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“Experience is the teacher of all things.”
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Abstract

Perceiving the actions of other people is one of the most important social skills
of human beings. We are able to reliably discern a variety of socially relevant
information from people’s body motion such as intentions, identity, gender, and
affective states. This ability is supported by highly developed visual skills and the
integration of additional modalities that in concert contribute to providing a ro-
bust perceptual experience. Multimodal integration is a fundamental feature of the
brain that together with widely studied biological mechanisms for action percep-
tion has served as inspiration for the development of artificial systems. However,
computational mechanisms for processing and integrating knowledge reliably from
multiple perceptual modalities are still to be fully investigated.

The goal of this thesis is to study and develop artificial learning architectures
for action perception. In light of a wide understanding of the brain areas and un-
derlying neural mechanisms for processing biological motion patterns, we propose
a series of neural network models for learning multimodal action representations.
Consistent with neurophysiological studies evidencing a hierarchy of cortical lay-
ers driven by the distribution of the input, we demonstrate how computational
models of input-driven self-organization can account for the learning of action fea-
tures with increasing complexity of representation. For this purpose, we introduce
a novel model of recurrent self-organization for learning action features with in-
creasingly large spatiotemporal receptive fields. Visual representations obtained
through unsupervised learning are incrementally associated to symbolic action la-
bels for the purpose of action classification.

From a multimodal perspective, we propose a model in which multimodal action
representations can develop from neural network organization in terms of associa-
tive connectivity patterns between unimodal representations. We report a set of
experiments showing that deep self-organizing hierarchies allow to learn statisti-
cally significant features of actions, with multimodal representations emerging from
co-occurring audiovisual stimuli. We evaluated our neural network architectures on
the tasks of human action recognition, body motion assessment, and the detection
of abnormal behavior. Finally, we conducted two robot experiments that provide
quantitative evidence for the advantages of multimodal integration for triggering
sensory-driven motor behavior. The first scenario consists of an assistive task for
the detection of falls, whereas in the second experiment we propose audiovisual
integration in an interactive reinforcement learning scenario. Together, our re-
sults demonstrate that deep neural self-organization can account for robust action
perception, yielding state-of-the-art performance also in the presence of sensory
uncertainty and conflict.

The research presented in this thesis comprises interdisciplinary aspects of ac-
tion perception and multimodal integration for the development of efficient neu-
rocognitive architectures. While the brain mechanisms for multimodal perception
are still to be fully understood, the proposed neural network architectures may be
seen as a basis for modeling higher-level cognitive functions.
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Zusammenfassung

Die Wahrnehmung von Aktionen anderer Personen ist eine der wichtigsten sozialen
Kompetenzen von Menschen. Wir sind in der Lage, eine Vielzahl von relevanten
sozialen Informationen aus den Körperbewegungen von Personen zu extrahieren;
dazu gehören Absichten, Identität, Geschlecht und Gefühlszustände. Diese Fähig-
keit stützt sich auf ein hochentwickeltes visuelles System und die Integration von
zusätzlichen Modalitäten, die gemeinsam dazu beitragen, eine robuste Wahrneh-
mungserfahrung zu schaffen. Multimodale Wahrnehmung ist eine fundamentale
Eigenschaft des Gehirns, welche zusammen mit den biologisch gut erforschten
Mechanismen zur Aktionswahrnehmung als Inspiration für die Entwicklung künst-
licher Systeme gedient hat. Dennoch ist die Forschungsfrage, wie man Wissen
maschinell aus einer Vielzahl von Modalitäten verlässlich verarbeiten und verbinden
kann, noch offen.

Die vorliegende Arbeit beschäftigt sich mit der Erforschung und Entwicklung
von künstlichen Lernarchitekturen zur Aktionswahrnehmung. Vor dem Hinter-
grund des weitverbreiteten Verständnisses der Gehirnregionen und zugrundeliegen-
den neuronalen Mechanismen zur Verarbeitung von Bewegung in biologischen Sys-
temen, präsentieren wir eine Reihe von neuronalen Netzwerkmodellen zum Erler-
nen von Repräsentationen von multimodalen Aktionen. In Einklang mit neuro-
physiologischen Studien, die eine stimulusgetriebe Hierarchie von kortikalen Ebe-
nen belegen, zeigen wir, wie Computermodelle von stimulusgetriebener Selbstor-
ganisation für das Erlernen von Aktionsmerkmalen Rechnung tragen können. Zu
diesem Zweck stellen wir ein neues Modell rekurrenter Selbstorganisation zum
Erlernen von Aktionsmerkmalen vor, welches wachsende raum-zeitliche rezeptive
Felder nutzt. Visuelle Repräsentationen, welche mit Hilfe von unüberwachtem Ler-
nen gewonnen werden, werden zum Zweck der Aktionsklassifikation inkrementell
mit symbolischen Aktionslabeln assoziiert.

Von einer multimodalen Perspektive stellen wir ein Modell vor, in dem sich
Aktionsrepräsentation aus neuronaler Netzwerkorganisation ergibt, im Sinne von
Mustern in der Konnektivität von Assoziationen unimodaler Repräsentationen.
Wir führen eine Reihe von Experimenten durch, die zeigen, wie tiefe, selbstorgan-
isierende Hierarchien das Erlernen von statistisch signifikanten Aktionsmerkmalen
erlauben, wobei multimodale Repräsentation aus gemeinsam auftretenden audio-
visuellen Stimuli hervorgeht. Wir evaluieren unsere neuronalen Netzwerkarchitek-
turen mit Aufgaben zur Erkennung menschlicher Bewegung, zur Körperbewegungs-
beurteilung und zur Erkennung von abnormalem Verhalten. Abschliessend führen
wir zwei Experimente mit Robotern durch, welche quantitativ die Vorteile von mul-
timodaler Integration zum Auslösen von sensorgetriebenem motorischen Verhalten
belegen. Das erste Szenario besteht aus einer assistiven Aufgabe zur Sturtzerken-
nung, während im zweiten Experiment ein Vorschlag zur audiovisuellen Integration
in einem interaktiven Szenario erbracht wird. Zusammen zeigen unsere Ergeb-
nisse, dass tiefe neuronale Selbstorganisation eine robuste Aktionswahrnehmung
ermöglicht und dem Stand der Technik entsprechende Ergebnisse liefern kann,
selbst bei unsicheren oder widersprüchlichen Sensormessungen.
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Abstract

Die Forschung in dieser Arbeit beinhaltet interdisziplinäre Aspekte der Aktions-
wahrnehmung und der multimodalen Integration mit dem Ziel der Entwicklung
von effizienten neurokognitiven Architekturen.Während die Mechanismen, welche
das Gehirn zur multimodalen Wahrnehmung nutzt, noch näher erforscht werden
müssen, können die vorgestellten neuronalen Netzwerkarchitekturen als Basis zur
Modellierung von höheren kognitiven Funktionen gesehen werden.
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Chapter 1

Introduction

The daily perceptual experience of human beings is driven by an array of sensors
that in concert contribute to the efficient and robust interaction with the environ-
ment (Stein and Meredith, 1993; Ernst and Bülthoff, 2004; Stein et al., 2009). We
are able to reliably discern a variety of relevant social cues from people’s body mo-
tion such as intentions, identity, gender, and affective states (Blake and Shiffrar,
2007; Giese and Rizzolatti, 2015), which is supported by the development of a
highly skilled visual perception and the integration of additional modalities. The
ability to integrate multisensory information is a fundamental and widely studied
feature of the brain, yielding the effective processing of body motion patterns also
from strongly degraded stimuli (Neri et al., 1998; Thornton et al., 1998; Poom and
Olsson, 2002). Therefore, the findings of the underlying biological mechanisms
for action perception have played an inspiring role in the development of artifi-
cial systems aimed to address the robust recognition of actions, for instance, by
integrating auditory and visual patterns. Computational models for multimodal
integration are a paramount ingredient of autonomous robots to forming robust
and meaningful representations of perceived events (Ursino et al., 2014).

Multimodal representations have been shown to improve performance in the
research areas of human action recognition, human-robot interaction, and sensory-
driven robot motor behavior (Kachouie et al., 2014; Noda et al., 2014; Bauer et al.,
2015). However, multisensory inputs must be represented and integrated in an ap-
propriate way so that they result in a reliable perceptual experience aimed to
trigger adequate behavioral responses. Since real-world events unfold at multi-
ple spatial and temporal scales, artificial learning architectures aiming at tackling
complex perceptual tasks should account for the multimodal processing of spa-
tiotemporal stimuli with multiple levels of complexity and abstraction (Fonlupt,
2003; Hasson et al., 2008; Lerner et al., 2011). This kind of hierarchical aggrega-
tion is an essential organizational principle of brain cortical networks that together
with the interplay of multiple modalities drives a series of perceptual and cogni-
tive processes (Taylor et al., 2015). Consequently, the question of how to acquire,
process, and integrate multimodal knowledge in artificial neurocognitive systems
represents a fundamental issue still to be fully investigated.
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Chapter 1. Introduction

Research Objective

The main goal of this thesis is the study and development of artificial learning ar-
chitectures for action perception motivated by a set of neurophysiological findings
and behavioral studies. We take inspiration from the underlying neural mecha-
nisms of the brain areas dedicated to processing biological motion from a set of
available perceptual cues. These mechanisms include the hierarchical nature of
cortical areas for processing spatiotemporal patterns with an increasing complex-
ity and abstraction of representation (Hasson et al., 2008; Taylor et al., 2015)
and the development of cortical connectivity patterns through neural network self-
organization (Willshaw and von der Malsburg, 1976; Nelson, 2000). In the light of a
more substantial understanding of the development and properties of cortical maps
in the mammalian brain, well-studied computational mechanisms of input-driven
self-organization can be extended to model learning architectures that account for
complex multimodal tasks, e.g., from rudimentary action perception to higher-level
cognitive functions.

The key objective of this thesis is in the development of multimodal action
representations from neural network self-organization. More specifically, how can
statistically significant action cues from co-occurring auditory and visual inputs be
combined in an unsupervised manner by learning connectivity patterns between
unimodal representations. Although the development of associations between co-
occuring stimuli for multimodal binding has been supported extensively by neuro-
physiological studies (Fiebelkorn et al., 2009) with strong links between the brain
areas governing visual and language processing (Foxe et al., 2000; Pulvermüller,
2005), computational models for the efficient multimodal binding of spatiotemporal
features have remained an open issue (Ursino et al., 2014).

As a complementary goal, we aim to validate the proposed neural network
models for multimodal action perception in robot experiments with real-world
tasks. In contrast to the evaluation of computational models with data collected
in highly controlled conditions, these experiments are aimed at assessing how the
proposed neural architectures deal with rich streams of information also in the case
of sensory uncertainty and conflict. In particular, we wish to provide quantitative
evidence on the advantages conveyed by the use of multiple modalities for human-
robot interaction tasks comprising sensory-driven motor behavior.

Contribution to Knowledge

The contribution to knowledge of this thesis is a detailed study of neural net-
work self-organization and the development of deep self-organizing architectures
for learning multimodal action representations. These architectures are in line
with a set of biological findings evidencing a hierarchy of neural detectors for
processing spatiotemporal body motion cues with increasing complexity of repre-
sentation. We demonstrate how self-organizing architectures can be extended to
account for a set of visual tasks such as human action recognition, body motion
assessment, and the detection of abnormal behavior. In particular, we propose a
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deep self-organizing architecture for learning visual action representations in an un-
supervised manner. This architecture comprises multiple layers of recurrent neural
networks to implement the hierarchical processing of visual cues with increasingly
larger spatiotemporal receptive fields from depth map videos. Furthermore, we
propose an approach for learning multimodal action representations from neural
self-organization in terms of asymmetric connectivity patterns between unimodal
representations, allowing the bidirectional retrieval of audiovisual patterns. Our
experimental results with computer simulations and interactive robots show the
importance of multimodal processing for improving human-robot interaction and
sensory-driven motor behavior, especially in the case of sensory uncertainty and
conflict in real-world tasks.

Thesis Organization

For a better understanding of the challenges considered in this thesis, we provide
an introduction to multimodal action recognition in Chapter 2, where we review
well-established findings regarding action perception in the brain along with a back-
ground on computational architectures for state-of-the-art human action recogni-
tion, body motion assessment, and abnormal behavior detection in assistive robot
scenarios. In Chapter 3, we present the pillars of experience-driven cortical or-
ganization and computational models of neural network self-organization. As a
modelling foundation to address our research question, we focus on a number of
topology-preserving networks for the development of topological maps driven by
the distribution of the input.

In Chapter 4, we propose a set of neurobiologically-motivated neural network
architectures for action recognition from depth map videos in real time. Our ap-
proach consists of hierarchically-arranged self-organizing networks processing ac-
tion cues in terms of body posture and motion features. Furthermore, we introduce
our dataset of full-body actions that we use to evaluate the architectures proposed
in this and following chapters. In Chapter 5, we investigate the use of hierarchical
self-organizing learning for the development of congruent multimodal action rep-
resentations. In particular, we propose a model where multimodal representations
emerge from the co-occurrence of auditory and visual stimuli via the learning of as-
sociative connections between unimodal representations, yielding the bidirectional
retrieval of audiovisual patterns.

In Chapter 6, we propose a novel temporal extension of a self-organizing net-
work equipped with recurrent connectivity for dealing with time-varying patterns.
We use this recurrent network in a hierarchical architecture for the unsupervised
learning of action representations with increasingly larger spatiotemporal recep-
tive fields. In order to compare our proposed architecture with respect to current
trends in deep learning, we show how our model accounts for the learning of robust
action-label mappings also in the case of occasionally absent or even contradictory
action class labels during training sessions. Additionally, we show how the same
recurrent neural network mechanism can deal with both action recognition and
body motion assessment in real time.
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In Chapter 7, we apply aspects of multimodal integration for enhancing human-
robot interaction and triggering robust sensory-driven robot behavior in dynamic
environments. We conduct experiments in two scenarios: a robot-human assistance
task for fall detection and a multimodal interactive reinforcement learning task
with a robot cleaning a table and receiving instructions from both vocal and gesture
commands. Experiments show that the integration of multiple modalities leads to
a significant improvement of performance with respect to unimodal approaches.

Concluding in Chapter 8, the proposed neural network architectures and re-
ported results are discussed from the perspective of our research questions, ana-
lyzing analogies and limitations with respect to biological findings and providing
a number of future research directions.
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Chapter 2

Multimodal Action Recognition

The robust recognition of others’ actions represents a crucial component under-
lying social cognition. Humans can reliably discriminate a variety of socially rel-
evant cues from body motion such as intentions, identity, gender, and affective
states (Blake and Shiffrar, 2007; Giese, 2015). Neurophysiological studies have
identified a specialized area for the visual coding of complex motion in the mam-
malian brain (Perrett et al., 1982), comprising neurons selective to biological mo-
tion in terms of time-varying patterns of form and motion features in a wide
number of brain structures (Giese and Rizzolatti, 2015). Furthermore, the ability
of the brain to integrate multisensory information plays a crucial role aimed to
provide a robust perceptual experience for an efficient interaction with the envi-
ronment (Stein and Meredith, 1993; Ernst and Bülthoff, 2004; Stein et al., 2009).
Consequently, the investigation of the biological mechanisms of action perception
is fundamental to the development of artificial systems that should account for
the robust processing of body motion cues from cluttered environments and rich
streams of information.

In Section 2.1, we provide an introduction to multimodal action perception in
humans and the underlying neural mechanisms in the brain, whereas in Section 2.2
we describe a variety of computational models aimed to tackle complex visual tasks
such as human action recognition, body motion assessment, and the detection of
abnormal behavior, along with a set of technical challenges involve in embedding
these systems into robotic platforms.

2.1 Action Recognition in the Brain

2.1.1 How We Learn to See Others

The skill to recognize biological motion in humans arises in early life. The ability
of neonates to imitate manual gestures suggests that the recognition of complex
motion may depend on innate neural mechanisms (Meltzoff et al., 1977). Studies on
preferential looking with four-month-old infants evidence a preference for staring
at human motion sequences for a longer duration than at sequences with random
motion (Bertenthal and Pinto, 1993). Additional behavioral studies have shown
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that young children aged three to five years steadily enhance their skills to identify
human and non-human biological motion portrayed as animations of point-light
tokens and reach adult performance by age five (Pavlova et al., 2001).

The preservation of the ability to reliably discriminate different forms of body
motion from normal and impoverished stimuli has been reported for observers older
than sixty years old (Norman et al., 2004), in contrast to reported age-related
deficits in the visual system such as deterioration of speed discrimination and de-
tection of low-contrast moving contours. Experiments on action discrimination
tasks have evidenced a remarkable efficiency of adult observers to temporally inte-
grate body motion from highly improvised visual stimuli, e.g., partially occluded
bodies, body motion embedded within noise or animated figures represented by
a small number of moving dots (Johansson, 1973; Neri et al., 1998; Thornton
et al., 1998; Poom and Olsson, 2002). On the other hand, significantly decreased
performance of action perception has been reported for temporal disruptions of
the stimuli (temporally scrambled frames of videos) and strong spatial rotation
(upside-down clips) of both biological and artificial motion morphs (Bertenthal
and Pinto, 1993; Jastorff et al., 2006). Interestingly, Jastorff et al. (2006) have
shown that after a number of trials, observers improve their ability to recognize
sequences of upside-down body motion, whereas such an improvement over multi-
ple trials has not been reported for temporally disrupted versions of videos, thus
suggesting that action recognition is highly selective in terms of the temporal or-
der of presented stimuli. Moreover, these studies have shown that learning plays
an important role in complex motion discrimination, with recognition speed and
accuracy of humans being improved after a number of training sessions, not only
for biologically relevant motion but also for artificial motion patterns underlying
a skeleton structure (Jastorff et al., 2006; Hiris, 2007).

In addition to highly skilled visual mechanisms for motion analysis, a vast
variety of studies has shown that visual perception is strongly interwoven with
additional perceptual modalities and higher-level cognitive processes (Foxe et al.,
2000; Raij et al., 2000; Pulvermüller, 2005). Words for actions and events appear to
be among children’s earliest vocabulary (Bloom, 1993). A central question in the
field of developmental learning is how children first attach verbs to their referents.
During their development, children have a wide range of perceptual, social, and
linguistic cues at their disposal that they can use to attach a novel label to a novel
referent (Hirsch-Pasek et al., 2000). The referential ambiguity of verbs may then
be solved by children assuming that words map onto the most perceptually salient
action in their environment. Recent experiments have shown that human infants
are able to learn action–word mappings using cross-situational statistics, thus also
in the presence of occasionally unavailable ground-truth action words (Smith and
Yu, 2008). Furthermore, action words can be progressively learned and improved
from linguistic and social cues so that novel words can be attached to existing
visual representations. This hypothesis is supported by neurophysiological studies
evidencing strong links between the cortical areas governing visual and language
processing, and suggesting high levels of functional interaction of these areas for
the formation of multimodal representations of audiovisual stimuli (Foxe et al.,
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2000; Raij et al., 2000; Belin et al., 2000, 2002; Pulvermüller, 2005).
Together, these studies suggest a highly robust and adaptive system for the ef-

ficient analysis of biological motion and synthetically generated patterns of biome-
chanically plausible motion. For over five decades, the neural mechanisms of the
mammalian brain for action perception have been subject to multidisciplinary
studies, with insights about biological motion processing having the dual goal of
improving our understanding of the brain and contributing to the development of
artificial models of perception.

2.1.2 Neural Mechanisms for Action Perception

Studies have identified a specialized area for the visual coding of complex, artic-
ulated motion in the mammalian brain (Perrett et al., 1982). Early processing of
visual input starts in the primary visual cortex (V1) and extends to higher-level
and diverse areas of the brain. In particular, neurons selective to biological motion
in terms of time-varying patterns of form and motion features have been found
in a wide number of brain structures such as the superior temporal sulcus (STS),
the parietal, the premotor and the motor cortex (Giese and Rizzolatti, 2015). A
schematic illustration of the brain containing a series of areas involved in visual
processing is shown in Fig. 2.1.

Two-Pathway Processing of Visual Cues

Neurophysiological studies have shown that the mammalian visual system pro-
cesses biological motion in two neural pathways (Ungerleider and Mishkin, 1982;
Felleman and Van Essen, 1991). The ventral pathway recognizes sequences of
snapshots of body form, while the dorsal pathway recognizes movements in terms
of optic-flow patterns. Both pathways comprise hierarchies that extrapolate visual
features with increasing complexity of representation. Visual processing in corti-
cal areas is hierarchical, with increasingly larger spatiotemporal receptive windows
where simple features manifest in low-level layers closest to sensory inputs, while
increasingly complex representations develop in deeper layers (Taylor et al., 2015;
Hasson et al., 2008; Lerner et al., 2011). Specifically for the visual cortex, Hasson
et al. (2008) have shown that while early visual areas such as the primary visual
cortex (V1) and the motion-sensitive area (MT+) yield higher responses to instan-
taneous sensory input, high-level areas such as the superior temporal sulcus (STS)
are more affected by information accumulated over longer timescales. Neurons in
higher levels of the hierarchy are also characterized by gradual invariance to the
position and the scale of the stimulus (Orban et al., 1982). This kind of hierarchi-
cal aggregation is a fundamental organizational principle of cortical networks for
dealing with perceptual and cognitive processes that unfold over time (Fonlupt,
2003).

Although there has been a long-standing debate on which visual cue is pre-
dominant to action understanding, i.e. either snapshots of body form (Lange and
Lappe, 2006) or optic flow patterns (Troje, 2002), it has been found that neurons
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Figure 2.1: Schematic illustration of the brain for visual processing. IT, inferior
temporal cortex; MT, middle temporal cortex; STG, superior temporal gyrus; STS,
superior temporal sulcus; V1, primary visual cortex; V2, secondary visual cortex
(prestriate cortex); V4, visual area in the extrastriate visual cortex.

in the macaque STS that are sensitive to both motion and posture for represent-
ing similarities among actions, thus suggesting contributions from converging cues
received from the ventral and dorsal pathways (Oram and Perrett, 1996). On
the basis of additional studies showing that neurons in the human STS activate
by body articulation (Beauchamp et al., 2003), there is a consensus that posture
and motion together play a key role in biological motion perception (Garcia and
Grossman, 2008; Thirkettle et al., 2009). It is to be noted that the conceptual sepa-
ration into two distinct pathways represents a simplification, while it is known that
the two processing streams comprise interactions at several levels (Felleman and
Van Essen, 1991). The underlying neural mechanisms and functional underpinning
of this interaction are still to be fully investigated.

A well-established computation model used to provide a qualitative analysis of
existing data on biological movement recognition was proposed by Giese and Pog-
gio (2003). It consists of a feedforward, two-pathway architecture for learning pro-
totypical action patterns based on neurophysiological evidence. The architecture
includes primarily visual areas involved in the recognition of body movement. An
overview of the architecture is illustrated in Fig. 2.2, showing the different types of
neuron detectors and corresponding areas in the mammalian brain involved in the
processing. Consistent with biological findings, both streams comprise a hierarchy
of neural detectors that process form-motion features with increasing complexity,
i.e. the size of the receptive fields and the position and scale invariance of the
detectors increase along the hierarchy. The model assumes that the hierarchy is

8



2.1. Action Recognition in the Brain

Invariant bar 
detectors
V1, V4

Local 
orientation 
detectors

V1

Snapshot 
neurons

IT, STS, FA

Local motion 
detectors

V1/V2, MT

Local OF 
detectors

MT, MST, KO

OF neuron 
patterns
STS, FA

Motion pattern 
neurons

STS, F5, FA

Form pathway

Motion pathway

Walking

Other

Running

Figure 2.2: Hierarchical, two-pathway neural model for the processing of form and
motion. F5, ventral premotor cortex; IT, inferior temporal cortex; KO, kinetic
occipital cortex; MT, middle temporal cortex; MST, medial superior temporal
cortex, OF, optic flow; STS, superior temporal sulcus; V1, primary visual cortex;
V2, secondary visual cortex (prestriate cortex); V4, visual area in the extrastriate
visual cortex. Adapted from (Giese and Poggio, 2003).

predominantly feedforward. While this assumption does not rule out the need
for top-down signals, the assumption is based on the fact that recognition of bi-
ological motion in the STS exhibits short latencies, thus making the key role of
top-down modulation unlikely for early action perception. For instance, Johans-
son (1976) showed that stimulus presentation times below 300 ms are sufficient for
the recognition of biological motion, while Oram and Perrett (1996) observed that
motion-selective neurons in the STS exhibit latencies of less than 200 ms. How-
ever, anatomical and neurophysiological studies have shown that the visual cortex
is characterized by significant feedback connectivity between different cortical ar-
eas (Felleman and Van Essen, 1991; Salin and Bullier, 1995). In particular, action
perception demonstrates strong top-down modulatory influences from attentional
mechanisms (Thornton et al., 2002) and higher-level cognitive representations such
as biomechanically plausible motion (Shiffrar and Freyd, 1990). Furthermore, al-
though the model accounts for the biologically plausible processing of form-motion
cues, it does not explain how information from the two streams is subsequently
integrated as a joint percept.

Multimodal Action Perception

It has been argued that the STS in the mammalian brain may be the basis of an
action-encoding network with neurons driven by the perception of dynamic human
bodies and that for this purpose it receives converging inputs from earlier visual
areas from both the ventral and dorsal pathways (Beauchamp, 2005; Garcia and
Grossman, 2008; Vangeneugden et al., 2009; Thirkettle et al., 2009). Neuroimag-
ing studies have shown that the posterior STS (pSTS) shows a greater response
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for audiovisual stimuli than to unimodal visual or auditory stimuli (Calvert, 2001;
Beauchamp et al., 2004; Wright et al., 2003; Senkowski et al., 2011). Wright
et al. (2003) conducted an event-related fMRI study showing a strong activation
of the STS region in subjects evoked by both unimodal and multimodal audiovi-
sual stimuli from an animated character, but that greatest levels of activity were
elicited by audiovisual speech. In a study of actions involving the use of objects,
(Beauchamp et al., 2004) observed that the pSTS and middle temporal gyrus
(MTG) showed an enhanced response when auditory and visual object features
were presented together with respect to the response to a single modality. Thus,
the STS area is thought to be an associative learning device for linking different
unimodal representations and accounting for the mapping of naturally occurring,
highly correlated features such as body pose and motion, the characteristic sound
of an action (Beauchamp et al., 2004; Barraclough et al., 2005) and linguistic
stimuli (Belin et al., 2002; Wright et al., 2003; Stevenson and James, 2009).

These findings together suggest that multimodal representations of actions in
the brain play an important role for a robust perception of complex action patterns,
with the STS representing a multisensory area in the brain network for signaling
the social significance of biological motion (Allison et al., 2000; Adolphs, 2003;
Beauchamp, 2005; Beauchamp et al., 2008).

Formation of Cortical Maps

It is now known that rudimentary patterns of cortical connectivity for visual pro-
cessing are established early in development (see Section 3.1). However, normal
visual input is required for the correct development of the visual cortex through
input-driven self-organization (Hubel and Wiesel, 1962, 1967, 1970; Hubel et al.,
1977). The ability of the cortex to self-organize with respect to the distribution of
the inputs becomes a less prominent feature as the system stabilizes through a well-
specified set of developmental stages (Nelson, 2000). However, this ability is not
absent in the adult system that exhibits mechanisms of transient reorganization
at a smaller scale (Stiles, 2000).

The ability of the brain to adapt to dynamic input distributions provides vital
insight into how connectivity and function of the cortex are shaped and recovered
from injuries. We will discuss the pillars of cortical experience-driven learning
mechanisms and computational models of self-organization in Chapter 3.

2.2 Computational Approaches

2.2.1 Trends in Action Recognition

The task of human action recognition has been of strong interest for different
fields of research. Artificial systems aimed to tackle complex visual tasks such
as the classification of actions from videos have been extensively studied in the
literature, with a large variety of models and methodologies tested on different
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action benchmark datasets (Poppe, 2010). In particular, learning-based approaches
have been successfully used to generalize a set of training action samples and then
predict the labels of unseen samples by computing their similarity with respect to
the learned action templates. Deep learning architectures motivated by biological
evidence have been shown to recognize actions with high accuracy from video
sequences with the use of spatiotemporal hierarchies that functionally resemble
the organization of earlier areas of the visual cortex (see Section 2.1.2). Many
of these models show high computational costs linked to the extraction of action
features such as body posture and motion characteristics from rich streams of
information (Guo et al., 2016).

In the last half decade, the emergence of low-cost depth sensing devices such
as the Microsoft Kinect and ASUS Xtion Live has led to a large number of vision-
based applications using depth information instead of, or in combination with, color
information. This sensor technology provides depth measurements used to obtain
reliable estimations of 3D human motion in cluttered environments, including a set
of body joints in real-world coordinates and their orientations. Depth sensors rep-
resent a significant contribution to the field of action recognition since they address
a set of limitations related to traditional 2D sensors (e.g. RGB cameras), thereby
increasing robustness under varying illumination conditions and reducing compu-
tational effort for motion segmentation and body pose estimation (see Han et al.
(2013) for a survey). Depth sensors have the additional advantage of avoiding pri-
vacy issues regarding the identity of the monitored person since color information
is not required at any stage. However, although this approach allows to efficiently
compute 3D motion features in real time, robust mechanisms for learning relevant
spatiotemporal action features represent still an open question.

Contrary to fixed sensors, mobile robots may be designed to process the sensed
information and undertake actions that benefit people with disabilities and se-
niors in a residential context (Fig. 2.3). In this context, the reliable recognition
of actions and potentially dangerous behaviors such as fall events play a crucial
role. There has been an increasing number of ongoing research projects aimed
to develop assistive robots in smart environments for self-care and independence
at home. Moreover, advanced robotic technologies may encompass socially-aware
assistive solutions for interactive robot companions, able to support basic daily
tasks of independent living and enhance the user experience through a more flex-
ible human-robot interaction (e.g., gesture recognition, dialogues, and vocal com-
mands). Recent studies support the idea that the use of socially assistive robots
leads to positive effects on the senior’s well-being in domestic environments (see
Kachouie et al. 2014 for a review). On the other hand, the use of robotic technolo-
gies brings a vast set of challenges and technical concerns.

To cope with the dynamic nature of real-world scenarios, learning artificial
systems may also be adaptive to unseen situations. In addition to detecting short-
term behavior such as domestic daily actions and abnormal behavior with respect
to specific action patterns, it may be of particular interest to learn the user’s
behavior over longer periods of time (Vettier and Garbay, 2014). In this setting,
it would be desirable to collect sensory data to, e.g., perform medium- and long-
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Figure 2.3: Person monitoring in a home-like environment. The humanoid robot
tracks the person while performing daily activities (Parisi et al., 2016c).

term gait assessment of the person, which can be an important indicator for a
variety of health problems, e.g. physical diseases and neurological disorders such as
Parkinson’s disease (Aerts et al., 2012). To enhance the user’s experience, assistive
robots may be given the capability to adapt over time to better interact with the
monitored user. This would include, for instance, a more natural human-robot
communication including the recognition of hand gestures and full-body actions,
speech recognition, and a set of reactive behaviors based on the user’s habits. In
this context, interdisciplinary research aimed to address the vast set of technical
and social issues regarding robots for assisted living is fundamental to provide
feasible and reliable solutions in the near future.

Computational models for action recognition through multiple sensor modal-
ities are a paramount ingredient of autonomous robots to forming robust and
meaningful representations of perceived events (Ursino et al., 2014). There are
numerous advantages from the multimodal processing of sensory inputs conveyed
by rich and uncertain information streams. For instance, the integration of stim-
uli from different sources may be used to attenuate noise and remove ambiguities
from converging or complementary inputs. Multimodal representations have been
shown to improve robustness in the context of action recognition, human-robot
interaction, and sensory-driven motor behavior (Kachouie et al., 2014; Noda et al.,
2014; Bauer et al., 2015). However, multisensory inputs must be integrated in
an appropriate way so that they result in a reliable cognitive experience aimed
to trigger adequate behavioral responses. Consequently, the question of how to
effectively acquire, process, and bind multimodal knowledge from rich information
streams represents a fundamental issue still to be fully investigated.
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2.2.2 Learning to Recognize Actions

Machine learning and neural network techniques processing multi-cue features from
natural images have shown motivating results for classifying a set of training ac-
tions. Typically, baselines of performance in terms of classification accuracy are
provided by evaluating the approach with publicly available action datasets. Ex-
amples of common public datasets are the KTH human motion dataset (Schuldt
et al., 2004), the Weizmann human action dataset (Gorelick et al., 2005), the UCF
sports action dataset (Rodriguez et al., 2008), and the CAD-60 with depth map
video sequences (Sung et al., 2012).

Xu et al. (2012) presented a system for action recognition using dynamic poses
by coupling local motion information with pose in terms of skeletal joint points.
They generated a codebook of dynamic poses from two RGB action benchmarks
(KTH and UCF-Sports), and then classified these features with an Intersection
Kernel Support Vector Machine. Jiang et al. (2012) explored a prototype-based
approach using pose-motion features in combination with tree-based prototype
matching via hierarchical clustering and look-up table indexing for classification.
They evaluated the algorithm on the Weizmann, KTH, UCF Sports, and CMU
action benchmarks. To be noted is that although these two approaches use pose-
motion cues to enhance classification accuracy with respect to traditional single-cue
approaches, they do not take into account an integration function that learns order-
selective prototypes of joint pose-motion representations of action segments from
training sequences. Furthermore, these classification algorithms can be susceptible
to noise which may occur during live recognition.

Learning systems using depth information from low-cost sensors have been in-
creasingly popular in the research community encouraged by the combination of
computational efficiency and robustness to light changes in indoor environments.
In recent years, a large number of applications using 3D motion information has
been proposed for human activity recognition such as classification of full-body
actions (Faria et al., 2014; Shan and Akella, 2014), fall detection (Rougier et al.,
2011; Parisi and Wermter, 2013), and recognition of hand gestures (Suarez and
Murphy, 2012). A vast number of depth-based methods has used a 3D human
skeleton model to extract relevant action features for the subsequent use of a clas-
sification algorithm. For instance, Sung et al. (2012) combined the skeleton model
with Histogram of Oriented Gradient (HOG) features and then used a hierarchical
maximum entropy Markov model to classify 12 different actions. The learning
model used a Gaussian mixture model to cluster and segment the original training
data into activities.

Using the same action benchmark for the evaluation, Shan and Akella (2014)
used action templates computed from 3D body poses to train multiple classifiers:
Hidden Markov Model, Random Forests, k-Nearest Neighbor, and Support Vector
Machine (SVM). Faria et al. (2014) used a dynamic Bayesian Mixture Model de-
signed to combine multiple classifier likelihoods and compute probabilistic body
motion. Zhu et al. (2014) evaluated a set of spatiotemporal interest point features
from raw depth map images to classify actions with an SVM. Experiments were
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conducted also using interest points in combination with skeleton joint positions
and color information, obtaining better results. However, the authors also showed
that noisy depth data and cluttered background have a significant impact on the
detection of points of interest, and that actions without much motion are not well
recognized.

