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CHAPTER 1

Introduction

This thesis splits into two parts concerning two problems in extremal combi-

natorics. In the first part we analyse thresholds for Ramsey-type properties in

random discrete structures (see Theorem 5 and Theorem 8). In the second part we

consider a generalisation of Dirac’s theorem on Hamiltonian cycles to hypergraphs

(see Theorem 12). For the basic notation which is not defined here we refer to the

textbooks by Diestel [10], Bollobás [4], and Bondy and Murty [5].

§1.1. Sharp Thresholds

1.1.1. Thresholds for Random Graphs. In Part 1 we consider a question

on random discrete structures, in particular, in Chapter 3 on random graphs.

Random graph theory has its origin in the 1940s. In one of the first applications of

random graphs Erdős [12] proved the existence of a certain combinatorial object

for which no constructive proof is known until now.

Throughout the years the systematic study of random graphs grew into a field

within graph theory on its own. While random graphs were initially used as a tool

to prove existence results, Erdős and Rényi studied in a series of papers starting

in 1959 [13] random graphs as objects themselves. Their paper [14] from 1960

is considered one of the most important ones on random graphs. There they

investigate the so-called evolution of the random graph, i.e. they analyse how the

structure of a random graph changes if the density increases, e.g. they contribute

to answer questions such as “when is the random graph connected”. In general the

most common question is “for which density does the random graph with high

probability satisfy a given property”. For an overview about classic results we refer
1
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to the books by Bollobás [3] and by Janson, Łuczak, and Ruciński [32]. Nowadays

random graph theory is an established branch of discrete mathematics lying at

the focal point of graph theory, combinatorics, and probability theory.

In this thesis we use the binomial random graph model Gpn, pq which considers

graphs with vertex set rns “ t1, . . . , nu where each edge appears independently

with probability p. Formally Gpn, pq can be constructed by the following random

procedure. Let Ωn be the set of all graphs with vertex set rns, let PpΩnq be

the powerset of Ωn, and let PGpn,pq be a probability measure such that for each

graph G P Ωn holds PGpn,pqptGuq “ pepGqp1 ´ pqp
n
2q´epGq. Then Gpn, pq is a short

hand notation for the probability space pΩn,PpΩnq,PGpn,pqq.

In this thesis we are interested in large graphs, which means we consider the

behaviour of the random graph for nÑ 8. Moreover, in our case p depends on n

and mostly in interesting cases limnÑ8 ppnq “ 0 holds. Let An Ď Ωn be a family of

graphs with vertex set rns and let A “
Ť

nPN An. We then call A a graph property,

e.g. for An “ tG P Ωn : G is connectedu we obtain the property that a graph is

connected (up to isomorphisms). In the following we will suppress the index n

in An if it is clear which n is meant. We say that Gpn, pq satisfies A asymptotically

almost surely (a.a.s.) if limnÑ8 PpGpn, pq P Aq “ 1, where we use the standard

notation PpGpn, pq P Aq for the the term PGpn,pqpAnq.

A key concept in this area is the so-called threshold function, that is for a given

property A a function p̂ “ p̂pnq such that

lim
nÑ8

PpGpn, pq P Aq “

$

’

&

’

%

0, if p “ opp̂q ,

1, if p “ ωpp̂q .

This threshold function determines the critical value of p where the probability

that Gpn, pq satisfies A “jumps” from zero to one. Note that a threshold function

is not unique as any multiplication with a constant would also yield a threshold

function. However, we talk about the threshold and often mean the order of

magnitude of a threshold which is unique. Note also that the definition of threshold
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consists of two statements. We refer to the statement “limnÑ8 PpGpn, pq P Aq “ 0

if p “ opp̂q” as the 0-statement and to “limnÑ8 PpGpn, pq P Aq “ 1 if p “ ωpp̂q” as

the 1-statement.

As it turns out, most “natural” graph properties have a threshold, for example

it is easy to show that monotone graph properties have a threshold (see, e.g. [22]).

Consequently, this leads to the question whether this result is sharp or in other

words: Is it possible to improve p “ opp̂q and p “ ωpp̂q?

In this sense we define a threshold to be semi-sharp if there are constants

C1 ě C0 ą 0 such that

lim
nÑ8

PpGpn, pq P Aq “

$

’

&

’

%

0, if p ď C0p̂ ,

1, if p ě C1p̂

and sharp if for all ε ą 0

lim
nÑ8

PpGpn, pq P Aq “

$

’

&

’

%

0, if p ď p1´ εqp̂ ,

1, if p ě p1` εqp̂ .

If a threshold is not sharp we call it coarse. For example the threshold for the

property “Gpn, pq is connected” is a sharp threshold of order logn
n

, while for the

property “Gpn, pq contains a triangle” it is 1
n
, coarse, and not even semi-sharp.

Concerning sharp thresholds only few results are known. The most important

work in this area was done by Friedgut [19] who basically characterised the graph

properties that do not have a sharp threshold as the ones that can be approximated

by local properties. In Part 1, Chapter 3 we will investigate the sharpness of

the threshold for some Ramsey-type properties of graphs. In Part 1, Chapter 4

we study the threshold for monochromatic Schur triples in colourings of random

subsets of the integers.
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1.1.2. Thresholds for Ramsey-type Properties. Ramsey theory is a

branch of extremal combinatorics which started in 1930 with Ramsey’s theo-

rem [42]. The finite version states that for all k, r P N there is n0 P N such that

for all vertex colourings of the complete graph Kn with r colours, where n ě n0,

there exists a monochromatic Kk. There are also some other versions including

an infinite version, a version with edge colourings instead of vertex colourings or

versions with more general graphs then cliques. We define the following common

short notation GÑ pF qer that means: For each edge colouring of G with r colours

there is a monochromatic copy of F . When we talk about vertex colourings

we use v instead of e, however, in this thesis we are mainly interested in edge

colourings.

A common theme in recent years was the transfer of different results to a sparse

random setting, for example this was done for the classical theorems of Ramsey,

Turán and Szemerédi (see, e.g. [8,25,46,52]).

Here we are interested in the threshold behaviour for Ramsey properties of

random graphs, in this thesis especially in the sharpness of a threshold for the

case of edge colourings. For the case of vertex colourings we refer to [23], where it

was shown that for strongly strictly balanced graphs F , i.e.

@F 1 Ĺ F with vpF 1q ą 1: epF q

vpF q ´ 1 ă
epF q ´ epF 1q

vpF q ´ vpF 1q
,

the threshold for the property Gpn, pq Ñ pF qvr is sharp and it has order of

magnitude n´1{m1pF q, where

m1pF q “ max
F 1ĎF,vpF 1qě2

tepF 1q{pvpF 1q ´ 1qu .

Heuristically a probability p “ Θ
`

n´1{m1pF q
˘

yields that in average a fixed

vertex v should be contained in a constant number of copies of F . Then for p “ ωpp̂q

we expect many copies of F in the whole graph and consequently that somewhere

there should exist a monochromatic copy of F . On the other side if p “ opp̂q
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we expect only few copies of F which should make it possible to find an F -free

colouring of Gpn, pq.

For the case of edge colourings the order of magnitude changes. For star forests

and an arbitrary number of colours r and d “ ∆pF q the threshold coincides with

the threshold for appearance of a vertex of degree rpd´ 1q ` 1 which is of order

n´1´ 1
rpd´1q`1 (see [14]). For other graphs which are not a star forest the threshold

depends on the m2-density

m2pF q “ maxtd2pF
1
q : F 1 Ď F and epF 1q ě 1u ,

where

d2pF
1
q “

$

’

&

’

%

epF 1q´1
vpF 1q´2 , if vpF 1q ą 2,

1, if F 1 “ K2 .
(1)

In [46] Rödl and Ruciński proved the following semi-sharp behaviour of the

threshold (parts of the theorem had been shown before, see also [17], [40] and [45]).

Theorem 1 (Rödl & Ruciński [46]). For all r ě 2, for all graphs F that

are not a star forest the function p̂ “ p̂pnq “ n´1{m2pF q is the threshold for the

property Gpn, pq Ñ pF qer. In fact, there exist constants C1 ě C0 ą 0 such that

lim
nÑ8

PpGpn, pq Ñ pF qerq “

$

’

&

’

%

0, if p ď C0n
´1{m2pF q,

1, if p ě C1n
´1{m2pF q.

�

Note that p “ Θpn´1{m2pF qq yields a similar behaviour as p “ Θpn´1{m1pF qq

in the context of vertex colourings. We expect for each fixed edge e a constant

number of copies of F containing e.

Overall, the order of magnitude for edge colourings is known for all graphs F

and for all number of colourings r ě 2. In contrast to this the question whether

the threshold is sharp seems to be much more complicated compared to the vertex

colouring case and only few results were proved.
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1.1.3. Sharp Thresholds for Ramsey Properties of Random Graphs.

In the before mentioned paper [23] Friedgut and Krivelevich showed that the

threshold for most trees and an arbitrary number of colours r ě 2 is sharp.

Theorem 2 (Friedgut & Krivelevich [23]). For all r ě 2, for every tree T

which is not a star and in case of r “ 2 not P4 (a path of three edges), there exist

constants C1 ě C0 ą 0 and a function ppnq “ cpnqn´1{m1pF q with C0 ď cpnq ď C1

such that

lim
nÑ8

PpGpn, pq Ñ pT qerq “

$

’

&

’

%

0, if p ď p1´ εqppnq,

1, if p ě p1` εqppnq.
�

In another involved paper Friedgut et al. showed that the threshold for a

triangle K3 (the complete graph on three vertices) and two colours is sharp.

Theorem 3 (Friedgut, Rödl, Ruciński & Tetali [24]). There exist positive

constants c0 and c1 and a function cpnq with c0 ă cpnq ă c1 such that for all ε ą 0

we have

lim
nÑ8

PpGpn, pq Ñ pK3q
e
2q “

$

’

&

’

%

0, if p ď p1´ εqcpnqn´1{2 ,

1, if p ě p1` εqcpnqn´1{2 .
�

Recently Friedgut, Hàn, Person and Schacht [21] developed in a paper on

arithmetic progressions in random subsets of the integers a method that works to

prove the sharpness for all bipartite graphs and two colours. We use this method

to show the following extension of [24] for arbitrary cycles. In particular, we

obtain a shorter proof of their theorem.

Theorem 4 (Schacht & Sch.). For a cycle Ck of length k ě 3 there exist

positive constants c0 and c1 and a function cpnq with c0 ă cpnq ă c1 such that for

all ε ą 0 we have

lim
nÑ8

PpGpn, pq Ñ pCkq
e
2q “

$

’

&

’

%

0, if p ď p1´ εqcpnqn´pk´2q{pk´1q,

1, if p ě p1` εqcpnqn´pk´2q{pk´1q.



1.1. SHARP THRESHOLDS 7

In fact, our proof also works for a more general class of graphs. We say a

graph F is nearly bipartite if epF q ě 2 and there is a bipartite graph F 1 and some

edge e such that F “ F 1 ` e “ pV pF 1q, EpF 1q Y teuq. Related to the definition

of m2-density we call a graph strictly balanced if d2pF
1q ă d2pF q for all F 1 Ĺ F .

Note that all cycles are nearly bipartite since removing one edge yields a bipartite

graph, and they are strictly balanced. There are also other strictly balanced and

nearly bipartite graphs, for example there exist such graphs which result from a

cycle by adding some cords. Our main theorem which also implicates Theorem 4

is the following.

Theorem 5 (Schacht & Sch.). For all strictly balanced and nearly bipar-

tite graphs F there exist positive constants c0 and c1 and a function cpnq with

c0 ă cpnq ă c1 such that for all ε ą 0 we have

lim
nÑ8

PpGpn, pq Ñ pF qe2q “

$

’

&

’

%

0, if p ď p1´ εqcpnqn´1{m2pF q,

1, if p ě p1` εqcpnqn´1{m2pF q.

We will give the proof of Theorem 5 in Chapter 3. Similar to the proofs in [24]

and [21] the proof starts with a result by Friedgut and Bourgain given in [19] which

yields a characterisation of graph properties with a coarse threshold (remember

that coarse equals not sharp) as properties that can be approximated by local

properties. A second main tool that we use is the recent hypergraph container

theorem by Saxton and Thomason and by Balogh, Morris, and Samotij ([51], [1]).

We will present these main tools as well as some concentration results of probability

theory in Chapter 2.

1.1.4. Sharp Threshold for Monochromatic Schur Triples. In Ramsey

theory we are not only interested in graphs but also in other discrete structures.

For instance we can ask for integer value solutions of linear equations. Here one

prime example is the following theorem by van der Waerden.
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Theorem 6 (van der Waerden 1927 [58]). For all integers r ě 1 and k ě 1

the following holds. For any partition E1 Ÿ . . . Ÿ Er “ N of the natural numbers

there exists some j P rrs such that Ej contains an arithmetic progression of length

k, that means there exist a, λ P N with λ ą 0 such that a ` iλ P Ej for all

i “ 0, . . . , k ´ 1. �

We can consider arithmetic progressions as solutions of special linear equations,

for example a triple px, y, zq with y “ x ` λ and z “ x ` 2λ is a solution of the

equation x ` z “ 2y. The same can be done for longer arithmetic progressions,

in general an arithmetic progression of length k is a solution ~x “ px1, . . . , xkq of

the equation system xi ` xi`2 “ 2xi`1 for all i “ 1, . . . , k ´ 2. Clearly this can be

expressed as a set of solutions of a homogeneous linear equation system given by a

matrix A and more generally we can ask for solutions of such an equation system

for arbitrary integer value matrices A.

We are also mainly interested in “non degenerated” solutions such that xi ‰ xj

for all i ‰ j, which leads to the following definition. A matrix A is called

irredundant if there exists a solution ~x “ px1, . . . , xkq of A~x “ 0 with xi ‰ xj for

all i ‰ j. These solutions are called proper solutions.

Rado [41] found a characterisation when there are monochromatic solutions

of A~x “ 0. A Matrix A is called partition regular if for arbitrary r P N and

sufficiently large n every partition of rns into r classes has a partition class that

contains a proper solution of A~x “ 0.

All of these definitions and concepts can be done for rns as well as for Zn,

the quotient ring Z{nZ. A related question is the following where we consider

arbitrary subsets of rns respectively of Zn of linear size instead of partitions. Which

matrices A satisfy that for all ε ą 0 and sufficiently large n every subset of rns

respectively Zn of size at least εn contains a proper solution of A~x “ 0? Matrices

that satisfy this condition are called density regular and it turns out that for

example the matrix corresponding to arithmetic progressions of length k is density

regular.
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Another natural linear equation is given by the matrix AST “
´

1 1 ´1
¯

which characterises triples px, y, zq such that x` y “ z. We call the set

tpx, y, zq P rns3 : y ` z “ x or x` z “ y or x` y “ zu

(and analogue for Zn instead of rns) the set of Schur triples and Schur proved in [54]

that for all r P N for every partition of rns into r classes there exist monochromatic

proper Schur triples providing n is sufficiently large. In other words: On the one

hand he showed that AST is partition regular. On the other hand it is clear that

AST is not density regular since for example the set of all odd numbers up to n

does not contain a Schur triple. Note that in this thesis a triple px, y, zq is called

a Schur triple if one element is the sum of the other two, independently of the

position of the elements in the triple.

Similar to questions in graph theory, theorems about solutions of linear equa-

tions had been transferred to a random setting that means to rnsp or Zn,p, where

for some finite set Γ we denote by rΓsp the binomial random subset such that each

element of Γ is contained in rΓsp independently with probability p, and we use

the short hand notation Zn,p “ rZnsp. As noted before we are interested in the

threshold behaviour which in some sense is determined by the “densest subset” of

a solution, similar to the m1-density in case of vertex colourings for graphs or the

m2-density in the case of edge colourings.

For an `ˆ k matrix A and a partition W ŸW “ rks of the columns of A, we

denote by AW the matrix obtained from A by restricting to the columns indexed

by W . Then we define the density mA of A by

mA “ max
W ŸW“rks,|W |ě2

|W | ´ 1
|W | ´ 1` rankpAW q ´ rankpAq ,

where we use rankpAW q “ 0 for W “ ∅.

We define the arrow notation also for random subsets of integers, that means

for a subset X Ď rns or X Ď Zn we write X Ñ pAqr if for any partition of X

into r classes there is a proper solution of A~x “ 0 contained in one partition class.
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In [47] Rödl and Ruciński showed that irredundant, density regular matrices

have a semi-sharp threshold for the property rnsp Ñ pAqr which is of order n´1{mA .

Friedgut, Rödl and Schacht verified the same semi-sharp threshold of order n´1{mA

for all irredundant, partition regular integer matrices (see [25]). The special case

for Schur triples and two colours was shown in [26] before, where as short hand

notation we write ST instead of AST .

Theorem 7 (Graham, Rödl & Ruciński [26]). There exist constants

C1 ě C0 ą 0 such that the following holds.

lim
nÑ8

Pprnsp Ñ pSTq2q “

$

’

&

’

%

0, if p ď C0n
´1{2 ,

1, if p ě C1n
´1{2 .

�

Recently Friedgut, Hàn, Person and Schacht [21] verified the first sharp thresh-

old result in this area by showing that in case of two colours and arbitrary k P N

the threshold for Zn,p Ñ pAkq2 is sharp. The method used there also gives the, in

the graph section mentioned, sharpness concerning bipartite graphs.

We adapted the proof for the case of two colours and Schur triples, a non

density regular matrix. The main result in this section is the following.

Theorem 8. There exist positive constants c0 and c1 and a function cpnq with

c0 ă cpnq ă c1 such that for all ε ą 0 we have

lim
nÑ8

PpZn,p Ñ pSTq2q “

$

’

&

’

%

0, if p ď p1´ εqcpnqn´1{2,

1, if p ě p1` εqcpnqn´1{2.
�

This proof also uses some of the main tools of Theorem 5 from Chapter 2. The

details of the proof (which follows the same method as the proof in [21]) will be

presented in the second half of Part 1, in Chapter 4.
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§1.2. Forcing Hamiltonian Cycles in Hypergraphs

In Part 2 of this thesis we consider minimum degree conditions that guarantee

the existence of Hamiltonian cycles in hypergraphs. A fundamental result in the

theory of Hamiltonian cycles is Dirac’s theorem from 1952.

