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Introduction

Non-destructive testing (NDT) techniques are widely used in industry to evaluate prop-
erties of a component, material or system without causing any damage. One of the main
advantages of these methods is that they do not permanently alter the material being
inspected, and therefore time and money can be saved. The employment of ultrasonic
waves meant a big achievement for NDT since until that point, x-rays and radioactive
isotopes were the best techniques and the equipment was big and expensive as well as
the testing process pretty slow.

Among the NDT techniques based on ultrasonic waves for defect detection, the Time
of Flight Diffraction (TOFD) is one of the most sophisticated methods, with high signif-
icance in many applications of steel industry, where welding quality is essential to avoid
productivity losses. TOFD has different advantages that make it desirable to other
techniques. For instance, defect detection does not depend on the defect orientation.
Moreover, it provides sizing accuracy and a high probability of detection, reducing the
risk of false indications.

Notwithstanding, the interpretation of TOFD images and classification of defects is
still done manually and therefore frequently questioned since it mostly depends on the
experience of the human operator, and when the data volume increases, this can lead to
errors. In consequence, the recent trend is to fully automate the classification of defects.
To this end, different approaches have been used in the past, including artificial neural
networks [27, [69], mathematical morphology [64], Hough tranform [I8, 97] to propose
match filtering for parabola detection [79], etc.

In this thesis we propose two innovative methods for automated detection and clas-
sification of defects. Both are based on the principles of persistent homology, moreover
the second method goes one step further using tangential homology, which is persistent
homology applied to some suitable tangential constructions [29] 25].

Persistent homology is a recently and powerful developed algebraic method for de-
tecting topological features of data, especially big and noisy data sets [39] [40, 104} 28].
The fields of applications of this tool has increased a lot in the last years, and some
important examples can be found in areas like biological systems [73], 21], sensor net-
works [36], Alzheimer [77], computer graphics [64} [44], chemistry [I00] and computer vi-
sion [24]. The key idea of persistent homology is to build a filtration from a Point Cloud
Data (PCD), i.e., a nested sequence of simplicial subcomplexes. During this process, the
“birth” and “death” of different topological features such as connected components and
n-dimensional holes, can be tracked down. There exist different ways to create a filtra-
tion using different kind of simplicial complexes such as Vietoris-Rips complexes [103],
Alpha complexes [38], Lazy-Witness complexes [35], or Cech complexes [34].

Tangential homology is a concept introduced by [29, 25]. It has proved to be a pow-
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Introduction

erful tool for shape classification of curve PCD. The idea of tangential homology is to
compute persistent homology not to the space itself, but to spaces that are enriched with
geometrical information about the shape.

Software packages are used in this work to compute the persistent homology of a PCD
including Perseus [72] (based on [66]), and Phom [91].(based on [104]).

This thesis is organized as follows. Chapter 1 shortly introduces ultrasonic non-
destructive testing, where the physics behind ultrasounds are also well presented. This
chapter also touches upon the current ultrasonic NDT methods and the different welding
defects that normally appear. Chapter 2 provides the state of the art of the existing
techniques for automatic classification of TOFD defects, where image pre-processing,
image segmentation and image classification stages are introduced. In Chapter 3, an
introduction to topological data analysis is given. It provides the necessary theoretical
background to understand our new approach to the problem. Chapter 4 focuses on
Discrete Morse theory, which allows a fast pre-processing step before the computation
of persistent homology. Chapter 5 describes our new approach to the problem, where
two automated classification methods are presented. Chapter 6 deals with neighbouring
search, a constant in many steps of our methods. Chapter 7 will present numerical re-
sults where our techniques are tested with real and simulated data. Finally, Chapter 8
will conclude this work.
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1 Ultrasonic Non-Destructive Testing

In this chapter, we introduce non-destructive testing of materials. Section 1.1. includes
the reasons that explain why people started to use these type of methods, the basic prin-
ciples of ultrasonic Non-Destructive Testing (NDT) techniques and their advantages and
disadvantages. In section 1.2., the physics of ultrasound theory are presented, describ-
ing the most significant physical processes involved in ultrasonic NDT. An explanation
of how to create and measure an ultrasound is included in section 1.3. Section 1.4.
introduces the main methods for ultrasonic testing. To conclude this chapter, in sec-
tion 1.5. we show and explain the typical welding defects that may occur. For a more
comprehensive account on the topic, we refer to [55] [16] [59].

1.1 First steps

Ultrasonic testing usually employes high frequency waves, i.e, frequencies between 0.5
and 10 Mhz [55], in order to carry measurements in a very wide range of fields, such as en-
gineering (flaw detection [4], material characterization [56], etc) or medical applications
(sonography, cancer detection [15], etc.).

Ultrasonic NDT methods can be classified according to the type of waves that are used
for gathering information: i) pulse-echo techniques, which capture information given by
reflected waves and i) through transmission techniques, which use transmitted waves.
Normally pulse echo systems are more frequently used since they only require one side
access to the inspected object or material.

1.1.1 Why ultrasonic NDT

Ultrasonic testing methods are relatively new. The idea was proposed by Sokolov in 1935
[90]. Before that, the employed techniques for detection of internal defects were just x-
ray or radioactive isotopes, and by this time, x-ray equipment was big and expensive
and the testing process was dangerous and slow. Moreover, only thin material could be
tested. After the Second World War, equipment was developed to perform ultrasonic
testing measurements. The key of ultrasonic testing is that sound waves are not only
reflected or diffracted by the interfaces, but also by the internal defects.

1.1.2 Basic principles of ultrasonic NDT

An ultrasonic measurement is arranged as follows (Figure [1.1):

(i) Transducers acting as emitter or receivers have to be placed into the inspected
area. Depending on the method, one can place two devices acting as emitter and
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receiver or just one device acting as both. These transducers are normally piezo-
elements, which means that they are able to convert an excited voltage into an
ultrasound and viceversa. The piezoelectric effect will be addressed later in this
chapter.

(ii) The ultrasound travels through the material.
(iii) When the wave finds a flaw, some wave energy will be reflected to the receiver.

(iv) The receiver converts that energy into electricity again and that electrical signal
is displayed on a screen.

(v) The position, size, orientation and other properties of the defect can be found out
from the measured signals.

Electricity Electricity
Emitter — | Ultrasound | —* Material —> Receiver

Piezoelectric effect Piezoelectric effect

Figure 1.1: typical arrangement for ultrasonic testing.

The most interesting properties of an acoustic wave propagated in isotropic material
are the following (Figure [1.2)):

e Amplitude A: it is the height from the equilibrium point to the highest point of a
crest. It measures how ”big” the wave is.

e Frequency f: it gives the number of oscillations of a particle per second.

e Wavelength A: it is the distance between two points in the wave with the same
phase.

e Speed of the wave v: it depends on the medium.

Another important remark is that the smaller the wavelenght is, the higher is the
interaction between sound waves and the material.

Let A be the wavelenght in mm, v the sound velocity in km/s and f the frequency of
the wave in M hz. They are related as follows:

P
/

To get small wavelengths, one needs to use high frequencies. If the frequency is not
high enough, the defect detection is dubious.
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Wavelength Crest

h 4

Amplitude

~ Trough

Figure 1.2: Basic elements of a wave.

1.1.3 Advantages and disadvantages of ultrasonic NDT

Here we list advantages and disadvanteges of ultrasonic NDT methods in comparison
with other NDT methods. We summarize them as follows:
Advantages:

e We usually only need access to one side of the material inspected in order to place
the transducers.

e The results of the measurements are displayed instantaneously on a screen.

e The equipment is small, cheap and can be automated, i.e., complete system to
move it along the inspected material.

e [t is not dangerous and operators are safe in any case.

e It is very sensitive to surface or inner defects. Therefore volumetric and crack like
defects can be detected, and the detection does not depend on their orientation.

Disadvantages:

e Operators need training especially for the interpretation of ultrasonic data. This
is preciselly the motivation of our work. There are not so many current automatic
interpretation techniques for ultrasonic data.

e The obtained data is quite noisy.
e Inhomogeneous materials are difficult to inspect.

e Spurious indications, and misreading of signals, can result in unnecessary repairs.
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1.2 Physics of ultrasound

To understand how ultrasonic testing works, we need to go deeper and comprise all
physical processes that are involved in this method. Here we explain the most important
ones. For a more detailed overview on these topics the reader may consult [I01L [67].

1.2.1 Wave propagation

As we noted before, ultrasonic testing uses ultrasonic waves to gather important infor-
mation about the existing flaws or indications inside a material. Therefore, it is very
important to understand how sound waves propagate in a solid material.

Every body is made of atoms, which can combinate and create bigger particles. Due
to many reasons, these particles can start vibrating. We are interested in studying the
vibration that induces a mechanical wave. A body can be subjected to a force field and
considering the case where its elastic limit has not been reached, the body particles start
oscillating. Whenever a particle is displaced from its equilibrium position, some internal
forces arise in order to restore that equilibrium. At the end, these forces added to the
inertia of the particles, lead to oscillatory motions of the medium. The relation between
the particles oscillation and propagation of the sound leads us to different ways of wave
propagation. Here we mention the most used in ultrasonic testing:

e Longitudinal waves: It is a wave motion in which the particles of the medium
oscillate in the same direction of the wave propagation (Figure . They are
caused by compression and expansion forces, creating compression and rarefaction
areas. They can be generated in gases, liquids or solids. They are also referred as
COMPTESSION, Waves.

As illustrated in Figure [I.3] in compression areas particles are closer to each other
and density of the medium increases. There are many examples in nature where
longitudinal waves are generated, i.e., tsumamis, ultrasounds, internal water waves,
primary or P waves, etc.

e Transverse waves: it is a wave motion in which the particles of the medium os-
cillate perpendicular to the direction of the wave propagation (Figure . It is
important to note that particles do not move with the wave. They just move up
and down from their original equilibrium point as the wave passes. One example
of these waves are the secondary or S waves.

The velocity of these types of waves in different materials is well known [86]. In
particular we are interested in steel, since in this project we are working with steel
pipelines. In this medium, longitudinal waves have approximately a speed of 5.94 ™2
while the speed of transversal waves is around 3.29 "/%” Therefore, longitudinal waves
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Wave propagation

|

Wavelength

ammmm——)

Rarefaction . , . C i
Particle oscillation ompresion

Figure 1.3: Longitudinal wave: wave propagation in oscillation
direction.

arrive generally much earlier than transversal waves to the receiver, and in most of the
cases, these waves will be the only ones considered and measured.

1.2.2 Huygens principle

Several effects like reflection, refraction or diffraction occur to waves. In order to be
able to fully understand them, it is very important to explain the principle that governs
them, and this is the Huygens principle. It was published by Huygens in 1690 in [50], a
work about light waves:

"There is the further consideration in the emanation of these waves, that each par-
ticle of matter in which a wave spreads, ought not to communicate its motion only to
the next particle which is in the straight line drawn from the luminous point, but that
it also imparts some of it necessarily to all the others which touch it and which oppose
themselves to its movement. So it arises that around each particle there is made a wave
of which that particle is the centre. ...”

Let us try to fully understand what this paragraph is saying. First of all, it is necessary
to give some definitions. A wavefront shows all the points of a wave that are in phase
with one another [59, b]. This is illustrated in Figure where we have a 3D view of a
wave and a wavefront is represented by a line.

We can represent all the points with the same wave crest as a straight line (Figure.
Huygens principle basically says that it is possible to predict the shape and position of
the next wavefront. We can think on every point on a wavefront as a source of secondary
wavelets. Let us apply huygens principle to the wave of Figure Remember that a
small vibrating source produces circular waves that radiate outwards. Therefore, if we
apply Huygens principle to all the points of a wavefront, we can draw little circles around
each point to represent the wavelets formed by each point. The radii of all the circles
are the same, showing that all the wavelets move at the same speed, so they move the
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Wave propagation

| Wavelength 1
| 1

Amplitude

Particle oscillation

Figure 1.4: Transverse wave: propagation perpendicular to the
oscillation.

same distance after some time. Notice that one tangent line can be drawn to all of
this circles. The tangent shows the boundary of the region that contains all the little
wavelets. Huygens says that the tangent line represents the new wavefront (Figure [1.7)).

1.2.3 Diffraction

As we explained, ultrasonic waves are sent through the material. These waves can find
obstacles in their way to the receiver such as defects. Due to the Huygens principle,
diffraction occurs at the tips of the defect and the wave can travel round it.

Let us use Huygens principle to predict how a wavefront would look like for a wave
that finds a barrier in its way (Figure . Some of the points in the wavefront are
blocked by the barrier. This causes the shape of the new wavefront to be curved at
the point where the barrier has cut off some of the point sources. The curvature of the
wavefront as it passes the barrier is called diffraction.

What happens if we add another barrier? (Figure left). The wave now passes
through a gap. The wavefront is now curved on both sides. The narrower we make
the gap (Figure right), the more the wave spreads out behind the gap. The more
the wave it is diffracted, as it passes through the gap. It is important to note that the
diffraction pattern formed by the narrow gap is very similar to the pattern form by a
single spherical vibrating source.

1.2.4 Reflection

This phenomenon occurs at the boundaries. Consider two materials M; and My one
over the other. The wave is reflected at the boundary if both materials have different



1.2 Physics of ultrasound

Wavefront

Wave propagation in x

E—

Figure 1.5: Representation of a wave and one wavefront in 3D.

acoustic impedances [22]. The greater this difference is, the greater the percentage of the
wave energy that will be reflected. The acoustic impedance Z of a material is defined
as follows:

Z = pv,

where p is the density of the material and v is the sound velocity. Ultrasonic testing is
widely used for welding testing, and in most of cases steel and air are the two materials
at each side of the boundary. The proportion of wave energy that is reflected is measured
by the so-called reflection coefficient R and can be computed as follows [12]:

Ty — Z17\2
R:(z§+zi)7

where Z; and Z5 are the impedances of the two materials at the interface or boundary.
Note that in this whole chapter we are assuming that there is no loss of energy by
attenuation , absortion or dispersion. Therefore, when the wave arrives to the interface,
the total energy is split into reflected plus transmitted energy, and the transmission
coefficient T is calculated by

T=1-R.

Due to the Huygens principle, the wave at the boundary builds a new wave front that
will be propagated as a reflected wave. In reflection, the ultrasound speed remains the
same, and therefore the angle of incidence is equal to the angle of reflection. Reflection
of waves is illustrated in Figure [[.10}

1.2.5 Refraction

When a wave arrives to an interface, besides reflection, another phenomenon called
refraction takes place. Consider two materials M; and My at each side of the interface.
Refraction takes place at the interface when the velocity of sound in M is different than
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Side view
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Figure 1.6: Representation of a wavefront from top view of the
wave.

in Ms. Sound velocity is inherent of the material, since it depends only on material
properties such that the elastic modulus and density. When the wave "enters” in the
second material, there is a change in the direction of the travelling wave.

Refraction is governed by Snell‘s law [17], which describes the relation between angles
and velocities of waves. It basically says that the proportion between material velocities
v1 and vy is equal to the proportion between sinus of incident angle a; and refracted
angle ao (Figure :

sin(ay)  sin(az)

U1 U2

Note that vy and ve are the velocities that correspond to the longitudinal waves in
those materials.

When the wave passes from a material with some velocity to another material where
its velocity its higher, there is a certain angle of incidence that causes a refraction angle
of 90°. This is known as critical angle. To find it, one needs to substitute ag = 7/2
and calculate ;. When this happens, most of the acoustic energy is in the form of an
inhomogeneous compression wave, and this wave is known as ”creep wave”. It decays
pretty fast along the interface, and because of this, they are barely used in NDT.



1.3 Equipment and transducers: the piezoelectric effect

AN
‘”

7
A

S 2%
o,

New wave front

———
=

\/
A

W 2
.’q <

———

(D

A

9%

“’

Wave propagation

Figure 1.7: It is possible to predict the position and shape of the
new wavefront according to the Huygens principle.

1.3 Equipment and transducers: the piezoelectric effect

Before getting to know what kind ultrasonic testing methods exist, it is important to
describe how to create an ultrasound. This would not be possible without the so-called
piezoelectric effect. Here we give a brief introduction to it. For a more comprehensive
account on the topic, we refer to [55], 59, [51].

Ultrasonic testing is based on the conversion of electricity into mechanical vibrations
and the reverse process. There are some materials called piezo-elements, which can make
possible this process converting electrical energy into acoustic energy and viceversa. The
role of the piezoelectric effect in NDT is the following:

e An electric pulse or voltage is created.

e This electricity passes through a piezo-element, which is placed in the heart of the
emitter. Due to the piezoelectric effect, this device converts the electrical energy
into an ultrasound that travels through the material.

e When the wave arrives to the receiver, another piezo-element converts back the
energy into a voltage that can be measured and related to wave properties.

A piezo-element is normally a piece of a polarized material (which means that some
parts of the molecule have a positive charge, while other have negative charge) with
electrodes attached to two of its opposite faces. If we apply an electric field across the
material, the polarized molecules will start to align with the electric field and therefore
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| | | New wave front

Wave propagation

)

Figure 1.8: Diffraction of waves. It is possible to predict the new
wave front using the Huygens principle.

Figure 1.9: Diffraction of a wave through a gap.

NS

dipoles are induced within the molecular or crystal structure of the material. As a
consequence, the dimensions of the material change and a mechanical wave is created.
This phenomenon is known as the reverse piezolectric effect [46].

Some materials like barium titanate create electricity when the material changes in
size due to an imposed mechanical force. This is the direct piezoelectric effect. A list
with different materials that are piezoelectric can be found in [52] and the phenomenon
is illustrated in Figure [1.12

1.4 Ultrasonic NDT methods

In this section, we introduce different available methods. Each of those use the explained
effects of reflection, refraction and diffraction to gather interesting information of the

10
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Figure 1.10: Reflection of waves.

tested materials. It is possible to classify these methods precisely according to the
incoming ultrasound [46]:

(i)

(i)

Impulse-echo techniques: the measured waves will be reflections or diffractions of
the inner defects. Therefore, one needs to place the transducers in positions such
that this will happen.

In Figure [I.13] we show one example where one transducer is acting as emitter and
receiver. In case a), the reflected waves at the defect do not reach the receiver, but
in case b), after moving a bit the transducer until it is directly above of the inner
defect, some information can be measured at the receiver. There are many different
ways of placing the probes. The Time of Flight Diffraction method (TOFD), that
will be presented later, place the probes in a way to measure diagonal reflection
and diffraction waves.

Transmission techniques: now the receiver is situated opposite to the emitter at
the other side of the material (Figure [[.14). When there is no defect in between,
the ultrasonic wave will always reach the receiver (even if it is in an attenuated
version). When there is a defect in between, some alterations will be shown in the
measured data.

