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Abstrat

The development of the staking theory has ertain peuliarities. Almost all new staking

onepts (suh as, ommon-midpoint stak, ommon-re�etion-surfae (CRS) stak, et.)

have originally been developed for simulating a zero-o�set setion from 2D prestak

multioverage monotypi data reorded along a seismi pro�le. Later, these tehniques

have been extended to three pratially important �speial� ases: the ase of 3D aquisition

geometry, the ase of onverted (PS) waves and the ase of ommon-o�set (CO) setions.

In the last years an inreasing number of investigations is devoted to the double-

square-root-based (DSR-based) staking operators: Multifousing and two extensions of

the onventional CRS stak � impliit CRS (i-CRS) and non-hyperboli CRS (n-CRS).

The DSR-based staking operators use the same kinemati wave�eld attributes as the

onventional CRS stak. However, due to a double square root struture, the DSR-

based staking operators approximate the di�ration events better than the onventional

CRS staking operator. As a result, staking with the DSR-based operators provides

higher resolved staked setions and more reliable wave�eld attributes whih are extremely

important for the subsequent proessing, imaging and inversion steps.

Reent studies have systematially analyzed the DSR-based staking operators and

have proposed the searh of wave�eld attributes using global optimization tehniques and

the proper treatment of the on�iting dip problem. Together with a growing omputing

power, these studies unlok the full potential of the DSR-based staking operators.

Thus, nowadays, multidimensional staking with the DSR-based staking operators and

the subsequent analysis of the obtained wave�eld attributes onstitute an exiting new

tehnology.

In this thesis, I take the next logial step in the evolution of staking theory and

investigate the extension of the DSR-based staking operators to the three above mentioned

�speial� ases. I onstrut extensions of n-CRS and i-CRS staking operators for the 3D,

PS and CO ases. I also present a new staking operator, so-alled expliit DSR staking

operator, whih plays a very important role in the theory of DSR-based staking operators.

Furthermore, I investigate the auray of staking operators, the auray of obtained

wave�eld attributes and disuss the implementation of the new staking operators into the

CRS-based software.

The derivations of DSR-based staking operators require a simpli�ed model to �t

seismi data from a heterogenous overburden. It requires an auxiliary medium and

an analytial desription of the re�etor. The existing mehanisms to aount for the

overburden heterogeneity, either by the shift in veloity (e�etive medium), or by the shift

of the referene time (optial medium), ould not yet be extended to the 3D ase. Hene, I

suggest an auxiliary anisotropi medium, whih in the 3D ase allows to simulate wavefronts
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ii ABSTRACT

of omplex shape. The auxiliary anisotropi medium and an analytial desription of the

re�etor surfae onstitute the 3D simpli�ed model, whih yields the derivation of the 3D

i-CRS, 3D n-CRS and 3D DSR staking operators.

In the ase of onverted PS waves, I suggest the simpli�ed model with a onstant ratio

of P- and S- wave veloities. The PS simpli�ed model together with a newly introdued

γ−CMP oordinates, whih aount for the symmetry of the problem, allow to derive the

DSR-based staking operators for onverted waves and formulate the e�ient parameter

searh strategy. Furthermore, for the most general CO ase, I demonstrate that similar

to the lassial CRS staking operator the DSR-based staking operators ould be derived

from the paraxial ray theory. This result justi�es the implementation of the DSR-based

staking operators in the ase of an anisotropi medium and opens the possibility of

onstrution of an anisotropi veloity model by inversion of the staking parameters.

Thus, the researh presented in this thesis not only provides a theoretial basis for

extension of the DSR-based staking operators to the 3D, PS and CO ases, but also makes

pratial reommendations regarding the implementation of the new staking operators.

I believe that the results of this work ould be a starting point for further investigations

and that the tehnologies presented here will be of high demand by industry and basi

researh.



Zusammenfassung

Die Entwiklung der Theorie des Stapelns enthält bestimmte Besonderheiten. Fast

alle neuen Stapelungskonzepte (wie die ommon-midpoint Stapelung, ommon-re�etion-

surfae (CRS) Stapelung usw.) wurden ursprünglih für simulierte zero-o�set Sektionen

aus 2D prestak multioverage monotypishen Daten, aufgenommen entlang eines seis-

mishen Pro�ls, entwikelt. Im Laufe der Zeit wurden diese Tehniken zu drei praktish

relevanten Spezialfällen erweitert: die 3D Akquisitionsgeometrie, konvertierte (PS) Wellen

und die ommon-o�set (CO) Sektion.

In den letzten Jahren hat sih eine steigende Anzahl an Untersuhungen auf die double-

square-root (DSR)-basierten Operatoren fokussiert: Multifousing und zwei Erweiterungen

der konventionellen CRS Stapelung � impliziertes CRS (i-CRS) und niht-hyperbolioshes

CRS (n-CRS). Die DSR-basierten Stapeloperatoren approximieren Di�raktionen besser als

der konventionelle CRS Stapeloperator. Als Resultat liefert die Stapelung mittels DSR-

basierten Operatoren besser aufgelöste Stapelsektionen und verlässlihere Wellenfeldat-

tribute, die sehr wihtig für nahfolgende Prozessierung, Abbildung und Inversionsshritte

sind.

Kürzlih erfolgte Studien haben die DSR-basierten Operatoren systematish analysiert

und vorgeshlagen die Suhe der Wellenfeldattribute mittels globaler Optimierungsteh-

niken und unter Berüksihtigung von interferierenden Wellenfelder (on�iting dips)

durhzuführen. Zusammen mit wahsender Rehenleistung ermöglihen diese Studien

das volle Potential aus DSR-basierten Stapeloperatoren zu nutzen. Heutzutage stellt

multidimensionales Stapeln mittels DSR-basierten Stapeloperatoren und anshlieÿender

Analyse der erhaltenen Wellenfeldattributen eine aufregende neue Tehnologie dar.

In dieser These nehme ih den nähsten logish folgenden Shritt in der Entwiklung

der Stapelungstheorie und untersuhe die Erweiterung der DSR-basierten Stapeloperatoren

auf die drei genannten Spezialfälle. Ih erweitere die n-CRS und i-CRS Stapeloperatoren

für die 3D, PS und CO Fälle. Weiterhin präsentiere ih einen neuen Stapeloperator,

den sogenannten explizierten DSR Stapeloperator, der eine sehr wihtige Rolle in der

Theorie von DSR-basierten Stapeloperatoren einnimmt. Weiterhin untersuhe ih die

Genauigkeit der Stapeloperatoren, der erhaltenen Wellenfeldattribute und diskutiere die

Implementation des neuen Stapeloperators in die CRS-basierte Software.

Die Ableitungen des DSR-basierten Stapeloperators benötigen ein vereinfahtes Model

um seismishe Daten bei heterogenem Dekgestein zu beshreiben. Es benötigt ein

Hilfsmedium und eine analytishe Beshreibung des Re�ektors. Der existierende Meh-

anismus um das heterogene Dekgestein zu berüksihtigen, entweder durh veloity shift

(e�ektives Hilfsmedium) oder time shift (optishes Hilfsmedium), konnte bisher niht auf

den 3D Fall erweitert werden. Daher shlage ih vor ein anisotropes Hilfsmedium zu
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benutzen, da es erlaubt Wellenfronten von komplexer Form im 3D Fall zu simulieren. Das

anisotrope Hilfsmedium und eine analytishe Beshreibung der Re�ektorober�ähe stellen

das vereinfahte 3D Modell dar, welhes die Herleitung der 3D i-CRS, 3D n-CRS und 3D

DSR Stapeloperatoren liefert.

Im Falle von konvertieren PS Wellen shlage ih ein vereinfahtes Modell mit

konstantem P- und S-Wellen Geshwindigkeiten vor. Das vereinfahte PS Modell

zusammen mit neu eingeführten γ−CMP Koordinaten, die die Symmetrie des Problems

berüksihtigen, ermöglihen es die DSR-basierten Stapeloperatoren für konvertierte

Wellen herzuleiten und die e�ziente Parametersuhstrategie aufzustellen.

Weiterhin, für den allgemeinsten CO Fall, demonstriere ih, das ähnlih wie bei dem

klassishen CMP Stapeloperator, der DSR-basierte Stapeloperator aus der paraxialen

Strahlentheorie hergeleitet werden kann. Das Resultat rehtfertigt die Implementierung

des DSR-basierten Stapeloperators im Falle eines anisotropen Mediums und erö�net die

Möglihkeit ein anisotropes Geshwindigkeitsmodell, mittels Inversion der Stapelparame-

ter, zu konstruieren.

Die Forshung, die in dieser These präsentiert wird, liefert niht nur die theoretishe

Basis zur Erweiterung DSR-basierter Stapeloperatoren auf die 3D, PS und CO Fälle,

sondern maht auh praktishe Vorshläge bezüglih der Implementierung des neuen

Stapeloperators. Ih glaube die Ergebnisse dieser Arbeit könnten ein guter Startpunkt für

weitere Untersuhungen sein, denn die hier präsentierten Tehnologien sind von groÿem

Interesse in Industrie und Forshung.
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Introdution

Due to the growth of the world population and the rising living standards, the worldwide

energy onsumption is onstantly inreasing. Thought the world beomes more energy

e�ient and the alternative energy soures develop, in the near future the hydroarbons

(natural gas, oil, oal) will remain a major soure of the energy. Most of onventional

reservoirs are already explored and depleted. Future reservoirs haraterize by the

inreasing depth and omplexity, giving a onstant high demand for innovative and

advaned tehnologies for hydroarbon exploration.

The re�etion seismi method is the most e�etive geophysial method for hydroarbon

exploration. The goal of the re�etion seismi method is to reate an image of the

Earth's subsurfae using the re�eted seismi waves. The seismi image ontains valuable

information about the loation and on�guration of the seismi re�etion horizons. There

are two types of the seismi images: images in the time domain (linked to the vertial

two-way traveltime) and images in the depth domain (linked to the depth).

Imaging in time domain was historially the �rst type of imaging. Its development was

losely related to the ability to digitize analog signals. An image in the time domain

may be obtained, for instane, by staking the ommon-midpoint (CMP) gathers, �rst

suggested by Mayne (1962). Over the last �fty years, this simple CMP staking has evolved

into a sophistiated tehnology that requires ompliated mathematis and state-of-the-art

omputation (Rashed, 2014).

The last 20-30 years have seen a growing interest in the methods for imaging the subsurfae

in depth domain. The main feature of these methods is the requirement of an initial

veloity model. The modern strategy for imaging in depth domain is based on the full

waveform inversion (FWI) for an iterative update of the initial veloity model and further

prestak depth migration (PSDM) performed using the resulting veloity model (see e.g.

Warner et al., 2013). This proedure allows reonstrution of highly resolved depth images

of the subsurfae with orret loations and dips of the re�etion horizons. However, the

quality of the depth imaging depends signi�antly on the initial veloity model, whih

should be su�iently lose to the true veloity model.

On the ontrary, imaging in time domain does not require the initial veloity model.

Moreover, it extrats the staking parameters that may be used to estimate the veloity
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2 INTRODUCTION

model for subsequent imaging steps. Currently, about 70% of the seismi re�etion data

are proessed only in the time domain (Landa, 2007), mainly due to the lower ost of

imaging in time domain ompared to imaging in depth domain. Hene, the development

of improved algorithms for imaging in time domain is a promising researh topi.

The multidimensional staking is a modern method for imaging in time domain. It

onsists of staking traes in the neighboring CMP gathers. The multidimensional staking

signi�antly inreases the staking fold, whih results in the enhaned ontinuity of

re�etion horizons and the improved image resolution. This proedure requires the staking

operator: an expression desribing the traveltime of the re�eted wave.

Two alternative multidimensional staking operators have been proposed almost si-

multaneously at the end of the 20th entury: the ommon-re�etion-surfae (CRS)

staking operator (Mann et al., 1999; Jäger et al., 2001) and the Multifousing (MF)

staking operator (Gelhinsky et al., 1999; Tygel et al., 1999). Both staking operators are

formulated in terms of near-surfae kinemati wave�eld attributes of Hubral (1983) and

are valid for arbitrary veloity models and arbitrary soure-reeiver pairs in the viinity of

the hosen imaging point. Both CRS and MF give omparable results for re�etion events.

However, the seismi wave�eld ontains not only re�etion events but also di�ration

events. The "di�rations" appear at terminations of re�etors (e.g., at faults, edges,

pinh-outs) and at small sattering inhomogeneities of the subsurfae. The di�rations

arry valuable information neessary for the veloity model building (e.g., by means of the

NIP-wave tomography, Duvenek, 2004; Bauer et al., 2016b), for the migration veloity

analysis (Fomel et al., 2007) and for the reovery of strutures smaller than the seismi

wavelength (Khaidukov et al., 2004).

The CRS staking operator annot properly �t traveltimes of di�ration events, whereas

the MF staking operator is designed to aount for di�ration events. Hene, the MF stak

produes better staked setions (images) than the CRS stak (Landa, 2007). In order to

improve the performane of the onventional CRS stak, two alternative approahes have

reently been proposed: the impliit CRS (i-CRS) stak (Shwarz et al., 2014) and the

non-hyperboli CRS (n-CRS) stak (Fomel and Kazinnik, 2013). Sine MF, i-CRS and

n-CRS desribe the traveltime of the re�eted/di�rated event as a sum of two square

roots, they are alled "double-square-root-based" (DSR-based) staking operators. Reent

studies (Shwarz et al., 2015; Walda et al., 2016) indiate that all DSR-based staking

tehniques give superior results ompared to the onventional CRS stak.

All multidimensional staking operators (CRS, MF, i-CRS and n-CRS) are traditionally

formulated for the 2D zero-o�set (ZO) aquisition geometry and monotypi waves. The

onventional CRS stak has extensions to three important ases: the ase of 3D surveys

(Müller, 2003), the ase of onverted (PS) waves (Bergler et al., 2002) and the ase of the

ommon-o�set (CO) aquisition geometry (Zhang et al., 2001). However, apart from few

exeptions, the DSR-based staking operators do not have extensions to these speial ases.

The onventional CRS staking operator originates from the paraxial ray theory (see
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e.g, Hubral et al., 1992). Moser and �erven�y (2007) reently formulated the paraxial ray

theory for the general anisotropi ase. This opens the possibility of a large number of

appliations, inluding the estimation of the kinemati wave�eld attributes in the general

anisotropi media. The DSR-based staking operators are usually derived from the model-

based approah. The question naturally arises whether it is possible to derive the DSR-

based staking operators from the paraxial ray theory and, thus, extend them to general

anisotropi media.

In this thesis, I present the extensions of the DSR-based staking operators to the three

speial ases (3D, PS, CO) and demonstrate the derivation of the DSR-based staking

operators from the paraxial ray theory. The thesis is strutured as follows.

In Chapter 1, I review the theory of staking starting from the lassial CMP stak over

the CRS stak to the modern DSR-based staking operators. I also disuss extensions of

these staking tehniques to three speial ases: the 3D ase, the ase of onverted PS

waves and the ase of CO aquisition geometry. Furthermore, I introdue and explain

notations and terms that are used in the next hapters.

Chapter 2 is dediated to the theory of 3D staking operators. I suggest a 3D simpli�ed

model whih onsists of the urved re�etor in the auxiliary anisotropi medium. Based

on this 3D simpli�ed model, I propose the 3D extensions of the i-CRS and n-CRS staking

operators and the ompletely new 3D DSR staking operator.

In Chapter 3 I investigate the auray of the new 3D staking operators based on the

simple numerial tests. I also disuss the implementation of the new staking operators

into the CRS-based software.

Chapter 4 is onerned with the staking operators for onverted PS waves. Based on

a fairly reasonable assumption of onstant ratio of P- and S-wave veloities, I suggest

extensions of the DSR and n-CRS staking operators to the ase of onverted waves.

Furthermore, I introdue a pragmati searh strategy for onverted waves, similar to the

one suggested by Müller (1999) for monotypi waves. The new staking operators and

the new pragmati searh strategy together form an e�ient tool to obtain high-quality

staked setions for onverted PS waves.

In Chapter 5, based on the paraxial ray theory, I obtain the DSR staking operator for the

most general ommon-o�set (CO) ase. This expression extends the range of appliability

of the DSR-based staking operators and demonstrates their lose relationship with the

standard CRS staking operators.

In Summary and Outlook, I onlude the results of this thesis and provide an outlook

to future diretions of investigations.
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Chapter 1

Theoretial bakground

�Everything that happens one an never happen again. But everything that

happens twie will surely happen a third time�

� Paulo Coelho, The Alhemist

Staking is one of the basi steps of the re�etion data proessing work�ow. In this hapter,

I attempt to present, in historial sequene, the main stages of the development of the

staking theory. I also introdue and explain notations and terms that will be used in the

next hapters.

1.1 Seismi re�etion experiment

The seismi re�etion experiment onsists of the reording of re�eted seismi waves. The

seismi waves are generated by a seismi soure (dynamite harge, vibrator, airgun, et.)

that is loated at a ground level or is buried in the ground at a shallow depth (see

Figure 1.1a). The seismi waves propagate in a omplex inhomogeneous medium that

is often alled "overburden" or "subsurfae". The veloity of propagation of seismi waves

depends on rok properties, density and other fators (see, e.g., Sheri� and Geldart, 1995).

At a boundary of di�erent roks (re�eting surfae, "re�etor"), a disontinuous hange

of the rok properties ours. In suh a ase, an inident seismi wave is partly re�eted

and partly transmitted (see Figure 1.1b). The re�eted wave returns bak to the ground

surfae, where it is reorded by reeivers.

There are two modes of the seismi wave in an isotropi solid medium: a ompressional

P-wave and a shear S-wave. These waves travel in the medium with di�erent veloities.

Sine the veloity of the S-wave is about half that of the P-wave, the re�eted PP wave

omes before the re�eted SS wave. The re�eted PP waves are usually investigated in the

5
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Figure 1.1: Illustration of the seismi re�etion experiment. The inident seismi wave,

emitted by the soure, re�ets from the re�eting surfaes to the reeivers on

the ground surfae (a). At the re�eting surfaes the inident seismi wave

is partly re�eted, partly onverted and partly transmitted (b). The red and

green triangles indiate the soure and reeiver loations, respetively.

seismi re�etion experiment.

During the re�etion, the mode onversion an our at the re�eting surfae. The

onverted PS and SP waves are formed as the wave hanges the mode. The onverted

PS waves are ommonly used to obtain valuable information about S-wave veloities.

The seismi re�etion experiments are ompliated by topographi variations and omplex

low-veloity near-surfae strutures. In order to overome these problems, stati orretions

(onstant timeshifts) are applied to the reorded data (Cox, 1999). After the stati

orretion, the soures and the reeivers belong to the referene horizon (so-alled

"measurement surfae") and the omplex low-veloity near-surfae layers are replaed by

onstant-veloity layers.

It is usually assumed that the referene horizon is loated at a zero depth z = 0. In the 2D
ase, the measurements are performed along the seismi pro�le. Seismi data are generally

aquired in the shot-reeiver (xs, xg) oordinates, where xs and xg denote the shot and

reeiver loations along the pro�le. However, the proessing of seismi data is usually

arried out in the midpoint-o�set oordinates:

xm =
xg + xs

2
, h =

xg − xs
2

, (1.1)

where xm is the midpoint loation and h is the half-o�set (the half distane from the soure

to the reeiver). As a result of the seismi re�etion experiment the traes as a funtion of

the traveltime t, the midpoint xm and the half-o�set h (so-alled "prestak seismi data")

P (t, xm, h) are obtained.
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1.2 Common-midpoint stak

Staking of seismi traes, with the goal of improving the signal-to-noise ratio, dates bak

to the early 1950s. Its development is losely related to the possibility to digitize the

analog signals. In 1956, Mayne patented the ommon-midpoint (CMP) staking

1

. He

introdued the midpoint-o�set oordinates (1.1) and proposed to ollet traes with the

same midpoint xm into the ommon-midpoint (CMP) gathers. The staking of traes

in the CMP gather yields the staked trae assoiated with the midpoint loation. This

staked trae approximates the trae that would be reorded if the soure and the reeiver

are loated in the midpoint position. Sine the useful signals are staked "in phase" and

the noise is often unorrelated (Sengbush, 1983), the staked trae has an improved signal-

to-noise (S/N) ratio. Theoretially, while staking, the S/N ratio inreases by the square

root of the number of traes in the CMP gather (Mayne, 1962). Implementation of the

staking proedure for eah midpoint gives the CMP-staked setion (zero-o�set setion).

The geometry of the CMP gather and the raypath assoiated with the plane horizontal

re�etor are presented in Figure 1.2a. Due to the di�erene in the raypaths, the traveltime

t0 of the zero-o�set ray

2

is not equal to the traveltime t(h) of the ray from the remote

soure to reeiver. The dependene of traveltime with the o�set is alled "moveout". The

di�erene between t(h) and t0 is alled "moveout orretion". Staking of the seismi traes
in the CMP gather requires the moveout approximation t = τ(t0, h). With the introdued

notations, the CMP staked setion S(t0, xm) an be desribed as:

S(t0, xm) =

∫

P
(
τ(t0, h), xm, h

)
dh. (1.2)

Below, I disuss several moveout approximations used in the CMP proessing.

1.2.1 Normal moveout

The moveout approximation that aounts for the di�erene of the soure-reeiver distane

is alled "normal moveout" (NMO). The NMO equation reads:

t2(h) = t20 +
4h2

v2NMO

. (1.3)

This approximation was derived for di�erent earth models:

� Constant veloity model with a single horizontal plane re�etor (Fig-

ure 1.2a). This ase was onsidered by Green (1938) for measuring the average

veloity above the re�etor. In this ase, the staking veloity vNMO is equal to the

veloity of the layer v.

1

Originally, Mayne alled his method the "ommon re�etion point horizontal staking".

2

The ray whose soure and reeiver are loated at the midpoint xm. Also alled "entral ray" or "normal

inidene ray".
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I love Amel! 

Figure 1.2: Illustration of the simple earth struture models: the plane horizontal

re�etor (a), the plane dipping re�etor (), the system of horizontal layers (b)

and the system of dipping layers (d). The red dashed line indiates the

trajetory of the normal inidene ray.

� Horizontally layered model (Figure 1.2b). The traveltime approximation for this

ase have been obtained independently by Dix (1955) and Dürbaum (1954). They

showed that in this ase the NMO veloity is equal to the root-mean-square (RMS)

veloity:

vRMS =

√
√
√
√ 1

t0

K∑

k=1

∆tkv
2
k. (1.4)

Here vk is the interval veloity of the kth layer and ∆tk is the two-way traveltime in

the layer k. In this ase the NMO (1.3) is a small-o�set approximation (Castle, 1994).

Bolshykh (1956) and Taner and Koehler (1969) presented the long-o�set moveout

approximations using the Taylor series expansion:

t2(h) = c1 + c2h
2 + c3h

4 + c4h
6 + ... (1.5)

They showed that the �rst two oe�ients of (1.5) oinide with the NMO (1.3)

approximation and the next oe�ients are the omplex funtions depending on the

interval veloities. Taner and Koehler (1969) also provided the reursive formulas to

obtain all oe�ients of the series.

� Constant veloity model with a single dipping plane re�etor (Figure 1.2).

Levin (1971) onsidered this oversimpli�ed ase for understanding the dependene

of the staking veloities on the dip of the re�etor α. He found that the NMO

equation (1.3) is still valid and the staking veloity is the same as or higher than
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the veloity of the layer v:

vNMO = v/ cosα. (1.6)

For this simple model the assumption that the traes in the CMP gather image the

same point in depth is violated. Hene, the e�et of the re�etion-point dispersal

ours. To orret for this e�et a dip-moveout (DMO) orretion was introdued.

For the review of di�erent DMO methods, see Hale (1991) and referenes therein.

� System of dipping layers (Figure 1.2d). Hubral and Krey (1980) proved that the

NMO approximation (1.3) is valid in this general ase.

Fomel and Stovas (2010) fairly notied that the hyperboli behaviour of the moveout is

always valid around the zero o�set, "thanks to soure-reeiver reiproity

3

and �rst-order

Taylor series expansion". However, exept for a few speial ases, the moveout shows a

nonhyperboli behaviour at large o�sets.

In summary, the staked setion is obtained as follows. The prestak data are sorted in

the CMP gathers (see Figure 1.3a). In the CMP gather eah time sample is onsidered as

t0 (see Figure 1.3b). The NMO (1.3) is alulated for a set of the NMO veloities from

the initially de�ned range. The objetive funtion that measures the similarity of traes,

e.g., semblane (Taner and Koehler, 1969), is estimated for eah of these NMO veloities.