Computational models inspired by the hierarchical organization of the visual
cortex (see Section 2.1.2) have become increasingly popular for learning complex
visual patterns such as action sequences from video (Giese and Poggio, 2003; Lay-
her et al., 2013). In particular, neural network approaches with deep learning ar-
chitectures have produced state-of-the-art results on a set of benchmark datasets
containing daily actions (e.g. Baccouche et al. 2011; Jain et al. 2015; Jung et al.
2015). Typically, visual models using deep learning comprise a set of convolution
and pooling layers trained in a hierarchical fashion for obtaining action feature
representations with an increasing degree of abstraction (see Guo et al. (2016) for
a recent survey). This processing scheme is in agreement with neurophysiological
studies supporting the presence of functional hierarchies with increasingly larger
spatial and temporal receptive fields along cortical pathways.

The above-described methods are trained by a batch learning scheme, and
thus assuming that all the training samples and sample labels are available during
the training phase. However, an additional strong assumption is that training
samples, typically represented as a sequence of feature vectors extracted from video
frames, are well segmented so that ground-truth labels can be univocally assigned.
Therefore, it is usually the case that raw visual data collected by sensors must
undergo an intensive pre-processing pipeline before training a model. These pre-
processing stages are mainly performed manually, thereby hindering the automatic,
continuous learning of actions from live video.

From a multimodal perspective, a number of computational models have been
proposed aiming to effectively integrate multisensory information, in particular
audiovisual input. These approaches typically use unsupervised learning for ob-
taining visual representations of the environment and then link these features to
auditory cues. For instance, Vavrečka and Farkaš (2014) presented a connectionist
architecture that learns to bind visual properties of objects (spatial location, shape
and color) to proper lexical features. These unimodal representations are bound
together based on the co-occurrence of audiovisual inputs using a self-organizing
neural network (see Section 3.2). Similarly, Morse et al. (2015) investigated how
infants may map a name to an object and how body posture may affect these
mappings. The computational model is driven by visual input and learns word–
to–object mappings through body posture changes and online speech recognition.
Unimodal representations are obtained with neural network self-organization and
multimodal representations develop through the activation of unimodal modules
via associative connections.

The development of associations between co-occurring stimuli for multimodal
binding has been strongly supported by neurophysiological evidence (Fiebelkorn
et al., 2009). However, these approaches do not naturally scale up to learn more
complex spatiotemporal patterns such as action–word mappings. In fact, action
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words do not label actions in the same way that nouns label objects (Gentner,
1982). While nouns typically refer to objects that can be perceived as distinct
units, action words refer instead to spatiotemporal relations within events that
may be performed in many different ways with high spatial and temporal variance.
Thus, further work is required to address the learning of multimodal representation
of spatiotemporal inputs for obtaining robust action–word mappings.

2.2.3 Body Motion Assessment

The analysis and assessment of human body motion have recently attracted sig-
nificant interest in the healthcare community with many application areas such
as physical rehabilitation, diagnosis of pathologies, and assessment of sports per-
formance. In this context, the correctness of postural transitions is paramount
during the execution of well-defined physical routines, since inaccurate movements
may significantly reduce the overall efficiency of the movement and increase the
risk of injury (Kachouie et al., 2014). For instance, in the case of weight-lifting
training, correct postures improve the mechanical efficiency of the body and allow
the athlete to achieve higher effectiveness during training sessions. Similarly, in
the healthcare domain, the correct execution of physical rehabilitation routines is
crucial for patients to improve their health condition (Velloso et al., 2013a).

Human proprioception may not be sufficient to spot movement mistakes. Thus,
expert trainers observing the movement can give the trainee proficient feedback
for timely improving the quality of the performance and avoiding persistent inac-
curacies. However, it is not the case that a personal trainer is always available
to assess the quality of movements during their execution. Therefore, there is a
strong motivation to develop automatic systems able to detect mistakes during the
performance of well-defined routines for providing feedback in real time.

While the aim of action recognition is to categorize a set of distinct classes
by extrapolating inter-class spatiotemporal differences, action assessment requires
instead a model to capture intra-class dissimilarities that allow to express a mea-
surement on how much an action follows its learned template. In this setting,
efficient approaches to learn spatiotemporal templates for computing intra-class
dissimilarities have remained an open issue. Common computational bottlenecks
are the robust extraction of body features from video streams and the definition
of suitable metrics aimed to compare two actions in terms of their spatiotempo-
ral structure. The former issue has been partly addressed with the use of depth
sensors that allow the efficient tracking of human motion and the estimation of a
3D skeleton model. On the other hand, effective methods for the computation of
a similarity measure between two actions still represent a major challenge.

Automatic systems for the visual assessment of body motion have been previ-
ously investigated for applications mainly focused on physical rehabilitation and
sports training. For instance, Chang et al. (2011) proposed a physical rehabilita-
tion system for young patients with motor disabilities using a Kinect sensor. The
idea was to assist the users while performing a set of simple movements neces-
sary to improve their motor proficiency during the rehabilitation period. Users
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were instructed by a therapist on how to perform the movements. During the au-
tonomous execution, visual hints were shown to users to motivate the performance
of the routines. Although experimental results have shown improved motivation
for users using visual hints, only movements involving the arms at constant speed
were considered. Furthermore, the estimation of real-time feedback in order to
enable the user to spot and correct mistakes was not considered.

Similarly, Su (2013) proposed the estimation of feedback for Kinect-based reha-
bilitation exercises by comparing performed motion with a pre-recorded execution
by the same person. The comparison was carried out on sequences using dynamic
time warping (DTW) and fuzzy logic with the Euclidean distance as a similarity
measure. The evaluation of the exercises was based on the degree of similarity
between the current sequence and a correct sequence. The system provided qual-
itative feedback on the similarity of body joints and execution speed, but it did
not suggest the user how to correct the movement.

Paiement et al. (2014) proposed a method for assessing the quality of gait from
sequences of people on stairs. As a measure of quality, Kinect-based body poses
were compared to learned normal occurrences of a movement from a statistical
model. The likelihood of a model for describing the current movement was com-
puted frame-by-frame over a sequence of postures and motion speed. The system
triggered an alarm if the current movement differed from the correct movement
template. For this purpose, a proper threshold must be empirically chosen to de-
cide the degree of tolerance with respect to the template. Although this method
represents a useful application for detecting abnormal behavioral patterns, it does
not provide any hints on how to correct motion mistakes.

Velloso et al. (2013b) investigated qualitative action recognition with a Kinect
sensor for specifying the correct execution of movements, detecting mistakes, and
providing feedback to the user. A baseline was created by asking the users to
perform a routine ten times, from which individual repetitions were manually seg-
mented. Hidden Markov Models were trained with tuples containing the joint
angles and the timestamp for individual exercises. Similar to Chang et al. (2011)
and Su (2013), the system was tested only on arm movements, in this case for
dumbbell lifting. A strong limitation of this approach is that the correct duration
and motion intensity of movements were computed by using the timestamp from
body joint estimation. Therefore, although the system provides feedback to correct
body posture in terms of joint angles, it does not provide any robust feedback on
temporal discrepancies.

For the assessment of human motion in sports, Pirsiavash et al. (2014) predicted
scores of performed movements from annotated footage. The system compared
the gradient for each body joint with a regression model from spatiotemporal pose
features to scores obtained from expert judges. Feedback is provided in terms of
which joints should be changed to obtain the maximum score. Different from the
previously discussed approaches, this method extracts body features from RGB
sequences. Thus, the estimation of body joints is not as robust as the 3D skeleton
model using a depth sensor. Experimental results showed that the system predicted
scores better than non-expert humans but significantly worse than expert judges.
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While the correct execution of well-defined movements plays a crucial role in
physical rehabilitation and sports, artificial learning systems for assessing the qual-
ity of actions and providing feedback for correcting inaccurate movements have
remained an open issue in the literature.

2.2.4 Abnormal Event Detection

Falls represent a major concern in the public health care domain, especially among
the elderly population. According to the World Health Organization, fall-related
injuries are common among older persons and represent the leading cause of pain,
disability, loss of independence and premature death1. Although fall events do not
necessarily cause a fatal injury, fallen people may be unable to get up without
assistance, thereby resulting in long lie time complications such as hypothermia,
dehydration, bronchopneumonia, and pressure sores (Tinetti et al., 1993). More-
over, fear of falling has been associated with a decreased quality of life, avoidance
of activities, and mood disorders such as depression (Scheffer et al., 2008).

As a response to increasing life expectancy, research has been conducted to
provide technological solutions for supporting living at home and smart environ-
ments for assisted living. The motivation of assistive fall systems is the ability to
promptly report a fall event and by this enhancing the person’s safety perception
and avoiding the loss of confidence due to functional disabilities. Recent systems
for elderly care aim mostly to detect hazardous events such as falls and allow the
monitoring of physiological measurements (e.g. heart rate, breath rate) using wear-
able sensors to detect and report emergency situations in real time (Kaluza et al.,
2013; Vettier and Garbay, 2014). Vision-based fall detection is currently the pre-
dominant approach due to the constant development of computer vision techniques
that yield increasingly promising results in both experimental and real-world sce-
narios. While the number of advantages introduced by low-cost depth sensors is
significant in terms of body motion and posture estimation, these approaches are
characterized by a number of issues that may prevent them from operating in real-
world environments. For instance, their operation range (distance covered by the
sensor) is quite limited (between 0.8 m and 5 m), as well as their limited field of
view, thereby requiring a mobile or multi-sensor scenarios to monitor an extensive
area of interest.

Lee and Mihailidis (2005) proposed a vision-based method with a ceiling camera
for monitoring falls at home. The authors considered falls as lying down in a
stretched or tucked position. The system accuracy was evaluated with a pilot
study using 21 subjects consisting of 126 simulated falls. Personalized thresholds
for fall detection were based on the height of the subjects. The system detected fall
events with 77% accuracy and had a false alarm rate of 5%. Miaou et al. (2006)
proposed a customized fall detection system using an omni-camera for capturing
360-degree scene images. Falls were detected based on the change of the ratio of

1World Health Organization: Global report on falls prevention in older age – http://www.

who.int/ageing/publications/Falls_prevention7March.pdf
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people’s height and width. Two scenarios were used for the detection: with and
without considering user health history, for which the system showed 81% and 70%
accuracy respectively.

In a multi-camera scenario, Cucchiara et al. (2007) presented a vision system
with multiple cameras for tracking people in different rooms and detecting falls
based on a hidden Markov model (HMM). People tracking was based on geometri-
cal and color constraints and then sent to the HMM-based posture classifier. Four
main postures were considered: walking, sitting, crawling, and lying down. When a
fall was detected, the system triggered an alarm via SMS to a clinician’s PDA with
a link to live low-bandwidth video streaming. Experiments showed that occlusions
had a strong negative impact on the system’s performance. Hazelhoff et al. (2008)
detected falls using two fixed perpendicular cameras. The foreground region was
extracted from both cameras and the principal components (PCA) for each object
were computed to determine the direction of the main axis of the body and the
ratio of the variances. Using these features, a Gaussian multi-frame classifier was
used to recognize fall. In order to increase robustness and mitigate false positives,
the position of the head was taken into account. The system was evaluated also
for partially occluded people. Experiments showed real-time performance with an
85% overall detection rate.

Rougier et al. (2011) presented a method for fall detection by analysing hu-
man shape deformation in depth map image sequences. Falls were detected from
normal activities using a Gaussian mixture model with 98% accuracy. The overall
system performance increased when taking into account the lack of significant body
motion after the detected fall event. Liu et al. (2010) detected falls considering
privacy issues, thereby processing only human silhouettes without featural prop-
erties such as the face. A k-nearest neighbor (kNN) algorithm was used to classify
the postures using the ratio and difference of human body silhouette bounding box
height and width. Recognized postures were divided into three categories: stand-
ing, temporary transition, and lying down. Experiments with 15 subjects showed
a detection accuracy of 84.44% on fall detection and lying down events. Diraco
et al. (2010) addressed the detection of falls and the recognition of several postures
with 3D information. The system used a fixed time-of-flight camera that provided
robust measurements under different illumination settings. Moving regions with
respect to the floor plane were detected applying a Bayesian segmentation to the
3D point cloud. Posture recognition was carried out using the 3D body centroid
distance from the floor plane and the estimated body orientation. The system
yielded promising results on synthetic data with threshold-based clustering for
different centroid’s height thresholds.

Most of the above-described approaches rely on predefined threshold values
to detect abnormal behavior. Furthermore, reported experiments were conducted
in highly controlled environments with fixed vision sensors. Whether these ap-
proaches would account for the robust detection of abnormal behavior if embedded
in mobile robot platforms, is questionable.
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2.2.5 Assistive Robotics

Mobile robots have been characterized by a constant development for aging at home
scenarios. In contrast to fixed sensors, mobile assistive robots may be designed to
process the sensed information and undertake actions that benefit people with
disabilities and seniors in a residential context. In fact, the mobility of robots rep-
resents a big benefit for non-invasive monitoring of users, thereby better addressing
fixed sensors’ limited field of view, blind spots, and occlusions. Despite different
functional perspectives concerning elderly care and user needs (e.g. rehabilita-
tion,social robotics), there is a strong affinity regarding the intrinsic challenges
and issues needed to operate these systems in real-world scenarios. For instance,
the use of mobile robots may be generally combined with ambient sensors em-
bedded in the environment (e.g. cameras, microphones) to enhance the agent’s
perception and increase robustness under in-the-wild conditions. On the other
hand, complementary research efforts has been conducted on the deployment of
stand-alone mobile robot platforms, able to sense and navigate the environment
by relying exclusively on onboard sensors.

In particular when operating in natural environments, the robust and efficient
processing of multimodal information plays a key role to perceive human activity.
Research efforts have been made towards robots exploiting multi-sensory integra-
tion to improve HRI capabilities. For instance, Lacheze et al. (2009) used auditory
information to recognize objects that were partially occluded and thus difficult
to detect by vision only. Sanchez-Riera et al. (2009) presented a scenario with a
robot companion that performs audio-visual fusion for multimodal speaker detec-
tion. The system targeted multiple speakers in a domestic environment processing
information from two microphones and two cameras mounted on a humanoid robot.
Martinson (2014) introduced a robot with a navigational aid for visually impaired
people using a mobile robot platform. The system used depth information to de-
tect other people in the environment and avoid dynamic obstacles. The system
communicated to the person the direction of motion to reach the goal destination
via a tactile belt around the waist.

For abnormal behavior detection, promising experimental results have been ob-
tained by combining mobile robots and 3D information from depth sensors. This
approach overcomes limitations in the operation range of sensors while preserving
reduced computational power for real-time characteristics. Mundher and Zhong
(2014) proposed a mobile robot with a Kinect sensor for fall detection based on
floor-plane estimation. The robot tracks and follows the user in an indoor envi-
ronment, and can trigger an alarm in case of a detected fall event. The system
recognizes two gestures to start and stop a distance-based user-following proce-
dure, and three voice commands to enable fall detection and call for help in case
of a fall. Volkhardt et al. (2013) presented a mobile robot to detect fallen per-
sons, i.e. a user already lying on the floor. The system segments objects from the
ground plane and layers them to address partial occlusions. A classifier trained on
positive and negative examples is used to detect object layers as a fallen human.
Experiments reveal that the overall accuracy of the system is strongly dependent
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on the type of extracted features and the classifier.

Additional challenges conveyed by the use of mobile robots for detecting fall
events may comprise the tolerance of noise in a moving sensor scenario (Parisi
et al., 2015a), the robust tracking of occluded persons (Martinson, 2014), and
effective navigation strategies for following and finding people in domestic envi-
ronments (Volkhardt and Gross, 2013). Multimodal systems embedded in mobile
robots that remain operative under situations of uncertain sensory information,
e.g. temporary unavailability of one of the modalities, represent an enticing mile-
stone for assistive robots and are still to be extensively investigated. In fact, the
main challenge is characterized by the ability of artificial agents to robustly in-
tegrate available multi-sensory cues from uncertain information streams, thereby
yielding robust perceptual experience aimed to trigger an adequate motor behavior
in highly dynamic environmental conditions.

2.3 Summary

Humans possess an astonishing ability to promptly process complex visual stimuli
such as body motion patterns, exhibiting a high tolerance to sensory distortions
and temporal variance (Blake and Shiffrar, 2007). The underlying neural mech-
anisms for action perception have been extensively studied, comprising cortical
areas with a hierarchy of spatiotemporal receptive fields for processing body mo-
tion cues with increasing complexity of representation (Taylor et al., 2015; Hasson
et al., 2008; Lerner et al., 2011), i.e. higher-level areas process information accumu-
lated over larger temporal windows with increasing invariance to the position and
the scale of stimuli. The brain integrates multisensory information to provide a
robust perceptual experience (Stein and Meredith, 1993; Ernst and Bülthoff, 2004;
Stein et al., 2009), thereby yielding the efficient processing of motion patterns also
in situations of highly degraded stimuli and uncertainty (Neri et al., 1998; Thorn-
ton et al., 1998; Poom and Olsson, 2002). Therefore, the study of the biological
mechanisms for action perception is fundamental for the development of artificial
systems aimed to address the robust recognition of actions in real-world scenarios.

To tackle the visual recognition of actions, learning-based approaches typically
generalize a set of labeled training action samples and then predict the labels
of unseen samples by computing their similarity with respect to the learned ac-
tion templates. Simplified models of brain areas processing visual cues have been
proposed as a stepping stone to numerous artificial systems dealing with the de-
tection and classification of biological motion (Giese and Poggio, 2003; Layher
et al., 2014). In particular, deep neural network architectures have been shown
to recognize actions with high accuracy from video sequences with the use of spa-
tiotemporal hierarchies that functionally resemble the organization of earlier areas
of the visual cortex (Guo et al., 2016). However, despite recent research efforts in
machine learning and neural network, the question remains open of how to better
process extracted body features for effectively learning the complex dynamics of
actions in real-world scenarios. For instance, the reliable classification of actions
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may be hindered by noisy and missing body joints caused by systematic sensor er-
rors or temporary occluded body parts (Parisi and Wermter, 2013). Nevertheless,
a robust, noise-tolerant system should also operate under such adverse conditions.

In the next chapters, we propose a set of neurobiologically-motivated neural
network architectures for action recognition from depth map videos. For this
purpose, we take into account different aspects of biological action perception
and multimodal integration for enhancing human-robot interaction and triggering
robust sensory-driven robot behavior in dynamic environments.
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Chapter 3

Computational Models of
Self-Organization

Experience-driven development plays a crucial role in the brain (Nelson, 2000),
with topographic maps being a common feature of the cortex for processing sen-
sory inputs (Willshaw and von der Malsburg, 1976). Different models of neural
self-organization have been proposed to resemble the dynamics of basic biological
findings on Hebbian-like learning and map plasticity. In this chapter, we provide an
overview of experience-driven self-organization and describe a set of well-studied
computational models of self-organizing systems. In particular, we review the
main properties, functionality and potential drawbacks of self-organizing neural
networks with feedforward competitive layers, growing models for adapting to dy-
namic input distributions, and networks with recurrent connectivity for learning
latent spatiotemporal relations of the input.

3.1 Experience-driven Self-Organization

3.1.1 Introduction

It was first found by Mountcastle (1957) and Hubel and Wiesel (1962) that certain
single neural cells in the brain of cats respond selectively to specific sensory stim-
uli. At that time, a number of experiments were conducted showing that altering
the visual environment leads to drastic changes in the organization of the cat’s
visual cortex (Hubel and Wiesel, 1962, 1967, 1970; Hubel et al., 1977). Most cells
in the cortex develop preferences for particular orientations, while they do not re-
spond well to the other orientations (Blakemore and Cooper, 1970; Blakemore and
Van Sluyters, 1975; Hirsch and Spinelli, 1970; Sengpiel et al., 1999). These studies
suggested that visual inputs are crucial for normal cortical organization, since the
cortex tunes itself to the distribution of visual inputs. Additional studies showed
that brain maps develop through self-organization of input connections from the
thalamus and are shaped by visual experience (Shatz, 1992).

The concept of input-driven self-organization has been challenged from a bi-
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ological perspective. In particular, it has been argued that since the process of
self-organization requires time, the animal would not be able to properly react to
visual input until the process is at an advanced stage. Furthermore, with self-
organizing structures critically depending on the available input, statistically rel-
evant patterns may not be the most relevant information for the organism and
its survival. Today, it is well known that visual development in nature is highly
stable, with the visual cortex of many animals being partially organized already
at birth, or at least at the moment of first eye opening (O’Donovan, 1999; Wong,
1999). However, the information available in the genome to achieve a fixed genetic
blueprint is not sufficient. Therefore, it has been hypothesized that while intrin-
sic factors such as genes or molecular gradients drive the initial development for
granting a rudimentary level of performance from the start, extrinsic factors such
as sensory experience completes this process for achieving higher complexity and
performance (Hirsch and Spinelli, 1970; Hirsch, 1985; Shatz, 1990, 1996; Sur and
Leamey, 2001).

The ability of the brain to adapt to changes in its environment - referred to as
developmental plasticity - provides vital insight into how connectivity and func-
tion of the cortex are shaped and recovered from injuries. For instance, studies
showed that while rudimentary patterns of connectivity in the visual system are
established early in development, normal visual input is required for the correct
development of the visual cortex. The work of Hubel and Wiesel (1967) on the
emergence of ocular dominance columns also highlighted the importance of timing
of experience on the development of normal patterns of cortical organization. The
visual experience of newborn kittens was experimentally manipulated to study the
effects of varied input on brain organization. As a result, they observed that the
disruption of cortical organization was more severe when deprivation of the visual
input began prior to 10 weeks of age, while no changes were observed in adult
animals. These experiments presented evidence that neural patterns of cortical
organization can be modulated by external environmental factors at least for a
period early in development. These findings together demonstrated that optimal
patterns of cortical organization are not fixed, but rather depend on local patterns
of connectivity that may be altered by remote changes in structure or input.

The most well-known theory describing the mechanisms of synaptic plasticity
for the adaptation of neurons during the learning process was first proposed by
Hebb (1949), postulating that when one neuron drives the activity of another neu-
ron, the connection between these neurons is strengthened. More specifically, the
Hebb’s rule states that the repeated and persistent stimulation of the postsynaptic
cell from the presynaptic cell leads to an increased synaptic efficacy. Subsequent
studies indicated that in addition to a Hebbian-like synaptic potentiation, a mech-
anism of depression between two neurons that are not sufficiently co-active is nec-
essary (Sejnowski, 1977). Throughout the process of development, neural systems
stabilize to shape optimal functional patterns of neural connectivity. Plasticity be-
comes a less prominent feature as the system stabilizes through a well-specified set
of developmental stages, however, it is not absent from the adult system, yielding
the transient capacity for plastic reorganization at a smaller scale (for a review on
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neural plasticity, see Stiles, 2000).

These results together show that plasticity, in terms of the ability to adapt and
respond to both intrinsic and extrinsic factors, plays a crucial role in the normal
development of neural systems, and in particular in the postnatal period.

3.1.2 Artificial Self-Organizing Networks

Computational models implementing experience-driven self-organization have been
used to demonstrate that the preferences and their organization can result from
statistical learning with the nonlinear approximation of the distribution of visual
inputs. These models have contributed to better understand the underlying neural
mechanisms for the development of cortical organization.

As presented in Section 2.1, a vast body of literature has shown that the ac-
tual organization of the visual cortex and other cortical areas is quite complex,
with an incredibly large number of sheets of neurons and topographically mapped
connections between them. Therefore, most of the models implementing biologi-
cally motivated self-organization have focused on small-scale systems with simpli-
fied mathematical models governing the formation of topographic maps. Different
artificial self-organizing neural networks have been proposed to resemble the dy-
namics of basic biological findings on Hebbian-like learning and map plasticity. In
the study of neural networks and cognitive functions, the Hebb’s associative rule
(Hebb, 1949) is seen as the basis of unsupervised learning.

The goal of the self-organizing learning is to cause different parts of the network
to respond similarly to certain input samples starting from an initially unorganized
state. Typically, during the training phase these networks build a map through
a competitive process, also referred to as vector quantization, so that a set of
neurons represent prototype vectors encoding a submanifold in the input space. In
doing so, the network learns significant topological relations of the input without
supervision.

Vector Quantization

Vector quantization (VQ) is a quantization technique that models probability den-
sity functions via the distribution of prototype vectors. The optimal quantization
of a vector space was first introduced by Dirichlet (1850) with the so-called Dirich-
let tessellation in two- and three-dimensional spaces, and subsequently extended
to spaces of arbitrary dimensionality by Voronoi (1907).

The standard VC technique encodes a data manifold V ⊆ Rd using a finite set
of protoype (or codebook) vectors wi ∈ Rd. For simplicity, we consider input data
samples in terms of d-dimensional Euclidean vectors. A vector-valued input v ∈ V
can be then described by the best-matching reference vector wi(v) for which the
distortion (or quantization error) d(v,wi(v)), e.g. the squared error ‖v −wi(v)‖2,
is minimized. This procedure divides the manifold V into a number of subregions
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Vi, referred to as Voronoi regions, such that:

Vi = {v ∈ V : ‖v−wi‖2 ≤ ‖v−wj‖2 ∀i 6= j}, (3.1)

with all vectors in V having a distance to wi not greater than their distance to wj.
If p(v) is the probability density of v and b is the index of the best-matching

vector of v, then the mean quantization error E is defined as

E =

∫
V

‖v−wb‖2p(v)dV, (3.2)

where dV is a volume differential of V , and E is an energy function that can
be minimized by a gradient-descent procedure. Kohonen (1991) showed that this
highly nonlinear function converges to a local minimum.

This VQ procedure can be applied to self-organizing networks for performing a
nonlinear approximation of the distribution of the input through statistical learn-
ing, so that a continuous input space is mapped onto a discrete feature space of
neurons by a process of neural competition (see Section 3.2).

Topology Preservation

The preservation of the topology of the input in terms of neighborhood relations
is a useful and well-studied property of self-organizing networks (Martinetz, 1993;
Martinetz et al., 1993; Goodhill and Sejnowski, 1997). In general, a network can
perform a perfect topology-preserving mapping only if the dimensionality of the
map space reflects the (intrinsic) dimensionality of the input space.

A network G consists of a number n of neurons and receives input samples from
a data manifold V ⊂ Rd, with every neuron i ∈ G having a synaptic weight vector
wi ∈ Rd. The representation of V inG is defined by the mapping VG(ΨV→G,ΨG→V )
defined as

VG =

{
ΨV→G : V → G; v ∈ V =⇒ i∗(v) ∈ G
ΨG→V : G→ V ; i ∈ G =⇒ wi ∈ V

(3.3)

where i∗(v) is the map neuron with weight vector wi∗(v) closest to v. A connection
matrix C that stores connections between neurons is defined on G as:

Cij =

{
1 if i and j are connected

0 otherwise
(3.4)

As formalized by Martinetz (1993), there is a perfect topology-preserving map-
ping between the input manifold and a network if and only if connected neurons
i, j that are adjacent in G have weight vectors wi,wj adjacent in V .

Taxonomy of Self-Organizing Networks

Although self-organizing models are governed by similar principles with the aim to
cause different parts of a network to respond similarly to certain input patterns,
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x1 x2 ……… xn-1 xn x1 x2 ……… xn-1 xn 

a) b)

x1 x2 ……… xn-1 xn 

c)

Figure 3.1: Different types of self-organizing networks: (a) competitive layer with
fixed topology, (b) competitive layer with adaptive topology, and (c) growing net-
work with a variable number of neurons and adaptive topology.

the models may significantly differ in terms of the shape of the maps, the devel-
opment of neighborhood relations, and the learning procedure. Different examples
of self-organizing networks are illustrated in Fig. 3.1, showing a competitive layer
with fixed topology, a competitive layer with adaptive topology, and a growing
network with a variable number of neurons and adaptive topology. Generally, the
competitive layer is fully connected to the input. The number of neurons and
the shape of the map are related to the representational power of the model. For
instance, in a network with fixed topology, each neuron has a fixed set of neigh-
bors, and this may constrain the mapping accuracy. Static networks in which the
number of neurons must be specified a priori, i.e., before the training phase starts,
have shown compelling performance in a huge number of data-analysis tasks. On
the other hand, the ability of a network to create new neurons (and remove unused
ones) for adapting to novel incoming signals is crucial for learning non-stationary
input distributions.

In the next sections, we introduce a set of well-established self-organizing neural
networks that have been successfully applied to a large variety of learning tasks
such as clustering and novelty detection. Furthermore, for each of these self-
organizing networks, we will show extended variants with recurrent connectivity
for learning the spatiotemporal structure of the input.

3.2 Feedforward Self-Organizing Networks

In this section, we introduce four self-organizing networks: the self-organizing map
(SOM), the neural gas (NG), and growing neural gas (GNG), and the growing when
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required (GWR). We refer to these networks as feedforward to differentiate them
from their recurrent variants, in which the formation of the map depends on the
current input plus previously activated map patterns. The number of neurons in
the SOM and the NG is fixed beforehand and cannot be changed over time, while
growing models have the ability to create (and remove) neurons to better fit the
(dynamic) distribution of the input.

3.2.1 Self-Organizing Feature Maps

The self-organizing map (SOM, Kohonen, 1990) is an unsupervised learning al-
gorithm that nonlinearly projects a high-dimensional input space onto a low-
dimensional discretized (typically two-dimensional) representation. It consists of a
layer with competitive neurons connected to adjacent neurons by a neighborhood
relation (Fig. 3.1.a). Similar to the VQ technique, the SOM represents the input
distribution using a finite set of prototype neurons. The number n of neurons
must be decided a priori (i.e., before the training phase starts), and the topology
of the network (neighborhood relation) is fixed. The network learns by iteratively
reading each vector-valued training sample and organizes the neurons so that they
describe the domain space of input.

Each neuron j of the network is associated with a d-dimensional synaptic weight
vector:

wj = [wj,1,wj,2, ...,wj,d], j = 1, 2, .., n. (3.5)

For an input vector x = [x1, ...,xd] presented to the network, the best-matching
unit (BMU) b for x is selected by the smallest Euclidean distance as:

b(x) = arg min
j
‖x−wj‖, j = 1, 2, .., n. (3.6)

The weights of the winner neuron b and those of the neurons within a neigh-
borhood Hb on the neuron grid are modified according to the update rule:

wj(t+ 1) = wj(t) + ε(t) · hb(t) · [x(t)−wj(t)], (3.7)

where b is the best matching unit (Eq. 3.6), and hb(t) is a Gaussian neighborhood
function:

hb(t) = exp

(
−‖rb − ri‖2

2σ2(t)

)
, (3.8)

where rb is the location of b on the map grid and σ(t) is the neighborhood radius
at time t.

The learning rate ε(t) is a decreasing function of time between [0, 1], for instance
the exponentially decreasing learning rate function defined as:

ε(t) = ε0

(
εT
ε0

) t
T

, (3.9)

where ε0 is the initial learning rate, εT the final learning rate, t is time and T the
training length in terms of epochs.
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The competitive network can be trained with a batch variant of the SOM
algorithm, where the whole data set to the network before any adjustments are
made. The updating is carried out by replacing the prototype vector wj with a
weighted average over the samples:

wj(t+ 1) =

∑n
i=1 hb(i)(t)xi∑n
i=1 hb(i)(t)

. (3.10)

The batch version of the learning algorithm has shown fast performance for
a variety of learning tasks (Kohonen, 2013). However, a potential drawback of
the SOM is the fixed topology that may constrain mapping accuracy. For a more
detailed discussion on this matter and examples of implementation, we refer the
reader to a recent review of the SOM by Kohonen (2013).

Neural Gas

The neural gas (NG, Martinetz, 1993) is an unsupervised algorithm for finding
optimal data representations based on prototype vectors. Similarly to the SOM,
the NG consists of a competitive layer with a fixed number N of neurons fully
connected to the input (Fig. 3.1.b). In the NG, however, the topology of the
network is not fixed but rather develops throughout the learning process.

At each time step t, a vector-valued sample x is randomly chosen from a
distribution p(x) and presented to the network. Then, the distance order of
the prototype neurons to the given sample x is determined so that each neuron
(k = 0, ..., n− 1) is adapted according to:

wik(t+ 1) = wik(t) + ε · exp(−k/λ) · [x−wik(t)], (3.11)

where i0 denotes the index of the closest neuron, i1 the index of the second closest
neuron and in−1 the index of the neuron most distant from x, ε is the adaptation
step size and λ is the neighborhood range. The learning rate ε and the range λ
decrease with increasing t.

After a sufficient number of adaptation steps, the neurons will cover the data
space with a minimum representation error. In fact, since the structure of the
network is not constrained by a fixed topology, the NG has been shown to minimize
the quantization error. The adaptation step of the NG (Eq. 3.11) can be interpreted
as gradient descent on the energy function E (Eq. 3.2).

Like in the SOM, in the NG the number of neurons must be decided a priori
and cannot change over time. Furthermore, the number of epochs must also be
pre-defined, with the neighborhood size decreasing as time increases. Therefore,
these models have been shown to be unsuitable for continuous learning or the
learning of non-stationary input distributions.

3.2.2 Growing Self-Organizing Networks

Growing networks represent one approach to address the limitations of static self-
organizing networks by creating (or removing) neurons to support the correct for-
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mation of topological maps. In the Growing Neural Gas (GNG) neurons are added
at fixed intervals to minimize local errors, while the Growing When Required
(GWR) adds neurons whenever the activity of the network is not sufficiently high.
In this section, we provide a comparison between these growing models.

Growing Neural Gas (GNG)

The GNG algorithm proposed by Fritzke (1995) represents an incremental exten-
sion of SOM and the NG. The GNG has the ability to add new neurons to an
initially small network by evaluating local statistical measures gathered during
previous adaptations and to create connections between existing neurons. The
network topology is generated incrementally using competitive Hebbian learn-
ing (Martinetz, 1993), i.e. for each input, an edge connection is generated between
the neuron that best matches the input and the second-best matching one.

The GNG network starts with a set of N = 2 neurons in the input space. At
each training iteration, the algorithm is given a random input signal x drawn from
the input distribution p(x). The closest neuron b and the second closest unit s of
x in N are found and if the connection (b, s) does not exist, it is created. The local
error of b is updated by ∆Eb = ‖x−wb‖2 and ws is moved towards x by a fraction
εb. The weight of all the topological neighbors of b are also moved towards x by a
fraction εi.

If the number of given inputs is a multiple of a parameter λ, a new neuron is
created halfway between those two neurons that have maximum accumulated error.
A connection-age-based mechanism leads to the removal of rarely used connections
and neurons without connections. The algorithm stops when a criterion is met, i.e.
some performance measure, network size, or a given number of training epochs.
The complete GNG training algorithm is provided in Appendix B.

Growing When Required (GWR)

Different to the GNG which creates new neurons at a fixed growth rate, the GWR
network proposed by Marsland et al. (2002) creates new nodes whenever the activ-
ity of trained neurons is smaller than a given threshold. As a criterion for neural
growth, the training algorithm considers the amount of network activation at time
t computed as a function of the distance between the current input x(t) and its
best-matching neuron wb:

a(t) = exp(−‖x(t)−wb‖). (3.12)

Additionally, the algorithm considers the number of times that neurons have
fired so that recently created neurons are properly trained before creating new
ones. For this purpose, the network implements a firing counter η ∈ [0, 1] used to
express how frequently a neuron has fired based on a simplified model of how the
efficacy of an habituating synapse reduces over time (Stanley, 1976). The firing
counter is given by

η(t) = η0 −
S(t)

α
· (1− exp(−αt/τ)), (3.13)
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Figure 3.2: Comparison of GNG and GWR growth behavior: a) number of neurons,
b) quantization error, and c) GWR average activation and firing counter through
30 training epochs for the Iris dataset (150 four-dimensional samples).

where η0 is the resting value, S(t) is the stimulus strength, and τ and α are
constants that control the behavior of the curve.