Theorem 9 (Dirac [11]). Every graph G on n ě 3 vertices with minimum

degree δpGq ě n{2 contains a Hamiltonian cycle. �

Here we want to investigate minimum degree conditions for hypergraphs. As

there are several ways to generalise the notion of minimum degree or of cycle,

we start with the following definitions. For a k-uniform hypergraph H “ pV,Eq

and 1 ď s ď k ´ 1 let S P
`

V
s

˘

. We denote by degpSq the number of edges that

contain S and by NpSq the neighbourhood of S, i.e. sets T P
`

V
k´s

˘

such that

T Ÿ S P E, consequently |NpSq| “ degpSq. We call

δspHq “ mintdegS : S P
ˆ

V

s

˙

u

the s-minimum degree of H. Note that an i-minimum degree condition yields also

some useful information about j-minimum degree conditions if j ă i since every

j-set is contained in some i-set. In general the opposite is not true.

Let k P N and 1 ď ` ď k´1. An `-cycle is a k-uniform hypergraph C` if a cyclic

ordering of its vertices exists such that every edge of C` consists of k consecutive

vertices, the intersection of two consecutive edges (order given by the contained

vertices) is precisely `, and every vertex is contained in at least one edge. Note

that if 2` ă k there are vertices which are contained in exactly one edge and

vertices that are contained in exactly two edges, while for ` “ k ´ 1 each vertex is

contained in exactly k edges.

These definitions allow for different generalisations of Dirac’s theorem depending

on the choice of the minimum degree and the value of ` and a lot of work was

accomplished over the last 20 years (see e.g. [43] and the references therein). The

starting point in this area is a conjecture by Katona and Kierstead [33] that for all
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k ě 3 each k-uniform hypergraph H on n vertices with δk´1pHq ě p1{2` op1qqn

contains a Hamiltonian pk´1q-cycle. This conjecture was verified by Rödl, Ruciński

and Szemerédi ([48], [49]) by introducing a new method, the so-called absorbing

method. In the absorbing method one tries to find a special large cycle that contains

almost all vertices of H. Afterwards the cycle can be extended by local changes to a

Hamiltonian cycle. The difficulty in proving derives from the necessary preparation

for the properties of the almost spanning cycle, which allow to conclude the missing

vertices. We will also use this method in our proof and explain the details in

Part 2.

The same question can be asked for 1-cycles instead of pk ´ 1q-cycles. What

is the necessary degree condition? Kühn and Osthus [39] gave the answer for

3-uniform hypergraphs. Is δ2pHq ě p1{4` op1qqn then H contains a Hamiltonian

1-cycle. In a next step Hàn and Schacht gave in general an asymptotic version

for arbitrary k P N and `-cycles with 1 ď ` ă k{2 in [27] (see also [34]). In this

context asymptotic means that we can choose γ ą 0 in the next theorem arbitrary

small such that for sufficiently large n the degree condition is sufficient.

Theorem 10 (H. Hàn & Schacht [27]). For all integers k ě 3 and 1 ď ` ă k{2

and every γ ą 0 there exists an n0 such that every k-uniform hypergraph H “ pV,Eq

on |V | “ n ě n0 vertices with n P pk ´ `qN and

δk´1pHq ě
ˆ

1
2pk ´ `q ` γ

˙

n

contains a Hamiltonian `-cycle. �

The case ` “ k ´ 2 is solved in [38] by Kühn, Mycroft and Osthus. Recently

J. Han and Zhao [28] improved the last theorem to a sharp version, i.e. they

managed to remove γ. To get a feeling about the improvement from an asymptotic

to a sharp version it is useful to look at the so-called extremal case.

Consider an extremal example (i.e. one that maximises the number of edges)

of a k-uniform hypergraph H on n vertices that does not contain a Hamiltonian
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`-cycle. It is known that such hypergraph looks as follows (for simplicity assume

n P 2pk ´ `qN). Take a set A of size n
2pk´`q ´ 1, a set B of size n´ n

2pk´`q ` 1, and

let a hyperedge e be contained in EpHq if and only if e contains at least one vertex

from A. Then on one hand H does not contain a Hamiltonian `-cycle since each

edge has to contain at least one vertex from A. For 2` ă k each vertex in an

`-cycle is contained in at most two edges and consequently it is not possible to

find pk ´ `qn edges that form a cycle such that each vertex contains an element

from A. On the other hand this hypergraph satisfies δk´1pHq ě p 1
2pk´`q ´

1
n
qn, i.e.

it is not possible to improve the degree condition to δk´1pHq ě p 1
2pk´`q ´ γqn for

some γ ą 0 and arbitrary hypergraphs.

The proof of the sharp result is split into two cases. Either a hypergraph is

in some sense close to the extremal example shown in the last paragraph, which

yields some structure to work with, or it is not close, in which case it is possible

to use the asymptotic result by Hàn and Schacht. In Chapter 5, for this we define

the notion of p`, ξq-extremal graphs that are graphs which contain a set B of size

t
2pk´`q´1
2ppk´`q nu with epBq ď ξ

`

n
k

˘

. We can think of “H is close to the extremal example”

as “H is p`, ξq-extremal for some small ξ ą 0”.

One of the natural questions in this field is to find s-minimum degree conditions

for smaller s, so the next step is to deal with s “ k ´ 2. Buß, H. Hàn and Schacht

proved the 3-uniform case, which was later extended to the sharp version by J. Han

and Zhao [29].

Theorem 11 (Buß, H. Hàn & Schacht [6]). For all γ ą 0 there exists an n0

such that every 3-uniform hypergraph H “ pV,Eq on |V | “ n ě n0 vertices with

n P 2N and

δ1pHq ě
ˆ

7
16 ` γ

˙

n

contains a Hamiltonian 1-cycle. �

The extremal example for this condition remains the same and one can calculate

to which pk ´ 2q-minimum degree condition this leads. A quick estimation yields
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the following for a set S Ď B of size k ´ 2.

degpSq “ |A||B| `
ˆ

|A|

2

˙

“

ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ op1q

˙ˆ

n

2

˙

.

It turns out that the corresponding minimum degree condition is sufficient. Our

main result is the following asymptotic version.

Theorem 12 (Bastos, Mota, Schacht, Schnitzer & Sch.). For all integers k ě 4

and 1 ď ` ă k{2 and every γ ą 0 there exists an n0 such that every k-uniform

hypergraph H “ pV,Eq on |V | “ n ě n0 vertices with n P pk ´ `qN and

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ` γ

˙ˆ

n

2

˙

contains a Hamiltonian `-cycle.

In fact we show the following version for non p`, ξq-extremal hypergraphs.

Theorem 12 follows directly from Theorem 13 since for given `, k, and γ we can

choose ξ sufficiently small and n sufficiently large such that the degree condition

in Theorem 12 prevents the graph to be p`, ξq-extremal.

Theorem 13 (Bastos, Mota, Schacht, Schnitzer & Sch.). For any 0 ă ξ ă 1

and all integers k ě 4 and 1 ď ` ă k{2, there exists γ ą 0 such that the following

holds for sufficiently large n. Suppose H is a k-uniform hypergraph on n vertices

with n P pk ´ `qN such that H is not p`, ξq-extremal and

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ γ

˙ˆ

n

2

˙

.

Then H contains a Hamiltonian `-cycle.

Moreover, a proof for the sharp version is in preparation at the moment.

However, this will not be covered in this thesis. The proof of Theorem 13 will be

presented in Part 2.



Part 1

Sharp Thresholds



CHAPTER 2

Main Tools

Large parts of Chapter 2 and almost all of Chapter 3 are based on the Ar-

ticle [53], joint work with Mathias Schacht. Chapter 4 follows the same proof

strategy and uses the ideas from [21] as well as from [53].

In this chapter we present the main tools which are similarly used in both

parts about sharp thresholds, in Chapter 3 about nearly bipartite graphs and in

Chapter 4 about Schur triples. These tools are mainly Friedgut’s and Bourgain’s

criterion to characterise coarse thresholds and the recently developed hypergraph

container lemma by Balogh, Morris, and Samotij and by Saxton and Thomason.

Furthermore, we will recall some standard probabilistic estimates.

§2.1. Friedgut’s Criterion for Coarse Thresholds

In [19] Friedgut characterised graph properties with a coarse threshold as those

properties that can be approximated by local ones. We use the following version

from [20, Theorem 2.4], where for a graph B and n ě vpBq we define ΨB,n as the

set of all injective embeddings of B into the complete graph Kn.

Theorem 14. Let A be a monotone graph property with a coarse threshold.

Then there exist p “ ppnq, constants 1
3 ą α ą 0, ε ą 0, τ ą 0, and a graph B

satisfying

(i ) α ă PpGpn, pq P Aq ă 1´ 3α and

(ii ) PpB Ď Gpn, pqq ą τ

such that for every graph property G with a.a.s. Gpn, pq P G there exist infinitely

many n P N and for each such n a graph Z P G on n vertices such that the following

holds.
16
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(1) PpZYhpBq P Aq ą 1´α , where h P ΨB,n is chosen uniformly at random,

(2) PpZ YGpn, εpq P Aq ă 1´ 2α,

where the random graph Gpn, εpq and Z have the same vertex set. �

Note that Pp¨q in (i ), (ii ), (1), and (2) concern different probability spaces.

While in (i ) and (ii ) it concerns the random graph Gpn, pq, we consider h chosen

uniformly at random in (1) and the random graph Gpn, εpq in (2).

Roughly the theorem can be read as: If A has a coarse threshold and p is in

range of the threshold, then there exists a small graph B (the “booster”) and for

infinitely many n a typical graph Z on n vertices with Z R A such that the following

holds. Adding a random copy of B to Z increases the probability to maintain

property A more than adding εpn2 edges to Z. This is remarkable because B has

at most K2 edges which is much less then εpn2 in typical applications. All in all

we can conclude that property A depends on the local property that the small

graph B is contained in Gpn, pq.

Also in [19] (see the appendix there) Bourgain gave a similar characterisation

for a more general setting than graphs, but with weaker conclusions. In particular,

for Zn the theorem says.

Theorem 15. There exist functions δpC, τq and KpC, τq such that the following

holds. Let p “ op1q, let A be a monotone family of subsets of Zn with

τ ă µpp,Aq :“ PpZn,p P Aq ă 1´ τ , (2)

and assume also p ¨ dµpp,Aq
dp

ď C. Then there exist some B Ă Zn with |B| ď K such

that

PpZn,p P A|B Ď Zn,pq ě PpZn,p P Aq ` δ . (3)

�

In [20] it was observed that the proof of the last theorem in fact also yields

the following stronger version with more than one B.
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Theorem 16. There exist functions δpC, τq, KpC, τq and ηpC, τq such that

the following holds. Let p “ op1q, let A be a monotone family of subsets of Zn with

τ ă µpp,Aq :“ PpZn,p P Aq ă 1´ τ , (4)

and assume also p ¨ dµpp,Aq
dp

ď C. Then there exist a family B of subsets of Zn such

that

PpB Ď Zn,p for some B P Bq ě η

and for all B P B holds |B| ď K and

PpZn,p P A|B Ď Zn,pq ě PpZn,p P Aq ` δ . (5)

�

We will use the last theorem in Chapter 4 about Schur triples.

§2.2. Hypergraph Containers

We shall also use a recent result concerning independent sets in hypergraphs,

which was obtained independently by Saxton and Thomason [51] and Balogh,

Morris, and Samotij [1]. Here we will use the version from [51].

Let H be an `-uniform hypergraph on m “ |V pHq| vertices. For a subset

σ Ă V pHq we define its degree by

dpσq “ |te P EpHq : σ Ď eu| .

For a vertex v P V and an integer j with 2 ď j ď ` we consider the maximum

degree over all j-element sets σ containing v

dpjqpvq “ maxtdpσq : v P σ Ă V pHq and |σ| “ ju .

We denote by d “ `|EpHq|{m ą 0 the average degree of H and, following the

notation of [51], for τ ą 0 and j “ 2, . . . , ` we set

δj “
1

τ j´1md

ÿ

vPV pHq

dpjqpvq
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and

δpH, τq “ 2p
`
2q´1

ÿ̀

j“2
2´p

j´1
2 qδj .

We write PpXq for the power set of X and denote by PspXq “ PpXqˆ ¨ ¨ ¨ˆPpXq

the s-fold cross product of PpXq. Then the hypergraph container theorem in the

version by Saxton and Thomason reads as follows.

Theorem 17 (Saxton & Thomason [51]). Let H be an `-uniform hypergraph

on the vertex set rms and let 0 ă ε ă 1
2 . Suppose that for τ ą 0 we have both

δpH, τq ď ε{12`! and τ ď 1{144`!2`. Then there exist a constant c “ cp`q and a

collection J Ă Pprmsq such that the following holds

(a ) for every independent set I in H there exists T “ pT1, . . . , Tsq P PspIq

with |Ti| ď cτm, s ď c logp1{εq and there exists a J “ JpT q P J only

depending on T such that I Ď JpT q P J ,

(b ) epHrJsq ď εepHq for all J P J and

(c ) log |J | ď cτ logp1{τq logp1{εqm. �

§2.3. Probabilistic Inequalities

We will frequently use the following standard probabilistic estimates (see for

example [32]).

Lemma 18 (Markov’s inequality). Let X be a non-negative random variable

and a ą 0, then

PpX ě aq ď
ErXs
a

. �

Lemma 19 (Chebyshev’s inequality). Let X be a random variable with finite

expectation and finite non-zero variance and let t ą 0, then

P
`

|X ´ ErXs| ě t
˘

ď
VarpXq
t2

. �
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Lemma 20 (Chernoff’s inequality). Let X be a binomial distributed random

variable and t ą 0, then

P
`

|X ´ ErXs| ě t
˘

ď 2 exp
ˆ

´
t2

2pErXs ` t{3q

˙

.

Similarly, for ε ď 3{2 holds

P
`

X ě εErXs
˘

ď exp
ˆ

´
ε2 ErXs

3

˙

. �

For Janson’s inequality we refer to [30] (see also [31]).

Lemma 21 (Janson’s inequality). Let Γp be a random subset of a finite set Γ

and let S be a family of subsets of Γ. Let 1A be the characteristic function for the

event A Ď Γp and X “
ř

APS 1A be the number of elements of S that are contained

in Γp. Then

PpX “ 0q ď exp
ˆ

´
ErXs2

2∆

˙

,

where

∆ “
ÿ

A‰BPS,AXB‰∅
Er1A1Bs . �



CHAPTER 3

Nearly Bipartite Graphs

This chapter is based on [53], joint work with Mathias Schacht. Here we will

prove the first main result, Theorem 5. We start with a section about the main

lemmas, concepts and ideas of the proof. Afterwards we present the proof of

Theorem 5 in Section 3.2. The proof of the two main lemmas are finally presented

in Section 3.3 and Section 3.4, respectively.

The proof of Theorem 5 refines ideas from the work in [21] and also uses

Friedgut’s criterion for coarse thresholds [19] and the recent hypergraph container

theorem of Balogh, Morris, and Samotij [1] and Saxton and Thomason [51]. In

Section 3.1 we will reformulate Friedgut’s criterion and in addition we will state

the two main technical lemmas, Lemmas 23 and 24, which we will need in the

proof of the main result. Section 3.2 is devoted to the proof of Theorem 5 based

on these tools. In Section 3.3 and Section 3.4 we then prove Lemmas 23 and 24,

respectively. We close with a few remarks concerning possible generalisations of

Theorem 5 and related open questions.

§3.1. Main Lemmas and Ideas of the Proof

In this section we give an overview of the proof as well as an introduction

of the necessary concepts for the proof of the main result. In particular we will

present two probabilistic lemmas.

For definiteness we may assume that the vertex sets of Kn and Gpn, pq coincides

with rns. We use the following notation: For a graph B and n ě vpBq we define

ΨB,n as the set of all injective embeddings of B into the complete graphKn. So ΨB,n

corresponds to the unlabelled copies of B in Kn and, clearly, |ΨB,n| “ ΘpnvpBqq.
21



3.1. MAIN LEMMAS AND IDEAS OF THE PROOF 22

The starting point of the proof is the Rödl-Ruciński theorem, Theorem 1,

which establishes that n´1{m2pF q is the threshold for the property Gpn, pq Ñ pF qe2

for most graphs F . In view of Theorem 5 we restrict our discussion below to two

colours and to strictly balanced and nearly bipartite graphs F . In particular, we

have m2pF q ą 1 for every strictly balanced and nearly bipartite graph F since

every nearly bipartite graph is required to have at least two edges by definition

and we defined d2pK2q “ 1. The assumptions of Theorem 5 are never met by

forests F and for sharp thresholds of Ramsey properties of trees we refer to [23].

Consequently in the following we can exclude all forests (some forests exhibit a

slightly different behaviour in this context see [32, Theorem 8.1] for details).

We will strengthen Theorem 1 and show that these thresholds are sharp. For

that we will appeal to Friedgut’s criterion (Theorem 14) for coarse thresholds and

to a recent structural result on independent sets in hypergraphs (see Section 2.2)

which play a crucial rôle in our proof. In Section 3.1.2 we introduce two somewhat

technical probabilistic lemmas needed for the proof of Theorem 5. Section 3.1.3

establishes the connection between independent sets in hypergraphs and colourings

of the edges of the random graph without monochromatic copies of the given

graph F considered in our setting.

3.1.1. Friedgut’s Criterion for Coarse Thresholds. Below we reformu-

late Theorem 14 suited for our application.

Corollary 22. Let F be a strictly balanced and nearly bipartite graph. Assume

that the property GÑ pF qe2 does not have a sharp threshold. Then there exists a

function ppnq “ cpnqn´1{m2pF q with C0 ă cpnq ă C1 for some C0, C1 ą 0, there are

constants 1
3 ą α ą 0 and ε ą 0, and there is a graph B with B Û pF qe2 such that

for infinitely many n P N and for every family of graphs G on n vertices with a.a.s.

Gpn, pq P G there exists a Z P G such that the following hold

(1) PpZ Y hpBq Ñ pF qe2q ą 1´α, with h P ΨB,n chosen uniformly at random,

(2) PpZ YGpn, εpq Ñ pF qe2q ă 1´ 2α.
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Corollary 22 is just a reformulation of Theorem 14 in our context. We give the

details below.

