case the lift ι[ is

uniquely determined as the restriction of ι] to M(X,D) ⊂ OX .

Proof. Let ι : X → X be a real structure on X with ι(D) = D. Then ι(X \D) = X \D
and hence ι] restricts to an isomorphism ϕ : ι−1O×X\D → O×X\D. By definition of

M(X,D), ϕ induces an isomorphism ι[ : ι−1M(X,D) → M(X,D). Hence we get a real

structure (ι, ι[) : (X,M(X,D))→ (X,M(X,D)) on (X,M(X,D)) lifting ι.

Conversely, let the real structure ι : X → X lift to (ι, ι[) : (X,M(X,D)) −→
(X,M(X,D)). In other words, there exists a morphism ι[ : ι−1M(X,D) −→ M(X,D)
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making the following diagram commute.

(1.2)

ι−1M(X,D)
ι−1α−−−→ ι−1OX

ι[

y yι]
M(X,D)

α−−−→ OX

Let D =
⋃
µDµ be the decomposition into irreducible components. Since ι2 = idX it

suffices to show ι(D) ⊂ D, or ι(Dµ) ⊂ D for every µ. Fix µ and let U ⊂ X be an

affine open subscheme with U ∩Dµ 6= ∅. Let f ∈ OX(U) \ {0} be such that D ⊂ V (f).

Then U ∩Dµ ⊂ U ∩D ⊂ V (f). Write V (f) = (Dµ ∩U)∪E with E ⊂ V (f) the union

of the irreducible components of V (f) different from Dµ. Replacing U by U \ E we

may assume V (f) = U ∩Dµ. Note that U may not be affine anymore, but this is not

important from now on.

Taking sections of Diagram (1.2) over ι−1(U) shows that f ◦ ι = ι](f) lies in

M(X,D)

(
ι−1(U)

)
⊂ OX

(
ι−1(U)

)
. By the definition ofM(X,D) this implies V (f ◦ι) ⊂ D.

But also

V (f ◦ ι) = ι−1
(
V (f)

)
= ι−1(U ∩Dµ) = ι(U ∩Dµ).

Taken together this shows that ι(U ∩Dµ) ⊂ D. Since U is open with U ∩Dµ 6= ∅ we

obtain the desired inclusion ι(Dµ) ⊂ D. �

Proposition 1.5. Let f : (X,MX)→ (Y,MY ) be strict and assume that the morphism

f of the underlying schemes is compatible with real structures ιX on X and ιY on Y .

Then for any real structure ι[Y on MY lifting ιY there exists a unique real structure ι[X
on MX lifting ιX and compatible with f .

Proof. By strictness we can assume the log structure MX on X is the pull-back log

structure f ∗MY = f−1MY ⊕f−1O×Y
O×X . Hence,

ι−1
X MX = ι−1

X f−1MY ⊕ι−1
X f−1O×Y

ι−1
X O

×
X = f−1ι−1

Y MY ⊕f−1ι−1
Y O

×
Y
ι−1
X O

×
X .

Now for a lift ι[X : ι−1
X MX →MX of ι]X compatible with f , the composition

ϕ : f−1ι−1
Y MY −→ ι−1

X MX

ι[X−→MX = f ∗MY

factors over f−1ι[Y : f−1ι−1
Y MY → f−1MY and is hence determined by f and ι[Y .

Similarly, the composition

ψ : ι−1
X O

×
X −→ ι−1

X MX

ι[X−→MX = f ∗MY

factors over ι]X : ι−1
X O

×
X → O

×
X and thus is known by assumption. Since f is a real

morphism of real schemes, ϕ and ψ agree on f−1ι−1
Y O

×
Y . Hence the unique existence
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of ι[X with the requested properties follows from the universal property of the fibered

sum. �

Explicit computations are most easily done in charts adapted to the real structure.

Definition 1.6. Let (X,MX) be a log scheme with a real structure (ιX , ι
[
X). A chart

β : P → Γ(U,MX) for (X,MX) is called a real chart if (1) ιX(U) = U and (2) there

exists an involution ιP : P → P such that for all p ∈ P it holds β
(
ιP (p)

)
= ι[X

(
β(p)

)
.

Example 1.7. An involution ιP of a toric monoid P induces an antiholomorphic invo-

lution on C[P ] by mapping
∑

p apz
p to

∑
p apz

ιP (p). The induced real structure on the

toric variety XP = SpecC[P ] permutes the irreducible components of the toric divisor

DP ⊂ XP and hence, by Proposition 1.4 induces a real structure on (XP ,M(XP ,DP )).

We claim the canonical toric chart

β : P −→ Γ(XP ,M(XP ,DP )), p 7−→ zp

is a real chart. Indeed, for any p ∈ P we have β(ιP (p)) = zι(p) = ι]XP (zp) = ι[XP (zp),

the last equality due to Proposition 1.4.

Real charts may not exist, a necessary condition being that X has a cover by affine

open sets that are invariant under the real involution ιX . This is the only obstruction:

Lemma 1.8. Let (X,MX) be a real log scheme with involution ιX . Let U ⊂ X be a

ιX-invariant open set supporting a chart β : P → Γ(U,MX). Then there also exists a

real chart β′ : P ′ → Γ(U,MX) for MX on U .

Proof. We claim that

β̃ : P ⊕ P −→ Γ(U,X), β̃(p, p′) = β(p) · ι[X
(
β(p′)

)
is a real chart. Since β̃ restricts to β on the first summand of P̃ , this is still a chart

forMX on U . For the involution on the monoid P̃ = P ⊕P we take ιP̃ (p, p′) = (p′, p).

Then indeed for any (p, p′) ∈ P̃ we have

β̃
(
ιP̃ (p, p′)

)
= β̃(p′, p) = β(p′) · ι[X(β(p)) = ι[X

(
ι[X(β(p′)) · β(p)

)
= ι[X

(
β̃(p, p′)

)
,

verifying the condition for a real chart. �

Note that if X is a separated scheme, real charts always exist at any point x in the

fixed locus of ιX . In fact, take any chart defined in a neighbourhood U of X, restrict

to U ∩ ιX(U), still an affine open set by separatedness, and apply Lemma 1.8.

Proposition 1.9. Cartesian products exist in the category of real log schemes.
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Proof. Let (X,MX), (S,MS), (T,MT ) be real log schemes endowed with morphisms

f : (X,MX) → (T,MT ) and g : (S,MS) → (T,MT ). Then the fibre product in the

category of log schemes (S ×T X,MS×TX) fits into the following cartesian diagram.

(S ×T X,MS×TX)
pX //

pS
��

(X,MX)

f

��
(S,MS)

g
// (T,MT )

(1.3)

The log structure on the fiber product S ×T X is given by MS×TX = p∗XMX ⊕p∗TMT

p∗SMS. By the universal property of the fibered coproduct the existence of real struc-

tures on (X,MX), (S,MS) and (T,MT ) ensures the existence of a real structure on

(S ×T X,MS×TX). �

Note that in general the amalgamated sum of fine log structures p∗XMX⊕p∗TMT
p∗YMY

is only coherent, but not even integral. To take the fibred product in the category of fine

log schemes requires the further step of integralizing (S×TX,MS×TX). Given a monoid

P with integralization Pint and a chart U → SpecZ[P ] for a log scheme (U,MU), the

integralization of (U,MU) is the closed subscheme U×SpecZ[P ]SpecZ[P int] of U with the

log structure defined by the chart U → SpecZ[P ]→ SpecZ[P int]. A similar additional

step is needed for staying in the category of saturated log schemes. Fortunately, we

are only interested in the case that g is strict, and in this case the fibre product in all

categories agree. See [O], Ch.III, §2.2.1, for details.

Example 1.10. Let S be the spectrum of a discrete valuation ring with residue field C
and δ : X→ S be a flat morphism. Let 0 ∈ S be the closed point, X0 = δ−1(0) and con-

sider δ as a morphism of log schemes with divisorial log structures δ : (X,M(X,X0))→
(S,M(S,0)). If δ commutes with real structures on X and S, then by Proposition 1.4,

the morphism δ is naturally a real morphism of real log schemes. Taking the base

change by the strict morphism (SpecC,N ⊕ C×) → (S,M(S,0)), Proposition 1.9 leads

to a real log scheme (X0,MX0) over the standard log point O† = (SpecC,N⊕ C×).

2. The Kato-Nakayama space of a log space

2.1. Generalities on Kato-Nakayama spaces. For the rest of the paper we work

in the analytic topology. If R is a finitely generated C-algebra we write SpecanR for

the analytic space associated to the complex scheme SpecR.

To any log scheme (X,MX) over C, Kato and Nakayama in [KN] have introduced

a topological space (X,MX)KN, its Kato-Nakayama space or Betti-realization. We

review this definition and its basic properties first before discussing the additional
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properties coming from a real structure. Denote by Π† = (SpecanC,MΠ) the polar log

point, with log structure

αΠ :MΠ,0 = R≥0 × U(1) −→ C, (r, eiϕ) 7−→ r · eiϕ.

There is an obvious map Π† → SpecanC making Π† into a log space over C. Note

MΠ,0 = U(1), so this log structure is not fine. As a set define

(X,MX)KN := Hom
(
Π†, (X,MX)

)
,

the set of morphisms of complex analytic log spaces Π† → (X,MX). Note that a log

morphism f : Π† → (X,MX) is given by its set-theoretic image, a point x = ϕ(0) ∈ X,

and a monoid homomorphism f [ : MX,x → R≥0 × U(1). Forgetting the monoid

homomorphism thus defines a map

(2.1) π : (X,MX)KN −→ X.

We endow (X,MX)KN with the following topology. A local section σ ∈ Γ(U,Mgp
X ),

U ⊂ X open, defines a map

(2.2) evσ : π−1(U) −→ R≥0 × U(1), f 7−→ f [ ◦ σ.

As a subbasis of open sets on (X,MX)KN we take ev−1
σ (V ), for any U ⊂ X open,

σ ∈ Γ(U,Mgp
X ) and V ⊂ R≥0 × U(1) open. The forgetful map π is then clearly

continuous.

If the log structure is understood, we sometimes write XKN instead of (X,MX)KN

for brevity.

Remark 2.1. The following more explicit set-theoretic description of (X,MX)KN is

sometimes useful. A log morphism f : Π† → (X,MX) with f(0) = x is equivalent to

a choice of monoid homomorphism f [ fitting into the commutative diagram

MX,x
f[=(ρ,θ)−−−−−→ R≥0 × U(1)

αX,x

y yαΠ

OX,x −−−→
evx

C

Here αX,x is the stalk of the structure morphism αX :MX → OX of X and evx takes

the value of a function at the point x. This diagram implies that the first component

ρ of f [ is determined by x and the structure homomorphism by

ρ(σ) =
∣∣(αX,x(σ)

)
(x)
∣∣.
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Thus giving f is equivalent to selecting the point x ∈ X and a homomorphism θ :

MX,x → U(1) with the property that for any σ ∈MX,x it holds

(αX,x(σ))(x) =
∣∣(αX,x(σ))(x)

∣∣ · θ(σ).

Since both sides vanish unless σ ∈ O×X,x ⊂MX,x, this last property needs to be checked

only on invertible elements. Note also that a homomorphismMX,x → U(1) extends to

Mgp
X,x since U(1) is an abelian group. Summarizing, we have a canonical identification

(2.3) (X,MX)KN =
{

(x, θ) ∈
∏

x Hom(Mgp
X,x, U(1))

∣∣∣∀h ∈ O×X,x : θ(h) = h(x)
|h(x)|

}
In this description we adopt the occasional abuse of notation of viewing O×X,x as a

submonoid of MX,x by means of the structure homomorphism MX,x → OX,x. From

(2.3), for s ∈ MX,x any point f ∈ XKN over x ∈ X defines an element θ(s) ∈ U(1).

We refer to this element of U(1) as the phase of s at f . If s ∈ O×X,x then the phase of

any point of XKN over x agrees with Arg(s) = ei arg(s).

Next we give an explicit description of (X,MX)KN assuming the log structure has a

chart with a fine monoid. For a fine monoid P , we have P gp ' T ⊕ Zr with T finite.

Thus the set Hom(P gp, U(1)) is in bijection with |T | copies of the real torus U(1)r by

means of choosing generators. This identification is compatible with the topology on

Hom(P gp, U(1)) defined by the subbasis of topology consisting of the sets

(2.4) Vp :=
{
ϕ ∈ Hom(P gp, U(1))

∣∣ϕ(p) ∈ V
}
,

for all V ⊂ U(1) open and p ∈ P gp.

