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Abstract

In high energy hadron-hadron collisons (like for example at LHC) Drell Yan
processes are important. For a precise determination of the inclusive cross
section higher order calculations must be taken into account. In the region
of phase space near threshold (where soft gluon emission dominates) large
double logarithmic corrections become important. Thus it is necessary to
perform a resummation to all orders in perturbation theory. In this thesis
we analyze the energy fraction in Drell Yan processes. For that we apply
a new parton shower formalism that was originally developed in [1]. It will
be shown that the result is equivalent (under certain conditions) to a result
given in [2] where the distribution of the energy fraction has been derived by
standard resummation techniques. The goal is to confirm the reliability of
this new formalism. Further also a comparison with the Monte Carlo event
generator PYTHIA will be done.
We further investigate a jet algorithm that should detect multi parton in-
teractions. It will be shown that this algorithm works for an idealised case
but that it cannot detect multi parton interaction in a realistic scenario.



Zusammenfassung

In hochenergetischen Hadron-Hadron Kollisionen (wie z.B. am LHC) sind
Drell Yan Prozesse wichtig. Für eine präzise Bestimmung des inklusiven
Wirkungsquerschnittes müssen Rechnungen höherer Ordnung berücksichtigt
werden. In der Region nahe an der Grenze des Phasenraumes (wo weiche
Gluonenemission dominiert) werden große doppelte Logarithmen wichtig.
Es ist daher notwendig, eine Resummation in allen Ordnungen der Störungs-
theorie durchzuführen. In dieser Arbeit analysieren wir den Energieanteil
in Drell Yan Prozessen. Dafür wenden wir einen neuen Partonschauerfor-
malismus an, der urprünglich in [1] entwickelt wurde. Es wird gezeigt, dass
das Resultat unter bestimmten Bedingungen äquivalent zu einem anderen
Resultat von [2] ist, wo die Verteilung des Energieanteils mit Standard-
resummationtechniken hergeleitet wurde. Das Ziel ist, die Zuverlässigkeit
des neuen Formalismus zu bestätigen. Desweiteren wird auch ein Vergleich
mit dem Monte Carlo Generator PYTHIA gemacht werden.
Wir untersuchen desweiteren einen Jetalgorithmus, der Multipartonwech-
selwirkungen ausfindig machen soll. Es wird gezeigt werden, dass dieser
Algorithmus für ein idealisiertes Szenario funktioniert, aber dass er Mul-
tipartonwechselwirkungen nicht in einem realistischen Szenario bestimmen
kann.
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Chapter 1

Introduction

The general picture

For the investigation of the strong interaction, collider experiments are in-
despensable. There are several types of possible collisions: electron-positron,
electron-proton, positron-proton, protron-antiproton and proton-proton. For
the analysis of the strong interaction the most simple choice are electron-
positron collisions1: the incoming electron and the incoming positron radi-
ate before they form a γ or a Z0 boson several photons. These radiation
processes are well understood inside the frame of QED and can be treated
pertubatively. We can call the formation of the γ or the Z0 boson the
”hard” subprocess as it happens on higher energy scales than the processes
before and afterwards. After the formation of the virtual γ or Z0 boson it
must decay into a fermion-antifermion pair. It can be a lepton-antilepton
pair (for example e−e+, µ−µ+, νeν̄e etc.) or a quark-antiquark pair. Only
the latter case is interesting for the study of the strong interaction. The
outcoming quarks undergo subsequent radiation of gluons as the incoming
lepton-pair has undergone subsequent radiation of photons2. The outgoing
gluons themselves can undergo further branchings: splitting into a gluon
pair (in contrast to photons which cannot radiate photons by themselves)
or splitting into a quark-antiquark pair. Those branchings can be treated
inside the frame of perturbation theory and the branching can undergo fur-
ther iterations until the nonperturbative domain has been reached. In the

1As we must deal here with the strong interaction in the final state only. In the
other cases also the inital state must be taken into account for the analysis of the strong
interaction.

2Though the outgoing quarks can also radiate photons those processes play no siginif-
icant role in comparison to the radiation of gluons.
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nonperturbative domain the outgoing partons must form hadrons due to
confinement. This process is called hadronization. An important point that
must be kept in mind in this context are the factorization theorems. They
state that the cross section for the process e−e+ → Z0/γ → hadrons can
be factored into a part σ̂ that can be calculated with perturbative methods
and a nonperturbative part that stands for hadronization. The perturba-
tive cross section σ̂ is always defined on parton level and is suited for the
description of parton branching we have talked above. Physically the factor-
ization theorems stand for the fact that perturbative and non-perturbative
processes happen on different time scales: the time scale for perturbative
processes is magnitudes lower than the one of non-pertubative processes.
Therefore they can be treated seperately.
There are also factorization theorems in the case of deep inelastic scattering
(DIS) (electron-proton or positron-proton collision) both for the incoming
proton and for the outgoing hadrons. In that case the cross section fac-
tors into a non-perturbative part that stands for the incoming proton, a
perturbative part σ̂ that describes the quark that is struck by the virtual
photon and its parton branching before and after the hard interaction and a
non-perturbative part that stands for hadronization in the final state. The
incoming proton is described by parton density functions (PDFs) which de-
scribe the momentum distributions of the incoming partons.
Similar is the situation in the case of hadron-hadron collisions. We have
those processes at Tevatron (proton-antiproton) and at LHC (proton-proton).
In the perturbative regime the incoming partons of the two hadrons can un-
dergo parton branching (splitting of a gluon into a quark-antiquark pair or
a gluon pair, radiation of a gluon from a quark or antiquark). This is in
correspondence to the case of photon radiation in the case of a e+e− collision
we have already mentioned above with the difference that gluons themselves
can radiate further gluons. Afterwards they can undergo a hard interaction.
The partons that come out of the hard interaction are themselves subject to
further branching. An important point that must be kept in mind is that it
is only meaningful to speak of parton branchings with respect to a resolution

scale. As it is well known we encounter divergences in the case of soft and
collinear branchings. This has to do with the fact that for example a quark
that has emitted a soft or a collinear gluon3 is completely undistinguishable
from a quark that has emitted no gluon at all. The same applies to the case
of a gluon which undergoes a soft or a collinear branching. By introduc-

3We have the problem of collinear gluons emitted by a quark only for the case that the
quark’s mass can be neglected.
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ing a resolution scale we can distinguish between resolvable branchings and
nonresolvable branchings. Thus it is possible for a quark that comes into a
hard interaction to loose energy without emitting any resolved gluons4. The
lower the resolution scale (for example for the case of an incoming quark) is
set the more we see emitted gluons which are almost soft or collinear with
respect to the resolution scale. This number goes to infinity when the reso-
lution scale goes to zero. This is the physical meaning of the collinear and
soft divergency.

In the case of proton-proton or antiproton-proton collisions further pro-
cesses exist besides the one hard interaction. These additional processes are
called the underlying event. First it is possible that besides the one hard in-
teraction there are softer interactions that can be dealt within perturbative
QCD. This is called multi parton interaction. The incoming and outcoming
partons from these further interactions must also undergo parton branching.

Then it should be noted that besides the partons that came out of par-
ton branching or directly from the hard interactions we have also remnants
from the incoming hadrons. This is called the beam remnant. The beam
remnant must also be taken into account for the formation of hadrons in the
final state.

Monte Carlo event generators

After the description of the general physical picture of hadron-hadron col-
lisions in a qualitative manner, the next question that arises is: how do we
model this quantitatively? In practice a computer simulation is used which
reproduces the probability distributions we expect from theory. Such a pro-
gram is called a Monte Carlo event generator (MC).
The first step for such a program is to simulate the incoming particles. In
the case of LHC and Tevatron they are hadrons. As already mentioned due
to factorization theorems the incoming hadrons can be described by PDFs
if there is a hard interaction for the incoming partons. For the case of two
incoming hadrons (where two incoming partons undergo a hard interaction)

4This will become important in chapter (4).
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we can write the cross section as5

σ(P1, P2) =
∑

i;j

∫
dx1dx2 fi(x1, µ

2)fj(x2, µ
2)σ̂ij(p1, p2, αS(µ2), Q2/µ2) .

(1.1)
Here is µ the factorization scale which separates the long- and the short-
distance physics while Q characterizes the scale of the hard process. We note
here that the scale µ should be of the order of the hard scale Q. The object
σ̂ij is the cross section of two incoming partons i and j which participate
in the hard interaction. This entity can be calculated inside the frame of
perturbative QCD. This is possible because the coupling at high energies
(which is equivalent to short distances) is small. This implies that it does
not depend on the details of the hadronic wave function or the flavors of
the incoming hadrons. It only depends on the momenta and flavors of the
incoming partons which come out of the hadrons. The functions fi(x, µ

2)
are the well known parton density functions evaluated at factorization scale
µ. It should be noted that eq.(1.1) does not apply to the majority of events
in hadron-hadron collisions. Most collsions only yield soft particles in the fi-
nal state. Nevertheless it is essential for the analysis of those type of events
where we do have a hard interaction as this is important for the under-
standing of perturbative QCD. The momenta of the two incoming partons
are given by p1 = x1P1 and x2P2 where P1 and P2 are the momenta of the
two incoming hadrons while x1 and x2 are the momentum fractions of the
partons. The parton density functions stand for the non-perturbative part
of the process or to be more precise their dependence on the momentum
fractions x cannot be derived inside the frame of perturbative QCD. What
however can be treated inside perturbation theory is their dependence on
the scale µ. This leads to a set of evolution equations which are known as
the DGLAP equations. The DGLAP equations effectively sum up leading
powers of [αS logQ]n which come from multigluon emission in a region of
phase space where the gluons have strongly-ordered transverse momenta6.
The DGLAP equations are based on the assumption that logQ is much big-
ger than log

(
1
x

)
.

Though DGLAP is the usual approach for dealing with the scale dependency
of the parton density functions it is important to mention that for example
at HERA Q2 is not so large at very small x. Here the application of DGLAP
is not appropriate. The alternative is to sum up all terms proportional to
αS log

(
1
x

)
while retaining the full Q2 dependence and not just the leading

5See for that eq.(7.1) in [3].
6See for that chapter (4) of [3].
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logQ2 terms. This leads to the BFKL7 evolution equations where integra-
tion is performed for the full kT space of the gluons and not just for the
strongly ordered part. It ought to be mentioned that for BFKL another
factorization is used than the one given in eq.(1.1).
A third set of evolution equations are the CCFM equations (see for that [7],
[8], [9] and [10].). They have the advantage that in contrast to BFKL they
are better suited for implementation into a Monte Carlo event generator
(see for that [11] and [12]). They are an approach to cover both the infrared
regions and the collinear regions by treating color coherence effects; in the
limit of asymptotic energies they are almost equivalent to the BFKL and
DGLAP equations.

For hadron-hadron collisions where we have at least one hard interaction,
the next step inside a Monte Carlo event generator is to simulate the parton
branching mentioned above. The first choice for those kind of processes are
matrix elements as they are inside the frame of perturbative QCD. Here
the exact kinematics, full interference and helicity structure are taken into
account. Unfortunately the application of matrix elements becomes more
and more complicated8 in higher orders especially for loop graphs. Thus
the parton shower approach is introduced where certain approximations for
the parton splitting in the soft and collinear limit are made in order to deal
with the parton branching we have discussed above. There the process of
parton splitting is modeled like a process in classical statistical mechanics9.
An explicit expression of a matrix element is only used in MC event gener-
ators for the hard scattering while the parton shower appproach is applied
for branchings that occur before (initial state splitting) and after the hard
scattering (final state splitting).

In the generator we have a bunch of partons which come out from the
hard interaction and the parton branching. Inside a physical detector we
see however not partons but hadrons. The transition is beyond the scope
of perturbative QCD and cannot be treated up to now from first principles.
Thus we need inside the event generator a phenemenological algorithm which
conducts the transition from partons. Such a kind of algorithm is called a
hadronization model.

7See for that section (4.6.4) and section (4.6.5) in [3]; the original set up of the BFKL
equations was done in [4–6].

8See for that chapter (2) in [13].
9For a more detailed description of this see the next chapter and section (2.2)

in chapter (2).
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There are nowadays two ways to simulate hadronization in a Monte Carlo
event generator: string fragmentation and cluster fragmentation. Further
many variants and hybrids exist, too10. String fragmentation is used in the
JETSET hadronization scheme which is applied in PYTHIA and ARIADNE
(see for that [13], [14, 15] and [16]) . An example for the use of cluster
fragmentation is HERWIG (see for that [17,18]).

We note here that the decay of unstable hadrons after their formation
plays also a role.
In a hadron-hadron collision the incoming partons (which first can radiate
and then undergo the hard process) take only a part of the momenta of the
incoming hadrons. Thus the beam remnant must be taken into account in
the simulation in order to treat the whole physical process properly.
What will be discussed in more detail in this thesis is the possibility of
multi parton interaction. It is possible that a parton from one hadron scat-
ters with several partons from the other or that several parton pairs from
the two hadrons take part in several distinct hard interactions. It is pre-
sumed due to combinatorial reasons that the latter is favored; this is taken
into account in an event generator like PYTHIA11.

Jets

A point that will be important in this thesis is the subject of jets. We have
an algorithm that combines several outgoing hadrons which we call jets.
There are several types of jet algorithms like kT (see [19]), SiScone (see [20])
or anti-kT (see [21]).
The underlying reasoning behind those algorithms is this: the outgoing par-
tons after the hard scattering (they are considered inside the frame of per-
turbative QCD) are colored objects; the outgoing hadrons which are directly
observed in the detector are color free12. We have already mentioned that
this problem is handled by hadronization models which are phenomenologi-
cal and not based on first principles. It is on the other hand helpful to treat
this problem from the other side in a jet algorithm where the final state
hadrons are attributed to distinct jets. The idea behind this is that the out-
going partons are the origin of those jets and that fragmentation does not
change the momentum distribution much. An important application for jet
algorithms are events of the type e+e− → hadrons. On parton level we have

10See section (2.4) in [13].
11See section (2.3) in [13].
12See also chapter (5).
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e+e− → qq̄ and e+e− → qq̄g where g is supposed to be a hard gluon. The
seperation into 2 jet and 3 jet events gives us insight how often a hard gluon
is emitted. By this method it is possible to determine the strong coupling
constant αS . We note that also 4 jet events and events with an even higher
jet multiplicity are observed. However they are rather suppressed.
Another example where the application of jet algorithms becomes important
is given by the analysis of hadron-hadron collision where we have in the final
state three jets. Under the prerequisite that these jets are well seperated
in phase space it is possible by using a jet algorithm to compare the three
jet cross section with perturbative QCD. The result is a big success for the
theory13.
This success of perturbative QCD and jet algorithms triggered the hope by
introducing a new kind of jet algorithm we could distinguish multi-parton
interactions from the major hard interaction. In chapter (5) we will discuss
this in more detail.

This thesis is orgainized as follows

1. In chapter (2) we summarise the application both for PS and MPI
inside Monte Carlo event generators.

2. In chapter (3) we introduce an analytical parton shower formalism.
This is a summary of [1] where this formalism was devoloped for the
first time. Its advantage lies in the fact that it takes also interference
effects into account. We present this formalism as its results will play
a role in chapter (4).

3. In chapter (4) we apply the formalism presented in chapter (3) to the
case of Drell Yan processes. This will be compared afterwards with
the resummation in perturbative QCD. By that the energy fraction
in Drell Yan processes was derived inside the frame of conventional
methods. This was done in [2] and [24]. In section (4.4) the results
will be compared with the energy fraction inside a conventional parton
shower generated by PYTHIA.

4. In chapter (5) we discuss an algorithm that is supposed to distinguish
between the hard interaction and multi parton interaction.

5. In chapter (6) we summarize the results of this thesis.

13See section (7.7) in [3]; further [22] and [23]

9



Chapter 2

Monte Carlo event

generators

2.1 Why do we need Monte Carlo generators?

We want to compare predictions from a theory like QCD with experimental
measurements. In contrast to QED, however, it is not possible just to cal-
culate the matrix element of a particular process and then derive the cross
section which can be compared to data. The first complication arises with
the break down of perturbation theory at low momentum transfer. With
our present tools we are not able to deal with nonperturbative physics from
first principles. We must therefore use phenomenological models like for
example hadronization models for dealing with the final state1. But even
inside the frame of perturbative QCD it is not meaningful to just calculate
the matrix element: although it is true that the matrix element approach
is preferable - since exact kinematics, the full interference and the helicity
structure are treated - the calculation of matrix elements for higher orders
becomes increasingly difficult especially for loop graphs. Until recently only
for special cases diagrams have been computed for more than one loop and
in many cases no loops at all have been treated. Now it is possible to apply
automated NLO calls like aMC@NLO or Blackhat (see [25]).
In order to deal with this problem the parton shower approach is used. This
can be done in numerical computer programs like Monte Carlo event gener-
ators (see this chapter) or in an analytical formalism (see for that chapter
(3)). The basic idea of a parton shower is to have an iterative algorithm of
branchings a → bc. In a QCD shower the type of branchings we have are

1See for a discussion of it for example section (5.6) of [3].
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q → qg, q̄ → q̄g, g → gg and g → qq̄. (It is in principle also possible to
include QED type processes q → qγ, γ → ll̄ etc.) In contrast to the matrix
element approach the number of the outgoing partons is not fixed anymore2.
The probability of a branching is derived from the soft and collinear limit
where we have a pole. The kinematics, the interference and helicity struc-
ture is simplified in contrast to the matrix element approach. In contrast to
a matrix element loop graphs are not considered. Non-resolvable branchings
and virtual corrections are taken into account by the fact that the probabil-
ity of non-emission can be simply derived from the probability of emission3.
Thus the matrix element approach and the parton shower approach should
be viewed as complementary in many aspects (see section (2.2) of [13]). In
the following section we introduce the parton shower approach for Monte
Carlo event generators. For a full description of hadron-hadron collisions
Monte Carlo event generators are indispensible. The aim is to have a com-
puter program that simulates events as detailed as possible as they would
be seen in reality by a perfect detector. It is however not feasible to per-
form this in one single step. Instead the process is ’factored’ into several
parts where each can be treated by a computer program in a proper way.
In practice this means that the algorithm starts with the hard interaction,
then parton shower or bremsstrahlung is generated and as a final step we
have hadronization.
Those ’events’ which are generated with the computer program are sup-
posed to have the same average behaviour and the same fluctuations as real
data. The fluctuations in data have their origin in quantum effects. These
fluctuations are simulated in an algorithm by Monte Carlo techniques where
all relevant variables are selected according to the probability distributions
which lead to the desired (quasi-)randomness. Unfortunatley we must antic-
ipate some loss of information as Monte Carlo algorithms work with prob-
abilities and not with amplitudes which are the basis for quantum physics.
This problem is not too severe, since only rarely we must deal with inter-
ference phenomena that cannot be treated inside the frame of probabilistic
language.
We summarize the main applications for Monte Carlo event generators in
particle physics:

• Monte Carlo event generators show us for every model (for example
the Standard model) how events are supposed to look like and at what

2While in the matrix element approach for any configuration of the final state partons
a transitional amplitiude is calculated.

3One or the other of the two processes must happen.
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rates. These results can later be compared to data.

• Monte Carlo event generators are useful for the planning of new detec-
tors so that detector performance can be optimized. The simulation
of the detector is done with programs like GEANT (see [26] and [27]).

• Monte Carlo event generators are also useful for work on analysis
strategies on real data in order to enhance the signal-to-background
conditions.

• A Monte Carlo generator can be also used as a tool in order to estimate
detector acceptance corrections which can be applied to data in order
to obtain the ’real’ physical signal.

For a full description of hadron-hadron collisions a Monte Carlo algo-
rithm needs necessarily the following ingredients:

• matrix elements, lorentzinvariant phase space

• parton density functions

• parton showers

• beam remnants

• multi parton interactions

2.2 Parton showers

We start the discussion with a concrete example namely e+e− annihilation
to hadrons4. The leading order process is e+e− → qq̄. We denote its cross
section by σqq̄.
The next step is to consider the next-to-leading order process, the radiation
of a gluon e+e− → qq̄g. We parametrize the three-parton phase space by θ
(which is the opening angle between the quark and the gluon) and the energy
fraction of the gluon with respect to the beam energy which we denote by
z. With the matrix element we obtain

dσqq̄g

d cos θdz
≈ σqq̄CF

αS

2π

2

sin2 θ

1 + (1− z)2
z

, (2.1)

4We follow here the description of [28] page 22-28.
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where we have CF = N2
c −1

2Nc
which can be considered as the color charge

squared of a quark. According to eq.(2.1) the cross section for qq̄g is pro-
portional to the cross section for qq̄. Thus we may consider the rest of the
equation as the probability of gluon emission, differential in the kinematics
of the gluon.
We must note there are divergencies:

1. θ → 0 corresponds to the case where the gluon becomes collinear with
the quark.

2. θ → π corresponds to the case where the gluon becomes back-to-
back with the quark which implies that it becomes collinear with the
antiquark.

3. z → 0 means that the gluon energy becomes zero. This is the soft
case.

We focus now on the two collinear cases. We can seperate the two collinear
regions

2

sin2 θ
=

1

1− cos θ
+

1

1 + cos θ
≈ 1

1− cos θ
+

1

1− cos θ̄
. (2.2)

So we can write the cross section as a sum of these two processes. θ̄ is here
the angle between the gluon and the antiquark. Thus we may write

dσqq̄g ≈ σqq̄

∑

partons

CF
αS

2π

dθ2

θ2
dz

1 + (1− z)2
z

. (2.3)

Here is θ now the opening angle between the parton and the gluon that
has been emitted by the former. A series expansion of the trigonometric
functions was used for this expression so we come to the dθ2

θ2 expression for
the θ → 0 limit in eq.(2.3). We note that the form of this equation does not
change when we substitute θ by any other variable that is proportional to
θ like the virtuality q2 = z(1− z)θ2E2 or the gluon’s transverse momentum
with respect to the parent’s quark direction. Because of k2

⊥ = z2(1−z)2θ2E2

we can write for θ → 0
dθ2

θ2
=

dq2

q2
=

dk2
⊥

k2
⊥

. (2.4)

We note that any of these forms gives the same result in the collinear limit
but differs in the region away from it which means different finite terms are
included in addition to the divergent piece.
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It is possible to generalize eq.(2.3). We can write for a hard process where
a parton of flavor i together with a parton j (which has momentum fraction
z) is produced

dσ ≈ σ0

∑

partons,i

αS

2π

dθ2

θ2
dzPji(z, φ)dφ . (2.5)

Pji(z, φ) are the splitting functions. They are a set of flavor dependent
functions. The angle φ (the azimuth of j around the axis of i) indicates that
they are also spin dependent. The spin-averaged functions are given by

Pqq(z) = CF
1 + z2

1− z , Pgq(z) = CF
1 + (1− z)2

z ,

Pgg(z) = CA
z4 + 1 + (1− z)4

z(1− z) , Pqg(z) = TR(z2 + (1− z)2) .
(2.6)

CA = Nc can be considered as the color charge squared of a gluon. TR is
a further factor that is by convention set to 1

2 . Another choice would make
a different definition of αS necessary. The splitting functions Pqq, Pgq, Pgg

and Pqg are related to the splitting-processes q → qg, q → gq, g → gg and
g → qq̄.
These results are valid for the collinear limit where they do not depend on
the precise definition of z. This variable can be the energy fraction or the
light-cone momentum fraction (or something similar) of parton j with re-
spect to parton i.
The next step is to treat the divergencies in the splitting functions. For the
moment we focus on the collinear divergencies. The soft case will be con-
sidered later. The collinear divergency means that we cannot distinguish
between non-emission and a collinear pair of partons. This corresponds to
a process that has no physical effect and is unmeasurable.
In order to get meaningful results we require that we take only resolvable
branchings into account. For the resolution scale there are several possible
choices. One choice is the relative transverse momentum between two par-
tons above a cutoff scale Q0.
Let us consider some ordering variable q (for example the virtuality). The
total probability of a branching of a parton of type i between q2 and q2+dq2

is given by

dPi =
αS

2π

dq2

q2

∫ 1−Q2
0/q2

Q2
0/q2

dzPji . (2.7)

We want to find out the probability that no branchings above a virtuality q2

happen given that its maximum possible value is Q2. We call this function

14



∆i(Q
2, q2). If we change the quantity q2 by a small value the non branching

probability ∆i will change by the branching probability dPi. The change
d∆i itself is proportional to the non emission probability ∆i. Thus we have

d∆i(Q
2, q2)

dq2
= ∆i(Q

2, q2)
dPi

dq2
. (2.8)

The solution of this equation is given by

∆i(Q
2, q2) = exp

{
−
∫ Q2

q2

dk2

k2

αS

2π

∫ 1−Q2
0/k2

Q2
0/k2

dzPji(z)

}
. (2.9)

Of special interest is the total probability to produce no resolvable branching
at all:

∆i(Q
2, q2) = exp

{
−
∫ Q2

Q2
0

dk2

k2

αS

2π

∫ 1−Q2
0/k2

Q2
0/k2

dzPji(z)

}

∼ exp

{
− CF

αS

2π
log2 Q

2

Q2
0

}
.