The staking veloity is the one that maximizes the value of the objetive funtion. The

proedure provides the staked setion, the staking veloity setion and the semblane

setion. Interpretation of the staking veloities is performed with the hosen model of the

subsurfae.

1.2.2 Shifted hyperbola

In the NMO equation (1.3), the inhomogeneity of the overburden is aounted by the

NMO veloity. In the presene of inhomogeneity, the NMO veloity beomes an e�etive

veloity, sine it depends on the veloities of the layers. Hene, the onventional NMO (1.3)

desribes the moveout in the e�etive medium.

de Bazelaire (1988) suggested an alternative idea based on the theory of geometrial optis.

He proposed to replae the inhomogeneous medium by the so-alled "optial medium" � the

homogeneous medium with the onstant near-surfae veloity v0. In the optial medium,

the moveout t(h) is desribed by the shifted-hyperbola

4

:

(t− t0 + tp)
2 = t2p +

4h2

v20
. (1.7)

3

The traveltime of the monotypi wave is invariant with respet to the soure-reeiver hange.

Mathematially, it means that the traveltime is an even funtion of the o�set t(−h) = t(h) and the

�rst derivative of the traveltime with respet to the o�set is equal to zero:

∂t
∂h

= 0.
4

A similar approximation was proposed by Malovihko (1978) for the ase of the horizontally layered

struture.
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Figure 1.3: (a) Illustration of the geometry of the typial staking hart. (b) Example

of the CMP gather. Staking is performed along the NMO trajetory (bold

blue urve). The proedure provides the staked trae () assoiated with the

zero-o�set ray (red dashed line).
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Figure 1.4: The ray sheme for the shifted hyperbola. The atual raypath of the re�eted

ray (a) in the inhomogeneous model and its equivalent raypath in the optial

analog (b). The enter of the hyperbola is shifted to the point D′
.

Here, t0 is the two-way traveltime along the atual raypath XmD in the inhomogeneous

medium and tp is the two-way traveltime along the equivalent raypath XmD′
in the optial

medium (see Figure 1.4).

In the shifted hyperbola (1.7), the inhomogeneity of the medium is ompensated by the

so-alled fousing time tp. Thus, both NMO and the shifted hyperbola utilize the onept

of auxiliary onstant veloity medium, but NMO is formulated for the e�etive auxiliary

medium and the shifted hyperbola for the optial auxiliary medium. One an say that

NMO and the shifted hyperbola are the same staking operator formulated in the di�erent

(e�etive or optial) domains, or utilized the di�erent mehanisms (veloity-shift or time-

shift) to aount for the inhomogeneity.

1.2.3 3D normal moveout

Subsurfae geologial features of interest in hydroarbon exploration are three-dimensional

in nature (Yilmaz, 2001). The 3D seismi survey data are used to obtain the true and

preise 3D seismi image of the subsurfae.

In the 3D seismi surveys, the soures and the reeivers are distributed in the measurement

surfae. In this ase, the midpoint xm and the half-o�set h beome two-dimensional vetors:

xm =
xg + xs

2
, h =

xg − xs

2
, (1.8)

where xs ≡ {xs, ys} and xg ≡ {xg, yg} denote the soure and the reeiver loations. Traes
with the same midpoint loations xm are gathered in the CMP bins. The traes of the

CMP bin are staked along the hyperboli trajetories:

t2(|h|, ξ) = t20 +
4|h|2

v2NMO(ξ)
(1.9)
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with the NMO veloity depending on the diretion of the pro�le line ξ (Levin, 1971):

1

v2NMO(ξ)
=

cos2 ξ

v21
+

sin2 ξ

v22
. (1.10)

Equation (1.10) is known as the NMO veloity ellipse. Alternatively, the 3D NMO (1.9)

may be presented in the notations of Grehka and Tsvankin (1999):

t2(h) = t20 + 4hTWh, (1.11)

where the elements of the symmetri matrix W are the inverse values of the squared

staking veloities.

1.2.4 Converted waves

The onverted PS waves are ommonly used to obtain valuable information about S-wave

veloities. Extensions of the NMO equation (1.3) for onverted waves were proposed

by Fromm et al. (1985); Tessmer and Behle (1988); Tessmer et al. (1990); Iverson et al.

(1989). The shifted hyperbola moveout approximation for onverted waves was formulated

by Slotboom (1990). The detailed review of the meaning of onverted waves, the di�ulties

in their proessing and the existing moveout approximations are given in Setion 4.1.

1.2.5 Common-o�set stak

In the ommon-o�set ase, the soure and reeiver loations of the entral ray do not

oinide. Staking of seismi traes having the ommon-o�set distanes was patented by

Harris (1968). For a more detailed disussion of the ommon-o�set stak the reader is

referred to Setion 5.1.

1.3 Multidimensional staking

At the beginning of the 1980s, several authors (e.g., Naess, 1982; Buhanan et al., 1983)

have pointed out that sine traes in the CMP gather do not re�et from one point on

the re�etor but rather from the segment of the re�etor, it is possible to use traes

in the neighboring CMP gathers for staking. Thus, to obtain the staked trae at the

entral (imaging) point x0, one must onsider the traes whose soures and reeivers are

in a ertain viinity of the entral point. In suh a situation, the midpoints xm of the

traes being staked do not oinide with the entral point x0. The di�erene between the

midpoint xm and the entral point x0 is alled the midpoint displaement:

m ≡ xm − x0. (1.12)
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Figure 1.5: The multidimensional (CRS or MF) staking uses all available traes in the

viinity of the entral point x0. The multidimensional staking is performed

both in the midpoint and in the half-o�set diretions, i.e., along the moveout

surfae t = τ(t0,m, h) (red surfae). Staking in both diretions signi�antly

inreases the amount of staked traes in omparison to the onventional CMP

staking (bold blue urve). Figure adapted from Müller (1999).
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The staked setion S(t0, x0) is obtained by staking the prestak seismi data P (t, xm, h)
both in the midpoint displaement m and the half-o�set h diretions (see Figure 1.5):

S(t0, x0) =

∫∫

P
(
τ(t0,m, h), x0 +m,h

)
dmdh. (1.13)

This proedure requires the moveout approximation t = τ(t0,m, h). Sine the stak-

ing (1.13) is performed in two dimensions, the proedure is alled "multidimensional

staking". As it is apparent from Figure 1.5, the multidimensional staking signi�antly

inreases the staking fold. Hene, it is partiularly useful for data with a low signal-to-

noise ratio or aquisitions with a low fold.

Two ompeting multidimensional staking tehniques appeared almost simultaneously at

the end of the 20th entury: the ommon-re�etion-surfae (CRS) stak (Mann et al., 1999;

Jäger et al., 2001) and the Multifousing (MF) stak (Gelhinsky et al., 1999). Although

originated from di�erent theories, both tehniques propose the moveout approximations

formulated in terms of kinemati wave�eld parameters of Hubral (1983) and valid for

arbitrary veloity models. Both tehniques perfetly handle re�etion events, however the

MF stak produes better staked setions due to its ability to properly handle di�ration

events (see, e.g., Landa, 2007).

In order to improve the performane of the onventional CRS stak, two alternative

approahes have reently been proposed: the impliit CRS (i-CRS) stak (Shwarz et al.,

2014) and the non-hyperboli CRS (n-CRS) stak (Fomel and Kazinnik, 2013). Beause

MF, i-CRS and n-CRS desribe the traveltime of re�eted/di�rated event as a sum of two

square roots, I will all them "double-square-root-based" (DSR-based) staking operators.

I this setion, I will brie�y desribe these four staking operators, mention their relations

and existing extensions.

1.3.1 Common-re�etion-surfae stak

The CRS staking operator

5

is a natural extension of the NMO equation (1.3) for the

multidimensional ase. The CRS staking operator an be derived from the paraxial ray

theory for the most general 3D ommon-o�set (CO) ase. Here, in ontrast, I will start

from the most intuitive 2D zero-o�set (ZO) ase, and later disuss extensions to the 3D

and CO ases.
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Figure 1.6: Illustration of the kinemati wave�eld attributes: α is the dip angle of the

zero-o�set ray, RNIP is the radius of urvature of the NIP wave (a) and RN is

the radius of urvature of the normal wave (b).

1.3.1.1 2D zero-o�set CRS staking operator

The multidimensional moveout approximation t = τ(t0,m, h) may be onsidered as a

trunated Taylor series expansion:

t(m,h) = t0 +
∂t

∂m
︸︷︷︸

w

m+
∂t

∂h
︸︷︷︸

=0

h+
1

2

∂2t

∂m2
︸ ︷︷ ︸

N

m2 +
∂2t

∂h∂m
︸ ︷︷ ︸

=0

mh+
1

2

∂2t

∂h2
︸ ︷︷ ︸

M

h2. (1.14)

Due to the reiproity priniple, the �rst derivative of the traveltime with respet to the

half-o�set and the mixed partial derivative are equal to zero. After giving the notations

for the non-zero oe�ients of the series (1.14), the moveout approximation reads:

t(m,h) = t0 + wm+Nm2 +Mh2. (1.15)

The last formula is alled the paraboli traveltime approximation. The hyperboli

traveltime approximation an be immediately obtained by squaring both sides of the

paraboli traveltime formula (1.15) and negleting the terms of higher order than the

seond:

t2(m,h) =
[

t0 + wm
]2

+ 2t0

[

Nm2 +Mh2
]

. (1.16)

Aording to numerous investigations (e.g, Ursin, 1982; Mann et al., 1999), the hyperboli

staking operators better �t the re�etion events than the paraboli staking operators.

For a CMP gather, the hyperboli staking operator (1.16) redues to the NMO

approximation (1.3).

The paraxial ray theory (Shleiher et al., 1993; Tygel et al., 1997) gives a physial

interpretation of the oe�ients w6,M,N :

w = −2 sinα

v0
, M =

cos2 α

v0RNIP
, N =

cos2 α

v0RN
. (1.17)

5

The multidimensional moveout approximation t = τ (t0,m, h) is often referred to as "staking

operator".

6

Note that the sign of the �rst order derivative w depends on the de�nition of the oordinate system.

The negative sign is hosen here to be onsistent with the oordinate systems desribed in the further

hapters.
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Here, v0 denotes the near-surfae veloity, α is the dip angle of the zero-o�set ray, RNIP and

RN are the radii of urvature of the two fundamental waves: the normal-inidene-point

(NIP) wave and the normal (N) wave (see Figure 1.6). The NIP wave is a hypothetial

wave generated by the �titious point soure plaed in the NIP of the zero-o�set ray,

and the normal wave is a hypothetial wave arising from the �titious exploding re�etor

experiment (Hubral, 1983).

The formula (1.16) together with interpretation of the oe�ients (1.17) is known as the

2D zero-o�set ommon-re�etion-surfae (2D ZO CRS) staking operator. The 2D ZO

CRS staking operator may also be derived by means of the geometrial (model-based)

approah of Höht et al. (1999).

The 2D ZO CRS staking operator is the ore for the CRS stak. Müller (1999); Jäger et al.

(2001); Mann (2002) explained in detail the theory and the appliation of the CRS stak

and proposed a pragmati searh of the staking parameters (α,RNIP, RN). Mann et al.

(1999) showed suessful implementation of the idea to the 2D �eld data.

The CRS stak provides the staked setion, the semblane setion and the staking

parameters. The staking parameters are used in many appliations, e.g., the velo-

ity model building (the NIP-wave tomography, Duvenek, 2004; Della Moretta et al.,

2006), the prestak data enhanement and interpolation (Baykulov and Gajewski, 2009;

Hoeht et al., 2009), the di�ration imaging and separation (Dell and Gajewski, 2011;

Bakhtiari Rad et al., 2015) and the multiple suppression (Dümmong and Gajewski, 2008).

Baykulov et al. (2011) summarized the CRS based work�ow.

The CRS stak is a topi of the ongoing researh. Of prime interest are the advaned

searh strategies of the staking parameters (e.g., by means of global optimization

methods, Garabito et al., 2012; Walda and Gajewski, 2015a) and the on�iting dip

problem (Müller, 2009; Soleimani et al., 2009; Walda and Gajewski, 2015b).

1.3.1.2 3D zero-o�set CRS staking operator

In the 3D ase, the midpoint displaement m and the half-o�set h beome two-dimensional

vetors m and h:

xm =
xg + xs

2
, h =

xg − xs

2
, m = xm − x0, (1.18)

the �rst-order derivative w transforms to the two-dimensional vetor w, and the seond-

order derivatives M and N transform to the symmetri 2× 2 matries M and N.

The 3D zero-o�set ommon-re�etion-surfae (3D ZO CRS) staking operator reads:

t2(m,h) =
[

t0 +wTm
]2

+ 2t0

[

mTNm+ hTMh
]

. (1.19)
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The oe�ients w, M and N are related to the kinemati wave�eld attributes as follows:

w = −2 sinα

v0

( cos β
sin β

)

, M =
1

v0
RKNIPR

T, N =
1

v0
RKNR

T. (1.20)

Here, v0 denotes the near-surfae veloity, α and β are the dip and the azimuthal angles

of the zero-o�set ray, KNIP and KN are the symmetri 2 × 2 urvature matries of the

NIP and the normal waves in the ray-entered oordinate system, and R is the upper left

2 × 2 part of the 3 × 3 rotation matrix R̂ that aounts for the transformation from the

ray-entered to the general Cartesian oordinate system:

R̂ = Φ̂Θ̂, Φ̂ =





cos β − sin β 0
sin β cos β 0
0 0 1



 , Θ̂ =





cosα 0 sinα
0 1 0

− sinα 0 cosα



 . (1.21)

The 3D ZO CRS staking operator (1.19) ontains eight staking parameters: α, β,KNIP

and KN. The theory and the implementation of the 3D ZO CRS staking operator are

minutely disussed in Müller (2003).

1.3.1.3 Common-o�set CRS staking operator

Zhang et al. (2001) presented the ommon-o�set CRS (CO CRS) staking operator. This

general operator has �ve staking parameters in the 2D ase and thirteen parameters in

the 3D ase. A more detailed disussion of the 3D CO CRS staking operator is presented

in Setion 5.2.

1.3.1.4 CRS staking operator for onverted waves

A 2D CRS-based strategy for onverted waves was proposed by Bergler et al. (2002). They

used the CO CRS staking operator that aounts for the asymmetri PS raypath. Based

on the example of the 2D syntheti dataset, Bergler et al. (2002) showed that the proposed

strategy improves the quality of the staked setion in the presene of noise and extrats

reliable kinemati wave�eld attributes.

1.3.2 Double-square-root-based staking operators

Along with re�etions, the seismi wave�eld ontains di�rations. Di�rations appear at

the termination of re�etors (e.g., at faults) and at the inhomogeneities of the subsurfae.

Di�rations allow to obtain orretly migrated images of the subsurfae; they are espeially

important for determining the shape of the salt bodies. Di�rations are used to the obtain

veloity model (e.g., by means of the NIP-wave tomography Duvenek, 2004; Bauer et al.,

2016b) and to analyze the migration veloity (Fomel et al., 2007). Furthermore, proessing



18 CHAPTER 1. THEORETICAL BACKGROUND

Figure 1.7: (a) In MF, the intersetion point of the entral ray and the paraxial ray

is onsidered as the virtual seismi soure. This virtual seismi soure and

its orresponding mirror image generate two wavefronts: the soure-related

wavefront with the radius of urvature Rs and the reeiver-related wavefront

with the radius of urvature Rg. (b) i-CRS is based on the problem of re�etion

from the irular re�etor in the homogeneous veloity model. () n-CRS solves

the problem of �nding the re�etion point from the hyperboli re�etor in the

homogeneous veloity model.

of di�rations an lead to the reovery of details smaller than the seismi wavelength

(Khaidukov et al., 2004).

The onventional CRS staking operator, being the seond order moveout approximation,

annot properly approximate the traveltimes of the di�ration events. Hene, several

alternative staking operators were proposed to �t both re�etion and di�ration events.

1.3.2.1 Multifousing

Multifousing (MF) is a staking tehnique proposed by Gelhinsky et al. (1999). It

generalizes the ideas of the homeomorphi imaging (Gelhinsky, 1989). The MF moveout
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approximation is a double-square-root formula, that is traditionally expressed in terms of

the soure and the reeiver displaements:

∆xs = xs − x0, ∆xg = xg − x0. (1.22)

The MF moveout approximation reads:

t(∆xs,∆xg) = t0 +∆ts +∆tg, (1.23)

where

∆ti =

√

R2
i + 2Ri∆xi sinα+∆x2i −Ri

v0
, i = s, g; (1.24)

Rs and Rg are the urvature radii of two waveforms (see Figure 1.7a)

Rs =
1 + σ

1/RN + σ/RNIP
, Rg =

1− σ

1/RN − σ/RNIP
; (1.25)

and σ is so-alled fousing parameter:

σ =
∆xs −∆xg

∆xs +∆xg + 2(∆xs∆xg/RNIP) sinα
. (1.26)

MF has a very lose relationship with the shifted hyperbola of de Bazelaire (1988). Both

methods use the time-shift mehanism to aount for the overburden inhomogeneity. For

the CMP gather, the MF moveout formula (1.23) redues to the shifted hyperbola moveout

approximation (1.7).

Originally, the fousing parameter (1.26) was derived under the assumption of plane

dipping re�etor in a homogeneous medium. Hene, the MF moveout approximation (1.23)

is often alled "planar multifousing". An alternative formulation, so-alled "spherial

multifousing", was proposed by Landa et al. (2010). It is based on the analytial

expression for the traveltime of the wave, re�eted from the irular re�etor in a

homogeneous medium.

To my knowledge extension of the MF staking operator to the 3D ase was not presented so

far. An attempt to propose the 3D MF staking operator was made by Landa et al. (2010).

They onsidered spherial re�etor in a homogeneous medium. However, this oversimpli�ed

model annot adequately desribe existing 3D e�ets (see Setion 2.4 for more details).

The 3D MF formula exists only for purely di�rated events, when Rs = Rg = RNIP (see,

e.g., Berkovith et al., 2009, 2012). The suessful implementation of the 3D MF for the

di�ration imaging was reported by Rauh-Davies et al. (2013).

The 2D ommon-o�set MF (2D COMF) staking operator was presented by Berkovith et al.

(2011). In the CO ase, the moveout is still desribed by the double-square-root expression.

Berkovith et al. (2011) showed that CO MF allow to enhane strongly non-hyperboli

events and to onstrut the reliable veloity model by the prestak stereotomography.
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1.3.2.2 Impliit CRS

In order to improve the quality of the onventional CRS stak, Vanelle et al. (2010) have

revisited the model of Landa et al. (2010) - the irular re�etor with the origin at the

point (xc, H) and the radius R in the homogeneous isotropi medium with the veloity V
(see Figure 1.7b). In this model, the traveltime of the ray propagated from the soure xs
through the arbitrary point on re�etor (de�ned by the angle θ) to the reeiver xg is equal:

t(∆xs,∆xg) = ts + tg, (1.27)

where

ti =

√

(∆xi −∆xc −R sin θ)2 + (H −R cos θ)2

V
, ∆xc = xc − x0, i = s, g. (1.28)

Aording to Fermat's priniple, the ray takes the path that minimizes the traveltime, i.e.,

the ondition

∂t
∂θ = 0 must ful�ll. This ondition leads to the impliit equation for the

angle θ:

tan θ =
m−∆xc

H
+

h

H

ts − tg
ts + tg

. (1.29)

The last equation may be solved iteratively with the initial value of θ orresponding to the
NIP (see Vanelle et al., 2010).

In order to extend this model-based approah to the inhomogeneous medium, Shwarz

(2011) expanded the square roots of (1.27) into the Taylor series and mathed the

oe�ients with the respetive ounterparts in the paraboli CRS staking operator (1.15).

The obtained system of equations has a unique solution:

V =
vNMO

√

1 + (v2NMO/v
2
0) sin

2 α
,

xc = x0 −
RN sinα

cos2 α(1 + [v2NMO/v
2
0 ] sin

2 α)
,

H =
v0RN

vNMO cos2 α(1 + [v2NMO/v
2
0 ] sin

2 α)
,

R =
(v0RN/vNMO cos2 α)− (vNMOt0/2)

√

1 + (v2NMO/v
2
0) sin

2 α
,

(1.30)

where the NMO veloity is equal to

vNMO =

√

2v0RNIP

t0 cos2 α
. (1.31)

The traveltime formula (1.27) with the oe�ients (1.30) was alled the impliit CRS

(i-CRS) staking operator.

Shwarz et al. (2014) summarized the method and ompared i-CRS with the onventional

CRS and MF. They found that i-CRS provides higher auray than the MF method,
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espeially in the presene of strong inhomogeneity. In order to explain this result,

Shwarz et al. (2015) investigated the mehanisms by whih MF and i-CRS aount for

inhomogeneity of the overburden: while MF uses the time-shift mehanism, i-CRS inherits

the veloity-shift mehanism, typial for CRS. Shwarz et al. (2015) also proposed a reipe

how to transform time-shifts to veloity-shifts and vie versa. With this reipe, one an

obtain the time-shifted version of the i-CRS operator and the veloity-shifted version of

MF. Shwarz et al. (2015) onluded that i-CRS and MF "are essentially equivalent, when

the same auxiliary medium for both operators is onsidered".

Vanelle et al. (2012a) proposed the 2D i-CRS staking operator for onverted waves (2D

i-CRS-PS, see Setion 4.2.4 for more details). However, extension of the i-CRS method to

the 3D ase and to the ommon-o�set ase was not presented so far.

1.3.2.3 Non-hyperboli CRS

Another simple model, that onsists of the hyperboli re�etor in the onstant-veloity

medium (see Figure 1.7), was analyzed by Fomel and Stovas (2010). They derived an

analytial expression for the re�etion traveltime in this simple model. Based on this

analytial expression, Fomel and Kazinnik (2013) proposed the non-hyperboli ommon

re�etion surfae (n-CRS) staking operator:

t(m,h) =

√

F (m) + χh2 +
√

F (m− h)F (m+ h)

2
, (1.32)

where

F (m) =
(
t0 + wm

)2
+ 2t0Nm2, (1.33)

χ = 2t0(2M −N) + w2, (1.34)

and w, M , N are the CRS parameters (1.17).

Obviously, the n-CRS staking operator is mathematially more ompliated than the

MF and i-CRS formulas. In order to better understand the struture of the n-CRS

formula (1.32), I propose the following reformulation (see Appendix C.1):

t(m,h) =

√
√
√
√
√

[ 1

2

√

F (m− h)
︸ ︷︷ ︸

ts

+
1

2

√

F (m+ h)
︸ ︷︷ ︸

tg

]2
+ 2t0

(
M −N

)
h2

︸ ︷︷ ︸

∆tsg

. (1.35)

In the ase of di�rations, oe�ients M and N are equal and n-CRS transforms to the

purely DSR formula.

Fomel and Kazinnik (2013) presented the formal extension of the n-CRS staking operator

to the 3D ase (3D n-CRS, see Appendix C.2). However, they ould not �nd a geometrial

interpretation of the obtained traveltime approximation.
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Table 1.1: Evolution of staking operators

Stak Staking operator Extensions

CMP t =
√

fNMO(t0, h) 3D, PS, CO

CRS t =
√

fCRS(t0, h,m) 3D, PS, CO

MF

t = t0 +
√

f s
MF(h,m)

︸ ︷︷ ︸

∆ts

+
√

f g
MF(h,m)

︸ ︷︷ ︸

∆tg

i-CRS

t =
√

f s
iCRS(t0, h,m)

︸ ︷︷ ︸

ts

+
√

f g
iCRS(t0, h,m)

︸ ︷︷ ︸

tg

?

n-CRS

t =

√
√
√
√

[√

f s
nCRS(t0, h,m)

︸ ︷︷ ︸

ts

+
√

f g
nCRS(t0, h,m)

︸ ︷︷ ︸

tg

]2
+ f sg

nCRS(t0, h)
︸ ︷︷ ︸

∆tsg

Walda et al. (2016) made a fair omparison of the CRS, MF, i-CRS and n-CRS staking

operators. In order to reveal the full potential of the DSR-based staking operators, they

arefully aounted for the on�iting dips problem and used a global optimization sheme

to estimate the wave�eld attributes. As well they ompared staking operators in the

same (time-shifted or veloity-shifted) domain. Based on the marine �eld data, they found

that all DSR-based staking operators give superior results ompared to the onventional

CRS. Also they did not observe signi�ant di�erenes between the DSR-based staking

operators. A omparison of the omputational e�ieny showed that the most e�ient

DSR-based staking operator is the n-CRS with only 5% inrease in the omputational

time ompared to the onventional CRS.