Proposition 2.2. Let P be a fine monoid and let X be an analytic space endowed with

the log structure defined by a holomorphic map g : X → SpecanC[P ]. Then there is a

canonical closed embedding of (X,MX)KN into X × Hom(P gp, U(1)) with image{
(x, λ) ∈ X × Hom(P gp, U(1))

∣∣∣ ∀p ∈ P : g](zp)x ∈ O×X,x ⇒ λ(p) = Arg(g](zp)(x))
}
.

Proof. Denote by β : P → Γ(X,MX) the chart given by g and by βx : P → MX,x

the induced map to the stalk at x ∈ X. Recall the description (2.3) of (X,MX)KN

by pairs (x, θ) with x ∈ X and θ : Mgp
X,x → U(1) a group homomorphism extending

h 7→ h(x)/|h(x)| for h ∈ O×X,x. With this description, the canonical map in the

statement is

Ψ : (X,MX)KN −→ X × Hom(P gp, U(1)), (x, θ) 7−→
(
x, θ ◦ βgp

x

)
.

Here βgp
x : P gp →Mgp

X,x is the map induced by βx on the associated groups.

To prove continuity of Ψ, let p ∈ P gp and V ⊂ U(1) be open. Then Ψ−1 of X × Vp
with Vp ⊂ Hom(P gp, U(1)) the basic open set from (2.4), equals ev−1

βgp(p)(R≥0×V ), with
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evσ defined in (2.2). By the definition of the topology, Ψ−1(X × Vp) ⊂ (X,MX)KN

is thus open. Continuity of the first factor π of Ψ being trivial, this shows that Ψ is

continuous.

We next check that im(Ψ) is contained in the stated closed subset ofX×Hom(P gp, U(1)).

Let (x, θ) ∈ (X,MX)KN. For p ∈ P the required equation g](zp)(x) = λ(p) ·
∣∣g](zp)(x)

∣∣
for λ = θ ◦ βgp

x is non-trivial only if h := g](zp) ∈ O×X,x. In this case, βx(p) maps to h

under the structure homomorphism MX,x → OX,x and hence(
θ ◦ βx(p)

)
(x) =

h(x)∣∣h(x)
∣∣ =

g](zp)(x)∣∣g](zp)(x)
∣∣ ,

verifying the required equality.

Conversely, assume (x, λ) ∈ X × Hom(P gp, U(1)) fulfills

(2.5) g](zp)(x) = λ(p) ·
∣∣g](zp)(x)

∣∣.
Denote by α : MX → OX the structure homomorphism. Then MX,x fits into the

cocartesian diagram of monoids

β−1
x (O×X,x) //

αx◦βx
��

P

βx

��
O×X,x //MX,x

.

Consider the pair of homomorphisms Arg ◦ evx : O×X,x → U(1), and λ : P → U(1),

with evx evaluation at x. In view of (α ◦ β)(p) = g](zp), Equation (2.5) says precisely

that the compositions of these two maps with the maps from β−1
x (O×X,x) agree. By the

universal property of fibred sums we thus obtain a homorphismMX,x → U(1). Define

θ : Mgp
X,x → U(1) as the induced map on associated groups. For h ∈ O×X,x it holds

θ(h) = h(x)/|h(x)| and hence (x, θ) ∈ (X,MX)KN. It is now not hard to see that the

map (x, λ) 7→ (x, θ) is inverse to Ψ and continuous as well. �

2.2. Examples of Kato-Nakayama spaces. We next discuss a few examples of

Kato-Nakayama spaces, geared towards toric degenerations. Unless otherwise stated,

N denotes a finitely generated free abelian group, M = Hom(N,Z) its dual and NR,

MR are the associated real vector spaces. If σ ⊂ NR is a cone then the set of monoid

homomorphisms σ∨ = Hom(σ,R≥0) ⊂ MR denotes its dual cone. A lattice polyhedron

is the intersection of rational half-spaces in MR with an integral point on each minimal

face.

The basic example is a canonical description of the Kato-Nakayama space of a toric

variety defined by a momentum polytope. We use a rather liberal definition of a

momentum map, not making any reference to a symplectic structure. Let Ξ ⊂ MR
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be a full-dimensional, convex lattice polyhedron. Let X be the associated complex

toric variety. A basic fact of toric geometry states that the fan of X agrees with

the normal fan ΣΞ of Ξ. From this description, X is covered by affine toric varieties

SpecanC[σ∨ ∩M ], for σ ⊂ ΣΞ. Since the patching is monomial, it preserves the real

structure of each affine patch. Hence the real locus Hom(σ∨,R) ⊂ Hom(σ∨,C) of each

affine patch glues to the real locus XR ⊂ X. Unlike in the definition of σ∨, here R and

C are multiplicative monoids. Moreover, inside the real locus of each affine patch there

is the distinguished subset

σ = Hom(σ∨,R≥0) ⊂ Hom(σ∨,R),

with “Hom” referring to homomorphisms of monoid. These also patch via monomial

maps to give the positive real locus X≥0 ⊂ XR.

Having introduced the positive real locus X≥0 ⊂ XR we are in position to define

abstract momentum maps.

Definition 2.3. Let X be the complex toric variety defined by a full-dimensional

lattice polyhedron Ξ ⊂MR. Then a continuous map

µ : X −→ Ξ

is called an (abstract) momentum map if the following holds.

(1) µ is invariant under the action of Hom(M,U(1)) on X.

(2) The restriction of µ maps X≥0 homeomorphically to Ξ, thus defining a section

s0 : Ξ→ X of µ with image X≥0.

(3) The map

(2.6) Hom(M,U(1))× Ξ −→ X, (λ, x) 7−→ λ · s0(x)

induces a homeomorphism Hom(M,U(1)) × Int(Ξ) ' X \D, where D ⊂ X is

the toric boundary divisor.

Projective toric varieties have a momentum map, see e.g. [Fu], §4.2. For an affine

toric variety SpecanC[P ], momentum maps also exist. One natural construction dis-

cussed in detail in [NO], §1, is a simple formula in terms of generators of the toric

monoid P ([NO], Definition 1.2). Some work is however needed to show that if

P = σ∨ ∩ M , then the image of this momentum map is the cone σ∨ spanned by

P . We give here another, easier but somewhat ad hoc construction of a momentum

map.

Proposition 2.4. An affine toric variety X = SpecanC[σ∨ ∩M ] has a momentum

map with image the defining rational polyhedral cone σ∨ ⊂MR.
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Proof. If the minimal toric stratum Z ⊂ X is of dimension r > 0, we can decom-

pose σ∨ ' C + Rr and acordingly X ' X × (C∗)r with X a toric variety with a

zero-dimensional toric stratum. The product of a momentum map X → C with the

momentum map

(C∗)r −→ Rr, (z1, . . . , zr) 7−→
(

log |z1|, . . . , log |zr|
)

is then a momentum map for X. We may therefore assume that X has a zero-

dimensional toric stratum, or equivalently that σ∨ is strictly convex.

Now embed X into a projective toric variety X̃ and let µ : X̃ → Ξ be a momentum

map mapping the zero-dimensional toric stratum of X to the origin. Then the cone in

MR spanned by Ξ equals σ∨. By replacing Ξ with its intersection with an appropriate

affine hyperplane we may assume that Ξ is the convex hull of 0 and a disjoint facet

ω ⊂ Ξ. Then X = µ−1(Ξ \ ω). To construct a momentum map for X with image σ∨

let q : MR → R be the quotient by Tω. Then q(Ξ) is an interval [0, a] with a > 0. Now

f(x) = x/(a− x) maps the half-open interval [0, a) to R≥0. A momentum map for X

with image σ∨ is then defined by

z 7−→ (f ◦ q)
(
µ(z)

)
· µ(z).

�

Our next result concerns the announced canonical description of the Kato-Nakayama

space of a toric variety with a momentum map.

Proposition 2.5. Let X be a complex toric variety with a momentum map µ : X →
Ξ ⊂ MR and let MX be the toric log structure on X. Then the map (2.6) factors

through a canonical homeomorphism

Ξ× Hom(M,U(1)) −→ (X,MX)KN.

Proof. The toric variety X is covered by open affine sets of the form SpecanC[P ] with

P gp = M , and these are charts for the log structure. Thus the local description of XKN

in Proposition 2.2 as a closed subset globalizes to define a closed embedding

ι : XKN −→ X × Hom(M,U(1)).

With s0 : Ξ→ X the section of µ with image X≥0 ⊂ X, consider the continuous map

Φ : Ξ× Hom(M,U(1)) −→ X × Hom(M,U(1)), (a, λ) 7−→
(
λ · s0(a), λ).

Here λ ∈ Hom(M,U(1)) acts on X as an element of the algebraic torus Hom(M,C×).

The map Φ has the continuous left-inverse π × id. Thus to finish the proof it remains

to show im(Φ) = im(ι).
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Indeed, according to Proposition 2.2, (x, λ) ∈ X × Hom(M,U(1)) lies in ι(XKN) iff

for all m ∈M with zm defined at x it holds zm(x) = λ(m) · |zm(x)|. But this equation

holds if and only if x = λ · σ(a) for a = µ(x) since σ(a) ∈ X≥0 implies

zm(λ · σ(a)) = λ(m) · zm(σ(a)) = λ(m) · |zm(x)|.

Thus (x, λ) ∈ XKN iff (x, λ) = (λ · σ(µ(x)), λ), that is, iff (x, λ) ∈ im(Φ). �

Remark 2.6. The left-hand side in the statement of Proposition 2.5 can also be written

T ∗Ξ/Λ̌ where Λ̌ ⊂ TΞ is the local system of integral cotangent vectors. Indeed, for any

y ∈ Ξ we have the sequence of canonical isomorphisms

T ∗Ξ,y/Λ̌y −→ Hom(M,R)/Hom(M,Z) = Hom(M,R/Z) = Hom(M,U(1)).

Example 2.7. Let X = A1 = SpecanC[N] be endowed with the divisorial log struc-

ture M(X,{0}). By Proposition 2.4 there exists a momentum map µ : X → R≥0.

Explicitly, in the present case one may simply take µ(z) = |z| where z is the toric

coordinate. According to Proposition 2.5, XKN ∼= R≥0 × S1 canonically. The map

π : XKN → X is a homeomorphism onto the image over A1 \ {0} and has fibre

S1 = Hom(M(X,{0}), U(1)) = Hom(N, U(1)) over 0. Thus XKN is homeomorphic to

the oriented real blow up of A1 at 0.

Example 2.8. More generally, Let (X,M(X,D)) be the divisorial log structure on a

complex scheme X with a normal crossings divisor D ⊂ X. Then the Kato-Nakayama

space XKN of X can be identified with the oriented real blow up of X along D. At

a point x ∈ X the map XKN → X has fibre (S1)k with k the number of irreducible

components of D containing x.

Example 2.9. Let X = P2 with the toric log structure. There exists a momentum

map µ : P2 → Ξ with Ξ = conv{(0, 0), (1, 0), (0, 1)} ⊂ MR the 2-simplex and M = Z2.

The momentum map exhibits the algebraic torus (C×)2 ⊂ P2 as a trivial (S1)2-bundle

over Int Ξ. Intrinsically, the 2-torus fibres of µ over Int(Ξ) are Hom(M,U(1)). Over a

face τ ⊂ Ξ, the 2-torus fibre collapses via the quotient map given by restriction,

Hom(M,U(1)) −→ Hom(M ∩ Tτ , U(1)),

where Tτ ⊂ MR is the tangent space of τ . The quotient yields an S1 over the interior

of an edge of Ξ and a point over a vertex.

Now going over to the Kato-Nakayama space simply restores the collapsed directions,

thus yielding the trivial product Ξ× (S1)2. The fibre of XKN → X over the interior of

a toric stratum given by the face τ ⊂ Ξ are the fibres of Hom(M,U(1)) → Hom(M ∩
Tτ , U(1)).

An analogous discussion holds for all toric varieties with a momentum map.
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We finish this section with an instructive non-toric example that features a non-fine

log structure. It discusses the most simple non-toric example of a toric degeneration,

the subject of Section 4.

Example 2.10. Let X = SpecanC[x, y, w±1, t]/(xy − t(w + 1)), considered as a holo-

morphic family of complex surfaces δ : X → C via projection by t. For fixed t 6= 0

we can eliminate w to arrive at δ−1(t) ' C2. For t = 0 we have π−1(0) = C2 qC C2,

two copies of the affine plane with coordinates x,w and y, w, respectively, glued semi-

normally along the line x = y = 0. Denote X0 = δ−1(0), let MX = M(X,X0) be the

log structure defined by the family and MX0 its restriction to the fibre over 0. Then

(X0,MX0) comes with a log morphism f to the standard log point O† = (pt,C×⊕N).