The use of an activation threshold and firing counters to modulate the growth
of the network leads to create a larger number of neurons at early stages of the
training and then tune the weights of existing neurons through subsequent training
epochs. This behavior is particularly convenient for incremental learning scenarios
since neurons will be created to promptly distribute in the input space, thereby
yielding fast convergence through iterative fine-tuning of the topological map. The
GWR algorithm will then iterate over the training set until a given stop criterion
is met, e.g. a maximum network size or a maximum number of iterations. The
learning procedure for GWR is illustrated in Appendix B.

A comparison between GNG and GWR learning in terms of the number of neu-
rons, quantization error (average discrepancy between the input and representative
neurons in the network), and parameters modulating network growth (average net-
work activation and firing rate) is shown in Fig. 3.2 over 30 training epochs for the
Iris dataset1. Such a learning behavior is particularly convenient for incremental
learning scenarios since neurons will be created to promptly distribute in the input
space, thereby allowing a faster convergence through iterative fine-tuning of the
topological map. It has been shown that GWR-based learning is particularly suit-
able for novelty detection and cumulative learning in robot scenarios (Marsland
et al., 2002, 2005).

The standard GNG and GWR learning algorithms do not account for temporal
sequence processing. Therefore, there is a motivation to extend these networks
with recurrent connectivity while preserving desirable learning properties such as
computational efficiency and network convergence.

1http://archive.ics.uci.edu/ml/datasets/Iris
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3.3. Recurrent Self-Organizing Networks

3.3 Recurrent Self-Organizing Networks

The efficient processing of time-varying stimuli plays a crucial role in biological
systems. Therefore, there is a strong motivation to design artificial systems that
account for the processing of sequences, from low-level signals to complex high-
level cognitive functions. Popular learning tasks with sequential data have been
action recognition, DNA analysis, and natural language processing.

The self-organizing networks described in Section 3.2 have been designed for
the spatial domain and do not naturally account for the extrapolation of temporal
relations from time-varying input samples. As an attempt to learn sequentially
ordered patterns, data windows in terms of serialized concatenations of a fixed
number of samples from the input were used (e.g., Martinetz, 1993). However,
this approach may lead to loss of information, the curse of dimensionality, and
inappropriate metrics (Strickert and Hammer, 2005). Therefore, temporal exten-
sions of these networks have been proposed that implement recurrent connectivity
so that neural activation in the map is driven by multiple time steps.

The first example was the Temporal Kohonen Map (TKM, Chappell and Tay-
lor, 1993), equipped with recurrent neurons in terms of leaky integrators. The
computation of the distance of a neuron wi from the input sequence (x1, ...,xt) at
time t with similarity measure dW is

d̃i(t) = α · dW (x(t),wi) + (1− α) · d̃i(t− 1), (3.14)

where α ∈ (0; 1) controls the rate of signal decay, expressing the quality of the
representation of the current input and the exponentially weighted past. However,
in the TKM there is no explicit back-reference to previous map activity, i.e. the
context is only implicitly represented by the weights. Therefore the sequence rep-
resentation domains are restricted to the superposition of values from the domain
of the processed sequence entries.

To provide a less restricted recurrence, in the RecSOM (Voegtlin, 2002) the
distance of a neuron from the input sequence at time t is computed as

di(t) = α · dW (x(t),wi) + β · ‖ci −Rt−1‖, (3.15)

Rt−1 = (exp(−d̃1(t− 1)), ..., exp(−d̃N(t− 1))), (3.16)

where ci are the context descriptors of each neuron, Rt−1 is the context vector
of the previous time step, N is the number of neurons in the map, and ‖ · ‖
denotes the Euclidean distance. This preserves the information available within
the activation at the last timestep. However, this is computationally expensive
due to the high-dimensional contexts attached to each neuron.

A more compact model was introduced by a SOM for structured data (Hagen-
buchner et al., 2003), where an additional context vector is used for each neuron,
but only the last winner index is stored as information of the previous map state
such that

d̃i(t) = α · dW (x(t),wi) + β · dG(It−1 − ci), (3.17)
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where It−1 denotes the index of the winner neuron at t − 1 and dG is the grid
distance measure. However, this recurrent activation cannot be used for arbitrary
lattice shapes since it relies on fixed grid distances to update the winning neuron
and its neighbours.

Different approaches with context learning have been proposed that use a com-
pact reference representation for an arbitrary lattice topology. Context learning
as proposed by Strickert and Hammer (2005) combines a compact back-reference
with a weighted contribution of the current input and the past. Each neuron is
equipped with a weight vector wi and a temporal context ci (with wi, ci ∈ Rd),
the latter representing the activation of the entire map at the previous timestep.
The recursive activation function of a sequence is given by the linear combination

d̃i(t) = α · dW (x(t),wi) + (1− α) · dW (C(t), ci), (3.18)

Ci = β ·wI(t−1) + (1− β) · cI(t−1), (3.19)

where α, β ∈ (0, 1) are fixed parameters, C(t) is a global context vector, and I(t−1)
denotes the index of the winner neuron at time t− 1.

The training is carried out by adapting the weight and the context vector
towards the current input and context descriptor according to:

4wi = εi · hσ(dN(i, It)) · (x(t)−wi), (3.20)

4 ci = εi · hσ(dN(i, It)) · (C(t)− ci), (3.21)

where εi is the learning rate, hσ is usually a Gaussian function, and dN : N×N → R
is a neighborhood function that defines the topology of the network. After the
training, Strickert and Hammer (2005) showed that C(t) converges to the optimal
global temporal context vector Copt(t) such that

Copt(t) =
t−1∑
j=1

(1− β) · βt−1−j · x(j). (3.22)

Context learning can be applied to lattices with arbitrary topology as well
as to incremental approaches that vary the number of neurons over time. For
instance, a GNG model equipped with context learning (MergeGNG, Andreakis
et al., 2009) uses the activation function defined by Eq. 3.18 and 3.19 to com-
pute winner neurons and creates new neurons with a temporal context. Further-
more, this formulation of context learning can be extended to equip each neuron
with an arbitrary number of context descriptors, leading to a reduced temporal
quantization error (Estévez and Hernández, 2011). This is due to an increase in
memory depth and temporal resolution following the idea of a Gamma memory
model (de Vries and Pŕıncipe, 1992). The computation of winner neurons in a
network with a K-order Gamma memory is as follows:

di(t) = αw · ‖x(t),wi‖2 +
K∑
k=1

αk · ‖Ck(t)− cik‖2, (3.23)
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3.4. Summary

Ck(t) = β · cIt−1

k + (1− β) · cIt−1

k−1 ∀K = 1, ..., K, (3.24)

where α, β ∈ (0; 1) are constant values that modulate the influence of the current

input and the past, and c
It−1

0 ≡ wIt−1 with random cI0k at t = 0. This results in a
mean memory depth D = K/(1−β) with temporal resolution R = 1−β. Therefore,
both depth and resolution are modulated by the value of β. When K = 1, this
approach reduces to the standard context learning mechanism (Eq. 3.18). Since
the definition of the context descriptors is recursive, setting αw > α1 > α2 > ... >
αK−1 > αK > 0 should reduce the propagation of errors from early filter stages to
higher-order contexts.

Experiments with Gamma-SOM and Gamma-GNG networks were reported
by Estévez and Hernández (2011); Estévez and Vergara (2012), showing reduced
temporal quantization error with respect to traditional context learning models for
trained networks using multiple context descriptors.

3.4 Summary

We provided an overview on a set of neurobiologically-motivated neural networks
implementing mechanisms of self-organization for the formation of topological
maps driven by the distribution of the input. In addition to improving the under-
standing of experience-driven cortical organization via the development of simpli-
fied computational models, self-organizing networks have been successfully applied
to a large number of data-analysis problems. From early formulations of topology-
preserving neural networks to more elaborated models of information processing,
self-organizing systems have been shown to represent a powerful and computa-
tionally convenient mechanism to deal with high-dimensional input and able to
extrapolate underlying data structure in the spatiotemporal domain.

Although so far computational models of self-organization have mainly fo-
cused on small-scale systems, state-of-the-art neural architectures can be used as a
stepping-stone towards the modeling of more complex systems and high-level cog-
nitive functions, especially in the light of a more extensive understanding of cortical
maps in the mammalian brain. In the next chapters, we propose a set of learning
architectures for the recognition of complex action sequences from multiple visual
and auditory cues. We use hierarchically-arranged self-organizing networks for the
robust development of action representations with increasing level of abstraction,
resembling neural mechanisms of hierarchical processing in the cortex discussed in
Section 2.1. Furthermore, we show how Hebbian-like learning can be used for the
development of associative connectivity between two self-organizing systems in an
unsupervised fashion, and how this mechanism contributes to the emergence of
multimodal action representations from audiovisual input.
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Chapter 4

Self-Organizing Neural
Integration of Visual Action Cues

4.1 Introduction

The visual recognition of articulated human movements is fundamental to a wide
range of artificial systems oriented towards human-robot communication, action
classification and action-driven perception. These challenging tasks may generally
involve the processing of a large amount of visual information and learning mech-
anisms for generalizing a set of training actions and classifying novel samples. To
operate in natural environments, a crucial property of artificial vision systems is
the efficient and robust recognition of actions, also under noisy conditions caused
by, for instance, systematic sensor errors or temporarily occluded persons. As
discussed in Section 2.1, neurophysiological studies support a highly flexible and
adaptive biological system with separate neural pathways for the distinct process-
ing of pose and motion features at multiple levels and the subsequent integra-
tion of these visual cues for action perception. Computational implementations of
simplified biological self-organizing models have shown motivating results on the
recognition of dynamic patterns (see Chapter 3). With the use of extended models
of conventional input-driven self-organization, it is possible to obtain progressively
generalized representations of sensory inputs and learn inherent spatiotemporal
dependencies of input sequences.

In this chapter, we propose a set of neurobiologically-motivated neural network
architectures to achieve noise-tolerant action recognition from videos in real time.
Our approach consist of a series of hierarchically-arranged self-organizing networks
for processing action features in the spatiotemporal domain. The architectures are
based on three assumptions consistent with neurophysiological evidence from the
mammalian visual system:

1. Complex motion is analysed in parallel by two separated pathways and sub-
sequently integrated to provide a joint percept (Vangeneugden et al., 2009);

2. Both pathways contain hierarchies to extrapolate shape and optic-flow fea-
tures with increasing complexity, from low- to high-level representations of
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4.2. KT Full-Body Action Dataset

the visual stimuli (Giese and Poggio, 2003; Hasson et al., 2008);

3. Input-driven self-organization is crucial for the cortex to tune the neurons
according to the distribution of the inputs (Willshaw and von der Malsburg,
1976; Nelson, 2000).

Under these assumptions, we carry out action learning and classification through
a two-pathway hierarchy of growing self-organizing networks that cluster pose and
motion cues separately. We first extract pose and motion features from sequences
of depth map videos and then cluster action features in terms of prototype pose-
motion trajectories. Multi-cue trajectories from matching action frames are sub-
sequently combined to provide action dynamics in the joint feature space. For
our action recognition task, we propose two types of growing self-organizing net-
works extended for classification: the associative GNG (Parisi et al., 2014c) and
the associative GWR (Parisi et al., 2015b). In both cases, visual representations
obtained in an unsupervised fashion are associated with symbolic labels. This
technique allows to predict action labels for novel visual samples. Furthermore,
in contrast to static self-organizing models, growing networks dynamically change
their topological structure to better match the input space and allow to train the
system with novel actions without the need to re-train from scratch. To compare
the performance of these two architectures (GNG vs GWR), we collected a dataset
of full-body actions with 10 actions that we introduce in Section 4.2. Furthermore,
we provide an evaluation of the performance of our architectures with respect to
the state of the art in action recognition from depth map videos with experiments
on a public benchmark of domestic daily actions. Finally, we show how this hier-
archical approach can be extended to account for the rudimentary recognition of
transitive actions, i.e. body sequences that also involve the use of objects such as
grasping a bottle and drinking. Analogies to biological findings and limitations of
these three learning architectures are discussed in Chapter 8.

4.2 KT Full-Body Action Dataset

The Knowledge Technology (KT) action dataset is composed of 10 full-body ac-
tions performed by 13 subjects with a normal physical condition (Parisi et al.,
2014c). The dataset contains the following actions: standing, walking, jogging,
picking up, sitting, jumping, falling down, lying down, crawling, and standing up.

Videos were captured in a home-like environment with a Kinect sensor installed
1, 30 meters above the ground. Depth maps were sampled with a VGA resolution
of 640×480 and an operation range from 0.8 to 3.5 meters at 30 frames per second.
To avoid biased execution, subjects did not receive explicit instructions on how to
perform the actions nor regarding the purpose of the study. Snapshots of actions
are shown in Fig. 4.1 as raw depth images, segmented body silhouettes, skeletons,
and body centroids. (For more video sequences of actions, see Appendix C.)

From the raw depth map sequences, 3D body joints were estimated on the
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Figure 4.1: Snapshots of actions from the KT action dataset visualized as raw
depth images, segmented body, skeleton, and body centroids.
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Figure 4.2: Action representations: (a) Three centroids with body slopes θu and
θl, and b) comparison of body centroids (top) and noisy skeletons (bottom).

basis of the tracking skeleton model provided by OpenNI.1 In previous research, we
proposed a simple model to track a spatially extended skeletons with two centroids
and a global body orientation (Parisi and Wermter, 2013). The centroids were
estimated as the centers of mass that follow the distribution of the main body
masses on each posture. For this thesis, we extended our previous model to describe
articulated actions more accurately by considering three body centroids (Fig. 4.2):
C1 for upper body with respect to the shoulders and the torso; C2 for middle body

1OpenNI SDK. http://www.openni.org/openni-sdk/
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4.3. Two-Stream Hierarchical Processing

with respect to the torso and the hips; and C3 for lower body with respect to the
hips and the knees, with each centroid computed as a point sequence of real-world
coordinates C = (x, y, z). As shown in Fig. 4.2, three body centroids are enough to
represent significant posture characteristics while maintaining a low-dimensional
feature space. Furthermore, this low-dimensional representation increases tracking
robustness for situations of partial occlusion with respect to a skeleton model
comprising a larger number of body joints.

To attenuate sensor noise, we used the median value of the last 3 estimated
points (yielding action features at 10 frames per second). We then estimated upper
and lower orientations θu and θl given by the slope angles of the line segments
{C1, C2} and {C2, C3} respectively. As shown in Fig. 4.2.a, θu and θl describe the
overall body pose according to the orientation of the torso and the legs, which
allows to capture significant body features such as the characteristic posture of
actions. This technique has been shown to provide a more reliable estimation of
overall body posture than using skeletons, specially in cases of self-occlusion and
unusual body postures (Fig. 4.2.b).

We computed the body velocity Si as the difference in pixels of the upper cen-
troid C1 between two consecutive frames. This centroid was chosen based on the
motivation that the orientation of the torso is the most characteristic reference
during the execution of full-body actions (Papadopoulos et al., 2014). We then
encode Si as horizontal and vertical speed with respect to the image plane, respec-
tively expressed as hi =

√
(Sxi )2 + (Szi )2 and vi = Syi . The former refers to the

target moving along the width and depth axis, i.e. closer, further, right, and left.
The latter represents the speed with respect to height, e.g. negative if the target
is moving down.

For each action frame i, we computed the following pose-motion vector:

fi = (θui , θ
l
i, hi, vi). (4.1)

Thus, each action Aj will be composed of a set of sequentially ordered pose-motion
vectors such that:

Aj = {(fi, lj) : lj ∈ L}, (4.2)

where lj is the action class label and L is the set of class labels. Action labels were
manually annotated for video sequences.

4.3 Two-Stream Hierarchical Processing

Neurophysiological studies have shown that the mammalian visual system pro-
cesses biological motion in two separate neural pathways (Giese and Poggio, 2003;
Vangeneugden et al., 2009). The ventral pathway recognizes sequences of snap-
shots of body postures, while the dorsal pathway recognizes movements in terms
of optic-flow patterns. Both pathways comprise hierarchies that extrapolate visual
features with increasing complexity of representation. Neurons in the macaque
and human superior temporal sulcus (STS) are sensitive to both motion and pos-
ture for representing similarities among actions, thus suggesting contributions from
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Figure 4.3: Three-stage GNG hierarchical pose-motion processing: 1) noise de-
tection and removal; 2) hierarchical processing of pose-motion trajectories in two
parallel streams; 3) classification of multi-cue trajectories (Parisi et al., 2014c).

converging cues received from the ventral and dorsal pathways (Oram and Perrett,
1996; Beauchamp et al., 2003). As discussed in Section 2.1.2, there is a consensus
that posture and motion together play a key role in biological motion percep-
tion (Garcia and Grossman, 2008; Thirkettle et al., 2009). These findings have
served to the development of architectures using learned prototype patterns to
recognize actions, consistent with the idea that STS neurons integrate both body
pose and motion.

In this section, we propose a learning framework for recognizing human full-
body actor-independent actions. We first extract pose and motion features from
depth map video sequences and then cluster actions in terms of prototypical pose-
motion trajectories. Multi-cue samples from matching frames are processed sep-
arately by a two-stream hierarchy of GNG networks (Fritzke, 1995). The GNG
is an unsupervised, incremental clustering algorithm able to dynamically change
its topological structure to represent the input space. Clustered trajectories from
the parallel streams are combined to provide joint action dynamics. We process
the samples under the assumption that action recognition is selective for tempo-
ral order (Giese and Poggio, 2003). Therefore, positive recognition of an action
occurs only when trajectory samples are activated in the correct temporal order.
In order to assign labels to clustered trajectories, we extend the GNG with two
labelling functions. Noisy samples are automatically detected and removed from
the training and the testing set to increase recognition accuracy. We present and
discuss experimental results on the KT action dataset with 10 full-body actions.

4.3.1 Learning Architecture

Our GNG-based architecture consists of three main stages: 1) detection and re-
moval of noisy samples from the dataset; 2) hierarchical processing of samples
from matching frames by two separate processing streams in terms of activation
trajectories; and 3) classification of action segments as multi-cue trajectories. An
overall overview of the framework is depicted in Fig.4.3.
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Hierarchical Learning

The motivation underlying hierarchical learning is to use trajectories of neural
activation from one network as input for the training for a subsequent network.
This mechanism allows to obtain progressively specialized neurons coding inherent
spatiotemporal dependencies of the input, consistent with the assumption that
the recognition must be selective for temporal order (Bertenthal and Pinto, 1993;
Giese and Poggio, 2003). Therefore, positive recognition of action segments occurs
only when neurons along the hierarchy are activated in the correct order of learned
movement sequences.

The second stage is composed of a two-stream hierarchy for processing pose-
motion cues separately. Hierarchical training is carried out as follows. We first
train a network G with a training set T . After the training is completed, the
subsequent network G∗ will be trained with a new training set that is obtained by
computing trajectories of best-matching neurons from G for samples of T . Given a
training sequence X and the trained weight vectors wj of G, the set of trajectories
Ω(X) is given by

Ω(X) = {xi ∈ X : wb(xi),wb(xi−1), ...,wb(xi−q+1)}, i ∈ [q..m], (4.3)

where b(xi) = arg mini∈W ‖xi − wj‖, q is the length of the trajectory, and m
is the number of samples of X. After the training of the higher level network is
completed, each neuron in G∗ will encode a sequence-selective action segment from
q consecutive frames. This mechanism allows to obtain specialized neurons coding
the spatiotemporal structure of the input.

In our architecture (Fig.4.3), we first train the networks GP
1 and GM

1 with the
denoised training sets P and M respectively. After this training phase, chains of
prototype neurons of training samples produce time-varying trajectories on each
network. After this step, we train GP

2 and GM
2 with the training sets of concate-

nated trajectories of best-matching neurons as defined by Eq. 4.3.
The network layer GC integrates pose-motion features by training the network

with a new set Ψ containing the concatenation of the activation trajectories of
from GP

2 and GM
2 such that:

Ψ = {Ω(P) _ Ω(M)}, (4.4)

where P andM are the set of neural activations from the pose and motion stream
respectively. After the training of GC is completed, each neuron will encode a
sequence-selective prototype action segment, thereby integrating changes in the
configuration of a person’s body pose over time.

Noise Detection

Pose-motion vectors fi as described in Section 4.2 are susceptible to tracking errors
due to occlusion or systematic sensor errors, which may introduce noise in terms of
values highly detached from the dominating point clouds. We assume inconsistent
changes in body velocity to be caused by tracking errors rather than actual motion.
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Therefore, we remove noisy motion samples to create smoother inter-frame tran-
sitions. First, the network GN is trained using only the motion samples. Second,
the training motion samples are processed again to obtain the set of quantization
errors E from the trained network, which contains the distances from the best-
matching neurons of all motion sample. We then compute the empirically defined
threshold that considers the distribution of the samples as th = 2σ(E)

√
µ(E),

where σ(E) is the standard deviation of E and µ(E) is its mean.
For each motion sample, if its distance from the best-matching neuron is greater

than th, then the sample is considered to be noisy and its associated vector fi
is removed from the training set. We then obtain a new denoised training set
from which we create two distinct sets with sequentially ordered pose and motion
features, formally defined as P = {(θui , θli)} and M = {(hi, vi)} respectively.

4.3.2 Action Classification

For assigning labels to clustered trajectories with GC , we extend the GNG algo-
rithm with two labelling functions: one for the training phase and one for predict-
ing the label of unseen samples at recognition time. First, we define a function
l : N → L where N is the set of neurons and L is the set of class labels. According
to the minimal-distance strategy (Beyer and Cimiano, 2011), the sample ψk ∈ Ψ
adopts the label lj of the best-matching neuron:

l(ψk) = lj = l(arg min
ψi∈Ψ
‖ψk − ψi‖2). (4.5)

At recognition time, our goal is to predict class labels from unseen samples
in terms of pose-motion trajectory prototypes. Therefore, we define a prediction
function ϕ : Ψ → L inspired by a single-linkage strategy in which a new sample
ψnew is labeled with lj associated to the neuron i that minimizes the distance to
this new sample:

ϕ(ψnew) = arg min
lj

(arg min
ψi∈Ψ
‖ψnew − ψi‖2). (4.6)

The adopted labelling techniques have shown to achieve best classification ac-
curacy among other offline labelling strategies (Beyer and Cimiano, 2011).

The hierarchical flow is composed of 3 networks with each subsequent network
neuron encoding a window of 3 samples from the previous one. Therefore, this
classification algorithm returns the first action label lnew after 7 new samples f̂ ∈ F
as defined by Eq. 4.1. Then, applying the temporal sliding window scheme, we get
a new action label for each new sample. For instance, operating at 10 frames per
second, we would get the first action label after 7/10 = 0.7 seconds.

4.3.3 Results and Evaluation

We evaluated our approach on the KT action dataset described in Section 4.2. The
KT action dataset is composed of 10 full-body actions performed by 13 subjects.
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Figure 4.4: Recognition accuracy under 5 different processing conditions: Denoised
multi-cue (DMC ), denoised pose-motion vector (DPM ), raw multi-cue (RMC ),
denoised pose-only (DP), and denoised motion-only (DM ) (Parisi et al., 2014c).

For our experiments, we divided the data equally into training and test set, i.e.
30 sequences of 10 seconds for cyclic actions such as standing, walking, jogging,
sitting, lying down, and crawling, and 30 repetitions for each goal-oriented action
such as picking up, jumping, falling down, and standing up. Both the training and
test sets contained data from all participants.

We used the following GNG training parameters: learning step sizes εb = 0.05,
εn = 0.005, node insertion interval λ = 350, error reduction constant α = 0.5,
and error reduction factor d = 0.995 (see Appendix B for the detailed training
algorithm). Maximum network size and the number of training epochs varied for
each of the six GNG networks and were experimentally adjusted based on the
network performance for different input distributions.

We evaluated the recognition accuracy of the framework under 5 different pro-
cessing conditions: denoised multi-cue (DMC) and raw multi-cue (RMC) samples,
denoised “pose only” (DP) and denoised “motion only” (DM) samples, and joint
pose-motion vectors (DPM) as defined in Eq. 1 processed by a single stream. As
can be seen in Fig. 4.4, the use of denoised multi-cue trajectory prototypes yields
the best average recognition result (89%). The removal of noise from the data
sets increases average recognition accuracy by 13%. The DMC approach exhibits
average improvements over DP and DM of 28% and 26% respectively.

Our results also show that DMC exhibits increased accuracy over the learn-
ing of joint pose-motion vectors (DPM) by 10%. This is partly due to the fact
that the DPM approach forces the early convergence of the networks in the joint
pose-motion space, while DMC and RMC learn a sparse representation of disjoint
pose-motion prototypes that are subsequently combined to provide joint action
dynamics. The reported results for actor-independent action recognition were ob-
tained with low latency providing real-time characteristics.
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Figure 4.5: GWR-based architecture for pose-motion processing: 1) hierarchical
processing of pose-motion features in parallel; 2) integration of neuron trajectories
in the joint pose-motion feature space (Parisi et al., 2015b).

4.4 Hierarchical GWR Model

In the previous section, we explored the use of hierarchical self-organization for
integrating pose-motion cues using GNG learning. The unsupervised learning al-
gorithm was extended with two labelling functions for classification purposes. In
this section, we use GWR networks that can create new neurons whenever the ac-
tivity of the best-matching neuron of the input is not sufficiently high, leading to a
more efficient convergence with respect to GNG networks that use a fixed insertion
interval. In the GNG model, an extra network was used to automatically detect
outliers in the training and test set. However, the removal of noisy cues via an
additional specialized network lacks neurobiological support and adds complexity
to the model. With the use of an extended GWR learning mechanism, we show
that this process can be embedded naturally into the self-organizing hierarchy for
the clustering of action cues and allows to remove noisy samples also during live
classification.

We present our hierarchical GWR architecture for the classification of action
samples and report a series of experiments on the KT action dataset and a bench-
mark of domestic actions CAD-60 (Sung et al., 2012).

4.4.1 GWR-based Learning Architecture

Our architecture consists of a two-stream hierarchy of GWR networks that pro-
cesses extracted pose and motion features in parallel and subsequently integrates
clustered neuronal activation trajectories from both streams. This latter network
resembles the response of STS model neurons encoding sequence-selective proto-
types of action segments in the joint pose-motion domain. An overall overview of
the architecture is depicted in Fig. 4.5.

Different to the growing process of the GNG (Fritzke, 1995), GWR-based learn-
ing creates new nodes whenever the activity of trained neurons is smaller than a
given threshold. Additionally, the training algorithm considers the number of times
that a neuron has fired so that recently created neurons are properly trained before
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creating new ones. For this purpose, the network implements a firing counter to
express how frequently a neuron has fired based on a simplified model of how the
efficacy of an habituating synapse reduces over time. As discussed in Section 3.2.2,
the use of an activation threshold and firing counters to modulate the growth of
the network leads to the creation of a larger number of neurons at early stages
of the training and then a tuning of the weights of existing neurons through sub-
sequent training iterations (epochs). This behavior is particularly convenient for
incremental learning scenarios since neurons will be created to promptly distribute
in the input space, thereby yielding fast convergence through iterative fine-tuning
of the topological map. The GWR algorithm will then iterate over the training set
until a given stop criterion is met, e.g. a maximum network size or a maximum
number of iterations.

In our architecture, hierarchical learning is carried out as described in Sec-
tion 4.3.1. At the first stage of our hierarchy, each stream is composed of two GWR
networks to process pose and motion features separately. We therefore compute
two distinct datasets with sequentially-ordered pose and motion features, denoted
as P and M respectively. Since P and M are processed by different network hierar-
chies, they can differ in dimensionality. Following the notation introduced in Fig.
1, we train the networks GP

1 and GM
1 with samples from P and M respectively.

After this step, we train GP
2 and GM

2 with the training sets of concatenated tra-
jectories of best-matching neurons as defined by Eq. 4.3. The STS stage consists
of the integration of prototype activation trajectories from both streams by train-
ing the network GSTS with two-cue trajectory samples. The network layer GSTS

integrates pose-motion features by training the network with the concatenation of
vectors Ψ = {Ω(P) _ Ω(M)}, where P and M are the activation trajectories
from GP

2 and GM
2 respectively. After the training of GSTS is completed, each neu-

ron will encode a sequence-selective prototype action segment, thereby integrating
changes in the configuration of a person’s body pose over time.

For the purpose of action classification, we extend the unsupervised GWR-
based learning with two labelling functions: one for the training phase and one for
returning the label of unseen samples as described in Section 4.3.2. We train the
GSTS network with the labeled training pairs so that symbolic labels are attached
to neurons representing temporally-ordered visual representations.

Noise Detection

The presence of noise in the sense of outliers in the training set has been shown
to have a negative influence on the formation of faithful topological representa-
tions using SOMs (Parisi and Wermter, 2013), whereas such an issue is partially
addressed by incremental networks. For instance, incremental networks such as
GNG and GWR are equipped with a mechanism to remove rarely activated nodes
and connections that may represent noisy input. In contrast to GNG, however,
the learning strategy of the GWR shows a quick response to changes in the distri-
bution of the input by creating new neurons to match it. The insertion threshold
aT modulates the number of neurons that will be added, e.g. for high values of aT
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Figure 4.6: A GWR network trained with a normally distributed training set of
1000 samples resulting in 556 nodes and 1145 connections (Parisi et al., 2015b).
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Figure 4.7: Activation values for the network trained in Fig. 4.6 with a test set of
200 samples containing noise. Noisy samples line under novelty threshold anew =
0.1969 (green line) (Parisi et al., 2015b).

more nodes will be created. The network is also equipped with a mechanism to
avoid slight input fluctuations to perturb the learning convergence and the creation
of unnecessary nodes. The GWR takes into account the number of times that a
neurons has been activated, so that neurons that have been activated more times,
are trained less. Therefore, an additional threshold modulates the firing counter
of neurons so that during the learning process less trained neurons are updated,
whereas new neurons are created only when existing neurons do not sufficiently
represent the input. A number of experiments have shown that the GWR is well-
suited for novelty detection (Marsland et al., 2005), which involve the identification
of inputs that do not fit the learned model.

In line with this mechanism, we use the activation function to detect noisy input
after the training phase. The activation function will be equal to 1 in response
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to input that perfectly matches the model, i.e. minimum distance between the
weights of the neuron and the input, and will decrease exponentially for input
with a higher distance. If the response of the network to the novel input is below
a given novel activation threshold anew, then the novel input can be considered
noisy in the sense that it is not represented by well-trained prototype neurons, and
thus discarded. The threshold value anew can be empirically selected by taking
into account the response distribution of the trained network with respect to the
training set. For each novel input xnew, we compute:

exp(−‖xnew −wb‖) < Ā− u · σ(A), (4.7)

where wb is the best-matching neuron of xnew, Ā and σ(A) are respectively the
mean and the standard deviation of the set of activations A from the training
set, and u is a constant value that modulates the influence of fluctuations in the
activation distribution.

Fig. 4.6 shows a GWR network trained with 100 input vectors with two nor-
mally distributed clusters. Over its 500 iterations, the network created 556 neurons
and 1145 connections (aT = 0.95, u = 4). The activation values for a test set of
200 samples (also normally distributed) containing artificially introduced noise are
shown in Fig. 4.7. It is observable how noisy samples lie below the computed ac-
tivation threshold anew = 0.1969 (Eq. 4.7) and can, therefore, be discarded. We
use this noise detection procedure to all the networks in our architecture with the
aim to attenuate noise in the training data and prevent the forced classification of
input that are not represented by the trained model.

4.4.2 Results and Evaluation

As aforementioned, we evaluated our approach both on our KT full-body action
dataset (described in Section 4.2) and the public action benchmark CAD-60 (Sung
et al., 2012). We now provide details on learning parameters for the GWR-based
training and recognition, and a comparative evaluation.

KT Action Dataset

The KT full-body action dataset is composed of 10 full-body actions performed by
13 subjects. Similar to previously reported results (Section 4.3.3), we divided the
data equally into training and test set, i.e. 30 sequences of 10 seconds for cyclic
actions such as standing, walking, jogging, sitting, lying down, and crawling, and
30 repetitions for each goal-oriented action such as picking up, jumping, falling
down, and standing up. Both the training and test sets contain data from all
participants.

Our experiments show that our new approach outperforms the previous one
with an average accuracy rate of 94% (5% higher the than GNG-based architec-
ture described in Section 4.3 using an extra network for noise detection, and 18%
higher than the same architecture without noise detection). We show the confu-
sion matrix for both approaches in Fig. 4.8 and 4.9 (with each row of the matrix
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Figure 4.8: Confusion matrix for GNG-based architecture (Parisi et al., 2015b).
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Figure 4.9: Confusion matrix for GWR-based architecture with embedded noise
detection (Parisi et al., 2015b).

being an instance of the actual actions and each column an instance of the pre-
dicted actions.) We can observe from the matrices that all the actions are slightly
classified more accurately with respect to Parisi et al. (2014c). The most often
misclassified actions are sitting and lying down. In the first case, the action was
confused with walking and picking up. This misclassification was mainly caused
by skeleton tracking errors, i.e. when sitting down, the self-occlusion of joints
may compromise the estimation of the overall body pose. The action lying down
was, instead, misclassified as falling down. This is likely caused by the similar
body poses of the two actions, despite the contribution of motion to disambiguate
actions with similar poses.
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Figure 4.10: Daily actions from the CAD-60 dataset (RGB and depth images with
skeleton). Adapted from (Sung et al., 2012).

CAD-60

The Cornell activity dataset CAD-60 (Sung et al., 2012) is composed of 60 RGB-D
videos of four subjects (two males, two females, one left-handed) performing 12 ac-
tivities: rinsing mouth, brushing teeth, wearing contact lens, talking on the phone,
drinking water, opening pill container, cooking (chopping), cooking (stirring), talk-
ing on couch, relaxing on couch, writing on whiteboard, working on computer. The
activities were performed in 5 different environments: office, kitchen, bedroom,
bathroom, and living room. The videos were collected with a Kinect sensor with
distance ranges from 1.2 m to 3.5 m and a depth resolution of 640×480 at 15
frames per second. The dataset provides raw depth maps and RGB images, and
skeleton data. An example of the actions and the resulting skeletons is shown in
Fig. 4.10. The dataset provides skeleton data composed of 15 extracted joints for
the following body parts: head, neck, torso, shoulders, elbows, hands, hips, knees,
and feet.

For our approach, we used the set of 3D positions without the feet, leading
to 13 joints (i.e., 39 input dimensions). Instead of using world coordinates, we
encoded the joint positions using the center of the hips as frame of reference to
obtain translation invariance. We then computed joint motion as the difference of
two consecutive frames for each pose transition. We added a mirrored version of
all action samples to obtain invariance to actions performed with either the right
or the left hand.

For our evaluation on the CAD-60 dataset, we adopted a similar scheme as the
one reported by Sung et al. (2012) using all the 12 activities plus a random action
with new person strategy, i.e. the first 3 subjects for training and the remaining
for test purposes. In Table 4.1, we show a comparison of our results with the state
of the art on the CAD-60 dataset with precision and recall as evaluation metrics,
and ranked by the F1-score computed as:

F1 = 2 · Precision ·Recall
Precision+Recall

. (4.8)
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Table 4.1: Our approach evaluated on the 12 activities from CAD-60 and compar-
ison with other approaches.