1.4 Conlusions

The staking theory has ome a long way from the CMP stak over the multidimensional

CRS stak to the double-square-root-based MF, i-CRS and n-CRS staks. Over the years,

staking operators have evolved and beome more and more ompliated (see Table 1.1).

For the purpose of simpliity, the new staking tehniques are usually proposed for the

simplest 2D zero-o�set ase. Later they are extended to three important ases: the 3D

ase, the ase of onverted waves (PS) and the ase of ommon-o�set geometry (CO).

The lassial CMP stak and the CRS stak have extensions for all these speial ases.

However, the extension of the MF/i-CRS/n-CRS staking operators to the 3D/PS/CO

ases have not been fully understood yet. Existing in the literature extensions (2D CO MF,

2D i-CRS-PS and 3D n-CRS) still remain a room for further studies. To date a number of

interesting questions are still open: how to derive the 3D n-CRS staking operator, how to

extend the 2D i-CRS/MF staking operators to the 3D ase, how to onstrut the n-CRS
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Figure 1.8: Classi�ation of the multidimensional staking operators. The paraxial ray

theory is the origin for the 3D CO CRS staking operator whih may be used

for staking of onverted waves. The model-based approah is used for the

derivation of the DSR-based staking operators. The most popular model - the

spherial re�etor in the homogeneous medium - leads to the MF and i-CRS

staking operators. The dashed line indiates that MF and i-CRS represent

almost the same staking operator formulated in di�erent domains.

staking operator for the ase of onverted waves?

Another important issue is the origin of the staking operators. While the CRS staking

operator is based on the paraxial ray theory, all DSR-based staking operators are derived

from the model-based approah (see Figure 1.8). However, the 2D ZO CRS staking

operator an also be derived from the model-based approah of Höht et al. (1999). The

question naturally arises whether it is possible to derive the DSR-based staking operators

from the paraxial ray theory.

In the next four hapters, I will try to �nd the answers to these questions.
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Chapter 2

Theory of 3D DSR-based staking

operators

The geometrial approah is usually used for the derivation of the 2D DSR-based staking

operators. The key element of the derivation is a simpli�ed model: an analytial re�etor

in a homogeneous isotropi medium (auxiliary medium). The straightforward extension

of this approah to the 3D ase does not lead to good results sine the wavefronts have

ompliated shape in the 3D ase.

In this hapter, I propose the 3D simpli�ed model whih onsists of the auxiliary anisotropi

medium and the speially oriented analytial re�etor. Based on this model, I extend the

existing DSR-based staking operators to the 3D ase.

2.1 Introdution

Staking of seismi traes is a basi step in the seismi proessing work�ow (Yilmaz, 2001).

It represents a onvenient and e�ient way to obtain a simulated zero-o�set (ZO) volume

and to extrat surfae-based kinemati wave�eld attributes whih may be used in the

subsequent imaging steps. The quality of the ZO volume and the wave�eld attributes

signi�antly depends on the hosen staking operator. The double-square-root-based

(DSR-based) staking operators produe images of the subsurfae superior than the one

obtained by the onventional ommon-re�etion-surfae (CRS) staking operator (Landa,

2007; Shwarz et al., 2014). A variety of DSR-based staking operators exists in the 2D

ase. The most ommon are Multifousing (MF) (Gelhinsky et al., 1999; Landa et al.,

1999; Tygel et al., 1999), non-hyperboli CRS (n-CRS) (Fomel and Kazinnik, 2013) and

impliit CRS (i-CRS) (Vanelle et al., 2010; Shwarz, 2011).

Nowadays, the 3D seismi surveys have beome a standard exploration and exploitation

tool (Vermeer, 2002). The 3D seismi surveys allow to obtain a true and preise image of

25
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the subsurfae (Frenh, 1974). While the 3D CRS staking operator exists in the literature

(see Müller, 2003), the 3D versions of the DSR-based staking operators (exept the formal

extension of n-CRS) were not presented so far. Hene, it is important to extend the DSR-

based staking operators to the 3D ase.

The geometrial (model-based) approah is ommonly used for the derivation of the DSR-

based staking operators. The derivation is usually based on a simpli�ed model of the

subsurfae: an analytial re�etor in an auxiliary onstant-veloity medium. The simpli�ed

model is related to "reality" (a urved re�etor below an inhomogeneous overburden)

through the two hypothetial experiments providing two eigen-wavefronts (Hubral, 1983).

This allows to obtain the DSR-based traveltime approximations with the same wave�eld

attributes used in the onventional CRS staking operator.

This hapter re-examines the geometrial approah in the 2D ase and proposes its

extension to the 3D ase in order to obtain the 3D DSR-based staking operators. The

hapter has the following struture. Setion (2.2) gives a statement of the problem and

explains the main ideas behind the derivation of the 2D DSR-based staking operators. The

next three setions introdue the omponents of the 3D simpli�ed model: the speial ray-

entered oordinate system (Setion 2.3), the auxiliary anisotropi medium (Setion 2.4)

and the urved re�etor (Setion 2.5). The 3D simpli�ed model (Setion 2.6) depends only

on the traveltime of the entral ray, the near-surfae veloity and the kinemati wave�eld

attributes. In the 3D simpli�ed model, the traveltime of the re�eted wave an be presented

either by the impliit DSR formula, similar to i-CRS (Setion 2.7), or by the approximate

expliit DSR formula, similar to n-CRS (Setion 2.8). Final Setion (2.9) onludes the

results of this hapter and highlights the links between the obtained operators.

2.2 Statement of the problem

In the re�etion seismi experiment, the seismi wave, emitted from the soure, propagates

in the inhomogeneous subsurfae. This wave re�ets from the inhomogeneities in the

subsurfae, returns bak to the measurement surfae and is reorded by reeivers. In the

2D ase, the soures and the reeivers are loated on the seismi pro�le. The entral ray

originates from the entral (imaging) point x0, re�ets at the normal-inidene-point (NIP)
and returns bak to x0 with the traveltime t0 (see Figure 2.1a). The staking operators

desribe the traveltime t of the paraxial ray, whose soure position xs and reeiver position
xg are loated in the viinity of the entral point x0.

The derivation of the 2D DSR-based staking operators requires several assumptions. Both

i-CRS and n-CRS as well as MF utilize the onept of straight rays and loally approximate

the wavefront elements by irles. Hene, it is usual to replae the omplex inhomogeneous

overburden by the homogeneous medium (so-alled auxiliary medium). It is also ommon

to approximate the re�etor by an algebrai urve. For example, the irular re�etor is

used in the derivation of i-CRS, and n-CRS is based on the re�etion from the speially

oriented hyperbola. The auxiliary medium and the analytial re�etor form a simpli�ed
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model, appealing for the geometrial interpretation (see Figure 2.1b).

As mentioned in the previous hapter, the 2D staking operators an be formulated either

for the �optial� or for the �e�ient� auxiliary medium (see Setions 1.2.2 and 1.3.2.2). In

fat, the di�erene between these two auxiliary media is only in the value of the veloity,

whih is either equal to the near-surfae veloity v0 (in the optial medium) or to the

e�etive veloity (in the e�etive medium). Sine formulation in the optial domain is

more intuitive and leads to onsiderably simpler formulas, in the following I will use the

optial auxiliary medium.

The relationship between the inhomogeneous medium with the urved re�etor and the

simpli�ed model is established upon onsideration of two hypothetial experiments: the

normal-inidene-point (NIP) experiment and the normal experiment.

In the NIP experiment, a �titious soure S is plaed at the re�etion point of the entral

ray (NIP). The soure S generates the wavefront with the radius of urvature RNIP at the

entral point (see Figure 2.1). The irular approximation of the wavefront is appliable

in the viinity of the entral point. In the optial auxiliary medium of onstant veloity

v0, an idential wavefront may be generated by an image soure S∗
loated at the enter

of urvature of the NIP wavefront. The position of the image soure S∗
is determined by

the emergene angle of the entral ray α and the radius of urvature RNIP. Note that the

two-way traveltime along the entral ray in the optial auxiliary medium

tp =
2RNIP

v0
(2.1)

is generally not equal to the two-way traveltime t0 in the inhomogeneous medium.

In the normal experiment, the �titious exploding re�etor is onsidered (see Figure 2.1d).

Similarly to the NIP experiment, the wavefront of the normal wave an be approximated by

the irular wavefront with the radius of urvature RN at the entral point. It is apparent

from Figure 2.1d that the idential wavefront is generated by the irular re�etor with

the origin at the enter of urvature of the normal wavefront O∗
and the radius R:

R = RN −RNIP. (2.2)

Thus, the simpli�ed model is de�ned by the near-surfae veloity v0 and the surfae-based

wave�eld attributes: the emergene angle of the entral ray α, and the urvatures of the

fundamental waves RNIP and RN.

In the simpli�ed model, the traveltime of the ray from the soure at xs to the irular

re�etor (xref (ϑ), zref (ϑ)) parameterized by the variable ϑ to the reeiver at xg is equal:

t(ϑ) =

√

(xs − xref (ϑ))2 + z2ref (ϑ)

v0
+

√

(xg − xref (ϑ))2 + z2ref (ϑ)

v0
. (2.3)

Aording to Fermat's priniple, the re�eted ray prefers the path, whih minimizes the

traveltime t(ϑ). Hene, the value of the variable ϑ = ϑr de�ning the re�etion point
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Figure 2.1: Illustration of the 2D seismi re�etion experiment (a). The entral ray (red)

and the paraxial ray (blak) propagate in the inhomogeneous isotropi medium.

In order to �nd the traveltime of the paraxial ray, the inhomogeneous medium

and the urved re�etor are simpli�ed by the onstant-veloity medium and

the irular re�etor (b). The parameters of suh simpli�ed model are linked

with the urvatures of the NIP () and normal (d) waves.
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oordinates (xr, zr) an be found by minimizing the traveltime t(ϑ):

∂t

∂ϑ
= 0, → ϑ = F(ϑ, v0, xs, xg, x0, α,RNIP, RN). (2.4)

The resulting impliit equation an be iteratively solved to obtain ϑr. Substitution of ϑr

into the equation (2.3) yields the traveltime of the re�eted ray in the simpli�ed model.

Finally, the traveltime of the re�eted wave in the inhomogeneous medium is obtained

after subtration of the time shift tp − t0 from the traveltime of the re�eted ray in the

simpli�ed model:

t =

√

(xs − xr)2 + z2r
v0

+

√

(xg − xr)2 + z2r
v0

−
(
tp − t0

)
. (2.5)

The above strategy reprodues the derivation of the time-shifted version of the 2D i-CRS

staking operator (Shwarz, 2011).

The objetive of this hapter is to apply the similar strategy in the 3D ase in order to

�nd the 3D DSR-based staking operators. This will obviously require:

1. the image soure S∗
in the 3D auxiliary medium, de�ned by the urvature of the

NIP wavefront (similar to 2.1);

2. the link between the urvature of the re�etor and the urvatures of the NIP and

normal wavefronts in the 3D ase (similar to 2.2);

3. the expression for the traveltime of the re�eted ray (similar to 2.3);

4. the system of equations de�ning the re�etion point oordinates (similar to 2.4).

Moreover, the 3D DSR-based staking operators have to be ompatible with the onven-

tional 3D CRS staking operator (1.19) and have to use the same wave�eld attributes (1.20)

as the onventional 3D CRS.

2.3 Coordinate system

To provide a mathematial formalism of the problem, I establish two oordinate systems:

the general Cartesian oordinate system L related to the measurement surfae and the

speial ray-entered oordinate system L′
related to the entral ray (see Figure 2.2a).

The general Cartesian oordinate system L is hosen so that the seismi soure x̂s, the

reeiver x̂g and the entral point x̂0 are loated in the plane z = 0. The positive z-axis
points downwards, thereby z may be referred to as "depth".
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Figure 2.2: Seismi measurements are related to the general Cartesian oordinate system

L (a). However, the derivation of the 3D DSR-based staking operators requires

the speial ray-entered oordinate system L′
. The origin of the system L′

oinides with the entral point x̂′
0. It's z

′
-axis is tangential to the entral ray

and the x′ and y′-axes align the prinipal diretions of urvature of the NIP

wavefront. The diretion of z′-axis is de�ned by the emergene angles α and

β of the entral ray (b). In the standard ray-entered oordinate system L̃′
, x̃′

and ỹ′-axes do not oinide with the prinipal diretions of the NIP wavefront.

Hene, the additional rotation for the angle δ is performed ().

The system L′
is a speial ray-entered oordinate system whose x′ and y′-axes oinide

with the prinipal diretions of urvature of the NIP wavefront. Like the standard ray-

entered oordinate system, the system L′
originates at the entral point x̂0, and it's z

′
-axis

is tangential to the entral ray at x̂0.

The relationship between the general Cartesian oordinates x̂ and the speial ray-entered

oordinates x̂′
is given by equation:

x̂′ = R̂T

z (δ) R̂
T

y (α)R̂
T

z (β)
︸ ︷︷ ︸

R̂T

(x̂− x̂0). (2.6)

In this equation, α and β are the polar and azimuthal angles of the entral ray, and δ is

the angle between the prinipal urvature diretion and the x-axis of the standard ray-

entered oordinate system (see Figure 2.2b). The matries R̂y and R̂z are the basi

rotation matries:

R̂y(θ) =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 , R̂z(θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 . (2.7)

The matrix R̂T ≡ R̂T
y (α)R̂

T
z (β) aounts for the transformation from the general Cartesian

to the standard ray-entered oordinate system. The matrix R̂T
z (δ) makes an additional

rotation about z′-axis to aline x′ and y′-axes with the prinipal diretions of urvature of

the NIP wavefront.

The obvious advantage of the oordinate system L′
over the standard ray-entered system
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Figure 2.3: Illustration of the NIP experiment in the 3D ase. The �titious soure S in the

inhomogeneous medium generates the wavefront with the urvature K′
NIP (a).

In the ase of the auxiliary isotropi medium (b), the NIP wavefront does not

"fous" in one point. Consideration of the auxiliary anisotropi medium ()

overomes this problem.

is that in the L′
system the matrix of urvature of the NIP wave K′

NIP is diagonal:

K′
NIP =

(
k′11NIP 0

0 k′22NIP

)

. (2.8)

2.4 Auxiliary anisotropi medium

As disussed before, all DSR-based staking operators desribe the moveout in the auxiliary

medium of onstant veloity. It is also important to note that the 2D auxiliary medium is

not only homogeneous but also isotropi, i.e. the veloity is diretion-independent.

In the 2D ase, the irular wavefront approximation is valid, beause the arbitrary

wavefront is loally de�ned by one urvature. However, in the 3D ase, an arbitrary

wavefront has two prinipal urvatures and, hene, ould not be aurately approximated

by the spherial wavefront. In the 3D ase, the homogeneous isotropi medium does

not "fous" the arbitrary wavefront (see Figure 2.3b). Thus, I propose to onsider

a homogeneous anisotropi medium. In the homogeneous anisotropi medium, the

wavefronts have a ompliated shape, sine the veloity varies with the diretion. Hene

it is possible to �nd the homogeneous anisotropi medium that "fous" the wavefront of

the arbitrary urvature in one point (see Figure 2.3).

The wavefront propagation in a general homogeneous anisotropi medium is governed by

21 density normalized elasti parameters. However, the number of independent parameters

may be signi�antly redued when the wavefronts with the ertain symmetry properties are

required. In the system L′
, the loal quadrati approximation of the arbitrary wavefront

has two orthogonal symmetry planes: x′ = 0 and y′ = 0 (see Figures 2.3a,). Sine the

wavefront approximation is only of interest in the half-spae z′ > 0, there is an additional

symmetry plane z′ = 0. Given the above mentioned symmetries, the general anisotropy
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degenerates to the orthorhombi anisotropy.

The orthorhombi anisotropy media is de�ned by 9 density normalized elasti parameters.

However, the propagation of quasi-ompressional (qP) waves in the degenerate orthorhom-

bi (ellipsoidal) medium is governed by only three density normalized elasti parameters.

The group veloity of qP-waves in the weakly anisotropi ellipsoidal medium is equal to

(Daley and Krebes, 2005, p. 5 eq. 21):

1

ζ2(Θ,Φ)
=

sin2 Θcos2 Φ

A11
+

sin2 Θsin2 Φ

A22
+

cos2 Θ

A33
. (2.9)

Here Θ and Φ are the group polar and azimuthal angles de�ning the diretion of the ray.

Density normalized elasti parameters A11, A22 and A33 de�ne the group veloity in x′, y′

and z′ diretions, respetively.

In order to investigate the link between the density normalized elasti parameters and the

prinipal urvatures of the NIP wavefront, I onsider the NIP experiment. In the NIP

experiment the �titious soure S is plaed at the re�etion point of the entral ray (see

Figure 2.3a). The wavefront generated by the soure S arrives at the entral point x̂′
0 at

the time

t0
2 with the urvature K′

NIP. The idential wavefront may be generated by the

image soure S∗
at the point (0, 0, R∗

NIP) in the auxiliary anisotropi medium.

The depth of the image soure R∗
NIP and the parameters of the auxiliary anisotropi medium

A11, A22, A33 are uniquely determined from the ondition that the traveltime, the slowness

vetor and the urvature of the NIP wavefront at the entral point x̂′
0 are the same both

in the inhomogeneous medium and in the auxiliary medium. Indeed:

� from the ondition of the slowness equality, the group veloity along z′-axis in the

auxiliary medium is equal to the veloity v0 at the entral point in the inhomogeneous
medium:

A33 = v20 ; (2.10)

� from the ondition of the traveltime equality, the depth of the image soure S∗
is

equal:

R∗
NIP =

t0v0
2

; (2.11)

� from the ondition of the urvature equality, the parameters A11, A22 are equal (see

Appendix A.2 for details):

1

A11
=

t0
2v0

k′
11
NIP,

1

A22
=

t0
2v0

k′
22
NIP. (2.12)

Hene, in the 3D ase, the omplex inhomogeneous overburden may be replaed by the

auxiliary anisotropi medium with parameters:

1

A11
=

t0
2v0

k′
11
NIP,

1

A22
=

t0
2v0

k′
22
NIP,

1

A33
=

1

v20
. (2.13)
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Figure 2.4: Illustration of the normal experiment in the 3D ase. The exploding re�etor in

the inhomogeneous medium generates the wavefront with the urvatureK′
N (a).

The similar wavefront may be generated by the analytial re�etor with the

urvature K′
R in the auxiliary medium.

The parameters (2.13) depend on the traveltime of the entral ray t0, the near-surfae

veloity v0 and the urvature of the NIP wavefront. Hene they are �xed for a given

entral ray. Note that, unlike the 2D ase, the traveltimes along the entral ray oinide

in the auxiliary anisotropi medium and in the inhomogeneous medium.

2.5 Curvature of re�etor

In the 2D ase, the arbitrary re�etor an be loally approximated by an analyti urve in

the viinity of the NIP. For example, the irular re�etor is used in the derivation of the

i-CRS formula, and the n-CRS formula is based on the re�etion from the speially oriented

hyperbola. These simpli�ations are possible, beause the front of the hypothetial normal

wave has one urvature in the 2D ase. However, in the 3D ase, both the re�etor and the

normal wavefront are desribed by 2 × 2 symmetri urvature matries (see Figure 2.4a).

As shown in the previous setion, the inhomogeneous medium may be replaed by the

auxiliary anisotropi medium with parameters depending on the urvature of the NIP

wavefront. The aim of this setion is to �nd the re�etor that generates the normal

wavefront with the desired urvature in the auxiliary medium.

When the inhomogeneous overburden is replaed by the auxiliary medium, the entral ray

beomes the straight line oiniding with the z′-axis and the NIP is loated at the depth

R∗
NIP (see Figure 2.4b). Like in the inhomogeneous isotropi medium, in the auxiliary

medium the re�etor passes through the NIP and is perpendiular to the entral ray at the

NIP. The urvature of the re�etor at the NIP is determined by the urvature matrix K′
R.

In the 3D ase, there are many surfaes with the urvature K′
R at the apex. For example,
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Figure 2.5: Two di�erent ways to approximate the re�etion surfae: (a) by the paraboloid,

and (b) by the ellipsoid. Both re�etors have the same urvature K′
R at the

apex point R∗
NIP.

the re�etor an be approximated by the paraboloid (see Figure 2.5a):

f(x′) = R∗
NIP +

1

2
x′TK′

Rx
′, (2.14)

or by the ellipsoid (see Figure 2.5b and Appendix B.1). Although the ellipsoidal re�etor

is a restrited ase (both prinipal urvatures have positive signs), this type of re�etor is

of speial interest beause of the ability to �t point di�rators. Despite the atual form

of the re�etor, the urvature of the normal wave depends only on the urvature of the

re�etor at the NIP. In order to �nd the relationship between urvatures K′
R and K′

N, I

onsider the normal experiment.

In the normal experiment (see Figure 2.4b), the wavefront, originated from the re�etor,

propagates through the auxiliary medium and arrives at the entral point x̂0 with the

urvature K′
N. Suppose that the re�etor is de�ned by the funtion f of the lateral

oordinates (e.g., by the equation 2.14). Then, it is possible to ompute a unit normal

vetor at eah point on the re�etor. The normal vetor, being also normal to the wavefront,

de�nes the diretion of the phase veloity propagation. The diretions of the group and

phase veloity propagation generally do not oinide in an anisotropi media and have a

ompliated relation. However, in the auxiliary (ellipsoidal) anisotropi medium, there is

an expliit relation between the group and phase angles (see e.g. Daley and Krebes, 2005).

The group angles de�ne the diretion and the value of the group veloity ζ aording to

the equation (2.9).

Therefore, for eah point on the re�etor x̂′
ref it is possible to onstrut the normal ray.

This ray rosses the surfae z′ = 0 at the intersetion point x̂′
int:





x′int
y′int
0



 =





x′ref
y′ref
f(x′

ref)



+ t





ζ1(x
′
ref )

ζ2(x
′
ref )

ζ3(x
′
ref )



 . (2.15)
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The z′-omponent of this three-omponent equation gives the traveltime to the intersetion
point as a funtion of x′

ref :

t = −
f(x′

ref )

ζ3(x
′
ref )

. (2.16)

Substitution of (2.16) into the x′ and y′-omponents of the equation (2.15) yields the

dependene of the intersetion point x′
int on the re�etor point x

′
ref . In the viinity of the

entral ray, this dependene an be linearized, and the inverse relation an be established

(see Appendix A.3 for details):

x′
ref ≈

[

I+K′−1
NIPK

′
R

]−1
x′
int. (2.17)

With the last relation it is possible to �nd the traveltime of the normal wave as a funtion

of x′
int (see Appendix A.3 for details):

t2(x′
int) =

t20
4
+

t0
2v0

x′T
int

[

K′−1
R +K′−1

NIP

]−1
x′

int. (2.18)

The omparison of this traveltime with the hyperboli expression (see Appendix A.1)

t2(x′) =
t20
4
+

t0
2v0

x′TK′
Nx

′
(2.19)

gives the desired link between the urvatures:

K′−1
N = K′−1

R +K′−1
NIP. (2.20)

Thus, in the 3D auxiliary anisotropi medium, the re�etor with the urvature

K′
R =

[

K′−1
N −K′−1

NIP

]−1
(2.21)

generates the normal wavefront with the urvature K′
N. Another important result follows

immediately from (2.17) and (2.21):

x′
ref ≈

[

I−K′−1
NIPK

′
N

]

x′
int. (2.22)

This means that the approximate position of the re�etion point may be determined in

terms of the surfae-based kinemati wave�eld attributes.

2.6 3D simpli�ed model

In summary, the inhomogeneous medium with the urved re�etor may be replaed by the

auxiliary anisotropi medium with the analytial re�etor of urvatureK′
R (see Figure 2.6).

The analytial re�etor (2.21) and the auxiliary medium (2.13) in the speial ray-entered

oordinate system (2.6) form the simpli�ed model. The simpli�ed model depends on the
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Figure 2.6: Similar to the 2D ase, in the 3D ase, the inhomogeneous overburden with

the urved re�etor (a) an be replaed by the simpli�ed model (b). In the

simpli�ed model the rays are straight lines, and the re�etor has a simple

shape. Hene, the traveltime of the paraxial ray an be found based on the

geometrial relations.

traveltime of the entral ray, the near-surfae veloity and the surfae-based kinemati

wave�eld attributes.