Proof of Corollary 22. Note that conclusions (1) and (2) of Corollary 22

are identical to (1) and (2) of Theorem 14 for the monotone graph prop-

erty A “ tG : GÑ pF qe2u. Owing to Theorem 1 we infer that because of (i )

in Theorem 14 the probability ppnq must satisfy ppnq “ cpnqn´1{m2pF q where

C0 ă cpnq ă C1 for constants C0, C1 given by Theorem 1. It is only left to show

that B Û pF qe2 is a consequence of (ii ) of Theorem 14.

Recall that it was shown in [44, Theorem 6] that if B Ñ pF qe2 then

mpBq “ epBq
vpBq

ą m2pF q. Thus a standard application of Markov’s inequality yields

PpH Ď Gpn, pqq “ op1q for every H with H Ñ pF qe2 and p “ Θpn´1{m2pF qq. Conse-

quently the graph B provided by Theorem 14 must satisfy B Û pF qe2, due to (ii )

of Theorem 14.

�

3.1.2. Main Probabilistic Lemmas. In this section we define an auxiliary

hypergraph H. The hypergraph H to which we will apply Theorem 17 depends

on the graph Z P G which will be provided by Friedgut’s criterion (Corollary 22)

applied for the strictly balanced, nearly bipartite graph F . For the verification of

the assumptions of Theorem 17 we will restrict the family G containing Z. Recall

that G can be chosen to be any graph property which is satisfied a.a.s. by Gpn, pq

for every p with p “ Θpn´1{m2pF qq. In what follows we discuss the restrictions for

the family G (see Lemmas 23 and 24 below) and for that we introduce the required

notation.

Let Z and B be two subgraphs of the complete graph Kn. We say z P EpZq

focuses on b P EpBq if there exists a copy of F in Z YB which contains z and b.

We set

MpZ,Bq “ tz P EpZq : there is b P EpBq such that z focuses on bu . (6)
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The pair pZ,Bq is called interactive if EpZqXEpBq “ ∅, Z Û pF qe2, and B Û pF qe2,

but ZYB Ñ pF qe2. For a collection Ξ Ă ΨB,n of embeddings of B into Kn the pair

pZ,Ξq is called interactive if pZ, hpBqq is interactive for all h P Ξ. Furthermore,

a pair pZ,Ξq is regular if for all h P Ξ every z P EpZq focuses on at most one

b P EphpBqq. We call h P ΨB,n regular w.r.t. Z if pZ, thuq is regular. The

hypergraphs H considered here are defined in terms of regular pairs pZ,Ξq.

For a pair pZ,Ξq with Z Ď Kn and Ξ Ď ΨB,n we define the hypergraph

H “ HpZ,Ξq with vertex set

V pHq “ EpZq

and edge set

EpHq “ tMpZ, hpBqq : h P Ξu .

For our presentation it will be useful to consider orderings of the edges of the

involved graphs and “order consistent” embeddings. For that we fix an arbitrary

ordering of EpKnq and an ordering of EpBq. For an interactive and regular pair

pZ,Ξq and h P Ξ we say that z PMpZ, hpBqq “ te1, . . . , e`u with e1 ă e2 ă ¨ ¨ ¨ ă e`

has index i if z “ ei. Furthermore, we call pZ,Ξq and HpZ,Ξq index consistent if

for all z P EpZq and all h, h1 P Ξ with z PMpZ, hpBqq XMpZ, h1pBqq the indices

of z in MpZ, hpBqq and in MpZ, h1pBqq are the same. Let b1 ă ¨ ¨ ¨ ă bepBq be

the ordering of the edges of B. Then the profile of MpZ, hpBqq is the function

π : r|MpZ, hpBqq|s Ñ repBqs defined by πpiq “ j if and only if ei focuses on hpbjq.

Since the pair pZ,Ξq is regular, for each edge of H each ei focuses on at most

one hpbjq and, hence, the profile is well defined. We say pZ,Ξq has profile π

if all edges MpZ, hpBqq for h P Ξ have profile π. Note that in this case all

sets MpZ, hpBqq have the same cardinality and |MpZ, hpBqq| is called the length

of the profile π.

Having established this notation we now state the following technical lemma

which gives one part of the graph property G for the application of Corollary 22.
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Moreover, we shall also apply Theorem 17 which results in useful properties of the

hypergraph HpZ,Ξq for Z P G and some appropriately chosen Ξ Ď ΨB,n.

Lemma 23. For all constants C1 ą C0 ą 0, 1
3 ą α ą 0 and graphs F and B,

where F is strictly balanced, there exist α1, β, γ ą 0 and L P N such that for every

p “ cpnqn´1{m2pF q with C0 ď cpnq ď C1 a.a.s. Z P Gpn, pq satisfies the following.

If

PpZ Y hpBq Ñ pF qe2q ą 1´ α

then there exists ΞB,n Ď ΨB,n with |ΞB,n| ě α1n2 and Z Y hpBq Ñ pF qe2 for all

h P ΞB,n such that the hypergraph H “ HpZ,ΞB,nq is index consistent for some

profile π of length ` ď L and there is a family C of subsets of V pHq satisfying

(1) log |C| ď epZq1´γ,

(2) |C| ě βepZq for all C P C and

(3) every hitting set A of H contains a C P C, i.e. for every A Ď V pHq with

eX A ‰ ∅ for all e P EpHq there exists C P C with C Ď A.

Note that in contrast to the assumptions of Theorem 5 for Lemma 23 it is

not required that the given graph F is nearly bipartite. However, for the proof of

Theorem 5 we need another restriction on the family G (in Corollary 22) which

is satisfied a.a.s. by Gpn, pq and makes use of the near-bipartiteness of F . For

a nearly bipartite graph F “ F 1 ` e we consider those pairs of vertices in Kn

which complete a copy of the bipartite subgraph F 1 in a given subgraph of Gpn, pq

to a full copy of F in Kn. Hence, for a graph G Ď Kn we define the basegraph

BaseF pGq Ď Kn with edge set

 

tx, yu : DF 1 Ď G such that F 1 ` tx, yu forms a copy of F
(

.

We require that for every relatively dense subgraph G1 of Gpn, pq the basegraph

spans many copies of F itself. More precisely, for a graph G on n vertices and a

nearly bipartite graph F “ F 1`e and λ, η ą 0 we say G has the property T pλ, η, F q
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if for every subgraph G1 Ă G with epG1q ě λepGq we have that the basegraph

BaseF pG1q contains at least ηnvpF q copies of F .

Lemma 24 gives the second restriction for the family G for our application of

Corollary 22. Assuming that there is no copy of F in the bigger colour class of Z,

Lemma 24 will be helpful to find a copy of F in the intersection of Z XGpn, εpq

with the other colour class.

Lemma 24. For all λ ą 0, C1 ą C0 ą 0 and every strictly balanced and nearly

bipartite graph F there exists η ą 0 such that for C0n
´1{m2pF q ď p ď C1n

´1{m2pF q

the random graph Gpn, pq a.a.s. satisfies T pλ, η, F q.

3.1.3. Colourings and Hitting Sets. In this section we establish the con-

nection between hitting sets of the hypergraph HpZ,Ξq and F -free colourings

of Z.

Recall that the definition of an interactive pair pZ,Ξq says that for every

embedding h P Ξ Ď ΨB,n the graphs Z and hpBq are edge disjoint and Z Û pF qe2

and B Û pF qe2 but Z Y hpBq Ñ pF qe2. Let b1, . . . , bK be an enumeration of EpBq

and fix an F -free colouring σ : EpBq Ñ tred,blueu. We copy this colouring for

every h P Ξ by setting σh : EphpBqq Ñ tred,blueu with σhphpbiqq “ σpbiq for

all i “ 1, . . . , K. Furthermore, let ϕ be an arbitrary F -free colouring of Z.

Since Z Y hpBq Ñ pF qe2, the joint colouring of Z Y hpBq given by ϕ and σh
yields a monochromatic copy of F and this copy must contain edges of both

graphs, of Z and of hpBq. Thus each edge MpZ, hpBqq of the hypergraph HpZ,Ξq

contains an e P EpZq which focuses on some hpbq with b P EpBq, where we have

ϕpeq “ σhphpbqq “ σpbq. We say such an edge e P EpZq (resp. vertex e P V pHq) is

activated by ϕ, σ, and h. We define the set of activated vertices by

Aσϕ “ AσϕpZ,Ξq “
ď

hPΞ
te P EpZq : e is activated by σ, ϕ and hu Ď V pHq . (7)

Note that by definition for an interactive pair pZ,Ξq every edge MpZ, hpBqq of

HpZ,Ξq contains an activated vertex and, hence, the set of activated vertices Aσϕ
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is a hitting set of HpZ,Ξq. In what follows we will use different colourings ϕ of Z

but we will always restrict to the same colouring σ of B.

Suppose that in addition we have a fixed ordering of EpZq and

EpBq “ tb1, . . . , bKu. Further suppose that the interactive pair pZ,Ξq is also

index consistent with profile π of length `. In particular, the hypergraph HpZ,Ξq

is `-uniform.

It also follows from the definitions that for z P Aσϕ X Aσϕ1 for two colourings ϕ

and ϕ1 we have ϕpzq “ ϕ1pzq. In fact, for z P Aσϕ there exists an h P Ξ such that z

is activated by σ, ϕ and h. Let i be the index of z in MpZ, hpBqq, then z focuses

on hpbπpiqq and, therefore, ϕpzq “ σpbπpiqq. Repeating the same argument for ϕ1,

we obtain from index consistency that ϕ1pzq “ σpbπpiqq “ ϕpzq. We summarise

these observations in the following fact.

Fact 25. Let pZ,Ξq be an interactive, regular and index consistent pair with

profile π and let σ be an F -free colouring of EpBq and ϕ be an F -free colouring

of EpZq. Then

(A1) AσϕpZ,Ξq is a hitting set of HpZ,Ξq and

(A2) for all F -free colourings ϕ1 of EpZq and for all z P Aσϕ X Aσϕ1 we have

ϕpzq “ ϕ1pzq. �

Now we are prepared to give the proof of the main theorem based on the

lemmas and theorems of this section.

§3.2. Proof of the Main Theorem

The starting point of the proof is Friedgut’s criterion (see Corollary 22) applied

to the contradictory assumption, that the Ramsey property GÑ pF qe2 for a given

strictly balanced and nearly bipartite graph F has a coarse threshold. For that

we define a family of graphs G having “useful” properties and Lemma 23 and

Lemma 24 show that a.a.s. Gpn, pq displays these properties. Then Friedgut’s

criterion asserts for infinitely many n P N the existence of an n-vertex graph Z P G,
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a graph B (called booster), constants 1
3 ą α ą 0, ε ą 0 and a family of embeddings

Ψ1
B,n Ď ΨB,n with Z Y hpBq Ñ pF qe2 for all h P Ψ1

B,n and |Ψ1
B,n| ě p1 ´ αq|ΨB,n|,

but PpZ YGpn, εpq Ñ pF qe2q ă 1´ 2α. The goal is to find a contradiction to the

last fact by showing PpZ YGpn, εpq Ñ pF qe2q “ 1´ op1q.

Let Φ be the set of all F -free colourings of Z. We have to show that for any

ϕ P Φ the probability to extend ϕ to an F -free colouring of Z YGpn, εpq is very

small. We are able to show that this probability is of order expp´Ωppn2qq. Now we

would like to use a union bound for all ϕ P Φ. However, we have only little control

over |Φ| and the trivial upper bound 2Θppn2q is too large to combine it with the

bound from above expp´Ωppn2qq to obtain for PpZ YGpn, εpq Û pF qe2q a bound

of order op1q by the union bound.

Instead we shall find a partition of Φ into 2oppn2q classes such that two colourings

from the same partition class always agree on a large subset of Z. These subsets are

called cores. Then we will show that the colouring of ϕ restricted to the associated

core implies that ϕ is only with probability at most expp´Ωppn2qq extendible to

an F -free colouring of Z YGpn, εpq. This allows us to use a union bound over all

partition classes to get the desired upper bound on PpZ Y Gpn, εpq Û pF qe2q of

order op1q.

For the definition of the cores we will appeal to the hypergraph H “ HpZ,Ξq

which was defined in Section 3.1.2. Recall that V pHq “ epZq and hyperedges of H

correspond to embeddings of B in Kn, which are given by a carefully chosen subset

Ξ Ď Ψ1
B,n. In fact, we shall select Ξ Ď Ψ1

B,n in such a way that we can apply the

structural result on independent sets of hypergraphs by Saxton and Thomason [51]

to H (see Lemma 23). In fact, the cores then correspond to the complements

of the almost independent sets from J given by the Saxton-Thomason theorem

(Theorem 17). This yields a small family C of subsets of V pHq, that means of

size 2oppn2q, such that the elements C P C are not too small and every hitting set

of H contains at least one element from C.
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We then associate every F -free colouring ϕ of Z with a hitting set Aσϕ of H (for

some F -free colouring σ of B, see part (A1) of Fact 25) and thus we can associate

to each such colouring ϕ a core C P C contained in Aσϕ. This allows us to define

the desired partition of the set of colourings Φ using the “small” family of cores C.

Finally, we use the union bound to estimate the probability that there is an F -free

colouring of Z that can be extended to an F -free colouring of ZYGpn, εpq by op1q,

which contradicts PpZ YGpn, εpq Ñ pF qe2q ă 1´ 2α. Below we give the details of

this proof.

Proof of Theorem 5. Let F “ F 1 ` ta1, a2u be a strictly balanced, nearly

bipartite graph with F 1 being bipartite and assume for a contradiction that the

property GÑ pF qe2 does not have a sharp threshold.

We apply Corollary 22 and obtain a function ppnq “ cpnqn´1{m2pF q with

C0 ă cpnq ă C1 for some C1 ą C0 ą 0, constants 1
3 ą α ą 0, ε ą 0 and a

graph B with B Û pF qe2.

For these parameters we apply Lemma 23 and obtain constants α1, β, γ ą 0

and L P N. Set λ “ β{2 and apply Lemma 24, which yields η ą 0. Then

let Gn be the family of graphs G on n vertices that satisfy the conclusions of

Lemma 23 and Lemma 24 for the chosen parameters and 1
4pn

2 ď epGq ď pn2.

Since these properties hold a.a.s. in Gpn, pq, it follows from Corollary 22, that

there are infinitely many n P N for which there is some Z P Gn satisfying

(R1) PpZ Y hpBq Ñ pF qe2q ą 1´α, with h P ΨB,n chosen uniformly at random,

(R2) PpZ YGpn, εpq Ñ pF qe2q ă 1´ 2α

as well as by Lemma 24

(T) Z has the property T pλ, η, F q

and

(Z) 1
4pn

2 ď epZq ď pn2.
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Owing to Z P Gn and (R1) we can use Lemma 23 to find some ΞB,n Ď ΨB,n of

size at least α1n2 with Z Y hpBq Ñ pF qe2 for all h P ΞB,n such that the hypergraph

H “ HpZ,ΞB,nq is index consistent with a profile π of length ` ď L and such that

there is a family C of subsets of V pHq with

(C1) log |C| ď epZq1´γ,

(C2) |C| ě βepZq for all C P C and

(C3) every hitting set A of H contains a set C P C.

Our proof is by contradiction and we shall establish such a contradiction to

the assertion (R2).

Let Φ be the set of all F -free edge colourings of EpZq and pick an arbitrary

F -free colouring σ of B. We want to split Φ into “few” classes. For this we use the

correspondence between any colouring ϕ P Φ and the hitting set Aσϕ “ AσϕpZ,ΞB,nq

of H given by part (A1) of Fact 25. Moreover, for C P C we define

ΦC “ tϕ P Φ: C Ď Aσϕu .

Then Φ “
Ť

CPC ΦC (not necessarily disjoint) since by (C3) for every ϕ P Φ the

hitting set Aσϕ contains some C P C and hence ϕ P ΦC .

Part (A2) of Fact 25 asserts that ϕpzq “ ϕ1pzq for all z P Aσϕ X Aσϕ1 and

colourings ϕ, ϕ1 P Φ. In other words, all colourings in ΦC agree on C and,

hence, there exists a monochromatic subset RC Ď C, say coloured red, of size at

least |C|{2 ě βepZq{2 “ λepZq (see (C2) and the choice of λ). For the desired

contradiction we add Gpn, εpq to Z. We have to show that

PpZ YGpn, εpq Û pF qe2q “ op1q .

For this purpose we find for all F -free colourings ϕ of Z an upper bound for the

probability that ϕ is extendible to an F -free colouring of Z YGpn, εpq. For ϕ we

use only the colouring on the associated core C Ď Aσϕ, instead of the colouring on

all edges of Z. In this way we can deal with all embeddings ϕ P ΦC at once since

they coincide on C.
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Since the red colour class RC contains at least λepZq edges it follows from

Property (T), that there are at least ηnvpF q copies of F in the basegraph BaseF pRCq

of RC w.r.t. F . In an F -free colouring of Z YGpn, εpq all edges in

UC “ Gpn, εpq X BaseF pRCq

have to be coloured blue since every edge in BaseF pRCq completes a red copy of F 1

in RC to a copy of F . Consequently, ϕ cannot be extended to an F -free colouring of

ZYGpn, εpq if UC spans a copy of F . However, since BaseF pRCq contains ΩpnvpF qq

copies of F and p “ Ωpn´1{m2pF qq it follows from Janson’s inequality [30] (see

also [31]) that it is very unlikely that UC is F -free. In fact, a standard application

of Janson’s inequality asserts that there exists some γ1 “ γ1pε, η, C0, C1, F q such

that

PpF Ę Gpn, εpq X BaseF pRCqq “ PpF Ę UCq ď exp
´

´γ1n
2´ 1

m2pF q

¯

. (8)

We then deduce the desired contradiction to (R2) by

PpZ YGpn, εpq Û pF qe2q ď |C| ¨max
CPC

PpDϕ P ΦC : ϕ is extendible to UCq

(C1)
ď exp

`

epZq1´γ
˘

¨max
CPC

PpF Ę UCq

(Z)
ď exp

`

ppn2
q
1´γ˘

¨max
CPC

PpF Ę UCq

(8)
ď exp

´

pC1n
2´ 1

m2pF q q
1´γ

¯

¨ exp
´

´γ1n
2´ 1

m2pF q

¯

ă α ,

for sufficiently large n, since γ ą 0 and C1, γ, and γ1 are constants independent

of n. This concludes the proof of Theorem 5. �

§3.3. Proof of Lemma 23

The key tool to prove Lemma 23 is the container theorem (see Section 2.2).