Impulse-echo methods are normally more employed than transmission techniques. For
obvious reasons, the last need access to both sides of the inspected material, and hence
this is more restrictive. A second reason is that in impulse-echo techniques the received

11
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Incident wave Reflected wave

a,

Vi .
o, v, Material 1

Interface

Refracted wave

Material 2

Figure 1.11: Schematic view of refraction and Snell‘s law. The
incident wave is refracted and reflected at the interface.

waves contain boundary defect information, and moreover one can easily find out the
distance defect-probes because it is directly related to the ultrasound velocity and the
time of flight that the wave spends from emitter to receiver. In this research project
we focus on this techniques and in the last part of this chapter we present two impor-
tant methods: the Time of Flight Diffraction (TOFD) [68] [93] [80], which is worldwide
employed for weld defect detection and the Wall Thickness measurement [55].

1.4.1 The Time of Flight Diffraction Method (TOFD)

The TOFD was first introduced in 1977 [89], and since then, it has been one of the most
reliable methods in non invasive condition assessment. The main difference of TOFD
with respect to all other ultrasonic NDT techniques is that it relies on the detection of
diffracted rather than reflected signals. A typical set-up for the TOFD method is shown
in Figure [I.15] Two angle beam probes are used in a transmitter-receiver arrangement,
where the distance between them is normally calculated according to the wall thickness.
Ultrasonic waves are sent through the inspected material. The received information
at the receiver is recorded in an a-scan (Figure , which is a representation of the
amplitudes of the waves versus time. An a-scan normally monitors:

e Diffracted signals at the edges of the defects.
e Lateral wave, which is the fastest wave that travels directly from emitter to receiver.

e Back wall echo, which is the reflection of the back wall and the latest wave arriving
to the receiver.

12
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; ;

Figure 1.12: Piezoelectric effect. When a voltage is applied
across a piezo-element, it changes in size and viceversa.

e Diffractions from inhomogeneities of the material (noise).

For acquiring more data, probes are moved in parallel to the weld. Whenever they are
fixed in a new position, another a-scan is taken. All the combinations of a-scans create a
b-scan (Figure , which is a representation of the position of probes versus time. The
echo amplitude is normally displayed as gray scale, with light gray for zero amplitude
and black and white for negative and positive maximum amplitude respectively.

The two classification methods proposed in this paper are based on the detection and
recognition of the shapes that TOFD indications may present in b-scans. We focus our
work in the following indications:

o Volumetric defects: pore defects or gas inclusions, which usually exhibit a parabolic
shape in b-scans (Figure [1.16).

e Planar defects: lack of fusion and crack propagations, which usually produce linear
shapes in b-scans (Figure [7.3)).

TOFD b-scans are usually quite noisy. Before applying any classification method, a
preprocessing step is applied for denoising. One typical deconvolved b-scan is shown in

Figure [1.16]

1.4.2 Wall thickness measurement

Usually surface defects are really easy to detect even with the human eye, and most
of the times there is no need of a non-destructive testing evaluation. But there can be
some situations where the material surface is not visible. For instance one can consider
a pipeline that is half buried. Then one needs an NDT evaluation for checking the state
of the buried surface.

This is the purpose of wall thickness measurements. A probe, acting as emitter and
receiver at the same time, is placed on the accesible surface (Figure ), and ultra-
sounds are sent to the interior into the direction of the inner surface defect. Once the

13
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Transducer:
Emitter + Receiver

Reflected wave

Material inspected
defect
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[

u

Figure 1.13: a) The reflected waves from the defect do not reach
the receiver; b) In this position of the transducer the reflected
waves can be measured at the receiver.

wave arrives to the defect itself, it is reflected back reaching the transducer. As in every
pulse-echo method, there is a correlation between the time of flight and the distance or
wall thickness. Accordingly, it is possible to reconstruct the shape of the inner surface.
Note that in Figure [[.I7h we just show a 2D view, but of course the defect is 3D and one
needs to move the probe across the whole outer surface to reconstruct the inner surface.
This leads to a three-dimensional b-scan (Figure ), where each column corresponds
to a probe position on a line on the surface.

Let us analyse why a wall thickness b-scan looks like that. To that end, we follow the
journey of the waves in Figure [[.I7h. The trip starts at the transducer. From there, the
wave or parts of it can take several paths.

e Part of it does not even enter the material and it is reflected back to the transducer
(point D). That is why one sees a region in the b-scan that corresponds to this
reflection of the surface.

e Part of the ultrasound reaches the defect and it is reflected to the transducer back.

e There are many backwall echo reflections. Consider for example the ultrasound
travelling from A to B. Then it is reflected back and when it arrives again to A,
some part may continue to the transducer and other is again reflected and starts
travelling in direction to the inner surface again. This is why in the b-scan one
can see several back wall echoes with a decreasing amplitude.
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Emitter

Material inspected

Receiver

Figure 1.14: Transmission technique.

Emitter Receiver
/_\ Lateral wave
.
";".‘?,'E. .
Steeltube j T'
T, defect

Backwall echo

Figure 1.15: Time of Flight Diffraction method (TOFD).

1.5 Welding defects

In this section we describe the most common welding defects and the principal mecha-
nisms that cause them. The coordinate system used in the text is chosen as illustrated
in Figure [I.18] where a pipeline is welded along the z-axis.

Welding imperfections are classified according to ISO 6520 [3] while their acceptable
limits are specified in ISO 5817 [2] and ISO 10042 [1].The most observed defects can be
classified as follows:

e 2.5.1. Surface defects:
2.5.1.1. Lack of deposition
2.5.1.2. Lack of penetration
2.5.1.3. Over deposition
2.5.1.4. Undercut
2.5.1.5. Spatter
2.5.1.6. Surface cracks

e 2.5.2. Internal defects:
2.5.2.1. Internal cracks

15
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Time of flight
Amplitude

Cracktop Crack bottom

>

Lateral wave

Backwall echo

Figure 1.16: Left ro right: a-scan, b-scan, deconvolved b-scan
(preprocessed data).

Transducer:
Emitter + Receiver
b)

urtface reflection

C

Surface defect
Back Wall echos

Figure 1.17: a) Wall thickness measurement; b) Typical corre-
sponding b-scan.

2.5.2.2. Slag inclusion
2.5.2.3. Porosity
2.5.2.4. Wormbholes
2.5.2.5. Lamellar tear

The following subsections include a brief description of every welding defect.

1.5.1 Lack of deposition

This kind of defect is generally not acceptable. If we consider a cross section xy of the
weld, this should have a top reinforcement as shown in Figure [[.I9% top. When this is
not the case, the weld presents lack of deposition (Figure [L.19a bottom and b).
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)%

Figure 1.18: Representation of a pipeline and the chosen coordi-
nate system where the tube is welded along the z axis.

a) Top Reinforcement b)

Lack of deposition

Sy

~—

Figure 1.19: a) Ideal cross section zy representing top reinforce-
ment and lack of deposition; b) Real image showing lack of depo-

sition [75].

1.5.2 Lack of penetration

It is illustrated in Figure and it can be found in two ways: i) when the weld bead
does not penetrate the entire thickness of the base plate or ii) when two opposing weld
beads do not interpenetrate. It is normally caused due to a low welding current and can
be fixed easily by simply increasing the amperage.

1.5.3 Over deposition

It happens when too much heat is added to the system (Figure ) This increases
the heat affected zone (HAF), which is the area of base material that is not melted and
has had its microstructure and properties altered by welding or heat intensive cutting
operations. Therefore, this is an indirect defect that might affect the pipeline in the long
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a) b)

g
N

Figure 1.20: a) Cross section zy showing lack of penetration; b)
Real image showing lack of penetration [87].

term, increasing the corrosion rate. This also creates local stress concentration.

a) b)

7))

S~

heat-affected Zone

Figure 1.21: a) Cross section zy showing over deposition. The
HAZ is represented by the blue area while the local stress concen-
tration by the red circles; b) Real image showing over deposition

4.

1.5.4 Undercut

If the welding speed is too high, the metal will get melted and solidified before it can
flow back and fill the whole place (Figure . Undercut also takes place when a poor
technique is employed and not enough filler metal is deposited along the edges of the
weld. Other causes are a dampened electrode or excessive arc length [82]. To prevent
undercut, using a multi-run technique is one of the best solutions. It helps to produce
fine welds with improved mechanical properties.

1.5.5 Spatter

Spatter are zones where there are small droplets of metal (Figure|1.23a and b). It is not
a defect itself, but it indicates that might be a flaw in its location. An explosion of metal
has taken place for some reason. It is possible that gas has got entrapped in the flaw.
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)

Figure 1.22: a) Cross section xy showing undercut; b) Real image
showing undercut [92].

Spatter indicates a possibility of porosity inside and therefore needs to be removed. It
is possible to do so by grinding, and it is compulsory, otherwise corrosion will start soon
when painting.

1.5.6 Surface cracks

They appear as linear openings at the metal surface (Figure and b). They can
be critical and have led to frequent failures. They are generally known as "hot cracks”,
since they take place during the welding process itself when the weld is still hot. Crack-
ing normally results from poor welding practice, inadequate joint preparation, improper
electrodes, inadequate preheat, and an excessive cooling rate. All this leads to unfavor-
able and residual thermal stresses, which causes the crack. The remedy is cutting out
and rewelding.

By residual stresses, we mean stresses that remain in the material after having removed
the original cause of the stresses. These can cause a premature failure of a structure
and in most cases are highly undesirable. There are several physic mechanisms that
can cause residual stresses [85]: inelastic (plastic) deformations, temperature gradients
(during thermal cycle) and structural changes (phase transformation). For instance,
when the welding process is finished, after some time the weld starts cooling, but this
cooling process can be different between different areas, and then residual stresses are
created.

1.5.7 Internal cracks

They are generally known as cold or delayed cracks. You may find them even even few
days after the welding.

At the beginning, they are generated internally and then they can propagate out-
side. Internal cracks generally happen due to a phenomenon called “hydrogen embrit-
tlement”. Basically, the material loses ductility becoming brittle, and under thermal
stresses cracks [61, [102]. When one takes a look into the microstructure of the material
(Figure ), it can be appreciated that there exist grains and voids.
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a) Spatter
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Figure 1.23: a) Representation of spatter from a top view. The
red dots indicate small droplets of metal; b) Real image showing

spatter [7]

During the welding process there exits hydrogen pressure and if this process is not
done correctly, the hydrogen gets dissociated and its atomic form occupies the voids
(Figure left). When the welding is over and the whole material gets cooled down,
these atoms combine and form some molecules which size is much bigger than the sum of
the size of the individual atoms. Therefore, the lack of space for the generated molecules,
causes an enormous force in every direction and the material cracks (Figure right).

In order to avoid hydrogen embrittlement, several techniques can be employed and all
of them are focused on minimizing contact between the metal and hydrogen, particularly
during fabrication. One solution is to apply sulfides to the metal [95].

1.5.8 Slag inclusions

This defect usually occurs in welds that need multiple passes and there is a poor overlap
between them (Figure and b). As a consequence the slag from the previous weld
cannot melt out and rises to the top of the new weld bead. Slag inclusions can have any
arbitrary shape and with all probability, will have many sharp peaks.

Because of this, it will behave like crack tips, meaning chances of stress concentration
and a potential location for a crack initiator. The slag that appears between passes or
runs must be cleaned via grinding, wire brushing, or chipping.
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Figure 1.24: a) Representation of the two types of surface cracks
(transversal and longitudinal) along the weld; b) Image of a real
surface crack [14].

1.5.9 Porosity

Pore defects are gas inclusions inside the welded area (Figure [1.27). During the welding
process, some gases are injected. If the metal solidifies too fast, the gas bubbles get
entrapped before they can float out. Porosity can be caused by high welding speed,
resence of impurities in the welding side, high sulphur content in the electrode or wrong
welding current or polarity [81]. Porosity is an intolerable defect and therefore has to be
removed. One solution is to use electrode formulation [60].

1.5.10 Wormholes

This volume errors only occur within the seam and have a tube-like geometry. This
defect is also not tolerated and has to be removed. They emerge at one point and then
grow along the solidification direction upward (chimney effect). They can even reach
the surface and that is why they are called wormholes (Figure . The diameter of
the tube is usually kept constant.

To prevent wormholes, one should eliminate the gas and cavities. To this end, one
needs: to clean the workpiece surfaces around the weld, to remove any residue such as
oil or grease after every NDT operation and to eliminate the surface coatings from the
joint area to expose bright material.
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Figure 1.25: a) Representation of internal cracks in a weld; b)
Schematic view of hydrogen embrittlement process; c) Real image
showing internal cracks [30].

1.5.11 Lamellar tear

This defect appears in T-join and fillet welds. The crack is always related to points of
high stress concentration and they appear parallel to the plate surface (Figure [1.29).
Several conditions must be satisfied in order to observe a lamellar tear:

e There exists a shrinkage force acting through the plate thickness.

e Cracks are perpendicular to the direction of the shrinkage force.

e The fusion boundary is almost parallel to the plane of the defects.

e The plate normally has poor ductility in the through-thickness direction.

Changing the construction process to use casted or forged parts can solve this problem,
since these defects only arise in welded parts.
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b)

Figure 1.26: a) Cross section xy representing slag inclusions in
red; b) Real image showing a slag inclusion [75].

b)

Figure 1.27: a) Cross section zy representing porosity. b) Real
image: round holes in the weld bead are a sign of metal porosity

3],

b)

Figure 1.28: a) Representation of a wormhole in a T-join weld
(shown in red); b) Real image showing wormholes [31].
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Figure 1.29: a) Representation of a lamellar tear (red) in a T-join
weld; b) Real image of an appearance of fracture face of lamellar

tear [47].
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2 Automatic classification of TOFD
defects: state of the art

TOFD is one of the most popular ultrasonic NDT methods. However, it also has disad-
vantages, as is the lack of techniques to automate the interpretation of TOFD images
and the classification of defects, which are still done manually.

Before we present our classification methods, we want to give an overview of the
existing current techniques that have been used to overcome this last disadvantage.
Even though this research field is very open and there is still a lot to be done, there have
been some remarkable attemps and it is worthy to mention them.

The goal is to interprete TOFD images without the help of a human operator. The
general procedure for automatic interpretation of TOFD images is normally divided into
four main stages, as shown in Figure [2.T

Data Image Image Image

acquisition Pre-processing segmentation classification

Figure 2.1: Procedure’s scheme for the automatic interpretation
and classification of TOFD defects.

After the data is obtained using TOFD equipment, the next steps are preprocessing,
image segmentation and image classification. In the rest of this chapter each of this
steps is presented and some of the current techniques are shown to the reader. Please
note that here we only give a brief introduction to them.

2.1 Image pre-processing stage

After a TOFD measurement has been taken (as explained before in section 1.4.1), a raw
image is obtained. This is represented by a b-scan (Figure center). To perform
an image segmentation in a later step, an image pre-processing has to be implemented.
This stage comprises two processes:

e Removing everything from the raw image that does not belong to the region of
interest (ROI).

e Denoising or background removal.
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In section 1.4.1, we noted that the first wave that arrives to the receiver is the lateral
wave and the latest is the backwall echo. The ROI is the region that exists between these
two signals (Figure , and therefore, the rest of the image is not further processed. It
is also important to remove these two strong signals as well (lateral wave and back wall
echo), in order to reduce the amount of data analyzed in the next steps.

TOFD b-scans are usually quite noisy and denoising is needed in the remaining image
of the ROIL. One can use linear processing methods [99] for this purpose. In the present
research project, a sparse deconvolution method [I9] [20] is used, where an Orthogonal
Matching pursuit (OMP) algorithm adjusted to NDT is applied. This method eliminates
the low amplitudes in every a-scan, removing an important amount of noise and it is
explained in detail in the following subsection. After applying this method, we obtain
a deconvolved b-scan (Figure right), where the amount of data has been reduced
substantially while retaining the fundamental image, in this case, the defect shape.
Processes involved in the preprocessing stage are illustrated in Figure 2.2}

ROI

Figure 2.2: Left: Selection of the region of interest; right: decon-
volved b-scans after using a sparse deconvolution method. Some
noise still remains.

Finally, the basics of the sparse deconvolution method used in our work for prepro-
cessing are explained in the next subsection:
2.1.1 Sparse deconvolution methods for NDT

In the TOFD method, the receiver measures the amplitudes of the arriving waves. These
signals come either from defects or noise and the measured amplitude is a function of
the form [20]:

K
m(t,p) = (g(t) * ( > Axlt,p) + N(t,p)>> (4),

k=1

where:

e { is time and p is a certain position of the probes.
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m(t,p) is the measured amplitude and it is represented in a b-scan.

K is the total number of defects.

g is an ultrasound impulse function (i.e., Gabor impulse, etc).

A is the amplitude function, which takes into account several physical waves phe-
nomena such as divergence, absortion or dispersion.

N is the noise that can come from reflections of small inhomogeneities of the
material.

Nowadays, due to the high quality manufacturing processes in steel industry, it is
reasonable to assume that only few defects are present. Accordingly, Zle A(t,p) is
a sparse signal, while the noise N(¢,p) is not (many values with low amplitude). As
already explained, high amplitude values come from strong signals and the Noise N (¢, p)
will influence with a minor role the function m. Due to the sparsity shown of the main
signals, sparse deconvolution methods can be used. These try to find a sparse solution
X of the problem:

m=gx*X.

The solution X will be a good approximation of the solution m and at the same time
a large amount of noise will be filtered out. We assume that an upper bound L € R of
the non zero elements of X is given and the impulse function g to be known. In many
applications, this is not the case. For a more comprehensive account, we refer the reader
to [20], where techniques are discussed in order to solve a blind deconvolution problem
where ¢ is not known.

What kind of sparse deconvolution methods are suitable for our problem? In ultrasonic
NDT, there are two main requirements that must be satisfied [19]:

(i) Stability respect to noise.
(ii) Computational efficiency.

The so-called Greedy methods satisfy both conditions. These techniques try to find a
global solution of a problem by solving several local problems and then combining them.
One of the handicaps of these methods is that the solution obtained is approximate and
not exact, although it is very fast and stable. In our work, we have used the adjustments
of a Matching Pursuit (MP) and an Orthogonal Matching Pursuit (OMP) to NDT. In
the following paragraphs, the basics of these Greedy methods considered in this work
are explained. For a more detailed explanation the reader is referred to [20].

Let f be a signal in a Hilbert space H and D = {gi,...,gp} a dictionary. The idea
of the MP method is to represent this signal as a weighted sum of functions g,, taken
from D where v, # v.Vn # k :

L
f(t) = Z Tngvy, (t)7
n=0
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where the functions g are normally called atoms, n is the number of atoms chosen and
x, refers to the amplitudes of each atom.