Algorithm Precision (%) Recall (%) F-score (%)

Sung et al. (2012) 67.9 55.5 61.1

Ni et al. (2013) 75.9 69.5 72.1

Koppula et al. (2013) 80.8 71.4 75.8

Gupta et al. (2013) 78.1 75.4 76.7

Gaglio et al. (2014) 77.3 76.7 77

Zhang and Tian (2012) 86 84 85

Zhu et al. (2014) 93.2 84.6 88.7

Our approach 91.9 90.2 91

Faria et al. (2014) 91.1 91.9 91.5

Shan and Akella (2014) 93.8 94.5 94.1

We obtained 91.9% precision, 90.2% recall, and 91% F-score, indicating that our
model exhibits a good positive predictive value and very satisfactory sensitivity to
classified actions. (For the precision and recall of each action and environment see
Appendix D.) To be noted is that we separated the actions into 5 different envi-
ronments for a consistent and more informative comparison with other approaches
using the same dataset, whereas the specific properties of the environments were
not known to the model and had no effect on the segmentation of the skeleton
joints, therefore not influencing the classification process.

The best state-of-the-art result is 93.8% precision, 94.5% recall, and 94.1%
F-score (Shan and Akella, 2014). In their work, the authors identified prior to
learning a number of key poses to compute spatiotemporal action templates, which
makes this approach highly data dependent. Each action must be segmented into
atomic action templates composed of a set of n key poses, where n depends on
the action’s duration and complexity. Furthermore, experiments with low-latency
(close to real time) classification have not been reported. The second approach
with slightly better results than ours is the work by Faria et al. (2014) with 93.2%
precision, 91.9% recall, and 91.5% F-score. In their work, the authors used a
dynamic Bayesian Mixture Model to classify motion relations between body poses.
However, they used the raw depth images to estimate their own skeleton model
(and did not use the one provided by the CAD-60 benchmark dataset). Therefore,
differences in the tracked skeleton may exist that hinder a quantitative comparison
with our classification method.
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Table 4.2: Training results on the two datasets – For each trained network along
the hierarchy, the table shows the resulting number of nodes (N) and connections
(C), and the activation threshold (a).

KT Action Dataset
GP

1

N = 225

C = 435

a = .1865

GP
2

N = 183

C = 338

a = .1934

GSTS N = 118

C = 378

a = .2932

GM
1

N = 254

C = 551

a = .1732

GM
2

N = 192

C = 353

a = .1910

CAD-60
GP

1

N = 289

C = 403

a = .1778

GP
2

N = 214

C = 445

a = .1898

GSTS N = 137

C = 309

a = .2831

GM
1

N = 302

C = 542

a = .1698

GM
2

N = 239

C = 495

a = .1991

Training Parameters

We now report the GWR parameters for the training sessions. We set the following
values: insertion thresholds aT = 0.90, learning rates εb = 0.3 and εn = 0.006,
maximum age amax = 50, firing counter parameters h0 = 1, τb = 0.3, τn = 0.1.

Each network stopped training after 500 epochs over the whole dataset. These
parameters were empirically found to let the model learn spatiotemporal depen-
dencies with the best accuracy in terms of classification labels returned by the last
network GSTS. For a single network, the number of neurons converged already af-
ter 100 epochs, and weight vectors of neurons showed little modification after 400
epochs. If we consider the 2 networks per stream in the first stage of the hierarchy
and the integration network in the second stage, it took overall 1500 epochs to
obtained a trained neuron in the GSTS network.

In Table 4.2, we show the resulting properties of the networks along the hi-
erarchy after the training sessions on the two datasets. In both cases, it can be
observed that the number of nodes (N) and connections (C) is lower for higher
levels of the hierarchy. The lower numbers indicate that in the STS level neurons
encode more complex spatiotemporal dependencies with respect to the first level
(in which only uni-cue spatial relations are considered), but with a smaller number
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of specialized neurons. To be noted is that the number of neurons did not depend
on the dimensionality of the input, but rather on the distribution of the data. From
Table 4.2 it can also be seen that the activation threshold (a) increases towards
higher levels of the hierarchy. In the first level, the activation function yielded
larger fluctuations due to outliers and input data that were rarely presented to the
network during the training. Conversely, activations of training samples matching
the model get higher as neurons become more specialized. These results indicate
that noise from the training data was not propagated along the hierarchy, but
rather detected and discarded, which resulted in a larger a-value.

4.5 Towards Learning Transitive Actions

The recognition of transitive actions (actions that involve the interaction with
an object) is an important part of daily human activities. Humans possess an
outstanding capability to infer the goal of actions from the interaction with objects.
The study of transitive actions such as grasping and holding has often been the
focus of research in neuroscience and psychology (Fleischer et al., 2013; Nelissen
et al., 2005; Gallese et al., 1996). Nevertheless, this task has remained an open
challenge for computational models of action recognition.

Neurophysiological studies suggest that only when information about the ob-
ject identity is added to the semantic information of the action, then the actions of
other individuals can be completely understood (Saxe et al., 2004). From the com-
putational perspective, an important question regards the potential links between
representations of body postures and manipulated objects and, in particular, how
these two representations can be integrated.

In this section, we propose a possible extension of the hierarchical architectures
previously discussed in this chapter to account for the learning of action–object
mappings from RGB-D videos (Mici et al., 2016). The architecture consists of
two separate pathways that process body action features and object features in
parallel and subsequently it integrates prototypes of actions and the identity of
recognized objects. Experimental results have shown that the proposed integration
of body actions and objects significantly increases the classification accuracy of
action sequences.

4.5.1 Proposed Architecture

An overview of the architecture is depicted in Fig. 4.11. For the processing of body
postures, a set of local features describing the upper-body joints are extracted and
fed into the 2-layer neural architecture with GWR networks. The input for the
object recognition module is the RGB image of the object. Objects are represented
as compact feature vectors and are fed into a SOM network. The last layer learns
the combination of body postures and objects involved in an action.
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Figure 4.11: Overview of the proposed architecture for transitive action recogni-
tion (Mici et al., 2016).

Object Recognition

Objects are extracted from RGB action sequences, where the region of interest
is automatically extracted through a point cloud-based table top segmentation.
For the representation of objects, we use SIFT features (Jégou et al., 2010) that
yield invariance to translation, rotation and scaling transformations and, to some
extent, robustness to occlusions. For the problem of object category recognition,
we use dense SIFT descriptors on regular grids across each image. Since object
representations are compared using the Euclidean distance as a metric, we compute
a fixed-dimensional vector for each image. For this purpose, we selected the vector
of locally aggregated descriptors (VLAD) (Lowe, 2004), which results in a feature
vector with a high discriminative power.

For learning objects, we train a SOM network on a set of training objects
(Fig. 4.11.B). We attach symbolic labels to each neuron based on the majority of
input samples that have matched with each neuron during the training phase. At
recognition time, for each input image the best-matching neuron from the trained
network will be computed, so that the knowledge of the category of objects can be
transferred to the higher layer of the architecture in terms of a symbolic label.

Body Motion Recognition

For the recognition of body motion sequences, we train a hierarchical GWR ar-
chitecture (Fig. 4.11.A). We first train the GWR1 network with the sequences of
body postures. After the training is completed, the GWR2 network is trained with
neural activation trajectories from GWR1. Thus, for each input sample xi, the
best-matching neuron in GWR1 network is computed as in Eq. 3.6. The weights
of the neurons activated within a temporal sliding window of length q are concate-
nated and fed as input to GWR2. The input data for training GWR2 is of the
form:

ψ(xi) = {b(xi), b(xi−1), ..., b(xi−q+1), i ∈ [q..m]}, (4.9)
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where m is the number of training samples. While the first network learns a
set of prototype body postures, the second network will learn temporally-ordered
prototype sequences from q consecutive samples.

Integration of Action-Object Representations

The last network in hierarchy, GWR3, will integrate the information from the
converging streams and learn action–object mappings (Fig. 4.11.C). For this
purpose, we create a new dataset by concatenating the set of activation trajectories
from the GWR2 network and the object’s symbolic label from the SOM trained
with the set O of training objects. The resulting training data consists of pairs φu
of the following form:

φu = {b(ψ(xi)), ..., b(ψ(xi−q−1)), lb(y),xi ∈ T,y ∈ O, u ∈ [q..m− q]}, (4.10)

where lb(y) represents the label attached to the best-matching neuron of the object
recognition module for the object input y. Each neuron in GWR3 is assigned with
an action label adopting the same labeling strategy as in the SOM, meaning that
neurons take the label of the best-matching input samples. After the training of
GWR3 is completed, each neuron will encode a prototype segment of the action in
terms of action–object pairs.

4.5.2 Results and Evaluation

Data Collection

We collected a dataset of the following daily activities: picking up, drinking (from a
mug or a can), eating (cookies) and talking on a phone. The actions were performed
by 6 participants that were given no explicit indication on the purpose of the study
nor instructions on how to perform the actions.

The dataset was collected with an Asus Xtion depth sensor that provides a syn-
chronized RGB-D image (color and depth map). The tracking of skeleton joints
was computed with the OpenNI framework (Fig. 4.12). Action labels were man-
ually annotated from a ground-truth of sequence frames. We added a mirrored
version of all action samples to obtain invariance to actions performed with ei-
ther the right or the left hand. The depth sensor was also used for acquiring the
objects dataset. Since object recognition should be view-invariant, RGB images
were acquired with the camera positioned in two different heights and from objects
in different views with respect to the sensor. Object labels were manually anno-
tated for the training sequences, and the labels output from the object recognition
module were used for the test sequences.

Training and Evaluation

In order to evaluate the generalization capabilities of our architecture, we con-
ducted experiments with 10-fold cross-validation, meaning that data were split
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Picking up Talking on phone Eating Drinking

Figure 4.12: Examples of sequences of skeleton joints taken from our action
dataset (Mici et al., 2016).

Figure 4.13: Evaluation of the recognition accuracy on the test data set under
different conditions (Mici et al., 2016).

into 10 sets of random samples, from which 60% for training and 40% for testing.
The reported results were averaged over the 10 folds.

We set the following GWR training parameters: learning rates εb = 0.1,
εn = 0.01, firing threshold hT = 0.1, insertion thresholds aT = {0.5, 0.4, 0.3} for
GWR1, GWR2, and GWR3 respectively, maximum age amax = 100, firing counter
parameters h0 = 1, τb = 0.3 and τn = 0.1. Each GWR network was trained for 50
epochs over the whole dataset of actions. The number of neurons created in each
GWR network given a training set with ≈ 18.600 frames were ≈ 480 for GWR1,
≈ 600 for GWR2, while for GWR3 the number varied from ≈ 700 to ≈ 1000 de-
pending on the inclusion or exclusion of the objects (as explained in Fig. 4.13).
For training the SOM, we used a 20× 20 map of neurons in a hexagonal network
lattice with a Gaussian neighboring function and 50 training epochs over the whole
dataset of objects.

We evaluated the recognition accuracy of the architecture under three condi-
tions: (1) completely excluding the object identity in both training and testing,
(2) including the objects in training while excluding them in testing phase, and (3)
no exclusion in both phases. In the third case, the label given by the SOM-based
object classifier was used during testing. Additional experiments were run using
the objects’ ground-truth labels for comparison. Results are reported in Fig. 4.13,
where it is possible to see a significant improvement of the action classification
performance for the third condition. When the object can is replaced with the
object mug, the final classification accuracy of the action drinking is not affected
– this is a desirable generalization capability of our architecture. Furthermore, the
relatively low recognition rates in the second condition suggest that the identity
of the object is crucial for distinguishing between the actions drinking, eating and
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talking on phone, while for the action picking up the situation does not vary dras-
tically in either case. Together, these results suggest that the identity of objects
plays a fundamental role for the effective recognition of daily actions that involve
the interaction with objects.

4.6 Summary

In this chapter, we presented a series of neurobiologically-motivated approaches
that learns to recognize actions from depth map video sequences. The proposed
neural network architectures rely on three assumptions that are consistent with
evidence on neural mechanisms for action recognition: 1) pose and motion action
features are processed in two distinct pathways, respectively the ventral and the
dorsal stream, and then action cues are integrated to provide a joint percept (Van-
geneugden et al., 2009); 2) hierarchies within each pathway process features with
increasing complexity (Giese and Poggio, 2003; Hasson et al., 2008); and 3) visual
information is arranged according to input-driven self-organization (Willshaw and
von der Malsburg, 1976; Nelson, 2000).

Our architectures consist of a two-pathway hierarchy of growing self-organizing
networks that process pose-motion features in parallel and subsequently integrate
action cues to provide movement dynamics in the joint feature space. Hierarchical
learning was carried out using prototype trajectories composed of neuron activa-
tion patterns. The learning mechanism of the networks allows to attenuate noise
and detect noisy novel samples. For classification purposes, we extended the stan-
dard implementations of unsupervised GNG and GWR learning with two labelling
functions for associating symbolic labels to learned visual representations.

We conducted a series of experiments with a full-body action dataset and a
public benchmark dataset of daily actions. Additionally, we presented an extended
architecture for the learning of action–object mappings from RGB-D videos. The
reported results motivate the embedding of our learning systems into mobile robot
platforms to conduct further evaluations in more complex scenarios, where the
robust recognition of actions plays a key role. For instance, the learning of mul-
timodal action representations from multiple sensors (see Chapter 5 and 6), the
detection of dangerous events for assistive robotics such as falls, and the recognition
of actions with learning robots in HRI scenarios (see Chapter 7).
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Chapter 5

Self-Organizing Emergence of
Multimodal Action
Representations

5.1 Introduction

As humans, our daily perceptual experience is modulated by an array of sensors
that convey different types of modalities such as visual, auditory, and somatosen-
sory information (see Chapter 2). A number of computational models have been
proposed that aim to effectively integrate multisensory information, in particular,
audiovisual input. These approaches generally use unsupervised learning for ob-
taining visual representations of the environment and then link these features to
auditory cues. Vavrečka and Farkaš (2014) and Morse et al. (2015) presented con-
nectionist architectures that learn to bind visual properties of objects (e.g., spatial
location, shape and color) to proper lexical features. Unimodal representations
are obtained by neural network self-organization and multimodal representations
develop through the activation of unimodal modules via associative connections.
The development of associations between co-occurring stimuli for multimodal bind-
ing has been strongly supported by neurophysiological evidence (Fiebelkorn et al.,
2009). However, these approaches do not naturally scale up to learn more complex
spatiotemporal patterns such as action–word mappings.

Action words do not label actions in the same way that nouns label objects (Gen-
tner, 1982). While nouns typically refer to objects that can be perceived as distinct
units, action words refer instead to spatiotemporal relations within events that may
be performed in many different ways with high spatial and temporal variance.
Words for actions and events appear to be among children’s earliest vocabulary
(Bloom, 1993; Hirsch-Pasek et al., 2000). Infants are able to learn action–word
mappings using cross-situational statistics, thus in the presence of sometimes un-
available ground-truth action words (Smith and Yu, 2008). Furthermore, action
words can be progressively learned and improved from linguistic and social cues so
that novel words can be attached to existing visual representations. This hypothe-
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sis is supported by neurophysiological studies evidencing strong links between the
cortical areas governing visual and language processing, and suggesting high levels
of functional interaction of these areas for the formation of multimodal representa-
tions of audiovisual stimuli (Foxe et al., 2000; Raij et al., 2000; Belin et al., 2000,
2002; Pulvermüller, 2005).

It has been argued that the superior temporal sulcus (STS) in the mammalian
brain may be the basis of an action-encoding network with neurons driven by the
perception of dynamic human bodies and that for this purpose it receives converg-
ing inputs from earlier visual areas from both the ventral and dorsal pathways (see
Section 2.1.2). Thus, the STS area is thought to be an associative learning device
for linking different unimodal representations and accounting for the mapping of
naturally occurring, highly correlated features such as body pose and motion, the
characteristic sound of an action (Beauchamp et al., 2004; Barraclough et al., 2005)
and linguistic stimuli (Belin et al., 2002; Wright et al., 2003; Stevenson and James,
2009). Multimodal representations of actions in the brain play an important role
for a robust perception of complex action patterns, with the STS representing a
multisensory area in the brain network for social cognition (Allison et al., 2000;
Adolphs, 2003; Beauchamp, 2005; Beauchamp et al., 2008).

In Chapter 4, we focused on the development of robust action representations
from different visual cues such as body posture and motion, and object features. In
this chapter, we investigate how congruent multimodal representations of actions
can naturally emerge from the co-occurrence of audiovisual stimuli. In particular,
we propose an approach where associative links between unimodal representations
are incrementally learned in a self-organizing manner. For this purpose, we extend
our proposed spatiotemporal hierarchy for the integration of pose-motion action
cues as presented in Parisi et al. (2015b) to include an associative network layer
where action–word mappings develop from co-occurring audiovisual inputs using
asymmetric inter-layer connectivity. Each network layer comprises a self-organizing
neural network that employs neurobiologically-motivated Hebbian-like plasticity
and habituation for stable incremental learning (Marsland et al., 2002).

The proposed architecture is novel in two main aspects: First, our learning
mechanism does not require manual segmentation of training samples. Instead,
spatiotemporal generalizations of actions are incrementally obtained and mapped
to symbolic labels using the co-activation of audiovisual stimuli. This allows us
to train the model in an incremental fashion also in the presence of occasionally
unlabeled samples. Second, we let asymmetric inter-layer connectivity emerge
taking into account the spatiotemporal dynamics of sequences so that symbolic
labels are linked to temporally-ordered representations in the visual domain. This
kind of connectivity allows the bidirectional retrieval of audiovisual inputs, i.e. it is
possible to retrieve action words from processed visual patterns and, conversely, to
activate congruent visualizations of learned actions from recognized action words.

We conducted a set of experiments with the KT action dataset containing 10
full-body actions (see Section 4.2) using body pose-motion cues as visual features
and action labels obtained from automatic speech recognition. Experimental re-
sults showed that we achieve state-of-the-art recognition performance without the
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need to manually segment training samples, and that this performance is not dras-
tically compromised as the number of available labeled samples is decreased.

5.2 Associative Action–Word Mappings

Our neural architecture consists of a self-organizing hierarchy with four network
layers for the unsupervised processing of visual action features and the development
of associative connections between learned action representations and symbolic
labels. An overall diagram of the architecture is shown in Fig. 5.1.

Network layers 1 and 2 comprise a two-stream hierarchy for the processing
and subsequent integration of body pose and motion features, resembling the ven-
tral and the dorsal pathway respectively for the processing of complex motion
patterns (Giese and Poggio, 2003). The integration of pose and motion cues is
carried out in network layer 3 (or GSTS) to provide movement dynamics in the
joint feature space (Parisi et al., 2015b). Hierarchical learning from contiguous
Growing When Required (GWR) networks (Marsland et al., 2002) shapes a func-
tional hierarchy that processes spatiotemporal visual patterns with an increasing
level of complexity by using neural activation trajectories from lower-level layers for
training higher-level layers. For learning multimodal representation of actions, net-
work layer 4 (or GSTSm) implements a self-organizing algorithm where action–word
mappings are developed by binding co-occurring audiovisual inputs using bidirec-
tional inter-layer connectivity. For this purpose, we extended the traditional GWR
learning algorithm with a mechanism for semi-supervised label propagation and
enhanced synaptic connectivity for learning prototype neural activation patterns
in the temporal domain. The proposed learning algorithm is referred to as Online
Semi-Supervised GWR (OSS-GWR).

The self-organizing associative connectivity between GSTSm and the Action
Words Layer (AWL) will yield an incremental formation of congruent action–word
mappings for the bidirectional retrieval of audiovisual patterns.

5.2.1 A Self-Organizing Spatiotemporal Hierarchy

Our learning model consists of hierarchically-arranged GWR networks (Marsland
et al., 2002) that obtain progressively generalized representations of sensory inputs
and learn inherent spatiotemporal dependencies. The GWR network is composed
of a set of neurons with their associated weight vectors linked by a set of edges.
During the training, the network dynamically changes its topological structure to
better match the input space following competitive Hebbian learning (Martinetz,
1993). The learning procedure for GWR is illustrated by Algorithm 1 (except for
Steps 3, 7.c, 8.c, 9, and 10 that are implemented by the OSS-GWR only).

The motivation underlying hierarchical learning is to obtain progressively spe-
cialized neurons coding spatiotemporal dependencies of the input. This is consis-
tent with neurophysiological evidence supporting increasingly large temporal re-
ceptive windows in the mammalian cortex (Taylor et al., 2015; Hasson et al., 2008;
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Figure 5.1: Diagram of our learning architecture with GWR networks and the
number of frames required for hierarchical processing. Layers 1-3: parallel spa-
tiotemporal clustering of visual features and self-organizing pose-motion integra-
tion (GSTS). Layer 4: Self-organization of GSTS representations and associative
learning for linking visual representations in GSTSm to the Action Words Layer
(AWL) obtained from automatic speech recognition (ASR) (Parisi et al., 2016b).

Lerner et al., 2011), where neurons in higher areas encode information accumulated
over longer timescales. In our architecture, hierarchical learning is carried out by
training a higher-level network with neural activation trajectories from a lower-
level network. These trajectories are obtained by computing the best-matching
neurons for the current input sequence with respect to the trained network with
N neurons, so that a set of trajectories of length q is given by

Ωq(x(t)) = {wb(x(t)),wb(x(t−1)), ...,wb(x(t−q+1))}, (5.1)

with b(x(t)) = arg minj∈N ‖x(t) − wj‖ computing the index of the neuron that
minimizes the distance to the current input.

The overall hierarchical flow is illustrated in Fig. 5.2. The low-level networks
GP-1 and GM-1 learn a set of time-independent primitives that will be used for
higher-level representations and should exhibit robust activation regardless of tem-
poral disruptions of the input. The networks GP-2 and GM-2 process activation
trajectories of 3 neurons from the previous layer and the integration of the input
is carried out in GSTS over activation trajectories of 3 neurons from layer 2. The
network layer GSTS integrates pose-motion features by training the network with
the concatenation of vectors Ψ = {Ωq(P) _ Ωq(M)}, where P and M are the
activation trajectories from GP-2 and GM-2 respectively. Network layer GSTSm pro-
cesses activation trajectories of 3 neurons from GSTS, thereby representing visual
information over a temporal window of 7 frames (see Section 4.3 for a detailed
discussion). After the training is completed, neurons in GSTSm encode sequence-
selective prototype action segments, following the assumption that the recognition
of actions must be selective for temporal order (Giese and Poggio, 2003; Hasson
et al., 2008).
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Algorithm 1 OSS-GWR - In layers 1, 2, and 3 of our architecture, we use GWR
learning, while in layer 4 (GSTSm) we use OSS-GWR.

1: Create two random neurons with weights w1 and w2.
2: Initialize an empty set of spatial connections E = ∅.
3: [OSS-GWR only] Initialize an empty set of temporal connections P = ∅ and a

set of label–to–action references V = ∅.
4: At each iteration t, generate an input sample x(t) with sample label ξ
5: Select the best and the second-best matching neuron such that:
b = arg minn∈A ‖x(t)−wn‖, s = arg minn∈A/{b} ‖x(t)−wn‖.

6: Create a connection E = E ∪ {(b, s)} if it does not exist and set its age to 0.
7: If (exp(−‖x(t)−wb‖) < aT ) and (ηb < fT ) then:

a: Add a new node r (A = A ∪ {r}) with wr = 0.5 · (x(t) + wb), ηr = 1,
b: Update edges: E = E ∪ {(r, b), (r, s)} and E = E/{(b, s)},
c: [OSS-GWR only] Initialize neuron label (Eq. 5): λ(r) = γnew(b, ξ).

8: If no new neuron is added:
a: Update the best-matching neuron wb and its neighbors i:

∆wb = εb · ηb · (x(t)−wb), ∆wi = εn · ηi · (x(t)−wi),
with the learning rates 0 < εn < εb < 1.

b: Increment the age of all edges connected to b by 1.
c: [OSS-GWR only] Update neuron label (Eq. 6): λ(b) = γupdate(b, s, ξ).

9: [OSS-GWR only] Create a temporal connection P
b(t−1)
b if it does not exist,

increase it by a value of 1 and decrease all the others if P
b(t−1)
n > 0.

10: [OSS-GWR only] Create a label–to–action reference V
λ(b)
b if it does not exist

and update it (Eq. 8): V
λ(b)
b = Λλ(b)(b).

11: Reduce the firing counters of the best-matching neuron and its neighbors i:
∆ηb = τb · κ · (1− ηb)− τb, ∆ηi = τi · κ · (1− ηi)− τi,
with constant τ and κ controlling the curve behavior.

12: Remove all edges with ages larger than µmax and remove neurons without
edges.

13: If the stop criterion is not met, repeat from step 4.

5.3 GWR-based Associative Learning

For the GSTSm layer, we extended the standard GWR algorithm with: 1) semi-
supervised label propagation functions so that prototype neurons can be attached
to symbolic labels also in the absence of labeled samples, and 2) enhanced synaptic
connectivity in the temporal domain for learning activation patterns of consecu-
tively activated neurons. The detailed learning algorithm for the proposed Online
Semi-Supervised GWR (OSS-GWR) is illustrated by Algorithm 1.

5.3.1 Semi-Supervised Label Propagation

For the semi-supervised propagation of labels, we attach labels to neurons by tak-
ing into account local connectivity and neural activation patterns. In this way,
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Figure 5.2: Hierarchical learning of the last 7 inputs for processing neural ac-
tivations with a sliding window scheme and asymmetric inter-layer connectivity
between GSTSm and AWL used for bidirectional retrieval of audiovisual patterns.
A neuron in GSTSm encodes action segments of 7 inputs. Action labels are pre-
dicted from 4 neurons in GSTSm (10 inputs), while for each action word in AWL,
one onset neuron in GSTSm is computed (Parisi et al., 2016b).

only labels attached to well-trained neurons are propagated to unlabeled neigh-
bors (Algorithm 1, Steps 7.c and 8.c). For this purpose, we defined two labelling
functions: γnew for when a new neuron is created, and γupdate for when a neuron
is updated.

Provided that b is the index of the best-matching neuron of the training sample
x(t) with label ξ and that we denote a missing sample label with the value −1,
the label of a new neuron λ(wr) is assigned according to

γnew(b, ξ) =

{
ξ ξ 6= −1

λ(wb) otherwise
(5.2)

For updating the label of an existing neuron, we also consider whether the
current training sample is labeled. If this is not the case, then the best-matching
neuron b will take the label of its closest neighbor s, provided that the two neurons
have been sufficiently trained as expressed by their firing counters. Given the
index of the second-best matching neuron s of x(t), the update labelling function
for λ(wb) is defined as

γupdate(ξ, b, s) =


ξ ξ 6= −1

λ(ws) (ξ = −1) ∧ (πbs ≥ πT )

λ(wb) otherwise

(5.3)

πij =
Ei
j

1 + ηi + ηj
, (5.4)

with Ei
j = 1 if the neurons i and j are connected and 0 otherwise. Thus, this

function yields greater values for interconnected, well-trained neurons, i.e. that
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Table 5.1: Training parameters for the S-GWR and the OSS-GWR used for the
classification task of the Iris dataset (results in Fig. 5.3).

Parameter Value

Insertion threshold aT = {0.35, 0.75}
Firing threshold fT = 0.1

Learning rates εb = 0.1, εn = 0.01

Firing counter τb = 0.3, τi = 0.1, κ = 1.05

Training epochs 20

Labeling threshold (OSS-GWR only) πT = 0.5

have smaller firing counters. The value πT is used as a threshold to modulate the
propagation of a label from s to b.

We evaluated our semi-supervised labelling strategy on a classification task
using the Iris benchmark dataset1 containing 3 classes with 50 four-dimensional
samples each. The goal of our experiment was to compare the classification perfor-
mance of the proposed OSS-GWR with respect to the traditional GWR extended
for classification (S-GWR, Parisi et al. 2015b) using a decreasing percentage of
available labeled samples in the training set. The average accuracy was estimated
over 10 runs by removing labels at random positions for each percentage of avail-
able labels (from 0% to 100%).

The training algorithm used for this experiment is illustrated by Algorithm 1,
excluding Steps 3, 9, and 10 which are used in the GSTSm layer only, while the
training parameters are listed in Table 5.1. Fig. 5.3 shows the average recognition
accuracy for two different insertion thresholds aT = {0.35, 0.75} used to modulate
the number of neurons created by the network, which also has an impact on the
classification performance. In a smaller network, a prototype neuron will represent
a greater number of samples. Thus, it is more likely that a neuron representing a
dense cluster of samples with the same label will be assigned the correct one. It
can be seen that the OSS-GWR outperforms S-GWR for the classification task as
soon as not all labels are available. Larger deviations from the average accuracy
can be observed due to the fact that for each run labels were removed from ran-
domly selected samples and the distribution of missing labels can strongly influence
the final outcome, particularly when few samples were labeled. Furthermore, the
number of neurons created at each run varied, i.e. ≈ 16 for aT = 0.35 and ≈ 100
for aT = 0.75. This is due to the fact that the weight vectors for the two neurons
initializing the networks were randomly selected from the training samples.

These results show that the proposed labelling strategy (Eq. 5.2, 5.3, and 5.4)
yields higher classification performance in the absence of sample labels. The over-

1http://archive.ics.uci.edu/ml/datasets/Iris
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Figure 5.3: Average classification accuracy with a decreasing percentage of avail-
able labels in the training set for trained S-GWR and OSS-GWR networks with
≈ 100 neurons (top) and ≈ 16 neurons (bottom) (Parisi et al., 2016b).

all approach is said to be online since the algorithm incrementally propagates
labels during the training process (Beyer and Cimiano, 2011), in contrast to offline
methods where labels are used after the unsupervised training of a network has
finished.

5.3.2 Sequence-Selective Synaptic Links

Next, we enhanced standard GWR connectivity by taking into account latent
temporal relations of the input, so that connections between neurons that are
consecutively activated can be created and incrementally updated. In other words,
when the two neurons i and j are activated at time t − 1 and t respectively, the
synaptic link P i

j between them is strengthened. At each iteration, the link P
b(t−1)
b

between the best-matching neuron b and the previous winner neuron b(t − 1) is
increased by a value of 1, while the synaptic links between b(t− 1) and the other

neurons are decreased if P
b(t−1)
n > 0 for n ∈ A/{b} (Algorithm 1, Step 9). This

approach results in the efficient learning of the temporal structure of the input in
terms of neural activation trajectories. The highest value of P b

n will encode the
most frequent transition, and thus allowing to estimate a prediction of b(t + 1)
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provided b(t).

Sequence selectivity driven by asymmetric connections has been argued to be
a feature of the cortex for neurons encoding optic flow patterns, where an active
neuron preactives neurons encoding future patterns, while it inhibits neurons en-
coding other patterns (Mineiro and Zipser, 1998). This mechanism can be used
for iteratively retrieving prototype neurons that encode an action sequence given
the onset neuron for that action.

5.4 Bidirectional Retrieval of Audiovisual Inputs

We now describe the asymmetric connectivity between the GSTSm layer and the
Action Words layer (AWL) which allows the bidirectional retrieval of audiovisual
patterns. We will show how it is possible to predict action words from processed
visual patterns and, conversely, how to activate congruent visualizations of learned
actions from recognized action words.

5.4.1 Action–to–Word Patterns

During the learning phase, unsupervised visual representations of actions in GSTSm

are linked to symbolic action labels λ ∈ L, with L being the set of possible words.
Action words in AWL will then have a one-to-many relation with neurons in GSTSm,
while neurons can be linked to only one label in L. The development of connections
between GSTSm and AWL depends on the co-activation of audiovisual inputs. More
specifically, the connection between a neuron in GSTSm and a symbolic label in AWL
will emerge if the neuron is activated within a time window in which the label is
also activated by an auditory signal. In case no auditory stimulus occurs during
the training of neurons in GSTSm, the sample label will be given the value −1
to indicate a missing label. Symbolic labels attached to neurons will be updated
according to the semi-supervised label propagation rules (Eq. 5.2 and 5.3).

Given a previously unseen sequence of visual inputs, we want to predict the
correct action word by comparing the novel input to prototype action sequences
in GSTS and then return action labels attached to the best-matching neurons. The
hierarchical flow of the visual input is composed of four networks, each of them
processing activation trajectories of 3 neurons from the previous layer as introduced
in Section 4.3. Thus, each neuron in GSTS represents a prototype sequence encoding
7 consecutive frames (Fig. 5.2). By applying a temporal sliding window scheme, we
get a new action label for each processed frame. To improve the robustness of the
label prediction process, we return an action word from 4 neurons consecutively
activated in GSTS (10 frames). Given a set of 4 labels obtained from the last 4
activated neurons from visual input, we output the statistical mode of the set, i.e.
the most frequent label in the set is returned as the predicted action word. If we
assume visual input at 10 frames per second, an action word will be predicted for
1 second of video.
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Figure 5.4: Values of the Λλ function (Eq. 5.5) for different firing counters ηi
and sequence counters c(λj, t) in the range 1 to 6 expressing the sequential order
of processed samples. It can be seen that greater values are given to neurons
activated at the beginning of the sequence, with an increasing response for well-
trained neurons (smaller firing counter) (Parisi et al., 2016b).

5.4.2 Word–to–Action Patterns

For the development of connectivity patterns from AWL to GSTSm, we take into
account the temporal order of consecutively activated neurons, yielding the learn-
ing of onset neurons in GSTSm to be linked with an action label, and from which it
is possible to retrieve temporally-ordered prototype sequences for an action word.
For a labeled neuron b in GSTSm activated at time t, its connection strength with
the symbolic label λ becomes:

Λλ(b) =
1

2 · ηb + c(λ, t)
, (5.5)

with c(λ, t) being a sequence counter that will increase by 1 when λ(b) = λ(b− 1)
and reset to zero when this condition does not hold. Thus, this function expresses
the relation between the firing counter ηb of the neuron b and its sequential order
within the set of neural activations with the same label, yielding greater connection
strengths for well-trained neurons that activate at the beginning of a sequence. The
Λλ function for different neuron firing counters is depicted in Fig. 5.4 for a temporal
window of 6 neural activations.

Word–to–action connectivity patterns are stored in the label–to–action refer-
ence V and updated at each training iteration so that V

λ(b)
b = Λλ(b)(b) (Algorithm

1, Step 10). The neuron in GSTSm with the maximum value of Λλ can then be
selected as the onset neuron of an action label λ representing the first element of
a prototype sequence.

We expect that word–to–action connections will develop according to the Λλ

function (Eq. 5.5) for each action label. Thus, when an action label λ(j) is recog-
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nized from speech, the onset neuron in GSTSm of that action can be selected as the
neuron that maximizes Λλ(j), and consequently as the first element of a sequence
used to generate prototype visual representations of actions. The index of the
onset neuron wv(t) for an action label λ(j) is defined as:

v(t) = arg max
n

V λ(j)
n . (5.6)

Next, we can retrieve the next neuron of a prototype action sequence by select-
ing the maximal temporal synaptic connectivity:

v(t+ 1) = arg max
n

P v(t)
n , (5.7)

from which we can reconstruct a temporally-ordered sequence of arbitrary length
by retrieving the weight vectors for a number of timesteps into the future. For
instance, the sequence (wvt , ...,wvt+3) will generate visual output for a temporal
window of 10 frames (1 second). This mechanism can be used in practice to
visually assess how well the model has learned action dynamics and whether it has
accounted for effectively binding action words to visual representations.