By de�nition, the simpli�ed model satis�es the hypothetial NIP and normal experiments.

Sine the NIP and normal waves are the eigen-waves (Hubral, 1983), the arbitrary re�eted

wave, in some sense, an be represented by the superposition of these eigen-waves. Thus,

the simpli�ed model may be used to predit the traveltime of the paraxial ray.

2.7 Impliit staking operator (3D i-CRS)

As disussed previously, it is possible to replae the urved re�etor and the inhomogeneous

overburden with a simpli�ed model. The surfae-based kinemati wave�eld attributes

de�ne the simpli�ed model that onsists of the speial oordinate system L′
, the auxiliary

medium and the re�etor in the parametri form:

x̂′
ref (ϑ,ϕ) ≡ (x′ref (ϑ,ϕ), y

′
ref (ϑ,ϕ), z

′
ref (ϑ,ϕ)). (2.23)

In this setion, I disuss how to �nd the traveltime of the paraxial ray in the simpli�ed

model.

Consider an arbitrary point on the re�etor. The traveltime from the soure loation x̂′
s

to this arbitrary point and from this point to the reeiver loation x̂′
g is obviously equal:

t(ϑ,ϕ) =

√

X ′
s
2 + Y ′

s
2 + Z ′

s
2

ζs(Θs,Φs)
+

√

X ′
g
2 + Y ′

g
2 + Z ′

g
2

ζg(Θg,Φg)
, (2.24)
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where the following notations are used:

X ′
i = x′ref − x′i, Y ′

i = y′ref − y′i, Z ′
i = z′ref − z′i, i = s, g, (2.25)

and ζs, ζg denote the group veloities. Substituting the relations for the group angles:

sin2Θi =
X ′

i
2 + Y ′

i
2

X ′
i
2 + Y ′

i
2 + Z ′

i
2 , sin2 Φi =

Y ′
i
2

X ′
i
2 + Y ′

i
2 , i = s, g, (2.26a)

cos2 Θi =
Z ′
i
2

X ′
i
2 + Y ′

i
2 + Z ′

i
2 , cos2 Φi =

X ′
i
2

X ′
i
2 + Y ′

i
2 , i = s, g, (2.26b)

and the de�nition of the group veloity (2.9) into (2.24) yields the ompat DSR formula

for the traveltime:

t(ϑ,ϕ) =

√

X ′
s
2

A11
+

Y ′
s
2

A22
+

Z ′
s
2

A33
+

√

X ′
g
2

A11
+

Y ′
g
2

A22
+

Z ′
g
2

A33
. (2.27)

Note that the resulting traveltime formula (2.27) is given as a funtion of the parameters

ϑ and ϕ. The parameters ϑr, ϕr de�ning the re�etion point of the paraxial ray x̂′
r an

be determined using Fermat's priniple. Aording to Fermat's priniple, the paraxial ray

takes the path of the least traveltime. Hene, the parameters ϑr, ϕr may be found by

solving the following system of nonlinear equations:

{
∂t
∂ϑ = 0,
∂t
∂ϕ = 0.

(2.28)

The traveltime formula (2.27) and the solution of the system (2.28) form the 3D impliit

CRS staking operator

1

(3D i-CRS). Below, I present two iterative approahes to solve the

system (2.28). The hoie of the approah depends on the type of parameterization of the

re�etor surfae.

2.7.1 Linearized iterative approah

In this approah, the parameters ϑ and ϕ denote the lateral oordinates x′ and y′, and the

re�etion surfae is desribed by the ontinuous and twie di�erentiable funtion f of the

lateral oordinates:

z′ref = f(x′, y′). (2.29)

I assume that the re�etion point of the paraxial ray is lose to the re�etion point of the

entral ray. Hene the re�etion point displaements

∆x′r ≡ x′r − x′r0 , ∆y′r ≡ y′r − y′r0 (2.30)

1

This name was given sine the obtained staking operator is "ideologially" lose to the 2D impliit

CRS staking operator.
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are small, ompared to the typial sale of the problem. With this assumption, the system

of equations (2.28) an be linearized:

{

Ax +Axx∆x′(j)r +Axy∆y′(j)r = 0,

Ay +Ayx∆x′(j)r +Ayy∆y′(j)r = 0.
(2.31)

Here ∆x′(j)r and ∆y′(j)r are the updates of the re�etion point oordinates at the j-th
iteration

∆x′
(j)
r ≡ x′

(j)
r − x′

(j−1)
r , ∆y′

(j)
r ≡ y′

(j)
r − y′

(j−1)
r . (2.32)

The oe�ients Ax and Ay denote the �rst-order partial derivatives of the traveltime (2.27)

with respet to the lateral oordinates of the re�etion point, and the oe�ients Axx,

Axy, Ayx and Ayy are equal to the orresponding seond-order partial derivatives. The

oe�ients are minutely disussed in Appendix B.2.

At the �rst iteration, the oe�ients are estimated at the re�etion point of the entral

ray. The linearized system (2.31) gives the �rst approximation of the re�etion point

oordinates (x′(1)r , y′(1)r ). The next approximation (x′(2)r , y′(2)r ) may be found by solving

the system (2.31) with the oe�ients taken at the point x′(1)
r . Aordingly, for the j-th

iteration step, the oe�ients are estimated at the point (x′(j−1)
r , y′(j−1)

r ). Finally, after n

iterations, I obtain the lateral oordinates of the re�etion point (x′(n)r , y′(n)r ) and get the

traveltime aording to the formula (2.27).

Note that the algorithm, desribed here is a generalization of the approah presented by

Abakumov et al. (2013) for the ase of the inhomogeneous overburden.

2.7.2 Trigonometri iterative approah

Alternatively, the re�etor surfae an be parameterized by polar angles. In this

parameterization ϑ and ϕ denote the polar and azimuthal angles. In this ase, the system

of nonlinear equations (2.28) may be presented in the following way:

tanϕ = F1(ϑ,ϕ, t0, v0,xs,xg,x0, α, β,KNIP,KN) (2.33a)

tan ϑ = F2(ϑ,ϕ, t0, v0,xs,xg,x0, α, β,KNIP,KN) (2.33b)

The funtions F1 and F2 are de�ned in Appendix B.3.

The angles ϑ and ϕ an be obtained iteratively with the equations (2.33). At the �rst

iteration, I hoose ϑ(0)
and ϕ(0)

orresponding to the re�etion point of the entral ray:

ϑ(0) = 0, ϕ(0) = 0.

The equation (2.33a) gives an update ϕ(1)
. This updated value is used in the equation

(2.33b) for ϑ(1)
. The iterations are repeated until the onvergene is ahieved. Finally,

after n iterations, I obtain the values ϑ(n)
and ϕ(n)

and substitute them into the equation
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(2.27) to get the traveltime of the re�eted wave. The desribed approah is based on the

method proposed by Shwarz et al. (2012) for the 2D i-CRS staking operator.

Note that both iterative approahes potentially allow to �nd the traveltime of the re�eted

wave in the simpli�ed model with any desired preision.

2.8 Expliit staking operators

The reently introdued 3D i-CRS staking operator is muh more ompliated than the

onventional 3D CRS staking operator, and hene its implementation into the CRS ode is

rather hallenging. In this setion, I propose alternative expliit staking operators in order

to ahieve a good tradeo� between the auray and the e�ieny of the implementation.

The idea here is to �nd an expliit approximation of the re�etion point oordinates instead

of solving the system (2.28). For a given simpli�ed model, the re�etion point of the

paraxial ray depends only on the oordinates of soure and reeiver, or alternatively, on

the o�set h′
and the midpoint displaement m′

. The approximate loation of the re�etion

point may be presented as a Taylor series expansion around the re�etion point of the

entral ray:

x′
r ≈ x′

r0 +Bh′h′ +Bm′m′ + ... (2.34)

Here Bh′
and Bm′

are 2× 2 matries desribing the shift of the re�etion point in the ase

of CMP and zero-o�set aquisitions, respetively. The matrix Bh′
is equal to zero due to

the reiproity priniple. The matrix Bm′
is equal to (see equation 2.22):

Bm′ =
[

I−K′−1
NIPK

′
N

]

. (2.35)

2.8.1 3D DSR staking operator

Substituting the approximation for x′
r (2.34) into the traveltime formula (2.27) and

omitting the terms of higher order than the seond yield the 3D DSR staking operator

(see Appendix C.3 for detailed derivation):

t(m,h) =
1

2

√
[

t0 +wT∆xs

]2
+ 2t0

[

mTNm− 2mTNh+ hTMh
]

+
1

2

√
[

t0 +wT∆xg

]2
+ 2t0

[

mTNm+ 2mTNh+ hTMh
]

, (2.36)

where ∆xs and ∆xg denote the soure and reeiver displaements:

∆xs ≡ m− h, ∆xg ≡ m+ h. (2.37)

The 3D DSR staking operator (2.36) inludes only CRS parameters (1.20), and an be

easily implemented into the CRS software. It is numerially slightly more expensive than
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the onventional 3D CRS staking operator (1.19). In the speial ases of the �at re�etor

and the point di�rator in the homogeneous medium, formula (2.36) gives exat traveltimes.

For the dipping plane re�etor in the homogeneous medium, formula (2.36) is a short-spread

approximation.

2.8.2 3D n-CRS staking operator

The 3D DSR staking operator (2.36) an be transformed to the 3D n-CRS staking

operator (see Appendix C.4 for details):

t(m,h) =

√
[1

2

√

F̂ (m− h) +
1

2

√

F̂ (m+ h)
]2

+ 2t0hT
(
M−N

)
h (2.38)

where

F̂ (m) =
(
t0 +wTm

)2
+ 2t0m

TNm. (2.39)

This staking operator is idential to one proposed by Fomel and Kazinnik (2013) for the

3D ase.

2.9 Conlusions

Along this hapter I reviewed the geometrial approah whih is the basis of the derivation

of the 2D DSR staking operators. Based on this review, I proposed a simpli�ed model in

the 3D ase. The simpli�ed model onsists of the speial ray-entered oordinate system,

the auxiliary anisotropi medium and the analytial re�etor. The model is fully de�ned by

the traveltime of the entral ray, the near-surfae veloity and the surfae-based wave�eld

attributes. By means of this model, I found impliit and expliit 3D staking operators for

the traveltime of the paraxial ray.

The 3D impliit staking operator (3D i-CRS) inludes the system of nonlinear equations

de�ning the re�etion point oordinates and the DSR expression for the traveltime, as a

funtion of the re�etion point. This staking operator allows to �nd the traveltime in the

simpli�ed model with any desired preision. The auray of the 3D i-CRS approximation

is only restrited by the appliability of the simpli�ed model. In the 2D ase, this approah

redues to the 2D i-CRS staking operator.

The 3D expliit staking operator (3D DSR) is based on the �rst-order approximation of

the re�etion point oordinates. It is the DSR formula of the seond-order auray. The

formula has the same set of parameters as the onventional 3D CRS staking operator and

is thereby ready for implementation into the CRS-based software. The 3D DSR staking

operator an be transformed to the 3D n-CRS staking operator.

In the next hapter, I will investigate the domain of the appliability of the simpli�ed

model and the auray of the 3D staking operators. I will disuss the implementation of
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the new staking operators into the CRS software and I will ompare the performane of

the new operators with the one of the onventional 3D CRS.
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Chapter 3

Auray and implementation of

3D DSR-based staking operators

How aurate is the 3D simpli�ed model? What is the "best" 3D DSR-based staking

operator? How do the DSR-based staking operators improve the quality of the staked

setion? These and other intriguing questions naturally arise from the �ndings presented

in the previous hapter. In this hapter, I will answer these questions based on several

numerial examples.

3.1 Appliability of the simpli�ed model

In the simpli�ed model, the traveltime of the re�eted ray ould be found with any desired

preision. However, the simpli�ed model orretly desribes propagation of re�eted rays

only in the viinity of the entral ray. Hene, it is important to investigate the range of

appliability of the simpli�ed model.

In order to test the appliability of the simpli�ed model, I onsider the so-alled Complex

model (see Figure 3.1a). The Complex model onsists of the analytial re�etor below

the inhomogeneous overburden with the veloity pro�le typial for the Gulf of Mexio.

Suh a model is ompliated enough to possess all e�ets of the real 3D media and at

the same time allows the numerial omputation of traveltimes of re�eted waves. The

Complex model is haraterized by the depth of the NIP point D, whih in this ase is

approximately equal to 1 km.

A orresponding simpli�ed model is shown in Figure 3.1b. The model onsists of the

homogeneous anisotropi auxiliary medium (blue layer in Figure 3.1b) and ellipsoidal or

paraboli re�etor (red surfae). The simpli�ed model is valid if the traveltime of the

re�eted ray in the simpli�ed model tsm is almost idential to the traveltime of the re�eted

ray in the Complex model tcm.

43
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Figure 3.1: Illustration of the Complex model (a) and the orresponding simpli�ed model

(b). The Complex model onsists of the onstant veloity part (v0 = 1500 m/s,
z ≤ 250 m) simulating the water layer, and the onstant-gradient veloity part

(v = v0 + κ(z − z0), z0 = 250 m, κ = 0.5 s−1
, z > 250 m) simulating the

sedimentary layer. The re�etor (red surfae) simulates the top of the salt

body. The re�etor is desribed by the fourth order polynomial funtion of

lateral oordinates. The blak line indiates the trajetory of the entral ray.

The depth of the NIP point is approximately equal to 1.0 km. The simpli�ed

model (b) is onstruted for the partiular entral ray.

The CMP and ZO experiments ould be used to identify the range of appliability of the

simpli�ed model. These experiments allow to obtain the relative error of traveltimes in the

simpli�ed model

E =
tsm − tcm

tcm
· 100% (3.1)

as a funtion of the half-o�set h = {hx, hy} and the midpoint displaement m = {mx,my}
(see Figure 3.2).

As follows from Figures 3.2a,, the simpli�ed model is valid for traes with o�sets |h| < D
and midpoint displaements |m| < D/2 (relative error does not exeed 0.2% and 0.3%,

respetively). There is no systemati di�erene between the ellipsoidal and paraboli

re�etor (ompare images a,  with b, d in Figure 3.2), however the simpli�ed model

with the ellipsoidal re�etor provides a slightly better result.

3.2 The most e�etive iterative approah

In Setion 2.7, I proposed two iterative approahes to �nd the traveltime of the re�eted

wave in the simpli�ed model: the trigonometri iterative approah (TIA, equations 2.33),

whih is the extension of the method proposed by Shwarz et al. (2012) to the 3D ase, and

the linearized iterative approah (LIA, equations 2.31). In this Setion, I will investigate
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Figure 3.2: Relative errors (3.1) E of the traveltimes in the simpli�ed model for the CMP

and ZO experiments. In the CMP experiment (a,b), E is a funtion of |h|
and azimuth angle ξh: 0 ≤ |h| ≤ 2000 m, 0° ≤ ξh ≤ 360°

, |m| = 0. In

the ZO experiment (,d), E is a funtion of |m| and azimuth angle ξm: 0 ≤
|m| ≤ 1000 m, 0° ≤ ξm ≤ 360°

, |h| = 0. Relative errors are omputed for the

simpli�ed model with the ellipsoidal (a,) and paraboli (b,d) re�etors.
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Figure 3.3: Illustration of the aquisition geometry: 100 randomly distributed soure-

reeiver pairs in the viinity of the entral point (a). The RMS traveltime

errors plotted as funtions of the iteration number (b).

whih of these approahes perform best in the 3D ase.

In order to answer this question, I onsider N = 100 randomly distributed soure-reeiver

pairs (see Figure 3.3a) that satisfy the riteria of validity of the simpli�ed model (|h| < D,

|m| < D/2). The simpli�ed model with the ellipsoidal re�etor was hosen to ompare the

LIA and TIA methods.

For omparison, it is onvenient to use the root-mean-square (RMS) traveltime error

δtRMS(i) whih is equal to

δtRMS(i) =

√
√
√
√ 1

N

N∑

k=1

(tk(i)− tkex
tkex

)2
· 100%, (3.2)

where tkex is the exat (omputed numerially to very high preision) traveltime in the

simpli�ed model from the soure at xk
s to the reeiver at x

k
g and tk(i) is the orresponding

traveltime obtained by the TIA/LIA methods on the i-th iteration step.

The RMS traveltime errors as funtions of the iteration number are shown in Figure 3.3b.

As follows from the �gure, LIA onverges signi�antly faster than TIA (LIA requires only

5 iterations to reah the preision of the numerial omputation, while TIA requires 14

iterations). In pratie, 1-2 iterations are enough for LIA, while TIA requires more than 5

iterations.

Note that these results are only valid for the 3D ase. Tests in the 2D ase (and in the 3D

ase with a spherial re�etor) do not reveal signi�ant di�erene between both approahes.
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Figure 3.4: Illustration of six analytial re�etors.

3.3 The most aurate staking operator

As one an onlude from the previous setions, the best realization of the 3D i-CRS

staking operator is the one with the ellipsoidal re�etor and LIA. In this setion, I will

ompare 3D CRS (1.19), 3D DSR (2.36), 3D n-CRS (2.38) and three di�erent realizations

of the 3D i-CRS staking operator (I - LIA, paraboli re�etor, II - LIA, ellipsoidal re�etor,

III - TIA, ellipsoidal re�etor) to �nd �the most aurate� staking operator.

I onsider six di�erent re�etors (see Figure 3.4): the �at re�etor, the plane dipping

re�etor, the point di�rator

1

, the sphere, the ellipsoid and the analytial re�etor from

the Complex model. Eah of these re�etors is ombined with three di�erent overburden

strutures:

� Const - onstant veloity overburden (v0 = 1500 m/s) simulating the water layer;

� Grad - onstant-gradient veloity overburden (v = v0 + κz, v0 = 1500 m/s, κ =
0.5 s−1

) simulating the sedimentary layer;

� 1-D - overburden of omplex struture that onsists of the water layer (depth <

250 m) and the sedimentary layer (depth > 250 m).

All re�etors are hosen in suh a way that the depth of the NIP point D is approximately

equal to 1 km. Hene, previously used aquisition geometry (from Figure 3.3a) is appliable

1

The point di�rator is simulated by the spherial re�etor with the radius R = 10 m.
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for all 18 models. For eah staking operator the RMS traveltime error (3.2) is omputed

(see Table 3.1).

Table 3.1: RMS traveltime errors

Re�etor Veloity CRS DSR n-CRS i-CRS

I

i-CRS

II

i-CRS

III

Flat

re�etor

Const 0.000 0.000 0.000 0.000 0.000 �

Grad 0.058 0.058 0.058 0.059 0.059 �

1-D 0.050 0.050 0.050 0.050 0.050 �

Plane

dipping

re�etor

Const 0.000 0.207 0.000 0.001 0.001 �

Grad 0.184 0.232 0.191 0.189 0.189 �

1-D 0.183 0.225 0.190 0.188 0.188 �

Point

di�rator

(R=10m)

Const 0.878 0.005 0.002 0.001 0.000 0.000

Grad 0.908 0.091 0.089 0.092 0.092 0.092

1-D 0.905 0.085 0.083 0.086 0.085 0.085

Sphere

(R=1km)

Const 0.241 0.087 0.043 0.007 0.000 0.000

Grad 0.275 0.159 0.098 0.108 0.108 0.109

1-D 0.273 0.153 0.093 0.104 0.104 0.105

Ellipsoid

Const 0.207 0.118 0.061 0.022 0.022 0.339

Grad 0.167 0.123 0.092 0.095 0.096 0.621

1-D 0.163 0.117 0.086 0.090 0.090 0.619

Complex

surfae

Const 0.192 0.067 0.017 0.049 0.048 0.048

Grad 0.224 0.145 0.108 0.128 0.128 0.130

1-D 0.223 0.144 0.108 0.128 0.128 0.130

As follows from the table, all staking operators behave equally well for the �at re�etor

and the plane dipping re�etor. An exeption is the 3D DSR staking operator whih gives

an approximate traveltime in the ase of the plane dipping re�etor.

In the ase of quadri surfaes (point di�rator, sphere, ellipsoid) 3D i-CRS (for the

homogeneous overburden) and 3D n-CRS (for the inhomogeneous overburden) provide the

most aurate result. For these models, all DSR-based staking operators �t traveltimes of

the re�eted events signi�antly better than the onventional 3D CRS staking operator.
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Figure 3.5: Relative errors of 3D CRS, 3D DSR, 3D n-CRS and 3D i-CRS staking

operators along the 2D pro�le.

For omplex analytial re�etor, 3D n-CRS remains the most aurate staking operator

even in the ase of homogeneous overburden.

No signi�ant di�erenes were observed between di�erent realizations of the i-CRS staking

operator. As expeted, the realization II (LIA, ellipsoidal re�etor) yields superior result

over the other two realizations. The realization III (TIA, ellipsoidal re�etor) ould not

be applied in the ase of plane re�etors. As expeted, for a given number of iterations

(three iterations in this partiular ase) the realization III (TIA, ellipsoidal re�etor) is

less aurate than the realization II (LIA, ellipsoidal re�etor).

For the Complex model, I additionally ompute the relative errors of traveltimes along

the 2D pro�le (see Figure 3.5). As expeted, 3D n-CRS and di�erent realizations of 3D i-

CRS demonstrate omparable auray, whih is muh higher than the one of onventional

3D CRS.

The results of this setion indiate that 3D n-CRS is "the most aurate" 3D DSR-based

staking operator.
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Figure 3.6: Illustration of the model with the re�etor of varying urvature (a). The

following model parameters are �xed and are equal: RNIP = 1.0 km, α = 30°

,

m = 0.2 km, h = 0.4 km, v0 = 3.2 km/s. The radius of urvature of the

re�etor R varies from 10−4 km to 104 km. Illustration of the orresponding

exat traveltimes and CRS, DSR and n-CRS traveltime approximations (b).

3.4 On the role of expliit staking operators

In the previous setions, I investigated di�erent realizations of the 3D i-CRS staking

operator. In this setion, I would like to disuss relations between di�erent expliit staking

operators � 3D CRS, 3D DSR and 3D n-CRS.

The tests in the previous setion indiate that the CRS staking operator is aurate for

plane re�etors and is not aurate for point di�rators. On the ontrary, the DSR staking

operator perfetly �ts di�ration events and is a short-o�set approximation in the ase of

the plane dipping re�etor. As follows from the tests, n-CRS perfetly mathes both ases.

For better understanding of these observations, I onsider a irular re�etor with

varying radius of urvature R in the homogeneous medium (see Figure 3.6a). For a

wide range of radii R (from 10−4 km, orresponding to the point di�rator limit, to

104 km, orresponding to the plane re�etor limit) I omputed CRS, DSR and n-CRS

approximations and ompared them with the exat (omputed numerially) traveltime

(see Figure 3.6b). Figure 3.6b illustrates the idea that CRS and DSR are two asymptoti

solutions of the re�etion traveltime. The n-CRS staking operator, being aurate for the

whole range of urvatures, sews both asymptoti solutions. This fat explains outstanding

auray of the n-CRS staking operator.

Further disussion about the link between the CRS and DSR staking operators in the

ontext of the paraxial ray theory will be given in Chapter 5.
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Figure 3.7: Relative omputational di�ulty of the 3D staking operators (a) and the 3D

CRS ode with di�erent 3D staking operators (b). Conventional 3D CRS is

taken as referene (100%).

3.5 Computational di�ulty

As already mentioned in Setion 2.8, omputational di�ulty of the new staking operators

in higher than the one of the onventional 3D CRS. The relative omputational di�ulty

of the 3D staking operators is shown in Figure 3.7a. In terms of omputational di�ulty,

there is almost no di�erene between three realizations of the 3D i-CRS staking operator,

however all of them are about eight times more �expensive� than the onventional 3D

CRS. As expeted, expliit staking operators are more e�ient than impliit operators,

taking only two (3D DSR) and tree (3D n-CRS) times more omputational time than the

onventional 3D CRS.

In the 3D CRS ode, the omputation of the moveout takes about 10% of the total

omputation time. The 3D CRS ode with expliit staking operators requires slightly

more omputational time (approximately 13% and 16% more for 3D DSR and 3D n-CRS)

then the ode with the onventional 3D CRS staking operator (see Figure 3.7b). The same

ode with the 3D i-CRS staking operator is signi�antly more expensive (additionally 80%

of the omputation time). Hene, the 3D n-CRS staking operator ahieves the best trade-

o� between the auray and the omputational di�ulty.