Having chosen a dictionary D, MP finds first the atom z,, that has the largest inner
product with the signal f(¢). Next, the residual r,, is calculated substracting the contri-
bution due to that atom to the signal. Finally, the process is repeated until the residual
is small enough and the signal has been decomposed adequately. We can schematise the
MP algorithm as follows:

Given a signal f(t) and a dictionary D:

(i) Set r1 = f(t) and n=1. Repeat 2 and 3 until some stopping criterion is satisfied,
i.e, ||rn|| < threshold.

(ii) Find g4, € D with the biggest inner product [(ry,g,,)| i.e., the best match with
the residual.

(ili) zpn = (" Gyn)s Tntl = Tn — TnGy,, B =1+ 1.

OMP gives better results but it is computationally less efficient. The difference with
MP, is that OMP takes into account the correlations between active dictionary ele-
ments [94].

It has been explained how MP works in general, but how is it applied to ultrasonic
NDT? The signal f(t) is an a-scan in our case. Therefore, in order to denoise or decon-
volve a whole b-scan one can repeat the process for every a-scan. We assume that our
ultrasound data m = g * X is sampled on a time grid 1 < ¢; < ... < ty < o0 and g is
known. Therefore (m (tk))kN:1 is given. We assume m is of the form:

L
m = Z(I}kf( — Tk),
k=1

with L the number of ultrasonic impulses and shift parameters 71, ..., 77, and zp € R
for k =1,..., L. The problem is that the exact shifts are unknown so we need to choose a

dictionary D = {f(.—7%) }f:[:l that at least contains good approximations. The sampling
points 1 <ty < ... <ty < oo are chosen such that [t;, — 75| is small enough, so we can
guarantee that there exists t;, such that |¢;,| is small and

L L
m = Z:L’kf( — Tk) ~ Zi’kg( — tjk)-
k=1 k=1

Now it is possible to discretize the equation m = g x X:

m(t1) glti—t1) ... g(ti—tm) T
m = : G := : : X:=]": (2.1)
m(tn) gltn —t1) ... gty —tar) T\
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To perform one MP iteration of the data m with dictionary D we need to calculate:

N

T
arg maz, |(m, g(. — t;))| = arg maz, ;m(tk)g(tk —t;)| = argmaz|G' m|.

We have assumed that the number of ultrasonic impulses L is known for every a-
scan. This assumption will never be realistic since we do now know the exact number
of defects. Instead, it is reasonable to fix an upper bound for L. Considering a TOFD
measurement, we will always get two strong signals (lateral wave + backwall echo) plus
the signals coming from the different defects:

L~2+4Y,

being Y our guess for the number of defects inside the tube. In many a-scans there will
be just two signals caused by the lateral wave and backwall echo, so the MP algorithm
will reconstruct at least Y signals caused by noise. That is why a pure MP algorithm
will never denoise completely our data.

2.2 Image segmentation stage

A typical ROI of a deconvolved b-scan (after using a sparse deconvolution method) could
look like Figure where two parabolic shapes and one linear shape could correspond to
pore and crack defects respectively. It is clear that defect areas are just a very small part
of the whole ROI. That is why several techniques are employed to subdivide an image
into its constituent regions or objects. In this way, a more exhaustive image processing
can be applied in the next steps. The image segmentation in different regions or objects
can be done using several techniques, including morphological processing techniques [37],
clustering algorithms [83] 58], etc. The present research work uses clustering algorithms
to segment the image into different regions. These divide a given Point Cloud of Data
(PCD) into different clusters. For example, in Figure a clustering algorithm would
allow us to cluster the three observed shapes and separate them from the remaining
noise.
By clusters, we mean a set of points that have the following properties:

e Elements that belong to the same cluster should be related to each other / to the
cluster.

e Elements that belong to two different clusters should be unrelated to each other /
to the cluster.

In this case, the relation is defined as the distance between points. For example, given
a set of points S = {p1,p2, ..., pm} we could say that two elements p; and p; are related
if [|p; — pj||2 is smaller than a certain threshold. So basically, a clustering algorithm
tries to create clusters according to certain relation measure between the set elements.
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Figure 2.3: Deconvolved b-scan after pre-processing step. Three
clusters and some remaining noise represented.

There are many clustering algorithms available in literature, such as the Complete and
Single-Linkage algorithm [53], k-means algorithm [41], fuzzy clustering algorithms [10],
etc.

One can limit the number of suitable algorithms for each application. In order to to
that, one needs to consider the following questions:

e Which is going to be the function used for relation between the data elements?
e Do we allow overlapping clusters?
e Do we know the number of clusters a priori?

One algorithm that is suitable for TOFD data is the so-called Density-based spatial
clustering of applications with noise (DBSCAN) [42] due to the following reasons:

e It does not need to know the number of clusters in advance. This is our case in
NDT data since we do not know the number of defects inside the material.

e It does not require one element to be related with all other elements of the cluster.
This is our case in TOFD data since there might be a large distance between the
first and the last peak caused by a defect.

e It can handle noisy data and will serve as an extra denoising process, since noise
points are not clustered and therefore eliminated.

One disadvantage is that it cannot properly handle overlapping clusters (intersection
of defects in b-scans). This will be addressed in section In the following subsection,
a short introduction to DBSCAN is included. For a more detailed overview, the reader
is referred to [42].
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2.2 Image segmentation stage

2.2.1 Density-based spatial clustering of applications with noise (DBSCAN)

DBSCAN is a data clustering algorithm that models clusters as high-density clumps
of points. When looking at Figure 2.3 one can confirm with no doubt that there are
“clusters” of points and noise points which do not belong to those clusters.

By clusters, we mean areas with a density of points appreciably higher than outside
those areas. Indeed, the density in the noise areas is smaller than in any cluster area.

Before we explain how the algorithm works itself, some definitions are needed. We
consider the 2D case. Note that all the next definitions can be easily extend to higher
dimensions. Let S be a PCD. Then the definitions are as follows:

Definition 2.1. The e-neighbourhood N, of a point p € S is defined as follows:

Ne(p) ={q€S:d(p,q) <e}.

Basically, a ball with radius € can be drawn around p, and then the points ¢ contained
in that ball are considered to be the neighbourhood of p (Figure ) With this defi-
nition in mind, now we can classify all points from the PCD S:

a) b)

. ..

Figure 2.4: a) Taking € as radius, we can draw an e-ball. ¢ is
a neighbour of p whereas ¢ is not; b) Given € and P, = 3, p1
is a core point while py is not; c¢) Representation of core, density
reachable and noise points.

Definition 2.2. Let P,;, € N. We say that p € S is a core point if the number of
neighbours |N¢(p)| > Pin-

In Figure 2.4b we further explain this concept.

Definition 2.3. Given € and P,,;,, we say that a point ¢ is directly density-reachable
from p if ¢ € Nc(p) and |Ne(p)| > Prin-
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Looking at the example of Figure 2.4k, for the given € and considering Py, = 3, we can
see that ps is directly density-reachable from pq, since p3 belongs to the neighbourhood
of p1 and |Nc(p1)| = 3 > Ppin, so both conditions are satisfied.

On the other hand, pg is not directly density-reachable from p;, since it does not
belong to its neighbourhood.

Definition 2.4. We say that a point ¢ is density reachable from p w.r.t. € and Py,
if there exists a path pi1,...,p, being p1 = p and p, = ¢ such that p;1 is directly
density-reachable from p;.

In Figure 2.4k, red dots represent core points. We can see that pg is density reachable
from p; since one can find the path pq, p7, p¢ with the properties defined above. A core
point forms a cluster with all points that are reachable from it. Points that are not
reachable from any others are noise (see py in Figure )

Once these definitions are clear, one can schematise the DBSCAN algorithm as follows:

(i) The only two parameters of the algorithm are set: € and Pp,.

(ii) It starts with a random point p. If |N(p)| > Pin then a cluster is started. If
this is not the case this point is considered as noise, but take into account that
later it could join a cluster if it is density reachable or for another value of €. The
algorithm retrieves all points density-reachable from p w.r.t. € and Pyp.

(iii) If p is a border point, no points are density-reachable from p and DBSCAN looks for
the next point of the point cloud, in order to look for new clusters or noise points.
An example of clustering using DBSCAN algorithm can be found in Figure

The DBSCAN clustering algorithm is a powerful method to divide the image generated
by the ultrasonic NDT techniques into different clusters. However, some drawbacks has
to be mentioned:

e [t is not able to properly handle data sets with different densities, since in that
situation it is very complicated to find a suitable value for e.

e In some cases, representation of defects in b-scans could intersect. For instance, in
Figure we see that the two parabolas intersect each other. DBSCAN could fail
in these cases, since you may start clustering from a parabola branch, but when
getting to the cross intersection, you may continue with the wrong path. For such
cases, we have elaborated in section [5.2.2] an algorithm based on central differences
which is able to cluster intersecting defects without problem.

2.3 Image classification stage

After we have segmented the image and extracted the main features from denoised b-
scans, it is time to classify the different types of defects. The main part of our work
precisely focuses on new techniques at this step to automatically classify TOFD defects.
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2.3 Image classification stage

epsilon = 1.02
minPoints = 4

Figure 2.5: Clustering after applying DBSCAN to the PCD
shown. Different colours represent different clusters and white
dots are noise points. Source: [71].

Different techniques are available in the literature for extracting different features of
the defects and classifying them. Among them we can name wavelet features [74], texture
features [906], [88], first order statistical descriptors [48], geometric descriptors [74], etc.

Given first statistical descriptors, in [27],26] they use Artificial Neural Networks (ANN)
and linear classifiers to perform a classification based on those descriptors. In the rest
of this section, we explain deeper some of these ideas.

2.3.1 Statistical classification, linear classifiers and artificial neural networks

Let us suppose that a set of categories is given. In statistics, classification can be seen
as the process of identifying to which of these categories a new observation belongs.
These are created based on different data observations. For example, rocks can be
classified according to the hardness, rugosity, colour, geomorphologic origin, etc. Each
of these characteristics of the rocks could be weighted, i.e., some of them have greater
importance than others for classification. Basically, classification is a problem of pattern
recognition. When a new observation is taken, there is a function who maps it into
one of these categories. These kind of algorithms are known as classifiers, in which a
mathematical function is built to assign one category to the input data.

In the NDT field, and especially in TOFD data measurements, the categories would be
the different types of defects. After image pre-processing and segmentation, one is able
to extract or cluster the different PCD that correspond to the different defects (parabolic
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2 Automatic classification of TOFD defects: state of the art

Figure 2.6: b-scan with two parabolic defects that intersect. Ide-
ally, one would like to find two clusters: the parabola ab and the
parabola db. The problem with DBSCAN is that you may start
clustering from a but when gettin to z, the algorithm may continue
through the path ze.

PCD, linear PCD). One could describe those features statistically, i.e., computing the
mean, standard deviation, energy, skewness, etc. The task of a classification algorithm
is to identify a new defect with the created categories that are based on the experience
and observations of data.

Recently, Artificial Neural Networks (ANN) have gained quite some popularity as
automatic systems for interpretation and classification of defects [27, [69) 63 [62]. ANN
structures are similar to that of the human brain, and are able to process a huge amount
of data in short periods of time. Their structure is normally based on a system of
interconnected "neurons” which can interact between each other (Figure [2.7). These
interactions can be based on experience, and therefore ANN are able to learn, which
make ANN a really interesting tool. We can reformulate the problem in a mathematical
way as follows:

Let G be a class of functions. By learning we mean applying different observations to
find a function f € G such that the problem is solved optimally, i.e., for a cost function
C : G — R, the target is to find a function f such that f is the solution with least cost:

C(f)<Clg) Vged

In many cases, the solution will depend on the data, and clearly the cost must be a
function of the observations in order to model according to the data. Let us consider
one of the easiest examples for a better understanding. Let (x,y) be pairs of some
distribution D. Imagine we want to find the function f that minimizes

G = E[(f(z) - )]

Probably, we only have N samples from the whole PCD and therefore the cost is
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—

—
—)
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—)

—)

Output layer
Input layer

Hidden node layer

Figure 2.7: Representation of an Artificial Neural Network. In
TOFD classification of defects, as input we would have a TOFD
image or measurement. The output is the type of defect group to
which it belongs.

minimized only over a sample:
L1 X
G == (flz:)—w)?
N

ANN can use linear classifiers to make classifications based on values of a linear com-
bination of the characteristics or features values. These values are normally represented
in a input vector. The mathematical formulation of the problem is the following;:

Let z be the input feature vector to the classifier. Then the output is

y=fw-z)=f (ijxj) :

being w the vector of weights. This means there will be variables “more important” than
others for the classification. We consider another illustrative example.

Imagine that given a sentence, we would like to classify it as positive or negative. To
this end, a linear classifier can be used. The structure of the problem is illustrated in

Figure
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Output 1:

e —)
Positive
Input x: Linear
—) sentence Classifier
Output 2:
Negative —

Figure 2.8: Structure of the proposed example for understanding
of a linear classifier.

How does this classifier work? One can imagine a very simple threshold classifier.
This would be just counting the number of positive and negative words in a sentence. If

Number of positive words > number of negative words = y = positive. Otherwhise
y = negative.

Given an input sentence like “We went to the cinema. The movie was great and the
chairs good. On the other hand, the company was disgusting®, we find two positive
words and one negative. Accordingly y > 0. This threshold lists have some limitations:

e How is created the positive-negative word list?

e Words have different degree of sentiment (superb > great). How do we weight
different words or variables in general?

e Single words may not be enough, i.e., “not good” is negative.

The first two problems in the list are normally addressed by learning a classifier and the
last problem needs a more elaborate solution. Therefore a linear classifier uses training
data to give a weight for each word. In the table below an example of weighted words is
given. Then for the given input sentence “We went to the cinema. The movie was great
and the chairs good. On the other hand, the company was disgusting”, now we compute
the score taking the weights into account:

y=1+15-2=0.5>0 positive

This method receives the name of linear classifier because the output is a weighted
sum of the input. Following ideas of this mini example, linear classifiers have been used
in content based-recommendation systems [78].
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2.3 Image classification stage

Words Weights

horrible -3.1

bad -1

disgusting -2

fantastic 2.3

awesome 3

superb 2

great 1.5

good 1

the, food, cinema, chair, movie, etc 0

Table 2.1: Weights defined for each word.
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3 An introduction to topological data
analysis

As we said in the Introduction, our classification methods are innovative in the NDT
field and are based on persistent and tangential homology ideas. In this chapter, an
introduction to this topic is given. This is necessary in order to understand the foun-
dations of our methods. For a more complete analysis on topological data analysis, the
reader is invited to consult [73], 23] [70].

3.1 Simplices and simplicial complexes

Simplices are generalizations of triangles or tetrahedrons to arbitrary dimensions, and
are the simplest cells used in persistent homology. Let U = {ug,...,u,} C R"™ be
n + 1 affinely independent points in R™, which means u; — ug,...,ux — ug are linearly
independent. This is needed so that we don’t end up with collinear vertices. Then, an
n-simplex A,, = A, (U) is defined as a n-dimensional polytope, given by the convex hull
of its n + 1 vertices:

A, = UZZAjUjZOS/\jSl&HdZ/\jZl c R™.
=0 =0

The most regularly used simplices in R? are shown in Figure

A4

Figure 3.1: 0-, 1-, 2-, and 3- simplices: vertex, edge, triangle,
tetrahedron.

Taking simplices as building units, it is possible to combine them. A simplicial complex
K is a finite collection of simplices that satisfy the two following requirements:

(i) Every face of a simplex from K is also in K.
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3 An introduction to topological data analysis

(ii) The intersection of any two simplices 73 and 73 in K is either the empty set or a
face that belongs to both 7 and 7.

A d-face o4 of a simplex 7 of dimension p is the d-dimensional subset of d + 1 vertices,
where 0 < d < p. We write K, to indicate the set of d-dimensional simplices in K. In
Figure [3.2] we represent a valid simplicial complex.

Figure 3.2: A simplicial complex K consisting on ver-
tices, edges, triangles and one tetrahedron, where Ky =
{a,b,c,d,e, f,g,h}; K1 = {ab,bc,cd,da,ae,eb,bf,ef, eg, fg,gh};
Ky = {acd,afb,aeb,bef, eqf}; K3 = {abfe} and kg =0 V d >
3.

3.2 Filtrations. The Vietoris-Rips complex

We denote by L a simplicial subcomplex, which is a subcollection of simplices from K
which forms a simplicial complex by itself. Let N € N be a natural number. We
define a filtration F' of K as a nested collection of simplicial complexes F,, K — K, for
n € {0,..., N}, which goes from the empty set until K in the following way:

0=FRK - K —...—- Fy_.1K— FyK — K,

where N denotes the length of the filtration. Some interesting topological features
(e.g., connected components and holes) appear and disappear when building a simplicial
complex K from subcomplexes through a filtration F'. We show this process in Figure|3.3

In this research work, we use Vietoris-Rips complexes (VR) with same birth times for
building a filtration F. To understand how this approach works, consider the example
from Figure Let X = {x1,....,zn} be a set of N vertices forming a point cloud.
This PCD is the first step of F' (Figure[3.4h). Then N e-balls are centered at each vertex
in X, being € the radii of the balls. Further steps of the filtration are created increasing
gradually the radius of the balls.

Now the VR complex at each step of the filtration is built as follows:
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We

. —

Fy - F,

Fs Wi Fs

Figure 3.3: Filtration of length 4 of the simplicial complex K
of Figure Note that the intermediate subcomplexes are very
different from the final state. Connected components and holes
appear and dissapear across F.

e When two balls intersect, an edge (1-simplex) is added between the two centers
(Figure [3.4p).

e When there is a closed loop between three 1-simplices, i.e., pairwise intersection
between three balls, one 2-simplex (triangle) is added (Figure [3.4b,c and d). The
same applies for n-simplices of higher dimensions.

3.3 Homology groups and Betti numbers

Every simplicial complex has different topological invariants such as connected compo-
nents and holes. These can be detected by homology, a well known topological tool.
The homology groups of a simplicial complex K, denoted by H,,(K), give the number of
connected components for n = 0 and the number of n-dimensional holes Vn > 0.

In order to understand how H, (K) are computed, we refer to the simplicial complex
in Figure a triangle with its interior.

To compute the homology groups we first need to describe the n-dimensional chain
groups Cyp(K) of K, which by definition are formal linear combinations of n-simplices.
For instance, in Figure Cy is isomorphic to Z3 with basis vy, v and vs. Oy is
isomorphic to Z3 with a basis given by the 1-simplices e, e and e3. Cy is isomorphic
to Z with basis the 2-simplex T'. Finally, C,, =0 Vn > 2.
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a b

O

~

e

Figure 3.4: Four steps of a filtration from random PCD where in
each step a Vietoris-Rips complex is built. Number of connected
components and holes are different at each step of the filtration.
For instance in b there are six connected components and one 1-
dimensional hole.