5.5 Experiments and Evaluation

We present our experimental set-up and results on a dataset of 10 full-body ac-
tions that has been previously used to report recognition performance with manual
segmentation for ground-truth labelling (Parisi et al., 2014c, 2015b). For the re-
ported experiments of this approach, action labels were recorded from speech so
that action–word mappings of training samples can result from co-occurring audio-
visual inputs using unsupervised learning and our strategy for label propagation.
To evaluate our system, we compared newly obtained results with reported results
using hierarchical GWR-based recognition (Parisi et al., 2015b). We conducted ad-
ditional experiments with different percentages of available labeled samples during
the training, ranging between 100% (all samples are labeled) and 0%.

5.5.1 Audiovisual Inputs

Our action dataset is composed of 10 full-body actions performed by 13 subjects
(see Section 4.2). Videos were captured in a home-like environment with depth
maps sampled at 30 frames per second. The dataset contains the following actions:
standing, walking, jogging, picking up, sitting, jumping, falling down, lying down,
crawling, and standing up. From raw depth map sequences, 3D body joints were
estimated on the basis of the tracking skeleton model and actions were represented
by three body centroids (Fig. 5.5): C1 for upper body with respect to the shoulders
and the torso; C2 for middle body with respect to the torso and the hips; and C3 for
lower body with respect to the hips and the knees, with each centroid computed as
a point sequence of real-world coordinates C = (x, y, z). To attenuate sensor noise,
we used the median value of the last 3 estimated points (yielding action features at
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Figure 5.5: Representation of actions from the KT dataset. We estimate three
centroids: C1 (green), C2 (yellow) and C3 (blue) for upper, middle and lower body
respectively. The segment slopes θu and θl describe the posture in terms of the
overall orientation of the upper and lower body (Parisi et al., 2016b).

10 frames per second). We then estimated upper and lower orientations θu and θl
given by the slope angles of the line segments {C1, C2} and {C2, C3} respectively.
As shown in Fig. 5.5, the values θu and θl describe the overall body pose according
to the orientation of the torso and the legs, which allows capturing significant
body features such as the characteristic posture of actions. We computed the
body velocity Si as the difference in pixels of the upper centroid C1 between two
consecutive frames.

For recording action labels, we used automatic speech recognition from Google’s
cloud-based ASR enhanced with domain-dependent post-processing (Twiefel et al.,
2014). The post-processor translates each sentence in a list of candidate sentences
returned by the ASR service into a string of phonemes. To exploit the quality
of the well-trained acoustic models employed by this service, the ASR hypothe-
sis is converted to a phonemic representation employing a grapheme-to-phoneme
converter. The word from a list of in-domain words is then selected as the most
likely word candidate. An advantage of this approach are the hard constraints of
the results, as each possible result can be mapped to an expected action word.
Reported experiments showed that the sentence list approach obtained the best
performance for in-domain recognition with respect to other approaches on the
TIMIT speech corpus2 with a sentence-error-rate of 0.521. The audio recordings
were performed by speaking the name of the action in a time window of 2 seconds
during its execution, i.e. for each repetition in the case of jumping, picking up,
falling down, and standing up, and every 2 seconds for cyclic actions (standing,
walking, jogging, sitting, lying down, crawling). This approach has the advantage
of assigning labels to continuous video streams without the manual segmentation
of visual features from specific frames.

5.5.2 Results and Evaluation

For a consistent comparison with previous results, we adopted similar feature ex-
traction and evaluation schemes. We divided the data equally into training and
test set, i.e., 30 sequences of 10 seconds for each cyclic action (standing, walking,

2TIMIT Acoustic-Phonetic Continuous Speech Corpus: https://catalog.ldc.upenn.edu/

LDC93S1
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jogging, sitting, lying down, crawling) and 30 repetitions for each goal-oriented
action (jumping, picking up, falling down, standing up). Both the training and the
test sets contained data from all subjects.

For the learning in the GSTSm layer, we used the following training parameters:
insertion threshold aT = 0.9, learning rates εb = 0.3, εn = 0.006, firing counter
parameters τb = 0.3, τi = 0.1, κ = 1.05, maximum age for edges µmax = 500, la-
belling threshold πT = 0.5 (OSS-GWR only). These parameters were empirically
found with respect to best accuracy in terms of classification performance. Similar
to Parisi et al. (2015b), each network was trained for 500 epochs over the entire
training set. Once a layer was trained, its weights were set fixed and the next
higher-level layer was trained. If we consider the 4 network layers of the architec-
ture, it took overall 2000 epochs to obtain a trained neuron in the GSTSm network.
Layers GSTSm and AWL were trained together according to Algorithm 1.

Experimental results showed an average classification accuracy of 93, 3%, com-
paring with the state-of-the-art results of 94% reported by Parisi et al. (2015b)
which required the manual segmentation of training samples for assigning ground-
truth labels. The confusion matrices for the novel OSS-GWR and the S-GWR
approaches tested on a set of 10 actions are shown in Fig. 5.6 and 5.7 respectively
(with the rows of the matrix being the instances of actual actions and columns be-
ing the instances of predicted actions). The matrices show that there is a significant
similarity on which samples were misclassified, suggesting that misclassification de-
pends more on the visual features than on issues related to the associative learning
mechanism via the co-occurrence of audiovisual inputs. For example, actions that
are similar with respect to body posture (e.g. walking and jogging, falling down
and lying down), tend to be mutually misclassified. The reason for this is that
although the defined features used to learn relevant properties of actions should be
sufficient to univocally describe spatiotemporal patterns over different timescales,
tracking inaccuracies from the depth sensor may have a negative impact on the
extraction of reliable pose-motion cues. While it is possible to embed the detec-
tion of sensor noise in low-level networks (Parisi et al., 2015b), it is non-trivial
to detect inaccurate samples that belong to the feature space, e.g. caused by the
(self-)occlusion of body joints. In this case, tracking errors will propagate from
low to higher-level layers and lead to the misclassification of samples.

An additional experiment consisted of decreasing the percentage of labeled
action samples. Since visual representations are progressively learned without
supervision, we expect that the absence of training action labels will not have
a catastrophic impact on the correct development of associative connections of
audiovisual input (as would be expected for a strictly supervised method). For this
purpose, we trained our system with a similar scheme as in the first experiment,
but this time we omitted action words from ASR of randomly chosen samples and
varied the percentage of available labels from 100% to 0%. Here, with sample we
do not refer to a single data point (as in the experiment from Section 5.3.1), but
rather to a set of data points represented by the number of frames for the duration
of the audio time window, i.e. 20 frames. The average classification accuracy with
different percentages of omitted audio samples for randomly selected samples over
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Figure 5.6: Confusion matrix for the OSS-GWR approach on the KT action dataset
without manual segmentation (Parisi et al., 2016b).
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Figure 5.7: Confusion matrix for the S-GWR approach tested on the KT action
dataset with samples manually segmented (Parisi et al., 2016b).

10 runs is displayed in Fig. 5.8. We can observe that although a decreasing number
of available labeled samples during the training phase has a negative impact on
the classification performance, this decline is not proportional to the number of
omitted action words. As soon as 10% of labeled samples are available during the
training, the system shows an accuracy of 58.5%, and accuracy values above 85%
can be observed for 50% or more available labeled samples. On the other hand, we
found that the timing at which these action words are presented to the AWL layer
over the training epochs does have a significant impact on the performance. In fact,
best results were obtained if action words are presented when visual representations
have reached a certain degree of stability, while associative connections created at
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Figure 5.8: Average classification accuracy over 10 runs for a decreasing percentage
of available action labels (Parisi et al., 2016b).
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Figure 5.9: Example of learned visual representations generated from speech recog-
nition for the action words sitting, jumping, and picking up. The figure shows the
three body centroids and the motion intensity of the upper-body centroid (black
arrow) for a window of 10 frames (1 second) starting from the action onset neu-
ron (Parisi et al., 2016b).

early stages of visual development may not be as reliable.
To gain insight into how well the associative layer has learned action dynam-

ics, we generated learned action representations from action words in the absence
of visual input. The visualizations were generated from the recognized action
words by computing onset neurons in GSTSm via the associative connections from
AWL (Eq. 5.5). For each onset neuron, one-step prediction was made using the
temporal connectivity (Eq. 5.6) to compute snapshots of 10 frames (1 second of
action). The visual representations of the actions sitting, jumping, and picking
up for a time window of 1 second are shown in Fig. 5.9, where we displayed the
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Chapter 5. Self-Organizing Emergence of Multimodal Action Representations

three body centroids and the motion intensity of the upper-body centroid (black
arrow). From these visualizations, we can argue that the associative layer suc-
cessfully learns temporally-ordered representations of visual input sequences from
onset neurons, and therefore that our model accounts for the bidirectional retrieval
of audiovisual input.

5.6 Summary

We presented a hierarchical neural architecture for learning multimodal action
representations from a set of training audiovisual inputs. In particular, we inves-
tigated how associative links between unimodal representations can emerge in a
self-organizing manner from the co-occurrence of multimodal stimuli. Visual gen-
eralizations of action sequences were learned using hierarchically-arranged GWR
networks for the processing of inputs with increasingly larger temporal windows.

Multimodal action representations in terms of action–word mappings were ob-
tained by incrementally developing bidirectional connections between learned vi-
sual representations and action labels from automatic speech recognition. For
this purpose, we proposed an associative network with asymmetric inter-layer con-
nectivity that takes into account the spatiotemporal dynamics of action samples
and binds co-occurring audiovisual inputs. For this associative layer, we imple-
mented an extended GWR learning algorithm (the OSS-GWR) that accounts for
the propagation of action labels in a semi-supervised training scenario and that
learns neural activation patterns in the temporal domain through enhanced synap-
tic connectivity. Experiments with a dataset of 10 full-body actions showed that
our system achieves state-of-the-art classification performance without requiring
the manual segmentation of training samples. Together, these results show that
our neural architecture accounts for the bidirectional retrieval of audiovisual in-
puts, also in the scenario where a number of action labels is omitted during the
training phase.

Our implementation of bidirectional action–word connections roughly resembles
a phenomenon found in the human brain, i.e. spoken action words elicit receptive
fields in the visual area (Barraclough et al., 2005; Miller and Saygin, 2013). In other
words, learned visual representations of actions can be activated in the absence of
visual input, in this case from recognized speech. These visualizations can be
generated by computing the onset neuron in the GSTSm layer via the developed
associative connections to AWL, so that temporally-ordered action snapshots can
be obtained from neural activation patterns learned by synaptic connectivity in
the temporal domain. We have shown that this property can be used in practice
to assess how well the model accounts for learning congruent visual representations
of actions from pose-motion features.

Our results encourage the leverage of the proposed architecture in several direc-
tions. For instance, so far we have assumed that the training labels provided from
speech are correct. On the other hand, several developmental studies have shown
that human infants are able to learn action–word mappings also in the presence
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of missing, ambiguous or sometimes contradictory referents using cross-situational
statistics (Smith and Yu, 2008). Thus, it would be interesting to evaluate the
robustness of the system if the available labels are sometimes inaccurate or in
contradiction with previously learned labels. Furthermore, another limitation of
our model is the use of domain-dependent ASR. Although this approach yields
the reliable recognition of a set of action words (Twiefel et al., 2014), it has the
disadvantage that a specific set of words has to be defined a priori. Therefore, new
action words cannot be learned during the training process. We plan to address
this constraint by accounting for learning new lexical features so that the action
vocabulary can be dynamically extended during training sessions. It has been
shown that lexical features can be learned using recursive self-organizing architec-
tures (Strickert and Hammer, 2005), obtaining action word representations from a
phonemic representation of recognized audio. This extension would comprise a hi-
erarchical stream for processing audio features and, similar to the visual hierarchy,
higher-lever representations of speech (words) would be learned from lower-level
representations (e.g., phonemes). Such a processing scheme would be in line with
neurophysiological evidence supporting the hierarchical processing of aural fea-
tures in the auditory cortex with increasing temporal receptive windows (Lerner
et al., 2011). By considering the aforementioned extensions, the mechanism re-
sponsible for developing associative connections should be robust to situations in
which action words recognized from speech may not be reliable. Therefore, an
additional labelling scheme should be considered that takes into account cross-
statistical properties of labels to guarantee a congruent audiovisual mapping.

Finally, our results motivate the extension of our approach for scenarios that
require more complex audiovisual inputs, for instance by considering the recogni-
tion of transitive actions. This challenging task would require accounting for the
learning of action-object relations to be described by more flexible action words,
e.g. labelling both the action and the object being used. An interesting question
would then be how multiple different modules develop bidirectional connections in
order to provide a congruent perceptual experience.

The manual labeling of training sequences is expensive and hinders the auto-
matic, continuous learning of novel information. Thus, research in the direction
of neurocognitive architectures aimed at developing robust multimodal representa-
tions from more natural interactions would provide a significant benefit for learning
agents in order to trigger proper action-driven behavior in complex environments.
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Chapter 6

Action Learning and Assessment
with Recurrent Self-Organization

6.1 Introduction

The efficient processing of sequential input plays a crucial role in biological sys-
tems. An example of this is the mammalian visual cortex, a hierarchical brain
structure able to efficiently compute incoming visual stimuli at different spatial
and temporal scales (see Chapter 2). In combination with other brain areas, the
capability of the visual cortex to efficiently compute spatiotemporal structure of
the input results in highly skilled mechanisms of visual perception, e.g. the robust
discrimination of complex biological motion patterns. Similarly, artificial systems
processing sequential input from cluttered environments must account for the ro-
bust computation of the underlying spatiotemporal structure of incoming stimuli.

In Chapters 4 and 5, we demonstrated that hierarchies of self-organizing neural
networks can learn spatiotemporal action features with increasing complexity of
representation. The main advantage of this method over traditional supervised
learning approaches is that visual representations are learned in an unsupervised
fashion. However, since the conventional definition of self-organizing networks such
as the SOM (Kohonen, 1990), the GNG (Fritzke, 1995) and the GWR (Marsland
et al., 2002) do not account for the processing of time-varying inputs, the temporal
processing of features in our neural architectures was explicitly modeled in terms
of neurons in higher-level layers computing the concatenation of neural activation
trajectories from lower-level layers, which increases the dimensionality of neural
weights along the hierarchy. The high-dimensionality of neural weights may com-
promise the accuracy of the metric used to compute best-matching neurons, in our
case the Euclidean distance, and therefore the ability of the network to develop
correct topological maps. As discussed in Section 3.3, different temporal extensions
of self-organizing networks have been proposed that implement recurrent connec-
tivity so that neural activation in the map is driven by multiple time steps. In
particular, context learning as proposed by Strickert and Hammer (2005) combines
a compact back-reference with a weighted combination of the current input and
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6.2. Human Motion Assessment

the previous network activation.

In this chapter, we propose an extension the GWR network with context learn-
ing for processing sequential input. In Section 6.2, we introduce a temporal GWR
for learning body motion sequences and assessing the quality of novel sequences
with respect to learned motion templates. Reported experiments show how this
extension of the GWR outperforms previous temporal self-organizing models and
how recurrent self-organization can be used to provide visual feedback in real time
when incorrect body motion is detected. In Section 6.3, we propose a deep neu-
ral architecture with hierarchically-arranged recurrent GWR networks for learning
action features with increasingly larger spatiotemporal receptive fields. Visual rep-
resentations obtained through unsupervised learning are incrementally associated
to symbolic action labels for the purpose of action classification. We show how
this novel architecture outperforms previous self-organizing approaches for action
recognition with the KT action dataset (see Section 4.2) and the Weizmann action
benchmark, especially when the number of ground-truth labels available during
the training is decreased.

6.2 Human Motion Assessment

The correct execution of well-defined movements plays a crucial role in physical
rehabilitation and sports. While there is an extensive number of well-established
approaches for human action recognition, the task of assessing the quality of actions
and providing feedback for correcting inaccurate movements has remained an open
issue in the literature (see Section 2.2).

In this section, we present a learning-based method for efficiently providing
feedback on a set of training movements captured by a depth sensor. We propose a
novel recursive neural network that uses growing self-organization for the efficient
learning of body motion sequences. The quality of actions is then computed in
terms of how much a performed movement matches the correct continuation of a
learned sequence. The proposed system provides visual assistance to the person
performing an exercise by displaying real-time feedback, thus enabling the user
to correct inaccurate postures and motion intensity. We evaluate our approach
with a data set containing 3 powerlifting exercises performed by 17 athletes using
a temporal extension of both the SOM and the GWR networks. Experimental
results show that our neural architecture accounts for computing visual feedback
in real time, and that processing motion intensity is crucial for exercises with
variations of speed or lockouts. We evaluated the detection of mistakes both on a
single- and multiple-subject scenario.

For our approach, we tracked the position of a person based on a simpli-
fied 3D model of the human skeleton using a set of K joint coordinates ji =
(xji , yji , zji), 1 ≤ i ≤ K, so that at each timestep t the body posture is represented
as the collection of K joints p(t) = (ji(t), ..., jK(t)). We computed motion inten-
sity from posture sequences with the inter-frame difference between consecutive
joint pairs. The Kinect’s skeleton model (Fig. 6.1), although not faithful to human

73



Chapter 6. Action Learning and Assessment with Recurrent Self-Organization

Figure 6.1: Visual feedback for correct squat sequence (top), and a sequence con-
taining knees in mistake (bottom, joints and limbs in red) (Parisi et al., 2015a).

anatomy, provides reliable estimations of the joints’ position over time. This allows
us to extract significant properties of postural dynamics.

6.2.1 Proposed Architecture

Our architecture consists of two hierarchically arranged layers with self-organizing
networks processing posture and motion sequences (Fig. 6.2). The first layer is
composed of two GWR networks, GP and GM , that learn a dictionary of posture
and motion feature vectors respectively. This hierarchical scheme has the advan-
tage of using a fixed set of learned features to compose more complex patterns
in the second layer, where the recursive network GI is trained with sequences of
posture-motion activation patterns from the first layer to learn the spatiotemporal
structure of the input.

From a dataset X with n samples, we compute the best-matching neuron of
each input with respect to a trained network with N neurons, so that a sequence
of input activations from the training set is given by

Ω(X) = {wb(x1),wb(x2), ...,wb(xn)}, (6.1)

with b(xi) = arg mini∈N ‖xi−wj‖ computing the index of the neuron (or prototype
vector) that minimizes the distance to the current input. We denote the dataset
of posture and motion vectors as P and M respectively. The training dataset for
GI , I, is given by the horizontal concatenation of the set of activations over P and
M, i.e. I = {Ω(P)_Ω(M)}.

6.2.2 Merge-GWR

To learn the spatiotemporal structure of the input in GI , we extend the traditional
GWR algorithm (Marsland et al., 2002) for efficient context learning (Strickert and
Hammer, 2005). We adopt the distance function as defined by Eq. 3.18 and 3.19
such that

dn(t) = α · ‖x(t)−wn‖2 + (1− α) · ‖[β ·wb̂ + (1− β) · cb̂]− ci‖2, (6.2)
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Figure 6.2: Multilayer learning architecture with incremental self-organizing net-
works. In Layer 1, two GWR networks learn posture and motion features re-
spectively. In Layer 2, a recursive GWR learns spatiotemporal dynamics of body
motion. This mechanism allows to predict the ideal continuation of a learned se-
quence and compute feedback as the difference between its expected behavior and
its current execution (Parisi et al., 2016a).

where α and β are constant values that modulate the influence of the current input
and the past, and b̂ is the index of the winner neuron at the previous time step.
Specifically for our recursive GWR model, the update functions of the weight and
context neurons become

∆wi = εi · ηi · (x(t)−wi), (6.3)

∆ci = εi · ηi · ([β ·wb̂ + (1− β) · cb̂]− ci), (6.4)

where εi is the learning rate and ηi is the firing counter. The complete training
algorithm is illustrated in Algorithm 2.

The recursive GWR architecture avoids the drawback of our previous approach
using a MSOM, where the number of neurons of the networks had to be decided a
priori. Furthermore, since the GWR does not have a fixed lattice topology, it can
better represent the feature space.

Time Series Analysis

We compared the performance of our MGWR on a time series analysis task
with other two well-established models of recursive self-organization: Merge Neu-
ral Gas (MNG) (Strickert and Hammer, 2005) and Merge Growing Neural Gas
(MGNG) (Andreakis et al., 2009). For the analysis, we used the Mackey Glass
time series, a continuous and chaotic function that has been used to evaluate the
temporal quantization of recursive models. It is defined by the differential equation
dx
dτ

= bx(τ) + ax(τ−d)
1+x(τ−d)10

and depending on the values of the parameters, it displays
a range of pseudo-periodic dynamics. For evaluation purposes, it is generally used
with a = 0.2, b = −0.1, and d = 17. Similar to previous comparison schemes
in the literature (Voegtlin, 2002), all the models were evaluated in terms of their
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Algorithm 2 Merge-GWR.

1: Create two random neurons A = {w1,w2} with context vectors c1, c2

2: Initialize an empty set of connections E = ∅
3: Initialize an empty global context C0 = 0
4: At each iteration, generate an input sample xt.
5: Select the best and second-best matching neurons (Eq. 6.2):
b = arg mini∈A di(t), s = arg mini∈A/{b} di(t).

6: Update global context Ct = β ·wb̂ + (1− β) · cb̂
7: Create a connection E = E ∪ {(b, s)} if it does not exist and set its age to 0.
8: If (exp(−db(t)) < aT ) and (ηb < fT ) then:

Add a new node r (A = A ∪ {r}):
wr = 0.5 · (wb + xt), cr = 0.5 · (Ct + xt), ηr = 1,

Update edges between neurons:
E = E ∪ {(r, b), (r, s)} and E = E/{(b, s)}.

9: If no new node is added, update weight and context of the winning node and
its neighbors i:

∆wb = εb · ηb · (xt −ws), ∆wi = εn · ηi · (xt −wi),
∆cb = εb · ηb · (Ct − cb), ∆ci = εi · ηi · (Ct − ci).

10: Increment the age of all edges connected to b of 1.
11: Reduce the firing counters of the best-matching neuron and its neighbors i:

ηb = ηb + (τb · κ · (1− ηb)− τb), ηi = ηi + (τi · κ · (1− ηi)− τi),
with τ , κ constants controlling the curve behavior.

12: Remove all edges with ages larger than µmax and remove nodes without edges.

13: If the stop criterion is not met, repeat from step 4.

temporal quantization error (TQE) for 30 steps in the past with 150,000 elements
of the series. The TQE for the map at time t is defined as:

e(t) =
N∑
i=1

 ∑
j:I(j)=i

‖xj−t −
∑

j:I(j)=i

xj−t/γi‖2/γi

1/2

/N, (6.5)

where N is the number of neurons, γi is the number of timesteps in which neuron
i becomes the winner.

For MGWR learning, we used the following training parameters: insertion
threshold aT = 0.95, learning rates εb = 0.01, and εn = 0.001, maximum age amax =
200, firing counter parameters τb = 0.3, τi = 0.1, κ = 1.05, firing threshold ηT =
0.1, and context learning parameters α = 0.6, β = 0.7 with 100 training epochs.
The training parameters of MNG and MGNG were set according to previously
reported experiments (Strickert and Hammer, 2005; Andreakis et al., 2009).

The TQE for the recursive models MSOM, MNG, MGNG and our MGWR is
reported in Fig. 6.3, showing how the four models behave quite similar, with the
MGWR slightly outperforming the others. The average TQE over 30 timesteps
was MSOM= 0.0795, MNG= 0.0749, MGNG= 0.0721, and MGWR= 0.0697.
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Figure 6.3: Temporal quantization error over 30 timesteps into past for the Mackey-
Glass time series (Parisi et al., 2016a).

Although both the MSOM and MNG are not growing methods, the latter performs
better since the topology of the MNG network is not fixed, thus yielding a smaller
quantization error.

6.2.3 Feedback from Prediction

The underlying idea for assessing the quality of a sequence is to measure how
much the current input sequence differs from a learned template. In other words,
provided that the trained model GI is able to predict a training sequence with a
satisfactory degree of accuracy, it is then possible to quantitatively compute how
much a novel sequence follows this expected pattern.

We define a function that computes the difference of a current input sequence,
Ωt , from its expected input, i.e. the prediction of the next element of the sequence
given Ωt−1:

fΩ(t) = ‖Ωt − p(Ωt−1)‖, (6.6)

p(Ωt−1) = wp with p = arg min
j∈N
‖cj − Ωt−1‖. (6.7)

Since the weight and context vectors of the prototype neurons lie in the same
feature space as the input (wi, ci ∈ R|Ω|), it is possible to provide joint-wise feed-
back computations. The recursive prediction function p can be applied an arbi-
trary number of timesteps into the future. Therefore, after the training phase is
completed, it is possible to compute fΩ(t) in real time with linear computational
complexity O(|A|), which depends on the number of neurons of a trained model.

We show the result of this prediction mechanism in Fig. 6.4. For this exam-
ple, a network was trained with the Finger to nose routine, which consists of
keeping your arm bent at the elbow and then touching your nose with the tip
of your finger. When the person starts performing the routine after this training
phase, we can see progressively fading violet lines representing the next 30 time
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Figure 6.4: Movement prediction – Visual hints for future steps of a network
trained for Finger to nose routine. Progressively fading violet lines indicate the
correct order of execution (Parisi et al., 2015a).

steps, thereby providing visual assistance to successfully carry out the movement
through spatiotemporal hints. The value 30 was empirically determined to provide
a substantial reference to future steps while limiting visual clutter.

To compute feedback, we use the predictions estimated by p as hints on how
to perform a routine over 100 timesteps into the future, and then use fΩ(t) to spot
mistakes on novel sequences that do not follow the expected pattern for individual
joint pairs. A mistake can then be detected when fΩ(t) exceeds a given threshold
fT over i timesteps. Visual representations of these computations can then pro-
vide useful qualitative feedback to assist the user on the correct performance of
the routine and the correction of mistakes (Fig. 6.1). Different from our previous
model, our current approach learns also motion intensity to better detect tempo-
ral discrepancies. Therefore, it is possible to provide more accurate feedback on
posture transitions and the correct execution of lockouts.

6.2.4 Experimental Results

We present our experimental results on a data-set of 3 powerlifting movements
used for the training, validation, and test of the proposed system.

Powerlifting Dataset

The data collection took place at the Kinesiology Institute of the University of
Hamburg, Germany, where 17 volunteering participants (9 male, 8 female) per-
formed 3 different powerlifting exercises:

E1) High bar back squat : One repetition consists of crouching with a loaded bar-
bell behind the back until the hips are lower than the knees and then standing
up;

E2) Deadlift : Lift a loaded barbell off the ground to the hips, then lower back to
the ground;

E3) Dumbbell lateral raise: Start with the arms at the side of the body then raise
the dumbbells sidewards while keeping the elbows higher than the wrists.
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For a thorough evaluation of our system, we also recorded a set of typical mistakes
for each routine:

E1) M1) Good morning : Raising the hips without raising the chest with an ex-
cessively horizontal back angle;

M2) Half squat : Going only halfway down to the ground;

M3) Knees in: Bow the knees toward each other during the lift.

E2) M1) No lockout : The execution is carried out properly, but the lift is stopped
before the lockout;

M2) Rounded back : The back is heavily rounded during the lift instead of
being in a straight line.

E3) M1) Low elbows : Lateral lifts performed with the wrists being higher than
the elbows.

We captured body motion of correct and incorrect executions with a Kinect
v2 sensor1 and estimated body joints using Kinect SDK 2.0 that provides a set
of 25 joint coordinates at 30 frames per second. The participants executed the
routines frontal to the sensor placed at 1 meter from the ground. We processed
video sequences with Kinect SDK to segment body motion and extract 3D joint
coordinates frame by frame.

We used the joints for head, neck, wrists, elbows, shoulders, spine, hips, knees,
and ankles, for a total of 13 3D-joints (39 dimensions). We manually segmented
single repetitions for all exercises. In order to obtain translation invariance, we
subtracted the spine base joint (the center of the hips) from all the joints in absolute
coordinates.

Evaluation

We evaluated our method for computing feedback with individual and multiple
subjects. We divided the correct body motion data with 3-fold cross-validation into
training and test sets and trained the models with data containing correct motion
sequences. Each network was trained for 100 epochs. For the test phase, both the
correct and incorrect movements were used with feedback threshold fT = 0.7 over
100 frames.

Our expectation was that the output of the feedback function would be higher
for sequences containing mistakes. We observed true positives (TP), false negatives
(FN), true negatives (TN), and false positives (FP) as well as the measures true
positive rate (TPR or sensitivity), true negative rate (TPR or specificity), and pos-
itive predictive value (PPV or precision). Results for single- and multiple-subject
data on E1, E2, and E3 routines are displayed in Table 6.1 and 6.2 respectively,
along with a comparison with the best-performing feedback function fb from Parisi
et al. (2015a) in which only posture sequences were used.

1Microsoft Kinect 2.0 – microsoft.com/en-us/kinectforwindows/develop/
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Table 6.1: Single-subject evaluation.

TP FN TN FP TPR TNR PPV

E1 fb 35 10 33 0 0.77 1 1

fΩ 35 2 41 0 0.97 1 1

E2 fb 24 0 20 0 1 1 1

fΩ 24 0 20 0 1 1 1

E3 fb 63 0 26 0 1 1 1

fΩ 63 0 26 0 1 1 1

Table 6.2: Multi-subject evaluation.

TP FN TN FP TPR TNR PPV

E1 fb 326 1 7 151 0.99 0.04 0.68

fΩ 328 1 13 143 0.99 0.08 0.70

E2 fb 127 2 0 121 0.98 0 0.51

fΩ 139 0 0 111 1 0 0.56

E3 fb 123 0 8 41 1 0.16 0.75

fΩ 126 0 15 31 1 0.33 0.80

The evaluation on single subjects shows that the system successfully provides
feedback on posture errors with high accuracy. A drawback of our previous model
was a limited memory due to the number of neurons being fixed a priori and a fixed
network topology yielding a higher quantization error. In our current approach,
the MGWR networks grow dynamically to better represent the spatiotemporal
structure of the sequences. This allows us to reduce the temporal quantization
error over longer timesteps (Fig. 6.3), so that more accurate feedback can be com-
puted and thus reduce the number of false negatives and false positives (Table 6.1
and 6.2). Furthermore, since the networks can create new neurons according to
the distribution of the input, each network can learn a larger number of possible
executions of the same routine, thus being more suitable for training sessions with
multiple subjects.

Tests with multiple-subject data show a significantly decreased performance,
mostly due to a large number of false positives. This is not necessarily a flaw
linked to the learning mechanism, but rather a consequence of the fact that people
have different body configurations and, therefore, different ways to perform the
same routine. A solution to attenuate this issue is to set different values for the
feedback threshold fT . For larger values, the system would tolerate more variance
in the performance. On the other hand, one must consider whether a higher degree
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of variance is desirable based on the application domain; for instance, rehabilita-
tion routines may be tailored to a specific subject based on their specific body
configuration and health condition.

Our experimental results encourage further work in the direction of embedding
our system into an assistive robot which could interact with the user and motivate
the correct performance of physical rehabilitation routines and sports training.
This is supported by a number of studies in which robots were used for motivating
the users to perform a set of health-related tasks (Dautenhahn, 1999; Kidd and
Breazeal, 2007; Nalin et al., 2012). Furthermore, the assessment of motion plays
a crucial role not only for the detection of mistakes on training sequences but also
in the timely recognition of gait deterioration, e.g. linked to age-related cognitive
declines. In this context, growing learning architectures are particularly suitable
for this task, since they may adapt to the user through longer periods of time while
still detecting significant changes in their motor skills.

6.3 Deep Self-Organizing Learning

6.3.1 Introduction

Computational models inspired by the hierarchical organization of the visual cor-
tex have become increasingly popular for action recognition from videos, with
deep neural network architectures producing state-of-the-art results on a set of
benchmark datasets (see Chapter 2). Typically, visual models using deep learning
comprise a set of convolution and pooling layers trained in a hierarchical fashion for
yielding action feature representations with increasing degree of abstraction (Guo
et al., 2016). This processing scheme is in agreement with neurophysiological stud-
ies supporting the presence of functional hierarchies with increasingly large spatial
and temporal receptive fields along cortical pathways (see Section 2.2).

The training of deep learning models for action sequences has been proven to
be computationally expensive and require an adequately large number of train-
ing samples for the successful learning of spatiotemporal filters. The supervised
training procedure comprises two stages: a forward stage in which the input is
represented with the current network parameters and the prediction error is used
to compute the loss cost from ground-truth sample labels, and a backward stage
which computes the gradients of the parameters and updates them using back-
propagation through time (BPTT, Mozer 1995). While different regularization
methods have been proposed to boost performance such as parameter sharing and
dropout, on the other hand, the training process requires samples to be (correctly)
labeled in terms of input-output pairs. Consequently, the question arises whether
traditional deep learning models for action recognition can account for real-world
learning scenarios, in which the number of training samples may not be sufficiently
high and ground-truth labels may be occasionally missing or incorrect.

In Chapter 4 and 5, we showed that a deep architecture comprising a hierarchy
of self-organizing networks can learn spatiotemporal action features with increasing
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complexity of representation. The main advantage of this method over traditional
supervised learning approaches is that visual representations are learned in an
unsupervised fashion. For the purpose of classification, associative connections
between these visual representations and symbolic labels are learned during the
training phase. Remarkably, correct action–label mappings with state-of-the-art
accuracy can be obtained also in the absence of a large percentage of ground-
truth labels. On the other hand, experiments were conducted by feeding this
self-organizing architecture with a set of hand-crafted action features, which goes
against the idea of deep convolutional neural network architectures of learning
significant action features by iteratively tuning internal representations. Further-
more, the temporal processing of features was modeled in terms of neurons in
higher-level layers computing the concatenation of neural activation trajectories
from lower-level layers, which increases the dimensionality of neural weights along
the hierarchy. In this section, we address these two issues through the development
of a self-organizing hierarchy with increasingly large spatiotemporal receptive fields
in the spirit of deep learning with convolutional neural networks.

Similar to our hierarchical architectures presented in Chapter 4 and 5, the deep
self-organizing architecture introduced here is composed of two distinct processing
streams for pose and motion features, in correspondence to the ventral and the
dorsal pathways respectively, and their subsequent integration in the STS area
(see Section 2.1.2). We propose a novel temporal extension of the GWR equipped
with recurrent connectivity, referred to as Gamma-GWR, that learns spatiotem-
poral properties of the input. Different from previously introduced models that
learn action representations from hand-crafted 3D features, we use a hierarchy of
Gamma-GWR networks to learn prototype action segments from video contain-
ing full-body silhouettes. For the purpose of classification, associative connections
between visual action representations and action class labels are learned during
the training phase. We evaluate our approach on the KT action dataset and the
Weizmann action benchmark, showing that our model learns robust action-label
mappings also in the case of occasionally absent or incorrect action class labels
during training sessions.

6.3.2 Proposed Architecture

The proposed architecture is illustrated in Fig. 6.5. Each layer in the hierarchy
comprises a Gamma-GWR network and a pooling mechanism for learning action
features with increasingly large spatiotemporal receptive fields. In the last layer,
we extend the Gamma-GWR to learn associative connections between visual rep-
resentations and symbolic labels for the purpose of action classification.

