Model-based Regression Testing
of Evolving Software Systems

Dissertation with the aim of achieving the doctoral degree of
Doktor der Naturwissenschaften (Dr. rer. nat.)

Department of Software Engineering and Construction Methods
Faculty of Mathematics, Informatics, and Natural Sciences
University of Hamburg

submitted by
M.Sc. Qurat-Ul-Ann Farooq

Hamburg, 2015

Date of Oral Defense: 24.06.2016

The following evaluators recommend the admission of the dissertation:

Name: Univ.-Prof. Dr.-Ing. habil. Matthias Riebisch

Name: Prof. Dr. Uwe Affimann

Abstract

Changes are required to evolve software systems in order to meet the requirements
emerging from technological advances, changes in operating platforms, end user needs,
and demands to fix errors and bugs. Studies have shown that about one third of a
project’s budget is spent to test these changes to ensure the system correctness. To
minimize the testing cost and effort, model-based regression testing approaches se-
lect a subset of test cases earlier by tracing the changes in analysis and design models
to the tests. However, modeling of complex software systems demands to cover var-
ious views, such as structural view and behavioral view. Dependency relations exist
between these views due to overlapping and reuse of various concepts. These depen-
dency relations complicate regression testing by propagating the changes across the
models of different views and tests. Change impact analysis across the models and
tests is required to identify the potentially affected test cases by analyzing the change
propagation through dependency relations.

This thesis presents a holistic model-based regression testing approach, which ex-
ploits the interplay of changes and dependency relations to forecast the impact of
changes on tests. A baseline test suite, the one used for testing the stable version of
software, is required for the selection of test cases. To enable a test baseline, our ap-
proach supplements a model-driven test generation approach that uses model transfor-
mations to generate various test aspects. The approach uses BPMN and UML models
and generates test models expressed as UML Testing Profile (UTP).

Dependency relations are recorded prior to the impact analysis by using a two-fold
approach; during the generation of baseline test suite and by using a rule-based de-
pendency detection approach. This prevents repeated search of dependency relations
for each change and makes our approach less time extensive. Change impact analysis
across tests is supported by integrating a rule-based impact analysis approach. The
approach enables a set of rules, which analyze previously recorded dependency re-
lations and change types to further propagate the impact of a change. To precisely
define various changes in models, the approach also synthesizes a change taxonomy
for a consistent representation of complex changes in the models. Finally, to distin-
guish between various potentially affected tests, our approach presents the concept
of test classification rules. Test classification rules analyze the type of an affected el-
ement, the type of the applied change, and other related elements to decide whether
the affected element is obsolete, unaffected, or required for regression testing.

To demonstrate the applicability of our approach in practice, we adapted our ap-
proach for the domain of business processes and support BPMN, UML, and UTP mod-
els. The tool support for our approach is available in two prototype tools; VIATRA Test
Generation Tool (VIG) and EMFTrace. VTG generates UTP test baseline from BPMN
and UML models using model transformations. EMFTrace is a tool, which was built
initially to support the rule-based dependency detection among models. It is further
extended to support the rule-based impact analysis and rule-based test classification.
These tools help us to evaluate our approach on a case study from a joint industrial
project to enable business processes of a field service technician on mobile platforms.
The results of our evaluation show promising improvements with an average reduction
of the test cases by 46% achieved with an average precision and recall of 93% and 87%
respectively.

ii

Kurzfassung

Software Systeme erfordern kontinuierliche Anderungen, um sie an die Anforderungen
neuer Technologien, Einsatzumgebungen und Kundenwiinsche anzupassen sowie um
bestehende Defekte zu beheben. Dabei wurde durch Studien nachgewiesen, dass bis zu
einem Drittel der gesamten Projektkosten allein auf das Testen der Software nach Ande-
rungen entfallen, um weiterhin deren Korrektheit zu gewéhrleisten. Um diese Kosten zu
minimieren, kdnnen durch modellbasiertes Testen nur die absolut notwendigen Testfal-
le durch die Nachverfolgung von Anderungen vorselektiert werden. Durch den redu-
zierten Testaufwand ist es dariiber hinaus auch méglich, selbst in noch frithen Entwick-
lungsphasen systematische Regressionstests auszufiihren. Die Modellierung komplexer
Systeme setzt jedoch die Nutzung verschiedener Sichten voraus, so z.B. die Struktur-
oder Verhaltenssicht eines Systems. Aufgrund von Uberschneidungen und Abhéngig-
keiten dieser Sichten breiten sich Anderungen iiber mehrere Sichten und deren Modelle
hinweg aus und erschweren somit das Regressionstesten. Mithilfe von Impact Analyse
muss diese Anderungsausbreitung erfasst werden, um damit die fiir die Regressions-
tests einzuschlieffenden Testfélle zu identifizieren.

Diese Arbeit prasentiert einen umfassenden Ansatz fiir modellbasiertes Regressi-
onstesten, der das Zusammenspiel verschiedener Typen von Abhingigkeiten und An-
derungsoperationen fiir die Auswahl von Testfdllen auswertet. Der Ansatz zeichnet die
zu untersuchenden Abhéngigkeiten zunadchst auf, um eine wiederholte Abhédngigkeits-
analyse pro Anderungsoperation zu vermeiden. Zur Ermittlung der Auswirkungen der
Anderungen auf Modelle und Testfille, integriert der Ansatz ein regelbasiertes Impact
Analyse Verfahren, welches das Zusammenspiel von Anderungsoperationen und Ab-
héangigkeitsbeziehungen analysiert. Die verwendeten Regeln bestimmen die Ausbrei-
tung von Anderungen, indem sie die Abhédngigkeitsbeziehungen zwischen Modellen
untersuchen. Fiir die Definition von Anderungen stellt diese Arbeit eine Taxonomie
von Anderungsoperationen bereit, die die konsistente Modellierung auch von komple-
xen Operation ermoglicht. Da das Vorhandensein einer Testbaseline eine wesentliche
Voraussetzung des Regressionstestens ist, stellt der Ansatz zusitzlich ein modellgetrie-
benes Testerzeugungsverfahren vor, um eine solche Testbaseline durch Modelltransfor-
mationen zu erzeugen. Um zwischen den betroffenen Testféllen weiter differenzieren zu
konnen, stellt diese Arbeit ein weiteres Konzept vor, um Testfdlle entweder als Obsolet,
Wiederverwendbar, Testbar, oder Neu zu kategorisieren.

Um die Anwendbarkeit des Ansatzes auch fiir praktische Probleme zu demonstrie-
ren, wurde der Ansatz fiir die Doméne der Geschéftsprozesse erweitert und hinsichtlich
der Unterstiitzung von BPMN, UML sowie dem UML Testing Profile (UTP) angepasst.
Geeignete Werkzeugunterstiitzung wird dabei durch zwei Prototypen bereitgestellt: das
VIATRA Test Generation Tool (VTG) und EMFTrace. Wahrend VTG die Testbaseline
aus BMPN- und UML-Modellen durch Modelltransformationen generiert, ermoglicht
EMFTrace eine automatisierte Suche nach Abhingigkeiten zwischen diesen Modellen
und bietet dariiber hinaus Unterstiitzung fiir regelbasierte Impact Analyse sowie regel-
basierte Testklassifizierung. Mithilfe beider Werkzeuge wurde eine Fallstudie im Rah-
men eines industriellen Kooperationsprojektes durchgefiihrt, im Laufe derer typische
Geschiftsprozesse von Servicetechnikern auf mobile Endgeréte abgebildet wurden. Die
Ergebnisse dieser Studie zeigen dabei deutliche Verbesserungen hinsichtlich Precision
und Recall und der Reduktion des Testaufwands sowie dem Abdeckungsgrad der Test-
talle durch den vorgestellten Ansatz fiir modellbasiertes Regressionstesten.

iii

Acknowledgment

I would like to thank all those who supported me throughout my doctorate.
First of all, I would like to express my deepest gratitude for my supervisor
Prof. Matthias Riebisch for his continuous mentoring, guidance, and en-
couragement. I cannot thank him enough for giving me this opportunity,
keeping me motivated, giving required feedback, and having constructive
discussions. I thank him for his patience and support during those times
when I was not at my best. I would like to thank Prof. Uwe Afiman for
giving his valuable time to review my thesis. I am really grateful to him
for providing useful feedback to improve this menuscript. I am also very
thankful to Steffen for being such a great support. I am really lucky to find a
friend like him who was always so full of ideas and positive energy. I want
to thank my colleagues at [Imenau, who always supported me in every pos-
sible way. My sincere thanks to Prof. Phillipow, Nils, Heiner', Patrick, and
all others for everything.

I am very grateful to my colleagues at Hamburg. Though, we spent very lit-
tle time together, all of you made me really welcome. My sincere thanks to
Soliman and Sabastian for their useful comments during the thesis writeup.
I want to take this opportunity to thank all my teachers and colleagues in
Pakistan, who motivated me to peruse a doctorate and trusted my abilities.
A lot of respect and gratitude for Prof. Zafar Malik for being an inspiration
and a continuous source of encouragement. My deepest regards for my
parents, my brothers, and the whole family for their encouragement and
continuous love. Special thanks to my other half Naseer for his tremendous
support, understanding, and patience. Finally, I would like to say thanks
to my friends for being there, whenever I needed them during this long pe-
riod of time. Heartiest thanks to Sana, Noman Bhai, Iram, Sadaf, and all
others.

iv

Table of Contents

List of Figures viii
List of Tables X
Abbreviations xi
1 Introduction and Motivation 1
1.1 ResearchQuestions i 3

12 Scope 3

1.3 ThesisGoals e 4

1.4 Contributions e 6

1.5 ThesisStructure e 8

2 Fundamentals and Preliminaries 10
2.1 Model-based Regression Testing Problem 10
22 Problem Analysis 13
221 The Role of System Viewsand Models 13

2.2.2 Cross View Dependency Relations 15

223 TheNotionofChange 16

2.2.4 The Test Baseline Using Model-Based Testing 16

2.3 Introduction to Mobile Field Service Technician Case Study 18
24 ChapterSummary. 19

3 Analysis and Evaluation of the State of the Art 20
3.1 Evaluation of Model-based Regression Testing Approaches 20

3.1.1 Evaluation Criteria for Model-based Regression Testing Approaches 21
3.1.2 Evaluation of Model-based Regression Testing Approaches based
on the Evaluation Criteria 23
3.2 Analysis of State of the Art in Other Relevant Areas 27
3.2.1 Analysis of Business Process-based Regression Testing Approaches 27
3.2.2 Analysis of Test Generation Approaches for Business Processes . 28

3.2.3 Analysis of Change Classification Schemes 28

3.24 Analysis of Impact Analysis Approaches 30

3.2.5 Analysis of Approaches for Support of Software Views 31

3.2.6 State of the Art Business Process Modeling Approaches 32

3.2.7 Analysis of State of the Art on Test Dependencies 33

33 ChapterSummary. 34
4 Overview of Proposed Model-based Regression Testing Approach 35
4.1 Proposed Model-based Regression Testing Approach 36
4.1.1 Baseline Test Generation 37

412 Recording of Dependency Relations 37

41.3 Change Application 38

414 Rule-based Impact Analysis 39

41.5 Regression Test Classification 39

42 Adapting the Approach to Business Processes 40
42.1 Motivating Scenario for Business Processes 40

422 Adapting Problem and Solution for Business Processes
4.3 Relation of the Approach with General SDLC
44 ChapterSummary.

Baseline Test Generation—A Model-driven Test Generation Approach

5.1 Requirements to Enable Model-driven Test Generation for Business Pro-
CESSES . v o v i e e e

5.2 Our Approach for Model-driven Testing of Business Processes
52.1 Mappings and MappingRules
522 UTP Test Architecture Generation
5.2.3 UTP Test Behavior Generation
524 UTP Test Data Generation

5.3 Applying Test Generation Approach on HandleTourPlanningProcess . .

54 ChapterSummary. o

Recording of Dependency Relations-between Models and Tests
6.1 Fundamentals of Dependency Relations
6.1.1 Origin of Dependency Relations
6.1.2 Classification of Dependency Types
6.2 Dependency Relations among Business Process Models and Tests
6.2.1 Intra-Model Dependency Relations
6.2.2 Cross-Model Dependency Relations
6.3 Recording Dependency Relations for Tests
6.3.1 Recording Dependency Relations During Test Generation .
6.3.2 Recording Dependency Relations Using Detection Rules
6.3.3 Demonstrating Dependency Relations for HandleTourPlanning-
Process e
64 ChapterSummary.

Change Application

7.1 Applying Changes from Pre-Defined Change Catalogue

72 A Taxonomy of Change Types
7.2.1 Representing Models as Labeled Graph
722 ChangeTypes

7.3 Application of Taxonomy on Models of Structural and Process View
7.3.1 Adapting Change Taxonomy for Models of Structural View . . .
7.3.2 Adapting Change Taxonomy to the Models of Process View . . .

74 Demonstrating Changes for HandleTourPlanningProcess

75 ChapterSummary.

Rule-based Impact analysis Across Tests

8.1 Insight to Rule-based Impact Analysis Approach
8.1.1 DefiningImpactRules
8.1.2 Impact Analysis Process and Activities

8.2 Impact Rules Covering Business Process Views

8.3 Demonstrating Rule-based Impact Analysis on HandleTourPlanningPro-
CESS . v v i e
8.3.1 Impact Analysis for the Application of Change1
8.3.2 Impact Analysis for the Application of Change2

84 ChapterSummary.

vi

10

11

12

Regression Test Classification

9.1 Rule-based Test Classification
9.1.1 Concept of Test Classification
9.1.2 TestClassificationRules
9.1.3 Test ClassificationProcess

9.2 C(Classification of UTP TestElements
9.2.1 C(lassification of UTP Test Architecture Elements
9.2.2 C(lassification of UTP Test Behavior Elements

93 ChapterSummary.

Automation and Tool Support
10.1 Tool Support for our Baseline Test Generation Approach using VIG . . .
10.2 Tool Support for our Regression Testing Approach by using EMFTrace .
10.2.1 Using EMFTrace for Dependency Detection and Rule-based Im-
pactAnalysis L
10.2.2 Extending EMFTrace for Test Classification
10.3 ChapterSummary

Evaluation

11.1 The Evaluation Protocol
11.1.1 EvaluationMetrics
11.1.2 The Experiment Execution Process

11.2 EvaluationResults e
11.2.1 Evaluation Results of Change Scenariol
11.2.2 Cumulative EvaluationResults

11.3 Threatsto Validity

114 ChapterSummary

Conclusion and Future Work

12.1 Summary of Contributions
12.2 Critical Review e
12.3 Future Work e

State of the Art Analysis Tables

Mappings and Mapping Rules for UTP Test Generation
B.1 Mapping rules for Test Architecture Generation
B.2 Mapping Rules for Test Behavior Generation

C List of Dependencies Between System Views

E

F

G

Change Types and Scenarios
Rules
List of Own Publications

The Experiment Data

Bibliography

vii

121
122
124

125
125
127
129
130
130
131
136
137

139
139
142
143

144

150
150
152

160

168

174

192

194

200

List of Figures

1.1 A Structured Overview of Thesis Contributions. 6
2.1 The Mobile Device Depicting a Field Tour. (In German) 19
3.1 The Evaluation Criteria of MBRT Approaches. 22
3.2 The Evaluation of MBRT Approaches forInq. 2toInq.6.. 24
3.3 The Evaluation of MBRT Approaches for Inq.7 toInq.16. 25
3.4 The Evaluation of MBRT Approaches for Inq. 17 toInq.25. 26
4.1 Overview of Model-based Regression Testing Approach. 36
42 Coverage of Views for Business Processes. 41
4.3 A Scenario Representing System Models belonging to Various Views of
Business Processes. oL 42
44 Relation of our approachtoSDLC. 45
5.1 Model-driven Testing using BPMN, UML, and UTP. 48
5.2 Test Behavior Generation Activities. 53
5.3 An excerpt of the test architecture and test behavior for Tour Planning Pro-
CESS. v v v e 56
6.1 A Taxonomy of Dependency Relations. 62
6.2 Categories of Dependency Relations between Models and Tests. 64
6.3 Examples of Cross-Model and Intra-Model Dependency Relations. . . . 67
6.4 Example Dependency Relations between Various Views of Handle Tour
Planning Process. 70
7.1 Tasks to Support Change Application in our Approach. 72
72 ChangeTypes. e 73
7.3 The Elements of the HandleTourPlanningProcess Relevent to the Change
Scenarios.. 80
8.1 Interplay of Changes and Dependency Relations for Rule-based Impact
Analysis. 84
8.2 Tasks for Rule-based Impact Analysis. 87
8.3 Impact Propagating Through Chain of Dependency Relations. 87
8.4 Consequent Impact Rules for Structural and Process View. 88
8.5 Dependencies and Results of Applying the Change AddOperation. . . . 89
8.6 Dependencies and Result of Applying Change 1 on HandleTourPlan-
ningScenario. e 90
8.7 Impact Report for Add Operation in ProcessClass. 91
8.8 Dependencies and Result of Applying Change Replace ServiceTask. . . . 91
8.9 Dependencies and Result of Applying Change 2 on HandleTourPlan-
ningScenario. L 92
91 C(lassifyingaTestElement. 95
9.2 The Test Classification Meta-Model. 98
9.3 Process for the Classification of Test Elements. 99
10.1 Architecture of the Baseline Test Generation Tool-VIG. 117

viii

10.2

10.3
10.4
10.5

10.6

11.1
11.2
11.3
114
11.5
11.6

The Mapping Rule and Corresponding Transformation Rule for Partici-
pant. ... 119
Architecture of the Extended EMFTrace Tool. 120
Required Models and Meta-Models for the Implementation of Approach.121
A Sequence Diagram Depicting High Level Interactions of Classes to

Implement Test Classification Rules. 122
Test Classification Report in EMFTrace for a Reusable Test Element. . . . 124
Precision, Recall, Coverage,and Reduction achieved on CS1. 130
Precision, Recall, Coverage,and Reduction achieved on CS2. 131
Cumulative Results for the Precision of Approaches. 131
Cumulative Results for the Recall of Approaches.. 132
Evaluation Results for the Coverage. 134
Evaluation Results for the Reduction. 134

ix

List of Tables

3.1
3.2

51
52

8.1
8.2

11.1
11.2
11.3

Al
A2
A3

B.1

C1
C2

D.1
D.2
D.3

E1
E.2
E3

The Inquiries Corresponding to Criteria
Different Software Views and Their Adherence to Purposes

Mappings between UML,BPMN, and UTP Test Architecture Elements. .
Mappings Data Elements.

Impact Rules for the Change AddOperation.
Impact Rules for the change Replace ServiceTask..

Statistics about size of the casestudy.
Variables and Results for Change Scenarios.
Overall Analysis Based on Evaluation Criteria for MBRT Approaches. .

Analysis based on the criteria C1 and C2 in the category Scope.
Analysis based on criteria C5 and C6 in the category Core.
Analysis based on criteria C9 and C10 in the category Applicability.

Mappings between Collaboration and Activity diagram.

Dependency Relations for TestView of Business Processes.
Dependency Relations for Process View and Structural View.

Change Types for BPMN Collaboration Diagrams.
Change Types for Models of structural view.
Change Types for UTP Test Architecture Elements.

Rules for Detecting Dependency Relations between Models and Tests. .
Impact Rules between Modelsand Tests.
Test Classification Rules for UTP Test Elements.

50
55

90
92

127
133

. 135

145
146

. 148

153

Abbreviations

CPM Category Partition Method

DFS Depth First Search

EMF Eclipse Modeling Framework

MBRT Model-based Regression Testing

MBT Model-based Testing

MDT Model-driven Testing

MOPS Adaptive Planning and Secure Execution of Mobile Processes in Dynamic
Scenarios

OMG Object Management Group

OWL Web Ontology Language

PIM Platform Independent Model

PIT Platform Independent Test Model

RNS Random Name Similarity-based test selection approach

SUT System Under Test

TTCN Testing and Test Control Notation

URN User Requirement Notation

UTP UML Testing Profile

VIATRA Visual Automated Model Transformations

XMI XML Meta-data Interchange

xi

Introduction and Motivation

1.1 ResearchQuestionst tueeneenen. 3
12 SCope . . . it e e e e e e e 3
1.3 ThesisGoals. it i ittt ittt e ettt e e e e e e 4
1.4 Contributions e e e e e e 6
1.5 ThesisStructure eeennnn.. 8

Software systems evolve continuously to accommodate new requirements, new tech-
nologies, and end user needs. These changes can adversely affect the quality of the
software systems due to unintended side effects by introducing additional defects and
errors. Testing as an instrument to detect these errors requires substantial effort and
often consume a higher percentage of the project budget. Studies have shown that the
cost spent on the testing budget can consume about one third of the total cost of the
project [Har98][LW89][Whi00]. This includes the cost of developing tests, executing
them, comparing their results, and then tracking the detected failures [OTPS98].

Regression testing aims to reduce the testing effort and consequently saves the cost
by limiting the test execution to a subset of test cases corresponding to the changes
[RH96]. One of the approaches to perform regression testing is to use different versions
of source code, compare them to obtain a set of changes, and trace these changes to the
test cases. Although, precision of the source code-based regression testing approaches
might be higher, these approaches fail to deal with the complexity of larger systems.
Moreover, overall efficiency of the regression testing process is compromised as the
regression testing activity can only be started after the implementation. It is believed
that starting the regression testing activity earlier in the development life cycle can
reduce the testing cost by providing an early assessment of the test effort, enabling
the test planning prior to the implementation, and early tracking the detected failures
[BLY09].

Model-based regression testing (MBRT) is another complementary approach, which an-
alyzes the changes in analysis and design models and traces them to the potentially
affected tests. Thus, the overall test effort can be reduced by starting the regression
testing activity before the actual implementation of the changes [BLY09]. However, the
representation of complex software systems demands for modeling different views to
represent their structure, behavior, and other relevant aspects [Gom11, FPK*12, PE0O].
These views represent different aspects of the same system, which might result in over-
lapping of concepts and introduce dependency relations between models representing
these views. Changes propagate through these dependency relations and can poten-
tially impact the tests. Change impact analysis across models and tests is required
to asses the change propagation through dependency relations to find potentially im-
pacted subset of tests for regression testing [BLS02, BG00, WO03]. Dependency rela-

tions are of crucial importance to support change impact analysis, as they propagate
changes across several models and tests.

Our analysis of the state of the art model-based regression testing approaches shows
that they provide limited support for different types of dependency relations among
models of various system views and tests. Moreover, if dependency relations are sup-
ported to some extent, they are repeatedly searched for each change, which is time ex-
tensive. An effective solution to deal with this issue is to record dependency relations
prior to impact analysis, as the dependency relations can be reused for each change.
However, this aspect is overlooked by the mainstream regression testing literature.

Besides the issue of dependency relations, the change support provided by these ap-
proaches is also insufficient. Most of the approaches use inconsistent and incomplete
set of changes by considering only a set of basic changes in models, such as add and
delete. Nevertheless, changes in models can be complex, for example, moving, merg-
ing, or replacing of model elements. Such complex changes are not supported by the
existing model-based regression testing approaches.

Another important aspect neglected by the existing model-based regression approaches
is that how the baseline test suite is represented and generated? A baseline test suite is the
one used for testing the stable version of the software before the changes and its subset
is required to be selected during regression testing. Recent developments in model-
based testing emphasize the need of using test models to express various aspects of
tests, such as test architecture, test behavior, and test data [BDG'07, SS09]. These aspects
represent the test view of a system and a baseline test suite should constitute all these
aspects. These aspects of the test view are required to be analyzed to provide a thor-
ough coverage during regression testing. However, the existing model-based regres-
sion testing approaches lack the support for test models and standard test specification
languages.

Furthermore, to enable the application of approaches for a wide range of models and
test specification languages, the ability to integrate new models and test specifica-
tion languages by means of extendable and flexible solutions is required [ZFKB12].
Similarly, the system modeling and test specification languages also evolve to support
new concepts. In these cases, most of the existing model-based regression testing ap-
proaches require substantial effort to keep their tool-set stable and up-to-date and re-
quire modifications in the source code.

Considering the limitations of the state of the art model-based regression testing ap-
proaches, the need for a model-based regression testing approach to address these is-
sues is evident. Various characteristics of the required approach include: (1) inherent
support for dependency relations of various types among models of different system
views and various test aspects, (2) support for complex changes in models, (3) explicit
support for baseline test generation approach to cover various aspects of the test view,
and finally (4) the capability to extend the approach easily to support new and evolved
modeling and test specification languages.

1.1 Research Questions

The research questions presented in this section enable us to focus on the core issues
and problems that we want to address in this thesis. Later, we derive the goals of our
work based on these research questions.

RQ1: If a change is applied to a model belonging to a particular view of a software
system, how can a systematic approach be used to propagate this change using
dependency relations to identify a subset of required regression tests?

RQ2: How can different types of dependency relations between models of various
views and tests be identified, recorded prior to impact analysis, and used to prop-
agate changes to the tests, with the aim of finding impacted tests?

RQ3: How can simple and complex changes in models be defined and used to realize
various change scenarios to initiate model-based regression testing?

RQ4: How can test models be generated from existing specification and design models
to enable a test baseline providing coverage of various aspects of the test view?

RQ5: How can various parts of test models, affected by changes, be classified to distin-
guish between various types of regression tests?

RQ6: How can extensibility and flexibility be integrally supported to address the evo-
lution of models and to generalize the approach for a wide range of modeling
and test specification languages?

1.2 Scope

The scope of this thesis is limited to business processes, which are used to demonstrate
various concepts presented in the thesis. We do not consider other domains like em-
bedded systems or communication intensive systems. However, we believe that the
concepts presented in the thesis are applicable to general software systems and can be
adapted and extended to support other domains as well.

The focus of the thesis is further on using dependency relations to perform impact
analysis across models and tests to select a subset of test cases for regression testing.
Therefore, the thesis focuses on dependency relations across models representing dif-
ferent views of business processes. The thesis covers the models that represent struc-
tural view, behavioral view, and process view. Moreover, the thesis do not cover aspects
related to source code, configurations, or deployment artifacts. Similarly, the approach
presented in the thesis uses test models to express the test view. Although, test code
is also used to some extent during the experimental evaluations, the approach do not
provide support for automated test code generation. Thus, the test code used during
the experimental evaluation is manually developed. Moreover, the focus of this work
is on the selection of a test subset only and we do not aim for the test execution and

test result analysis techniques. These techniques are more relevant to the test code
generation, which is not in the scope of our current work.

Different metrics, such as cost of test cases, fault severity, and test execution history, can
also be used to identify the test cases required for regression testing. However, the ap-
proach presented in the thesis do not address such metrics, as we believe that they can
be used for the prioritization of test cases and not for the selection of affected tests. To
select the affected test cases, it is sufficient to analyze the change propagation through
dependency relations. Similarly, other problems relevant to regression testing, such as
test minimization and test prioritization, are also out of scope of this thesis.

1.3 Thesis Goals

The thesis aims to provide a structured and systematic model-based regression testing
approach to answer the research questions presented above. The approach aims to
reduce the test effort by selecting a subset of test cases and enables early testing by
using models of various views and test models. Thus, an overall goal of the thesis is
stated below as Initial Goal IG1.

IG1: Develop a flexible model-based regression testing approach to reduce test effort by
selecting a subset of tests corresponding to the changes earlier in software develop-
ment. The approach shall provide better coverage of models of various views and
various test aspects. It shall use dependency relations between models of various
views and tests to assess the impact of changes in models on tests for selection and
classification of the affected tests.

The sub-goals of the thesis, from IG3 to IG9, adhere to the overall goal IG1 and cover the
issues discussed earlier. The sub-goal IG2, however, is concerned with adaptation of
the approach to business processes. We demonstrate the applicability of the presented
solutions by adapting them to the domain of business processes, as depicted by IG2.

IG2: Adapt the approach and proposed solutions to business processes by extending
them to support models, test models, change types, and dependency relations
specific to business processes.

The foremost prerequisite of regression testing is the availability of an existing baseline
test suite. To generate the baseline test suite for testing business processes, model-based
and model-driven test generation approaches are required to be evaluated for their
ability to cover various test aspects. These aspects include test architecture, test behavior,
and test data. The rules to generate various test aspects are also required to analyze the
correspondences between system models and test models.

IG3: Select/Develop a suitable method to systematically generate baseline test models
for business processes to cover various test aspects.

To define and express changes in models, a generic, consistent, and unified representa-
tion of changes is required. It requires an investigation of existing change representa-
tions and taxonomies to analyze their support for various change types. This analysis
shall focus on identifying any potential inconsistencies in the existing taxonomies and

synthesize them to enable a consistent and unified representation of changes applica-
ble to models. Moreover, changes shall be defined and expressed for models of various
business process views to realize different change scenarios.

IG4: Examine possible changes applicable to various models and define a unified and
consistent change taxonomy to represent these changes. Apply the change tax-
onomy to define changes in the models of various business process views.

To analyze the impact of changes in various models on tests, an inherent support of
various types of dependency relations is required to propagate changes through these
dependency relations. It demands for understanding, identifying, expressing, and
recording dependency relations of different types among various system and test mod-
els. To record these dependency relations, existing approaches for detecting and record-
ing dependency relations are required to be analyzed for their ability to support system
models and test models. These dependency relations are then required to be used to
perform impact analysis by examining the change propagation through them. Further,
potential solutions to record dependency relations and analyze the impact of changes
in models on tests shall be extended for the domain of business processes.

IG5: Find/identify dependency relations between models of various views and tests
and select appropriate methods to record these dependency relations.

IG6: Identify/Develop an appropriate method to propagate changes through the set
of recorded dependency relations.

The selection of the affected test elements alone is not enough and a further classifica-
tion based on the type of effectis required. Thus, the affected test elements are required
to be classified to demonstrate if they are obsolete, required for retest, or unaffected.
Such a classification of the affected test elements requires analysis of affected elements
for conditions under which they belong to a specific classification. These conditions
include constraints, such as the type of applied change, the type of the affected test
element, and the status of related test elements.

IG7: Select a suitable classification scheme and define conditions to distinguish be-
tween different types of regression tests by examining the type of change and
the status of other affected elements.

As discussed earlier, flexibility is a required characteristic of the approach to support
the evolution of system modeling and test specification languages. The approach as
well as tool support for the approach should enable flexible and extendible design to
support easy integration of new models and test specification languages.

IG8: Develop inherently flexible and extensible solutions and corresponding tool sup-
port to enable the evolution of modeling and test specification languages.

To evaluate the quality of the solutions provided by the approach, it is required to
assess various characteristics of the approach by developing and applying appropriate
metrics. To do so, the approach shall be exercised on a case study from the domain of
business processes and analyzed against various metrics to assess its quality. The case
study is introduced in Section 2.3 of Chapter 2.

IG9: Evaluate quality of the presented solutions by developing appropriate metrics,

applying the approach on the selected case study, and analyzing the results of
the case study to evaluate the metrics.

1.4 Contributions

The main contribution of the thesis is a holistic model-based regression testing ap-
proach, which identifies the required subset of regression tests by analyzing depen-
dency relations among models and tests. Consequently, it facilitates the forecast of the
required effort for regression testing at an early stage in the software development life
cycle. Our approach is based on the hypothesis that the selection of test cases depends

Mapping Test
Architecture & Test Data

System Models

Conditions for UTP

Affected test elements UTP
v \ 4

Rule-based Test
Classification

Test Classification Rules Rule-based Impact

Analysis

Test Classification Rule

Catalog for UTP BPMN, UML, UTP

E Test Behavior E E ¥ BPMN umL
E Generation i ! I:-.::'_::'_::'_'_::'_::'_::'_::'_:
i : : Test Generation (Model i uTP E
' : ' Transformations) ' / !
E Mapping Rules and ' E E !
i Transformations : E ; - '
H ! H — Test Architecture '
: P T — :
i Chapter 5 (@ : . o .
. [HEN ' H
Pommm oo oo E . Test Models i} !
E bependency T . Trac;Lmks P Test Behavior :
i ependenc e ! ! 8 : HE i
: pendency vp P 5 v P — ;
' Classification S N\ P i
E . ! ! Recording Dependencies Nl E E E
: Dependency Relations i ' i : Test Data E
' (BPMN, UML, UTP) L \ ¢, Z 1 e
i b r N\ L — ;
i Two-fold Dependency |1 1 Change Application ; | Change Taxonomy i
! Detection H i I '
: i N ¢ / b i
i oo b Change Catalog for E
| Chapter6 | IR NG Pl sewnumLute !
e, ! Perform Impact Analysis I :
UML, BPMN, UTP P :
Test Classification ! - . 1 Chapter7 (e) !

E Impact Rule Catalog for

Chapter 9 (c)

Figure 1.1: A Structured Overview of Thesis Contributions.

on the type of the impact, which is determined by evaluating the interplay of change
types and dependency relations among the models of various system views and the
test view. Thus, our approach integrates, reuses, and extends various approaches to
record dependency relations, perform impact analysis, and classify tests. Figure 1.1
depicts an overview of the contributions in accordance with the structure of this thesis

and its middle part (d) depicts a simplified overview of our approach.

To enable the recording of dependency relations, our approach uses a two-fold ap-
proach, that is, during the test generation and using dependency detection rules. Our
Contributions dealing with this aspect are also depicted in part (b) of Figure 1.1. Our
approach enables the recording of dependency relations prior to the impact analysis,
which is less computational extensive as compared to the approaches that perform re-
peated search of dependency relations for each change during the impact analysis.
Furthermore, our approach provides better coverage of the dependency relations among
models and tests by eliciting a comprehensive set of dependency relations of various
types of models and tests. Thus, we presented a general classification of dependency
relations of various dependency types. The classification is based on the purpose of
dependency relations, identified by analyzing the context in which the dependency re-
lations are required. We elicit 92 different types of dependency relations among UML,
BPMN, and UTP models representing the structural view, process view, and test view.
The corresponding dependency detection rules are also developed to detect these de-
pendency relations.

A further contribution of our work is to develop a change taxonomy for a unified and
consistent representation of changes, which helps to define and express the changes in
the models belonging to various views. The contributions relevant to this aspect are
also presented in part (e) of Figure 1.1. The change taxonomy defines two categories
of changes; atomic changes representing the primary changes like add and delete, and
composite changes representing more complex ones like move or merge. We adapted
the change taxonomy to define changes in UML class diagrams, UML component di-
agrams, BPMN collaboration diagrams, and UTP test models. Thus, we identified a
comprehensive list of 140 changes applicable to these models.

Change impact analysis between models and tests is achieved using a rule-based im-
pact analysis approach to propagate the impact of changes through dependency rela-
tions among system models and test models. We originally developed this approach to
support impact analysis across heterogeneous software artifacts based on the notion of
various change types and dependency relations. However, it is required to determine
the impact of changes on tests for the selection of affected tests. Therefore, the rule-
based impact analysis approach suits in this context as well. The rule-based impact
analysis approach uses the interplay of dependency relations and change types and pro-
vides a recursive impact propagation through dependency relations. We developed a
comprehensive set of change impact rules to react on various changes in UML, BPMN,
and UTP models. These contributions are also shown in part (f) of Figure 1.1.

Another relevant contribution of our work is to enable the classification of the affected tests
by developing the concept of test classification rules. The contributions relevant to
the test classification are presented in part (c) of Figure 1.1. The classification rules
are able to specify various conditions on the affected test elements and impact reports
produced during the impact analysis. When all the conditions stated in a rule meet,
the rule classify the specific test element according to the given classification type. We
use the classification types of Leung and White [LW89] for this purpose, as they cover
all the required types for the test classification. Thus, we classify tests as Obsolete,
Reusable, Retestable, PartiallyRetestable, or New. For the classification of
UTP test models, we analyzed them for various classification conditions and developed

a set of test classification rules to classify various UTP test elements.

A further contribution of our work is to generate the required baseline test suite, which
is a prerequisite for regression testing. The contributions relevant to this aspect are
depicted in part (a) of Figure 1.1. Our model-driven test generation approach targets
business processes and uses UML class diagrams, component diagrams, and BPMN
collaboration diagrams to generates various test models expressed in UTP. The gen-
erated test suite consists of various UTP models representing the test architecture, test
behavior, and test data [UTP11]. Thus, our approach provides better coverage of test aspects
as compared to other state of the art business process testing approaches. We devel-
oped a set of mapping rules to express the correspondences between BPMN, UML, and
UTP models. These mapping rules are then implemented as model transformations to
support automatic test generation. As discussed earlier, dependency relations between
models and their corresponding tests are also preserved during the test generation.

To demonstrate the applicability of our approach in practice, it is complemented by tool
support provided by VIATRA Test Generation (VIG) tool and EMFTrace. VTG auto-
mates our baseline test generation approach using Visual Automated Model Transfor-
mations (VIATRA) framework. Whereas, EMFTrace is an eclipse based tool-set that
was initially developed for rule-based dependency detection. It is later extended to
support rule-based change impact analysis and rule-based test classification by reusing
the existing rule processing infrastructure of EMFTrace.

Finally, the ideas presented in the thesis are evaluated by applying our approach on
a case study from joint academic and industrial project. The case study automates
the business processes relevant to field service technicians on mobile platforms. We
analyzed our approach to evaluate the precision, recall, reduction, and coverage of our
approach and our findings yield promising results by showing an average reduction
of test cases by 46% achieved with an average precision and recall of 93% and 87% re-
spectively. The approach also provides an average coverage of test elements up to 21%,
which is significantly better than a name similarity-based approach, which provide 5%
coverage when applied on the same change scenarios.

1.5 Thesis Structure

The remainder of the thesis is structured as follows. Chapter 2 presents preliminaries
and fundamental concepts, defines the problem of regression testing, and discusses
various aspects of the problem. It also introduces Field Service Technician case study,
which automates the business processes of field service technicians on mobile plat-
forms. Chapter 3 presents an analysis of the state of the art in the field of model-based
regression testing by developing and applying a comprehensive evaluation criteria. It
also presents analysis and discussions on various topics relevant to this thesis.

Figure 1.1 highlights the chapters, which contain the core contributions of the thesis.
These contributions are presented in the former section as well. The contributions of
a particular chapter are highlighted using dashed boxes in Figure 1.1. Thus, Chapter
4 presents our holistic model-based regression testing approach, discusses various ac-
tivities of the approach, and presents its adaptation to business processes. Chapter 5-9

correspond to the core activities of the proposed approach. These are the generation of
a baseline test suite, the application of changes on models, recording of dependency re-
lations, performing impact analysis, and classifying regression tests. These are already
discussed in detail in the former chapter and are also highlighted in Figure 1.1.

Chapter 10 discusses the tool support provided by our approach and discusses how
we used and extended EMFTrace to support our approach. It also presents VIG our
baseline test generation tool for business processes. Chapter 11 presents the experi-
mental evaluation of our approach on the Mobile Field Service Technician case study and
presents the results of our approach and discusses various validity threats. Chapter 12
finally concludes the thesis by revisiting the contributions of our work, discussing the
critical issues, and presenting the future directions.

Fundamentals and Preliminaries

2.1 Model-based Regression Testing Problem 10
22 ProblemAnalysis., 13
22.1 The Role of System Viewsand Models 13
222 Cross View Dependency Relations 15
223 TheNotionofChange 16
2.2.4 The Test Baseline Using Model-Based Testing 16
2.3 Introduction to Mobile Field Service Technician Case Study 18
24 ChapterSummaryt 19

This chapter presents the fundamental concepts by defining the regression testing prob-
lem and discussing various aspects relevant to the problem. The discussion on these
preliminary concepts helps to understand the nature of the problem, provides an in-
sight to the relevant issues, and helps to establish a foundation for our state of the art
analysis.

2.1 Model-based Regression Testing Problem

Rothermel et al. [RH94a] define the regression testing problem as: "find a way making
use of T, to get confidence in the correctness of P"". Where P’ is a modified version
of a program P, and T is the test suite for P. Thus, the definition of Rothermel et al.
focuses on the use of an existing test suite to test a modified program. Yoo and Harman
[YH10] further classify the regression testing problem into three sub problems: test
minimization problem, test prioritization problem, and test selection problem.

The test minimization problem focuses on removing the redundant test cases from the
original test suite 7" to find a reduced subset T". The test prioritization problem focuses
on an ordering of the test cases according to some desirable properties, such as the
rate of fault detection, risk, and cost. Finally, the test selection problem focuses on the
identification of the test cases relevant to the modified parts of the system.

In this thesis, we focus on the selection of tests affected by the changes propagating
through dependency relations, hence we deal specifically with the test selection problem.
The test minimization problem and the test prioritization problem are out of scope for our
work.

10

Test Selection Problem-—is defined by Yoo and Harman [YH10] as follows:

Given: a program P, a test suite 7" to test P, and the modified version of P, P.
Problem: Find a subset of T, T'totest P'. (2.1)

The above presented definition is similar the one presented by Rothermel et al. [RH94a].
It focuses on the selection of a subset of test cases from a baseline test suite to testa mod-
ified program. The above presented definitions consider the source code of a program
under test and the regression testing approaches of Rothermel et al. [RH94a] and Yoo
and Harman [YH10] are also based on program source code.

Model-based regression testing is different from the code-based testing as it uses anal-
ysis and design models to identify changes in a software system instead of the program
source code. These changes are then traced to the tests corresponding to the modified
parts of the system. Thus, it is required to define the regression testing problem with
a focus on models by incorporating the fundamental issues relevant to the models.
Therefore, we define the model-based regression testing problem by adapting the def-
inition of Yoo and Harman [YH10] and extending it to incorporate the notion of models,
changes in models, and dependency relations among models.

Given: a Software System S defined by a set of Models Sy.
Given: a baseline test suite 7'defined by a set of Models T),.

Given: aset C' = (c1,¢2, ..., ¢p) | /\ ¢; € C'is a change applicable on any model in M.
1

Given: aset D = (dy,dy, ...,dy) | Vd; € D is a dependency relation

between elements of Sj; and T,.

Problem: for any given ¢; € C, find T]/V[, by identifying elements of T/
affected by ¢; using D. (2.2)

According to the problem definition presented above, model-based regression testing
requires a set of system models representing various views of a software, a baseline
test suite, a set of changes applicable to the models, and a set of dependency relations
between various models. The problem is to use the set of dependency relations to
assess the impact of any change ¢; € C on the tests and find a subset 7" of the baseline
test suite T to test the modified system. This problem definition explicitly integrates
the dependency relations, which are required to propagate the impact of a change c¢;
to the tests.

Selection of a subset of test cases for regression testing is required, even if, all the test
cases for a modified version of a system can be regenerated using an automated tool
support without substantial effort. The reason is that the time required to configure,
execute, and analyze the test cases can still be saved by executing a subset of tests in-
stead of the complete test suite. Similarly, for the integration and system level testing,
it is very challenging to fully regenerate the tests, due to the complexity of test cases,
number of required test components, test drivers, and test stubs.

11

Test Classification Problem~— focuses on the identification of the affected test
cases for regression testing. However, to distinguish between different types of affected
test cases and to decide whether these test cases are valid or invalid for the modified
system, a further distinction among the affected test cases is required. To facilitate such
a distinction, Leung and White [LW89] introduced a test classification scheme, which
covers different types of test cases required to be distinguished for regression testing.
A significant number of regression testing approaches use this classification scheme
[BLY09, FBH*10, NR07], as the classification scheme supports all the required classi-
fication types to distinguish between the affected tests. According to the classification
of Leung and White [LW89], the test cases in 7" should be classified into Obsolete,
Reusable, Retestable, and New test cases for regression testing in T.

As the name suggests, Obsolete test cases are no more required and should be re-
moved from 7”. The Reusable test cases are unaffected from the current changes;
thus to be kept in T’ ". However, they should not be re-executed during regression test-
ing. The Retestable test cases are the ones affected by the changes. They should
be included in 7" and should be re-executed for regression testing. Finally, the New
test cases are the ones which are to be added in 7" as they correspond to the newly
introduced elements of the system.

Since the test selection alone is not enough and classification of test cases inside 7" is
required to understand the nature of regression test cases, we define the test classifica-
tion problem as an important aspect to support regression testing. The test classification
problem considering the classification scheme of Leung and White [LW89] is defined as
follows:

Given: a test suite 7.
Problem: Vz € T decide if x € Obsolete V Reusable V RetestableV
New. (2.3)

According to the definition presented by the Equation 2.3, for a given baseline test suite
T, the test classification problem is to decide how every test element x in T is classified
either as Obsolete, Reusable, Retestable, or New.

Test Classification Problem for MBRT- is defined by Equation 2.5 in
the context of models by adapting the test classification scheme of Leung and White
[LW89].

Given T defined by Tas, IR = 11,72, 73...7:m), let (O,U, R, P, A). (2.4)
Find 7' defined by Ty, = (z1,22,23,....2,) \nz € (OVUVRVPVA). (25)
=0

As presented in Equation 2.5, the test suite 7" is defined by a set of models Ty, a set
of affected elements I R, which is produced after performing the impact analysis for the
selection of the affected test elements. Further, the set O refers to the set of Obsolete
elements, which are no more valid for 7", thus should be removed for 7. The set U

12

represents the set of Reusable elements in 7', which are not affected by a change.
R is the set of Reusable elements, which are affected by the change and should
be used to retest the system and should be included in 7". The set P represents the
PartiallyRetestable elements. We introduce the notion of
PartiallyRetestable to address the composite test elements, such as test compo-
nents. A test component might consist of various mock or stub operations. If one of these
is Retestable, the test component will be then PartiallyRetestable.

Thus, an element x is PartiallyRetestable, if atleast one of its constituents is
Reusable and atleast one of its child elements is Retestable. In the case of a
PartiallyRetestable element, x should remain in T', whereas its affected con-
stituents should be updated and used during regression testing.

Finally, A is the set of elements that are required to be added in 7" to update it. The
type of the element x and the affected elements relevant to = determine how x will
be classified. Each element in UTP has to be analyzed to define the conditions under
which that element can belong to either O, U, R, P, or A.

2.2 Problem Analysis

The above presented definitions of regression test selection (Equation 2.2) and classifi-
cation (Equation 2.3) reflect various important aspects. These include, the use of models
to express various views of a system, a baseline test suite to represent the test aspects,
dependency relations among models, and the notion of changes. An understanding of
these aspects is necessary to develop the foundations of the solutions to address the
problems presented above and to outline the major requirements for our analysis of the
state of the art model-based regression testing approaches. Moreover, we use business
processes as an application domain to demonstrate the applicability of the concepts
presented in this thesis. Thus, these aspects are required to be discussed for business
processes as well to address the domain specific requirements.

2.2.1 The Role of System Views and Models

A software system can be perceived by different perspectives, known as views. IEEE
standard 14700 [IEEOQ] defines the term view for the software systems as follows:

View: A representation of a whole system from the perspective of a related
set of concerns.

Both terms view and viewpoint are used interchangeability to describe a software view
in the literature. The IEEE standard itself maps a view to exactly one viewpoint. Hence,
we use the term view throughout this thesis to describe a software view defined by a
specific viewpoint.

According to Hilliard [Hil99], a view can be characterized by its purpose, scope, and
constituent elements. Thus, the purpose of modeling a view is important to under-
stand the view, define its scope, and decide the required models to express it. In the

13

following, we present a list of views and the purposes they serve to emphasize the role
of various views in the software development. Some of these views also exist with a
different name in the literature but serve the same purpose, thus they are combined
according to the purpose they adhere. The details of the relevant literature from which
we extracted these views is presented in Section 3.2.5 of Chapter 3.

1. PVO0: Organizational View-To describe business strategies and organizational
structures [PE0O].

2. PV1: Requirement & Conceptual View—To elaborate the software requirements,
use cases, conceptual entities, and their interactions [Gom11, HNS99].

3. PV2: Process View-To express high level processes of the system, their inter-
actions, the roles and participants involved, and the services used by processes
[Kru95, PE0O].

4. PV3: Structural View-To model the structure of the resources, data, modules,
high level components, and functions of the system [PE00, Gom11].

5. PV4: Behavioral View-To demonstrate the functional behavior of a module and
interactions between modules [PE00].

6. PV5:UI View To model user interfaces, navigation among various Ul entities,
and UI components of a system [KKCMO04].

7. PV6: Implementation View-To represent the source code of the software and
various implementation platforms [RCVD09, HNS99].

8. PV7:Allocation View-To describe the configurations of the software, the physi-
cal components on which the software would be deployed, and the allocation of
software components to the physical components [Cle10].

9. PVS8: Test View-To model the test architecture, test behavior, test data, and various
other test related aspects of a system [UTP11].

Models to Express Views— Model-based development requires various mod-
els to express different software views. Thus, each of the above presented views can
be expressed using one or more models belonging to various modeling languages. As
an example, we take class diagrams, which are widely used to model structural view
of a software system in different domains. They are used to model classes, their con-
stituent operations, attributes, the interactions among various classes, the hierarchical
relationships between classes, and composition of various classes etc. Since class dia-
gram model the structural aspects of a system, they belong to the structural view [PE0O].
Similarly, the structural view also consists of high level software components, which can
be modeled using UML component diagrams.

Views and Models for Business Processes— Business processes require
a high level representation of processes, where processes might also use services pro-
vided by various participants and interact with various other processes. Thus, a pro-
cess view is required to model the high level processes and their interactions. Various
approaches use UML activity diagrams to model the flow of the processes and their
interactions [PE00, EFHTO5].

14

In their approach for modeling the architecture of business information systems, Penker
et al. [PEOO] proposed four different views for modeling business processes. These
are, vision view, process view, structural view, and behavioral view. The vision view can be
mapped to the PV0 and PV1 presented above. In this thesis, we focus on the structural
view and process view, as these views express the core design of a business processes.

Penker et al. [PE00] as well as many other business process modeling approaches
[SDE*10, EFHT05] modeled the structural view using UML class and component di-
agrams. A process view is required to model the high level processes, their interactions,
the participants which interact with processes, and the services provided by the par-
ticipants. Penker et al. modeled the process view using UML activity diagram, where
the activity diagram describes the flow of a process and its various tasks. The activity
partitions model various participants of the process.

Another alternative to model the business processes is using Business Process Model-
ing Notation (BPMN) collaboration and process diagrams [BPM10], which are widely
used to model business processes. In this thesis, we model the process view using BPMN
collaboration diagrams and the structural view using UML class and component dia-
grams. Both UML and BPMN are standards from the Object Management Group (OMG)
[OMG14].

2.2.2 Cross View Dependency Relations

Although different models are used to model several views of a system, the concepts
used by the models cannot be completely isolated from each other. Overlapping and
reuse of various concepts in the models belonging to different views results in depen-
dency relations among models and views.

Example Dependency Relations from Business Processes— Asan
example, we take the previous example of the structural view and the process view from
the modeling approach of Penker et al. [PE00]. Penker et al. [PE00] model various
business resources as classes in a class diagram. The business processes use business
resources defined in the class diagrams to model the data used by the processes. In this
way, a business resources is defined inside one model and is used in another model.
This suggest a dependency relation between the business resources belonging to the
structural view and the process data belonging to the process view.

In the context of regression testing, tests representing the test view of a business pro-
cess consist of test cases, test data elements, test components, and other test elements.
Test data can be extracted by analyzing the process data, as also discussed later in Sec-
tion 5.2.4 of Chapter 5. Thus, the test data elements indirectly relate to the business
resources defined inside the corresponding class diagram. If a business resource is
changed in the class diagram, this change would affect the process data, which in-turn
affects the test data. Consequently, test cases using the test data would also be affected
and they are required to be analyzed for potential side effects.

Another example is of a Participant of a process. A Participant provides var-
ious services to a process. However, a Participant can also be defined as a com-
ponent in a UML component diagram [SDE*10], which is a case of overlapping of

15

concepts. Thus, it also suggests a dependency relation between the Process using the
Participant and the corresponding component. Hence, all such dependency relations
are required to be understood, made explicit, and used to propagate changes and iden-
tify the affected tests.

2.2.3 The Notion of Change

Changes are drivers and triggers for regression testing. Thus, they are required to be
understood to commence various change scenarios during regression testing. Changes
can be simple, such as deleting an Attribute from a Class, or they might be more
complex, such as merging two classes into one. Thus, identifying and distinguishing
between various types of changes is required to realize various change scenarios.

Distinguishing between the simple and complex change types is necessary to asses
their impact on various models and tests. To understand the changes, various prop-
erties of changes are required to be analyzed. These include the nature of change, its
complexity, and its applicability on models based on its granularity. To do so, it is
required to investigate the existing change classifications and change taxonomies and
assess them for the above mentioned properties.

In the context of model-based regression testing, the information about changes is tra-
ditionally extracted from the models belonging to different views of a system. Thus,
the changes are obtained from analysis and design models by comparing two versions
of a model. These changes are then used to perform impact analysis among models
and tests. Thus, it is also required to analyze the capability of existing model-based
regression testing approaches for the change support they provide.

Example Changes in Business Processes— To support model-based re-
gression testing of business processes, changes in various models belonging to the
business processes are to be identified, analyzed, and defined. Since we focus on the
structural view and the process view, the changes in models belonging to these views are
required to be considered. The changes in structural view include the changes in the el-
ements of UML class and component diagrams, such as components, classes, services,
etc. The changes in the process view consists of the changes in BPMN collaboration
diagrams, such as processes, tasks, participants, etc.

Some examples of primitive changes are addition and deletion of classes, attributes,
and operations. Renaming classes, components, and other elements is another exam-
ple of a primitive change. Examples of complex changes include moving of a service
from one component to another or swapping a service call in a process with another
service.

2.2.4 The Test Baseline Using Model-Based Testing

The definitions of the test selection problem (Equation 2.2) and the test classification
problem (Equation 2.3) inherently require a baseline test suite from which a subset has
to be selected for regression testing. To generate a test baseline representing the test

16

view, model-based testing (MBT) approaches require a set of models of different views
of a system to generate tests [DNTO8].

Various models are used to generate test cases for different testing levels. This also
results in correspondences between various models and the test suites generated from
them. These corresponding elements also help to establish dependency relations be-
tween the system models and tests [NZR09]. Thus, for the applicability of model-based
regression testing approaches, it is important to answer two fundamental questions.
(1) How the baseline test suite is generated? (2) What are the constituents of baseline
test suite? or how the baseline test suite is represented?

Representing Test Baseline— For a complete test specification, the represen-
tation of various aspects of a test view is required, such as test architecture, test behavior,
and test data. This ensure the better coverage of various test aspects during regression
testing. Test specification languages, such as TTCN [TTC13] or UTP [UTP11], are used
for this purpose.

Recent developments in model-based and model-driven testing support the test speci-
fications in the form of test models [UTP11]. The use of test modeling languages helps
to specify the tests on higher level of abstraction. Consequently, the test design activity
is performed before the implementation of test cases. The specification of tests in the
form of models provides several benefits, such as portability and interoperability result-
ing from higher level of abstraction, better comprehension due to the visual modeling,
reduced training costs due to their similarity to UML which is a widely accepted mod-
eling language [RW03, LZG05]. For model-based regression testing, the test models
provide better traceability between the system models and test models, as they belong
to the same level of granularity. Thus, the existing model-based regression testing ap-
proaches are required to be analyzed for their support of various aspects of the test
view and test modeling and specification languages.

Generating Test Baseline— Besides the test representation, the baseline test
generation method is also of crucial importance. It is of crucial importance to answer
various questions regarding the baseline test generation method. For example, how the
baseline tests are generated? Which models are used to generate the test baseline and
which test aspects are covered? Which algorithms are being used to generate the test
cases. There is a need to analyze existing model-based regression testing approaches
to assess their ability to answer these questions.

To represent the test view of business processes, the questions of how baseline test suite
is generated and represented are required to be answered. The test view of a business
processes should cover various cases of process execution defined by the processes test
cases. Moreover, the interaction of various test components to simulate the services
requires by the processes is also required to be modeled. Moreover, test data required
for the execution of different test cases should also be modeled.

The information from the models belonging to various views can be used to identify
these different test aspects using model-based testing approaches. For this purpose,
correspondences between the elements of models of structural view and behavioral view
and fest view are required to be identified. Our proposed baseline test generation ap-
proach for business processes is discussed in detail in the Chapter 5.

17

For the representation of various test aspects, we use UTP [UTP11], which is standard
test modeling language from OMG [OMG14]. The factors due to which we selected
UTP for the test specification are its wide acceptance in industry and academia, the
support available in the form of documentation, its ease of implementation in the form
of a UML profile, ease of use as familiarity with UML is enough to understand the UTP
notation, and finally its coverage of various test aspects.

2.3 Introduction to Mobile Field Service Technician

Case Study

In this section, we introduce the Mobile Field Service Technician case study, which we use
throughout this thesis as an example and also for the evaluation of our own approach.
The case study was developed as part of a joint academic and industrial research project
Adaptive Planning and Secure Execution of Mobile Processes in Dynamic Scenarios (MOPS)
[MOP12]. The aim of MOPS project is to bring the business processes in the world of
mobile devices. One of the goals of the MOPS project is to develop several case studies,
which require the automation of business processes on mobile platforms.

The Mobile Field Service Technician case study is one of the case studies developed as
part of the MOPS project. The main goal of the Mobile Field Service Technician study is
to automate the core business processes relevant to the field service technicians, such
as planning, preparation, and execution, of field service orders. Moreover, the business
processes related to the management of field tours, management of tools and spare parts, and
resource scheduling are also of crucial importance.

An example of one of these processes is the planning of a field tour, as presented in the
following.

Problem Demonstration on HandleTourPlanningProcess— Tour
planning is an important business process of Mobile Field Service Technician case study.
We would refer to this process throughout this thesis for the demonstration of various
concepts. A service technician uses a hand-held mobile device to plan field tours to cover
various service orders. A mockup of the mobile device used in the project, showing a
field tour, is depicted in Figure 2.1. Figure 2.1 shows a field tour (Tagestour), which
consists of a list of service orders (Auftragsliste) to be handled at different times and
venues. A service technician can plan a field tour based on several strategies, such
as the shortest route from the start to the destination, maximum coverage of service
contracts from the start to the destination, or the coverage of only high priority services.

The case study has undergone a lot a changes throughout its course and evolved to
enhance the processes to cover new scenarios, meet the expectations of various project
partners, and to improve various existing processes. Here, we briefly discuss one of
the changes from the above presented scenario to motivate the need of our approach.

A yet unresolved functional error in the system demands replacing an existing service
with the new one in a process. However, for the replacement of this service, several
changes are required in various models. The participants providing services to the pro-

18

A8uors Auftragsliste

Tagestour 12.02.2011

09:30 Reparatur, Wartung
Erfurt - Schillerstr.28 >
Pharma EF 6mbH

Reparatur, Wartung
Erfurt - Erfurterstr.12 >
Muster GmbH

Reparatur, Wartung
Erfurt - Ketternsir.2
Muster2 GmbH

Figure 2.1: The Mobile Device Depicting a Field Tour. (In German)

cess are represented as components in component diagrams [SDE*10]. The services
provided by these components are represented as operations of the classes implement-
ing the component interfaces. Test cases testing the process also requires these services
during the test execution. Moreover, mocks and stubs might simulate these services to
assists the test cases.

If a service has to be replaced, all such dependencies are required to be understood and
utilized to find the affected tests. Thus, there is a need to answer these two fundamental
questions. First is that how many such dependencies exist between the various views
discussed above? The second question is that if a change is to be introduced, which
test cases are affected due to such dependencies, and how they are affected?

2.4 Chapter Summary

This chapter formalizes the test selection and classification problems to enable model-
based regression testing and elaborates the relevant aspects. The problem definitions
inherently include the fundamental aspects of using models of various system views,
dependency relations among models, and the notion of change. Since a test baseline is
a primary artifact that is used for regression testing, we also discuss the importance of
the baseline test generation and test representation using test modeling language UTP.

These preliminary and foundation concepts help us to understand basic requirements
to enable MBRT. Thus, provide a clear road map to evaluate the state of the art MBRT
approaches in the next chapter. Further, we introduced our Mobile Field Service Techni-
cian case study, which automates business processes on mobile platforms and is used
throughout this thesis for the concept demonstration.

19

Analysis and Evaluation of the State of the
Art

3.1 Evaluation of Model-based Regression Testing Approaches 20
3.1.1 Evaluation Criteria for Model-based Regression Testing Ap-
proaches L 21
3.1.2 Evaluation of Model-based Regression Testing Approaches based
on the Evaluation Criteria 23
3.2 Analysis of State of the Art in Other Relevant Areas 27
3.2.1 Analysis of Business Process-based Regression Testing Ap-
proaches 27
3.2.2 Analysis of Test Generation Approaches for Business Processes 28
3.2.3 Analysis of Change Classification Schemes 28
3.24 Analysis of Impact Analysis Approaches 30
3.2.5 Analysis of Approaches for Support of Software Views 31
3.2.6 State of the Art Business Process Modeling Approaches 32
3.2.7 Analysis of State of the Art on Test Dependencies 33
33 ChapterSummary i ittt 34

We divided this chapter into two main sections. Since the scope of this thesis is limited
to model-based regression testing, Section 3.1 presents a through evaluation of the
state of the art model-based regression testing approaches by using a comprehensive
evaluation criteria. Section 3.2 analyzes the literature relevant to other topics covered
in the various parts of this thesis.

3.1 Evaluation of Model-based Regression Testing
Approaches

We first present various research questions, which are required to be answered to eval-
uate the state of the art MBRT approaches.

Research Questions for Evaluation— The evaluation research questions
presented in the following are derived from the research questions presented in Chap-
ter 1 and the concepts discussed in 2.

1. ERQ1: Which views and models are covered by the approaches? (see Section
2.2.1 of Chapter 2)

2. ERQ2: What testing level is addressed by the approach?

3. ERQ3: Whatis the application domain of the approach? (see Section 1.2 of Chap-
ter 1)

20

4. ERQ4: How the baseline test suite is generated and represented? (see RQ4 in
Section 1.1 in chapter 1)

5. ERQ5: Are dependency relations supported and used for impact analysis? (see
RQ2 in Section 1.1 of Chapter 1)

6. ERQ6: Which types of dependency relations are used by the approaches (see
RQ2 in Section 1.1 of Chapter 1)

7. ERQ7: How dependency relations are recorded? (see RQ2 in Section 1.1 of Chap-
ter 1)

8. ERQ8: Which simple and complex changes in models are considered? (see RQ3
in Section 1.1 of Chapter 1)

9. ERQ9: How the changes are identified and recorded? (see RQ2 in Section 1.1 of
Chapter 1)

10. ERQ10: How the affected test elements belonging to various parts of test suites
are obtained and classified? (see RQ5 in Section 1.1 of Chapter 1)

11. ERQ11: How easy it is to enhance and evolve the approach? and to which extent
extensibility is supported? (see RQ6 in Section 1.1 of Chapter 1)

12. ERQ12: Which standards are supported for modeling, test specification, and tool
implementation?

13. ERQ13: Whether automation and tool support is provided for the approach or
not?

3.1.1 Evaluation Criteria for Model-based Regression Testing

Approaches

This section presents the evaluation criteria we developed to answer the above pre-
sented research questions. The evaluation criteria is presented in Figure 3.1 and con-
sists of 5 main criteria. Each criterion is further composed of several sub-criteria, which
correspond to a set of inquiries. An inquiry is a distinct question that has to be an-
swered to evaluate a specific criterion. The five main criteria are Scope, Coverage, Core
Methodology, Applicability, and Extensibility.

Scope and Coverage— criteria provide answers to the questions ERQI-ERQ3.
The criterion Scope further consist of two sub criteria; Domain and Testing Level.

Coverage— is the criterion which provides information about various views covered
by the approaches and the input and output models required by the approach.

Core Methodology— is the most significant criterion as it addresses the core
MBRT issues, such as support for test baseline, changes, dependency relations, and

the test classification of the approach under evaluation. This criterion addresses the
research questions ERQ?2...ERQS.

21

Criteria Sub Criteria Inquiries
Domain { Inql, Ing2 }
Scope
Testing Level { .y }
Coverage

Core Methodology

/ Usage of Models
\

Evaluation Framework

Applicability

I\

Support for Views

Support for Test Baseline

Support for Change

Support for Dependency Relations

Test Selection and Classification

Degree of Automation

Standard Compliance

Degree of Evaluation

Extensibility

{Inq n-1,..1Inq n}

Figure 3.1: The Evaluation Criteria of MBRT Approaches.

Applicability— is the criterion that covers the aspects to determine whether the
approach under consideration is applicable in practice or not. Thus, it evaluates the
standard compliance, the automation support, and the extent to which evaluations are

performed.

Extensibility— is the criterion which evaluates the flexibility of the approach and
the ability to extend it with minimal effort. Table 3.1 provides the set of inquiries for
each criterion and their sub-criteria presented in Figure 3.1.

Table 3.1: The Inquiries Corresponding to Criteria

Criteria Sub Criteria Inquiries
Scope Domain Ing.1: The approach is suitable of which types of the systems?
Testing Level Inq.2: What is the testing level addressed by the approach?
Coverage Support For Views Inq.3: The approach covers which of the views? (structural, be-
havioral, others)
Inq.4: Which aspects of the test view are covered by the approach?
Use of Models Inq.5: What are the input models used by the approach?
Inq.6: Does the approach require any additional inputs other
than Models?
Core Support For Test Baseline Inq.7: How are the tests expressed?
Inq.8: What is the base line test suite generation method?
Support for Change Inq.9: Does the approach discusses the change detection mecha-

nism?
Inq.10: Whether the approach provides sound change definitions
for modifications in the system?

22

Inq.11:How many change types are considered by the approach?

Support for Dependency Relations Ing.12: What type of dependency relations are supported?
Inq.13: How the dependency relations are recorded?
Inq.14: Does the approach considers dependency types?
Inq.15: How dependency-relations are stored?

Test Selection and Classification ~ Inq.16: Does the approach provide logic of test case selection and
classification?

Applicability Degree of Automation Inq.17: Were the ideas defined by some algorithmic details or
not?
Inq.18: Does the approach provide tool support or not?
Inq.19: What is the implementation platform for the tool if im-
plemented?

Standard Compliance Inq.20: Is the input of approach compliant to any standards?
Inq.21: Is the approach compliant to any test specifications stan-
dard?

Degree of Evaluation Inq.22: Is the approach evaluated on any case study or does any
experimental evaluation was present?

Extensibility Ingq.23: Does the approach rely on a specific change identification
method?
Inq.24: Is it easy to extend the impact analysis logic?
Inq.25: Dependency relations recording and impact analysis is
tightly coupled or not?

3.1.2 Evaluation of Model-based Regression Testing Approaches

based on the Evaluation Criteria

To evaluate the model-based regression testing approaches, we first select a set of
model-based regression testing approaches and then evaluate them for each inquiry
presented in Table 3.1. For the selection of the approaches for the evaluation, we used
the following exclusion criteria.

Study Selection and Exclusion— We do not consider the studies that use
source code or formal specifications as input. We only evaluate the approaches which
takes visual analysis and design models as input to perform model-based regression
test selection. In total we selected 18 studies published in 26 research papers which
fulfill this criteria.

Evaluation based on Criteria— We used the Ing.1 to group the selected stud-
ies based on their application domain, as presented in the form of tables in Appendix
A. Thus, a large number of approaches are object oriented and UML-based. A signifi-
cant number of approaches are specific to state-based systems and a small number of
approaches belong to the component-based and specification-based systems. The do-
main of business processes is, however, neglected by the model-based regression test-
ing approaches. Although, there are other code-based regression testing approaches
for business processes, which are presented in Section 3.2.1.

We present the cumulative evaluation results of all other inquiries in the form of bar
charts for a better visualization in Figure 3.2, 3.3, and 3.4. The detailed results of other
inquiries are also presented in Table A.1, A.2, and A.3 in Appendix A. The z axis of the
bar charts shows the results for each inquiry presented in Table 3.1 and y axis depicts
the percentage of the approaches which adhere to a certain answer of the respective
inquiry. The various possible answers of an inquiry are represented as a distinct cate-

23

gory.