We want to discuss the Kato-Nakayama space of (X0,MX0) together with the map to

S1, the Kato-Nakayama space of O†.

First note that X has an A1-singularity at the point p0 with coordinates x = y = t =

0, w = −1. Any Cartier divisor at p0 with support contained in X0 is defined by a power

of t. Hence MX0,p0 = N, while at a general point p of the double locus (X0)sing ' C,

the central fibre is a normal crossings divisor in a smooth space and MX0,p = N2. In

particular, MX0 is not a fine sheaf at p0. On the other hand (X0,MX0) is a typical

example of Ogus’ notion of relative coherence. In this category, the main result of [NO]

still says that XKN is homeomorphic relative (C,MC)KN = S1 × R≥0 to XKN
0 × R≥0.

In particular, the fibre of fKN : XKN
0 → S1 = (O†)KN over eiφ ∈ S1 is homeomorphic

to C2. We want to verify this statement explicitly.

As a matter of notation we write sx, sy, st for the sections ofMX or ofMX0 defined

by the monomial functions indicated in the subscripts. We also use st to denote the

generator of the log structure MO† of O†.

Since st generates MX0,p0 as a log structure, according to (2.3) the fibre of π :

XKN
0 → X0 over p0 is a copy of U(1), by mapping θ ∈ Hom(Mgp

X0,p0
, U(1)) to its value

on st. The projection to S1 = (O†)KN can then be viewed as the identity.

On the complement of p0 the log structure is fine, but there is no global chart. We

rather need two charts, defined on the open sets

U = X0 \ (x = y = 0) = Specan
(
C[x±1, w±1]× C[y±1, w±1]

)
V = X0 \ (w = −1) = SpecanC[x, y, w±1]w+1,

respectively. The charts are as follows:

ϕ : N −→ Γ(U,MX0), ϕ(1) = st.

ψ : N2 −→ Γ(V,MX0), ϕ(a, b) = sax · sby.
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Proposition 2.2 now exhibits UKN, V KN as closed subsets of U × U(1) and V × U(1)2,

respectively. In each case, the projections to the U(1)-factors are defined by evaluation

of θ ∈ Hom(Mgp
X0,x

, U(1)) on monomials. We write these U(1)-valued functions defined

on open subsets of XKN
0 by θt, θx, θy, θw according to the corresponding monomial.

Since f : (X0,MX0) → O† is strict over U , we have UKN = U × U(1) with fKN = θt

the projection to U(1). For V KN, over the double locus x = y = 0 the fibre of the

projection V KN → V is all of U(1)2, while for x 6= 0 the value of θx is determined by

arg x. An analogous statement holds for y 6= 0.

To patch the descriptions of XKN
0 over the two charts amounts to understanding the

map V KN → (O†)KN = U(1), the image telling the value of θ ∈ Hom(Mgp
X0,x

, U(1)) on

st. Over V = X0 \ (w = −1) we have the equation st = (w + 1)−1sxsy. Thus, say over

x 6= 0, we had the description of V KN by the value of θ ∈ Hom(Mgp
X0,x

, U(1)) on sy.

Then

(2.7) θt =
Arg(x)

Arg(w + 1)
· θy.

Thus the identification with UKN is twisted both by the phases of x and of w + 1. A

similar description holds for y 6= 0.

For t = τeiφ 6= 0 denote by XKN
0 (eiφ) the fibre over eiφ ∈ U(1) = (O†)KN and simi-

larly UKN(eiφ), V KN(eiφ). It is now not hard to construct a homeomorphism between

UKN(eiφ) ∪ V KN(eiφ) and δ−1(t) ' C2 \ {0}. For example, there exists a unique such

homeomorphism that on (x = 0) ⊂ UKN(eiφ) restricts to

(C∗)2 3 (y = seiψ, w) 7−→
(

(w + 1) · τei(φ−ψ)

s+ |(w + 1)τ |1/2
, (s+ |(w + 1)τ |1/2)eiψ

)
∈ C2,

and to a similar map with the roles of x and y swapped on (y = 0) ⊂ UKN(eiφ). This

form of the homeomorphism comes from considering the degeneration xy = (w + 1)t

as a family of normal crossing degenerations of curves parametrized by w = const.

Details are left to the reader.

Example 2.11. An alternative and possibly more useful way to discuss the Kato-

Nakayama space of the degeneration xy = (w + 1)t in Example 2.10, is in terms of

closed strata and the momentum maps of the irreducible components Y1 = (y = 0),

Y2 = (x = 0) of X0 and of their intersection Z = Y1 ∩ Y2. Endow Y1, Y2, Z with the

log structures making the inclusions into X0 strict. Away from p0 we then have global

charts defined by st, sx for Y1, by st, sy for Y2 and by sx, sy for Z. By functoriality, the

fibre of π : XKN
0 → X0 over these closed strata Y1, Y2, Z agrees with Y KN

1 , Y KN
2 , ZKN,

respectively. Therefore, we can compute XKN
0 as the fibred sum

XKN
0 = Y KN

1 qZKN Y KN
2 .
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Away from the singular point p0 ∈ X0 of the log structure, Y KN
1 is the Kato-Nakayama

space of Y1 as a toric variety times an additional S1-factor coming from st, and similarly

for Y2. Since each Yi has a momentum map µi with image the half-plane R≥0 × R,

Proposition 2.5 gives a description of Y KN
i as R≥0×R×U(1)3/ ∼ with the U(1)-factors

telling the phases of w, st and of sx (for i = 1) or of sy (for i = 2), respectively. We

assume that the momentum map maps p0 to (0, 0) ∈ R≥0×R. Note that w 6= 0, so the

phase of w is already determined uniquely at any point of X0. The indicated quotient

takes care of the special point p0 by collapsing a U(1) over (x, y, w) = (0, 0,−1) as

follows. Restricting the projection

R≥0 × R× U(1)3 −→ Y1

to x = 0 yields a U(1)2-bundle over C∗, the w-plane. The two U(1)-factors record the

phases of st and sx, respectively. Now the quotient collapses the second U(1)-factor

over w = −1, reflecting the fact that only st survives in MX0,p0 .

Again by functoriality, the restriction of either Y KN
i to {0} × R yields ZKN. Using

sx, sy as generators for MZ over Z \ {p0} = C∗ \ {−1} we see

ZKN = R× U(1)3/ ∼ = C∗ × U(1)2/ ∼

Now the three U(1)-factors tell the phases θw, θx, θu of w, sx, sy. The equivalence

relation collapses the U(1)-subgroup{
(θx, θy) ∈ U(1)2

∣∣ θx · θy = 1
}

over −1 ∈ C∗.
Thus over the circle |w| = a inside the double locus x = y = 0, XKN

0 is a trivial

U(1)2-bundle as long as a 6= 1, hence a 3-torus. This 3-torus fibres as a trivial bundle

of 2-tori over (O†)KN = S1. If a = 1, one of the U(1)-factors collapses to a point over

w = −1, leading to a trivial family of pinched 2-tori over S1.

A nontrival torus fibration arises if we consider a neighbourhood of the double locus.

This is most easily understood by viewing XKN
0 as a torus fibration over R2 by taking

the union of the momentum maps

µ : X0 −→ R2, µ|Y1 = µ1, µ|Y2 = −µ2.

Denote by XKN
0 (θ) the fibre of XKN

0 → (O†)KN = S1 over θ ∈ S1. Write µKN = π ◦ µ :

XKN
0 → R2 and µKN(θ) for the restriction to XKN

0 (θ). For any (a, b) ∈ R2 \ {(0, 0)} the

fibre (µKN)−1(a, b) is a 3-torus trivially fibred by 2-tori over (O†)KN = S1. We also have

trivial torus bundles over the half-spaces (R≥0 ×R) \ {(0, 0)} and (R≤0 ×R) \ {(0, 0)}
as well as over R × (R \ {0}). However, the torus bundle is non-trivial over any loop
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about (0, 0). The reason is that the equation xy = t(w + 1) gives the identification of

torus fibrations over the two half planes via

θy = θ−1
x · Arg(w + 1) · θt.

Now Arg(w + 1) restricted to the circle |w| = a with a < 1 is homotopic to a constant

map, while for a > 1 this restriction has winding number 1. This means that for

θ ∈ S1, the topological monodromy of the 2-torus fibration µKN(θ) : XKN
0 → R2 along

a counterclockwise loop about (0, 0) ∈ R2 is a (negative) Dehn-twist. Thus µKN(θ) is

homeomorphic to a neighbourhood of an I1-singular fibre (a nodal elliptic curve) of an

elliptic fibration of complex surfaces.

3. The Kato-Nakayama space of a real log space

Let us now combine the topics of Sections 1 and 2 and consider the additional struc-

ture on the Kato-Nakayama space of a log space induced by a real structure. Through-

out this section we identify Z/2Z with the multiplicative group with two elements

±1.

The conjugation involution on C lifts to the log structure of the polar log point

MΠ = R≥0 × U(1) by putting ι[Π(r, eiϕ) = (r, e−iϕ).

Definition 3.1. Let (X,MX) be a real log space with (ιX , ι
[
X) : (X,MX)→ (X,MX)

its real involution. We call the map

ιKN
X : XKN −→ XKN,

(
f : Π† → (X,MX)

)
−→ ι[X ◦ f ◦ ι[Π.

the lifted real involution.

Proposition 3.2. The lifted real involution ιKN
X is continuous and is compatible with

the underlying real involution ιX of X under the projection π : XKN → X.

Proof. Both statements are immediate from the definitions. �

By the definition and proposition we thus see that the real locus of X has a canonical

lift to XKN.

Definition 3.3. Let (X,MX) be a real log space and ιKN
X : XKN → XKN the lifted

real involution. We call the fixed point set of ιKN
X the real locus of XKN, denoted

XKN
R ⊂ XKN.

To describe the real locus in toric degenerations, one main interest in this paper is

the study of the real locus XKN
R ⊂ XKN. We first discuss the fibres of the restriction

πR : XKN
R → XR of the projection π : XKN → X. If x ∈ XR then ι[X induces

an involution on MX,x and on the quotient MX,x = MX,x/O
×
X,x. If the involution
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on MX,x is trivial, π−1
R (x) is easy to describe. Recall from (2.3) that π−1(x) can

be identified with the set of homomorphisms θ : Mgp
X,x → U(1) given on invertible

functions h ∈ O×X,x by θ(h) = h(x)/|h(x)|.

Proposition 3.4. Let (X,MX) be a real log space and x ∈ XR.

(1) In the description (2.3) of π−1(x), an element θ ∈ Hom(Mgp
X,x, U(1)) lies in

XKN
R if and only if θ ◦ ι[X,x = θ, the complex conjugation of θ.

(2) If ι[X induces a trivial action on MX,x, then π−1
R (x) is canonically a torsor for

the group Hom(Mgp

X,x,Z/2Z).

Proof. 1) Let x̃ ∈ π−1(x), given by a log morphism f : Π† → (X,MX) with image x.

Then x̃ ∈ XKN
R if and only if f ◦ ιΠ = ιX ◦ f . Now writing x̃ = (x, θ) as in (2.3), we

have f ◦ ιΠ = (x, θ) and ιX ◦ f = (x, θ ◦ ι[X,x). Comparing the two equations yields the

statement.

2) Denote by κ : MX → MX the quotient homomorphism. We define the action of

σ ∈ Hom(Mgp

X,x,Z/2Z) on π−1(x) by(
σ · θ

)
(s) = σ(κx(s)) · θ(s)

for θ ∈ Hom(Mgp
X,x, U(1)). In this definition we take σ(κx(s)) ∈ O×X,x by means of the

identifcation Z/2Z = {±1}. Now by (1) together with the additional hypotheses, θ

defines a point in XKN
R iff θ = θ. This is the case iff θ takes values ±1. This condition

is preserved by the action of Hom(Mgp

X,x,Z/2Z). Conversely, if θ1, θ2 define elements in

π−1
R (x) ⊂ XKN

R then they both take values in Z/2Z ⊂ U(1) and in any case they agree

on O×X,x. Thus θ1 ◦ θ−1
2 factors over the quotient map κx :Mgp

X,x →M
gp

X,x to define a

homomorphism σ :Mgp

X,x → Z/2Z. Then θ1 = σ · θ2, showing that the action is simply

transitive. �

Concretely, in the fine saturated case, Proposition 3.4,(2) says that if the stalk of

Mgp

X at x ∈ XR has rank r, and ι[x induces a trivial action on MX,x, then π−1(x)

consists of 2r points. This seems to contradict the expected smoothness of XKN
R in log

smooth situations, but we will see in the toric situation how this process can sometimes

merely separate sheets of a branched cover. The reason is that the real picture interacts

nicely with the momentum map description of XKN.