An oriented simplicial complex is a simplicial complex K equipped with a partial
ordering on its vertices that restricts to a linear ordering on each simplex (Figure .
Let o = (09, ...,0,) be an oriented n-simplex. The boundary operator O, : Cp — Cp_1
of ¢ is the homomorphism:

n

On(0) = Z(—l)i(ag, ey i1y eeey Tily +-On),s

i=0
where (0, ...,0,) are the faces of o. In Figure we see that

d(v1) = d(v2) = O(vs) = 0,
d(e1) =vy —v1, O(ez) =v3—wv2, OJ(e3)=v3—v1, and
8(T) =e1 + ey + e3.

Geometrically, a cycle is a closed loop (e.g. e; + e2 + ez in Figure . From the
algebraic viewpoint, the cycle group Z,(K) is the subspace generated by the kernel of
the boundary operator Oy:

Zn = ker(0y).

The boundary group B, (K) is the subspace generated by the image of the boundary
operator Jp41.
Bn == zm(8n+1)

We compute all the cycle and boundary groups for the example of Figure [3.5
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vz

€4 €z
Cr

"]

Wy V3
€3

Figure 3.5: An oriented simplicial complex K with 0-simplices
v1, V9, V3, 1-simplices eq, eg, e3 and 2-simplex T.

Since the boundary of a 0-simplex or vertex is 0, then Zj is the space generated
by the 3 vertices,
Zy = ker(a()) =Cy=<w1,v9,v3 >.

Computing Z; = ker(9;) means solving the problem 9(ae; + Bes + ye3) =0, i.e.,
a(vy —v1) + B(vs —v2) +y(v1 —v3) =0, Va,B,7€R.

This leads to a = 8 = v and therefore Z; = ker(d1) =< e1 + €3 + e3 >=Z.

For the rest of cycles groups

Zn=0 Vn2>2.

Then boundary groups are computed:

BU = im(&l) =< V2 —V1,VU3 —V2,V1 — V3 > .
B = im(ag) =< e +ep+ e3>,
B,=0 Vn>2.
Note that (vy —v1) + (v1 — v3) = —(v3 — v2), hence By =< vy — vq,v3 — vg >= Z>.

The n-dimensional homology group is defined as the quotient of the n-cycle group and
the n-boundary group,

For the example of Figure the homology groups are

Hy = Zy/By =< v1,v2,v3 > [ < vg —v1,03 — V2,01 — V3 > = 1,
H =7,/Bi=2/7 = 0.

We define the Betti numbers (3, as the rank of each homology group. [y measures
the number of connected components in a simplicial complex and 5, the number of
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3 An introduction to topological data analysis

n-dimensional holes ¥n > 0. In our example from Figure Bo =1and 8, = 0. To
summarize, the reader should keep in mind that homology is a tool that allows us to
calculate the number of connected components and holes of a simplicial complex.

We remark that Betti numbers are sensitive with respect to perturbations in the
simplicial complex, e.g., Betti numbers may change when adding only a single vertex
(Figure [3.6). To avoid such instabilities, persistent homology considers a filtration F
of a simplicial complex K. Betti numbers are essentially computed in each step of the
filtration, keeping track of topological changes (e.g. for holes and connected components).

a) b)

Figure 3.6: By adding a vertex, the Betti Number is incremented
by one from a) to b).

3.4 Barcodes and persistent diagrams
As we noted before:

e Persistent homology keeps track of the "birth” and ”death” of topological features
across a filtration F'.

e Betti numbers are computed in every step of F.

To monitore the change of homology classes a barcode is normally used (Figure .
The beginning and end of every bar represents the birth and death (in terms of balls
radii) of a topological attribute (1-dimensional holes in case of Figure . Long bars
represent stables holes across F' while short bars correspond to unstable or noisy features.
Note that a similar barcode can be generated in every dimension.

Another equivalent representation to the barcode is the so-called persistent diagram
(Figure , which is a 2-dimensional graph where the points represent the topological
features. The z and y coordinates give the birth and death of them. Points far away
from the diagonal indicate the existence of holes with a long lifetime across the filtration.

Currently, there is no mechanism in most of homology softwares to extract the points
involved in a given homology class or hole, but one should be careful about asking which
holes in the complex correspond to which generator. In particular, if the complex comes
from points sampled on the annulus 1 < ||z|| < 2, then any collection of points which
goes all the way around the hole is a legitimate homology generator, and any two such
generators are equivalent in the sense that they generate the same class.
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Figure 3.7: a) Barcode representation of H;(K). Five steps of the
filtration are shown. Stable holes correspond to long bars (red).
The Betti numbers are equal to the number of bars intersecting the
dashed line; b) Equivalent persistent diagram generated with [49].

3.5 Persistent homology with different birth times

We would also like the reader to keep in mind another way of building a filtration, the so-
called 7persistent homology with different birth times”, which will be used in our second
classification method exposed in section [5.2)

This type of Vietoris Rips filtration is created with vertex-radius-birth triples [72].
A radius for every vertex ball is fixed and it will not change. The idea is that every
vertex gets its own birth time in the filtration. The complex is built in the same way
i.e., two vertices get an edge between them if their corresponding balls intersect. This
edge appears only when the 2 corresponding vertices have emerged in the filtration.

In Figure this procedure is explained. We consider nine points in 2D. Green balls
are drawn around every vertex with a certain value for the radius. In the top-right of
the figure, the coloured numbers indicate when the vertices appear in the filtration F
(bottom-left). In each step of F' the VR-complex is built as we explained in the previous
subsubsection. Similarly to Figure 3.7, but now looking at the 0 betti numbers, the
barcode of Figure keeps track of the birth and death of the number of connected
componens across F' (two connected components in steps 1 and 2 of F', four in step 3,
two in step 4 and 1 from step 5 to n).
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3 An introduction to topological data analysis

Figure 3.8: VR complex with different birth times.

3.6 Other filtrations

In this section, we present other interesting complexes used to create a filtration. The
motivation for their use is presented, as well as the advantages and disadvantages of
them.

3.6.1 Cech complex

Let X = {x1,....,xn} be again a set of N vertices forming a PCD. Then N e-balls are
centered at each vertex in X, being € the radii of the balls. We define the Cech complex
at each scale € > 0 in the following way:

Definition 3.1. Let 7 = (p1, ..., pm) be collecion of points in X. We say that 7 is an
m — 1 dimensional simplex of a Cech complex C. if

m

() Be(pi) # 0,
j=1

or equivalently, if the corresponding € balls have a nonempty intersection.

For instance, if we consider the PCD a, b, ¢ given in Figure [3.9and the e-balls shown,
one can extract the following conclusions:
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3.6 Other filtrations

e ab belongs to the Cech complex C. because the intersection of the corresponding
balls is nonempty. The same applies for ac and bc.

e The simplex abe does not belong to C, since the triple intersection is empty (small
white area of Figure left). Instead the associated Rips complex does contain
abc as explained in the previous section.

Figure 3.9: Left: Cech complex for the given PCD and ¢; right:
the Rips complex does contain the 2-dimensional simplex abc.

From the definition of a Cech complex, it is clear that a simplex 7 will appear in
the step of the filtration where one finds the smallest radius e such that the intersection
between all balls of points belonging to 7 is nonempty. This problem can be reformulated
in another way [73]:

Given a collection T of points in R%, what is the smallest radius r so that there exists
some point x in RY whose distance from each point in T is less than r¢ This is known
as the smallest enclosing ball problem and for large PCD it is pretty complicated.

Therefore, from the computational point of view, building a Vietoris-Rips filtration is
cheaper than a Cech for the same PCD since for the first of them just simple pairwise
distance calculations are needed. Once we know how the Cech complex is built, it is easy
to define how to create the filtration. It is done in the same way that a Vietoris-Rips
Filtration by changing the value of the parameter e.

We already mentioned the main disadvantage of the Cech filtration, which is related
to the computational complexity of the smallest enclosing ball problem. On the other
hand, this filtration “beats” the Rips in the sense that it is faithful to the topology of the
union off balls. Taking a look at Figure the 2-dimenional simplex will not appear
until the triple intersection is nonempty. Algorithms to construct a Cech filtration can
be found in [34].

3.6.2 Alpha complex

Vietoris-Rips or Cech complexes may contain many simplices when the value e-balls are
big. There exists a variant of the Cech complex called alpha complex, which considers
the intersection of e-balls with the Voronoi cells for the given PCD.
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Let S be a finite set of points in R? and € a positive real number. For each p € S let
B(p) a ball of radius € at each point p, and let

U(e) = U Be(p)

peS

be the union of these balls.

Definition 3.2. [57]. Considering the 2-dimensional case, let S = {p1,p2,...,pn} be a
finite set of n points in R2. Let d(p;, p;) the ecuclidean distance between two points p;
and p;. The locus of points which are closer to p; than to p;, denoted by L(p;,p; ), is
given by one of the half planes that results from computing the bisector between p; and
pj. The locus of points closer to p; than to any other point in S, denoted by V(i) is
given by

i#]
the intersection of all the half planes associated with p;. Repeating the process for every
point in S, this will result in a set of N regions bounded or unbounded, which are known
as the Voronoi diagram V' (.S) of the set S.

This definition can be generalized to higher dimensions. An example of a Voronoi
diagram is illustrated in Figure [3.10

Let us consider the intersection between each € ball and their corresponding Voronoi
cell:

Rp(€) = By(e) N V.

This is illustrated in Figure At each scale € > 0, the alpha complex alpha(e) can
be defined as follows:

Definition 3.3. A simplex 7 = (p1, p2, .., pq) belongs to alpha(e) if

ﬂ Ry(e) #0.

peET

To further explain this, we refer to the example of Figure The simplex {127}
exists because there is triple intersection between Rj(€), Ra(€) and R7(e). On the other
hand, the edge {26} does not belong to the complex since the intersection between Rs(€)
and Rg(e) is empty. From the definition of alpha complex alpha(e) the following holds:

o Ry(e) C V.

e R,(e) C By(e) and therefore alpha(e) C C..
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3.6 Other filtrations

Figure 3.10: The Voronoi diagram of a set of 20 points in 2D.

One of the advantanges of alpha complexes respect to Cech complexes is that they use
less simplices. This is something that can be clearly seen in the example of Figure [3.11]
where for example the edge {74} will never exist even for a large value of € since the
limit of Voronoi regions makes it impossible. On the contrary, this edge will appear for
some € big enough in the Cech or Vietoris-Rips filtration.

As in the previous sections, once we have defined how the complex is built, the last
step is the creation of the filtration. Given our collection of points S in R? we can
increase now the value of € in order to get a nested sequence of alpha complexes, where
we denote by K the i-alpha complex in the filtration

=K°cK'c..c K™

3.6.3 Witness complex

It has been seen that simplicial complexes such as éech, Vietoris-Rips or Alpha use all
points from the PCD in order to build the filtration. For huge complexes, this can be
very expensive from the computational point of view. There are some cases in which a
smaller vertex set can be representative of the topology of the studied object. In this
case, it would be very interesting to create simplicial complexes based only on certain
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Figure 3.11: Intersection between e-balls and the Voronoi re-
gions. The associated alpha-complex is superimposed.

points of the PCD. These structures are called witness complexes and were introduced
in [35], where the reader can find a more comprehensive account on the topic.

Smaller complexes are obtained by choosing a set of landmarks from the PCD, and
then building a witness complex on this set. This means that the remaining points that
are not used as landmarks, will be employed as witnesses to the existence of higher
dimensional simplices in the complex (edges, triangles, etc.).

3.6.3.1 Definition of the witness complex W (D)

Let P be the total number of points of a PCD. We consider IV data points and a set of
landmark points n such that N +n = P. Let D be an n x N matrix with entries greater
or equal than 0:

dll ce CllN
D:=|: . s (3.1)
dpi ... dnn

where d;; represents the distance between a landmark point ¢ and a point j. The strict
witness complex Wy (D) with vertex set {1,2,....n} is defined as follows:

(i) An edge 7 = [ab] belongs to W (D) if there exists a point 1 < i < N s.t. d(a,q)
and d(b,i) are the two smallest entries in the ¢ — th column of D.

(ii) By induction in p: imagine all the faces of a p-dimensional simplex 7 = [ag, a1, ..., ap)
belong to Wy, (D). Then 7 also belongs to Wy (D) iff one can find a point
1 <i < N st. d(ao, i), d(ai,i),...,d(ap, i) are the smallest p 4+ 1 entries in the
1 — th column of D.
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3.6 Other filtrations

In both cases, we say that i is a “witness” to the existence of 7. To further explain
this, we refer to the example of Figure left, where we consider a PCD of ten points.
We consider the case where the landmarks are a, b, ¢, d. Therefore the complex is going
to be built only around those vertices and the rest of points will determine the existence
of edges and triangles in the W, (D) complex. First of all, one needs to construct the
matrix D of distances between landmarks and the rest of points:

1 2 3 4 5 6

41 34 12 45 5 0.8\ a
D= 42 33 09 42 45 1 |b

49 4 1.8 47 51 05| c

13 16 2 08 07 5/ d

From the definition on W (D) and taking a look on D, one can extract the following
conclusions:

e 3 is a witness of the existence of the edge ab, since d(a,3) and d(b, 3) are the two
smallest entries in the third column.

6 is a witness of the existence of the edge ac.

The edge bc has no witnesses and therefore does not occur in the complex Weo (D).

1 is a witness of the edge ad.
e 2 4 and 5 are witnesses of the edge bd.
e dc has not witnesses and does not occur in W (D).

e The 2-simplex abd appears in Wy (D) and there are three witnesses 2,4, 5.

In Figure right we show the complex W, (D).

In practice, it is costly to compute Woo (D) and normally a “lazy version” Wj(D) of
the witness complex is used. Wi (D) has the same skeleton than Wo, (D) and it is defined
as the maximal simplicial complex containing W, (D) (Figure 3.13). For instance, in
2D this means that whenever there are three 1-dimensional simplices forming an empty
triangle, the 2-simplex will exist in W; (D). We will write W (D) to mean W;(D).

3.6.3.2 The weak witnesses theorem

Woo (D) can be motivated by comparing it with the Delaunay triangulation in Euclidean
space. Here we will present the necessary theorem to address this motivation and we
also explain what is a Delaunay complex.

Definition 3.4. Delaunay triangulation and complex. Let L C RP be a finite set of
points. A p-simplex 7 = [lgl;...[,] is contained in a Delaunay triangulation Del(L) when
J 2 € RP s.t. x is equidistant from the points loly...l, and has no nearer neighbour in
L. In such a case z is a strong witness to the existence of 7.
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5 5
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L ] L ]
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Figure 3.12: Left: PCD consisting on 4 landmark points a, b, ¢, d
and 6 vertices 1,2,3,4,5,6. Right: representation of the asso-
ciated W (D): O-simplices a, b, ¢,d, 1-simplices ab, ad, db, ac and
2-simplex adb.

In Figure this defintion is explained graphically. We consider the set L of five
points lg, l1, l2, I3, l4 where x is equidistant to [y, {; and l2 and there is no nearer neighbour
in L (I3 and l4 are outside the circumcenter). Therefore x is a strong witness and the
2D simplex [lgl1ls exists in a Delaunay triangulation. If the set of witnesses is discrete,
it is clear that the probaility of finding a strong witness is 0. This is the motivation of
the following definition.

Definition 3.5. [35] We say that 2 € R” is a weak witness for 7 = [lol;...[,] with
respect to L if the p + 1 nearest neighbours of = in L are l, l1, ...[, (tolerating equality).

So, weak witnesses are not necessarily equidistant from l, [y, ...,l,. As a consequence
we can redefine the notion of W, (D) saying that 7 is a p-simplex of W (D) iff 7 and
its faces have weak witnesses.

Theorem 3.6. [35] Let L € RY be a finite set of points and lo,ly,...,l, € L. Then
T = [lol1...lp] has a strong witness with respect to L iff T and its faces have weak witnesses
with respect to L.

The consequences of this theorem are pretty important, since now one does not look
for a strong witness but instead look for a certain number of weak witnesses.
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Figure 3.13: Suppose the left figure is a witness complex Woo (D).
Then the lazy version W;(D) is shown in the right.

3.6.3.3 How to choose the landmarks

Witness complexes are built just on a certain number of “landmark” points. The first
and most important question that arises is how to choose those landmark points? It
is clear that they should be representative of the topology of the samples. Diferent
methods have been used to this end [35]:

e Randomly.
e By maxmin algorithm.

Consider a PCD Z € R”. The aim is to select i landmark points. Maxmin algorithm
works as follows:

(i) The first landmark [; € Z is chosen randomly.
(ii) Inductively I3,ls, ...,l;—1 have been chosen.
(iii) Then [; is the point that maximizes the function

z— min{d(z,l1),d(z,12),...,d(z,li—e) },

where d is the distance between the potential new landmark candidate and the
existing landmarks.
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Figure 3.14: x strong witness to the existence of the 2D simplex
T = lgl1ly with respect to L.

(iv) The process is repeated until the number of desired landmarks is reached.

To further explain how maxmin algorithm works, we look at the example of Fig-
ure |3.15] where we consider six points Z = a,b,c,d,l1,lo in 2D . Imagine that two
landmarks [; and [ have been chosen already and let us assume that the target is to
choose a third landmark for this PCD. How is I3 chosen?

For every candidate (in this case a, ¢, d, ¢), we calculate the distances to each landmark
and take the minimum between the two of them. The loser distances are the dashed
lines of Figure and the winners for every case are: aly, bly, cly and dls.

The next step of the maxmin algorithm is to take the maximum of these distances,
and hence, the new landmark is found. In the example of Figure the winner is dly
so the new landmark is d.

Therefore, the maxmin algorithm gives even spaced landmarks, but one of the disad-
vantages is that it takes extremal points as well. Both random and maxmin algorithms
give good results according to [35].

Another important issue is the number of landmarks that one should use in order to
build the complex. In [35] N/n > 20 gave good results.

3.6.3.4 Building a witness complex filtration

Let D be the matrix nx N defined previously, where n is a set of landmarks and N are the
remaining points in the PCD. Let R € [0, 00) and v € N. The cases where v =0, 1,2 are
of special importance. The nested family of simplicial complexes W (D; R, v) is created
with the following idea:

(i) A value for v is fixed.

(ii) R will be the changing parameter that will be used to create the different steps
of the filtration. It is equivalent to the radius parameter of the Vietoris-Rips
filtration.
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Figure 3.15: Illustration of maxmin algorithm.