The answers of Ing.2 shown in Figure 3.2 depict the percentage of the approaches that
adhere to a certain testing level. The larger set of approaches targets the unit testing
level. However, a reasonable number also addresses integration and system level re-
gression testing. The results of Ing.3 reveal that the support of structural view, behavioral

100.00

90.00

80.00

70.00

60.00

50.00

% of Approaches

40.00

30.00 -

20.00 -+

10.00 -

0.00 -

multiple
Test Data
Activity
Use case
None

Integration
Componenet
Specification

Structural Only
Requirement
Test Behavior
Test Structure
Not Discussed
Sequence
State Machine
Source Code

Behavioral Only
Other Meta-Data

Ing2 Ing3 Ing4 Ing5 Ing6

Figure 3.2: The Evaluation of MBRT Approaches for Inq. 2 to Inq.6.

view, and requirement view is already available to some extent in the exiting model-based
regression testing approaches. However, the process view, which is crucial for business
processes and in our context is not supported. Support of some other views presented
in Section 2.2.1 in Chapter 2, such as allocation view, implementation view, and Ul view, is
also not available. However, these views target later phases of software development
life cycle and though important for overall development life cycle, are not relevant to
model-based regression testing.

It is to be noted that the approach of Zech et al. [ZFKB12] is generic and can support
EMF-based models. This work is significant for us, as our approach is also generic
for EMF-based models. However, the work of Zech et al. [ZFKB12] is based on OCL
queries, which are more complex compared to our rule-based approach. Similarly, we
use the notion of dependency relations and complex change types, which is not present
in their work.

The results of Ing.4 depict that most of the MBRT approach only support the test behavior
and a few of them also support test data. However, this support is limited to the data
constraints only. The test architecture is not considered at all. The approach of Zech et
al. [ZFKB12] can be used to support UTP test models but their ideas are only limited to
a number of small examples. A systematic approach to cover all these views is lacking
in the state of the art approaches.

24

The results of Ing.5 and Inq.6 summarize the input data and format used by the ap-
proaches. The results of Ing.6 show that most of the MBRT approaches use the in-
formation from models only and do not require any other meta-data as input. The
additional meta-data on the one hand might improve the accuracy of the results but
on the other hand it might be an additional overhead to acquire this data.

According to the results of Ing.7 shown in Figure 3.3, the conformance of the approaches
to the test specifications standards is lacking. As discussed earlier, this can result in
the poor quality of test baseline and also makes the application of approaches difficult
in practice. Moreover, according to Inq.8, a significant number of approaches do not
provide any information about their baseline test generation methods. Most of the ap-
proaches, which use path-based algorithms for test generation are also only for unit
level testing. For other complex testing scenarios, such as during integration and sys-
tem testing, it is crucial to know the structure of the test baseline and how it can be
generated.

100.00
90.00
80.00

w
Q
S 70.00
©
o
S 60.00
Q.
< 50.00
o

R 40.00
30.00

20.00

10.00 -

0.00 1
—
=
53

Yes
No
Yes
No

Junit _

Not Discussed
None

Generic F

Model Transformation P
assumed

During Test Generation F
Classified

Path-based
Data-based
Not Discussed
Not Discussed
Atomic
Composite
Inter-Model
Intra-Model
Not Specified
Tracelinks
Traceability Matrix _
Not Discussed
Not Classified

Model Comparison
Edit Time Monitoring _

During Impact Analysis

Inq7 Ing8 Inq9 Inq10 | Inq11 Inq12 Inql4 Inq15 Inq16

pm}
Ko

=y

w

Figure 3.3: The Evaluation of MBRT Approaches for Inqg.7 to Inq.16.

The inquiries Ing.9-Inq.11 focus on the change support. According to the results, most
of the existing approaches either rely on model comparison or do not discuss the change
identification method explicitly. Further, only the atomic changes are considered by the
approaches and no complex changes are supported. Moreover, the concrete change
specifications are also not provided by many approaches.

The inquires Ing.12-Inq.15 investigate the support of approaches for dependency rela-
tions. According to the results, although a number of approaches support inter-model
dependencies, they are not made explicit and cannot be reused. Moreover, if the de-
pendency relations are supported to an extent, for each change they are repeatedly
searched compromising the efficiency of the approaches. A solution is to record them

25

100.00
90.00
80.00
w
Q
S 70.00
©
o
& 60.00
<
« 50.00 +
(=]
J
X 40,00 -
30.00 -
20.00
10.00
0.00 | n i B n
g/2 8/ 2/ g 23/ elleeleles|s2 |82z E
Slela|5/2 5|22 €|% 5|5 |8 E|2| &
S| 3] I - el 3Ll 5|3/ 2|73
g2 £ 3/ 8|8 £/9 28 8 < s
I3 2 SF5 s 82 %3
= | B ° P]
2| 2 5|2 ki 3 £ 5 2
o iz £
[J] [e]
e T
=1 o
3 a
Inql7 Inql18 Inq19 Ing20 Ing21 Ing22 Ing23 Ing24 Ing25

Figure 3.4: The Evaluation of MBRT Approaches for Inq. 17 to Inq.25.

prior to the impact analysis, as done by Naslavsky et al. [NZR09] and our approach
presented in this thesis. Further, none of the approaches distinguish between various
types of dependency relations.

For the test classification, the results of Inq.16 show that a number of approaches dis-
cuss some mechanism to classify tests. Since they cover only the test behavior aspect,
these classifications cannot be considered complete, as discussed earlier.

The inquiries Ing.17-Inq.19 analyze the aspect of tool support. About half of the ap-
proaches provide some algorithmic details or prototype implementations of their tools.
Java is the most used implementation platform. The inquiries Ing.20 and Inq.21 evalu-
ate the approaches for their support of standards. A number of approaches use UML
for system modeling. However, as discussed earlier as well, standard compliance for
test specification is very limited. Only a few approaches use JUnit to express tests and
most of the approaches only rely on self improvised notations.

The inquiry Ing.22 presents the degree of evaluation provided by the approaches. The
results are promising and a large number of approaches provide some basic evaluation
of their approaches. However, an empirical evaluation of various approaches one one
or more similar case studies can be an interesting direction for the further research in
the area of model-based regression testing. The inquiries Ing.23-Inq.25 evaluate the
approaches for extensibility. The results of Ing.23 show that most of the approaches
rely on state-based change detection or model comparison for their approaches. Hence,
they depend on some tool to compare the state of the models.

However, the result of Ing.25 show that all the approaches require the changes in source
code to extend the rules for performing change impact analysis. This is a rigid solu-
tion and require a lot of effort to extend the tool support if new dependency relations

26

and scenarios are identified or new modeling or test specification languages are re-
quired to be integrated. Finally, the results of Ing.25 show that only one approach, the
approach of Naslavsky et al. [NZR09], records the dependency relations prior to the
impact analysis and all the other approaches repeat the dependency detection for each
change. As discussed earlier, this requires more time and efficiency of the approach is
compromised.

Limitations of the State of the Art— To summarize the above discussion,
we state the limitations of the state of art in the following points briefly.

Limited support for baseline test generation

Limited support for complex changes

Limited support for dependency relations and types

Lack of support for the process view

Limited support for test modeling languages and test views
Repeated search of dependency relations

Limited extensibility

Non-compliance to standards

NN WD

3.2 Analysis of State of the Art in Other Relevant
Areas

In this section, we present the state of the art relevant to various areas covered by this
thesis in the following subsections.

3.2.1 Analysis of Business Process-based Regression Testing

Approaches

A number of business process-based regression testing approaches use process code,
such as BPEL for regression test selection [WLC08, LQJW10, LLZT07]. They start the
test selection activity after the changes are already implemented. Hence, an early fore-
cast of the required effort and an early start of testing activity are not possible. More-
over, they overlook the dependency relations across views, which might also produce
less accurate results.

A number of approaches in the literature only target the unit testing of web services
used by the processes [RT07b, RT07a, KH09, TFM06]. However, they do not address
the changes and their impact on the process tests.

Some research in the field of impact analysis also focuses on the relationship of business
processes with other artifacts. Ginige et al. [GG09] consider the relations between
BPEL processes and the WSDL web service specifications. Since we do not use process
code for regression testing, these dependency relations cannot contribute to our work.

27

Wang et al. [WYZS12] use dependency relations between the process layer and the
service layer for impact analysis. They only consider one type of dependency and in
comparison, we support a comprehensive set of other dependency relations between
processes, services, components, and test suites.

3.2.2 Analysis of Test Generation Approaches for Business Pro-

cesses

This section covers the state of the art approaches for the test generation of business
processes, as we generate our test baseline using our proposed model-driven test gen-
eration approach as part of our work.

Bakota et al. [BBGT09] and Heinecke et al. [HGGF10] use an activity-like notation for
process specification and test generation. Bakota et al. [BBGT09] use category partition
method, whereas, Heinecke et al. [HGGF10] use a path-based approach for test deriva-
tion. However, these test generation approaches cannot be applied on BPMN processes
as they have their own syntax, semantics, and many additional activity types requiring
additional investigation. Moreover, BPMN supports the concepts of events, whereas,
the model used by these approaches is purely data-based.

Schiefer et al. [SSS06] presents a framework which supports test generation for event
based processes. The concept of event based testing is valuable for us but the paper fo-
cuses only on the execution framework and not on the test generation aspects. Werner
et al. [IWGTZ08] use WSDL specifications for test generation. They only consider inter-
faces of the processes, thus generate only black box test cases, and overlook control or
data flows of the system.

Yuan et al. [Yua0O8] present a model-driven approach for test generation for business
processes. Our approach also uses same foundations as Yuan et al. [Yua08] but their
work is only an initial idea and lacks details about test generation activities, various
mappings, mapping rules. Moreover, the focus of their work is only on test architecture
generation and other aspects, such as test behavior generation and test data generation,
are missing.

Apart form the above presented analysis, most of the above discussed approaches do
not consider a holistic view of the system for the test generation They use a single
artifact, such as process specification in the form of a graph or an activity diagram.
However, as discussed earlier, the information for different test views can be obtained
from the artifacts representing different views of business processes. Thus, there is a
need for a test generation approach that uses the information from various views of
business processes and generate various test aspects.

3.2.3 Analysis of Change Classification Schemes

In this section, we discuss the change classifications used by regression testing, impact
analysis, and some other general change classifications schemes. Further, we discuss

28

the approaches dealing with BPMN collaboration diagrams, as we use them as an ap-
plication domain.

Changes Covered for Regression Testing— Changes covered for regres-
sion testing are already discussed earlier in Section 3.1.2. Our evaluations conclude
that most of the MBRT approaches use only add, delete, and modify change types. Some
tools for regression testing of JUnit classes, such as JUnit-CIA by Storzer et al. [SRRT06]
and Chianti by Ren et al. [RST*03, RSTC04], also use atomic change operations like
addition and deletion of classes to determine affected test cases.

Changes Covered for Impact Analysis— Webriefly discuss here the change
types considered for impact analysis. A detailed discussion on these approaches can

be seen in one of our works [LFR12]. A number of existing impact analysis approaches

for source code use atomic changes, such as addition of elements, deletion of elements,

and changes in data values and properties of elements [KGH™, FG06, SLT*10]. How-

ever, the major issue with all these works is lack of support for composite changes.

Further, all the changes they consider are in the context of source code.

Various approaches for impact analysis across models support change types to express
model changes. Briand et al. [BLOS06] also consider changes in various UML models,
such as class diagrams, sequence diagrams, and use case diagrams. However, the set of
change types they support is also limited to the atomic change types. The approach of
Xing and Stroulia [XS04a, XS04b, XS05] is based on differencing of UML class models,
with the overall goal of detecting class co-evolution patterns. The change types they
support are add, delete, move, rename, and signature changes of classes, methods, and
attributes. Although move is supported, however, many other composite changes types
are neglected by their work.

Other Change Classification Schemes— The change taxonomy of Buckley
et al. [BMZ*05] distinguishes between two major categories of changes; structural and
semantic change types. The structural changes cover the addition, subtraction, and
alteration of software entities. The concept of distinguishing between structural and
semantic changes is interesting but we only focus on structural changes and do not
consider semantic changes in our work.

The work of Mdder [Mdd10] on traceability maintenance supports elementary change
operations, such as addition of elements, deletion of elements, and property modi-
fications. Some composite developer activities they support consist of replace, merge,
and split operations. Baldwin and Clark [BCOO] propose a set of atomic operations to
modularize a software by application of various refactorings. The authors distinguish
between six distinct refactorings: splitting, substitution, augmenting, excluding, inversion,
and porting. Their proposed set of operations contains a mixture of atomic and com-
posite types. However, the atomic operations are incomplete, as the modification of
properties is not covered. The set of composite operations lack the merge and the sim-
ple move operators.

Changes Covered for BPMN Collaboration Diagrams— Gerth et
al. [GKLE10] presented an approach for detection of changes in the business pro-
cess models for conflict resolution of changes. They considered three change opera-
tions, that are, insert, delete, move for detecting changes in process models. Weber et al.
[WRO8] proposed various change patterns to enable refactoring of business processes.

29

However, these change patterns can be realized by sequence of atomic and composite
change types presented in this thesis. Since process refactoring is out of scope for this
thesis, we do not consider these change patterns in our work.

3.2.4 Analysis of Impact Analysis Approaches

In this section, we briefly discuss the impact analysis approaches in the literature. A
detailed discussion on the impact analysis approaches can be found in one of our works
on rule-based impact analysis [LFR13b].

Typical impact analysis approaches are focused on only one type of software artifact,
such as source code, or certain UML diagrams. For example, a call graph analysis
cannot be applied on requirement specifications. Due to this limitation, most of the
proposed approaches are not able to detect impacts in heterogeneous software arti-
facts. Their applicability in the context of regression testing is also difficult due to
this. A previous study [Leh11] reveal ed, that from 150 studied impact analysis ap-
proaches only 19 are able to analyze atleast two types of artifacts. Various techniques
have been proposed to assess the propagation of impacts, such as program slicing
[VBFO07], call graph analysis [RT01], analysis of execution traces [OAHO03], impact anal-
ysis using similarity match algorithms [BLOS06, KSD09, KD11], information retrieval
[ACCDLO00, PMFG09], and the mining of software repositories [YMNCC04, ZWDZ05].

Ibrahim et al. [IIMDO05] proposed an approach for impact analysis spanning classes,
packages, tests, and requirements. To perform impact analysis, traceability relations
are established between the artifacts based on similar names, domain knowledge, and
explicit relationships. However, they provide semi-automated traceability analysis
only, which limits the applicability of their approach. They further neglect UML, BPMN,
and UTP models, thus are not applicable in our context.

Lindvall et al. [LS96, LS98] also use vertical and horizontal traceability relations for
impact analysis. De Lucia et al. [DLFO08] discussed the need of traceability support
for impact analysis and the two main problems of traceability analysis, that are, link
recovery and link evolution.

Most impact analysis approaches are further limited by the amount of change types
they support. They treat different types of changes equally and assume that they re-
sult in the same consequences. Only few works, such as the approach of Keller et al.
[KSDO09, KD11], treat different types of changes separately during the impact analysis
process. However, their set of change operations is not comprehensive either.

A closely related area to impact analysis is also dependency detection. Imtiaz et al.
[III08] analyzed various traceability techniques for their support of multi-perspective
impact analysis, which is based on various criteria. These are support for horizontal
and vertical traceability, support for different types of software artifacts, and their de-
gree of automation. According to results of Imtiaz et al., rule-based traceability mining
techniques are suitable for dependency detection among the different types of artifacts,
which can also be fully automated.

30

3.2.5 Analysis of Approaches for Support of Software Views

Gomaa [Gom11] presented 7 different views of a system that can be modeled using
UML diagrams. The usecase View describes the functional requirement of the system,
the static view describes classes and their relationships, and the dynamic interaction view
describes objects and communication between them. The dynamic state-machine view
depicts states and internal control of a component, the structural component view defines
components and their interconnections, the dynamic concurrent view describes commu-
nication between distributed components, and finally the deployment view defines the
configurations of a system.

Razavizadeh et al. [RCVDO09] use implementation view for extracting architectural de-
scriptions from it. Four different architectural views are defined in the 4+1 view model
[Kru95]: the logical view, the development view, the process view, and the physical view.

The logical view defined as an object model using classes and their relationships. The
process view captures concurrency and synchronization aspects and defines tasks and
inter-task communications. The development view defines the static organization of a
software and its development environment by using components and connectors.

Hofmeister et al. [HNS99] use 4 different views: the conceptual view, the module view,
the code view, and the execution view to define software architecture. The conceptual view
of the software define by UML component diagram to define high level components,
UML class diagrams to define the conceptual classes, UML sequence diagrams to show
component interactions, and state machines to define the protocol for the component
ports.

The module view defines the decomposition of subsystems into individual modules and
is described by UML class diagram. The execution view defines the concrete configu-
rations required to execute the system and is defined using UML class and Object di-
agram. Finally, the code view shows how the concrete source code files are organized
into directories. Clements [Cle10] discuss Module, Component & Connector, and Alloca-
tion views to define the modular structures, components and their relationships and
hardware allocations. In the following, we explicitly discuss the views of business ori-
ented systems, as business processes are the application domain of this thesis.

Views of Business Oriented Software Systems— Penker and Eriks-
son [PEOO] present 4 different views to model business architecture. The vision view
models high level business strategies and business requirements and the process view
models high level business processes. The structure view defines the structure of the
business resources, processes, and services. Finally, behavior view defines states of var-
ious business objects and interaction between processes. Koch et al. [KKCM04] use
various views to model business processes. These are Ul view composed of navigation
and presentation views, process view, and structural view. The process and structural views
are similar to the Penker and Errikson’s [PEOO] approach.

Ferdian [PE0O] describes different views of business process, such as data view, function
view, organization view, and control view. The control view binds the function and data
view. Moreover, he discusses several other views to describe a software system, such

31

Table 3.2: Different Software Views and Their Adherence to Purposes

Purposes
Auth
uthors PVI PV2 PV3 PV4 PV5 PV6 PV7
Penker and -) Process]))
Eriksson [2000] Vision View View Structure View Behavior View _ _ _
Koch et al. Process .)
[2004] _ View Structural View _ UlView _ _
Ferdian [2001] | Organization Data View, Control View _ _ _
View Fuction View
Module View
Allocation
Clements [2010] _ _ Component and _ — — View
Connector View
Hofmeister et al. | Conceptual - . Execution
[1999] View Module View _ _ Code View View
Logical View .
Kruchten [1995] Pr(?cess Development _ _ _ Ph).lsmal
View) View
View
Razavizadeh et Implementation
al. [2009] — — — — View —
Dynamic Interaction View
Gomaa [2011] USFT. case StructuraIA Dynamic State Machine View Depléyment
view Component View .) View
_ Dynamic Cuncurrent View _ _

as usecase view, design view, process view, implementation view, and deployment view.

Another important view neglected by the architecture modeling approaches is test view.
A number of test modeling and execution languages [HKO07, UTP11, MHO03, PM91]
are used to represent the test related aspects of a software system. Since our goal is to
enable model-based regression testing, the test view of the system is of crucial impor-
tance to us.

All the above mentioned views, however, adhere to various purposes, which were in-
troduced earlier in Section 3.2.5 of Chapter 2. Table 3.2 in-lines the above discussed
views according to the purpose they serve. Table 3.2 presents how different views dis-
cussed in Section 3.2.5 in Chapter 3 adhere to the list of purposes we collected.

3.2.6 State of the Art Business Process Modeling Approaches

This section briefly presents various approaches for modeling business processes and
discusses the modeling methods and artifacts supported by the approaches. The UWE
approach [KKCMO04] uses an activity like model to model processes. Each process it-
self is modeled as a class with a stereotype «ProcessClass ». The data and resources
required by the processes are modeled as classes with a stereotype «entity ». The focus
of the approach is to integrate the UI navigation models with the business processes.

The SoaML approach [EtCM ™10, SDE*10] models the enterprise business applications
by modeling the business architecture models and software architecture models. The
business architecture is modeled using BPMN collaboration and process models, and
business goals and capabilities. Moreover, a high level service architecture is modeled
using UML collaboration diagrams. The service architecture is further expressed as
service interface models in class diagrams, service interface behavior using UML in-
teraction/sequence diagrams, and software components using UML structure/com-
ponent diagrams. The aim of the approach is to integrate both business modeling
(BPMN) and service modeling (SoaML) approaches to model service oriented enter-

32

prise applications.

Engels et al.[EFHTO05] use UML activity diagrams to model the process behavior. The
constraints on the processes are modeled using OCL. The data used by processes is
defined as classes inside UML class diagrams, and concrete data instances are mod-
eled using UML object diagrams. The organizational structure is also modeled using
UML class and object diagrams. Interactions of business processes are modeled us-
ing swim lanes, which is conceptually similar to the Pools in BPMN collaboration dia-
grams. UML structure/component diagrams are used to model the high level business
components and their interfaces.

As discussed in previous section, Penker et al. [PE00] present four different views to
model business architecture. They use various UML models to model these various
aspects, such as UML activity, class, object, sequence, and collaboration diagrams.

Auer et al. [AGEG09] modeled user interfaces using dialogs. Other approaches used
task models for interface modeling.

3.2.7 Analysis of State of the Art on Test Dependencies

A number of approaches in the literature use dependency relations to support vari-
ous test related activities. Sneed [Sne04] presented an approach for the reverse engi-
neering of the test cases to support software migration. They used dependency rela-
tions among various system artifacts and tests to support software migration. Some
of these dependency relations include, subsystem to test procedure, test procedure to
test case,test case to use case, and test case to component etc.

Paul et al. [PYTBO1] presented various categories of dependency relations to support
functional regression testing using textual test scenarios. The different categories pre-
sented by them are: functional dependence, which expresses a relationship between var-
ious test scenarios, input/output dependence, which expresses common inputs and out-
puts shared by test scenarios, persistent data dependence, if the input/output data of tests
is persistent, execution dependence, if the execution order of test cases is dependent on
each other, and condition dependence, if the tests share preconditions/postconditions.

Kuhn et al. [KRH08] talk about dependencies among the unit test cases and discover
them for the purpose of fault localization. They use annotations to declare explicit de-
pendencies inside the test cases. Jungmayr [Jun02] discuss the dependencies between
components to increase the testability of the components. They suggest to remove cer-
tain dependencies to reduce the need of stubs for testing. They call them test critical
dependencies but the work does not suggests any new dependency types and only
aims to reduce existing dependencies between components to support testing.

Honeyman [Hon82] as well as Johnson and Klug [JK84] discuss the dependencies among
database fields and quires for testing the databases. Control low dependencies due to con-
ditional statements and data flow dependencies due to assignments to program variable
are discussed and used for testing program code by various approaches, such as by
Leung and White [WL92] and by Podgurski and Clarke [PC89]. Podgurski and Clarke
[PC89] also discuss two other types of dependencies for testing program code, that are,

33

syntactic dependence if a statement is in the chain of control and data dependence, and
semantic dependence, if they have a semantic relationship which might not be visible by
program syntax.

3.3 Chapter Summary

The analysis presented in this chapter shows that the existing MBRT approaches do
not provide through coverage of various types of dependency relations among mod-
els belonging to various views and tests. Furthermore, for each change, the existing
approaches perform a repeated search of dependencies during the impact analysis.
Detecting dependency relations prior to impact analysis can significantly improve the
efficiency and execution time required for larger systems. Similarly, impact analysis
activity is not separated from the detection of dependency relations. Thus, it is not
possible to use existing dependency detection approaches with them, which makes
the design less flexible.

Moreover, the existing approaches only support primitive changes, such as addition
and deletion, and neglect more complex changes applicable to models. In addition,
there is no support for test modeling languages and consequently, impact of changes on
various test views is also not supported. Similarly, only a limited number of approaches
support any standard test specification language. Most of the approaches do not refer
to any baseline test generation method. Thus, it is difficult to apply them on practical
scenarios. The tools provided by the approaches also lack extensibility, if the modeling
languages or test specification languages evolve. Changes in the source code of the
tools are required to support new conditions, dependency relations, and new language
teatures, which results in additional effort. Thus, there is a strong need of a new model-
based regression testing approach to overcome these issues.

34

Overview of Proposed Model-based
Regression Testing Approach

4.1 Proposed Model-based Regression Testing Approach 36
41.1 Baseline Test Generation 37
41.2 Recording of Dependency Relations 37
41.3 Change Application 38
414 Rule-based Impact Analysis 39
41.5 Regression Test Classification 39
4.2 Adapting the Approach to Business Processes 40
42.1 Motivating Scenario for Business Processes 40
422 Adapting Problem and Solution for Business Processes 43
4.3 Relation of the Approach with General SDLC 45
44 ChapterSummaryt 46

This chapter presents a broad overview of our approach and the activities required to
enable our approach. The approach complements the results obtained by our evalu-
ation of the state of the art, presented in Section 3.1.2 of Chapter 3. Our evaluation
results demand for a model-based regression testing approach, which inherently sup-
ports various types of dependency relations across several system views and the fest
view. These dependency relations are required to be recorded prior to the impact anal-
ysis, to abstain from repeated search of dependency relations for each change. The
approach shall also provide support for different types of changes applicable to mod-
els. Moreover, a desirable characteristic of the approach is inherent flexibility to extend
and adapt the approach for different modeling, test specification, and test execution
languages. Thus, based on these requirements we establish the hypothesis for our ap-
proach in the following.

Hypothesis— The hypothesis of our approach states that a potentially affected
subset of tests, after a change is being introduced, can be selected and classified by
considering following aspects.

1. The type of the applied change.

2. The type of impact determined by change impact analysis considering three dis-
tinct aspects; type of the applied change, type of the element on which the change is
applied, and dependency relations relevant to this element.

3. The type of the affected test element determined by the change impact analysis

4. The type of the test classification and classification conditions respective to the
type of the affected test element.

35

Further, our approach supports the concept of rules to enable various activities. These
rules are extensible and can be enhanced to support various modeling and test speci-
fication languages.

4.1 Proposed Model-based Regression Testing Ap-
proach

Our approach follows a systematic procedure by first defining generic steps and ac-
tivities to enable model-based regression testing. This enables us to discuss the con-
ceptual foundations of our approach, independent of a particular application domain.
For the realization of our approach to support domain specific requirements, it is then
adapted to the domain of business processes. Thus, the adaptation demonstrates con-
crete application of the generic concepts. This section presents a general overview of
our approach and Section 4.2 discusses the adaptation of our approach for the domain
of business processes.

Step 1: Prerequisite

gro— [Basellne Test Generation

System Analysis & ﬁ

Design Models

Baseline Test Models Baseline Test Code

v v v

Step 2: Core Activities

o]

Dependepcy Types Change Types Impact Rules Test Classification
i Rules i
Y V "2
Al:Recording of A2: Change A3: Rule-based Impact A4: Regression Test
Dependency Relations Application Analy5|s Classification
V :
Dependency Relations Impacted Elements Classified Test Elements

Step 3: Post Test Selection

I Test Execution & :
L Result Analysis "

Figure 4.1: Overview of Model-based Regression Testing Approach.

Our approach is comprised of three major steps, as depicted in Figure 4.1. Step 1 pro-
vides a test baseline, as the need for a test baseline is evident to support regression
testing. Our evaluation of the state of the art exhibits that the baseline test suite should
cover various test aspects, which is supported by Step 1. Step 2 in Figure 4.1 enables core
regression testing activities. These activities are (1) application of changes on models,

36

(2) recording of dependency relations, (3) change impact analysis, and (4) the classifi-
cation of tests for regression testing.

Finally, the last step, Step 3 in Figure 4.1, depicts the post test selection activities. These
activities enable the execution of the classified test cases and analysis of obtained test
results. The execution of regression tests and the analysis of the test results can be
achieved by using the same test execution platforms, which were used to test the base-
line test suite prior to the changes. A number of existing test execution tools can be
used for this purpose, such as TTWorkbench! . However, test execution is a separate
domain and is not in the scope of our current work. Therefore, further discussion on
this step in the context of regression testing is not required. In the following, we elab-
orate on the activities belonging to Step 1 and Step 2 to provide further insight to our
approach.

4.1.1 Baseline Test Generation

To support the generation of a test baseline from models, it is required to use these
models by extracting the test relevant information to generate the test suites. Therefore,
we propose a model-driven test generation approach, which uses the system models
and transform them to the test models to obtain a set of baseline test models. Model-
driven test generation approaches are based on the notion of platform-independent
models, which are transformed to the platform-independent test models. As discussed
in the previous chapter, we use UTP models to express the test view and various aspects
of UTP are required to be covered during the test generation.

Thus, to generate the test architecture in UTP, the information about the structure of
the software system is required, which is obtained from UML class and component
diagrams. Similarly, UTP test behavior can be extracted by analyzing the control flow
in BPMN collaboration diagrams. test data in UTP is also required to be generated
to provide the test inputs and expected test results. Therefore, we analyze the data
used by the processes and various business entities and resources defined in the class
diagrams.

Further, in model-driven test generation, mapping rules are required to transform the
system models to the test models for the test generation. To support the generation
of various test aspects, we analyzed the elements of system models and test models
to identify the correspondences and realized these correspondences as mapping rules.
These mappings rules are then translated to model transformations for the execution.
Further details of our baseline test generation approach and the mapping rules we
developed to transform the system models to UTP test models are presented in detail
in Chapter 5.

4.1.2 Recording of Dependency Relations

The activity Recording of Dependency Relations in Figure 4.1 records the dependency
relations between the set of system models Sy, and the set of test models T}, prior

Thttp:/ /www.testingtech.com /products/ttworkbench.php

37

to the impact analysis. There are two major benefits of using this approach. Firstly,
various existing approaches can be used for dependency recovery and dependency
recording independent of impact analysis [MMO03, LFOT07, BLR11]. Secondly, every
time a change is applied the required dependency relations are not repeatedly searched
during the impact analysis reducing the search overhead.

Thus, we record the dependency relations of various types between system and test
models using two different approaches. The dependency relations across system mod-
els (Syr to Sys) are recorded using a rule-based approach for dependency detection
[BLR11]. The approach was originally proposed for dependency detection between
requirements, user goals, and UML design models. However, the approach supports
rules, which are able to capture dependency relations based on a set of conditions.
These rules are based on a generic structure and can be extended to detect dependency
relations for other artifacts as well. We extend the set of dependency detection rules to
detect dependency relations between the models belonging to the structural view and
process view.

The dependency relations between system models and test models (Sys to Sr) are
recorded during the test generation. As discussed in the previous section, we gen-
erate the tests by extracting the relevant information from the models belonging to
Sur. During the test generation, dependency relations between source system models
and target test models can also be recorded and preserved, as done by Naslavsky et
al. [NRO7]. Therefore, we record the dependency relations between various system
models and UTP test models during the test generation.

Moreover, to record various types of dependency relations, a distinction between var-
ious types is necessary to identify various classes of relations. This is particularly im-
portant later during the impact analysis because different type of dependency relations
might result in different type of impacts. Therefore, we also provide a classification of
various types of dependency relations, which is based on the purpose of the depen-
dency relations. Chapter 6 discusses various aspects relevant to dependency relations,
the classification and types of dependency relations, the approaches to record depen-
dency relations, and dependency relations between BPMN, UML, and UTP models in
detail. Once the dependency relations between the models are explicitly recorded, the
next step is to apply a change on any model element to assess its impact.

4.1.3 Change Application

The Change Application is the second activity of step 2, as depicted in Figure 4.1. In
our approach, we use a predefined change catalogue and select the required changes
to be applied on a model to start the regression test selection. In this way, we do not
require the changes to be implemented first on the models. Therefore, our approach
is not based on the model comparison as compared to the existing approaches in the
literature. This enables us to deal with complex changes as well. Model comparison is
mostly able to detect basic changes in the models, such as add and delete. The com-
plex model changes, such as move and merge, are very hard to detect using the model
comparison. Figure 4.1 represents this catalogue as change types. The models in the
set are required to be analyzed to identify the changes applicable on them. The set of

38

changes applicable to the set S, was defined as set C' in the problem definition ex-
pressed by Equation 2.2 in Section 2.1 in Chapter 2. These changes are required to be
well understood, extracted for each required model, and defined unambiguously.

To define various types of changes applicable to models, a unified representation of
changes applicable to models is required. To support this, we present a generic change
taxonomy, which can be used to represent atomic and composite changes in models. The
taxonomy analyzes various change types from the literature and unifies them for a
consistent representation of change types across all the models. Further details of the
Change Application activity, the change taxonomy, and its application on the domain of
business processes is presented in detail in Chapter 7.

414 Rule-based Impact Analysis

After a change is applied on any model, the next task is to initiate the Rule-based Impact
Analysis activity, as depicted by Figure 4.1. To analyze the propagation of changes
across models, the dependency relations recorded earlier are utilized by the rules.

We initially developed the rule-based impact analysis approach to support impact anal-
ysis across heterogeneous software artifacts [LFR13a]. The approach is based on the
rules that use interplay to change types and dependency relations to propagate impact
of a change. Our hypothesis for the test selection and classification is based on the af-
fected test elements determined by analyzing various change types and dependency
relations. Therefore, the rule-based impact analysis approach can be used to analyze
the impact of changes in the models on the test models.

According to Figure 4.1, rule-based impact analysis requires a set of rules, a set of
predefined change types, and previously recorded dependency relations. Impact rules
asses the impacted elements by analyzing various conditions under which a change
¢; € C propagates through dependency relations. Thus, a set of affected elements from
the models of S and T is obtained. The impact rules produce a chain of reactions and
trigger other changes and their corresponding impact rules as well. This process can
consume a chain of dependency relations and carries on until no further dependency
relations are found for a particular impact rule.

At this point, we already obtain the set of affected test elements, which addresses the
test selection problem presented in Section 2.1 of Chapter 2. Further details of the rule-
based impact analysis activity and its application on the models from the domain of busi-
ness processes is presented in Chapter 8.

4.1.5 Regression Test Classification

The final activity of step 2 shown in Figure 4.1 is Regression Test Classification, as the
selection of affected test elements alone is not enough and a further classification of
affected tests is required. Once, a set of elements affected by a change is available after
the impact analysis, it is required to analyze the affected test elements to determine
how they are affected? and how they should be used for regression testing?

39

Thus, to distinguish between various types of test cases for regression testing, we use
the classification scheme proposed by Leung and White [LW89]. The baseline test suite
T is defined by a set of models T}, and classification of the elements of T} is required to
obtain the final regression test suite T'. To classify the elements of T}y, it is required to
analyze these elements to define the conditions under which the affected test elements
can be classified.

We propose the concept of text classification rules, which are based on various classifica-
tion conditions for a test element, the type of impact produced by the impact analysis
activity, and the type of applied changes. The rules analyze these various elements to
decide how an affected test element should be used during regression testing, that is,
ifitis Obsolete, Reusable, Retestable,PartiallyRetestable, or New. These
rules are easy to extend as compared to the existing approaches, which require changes
in source code if new test elements are required to be covered or any change in the
classification conditions is required [BLY09, FIMR10, NZR10]. The details of the test
classification activity and test classification rules are presented in Chapter 9.

The next section presents a scenario to motivate the need of our approach for business
processes and how we adapted our approach to business processes is presented in
Section 4.2.

4.2 Adapting the Approach to Business Processes

To demonstrate the applicability of our approach, in this section, we present how our
approach is adapted to the domain of business processes. Therefore, we first present a
motivating scenario, which is taken from the HandleTourPlanningProcess from the Mo-
bile Field Service Technician case study introduced earlier in Section 2.3. We use this
scenario throughout this thesis to explain various aspects of our approach. After that,
we define the concrete problem of regression testing for business processes and discuss
how our approach can be adapted to provide the concrete for the domain of business
processes.

4.2.1 Motivating Scenario for Business Processes

Models to express various views of business processes are prepared during the analysis
and design phase of software development and they serve as a working specification of
the design of business processes. These views are also discussed earlier in Chapter 2.
The views we specifically consider in our approach are presented in Figure 4.2. Figure
4.3 presents the excerpts of the various views of the tour planning process.

Tour Planning Process View— Part (a) of Figure 4.3 presents the process view
and provides an excerpt of the HandleTourPlanningProcess. The process takes start and
end location of the field tour, which is to be planned, and plans a tour based on various
strategies. The scenario in Figure 4.3 presents only the excerpt of the process for the
case when the strategy for planning a tour is based on the shortest distance. However,
other cases are also possible, such as routes covering maximum number of service orders

40

~

Structural Process
View View
Behavioral
View
- J

[Test Architecture] [Test Behavior]

System Models

View View

View
\ J

Figure 4.2: Coverage of Views for Business Processes.

Test Models

or the routes covering only high priority service orders.

When a route is obtained based on the shortest distance strategy, the next task is to obtain
the service orders for this particular route and create a tour plan. The tour plan can then
be customized by the service technician and finally the tour plan is saved. The tasks
Get Shortest Route and Get Service Orders For Route call two services provided by the
RoutePlaner and ServicePlanner, which are participants of the process.

Tour Planning Structural View— The part (b) and (c) of Figure 4.3 present
the structural view of the process. According to part (b) a Class is modeled corre-
sponding to the process HandleTourPlanningProcess with the stereotype «ProcessClass
» and various data elements used by the process are also defined as classes with the
stereotype «entity » [KKCMO04]. One of the entity classes is TourPlan as depicted in
part (b) of Figure 4.3.

Similarly, different stakeholders and participants of the processes are defined as com-
ponents [SDE*10], shown in part (c) of Figure 4.3. Thus, one of the components is
ServicePlanner, which provides the service getServiceOrders to the Handle-
TourPlanningProcess. Thus, a class ServicePlanningManager implements the ser-
vice getServiceOrders of the ServicePlanner component. Similarly, the com-
ponent RoutePlanner provides the service get ShortestRoute, which is called by
the process. These services can be modeled as operations in the classes implementing
the component interfaces.

Tour Planning Test View— The part (d) of the Figure 4.3 depicts an excerpt
of the test view of the HandleTourPlanningProcess. It consists of three test components
and a TestContext. The TestContext contains two test cases, testShortestStrategy
and testNoRouteForShortestStrategy. These test cases are derived from the collaboration
diagram depicted in Part (a) of Figure 4.3 using a path-based strategy, discussed in
Section 5.2.3 of Chapter 5.

The test components, RoutePlannerTCom, ServicePlannerTCom,and HTPPTCom,
simulate the behavior of the actual components from the structural view. They simulate
the services provided by the components as mock operations. How we generate these
test aspects using our model-driven test generation approach is discussed in detail in

41

(©) (b)
:E <<Components> ——O HandleTourPlanningProcess
RoutePlanner getShortestRoute <<Process Class>> ServicePlanningManager
createTourPlan() getServiceOrders()
=E <<Component>> saveTourPlan() ServiceOrder
ServicePlanner [O <<entity>>
takeServiceOrders TourPlan orderld
<<entity>> plannedStartDate
:EI <<Component>> plannedEndDate
TourPlanner requiredResource
requiredSkills

Get Start Location

Get Destination

HandleTourPlanningProcess

Shortest Distance

saveTourPlan

Customize
Tour Plan

TourPlanner

Get Tour Strategy

Get Se
Orders Fol

Get Shortest
Route

H

rvice
r Route

createTourPlan

RoutePlanner

getShortestRoute

ServicePlanner

{Ev]
getServiceOrders

]

HandleTourPlanningProcess.test
<<TestPackage>>

HandleRoutePlanningProcessTC

ServicePlannerTCom

(d)

<<TestCase>>
testShortestStrategy

getShortestRoute

é

<<TestContext>> <<TestComponent>>
testShorstrategy() getServiceOrdersMock()
testNoRoutesForShortestStrategy()
RoutePlannerTCom HTPPTCom
<<TestComponent>> <<TestComponent>>
getShortestRouteMock() createTourPlanMock()

<<TestCase>>
testNoRoutesForShortestStrategy

Q
getShortestRoute

3

Figure 4.3: A Scenario Representing System Models belonging to Various Views of
Business Processes.

42

Chapter 5.

Dependency Relations for Models of Different Views— From the
above presented views, one can already notice some of the dependency relations be-
tween the elements of these views, as depicted in the following.

« between Participant and Component—As the participants in a BPMN collab-
oration diagram are equivalent to the components in UML component diagram.

« between Task and Service—-As tasks call services provided by participants.

« between Component and TestComponent—As the test components simulate the
behavior of actual components.

These example dependency relations provide an idea of various types of dependency
relations that exist between models of different views.

Change Scenario and Need for Regression Testing— Considering
the above discussed views, we apply the changes and analyze their impact on the
test view to demonstrate the need of our approach. The operation getServiceOrder()
from the class ServicePlanningManager does not take any argument, however re-
quires a Route to compute the service orders covering that Route. The test component
ServicePlannerTCom implements a corresponding MockOperation which simu-
lates the behavior of the actual getServiceOrder operation. Therefore, the impacts on the
test view would be following:

1. The change would affect the takeServiceOrdersMock in the test component
ServicePlannerTCom.

2. Any test case that uses the takeServiceOrdersMock is affected as well, hence
in this case both operations in the TestContext are affected.

Thus, the problem is to determine that if a change is applied on any of these views,
which test elements are affected by the change and are required to be selected for re-
gression testing. Moreover, how the test elements should be classified for regression
testing, that is, whether they become obsolete, they are required for retesting, new
elements are required, or they remain unaffected.

Both of the test cases presented in Figure 4.3 become Retestable and are required
to rerun for the regression cycle. There are total 10 test cases in the actual test suite
of HandleTourPlanningProcess as reported in Section 11.2 of Chapter 11. In the present
change scenario, the remaining 8 test cases remain unaffected and are not required to
retest.

4.2.2 Adapting Problem and Solution for Business Processes

Considering the scenario presented in the previous section, for the adaptation of our
approach to business processes, we first map the problem definition presented in Sec-
tion 2.1 of Chapter 2 to business processes. Afterward, we discuss how various activi-
ties of our approach presented in Section 4.1 are adapted to support business processes.

Problem Definition for Business Processes— Equation 4.1 presents the
problem of model-based regression test selection and classification by adapting the

43

problem definitions presented in Section 2.1 of Chapter 2 and focusing on models of
various views of business processes.

Given: V = (PV,SV,TV) a set of different software views.

PV = (pv1, pva...pvy) | ¥ pv; € PV pu; is a model expressing the process view.
SV = (sv1, sva...svy) | V sv; € SV sv; is a model expressing the structural view.
TV = (tvy, tvg...tvy,) | V tv; € T'Vtv; is a model expressing the fest view.

Given: a process P defined by Sy = (b, Cp, Cop) | type(b)=collaboration diagram A
b€ PV Atype(Cp)=class diagram A type(Cop)=component diagram A

(Cp ANCop) € SV.

Given: T' = (1, T, T4) € TV to test P.

Ty, expresses the test architecture A Ty expresses the test data.

Ty = (b1, b, ...,by) | Y b; € Ty, b; is a test case representing test behavior.

Given: C = (c1, ¢, ...,¢n) | Ve; € C, ¢; is a change type for any model in Sjy.
Problem: find 7" for any given ¢; € C by identifying elements of T affected by
¢; using D.

determine Vz € T' how & can be classified? 4.1)

According to Equation 4.1, the structural view and the behavioral view of a given process
is defined by class diagram, component diagram, and collaboration diagram. More-
over, the test view of the process is defined using a set of models 7, T3, and T} repre-
senting the test architecture, test behavior, and test data respectively.

Moreover, a set of changes applicable to the models is defined as C. The problem is
that if a change C; € C is applied to any of the models belonging to the set Sj;, which
elements in the models of test architecture, test behavior, and test data will be affected.
Further, how these elements can be classified to assist regression testing.

Adaptation of Proposed Approach to Business Processes— The
tirst activity Baseline Test Generation in Figure 4.1 takes BPMN collaboration diagram,
UML class diagram, and UML component diagram as input. The output of the base-
line test generation activity is test models to test the BPMN collaboration diagrams
expressed in UTP. Our model-driven approach presented in Chapter 5 details down
the test generation using these models, the mapping rules we developed, and the ex-
ample scenarios from our case study for the concept demonstration.

To enable the second activity Recoding Dependency Relations presented in Figure 4.1,
dependency relations are required to be recorded between BPMN, UML, and UTP
models. The details of how we identified, analyzed, and recorded these dependency
relations is discussed in Chapter 6.

The activity Change Application presented in Figure 4.1 requires a set of predefined
change types for BPMN and UML models. As discussed in Section 4.1.3, we develop a
change taxonomy to define the generic changes in models. We used the same taxonomy
to define the changes in UML and BPMN models and discuss them in Chapter 7.

44

To adapt the activity Rule-based impact analysis presented in Figure 4.1, impact rules
are required to be developed to react on the changes defined for BPMN and UML
models. The details of how we developed these rules is presented in Chapter 8. The
set of impact rules is also presented in Appendix E. Finally, the last activity regression
test classification requires the analysis of UTP test models to identify the conditions for
classification. Chapter 9 presents the details of the tests classification, the definitions
to classify UTP elements and the concept of test classification rules.

4.3 Relation of the Approach with General SDLC

In this section, we briefly discuss the relation of our model-based regression testing
approach with general software development life cycle (SDLC). In one of our earlier
works, we presented a generic process for regression testing [FR11]. We refine this
process in the context of our approach, as presented in Figure 4.4. The upper part
of Figure 4.4 depicts the basic SDLC, which is comparable to the traditional waterfall
development model [Som10]. Baseline analysis and design models are prepared dur-
ing the Analysis and Design phases of SDLC. During the testing phase, model-driven
testing is used to generate baseline test models.

Usually, change requests are made during the maintenance phase. After the initial as-
sessment of a change, model-based regression testing can be started to analyze the test
effort required for the changes. During the regression testing activity, various activities
of our approach are commenced by recording dependency relations, applying change,
analyzing the change impact, and finally selecting and classifying a subset of baseline
test suite for regression testing. After that the desired change is designed and imple-
mented. The selected subset of tests is then used for the test execution and test result
analysis to get the confidence that changes have no adverse effects on the system.

| Model-driven Testing |

S

SQ

g S Analysis Design Implementation Testing Deployment Maintenance
Rz

<<Baseline Analysis & Design Models>> <<Basgline Test Models>> <<Change Request>> I

% E £

£ 2| | iAnalyze/Assess Start Model-based Destgn Implement Test Change

S 5 Change Regression Testing Change Change usmg Test Subset

@
1

=
! \ [\
2 £

R Record Apply Perform Change Classify Execute Analyze Test
& || Dependencies Change Impact Analysis Tests Tests Results

=

Legend: M Control Flow e >1/0

Figure 4.4: Relation of our approach to SDLC.

After a change cycle is complete, it can be repeated to accommodate other changes to
support incremental development. The adherence to waterfall SDLC depicted in Fig-

45

ure 4.4 is only an example of integration of our approach with a basic development
process. To integrate it with other widely used development processes, for example
RUP [Kru00] or agile process SCRUM [Sch95], the approach shall be adapted accord-

ingly.

4.4 Chapter Summary

In this chapter, we provide an overview of our proposed regression testing approach,
which uses dependency relations between system models and test models recorded
prior to the regression test selection and classification. The approach consists of three
major steps, the establishment of prerequisites, the core activities to support regression
testing, and post test selection activities. In this thesis, we focus on the first two steps.
The establishment of prerequisites step focuses on the generation of a test baseline
using a model-driven test generation approach.

The core regression testing step consists of various other activities: Recording of De-
pendency Relations, Change Application, Rule-based Impact Analysis, and Test Selection and
Classification. Dependency relations are used to propagate impact of changes by using
a set of impact rules, which can be triggered when a change is applied on a model. The
set of impacted test elements are then be analyzed to classify the test cases required for
regression testing.

We demonstrate the applicability of our approach by adapting it to the domain of busi-
ness processes. For this purpose, we first discussed the need of adaptation of our ap-
proach by presenting a motivating scenario from Mobile Service Technician case study.
The activities of our model-based regression testing approach are then analyzed to
enable our approach in the context of business processes. The subsequent chapters
discuss each activity supported by our approach in detail to provide further insight to
our approach.

46

Baseline Test Generation—A Model-driven
Test Generation Approach

51 Requirements to Enable Model-driven Test Generation for Busi-

nessProcesses i i e 48
5.2 Our Approach for Model-driven Testing of Business Processes . . . 48
52.1 Mappings and MappingRules 49
52.2 UTP Test Architecture Generation 49
52.3 UTP Test Behavior Generation 52
524 UTP Test Data Generation 55

5.3 Applying Test Generation Approach on HandleTourPlanningProcess 56
54 ChapterSummaryttt 57

This chapter presents our model-driven test generation approach to generate a test
baseline for business processes, which is one of the contributions of this thesis. Step 1
of our model-based regression testing approach presented in Section 4.1 of Chapter 4
states the baseline test generation as a prerequisite step. The test baseline generated in
this step will be used for test selection and classification later in our approach.

Our test generation approach is targeted for the domain of business processes. Test-
ing business processes is essential to ensure the quality of the systems supporting the
underlying business processes. Due to the increasing complexity of processes and
rapid technological advancement, testing requires high effort and huge investments.
Early testing can significantly reduce the testing costs [BDG*07]. Model-driven testing
(MDT) of business processes is, therefore, introduced [SWKO09, Yua08], which support
early testing by deriving the tests from analysis and design models.

Our analysis of the state of the art shows that most of the business process testing
approaches derive test cases from process code, for example, BPEL [YLY 06, YLS06].
Some approaches also translate the process code into some formal specification, such
as PROMELA [GFTRO06, ZZK07a, ZZK07b] or petri-nets [DYZ06], and then perform
model checking and test derivation. There are three main disadvantages of these ap-
proaches.

Firstly, the tests can not expose the deviations of the code from the functional speci-
fications. Secondly, testing activity can only be started after the development is com-
plete, which increases time and cost for testing. Thirdly, various test views discussed
throughout this thesis are not supported by these approaches and the focus is only
on the test behavior. Therefore, a model-driven test generation approach for business
processes is needed to overcome these deficiencies of the state of the art approaches.

47

5.1 Requirementsto Enable Model-driven Test Gen-
eration for Business Processes

Model-driven testing uses the concept of model transformations to transform the plat-
form independent design models into platform independent test suites [BDG ' 07]. Thus,
there are three major requirements to support model-driven test generation for busi-
ness processes. These are (1) the availability of a platform independent process mod-
eling language, (2) the availability of a test modeling language to support test visual-
ization and documentation, and (3) the support for model transformations for the test
generation.

To meet the first requirement, support for the artifacts required to model different
views of process-based information systems is required [PE00]. As discussed earlier, to
model the process view and behavioral view, we use BPMN collaboration diagrams. The
structural view of the system is modeled using the UML class and component diagrams.

To fulfill the second requirement we use UTP test models for the test specification. UTP
supports modeling of several test related aspects, such as test architecture, test behavior,
test data, test time, and several others. Finally, to support the third requirement, we
identify the correspondences between the design artifacts and test models and develop
the mapping rules using these corresponding elements.

5.2 Our Approach for Model-driven Testing of Busi-
ness Processes

To generate the test specifications, we adapt the general model-driven test generation
process by Dai et al. [BDGT07], as depicted in part (a) of Figure 5.1. This process

E Z>Transformationz> E (a)

PIM PIT
(b)
Z> Transformationz>
UML Class & UTP
Component Diagram Test Models

BPMN Process &
Collaboration Diagram

Figure 5.1: Model-driven Testing using BPMN, UML, and UTP.

48

involves the transformation of a platform independent model (PIM) to a platform in-
dependent test model (PIT). The lower part of Figure 5.1 shows our adaptation of the
process. Our approach transforms UML and BPMN models to generate test specifica-
tions represented as UTP models, which is a PIT model.

We support three distinct aspects from UTP, which are of core importance to the testing
activity. These are test architecture, test behavior, and test data elements. Thus, we trans-
form the UML class and component diagrams representing the structure and resources
of the processes into test architecture models represented in UTP.

For the generation of test behavior, information from BPMN collaboration diagram or
process diagram as PIM is used. Finally, the test data can also be generated by analyz-
ing the resources modeled as classes in UML class diagrams and data elements from
BPMN collaboration and process diagrams.

5.2.1 Mappings and Mapping Rules

To define the model transformations, mappings between the elements of source and
target models are required to be identified. We identify these mappings by analyzing
the correspondence between the relevant elements of UML, BPMN, and UTP. Model
transformations require the translation of mappings into concrete rules to realize vari-
ous transformation scenarios. In principle, a mapping rule realizes a mapping relation,
that represents a correspondence between the relevant source model and the target
model of a particular transformation.

We define a mapping rule as a 4-tuple (SourceElement, TargetElement,
Preconditions, Postconditions). The SourceElement is an element of the
source PIM model, the TargetElement is an element in the target PIT model. The
Preconditions is the set of constraints defined for the execution of the rule. Finally,
the Postconditions is the set of conditions that define the required changes in the
state of the target test models, such as creation of new test elements.

To identify the mappings and to develop the corresponding mapping rules, we ana-
lyzed the elements in the source models to generate various aspects of the test speci-
fication. According to the definition 4.1 presented in Section 4.2 of Chapter 4, the set
B=(b1, ba, b3...by,) for all (i=1,2,3...n) represents the set of collaboration diagrams, where
each b; represents the process view of a process P. The structural view of a process is
defined using a class diagram Cp and a component diagram Cop. The test suite T
represents the test view, where Ty, represents test architecture, Tj, represents test behavior,
and Ty represents test data. The mappings and rules required to generate test architec-
ture, test behavior, and test data form these models of the process view and the structural
view are presented below.

5.2.2 UTP Test Architecture Generation

The test architecture T, in UTP represents the structure of a test model. UTP defines vari-
ous concepts related to test architecture and provide a set of model elements to represent

49

W N =

O 00 N O Ul W

these concepts in the form of a UML class diagram decorated with UTP stereotypes.
These concepts include SystemUnderTest (SUT), TestArbiter,
TestScheduler, TestContext, and TestComponent.

Table 5.1: Mappings between UML,BPMN, and UTP Test Architecture Elements.

UML & BPMN Elements Test Architecture Ele- | Mapping Rule
ments

Package:UML TestPackage:UTP Listing 5.1
Class:UML «ProcessClass » SUT:.UTP Listing B.1
Class:UML «ProcessClass » TestContext:UTP Listing B.2
Participant: TestComponent:UTP Listing B.3
BPMN:Collaboration

Lane:BPMN TestComponent:UTP Listing B.4
TestPath:BPMN TestCase:UTP Listing B.6

UTP uses UML class diagrams with test related stereotypes to represent the test archi-
tecture T, of a system [BDG07]. We refer to this class diagram as C' Dy, representing T,.
To generate each element of the test architecture, we first analyze the elements of system
models to extract the relevant information and provide the corresponding mappings
and develop mapping rules. Table 5.1 presents the mapping and a reference to the cor-
responding mapping rules. In the following, we present the fest architecture elements
in UTP and discuss how they are generated from the elements of system class and
component diagram defined earlier as Cp and Cpop. We also use a set of dependency
relations D to access various related elements for defining the mapping rules.

Generation of TestPackage— A TestPackage in UTP is required to group
the related test elements into one package for better organization [BDG"07]. As dis-
cussed earlier in Section 4.2 of Chapter 4, the process modeling approach UWE repre-
sents the structure of a collaborative process as a Class inside Cp with a stereotype
«ProcessClass » [KKCMO04]. Thus, the test-related elements to test a ProcessClass
can be grouped together inside one TestPackage.

Due to this, we generate a TestPackage corresponding to a ProcessClass, which
groups the test related artifacts to test the process it represents. The mapping rule to
realize this mapping is presented in Listing 5.1.

According to the mapping rule in Listing 5.1, there are two preconditions specifying
the existential constraints. The first precondition states that a ProcessClass x exists
in the system class diagram C'Dp (Line 5). The second and third preconditions ensure
that a BPMN collaboration diagram b1 exists corresponding to the ProcessClass z
(Line 6-7).

Listing 5.1: Mapping Rule to Generate a TestPackage

Mapping-Rule TAOOl: Source:ProcessClass—>Target:TestPackage

Description:
/+ A TestPackage 1s generated to a ProcessClass to contain its test related elements
*/
Preconditions:
Jz € Cp | type(x)=Class:UML «ProcessClass »
3bl € B | type(bl)=Collaboration:BPMN
3dl € D | source(dl)=x, target(dl)=bl, type(dl)=Equivalence
postconditions:
create p E(j[ha| type (p) =UML:Package «TestPackage »

50

10
11
12
13

p.name= x.FQN +"TP"

set p.Containment=true
createTraceLink (x, "Derivation", p)
createTracelink (p, "Tests",bl)

In the postcondition part, a TestPackage p is created and its named after the origi-
nal class x and a string “TP"” is concatenated with it (Line 9-10). Moreover, the prop-
erty Containment of the newly created TestPackage is set to true (Line 11), as
this TestPackage would later contain other test elements. The next two postcon-
ditions (Line 12-13) create required dependency relations between various elements.
This helps to access the related elements during the transformations as well as pre-
serving these dependency relations for the later reuse, as discussed later in Chapter
6.

Generation of SUT- The suT in UTP represents the system to be tested, which
in our case is a process. This ProcessClass defines a collaborative process rep-
resenting interactions between several participants. These interactions are required
to be tested to test the functional behavior of the collaborative process. Hence, each
ProcessClass can be translated to a SUT for a test suite which tests the functional
behavior of that process.

We, therefore, map a ProcessClass in Cp to a SUT in the CDy,. This mapping is
realized by the mapping rule presented in Listing B.1 in Appendix B. According to the
mapping rule, the preconditions pose various existential constraints. The first three
constraints are similar to the rule discussed in the previous section. The third and
forth constraints require that a TestPackage already exists to test the SUT. The cre-
ation of the TestPackage is already discussed in the previous section. Thus, the forth
precondition checks if a Link exists between the ProcessClass and TestPackage,
which was created previously in the last postcondition of the rule presented in Listing
5.1. Finally, in the last preconditions the existence of the operations inside the relevant
ProcessClass is ensured.

The postconditions create the test element SUT and give it a similar name as the
ProcessClass, as it represents the process to be tested. All the operations of the
ProcessClass are then mapped to SUT.

There is a need to relate the SUT to the TestPackage which tests it. Baker ef al.
[BDG'07] suggest to create an import dependency between SUT andTestPackage
so that the tests are able to access SUT during the test execution. Thus, an import de-
pendency dep is also created. Finally, the required dependency relations are created to
relate various source and target elements.

Generation of TestContext— A TestContext is UTP contains the test cases
and is responsible of the order in which the test cases should be executed. Similar to the
SUT, a TestContext is also mapped to the ProcessClass. Listing B.2 in Appendix
B presents the mapping rule to generate the TestContext. All the test case in the
TestContext class are added later during the test behavior generation, presented in
Section 5.2.3. However, the test control can be defined manually after all the tests are
generated.

Generation of Test Components— Test components in UTP simulate the

51

behavior of the actual components and mock any interaction of the test cases with the
outside world. The test components can be generated by analyzing the associations of
the ProcessClass inside Cp.

However, all the process interactions might not be visible inside class diagrams; as the
process may also interact with high level components, GUI windows etc. Similarly, the
method called by the processes might be required to mocked or simulated inside test
components. This information can also not be obtained from the class diagrams alone.
Thus, to generate the test component, the process interactions are required to be ana-
lyzed from BPMN collaboration diagrams. In the following, we discuss the interaction
modeling scenarios for BPMN collaboration diagrams and provide the mappings to
extract test components.

Case 1: Process Interacts with a Participant.

To model the collaborators of a process, BPMN provides the element Participant.
A Participant can represent a software component, a GUI component, or a ser-
vice provider component. A Process can interact with a Participant by using a
MessageFlow element. However, in this case, it is not visible which service of the
component is being called, or how the message would be received by the component.
Thus, the Participant in this case represents a blackbox component. The mapping
rule realizing this scenario is presented in Listing B.3 in Appendix B.

Case 2: Process Interacts with a Lane.

A LaneinsideaParticipant caneither representa Class realizinga Component or
it represents a ServiceClass. A ServiceClass can implement a service interface
of a Component represented by the Participant. Therefore, a call to a Lane will be
received by a ServiceTask inside a Lane, which correspond to a method or a service.
Listing B.4 in Appendix B provides a mapping rule for this scenario.

5.2.3 UTP Test Behavior Generation

The generation of test behavior comprises of two major tasks; the generation of test paths
from BPMN collaboration diagram, and the transformation of these test paths into
UML activity diagram test cases. The generation of the test paths is dependent on the
selected coverage criteria. However, the activity of mapping the test paths onto activity
diagram test cases should be independent of the coverage criteria and path generation
strategies. Thus, to enable such reuse, we design the process of test behavior generation
into three sub-activities, as depicted in Figure 5.2.

Extend Model with Distance— According to Figure 5.2, in the first activity,
we prepare the BPMN collaboration diagram for test path generation by extending it
with some information required by the path extraction algorithms. The algorithm we
use in this work uses the distance information for the selection of test paths. Thus, the
distance of each node from the end node is computed and the nodes are annotated
with this information.

The output of this activity is a diagram that is extended with distance information. In
the second activity, the test paths are extracted from the extended collaboration dia-

52

BPMN Collaboration
Diagram Coverage Criteria

.. C

v v

O—)[Extend.ModeI with]_)[Generate Test Paths]—)[Transform Test Paths]—).
Distance

: : V

E /

Extended BPMN Test paths Test Case Activity
Collaboration Diagram Diagrams

Figure 5.2: Test Behavior Generation Activities.

gram based on some coverage criterion. Finally, during the third activity, the generated
paths are transformed to UML activity diagrams to support the visualization and test
documentation.

As discussed earlier, the mapping of the test paths onto UML activity diagrams is inde-
pendent of the test path generation activity, hence can be reused with multiple coverage
criteria. In the following sections, we discuss the test path generation and mapping the
test paths into UML activity diagram in detail.

Generate Test Paths— To enable the test path generation from BPMN collabora-
tion diagram, we use the branch coverage criterion. The criterion covers all the gateways
in the diagram for all possible outcomes, and traverses each loop once. To compute
the test paths, we first compute the shortest path in the collaboration diagram by us-
ing the Dijkstra algorithm [SSD06]. The algorithm starts by selecting the start node in
the diagram and then selects its child node which has the shortest distance from the
end node.

This process is repeated for each selected node until the end node is reached. The
reasons for using the Dijkstra algorithm for computing the shortest path first is that in
our test suite, the first test case will always contain the shortest execution path. In the
case of limited testing budget, execution of this test case can provide the confidence
about at least one process path execution with the minimum cost overhead.

For the calculation of other paths in the diagram we use a Depth First Search (DFS)
algorithm with backtracking [Awe85]. The reason of selecting the DFS is its ability to
cover all the branches of a graph by visiting all children nodes of a node and backtrack-
ing when the end node or an already visited node is found. When a node is added to a
path all the information of the node is also copied. If the node corresponds to a send,
receive, or service task, the information about the related participants is also copied
with that task.

BPMN collaboration diagrams support parallelism by using the parallel gateways. How
these parallax activities will be executed is decided at the execution time. For example,
all branches of the gateway can be executed in a sequential order [BBG*09]. Since the

53

decision to treat parallelism is based on execution strategies, we also defer this deci-
sion for the test code generation. We maintain the abstraction of test models by adding
the whole parallel fragment in the test cases. After the generation of the test paths, the
next activity is to map each test path onto a UML activity diagram, as discussed in the
next section.

Transform Test Paths to UMLAD- The next activity is the transforma-
tion of test paths in to UML activity diagrams. The mappings between the test cases
represented by the UTP activity diagrams and test paths extracted from BPMN col-
laboration diagram requires an analysis of elements of both diagrams for similarity of
concepts. BPMN collaboration diagrams comprise of set of nodes (start, end, and in-
termediate), tasks and activities, participants and lanes, flow elements (control flows,
message flows), gateways, and several data elements.

Mapping rules are required to be defined between all these elements and their corre-
sponding activity diagram elements. The mappings between UTP activity diagrams
and BPMN processes are presented in Table B.1 in Appendix B. The corresponding
mappings rule are also enlisted in Appendix B. Discussion on all the mapping rules
is not possible due to space constraints. However, for more detailed explanations a
related masters thesis can be consulted [Groll]. For the demonstration purpose, in
the following, we provide an example of a mapping rule that maps a StartEvent in
BPMN collaboration diagram to the corresponding activity diagram elements.

The startEvent and EndEvent in a BPMN collaboration diagram can be mapped
tothe InitialNode and FinalNode in the UML activity diagram. However, BPMN
collaboration diagrams have many different types of start and end events, such as
MessageStartEvent, EmptyStartEvent, TimerStartEvent, and many others.
Since the UML activity diagram has only one InitialNode, it can be mapped to only
one typeof StartEvent in BPMN collaboration diagram, thatis, EmptyStartEvent.
For the rest, more complex patterns need to be identified in the UML activity diagram.
In the following, we discuss the mapping for a more complex StartEvent, that is,
MessageStartEvent.

An Example of Mapping the MessageStartEvent

A MessageStartEvent is initiated upon the receipt of a message. Thus, it can be
mapped to an InitialNode followed by an AcceptEventAction, witha
MessageEvent. A ControlFlow in the activity diagram joins both InitialNode
and AcceptEventAction. The corresponding mapping rule is presented in Listing
5.2. Similar to the mapping rule in Listing 5.1 presented earlier, the mapping rule 5.2
also consists of a set of preconditions and postconditions.

The preconditions state that a MessageStartEvent exists in a BPMN collaboration
diagram and a corresponding Activity element exists, which depicts the root el-
ement of the test case activity diagram. In the postconditions, an InitialNode, a
AcceptEventAction, and a ControlFlow is created and added in the test case ac-
tivity diagram. The name of AcceptEventAction is assigned to the InitialNode
and the source and target of the ControlF1low are set of join the InitialNode and
AcceptEventAction.

54

Listing 5.2: A Rule for Mapping Messagestartevent/SignalStartEvent in BPMN

Mapping Rule 019: MessageStartEvent|SignalStartEvent-> InitialNode,ControlFlow,
AcceptEventAction

Description:

/+Since a MessageStartEvent and a SignalStartEvent wait for incoming message, they
are mapped to an InitialNode followed by an AcceptEventAction, which are joined
by a ControlFlow in an activity diagram test case.#*/

PreConditions:

Jta € Ty | type(ta)= Actvity, streotype (ta)=TestCase

3P € Sp |type (P)=Collaboartion

3d1 € D |source(dl) =ta, target(dl)=P, type(dl)=Tests

Jse € Sy | type (se)=MessageStartEvent|SignalStartEvent

3d2 € D |source(d2) =P, target (d2)=se type(d2)=Containment

PostConditions:

create anode |type(anode)=ActivitylnitialNode:UML
create cf | type(cf)=ControlFlow:UML

create aea | type (aea)=AcceptEventAction:UML
ta.add (anode)

ta.add(cf)

ta.add (aea)

anode.name=se.name

source (cf)=anode

target (cf) =aea

5.2.4 UTP Test Data Generation

Test data generation requires extraction of test data for test cases and definition of the
data elements inside UTP. Test data generation is a vast field and scope of this the-
sis limits the discussion on test data generation techniques. However, in one of our
works, we explored the test data generation for business processes in detail [Rav13].
For the concept demonstration, we only briefly discuss the steps to generate test data
from business process models.

Table 5.2: Mappings Data Elements.

‘ Collaboration Elements ‘ Activity Elements
DataObject Input/Output Pin (with tasks)
Datalnput InputPin of base ActivityPartition
DataOutput OutputPin of base ActivityPartition
DataStore DataStoreNode

The first step is to map the BPMN data elements to UTP test cases. Table 5.2 presents
the correspondences between data elements of both models. In the step 2, a test data
class diagram is created to represent the test data definitions for a particular process. This
diagram contains data pools and data partitions from the data elements and process
constraints using the Category Partition Method(CPM) [OB88]. CPM is a well known
method to generate data partition from variables by identifying sets of data classes
based on common traits. An example of data pools and partitions is available in Section
5.3 Finally, test verdicts are modeled by combining all the data outputs and analyzing
the expected results.