We shall apply Theorem 17 to the hypergraph HpZ,ΞB,nq. In order to satisfy the

assumptions of Theorem 17 we may enforce some properties on the typical graph Z
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and the family of embeddings ΞB,n. Firstly in Section 3.3.1 we will formulate some

properties on Z that hold a.a.s. for Gpn, pq and which will turn out to be useful

for locating a suitable family of embeddings ΞB,n Ď ΨB,n (see Section 3.3.2). In

Section 3.3.3 we finally check that for those choices the assumptions of Theorem 17

are satisfied by the hypergraph HpZ,ΞB,nq.

3.3.1. Some Typical Properties of Gpn, pq. Corollary 22 yields a family

of embeddings of B into Kn. We restrict ourselves to regular embeddings with

foresight to the later parts of the proof. Actually we want that for every edge

e P EpZq and every embedding h there is at most one b P EpBq such that e focuses

on hpbq. In addition there should be exactly one copy of F that contains e and hpbq

if e focuses on hpbq. There are three ways such that this fails.

Definition 26. Let F , B, Z be graphs with Z Ď Kn. An embedding h P ΨB,n

is bad (with respect to F and Z) if one of the following holds

(B1) either there is a copy F1 of F in Z Y hpBq that contains at least one edge

of EpZqr EphpBqq and at least two edges of EphpBqq,

(B2) or there are distinct copies F1 and F2 of F in ZYhpBq and edges e, f1 ‰ f2

with e P EpZqr EphpBqq and e P EpF1q X EpF2q, f1, f2 P EphpBqq such

that f1 P EpF1q and f2 P EpF2q

(B3) or there are distinct copies F1 and F2 of F in Z Y hpBq and edges e, f

with e P EpZq r EphpBqq and e P EpF1q X EpF2q, f P EphpBqq and

f P EpF1q X EpF2q.

Note that (B3) would be a special case of (B2) if we did not require f1 ‰ f2

there. However, for the later discussion it is better to distinguish these cases, and

the idea of excluding embeddings h because of (B3) will be used in the proof of

Lemma 23 (see Lemma 36).
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Fact 27. For F , B and Z let ΞB,n Ď ΨB,n be a family of embeddings such that

properties (B1) and (B2) fail for every h P ΞB,n. Then clearly the pair pZ,ΞB,nq is

regular. �

We shall show that for the random graph Z “ Gpn, pq only a few embeddings

h P ΨB,n are bad (see (Z5) in Definition 28 and Lemma 29 below), which enables us

to focus on regular pairs pZ,ΞB,nq. Moreover, we shall restrict to typical graphs Z,

which render a few more somewhat technical properties such as containing roughly

the expected number of some special subgraphs. We discuss those properties

below.

Let F´ be the family of spanning subgraphs of F obtained by removing some

edge and for a graph G we denote by F´pGq the copies of the members of F´
in G. Furthermore, for an edge e P EpGq let F´pG, eq be those copies in F´pGq

that contain e. For e1, e2 P
`

V pGq
2

˘

let PpG, e1, e2q be the set of pairs pF1, F2q of

two edge disjoint subgraphs of G such that

‚ F1 and F2 are copies of (possibly different) spanning subgraphs of F , each

of which obtained from F by removing two edges,

‚ the intersection V pF1q X V pF2q “ tx1, x2, . . . , xsu contains at least two

vertices, and

‚ F1 ` tx1, x2u ` e1 and F2 ` tx1, x2u ` e2 are isomorphic to F .

For s ě 2 let PspG, e1, e2q Ď PpG, e1, e2q be the set of pairs as in PpG, e1, e2q such

that F1 and F2 intersect in exactly s vertices. Note that for i “ 1, 2 by definition

ei ‰ tx1, x2u and ei is not required to be an edge of G.

These concepts lead to the following definition of “good” graphs Z, where we

impose that the sizes of the introduced families defined above are close to the

respective expectation in Gpn, pq. Then Lemma 29 states that a.a.s. Gpn, pq is

indeed good for the right choice of parameters.
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Definition 28. For graphs F and B and constants D ą 0, ζ ą 0, δ ą 0

and p P p0, 1q we consider the set of graphs GB,F,n,ppD, ζ, δq on n vertices that is

given by Z P GB,F,n,ppD, ζ, δq if and only if

(Z1) 1
4pn

2 ď epZq ď pn2,

(Z2) |F´pZq| ď Dn2,

(Z3) |F´pZ, eq| ď D
p
for all e P EpZq,

(Z4) |PpZ, e1, e2q| ď
D
pnδ

for all but at most Dpn2

nδ
pairs of distinct edges

e1, e2 P EpZq and

(Z5) |th P ΨB,n : h is bad w.r.t. F and Zu| ď |ΨB,n|
nζ

.

The following Lemma shows that a.a.s. Gpn, pq P GB,F,n,ppD, ζ, δq for D suf-

ficiently large and ζ and δ sufficiently small (in fact, our choice of δ will imply

pnδ Ñ 0).

Lemma 29. For every strictly balanced graph F , for every graph B, and

for all constants C1 ě C0 ą 0 there are constants D ą 0, ζ ą 0, and δ with

0 ă δ ď min
 1
m2pF q

, 1´ 1
m2pF q

(

such that for C0n
´1{m2pF q ď p ď C1n

´1{m2pF q a.a.s.

Gpn, pq P GB,F,n,ppD, ζ, δq.

We will split the proof into two parts: First we consider (Z1)-(Z4) which deals

with subgraphs of Z (Lemma 30), and then we deal with the bad embeddings

considered in (Z5) (Lemma 32).

Lemma 30. For constants C1 ě C0 ą 0, a strictly balanced graph F , and p

and n with C0n
´1{m2pF q ď p ď C1n

´1{m2pF q the following holds. There exist

constants D ą 0 and δ with 0 ă δ ă min
 1
m2pF q

, 1´ 1
m2pF q

(

such that a.a.s. Gpn, pq

satisfies the properties (Z1), (Z2), (Z3), and (Z4) with the parameters p, D, and δ

and for the graph F .

For the proof of Lemma 30 we note that property (Z1) follows directly from

the concentration of the binomial distribution and (Z2) follows from (Z1) and (Z3).
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The proof of (Z3) will make use of Spencer’s extension lemma (Theorem 31 stated

below). Finally, (Z4) follows from a standard second moment argument. Below we

introduce the necessary notation for the statement of Theorem 31.

For a graph H and an ordered proper subset R “ px1, . . . , xrq of V pHq the pair

pR,Hq is called rooted graph with roots R. For an induced subgraph H 1 “ HrSs

of H with tx1, . . . , xru Ĺ S we say pR,H 1q is a rooted subgraph of pR,Hq. We

define the density of a rooted graph pR,Hq by

denspR,Hq “ epHq ´ epHrRsq

vpHq ´ |R|
.

Let V pHq r tx1, . . . , xru “ ty1, . . . , yνu for some ν ě 1. For a graph G with

some marked vertices px11, . . . , x1rq an ordered tuple py11, . . . , y1νq is called an pR,Hq-

extension of px11, , . . . , x1rq if

‚ the y1i are distinct from each other and from the x1j,

‚ tx1i, y
1
ju P EpGq whenever txi, yju P EpHq and

‚ ty1i, y
1
ju P EpGq whenever tyi, yju P EpHq.

The number of pR,Hq-extensions py11, . . . , y1νq is denoted by Npx11, . . . , x1rq. Finally,

we define madpR,Hq as the maximal average degree of a rooted graph pR,Hq by

madpR,Hq “ maxtdenspR,H 1
q : pR,H 1

q is rooted subgraph of pR,Hqu .

Theorem 31 ([55, Theorem 3]). Let pR,Hq be an arbitrary rooted graph and

let ε ą 0. Then there exist t such that if p ě n´1{madpR,Hqplog nq1{t then a.a.s.

in Gpn, pq

p1´ εqErNpx1qs ă Npx1q ă p1` εqErNpx1qs

for all x1 “ px11, . . . , x
1
rq chosen from rns. �

Proof of Lemma 30. (Z1) This follows from an application of Chernoff’s

inequality, Lemma 20.
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(Z2) As already mentioned this property follows from (Z1) and (Z3). However,

here is a standard direct proof based on the subgraph containment threshold in

random graphs.

For F´ P F´ let X be the random variable that counts the number of copies

of F´ contained in Gpn, pq. Using that p “ Θpn´1{m2pF qq combined with the

balancedness of F yields

ErXs “ Θ
`

nvpF qpepF q´1˘
“ Θpn2

q .

Moreover, by the definition of the 2-density the expected number of copies of every

non-trivial subgraph of F´ Ă F is of order Ωppn2q and tends to infinity for nÑ 8.

Consequently, X converges to ErXs in probability (see, e.g. [32, Remark 3.7]) and

we have PpX ě 2ErXsq Ñ 0 for n Ñ 8. Summing over all F´ P F´ yields the

claim.

(Z3) Consider a graph F´ P F´ and remove some edge tx1, x2u from F´ and

call the resulting graph F´2. For e P
`

rns
2

˘

let Xe be the random variable that

counts the number of copies of F´2 that build a copy of F´ by adding e and let X

be the random variable that counts the number of copies of F´2 contained in

Gpn, pq.

Now we can use Spencer’s extension lemma (Theorem 31). We consider the

rooted graph ppx1, x2q, F´q. Let F̂ be an induced subgraph of F´ such that

ppx1, x2q, F̂ q is a rooted subgraph of ppx1, x2q, F´q which maximizes the density

densppx1, x2q, F̂ q. Since the graph F Ľ F´ Ě F̂ is strictly balanced we have

m2pF q ą d2pF̂ q “
epF̂ q ´ 1
vpF̂ q ´ 2

“ densppx1, x2q, F̂ q “ madppx1, x2q, F´q .

Consequently, Theorem 31 applied with ε “ 1 implies a.a.s.

Npx11, x
1
2q ď 2EpXeq “ OppepF q´2nvpF q´2

q
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for every x11 ‰ x12 P rns. Owing to p “ Θpn´1{m2pF qq and the (strict) balancedness

of F we have that pepF qnvpF q “ Θppn2q and, consequently, for sufficiently large D

the claim follows by summing over all choices of F´ P F´ and tx1, x2u P EpF´q.

(Z4) We show that this property holds a.a.s. for

δ “
1
6 min

!

1
m2pF q

, 1´ 1
m2pF q

)

(9)

and some D ą 0 independent of n. In the proof below we distinguish several cases.

In the first case we only look at configurations from P2pGpn, pq, e1, e2q. Afterwards

we consider configurations from PspGpn, pq, e1, e2q for s ą 2.

Case 1 : s “ 2. For two pairs e1 ‰ e2 P
`

rns
2

˘

let Xe1,e2 be the random variable

given by |P2pGpn, pq, e1, e2q| and denote by v1 and u1 the elements of e1 and by v2

and u2 the elements of e2. We want to use Chebyshev’s Inequality to obtain the

claimed bound for most pairs. Consequently, we estimate the expectation and

variance of Xe1,e2 . We distinguish between the cases e1 X e2 “ ∅ and |e1 X e2| “ 1.

First let e1 X e2 “ ∅. Since C0n
´1{m2pF q ď p ď C1n

´1{m2pF q and F is strictly

balanced we have nvpF qpepF q “ Θppn2q and

nvpF q´2pepF q´1
ď C

epF q´1
1 . (10)

For F0 Ď F with vpF0q ě 2 it follows from F being strictly balanced that there is

some d ą 0 only depending on F and C0 such that

nvpF0qpepF0q ě dpn2 . (11)

The expectation of Xe1,e2 is

ErXe1,e2s ď epF q4n2vpF q´6p2epF q´4 (10)
ď epF q4C

2epF q´2
1 n´2p´2 (12)

and ErXe1,e2s Ñ 0 for n tending to infinity since p “ Θpn´1{m2pF qq and m2pF q ą 1.

Now we estimate the variance of Xe1,e2 . We will show

VarpXe1,e2q ď
c

n2p2

ˆ

1` 1
np2

˙
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for some constant c ą 0 depending only on F , C0 and C1. For this purpose let

pFa, Fbq and pFc, Fdq be two different pairs of graphs that contribute to the number

|P2pGpn, pq, e1, e2q| with

V pFaq X V pFbq “ tx1, x2u, V pFcq X V pFdq “ ty1, y2u

and

V pFaq X V pFcq Ě tu1, v1u “ e1, V pFbq X V pFdq Ě tu2, v2u “ e2 .

Recall that e1 and e2 are by definition of P2pGpn, pq, e1, e2q not necessarily contained

in Gpn, pq and they are not contained as edges in any of the subgraphs Fa, Fb, Fc,

and Fd (where s “ 2 is used). We denote by P2
e1,e2 the family of isomorphism types

of possible pairs ppFa, Fbq, pFc, Fdqq such that the conditions above are satisfied. If

it is clear from the context we will sometimes drop the subscripts e1 and e2 to

further ease the notation.

For Q “ ppFa, Fbq, pFc, Fdqq P P2
e1,e2 let SQ be the set of subsets of rns of size

vpFa Y Fb Y Fc Y Fdq that contain u1, v1, u2, and v2. For S P SQ let 1S be the

indicator random variable for the event “there exists a copy of Q in Gpn, pq on the

vertex set S”. Then

VarpXe1,e2q ď ErXe1,e2s `
ÿ

QPP2
e1,e2

ÿ

SPSQ

Pp1S “ 1q (13)

For the estimation of the term
ř

QPP2
ř

SPSQ Pp1S “ 1q we use the following

notation. For α, β P ta, b, c, du and ˝ P tY,Xu we set

vα˝β “ vpFα ˝ Fβq and eα˝β “ epFα ˝ Fβq ,

where FαXFβ and FαYFβ denotes the normal union and intersection of two graphs.

Moreover, we can extend this to longer expressions of unions and intersections,

like vpαXβqYγ , and we will make use of this short hand notation in the calculations

below. We also set

vαrβ “ vα ´ vαXβ and eαrβ “ eα ´ eαXβ . (14)
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Note that eαrβ denotes the number of edges exclusively contained in Fα, which does

not necessarily coincide with epFα ´ V pFβqq. We estimate
ř

QPP2
ř

SPSQ Pp1S “ 1q

by counting the number of choices for the vertices of the desired configuration and

determine the number of needed edges. Recalling that every Q P P2
e1,e2 corresponds

to ppFa, Fbq, pFc, Fdqq we count those by first choosing pFa, Fbq, then Fc and then Fd
and deal with the vertices and edges that are counted several times by looking at

the intersections between the different copies of F .

ÿ

QPP2

ÿ

SPSQ

Pp1S “ 1q

ď
ÿ

QPP2

p4vpF qq! ¨ n2vpF q´6p2epF q´4
¨ nvcrpaYbqpecrpaYbq ¨ nvdrpaYbYcqpedrpaYbYcq (15)

(14)
“ p4vpF qq!

ÿ

QPP2

n4vpF q´6p4epF q´8
¨ n´vcXpaYbqp´ecXpaYbq ¨ n´vdXpaYbYcqp´edXpaYbYcq

“ p4vpF qq!
ÿ

QPP2

n2p´4
pnvpF q´2pepF q´1

q
4n´vcXpaYbqp´ecXpaYbqn´vdXpaYbYcqp´edXpaYbYcq

(10)
ď C

ÿ

QPP2

n2p´4
¨ n´vcXpaYbqp´ecXpaYbq ¨ n´vdXpaYbYcqp´edXpaYbYcq , (16)

where C ą 0 is a constant depending only on F and C1. For the estimation of

fQpn, pq :“ n2p´4
¨ n´vcXpaYbqp´ecXpaYbq ¨ n´vpaYbYcqXdp´epaYbYcqXd (17)

we distinguish several cases depending on the structure of Q.

First we consider terms in (16) with tx1, x2u Ď V pFcq. Since

tx1, x2, v1, u1u Ď V pFa X Fcq and Fa X Fc Ď Fa Ă F we also know that

F0 :“ pFa X Fcq ` tx1, x2u ` e1 Ď F . Therefore,

1
nvaXcpeaXc

“
p2

nvpF0qpepF0q

(11)
ď

p2

dpn2 “
p

dn2 .
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Similarly, pFbXFcq`tx1, x2u Ď F and ppFaYFbYFcqXFdq`ty1, y2u`e2 Ď F .

The same argument yields

1
nvbXcpebXc

ď
1
dn2 and 1

nvpaYbYcqXdpepaYbYcqXd
ď

p

dn2 .

Applying these bounds and the facts that vaXbXc ď 2 and eaXbXc “ 0 to (17)

yields

fQpn, pq “ n2p´4
¨ n´vaXcp´eaXc ¨ n´vbXcp´ebXc ¨ nvaXbXc ¨ n´vpaYbYcqXdp´epaYbYcqXd

ď n2p´4
¨
p

dn2 ¨
1
dn2 ¨ n

2
¨
p

dn2 “
1

d3p2n2 . (18)

By symmetry we obtain the same estimate in the case that tx1, x2u Ď V pFdq and

in the remaining case we may assume

(I) |V pFcq X tx1, x2u| ď 1 and |V pFdq X tx1, x2u| ď 1.

Next we consider those terms in (16) with (I) and vbXc ě 2. By (I) we have

vaXbXc ď 1. We proceed in a similar way as above. This time we use that

pFa X Fcq ` e1 Ď F and similarly that ppFa Y Fb Y Fcq X Fdq ` e2 ` ty1, y2u Ď F

and, therefore,

1
nvaXcpeaXc

(11)
ď

1
dn2 and 1

nvpaYbYcqXdpepaYbYcqXd

(11)
ď

p

dn2 .

Moreover, since we assume vbXc ě 2 we can apply (11) with F0 “ Fb X Fc

1
nvbXcpebXc

ď
1

dpn2 .