Gamma-GWR

We introduce a temporal GWR network that equips each neuron with an arbitrary
number of context descriptors to increase the memory depth and temporal reso-
lution in the spirit of a Gamma memory model (de Vries and Pŕıncipe, 1992). A
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Figure 6.5: Diagram of our deep neural architecture with recurrent GWR networks
for action recognition. Posture and motion action cues are processed separately in
the ventral (VP) and the dorsal pathway (DP) respectively. At the STS stage, the
recurrent network learns associative connections between prototype action repre-
sentations and symbolic labels.

similar approach has been previously applied to SOM and GNG learning, show-
ing good results in nonlinear time series analysis (Estévez and Hernández, 2011;
Estévez and Vergara, 2012).

Following previous formulations of context learning (see Section 3.3), the acti-
vation of the network with a K-order Gamma memory becomes

di(t) = αw · ‖xt −wi‖2 +
K∑
k=1

αk · ‖(β · cIt−1

k + (1− β) · cIt−1

k−1 )− cik‖2, (6.8)

for each k = 1, ..., K, where α, β ∈ (0; 1) are constant values that modulate the

influence of the current input and the past, and c
It−1

0 ≡ wIt−1 with random cI0k at
t = 0. It has been shown that the mean memory depth is D = K/(1− β) and its
temporal resolution is R = 1 − β (Estévez and Vergara, 2012). Therefore, both
depth and resolution are modulated by the value of β.

The proposed training algorithm is illustrated by Algorithm 3 (except for Steps
3, 9.c, and 10.b that are implemented by the AG-GWR only). Different from the
standard GWR with activation function a(t) = exp(−‖x(t) − wb‖) (see Section
3.2), in the Gamma-GWR this function is replaced with at = exp(−di(t)) with
di(t) as defined by Eq. 6.8.

For K = 1, the Gamma-GWR is reduced to the Merge-GWR as described in
Section 6.2.2.
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Algorithm 3 Associative Gamma-GWR (AG-GWR).

1: Start with a set of two random nodes, A = {w1,w2} with context vectors cik
for k = 1, ..., K, i = 1, 2.

2: Initialize an empty set of connections E = ∅.
3: [AG-GWR only] Initialize an empty label matrix H = ∅.
4: Initialize K empty global contexts Ck = 0.
5: At each iteration, generate an input sample xt with label ξ.
6: Select the best and second-best matching neurons (Eq. 6.8):
b = arg mini∈A di(t), s = arg mini∈A/{b} di(t).

7: Update context descriptors: Ck(t) = β · cIt−1

k + (1− β) · cIt−1

k−1 .
8: Create a connection E = E ∪ {(b, s)} if it does not exist and set its age to 0.
9: If (exp(−db(t)) < aT ) and (ηb < fT ) then:

a: Add a new node r (A = A ∪ {r}):
wr = 0.5 · (wb + xt), crk = 0.5 · (Ck(t) + cik), ηr = 1,

b: Update edges between neurons:
E = E ∪ {(r, b), (r, s)} and E = E/{(b, s)}.

c: [AG-GWR only] Associate the sample label ξ to the neuron r:
H(r, ξ) = 1, H(r, l) = 0, with l ∈ L/{ξ}.

10: If no new node is added:
a: Update weight and context of the winning node and its neighbors i:

∆wb = εb · ηb · (xt −wb), ∆wi = εn · ηi · (xt −wi),
∆cbk = εb · ηb · (Ck(t)− cbk), ∆cik = εn · ηi · (Ck(t)− cik).

b: [AG-GWR only] Update label values of b according to the sample label ξ:
H(b, ξ) = H(b, ξ) + 1, H(b, l) = H(b, l)− 0.1, with l ∈ L/{ξ}.

11: Increment the age of all edges connected to b of 1.
12: Reduce the firing counters of the best-matching neuron and its neighbors i:

ηb = ηb + (τb · κ · (1− ηb)− τb),
ηi = ηi + (τi · κ · (1− ηi)− τi),
with τ , κ constants controlling the curve behavior.

13: Remove all edges with ages larger than µmax and remove nodes without edges.

14: If the stop criterion is not met, repeat from step 5.

Pooling Layers

Along the hierarchical visual pathways, individual neurons specialize to increas-
ingly complex stimulus features, thus yielding invariance to stimulus transforma-
tions such as changes in scale and position (Földiák, 1991). Early studies by (Hubel
and Wiesel, 1962) postulated the idea of complex cell invariance with respect to
spatial phase shifts carried out in terms of a linear summation of responses from
phase-sensitive neurons.

Typically, computational models with deep architectures obtain invariant re-
sponses by alternating layers of feature detectors and nonlinear pooling neurons
using the maximum (MAX) operation, which has been shown to achieve higher fea-
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ture specificity and more robust invariance with respect to linear summation (Guo
et al., 2016). The process of pooling became a standard operation in convolu-
tional neural network models, where pooling layers generally follow convolutional
layers with the aim to reduce the dimensions of the feature maps and network
parameters, resulting in translation-invariant responses to features of previous lay-
ers (see Guo et al. (2016) for a review). Although robust invariance to translation
has been obtained via MAX and average pooling, the MAX operator has shown
faster convergence and improved generalization (Scherer et al., 2010).

Hosoya and Hyvärinen (2016) demonstrated that spatial pooling of visual cells
can be implemented via linear transformations such as the principal components
analysis (PCA) that retain several of the first principal components and ignore
the remaining ones. PCA-pooling learns to suppress fine-grained structures of
the input and thus extrapolates linear pooling of highly correlated parts of the
stimulus. Therefore, it is argued that linear transformations of dimensionality
reduction explain more neurally-plausible properties of the primary visual cortex
(V1) complex cells, and that this process may also represent the basis of spatial
pooling in higher visual areas.

In our architecture, the pooling layers are implemented via PCA over the multi-
dimensional neuron weights, which maximizes the variance of projection along
each component and thus minimizes the reconstruction error. The mathematical
formulation of the PCA transformation is defined by a set of k weight vectors
w(k) that map each row vector x(i) of the input space to a new vector of principal
components t(i) = (t1, ..., tk)(i) given by tk(i) = x(i) · w(k) (Jolliffe, 2002). In our
pooling layers, we compute the first component such that:

w(1) = arg max
‖w‖=1

{∑
i

(x(i) ·w)2

}
, (6.9)

where x(i) are the neural weights activated by the input.

Associative Learning and Classification

The aim of classification is to predict action labels from unseen action samples. For
this purpose, the last network is equipped with an associative learning mechanism
to map sample labels to prototype neurons representing action segments.

During the training phase, neurons in the GSTS network can be assigned a label
l (with l from a set L of label classes) or remain unlabeled. The AG-GWR training
algorithm for this network is illustrated by Algorithm 3. The associative matrix
H stores the frequency-based distribution of sample labels for each neuron in the
network. Neurons in the GSTS network are activated by the latest K + 1 input
samples, i.e. from time t to t−K. The label that we take into account is the one
of the latest input at time t. When a new neuron r is created and provided that
ξ is the label of the input sample xt, the associative matrix is updated according
to H(r, ξ) = 1 and H(r, l) = 0, with l ∈ L/{ξ}. Instead, when an existing neuron
b is updated, we increase H(b, ξ) by a value of 1 and decrease H(b, l) of 0.1.
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This labeling mechanism yields neurons associated to most frequent labels,
thus also handling situations in which sample labels may be occasionally missing
or incorrect. To predict the label λ of a novel sample x̃t after the training is
completed, we return the label class with the highest value of the associative matrix
for the best-matching neuron b of x̃t according to Eq. 6.8.

6.3.3 Experiments and Evaluation

We conducted experiments on two datasets: the KT action dataset and the Weiz-
mann action benchmark (introduced in detail in the following sections). For these
two datasets, we used the same action features from video frames containing seg-
mented body silhouettes as shown in Fig. 6.6.a, and similar neural network training
parameters.

Action Features

As input for our learning architecture, we use the difference of Gaussians (DoG)
transformed versions of gray-level images containing segmented body silhouettes.
This transformation emulates the preprocessing of visual input by the retina and
the lateral geniculate nucleus (LGN) by applying an edge detector filter that ap-
proximates the sum of biologically-motivated Gabor filters (Lücke, 2009).

The DoG image is computed for each original image subtracting images con-
volved with Gaussians of different variances σ2

i . The DoG operation with two
Gaussian kernels σ1 and σ2 is defined as:

DoG = Gσ1 −Gσ2 =
1√
2π

(
1

σ1

exp−(x2+y2)/2σ2
1 − 1

σ2

exp−(x2+y2)/2σ2
2

)
, (6.10)

where (x, y) are the pixels from the original input image. For our approach, we
subtract the image convolved with two Gaussian kernels σ2

1 = 1 and σ2
2 = 3,

with these values being consistent with the biologically measured ratio of σ1
σ2
≈ 1

3

from the cat’s visual cortical simple cells (Somers et al., 1995). The resulting
image sequence is illustrated in Fig. 6.6.b. Motion sequences are obtained as
the pixel-level difference between consecutive transformed images containing body
silhouettes.

Training Parameters

For our experiments, we used sequences of actions at 10 frames per second with
resized images of 30 × 30 pixels containing only the segmented body silhouette.
In the first layer, we select overlapping image patches of 3 × 3 pixels for both
posture and motion sequences, i.e. a total of 784 patches for each 30 × 30 input
image. The patches from posture and motion images are fed into the recurrent
networks GP

1 and GM
1 respectively, both comprising a Gamma-GWR with 1 context

descriptor (K = 1). In the second layer, the input is represented by the pooled
activation from the first two networks, yielding a 28 × 28 representation for each

86



6.3. Deep Self-Organizing Learning

Segmented image DoG image Gamma-GWR

a) b) c)

Figure 6.6: Body motion representation: (a) gray-scale segmented body silhouette;
(b) DoG image divided into image patches; (c) recurrent competitive network for
processing image patches.

processed frame. From this representation, we compute 4 × 4 patches that are
fed into GP

2 and GM
2 with 3 context descriptors (K = 3) each. In the third layer,

the pooled activation from the pose and the motion pathways are concatenated,
producing 14× 7 matrices for each frame that we use to train GSTS with K = 5. If
we consider the hierarchical processing of the architecture, the last network yields
neurons that respond to the latest 10 frames, which correspond to 1 second of
video.

Since the definition of the context descriptors is recursive, setting αw > α1 >
α2 > ... > αK−1 > αK > 0 has been shown to reduce the propagation of errors
from early filter stages to higher-order contexts for the Gamma-SOM (Estévez and
Hernández, 2011) and the Gamma-GNG (Estévez and Vergara, 2012). We assign
decreasing values to αi according to the following function:

pN =

[
αi∑
i α

i
: αi =

1

N
− exp (−(i+ 2))

]
, i = 1, .., N (6.11)

with N = K + 1, i.e. the number of context descriptors plus the current weight
vector. For our three-layer architecture, this function yielded the following values:

Network pN

GP
1 / GM

1 p2 = [0.536, 0.464]

GP
2 / GM

2 p4 = [0.318, 0.248, 0.222, 0.212]

GSTS p6 = [0.248, 0.178, 0.152, 0.142, 0.139, 0.138]

The training parameters were set based on the overall recognition accuracy
over multiple training sessions, with the selected values being similar to the ones
set in previous experiments (see Section 4.3 and 5.5). The training parameters for
all the 5 networks are summarized in Table 6.3.
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Table 6.3: Training parameters for the Gamma-GWR architecture.

Parameter Value

Insertion threshold (aT ) GP
1 =0.7, GM

1 =0.6, GP
2 =0.6, GM

2 =0.5, GSTS=0.9

Firing threshold fT = 0.1

Learning rates εb = 0.1, εn = 0.001

Firing counter τb = 0.3, τi = 0.1, κ = 1.05

Context descriptor β = 0.7

Training epochs 100

Results on the KT Action Dataset

The KT action dataset that contains 10 full-body actions performed by 13 par-
ticipants (see Section 4.3). The actions are standing, walking, jogging, sitting,
picking up, jumping, lying down, standing up, falling, and crawling. Participants
were recorded individually in a home-like environment with a Kinect sensor ob-
taining depth maps sampled at 30 frames per second. For a consistent comparison
with previous results presented in Chapter 4 and 5, we adopted similar feature
extraction and evaluation schemes with action sequences at 10 frames per sec-
ond. We divided the data equally into training and test set, i.e., 30 sequences of
10 seconds for each cyclic action (standing, walking, jogging, sitting, lying down,
crawling) and 30 repetitions for each goal-oriented action (jumping, picking up,
falling down, standing up). Both the training and the test sets contained data
from all subjects.

Experimental results showed an average classification accuracy of 97%, produc-
ing the best result on this dataset with respect to previously introduced approaches
using hand-crafted action features (94% reported in Chapter 4 and 93, 3% reported
in Chapter 5 without the manual segmentation of training samples for assigning
ground-truth labels). The confusion matrix for the AG-GWR approach tested on
a set of 10 actions is shown in Fig. 6.7. The matrix shows that there is a strong
similarity on which samples were misclassified with respect to our previous models,
suggesting again that misclassification depends more on the visual features than
on issues related to the associative learning mechanism. Similar to the obtained
results in previous chapters using 3D centroids as action features, actions that are
similar with respect to body posture (e.g. walking and jogging, falling down and
lying down), tend to be mutually misclassified. The reason for this is that although
sequences of segmented body pose and motion should be sufficient to univocally
describe action patterns, tracking inaccuracies and body segmentation errors may
have a negative impact on the extraction of reliable pose-motion cues.

Similar to experiments in Chapter 5, we decreased the percentage of labeled
action samples. We trained our system with as in the first experiment, but this time
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Figure 6.7: Confusion matrix for the AG-GWR approach tested on the KT action
dataset.
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Figure 6.8: Average classification accuracy on the KT action dataset over 10 runs
for a decreasing percentage of available and correct action labels.

we omitted action labels of randomly chosen samples and varied the percentage of
available labels from 100% to 0%. The average classification accuracy with different
percentages of omitted sample labels for randomly selected samples over 10 runs is
displayed in Fig. 6.8. Although a decreasing number of available labeled samples
during the training phase has a negative impact on the classification performance,
this decline is not proportional to the number of omitted action labels. When
10% of labeled samples are available during the training, the system shows an
accuracy of 43%, and accuracy values above 84% can be observed for 50% or
more available labeled samples. Similar to the associative learning mechanism
introduced in Section 5.3, we found that the timing at which these action labels
are presented to AG-GWR layer over the training epochs does have a significant
impact on the performance. The best results were obtained if action labels are
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presented when visual representations have reached a certain degree of stability,
while associative connections created at early stages of visual development may
not be as reliable since the distribution of neurons will tend to significantly change
during the rest of the training phase.

An additional experiment consisted of decreasing the percentage of correct
sample labels. We changed correct ground-truth action labels of randomly chosen
samples to incorrect ones, varying the percentage of correct labels from 100% to 0%.
The average classification accuracy with different percentages of correct sample
labels for randomly selected samples over 10 runs is displayed in Fig. 6.8. Different
from the results obtained with different percentages of missing labels, incorrect
labels had a stronger negative influence on the overall classification performance.
This is because incorrect labels alter the frequency distribution of labeled samples.
The overall accuracy decreases significantly when the percentage of correct labels
is smaller than 60%.

Results on the Weizmann Dataset

The Weizmann dataset (Gorelick et al., 2005) contains 90 low-resolution (180 ×
144) sequences with 10 actions performed by 9 subjects. The actions are walk, run,
jump, gallop sideways, bend, one-hand wave, two-hands wave, jump in place, jump-
ing jack, and skip. Sequences are sampled at 180 × 144 with a static background
and are about 3 seconds long. For our experiments, we used aligned foreground
body shapes by background subtraction included in the dataset (Fig. 6.10). To
be consistent with other evaluation schemes in the literature, we evaluated our
approach by performing leave-one-out cross-validation, i.e., 8 subjects were used
for training and the remaining one for testing. This procedure was repeated for all
9 permutations and the results were averaged. Similar to Schindler and Van Gool
(2008), we trimmed all sequences to a total of 28 frames, which is the length of
the shortest sequence.

Similar to experiments on the KT action dataset, we decreased the percentage
of available and correct labels (from 100% to 0%) from randomly chosen samples.
The average classification accuracy with different percentages of omitted and in-
correct labels over 10 runs is displayed in Fig. 6.8. As expected from previous
experiments, incorrect labels had a stronger negative influence on the overall clas-
sification performance with respect to missing labels. Classification performance
over 80% was obtained for at least 40% available labels, whereas in the case of
incorrect labels, we obtained an overall performance under 40% for less than 50%
correct labels.

Results for the recognition of 10-frame snippets are shown in Table 6.4. Our
experiments yielded an overall accuracy of 98.7%, which is a very competitive result
with respect to the state of the art of 99.64% reported by Gorelick et al. (2005).
In their approach, the authors extract action features over a number of frames by
concatenating 2D body silhouettes in a space-time volume. These features are then
fed into simple classifiers: nearest neighbors and Euclidian distance. Schindler and
Van Gool (2008) obtained an accuracy of 99.6% by combining pose and motion
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Figure 6.9: Three sample frames of body shapes by background subtraction for
each action from the Weizmann dataset.

cues. In their two-pathway architecture, the filter responses are MAX-pooled and
then compared to a set of learned templates. The similarities from both pathways
are concatenated to a feature vector and classified by a bank of linear classifiers.
Their experiments showed that local body pose and optic flow for a single frame
are enough to achieve around 90% accuracy, with snippets of 5-7 frames (0.3-0.5
seconds of video) yielding similar results to experiments with 10-frame snippets.
Our results outperform the overall accuracy reported by Jung et al. (2015) with
three different deep learning models: convolutional neural network (CNN, 92.9%),
multiple spatiotemporal scales neural network (MSTNN, 95.3%), and 3D CNN
(96.2%). However, a direct comparison of the above-described methods with ours
is hindered by the fact that they differ in the type of input and number of frames
per sequence used during the training and the test phase.

Most of the results in the literature are reported at the level of correctly classi-
fied sequences. Therefore, we also evaluated our approach on full sequence classifi-
cation to compare it to the state of the art. For each action sequence, we predicted
labels from 10-frame snippets and then considered the prediction with the highest
statistical mode as the output label for that sequence. Results at a sequence level
are shown in Table 6.5.
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Figure 6.10: Average classification accuracy on the Weizmann dataset over 10 runs
for a decreasing percentage of available and correct action labels.

Table 6.4: Results on the Weizmann dataset for 10-frame snippets. Results from
Jung et al. (2015) with 3 different models: 1) CNN, 2) MSTNN, and 3) 3D-CNN.

Accuracy (%)

Gorelick et al. (2005) 99.64

Schindler and Van Gool (2008) 99.6

Our approach 98.7

Jung et al. (2015) 92.91, 95.32, 96.23

Table 6.5: Results on the Weizmann dataset for full action sequences.

Accuracy (%)

Gorelick et al. (2005) 100

Blank et al. (2007) 100

Schindler and Van Gool (2008) 100

Fathi and Mori (2008) 100

Our approach 100

Jhuang et al. (2007) 98.8

Thurau and Hlavác (2008) 94.4

Niebles et al. (2008) 90
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6.4 Summary

Research efforts for tackling human action recognition and body motion assessment
have produced a larger number of methodologies, ranging from rule-based systems
to neural network architectures (see Section 2.2). In this Chapter, we showed that
these two tasks can be approached using recurrent neural network self-organization.

In Section 6.2, we introduced a hierarchical self-organizing architecture for
learning body motion sequences from 3D skeleton models. The quality of ac-
tions is computed in terms of how much a performed movement matches the cor-
rect continuation of a learned motion sequence template. For learning sequences
and computing body motion prediction, we introduced a novel temporal extension
of the GWR – the Merge-GWR – in the spirit of context learning (see Section
3.3). Our experiments showed that the Merge-GWR outperforms previous tem-
poral self-organizing models, yielding a smaller temporal quantization error with
respect to reported experiments on a time-series regression task. We evaluated
our assessment system on a dataset with 3 powerlifting exercises, showing that the
system can provide real-time visual feedback and detect motion mistakes in both
single- and multiple-subject scenarios. Learning architectures comprising growing
networks such as the GWR and the Gamma-GWR are particularly suitable for
adapting to the user through longer periods of time while still detecting significant
changes in their motor skills, e.g., gait deterioration linked to age-related cogni-
tive decline. Future work could comprise the embedding of our system into an
assistive robot which could interact with the user and motivate the correct per-
formance of physical rehabilitation routines, sports training, and a set of health-
related tasks (Dautenhahn, 1999; Kidd and Breazeal, 2007; Nalin et al., 2012).
The detection of abnormal user behavior using self-organizing networks and the
use of assistive robots will be discussed in Chapter 7.

In Section 6.3, we proposed a deep neural architecture with a hierarchy of
recurrent GWR networks for learning action features with increasingly larger spa-
tiotemporal receptive fields. Visual representations obtained through unsupervised
learning are incrementally associated to symbolic action labels for the purpose of
action classification. This is achieved through the use of an associative mechanism
in the Gamma-GWR that attaches labels to prototype neurons based on their
frequency. Different from previously introduced models in which action represen-
tations are learned from hand-crafted 3D features (see Chapter 4 and 5), we use
a hierarchy of Gamma-GWR networks to learn prototype action segments from
video containing full-body silhouettes. PCA-pooling is used to maximize the vari-
ance of projection of each layer, yielding invariance to scale and position along the
hierarchy. Our experiments showed that this architecture outperforms previous
self-organizing approaches on the KT action dataset. In order to compare our
approach to state-of-the-art deep learning methods, we conducted experiments on
the Weizmann action benchmark, showing competitive performance in different
evaluation schemes. Additional experiments on both datasets showed that our
learning architecture can also handle situations in which the number of available
and correct ground-truth labels is decreased during the training phase.
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Chapter 7

A Neurocognitive Robot for
Multimodal Action Recognition

7.1 Introduction

In the previous chapters, we have illustrated a set of neural network architec-
tures for the robust recognition of human body motion patterns. As the main
contribution with respect to previous work in the literature, we have proposed a
hierarchy of recurrent self-organizing networks with spatiotemporal receptive fields
for learning action features with increasing complexity of representation (see Chap-
ter 6). In contrast to traditional classification approaches that strongly rely on the
ground-truth labeling of training samples, our approach associates unsupervised
visual representations to available symbolic labels, with the availability and verac-
ity of the labels not compromising the correct formation of visual action cues. The
underlying motivation is to foster more flexible training procedures for artificial
agents operating in real-world scenarios where, for instance, visual samples may be
highly degraded due to sensor noise or action labels being occasionally unavailable
or incorrect. As discussed in Chapter 2, the integration of multiple modalities is
crucial for enhancing the perception of actions, especially in situations of uncer-
tainty, with the aim to reliably operate in highly dynamic environments. However,
experiments reported in Chapters 4, 5, and 6 were conducted with data collected
in highly controlled environments, thus without considering a number of challenges
introduced by agents operating in real-world scenarios. These challenging scenar-
ios include, for instance, one of the modalities being occasionally unavailable or
even in conflict to other sensor measurements.

In this chapter, we investigate aspects of multimodal integration for enhancing
human-robot interaction and triggering sensory-driven robot behavior in dynamic
environments. In particular, we propose two main scenarios. The first scenario
consists of a robot-human assistance task, where a humanoid robot is used to
monitor a user in a domestic environment with the aim to detect dangerous be-
havior such as falls. The humanoid integrates information from a depth sensor and
a stereophonic microphone to actively track the user and report abnormal behavior
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with respect to a set of learned domestic actions. In the second scenario, we pro-
pose a model of audiovisual integration for an interactive reinforcement learning
task. In order to correctly perform the task, teacher-like feedback can be provided
to the agent using both speech or hand gestures. Our model integrates dynamic
audiovisual patterns and computes the level of confidence of the perceived feedback
based on the available cues. Together, our experiments show that the integration
of multiple modalities leads to a significant improvement of performance in both
scenarios with respect to approaches relying on one single modality.

7.2 A Multimodal Approach for Abnormal Event

Detection

We present a humanoid robot that tracks a person in daily activities and detects
situations of danger such as falls. For this purpose, we use an array of sensors
installed on the Nao and a multimodal controller that integrates heterogeneous
sensory information to trigger Nao’s motor behavior. The overall architecture of
the system is shown in Fig. 7.1. Our system integrates multiple sensor modalities to
enhance the perception of the robot through automatic speech recognition (ASR),
sound source localization (SSL), and visual active tracking for fall detection. In
the proposed scenario, the person can communicate with the Nao using speech
commands. We use a depth sensor and a stereo microphone system to actively
track the person by its motor abilities. In the case that the person is out of the
field of view (FOV) of the depth sensor, SSL is used to locate the person and
establish visual tracking. Information from Nao’s sonar sensors is used to avoid
obstacles in the environment. When the person asks for assistance or a fall is
detected, the humanoid will approach the person and record the scene using the
depth sensor’s RGB channel of the depth sensor. This video recording can then
be sent to the person’s caregiver or relatives for further human evaluation.

Nao is a midsize humanoid robot developed by Aldebaran Robotics.1 We ex-
tended the robot Nao with an ASUS Xtion Pro depth sensor installed on top of
the head (Fig 7.1.a). The Xtion has an operation range between 0.8 and 3.5 me-
ters with a VGA resolution (640 × 480) at a maximum of 30 fps. In contrast to
the Microsoft Kinect, the Xtion has reduced power consumption and also reduced
weight. The main technical characteristics of the Xtion live sensor are listed in
Table 7.1. For SSL, we used a Soundman OKM II binaural stereo microphone with
omnidirectional polar pattern and a frequency range of 20Hz–20kHz. We installed
the stereo microphone on the Xtion sensor with a distance of 14.5 cm between the
right/left channels. We chose the Soundman microphones by comparing the SSL
performance also with the stereo microphones embedded in the Nao and the Xtion
(see Section 7.2.2). For ASR, we use a bluetooth headset (Sennheiser EZX 80)
with an omnidirectional microphone that can be comfortably worn by the person
and allows more robustness in noisy environments compared to the microphones

1Aldebaran Robotics - http://www.aldebaran-robotics.com/
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Automatic Speech 
Recognition

Visual Tracking +
Fall Detection

Sound Source 
Localization

Obstacle 
Avoidance

Multimodal 
Controller

Headset

(a) (b)

Sonar sensors

Depth sensor

Communication 
Network

Stereo 
Microphone

Robot actuators

Figure 7.1: Overall architecture of our multimodal system – a) extended Nao with
a depth sensor and stereo microphone, b) Communication network for covey sensor
information to the multimodal controller for sensory-driven robot behavior.

Table 7.1: ASUS Xtion Live sensor specifications

Depth Image Size VGA (640x480) : 30 fps

Field of View 58◦ horizontal, 45◦ vertical, 70◦ diagonal

Distance of use 0.8 m to 3.5 m

Dimensions 18× 3.5× 5 cm

Power consumption below 2.5 W

Interface USB 2.0/3.0

Weight 227 g

embedded in the Nao, especially when the robot is moving. We use Nao’s sonar
sensors to detect obstacles on the way. The sonar sensors have an effective cone of
60◦ with a resolution of 1 cm and a detection range from 0.25 to 2.55 meters.

7.2.1 Active Tracking

The Xtion depth sensor is characterized by a reduced FOV (58◦ horizontal, 45◦

vertical, 70◦ diagonal), limiting its use in expansive environments. This motivates
the implementation of an active tracking system, which moves the sensor to keep
the person in the scene. We use Nao’s head to move the sensor and increase the
horizontal FOV from 58◦ to 138◦ (Fig. 7.2). Nao will then smoothly pan its head
by 10◦ degrees in the required direction, for a maximum pan angle of 40◦ degrees
in each direction. As a strategy for active tracking, we define a bounding box in
which the person can act without the sensor being moved (Fig. 7.3). We base
the tracking of the person on a 3D skeleton model and consider the point of the
upper-body torso as the reference of the person’s position (see Section 4.2). When
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4 m

58°

138°

40°40°

Figure 7.2: Nao with Xtion sensor: extended horizontal field of view from 58 to
138 degrees with a maximum head pan angle of 40 degrees in each direction (Parisi
et al., 2016c).

(a) (b)

Figure 7.3: Threshold-based active tracking. When the upper-body centroid lies
outside of the threshold, the tracking application will compute the needed opera-
tions to keep the person within the bounding box (red lines) (Parisi et al., 2016c).

the torso point lies beyond the threshold, the tracking application will compute
the operations required to keep the person within the bounding box.

The tracking application is built on top of simple-openni2, which wraps the
OpenNI–NITE framework3 for user identification, calibration and estimation of
skeletal joints. We use this library with Processing IDE4 with skeleton tracking
provided by OpenNI. In this setting, we obtain the angle of the person with respect
to the sensor as follows:

α = arctan([x− (xmax/2)]/zmax), (7.1)

2simple-openni: https://code.google.com/p/simple-openni/
3OpenNI/NITE: http://www.openni.org/software
4Processing IDE: http://processing.org/
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Figure 7.4: A diagram of the communication network for interfacing the tracking
framework with Nao’s actuators over ROS (Parisi et al., 2016c).

where x is the position of the torso joint with respect to the horizontal image plane,
xmax/2 is the center of this plane, and zmax is the focal length (max. depth value).

All system modules for active tracking communicate over Robot Operating Sys-
tem (ROS), a framework for robot software development with operating system-like
functionality on a heterogeneous computer cluster. It provides hardware abstrac-
tion, device drivers, libraries, visualizers, message-passing between processes and
package management. A diagram of the overall architecture for active tracking
is illustrated in Fig. 7.4. To interface our system modules, we use a ROS-based
communication network implemented with publisher-subscriber nodes. We imple-
ment publisher nodes to continually broadcast a message over the network using a
message-adapted class. The subscriber node will receive the messages on a given
topic via a master node, which keeps a registry of publishers and subscribers.
This specific architecture represents a robust interface to connect different appli-
cations, e.g. written in different programming languages, over a common network
of communication. The tracking framework communicates to ROS over Rosbridge5

and a modified version of ROSProcessing,6 extended to publish ROS topics. Ros-
bridge provides a JSON API7 to ROS functionality for non-ROS programs. The
rosbridge suite package is a collection of packages that implement the rosbridge
protocol and provides a WebSocket transport layer. We program Nao to move
its head according to the tracking application via NAOqi framework,8 which al-
lows homogeneous communication between different Nao modules (motion, audio,
video), and ROS integration.

5rosbridge suite: http://wiki.ros.org/rosbridge_suite
6ROSProcessing: https://github.com/pronobis/ROSProcessing
7JSON API: http://jsonapi.org/
8NAOqi framework: https://community.aldebaran-robotics.com/doc/1-14/dev/

naoqi/index.html
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7.2.2 Sound Source Localization

There are a number of auditory cues that can be used for sound-source localization.
Most of these cues are derived from the spatial separation of sensors. Among
these are the difference in the time at which sounds arrive at each microphone
(time difference of arrival, TDOA), the difference in intensity (interaural intensity
difference, IID), and spectral variations in the signals (Knapp and Carter, 1976).
Any number of microphones greater than two can be used in principle, but the
hardware and computational cost sharply rises with each additional microphone.

In our scenario, we require fast and reliable SSL. On the other hand, high
accuracy is not an issue. Therefore, we choose a simple but reasonably accurate
binaural solution which extracts the TDOA from a stereo signal using the cross-
correlation algorithm (Schnupp et al., 2010). This algorithm shifts the signals from
the individual microphones with respect to each other and determines the shift
producing the greatest cross-correlation. That shift corresponds to the TDOA and
thus to the angle of incidence.

It is possible to compute the angle of incidence for a given TDOA from the
geometry of the system. However, since the estimate of the TDOA computed
by the cross-correlation algorithm can be smeared by the acoustic properties of
the environment, the robot body, and the ego-noise it produces, we opted for an
empirical approach: We recorded 60 s of recorded speech from 19 directions at 10◦

intervals between −90◦ and 90◦ from the robot. We split each of the recordings
into 0.25 s snippets and computed the relative time shift maximizing the cross-
correlation between the channels for each snippet. For each occurring time shift,
we then selected that angle of incidence for which it occurred most often as the most
likely angle of incidence. We did this for three different sets of microphones: the
Nao’s own microphones, those of the Xtion sensor, and the Soundman microphones.

Figure 7.5 shows histograms of maximizing time shifts for each angle. The
TDOA estimated by the cross-correlation algorithm was strongly correlated to the
angle of incidence for all stereo microphones, as expected. However, the degree of
correlation, measured by Spearman’s rank correlation coefficient, differed drasti-
cally (Nao: ρ = 0.506, Xtion: ρ = −0.714, Soundman: ρ = −0.930; p << 0.0001
for all microphones). We therefore chose the Soundman microphone for SSL.

7.2.3 Automatic Speech Recognition

For ASR, we used Google’s cloud-based speech recognition with domain-dependent
post-processing (Twiefel et al., 2014). In this approach, the post-processor trans-
lates each sentence in the list of candidate sentences returned by Google’s service
into a string of phonemes. To be able to exploit the quality of the well-trained
acoustic models employed by Google’s service, the ASR hypothesis is converted
to a phonemic representation employing the SequiturG2P grapheme-to-phoneme
converter. Then, the sentence from a list of in-domain sentences is selected as
the most likely sentence, which has the least Levenshtein distance to any of the
candidate phoneme strings. For our implementation, we used the 10 top results
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Figure 7.5: Results of SSL with cross-correlation using different stereo microphones
– Histograms of maximizing time shifts for each angle for the Soundman, Xtion,
and Nao microphones. Each shade represents a histogram for one angle.

and the target sentences.

An advantage of this approach is the hard constraints of the results, as each
possible result can be mapped to an expected sentence. Experiments reported
by Twiefel et al. (2014) showed that the sentence list approach obtained the best
performance for in-domain recognition with respect to other approaches on the
TIMIT speech corpus9 with a sentence-error-rate of 0.521. The sentences that we
use for our scenario are: ”Look at me”, ”Come to me”, ”Turn around”, ”Turn to
me”, ”Help me”, ”Yes, please”, ”No, thank you”, and ”Stop”.

7.2.4 Multimodal Controller

The multimodal controller modulates the motor behavior of the humanoid and
other operations of the system based on the information conveyed by the different
sensors. This module is responsible for estimating the reliability of the modalities
in terms of last arrived valid signal from the audio-visual modules.

When the vision-based position is not available or the last tracked position
is older than 3 seconds, then SSL will be used. If the last valid SSL angle is
older than 3 seconds, then the robot will ask Where are you? and wait for either
audio or visual input. If audio-visual inputs are in conflict, i.e. the user’s position
estimated by the tracking framework and the SSL are widely discrepant, then
more priority will be given to the visual estimation. This is due to the fact that
the SSL module is more likely to return unreliable estimations, e.g., in situations

9TIMIT Acoustic-Phonetic Continuous Speech Corpus: https://catalog.ldc.upenn.edu/

LDC93S1
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Vision-based Position - SSL-based Position - Sonar

(a) (b) (c)

Figure 7.6: Visualization of multimodal robot perception in a ratio of 3 meters -
The thickness of the lines represents the reliability of the information sources (the
thicker the more reliable). (a) Visual information is used to estimate the position
of the person (SSL is also computed but not used); (b) When visual information
is not available (e.g. out of date), then SSL is used to estimate the position; (c)
The person is too close to the robot (30 cm) so that the depth sensor cannot track
the position (out of the operation range) and the sonar sensors detect a possible
obstacle.

with strong background noise. When the robot is moving, the controller uses Nao’s
sonar sensors to stop before obstacles that can cause the damage to the robot. A
visual example of the interplay of different modalities is shown in Fig. 7.6.