55

5.3 Applying Test Generation Approach on Handle-
TourPlanningProcess

To present concrete examples of the concepts discuss above, we discuss here the test
aspects related to the Field Service Technician scenario presented in Section 4.2.1 of Chap-
ter 4. Figure 5.3 presents an excerpt of the test architecture, test behavior, and test data for

(@) <<TestCase>>| ()
testShortestStrategy
HandleTourPlanningProcess.test 9
<<TestPackage>>
RoutePlannerTCom HTPPTCom [getStartLocation
<<TestComponent>> <<TestComponent>> N\
[getDestination }
v
getShortestRouteMock() createTourPlanMock()
getTourStrategy
HandleRoutePlanningProcessTC ShortestDistgnce=true
<<TestContext>>
testCasel() [getShortestRoute
testCase2()
LocationPool RoutePool ©
<<DataPool>> <<DataPool>>

A R

Locationl Location2 ShortestRouteFrom1to2
<<Datapartition>> <<Datapartition>>

<<Datapartition>>

Figure 5.3: An excerpt of the test architecture and test behavior for Tour Planning Process.

the scenario discussed in Section 4.2.1 of Chapter 4. These aspects can be generated by
using the mapping rules discussed above.

The test architecture depicted in part (a) of Figure 5.3 represents the elements
TestPackage, TestContext, and two TestComponent elements. The test compo-
nents are generated from the participants of the HandleTourPlanningProcess from the
scenario presented in Section 4.2.1 of Chapter 4.

The test behavior is presented in part (b) of Figure 5.3 which is generated by applying
the path extraction and mapping rules discussed above. Part (b) of Figure 5.3 shows
one particular test case that test the scenario when the strategy Shortest Distance is se-
lected. Finally, the test data shown in part (c) of Figure 5.3 depicts the data pools and
partitions required for the execution of the test case shown in part (b). The data pools

56

are generated from the data elements Location and Route but their corresponding
partitions are created manually.

5.4 Chapter Summary

In this chapter, we presented a holistic model-driven test generation approach to gener-
ate the test baseline for testing business processes. We generate the test architecture, test
behavior, and test data by defining mapping rules between the elements of UML class
diagram, component diagram, and BPMN collaboration diagram. The test architecture
and test data generation required direct transformation of elements of source models
into target models. To extract the test behavior, however, we first extract the test paths
from BPMN collaboration diagrams using a path-based algorithm. These test paths are
then transformed into U2P activity diagram test cases. To enable the transformations,
we analyzed the elements of BPMN collaboration diagrams, UML class and compo-
nent diagrams, and UTP test models to identify the corresponding elements and then
developed mapping rules based on them. An interesting future research area is to pro-
vide a way to translate the UTP test specifications for business processes into concrete
test scripts to support test execution.

57

Recording of Dependency
Relations—between Models and Tests

6.1 Fundamentals of Dependency Relations 59
6.2 Dependency Relations among Business Process Models and Tests . 63
6.3 Recording Dependency RelationsforTests 66
6.4 ChapterSummaryttt ennnenn 69

We use dependency relations to propagate changes across models and tests to iden-
tify the affected test elements. Therefore, it is of crucial importance to our work to
show how these dependency relations are recorded. Recording Dependency Relations is
the first activity in the Step 2 of our approach presented in Section 4.1 of Chapter 4.
The main contribution of this chapter is to present various solutions for recording de-
pendency relation across models and tests by analyzing different types of dependency
relations that can occur between software artifacts. Thus, we present a taxonomy of
dependency relations that classifies various types of dependency relations.

We use the taxonomy as a basis to identify a comprehensive set of dependency rela-
tions between various views of business processes. Moreover, we adapt two different
approaches to record these dependency relations. Firstly, the dependency relations are
recorded during the test generation. Secondly, we use a rule-based dependency detec-
tion approach, that uses a set of rules which analyze various conditions to identify and
record various types of dependency relations.

Our analysis of model-based regression testing approaches presented in Chapter 3
shows a lack of support for various types of dependency relations across views. Sim-
ilarly, the state of the art approaches repeatedly search dependency relations for each
change during the impact analysis. Another limitation of the state of the art is lack of
support for dependency relations of various types. None of the model-based regres-
sion testing approaches support the notion of type of dependency relations. Therefore,
our approach addresses these issues by recording the dependency relations of various
types prior to the impact analysis.

Therefore, we first present the fundamentals of dependency relations to gain a bet-
ter comprehension of the concept and then discuss how we identified and recorded
dependency relations in our approach.

58

6.1 Fundamentals of Dependency Relations

To get a through understanding of dependency relations, following questions are re-
quired to be answered.

1. Q1: How a dependency relation can be defined? What are the basic building
blocks and structure of a dependency relation?

2. From where the dependency relation can emerge? What are the origins of the
dependency relations and how to find them?

3. Q2: What types and categories of dependency relations exist?

4. Q3: How the dependency relations relevant to tests can be recorded?

In the following, we discuss the relevant details to answer the above mentioned re-
search questions.

Defining Dependency Relations— Earlier in the problem definition 2.1,
the set of dependency relations is refereed to as D, where each d; € D is a dependency
relation between the system and test models. In the following, we define a dependency
relation, as we use and perceive it in the rest of this thesis.

Definition—-A dependency relation d; € D canbe defined as a 3-tuple (Source,
RelationType, Target). The Source and Target specify the model elements be-
longing to the models of different system views, which are related to each
other. The relation-type defines the purpose of a dependency relation and
clarifies its semantics.

According to the definition above, a dependency relation not only points to the related
model elements but also contain a purpose to ease the comprehension of the context
of a dependency relation. To understand the purpose of dependency relations and to
find various dependency relations among models and tests, it is important to identify
the genesis of dependency relations.

6.1.1 Origin of Dependency Relations

Keeping in view the dependency relations in the context of model-based testing, we
identified the following origins of dependency relations, which can be of interest while
finding dependency relations among system models and tests. The different origins of
dependency relations are presented in the following;:

arising from different views of a system.

originating form modeling and development methodologies.
emerging from meta-models.

arising from test generation Approaches.

Ll

Relations From Views and Modeling Methodologies— We already
discussed the dependency relations originating from different views of a system in

59

detail in Section 2.2.2. Modeling methodologies define how various models belonging
to different views are developed and also define various constraints to enforce better
modeling practices. Dependency relations can also originate due to these constraints
imposed by modeling methodologies. Since the dependency relations emerging from
views and modeling methodologies are closely related, we are discussing them side
by side.

An example is, that a Participant in the process view is equivalent to a Component
defined in structural view. This dependency relation is suggested by the modeling
methodology of Sadovykh et al. [SDE*10]. Another example is of Koch et al. [KKCMO04]
requiring that the structural view of each Process is modeled asa Class in UML class
diagram with a stereotype «ProcessClass ». This suggests a relationship between a pro-
cess view and structural view, where the Class defines the corresponding Process.

Relations Emerging from Meta-Models— A meta-model defines amodel,
the elements that constitute a model, and the possible relationships between those el-
ements. For example, UML and BPMN are defined by their respective meta-models
[UMLO07, BPM10] provided by OMG [OMG14]. Meta-models explicitly state various
dependencies and relations among elements of models. These relations are also re-
terred to as "structural relations" by De Lucia et al. [DLFO08]. For example, UML meta-
model suggests inheritance and composition relations between classes. It also defines the
containment relation between the classes and their contained operations and attributes.

BPMN meta-model also explicitly suggests containment relations between processes and
their contained tasks, gateways, and various data elements. However, all the relations are
not explicitly stated and some dependency relations can also be extracted by analyzing
indirect relations. For example, consider the case where a Process contains a Task
and a ServiceTask, which are connected by a MessageFlow element. If the source
of the MessageFlow is the Task element and the target of the MessageFlow is the
ServiceTask, then it means that the Task is calling the ServiceTask. This suggests
the call relation between the Task and ServiceTask.

Relations Arising From Test Generation Approaches— Asdemon-
strated earlier in Chapter 5, model-based testing uses analysis and design models to
generate test cases. Thus, the correspondences between source models and target tests
suggest potential dependency relations among them. Such dependency relations are
recognized and used for regression test selection in the works of Naslavsky et al. [NR07]
as well. These relations are further discussed in Section 6.2.2 and 6.3.1.

6.1.2 Classification of Dependency Types

The discussion in this section aims to answer the Q3 from the list of questions presented
at the start of this section. Each dependency relation serves a particular purpose and
the purpose determines the type of a dependency relation.

Purpose of Dependency Relations— The purpose of dependency relations
helps to improve the comprehension of dependency relations and distinguish the dif-
ferent type of relationship between same type of elements. An example of such a de-

60

pendency type is between an Operationand Class. A Class can contain an owned
operation, which specifies a dependency relation whose purpose is to describe a struc-
tural relationship between the Class and Operation. Similarly, a Class might use
an Operation of another class. The purpose of this relationship is different as it spec-
ifies a usage scenario. Therefore, the purpose of a dependency relation helps to dis-
tinguish between various dependency relations. Moreover, it helps to understand the
context of the dependency relation, in which the dependency relation is used. To fur-
ther clarify the concept, we take an example from BPMN collaboration diagrams. A
ServiceTask in BPMN collaboration diagram can call an Operation corresponding
to the service in UML class diagram. Similarly, an Operationina

TestComponent can simulate the behavior of a ServiceTask. in a test suite can test
a service task inside a BPMN collaboration diagram. These two dependency relations
are among the same element types, that are, Operation and ServiceTask. How-
ever, they reflect different purposes and consequently are used in different contexts.
Thus, they can be expressed using two different type of relations, that are, tests and
simulates.

Taxonomy of Dependency Types— Based on the purpose of the depen-
dency relations, we classified the dependency relations into different types. During
one of our studies, we identified a set of 50 different types of dependency relations
that can occur between software artifacts [LFR13b]. We categorized these relations
into a taxonomy of dependency relations which consists of different clusters based on
their purpose. Figure 6.1, we present the taxonomy and discuss the high level clusters
of dependency types in the following. The details of these clusters and subtypes are
available as a separate white paper with this thesis [LFR13b]. The taxonomy consists
of three levels and each level contains the subtypes of dependencies of its parent level.
The first level contains 9 high level dependency clusters. These are Abstraction, Defini-
tion, Similarity, Structure, Realization, Behavior, Evolutionary, Conditional, and Causation.

Abstraction— defines the relation between elements, where one elements represents
an abstraction of the other elements. Such as, an element is refinement of other or an
element is a parent of other.

Definition- is a type, which suggests an element defines another element.
Similarity- suggests similar or equivalent elements.

Structure- suggests structural relationships between elements. An example is the re-
lationship between the element Class and Operation in object oriented software
systems. A Class contains an Operation, which is a structural dependency relation.

Realization- depicts the set of dependency types, where elements realize or implement
other elements. Another type that falls in this cluster is instance-of relation between an
element and its type.

Behavior- is a set of dependency relations, where elements are behaviorally depen-
dent on other. For example, operations calling other operations, elements creating other
elements, or elements simulating the behavior of other elements. A number of test de-
pendencies also fall in this category. These dependency types include tests, simulate,
and assert.

61

‘suorye[ay Aouapuado(] jo Awouoxe] v

:1'9 2an31]

JO-92UeISU|-S|

sooe|day 0]-1ud|eAinb3-s|
M%Mﬁ 01-S9A|0A] swawa|dw 0J-Je|IwIs-s|
ML A SaIIPOIN sozljeay YyuM-sdesano
Ag-pasne)-s| A A
A spodwi| saulyaq
saljsies SHIssY S9I}130N A coztenad
salinbay sajepl|ep sa1eAldRag -s91e39.33y - Nm__ _w S
- uaIX
0L-|3||eJed-S| -saInqLIU0D) -s| sjuleJIsuo) SaLIAA $31eAIDY SWJOJSURI] ol-sanquisig JOHed-sI wolg-syusyu pusig
- sa1e|nwil] sulejuo) v-si sauljay
19YV-s| spoddng S9A|0S9Y 0]-9|ql1edwo)-s| 1e|nwis s||ed s9319]9@ 0]-591e20| |y ! N
91049g-5| SIPINOId YUAMN-SIIIUOD YHA-SWI0U0) S1s9 sasn sajeal) A A A
A A A A A A A
€ 991
|esodwa] uoinquIuo) 101jju0) uonipuo) uolneuijwex3y uonezinn uoiear) uonnquasiqg uoiysodwo) uoljezijeJauan uswaulay
V. » 4 » A A .A >
uolzesne) |[euOI}IpuUOD AJeuoiin|on3 Joineyag uonjezjjeay 2Jn10N41S Ayewis uoluyaqg uooeIISqy

<

i

¥

<

v

i d

i 4

—p

T 19A97

Aduspuadaq

019731

62

Evolutionary— dependencies define evolution of an element to another element. These
relationships can be seen in evolutionary modeling languages, such as in feature mod-
eling [TTJ*09].

Conditional- category defines the relations, where the existence of an element de-
pends on the existence of other. For example, if one element requires another element,
provides another element, or conflicts with another element.

Causation- defines cause and effect relationships between elements.

In the following, we discuss how the dependency relations of different types are being
used in the context of regression testing. We present example dependency relation
types and examples of their usage from the domain of business processes using BPMN,
UML, and UTP models. The discussion on test related dependencies is also explicitly
presented in Section 3.2.7 of Chapter 3.

« Equivalence: An Interface in a UML component diagram is equivalent to an
Interface in UML class diagram.

« Derivation: A TestPackage ina UTP testmodelis derived fromaProcessClass
in a UML class diagram.

« Tests: A TestCaseina UTP testmodel testsa Process ina BPMN collaboration
diagram.

« Mocks: A TestComponent in UTP test architecture mocks the behavior of the
Component in UML component diagram.

« Definition: A Process in a BPMN collaboration diagram is defined by a
ProcessClass ina UML class diagram.

. Calls: A ServiceTask in a BPMN Collaboration diagram calls an Operation
in a UML class diagram.

Concrete examples of these types are presented in Section 6.3.3, while demonstrating
the concepts on a scenario from our case study.

6.2 Dependency Relations among Business Process

Models and Tests

To further elaborate on various types of dependency relations for business processes
and tests, we further categorized them into two major categories; cross-model and intra-
model dependency relations, as depicted by Figure 6.2. The intra-model dependency
relations are within one specific model, whereas, the cross-model dependency rela-
tions relate more than one models.

We are interested in the dependency relations among models belonging to the sets Sy,
and T. Thus, we categorize cross-model dependency relations in two subcategories, as
depicted by Figure 6.2. These are Sjs to Syr dependency relations and the Sy to T’
dependency relations. We discuss these categories in detail in the following.

63

{IMI: Class. Containment, Operation

Intra-Model

/_ IM2: Task, Calls, ServiceTask
Process View to Test View PT1: ServiceTask. Mocked Bv. Mock Oberation
PT2: Process, Tested_By, TestCase
2, :
£ & Smto T—
%} .
g g f Structural View to Test View ST1: Component, Mocked_By, TestComponent
g % ST2: Class, Tested_By, TestModel
[~ .
2 :
T
'8 PS1: Participant, Equivalence, Component
s | Structural View to Structural View . ”
\ o PS2: DataObject, Definition, Class
¢ —Sm to Sm—| .
S
(&}
Process View to Structural View SS1: Interface, Equivalence, Interface
S$S2: Operation, Implementation, Interface

TT1: TestCase, Uses, TestComponent
TtoT TT2: TestContext, Containment, TestCase

Figure 6.2: Categories of Dependency Relations between Models and Tests.

6.2.1 Intra-Model Dependency Relations

The category intra-model consists of dependency relations within one model, such as
a relation between two elements of a class diagram. Hence, an intra-model model de-
pendency relation d1=(source:A, DependencyType, target:A) depicts a relationship in
which both source and target elements belongs to the same model A. Examples of
these relations are IM1, IM2, and IM3, as depicted by Figure 6.2.

The dependency relation IM1 expresses that a Class ina UML class diagram can con-
tain a set of operations. A similar dependency relation of type containment is suggested
by IM2 that expresses that a Lane element is contained by a Participant element in
a BPMN collaboration diagram. The dependency relation IM3 expresses a call rela-
tion between a service-calling Task and the ServiceTask that represents the service
being called in a BPMN collaboration diagram.

6.2.2 Cross-Model Dependency Relations

The cross-model dependency relations are between elements of different models belong-
ing to any of the views. Hence, a cross-model dependency relation d2=(source:A, De-
pendencyType, target:B) depicts a relationship, in which, the source element belongs
to a model A and the target element belongs to the model B and A # B. As discussed
earlier, the cross-model dependency relations are further divided into two categories;
Sy to Sy and Sy to T' dependency relations. The category Sy to Sy expresses the
dependency relations among system models. Whereas, the category Sjs fo " expresses
the dependency relations between system models and test models.

The need for these dependency relations is already discussed in Chapter 4 in Section
4.1.2. Since the set S); consists of the models belonging to the structural view and process

64

view of the system, the Sy to Sys dependency relations an be categorized into struc-
tural view to structural view and process view to structural view dependency relations, as
shown in Figure 6.2. Further the S); to 1" can be categorized as process view to test view
and structural view to test View dependency relations.

S to Sy Dependency Relations— In the following, we present the sub-
categories of Sy to Sys dependency relations and provide examples of them for the
concept demonstration.

The category structural view to structural view expresses the relationships between UML
class and component diagrams (Sis to Syr). As an example, consider the dependency
relation SS1:(Interface, Equivalence, Interface) depicted by Figure 6.2. It specifies that an
Interface of a component in a UML component diagram can also be presented as a con-
crete interface in a UML class diagram. However, both express the same Interface.

The category process view to structural view consists of dependency relations between
BPMN collaboration diagrams and UML class and component diagrams (Sys to Sar).
One example of such dependency relations as depicted in Figure 6.2 is PS1:(Participant,
Equivalence, Component). This suggests the situation where a Component can act as a
Participant of a collaborative process. The Pocess can call services and methods
defined in that Component as well [SDE*10].

Sy to T Dependency Relations— The category process view to test view
consists of dependency relations between the elements of BPMN collaboration dia-
grams and UTP test models (Sj to T). One example of such a relation is PT3:(Process,
Tested_By, TestCase), which suggests that a Process can be tested by a UTP Test
Case. Finally, the intra-model dependency relations are the dependency relations in-
side one particular model belonging to any view.

The category structural view to test view contains the dependency relations between the
elements of UML class and component diagrams and UTP test models (Sy; to T). An
example of such a relation is ST1:(Component, Mocked By, Test Component). This depen-
dency relation expresses a situation where the behavior of a Component defined by
a UML component diagram is simulated by a Test Component in UTP test architecture.

T to T' Dependency Relations— These dependency relations are the rela-
tions between various test models belonging to the test view of the system. As dis-
cussed in the previous chapter, various test aspects are expressed using a set of dif-
ferent test models, such as class diagrams to express the test architecture and test data,
activity diagrams to express the test behavior, and object diagrams to express various
test configurations. The relation between these various models belong to the category
of dependency relations 7" to T'.

The dependency relation TT1 in Figure 6.2 describes a situation when a Test Case uses
a TestComponent by calling one of its mock operations. The second dependency re-
lation in Figure 6.2 expresses the situation where a TestContext contains various
test cases to test a particular process. We collected a set of different types of depen-
dency relations between the UTP test architecture, test behavior, and test data elements

65

and between the other system models. The set of these various dependency relations
is available in Appendix C in Table C.1.

6.3 Recording Dependency Relations for Tests

Recording the dependency relations is important to recognize ans identify the depen-
dency relations among models and tests. We identified following four different tech-
niques to record dependency relations among models.

Analyzing Test Execution Traces— During the execution of test cases, the
execution traces can be recorded to check the parts of the program executed during
a test run [WHLAO97]. This can help to establish the links between the parts of the
program and their corresponding test cases. However, such an approach cannot be
used for recording dependency relations among models and tests.

Mining Co-evolution Histories— In this approach, the co-evolution be-
tween production code and the accompanying tests is analyzed by exploring a project’s
versioning system, code coverage reports, and size-metrics [ZRDDO08]. However, a co-
evolution of source and test code might not suggest the accurate dependency relations
as the developers and testers might be working on two different problems at the same
time.

Recording During Test Generation— In model-based and model-driven
testing, the tests are generated from the system analysis and design models. There-
fore, mappings between the elements of analysis and design models and test models
also suggest the dependency relations between them. These relations can be recorded
during test generation, as done by Naslavsky et al. [NR07]. Since we use model trans-
formations for test generation, we also record dependency relations among source and
target models during these model transformations.

Recording Using Dependency Detection Rules— Bode et al. [BLR11]
presented an approach to record dependency relations by using a set of dependency
detection rules to record traceability relations among models. These rules evaluate
certain conditions, such as name similarity checks, conditions on attribute values, etc.
If the conditions meet, the rules create a dependency relations among the specified
source and target elements. This approach is very useful to create the Sy to Sy, de-
pendency relations, thus we employ this approach as well. In the following we discuss
the both methods we employ for recording the dependency relations in detail.

6.3.1 Recording Dependency Relations During Test Genera-
tion

As discussed earlier dependency relations between source models and target test mod-
els can be preserved during the transformation process [NZR10], as depicted in Figure
6.3. In our approach the UML and BPMN models are PIM models, whereas, the UTP
test models are the PIT models. Hence, during the test generation, we record the de-

66

10
11
12
13

C Transformation C
:> : :> PIT

PIM

[|

Dependency Relations

Figure 6.3: Examples of Cross-Model and Intra-Model Dependency Relations.

pendency relations belonging to the categories process view to test view and structural
view to test view . Our test generation approach takes BPMN collaboration diagrams as
input, and generates the activity diagram test paths from them using a path traversal
algorithm. Hence, the dependency relations of the category process view to test view are
recoded during this activity. Dependency relations belonging to the category structural
view to test view are recorded mostly during the generation of test architecture and test
data.

Listing 6.1: An excerpt of the Mapping Rule for the Generation of a TestPackage.

postconditions:
create p € CDr 4 | type(p)=UML:Package «TestPackage »
p.name= x.FQN +"TP"

set p.Containment=true
createTracelink (x, "Derivation", p)
createTraceLink (p, "Tests",bl)

Listing 6.1 presents an excerpt of the mapping rule discussed in Chapter 5 for the gen-
eration of a UTP TestPackage. The excerpt only shows the postconditions of the rule,
where the last postcondition creates a Link between the newly created TestPackage
and the source ProcessClass from which it is generated.

The creation of a Link requires the specification of atleast three aspects. These are the
SourceElement, the TargetElement, and the LinkType. Thus, in the last line
of the mapping rule in Listing 6.1 = is the SourceElement, which represents the
ProcessClass, which is the SourceElement of this mapping rules as well. The
element p is the TargetElement, which refers to the newly created TestPackage.
Finally, Derivation is the type of the dependency relation, which reflects that the
TestPackage is derived from the ProcessClass.

6.3.2 Recording Dependency Relations Using Detection Rules

Since the Sjs to T' dependency relations are recorded during the test generation activity,
it is required to record the Sy to Sy dependency relations as well. To record them, we
utilize a rule-based approach, which we introduced in our previous works [LFR13b].
This approach was initially developed for dependency detection among UML, Use Re-
quirement Notation (URN), and Web Ontology Language (OWL) models. However, we
extended the set of dependency detection rules to record the intra-model dependency
relations and (S, to Sir) dependency relations in our approach.

A dependency detection rule checks if two elements meet certain conditions and then

67

0N O Ul W

creates a dependency relation between them. These conditions include name similarity
checks, conditions on attribute values, conditions for analyzing the structure of models
(For example, parent-child-relations) or searching for existing dependency relations
between model elements.

A dependency detection rule consists of three essential parts. The ElementDefnition
part declares the model elements used by the rule. The ConditionDefinition part spec-
ifies the constraints of model elements, which are required to meet to establish a link
between the elements. Finally, the ActionDefinition part specifies an action createLink,
which creates a link of a particular type between the specified source and target ele-
ments.

Illustration of an Example Dependency Detection Rule- To illus-
trate the concept of dependency detection rules, we take the example of the depen-
dency relation PS1 from Figure 6.2. As explained earlier, this dependency relation
explains the relation of type Equivalence between the element Participant ina
BPMN collaboration diagram and the element Component in UML class diagram. As
the participants in the collaboration diagrams might use the services of components
defined in component diagrams.

Listing 6.2: An example dependency detection rule to relate a Participant to a
Component.

<RuleModel:Rule Description=creates links between participants and components inside
Component diagram RuleID=traceabilitycreationrule006>
<Elements Type=Component Alias=el/>
<Elements Type=Participant Alias=e2/>
<Conditions>
<BaseConditions type=valueEquals Source=el::name Target=e2::name/>
</Conditions>
<Actions name=createlink ResultType=Equivalence SourceElement=el TargetElement=e2/>
</RuleModel:Rule>

To record this relation, a rule has to match the name of the Participant with the
name of the Component. If the names matches, a dependency relation of type
Equivalence between the Participant and Component has to be created.

Listing 6.2 presents the rule corresponding to the above discussed situation. A rule is
declared with the keywords RuleModel:Rule. The attributes of the rule are Description
and a unique RulelD to identify the rule (Linel). After that the elements required to
process the rule are declared with the keyword Elements (Line 2-3). The type of the
attribute is specified with the type attribute and an Alias is given to the element to
identify and access it. The scope of the Alias is limited to the current rule only.

A condition required to process are declared inside the Conditions tag. Thus, a BaseCon-
dition checks if the name of the element Component and the element Participant,
specified as "el" and "e2", matches (Line 5). The type of the condition is valueEquals,
which checks if two string values match or not. Finally, an action of the type createLink
is specified inside the Actions tag. The createLink action creates and stores a trace link,
which expresses a dependency relation of type Equivalence between el and e2.

As discussed earlier, more complex dependency detection rules involving multiple
model elements and complex conditions are also possible. The list of the dependency

68

detection rules we developed to extract various inter-model and test dependencies are
presented in the Appendix C.

6.3.3 Demonstrating Dependency Relations for HandleTour-

PlanningProcess

The set of dependency relations between various models of HandleTourPlanningProcess
is very large. However, for the concept demonstration, we present a few dependency
relations between the process view, structural view, and test view of the
HandleTourPlanningProcess in Figure 6.4. The dependency relations are pre-
sented as a dotted two headed arrow linking the source and target elements of the
dependency relation. The type of a dependency relation is also presented as a label on
the arrow. An example of these dependency relations is D1, which presents an Equiva-
lence relation between the Component RoutePlanner in UML component diagram and
the Participant RoutePlanner in the BPMN collaboration diagram. The type of re-
lationship suggests the similarity relationship between both elements.

Another example of relationship between the Participant RoutePlanner and a UTP
TestComponent is the dependency relation D5. The type of this relationship is mocks
which suggest that the RoutePlannerTCom Test Component mocks the behavior of the
Participant RoutePlanner by simulating its provided services.

6.4 Chapter Summary

This chapter presents our contributions to record dependency relations prior to impact
analysis and test selection and classification. Thus, we defined fundamentals of de-
pendency relations by defining dependency relations, discussing the origin and types
of dependency relations, and analyzing various methods for recording them between
models and tests.

We identified and discussed various types of dependency relations between the models
of structural view, process view, and test view. A comprehensive set of 92 various types
of dependency relations is presented, which are recorded during test generation and
using dependency detection rules. We also developed a set of 60 dependency detection
rules to record these dependency relations.

In contrast to most of the model-based approaches in the literature, we record depen-
dency relations prior to the impact analysis, which enables a flexible design of the ap-
proach. It allows us to use diverse approaches for recording dependency relations to
provide a comprehensive coverage of dependency relations. Moreover, it enables the
reuse of dependency relations for multiple changes without repetition, which saves
the execution time. Once the dependency relations are available, they can be used to
perform impact analysis to support regression testing as discussed later.

69

) (b)
:E <<Component>> ') HandleTourPlanningProcess
,~> RoutePlanner getShortestRoute <<Process Class>> ServicePlanningManager
4
l’
B createTourPlan() >| takeServiceOrders()
1 /|
'/ -E <<Component>> saveTourPlan() ,/ ServiceOrder
;' ServicePlanner <[9 ," <<entity>>
! {akeServiceOrders TourPlan ; orderld
AY
] \ O <<entity>>] plannedStartDate
',' =E <<Component>> N\ ," plannedEndDate
! TourPlanner ‘\‘-%_ ',' requiredResource
H A \‘§, ! requiredsSkills
! S
1S | D2:Eqlivalence 3 !
e / | © H
i3 :
HE] [[eeaat Ll e > HandleTourPlanningProcesq {
:l-lu-l- ,'l’—- ‘I A i n !
i !
s "é Get Start Location | ! 18 &1
H h4 1 13 4] 2
1 1< - ™M
H o] lee S O
[c H I o! H
\ < -] ,’Q S| o}
] f Get Destination ! &) !
! 5 ! Shortest Distance al H
\ s h / ! f
1
'.| . 1 Get Shortest het Sgervice
[Route Orfers For Route
Vo I + 1 E
\‘ ‘. Bad v
Al RbutePlannef /'
\‘ ’I
\\ i
_ :P’
21
AR
SerwgePIanner < s
N s
AN
. = ’. > y .
e %o 0% e || (@
s Mogpn— LemShonestStrate
HandIeTourPIanmrngroce§s(test<o Es By | ay
<<Testch,+(age>> “ \\’9, AR %;:L R 4 O
\ \"%n VR .)% y
v e =yl
HandIeF(outePIannlngProcessT‘C Serv;eé'PIhnnerT bom ,," “==-r> getShortestRoute
t<TestContext>> \ < JestCon\oonent» ”
1 o
i QEET W L
testSP'jorstrategy() =" takegerwceOrders qck() <<TestCase>>
testNpRoutesForShortestStraE?y() --~-__sgg. N testNoRoutesForShortestStrategy
: 6 "@/e,,c -'\‘?'6“9 O
H o ki % -
&'v RoutePlannerTCom "’%,,;—ITPPTCdm v \\:P/e,) v
g';, <<TestComponent>> <<TestComponent>;"'“--:}\ getShortestRoute
|/
g 7
S hortestRouteMock ®
O ygetShortestRouteMock() createTourPlanMock()
N
—> SequenceFlow <---> Dependency Relation

............. > MessageFlow

Figure 6.4: Example Dependency Relations between Various Views of Handle Tour

Planning Process.

70

Change Application

7.1 Applying Changes from Pre-Defined Change Catalogue 71
7.2 A Taxonomy of Change Types 72
721 Representing Models as Labeled Graph 74
722 ChangeTypes 74

7.3 Application of Taxonomy on Models of Structural and Process View 78
7.3.1 Adapting Change Taxonomy for Models of Structural View . 78
7.3.2 Adapting Change Taxonomy to the Models of Process View . 79
7.4 Demonstrating Changes for HandleTourPlanningProcess 80
75 ChapterSummary, 81

Changes are of fundamental importance for our approach, as they trigger the need for
regression testing. Change Application is the second activity of Step 2 of our approach,
presented in Section 4.1 of Chapter 4. To apply changes on models, the models in con-
text are required to be analyzed thoroughly for simple and more complex changes.
Therefore, this chapter first discusses the change application in the context of our ap-
proach in the following section. The Change Taxonomy is presented in Section 7.2, to
assist the definition of model changes. The changes in UML and BPMN models are
then defined using our change taxonomy and applied on the scenario from our case
study for the concept demonstration.

7.1 Applying Changes from Pre-Defined Change Cat-
alogue

Our approach enable changes by providing a pre-defined set of changes to the test
experts, from which they can select a change and execute it on the models to assess
its impact on tests. The concept is depicted in Figure 7.1. The first task in Figure 7.1
is to define changes applicable to different models. Defining the changes for models
requires an analysis of models to identify the potential changes applicable to various
model elements. This also requires an understanding to simple and complex change
types, that can be applied on various elements. In the next task, a specific change type
is selected from the set of available changes and finally it is applied on the selected
model to trigger possible consequences.

For regression testing, such an approach support basic changes as well as more com-
plex changes. It is a major advantage as compared to the state of the art approaches,

71

=

Change Taxonomy

v

[Define Changes H Select a Change H Apply Change on a Model]

A

Concrete Change Types

Figure 7.1: Tasks to Support Change Application in our Approach.

which use model comparison for change detection [BLY09, FIMR10, NZR09]. Thus, two
versions of the same model are compared to detect the differences between them [SM08,
KDRPPQ9]. It results in two main disadvantages.

Firstly, model comparison only supports very basic changes, such as addition and deletion,
of model elements. The detection of complex changes, such as moving or merging, of
model elements is very difficult by model comparison and requires complex heuristics.
Secondly, in the case when a change is considered infeasible because it is estimated
that it would result in huge regression testing effort, it requires additional effort by
reverting it from models.

Our approach for the Change Application and the change taxonomy is enabled by the
tool support in EMFTrace. Change Catalogue for a specific model can be created in
EMFTrace according to our change taxonomy. EMFTrace allows selecting a particu-
lar change for a specific model element to trigger it. Triggering a change initiates the
impact analysis activity, which is discussed in Chapter 8. Further, discussion on EMF-
Trace is presented in Section 10.2 in Chapter 10. To define various change type, a uni-
fied and consistent representation of various change types is necessary. Therefore, we
define a change taxonomy, which consists of various change types to support the def-
inition of changes for models. In the next section, we present our change taxonomy;,
which enables us to define the set of concrete changes in UML, BPMN, and UTP models
presented in Section 7.3.

7.2 A Taxonomy of Change Types

In this section, we present our change taxonomy which we developed to define various
aspects related to the changes. Our analysis of the state of the art, discussed in Section
3.2.3 of Chapter 3, reflects that there is a lot of duplicate work in terms of proposed
change types and taxonomies. The changes defined by taxonomies are inconsistent to
each other. Therefore, we felt the need for providing a taxonomy to improve the ex-
isting change classifications, unify various change types, and provide consistent defi-
nitions to promote reuse. This unified change representation can be used to support
several development activities, such as regression testing, change impact analysis, and
consistency checking.

72

We first define a change as we perceive it in the following and then discuss various
facets of our change taxonomy.

Definition—A change is an operation, which can be applied on an artifact to
change one or more elements of this artifact. The consequence of a change is
dependent of the type of a change.

According to the above presented definition, a change can be perceived as an operation,
which can be applied to a number of elements belonging to a certain artifact, such as
a model, source code, or any other artifact. Similarly, the definition also emphasize
the need of distinguishing between various types of changes. Since a change can be
applied to a single element or more elements, it also points to the granularity of the
change.

Our proposed change taxonomy is based on 4 different facets of a change; Abstraction,
Granularity, Type, and Scope of a change. These facets are also presented in Figure 7.2.
The first facet Abstraction of a change defines, whether a change is Generic, or Concrete.
A generic change is only a high level change. To realize this change it has to made
concrete by defining it for one or more elements of a particular artifact.

As an example, consider the change type Add, which is a generic change type. How-
ever, when applied to a particular element, such as the element Class from UML class
diagram, the concrete form would be Add Class. The second facet is Granularity and
the third facet is Type of a change. Based on the granularity of a change, we can di-
vide the change types in two main categories. These are Atomic changes and Composite
Changes, as also shown in Figure 7.2. As the name suggests, the atomic change types

Abstraction Level | Composition Type Type of Change Scope of Change
Generic Atomic Addegge/node Requirements
Concrete Composite Deletecgge/node Architecture

Property_update

Source Code

Move Documentation
Merge Configuration
Solit Files
Pl Other
Replace Documents
Swap

Figure 7.2: Change Types.

are the basic unit of change, and composed of three basic change types; add, delete,
and property update, which refers to the update of properties of elements of different
artifacts. The composite change types are more, replace, split, merge, and swap.

Finally, the Scope of a change determines the type of artifact on which the change has
to be applied. Before we explain the various atomic and composite change types, we
tirst exemplify one change type as defined by the change taxonomy for the purpose
o concept demonstration. The change "set the return type of method X to integer"
according to our taxonomy would be classified as follows.

73

« Abstraction level: concrete.

« Composition type: atomic.

« Type of operation: property_update.

« Scope of change: Architecture, Source Code.

7.2.1 Representing Models as Labeled Graph

To apply the changes on models, we first define a model. A model can be defined as
a directed graph of elements, that is, G = (V, E). The elements in the models are per-
ceived as a set of nodes (V') and relations between model elements as edges (E) of the
graph Attributes are added as property labels to the nodes and edges. This kind of
representation to most of the modeling languages, including UML, BPMN, and UTP.
The property labels, assigned to the nodes represent the properties of model elements.
However, there are two properties which are independent of domain: the name and
the type of an artifact. Thus, each artifact has atleast these two properties. The set of
properties of a node is denoted as p;.

Vo e Vv = {pilj €N,j > 2},

Relations which exist between entities can also be enhanced with properties p;, such as
the type of relation (E.g., Implemented_By, Inherits or Defined_By).

Ver € E : e, = (a,b, {pm|l € N}), wherea,b e V.

Based on the above definition of models, we now define the change types applicable
on models.

7.2.2 Change Types

In the following, we explain the change types in our change taxonomy, also depicted
in Figure 7.2. One of our related publications discuss the application on the change
taxonomy on software in general for various development activities [LFR12]. It also
presents, how the change types presented in the state of the art taxonomies are mapped
onto our change taxonomy.

Atomic Change Types— The set of atomic change types is denoted as O Patomic,

and is defined as follows.

O Patomic = {addnodea deletenode, addedgea delet@edge7
update_property}.

This set is similar to the one proposed by Fluri and Gall [FGO06]. In contrast to Fluri
and Gall, we do not consider move as an atomic operation, since it can be modeled by
delete and add operations. We further distinguish between the addition and deletion of

74

nodes and edges.

Add and Delete: As the names suggest, Add and Delete refer to the adding and delet-
ing of nodes and edges. These are also referred to as Augmentation and Remove in the
literature [BCO0]. The former change type adds a new model element and the later
removes an existing model element from a model. An example is adding or deleting
an Operationina Class in UML class diagram, or a Participant in a BPMN col-
laboration diagram.

Property Update: A Property update is a change type, which refers to a change in
attributeproperty of a node or an edge. We present a few of them as an example by
considering the elementnode Class from UML class diagrams.

« Declare a Class as abstract.

« Change the visibility of a Class, Operation, or Attribute to either public,
protected or private.

« Rename a Class.

« Change the type of an At tribute, the return type of an Operat ion or the type
of a method parameter.

« Change the modifiers of an Attribute, e.g., declare it as static or final.

Composite Change Types— Our proposed composite change types consist of
sequences of atomic operations and are based on previous research on regression test-
ing [FR11] and traceability maintenance [MRP06]. As previously stated, we consider
move as an composite change type, since it can be modeled by a sequence of add and
delete operations. Proposed composite change types also share some similarities with
the refactoring activities proposed by Baldwin and Clark [BC00]. Therefore, the set of
composite operations O Peomposite 15 defined as follows.

O Peomposite := {move, replace, split, merge, swap}.

« Move - move one sub-graph to another node.

« Replace - replace one sub-graph by another sub-graph.
« Split - split one sub-graph into several sub-graphs.

« Merge - merge several sub-graphs into one.

« Swap - exchange two sub-graphs.

We discuss the composite change types in the following and discuss how they can be
modeled as a sequence of atomic operations. The function P(z) denotes the "direct
parent” of node z, that is, one of its predecessors which is related to x via a relation of
the type definedBy, consistsOf or similar. For example, a method m can have more than
one predecessor, that is, one class C it belongs to and several other artifacts, which call
this method (E.g., related via Calls). Thus, we consider C as the "parent" of m, and m
as the "child" of C likewise.

Move

We support two versions of the move change type. First, the developer can move an
entire sub-graph z to another node y, e.g., when moving a class to another package,all

75

methods and attributes are also moved.
move(z,y) 1= deleteedge (z, P(x)), addedge(ﬂfv Y).

On the other hand, a developer might want to move a node x to another node y only,
leaving potential child nodes z; in place, e.g., when moving an attribute up to the par-
ent class.

n
move (z,y) = /\ move(z;, P(x)), move(z,y).
1=0

Depending on the context, the move change type may also be modeled as a sequence
of deletenoge and addyoge Operations. This might be required in the context of model
comparison and state-based change identification. Move is also referred to as Change of
Hierarchy by Baldwin et al. [BC00]. Since if we move any model element from one place
to another, it will be placed from one container to another, which is a form of change
in hierarchy as well. Fowler [Fow99] proposes moving of methods as a refactoring step,
where Gorp et al. [VGSMDO03] use move operations to pull methods up into a super-
class

Replace

In a similar fashion, a developer can replace the entire sub-graph x by another sub-
graph y, e.g., when replacing the Service corresponding to a ServiceTask in a
Process. This is also discussed later in Section 7.4, when defining change scenarios for
an example from our case study.

replace(x,y) := deletenoge (), move(y, P(x)).

The developer may also replace a node x by node y only, that is, leaving all the child
nodes z; of in place.

n

replace’ (z,y) = /\ move(x;,y), replace(zx,y).
i=0

Other examples can be found in the work of Sunyé et al. [SPLTJ01], who replace UML
state machine transitions, and in the work of Westhuizen and Hoek [WHO02], who re-
place architectural elements during architectural evolution.

Split

The change type Split breaks an element into n number of elements. It creates a set of
nnodes (n € N,n > 2), which are of the same type as z, and moves all child elements
of z to the respective new node z;. An example for this operation is the extraction of a
class from another class. A new class is created and all methods and attributes which
should be extracted are moved to the new class. A tuple (s, dy) denotes, that the s,-th

76

sub-graph of the node z should be moved to the dj-th sub-graph of the resulting set 2.

n

split(z,mn, (s0,do) ... (Sm,dm)) := /\ addpoge(}, P(2)),
=0

/\ move(ysj,wélj)), where x = P(ys;).
5=0

Another example is of Sunyé et al. [SPLT]J01], who extract sub-states from UML state
machines by splitting them into a set of states.
Merge

The inverse operation to split is merge, which bundles n entities (n € N,n > 2) of the
same type into one, where y;; is the j-th sub-graph of x;.

n m

merge(xq ... Ty,) = /\(/\ move(y;;, To)).-

i=1 j=0

The changes like merge and split are hard to detect using model comparison, as only
the added and deleted elements can be easily detected and heuristics are required to
infer if composite changes are also present.

Swap

Swapping allows exchanging two entities by another.
swap(x, y) =move(, P(y)), move(y, P(x)).

We support exchanging nodes only, which attaches the child nodes of z, x;, to y, and
vice versa.

n

m
swap'(z,y) /\ move(x;,y /\ move(y;, T
=0 7=0

swap(x,y).

Further combinations of atomic and composite changes presented here are possible
to realize more complex refactorings. However, a discussion on refactorings is out of
scope of our current discussion.

77

7.3 Application of Taxonomy on Models of Struc-

tural and Process View

As discussed earlier, the change taxonomy presented above help to define uniform
changes for various artifacts. Thus, it can be used as a basis to define changes inside
various models of interest. Our approach uses the models belonging to structural view,
process view, and test view of the system. Thus, changes in the models belonging to these
views can be defined using the above proposed taxonomy.

7.3.1 Adapting Change Taxonomy for Models of Structural View

As discussed earlier, we define the structural view of the system using UML class and
component diagrams. Thus, the changes in various elements of both models need to
be explicitly specified. Changes in UML class diagram are widely discussed in the
literature on impact analysis and regression testing [BLS03, BLOS06, PUA06, FIMNO7].
However, all these approaches only consider Atomic change types and do not support
the Composite change types. The change types we defined for the elements of both UML
class and component diagram are presented in Appendix D.

However, for the demonstration of concept, in the following, we consider an example
of the element Class from UML class diagram and discuss various changes extracted
for this element by applying our change taxonomy. Both atomic and composite change
types for the element Class are listed below.

Atomic Changes in a Class

According to the our change taxonomy, the atomic change types for the element Class
are Add, Delete, and Property_Update. The first two changes are referred to as Add Class
and Delete Classrespectively.

Property_Update: is an Atomic change type which can be applied to various Properties
of the element Class as visible from the UML meta-model [UML07]. UML meta-
model states various properties of a class, e.g., name as a Class is inherited from the
element NamedElement in the meta-model. The Property_Update change type applied
on the property name results in the change type Rename a Class. Another important
property of the element Class is abstract and the corresponding Property_Update
change type is Make Class abstract. Since the list of properties of the Class is long, all
the property update change types for the element Class are listed in Table D.2in Ap-
pendix D.

Composite Changes in a Class

When applying our taxonomy on the element class, the composite change types which
are to be extracted are move, merge, split. The change types replace and swap are not
relevant in the context of classes.

Mowe a Class: is a scenario when a Class is moved from one Component or another or

78

from one Package to another. Thus, two concrete change types of type move are: Move
Class to Package, Move Class to Component. The application of the move change type
on the element Class would result in affecting all its relationships to the other classes.
However, this question is relevant to the impact analysis problem, hence is addressed in
Chapter chapter:impactanalysis.

Merge Classes: is a scenario, where two classes are merged together. The merging of
two classes. The corresponding concrete change type listed in Table D.2in Appendix
D is Merge Two Classes. Since it is a composite change type, it is further composed of
many other change types. All the attributes and operations of the source class have
to be added to the target class. Similarly, the properties of the source class are also
to be applied on the target class. However, the affects on attributes, operations,and
relationship of the class would be assessed during impact analysis, thus are not relevant
to change identification problem.

Split a Class: is a composite change type. In contrast to the Merge operation, the Split
operation splits a class into n number of classes. This operation can also be seen as
extraction of another class from an existing class. The Split operation would result in
creation of a new class and moving the selected methods and attributes of the existing
class to the newly created class.

7.3.2 Adapting Change Taxonomy to the Models of Process View

To model the changes for the process view, it is required to identify and define define
changes applicable to BPMN collaboration diagrams by adapting our change taxon-
omy:.

BPMN collaboration diagrams are composed of various model elements, such as pro-
cesses, participants, lanes, tasks, gateways, message flows, sequence flows, and sev-
eral data elements. The list of several atomic and composite change types applicable to
BPMN collaboration diagrams are presented in Table D.1 of Appendix D. Here we dis-
cuss the element Participant from BPMN collaboration diagram and discuss the atomic
and composite changes applicable to it in the following.

Atomic Changes for the Participant

As discussed earlier, the element Participant in a BPMN collaboration diagram rep-
resents various contributors of a collaborative process and can refer to an actor, stack
holder, a system component, an external component, or subsystem.

Thus, the atomic change types are Add a Participant in Collaboration, Delete a Participant
from Collaboration, and Rename a Participant. The rename might be applied in the result
of renaming a component or any other other element to which the Participant refers.
Deleting a Participant from a collaboration results in the deletion of all incoming and
outgoing message flows, and also in the deletion of all its service task.

Composite Changes for the Participant

We analyzed each element of BPMN collaboration diagram to access which composite
change types are applicable on those elements.

79

« Merge Two Participants: Merge Two participants into one. This change will
cause the merging of all the contained service tasks and incoming and outgoings
message flows of the Participant as well. In the result, those service tasks will
get affected as well.

« Split a Participant: Split a Participant into two Participants. Application of those
change type creates another Part icipant by splitting an existing Part icipant
into two. Similar to the merge change type, the split change type also affects the
service tasks contained in the old Participant and its incoming and outgo-
ing message flows. As some of them might be required to move into the newly
created Participant.

« Move and Swap a Participant: These change types are not relevant to the el-
ement Participant, as moving a Participant or swapping it with another
inside a collaboration would only affect its graphical representation and does not
affect its semantics. All the Participant elements belong to the same hierar-
chy in the model, hence, these change types only change the graphical placement
of the element Participant.

« Replace a Participant: Replacing a Participant with another will not only
replace the old Participant with the new one, it will also affect its contained
service tasks and incoming and outgoing message flows.

7.4 Demonstrating Changes for HandleTourPlanning-
Process

In the previous chapters, we already discussed the generation of the test models and
recording of dependency relations for the business process HandleTourPlanningProcess.
This section introduces a change scenario to fix a problem in the specification of the
process and discusses the concrete changes we planned based on the change taxon-
omy we introduced above. The relevant views of HandleTourPlanningProcess are al-
ready presented in Figure 4.3 of Chapter 4.2.1. We developed further change scenar-
ios for our case study for various perfective and corrective [WO03] maintenance activi-
ties, which are also presented in Table D.4 in Appendix D. In Figure 7.3, we present

HandleTourPlanningProcess
<<Process Class>>

HandleTourPlanningProcess
LAY

createTourPlan

createTourPlan()

TourPlanner

saveTourPlan()

Figure 7.3: The Elements of the HandleTourPlanningProcess Relevent to the Change
Scenarios.

a ServiceTask createTourPlan and its corresponding operation Class HandleTour-
PlanningProcess «ProcessClass ». Thus, the ServiceTask represents an element of the
process view, whereas, its corresponding operation modeled inside a class represents
elements of structural view.

80

The operation createTourPlan() creates and initializes a TourPlan object and returns it
to the calling process. We identified that the creation of a TourPlan in HandleTourPlan-
ningProcess not only requires the creation and initialization of the TourPlan object, but
it should also assign the Tour and the ServiceOrders selected for the Tour to the TourPlan.
Otherwise, an empty TourPlan object would be kept in the system, which would violate
the constraints of the system design. Thus, the replacement of the old createTourPlan
operation is required with a new operation, which takes the parameters current Tour
and a list of SericeOrders.

This change scenario also requires modified operation contracts. However, to simplify,
we do not discuss the operation contracts here and focus only on the addition of a new
operation. Thus, this change scenario leads to a number of changes, two of which are
presented in the following. Other changes relevant to this scenario are also presented
in Appendix D.

1. Changel:
Name of Change: Add Operation.
Abstraction Level: Concrete.
Composition Type: Atomic.
Scope: Design/Model Level.
Source: createTourPlan(Tour currentTour, ServiceOrders. <List>)
Target: HandleTourPlanningProcess «ProcessClass ».
2. Change2:
Name of Change: Replace ServiceTask.
Abstraction Level: Concrete.
Composition Type: Composite.
Scope: Design/Model Level.
Source: createTourPlan().
Target: createTourPlan(Tour currentTour, ServiceOrders. <List>)

In the above presented changes, the Change 1 describes the scenario when a new
Operation is added inside the HandleTourPlanningProcess «ProcessClass ».
The name of this change is Add an Operation, it is defined as a Concrete change as we are
applying it on concrete model elements. It is modeled as an Atomic change type and
its Scope is limited to the design models.

The source and the target attributes define the model element which is added (That is,
an Operation)and the target Container element in which it is to be added (That is,
Class) respectively. The changes are named as Add Operation and Replace Service Task
In the subsequent chapters, we discuss the change impact analysis and regression test
classification, corresponding to the changes discussed in this chapter.

7.5 Chapter Summary

The contributions of this chapter are three-fold. Firstly, it establishes the need of change
application and a change taxonomy in the context of our approach. Secondly, it presents
our change taxonomy, which is based on a set of atomic and composite change types. We
present three atomic changes types add, delete, and property_update, and present several

81

examples of their application in the context of models. The set of composite change
types consists of five changes: move, merge, split, replace, and swap.

Thirdly, it adapts the change taxonomy to define changes for UML and BPMN mod-
els. To do so, we analyzed the model elements from BPMN and UML models for the
applicability of each change defined in our change taxonomy. To demonstrate the ap-
plication of changes on our case study, we developed various change scenarios and
defined the changes to realize these change scenarios using the changes defined for
UML and BPMN Models.

82

Rule-based Impact analysis Across Tests

8.1 Insight to Rule-based Impact Analysis Approach 83
8.2 Impact Rules Covering Business Process Views 87
8.3 Demonstrating Rule-based Impact Analysis on HandleTourPlan-
ningProcess o o e e e 89
84 ChapterSummary00ttt 93

Rule-based Impact Analysis is is the third activity of Step 2 in our approach and the it
is performed in response to the application of changes. We developed our rule-based
impact analysis approach to analyze the impact of changes in heterogeneous software
artifacts by exploiting the interplay of changes and dependency relations [LFR13a].
Thus, the rule-based impact analysis approach solves the test selection problem pre-
sented in Section 2.1 of Chapter 2 by identifying the test elements affected by a change.

In the context of regression testing, the impact analysis is performed specifically to
cover the changes affecting the test models. As discussed earlier in Chapter 4 our ap-
proach is based on the notion that potentially affected test cases can be identified by
considering three distinct aspects. These are type of change, type of the element on which
the change is applied, and the dependency relations relevant to that element. Our rule-
based impact analysis approach complements this notion and relies on these three as-
pects to propagate the impact of a change on models.

Our change impact analysis approach can be used to deal with various software de-
velopment issues, such as determining the architectural erosion and software consis-
tency checking [LFR13a]. However, we particularly focus on how to use the approach
to propagate changes to the test view to find the affected test elements. Thus, the rules
consider the dependency relations among system models and test models. Conse-
quently, they are able to identify the affected elements of test models by processing the
relevant dependency relations. These affected test elements are later analyzed to clas-
sify them for regression testing in Chapter 9 to address the test classification problem.
This chapter contributes by first providing an insight to our rule-based impact analy-
sis approach and then presents the adaptation of the concept to define impact analysis
rules for the domain of business processes.

8.1 Insightto Rule-based Impact Analysis Approach

As mentioned earlier, the basis of rule-based impact analysis approach is the interplay
of change types and dependency relations. A dependency relation refers to two re-
lated elements. Hence, if one is affected by the change, its related element might be

83

considered possibly impacted. The decision, whether, the related element is impacted
or not is based on the type of dependency relation, type of the applied change, and fur-
ther constraints to specify the conditions under which an element can be considered
impacted. Thus, to enable rule-based impact analysis, changes, dependency relations,
and conditions are required to be analyzed. Figure 8.1 presents an example to clarify

Source Dependency Relations Target

Calls .| OperationY

Initial Change

Delete Operation [

4-4 Delete Operation
' Change Result

Condition: If Operation1->implemented by->Operation2

Result: Delete Operation 2

Figure 8.1: Interplay of Changes and Dependency Relations for Rule-based Impact
Analysis.

the notion of impact propagation by considering the factors mentioned above. Accord-
ing to Figure 8.1, an Operation might have two different types of dependency rela-
tions with other operations. Firstis thatan Operation might call another Operation
during its course of control, depicted by Operation X and Operation Y. Similarly, an
Operationina Class mightimplement an Operation of an Interface, depicted
by Operation X and Operation Z. If an Operation is deleted, it would not effect the
Operation it calls.

However, if an Operation is deleted, the Operation implementing it is required
to be deleted as well. In the case depicted in Figure 8.1, if Operation X is deleted, the
Operation Z is to be deleted as well. The lower part of Figure 8.1 depicts this condition.
It also shows the result, which requires deletion of Operation Z.

8.1.1 Defining Impact Rules

By the above presented analogy, an impact rule defined for a particular change type
retrieve a number of impacted elements by retrieving relevant dependency relations if
the conditions satisfy. These dependency relations can point to further elements and
further changes can be triggered on the retrieved elements to recursively perform im-
pact analysis on the retrieved elements. This is the pivotal concept of our approach
and is defined as follows. An impact rule operates on a change ¢; € C and processes
dependency relations D = di, da, d3...d,, under various conditions to find the impacted
elements. This the following equation present the scenario of recursive impact analy-

84

sis.

Given c¢; € C applicable to elem € Sy;. (8.1)

Given /\ md; € D™ | D™ set of dependencies for elem. (8.2)
i=0

/\ m target = findTarget(c;, elem, D§™)). (8.3)

k=0

repeat forelem = target. (8.4)

According to 8.1, the ¢; is a change applicable to the element a from a model M, which
belongs to the set of system models. Further, according to 8.2, D, is the set of depen-
dency relations of the element a, where the number of dependency relations in the set
are n. The equation 8.3 defines the impact propagation scenario, where the impact of
the change c is propagated through all the dependency relations of a in the set D,.
Structure of the impact rules is defined as follows.

Based on the above mentioned aspects, an impact rule R, as we define it in Equation
8.6-8.10is a 5 tuple (¢, me, ED,QD, RD).

R = (¢;,me, ED,QD, RD). (8.5)

¢t € C' A ¢y applies on Syy. (8.6)

me € Syr. (87)

ED = (e1,e2,...,ep) | /\nei eSyVvT. (8.8)
=0

QD = (q1,92, ---9m) | /\ m Je; constrained by g;. (8.9)
j=0

RD = (a1, az, ...,ap) | /\ reports impact A\ a; = (source, target, impact, result).
k=0
(8.10)

Change Trigger— According to the equations 8.6 and 8.7, the element ¢, is a
change type that acts as the Change Trigger for the impact rule and the element m, de-
fines the concrete model element from the set of system models on which ¢; is applied.

Element Definition— According to the equation 8.8 ED is the Element Definition
part. where each e; in the set ED is an element from one of the models belonging the
set Sys or T' These elements include the element on which the change is applied and
also those elements which are being used in the Condition Definition part to process
dependency relations. For example, consider the example change Add Operation in a
design class. It requires the definition of element Class and the element Operation.
However, adding an operation in a class might require adding an operation into the
implementation class due to the implementation relation between them. In this case,
the implementation class is also required to be defined in the Element Definition part,
for example, the ClassDeclaration element in java.

85

Query Definition— According to the equation 8.9 QD is the Query Definition
part and each query-definition ¢; specifies a condition on the elements belonging to
the set ED. These conditions include logical conditions which can filter the elements
selected by the rule, for example AND, OR, XOR, and pre-defined operations to query
the attributes of models and the relations between models.

One example of these predefined operations is modelParentOf(a, b), which checks if a
model element 4 is parent of another model element b. Similarly, another important
predefined operation is modelRelatedTo(a,dType, b), which queries the dependency rela-
tions where source of the relation is a, target of the relation is b, and the dType refers
to the type of the dependency relation. The types of dependency relations are already
elaborated in detail in Chapter 6. The conditions in the Query Definition should include
atleast one condition that uses the modelRelatedTo operation to propagate the change
further.

Result Definition— Finally, according to the equation 8.10 RD is the Result Def-
inition part, where each result definition a; is an action that reports an impact. This
action further consists of a set of elements. The source element tells the source and tar-
get depicts the source and target elements on which change is applied. For example,
the change type Add Operation requires a source element, that would be the Class
in which Operation is added. The target would be the Operation, which is to be
added. The impact depicts the set of elements which will be potentially affected in the
result of this impact rule. Finally, the result refers to the next change, which is to be
applied on the obtained affected elements to further continue the impact analysis.

8.1.2 Impact Analysis Process and Activities

The impact analysis process starts with the application of a change on a model, as
depicted in Figure 8.2. Therefore, first a model from the set of system model is selected.
After that, the required change is selected and applied from the Change Catalogue. The
details about how the Change Catalogue is being created is already discussed in Chapter
7.

The actual execution of impact rules is accomplished in a recursive manner [LFR13b].
First, the impact rules corresponding to the initial change (Change Trigger) are selected
and applied. The impact rules process the set of dependency relations expressed as
Trace Links, which were earlier recorded, as presented in Chapter 6. These impact rules
processes the relevant dependency relations to produce the impacted model and test
elements and corresponding impact reports.

Each impact report is then again treated as the initial change (Change Trigger) and pro-
cessed accordingly. Consequently, further impact reports might be created. The final
result produced by this impact analysis process is a set of impact reports, containing
the elements defined by the Result Definition part of the rule.

Dealing with Cyclic Dependencies— Cyclic dependencies between soft-
ware artifacts may lead to infinite loops during impact propagation. We address this
problem by maintaining two lists storing 3-tuples (changed element, change type, im-

86

Select a System Model Select a Change Type Start Rule-based Impact
Analysis

T T ¥
: [Select impact Rule for Selected W
il Change Type J
System Models Change Catalog ;
[Apply Impact Rule }
i

_____________ Determine Impacted Models
and Tests
i

Trace Links
(System and Test Models) [

Create Impact Reports }

for each impacted
no more impacts
@ P model and test (Select Change Type

L from Impact Report

Figure 8.2: Tasks for Rule-based Impact Analysis.

pacted element) to record the current progress of impact propagation, which is in-
spired by the A*-path finding algorithm [HNR68]. The ClosedList contains all already
explored 3-tuples or impact paths. The OpenList contains all 3-tuples which might lead
to new impact paths and should be further explored.

If a possible new impact path is found, the ClosedList is searched for a tuple containing
the same elements and change types. If such a tuple is found, further propagation
on this path is stopped. This concept and the related algorithmic details are further
discussed in our work on heterogeneous impact analysis [LFR13b].

8.2 Impact Rules Covering Business Process Views

The dependency relations between various views of business processes are already
discussed in detail in Chapter 6. To see how changes are propagated through these
dependency relations, we consider the HandleTourPlaningProcess scenario used in the
earlier chapters. According to the scenario a Component might act as Participant
in a collaborative process to provide services to that process [SDET10]. This depen-
dency relation was earlier presented as PS1 in Figure 6.2, in Section 6.2 of Chapter 6.
It demonstrate a dependency relation between process view and structural view. In the

DeleteParticipant

e

Participant Component TestComponent

v v
Equivalence Mocks

Figure 8.3: Impact Propagating Through Chain of Dependency Relations.

87

context of test, a Test Component might mock the Participant to simulate its be-
havior for testing. This dependency relation was also discussed and presented as ST1
in Figure 6.2 in 6.2 of Chapter 6. It related the elements of process view and test view.

<Rules Description="Deleting a Component requires deleting corresponding
Participant" RulelD="IR017">

<Elements Type=“Component" Alias="el"/>

<Elements Type="Participant" Alias="e2"/>

<Elements Type="AtomicChangeType" Alias="e3"/>
<Conditions>

Element
Def'lnition

[=
=2 <BaseConditions Source="e3::name" Target="" Value="Delete Component"/>
3 E <BaseConditions Type="ModelRelatedTo" Source="el" Target="e2"
o 8 | Vvalue=“Equivalence"/>
c </Conditions>
+= 9 | <Actions ActionType="Reportimpact" ResultType="Delete Participant "
5 E{SourceElementf‘el” ImpactedElement="e2"/>
« 8 </Rules> Change Trigger

(a) Component affects Participant

<Rules Description="Deleting a Particiant requires deleting corresponding
TestComponent" RuleID="IR018">

<Elements Type="Participant" Alias="el1"/>

<Elements Type=“TestComponent" Alias="e2"/>

<Elements Type="AtomicChangeType" Alias="e3"/>
Conditions>

Element
Def'lnition

c
> .g <BaseConditions Source="e3::name" Target="" Value=“Delete Participant"/>
3 g <BaseConditions Type="ModelRelatedTo" Source="e2" Target="el"
c 8 | Value="Mocks"/>
c </Conditions>
+= O | <Actions ActionType="Reportimpact" ResultType=“Delete Test Compong¢nt "
S noqu noan
2 c SourceElement="e1“ ImpactedElement="e2"/>
o b
a </Rules> Change Trigger

(b) Participant affects TestComponent

Figure 8.4: Consequent Impact Rules for Structural and Process View.

If a Participant is deleted, it would require the deletion of corresponding Test
Component as well. This scenario is also depicted in Figure 8.3. The rules realizing
this scenario are presented in Figure 8.4.

The element e3 in Figure 8.4a is a Change Trigger and the name of its associated change
type is Delete Component. The Element Definition part defines the elements to be evalu-
ated by the impact rule, that are, Part icipant and Component. The conditions part
applies constraints on the model elements defined in the Element Definition part. One
condition in the rule checks the type of the applied change type to trigger the rule.
The other condition uses the predefined operation modelParentOf to check if the de-
pendency relations PS1:(Participant, Equivalence, Component) exists between any of
the components and participants in the models.

If the conditions are satisfied, the next change depicted in the Result Definition part is
triggered. In the rule presented in Figure 8.4a, the resulting change is Delete participant,
which will be applied to all the retrieved participants after the execution of rule. After
the execution of rule depicted in Figure 8.4a, the rule depicted in Figure 8.4b would
be triggered for all the related participants. This would in the result invoke the rules
corresponding to the Delete TestComponent change type for all the related components.

88

The impact rules presented above enable us to propagate changes using inter-model
and intra-model dependency relations for the models belonging to various software
views including the test view. These rules realize and complement our theory that test
selection can be enabled by propagating impact using the type of applied changes,
dependency relations, and the type of model elements. This was a major goal of our
work stated in Section 1.3 of Chapter 1. The list of the impact rules reacting to all the
changes inside the models of interest is rather long. Therefore, we present a part of
these rules in Appendix E for further consultation.

8.3 Demonstrating Rule-based Impact Analysis on
HandleTourPlanningProcess

We presented a change scenario from the TourPlanningProcess earlier in Chapter 7.
In the following, we present the impact rules adhering to the changes from the sce-
nario. Two different changes were taken from the scenario. First is adding an oper-
ation into a ProcessClass and the other is replacing aserviceTask with another
ServiceTask.

8.3.1 Impact Analysis for the Application of Change 1

For the Change 1 Add Operation in ProcessClass, when an Operation is added
in a ProcessClass, a chain of dependency relations is required to be analyzed, as
presented in Figure 8.5 As the ProcessClass in UML class diagram represents a

Change Trigger{AddOperation in ProcessClass

Dependencies Test Component ->Mocks -> ProcessClass
SUT Definition-> ProcessClass
Result Add MockOperation in TestComponent
Add Operation in TestComponent

Figure 8.5: Dependencies and Results of Applying the Change AddOperation.

Process in BPMN collaboration diagram. This corresponding Process is commenced
by a Participant. For the test purpose, as discussed earlier in this chapter, a
TestComponent can simulate the behavior of a Part icipant. Thus, is an operation
isadded toaProcessClass, a corresponding MockOperation is to be added in that
TestComponent as well.

Similarly, the ProcessClass also provides a definition of the SUT in the test architec-
ture. Therefore, as shown in Figure 8.5, a corresponding operation is required to be

89

added in that SUT as well. Thus, two rules are triggered by the change Add Operation
in ProcessClass. These rules are presented in Table 8.1.

Table 8.1: Impact Rules for the Change AddOperation.

Rule IR006

Description Adding an operation in class requires adding mock operations in corresponding test com-
ponents

Elements el:Class «ProcessClass », e2:Operation, e3:Class «TestComponent »

Change Type

Conditions (modelRelatedTo(e3,Mocks,el) OR modelRelated To(e1, Tests,e2))

Actions reportlmpact(el, Add MockOperation,e2, e3 | e2)

Rule IR008

Description Adding an operation in ProcessClass requires a corresponding operation in SUT

Elements el:Class «ProcessClass »,e2:Operation, e3:Class «SUT »

Change Type

Conditions (modelRelated To(el,Definition,e3))

Actions reportlmpact(el, Delete ProcessClass, e2)

The results of these rules would trigger a set of other changes and corresponding im-
pact rules, as shown in the actions of the rules presented in Table 8.1. These rules
are also available in Appendix E. When applying the change Add Operation on the

—AddOperation: createTourPlan
|in HandleTourPlanningProcess:Class

- v

HTPPTestComp->Mocks ->HandleTourPlanningProcess

Trigger—

Dependencies HandleTourPlanningProcessSUT->Definition->

| HandleTourPlanningProcess-

Results Add createTourPlanMock <<MockOperation>> in
HTPPTestComp

Figure 8.6: Dependencies and Result of Applying Change 1 on HandleTourPlan-
ningScenario.