(2.10)

This is the Sudakov factor. It is the basic building block to be implemented
into a Monte Carlo simulation program.
Previously we considered the collinear case. We also know that there is a
soft divergency. Due to destructive interference it is possible to include soft
gluon effects into a collinear parton shower algorithm if out of all possible
evolution scales, the opening angle is used. This leads to angular-ordered
(or coherence-improved) parton showers like for example in HERWIG5 (for
the description of HERWIG see [29]). Angular ordering is also used in the
generators CASCADE (see [30]), PYTHIA (see [13] and [31]) and ARIADNE
(see [16]).

2.2.1 Implementation into a Monte Carlo event generator

We introduce here the most simple way to simulate parton branching in a
Monte Carlo event generator6. We do not take into account more compli-
cated effects like different possible branchings and QCD coherence effects.
For the purpose of convenience we write t := q2. First we consider the case
of spacelike branching. In this case t evolves towards the hard scale Q2.
Let us start with t1 as a starting value for the virtuality. Then we want to

5See for that section (4.3) of [28].
6The description follows mainly section (5.3) and (5.4) of [3].
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generate with the correct probability distribution t2. We already know that
the probabilty to evolve from t1 to t2 without resolvable branching is given
by ∆(t2)/∆(t1). We generate t2 by solving the equation

∆(t2)

∆(t1)
= R . (2.11)

R is here a random number with a uniform distribution in the interval [0, 1].
For the case that t2 exceeds Q2 we have no further branching. Else further
branching is possible. Then we must consider7 the proper distribution of z.
The distribution is supposed to be proportional to (αS/2π)P (z) where P (z)
is the corresponding splitting function. The value of z can be generated by
solving the following equation

∫ x2/x1

ǫ
dz
αS

2π
P (z) = R′

∫ 1−ǫ

ǫ
dz
αS

2π
P (z) . (2.12)

R′

is here a further random number in the interval [0, 1] while ǫ is the infra-
red cut-off for resolvable branching. The azimuthal angles of the emission
are in the simplest case generated uniformly in the range [0, 2π].
Now we focus on the timelike case. Here t evolves downwards to the cut-
off scale t0. Now the probability for evolution from t1 to t2 is given by
∆(t1)/∆(t2). Thus we substitute for the timelike case eq.(2.11) by

∆(t1)

∆(t2)
= R . (2.13)

We remark that because of ∆(t0) = 1 there is no solution for t2 > t0 if
we have R < ∆(t1). If timelike branching does happen the procedure for
generating z is the same as in the spacelike case.
The whole procedure continues until no branchings occur. Then the cascade
stops. This depends on the cut-off scale t0. After parton branching ceases
the outgoing partons are transformed into hadrons. This is called hadroniza-

tion. There are several hadronization models available for a Monte Carlo
event generator.

We have now dealt with forward parton evolution. Here a parton with
timelike momentum produces new partons so that they evolve towards lower
virtual mass-squared. In spacelike cascades it is however more convenient
to consider backward evolution. If we applied forward evolution for initial

7If the incoming particles are hadrons we have z = x2/x1.
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state radiation we would have no guarantee that a hard subprocess can be
generated. Instead in many cases we would have no hard process at all.
This would make the whole algorithm inefficient. Instead we start with the
hard subprocess and evolve the parton shower back. This is called backward

evolution. However we cannot just use the forward algorithm and run it
in the reverse. If for example the incoming particles are hadrons eq.(2.12)
could produce an incoming parton with x1 > 1. Again in many cases we
would obtain useless results that must be rejected so that we would have
low efficiency either.
The solution to this problem is given by a modified form factor which also
incorporates the parton density functions f(x, t). It is given by

Π(t1, t2;x) =
f(x, t1)∆(t2)

f(x, t2)∆(t1)
. (2.14)

It is the probability for backward evolution from (t2, x) to (t1, x) without
branching. Thus the Sudakov factor ∆(ti) is substituted by ∆(ti)/f(x, ti).
The algorithm yields t1 by solving the equation

Π(t1, t2;x) = R (2.15)

where R is again a random number uniformly distributed in the interval
[0, 1]. The next step is to generate x1. With z = x2/x1 the probability
distribution for x1 is supposed to be proportional to

αS

2π

P (z)

z
f(x2/z, t1) (2.16)

with P (z) as the corresponding splitting function. The extra factor f(x1, t1)
will be divided out in the next backward step in t. With the above expression
z is generated with a similar procedure as in forward evolution (see for that
eq.(2.12)). As an alternative it is possible to write for Π

Π(t1, t2;x) = exp

{
−
∫ t2

t1

dt

t

∫
dz

z

αS

2π
P̂ (z)

f(x/z, t)

f(x, t)

}
. (2.17)

It should be noted here that the ratio of parton distributions in eq.(2.14)
leads to a suppresion of branching at large x as f(x, t) is a decreasing func-
tion of t there. On the other side it enhances branching at low x because
f(x, t) is increasing with decreasing x. The physical meaning of this is that
partons at high x are less likely to have undergone branching (which always
reduces x) what means that it is very likely for the parton to have come
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directly from one of the two hadrons.
Corresponding to that we have in the distribution of z a suppression of
branchings in regions where the parton density f(x2/z, t1) is low. This fac-
tor guarantees that the value of x1 = x2/z is always less than unity.

2.3 Multi parton interaction

Besides the hard interaction and the parton showering (which are dealt with
perturbative methods) there are further processes in hadron-hadron colli-
sions. Due to the composite nature of hadrons (they can be considered as
’bunches’ of partons) even within perturbative QCD we expect that most in-
elastic hadron-hadron collisions contain several calculable interactions. Such
interactions, even if they are soft compared to the hardest interaction, can
cause non-trivial changes in the color topology of the system which could
lead to drastic changes of the particle multiplicity of the final state.
These further interactions (which are part of the so called ’underlying event’)
were not considered to be interesting in the past because perturbative QCD
emissions play a more important role in the production of multijets than
seperate multiple interactions. The underlying event was dismissed as a
mess of soft QCD emissions that cannot be treated inside the frame of per-
turbative physics but must be parametrized. Those parametrizations were
successful in describing the average underlying activity. They fail however
for the treatment of correlations and fluctuations. This affects the descrip-
tion of jet pedestals, jet profiles and random shifts in jet energies. Thus
those models are not trustworthy beyond the fit region despite the fact that
they can describe a few distributions well.
In order to deal with this it is postulated that all particle production in
inelastic hadronic collisions has its origin in the multiple-interactions mech-
anism. This does not exclude the possibility that nonperturbative effects
and other phenomena will play a role in the transition from perturbative
physics to visible hadrons. But we start in the frame of perturbative physics.
This implies that a typical Tevatron hadron-hadron collision has about 2-6
interactions while at the LHC one expects8 about 4-10.

8The material for this section has been taken out from [32] (page 1 to 8) and [13] (page
329-334 and 342-344).
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2.3.1 Basics of multi parton interaction

The following follows closely the description of [28,32]. Information from [13]
on multi parton interaction has been included, too.
The cross section for QCD hard 2→ 2 processes can be written as a function
of the p2

⊥ as

dσint

dp2
⊥

=
∑

i,j,k

∫
dx1

∫
dx2

∫
dt̂fi(x1, Q

2)fj(x2, Q
2)

dσ̂ij→kl

dt̂
δ

(
p2
⊥ −

t̂û

ŝ

)

(2.18)
with ŝ = x1x2s. As each interaction gives rise to two jets, the jet cross
section σjet is twice as large. We will now always refer to the interaction
cross section and not the jet cross section. As the hard scale we take the
transverse momentum p⊥ thus Q2 = p2

⊥. We must note however that some
objections could be made against the use of the above equation for small
values of p⊥. For small p⊥ values the low x region yields major contribution
to the integrals. The theoretical understanding of parton distributions in
this region however is difficult (BFKL, CCFM, Regge-limit behaviour, dense-
packing problems etc.). In the low x region there are measurements of
parton density functions from HERA ( [33,34] and [35]). We must therefore
face the problem that different sets of parton density functions could give
different results for the phenomenolgy of interest. A further problem could
be higher order corrections to the jet rates, K factors, beyond what is given
by parton shower corrections. The following processes contribute to the
QCD 2 → 2 cross section: qq′ → qq′, qq̄ → q′q̄′, qq̄ → gg, qg → qg,
gg → gg and gg → qq̄. The cross section itself is dominated by t-channel
exchange processes.
For the |t| ≪ ŝ case where we have p2

⊥ = t̂û/ŝ ≈ |t̂| the following relation
holds

dσint

dp2
⊥
≈
∫ ∫

dx1

x1

dx2

x2
F (x1, p

2
⊥)F (x2, p

2
⊥)

dσ̂

dp2
⊥

(2.19)

with
dσ̂

dp2
⊥

=
8παS(p2

⊥)

9p4
⊥

(2.20)

and

F (x,Q2) =
∑

q

(
xq(x,Q2) + xq̄(x,Q2)

)
+

9

4
xg(x,Q2) . (2.21)

We remark here that in this region the only difference between quark and
gluon interactions are the color factors.
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Note that for constant αS the integrated cross section above some p⊥min

becomes divergent in the limit p⊥ → 0:

σint(p⊥min) =

∫ √
s/2

p⊥min

dσ

dp⊥
dp⊥ ∝

1

p2
⊥min

. (2.22)

We have here neglected the x integrals. That the integral for p⊥ → 0
becomes divergent should not surprise us because this is already the well
known collinear divergency. But the integrated cross section can exceed the
total cross section pp/pp̄ ( in the parametrization of [36]) when p⊥ reaches
the order of a few GeV. As this is well above ΛQCD this problem cannot
be dismissed as the result of nonperturbative effects. In order to solve the
problem we must consider the following:

1. We must take into account that the interaction cross section is an
inclusive number. Events with two interactions contribute twice to
σint but only once to σtot. The same applies for higher multiplicities.
Thus 〈n〉(p⊥min) = σint(p⊥min)/σtot can be identified with the average
number of interactions above p⊥min per event. This quantity can be
well above unity.

2. The effects of energy-momentum conservation have not been included
in our derivation. The problem is that the number of interactions in-
creases faster than the average of ŝ decreases if p⊥min becomes smaller
and smaller. Thus the total amount of partonic energy would become
infinite. One way to solve this problem is by introducing multi-parton
correlated parton distributions inside a hadron. This is not part of the
standard perturbative QCD formalism and it is not implemented into
eq. (2.22). Those functions reduce the 〈n〉(p⊥min) number but not
strong enough to describe measurements. It leads to a picture where
too little of the incoming energy remains in the small-angle beam-jet
region.

3. In order to tame the rise of 〈n〉(p⊥min) it is important to take into
account that hadrons are color singlet objects. A gluon with a p⊥
has a correspondingly large wavelength and cannot anymore resolve
individual color charges. Thus the effective coupling decreases. We
note here that perturbative QCD deals with partons that are assumed
to be free and not with partons inside of hadrons. Thus it cannot deal
with this kind of nonperturbative screening effect. In the simplest
model a sharp cut-off at some scale p⊥min is introduced, while a more
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smooth dampening is assumed for a complex scenario.
A naive estimate for an effective lower cut-off would be

p⊥min =
~

rp
≈ 0.2 GeV · fm

0.7 fm
≈ 0.3 GeV ≃ ΛQCD . (2.23)

The proton radius rp itself must be replaced by the typical color screen-
ing distance which is not known from first principles but is assumed.
In PYTHIA the default value for such a cut-off is given by9

p⊥min(s) = (1.9 GeV)

(
s

1 TeV2

)0.08

. (2.24)

In addition to the coupling also the pQCD ME diverges for small p⊥,

such that we obtain ∼ α2
S

p4
⊥

. Instead of just introducing a step function

a smooth transition is obtained by multiplying α2
S/p

4
⊥ with

α2
S(p

2
⊥0 + p2

⊥)

α2
S(p

2
⊥)

p4
⊥

(p2
⊥0 + p2

⊥)2
(2.25)

with p⊥ 0 as a free parameter that must be tuned to data. Empirically
we have p⊥min ≈ p⊥min. Both entities are of order 2 GeV.

Simple model for multi parton interactions (”Old” model)

We follow here the description of the ”old” model given in section (11.2.2)
of [13]. The ”old” and the ”new” model (the ”new” model will be discussed
in the next section) are brought up here as they will be used for our jet
studies in chapter (5).
Since elastic or diffractive physics are not considered, the partonic cross
section σint(p⊥min, s) or σint(p⊥0, s) builds the σnd nondiffractive one. The
average number of interactions per event is then given by 〈n〉 = σint/σnd.
First let us assume that all hadron collisions are equivalent, that means
without impact parameter dependence, and that the parton-parton inter-
actions take place completely independent from each other. This implies
that the number of interactions per event is then distributed according to a
Poisson distribution with mean 〈n〉, Pn = 〈n〉n exp(−〈n〉)/n!.
A naive approach would be to choose the actual number of interactions per
event n according to the Poissonian and then to pick the np⊥ values indepen-
dently according to eq.(2.18). The problem with this kind of approach how-
ever is that it does not take into account correlations like energy-momentum

9See section (11.2.1) of [13].
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conservation.
It is convenient to impose an ordering. As an ordering variable we can
choose p⊥ or x⊥ = 2p⊥/Ecm. The scatterings are then arranged in a falling
sequence of the p⊥ values. In this picture the ’first’ scattering is the hardest
one while the subsequent ones (the ’second’ one, the ’third’ one, etc.) are
successively softer. This kind of ordering however must not be confused with
a time-ordering. In a simplified picture where the incoming hadrons are due
to Lorentz contraction like flat pancakes, the different interactions have the
tendency to be causally separated. Averaging over all configurations of soft
partons yields the standard QCD phenomenology of a hard scattering to-
gether with parton density functions.
For the use in a Monte Carlo event generator let us consider the following
function

f(x⊥) =
1

σnd(s)

dσ

dx⊥
. (2.26)

dσ/dx⊥ is here corresponding to eq.(2.18). The function f(x⊥) can be
considered as the probability for a parton-parton interaction at x⊥ for the
case that the collision of the two hadrons is nondiffractive and inelastic.
The probability distribution for the hardest interaction is

f(x⊥) exp

{
−
∫ 1

x⊥1

f(x′⊥)dx′⊥

}
(2.27)

with x⊥1 being the x⊥ of the hardest interaction. This is the probability
to have a scattering at x⊥1 multiplied by the probability that no scattering
above x⊥1 has occurred. This corresponds to the Sudakov form factor which
we have used for parton showers in Monte Carlo generators. The probability
to have an ith scattering at a x⊥i < x⊥i−1 · · · < x⊥1 < 1 sequence is given
by

f(x⊥i)
1

(i− 1)!

(∫ 1

x⊥i

f(x′⊥)dx′⊥

)i−1

exp

{
−
∫ 1

x⊥i

f(x′⊥)dx′⊥

}
. (2.28)

We see that according to this expression the total probability that a scat-
tering happens at x⊥i (independently whether it is the first, the second and
so on) is given by f(x⊥i).

The ordinary parton distributions are used for the hard scattering. This
scattering takes energy from the system away. Thus for the subsequent
scatterings we must also take into account the energies and flavors of the
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preceeding interactions. In practice the parton distributions are not evalu-
ated at xi (the x value for the i-th scattering) but at a rescaled value

x′i =
xi

1−∑i−1
j=1 xj

. (2.29)

This modification prevents that more energy is taken by the individual scat-
terings than available from the incoming hadrons.
Some events do not include scatterings above x⊥min at all. Here we reach
the domain of nonperturbative physics which is not treated here.
For a hard interaction the situation can become quite complex especially
when we have to deal with several hard scatterings and as the number of
possible color configurations increases. What makes the situation even worse
is that we must extend the standard string fragmentation description in or-
der to deal with events where we have two or more valence quarks being
kicked out of an incoming hadron by seperate interactions.
Some simplifications are necessary. For the first interaction (the hardest one)
full freedom for the choice of flavor and color topology is assumed while for
the subsequent interactions we have only three possibilities in the model:

• Processes of the type gg → gg where the two gluons are in a color-
singlet state. A double string is stretched between the two gluons that
are decoupled from the rest of the system.

• Processes of the type gg → gg where each of the two gluons are con-
nected to one of the strings already present. There are several possibil-
ities for connecting the colors of the gluons. The one which minimizes
the total increase in string length is chosen. This is in contrast to the
previous situation where we have a maximization (within reason) of
the string length.

• Processes of the type gg → qq̄ where the final pair is required to be
in a color-singlet state. Thus a single string is stretched between the
outgoing q and q̄.

Originally it was presumed that the probabilities of the three possibilities
are equal. Comparison with measurements however suggests that the mini-
mal string length topology dominates.
Initial- or final state showers can change the nature of a gg→gg or qq̄ scat-
tering as it could turn into a qg-process. Thus radiation is only included for
the hardest interaction. The treatment of beam remnants is a bit modified
if we have multiple interactions. After the generation of the hard scatter-
ing (together with its associated initial- nad final state radiation) additional
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multiple interactions are generated. Only then are beam remnants attached
to the initiator partons of the hardest interaction. For the treatment of
beam remnants see section (11.1) of [13].

Complex model for multiparton interactions (”new” model)

In the ”old” model we considered initial and final state radiation only for the
hardest interaction. The reason for this was the inability to treat junction
string topologies. Thus a simplification was needed. It can be argued that
the subsequent interactions have the tendency to be soft with rather low
transverse momentum near p⊥min or p⊥0 and are therefore not associated
with additional hard interaction. However it still remains a simplification.
The ”new” model (see for that section (11.4) of [13]) uses transverse mo-
mentum ordered showers. The transverse momentum p⊥ is therefore the
evolution variable both for multiple interactions and for parton showers al-
though the definition of it is slightly different in the two cases.
Regarding the parton showers it should be possible to apply final state radi-
ation only after the simulation of initial state radiation (ISR) and multiple
interactions. This is supposed to be a good approximation because FSR
does not change the total energy of the system. Instead it only redistributes
the energy among more partons. In contrast to that a further ISR or a
further interaction takes energy from the beam particles.
It is required that multi parton interactions are ordered according to a se-
quence of falling p⊥ values. The ISR emissions are incorporated into the
p⊥ sequence. This means that a hard interaction is generated before an
ISR emission of the hardest interaction. This can be done as p⊥ is now the
common evolution variable.
We note here that the choice of p⊥ as an evolution variable is a generaliza-
tion of backward evolution: we consider a configuration at a given p⊥ and
then deal with the kind of configuration with lower p⊥ it could have come.
A further point is that the new model does not have the limitations regarding
string configuration as the old model.
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Chapter 3

Parton shower formalism

3.1 Introduction

In this chapter we present a new analytical formalism developed in [1] that
describes parton showers. This formalism will be the basis for the calculation
in chapter (4) where the distribution of the energy fraction1 τ in Drell Yan
processes is derived. The exact definition of this observable can be found in
the beginning of chapter (4).
Parton showers are usually dealt within a Monte Carlo event generator. The
basic principles how a parton shower is generated inside a Monte Carlo event
generator can be found in section (2.2.1): thus in a conventional Monte Carlo
generator the physical events are modeled as processes in classical statistical
mechanics. Here we have a set of partons that have been produced in the
hard scattering. Then it is possible for each parton to split into two partons
with a probability determined from theory. This process continues until a
complete ”parton shower” has been formed.
The splitting probability becomes biggest if the two daughter partons are
collinear or soft (p = 0) or both. In this case they must be also almost
massless.
In the soft and in the collinear case the amplitude form+1 partons factorizes
into a splitting function and the matrix element for m partons.
Usually also the following approximations are used:

1. It is possible that a soft gluon can be emitted from one hard parton
or from another. These two diagrams interfere. This interference is
approximated with the ”angular ordering” approximation.

1For its definition see eq.(4.32).
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2. Colors are simplified. This approximation is valid if 1/N2
c → 0. Here,

however, Nc = 3 is the number of colors.

3. The angular distribution of the daughter partons after splitting is de-
pendent on the mother parton spin and also on the interference be-
tween different mother parton spins. This is usually neglected.

The purpose of the parton shower formalism formulated in [1] was to con-
struct a parton shower formalism where these approximations are not made.
This leads to a formulation where quantum statistical states instead of clas-
sical statistical states are used. With the application of the soft/collinear
approximation the treatment becomes rather simple. The formulation works
with a density operator in color ⊗ spin space.
In the next sections we give an overview of the formalism and its construc-
tion. The details are given in [1]. For the momentum mapping2 we apply
the formalism of [37]. The rest of this chapter is organised as follows:

1. In section (3.2) we introduce the concept of parton density states.
These span a vector space in parallel to ordinary quantum states.
Formally they have the same structure as density operators known
from statistical physics.

2. In section (3.3) we introduce the concept of shower evolution. This is in
direct analogy to shower evolution in a Monte Carlo event generator
(see chapter (2) and section (2.2)). Thus we compile an evolution
equation for the density state ρ. This is dependent on the shower time
t (that must not be confused with real physical time but is a running
parameter which will be later connected to kinematical parameters).

3. In section (3.4) we introduce the concept of parton mapping.

4. In section (3.5) we deal with parton splitting on the level of quantum
amplitudes. There we show for one example how the splitting ampli-
tudes are derived3. In section (3.5.3) these results are used to derive
the splitting operator. With that we are in a position to construct the
evolution equation that will be used in chapter (4).

2What momentum mapping is and what is its purpose see section (3.4).
3For further derivations see [1].
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3.2 The parton shower formalism

We describe a parton shower formalism following the description of [1]. We
start with a proper notation. This notation will be used for the description
of a quantum state with two initial state partons and m final state partons.
All partons shall have an index. The indices ”a” and ”b” denote initial
state partons, 1, . . . ,m denote final state partons. For each parton we have
a momentum p, a spin index s and a color index c. Further each parton
has a flavor f ∈ {g,u,ū,d, d̄, . . . }. The quantum numbers of such a state are
described by

{p, f, s, c}m ≡ {ηa, a, sa, ca; ηb, b, sb, cb; p1, f1, s1, c1; . . . ; pm, fm, sm, cm} .
(3.1)

The momentum fractions of the incoming partons are ηa and ηb. We assume
the incoming hadrons are massless. Thus we may write

p2
A = 0 ,

p2
B = 0 ,

2pA · pB = s .

(3.2)

We assume the initial state partons to be on-shell. They have no transverse
momentum. In [1] their momenta are written as

pa = ηapA +
m2(fa)

ηas
pB ,

pb = ηbpB +
m2(fb)

ηbs
pA ,

(3.3)

where the masses of the partons were taken into account. In our notation
the flavor of parton ”a” is simply a, and the flavor of parton ”b” is simply
b. This notation will also be used for the parton distribution functions:
fa/A(ηa, µ

2
F ) and fb/B(ηb, µ

2
F ). For the flavors of antiquarks we write −u =

ū,−ū = u,−g = g. In [37] it was assumed that all partons are massless:

pa = ηapA ,

pb = ηbpB .
(3.4)

As we shall use the results of [37] in chapter (4) (where we will derive the
energy fraction4 in Drell Yan processes with the formalism discussed here)

4The definition of the energy fraction is found there.
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we will from now on assume that all partons are massless.
For a matrix element we can write

M({p, f})ca,cb,c1,...,cm
sa,sb,s1,...,sm

. (3.5)

M is here supposed to be a function of the parton momenta {p, f}m, the
colors ca, cb, c1 . . . , cm and the parton spins sa, sb, s1, . . . , sm.
M can be seen as a vector in color-spin space

|M({p, f}m)〉 . (3.6)

In the color-spin space we can define a scalar product

〈M ′|M〉 . (3.7)

This is given by multiplying an element M of |M({p, f}m)〉 with M ′∗ and
then summing over the spins and colors.
We can view an observable F as a set of functions F ({p, f}m) which act
as linear operators on the color-spin space. For the cross section of an
observable F we can write

σ[F ] =
∑

m

1

m!

∫
[d{p, f}m]

fa/A(ηa, µ
2
F )fb/B(ηb, µ

2
F )

4nc(a)nc(b)2ηaηbpA · pB

×〈M({p, f}m)|F ({p, f}m)|M({p, f}m)〉 .
(3.8)

The integration over momenta is defined as

∫
[d{p, f}m]g({p, f}m) =

m∏

i=1

{∑

fi

∫
d4pi

(2π)4
2πδ+(p2

i −m2(fi))

}

×
∑

a

∫ 1

0
dηa

∑

b

∫ 1

0
dηb(2π)4δ

(
pa + pb −

m∑

i=1

pi

)
θ(m2

H < ηaηbs)g({p, f}) .

(3.9)

Here g({p, f}m) is an arbitrary test function.
fa/A and fb/B are the parton distribution functions, nc(a) stands for the
number of colors a parton of flavor a can have, Nc = 3 for quarks and
Nc = 8 for gluons. By the factor 4nc(a)nc(b) the sum over spins and colors
for initial state partons is changed into an average over spins and colors. mH

stands here for the mass5 of the heaviest quark involved in the interaction.

5In [1] it was assumed that quarks have masses.
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As we make here the simplification only to deal with massless partons we
can remove the θ function inside the phase space element. We note that the
distribution δ+ is defined by

δ+(p2) = θ(E > 0)δ(p2) , (3.10)

so that the energy is only positively defined.
We give for every final state parton a label i ∈ {1, . . . ,m}. We denote the
label of momentum, flavor, spin and color of particle i by {pi, fi, si, ci}. Now
we introduce the density operator in color ⊗ spin space as

ρ({p, f}m) = |M({p, f}m)〉
fa/A(ηa, µ

2
F )fb/B(ηb, µ

2
F )

4nc(a)nc(b)2ηaηbpA · pB
〈M({p, f}m)| . (3.11)

With that we can write for the cross section

σ[F ] =
∑

m

1

m!