At any time, the robot can receive vocal commands that have priority over
other modules. The person can use a set of short commands to interact with the
robot that will result in the following behaviors. For Look at me, Nao will orient
towards the person in the environment using vision and audio. If the position of
the person is not known through vision (out of the FOV or occluded), the robot
will use SSL. If still, the robot is not able to estimate the position of the person,
it will ask ”Where are you?” and wait for hints delivered vocally. For Come to
me, the robot approaches the person to a fixed distance of 1 meter using the last
estimated position. When the person is not in the FOV of the robot, the command
Turn to me is used to rotate the robot (not only the head) towards the person and
then establish visual contact. For Turn around, the robot will perform a 180◦ turn.
The command Stop will terminate any operation that the robot is performing, e.g.,
interrupting a turn or stopping the approaching robot at a desired distance.

When the person says Help me or when a fall is detected through vision (see
Section 7.2.5), Nao will approach the person and ask whether assistance is required
(e.g., to stand up in the case of fall). If the answer is Yes, please or no vocal answer
is detected, Nao can get in contact with the person’s caregiver or relative for further
assessment of the situation. In the case of a fall, the system will store the last 5
seconds of activity before the fall as an RGB video that can be used to evaluate
the seriousness of the event. The fall detection scenario is illustrated in Fig. 7.7.
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(a) (b)

Figure 7.7: Fall detection scenario: When a fall event is detected, the Nao will
approach the person (a) and take a picture of the scene (b) (Parisi et al., 2016c).

7.2.5 Fall Detection

To detect fall events, we use a learning-based approach that reports novel be-
havioral patterns that were not presented during the training phase (Parisi and
Wermter, 2013). We train a neural network architecture on a dataset of 3D body
motion from depth map videos comprising normal behavior, i.e. domestic actions
such as walking, sitting, and lying down, and then trigger an alarm when abnormal
behavioral patterns are detected. To contrast sensor noise and tracking errors, the
neural architecture is also responsible for automatically removing noisy samples
from the extracted body features during the training and test stage. Experiments
in a home-like environment (Fig. 7.8) showed that the system detects falls with
96% accuracy.

The combination of a depth sensor with the learning-based approach allows us
to tailor the robust detection of fall events independently from the background
surroundings and changing light conditions. This is especially advantageous in
scenarios with a mobile sensor.

Learning Framework

Unsupervised neural network learning has shown to be a prominent approach for
the detection of abnormal events (Hu et al., 2004a), also referred to as anomaly
detection (Chandola et al., 2009). We propose a hybrid neural-statistical frame-
work to approximate the normal behavior with trained self-organizing map (SOM)
networks and subsequently detect behavioral patterns that do not conform to the
expected learned behavior with an abnormality test.

The SOM is a competitive neural network introduced by Kohonen (1990) that
has been shown to be a compelling approach for clustering motion expressed in
terms of multi-dimensional flow vectors (Hu et al., 2004b; Nag et al., 2005). The
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Figure 7.8: Abnormal event detection from video sequences. The system can
successfully detect abnormal actions and report them (red body) (Parisi et al.,
2016c).

proposed learning framework consists of three SOM networks. We consider two-
dimensional networks with units arranged on a hexagonal lattice in the Euclidean
space and a Gaussian neighborhood function trained with a batch variant of the
SOM algorithm (see Section 3.2.1). A first network Φ0 is trained to detect outlier
values from the extracted pose-motion vectors caused by tracking errors and sensor
noise. During the second learning stage step, a hierarchical SOM-based approach is
used to learn spatiotemporal properties of action sequences from denoised training
samples. After this initial learning phase, the pose-motion vectors are processed
again to perform a threshold-based test and remove outliers from the training
set. The denoised training set is then fed to a hierarchical SOM-based architecture
composed of two networks, Φ1 and Φ2, for clustering the subspace of normal actions
taking into account spatiotemporal relationships of action sequences. A flow chart
of this learning stage is illustrated by Fig. 7.9. At detection time, extracted vectors
will be denoised and processed through the hierarchy of trained SOM networks.
New observations that deviate from the learned behavior, i.e. below an abnormality
threshold, will be reported as abnormal. The detection of noise and abnormal
behavior is based on the same abnormality test using two different automatically
computed thresholds.
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Figure 7.9: Flow chart of our SOM-based learning stage. A first network Φ0 is
trained to detect and remove outliers from extracted pose-motion vectors. Prepro-
cessed vectors are fed to a hierarchy of networks (Φ1 and Φ2) to cluster spatiotem-
poral relationships of action sequences (Parisi et al., 2016c).
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Figure 7.10: Effects of outliers in the clustering of training data (Parisi and
Wermter, 2013) – (a) The first SOM was trained with the full set of extracted
motion vectors. The presence of highly noisy observations in the training set de-
creased the unfolding of the projected feature map; (b) This second SOM was
trained after removing outliers from the training set, gave a more representative
clustering of the observations from tracked motion.

Tracking Errors

An outlier can be seen as an observation that does not follow the pattern suggested
by the majority of the observations belonging to the same data cloud (Nag et al.,
2005). From a geometrical perspective, outliers are to be found detached from the
dominating distribution of the subspace of normal actions.

In our approach, we differentiate between outliers introduced by tracking er-
rors and outliers caused by tracked abnormal events. For this purpose, we assume
that the behavior of a moving target must be consistent over time. Therefore, we
consider highly inconsistent changes in body posture and speed to be caused by
tracking errors rather than the actual tracked motion. As shown in our experi-
ments, the presence of tracking errors in the training set may negatively affect the
SOM-based clustering of pose-motion features. Fig. 7.10 illustrates these effects
after the learning phase. A first SOM was trained with the full set of extracted mo-
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tion vectors, for which outliers in the data decreased the unfolding of the projected
feature map (Fig. 7.10.a). These noisy samples were detected by our algorithm
and removed from the training set. As seen from the second SOM trained with
the denoised training set (Fig. 7.10.b), the absence of outliers allowed a more
representative clustering of the motion vectors for the subspace of normal actions.

While we use the same algorithm to detect outliers, two different abnormality
thresholds are automatically computed that take into account the different char-
acteristics of tracking noise and abnormal pose-motion vectors. Tracking errors in
the test set are detected using this first trained SOM network as a reference and
then removed.

Abnormality Detection Algorithm

The goal of the detection algorithm is to test if the most recent observation is
abnormal or not. For this purpose, the degree of abnormality for every test obser-
vation is expressed with the estimation of a P-value. If the P-value is smaller than
a given threshold, then the observation is considered to be abnormal and reported
as such.

For a given training set X and a new test observation xn+1 presented to the
network Φ, the algorithm is summarized as follows (Hoglund et al., 2000):

0. Compute the set of quantization errors Q = (q1, q2, ..qn).

1. Compute q(n+1) with respect to Φ.

2. Define B as the number of quantization errors (q1, ..., qn) greater than q(n+1).

3. Define the abnormality P-value as P(n+1) = B/n.

As an extension to the algorithm proposed by Hoglund et al. (2000), abnor-
mality thresholds are automatically computed for the trained networks Φ0 and Φ2.
The choice of convenient threshold values that take into account the characteris-
tics of the distributions can have a significant impact on the successful rates for
abnormality detection. From a neural network perspective, the threshold values
will consider the distribution of the quantization errors from each trained SOM.
Based on previous research (Parisi and Wermter, 2013), we empirically define two
different thresholds, TO for outlier detection and TA for abnormality detection:

TO = β

√
QO + σ(QO) + max(QO) + min(QO), (7.2)

TA = γ

[
Q+ σ(Q)

max(Q) + min(Q)

]
, (7.3)

where QO and Q denote the quantization error sets for Φ0 and Φ2 respectively,
Q denotes the mean value operator, σ(Q) denotes the standard deviation, and
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β = 0.5, γ = 0.1. In the case of Φ0, observations with P-values under the abnor-
mality threshold TO are considered as outlier values and therefore removed from
the training set. For Φ2, if P(n+1) is smaller than TA, then the test observation
xn+1 is considered abnormal.

Experimental Results

For the training and evaluation of the system, we used video sequences from the
KT action dataset with full-body actions performed by 13 different participants
with a normal physical condition (see Section 4.2). To avoid biased execution, the
participants were not instructed on how to perform the actions. Training video
sequences consisted of domestic actions such as walking, sitting down and standing
up, and bending to pick up objects, whereas abnormal actions comprised falling
down and crawling. We did not take into account those cases in which the user is
already fallen on the ground since the tracking framework built on top of OpenNI
would fail to provide a reliable recognition of the user and therefore the extraction
of body features would be highly compromised.

At detection time, new extracted vectors were processed to remove outliers.
For the last three denoised vectors, a new test trajectory τi+1 was obtained from
Φ1 and then fed to Φ2 to compute the abnormality test λ(τi+1). We took the last
3 abnormality test results and returned as abnormality output the result of the
statistical mode:

Mo(λ(τi+1), λ(τi+2), λ(τi+3)). (7.4)

A new output was therefore returned every 9 samples, which corresponds to ap-
proximately less than 1 second of captured motion. As shown by our experiments,
this approach led to increased detection accuracy.

We evaluated the detection algorithm on abnormal actions using standard mea-
surements defined by Van Rijsbergen (1979):

Recall =
TP

TP + FN
, (7.5)

Precision =
TP

TP + FP
, (7.6)

F-score = 2 · Recall · Precision

Recall + Precision
, (7.7)

True negative rate =
TN

TN + FP
, (7.8)

Accuracy =
TP + TN

TP + TN + FP + FN
. (7.9)

A true positive (TP) was obtained when an abnormal event was detected be-
tween the first and the last frame where the abnormal action took place. True
negatives (TN) refer to normal actions not detected as abnormal. False positives
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Table 7.2: Performance of our abnormality detection algorithm on a data set of 13
participants.

Raw Denoised Improvement

Recall 88% 95% 7.02%

Precision 90% 97% 7.02%

F-score 89% 96% 7.02%

TN rate 90% 97% 6.90%

Accuracy 89% 96% 6.96%

(FP) and false negatives (FN) refer respectively to normal actions reported as
abnormal and abnormal behaviors not reported by the system.

The system evaluation is shown in Table 7.2. Our system detected abnormal
fall events with 96% accuracy. The removal of noise from the training and test set
was of significant importance for reducing detection errors in presence of partial
occlusions and tracking errors introduced by the mobile sensor, with an improve-
ment in accuracy of 6.96%. On the other hand, the accuracy of our system would
be negatively influenced by: 1) highly-occluded users, leading to tracking errors
and compromised feature extraction; and 2) the presence of actions sharing similar
body features subject to classification ambiguity, i.e. detecting lying down as a
fall, leading to a greater number of false positives.

The obtained results motivate future work in several directions. At the current
state of the system, the depth sensor must be wired to an external, fixed processing
unit to perform the tracking, thereby limiting the mobility of the humanoid. To
achieve better mobility, the sensor could be wired to an onboard processing unit
and then transmit the depth information via WiFi for further processing to be
carried out in the cloud. Moreover, video files could be adopted instead of a single
picture to better support telematic human evaluation, e.g. sending a video with
the last 5 seconds of the user’s activity before the fall event. In fact, the role
of human assessment is of crucial importance to determine the seriousness of the
detected event and to undertake effective intervention.

From a navigation perspective, the robot does not have any representation
about the operational environment. A possible extension is to provide Nao with
prior knowledge of the properties of the environment using a ceiling camera (Yan
et al., 2013) or a mechanism for self-localization and mapping such as RatSLAM
extended for humanoid robots (Müller et al., 2014). This would enhance Nao’s
navigational capabilities for, e.g., a scenario with multiple rooms in a residential
context. Additionally, proxemic behaviors could be explored for socially-acceptable
scenarios to navigate safely in a cluttered and dynamically changing domestic
environment (Torta et al., 2011).
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7.3 Integration of Dynamic Audiovisual Patterns

7.3.1 Introduction

Reinforcement Learning (RL) is an approach based on behavioral psychology in
which an agent autonomously explores its environment in order to find an optimal
policy to perform a given task (Sutton and Barto, 1998). At each state, the
agent selects an action to perform in order to obtain a reward and reaching a new
state. However, a known issue of this approach is the high number of training
episodes required by the agent to learn a proper policy. In this regard, interactive
reinforcement learning (IRL) has added an external parent-like trainer in order
to speed up the learning process through either providing a reward (Thomaz and
Breazeal, 2007) or policy shaping (Griffith et al., 2013). Therefore, robot learning
can be sped up with the use of parent-like trainers who provide useful advice,
allowing robots to learn a specific task in less time compared to a robot exploring
autonomously (Cruz et al., 2015). In this regard, the parent-like trainer guides
the apprentice robot with actions that allow to enhance its performance the same
way as external caregivers may support infants in the accomplishment of a given
task, with the provided support frequently decreasing over time. This teaching
technique is known as parental scaffolding (Ugur et al., 2015).

When interacting with their caregivers, infants are subject to different envi-
ronmental stimuli which can be present in various modalities. In general terms,
it is possible to think about some of those stimuli as a guidance that the parent-
like trainer delivers to the apprentice agent. However, when multiple modalities
are considered, issues may emerge regarding the interpretation and integration of
multimodal information, especially when the information from multiple sources is
in conflict or ambiguous, e.g., yielding low confidence levels (Bauer et al., 2015).
Consequently, instructions may not be clear and misunderstood, thereby leading to
a decreased performance in the apprentice agent when solving a task (Cruz et al.,
2016a). Although IRL approaches have been implemented in robotic scenarios
(e.g., Suay and Chernova (2011); Knox et al. (2013)), an open issue is that the
communication interface between the trainer and the robot in home-like environ-
ments is quite tedious and cumbersome for non-expert trainers. Therefore, there is
a motivation to develop a more natural interactive scenario where external parent-
like trainers can provide instructions using their natural communication skills such
as speech and gestures.

In this section, we present a multimodal interactive reinforcement learning sce-
nario which consists of a robot learning a domestic task. The robot can manipulate
two objects with the goal of cleaning a table. During the learning process, advice
can be provided by a parent-like trainer using vocal commands or performing hand
gestures. Our proposed architecture is able to process information from multiple
sources through the use of a neural associative memory that computes multimodal
advice as a function of the recognition and confidence of unimodal modules. A gen-
eral overview of the architecture is depicted in Fig. 7.11, where λ and γ are the label
class and the confidence value respectively. First, auditory and visual patterns are
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Figure 7.11: Overall view of our multimodal system architecture. The domain-
based ASR system (Box A) processes auditory input to obtain an advice class label
λA and a confidence value γA, while the neural network-based gesture recognition
system (Box B) processes visual input to predict an advice class label λV and
its confidence value γV . Subsequently, an associative neural network is used to
compute an integrated advice label λI and confidence value γI (Cruz et al., 2016b).

processed individually as described in Sections 7.4.3 and 7.4.4 respectively. Then,
predicted class labels for vocal commands and gestures along with their confidence
values are used as input for the multimodal integration system (Section 7.4.5). We
present a set of experiments using 7 possible advice classes from audiovisual inputs,
showing that multimodal integration leads to a better performance of interactive
reinforcement learning, with the robot being able to learn using a smaller number
of training episodes compared to unimodal scenarios.

7.3.2 Robot Scenario

We extended the approach proposed in Cruz et al. (2015) to incorporate visual
information and integrate it with audio as a more robust guidance during the
learning process. The scenario consists of a humanoid robot in front of a table
to clean it, comprising two objects that the robot can manipulate to achieve this
task. The two objects are:

1. cup, which is initially placed at any location of the table and should be moved
in order to finish the cleaning task;

2. sponge, which is used along with the robot’s hand to clean different positions
of the table.

For each object, we defined three locations: the right and left parts of the table,
and an additional position defined as home, where the sponge should be placed
when not in use. We define a set of 7 possible advice classes that can be given to
the robot by a parent-like trainer. Each advice class has a spoken representation
in a domain-based language and a visual representation with gestures from vision.
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Figure 7.12: Cleaning scenario with the NICO robot. Our scheme is composed of
2 objects, 3 locations, and 7 action classes (Cruz et al., 2016b).

The advice can be delivered at any time using speech, gestures, or both with the
following advice classes:

1. get, which allows the robot to pick up the nearest object to its gripper;

2. drop, which allows the robot to put down the object held in its hand;

3. go < location >, which moves the robot’s gripper to one of the three defined
locations: go home, go left, and go right ;

4. clean, which allows the robot to clean the table surface at the current hand
position;

5. abort, which cancels the execution of the cleaning task at any time.

Fig. 7.12 shows an example of the domestic scenario with our Neural Inspired
COmpanion (NICO) robot. We use a microphone and a depth sensor to capture
the advice from the parent-like trainer that is subsequently integrated and sent
to the IRL algorithm as one single piece of consistent advice. The integrated
advised action is then sent to the NICO robot to be performed using the pypot
library (Lapeyre et al., 2014), allowing to control the robot actuators either in real
or simulated environments.

7.3.3 Automatic Speech Recognition

The apprentice robot processes vocal advice by applying automatic speech recogni-
tion (ASR) based on Google Voice Search (GVS, Schalkwyk et al. 2010), a cloud-
based ASR service to process audio data captured by a local microphone and
generating hypotheses for the corresponding text representation. To overcome the
issue of out-of-domain language models, we use DOCKS (Twiefel et al., 2014), a
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post-processing technique to fit the ASR hypotheses provided by GVS to the given
human-robot interaction (HRI) domain.

For our scenario, we define a set of robot commands represented by a list of
sentences. To identify the best-matching hypothesis out of the list of sentences,
the phonemic representation of the ASR hypothesis is compared to the phone-
mic representation of each sentence in the list. For this task, the Levenshtein
distance (Levenshtein, 1966) is used to compute the difference of the obtained
phoneme sequences. Then, the sentence having the shortest distance is chosen
as the best-matching result. The Levenshtein distance is computed for the 10-
best hypotheses provided by GVS. Given the set H of the best-10 hypotheses
and the set S of the reference sentences, the predicted class label is computed as
λA = argmin L(hi, sj), where L is the Levenshtein distance in our ASR system.
The confidence value is computed as γA = max(0, 1 − L(hi, sj)/|sj|) with hi ∈ H
and sj ∈ S, both represented as phonemes. A diagram of the ASR system is
illustrated in Box A of Fig. 7.11.

7.3.4 Gesture Recognition

People perform body gestures and co-speech gestures rather unconsciously in ev-
eryday life, for instance, when we explain the shape of an object (Dick et al., 2012).
Similarly, gestures may be a convenient and complementary way to communicate
in HRI scenarios. In Parisi et al. (2014a,b), we proposed two learning architectures
for the recognition of a set of gesture classes in real time. Both the approaches
were based on the idea of hierarchical learning with self-organizing networks as
presented in Chapter 4. In Parisi et al. (2014a), we implemented a neural archi-
tecture for learning both static and dynamic hand gestures. Hand features were
extracted from RGB-D video sequences (Fig. 7.13) and subsequently processed
by a SOM-based architecture in terms of hand pose-motion features (Fig. 7.14).
Reported results evidenced the importance of integrating both pose and motion
features as suggested by experiments throughout Chapter 4. An evaluation of the
architecture on a dataset of hand gestures is reported in Appendix D. In Parisi
et al. (2014b), we considered a wider number of body features to perform gestures.
The representation of gestures is hand-independent and gestures using both hands
are also considered.

For recognizing gestures in our multimodal system, we used an extended version
of Parisi et al. (2014a) for learning gestures from depth map videos using growing
self-organizing networks. Furthermore, for each predicted label we also estimate a
confidence value that expresses the degree of belief that the prediction is correct
based on a set of predictions over a given time window.

Feature Extraction

Hand motion from depth images was extracted to represent gestures as hand-
independent motion sequences. The set of gestures used in our robotic scenario
are shown in Fig. 7.15. To encode motion patterns, only the motion information of
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Figure 7.13: Example of hand segmentation and pose estimation with SHAPE for
static and dynamic gestures (Parisi et al., 2014a).
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Figure 7.14: FINGeR pipeline for the hierarchical SOM-based clustering of encoded
gestures with the SHAPE algorithm. Pose and motion properties are processed by
two different streams, ΦS and ΦM respectively. Synchronized multi-cue represen-
tations are subsequently combined by ΦC (Parisi et al., 2014a).

the most salient hand performing a gesture was taken into account (Parisi et al.,
2014b). In case that both hands are used, the type of interaction between the
hands is considered, i.e. physical if the two hands overlap, or symmetric, if they
follow the same (mirrored) behavior. We consider a set of motion descriptors for
a given set of tracked body joints, i.e. hands and head. For each frame i, the
gesture feature vectors were of the form mi = (si,vi, ϕi, hi, λi), where si is the
hand interaction type, λi is the annotated gesture label, vi is the hand 3D motion
intensity in terms of pixel difference from consecutive frames, ϕi is the hand angle
with respect to the y axis in the image plane, and hi is the distance from the head.

Training videos were recorded with an ASUS Xtion depth sensor operating at
30 frames per second, from which we estimated the 3D skeleton model using the
OpenNI/NITE framework. To attenuate noise, we computed the median value for
each joint every 3 frames, resulting in a total of 10 feature vectors per second.
These vector sequences are then clustered by a hierarchical learning architecture
to obtain a representation of prototype gestures from a set of training samples.
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Figure 7.15: Gestures used as advice in the robotic scenario. Red arrows represent
the hand movement performed to advice the robot. The motion from the most
salient hand is used to estimate the motion vector. In case that both hands are
used, the type of hand interaction is considered (details in the text). Since gesture
labels are seamlessly predicted from depth map video sequences, we add the label
still to indicate no advice at that moment (Cruz et al., 2016b).

Learning Architecture

Our learning model consists of two hierarchically arranged GWR networks (Mars-
land et al., 2002) that incrementally obtain generalized representations of sensory
inputs to learn latent spatiotemporal structure. Hierarchical learning is carried
out by training the higher-level network with neuron activation trajectories from
the lower-level network (see Chapter 4). The network in the first layer receives the
sequence of vectors mi as input. The network in the second layer is trained with
neural activation trajectories from the first layer. These trajectories are obtained
by computing the best-matching neurons of the input sequence xi with respect to
the trained network with N neurons, so that a set of trajectories is given by

Ω(xi) = {wb(xi),wb(xi−1),wb(xi−2)}, (7.10)

with b(xi) = arg mini∈N ‖xi −wj‖. After the training of the higher level network
is completed, each neuron will encode a sequence-selective gesture segment from 3
consecutive frames. This mechanism allows to obtain specialized neurons coding
the spatiotemporal structure of the input. For classification purposes, neurons cre-
ated in this second layer are attached to gesture labels obtained from the training
set. During training of the GWR networks, we attach labels to neural activation
trajectories as discussed in Section 4.3. The training parameters and number of
neurons created after the training session are shown in Table 7.3.

In the hierarchical architecture, a predicted label is returned every 3 frames in
a sliding window scheme. We considered the last 5 observations and computed the
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Table 7.3: Training parameters for GWR hierarchical learning

Parameters Network Layer 1, 2

Activation threshold aT = {0.85, 0.65}
Firing threshold fT = 0.01

Firing counter τb = 0.3, τn = 0.1

Learning rates εb = 0.1, εn = 0.01

Maximum edge age 200

Training epochs 100

N. of neurons after training {337, 316}

statistical mode that returns the most frequent value in a set. Given the set of
predictions ΛV and denoting N as the number of occurrences of the mode within
ΛV , the confidence value is then defined as γV = N/|Λ|, yielding a maximum
confidence value of 1 and a minimum of 0.2. Since we processed 10 feature vectors
per second and we compute the mode of the last 5 predictions, our system returns
a predicted label λV and a confidence value γV for a window of 7 frames (0.7
seconds).

7.3.5 Audiovisual Integration

Our integration function relates the predicted advice classes and confidence pairs
from uni-sensory input, respectively denoted as (λA, γA) for audio and (λV , γV )
for vision. The integrated predicted label λI is calculated according to the highest
confidence value:

λI = argmax
λ

γ(λ). (7.11)

In other words, if the auditory and visual labels λA and λV are different, then
the integrated label λI takes the value from the modality which has the biggest
confidence value. The integrated confidence value is computed by the function:

γI = ln (1 + φ), (7.12)

where φ is a time-varying parameter which depends on each label λ and confidence
value γ. We refer to this parameter as the likeliness parameter, obtained according
to the following equation:

φ =

{
γA + γV if λA = λV

|γA − γV | if λA 6= λV
(7.13)

Therefore, if the labels λA and λV are the same, then the confidence value γI

is computed using φ = γA + γV in order to strengthen the integrated confidence
level over the prediction made from both modalities. Instead, if the labels λA

and λV are different, then the integrated confidence value γI is computed using
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(b) Integrated confidence with different uni-modal predicted labels(a) Integrated confidence with equal uni-modal predicted labels

Figure 7.16: Confidence values used in the neural network-based associative ar-
chitecture. While in (a) the corresponding output labels for audio and visual
modalities are the same, in (b) they are different. During the training, we use a
20 × 20 grid for each modality, whereas for the test we use an equal distribution
with a 100× 100 grid (Cruz et al., 2016b).

φ = |γA − γV | in order to decrease the confidence level. This function yields an
integrated confidence value γI ∈ [ln (1), ln (3)] = [0, 1.0986]. We use a unity-base
normalization to rescale the range of confidence between 0 and 1:

γI =
γI −min(Γ)

max(Γ)−min(Γ)
. (7.14)

where Γ is the set of all possible confidence values γI . Fig. 7.16 shows the in-
tegrated confidence values when the predicted auditory and visual labels are the
same (a) and different (b).

Associative Learning

To implement the proposed integration model, we develop an associative neural
architecture with a complex-valued quadratic neuron (Georgiou, 2006) that defines
a two-dimensional grid on the output space as presented in (Georgiou and Voigt,
2013). For an input vector X ∈ Cn, the scalar complex output is y = X∗AX,
where A ∈ Cn×n is the weight matrix and X∗ denotes the conjugate transpose.
The output can be written as the summation of the individual terms that involve
the components of X and A:

y =
n∑
j=1

n∑
k=1

x̄jxkajk. (7.15)

The gradient descent learning rule that minimizes the mean-square error is:

4 A = αεX̄XT , (7.16)

where α is a small real-valued learning rate. For a given input vector X, the desired
output Y to be used in the learning algorithm is defined as the nearest intersection
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point of the grid lines of the complex plane. In practice, a function Ψ is defined
which rounds to the nearest integer for grid lines spaced at a fixed distance δ in
both directions:

Ψ(Y ) =
round(δRe(Y ))

δ
+ i

round(δIm(Y ))

δ
. (7.17)

This function creates a virtual grid where the output snaps onto the nearest
grid corner. The training algorithm is as follows:

0. Initialize the weights of the neuron with random values,

1. Compute Y ,

2. Compute d = Ψ(Y ),

3. Update the weights of the neuron using Eq. 7.16.

At each iteration, the steps (1) to (3) are carried out for all the input vectors,
so that a cluster in the input space will map to a similar region in the output space
due to the continuity of the activation function. The stop criterion can be a fixed
number of iterations, a decreasing learning rate, or a given minimum mean-square
error over all inputs.

7.3.6 Experimental Results

For our experiments, we implemented the robotic domestic scenario described in
Section 7.3.2. We recorded clips of advice from a parent-like trainer for all advice
classes, including speech and gestures with four repetitions for each class. At
recognition time, our goal was to predict the gesture label from novel audiovisual
sequences (λA, λV ) and compute the confidence values (γA, γV ) that expressed how
reliable these predictions are. After the independent processing each modality,
audiovisual inputs were integrated using our neural architecture to compute the
integrated gesture class λI with confidence γI . We used a grid of 20×20 points for
training and a subsequent validation grid of 100× 100 points obtaining an average
quantization error eq(n) = 0.05984 computed as eq(n) = xq(n) − x(n), where
xq(n) and x(n) are the sample sequences of the validation set and the training set
respectively.

When working autonomously in the domestic scenario, the robot selects the ac-
tions using ε-greedy action selection policy with ε = 0.1. We used interactive advice
probability of 0.3 since it has been shown to be effective and small enough (Cruz
et al., 2016b). After the integration, we used different confidence levels to verify
whether small confidence values benefit the learning scenario. Therefore, we con-
sidered γI > θmin with θmin being the minimum confidence threshold to be consid-
ered as a valid advice. In the case that the advice did not accomplish this minimal
condition, the next action was selected through the aforementioned ε-greedy pol-
icy. We tested different thresholds θmin ∈ {0.0, 0.25, 0.5, 0.75}, observing that in
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Figure 7.17: Integrated rewards with different thresholds of minimal confidence
level. The best performance is observed with θmin = 0.25 depicted in red. Au-
tonomous RL is shown as a baseline in yellow (Cruz et al., 2016b).

Figure 7.18: Collected rewards with advice from audio and visual modalities are
shown in blue and green respectively. Autonomous RL is shown as a baseline in
yellow. Working with advice from the multimodal integration approach, the IRL
agent is able to collect faster and greater reward in comparison to individual advice
approaches (Cruz et al., 2016b).

general IRL works better with θmin = 0.25. Fig. 7.17 shows the average convoluted
rewards for those θmin values using 100 agents over 500 training episodes.

Finally, we used a fixed threshold θmin = 0.25 during the learning process to
compare unimodal and multimodal advice in the IRL scenario. In the unimodal
IRL approach, collected rewards were close to each other in terms of the time
required for convergence (more than 200 episodes) as well as the maximal reward
value (approximately 0.3). On the other hand, the multimodal IRL approach
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using both sensory inputs obtained the same level with respect to the unimodal
approaches in fewer episodes (in this case, less than 200 episodes) and converged
to a greater reward (approximately 0.4). Therefore, the IRL performance benefits
from the integrated information, where greater rewards are accumulated faster in
comparison to the use of unimodal modules. Fig. 7.18 shows the average collected
reward over 500 training episodes for the uni- and multimodal learning procedure.

Together, these results show that multimodal integration leads to a better per-
formance of interactive reinforcement learning with the robot being able to learn
faster with greater rewards compared to unimodal scenarios. Experiments in our
multimodal IRL scenario were conducted in an off-line scheme. Therefore, future
work directions should consider experiments accounting for on-line interactions.
Furthermore, experiments should also consider a wider number of parent-like train-
ers with different teaching characteristics.

7.4 Summary

In this chapter, we proposed the use of multimodal systems for enhancing human-
robot interaction and triggering sensory-driven robot behavior in dynamic envi-
ronments. In particular, we presented two robotic scenarios. The first scenario
consisted of a humanoid robot for fall detection in a home-like environment, for
which we used audiovisual cues to track a user performing daily activities, while a
neural network architecture was responsible for detecting abnormal user behavior
from action sequences captured with a depth sensor. Experiments have shown that
multimodal processing is crucial to complement occasionally unavailable modali-
ties, thereby providing a more robust perceptual experience to the robot. In the
second scenario, we proposed the integration of speech and body gestures for pro-
viding trainer-like feedback to a learning agent in an interactive reinforcement
learning task, thereby improving the overall learning performance. Our archi-
tecture integrates dynamic audiovisual patterns for a more natural trainer-like
learning procedure, also accounting for possible conflicts in terms of contradictory
predicted feedback classes or classes predicted with low confidence. Experiments
have shown that multimodal feedback significantly enhances the agent’s perfor-
mance while learning the task of cleaning a table.

In both scenarios, robot motor control was triggered by the interplay of auditory
and visual cues, showing that multisensory integration can be advantageous for a
variety of reasons. One is that certain types of information can only be gleaned
from some modalities and not from others. This is the case in our fall detection
scenario in which verbal information is only available in the auditory modality.
A second reason why multisensory integration can be useful is that it provides
redundancy which can help improve accuracy and disambiguate. For instance, we
exploit this aspect of multimodal learning in our first scenario when we integrate
segmentation from depth perception and sound cues to estimate the position of a
person in the environment. This would be much harder from either modality alone.
Finally, it can be useful to employ another type of sensor even if the information
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gleaned through it could be provided by a different sensor in principle: sometimes
one modality just provides information simply in a more appropriate form, as
exemplified by our use of the Nao’s sonar sensors for obstacle detection which
would be possible, at greater computational cost, using just color vision or depth
perception. As future work, we aim to design a usability study to evaluate the
systems in a real-world setting, for instance by studying the users’ acceptance of
the agents in terms of overall performance, human-robot communication, timing,
and task sequence (Torta et al., 2014).
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Chapter 8

Conclusion

Understanding others’ actions plays a crucial role in our everyday lives. Human
beings are able to reliably discriminate a series of socially relevant cues from body
motion, with this ability being supported by highly skilled visual perception and
other modalities. The main goal of this thesis is the modeling of artificial learning
architectures for action perception with focus on the development of multimodal
action representations. As a modeling foundation to address our research question,
we focus on hierarchies of self-organizing neural networks motivated by experience-
driven cortical organization.

8.1 Thesis Summary

We presented a number of neural network architectures that develop robust spa-
tiotemporal representations for the task of multimodal action perception. As a
starting point, we proposed a set of neurobiologically motivated architectures con-
sisting of hierarchically-arranged network layers for processing action cues in the
visual domain in terms of body posture and motion features. On this basis, we
investigated the use of hierarchical self-organizing learning for the development of
congruent multimodal action representations. In particular, we proposed a model
where multimodal representations emerge from the co-occurrence of auditory and
visual stimuli via the learning of associative connections between unimodal repre-
sentations, yielding the bidirectional retrieval of audiovisual patterns.

In the spirit of hierarchical spatiotemporal processing, we proposed an extension
of a growing self-organizing network equipped with recurrent connectivity, showing
that this novel model accounts for the learning of robust action-label mappings also
in the face of occasionally absent or even contradictory action class labels during
the training phase. We demonstrated how the same recurrent neural network
mechanism can deal with both action recognition and body motion assessment in
real time.

Finally, we reported on two robot experiments of multimodal perception, one
focused on a fall detection scenario and the other was set in a multimodal interac-
tive reinforcement learning task. Our experiments showed that the integration of
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multiple modalities significantly improves performance with respect to unimodal
approaches for sensory-driven robot behavior.

8.2 Discussion

The research presented in this thesis considers interdisciplinary aspects of action
perception and its underlying neural mechanisms with the aim to develop learning
architectures for multimodal action processing. In the following sections, we discuss
important modeling aspects of our neural network architectures and the results
obtained, as well as analogies and limitations with respect to biological findings.

Neurocognitive Architectures for Multimodal Integration

A variety of studies has shown the ability of the brain to integrate multimodal
information for providing a coherent perceptual experience (Stein and Meredith,
1993; Ernst and Bülthoff, 2004; Stein et al., 2009). Specifically for the integra-
tion of audiovisual stimuli, neurophysiological studies have evidenced strong links
between the areas in the brain governing visual and language processing for the
formation of multimodal perceptual representations (Foxe et al., 2000; Raij et al.,
2000; Belin et al., 2000, 2002; Pulvermüller, 2005). However, the question of how to
develop artificial models that efficiently process and bind multimodal information
has remained an issue to be investigated (Ursino et al., 2014).