ProcessClass HandleTourPlanningProcess, the result will be similar to the scenario
depicted in Figure 8.6. The dependency relations consumed in the case depicted in
Figure 8.6 can be seen in Figure 6.4 in Chapter 6 as D18, D17, and D16 respectively.
The TestComponent HTPPTCom will be considered as affected by the application of
this change and a corresponding impact report would be produced.

90

& Impact Report IR0O06 [ImpactReport] @ L

Detected By IRODG
Type Impact v
Selution Add MockOperation
Description IR006adding an operation in class requires adding corresponding mockoperations in testcomponents
~ Affected Hements & %

Q <<testComponent>> <Class» Hand[..] 3

& <Operation> createTourPlan [cul..] 3§

+ Impact Sources 4 %

RE <<processClass>> <Class> Handl[..] 3§

Change Type g Atomic Change Type Add Operation 3§ &

Figure 8.7: Impact Report for Add Operation in ProcessClass.

8.3.2 Impact Analysis for the Application of Change 2

As discussed in the previous chapter, the change 2 to realize the change scenario for
HandleTourPlanningProcess requires the replacement of an Operation corresponding
to the ServiceTask {TourPlan createTourPlan()} with the new
Operation{TourPlan createTourPlan(Tour currentTour, ServiceOrders«List» s0)}.

Trigger{RepIace ServiceTask in Participant|Lane

ServiceTask ->Derivation -> CallOperationAction

Dependencies MockOperation Mocks-> ServiceTask

Replace CallOperationAction in Activity TestCase

Results
Relace MockOperation in TestComponent

Figure 8.8: Dependencies and Result of Applying Change Replace ServiceTask.

Figure 8.8 illustrate the required dependencies to be processed for the application of the
change Replace ServiceTask and the resulting changes to be triggered. A MockOperation
can mock the behavior of the ServiceTask in the test system. This corresponding
MockOperation will be affected and is thus required to be deleted from its parent
TestComponent. Anew MockOperation isrequired to be added in the correspond-
ing TestComponent. The dependencies consumed for this scenario are also depicted
in Figure 8.8.

91

Trigger—

Dependencies—

Result—

—Replace ServiceTask:
Source: createTourPlan()
target: createTourPlan(Tour currentTour, List< ServiceOrder> so)

e

createTourPlan(old)->Derivation-> createTourPlan
createTourPlanMock -> Mocks -> createTourPlan(old)

—

Replace createTourPlan():CallOerationAction with
createTourPlan(Tour currentTour, List< ServiceOrder> so)
Replace createTourPlanMock with createTourPlanMock (Tour
currentTour, List< ServiceOrder> so)

—

Figure 8.9: Dependencies and Result of Applying Change 2 on HandleTourPlan-

ningScenario.
Table 8.2: Impact Rules for the change Replace ServiceTask.
Rule IR007
Description Replacing a ServiceTask requires replacement of corresponding CallOperationAction in
tests
Elements el:ServiceTask, e2:ServiceTask, e3:CallOperationAction

Change Type | Replace ServiceTask (Composite)
Conditions (ModelRelatedTo(el,Derivation,e3))

Actions reportlmpact(el, Replace CallOperationAction, €2, €3 | e2)

Rule IR010

Description Replace a ServiceTask with another ServiceTask affects corresponding mockopera-
tion

Elements el:ServiceTask, e2:0peration, e3:ServiceTask,e4:Operation

Change Type | Replace ServiceTask (Composite)
Conditions (ModelRelatedTo(e2,Mocks,el) OR ModelRelated To(e4,Mocks,e3))
Actions reportlmpact(el, Replace MockOperation, e3,e2 | e4)

Figure 8.9 depicts the application of the actual change on the
ServiceTask: TourP lancreateTourPlan(). The corresponding MockOperation
{createTourPlanMock ()} fromthe Test Component HTPPTTCom gets affected due

to this change.

Similarly, if this ServiceTask is used in some TestCase, that TestCase will also
get affected. In this case, the test cases testShortestStrategy and testNoRoutesForShortest-
Strategy both use this MockOperation, and thus would get affected as well. However,
to simplify the discussion we do not discuss this scenario in detail here.

92

8.4 Chapter Summary

This chapter provides the details about the impact analysis approach we employ to
perform impact analysis across models and tests. We presented the concept of impact
rules and how they utilize various dependency relations to react on changes. The im-
pact rules produce a set of impact reports, which exhibit the list of affected elements in
the result of change, how they are affected, and what next changes they trigger. This list
of impact reports although show the affected test elements along with other affected
elements. However, to decide how these affected test elements should be treated, we
still need a classification mechanism to distinguish between various types of affected
test elements. In the next chapter, we discuss the test classification mechanism we use
to support our regression testing approach.

93

Regression Test Classification

9.1 Rule-based Test Classification 94
9.1.1 Concept of Test Classification 95
9.1.2 TestClassificationRules 96
9.1.3 Test Classification Process 98
9.2 Classification of UTP TestElements 100
9.2.1 Classification of UTP Test Architecture Elements 100
9.2.2 C(lassification of UTP Test Behavior Elements 110
93 ChapterSummaryttt nenn 113

The classification of tests to support regression testing is the last activity in Step 2 of
our approach, presented in Section 4.1 of Chapter 4. The affected test elements ob-
tained after the change impact analysis activity are required to be distinguished based
on how they will be used during regression testing. Thus, a distinction is necessary
between the test elements which became obsolete, are required to be executed during
regression testing, and are unaffected. Our hypothesis, presented in Chapter 4, stated
that the classification of an affected test element depends on four factors: the type of the
applied change, the type of the affected test element determined by the impact analysis, the
classification type, and the applicable test classification conditions. Based on the hypothe-
sis, in the following section, we present our test classification approach that uses rules
based on these factors to classify the affected test elements.

9.1 Rule-based Test Classification

To classify the test cases for regression testing, we propose a set of rules, which decide
how an affected test element should be classified. The test classification rules are used
to analyze the affected test elements to check how they are affected and if they are
potentially affecting other test elements due to various conditions.

94

Thus, the test classification rules analyze the impact reports produced by the impact
analysis performed earlier, check if a specified affected test element exists, and assess
it for various specified conditions. If the conditions satisfy, the respective test element
is classified according to the classification type specified in the rule.

Our analysis of the state of the art regression testing approaches reflect that they im-
plement the test classification conditions as part of the source code. Thus, adding new
conditions, covering new test elements, or incorporating new test specification and im-
plementation languages require changes inside the source code of the tool. This results
in lack of ability to support extensibility and customization of the test classification
logic. Our rule-based test classification approach improves on this aspect and uses the
concept of easily extendible rules. These rules are also able to process various con-
ditions, asses dependency relations, and query various test elements, impact reports,
and other model elements. The structure of the test classification rules is very similar
to the dependency detection rules and the impact analysis rules presented earlier in
Chapter 6 and Chapter 8.

9.1.1 Concept of Test Classification

We further explain the concept of the rule-based test classification using an example
of a TestCase and a MockOperation. If a MockOperation is deleted during the
impact analysis process, it will be considered Obsolete. However, any TestCase,
which uses this MockOperation should be selected for retest during the regression
testing, by analyzing and changing the TestCase accordingly. Figure 9.1 elaborates
on the concept of impact analysis by using this example.

(a) (b)

Unaffected Test Element Impact Report
X: Test Case Affected Test Element:
Dependency Relation| Y: MockOperation
Uses]
Change Type:
DeleteMockOperation
Classification Conditions: If a TestCase uses MockOperation Y
If Yis impacted by Delete MockOperation

Classification Action: Make X Retestable

Make Y obsolete

Figure 9.1: Classifying a Test Element.

The right hand side of Figure 9.1 (b) depicts an impact report, which presents an af-
fected MockOperation Y, where the result change type in the impact report is Delete
MockOperation. There is a test case X, which was initially unaffected during the impact
analysis process. The test classification conditions present in the lower part of Figure
9.1 specify two constraints. Firstis thatifa TestCase exist which uses a MockOperation

95

Y. The left hand side shows an element X, which is a TestCase and a dependency
relation between X and Y of type uses exist, making the classification condition true.
The second condition is that Y should be an affected element and the change type
in the impact report should be Delete MockOperation. This condition also satisfies.
Since both conditions satisfy, the test case X can be classified as Retestable and the
MockOperation Y can be classified as Obsolete, as specified in the classification ac-
tion.

9.1.2 Test Classification Rules

To realize the above presented scenario, test classification rules are required to be de-
fined and used. Similar to the impact analysis rules, the test classification rules require
the evaluation of a set of conditions. If these conditions are met, the result is a classi-
fication action specify the test element to be classified and the classification type that
should be assigned to the test element. Thus, the most important components of a test
classification rule are as follows: (1) the specification of test elements, impact reports,
and other model elements, (2) classification conditions, and (3) test classification ac-
tions. Another important aspect is the test classification type to be specified in the test
classification actions. We use the classification scheme of Leung and White [LW89],
which consists of all the types required for the test classification. These types are dis-
cussed later with the test classification actions.

The structure of test classification rules is similar to the dependency detection rules
and impact analysis rules, as they use the same analogy of evaluating logic conditions
and performing classifications actions based on these conditions. Thus, similar to the
impact analysis rules, a test classification rule also consist of the element definitions, the
classification conditions, and the test classification action parts. For the purpose of demon-
stration, Listing 9.1 presents an excerpt of a test classification rule, which classifies a
TestComponent asPartiallyRetestable.

Element Definition— part specifies the model elements, test elements, and im-
pact reports to be used by the rules. The ElementDefinition part of a test classifi-
cation rule should specify one or more impact reports or refer to already classified test
elements, which are to be accessed inside the classification rule. These impact reports
are produced during the impact analysis process and are used to analyze the affected
test elements. Line 2-6 of the impact rule shown in Listing 9.1 is the element definition
part of the rule and specifies various elements required by the rule.

Test Classification Conditions— consist of logical conditions and other pre-
defined operations on models. These include checking the parent-child relationships
among elements, checking the name similarity and matching the attribute values. For
the creation of classification conditions, each test element is required to be analyzed to
identify the cases in which it could be classified according to a classification type. Line
7-15 of Listing 9.1 show the test classification conditions of the presented rule, which
are required to be evaluated to true for the classification of the specified elements.

Test Classification Actions— assign a test classification type to a classified
test element. As discussed earlier, we use the test classification scheme of Leung and
White [LW89] for various test classification types. Thes classification types proposed

96

by Leung and White [LW89] are Obsolete, Reusable, Retestable, and New. The
Obsolete and New test elements are self explanatory. The Retestable test elements
are affected and required for regression testing. The Reusable test elements are valid
but not required for regression testing.

Listing 9.1: A Rule To Classify a TestComponent as Partially Retestable.

1 <RuleModel:Rule Description="Makes_a, TestComponent, Retestable" RuleID="TCR0O03">

2 <Elements Type="ClassifiedTestElement" Alias="el"/>

3 <Elements Type="MockOperation" Alias="e2"/>

4 <Elements Type="ClassifiedTestElement" Alias="e3"/>

5 <Elements Type="MockOperation" Alias="e4"/>

6 <Elements Type="TestComponent" Alias="e5"/>

7 <Conditions>

8 <BaseConditions Type="ModelEquals" Source="el::afftectedTestElement" Target="
e2" Value=""/>

9 <BaseConditions Source="el::cType" Target="" Value="reusable"/>

10 <BaseConditions Source="e3::cType" Target="" Value="retestable"/>

11 <LogicConditions>

12 <BaseConditions Type="ModelRelatedTo" Source="e5" Target="e2" Value="
Containment"/>

13 <BaseConditions Type="ModelRelatedTo" Source="e5" Target="e4" Value="
Containment"/>

14 </LogicConditions>

15 </Conditions>

16 <Actions ActionType="TestClassification" ImpactedElement=""/>

17 <Actions xsi:type="RuleModel:TestClassificationAction" SourceElement="e5"
classificationType="partiallyRetestable"/>
18 </RuleModel:Rule>

However, the test elements can also be composite, such as test components, are com-
posed of mock operations. Therefore, to classify the composite test elements affected
by changes, we use another classification type PartiallyRetestable as well. A
test element is considered PartiallyRetestable if atleast one of the constituent of
a composite test element is affected and atleast one of its constituents remains unaf-
fected.

types required for the classification of test elements. Line 16-18 in Listing 9.1 show
the specification of a test classification action, which classifies a TestComponent as
Obsolete

A test classification action creates TestClassificationReport/s, which specify
the classified test element, the classification type, and any relevant impact reports used
for deciding the test classification. The meta-model presented in 9.2 defines the ele-
ments, relevant to the implementation of test classification reports.

The Test Classification Meta-Model- depicts the element
TestClassificationReport and itsinteraction with various other relevant classes.
Thus, according to Figure 9.2,a TestClassificationReport has three primary at-
tributes. A name, a creationDate, and an element TestClassificationType appli-
cable to a the test element to be classified. It also refers toa UTP TestElement whichis
tobe classified inthe TestClassificationReport. TheTestClassificationType
is an enumeration literal, which specifies the types from the test classification scheme

of Leung and White [LW89].

Theclass TestClassificationReport alsoreferstothe TestClassificationRule
class, which resulted in the creation of a concrete TestClassificationReport. It

97

O 0N ONUTHWN -

UTP:TestElement

TestClassificationType Report
<<enumeration>> - name:String
1.%
Obsolete classjfiedTestElement
Reusable ~
Retestable |
PartiallyRetestable TestClassificationReport
New
-name:String ImpactReport
--creationDate:Date
-cType:TestClassificationType 1.*
TestClassificationRule ReportContainer
<______________J -name:String
1.* -creationDate:Date

Figure 9.2: The Test Classification Meta-Model.

also refers to any impact reports, which were being processed during the test classifi-
cation. The class ReportContainer packages all the test classification reports in one
container inside EMFTrace GUI. Figure 10.6 shows a screen shot of EMFTrace showing
aTestClassificationReportContainer withaTestClassificationReport
element, which classifies the test element as Reusable. The actual specification of the
test classification rules is similar to the dependency detection and impact rules.

9.1.3 Test Classification Process

Based on the example and concept presented above, we present the process of test clas-
sification in Figure 9.3. According to Figure 9.3, the test classification process starts by
selecting the impact reports produced by the impact analysis process and the required
test classification rules. The test classification rules are based on the same analogy pre-
sented in Figure 9.1, and are discussed later in the subsequent section. The actual test
classification process takes the test classification rules and processes them one by one,
until all the rules are covered. For the processing of rules, first all the elements spec-
ified in the rule are obtained by querying the models according to the specified type.
After that the classification conditions specified in the rule are accessed.

Listing 9.2: Pseudo Code for processing Test Classification Rules.

classifyTests (rules, models) {
for(int 1 = 0; 1 < rules.size(); i++) {
do{
results=results+processTestClassificationActions (rule);
}
while (applyRule (selectedRules, models));
}
removeAndMergeDuplicates();
fillReportContainer (results); }

The querying of elements and the processing of conditions is achieved similar to the
impact rules presented in the Chapter 8. Therefore, the test classification rules can also
specify various logic conditions and can use pre-defined operation discussed in Sec-
tion 8.1 of Chapter 8. If the conditions specified in the rule are satisfied, then a

98

;

S | t | t R t] rrrrerreentiiiininns
[elect Impact Reports Change Impact Reports

:

[Select and Execute Test Classification Rules]< """""""""""

Classification Rules Catalog
@5
[no morejrules)Y [more rules]

[Select a Rule]
v
[Query Affected /other Elements]
v

[Assess Classification Conditions]

[conditions unsuccessful] ¥ [conditions successful]

[Select Test Classification Type]

v

[Create Test Classification Report]

[Remove and Merge Duplicates]

Figure 9.3: Process for the Classification of Test Elements.

TestClassificationReportiscreated. The TestClassificationReports clas-
sify the selected test element, which fulfills the conditions according to the specified
classification type. Finally, any duplicate test classification reports are merged to remove
duplicates.

Listing 9.2 presents the pseudo code, which reflects how the test classification rules
are processed. The operation classifyTests() takes the test classification rules and set of
models. The models include system and test models as well as impact reports pro-
duced during the impact analysis earlier.

For each rule, the rule is applied to evaluate all the conditions and retrieve the results
meeting these conditions. The results are then used to process the test classification ac-
tions and create the test classification reports. In the Line 8 of Listing 9.2, the results are
then analyzed for any duplicate test classification reports, which might be produced
during the result processing. Finally, Line 8 fills the TestClassificationContainer
with the created test classification reports Listing 9.3 presents the pseudo code to pro-
cess the test classification results and create the required test classification reports.

Listing 9.3: Pseudo Code to Process Test Classification Results.

1 processTestClassificationResults(rule, tuples, index) {
2 for(int j = 0; j < tuples.length; j++){

3 src= tuples.getSource (index);

4 dst=tuples.getTarget (index) ;

5 ir=tuple.getImpactReports (index) ;

6 //Creates ClassificationReports;

7 create tcr;

8 set tcr.impactReports=impactReports();

99

9
10
11
12
13
14
15
16
17
18

24
25

set tcr.AffectedTestElement =src;
//ct is TestClassificationType specified in input rule
ct=rule.getClassificationType();
switch(ct) {
//Decides Which Classification Type is applicable
case "added":{
set tcr.classificationType=NEW; break; }
case "obsolete":{
set tcr.classificationType=OBSOLETE; break; }
case "reusable":{
set tcr.classificationType=RESUABLE; break; }
case "retestable":{
set tcr.classificationType=RETESTABLE; break; }
case "partiallyRetestable":{
set tcr.classificationType=PARTIALLY_RETESTABLE; break; } } }
results.add(tcr);
return results; }

These test classification reports can the be analyzed by the test analyst to check how
many test cases are required for retest. This provides an early assessment of the effort
required to maintain, execute, and analyze the tests if the change is introduced. The
feasibility of the change can be assessed by considering the effort required for testing,
which consumes a higher percentage of project budget.

9.2 C(lassification of UTP Test Elements

As we use UTP test models for the test specification in our approach, they are required
to be analyzed to identify the classification conditions under which the UTP elements
are classified. Therefore, we analyze the UTP test architecture and test behavior elements
by identifying the classification conditions for each classification type discussed earlier.

9.2.1 Classification of UTP Test Architecture Elements

We analyzed the UTP test architecture elements for the conditions in which they will
be classified. We first present some initial constants and then below we present UTP
elements and their classification conditions.

Let IR = (iry,iry,irs...iry,) be a set of impact reports of size n. 9.1)
Let Ty = (tmy, tme, tms...tm,,) be a set of baseline test models of size m. 9.2)
(9.3)

Classifying a TestModel- A TestModel contains all test related elements of
UTP, thus is a container of all the test related elements. A TestModel in UTP can be
classified for regression test selection as follows.

100

Case Obsolete: A TestModel is considered Obsolete if the following holds true.

Let tm be an element TestModel in UTP. 9.4)

Let Dy, = dy,da2, ds...dy, be the set of dependency relations of tm TestModel of size k.
(9.5)

dr € IR | changeType(r) = Delete TestModel A

source(r) = tm. (9.6)

\Y

Jr € IR | changeT'ype(r) = Delete TestPackage foritp € Tyy. 9.7)

| type(tp) = TestPackage A (9.8)

3d € Dy, | type(d) = Containment A target(d) = tp.. (9.9)

According to the above mentioned equations, ¢tm will be obsolete in two different sce-
narios. Firstly, if the TestModel tm is deleted itself. Secondly, when a TestPackage
corresponding to tm is deleted. Thus, according to Equation 9.6, tm is considered
Obsoleteifan ImpactReport exists that contains a change typeDelete TestModel
for tm.

Moreover, according to Equations 9.7, 9.8, and 9.9, if a Test Package that has a depen-
dency relation of type Containment with tm is deleted, ¢m will be considered Obsolete.
Listing 9.4 shows the test classification rule that satisfies the test classification condi-
tion defined by Equation 9.7. Similar test classification rules for other test classification
conditions presented in this chapter are also developed and presented in Table E.3 in
Appendix E.

Listing 9.4: A Test Classification Rule to Classify a TestModel.

1 <RuleModel:Rule Description="A_TestModel, is, Obsolete_if_its_corresponding TestPackage
_1s _Deleted" RuleID="TCR025">

<Elements Type="Model" Alias="el"/>

<Elements Type="TestModel" Alias="e2"/>

<Elements Type="Package" Alias="e3"/>

<Elements Type="ImpactReport" Alias="e4"/>

<Actions xsi:type="RuleModel:TestClassificationAction" ActionType="
TestClassification" ResultType="obsolete" SourceElement="el" TargetElement="el"

classificationType="retestable"/>
7 <Conditions>

QN U= W N

8 <BaseConditions Type="ModelEquals" Source="e2::base_Package" Target="el"/>

9 <BaseConditions Type="ModelRelatedTo" Source="el" Target="e3" Value="Containment"
/>

10 <BaseConditions Type="ValueEndsWith" Source="e3::name" Target="" Value="TP"/>

11 <BaseConditions Type="ReferenceExists" Source="e4::AffectedElements" Target=""
Value="e3"/>

12 <LogicConditions Type="Or">

13 <BaseConditions Source="e4::Solution" Target="" Value="Delete TestPackage"/>

14 <BaseConditions Source="e4::Solution" Target="" Value="Delete_Package"/>

15 </LogicConditions>

16 </Conditions>
17 </RuleModel :Rule>
18 }

Case Retestable: The cases in which a TestModel tm is considered Retestable is

101

defined as follows.

—(status(tm) = Obsolete) A (9.10)
dtc € Ty | type(tc) = TestContext. (9.11)
3d € Dy, | type(d) = Containment A target(d) = tc. (9.12)
status(tc) = Retestable. (9.13)
ditp € Ty | type(tp) = TestPackage A status(tp) = Retestable. (9.14)
3dl € Dy, | type(dl) = Containment A target(dl) = tp. (9.15)

If the TestModel tm is not classified as Obsolete (9.10). Or the TestContext (9.11,
9.12, and 9.13) and TestPackage (9.14, 9.15) corresponding to this TestModel is
Retestable.

Case PartiallyRetestable: A TestModel tm is PartiallyRetestable in the fol-
lowing cases.

dtc € Ty | type(tc) = TestContext. (9.16)
3d € Dy, | type(d) = Containment A target(d) = tc. (9.17)
status(tc) = Retestable. (9.18)
dtp € Tas | type(tp) = TestPackage A status(tp) = Retestable. (9.19)
3dl € Dy, | type(dl) = Containment A target(dl) = tp. (9.20)

According to the above mentioned equations, a TestModel is considered Partial-
lyRetestable if either the TestContext (9.16, 9.17, 9.18) or the TestPackage
(9.20) corresponding to this TestModel are PartiallyRetestable.

Case Reusable: A TestModel is Reusable if none of its elements are affected by
any change. The following equation describes this scenario.

—(3r € IR | changeType(r).source.type = TestModel for tm). (9.21)

Case New: Following equation describes a scenario when a TestModel is considered
New.

Jr € IR | changeType(r) = Add TestModel for tm. (9.22)

Classifying a Test Package— In the following, we discuss the classification of
the element TestPackage tp in UTP. For this we first define the required constants
and then provide definitions for various classification scenarios.

Let tp € Ty | type(tp) = TestPackage. (9.23)
Let tc € Ty | type(tc) = TestContext. (9.24)
Let TCM = (tcma, tema, tems...temy,), where /\ n type(tem;) = TestComponent.

=0
(9.25)

102

Let Dy, = (di,d2,d3...dy,), where /\ m type(d;) = DependencyRelation

=0
for the TestPackage. (9.26)
/\ n (/\ m(3 d; € Dy, | type(d;) = Containment, target(d;) = tcg)). (9.27)
k=0 1=0
dd € Dy, | type(d) = Containment, target(d) = tc. (9.28)

Case Obsolete: A TestPackage tpis considered Obsolete in the following cases.

dr € IR | changeType(r) = Delete TestPackage A source(r) =tp (9.29)
\%
status(tc) = Obsolete. (9.30)

According to the Equation 9.29, a TestPackage tp in UTP is considered Obsolete
if an ImpactReport exists which consists of a change Delete TestPackage for tp. A
TestPackage tpis considered Obsolete as well when the TestContext belonging
to tp is Obsolete, as shown by Equation 9.30.

Case Retestable: A TestPackage tp is considered Retestable in the situation
when its TestContext is either Retestable, as shown by Equation 9.31.

status(tc) = (Retestable. (9.31)

Case PartiallyRetestable A TestPackage tpisconsidered PartiallyRetestable
in the following cases.

status(tc) = (PartiallyRetestable V New) (9.32)
V

/\ n status(tc;) = (Obsolete V Retestable VPartiallyRetestable V New).
=0
(9.33)

According to the above presented equations, a TestPackage tp is considered Par-
tiallyRetestable if either its TestContext is PartiallyRetestable or New.
Moreover if any of its test components are affected,then as well it well be considered
PartiallyRetestable. Thatis, that the affected TestComponent is either Obso-
lete, Retestable, PartiallyRetestable, or New.

Case Reusable: A TestPackage tpis considered Reusable if none of its test com-
ponents and its Test Context is affected by any change as presented by the following

103

equations.

—(3rl € IR | changeType(rl).source.type = TestPackage for tp) (9.34)
V

—(3 72 € IR | changeType(r2).source.type = TestContext for tc) (9.35)
V

/\ n—=(3r3 € IR | changeType(r3).source.type = TestComponent for tc;). (9.36)
i=0

Case New: A TestPackage tpis considered New if a change type for adding it exists,

as shown in the following equation.

—(3r € IR | changeType(r) = Add TestPackage for tp). (9.37)

Classifying a SUT- For the classification of a SUT sut, we first define the fol-
lowing constants to define sut and its contained operations. We then present different
classification cases for classifying SUT.

Let sut € Ty | type(tc) = SUT. (9.38)
LetM,, = (op1,0p2, 0ps3...opy), where /\ n type(op;) = Operation. (9.39)
=0
LetDgy = (dy,dg, ds...dy,), where /\ mtype(d; = DependencyRelation. (9.40)
j=0

/\ k=0n (/\ m(3 d; € Dsyt | type(d;) = Containment, target(d;) = opx)). (9.41)
1=0

Case Obsolete: The sut is considered Obsolete in the following cases.
dr € IR | changeT'ype(r) = Delete SUT for sut. (9.42)

The change type DeleteSUT would be triggered in response to the deletion of its cor-
responding process or the process class in the system class diagram.

Case Retestable: The sut is considered Retestable in the following cases.

/\ n —(op(k) € M,, = Reusable). (9.43)
k=0

According to Equation 9.43, a SUT sut is considered Retestable if all the operations
inside SUT are affected by any change. We define this by using the — property and
this states that all the operations belonging to the sut should not be Reusable, that s,
affected by a change.

Case PartiallyRetestable: The sut is considered PartiallyRetestable in the fol-

104

lowing cases.

Jopl € M,, | status(opl) = (Obsolete V Retestable) A (9.44)

Jop2 € M,, | status(op2) = Reusable. (9.45)
V

Jop3 € M, | status(op3) = New. (9.46)

According to the above presented equations, there are two scenarios in which sut
would be considered PartiallyRetestable. In the first scenario, as defined by the
Equation 9.44, and Equation 9.45, the sut would be considered PartiallyRetestable
if atleast one operation in sut is either Obsolete or Retestable and atleast one op-
eration in sut is Reusable. This means that atleast one operation affected by a change
and atleast one operation unaffected by a change should exist in sut to make it Par-
tiallyRetestable. Inthe second scenario, the sut would be considered Partial-
lyRetestable, if a New operation is added to it, as new test cases would be required
to test this operation.

Case Reusable: An SUT sut is considered Reusable if it remains unaffected and
none of its operations are affected by a change. The following equations describe the
scenarios, when an SUT is considered Reusable.

—(3r € IR | changeType(r).source.type = SUT for st). (9.47)
/\ n (op; € M,y status(op;) = Reusable). (9.48)
i=0

Case New: A SUT st is considered New if the following holds for it.

dr e IR, Itp € Ty | type(tp) = TestPackage. (9.49)
changeType(r) = Add SUT A source(r) = tp. (9.50)

Classifying a TestContext— To classify a TestContext in UTP, we first define
it and its constituents in the following.

Let tc € Ty | type(tc) = TestContext. (9.51)

Let TCy = (t11,t2,t3...t,), where /\ n type(op;) = TestCase. (9.52)
i=0

Let Dy. = (d1,d2,ds...dy,), where /\ m type(d; = DependencyRelation. (9.53)
§=0

/\ k= 0n (/\ m(3d; € Dy | type(d;) = Containment, target(d;) = ty)). (9.54)
1=0

Case Obsolete: A TestContext tcis considered Obsolete in the following cases.

dr € IR | changeType(r) = Delete TestContext for tc (9.55)
V

/\ n status(t;) = Obsolete. (9.56)

i=0

105

According to the above mentioned equations, a TestContext tc will be considered
Obsolete in two cases. The first case is when a change operation Delete TestContext is
explicitly available in the set of impact reports I R (9.55). The other case is when all of
the test cases inside the TestContext tc are already Obsolete 9.56.

Case Retestable: Since a TestContext is a container of all the test cases to test a
process, it would be considered Retestable if all the test cases inside that Test-
Context are Retestable. The Equation 9.57 describe this case for a TestContext
te.

/\ n status(t;) = Retestable. (9.57)
i=0

PartiallyRetestable: A TestContext is considered PartiallyRetestable inthe
following cases.

3¢1,t2 € TC | status(tl) = (Reusable V Obsolete) A status(t2) = Retestable

(9.58)

\Y
dr € IR | changeType(r) = Add TestCase for tc. (9.59)
(9.60)

A TestContext tcis considered PartiallyRetestable in two different scenario.
Firstly, if atleast one TestCase inside that TestContext is Reusable, and atleast
one TestCase is either Retestable or Obsolete. Secondly, if atleast one Test -
Case is added inside tc it would become PartiallyRetestable as this TestCase
has to be executed for regression testing.

Case Reusable: A TestContext tcisconsidered Reusable if all the test cases inside
tc are Reusable and no change is applied on the TestContext as defined by the
following equations.

—(3r € IR | changeType(r).source.type = TestContext for tc). (9.61)
/\ nstatus(t;) = Reusable. (9.62)
i=0

Case New: A TestContext tcis classified as new if an impact report exists for its
addition in a TestPackage

dr e IR, 3tp € Ty | type(tp) = TestPackage. (9.63)
changeType(r) = Add TestContext A source(r) = tp. (9.64)

Classifying a Mock Operation— In the following, we define how a Mock-
Operation inside a TestComponent can be classified. Since a MockOperation is
not composed of further complex sub-elements, there is no such case in which Mock-
Operation can be classified as PartiallyRetestable. For the other classification

106

types, however, we define the conditions in the following. We first define a MockOp~-
eration and required constants and then present its classification scenarios.

Let mo € T | type(mo) = MockOperation (9.65)
Let PAR,,, = (p1,D2,P3---Pn), Where /\ n type(py) = Parameter. (9.66)
k=0

Let Dy = (dy,do, ds...d,y,), where /\ m type(d;) = DependencyRelation. (9.67)
i=0

/\ n (/\ m(3 dj € Duo | type(d;) = Containment, target(d;) = p;)). (9.68)

i=0 =0

Let PRE,,, = (pr1, pra, pra...prz), /\ x type(pry) = Constraint. (9.69)
y=0

/\ x (/\ m(3 dp € Do | type(dy) = Containment, target(dy) = prg)). (9.70)

a=0 b=0

Let POS,,0 = (po1, poz, pos...pot), /\ t type(pos) = Constraint. (9.71)
s=0

/\ t (/\ m(3 dy € Do | type(dy) = Containment, target(d,) = prg)). (9.72)

=0 y=0

Case Obsolete: A MockOperation mo is considered as Obsolete if the following
holds to true.

dr € IR | changeType(r) = Delete MockOperation A source(r) = mo. (9.73)

A MockOperat ion would be considered Obsolete if a change operation Delete Mock-
Operation is applied atleast once on the MockOperation. This is similar to the case
of the deletion of an Operation as defined by [BLS02, FR11] in their works. How-
ever, we do not consider a MockOperation as ObsoleteifaParameter isadded or
deleted from it as done by [BLS02] and [FR11]. The reason to do so is that from the test
point of view, if a parameter is added or deleted from a MockOperation, it would be
required to retest the test cases using this MockOperat ion. Hence, instead of making
it Obsolete, we would classify it as Retestable in case of addition or deletion of
parameters, as also discussed later.

Case Retestable: A MockOperation mo will be considered Retestable in the fol-

107

lowing cases.

3rl € IR | changeType(rl) = Add Parameter A source(rl) =mo (9.74)
V

3r2 € IR,3pl € PAR,,, | changeType(r2) = Delete Parameter A

source(r2) = mo A target(r2) = pl (9.75)
Vv

3r3 € IR, pr € PRE,,, | changeType(r3) = Change PreCondition A

source(r3) = mo, target(r3) = pr (9.76)
V

3rd € IR, Ipo € POS,,, | changeType(rd) = Change PostCondition A

source(rd) = mo, target(rd) = pr. (9.77)

As defined in the above presented equations, a MockOperation in UTP will be clas-
sified as Retestable in the following different cases.

In the first case, a MockOperation will be considered as Retestable if a Parame—
terisadded inside that Operation. The addition of a Parameter will be recognized
if a corresponding ImpactReport exists where source of the impact report is mo and
the changeType of that ImpactReport is Add Parameter, as defined by the Equation
9.74.

In the second case, if a parameter is deleted from an MockOperation, in that case as
well, it would be considered Retestable and all the test cases calling mo would be
selected for a retest as well. The Equation 9.75 describes this scenario. In the third and
forth case, if the Precondition or the PostCondition of the MockOperation mo
is changed, in this case as well mo would be considered Retestable as suggested by
the Equation 9.76 and Equation 9.77.

Further, a MockOperation will also be considered Retestable if any of its own
properties or any property of its Parameter is changed. The following equations
present two of such cases. In the first case, if a property of the mo is changed, for
example, if mo is made abstract, then as well, mo would be considered Retestable,
as suggested by Equation 9.78. In the other case, if type of a Parameter of mo is
changed then it would be considered Retestable, as suggested by Equation 9.79

375 € IR | changeType(rb) = MakeMockOperationAbstarct A

source(rb) = mo (9.78)
V

3r6 € IR,3p2 € PAR,,, | changeType(r6) = ChangeParameterType A

source(r6) = p2. (9.79)

Case Reusable: A MockOperation is consideredReusable if it remains unaffected
and there are no corresponding impact reports for it as defined in the following.

—(3r € IR | changeType(r).source.type = MockOperationfor mo). (9.80)

108

Case New: A MockOperation mo is considered New if an ImpactReport for its
addition exists, as suggested by Equation 9.82 and Equation ??. According to the equa-
tion, the source of the ImpactReport hastobea TestComponent in which the Mock -
Operation has to be added.

Jr € IR, Jtc e Ty | type(tc) = TestComponent. (9.81)
changeType(r) = Add MockOperation A source(r) = tp. (9.82)

Classifying a Test Component— To classify a UTP TestComponent tc, the
changes applied to a test component and its constituent MockOperat ions have to be
analyzed. The following set of equations defines various cases in which a TestCom-
ponent can be classified.

Let tc € Ty | type(tc) = TestComponent. (9.83)
Let My, = (m1, mo, m3...my,), where /\ n type(m;) = MockOperation. (9.84)
i=0

Equation 9.83 and 9.84 define the primitive concepts. They define a Test Component
tc belonging to the set of baseline test models. Further, a set of MockOperations M.
exists for the TestComponent te. Thus, if a change ¢ € C'is applied, it would make
the tc either Obsolete, Reusable, Retestable,

PartiallyRetestable, or New in the following cases.

Case Obsolete: The following equation defines the case when tcis Obsolete.
dr € IR for tc | changeType(r) = Delete TestComponent.. (9.85)
The origin of the change type Delete TestComponent can vary, as it depends on the de-
pendency relations, which are exercised.
Case Retestable: The element tc will be Retestable if the following holds true.
Vm € My m € (RV P). (9.86)

This means that a test component is considered Retestable if all of its mock opera-
tions are also Retestable or PartiallyRetestable. Otherwise, tc will be
PartiallyRetestable under the conditions discussed in the following. If a Test—
Component is Retestable, all the test cases using this Test Component would also
be considered affected.

Case PartiallyRetestable: The following equations define when a TestComponent

109

is considered PartiallyRetestable.

Im € Mie,n € Mye,| m € Reusable A n € Retestable. (9.87)
vV

dr € IR | changeType(r) = PropertyUpdate for tc (9.88)
V

dr € IR | changeType(r) = Add MockOperation for tc.. (9.89)

Thus, according to the above presented equations, a Test Component will be consid-
ered PartiallyRetestable in three different cases. The first case is when atleast
one of its constituent mock operations is affected and atleast one of its constituent re-
mains unaffected 9.87.

The second case is one any property of the Test Component is changed, for example,
a rename change operation is applied 9.88. Finally, the third case is when any new
MockOperation is added in a TestComponent 9.89.

Case New: Finally, tc will be considered as New if a Add TestComponent change type
exists in any impact report as presented in Equation 9.90.

dr € IR | changeType(r) = Add TestComponentsource(r) = tc. (9.90)

Case Reusable: To define the reusebility of a test element we introduce the concept of
an immaculate element. An immaculate element is the one which does not falls into the
category of any of the Obsolete, Retestable, PartiallyRetestable, or New, as
shown in Equation 9.91.

JdeeTye¢ OR,P,A. (9.91)

Thus, Equation 9.92 presents the case in which tcis Reusable. According to the Equa-
tion 9.92, the case Reusable is applicable when tc is immaculate and no other impact
reports exists for tc.

te = immaculate A =(3r € IR for tc). (9.92)

9.2.2 C(lassification of UTP Test Behavior Elements

As discussed earlier, the behavior of the tests in UTP can be expressed using UML ac-
tivity diagram specifying test scenarios and test cases. In our test generation approach
presented in Chapter 5, the activity diagrams representing the test cases are generated
from BPMN collaboration diagrams and consequently express the test cases to test a
process. In the following, we first present the classification definitions for the Test -
Case definition inside the test architecture and then discuss the classification of their
corresponding activity diagram test cases.

Classifying a TestCase— A TestcCase is defined inside the class diagram rep-
resenting the test architecture of a business process. It is defined as an Operation

110

inside the TestContext class as also discussed in Chapter 5. A TestCase can be
classified similar to an Operation, since it is a test operation. It would be affected by
other relevant aspects, such as the data used by it and its behavior defined by a behav-
ioral activity diagram. Hence, to classify a TestCase, we first define it and its relevant
aspects.

Let tcase € Thy | type(tcase) = TestCase. (9.93)
Let tc € Ty | type(tc) = TestContext. (9.94)
Let ac € Ty | type(ac) = Activity. (9.95)
Let Dyegse = (di,da, ds...dy,), where /\ n type(dx) = DependencyRelation. (9.96)
k=0
3 dl € Dicase | type(dl) = Equivalence, target(dl) = ac. (9.97)
3dl € Dyease | type(dl) = Containedpy, target(dl) = tc. (9.98)
Let PARycase = (p1,p2, P3-.-Dm), where /\ m type(p,) = Parameter. (9.99)
r=0
/\ m (/\ n(3 d; € Dycase | type(d;) = Containment, target(d;) = p;)). (9.100)

i=0 j=0

Case Obsolete: A TestCase tcase is considered as Obsolete if the following holds
to true.

Jr € IR | changeType(r) = Delete TestCase A source(r) = tcase (9.101)
V
status(ac) = Obsolete. (9.102)

A TestCase tcase will be considered Obsolete isan ImpactReport for its deletion
exists or if the test behavior corresponding to tc is Obsolete. Similar to a MockOp-
eration, addition and deletion of parameters would not make a TestCase obsolete
rather it would make it Retestable, as discussed later as well.

Case Retestable: A TestCase is considered Retestable in the following cases.

« Ifits corresponding Activity is Re-testable.

. IfaConstraint onaMockOperation changes.

« If the type of any Parameter of the MockOperation is changed.
« If any parameter is added or deleted from the MockOperation.

« If the Verdict related to the MockOperation changes.

« If any input data element changes.

Case Reusable: A TestCase is considered Reusable if it remains unaffected and
there are no corresponding impact reports for it as defined in the following, and if it

111

does not falls to any other classifications.

—(3r € IR | source(r) = tcase) (9.103)
V
—(tcase = (Obsolete N\ Retestable)). (9.104)

Case New: A TestCase isconsidered New if the change operation Add TestCase exists
in the set of Impact Reports for a particular TestContext in the set of impact reports.

dr € IR | changeType(r) = Add TestCase A source(r) = tc. (9.105)

Classifying a Activity Diagram Test Case— A UML activity diagram cor-
responding to a TestCase represents the test behavior and is expressed as ¢ in Equation
9.106. In the following, we discuss various classification scenarios for ¢.

Lett € Ty | type(t) = Activity «TestCase ». (9.106)

Case Obsolete: A test case t will be considered Obsolete if either it is explicitly
deleted from the model or the path of the process tested by ¢ is no longer valid. This
is a case when any SequenceF low in the process is deleted triggering the deletion of
the corresponding Cont rolFlow int. The following equations define these scenarios.

drl € IR | changeType(rl) = Delete TestCaseActivity fort. (9.107)
V

dc e T | type(c) = Control Flow, 3d € Dy | type(d) = Containment N\

target(d) = c. (9.108)

dr2 € IR | changeType(r2) = Delete ControlFlow for c. (9.109)

According to Equation (9.107), if an impact report with a change type Delete TestCaseAc-
tivity exists for ¢, then ¢ will be considered Obsolete. The second case is whena Con-
trolFlow inside t is deleted making it Obsolete and is represented by the Equation
9.108 and Equation 9.109.

According to Equation 9.108, a Cont rolFlow c exists and is contained by ¢. Equation
9.108 further clarifies the conditions by stating that an ImpactReport with a change
type Delete ControlFlow exists for the Cont rolFlow c contained by ¢.

112

Case Retestable:

3 € Twya | type(a) = Action A 3dl € Dy | source(dl) =t A target(dl) =a

A type(dl) = Containment. (9.110)

Im | type(m) = MockOperation A 3d2 € Dy | source(d2) =a A

target(d2) =m A m € (OV R). (9.111)
V

Jtcl | type(tcl) = TestComponent A tel € (O V R). (9.112)

3d3 € Dy A source(d3) =t A target(d3) =tcl A type(d3) = requires. (9.113)
V

ddo € Ti | type(do) = DataObject A do € (O,R,P,N). (9.114)

dd4 € Dy | source(d4d) =t A target(d4) = do,type(d4) = Containment. (9.115)

Case New: Finally, ¢ will be considered as New if a Add TestCaseActivity change type
exists in any impact report as presented in Equation 9.116.

dr € IR | changeType(r) = Add TestCaseActivity for t. (9.116)

Case Reusable: The test case t is reusable if ¢ is immaculate, or if ¢ is immaculate and a
rename change operation is applied on it as expressed by Equation 9.117 and Equation
9.118. If a change operation Rename TestCaseActivity is applied on t, then it requires the
maintenance of the test model but actually does not affects the test logic.

The definition of an immaculate element is already presented in the Equation 9.91 in
Section 9.2.1 while discussing the reusability of a TestComponent.

t = immaculateVsub € tsub = immaculate. (9.117)
V
t = immaculate N 3rl € IR | changeT'ype(rl) = Rename TestCaseActivity fort.
(9.118)

Results of Test Classification for HandleTourPlanningProcess—
The TestCasel represented as an activity diagram is classified as Retestable, as it
is required to be retested due to a change in its called Operation. Other test cases
remain unaffected because they do not call this operation. The HTPPTCom TestCom-
ponent and the TestContext class will be classified as PartiallyRetestable.
All other elements of the test view will be considered as Reusable.

9.3 Chapter Summary

This chapter demonstrates the test classification mechanism employed by our approach
for the classification of baseline test suite. The chapter first elaborates the classification
scheme we used to classify the testelementsinto Obsolete, Reusable,Retestable,
PartiallyRetestable, and New. We further analyzed the test elements of UTP for

113

the conditions in which various test classification scenarios are applicable to various
UTP elements. We also presented the classification definitions for these elements.

These classification definitions are then refined and mapped to the test classifications
rules we developed to assist the implementation and execution. The test classification
rules are generic, customizable, extensible, and can be defined to classify various ele-
ments of a baseline test suite. In contrast to the state of the art, the rules can be extended
to support new classification scenarios and test languages without requiring modifi-
cations in source code.

114

Automation and Tool Support

10.1 Tool Support for our Baseline Test Generation Approach using VIG116
10.2 Tool Support for our Regression Testing Approach by using EMF-

Trace e e e 119
10.2.1 Using EMFTrace for Dependency Detection and Rule-based

Impact Analysis L 121

10.2.2 Extending EMFTrace for Test Classification 122

10.3 ChapterSummaryt nenn 124

To reduce the manual effort, automation of various activities of our approach is re-
quired . Thus, we provide tool support to enable our approach in two different ways.
Firstly, by presenting a prototype tool VIATRA Test Generation Tool (VTG) to enable the
baseline test generation.

Secondly, by using and extending EMFTrace' , a tool based on Eclipse Modeling Frame-
work (EMF)? that provides traceability support between various software artifacts. As
mentioned earlier, the goal of providing tool support is to reduce the manual effort
required to commence various activities of our approach. Thus, the tool support shall
enable the generation of test models from system models, preserve and record depen-
dency relations between models and tests, support impact analysis, classify tests using
our rule-based approach.

Requirements to enable Tool Support— The major requirements for the
tool support are stated in the following.

1. Enable model to model transformations to realize mapping rules for the genera-
tion of UTP test models from BPMN and UML models.

2. Preserve traceability links between test models and system models during the
test generation.

3. Provide support for rule-based dependency detection between UML and BPMN
models and UTP test models.

4. Enable impact analysis across BPMN, UML, and UTP models using dependency
relations by providing support for the execution of impact rules.

5. Support import and export of dependency relations between models and tests to
reuse them for impact analysis.

6. Support the test classification of UTP models by enabling execution of test clas-
sification rules.

7. Generate reports to enable the analysis of classified elements of test models.

'https:/ /sourceforge.net/projects/emftrace/
*http:/ /www.eclipse.org/modeling /emf/

115

8. Provide import and export facility for BPMN, UML, and UTP models.

To enable the first two requirements, we developed a prototype test generation tool VI-
ATRA Test Generation Tool (VIG). VTG enables the implementation of mapping rules
for test generation as model transformations using the Visual Automated Model Trans-
formations (VIATRA) framework [VIA11]. The tool also preserves the traceability links
between system and test models during the model transformations. Further details of
VTG are presented in Section 10.1.

To fulfill the other requirements, we use and extend EMFTrace. EMFTrace was orig-
inally developed to support traceability between various software artifacts [BLR11].
EMFTrace uses a model repository EMFStore! and provides various facilities, such as
import/export, editing, and update of models. Models in EMFTrace are conformed to
XML Meta-data Interchange (XMI) format and adapters for various modeling tools, such
as Visual Paradigm 2 and Eclipse UML2 Tools 3, are available in EMFTrace. EMFTrace
suits very well in our context, as it provides the facility to detect dependency relations
using the rule-based approach discussed earlier in Section 6.3.2 of Chapter 6. Similarly,
it already provides import facility for UML models and provides export facility of any
model inside the model repository.

In one of our works, we extended EMFTrace to enable impact analysis across hetero-
geneous software artifacts [LFR13a]. In this thesis, we use EMFTrace to record depen-
dency relations and perform impact analysis between UTP, UML, and BPMN models.
Further, we extend EMFTrace to support the test classification by developing the test
classification rules. The details of how we use and extend EMFTrace are presented in
Section 10.2.

10.1 Tool Support for our Baseline Test Generation
Approach using VTG

As mentioned earlier, the relevant mappings for the test generation in our approach are
implemented as model transformations. The details of our test generation approach
and required mappings are already presented in Chapter 5. Figure 10.1 depicts the
architecture of our prototype tool VTG.

As depicted in Figure 10.1, the tool takes BPMN and UML models as input and pro-
duces UTP test models by applying a set of model transformations. These model trans-
formations are based on the mapping rules presented in Chapter 5 and Appendix B.
The model transformations also preserve a set of trace links to link the source and tar-

get model elements of the transformations, as discussed in Section 6.3.1 of Chapter
6.

In the VIATRA framework, all models are saved in a Model Space, which is an internal
model repository. Models are expressed in VIATRA Textual Meta-modeling language
(VIML) that expresses any model in the form of entities and relations. For example, a

Thttp:/ /eclipse.org/emfstore/
*http:/ /www.visual-paradigm.com
*http:/ /eclipse.org/modeling /mdt/?project=umI2tools

116

1
2

O N3 O\ U1 =~

UML Class is expressed as an Entity and an Association between two classes is
expressed as a Relation in VIML. To transform a source model into a target model,
transformation rules are required, which can be developed in VIATRA Textual Com-
mand Language (VICL).

BPMNXMI UML XMl UT&%MI Tmc%XMI
v Y] :

[| Import [| Import Export [| Export [|
M v VTCL Model Transformations A A
BPMN VTML UMLVTML | Distance Path Model UTP VTML Trace VTMU
Model Model Calculator Extractor Mapper Model Model

T 7 . Ry
v _ ¥ -
Extended Test Paths
BPMN VIATRA Model Space

Figure 10.1: Architecture of the Baseline Test Generation Tool-VTG.

We developed a set of VTCL model transformations to realize our baseline test genera-
tion approach presented in Chapter 5. In our baseline test generation approach, most of
the test architecture elements have one to one correspondences between system models
and UTP test models. Thus, a model mapping transformation is sufficient to generate
the test architecture elements. For example, a TestContext in UTP corresponds to the
ProcessClass in UML class diagram.

However, the generation of test behavior requires the extraction of test paths from BPMN
collaboration diagrams. These test paths are then required to be transformed to activ-
ity diagram test cases in UTP. Thus, the model transformations are also required to be
developed accordingly. We developed three different transformations, which comple-
ment our test generation approach presented in Chapter 5.

Distance Calculator Transformation— The Distance Calculator Transforma-
tion calculates the distance of each BPMN element from the end element and attaches
it to the elements in the form of textual annotations. This extended BPMN model is
then used for path extraction by the Path Extractor transformation. Listing 10.1 depicts
an excerpt of the Distance Calculator in VTCL.

Listing 10.1: An excerpt of DistanceCalculator.vtcl.

rule visitChildren(in Node) = seq //Visit Children of ’Node’ {

forall Child with find unvisitedChild(Node,Child) do //take all unvisited child
nodes

let Dist_N = undef, Dist_C = undef, New_Dist_C = undef in //declaration of
variables

seq{

choose N_Distance with find GetDistance (Node,N_Distance) do

seq{

update Dist_N = tolInteger(value(N_Distance)); //Get Distance of Node}

choose C_Distance with find GetDistance(Child,C_Distance) do

117

10
11
12

13
14
15
16
17

seq{
update Dist_C = toInteger(value(C_Distance)); //Get Distance of Child}
update New_Dist_C = Dist_N +1; //Calculate new distance of child
if (Dist_C > New_Dist_C) //if you encounter that new distance is shorter than old
one:
seq{
call setDistance(Child,New_Dist_C); //set new distance
call visitChildren(Child); //visit children of child node (recursive)}
}
}

The Listing 10.1 presents a recursive rule, which visits its children nodes and assign
them a value based on the hierarchical distance from the parent node. The keyword
seq is similar to a do-while loop in standard programming languages and the keyword
call denotes calls to other rules. Thus, the distance of a node and all its children nodes
is obtained. Each child node has a distance of parent node+1. If the newly calculated
distance is shorter then the old one, it is assigned to the node and the process is recur-
sively repeated for all child nodes.

Path Calculator Transformation— The Path Calculator Transformation then
uses the distance-based path calculation strategy discussed in Chapter 5 and extracts
test paths from the extended BPMN collaboration diagram. It uses the backtracking
form the end node and selects the paths having lesser distance from the end node, thus
calculates the shortest path to test first. All the other paths are also calculated in the
similar fashion to provide coverage of all the decision nodes of a process.

Model Mapper Transformation— Once the test paths are available, the
Model Mapper Transformation maps the source BPMN and UML elements to UTP test
models. The Model Mapper automates the mapping rules presented in Section Ap-
pendix B and generates the UTP activity diagram test cases from the extracted test
paths. To realize the second requirement for tool support stated in the start of this
chapter, the Model Mapper also preserves the corresponding source and target elements
and saves them in a Trace Model. Trace Model stores the source element, the target ele-
ment, and the type of the dependency relation.

To demonstrate how elements in source BPMN and UML models are mapped to the
corresponding UTP elements, we present an example VICL rule, which implements
the mapping rule in Listing B.7 in Appendix B. The rule maps the element Parti-
ciant in BPMN to the element ActivityPartition in UTP activity diagram test
case.

The (a) part Figure 10.2 presents the mapping rule depicted Listing B.7 in Appendix
B and (b) part depicts an excerpt of the corresponding transformation in VICL. VICL
consists of a set of graph transformation rules GTRules, which consist of a precondi-
tion pattern, a postcondition pattern, and a set of actions. The GTRule matchPartic-
ipant in part (b) of Figure 10.2 consist of a precondition pattern, which checks if the
element to be transformed is an element of BPMN meta-model. The postcondition
pattern matchSwimlane ensures that after the transformation a Participant and
corresponding ActivityPartition exists and a link between both is also created.

In the actions part of the rule, name of the Part icipant is assigned to the name of the
ActivityPartitionandthenewly created ActivityPartitionand TraceLink
is saved/moved to the models. Thus, VTG enables our baseline test generation ap-

118

gtrule matchParticipant (out Participant)={

precondition pattern isParticipant (Participant)={
bpmn.metamodel.bpmn.Participant (Participant);

}

postcondition pattern

matchSwimlane (Partition,Participant, Link)={

bpmn.Participant (Participant);

Mapping Rule 008: Participant -> ActivityPartition uml.ActivityPartition(Partition);
Preconditions: trace.Link (Link);

3tp € TP | type (tp)=TestPath trace.Link.Source(Src,Link,Participant);
Jact € AC'| type (act)=Activity:UML «TestCase » trace.Link.Target (Trqg, Link, Partition);

3d1 € D |source (dl)=tp, target(dl)=act, type(dl)=Derivation }

3 t] t =Part ant : BPMN .
par € tp | type (par)=Participan action{

Postconditions: X X

A o rename (Partition, name (Participant));

create ap\ type (ap) =ActivityPartition:UML L

ap.name=par . name move (Partition, uml.models) ;

rename (Link, name (Pool)+"—->"+name (Partition));

act.add (ap)
create Tracelink(ap,"Derivation", par) move (Link, trace.models) ;
create Tracelink(act,"Containment", ap) }}

(a) Mapping Rule (b) Transformation Rule

Figure 10.2: The Mapping Rule and Corresponding Transformation Rule for Partici-
pant.

proach. The generated test models and trace links are later used by EMFTrace to enable
our regression testing approach.

10.2 Tool Support for our Regression Testing Ap-
proach by using EMFTrace

As discussed earlier, we use EMFTrace to detect dependency relations among models
and tests using the rule-based dependency detection approach implemented in EMF-
Trace. In one of our works, we extended EMFTrace to support rule-based impact anal-
ysis across heterogeneous various software artifacts based on the concepts presented
in Chapter 8 [LFR13a]. In this thesis, we developed rules to support impact analysis
across BPMN, UML, and UTP models using the impact analysis capabilities of EMF-
Trace. Further, we extended EMFTrace to support test classification rules for regression
testing.

Architecture of Extended EMFTrace Tool- Figure 10.3 represents the
architecture of the extended EMFTrace tool and the logical components of EMFTrace.
The shaded elements in 10.3 are the ones, which are reused without introducing any
changes to them. The other elements are either newly introduced or extended to sup-
port regression testing in particular. The EMFStore repository is the central storage
of all the models and traceability links between them. EMFTrace consists of a generic
rule processing engine, depicted as RuleProcessor in Figure 10.3, which enables
execution of logical conditions and some other comparison functions to compare var-
ious properties of model elements. The RuleProcessor component is used for the
processing of dependency detection rules, impact rules, and test classification rules.

Processing of the impact analysis rules is responsibility of the ImpactAnalyzer com-
ponent. We extended EMFTrace to enable the processing of test classification rules,
which are being implemented by the TestClassifier component. The Result-

119

VIATRA Test
Generation Tool
(VTG)
v v
Java BPMN uMmL uTp Trace Links
v v v v v
Import Import Import Import Import EMFTrace

Dependency Detection Rule use
Catalog

RuleProcessor TraceManager ReportManager TestClassifier

ResultProcessor ImpactAnalyser EMFTraceUl TestClassifierU|

Test Classification Rule Catalog

Legend: -->Input/Output [JExisting Features []Added/Extended Features

Figure 10.3: Architecture of the Extended EMFTrace Tool.

Processor and ReportManager components are responsible of processing results
of these rules and creation of impact reports and test classification reports. As the name
suggests, the EMFTraceUI and TestClassifierUI components provide the user
interface to enable various user actions. Before we discuss how EMFTrace is used and
extended for dependency detection, impact analysis, and test classification, we first
present the models and meta-models required to enable our approach in EMFTrace.

Required Models and Meta-Models— Figure 10.4 depicts the models and
meta-models required for implementing our approach in EMFTrace. These models
consist of three categories, which are system models, test models, and EMFTrace internal
models. The category system models consists of BPMN and UML models and these mod-
els should be consistent with the BPMN and UML meta-models. We use the UML and
BPMN meta-models from the project Model Development Tools (MDT?).

The category test models consists of UTP models. UTP used class diagrams to represent
the test architecture and test data. The test behavior is represented using activity diagrams
to model test cases with UTP specific stereotypes. The UTP test models represent the
test baseline which can be generated using the VTG Tool, as depicted in Figure 10.3.
We implemented the UTP meta-model as a profile for UML using EMF Framework,
which is available as a Eclipse plugin. Finally, the third category EMFTrace internal
models consists of the models to express changes, dependency relations, impact rules,
test classification rules, impact reports, and test classification reports. These models
are used for the implementation of impact analysis and test classification rules.

]http: / /eclipse.org/modeling /mdt/?project=uml2

120

1

E

UML
A R

Diagram

Component Class Diagram Collaboratlon

]

BPMN
’.\

Diagram

=1
J

Test Test Test Data CD
Architecture Behavior AD
CcD

ﬁ System Models (a)

Test Models (b)

Change

@l

UML Changes UML,BPMN, UTP :

T I i 1 i A

Trace Rule TCRule Report Test Classification
A A A A
@ [

TraceLinks

UML,BPMN
DDRules Classification

UTP Impact Reports TCReports

Rules

UML,BPMN,UTP
ImpactRules

EMFTrace Internal Models (C)

BPMN Changes

Legend: ------> Meta-Model Conformance

Figure 10.4: Required Models and Meta-Models for the Implementation of Approach.

10.2.1 Using EMFTrace for Dependency Detection and Rule-
based Impact Analysis

To implement the dependency detection rules to support our approach, we use existing
teatures of EMFTrace for rule-based dependency detection. The logical component
TraceManager is responsible to record dependencies between various artifacts based
on rules. Thus, the dependency detection rules for UML, BPMN, and UTP models
are depicted as Dependency Detection Rule Catalog in Figure 10.3. EMFTrace uses the
RuleProcessor component to to execute the dependency detection rules.

The implementation of rule-based impact analysis is part of one of our works [LFR13a]
to support impact analysis across heterogeneous software artifacts. Thus, the Impact -
Analyzer component uses the same RuleProcessor to process the impact rules by
evaluating various conditions to identify the elements impacted by the change. A built-
in function modelRelatedTo is used to asses if the dependency relations exists between
two model elements are not. The details of the impact analysis approach are already
presented in Chapter 8. The ImpactAnalyzer component generates the impact reports
using the ReportManager component.

To support the impact analysis in our approach, in this thesis, we implemented impact
rules to react on changes in BPMN and UML models to find their impact on UTP test
models. Thus, the Change Catalog depicted in Figure 10.3 defines the change types
applicable to UML, BPMN, and UTP models. The Change Catalog consists of the
changes defined earlier in Chapter 7.

The Impact Rule Catalog depicted in Figure 10.3 consists of the impact rules applica-
ble to these changes in UML, BPMN, and UTP models. These rules use the depen-
dency relations recorded using dependency detection rules and VTG tool during the
test generation and propagate the impact of these changes to other models and tests.

121

These rules are presented Appendix E. The component ImpactAnalyzer processes
the impact rules and creates impact reports using the ReportManager component.

10.2.2 Extending EMFTrace for Test Classification

As discussed earlier, the TestClassifier component is responsible for the imple-
mentation of test classification rules. Thus, a set of test classification rules are devel-
oped in EMFTrace and can be executed on the impact reports produced during the
impact analysis to decide how impacted test elements can be classified.

The TestClassifier uses the existing RuleProcessor component of EMFTrace
to process the rules and to evaluate the specified conditions. However, it extends the
ResultProcessor component to implement the actions specific to the test classifi-
cation. The ReportManager component is also extended to enable the generation of
Test Classification Reports based on the results produced by the ResultProcessor.

Figure 10.5 presents the high level interactions of various classes for the realization of
test classification rules. According to Figure 10.5, the TestClassifierUI obtains an
instance of TestClassifier class from the Activator class. The Activator is
used for dynamic instantiation of various classes to support loose coupling between
the user interface classes and core logic. After that, the method classifyTests() of the

SD: interaction of components for test classification J

emftrace.ui.testclas emftrace.ui.act emftrace.core emftrace.core emftrace.core. emftrace.core.
sifier ivator .testclassifier .ruleprocessor resultprocessor reportmanager

|TestC|assifierU|‘ ‘Activator” TestClassifier ‘ ‘ RuleEngine H ResultProcessor ‘ ‘ReportManager |

getTestClassifier()

S while |[!(selected fules empty]

classifier.classifyTests() applyRule()

getResultProces:

processTest(lassificationResults()

createJeptClassificationReport(
RN

getTestClassifjcationSet()

"' fillReportfdntainer()
| T

Figure 10.5: A Sequence Diagram Depicting High Level Interactions of Classes to Im-
plement Test Classification Rules.

class TestClassifier is called. This method implements the core test classification
logic. It takes the set of test classification rules and calls applyRule() method of the class
RuleEngine of EMFTrace. The applyRule() method evaluates the conditions of the
rules and all the elements, which satisfy these conditions are obtained.

The RuleEngine class also uses the various other components, such as an Element -
Processor component to get the elements specified in the rules, a ConditionPro-

122

1

cessor to evaluate conditions in the rule, and a RulevValidator to check if the rules
are structurally correct. However, for the sake of simplification, these are not shown in
Figure 10.5.

Consequently, the applyRule() operation calls the processTestClassificationResult() opera-
tion of the ResultProcessor to process the elements obtained after the evaluation of
conditions. The ResultProcessor then extracts the relevant information from a list
of results and calls the ReportManager to create the Test Classification Reports. Listing
10.2 presents an excerpt of the source code of the method processTestClassificationRe-
sult().

Listing 10.2: An Excerpt of the Source Code for Processing Test Classification Results.

public void processTestClassificationResult (Project project, Rule rule, List<List<
EObject>> results, int[][] tuples, int index) {
classificationSet.clear();
int srcIdx = ListHelper.getIndexForElement (rule, rule.getActions() .get (index) .
getSourceElement ());
int dstIdx = ListHelper.getIndexForElement (rule, rule.getActions() .get (index) .
getTargetElement ());
List<Integer> irIdxes=getIRIndex(results, srcldx, dstIdx);

if(results.get (srcldx) .isEmpty() || results.get (dstIdx).isEmpty()) return;
TestClassificationAction currentAction=(TestClassificationAction)rule.getActions().
get (index) ;

TestClassificationType classificationType=TestClassificationType.get (
currentAction.getClassificationType () .getValue());
for(int j = 0; j < tuples.length; Jj++){
if(tuples[j]l[srcIdx] == -1 || tuples[j][dstIdx] == -1) continue;
EObject src = results.get (srclIdx).get (tuples[j]l[srcIdx]);
EObject dst = results.get (dstIdx) .get (tuples[j][dstIdx]);
List<ImpactReport> iReports=new ArrayList();;
if(irIdxes!=null) {
for (int k=0; k<irIdxes.size(); k++) {
ImpactReport temp= (ImpactReport)results.get (irldxes.get(k)) .get(
tuples[j]l [irIdxes.get (k)]1);
if (temp!=null) iReports.add(temp); }
}
EObject impactedTestElement=null;
if(src == null || dst == null || src == dst) continue;
impactedTestElement=src;
ClassifiedTestElement cte=createClassifiedTestElement (iReports,
impactedTestElement, dst,classificationType);
classificationSet.add(reportManager.createTestClassificationReport (cte),
rule) ; }

According to the method in Listing 10.2, the method processTestClassificationResult()
takes a project, a rule thatis being processed, a list of results, and a two dimensional array
of tuples. The results and tuples are produced by the ConditionProcessor, while
processing the rules. The tuples is an array, which only contains indexes of matching
elements, whereas, the actual elements are saved in the list results.

The method first gets the index of source and target elements of the rule (line 4 and
5). It also takes the index of the places in the tuples, where the matched impact reports
processed by the rule are stored (line 6). How the specified elements are classified
is obtained by accessing the ClassificationType specified by the rules (line 8-9).
Then all the tuples are visited to obtain the values for the indexes specified earlier to
get a matching source element, target element, and a set of processed impact reports. The

123

source element src is that test element, which is to be classified by the current rule.

These elements are then passed to the ReportManagerto create the corresponding
test classification reports (line 24-25). The test classification meta-model depicted in Fig-

L3 Project Explorer | 4% Navigator 23
o= - g Rule Catalogue DependencyDetectionRules [178 rules]
@ Link Container [186 links, 0 traces]
a < Test Classification Report Container Test Classification Ru
4 g Test Classification Report TestClassifcationReportMo
[ﬁ} Classified Tes: Element re;uable|
- g~ Test Classification Report TestClassifcationReportMo
- 1= org.mops.casestudy.st(hot shared)
» g test project(Not shared)
. g org.fast.casestudy(Mot shared)
4 = org.mops.evaluation(Mot shared)
- Bz «<Model> MopsComaonentDiagram
- B2 «Model> MopsHotlineCD
< Business Entity
. B2 <Model> MopsTourClassDiagram
4 Service
- B2 <Model> MopsSOClassDiagram
<= Business Entity
4 Process Class
- Bz <Model> MopslnvertoryCD
. B3 = <testModel>> <Model> EvaluateProblemProcessTest?
. B3 <<testModel>> <Model> HandleBookAccomocationPr
- B2 = <testModel>> <Model> HandleDemagedinventoryRep

< >

A

o |<L=D = @~ Test Classrfication Repo
- g~ Change Type Catalogue 00-Changes [25 clusters, 192ty A

- Resource - Classified Test Element resuable - Eclipse Platform = B
File Edit Mavigate Search Project Run Window Help
i [P N =R W - L == - [| [Resource

g~ Classified Test Element r 22
o Classified Test Element resuable
[ClassifiedTestElement]

Afftected Test Element = <testComponent> > <Class> Cust[...

+ Impact Report Reference

o> Impact Report TypeBasedimpactA[..] ¥

£ >
Standard View
&) Tasks | 57 EmfStore Browser &2 =08

| b localhost [Localhost Server]

. B3 = <testModel>> <Model> HandleTourPlanningFrocessT v

Figure 10.6: Test Classification Report in EMFTrace for a Reusable Test Element.

ure 9.2 of Chapter 9 already described the structure of the test classification reports. A
test classification reports is contained ina ClassificationReportContainer and
refers to a set of impact reports, the classified test element, and the assigned classifi-
cation type. Figure 10.6 shows an impact report, which shows a reusable Te st Compo-

nent.