Combining these bounds with (17) and vaXbXc ď 1 and eaXbXc “ 0 yields

fQpn, pq ď n2p´4
¨ n´vaXcp´eaXc ¨ n´vbXcp´ebXc ¨ n ¨ n´vpaYbYcqXdp´epaYbYcqXd

ď n2p´4
¨

1
dn2 ¨

1
dpn2 ¨ n ¨

p

dn2 “
1

d3p4n3 . (19)

Next we consider the subcase of (I) when

vbXc “ 1 and V pFcq X tx1, x2u “ ∅ .
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Then we have ebXc “ 0 and vaXbXc “ 0. Since pFa X Fcq ` e1 Ď F and

ppFa Y Fb Y Fcq X Fdq ` e2 ` ty1, y2u Ď F we get

1
nvaXcpeaXc

(11)
ď

1
dn2 and 1

nvpaYbYcqXdpepaYbYcqXd

(11)
ď

p

dn2 .

Consequently, in this case we have

fQpn, pq “ n2p´4
¨ n´vaXc´vbXc`vaXbXc´vpaYbYcqXdp´eaXc´ebXc`eaXbXc´epaYbYcqXd

ď n2p´4
¨ n´vaXcp´eaXc ¨ n´1

¨ n´vpaYbYcqXdp´epaYbYcqXd

ď n2p´4
¨

1
dn2 ¨ n

´1
¨
p

dn2 “
1

d2p3n3 . (20)

For the last remaining cases we consider summands in (16) with (I) and

(A1) either vbXc “ 1 and V pFcq X tx1, x2u ‰ ∅ (and, hence,

V pFbq X V pFcq Ĺ tx1, x2u),

(A2) or vbXc “ 0.

In both cases together with (I) we get

vbXpaYcqXd “ |tx1, x2u X V pFdq| ď 1 . (21)

Based on (21) we treat both subcases in same way. We consider

ppFa Y Fbq X Fcq ` e1 Ď F , pFb X Fdq ` e2 Ď F and ppFaYFcqXFdq`ty1, y2u Ď F

and get

1
nvpaYbqXcpepaYbqXc

(11)
ď

1
dn2 ,

1
nvbXdpebXd

(11)
ď

1
dn2 and 1

nvpaYcqXdpepaYcqXd

(11)
ď

1
dn2 ,

which leads to

fQpn, pq “ n2p´4
¨ n´vpaYbqXc´vbXd´vpaYcqXd`vbXpaYcqXd ¨ p´epaYbqXc´ebXd´epaYcqXd`ebXpaYcqXd

(21)
ď n2p´4

¨ n´vpaYbqXcp´epaYbqXc ¨ n´vbXdp´ebXd ¨ n´vpaYcqXdp´epaYcqXd ¨ n

ď n2p´4
¨

ˆ

1
dn2

˙3

¨ n “
1

d3p4n3 . (22)
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Using the bounds from (18), (19), (20) and (22) and pn Ñ 8 for n Ñ 8 we

summarize that there are constants c1, c ą 0 only depending on F,C0 and C1 such

that for sufficiently large n

fQpn, pq ď c1
ˆ

1
p2n2 `

1
p4n3

˙

.

Since the sum in (16) has finitely many summands, together with (13) and (16) it

follows that

VarpXe1,e2q ď
c

p2n2

ˆ

1` 1
p2n

˙

. (23)

Recall that we want to show that there are at most Dpn2n´δ pairs of edges

e1, e2 in Gpn, pq so that Xe1,e2 ą Dp´1n´δ for some constant D ą 0 independent

of n and δ ą 0 chosen in (9). For this purpose we use Markov’s Inequality and

Chebyshev’s Inequality. Let t “ p´1n´δ, then Chebyshev’s Inequality tells us

PpXe1,e2 ě ErXe1,e2s ` tq ď
VarpXe1,e2q

t2
.

Let X be the number of pairs pe1, e2q P
`

EpZq
2

˘

with Xe1,e2 ě 2p´1n´δ and

e1 X e2 “ ∅. Since ErXe1,e2s ď t we have

ErXs ď
ˆ

pn2

2

˙

PpXe1,e2 ě ErXe1,e2s ` tq (24)

ď
p2n4

2 ¨
cp2n2δ

p2n2

ˆ

1` 1
np2

˙

“
1
2cp

2n2`2δ
ˆ

1` 1
np2

˙

. (25)

We distinguish the cases n´1p´2 ą 1 and n´1p´2 ď 1. For n´1p´2 ą 1 we have

for sufficiently large n

ErXs ď
cp2n2`2δ

np2 ď cn1`2δ
ď pn2´2δ ,

where the last inequality follows from our choice of δ ă 1
4p1´

1
m2pF q

q.

For the case n´1p´2 ď 1 we have for sufficiently large n

ErXs ď cp2n2`2δ
ď pn2´2δ
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where the last inequality follows by the choice of δ ă 1
4m2pF q

. Consequently,

ErXs ď pn2´2δ and by Markov’s Inequality

PpX ą pn2´δ
q ď

ErXs
pn2´δ ď n´δ

thus a.a.s. X ď pn2´δ. For sufficiently large n this finishes the case e1 X e2 “ ∅.

It remains the case when |e1 X e2| “ 1. Now let e1, e2 P
`

rns
2

˘

with |e1 X e2| “ 1.

We repeat essentially the same calculations of the first case e1 X e2 “ ∅ with the

following differences.

‚ For the expectation of Xe1,e2 in (12) we get

ErXe1,e2s “ O

ˆ

1
np2

˙

.

‚ For the variance we will show

VarpXe1,e2q ď
c

np2

ˆ

1` 1
np2

˙

.

In the calculation of the variance there is essentially one difference com-

pared to the case e1 X e2 “ ∅. In (15) we get

vaYb ´ |tx1, x2u Y tv1, u1u Y tv2, u2u| ď 2vpF q ´ 5

instead of 2vpF q ´ 6 which leads to an additional n factor. This n factor

carries over to

fQpn, pq :“ n3p´4
¨ n´vcXpaYbqp´ecXpaYbq ¨ n´vpaYbYcqXdp´epaYbYcqXd (26)

in (17).

For the following case distinction we repeat in the case tx1, x2u Ď V pFcq

the calculation, but keep the additional n factor. Consequently we get

in (18)

fQpn, pq “ O

ˆ

1
p2n

˙

.

Similarly we get with the additional n factor in (19)

fQpn, pq “ O

ˆ

1
p4n2

˙

.
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The case vbXc “ 1 and V pFcq X tx1, x2u “ ∅ disappears since Fb
and Fc intersect at least in e1 X e2 Ď tx1, x2u. For the same reason the

case vbXc “ 0 disappears. For the last remaining case in (22) we get again

the same bound with an additional factor of n

fQpn, pq “ O

ˆ

1
p4n2

˙

.

Consequently

VarpXe1,e2q ď
c

np2

ˆ

1` 1
np2

˙

.

‚ The expectation still satisfies ErXe1,e2s ď t for the same choice of

t “ p´1n´δ. This follows since ErXe1,e2s “ Op 1
np2 q, t “ 1

pnδ
and

δ ă 1´ 1
m2pF q

.

‚ Let X 1 be the number of pairs pe1, e2q P
`

EpZq
2

˘

satisfying Xe1,e2 ě 2p´1n´δ

and |e1Xe2| “ 1. We know by the condition |e1Xe2| “ 1 that X 1 ď 2p2n3,

thus we get with X 1 instead of X in (24) a factor of 2p2n3 instead of
`

pn2

2

˘

which results in a factor of n´1 compared to the first case. Consequently

the n´1 factor cancels with the n factor above which leads to the same

order of magnitude in (25). Then the rest of the proof is the same as in

the first case.

Setting D1 ě 2 sufficiently large such that 2p´1n´δ ď D1pn2

nδ
then yields

|P2pZ, e1, e2q| ď
D1

pnδ
(27)

for all but at most D1pn2

nδ
pairs of edges e1, e2 P EpZq.

Case 2 : s ą 2. We consider for s ą 2 configurations from PspGpn, pq, e1, e2q,

so for two pairs e1 ‰ e2 P
`

rns
2

˘

let Ye1,e2 be the random variable given by

|PspGpn, pq, e1, e2q|. Here it is sufficient to use Markov’s inequality instead of

Chebyshev’s inequality which will allow us to avoid the calculation of the variance,

but we still have to distinguish the cases e1 X e2 “ ∅ and |e1 X e2| “ 1.
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For the first case let e1 X e2 “ ∅. The expectation of Ye1,e2 is

ErYe1,e2sďepF q
4n2vpF q´4´svpF qsp2epF q´4 (10)

ď epF q4vpF qsC
2epF q´2
1 n´sp´2

ďC 1n´3p´2

with C 1 “ epF q4vpF qsC
2epF q´2
1 . We use Markov’s inequality and get

P
ˆ

Ye1,e2 ě
1
pnδ

˙

ď C 1n´3p´2
¨ pnδ “ C 1p´1n´3`δ .

Let Y be the number of pairs e1, e2 P EpZq with e1 X e2 “ ∅ and Ye1,e2 ě p´1n´δ.

Then

ErY s ď
ˆ

pn2

2

˙

C 1n´3`δp´1
ď
C 1pn1`δ

2
and a second use of Markov’s inequality yields

PpY ě pn2´δ
q ď

C 1pn1`δ

2pn2´δ “ op1q

where the last inequality follows from our choice δ ă 1{2 and for sufficiently

large n.

We repeat the same proof for the case |e1Xe2| “ 1 with the following differences.

‚ ErYe1,e2s ď C2n´2p´2 for some C2 ą 0.

‚ P
´

Ye1,e2 ě
1
pnδ

¯

ď C2p´1n´2`δ.

‚ ErY s ď 2p2n3C2p´1n´2`δ ď 2C2pn1`δ.

‚ PpY ě pn2´δq ď 2C2pn1`δ

pn2´δ “ op1q.

Consequently for all s ě 3 we have |PspGpn, pq, e1, e2q| ď p´1n´δ for all but at

most pn2´δ pairs of edges e1, e2 P EpZq. Together with (27) this concludes the

proof of (Z4) and finishes the proof of Lemma 30. �

The next lemma concerns property (Z5), which bounds the number of bad

embeddings as defined in Definition 26.

Lemma 32. For all graphs B and all strictly balanced graphs F , for all

C1 ě C0 ą 0 and for C0n
´1{m2pF q ď p ď C1n

´1{m2pF q there exists ζ ą 0 such

that a.a.s. Gpn, pq satisfies (Z5).
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Proof of Lemma 32. We shall show that there exist a ξ ą 0 such that for

any given h P ΨB,n we have for sufficiently large n

Pph is bad w.r.t. F and Gpn, pqq ď n´ξ .

Then the lemma follows from Markov’s inequality with ζ “ ξ{2.

Let h P ΨB,n be fixed. We first consider the case that h is bad w.r.t. F and

Gpn, pq because of (B1). Since F is strictly balanced, for all proper subgraphs

F0 Ĺ F with epF0q ě 2 we have

pepF0qnvpF0q “ pn2
¨ pepF0q´1nvpF0q´2

ě pn2
¨ C

epF0q´1
0 n

´ 1
m2pF q

pepF0q´1q`vpF0q´2

“ pn2
¨ C

epF0q´1
0 n

pepF0q´1q
`

vpF0q´2
epF0q´1´

1
m2pF q

˘

“ pn2
¨ C

epF0q´1
0 n

pepF0q´1q
`

1
d2pF0q

´ 1
d2pF q

˘

ě pn2
¨ nξ

1 (28)

for some ξ1 ą 0. We bound the probability for h being bad because of case (B1)

by estimating the number of configurations leading to this event. In this case F0

stands for the part of F that is contained in hpBq and hence consists of at least

two edges. Using again nvpF q´2pepF q´1 ď C
epF q´1
1 yields

Pph is bad by (B1)q ď
ÿ

F0ĹF,epF0qě2
vpBqvpF0qnvpF q´vpF0qpepF q´epF0q

(28)
ď

ÿ

F0ĹF,epF0qě2
vpBqvpF0qC

epF q´1
1 n´ξ

1

ď n´ξ1

for some ξ1 ą 0 and sufficiently large n.

When we address the case (B2) we can assume that h is not bad because of

case (B1). Hence, it suffices to consider copies F1 and F2 of F each intersecting

hpBq in precisely one edge and F0 :“ F1 X F2 having no edge in hpBq. Again

we will use nvpF q´2pepF q´1 ď C
epF q´1
1 and that nvpF0qpepF0q ě dpn2 for F0 Ĺ F with

epF0q ě 1 for some d ą 0 only depending on F and C0 (see (11)). Note that two



3.3. PROOF OF LEMMA 23 47

fixed edges of hpBq determine at least three vertices of F1 Y F2.

Pph is bad by (B2) and not by (B1)q ď
ÿ

F0ĹF
epF0qě1

vpBq4n2vpF q´vpF0q´3p2epF q´epF0q´2

ď
ÿ

F0

vpBq4C
2epF q´2
1

n

pepF0qnvpF0q

ď
ÿ

F0

vpBq4C
2epF q´2
1

1
dpn

ď
ÿ

F0

vpBq4C
2epF q´3
1 d´1n

´p1´ 1
m2pF q

q
ď n´ξ2

for some ξ2 ą 0 since m2pF q ą 1.

For case (B3) we assume that h is not bad because of case (B1) or case (B2).

Again we bound the probability by the expected number of options to obtain a

configuration as in (B3). In this case F0 stands for the intersection of two different

copies of F and includes at least two edges, e and f from (B3), where f is also

contained in hpBq.

Pph is bad by (B3) and not by (B1) or (B2)q

ď
ÿ

F0ĹF
epF0qě2

vpBq2n2vpF q´vpF0q´2p2epF q´epF0q´1

ď
ÿ

F0

vpBq2C
2epF q´2
1 ¨ pn2

¨
1

pepF0qnvpF0q

(28)
ď n´ξ3

for some ξ3 ą 0 and, hence, Pph is badq ď n´ξ for any 0 ă ξ ă mintξ1, ξ2, ξ3u and

sufficiently large n. �

3.3.2. Restricting Embeddings of B. In this section we focus on restricting

the family ΨB,n of all embeddings B in Kn to a suitable subset ΞB,n so that we

can apply Theorem 17 for the proof of Lemma 23. In particular, our choice

of ΞB,n will ensure conditions on the maximum degree and maximum pair degree
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of H “ HpZ,ΞB,nq. For the control of the pair degree of H the following definition

will be useful.

Definition 33. For a pair of edges e1, e2 P EpZq and an embedding

h P ΞB,n Ď ΨB,n we write e1 «h e2 if e1 and e2 both focus on hpBq. Moreover, if e1

and e2 focus jointly on only one edge of hpBq, then we write e1 „h e2. We denote

by cΞB,npe1, e2q the number of h P ΞB,n such that e1 «h e2.

In the next definition and lemma we define the properties of the desired family

of embeddings.

Definition 34. Let F , B be graphs and let α ą 0. We call a family

ΞB,n Ď ΨB,n of embeddings of B into Kn α-normal if the following conditions

are satisfied.

(N1) |ΞB,n| ě αn2 and

(N2) |V phpBqq X V ph1pBqq| ď 1 for all h ‰ h1 P ΞB,n.

Lemma 35. Let F and B be graphs. For all constants 1
3 ą α ą 0, D ą 0,

1 ą ζ ą 0, mint 1
m2pF q

, 1 ´ 1
m2pF q

u ą δ ą 0, and C1 ą C0 ą 0 there exists n0 P N

such that for all n ě n0 and C0n
´1{m2pF q ď p ď C1n

´1{m2pF q the following holds.

If Z P GB,F,n,ppD, ζ, δq and

PpZ Y hpBq Ñ pF qe2q ą 1´ α

where h P ΨB,n chosen uniformly at random then there exists Ξ0
B,n Ď ΨB,n such

that

(Ξ1 ) Ξ0
B,n is rα-normal for rα “ rαpBq “ 1

13vpBq4vpBq! ą 0,

(Ξ2 ) Z Y hpBq Ñ pF qe2 for all h P Ξ0
B,n,

(Ξ3 ) for all pairs te1, e2u P
`

EpZq
2

˘

we have cΞ0
B,n
pe1, e2q ď

1
pnδ{2

,

(Ξ4 ) h is not bad w.r.t. F and Z for all h P Ξ0
B,n (see Definition 26), and

(Ξ5 ) for all h P Ξ0
B,n we have EphpBqq X EpZq “ ∅.

A family Ξ0
B,n is prα,Zq-normal if it satisfies conditions (Ξ1 ), (Ξ2 ), (Ξ3 ), (Ξ4 ),

and (Ξ5 ) for a given Z P GB,F,n,ppD, ζ, δq.
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Proof of Lemma 35. Given F , B and the constants as above we set

rα “
1

13vpBq4vpBq! .

Let Z P GB,F,n,ppD, ζ, δq and suppose PpZ Y hpBq Ñ pF qe2q ą 1´ α.

For the construction of Ξ0
B,n we start with the family ΨB,n and remove em-

beddings that do not satisfy property (Ξ2 ), embeddings that do not satisfy

property (Ξ4 ) and embeddings that will later lead to problems for (Ξ3 ). After

that we choose at random 2rαn2 embeddings which will induce property (Ξ3 )

and show that after deleting the embeddings that intersect in more than one

vertex we keep Crαn2 of them with C ą 1. Afterwards we remove embeddings

not satisfying (Ξ5 ). Since epZq “ Θppn2q we keep at least pCrα´ op1qqn2 ą rαn2

embeddings h, which finishes the proof.

Since PpZ Y hpBq Ñ pF qe2q ą 1 ´ α ą 2{3 there is a family Ψ1
B,n Ď ΨB,n of

embeddings of B of size 2
3 |ΨB,n| such that Z Y hpBq Ñ pF qe2 for all h P Ψ1

B,n, i.e.

Ψ1
B,n satisfies (Ξ2 ).

Moreover, since Z P GB,F,n,ppD, ζ, δq there are at most n´ζ |ΨB,n| embeddings

that are bad w.r.t. F and Z. We remove those bad embeddings from Ψ1
B,n. In this

way for sufficiently large n we obtain a family Ψ2
B,n Ď Ψ1

B,n of size at least 1
2 |ΨB,n|

that contains no bad embedding and, therefore, Ψ2
B,n satisfies (Ξ4 ).