∫
[d{p,m}]Tr{ρ({p, f}m)F ({p, f}m)} . (3.12)

The density operator ρ can be written in color ⊗ spin space as

ρ({p, f}m) =
∑

s,c

∑

s′,c′

|{s, c}m〉ρ({p, f, s′, c′, s, c}m)〈{s′, c′}m| . (3.13)

The function ρ({p, f, s′, c′, s, c}m) depends on the momenta and flavors of the
m partons {p, f}m and on the labels {s, c}m for the ”ket” quantum state and
the labels {s′, c′}m for the conjugate ”bra” state. The state labels are written
as {p, f, s′, c′, s, c}m. We can therefore view the entities ρ({p, f, s′, c′, s, c}m)
as matrix elements of the density operator. We choose an orthonormal basis
for the spin space

〈{s′}m|{s}m〉 = δ
{s′}m

{s}m
. (3.14)

However we do not assume that the basic color states are orthogonal for
reasons that shall become later clear6. 〈{c}m|{c}m〉 is only approximately
one. 〈{c′}m|{c}m〉 in general is not zero for {c}m 6= {c′}m.
We can expand a vector |ψ〉 by

|ψ〉 =
∑

{c}m

|{c}m〉a({c}m) . (3.15)

And now we define a dual basis by

D〈{c′}|{c}m〉 = δ
{c′}m

{c}m
. (3.16)

6See for that section (3.5.2).
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Thus we can obtain the expansion coefficients a({c}m) by

D〈{c}m|ψ〉 = a({c}m) . (3.17)

With a dual basis we can also formulate a completeness relation

1 =
∑

{c}m

|{c}m〉 D〈{c}m| , (3.18)

and
1 =

∑

{c}m

|{c}m〉D 〈{c}m| . (3.19)

Please note the difference between eq.(3.18) and eq.(3.19): in eq.(3.18) the
bravector has the label D while in eq.(3.19) the ketvector has the label
D. These two completeness relations are a convenient tool for dealing with
linear operators.
Let us call such a linear operator O. Consider the expansion coefficients
a′({c′}m) of the state |ψ′〉 = O|ψ〉. They are given by

a′({c′}m) =
∑

{c}m

o({c′}m, {c}m)a({c}m) , (3.20)

where o({c′}m, {c}m) are the matrix elements of O with respect to the basis
|{c}m〉. With the help of the dual basis D〈{c′}m| we may write

o({c′}m, {c}m) = D〈{c′}m|O|{c}m〉 . (3.21)

Statistical states

The density operators ρ form a vector space just as the quantum states |ψ〉.
We call a statistical state |ρ). We can also define a dual space where we
have basis vectors ({p, f, s′, c′, s, c}m|. With that we may write

ρ({p, f, s′, c′, s, c}m) = ({p, f, s′, c′, s, c}m|ρ) . (3.22)

There is further a completeness relation

1 =
∑

m

1

m!

∫
[d{p, f, s′, c′, s, c}m]|{p, f, s′, c′, s, c}m)({p, f, s′, c′, s, c}m| .

(3.23)
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The integration measure [d{p, f, s′, c′, s, c}m] is a generalization of the inte-
gration measure given in eq.(3.9)

∫
[d{p, f, s′, c′, s, c}m] =

∫
[d{p, f}m]

∑

sa,s′a,ca,c′a

∑

sb,s
′

b
,cb,c

′

b

m∏

i=1

{ ∑

si,s
′

i,ci,c′i

}
.

(3.24)
The inner product of basic states is given by

({p, f, s′, c′, s, c}m|{p̃, f̃ , s̃′, c̃′, s̃, c̃}m̃) =

δm,m̃δ({p, f, s′, c′, s, c}m; {p̃, f̃ , s̃′, c̃′, s̃, c̃}m) .
(3.25)

The function δ is an extension of the ordinary δ-function and defined in the
following way:

1

m!

∫
[d{p, f, s′, c′, s, c}m]δ({p, f, s′, c′, s, c}m; p̃, f̃ , s̃′, c̃′, s̃, c̃}m)

× h({p, f, s′, c′, s, c}m) = h(p̃, f̃ , s̃′, c̃′, s̃, c̃}m) ,

(3.26)

with h as an ordinary test function.
Let us consider a covector (F | which corresponds to an observable F so that
the following relation holds

(F |{p, f, s′, c′, s, c}m) = 〈{s′, c′}m|F ({p, f}m)|{s, c}m〉 . (3.27)

With that we obtain
σ[F ] = (F |ρ) . (3.28)

Here we used the completeness relation (3.23), the formula for the cross
section given in eq.(3.12), eq.(3.22) and eq.(3.13).
If F is an operator proportional to the unit operator we may write

(F |ρ) =
∑

m

1

m!

∫
[d{p, f, s′, c′, s, c}m]F ({p, f}m)〈{s′}m|{s}m〉〈{c′}m|{c}m〉

× ρ({p, f, s′, c′, s, c}m) .

(3.29)

3.3 Parton evolution

In the previous sections we have introduced the concept of a density state
operator ρ. It is supposed to describe a parton shower7. From now on we

7For what a parton shower is see also chapter (1), section (3.1) and section (2.2).
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call ρ a parton shower state. This parton shower state evolves with the par-
ton shower time t. Please note that t is not a physical time, it is a running
parameter on which ρ is dependent. In section (3.5.4) it will be discussed
how t is connected to the kinematical parameters of the system, for example
virtuality8. Then increasing t can mean decreasing virtuality. We start with
the value t = 0. Here we have no parton shower at all what means that we
start with the hard interaction. Then t increases towards a final value tf at
which the application of shower evolution is no longer meaningful. Please
note that also initial state evolution can only occur for t > 0. Thus we have
here again the backward evolution principle we discussed in section (2.2.1).

In this context it is important to consider the issue of a resolution scale.
As already mentioned in chapter (1) a parton shower is only well defined
with respect to a resolution scale: else it is not meaningful to distinguish
between resolvable and nonresolvable branching. This is however essential
for the definition of the two splitting operators H and V which are later
given in eq.(3.35) and eq.(3.36) and will be defined there.
Let us call the scale of the hard interaction Q2

0. Then the resolution scale µ2

must be always smaller or equal to Q2
0. Interactions whose scales are bigger

than µ2 are resolvable. They are included in the |M〉〈M | part of the density
operator ρ. Interactions whose scales are smaller than µ2 (nonresolvable
branchings) are either included into the parton density functions9 (if they
are initial state) or are simply integrated out if they belong to the final state.
In order to guarantee that the parton density functions in eq.(3.11) include
all branchings below the resolution scale µ2 we demand µ2

F = µ2 where µ2
F

is the factorization scale of the parton density functions.
The resolution scale µ2 starts from the scale of the hard interaction Q2

0 and
becomes lower down to a cut-off value10. The lower µ2 is set the more parton
branching we see. This is in the reverse order of the shower t which starts
from the hard interaction at value 0 and increases to some cut-off value tf.
It is therefore meaningful to assume the following relation

µ2 = Q2
0e

−t . (3.30)

Further also the issue of infrared safety of an observable F ought to be
mentioned. A physical observable can be represented by a set of functions

8Another possibility would be transverse momentum.
9That is the functions given in eq.(3.11).

10It is not meaningful to go down directly to zero as we would see then an infinite
number of partons.
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F ({p, f}m) which are invariant under label interchange. Strictly speaking it
is called infrared safe if F ({p, f}m+1)→ F ({p, f}m) for the case that parton
m+ 1 becomes soft or collinear with parton l. This definition refers to any
scale.
A broader notion of infrared safety can be given by considering infrared
safety with reference to a scale µ2. This means that

F ({p̂, f̂}m+1) ≈ F ({p, f}m) (3.31)

holds11 for |2p̂m+1 · p̂l| < µ2. So (F |ρ) does not change for µ2 → µ2 + δµ2

which is equal or larger than µ2. (F |ρ) can however in this case change for
scales which are smaller than µ2.

Now we formulate the axioms for shower evolution. In the next sections
we will relate the operators which appear in the evolution equation to the
Feynman rules at tree level QCD. For the evolution equation we assume a
linear operator U so12 that we have

|ρ(t)) = U(t, t
′

)|ρ(t′) . (3.32)

In order to have consistency we demand

U(t, t) = 1 . (3.33)

Further we must require that the U operators fullfill the group compository
rule

U(t3, t2)U(t2, t1) = U(t3, t1) . (3.34)

We demand
d

dt
U(t, t

′

) = [H(t)− V(t)]U(t, t
′

) . (3.35)

The operator H(t) describes real splitting (the number of partons and their
momenta are changed) while V(t) describes virtual splitting (virtual graphs
and unresolved graphs). It does not change the spin, number and momenta
of the partons but it can change their colors. Thus the evolution equation
can be also written as

d

dt
|ρ(t)) = [H(t)− V(t)]|ρ(t)) . (3.36)

11Up to now there is no exact condition formulated how precise the approximation has
to be.

12Note that this formalism is not intended for dealing with saturation effects.
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In lowest order, H(t) describes the change from a state with m partons to a
state with m+ 1 partons. H(t) is specified by its matrix elements

({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m′ |H(t)|{p, f, s′, c′, s, c}m) . (3.37)

In the following sections we will derive these matrix elements from the Feyn-
man rules at tree level QCD.
We can construct the virtual splitting operator V(t) from the real splitting
operator H. Here we must take into account that the showering itself is
independent from the hard process. This means that the total cross sec-
tion is not changed during shower evolution. We note here however that
this statement is only true for processes like e+ + e− → hadrons. For the
case of hadron-hadron collisions the total cross section does not have a well
defined perturbative expansion. If |ρ(0)

)
is however ”hard” in the sense

that ({p, f, s′ , c′ , s, c}m|ρ(0)
)
6= 0 holds only for configurations with a large

transverse momentum we can postulate that the contribution from |ρ(t)
)

to
the total cross section does not change.
The observable that measures everything (that is the total cross section) is

F1({p, f}m) = 1 . (3.38)

The density state that corrsponds to F1({p, f}m) should be (1|. This means
that we have

σtotal = (1|ρ) . (3.39)

At this point it is important to note that the unit vector (1| satisfies the
following condition

(1|{p, f, s′, c′, s, c}m) = 〈{s′}m|{s}m〉〈{c′}m|{c}m〉 , (3.40)

which we obtain from equation (3.27). As shower evolution does not change
the total cross section, the following relation holds

(1|U(t
′

, t)|ρ) = (1|ρ) . (3.41)

Thus we obtain:

d

dt
σtotal = 0

= (1|H(t)− V(t)|ρ(t)) .
(3.42)

So the following relation holds

0 = (1|[H(t)− V(t)] , (3.43)

which results in:

(1|V(t)|{p, f, s′, c′, s, c}m) = (1|H(t)|{p, f, s′, c′, s, c}m) . (3.44)
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3.4 Momentum and flavor mapping

For the description of collision processes the first choice are matrix elements.
In contrast to the incoming and outcoming partons the partons in the inter-
mediate state are described by propagators and are therefore not on mass
shell. In a matrix element the in- and outcoming partons are well defined.
In contrast to that, the parton shower approach is an iterative process. It
is a priori not clear when to stop. For simplicity we want to keep therefore
the partons on mass shell. In order to preserve momentum conservation
we need therefore a momentum mapping {p}m ↔ {p̂}m+1 where the mo-
menta of all or at least some of the partons before and after the splitting
are related to each other. There are different possible ways to define a mo-
mentum mapping. One of them is the method of Catani and Seymour [38].
It is an example of local mapping where only three partons are involved:
(pl, pk) ↔ (p̂l, p̂m+1, p̂k). Parton k is thereby a spectator parton which is
color connected to parton l. The momenta of the other partons remain un-
changed13.
On the other hand in the case of a global mapping the momenta of all par-
tons are changed. This was the case in [1] and [37]. As we will use in chapter
(4) the results of [37] we introduce the momentum mapping that was pre-
sented there. First of all we consider initial state splitting. Consider parton
a with momentum pa that splits in backward evolution into parton m + 1
with momentum p̂m+1 and a parton with momentum p̂a. The momentum
of parton b remains unchanged. Then we define the following momentum
mapping with splitting variables (y, z, φ)14

p̂m+1 =
1− z
z

(1 + y)pa + z
y

1 + y
pb + k⊥ ,

p̂a =
1 + y

z
pa ,

p̂b = pb .

(3.45)

Here is k⊥ a space-like vector which is the part of p̂m+1 that is orthogonal
to both pa and pb.
According to eq.(3.45) we have

y =
2p̂m+1 · p̂a

2pa · pb
(3.46)

13Please note that there is an exception to this rule in the case of inital state splitting.
14Regarding initial state splitting: in [37] in section (4.4) the momentum mapping was

only defined by the momenta themselves and not by splitting variables.
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and
p̂m+1 · pb

p̂a · pb
= 1− z . (3.47)

The fraction variable z is in the range 0 < z < 1. For the momentum
fractions of the two partons we have

η̂a =
1 + y

z
ηa ,

η̂b = ηb .
(3.48)

As we discussed in the previous section the density state ρ of the system is
dependent on the shower time t. We choose as in [37] the following relation

t = log

(
Q2

2p̂m+1 · p̂a

)
. (3.49)

Here can be, for example,
√
Q2 the mass of the Z-boson in a Drell Yan

process. Both t and y can be seen as virtuality variables. We have the
following relation

y =
Q2

2pa · pb
e−t . (3.50)

As the emitted parton m + 1 is supposed to be lightlike we can derive the
following relation for

0 = p̂2
m+1

= (1− z)y2pa · pb − k2
⊥

= (1− z)Q2e−t − k2
⊥ .

(3.51)

So we get
k2
⊥ = (1− z)Q2e−t . (3.52)

We note here that in the case that we have y 6= 0 the momentum differ-
ence p̂a − p̂m+1 is not exactly pa. We therefore must face the problem of
momentum conservation. The problem is solved by taking some momentum
from the final state partons at the time of the splitting. This means that
each parton j with momentum pj , j ∈ {1, 2, . . . ,m} has after the splitting a
new momentum p̂j . This also applies to the Z-boson as an example. The
momenta p̂j after splitting are related to the ones before the splitting by a
Lorentz transformation p̂j = Λpj . Hence the following relation holds

p̂a + p̂b − p̂m+1 = Λ(pa + pb) . (3.53)
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There are different choices for a Lorentz transformation possible.
It must be mentioned that in contrast to the p̂j we have

p̂a 6= Λpa ,

p̂b 6= Λpb .
(3.54)

Further we remark that in the case of final state splitting the daughter par-
tons are also put on mass shell. In [1] it was chosen to let the momenta of
the inital state partons unchanged while the momenta of the spectator final
state partons are changed by a Lorentz transfortmation, too.

The next point we must face is flavor mapping. First of all we consider
final state splitting. The parton that splits is denoted as parton l. Thus we
write

f̂j = fj , j /∈ {l,m+ 1} . (3.55)

The flavor of the two partons l and m+1 is given by the value of the variable
ζf = (f̂l, f̂m+1). The different possible values that ζf can take, span a set
Φ(fl) which is dependent on the mother parton’s flavor. For parton l being a
quark or an antiquark the only possible way of splitting is the radiation of a
gluon. As we have freedom to assign labels we choose to label the remaining
quark or antiquark after the splitting as parton l and the emitted gluon as
parton m+ 1. Then the set Φl(fl) can have only one element

Φ(fl) = {(fl, g)} , fl 6= g . (3.56)

A bit different is the case when parton l is a gluon. Then ζf is a pair of
gluons or a quark-antiquark pair (q, q̄) of any flavor

Φl(g) = {(g, g), (u, ū), (d, d̄), . . . } . (3.57)

For g → q + q̄ we have again the freedom to assign labels. We call the
daughter quark parton l and the daughter antiquark parton m+ 1.
We have now discussed the flavor mapping in final state splitting. Let us
turn to initial state splitting. The flavors of the two incoming partons which
are involved in the hard interactions are before and after the splitting called
fa, f̂a, fb and f̂b. With the exception of those partons that have the label
”a” or m+ 1 the flavors are not changed

f̂j = fj , j /∈ {a,m+ 1} . (3.58)

We call the splitting variable ζf = (f̂a, f̂m+1). The set of the splitting vari-
ables is named Φa(fa). It is dependent on the flavor of the mother parton.
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The set has only two elements for parton ”a” being a quark or an antiquark

Φa(fa) = {(fa, g), (g, fa)} , fa 6= g . (3.59)

We have these two possibilities because both the gluon or the quark/antiquark
can go into the hard interaction. The parton that does not participate in
the hard interaction and therefore goes directly to the final state partons is
called m + 1. For the case that parton ”a” is a gluon, ζf can be a pair of
gluons or a quark-antiquark of any flavor (q, q̄) or (q̄, q) (as far as momentum
conservation allows it)

Φa(g) = {(g, g), (u, ū), (ū,u), (d, d̄), (d̄,d), . . . } . (3.60)

We have here several possibilities as a gluon, a u-quark or a d̄-quark etc.
can participate in the hard interaction. Again the parton that goes directly
to the final state is labeled m+ 1. The mapping of momenta and flavors is
symbolically written as

{p̂, f̂}m+1 = Rl({p, f}m, {ζp, ζf}). (3.61)

We mention here that the transformation has an inverse. For a more detailed
discussion see [1] and [37].

3.5 Splitting for the statistical states

Here it is our goal to derive an expression for the operator H. According
to equation (3.43) we can then derive an expression for the virtual splitting
operator V. In order to derive an expression for H we use the Feynman
rules for the corresponding matrix element. Before we consider the den-
sity state operator ρ we must investigate the quantum scattering amplitude
|M({p, f})〉. It belongs to color ⊗ spin space. Thus we can write it as

|M({p, f}m)〉 =
∑

{c}m

|{c}m〉
∑

{s}m

|{s}m〉M({p, f, s, c}m) . (3.62)

Please note that the color vectors are not orthogonal to each other in contrast
to the spin vectors. Here the following relation holds

〈{s′}m|{s}m〉 = δm′
,mδ{s′}m,{s}m

. (3.63)

Let us consider now the QCD scattering amplitude |M({p̂, f̂}m+1)〉. Further

the splitting operators t†l (which acts on the color part) and V †
l (which acts

on the spin part) are introduced. Thus the following relation holds

|Ml({p̂, f̂}m+1)〉 = t†l (fl → f̂l + f̂m+1)V
†
l ({p̂, f̂}m+1)|M({p, f}m)〉 . (3.64)
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For the case that two partons (we call them l and m+1) are almost collinear
we may write

|M({p̂, f̂}m+1)〉 ∼ |Ml({p̂, f̂}m+1)〉 . (3.65)

If pm+1 becomes soft we have

|M({p̂, f̂}m+1)〉 ∼
∑

l

|Ml({p̂, f̂}m+1)〉 . (3.66)

The definition of |Ml({p̂, f̂}m+1)〉 in eq.(3.64) has the feature that eq.(3.66)
and eq.(3.65) become exact in the soft and collinear limit respectively.

3.5.1 Splitting on the spin level

The spin dependent splitting operator V †
l ({p̂, f̂}m+1) can be characterized

by its matrix elements

〈{ŝ}m+1|V †
l ({p̂, f̂}m+1)|{s}m〉 . (3.67)

As we have chosen an orthonormal basis for the spin states we can write the
operator V †

l in the following way

〈{ŝ}m+1|V †
l ({p̂, f̂}m+1)|{s}m〉 =

( ∏

j /∈{l,m+1}
δŝj ,sj

)
vl({p̂, f̂}m+1, ŝm+1, ŝl, sl) .

(3.68)
The factor

∏
j /∈{l,m+1} δŝj ,sj

is on the right side of the equation as the whole
expression must be diagonal in the spectator spins. By this equation we
define the splitting functions vl({p̂, f̂}m+1, ŝm+1, ŝl, sl). The various splitting
functions are derived in [1].
As an example we show here in detail the derivation for one splitting (initial
state q → q + g splitting, quark scatters). For the other amplitudes see
section (6) of [1].
For the kinematics of the whole process we write

p = pa , η = ηa ,

p̂ = p̂a , η̂ = η̂a ,

q = p̂m+1 , m = m(fa) = m(f̂a) ,

ŝ = ŝa , εµ = εµ(p̂m+1, ŝm+1; Q̂) ,

(3.69)

where pm+1 stands for the momentum of the emitted gluon. It must be
noted that ε is defined to be orthogonal to Q̂ = p̂a + p̂b = pa + pb.
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According to the Feynman rules for QCD we have for a quark-gluon vertex
(see for that page 10 of [3]):

−ig(tA)cb(γ
α)ji . (3.70)

The factor g stands here for the strong coupling constant (in analogy to the
fine structure constant α in QED) while (tA)cb is the color matrix. Thus we
have for the amplitude |M({p̂, f̂}m+1)〉 the following expression

M = H
/P −m
P 2 −m2

gtc/ε∗U(p̂, ŝ) . (3.71)

The factor −i has been absorbed into H that stands here for the hard
interaction we are not interested in at the moment. The entity U(p̂, ŝ) stands
for the incoming initial state quark while /ε∗ stands for the outcoming real
gluon that is emitted in the process. Further, /P is given by

/P = Pµγ
µ . (3.72)

We see here also the propagator for the off-shell quark (the quark after the
emission of the gluon). Its momentum is given by

P = p̂− q . (3.73)

We want to make an approximation of M for the soft and the collinear case;
our goal is to derive the scalar expression v given in eq.(3.68).
For that we insert into M a ”one” factor

M = H
/n(/p−m) + (/p+m)/n

2p · n
/P +m

P 2 −m2
(gtc/ε∗)U(p̂, ŝ) . (3.74)

We assume n to be the lightlike vector pB. In order to see that the in-

serted factor
/n(/p−m) + (/p+m)/n

2p · n is truly equal to one we remind that the

following relation is valid for general 4 vectors A and B (see eq. (A.19a)
of [39])

/A /B = 2A ·B − /B /A . (3.75)

Let us focus on the first term in M

Mns = H
/n(/p−m)

2p · n
/P +m

P 2 −m2
(gtc/ε∗)U(p̂, ŝ) . (3.76)

With15

p = P + (p+ q − p̂) (3.77)

15See eq.(3.73).

40



and
(/P −m)( /P +m) = P 2 −m2 (3.78)

we can write for Mns

Mns = H
/n

2n · p(gtc/ε∗)U(p̂, ŝ)

+H
/n (/p + /q − /̂p)

2p · n
/P +m

P 2 −m2
(gtc/ε∗)U(p̂, ŝ) .

(3.79)

We remind here that the 4-momentum of the emitted gluon is given by q.
As the first term is independent from q we have no divergency both for the
soft and collinear limit of q.
In the soft limit we see that the expression (p+ q− p̂) is proportional to one
power of q. Also the denominator P 2 −m2 = −2p̂ · q is proportional to one
power of q. So the expression Mns as a whole remains finite in the soft limit.
For the treatment of the collinear limit we resolve the entity q into two parts

q = q⊥ + q|| . (3.80)

Here is q⊥ a spacelike vector; it is non-zero and fulfills

q⊥ · p = 0 . (3.81)

In the collinear limit the denominator of the second term of Mns has two
powers of q⊥. The numerator (/p+ /q − /̂p) contributes with one power of q⊥
while the other numerator /P + m also with one. Thus both cancel each
other and Mns remains finite both in the soft and in the collinear limit.
Thus the divergent part of M remains

Msing = H
(/p +m)/n

2p · n
/P +m

P 2 −m2
(gtc/ε∗)U(p̂, ŝ) . (3.82)

According to eq.(A.22) of [40] we have

/p +m =
∑

s

U(p, s)Ū(p, s) . (3.83)

The factor U(p, s) can be viewed as a real incoming quark that comes into
the hard process. Thus we consider it to be meaningful to absorb this factor
into the hard scattering amplitude H. We define therefore as a splitting
function

va = −
√

4παs

(p̂− q)2 −m2
ε∗µ
Ū(p, s)/n (/̂p− /q +m)γµU(p̂, ŝ)

2p · n . (3.84)
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We note here that by definition the color matrix tc acts only on the color part
of |M〉. For the splitting function va only the spin part of |M〉 is relevant
(see for that eq.(3.68)). For the treatment of the other splittings see section
6 of [1].

3.5.2 Splitting on the color level

In the previous section we discussed the splitting operators on spin level.
Now we want to say something about splitting on color level. In eq. (3.64)
the splitting operators both on color and on spin level have been introduced.
As an example we could write for the emission of a gluon by a parton:

|ψ̂〉 = t†l (fl → fl + g)|ψ〉 . (3.85)

The question is: how can this be properly described?
For that we write the quantum amplitude in a vector expansion

|M({p, f}m)〉C,S =
∑

{c}m

|{c}m〉C ⊗
∑

{s}m

|{s}m〉SM({p, f, s, c}m) . (3.86)

|{c}m〉 is here a vector in color space while |{s}m〉 is a vector in spin space.
With that |M({p, f}m)〉C,S is a vector in the combined color-spin space.
Eq.(3.86) can be written in a component notation. The spin is denoted
by the index λl which takes the values ±1

2 for quarks and the values ±1
for gluons. For color the indices are denoted by al which takes the values
1, . . . , 3 for quarks and the values 1, . . . , 8 for gluons. Regarding color, an
initial state quark corresponds to a final state antiquark and an initial state
antiquark corresponds to a final state quark. Hence in this section ”q” and
”quark” can mean both a final state quark or an initial state antiquark and
”q̄” respectively ”antiquark” a final state antiquark or an initial state quark.
Now M can be expanded in the following way

M({p, f}m)aa,ab,a1,...,am

λa,λb,λ1,...,λm
=
∑

{c}m

Ψ({c}m)aa,ab,a1,...,am

×
∑

{s}m

Ξ({s}m)λa,λb,λ1,...,λm
M({p, f, s, c}m) .