3.6 Implementation into the CRS software

Xie and Gajewski (2016) have reently presented the 3D CRS software with automati

estimation of the staking parameters by global optimization algorithm. The new software

allows implementation of the 3D DSR-based staking operators. The set of staking

parameters for 3D DSR and 3D n-CRS oinides with the one of onventional 3D CRS (w,

M and N). The staking parameters for 3D i-CRS ould be (w, M and K′
R), where K′

R

is the urvature matrix of the re�etor. Though the sets of parameters (w, M and N) and

(w, M and K′
R) are linked, I expet that the parameter searh in terms of (w, M and

K′
R) ould get additional advantages.
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CHAPTER 3. ACCURACY AND IMPLEMENTATION OF 3D DSR-BASED

STACKING OPERATORS

3.7 Conlusions

In this hapter, I analyzed the di�erent realizations of the 3D i-CRS staking operator and

ompared auray of the 3D DSR-based staking operators. I found that the trigonometri

iterative approah, whih is very e�ient in the 2D ase, does not properly work in the

3D ase. The linearized iterative approah, whih was proposed as an alternative to TIA,

demonstrates signi�antly better results.

The auray tests demonstrated that 3D n-CRS and 3D i-CRS are the most aurate

staking operators. Taking into aount the omputational di�ulty, I found 3D n-CRS

to be the most promising 3D DSR-based staking operator.

All 3D DSR-based staking operators ould be integrated into the CRS software with a

global searh of staking parameters. Study of their impat on omplex syntheti and �eld

datasets will hopefully be a topi of future researh.



Chapter 4

DSR-based staking operators for

onverted waves

Converted PS waves have attrated onsiderable interest beause they are ommonly used

to obtain valuable information about S-waves. However, the existing DSR-based staking

operators are not designed for onverted waves.

In this hapter, I propose a double-square-root traveltime approximation (DSR-PS) for

onverted waves. This approximation is based on a fairly general assumption of onstant

ratio of P- and S-wave veloities. Furthermore, I demonstrate that a CRS-type traveltime

approximation for onverted waves may be derived from the new approximation. It enables

to introdue a pragmati searh strategy for onverted waves, similar to the one for

monotypi waves. The DSR-PS staking operator and the new pragmati searh strategy

together form an e�ient way to obtain high-quality staked setions for PS onverted

waves.

4.1 Introdution

There are two types of body waves of di�erent polarization in an isotropi medium: a

ompressional (or primary) P-wave and a shear S-wave. Originally, the re�etion seismi

imaging utilized only ompressional PP re�eted waves. However, the appearane of

multiomponent surveys in the early 1980s (Garotta, 1985), gave rise to registration and

proessing of other types of re�eted wave�elds (PS, SP, SS). Thus, the multiomponent

measurements made it possible to obtain S-wave information.

The shear waves ontain important information about the properties of the subsurfae and

are widely used in seismi appliations. For example, veloities of S-waves are used for

the estimation of porosity and permeability, whih are two important parameters for the

reservoir haraterization (Nelson, 2001). S-waves are needed for the detetion of porous
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zones (Coulombe et al., 1996) and for identi�ation and quanti�ation of seismi anisotropy

(Tsvankin, 2012). Sine the veloity of S-waves is typially half that of P-waves and the

frequeny ontent of P- and S-events is almost the same, the images, obtained by S-waves,

have higher spatial resolution than the assoiated PP images (Stewart et al., 2002).

For many reasons, pure SS re�etion experiments are rarely used in seismi exploration.

This is mainly beause the e�ient soures of S-waves are expensive, SS re�etions

are typially noisy and SS listening times are about double or triple those of P-waves

(Stewart et al., 2002). Moreover, SS surveys are not appliable in marine measurements.

In ontrast to SS, PS surveys are relatively inexpensive (Kendall and Davis, 1996) and they

do not require speial types of soures. Hene, onverted PS re�etions are an alternative

to pure SS re�etions.

The prie we have to pay for this onveniene is the asymmetry of the ray path of onverted

waves. Aording to Snell's law, the angle of inidene and the angle of re�etion are not

the same for PS re�etions. Moreover, the idea of reiproity (invariane of the moveout

under the exhange of soure and reeiver positions), utilized in standard CMP-proessing,

is violated for onverted waves (Thomsen, 1999). As a onsequene, the traveltime of the

onverted wave beomes asymmetri beause it has a linear term of o�set. For these

reasons, the standard CMP-based proessing is not appliable for onverted waves.

The fundamentals of onverted wave proessing appeared at late 1980s - early 1990s. In

order to overome the onversion point dispersal, it was proposed to sort the traes into

the ommon-onversion-point (CCP) gathers instead of onventional CMP gathers. The

suessful examples of staking of onverted waves in CCP gathers were demonstrated

by Tessmer and Behle (1988), Tessmer et al. (1990) and Iverson et al. (1989). However,

even for simple veloity models it is a ompliated problem to �nd a CCP gather (e.g.

Tessmer and Behle (1988); Thomsen (1999)).

With appearane of multiparameter staking the problem of powerful staking tehnique

for onverted waves arose again. A 2D CRS-based staking operator for onverted waves

was presented by Bergler et al. (2002). In order to aount for the asymmetri PS ray

path, Bergler et al. (2002) used the ommon-o�set (CO) CRS staking operator. The

disadvantage of this method is that the CO CRS operator uses �ve parameters that do

not have a physially intuitive explanation. The 2D i-CRS staking operator for onverted

waves was proposed by Vanelle et al. (2012a). To my knowledge, there are no MF or n-CRS

extensions for onverted waves. Hene, there is an interest to investigate the DSR-based

staking operators for onverted waves.

The aim of this hapter is to obtain the DSR and n-CRS traveltime approximations for

onverted waves valid for arbitrary observation geometry and arbitrary re�etor urvature.

To ahieve this goal, I introdue the simpli�ed model of subsurfae (Setion 4.2.2) and

the speial γ-CMP oordinates (Setion 4.2.3) that aounts for the asymmetry of PS

trajetories. With these tools, I derive the DSR-PS and n-CRS-PS staking operators

for onverted waves, based on the geometrial approah (Setion 4.2.4). The DSR-PS

staking operator may be transformed to the CRS-PS staking operator, whih is formally
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Figure 4.1: Illustration of the PS re�etion experiment. The down- and upgoing segments

of the entral PS ray do not oinide in the arbitrary inhomogeneous medium

(a). However, they have the same trajetories under the assumption of onstant

vP /vS ratio (b). This fat enables one to introdue a simpli�ed model for PS

waves ().

similar to the ZO CRS operator (Setion 4.2.5). Both DSR-PS and CRS-PS have lear

extension to the 3D ase (Setion 4.2.7). The CRS-PS staking operator makes it possible

to formulate a pragmati searh strategy for onverted waves (Setion 4.3.2). For non-

onverted waves, this strategy transforms to the well-known pragmati approah of Müller

(1999). Finally, I present several numerial simulations that provide insight into the

auray of the new approximations (Setion 4.3.1), the auray of the estimated wave�eld

attributes (Setion 4.3.3) and the quality of the resulted staked setions (Setion 4.3.4).

4.2 Theory

In this hapter, I assume that the ratio of ompressional veloity vp to shear veloity vs is
onstant. For the most roks this ratio varies from 1.6 to 2.0. Hene, the average value of
1.8 is relatively aurate (about 10% auray) for the most real roks.
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4.2.1 Statement of the problem

In the PS re�etion experiment, the ompressional P-wave, emitted by the soure,

propagates in the inhomogeneous medium. The P-wave partly "onverts" to the S-wave

upon re�etion and returns bak to the measurement surfae (see Figure 4.1a). In the

zero-o�set ase, the soure and reeiver loations of the entral ray oinide at the entral

point x0. The traveltime of the entral ray is equal t0. The problem is to �nd a traveltime

t of the paraxial onverted ray, whose soure and reeiver are loated in the viinity of

entral point x0 at the positions xs and xg, respetively.

In an arbitrary inhomogeneous medium the trajetories of P- and S-segments of the entral

ray do not neessarily oinide. Therefore, these ray-segments should not be perpendiular

to the re�etor at the re�etion point, and the inidene and the emergene angles of the

entral ray may di�er onsiderably (see Figure 4.1a). However, under the assumption that

the ratio of P- and S-wave veloities is onstant, the trajetory of the entral ray simpli�es:

down- and upgoing ray segments oinide, the entral ray is perpendiular to the re�etor

and the inidene and the emergene angles are equal (see Figure 4.1b). This simpli�ation

enables to introdue the simpli�ed model for onverted waves.

4.2.2 Simpli�ed model for onverted waves

As disussed in Setion 2.2, for monotypi re�eted waves (PP or SS) it is possible to

replae the inhomogeneous medium with the re�etor of arbitrary shape by the so-alled

simpli�ed model. In the 2D ase, the simpli�ed model onsists of the irular re�etor in

the auxiliary medium of onstant veloity. The parameters of the simpli�ed model (the

veloity v and the radius of a irular re�etor R) are established upon the onsideration

of the hypothetial normal-inidene-point (NIP) and normal experiments.

Due to the onstant veloity ratio, the urvatures of the NIP RNIP and normal RN

wavefronts are idential both for P- and S-waves. These urvatures de�ne e�etive veloities

of P- and S-waves (vP and vS , respetively, γ = vP /vS) and the radius of irular re�etor

R:
R = RN −RNIP. (4.1)

The e�etive veloity of a onverted PS wave is determined by the ondition that the

traveltime of the entral ray must oinide in the inhomogeneous and in the auxiliary

media:

t0 =
2RNIP

vPS
. (4.2)

There is obviously an important relationship between the e�etive veloity of PS wave vPS

and the e�etive veloities of P- and S-waves:

2

vPS
=

1

vP
+

1

vS
. (4.3)

The veloities vP , vS and the irular re�etor form the simpli�ed model for onverted

waves (see Figure 4.1). The simpli�ed model is determined by the traveltime of the
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Figure 4.2: In the onventional CMP gather, soures and reeivers are loated

symmetrially with respet to the entral point (a). In the ase of a horizontally

layered medium, all re�etion points of PP rays oinide with the NIP. In

the ase of onverted waves (b), the re�etion points of PS rays in the CMP

gather are smeared. Fromm et al. (1985) found an approximation for the lateral

position of the onversion point (). Based of this idea, I propose to use γ-CMP

gathers (d) for staking PS onverted waves.

entral ray t0 and the kinemati wave�eld attributes: the emergene angle of the entral

ray α and the radii of NIP RNIP and normal RN waves. In the simpli�ed model, the DSR

staking operator for onverted waves an be derived using the geometrial approah.

4.2.3 γ−CMP oordinates

Before onsidering the staking operators for onverted waves, I will brie�y desribe the

speial oordinate system required to simplify the expressions of these operators.

Conventionally, the re�etion data are sorted into the ommon-midpoint (CMP) gathers

(Mayne, 1962). The CMP gathers are popular beause for horizontally layered media,

the PP re�etions in the CMP gather image the same point in depth (see Figure 4.2a).

However, sine the path of the onverted wave is asymmetri, the PS re�etions in the

CMP gather ome from di�erent points in the subsurfae (i.e., the e�et of the onversion-
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point dispersal ours (see Figure 4.2b)). Hene, suessful staking of onverted waves

an not be ahieved using the CMP gathers and requires speial ommon onversion point

(CCP) gathers (Tessmer and Behle, 1988).

For onstant vP , vS veloities and a �at horizontal re�etor, Fromm et al. (1985) found

the approximate position of the onversion point x̃m (see Figure 4.2):

x̃m = xs + xp, xp =
γ(xg − xs)

1 + γ
, γ = vP/vS . (4.4)

Following this idea, I introdue the γ-CMP oordinates m̃ and h̃:

x̃m ≡ γxg + xs
1 + γ

, m̃ ≡ x̃m − x0, h̃ ≡ xg − xs
1 + γ

. (4.5)

With the γ-CMP oordinates, I an express the soure and reeiver displaements as:

∆xs = m̃− γh̃, ∆xg = m̃+ h̃. (4.6)

Traes having the same value of m̃ are olleted in the γ-CMP gather (see Figure 4.2d).

The γ-CMP gather an be onsidered as the �rst linear approximation of the CCP gather.

Note that in the partiular ase of monotypi waves (γ = 1), the γ-CMP oordinates (4.5)

oinide with the standard CMP oordinates (1.1).

4.2.4 DSR staking operator for onverted waves

In the simpli�ed model (see Figure 4.1), the traveltime of a PS wave from the soure at

xs to the re�etor to the reeiver at xg is equal:

t(ϑ) =

√

(xs − xref )2 + z2ref

vP
+

√

(xg − xref )2 + z2ref

vS
. (4.7)

Here, both the soure and the reeiver are at the depth z = 0, and the angle ϑ de�nes the

point on the irular re�etor (xref (ϑ), zref (ϑ)). As in the ase of monotypi waves, the

angle ϑr de�ning the onversion point (xr, zr) an be found either impliitly or expliitly.

The impliit staking operator for onverted waves was proposed by Vanelle et al. (2012a).

The traveltime t must ful�ll Fermat's priniple, i.e., ∂t/∂ϑ = 0, whih leads to an impliit

equation for ϑ (see Vanelle et al. (2012a), eq. 13):

tan ϑ = F(ϑ, t0, xs, xg, x0,model parameters). (4.8)

The equation (4.8) is solved iteratively with the initial value of ϑ orresponding to the

onversion point of the entral ray (NIP). The result ϑr is substituted into (4.7) to ompute

the traveltime of PS wave. With the 3D auxiliary anisotropi medium, proposed in Setion

2.4, the extension of this method to the 3D ase is straightforward.
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In this setion, I will present another approah, whih is ideologially lose to the 3D

expliit DSR staking operator (see Setion 2.8). Assuming that the soure and reeiver

displaements are muh smaller than the harateristi distane of the problem (suh as

RNIP or RN), and using Snell's law, I obtain the following expression for the angle ϑr

desribing the re�etion point (see Appendix D.1):

sinϑr ≈
m̃

RN
cosα. (4.9)

Substituting the re�etion point approximation (4.9) into the expression for PS travel-

time (4.7) I obtain, after some algebrai manipulations, the expliit

1

DSR-PS staking

operator for onverted waves (see Appendix D.2 for detailed derivation):

t(m̃, h̃) =
1

1 + γ

√
[

t0 + w̃∆xs

]2
+ 2t0

[

Ñm̃2 − 2Ñm̃(γh̃) + M̃(γh̃)2
]

+
γ

1 + γ

√
[

t0 + w̃∆xg

]2
+ 2t0

[

Ñm̃2 + 2Ñm̃h̃+ M̃h̃2
]

(4.10)

with parameters:

w̃ = −2 sinα

vPS
, M̃ =

cos2 α

vPSRNIP
, Ñ =

cos2 α

vPSRN
. (4.11)

The DSR-PS staking operator (4.10) is valid for any general loation of the soure and

reeiver. If the radius of urvature RN goes to in�nity, I obtain the traveltime of a wave

re�eted from a plane interfae; if I set RNIP = RN, I obtain (in the ase of the homogeneous

overburden) the exat solution for sattered PS waves. In the ase γ = 1, I get the typial
multi-parameter traveltime approximation like CRS, MF, n-CRS or i-CRS. Though DSR-

PS was derived for a onstant veloity overburden, it is appliable for any arbitrary veloity

model. In that ase, the wave�eld attributes (α, RNIP and RN) lose their lear geometrial

interpretation and beome e�etive parameters.

4.2.5 CRS staking operator for onverted waves

The ommon-o�set (CO) CRS staking operator is ommonly used to properly stak the

onverted PS re�etions (Bergler et al., 2002). The CO CRS operator inludes �ve staking

parameters and two a priory known near-surfae veloities (Zhang et al., 2001). With

the DSR-PS staking operator it is possible to obtain an alternative CRS-type staking

operator for PS onverted waves.

Indeed, using the Taylor series expansion of (4.10) and omitting the terms of higher order

than the seond I get the CRS-type formula (CRS-PS) for onverted waves in γ-CMP

oordinates (see Appendix D.3):

t2(m̃, h̃) =
[

t0 + w̃m̃
]2

+ 2t0

[

Ñm̃2 + γM̃h̃2
]

. (4.12)

1

Here and later, "DSR-PS" means "expliit DSR staking operator for onverted waves".
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The CRS-PS staking operator is idential to the ZO CRS expression (1.16) in the standard

CMP oordinates and it redues to ZO CRS in the ase of monotypi waves. If the standard

CMP oordinates are substituted in (4.12), I obtain the same �ve parameter expression

that was derived by Vanelle et al. (2012b). It is also formally idential with the CO CRS

of Zhang et al. (2001), but uses the same three parameters as ZO CRS.

As will be disussed later, CRS-PS (4.12) is a ruial element to establish the pragmati

searh of wave�eld attributes for onverted waves.

4.2.6 n-CRS staking operator for onverted waves

As in the ase of monotypi waves, the n-CRS staking operator for onverted waves

(n-CRS-PS) may be obtained from the DSR staking operator (see Appendix D.4). The

2D n-CRS-PS staking operator reads:

t(m,h) =

√
[ 1

1 + γ

√

F̃ (m̃− γh̃) +
γ

1 + γ

√

F̃ (m̃+ h̃)
]2

+ 2t0γ
(
M̃ − Ñ

)
h̃2 (4.13)

where

F̃ (m̃) =
(
t0 + w̃m̃

)2
+ 2t0Ñm̃2. (4.14)

2D n-CRS-PS oinide with 2D DSR-PS in the point di�rator limit and with 2D CRS-PS

in the plane-re�etor limit. In the ase of monotypi waves 2D n-CRS-PS redues to the

onventional n-CRS staking operator (1.32).

4.2.7 Extension to the 3D ase

In the 3D ase, m̃ and h̃ beome two-dimensional vetors m̃ and h̃. The parameter w̃,
orresponding to the �rst-order derivative of traveltime with respet to m̃, transforms to

the two-dimensional vetor w̃, and the seond-order derivatives M̃ and Ñ transform to

the symmetri 2× 2 matries M̃ and Ñ. The parameters w̃, M̃ and Ñ are related to the

kinemati wave�eld attributes as follows:

w̃ = −2 sinα

vPS

( cos β
sin β

)

, M̃ =
1

vPS
RKNIPR

T, Ñ =
1

vPS
RKNR

T. (4.15)

Extension of the DSR-PS, CRS-PS and n-CRS-PS staking operators to the 3D ase is

straightforward:
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� the 3D DSR-PS staking operator:

t(m̃, h̃) =

1

1 + γ

√
[

t0 + w̃T∆xs

]2
+ 2t0

[

m̃TÑm̃− 2m̃TÑ(γh̃) + (γh̃)TM̃(γh̃)
]

+
γ

1 + γ

√
[

t0 + w̃T∆xg

]2
+ 2t0

[

m̃TÑm̃+ 2m̃TÑh̃+ h̃TM̃h̃
]

, (4.16)

� the 3D CRS-PS staking operator:

t2(m̃, h̃) =
[

t0 + w̃Tm̃
]2

+ 2t0

[

m̃TÑm̃+ γh̃TM̃h̃
]

. (4.17)

� the 3D n-CRS-PS staking operator:

t(m̃, h̃) =

√
[ 1

1 + γ

√

F̃(m̃− γh̃) +
γ

1 + γ

√

F̃(m̃+ h̃)
]2

+ 2t0γh̃T
(
M̃− Ñ

)
h̃

(4.18)

where

F̃(m̃) =
(
t0 + w̃Tm̃

)2
+ 2t0m̃

TÑm̃. (4.19)

Note that in the ase of monotypi waves (γ = 1), the 3D DSR-PS staking operator (4.16)

is indential to the expliit 3D DSR staking operator (2.36), the 3D CRS-PS staking

operator (4.17) is indential to the 3D CRS staking operator (1.19) and the 3D n-CRS-PS

staking operator (4.18) is idential to the 3D n-CRS staking operator (2.38).

4.3 Auray and implementation

In this setion, I provide insight into the auray and the range of appliability of the

new staking operators. I begin with simple models like the onstant veloity and the

onstant vertial gradient overburden over a irular re�etor to demonstrate the auray

of the traveltime approximations and the oe�ient determination. Using a more omplex

syntheti data set I show that the new traveltime approximations also lead to high quality

stak results.

4.3.1 Auray of the staking operators for onverted waves

Consider the model from Figure 4.1 with a irular re�etor under a homogeneous

overburden. For the monotypi re�etions, the re�etion point an be found by evaluating

the roots of a fourth-order equation (Landa et al., 2010). For the onverted waves, the exat

solution requires solving a sixth-order algebrai equation (see Appendix E). I alulated
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Figure 4.3: Auray of the staking operators for onverted waves. (a) Comparison of the

referene traveltime (blak), CRS-PS (blue), n-CRS-PS (green) and DSR-PS

(red) approximations. (b) Relative errors of the CRS-PS (blue), n-CRS-PS

(green), and DSR-PS (red) approximations. Relative traveltime errors of the

DSR-PS () and n-CRS-PS (d) approximations.

Table 4.1: Parameters of the onstant veloity model

Parameter Value

α 30°

RNIP 0.5 km
RN 1.0 km
vP 2.5 km/s
vS 1.8 km/s

suh solutions as referene traveltimes. For the auray studies I used a model with

parameters listed in Table 4.1.

The auray of the DSR-PS and n-CRS-PS approximations an be ompared not only with

the referene traveltime, but as well with the CRS approximation. The resulting DSR-PS,

CRS-PS, n-CRS-PS approximations and the referene traveltimes in a (standard) CMP

gather with a maximum o�set of 1.35 km are presented in Figure 4.3a. These traveltime

approximations are ompared to the referene traveltimes in Figure 4.3b, where relative

errors are shown. I observe that both DSR-PS and n-CRS-PS approximations exhibit

smaller errors for large o�sets than the onventional CRS-PS.

For the CRS geometry, the resulting relative errors of the DSR-PS and n-CRS-PS

approximations are shown in Figures 4.3-d. In most regions, the error is less than 2%.
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For the further tests, I will only use the DSR-PS approximation.

4.3.2 Pragmati searh strategy for onverted waves

The staking proedure onsists of evaluating a measure of the ohereny of the multi-

overage data along the traveltime surfaes given by the DSR-PS operator (4.10) (or

n-CRS-PS operator) for any possible ombination of the wave�eld parameters. The

determination of the global maximum of the ohereny turns out to be time onsuming in

a three-parametri searh strategy. Therefore, I propose a pragmati searh strategy that

helps to split the three-parametri searh problem into four one-parametri searhes and

an optional three-parametri loal optimization.

The CRS stak approah determines optimal values of wave�eld attributes for a known

near-surfae veloity. For onverted waves I additionally require that the near-surfae

veloity ratio is known. Using the CRS-PS staking operator (4.12) I an formulate a

pragmati approah for onverted waves similar to the one suggested by Müller (1999). It

onsists of the following steps:

� Step 1. Automati γ-CMP searh with m̃ = 0:

t2γ−CMP = t20 +
2t0γq

vPS
h̃2, q =

cos2 α

RNIP
. (4.20)

Output: ZO setion, ombined parameter q.

� Step 2. Plane wave searh in the γ-CMP staked setion with h̃ = 0:

tγ−PW = t0 −
2 sinα

vPS
m̃. (4.21)

Output: emergene angle α.

� Step 3. Repeated γ-CMP searh with m̃ = 0. Fromm et al. (1985) showed that

the traveltime of onverted waves expanded into a power series omprise terms of

third order that depend on the emergene angle and RNIP. Due to this fat, the

determination of RNIP from the ombined parameter q and the angle α is not an

aurate proedure. For these reasons an additional RNIP searh is required:

t =
1

1 + γ

√
[

t0 +
2 sinα

vPS
(γh̃)

]2
+

2t0 cos2 α

vPSRNIP
(γh̃)2 (4.22)

+
γ

1 + γ

√
[

t0 −
2 sinα

vPS
h̃
]2

+
2t0 cos2 α

vPSRNIP
h̃2 (4.23)

Output: radius of NIP wave RNIP.
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Figure 4.4: Illustration of the model with a onstant vertial veloity gradient and a

irular re�etor.

� Step 4. Hyperboli searh in the ZO setion with h̃ = 0:

t2γ−HY =
[

t0 −
2 sinα

vPS
m̃
]2

+
2t0 cos

2 α

vPSRN
m̃2. (4.24)

Output: radius of normal wave RN.