Since Z P GB,F,n,ppD, ζ, δq there are at most Dpn2

nδ
pairs of distinct edges

e1, e2 P EpZq such that |PpZ, e1, e2q| ą
D
pnδ

. For those pairs of edges e1, e2 we

delete all embeddings h P Ψ2
B,n with e1 „h e2. Since |F´pZ, eq| ď D

p
for all

e P EpZq for Z P GB,F,n,ppD, ζ, δq we delete at most

Dpn2

nδ
¨
D

p
vpF q2nvpBq´2

“
D2vpF q2nvpBq

nδ
“ op|ΨB,n|q

embeddings from Ψ2
B,n. So we get for sufficiently large n a family Ψ3

B,n Ď Ψ2
B,n of

size at least 1
3 |ΨB,n| such that for all distinct e1, e2 P EpZq we have

(F1) if e1 „h e2 for some h P Ψ3
B,n, then |PpZ, e1, e2q| ď

D
pnδ

.
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Next we will select a subset Ψ4
B,n Ď Ψ3

B,n, which allows us to bound cΨ4
B,n
pe1, e2q

for every pair of edges of Z. For this purpose for

ε “ 2rα “ 2
13vpBq4vpBq!

we select with repetition εn2 times an element of Ψ3
B,n, where we assume for

simplicity that εn2 is an integer. For every selection S we define a family of

embeddings ΨS Ď Ψ3
B,n by taking all embeddings that were chosen at least once in S.

We will show that the random selection S a.a.s. satisfies that cΨSpe1, e2q ď
1

pnδ{2

for all e1, e2 P EpZq and that with probability less than 1
2 there are more than ε

2n
2

embeddings that share at least two vertices with some other embedding in the

selection.

First we show that a.a.s. cΨSpe1, e2q ď
1

pnδ{2
for all e1, e2 P EpZq. Since there

are no bad embeddings w.r.t. F and Z in Ψ3
B,n we know that if e focuses on hpBq

then e focuses on exactly one edge in EphpBqq (see property (B1) in Definition 26).

Hence, for e1 «h e2 we may consider the following two cases. Either e1 „h e2 or e1

and e2 focus on two different edges in hpBq.

For the first case we shall use (F1) and |Ψ3
B,n| ě

1
3

`

n
vpBq

˘

to bound the probability

that e1 „hi e2. In fact,

Ppe1 „hi e2q ď
D

pnδ
¨ vpF q2 ¨

vpBq2 ¨ pn´ 2q ¨ ¨ ¨ pn´ vpBq ` 1q
|Ψ3

B,n|

ď
3DvpF q2vpBq2vpBq!

pn2`δ .

In the second case we shall use (Z3) of Definition 28 for the upper bound on

|F´pZ, eq|. This and the fact that two edges fix at least three vertices yield

Ppe1 «hi e2 and not e1 „hi e2q ď
D2

p2 ¨ vpF q
4
¨
vpBq3 ¨ pn´ 3q ¨ ¨ ¨ pn´ vpBq ` 1q

|Ψ3
B,n|

ď
3D2vpF q4vpBq3vpBq!

p2n3 .
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Consequently

Ppe1 «hi e2q ď 3DvpF q2vpBq2vpBq!
ˆ

1
pn2`δ `

DvpF q2vpBq

p2n3

˙

. (29)

Since δ ă 1 ´ 1
m2pF q

we infer nδ ă C0n
1´ 1

m2pF q ă pn for sufficiently large n.

Therefore the right hand side of (29) is of order Θp 1
pn2`δ q and we can bound

Ppe1 «hi e2q ď
D0

pn2`δ .

where D0 “ 4DvpF q2vpBq2vpBq!. For the expected number of connections we get

ErcΨSpe1, e2qs ď

εn2
ÿ

i“1
Ppe1 «hi e2q ď

εD0

pnδ
.

Consequently, Chernoff’s Inequality yields

P
ˆ

cΨSpe1, e2q ě
3
2 ¨

εD0

pnδ

˙

ď exp
ˆ

´
1
12 ¨

εD0

pnδ

˙

.

Note that 1
pnδ
ą nβ for some β ą 0 since δ ă 1

m2pF q
, hence, we can apply the union

bound for all pairs of edges e1, e2 P EpZq and get that a.a.s.

cΨSpe1, e2q ď
3εD0

2pnδ ď
1

pnδ{2
.

Finally we verify that most pairs of selected embeddings intersect in at most

one vertex. In fact, for i “ 1, . . . , εn2 let 1hi be the indicator random variable for

the event “there is some j P rεn2sr tiu such that vphipBq X hjpBqq ě 2” and set

Y “
řεn2

i“1 1hi . Then

Er1h1s ď pεn
2
´ 1q

`

vpBq
2

˘

¨ vpBqpvpBq ´ 1q ¨ pn´ 2q ¨ ¨ ¨ pn´ vpBq ` 1q
|Ψ3

B,n|
ď D1ε

for some constant D1 “ D1pBq with 0 ă D1 ă
3
2vpBq

4vpBq! independent of ε.

Hence,

ErY s ď εn2D1ε “ D1ε
2n2

and by Markov’s Inequality we get

PpY ą 2ErY sq ď 1
2 ,
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so there is a selection S of εn2 embeddings such that Y ď 2D1ε
2n2 and

cΨSpe1, e2q ď
1

pnδ{2
for all pairs of edges. For this choice of S we can simply delete

all those embeddings hi that intersect with some other embedding hj in at least

two vertices. We call the remaining family Ψ4
B,n. Using D1 ď 3vpBq4vpBq!{2 and

the definition ε “ 2rα “ 2
13vpBq4vpBq! yields

|Ψ4
B,n| ě εn2

´ 2D1ε
2n2

ě Crαn2

for some C ą 1 and, hence, Ψ4
B,n satisfies (Ξ1 )–(Ξ4 ).

To achieve (Ξ5 ) we make use of epZq ď pn2 (see (Z1) of Definition 28). Since

no two embeddings from Ψ4
B,n share an edge, we may remove all embeddings from

Ψ4
B,n which share at least one edge with Z and this results in the desired family

Ξ0
B,n Ď Ψ4

B,n of size at least rαn2, which finishes the proof. �

For Lemma 23 we have to show that there is a family of embeddings ΞB,n such

that the hypergraph HpZ,ΞB,nq is index consistent with a profile π. Lemma 36

will ensure this.

Lemma 36. For all constants 1 ą rα ą 0 and D ą 0, for all graphs F and B

with F being strictly balanced and with EpBq “ te1, . . . , eKu, there exist α1 ą 0

and L P N such that every graph Z on n vertices with a fixed ordering of its edge

set and the property

(Z) |F´pZq| ď Dn2

satisfies the following.

For every prα,Zq-normal family Ξ0
B,n there is an pα1, Zq-normal family

ΞB,n Ă Ξ0
B,n and there is a profile π of length at most L such that pZ,ΞB,nq is

index consistent with profile π.

Below we consider Z and B to be fixed graphs and for a simpler notation we

set

Mh “MpZ, hpBqq
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for h P ΨB,n (see (6) for the definition of MpZ, hpBqq). Note that it is rather

unlikely that Mh and Mh1 of H are equal for distinct h, h1 P Ξ0
B,n and, hence,

Lemma 36 follows by a simple averaging argument. We will use Lemma 36 for

Z P GB,F,n,ppD, ζ, δq which satisfies (Z) by (Z2) from Definition 28.

Proof of Lemma 36. Let 1 ą rα ą 0, D ą 0, F and B be given. We define

L “ pepF q ´ 1q 2
rα
vpF q2D and α1 “

rα

2LpKLqL .

Given some Z satisfying (Z) and an prα,Zq-normal family Ξ0
B,n Ď ΨB,n we will

restrict Ξ0
B,n to the promised set ΞB,n with the desired properties.

Note that the family ΞB,n Ď Ξ0
B,n inherits the properties (Ξ2 )–(Ξ5 ) from

the prα,Zq-normality of Ξ0
B,n since they are independent of rα. Consequently, to

establish that ΞB,n is indeed pα1, Zq-normal, we only have to focus on (Ξ1 ). Since

again property (N2) of Definition 34 is inherited from the normality of Ξ0
B,n, it

suffices to show that |ΞB,n| ě α1n2.

Because of (Z) we know that Z contains at most Dn2 copies of some F 1 Ď F

with epF 1q “ epF q ´ 1. Also due to Ξ0
B,n being prα,Zq-normal (see (Ξ4 )) there are

no bad embeddings w.r.t. F and Z in Ξ0
B,n and thus by Fact 27 the pair pZ,Ξ0

B,nq

is regular. In particular, for every h P Ξ0
B,n we have that every edge e P Mh

focuses on exactly one b P EphpBqq. Furthermore, since every h P Ξ0
B,n also does

not satisfy (B3) of Definition 26, each e P Mh focuses on one b P EphpBqq in

only one way, i.e. there is only one copy of F in Z Y hpBq containing b and e.

Therefore, `h “ |Mh| is a multiple of epF q´1 and eachMh gives rise to `h{pepF q´1q

copies of graphs F 1 in Z, where each such F 1 is obtained from F by removing some

edge. Clearly, each such pepF q ´ 1q-element subset of Mh might be completed to a

copy of F in at most
`

vpF q
2

˘

´ epF q ` 1 ă vpF q2 ways.

Applying the upper bound on the number of copies of F with one edge removed

from (Z) yields
ÿ

hPΞ0
B,n

`h
epF q ´ 1 ď vpF q2 ¨Dn2 .



3.3. PROOF OF LEMMA 23 54

So there are at most rαn2{2 embeddings h P Ξ0
B,n with `h ą L, and, consequently,

at least rαn2{2 embeddings h P Ξ0
B,n with `h ď L. Since there are at most K`

different profiles of length `, there must be a profile π of length ` ď L and a subset

Ξ1B,n Ď Ξ0
B,n with

|Ξ1B,n| ě
1

LKL
¨
rα

2n
2

such that pZ,Ξ1B,nq has profile π.

Next we apply another averaging argument to achieve index consistency.

We consider some partition Z1 Ÿ . . . Ÿ Z` of Z into ` classes chosen uniformly

at random. Recall that we ordered the edges of Z. For h P Ξ1B,n consider

Mh “ pz1, . . . , z`q with the inherited ordering of Z. We include h in ΞB,n if zi P Zi
for all i “ 1, . . . , `. Clearly Pph P ΞB,nq “

1
``

and Er|ΞB,n|s “
|Ξ1B,n|
``

, which means

there is an ΞB,n Ď Ξ1B,n with

|ΞB,n| ě |Ξ1B,n|{`` ě
1
LL

rαn2

2LKL
“ α1n2 .

Now let h, h1 P ΞB,n and let z P Mh XMh1 . Since z P Zj for some partition class

Zj we know that z has index j in both Mh and Mh1 . Therefore pZ,ΞB,nq is index

consistent which finishes the proof. �

3.3.3. Proof of Lemma 23. Finally we prove Lemma 23. The previous

lemmas will be utilised to show that the hypergraph HpZ,Ξq satisfies the conditions

of Theorem 17 of Saxton and Thomason about independent sets in hypergraphs.

Proof of Lemma 23. Let constants C1 ą C0 ą 0, 1
3 ą α ą 0 and graphs F

and B with F being strictly balanced be given.

First we fix all constants used in the proof. For the given graphs F and B and

the given constants C1 and C0 Lemma 29 yields constants D ą 0, ζ ą 0, and δ

with 0 ă δ ă min
 1
m2pF q

, 1´ 1
m2pF q

(

. Similarly Lemma 36 applied to F , B, D and

rα “
1

13vpBq4vpBq!
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yields α1 and L. Fixing an auxiliary constant

k “

ˆ

L

epF q ´ 1

˙ˆ

vpF q

2

˙

allows us to set

β “
α1

DkvpF q2
and γ “

δ

10L . (30)

We shall show that α1, β, γ, and L defined this way have the desired property. For

that let p “ ppnq “ cpnqn´1{m2pF q for some cpnq satisfying C0 ď cpnq ď C1. We

shall show that Gpn, pq a.a.s. satisfies the property of Lemma 23. Hence, in view

of Lemma 29 we may assume that the graphs Z considered in Lemma 23 are from

the set GB,F,n,ppD, ζ, δq. Moreover, let n be sufficiently large, so that Lemma 35

applied with F , B, α, D, ζ, δ, C1 and C0 holds for n.

Now let Z P GB,F,n,ppD, ζ, δq such that for h P ΨB,n chosen uniformly at random

we have

PpZ Y hpBq Ñ pF qe2q ą 1´ α .

Then Lemma 35 yields an prα,Zq-normal family of embeddings Ξ0
B,n Ď ΨB,n, i.e.

the family Ξ0
B,n satisfies properties (Ξ1 )–(Ξ5 ) of Lemma 35 for the parameters

chosen above.

Since Z P GB,F,n,ppD, ζ, δq it satisfies property (Z2) of Definition 28 and,

hence, Z satisfies in particular assumption (Z) of Lemma 36. Consequently,

Lemma 36 yields an pα1, Zq-normal family ΞB,n Ď Ξ0
B,n and a profile π of length

` ď L such that the pair pZ,ΞB,nq is index consistent for π.

Next we consider the hypergraph H “ HpZ,ΞB,nq defined by

V pHq “ EpZq and EpHq “ tMpZ, hpBqq : h P ΞB,nu ,

where

MpZ, hpBqq “ tz P EpZq : there is b P EphpBqq such that z focuses on bu .
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Clearly, H is an `-uniform hypergraph on m “ epZq vertices. Below we show

that H satisfies the assumptions of Theorem 17 for

ε “ 1
4 and τ “ n´

δ
4p`´1q .

Since Z P GB,F,n,ppD, ζ, δq it displays properties (Z1)–(Z5) of Definition 28. In

particular, the property (Z1) guarantees

1
4pn

2
ď epZq “ m ď pn2

ă n2 . (31)

Now we bound epHq. Since ΞB,n is α1-normal, it follows from (N1) and (N2) of

Definition 34 that α1n2 ď |ΞB,n| ď n2 and, consequently, we have epHq ď n2. On

the other hand, for any hyperedge Mh of size ` there are at most
`

`
epF q´1

˘

different

copies of some F 1 Ď F with epF 1q “ epF q ´ 1 in Mh and each such copy can be

extended to F by at most
`

vpF q
2

˘

different boosters since all boosters are edge

disjoint. Consequently, Mh could be the hyperedge for at most
`

`
epF q´1

˘`

vpF q
2

˘

ď k

different embeddings h P ΞB,n and, therefore, we have

α1n2

k
ď epHq ď n2 . (32)

Hence, for the average degree of H we obtain

dpHq “ ` ¨
epHq
vpHq

ě ` ¨
α1n2

k
¨

1
pn2 “

`α1

kp
.

We denote by ∆1pHq “ maxvPV pHq |te P EpHq : e contains vu| the maximum

vertex degree and by ∆2pHq “ max
pv,v1qPpV pHq2 q

|te P EpHq : e contains v and v1u|

the maximum codegree of H and below we will bound ∆1pHq and ∆2pHq.

We start with ∆1pHq. Suppose e PMpZ, hpBqq for some h P ΞB,n. Since ΞB,n

contains no bad embeddings w.r.t. F and Z and EphpBqqXEpZq “ ∅ there exists

a unique copy F´ P F´pZ, eq with e P EpF´q and f P hpBq such that F´ ` f

forms a copy of F . Moreover, since every two distinct embeddings h, h1 P ΞB,n

intersect in at most one vertex the degree of e in H is bounded by |F´pZ, eq| ¨
`

vpF q
2

˘

.
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Consequently, it follows from property (Z3) given by Z P GB,F,n,ppD, ζ, δq that

∆1pHq ď
D

p
¨

ˆ

vpF q

2

˙

.

For ∆2pHq we have to look at pairs of edges of Z. Two edges e1, e2 P EpZq

are both contained in MpZ, hpBqq if and only if e1 «h e2. By (Ξ3 ) we know

cΞB,npe1, e2q ď
1

pnδ{2
, so

∆2pHq ď
1
pn

δ
2
.

Note that pnδ{2 Ñ 0 for nÑ 8 since δ ď 1
m2pF q

.

In order to verify the assumptions of Theorem 17 we estimate δpH, τq for ε

and τ defined above. Indeed we have

δpH, τq “ 2p
`
2q´1

ÿ̀

j“2
2´p

j´1
2 q

1
τ j´1mdpHq

ÿ

vPV pHq

dpjqpvq

ď 2p
`
2q´1

ÿ̀

j“2
2´p

j´1
2 q

1
τ j´1mdpHq

¨m ¨∆2pHq

ď 2p
`
2q´1

ÿ̀

j“2

1
τ `´1dpHq

¨∆2pHq

ď 2p
`
2q´1

¨ ` ¨ n
δ
4 ¨

kp

`α1
¨

1
pn

δ
2

“ 2p
`
2q´1

¨
k

α1
¨

1
n
δ
4

ď
ε

12`! ,

where the last inequality holds for sufficiently large n.

By Theorem 17 there exist some constant c “ cp`q and a family J Ă PpV pHqq

satisfying (a ), (b ) and (c ) from Theorem 17. We define

C “ tC Ă V pHq : C “ V pHqr J for one J P J u .

Below we show that C has the desired properties (1), (2) and (3) of Lemma 23.
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(1) follows from (c ) since |C| “ |J | and

log |J | ď cτ logp1{τq logp1{εqm ď m ¨ n´
δ

4p`´1q c logp1{τq logp1{εq ď m1´γ ,

where the last inequality follows for sufficiently large n from

mγ
(31)
ă n2γ (30)

ď n
δ
5` ,

since c “ cp`q and logp1{εq are constants independent of n and logp1{τq ă log n.

(2) follows from (b ). Assume for a contradiction that there is C P C with

|C| ă βm and let J “ V rC P J . Then we count the number of hyperedges of H.

epHq ď epHrV r Csq ` |C| ¨∆1pHq

ă epHrJsq ` βm ¨ D
p

ˆ

vpF q

2

˙

(31)
ď εepHq ` βD

ˆ

vpF q

2

˙

n2

(32)
ď εepHq ` βDk

α1

ˆ

vpF q

2

˙

epHq

“

ˆ

ε`
βDk

α1

ˆ

vpF q

2

˙˙

epHq

(30)
ă epHq

with a contradiction, so |C| ě βm for all C P C.