(3.87)

The Ψ({c}m) form here a basis in the space of color singlets with color labels
{c}m. In addition the Ξ({s}m) form a basis in the space of spins with spin
labels {s}m.
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We assume that the spin labels λ stand for parton helicities. They are
already properly normalized. Therefore we have

Ξ({s}m)λaλb,λ1,...,λm
= δλa

sa
δλb
sb
δλ1
s1
. . . δλm

sm
. (3.88)

We already mentioned in section (3.2) the situation for color is a bit more
complicated. As the amplitude |M({p, f}m)〉 is supposed to be a physical
state it must be invariant under gauge transformations. Thus a basis in the
color space must be introduced where each basis vector is a color singlet. For
that the concept of color strings is introduced (see for that [41–44]). Here
a color basis vector |{c}m〉 is considered to be a color string configuration

{c}. Such a configuration is considered to be a set of one or more strings S.
There are two types of strings: open strings and closed strings.
An open string S = [l1, l2, . . . , ln−1, ln] is respresented by a set of parton
indices where l1 is the label of a quark, l2, . . . , ln−1 are the labels of gluons
and ln is a label for an antiquark.
A closed string S = (l1, l2, . . . , ln−1, ln) is represented by at least two parton
indices where all the partons are gluons. Sets which are related by cyclic
permutation are treated as the same.
Now we focus on the basis states. We write Ψ({c}m) as

Ψ({c}m)a1,...,am = Ψ(S1)
{a}[1]Ψ(S2)

{a}[2] . . .Ψ(SK){a}[K] . (3.89)

The set of color indices in string k is given by

{a}[k] = {al1 , . . . , aln} . (3.90)

We define for an open string

Ψ(S){a} = n(S)−1/2[ta2ta3 . . . tan−1 ]a1an . (3.91)

Here ta are the SU(3) generator matrices. The normalization factor is

n(S) = NcC
n−2
F . (3.92)

So that we have
〈S|S〉 ≡

∑

{a}
|Ψ(S){a}|2 = 1 . (3.93)

For a closed string we define

Ψ(S){a} = n(S)−1/2Tr[ta1ta2 . . . tan ] . (3.94)
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Where we have
n(S) = Cn

F . (3.95)

So we obtain

〈S|S〉 ≡
∑

{a}
|Ψ(S){a}|2 = 1−

( −1

2NcCF

)n−1

, (3.96)

which becomes one for a large number of colors.
With the definition of color strings we can now construct basis states for
color singlet states. They are defined as a product of string states. They
have a normalization factor n({c}m)−1/2 with

n({c}m) = n(S1)n(S2) . . . n(SK) . (3.97)

For the normalization of the states we have

〈{c}m|{c}m〉 =
∏

k

〈Sk|Sk〉 . (3.98)

These factors are given by eq.(3.93) and eq.(3.96). We have therefore
〈{c}m|{c}m〉 ≈ 1 for the large Nc limit.
The set of basis vectors |{c}m〉 is not orthonormal but for the large limit we
have

〈{c′}m|{c}m〉 = O(1/N2
c ) {c′}m 6= {c}m . (3.99)

Now splitting on color level can be described. For that we go back to
eq.(3.85). In component notation it can be written as

ψ̂aa,ab,a1,...,al,...,am,am+1 =
∑

ãl

T (fl)
am+1

al,ãl
ψaa,ab,a1,...,ãl,...,am (3.100)

where the T (fl)
am+1

al,ãl
stand for a representation of the SU(3) group. For the

case that we have fl = g it is given by

T (g)a
bc = ifbac . (3.101)

The fbac are the structure constants of the SU(3) group. They are defined
by the commutator relation16

[ta, tb] = ifabct
c . (3.102)

16We remind that we have the summation convention there; see further section (15.2)
and section (15.4) of [40].
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The application of the splitting operator T to one basis state |{c}m〉 leads
to

∑

al

T (g)
ãm+1

ãl,al
tal =

∑

al

ifãl,ãm+1,al
tal = tãltãm+1 − tãm+1tãl , (3.103)

which can be written as

t†l (g → g+g)|{c}m〉 =

[
n({ĉ+}m+1)

n({c}m)

]1/2

|{ĉ+}m+1〉−
[
n({ĉ−}m+1

n({c}m)

]1/2

|{ĉ−}m+1〉
(3.104)

with
n({ĉ±}m+1)

n({c}m)
= CF . (3.105)

Eq. (3.104) can be also written as an operator equation

t†l (g → g + g) =
√
CFa

†
+(l)−

√
CFa

†
−(l) . (3.106)

For a precise definition of the splitting operators a see section (7.2) of [1].
If fl is a quark we have

T (q)a
ij = taij (3.107)

and if fl is an antiquark the following relation holds

T (q̄)a
ij = −taji . (3.108)

By that also the splitting operators T †
l for other processes (like for example

q → q + g) can be derived. For a more detailed discussion see section (7.3)
of [1].

3.5.3 Splitting for the density operator

In the previous sections we have dealt with parton splitting on the level of the
quantum states |M〉. Now we want to consider how a splitting is described

on the level of the density states. In eq.(3.64) the splitting operators t†l and

V †
l have been introduced which act on the quantum aplitude |M〉.

Now we need an operator S that acts on the density state ρ so that the
following relation holds

|ρ̂) = S|ρ) . (3.109)

Here |ρ) stands for the density state before the splitting while |ρ̂) stands for
the density state after the splitting. Before a splitting we can describe a
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state with m partons in the final state and two partons in the initial state
by

({p, f, s′, c′, s, c}m|ρ) . (3.110)

After a splitting we have m + 1 partons in the final state that is described
by

({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1|ρ) . (3.111)

Parton i can split in |M({p, f}〉 while parton j can split in 〈M({p, f}m)|.
The simplest possibility is i = j. It is the only one that is incorporated into
Monte Carlo event generators as they simulate only probability distributions
(in collinear approximation) and not amplitudes. Thus they do not simulate
interference effects.
We cannot ignore, however, the case where we have i 6= j for the following
reason: it is possible that we obtain after splitting the same flavors and
momenta {p̂, f̂}m+1. An integration over {p̂}m+1 would yield a logarithmic
divergency. Please note that this is not only true for the collinear case
but in general. An example for that would be parton i in |M({p, f}m)〉
emitting a gluon m + 1 while parton j emits a gluon in 〈M({p, f}m)|. An
interference graph for this does not contain a collinear divergence from pm+1

being collinear with respect to p̂i or p̂j . We obtain a soft divergence when
p̂m+1 goes to zero. Thus we must take the case i 6= j into account. Now the
question arises which momentum mapping ought to be used for i 6= j:

{p̂, f̂}m+1 = Rl({p, f}m, {ζp, ζf}) . (3.112)

There are different options: mapping with l = i or with l = j. In [1] it was
chosen to average the two possibilities in an equal manner:

ρ̂({p̂, f̂m+1}) =
∑

l

ρ̂
(l)
ll ({p̂, f̂}m+1)

+
∑

i,j
i6=j

{
Aij({p̂}m+1)ρ̂

(i)
ij ({p̂, f̂}m+1) +Aji({p̂}m+1)ρ̂

(j)
ij ({p̂, f̂}m+1)

}

=
∑

l

{
ρ̂
(l)
ll ({p̂, f̂}m+1)

+
∑

k 6=l

Alk({p̂}m+1)

[
ρ̂
(l)
lk ({p̂, f̂}m+1) + ρ̂

(l)
kl ({p̂, f̂}m+1

]}
.

(3.113)

The sum runs over the set {a,b, 1, . . . ,m}. The Aij are here weight factors.
In [1] Aij = 1

2 was taken but also other choices are possible. Aij stands
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here for momentum mapping Rl while Aji stands for momentum mapping
Rl with l = j. If we have i = j we take the mapping with l = i = j. Then
the different contributions to ρ̂({p̂, f̂m+1}) need to be considered. We have
for the case i = j according to eq.(3.64)

ρ
(l)
ll ({p̂, f̂m+1}) = t†l (fl → f̂l + f̂m+1)V

†
l ({p̂, f̂}m+1)ρ({p, f})

×Vl({p̂, f̂}m+1)tl(fl → f̂l + f̂m+1)

×Sl({f̂m+1) .

(3.114)

Here is Sl({f̂m+1) a normalisation factor

Sl({f̂}m+1) =





1/2 , l ∈ {1, . . . ,m}, f̂l = f̂m+1 = g

1 , l ∈ {1, . . . ,m}, f̂l 6= g, f̂m+1 = g

0 , l ∈ {1, . . . ,m}, f̂l = g, f̂m+1 6= g

1 , l ∈ {1, . . . ,m}, f̂l = q, f̂m+1 = q̄

0 , l ∈ {1, . . . ,m}, f̂l = q̄, f̂m+1 = q
1 , l ∈ {a,b}

. (3.115)

In the first case the normalisation factor is 1/2. The reason for this is
because this stands for the process g → g + g. The splitting probability is
symmetric under interchange of the labels l and m + 1 so that integration
over p̂l and p̂m+1 would count the same physical configuration twice. The
factor 1/2 compensates this. For the case that we have f̂l = g and f̂m+1 = q
or f̂m+1 = q̄ the counting factor must be zero, so that then the emitted gluon
should be counted as parton m + 1. Similar to that the factor is zero for
f̂l = q̄ and f̂m+1 = q so that for g→ q+ q̄ the final daughter antiquark ought
to be parton m+ 1. By that the flavor mapping is enforced as discussed in
section (3.4).

For the case i 6= j we have

ρ̂
(l)
ij ({p̂, f̂m+1) =t†i (fl → f̂i + f̂m+1)V

†,soft
i ({p̂, f̂}m+1)ρ({p, f})

× V soft
j ({p̂, f̂}m+1)tj(fj → f̂j + f̂m+1) .

(3.116)

Here we have used the simpler splitting operator V soft. We mention here
that both V †,soft

i and V soft
j are equal to zero when parton m + 1 is not a

gluon.17 So ρ̂
(l)
ij ({p̂, f̂m+1) vanishes for i 6= j except for the case that parton

m+ 1 is a gluon.
So we can write now

|ρ̂(l)
ij ) = S(l)

ij |ρ) . (3.117)

17For a treatment of the soft splitting function see section (6.6) of [1].
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|ρ̂(l)
ij ) stands for the statistical state after splitting while |ρ) stands for the

statistical state before splitting. S(l)
ij is the splitting operator.

We can write this as

({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1|S(l)
ij |ρ) =

1

m!

∫
[d{p, f, s′, c′, s, c}m]

×({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1|S(l)
ij |{p, f, s′, c′, s, c}m)

×({p, f, s′, c′, s, c}m|ρ) .

(3.118)

We can write the splitting operator in the following form

({p, f, s′, c′, s, c}m+1|S(l)
ij |{p, f, s′, c′, s, c}m) =

({ĉ′, ĉ}m+1|G(i, j; {f̂}m+1)|{c′, c}m)

×({ŝ′, ŝ}m+1|W(i, j; {f̂ , p̂}m+1)|{s′, s}m)

×({p̂, f̂}m+1|Pl|{p, f}m)

×(m+ 1)
nc(a)nc(b)ηaηb

nc(â)nc(b̂)η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2
F )fb/B(ηb, µ

2
F )

.

(3.119)

The single factors are given by a color part

({ĉ′, ĉ}m+1|G(i, j; {f̂}m+1)|{c′, c}m) =

D〈{ĉ}m+1|t†i (fi → f̂i + f̂m+1)|{c}m〉〈{c′}m|tj(fj → f̂j + f̂m+1)|{ĉ′}m+1〉D
(3.120)

and a spin part ({ŝ′, ŝ}m+1|W(l, l; {f̂ , p̂}m+1)|{s′, s}m). For i = j and under
the exclusion of the process g→ g + g this can be written as

({ŝ′, ŝ}m+1|W(l, l; {f̂ , p̂}m+1)|{s′, s}m)

= Sl({f̂}m+1)〈{ŝ}m+1|V †
l ({p̂, f̂}m+1)|{s}m〉〈{s′}m|Vl({p̂, f̂}m+1)|{ŝ′}m+1〉 .

(3.121)

For i = j the splitting operator W can be written as18

({ŝ′, ŝ}m+1|W(l, l; {f̂ , p̂}m+1){s′, s}m) =

= Sl({f̂}m+1)

{
〈{ŝ}m+1|V †

l ({p̂, f̂}m+1)|{s}m〉〈{s′}m|Vl({p̂, f̂}m+1)|{ŝ′}m+1〉

+ θ(l ∈ {1, . . . ,m}, f̂l = f̂m+1 = g)({ŝ′, ŝ}m+1|W̃(l, l; {p̂}m+1)|{s′, s}m)

}
,

(3.122)

18For the proper definition of W̃ see eq.(8.13)-(8.16) in [1].
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while for i 6= j the splitting operator W can be written as

({ŝ′, ŝ}m+1|W(i, j; {p̂}m+1)|{s′, s}m) = 〈{ŝ}m+1|V †,soft
i ({p̂, f̂}m+1)|{s}m〉

×〈{s′}m|V soft
j ({p̂, f̂}m+1)|{ŝ′}m+1〉

(3.123)

where the simpler soft splitting operators V soft are used which are mentioned
on page (47).

The matrix element ({p̂, f̂}m+1|Pl|{p, f}m) is the next factor which must
be discussed. It has a delta function which ensures the correct momentum
mapping

1

m!

∫
[d{p, f}m]({p̂, f̂}m+1|Pl|{p, f}m)h({p, f}m) = h({p′, f ′}m) , (3.124)

with h being a test function. The flavors and momenta are given by

{{p′, f ′}m, {ζp, ζf}} = Ql({p̂, f̂}m+1) . (3.125)

The flavor and momentum mapping has been explained in section (3.4).
Alternatively we can write for Pl

1

(m+ 1)!

∫
[d{p̂, f̂}m+1]g({p̂, f̂}m+1)({p̂, f̂}m+1|Pl|{p, f}m)

=
1

m+ 1

∑

ζf∈Φl(fl)

∫
dζpθ(ζp ∈ Γl({p}m, ζf))g({p̂′, f̂ ′}m+1) ,

(3.126)

with g being a test function and

{p̂′ , f̂ ′}m+1 = Rl({{p, f}m, {ζp, ζf}}) (3.127)

being the inverse of Ql. For the derivation of the counting factor 1
m+ 1 see

Appendix B of [1].
We can now derive the splitting operator S. For the density operator we
have

|ρ̂) = S|ρ) , (3.128)

with
S =

∑

l

Sl . (3.129)

The terms Sl are here given by

Sl = S(l)
ll +

∑

k 6=l

Alk

{
S(l)

lk + S(l)
kl

}
. (3.130)
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The Alk are operators where each basis vector |{p, f, s′, c′, s, c}m+1) is multi-
plied by the functionAlk({p̂}m+1). The sum runs over the set {a,b, 1, . . . ,m}.
We mention here that a simplification is possible.
We remind, since the quantum amplitudes must be color singlets, we have19

∑

l

∑

ãl

T (fl)
am+1

al,ãl
ψaa,ab,a1,...,ãl,...,am = 0 , (3.131)

which can be also written as
∑

l

t†l (fl → fl + g)|ψ〉 = 0 . (3.132)

Thus we can write for the gluon emission operators G(l, k; {f̂}m+1) for
f̂m+1 = g

∑

k

G(l; k; {f̂}m+1) = 0 ,
∑

k

G(k, l; {f̂}m+1) = 0 , (3.133)

which leads to the following useful relation

G(l; l; {f̂}m+1) = −1

2

∑

k 6=l

G(l; k; {f̂}m+1)−
1

2

∑

k 6=l

G(k; l; {f̂}m+1) . (3.134)

Now we can write down the splitting operator in an explicit manner. We
get for the case f̂m+1 = g
(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1

∣∣Sl

∣∣{p, f, s′, c′, s, c}m
)

= (m+ 1)
(
{p̂, f̂}m+1

∣∣Pl

∣∣{p, f}m
) nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2
F )fb/B(ηb, µ

2
F )

×
∑

k∈{a,b,1,...,m}
k 6=l

{(
{ĉ′, ĉ}m+1

∣∣G(l, k; {f̂}m+1)
∣∣{c′, c}m

)

×
[
Alk({p̂}m+1)

(
{ŝ′, ŝ}m+1

∣∣W(l, k; {f̂ , p̂}m+1)
∣∣{s′, s}m

)

− 1

2

(
{ŝ′, ŝ}m+1

∣∣W(l, l; {f̂ , p̂}m+1)
∣∣{s′, s}m

)]

+
(
{ĉ′, ĉ}m+1

∣∣G(k, l; {f̂}m+1)
∣∣{c′, c}m

)

×
[
Alk({p̂}m+1)

(
{ŝ′, ŝ}m+1

∣∣W(k, l; {f̂ , p̂}m+1)
∣∣{s′, s}m

)

− 1

2

(
{ŝ′, ŝ}m+1

∣∣W(l, l; {f̂ , p̂}m+1)
∣∣{s′, s}m

)]}
.

(3.135)

19See for that eq.(7.27) and eq.(7.28) of [1].
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If f̂m+1 6= g that means {f̂l, f̂m+1} = {q, q̄} we have

(
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1|Sl|{p, f, s′, c′, s, c}m

)
= (m+ 1)({p̂, f̂}m+1|Pl|{p, f}m)

×nc(a)nc(b)ηaηb

nc(â)nc(b̂)η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2
F )fb/B(ηb, µ

2
F )

×({ĉ′, ĉ}m+1|G(l, l; {f̂}m+1)|{c′, c}m)

×({ŝ′, ŝ}m+1|W(l, l; {f̂ , p̂}m+1)|{s′, s}m) .

(3.136)

3.5.4 The real splitting operator H(t)

Our goal is now to set up the evolution equation given in eq.(3.36). The
splitting operator S gives the total probability that a real splitting occurs. In
eq.(3.36) the operator H(t) is supposed to be proportional to the probability
that a branching occurs between t and t + dt. It is therefore a probability
density that a splitting happens. Thus it is presumed that the following
relation holds ∫ ∞

0
dtH(t) = S . (3.137)

The simplest way to get the real splitting operator H(t) is just to insert into
S a delta function which defines the shower time t. The choice taken in [1]
was

t = log

(
Q2

0

|(p̂l + (−1)δl,a+δl,b p̂m+1)2 −m2(fl)|

)
(3.138)

where Q2
0 is taken to be the hardness scale of the initial hard scattering

which starts the parton shower. Remember from section (3.4) that l is the
index of the parton that splits while a and b are the indices of the initial
state partons. There are several other possibilities to introduce the shower
time. Another choice would be to relate the shower time t to the transverse
momentum as it is done in the Catani-Seymour dipole shower20

t = log

(
Q2

k2
⊥

)
(3.139)

withQ as the hardness scale of the scattering. For our purposes the following
definition is used (as it was used in [37] and the results of [37] will be applied

20See for that eq.(13.7) of [37].
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in the next chapter21

t = log

(
Q2

2p̂m+1 · p̂a

)
. (3.140)

For the general case we can introduce a function e(p̂) which depends on the
kinematical momenta of the splitted partons and which defines the shower
time. So we define for the real splitting operator

({p̂, f̂ , ĉ′, ŝ, ĉ}m+1|H(t)|({p, f, c′, s, c}m) =
∑

l∈{a,b,...,m}
{p̂, f̂ , ĉ′, ŝ, ĉ}m+1|Sl|({p, f, c′, s, c}m))

×δ(t− e(p̂))

(3.141)

With eq.(3.44) it is possible to derive the non splitting operator V(t).
With eq.(3.36) together with eq.(3.135), eq.(3.136), eq.(3.44) and eq.(3.137)
we have now the evolution equation; it was used in [37].
We note that further simplifications are possible. In [45] the evolution was
averaged over spins as it is common in Monte Carlo event generators (while
soft gluon interference effects remained in [45] in contrast to Monte Carlo
event generators). Further the leading color limit was taken.

It is maybe interesting to note that the splitting operator H(t) has the
following structure

(
1
∣∣H(t)

∣∣{p, f, s′, c′, s, c}m
)

= 2
〈
{s′}m

∣∣{s}m
〉 〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
.

(3.142)
Thus the splitting operatorH(t) is diagonal in spin but not in color. The full
expression for the function h is given in section (12) of [1] and in Appendix22

A of [37]. In Appendix A of [37] h respectiveH(t) has been further simplified.
This result will be used in the next chapter.

21See for that eq.(3.3) of [37].
22Please note that in [37] an error has been corrected.
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Chapter 4

Parton shower formalism and

the energy fraction in Drell

Yan processes

In chapter (3) an analytical formalism for parton showers which takes in-
terference effects into account has been summarized. This formalism was
developed in [1]. In [37] this formalism (together with some simplifications)
was used in order to calculate the distribution of the transverse momentum
k⊥ of the Z0 boson in Drell Yan processes. It turned out that the result was
equivalent to the one given in [46] where the k⊥ distribution was derived by
standard resummation techniques.
Our goal in this chapter is now to do the same for the energy fraction1 in
Drell Yan processes. In [2] this problem was already handled, where resum-
mation techniques were used while in [24] the same was considered for a MC
generator with color coherence. Here it is our goal to derive the distribution
of the energy fraction in Drell Yan with the formalism of [1] together with
simplifications given in [37]. We will show that the result is equivalent to
the one given in [2] and [24] under certain conditions.

4.1 Review from the literature

In a Drell Yan (DY) process we have two incoming partons (which come out
from two incoming hadrons) which form a Z0 boson that then decays into
a lepton-antilepton pair. According to the mass factorization theorem the

1For its definition see eq.(4.32).

53



partonic DY cross section can be written (see for that [47], [48] and [49]) as

τ
dσ

dτ
= Q2 dσ

dQ2
= σ0W

(
τ ;Q2, Q2

0

)
, (4.1)

σ0 stands here for the Born cross section. Qµ is the four momentum of the
lepton pair. The variable τ = Q2/s is the (partonic) energy fraction with s
as the center of mass energy of the two partons before any parton showering
takes place while Q2 stands for the center of mass energy after the parton
shower2. The variable Q2

0 is a kinemetical cut in order to avoid the collinear
divergency. Thus only partons with k2

⊥ ≥ Q2
0 are taken as real emission

while the others are considered as unresolved.
The function W can be derived inside the frame of perturbative QCD. This
was done for the soft limit in [2] and [24]. In [2] resummation techniques were
used for the derivation of W . As it is easier to compare the cross sections
of DY and deep inelastic scattering (DIS) in Mellin space the following
transformation was used

WN (Q2;Q2
0) =

∫ 1

0
dττN−1W

(
τ ;Q2, Q2

0

)
. (4.2)

In [2] it was shown that this function takes the following form in the soft
limit3

lnWN (Q2;Q2
0) = 2

CF

π

∫ 1

0
dζ
ζN−1 − 1

1− ζ

∫ (1−ζ)2Q2

Q2
0

dk2
⊥

k2
⊥
αS

(
k2
⊥
)
. (4.3)

In [24] it was shown that a Monte Carlo event generator which takes into
account color coherence can reproduce the result of eq.(4.3).
The question that arises whether the parton shower formalism of [1] can
reproduce the expression of eq.(4.3). Our goal in this chapter is to handle
this issue. For that we make use of some approximations derived in [37]
(see section (4.1.4)). Please note that the energy fraction τ as a purely
partonic variable cannot be easily measured. The reason why we consider
this variable is that we want to check whether the formalism of [1] can
reproduce the results of [2] and [24]. By this we can check the quality of
this parton shower formalism.

2See for that also section (4.1.2).
3We have decided to write instead of z ζ as later in this chapter another variable z will

be used.
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4.1.1 The differential cross section dσ/dτ and the partonic

statistical state

The entity we are interested in is the differential cross section with respect
to the energy fraction τ . As τ is a purely partonic variable it makes sense
to consider a statistical state |ρpert) which is defined purely on parton level
what means that it is free from PDFs.
The introduction of such a kind of states was already done in [37]. We give
here a summary of the consideration there.
It should be reminded that the statistical state |ρ(t)) contains a factor4

which gives the parton-parton luminosity

fa/A(ηa, µ
2
F )fb/B(ηb, µ

2
F )

4nc(a)nc(b)2ηaηbpA · pB
. (4.4)

The functions fa/A and fb/B are parton distribution functions, nc(a) and
nc(b) denote the number of colors carried by the partons a and b (3 for
quarks and 8 for gluons). Let us introduce an alternative statistical state
vector |ρpert(t)) where this non-pertubative factor is removed

({p, f, s′, c′, s, c}m|ρ(t)) =

fa/A

(
ηa, Q

2e−t
)
fb/B(ηb, Q

2e−t)

4nc(a)nc(b)2ηaηbpA · pB
({p, f, s′, c′, s, c}m|ρpert(t)) .