The development of associations between co-occurring stimuli for multimodal
binding has been strongly supported by neurophysiological evidence (Fiebelkorn
et al., 2009; Ursino et al., 2014). Similar to Vavrečka and Farkaš (2014) and Morse
et al. (2015), we argue that the co-occurrence of sensory inputs is a sufficient source
of information to create robust multimodal representations with the use of asso-
ciative links between unimodal representations that can be incrementally learned
in an unsupervised fashion. However, in contrast to previous models focused on
the development of object–word mappings, we focus on the development of asso-
ciative links between action labels and visual actions, which have high spatial and
temporal variance, thereby requiring a processing architecture that accounts for
the generalization of inputs at different spatiotemporal scales.

From a neurobiological perspective, neurons selective to actions in terms of com-
plex biological motion have been found in a wide number of brain structures (Giese
and Rizzolatti, 2015). An example is the STS, which is thought to be an asso-
ciative learning device for linking different unimodal perceptual representations,
and consequently crucial for social cognition (Allison et al., 2000; Adolphs, 2003;
Beauchamp, 2005; Beauchamp et al., 2008). It has been shown that different re-
gions in the STS are activated by naturally occurring, highly correlated action
features, such as pose, motion, the characteristic sound of an action (Beauchamp
et al., 2004; Barraclough et al., 2005) and linguistic stimuli (Belin et al., 2002;
Wright et al., 2003; Stevenson and James, 2009).
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In Chapter 5, we proposed a simplified computational model that learns to in-
tegrate audiovisual patterns of action sequences. Our model incrementally learns
a set of associative connections in a self-organized manner to bind unimodal rep-
resentations from co-occurring multisensory inputs. Therefore, neurons in the
associative layer are tuned to multimodal action snapshots in terms of action-
word mappings. The focus of our study was the self-organizing development of
associative connections between visual and auditory action representations. For
audiovisual stimulation, neurons in the posterior STS showed greater response to
multimodal stimuli than to unimodal ones, with these multimodal responses being
greater than the sum of the single unimodal responses. This principle, referred to as
superadditivity, has not been observed for auditory-tactile stimulation (Beauchamp
et al., 2008), suggesting that multimodal patterns are integrated in a principled
way according to modality-specific properties. The modeling of neurobiologically
observed principles underlying audiovisual integration in the STS for speech and
non-speech stimuli, such as superadditivity (Calvert et al., 2000), spatial and tem-
poral congruence (Bushara et al., 2001; Macaluso et al., 2004), and inverse effec-
tiveness (Stevenson and James, 2009), was out of the scope of this thesis and will
be subject to future research.

Based on the principle of learning associative connections from co-occurring
inputs, it is possible to extend the development of associative patterns beyond
the audiovisual domain. For instance, several neurophysiological studies have ev-
idenced strong interaction between the visual and motor representations, more
specifically including the STS, parietal cortex, and premotor cortex (see Giese and
Rizzolatti (2015) for a recent survey), with higher activation of neurons in the mo-
tor system for biomechanically-plausible, perceived motion sequences (Miller and
Saygin, 2013). From the perspective of our model, we could think of emerging as-
sociative connections between auditory, visual, and motor representations in terms
of the self-organizing binding of temporally correlated activations. However, while
our architecture scales up to a larger number of modalities, it does not account for
crossmodal learning aspects, e.g. in an embodied robot perception scenario where
motor contingencies influence audiovisual mappings (Morse et al., 2015). Conse-
quently, the extension of our model in such a direction would require additional
mechanisms for the crossmodal learning of spatiotemporal contingencies built on
the basis of modality-specific properties.

Self-Organizing Hierarchies of Networks

Hierarchies may provide a convenient trade-off in terms of invariance-selectivity
by decomposing a complex task in a hierarchy of simpler ones (Poggio and Smale,
2003). From a computational perspective, a hierarchical structure has the advan-
tage of increased computational efficiency by sharing functionalities across mul-
tiple levels, e.g., low-level networks represent a dictionary of features that can
be shared across multiple tasks. The proposed hierarchical learning architectures
yield progressively specialized neurons encoding latent spatiotemporal dynamics of
the input. Neurons in higher-level layers will encode prototype sequence-selective
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snapshots of visual input, following the assumption that the recognition of actions
must be selective for temporal order (Giese and Poggio, 2003; Hasson et al., 2008).
In Chapter 4 and 5, the temporal processing of features was explicitly modeled
in terms of neurons in higher-level layers computing the concatenation of neural
activation trajectories from lower-level layers, which increases the dimensionality
of neural weights along the hierarchy. This issue was addressed in Chapter 6,
where we proposed a novel temporal extension of the GWR with context learn-
ing (Strickert and Hammer, 2005) and a Gamma Memory model (de Vries and
Pŕıncipe, 1992; Estévez and Vergara, 2012), showing that hierarchically-arranged
GWR networks with recurrent connections can account for the learning of action
features with increasingly larger spatiotemporal receptive fields.

A hierarchical organization is consistent with neurophysiological evidence for
increasingly large spatiotemporal receptive windows in the human cortex (Tay-
lor et al., 2015; Hasson et al., 2008; Lerner et al., 2011), where simple features
manifest in low-level layers closest to sensory inputs, while increasingly complex
representations emerge in deeper layers. Specifically for the visual cortex, Hasson
et al. (2008) showed that while early visual areas such as the primary visual cortex
(V1) and the motion-sensitive area (MT+) yield higher responses to instantaneous
sensory input, high-level areas such as the STS were more affected by information
accumulated over longer timescales (∼ 12 seconds). This kind of hierarchical ag-
gregation is a fundamental organizational principle of cortical networks for dealing
with perceptual and cognitive processes that unfold over time (Fonlupt, 2003).

Motivated by the process of input-driven self-organization exhibited by topo-
graphic maps in the cortex (Nelson, 2000; Willshaw and von der Malsburg, 1976;
Miikkulainen et al., 2005), we proposed a series of learning architectures encom-
passing a hierarchy of self-organizing networks. Growing neural networks the abil-
ity to dynamically change their topological structure through competitive Hebbian
learning (Martinetz, 1993) and incrementally match the distribution of the data
in input space (see Chapter 3). Different from other incremental models of self-
organization that create new neurons at a fixed growth rate (e.g. Fritzke 1995,
1997), GWR networks (Marsland et al., 2002) create new neurons whenever the
activity of well-trained neurons is smaller than a given threshold. This mechanism
creates a larger number of neurons at early stages of training and then tunes the
weights through subsequent training epochs. While the process of neural growth
of the GWR algorithm does not resemble biologically plausible mechanisms of neu-
rogenesis (e.g., Eriksson et al. 1998; Gould 2007; Ming and Song 2011), it is an
efficient learning model exhibiting a computationally convenient trade-off between
adaptation to dynamic input and learning convergence.

The two parameters modulating the growth rate of the network are the ac-
tivation threshold and the firing counter threshold. The activation threshold es-
tablishes the maximum discrepancy (distance) between the input and its best-
matching neuron in the network, with larger values of the threshold yielding a
smaller discrepancy. The firing counter threshold is used to favour the training
of recently created neurons before creating new ones. Intuitively, the average dis-
crepancy between the input and the network representation should decrease for
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a larger number of neurons. On the other hand, there is no such straightforward
relation between the number of neurons and the classification performance. This is
because the classification process consists of predicting the label of novel samples
by retrieving attached labels to the inputs’ best-matching neurons, irrespective of
the actual distance between the novel inputs and the selected neurons (see Sec-
tion 5.3). Therefore, convenient threshold values should be chosen by taking into
account the distribution of the input and, in the case of a classification task, the
classification performance.

Action Features and Representations

For the processing of action features in Chapters 4, 5, 6, and 7, we rely on the ex-
traction of a simplified 3D skeleton model from which we compute relevant cues de-
scribing body pose and motion while maintaining a low-dimensional feature space.
The skeleton model estimated by OpenNI, although not anatomically faithful, pro-
vides a convenient representation from which it is possible to extrapolate actor-
independent action dynamics. The use of such models is in line with biological
evidence demonstrating that human observers are very proficient in recognizing
and learning complex motion underlying a skeleton structure (Jastorff et al., 2006;
Hiris, 2007). These studies show that the presence of a holistic structure im-
proves the learning speed and accuracy of action patterns, also for non-biologically
relevant motion such as artificial complex motion patterns. On the other hand,
skeleton models may be susceptible to sensor noise and situations of partial occlu-
sion and self-occlusion (e.g. caused by body rotation) for which body joint values
may be noisy or missing. In Chapter 6, we proposed a neural architecture able
to learn spatiotemporal action features from depth images with segmented body
silhouettes, thereby addressing the issue of noisy skeletons. On the one hand, in
this case we rely on the correct segmentation of body shape from depth-map im-
age sequences. On the other hand, approaches for extracting action features from
cluttered environments have been shown to be either computationally expensive
or they require large amounts of training data (Guo et al., 2016), thus they are
not ideal for real-world scenarios (see Chapter 7).

Our proposed neural models for action perception create prototype action rep-
resentations based on statistically significant features presented during the training
process. This process allows to generalize spatiotemporal properties of the train-
ing set to classify novel samples and yields invariance to scale and position of the
visual stimuli. Our recognition scheme for action sequences is in line with a num-
ber of studies demonstrating that action discrimination is selective to temporal
order (Bertenthal and Pinto, 1993; Giese and Poggio, 2003; Jastorff et al., 2006).
These action representations are view dependent, i.e., if the perspective of the
sensor or the orientation of the person with respect to the sensor change, actions
may not be reliably recognized. This is not in contradiction with biological studies
showing that biological motion recognition is strongly dependent on stimulus view
and orientation. Sumi (1984b) as well as Pavlova and Sokolov (2008) demonstrated
that action recognition is impaired by biological motion stimuli being upside-down
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or rotated with respect to the image plane. Similarly, Jastorff et al. (2006) found
that learned visual representations seem to be highly orientation-dependent, i.e.,
discrimination performance increased only when the test patterns presented the
same orientation as in the training. Therefore, view-dependent action recogni-
tion is consistent with the idea that biological motion perception is based on the
matching of learned two-dimensional patterns. On the other hand, there is a
strong motivation to develop artificial systems that account for view-independence
responses, e.g., achieved by means of 3D internal models (Sumi, 1984a). In our
implementation of the GNG and the GWR algorithms, we used the Euclidean
distance as a metric to compute the distance of prototype neurons and neuron
trajectories from the current input. Giese et al. (2008) investigated perceptual
representations of full-body motion finding motion patterns that reside in percep-
tual spaces with well-defined metric properties. They conducted experiments with
2D and 3D joints of prototype trajectories with results implying that perceptual
representations of complex motion patterns closely reflect the metric of movements
in the physical world. Although more precise neural mechanisms that implement
distance computation remain to be explored, we can assume that the Euclidean
distance is an adequate metric to compare articulated movement patterns.

In our models for processing actions in terms of pose-motion features, we have
assumed that the pose and the motion pathways do not interact before the stage
of integration. This is a strong simplification with respect to biological mecha-
nisms, where the two streams comprise interactions at multiple levels (Felleman
and Van Essen, 1991). From a computational perspective, it would be interesting
to investigate the interplay of pose-motion cues and recognition strategies when
one of the two cues is suppressed. Our neural architectures require that both
the pose and motion samples are available for parallel processing and integration.
However, Tyler and Grossman (2011) demonstrated that observers can shift be-
tween pose- and motion-based strategies, depending on the available cue. In other
words, suppressing one of the cues does not fully impair action perception. In
line with this assumption, we could extend our models with inter-lateral connec-
tions so that neurons from distinct pathways can co-activate in the presence of
single-cue input. This mechanism would require network layers to be equipped
with symmetric, inter-network references that link prototype neurons in different
stream populations, and that enable the computing of activation trajectories in
both pathways when only neurons from one pathway are activated. In this setting,
the dynamics of learning and neural mechanisms of integration can be investigated.

8.3 Future Work

Our proposed neural network architectures for action perception are based on a set
of strong simplifications. In this section, we discuss two main research directions
aimed to address some important shortcomings.
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Attention as a Modulator of Action Perception

In this thesis, we focused on feedforward hierarchical learning mechanisms of action
recognition and assessment. In Chapter 6, we introduced recurrent connectivity
in network layers to process sequential visual input with increasingly larger spa-
tiotemporal receptive fields as strongly supported by biological findings (Taylor
et al., 2015; Hasson et al., 2008; Lerner et al., 2011). However, anatomical and
neurophysiological studies have shown that the visual cortex exhibits significant
feedback connectivity between different cortical areas (Felleman and Van Essen,
1991; Salin and Bullier, 1995). In particular, action perception demonstrates strong
top-down modulatory influences from attentional mechanisms (Thornton et al.,
2002) and higher-level cognitive representations such as biomechanically plausible
motion (Shiffrar and Freyd, 1990). More specifically, audiovisual spatial atten-
tion allows animals and humans to process relevant environmental stimuli while
suppressing irrelevant information. Therefore, attention as a modulator in action
perception is also desirable from a computational perspective, thereby allowing
the suppression of uninteresting parts of the visual scene and thus simplifying the
detection of human motion in cluttered environments (e.g., in the robot-human
assistance scenario presented in Chapter 7).

Several brain areas and neural mechanisms have been identified to be involved
in the processing of spatial attention during perception (Driver, 2001). For in-
stance, the midbrain area superior colliculus (SC) plays a crucial role in spatial
attention in terms of target selection and estimating motor consequences such as
eye and head saccades (Krauzlis et al., 2013). The integration of audiovisual stimuli
in the SC has been extensively investigated from a neurophysiological perspective
(Ursino et al., 2014), with different computational approaches modeling the in-
tegration of multiple perceptual cues for triggering spatial attention in line with
neurobehavioral evidence, e.g. with the use of a self-organizing neural architecture
(Bauer et al., 2015). The SC is connected to higher cortical areas such as the vi-
sual and the auditory cortex, both able to process information events that unfold
over larger temporal time scales such as the visual recognition of body actions and
speech. Top-down connectivity from cortical areas is used by the SC to modulate
attentional shifts.

Consequently, future work directions may include the development of a cortico-
collicular architecture aimed at modeling crossmodal attention and accounting for
the interplay between the SC and cortical processing. This architecture could
extend the computational model of multimodal integration performed by the SC
proposed by Bauer et al. (2015) by adding cortical feedback and recurrent self-
organizing networks for the integration of inputs in the spatiotemporal domain as
proposed in Chapter 6. For a biologically plausible model of crossmodal learning,
neural network models should account for the modeling of multimodal integration
principles of co-occurring stimuli such as superadditivity (Calvert et al., 2000),
spatial and temporal congruence (Bushara et al., 2001; Macaluso et al., 2004), and
inverse effectiveness (Stevenson and James, 2009). Multimodal representations in
the SC may serve as input for a cortical visual-auditory integration model, using
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recurrent self-organizing networks to learn inherent spatiotemporal structure, e.g.
recognition of actions from visual and auditory cues. The output from cortical
areas can be used as feedback for the SC model, thereby modulating attentional
shifts as an interplay between bottom-up and top-down processing mechanisms.

This architecture would aim to model the underlying neural mechanisms of
crossmodal attention in terms of cortico-collicular interaction with the aim of re-
producing behavioral responses supported by psychological studies on attentional
shifts from audiovisual stimuli. Furthermore, this model could be embedded in a
robot to test whether crossmodal attention effectively improves action perception.

Life-Long Learning of Action Representations

The neural network architectures proposed in Chapters 4, 5 and 6 as well as other
similar hierarchical models are designed for learning a batch of training actions,
thus implicitly assuming that a training set is available (e.g. Giese and Poggio
2003; Guo et al. 2016). Ideally, this training set contains all necessary knowledge
that can be readily used to predict novel samples in a given domain. However, this
training scheme is not suitable for more natural scenarios where an artificial agent
should incrementally process a set of perceptual cues as these become available
over time. Therefore, life-long learning is considered to be essential for cognitive
development and plays a key role in autonomous robotics for the progressive acqui-
sition of knowledge through experience and the development of meaningful internal
representations during training sessions (Zhou, 1990; Lee, 2012).

It has been argued that hierarchical predictive models with interactions be-
tween top-down predictions and bottom-up regression may provide a computa-
tional mechanism to account for the learning of dynamic input distributions in
an unsupervised fashion (Jung et al., 2015). Predictive coding (Rao and Ballard,
1999; Huang and Rao, 2011) has been widely studied for understanding many as-
pects of brain organization and, in particular, it has been proposed that the visual
cortex can be modeled as a hierarchical network with reciprocal connections where
top-down feedback connections from higher-order cortical areas convey predictions
of lower-order neural activity and bottom-up connections carry the residual pre-
diction errors. Tani and Nolfi (1999) and Tani (2003) proposed that the generation
and recognition of sensory-motor patterns for on-line planning in a robot learning
scenario can be obtained by using recurrent neural network models extended with
prediction error minimization. However, neural network models that implement
a predictive learning scheme to achieve life-long learning have not been yet fully
investigated.

With the use of recurrent self-organizing as proposed in Chapter 6, life-long
learning can be developed in terms of prediction-driven neural dynamics with ac-
tion representations emerging from the interplay of feedforward–feedback connec-
tivity in a self-organizing hierarchy. In our proposed architecture, the growth of the
networks is modulated by their capability to predict neural activation sequences
from the previous network layer. The ability of the architecture to correctly predict
action labels from incoming sequence may be then used to modulate neural activ-
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ity along the hierarchy. More specifically, feedback connectivity from the symbolic
layer containing action labels could have modulatory effects on the growth rate of
lower-level networks so that a sufficient number of prototype neurons are created
as a dictionary of primitives subsequently used to learn spatiotemporal statistics of
the input. This mechanism may be employed to modulate the amount of learning
necessary to adapt to the dynamic input distribution and develop robust action
representations. Convenient threshold values should be chosen so that the layers
adapt to dynamic input (yielding smaller prediction errors) while showing conver-
gence with stationary input. Additionally, other important principles that play a
role in life-long learning such as the influence of reward-driven motivational and
attentional functions (Ivanov et al., 2012) can be taken into account and will be
subject to future research.

8.4 Conclusion

In conclusion, this thesis contributes to the knowledge about multimodal ac-
tion representations which can emerge from deep neural network self-organization.
Studies on biological motion perception have evidenced the hierarchical processing
of stimuli with increasing complexity of representation, together with the devel-
opment of topographic maps driven by the distribution of the input as a common
feature of cortical networks. In the light of these findings, rudimentary models of
experience-driven self-organization can be extended to the design of neural network
architectures for body motion processing.

We proposed a set of neural network architectures for the learning of action
representations from videos. Our approach consists of hierarchically-arranged self-
organizing networks processing action cues in terms of body posture and motion
features. We investigated the use of self-organizing learning for the development
of congruent multimodal action representations from auditory and visual stim-
uli. Furthermore, we proposed a novel temporal extension of a self-organizing
network equipped with recurrent connectivity for dealing with time-varying pat-
terns. Reported experiments showed that deep self-organizing architectures yield
robust action representations, exhibiting comparable performance to state-of-the-
art results also in the case of sensory uncertainty and conflicts. Additionally, we
showed how the same recurrent neural network mechanism can deal with both
action recognition and body motion assessment in real time.

Although a full understanding of the biological mechanisms for multimodal
action perception remains to be determined, we proposed a set of neurally inspired
computational approaches as a basis for modeling the development of higher levels
of cognition in artificial systems.
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Appendix A

List of Abbreviations

ANN artificial neural network.

ASR automatic speech recognition.

BMU best-matching unit.

BPTT backpropagation through time.

DoG difference of Gaussians.

DTW dynamic time warping.

F5 ventral premotor cortex.

FOV field of view.

GNG growing neural gas.

GWR growing when required.

HMM hidden Markov model.

HOG histogram of oriented gradient.

HRI human-robot interaction.

IID interaural intensity difference.

IT inferior temporal cortex.

IRL interactive reinforcement learning.

kNN k-nearest neighbor.

KO kinetic occipital cortex.

LGN lateral geniculate nucleus..
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MST medial superior temporal cortex.

MT middle temporal cortex.

MT+ motion-sensitive area.

MTG middle temporal gyrus.

NG neural gas.

NN neural network.

OF optic flow.

OSS-GWR online semi-supervised growing when required.

PCA principal component analysis.

pSTS posterior superior temporal sulcus.

RL reinforcement learning.

ROS robot operating system.

S-GWR supervised growing when required.

SC superior colliculus.

SOM self-organizing map.

SSL sound source localization.

STG superior temporal gyrus.

STS superior temporal sulcus.

SVM support vector machine.

TDOA time difference of arrival.

TKM temporal Kohonen map.

V1 primary visual cortex.

V2 secondary visual cortex (prestriate cortex).

V4 visual area in the extrastriate visual cortex.

VQ vector quantization.
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Supplementary Algorithms

Algorithm 4 Growing Neural Gas (Fritzke, 1995)

1: Start with a set N of two nodes at random positions wa and wb in the input
space.

2: Apply an input signal ξ according to the input distribution P (ξ).
3: Find the closest unit s1 and the second closest unit s2 to ξ in N .
4: Create a connection between s1 and s2 if it does not exist and set the age of

the connection (s1, s2) to 0.
5: Increment the age of all edges connected to s1.
6: Update the local error of s1 by ∆Es1 = ‖ξ − ws1‖2.
7: Move s1 towards ξ by fraction εb: ∆ws1 = εb(ξ − ws1).
8: Move the neighbors of s1 towards ξ by fraction εn: ∆wn = εn(ξ − wn).
9: Remove all edges with their ages larger than amax and remove nodes without

edges.
10: if the number of inputs signals is an integer multiple of a parameter λ then
11: Determine the node q with the maximum accumulated error.
12: Insert a new node r halfway between q and its neighbor f with the largest

error: N = N ∪ {r} with wr = 0.5(wq + wf ).
13: Insert the edge connecting r with q and f and remove (q, f).
14: Decrease the error of q and f by α: ∆Eq = −αEq, ∆Ef = −αEf .
15: Initialize the error of r with the interpolated error: Er = 0.5 · (Eq + Ef ).
16: Decrease all node error variables by β: ∆Ec = −βEc (∀c ∈ N).
17: end if
18: If the stop criterion is not met (minimum error, max network size, max number

of neurons), go to step 2.
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Algorithm 5 Growing When Required (Marsland et al., 2002)

1: Start with a set A consisting of two random neurons n1 and n2 in the input
space.

2: Initialize an empty set of connections C = ∅.
3: At each iteration, generate an input sample ξ according to the input distribu-

tion P (ξ).
4: For each neuron i calculate the distance from the input ‖ξ − wi‖.
5: Select the best matching neuron and the second-best matching neuron such

that:
s = arg minn∈A ‖ξ − wn‖,
t = arg minn∈A/{s} ‖ξ − wn‖.

6: Create a connection C = C ∪ {(s, t)} if it does not exist and set its age to 0.
7: Calculate the activity of the best matching neuron: a = exp(−‖ξ − ws‖).
8: If (a < activity threshold aT ) and (firing counter < firing threshold fT ) then:

Add a new neuron between s and t: A = A ∪ {(r)}
Create the weight vector: wr = 0.5 · (ws + ξ)
Create edges and remove old edge: C = C∪{(r, s), (r, t)} and C = C/{(s, t)}

9: Else, i.e. no new node is added, adapt the positions of the winning neuron and
its neighbors i:

∆ws = εb · hs · (ξ − ws),
∆wi = εn · hi · (ξ − wi),
where 0 < εn < εb < 1 and hs is the value of the firing counter for neuron s.

10: Increment the age of all edges connected to s: age(s,i) = age(s,i) + 1.
11: Reduce the firing counters:

hs(t) = h0 − S(t)
αb
· (1− exp(−αbt/τb)),

hi(t) = h0 − S(t)
αn
· (1− exp(−αnt/τn)).

12: Remove all edges with ages larger than amax and remove neurons without edges.

13: If the stop criterion is not met, go to step 3.
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Action Sequences
Walking 330     Jogging 594    Sitting 1455      Picking 2067      Falling 3510      Lying Down 3753
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Figure C.1: Example sequences from the KT action dataset (5 frames per second).
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Additional Results

CAD-60

Results on S-GWR learning on the CAD-60 dataset. See next page.

Hand Gesture Recognition

Reported results in (Parisi et al., 2014a) were obtained training the neural network
architecture with 10 gesture classes. We captured RGB-D videos with an ASUS
Xtion sensor at a constant frame rate of 30 Hz. Each gesture was performed 10
times by three different subjects for a total of 300 training gestures. For testing,
each gesture class was performed 30 times by varying sensor distances within the
operation range. We run experiments on the 300 testing gestures with single-cue
information, i.e. motion and shape, and their combination. The recognition result
is based on the statistical mode of the last 3 output labels obtained from the
network. For our test set, the average accuracy increase on using combined cues
over motion and shape inputs individually is 17% and 13% respectively. Multi-
cue combination showed better results also compared to choosing the best result
between single-cue approaches, with an average improvement of 10%.
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Figure D.1: Evaluation of the system on a set of 10 hand gestures (Parisi et al.,
2014a).
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Table D.1: Precision, recall, and F-score of S-GWR learning on the five environ-
ments of the CAD-60 dataset.

Location Activity Precision Recall F-score

Office talking on the phone 94.1 92.8 93.4

drinking water 92.9 91.5 92.2

working on computer 94.3 93.9 94.1

writing on whiteboard 95.7 94.0 94.8

Average 94.3 93.1 93.7

Kitchen drinking water 93.2 91.4 92.3

cooking (chopping) 86.4 86.7 86.5

cooking (stirring) 88.2 86.2 87.2

opening pill container 90.8 84.6 87.6

Average 89.7 87.2 88.4

Bedroom talking on the phone 93.7 91.9 92.8

drinking water 90.9 90.3 90.6

opening pill container 90.8 90.1 90.4

Average 91.8 91.7 91.7

Bathroom wearing contact lens 91.2 87.0 89.1

brushing teeth 90.6 88.0 89.3

rinsing mouth 87.9 85.8 86.8

Average 89.9 86.9 88.4

Living room talking on the phone 94.8 92.1 93.4

drinking water 91.7 90.8 91.2

relaxing on couch 93.9 91.7 92.8

talking on couch 94.7 93.2 93.9

Average 93.8 92.0 92.9
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• Barros, P., Parisi, G. I., Weber, C., Wermter, S. (2016) Emotional Atten-
tion Modulation Applied to Expression Perception with Deep Neural Models.
Neurocomputing, in press.

• Parisi, G. I., Tani, J. Weber, C., Wermter, S. (2016) Emergence of Multi-
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nitive Systems Research, doi:10.1016/j.cogsys.2016.08.002.

• Parisi, G. I., Weber, C., Wermter, S. (2015) Self-Organizing Neural Inte-
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Book Chapters

• Parisi, G. I., Wermter, S. (2016) A Neurocognitive Robot Assistant for
Robust Event Detection. Trends in Ambient Intelligent Systems: Role of
Computational Intelligence, Series ”Studies in Computational Intelligence”,
pp. 1-28, Springer.

Conference Papers

• Cruz, F., Parisi, G. I., Twiefel, J., Wermter, S. (2016) Multi-Modal Inte-
gration of Dynamic Audiovisual Patterns for an Interactive Reinforcement
Learning Scenario. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 759–766, Daejeon,
Korea.
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with Hierarchical Neural Network Learning. In Proceedings of the Interna-
tional Conference on Artificial Neural Networks (ICANN), pages 472–479,
Barcelona, Spain.
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Workshop Papers and Extended Abstracts
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Földiák, P. (1991). Learning invariance from transformation sequences. Neural
Computation, 3(2):194–200.

Fonlupt, P. (2003). Perception and judgement of physical causality involve different
brain structures. Cognitive Brain Research, 17(2):248 – 254.

Foxe, J. J., Morocz, I. A., Murray, M. M., Higgins, B. A., Javitt, D. C., and
Schroeder, C. E. (2000). Multisensory auditorysomatosensory interactions in
early cortical processing revealed by high-density electrical mapping. Cognitive
Brain Research, 10(12):77 – 83.

Fritzke, B. (1995). A growing neural gas network learns topologies. In Advances
in Neural Information Processing Systems 7, pages 625–632. MIT Press.

Fritzke, B. (1997). A self-organizing network that can follow non-stationary dis-
tributions. In Proceedings of the International Conference on Artificial Neural
Networks (ICANN), pages 613–618. Springer.

146



Bibliography

Gaglio, S., Lo Re, M., and Morana, M. (2014). Human activity recognition process
using 3-D posture data. IEEE Trans. on Human-Machine Systems, 99:1–12.

Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. (1996). Action recognition
in premotor cortex. Brain, 2:593–609.

Garcia, J. O. and Grossman, E. D. (2008). Necessary but not sufficient: Mo-
tion perception is required for perceiving biological motion. Vision Research,
48(9):1144–1149.

Gentner, D. (1982). Why nouns are learned before verbs: Linguistic relativity ver-
sus natural partitioning. Language development: Language, thought,and culture,
2:301–334.

Georgiou, G. (2006). Exact interpolation and learning in quadratic neural net-
works. In Proceedings of the International Joint Conference on Neural Networks
(IJCNN), pages 230–234.

Georgiou, G. and Voigt, K. (2013). Self-organizing maps with a single neuron. In
Proceedings of the International Joint Conference on Neural Networks (IJCNN),
pages 1–6.

Giese, M., Thornton, I., and Edelman, S. (2008). Metrics of the perception of body
movement. Journal of Vision, 8(9):1–18.

Giese, M. A. (2015). Biological and body motion perception. Johan Wagemans
(ed.):The Oxford Handbook of Perceptual Organization, Oxford University Press,
Oxford.

Giese, M. A. and Poggio, T. (2003). Neural mechanisms for the recognition of
biological movements. Nature Reviews Neuroscience, 4(3):179–192.

Giese, M. A. and Rizzolatti, G. (2015). Neural and computational mechanisms of
action processing: Interaction between visual and motor representations. Neu-
ron, 88(1):167–180.

Goodhill, G. and Sejnowski, T. (1997). A unifying objective function for topo-
graphic mappings. Neural Computation, 9:1291–1303.

Gorelick, L., Blank, M., Shechtman, E., Irani, M., and Basri, R. (2005). Actions as
space-time shapes. In Proceedings of the International Conference on Computer
Vision (ICCV), pages 1395–1402.

Gould, E. (2007). How widespread is adult neurogenesis in mammals? Nature
Reviews Neuroscience, 8(6):481–488.

Griffith, S., Subramanian, K., Scholz, J., Isbell, C., and Thomaz, A. (2013). Policy
shaping: Integrating human feedback with reinforcement learning. In Advances
in Neural Information Processing Systems, pages 2625–2633.

147



Bibliography

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M. S. (2016). Deep
learning for visual understanding: A review. Neurocomputing, 187:27 – 48.

Gupta, R., Chia, A. Y.-S., and Rajan, D. (2013). Human activities recognition
using depth images. In ACM International Conference on Multimedia, pages
283–292.

Hagenbuchner, M., Sperduti, A., , and Tsoi, A. C. (2003). A self-organizing map for
adaptive processing of structured data. IEEE Transactions on Neural Networks,
14(3):491–505.

Han, J., Shao, L., Xu, D., and Shotton, J. (2013). Enhanced computer vision with
Microsoft Kinect sensor. IEEE Transactions on cybernetics, 43(5):1318–1334.

Hasson, U., Yang, E., Vallines, I., Heeger, D. J., and Rubin, N. (2008). A hierarchy
of temporal receptive windows in human cortex. The Journal of Neuroscience,
28(10):2539–2550.

Hazelhoff, L., Han, J., and de With, P. (2008). Video-based fall detection in the
home using principal component analysis. Proceedings of the 10th International
Conference on Advanced Concepts for Intelligent Vision Systems, pages 298–309.

Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory.
Wiley, New York.

Hiris, E. (2007). Detection of biological and nonbiological motion. Journal of
Vision, 7(12):1–16.

Hirsch, H. (1985). The role of visual experience in the development of cat striate
cortex. Cellular and Molecular Neurobiology, 5:103–121.

Hirsch, H. and Spinelli, D. (1970). Visual experience modifies distribution of hori-
zontally and vertically oriented receptive fields in cats. Science, 168(3933):869–
871.

Hirsch-Pasek, K., Golinkoff, R., and Hollich, G. (2000). An emergentist coalition
model for word learning: mapping words to objects is a product of the interaction
of multiple cues. In Becoming a Word Learner: a debate on lexical acquisition,
pages 136–165. Oxford University Press.

Hoglund, A. J., Hatonen, K., and Sorvari, A. S. (2000). A computer host-based
user anomaly detection system using self-organizing maps. In Proceedings of
International Joint Conference on Neural Networks (IJCNN), pages 411–416.

Hosoya, H. and Hyvärinen, A. (2016). Learning visual spatial pooling by strong
PCA dimension reduction. Neural Computation, 28(7):1249–1264.

Hu, W., Tan, T., Wang, L., and Maybank, S. (2004a). A survey on visual surveil-
lance of object motion and behaviors. IEEE Transactions on Systems, Man and
Cybernetics, 34(3):334–352.

148



Bibliography

Hu, W., Xie, D., and Tan, T. (2004b). A hierarchical self-organizing approach
for learning the patterns of motion trajectories. IEEE Transactions on Neural
Networks, 15(1):135–144.

Huang, Y. and Rao, R. P. N. (2011). Predictive coding. Wiley Interdisciplinary
Reviews: Cognitive Science, 2(5):580–593.

Hubel, D. H. and Wiesel, T. H. (1962). Receptive fields, binocular and functional
architecture in the cat’s visual cortex. Journal of Physiology, 160:106–154.

Hubel, D. H. and Wiesel, T. H. (1967). Cortical and callosal connections concerned
with the vertical meridian of visual fields in the cat. Journal of Neurophysiology,
30:1561–1573.

Hubel, D. H. and Wiesel, T. H. (1970). The period of susceptibility to the psy-
chological effects of unilateral eye closure in kittens. Journal of Physiology,
206:419–436.

Hubel, D. H., Wiesel, T. N., and LeVay, S. (1977). Plasticity of ocular dominance
columns in monkey striate cortex. Philosophical Transactions of the Royal So-
ciety of London, Series B: Biological Sciences, 278:377–409.

Ivanov, I., Liu, X., Clerkin, S., Schulz, K., Friston, K., Newcorn, J. H., and Fan,
J. (2012). Effects of motivation on reward and attentional networks: an fMRI
study. Brain and Behavior, 2(6):741–753.

Jain, A., Tompson, J., LeCun, Y., and Bregler, C. (2015). Modeep: A deep learning
framework using motion features for human pose estimation. In Proceedings
of the Asian Conference on Computer Vision (ACCV), pages 302–315, Cham.
Springer International Publishing.

Jastorff, J., Kourtzi, Z., , and Giese, M. A. (2006). Learning to discriminate
complex movements: biological versus artificial trajectories. Journal of Vision,
6(8):791–804.

Jégou, H., Douze, M., Schmid, C., and Pérez, P. (2010). Aggregating local de-
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