After the determination of the wave�eld attributes (α, RNIP, RN) the loal optimization

is arried out with the DSR-PS staking operator (4.10). The �nal ZO setion from the

multi-overage data is then onstruted for the attributes of this optimization.

4.3.3 Auray of the wave�eld attributes

In order to investigate the auray of the determined wave�eld attributes, I hoose a

medium with a onstant vertial veloity gradient, vP = v0+κz and onstant vP /vS ratio.

The re�etor is a irle with radius R and top at the depth D (see Figure 4.4).

The re�eted PP and the onverted PS wave�elds were generated in Seismi Unix with the

routines susynlv and susynlvw, respetively. In order to make the data more realisti the

seismi noise was added to all traes. The parameters of the datasets are summarized in

Table 4.2.

The referene solutions for the wave�eld attributes were generated by a numerial

determination of the re�etion and onversion points and a subsequent evaluation of results

given in Vanelle (2002). Figure 4.5 illustrates the semblane, the emergene angle, RNIP,

KN = 1/RN for PP as well as PS re�etions, and in omparison to the referene values. The

e�etive wave�eld attributes display a similar behavior in omparison to the exat values.

They may be used in NIP-wave tomography for onverted waves (Vanelle and Gajewski,

2009).
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Figure 4.5: Semblane (a) and e�etive wave�eld attributes (b)-(d), derived from onverted

(blue) and monotypi (red) waves by applying the DSR-PS operator. The

e�etive wave�eld attributes display a similar behavior in omparison to the

exat values (green). The asymmetry in the semblane (a) may be explained

by the asymmetry of the survey.
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Table 4.2: Parameters of the onstant-gradient veloity model

Parameter Value

Near-surfae veloity v0 2.0 km/s
Vertial gradient κ 1.0 s−1

vP/vS ratio γ 1.4
Radius of re�etor R 1.0 km
Depth of re�etor D 1.0 km
Number of CMPs 201
CMP sampling interval 25 m
CMP fold 81
O�set sampling interval 25 m
Signal to noise ratio 5.0

4.3.4 Complex syntheti data example

Finally, I have applied the DSR-PS staking operator to a omplex syntheti dataset. The

NORSAR ray traing pakage was used to generate syntheti seismograms for the model

shown in Figure 4.6. The resulting PP and PS-staked setions in Figure 4.7 exhibit similar

quality. PS setion an be interpreted on their own or together with P-wave setions.

Events seen on one setion are not seen on the other. Due to the asymmetry of the

PS ray paths and stronger PS impedane ontrast, I observe a better illumination of the

distant part of the top re�etor in the PS than in the PP stak. I onlude that joint

interpretation of PP- and PS-staked data using the DSR-PS/n-CRS-PS operators allow

for a better understanding of the subsurfae struture.

4.4 Conlusions

In this hapter I have investigated the extension of the DSR-based staking operators for

the ase of onverted waves. I have presented the new DRS-based traveltime expressions,

the DSR-PS and n-CRS-PS approximations, for onverted waves re�eted from the urved

interfaes. These approximations are natural generalizations of the earlier introdued

expliit DSR and onventional n-CRS staking operators. For onverted waves the new

operators are highly aurate.

Furthermore, I have found a CRS-type expression for onverted waves. This hyperboli

operator is expressed in the γ-CMP oordinates and allows for a pragmati searh strategy

for onverted waves. Taken together, these �ndings provide a powerful and e�ient tool

for onstruting the PS-staked setions.

The most important limitation of this work is the assumption of the onstant vP /vS
ratio. Although this assumption does not hold in the "real world", it appears to be

quite reasonable, beause the variation of γ in most of roks is limited. The assumption
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of the onstant γ is not neessarily a restrition, beause even in the ase of the omplex

model with the non-onstant value of γ, the proposed DSR-PS staking operator provides

high-quality PS images.

Monotypi and onverted waves image di�erent parts of the re�etor beause of the

asymmetry of ray paths of onverted waves and the di�erene in P- and S-wave impedane.

The obtained PP and PS images and the orresponding wave�eld attributes may be jointly

interpreted to derive the true model of the subsurfae. Hene, I believe that this work ould

be the starting point for staking onverted waves with the DSR-based staking operators.

However, further studies, whih take the variation of γ into aount and investigate the

appliation of the method to �eld data, will need to be performed.



Chapter 5

Common-o�set DSR staking

operator

�Is every aident just a higher-order design?�

� Terry Prathett, Night Wath

In the previous hapters, I used a model-based approah to derive the DSR-based staking

operators. Another ommonly used approah is based on the paraxial ray theory. The

paraxial ray theory is valid for an arbitrary veloity model and, hene, the traveltime

expressions, obtained from this theory, are onsidered to be veloity model independent.

In this hapter, based on paraxial ray theory, I obtain the DSR staking operator for the

most general ommon-o�set (CO) ase. This expression extends the range of appliability

of the DSR staking operators and demonstrates their lose relationship with the standard

CRS staking operators. For a number of speial ases, I �nd a good agreement with the

previously obtained results.

5.1 Introdution

Seismi ray theory provides the trajetories of seismi rays as well as the kinemati and

dynami attributes along the ray. These dynami attributes enable to predit the properties

of rays in the paraxial viinity of the referene (entral) ray. The properties of these paraxial

rays are determined by the surfae-to-surfae propagator matrix (�ervený, 2001).

Bortfeld (1989) derived a paraboli approximation for the traveltime of a re�eted paraxial

ray that propagates in the so-alled seismi system: a struture of homogeneous layers

with urved ontinuous boundaries. Hubral et al. (1992) proved that the same traveltime

69
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Figure 5.1: Illustration of the ommon-o�set re�etion experiment. The subsurfae

onsists of inhomogeneous isotropi layers with smooth ontinuous interfaes.

approximation is valid in the inhomogeneous isotropi medium. Moser and �erven�y (2007)

formulated the paraxial ray theory for the general anisotropi ase. They argue, that even

in an anisotropi inhomogeneous layered medium, the paraboli traveltime approximation

of Bortfeld remains orret.

The hyperboli traveltime approximations better �t the traveltime of re�eted waves,

than the paraboli approximations (Ursin, 1982; Mann et al., 1999). These hyperboli

traveltime approximations (e.g., CO CRS) are derived from paraboli approximations

(Shleiher et al., 1993; Zhang et al., 2001). In this hapter, I show that it is possible to

obtain a DSR staking operator from the paraboli traveltime approximation of Bortfeld.

This hapter is strutured as follows. Setion 5.2 introdues the required notation and

disusses the statement of the problem. I show how the paraboli traveltime approximation

is derived from Hamilton's equation and paraxial ray theory. In Setion 5.3 I disuss the

link between the submatries of the propagator matrix and the urvatures of wavefronts.

This link allows me to split the terms of the paraboli traveltime formula in two groups and

to present the traveltime in DSR form (CO DSR approximation). Setion 5.4 investigates

the relation between the new CO DSR staking operator and the DSR operators, derived

in the previous hapters. For this reason, I onsider several speial ases: a monotypi

re�eted wave in the ZO experiment, a onverted re�eted wave in the ZO experiment, and

a di�rated wave in the CO experiment. In the onlusion 5.5 of this hapter I summarize

the results and disuss the appliability of the DSR staking operators to anisotropi media.
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5.2 Traveltime approximation from paraxial ray theory

In this setion I brie�y review the basis of the paraxial ray theory and the traveltime

approximation obtained from this theory.

Consider the entral ray emitted from the soure and, after re�etion from the urved

interfae, reorded by the reeiver (see Figure 5.1). In the general (ommon-o�set) ase,

the soure and the reeiver loations do not neessarily oinide. Let me denote the

traveltime along the entral ray by t0. The question is, what is the traveltime t of the
paraxial ray in the viinity of the entral ray?

Let me now introdue the notations neessary to formalize the problem. As disussed

previously, in order to show the di�erene between 2D and 3D vetors, the 3D vetors are

marked with a hat (e.g., x̂s) while their horizontal projetions do not have the hat (e.g.,

xs). In the following:

� x̂s0 and x̂g0 are the soure and the reeiver loations of the entral ray;

� x0 and h0 are the midpoint and the half-o�set of the entral ray:

x0 =
1

2
(xg0 + xs0), h0 =

1

2
(xg0 − xs0); (5.1)

� x̂s and x̂g are the soure and the reeiver loations of the paraxial ray;

� xm and hm are the midpoint and the half-o�set of the paraxial ray:

xm =
1

2
(xg + xs), hm =

1

2
(xg − xs); (5.2)

� ∆xs and ∆xg are the soure and the reeiver displaements:

∆x̂s = x̂s − x̂s0 , ∆x̂g = x̂g − x̂g0 ; (5.3)

� m and h are the midpoint and the half-o�set displaements:

m = xm − x0 =
1

2
(∆xg +∆xs),

h = hm − h0 =
1

2
(∆xg −∆xs); (5.4)

� p̂s0 and p̂g0 are the slowness vetors of the entral ray at the position of soure and

reeiver;

� p̂s and p̂g are the slowness vetors of the paraxial ray at the position of soure and

reeiver, and

� ∆p̂s and∆p̂g are the deviations of the slowness vetors at the soure and the reeiver:

∆p̂s = p̂s − p̂s0 , ∆p̂g = p̂g − p̂g0 . (5.5)
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It is assumed that all soure-reeiver pairs are loated on the measurement surfae z = 0,
and that the subsurfae is an inhomogeneous isotropi layered medium with ontinuous

urved re�etors.

With these notations I an �nd the traveltime of a paraxial ray t. Aording to Hamilton's
equation (see e.g., Bortfeld, 1989) the di�erential dt of the traveltime of re�eted wave is

equal:

dt = p̂T

g dx̂g − p̂T

s dx̂s. (5.6)

Sine the vertial omponents of the displaement vetors (5.3) are equal to zero, the

traveltime di�erene (5.6) depends only on two-omponent horizontal projetions:

dt = pT

g dxg − pT

s dxs. (5.7)

The paraxial ray theory (see, e.g., Hubral, 1983; �ervený, 2001) establishes the linear

relationship between the displaements and the deviations of the slowness vetors at the

soure and the reeiver: (
∆xg

∆pg

)

= ¯̄T

(
∆xs

∆ps

)

. (5.8)

This relation is set up by the 4×4 surfae-to-surfae ray propagator matrix for the entral
ray:

¯̄T =

(
A B

C D

)

, (5.9)

that onsists of four 2 × 2 submatries: A, B, C and D. The propagator matrix

¯̄T has

several important properties, inluding, among others, sympletiity (see e.g., �ervený,

2001). Hene, there is an additional ondition for these submatries:

ADT −BCT = I. (5.10)

where I is the identity matrix. The linear relationship (5.8) may be solved to get ps and

pg:

ps = ps0 +B−1∆xg −B−1A∆xs, (5.11a)

pg = pg0 +C∆xs +DB−1∆xg −DB−1A∆xs. (5.11b)

Substitution of (5.11) into (5.7), together with the simpletiity property (5.10) and

integration yield the paraboli traveltime approximation for a paraxial ray:

t(∆xs,∆xg) = t0 + pT

g0∆xg − pT

s0∆xs

−∆xT

s B
−1∆xg +

1

2
∆xT

s B
−1A∆xs +

1

2
∆xT

g DB−1∆xg. (5.12)

This formula was originally obtained by Bortfeld (1989) for a homogeneous layered medium

and later extended by Hubral et al. (1992) to inhomogeneous isotropi media. Further

investigations showed that the same paraboli traveltime approximation remains valid even

in a general inhomogeneous anisotropi medium (see Moser and �erven�y, 2007, eq. 72).
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In pratie, it is ommon to work in the midpoint-o�set oordinates. The paraboli

traveltime approximation (5.12) in the midpoint-o�set oordinates reads:

t(m,h) = t0 + pT

g0∆xg − pT

s0∆xs +mT(DB−1 −B−1A)h

+
1

2
hT(B−1A+DB−1 + 2B−1)h+

1

2
mT(B−1A+DB−1 − 2B−1)m. (5.13)

The hyperboli traveltime approximation an be immediately obtained by squaring both

sides of the paraboli traveltime formula (5.13) and negleting the terms of higher order

than the seond (Zhang et al., 2001):

t2(m,h) =
[

t0 + pT

g0∆xg − pT

s0∆xs

]2
+ 2t0

[

mT(DB−1 −B−1A)h

+
1

2
hT(B−1A+DB−1 + 2B−1)h+

1

2
mT(B−1A+DB−1 − 2B−1)m

]

. (5.14)

In the next setion I shall onsider an alternative transformation of the paraboli traveltime

formula (5.13) leading to a DSR traveltime expression.

5.3 DSR approximation from paraxial ray theory

The submatries A, B and D from the paraboli traveltime approximation (5.13) are

linked with the wavefront urvatures of the real and the hypothetial waves. These

waves are the results of two real (ommon-shot (CS), ommon-reeiver (CR)) and

two hypothetial (ommon-midpoint (CMP) and ommon-o�set (CO)) experiments (see

Figure 5.2). Conventionally, the paraboli traveltime approximation (5.13) is expressed

in the urvatures of the CS (K
g
CS) and CMP (Ks

CMP,K
g
CMP) waves (see, e.g., Müller,

2003). On the ontrary, I shall use the urvatures of the CMP (Ks
CMP,K

g
CMP) and CO

(Ks
CO,K

g
CO) waves.

The link between the wavefront urvatures and the submatries A, B and D was disussed

by Zhang et al. (2001). Müller (2003) also derived similar relations in the 3D ase.

Table 5.1 summarizes the results obtained in these studies.

Table 5.1: Wavefront urvatures in terms of the elements of the propagator matrix.

Experiment CS CMP CO CR

1
vs
RsK

s
lR

T
s = � −B−1

(
I+A

)
B−1

(
I−A

)
−B−1A

1
vg
RgK

s
lR

T
g = DB−1

(
D+ I

)
B−1

(
D− I

)
B−1

�

As it is apparent from Table 5.1, the urvature of the hypothetial downgoing CMP wave

Ks
CMP at x̂s0 has the following relation with the submatries A and B:

1

vs
RsK

s
CMPR

T

s = −B−1
(
I+A

)
. (5.15)
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Figure 5.2: Illustration of the di�erent aquisition geometries: a) ommon-shot, b)

ommon-reeiver, ) ommon-midpoint, and d) ommon-o�set. Aording

to Hubral and Krey (1980) the elements of the urvature matries are

positive/negative if the wavefront is fully behind/ahead its tangent plane.

Hene, the wavefront urvatures of the downgoing waves at the soure x̂s0

are negative and the orresponding emerging waves at the reeiver x̂g0 are

positive.
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Here, vs is a near-surfae veloity at the soure loation x̂s0 , and Rs is the upper left (2×2)
part of the rotation matrix that aounts for the transformation from the ray-entered to

the general Cartesian oordinate system. Rs is de�ned by the inidene polar αs and

azimuth βs angles of the entral ray. Quantities vg, Rg, αg, βg denote orresponding

values at the reeiver loation x̂g0 .

In order to express the traveltime approximation (5.13) in the terms of the urvatures of

the CMP and CO waves, I use the following notations:

Ms =
1

vs
RsK

s
CMPR

T

s ,

Mg =
1

vg
RgK

g
CMPR

T

g ,

Ns =
1

vs
RsK

s
COR

T

s ,

Ng =
1

vg
RgK

g
COR

T

g .
(5.16)

Sine there is a linear relation:

Mg −Ng = Ns −Ms, (5.17)

only three variables among (5.16) are independent.

As it is apparent from Table 5.1, the sum and the di�erene of the CMP and CO urvatures

are equal:

Mg −Ms = B−1A+DB−1 + 2B−1,

Ng −Ns = B−1A+DB−1 − 2B−1,

Mg +Ms = DB−1 −B−1A,

Ng +Ns = DB−1 −B−1A.
(5.18)

The above equations allow to express the traveltime approximation (5.13) in terms of CMP

and CO wavefronts:

t(m,h) = t0 + pT

g0∆xg − pT

s0∆xs +mT(η1(Mg +Ms)) + η2(Ng +Ns))h

+
1

2
hT(Mg −Ms)h+

1

2
mT(Ng −Ns)m (5.19)

Sine there is no unique representation for the "mixed" term, I used the linear ombination

of Mg +Ms and Ng +Ns with the weights η1, η2:

η1 + η2 = 1. (5.20)

If I introdue the terms:

Ls = η1Ms + η2Ns, Lg = η1Mg + η2Ng, (5.21)

and represent the traveltime of the entral ray as a sum of the traveltimes of the inident

ts and the re�eted tg ray segments, I an split the terms in (5.19) in two groups:

t(m,h) = ts − pT

s0∆xs −
1

2
mTNsm+mTLsh− 1

2
hTMsh

︸ ︷︷ ︸

soure terms

+ tg + pT

g0∆xg +
1

2
mTNgm+mTLgh+

1

2
hTMgh

︸ ︷︷ ︸

reeiver terms

. (5.22)
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Note that the hyperboli CO CRS staking operator an be obtained by squaring (5.22)

and negleting the terms of higher order than the seond. Instead, I shall square and

neglet the terms of higher order than the seond in eah group separately. The result is

the ommon-o�set DSR staking operator:

t(m,h) =

√
[

ts − pT
s0∆xs

]2
+ ts

[

−mTNsm+ 2mTLsh− hTMsh
]

+

√
[

tg + pT
g0∆xg

]2
+ tg

[

mTNgm+ 2mTLgh+ hTMgh
]

. (5.23)

5.4 Speial ases

The CO DSR staking operator (5.23) uses exatly the same wave�eld attributes as the

CO CRS staking operator. These attributes are the horizontal projetions of the slowness

vetors at the soure ps0 and the reeiver pg0 , and four symmetri 2×2 urvature matries
Ks

CMP,K
g
CMP,K

s
CO,K

g
CO linked by equation (5.17). In total, CO DSR has 13 independent

wave�eld attributes in the 3D ase and 5 independent wave�eld attributes in the 2D ase.

Additionally, CO DSR requires the weights η1 and η2 and the traveltimes ts and tg. These
additional parameters do not allow to formulate an e�ient implementation of the CO DSR

staking operator. However, in several speial ases, I an get relatively simple traveltime

approximations and ompare them with existing results.

5.4.1 Zero-o�set, monotypi waves

In the zero-o�set ase, the inident and the re�eted ray oinide, hene:

vs = vg = v0, αs = αg = α, βs = βg = β, ts = tg =
t0
2
. (5.24)

Aording to Hubral (1983), the urvatures of the CMP waves are equal to the urvature

of the �titious NIP wave and the urvatures of the CO waves are equal to the urvature

of the normal wave:

Ks
CMP = −KNIP, K

g
CMP = KNIP, Ks

CO = −KN, K
g
CO = KN. (5.25)

With this simpli�ations, CO DSR (5.23) an be expressed in notations w, M and N

from (1.20). Indeed,

ps0 = −w

2
, pg0 =

w

2
, Ms = −M, Mg = M, Ns = −N, Ng = N. (5.26)

and CO DSR transforms to:

t(m,h) =
1

2

√
[

t0 +wT∆xs

]2
+ 2t0

[

mTNm− 2mT
(
η1M+ η2N

)
h+ hTMh

]

+
1

2

√
[

t0 +wT∆xg

]2
+ 2t0

[

mTNm+ 2mT
(
η1M+ η2N

)
h+ hTMh

]

. (5.27)
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If I set the weight η1 = 0, this formula is idential to the 3D DSR staking operator (2.36).

Hene, I an onlude that in the zero-o�set ase the "mixed" term is determined only by

the urvature of the CO wave.

5.4.2 Zero-o�set, onverted waves

Similar to Chapter 4, I will only onsider the speial ase of a onstant vP/vS ratio. In

this ase the inident and the re�eted ray segments still oinide,

αs = αg = α, βs = βg = β, (5.28)

however, the traveltimes of the ray segments and the near-surfae veloities are di�erent:

vs = vP , vg = vS , ts =
t0

1 + γ
, tg =

γt0
1 + γ

. (5.29)

There is no more onnetion with the urvatures of the NIP and the normal waves. The

DSR-PS formula is expressed in terms of the parameters w̃, M̃, Ñ (4.15):

ps0 = − w̃

1 + γ
, pg0 =

γw̃

1 + γ
, (5.30)

Ms =
2

1 + γ
M∗

s,

Ns =
2

1 + γ
N∗

s,

Mg =
2γ

1 + γ
M∗

g,

Ng =
2γ

1 + γ
N∗

g,

M∗
i =

1

vPS
RKi

CMPR
T,

N∗
i =

1

vPS
RKi

COR
T,

i = s, g. (5.31)

where i denotes either the soure (s) or the reeiver (g). Note, that the di�erene between
M∗

and M̃, and N∗
and Ñ is only in the urvature matrix. Substitution of (5.30) and

(5.31) into (5.23) gives:

t(m,h) =
1

1 + γ

√
[

t0 + w̃T∆xs

]2
+ 2t0

[

−mTN∗
sm+ 2mTN∗

sh− hTM∗
sh

]

+
γ

1 + γ

√
[

t0 + w̃T∆xg

]2
+ 2t0

[

mTN∗
gm+ 2mTN∗

gh+ hTM∗
gh

]

. (5.32)

This expression is formally idential to the 3D DSR-PS staking operator in standard CMP

oordinates (D.36) (see Appendix D.5 for more details). A oe�ient omparison in (5.32)

and (D.36) establishes the link between the urvatures of the CMP and the CO waves

and the urvatures of the NIP and the normal waves. As expeted, the urvatures of CO

experiment at the soure and the reeiver are equal to the urvature of the normal wave:

Ks
CO = −KN, K

g
CO = KN, (5.33)

and the urvatures of the CMP experiment are di�erent:

Ks
CMP = −

[

KN +
( 2γ

1 + γ

)2
(KNIP −KN)

]

,

K
g
CMP =

[

KN +
( 2

1 + γ

)2
(KNIP −KN)

]

.

(5.34)
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5.4.3 Common-o�set, di�rations

In the ase of a point di�rator, the urvatures of the CMP and CO waves oinide and

beome equal to the urvature of the NIP wave:

Ks
CMP = −Ks

NIP, K
g
CMP = K

g
NIP, Ks

CO = −Ks
NIP, K

g
CO = K

g
NIP. (5.35)

The CO DSR staking operator (5.23) in this ase simpli�es to:

t(m,h) =

√
[

ts − pT
s0∆xs

]2
+

ts
vs

[

∆xT
s RsK

s
NIPR

T
s ∆xs

]

+

√
[

tg + pT
g0∆xg

]2
+

tg
vg

[

∆xT
g RgK

g
NIPR

T
g ∆xg

]

. (5.36)

If I expand the square roots of (5.36), I obtain the same paraboli staking operator, as used

by Bauer et al. (2015) to enhane the di�ration events. Hene, the DSR formula (5.36)

may be used for di�ration imaging in the CO domain in the similar way as it was presented

by Bauer et al. (2016a).

5.4.4 Anisotropi media

Moser and �erven�y (2007) proved that the original paraboli traveltime approxima-

tion (5.13) is valid in the inhomogeneous anisotropi medium. Hene, I an argue that

the DSR staking operators, obtained in the previous hapters under the assumption of an

inhomogeneous isotropi medium, are also valid in an anisotropi medium and have the

same representations. This is beause the expliit DSR staking operators and the DSR-PS

staking operators are the speial ases of the CO DSR staking operator, derived from

exatly the same paraboli traveltime approximation. In the ase of an anisotropi medium,

the parameters of the DSR staking operators lose their lear physial interpretation and

inorporate anisotropy e�ets.

5.5 Conlusions

In this hapter I have derived the CO DSR staking operator from paraxial ray theory. This

new formulation adds su�iently to our understanding of the DSR staking operators. In

fat, it appears that the DSR staking operators, derived from geometrial onsiderations,

are just a reformulation of the well-known hyperboli CRS staking operator, derived

from the paraxial ray theory. Both formulations have their advantages: while the double-

square-root traveltime expression perfetly desribes di�ration events, the hyperboli CRS

operator is exat for re�eted waves from inlined �at surfaes. Sine the original paraboli

traveltime approximation is valid for inhomogeneous anisotropi layered media, the DSR

staking operators are also appliable in this general type of medium.
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Moreover, I have found the CO DSR staking operator for pure di�ration events. In my

opinion, this DSR formulation is physially more intuitive than the paraboli traveltime

formula. I think that this new DSR operator ould further improve the enhanement of

di�ration events.