(4.5)

Thus this density operator ρpert operates only on parton level. For the scale
µF inside the PDFs µ2

F = Q2e−t was presumed. Q2 is here the scale of the
hard scattering. In our case it is the center of mass energy after the parton
shower. For the exact definition of the shower time t see eq.(4.26). We can
write for |ρpert(t))

|ρ(t)) = F(t)|ρpert(t)) , (4.6)

where the operator F(t) is defined as

F(t)|{p, f, s′, c′, s, c}m) =
fa/A

(
ηa, Q

2e−t
)
fb/B(ηb, Q

2e−t)

4nc(a)nc(b)2ηaηbpA · pB
|{p, f, s′, c′, s, c}m) .

(4.7)
Now we want to write down an evolution equation for |ρpert(t)). It should
have the same structure as the evolution equation (3.36) that is for the
hadronic statistical state; thus we write

d

dt
|ρpert(t)) = [Hpert(t)− Vpert(t))]|ρpert(t)) , (4.8)

4See for that eq.(3.8), eq.(3.11) and eq.(3.22).
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where the objectsHpert(t) and Vpert(t) are supposed to be splitting operators
which operate only on parton level which are derived now. If we consider
eq.(4.6) and eq.(3.36) we obtain

[
d

dt
F(t)

]
|ρpert(t)) + F(t)

d

dt
|ρpert(t)) = [H(t)− V(t)]F(t)|ρpert(t)) , (4.9)

which leads us to

d

dt
|ρpert(t)) =F(t)−1[H(t)− V(t)]F(t)|ρpert(t))

−F(t)−1

[
d

dt
F(t)

]
|ρpert(t)) .

(4.10)

Thus we can write for the partonic splitting operators

Hpert(t) = F(t)−1H(t)F(t) ,

Vpert(t) = F(t)−1V(t)F(t) + F(t)−1

[
d

dt
F(t)

]

= V(t) + F(t)−1

[
d

dt
F(t)

]
,

(4.11)

where we used the fact that V(t) and F(t) commute with each other because
V(t) as the virtual splitting operator does not change flavors and momenta.
For the real splitting operator the following relation holds5

({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1|H(t)|{p, f, s′, c′, s, c}m) =

nc(a)nc(b)ηaηb

nc(â)nc(b̂)η̂aη̂b

fâ/A(η̂a, Q
2e−t)fb̂/B(η̂b, Q

2e−t)

fa/A (ηa, Q2e−t) fb/B(ηb, Q2e−t)

× ({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1|Hpert(t)|{p, f, s′, c′, s, c}m) .

(4.12)

Now we are prepared to define dσ/dτ inside the frame of the parton
shower formalism6. For that we note that the total cross section on parton

5The variables η̂a and η̂b stand for the momentum fraction after the splitting in back-
ward evolution. See for that section (4.1.2).

6We note that in the soft limit dσ/dτ is approximately equal to the left side of eq.(4.1)
as then τ is close to 1.
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level for producing a Z0 boson can be written7 as

σ =
(
1|ρpert(t)

)
=

∑

m

1

m!

∫
[d{p, f, s′, c′, s, c}m]

×
(
1|{p, f, s′, c′, s, c}m

)(
{p, f, s′, c′, s, c}m|ρpert(t)

)
=

∑

m

1

m!

∫
[d{p, f, s′, c′, s, c}m]〈{s′}m|{s}m〉〈{c′}m|{c}m〉

×
(
{p, f, s′, c′, s, c}m|ρpert(t)

)
.

(4.13)

Here eq.(3.40) and the completeness relation given in eq.(3.23) has been
used. Thus we define the differential cross section as

dσ

dτ
=

∑

m

1

m!

∫
[d{p, f, s′, c′, s, c}m]〈{s′}m|{s}m〉〈{c′}m|{c}m〉

× δa,ãδb,b̃δ(ηa − η̃a)δ(ηb − η̃b)δ

(
τ − Q2

s

)(
{p, f, s′, c′, s, c}m|ρpert(t)

)
.

(4.14)

We have decided to keep track of the momentum fractions ηa and ηb as we
will compare our result in section (4.4) with PYTHIA which only yields
results on hadron level.
The differential cross section can be also written as8

dσ

dτ
=
(
τ
∣∣ρpert(t)

)

=
(
1|Q(τ, η̃a, η̃b, ã, b̃))|ρpert(t)

)
,

(4.15)

where the measurement9 operator Q is defined as

Q(τ, η̃a, η̃b, ã, b̃)|{p, f, s′, c′, s, c}m
)

=

δa,ãδb,b̃δ(ηa − η̃a)δ(ηb − η̃b)δ

(
τ − Q2

s

)∣∣{p, f, s′, c′, s, c}m
)
.

(4.16)

7See for that also eq.(2.4) of [37].
8This corresponds to eq.(4.1)-(4.3) in [37].
9Strictly speaking it is not a measurement function as the variable τ cannot be mea-

sured.
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On hadron level we write the cross section as

dσhadron

dτ
=
∑

a,b

∫ 1

0
dηa

∫ 1

0
dηb

fa/A

(
ηa, Q

2e−t
)
fb/B(ηb, Q

2e−t)

4nc(a)nc(b)2ηaηbpA · pB

×
(
1|Q(τ, η̃a, η̃b, ã, b̃))|ρpert(t)

)
.

(4.17)

The energy fraction τ is in contrast to the transverse momentum an inclusive
variable. As discussed in the beginning of this chapter we consider it in
order to check whether the formalism of [1] can reproduce the results of [2]
and [24]. This is in contrast to the reasoning given in [37] for the transverse
momentum of the Z0 boson. We cannot therefore simply define dσhadron/dτ
by (

1|Q(τ)|ρpert(t)
)
, (4.18)

with a hypothetical Q(τ) given as

Q(τ)
∣∣{p, f, s′, c′, s, c}m

)
= δ

(
τ − Q2

s

)∣∣{p, f, s′, c′, s, c}m
)
. (4.19)

As discussed in the previous section we must consider the cross section in
Mellin space. For the Mellin transform of dσ/dτ we write

σN =

∫ 1

0
dττN−1dσ

dτ
. (4.20)

Further the Mellin transform of Q(τ, η̃a, η̃b, ã, b̃)|{p, f, s′, c′, s, c}m
)

is given
by

Q(N ; η̃a, η̃b, ã, b̃)|{p, f, s′, c′, s, c}m) =
(
Q2

s

)N−1

δa,ãδb,b̃δ(ηa − η̃a)δ(ηb − η̃b)|{p, f, s′, c′, s, c}m) .
(4.21)

We can therefore write

σN = (1|Q(N ; η̃a, η̃b, ã, b̃)|{p, f, s′, c′, s, c}m) . (4.22)

On hadron level we can write this as

(1|Q(N)|ρpert(t)) =
∑

a,b

∫ 1

0
dηa

∫ 1

0
dηb

fa/A

(
ηa, Q

2e−t
)
fb/B(ηb, Q

2e−t)

4nc(a)nc(b)2ηaηbpA · pB

×(1|Q(N ; ηa, ηb, a, b)|ρpert(t)) .

(4.23)

58



Figure 4.1: Schematic diagram for initial state splitting. This figure was
taken from [37].

4.1.2 Kinematics of initial state splitting and definition of

the energy fraction

Now we give a review of the kinematics given in [37] for parton splitting in
Drell Yan processes10. We do this as we will need this in section (4.1.7) for
the derivation of the differential cross section of the energy fraction11.
In [37] the kinematics of the Drell Yan process is given in backward evolution
as12

p̂m+1 =
1− z
z

(1 + y)pa + z
y

1 + y
pb + k⊥ ,

p̂a =
1 + y

z
pa ,

p̂b = pb .

(4.24)

Here we require that z must be in the range 0 < z < 1, and k⊥ is spacelike
and orthogonal both to pa and pb. Backward evolution13 means that the
shower starts with the hard subprocess and the soft emissions in the initial

10A summary of this momentum mapping can be also found in section (3.4).
11For its definition see eq.(4.32).
12See for this also fig.(4.1).
13See for that also section (2.2.1).
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state are generated after the hard process in shower time. It is presumed
that the momenta of the partons are lightlike. With eq.(4.24) we obtain:

y =
2p̂m+1 · p̂a

2pa · pb
. (4.25)

As in [37] we will also use a shower time based on the virtuality

t = log

(
Q2

2p̂m+1 · p̂a

)
. (4.26)

Between y and t we have the following relation

y =
Q2

2pa · pb
e−t . (4.27)

And for the variable z we have

p̂m+1 · pb

p̂a · pb
= 1− z . (4.28)

For the momentum fractions of the partons we may write

η̂a =
1 + y

z
ηa =

1

z

[
ηa +

Q2

ηbs0
e−t

]
,

η̂b = ηb ,

(4.29)

where we have s0 = 2pA · pB and 2pa · pb = ηaηbs0.
Finally we denote the azimuthal angle of k⊥ with respect to the z axis14 as
φ. As all partons are lightlike we may write

0 = p̂2
m+1

= (1− z)y2pa · pb − k2
⊥

= (1− z)Q2e−t − k2
⊥ ,

(4.30)

which leads us to
k2
⊥ = (1− z)Q2e−t . (4.31)

In section (4.1) we have already introduced the energy fraction in Drell
Yan processes

τ =
Q2

s
. (4.32)

14The z axis is considered to be in the direction of the beam.
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We remind here that Q2 is the center of mass energy of the two quarks at the
interaction point (this means after all the soft gluon emission has occurred)
where the Z boson is formed.
In fig.(4.1) we see the illustration of one single splitting:

Q2 = (pa + pb)
2 = 2pa · pb . (4.33)

On the other hand s is defined as the center of mass energy of the two
quarks before any soft gluon emission has occurred. For the case of one
single splitting, illustrated in fig.(4.1), it is given as

s = (p̂a + p̂b)
2 = 2p̂a · p̂b . (4.34)

In section (4.1.4) we must also deal with the rapidity of the emitted gluon.
In general it is given by

r =
1

2
log

(
E + pL

E − pL

)
, (4.35)

with E as the energy of the gluon and pL as its longitudinal momentum. In
the rest frame of the Z0 boson this can be written as

r =
1

2
log

(
(1− z)(1 + y)2

z2y

)
. (4.36)

4.1.3 Strategy

In section (4.1.1) we have defined by eq.(4.15) the differential cross section
for the energy fraction in Mellin space. We can now set up the evolution
equation as

d

dt
(1|Q(N ; ηa, ηb, a, b)|ρpert(t)) =

(1|Q(N ; ηa, ηb, a, b)[Hpert(t)− Vpert(t)]|ρpert(t)) ,
(4.37)

where we used the evolution equation (4.8) for |ρpert(t)). Our goal is now
to approximate this evolution equation in order to get an expression of the
following form

d

dt
(1|Q(N ; ηa, ηb, a, b)|ρpert(t)) ≈ −K(t,N)(1|Q(N ; ηa, ηb, a, b)|ρpert(t)) .

(4.38)
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With such a kind of expression it is possible to write down the solution of
eq.(4.37) as

(1|Q(N ; ηa, ηb, a, b)|ρpert(tf)) ≈

exp

(
−
∫ tf

0
dtK(t,N)

)
(1|Q(N ; ηa, ηb, a, b)|ρpert(0)) .

(4.39)

tf is here the time when the shower stops15. Then we can compare this with
the result for the partonic cross section given in [2] where lnWN (Q2;Q2

0) has
been calculated. In order to get an expression like the one given in eq.(4.39)
we will use two approximations derived in [37] in section (4.1.7). These will
be given in the next section.

4.1.4 Approximations

Here we summarize the equations that will be later used in section (4.1.7).
The operators Vpert

a (t; z, φ, f ′) and Ha(t; z, φ, f
′) will be defined on page 66.

The first one is eq.(8.12) of [37]

(1|Vpert
a (t; z, φ, f ′)|{p, f, s′, c′, s, c}m) ≈

nc(a)f(a+f ′ )/A

(
1 + y
z ηa, Q

2e−t
)

nc(a+ f ′)fa/A (ηa, Q2e−t)

1

1 + y
(1|zHpert

a (t; z, φ, f ′)|{p, f, s′, c′, s, c}m)

− αS(µ2
R)

2π

(
Pa,a+f

′ (z)
f(a+f

′
)/A

(
ηa/z,Q

2e−t
)

zfa/A (ηa, Q2e−t)
− δf ′

,g

[
2Ca

1− z − γa

])

× (1|{p, f, s′, c′, s, c}m) ,

(4.40)

with Ca given as

Ca =

{
CF , a 6= g
CA , a = g

. (4.41)

For the derivation of eq.(8.12) in [37] eq.(8.5) and eq.(4.15)16 of [37] has been
used where η̂a ≈ ηa/z was taken. Instead of this it appears to us better to

15In section (4.4.1) we will call it also tc for reasons that will become clear there.
16which corresponds to eq.(4.12).
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retain η̂a =
1 + y
z ηa and thus we obtain using eq.(4.12)

(1|Ha(t; z, φ, f
′)|{p, f, s′, c′, s, c}m) =

1

1 + y

nc(a)f(a+f
′
)/A

(
1 + y
z ηa, Q

2e−t
)

nc(a+ f ′)fa/A (ηa, Q2e−t)

× (1|zHpert
a (t; z, φ, f ′)|{p, f, s′, c′, s, c}m) .

(4.42)

That is the reason why we have in eq.(4.63) the additional factor 1
1 + y in

front of (1|zHpert
a (t; z, φ, f ′)|{p, f, s′, c′, s, c}m).

The second one is eq.(7.13) of [37]:

(1|zHpert
a (t; z, φ, f ′)|{p, f, s′, c′, s, c}m) ≈

δf ′
,g

αS(µ2
R)

2π
Ca

2

1− z + y
(1|{p, f, s′, c′, s, c}m) .

(4.43)

For the derivation of eq.(7.13) of [37] it was presumed that the following
relation holds

e2r ≫ e2rk . (4.44)

Here r stands for the rapdity of the emitted gluon while rk stands for the
rapidity of the previously emitted gluon in the rest frame of the Z0 boson.
The consideration of [37] was conducted however in b space17. As we work
here in Mellin space we must check whether this approximation is also valid
in our case. We rewrite eq.(4.36) as

r =
1

2
log

[
et

k2
⊥
Q2

(1 + y)2

z2y

]
. (4.45)

As we will discuss in section (4.1.6) y must be in the soft limit close to zero.
Further z must be close to 1 so we have for the rapiditiy of the emitted
gluon

r ≈ 1

2
log

[
e2tk

2
⊥
Q2

2pa · pb

Q2

]
, (4.46)

where eq. (4.27) has been used. We can therefore write

r ≈ t+
1

2
log

(
k2
⊥
Q2

)
+

1

2
log

(
2pa · pb

Q2

)
. (4.47)

17
b is the Fourier transform of k⊥.
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By the same reasoning we have for the previously emitted gluon

rk ≈ tk +
1

2
log

(
k2
⊥,k

Q2

)
+

1

2
log

(
2pa · pb

Q2

)
. (4.48)

Because of eq.(4.27) we conclude that emissions with large t are favored.
This implies that we can presume for soft emissions

e2t ≫ e2tk . (4.49)

And this implies that also for our case eq.(4.44) holds. Thus we can also
apply eq.(4.43).

4.1.5 Final state splitting

In section (4.1.2) we have introduced momentum mapping for initial state
splitting. Now we are forced to consider also final state splitting. Though
in Drell Yan the outgoing leptons do not participate in the parton shower it
is still possible that outgoing gluons from the incoming quarks can undergo
further branching. Thus we can still have final state splitting. In [1] a
mapping was chosen where the momenta of the final state splitting were
taken to remain unchanged: p̂a = pa, p̂b = pb.
In order to preserve both momentum conservation and keeping all partons
on shell it was chosen to change all the momenta of the final state spectator
partons by a Lorentz transformation

p̂µ
j = Λµ

νp
ν
j , j 6= {l,m+ 1} . (4.50)

As the momenta of the initial state remain unchanged we conclude that final
state splitting has no effect on the energy fraction at all. Thus we can for
our purposes completely ignore final state splitting.

4.1.6 Initial state splitting

A little more complicated is the case for initial state splitting. For that we
must first of all consider the effect of initial state splitting on Q2 and s and

by that on the energy fraction τ =
Q2

s
.

The center of mass energy after soft gluon emission: Q2

Here we want to obtain the relation between Q2 and Q̂2. Q2 is defined as
the center of mass energy at the interaction point this means where the Z0
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boson is formed:
Q2 = 2pa · pb . (4.51)

If we look at fig.(4.1) we see that the parton momenta at the interaction
point are not changed by parton splitting due to backward evolution. Thus
we have

Q̂2 = 2pa · pb = Q2 . (4.52)

The center of mass energy before soft gluon emission: s

With s being the center of mass energy of the two incoming partons before
any splitting, we have at the beginning of the parton evolution

s = 2pa · pb . (4.53)

This means that we have for the energy fraction at the beginning of the
evolution

τ =
Q2

s
= 1 . (4.54)

After the splitting we have

ŝ = 2p̂a · p̂b . (4.55)

This is according to eq.(4.24)

ŝ = 2
1 + y

z
pa · pb

=
1 + y

z
s .

(4.56)

With that we obtain for the energy fraction

τ̂ =
z

1 + y
τ . (4.57)

In the high N limit which corresponds to soft gluon emission both τ and τ̂
are close18 to 1. Thus y must be close to 0 and z close to 1.

18See for that eq.(4.2).
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The evolution equation

Now we want to consider the evolution equation for the energy fraction
distribution. For that let us return to equation (4.37). The operators Q
and Vpert commute with each other. The reason for this lies in the fact that
the non-splitting operator Vpert does not change the momenta and flavors
of a partonic basis state |{p, f, s′, c′, s, c}m). Further it does not add a new
parton. We can therefore write

d

dt
(1|Q(N ; ηa, ηb, a, b)|ρpert(t)) =(1|Q(N ; ηa, ηb, a, b)Hpert(t)

− Vpert(t)Q(N ; ηa, ηb, a, b)|ρpert(t)) .

(4.58)

In order to proceed further we take the decompostion ofHpert(t) and Vpert(t)
given in eq.(6.2) and eq.(6.3) of [37]

Hpert(t) = HFS(t) +

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f
′

Hpert
a (t; z, φ, f ′)

+

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f
′

Hpert
b (t; z, φ, f ′) ,

Vpert(t) = VFS(t) +

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f
′

Vpert
a (t; z, φ, f ′)

+

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f
′

Vpert
b (t; z, φ, f ′) .

(4.59)

The entities HFS and VFS stand for final state splitting. As we are dealing
with initial splitting they both commute with Q and yield therefore no
contribution to the evolution. f ′ stands for the flavor of the emitted parton.
For the commutator relation between Q(N ; ηa, ηb, a, b) and Hpert

a (t; z, φ, f ′)
we must consider eq.(4.21) and eq.(4.29). The operator Q before splitting

yields a factor

(
Q2

s

)N−1

while after splitting a factor

(
Q̂2

ŝ2

)N−1

.
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Thus we may write19

Q(N ; ηa, ηb, ηb, a, b)Hpert
a (t; z, φ, f ′) =

z

1 + y

(
s

ŝ

)N−1

Hpert
a (t; z, φ, f ′)Q

(
N ;

z

1 + y
ηa, ηb, a− f ′, b

)
=

(
z

1 + y

)N

Hpert
a (t; z, φ, f ′)Q

(
N ;

z

1 + y
ηa, ηb, a− f ′, b

)
.

(4.60)

The additional factor
z

1 + y
comes from a delta distribution given in eq.(4.21).

Regarding the expression a−f ′ we note that it stands for the flavor of parton
a before the splitting a = a− f ′. For the flavor mapping we write u− g = u
or g− ū = u etc.

Thus we can write the evolution equation as

d

dt
(1|Q(N ; ηa, ηb, a, b)|ρper(t)) =

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f ′

(1|Ka(t; z, φ, f
′;N ; ηa, ηb, a, b)|ρpert(t))

+

∫ 1

0
dz

∫ π

−π

dφ

2π

∑

f
′

(1|Kb(t; z, φ, f
′;N ; ηaηb, a, b)|ρpert(t)) .

(4.61)

The operator Ka is here given by

(1|Ka(t; z, φ, f
′;N ; ηa, ηb, a, b)|ρpert(t)) =

(
1

∣∣∣∣
[
Hpert

a (t; z, φ, f ′)

(
z

1 + y

)N

Q(N ;
z

1 + y
ηa, ηb, a− f ′, b)

− Vpert
a (t; z, φ, f ′)Q(N ; ηa, ηb, a, b)

]∣∣∣∣ρpert(t)

)
.

(4.62)

The expression for Kb is corresponding to that of Ka.

4.1.7 Evolution up to the shower final time tf

In this section we are interested in the evolution of the energy fraction
distribution up to a shower final time tf. What will be the proper value of
tf will be discussed in section (4.4.1) and (4.4.2). It is our goal to achieve a

19We remind here that Q2 = Q̂2 holds.
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factorization as it is written in eq.(4.38) and eq.(4.39). First of all we focus
on the second term in Ka (see for that eq.(4.62)). Using eq.(4.40)20 leads to
(
1|Vpert

a (t; z, φ, f ′)Q(N ; ηa, ηb, a, b)|ρpert(t)
)
≈

∑

m

1

m!

∫
[d{p, f, s′, c′, s, c}m]

{
nc(a)f(a+f

′
)/A

(
1 + y
z ηa, Q

2e−t
)

nc(a+ f ′)fa/A (ηa, Q2e−t)

1

1 + y

(
1|zHpert

a (t; z, φ, f ′)|{p, f, s′, c′, s, c}m
)

− αS(µ2
R)

2π

(
Pa,a+f ′ (z)

f(a+f
′
)/A

(
ηa/z,Q

2e−t
)

zfa/A (ηa, Q2e−t)
− δf ′ ,g

[
2Ca

1− z − γa

])

× (1|{p, f, s′, c′, s, c}m)

}
(
{p, f, s′, c′, s, c}m|Q(N ; ηa, ηb, a, b)|ρpert(t)

)
.

(4.63)

Here we made use of the completeness relation given by eq.(3.23).
By using the completeness relation again eq.(4.63) can be rewritten as

(
1|Vpert

a (t; z, φ, f ′)Q(N ; ηa, ηb, a, b)|ρpert(t)
)
≈

1

1 + y

nc(a)f(a+f
′
)/A

(
1 + y
z ηa, Q

2e−t
)

nc(a+ f ′)fa/A (ηa, Q2e−t)

×
(
1|zHpert

a (t; z, φ, f ′)Q(N ; η̃a, η̃b, ã, b̃)|ρpert(t)
)

− αS(µ2
R)

2π

(
Pa,a+f

′ (z)
f(a+f ′ )/A

(
ηa/z,Q

2e−t
)

zfa/A (ηa, Q2e−t)
− δf ′

,g

[
2Ca

1− z − γa

])

× (1|Q(N ; ηa, ηb, a, b)|ρpert(t)) .

(4.64)

We remind that in [2] and [24] the case of soft gluon emission was considered.
Thus it seems important to us to consider the case of soft gluon emission
for the evolution of the energy fraction as well. According to eq.(4.28) the
following relation holds

p̂m+1 · pb

p̂a · pb
= 1− z . (4.65)

The situation where p̂m+1 becomes small compared to p̂a therefore corre-
sponds to

(1− z)≪ 1 . (4.66)

20which corresponds to eq.(8.12) of [37]

68



Then we have according to eq.(4.43)21

(1|zHpert
a (t; z, φ; f

′

)|{p, f, s′, c′, s, c}m) ≈

δf ′
,g

αS(µ2
R)

2π
Ca

2

1− z + y
(1|{p, f, s′, c′, s, c}m)

(4.67)

As we deal only with gluon emission (which is further only soft) we obtain
the following approximation for Ka

(1|Ka(t; z, φ, f
′;N ; η̃a, η̃b, ã, b̃)|ρpert(t)) ≈{

δf ′
,g

αS(µ2
R)

2π
Ca

2

1− z + y

×


 zN−1

(1 + y)N
− 1

1 + y

nc(a)f(a+f
′
)/A

(
1 + y
z ηa, Q

2e−t
)

nc(a+ f ′)fa/A (ηa, Q2e−t)




+
αS(µ2

R)

2π

(
Pa,a+f

′ (z)
f(a+f

′
)/A

(
ηa/z,Q

2e−t
)

zfa/A (ηa, Q2e−t)
− δf ′

,g

[
2Ca

1− z − γa

])}

× (1|Q(N ; ηa, ηb, a, b)|ρpert(t)) .

(4.68)

So we have the desired factorization formulation22. Let us take now a look
at eq.(4.61). The integration over φ is simple as we have no φ dependent
term; so this yields only a trivial factor.
According to eq.(4.61), eq.(4.38) and eq.(4.39) we must perform for Ka an
integration over the shower time t and an integration over the variable z.
Let us substitute t by k2

⊥. Then we define the following entity

S :=

∫ 1

0
dz

∫ (1−z)Q2

(1−z)Q2e−tf

dk2
⊥

k2
⊥
Ca
αS(µ2

R)

2π

2

1− z + y

×


 zN−1

(1 + y)N
− 1

1 + y

nc(a)f(a+f
′
)/A

(
1 + y
z ηa, Q

2e−t
)

nc(a+ f ′)fa/A (ηa, Q2e−t)


 .