Proposition 3.5. Let (X,MX) be a toric variety with its toric log structure and µ :

X → Ξ ⊂MR a momentum map. Let ιX be the unique real structure on (X,MX) lifting

the standard real structure according to Proposition 1.4. Then there is a canonical

decomposition

XKN
R ' Ξ× Hom(M,Z/2Z),

with the projection to Ξ giving the composition µ ◦ πR : XKN
R → Ξ.
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Proof. Recall the section σ : Ξ → X of the momentum map with image X≥0 ⊂ XR.

For x ∈ Ξ, Proposition 2.5 identifies π−1(µ−1)(x) ⊂ XKN with pairs (λ · σ(x), λ) ∈
X × Hom(M,U(1)). The action of ιKN

X on this fibre is

(λ · σ(x), λ) 7−→ (λ · σ(x), λ).

Thus (λ · σ(x), λ) gives a point in XKN
R if and only if λ = λ. This is the case iff λ takes

values in R ∩ U(1) = {±1}, giving the result. �

Without the assumption of a trivial action on the ghost sheaf MX,x, the fibre of

XKN
R → XR can be non-discrete.

Example 3.6. Let X be a complex variety with a real structure ιX and a ιX-invariant

simple normal crossings divisor D with two irreducible components D1, D2. Assume

there is a real point x ∈ D1∩D2 and ιX exchanges the two branches of D at x. Denote

by ι[X the induced real structure onMX =M(X,D) according to Proposition 1.4. Then

P = MX,x = N2 and ι[X,x(a, b) = (b, a). The action extends to an involution ιM of

M = P gp = Z2. In the present case there is a subspace M ′ ⊂M with M ′ ⊕ ιM(M ′) =

M , e.g. M ′ = Z · (1, 0). Then θ : M → U(1) can be prescribed arbitrarily on M ′

and extended uniquely to M by enforcing θ ◦ ιM = θ. Thus in the present case

π−1
R (x) = Hom(Z, U(1)) = S1.

In the general case, say with MX,x a fine monoid, we can write Mgp
X,x = M ⊕O×X,x

with M a finitely generated abelian group and such that ι[X,x acts by an involution ιM

on M and by ι]X,x on O×X,x. Then π−1(x) = Hom(M,U(1)) is a disjoint union of tori,

one copy of Hom(M/T,U(1)) for each element of the torsion subgroup T ⊂ M . The

fibres π−1
R (x) for x ∈ XR are the preimage of the diagonal torus of the map

Hom(M,U(1)) −→ Hom(M,U(1))× Hom(M,U(1)), θ 7−→ (θ ◦ ιM , θ).

4. The case of toric degenerations

4.1. Toric degenerations and their intersection complex. We now focus atten-

tion to toric degenerations, as first introduced in [GS1], Definition 4.1. As already

stated in the introduction, a toric degeneration in this sense is a proper flat map of

normal connected schemes δ : X → SpecR with R a discrete valuation ring and such

that the central fibre X0 is a reduced union of toric varieties; the toric irreducible

components of X0 are glued pairwise along toric strata in such a way that the dual

intersecting complex is a closed topological manifold, of the same dimension n as the

fibres of δ. In particular, the notion of toric strata of X0 makes sense. It is then

also required that near each zero-dimensional toric stratum of X0, étale locally δ is

isomorphic to a monomial map of toric varieties. Since R is a discrete valuation ring
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this amounts to describing X étale locally as SpecC[P ] with P a toric monoid and f

by one monomial t = zρP , ρP ∈ P . This last formulation then holds locally outside a

closed subset Z ⊂ X0 of codimension 2 and not containing any zero-dimensional toric

strata. For the precise list of conditions we refer to [GS1], Definition 4.1. Under these

conditions it turns out that the generic fibre Xη is a Calabi-Yau variety.

We refer to [GS3], §1 for a more thorough review of toric degenerations as described

here. Various generalizations of toric degenerations have also been considered, no-

tably including dual intersection complexes that are non-compact or have non-empty

boundary [CPS], higher dimensional base spaces [GHK],[GHKS] and log singular loci

containing zero-dimensional toric strata [GHK]. While much of the following discus-

sion holds in these more general setups, to keep the presentation simple we restrict

ourselves to the original Calabi-Yau case.

Asuming that X0 is projective, let P = {σ} be the set of momentum polytopes of

the toric strata and Pmax ⊂ P the maximal elements under inclusion. For τ ∈ P

we denote by Xτ ⊂ X0 the correspoinding toric stratum. View B =
⋃
σ∈Pmax

σ as

a cell complex with attaching maps defined by the intersection patterns of the toric

strata. The barycentric subdivision of (B,P) is then canonically isomorphic to the

barycentric subdivision of the dual intersection complex of X0, as simplicial complexes.

Thus B is a topological manifold. There is a generalized momentum map µ : X0 →
B that restricts to the toric momentum map Xτ → τ on each toric stratum of X0

([RS], Proposition 3.1). Unlike in [GS1], for simplicity of notation we assume that no

irreducible component of X0 self-intersects. On the level of the cell complex (B,P)

this means that for any τ ∈ P the map τ → B is injective. We call (B,P) the

intersection complex or cone picture of the polarized central fibre X0.

The log structure MX0 on X0 induced from the degeneration can be conveniently

described as follows. At a general point of (X0)sing, exactly two irreducible components

Xσ, Xσ′ ⊂ X0 intersect. At such a point there is a local description of X of the form

(4.1) uv = f(z1, . . . , zn−1) · tκ,

with t a generator of the maximal ideal of R, z1, . . . , zn−1 toric coordinates for the

maximal torus of Xσ ∩ Xσ′ and u, v restricting either to 0 or to a monomial on Xσ,

Xσ′ . One of the main results of [GS1] is the statement that the restriction of the

function f is well-defined after choosing u, v and that this restriction classifies MX0 .

The zero locus of f in Xρ specifies the locus where the log structure MX0 is not fine.

Thus MX0 is fine outside a closed subset Z ⊂ (X0)sing of codimension two, a union

of hypersurfaces on the irreducible components Xρ of X0, dim ρ = n − 1. Conversely,

there is a sheaf on X0 with support on (X0)sing which is an invertibe OX0-module on the
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open dense subset where X0 is normal crossings, with sections classifiying log structures

arising from a local embedding into a toric degeneration (see [GS1], Theorem 3.22 and

Definition 4.21). Thus the moduli space of log structures on X0 that look like coming

from a toric degeneration can be explicitly described by an open subset of Γ((X0)sing,F)

for some coherent sheaf F on (X0)sing.

The ghost sheaf MX0 can be read off from a multivalued piecewise affine function

ϕ on P. This function is uniquely described by one integer κρ on each codimension

one cell ρ ∈ P. If uv = f · tκ is the local description of X at a general point of

Xρ, then κρ = κ. Each codimension two cell τ imposes a linear condition on the κρ
for all ρ ⊃ τ assuring the existence of a local single-valued representative of ϕ in a

neighbourhood of τ (see [GHKS], Example 1.11). Note that the local representative ϕ

is only defined up to a linear function. Thus globally ϕ can be viewed as a multi-valued

piecewise linear function, a section of the sheaf of pieceweise linear functions modulo

linear functions. We write (B,P, ϕ) for the complete tuple of discrete data associated

to a toric log Calabi-Yau space (X0,MX0), still refereed to as the intersection complex

(now polarized by ϕ).

The interpretation of the cells of P as momentum polyhedra endows B with the

structure of an integral affine manifold on the interiors of the maximal cells, that is,

a manifold with coordinate changes in Aff(Zn) = Zn o GL(n,Z). On such manifolds

it makes sense to talk about integral points as the preimage of Zn under any chart,

and they come with a local system Λ of integral tangent vectors. An important insight

is that the log structure on X0 provides a canonical extension of this affine structure

over the complement in B of the amoeba image A := µ(Z) of the log singular locus

Z ⊂ (X0)sing. In the local description at a codimension one cell ρ = σ ∩ σ′, the affine

structure of the adjacent maximal cells σ, σ′ already agree on their common face ρ.

So the extension at x ∈ Int ρ \ A only requires the identification of ξ ∈ Λσ,x with

ξ′ ∈ Λσ′,x, each complementary to Λρ,x. In a local description uv = f · tκρ we have

u|Xσ = zm, v|Xσ′ = zm
′

by the assumption on u, v to be monomial on one of the

adjacent components Xσ, Xσ′ . One then takes ξ = m, ξ′ = −m′ + mx. Here mx ∈ Λρ

is defined by the homotopy class of f |µ−1(x), see [RS], Construction 2.2 for details. This

defines the integral affine structure on B \ A away from codimension two cells.

Lemma 4.1. The integral affine structure on the interiors of the maximal cells σ ∈P

and on Int ρ \ A for all codimension one cells ρ extends uniquely to B \ A.

Proof. Uniqueness is clear because the extension is already given on an open and dense

subset.

At a vertex v ∈ B we have µ−1(v) = Xv, a zero-dimensional toric stratum. Let

U → SpecanC[P ] with P = K ∩ Zn+1 and t = zρP , ρP ∈ P , be a toric chart for
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δ : X → SpecanR at Xv. Here K is an (n + 1)-dimensional rational polyhedral

cone, not denoted σ∨ to avoid confusion with the cells of B. There is then a local

identification of µ with the composition

µv : SpecanC[P ]
µP−→ K −→ Rn+1/R · ρP

of the momentum map for SpecanC[P ] with the projection from the cone K along

the line through ρP . Since ρP ∈ IntK, this map projects ∂K to a complete fan Σv

in Rn+1/R · ρP . The irreducible components of X0 containing Xv have affine toric

charts given by the facets of K. Thus this fan describes X0 at Xv as a gluing of

affine toric varieties. Now any momentum map µ of a toric variety provides an integral

affine structure on the image with R1µ∗Z the sheaf of integral tangent vectors on the

interior. In the present case, this argument shows first that the restriction of R1µv∗Z
to the interior of each maximal cone K ′ ∈ Σv can be canonically identified with the

sheaf of integral tangent vectors Λ on the interiors of maximal cells of B. Second, the

argument shows that R1µv∗Z restricted to IntK ′ can be identified with the (trivial)

local system coming from the integral affine structure provided by Zn+1/Z · ρP . The

fan thus provides an extension of the sheaf Λ over a neighbourhood of σ and hence also

of the integral affine structure. A possible translational part in the local monodromy

does not arise by the given gluing along lower dimensional cells.

For any τ ∈P, the extension at the vertices of P provides also the extension on any

connected component of τ \A containing a vertex. If A∩ τ has connected components

not containing a vertex, one can in any case show the existence of a toric model with fan

∂K/R · ρP of not necessarily strictly convex rational polyhedral cones. The argument

given at a vertex then works analogously. �

4.2. The Kato-Nakayama space of a toric degeneration. Throughout the fol-

lowing discussion we fix (X0,MX0) the central fibre of a toric degeneration with log

singular locus Z ⊂ (X0)sing, (B,P) its intersection complex and µ : X0 → B a mo-

mentum map. The main result of the section gives a canonical description of the

Kato-Nakayama space of (X0,MX0) as a torus bundle over B, away from the amoeba

image A = µ(Z) ⊂ B. We denote by

µKN : XKN
0

π−→ X0
µ−→ B

the composition of the projection of the Kato-Nakayama space with the momentum

map and write ZKN = π−1(Z) ⊂ XKN
0 . We also fix once and for all a generator t of

the maximal ideal of R and accordingly identify the closed point in SpecR with the

induced log structure with the standard log point O†. Thus we have a log morphism

δ : (X0,MX0)→ O†, inducing a continuous map δKN : XKN
0 → (O†)KN = U(1).
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Our interest in XKN
0 comes from the fact that it captures the topology of an analytic

family inducing the given log structure on X0, for a large class of spaces. This statement

is based on a result of Nakayama and Ogus, which involves the following generalization

of the notion of a fine log structure. A log space (X,MX) is relatively coherent if locally

in X the log structure MX is isomorphic to a sheaf of faces of a fine log structure.