10.3 Chapter Summary

This chapter presents the details of automation and tool support we provide to auto-
mate various activities of our approach. We implemented our baseline test generation
approach in a tool TVG using a a model transformation framework VIATRA. TVG also
produces a set of dependency relations between BPMN, UML, and UTP models.

To support rule-based dependency detection, impact analysis, and test classification,
we use and extend EMFTrace. EMFTrace is a tool built in Eclipse using EMF and EMF-
Store frameworks. A set of rules to detect dependency relations, perform impact anal-
ysis, and classify tests for BPMN, UML, and UTP are developed in EMFTrace. We
present the architecture of extended EMFTrace and discuss how we reuse and extended
its various components to support the test classification. Thus, we provide a generic
facility to develop and extend test classification rules for various test models in EMF-

Trace.

124

Evaluation

11.1 The EvaluationProtocol 125
11.1.1 Evaluation Metrics 127
11.1.2 The Experiment Execution Process 129

11.2 EvaluationResults eenen... 130
11.2.1 Evaluation Results of Change Scenariol 130
11.2.2 Cumulative EvaluationResults 131

11.3 Threatsto Validity, 136

11.4 Chapter Summary v ittt it 137

This chapter presents the evaluation of our approach to assess its performance. The
main objective of the evaluation is to prove our early hypothesis that using the explicit
dependency relations to analyze the changes propagating to tests can yield better results dur-
ing regression testing. Therefore, we apply our approach on a case study from a joint
academic and industrial project. We design the experimental evaluation by following
the guidelines for conducting software experiments by Juristo et al. [[M10]. Hence, we
tirst develop an evaluation protocol to establish the basis of the experimental evalua-
tion. The evaluation protocol defines various requirements, parameters, and metrics,
which are necessary to ensure an effective experimental evaluation. The protocol is
then applied to our case study and the results are analyzed by using the specified met-
rics.

11.1 The Evaluation Protocol

For the evaluation, we first present our initial hypothesis and extract various evaluation
requirements from the initial hypothesis. Stating an initial hypothesis helps to focus
on the goals of the evaluation [JM10].

Initial Hypothesis— Our initial hypothesis is stated as follows.

1. HP1: The precision and recall of our approach is better than the name similarity-
based regression testing approaches.

2. HP2: Our approach provides more coverage of modified test elements, and re-
duces the test suite depending on the number of applied changes and the type
of a change.

The above presented hypothesis features two important aspects crucial to the evalu-
ation of our approach. Firstly, the correctness of the results, which can be established
by analyzing the precision and recall of the approach. Since most of the existing model-
based regression testing approaches are name similarity-based, we want to demon-
strate that the precision and recall of our approach is better than those approaches.

125

Secondly, the completeness of the approach, which can be assessed by analyzing its ca-
pability to cover the tests during regression testing as well as how much the base line
test suite is reduced for regression testing. These factors are covered by the evaluation
requirements stated below. The experimental evaluation and the analysis of evaluation
results are required to be consistent with these evaluation requirements.

Evaluation Re quirements— We extract the following evaluation requirements
form the initial hypothesis.

1. Measuring Precision: What is the extent to which the unaffected test elements
are omitted by the approach?

2. Measuring Recall: What is the extent to which the affected test elements are se-
lected by the approach? Recall is also stated as inclusiveness by Rothermel et al.
[RH94b]

3. Measuring Coverage: How much coverage of modified test elements is achieved?

4. Measuring Reduction: To which extent the number of required regression test
cases is reduced?

To answer the questions corresponding to the evaluation requirements, corresponding
metrics are required to be developed to satisfy the evaluation requirements [OSHO04].
Therefore, the experimental evaluation aims to analyzes the validity of the initial hy-
pothesis by considering the above stated evaluation requirements using various eval-
uation metrics. However, before we present the evaluation metrics, we first present
invariable parameters for the evaluation.

Invariable Parameters— The invariable parameters are required to understand
the nature and scope of the experiment and they remain fixed throughout the exper-
imental evaluations [JM10].We present the invariable parameters of our experimental
evaluation in the following.

Experimental Object and its Scope- The experimental object for our evaluation is the
Field Service Technician case study, introduced earlier in Chapter 2. The case study is
taken from a joint academic and industrial project MOPS. The aim of the case study is
to automate the business processes on mobile platforms to facilitate the mobility and
various tasks of a field service technician during the field work. The scope of our case
study is limited to the business processes for mobile platforms.

The selection of the case study is influenced by various factors. The foremost aspect
is the availability of a set of domain models, process models, and other relevant in-
formation directly from the industrial partners. This is particularly important for the
application of our approach in the industrial context, as it is applied to real world sce-
narios developed by the domain experts.

Size of the Case Study- The case study is of medium size and consists of various
process models, system models, test models, and other required artifacts. The number
of these models and artifacts is depicted in Table 11.1. The upper part of the table
depicts the system models and the required project artifacts. The lower part of the
table depicts the required test models and artifacts. Thus, the test models consist of 75
test behavior models, 229 test components, and 184 test stubs and mocks. Moreover,
test code in Java is also available for some parts of the test models. Parts of the case

126

Table 11.1: Statistics about size of the case study.

System Models and Project Artifacts
BPMN Processes UML Components UML Classes EMFTrace Project Size
18 49 181 42892 Lines
Test Models and Artifacts
UTP Test Behavior | UTP Test Components UTP Mocks & Stubs Java Test Code
Models
75 229 184 Test Classes:107
Test Methods:485

study evolved continuously by the author as well as various students, who worked on
this project during their masters thesis. Therefore, various scenarios to support the
needs of evolution are identified from the case study.

Tools for Experiment Execution— We use EMFTrace for the execution of our case study.
All the required changes and rules to perform impact analysis, record dependency
relations, and classify tests are also implemented in EMFTrace. The set of rules consists
of 95 dependency detection rules, 70 impact analysis rules, and 35 test classification
rules for BPMN, UML, and UTP models. These rules are presented in Appendix E as
well. All the models, tests, and other artifacts are stored in a project in the EMFTrace
model repository. The size of the EMFTrace project is also presented in Table 11.1.

Benchmarks for Result Evaluation— Another important aspect is how we compare the
results of the evaluation to draw meaningful conclusions from the experimental evalu-
ation. For this purpose, we take two distinct measures. Firstly, we developed a manual
oracle to define the expected outcomes of our evaluation. The oracle is developed by an-
alyzing various change scenarios for potentially affected test elements manually. The
results of our case study are then compared with the oracle to analyze the correctness
of the results.

Secondly, we compare the results of our approach with a random test selection ap-
proach based on the concept of name similarity matches. A similar random name
similarity-based approach (RNS) was also used by [YJHO8] to analyze their test reduc-
tion approach. Moreover, most of the existing regression testing approaches also use
name similarity matches to find the elements affected from changes. Therefore, com-
parison with such an approach gives us an idea about how the existing approaches
would perform in comparison to our approach.

11.1.1 Evaluation Metrics

The evaluation metrics presented in this section adhere to the evaluation requirements
presented earlier.

Precision and Recall- These are the standard information retrieval concepts
and are used by several approaches for the evaluation [RH94b, HHO04]. To define both
precision and recall, we first define the set S and R. The set S represents the set of test
elements, which is selected by a given regression testing approach, when a change is
applied. The set R defines the set of test elements which is required to be selected by
a regression testing approach. The set I denotes the intersection of both S and R, that
is, SN R. The regression testing approach, which is under consideration is denoted by

127

A. The precision of an approach A is denoted as P4 and recall of A is denoted as R 4.
Based on these definitions, we define the precision and recall as follows:

I=SNR I=SNR
=— — — Rp=—" "~

Pa 5 == 11.1)

Coverage— Coverage can be defined as the ability of a given regression testing ap-
proach to cover various test elements during the test classification. A regression testing
approach is required to cover various aspects of the test view, namely the test architec-
ture, test behavior, and test data. We define the coverage of test elements as a relation
induced by a regression testing approach A. A similar approach to define coverage is
also used by Harrold et al. [HRRWO01] to determine the coverage of program statements
by tests.

We define a coverage relation as T x C with coverss = (t, c) true if and only if the test
element ¢ is covered by a test classification report c. The coverage relation coversa(t,c)
can be represented as a matrix C4 whose rows represents the elements of the test suite
T and columns represents the elements of a the test classification set C. An element ¢; ;
of C4 can be defined as:

|0 if covers(i,j)
g = { 1 otherwise (11.2)

The cumulative coverage of the test elements can be defined as follows.

7| |C]

CC=>" coi; (11.3)

i=1j=1

Reduction— It measures the extent to which the original test suite is reduced after
the application of a given regression testing approach. A reduced set of the test cases
is denoted by 7', which are the test cases affected by changes.

To measure the reduction, we consider only behavioral test elements, that is, test cases,
mock operations, and SUT operations. The reason is that the effort for developing these
behavioral test elements is higher due to their complexity, as they implement the core
logic of various test scenarios.

Thus, M C T consists of the set of test cases, mock operations, and SUT operations from
T. M' C T' denotes the subset of 7° which consists of all the classified test cases, mock
operations, and SUT operations. The percentage reduction denoted by Reduce, for a
regression testing approach can be measured by using the following formula.

!

M
Reduce s = 100 — (ﬁ x 100) (11.4)

Although, the above mentioned evaluation metrics answer the evaluation requirements
presented earlier, we present two more metrics, which are proposed by Rothermal et
al. for the evaluation of regression testing approaches.

128

Efficiency and Generality— Efficiency is defined in terms of time and space
requirements of the approach, its computability, the cost of calculating modifications,
and the costs that occur during the critical phases of testing. Generality is defined as
the ability to work in a wide range of practical applications and identifiable classes of
programs [RH96]. These both metrics depends on many subjective variables, such as
the degree of applicability and the expected cost of modifications. Therefore, we do
not explicitly calculate them during our experimental evaluation. However, a discus-
sion on various aspects influencing the generality and efficiency of our approach is
presented later in this chapter.

After defining the required evaluation metrics, we now specify how the experimental
evaluation is commenced and how the required data is gathered.

11.1.2 The Experiment Execution Process

Following steps are taken to execute the experiment on our case study.
—Set-up and Preliminary Work

1. Identify changes and their order of application to commence each change sce-
nario.

2. Prepare the test oracle for the comparison of results for each change.

3. Import all artifacts, changes, and rules in EMFTrace.

4. Import dependency relations from our tool VIG.

—-Experiment Execution and Data Collection

1. Apply the dependency detection rules to record all the required dependencies
between models and tests.

2. Select a change scenario, apply changes listed in the change scenario one by one,
and record the impact reports for each change.

3. Analyze the impact reports to add any required elements demanded by the im-
pact reports and apply further changes.

4. Once all the changes in a scenario are consumed, start the execution the test clas-
sification rules on the impact reports.

5. Record the test classification reports for each scenario and repeat the change sce-
narios

—Result Analysis and Metric Computation

1. Compare the impact reports of each change with the oracle to first analyze the
correctly identified effected test elements.

2. Compare the test classification reports for the scenario and record the correct and
false results.

3. Analyze the recorded results by calculating the evaluation metrics presented ear-
lier.

Executing RNS Approach-To compare our results with the RNS approach, we imple-
mented a prototype of the approach in EMFTrace. The approach compares the name
of each model element on which a change is applied to the process test cases. The ap-
proach then selects the test cases randomly to reduce the selected subset of matched

129

tests. The test cases are classified according to the applied change type. If the initial
change is delete or add, then all the selected tests are classified as obsolete or new. Oth-
erwise, all the selected tests are classified as Retestable. The results of each change are
separately recorded for each change scenario.

11.2 Evaluation Results

This section presents the results of our evaluation on the change scenarios from the
field service technician case study. We present the results to analyze the correlation
of the results obtained by various metrics according to our initial evaluation require-
ments. Thus, we first present the results of two different change scenarios. After that,
we present the cumulative result of all the scenarios to present the big picture.

11.2.1 Evaluation Results of Change Scenario 1

The change scenario 1 (CS1) was discussed throughout this thesis to elaborate various
concepts presented in the thesis. The scenario consists of 4 atomic and one composite
change operation. Figure 11.1 presents the results of various metrics in the result of CS
1 of our approach as well as the RNS approach. The blue curve depicts the results of

1.2

1 Pe0.97 RC,0.93
0.8 PN
0.6 \\ \
04 \‘l\ CC,0.18 R 03
0.2 RC,0.30 = ' //00.1
—

CC, 0.09
=&~ Rule-based == Random Name Similarity

Figure 11.1: Precision, Recall, Coverage,and Reduction achieved on CSI.

RNS approach, whereas, the black curve depicts the results of our rule-based regres-
sion testing approach. The results are mapped on the scale form 0 to 1. The results
presented in Figure 11.1 show that the precision of both approaches in this scenario is
quite good. This means that all affected test cases are correctly identified and classi-
fied. The RNS approach was able to detect all the affected tests, whereas, our approach
identified and correctly classified about 0.97 percent test elements. However, a huge
difference is in the recall of both approaches.

The results of our approach are very good yielding 0.93 percent recall, whereas, the re-
call of RNS approach is as low as 0.35. The results of the scenario CS1 support our claim
that dependency types help to propagate correct results is a valid explanation of this
phenomena. Similarly, the coverage of the test elements provided by our approach are
twice higher in comparison to the RNS approach. The reason is that the dependency
relations in our approach cover a large number of dependency relations between dif-
ferent system and test models. However, the RNS approach reduces the original test
suite to 0.1, which is quite significant reduction. Our approach reduces the test base-
line to 0.3 on a scale of one, which is still quite reasonable. However, the low recall of

130

1.5

P, 1 RC, 1

1. o~
T~ G037 R 057
0.5 ><‘=< — |
/ cc, 0.5\
0 0 i
P,0 RC, 0 N
0.5 ™R,-0.71

=&~ Rule-based == Random Name Similarity

Figure 11.2: Precision, Recall, Coverage,and Reduction achieved on CS2.

the RNS approach raises questions on the validity of the reduced test subset. A very
similar tendency can also be seen in the results of change scenario 2 (CS2), depicted in
Figure 11.2.

11.2.2 Cumulative Evaluation Results

In the following we present the cumulative results of 10 different change scenarios,
which are applied during the evaluation.

Results for Precision and Recall- As discussed earlier precision and recall
are used to measure the correctness of the approaches. Therefore, recall measures the
extent to which the affected tests are included in the regression test suite. However,
precision determines the presence of false positives, that is, the inclusion of those test
elements not defined in the oracle. The precision and recall of our approach largely
depends on its ability to record the dependency relations among models and test cor-
rectly. To ensure this, we cover 114 different types of dependency relations, which are
recorded using two different approaches. Due to this, the risk of missing any modified
test elements is precisely very low. However, all approach do not covers all artifacts re-
quired during several stages of software development, which can result in additional
side effects, consequently effecting the precision and recall.

100.00 ’—ﬁ‘—‘—.—W—F
80.00

60.00

40.00

20.00

0.00
Cs1 Cs2 Cs3 Cs4 Cs5 Csé Cs7 Cs8 Cs9 cs10

——pd —-P_ns

Figure 11.3: Cumulative Results for the Precision of Approaches.

Figure 11.3 shows the cumulative results showing the precision of our dependency-
based approach and the RNS approach. The results of the parameter precision, in our
approach, are almost linear in the most high ranges, which means that it performed
consistently well in most of the scenarios. Thus, the average precision of our approach
based on these 10 scenarios is recorded as 92.87%. The precision of the RNS approach

131

shows an inconsistent trend, often falling to the lowest ranges. The RNS approach
mostly performed well in the scenarios, where direct relations among the changed
elements and test cases was present. Dependency relations of different types are not
integral to this approach, hence it performed very low in the cases where inter-model
dependencies among structural and process models were affecting the tests indirectly.
Thus, the results yield an average precision of 38.50% of the RNS approach. The scenario

100.00
80.00 ; ; Cv \V/Q\‘
60.00 \v/
40.00 / \
20,00 \ A
0.00 \/./ V
€1 CS2 3 CS4 G55 CS6 C

=——RC_d =@=RC_ns

S7 Cs8 Cs9 Cs10

Figure 11.4: Cumulative Results for the Recall of Approaches.

six depicted as C6 shows an interesting result, where our approach performed not very
well and the name similarity-based approach was able to select and classify the tests.
This shows a particular case, in which no test elements were affected and required to be
classified due to the nature of change. A conceptual error in one of the rules, however,
wrongly classified a set of test cases. The RNS approach, however, was not able to find
any impact, which was caused by the inter-model dependency relation. Therefore, it
was luckily able to produce the desired results in this scenario. The results of the recall
of our approach and RNS approach are displayed in Figure 11.4. The average recall
obtained by our approach as shown by our results is 86.56%.

However, the results obtained by the RNS approach consistently fall in the lower range,
due to either omitting the required results, or wrongly classifying the tests due to miss-
ing information about dependency relations. Thus, the average recall obtained by the
RNS approach in these scenarios is fairly low yielding 15.48% recall. The concrete re-
sults in the form of a table are also presented in Table 11.2. Moreover, all the test classi-
fication reports obtained for these change scenarios are also presented in the Appendix
G.

132

Table 11.2: Variables and Results for Change Scenarios.

R | Sq | la = [Pa=gt| RCa=%| Sns| Ins = | Pas=82| RCns=T:| OC4| CCis PRY PRy
RN Sy RN Shs

Change Scenario 1

41 39 [38 [9744] 9268 | 14] 100 | 100 | 100 [1829 854] 10 [30
Change Scenario 2

27 27 |27 [100 [100 [5 0 [0 | 0 | 37.70 820] 57.14 -72
Change Scenario 3

8 [8 |8 | 00 | 100 [2 J1 | 50 | 12 [1190 238] 75 [75
Change Scenario 4

4]2 J2 [100 [50 [10 J1 [10 | 25 [244] 12200 [90
Change Scenario 5

2]2 J2 [100] 100 [0 JO [0 [0 [476] 0] 100 [100
Change Scenario 6

10 [16 |8 | 50 | 80 [5 |5 | 100 | 50 [2227 1389 0 [38
Change Scenario 7

20 [20 [20 [100 [100 [4 |3 | 75 | 15 [20 [667] 0 [57
Change Scenario 8

18 [16 |13 | 81.25 | 100 [0 JO [0 [0 [42170 [0] 100
Change Scenario 9

27 124 [24 [100 [80 [0 JO [0 [0 | 1895 0] 27.7§ 100
Change Scenario 10

22 18 [18 [100 [100 [8 4 [50 | 18.18 [30 [10 [100 [42

These results explain the low recall of the RNS approach. The selected and classified
test elements by the RNS approach are depicted by the variable S,,; and the correctly
selected and classified test elements are presented by the variable I,,;. The values on
Sns and I,,s reflect that for a number of change scenarios either no test elements were
obtained or the set of obtained test elements is wrongly classified. As explained ear-
lier, this is due to missing the iter-model relations among the models of structural and
process view, which have no direct relations to tests. The basis of our test classification
results is the rule-based impact analysis performed across the system models and tests
models. In one of our studies, the same impact analysis approach showed a precision
and recall of 80% for the rule-based impact analysis of heterogeneous software artifacts
including UML and Java [LFR13b]. Thus, the results of precision and recall obtained by
our experimental evaluations show the same trends and are consistent to our previous
findings.

Results for Coverage and Reduction— As defined earlier, the coverage of
an approach is defined as the extent to which the test elements relevant to various test
aspects are covered during regression testing. However, reduction is the extent to which
the baseline test suite is reduced after the selection and classification of the affected
tests. However, both coverage and reduction cannot be analyzed in the isolation and the
results should always be interpreted in relation to the precision and recall.

High coverage is not necessarily a good thing if the recall of the approach is low. It shows
that those test elements are also covered by the approach, which are not required. The
low coverage and low recall also indicate that it might be the result of not covering ade-
quate test elements, which is indicative of a problem.

The same concept is applicable while computing the parameter reduction as well. Al-
though high reduction is very desirable during regression testing, as we want to mini-
mize the test effort as much as possible. However, similar to the coverage, high reduction
with low recall suggests that the approach is not including a number of potentially af-
fected test cases in the regression test suite. This might result in undetected side effects

133

100.00

80.00

60.00

40.00
20.00 g : Q.- v
0.00 I/.

3
Cs1 Cs2 Cs3 Cs4 CS5 Cs6 cs7 Cs8 Cs9 cs10

——CC_d —@-CC_ns

Figure 11.5: Evaluation Results for the Coverage.

of the changes. The low reduction with low recall might also indicate that the approach
is including those tests in the regression test suite, which could possibly be omitted.

However, the coverage is computed differently from the reduction. It specifies all the po-
tentially affected test elements selected after analyzing changes, regardless of how they
are classified for the regression testing later. Figure 11.5 shows the coverage achieved
by both approach for various change scenarios. The coverage achieved by our approach
is consistently higher than the RNS approach The average coverage achieved by our ap-
proach is 20.84% and the average coverage of the RNS approach is 4.97%. The reason is
that our approach covers various test aspects, such as the test architecture, test behavior,
and fest data. Whereas, the RNS approach only consider the test cases reflecting the test
behavior, similar to the other state of the art regression testing approaches.

100.00
80.00

ow —] \ A
20.00 !/ / \ /
2N/ ——
—

-80.00
Cs1 Cs2 Cs3 Ccs4 CS5 Cs6 Ccs7 Cs8 Cs9 Cs10

——R_d =l-R_ns

Figure 11.6: Evaluation Results for the Reduction.

Figure 11.6 depicts the results for the reduction achieved by the approaches. According
to the figure, the results of our approach are comparable to the RNS approach. How-
ever, the reduction capability of the RNS approach is slightly higher than our approach.
However, as stated earlier, a comparison of the reduction with the achieved recall is nec-
essary to interpret the achieved reduction. A comparison with the recall values yields
that our approach still performs better as the recall is higher than the RNS approach
when the reduction is low. However, the average reduction achieved by our approach
is still slightly higher than the RNS approach due to a negative value depicted in Fig-
ure 11.6. The average reduction achieved by our approach is 45.99% and the average
reduction achieved by the RNS approach is 57.11%. The negative value of RNS is due
to adding the new test cases, which were not required by the test oracle.

The evaluation results presented above are promising and imply that our approach can
yield good performance on the systems comparable to the one used in the evaluation.

134

In the following, we briefly analyze various factors which can influence the efficiency
and generality of our approach. Moreover, we also evaluate our approach based on
the same evaluation criteria using which we evaluated the existing state of the art ap-
proaches in Chapter 3 as presented in Table 11.3 This provides a comparison of our
approach with the existing state of the art approaches.

Results for Efficiency and Generality— of our approach is subject to vari-
ous factors. For the generality, our approach first develop the abstract conceptual foun-
dations of all the concepts it integrates and then apply them to address the domain
specific requirements. Thus, the concepts are applicable to the general software sys-
tems. Although, concrete artifacts are developed for the domain of business processes
only.

However, our approach can be generalized to the other domain easily, as it is based
on the extensible rules to detect dependencies, perform impact analysis, and classify
tests. The rules require no modification to the tool to adapt to a new modeling or test
specification language. Similarly, new change types and dependency relations can also
be integrated easily without requiring any additional tool support.

The efficiency our approach is mainly influenced by the tool support provided by EMF-
Trace, presented in Chapter 10. The worst case time complexity of the rule execution
inside EMFTrace is O(n?), which is solvable in polynomial time, where n is the num-
ber of models in the repository. The best case and worst case space complexity is al-
ways O(n). Moreover, the approach can save significant test costs compared to the
approaches that require more effort in the later critical testing phases, since it is able to
forecast the number of test cases affected by a change in the earlier phases of software

development.

Table 11.3: Overall Analysis Based on Evaluation Criteria for MBRT Approaches.

Inquiries

Result of Own Approach

Ing.1: The approach is suitable of which types of the systems?

Generic and applied to business processes.

Inq.2: What is the testing level addressed by the approach?

Process unit and integration tests

Inq.3: The approach covers which of the views?

structural View, behavioral view, process view

Inq.4: Which aspects of the test views are covered by the approach?

test architecture, test behavior, test data

Inq.5: What are the input models used by the approach?

UML class and component diagrams, BPMN
collaboration diagram, UTP test models

Ing.6: Does the approach require any additional inputs other than
models?

Trace links recorded during test generation

Inq.7:How are the tests expressed?

UTP test models

Inq.8: What is the base line test suite generation method?

Model-driven test generation

Inq.9: Does the approach discusses the change detection mechanism?

No changes directly selected and applied

Inq.10: Whether the approach provides sound change definitions for
modifications in the system?

Yes, Change taxonomy and its application

Inq.11:How many change types are considered by the approach?

3 atomic and 5 composite change types.

Inq.12: what type of dependency relations are supported?

92 concrete dependency relations, 50 types

Inq.13: How the dependency relations are recorded?

during test generation as well as using de-
pendency detection approach

Inq.14: Does the approach considers dependency types?

yes, 50 different types

Inq.15: How dependency-relations are stored?

in a separate model

Inq.16: Does the approach provide logic of test case selection and
classification?

yes, test classification rules

Inq.17: Were the ideas defined by some algorithmic details or not?

yes

Inq.18: Does the approach provide tool support or not?

VTG and EMFTrace

Inq.19: What is the implementation platform for the tool if imple-
mented?

VIATRA, Java, Eclipse EMF

Inq.20: Is the input of approach compliant to any standards?

OMG standards: BPMN and UML

Inq.21: Is the approach compliant to any test specifications standard?

OMG Standard: UTP

135

Inq.22: Is the approach evaluated on any case study or does any ex- | Field Service Technician Case study, medium

perimental evaluation was present? size
Inq.23: Does the approach rely on a specific change identification | No, changes selected from predefined cata-
method? log
Inq.24: Is it easy to extend the impact analysis logic? Impact rules are extensible without source

code modification

Inq.25: Dependency relations recording and impact analysisis tightly | Dependency recording prior to impact anal-
coupled or not? ysis.

11.3 Threats to Validity

A fundamental question regarding the evaluations is that how valid are the results?
Therefore, an analysis of the validity threats is required to check whether the results of
the evaluation are valid and in accordance to the initial evaluation requirements and
hypothesis [WRH00]. Wohlin et al. classify the validity threats in four different cate-
gories. We discuss them in the context of our experimental evaluation in the following.

Internal Validity— The internal validity describes the validity within a given
environment by analyzing the degree of influence through side effects, which might
negatively effect the experiment results [WRH*00]. To minimize these side effects,
we used a single controlled environment, predefined tasks, and same artifacts during
our evaluation. Further, we have not changed any hardware or software environment
to further restrict the external side effects. However, following factors may affect the
internal validity of our evaluation.

Firstly, the precision of dependency relations obtained during the dependency record-
ing phase can effect the validity of selected test cases. In case of missing or wrongly
recorded dependency relations, the selected and classified tests might also be invalid.
To minimize this side effect, we used two different means of recording the dependency
relations, that is, during the test generation and using a rule-based dependency de-
tection approach. Moreover, we developed a manual oracle to analyze the unwanted
results to further minimize this threat.

The second aspect is the side effect introduced by the selected modeling method. In
practice, various modeling methods can be used for the specification and design of
the system and each modeling method would might require relationships among dif-
ferent model elements. This side effect can not be treated in the current settings as it
is not possible to consider all the available modeling methods in practice due to the
effort required. However, to minimize this side effect, during the development of the
case study, the guidelines from two well accepted modeling methods are followed.
These are the methods of Penker et al. [PEOOJand SoaML business modeling approach
[SDE*10].

External Validity— The factors which obstruct the generalization of the results
of the evaluation are widely known as threats to the external validity [WRH*00]. We
already discussed the generality of our approach earlier in the previous section. We do
not claim that the results of the conducted evaluations can be generalized for all other
domains. However, considering the heterogeneity of the used models and artifacts,
it can be safely assumed that for the larger systems involving complex interactions,
the similar experiments will probably yield equivalent results in the terms of precision,
recall, coverage, and reduction achieved. Moreover, our approach is more adaptable due

136

to extensible rules, thus can be generalized to other domains as well.

Construct validity— The construct validity is concerned with the relation be-
tween the theory and collected observations [WRH™00]. In theory, we have shown the
relation between the dependency relations among models and tests, which propagate
the changes to models of different views and in the result affect the test cases. Our
theory also aims to reduce the existing test suite to a smaller subset affected by the
changes, and to provide better coverage of various views and test aspects.

During our evaluation, we examine the precision and recall of the selected tests, apply-
ing our initial theory. For that, we used various change types and dependency relations
to observe the change preparation through them. Similarly, we use another measure
reduction to check how much the tests are reduced. Finally, another metric coverage mea-
sures how many test aspects are covered by an approach. Therefore, our observations
during the experiment are also consistent with our theory.

Conclusion validity— Conclusion validity is concerned with the reliability of
conclusions drawn form the experimental evaluation [WRH"00]. conclusion validity
can depends upon several factors, for example, the sample size, the heterogeneity of
subjects, and the quality of measures. A general threat to the conclusion validity is the
fishing and the error rate threat, where the experiment is conducted to get a specific out-
come [WRH™00]. To reduce the influence on the outcome, we developed and applied
a set of heterogeneous change scenarios considering various maintenance activities.

Similarly, the sample size in our case consists of a reasonably large set of number of
UML, BMMN, and BPMN model. The quality of the models can also be considered
satisfactory as they were taken from a joint academic and industrial project and were
created by professionals and experts. Another potential threat that can affect the con-
clusion validity is the quality of measures. Quantitative measures are often consid-
ered better than the qualitative measures when performing evaluations [WRH"00].
We used a set of both quantitative and qualitative metrics to and hence the quality of
our measures can also be considered as adequate.

11.4 Chapter Summary

The chapter presents the details of experiment and evaluation we performed to assess
various characteristics of our approach. To do so, we analyzed our approach using a
number of quantitative and qualitative metrics. The evaluation is performed on the
Field Service Technician case study from a joint industrial and academic project. The ob-
jective of the case study was to automate the business processes on mobile platforms.
The quantitative metrics we evaluated during our experiment are precision, recall, cov-
erage, and reduction achieved by our approach.

Thus, over approach provides an average reduction of test cases by 46% achieved with
an average precision and recall of 93% and 87% respectively. These results are fairly good
as compared to a random name similarity based approach, which yield 57% reduction
with an average precision and recall of 39% and 15% respectively. Our approach also
provides an average coverage of test elements up to 21%, which is significantly better
than the name similarity-based approach, which provides 5% coverage when applied
on the same change scenarios. The qualitative metrics we subjectively evaluated are

137

efficiency and generality of our approach.

As shown by our evaluations, in some of the cases, the reduction achieved by our ap-
proach is not very significant. The reason is that our approach aims to select all those
test elements, which are potentially affected by the changes and do not use any other
test reduction technique. Thus, all potentially affected tests are included in the regres-
sion test suite. However, after the classification of test cases by applying our approach,
a further prioritization can be made based on the other metrics, such as cost of the test
cases, fault detection effectiveness, and test cases associated with higher risk. Since the
existing test prioritization approaches can be adapted for this purpose, we consider this
aspect out of scope for our current work.

138

Conclusion and Future Work

We conclude this thesis by synthesizing our contributions, examining the implications
of our work, and exploring the potential future research directions. Section 12.1 pro-
vides a summary of the core contributions by revisiting our accomplishments. Section
12.2 presents a critical review of various important issues and Section 12.3 presents the
potential future research directions.

12.1 Summary of Contributions

The foremost contribution of this thesis is to provide a holistic model-based regression
testing approach, which is based on the notion of dependency relations and complex
change types. A subset of test cases corresponding to the changes is selected for re-
gression testing by examining the potential changes and dependency relations earlier
in the software development life cycle. It helps to forecast the required test effort earlier,
prior to the implementation of changes. Thus, an early test planning and resource allo-
cation is possible, which is believed to reduce the overall testing costs. The approach
synthesizes various methods and concepts to assist the model-based regression testing
process.

Proposed Model-based Regression Testing Approach— Our model-
based regression testing approach is based on the notion that different types of depen-
dency relations exist between models representing several views of a software system
and tests. These dependency relations can be used to propagate the changes across
models and tests to identify the potentially impacted test cases. Therefore, our ap-
proach employed a systematic course of activities to enable the selection of a subset of
test cases for regression testing using these dependency relations. A holistic coverage of
various software views is provided by supporting the structural view, process view, and
test view.

Firstly, the test baseline is generated from a set of models by developing a model-driven
test generation approach. After that the dependency relations between the models and
the test baseline are recorded. The recording of these dependency relation is accom-
plished during the test generation and by using a rule-based dependency detection
approach.

For a consistent and unified representation of changes in models, we proposed a change
taxonomy, which defines various atomic and composite changes applicable to models.
These changes and dependency relations are then used to identify the potentially af-
fected test cases by using a rule-based impact analysis approach. The rule-based im-
pact analysis approach recursively propagates the changes through the dependency
relations recorded earlier and identifies the potentially affected test cases.

139

To decide whether the affected tests are obsolete, required for retest during regression
testing, or new, we proposed a rule-based test classification method. The test classi-
fication rules operate on the affected test elements and analyze the type of affected
test elements, any related affected elements, and the type of initially applied change to
decide how a test element should be classified.

The major benefits of our approach are discussed in the following. As discussed ear-
lier, our approach provides an early forecast of the required test effort, thus enables
the early test planning and resource allocation. It is less computational extensive, as the
dependency relations are not repeatedly searched after every change. The approach
provides better coverage by considering the structural view and process view as well as
various aspects of the test view, as discussed in the next section. Moreover, a com-
prehensive set of dependency relations and change types is also covered to provide a
better assessment of the potentially affected test cases.

We designed our approach to enable generic and flexible solutions to answer the research
question RQ6, presented in Chapter 1. Thus, our approach is based on a set of extensible
rules to record dependency relations, perform impact analysis, and classify tests. More-
over, all the solutions presented in this thesis are first discussed on an abstract level
and are then adapted for the domain of business processes. This enables us to discuss
the generic solutions first and then demonstrate their implementation on a particular
application domain. Furthermore, all the above mentioned rules can be created and
executed using our tool EMFTrace without requiring any modification in the source
code of EMFTrace. This also enhances the flexibility of our approach. In the following,
we present further related contributions of this thesis.

Model-driven Baseline Test Generation— One of the related contribu-
tions of our work is to provide an approach for the generation of the test baseline. The
research question RQ4, presented in Chapter 1, demands for a test baseline covering
different test aspects. To accomplish this, we developed a model-driven test generation
approach, which takes BPMN and UML models as input to generate UTP test models
using model to test transformations. We developed the required mapping rules be-
tween BPMN, UML, and UTP models and implemented these rules as model transfor-
mations for the test generation. Our test generation approach covers fest architecture,
test behavior, and test data to test the collaborative processes. The test behavior is repre-
sented by activity diagram test cases generated using a distance-based path traversal
algorithm.

The approach is implemented in our prototype tool VIG, which uses the VIATRA
framework to realize the required model transformations. Our test generation ap-
proach supports early testing, uses standard modeling and test specification languages,
and provides better coverage of the test view. Finally, it supports higher abstraction by
using models for the test generation as well as the test specification.

Change Taxonomy— Developing a change taxonomy to express various changes
in models is also another contribution of our work. The research question RQ3, pre-
sented in Chapter 1, establishes the need for considering the simple and complex changes
applicable to models during regression testing. These changes are required to realize
various change scenarios. For a unified and consistent representation of changes, our
approach proposes a change taxonomy, which consists of atomic and composite changes

140

applicable to models. Our change taxonomy is composed of eight fundamental change
types which can be defined for models. Most of the existing model-based regression
testing approaches are dependent on model comparison, hence can deal only with very
basic changes, such as addition, deletion, and update of attributes of model elements.
Our approach is based on the application of changes using a predefined change catalog,
which is defined using our change taxonomy. This enables early start of the regression
testing activity resulting in early estimation of the required regression testing effort,
even before a change is implemented on models. We used our change taxonomy to
define the changes applicable to BPMN, UML, and UTP models.

Inherent Support for Dependency Relations for Rule-based Im-
pact Analysis— Another contribution of our work is to integrate a rule-based im-
pact analysis approach, which uses dependency relations of various types between
models and tests to answer the research question RQ2, presented in Chapter 1. To do
so, first we identified various types of dependency relations among models of different
views and tests and use them to perform impact analysis. As discussed earlier, these
dependency relations are recorded prior to the impact analysis by using a rule-based
dependency detection approach and also recorded during the baseline test generation.

To distinguish between various types of dependency relations, our approach presents a
taxonomy of dependency relations. The taxonomy classifies various dependency rela-
tions based on their purpose. A comprehensive set of dependency relation is identified
between BPMN, UML, and UTP models by using the taxonomy of dependency types.
Once dependency relations between models and tests are available, we employed a
rule-based impact analysis approach to propagate the impact of changes across models
and tests. The rule-based impact analysis approach was developed initially to support
impact analysis across heterogeneous software artifacts and uses change propagation
through dependency relations to access the impact. We used this approach to find im-
pact of changes in BPMN and UML models on UTP tests by using the dependency re-
lations recorded earlier. We elicit a comprehensive set of rules to support dependency
detection and impact analysis for BPMN, UML, and UTP models.

Rule-based Test Classification— The research question RQ5, presented in
Chapter 1, inquires how the affected test elements identified during the impact anal-
ysis activity can be classified to distinguish them for reuse during regression testing.
To answer this question, we present the concept of test classification rules. The test
classification rules analyze and classify the affected test elements based on their type,
any related affected element, and the type of the initially applied change. These rules
are able to specify various conditions on the models, impact reports produced dur-
ing the impact analysis, and test models. These conditions define the cases under
which the baseline test models and test cases are classified as Obsolete, Reusable,
Retestable,PartiallyRetestable, and New. To classify various test elements of
UTP test specifications, we thoroughly analyzed them to identify different test classi-
fication conditions.

These definitions are then translated to create the test classification rules. The test
classification rules are implemented in EMFTrace, a tool, which was initially developed
for the dependency detection among software artifacts. It was further enhanced to
support the rule-based impact analysis. We integrated the concept of test classification
rules in EMFTrace as well to support our approach.

141

12.2 Critical Review

In the following, we discuss various critical issues regarding our approach and the
validity of our evaluation results.

Reliability of Dependency Relations and Impact Analysis— The
reliability of the test selection and classification in our approach depends on the re-
liability of dependency relations and the rule-based impact analysis approach. For
a through coverage of dependency relations, we record them using two different ap-
proaches. This greatly reduces the chance of missing any potential dependency re-
lations between models and tests. A study conducted in our research group, which
apply the same rule-based dependency detection and impact analysis approach for
object-oriented software artifacts, yields 90% precision. This also complements the re-
sults produced by the evaluations presented in this thesis.

Availability of Models— An assumption of our approach is the availability of a
set of system models, which should be up-to-date and consistent to each other. In some
projects, a complete set of models might not be available due to limited resources. In
such cases, where the resource constraints do not allow extensive modeling, the critical
parts of system should be modeled at minimum to get the benefits of early estimation
of test effort, early testing, and early bug tracking. This helps to ensure that atleast
critical system parts are well tested. Studies have also shown that model-based testing
can reveal defects earlier and save project costs in the long run [BLWO05]. Therefore, it
is wise to invest on early modeling and regression testing to save costs in the long run.

Predefined Rules— Our approach requires a set of predefined rules and if they
do not cover a specific model, the impact of changes on that model cannot be deter-
mined. However, our approach is easier to extend, as it is based on extensible rules.
In comparison to other state of the art approaches, different rules required by our ap-
proach can be extended without requiring modifications in the source code of the tool.
Therefore, new rules can be easily implemented to cover any additional models.

Validity of Evaluation Results— We evaluated our approach on a joint aca-
demic and industrial case study of medium size and complexity. Thus, the experimen-
tal evaluation is based on real scenarios and changes. Thus, over approach provides
an average reduction of test cases by 46% achieved with an average precision and re-
call of 93% and 87% respectively. Our approach also provides an average coverage of
test elements up to 21%, which is significantly better than the name similarity-based
approach that achieved 5% coverage when applied on the same change scenarios.

To provide a thorough coverage of various models and tests, a comprehensive set of
rules for dependency detection, impact analysis, and test classification is developed,
which also greatly reduces the chances of missing impacts on test elements. During
the evaluation, we compared our results against a name similarity-based approach and
using a manually developed oracle. To avoid any potential bias in the evaluation, we
explicitly discuss the measures we taken to reduce the validity threats, as discussed in
Section 11.3 of Chapter 11.

We do not claim that the findings of our evaluation can be generalized. However, we
can safely assume that similar experiments on the systems involving complex inter-

142

actions will likely yield similar results in terms of the precision, recall, coverage, and
reduction achieved.

12.3 Future Work

We identified several potential research directions for the future work during this the-
sis, which are discussed in this section briefly.

Round Trip Change Support for Test Code— One of the potential future
works is to provide a round trip change support, if changes are made to the test code di-
rectly. Currently, our approach can be used if tests are generated from models and are
consistent to models. However, agile software development practices may allow the
testers to change the test code without considering the models first. As a consequence,
the design models and test models corresponding to the test code might become in-
consistent. To deal with this issue, rules can be developed to propagate the impact of
changes in test code to the test models and consequently to the design models. For
this purpose, potential dependency relations between test models and test code are
required to be identified. This round trip approach can also help to assess the model
coverage provided by the test cases, which is another important problem in the domain
of testing.

Support for Test Prioritization Metrics— During our work, we select all
potentially affected tests cases. Therefore, the tests selected by our approach are not
necessarily a minimal subset. In different scenarios, it might be desirable to further
prioritize the selected test cases corresponding to parts of the system with high risk,
high cost, or fault severity history etc. Although, test prioritization is not in the current
scope of our work, in the future the concept of rule-based test selection can be extended
to support these metrics as well. We already conducted an initial investigation in a
master’s thesis by analyzing the cost of test derived from business processes. However,
this is still a preliminary work and requires further research in this area.

Support for Automatic Test Code Generation— At present, our ap-
proach focuses largely on the tests models. For the test execution, these test models
are required to be translated to the concrete test code. During our evaluations, we use
some test code written in Java with UTP specific annotations and developed rules for it
as well. However, we translated the test models to the test code manually. To automate
this aspect, the existing test code generation approaches can be analyzed and extended
to support the test code generation from UTP test models for business processes.

Generalization to other Domains— Finally, to generalize our findings, there
is a need to apply our approach on other domains, such as embedded systems or
telecommunication systems. Our approach can be applied to other domains by ex-
tending the set of rules to support dependency detection rules, impact analysis, and
test classification. The telecommunication domain can be one of the potential appli-
cation domains, as model-based testing is widely used in this domain. Tests are of-
ten generated from class diagrams, sequence diagrams, and message sequence charts.
These tests are usually expressed using Testing and Control Notation (TTCN). Thus,
dependencies between these models and TTCN tests are required to be recorded and
corresponding rules are required to be developed for the application of our approach.

143

A

State of the Art Analysis Tables

144

puo 3[qe) e spuada] seg-aded jxau uo panunuo))

Ayradoad [60X14
Ajrpowr an‘as ‘0514
‘uonaPp ‘osed AS ‘ol e
‘uonippe Sk DN SN SN suou asn qaL | ‘A9 ‘Ad wolshs | 7o pueng
(0Ll
UsnoxeL
saduanbas we)sAs “uony pue
Ajrpowr ou DN SN | Tre> poyeuwr auou av qar AS‘Ad -erdayur quun INOSURIA
pajualiQ 123[qQ pue paseq-TINN
Surioy aL
-Tuow ‘antea
um NdD semp aImyesy as AS [01+H44]
Ajrpowr ou ypo | ‘paseg-yred | -oooxd 359y s | ‘as‘av qa1 AD'AY Teuonouny | 'y 3o Oy
[e0aD
“20SdD]
syyed ejep }2qo1]
Ajrpowr ou DN SN Ayanoe JSLX av qar A ooueydadoe | pue uay)d
Ajrpowr syjed ejep av [80T1DdD]
‘919[op ‘ppe ou DN SN Ayanoe MSII PaInjonIs qr A soueydadde | v jo M3I09)
paseq-uonedyadg
Ayrpowr [coom] wy
ORPRP ‘ppe ou N SN SN suou NS SN AS'Ad yusuodwod | JO pue nm
[£0omA
Ajrpowr NS ‘90qan] ‘v
‘219[op ‘ppe sak DN SN SN auou AIARVHD SN A jusuodwod | 72 TUONA
paseq-juauoduwo)
ajepdn [OTMAIA
-Ayradoxd poyiow 9913 ‘ZONINIA]
‘9)919p ‘ppe sak DIN | uoredyjissed TINX auou | dD NS a1 ASAG uonerdayur qrun | “jv 3o booreg
MO} eyep [00D4]
J0J TesIaAeI) sired 9pod NS uynio) pue
Ajrpowr ou SN yderd asn-yop 20IN08 ssep al A jun epapAhag
douanbas [2oAI]
212[°p ‘ppe ou SN | peseq-yjed uonsuen 1as | Nsdd a1 Ad mun | jo IOy
[60NdD
Ajrpowr souanbas ‘2001dD]
‘919[ep _‘ppe ou SN paseq-yred uonisuen 1ds JAREE! aL A4 jun | 7w jo udyp
paseq-ajeig
TLONI | OLONI | 6ONI | 8 ONI | LONI | 9ONI | SONI | TONI | €ONI | T ONI | sayoroiddy

*ad0ag A10337d 3} UT gD pue D) BLIDILID 3} UO paseq SISATeuy 1y d[qel.

145

pusa a1qe) e spuada] 9ag—aded jxou uo panunuo))

paseq-aeig

61 ONI | 8T ONI | LT ONI | 9T ONI | ST ONI | $TONI | €I ONI | ZLONI | saydeorddy

*2400) A10333€D 9} UT 9D pue GO BLISJLID UO Paseq SISATeuy 7'V d[qeL

uostredwod ppojy: DN 99enBue] uonduosa uoneoywadg 1 IS poysN uonnreJ A108a3e)) : WD
MITA JuawImbay 1 AY MITA [eIMIONAG : AS MIIA [eIOoTARYR : A QuneIN 93eIG : NS
werdergssed . D weiderq oousnbag: (g weider ANAIRY ¢ (Y SUIYDRIA 93RIS 9HIUL] popuLIXy : NS
poymadgioN : SN eleIsal . AL 2INANPIY ISJ, VL I01ARYD 3S9] qar
*SANAOAT
s[ppowt
(S11) som
-0IGIS3L [c1ea7]
SN ou DN SN | Surr d1rn auou | oueuad oreuad | oreued omoudd | w12 Yooy
[SOAIN]
oW sisAfeue sadpa eIRIA pue
-a1 ‘pPpe ou DN | MO[j [01U0d | MO[j [OTUOD auou av qar Ad jun sunIepy
paseq
-[esiaAen} saouanb [0ONI[1]
Ajrpowr ou SN ydei8 | -os qnis auou an aL AS uonerdajur | ‘p 7 uoerp
suoy
-9ys yrunf [oTazN
suon ‘saduanb ‘608 ZN
Ayipowr -euriojsuer} | -as e ‘J0AN] ‘v 32
‘3)9[9p ‘ppe sak DN [epout o8essaw suou | OD’‘AS qar AS‘Ad uoneiSajur Axsae[seN
sisATeue
Ajrpowr urewop SUOTIPUO0d [oovnd] ‘v
‘339[9p ‘ppe sak SN | Areurg-uou | jo adusnbes sauou | OD‘AS aL AS‘Ad Sunsay ppowr | 72 supeys[ig
[es1one} syjed [Z0NANYV]
Ajrpowr soh DN ydeid | mopy jonuod auou an‘as al AS ‘Ad walshs | ;p 0 UV
an
‘av‘as
‘ased [Fomsal
Ajrpowr ou SN paseq-yyed SN auou asn aL AS ‘A4 washs | g2 Bus(g
ILONI | OIONI | 6ONI 8 ONI LONI | 90ONI | SONI YONI | €ONI ZONI | sayeorddy

a8ed snoraaxd woiy panunuo)) IV d[qeL

146

pus a7qe) 1e spuada] 9ag—aded 3xou uo panunuo))

a[qeIsaaIx
pajuasard ‘3[qesnax uon (parNISU0d HID [ZONANV]
VN ouou | sunpjuoSe ou ‘a)o10sqo | -eyndwod A7y ayy uo duou | -DH) sisAreue oedur Sunmp WY | 70 v
payussaid [romsal
VN suou | sunpuode ou pajoage SN auou SN WM | v 12 Sueg
o[qeisa3al [60x14
payuasaxd ‘drqesnax uor} (soyorewr Lyrre[rurrg aweu) ‘cos1d ‘2014l
eae(adfyojord gy | sunpo8re ou ‘a1910sqo0 | -emduwod Ay sy uo auou | sisAeue pedwr Surmp I | v 79 pueug
[z01]
pajuLs uon ysnoxyer,
VN suou | -axd sunyyroSre paroage | -emdwod Ay ayy uo auou sisATeue Joedwr urmp JRI | pue nosuep
Paseq-TINN PUe pAjuaLIQ P3(q0

Mau

‘Srqessazax
pajuasard ‘a1qesnax [01+Hg4]
eae(TANN-9AL | swyuolde ou “9)910SqO ssyurp Ajipiqeasen auou pawmsse I | v 12 oygng
[€0dD “20SdD]
pajuasard paznuiorxd S159) 03 SyUdI Aquo 359} 11901
VN suou | sungjuod[e ou | ‘Mau ‘pajodye xtryeur Ajipiqeasern suou | -armbar usamiaq pawmsse | 0} spuswarmbar | pue uayD
SN pajuss $1S9} 03 SjuawW Auo 359} [80T1DdD]
SN ‘payuowrdrdwr | -axd sunyprro3re MU “pajoage SN suou | -axmbar usamjeq pauwmsse | 0} sjuswermbar | w70 M0

paseq-uoneoynadg
pajuasard [013U0d [eoom]
VN auou | sunpjuode ou MU “pajoage SN | pue eyep SN NI | WO pue npp
JUSWIUOITAUD [Z0oMIA
AARIVHD pajuas uoneindwod £y ay WS | ‘0@l
eae[| ur sur-3nd | -aad sungyrzo3pe MU ‘9[qeIsaldI | uo ‘uonearssaid ou auou sisAreue yoedwr Sutmp | XAMVHD) NI | # TUIOONIA]
paseq-juauoduro)

Mau
‘S[qessalar [oTaATA
eae[‘sur ad4y payuesaxd ‘arqesnar | uonendwod Ay oy ‘/ONINIA]
-3nid esdipyg | -ojoad INVIS | swyioSe ou ‘219[0sqo | uo ‘uonearssaid ou auou sisATeue Joedwr Surmp I | v 70 booxeg
pajuas uonendurod Ay oy [00Dg] uynio
VN duou | -axd sunprodre paage | uo ‘uonearssard ou ejep sisAreue joedwr Surmp I | pue epaphog
payuasaxd uon 1ou0d [20AI]
VN ou | sunpuole ou pajage | -endwod Ay oy uo | pue ejep sisATeue joedwr Surmp NI | v 12 [PI0Y
[60ndD
SN pajuos uon [oru0d 20ndD]
SN ‘payuowrordwr | -axd sunyprrodre pajoage | -endwod Ay oy uo | pue ejep sisATeue joedwr Surmp NI | v 32 uayd
61 ONI 81 ONI L1 ONI 91 ONI SI ONI YIONI €1 ONI ¢1 ONI sayoeorddy

a8ed snoraaxd woiy panunuo) 7'y d[qeL

147

pus 9[qe) 3e spuada] 99g—a3ed JXaU U0 PaNURU0))

paseq-jusuoduio)

[OTINIA “ZONINIA]
DL AND DN SasED 389} €7/ ‘ApNis 9ased WdisAg JuswfoIuy JUapnig TINX TN | 7 12 booxeg
[00D4]
DL VN SN ordurexa [ews auou JNS Sse[D | uynio) pue epapAiag
JL VN SN o[durexs [jews auou 1as | [20AIM] 7w 42 [910%
[60NndD
oL AND SN 1691 SI 93INS }S9) 389318 JO JZIS "SAPINIS ISLD JUIIYIP / auou 1as | ‘zondd] v 2 uayd
paseq-2jeig
ST ONI | 2 ONI | €2 ONI | ZT ONI | 12 ONI | 0T ONI | sayeorddy
“Appquonddy £10391e0 9y} ur 01D Pue D) BLIDILID UO paseq SISA[euy ¢y d[qe],
siqeorddy joN : YN paywadgioN : SN
vegiseL: AL [PPON-11U] : INMI [OPOIN-eI : NI
‘SANADIT
wroperd
(HAOW) uoun|
-oag pue Sur passnosip 189} pue Ao [z1a1:17]
osdrpyg “eae(| -uorsop [PpolN | 1toddns oo} ou SN QUOU | S[PPOW UdIM}dq pownsse | 9} 0} [Ppow | jp ja YddyZ
a[qeysalax
pajuas ‘9lqesnaz $1S9} 0} SjUdW Apuo [SOAN] eIreIA
VN ouou | -axd sunyjrodre “9}9[0SqO SN ouou | -armbar usamidq powmsse | Js9) 0} [PpPOW | pue SURIEN
uorney
pajuasaxd uon ~uawapdwr (yderny Louspuadag [00A[(L]
VN duou | sunpuode ou paage | -eindwod Ay oy uo | ‘renyoeryuod | 3s91) sisAreue pedur urmp WI | v 1 uoerg
d[qeIsalar [oT¥MZN
eAe(’ Ppajuss ‘a[qesnalx uon ‘60MZN “Z0¥NI]
sur-3nyd asdrpg 1003 TMSGIN | -9ad sungyio3pe ‘939[0SqO syuIy Ayjiqeasern) duou | -erouad 1s9) auraseq Junmp I | v 10 Asae[seN
Mmau
‘alqeIsaser
pajuos ‘d[qesnar S159} Apuo [oovndl
VN ouou | -axd sunyjuodpe “9}9[0SqO SN QUOU | O} [9POW UOM}dq pawinsse | s} 0} [Ppowr | ‘ju 72 Sueys|iJ
61 ONI 81 ONI L1 ONI 91 ONI ST ONI YIONI €1 ONI 21 ONI sayoeorddy

a8ed snoraaxd woiy panunuo) 7'y d[qeL

148

pardnop ApySiy . DL sisAreue joedwr o3 1011 : NId
PapasN UoRedYIPOA 9p0D : dIND aunpeyaelg: NS 9enSue] uondiosa uoneoyadg : 1das
uosLredwo)) [9POIA : JIN orqeoriddy 10N : VN paymnadg joN : SN
'SANIDIT
soLonb
paumsse | 700 ySnoxny DN sordurexa [rews dLn INH “TNA | [219Z] ‘1v 39 y2dz
[SOAN]
pawmnsse VN OIN SUOTSIdA 9 ‘SPOY}aW §¢ ‘S9sse[d N\\CE&: ++D uowrwoD) Quou TANN BIDIA PUB SULMRIA
DL VN SN SOSSeD Q¢ UTRWOP UOTILdTUNUWIWODI[9} Ul JI9AIIS SJINS uou TNN SOHZ;E ‘v 3o uoeiy,
[oT¥zN
‘604ZN “£0¥N]
I anD DN (SN 9z18) sarpnys ased ysnjenboy pue ST jun(TAN | v 32 KysaefseN
[oovnd]
mz <Z mZ S9Sed 1S9} G dmmmmﬁ ¢ \aCQEOQEOU mUOumCﬁH,H o2uou AED .Nu 12 mcﬁmvﬁmﬁm
oL VN DN a[durexa qrews suou TAN | [Z0NANV] v 32 IV
SN VN SN auou auou 1NN | [Fomsal ‘v 32 Suag
[60X14 ‘€05 1d
DL amod DN S3SeD 159} 965 auou TN | ‘201d] 1v jo pueng
[ZOLIN] ysnoxpe],
DL VN DOIN 06 SasED 159 359818 JO 9ZIS “SarpMys ased aydnnur auou TJANN | pue INOSUeN
paseq-TIAN Pue pajuariQ 13[qO
Surrojruowr o1 +H4A]
Umaﬂmmm DEU un tﬁw ouou ouou TINN .Nu 12 Oﬂzm
uorye; [€0dD “20SdD]
pawnsse VN JOIN S9SeD 1893 9()¢ \mwﬁmﬁo%boU w.&&&m NGI ¢ 2Uou -Ou aI[bgﬂu< }12qOoIJ pue usy)
uone; [80T1DdD]
pouwnsse dnND DN S95ED 189} THE “Apnys ased wvlsAg [reay] suou | -ouayI AyIAIdY | v 12 43109
paseq-uonedoymnadg
[coom]
mZ <Z mz oﬁmamxo :mQHm Juou AED ﬁﬂto UEN naA
[20oMIN ‘90 aN]
UH DEU UE Aw#GmEOQEOU O_”v Emum%w .Hwﬁ\.—OM Owhmu 2Uuou Zm >EN~<IQ .Nu 72 _E_UUS—Z
ST ONI $C ONI €2 ONI 2T ONI 12 ONI 0T ONI sayoeorddy

a8ed snoraaxd woy panunuo) ¢'y d[qeL

149

1
2
3

4
5
6
7
8

9
10
11

Mappings and Mapping Rules for UTP Test

Generation
B.1 Mapping rules for Test Architecture Generation 150
B.2 Mapping Rules for Test Behavior Generation 152

B.1 Mappingrules for Test Architecture Generation

Input Models:

B= set of BPMN collaboration diagrams representing the process view
Cp UML class diagram representing the structural view

Cop= UML component diagram representing the structural view
D=Set of dependency relations

Output Models:

C D7 =UTP test architecture class diagram

D=Set of dependency relations

Listing B.1: A Mapping Rule to Generate SUT.

Mapping-Rule 002: ProcessClass—>SUT
Description:

/#+A SUT is created against the ProcessClass and all the operations of the

ProcessClass are also mapped to the SUT.#*/

Preconditions:

Jz € Cp | type(x)=Class:UML «ProcessClass »

Jp € B| type(p)=Collaboration:BPMN

3d1 € D |source(dl)=x, target(dl)=p, type(dl)=Equivalence

Jtp € CDr4 | type (p)=Package:UML «TestPackage »

3d2 € D |source (d2)=x, target(d2)=tp, type(d2)=Derivation

JOP € x = (op1,0p2,0p3...0pn) | Yop; € OP type (op;) =Operation:UML (Vi=0...n)
Postconditions:

create su € CDr4 | type(su)=Class:UML «SUT »

Su.name=x.name

:;1 [op_{i} \in n

create op?“| type (op
op5¥! . name=op; . name
mapParameters (op;, op

su.add (op$*t)
createTraceLink (su, "Containment", op{“?)]
create dep € CDr4 | type (dep)=Dependency : UML
source (i)=su, target (dep)=tp, type (dep)=import
createTracelink (x, "Definition", su)
createTraceLink (tp, "Tests", su)

suty — 0 .

;) =Operation:UML
sut
)

150

Listing B.2: A Rule for Generating a TestContext.

Mapping Rule 003: ProcessClass —-> TestContext

Description:

/#+A TestContext is created against a ProcessClass and added to the corresponding

TestPackage. */

Preconditions:
Jz € Cp |type(x) =Class:UML «ProcessClass »
Jp € B |type (p) =Collaboration:BPMN
existsdl € D | source(dl)=x, target(dl)=p, type(d)=Equivalence
Jtp € Ty | type(tp)=Class:UML «TestPackage »
existsd2 € D | source(d2)=x, target(d2)=tp, type(d2)=Derivation
Postconditions:
create tc | type(tc)=Class:UML «TestContext »
tc.name=x.name+"TC"
p.add(tc)
createTracelink (x, "Derivation", tc)
createTraceLink (p, "Containment", tc)

Listing B.3: A Rule to Generate a TestComponent (EmptyParticipant).

Mapping Rule 004: Participant->TestComponent
Description:
/#+For a Participant of a Process, which contains no Lanes, a TestComponent 1is created

A component corresponding to the Participant is required, whose interfaces are mapped
to the MockOperations of the new TestComponent.x*/

Preconditions:

Jp € B| type(p)=Collaboartion:BPMN

Jpar € P |type (par)=Participant :BPMN

—(3la € par | type(la) = Lane)

Jpc € Cp | type(pc)=Class:UML «ProcessClass »

3d0 € D | source(d0)=p, target (d0)=pc, type(dl)=Equivalence

Jeom € Cop | type (x)=Component : UML

3dl € D | source(dl)=par, target(dl)=com, type(dl)=Equivalence

dtp € Thy, where type(tp)=Package:UML «TestPackage »

3d2 € D | source(d2)=pc, target(d2)=tp, type(d2)=Derivation

JIN € com = (inty1,inta,ints...inty) | Vint; € IN type (int;) =Interface:UML (Vi=1...n)

Jtc € Tar | type (tc)=Class:UML «TestContext »

3d3 € D | source(d3)=pc, target(d3)=tc, type(d3)=Derivation

Postconditions:

create tcom |type(tcom)=Class:UML «TestComponent »

tcom.name=com.name+"TestComp"

Vint; € IN

[create mo | type (mo)=Operation:UML «MockOpeartion »

mo . name=int; .name+"Mock"

mapParameters (int;, mo)

tcom.add (mo) ,

createTracelink (tcom, "Containment", mo)

createTraceLink (mo, "Mocks", int;)]

tp.add(tcom)

create a € T);, where type(a)=Association:UML, source(a)=tc, target (a)=tcom
createTraceLink (tp, "Containment", tcom)

createTracelink (tc, "Usage", com)

createTracelLink (par, "Derivation", tcom)

createTraceLink (tcom, "Mocks", com)

Listing B.4: A Rule to Generate a TestComponent (Participant with Lanes).

Mapping Rule 005: Participant (with Lanes) ->TestComponent
Description:
/#+*Each Lane in a Participant is mapped to a TestComponent.
All the ServiceTasks inside these Lanes are translated to MockOperations.

151

The definitions of these ServiceTasks 1is obtained from the class diagram from the
class realizing a component.x*/
Preconditions:
Jp € B |type (p)=Collaboartion:BPMN
Jpar € p |type (par)=Participant :BPMN
3L = l1,12,13,...,1n |type (I;) =Lane:BPMN Vi=1...n
VI;ASR; = sr1,sra, sr3,...,srm | type (srj)=ServiceTask (Vj =1..m)
Jpc € Cp | type(pc)=Class:UML «ProcessClass »

3d0 € D | source(d0)=P, target (d0)=pc, type(dl)=Equivalence
HconLE(ZQD|type(com)=Component:UML

JeomClass € Cp | type (comClass)=Class:UML

ddl € D| source (dl)=par, target(dl)=com, type(dl)=Equivalence
3d2 € D | source(d2)=com, target (d2)=comClass, type(dl)=Realization
Jtp € Ty | type (tp)=Class:UML «TestPackage »

3d3 € D | source(d3)=pc, target(d3)=tp, type(d3)=Derivation

Jtc € T |type (tc)=Class:UML «TestContext »

3d4 € D | source(d4)=pc, target(d4)=tc, type(d4)=Derivation
Postconditions:

vi; € L,[

create tcom where type(tcom)=Class:UML «TestComponent »
createTracelink (/;, "Derivation", tcom)

Vsrj € SR

[create mo | type(mo)=Operation:UML «MockOpeartion »

mo.name=sr; .name+"Mock"

get m for snj) /+from comClass by using trace link of type Equivalence =/
mapParameters (m, mo)

tcom.add (mo),

createTracelink (tcom, "Containment", mo)]

create Tracelink(mo, "Mocks", srj)

create a € Tyy, where type(a)=Association:UML, source(a)=tc, target(a)=tcom

Listing B.5: A Rule to Generate a TestCase Definition.

Mapping Rule 006: Activity -> TestCase

Description:

/#+An Activity representing the behavior of a TestCase is used to generate its
definition inside the TestContext.

The TestContext class contains TestCases to test its corresponding process.*/

Preconditions:

Jtb € Ty | type (tb)= Activity:UML «TestCase »

Jp € Sy |type (p) =Collaboartion:BPMN

3d1 € D |source(dl) =tb, target(dl)=p, type(dl)=Tests

Jtc € Ty |type (tc)=Class:UML «TestContext »

HpCE,SM\ type (pc)=Class:UML «ProcessClass »

3d2 € D |source(d2) =p, target (d2)=pc, type(dl)=Equivalence
3d3 € D |source (d3) =pc, target(d3)=tc, type(dl)=Derivation
Postconditions:

create tcase | type(tCase)=UML:Operation «TestCase:UTP »
tcase.name=tb.name

mapTestCaseParameters (tcase, tb)

tc.add(tcase)

create Tracelink (tcase,"Definition", tb)

create Tracelink(tc,"Containment", tcase)

B.2 Mapping Rules for Test Behavior Generation

Input Models:

TP: Set of test paths extracted from BPMN collaboration diagrams

B= set of BPMN collaboration diagrams representing the process view
Cp UML class diagram representing the structural view

152

Cop=UML component diagram representing the structural view

C D7 =UTP test architecture class diagram

Output Models:

AC=Set of Activity Diagrams representing a test case D=Set of dependency relations

Table B.1: Mappings between Collaboration and Activity diagram.

BPMN Elements Activity Elements Mapping
Rule
TestPath (derived from | Activity Listing B.6
BPMN)
Participant ActivityPartition Listing B.7
Lane ActivityPartition Listing B.8
SequenceFlow ControlFlow Listing B.9
ExclusiveGateway ConditionalNode Listing B.10
EventBasedGateway ConditionalNode Listing B.11
Task OpaqueAction Listing B.12
ScriptTask OpaqueAction Listing B.12
BusinessRuleTask OpaqueAction Listing B.12
ManualTask OpaqueAction Listing B.12
UserTask OpaqueAction Listing B.12
Task (calling ServiceTask) Call Operation Action Listing B.13
SendTask SendSignalAction Listing B.14
SendTask (Service Calling) CallOperationAction Listing B.15
ReceiveTask AcceptEventAction Listing B.16
StartEvent InitialNode Listing B.17
MessageStartEvent InitialNode followed by AcceptEventAction Listing 5.2
SignalStartEvent InitialNode followed by AcceptEventAction Listing 5.2
ConditionalStartEvent InitialNode followed by a ControlFlow with a | Listing B.18
condition
EndEvent CallOperationAction followed by ActivityFi- | Listing B.19
nalNode
MessageEndEvent AcceptEventAction followed by ControlFlow | Listing B.20
and CallOperationAction followed by ActivityFi-
nalNode

Listing B.6: A Rule to Generate a TestCase Activity for a TestPath.

Mapping Rule 007: TestPath -> Activity
Description:
/#This activity contains all other elements presents in a TestCase.
This Activity element is a container for all other test elements.*/
Preconditions:
Jtp € TP | type (tp)=TestPath
Jeol € B | type (pr)=Process:BPMN
Jpc € B | type (pc)=Class:UML
3dl € D |source(dl)=pr, target(dl)=tp, type(dl)=Tests
3d2 € D |source(d2)=pr, target(d2)=pc, type(dl)=D
Postconditions:
create act,| type (act)=Activity:UML «TestCase »
act.name=pr.name + "TestCase"+total+l
create TracelLink (act, "Tests", pr)
create Tracelink (act, "Derivation", pc)

Listing B.7: A Rule for Mapping a Participant.

Mapping Rule 008: Participant -> ActivityPartition

Description:

/+ A Participant in a test path is mapped to a ActivityPartition in a test case.x*/
Preconditions:

Jtp € TP | type (tp)=TestPath

Jact € AC' | type(act)=Activity:UML «TestCase »

153

3d1 € D |source(dl)=tp, target(dl)=act, type(dl)=Derivation
Jpar € tp | type (par)=Participant:BPMN

Postconditions:

create ap | type(ap)=ActivityPartition:UML
ap.name=par.name

act.add(ap)
create Tracelink (ap, "Derivation", par)
create Tracelink(act, "Containment", ap)

Listing B.8: A Rule for Mapping a Lane.