(3) For a hitting set A of H consider the independent set I “ V r A. Hence

by (a ) of Theorem 17 there exists J P J such that I Ď J and, therefore, we have

A Ě V r J “ C which is an element of C. �
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§3.4. Proof of Lemma 24

The proof of Lemma 24 follows the proof in [24, Lemma 2.3] and is based on

an application of the regularity method for subgraphs of sparse random graphs

which we introduce first.

Let ε ą 0, p P p0, 1s and H “ pV,Eq be a graph. For X, Y Ă V non-empty

and disjoint let

dH,ppX, Y q “
epX, Y q

p|X||Y |

and we say pX, Y q is pε, pq-regular if

|dH,ppX, Y q ´ dH,ppX
1, Y 1q| ă ε

for all subsets X 1 Ď X and Y 1 Ď Y with |X 1| ě ε|X| and |Y 1| ě ε|Y |. We will use

the sparse regularity lemma in the following form (see, e.g. [35]).

Lemma 37. For all ε ą 0 and t0 there exists an integer T0 such that for every

function p “ ppnq " 1{n a.a.s. G P Gpn, pq has the following property. Every

subgraph H “ pV,Eq of G with |V | “ n vertices admits a partition V “ V1 Ÿ. . .ŸVt

satisfying

(i ) t0 ď t ď T0,

(ii ) |V1| ď ¨ ¨ ¨ ď |Vt| ď |V1| ` 1 and

(iii ) all but at most εt2 pairs pVi, Vjq with i ‰ j are pε, pq-regular. �

For a partition P as in the last lemma we call the graph R “ RpP , d, εq with

vertex set V pRq “ tV1, . . . , Vtu and edges

tVi, Vju P EpRq ðñ pVi, Vjq is pε, pq-regular with dH,ppVi, Vjq ě d

the reduced graph w.r.t. P , d, and ε.

The next lemma is a counting lemma for subgraphs of random graphs from [1,

9,51]. For the proof of Lemma 24 we only need this (and the following lemma)

for fixed bipartite graphs. However, we state those auxiliary lemmas in its general

form.
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Lemma 38. For every graph F with vertex set V pF q “ r`s and d ą 0 there

exist ε ą 0 and ξ ą 0 such that for every η ą 0 there exists C ą 0 such that for

p ą Cn´1{m2pF q a.a.s. G P Gpn, pq satisfies the following.

Let H “ pV1 Ÿ . . . Ÿ V`, EHq be an `-partite (not necessarily induced) subgraph

of G with vertex classes of size at least ηn and with the property that for every edge

ti, ju P EpF q the pair pVi, Vjq in H is pε, pq-regular with density dH,ppVi, Vjq ě d.

Then the number of partite copies of F in H is at least

ξpepF q
ź̀

i“1
|Vi| ,

where a partite copy is a graph homomorphism ϕ : F Ñ H with ϕpiq P Vi. �

The next lemma bounds the number of edges between large sets of vertices

of Gpn, pq as well as the number of copies of some bipartite graphs F ‹ with two

vertices from a prescribed set W .

Lemma 39. Let F ‹ be a graph with two vertices a1, a2 P V pF ‹q with

a1a2 R EpF
‹q. For all plog nq{n ď p “ ppnq ă 1 the random graph G P Gpn, pq

satisfies a.a.s. the following properties.

(A1) For all disjoint subsets U , W Ď V pGq with |U |, |W | ě n{ log log n we have

p|U |2{3 ă eGpUq ă p|U |2 and p|U ||W |{2 ă eGpU,W q ă 2p|U ||W | .

(A2) For all subsets W Ă V pGq there exists a set of edges E0 Ď EpGq

with |E0| “ n log n such that there are at most 2pepF ‹qnvpF ‹q´2|W |2

many copies ϕpF ‹q of F ‹ in the graph pV pGq, EpGq r E0q with

V pϕpF ‹qq XW “ tϕpa1q, ϕpa2qu.

The proof of (A1) follows directly from Chernoff’s inequality and the proof

of (A2) is based on the so-called deletion method in form of the following lemma.
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Lemma 40. [32, Lemma 2.51] Let Γ be a set, S Ď rΓss and 0 ă p ă 1. Then

for every k ą 0 with probability at least 1´ expp´ k
2sq there exists a set E0 Ă Γp of

size k such that Γp r E0 contains at most 2µ sets from S where µ is the expected

number of sets from S contained in Γp. �

Proof of Lemma 39. Since part (A1) follows from Chernoff’s inequality, we

will only focus on property (A2), which is a direct consequence of Lemma 40.

In fact, let V be a set of n vertices, W Ă V and a graph F ‹ with two fixed

vertices a1, a2 P V pF
‹q not forming an edge in F ‹. We use Lemma 40 with Γ “

`

V
2

˘

,

s “ epF ‹q,

S “
 

copies ϕpF ‹q of F ‹ in pV,Γq with V pϕpF ‹qq XW “ tϕpa1q, ϕpa2qu
(

,

p, and k “ n log n. In particular, Γp “ Gpn, pq in our setup here. With probability

at least 1´exp
`

´
n logn
2epF ‹q

˘

there exists a set E0 Ď EpGpn, pqq of size at most n log n

such that there are at most

2µ ď 2pepF ‹qnvpF ‹q´2
|W |2

many copies ϕpF ‹q with V pϕpF ‹qq XW “ tϕpa1q, ϕpa2qu in pV,EpGpn, pqqr E0q.

The lemma then follows from the union bound applied for all 2n possible choices

W Ă V . �

Finally, we can prove Lemma 24. Let F be a strictly balanced and nearly

bipartite graph. Let G be a typical graph (with respect to the properties of

Lemmas 37–39) in Gpn, pq and let H be a subgraph of G with |EpHq| ě λ|EpGq|.

First we apply the sparse regularity lemma (Lemma 37) to H. Since H is relatively

dense in Gpn, pq we infer that the corresponding reduced graph R (for suitable

chosen parameters) has many, i.e. Ωp|V pRq|2q edges. So we can find many large

complete bipartite graphs in R. We conclude that there is some partition class

Vi P V pRq contained in many complete bipartite graphs.
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We analyse the graph G0 “ BaseHpF qrVis on the vertex set Vi with edges being

those pairs in
`

Vi
2

˘

that complete a copy of the bipartite graph F 1 Ď F 1 ` e “ F

in H to a copy of F . We say that G0 is p%, dq-dense if for all W Ď V pG0q with

|W | ě %|Vi| we have eG0pW q ě d
`

|W |
2

˘

. It is well known that sufficiently large

p%, dq-dense graphs contain any fixed subgraph (see e.g. [46]).

Lemma 41. For all d ą 0 and F there exist %, c0 ą 0 and n0 P N such that

every p%, dq-dense graph G0 with vpG0q “ n ě n0 contains at least c0n
vpF q copies

of F . �

To show the p%, dq-denseness of G0 we consider W Ď Vi with |W | ě %|Vi|. Then

by Lemma 38 we will find many copies of F 1 in H where the missing edge has

to be in
`

W
2

˘

. Together with an upper bound for the number of graphs that are

combinations of two different copies of F 1 ((A2) of Lemma 39) we ensure that not

too many copies of F 1 are completed to F by the same pair in W . Thus there are

many edges in BaseHpF qrW s and G0 is p%, dq-dense.

Proof of Lemma 24. Let λ ą 0, C1 ą C0 ą 0 and let F be a strictly

balanced nearly bipartite graph such that F “ F 1 ` ta1, a2u, where F 1 is bipartite

with partition classes A “ ta1, . . . , aau and B “ tb1, . . . , bbu.

The Sparse Counting Lemma (Lemma 38) applied with F 1 and dCL “ λ{4

yields constants εCL ą 0 and ξCL ą 0. Since we don’t know whether the given

constant C0 is at least 1 or not, we find it convenient to fix an auxiliary constant

C 10 “ mint1, CepF q´1
0 u . (33)

Furthermore, we set

d “
pλ{6q2pa´1qb

¨ ξ2
CL ¨ C

2pepF q´1q
0 ¨ C 10

64 ¨ a2ab2b ¨ pvpF q ` 1qvpF q ¨ C2pepF q´1q
1

. (34)
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Next we appeal to Lemma 41. For F and for this choice of d this lemma yields

constants %, c0 ą 0 and n0 P N. Furthermore, set

ε “ min
"

%εCL

4 ,
λ

48

*

and t0 “
48ab
λ

. (35)

Lemma 37 applied with ε and t0 yields T0 P N and Lemma 38 applied with

ηCL “ %{p2T0q yields CCL. Finally, we fix the promised

η “ c0T
´vpF q
0

and let C0n
´1{m2pF q ď p “ ppnq ď C1n

´1{m2pF q. For later reference we note that

due to the balancedness of F we have

pepF qnvpF q ď C
epF q´1
1 pn2 (36)

and owing to the choice of C 10 in (33) we have

pepF1qnvpF1q ě C 10pn
2 (37)

for every subgraph F1 Ď F with epF1q ě 1. Moreover, since we applied Lemma 38

for F 1 Ĺ F , the strict balancedness of F implies m2pF q ą m2pF
1q. Consequently,

for sufficiently large n we have

CCLn
´1{m2pF 1q ď C0n

´1{m2pF q ď p .

Since we have to show that Gpn, pq a.a.s. satisfies T pλ, η, F q we can assume

that n is arbitrarily large. Consider any G P Gpn, pq that satisfies the properties

of Lemma 37 and Lemma 38, as well as property (A1) and property (A2) of

Lemma 39 for all bipartite graphs F ‹ such that F ‹ is the union of two different

copies ϕ1pF
1q and ϕ2pF

1q of F 1 with tϕ1pa1q, ϕ1pa2qu “ tϕ2pa1q, ϕ2pa2qu. In other

words, for the rest of the proof we consider a fixed graph G to which we can apply

the Lemmas 37–39 and we will show that such a G satisfies T pλ, η, F q. For that

let H Ď G with

epHq ě λepGq ą
1
3λpn

2

where the second inequality follows from property (A1) of Lemma 39.
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Lemma 37 applied to H yields a partition P of the vertices V “ V1 Ÿ . . . Ÿ Vt

with at least p1´ εq
`

t
2

˘

many pε, pq-regular pairs for some t with t0 ď t ď T0. We

assume w.l.o.g. that t divides n. We infer that there are at least λ
6

`

t
2

˘

regular pairs

with edge density at least λ
4p since otherwise we could bound the number of edges

of H by

epHq ď
λ

6

ˆ

t

2

˙

¨ 2p
´n

t

¯2
`

ˆ

t

2

˙

¨
λ

4p
´n

t

¯2
` ε

ˆ

t

2

˙

¨ 2p
´n

t

¯2
` t ¨ p

´n

t

¯2

ď
1
2pn

2
ˆ

λ

3 `
λ

4 ` 2ε` 2
t

˙

(35)
ď

1
3λpn

2 ,

which would contradict the derived lower bound epHq ą 1
3λpn

2.

Let R “ RpP , dCL, εq be the reduced graph w.r.t. the partition P and relative

density dCL “
λ
4 . In particular R has exactly t ě t0 vertices and at least λ

6

`

t
2

˘

edges.

It follows from the theorem of Kővári, Sós and Turán [37] (see, e.g. [15, Lemma 1])

that there are at least γta`b´1 copies of the complete bipartite graph Ka´1,b in R

where1

γ “ γpF, λq “
1
2

1
pa´ 1qa´1bb

ˆ

λ

6

˙pa´1qb

. (38)

Hence, there is a partition class Va0 of P such that Va0 is contained in at least

γta`b´2 copies of Ka´1,b in R where Va0 is always contained in partition class A of

Ka´1,b for these copies.

Our goal is to show that the graph G0 induced by BaseF pHq on Va0 is p%, dq-

dense, which due to our choice of c0 and η above leads to c0pn{tq
vpF q ą ηnvpF q

copies of F in G0 (see Lemma 41). So let W Ď Va0 with |W | ě %|Va0 | and fix some

partition W “ W1 ŸW2 with |W1| “ |W2| “ |W |{2 (for simplicity, we may assume

1Strictly speaking, in [37] no such lower bound on the number of copies of complete

graphs in dense large graphs is given. However, the proof from [37] combined with standard

convexity arguments gives the bound stated here and such an argument can be found for example

in [15, Lemma 1].
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that |W | is even). Note that for any j for which pVa0 , Vjq is pε, pq-regular we still

have that pW1, Vjq and pW2, Vjq are p2ε{%, pq-regular.

We will ensure many copies of F 1 with a1 P W1 and a2 P W2 which force edges

in G0 “ BaseF pHqrVa0s. However, we have to make sure that not too many copies

force the same edge in G0. For this purpose we delete some edges by (A2) of

Lemma 39 to restrict the number of graphs F ‹ that are unions of two different

copies of F 1 that force the same edge in G0.

Let ϕ1pF
1q and ϕ2pF

1q be two copies of F 1 satisfying ϕ1pta1, a2uq “ ϕ2pta1, a2uq

and let F ‹ “ ϕ1pF
1qYϕ2pF

1q. We find by (A2) of Lemma 39 at most n log n edges

EF ‹ such that there are at most

2pepF ‹qnvpF ‹q´2
|W |2 (39)

copies of F ‹ in pV pHq, EpHq r EF ‹q with ϕ1pa1q, ϕ1pa2q P W1 YW2. We repeat

this argument for all possible graphs F ‹ that can be created this way and we

denote by F‹ the family of those graphs. Since there are at most 2pa`1qa´2pb`1qb

such graphs F ‹, in total we delete at most

2pa` 1qa´2
pb` 1qbn log n “ oppn2

q

edges of H, i.e. for H 1 “ H ´
Ť

F ‹PF‹ EF ‹ we have

epH 1
q ě p1´ op1qqepHq.

In particular, for sufficiently large n the density and the regularity of the pairs

in the partition P is not affected much and pδ, pq-regular pairs in H are still

p2δ, pq-regular in H 1.

Lemma 38 yields many copies of F 1 in H 1. In fact, since m2pF
1q ă m2pF q we

get

p ě C0n
´ 1
m2pF q ą CCLn

´ 1
m2pF 1q .

For any copy of Ka´1,b in the reduced graph R that contains Va0 among the a´ 1

classes of the bipartition of Ka´1,b Lemma 38 applied with εCL ě 4ε{% (see (35))
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yields at least

ξCLp
epF q´1

´n

t

¯vpF q´2
|W1||W2| “

1
4ξCLp

epF q´1
´n

t

¯vpF q´2
|W |2

partite copies of F 1 in H 1 with a1 P W1 and a2 P W2. Repeating this for the γta`b´2

different copies of Ka´1,b in R that contain Va0 in the described way, in total we

obtain at least

γtvpF q´2
¨

1
4ξCLp

epF q´1
´n

t

¯vpF q´2
|W |2 “

γξCL

4 ¨ pepF q´1nvpF q´2
|W |2

ě
γξCL

4 ¨ C
epF q´1
0 |W |2 (40)

copies of F 1 in H 1 with a1 P W1 and a2 P W2. For a pair of vertices e P
`

W
2

˘

we

define

xe “ |tϕpF
1
q copy of F 1 in H 1 : e “ tϕpa1q, ϕpa2quu| .

By (40) we know that

ÿ

ePpW2 q

xe ě
γξCL

4 ¨ C
epF q´1
0 |W |2 . (41)

Let Wą0 “
 

e P
`

W
2

˘

: xe ‰ 0
(

and N “ |Wą0|. Since this N corresponds to the

number of edges in BaseH 1pF qrW s Ď BaseHpF qrW s we shall show that N ě d
`

|W |
2

˘

.

For this purpose we use (41) and an upper bound for
ř

ePpW2 q
x2
e that follows

from (39). In fact,

ÿ

ePpW2 q

x2
e

(39)
ď |F‹

| ¨ 2pepF̂ qnvpF̂ q´2
|W |2 (42)

where F̂ is a graph in F‹ that maximises the value of pepF ‹qnvpF ‹q´2 for F ‹ P F‹.

We will show that pepF̂ qnvpF̂ q´2 is bounded by a constant only depending on C0,

C1 and F . In fact, for F ‹ “ ϕ1pF
1q Y ϕ2pF

1q P F‹ let F0 “ ϕ1pF
1q X ϕ2pF

1q and
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e “ tϕ1pa1q, ϕ1pa2qu. In particular, F0 ` e Ď F and we have

pepF
‹qnvpF

‹q´2
“
pepF

‹`eqnvpF
‹`eq

pn2 “

`

pepF qnvpF q
˘2

pepF0`eqnvpF0`eq ¨ pn2

(36)
ď

C
2epF q´2
1 pn2

pepF0`eqnvpF0`eq

(37)
ď

C
2epF q´2
1
C 10

.

Combining (42) with the simple upper bound |F‹| ď pvpF q ` 1qvpF q and the last

inequality yields
ÿ

ePpW2 q

x2
e ď 2pvpF q ` 1qvpF qC

2pepF q´1q
1
C 10

|W |2 . (43)

Finally, we establish the p%, dq-denseness of G0. In fact, from the Cauchy-

Schwarz inequality we know
˜

ÿ

ePpW2 q

xe

¸2

“

˜

ÿ

ePWą0

xe

¸2

ď N ¨
ÿ

ePWą0

x2
e “ N ¨

ÿ

ePpW2 q

x2
e .

and, consequently,

N ě

´

ř

ePpW2 q
xe

¯2

ř

ePpW2 q
x2
e

(41),(43)
ě

´

γξCLC
epF q´1
0 |W |2{4

¯2

2pvpF q ` 1qvpF qC2pepF q´1q
1 |W |2{C 10

ą
γ2ξ2

CLC
2pepF q´1q
0 C 10

16pvpF q ` 1qvpF qC2pepF q´1q
1

¨

ˆ

|W |

2

˙

(34),(38)
ě d ¨

ˆ

|W |

2

˙

.

Recalling that W Ď Va0 with |W | ě %|Va0 | was arbitrary, implies that G0 is

p%, dq-dense which finishes the proof. �

§3.5. Open Problems

3.5.1. Ramsey Properties of Nearly Partite Hypergraphs. Instead of

nearly bipartite graphs one may consider nearly k-partite k-uniform hypergraphs,
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i.e. k-uniform hypergraphs with vertex partition V1 Ÿ . . .ŸVk and the property that

at most one hyperedge is contained in V1 and the remaining hyperedges contain

exactly one vertex from each vertex class. Again one may require additional

balancedness assumptions (similar as in Theorem 5). However, for the proof of a

lemma corresponding to Lemma 24 one would need a sparse version of the so-called

weak regularity lemma for hypergraphs and a corresponding embedding/counting

lemma for subhypergraphs of random hypergraphs (see, e.g. [9, Section 5.1]).