Theorem 4.2. ([NO], Theorem 5.1) Let f : (X,MX) → (Y,MY ) be a proper, sepa-

rated, exact and relatively smooth morphism of log analytic spaces, with (Y,MY ) fine

and (X,MX) relatively coherent. Then fKN : (X,MX)KN → (Y,MY )KN is a topologi-

cal fibre bundle with fibres oriented manifolds with boundary.

Being a topological fibre bundle says that fKN is locally in Y homeomorphic to the

projection from a product. The technical heart of the proof is a local product decompo-

sition for maps of real cones induced by exact homomorphisms of fine monoids ([NO],

Theorem 0.2). From this result it follows easily that fKN is a topological submersion,

that is, locally in X a projection of a product ([NO], Theorem 3.7). In a final step

one applies a result of Siebenmann ([Si], Corollary 6.14) to conclude the fibre bundle

property.

We can verify the hypothesis of Theorem 4.2 for analytic smoothings of (X0,MX0) for

the case of simple singularities. The notion of simple singularities has been introduced

in [GS1] as an indecomposability condition on the local affine monodromy around

the singular locus ∆ ⊂ B of the affine structure on the dual intersection complex of

(X0,MX0). It implies local rigidity of the singular locus of the log structure as needed

in the smoothing algorithm ([GS3], Definition 1.26), but unlike local rigidity, being

simple imposes conditions in all codimensions.

Proposition 4.3. Let (X0,MX0) be the central fibre of a troic degeneration with

simple singularities. Then (X0,MX0) → SpecO† as well as any analytic family

X → D =
{
z ∈ C

∣∣ |z| < 1
}

with X0 as central fibre and inducing the given log structure

MX0, fulfills the conditions of Theorem 4.2. In particular, δKN : (X0,MX0) → U(1)

and (X ,MX ,X0)KN → (D,MD,0)KN are topological fibre bundles with fibres closed man-

ifolds.

Proof. Under the assumptions of simple singularities, [GS2], Theorem 2.11 and Corol-

lary 2.17 show that δ : (X0,MX0) → O† as well as any analytic family inducing the

given log structure on X0 away from codimension three are relatively coherent. The log

structure on the parameter space being generated by one element, exactness is trivial.

Moreover, δ is vertical as a log morphism (the image of δ[ is not contained in any proper

face), and hence the fibres have no boundary according to [NO], Theorem 5.1. �
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The preceding discussion motivates the study of δKN : XKN
0 → U(1). First we show

that the log singular locus can be dealt with by taking closures, even stratawise. For

τ ∈P denote by XKN
τ = π−1(Xτ ) ⊂ XKN

0 and by ZKN
τ = ZKN ∩XKN

τ .

Lemma 4.4. On each toric stratum Xτ ⊂ X0, the preimage ZKN
τ ⊂ XKN

τ of the log

singular locus is a nowhere dense closed subset.

Proof. It suffices to prove the statement over an irreducible componentXσ ⊂ X0, σ ⊂ B

a maximal cell. Let x ∈ Z ∩ Xσ and Xτ ⊂ Xσ the minimal toric stratum containing

x. Since Z does not contain zero-dimensional toric strata, x is not the generic point

η ∈ Xτ . We claim that the generization map χηx : MX0,x → MX0,η is injective. In

fact, MX0 is locally the divisorial log structure for a toric degeneration. Hence the

stalks of MX0 are canonically a submonoid of Nr with r the number of irreducible

components of X0 containing Xτ , say Xσ1 , . . . , Xσr . An element a ∈ Nr lies in MX0,x

iff
∑
aiXσi is locally at x a Cartier divisor, in a local description as the central fibre of

a toric degeneration. In any case, bothMX0,x andMX0,η are submonoids of the same

Nr, showing the claimed injectivity of χηx.

Now take a chart MX0,η → Γ(U,MX0) with U a Zariski-open neighbourhood of

η in X0 \ Z. Then Proposition 2.2 yields a canonical homeomorphism π−1(U) =

U × Hom(Mgp

X0,η
, U(1)). By the definition of the topology on XKN

0 , the composition

U × Hom(Mgp

X0,η
, U(1)) −→ Hom(Mgp

X0,η
, U(1)) −→ Hom(Mgp

X0,x
, U(1))

of the projection with pull-back by the generization map χ∗ηx is continuous. By injec-

tivity of χηx this composition is surjective. Since x ∈ cl(U) we conclude that π−1(x) is

contained in the closure of π−1(U), showing the desired density. �

For σ ∈Pmax denote by MXσ the toric log structure for the irreducible component

Xσ ⊂ X0 and by XKN
σ its Kato-Nakayama space. By [GS1], Lemma 5.13, there is a

canonical isomorphism

(4.2) Mgp
X0
|Xσ\Z 'M

gp
Xσ
|Xσ\Z ⊕ Z,

the Z-factor generated by the generator t of mR chosen above.

Lemma 4.5. For σ ∈ Pmax denote by Λσ = Γ(Int σ,Λ) the group of integral tangent

vector fields on σ. Then there is a canonical continuous surjection

Φσ : σ × Hom(Λσ ⊕ Z, U(1)) −→ (µKN)−1(σ) ⊂ XKN
0 ,

which is a homeomorphism onto the image over the complement of the log singular

locus Z ⊂ X0.
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With respect to the product decomposition

σ × Hom(Λσ ⊕ Z, U(1)) = XKN
σ × U(1),

of the domain of Φ, the restrictions of π : XKN
0 → X0 and δKN : XKN

0 → U(1) to

(µKN)−1(σ) are given by the projection to XKN
σ followed by XKN

σ → Xσ and by the

projection to U(1), respectively.

Proof. By Lemma 4.4 we may establish the result away from Z and then extend Φσ by

continuity. For any x ∈ Xσ \Z, the isomorphism (4.2) establishes a canonical bijection

Hom(Mgp
X0,x

, U(1)) −→ Hom(Mgp
Xσ ,x

, U(1))× Hom(Z, U(1)).

This bijection is compatible with the fibrewise description of the Kato-Nakayama spaces

of X0 and of Xσ in (2.3), respectively, as well as with the definition of the topology.

Now varying x ∈ Xσ \ Z, Proposition 2.5 turns the first factor into the complement

of a closed, nowhere dense subset (to become Φ−1
σ (ZKN)) in σ × Hom(Λσ, U(1)). The

inverse of this description of (µKN)−1(σ) over the complement XKN
σ \ ZKN defines the

map Φσ over XKN
0 \ ZKN.

The statements in the second paragraph are immediate from the definitions. �

Proposition 4.6. Away from the amoeba image A ⊂ B of the log singular locus

Z ⊂ (X0)sing, the projection µKN : XKN
0 → B is a bundle of real (n+ 1)-tori. Similarly,

over B \A the restriction of µKN to a fibre of δKN : XKN
0 → (O†)KN = U(1) is a bundle

of n-tori.

Proof. For σ ∈Pmax denote by Tσ = Hom(Λσ, U(1))× U(1) the (n+ 1)-torus fibre of

µKN over σ in the description of Lemma 4.5. For x ∈ B \ A let τ ∈ P be the unique

cell with x ∈ Int τ . Let n = dimB and k = dim τ . Then in an open contractible

neighbourhood U ⊂ B\A of x, the polyhedral decomposition P looks like the product

of Λτ ⊗Z R with an n− k-dimensional complete fan Στ in the vector space with lattice

Λx/Λτ,x. Over each maximal cell σ containing τ , we have the canonical homeomorphism

of (µKN)−1(σ) with σ × Hom(Λσ, U(1))× U(1) provided by Lemma 4.5. Thus for any

pair of maximal cells σ, σ′ ⊃ τ we obtain a homeomorphism of torus bundles

Φσ′σ : (U ∩ σ ∩ σ′)× Tσ −→ (U ∩ σ ∩ σ′)× Tσ′ .

We only claim a fibre-preserving homeomorphism of total spaces here, Φσ,σ′ does in

general not preserve the torus actions. In any case, these homeomorphisms are com-

patible over triple intersections, hence provide homeomorphisms of torus bundes also

for maximal cells intersecting in higher codimension. This way we have described

π−1(U) as the gluing of trivial torus bundles over a decomposition of U into closed

subsets, a clutching construction.
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To prove local triviality from this description of π−1(U), replace U by a smaller

neighbourhood of x that is star-like with respect to a point y ∈ Int(σ) for some maximal

cell σ 3 x. By perturbing y slightly, we may assume that the rays emanating from y

intersect each codimension one cell ρ with ρ ∩ U 6= ∅ transversaly. To obtain a fibre-

preserving homeomorphism π−1(U) ' U × Tσ, connect any other point y ∈ U with x

by a straight line segment γ. Then γ passes through finitely many maximal cells σ′.

At each change of maximal cell apply the relevant Φσ′σ′′ to obtain the identification of

the fibre over y with Tσ. �

Remark 4.7. Let us describe explicitly the homeomorphism of torus bundles Φσ′σ in the

proof of Proposition 4.6, locally around some x ∈ B \ A. We restrict to the basic case

σ∩σ′ = ρ of codimension one. Let fρ be the function defining the log structure along Xρ

according to (4.1). Then there is first a strata-preserving isomorphism of Xρ ⊂ Xσ with

Xρ ⊂ Xσ′ . This isomorphism is given by (closed) gluing data, see [GS1], Definition 2.3

and Definition 2.10. In the present case, gluing data are homomorphisms Λρ → C×

fulfilling a cocyle condition in codimension two. The Kato-Nakayama space has an

additional U(1)-factor coming from the deformation parameter t. This additional factor

gets contracted in X0 along Xρ, but not in XKN
0 . Thus over Xρ, the Kato-Nakayama

space is a U(1)2-fibration. One factor captures the phase of the deformation parameter

t, the other the phase of the monomial u (or v) describing Xρ as a divisor in Xσ and Xσ′ ,

respectively. In these coordinates for XKN
0 over σ and σ′, the gluing Φσ′σ is determined

by taking the argument of (4.1):

(4.3) arg(u) + arg(v) = κρ · arg(t) + arg(f).

Unless f is monomial, this equation is not compatible with the fibrewise action of

Hom
(
Λx, U(1)

)
× U(1) suggested by Lemma 4.5. In the case of nontrivial (open)

gluing data, this definition of Φσ′σ has to be corrected by the scaling factors in C× by

which u, v differ from toric monomials in Xσ, Xσ′ , respectively.

By Proposition 4.6 we may now view the subset (µKN)−1(B \ A) ⊂ XKN
0 as a torus

bundle over B \ A. For U ⊂ B \ A any subset, we write X0|U = (µKN)−1(U), viewed

as a topological torus bundle over U . Generally, topological r-torus bundles are fibre

bundles with structure group Homeo(T r), the group of homeomorphisms of the r-torus.

There is the obvious subgroup U(1)r o GL(r,Z) of homeomorphisms that lift to affine

transformations on the universal covering Rr+1 → T r = Rr/Zr. In higher dimensions

(certainly for r ≥ 5), there exist exotic homeomorphisms that are not isotopic to a linear

one ([Ht], Theorem 4.1). However, in the present situation such exotic transition maps

do not occur, and we can even find a system of local trivializations with transition

maps induced by locally constant affine transformations.
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Lemma 4.8. The torus bundle XKN
0 |B\A has a distinguished atlas of local trivializations

with transition maps in U(1)n+1 o GL(n+ 1,Z).

Proof. It suffices to consider the attaching maps between the trivial pieces (µKN)−1(σ) =

σ×Hom(Λσ⊕Z, U(1)) of Lemma 4.5 for maximal cells σ, σ′ with ρ = σ∩σ′ of codimen-

sion one. Let V ⊂ ρ be a connected component of ρ\A. In Remark 4.7 we saw that the

transition maps over V are given by the equation arg(v) = − arg(u)+arg(f)+κρ·arg(t).

Now µKN|V factors over the Kato-Nakayama space of Xρ, which can be trivialized as

V ×Hom(Λρ, U(1))× U(1)2. The last factor is given by (Arg(u),Arg(t)), say, and the

transition map transforms this trivialization into the description with (Arg(v),Arg(t)).