Finally, a number of potential weaknesses of the CO DSR approximation has to be

onsidered. The urrent formulation of the CO DSR staking operator is hallenging

for implementation sine it requires additional parameters: the traveltimes along the ray

segments and the weight oe�ients η1, η2, de�ning the "mixed" term. As was found in

this work, in the ZO ase, the "mixed" term depends only on the urvature of the normal

wave. However, with the knowledge obtained so far, I annot argue that this remains

valid in the CO ase. The solution of this problem gives a possibility for the e�ient

implementation of the CO DSR staking operator.
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Summary and Outlook

Several new multidimensional staking operators have been suggested in this thesis (see

Figure 5.3). Some of them are extensions of the already existing i-CRS and n-CRS staking

operators from the standard 2D ase to the 3D ase and to the ase of onverted PS waves.

Another "family" of staking operators, the DSR staking operators, provides a ompletely

novel representation of the traveltime of the re�eted wave. Although they are not as

aurate as i-CRS and n-CRS, they have a unique role among the DSR-based staking

operators, sine they ould be derived both from the model-based approah and from the

paraxial ray theory.

Thus, the paraxial ray theory is the origin of two alternative representations of the

traveltime of the re�eted wave (3D CO CRS and 3D CO DSR). In some sense, these

representations are asymptoti: while CRS perfetly desribes the traveltime response

from plane re�etors (re�etor urvature is equal to zero), DSR is designed for the sattered

waves from point di�rators (re�etor urvature is equal to in�nity). I have also shown that

for every DSR operator there is a orresponding n-CRS staking operator whih "sews"

both asymptoti solutions. As a result, n-CRS inherits from the paraxial ray theory a

number of useful features, i.e., n-CRS staking operators are valid for inhomogeneous

anisotropi medium.

Several staking operators have not been disussed in detail, but their derivation is possible

based on the priniples proposed in this work. For example, the derivation of 3D i-CRS

staking operator for onverted waves is straightforward with the proposed auxiliary

anisotropi medium. Also the n-CRS formula for the ase of CO geometry ould be

immediately obtained from the CO DSR staking operator. However, the model-based

derivation of the CO staking operators is still not fully understood.

Unfortunately, the 3D i-CRS staking operator, whih was the original objetive of this

researh, turned out to be omputationally very expensive. Nevertheless, the investigation

of 3D i-CRS eventually led to the disovery of the auxiliary anisotropi medium. The

auxiliary anisotropi medium inorporates properties of e�etive and optial auxiliary

media and it is an essential element of the 3D simpli�ed model.

Although all new staking operators provide better auray than the onventional CRS

stak (and, hene, an potentially be used for larger spreads), they are still the short-spread
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Auxiliary isotropic 

media, hyperbolic 

reflector

Auxiliary isotropic 

media, circular 

reflector

Auxiliary 

anisotropic media,

ellipsoidal reflector

Model-based 

approach

Paraxial ray 

theory

2D i-CRS 2D DSR-PS2D i-CRS-PS2D n-CRS

3D i-CRS
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CRS-PS
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3D

2D
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Formal extension to 3D

Related operators

2D/3D 
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Figure 5.3: Classi�ation of the new multidimensional staking operators (ompare with

Figure 1.8). The new staking operators (in yellow boxes) are derived from

the paraxial ray theory and from the model-based approah. The blak

dashed arrow indiates that the derivation/extension of the staking operator

is possible, but not disussed in the thesis. The blue solid arrows show the

related staking operators.
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approximations and ould be applied only for "loal" staking. The CO DSR staking

operator is important for theory, however, it remains to be further lari�ed whether the

e�etive implementation ould be proposed for this staking operator. It is also worth

mentioning that although the PS staking operators have been derived under the assumption

of onstant vP /vS ratio, they ould be applied, with aution, to the omplex media with

non-onstant vP /vS ratio.

In future, it will be of great interest to apply the new staking operators to �eld data,

espeially for the 3D ase and for the ase of onverted waves. The derivation of DSR and

n-CRS staking operators from the paraxial ray theory, as well as the formulation of the

paraxial ray theory for the general anisotropi medium, opens up a lot of new opportunities.

Future work should also �nd an interpretation of the staking parameters in the presene

of anisotropy and extend the existing appliations (e.g. NIP wave tomography) to the ase

of anisotropi media.

Finally, I would like to make several reommendations. I found out that the expliit

staking operators (espeially n-CRS) turned out to be the most e�ient. If possible, I

suggest to jointly interpret the PP and PS staked setions as well as the related attributes.

I also reommend to use the DSR-based staking operators for di�ration imaging and

enhanement.
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Appendix A

Traveltime of NIP and normal waves

A.1 Traveltimes in inhomogeneous medium

In this setion, I obtain the hyperboli expressions for the traveltime of the NIP and normal

waves in the 3D imhomogeneous medium.

In the speial ray-entered oordinate system L′
, the NIP wavefront arrives at the entral

point x̂′
0 = (0, 0, 0) at the time t0

2 with the urvature K′
NIP (see Setion 2.3). The goal is

to �nd the traveltime, needed for the NIP wavefront to reah the point x̂′ = (x′, y′, 0) in
the viinity of the entral point.

In the viinity of the entral point, the traveltime of the NIP wave in the inhomogeneous

medium may be presented as a trunated Taylor series expansion about x′ = (x′, y′):

t(x′) =
t0
2
+

1

2
x′T ∂2t

∂x′∂x′
x′. (A.1)

The seond spatial derivatives of the traveltime in the ray-entered oordinate system are

linked with the wavefront urvature (�ervený, 2001), therefore:

∂2t

∂x′∂x′
=

1

v0
K′

NIP. (A.2)

The �nal formula for the traveltime of the NIP wave in the inhomogeneous medium is

obtained by squaring (A.1) and omitting the terms of order higher than two:

t2(x′) =
t20
4
+

t0
2v0

x′TK′
NIPx

′. (A.3)

Similar result may be obtained for the normal wave:

t2(x′) =
t20
4
+

t0
2v0

x′TK′
Nx

′. (A.4)

85



86 APPENDIX A. TRAVELTIME OF NIP AND NORMAL WAVES

A.2 Traveltime of NIP wave in auxiliary medium

In this setion, I obtain the traveltime of the NIP wave in the auxiliary anisotropi medium.

The NIP wave originates from the image soure loated at the point (0, 0, R∗
NIP) in the

auxiliary anisotropi medium (in the L′
system). The traveltime, needed for the NIP

wavefront to reah the point x̂′ = (x′, y′, 0) in the viinity of the entral point is obviously

equal:

t2(x′) =
R∗2

NIP + |x′|2
ζ2

, (A.5)

where the group veloity ζ

1

ζ2(Θ,Φ)
=

sin2Θcos2 Φ

A11
+

sin2 Θsin2 Φ

A22
+

cos2 Θ

A33
(A.6)

depends on the group angles:

sin2 Θcos2Φ =
x′2

R∗2
NIP + |x′|2 , sin2Θsin2Φ =

y′2

R∗2
NIP + |x′|2 , cos2Θ =

R∗2
NIP

R∗2
NIP + |x′|2 .

(A.7)

Substitution the value of the group veloity (A.6) into the traveltime of the NIP wave in

the auxiliary medium (A.5) yields:

t2(x′) =
R∗2

NIP

A33
+ x′T

( 1
A11

0

0 1
A22

)

x′. (A.8)

By omparing the urvatures in the expressions (A.3) and (A.8), the parameters A11, A22

of the auxiliary medium are found to be:

1

A11
=

t0
2v0

k′
11
NIP,

1

A22
=

t0
2v0

k′
22
NIP. (A.9)

A.3 Traveltime of normal wave in auxiliary medium

In this setion, I obtain the traveltime of the normal wave in the auxiliary anisotropi

medium.

Consider the paraboli re�etor with the urvature K′
R in the speial ray-entered

oordinate system L′
(see Setion 2.3). The re�etor is embedded in the auxiliary

anisotropi medium (see Setion 2.4 and Figure 2.4b).

The surfae of the re�etor x̂′
ref is given by:

x̂′
ref (x

′
ref ) =





x′ref
y′ref
f(x′ref , y

′
ref )



 , x′
ref ≡

(
x′ref
y′ref

)

, (A.10)
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where

f(x′
ref ) = R∗

NIP +
1

2
x′T

refK
′
Rx

′
ref , (A.11)

K′
R is the symmetri urvature matrix:

K′
R =

(
k′11R k′12R
k′21R k′22R

)

, (A.12)

R∗
NIP is the apex of the re�etor:

R∗
NIP ≡ t0v0

2
, (A.13)

t0
2 is the one-way traveltime along the entral ray and v0 is the group veloity in the

z′-diretion.

The normal vetor to the re�etor surfae is equal to:

n̂′(x′
ref ) =






k′11R x′ref + k′12R y′ref
k′21R x′ref + k′22R y′ref

−1




 . (A.14)

Sine the normal wavefront originates as an exploding re�etor, the diretion of the vetor

n̂′
de�nes the phase polar θ and azimuthal φ angles:

n̂′ = |n̂′|





sin θ cosφ
sin θ sinφ

cos θ



 . (A.15)

In the 3D ase, the auxiliary medium is a weakly anisotropi ellipsoidal medium. In the

weakly anisotropi ellipsoidal medium, the group polar Θ and azimuthal Φ angles are

related with the phase angles (Daley and Krebes, 2005, p. 5 eq. 17,19):

tanΦ =
A22

A11
tanφ, tanΘ =

A11 tan θ cosφ
[
1 + (A22/A11)

2 tan2 φ
]1/2

A33
. (A.16)

The group angles de�ne the diretion and the value of the group veloity ζ (Daley and Krebes,

2005, p. 5 eq. 21):

1

ζ2(Θ,Φ)
=

sin2Θcos2Φ

A11
+

sin2Θsin2Φ

A22
+

cos2Θ

A33
. (A.17)

In summary, the parameters (x′ref , y
′
ref ) de�ne the point on the re�etor x̂′

ref , the normal

vetor at this point n̂′
, the phase angles θ and φ, the group angles Θ and Φ, and the group

veloity ζ.

Now, onsider the ray, whih originates at the point x̂′
ref on the re�etor. This ray intersets

the surfae z′ = 0 at the point x̂′
int:

x̂′
int = x̂′

ref (x
′
ref ) + tζ̂(x′

ref ) (A.18)
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or, in omponents:





x′int
y′int
0



 =





x′ref
y′ref
f(x′

ref )



+ t





ζ1(x
′
ref )

ζ2(x
′
ref )

ζ3(x
′
ref )



 . (A.19)

The traveltime t as a funtion of x′
ref may be determined from the z-omponent of the

equation (A.19):

t(x′
ref ) = −f(x′

ref )

ζ3
. (A.20)

Substituting (A.20) into (A.19), I obtain the oordinates of the ray's intersetion with the

surfae z′ = 0:

x′int = x′ref − f(x′
ref )ζ1/ζ3, (A.21a)

y′int = y′ref − f(x′
ref )ζ2/ζ3. (A.21b)

The ratio of the group veloity omponents is equal (see setion A.4.2 for details):

ζ1/ζ3 = − 1

R∗
NIPk

′11
NIP

(
k′

11
R x′ref + k′

12
R y′ref

)
, (A.22a)

ζ2/ζ3 = − 1

R∗
NIPk

′22
NIP

(
k′

21
R x′ref + k′

22
R y′ref

)
. (A.22b)

By substituting (A.11) and (A.22) into (A.21), I get:

x′
int =

[
I+ (1 + Ω)K′−1

NIPK
′
R

]
x′

ref , (A.23)

where

Ω =
1

2
x′T

refK
′
Rx

′
ref

1

R∗
NIP

=
∆zref
R∗

NIP

. (A.24)

Sine I only onsider the rays in the viinity of the entral ray, the parameter Ω ≪ 1 and

may be negleted:

x′
int ≈

[
K′−1

R +K′−1
NIP

]
K′

Rx
′
ref . (A.25)

Therefore, in the viinity of entral ray there is a linear relation between x′
ref and x′

int:

x′
ref ≈ K′−1

R

[

K′−1
R +K′−1

NIP

]−1
x′

int. (A.26)

With the last relation it is possible to �nd the traveltime of the normal wave in the auxiliary

medium as a funtion of x′
int. Indeed, if I square the equation (A.20)

t2(x′
ref ) =

f2(x′
ref )

ζ23
, (A.27)

substitute into this equation the vertial omponent of the group veloity (see setion A.4.3

for details):

1

ζ23
=

1

v20

[

1 +
1

R∗
NIP

x′T
refK

′T
RK

′−1
NIPK

′
Rx

′
ref

]

(A.28)
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and the squared depth of the re�etor (the fourth-order term is omitted):

f2(x′
ref) = R∗2

NIP +R∗
NIPx

′T
refK

′
Rx

′
ref , (A.29)

I obtain (the fourth-order term is omitted):

t2(x′
ref ) =

t20
4
+

t0
2v0

x′T
refK

′T
RK

′−1
NIPK

′
Rx

′
ref +

t0
2v0

x′T
ref K

′T
RK

′−1
R

︸ ︷︷ ︸

I

K′
Rx

′
ref , (A.30)

or

t2(x′
ref ) =

t20
4
+

t0
2v0

x′T
refK

′T
R

[

K′−1
R +K′−1

NIP

]

K′
Rx

′
ref . (A.31)

Finally, I substitute x′
ref from (A.26):

t2(x′
int) =

t20
4
+

t0
2v0

x′T
int

[

K′−1
R +K′−1

NIP

]−1
x′

int. (A.32)

A.4 Group veloity omponents

In this setion, I present the proof of the equations (A.22) giving the ratios of the group

veloity omponents and the equation (A.28) for the vertial omponent of the group

veloity. The proof requires two additional useful relations.

A.4.1 Additional useful relations

1. Relations between the group and phase angles:

tanΘ cos Φ =
A11

A33
tan θ cosφ, (A.33a)

tanΘ sinΦ =
A22

A33
tan θ sinφ. (A.33b)

These relations are obtained from the equations (A.16) after some basi trigonomet-

ri manipulations.

2. Ratios of density normalized elasti parameters:

A11

A33
=

1

R∗
NIPk

′11
NIP

, (A.34a)

A22

A33
=

1

R∗
NIPk

′22
NIP

. (A.34b)

These relations follow immediately from the equations (2.13).
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A.4.2 Ratios of group veloity omponents

In order to proof the equation (A.22a), I use the relation (A.33a), the relation (A.34a) and

the expression for the normal vetor (A.14):

ζ1/ζ3 = tanΘ cos Φ =
A11

A33
tan θ cosφ =

A11

A33

n1

n3
= −

k′11R x′ref + k′12R y′ref

R∗
NIPk

′11
NIP

. (A.35)

The equation (A.22b) an be derived similarly.

A.4.3 Vertial group veloity omponent

The proof of the equation (A.28) will be given in several steps.

First, I use the de�nition of the group veloity (A.17):

1

ζ23
=

1

|ζ|2 cos2Θ =
tan2 Θcos2Φ

A11
+

tan2 Θsin2 Φ

A22
+

1

A33
. (A.36)

Seond, I use the relations (A.33):

1

ζ23
=

A11

A2
33

tan2 θ cos2 φ+
A22

A2
33

tan2 θ sin2 φ+
1

A33
. (A.37)

Third, I use the relation between the phase angles and the normal vetor (A.15):

1

ζ23
=

1

A33

[

1 +
A11

A33

(n1

n3

)2
+

A22

A33

(n2

n3

)2
]

. (A.38)

Fourth, I use the equations (A.34), the expression for the normal vetor (A.14) and the

de�nition of the parameter A33 ≡ v20 :

1

ζ23
=

1

v20

[

1+
1

R∗
NIPk

′11
NIP

(
k′

11
R x′ref +k′

12
R y′ref

)2
+

1

R∗
NIPk

′22
NIP

(
k′

21
R x′ref +k′

22
R y′ref

)2
]

. (A.39)

Finally, I present the result using the matrix notation:

1

ζ23
=

1

v20

[

1 +
1

R∗
NIP

x′T
refK

′T
RK

′−1
NIPK

′
Rx

′
ref

]

. (A.40)



Appendix B

3D i-CRS staking operator

As disussed in Setion 2.7, the 3D i-CRS staking operator onsists of:

1. the DSR traveltime formula:

t(ϑ,ϕ) =

√

X ′
s
2

A11
+

Y ′
s
2

A22
+

Z ′
s
2

A33
︸ ︷︷ ︸

Rs

+

√

X ′
g
2

A11
+

Y ′
g
2

A22
+

Z ′
g
2

A33
︸ ︷︷ ︸

Rg

, (B.1)

where:

X ′
i = x′ref − x′i, Y ′

i = y′ref − y′i, Z ′
i = z′ref − z′i, i = s, g, (B.2)

x̂′
s and x̂′

g are the soure and reeiver loations, and x̂′
ref (ϑ,ϕ) is a parametri

representation of the re�etor surfae; and

2. the system of nonlinear equations:

{
∂t
∂ϑ = 0,
∂t
∂ϕ = 0,

(B.3)

whih yields the parameters (ϑr, ϕr) de�ning the re�etion point x̂′
r of the paraxial

ray.

In this Appendix, I disuss the solution of the system (B.3) based on the example of the

ellipsoidal re�etor.

B.1 Ellipsoidal re�etor

The ellipsoidal re�etor an be parameterized both by the lateral oordinates and by the

polar angles. The formulas (B.4) and (B.6) give the ellipsoidal surfaes with the enter
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at the point (0, 0, R∗
N) and the urvature K′

R at the point (0, 0, R∗
NIP). The depth of the

enter of the ellipsoid R∗
N, the depth of its apex R∗

NIP, and the length of its z′-semi-axis
R∗

are linked (see Figure 2.5b):

R∗
N = R∗

NIP +R∗.

B.1.1 Parameterization by lateral oordinates

In this ase, the re�etion surfae is a funtion of lateral oordinates x′ and y′:

x̂′
ref (x

′, y′) =





x′

y′

f(x′, y′)




(B.4)

where

f(x′) = R∗
N −R∗

√

1− 1

R∗
x′TK′

Rx
′. (B.5)

B.1.2 Parameterization by polar angles

In this ase, the re�etion surfae is a funtion of polar θ and azimuthal φ angles:

x̂′
ref (ϑ,ϕ) =





A′ sinϑ cosϕ
B′ sinϑ sin(ϕ−∆ϕ)
R∗

N −R∗ cos ϑ




(B.6)

where

A′ =
√
R∗

√

k′22R
detK′

R
, B′ =

√
R∗

√

k′11R
detK′

R
, sin∆ϕ =

k′12R
√

k′11R k′22R

. (B.7)

B.2 Linearized iterative approah

The linearized version of system (B.3) is:

{

Ax +Axx∆x′(j)r +Axy∆y′(j)r = 0,

Ay +Ayx∆x′(j)r +Ayy∆y′(j)r = 0,
(B.8)

where ∆x′(j)r , ∆y′(j)r are the updates of the re�etion point oordinates at the j-th iteration

∆x′
(j)
r ≡ x′

(j)
r − x′

(j−1)
r , ∆y′

(j)
r ≡ y′

(j)
r − y′

(j−1)
r . (B.9)
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The oe�ients of the system are equal:

Ax = As
x +Ag

x, Ay = As
y +Ag

y,

Axx = As
xx +Ag

xx, Ayy = As
yy +Ag

yy, Axy = As
xy +Ag

xy, Ayx = Axy, (B.10)

where

Ai
x =

1

Ri

[ X ′
i

A11
+

Z ′
if

′
x′

A33

]

, (B.11a)

Ai
y =

1

Ri

[ Y ′
i

A22
+

Z ′
if

′
y′

A33

]

, (B.11b)

Ai
xx =

1

Ri

[ 1

A11
+

f ′
x′

2

A33
+

Z ′
if

′′
x′x′

A33
− (Ai

x)
2
]

, (B.11)

Ai
yy =

1

Ri

[ 1

A22
+

f ′
y′
2

A33
+

Z ′
if

′′
y′y′

A33
− (Ai

y)
2
]

, (B.11d)

Ai
xy =

1

Ri

[f ′
x′f ′

y′

A33
+

Z ′
if

′′
x′y′

A33
−Ai

xA
i
y

]

, i = s, g, (B.11e)

and f ′
x′, f ′

y′ and f ′′
x′x′ , f ′′

x′y′ , f
′′
y′y′ are the �rst and the seond-order spatial derivatives of

the funtion f , desribing the re�etor surfae.

Equations (2.6), (2.13) and (2.21) link the variables in (B.11) with the surfae-based

kinemati wave�eld attributes.

B.3 Trigonometri iterative approah

When the re�etor surfae is parametrized by polar angles, the system (B.3) redues to:







1
Rs

(
X′

s

A11

∂x′

ref

∂ϑ + Y ′

s

A22

∂y′
ref

∂ϑ + Z′

s

A33

∂z′
ref

∂ϑ

)

+ 1
Rg

(
X′

g

A11

∂x′

ref

∂ϑ +
Y ′

g

A22

∂y′
ref

∂ϑ +
Z′

g

A33

∂z′
ref

∂ϑ

)

= 0,

1
Rs

(
X′

s

A11

∂x′

ref

∂ϕ + Y ′

s

A22

∂y′
ref

∂ϕ + Z′

s

A33

∂z′
ref

∂ϕ

)

+ 1
Rg

(
X′

g

A11

∂x′

ref

∂ϕ +
Y ′

g

A22

∂y′
ref

∂ϕ +
Z′

g

A33

∂z′
ref

∂ϕ

)

= 0.

(B.12)

In the ase of the ellipsoidal re�etor (B.6), the partial derivatives of x̂′
ref with respet to

the angles ϑ and ϕ are equal:

∂x′ref
∂ϑ

= A′ cos ϑ cosϕ,

∂y′ref
∂ϑ

= B′ cos ϑ sin(ϕ−∆ϕ),

∂z′ref
∂ϑ

= R∗ sinϑ,

∂x′ref
∂ϕ

= −A′ sinϑ sinϕ,

∂y′ref
∂ϕ

= B′ sinϑ cos(ϕ−∆ϕ),

∂z′ref
∂ϕ

= 0.

(B.13)

Substituting (B.13) into (B.12) yields two impliit equations for the angles ϑ and ϕ:

tanφ =
cos∆ϕ

( Y ′

s

Rs
+

Y ′

g

Rg

)

A′

B′

A22
A11

(X′

s

Rs
+

X′

g

Rg

)
− sin∆ϕ

( Y ′

s

Rs
+

Y ′

g

Rg

) , (B.14a)
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tan θ = −
(Λ′

s

Rs
+

Λ′

g

Rg

)

(Z′

s

Rs
+

Z′

g

Rg

) , (B.14b)

where

Λ′
i =

A′

R∗

A33

A11
X ′

i cosφ+
B′

R∗

A33

A22
Y ′
i sin(φ−∆φ), i = s, g. (B.15)

Equations (2.6), (2.13), (2.21) and (B.7) link the variables in (B.14) with the surfae-based

kinemati wave�eld attributes.



Appendix C

Expliit staking operators

C.1 Alternative representation of n-CRS

The 2D n-CRS staking operator, proposed by Fomel and Kazinnik (2013), reads:

t(m,h) =

√

F (m) + χh2 +
√

F (m− h)F (m+ h)

2
, (C.1)

where

F (m) =
(
t0 + wm

)2
+ 2t0Nm2, (C.2)

χ = 2t0(2M −N) + w2, (C.3)

and w, M , N are the CRS parameters (1.17).

This staking operator may be transformed to more intuitive expression. Indeed, taking

into aount the relation

F (m) + χh2 =
1

2
F (m− h) +

1

2
F (m+ h) + 4t0

(
M −N

)
h2 (C.4)

yields:

t(m,h) =

√
[1

2

√

F (m− h) +
1

2

√

F (m+ h)
]2

+ 2t0
(
M −N

)
h2. (C.5)

Note, that expressions (C.1) and (C.5) are idential.