(4.69)

S stands here for the first term in Ka integrated over φ, z and t.
We can perform a further approximation. According to section (4.1.6) y

21which corresponds to eq.(7.13) of [37]
22See for that eq.(4.62) and eq.(4.61).
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must be close to 0 while z must be close to 1. Further gluon emission does
not change the flavor of a quark. Thus we can set

1

1 + y

nc(a)f(a+f
′
)/A

(
1 + y
z ηa, Q

2e−t
)

nc(a+ f ′)fa/A(ηa, Q2e−t
) ≈ 1 . (4.70)

We must be however careful as fa/A is in some areas of ηa a steeply falling
function. By using a Taylor expansion around ηa for fa/A we can write

fa/A

(
1 + y

z
ηa, Q

2e−t

)
≈ fa/A

(
ηa, Q

2e−t
)

+

(
1 + y

z
− 1

)
ηa

∂fa/A

(
ηa, Q

2e−t
)

∂ηa
.

(4.71)

Thus eq.(4.70) holds for

(
1 + y

z
− 1

)
ηa

∂fa/A

(
ηa, Q

2e−t
)

∂ηA
≈ 0 . (4.72)

But as fa/A is in some areas of ηa a steeply falling function this presupposes

that
1 + y

z
is extremely close to 1. Thus the approximation given in eq.(4.70)

must be considered with caution.
So we have

S ≈
∫ 1

0
dz

∫ (1−z)Q2

(1−z)Q2e−tf

dk2
⊥

k2
⊥
Ca
αS

(
µ2

R

)

2π

2

1− z + y

×
(

zN−1

(1 + y)N
− 1

)
.

(4.73)

For the second term in Ka we consider now the following expression

B :=
∑

f
′

∫ tf

0
dt

∫ 1

0
dz
αS(µ2

R)

2π

×
(
Pa,a+f

′ (z)
f(a+f ′ )/A

(
ηa/z,Q

2e−t
)

zfa/A (ηa, Q2e−t)
− δf ′

,g

[
2Ca

1− z − γa

])
.

(4.74)
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We can make now use of the DGLAP equations in order to solve this integral.
They are given by23

d

dt
fa/A

(
ηa, Q

2e−t
)

= −
∫ 1

0
dz
∑

f ′

αS(µ2
R)

2π

×
{

1

z
Pa,a+f ′ (z)f(a+f ′ )/A

(
ηa/z,Q

2e−t
)
− δf ′,g

[
2Ca

1− z − γa

]
fa/A

(
ηa, Q

2e−t
)}

+O(α2
S) .

(4.75)

So this leads to

B =
∑

f ′

∫ tf

0
dt

∫ 1

0
dz
αS

(
µ2

R

)

2π

{
1

z
Pa,a+f

′ (z)f(a+f
′
)/A

(
ηa/z,Q

2e−t
)

− δf ′
,g

[
2Ca

1− z − γa

]
fa/A

(
ηa, Q

2e−t
)} 1

fa/A (ηa, Q2e−t)
=

−
∫ tf

0
dt

(
d

dt
fa/A

(
ηa, Q

2e−t
)) 1

fa/A (ηa, Q2e−t)
=

−
∫ tf

0
dt
d

dt
ln(fa/A

(
ηa, Q

2e−t
)
) =

−
{

ln
[
fa/A

(
ηa, Q

2e−tf
)]
− ln

[
fa/A

(
ηa, Q

2
)] }

.

(4.76)

We take this together with the result of eq.(4.73).
This yields24

∫ tf

0
dt

∫ 1

0
dz
∑

f
′

(1|Ka(t; z, f
′

;N ; η̃a, η̃b, ã, b̃)|ρpert(t)) =

(∫ 1

0
dz

∫ (1−z)Q2

(1−z)Q2e−tf

dk2
⊥

k2
⊥
Ca
αS(µ2

R)

2π

2

1− z + y

(
zN−1

(1 + y)N
− 1

)

−
ln
[
fa/A(ηa, Q

2e−tf)
]

ln[fa/A(ηa, Q2)]

)(
1|Q(N ; ηa, ηb, a, b)|ρpert(tf)

)
.

(4.77)

By taking a look at eq.(4.39) and eq.(4.61) we get25

(1|Q(N ; ηa, ηb, a, b)|ρpert(tf)) = (1|Q(N ; ηa, ηb, a, b)|ρpert(0))

×WN, PS
(4.78)

23See for that eq.(8.9) of [37].
24Where the variable φ as integration over it dφ

2π
only yields a trivial one factor.

25Where we used η̃a ≈ ηa which is valid for the soft case.
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with

lnWN, PS =

∫ 1

0
dz

∫ (1−z)Q2

(1−z)Q2e−tf

dk2
⊥

k2
⊥
Ca
αS

(
µ2

R

)

2π

2

1− z + y

×
(

zN−1

(1 + y)N
− 1

)
− ln

[
fa/A(ηa, Q

2e−tf)

fa/A(ηa, Q2)

]
+ b←→ a .

(4.79)

The second term in lnWN, PS contains no dependence on N . Thus we can
neglect it with respect to the first term in the high N limit:

ln

[
fa/A

(
ηa, Q

2e−tf
)

fa/A(ηa, Q2)

]
≈ 0 . (4.80)

We obtain therefore

lnWN, PS = 2

∫ 1

0
dz

∫ (1−z)Q2

(1−z)Q2e−tf

dk2
⊥

k2
⊥
Ca
αS

(
µ2

R

)

2π

2

1− z + y

×
(

zN−1

(1 + y)N
− 1

)
.

(4.81)

The factor 2 comes from quark b.
On hadron level the solution can be written as

(1|Q(N)|ρ(tf)) =
∑

a,b

∫ 1

0
dηa

∫ 1

0
dηb

fa/A

(
ηa, Q

2e−tf
)
fb/B

(
ηb, Q

2e−tf
)

4nc(a)nc(b)2ηaηbpA · pB

×(1|Q(N ; ηa, ηb, a, b)|ρpert(tf)) .

(4.82)

4.2 Comparison with published results

The next step is to compare the result we have derived with that of [2]
and [24]. In [2] resummation techniques have been used in order to obtain
the differential cross section of the energy fraction in Drell Yan processes.
In [24] it was shown that the same result can be obtained inside the frame
of a Monte Carlo event generator with angular ordering. The result is given
by26

lnWN, res = 2
CF

π

∫ 1

0
dζ
ζN−1 − 1

1− ζ

∫ (1−ζ)2Q2

Q2
0

dk2
⊥

k2
⊥
αS(k2

⊥) . (4.83)

26See eq.(2.14) of [2] and eq.(36) of [24]. The variable z of [2] and [24] has been relabeled
into ζ as the z used here is another variable. See for that also eq.(4.91). Please note that
αS(µ2

R) is indirectly dependent on k
2
⊥ via the scale µ2

R.
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Here we have
1− ζ = ωq/E . (4.84)

Here is E is the energy of the two partons in the center of mass frame before
the shower takes place

p0
1 = p0

2 = E , (4.85)

and ωq is the energy of the emitted gluon. Now it is our goal to see whether
the same result can be obtained inside the frame of the parton shower for-
malism. In order to understand the relation between the two expressions we
must find a relation between the two splitting variables: z and ζ. The z is
defined by the momentum mapping given in eq.(4.24). We remind that for
z we have

p̂m+1 · pb

p̂a · pb
= 1− z . (4.86)

By application of eq.(4.24) we may write

pb = (E, 0, 0,−E)

p̂m+1 =

(
ωq,k⊥,

1− z
z

(1 + y)E − z y

1 + y
E

)

p̂a =
1 + y

z
(E, 0, 0, E) .

(4.87)

With that we can derive a relation between z and ζ. So we have

p̂m+1 · pb =

{
E2(1− ζ) + E2

[
1− z
z

(1 + y)− z y

1 + y

]}
(4.88)

and

p̂a · pb =
1 + y

z
(E2 + E2) = 2

1 + y

z
E2 . (4.89)

This leads to

p̂m+1 · pb

p̂a · pb
=

(1− ζ) +
1− z
z

(1 + y)− z y

1 + y

2
1 + y

z

!
= 1− z . (4.90)

From this relation follows

2
1 + y

z
(1− z) = 1− ζ +

1− z
z

(1 + y)− z y

1 + y

⇒ 1 + y

z
(1− z) = 1− ζ − z y

1 + y

⇒ ζ = 1− 1 + y

z
(1− z)− z y

1 + y
.

(4.91)
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The last line is the exact relation between ζ and z. Obviously both entities
are not identical.
We derive now an expression for ζ in the semi-inclusive limit. Here z is close
to 1 (see for that section (4.1.6)) so that we can write

z = 1− α , (4.92)

where α must be treated as a small number. As we mentioned in section
(4.1.6) also y must be small compared to 1 for soft gluon emission. So we
can make the following approximation

ζ ≈ 1− (1 + y)(1 + α)α− (1− α)y(1− y)
≈ 1− (1 + α+ y)α− y(1− y)
≈ 1− α− y = z − y .

(4.93)

Now we focus on the expression

ζN−1 − 1

1− ζ , (4.94)

which we find in eq.(4.83). We have

1− ζ ≈ 1− z + y . (4.95)

So the denominator is the same as the corresponding expression 1 − z + y
we find in eq.(4.81). Then let us investigate the numerator. We have (for a
sufficiently small y so that terms which are of order N2y2 or smaller can be
neglected)

zN−1

(1 + y)N
≈ (z(1− y))N−1 = ((1− α)(1− y))N−1 (4.96)

so

((1− α)(1− y))N−1 ≈ (1− y − α)N−1 = (z − y)N−1

= ζN−1 .
(4.97)

As we deal with incoming quarks which emit soft gluons we have according
to eq.(4.41) Ca = CF .
Up to now we have no fixed value for tf. We27 can identify the lower inte-
gration boundary (1− z)Q2e−tf in eq.(4.81) with Q2

0 in eq.(4.83).

27The proper value of tf will be later discussed in section (4.4.1) and (4.4.2).
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A bit more tricky is the case of the upper integration boundary. We must
compare the expression

(1− z + y)2Q2 (4.98)

with
(1− z)Q2 . (4.99)

Obviously the two expressions are not identical. In order to proceed further
we note that the following manipulation is possible

∫ (1−ζ)2Q2

Q2
0

dk2
⊥

k2
⊥
αS(k2

⊥) =

∫ Q2

Q2
0

dk2
⊥

k2
⊥
αS

(
k2
⊥
)
θ
(
k2
⊥ ≤ (1− ζ)2Q2

)
. (4.100)

Now we can switch the θ function to the ζ integration inside lnWN, res. The
result is

lnWN, res =2
CF

π

∫ Q2

Q2
0

dk2
⊥

k2
⊥
αS

(
k2
⊥
)

×
∫ 1−
√

k
2
⊥

/Q2

0
dζ
ζN−1 − 1

1− ζ .

(4.101)

According to the same reasoning we may write

lnWN, PS =2
CF

π

∫ Q2

Q2
0

dk2
⊥

k2
⊥
αS

(
k2
⊥
)

×
∫ 1−k

2
⊥

/Q2

0
dz

1

1− z + y

(
zN−1

(1 + y)N
− 1

)
.

(4.102)

We see that for the k2
⊥ integration the boundaries of the two expressions are

now identical. (However for the z and the ζ integration the upper boundary
is not identical anymore). As y is small we must compare the two relations28

z ≤ 1−
√

k2
⊥/Q

2 + y ≈ 1−
√

k2
⊥/Q

2 (4.103)

with
z ≤ 1− k2

⊥/Q
2 . (4.104)

Later in section (4.4.2) we will see that (in the large N limit) for lnWN

those z′s that fullfill eq.(4.143)

z ≥ 1− e−γE/N (4.105)

28because of z ≈ ζ + y. See for that eq.(4.93).
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can be neglected. When k2
⊥ is sufficiently small we have

1− k2
⊥/Q

2 ≥ 1− e−γE/N

and

1−
√

k2
⊥/Q

2 ≥ 1− e−γE/N .

(4.106)

Now in the k2
⊥ integration the small k2

⊥ is strongly favored because of the

factor k−2
⊥ . So the two results are approximately equal if

√
Q2

0
Q2 ≤ e−γE/N .

We can compute the difference between lnWN, res and lnWN, PS. Let
us first of all focus on the case where αS is constant. We take further the
approximation that y is small compared to 1− z and can be treated inside
zN−1

(1 + y)N as zero. This is justified for the high t limit (see for that eq.(4.27)).

In that case we may write

lnWN, PS = 2
αS

π
CF

∫ 1

0
dz ln

[
(1− z)Q2

Q2
0

]
zN−1 − 1

1− z (4.107)

and

lnWN, res = 2
αS

π
CF

∫ 1

0
dζ
ζN−1 − 1

1− ζ ln

[
(1− ζ)2Q2

Q2
0

]
. (4.108)

As ζ has now just the role of an integral parameter we can relabel it into z.
Thus we can write for the difference

lnWN, res − lnWN, PS = 2
αS

π
CF

∫ 1

0
dz
zN−1 − 1

1− z ln(1− z) . (4.109)

What does this result29 actually mean? It is written in terms of ln(1 − z).
This implies that our parton shower algorithm (which uses virtual order-
ing) does not resum completely terms of ln(1− z) as standard resummation
techniques. According to [24] a Monte Carlo algorithm that uses angular or-
dering can also reproduce lnWN, res given in eq.(4.83). The difference comes
from different upper boundaries for the k2

⊥ integration (which corresponds
to t = 0). They are the result of two different ordering variables: in our for-
malism virtuality is taken as an ordering variable; in [24] effectively angular
ordering is used. As the upper boundary of the integration is (1−z)2Q2 this
corresponds effectively to transverse momentum ordering. Now the ordering

29This integral can be analytically calculated. The result can be found in the appendix.

76



variable is not just for the parton shower relevant but also for the pdf. The
usual MS scheme actually presupposes a k2

⊥ ordering. Absorbing the pole
into the pdfs means at one loop to make a cut on the transverse momentum.
This implies that any parton splitting with k2

⊥ < µ2
0 is30 integrated into the

pdf while splittings with higher transverse momentum are part of the parton
shower. Thus it is appropriate to use a k2

⊥ ordered shower together with
MS pdfs.
How is now the situation in a virtuality ordered shower? For that we recall
that the scale µ2

F inside the pdfs31 is given by Q2e−t. Thus we have inside
the pdfs as a32 scale k2

⊥/(1− z) and not k2
⊥. This kind of mismatch inside

the pdfs must be taken into account. A possibility are new pdfs which are
based on a virtuality ordered renormalization scheme. A new renormaliza-
tion scheme actually means that the finite part (inside the contribution to
the structure function F2) is distributed between the pdfs and the shower
in a different way33.

4.3 Integration

The next step is to compare the previous analytical result for the Drell
Yan process with results from a Monte Carlo event generator. This will be
done in section (4.4). For that we need explicit numerical expressions from
the analytical result given in eq.(4.83). Thus we perform the integration
explicitly. For that we will make use of MATHEMATICA34. Further we
relabel ζ to z and write instead of lnWN, res just lnWN . Now we describe
our strategy to deal with lnWN for the general case when αS is not constant.
Then only a numerical integration is possible. For the z integration inside
lnWN we must deal with the following expression35

∫ 1−
√

k
2
⊥

/Q2

0
dz
zN−1 − 1

1− z . (4.110)

This integration can be performed analytically. The result is given by

∫ 1−
√

k
2
⊥

/Q2

0
dz
zN−1 − 1

1− z = Bε(N, 0) +
1

2
ln
[
k2
⊥/Q

2
]

(4.111)

30where µ2
0 is the factorization scale.

31which is related to the virtuality y by y =
µ2

F

2pa·pb
32See for that eq.(4.31).
33See for that section (4.3.2) in [3].
34For a description see [50].
35See for that eq.(4.101).
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with

ε = 1−

√
k2
⊥
Q2

. (4.112)

Bε(N, 0) is here the Betafunction. With that we can write now

lnWN = 2CF

∫ Q2

Q2
0

dk2
⊥

k2
⊥

(
Bε(N, 0) + ln

[√
k2
⊥/Q

2

])
αS

(
k2
⊥
)

π
. (4.113)

For this expression a numerical integration can be performed. Examples
for this can be seen in fig.(A.3) and fig.(A.4) which can be found in the
appendix. In the appendix we will see that for the case that αS is constant
it is possible to perform for lnWN an analytical integration. However it will
be shown that this result is numerically unstable. Thus even for constant
αS it is meaningful to use eq.(4.113).

4.4 Comparison of the analytical result with a Monte

Carlo event generator

In the previous sections we derived an expression for the energy fraction
distribution τ in Drell Yan processes36. We applied the analytical formal-
ism that had been developed in [1] together with simplifications of it given
in [37]. We showed that this result (see eq.(4.78) and (4.81)) is equivalent
under special conditions to another result that was derived with resum-
mation techniques in [2] in the soft limit. However in general we have a
disagreement with respect to an integration boundary due to the usage of
different ordering variables. In [24] it was shown that this result (the one
given by eq.(4.83)) should be reproduced in a Monte Carlo event generator
that uses angular ordering37.
In this section it is our goal to confirm this result. At first we must fix
the value38 of the final shower time tf which will be done in the following
section. Then we will compare the analytical result with a simulation from
PYTHIA.

36For its definition see eq.(4.32).
37For leading soft and collinear logarithms only the angular ordered region of phase

space plays a significant role. Outside of this region we have destructive interference.
This is called color coherence. See for that section (3) of [24]. HERWIG has angular
ordering by construction while PYTHIA is supposed to have it effectively.

38See for that section (4.1.7).
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4.4.1 Consideration for the shower time tf

For the derivation of the shower time tf we consider now the evolution of the
energy fraction on hadron level. Strictly speaking there is not one ”right”
value for tf. However we would like to reflect what is the most natural choice.
The evolution equation for that is written as

d

dt
(1|Q(N)|ρ(t)) = (1|Q(N)[H(t)− V(t)]|ρ(t)) . (4.114)

This is in correspondence to eq.(10.1) of [37] where in the hadronic dif-
ferential cross section (1|Q(b, Y )|ρ(t)) for the transverse momentum the
evolution stops above some critcal time tc. Please note that this is the
evolution equation for the hadronic cross section (1|Q(N)|ρ(t)) and not
(1|Q(N ; ηa, ηb, a, b|ρ(t)) for the differential cross section of the energy frac-
tion on parton level. We are interested in the question whether evolution
for the energy fraction stops for the high t case in a similar way as for the
transverse momentum39.
For that we rewrite the splitting operators as

H(t) =

∫ 1

0
dzH(t, z)

V(t) =

∫ 1

0
dzV(t, z) .

(4.115)

Then we can rewrite eq.(4.114) as40

d

dt
(1|Q(N)|ρ(t)) =

∫ 1

0
dz(1|Q(N)[H(t, z)− V(t, z)]|ρ(t))

= (1|Q(N)H(t, z)− V(t, z)Q(N)|ρ(t)) .
(4.116)

Now we focus on the term Q(N)H(t, z). The following relation holds

Q(N)H(t, z)|ρ(t)) =

(
Q̂2

ŝ

)N−1( s

Q2

)N−1

H(t, z)Q(N)|ρ(t)) . (4.117)

We have (see for that fig.(4.1) and eq.(4.24))

Q2 = Q̂2 (4.118)

39See for that section (9) and (10) of [37].
40As the measurement operator Q and the non splitting operator V commute with each

other.
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and

ŝ = 2p̂a · p̂b

s = 2pa · pb .
(4.119)

Thus we get

Q(N)H(t, z) =

(
pa · pb

p̂a · p̂b

)N−1

H(t, z)Q(N)

⇒ Q(N)H(t, z) =

(
z

1 + y

)N−1

H(t, z)Q(N) .

(4.120)

In the high t case we can use (see for that also eq.(4.27))

y =
Q2

2pa · pb
e−t ≈ 0 . (4.121)

Thus the commutator only vanishes (and hadronic evolution stops,
see eq.(4.116) and eq.(3.42)) if eq.(4.121) and

(z)N−1 ≈ 1 (4.122)

holds.
Now we must look at the variable y. From eq.(4.120) it follows that the
evolution stops when the following condition holds

Ny ≈ 0

⇒ N
Q2

2pa · pb
e−t ≈ 0 .

(4.123)

This is the case when we have

t≫ ln

(
Q2

2pa · pb
N

)
. (4.124)

So we can define a critical time as41

tc = ln

(
λN

Q2

2pa · pb

)
. (4.125)

Here is λ a factor which is similar to e2γE/4 in [37]. The choice of the
proper value of this will be considered in the next section. This critical time

41Only above this value it is possible for evolution to stop.
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is supposed to be identical to the final shower time tf. A further point that
must be considered is the scale µ2

F the parton density functions fa/A(ηa, µ
2
F )

and fb/B(ηb, µ
2
F ) depend on. We can set42:

µ2
F = Q2e−t . (4.126)

Thus

µ2
F (t = tf) =

2pa · pb

λN
, (4.127)

which leads us to

(1|Q(N)|ρ(tf)) =
∑

a,b

∫ 1

0
dηa

∫ 1

0
dηb

fa/A

(
ηa,

2pa · pb
λN

)
fb/B

(
ηb,

2pa · pb
λN

)

4nc(a)nc(b)2ηaηbpA · pB

×(1|Q(N ; ηa, ηb, a, b)|ρpert(tf)) .

(4.128)

4.4.2 Derivation of the critical time tc

Now we want to consider what would be the proper value for λ. For that
we must go back to eq.(4.122). Practically we want to consider the z re-
gion where the parton shower evolution stops. Thus we want to make an
approximation like

zN−1 − 1 ≈ −θ(z ≤ z0) (4.129)

for large N . Here we must take into account that we have to deal with an
integral of the following form43

C :=

∫ 1

0
dz

αS(µ2
R)

1− z + y

((
z

1 + y

)N−1

− 1

)
. (4.130)

Here αS is indirectly dependent on z via the scale µR. We can simplify this
expression by introducing a new variable

σ :=
z

1 + y
. (4.131)

As we have
dz

dσ
= 1 + y , (4.132)

42See for that eq.(4.7) in [37].
43See for that for example eq.(4.81).
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eq.(4.130) results in

C =

∫ 1
1+y

0
dσ

(1 + y)αS(µ2
R)

1 + y − (1 + y)σ
(σN−1 − 1)

=

∫ 1
1+y

0
dσ
αS(µ2

R)

1− σ (σN−1 − 1) .

(4.133)

For the scale µR there are several possible choices. In [37] the following
choice was taken

µ2
R = λR(1− z + y)Q2e−t (4.134)

with

λR = exp

(
− CA[67− 3π2]− 10nf

3(33− 2nf)

)
. (4.135)

According to [37] we could in principle also take the simpler form

µ2
R = λR(1− z)Q2e−t , (4.136)

though according to [37] the form for µR taken in eq.(4.134) is preferable44.
The question that arises now is how does the expression given in eq.(4.133)
behave in the high N limit? For that we must consider an integral like

∫ 1

0
dσ
f(log(1− σ))

1− σ

{
σN−1 − 1

}
. (4.137)

According to [2] the following relation holds45 for large N

In(N) =

∫ 1

0
dσ
σN−1 − 1

1− σ lnn(1− σ)

=
(−1)n

n+ 1
(γE + lnN)n+1 +O((lnN)n−1) .

(4.138)

This expression can be also written according to eq.(5.2) of [2] as

In(N) = −
∫ 1−N0/N

0

dσ

1− σ lnn(1− σ) +O
(
(lnN)n−1

)
(4.139)

with N0 = e−γE . The upper integration limit means that we can neglect
those σ which fullfill

σ ≥ 1− e−γE/N . (4.140)

44We note that we later make usage of the αS = const. case.
45See eq.(5.1) of [2] which is proven in Appendix A of that paper.
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This means that the evolution stops for those σ. What are the implications
of eq.(4.140) for k2

⊥ and t? For that we rewrite eq.(4.140) with respect to
the ”old” variables z and y:

z

1 + y
≥ 1− e−γE/N . (4.141)

We consider it meaningful to further simplify this relation. From eq.(4.27)
it is clear that we have in the high t limit

y ≈ 0 . (4.142)

Thus we can set
z ≥ 1− e−γE/N . (4.143)

This means that for all z′s which fullfill eq.(4.143) the evolution can stop46.
Now we recall that the following relation holds for k2

⊥

k2
⊥ = Q2(1− z)e−t . (4.144)

By using eq.(4.143) we come to

k2
⊥ ≤

Q2

N
e−γEe−t . (4.145)

We define a new variable

k2
⊥min =

Q2

N
e−γE . (4.146)

The meaning of this variable is the following:
when k2

⊥ takes values above k2
⊥min the evolution will never stop. On the

contrary the evolution can stop for all k2
⊥ values which are below k2

⊥min.
Thus k2

⊥min constitutes a boundary where the nature of parton evolution
changes.
Which implications does that have for the shower time t? For that we must
write t as a function of k2

⊥. Eq.(4.144) yields

t =− log

(
k2
⊥

Q2(1− z)

)
=

log

(
Q2

k2
⊥

)
+ log(1− z) .

(4.147)

46See for that the discussion of the previous section.
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Because of
log(1− z) ≤ 0 (4.148)

we have for the biggest possible value tmax of t

tmax = log

(
Q2

k2
⊥

)
. (4.149)

The application of eq.(4.146) leads us to

tmax ≥ γE + logN . (4.150)

Thus we define a critical time by

tc := γE + logN . (4.151)

Only above this value it is possible for the evolution to stop. As already
discussed we take this value as the final shower time. Thus we can write in
analogy to eq.(12.1) of [37]

(1|Q(N)|ρ(tf)) =
∑

a,b

∫ 1

0
dηa

∫ 1

0
dηb

fa/A

(
ηa,

Q2

N e−γE

)
fb/B

(
ηb,

Q2

N e−γE

)

4nc(a)nc(b)2ηaηbpA · pB

×(1|Q(N ; ηa, ηb, a, b)|ρpert(tf)) .