Thus this transition is the identity on the first n − 1 coordinates given by Λρ and on

Arg(t), while on the last coordinate it is given by Arg(u)−1 times the phase of the alge-

braic function f · tκρ . The homotopy class of this map is given by the winding numbers

of a generating set of closed loops in π1(T n−1×T 1) = Zn. These winding numbers define

a monomial function zm on V ×Hom(Λρ⊕Z, U(1)) with z−m ·f homotopic to a constant

map. The transition function is therefore isotopic to (idTn−1 ,Arg(zm · tκρ ·u−1), idU(1)),

fibrewise a linear transformation of T n+1 = T n × U(1) with coordinates Arg(z) for T n

and Arg(u) for U(1), respectively.

The translational factor of U(1)n+1 arises because non-trivial gluing data change the

meaning of monomials on the maximal cells by constants. See the discussion after

Corollary 4.8 below for some comments on gluing data. �

The topological classification of torus bundles with transition functions taking values

in U(1)r o GL(r,Z) works in analogy with the Lagrangian fibration case discussed in

[Du]. Let µ : X → B be such a torus bundle of relative dimension r. Then Λ = R1µ∗Z is

a local system with fibres Λx = H1(µ−1(x),Z) ' Zr. The torus Hom(Λx, U(1)) ' U(1)r

acts fibrewise by translation on any trivialization µ−1(U) ' U × T r, and this action

does not depend on the trivialization. Hence X → B can be viewed as aHom(Λ, U(1))-

torsor. In particular, if µ : X → B has a section, then X ' Hom(Λ, U(1)) ' Λ̌ ⊗
U(1) is isomorphic to the trivial torsor. Here we write Λ̌ = Hom(Λ,Z) and view the

locally constant sheaf Hom(Λ, U(1)) as a topological space via its espace étalé. The

cohomology group H1(X, Λ̌⊗ U(1)) classifies isomorphism classes of Λ̌⊗ U(1)-torsors

by the usual Čech description. Moreover, from the exact sequence

0 −→ Λ̌ −→ Λ̌⊗Z R −→ Λ̌⊗Z U(1) −→ 0,

exhibiting Λ̌ ⊗Z U(1) fibrewise as a quotient of a vector space modulo a lattice, we

obtain the long exact cohomology sequence

. . . −→ H1(B, Λ̌) −→ H1(B, Λ̌⊗ R) −→ H1(B, Λ̌⊗ U(1))
δ−→ H2(B, Λ̌) −→ . . .
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The image of the class [X] ∈ H1(B, Λ̌⊗U(1)) of X → B as a Λ̌⊗U(1)-torsor under the

connecting homomorphism, defines the obstruction δ[X] ∈ H2(B, Λ̌) to the existence

of a continuous section of µ : X → B. The proof works as in the symplectic case

discussed in [Du], p.696f.

For a local system Λ on a topological space M with fibres Zr we write Hom(Λ, U(1))

for the associated torus bundle. As a set, Hom(Λ, U(1)) =
∐

x∈M Hom(Λx, U(1)), and

the topology is generated by sets, for m ∈ Γ(U,Λ) with U ⊂ X open and V ⊂ U(1)

open,

Vm =
{

(x, ϕ)
∣∣x ∈ U, ϕ ∈ Hom(Λx, U(1)), ϕ(m) ∈ V

}
.

With this notation, we summarize the general discussion on torus bundles with locally

constant transition functions in the following proposition.

Proposition 4.9. Let M be a topological manifold and µ : X → M a fibre bundle

with locally constant transition functions with values in U(1)r o GL(r,Z). Then up to

isomorphism, X → M is given uniquely by the local system Λ = R1µ∗Z with fibres Zr

and a class [X] ∈ H1(M, Λ̌⊗ U(1)).

Moreover, a continuous section of µ exists if and only if δ([X]) ∈ H2(M, Λ̌) vanishes.

In this case, X ' Hom(Λ, U(1)), as a torus bundle with locally constant transition

functions in U(1)r o GL(r,Z). �

For the Kato-Nakayama space XKN
0 |B\A, the governing bundle R1µ∗Z is identified as

follows. Recall that the multivalued piecewise affine function ϕ encoded in the κρ ∈ N
defines an integral affine manifold Bϕ with an integral affine action by (R,+), making

Bϕ a torsor over B = Bϕ/R ([GHKS], Construction 1.14). This torsor comes with a

canonical piecewise affine section locally representing ϕ. The pull-back of ΛBϕ under

this section defines an extension

(4.4) 0 −→ Z −→ P −→ Λ −→ 0

of Λ by the constant sheaf Z on B \ A. The extension class of this sequence equals

c1(ϕ) ∈ Ext1(Λ,Z) = H1(B \ A, Λ̌), called the first Chern class of ϕ from its mirror

dual interpretation (see [GHKS], Equation (1.5)).

Remark 4.10. Much as in the discussion of the radiance obstruction in [GS1], §1.1,

the first Chern classs c1(ϕ) can be interpreted as an element in group cohomology

H1(π1(B \ A, x), Λ̌x). Here Λ̌x ' Zn is a π1(B \ A, x)-module by means of parallel

transport in Λ̌ along closed loops based at some fixed x ∈ B \ A. As an element in

group cohomology, c1(ϕ) is given by a twisted homomorphism λ : π1(B \ A, x) → Λ̌x,

γ 7→ λγ, determining the monodromy of P around a closed loop γ based at x as follows:

Λx ⊕ Z −→ Λx ⊕ Z, (v, a) 7−→
(
Tγ · v, λγ · v + a

)
.
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Here Tγ ∈ GL(Λx) is the monodromy of Λ along γ and we have chosen an isomorphism

Px ' Λx ⊕ Z. Being a twisted homomorphism means that for a composition γ1γ2 of

two loops based at x,

λγ1γ2 = λγ2 ◦ Tγ1 + λγ1 .

Here we use the convention that γ1γ2 runs through γ2 first, and hence Tγ1γ2 = Tγ2 ◦
Tγ1 . This interpretation is also compatible with the fact that under discrete Legendre

duality, the roles of c1(ϕ) and the radiance obstruction swap ([GS1], Proposition 1.50,3).

For each point x ∈ B there is a chart for the log structure on X0 with monoid C[P+
x ],

where P+
x ⊂ Px is a certain submonoid of positive elements with (P+

x )gp = Px ([GHKS],

§2.2 and [GS3], Construction 2.7). Hence from the local description of XKN
0 |B\A in

Lemma 4.5 and in Proposition 4.6, the following result is immediate:

Lemma 4.11. Writing µ̆ for the restriction of µKN : XKN
0 → B to B \ A, there exists

a canonical isomorphisms of local systems R1µ̆∗Z = P. �

In view of this lemma, an immediate corollary from Proposition 4.9 is a complete

topological description of XKN
0 |B\A over large open sets.

Corollary 4.12. Denote by Ã ⊂ B a closed subset containing A and such that B \ Ã
retracts to a one-dimensional cell complex. Then as a topological torus bundle, XKN

0 |B\Ã
is isomorphic to Hom(P , U(1)).

Proof. By Lemma 4.8 we can treat XKN
0 |B\Ã as a torus bundles with locally constant

transition functions in U(1)n+1 o GL(n + 1,Z). By Proposition 4.9 the obstruction

to the existence of a continuous section then lies in H2(B \ Ã,P∨). This cohomology

group vanishes by the assumption on the existence of a retraction. �

We should emphasize that in this corollary, we have first used Lemma 4.8 to re-

duce to the case of locally constant transition functions. As discussed in Remark 4.7,

the transition functions for XKN
0 |B\A → B \ A between the canonical charts coming

from toric geometry are not locally constant, and hence Corollary 4.8 makes a purely

topological statement.

The remainder of this subsection derives a more canonical description of XKN
0 over a

somewhat smaller set by controlling the gluing data. The various charts for (X0,MX0)

are related by parallel transport inside P , but the monomials may be rescaled due

to non-trivial gluing data. Gluing data have already been introduced in [GS1], but

§1.2 in [GS3] or §5.2 in [GHKS] may contain more palatable accounts. Multiples of
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the deformation parameter t are well-defined on all charts, hence define a constant

subsheaf with fibres Z⊕ C×. Monomials therefore define a refinement of (4.4):

(4.5) 0 −→ Z⊕ C× −→ P̃ −→ Λ −→ 0.

The extension class
(
c1(ϕ), s

)
∈ Ext1(Λ,Z⊕C×) = H1(B \A, Λ̌)⊕H1(B \A, Λ̌⊗C×)

has as second component (the restriction to B \ A of) the gluing data s, as dis-

cussed in [GHKS], Remark 5.16.1 Furthermore, dividing out R>0 ⊂ C× defines an

extension P̂ of Λ by Z ⊕ U(1) with class
(
c1(ϕ),Arg(s)

)
∈ Ext1(Λ,Z ⊕ U(1)) =

H1(B \A, Λ̌)⊕H1(B \A, Λ̌⊗U(1)). Taking this latter extension and the extension of

Λ by Z from (4.4) as two columns, we obtain the following commutative diagram with

exact rows and columns:

(4.6)

0 0y y
1 −−−→ U(1) −−−→ Z⊕ U(1) −−−→ Z −−−→ 0

=

y y y
1 −−−→ U(1) −−−→ P̂ −−−→ P −−−→ 0y y

Λ
=−−−→ Λy y

0 0

Note that the extension of Z by U(1) in the second row is trivial by construction. The

middle row now defines an extension of P by U(1).

We can use the extension P̂ to give a canonical description of XKN
0 on a large subset

of B \ A, assuming the open gluing data normalizes the toric log Calabi-Yau space

(X0,MX0) ([GS1], Definition 4.23). Being normalized means that if fρ,v is the slab

function describing the log structure near a zero-dimensional toric stratum x ∈ X0

along a codimension one stratum Xρ ⊂ X0 with x ∈ Xρ, then fρ,v(x) = 1. By the dis-

cussion after Definition 4.23 in [GS1], there always exist open gluing data normalizing

a given toric log Calabi-Yau space, so this assumption imposes no restriction. Note

1The discussion in [GHKS] is on the complement of a part ∆̃ ⊂ B of the codimension two skeleton

of the barycentric subdivision. There is a retraction of A to a subset of ∆̃. However, the discussion

on monomials works on any cell τ ∈ P not contained in A and with X → SpecR locally toroidal at

some point of Xτ .
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that while previously we had viewed slab functions only as functions on (analytically)

open subsets of the big torus of Xρ, hence as Laurent polynomials, in the setup of

[GS1] or [GS3] they extend as regular functions to the zero-dimensional toric stratum

they take reference to.

Proposition 4.13. Denote by B′ =
⋃
σ∈Pmax Intσ∪

{
v ∈P [0]

}
the subset of B covered

by the interiors of maximal cells and the vertices of P. Assume that the toric log

Calabi-Yau space (X0,MX0) is normalized with respect to open gluing data s. Denote

by P̂ the extension of Λ by Z⊕ U(1) in (4.6). Write Hom(P̂ , U(1))◦ ⊂ Hom(P̂ , U(1))

for the space of fibrewise homomorphisms restricting to the identity on U(1) ⊂ P̂. Then

there is a canonical homeomorphism

Hom(P̂ , U(1))◦|B′
'−→ XKN

0

∣∣
B′

of topological fibre bundles over B′.

Moreover, the class in H1(B′,P∨ ⊗ U(1)) defining XKN
0 |B′ as a topological torus

bundle with locally constant transition functions in U(1)n+1 o GL(n + 1,Z) according

to Lemma 4.8, agrees with the class
(
c1(ϕ),Arg(s)

)
∈ Ext1(Λ,Z⊕U(1)) of the extension

P̂ of P by U(1) in (4.6).

Proof. From its origin in the bundle P̃ of monomials, we obtain a canonical description

of P̂ over B′ as follows. Over a maximal cell σ, we have a canonical isomorphism of P̂|σ
with the trivial bundle with fibre Λσ ⊕ Z⊕ U(1). Then if σ, σ′ ∈Pmax and v ∈ σ ∩ σ′

is a vertex, the open gluing data s define a multiplicative function sv,σ : Λσ → C×,

and similarly for σ′. Now glue the trivial bundles on σ, σ′ by means of Arg
(
sv,σ′ · s−1

v,σ

)
on the U(1)-factor. The gluing on the discrete part Λσ ⊕ Z is governed by a local

representative of the MPL function ϕ, to yield P . Accordingly, we obtain a description

of Hom(P̂ , U(1))◦ by gluing trivial pieces σ × Hom(Λσ ⊕ Z, U(1)).

Now the point is that if f is normalized, the gluing of XKN
0 from the same canon-

ical trivial pieces in Lemma 4.5 is given by exactly the same procedure over ver-

tices. Indeed, given a codimenson one cell ρ and a vertex v ∈ ρ, in the formula

arg(u) + arg(v) = arg(fρ,v) + κρ · arg(t) the term involving fρ,v disappears due to the

normalization condition.