C.2 3D n-CRS staking operator

Fomel and Kazinnik (2013) proposed a formal extension of the 2D n-CRS staking operator

to the 3D ase. They replaed m, h, w by two-dimensional vetors m, h, w and replaed
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M , N by the symmetri 2×2 matriesM andN. Thereby, the 3D n-CRS staking operator

reads:

t(m,h) =

√
√
√
√ F̂ (m) + hTχ̂h+

√

F̂ (m− h)F̂ (m+ h)

2
, (C.6)

where

F̂ (m) =
(
t0 +wTm

)2
+ 2t0m

TNm, (C.7)

χ = 2t0(2M −N) +wwT. (C.8)

The alternative 3D n-CRS expression reads:

t(m,h) =

√
[1

2

√

F̂ (m− h) +
1

2

√

F̂ (m+ h)
]2

+ 2t0hT
(
M−N

)
h. (C.9)

C.3 3D DSR staking operator

In this setion, I give a proof for the expliit DSR staking operator from Setion 2.8. I

start with the DSR expression for the traveltime of the re�eted wave (2.27):

t =

√

X ′
s
2

A11
+

Y ′
s
2

A22
+

Z ′
s
2

A33
+

√

X ′
g
2

A11
+

Y ′
g
2

A22
+

Z ′
g
2

A33
. (C.10)

I onsider the value under the square root and try to interpret it. I do the following

operations:

� Use the de�nition of X ′
i, Y

′
i , and Z ′

i (2.25):

Si ≡
(
x′i − x′ref

)2

A11
+

(
y′i − y′ref

)2

A22
+

(
z′i − z′ref

)2

A33
, i = s, g. (C.11)

� Use the de�nition of auxiliary media (2.13):

Si ≡
t0
2v0

k′
11
NIP

(
x′i − x′ref

)2
+

t0
2v0

k′
22
NIP

(
y′i − y′ref

)2
+

1

v20

(
z′i − z′ref

)2
. (C.12)

� Use the vetor and matrix notations:

Si ≡
t0
2v0

(
x′

i − x′
ref

)T
K′

NIP

(
x′

i − x′
ref

)

︸ ︷︷ ︸

S
(1)
i

+
z′2ref
v20

︸ ︷︷ ︸

S
(2)
i

− 2z′iz
′
ref

v20
︸ ︷︷ ︸

S
(3)
i

+
z′2i
v20
︸︷︷︸

S
(4)
i

. (C.13)

� Find S
(1)
i :

Use the de�nition of x′
i:

x′
i ≡ m′ ∓ h′, (C.14)
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and approximation for the re�etion point (2.35):

x′
ref ≈

[

I−K′−1
NIPK

′
N

]

m′. (C.15)

(
x′

i − x′
ref

)
= K′−1

NIPK
′
Nm′ ∓ h′. (C.16)

S
(1)
i =

t0
2v0

[

m′TK′T
N

(
K′−1

NIP

)T
K′

Nm′ ∓ 2m′TK′T
Nh′ + h′TK′T

NIPh
′
]

. (C.17)

� Find S
(2)
i :

Use the relation between urvatures (2.21):

K′
R =

[
K′−1

N −K′−1
NIP

]−1
(C.18)

and the paraboloidal re�etor (A.11):

z′ref = R∗
NIP +

1

2
x′T

refK
′
Rx

′
ref . (C.19)

z′ref =
t0v0
2

+
1

2
m′TK′

Nm′ − 1

2
m′TK′T

N

(
K′−1

NIP

)T
K′

Nm′. (C.20)

S
(2)
i =

t20
4
+

t0
2v0

m′TK′
Nm′ − t0

2v0
m′TK′T

N

(
K′−1

NIP

)T
K′

Nm′. (C.21)

� Find S
(3)
i :

Use the link between the oordinate systems (2.6):

x̂′ = R̂T

z (δ)R̂
T

y (α)R̂
T

z (β)
︸ ︷︷ ︸

B̂T

(x̂− x̂0). (C.22)

z′i = B̂T

31(xi − x0) + B̂T

32(yi − y0) + B̂T

33 (zi − z0)
︸ ︷︷ ︸

=0

. (C.23)

The elements of the matrix B̂ are equal:

B̂T

31 = sinα cos β, B̂T

32 = sinα sin β (C.24)

z′i =
( sinα cos β

sinα sinβ

)

∆xi = −v0
2
wT∆xi. (C.25)

S
(3)
i =

t0
2
wT∆xi. (C.26)

� Find S
(4)
i :

S
(4)
i =

1

4

(
wT∆xi

)2
. (C.27)
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� Combine S
(1)
i , S

(2)
i , S

(3)
i and S

(4)
i :

Si =
t20
4
+

t0
2
wT∆xi+

1

4

(
wT∆xi

)2
+

t0
2v0

[

m′TK′
Nm′∓2m′TK′T

Nh′+h′TK′T
NIPh

′
]

,

(C.28)

or

1

4
Si =

[

t0 +wT∆xi

]2
+ 2t0

[

mTNm∓ 2mTNh+ hTMh
]

i = s, g. (C.29)

Finally, I obtain the 3D DSR staking operator:

t(m,h) =
1

2

√
[

t0 +wT∆xs

]2
+ 2t0

[

mTNm− 2mTNh+ hTMh
]

+
1

2

√
[

t0 +wT∆xg

]2
+ 2t0

[

mTNm+ 2mTNh+ hTMh
]

. (C.30)

C.4 Relation between 3D DSR and 3D n-CRS

The 3D DSR staking operator (C.30) ould be further transformed to the 3D n-CRS

staking operator. Indeed, using notation F̂ (C.7), the 3D DSR staking operator reads:

t(m,h) =
1

2

√

F̂ (∆xs) + 2t0hT
(
M−N

)
h +

1

2

√

F̂ (∆xg) + 2t0hT
(
M−N

)
h. (C.31)

If I square the right-hand side of the last expression

t(m,h) =

√
[1

2

√

F̂ (∆xs) + 2t0hT
(
M−N

)
h+

1

2

√

F̂ (∆xg) + 2t0hT
(
M−N

)
h
]2
,

(C.32)

"take out" 2t0h
T
(
M −N

)
h from the square roots and neglet the terms of higher order

than the seond, I obtain the staking operator

t(m,h) =

√
[1

2

√

F̂ (∆xs) +
1

2

√

F̂ (∆xg)
]2

+ 2t0hT
(
M−N

)
h, (C.33)

that is idential to 3D n-CRS (C.9).



Appendix D

Staking operators for onverted

waves

D.1 Deviation angle

In this setion I derive the deviation angle ϑr (equation (4.9)). I onsider the irular

re�etor with the enter O, the entral point X0, and the soure and the reeiver at XS ,

XG, respetively (see Figure D.1). The onverted PS ray re�ets from the irle at the

point S. The line passing through the points O and S intersets the measurement surfae

at the point XP . In all derivations of this appendix, I assume that the soure and reeiver

displaements

∆xs ≡ XS −X0, ∆xg ≡ XG −X0 (D.1)

are small ompared to the typial sale of the problem (like RN ≡ OX0 or RNIP ≈ SXP ):

ε ≡ max
( |∆xs|
RNIP

,
|∆xg|
RNIP

,
|∆xs|
RN

,
|∆xg|
RN

)

, ε ≪ 1. (D.2)

I an express the deviation angle ϑr = ∠X0OXP by the relations in the triangle △X0OXP :

sinϑr =
X0XP

OXP
sin(

π

2
− α) =

X0XP

OXP
cosα =

X0XP

OX0
cosα

(
1 +O(ε)

)
. (D.3)

The ombination of the Snell's Law and the relations in the triangles△XSSXP ,△XGSXP ,

sin θ1
vP

=
sin θ2
vS

,
l1

sin θ1
=

r1
sin β

,
l2

sin θ2
=

r2
sin(π − β)

, β = ∠XSXPS (D.4)

lead to the following estimation of the ratio l1/l2:

l1
l2

=
vP
vS

r1
r2

= γ
r1
r2

= γ(1 +O(ǫ)). (D.5)
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Figure D.1: Illustration of the notations used in the derivation of sinϑ.

Here I took into aount that:

r1
r2

= 1 +O(ε). (D.6)

The ombination of (D.5) and the fat that l1+l2 = XG−XS yields the following expression

for X0XP :

X0XP =
γ∆xg +∆xs

1 + γ
(1 +O(ε)).

where a variable hange from XS ,XG to ∆xs, ∆xg was made. Substituting X0XP into the

equation (D.3) gives the �nal result:

sinϑr =
γ∆xg +∆xs
(1 + γ)RN

cosα+O(ε2), (D.7)

or, alternatively, in the γ-CMP oordinates (4.5):

sinϑr =
m̃

RN
cosα+O(ε2). (D.8)

D.2 Derivation of DSR-PS staking operator

In this setion I present the derivation of the DSR-PS staking operator (4.10). I start with

the DSR expression for the traveltime of onverted PS wave in onstant-veloity medium:

t =
1

vP

√

(xs − xr)2 + z2r +
1

vS

√

(xg − xr)2 + z2r . (D.9)

Here xs and xg are the lateral oordinates of soure and reeiver, xr, zr denote the loation
of the re�etion point, and vP and vS are the veloities of P- and S-waves, respetively
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(see Figure 4.1). For onveniene, I denote the expression under the square root by Si:

Si ≡ (xi − xr)
2 + z2r , i = s, g. (D.10)

It is apparent from the Figures 4.1 and D.1 that the re�etion point oordinates are equal:

xr = RN sinα−R sin(α− ϑr) + x0,

zr = RN cosα−R cos(α− ϑr). (D.11)

Substitution of (D.11) into (D.10) and simpli�ation of trigonometri expressions yield:

Si = R2
N +R2 − 2RNR cos ϑr + 2∆xiR sin(α− ϑr)− 2∆xiRN sinα+∆x2i . (D.12)

The goal is to �nd a traveltime approximation whih is aurate up to seond order of ε.
Hene, in the approximation for cos ϑr I inlude the seond order term:

cos ϑr = 1− 1

2
sin2 ϑr +O(ε4) (D.13)

and in sin(α− ϑr) I retain only linear terms:

sin(α− ϑr) = sinα cos ϑr
︸ ︷︷ ︸

=1+O(ε2)

− cosα sinϑr. (D.14)

Substituting (D.13) and (D.14) into (D.12) and taking into aount the relation RN =
RNIP +R yields:

Si =
[

RNIP −∆xi sinα
]2

+RNR sin2 ϑr − 2∆xiR cosα sinϑr +∆x2i cos
2 α. (D.15)

Now, I substitute the approximation for sinϑr (D.3):

Si =
[

RNIP −∆xi sinα
]2

+ cos2 α
[ R

RN
m̃2 − 2

R

RN
m̃∆xi +∆x2i

]

. (D.16)

In eqution (D.16), the soure and reeiver displaements ∆xi, i = s, g are equal to:

∆xs = m̃− γh̃, ∆xg = m̃+ h̃. (D.17)

To simplify these notations, I introdue h̃i:

h̃i =

{

−γh̃, i = s

h̃, i = g
, ∆xi = m̃+ h̃i, i = s, g. (D.18)

With these notations Si is equal:

Si =
[

RNIP −∆xi sinα
]2

+ cos2 αRNIP

[ m̃2

RN
+

2m̃h̃i
RN

+
h̃2i

RNIP

]

. (D.19)

Veloities of P- and S-waves an be expressed as:

1

vP
=

1

1 + γ

2

veff
,

1

vS
=

γ

1 + γ

2

veff
. (D.20)
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Hene,

( 2

veff

)2
Si =

[

t0 −
2 sinα

veff
∆xi

]2
+ 2t0

cos2 α

veff

[ m̃2

RN
+

2m̃h̃i
RN

+
h̃2i

RNIP

]

(D.21)

Here I took into aount that the traveltime of the entral ray is equal:

t0 =
2RNIP

veff
. (D.22)

Finally, by introduing the oe�ients:

w̃ = −2 sinα

veff
, M̃ =

cos2 α

veffRNIP
, Ñ =

cos2 α

veffRN
(D.23)

I obtain the ompat and elegant expression for the quantity under the square root:

( 2

veff

)2
Si =

[

t0 + w̃∆xi

]2
+ 2t0

[

Ñm̃2 + 2Ñm̃h̃i + M̃h̃2i

]

(D.24)

Substitution of (D.24) into (D.9) gives the DSR-PS staking operator:

t(m̃, h̃) =
1

1 + γ

√
[

t0 + w̃∆xs

]2
+ 2t0

[

Ñm̃2 − 2Ñm̃(γh̃) + M̃(γh̃)2
]

+
γ

1 + γ

√
[

t0 + w̃∆xg

]2
+ 2t0

[

Ñm̃2 + 2Ñm̃h̃+ M̃h̃2
]

. (D.25)

D.3 Derivation of CRS-PS staking operator

In this setion I disuss the derivation of the CRS-PS formula (4.12). I begin with the

DSR-PS staking operator (D.25). I "take out" (t0 + w̃∆xi) from the square roots, make

Taylor series expansion of the square roots and neglet the terms of higher order than the

seond:

t =
(t0 + w̃∆xs)

1 + γ

(

1 +
1

(t0 + w̃∆xs)

[

Ñm̃2 − 2Ñm̃(γh̃) + M̃(γh̃)2
])

+
γ(t0 + w̃∆xg)

1 + γ

(

1 +
1

(t0 + w̃∆xg)

[

Ñm̃2 + 2Ñm̃h̃+ M̃h̃2
])

. (D.26)

After some simpli�ations:

t = t0 + w̃
∆xs + γ∆xg

1 + γ
︸ ︷︷ ︸

=m̃

+
Ñ + γÑ

1 + γ
︸ ︷︷ ︸

=Ñ

m̃2 +
2γÑ − 2γÑ

1 + γ
︸ ︷︷ ︸

=0

m̃h̃+
γ2M̃ + γM̃

1 + γ
︸ ︷︷ ︸

=γM̃

h̃2, (D.27)

I obtain

t = t0 + w̃m̃+ Ñm̃2 + γM̃ h̃2. (D.28)

Final formula is obtained by squaring (D.28) and negleting the terms of higher order than

the seond:

t2(m̃, h̃) =
[

t0 + w̃m̃
]2

+ 2t0

[

Ñm̃2 + γM̃ h̃2
]

. (D.29)
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D.4 Derivation of n-CRS-PS staking operator

In this setion I disuss the derivation of the 2D n-CRS-PS formula (4.13). I begin with the

DSR-PS staking operator (D.25). Using notation F̃ (4.14), the DSR-PS staking operator

reads:

t(m̃, h̃) =
1

1 + γ

√

F̃ (∆xs) + 2t0
(
M̃ − Ñ

)
(γh̃)2 +

γ

1 + γ

√

F̃ (∆xg) + 2t0
(
M̃ − Ñ

)
h̃2.

(D.30)

If I square the right-hand side of the last expression

t(m̃, h̃) =

√
[ 1

1 + γ

√

F̃ (∆xs) + 2t0
(
M̃ − Ñ

)
(γh̃)2 +

γ

1 + γ

√

F̃ (∆xg) + 2t0
(
M̃ − Ñ

)
h̃2

]2
,

(D.31)

"take out" 2t0
(
M̃− Ñ

)
h̃2 from the square roots and neglet the terms of higher order than

the seond, I obtain the n-CRS-PS staking operator:

t(m,h) =

√
[ 1

1 + γ

√

F̃ (m̃− γh̃) +
γ

1 + γ

√

F̃ (m̃+ h̃)
]2

+ 2t0γ
(
M̃ − Ñ

)
h̃2. (D.32)

D.5 DSR-PS staking operator in CMP oordinates

For some appliation, it might be useful to express the DSR-PS staking operator in the

standard CMP oordinates. The midpoint displaement and the half-o�set in the γ-CMP

and standard CMP oordinates have the following relation:

m̃ = m+ σh, h̃ = υh, (D.33)

where

σ =
γ − 1

γ + 1
, υ =

2

γ + 1
. (D.34)

Substitution of m̃ and h̃ into (D.25) yields, after some algebra:

t(m,h) =
1

1 + γ

√
[

t0 + w̃∆xs

]2
+ 2t0

[

Ñm2 − 2Ñmh+
[
Ñ + γ2υ2(M̃ − Ñ)

]
h2

]

+
γ

1 + γ

√
[

t0 + w̃∆xg

]2
+ 2t0

[

Ñm2 + 2Ñmh+
[
Ñ + υ2(M̃ − Ñ)

]
h2

]

(D.35)

Similarly, the 3D DSR-PS staking operator in the standard CMP oordinates reads:

t(m,h) =

1

1 + γ

√
[

t0 + w̃T∆xs

]2
+ 2t0

[

mTÑm− 2mTÑh+ hT
[
Ñ+ γ2υ2(M̃− Ñ)

]
h
]

+
γ

1 + γ

√
[

t0 + w̃T∆xg

]2
+ 2t0

[

mTÑm+ 2mTÑh+ hT
[
Ñ+ υ2(M̃− Ñ)

]
h
]

. (D.36)
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Appendix E

PS exat solution

The problem of re�etion from the irular mirror has a very long history. This problem

is known as Alhazen's problem (Dörrie, 1965) and an be traed further bak at least to

Ptolemy's time (Neumann, 1998). The problem of re�etion from the irular mirror is

idential to the irular billiard problem. (Neumann, 1998) and Drexler and Gander (1998)

proved that the irular billiard problem typially has two or four solutions orresponding

to the roots of fourth-order algebrai equation. Landa et al. (2010) used this idea to

improve the quality of MF staking operator.

In this appendix I disuss how to extend the solution proposed by Drexler and Gander

(1998) to the ase of onverted waves.

E.1 Method

In the ase of onverted waves, the problem an be formulated as follows. Given a soure

xs, a reeiver xg and a irular re�etor. How to �nd a point on the irular re�etor,

where a seismi ray form xs to xg re�ets, assuming that the mode onversion from P to

S ours on re�etion?

Following the paper of Drexler and Gander (1998), I plae the soure xs at the point

(−h, 0), the reeiver xg at the point (h, 0) and assume that the re�etor is a irle of unit

radius and enter at the point (m1, m2), i.e., the irle is given by equation:

(x−m1)
2 + (z −m2)

2 = 1. (E.1)

I denote by vp and vs veloities of P- and S-waves, γ ≡ vp/vs.

Following Drexler and Gander (1998), I introdue the term "isohrone". By de�nition, at

eah point on the isohrone urve Snell's law is arried out for the inident and the re�eted
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Figure E.1: Typially, equation (E.3) has four real roots. Corresponding re�etion points

are shown as blak rosses. Only the root, giving the smallest value of

traveltime, yields the required re�etion point.

rays. In the ase of onverted waves, the isohrone is given by equation (see setion E.2):

√

(x+ h)2 + z2 + γ
√

(x− h)2 + z2 = 2σ. (E.2)

Coe�ient 2σ has a lear physial meaning of the produt of the traveltime and the veloity

of P-waves. In the ase of monotypi waves (γ = 1), the isohrone (E.2) is an ellipse. The

re�etion point oordinates may be found as a solution of the system of three equations:

the equation of irle (E.1), the equation of isohrone (E.2) and the ondition for tangeny

between the irle and the isohrone (see setion E.3). This system of nonlinear equations

in variables {x, z, σ} leads to the sixth-order algebrai equation:

β6u
6 + β5u

5 + β4u
4 + β3u

3 + β2u
2 + β1u+ β0 = 0, (E.3)

where oe�ients βi, i = 0, ..., 6 depend on parameters h, γ,m1,m2 (see setion E.4). The

re�etion points are equal:

xr = m1 + cos θ, zr = m2 + sin θ, θ = 2arctan u. (E.4)

In most ases equation (E.3) has four real roots and two omplex roots. The typial

situation is shown in Figure E.1. Among real roots, the root, giving the smallest value of

traveltime, yields the required re�etion point.

E.2 Isohrone of onverted wave

I assume that for the �xed traveltime t the isohrone is given in parametri form: r = r(τ).
I denote by rs(τ) and rg(τ) radius vetors desribing the isohrone from the position of
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Figure E.2: Illustration of the notations used in the derivation of the isohrone equation.

soure xs and reeiver xg, respetively (see Figure E.2). If L is an arbitrary point on the

isohrone, and n is a unit normal vetor of the isohrone, then Snell's law may be written

as:

sin( ̂rs(τ),n(τ)) = γ sin( ̂rg(τ),n(τ)). (E.5)

If instead of the normal I onsider a unit tangent vetor k, the Snell's law will look like:

cos( ̂rs(τ),k(τ)) = −γ cos( ̂rg(τ),k(τ)). (E.6)

Now, I use the de�nition of the salar produt of vetors, substitute expression for the unit

tangent vetor k = ṙ(τ)
|ṙ(τ)| , multiply equation (E.6) by |ṙ(τ)|, and note that ṙ(τ) = ṙs(τ) =

ṙg(τ). Finally, I obtain:
rs(τ) · ṙs(τ)

|rs(τ)|
= −γ

rg(τ) · ṙg(τ)
|rg(τ)|

. (E.7)

This expression is a total derivative with respet to τ :

d

dτ
|rs(τ)| = −γ

d

dτ
|rg(τ)|. (E.8)

Rearranging terms and arrying out the integration yields:

|rs(τ)| + γ|rg(τ)| = 2σ, (E.9)

where 2σ is the integration onstant. The oordinate representation of rs, rg in

equation (E.9) yields the equation of isohrone:

√

(x+ h)2 + z2 + γ
√

(x− h)2 + z2 = 2σ. (E.10)

E.3 Tangeny ondition

The re�etion point (xr, zr) should satisfy Fermat's priniple, aording to whih the

re�eted ray prefers the path, whih minimizes the traveltime. Mathematially, this
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is equivalent to the fat that the irle and the isohrone must touh eah other at

the re�etion point. If impliit funtions F and G denote the irle (E.1) and the

isohrone (E.2), the ondition of tangeny between the urves, may be written as follows:

(∂F

∂x

)(∂G

∂z

)

−
(∂F

∂z

)(∂G

∂x

)

= 0. (E.11)

The solution of equation (E.11) with respet to σ2
yields the traveltime of onverted wave

as a funtion of re�etion point:

σ2 = (1 + γ2)
[

2xh+Θ∆
] Λ+∆

4(Λ∆ + 1)
, (E.12)

where the following notations are made:

∆ =
1− γ2

1 + γ2
, Λ = h

z −m2

zm1 − xm2
, Θ = x2 + z2 + h2. (E.13)

E.4 Coe�ients of the sixth-order equation

The system of equations (E.1), (E.2) and (E.12) is solved in the following way:

1. isohrone (E.2) is twie squared to avoid irregularity;

2. σ2
from (E.12) is substituted into (E.2);

3. x, z are substituted into (E.2) in the form x = m1 + cos θ, z = m2 + sin θ; they
automatially satisfy equation of irle (E.1);

4. in (E.2) the variable hange is made: θ = 2arctan u.

Finally, the system redues to the sixth-order algebrai equation for u:

β6u
6 + β5u

5 + β4u
4 + β3u

3 + β2u
2 + β1u+ β0 = 0, (E.14)

with the following oe�ients:

β6 = (2h(m1 − 1)−∆A1)m
2
2;

β5 = 2h(m1 − 1)B1 −A1B2 − 4∆m3
2;

β4 = 2h(m1 + 1)m2
2 + 2h(m1 − 1)C1 −A2∆m2

2 − 4m2B2 −A1C2;

β3 = −8m2(4hm1 +∆(4m2
1 −m2

2));

β2 = 2h(m1 − 1)m2
2 + 2h(m1 + 1)C1 −A1∆m2

2 + 4m2B2 −A2C2;

β1 = −2h(m1 + 1)B1 +A2B2 − 4∆m3
2;

β0 = (2h(m1 + 1)−∆A2)m
2
2;
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where:

A1 = (m2
1 +m2

2 + 1 + h2 − 2m1);

A2 = (m2
1 +m2

2 + 1 + h2 + 2m1);

B1 = (4∆hm2 + 4m1m2);

B2 = (4hm2 + 4∆m1m2);

C1 = (8∆hm1 + 4h2 − 2m2
2 + 4m2

1);

C2 = (8hm1 +∆(4h2 − 2m2
2 + 4m2

1)).
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Used software

The results of this thesis were derived on the working station running under a free

GNU/Linux operating system.

Proessing and visualisation of the seismi data was performed in an open soure seismi
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generated using MATLAB (MathWorks) and Mirosoft Power Point.
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(2011).

� 3D ZO CRS stak ode as implemented by Müller (2003) with updates by Ahmed

(2015) and Xie and Gajewski (2016).

Syntheti datasets were generated with NORSAR-2D, and NORSAR-3D software (NOR-

SAR Innovation AS).

The thesis itself was written on a PC with the free operating system Debian GNU/Linux

with the typesetting system L
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