The vertex set of W(D; R,v) is a set of landmarks {1,2,....n} and the next steps of
the filtration are built as follows:

o Ifv=0,thenm; =0 V i=1,2,....,N.

o If v > 0, then for ¢ = 1,2, ..., N, let m; be the v-smallest entry of the i-column of
D. For instance, if v = 2, then mg is the second smallest entry of the third column
of D. Intuitively, m; is the distance between a potential witness ¢ and the v-closest

landmark.
e One edge 7 = [apai...ap] belongs to W (D;R,v) iff there exists a witness i €
{1,2,...,n} s.t.

max(D(a,i),D(b,i)) < R+ m,.

e We consider the lazy version of the complex, meaning this that a simplex 7 =
[agai...ap| belongs to W(D; R, v) if all its faces belong to W(D; R, v).

Note that for R = 0 and v = 2, W(D; R, v) is equivalent to W (D). To further explain
this with an example, we consider again the PCD given in Figure left. We are going
to build the filtrations (¥ = 0, and v = 1) and the changing parameter R will take the
values 0, 1.5 and 3.

First we try to build the filtration considering v = 0. As explained before in the
definition of W(D; R,v),if v =0, m; =0 Vi=1,2,...,N and therefore in our example
my = ...mg = 0. Taking a look on Figure left, we see that we need to check when
the six edges ab, bc, ac, ad, db and dc appear in the filtration. To check if the edge ab

exists
maz(D(a,i),D(b,1)) < R+ m;

needs to be computed. To check if such witness 7 exists:
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e Compute
1 2 3 4 5 6
41 34 12 45 5 0.8
D= 42 33 09 42 45 1
49 4 18 47 51 0.5
1.3 1.6 2 08 07 5

Ao T

e Compare the the rows corresponding to a and b and take the maximum for every
column the resulting vector maz is:

1 2 3 4 5 6
5 1

mazab:= (4.2 34 1.2 45 ) max between row a and row b

The same vector has to be computed for the rest of edges:

1 2 3 4 5 6
marac:= (49 4 1.8 4.7 51 0.8) max between row a and row c

1 2 3 4 5
maxbc:= (4.9 4 1.8 4.7 51 1) max between row b and row c

1 2 3 4 5 6
mazad := (41 34 2 45 5 5) max between row a and row d

1 2 3 4 5 6
maxdb:= (4.2 33 2 42 4.5 5) max between row d and row b

1 2 3 4 5 6
mazdc:= (4.9 4 2 4.7 51 5) max between row d and row c

This values are the result of the left side of the above equation.

e Finally we can compare:
max(i) < R+ m;,

for the different cases:
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(i) For R = 0, since m; = 0, there is not i such that maz(i) < R+m; = 0. The are no
edges, so W(D;0,0) is given only by the four vertices a, b, ¢,d (Figure left).

(ii) For R =1.5:

-edge ab: 3 and 6 are witnesses of its existence since mazab(3) = 1.2 < 1.5
and maxab(6) =1 < 1.5.

-edges ac and bc also exist since for example 6 is again a witness. The 2-
dimensional simplex abc also exists since we are considering the lazy version of the

complex. (Figure middle).

ili) For R = 3: every edge exists. One can find witnesses for every case. For instance
y edg Yy
3 is a witness to the existence of the six edges. The 2-dimensional associated

simplices also appear (Figure right).

v=0
5 5
4 4 4
. . .
[ ] L ] L ]
1 d 1 d 1 d
. . . . .
2® z*® 2®
3 3
[ ] [ ]
b b
[ ]
a g a ‘
.
c® c (T c
R=0 R=1.5 R=3

Figure 3.16: Three steps of the filtration for given PCD and
landmarks a, b, ¢,d, where v is considered to be 0; left: R = 0.
The complex only consists on the four vertices a, b, ¢, d; middle:
R = 1.5 with complex formed by abc and d; right: R = 3 with
complex formed by abc, adc and acb.
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We build the filtration considering v = 1. The only thing that changes with respect
to the case where v = 0 is that the values m; are now different from 0 and equal to the
smallest entry of the i-column of D. Therefore m; = 1.3, mo = 1.6, mg = 0.9, mq = 0.8,
ms = 0.7 and mg = 0.8.

(i) R=0— W(D;0,1) (Figure left). 7 is a witness if
max(D(a,i), D(b,i)) < m;

holds. We analyze only the case of edges ab and ac.

-edge ab. mazxab = (4.2,3.4,1.2,4.5,5,1) and the vector M that contains all
values m; is M = (1.3,1.6,0.9,0.8,0.7,0.8). As one can see mazab(i) > M (i) Vi.
Therefore, ab does not exist in this step of the filtration.

-edge ac. The point 6 is a witness to the existence of ac since maxac(6) =
0.8 <mg =0.8.

If one continues with the rest of edges, one concludes that they do not belong
to W(D;0,1).

(ii) R =15 — W(D;1.5,1). One can check that all edges exist since for instance the
vertex 3 is a witness for all of them. Therefore, all the 2D simplices as well as the
tetrahedron also appear (Figure middle).

(iii) R =3 — W(D;3,1). The complex does not change (Figure right).

It is also interesing to make some general observations about the three cases where
v=0,1,2.

v = 0: The filtration W(D;R,0) is very similar to the VR filtration noted by
Rips(L; R) and built over the same landmarks L. In particular, there are inclusions:

W(D; R,0) C Rips(L;2R) C W(D;2R,0)
v = 1: This family is very interesting since it can be understood as arising from a
family of coverings of the space X by Voronoi-like regions surrounding each landmark
point, which overlap increasingly as R — oo.

v = 2: there is a particular coincidence for R = 0 in this family:

W (D;0,2) = W(D)
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v=1
5 5
4 4 4
. . .
[ ] L ] [ ]
1 d 1 d 1 d
. . . .
2® z*® z®
3
[ ]
b b b
[ ]
a .\. a a
c® c (T c c® c
R=0 R=1.5 R=3

Figure 3.17: Analogous filtration to Figure but considering
v=1

3.6.3.5 Example: Lazy witness filtration for points on S?

We generated 1000 points randomly on S? as one can see in Figure The aim is to
recover the topology of the sphere. To this end, persistent homology is computed using a
Lazy witness filtration. The software used is the Phom package for R [91]. The number
of landmarks chosen is 40.

Results are shown in Figure[3.19] where one can see that there is one stable connected
component (red dot in the upper left corner), no stable 1-dimensional holes (all green
dots close to the diagonal) and one stable 2-dimensional hole (blue dot). This agrees
with the betti numbers of S? which are fy=1, $1=0 and fo=1.

Therefore, only with a sample of 40 landmark points out of 1000, one can construct
a proper lazy witness filtration where the topology is well recovered. Indeed, the com-
puational cost is much cheaper than using a Vietoris-Rips filtration that uses the 1000
points.

This computational advantage is not without a price: until now there are no explicit
results about how faithfully a witness complex is to the topology of the underlying union
of balls.
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60

Figure 3.18: 1000 random points on S2.

10 15

Irterval End

05
it

Figure 3.19: Persistent diagram corresponding to the persistent
homology computation of 1000 points over S?. Red dots corre-
spond to connected components. Green dots represent 1D holes
and blue dots 2D.



4 Discrete Morse Theory

Almost every available software for computing persistent homology is based on discrete
Morse theory. The computation of persistent homology is one of the key parts in topolog-
ical data analysis since for huge complexes, computing homology is extremely expensive.
This is precisely the problem that discrete Morse theory tries to overcome or at least
reduce. It does so by reducing the size of the input complexes preserving the homotopy
of them. Basically, it is a tool for determining equivalences between topological spaces
arising from simplicial complexes. This way, a pre-processing step is performed before
the homology computation. We will focuse our attention in simplicial complexes, since
this is the structure that we use.

4.1 Definitions

In this section we introduce some useful definitions that are used in the rest of the chap-
ter. For all of these definitions, let K be a simplicial complex and 7, o and v simplices
of K.

b ba a
bad
ch d ad
cbd
d
€ dc

Figure 4.1: Simplicial complex

Definition 4.1. Immediate faces of a simplex 7 are those faces o such that dim(o) =
dim(t) — 1.

In the example of Figure the simplicial complex K consists on four O-dimensional
simplices or vertices a, b, ¢, d, five 1D simplices or edges cb, ba, bd, ad, dc and two 2D sim-
plices or triangles cbd, bad. If we consider the simplex 7 = cbd, then the faces are ¢, b,
d, cb, bd and dc. The immediate faces are just cb, bd and dc.
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Definition 4.2. We say that v is a coface of a simplex 7 if 7 is a face of ~.

An immediate coface 7 of 7 is one that satisfies dim(vy) = dim(7) + 1. In the example
of Figure if we consider the simplex 7 = a, the cofaces are ba, ad and bad, but the
immediate cofaces are just ba and ad.

Definition 4.3. We say a topological space X is contractible if the identity map on
X is null-homotopic, which means that it is homotopic to a constant map. In a more
informal way, X is contractible if it can be constantly shrunk to a point within the space
(homotopic equivalent to a point).

Examples of contractible spaces are euclidean and complex spaces R" and C”. In
Figure more examples of contractible and non contractible spaces can be found.

Wa
O Aa

Figure 4.2: Contractible spaces (a and b) and non contractible
spaces (c and d).

4.2 Basic elements of discrete Morse theory

There are two basic elements in discrete Morse theory from which everything is built.
These are the discrete Morse function and the critical simplices.

Definition 4.4. Let K be a simplicial complez. Let 7®) € K be a simplex of dimension
p. Let 4tD), (-1 ¢ K immediate cofaces and faces of 7 respectively. Then we say
that a function f : K — R is a discrete Morse function if for every simplex 7 € K, the
two following conditions hold:

(i) #{y>7lf(y) < f(n)} <1,
(ii) #{o <7|flo) > f(r)} <1.
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(i) means that at most one inmmediate face o of 7 can have a value greater than or
equal to that of 7 and (%) says that at most one inmmediate coface v of 7 can have
a value less than or equal to that of 7. Basically, a discrete Morse function assigns
values (real numbers) to every simplex existing in our simplicial complex. As stated in
the previous definition, this function normally gives higher values to higher dimensional
simplices.

To further explain this definition, we consider the example of Figure where the
shown simplicial complex is a triangle with its interior. In the left, a trivial Morse
function is represented, where each simplex gets the value of its dimension, i.e., vertices
or 0-dimensional simplices get the value 0, edges get 1 and the triangle abc gets 2. In
the middle, another valid Morse function is shown. (%) and (%) hold for every simplex.
For example if we consider the 1D simplex 7 = ab, we see that f(7) = 4 and the values
at the two 0-dimensional faces are f(o1) = 1 and f(o2) = 6. Therefore, (7i) holds. (%)
also holds if we look at the coface abe.

On the other hand, in Figure right, we show a non valid Morse function. The
problem arises on the 0-dimensional simplex a, where f(a) = 8. This vertex, has two
cofaces 71 = ab and 2 = ac where f(y1) = 3 and f(72) = 5. Two cofaces cannot have
smaller values due to (i) and therefore, this is not a discrete Morse function.

[¢] [€]

b b b

g nffola s
D O G B R G S

Figure 4.3: Left: trivial Morse function; middle: A valid Morse
function; right: not a valid Morse function.

Definition 4.5. Let K be a simplicial complex. A simplex 7 is critical if
(i) #{v>7lf(v) < f(1)} =0
(ii) #{o <7|f(o) = f(r)} =0

Basically, this means that if you consider a simplex 7, the function values must de-
crease when you move to the inmmediate faces and must increase when looking at the
inmmediate cofaces. To further explain this, we refer to Figure The simplices that
are not critical are called regular.

Now we briefly introduce the notion of cell and CW complexes. For a more detailed
explanation they reader may consult [65].
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o] &

7'\ A

Bip/ B e
O B s 1 e G BN

Figure 4.4: Critical simplices are drawn in green. a) All simplices
are critical in a trivial Morse function; b) There is only one critical
simplex.

Definition 4.6. A cell complex is a Hausdorf space X together with a specific cell de-
composition of X.

Definition 4.7. A CW complex is a cell complex satisfying two extra conditions:

(i) V n-dimensional open cell C in the partition of X, 3 a continuous map f from the
n-dimensional closed ball to X s.t.

e the restriction of f to the interior of the closed ball is a homeomorphism onto
the cell C.

e the image of the boundary of the closed ball is contained in the union of a
finite number of elements of the partition, each having cell dimension less
than n.

(ii) A subset of X is closed if and only if it meets the closure of each cell in a closed
set.

4.3 Main theorem of discrete Morse theory

Once we have defined what is a discrete Morse function and a critical simplex, we can
state the main result of discrete Morse theory.

Theorem 4.8. [/5/Suppose K is a simplicial complex with a discrete Morse function.
Then K is homotopy equivalent to a CW complex with exactly one cell of dimension p
for each critical simplex of dimension p.

The impact of this theorem is enormous since the size of a huge simplicial complex can
be reduced substantially while keeping homotopy. The new size will be determined exclu-
sively by the critical simplices of K. For example, the simplicial complex of Figure [4.4p
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with the defined Morse function is homotopy equivalent to a vertex, since there is only
one critical O-dimensional simplex. We need some more definitions in order to be able
to prove the previous theorem.

Definition 4.9. Let K be a simplicial complex. If one can find two faces « and 8 such
that § is the only face that properly contains «, then « is a free face and K1 = K —a—
is another simplicial complex with the same homotopy.

The removal of « and S is called an elementary collapse and K and K7 are homotopy
equivalent. The reverse process is called expansion. Therefore, we say that two simplicial
complexes K and K, are homotopy equivalent if one can be reached from the other by a
finite sequence of elementary collapses or expansions.

Figure 4.5: Schematic view of an elementary collapse in a sim-
plicial complex K. K and K; are homotopy equivalent after the
removal of the faces a and f.

Definition 4.10. A collapsible complex is a complex that can be reduced to a vertex
by applying a finite sequence of elementary collapses.

An example is shown in Figure 4.5

Lemma 4.11. Let K be a simplicial complex and f a discrete Morse function on K.
Then there is always a minimum and it is a 0-face.

Proof. 1f a face F is a “minimum” and its dimension is > 1, then F' at least contains
two vertices x and .

flx) < (1),
fly) < f(F),
and this violates condition (%) of definition 4 of a Morse function. O

To illustrate this, we consider the example of Figure

Lemma 4.12. Let K be a simplicial complex and f a discrete Morse function on it.
Then there is always a maximum, either it is critical, in which case is a facet, or it
consists of a pair (a, f) with o a free face of 3.
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Figure 4.6: Simplicial complex where we assume that the simplex
ab is the minimum. This cannot occur since it is not possible to
obtain a valid Morse function.

Proof. The existence of a maximum can be easily proved since a map from a finite set
attains it maximum.

If the maximum is critical (Figure [4.7i), suppose by contradiction that it is not a
facet but a face F' (let G be a facet containing F'). Then f(F) < f(G) but then F is not
critical.

If instead there are two faces a and § s.t. f(a) = f(8) = max(f), then we are
claiming that  is the only face that contains a. This can be seen in the example of
Figure [L.7p where ab is the only edge that contains a. If we want to attach a new edge
ac to a(Figure [4.7jii), this is actually not possible:

e if f(ac) > 1, then ab and a would not be the maximum anymore.

e if f(ac) <1 then the function is not a valid Morse function anymore (violation of
condition (ii) of definition 4 of Morse functions.

O]

Figure 4.7: (i) and (ii): two different Morse functions applied
on a simplicial complex; (iii): a is a free face of ab. A new edge
(dashed line) cannot be added.
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Definition 4.13. [45]. Let K be a simplicial complex with a discrete Morse function
f onit. Let ¢ € R any real number. Then we define the level subcomplex K(c) as the
subcomplex consisting of all simplices 7 of K s.t. f(a) < ¢, and including all their faces.

To illustrate this, we refer to Figure Finally, we state the last two lemmas that
help us to prove the Theorem 4.8.

ke 2

b

[
AE & B & O {3

K(1) K(2)=K(3) K(4) K(5)=K(6)=K(7)

Figure 4.8: Different level subcomplexes for the shown discrete
Morse function.

Lemma 4.14. [/J]. Let K be a simplicial complex. If there are no critical simplices T
with f(7) € (a,b], then K(b) is homotopy equivalent to K (a).

Proof. Starting from the highest level, by Lemma 4.12 we know that if there is not a
critical cell, we do have a pair of faces o and S s.t. « is a free face and therefore both
faces can be removed while homotopy is maintained. As a consequence K (b) collapses
to K(a) O

Lemma 4.15. [{J]]. If there is a single critical simplex T with f(T) € (a,b] then there is
a map F : SV — K(a), where d is the dimension of T, such that K(b) is homotopy
equivalent to K (a) Up BZ.

In fact, what this lemma is saying is that if you find a critical simplex, you can remove
it but you have to keep track of it, attaching a d-ball at the end of your simplification
process.

Here we just explain the ideas behind the proof. For the complete proof, the reader
may consult [45]. If 7 is a critical d-dimensional simplex, then by definition all its faces
have smaller discrete Morse values. Because of this, they will appear in an earlier level
subcomplex. As a consequence, when the critical simplex 7 is added, it is being attached
along the entire boundary, and this is equivalent to attach a d-cell.

Finally, we are ready to prove theorem 4.8.

Proof. By lemma 4.12, we know there exists a maximum that it is either critical or a
pair of faces (o, 8) with « a free face of 5. Lemma 4.14 guarantees that homotopy is
maintained when passing regular simplices and lemma 4.15 tells us that we must attach
a cell of dimension p when a p-dimensional simplex is found. O
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In order to help the reader to understand the theorem 4.8 better, we consider two
examples. In Figure [4.9f, we see that the only critical simplex is the vertex d. Therefore,
theorem 4.8 states that K is homotopy equivalent to a vertex. We start looking for
the maximum, that always exists according to lemma 4.12. We see that the maximum
consists of a pair of faces ab and abd where ab is a free face of abd. Therefore by lemma
4.14., we can remove both faces and homotopy is maintained. The process is repeated in
the next steps (Figure ii, iii, iv and v) where free removable faces are marked in a red
circle. Finally, after all elementary collapses, we see that the initial simplicial complex
K is homotopy equivalent to a vertex (Figure i).

The second example shown in Figure corresponds to an empty polygon of five
edges. It is a bit different since when we start looking for the maximum we see that
corresponds to the 1D face bc and it is critical. Therefore according to Lemma 4.15,
we can delete it and at the end of the simplification process attach a By ball to the
remaining simplicial complex. In Figure [L.10ji we see that b is a free face of ab and ¢
is a free face of cd, so we can remove them according to lemma 4.14 and homotopy is
maintained. In Figure ii the process is repeated (elementary collapses) and finally,
in the last step, the Bp ball is attached. The initial simplicial complex is homotopy
equivalent to a circle and actually this is what theorem 4.8 was predicting.

vi

Figure 4.9: Reduction of the size of a simplicial complex main-
taining homotopy. The initial simplicial complex is homotopy
equivalent to a vertex.
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Attach atthe end 1-d ball _.J_..-”

-

Figure 4.10: Reduction of the size of a simplicial complex main-
taining homotopy. The initial simplicial complex is homotopy
equivalent to a circle.