Mapping Rule 009: Lane -> ActivityPartition

Description:

/+ A Lane in a test path is mapped to a ActivityPartition in a test case.x/
Preconditions:

Jtp € TP | type (tp)=TestPath

Jact € AC' | type(act)=Activity:UML «TestCase »

3dl € D |source(dl)=tp, target(dl)=act, type(dl)=Derivation
Jin € tp | type(1ln)=Lane:BPMN

Postconditions:

create ap| type(ap)=ActivityPartition:UML

ap.name=ln.name

act.add (ap)
create Tracelink(ln,"Derivation", ap)
create Tracelink(act, "Containment", ap)

Listing B.9: A Rule for Mapping a SequenceFlow.

Mapping Rule 010 SequenceFlow —-> ControlFlow

Description:

/+A SequenceFlow in BPMN collaboration diagram is mapped to a ControlFlow in activity
diagram test case.The name and conditions on sequence flows are also mapped
respectively =*/

Preconditions:

Jta € Tpr | type(ta)= Actvity, streotype (ta)=TestCase

3P € Sj |type (P)=Collaboartion

3d1 € D |source(dl) =ta, target(dl)=P, type(dl)=Tests

Jsf € Sy | type (sf)=SequenceFlow, source(sf)=el, target(sf)=e2 \mid el, e2 \in S_{M}

3d2 € D |source(d2) =P, target (d2)=sf type(d2)=Containment

3d3,d4 € D | source(d3)=P, target (d3)=el, type(d3)=Containment

source (d4) =P, target (d4)=e2, type(d4)=Containemnt

Js1,s2 € Ty

3d5,d6,d7,d8 € D |

source (d5)=ta, target (d5)=sl, type(d5)=Containment

source (d6)=ta, target (d6)=s2, type(d6)=Containment

source (d7)=el, target (d8)=sl, type(d7)=Derivation

source (d8)=e2, target(d7)=s2, type(d8)=Derivation

PostConditions:

create cf, | type(cf)=ControlFlow:UML
mapConditions(sf, cf)

source (cf)=sl, target (cf)=s2
ta.add(cf)

create Tracelink(sf, "Derivation", cf)
create Tracelink(ta, Containment,cf)

Listing B.10: A Rule for Mapping an ExclusiveGateway in BPMN.

Mapping Rule 011 ExclusiveGateway -> ConditionalNode
Description:
/%

154

An ExclusiveGateway in BPMN collaboration diagram is mapped to a ConditionalNode. The
name of the ConditionalNode is assigned the name of the SequenceFlow following
the gateway.

*/

Preconditions:

Jta € Tar | type(ta)= Actvity, streotype (ta)=TestCase

3P € Sp |type (P)=Collaboartion

3dl € D |source(dl) =ta, target(dl)=P, type(dl)=Tests

Jgway € Sy |type (gway) =ExclusiveGateway

dsf € Sy | type (sf)=SequenceFlow, source (sf)=gway

3d2 € D |source(d2) =P, target (d2)=sf type(d2)=Containment

3d2 € D |source(d2) =P, target (d2)=gway type (d2)=Containment

PostConditions:

create cnode, |type(cnode)=ConditionalNode:UML
name (cnode) =condition(sf)
condition(cnode)=condition(sf)

ta.add (cnode)

create TracelLink (gway, "Derivation", cnode)
create Tracelink(ta, Containment, cnode)

Listing B.11: A Rule for Mapping an EventBasedGateway in BPMN.

Mapping Rule 012 EventBasedGateway -> ConditionalNode

Description:

/%

An EventBasedGateway is assigned to a ConditionalNode with the value true. Instead of
the conditions, the AcceptEventActions following this gateway will decide the
flow.

*/

Preconditions:

Jta € Ty | type(ta)= Actvity, streotype (ta)=TestCase

3P € Sy |type (P)=Collaboartion

3dl € D |source(dl) =ta, target(dl)=P, type(dl)=Tests

Jgway € Sy |type (gway) =EventBasedGateway

3d2 € D |source(d2) =P, target (d2)=gway type (d2)=Containment

PostConditions:

create cnode, |type(cnode)=ConditionalNode:UML
name (cnode) =name (gway)

condition (cnode)=true

ta.add(cnode)

create TracelLink (gway, "Derivation", cnode)
create Tracelink(ta, Containment, cnode)

Listing B.12: A Rule for Mapping Various Tasks in BPMN.

Mapping Rule 013: Task|ScriptTask|ManualTask|BusinessRuleTask|UserTask ->
OpaqueAction

Description:

/+The ScriptTask, ManualTask, BusinessRuleTask, and UserTask are mapped to an
OpaqueAction. */

Preconditions:

Jta € Ty | type(ta)= Actvity, streotype (ta)=TestCase

3P € Sp |type (P)=Collaboartion

3d1 € D |source(dl) =ta, target(dl)=P, type(dl)=Tests

Jst € Sy | type(st)=TaskVScriptTaskVManualTaskVBusinessRuleTaskVUserTaskV

3d2 € D |source(d2) =P, target(d2)=st, type(d2)=Containment

M = (m1,m2,m3,...,my) | Ym; € Mtype(m;) = MessageFlow, source(m;) = st

Vi=1..n

PostConditions:

create oa, | type(oa)=OpaqueAction:UML

oa.name=st .name

ta.add(oa)

155

create Tracelink(st, "Derivation", oa)
create Tracelink(ta, Containment,oa)
mapMessages (oa, M)

Listing B.13: A Rule for Mapping a Task Calling a Service.

Mapping Rule 014: Task (calling a Service) -> CallOperationAction

Description:

/#+A task invoking a Service is mapped to a CallOperationAction in a test case
activity diagram.

This CallOperationAction calls the MockOperation corresponding to the called
ServiceTask#*/

Preconditions:

Jtp € TP | type (tp)=TestPath

Jact € AC' | type(act)=Activity:UML «TestCase »

3dl € D |source(dl)=tp, target(dl)=act, type(dl)=Derivation

Jta € tp | type (ta)=Task:BPMN

Jser € tp | type (ser)=ServiceTask:BPMN

3d2 € D |source(d2)=ta, target(d2)=ser, type(d2)=Calls

Jop € Cp | type (op)=UML:Operation

3d3 € D |source (d3)=ser, target(d3)=op, type(d3)=Equivalence

Imo € Ty | type (mo)=UML:Operation «MockOperation »

3d4 € D |source (d4)=op, target (d4)=mo, type(d4)=Mocks

JtCom € T4 | type (tCom)=UML:Class «TestComponent »

3d5 € D |source (d5)=tCom, target (d5)=mo, type(d5)=Containment

Postconditions:

create ca| type(ca)=CallOperationAction:UML

ca.name=ta.name

set ca.Operation=mo

act.add(ca)

create Tracelink (ta, "Derivation", ca)

create Tracelink (act,"Containment", ca)

create Tracelink(ca,"Calls", mo)

create Tracelink (act, "Requires", tCom)

Listing B.14: A Rule for Mapping a SendTask in BPMN.

Mapping Rule 015: SendTask -> SendSignalAction

Description:

/#A non service calling SendTask is mapped to a SendSignalAction in the test case
activity diagram. A dependency relations between the TestComponent corresponding
to the receiver Participant is also createdx*/

Preconditions:

Jtp € TP | type (tp)=TestPath

Jta € AC'| type(ta)= Activity:UML «TestCase »

dp € Sy |type (p) =Collaboartion:BPMN

3dl € D |source(dl) =ta, target(dl)=p, type(dl)=Tests

Jst € tp | type (st)=SendTask:BPMN

3d2 € D |source(d2) =P, target(d2)=st, type(d2)=Containment

IM = (m1,ma2,m3,....,my) | Vm; € M type (m;)=MessageFlow, source(m;)=st (Vi=1...n)

[/\?Zlkﬂﬂm_{j}e M \mid type (target (m;))=ServiceTask)

AJm_{j}€ M3par € p| type(par)=Participant:BPMN target (m;)=par]

Htawn\ type (tcom)Class:UML «TestComponent »]

3d3 € D |source (d3) =par, target (d3)=tcom, type (d3)=Mocks

Postconditions:

create ssa,| type (ssa)=SendsignalAction:UML

ssa.name=st .name

mapMessageFlows (M, ssa)

ta.add(ssa)

create TracelLink(ta, "Containment", ssa)

create Tracelink(st,"Derivation", ssa)

create Tracelink(ssa, "Communication", tCom)

create Tracelink (act, "Requires", tcom)

156

Listing B.15: A Rule for Mapping a SendTask (Service Calling).

Mapping Rule Rule 016: Send Task (ServiceCalling) —-> CallOperationAction

Description:

/* Since, call to a service is synchronous and the the target waits for the reply,
thus a service calling SendTask is mapped to a CallOperationAction */

Preconditions:

Jtp € TP | type (tp)=TestPath

Jact € AC' | type(act)= Activity:UML «TestCase »

Jp € Sy |type (p) =Collaboartion:BPMN

3d1 € D |source(dl) =act, target(dl)=p, type(dl)=Tests

Jst € tp | type (st)=SendTask:BPMN

3d2 € D |source(d2) =P, target(d2)=st, type(d2)=Containment

IM = (m1,m2,m3,...,my) | Vm; € M type (m;)=MessageFlow, source(m;)=st (Vi=1...n)

[/\?Zlﬂm_{j}e M3st | type(st)=ServiceTask:BPMN A target (m;)=st]

Jpar |type (par)=Participant :BPMN

3d3 € D |source (d3) =par, target(d3)=st, type(d3)=Containment

Jtcom | type (tcom)Class:UML «TestComponent »]

Jd4 € D |source(d4) =par, target (d4)=tcom, type(d4)=Mocks

Imo € tcom | type (mo)=UML:Operation «MockOperation »

3d5 € D |source (d5)=st, target (d5)=mo, type(d5)=Mocks

Postconditions:

create coa,| type (coa)=CallOperationAction:UML

coa.name=st .name

set coa.Operation=mo

mapMessages (M, coa)

act.add(coa)

create Tracelink (act, "Containment", coa)

create Tracelink(st,"Derivation", coa)

create Tracelink(coa,"Calls", mo)

create Tracelink(act, "Requires", tCom)

Listing B.16: A Rule for Mapping a ReceiveTask in BPMN.

Mapping Rule 017: ReceiveTask -> AcceptEventAction

Description:

/#*A ReceiveTask is mapped to an AcceptEventAction in the TestCase as this action can
accept the incoming messages. */

Preconditions:

Jta € Ty | type(ta)= Actvity, streotype(ta)=TestCase

3P € Sj |type (P)=Collaboartion

3d1 € D |source(dl) =ta, target(dl)=P, type(dl)=Tests

Irt € Sy | type (rt)=ReceiveTask

3d2 € D |source(d2) =P, target(d2)=rt, type(d2)=Containment

PostConditions:

create aea, | type(aea)=CallOperationAction:UML

aea.name=rt

ta.add (aea)

create Tracelink (ta,"Containment", aea)

create Tracelink(rt, "Derivation", aea)

mapOutputPin() /#to the messagex*/

Listing B.17: A Rule for Mapping a StartEvent in BPMN

Mapping Rule 018: StartEvent -> ActivityInitialNode

Description:

/#+A StartEvent in BPMN collaboration diagram is mapped to an ActivityInitialNode in
activity diagram test casex*/

Preconditions:

Jta € Ty | type(ta)= Actvity, streotype (ta)=TestCase

3P € Spr |type (P)=Collaboartion

3dl € D |source(dl) =ta, target(dl)=P, type(dl)=Tests

Jse € Sys | type(se)=StartEvent

3d2 € D |source(d2) =P, target (d2)=se type(d2)=Containment

157

PostConditions:

create anode, |type(anode)=ActivityInitialNode:UML
ta.add (anode)

anode.name=se.name

create TracelLink(sa,"Derivation", anode)

create Tracelink(ta, Containment, anode)

Listing B.18: A Rule for Mapping ConditionalStartEvent in BPMN.

Mapping Rule 020: ConditionalStartEvent-> InitialNode,ControlFlow

Description:

/#A ConditionalStartEvent is mapped to an InitialNode and the outgoing ControlFlow of
the InitialNode contains the condition of the ConditionalStartEvent #*/

PreConditions:

Jta € Ty | type(ta)= Actvity, streotype (ta)=TestCase

3P € Sy |type (P)=Collaboartion

3dl € D |source(dl) =ta, target(dl)=P, type(dl)=Tests

Jdse € Sy | type (se)=ConditionalStartEvent

3d2 € D |source(d2) =P, target (d2)=se type(d2)=Containment

PostConditions:

create anode | type(anode)=ActivityInitialNode:UML
create cf | type(cf)=ControlFlow:UML

ta.add (anode)

ta.add(cf)

anode.name=se.name

condition(cf)=condition(se)

source (cf)=anode

create Tracelink (sa, "Derivation", anode, cf)
create Tracelink(ta, Containment,anode, cf)

Listing B.19: A Rule for Mapping an EndEvent in BPMN.

Mapping Rule 021: EndEvent -> ActivityFinalNode

Description:

/#+An EndEvent in BPMN collaboration diagram is mapped to ActivityFinalNode in
activity diagram test case.x*/

Preconditions:

Jta € Tar | type(ta)= Actvity, streotype (ta)=TestCase

3P € Sp |type (P)=Collaboartion

3dl € D |source(dl) =ta, target(dl)=P, type(dl)=Tests

Jse € Sys | type (ee)=EndEvent

3d2 € D |source(d2) =P, target (d2)=ee type(d2)=Containment

PostConditions:

create enode,| type (enode)=ActivityFinalNode:UML
ta.add(enode)

enode.name=ee.name

create Tracelink(sa,"Derivation", enode)

create Tracelink(ta, Containment,enode)

Listing B.20: A Rule for Mapping a MessageEndEvent in BPMN.

Mapping Rule 022: MessageEndEvent -> AcceptEventAction, ControlFlow,
ActivityFinalNode

Description:

/+Similar to the MessageStartEvent, a MessageEndEvent waits for a message and then
ends the process. Thus it is mapped to an AcceptEventAction followed by
ActivityFinalNodex/

Preconditions:

158

Jta € Ty | type(ta)= Actvity, streotype(ta)=TestCase

3P € Sjr |type (P)=Collaboartion

3d1 € D |source(dl) =ta, target(dl)=P, type(dl)=Tests
Jse € Sys | type (ee) =MessageEndEvent

3d2 € D |source(d2) =P, target (d2)=ee type(d2)=Containment

PostConditions:

create aea | type(aea)=AcceptEventAction:UML
create cf | type(cf)=ControlFlow:UML

create enode | type(enode)=ActivityFinalNode:UML
ta.add (aea)

ta.add(cf)

ta.add (enode)

enode.name=ee.name

source (cf)=aea

target (cf) =enode

create Tracelink (sa, "Derivation", aea, cf, enode)
create Tracelink(ta, Containment,aea, cf, enode)

159

List of Dependencies Between System Views

160

puo 9[qe) e spuada] 9ag—aded 1xaU U0 PaNURUOD)

ssa001d remnon

8009 | -red e s)so) YdIYM ‘TOPOKISSL B Ul PaUrejuod st obeoedlissl y AVL JUSWIUTRIUOD) dln:sbexoedissy TSPOWISSL
‘uoneIaudd 19} « SSeT)SsS800I1I»
T'GOIMMYIN | oy SuLmp sseTHSS900IJ B WOIJ PIALISP SI ebexdoedissal y ASq uoneALId(TWA:SSeT)d sbexoegissl
11emyada

T aRIMAN ‘[£04+Dad]

‘CQRMYIN | INS ' 3593 0} syusuoduwiod 3s9) SUrRjuUOd SHexOeJIseSl Y AV.L JUSWIUTRIUOD) din:usuodwopisal sbeyoedisal
010°MMIAda

‘TN “LNS ®© 359} 03 pasmbai st oHeoRJISaL Y AVL S1S9], dln:ins sbeyoedisal
£00P1M4ad

‘T ARIMIN .FO.TUDE 1X93U0DISS] Y} I0J Jaurejuod e st obeyoedisal y AVL Juauwurejuo)) dIN:3IX923u0D3sal sbesyorgisal

€ goIMmIIN ‘Jusuodwo) e JO I0TARRQ dY} SYO0oW Jusuodwo)issl AS4 SYOOIN TWA ¢ 3usuoduo) Jusuodwo)isal

T00RIMIAA '$89001d dAT}RIOQR[[0D

‘CqRIMYIN | ' Jo 3uedTOTiIRg B WOIf PIALIDP 9q ued jusuodwodissl Y Adg uoneALa(NWdg:uedToTiaed Jusuodwopissl
910°MMIAd

B gRMIIN *9URT B WO PIALIDP 9q Ued 1usuodwo)diss] Add uoneALR(NNdg : sueT Jusuodwo)lsal
qroeIad

B QRN 'sased 389} £q parmbaz suorjerado jo 1o1aey

‘o g -9(9} 93N WIS YoTym ‘suoryerado SO0W Urejuod syusuodwod 3sar, AV.L JuawIurejuo)) drn:uoT3iexadOO0n quauodwo)isal

'1X93U0D3SSL Jusuodwopisal

GZ0RMYAQ | pue 1usuodwo)lss 3o jo yuared 10a1Ipur ue ST TSPOKNISSL Y AVL | 1uwsurejuod) dlN: TSPOWasal ‘1x93uU0D1s9L

‘uoneIauds 393 « SSBTDSS900Ig»

TARMYIN | o3 Sunmp sseT10Ss900Id B WOIJ PIALISP SI 3X9QU0DISSL YL AS4 UOTRALI(] TN :SSeTD dIN:23X23u0DIAsaL
croeIad ‘LNS

‘GRIMYIIN | 1s91 03 parmbar sased 3s9) 10§ IOUTLIUOD Y} ST IXSIUODISSL Y AV.L JUSWIUTRIUOD) dln:ssepassl 1¥93U0DISSL

'1X93U0D3SaL
(302mpuy) | a3 £q paureuod sased 3s9) JO UOINIIX3 Jo duanbas ayy seuyep
2209 | yorym ‘uvonerado T0I3U0HISSL B SUIRIUOD 1XSJUODISST YT, AV.L JUSWIUTRIUOD) dlN:TOIUODIASSL dlN:a1xX23uopasal

€109IMIAd *S9skD 159}

‘CRIMIIN | SI 9INd9Xd 03 SJuau0duwIod }$9) SNOLILA S9SN IXS3U0DISST YL AVL adesn drn:3usuodwopissl 1X923U0D3SaL
0201 YA *}S9) J9pUN SS900IJ B S)S9) S858DASOL Y Add S1S9L, NWdg:ss9001d ssepisal
fAR I 1A *9[qerreae jou s1 paxmbar Jusuodwo)

‘CTERMIN | rewrSto ayy 1 ‘qusuodwopissl e saxmbar esepiser v AV.L saxmbaoy dLn:3usuodwo)isal oseplsal
y1oeMmyada
‘T gRIMIIN “IOTARY9Q(159} Y} Sunuas « @sedlssal»
‘GRMYIN | -o1der wrerSerp £j1Anioe a3 JO SINJONLIS S} SSUYIP 9SBHISSL Y A4L uonIuga(drn:A3TATI0Y oseplsal
MIIA adAy,
sa[ny uondiosaq |398re] | Adouspuadag judwaly jaSre], JuUauwR[g J.L(2In0g

"S9SSD0IJ SSAUISNY JO MIIAISI], 10 suone[ay] Aouspuade(:1°D d[qeL

161

pus a1qe) je spuada] 99g—aded Jxau uo panuruo))

uonerauad
159} a3 SurImMp ased 359} WeIderp AJIA1OL U UOTIOY TRUbTSPUSS

FTQOMMIN | ue ojuo paddewr st wererp uoneroqe[[od NAJY U XSeIpuss v Add UOT)RALID(] Ndg : {Selpuss uoT31oYTRUBTSPUSS
‘uoneraudd 3so3 ay 3ur
-Inp ased }s9) wrerderp A}Ande Ur uoT 30y 3usAg1ded0y Ue 0juo
T gRMMYIN | peddew st weiSerp uoneIoqe[od NIAJY Ul ¥SBLOATS09Y Y Adg UOTIRALID(] NIWdg :Y{SelaATa09d UoT30y3uaa73de0oy
vr0eIMIad
‘ST gRIMIIN "10S jo suonerado pue suonerado oou s[Ted
‘ST dRIMIIN 9sed 159} Emamm:u Ayanoe ue 9pIsul UOT30YuOoT3eaadOTTRD V AV.L S[reD din:uotiexado UOT30YuUOTIeIadOTTRD
g gRMIN
A UNIA ‘suonrred ain
‘CHORPIMYI | AIATOR SI0W 10 SUO JO SISISUOD UED JSED 359} WeIderp AJTAde uy AdL | yuLwureyuo)) {UOTITITIRJAITATIOV «3seDISAL» AITATIOY
UOT)eIaUaS 3593 A}
9’ gRMYIN | Surmp ss9001J e WOIJ PIALISP SI S3SeD 59} WeIderp AJIAnoe Uy Adg UOTJRALID(] NWdg: ss2001d «9SeDISA[» AITATIOY
9" g SS9001J B 5)S9) SaseD 159} WeIderp AJIARde Uy Adg S1s9L, NWdg: sse001d «9SBDISA[» AITATIOV
‘uoneIaua3 359}
F90oIMIAA | 9y Sunmp }SeISATS09Y B WO PIALIdP SI UOTI1eI9d0}O0K Adg SYO0IN NIWdg :{SelaATa09y uoT3ex12dO3}O0K
‘uorjeIauad
2909 | 3s9) 9y} SuLmp YSeIpusS e WOoIj PIALIDP SI uoT1exadO¥O0K Adg SOOIA NWJdd:Yselpuas uoT3eI12dOO0N
‘uonjeIaua3 359}
FS0OIMIAA | 9y Sunmp ¥SeIS0TAISS B WO PIALIDP ST UOTIeI9d0}O0K Y Adg SYO0IN NWdg :{Sela0TIas uoT3ex12dO3}O0K
€ qOIMIIN ‘ax93u0D1sa L remonted e 10y weiderp ssep AN WOIJ
RN | uonerado [enjoe ue Jo I0TABYDq Y} SYoowr uoT1eI2dONO0N Y ASY SOOI WA : uoT3eaado uoT2ea12dO¥00K
‘SSeTDSS9001d
1209MyIad | Surpuodsariod ayy ur paugep are 10s Aq papraoxd suonerado ayy AS4 doaupeambyg TWA : uoT11eado (1LNS ur) uoteaado
(32311pUy)
ZzoeMmiIad "PaIsa)
T'GRMYIN | 2q 03 ssedoxd ay) jo suonerado d[qefreae ay3} surejuod JNS YL AVL | juowureyuo) (1ns ut) uotaeaado 10s
1209MMIAd ‘pa3s9} 9q 03 ssadoxd Y} « sseTDsse00Ig»
TR | ST YdTyMm ‘IS e JO UOnIUgap dY) sapraoid sseT)Hsse001d 9L ASY uonuyaq TWN:SSBeTD 10S
*$89001d 9AT}LIOQRT[0D A} JO UOH
~PULIOJUT POJR[I }$9) [[€ SUIBIUOD PIYM payrdads st TopowasaL
9009 | © ‘wererp uoneroqe[jod NJAJF Ul UOTIBIOqeTTOD [ord 10 Add SEEY NWJdg :UOT3IRIOqRTTOD TopOoWasal
‘SSeTDSS9001d
oy 03 Surpuodsariod ssadoird oy s3s9} 31 pue uoneraudd 39} « SSBTDSS200Ig»
€G0eIMIAA | 9ys Summp SsSeTHSS9001d B WOI PIALIDP SI TOPOWISOL Y ASY SEEY TWN:SSBeTD TopOoWasal
‘sso001g
6009 | ® 01 spuodsariod Yomym ‘IAS 9Yj SUTBJUOd TOPOWIASSL VY AVL | juswureyuo) dIn:1ns Tepowasal
MDA adAy,
sy uondrmsaq 3981l | Aduspuadag judwdly 3a81e], JudwWd[g J.LN 22In0Sg

a8ed snoraaxd woiy panunguo) 17D A[qeL

162

puo a[qe) e spuada] 9ag—aded 1xau UO PaNURUOD)

ZroeMmIaa
‘07 d=RIMIN
T GRIMIIN “wrer3erp uoneIoqe[[od NJIAJY UT SYSe} SNOLIEA WOIJ PIALISD
‘TUGRMMYIN | suoTaoysnbedo Jo 39S € SUTRJU0d 3sed 39} wieliderp Ajapoe uy A4L | yuowureyuo) TWA : UoT10yenbedo « 9sBDISAL» AATATIOY
Jsed 3s9) wrerderp
ZUgRMIN | Aanoe TN ur uo T 3oyenbedo ue ojuo paddew s sseraesn y Adg UOTIRALIS(] NWdg :yselrissn uoT3oyenbedo
*ased 359} werderp Lyian
CURIMIN | -0' TINN Ut uoT3oyenbedo ue ojuo paddew st ysegrenuey y Add UOTJRALId(] NWdg :¥SelTenueR uoT3oyenbedp
*9seD 159} WeIderp AjAn
CUGRMYIN | -o' TINN ut uoT3oysnbedo ue ojuo paddew st sse11dTI105 Adg UOTIRALID(] NWdg :3seradTaos uotioyenbedo
"9sed 189} weiderp A31anoe AN NWRdg
CUGRIMIN | ur uoT3oyenbedo ue ojuo paddew st ysersrngssautsng y Add UOTJRALID(] iyselrsTnyssauTrsng uoT3oyenbedo
*9sed 159} weIderp AyAnoe TN
ZUgRMMYIN | ur uotoyenbedo ue ojuo paddew st NINJY ut ssel apdwis y Ad4 UOTIRALI(] NWddg :ysel uoT3oyenbedp
uoneraua3 159}
a3 Surmp weiderp uoneIoqe[od NJAJG WO SUueT e Wolj PIALL
QRN | -9p SI ased 3s9) werderp AJIAROL Uk UI UOTITIIRJAITATIOY UY Add UOTIRALIS(] NWdg : sueT UOT3TIIRJAITATIOY
*9sed 389} weiderp AJIAOR 9} UT SPONTRTITUT
ue Aq pomo[oj uoTioyjusagildecoy ue oo paddew NWdg SPONTRUTAAITATIOVW
0T ERIMYIN | St werSerp uoneroqe[od NNJG Ul JUSAHPUESHESSON Y Adg UOTRALIS(] :queAgpugebhessan ‘uoT10yusnga1dedoy
*9seDd 159} wrerderp AJIAROeR 9} Ul UOT 0¥ IusAg1de00Y
ue Aq PomO[[0] SPONTeTITUI pue ojuo paddewr sr werd uoT3oy3IUSAT1IdeD0Y
TSOIMIN | -erp uoneroqe[[od NNJ Ul JUSAH}IRISSHESSOl Y Adg UOIRALID(] |NIdg: jusAITIRISoHRSSO) ‘9PONTEeTATUT
“weiSerp uonrIOqe[[od NJAJ] WOl MOTZoousnbags e
6 qRIMYIN | WOIJ PIALIOP SI 9SeDd 359} Wierderp A}IATOe Ue Ul MOT ITOIIU0D Add UOT}RALID(] Ndg : moT doousnbag MOTJTOI3UOD
‘weIderp uoneIoqe[jod NJANJg Ul JUSAHIIels e
LUOIMYIN | WIOIJ POALISP ST 9sed 359} wierderp AJIAROL Ue UISPONTETITUT Uy Add UOTIRALIS(] quaAgl1Ie]S SPONTBTITUT
“wrer3erp A}IALOR 9Sed 3S9) 9} Ul UOT10YIusAg1de00y
ue Aq pomo[[0j SPONTeT3ITuI ue ojuo paddew sr werd NKdg UoT30Y3IUSA73de00Y
TSOIMIN | -erp uoneIoge[od NN Ul JUSAEIILISTRubTS Y Adg UOTIRALIS(] :quUeAg1IRISTRUDTS ‘9PONTEeTATUI
*SI9ATOODI 9FLSSIUI SB 108 UDTYM
T doMIN ‘syuauodwod 393 S} Y3IM S9JedTUNWWOD UOTIOY [RUDTSPUSS Y Adg yonedrunuwuwo)) drn:3usuodwo)isal UOT3OYTRUDISPUSS
‘werderp uoreIo
-qe[[0D ® Ul SYSB} PUSS WOI PIALIDP SUOTIOYTRUDBTSPUSS
PIGOIMIN | JO 39S e surejuod oased 359} werderp Ajapoe uy A4L | yuowureyuo) TWN : UOT10YTRUDTSPUSS «9sBDISIL» AATATIOY
‘uoneIaudd 3s9) ay Surmp
uoT3oyuoTieaadoTrTed e ojuo paddew si ysersoraiss
QT g _MIIN e 0} s203 moTgebesssp Jurodmno 9sOym selpuss Yy Add UOTIRALID(] NWdd : {selpuas uot3oyuoTieIadoTTed
MDA adAy,
sy uondrmsaq 3981l | Aduspuadag judwdly 3a81e], JudwWd[g J.LN 22In0Sg

a8ed snoraaxd woiy panunguo) 17D A[qeL

163

pus a7qe) je spuada] 99g—aded Jxou uo panuruo))

‘uoneraudd 3so3 ay 3ur
-mp wer3erp uoneIOqe[[0d NINJY JO 1uedTOT3IBd B WOIj PIALL

L STOIMYIN | -op St wrerderp AJTATIOR 9sed $9) © Ul UOTITIIRJAITATION Uy Add UOTJRALID(] NWdg: quedToTIRg UOTATITRJAITATIOY
9r0eIMIaa
‘0 RN “uonNIAXa 593 Ay} Jo uona[dwod ayj yussaidar 03
‘6T | SPONTRUTIAITATIOY © SUTRJUOD Jsed 1593 wierderp Ajanoe uy A4l | juswurejuo) | d10:OPONTRUTIAITATIOV «3se))saL» A3 TATIOY
“wer3erp UoneIoqe[[od NIAJY Ul 2USAF1Ie]S ©
6509IM(| WOy PAALIDP SI 9sed 359} werSerp AJIATO. UL Ul SPONTRTITUT Uy A4L UOLIRALIS(] NIHdg : 3USATITIRAS dIN:SPONTeTATUT
ShoeMIAa
‘ST gRMIN
7GRN “UOTINDIX J$9} A} JO }IBIS 9}
‘JTRIMYIN | MOUS 0} SPONTRTITUT UR SUTBIUOD 3Sed 3s93 werderp Ajianoe uy AGL | yuswureyuo) T : SPONTeTATUT «3se)SIL» A3 TATIOY
160 “9DIAISS B SUI[[D YSEBL B WO PIALIIP 9] arn
‘CTERIMIINL | ured ased 359} werderp Aj1anoe ue ur uoT1oyuot1eradoTTe) Y AdL UOTIRALId(] NWJdg:¥{sel ruot3oyuotaiexadorTTed
FroeIMIaa “UOTINIIXD 159}
‘STERIMIN | 93 Surmp syusuodwiod 3$93 pue INS Jo suoperado snorrea [[ed 03 arn
‘CTGRIMIIN | uoTaoyuoTieaadoT TBD SUIejuod ased 359} werderp Ajande uy A9L | yuswureyuo :uoT3oyuoTareradoTTed «9se))8a» AITATIOY
croeIMIAd
‘0T gRTIIN
‘ST GBI
7GRN MO[j UOTINISXD }S9) A} [PPOwr
‘6’ OIMIIA | O} SMOJJ [OIJUOD JO }9S B SUTRJUOD dsed }s9) weiderp Ajanoe uy A9L | yuswureyuod TN :MOTATOIAIUOD « 98383 » A3 TATIOY
‘9D 159} WeISerp AJIAT)OR 9} Ul SPONUOTSTOa(
ITGRMYN | ® ojuo paddewr st NNJg Ul Aemsjespssedgiusag uy Adg UOTJRALId(] | NIWdd:Aemsjeopsseguany SPONUOTSTO2(
ZroemMIaa
TTGRIMIN “urergerp uoneIoqe[[od NJAJg Y} WOIj PIALIDP
‘OT'Q:OIMIAl | SOpOU UOISIDap JO 39S B SUrejuod ased 359} weiderp Ayanoe ayL A4L | yuswureyuon TN : SPONUOTSTOa(«9se)8 » AITATIOY
“UOT)eIdUIS 1S9} A}
Surump wexSerp Ajanoe ased 1$93 S} Ul SPONUOTS TOS(UR OJUO
TGN | sdewr urerSerp uoneIoqe[od NN € Ul AeMS1eD8ATSNTOXF Uy Adg UOTJRALId(] | NIWdg:AemMe3e9aATsSNTOXKE SPONUOTSTO9(
“UOT)eIdUIS 1S9} A}
8F0PMMYIAC | Surmp werSerp A1ande ased 359} Y} Ul OPONTRUTAAITATIOV
‘6T RN | e ojuo sdewr wexSerp uoneIoqe[[0d NIAJY € Ul JUSAHPUE Uy Adg UOT}RATId(] Ndd : JUSAZpUR SPONTRUTIAITATIOY
‘]USAESIILISTRUOTITPUOD
9y} JO UOQPIPUOd Y} SUIRJUOD MOTJITOIJUOD A}
oIOYM ‘MOTATOIUOD B Aq POMO[[O] SPONTBTITUL MOTATOIIUOD
QU'APIMIA | ue ojuo paddewr st jusagize3sTeUOTAITPUOD YV | AL UOHRALKICHE|: JUSAHITRISTRUOTITPUOD ‘OPONTBTITUT
MDA adAy,
sapny uonduosaq |3981eL, | Aduspuadag judwa[y ja8rey, JUdWId[H J1N 9IN0S

a8ed snoraaxd woiy panunguo) 17D A[qeL

164

pus 9[qe) e spuada] sag—aded Jxau U0 panunuo))

/z0omyIad suorjerado Jo 39S & Urejuod ued 9deJIajul Uy | JUSWUTReIuo)) ASq TWA:uoT3exado ASq TWN :o0BFIS3UT
[re3op ur suonyerado s)1 Sururyep Aq wreide
QC0PIMIAA | -IP SSe[d TN Y3 Ul paunap aq ued jusuodurod e Jo adejIojur uy sousreamby ASq TWA :90BFIS3UT ASq TWN:90BIISIUT
SJUSWII[
parepa1 a3 adexoed 03 SpPpow-LIaW Y} Aq PIdIOJUD Ik SUOHL[AI NWdag
6£09IMIAA | 9s9Yl ‘uonerogerod e st juedonred e jo raurejuod juared oy | jusuwrurej;UO)) Adg | NWadg:3uedrotazeg Ad9 {UOT3RIOQRTTOD
wexderp jusuodwod NN
G00dMIAQ | woiyjusuodwo)) e juswardur ued wererp ssep AN UISse[D) v tronejusurajdury ASq TWAO:SSeT) ASH TN : 3usuodwo)d
SIDTAIDS S}I 9ZI[LDI 0} SDBJIIUL J9J0 sarmbai yusuodwod v saxmbay ASg TWA:290eJI23UT AS9 WA : 2usuodwo)
F0eMIAd SIDIAIDS S)I SS00® 0} sadeyIdul sapraoid yusuodwod v SOPIAOI] ASg TWA :90eJI93UT AS9 TA : 2usuodwo)
jusuodwod [ND)
10 quauoduwod aremijos e ‘a01 e aq ued juednae] e se quedon
2009 | -TeJ yoea 10§ pajeaid st jusuoduiod e ‘poyjawr Surepow TAROS Ul sousreambyg Adg | Nwdg:auedrtoTraaegd AS9 TWA : 2usuodwo)
/209y ad suorjerad() JO 39S € SUTRJUOD SSEP Y | JUSWIUTEIUOD) AS9 TWA : uoT 3exado ASq TWN:SSeTD
‘wrerderp sse[d TN Ul sse[D) e Aq pazIeas St 9oey
-1ur uy “papraoxd suonerado jo 39s e 10 “papraoid ad1aIes Joun
TH0RIMIA | -SIp B S[Ppow 9sed 1o ur “Jusuodurod e Jo adejrajur papraoid syr UonjeZI[esy] AS4 TWA :90eJI93UT AS9 TWA:SSBeTD
adAL | maIp MIIA
saymy uonduwsaq | Aduapuadaq |31981e] juowdy 39S1e], |9dInog JUSWIA[Y IIN0g
"MITA TeINIONIIG PUL MITA SSa001] 10J suonedy Aouspuada(q gD d[qer,
MIIA IOTABUDY ISAL © AGL MBI/ SS9001] ssaursng : Adg
oy Surddejy : SMYIN MOIA SINPPAIYPIY ISAL, @ AV MIIA dINJONIG ssaursng : AS4
'SANEDAT
(30011pUy) "BJEP 159] B JO
0909 | S9SEd SNOLIEA dULSP 0} TOOJeIe(B SPUSIXd UOTiTITRdeedy AQL spuaixg Toogejeq uoT3ITITRJRIRA
‘sse[d reurdrio ay) 03 Surpuodsariod eyep
6509 | 3591 JO SISEd SNOLIBA SaULAP pue ssepd e saziewads Toodeaeay | AQL sazienadg sserd Tooge3ieq
‘TepoOKeledIsal e ul
8609 | PayIads eyep 1s9) 93910U0D d1) SISN sEd 359} Wreiderp AJAnde uy AL sasn TopoWe3Iealsal « 98BS » KITATIOY
*sased 159} snorrea 10§ paxmbar suonnred pue sjood eyep sy saury
25091 ad -9p }1 Sk ‘[opOouI 9IN}0a3TYdIe 3893 B %@ pasn sI TOPOWe1RdASSL AdL sas ToponWe3IeglIsal TOPOW3ISaL
MDA adAy,
sy uondrmsaq 3981l | Aduspuadag judwdly 3a81e], JudwWd[g J.LN 22In0Sg

a8ed snoraaxd woiy panunguo) 17D A[qeL

165

pus a7qe) 1e spuada] 9ag—aded jxou uo panunuo))

MSBLI01AIDG

0509 | Sursn juedpnie 18joue JO SDIAISS B [[ED URd SS9D0IL] © Ul YSe] s[reD Ad9 | NWdg:xsersoTazss Adg NWdg: dsel
due 10
juednre 19praoid a3 03 Surpuodsariod ssepd ayj ur uoneradQ e

9209 | se papraoid siyse]adiaIag e Aq pa[[ed 9DIAISS SY3 JO UORIULDP YT, uonuyaq ASq TWA :uoT3exado Ad9 | NWdg:selrsoTaxss

9z0eIMIAd S3[SB) 9IIAISS JO ULIOJ S} UT S9OIAIS Sapraoxd aue UOISTAOL] Ad9d | NWdg:yseleoTaiss Adg Ndg : sueT

FZ0eIMIad SIUETJO 39S B SUTEUO0D A[}02IIpUl 100 3USUNd0Q Y JUSWIUTEIU0)) Ad9 |NWdg:100¥3uswnooq Adg NIWdg :eueT

/F0RIM A SISSE[D JO J9S B UIRJUOD ULD 9HB30Rd Y | JUSWIUIRIUOD) ASg TWN:SSeTD ASg TN : obesoed

€209TMIAd sa8exped qns 1930 urejuod ued shexoed y | JudWUIRIUOD) ASg TWN : obesoed ASg TN : obesoeg

00 A MITA [RINIONIS A} UL SSL[DSSA0I] © Aq paunap st ssadoid v uonTuya(q Adg NIAJG:SS9001] ASq TIN:SSBIDSSD0I]
Juauodwod STy} 03 SSUOTaq UDIYM SSE[D 9q Ued aue] e pue jusuod
-wod e aq ued juedpnre e yoeordde mo ug syuedpnred jo sajox

/ZT0PIMYIQ | Snotrea usamiaq ysmaunsip 03 saueT Jo 39S € surejuod ssadoxd | juswrureyuo)) Adg NIWdE : ueT Ad9 NWdg: Ss2001d

sAemajed dAISN[OX JO }9S B 9SN ULd SSD NNdg :
9€09MIAA | -01d e ‘SUOKIPUOD SNOLIBA JO SAN[BA UO Paseq UOISIAP [9POW O], | JUSWUIRIUOD) Adg | Aemeiensatsnroxy Adg NWdg: Ss2001d
"SUOISIDAP PIseq-JuAd NWad :

GE0MMIA | S[epow 03 sAemajes paseq-yusAd JO 39S € UTejuod ued ssadoid v | juswurejuo)) Adg |Kemsieopesegiusanyg Ad9 NWdd] : Ss9001d
SJUAWIA[R pue

FEOAMIYAC | SSeI SNOLIEA UdaMIdq SMOTJ duanbas jo 3as e sureyuod ssadord y | juswurejuo)) Ad9 |NWag:motrasousnbag Ad4 NWdg: Ss2001d
uoreId

€€0MMIA | -uoS 3593 93 9SLD 03 JUSAFPUH U0 A[30eXd Ureyuod ued ssa0oid v | juswurejuo’) Adg NIWJE : JUSATPUR Ad9 NWdd]: Ss2001d
“UOT)RIUDS 1S9} d} 9SLd

€09 | o1 yoroxdde mo ur Jusazi1IEIS U0 AJJOEXD SUTRIUOD ssed01d v | JuswIureIUu0)) Add NWdg: JusAgl1Ie]s Adg NWNdg: ss2001dg
‘SYSBLSDTAIDS

§ZOIMIA(| se poEpowr sras jo 39s e opmoid ued sseord v | juswurejuod) Add | NWdg:xsersoTaIag Ad49 NWdg: Ss2001d
1 ypm Surpoersjur

1€0oIMIAd | souef 1o syuedonred oo £q juss sodessowr oATeda1 ULd $$3001d | Juswureyu0)) Adg | NWad:ssersateosy Adg NWNdg:ss2001dg
31 ynm Sunoe

0€09IM A | -royur sauey 10 syjuedpnred 1030 03 sadessowr puss ued ssadord v | Juswurejuo)) Adg NIWJE : {SeIpuss Ad49 NWddg: S§2001d
sdays

6209TMI A | 1oensqe snorrea juswa(durr 03 syse} Jo 398 e asn ued ssoooid Y | judwuTRIUO)) Adg NWd€:3{Ser A4 NWdg: Ss2001d

6909 SYSBIOIAIDG Se SaOIAIRS sapraoid juedonie] v UOISIAOIJ Ad9 | Nwdg:sxsersorazss Adg | Nwag:3auedrotiaed

€00°TMIAd ssa001d ssaursnq e sajeniur juedonie] v UoTyenIu] Adg NWdE : S§2001d Add | Nwag:3uedrotiaed

/€0omIad s1ojourered Jo 3s] € surejuod uoperddo y | jusuwurejuo)) ASq TN :IR1Were] ASH TWA:uoT3eaado
JueT e se Jusuodwo) ey} 03 SUISUo[Rq SSeTD © [9POW oM
‘quauodwo) e juasardar ued JuedTOT IR B IDUIS ‘SaUe] JO SSe}

ST09MMIAC | 9do1a19s oy sjuswddwr weiderp ssep T[] Ul SSe[d JDIAIS Y uonTuya(q ASq TWN:SSeTd Ad9 NWdg : sueT

adAy | maip MITA
sapny uvondsaq | Aduapuadaq |398rel judwd[q Jo81e], |9dINn0g JUSWId[] IIN0g

a8ed snoraaxd woy panunuo) z°) qeL

166

MIIA SS900IJ Ssaumsng : AJH ~ MSIA 2INOnig ssaursng : ASH
‘SANAODHT
€902 sueT juared S)1 Aq PIUTLIUOD ST JSBIOATOOSY Y [SO}LdIUNWILIO)) Add NWdg : aueT Ad9 | Nwdg:sselrsateosy
sueT juared s)1 03 Surpuodsar
€909 | -102 sseTd Yy} ur uot1eaado Uk Se PauUldp SI {SBISATS09Y Y douareambyg ASH TWN : uoT3exado Adg NG : YSeloAToDYy
19091IAd sueT juared) £q PIUTLIUOD SI SBIPUSS Y [SI}LIIUNUILIO)) Ad9 NIWdd : sueT Add9 NIdg : YSelpuss
sueT juared sy 03 Surpuods
1909 | -9110> sseTD 9y} ur uotieiadp Ue se pauyap SI }SeIPUSS Y aousreambyg ASd TN :uoTaexado Adg NI : ¥Selpuss
"SISSE[D 0M}
0909 | ueemiaq drysuone[ar priyd-jusieJ e ssugop Aouspuadop syl spuLixyg ASq THN:SSeTD ASg THA:SSeTD
adAy | maip MITA
sapny uvondsaq | Aduapuadaq |398rel judwd[q Jo81e], |9dINn0g JUSWId[] IIN0g

a8ed snoraaxd woy panunuo) z°) qeL

167

Change Types and Scenarios

Table D.1: Generic Change Types for BPMN Collaboration Diagrams (process view.

ModelElement ChangeType Comosition | Description Rules
Participant Add Atomic Add Participant in Collaboration
Participant Delete Atomic Delete participant from Collaboration
Participant PU:name Atomic Rename a Participant
Participant Merge Composite Merge Two participants into one (To merge
n+1 participants, the merge operation has to
be applied n times)

Participant Split Composite Split a Participant into two Participants

Participant Others Composite Move, Swap, and Replace are not applicable
on participants

Process Add Atomic Add a Process in Collaboration
Process Delete Atomic Delete a Process from Collaboration
Process PU:name Atomic Rename a Process
Process PU:type Atomic Change visibility of a process. Type specifies
if a process is private or public

Process Merge Composite Merge two processes

Process Split Composite Split a Process into two

Process Swap, Replace, | Composite Not applicable

Move

Task! Add Atomic Add a task in a Process

Task Delete Atomic Delete a task from the model

Task PU:name Atomic Rename a task

Task Move Composite Move a task from one lane to another

Task Move Composite Move a task from one Participant to another
(only valid for service tasks)

Task Split Composite Split a task into two

Task Merge Composite Merge two tasks
Task Replace Composite Replace a Task with another (only applicable

to the service tasks)

Task Swap Composite Swap is not applicable to tasks
SequenceFlow Add Atomic Add a sequence flow between two tasks.

Similar to the change pattern add control de-
pendency by Weber et al. [WR08]

SequenceFlow Delete Atomic Delete a Sequence Flow between two tasks.

Similar to the change pattern remove control
dependency by Weber et al. [WRO08]

SequenceFlow others Composite Move | Merge | Replace | Swap are not appli-

cable on sequence flows

SequenceFlow PU:Condition Atomic Update the conditional expression on a Se-

quenceFlow

MessageFlow Add Atomic Add a message flow between two tasks
MessageFlow Delete Atomic Remove a a message flow between two tasks
MessageFlow Others Composite Move | Merge | Replace | Swap are not appli-

cable on a MessageFlow

Lane Add Atomic Add a lane inside a Process
Lane Delete Atomic Delete a Lane from a Process
Lane PU:name Atomic Rename a Lane
Lane Merge Composite Merge two lanes
Lane Split Composite Split a Lane into two
Lane Swap | Replace Composite Not Applicable
Gateway Add Atomic Add a gateway inside a process

ltasks include Send, Receive, Service, Manual, Script, and User tasks

168

Gateway Delete Atomic Delete a gateway from a process

Gateway PU:mame Atomic Rename a gateway

Gateway Move Composite Move a gateway from one lane to another

Data Store Add Atomic Add a DataStore inside a Collaboration

Data Store Delete Atomic Delete a DataStore from a Collaboration

Data Store Delete Atomic Delete a DataStore from a Collaboration

Data Store PU:name Atomic Rename a DataStore

Data Store Merge Composite Two Data stores are merged

Data Store Split Composite A data store is splitted into two

Data Store Replace Composite Replace a data store with another

Table D.2: Generic Change Types for Models of Structural View

ModelElement ChangeType Composition| Description Rules

Class Add Atomic Add a class in a model

Class Delete Atomic Delete a class from a model

Class Swap Composite Swap a class with another class

Class Split Composite Split a class into two classes

Class Merge Composite Merge two classes into one

Class Move Composite Move a Class from one Package to another

Class Move Composite Move a Class from one Component to an-
other

Class PU:name Atomic Rename a class

Class PU:abstract Atomic Make a class abstract

Class PU.visibility Atomic Change visibility of a class

Class PU:static Atomic Make a class static

Property Add Atomic Add an attribute to a class

Property Delete Atomic Delete an attribute from a class

Property PU:name Atomic Rename an attribute of a class

Property PU:final Atomic Change final modifier of an attribute

Property PU:static Atomic Make an attribute static by changing the
static modifier

Property PU:type Atomic Change type of an attribute

Property PU.visibility Atomic Change visibility of an attribute

Property Move Composite Move an attribute from one class to another

Operation Add Atomic Add an operation to a class

Operation Delete Atomic Remove an operation from the class

Operation Move Composite Move an operation from one class to another

Operation PU:returnType Atomic Change return type of an operation

Parameter PU:Type Atomic Change data type of a parameter of an oper-
ation

Parameter Delete Atomic Delete a parameter from an Operation

Parameter Add Atomic Add a new parameter in an Operation

Operation PU:Static Atomic Make an operation static

Operation PU:name Atomic Rename an Operation

Parameter PU:name Atomic Rename a parameter of an Operation

Parameter PU:final Atomic Change final modifier of a parameter of an
Operation

Operation Add Atomic Add an abstract Operation in a class

Operation Delete Atomic Remove an abstract method from the class

Association(UML Prop- | Add Atomic Add an Association/composition/Aggrega-

erty with an ownedEnd) tion between two classes/interface

Association Delete Atomic Association is a Property with an owned
end in UML. Delete an Association/compo-
sition/ Aggregation between two classes/in-
terface

Association PU:multiplicity | Atomic Change the multiplicity of an association end

Association PU: visibility Atomic Change the Visibility of an association end

Inheritance Add Atomic Add an Inheritance relation between two
classes/interface

Inheritance Add Atomic Remove an Inheritance relation from two
classes/interface

Interface Add Atomic Add an Interface to a Model

169

Interface Delete Atomic Delete an Interface from the model

Interface PU:mame Atomic Rename an interface

Component Add Atomic Add a component in a model

Component Delete Atomic Delete a component from a model

Component Split Composite Split a component in to two

Component Merge Composite Merge two components

Interface Add Atomic Add Interface (Required/Provided) to a
Component

Interface Delete Atomic Remove Interface (Required/Provided) of a
Component

Interface Move Composite Move Interface (Required/Provided) from
one Component to another

Table D.3: Change Types for UTP test view.

ModelElement ChangeType Composition| Description Rules

TestModel Add Atomic Add a new TestModel

TestModel Delete Atomic Delete a TestModel

TestModel PU:name Atomic Rename a TestModel

TestPackage Add Atomic Add a TestPackage in a TestModel

TestPackage Delete Atomic Remove a TestPackage from a TestModel

TestPackage PU:name Atomic Rename a TestPackage

TestContext Add Atomic Add a TestContext in a TestPackage

TestContext Delete Atomic Remove a TestContext from a TestPackage

TestContext PU:name Atomic Rename a TestContext

SUT Add Atomic Add a SUT in a TestModel

SUT Delete Atomic Remove a SUT from a TestModel

SUT PU:name Atomic Rename a SUT

TestCase Add Atomic Add a TestCase in a TestContext

TestCase Delete Atomic Remove a TestCase from a TestContext

TestCase PU:name Atomic Rename a TestCase

MockOperation Add Atomic Add a MockOperation in a TestComponent

MockOperation delete Atomic Remove a MockOperation from a TestCom-
ponent

MockOperation U:name Atomic Rename a MockOperation

TestComponent Add Atomic Add a TestComponent in a TestPackage

TestComponent Delete Atomic Remove a TestComponent from a TestPack-
age

TestComponent PU:name Atomic Rename a TestComponent

Activity Add Atomic Add an activity in a Model

Activity Delete Atomic Remove an activity from a Model

Activity PU:mname Atomic Rename an activity

CallOperationAction Add Atomic Add a CallOperationAction in an Activity

CallOperationAction Delete Atomic Remove a CallOperationAction from an Ac-
tivity

CallOperationAction PU:mname Atomic Rename an Activity

ActivityPartition Add Atomic Add an ActivityPartition in an Activity

ActivityPartition Delete Atomic Remove an ActivityPartition from an Activ-
ity

ActivityPartition PU:name Atomic Rename an ActivityPartition from an Activ-

ity

170

Table D.4: Change Scenarios For Mobile Service Technician Case Study.

1D | ModelElement
Change Scenario 1
Maintenance Type Perfective

Scenario Description

In the HandleTourPlanningProcess, the creation of a TourPlan requires assigning the Tour
and the ServiceOrders selected for the Tour to the TourPlan. Otherwise, an empty TourPlan
object would be kept in the system, which would violate the constraints of the system
design. Thus, the replacement of the old createTourPlan operation is required with a new
operation, which takes the parameters current Tour and a list of SericeOrders.

Change 1
. name Add Operation
Required Changes abstraction Concrete
composition Atomic
source createTourPlan(Tour currentTour, ServiceOrders so) :Operation
target HandleTourPlanningProcess:Class
Change 2
name Add Parameter
abstraction Concrete
composition Atomic
source currentTour:Parameter, type=Tour
target createTourPlan:Operation
Change 3
name Add Parameter
abstraction Concrete
composition Atomic
source so:Parameter, e=ServiceOrder<List>
target createTourPlan:gperation
Change 4
name Add ServiceTask
abstraction Concrete
composition Atomic
source HandleTourPlanningProcess:Process
target createTourPlan:ServiceTask
Change 5
name Replace ServiceTask
abstraction Concrete
composition composite
source createTourPlan():Operation
target createTourPlan (Tour currentTour, ServiceOrders so)
Change Scenario 2
Maintenance Type Perfective

Scenario Description

In the EvaluateProblemProcess, it is required to check if some service technicians were as-
signed the device already and check their availability on priority, there is no such check
and it needs to be incorporated in the process.

Required Changes

Change 1

name Add Service Task

abstraction Concrete

composition Atomic

source getPriorityServiceTechnician:ServcieTask
target EvaluateProblemProcess:Lane

Change 2

name Add ServiceTask

abstraction Concrete

composition Atomic

source assignPriorityServiceTechnicaintoSO:ServcieTask
target EvaluateProblemProcess:Lane

Change 3

name Delete SequenceFlow

abstraction Concrete

composition Atomic

source saveServiceOrder:ServiceTask

target saveServiceQoutation:ServiceTask

Change 4

name Add SequenceFlow

abstraction Concrete

composition Atomic

source between saveServiceQoutation:ServcieTask
target getPriorityServiceTechnician:ServiceTask
Change 5

name Add SequenceFlow

abstraction Concrete

composition Atomic

source getPriorityServiceTechnician:ServiceTask
target assignPriorityServiceTechnicianSO:ServiceTask

171

Change 6

name Add SequenceFlow
abstraction Concrete
composition Atomic
source assignPriorityServiceTechnicianSO:ServcieTask
target saveServiceOrder:ServcieTask
Change Scenario 3
Maintenance Type Corrective

Scenario Description

The operation createServiceDiagnosisReport requires a list of possibleSolutions of type
Solution in the interface corresponding to Class ServiceReportHandler. Moreover, it is
required to call this operation for the further processing of cancellation of the ServiceOrder
during the ServiceExecutionProcess.

Change 2
Required Changes name Add Parameter
abstraction Concrete
composition Atomic
source possibleSolutions:Parameter
target createServiceDiagnsisReport:Operation
Change 1
name Add ServiceTask
abstraction Concrete
composition ~ Atomic
source createServiceDiagnosisReport ServiceTask
target ServiceReportHandler:Participant
Change 3
name Add MessageFlow
abstraction Concrete
composition Atomic
source Create Diagnosis Report :Task
target createServiceDiagnsisReport :ServiceTask
Change Scenario 4
Maintenance Type Corrective

Scenario Description

The HandleTourPlanningProcess uses a service getRoutesForInterval, which is ot more
available. Another service getRoutesForDuration returns the routes for a specified dura-
tion. Thus, the reuirement is to replace the ServiceTask with the other.

Required Changes name Replace ServiceTask
abstraction Concrete
composition ~ Composite
source getRoutesForInterval:ServiceTask
target getRoutesForDuration:ServiceTask
Change Scenario 5
Maintenance Type Perfective

Scenario Description

The Class ServiceOrderSchedular and ServicesSchedular both serve the same purpose of
scheduling related tasks for Service Orders. Merge both classes for a better design.

Required Changes name Merge Class
abstraction Concrete
composition ~ Composite
source Merge ServicesSchedular:Class
target ServiceOrderSchedularClass:Class
Change Scenario 6
Maintenance Type Corrective

Scenario Description

In HandleBookAccomodationProcess a ServcieTechnician cannot Handle the payment of
booked accommodations, and cannot access to the service payAccomodationExpenses. In-
stead, he can send the invoice to the PaymentAuthorizationOfficer’s and request for a pay-
ment.

. Change 1
Required Changes nameg Rename Task
abstraction Concrete
composition Atomic
source Pay for Booking:Task
Change 2
name Replace ServiceTask
abstraction Concrete
composition ~ Composite
source payAccomodationExpenses:ServcieTask
target requestForAccomodationBookingPayment:ServcieTask
Change Scenario 7
Maintenance Type Corrective

Scenario Description

ReturnInventoryForServiceOrderProcess requires calling a Service to verify the item con-
ditions and any liabilities from the ServciePlanner component

Required Changes

Change 1

name Add Participant in Process

abstraction Concrete

composition Atomic

source ServicePlanner:Participant

target ReturnInventoryForServiceOrderProcess:Process

172

Change 2

name Add ServiceTask
abstraction Concrete
composition Atomic
source verifyltemConditions:ServiceTask
target ServicePlanner:Participant
Change 3
name Add MessageFlow
abstraction Concrete
composition Atomic
source Verify Item Conditions:Task
target verifyltemConditionsServiceTask
Change Scenario 8
Maintenance Type Perfective

Scenario Description

The components Recruitment and Recruiter are required to be merged as they serve the

similar purpose.
Required Changes name Merge Components
abstraction Concrete
composition =~ Composite
source Recruitement:Component
target Recruiter:Component
Change Scenario 9
Maintenance Type Perfective

Scenario Description

Rename the Component ServcieCoordinatorNotifier to CoordinatorNotifier

Required Changes name Rename Component
abstraction Concrete
composition Atomic
source ServcieCoordinatorNotifier:Component
target CoordinatorNotifier:Component
Change Scenario 10
Maintenance Type Perfective

Scenario Description

Rename ReturnInventoryForServiceOrderProcess to ReturnServcieOrderInventoryPro-

cess
Required Changes name Rename Process
abstraction Concrete
composition Atomic
source ReturnInventoryForServiceOrderProcess:Process
target ReturnServcieOrderInventoryProcess:Process

173

Rules

Dependency Detection Rules

Table E.1: Rules for Detecting Dependency Relations between Models and Tests.