(4.152)

4.4.3 Analytical integration on hadron level

Now we want to derive the cross section in Mellin space on hadron level.
However it is not possible to perform the integral given in eq.(4.152) ana-
lytically as there is no analytical expression for the parton density functions
(PDFs). Thus we must perform the integral numerically. We recall fur-
ther that the partonic cross section factorizes into a parton shower part and
the Born cross section σ0. The decay widths of the W and Z boson are
small (ΓW = 2.08 GeV and ΓZ = 2.50 GeV) in comparison to their masses.
We take therefore the following expression as the Born cross section of the
Z0 resonance47 at leading order (see for that section (9.4) of [3] especially
eq.(9.32))

σ̂qq̄→Z =
π

3

√
2GFM

2
Z

(
V 2

q +A2
q

)
δ
(
spart −M2

Z

)
. (4.153)

47Strictly speaking we could also consider a situation beyond the Z0 resonance. This
choice is just by default.
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Here is GF the Fermi constant, MZ the mass of the Z0 resonance. spart

is the center of mass energy on parton level that means the center of mass
energy of the two incoming partons that form the Z0 boson.
The advantage of this approximation for the Born cross section is due to
the δ function. By that we must only integrate over one variable (we choose
here ηa) instead of two variables ηa and ηb. Further we have Q2 = M2

Z . Vf

and Af are given by

Vf = T 3
f − 2Qf sin2 θW , Af = T 3

f , (4.154)

θW is here the Weinberg angle, Qf the charge of the particle. For T 3
f we

have +1
2 for f = ν, u, . . . and T 3

f = −1
2 for f = e, d, . . . (see for that page

55 of [3]).
We want to integrate this expression over the PDFs. We obtain

∫ 1

0
dηa

∫ 1

0
dηbqf

(
ηa, µ

2
F

)
q̄f
(
ηb, µ

2
F

)
σ̂qq̄→Z =

π

3

√
2GFM

2
Z

(
V 2

q +A2
q

) ∫ 1

M2
Z

s

dηa

qf
(
ηa, µ

2
F

)
q̄f

(
M2

Z

ηas , µ
2
F

)

sηa
.

(4.155)

With this expression we can obtain the Born cross section. A cross check
shows that this analytical expression is identical within the uncertainty to
the Born cross section obtained by the MC generator PYTHIA.

For the scale µ2
F inside the PDFs we take

M2
Z

N e−γE . We recall that for k2
⊥min

eq.(4.146) holds. Thus we take for Q2
0 also

M2
Z

N e−γE . Thus we use as the
analytical cross section on hadron level in Mellin space

(1|Q(N)|ρ(t)) = 2
π

3

√
2GFM

2
Z

(
V 2

q +A2
q

)

×
∫ 1

M2
Z

s

dηa

qf

(
ηa,

M2
Z

N e−γE

)
q̄f

(
M2

Z

ηas ,
M2

Z

N e−γE

)

sηa
WN

(
M2

Z ;
M2

Z

N
e−γE

)
.

(4.156)

This function is plotted in fig.(4.2).
The next step is to compare the analytical result with the one obtained

from PYTHIA. PYTHIA has effectively angular ordering due to color co-
herence. According to eq.(36) of [24] such a Monte Carlo event generator is
supposed to reproduce the same distribution as the analytical approach in
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Figure 4.2: Hadron level cross section distribution for pp → Z + X at√
s = 104 GeV in Mellin space; the lower boundary Q2
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the soft limit48.
A comparison between PYTHIA and the analytical one can be seen in
fig.(4.3). For the analytical curve we made the condition that both the
µ2

F inside the pdfs and the minimal value of k2
⊥ never go below the value

Q2
0. We do this as in PYTHIA the scale for real emission can also never fall

below Q2
0. We see that there is a huge difference between the two (up to two

orders of magnitude). The next step is to investigate the reason for this dis-
crepancy. For that we make the situation as simple as possible. We choose
to have only one quark flavor (the s quark) and use instead of realistic pdfs
simplified ones in order to fix the source of the problem49. The result of this
can be seen in fig.(4.4). In this plot the analytical result is compared to two
simulations done within PYTHIA: one where we have set MSTP(65) = 0
which means that the emitted soft gluons are entirely neglected while in
the other we have set MSTP(65) = 1 which means that the emission of the

48For simplicity we first of all focus on the αS = const case. For that reason we apply
the virtuality ordered algorithm PYSSPA as the transverse momentum ordered algorithm
PYPTIS does not have the option αS = const.

49This means that the pdf function of the s and s̄ quark is set to 1. The pdfs of the
other flavors are set to zero.
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soft gluons is effectively resummed as a z shift50. As we see there is still a
discrepancy between the analytical result and that of PYTHIA. This plot
gives us however a hint that the reason for the discrepancy lies in the way
the z variable is generated.
This is backed up in fig.(4.5). As we see the reason for the discrepancy lies
in the parameter XEC in PYSSPA which works as an effective cut on 1− z
in order to avoid the divergencies inside the splitting functions. A good
value for XEC seems to be 3 ∗ 10−6 for the z generation while it remained
on default for the Sudakov factor. We note when the lower boundary Q2

0

is changed, PYTHIA and the analytical generation do not agree anymore.
This can be seen in fig.(4.6) where Q2

0 has been set to 5 GeV2. This problem
can be solved by changing the XEC value as we see in fig.(4.7). We conclude
that XEC = 10−8 is in that case the best value. In order to understand this
we take a look at eq.(4.31). From that it follows that a change on the cut
of k2

⊥ implies also a new cut on 1− z. Thus we must also change the value
of XEC. After this has been fixed we can show the final result in fig.(4.8).
In the first plot from above the scale µ2

F inside the PDFs has been fixed to
1 GeV2. We see a good agreement between PYTHIA and the analytical gen-
eration for large N . The same applies to the second plot in fig.(4.8) where
we have fixed the scale µ2

F to M2
Z . What is interesting to note is that we

see in the third plot where the scale inside the PDFs is not fixed anymore
both for the analytical generation and for PYTHIA (that means we have
evolution also for the scale inside the PDF) the two approaches do not agree
anymore. In order to understand this discrepancy we note that for the ana-
lytical generation the value of Q2

0 (the under boundary of the integral inside
WN ) was fixed to 1 GeV2. On the other hand we have in the upper plot of

fig.(4.9) for Q2
0 inside the analaytical integration taken the value e−γE

M2
Z

N .
As we see it agrees now better with the PYTHIA result. In the lower plot of
fig.(4.9) we compare a PYTHIA simulation with fixed µ2

F = 1GeV2 inside
the PDFs with an analytical result where we have µ2

F = 1GeV2 inside the
PDFs and the lower boundary of the integral inside WN is running. This
corresponds to the upper plot of fig.(4.8). We see that the two result do not
agree anymore.
The last step is to consider running coupling. This can be seen in fig.(4.10).
We see that PYTHIA and the analytical generation do not agree anymore.
In order to understand this we switch back to the previous case where we
have only one quark flavor and its PDF is simplified. The result of this can
be seen in fig.(4.11). It seems that XEC = 10−13 is a better value than

50See for that page 321 of [13].

87



3. ∗ 10−6. We conclude that the cutoff XEC plays inside the Monte Carlo
simulation an important role. After adjusting it properly the simulation
agrees nicley with the analytical result.

4.5 Summary

In section (4.1.7) we have derived the distribution of the energy fraction τ
in Drell Yan (its definition is given by eq.(4.32)). The result is given in the
equations (4.78), (4.81) and (4.82). We made use of an analytical formal-
ism for parton showers which takes interference effects into account. This
formalism was developed in [1]. Further we applied simplifications of this
formalism from [37].
In section (4.2) we saw that this result is equivalent (under special con-
ditions) to a result given in [2] where standard resummmation techniques
were applied. However while the integrand is approximately the same the
different choice of the ordering variable leads in the general case to different
integration boundaries. In section (4.3)51 we discussed how to solve the in-
tegral given in eq.(4.81) respective eq.(4.83). This is important as in section
(4.4) the analytical result is compared with one obtained from PYTHIA.
According to [24] the two results are supposed to be equivalent. While it
is possible for constant αS to perform the integration exactly for first order
running αS only a numerical integration is possible. We showed however
that even for αS = const. the numerical integration is suitable due to a
numerical instability in the exact solution.
In section (4.4) we have further considered the differential cross section of
the energy fraction τ in Drell Yan processes52. We compared the analytical
result derived in section (4.1) on hadron level with a result obtained by the
Monte Carlo event generator PYTHIA. At first it turned out that there was
a discrepancy between the two approaches which contradicts a result given
in [24]. According to [24] a Monte Carlo event generator should reproduce
the distribution derived from analytical resummation techniques. This dis-
crepancy however could be traced back to a z cut (the variable XEC) in
PYTHIA. After adjustment the two approaches agree well.

51See further the appendix.
52For a proper definition of this variable see eq.(4.32).
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Figure 4.3: Hadron level cross section distribution for pp→ Z +X at
√
s =

104 GeV in Mellin space; PYTHIA and the analytical result are compared;
Q2

0 (the minimal value of k2
⊥) is varied.
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Figure 4.4: Hadron level cross section distribution for pp→ Z +X at
√
s =

104 GeV in Mellin space; PYTHIA and the analytical result are compared;
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0 (the minimal value of k2
⊥) was set to 1 GeV2. Only a simplified PDF

of the s and s̄ quark was used. For the other flavors the PDFs were set to
zero. XEC was set to default value. The analytical distribution is compared
to two distributions obtained in PYTHIA: MSTP(65) = 0 means that soft
gluon emission is entirely neglected while MSTP(65) = 1 means that it is
effectively resummed as a z shift. The analytical curve is different from the
one given in fig.(4.2) because of the different PDFs.
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Figure 4.6: Comparison of the hadronic cross section in Mellin space between
PYTHIA and the analytical result. Q2

0 (the minimal value of k2
⊥) was set

to 5 GeV2. Only a simplified PDF of the s and s̄ quark was used. For the
other flavors the PDFs were set to zero. XEC was set on default value for
the Sudakov factor while it was set to 3 ∗ 10−6 for the z generation.
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Here we have running coupling. For all quark flavors realistic PDFs have
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Chapter 5

The k++
⊥ jet algorithm

5.1 Introduction

In this chapter we will investigate a modified version of the kT algorithm in
order to identify multi parton interaction (MPI). In this algorithm we have
two parameters: R (already known from the standard kT algorithm) and
ε. We will show that it can detect multi parton interaction in an idealised
case (parton showers and fragmentation switched off) under the condition
that an unusual low R value (R = 0.1) is taken. It will be shown however
that this algorithm is not suitable for detecting multi parton interaction for
a realistic scenario.

Although jets are supposed to give insight into scattering processes we
must be aware that there is no unique correlation between a jet and a single
initial quark or gluon. The reason for this lies in the fact that hadrons carry
no color in contrast to gluons and quarks. Despite this, the goal remains
to reduce the effects of long distance physics and to come to a more or less
precise view of the hard scattering.
First of all we must note that there is a crucial difference between e+e−

scattering and hadron-hadron collision. In the first case we have a purely
electromagnetic initial state. Then we have afterwards a virtual photon
which decays into a quark antiquark pair that evolves via parton radiation
and after that is transformed into hadrons. Thus we can say that all hadrons
emerge from the hard scattering process.
Different is the case in hadron-hadron scattering. Here we have only one
’active parton’ from each hadron that participates in the hard interaction.
Thus only a fraction of the final state hadrons can be considered to be associ-
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ated with the hard scattering while the rest comes from the soft interactions
of the remaining partons. In a first approximation this can be treated as
uncorrelated with the hard interaction.
A further point that must be taken into account is that the natural vari-
ables are different in both cases. In the case of e+e− scattering a natural
choice would be (because of rotational invariance) the energies E and the
polar angles θ, φ. In the case of hadron-hadron scattering we would like to
have boost invariance along the beam axis as the c.m frame of the hard
scattering usually moves in the frame of the hadron-hadron c.m. frame.
Thus we consider as natural variables the transverse momentum pT or the
corresponding ”transverse energy” ET = E sin θ, azimuthal angle φ and
pseudo-rapidity η = − ln(tan(θ/2)).

5.2 A jet algorithm

We present here the kT jet algorithm which was introduced in [19]. We look
at hadron-hadron collisions in the center of mass frame with the z-axis taken
in the beam direction. The final state of the collision is considered to be a
set of protojets i with momenta pi. The momentum of a protojet can be
the momentum of an individual particle or the total momentum of a bunch
of particles that are contained in a small angle around the leading particle.
The masses of the protojets are considered to be small compared to the trans-
verse momentum so that the protojets are more or less lightlike. For each
protojet we have an azimuthal angle φ, a pseudorapidity ηi = − ln(tan(θi/2))
and a transverse energy ET,i = |~pT,i|.
We start with a full list of protojets and an empty list of jets. We demand
that protojets with nearly parallel transverse momentum should be joined.
We have a parameter R which is considered to be a radius and is of order 1.
The steps of the jet algorithm are as follows:

1. For each protojet define:
di = E2

T,i . (5.1)

For each pair of protojets introduce the following definition

dij = min(E2
T,i, E

2
T,j)[(ηi − ηj)

2 + (φi − φj)
2]/R2 . (5.2)

2. Search for the smallest of all the di and dij and call it dmin.
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3. For the case that dmin is a dij , protojets i and j are merged into a new
protojet k with

ET,k = ET,i + ET,j (5.3)

and

ηk = [ET,iηi + ET,jηj ]/ET,k ,

φk = [ET,iφi + ET,jφj ]/ET,k .
(5.4)

4. If dmin is a di, call the corresponding protojet not ”mergable”, remove
it from the list of protojets and add it to the list of jets.

5. Repeat from step 1 until all protojets are assigned to jets.

The whole process continues until there are no more protojets. While ap-
plying the above procedure to all particles we obtain a list of jets with
successively increasing values of di = E2

T,i.
This algorithm attempts to seperate jets based on angle. Protojets that
have nearly parallel momenta should be joined so that they are part of the
same jet. If, however, a protojet i is isolated from other protojets it should
be considered its own jet.
It is interesting to note the relation of the jets obtained from the kT al-
gorithm to partons generated in a parton shower. A parton shower starts
with relatively hard splitting (and this implies large dij) and then goes to
splittings which are softer and softer. The kT algorithm does this in the
reversed order as the di values become larger and larger. A problem with
the application of the algorithm lies in the fact that it is not possible to say
where a specific parton comes from: some partons might come from initial
state splitting while others might come from final splitting. The algorithm
tries to make a distinction between those partons that are the result of final
state splittings and those that come either from initial state or directly from
the hard interaction. We note that this is relevant only in collinear factori-
sation where the hardest pt comes from the matrix element. The procedure
is based on angle so that final state splittings do not create new jets. In
order to make a further distinction between those jets that are the result of
initial state splitting and those jets that are the result of the hard interac-
tion we are introducing a cut on transverse momentum Pcut: jets with high
transverse momentum (this means p2

T ≥ P 2
cut) are considered to emerge from

the hard interaction while jets with low transverse momentum (this means
pT

2 < P 2
cut) are considered to emerge from initial or final state splitting.
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5.3 Application of the jet algorithm without multi-

parton interaction

Now we want to apply this algorithm to the case of proton proton collision
where a Z0 is produced which is set stable. The Z0 boson itself is not
included in the list of protojets. For the simulation PYTHIA (6.4) (see [13])
is used.

We investigate Z0 production at a center of mass energy of 7 TeV. We
require |η| ≤ 3. In fig.(5.1) we show the jet multiplicities for different values
of the minimum pT of the jets. We observe less jets for higher pT cuts.
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Figure 5.1: Number of jets without MPI in pp collisions for the case of the
production of a stable Z at

√
s = 7 GeV. The distributions for the number

of jets are shown for several pT cuts. The distributions themselves were
normalized with respect to the number of events Nevt.

5.4 Influence of multi parton interaction

The next step is to consider the influence of multi parton interaction (MPI)
on jets. We expect that with MPI we see more jets. For that we can compare
the jet multiplicity obtained from a simulation where MPI is switched on
and off. This is shown in fig.(5.2). The number of jets, the average and the
width of the distribution increases significantly when MPI is included. In
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Figure 5.2: Number of jets with and without MPI. The pT cut was set to
5 GeV. The distributions themselves were normalized with respect to the
number of events Nevt.

figure (5.3) the jet multiplicity is compared for different values of the pT cut
for a Monte Carlo (MC) simulation of MPI. By comparing it to fig.(5.1) it
is seen that the MPI contribution becomes much smaller at larger pT while
at lower pT we observe a siginificant increase. The pT spectrum of the jets
with and without MPI is shown in fig.(5.4) and in fig.(5.5).

We see that the MPI contribution at large pT is small while at small pT

it is significant. The reason for this lies in the fact that MPI processes have
by definiton less energy than the main interaction1. This means that we
classify the process with the highest pt as the direct process. Therefore jets
that originate from MPI interactions must themselves be at lower energy.
In fig.(5.6), fig.(5.7) and fig.(5.8) we see the changes on the η distribution.
In the area where |η| is about 7 the jet cross section is very small. Here we
reach the kinematical border.

1see section (2.3)
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Figure 5.3: Number of jets with MPI for several pT cuts in pp collisions.
The distributions for the number of jets are shown for several pT cuts. The
distributions themselves were normalized with respect to the number of
events Nevt.
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Figure 5.4: pT distribution of the jets. The pT cut was set to 2 GeV.
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Figure 5.6: η distribution of the jets with pT > 2 GeV.
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Figure 5.7: η distribution of the jets with pT > 5 GeV.
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Figure 5.8: η distribution of the jets with pT > 15 GeV.
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5.5 The MPI jet algorithm

5.5.1 A new algorithm

In this section we describe a modification of the inclusive kT algorithm of [19]
in order to seperate the MPI contribution from the primary hard interaction.
We start again with a list of protojets. Then we define Rij for every pair of
protojets

R2
ij = (ηi − ηj)

2 + (φi − φj)
2 . (5.5)

Here is ηi the pseudorapidity of protojet i and φi its azimuthal angle while
i and j denote any of the protojets. Further we have a parameter Λ.

After the application of the algorithm we have two types of objects:

• The first type are ”NON-MPI jets”.

• The second type are the ”MPI jets”.

The algorithm works as follows:

1. (a) For each protojet we define

di = p2
i . (5.6)

pi denotes here the transverse momentum of protojet i.

(b) Every pair of protojets has

dij = min{p2
i ,p

2
j}
Rij

R2
. (5.7)

(c) For every pair of protojets that fullfills the condition

(pi + pj)
2 < Λ2 , (5.8)

we calculate
d̃ij = min{p2

i ,p
2
j} . (5.9)

2. We derive the minimal value of d̃ij and call it tmin. We also derive the
minimal value of dij and call it dmin. If tmin < dmin holds then:

(a) Remove the two protojets i and j which correspond to tmin from
the list of protojets and add them to the list of MPI jets.

(b) Go to 1.
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3. We derive the minimal value of di and call it δ. If dmin < δ then

(a) Merge the two protojets i and j which correspond to dmin into a
new protojet k

pk = pi + pj . (5.10)

(b) Go to 1.

4. If δ < dmin then:

(a) Remove the protojet i which corresponds to δ from the list of
protojets and add it to the list of jets.

(b) Go to 1.

Without step 2 this is just the kT algorithm (see section (5.2)) with the
merging condition

pk = pi + pj . (5.11)

In order to seperate MPI from the hard interaction we have introduced a
new measure d̃ij together with the condition

(pi + pj)
2 < Λ2 . (5.12)

If this condition is fullfilled and the smallest of d̃ij is smaller than the
smallest of the dij we have a pair which is balanced in pT and which we
consider as a candidate for an MPI jet pair. The hardness scale for the
scattering is H̃ij = d̃ij and the hardness scale for the final state splitting is
Hij = R2dij . In PYTHIA the MPI scattering happens (with hardness scale
H̃ij) after the hard scattering with hardness scale Hij . For the case that
R is small compared to 1 we seperate the MPI jets too ”early” in reversed
shower time2.

5.6 Application of the algorithm

5.6.1 Validation of the algorithm

For a cross check of the implementation we skip step 2 from our algorithm.
Then our algorithm is supposed to be the same as the kT algorithm. The
result of this can be seen in the upper plots of figure (5.9) where the pT

distribution of the jets is shown at
√
s = 7000 GeV similar to what is shown

in (5.10). As we see there are tiny differences between the two. The reason

2concerning shower time see chapter (3) and section (2.2)
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for this lies in the fact that in the original routine the kinematical relations
are written in a different way. This leads to different rounding errors. After
rewriting the expressions identical results are obtained as can be seen in the
lower plots of the figures (5.9) and (5.10). A check of the number of jets and
the kinematical variables of the jets (like pseudorapidity, transverse momen-
tum) showed that the two kT algorithms are now completely identical.

5.6.2 kT++ algorithm: First attempt to identify MPI jets -

the Λ case

After we have seen that our implementation of the kT algorithm is correct
we switch on step 2 of the jet algorithm. We call this modified kt algorithm
k++
⊥ algorithm. If we have only the hard interaction in the Monte Carlo

event generator (this means no PS and no MPI) we should see no jets since
the Z is not included in the jet finding and we have |ηjet| < 3. In fig. (5.11)
we see the comparison of the pt distribution for the case that the parton
showers are switched off respectively switched on. We see that there are a
few non MPI jets even for PS being off. The reason for this is traced back
to the fact that the primordial k⊥ inside the two protons was still switched
on. This is shown in fig.(5.12). As we see we obtain no jets at all when
primordial k⊥ is switched off.
Now we start investigating the value of Λ (see eq.(5.8)) to seperate MPI
jets from the other jets. We require that without multi parton interaction
no MPI jets should be seen. The result of this can be seen in the plots
(5.13) to (5.15). There we see the pt distribution of the MPI jets both for
the case that multi parton interaction is switched on and off. Though the
distribution has a tail to higher values of pT when multi parton interaction
is switched on we see no clear distinction between the two cases when MPI
is switched on and MPI is switched off. This problem does not depend on
the concrete Λ value. What we see further is that the p⊥ spectrum for the
MPI jets becomes harder when Λ is increased.
Further we note that the shape of the p⊥ distribution does not depend sig-
nificantly on an η cut as shown in fig.(5.15). There are only minor changes3.
The same applies to fig.(5.16) where we show the distribution of the non
MPI jets with and without an η cut. Thus removing the η cut does not
solve the problem.
The reason of this problem can be traced back to the condition given in

3for the small pT area
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eq.(5.8). When the transverse momenta of two protojets are sufficiently
small they are considered as potential candidates for MPI jets no matter
how uncorrelated they are. Thus we must search for a better condition to
identify MPI jets.
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Figure 5.9: Comparison of the kT algorithm with our new algorithm. Here
we deleted step 2 of the new algorithm. The plot above shows the distribu-
tion before the correction while the plot beneath stands for the distribution
after the correction.
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Figure 5.10: Comparison of the kT algorithm with our new algorithm. Here
we deleted step 2 of the new algorithm. The plot above shows the distri-
bution before the correction while the plot beneath shows the distribution
after the correction.
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Figure 5.11: Comparison of the pT distribution of the non MPI jets with
and without PS. We had no pT cut. Fragmentation was switched off.
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Figure 5.12: Comparison of the pT distribution of the non MPI jets with
and without primordial k⊥. We had no pT cut. Fragmentation was switched
off.
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Figure 5.13: pT distribution of the MPI jets. The distributions for several
Λ values are compared. In the left plot multi parton interaction is switched
off while in the right plot multi parton interaction is switched on. The
distribution in each plot has been normalized with respect to the number of
events.
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Figure 5.14: pT distribution of the MPI jets. In these plots we compare the
distribution for several Λ values. The distributions have been normalized
with respect to the number of events.
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Figure 5.15: Comparison of the pT distribution of the MPI jets. In the plot
above we have no η cut while in the plot beneath we have an η cut. The
distributions have been normalized with respect to the number of events.
Please note that the two distributions are distinct for small pT values only.
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Figure 5.16: Comparison of the distribution of the transverse momentum
for the non MPI jets. In the plot above we have no η cut while in the plot
beneath we have an η cut. The distributions have been normalized with
respect to the number of events. Please note that the two distributions are
distinct for small pT values only.
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5.6.3 k++
⊥ algorithm: further condition- ε value

As we have seen the condition given in eq.(5.8) is inappropriate as in the low
pT region all protojet pairs fullfill the condition no matter how uncorrelated
they are. Thus we replace eq.(5.8) by the following condition for d̃ij

|pi + pj |
|pi|+ |pj |

< ε . (5.13)

We investigate the effects of this condition. It seems reasonable that ε should
not exceed 0.1 or 0.2, as otherwise protojet pairs ought not to be considered
as back-to-back. Higher values (like for example 0.3 or 0.4) would mean
that the correlation is too weak so we cannot say that such pairs are back-
to-back.
In fig.(5.17) we see two plots4 for ε = 0.1 and with an η cut less than 3 and
without an η cut which corresponds to fig.(5.16) in the Λ case. We observe
that the distribution of the ”non” MPI jets changes depending whether
MPI is switched on or off. This is not what we expect. In the ideal case the
algorithm would recognize all the additional jets produced by multi parton
interaction as MPI jets and not as non MPI jets. Then no change in the
distribution of non MPI jets would be seen when MPI is switched on. This
is however not the case in fig.(5.17). What we see further in fig.(5.17) is
that removing the η cut does not solve the problem. However removing the
η cut increases the distribution but not its shape. This corresponds to the
situation in fig.(5.16) for the Λ case. In fig.(5.18) we see the pT distributions
for ε = 0.03 and ε = 0.07. We see that the problem cannot be solved by
changing the ε value. This should not surprise us as lower ε values imply
that the condition to identify MPI jets given in eq.(5.13) becomes stricter.
We note that in this ε region there is almost no change in the distribution.
In principle it is possible to obtain the desired distribution by going to higher
ε values. Examples of that can be seen in fig.(5.19). However we consider
those ε values as too high as discussed before.