4.4 Morse inequalities

The Morse inequalities stated by Forman in [45] provide a bound for Betti numbers in
a simplicial complex. One of the main results is:

Theorem 4.16. For everyp = 0,1, ....,n being n the dimension of the simplicial complex
K. Let m, be the number of critical simplices in dimension p. Then

my > by.

As explained in Chapter 3, the Betti numbers measure the number of connected com-
ponents and dimensional holes in a simplicial complex. This theorem says that the Betti
numbers for each dimension are bounded by the number of critical cells in that dimen-
sion. This underlines the importance of critical simplices and again it is clear that if we
are able to construct a Morse function with less critical simplices, then the information
about Betti numbers is maximized.

As it can be inferred from Figure mo = 3 and m1 = 2. Therefore, we know from

the Morse function that the number of connected componentes is less or equal than three
and that the number of 1D holes in K is less or equal than two:
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Figure 4.11: Simplicial complexes and a Morse function on it.
Critical simplices are marked in red.

4.5 Gradient vector fields

Clearly trying to assign real numbers to all simplices in a simplicial complex and then
trying to see if this corresponds to a Morse function, looks quite dubious from the
efficiency point of view.

As we explained already, the Morse function is not the most important aspect of dis-
crete Morse theory, but the associated critical simplices, since they provide a bound for
the Betti numbers. Morse functions can be quite hard to compute, and in many cases,
it will be enough to consider what it is know in the literature as the gradient vector field
of a Morse function.

Definition 4.17. If 7 is a regular simplex with 7) < v(P*1) satisfying f(v) < f(7),
we say that 7 and  are paired.

We can represent this paired simplices by an arrow from 7 to . The diagram defined
by all arrows is known as gradient vector field. The goal, rather than building a Morse
function, is to create a gradient vector field that corresponds to a Morse function. How
this is accomplished, will be explained in the rest of this section. To illustrate the concept
of gradient vector field, we consider the simplicial complex of Figure The following
simplices are paired:

e b and ab since b < ab and f(b) =6 > f(ab) = 4.
e c and ac since ¢ < ac and f(c) =3 > f(ac) = 2.
e bc and abce since be < abe and f(bc) =7 > f(abc) = 5.

Basically, the gradient vector field indicates us where the function decreases while
increasing the simplex dimensions. The corresponding gradient vector field of the Morse
function shown in Figure is displayed in Figure Note that a simplex is critical
if and only if, it is neither the tail nor the head of any arrow. It is possible to characterize
a gradient vector field as a discrete vector field with some particularities.
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[¢]

b
4 5 O J/

Figure 4.12: left: Morse function on the simplicial complex form
by vertices a, b, ¢; right: Associated gradient vector field.

o

Figure 4.13: Gradient vector field that corresponds to the Morse
function shown on Figure

Definition 4.18. We say that a discrete vector field V' on a simplicial complex K is a
collection of pairs {T(p) < 7(”“)} of simplices such that each simplex is in at most one
pair of V.

For example, in Figure [£.12 one dicrete vector field V' could be formed by the following
pairs: {b,ab}, {a,ac} and {be,abc}. Note that in this definition we do not say anything
about the Morse function values.

Definition 4.19. Let V be a discrete vector field on a simplicial complex K. Then a
V-path is a sequence of simplices

(p+1) _(p)

7_(gp) (p+1) T(p) 7(p+1)’7_2(p)7m7% 70

770 sy 11 9 11

st. Vi=0,..r,{7 <~v} €V and v > 7,41 # 7;. We say that the V-path is a non-trivial
closed path if r > 0 and 79 = 7.41. If V is the gradient vector field of a discrete Morse
function f, then this V-path is called a gradient path of f.
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4 Discrete Morse Theory

In Figure left we show a simplicial complex given by the edges ab, be, cd, da, de
and ea. A V-path is shown in Figure middle, with 79 = a, vo = ab, 71 = b, 71 = be,
o = ¢, 72 = cd, 73 = d. All requirements of a V-path are satisfied.

In Figure right, a non-trivial closed path is shown, where 74 = 79 and the require-
ments specified in the above definition are satisfied.

e
a T,=a }’3=da To=T,=a
d T3=d
Yo=ab T3=d Yo=ab
Y,=cd ¥,=cd
b ’[1=b T1=b
c Ty=c ¥i=be Tz=¢ Yi=be

Figure 4.14: Left: simplicial complex; middle: V-path; right:
non-trivial V-closed path

These definitions take us to the next result.

Theorem 4.20. [}5]. Let V be the gradient vector field of a discrete Morse function
f- Then a sequence of simplices as those defined in definition 4.19, is a V-path if and
only if T < v; > Tiy1 for

f(10) = f(o) > f(11) = f(n) > . = fly) > f(Tr41)-

In Figure [£.15¢ and d we show two possible V-paths for the simplicial complex with
associated Morse function shown in Figure [1.15h. Note that in Figure [£.15f, if we choose
To = a as the first vertex of the path, then according to the previous theorem, vg = ab
would not be a valid choice since f(a) < f(ab). Instead the path {a,ac,c} is valid. in
Figure , another valid path {ab, abc, ac} is displayed where f(ab) > f(abc) > f(ac).

Basically, the gradient path of f are sequences of simplices along which f is decreasing.
What this theorem is also saying is that given V a gradient vector field, then there are
no nontrivial closed V -paths. The main result in this field is actually that the converse
is true:

Theorem 4.21. [/5]. A discrete vector field V' is the gradient vector field of a discrete
Morse function if and only if there are no non-trivial closed V -paths.

Therefore, computational strategies are based in finding such gradient vector fields
such that there are no non-trivial closed V-paths. This way, one makes sure that gradient
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a) b)

1 15
a 12 G |E| a_» C

c) d)
b b
T,=ab
Yo=abc
d C
Ty=a Y,=ac T4=C 1'1=ab

Figure 4.15: a) Simplicial complex with a valid Morse function
on it; b) Associated gradient vector field; ¢) V-path; d) Another
valid V-path.

vector field corresponds to a Morse function on the simplicial complex K. There is
another possibility to characterize gradient vector fields and it is going to be discussed
in the rest of this section.

It is also possible to describe a gradient vector field from a combinatorial point of
view [45], and in these terms, discrete Morse can be reformulated.

Definition 4.22. Let K be a simplicial complex. The Hasse Diagram of K is a directed
graph in which the simplices are ordered by the face relation. There is an edge between
7 and 7 if and only if |dim(y) — dim(7)| = 1, i.e., if one is an immediate face of the
other.

In Figure £.16h, we illustrate this definition. Creating a Hasse diagram is like de-
composing a human body in the different parts that it is made of. It is the same but
working with simplicial complexes. We start from the highest level, i.e., the 2D simplex
abc. This simplex can be decomposed in three dimensional faces ab, ac, and bc. Each of
these faces is split into two vertices or 0-dimensional simplices. This is how the directed
graph is created.
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a {abc
b / l \
) {ab} {ac} {bc}
a c {a} {b} {c}
b) {abc\
b
) {ab} {ac} {bc}
=] C
—-

Figure 4.16: a) Triangle with its interior is the considered sim-
plicial complex. In the right, the associated Hasse diagram; b)
Modification of the Hasse diagram according to the shown gradi-
ent vector field.

Then the Hasse diagram is modified in the following way: the direction of one arrow is
reversed where the gradient vector field indicates it. In the example of Figure one
can see that there are arrows in the gradient vector field {b,bc}, {a,ac}, and {ab, abc},
so the arrows are reversed in red. A V-path can be seen as a directed path in this
modified graph. This leads us to the next result.

Theorem 4.23. [/5]. There are no nontrivial closed V-paths if and only if there are no
nontrivial closed directed paths in the corresponding directed Hasse diagram.

Therefore, we can see a discrete vector field as a partial matching of the Hasse dia-
gram, and this discrete vector field is a gradient vector field corresponding to a Morse
function if the modified Hasse Diagram contains no cycles. Finally, we can reformulate
the main theorem of discrete Morse Theory in the following way:

Theorem 4.24. [/5]. Let V be an acyclic partial matching of the Hasse diagram of
K (of the kind described above — assume that the empty set is not paired with another
simplex). Let u, denote the number of unpaired p-simplices. Then K is homotopy
equivalent to a CW -complex with exactly u, cells of dimension p, for each p > 0.
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4.6 Computing persistent homology

4.6 Computing persistent homology

Several concepts have been presented in Chapters 2, 3 and 4. The reader should pay
special attention to the followings:

e How to build different types of filtrations such as Cech, Rips, Alpha or Lazy
witness.

e Discrete Morse theory, where ideas have been shown for pre-processing a simplicial
complex in order to reduce its size and save computational time.

e How to compute homology given a simplicial complex.
e How to encode persistent homology information in barcodes or persistent diagrams.

But we have not explained yet how the algorithm for computing persistent homology
works given a filtration. Once we have preprocessed the simplicial complex with ideas
from discrete Morse theory, how do we compute the barcode representation given a filtra-
tion? This question is answered in the present section. We first give the algorithm [I1]
and later, we show an illustrative example.

We assume that we have a filtration that goes simplex by simplex or cell by cell. In
discrete Morse theory this means that we assume that every cell is critical in f. This is
a reasonable assumption since we can always reach that by a small perturbation ¢, see
Figure The perturbation is performed to create some order in the filtration. Once
this is done, one can forget about e.

4+¢£

3tz

Figure 4.17: Morse function where each cell is critical.

Let D be the matrix of boundary maps 0 : C, — Cy_1. This matrix can be split
according to the different dimensions. We define the pivot pivotg(j) of some matrix R
as the largest row index in column j with R;; # 0. The algorithm works as follows:

Algorithm 1 Persistent homology computation algorithm
R=D for j=1ton

while 3 jy < j with pivot(jo) = pivot(y)

add column jp to column 5 (1+1=0;14+0=1;0+0=0)
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76

Let us state some properties of this reduced matrix:

Column j in D is a cycle (the boundary of a cell o; in K;_1).

Adding “older” colums does not change homology class in K;_1, because we only
add columns that correspond to boundaries of earlier complexes.

Reducing the matrix means minimizing pivot(j) and this is just finding the "ear-
liest” representative cycle.

Column j in R non-zero — pivotr(j) = i, — #z; is not homologous in K;_; to
any earlier cycle ([Z;] ¢ im(hi—1,)).

[2i] = 0 in j (boundary in Kj).

Another important remark is related with the gradient vector field of a Morse function.
Remember that each of those arrows represent two pair of simplices “paired”. It turns
out that if (0;,0;) is a pair in the discrete gradient of f, then ¢ = j — 1 and it will be a
persistence pair.

The explanation is that o; is the cell with highest index in do;. Moreover, o; is the
cell with highest index having o; in its boundary (there is no way to reduce the pivot)
and column j in D is already reduced.

All these remarks and definitions can look a bit confusing. That is why we consider
the following example in order to help the reader to understand the algorithm better.
In Figure a filtration of a tetrahedron is depicted.

Figure 4.18: Filtration of the tetrahedron a, b, c, d.

The tetrahedron is filtered simplex by simplex. We proceed as follows:



4.6 Computing persistent homology

(i) Write the boundary matrices.

(ii) Reduce them using the proposed algorithm. In this way, one is able to recover the
persistence pairs for this filtration.

Across the filtration, we have 0, 1, 2 and 3D simplices. Therefore, we can write the
boundary matrices for each of these dimensions and split the computation of persistence
pairs separately. Let us start with dimension 0.

a b ¢ d
D0:<0000)

On the top of the matrix Dy we write the name of the 0-dimensional simplices. All
of them have no boundary so the 0-dimension is not interesting. Now we compute the
matrix of boundaries for the first dimension:

ac bec ad bd ab cd

a1 0 1 0 1 0\1
bfo 1 0 1 0 0]2
Di= ¢{1 1 0 0 0 1/3
d\0 0 1 1 1 1/6
4 5 7 8 9 11

This matrix is built as follows: On top of the matrix we name the 1D simplices.
These are: ac, be, ad, bd, ab and cd. In every row we represent the 0-dimensional simplices
a,b,c,d (vertices are the boundaries of edges). For every column, we write 1 if that 0-
dimensional simplex is contained in the 1-dimensional simplex analyzed. For example in
the first column, we write 1 in the first and third row because a and c¢ are the boundaries
of ac.

On the bottom of the matrix we show indices of the filtration where the edges appear
(or equivalently the Morse function values). ac appears in step 4, and be, ad, bd, ab, dc in
steps 5, 7, 8, 9, 11 respectively. The same is displayed on the right, where indices of the
filtration where the vertices appear are displayed (a, b, ¢, d in 1, 2, 3, 6 respectively).

We continue reducing this matrix according to the proposed algorithm. We go column
by column trying to reduce the pivot index by adding a column with a lower index as
long as one can do that.

ac bc ad bd ab cd ac bc ad bd ab cd

a /1 0 1 0 1 0\1 a /1 1 1 0 1 0

bf0o 1 0 1 0 0]2 bfo 1 0 1 0 ©0
Di=¢{1 1 0 0o 0o 1|3 —Di=¢[1 0 0 0 0 1
d\0 0 1 1 1 1/ 6 d\0 0 1 1 1 1

4 5 7 8 9 11 4 5 7 8 9 11

7

S W N =
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The first column can never be reduced. We look at the second column and see that
the pivot is in the third row (marked in red, Da3). One can observe that the earlier
column has the same pivot and therefore according to the algorithm, we need to add the
first column to the second: (1 and 0 will result ina 1, 0 and 0 in 0, 1 and 1 in 0). D7 is
the result from this operation. The new pivot is in position Dy and this column cannot
longer be reduced since

pivot(D(,1)) # pivot(D(,2)).

We keep checking the rest of the matrix. The pivot of the third column is D43 and
cannot be reduced. The pivot for the fourth column is Dyy4. Both pivots are marked by
red in D7*. Since pivot(column3) = pivot(column4), we add the third column to the
fourth, resulting in D7**.

ac bc ad bd ab cd ac bc ad bd ab cd

a /1 1 1 0 1 0\1 a /1 1 1 1 1 0

bfo 1 0 1 0 0]2 bf0O 1 0 1 0 0

D= ¢|1 0o 0o 0o 0o 1]3 —D"=+¢l1 0 0 0 0 1
d\0 0 1 1 1 1/ 6 d\0 O 1 o0 1 1

4 5 7 8 9 11 4 5 7 8 9 11

The new pivot of column 4 is Doy and can be still reduced. Adding the second column
to the fourth we reach D7***. Repeating the procedure with the third and fifth columns,
third and sixth and first and sixth, we finally obtain the reduced matrix R, which cannot
be longer reduced.

ac bec ad bd ab cd ac bc ad bd ab cd

a /1 1 1 0 1 0\ 1 a /1 1 1 0 0 0

b0 1 0O O 0 0]2 b1o 1 0 0 0 O

D= ¢{1 0o 0o 0 0 1]3 —R=+¢|1 0 0 0 0 0
d\0 0 1 0 1 1/ 6 d \0 0 1 0O 0 O

4 5 7 8 9 11 4 5 7 8 9 11

The next step is to depict the barcode for Hy, since we analysed the boundary matrix
for dimension 1. From the reduced matrix R it is possible to read the persistence pairs.
In this case, they are {2,5}, {6,7} and {3,4}. They are represented in the barcode
(Figure [4.19).

One can compute the Betti numbers at each step of the filtration just counting the
number of basis elements that intersect with a vertical line in the barcode. For instance

Bo(4) = 2.

This barcode keeps track of the birth and death of number of connected components
in the tetrahedron filtration of Figure [£.18] In the next section, we consider a slight
variation of the barcodes, the persistent diagrams and we also analyze their stability.
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ac be ad bd ab ed
a /1 1 1 o 0 0yDO
bl 0 H H & K
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8 9 11
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Figure 4.19: Barcode representation in Hy.

4.7 Stability of persistent diagrams

Let f be a discrete Morse function. We assume that every cell of f is critical. Consider
the pairs (v;,v;) being v; = f(o;) and v; = f(o;) for all persistence pairs (i,j). We
consider o; an essential cell (it creates homology that it is never killed by another cell)
and we allow co as a possible value. Then one can plot the persistent diagram of the

function f B
Dgm(f) C R?.

In Figure we show one function f and a small perturbation g of the function f is
considered such that

Some persistence pairs AB and CD of f are represented in a persistent diagram in
the right side. This section raises the following question: if given f and g, are the
persistent diagrams related somehow? A metric needs to be defined for comparison
between persistent diagrams.

Definition 4.25. Let X,Y C R2. The bottleneck distance dg(X,Y) is defined as the
infimum over all bijections v : X — Y of the

sup||z — 7(2)]o
zeX

We define some operations in this metric. Let a,b € R. Then

e (a,00) — (byo0) =a—b

79



4 Discrete Morse Theory

AB

CcD

\ n/4

Figure 4.20: Morse function f and perturbation g. In the right
side some persistent pairs represented in a persistent diagram.
Given f and g, are the persistent diagrams of both related?.

e (a,00) — (b,c) = 0

These definitions allow us to derive the main theorem about stability of persistent
diagrams, which can be proved using discrete Morse theory.

Theorem 4.26. [28] Let f, g be two discrete Morse functions. Then

dp(Dgm(f), Dgm(g)) <||f — gllec

Proof. The idea is to interpolate linearly between f and g. Let f; = (1 —t)f +tg, which
is also a discrete Morse function for every t. The order of the function f; changes at a
finite number values 0 < ¢;... < t; < 1. This means within an interval [t;,¢;11] we can
assume a fixed order of cells induced by the functions. Let p; be a set of persistence
pairs for this family of functions. Then for each pair r, s C [t;, ;1]

dp(Dgm(fr), Dgm(fs)) < Jhax 1(fr(0), £r(7)) = (Fs(0), fs(T)loo < Ifr = fslloo

0'77—) €p;

= [s = 7l[lf = gllo-
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By the triangle inequality

k—1
dp(Dgm(f), Dgm(g)) <> dg(Dgm(f;,), Dgm(f(tis1))
=0
k—1
<D i = tilloo = [1f = glloo-
1=0

O]

This theorem has interesting implications regarding the number of critical points of
discrete Morse functions, because every persistence pair can only move as much as the
perturbation of the function.

Corollary 4.27. Let f be a discrete Morse function and § > 0. Then for every Morse
function f, with ||f — fs|| < 9, the number of critical points of f, is greater or equal
than the number of critical points of f with persistence less or equal than 20.