The statement on the extension class is immediate by exhibiting the class in H1(P∨⊗
U(1)) of Hom(P̂ , U(1))◦|B′ as a torus bundle according to Proposition 4.9 using the

description of P̂ by gluing constant sheaves over maximal cells just given. �

To describe the fibres of δKN : XKN
0 → (O†)KN = U(1), we need another extension.

For φ ∈ U(1) denote by Ψφ : Z ⊕ U(1) → U(1) the homomorphism mapping (1, 1) to
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φ and inducing the identity on U(1). We have a morphism of extensions

0 −−−→ Z⊕ U(1) −−−→ P̂ −−−→ Λ −−−→ 0

Ψφ

y y yid

0 −−−→ U(1) −−−→ P̂φ −−−→ Λ −−−→ 0,

with the lower row having extension class Ψφ(s) ∈ Ext1(Λ, U(1)) = H1(B\A, Λ̌⊗U(1)).

Corollary 4.14. With the same assumptions as in Proposition 4.13, the fibre of δKN :

XKN
0 |B′ → (SpecO†)KN = U(1) over φ ∈ U(1) is isomorphic to the n-torus bundle with

local system Λ and with extension class Ψφ(s) ∈ H1(B′, Λ̌⊗ U(1)).

Proof. By Lemma 4.5, the restriction of δKN to the canonical piece σ × Hom(Λσ ⊕
Z, U(1)) is given by composing with the inclusion Z→ Λσ ⊕Z. The statement follows

by tracing through the gluing descriptions of P̂φ and of the extension class defined by

(δKN)−1(φ). �

Remark 4.15. Let us emphasize the role of the normalization condition here. The

canonical description over maximal cells in Lemma 4.5 is based on toric monomials.

To extend this description over a point x ∈ B \A in a codimension one cell ρ, we need

the gluing equation (4.3) to be monomial along the fibres of the momentum map. This

condition means that the restriction of f to a fibre of the momentum map Xρ → ρ

is monomial. This is a strong condition that in case the Newton polyhedron of f

is full-dimensional fails everywhere except at the zero-dimensional toric strata of Xρ.

The normalization condition then says that the non-trivial gluing of the torus fibres

over the vertices only comes from the gluing data, hence is entirely determined by the

extension class of P̂ .

4.3. Study of the real locus. We now turn to toric degenerations with a real struc-

ture, or rather to the corresponding toric log Calabi-Yau space ([GS1], Definition 4.3)

that arise as central fibre (X0,MX0) of a toric degeneration, as discussed in §4.1. We

call a toric log Calabi-Yau space (X0,MX0) standard real if it has a real structure

inducing the standard real structure on its toric irreducible components and which is

compatible with the standard real structure on the standard log point. Since the mor-

phism δ : (X0,MX0)→ O† is strict at the generic points of the irreducible components

of X0, and since any section ofMX0 that is supported on higher codimensional strata

is trivial (constant 1), there is at most one such real structure on (X0,MX0). This real

structure is called the standard real structure.
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Standard real structures appear to be the only class of real structures on toric log-

Calabi-Yau spaces that exist in great generality. While other real structures, for exam-

ple those lifting an involution on B, should be extremely interesting in more specific

situations, we therefore restrict the following discussion to standard real structures.

Proposition 4.16. Let (X0,MX0) be a polarized toric log Calabi-Yau space ([GS1],

Definition 4.3) with intersection complex (B,P). Then there is a standard real struc-

ture on (X0,MX0) if and only if the following hold:

(1) There exist open gluing data s = (sωτ ) with X0 ' X0(B,P, s) such that sωτ
takes values in R× rather than in C×.

(2) The slab functions fρ,v ∈ C[Λρ] describing the log structureMX0 for gluing data

as in (1) are defined over R, that is fρ,v ∈ R[Λρ] for any ρ ∈P of codimension

one and v ∈ ρ a vertex.

Proof. The proof is by revision of the arguments in [GS1].

1) If s = (sωτ )ω,τ are open gluing data taking values in R× ⊂ C×, the construc-

tion of X0(B,P, s) by gluing affine toric varieties in [GS1], Definition 2.28 readily

shows that the real structures on the irreducible components induce a real structure

on X0(B,P, s).

Conversely, given (X0,MX0) with a standard real structure, Theorem 4.14 in [GS1]

constructs open gluing data s and an isomorphismX0 ' X0(B,P, s). The construction

has two steps. First, X0 being glued from toric varieties, there exist closed gluing data s

inducing this gluing. If X0 admits a standard real structure, s automatically takes real

values. In a second step one shows that the closed gluing data are the image of open

gluing data as in [GS1], Lemma 2.29 and Proposition 2.32,2. This step uses a chart for

the log structure at a zero-dimensional toric stratum x ∈ X0. In view of the given real

structure on (X0,MX0), this chart can be taken real (Lemma 1.8). With this choice of

chart, the construction of open gluing data in the proof of [GS1], Theorem 4.14, indeed

produces real open gluing data.

2) The relation between the slab functions fρ,v and charts for the log structure is given

in [GS1], Theorem 3.22. At a zero-dimensional toric stratum x ∈ X0 the description

in terms of open gluing data yields an isomorphism of an open affine neighbourhood

in SpecX0 with SpecC[P ]/(zρP ), with P = MX,x and ρP ∈ P corresponding to the

deformation parameter t. The facets of P are in one-to-one correspondence with the

irreducible components of X0 containing x. Now charts for the log structure on this

open subset are of the form

P −→ C[P ]/(zρP ), p 7−→ hp · zp
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with hp an invertible function on V (p), the closure of the open subset (zp 6= 0) ⊂
SpecC[P ]. The equation describing this chart in terms of functions on codimension

one strata writes the slab function as a quotient of piecewise multiplicative functions

gv defined in terms of hp. This equation, with the slab function written ξω(h) in [GS1],

shows that describing a real chart via real open gluing data yields real slab functions

fρ,v.

Conversely, given real open gluing data and real slab functions, the real structure on

SpecC[P ] induces the involution ι[X0
defining a standard real structure on (X0,MX0).

�

In the case of positive and simple singularities, a polarized toric log Calabi-Yau space

with given intersection complex (B,P, ϕ) is defined uniquely up to isomorphism by

so-called lifted gluing data s ∈ H1(B, ι∗Λ̌ ⊗ C×) ([GS1], Theorem 5.4).2 Lifted gluing

data both contain moduli of open gluing data and moduli of the log structure given

by the slab functions. In terms of lifted gluing data the existence of a standard real

structure has a simple cohomological formulation.

Corollary 4.17. Assuming (B,P) positive and simple, then the toric log Calabi-Yau

space (X0,MX0) defined by lifted gluing data s ∈ H1(B, ι∗Λ̌ ⊗ C×) is standard real if

and only if s lies in the image of

H1(B, ι∗Λ̌⊗ R×) −→ H1(B, ι∗Λ̌⊗ C×).

Proof. This follows again by inspection of the corresponding results in [GS1], here

Theorems 5.2 and 5.4. �

Remark 4.18. It is worthwhile pointing out that real structures on (X0,MX0) are com-

patible with the smoothing algorithm of [GS3] in the following way. Assume that

(X0,MX0) is a toric log Calabi-Yau space for which the smoothing algorithm of [GS3]

works, for example with associated intersection complex (B,P) positive and simple.

Assume that (X0,MX0) has a real structure, not necessarily standard. The real involu-

tion then induces a possibly non-trivial involution on the intersection complex (B,P).

But in any case, (X0,MX0) has a description by open gluing data s = (sωτ ) and slab

functions fρ,v with the real involution lifting to an action on these data. By the strong

uniqueness of the smoothing algorithm it is then not hard to see that the real involution

extends to the constructed family X→ SpecCJtK.
Note also that by Proposition 4.16, the locally rigid case with standard real structure

is already covered in [GS3], Theorem 5.2.

2The theorem makes also the converse statement using the dual intersection complexes; working

polarized as we do here, imposes a codimension one constraint, see the definition of AP in [GHKS],

§A.2.
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Let us now assume we have a standard real structure on (X0,MX0). We wish to

understand the topology of the real locus XKN
0,R ⊂ XKN

0 , the fixed locus of the lifted real

involution of XKN
0 from Definition 3.1. First, since (O†)KN

R = {±1}, the real locus of

XKN
0,R decomposes into two parts, the preimages of ±1 under δKN : XKN

0 → (O†)KN =

U(1). Denote by XKN
0,R (±1) these two fibres.

Proposition 4.19. The restriction of µKN : XKN
0 → B to the real locus exhibits XKN

0,R

as a surjection with finite fibres. Over B \ A, this map is a topological covering map

with fibres of cardinality 2n+1.

Proof. Let σ ∈P be a maximal cell. In the canonical identification Φσ of Lemma 4.5,

the standard real involution on (µKN)−1(σ) ⊂ XKN
0 lifts to the involution of σ ×

Hom(Λσ ⊕ Z, U(1)) that acts by the identity on σ and by multiplication by −1 in

Λσ ⊕ Z. The fixed point set of this involution over each point in σ is the set of two-

torsion points (±1, . . . ,±1) of U(1)n+1. In particular, away from A ⊂ B, the projection

XKN
0,R → B is a 2n+1-fold unbranched cover.

In any case, Φσ

(
σ×Hom(Λσ⊕Z, {±1})

)
is a closed subset in XKN

0 containing Xσ,R\Z
and projecting with fibres of cardinality at most 2n+1 to σ. The statement on finiteness

of all fibres then follows if Z is nowhere dense in XKN
0,R . This statement follows as in

Lemma 4.4 noting that the generization maps between stalks of MX0 at real points

are compatible with the real involution. �

We thus see that XKN
0,R can be understood by studying (a) the unbranched covering

over B \A and (b) the behaviour near the log singular locus by means of the canonical

uniformization map Φσ of Lemma 4.5. Sometimes, e.g. in dimension two, the un-

branched cover together with the fact that XKN
0,R is a topological manifold, determines

XKN
0,R completely.

For the unbranched cover, Lemma 4.5 together with the gluing equation (4.3) in

Remark 4.7 provide a full description of XKN
0,R . Note also that the gluing equation

involves the term κρ · arg(t), which for κρ odd and Arg(t) = −1 leads to a difference in

the identification of branches over neighboring maximal cells.

We formulate this discussion as a proposition, omitting the obvious proof.

Proposition 4.20. Let (X0,MX0) be endowed with a standard real structure, described

by real open gluing data and real slab functions, following Proposition 4.16. Then

the description of XKN
0 in Remark 4.7 as glued from trivial pieces σ × Hom(Λσ ⊕

Z, U(1)) \ Φ−1
σ (ZKN) via Equation (4.3), exhibits the real locus XKN

0,R \ ZKN as glued

from
(
σ × Hom(Λσ ⊕ Z, {±1})

)
\ Φ−1

σ (ZKN). In particular, the sign of the function f

describing the gluing over a connected component of ρ \ A, dim ρ = n − 1, influences
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the identification of branches suggested by the identification of integral tangent vectors

through affine parallel transport. �

As emphasized, in general the specific choice of slab functions changes the topology

of XKN
0,R , and hence has to be studied case by case. Assuming without loss of generality

that the toric log Calabi-Yau space (X0,MX0) is normalized by the open gluing data,

we can however give a neat global description over the large subset B′ ⊂ B considered

in Proposition 4.13. In the simple case, there is a retraction of B \ A to B′ and this

result is strong enough to understand the unbranched cover over B \A completely. In

the general case, this result can be complemented by separate studies along the interior

of codimension one cells to gain a complete understanding of the part of the real locus

covering B \ A.

As a preparation, we need to discuss the effect of the real involution on Diagram (4.6),

and in particular on the middle vertical part, the exact sequence

0 −→ Z⊕ U(1) −→ P̂ −→ Λ −→ 0.

The action on the discrete part Z and Λ is induced by the action on the cohomology

of the torus fibres, which is multiplication by −1. Similarly, we can act by multiplica-

tion with −1 on each entry of the sequence defining P , forming the next to rightmost

column in (4.6). For the extension by U(1), however, taking the pushout with com-

plex conjugation on U(1), maps the extension class s ∈ Ext1(Λ, U(1)) to its complex

conjugate s. Thus only if this class is real, reflected in a real choice of open gluing

data (Proposition 4.16), there is an involution on P̂ inducing multiplication by −1 on

Z and Λ and the conjugation on U(1). Note also that the extension class is real if and

only if it lies in the image of Ext1(Λ,Z⊕ {±1}) under the inclusion {±1} → U(1). In

this case, the extension of Λ by Z⊕U(1) is obtained by pushout from an extension by

Z⊕ {±1}. We now assume such an involution ιP̂ of P̂ exists.