In order to investigate why the algorithm does not find all MPI jets we
perform a systematic study using the following simplifications:

1. We switch off for initial state radiation further branching.

2. We switch off primordial k⊥.

The result of this can be seen in fig.(5.20) (and fig.(5.21) where parton
showers have been switched off). In both plots we have no η cut. This was

4In the following we have set R = 1 instead of R = 0.5 in the previous section.
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Figure 5.17: Comparison of the pT distribution of the non MPI jets both
for MPI being switched off and on. The distributions have been normalized
with respect to the number of events. We see that the η cut changes the
size of the distribution but not its shape.
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Figure 5.18: Comparison of the pT distribution of the non MPI jets both
for MPI being switched off and on. The distributions have been normalized
with respect to the number of events.
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Figure 5.19: Comparison of the pT distribution of the non MPI jets both
for MPI being switched off and on. The distributions have been normalized
with respect to the number of events.
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done in order to eliminate one possible source of the problem. In the follow-
ing we will renounce an η cut. It is possible that multi parton interaction
radiates along the beam axis. However we want to reconstruct all multi
parton interactions. Thus we skip an η cut5. We see no real improvement
in both figures. This corresponds to the situation in fig.(5.15) and (5.16) for
the Λ case.

In order to understand the reason why the algorithm cannot recognize
all multi parton interactions we focus on one single event. After switching
off parton showers we see in the event record parton pairs which are exactly
back-to-back. This should not surprise us as only MPI is on and there is
nothing that could smear the back-to-back relation. It is possible to obtain
the true number of multi parton interactions6.

Because of the fact that the pairs are exactly back-to-back the ε param-
eter can be set as near as possible to zero (however not exactly equal to
zero). One possible choice would be ε = 0.00000001. The R value remains
unchanged that means R = 1. The algorithm does not detect all MPI jet
pairs. Many are dismissed as non MPI jets. For simplification we only allow
two back-to-back pairs as input for the algorithm. The result is that the
algorithm yields 3 non MPI jets and no MPI jet.
By looking directly into the algorithm we see that the dij are systematically
too low compared to the d̃ij . This leads to the merging of two protojets
where each of them comes from a different pair. Thus protojets are dis-
missed as non MPI jets. An illustration of this misidentification can be seen
in fig.(5.22).

As the problem lies in the dij values which are too low we conclude that
it can be solved by a different scaling which means we must go to lower R
values. By that procedure the dij will become bigger. We switch to lower
R values. The desired result is obtained with R = 0.1.
The next step is to investigate whether this works now for a whole simula-
tion. The result of this can be seen in fig.(5.23). In the ideal case we should
see no non MPI jets no matter whether multi parton interaction is switched
on or off. This is not the case in fig. (5.23). What we see however is that
the agreement between the case of MPI being switched off and MPI being
switched on becomes better and better the lower the R value is taken. The
best value seems to be R = 0.01. However for practical applications the
best value seems to be R = 0.1 because with lower values we resolve single
partons which is in a realistic application inappropriate as we deal here with

5Later in fig.(5.31) we will see that removing the η cut is justified.
6see for that page 275 of [13] (variable MINT(351))
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Figure 5.20: Comparison of the pT distribution of the non MPI jets both
for MPI being switched off and on. In the plot above we have standard
parton showers on. In the plot beneath we have no primordial kt and no
further branching after initial state radiation. The distributions have been
normalized with respect to the number of events.
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Figure 5.21: Comparison of the pT distribution of the non MPI jets both
for MPI being switched off and on. Parton showers were switched off. We
have no primordial kt. The distributions have been normalized with respect
to the number of events. Please note that for the case that MPI is switched
off not the whole distribution vanishes due to the absence of an η cut. This
is in contrast to fig.(5.12) where we have an η cut.
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41

23

5

Figure 5.22: An illustration of the merging of two protojets inside the MPI
jet algorithm. The protojets 2 and 3 are merged to the new protojet 5.
After that we have no back-to-back pair. The three protojets 1, 4 and 5 are
regarded as non MPI jets.

jets consisting of hadrons.
As a next step we want to ensure that the number of reconstructed

multi parton interactions and the true number of multi parton interactions
are similar. The result is given in fig.(5.24) where we compare the true
number of multi parton interactions with the number of reconstructed MPI
jets. These plots correspond to fig.(5.23) where the pt distribution is shown.
As we see the choice R = 0.3 yields a really bad result while already the
choice R = 0.1 yields a rather good aggreement. The best result is given by
R = 0.01. However as discussed above we consider R values less than 0.1 as
too small. We conclude therefore that for our purpose the most appropriate
R value is 0.1.

In case of only one multi parton interaction the distribution of the recon-
structed MPI tends to be too low as can be seen in fig.(5.24)7. The reason
for this is a preclustering of partons in case of small parton-parton mass.

As a next step we focus on a realistic scenario. The result of this can be
seen in fig.(5.25). We see that we have no longer agreement. The reason for
this is that we have in a realistic scenario smearing effects: MPI jets are no
longer exactly back to back.

7This can be seen in the first bin of every plot.
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Figure 5.23: Comparison of the pT distribution of the non MPI jets both for
MPI being switched off and on. The distributions are compared for several
R values. Parton showers were switched off. The distributions have been
normalized with respect to the number of events.
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Figure 5.24: Comparison for several R values. The true distribution for the
number of MPI interactions (”interactions”) versus the number of recon-
structed MPI interactions (”MPI alogorithm”) is plotted. Here we have no
PS and no hadrionization switched on.

124



Numb
0 10 20 30 40 50 60 70 80 90 100

d
N

/d
N

u
m

b

-410

-310

-210

-110

1

10

210

interactions

MPI algorithm

cut
η=0.00000001               R=0.1        all on with frag           no ∈

Numb
0 10 20 30 40 50 60 70 80 90 100

d
N

/d
N

u
m

b

-410

-310

-210

-110

1

10

210

interactions

MPI algorithm

cut
η=0.01               R=0.1        all on with frag           no ∈

Numb
0 10 20 30 40 50 60 70 80 90 100

d
N

/d
N

u
m

b

-410

-310

-210

-110

1

10

210

interactions

MPI algorithm

cut
η=0.00000001               R=0.1        all off           no ∈

Figure 5.25: Comparison of the number of MPI interactions (”interactions”)
versus the number of reconstructed MPI interactions (”MPI alogorithm”).
In the lowest plot everything is switched off (with the exception of MPI
itself) while in the two upper plots everything is switched on.
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Thus we must switch to higher ε values. However it is a priori not clear
which value is the proper one. We must therefore tune the value.

The result can be seen in fig.(5.26). We see that while ε = 0.043 yields
a rather good agreement the value ε = 0.035 yields a rather bad result.
Thus we conclude that the algorithm works for a parameter set R = 0.1 and
ε = 0.043.

In order to verify this statement we check the pt distributions for the
non MPI jets. The result can be seen in (5.27). As expected the agreement
is rather good.
On the other hand we observe in the first two plots in fig.(5.26) (with
ε = 0.043 and ε = 0.045) that the algorithm has in the region of only a
few interactions (about 1 to 5 interactions) the tendency not to reconstruct
the correct number of interactions as seen by the red curve which is system-
atically too low. This means that in this region the algorithm reconstructs
too many interactions. The reason for this lies in the rather high ε value.
Too many potential back-to-back pairs are included in the d̃ij array what
leads to the reconstruction of too many interactions. That this is true can
be checked by going to lower ε values. The result of this can be seen in
fig.(5.28). We see that with lower ε values this problem more and more
dissapears. However the agreement as a whole between the true number
of multi parton interactions and the number of reconstructed multi parton
interactions becomes worse and worse. Thus we conclude that the value
ε = 0.043 is still a reasonable compromise.

Then we can compare further the distributions of the non MPI jets, the
MPI jets and the sum of them. This can be seen in fig.(5.29). We see that
the program detects clearly more MPI jets when multi parton interaction is
switched on.

Further in fig.(5.30) we see the distribution of the MPI jets compared
both for the case that MPI is switched off and on. We see that the distri-
bution has a tail to large values when MPI is switched on as it is supposed
to be.

Then we investigate the influence of an η cut. This can be seen in
fig.(5.31). We see that the reconstructed number of multi parton interac-
tions is no longer in such a good agreement.
As a final remark it would be good to take a look at fig.(5.32). Here we see
a comparison between the Λ and the ε case. We see that the algorithm with
ε performs better. The difference however is not big.

Until now we had investigated MPI in a model where the multi parton
interaction did not undergo any parton shower (old model in PYTHIA). We
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Figure 5.26: Comparison for several ε values. The true distribution for the
number of MPI interactions (”interactions”) versus the number of recon-
structed MPI interactions (”MPI alogortihm”) is plotted. The distributions
have been normalized with respect to the number of events.
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Figure 5.27: Comparison of the pT distribution of the non MPI jets both
for MPI being switched off and on. The distributions have been normalized
with respect to the number of events.

now investigate the ’new’ model, where MPI can also have initial and final
state parton showers.
As a first step we use the parameter set from above, R = 0.1 and ε = 0.043.
The comparison for the number of multi parton interactions can be seen in
fig.(5.33). As we see there is a clear disagreement. We investigate this by
switching off both primoridial k⊥ and associated time-like branching of the
initial state parton shower8. The result of this can be seen in fig.(5.34). We
see that this does not solve the problem (compare in contrast to that as
an example fig.(5.26) where we see the distribution for the true number of
multi parton interactions in the old model). It is on the other hand possible
in PYTHIA to switch off the extra PS for the MPI. Then we have, as in the
old MPI model, only PS for the main interaction. The result can be seen
in fig.(5.35). We see that the disagreement is rather big. From the plots
(5.33) to (5.35) we see that that in the new model the distribution for the
real number of multi parton interactions is not so extended as in the old
model even when parton showers are switched off. Further we see that the
proper value for ε is dependent on the real number of MPI. The reason for
this must be traced back to the fact that the new model uses a different
parameter set as a tune. A way to address this would be to tune again the ε

8See for that page 321 of [13]
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Figure 5.28: Comparison for several ε values. The true distribution for the
number of MPI interactions (”interactions”) versus the number of recon-
structed MPI interactions (”MPI algorithm”) is plotted. The distributions
have been normalized with respect to the number of events.
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Figure 5.29: Comparison of the pT distribution of the non MPI jets, the
MPI jets and their sum. In the plot above multi parton interaction has
been switched off while in the plot beneath multi parton interaction has
been switched on. The distributions have been normalized with respect to
the number of events.
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Figure 5.30: Comparison of the pT distribution of the MPI jets. The distri-
butions have been normalized with respect to the number of events.

value as it has been done in the previous section. The result can be seen in
(5.36) where we see the comparison of the distributions for several ε values.
We conclude that ε = 0.02 is the best choice.
In fig.(5.37) we see the comparison for the non MPI jets. We see that the

agreement is rather good.

Summary and Outlook

As we see the parameter set used in the two models are quit different: while
we obtained for the old model ε = 0.043 and R = 0.1 we find for the new
model ε = 0.02 and R = 0.1. As discussed in the last section this difference
cannot be traced back to the fact that in the new model there are also parton
showers for the multi parton interactions. This has been proven by fig.(5.35)
where parton showers for MPI in the new model have been switched off.

In fig.(5.38) we compare the distribution of the ”true” number of MPI
both in the new and in the old model. We see that there is a huge difference.
That the distribution (including its shape) in the new model is so different
must be traced back to the fact that in the new model a different parameter
set is used. As the distribution of the ”true” number of MPI is so different in
the new model even when parton showers for the multi parton interaction are
switched off we need for the application of the k++

⊥ algorithm a completely
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Figure 5.31: Comparison of the true number of multi parton interactions
versus the number of reconstructed multi parton interactions. The distri-
butions have been normalized with respect to the number of events. In the
plot above we have no η cut while in the plot beneath we one.

132



  [GeV]
t

p
0 10 20 30 40 50 60 70 80 90 100

]
-1

  [
G

eV
t

d
N

/d
p

-710

-610

-510

-410

-310

-210

-110

1

10

210

without MPI

with MPI

cut
η=1. GeV               R=0.1        all on with frag           no Λ     

  [GeV]
t

p
0 10 20 30 40 50 60 70 80 90 100

]
-1

  [
G

eV
t

d
N

/d
p

-710

-610

-510

-410

-310

-210

-110

1

10

210

without MPI

with MPI

cut
η=0.043               R=0.1        all on with frag           no ∈

Figure 5.32: Comparison of the pT distribution of the MPI jets. In the
plot above we see the MPI jet distributions for the Λ case while in the plot
beneath we see the MPI jet distributions for the ǫ case.
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Figure 5.33: Comparison of the true number of multi parton interactions
versus the number of reconstructed multi parton interactions. The simu-
lation has been performed in the new model. The distributions have been
normalized with respect to the number of events.

Numb
0 10 20 30 40 50 60 70 80 90 100

d
N

/d
N

u
m

b

-410

-310

-210

-110

1
interactions

MPI algorithm

  all on with frag   
cut

η=0.043    R=0.1   MSTP(63)=0 MSTP(91)=0    no   ∈

Figure 5.34: Comparison of the true number of multi parton interactions
versus the number of reconstructed multi parton interactions. The simu-
lation has been performed in the new model. The distributions have been
normalized with respect to the number of events.
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Figure 5.35: Comparison of the true number of multi parton interactions
versus the number of reconstructed multi parton interactions. The simu-
lation has been performed in the new model. The distributions have been
normalized with respect to the number of events.

new ε value. This however is problematic, since we wanted to apply this
algorithm for real data. The question that arises now is the following: which
is the best choice for the parameter set of ε and R when we apply the
algorithm for real data? As the ε values between the two models are so
different this question cannot be answered in a straightforward manner. The
main difference between the two models is that in the new model also parton
showers for the multi parton interactions are included what is not the case
in the old model. Because the new model is clearly closer to physical reality
than the old model we would suggest that the parameter set ε = 0.02 and
R = 0.1 is the best choice as can be seen from fig.(5.36). Such choice however
would presume that the new model is close enough to physical reality (much
closer than the old model) in order to justify it. To summarize we conclude
that an algorithm based on a back-to-back relation for protojets is not well
suited for detecting multi parton interaction.
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Figure 5.36: Comparison of the true number of multi parton interactions
versus the number of reconstructed multi parton interactions for several ε
values. The simulation has been performed in the new model. The distri-
butions have been normalized with respect to the number of events.
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Figure 5.37: Comparison of the pT distribution of the non MPI jets both
for MPI being switched off and on. The simulation has been performed in
the new model. The distributions have been normalized with respect to the
number of events.
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Figure 5.38: Comparison of the distribution of the number of multi parton
interaction both for the old and the new model
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Chapter 6

Summary

We applied an analytical formalism of parton showers to Drell Yan processes,
with a dipole formalism which takes also interference effects into account.
This formalism was originally developed in [1] and summarized in chapter
(3). In [37] the formalism of [1] was applied to the distribution of the trans-
verse momentum of the Z0 boson. We used the results of [37] to show that
the formalism can resum next-to-leading order logarithmic corrections. In
the general case however there is a disagreement with respect to an inte-
gration boundary. This must be traced back to the usage of two different
ordering variables. Else the two results agree well with each other1. This
puts the parton shower formalism of [1] on a solid theoretical ground.
We compared the analytical result for the resummation of the energy frac-
tion with the one obtained by the PYTHIA Monte Carlo event generator.
The result was that the two approaches agree very well if the kinematical
cut is properly adjusted.
What is the relation to measurements at a hadron-hadron collider like LHC?
Although the energy fraction τ cannot be measured directly, the resumma-
tion of logarithmic corrections for τ → 1 is extremely important for any mea-
surement when mDY becomes large and eventually approaches mDY →

√
s.

In such a region of phase space, no hard jet in addition to the Drell Yan
process can be produced. The detection of such a process was proposed
as one of the interesting measurements for the high luminosity case at the
LHC. A detailed measurement of this process is important for any search
for new particles. τ → 1 is not only possible for mDY →

√
s but also when

no parton emission is observed in a restricted rapidity range. The use of
forward detectors with η coverage |η| < 5 in CMS/ATLAS enables such

1This means that the integrand is approximately equal.
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measurements.
While for τ → 1 real emissions from the initial state cascade are suppressed,
additional hard partons can occur from multi parton interaction, that is
from secondary interaction.
We have considered a jet algorithm that was supposed to detect multi par-
ton interactions based on a kinematical back-to-back relation for protojets.
It came out that the algorithm works in an idealised case with a specially
tuned parameter.
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Appendix A

Integration of WN

In this section it is our goal to perform the integration (with respect to
eq.(4.83)) for the case of constant αS . We will show that it is possible to
obtain an exact result; however we will also show that this is numerically
unstable. Thus even for constant αS the numerical result obtained in section
(4.3) is suitable.
For performing the integration let us take a look at eq.(4.83). Performing
the k2

⊥ integration leads to

lnWN (Q2;Q2
0) = 2CF

αS

π

∫ 1

0
dz
zN−1 − 1

1− z

{
ln[(1− z)2] + ln

[
Q2

Q2
0

]}

×θ((1− z)2Q2 ≥ Q2
0) ,

(A.1)

where we have relabeled ζ by z and written instead of lnWN, resummation

the expression lnWN (Q2;Q2
0). Further we have explicitly introduced a θ

function as a boundary condition for the z integration. The integration of
the second term of this expression does not constitute a problem as we have

∫
dz
zN−1 − 1

1− z =

Nz1+N
2F1(1, 1 +N ; 2 +N ; z) + (1 +N)(zN +N ln(1− z))

N(1 +N)
,

(A.2)

where 2F1(1, 1 + N ; 2 + N ; z) is a hypergeometric function. Now we must
focus on the first term

2CF
αS

π

∫ 1

0
dz
zN−1 − 1

1− z ln[(1− z)2]θ((1− z)2Q2 ≥ Q2
0) . (A.3)
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The condition
(1− z)2Q2 ≥ Q2

0 (A.4)

can be written as

z ≤ 1−
√
Q2

0

Q2
. (A.5)

Thus we may write the expression given in (A.3) as

2CF
αS

π

∫ 1−
r

Q2
0

Q2

0
dz
zN−1 − 1

1− z ln[(1− z)2] . (A.6)

In principle we are able to perform an exact integration. The result however
we obtain for the right side in eq.(A.1) is unstable because the expression
given in eq.(A.6) contains after performing the z integration divergent terms.
To overcome this problem we notice that the following relation holds1

∫
zn ln zdz =

zn+1

n+ 1
ln z − zn+1

(n+ 1)2
(n 6= −1;n integer) . (A.7)

Let us define the following function

A(x) :=

∫ x

0

zN−1 − 1

1− z ln[(1− z)2]dz (with 0 < x < 1) (A.8)

with

x := 1−
√
Q2

0

Q2
. (A.9)

By the substitution

b := 1− z

⇒ dz

db
= −1

(A.10)

A can be written as

A(x) =

∫ 1

1−x
db

(1− b)N−1 − 1

b
ln(b2) . (A.11)

1This relation is given in eq.(41.50) of [51] on page 69.
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This can be rewritten as

A(x) = 2

(∫ 1

1−x

N−1∑

i=0

{(
N − 1

i

)
(−1)ibi−1 ln(b)db

}
−
∫ 1

1−x

ln b

b
db

)

= 2

(∫ 1

1−x

N−1∑

i=0

{(
N − 1

i

)
(−1)ibi−1 ln(b)db

}

︸ ︷︷ ︸
C

−
∫ 1

1−x

ln b

b
db

)
.

(A.12)

For the term C we can now apply eq.(A.7). This leads to

C =
N−1∑

i=1

(
N − 1

i

)
(−1)i

[
bi

i
ln(b)− bi

i2

]b=1

b=1−x

+

∫ 1

1−x

ln(b)

b

= −
N−1∑

i=1

(
N − 1

i

)
(−1)i 1

i2
−

N−1∑

i=1

(
N − 1

i

)
(−1)i (1− x)i

i
ln(1− x)

+
N−1∑

i=1

(
N − 1

i

)
(−1)i (1− x)i

i2
+

∫ 1

1−x

ln(b)

b
.

(A.13)

To summarize, our result is now

A(x) =

2

(
−

N−1∑

i=1

(
N − 1

i

)
(−1)i 1

i2
−

N−1∑

i=1

(
N − 1

i

)
(−1)i (1− x)i

i
ln(1− x)+

+
N−1∑

i=1

(
N − 1

i

)
(−1)i (1− x)i

i2

)
.

(A.14)
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Using MATHEMATICA gives

lnWN (Q2, Q2
0) = 2CF

αS

π

(
γ2

E +
π2

6
+

− 2(−1 +N)

√
Q2

0

Q2 4F3

(
{1, 1, 1, 2−N}; {2, 2, 2};

√
Q2

0

Q2

)

+ (−1 +N)

√
Q2

0

Q2 3F2

(
{1, 1, 2−N}; {2, 2};

√
Q2

0

Q2

)
ln

[
Q2

0

Q2

]

+
1

2
ln

[
Q2

0

Q2

](
2Bδ(N, 0) + ln

[
Q2

0

Q2

])
+ 2γEψ(N) + ψ(N)2 − ψ′(N)

)
.

(A.15)

Bδ(N, 0) is here a Beta function2. The function ψ is the Digamma function
and γE is the Euler-Mascheroni constant. In fig.(A.1) we see the distribution
of lnWN (Q2, Q2

0). We took as values Q2
0 = 1GeV2, Q2 = M2

Z with MZ =
91.88 GeV and αS = 0.2. The range was set from N = 1 to N = 1000.
In fig.(A.1) we see that the distribution increases rather fast for decreasing
N while it becomes constant for N > 400. This is exactly what we expect:
from eq.(4.2) we see that only those W (τ,N) with τ ≈ 1 contribute to
WN (Q2) in the high N limit. Thus lnWN (Q2;Q2

0) becomes constant for
N ≫ 1. However the expression given in eq.(A.15) shows in some regions of
Q2

0 extreme numerical instabilities ((up to 3∗1010)). This is due to rounding
errors (up to 3 ∗ 1010). This can be seen in fig.(A.2). This instability comes
from the two hypergeometric functions given in eq.(A.15). Thus even for
αS = const. it is meaningful to use the numerical expression which is given
in eq.(4.113). In fig.(A.3) we see the same function derived by the numerical
expression. We see that it is now well behaved.

A.0.4 Difference between the resummation result and the

parton shower result

Here we further investigate the difference between lnWN, res and lnWN, PS.
The execution of the integral given in eq.(4.109) by MATHEMATICA yields

lnWN, res − lnWN, PS =
αS

6π
CF (6γ2

E + π2 + 6ψ(N)(2γE + ψ(N))− 6ψ′(N))
(A.16)

2with δ = 1 −

q

Q2

0

Q2
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Figure A.2: Distribution of lnWN (Q2, Q2
0) for constant αS with respect to

Q2
0. N was set to 1500 while Q2 was equal to M2

Z with MZ = 91.88 GeV.
The exact solution given in eq.(A.15) is plotted. The plot shows an extreme
numerical instability due to rounding errors.
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with ψ as the digamma function.
As a next step we can look at the case of first order running αS . In that
case we have (see for that eq.(2.43) of [3])

αS(k2
⊥) =

1

β0 ln
(
k2
⊥/Λ

2
) . (A.17)

Further we have

∫
dk2

⊥
β0k

2
⊥ ln

(
k2
⊥/Λ

2
) =

ln
(
ln(k2

⊥/Λ
2)
)

β0
. (A.18)

With that we can rewrite lnWN, res and lnWN, PS as

lnWN, res = 2
CF

πβ0

∫ 1

0
dz

{
ln

(
ln

(
(1− z)2Q2

Λ2

))
− ln

(
ln

(
Q2

0

Λ2

))}

(A.19)
and

lnWN, PS = 2
CF

πβ0

∫ 1

0
dz

{
ln

(
ln

(
(1− z)Q2

Λ2

))
− ln

(
ln

(
Q2

0

Λ2

))}
.

(A.20)
This yields

lnWN, res − lnWN, PS =

2
CF

πβ0

∫ 1

0
dz

{
ln

[
ln

(
(1− z)2Q2

Λ2

)]
− ln

(
(1− z)Q2

Λ2

)}
=

2
CF

πβ0

∫ 1

0
dz ln




ln
[

(1−z)2Q2

Λ2

]

ln
[

(1−z)Q2

Λ2

]




(A.21)

Such an integral can be only numerically solved.
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