Proof. Persistence pairs in the discrete gradient of f Vy are pairs with persistence 0,
and by stability theorem we know that this corresponds to pairs with persistence less or
equal than 20. O
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5 Classification methods

In Chapter 1, ultrasonic NDT, the TOFD method and the most common welding defects
were presented. Chapter 2 showed the state of the art of automatic classification of
TOFD defects. Then, in Chapters 3 and 4, we learned the basics of persistent homology
and discrete Morse theory. Once these concepts have been discussed, we can present
the methods for the automatic classification developed in the present research work.
Therefore, in this chapter, two automated methods are presented for classification of
TOFD defects:

e The first method is able to differentiate between defects from different classes, in
particular volumetric and planar defects. This technique is based on ideas from
persistent homology.

e The second method does the same job as method 1, but it is also able to distinquish
between same type of defects that present slight different curves in the b-scan.
This technique requires a complete noise removal of the b-scan and it is a shape
classification method based on tangential homology, which is persistent homology
applied to some suitable tangential constructions. Every defect is represented as a
curve PCD in the b-scan and the method extracts a compact shape descriptor for
every defect [29].

5.1 Classification method 1: persistent homology and TOFD
defects

In this section, the first classification method is presented. We show briefly how ideas
from persistent homology can be applied for detection and classification of TOFD indi-
cations, in particular volumetric (pores, wormholes, etc) and planar defects (cracks and
lack of fusion).

Before getting into the method details, we show an schematic view (Figure in
order to understand the general procedure of this method. Imagine one company has
manufactured one steel tube and then they want to know if there is a defect inside and
if that is the case, find out the type. This method operates as follows:

(i) A TOFD setup is installed and measurements are taken in the inspected weld.

(ii) A b-scan is obtained, where in case the weld contains any defect, it will appear at
the b-scan between the lateral wave and backwall echo.

(iii) A sparse deconvolution method is used to reduce the amount of data and to denoise
the image. Lateral wave and backwall echo are also filtered out.
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Classification method 1: persistent homology and TOFD defects

1. TOFD measurement

Emitter Receiver

/_\ Lateral wave
T

Steeltube

" Backwallecho

4. Scanning of the image looking for
change in the number of stable holes
when computing persistent homology

b

Volumetric defect

Planar defect

No defect

2. b-scan

3. Deconvolved b-scan after sparse
deconvolution method

Figure 5.1: Scheme of classification method 1.

(iv) A scan of the image is performed. Extra suitable data depending on the defect
is added and persistent homology is computed. The defects will be related to the

existence of stable holes in the PCD.

(v) The defect type is found.

Pore defects present a parabolic shape in deconvolved b-scans (Figure , where the
lateral wave and backwall echo signals have been filtered out). The idea for detecting
such parabolic features surrounded by noise is a scanning method based on persistent

homology. The procedure works as follows:

(i) An horizontal line of points is added (Figure for y = 10) at the top of the

image.

(ii) Persistent homology is computed for the initial PCD plus the added line of points.
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Figure 5.2: (a) Deconvolved b-scan including a parabolic defect;
(b) a horizontal line is added and moved down; (c) small radii are
needed to create a hole between the line and the parabola; (d) a
large radius is needed to eliminate the hole [32].

(iii) The line is moved down and the process is repeated until the whole image has been
scanned.

When we start building the filtration by increasing the radii of the balls around every
vertex, a stable 1D hole will be created very soon (Figure ,d) in cases where the
parabola intersects with the line. This hole will be detected by persistent homology. As
soon as the line surpasses the parabola (Figure , for y = —2 or y = 10), no stable
hole will be detected. Summarizing, one-dimensional stable holes are generated by pore
defects, whereas unstable holes are due to noise.

Crack defects present a linear shape in deconvolved b-scans. Figure [5.3] shows one
example, where the crack is marked by blue dots. To detect the crack, instead of adding
lines, we add data points lying on a rectangle, see Figure left. A scan of the image
is performed from left to right. When the rectangle does not intersect with the crack
(e.g. Figure left), persistent homology detects only one big stable hole created in
the rectangle. But as soon as the rectangle arrives at the crack indication (Figure
right), two stable holes will be detected by persistent homology. In conclusion, changes
in the number of stables holes are indicators of the existence of pore or crack defects
depending on the extra data added.

One important remark is that the rectangles of points shown in Figure [5.3| are asym-
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350

PR
sdsnnsn

250 350

Figure 5.3: Two steps with adding points on rectangle. Left:
one stable generator is detected; Right: two stable generators are
detected by persistent homology [32].

metric (in our case points in the lower part of the rectangle are closer than in the upper
part and in the laterals). This is done in order to visualize the results in a clearer way.
If the rectangle is symmetric, then the 2-stables holes shown in Figure [5.3| right, would
appear and disappear at the same time, which means that we would see just one point
in the persistent diagram. This is illustrated in Figure

Symmetric rectangle of points

y
E 7
1 - //
- Death 4
e of points Birth
o //
-1 LN //
e
Death

Birth

Figure 5.4: If the rectangle of points is symmetric (distance be-
tween every point is the same), the two created stable holes when
computing persistent homology will be represented as just one
point in the corresponding persistent diagram.
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5.2 Classification method 2: tangential homology and TOFD
defects

This method is divided into two parts. As in the previous section, we first summarize
in Figure 5.5 and [5.6] the general procedure of the method before analyzing the details.

In the first part (Figure we create a catalogue of the most common defects that
appear in TOFD measurements. To this end, several hundreds of weld were tested
and the different indications were grouped by the shapes presented in the b-scans [33].
For each of those shapes, a barcode shape descriptor was computed using ideas from
tangential homology.

Classification method 2. i) creation of a catalogue of barcode shape descriptors

1. With a TOFD setup several hundreds of weld seams are 2. Indications can be grouped by similar appearances of
tested and evaluated flaws in the TOFD Scan.

a b c d

4 - & ANAREA R

AR =

4. Each TOFD defect has an associated barcode which it is 3. For each of those shapes, tangent complex T(X),
representative of its shape. approximated T(X) and approximated T(X) filtered by
curvature are computed.

Steel tube

ARBBE

i 3
i

Figure 5.5: Scheme of classification method 2 part 1.

Given a new TOFD measurement and therefore a b-scan, the second part of the
method describes how to find what defect type of the catalogue it belongs to (Figure.
Deconvolution and total noise removal for extraction of the defect shape is performed.
Next, the barcode shape descriptor is computed and a comparison between the computed
barcode and the ones from the catalogue allow us to find out the defect type.
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Classification method 2. ii) classification of a new defect

3. b-scan after applying sparse
deconvolution (section 2.1.1.) and
total noise removal (section 5.2.2).

atersl wave
————————
Steel tube ) . s
., defect o
= Backwallecho

1. We want to classify a new defect. First a TOFD 2. Obtained b-scan.
measurement is taken.

oy

|

4. The remaining shape is put into the
tangential homology machinery and the
barcode shape descriptor is computed.

5. A comparison with the catalogue of

barcodes is made.
a b [ d @

A

R A

{
i

A

¥

6. Defect type is found.

Figure 5.6: Scheme of classification method 1 part 2.

5.2.1 Part 1: creation of a catalogue of TOFD defects

Different TOFD measurements have been taken in the laboratory to establish a corre-
spondence between the b-scan shapes and the different defects represented with them.

The department of non-destructive testing of ”Salzgitter Mannesmann Forschung”
GmbH, a partner in our research project, was commissioned by a global supplier of
welded large-diameter steel pipes for the oil and gas industry to establish a TOFD setup
in order to examine weld seams of longitudinal welded pipes inline. For this purpose
a ToFD setup was designed, constructed and installed in the mill where measurements
were mostly performed on pipes with an outer diameter of approximately 0.813 m (32/)
and a wall thickness of 0.039 m. The ultrasonic beam angle was set by a wedge to 60°
and a centre frequency of 5 MHz (transducer Olympus V310-SM) was used according
to the standard specification ISO EN DIN 10863. Furthermore, the divergence angle of
the emitting transducer was high enough to probe almost the entire weld seam volume.
The probe center separation was set to approximately 0.09 m, which resulted in strong
analogue signal strength which was recorded and digitized by an Olympus OmniScan
MX test unit and finally saved on a computer.

With this setup, several hundreds of weld seams were tested and evaluated. In doing
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S0, it became apparent that it is possible to classify indications by similar appearances of
flaws in the TOFD scan [33]. This classification was done manually and contains along
with the different appearances also the frequency of occurrence.

The found indications are shown in Figure Even though most of them present a
parabolic shape, there are still important geometric differences that have to be recognized
by our automatic classification method.

Figure 5.7: Most common types of volumetric indications expe-
rienced in our TOFD real measurements.

The method we suggest for the classification is based on [29], but applied to TOFD
defects. A compact shape descriptor is computed for given PCD. This shape descriptor
is a barcode, that will be based on several techniques from differential geometry and
algebraic topology.

Basically, persistent homology is applied not to the space itself, but to spaces that will
be enriched with information about the shapes (tangential information and curvature).
This technique allows to distinguish between topologycally identical objects but with a
slight different geometry. One of the big advantages of this method is that it can be
used to any curve PCD without any previous knowledge about it.
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In order to create a shape descriptor for the found indications, we perform the following
steps, which are explained in details in the next subsections:

(i) Building the tangent complex T'(X).
(ii

) Buiding the approximated T'(X).
(iii) Filtering of the approximated T'(X) by curvature.
)

(iv) Computation of the barcode shape descriptor (/3p barcode).

5.2.1.1 Tangent complex T'(X)

By

Figure 5.8: (a) Curve PCD (analogous to deconvolved and de-
noised b-scan); (b) Tangent Complex T'(X); (c) Graphic control of
the T'(X) depending on the neighbourhood S; (d) Approximated
T(X); (e) Approximated T'(X) filtered by curvature where every
colour represents a different value for the curvature; (f) Sy barcode
representation.

We focus our attention on curve PCD in 2D, the structure that a deconvolved b-scan
shows. We compute the so-called Tangent complex to our PCD. Let X € R? be a curve.

First, we consider 7°(X) C X x S! to be the set of all possible tangents in every point
e X, ie.,
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5.2 Classification method 2: tangential homology and TOFD defects

TO(X) = {(x, V)| Tim ‘W} ,
t—0 t

where (z,v) represents a point x with tangent vector in the direction v. The Tangent

Complez of X is defined as the closure of 77, meaning T'(X) = T9(X) CR? x S'. Asa

direct consequence, the projection 7 : T(X) — X sends a point (z,v) € T(X) onto its

basepoint and 7~ 1(x) C T'(X) is the fiber at x.

So how to compute the fibers in our PCD? We take as example the elliptic PCD P
from Figure It is not so trivial since we do not know the underlying space X from
which P was sampled. V p € P we must estimate the two possible tangent directions.
We proceed as follows:

(i) We choose a neighbourgood S = {z1, ..., 1} (k nearest neighbors of p).

(ii) We assume that the best tangent line passes through zo = (1/k) Y%, z; i.e., the

average coordinate of S.

(iii) To find the orientation of the line, we minimize the sum of the squares of the
perpendicular distances of the line to the point’s nearest neighbors, solving a least
squares problem.

Let M be the matrix whose ith row is (z; — 29)” representing the distances between
every point in the neighbourhood x; and xzy. Then, if n is the unitary perpendicular
vector to the tangent line, Mn is the vector of perpendicular distances. The quantity to
be minimized is |Mn/|?. The solution to this problem, and therefore the fiber for p € P is
the eigenvector corresponding to the larger eigenvalue of the covariance matrix M7 M as
well as the vector pointing in the reverse direction.

We measure the angle § € [—7, 7| that exits between the tangent line and a reference,
being the z axis our choice. This is how we come from Figure [5.8h to Figure [5.8p,
where 3 coordinates are represented: x and y coordinates of the original curve, and z
coordinate corresponding to 6 angle. The top and the bottom of the volume are glued.
Take into account that there are two curves because there are always two possible tangent
directions. Therefore there is a map R? — R? : (z,y) — (z,y,0) between Figure
and Figure [5.8pb.

Another aspect that comes into consideration is how to choose the neighborhood S. It
was determined empirically taking a certain number of neighbors that give us a suitable
T(z) (Figure c¢). In the future, it could be interesting to try automatic neighbour
estimation depending on the given data.

5.2.1.2 Approximated T'(X)

The aim is to study the topology of the tangent complex 7'(X). The problem is that
this set consists just of points, and points have trivial topology. As we already explained
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in section 3.5., it is possible to follow a persistent homology with different birth times
approach, where we first center and fix an € ball of radius € at each point p.

Be(p) = {z|d(p, ) < €}
The approximated T'(X) shown in Figure is the union of balls in the fiber points:

T(X)~ |J Bep).

per—1(P)

In the previous section it was shown that T'(X) lies on R? x S!, therefore a metric is
necessary to define what an e ball is. An Euclidean metric can be defined as follows:

ds? = dz? + w?dv?,

where 2 € R? and v € S!. w is a scaling factor that is used to define the importance of
a change in the tangent direction. A large value w will spread the fibers out in 7'(X) in
angular directions.

Another issue is how to choose €. It needs to be chosen large enough so that the
basepoints are connected when w = 0. In our case, the basepoints will correspond to the
defect PCD in a deconvolved b-scan. We consider the following rule of thumb proposed
by [29]:

N VAZ2(1 + (wk)?)
€~ 5 )
where Az is the average separation between points, & is the maximum value of curvature
and w is the scaling factor.

5.2.1.3 Approximated 7'(X) filtered by curvature

The next step is to create a filtration. Following the “Persistent homology with differ-
ent birth times” approach, each vertex will get a value indicating in which step of the
filtration appears. This value is the curvature at each point (Figure ) The question
is, how to compute it for every point in the original PCD shown in Figure [5.8h? The
curvature k at a point z € X with tangent direction v is

1
plz,v)’
where p is the radius of the osculating circle. A good approximation for p is the radius
of the osculating parabola, and it is cheaper to compute [29]. Again a neighbourhood is
chosen as shown in Figure

To find the best parabolas V p in the PCD, the idea is to minimize the sum of the
squares of the vertical distances of the parabola to the point’s nearest neighbors. To this
end, the nearest neighbors of S are moved into a coordinate frame with horizontal axis

the tangent direction, vertical axis the normal direction to the tangent and the origin to
be z¢ (Figure and [5.10). The resulting parabola will depend on the frame coordinate

k(z,v) =
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5.2 Classification method 2: tangential homology and TOFD defects

Figure 5.9: For a point p, a neighbourhood S is chosen (blue
dots), being x( the average coordinate in S.

in which the points are expressed, and this will change V p, since the tangent directions
are different.

X

Figure 5.10: Rotation and translation of axes.

At this point we are ready to find a parabola f(z') = co + c12’ + c22’? in the following
way:

o Let S = {(2,v1)s ..., (¥}, y},)} be the considered neighbourhood.

/ 2
1 =z x%

/ /

Ty T3

o Let A= . )
/ 12

1z, o'y
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5 Classification methods

e Let C = (cp,c1,c2)”

o Let Y = (yi,....,yp)T

Defined all the variables above, u = AC —Y is the vector that quantifies the distance
between f(z') and S. Therefore, we want to find the vector C' s.t. |p| is minimized. The
solution to this problem is:

C = (ATA)"1ATY,
being the curvature of f(z') at the vertex 2co, and this will be our estimation for the
curvature at every point p. Finally, we are ready to build a Vietoris-Rips Filtration
and therefore to compute the Sy barcodes of the shapes (Figure ) If the barcodes

are computed for the shapes of Figure then the barcode is a shape descriptor and
fingerprint of the studied defect, since it contains tangential and curvature information.

5.2.2 Part 2: classification of a new defect

Given a new TOFD measurement and b-scan, our method will operate as follows in
order to find out to which defect from the catalogue belongs to:

(i) Sparse deconvolution.

(ii

(iii

Total noise removal.

Building the tangent complex T'(X).
(iv
(v

(vi) Computation of the barcode shape descriptor (fy barcode).

Buiding the approximated T'(X).

Filtering of the approximated T'(X) by curvature.

(vii) Comparison with the catalogue of barcodes.

)
)
)
)
)
)
)
)

(viii) The defect type is found.

In the rest of this section we explain how to completely denoise the b-scan in order
to extract the defect shape (total noise removal). Sparse deconvolution methods are not
100% effective, as it has been discussed in section 2.1.1. For this reason, we propose a
complementary algorithm to clean deconvolved b-scans.

A typical deconvolved b-scan with two pore defects is shown in Figure after
sparse deconvolution. A standard clustering algorithm such as DBSCAN could fail in
the parabolic intersection as explained in section 2.2.1. Our algorithm works as follows:

(i) Filtering of lateral wave and backwall echo: removal of points with high horizontal
density, i.e., when certain amount of points are found in a thin horizontal rectangle,
it means that they belong to the lateral wave or back wall echo. The algorithm

eliminates them (Figure [5.11p).
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(iii)

5.2 Classification method 2: tangential homology and TOFD defects

-
-

-- .'.;'-k‘\_.-f'_ %

Figure 5.11: (a) TOFD deconvolved b-scan with two pore de-
fects. (b) Filtering of back wall echo and lateral wave (red). (c)
Filtered poins after step ii) and iii) of the algorithm (red). (d)
Transformation to the derivative domain. (e) Recovered parabolic
shapes and complete noise removal.

Threshold condition: Let t € R be a threshold value, X = {p1,...,pn} the whole
PCD and {fi,..., fn} the 1% nearest neighbour V p € X. Since the defect points
are very close to each other in comparison to noise points, then if

lpi — fil >,
we assume that it is a noise related point and the algorithm eliminates it.

Angle method: Let {s1, ..., sn} be the 27? pearest neighbour V p € X. As shown in
Figure for defect points

0 = Zp;fipis; ~ 7.

On the other hand, for noise related points, 6 will differ substantially from 7 in
most of cases. So, when @ deviates a certain value from 7, points are eliminated
(Figure c¢). There will be some cases where defect points will be eliminated,
especially in the intersection. These will be recovered in the last step of this algo-
rithm.
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(iv)

Transformation to the derivative domain: this is necessary in cases where we have
two or more intersecting defects, since the intersection point is problematic. The
main idea is to compute the derivative domain where this problematic point will
not exist. We use a first order central difference to approximate the derivative.
Then, V p € X as follows:

f/(xpi) = (yfi - ysi)/(xfi - xSi)'

As shown in Figure|5.11d, the 2 parabolic defects are now lines that are much easier
to cluster. Going back to the original domain, we know which points correspond
to which parabola.