Rule-ID DDRule001

Description creates links between participants and test components

Elements el:DocumentRoot, e2:Model, e3:Participant,e4:Class

Conditions modelRelatedto(e2,Containment,e4) AND modelRelatedto(el,Containment,e3) AND
valueStartsWith(e4.name, e3.name) AND (valueEndsWith(e4.name," TCom”) OR val-
ueEndsWith(e4.name, TestComp’)) AND ((modelRelatedto(el,Tested_By,e2) OR modelRelat-
edto(e2,Tests,el))

Actions createLink(e3, Derivation, e4)

Rule-ID DDRule002

Description creates links between participants and corresponding components

Elements el:Participant, e2:Component

Conditions valueEquals(el.name, e2.name)

Actions createLink(el, Equivalence, e2)

Rule-ID DDRule003

Description creates links between participants and processes they initiate

Elements el:Participant, e2:Process

Conditions valueNotNull(e2::name) AND modelEquals(el::processRef, e2)

Actions createLink(el, Initiation, e2)

Rule-ID DDRule004

Description creates link between a Process and the ProcessClass defining the Process

Elements el:Process,e2:Class, e3:ProcessClass

Conditions modelEquals(e3::base_Class, e2) AND valueEquals(el::name, e2::name)

Actions createLink(el, Definition, e2)

Rule-ID DDRule005

Description creates links between components and their corresponding classes in CD

Elements el:Component, e2:Class

Conditions valueEquals(el::name,e2::name)

Actions createLink(el, Implementation, e2)

Rule-ID DDRule006

Description links BPMN collaboration root element and the corresponding TestModel

Elements el:DocumentRoot, e2:Model, e3:TestModel

Conditions valueContains(e2::name, el:name) AND valueEndsWith(e2::name, TestArchitecture) AND modelE-
quals(e3::base_Package, e2)

Actions createLink(e2, Tests, el), createLink (el, Tested_By, e2)

Rule-ID DDRule007

Description creates link between a TestContext and TestPackage

Elements el:Class, e2:Package, e3:TestContext, e4:TestPackage

Conditions modelEquals(e4::base_Package, e2) AND modelEquals(e3::base_StructuredClassifier, el) AND mod-
elDirectParentOf(e2, el)

Actions createLink(e2, Containment, el)

Rule-ID DDRule008

Description creates link between a TestPackage and SUT

Elements el:Package, e2:Model, e3:TestPackage, e4:TestModel

Conditions modelEquals(e3::base_Package, el) AND modelEquals(e4::base_Package, e2) AND modelDirectPar-
entOf(e2, el)

Actions createLink(e2, Containment, el)

Rule-ID DDRule009

Description creates link between SUT and Test Model

Elements el:Model, e2:Class, e3:TestModel, e4:SUT

Conditions modelEquals(e3::base_Package, el) AND modelEquals(e4::base_Classifier, €2) AND modelDirectPar-
entOf(el, e2)

Actions createLink(el, Containment, e2)

174

Rule-ID DDRule010

Description creates link between TestPackage and SUT

Elements el:Model, e2:Package, e3:Class, e4:TestModel, e5:TestPackage, e6:SUT

Conditions modelEquals(e4::base_Package, el) AND modelEquals(e5::base_Package, e2) AND modelE-
quals(e6::base_Classifier, e3) AND modelDirectParentOf(el, e2) AND modelDirectParentOf(el, e3)

Actions createLink(e3, Tests, €2)

Rule-ID DDRule011

Description creates links between TestPackage and TestComponent

Elements el:Package, e2:Class, e3:TestPackage, e4:TestComponent

Conditions modelEquals(e3::base_Package, el) AND modelEquals(e4::base_StructuredClassifier, e2) AND mod-
elDirectParentOf(el, e2)

Actions createLink(el, Containment, €2)

Rule-ID DDRule012

Description creates link between the TestContext and TestCase

Elements el:Class, e2:Operation, e3:TestContext

Conditions modelEquals(e3::base_StructuredClassifier, e1) AND modelDirectParentOf(el, e2)

Actions createLink(el, Containment, €2)

Rule-ID DDRule013

Description creates links between a TestContext and related TestComponents

Elements el:Class, e2:Package, e3:TestComponent, e4:Class, e5:TestContext

Conditions modelEquals(e3::base_StructuredClassifier, e1) AND modelEquals(e5::base_StructuredClassifier, e4, Con-
tainment) AND modelRelatedTo(e2, e1) AND modelRelatedTo(e2, e4, Containment)

Actions createLink(e4, Usage, el)

Rule-ID DDRule014

Description Creates Link between a test behavior and its definition

Elements el:Class, e2:Operation, e3:TestContext, e4:Process, e5:Activity

Conditions valueNotNull(e4::name) AND modelEquals(e3::base_StructuredClassifier, el) AND valueCon-
tains(el:name, e4:name) AND modelRelatedTo(el, Containment, e2) AND valueContains(e5::name,
e4::name) AND valueEquals(e5::name, e2::name)

Actions createLink(e2, Definition, e5)

Rule-ID DDRule015

Description creates links between TestComponent and mock operation

Elements el:Class, e2:Operation, e3:TestComponent

Conditions modelEquals(e3::base_StructuredClassifier, e1) AND modelDirectParentOf(el, e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule016

Description A TestComponent is derived from a Lane

Elements el:Lane, e2:DocumentRoot,e3:Model, e4:Class, e5:TestComponent

Conditions modelEquals(e5::base_StructuredClassifier, e4) AND modelRelatedTo(e2, Containment, el), AND (mod-
elRelatedTo(e3, Tests, e2) OR modelRelatedTo(e2, Tested_By, e3)) AND modelRelatedTo(e3, Containment,
ed)

Actions createLink(el, Derivation, e4)

Rule-ID DDRule017

Description creates links between a process and its contained Lane

Elements el:Process, e2:Lane

Conditions modelParentOf(el,e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule018

Description creates link between a Lane and the corresponding class implementing its services

Elements el:Lane, e2:Class

Conditions valueEquals(el::name, e2::name)

Actions createLink(e2, Definition, el)

Rule-ID DDRule019

Description creates links between a TestModel and the Process it tests

Elements el:Process, e2:Model, e3:DocumentRoot, e4:Definitions

Conditions modelDirectParentOf(e4, el) AND modelDirectParentOf(e3, e4) AND valueNotNull(el::name), AND
(modelRelatedTo(e2, Tests, e3) OR modelRelatedTo(e3, Tests, €2))

Actions createLink(e2, Tests, el)

Rule-ID DDRule020

Description creates traceability links between a process and the test cases to test the process

Elements el:Process, e2:Activity

Conditions valueEndsWith(e2::name, el::name) AND valueStartsWith(e2::name, testCase)

Actions createLink(e2, Tests, el), createLink(el, Tested_By, e2)

Rule-ID DDRule021

Description creates link between SUT and corresponding ProcessClass

Elements el:Class, e2:ProcessClass, e3:Class, e4:SUT

Conditions modelEquals(e4::base_Classifier, €3) AND modelEqualse2::base_Class, el) AND valueEquals(el::name,

e3::name)

175

Actions createLink(el, Definition, e3)

Rule-ID DDRule022

Description creates a traceability link between an operation of ProcessClass and an Operation of SUT

Elements el:Class, e2:ProcessClass, e3:Class, e4:SUT, pOP:Operation, sOP:Operation

Conditions modelEquals(e2::base_Class, el) AND modelEquals(e4::base_Classifier, e3) AND modelDirectPar-
entOf(el, pOP) AND modelDirectParentOf(e3,sOP) AND valueEquals(sOP::name, pOP::name)

Actions createLink(sOP, Equivalence, pOP)

Rule-ID DDRule023

Description creates a link between a package and its sub packages

Elements el:Package, e2:Package

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule024

Description creates link between Lane and its root element

Elements el:Lane, e2:DocumentRoot

Conditions modelParentOf(e2, el)

Actions createLink(e2, Containment, el)

Rule-ID DDRule025

Description creates links between TestComponent, TestContext and its TestModel

Elements el:Class, e2:Model, e3:TestModel

Conditions modelEquals(e3::base_Package, e2) AND modelParentOf(e2, el)

Actions createLink(e2, Containment, el)

Rule-ID DDRule026

Description creates links between lanes, ServiceTasks, and corresponding Operations

Elements el:Lane, e2:Class, e3:Operation, e4:Process, e5:ServiceTask

Conditions modelRelatedTo(e2, Definition, e1) AND valueEquals(e5::name, e3::name) AND modelRelatedTo(e2, Con-
tainment, e3), modelRelatedTo(e4, Containment, e5), modelRelatedTo(e4, Containment, el)

Actions createLink(e3, Equivalence, e5), createLink(el, Provision, e5)

Rule-ID DDRule027

Description creates links between classes/interfaces and their owned operations

Elements el:Class | Interface, e2:Operation

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, €2)

Rule-ID DDRule028

Description creates Links between Processes and ServiceTasks

Elements el:Process, e2:ServiceTask

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule029

Description creates links between process and its contained tasks

Elements el:Process, e2:Task

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule030

Description creates traceability links between process and the send tasks conatined by it

Elements el:Process,e2:SendTask

Conditions modelDirectParentOf(el,e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule031

Description creates traceability links between process and the receive tasks conatined by it

Elements el:Process,e2:ReceiveTask

Conditions modelDirectParentOf(el,e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule033

Description creates link between StartEvent and Process

Elements el:Process,e2:StartEvent

Conditions modelDirectParentOf(el,e2)

Actions createLink(el, Containment, €2)

Rule-ID DDRule033

Description creates link between EndEvent and Process

Elements el:Process,e2:EndEvent

Conditions modelDirectParentOf(el,e2)

Actions createLink(el, Containment, €2)

Rule-ID DDRule034

Description creates link between Process and the SequenceFlows it contains

Elements el:Process,e2:SequenceFlow

Conditions modelDirectParentOf(el,e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule035

176

Description creates link between process and event based gateway

Elements el:Process,e2:EventBasedGateway

Conditions modelDirectParentOf(el,e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule036

Description creates link between process and ExclusiveGateway

Elements el:Process,e2:ExclusiveGateway

Conditions modelDirectParentOf(el,e2)

Actions createLink(el, Containment, €2)

Rule-ID DDRule037

Description creates a link between an operation and its contained parameters
Elements el:Operation, e2:Parameter

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, €2)

Rule-ID DDRule038

Description creates link between an component interface and an interface in Class diagram
Elements el:Interface, e2:Interface

Conditions valueEquals(el::name, e2::name)

Actions createLink(el, Equivalence,e2)

Rule-ID DDRule039

Description creates a traceability link between a Particiant and a Collaboration
Elements el:Collaboration, e2:Participant

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule040

Description creates a traceability link between component and its provided interface
Elements el:Interface, e2:Component; e3:Port

Conditions modelEquals(e3::type, el) AND modelDirectParentOf(e2, e3)
Actions createLink(e2,Provision, el)

Rule-ID DDRule041

Description creates a link between an interface and the class implementing the interface
Elements el:Interface, e2:Class

Conditions valueStartsWith(el::name,"I") AND valueEndsWith(el::name, e2::name)
Actions createLink(el, Realization, e2)

Rule-ID DDRule042

Description creates a link beween activity and its contained Control Flows
Elements el:Activity, e2:ControlFlow

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, €2)

Rule-ID DDRule043

Description creates a link between an activity and its contained activity partition
Elements el:Activity, e2:ActivityPartition

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, €2)

Rule-ID DDRule044

Description creates a link between an activity and its contained Call operation actions
Elements el:Activity, e2:CallOperationAction

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule045

Description creates links between an activity and its contained InitailNode
Elements el:Activity, e2:InitialNode

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule046

Description creates links between an activity and its contained ActivityFinalNode
Elements el:Activity, e2:ActivityFinalNode

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule047

Description creates a link between Package and its contained classes

Elements el:Package, e2:Class

Conditions modelDirectParentOf(el, e2)

Actions createLink(el, Containment, e2)

Rule-ID DDRule048

Description creates link between ActivityFinalNode and BPMN EndEvent
Elements el:ActivityFinalNode, e2:Activity, e3:Process, e4:EndEvent
Conditions modelDirectParentOf(e3, e4) AND modelRelatedTo(e2, Tests, e3) AND modelDirectParentOf(e2, el)
Actions createLink(e4, Derivation, el)

177

Rule-ID DDRule049

Description creates link between test InitialNode and BPMN StartEvent

Elements el:InitialNode, e2:Activity, e3:Process, e4:StartEvent

Conditions modelDirectParentOf(e3, e4) AND modelRelatedTo(e2, Tests, e3) AND modelDirectParentOf(e2, el)

Actions createLink(e4, Derivation, el)

Rule-ID DDRule050

Description creates a link between a Task and Service it calls

Elements el:Task, e2:MessageFlow, e3:ServiceTask

Conditions modelEquals(e2::sourceRef, e1) AND modelEquals(e2::targetRef, e3)

Actions createLink(el, Calls, e3)

Rule-ID DDRule051

Description creates link between test CallOperationAction and BPMN Task

Elements el:CallOperationAction, e2:Activity, e3:Process, e4:Task

Conditions modelDirectParentOf(e3, e4) AND modelRelatedTo(e2, Tests, e3) AND modelDirectParentOf(e2, el)

Actions createLink(e4, Derivation, el)

Rule-ID DDRule052

Description creates link between OpaqueAction and Task

Elements el:OpaqueAction, e2:Activity, e3:Process, e4:Task

Conditions modelDirectParentOf(e3, e4) AND valueEquals(el::name,e4::name) AND modelRelatedTo(e2, Tests, e3)
AND modelDirectParentOf(e2, el)

Actions createLink(e4, Derivation, el)

Rule-ID DDRule053

Description creates a link between a ProcessClass and a TestModel

Elements el:Class, e2:Model, e3:Process

Conditions modelRelatedTo(e2, Tests, e3) AND modelRelatedTo(e3, Definition, el)

Actions createLink(e2, Tests, e1)

Rule-ID DDRule054

Description Mock operation is derived from a ServiceTask

Elements el:Operation, e2:Class, e3:ServiceTask, e4:Lane

Conditions valueEndsWith(el::name, "Mock") AND valueStartsWith(el::name, e3:name) AND modelDirectPar-
entOf(e2, el) (modelRelatedTo(e4, Provision, e3) OR modelRelatedTo(e3,Provision, e4)) AND modelRe-
latedTo(e4, Derivation, e2)

Actions createLink(e3, Mocks, el)

Rule-ID DDRule055

Description creates links between the Participant and its corresponding implementation Class

Elements el:Participant,e2:Class,e3: Component

Conditions modelRelatedTo(e2, Implementation,e3) AND (modelRelatedTo(el, Equivalence,e3) OR modelRelat-
edTo(e3, Equivalence,el))

Actions createLink(e2, Implementation, el)

Rule-ID DDRule057

Description creates link between a TestArchitectureModel and TestDataModel

Elements el:Model, e2:Model, e3:Process

Conditions valueStartsWith(e2::name, e3::name) AND valueEndsWith(e2::name, "TestData") AND modelRelat-
edTo(el, Tests, €3)

Actions createLink(el, Usage, e2)

Rule-ID DDRule058

Description creates links between a TestCase and TestDataModel

Elements el:Activity, e2:Model, e3:Process

Conditions valueStartsWith(e2::name, el:name) AND valueEndsWith(e2::name, "TestData") AND modelRelat-
edTo(el, Tests, €3)

Actions createLink(el, Usage, e2)

Rule-ID DDRule059

Description creates link between a DataPool and the Class it specializes

Elements el:Class, e2:Class, e3:DataPool

Conditions modelEquals(e3::base_Classifier, e1) AND valueStartsWith(el::name,e2::name)

Actions createLink(el, Specializes, e2)

Rule-ID DDRule060

Description creates link between a class and its super class

Elements el:Class, e2:Class, e3:Generalization

Conditions modelDirectParentOf(el, e3) AND modelEquals(e3::general, e2)

Actions createLink(el, Extends, e2)

Rule-ID DDRule061

Description creates links between lanes, SendTasks, and corresponding Operations

Elements el:Lane, e2:Class, e3:Operation, e2:Process, e5:SendTask

Conditions modelRelatedTo(e2, Definition,el) AND valueEquals(e5.name,e3.name) AND modelRelatedTo(e2, Con-
tainment,e3) AND modelRelatedTo(e4, Containment,e5) AND modelRelatedTo(e4, Containment,el)

Actions createLink(e3,Equivalence , e5), createLink(el, Communicates, e5)

Rule-ID DDRule062

Description Mock operation is derived from a SendTask

178

Elements

el:Operation, e2:Class, e3:SendTask, e4:Lane | Participant

Conditions valueEndsWith(el.name, ‘Mock’) AND valueStartsWith(el.name, e3.name) modelRelatedTo(e2, Contain-
ment,el) AND (modelRelatedTo(e4, Communicate,e3) OR modelRelatedTo(e3, Communicate,e4)) AND
(modelRelatedTo(e4, Derivation,e2) OR modelRelatedTo(e2, Derivation,e4))

Actions createLink(el, Mocks, e3)

Rule-ID DDRule063

Description creates links between lanes, ReceiveTasks, and corresponding Operations

Elements el:Lane

Elements e2:Class

Elements e3:Operation

Elements e4:Process

Elements e5:ReceiveTask

Conditions modelRelatedTo(e3, Equivalence,e5) AND modelRelatedTo(el, Communicate,e5) AND modelRelat-
edTo(e2, Definition,el)

Actions createLink(el, , e2)

Rule-ID DDRule064

Description Mock operation is derived from a ReceiveTask

Elements el:Operation, e2:Class, e3:ReceiveTask, e4:Lane | Participant

Conditions valueEndsWith(el::name, Mock) AND valueStartsWith(el::name, e3::name) AND modelRelatedTo(e2,
Containment,el) AND modelRelatedTo(e4, Communicate,e3) AND modelRelatedTo(e4, Derivation,e2)

Actions createLink(el, Mocks, e3)

Rule-ID DDRule065

Description Creates Link between a Participant and its provided services

Elements el:Participant, e2:Process, e3:ServiceTask, e4:DocumentRoot

Conditions modelRelatedTo(e2, Initiation,el) AND modelRelatedTo(e4, Containment,el) AND modelRelatedTo(e4,
Containment,e2) AND modelRelatedTo(e2, Containment,e3)

Actions createLink(el, Provision, e3)

Rule-ID DDRule066

Description Between the services of participants and their implementation

Elements el:Participant, e2:ServiceTask, e3:Class, e4:Operation, e5:Interface

Conditions modelRelatedTo(el, Provision,e2) AND modelRelatedTo(e3, Implementationel) AND valueE-
quals(e2::name, e4:name) AND modelRelatedTo(e5, Realization,e3) AND (modelRelatedTo(e3,
Containment,e4) OR modelRelatedTo(e5, Containment,e4))

Actions createLink(e2, Equivalence, e4)

Rule-ID DDRule67

Description creates link between a Mock operation and a ServiceTask provided by a participant

Elements el:Participant, e2:ServiceTask, e3:Class, e4:Operation

Conditions modelRelatedTo(el, Provision,e2) @ AND modelDirectParentOf'(€3, e4d) AND val-
ueEndsWith(e4::name,"Mock") AND modelRelatedTo(e3, Derivation,el)

Actions createLink(e4, Mocks, e2)

Rule-ID DDRule068

Description Creates dependency relation between Participant and DocumentRoot

Elements el:Participant, e2:DocumentRoot

Conditions modelParentOf(e2, el)

Actions createLink(e2, Containment, el)

Rule-ID DDRule069

Description Creates link between element process and documentroot

Elements el:Process, e2:DocumentRoot

Conditions modelParentOf(e2, el)

Actions createLink(e2, Containment, el)

Rule-ID DDRule070

Description Creates Links between class corresponding to lane or participant and test component

Elements el:Lane | Participant, e2:Class, e3:Class

Conditions modelRelatedTo(el, Derivation,e3) AND (modelRelatedTo(e2, Implementation,el) OR modelRelat-
edTo(e2, Definition,el)

Actions createLink(e3, Mocks, e2)

Rule-ID DDRule071

Description creates a link between a process and SUT

Elements el:Class, e2:Class, e3:Process

Conditions (modelRelatedTo(e2, Definition,el) OR modelRelatedTo(el, Definition,e2)) AND (modelRelatedTo(e3,
Definition,e1) OR modelRelatedTo(el, Definition,e3))

Actions createLink(e3, Derivation, e2)

Rule-ID DDRule072

Description creates links between Lanes and Tasks

Elements el:Lane, e2:Task

Conditions (modelEquals(e2::lane,e1))

Actions createLink(el, Executes, €2)

Rule-ID DDRule073

Description creates link between Lane and ServiceTasks

179

Elements

el:Lane, e2:ServiceTask

Conditions (modelEquals(e2::lane, el))

Actions createLink(el, Provision, e2)

Rule-ID DDRule074

Description creates links between SendTask, ReceiveTask and Lane

Elements el:Lane, e2:ReceiveTask | SendTask

Conditions (modelEquals(e2::lane, el))

Actions createLink(el, Communicate, €2)

Rule-ID DDRule075

Description create links between a task and mock operation

Elements el:Process, e2:EndEvent,e3:Lane | Participant,e4:Task,e5:Class,e6:Operation

Conditions (valueStartsWith(e6::name, ed:name) AND (NOT(modelRelatedTo(el,Containment,e2)) AND
(modelRelatedTo(e5,Containment,e6) AND (modelRelatedTo(e3,Derivation,e5) = AND (mod-
elRelatedTo(el,Containment,e4) AND (modelRelatedTo(e3,Initiation,e1) OR (modelRelat-
edTo(el,Containment,e3))))

Actions createLink(e6, Mocks, e4)

Rule-ID DDRule077

Description creates links bertween operatons of interfaces and mockoperatios

Elements el:Class, e2:Interface, e3:Operation, e4:Class, e5:Operation

Conditions (modelRelatedTo(e2, Realization,el) AND modelRelatedTo(e2, Containment, e3) AND mod-
elRelatedTo(e4, Mocks, el) AND modelRelatedTo(e4, Containment, e5) AND valueS-
tartsWith(e5::name,e3::name) AND ValueEndsWith(e5::name,Mock))

Actions createLink(e5, Mocks, e3)

Rule-ID DDRule076

Description creates link between operations of a class and corresponding test componenet

Elements el:Class, e2:Class, e3:Operation, e4:Operation

Conditions (modelRelatedTo(el, Mocks,e2) AND modelRelatedTo(el, Containment, e3) AND modelRelatedTo(e2,
Containment, e4) AND valueStartsWith(e3::name, e4::name))

Actions createLink(e3, Mocks, e4)

Rule-ID DDRule078

Description creates links between a test model and its java implemenattaion

Elements el:Model, e2:Package

Conditions (valueStartsWith(el::name, TestArchitecture) AND (el::name, e2::name))

Actions createLink(e2, Implementation, el)

Rule-ID DDRule079

Description creates link between a test package and its corresponding java implementation

Elements el:Package, e2:Package, e3:TestPackage

Conditions (modelEquals(e3::base_Package,el) AND (el:name, e2::name))

Actions createLink(el, Implementation, e2)

Rule-ID DDRule080

Description creates links between java package and implementation classes

Elements el:Package, e2:ClassDeclaration

Conditions (modelDirectParentOf(el,e2))

Actions createLink(el, Containment, e2)

Rule-ID DDRule081

Description creates link between java classes and methods

Elements el:ClassDeclaration, e2:MethodDeclaration

Conditions (modelDirectParentOf(el,e2))

Actions createLink(el, Containment, e2)

Rule-ID DDRule082

Description creates link between SUT and corresponding java implemenatation

Elements el:Class, e2:Model, e3:ClassDeclaration,e4:Package,e5:SUT

Conditions (ModelEquals(e5::base_Classifier,el) AND ModelRelatedTo(e2,Containment,el) AND ModelRelat-
edTo(e4,Containment,e3) AND ValueStartsWith(e3::name,el::name)) AND (ModelRelatedTo(e2, Imple-
mentation, e4) OR ModelRelatedTo(e4, Implementation, e2))

Actions createLink(e3, Implementation, e4)

Rule-ID DDRule083

Description creates links between TestContext, TestComponents, and its java implementation

Elements el:Class, e2:Package, e3:ClassDeclaration,e4:Package,e5:TestContext | TestComponent

Conditions (ModelEquals(e5::base_StructuredClassifier,el) AND ModelRelatedTo(e2,Containment,e1) AND Model-
RelatedTo(e4,Containment,e3) AND (el::name,e3::name)) AND (ModelRelatedTo(e2, Implementation, e4)
OR ModelRelatedTo(e4, Implementation, e2))

Actions createLink(e3, Implementation, el)

Rule-ID DDRule084

Description creates link between MockOperation and corresponding java methods and SUT operations

Elements el:Class, e2:ClassDeclaration, e3:Operation,e4:MethodDeclaration

Conditions (e4::name,e3::name) AND (ModelRelatedTo(e1l,Containment,e3) AND ModelRelat-
edTo(e2,Containment,e4)) AND (ModelRelatedTo(e2, Implementation, el))

Actions createLink(e4, Implementation, e3)

180

Rule-ID

DDRule085

Description creates link between receive tasks and send signal action

Elements el:ReceiveTask, e2:AcceptEventAction, e3:Activity,e4:Process

Conditions (ModelRelatedTo(e3, Tests,e4) OR ModelRelatedTo(e4, Tested_By,e3)) AND (ModelRelat-
edTo(e4,Containment,el) AND ModelRelatedTo(e3,Containment,e2))

Actions createLink(el, Derivation, e2)

Rule-ID DDRule086

Description creates links between sequence flows and control flows (startevent and task)

Elements el:SequenceFlow, srcSF:StartEvent, dstSF:Task, e2:ControlFlow, srcA:InitialNode, dstA:OpaqueAction

Conditions (ModelEquals(el::sourceRef,stcSF) AND ModelEquals(el::targetRef,dstSF)) AND (ModelE-
quals(e2::source,stcA) AND ModelEquals(e2::target,dstA)) AND (ModelRelatedTo(srcSF, Derivation,
srcA) OR ModelRelatedTo(srcA, Derivation, srcSF)) AND (ModelRelated To(dstSF, Derivation, dstA) OR
ModelRelatedTo(dstA, Derivation, dstSF))

Actions createLink(el, Derivation, e2)

Rule-ID DDRule087

Description creates links between sequence flows and control flows

Elements el:SequenceFlow, srcSF:ServiceTask, dstSF:Task, e2:ControlFlow, srcA:CallOperationAction,
dstA:OpaqueAction

Conditions (ModelEquals(el::sourceRef,stcSF) AND ModelEquals(el::targetRef,dstSF)) AND (ModelE-
quals(e2::source,srcA) AND ModelEquals(e2::target,dstA)) AND (ModelRelatedTo(srcSE, Derivation,
srcA) OR ModelRelatedTo(srcA, Derivation, srcSF)) AND (ModelRelatedTo(dstSF, Derivation, dstA) OR
ModelRelatedTo(dstA, Derivation, dstSF))

Actions createLink(el, Derivation, e2)

Rule-ID DDRule088

Description creates links between sequence flows and control flows

Elements el:Activity, e2:Process, e3:AcceptEventAction, e4:ReceiveTask, srcA:CallOperationAction,
dstA:OpaqueAction

Conditions (e3::name,ed:name) AND (ModelDirectParentOf(el,e3) AND ModelRelatedTo(e2, Containment, e4))
AND (ModelRelatedTo(e2, Tests,e1) OR ModelRelatedTo(el, Tests,e2))

Actions createLink(e3, Derivation, e4)

Rule-ID DDRule089

Description controlflow and sequenceflow

Elements el:SequenceFlow, e2:ControlFlow, srcSF:ServiceTask, dstSF:ReceiveTask, srcA:CallOperationAction,
dstA:AcceptEventAction

Conditions (ModelEquals(el::sourceRef,stcSF) AND ModelEquals(el::targetRef,dstSF)) ~AND (ModelE-
quals(e2::source,stcA) AND ModelEquals(e2::target,dstA)) AND (ModelRelatedTo(srcSF, Derivation,
srcA) OR ModelRelatedTo(srcA, Derivation, srcSF)) AND (ModelRelated To(dstSF, Derivation, dstA) OR
ModelRelatedTo(dstA, Derivation, dstSF))

Actions createLink(el, Derivation, e2)

Rule-ID DDRule091

Description ControlFow and SequenceFlow ServiceTask CallOperattionAction

Elements el:SequenceFlow, e2:ControlFlow, srcSF:ServiceTask, dstSF:ServiceTask, srcA:CallOperationAction,
dstA:CallOperationAction

Conditions (ModelEquals(srcSF::outgoing,el) =~ AND ModelEquals(dstSF::incoming,el)) ~AND (ModelE-
quals(srcA:outgoing, e2) AND ModelEquals(dstA:incoming, e2)) AND (ModelRelatedTo(srcSE,
Derivation, srcA) AND ModelRelatedTo(dstSF, Derivation, dstA))

Actions createLink(el, Derivation, e2)

Rule-ID DDRule092

Description creates links between Participants and their Lanes

Elements el:Process, e2:Participant, e3:Lane

Conditions (ModelRelatedTo(e2, Initiation, e1) AND ModelRelatedTo(el, Containment, e3))

Actions createLink(e2, Containment, e3)

Rule-ID DDRule093

Description cretaes a link between the callOperationAction and the MockOperations they call

Elements el:CallOperationAction | SendSignal Action, e2:Task | SendTask, e3:ServiceTask, e4:Operation

Conditions (ModelRelatedTo(e4, Mocks, €3) AND ModelRelatedTo(e2, Calls, e3) AND ModelRelatedTo(e2, Deriva-
tion, el))

Actions createLink(el, Calls, e4)

Rule-ID DDRule09%4

Description creates Link between SendSignal Action and Send Task

Elements el:SendTask, e2:Process, e3:SendSignalAction, e4:Activity

Conditions (ModelRelatedTo(e4, Containment, e3) AND (el:name, e3::name)) AND (ModelDirectParentOf(e2, el)
AND ModelRelatedTo(e4, Tests, e2))

Actions createLink(el, Derivation, e3)

Rule-ID DDRule095

Description Creates Link between Sequence Flow emerging from Decision Node to Taks and corresponding Con-
trolFlow

Elements el:SequenceFlow, e2:Task, e3:ControlFlow, e4:ConditionalNode, e5:CallOperationAction

181

Conditions

Actions

((el:name,e4::name)) AND (ModelEquals(e3::source, e4) AND ModelEquals(e3::source, e5)) AND (Mod-
elEquals(el::targetRef, e2) AND ModelRelatedTo(e2, Derivation, e5))
createLink(el, Derivation, e3) AND createLink(el, Derivation, e4)

Impact Rules

Table E.2: Impact Rules between Models and Tests.

Rule 1R001

Description Deleting a ProcessClass affects corresponding TestModel

Elements el:Class, e2:Model, e3:TestComponent

Change Type | Delete ProcessClass

Conditions (ModelRelatedTo(e2, Tests,el) OR ModelRelated To(el, Tests,e2))

Actions reportImpact(el, Delete ProcessClass, e2)

Rule IR002

Description Deleting an operation deletes corresponding ServiceTask

Elements el:ServiceTask, e2:Operation

Change Type | Delete Operation

Conditions (ModelRelatedTo(e2,Equivalence,el) OR ModelRelatedTo(el,Equivalence,e2))
Actions reportlmpact(e2, Delete ServiceTask, el)

Rule IR003

Description Deleting a ServiceTask deletes corresponding MockOperation

Elements el:Process, e2:Class

Change Type | Delete ServiceTask

Conditions (ModelRelated To(e2,Mocks,el))

Actions reportImpact(el, Delete ServiceTask, e2)

Rule IR004

Description Deleting a Process affects corresponding ProcessClass

Elements el:Participant, e2:Class, e3:TestComponent

Change Type | Delete Process

Conditions (ModelRelatedTo(e2,Definition,e1) OR ModelRelated To(e1,Definition,e2))
Actions reportImpact(el, Delete Participant, e2)

Rule 1R005

Description Deleting a participant impacts test components

Elements el: Class, e2:Model, e3:TestComponent

Change Type | Delete Participant

Conditions (ModelRelatedTo(e2,Derivation,el) OR ModelRelatedTo(el,Derivation,e2))
Actions reportlmpact(el, Delete ProcessClass, e2)

Rule IR006

Description Adding an operation in class requires adding corresponding mockoperations in testcomponents
Elements el:Class, e2:Operation, e3:Class

Change Type | Add Operation

Conditions (ModelRelated To(e3,Mocks,e1) OR ModelRelatedTo(el,Tests,e2))

Actions reportlmpact(el, Add MockOperation,e2, e3 | e2)

Rule IR007

Description Replacing a ServiceTask requires replacement of corresponding CallOperationAction in tests
Elements el:ServiceTask, e2:ServiceTask, e3:CallOperationAction

Change Type | Replace ServiceTask (Composite)

Conditions (ModelRelatedTo(el,Derivation,e3))

Actions reportlmpact(el, Add SUTOperation, €2, e3 | e2)

Rule IR008

Description Adding an operation in ProcessClass requires a corresponding operation in SUT
Elements el:Class,e2:Operation, e3:Class

Change Type | Add Operation

Conditions (ModelRelated To(e1,Definition,e3))

Actions reportlmpact(el, Delete ProcessClass, e2)

Rule IR009

Description Adding a parameter in an operation requires adding a parameter in the corresponding mockoperation
Elements el:Operation, e2:Parameter, e3:Operation

Change Type | Add Parameter

Conditions (ModelRelated To(e3,Mocks,el))

Actions reportlmpact(el, Add Parameter in MockOperation, €2, e3 | e2)

182

Rule 1R010

Description Replace a Service Task with another ServiceTask affects corresponding mockoperation
Elements el:ServiceTask, e2:Operation, e3:ServiceTask,e4:Operation

Change Type | Replace ServiceTask (Composite)

Conditions (ModelRelatedTo(e2,Mocks,el) OR ModelRelated To(e4,Mocks,e3))

Actions reportImpact(el, Replace MockOperation, e3,e2 | e4)

Rule IR011

Description Adding a MockOperation in test component requires corresponding method in implementation class
Elements el:Operation, e2:Class, e3:ClassDeclaration

Change Type | Add MockOperation

Conditions (ModelRelatedTo(e3,Implementation,e2))

Actions reportlmpact(e2, Add MOImplementation, el,e3 | el)

Rule IR012

Description Adding an operation in SUT requires corresponding implementation method in test code
Elements el:Operation, e2:Class, e3:ClassDeclaration

Change Type | Add SUTOperation

Conditions (ModelRelatedTo(e3,Implementation,e2))

Actions reportlmpact(e2, Add SUTOperationImplementation, el, 3 | el)

Rule IR013

Description Adding a parameter in MockOperation requires adding parameter in corresponding implementation
Elements el:Operation, e2:Parameter, e3:MethodDeclaration

Change Type | Add Parameter in MockOperation

Conditions (ModelRelatedTo(e3,Implementation,el))

Actions reportlmpact(el, Add Parameter in MOImplementation, e2, e3 | e2)

Rule IR014

Description Adding an parameter in an operation requires update in corresponding SUT Operation
Elements el:Operation, e2:Parameter, e3:Operation

Change Type | Add Parameter

Conditions (ModelRelatedTo(e3,Equivalence,el))

Actions reportlmpact(el, Add Parameter in SUTOperation, €2, e3 | e2)

Rule IR015

Description Adding Parameter in SUTOperation requires update in its implementation

Elements el:Operation, e2:Parameter, e3:MethodDeclaration

Change Type | Add Parameter in SUTOperation

Conditions (ModelRelatedTo(e3,Implementation,el))

Actions reportlmpact(el, Add Parameter in SUTImplementation, €2, e3 | e2)

Rule IR016

Description Adding a ServiceTask in a Process requires adding a corresponding MockOperation
Elements el:Process, e2:Lane, e3:Class, e4:ServiceTask

Change Type | Add ServiceTask

Conditions (ModelRelated To(e2,Derivation,e3) AND ModelRelatedTo(el,Containment,e2))
Actions reportImpact(el, Add MockOperation, e4, e3)

Rule IR017

Description Adding a Parameter requires adding corresponding data pools or data partitions
Elements el:Operation, e2:Parameter, e3:Model, e4:Model

Change Type | Add Parameter

Conditions ModelRelatedTo(e3,Usage,e4)) AND (modelParentOf(e3,e1))

Actions reportlmpact(el, Add DataPool, €2, e4)

Rule IRO18

Description Adding a ServiceTask requires corresponding Operation in class

Elements el:Process, e2:ServiceTask, e3:Class

Change Type | Add ServiceTask

Conditions (ModelRelated To(e1,Definition,e3) AND ModelRelatedTo(e1, Tests,e2))

Actions reportlmpact(el, Add Operation, e2,e3|e2)

Rule IR019

Description Adding a ServiceTask requires corresponding operation in SUT

Elements el:Process, e2:Class, e3:ServiceTask

Change Type | Add ServiceTask

Conditions (ModelRelated To(el,Derivation,e2) AND ModelRelatedTo(el, Tests,e2))

Actions reportlmpact(el, Add SUTOperation, €3, €2 | €3)

Rule IR020

Description Deleting a SequenceFlow requires deleting the corresponding ControlFlow in the test case
Elements el:SequenceFlow, e2:ControlFlow, e3:TestComponent

Change Type | Delete SequenceFlow

Conditions ModelRelated To(e2,Derivation,el)

Actions reportImpact(el, Delete ControlFlow, e2)

Rule 1R021

Description Adding a sequence flow in the process requires adding sequence flow to the corresponding test cases
Elements el:ServiceTask, e2:ServiceTask, e3:CallOperationAction, e4:CallOperationAction, e6:Activity

183

Change Type | Add SequenceFlow

Conditions (ModelRelatedTo(e2,Derivation,el) AND modelDirectParentOf(e6, e3) AND modelDirectParentOf(e6,
e4))

Actions reportlmpact(el, Add ControlFlow, e2, e3 | e4)

Rule IR022

Description Adding a ServiceTask in a process of Participant requires corressponding MockOperation in the test com-

onent

Elements Ie)lzProcess, e2:ServiceTask, e3:Participant, e4:Class

Change Type | Add ServiceTask

Conditions (ModelRelated To(e3,Initiation,e1l) AND ModelRelatedTo(e3,Derivation,e24))

Actions reportlmpact(el, Add MockOperation, €2, e4 | e2)

Rule IR023

Description Adding a MessageFlow between a Task and Service Task requires replacement in corresponding test

Elements el:Task, e2:ServiceTask, e3:OpaqueAction | CallOperationAction

Change Type | Add MessageFlow

Conditions ModelRelatedTo(el,Derivation,e3)

Actions reportlmpact(el, Replace OpaqueAction, €2, e3 | e2)

Rule IR024

Description Replacing a ServiceTask requires replacing mockOperation (if new operation is missing)

Elements el:ServiceTask, e2:ServiceTask, e3:Operation

Change Type | Replace ServiceTask

Conditions ModelRelatedTo(e3,Mocks,el)

Actions reportImpact(el, Replace MockOperation, e2, e2 | e3)

Rule 1R025

Description Merging two classes require merging corresponding participants in a Process

Elements el:Class, e2:Class, e3:Participant, e4:Participant,e5:Process

Change Type | Merge Classes

Conditions (ModelRelatedTo(e3,Initiation,e5) AND ModelRelated To(e4,Initiation,e5) AND ModelRelat-
edTo(el,Implementation,e3) AND ModelRelated To(e2,Implementation,e4))

Actions reportlmpact(el, Merge Participants, e2, e3 | e4)

Rule IR026

Description Merging Of participants requires merging of corresponding Lanes

Elements el:Participant, e2:Participant, e3:Lane, e4:Lane, e6:Process

Change Type | Merge Participants

Conditions (ModelRelatedTo(el,Containment,e3) AND ModelRelatedTo(e2,Containment,e4) AND ModelRelat-
edTo(el,Initiation,e6) AND ModelRelated To(e2,Initiation,e6))

Actions reportlmpact(el, Merge Lanes, e2,e3 | e4)

Rule IR027

Description Merging two classes result in rename of Participnat (if both are not in a Process)

Elements el:Class, e2:Class, e3:Participant, e5:Participant

Change Type | Merge Classes

Conditions (ModelRelatedTo(e2,Implementation,e3) AND NOT(ModelRelatedTo(el,Implementation,e5))

Actions reportlmpact(el, Rename Participant, e2, e3)

Rule IR028

Description Renaming a Participant requires renaming a TestComponent

Elements el:Participant, e2:Class, e3:TestComponent

Change Type | Rename Participant

Conditions ModelRelatedTo(e2,Derivation,el) A)

Actions reportlmpact(el, Rename TestComponent, e2)

Rule 1R029

Description Renaming a Task Renames corresponding CallOperationAction in TestCase

Elements el:Task, e2:CallOperationAction

Change Type | Rename Task

Conditions ModelRelatedTo(el,Derivation,e2)

Actions reportlmpact(el, Rename CallOperationAction, e2)

Rule IR030

Description Renaming a task requires renaming corresponding OpaqueAction in TestCase

Elements el:Task, e2:0OpaqueAction, e3:TestComponent

Change Type | Rename Task

Conditions ModelRelatedTo(el,Derivation,e2)

Actions reportlmpact(el, Rename OpaqueAction, e2)

Rule IR0O31

Description Adding a Participant in a Process requires corresponding test component in the test architecture

Elements el:Process, e2:Participant, e3:Model

Change Type | Add Participant

Conditions modelRelatedTo(e3, Tests,e1)

Actions reportlmpact(el, Add TestComponent", e2,e3 | e2)

Rule IR032

Description Adding a test component in a model requires test component code

184

Elements

el:Model, e2:Class, e3:Package

Change Type | Add TestComponent

Conditions ModelRelatedTo(e3,Implementation,el)

Actions reportlmpact(el, Add TestComponentImplementation, e2,e3 | e2)

Rule IR033

Description Deleting a component requires deleting corresponding Participant

Elements el:Component, e2:Participant

Change Type | Delete Component

Conditions (ModelRelatedTo(el, Equivalence, e2) OR ModelRelatedTo(e2, Equivalence, el))

Actions reportImpact(el, Delete Participant, e2)

Rule 1R034

Description Renaming a component requires renaming the corresponding Participant

Elements el:Component, e2:Participant

Change Type | Rename Component

Conditions (ModelRelatedTo(el, Equivalence, e2) OR ModelRelatedTo(e2, Equivalence, el))

Actions reportlmpact(el, Rename Participant, e2)

Rule IR035

Description Merging a Component requires merging corresponding Participants

Elements el:Component, e2:Component, e3:Participant, e4:Participant, Collaboration

Change Type | Merge Components

Conditions (ModelRelatedTo(el, Equivalence, e3) OR ModelRelatedTo(e3, Equivalence, el)) AND (ModelRelat-
edTo(e2, Equivalence, e4) OR ModelRelatedTo(e4, Equivalence, e2)) AND (ModelRelatedTo(e5, Contain-
ment, e3) AND ModelRelatedTo(e5, Equivalence, e4))

Actions reportlmpact(el, Rename Participant, e2)

Rule IR036

Description Merging of two lanes require moving corresponding ServiceTasks to the merged Lane.

Elements el:Lane, e2:Lane, e3:ServiceTask

Change Type | Merge Lanes

Conditions ModelRelatedTo(e2, Provision, e3)

Actions reportlmpact(el, Move ServiceTask, €2, 3 | el)

Rule IR037

Description Merging two Participants requires merging corresponding TestCmponents

Elements el:Participant, e2:Participant, e3:Class, e4:Class, e5:Package

Change Type | Merge Participants

Conditions (ModelRelatedTo(el, Derivation, e3) AND ModelRelatedTo(e2, Derivation, e4)) AND (ModelRelated To(e5,
Containment, e3) AND ModelRelatedTo(e5, Containment, e4))

Actions reportlmpact(el, Merge TestComponents, e2, 3 | e4)

Rule IR038

Description Merging two Lanes requires merging corresponding TestComponents

Elements el:Lane, e2:Lane, e3:Class, e4:Class, e5:Package

Change Type | Merge Lanes

Conditions (ModelRelatedTo(el, Derivation, e3) AND ModelRelatedTo(e2, Derivation, e4)) AND (ModelRelated To(e5,
Containment, e3) AND ModelRelatedTo(e5, Containment, e4))

Actions reportlmpact(el, Merge TestComponents, €2, e3 | e4)

Rule IR039

Description Merging Two Lanes requires renaming source component (if source have no TC)

Elements el:Lane, e2:Lane, e3:Class, e4:Class, e5:Package

Change Type | Merge Lanes

Conditions (ModelRelatedTo(e5, Containment, e4) AND ModelRelatedTo(e2, Derivation, e4)) AND (ModelRelat-
edTo(el, Derivation, e3) NOT ModelRelatedTo(e5, Containment, e3))

Actions reportlmpact(el, Rename TestComponent, e2, e4)

Rule IR040

Description Moving a ServiceTask to another Lane requires moving the corresponding MockOperation

Elements el:ServiceTask, e2:Lane, e3:Operation, e4:Class, e5:Package

Change Type | Move ServiceTask

Conditions (ModelRelatedTo(e3, Mocks, el) AND ModelRelatedTo(e2, Derivation, e4)) AND ModelRelatedTo(e4,
Containment, e3)

Actions reportlmpact(el, Move MockOperation, €2, e3 | e4)

Rule IR041

Description Renaming a TestComponent requires renaming the TCImplementation

Elements el:Class, e2:ClassDeclaration

Change Type | Rename TestComponent

Conditions ModelRelatedTo(e2, Implementation, el)

Actions reportlmpact(el, Rename TestComponentImplementation, e2)

Rule IR042

Description Renaming a Process requires renaming its corresponding test model

Elements el:Process, e2:Model

Change Type | Rename Process

Conditions ModelRelatedTo(e2, Tests, el)

185

Actions reportlmpact(el, Rename TestModel, , e2)

Rule IR043

Description Renaming a TestModel requires renaming corresponding implemntation package

Elements el:Model,e2:Package

Change Type | Rename TestModel

Conditions ModelRelatedTo(e2, Implementation, el)

Actions reportlmpact(el, TestPackageImplementation, , e2)

Rule IR044

Description Renaming a Process requires renamindg corresponding SUT

Elements el:Process,e2:Class,e3:SUT, e4:Model

Change Type | Rename Process

Conditions ModelEquals(e3::base_Classifier,e2) AND ModelRelatedTo(e4, Implementation, e2) AND ModelRelat-
edTo(e4, Tests, el))

Actions reportlmpact(el, Rename SUT, , e2)

Rule IR045

Description Renaming an SUT requires renaming corresponding implementation

Elements el:Class,e2:ClassDeclaration,e3:SUT

Change Type | Rename SUT

Conditions (ModelEquals(e3::base_Classifier,el) AND (ModelRelatedTo(e2, Implementation, el))

Actions reportlmpact(el, Rename SUTImplementation, , e2)

Rule IR046

Description Renaming a Process requires renaming its corresponding TestPackage

Elements el:Process,e2:Package,e3:Model

Change Type | Rename Process

Conditions (ModelRelatedTo(e3, Containment, e2) AND (ModelRelatedTo(e3, Tests, el))

Actions reportlmpact(el, Rename TestPackage, , €2)

Rule IR047

Description Renaming a TestPackage requires renaming the corresponding implementation

Elements el:Package,e2:Package

Change Type | Rename TestPackage

Conditions ModelRelatedTo(el, Implementation, e2)

Actions reportlmpact(el, Rename TestPackagelmplementation, , e2)

Rule IR048

Description Renaming a Process requires renaming its TestContext

Elements el:Process,e2:Class,e3:TestContext,e4:Model

Change Type | Rename Process

Conditions ModelEquals(e3::base_StructuredClassifier, e2) AND (ModelRelatedTo(e4, Containment,e2) AND Model-
RelatedTo(e4, Tests,el))

Actions reportlmpact(el, Rename TestContext, , €2)

Rule 1R049

Description Renaming a TestContext requires renaming its implemenattion in test code

Elements el:Class,e2:ClassDeclaration

Change Type | Rename TestContext

Conditions ModelRelatedTo(e2, Implementation,el)

Actions reportlmpact(el, Rename TestContextImplementation, , e2)

Rule IR050

Description Renaming a Process requires renaming the test cases of process

Elements el:Process,e2:Activity

Change Type | Rename Process

Conditions (ModelRelatedTo(e1, Tested_By,e2) OR ModelRelatedTo(e2, Tests,el))

Actions reportmpact(el, Rename TestCase, , €2)

Rule IR051

Description Adding a Process requires a corresponding TestPackage in the TestModel

Elements el:DocumentRoot,e2:TestModel

Change Type | Add Process

Conditions ModelRelatedTo(el, Tested_By,e2)

Actions reportlmpact(el, Add TestPackage, , €2)

Rule IR052

Description Adding a Process requires adding corresponding SUT in TestModel

Elements el:DocumentRoot,e2:TestModel

Change Type | Add Process

Conditions ModelRelatedTo(el, Tested_By,e2)

Actions reportlmpact(el, Add SUT, , e2)

Rule 1R053

Description Moving an Operation from one class to another requires moving the ServiceTasks of Participants and Lanes

Elements el:Class,e2:Class, e3:Participant | Lane, e4:Participant | Lane

Change Type | Move Operation

Conditions (ModelRelatedTo(e3, Implementation,el) AND ModelRelatedTo(e4, Implementation,e2))

Actions reportlmpact(el, Move ServiceTask, e2, e3 | e4)

186

Rule 1R054

Description Moving a ServiceTask from one Lane | participant to another requires moving mockoperations of testcom-
ponents

Elements el:Lane | Participant,e2:Lane | Participant, e3:Class, e4:Class

Change Type | Move ServiceTask

Conditions (ReferenceExists(el, Derivation,e3) AND ModelRelatedTo(e2, Derivation,e4))

Actions reportlmpact(el, Move MockOperation, €2, e3 | e4)

Rule IR055

Description Deleting a TestPackage requires deletions of TestCompoents

Elements el:Package,e2:Class

Change Type | Delete TestPackage

Conditions (ModelRelatedTo(el, Containment,e2) AND ValueEndsWith(el::name, TP))

Actions reportlmpact(el, Delete TestComponent, , €2)

Rule 1R056

Description Splitting a Participant requires Splitting corresponding testcomponents

Elements el:Participant,e2:Participant, e3:Class

Change Type | Merge Processes

Conditions ModelRelatedTo(e2, Derivation,e3)

Actions reportImpact(el, Split TestComponent, €2, €3)

Rule IR057

Description Merging two Processes requires moving the lanes of Target Process to the source Process

Elements el:Process,e2:Process, e3:Lane

Change Type | Split Participant

Conditions ModelRelatedTo(e2, Containment, e3)

Actions reportlmpact(el, Move Lane, €2, e3 | el)

Rule IR058

Description Splitting a Task into two requires splitting the corresponding MockOperation

Elements el:Task | SendTask | ReceiveTask | ServiceTask,e2:Task | SendTask | ReceiveTask | ServiceTask, e3:Operation

Change Type | Split Task

Conditions ModelRelatedTo(e3, Mocks, el)

Actions reportImpact(el, Split MockOperation, €2, e3)

Rule IR059

Description Adding a Task in a Process requires a new TestCase to cover it in the corresponding TestContext

Elements el:Process,e2:Class, e3:Model, e4:TestContext

Change Type | Add Task

Conditions (ModelRelatedTo(e3, Tests, e1) AND (e3, Containment,e2))

Actions reportlmpact(el, Add TestCase, , e4)

Rule 1R060

Description Splitting a Lane requires splitting corresponding TestComponent

Elements el:Lane,e2:Lane, e3:TestComponent

Change Type | Split Lanes

Conditions (e2, Derivation, el)

Actions reportlmpact(el, Split TestComponent, €2, e3)

Rule IR061

Description Merging two tasks requires merging the corresponding MockOperation

Elements el:Task | ServiceTask | SendTask | ReceiveTask,e2:Task | ServiceTask | SendTask | ReceiveTask,
e3:Operation, e4:Operation, e5:Class

Change Type | Merge Tasks

Conditions (ModelRelatedTo(e5,Containment,e3) AND ModelRelatedTo(e5,Containment,e4)) AND (ModelRelat-
edTo(e3,Mocks,el) AND ModelRelatedTo(e4,Mocks,e2))

Actions reportlmpact(el, Merge MockOperation, €2, €3 | e4)

Rule IR0643

Description Deleting a Lane requires deleting the corresponding TestComponent

Elements el:Lane,e2:Class

Change Type | Delete Lane

Conditions ModelRelatedTo(el, Derivation, e2)

Actions reportImpact(el, Delete TestComponent, , e22)

Rule IR062

Description Adding a Lane in a Participant requires corresponding TestComponent in the TestModel

Elements el:Participant,e2:Model,e3:DocumentRoot

Change Type | Add Lane

Conditions (ModelRelatedTo(e3, Containment, e1) AND ModelRelatedTo(e3, Tested_By, €2))

Actions reportlmpact(el, Add TestComponent, , e2)

Rule 1R064

Description Renaming a Lane requires renaming corresponding Testcomponent

Elements el:Lane,e2:Class

Change Type | Rename Lane

Conditions ModelRelatedTo(el, Derivation, e2)

187

Actions reportlmpact(el, Rename TestComponent, , €2)

Rule IR066

Description Deleting a Gateway requires deleting CondtionalNodes in test behaviors
Elements el:ExclusiveGateway,e2:ConditionalNode

Change Type | Delete Gateway

Conditions ModelRelatedTo(el, Derivation, e2)

Actions reportImpact(el, Delete ConditionalNode, , e2)

Rule IR067

Description Adding a Gateway requires new TestCase coverage

Elements el:Process,e2:Model

Change Type | Add Gateway

Conditions ModelRelatedTo(e2, Tests, el)

Actions reportlmpact(el, Add TestCase, , €2)

Rule IR068

Description Changing Type of a Gateway requires deletion of ConditionalNodes in TestCases
Elements el:ExclusiveGateway,e2:ConditionalNode

Change Type | Update GatewayType

Conditions ModelRelatedTo(el, Derivation, e2)

Actions reportlmpact(el, Delete ConditionalNode, , €2)

Rule IR069

Description Adding a DataElement in a Process requires corresponding datapool in test data
Elements el:Process,e2:Model

Change Type | Add DataElement

Conditions (ModelRelatedTo(el, Derivation, e2) AND ValueEndsWith(e2::name, TestData))
Actions reportlmpact(el, Add DataPool, , €2)

Rule IR070

Description Adding a DataElement in a Process requires new DataPartition in test data
Elements el:Process,e2:Model

Change Type | Add DataElement

Conditions ModelRelatedTo(e2, Tests, el)

Actions reportlmpact(el, Add DataPartition, , e2)

Test Classification Rules

Table E.3: Test Classification Rules for UTP Test Elements.

Rule TCRO01:Retestable

Description Deleting an Activity makes the activity test case obsolete

Elements el:CallOperationAction, e2:ImpactReport, e3:Activity

Conditions (ReferenceExists(e2:: AffectedElements,e1) AND valueEquals(e2::Solution, "Replace CallOperationAction")
AND (modelRelatedTo(e3,Containment,el)))

Action TestClassification Action=e3:retestable

Rule TCRO002:Obsolete

Description If CallOperationAction of a test case is affected it becomes Retestable

Elements el:Activity, e2:ImpactReport

Conditions (ReferenceExists(e2:: AffectedElements,el) AND valueEquals(e2::Solution, "Delete ActivityTestCase")

Action TestClassification Action=el:obsolete

Rule TCRO03:PRetestable

Description Adding a MockOperation makes the parent TestComponent Partially Retestable

Elements el:Class «TestComponent », e2:ImpactReport

Conditions (ReferenceExists(e2:: AffectedElements,el) AND valueEquals(e2::Solution,"Add MockOperation")

Action TestClassificationAction=el:partiallyRetestable

Rule TCRO004:PRetestable

Description Adding an Operation in SUT makes it PRetestable

Elements el:lass «SUT », e2:ImpactReport

Conditions (ReferenceExists(e2:: AffectedElements,el) AND valueEquals(e2::Solution,"Add SUTOperation")

Action TestClassification Action=el:partiallyRetestable

Rule TCROO05:PRetestable

Description Adding a Method in Java Test Component Makes it partially Retestable

Elements el:ClassDeclaration, e2:ImpactReport

Conditions (ReferenceExists(e2:: AffectedElements,el) AND valueEquals(e2::Solution,"Add MOImplementation")

Action TestClassification Action=el:partiallyRetestable

188

Rule TCRO06:Retestable

Description: | Adding a Parameter in a MockOperation and SUT operation makes it Retestable

Elements el:Operation, e2:ImpactReport

Conditions (ReferenceExists(e2:: AffectedElements,el) OR(valueEquals(e2::Solution,"Add Parameter in MockOpera-
tion") AND valueEquals(e2::Solution,"Add Parameter in SUTOperation")

Action TestClassification Action=el:retestable

Rule TCRO07:Retestabale

Description Adding a Parameter in Java MockOperation and SUT makes it retestable

Elements el:MethodDeclaration, e2:ImpactReport

Conditions (ReferenceExists(e2:: AffectedElements,el) OR(valueEquals(e2::Solution,"Add Parameter in MOImple-
mentation") AND valueEquals(e2::Solution,"Add Parameter in SUTImplementation")

Action TestClassification Action=el:retestable

Rule TCRO08:pRetestable

Description Adding a DataPool in a data model makes it Partially Retestable

Elements el:Model, e2:ImpactReport

Conditions (ReferenceExists(e2::AffectedElements,el) AND valueEquals(e2::Solution,"Add DataPool")

Action TestClassification Action=el:partiallyRetestable

Rule TCRO09:pRetestable

Description :Replacing a Mockoperation in TestComponent makes it Partially Retestable

Elements el:Class «TestComponenet », e2:Operation, e3:ImpactReport

Conditions (ReferenceExists(e3::AffectedElements,e2) AND valueStartsWith(e2:name", "Mock’) AND valueE-
quals(e3::Solution,"Replace MockOperation") AND modelRelatedTo(el,Containment, e2)

Action TestClassification Action=el:partiallyRetestable

Rule TCRO10

Description Deleting a controlFlow in TestCase makes it Retestable if a sequence is added after that between the nodes

Elements el:Activity, e2:CallOperationAction,e3:ControlFlow, e4:ImpactReport, e5:ImpactReport

Conditions (ReferenceExists(e5::AffectedElements,e2) ~AND valueEquals(e4::Solution,"Delete ~ ControlFlow")
AND modelEquals(e4::AffectedElements, e3) AND modelEquals(e3::source, e2) AND modelRelat-
edTo(el,Containment, e2), valueEquals(e5::Solution,"Add ControlFlow")

Action TestClassification Action=el:retestable

Rule TCRO11:retestable

Description Replacing an OpaqueAction with another action makes the test cases retetsable

Elements el:OpaqueAction, e2:ImpactReport, e3:Activity

Conditions (ReferenceExists(e2:: AffectedElements,el) AND valueEquals(e2::Solution, "Replace OpaqueAction") AND
modelDirectParentOf(e3, el)

Action TestClassification Action=e3:retestable

Rule TCRO12:retestable

Description Replacing a ServiceTask requires the test cases corresponding to its Call Operation Action as Retestable

Elements el:erviceTask, e2:CallOperationAction, e3:ImpactReport, e4:Activity, e5:Task

Conditions valueEquals(e3::Solution,"Replace MockOperation”) AND modelEquals(e3:ImpactSources, el) AND
modelDirectParentOf(e4,e2) AND modelRelatedTo(e5,Calls, e1) AND modelRelated To(e5,Derivation, €2

Action TestClassification Action=e4:retestable

Rule TCRO13:retestable

Description Renaming a CallOperationAction makes a TestCase Retestable

Elements el:CallOperationAction,e2:Activity, e3:ImpactReport

Conditions (ReferenceExists(e3::AffectedElements,el) AND valueEquals(e3::Solution, Rename CallOperationAc-
tion") AND modelDirectParentOf(e2, el)

Action TestClassificationAction=e2:retestable

Rule TCRO014

Description Renaming a TestComponent makes it PartiallyRetestable

Elements el:Class, e2:ImpactReport

Conditions (ReferenceExists(e2:: AffectedElements,el) AND valueEquals(e2::Solution,"Rename TestComponent")

Action TestClassificationAction=el:partiallyRetestable

Rule TCRO15

Description Moving a ServiceTask to Lane makes the corresponding MockOperation Retestable

Elements el:ServiceTask, e2:Operation, e3:ImpactReport

Conditions (ReferenceExists(e3::AffectedElements,el) AND valueEquals(e3::Solution,"Move ServiceTask") AND
ModelRelatedTo(e2,"Mocks",el)

Action TestClassification Action=e2:retestable

Rule TCRO16

Description Moving a ServiceTask to Lane makes the corresponding TestComponent PRetestable

Elements el:Lane, e2:Class, e3:ImpactReport

Conditions (ReferenceExists(e3::AffectedElements,el) AND valueEquals(e3::Solution,"Move ServiceTask") AND
ModelRelatedTo(el,"Derivation",e2)

Action TestClassification Action=e2:partiallyRetestable

Rule TCRO017

Description Moving a ServiceTask to Lane makes the source Component PRetestable

Elements el:Lane, e2:Class, e3:ImpactReport

189

Conditions (ModelEquals(e3::ImpactSources,el) AND valueEquals(e3::Solution, " Move ServiceTask") AND ModelRe-
latedTo(el,"Derivation",e2)

Action TestClassification Action=e2:partiallyRetestable

Rule TCRO18

Description A MockOperaton corresponding to a moved service task is Retestable

Elements el:Operation, e2:ServiceTask, e3:ImpactReport

Conditions (ReferenceExists(e3::AffectedElements,e2) AND valueEquals(e3::Solution,"Move ServiceTask") AND Val-
ueEndsWith(el::name, "Mock") AND ModelRelatedTo(el,"Mocks",e2)

Action TestClassification Action=el:retestable

Rule TCRO19

Description A test case will be retestable if it calls a MockOperation corresponding to moved ServiceTasks

Elements el:CallOperationAction, e2:ServiceTask, e3:Operation, e4:ImpactReport, e5:Activity

Conditions (ReferenceExists(e4::AffectedElements,e2) AND valueEquals(e4::Solution,"Move ServiceTask") AND
ModelRelated To(e5, "Containment", e1) AND ModelRelatedTo(e3, "Mocks", e2) AND ModelRelated To(el,
"Calls", e3)

Action TestClassificationAction=e5:retestable

Rule TCRO020

Description Renaming a TestComponentImplementation makes it PRetestabe

Elements el:ClassDeclaration, e2:ImpactReport

Conditions (ReferenceExists(e2::AffectedElements,el) AND valueEquals(e2::Solution,"Rename TestComponentIm-
plementation")

Action TestClassification Action=el:partiallyRetestable

Rule IR021

Description Make All the Testcases PartiallyRetestable if they call a MockOperation of a Renamed TestComponent

Elements el:Activity, e2:Class, e3:Operation, e4:CallOperationAction | SendSignal Action, e5:ImpactReport

Conditions (ReferenceExists(e5::AffectedElements,e2) AND valueEquals(e5::Solution,"Rename TestComponent")
AND ModelRelatedTo(e2, "Containment”, e3) AND ModelRelatedTo(e4, "Calls", e3) AND ModelRelat-
edTo(el, "Containment”, e4)

Action TestClassificationAction=el:partiallyRetestable

Rule TCRO022

Description A TestCase is considered reusable if it is renamed and not retestale

Elements el:Activity, e2:ImpactReport

Conditions (ReferenceExists(e2:: AffectedElements,el) AND valueEquals(e2::Solution,'Rename TestCase")

Action TestClassificationAction=el:reusable

Rule TCRO023

Description A TestModel is considered Obsolete if a change delete Model exists for it

Elements el:Model, e2:ImpactReport, e3:TestModel

Conditions (ModelEquals(e3::base_Package,el) AND ReferenceExists(e2::AffectedElements,el) AND (valueE-
quals(e2::Solution,"Delete Model") OR valueEquals(e2::Solution,"Delete TestModel"))

Action TestClassificationAction=el:obsolete

Rule TCR024

Description A TestModel is Obsolete if its corresponding TestPackage is Deleted

Elements el:Model,e2:TestModel, e3:Package, e4:ImpactReport

Conditions modelEquals(e2::base_Package,el) AND modelRelatedTo(el,Containment, e3) AND val-
ueEndsWith(e3:name,"TP") AND ReferenceExists(e4::AffectedElements,e3) = AND (valueE-
quals(e4::Solution,"Delete Package") OR valueEquals(e4::Solution, "Delete TestPackage")

Action TestClassificationAction=el:obsolete

Rule TCRO025

Description Classifies a TestModel as Retestable

Elements el:Model,e2:TestModel, e3:Class, 4:TestContext, e5:Package, e6:ImpactReport, e7:Classified TestElement

Conditions modelEquals(e2::base_Package, el) AND modelEquals(e4::base_StructuredClassifier, e3) AND
ValueEndsWith(e5:name, "TP") AND ModelRelatedTo(el, Containment, e5) AND ModelRe-
latedTo(el, Containment, e3) AND (NOT(ReferenceExists(e6::AffectedElements, el) AND val-
ueEquals(e6::Solution,"Delete TestModel") AND (valueEquals(e7::cType,"Obsolete”) OR Mod-
elEquals(e7::AffectedTestElement, e5)) AND (valueEquals(e7::cType,"Obsolete) OR ModelE-
quals(e7::Affected TestElement, €3))))

Action TestClassificationAction=el:retestable

Rule TCRO026

Description Classifies a TestModel as PartiallyRetestable

Elements el:Model, e2:TestModel, e3Class, e4:TestContext, e5:Classified TestElement, e7:Package,
e8:Classified TestElement

Conditions ModelEquals(e2::base_Package, el) AND ModelEquals(e4::base_StructuredClassifier, e3) AND Val-
ueEndsWith(e7::name, "TP") AND ModelRelatedTo(e1, Containment, e3) AND ModelRelatedTo(el, Con-
tainment, e7) AND ModelEquals(e5::AffectedTestElement, e3) AND valueEquals(e5::cType, "Retestable)
AND ModelEquals(e8::Affected TestElement, e7) AND valueEquals(e8, "Retesable")

Action TestClassification Action=el:partiallyRetestable

Rule TCR027

Description Adding a processes requires a New TestModel

Elements el:Process, e2:ImpactReport

190

Conditions

(ReferenceExists(e2:: AffectedElements,el) AND valueEquals(e2::Solution,"Add TestModel")

Action TestClassificationAction=el:added

Rule

Description

Elements el:Package, e2:ImpactReport

Conditions (ReferenceExists(e2:: AffectedElements,el) AND valueEquals(e2::Solution, 'Delete TestPackage")

Action TestClassificationAction=el:0bsolete

Rule TCRO029

Description A TestPackage is Retestable if its testcontext is retestable

Elements el:Package, e2:TestPackage, e3:Classified TestElement, e4:Class, e5:TestContext

Conditions ModelEquals(e2::base_Package, el) AND ModelEquals(e5::base_StructuredClassifier, e4) AND
ModelRelatedTo(el, Containment,e4) AND ModelEquals(e3::AffectedTestElement, e4) AND valueE-
quals(e3::cType, "retestable)

Action TestClassificationAction=el:retestable

Rule TCRO030

Description Classifies a SUT as Obsolete

Elements el:Class, €2:SUT, e3:ImpactReport

Conditions ModelEquals(el::base_Classifier, el) AND ReferenceExists(e3::AffectedElements, el) AND valueE-
quals(e2::Solution,"Delete SUT")

Action TestClassificationAction=el:obsolete

Rule TCRO031

Description Classifies a SUT as PartiallyRetestable

Elements el:Class, e2:SUT, e3:Operation, e4Classified TestElement, e5:Operation, e6:Classified TestElement

Conditions ModelEquals(e2::base_Classifier, el) AND ModelRelatedTo(el, Containment, e3) AND Model-
RelatedTo(el,Containment, e5) AND ModelEquals(e4:AffectedTestElement, e3) AND ModelE-
quals(e6::Affected TestElement, e5) AND valueEquals(e6::cType, "reusable") AND (valueEquals(e4::cType,
obsolete") OR valueEquals(e4::cType, "retestable"))

Action TestClassificationAction=el:partiallyRetestable

Rule TCRO032

Description Classifies a TestContext as Obsolete

Elements el:Class, e2:TestContext, e3:ImpactReport

Conditions (ModelEquals(e2::base_StructuredClassifier, e1) AND ReferenceExists(e3::AffectedElements,el) AND val-
ueEquals(e3::Solution,"Delete TestContext")

Action TestClassificationAction=el:obsolete

Rule TCRO033

Description Classifies a MockOperation as Obsolete

Elements el:Class, e2:TestComponent, e3:Operation, e4:ImpactReport

Conditions ModelEquals(e2::base_StructuredClassifier, e1) AND ModelRelatedTo(el, Containment, e3) AND Ref-
erenceExists(e4::AffectedElements,e3) AND (valueEquals(e4::Solution, "Delete MockOperation") OR val-
ueEquals(e4::Solution, "'Delete Operation"))

Action TestClassification Action=e3:0bsolete

Rule TCR034

Description Make a MockOperation Retestable if a Parameter is added

Elements el:Class, e2:TestComponent, e3:Operation, e4:ImpactReport

Conditions (ModelEquals(e2::base_StructuredClassifier, e1) AND ModelRelatedTo(el,Containment, e3) AND Refer-
enceExists(e4:: AffectedElements,e3) AND valueEquals(e4::Solution,"Add Parameter")

Action TestClassificationAction=e3:retestable

Rule TCRO035

Description Makes a MockOperation Retestable if a Parameter is Deleted from it

Elements el:Class, e2:TestComponent, e3:Operation, e4:Parameter, e5:ImpactReport

Conditions (ModelEquals(e2::base_StructuredClassifier, el) AND ModelRelatedTo(el, Containment, e3) AND
ModelRelatedTo(e3, Containment, e4) AND ReferenceExists(e5::AffectedElements,e4) AND valueE-
quals(e5::Solution,"Delete Parameter")

Action TestClassificationAction=e3:retestable

191

List of Own Publications

. Qurat-Ul-Ann Farooq, Steffen Lehnert, and Matthias Riebisch: Analyzing Inter-
play of Changes and Dependencies for Rule-based Regression Test Selection, In: Mod-
ellierung2014, GI-Edition - Lecture Notes in Informatics Vol. 225, Koéllen, pp.
305-320, Vienna, Austria, Mar. 19-21, 2014. (Conference Paper, Peer Reviewed)

. Steffen Lehnert, Qurat-ul-ann Farooq, and Matthias Riebisch: Rule-based Impact
Analysis for Heterogeneous Software Artifacts. In: Proc. 17th European Conference
on Software Maintenance and Reengineering (CSMR2013), pp. 209-218 Genova,
Italy, Mar. 5-8, 2013. (Conference Paper, Peer Reviewed)

. Qurat-ul-ann Farooq, Matthias Riebisch: Model-Based Regression Testing: Process,
Challenges and Approaches, In Book: Emerging Technologies for the Evolution and
Maintenance of Software Models, Jorg Rech, Christian Bunse (Eds.) IGI Global,
ISBN: 9781613504383, pp. 254-297, Mar. 27,2012. (Book Chapter, Peer Reviewed)

. Qurat-ul-ann Farooq, Matthias Riebisch: A Holistic Model-driven Approach to Gen-
erate U2TP Test Specifications Using BPMN and UML, In: Proc. Fourth Interna-
tional Conference on Advances in System Testing and Validation Lifecycle (VALID
2012), The, Lisbon, Portugal, pp. 85-92, Nov. 18-23,2012. (Conference Paper, Peer
Reviewed)

. Stefan Lehnert, Qurat-Ul-Ann Farooq, and Matthias Riebisch: A Taxonomy of Change
Types and its Application in Software Evolution, In: Proc. 19th IEEE International
Conference on the Engineering of Computer Based Systems (ECBS 2012), Novi
Sad, Serbia, pp. 98-107, Apr. 11-13, 2012. (Conference Paper, Peer Reviewed)

. Matthias Riebisch, Stephan Bode, Qurat-Ul-Ann Farooq, and Steffen Lehnert:
Towards Comprehensive Modelling by Inter-Model Links Using an Integrating Reposi-
tory. In: Proc. 8th IEEE Workshop on Model-Based Development for Computer-
Based Systems — Covering Domain and Design Knowledge in Models within the
18th IEEE International Conference on Engineering of Computer-Based Systems
(ECBS2011), Las Vegas, Apr. 27-29, 2011. (Workshop Paper, Peer Reviewed)

. AneelaJabeen, Sidra Tariq, Qurat-Ul-Ann Farooq, and Zafar I. Malik: A lightweight
aspect modelling approach for BPMN, In: Proc. 14th International IEEE Multitopic
Conference (INMIC), pp.255-260, Dec. 22-24, 2011. (Conference Paper, Peer Re-
viewed)

. Qurat-ul-ann Farooq, Muhammad Zohaib Z. Igbal, Zafar I. Malik, and Matthias
Riebisch: A Model-Based Regression Testing Approach for Evolving Software Systems
with Flexible Tool Support, In: Proc. IEEE International Conference and Workshops
on Engineering of Computer-Based Systems (ECBS), Oxford, United Kingdom,
pp- 41-49, Mar.22-26 2010. (Conference Paper, Peer Reviewed)

. Qurat-ul-ann Farooq: A Model Driven Approach for Testing Evolving Business Process
based Applications, In: Proc. Doctoral Symposium at International Conference on

192

10.

11.

Model Driven Engineering Languages and Systems (MODELS), 2010. (Doctoral
Symposium Paper)

Nosheen Sabahat, Qurat-ul-ann Farooq, and Zafar I. Malik: Analyzing Impact of
Change in Sequence diagrams on State-machine based Regression Testing, In: Proc.
IASTED International Conference on Software Engineering, Innsbruck, Austria,
pp- 226-233, Mar. 2010. (Conference Paper, Peer Reviewed)

Stephan Bode, Qurat-Ul-Ann Farooq, and Matthias Riebisch: Evolution Support

for Model-Based Development and Testing—Summary, In: Joint Proceedings of EMDT2010,

IWK2010, [lImenau, Germany, Sept. 13-16, 2010. (Workshop Paper, Not Peer Re-
viewed)

Co-supervised Thesis

. Stefan Grofs: Generierung von U2TP-Testfallbeschreibungen aus BPMN Workflowmod-

ellen auf Basis von Eclipse, lmenau University of Technology, Masters Thesis, 2011
(German Only)

. Rahul Ravindranath: Mapping Business Resources to UTP, Ilmenau University of

Technology, Masters Thesis, 2013

. Suraj Maranahalli: Cost Based Test Prioritization for Business Processes, Ilmenau

University of Technology, Masters Thesis, 2013

193

The Experiment Data

Due to the size of the artifacts and generated reports, it is not possible to include them
all here. However, all the evaluation data, case study material, and tool source code is
available in the electronic form in the DVD provided with this thesis. In the following,
only final test classification reports, generated for each change scenario are presented.

Test Classification Results: Change Scenario 1

TestClassificationReportName:TCR-C1-001, AffectedElements: «SUT »HandleTourPlan-
ningProcess , ImpactReportReference: cs1-c1-IR008, ClassificationType: PartiallyRetestable.
TestClassificationReportName:TCR-C1-002, AffectedElements: ClassDeclaration Handle-
TourPlanningProcessTestComp , ImpactReportReference: cs1-c1-IR011, ClassificationType:
PartiallyRetestable.

TestClassificationReportName:TCR-C1-003, AffectedElements: MockOperation createSO-
TourPlanMock, ImpactReportReference: cs1-c2-IR009, ClassificationType: Retestable.
TestClassificationReportName:TCR-C1-004, AffectedElements: «TestComponent » Han-
dleTourPlanningProcessTestComp, ImpactReportReference: cs1-c1-IR006, Classification-
Type: PartiallyRetestable.

Test Classification Results: Change Scenario 2

TestClassificationReportName:TCR-C2-001, AffectedElements: «TestComponent » Evalu-
ateProblemProcessTestComp , ImpactReportReference: cs2-c2-IR016,cs2-c1-IR016 , Classi-
ficationType: PartiallyRetestable.

TestClassificationReportName:TCR-C2-002, AffectedElements: «SUT » EvaluateProblem-
Process, ImpactReportReference:cs2-c2-IR008, cs2-c2-IR019, cs2-c1-IR019, Classification-
Type: PartiallyRetestable.