Proposition 4.21. Assume that the toric log Calabi-Yau space (X0,MX0) is given

by real open gluing data and real normalized slab functions. Then in the canonical

description of XKN
0 over B′ ⊂ B given in Proposition 4.13, the real locus is given by

Hom(P̂ , {±1})0|B′ ⊂ Hom(P̂ , U(1))0|B′ .

Proof. Recall the trivialization with fibres Λσ ⊕ Z ⊕ U(1) of P̂ over the interior of

a maximal σ ∈ P used in the proof of Proposition 4.13. In this trivialization, the

involution ιP̂ acts by−1 on Λσ⊕Z and by conjugation on U(1). Taking homomorphisms

to U(1) and restricting to those homomorphisms inducing the identity on the U(1)-

factor, identifies the fibres of XKN
0 over Intσ with Hom(Λσ⊕Z, U(1)). The fixed point
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locus of the induced action of ιP̂ is then the set of homomorphisms to the two-torsion

points of U(1), that is, Hom(Λσ ⊕ Z, {±1}), as claimed. �

Remark 4.22. The topology of the 2n+1-fold cover of B′ can also be described in terms

of the monodromy representation as follows. Analogously to the discussion for P in

Remark 4.10, the monodromy representation of P̂ is given by viewing (c1(ϕ), s) ∈
Ext1(Λ,Z⊕ U(1)) as a pair of twisted homomorphisms,

(λ, θ) : π1(B′, x) −→ Hom(Λx,Z⊕ U(1)).

Explicitly, for a closed loop γ at x, the action of (λ, θ)(γ) = (λγ, θγ) on the fibre of

P̂x ' Λx ⊕ Z⊕ U(1) is

Λx ⊕ Z⊕ U(1) 3 (v, a, β) 7−→ (Tγ · v, λγ · v + a, θγ(v) · β).

Here Tγ ∈ GL(Λx) is from parallel transport in Λ. If the open gluing data s are real, θ

takes values in {±1} ⊂ U(1). Thus in the real case, (λ, θ) is a twisted homomorphism

with values in Hom(Λx,Z⊕ {±1}).
In view of Proposition 4.21, the monodromy representation ofXKN

0,R overB′ is given by

the induced action on Hom
(
Λx⊕Z⊕{±1}, {±1}

)◦
= Hom(Λx, {±1})⊕Hom(Z, {±1}).

Note that the last summand in Λx⊕Z⊕{±1} does not contribute to the right-hand side,

since we restricted to those homomorphisms inducing the identity on 0⊕0⊕{±1}. The

action of a closed loop γ on Hom(Λx, {±1})⊕Hom(Z, {±1}) is now readily computed

as

(4.7) (ϕ, µ) 7−→
(
ϕ ◦ Tγ + µ ◦ λγ + θγ, µ

)
,

Here we wrote the group structure on {±1} additively. This formula gives an explicit

description of XKN
0,R over B′ in terms of a permutation representation of π1(B′, x) on

the set Λ̌x/2Λ̌x ⊕ {±1} of cardinality 2n+1.

In this description, the map to the real part (O†)KN
R = {±1} of the Kato-Nakayama

space U(1) of the standard log point, is induced by the inclusion Z ⊕ {±1} → Λx ⊕
Z⊕{±1}. Thus to describe the fibres over {±1} ⊂ (O†)KN in XKN

0,R simply amounts to

restricting to µ = ±1 in (4.7). In particular, c1(ϕ) only becomes relevant for the fibre

over −1. This fact can also be seen from the gluing description of (4.3), where κρ is

the only place for c1(ϕ) to enter.

5. Examples

5.1. A toric degeneration of quartic K3 surfaces. As a first application of the

general results in this paper, we look at an example of a toric degeneration of real

quartic K3 surfaces.
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Figure 5.1. (B,P) for a quartic K3 surface

Consider (B,P) the polyhedral affine manifold that as an integral cell complex is

the boundary of a 3-simplex, with four focus-focus singularities on each edge and with

the complete fan at each vertex the fan of P2 (Figure 5.1). There are four maximal cells,

each isomorphic to the standard simplex in R2 with vertices (0, 0), (1, 0) and (0, 1).

The edges have integral length 1 and are identified pairwise to yield the boundary of

a tetrahedron. On each of the six edges there are four singular points of the afffine

structure, with monodromy conjugate to ( 1 0
1 1 ). We use standard (“vanilla”) gluing

data, that is, sωτ = 1 for all ω, τ ∈ P, ω ⊂ τ . Then X0 is isomorphic as a scheme

to Z0Z1Z2Z3 = 0 in P3, a union of four copies of P2. As the MPL-function defining

the ghost sheaf MX0 we take the function with kink κρ = 1 on each of the edges.

The moduli space of toric log Calabi-Yau structures on X0 with the given MX0 is

described by the space of global sections of an invertible sheaf LS on the double locus

(X0)sing. This line bundle has degree 4 on each of the six P1-components. The section

is explicitly described by the 12 slab functions fρ,v. For each edge ρ ∈P there are two

slab functions, related by the equation fρ,v(x) = x4fρ,v′(x
−1) for x the toric coordinate

on P1 (see e.g. [GS3], Equation 1.11). Explicitly, restricting to the normalized case,

we have fρ,v = 1 + a1x + a2x
2 + a3x

3 + x4, the highest and lowest coefficients being 1

due to the normalization condition at the two zero-dimensional toric strata of the

projective line Xρ ⊂ X0. The other coefficients ai ∈ C are free, to give a total of

6 · 3 = 18 parameters. Taking into account the additional deformation parameter t,

this number is in agreement with the 19 dimensions of projective smoothings of X0.

See the appendix of [GHKS] for a discussion of projectivity in this context.

This example does not have simple singularities, but it is locally rigid in the sense

of [GS3], Definition 1.26. Thus the smoothing algorithm of [GS3] works, yielding a

one-parameter smoothing of X0, one for each choice of slab functions. According to

Proposition 4.16 this smoothing is real if and only if all slab functions are real, that

is, all coefficients ai ∈ R. To obtain 4 focus-focus singularities on each edge of P
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γ1

γ2γ3

Figure 5.2. Chart at a vertex of (B,P) from Figure 5.1

as drawn in Figure 5.1, we need to choose the ai in such a way that the 4 zeroes of

fρ,v = 1 + a1x + a2x
2 + a3x

3 + x4 have pairwise different absolute values. These are

then also all real. This condition is open in the Euclidean topology, but the closure is a

proper subset of R3, the space of tuples (a1, a2, a3). The precise choice does not matter

for the following discussion and we assume such a choice has been made on each edge.

Proposition 5.1. Let (X0,MX0) be the union of four copies of P2 with the real log

structure as described. Denote by A ⊂ B the pairwise different images of the 24 singular

points of the log structure (the zero loci of the slab functons).

Then the fibre XKN
0,R (1) of δKN

R : XKN
0,R → {±1} ⊂ U(1) has two connected compo-

nents, one mapping homeomorphically to B, the other a branched covering of degree

3, unbranched over B \ A and with a simple branch point over each point of A. In

particular, the latter component is a closed orientable surface of genus 10.

Proof. In the present case of vanilla gluing data, the positive real sections σ×{1} ⊂ σ×
Hom(Λσ, {±1}) of the pieces over maximal cells (Lemma 4.5) are compatible to yield a

section of XKN
0,R (1)→ B. At each point of A there are local analytic coordinates x, y, w,

defined over R, with (X0,MX0) isomorphic to the central fibre of the degeneration

xy = t(w + 1) discussed in Example 2.11. In this example, the real locus of the Kato-

Nakayama space has three connected components, with two being sections and one a

two-fold branched cover with one branch point.

To finish the proof we have to study the global monodromy representation π1(B \
A) → S4 into the permutations of a fibre and show it has at most two irreducible

subrepresentations. We compute a part of the affine monodromy representation and

then use Remark 4.22 and notably Equation (4.7) to obtain the induced monodromy

representation in S4.

Figure 5.2 depicts a chart at a vertex with its three adjacent maximal cells. The

chart gives the affine coordinates in the union of the three triangles minus the dotted
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lines. The locations of the 12 singular points on the outer dotted lines are irrelevant

in this chart and are hence omitted. We look at the part of the fundamental group

spanned by the three loops γ1, γ2, γ3. Each encircles one focus-focus singularities on

an edge containing the vertex and hence the affine monodromy is conjugate to ( 1 0
1 1 ).

In particular, the translational part vanishes. Concretely, in standard coordinates of

R2, the monodromy matrices Ti along γi are

(5.1) T1 =

(
1 0

1 1

)
, T2 =

(
2 −1

1 0

)
, T3 =

(
1 −1

0 1

)
.

Now while the γi are not loops inside B′ as treated in Remark 4.22, it is not hard

to see that (4.7) still applies in the present case. We have µ = 1 since we look at

XKN
0,R (1) and θγi = 1 also for the translational parts. Thus (4.7) says that the branches

transform according to the linear part of the affine monodromy. Now indeed a slab

function fρ,v changes signs locally along the real locus over an edge whenever crossing

a focus-focus singularity. For XKN
0,R (1) this means that the two branches given by

Hom(Λρ, {±1}) ⊂ Hom(Λσ, {±1}) have trivial monodromy around any focus-focus

singularity on ρ, while the two other branches swap.

It thus remains to compute the action of Ti on the two-torsion points of Z2/2Z2.

These are the four vectors

v0 =

(
0

0

)
, v1 =

(
1

0

)
, v2 =

(
0

1

)
, v3 =

(
1

1

)
.

Here v0 is the point in the positive real locus, yielding the section of XKN
0,R (1) → B.

The permutation of the indices of the other three vectors yield the three transpositions

(12), (13), (23) for T1, T2 and T3, respectively. These transpositions act transitively on

{1, 2, 3}, showing connectedness of the cover of degree 3. This component is a genus

10 surface by the Riemann Hurwitz formula. �

5.2. Toric degenerations of K3 surfaces for simple singularities. As a second,

related family of examples we consider toric degenerations of K3 surfaces such that

the associated intersection complex (B,P) has simple singularities. In this case the

possible topologies of XKN
0,R are determined by Proposition 4.21. Interestingly, for the

fibre over 1 ∈ (O†)KN = U(1), the question becomes a purely group-theoretic one. In

fact, according to (4.7), for µ = 1 the translational part λ of the affine monodromy

representation does not enter in the computation. Moreover, by a classical result of

Livné and Moishezon, the linear part of the monodromy representation for an affine

structure on S2 with 24 focus-focus singularities is unique up to equivalence [Mo],

p.179. The result says that there exists a set of standard generators γ1, . . . , γ24 of

π1(S2 \ 24 points, x), closed loops pairwise only intersecting at x and with composition
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γ1 · . . . · γ24 homotopic to the constant loop, such that the monodromy representation

takes the form

Tγi =

T3, i odd

T1, i even,

with T1, T3 as in (5.1). As in §5.1, the corresponding monodromy of the four elements

in Λ̌x/2Λ̌x ' Z2/2Z2 are (12) and (23), respectively. Thus the computation only

depends on the choice of the twisted homomorphism θ ∈ H1(B′, Λ̌⊗{±1}). Now each

θγ acts by translation on the fibre Z2/2Z2. If θγ is nontrivial, the permutation is a

double transposition. But any double transposition together with (12) and (23) acts

transitively on the 4-element set. Thus XKN
0,R is connected as soon as θ 6= 0; otherwise

we have two connected components as in Proposition 5.1.

Proposition 5.2. Let (X0,MX0) be a toric log K3 surface with intersection com-

plex (B,P) having simple singularities and endowed with a standard real structure.

Denote by θ ∈ H1(B, Λ̌ ⊗ {±1}) be the argument of the associated lifted real gluing

data according to Corollary 4.17. Then XKN
0,R (1) has a connected component mapping

homeomorphically to B ' S2 if and only if θ = 0, and is otherwise connected. �

For XKN
0,R (−1), the translational part of the affine monodromy enters in (4.7). The

action is also by translation, hence lead to a double transposition if non-trivial. A

similar analysis then shows that ifXKN
0,R (−1) is not connected, one connected component

maps homeomorphically to B ' S2.
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