Least squares problem: in order to recover some defect points that were eliminated
unintentionally in steps ii) and iii), we solve a least squares problem. The recovered
parabolas with the whole noise removal are shown in Figure [5.1Tf. This algorithm
has been tested with several different samples being able to clean 97% of noise-
related points.

Figure 5.12: Schematic illustration of the “angle method”, step
3 of the algorithm. The blue zoomed area corresponds to defect
points zone while the red zoomed area is a noisy zone.

After having extracted the defect shape (curve PCD), it is put into the tangential
homology machinery, after which the barcode shape descriptor can be computed and
compared to the catalogue barcodes, and the defect type can be found.
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6 Nearest neighbour search

As explained in section [5.2.2] and [5.2.1.1} the algorithm of our classification methods
looks quite often for nearest neighbours. In a nearest neighbour search problem (NNP)
a set of data points P in a d-dimensional space is given. These points are pre-processed
into a data structure, so that given any query point ¢, the nearest or generally k nearest
points of P to ¢ can be reported efficiently.

In order to do that, we are using the package RANN of the software R. RANN finds
the k nearest neighbours for every point in a given dataset based on Arya and Mount’s
ANN library [9, [8]. This library can give approximate near neighbours to within a
specified error bound. The library implements a number of different data structures,
based on kd-trees. A kd-tree runs in O(MlogM) time. In this Chapter we explain the
basics about kd-trees, giving a motivation for its use, an explanation of how to construct
them and an introduction to the typical operations that can be performed in a kd-tree.

6.1 Introduction and motivation of kd-trees

A kd-tree is a data structure that stores a finite set of points from a k-dimensional
space. Since the data in our research is mainly two dimensional (deconvolved b-scans),
we will focus on 2d trees. kd-trees were introduced by [I3], and allow us to do efficient
processing of points in space, being very flexible and useful in a lot of applications.

In geometric data, in many cases the data points are not evenly distributed. Therefore,
one needs a data structure adapted to that distribution of the data. Consider the example
of Figure where the green dots represent locations of olive trees in Andalusia, Spain.
Given a query point, if the target is to find the nearest olive tree to that point, it would be
extremely inefficient to start looking at every cell, since the olive trees are concentrated
in certain areas. This is the problem that precisely kd-trees try to overcome.

kd-trees have been applied in different fields such as ray tracing [98], N-body simula-
tion [6] and nearest neighbour search [13].

6.2 Construction of 2d-trees

A 2d-tree is a data structure based in a set of points that facilitates efficient data process-
ing of these points. The idea is to build a tree that corresponds to a recursive partitioning
of the plane. We consider the example of Figure to explain the procedure where the
data consists on eight 2D points a, b, ¢, d, e, f,g, h. A 2d-tree is built as follows:

e We choose a point that will be the root of the tree. Our choice is a.
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6 Nearest neighbour search

Figure 6.1: Map of olive trees in Andalusia (Spain). The green
dots correspond to locations of existing olive trees in the region.

Source: [76].

e We cut the space in half. In two dimensions the plane can be cut with an horizontal
or vertical line. In this case we choose the horizontal one (green line). Points
located in one half will be siblings belonging to the left branch of the tree and
points located in the other half will be located in the right branch.

e Consider a second point b of the set. Now one needs to alternate with the other
dimension of the space y. A vertical line is added. Whenever a new point is
added to the tree, one needs to check to which branch of the tree corresponds and
subdivide the space in a different dimension than the previous node did.

The generated tree is shown in Figure Let us try to sketch how the whole tree is
built. The node of the tree a divided the space in two halfs. b belongs to the down part.
The next point we consider is ¢, which belongs to the upper part, the right branch of
the tree. Since its previous node in the tree a cuts the space horizontally, ¢ does it now
vertically. d is in the upper part of a (right branch of the tree) and in the right side of ¢
(right branch of ¢) and cuts the space horizontally. The same procedure applies to the
rest of nodes.

6.3 Some operations in kd trees

In this section we explain two important operations that can be performed in kd trees:
range search and nearest neighbour search.
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Figure 6.2: Graphic representation of the space partition given
by a 2d-tree of the set of points from a to h.

6.3.1 Range search in a 2d-tree

In this operation the goal is to find all points in a query axis-aligned rectangle. In order
to to that, we proceed as follows:

e Check if the root of the tree lies in a given rectangle.
e Recursively search left /bottom (if any could fall in rectangle).

e Recursively search right/top (if any could fall in rectangle).

To further explain this, imagine we wish to find which points in our dataset are
contained by the yellow rectangle of Figure

We proceed as it was explained and first we see that the root of the tree a does not
lie on the rectangle. Therefore, we now check in which half divided by a the rectangle
lies. It lies on the down part or left branch of the tree (Figure . Accordingly, we
only examine this branch of the tree and here we already see one of the advantages of
kd trees.

We reach point b which does not lie on the rectangle and we keep looking on the left
side of the space divided by b. Point e is reached which does not match the yellow query
but we can appreciate that the rectangle is now in both spaces divided by e. Therefore,
an examination in both regions is needed. In one of the regions there are no points so
it is rejected, and in the other we see that the next point f is actually in the yellow
rectangle and as a consequence it is the champion.
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Figure 6.3: 2d-tree of the dataset a-h.

6.3.2 Nearest neighbour search in a 2d-tree

Aiming to find the closest point to a query point ¢, the next procedure is followed:
e Check distance from point in the root to query point.
e Recursively search left/bottom (if it could contain a closer point).
e Recursively search right/top (if it could contain a closer point).
e Organize the method so that it begins by searching for a query point.

We consider the example of Figure [6.4] where a given query point ¢ is marked with
red. We start calculating the distance from the root a to ¢. Then we start going down
the tree. ¢ is in the left branch of a (Figure so we just check the points that belong
to that branch. The next point in the tree in that direction is b and

d(q,b) < d(q,a),
so b is our new champion. Next we have to check the left branch of b and we see that
d(q,e) > d(q,b),

so b remains as the champion. Due to the location of ¢ we just have to examine the right
branch of e (Figure and [6.4). The next point to check is f and

d(q, f) > d(q,b),

so b keeps being the champion. Finally, we just need to check the right branch of f and
the last point h with
d(q, h) < d(qb),
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qe@

Figure 6.4: Graphic representation of the space partition given
by a 2d-tree of the set of points from a to h, where a query yellow
rectangle and point ¢ are also represented.

and therefore h is the champion and the nearest neighbour of q.

One can also divide the space according to the median of z and y coordinates. Let
us introduce a second example where we consider the following data set S in 2D:
[(0,7),(3,4),(2,3),(2,8),(6,2),(9,9), (4,1),(8,6), (6,6), (10,8)]. It is geometrically rep-
resented in Figure [6.5] with points in blue. The tree is build as follows:

e We pick an attribute i.e., x, and calculate the median. In our case the median is
equal to 5.

e The data is split along that median (drawing a vertical line in z = 5).

e We examine the points which its x coordinate is less or equal than the median,
ie., [(0,7), (3,4), (2,3), (2,8), (4,1)] and compute the median of the y coordinate
that turns out to be 4. An horizontal line is drawn in y = 4.

e The process is repeated for the points lying at the right side of x = 5.

This way, we fracture the space in halves and this process could go on. At the end,
points are located in different hypercubes. The 2d-tree is represented in Figure

If a query point ¢ is added (Figure , one can walk down the 2d-tree looking in
the hypercube where ¢ is located. In this case, the algorithm would choose (2, 8) as the
nearest neighbour of ¢. This is of course an approximate technique and in this example
is clearly seen, since the real nearest neighbour of ¢ is the point (3,4).

In a typical case, the nearest neighbour search in kd-trees runs in O(log/N) and in the
worst case in O(N). 2d-trees are extremely effective in quickly processing huge amount
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Figure 6.5: Graphic representation of the dataset S and the query
point q.

of geometric data. One can easily extend a 2d tree to higher dimensions. Even if there
are k dimensions, one will do a recursive partitioning one adimension at a time. For
instance in 3D, planes are used to partition the space.
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x=6
y=4 y=6
(2,3) (0,7) (6,2) (9,9)
(4,1) (3,4) (8,6) (10,8)
(2,8) (6.6)

Figure 6.6: The 2d tree of the dataset S.
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7 Numerical Results

Numerical results are presented and analyzed in the present chapter. The two automatic
classification methods of TOFD defects using ultrasonic NDT techniques explained in
Chapter 5, were tested with real and simulated data. Section 7.1. includes the numerical
results for the classification method based on persistent homology and section 7.2., those
results for the classification method based on tangential homology.

7.1 Results: persistent homology and TOFD defects

We have analyzed three different cases of TOFD defects. In the test cases 1 and 3 the
data was simulated with the model proposed in [I9]. Test 2 corresponds to real data.
To compute the persistent homology of the PCD we have used the software packages
Perseus [72] and the Phom [91].

7.1.1 Test Case 1: simulated TOFD Crack

A component of 20 mm thickness is simulated with the weld at z = 0. A crack is located
at (x =40—75,y = —11, z = 0). Two probes, one emitter and one receiver, are moving
along the weld (Figure ) The angle of aperture of the emitter is 12 degrees, other
parameters of ultrasound are: bandwidth: 30 MHz, frequency: 5 MHz, shift = 7/4.
a-scans are taken every 0.5 mm, 300 in total. The velocity of ultrasound in steel tube
is known and defined (¢; = 5.92 mm/s and ¢,= 3.23 mm/s). Gaussian noise was also
added to the geometrical model considering a variance of 0.035. The deconvolved b-scan
is shown in Figure (blue dots), where the backwall echo and lateral wave have also
been filtered out. The crack is detected very well (Figure . The entire detection
process takes less than 3 seconds CPU time only.

7.1.2 Test Case 2: real TOFD data with lack of fusion

The data (Figure[7.3h) was obtained from a sample of a pipe with outer diameter 1.166 m
and wall thickness 23.3 mm. The weld seam was tested with a 10 MHz transducer, 6 mm
diameter (Olympus C563-SM). The angle of incidence is 70 degrees. The data exhibits
a lack of fusion at the end of the pipe. a-scans were taken every 0.5 mm. Again, 300
a-scans were performed. Barcodes for the first homology group are shown in Fig. [7.4]
The defect is detected very well.
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Figure 7.1: (a) Move asymmetric rectangle of points scanning
the whole image. (b) persistent diagram for the PDC without
adding any extra data; (c), (d), (e) persistent diagram for the
PCD (deconvolved b-scan adding the black, green, red rectangle
of points). Note the change from 1 to 2 stable 1D holes (dots in
the upper left corner of diagrams) when the rectangle matches the
crack.
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Figure 7.3: (a) b-scan Real TOFD data; (b) deconvolved and
filtered b-scan.
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1

Figure 7.4: Barcode representation of persistent homology of
PCD representing a lack of fusion. (b) no extra data is added,
therefore no stable hole is detected; (c) blue rectangle of points
added: one stable hole; (d) green rectangle of points added: one
stable hole; (e) red rectangle of points added: two stable holes.
This change in stable one-dimensional holes detects the defect.
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Figure 7.5: Barcode representation of persistent homology com-
puted for the PCD representing two pore defects.
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7.1.3 Test Case 3: simulated TOFD data with two pore defects

We used the same weld as in test case 1, but now with two pore defects (Figure[7.2h). We
chose a bandwith of 50 Mhz, and set the variance of the noise to 0.02. The pore defects
are at (0,—13.5,0) and (16, —12,0). Our results are shown in Figure The two pore
defects are detected at the jump from 0 to 2 stable holes in the barcode representation.
This happens when the horizontal line intersects with the parabolic defects. The total
CPU time for all computations is less than 3 seconds only.

7.2 Results: tangential homology and TOFD defects

In this section the barcode shape descriptor is computed for shapes that simulate the
different real indications shown in Figure[5.7] This way a catalogue of the most common
defects has been created. We analyze defects b, ¢ and j of Figure

The data is generated manually as follows:

e Defect b Figure we select 50 points per unit length along the x and y axis and
project them into the parabolas of equations f(r) = —2240.5and f(z) = —22+1.5
with € [—1,1]. Next Gaussian noise is added to each point in the PCD with
mean 0 and standard deviation 0.01.

e Defect ¢ Figure same procedure than before projecting the points to the
parabola f(z) = —22+1.5 and the lines f(z) = 0.6252+0.2 ¢ f(z) = —0.6252+0.2.

e Defect j Figure the points are projected over a semi-ellipse with semiaxes
a =1 and b= 0.65 and the line f(x) = 0.14.

We set the necessary parameters to input the three PCD into the tangential homology
machinery:

(i) € is set to 0.05 and it is enough to connect properly all the defects points.
(ii) the scaling factor w is set to 0.1.
(iii) the number of neighbours & is set to 20.

The results are summarized in Figures [7.7] and where the barcode shape
descriptor is created for every shape.

Let us analyze the efficiency of this method for shape classification. It is obvious
that pure topology is not able to distinguish between the defects in Figures [7.6h and
Figure[7.7h, since both present two connected components and no holes. Nevertheless, we
can use the proposed method for this goal. Defect from Figure [7.6h present two smooth
parabolic shapes. On the contrary, defect in Figure [7.7h has a kink or singularity.

This kink will split the tangent complex in many pieces since the curvature varies
extremely fast in the kink. Defect from Figure [7.6h presents 4 half-infinite intervals
in the fy barcode that correspond to 4 separated elements in the approximated T'(X)
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Figure 7.6: Barcode shape descriptor computed for pore defect
type b. (a) defect PCD; (b) T'(X) filtered by curvature; (c) Ap-
proximated T'(X) filtered by curvature; (d) Sy barcode represen-
tation.

(Figure [7.6c,d). On the other hand, defect from Figure presents 8 (Figure d).
So, even though they have the same topology, they can be differentiated by the number
of half-infinite intervals.

Even in the case when two defects present the same topology and smoothness (Fig-
ure and Figure ), the curvature information can be used to distinguish them. In
this case both present the same number of half-infinite intervals, but the finite intervals
will differ due to the information provided by the curvature of the shapes (Figure
and Figure ) To compare different barcodes a metric has been proposed in [29],
where one can measure “distance” between barcodes.

Summarizing, when a new TOFD measurement is taken in the laboratory in order to
find out the type of defect d:

e The obtained deconvolved an denoised b-scan is put into the tangential homology
machinery.

e A barcode is generated.

e This shape descriptor is compared with the catalogue of barcodes that we computed
from real data experience (Figure |5.7)).
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a b

Figure 7.7: Barcode shape descriptor computed for pore defect
type c. (a) defect PCD; (b) T'(X) filtered by curvature; (c) Ap-
proximated T'(X) filtered by curvature; (d) 5y barcode represen-
tation.

e After this comparison, we find out what kind of indication d exists inside our
pipeline.
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Figure 7.8: Barcode shape descriptor computed for pore defect
typej. (a) defect PCD; (b) T'(X) filtered by curvature; (c) Approx-
imated T'(X) filtered by curvature; (d) Sy barcode representation.
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8 Summary and conclusions

Finally we summarize the results of this thesis. As we explained in the first chapters,the
Time of Flight Diffraction (TOFD) technique is one of the most advanced methods in
ultrasonic NDT for automatic weld inspection, especially in the steel industry, where it
is rather important to avoid productivity losses. Even though it has a low rate of false
indications, and it is fast and precise in terms of size accuracy, it has a huge drawback,
and this is the interpretation of the images that are generated by the ultrasounds used
in TOFD. To be more precise, most of industrial companies working with TOFD per-
form a manual interpretation of b-scans, and this implies that every decision regarding
interpretation of TOFD images depends on the experience and knowledge of one human
operator. For large amount of scans and data, this is of course inefficient and cost time,
money and moreover can lead to errors.

In this research project innovative methods for automatic classification of TOFD de-
fects have been presented. We show a successful applicacion of persistent homology
based methods to the task of automating the decision making process involved in the
interpretation of TOFD images.

Before applying our methods, image pre-processing is performed to the raw b-scan
in order to immensely reduce the amount of data and save computational time in next
steps. To this end, sparse deconvolution methods are used on the region of interest
(ROI) of the TOFD b-scans. Two automated classification methods have been proposed
at this point:

e In the first method a scanning technique based on persistent homology is used to
detect and distinguish between volumetric defects (pores, wormholes, etc.) and
planar defects (cracks and lack of fusion), where the change in the number of
stables holes in the PCD when adding extra suitable data determines the type
of defect. The method turns out to be fast and able to handle noisy datasets.
Moreover, the classification is done without the image segmentation stage, which
is always needed in others classification methods. One of its limitations is that it
is only useful for linear and parabolic shape defects. Even though these are the
most common in TOFD, the method has to be adjusted for other shapes.

e The second method performs a deeper classification being able to differentiate
defects that even belong to the same class. In a first step, a catalogue of shape
descriptors describing the most typical shapes that defects present in TOFD b-
scans is created in the following way:

(i) Typical b-scan defect shapes are found out taking real TOFD measurements
where several hundreds of weld seams were tested and evaluated.

113



8 Summary and conclusions

(ii) The appproximated tangent complex filtered by curvature is computed.

(iii) Computation of the 0 homology group is performed to obtain the barcode
shape descriptor.

Given a new TOFD measurement and its corresponding b-scan this method finds
out the defect type as proceeds:

(i) The b-scan is deconvolved using sparse deconvolution methods.
(ii) Complete noise removal is performed for defect shape extraction.

(iii) The remaining PCD is put into the tangential homology machinery to com-
pute the approximated tangent complex filtered by curvature.

(iv) The barcode shape descriptor is computed.

(v) A comparison is made between the barcode and the ones from the catalogue
to find out the defect type.

Summarizing, this technique studies the connected components of a complex con-
structed from a curve PCD using its tangential information. One of the main
advantage of this approach is that it can be used for any curve PCD (defect
shape) without any prior knowledge about it. One limitation is that the shape
cannot contain any remaining noise, since it directly affects to the number of con-
nected components. Therefore powerful pre-processing and denoising techniques
are needed.

The proposed methods have been validated by our numerical examples with real TOFD
data obtained in the laboratory through several measurements. Our methods are efficient
and give a relevant contribution to the development of an automatic system of detection
and classification of welding TOFD defects.

Following the work here presented, multiple possible routes could be considered in
order to continue and enrich this research:
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Application of our methods to other ultrasonic NDT techniques such as SAFT,
etc.

Extension to higher dimensions, i.e., persistent homology methods for interpreta-
tion of 3D scans.

Analysis of other defects that have not been studied in this thesis (undercut, lamel-
lar tear, etc).

Use of other complexes such as Witness in order to save computational time.

Incorporation of our methods to the real practice of detection and classification of
welding defects in different industries and materials.

Application of our methods to other scientific fields where stable holes or topo-
logical features can be related to properties of the PCD, such as mask of satellite
precipitation data.
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