TestClassificationReportName:TCR-C2-003, AffectedElements: ClassDeclaration Evalu-
ateProblemProcessTestComp , ImpactReportReference: cs2-c1-IR011, cs2-c2-IR011, Classi-
ficationType: PartiallyRetestable.

TestClassificationReportName:TCR-C2-004, AffectedElements: SUTOperation createTour-
Plan, ImpactReportReference: ¢2-IR014, ClassificationType: Retestable.
TestClassificationReportName:TCR-C2-005, AffectedElements: MethodDeclaration create-
TourPlan, ImpactReportReference: ¢2-IR015, ClassificationType: Retestable.
TestClassificationReportName:TCR-C2-006, AffectedElements: MethodDeclaration create-
SOTourPlanMock, ImpactReportReference: c2-IR013, ClassificationType: Retestable.
TestClassificationReportName:TCR-C2-007, AffectedElements: Model HandleTourPlan-
ningProcessTestData, ImpactReportReference: ¢2-IR017, ClassificationType: Partial-
lyRetestable.

194

TestClassificationReportName:TCR-C2-008, AffectedElements: test-
Case6#EvaluateProblemProcess, ImpactReportReference: ¢s2-¢3-IR020-3, cs2-c4-IR021-6,
ClassificationType: Retestable.
TestClassificationReportName:TCR-C2-009, AffectedElements: test-
Case3#EvaluateProblemProcess, ImpactReportReference: ¢s2-¢3-IR020-1, cs2-c4-IR021-5,
ClassificationType: Retestable.
TestClassificationReportName:TCR-C2-010, AffectedElements: test-
Case5#EvaluateProblemProcess, ImpactReportReference: ¢s2-¢3-IR020-2, cs2-c4-IR021-4,
ClassificationType: Retestable.

Test Classification Results: Change Scenario 3

TestClassificationReportName:TCR-C3-001, AffectedElements: «TestComponent » Ser-
viceReportHandlerTestComp , ImpactReportReference: cs3-c1-IR022, ClassificationType:
PartiallyRetestable.

TestClassificationReportName:TCR-C3-002, AffectedElements: ClassDeclaration Ser-
viceReportHandlerTestComp, ImpactReportReference: c¢s3-c1-IR011, ClassificationType:
PartiallyRetestable.

TestClassificationReportName:TCR-C3-003, AffectedElements: SUTOperation createTour-
Plan, ImpactReportReference: ¢3-c3-IR014, ClassificationType: Retestable.
TestClassificationReportName:TCR-C3-004, AffectedElements: MockOperation create-
ServiceDiagnosisReportMock, ImpactReportReference: c¢s3-c2-IR009, ClassificationType:
Retestable.

TestClassificationReportName:TCR-C3-005, AffectedElements: MethodDeclaration create-
TourPlan, ImpactReportReference: c3-IR015, ClassificationType: Retestable.
TestClassificationReportName:TCR-C3-006, AffectedElements: MethodDeclaration create-
ServiceDiagnosisReportMock, ImpactReportReference: c¢s3-c2-IR013, ClassificationType:
Retestable.

TestClassificationReportName:TCR-C3-007, AffectedElements: MethodDeclaration create-
SOTourPlanMock, ImpactReportReference: ¢3-IR013, ClassificationType: Retestable.
TestClassificationReportName:TCR-C3-008, AffectedElements: «TestComponent » Han-
dleTourPlanningProcessTestComp, ImpactReportReference: ¢3-IR016, ClassificationType:
PartiallyRetestable.

TestClassificationReportName:TCR-C3-009, AffectedElements: test-
Cased#ServiceExecutionProcess , ImpactReportReference: cs3-c2-IR023, ClassificationType:
Retestable.

Test Classification Results: Change Scenario 4

TestClassificationReportName:TCR-C4-001, AffectedElements: test-
Case8#HandleTourPlanningProcess , ImpactReportReference: c4-IR007 ClassificationType:
Retestable.

TestClassificationReportName:TCR-C4-002, AffectedElements: test-
Case9#HandleTourPlanningProcess , ImpactReportReference: cs4-cl: IR024 Classifi-
cationType: Retestable.

195

Test Classification Results: Change Scenario 5

TestClassificationReportName:TCR-C5-001, AffectedElements:

test-

Caset#HandleTourPlanningProcess, ImpactReportReference: ¢5-IR007-1, Classifica-

tionType: Retestable.
TestClassificationReportName:TCR-c5-002, AffectedElements:

test-

Case3#HandleTourPlanningProcess, ImpactReportReference: c5-IR007-3, c¢5-IR007-12,

c5-IR007-4, ClassificationType: Retestable.

test-

test-

TestClassificationReportName:TCR-C5-003, AffectedElements:
Case4#HandleTourPlanningProcess, ImpactReportReference: ¢5-IR007-10, Classifica-
tionType:Retestable.

TestClassificationReportName:TCR-C5-004, AffectedElements:

Case5#HandleTourPlanningProcess, ImpactReportReference: ¢5-IR007-8, c¢5-IR007-5,

ClassificationType:Retestable.
TestClassificationReportName:TCR-C5-005, AffectedElements:

test-

Case8#HandleTourPlanningProcess , ImpactReportReference: ¢5-IR007-13, Classifica-

tionType: Retestable.
TestClassificationReportName:TCR-C5-006, AffectedElements:

test-

CaselO#HandleTourPlanningProcess , ImpactReportReference: ¢5-IR007-7, c5-IR007-2,

ClassificationType: Retestable.
TestClassificationReportName:TCR-C5-007, AffectedElements:

Jtest-

Case7#HandleTourPlanningProcess, ImpactReportReference: ¢5-IR007-11, Classifica-

tionType: Retestable.
TestClassificationReportName:TCR-C5-008, AffectedElements:

test-

Casel#HandleTourPlanningProcess, ImpactReportReference: ¢5-IR007-6, Classifica-

tionType: Retestable.
TestClassificationReportName:TCR-C5-009, AffectedElements:

test-

Case2#HandleTourPlanningProcess , ImpactReportReference: ¢5-IR007-9, Classifica-

tionType: Retestable.

TestClassificationReportName:TCR-C5-010, AffectedElements: «TestComponent » Han-
dleTourPlanningProcessTestComp, ImpactReportReference: ¢5-IR010-2, ¢5-IR010-1, Classi-

ficationType: PartiallyRetestable.

TestClassificationReportName:TCR-C5-011, AffectedElements: «TestComponent » Ser-
viceOrderSchedularTestCompp, ImpactReportReference: cs5-c1-IR028, ClassificationType:

PartiallyRetestable.

Test Classification Results: Change Scenario 6

TestClassificationReportName:TCR-C6-001, AffectedElements:
Case5#HandleBookAccomodationProcess, ImpactReportReference:
ClassificationType: Retestable.
TestClassificationReportName:TCR-C6-002, AffectedElements:
Case8#HandleBookAccomodationProcess, ImpactReportReference:
ClassificationType: Retestable.
TestClassificationReportName:TCR-C6-003, AffectedElements:
Case4#HandleBookAccomodationProcess, ImpactReportReference:
ClassificationType: Retestable.

196

test-
cs6-c1-IR029-6,

test-
cs6-c1-IR029-7,

test-
cs6-c1-IR029-1,

TestClassificationReportName:TCR-C6-004, AffectedElements: test-

Case7#HandleBookAccomodationProcess, ImpactReportReference: cs6-c1-IR029-3,
ClassificationType: Retestable.
TestClassificationReportName:TCR-C6-005, AffectedElements: test-
Case2#HandleBookAccomodationProcess, ImpactReportReference: cs6-c1-IR029-8,
ClassificationType: Retestable.
TestClassificationReportName:TCR-C6-006, AffectedElements: test-
Casel#HandleBookAccomodationProcess, ImpactReportReference: cs6-c1-IR029-2,
ClassificationType: Retestable.
TestClassificationReportName:TCR-C6-007, AffectedElements: test-
Case6#HandleBookAccomodationProcess, ImpactReportReference: cs6-c1-IR029-5,
ClassificationType: Retestable.
TestClassificationReportName:TCR-C6-008, AffectedElements: test-
Case3#HandleBookAccomodationProcess, ImpactReportReference: cs6-c1-IR029-4,

ClassificationType: Retestable.

Test Classification Results: Change Scenario 7

TestClassificationReportName:TCR-C7-001, AffectedElements: «TestComponent » Ser-
vicePlannerTestComp, ImpactReportReference: cs7-c2-IR022, ClassificationType: Partial-
lyRetestable.

TestClassificationReportName:TCR-C7-002, AffectedElements: ClassDeclaration Servi-
cePlannerTestComp, ImpactReportReference: cs7-c2-IR011, ClassificationType: Partial-
lyRetestable.

TestClassificationReportName:TCR-C7-003, AffectedElements: test-
Case7#ReturnInventoryForServiceOrder , ImpactReportReference: cs7-¢3-IR023-2, cs7-c3-
IR023-7, ClassificationType: Retestable.

TestClassificationReportName:TCR-C7-004, AffectedElements: test-
Case2#ReturnInventoryForServiceOrder , ImpactReportReference: cs7-c3-IR023-8, Classifi-
cationType: Retestable.

TestClassificationReportName:TCR-C7-005, AffectedElements: test-
Case3#ReturnInventoryForServiceOrder , ImpactReportReference: cs7-c3-IR023-6, Classifi-
cationType: Retestable.

TestClassificationReportName:TCR-C7-006, AffectedElements: test-
Case6#ReturnInventoryForServiceOrder , ImpactReportReference: cs7-c3-IR023-10,
cs7-c3-IR023-4, ClassificationType: Retestable.

TestClassificationReportName:TCR-C7-007, AffectedElements: test-
Cased#ReturnInventoryForServiceOrder , ImpactReportReference: c¢s7-¢3-IR023-3, cs7-c3-
IR023-5, cs7-c3-IR023-9, ClassificationType: Retestable.
TestClassificationReportName:TCR-C7-008, AffectedElements: test-
Case5#ReturnInventoryForServiceOrder , ImpactReportReference: cs7-c3-IR023-1, Classifi-
cationType: Retestable.

Test Classification Results: Change Scenario 8

197

TestClassificationReportName:TCR-C8-001, AffectedElements: «TestComponent » Appli-
cationRegistrationHandlerTestComp, ImpactReportReference: cs8-c1-IR039, Classification-
Type: PartiallyRetestable.

TestClassificationReportName:TCR-C8-002, AffectedElements: MockOperation cancelReg-
istrationMock, ImpactReportReference: cs8-c1-IR036-3, ClassificationType: Retestable.
TestClassificationReportName:TCR-C8-003, AffectedElements: MockOperation saveRegis-
trationMock, ImpactReportReference: cs8-c1-IR036-2, ClassificationType: Retestable.
TestClassificationReportName:TCR-C8-004, AffectedElements: MockOperation verify Ap-
plicationMock, ImpactReportReference: cs8-c1-IR036-4, ClassificationType: Retestable.
TestClassificationReportName:TCR-C8-005, AffectedElements: MockOperation startAp-
plicationRegistrationMock, ImpactReportReference: ¢s8-c1-IR036-1, ClassificationType:
Retestable.

TestClassificationReportName:TCR-C8-006, AffectedElements: test-
Case4#RegisterJobApplicantProcess, ImpactReportReference: ¢s8-c1-IR036-1, cs8-cl-
IR036-3, ClassificationType: Retestable.

TestClassificationReportName:TCR-C8-007, AffectedElements: test-
Casel#RegisterJobApplicantProcess, ImpactReportReference: cs8-c1-IR036-1, c¢s8-cl-
IR036-3, ClassificationType: Retestable.

TestClassificationReportName:TCR-C8-008, AffectedElements: test-
Case2#RegisterJobApplicantProcess, ImpactReportReference: cs8-c1-IR036-1, c¢s8-cl-
IR036-2, ClassificationType: Retestable.

TestClassificationReportName:TCR-C8-009, AffectedElements: test-
Case3#RegisterJobApplicantProcess, ImpactReportReference: cs8-c1-IR036-1, c¢s8-cl-
IR036-2, ClassificationType: Retestable.

Test Classification Results: Change Scenario 9

TestClassificationReportName:TCR-C9-001, AffectedElements: «TestComponent » Ser-
viceCoordinatorNotifierTestComp, ImpactReportReference: ¢9-c1-IR028-3, Classification-
Type: PartiallyRetestable.

TestClassificationReportName:TCR-C9-002, AffectedElements: «TestComponent » Ser-
viceCoordinatorNotifierTestComp (RegisterProblemOnlineProcess), ImpactReportRefer-
ence: ¢9-c1-IR028-1, ClassificationType: PartiallyRetestable.
TestClassificationReportName:TCR-C9-003, AffectedElements: ClassDeclaration Service-
CoordinatorNotifierTestComp (RegisterProblemOnlineProcess), ImpactReportReference:
€9-c1-IR041-2, ClassificationType: PartiallyRetestable.
TestClassificationReportName:TCR-C9-004, AffectedElements: ClassDeclaration Service-
CoordinatorNotifierTestComp (EvaluateProblemProcess), ImpactReportReference: ¢9-cl-
IR041-1, ClassificationType: PartiallyRetestable.
TestClassificationReportName:TCR-C9-005, AffectedElements: test-
Case8#HandleWaitingServicePlanningProcess, ImpactReportReference: ¢9-c1-IR028-3,
ClassificationType: PartiallyRetestable.

TestClassificationReportName:TCR-C9-006, AffectedElements: test-
Case7#HandleWaitingServicePlanningProcess, ImpactReportReference: ¢9-c1-IR028-3,
ClassificationType: PartiallyRetestable.

TestClassificationReportName:TCR-C9-007, AffectedElements: test-
Case3#HandleWaitingServicePlanningProcess, ImpactReportReference: ¢9-c1-IR028-3,
ClassificationType: PartiallyRetestable.

TestClassificationReportName:TCR-C9-008, AffectedElements: test-
Case9#HandleWaitingServicePlanningProcess, ImpactReportReference: — ¢9-c1-IR028-3,
ClassificationType: PartiallyRetestable.

198

TestClassificationReportName:TCR-C9-009, AffectedElements: test-
Case4#HandleWaitingServicePlanningProcess, ImpactReportReference: ¢9-c1-IR028-3,
ClassificationType: PartiallyRetestable.

TestClassificationReportName:TCR-C9-010, AffectedElements: test-
Case5#HandleWaitingServicePlanningProcess, ImpactReportReference: ¢9-c1-IR028-3,
ClassificationType: PartiallyRetestable.

TestClassificationReportName:TCR-C9-011, AffectedElements: test-
Casel#HandleWaitingServicePlanningProcess, ImpactReportReference: ¢9-c1-IR028-3,
ClassificationType: PartiallyRetestable.

TestClassificationReportName:TCR-C9-012, AffectedElements: test-
Casel#RegisterProblemOnlineProcess, ImpactReportReference: ¢9-c1-IR028-2, Classi-
ficationType: PartiallyRetestable.

TestClassificationReportName:TCR-C9-013, AffectedElements: test-
Case2#RegisterProblemOnlineProcess, ImpactReportReference: ¢9-c1-IR028-22, Clas-
sificationType: PartiallyRetestable.

TestClassificationReportName:TCR-C9-014, AffectedElements: test-
Casel#RegisterJobApplicantProcess, ImpactReportReference: c¢s8-c1-IR039, Classifica-
tionType: PartiallyRetestable.

TestClassificationReportName:TCR-C9-015, AffectedElements: test-
Case4#RegisterJobApplicantProcess, ImpactReportReference: cs8-c1-IR039 Classifica-
tionType: PartiallyRetestable.

Test Classification Results: Change Scenario 10

TestClassificationReportName:TCR-C10-001, AffectedElements: test-
Caset#ReturnInventoryForServiceOrder , ImpactReportReference: c10-c1-IR050-4,
ClassificationType: Reusable.
TestClassificationReportName:TCR-C10-002, AffectedElements: test-
Caset#ReturnInventoryForServiceOrder , ImpactReportReference: ¢10-c1-IR050-1,
ClassificationType: Reusable.
TestClassificationReportName:TCR-C10-003, AffectedElements: test-
CaseS5#ReturnInventoryForServiceOrder , ImpactReportReference: c10-c1-IR050-6,
ClassificationType: Reusable.
TestClassificationReportName:TCR-C10-004, AffectedElements: test-
Case2#ReturnInventoryForServiceOrder , ImpactReportReference: ¢10-c1-IR050-2,
ClassificationType: Reusable.
TestClassificationReportName:TCR-C10-005, AffectedElements: test-
Case4#ReturnInventoryForServiceOrder , ImpactReportReference: c10-c1-IR050-2,
ClassificationType: Reusable.
TestClassificationReportName:TCR-C10-006, AffectedElements: test-
Case3#ReturnInventoryForServiceOrder , ImpactReportReference: c10-c1-IR050-3,
ClassificationType: Reusable.

199

Bibliography

[ACCDL00] AntonioL, G. ; Canrora, G. ; Casazza, G. ; DE Lucia, A.: Identifying the

[AGEG09]

[ANMUO7]

[Awe85]

[BBGT09]

[BCOO]

[BDG107]

[BG0O]

[BLO2]

[BLOS06]

[BLR11]

[BLSO02]

Starting Impact Set of a Maintenance Request: A Case Study. In: Proceed-
ings of the Fourth European Conference on Software Maintenance and Reengi-
neering. Zurich, Switzerland, February 2000, S. 227-230 30

Augr, D. ; Geist, V. ; ERHART, W. ; GUNz, C.: An Integrated Framework for
Modeling Process-Oriented Enterprise Applications and Its Application
to a Logistics Server System. In: Logistics and Industrial Informatics, 2009.
LINDI 2009. 2nd International, 2009, S. 1 -6 33

ALy A. ; Nabeem, A. ; M.Z.Z.IgsaL ; Usman, M.: Regression Testing Based
on UML Design Models. In: 13th Pacific Rim International Symposium on
Dependable Computing, 2007, S. 85-88 146, 147, 149

AwersucH, Baruch: A new distributed Depth-First-Search algorithm. In:
Information Processing Letters 20 (1985), Nr. 3, S. 147 —150. — ISSN 0020-0190
53

Baxora, Tibor ; BEszEDEs, Arpéd ; GErRGELY, Tamas ; Gyaral, Milan I. ; Gy-
mOTHY, Tibor ; FoLeki, Daniel: Semi-Automatic Test Case Generation from
Business Process Models. 11th Symposium on Programming Languages and
Software Tools, 2009 28, 53

BaLpwin, Carliss Y. ; CLark, Kim B.: Design Rules: The power of modularity.
2000. — ISBN 9780262024662 29, 75, 76

BAKER, Paul ; Da1, Zhen R. ; GRaBowsk, Jens ; HAUGEN, Dystein ; SCHIEFER-
DECKER, Ina ; WiLLiams, Clay: Model-Driven Testing: Using the UML Testing
Profile. 1. 2007. — ISBN 3540725628 2, 47, 48, 50, 51, 161

BeYDEDA, Sami ; GRUHN, Volker: Integrating White- and Black-Box Tech-
niques for Class-Level Regression Testing. (2000) 1, 145, 147, 148

Brianp, L. ; LasicHg, Y.: A UML-based approach to system testing. In:
Software and Systems Modeling 1 (2002), Nr. 1, S. 10-42 145, 147, 149

Brianp, L. ; LaBicHE, Y. ; O’SuLLivan, L. ; S6wka, M.: Automated impact
analysis of UML models. In: Journal of Systems and Software 79 (2006), S.
339-352 29, 30, 78

Bopg, Stephan ; Lennert, Steffen ; RiesiscH, Matthias: Comprehensive
Model Integration for Dependency Identification with EMFTrace. In: Joint
Proceedings of the First International Workshop on Model-Driven Software Mi-
gration and the Fifth International Workshop on Software Quality and Maintain-
ability, 2011, S. 17-20 38, 66, 116

BrianD, L. ; LasicHE, Y. ; Soccar, G.: Automating Impact Analysis and
Regression Test Selection Based on UML Designs. In: IEEE International
Conference on Software Maintenance,, 2002, S. 0252 1, 107

200

[BLSO3]

[BLWO5]

[BLY09]

[BMZ*05]

[BPM10]

[Cle10]

[CP03]

[CPS02]

[CPU07]

[CPU09]

[DLFO08]

BIBLIOGRAPHY

Brianp, L. C. ; LaBicHE, Y. ; SutLivan, L. O.: Impact Analysis and Change
Management of UML Models. In: Proceedings of the International Conference
on Software Maintenance, 2003, S. 256 78, 145, 147, 149

BakeRr, Paul ; Lon, Shiou ; WEerL, Frank: Model-Driven Engineering in a
Large Industrial Context -Motorola Case Study. In: Proceedings of the 8th
International Conference on Model Driven Engineering Languages and Systems,
2005. — ISBN 3-540-29010-9, 978-3-540-29010-0, S. 476491 142

Brianp, Lionel C. ; LasicHE, Yvan ; YUg, Tao: Automated traceability analy-
sis for UML model refinements. In: Inf. Softw. Technol. 51 (2009), February,
S. 512-527. — ISSN 0950-5849 1, 12, 40, 72, 145, 147, 149

Buckiey, Jim ; Mens, Tom ; ZENGER, Matthias ; RasHip, Awais ; KNIESEL,
Giinter: Towards a taxonomy of software change: Research Articles. New
York, NY, USA : John Wiley & Sons, Inc., September 2005. — ISSN 1532—
060X, S. 309-332 29

BPMN: Business Process Model and Notation (BPMN). Available at:
http:/ /www.omg.org/spec/BPMN/2.0, 2010 15, 60

CremenTs, Paul: Documenting software architectures: views and beyond. 2. ed.
2010. - ISBN 0-321-55268-7 14, 31

CHeN, Yanping ; ProserT, Robert: A Risk-based Regression Test Selection
Strategy. In: Proceeding of the 14th IEEE International Symposium on Software
Reliability Engineering, 2003, S. 305-306 145, 147, 149

CHEN, Yanping ; ProBerT, Robert L. ; Stvs, D. P.: Specification-based regres-
sion test selection with risk analysis. In: Proceedings of the 2002 conference
of the Centre for Advanced Studies on Collaborative research, 2002, 1 145, 147,
149

CHEN, Yanping ; Prosert, Robert L. ; UraL, Hasan: Regression test suite
reduction using extended dependence analysis. In: Fourth international
workshop on Software quality assurance: in conjunction with the 6th ESEC/FSE
joint meeting, 2007, S. 62-69 145, 147, 148

CHeN, Yanping ; Prosert, Robert L. ; UraL, Hasan: Regression test suite
reduction based on SDL models of system requirements. In: Journal of
Software Maintenance and Evolution: Research and Practice 21 (2009), Nr. 6, S.
379-405 145, 147,148

DE Lucia, A. ; Fasano, F. ; Oivero, R.: Traceability management for impact
analysis. In: Proceedings of Frontiers of Software Maintenance, 2008, S. 21-30
30, 60

201

[DNTO8]

[DSWO04]

[DYZ06]

[EFHTO5]

[EtCM+10]

[FBH*+10]

[FGO6]

[FIMNO07]

[FIMR10]

[Fow99]

[FPK+12]

BIBLIOGRAPHY

Dias Nero, Arilo C. ; Travassos, Guilherme H.: Supporting the selection
of model-based testing approaches for software projects. In: Proceedings of
the 3rd international workshop on Automation of software test. New York, NY,
USA : ACM, 2008 (AST "08). — ISBN 978-1-60558-030-2, 21-24 17

Deng, D. ; Suey, P.C.-Y. ; WaNg, T.: Model-based testing and maintenance.
In: Multimedia Software Engineering, 2004. Proceedings. IEEE Sixth Interna-
tional Symposium on, 2004, S. 278-285 146, 147, 149

Dong, Wen-Li ; Yu, Hang ; Zuang, Yu-Bing: Testing BPEL-based Web Ser-
vice Composition Using High-level Petri Nets. In: 10th IEEE International
Enterprise Distributed Object Computing Conference, 2006, S. 441 —444 47

EnceLs, Gregor ; FOrsTER, Alexander ; HeckEeL, Reiko ; THONE, Sebastian:
Process Modeling using UML. 2005. — 83-117 S. — ISBN 9780471741442 14,
15,33

Ervesz TERr, Brian ; Carrez, Cyril ; MoHAGHEGHI, Parastoo ; BErRrg, Arne-
Jor.; SvEIN G., Johnsen ; SoLBERG, Arnor: Model-Based Development with
SoaML / University of Oslo, Norway. 2010. — Forschungsbericht 32

FiLao, Roberto S. S. ; Bupnik, Christof . ; HasLing, William M. ; McKENNa,
Monica ; SusramMANYAN, Rajesh: Supporting Concern-Based Regression
Testing and Prioritization in a Model-Driven Environment. In: Proceedings
of Computer Software and Applications Conference (2010), S. 323-328 12, 145,
147,149

Fruri, Beat ; GaLr, Harald C.: Classifying Change Types for Qualifying
Change Couplings. In: Proceeding of the 14th IEEE International Conference
on Program Comprehension, 2006, S. 35-45 29, 74

Farooq, Qurat-ul-ann ; IoBarL, Muhammad Zohaib Z. ; MaLik, Zafar 1. ;
Napeem, Aamer: An Approach for Selective State-Machine- based Regres-
sion Testing. In: Proceedings of the 3rd International Workshop on Advances in
Model-based Testing, 2007, S. 44-52 78,145, 147, 148

Farooq, Qurat-Ul-Ann ; IoBar, M. ; MaLik, Z.1. ; RieBiscH, M.: A Model-
Based Regression Testing Approach for Evolving Software Systems with
Flexible Tool Support. In: 17th IEEE International Conference and Workshops
on Engineering of Computer Based Systems, 2010, S. 41-49 40, 72, 145, 147,
148

FowLEr, Martin: Refactoring: Improving the Design of Existing Code. 1999. —
ISBN 9780201485677 76

Fiscuer, Klaus ; PanriLenko, Dima ; KrumeicH, Julian ; Born, Marc ;
Desrray, Philippe: Viewpoint-Based Modeling-Towards Defining the

202

[FR11]

[GFTRO6]

[GGO09]

[GKLE10]

[Gom11]

[GPCLO8]

[Groll]

[Har98]

[HGGF10]

[HHO04]

BIBLIOGRAPHY

Viewpoint Concept and Implications for Supporting Modeling Tools. In:
EMISA, 2012, S.123-136 1

Kapitel 10. In:Farooq, Qurat-Ul-Ann ; RiesiscH, Matthias: Model-Based
Regression Testing: Process, Challenges and Approaches. 1GI Global, 2011, S.
254-297 45,75,107

Garcia-Fanjui, J. ; Tuva, J. ; Riva, C. de 1.: Generating test cases specifica-
tions for BPEL compositions of web services using SPIN. In: Proceedings
of the International Workshop on Web Services: Modeling and Testing, 2006, S.
83-94 47

GINnIGE, Jeewani A. ; Ginige, Athula: An Algorithm for Propagating-
Impact Analysis of Process Evolutions. In: Information Systems: Modeling,
Development, and Integration Bd. 20. 2009. — ISBN 978-3-642-01111-5, S.
153-164 27

GertH, Christian ; Kister, JochenM. ; Luckey, Markus ; EnGets, Gregor:
Precise Detection of Conflicting Change Operations Using Process Model
Terms. In: Model Driven Engineering Languages and Systems Bd. 6395. 2010.
— ISBN 978-3-642-16128-5, S. 93-107 29

Gowmaa, Hassan: Software Modeling and Design: UML, Use Cases, Patterns,
and Software Architectures. Cambridge University Press, 2011. — ISBN
9781139494731 1, 14, 31

GortHl, Ravi P. ; PasaLa, Anjaneyulu ; CHanDUKkA, Kailash K. ; Leong,
Benny: Specification-Based Approach to Select Regression Test Suite to
Validate Changed Software. In: Asia-Pacific Software Engineering Confer-
ence, 2008, S. 153-160 145, 147, 149

Gross, Stefan: Generierung von U2TP-Testfallbeschreibungen aus BPMN-
Workflowmodellen auf Basis von Eclipse (In German.), Ilmenau University of
Technology, Diplomarbeit, 2011 54

HarroLp, MaryJ.: Architecture-Based Regression Testing of Evolving Sys-
tems. In: Proceedings of the International Workshop on the Role of Software
Architecture in Testing and Analysis (1998), S. 73—77 1

HEenecke, Andreas ; Griesg, Tobias ; GrRunN, Volker ; FLemig, Holger: Busi-
ness Process-Based Testing of Web Applications., 2010 (Lecture Notes in
Business Information Processing), S. 603-614 28

Hassan, Ahmed E. ; Horr, Richard C.: Predicting Change Propagation in
Software Systems. In: Proceedings of the 20th IEEE International Conference
on Software Maintenance, 2004, S. 284-293 127

203

[Hil99]

[HKOO07]

[HNR68]

[HNS99]

[Hon82]

[HRRWO1]

[IEEQO]

[11108]

[IIMDO5]

[JK84]

[JM10]

[Jun02]

BIBLIOGRAPHY

Hiiriarp, Rich: Views and viewpoints in software systems architecture.
In: Position paper from the First Working IFIP Conference on Software Architec-
ture, San Antonio, 1999 13

HartmAN, Alan ; Katara, Mika ; Orvovsky, Sergey: Choosing a test mod-
eling language: a survey. In: Proceedings of the 2nd international Haifa ver-
ification conference on Hardware and software verification and testing, 2007, S.
204-218 32

Harr, P. E. ; Nisson, N. J. ; RapaagL, B.: A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. In: IEEE Transactions on Systems
Science and Cybernetics 4 (1968), Nr. 2, S. 100-107 87

HormEisTer, Christine ; Norp, Robert L. ; Soni, Dilip: Describing Software
Architecture with UML. In: Proceedings of the First Working IFIP Conference
on Software Architecture, 1999, S. 145-160 14, 31

HonNeyman, Peter: Testing Satisfaction of Functional Dependencies. In: J.
ACM 29 (1982), Juli, Nr. 3, S. 668-677. — ISSN 0004-5411 33

HarroLD, M.J. ; RosEnBLuM, D. ; RoTHERMEL, G. ; WEYUKER, E.: Empirical
studies of a prediction model for regression test selection. In: IEEE Trans-
actions on Software Engineering 27 (2001), mar, Nr. 3, S. 248 —263. — ISSN
0098-5589 128

IEEE: 1471-2000-Recommended practice for architectural description of
software-intensive systems / IEEE Computer Society. 2000. — Forschungs-
bericht. - 1-23 S. 13

ImTIAZ, Salma ; IkraM, Naveed ; ImTiaZ, Saima: Impact Analysis from Mul-
tiple Perspectives: Evaluation of Traceability Techniques. In: Proceedings
of the 3rd International Conference on Software Engineering Advances, 2008, S.
457-464 30

IBranIM, Suhaimi ; Ipris, Norbik B. ; Munro, Malcolm ; DEraMAN, Aziz:
Integrating Software Traceability for Change Impact Analysis. In: The In-
ternational Arab Journal of Information Technology 2 (2005), October, Nr. 4, S.
301-308 30

Jounson, D.S. ; Kiug, A.: Testing containment of conjunctive queries un-
der functional and inclusion dependencies. In: Journal of Computer and
System Sciences 28 (1984), Nr. 1, S. 167 — 189. — ISSN 0022-0000 33

Juristo, Natalia ; Moreno, Ana M.: Basics of Software Engineering Experi-
mentation. 1st. 2010. — ISBN 1441950117, 9781441950116 125, 126

JUNGMAYR, Stefan: Identifying Test-Critical Dependencies. In: International
Conferene on Software Maintenance, 2002, S. 404-413 33

204

[KD11]

[KDRPP09]

[KGH™"]

[KHO09]

[KKCMO4]

[KRH'08]

[Kru95]

[Kru00]

[KSD09]

[KTV02]

[Lehi1]

[LFOTO07]

BIBLIOGRAPHY

Kapitel 2. In:KeLLER, Anne ; DEMEYER, Serge: Change Impact Analysis for
UML Model Maintenance. 1GI Global, 2011, S. 32-56 30

Korovos, Dimitrios S. ; D1 Ruscio, Davide ; PieranToNIO, Alfonso ; PAIGE,
Richard F.: Different models for model matching: An analysis of ap-
proaches to support model differencing. In: Proceedings of the ICSE Work-
shop on Comparison and Versioning of Software Models, 2009, S. 1-6 72

Kung, D. ; Gao, J. ; Hsia, P.; WeN, E. ; TovosHima, Y. ; CHeN, C.: Change
impact identification in object oriented software maintenance 29

KnaNn, Tamim A. ; Hecker, Reiko: A Methodology for Model-Based Re-
gression Testing of Web Services. In: Academic & Industrial Conference on
Practice And Research Techniques, Testing, 2009, S. 123-124 27

KocH, Nora ; Kraus, Andreas ; CacHero, Cristina ; MELIA, Santiago: Inte-
gration of business processes in web application models. In: J. Web Eng. 3
(2004), Mai, Nr. 1, S. 22-49 14, 31, 32, 41, 50, 60

Kunn, Adrian ; Rompragy, Bart V. ; HAENSENBERGER, Lea ; NiersTrRASZ, Os-
car ; DEMEYER, Serge ; GALLi, Markus ; LEemput, Koenraad V.: JExample:
Exploiting Dependencies between Tests to Improve Defect Localization.,
Springer, 2008 (Lecture Notes in Business Information Processing). — ISBN
978-3-540-68254-7, S. 73-82 33

KruchreN, Philippe: The 4+1 View Model of Architecture. In: IEEE Softw.
12 (1995), November, Nr. 6, S. 42-50. — ISSN 0740-7459 14, 31

Kruchren, Philip: The Rational Unified Process: An Introduction. Addison
Wesley, 2000 46

KELLER, Anne ; ScHippers, Hans ; DEMEYER, Serge: Supporting Inconsis-
tency Resolution through Predictive Change Impact Analysis. In: Proceed-
ings of the 6th International Workshop on Model-Driven Engineering, Verifica-
tion and Validation. Denver, Colorado, USA, October 2009 30

KoreL, B. ; Tanart, L.H. ; Vayssurg, B.: Model based regression test reduc-
tion using dependence analysis. In: Software Maintenance, 2002. Proceed-
ings. International Conference on, 2002. — ISBN 1063-6773, S. 214-223 145,
147,148

LennerT, Steffen: A Review of Software Change Impact Analysis / Ilme-
nau University of Technology, Department of Software Systems / Process
Informatics. 2011. — Forschungsbericht 30

Lucia, Andrea D. ; Fasano, Fausto ; Orivero, Rocco ; Torrora, Genov-
effa: Recovering Traceability Links in Software Artifact Management Sys-
tems Using Information Retrieval Methods. In: ACM Trans. Softw. Eng.
Methodol. 16 (2007), September, Nr. 4. — ISSN 1049-331X 38

205

[LFR12]

[LFR13a]

[LFR13b]

[LLZTO07]

[LQIW10]

[LS96]

[LS98]

[LW89]

[LZGO5]

[M&d10]

[MDRO6]

[MHO03]

BIBLIOGRAPHY

LennerT, Steffen ; FaArooq, Qurat-Ul-Ann ; RiesiscH, Matthias: A Taxon-
omy of Change Types and its Application in Software Evolution. In: Pro-
ceedings of the 19th Annual IEEE International Conference on the Engineering
of Computer Based Systems, 2012, S. 98-107 29, 74

LennNerT, Steffen ; Farooq, Qurat-Ul-Ann ; RiesiscH, Matthias: Rule-based
Impact Analysis for Heterogeneous Software Artifacts. In: Proceedings
of the 17th European Conference on Software Maintenance and Reengineering,
2013 39, 83,116, 119, 121

Leunert, Steffen ; FArooq, Quratulann ; Riesisca, Matthias: Towards a
Taxonomy of Software Dependencies for Impact Analysis. In: White Paper
(2013), S. 1-14 30, 61, 67, 86, 87, 133

L, H.; L1, Z. ; Zny, J. ; Tan, H.: Business Process Regression Testing. In:
Service-Oriented Computing ICSOC (2007), S. 157-168 27

L1, Bixin ; Qmu, Dong ; J1, Shunhui ; Wang, Di: Automatic test case selec-
tion and generation for regression testing of composite service based on
extensible BPEL flow graph. In: Proceedings of the International Conference
on Software Maintenance, 2010, S. 1-10 27

LinpvaLr, Mikael ; SAnDaHL, Kristian: Practical implications of traceability.
In: Softw. Pract. Exper. 26 (1996), October, S. 1161-1180. — ISSN 0038-0644
30

LinpvarL, M. ; Sanpanr, K: Traceability aspects of impact analysis in
object-oriented systems. In: Journal of Software Maintenance: Research and
Practice 10 (1998), January, S. 37-57 30

Leung, HK.N. ; WHITE, L.: Insights into regression testing [software test-
ing]. In: Proceedings of Conference on Software Maintenance, 1989, S. 60-69 1,
7,12, 40, 96, 97

LiN, Yuehua ; ZHANG, Jing ; Gray, Jeff: A Testing Framework for Model
Transformations. In: Model-Driven Software Development - Research and
Practice in Software Engineering, 2005, S. 219-236 17

MADER, Patrick: Rule-based maintenance of post-requirements traceability, I1-
menau University of Technology, Germany, Diss., 2010 29

Muccini, Henry ; Dias, Marcio ; RicHArRDsON, Debra J.: Software
architecture-based regression testing. In: Journal of Systems and Software
79 (2006), Oktober, Nr. 10, S. 1379-1396. — ISSN 0164-1212 145, 147, 149

Massor, Vincent ; Hustep, Ted: JUnit in Action. 2003. — ISBN 1930110995
32

206

[MMO3]

[MOP12]

[MRP06]

[MTO7]

[Muc07]

[MVO05]

[NRO7]

[NZR09]

[NZR10]

[OAHO3]

BIBLIOGRAPHY

Marcus, Andrian ; MALETIC, Jonathan I.: Recovering documentation-to-
source-code traceability links using latent semantic indexing. In: Software
Engineering, 2003. Proceedings. 25th International Conference on IEEE, 2003,
S.125-135 38

MOPS: Adaptive Planning and Secure Execution of Mobile Processes in Dy-
namic Scenarios. Availble at: http://mops.uni-jena.de/us/Homepage-
page-.-html, 2012 18

MADER, Patrick ; RiesiscH, Matthias ; PriLiprow, Ilka: Traceability for Man-
aging Evolutionary Change. In: Proceedings of the 15th International Confer-
ence on Software Engineering and Data Engineering (SEDE-2006), 2006, S. 1-8
75

Mansour, Nashat ; TakkousH, Husam: UML based regression testing for
OO software. In: Proceedings of the 11th International Conference on Software
Engineering and Applications, 2007. — ISBN 978-0-88986-706-2, S. 96-101
145,147, 149

Muccing, Henry: Using Model Differencing for Architecture-level Regres-
sion Testing. In: Proceedings of the 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications, 2007. — ISBN 0-7695-2977-1, S. 59—
66 145, 147, 149

Marrins, Eliane ; Vieira, Vanessa: Regression Test Selection for Testable
Classes. In: Dependable Computing - EDCC 5 Bd. 3463. 2005, S. 453470
146, 148, 149

Nasravsky, Leila ; RicHArDsON, Debra J.: Using traceability to sup-
port model-based regression testing. In: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, 2007,
S. 567-570 12, 38, 60, 66, 146, 148, 149

Nastravsky, L. ; Ziv, H. ; Ricnarpson, D.J.: A model-based regression test
selection technique. In: IEEE International Conference on Software Mainte-
nance, 2009, S. 515-518 17, 26, 27,72, 146, 148, 149

Nasravsky, L. ; Ziv, H. ; Ricaarpson, D.J.. MbSRT2: Model-Based Se-
lective Regression Testing with Traceability. In: 2010 Third International
Conference on Software Testing, Verification and Validation, 2010, S. 89-98 40,
66, 146, 148, 149

Orso, Alessandro ; APIWATTANAPONG, Taweesup ; HarroLD, Mary J.: Lever-
aging Field Data for Impact Analysis and Regression Testing. In: Proceed-
ings of the 9th European software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of software engineer-
ing (ESEC/FSE’03). Helsinki, Finland, 2003, S. 128-137 30

207

[OBSS8]

[OMG14]

[OSHO04]

[OTPS98]

[PC89]

[PEOO]

[PM91]

[PMFGO09]

[PUA06]

[PYTBO1]

[Rav13]

[RCVDO09]

BIBLIOGRAPHY

OstrAND, T.]. ; BALCER, M.].: The category-partition method for specifying
and generating fuctional tests. In: Commun. ACM 31 (1988), Juni, Nr. 6, S.
676—-686. — ISSN 0001-0782 55

OMG: Object Management Group (OMG). Last Visited: October, 2014.
http://www.omg.org/. Version:2014 15, 18, 60

Orso, Alessandro ; Sui, Nanjuan ; HaArRroLD, Mary J.: Scaling regression
testing to large software systems. In: SIGSOFT Softw. Eng. Notes 29 (2004),
October, S. 241-251 126

Onowma, Akira ; Tsa1, Wei ; PoonawaLa, Mustafa ; Sucanuma, Hiroshi: Re-
gression testing in an industrial environment. In: Communications of ACM
41 (1998), Nr. 5, S. 81-86. — ISSN 0001-0782 1

Popcurski, A. ; CLARKE, L.: The Implications of Program Dependencies
for Software Testing, Debugging, and Maintenance. In: SIGSOFT Softw.
Eng. Notes 14 (1989), November, Nr. 8, S. 168-178 33

PeNKER, Magnus ; ErikssoN, Hans-Erik: Business Modeling With UML: Busi-
ness Patterns at Work. 1. 2000. — ISBN 0471295515 1, 14, 15, 31, 33, 48, 136

Prosert, Robert L. ; MonkewicH, Ostap: TTCN: The International Nota-
tion for Specifying Tests of Communcations Systems. In: Computer Net-
works and ISDN Systems 23 (1991), S. 417-438 32

PosHyvanyk, Denys ; Marcus, Andrian ; FErenc, Rudolf ; Gymmortny, Tibor:
Using information retrieval based coupling measures for impact analysis.
In: Empirical Software Engineering 14 (2009), Nr. 1, S. 5-32 30

PrLskaLns, Orest ; Uyan, Gunay ; ANDREws, Anneliese: Regression Testing
UML Designs. In: Proceedings of the 22nd IEEE International Conference on
Software Maintenance, 2006, S. 254-264 78, 146, 148, 149

Paut, Ray ; Yu, Lian ; Tsa1, Wei-Tek ; Bai, Xiaoying: Scenario-Based Func-
tional Regression Testing. In: Proceedings of the 25th International Computer
Software and Applications Conference on Invigorating Software Development,
2001, S. 496 33

RaviNDRANATH, Rahul: Mapping Business Resources to UTP, Ilmenau Uni-
versity of Technology, Diplomarbeit, 2013 55

Razavizaped, Azadeh ; Cimpan, Sorana ; VEerjus, Hervé ; Ducassk,
Stéphane: Software System Understanding via Architectural Views Ex-
traction According to Multiple Viewpoints. In: Proceedings of the Confeder-
ated International Workshops and Posters on On the Move to Meaningful Internet
Systems, 2009, S. 433-442 14, 31

208

http://www.omg.org/

[RH94a]

[RH94b]

[RH96]

[RST+03]

[RSTCO4]

[RTO1]

[RTO07a]

[RTO7b]

[RW03]

[Sch95]

[SDE*10]

BIBLIOGRAPHY

RoruermEL, Gregg ; HarrOLD, Mary J.: A framework for evaluating re-
gression test selection techniques. In: Proceedings of the 16th international
conference on Software engineering, 1994, S. 201-210 10, 11

RortuermEL, Gregg ; HarroLD, Mary J.: Selecting Regression Tests for
Object-Oriented Software. In: Proceedings of the International Conference on
Software Maintenance, 1994, S. 14-25 126, 127

RotuerMEL, G. ; HARROLD, ML].: Analyzing regression test selection tech-
niques. In: Software Engineering, IEEE Transactions on 22 (1996), aug, Nr. 8,
S.529 -551 1,129

ReN, Xiaoxia ; SHAH, Fenil ; T1p, Frank ; RyDer, Barbara G. ; CHesLEY, Ophe-
lia ; Dovsy, Julian: Chianti: A Prototype Change Impact Analysis Tool for
Java / Rutgers University, Department of Computer Science. 2003 (DCS-
TR-533). — Forschungsbericht 29

ReN, X.; SHaH, F. ; Tip, B.G.R. ; CHEesLEY, O.: Chianti: A Tool for Change Im-
pact Analysis of Java Programs. In: Proceedings of the 19th annual ACM SIG-

PLAN Conference on Object-oriented programming, systems, languages, and ap-
plications, 2004, S. 432-448 29

Ryper, Barbara G. ; Tip, Frank: Change Impact Analysis for Object-
Oriented Programs. In: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering (PASTE "01).
Snowbird, Utah, USA, June 2001, S. 46-53 30

Ruth, Michael ; Tu, Shengru: A Safe Regression Test Selection Technique
for Web Services. In: Proceedings of the Second International Conference on
Internet and Web Applications and Services, 2007, S. 47 27

Ruth, Michael E. ; Tu, Shengru: Towards automating regression test se-
lection for web services. In: Proceedings of the 16th international conference
on World Wide Web, 2007, S. 1265-1266 27

RutHEerFORD, Matthew J. ; WoLr, Alexander L.: A Case for Test-code Gen-
eration in Model-driven Systems. In: Proceedings of the 2nd International
Conference on Generative Programming and Component Engineering, 2003, S.
377-396 17

ScuwaBer, Ken: SCRUM Development Process. (1995). — Presented at
OOPSLA’95 Workshop on Business Object Design and Implementation 46

SapovykH, A. ; DEsFrAY, P. ; ELVESAETER, B. ; BERRE, A.-]. ; LANDRE, E.: Enter-
prise architecture modeling with SoaML using BMM and BPMN - MDA
approach in practice. In: 6th Central and Eastern European Software Engi-
neering Conference, 2010, S. 79 -85 15, 19, 32, 41, 60, 65, 87, 136

209

[SLT+10]

[SMO8]

[Sne04]

[Som10]

[SPLTJ01]

[SRRTO6]

[SS09]

[SSDO06]

[SSS06]

[SWKO09]

[TFMO6]

[TJIMO0]

BIBLIOGRAPHY

Sun, Xiaobing ; L1, Bixin ; Tao, Chuanqi ; WeEN, Wanzhi ; ZHANG, Sai:
Change Impact Analysis Based on a Taxonomy of Change Types. In: Pro-
ceedings of the IEEE 34th Annual Computer Software and Applications Confer-
ence, 2010, S. 373-382 29

Soro, Martin ; Munch, Jurgen: Using model comparison to maintain
model-to-standard compliance. In: Proceedings of the 2008 international
workshop on Comparison and versioning of software models, 2008, S. 35-40 72

Sneep, Harry M.: Reverse Engineering of Test Cases for Selective Regres-
sion Testing. In: Proceedings of the Eighth Euromicro Working Conference on
Software Maintenance and Reengineering, 2004, S. 69 33

SoMMERVILLE, Ian: Software Engineering. 9. Harlow, England : Addison-
Wesley, 2010. — ISBN 978-0-13-703515-1 45

Sunvyg, Gerson ; Porier, Damien ; Le TrAON, Yves ; JézEQuEL, Jean-Marc:
Refactoring UML Models. In: Lecture Notes in Computer Science 2185 (2001),
S.134-148 76,77

StorzER, Maximilian ; Ryper, Barbara G. ; ReN, Xiaoxia ; Tip, Frank: Find-
ing Failure-Inducing Changes in Java programs using Change Classifica-
tion. In: Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, 2006, S. 5768 29

SteraNEscu, Alin ; SCHIEFERDECKER, Ina: Model-Based Integration Testing
of Enterprise Services. In: Proceedings of the Testing: Academic and Industrial
Conference - Practice and Research Techniques, 2009, S. 56-60 2

SNEYERs, Jon ; ScHryvERs, Tom ; DEMOEN, Bart: Dijkstras algorithm with
Fibonacci heaps: An executable description. In: 20th Workshop on Logic
Programming, 2006, S. 182-191 53

SCHIEFER, Josef ; SAURER, Gerd ; ScHATTEN, Alexander: Testing Event-Driven
Business Processes. In: JCP 1 (2006), Nr. 7, S. 69-80 28

SteraNEescu, Alin ; Wieczorek, Sebastian ; KirsHin, Andrei: MBT4Chor:
A Model-Based Testing Approach for Service Choreographies. In: Model
Driven Architecture - Foundations and Applications. 2009, S. 313-324 47

TaruINg, A. ; FoucHat, H. ; MaNsour, N.: Regression testing web services-
based applications. In: International Conference on Computer Systems and
Applications, 2006, S. 163-170 27

Traon, Y. L.; JeroN, T. ; JEzeQUEL,].-M. ; MoreL, P.: Efficient object-oriented
integration and regression testing. In: IEEE Transactions on Reliability 49
(2000), Nr. 1, S. 12-25 146, 148, 149

210

[TTC13]

[TTJ*+09]

[UMLO7]

[UTP11]

[VBF07]

[VGSMDO03]

[VIA11]

[WGTZ08]

[WHO02]

[Whi00]

[WHLA97]

[WL92]

[WLCO08]

[WOO03]

BIBLIOGRAPHY

TTCN3: The Testing and Test Control Notation (ITCN-3). ETSI ES 201 873-1,
2013 17

TunN, Thein T. ; Trew, Tim ; JacksoN, Michael ; LaANEY, Robin ; NUSEIBEH,
Bashar: Specifying features of an evolving software system. In: Softw.
Pract. Exper. 39 (2009), August, S. 973-1002. — ISSN 0038-0644 63

UML: Super-Structure Specification Unified Modeling Language. Available at:
http:/ /www.omg.org/docs/formal/07-11-04.pdf, November 2007 60, 78

UTP: UML Testing Profile (UTP). Available at:
http:/ /www.omg.org/spec/UTP/1.1/PDF, 2011 8, 14, 17, 18, 32

VipAcs, Laszl6 ; BEszEDEs, Arpéd ; FERENC, Rudolf: Macro Impact Analysis
Using Macro Slicing. In: Proceedings of the Second International Conference
on Software and Data Technologies (ICSOFT '07), 2007, S. 230-235 30

Van Gorp, Pieter ; Stenten, Hans ; Mens, Tom ; DeMEYER, Serge: To-
wards Automating Source-Consistent UML Refactorings. In: Lecture Notes
in Computer Science 2863 (2003), S. 144-158 76

VIATRA2: VIATRA2, VIsual Automated model TRAnsformations Framework.
Availabe at: http:/ /www.eclipse.org/gmt/VIATRA2/, June 2011 116

WERNER, Edith ; GrRaBowski, Jens ; TRoscHUTZ, Stefan ; Zeiss, Benjamin: A
TTCN-3-based Web Service Test Framework. In: Workshop on Testing of
Software - From Research to Practice, 2008 28

WestnuizeN, Christian van d. ; Hoex, André van d.: Understanding and
Propagating Architectural Changes. In: Third Working IEEE/IFIP Confer-
ence on Software Architecture, 2002, S. 95-109 76

WHITTAKER, James A.: What Is Software Testing? And Why Is It So Hard?
In: IEEE Softw. 17 (2000), Januar, Nr. 1, S. 70-79 1

Wong, WE. ; Horgan, J.R. ; LonDoN, S. ; Acrawat, H.: A study of effec-
tive regression testing in practice. In: Proceedings of the Eighth International
Symposium on Software Reliability Engineering, 1997, S. 264-274 66

Whire, L.J. ; Leung, HEK.N.: A firewall concept for both control-flow and
data-flow in regression integration testing. In: Proceerdings., Conference on
Software Maintenance, 1992, S. 262-271 33

Wang, D. ; Li, B. ; Cay, J.: Regression Testing of Composite Service: An
XBFG-Based Approach. In: IEEE Congress on Services Part 11, 2008, S. 112—
119 27

Wu, Ye ; Orrurr, Jeff: Maintaining Evolving Component-Based Software
with UML. In: Proceedings of the Seventh European Conference on Software
Maintenance and Reengineering, 2003, S. 133 1, 80, 145, 147, 149

211

[WROS]

[WRH*00]

[WYZS12]

[XS04a]

[XS04b]

[XS05]

[YH10]

[YJHOS]

[YLS06]

[YLY*06]

[YMNCCO04]

BIBLIOGRAPHY

WEBER, Barbara ; ReicuErT, Manfred: Refactoring Process Models in Large
Process Repositories. In: Advanced Information Systems Engineering Bd.
5074. 2008, S. 124-139 29, 168

WomnLIN, Claes ; Runeson, Per ; Host, Martin ; OnLsson, Magnus C. ; Rec-
NELL, Bjdorn ; WessLEN, Anders: Experimentation in software engineering:
an introduction. Norwell, MA, USA : Kluwer Academic Publishers, 2000. —
ISBN 0-7923-8682-5 136, 137

WaNg, Yi ; Yang, Jian ; Zrao, Weiliang ; Su, Jianwen: Change impact
analysis in service-based business processes. In: Serv. Oriented Comput.
Appl. 6 (2012), Juni, Nr. 2, S. 131-149 28

XiNG, Zhenchang ; StrouLia, Eleni: Data-mining in Support of Detecting
Class Co-evolution. In: Proceedings of the 16th International Conference on
Software Engineering & Knowledge Engineering, 2004, S. 123-128 29

XiNG, Zhenchang ; StrouLia, Eleni: Understanding Class Evolution in
Object-Oriented Software. In: Proceedings of the 12th IEEE International
Workshop on Program Comprehension, 2004, S. 34—43 29

XING, Zhenchang ; Stroulia, Eleni: UMLDIff: an algorithm for object-
oriented design differencing. In: Proceedings of the 20th IEEE/ACM interna-
tional Conference on Automated software engineering, 2005, S. 54-65 29

Yoo, S. ; HArRMAN, M..: Regression testing minimization, selection and pri-
oritization: a survey. In: Software Testing, Verification and Reliability (2010)
10, 11

Yu, Yanbing ; Jones, James A. ; HarRroLD, Mary J.: An empirical study of
the effects of test-suite reduction on fault localization. In: Proceedings of the
30th international conference on Software engineering, 2008, S. 201-210 127

Yuan, Yuan ; L1, Zhongjie ; Sun, Wei: A Graph-Search Based Approach
to BPEL4WS Test Generation. In: International Conference on Software Engi-
neering Advances, 2006, S. 14 47

YaN, J. ; L1, Zhongjie ; YuaN, Yuan ; Sun, Wei ; ZHANG, Jian: BPEL4WS
Unit Testing: Test Case Generation Using a Concurrent Path Analysis Ap-
proach. In: 17th International Symposium on Software Reliability Engineering,
2006, S. 75 -84 47

YiNG, Annie T. ; Murpny, Gail C. ; NG, Raymond ; Cru-Carrorr, Mark C.:
Predicting Source Code Changes by Mining Change History. In: IEEE
Transactions on Software Engineering 30 (2004), September, Nr. 9, S. 574-586
30

212

[Yua08]

[ZFKB12]

[ZRDDOS]

[ZWDZ05]

[ZZK07a]

[ZZK07b]

BIBLIOGRAPHY

Yuan, Qiulu: A model driven approach toward business process test case
generation. In: 10th International Symposium on Web Site Evolution (2008),
S.41-44 28, 47

ZkcH, Philipp ; FELDERER, Michael ; Kats, Philipp ; BrReu, Ruth: A Generic
Platform for Model-Based Regression Testing. In: MARrGARia, Tiziana
(Hrsg.) ; SterreN, Bernhard (Hrsg.): Leveraging Applications of Formal Meth-
ods, Verification and Validation. Technologies for Mastering Change. Springer
Berlin Heidelberg, 2012 (Lecture Notes in Computer Science 7609). — ISBN
978-3-642-34025-3, 978-3-642-34026-0, S. 112-126 2, 24, 146, 148, 149

ZamoMaN, Andy ; Romraey, Bart V. ; DEMEYER, Serge ; DEURSEN, Arie v.:
Mining Software Repositories to Study Co-Evolution of Production & Test
Code. In: Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation, 2008, S. 220-229 66

ZMMERMANN, Thomas ; WEISSGERBER, Peter ; DieHL, Stephan ; ZELLER, An-
dreas: Mining Version Histories to Guide Software Changes. In: IEEE
Transactions on Software Engineering 31 (2005), June, Nr. 6, S. 429445 30

ZHENG, Yongyan ; ZHovu, Jiong ; Krausg, Paul: Analysis of BPEL Data
Dependencies. In: 33rd EUROMICRO Conference on Software Engineering
and Advanced Applications Bd. 0, 2007, S. 351-358 47

ZHENG, Yongyan ; ZHou, Jiong ; Krausg, Paul: An Automatic Test Case
Generation Framework for Web Services. In: [SW 2 (2007), S. 64-77 47

213

BIBLIOGRAPHY

List of Own Publications

1. Qurat-Ul-Ann Farooq, Steffen Lehnert, and Matthias Riebisch: Analyzing Inter-
play of Changes and Dependencies for Rule-based Regression Test Selection, In: Mod-
ellierung2014, GI-Edition - Lecture Notes in Informatics Vol. 225, Koéllen, pp.
305-320, Vienna, Austria, Mar. 19-21, 2014. (Conference Paper, Peer Reviewed)

2. Steffen Lehnert, Qurat-ul-ann Farooq, and Matthias Riebisch: Rule-based Impact
Analysis for Heterogeneous Software Artifacts. In: Proc. 17th European Conference
on Software Maintenance and Reengineering (CSMR2013), pp. 209-218 Genova,
Italy, Mar. 5-8, 2013. (Conference Paper, Peer Reviewed)

3. Qurat-ul-ann Farooq, Matthias Riebisch: Model-Based Regression Testing: Process,
Challenges and Approaches, In Book: Emerging Technologies for the Evolution and
Maintenance of Software Models, Jorg Rech, Christian Bunse (Eds.) IGI Global,
ISBN: 9781613504383, pp. 254-297, Mar. 27,2012. (Book Chapter, Peer Reviewed)

4. Qurat-ul-ann Farooq, Matthias Riebisch: A Holistic Model-driven Approach to Gen-
erate U2TP Test Specifications Using BPMN and UML, In: Proc. Fourth Interna-
tional Conference on Advances in System Testing and Validation Lifecycle (VALID
2012), The, Lisbon, Portugal, pp. 85-92, Nov. 18-23,2012. (Conference Paper, Peer
Reviewed)

5. Stefan Lehnert, Qurat-Ul-Ann Farooq, and Matthias Riebisch: A Taxonomy of Change
Types and its Application in Software Evolution, In: Proc. 19th IEEE International
Conference on the Engineering of Computer Based Systems (ECBS 2012), Novi
Sad, Serbia, pp. 98-107, Apr. 11-13, 2012. (Conference Paper, Peer Reviewed)

6. Matthias Riebisch, Stephan Bode, Qurat-Ul-Ann Farooq, and Steffen Lehnert:
Towards Comprehensive Modelling by Inter-Model Links Using an Integrating Reposi-
tory. In: Proc. 8th IEEE Workshop on Model-Based Development for Computer-
Based Systems — Covering Domain and Design Knowledge in Models within the
18th IEEE International Conference on Engineering of Computer-Based Systems
(ECBS2011), Las Vegas, Apr. 27-29, 2011. (Workshop Paper, Peer Reviewed)

7. Aneela Jabeen, Sidra Tariq, Qurat-Ul-Ann Farooq, and Zafar I. Malik: A lightweight
aspect modelling approach for BPMN, In: Proc. 14th International IEEE Multitopic
Conference (INMIC), pp.255-260, Dec. 22-24, 2011. (Conference Paper, Peer Re-
viewed)

8. Qurat-ul-ann Farooq, Muhammad Zohaib Z. Igbal, Zafar I. Malik, and Matthias
Riebisch: A Model-Based Regression Testing Approach for Evolving Software Systems
with Flexible Tool Support, In: Proc. IEEE International Conference and Workshops
on Engineering of Computer-Based Systems (ECBS), Oxford, United Kingdom,
pp- 41-49, Mar.22-26 2010. (Conference Paper, Peer Reviewed)

9. Qurat-ul-ann Farooq: A Model Driven Approach for Testing Evolving Business Process
based Applications, In: Proc. Doctoral Symposium at International Conference on
Model Driven Engineering Languages and Systems (MODELS), 2010. (Doctoral
Symposium Paper)

214

BIBLIOGRAPHY

10. Nosheen Sabahat, Qurat-ul-ann Farooq, and Zafar I. Malik: Analyzing Impact of
Change in Sequence diagrams on State-machine based Regression Testing, In: Proc.
IASTED International Conference on Software Engineering, Innsbruck, Austria,
pp- 226-233, Mar. 2010. (Conference Paper, Peer Reviewed)

11. Stephan Bode, Qurat-Ul-Ann Farooq, and Matthias Riebisch: Evolution Support
for Model-Based Development and Testing—Summary, In: Joint Proceedings of EMDT2010,
IWK2010, [Imenau, Germany, Sept. 13-16, 2010. (Workshop Paper, Not Peer Re-
viewed)

Co-supervised Thesis

1. Stefan Grofs: Generierung von U2TP-Testfallbeschreibungen aus BPMN Workflowmod-
ellen auf Basis von Eclipse, lmenau University of Technology, Masters Thesis, 2011
(German Only)

2. Rahul Ravindranath: Mapping Business Resources to UTP, Ilmenau University of
Technology, Masters Thesis, 2013

3. Suraj Maranahalli: Cost Based Test Prioritization for Business Processes, Ilmenau
University of Technology, Masters Thesis, 2013

215

Eidesstattliche Versicherung

Declaration on oath

Hiermit erklére ich an Eides statt, dass ich die vorliegende Dissertationsschrifft selbst
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

I hereby declare, on oath, that I have written the present dissertation on my own and
have not used other then acknowledged resources and aids.

Miinchen, den 16. 09. 2016 Unterschrift:

	List of Figures
	List of Tables
	Abbreviations
	1 Introduction and Motivation
	1.1 Research Questions
	1.2 Scope
	1.3 Thesis Goals
	1.4 Contributions
	1.5 Thesis Structure

	2 Fundamentals and Preliminaries
	2.1 Model-based Regression Testing Problem
	2.2 Problem Analysis
	2.2.1 The Role of System Views and Models
	2.2.2 Cross View Dependency Relations
	2.2.3 The Notion of Change
	2.2.4 The Test Baseline Using Model-Based Testing

	2.3 Introduction to Mobile Field Service Technician Case Study
	2.4 Chapter Summary

	3 Analysis and Evaluation of the State of the Art
	3.1 Evaluation of Model-based Regression Testing Approaches
	3.1.1 Evaluation Criteria for Model-based Regression Testing Approaches
	3.1.2 Evaluation of Model-based Regression Testing Approaches based on the Evaluation Criteria

	3.2 Analysis of State of the Art in Other Relevant Areas
	3.2.1 Analysis of Business Process-based Regression Testing Approaches
	3.2.2 Analysis of Test Generation Approaches for Business Processes
	3.2.3 Analysis of Change Classification Schemes
	3.2.4 Analysis of Impact Analysis Approaches
	3.2.5 Analysis of Approaches for Support of Software Views
	3.2.6 State of the Art Business Process Modeling Approaches
	3.2.7 Analysis of State of the Art on Test Dependencies

	3.3 Chapter Summary

	4 Overview of Proposed Model-based Regression Testing Approach
	4.1 Proposed Model-based Regression Testing Approach
	4.1.1 Baseline Test Generation
	4.1.2 Recording of Dependency Relations
	4.1.3 Change Application
	4.1.4 Rule-based Impact Analysis
	4.1.5 Regression Test Classification

	4.2 Adapting the Approach to Business Processes
	4.2.1 Motivating Scenario for Business Processes
	4.2.2 Adapting Problem and Solution for Business Processes

	4.3 Relation of the Approach with General SDLC
	4.4 Chapter Summary

	5 Baseline Test Generation–A Model-driven Test Generation Approach
	5.1 Requirements to Enable Model-driven Test Generation for Business Processes
	5.2 Our Approach for Model-driven Testing of Business Processes
	5.2.1 Mappings and Mapping Rules
	5.2.2 UTP Test Architecture Generation
	5.2.3 UTP Test Behavior Generation
	5.2.4 UTP Test Data Generation

	5.3 Applying Test Generation Approach on HandleTourPlanningProcess
	5.4 Chapter Summary

	6 Recording of Dependency Relations–between Models and Tests
	6.1 Fundamentals of Dependency Relations
	6.1.1 Origin of Dependency Relations
	6.1.2 Classification of Dependency Types

	6.2 Dependency Relations among Business Process Models and Tests
	6.2.1 Intra-Model Dependency Relations
	6.2.2 Cross-Model Dependency Relations

	6.3 Recording Dependency Relations for Tests
	6.3.1 Recording Dependency Relations During Test Generation
	6.3.2 Recording Dependency Relations Using Detection Rules
	6.3.3 Demonstrating Dependency Relations for HandleTourPlanningProcess

	6.4 Chapter Summary

	7 Change Application
	7.1 Applying Changes from Pre-Defined Change Catalogue
	7.2 A Taxonomy of Change Types
	7.2.1 Representing Models as Labeled Graph
	7.2.2 Change Types

	7.3 Application of Taxonomy on Models of Structural and Process View
	7.3.1 Adapting Change Taxonomy for Models of Structural View
	7.3.2 Adapting Change Taxonomy to the Models of Process View

	7.4 Demonstrating Changes for HandleTourPlanningProcess
	7.5 Chapter Summary

	8 Rule-based Impact analysis Across Tests
	8.1 Insight to Rule-based Impact Analysis Approach
	8.1.1 Defining Impact Rules
	8.1.2 Impact Analysis Process and Activities

	8.2 Impact Rules Covering Business Process Views
	8.3 Demonstrating Rule-based Impact Analysis on HandleTourPlanningProcess
	8.3.1 Impact Analysis for the Application of Change 1
	8.3.2 Impact Analysis for the Application of Change 2

	8.4 Chapter Summary

	9 Regression Test Classification
	9.1 Rule-based Test Classification
	9.1.1 Concept of Test Classification
	9.1.2 Test Classification Rules
	9.1.3 Test Classification Process

	9.2 Classification of UTP Test Elements
	9.2.1 Classification of UTP Test Architecture Elements
	9.2.2 Classification of UTP Test Behavior Elements

	9.3 Chapter Summary

	10 Automation and Tool Support
	10.1 Tool Support for our Baseline Test Generation Approach using VTG
	10.2 Tool Support for our Regression Testing Approach by using EMFTrace
	10.2.1 Using EMFTrace for Dependency Detection and Rule-based Impact Analysis
	10.2.2 Extending EMFTrace for Test Classification

	10.3 Chapter Summary

	11 Evaluation
	11.1 The Evaluation Protocol
	11.1.1 Evaluation Metrics
	11.1.2 The Experiment Execution Process

	11.2 Evaluation Results
	11.2.1 Evaluation Results of Change Scenario 1
	11.2.2 Cumulative Evaluation Results

	11.3 Threats to Validity
	11.4 Chapter Summary

	12 Conclusion and Future Work
	12.1 Summary of Contributions
	12.2 Critical Review
	12.3 Future Work

	A State of the Art Analysis Tables
	B Mappings and Mapping Rules for UTP Test Generation
	B.1 Mapping rules for Test Architecture Generation
	B.2 Mapping Rules for Test Behavior Generation

	C List of Dependencies Between System Views
	D Change Types and Scenarios
	E Rules
	F List of Own Publications
	G The Experiment Data
	Bibliography