For the more relaxed version of nearly partite, which would allow the additional

hyperedge to span across more than one vertex class, one would likely need sparse

analogues of the strong hypergraph regularity method for subhypergraphs of

random hypergraphs.

3.5.2. Ramsey Properties for More Colours and General Graphs. It

would be very interesting to extend Theorem 5 to more general graphs F . The

class of nearly bipartite graphs contains the triangle K3 and an extension for

all cliques would be desirable. The main obstacle seems to establish a suitable

analogue of Lemma 24 for this case.

Another limitation is the restriction to two colours only. The Rödl-Ruciński

theorem [46] applies, up to very few exceptions (see, e.g. [32, Section 8.1]), to

arbitrary graphs and any number of colours r ě 2. However, besides for the case

of trees (see [23]), all known sharpness results address only the two-colour case

and extending these results to more than two colours appears an interesting open

problem in the area.

Finally, we mention that due to Friedgut’s criterion the c “ cpnq in Theorem 5

is bounded by constants, but it may depend on n. It seems plausible, that a

strengthening of Theorem 5 for some constant c independent of n also holds.

However, this would likely require a very different approach to these problems.



CHAPTER 4

Schur Triples

Here we will prove Theorem 8. The proof builds on similar ideas as in [21,53].

§4.1. Main Lemmas

The proof of Theorem 8 has a very similar structure as the proof of Theorem 5

in Chapter 3. We start with a reformulation of Friedgut’s and Bourgain’s Criterion.

4.1.1. Friedgut’s Criterion for Coarse Thresholds. We want to apply

Bourgain’s Criterion, Theorem 16. For that we need symmetric properties of

the given ground set. To achieve the symmetry we switch from subsets of rns to

subsets of Zn.

As a starting point for the application of Bourgain’s Criterion we also need the

result by Graham, Rödl & Ruciński that the corresponding threshold is semi-sharp.

Theorem 7 concerns random subsets of rns, however, the proof given in [26] also

works similarly for random subsets of Zn. The 1-statement follows directly from

the rns-case. The 0-statement requires only slight changes in the calculations and

we obtain the following Lemma

Lemma 42. There exist constants C1 ě C0 ą 0 such that the following holds.

lim
nÑ8

PpZn,p Ñ pSTq2q “

$

’

&

’

%

0, if p ď C0n
´1{2 ,

1, if p ě C1n
´1{2 .

�

The starting point of the proof of Theorem 8 is again the criterion of properties

with a coarse threshold by Friedgut and Bourgain. Since we deal with a monotone

property in random subsets of Zn, this time we will use the version by Bourgain,

Theorem 16 from Section 2.1.
69
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We do not want that the booster set B already satisfies B Ñ pSTq2. Since B

is small the following lemma will guarantee that B Û pSTq2.

Lemma 43. Let B be a family of subsets of Zn such that every B P B satisfies

|B| ď log n and B Ñ pSTq2. Then for every function p “ ppnq “ Θpn´1{2q holds

PpB Ď Zn,p for some B P Bq “ op1q.

The proof is very similar to the proof of Theorem 2 in [26] and we only

sketch the main differences. First in [26] the proof is given for random subsets

of rns instead of random subsets of Zn. In the proof we only have to estimate

the expectation of special configurations. Since all of those expectations have

the same order of magnitude in rns and in Zn the proof can be adapted to this

setting. Secondly we want to prove the lemma for every p “ Θpn´1{2q, where

in [26] p “ cn´1{2 for a sufficiently small constant c. However, for the expectations

mentioned above we do not need c to be small since in the proof this is only used

for large configurations which are excluded here by |B| ď log n. This concludes

the discussion of Lemma 43.

Recall, that in the graph case we used random embeddings of B, while in [21]

for arithmetic progressions in Zn,p random shifts of a booster B were used. Note

that in both cases the property B Û pF qe2 respectively B Û pAPkq2 also hold

with B replaced by hpBq respectively B replaced by B ` x for some embedding h

respectively some shift x P Z.

For Schur triples we cannot use shifts of B since it can happen that B Û pSTq2
as well as B` xÑ pSTq2. Instead we take scalings of B, that means for q P Zn we

take qB “ tqb : b P Bu. It turns out that scalings preserve the property B Û pSTq2
at least for q coprime to n. Let Q‹n “ tq P Zn : gcdpq, nq “ 1u be the elements

of Zn that are coprime to n. Then |Q‹n| is given by Euler’s totient function and it

is known that for n ě 2

|Q‹n| ě
n

eγ‹ loglog n` 3
loglogn
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holds where γ‹ « 0.577 is Euler’s constant [50, Theorem 15], eγ‹ « 1.78. Since we

do not want to distinct cases for different order of magnitude of |Qn| later in the

proof, we fix for each n ě 2 a subset Qn Ď Q‹n of size

|Qn| “

S

n

eγ‹ loglog n` 3
loglogn

W

,

in particular, we have for sufficiently large n
n

2 loglog n ď |Qn| ď
n

loglog n . (44)

For q P Qn the function ψq : Zn Ñ Zn, n ÞÑ qn is a bijection and for each Schur

triple px, y, zq also pψqpxq, ψqpyq, ψqpzqq is a Schur triple. Similarly the preimage of

any Schur triple is a Schur triple. With these preparations we can adapt Friedgut’s

and Bourgain’s criterion, in this case Theorem 16, to our setting to obtain the

following lemma.

Lemma 44. Assume that the property tZ Ď Zn : Z Ñ pSTq2u does not have a

sharp threshold. Then there exist constants K P N, α, ε, µ ą 0 and C1 ě C0 ą 0

and a function c : NÑ R with C0 ă cpnq ă C1 such that for ppnq “ cpnqn´1{2 and

for infinitely many n P N the following holds.

There is a subset Bn Ă Zn with |Bn| ď K and Bn Û pSTq2 such that for every

family Z of subsets from Zn with PpZn,p P Zq ě 1´ µ there exists a Z P Z such

that

(1) PpZ Y qBn Ñ pSTq2q ą α, with q P Qn chosen uniformly at random,

(2) PpZ Y Zn,εpq Ñ pSTq2q ă α
2 .

Proof. Let A “ tZ Ď Zn : Z Ñ pSTq2u, then Lemma 42 yields that a

threshold function of A has order of magnitude Θpn´1{2q. We assume that this

threshold is not sharp. It follows that there are constants C, τ ą 0, C1 ě C0 ą 0

and a function c : NÑ R with C0 ď cpnq ď C1 such that for p “ ppnq “ cpnqn´1{2

there are infinitely many n P N with

τ ă µpp,Aq :“ PpZn,p P Aq ă 1´ τ
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and p¨ dµpp,Aq
dp

ď C, which are exactly the assumptions of Theorem 16. Consequently

there are δpC, τq, ηpC, τq ą 0 and KpC, τq P N and for each of the infinitely many n

there exists a family Bn of subsets from Zn with the properties as in Theorem 16.

Finally let sA “ PpZnq r A “ tZ Ď Zn : Z Û pSTq2u be the complement of A

and set

µ ă
δ PpZn,p P sAq

8 . (45)

Since we assume that the threshold of A is not sharp there exists a sufficiently

small ε ą 0 and α ą 0 with 0 ă α ă δ{2 such that the following holds.

PpZn,p P Z 1
|Zn,p P sAq ě 1´ δ{4

where Z 1 Ď sA is the family of sets Z P sA with

PpZ Y Zn,εp Ñ pSTq2q ă α{2 ,

otherwise this would yield a contradiction to p ¨ dµpp,Aq
dp

ď C.

We know from Theorem 16 that PpBn Ď Zn,p for some Bn P Bnq ě η and

from Lemma 43 that a.a.s. all Bn Ă Zn of size at most K satisfy Bn Û pSTq2.

Consequently for each n there exists a Bn P Bn with |Bn| ď K, Bn Û pSTq2 and

PpZn,p P A|B Ď Zn,pq ě PpZn,p P Aq ` δ .

By symmetry for all q P Qn also qBn satisfies these three properties: |qBn| ď K

follows directly since ψq is bijective. For qBn Û pSTq2 we use that ψq yields a

bijection between the Schur triples: Any ST-free colouring of Bn can be transferred

via ψq to an ST-free colouring of qBn and vice versa since there is always a

multiplicative inverse to q in Zn which is also coprime to n. The third property

follows from the same argument as the second combined with the fact that for any

A Ď Zn the probability PpA Ď Zn,pq only depends on the size of A. Consequently

for all q P Qn holds

PpZn,p P A|qBn Ď Zn,pq ě PpZn,p P Aq ` δ . (46)
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Let Z2 be the family of subsets Z Ď Zn such that

PpZ Y qBn P Aq ą δ

2 ą α ,

where here the probability comes from choosing q uniformly at random from Qn.

Then it follows from (46) that PpZn,p P Z2|Zn,p P sAq ě δ{2.

By the choice of µ in (45) it follows for any property Z with PpZn,p P Zq ě 1´µ

that

PpZn,p R Z X Z 1
X Z2

|Zn,p P sAq ď δ

8 `
δ

4 `
ˆ

1´ δ

2

˙

ď 1´ δ

8
and consequently

PpZn,p P Z X Z 1
X Z2

q ě
δ

8 ¨ PpZn,p P
sAq ě δτ

8 .

Consequently Z XZ 1 XZ2 ‰ ∅ and any Z in this intersection satisfies the desired

properties. �

4.1.2. Main Probabilistic Lemmas. Similarly as in Chapter 3 we will apply

the hypergraph container theorem, Theorem 17, to a hypergraph H that depends

on B,Z,Ξ Ď Zn, where B,Z are directly given by Bourgain’s lemma (Lemma 44)

and Ξ stands for a suitable family of scalings of B and will be a subfamily of the

family of scalings that is given by Lemma 44.

The main work in the proof is to make suitable choices for Z and Ξ. We can

guarantee that Z P Z satisfies properties that hold for Zn,p with probability at

least 1´ µ for µ given by Lemma 44. On the other hand we can also restrict Ξ as

long as the remaining family has size Θp n
loglognq. In this way we can ensure that Ξ

only contains typical scalings.

Next we translate the definitions from Chapter 3 to the setting in Zn with

Schur triples. For given B,Z Ď Zn we say that z P Z focuses on b P B if there

exists x P Z such that pz, x, bq is a Schur triple. The set of focusing elements we

call

MpZ,Bq “ tz P Z : there is b P B s.t. z focuses on bu .
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The pair pZ,Bq is called interactive if Z X B “ ∅, Z Û pSTq2, B Û pSTq2, but

Z YB Ñ pSTq2. For a set Ξ of scalings of B we call the pair pZ,Ξq interactive if

pZ, qBq is interactive for every q P Ξ.

We call pZ,Ξq regular if for all q P Ξ every z P Z focuses on at most one qb P qB.

Compared to Chapter 3 we need a new definition since we cannot exclude the case

that there is some z P Z that focuses on two elements of qB if there exist b, b1 P B

with b ` b1 “ 0. We say pZ,Ξq is almost regular if for all q P Ξ every z P Z

focuses on at most two qb, qb1 P qB and if in the case that z focuses on exactly

two qb ‰ qb1 P qB then there exists x P Z such that x´ z “ qb and z ´ x “ qb1.

For a booster B and an almost regular and interactive pair pZ,Ξq we define a

hypergraph H “ HpZ,Ξq with vertex set

V pHq “ Z

and edge set

EpHq “ tMpZ, qBq : q P Ξu .

For an interactive and almost regular pair pZ,Ξq and q P Ξ we say that

z PMpZ, qBq “ tz1, . . . , z`u with z1 ă z2 ă ¨ ¨ ¨ ă z` has index i if z “ zi (for that

we fix the canonical ordering on Zn). Furthermore, we call pZ,Ξq and HpZ,Ξq

index consistent if for all z P Z and all q, q1 P Ξ with z P MpZ, qBq XMpZ, q1Bq

the indices of z in MpZ, qBq and in MpZ, q1Bq are the same. Let b1 ă ¨ ¨ ¨ ă b|B|

be the natural ordering of the elements of B induced by the fixed one of Zn.

Then the profile of MpZ, qBq is the function π : r|MpZ, qBq|s Ñ r|B|s2 defined by

πpiq “ pj, jq if zi focuses only on qbj and by πpiq “ pj, kq, if zi focuses on qbj as well

as on qbk in a way such that there exist x P Z with zi ´ x “ qbj and x´ zi “ qbk.

Note that in this case it follows that x P MpZ, qBq and πpxq “ pk, jq. Since

the pair pZ,Ξq is almost regular, for each edge of H each zi focuses on at most

two qbj and, hence, the profile is well defined. We say pZ,Ξq has profile π if all

edges MpZ, qBq for q P Ξ have profile π. Note that in this case all sets MpZ, qBq

have the same cardinality and |MpZ, qBq| is called the length of the profile π.
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Recall that we fixed for all n P N a family Qn of coprimes to n. With these

definitions at hand we can formulate our main technical lemma which will similarly

to Chapter 3 yield the desired family of cores.

Lemma 45. For all constants C1 ą C0 ą 0, α, µ ą 0, K P N and any sequence

pBmqmPN of subsets Bm Ă Zm with |Bm| ď K for all m, there exist α1, β, γ ą 0 and

L, n0 P N such that for all n ě n0 and every p “ cpnqn´1{2 with C0 ď cpnq ď C1

with probability at least 1´ µ
2 we have that Z P Zn,p satisfies the following. If

PpZ Y qBn Ñ pSTq2q ą α

for q P Qn chosen uniformly at random, then there exists Ξn Ď Qn with

|Ξn| ě
α1n

loglogn and Z Y qBn Ñ pSTq2 for all q P Ξn such that the hypergraph

H “ HpZ,Ξnq is almost regular and index consistent for some profile π of length

` ď L and there is a family C of subsets of V pHq satisfying

(1) log |C| ď |Z|1´γ,

(2) |C| ě β|Z| for all C P C, and

(3) every hitting set A of H contains some C P C, i.e. for every A Ď V pHq

with eX A ‰ ∅ for all e P EpHq there exists C P C with C Ď A.

The main part of the proof (which will be given in Section 4.3) deals with the

preparation of Z and Ξ such that the hypergraph container theorem, Theorem 17,

can be applied to HpZ,Ξq.

The second probabilistic lemma is a preparation step for the second round

when we will add εpn elements to Z, where p “ Θpn´1{2q. For S Ď Zn we define

the base set of S by

BasepSq “ tz P Zn : Ds, s1 P S s.t. ps, s1, zq is a Schur tripleu .

We can consider BasepSq as the set of elements that complete a pair in S to a

Schur triple. The next lemma shows that a.a.s. a random subset of size Ωpn1{2q
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contains at least a constant fraction of the expected number of Schur triples in its

base set.

Lemma 46. For all λ ą 0, C1 ą C0 ą 0 there exists η ą 0 such that for

C0n
´1{2 ď p ď C1n

´1{2 the following a.a.s. holds. For every subset S Ď Zn,p of

size at least λpn there are at least ηn2 Schur triples in BasepSq.

The proof follows the proof in [21]and is given in section 4.4.

4.1.3. Colourings and Hitting Sets. In the following we define the hitting

set of H depending on a colouring of B and one of Z that establishes a connection

between ST-free colourings of Z Y qB and the hypergraph container theorem,

Theorem 17.

For B,Z Ď Zn and a family Ξ of scalings of B let pZ,Ξq be an interactive

pair, i.e. Z Û pSTq2, B Û pSTq2 but Z Y qB Ñ pSTq2 for all q P Ξ. In particular

there exists an ST-free colouring σ : B Ñ tred,blueu of B. We copy σ for all q P Ξ

to qB by setting σq : qB Ñ tred,blueu with σqpqbq “ σpbq. Furthermore, let ϕ be

an arbitrary ST-free colouring of Z.

As pZ,Ξq is interactive, for each q P Ξ for every 2-colouring of Z Y qB there

exists a monochromatic Schur triple in Z Y qB, in particular, for the colouring

defined by σq and ϕ (later in the proof we will ensure that Z X qB “ ∅ for all

elements q in the chosen family Ξ and we assume this for now).

Since σ and ϕ both are ST-free it follows that there is a monochromatic Schur

triple in Z Y qB that uses elements from Z as well as elements from qB. We call

the elements from Z that are contained in such a Schur triple activated by σ, ϕ,

and q and define for H the set of activated vertices by

Aσϕ “ AσϕpZ,Ξq “
ď

qPΞ

 

z P Z : z is activated by σ, ϕ and q
(

Ď V pHq .

In Chapter 3 we looked for an interactive, regular and index consistent

pair pZ,Ξq at Aσϕ to obtain that ϕpzq “ ϕ1pzq for all z P Aσϕ X Aσϕ1 and ST-free



4.1. MAIN LEMMAS 77

colourings ϕ, ϕ1 of Z. For Schur triples, however, we cannot exclude the following

configuration where there are x ‰ z P Z and qb ‰ qb1 P qB such that z ´ x “ qb

and x ´ z “ qb1. If we try to follow the same way as before it could happen

that ϕpxq “ ϕpzq “ σpbq “ red while ϕ1pxq “ ϕ1pzq “ σpb1q “ blue which would

contradict ϕpzq “ ϕ1pzq for all z P Aσϕ X Aσϕ1 .

To solve this issue we define rAσϕ Ď Aσϕ in the following way. Let pZ,Ξq be an

interactive, almost regular, and index consistent pair with profile π (compared

to Chapter 3 we changed regular to almost regular). Remember that by index

consistency each z P Z focuses for all q P Ξ on qbj for exactly the same indices j,

in fact, on at most two different qbj and in the case that there are two different

qbj ‰ qbk then there exists x P Z such that z´ x “ qbj and x´ z “ qbk. It follows

that such elements which focuses on two different qbj ‰ qbk appear in pairs px, zq

with z ´ x “ qbj and x´ z “ qbk.

The idea is to include in rAσϕ Ď Aσϕ all elements from Aσϕ which focuses on

exactly one qbj , and to make choices for each pair px, zq of elements which focuses

on qbj ‰ qbk depending on the profile of x and z and the colour of qbj and qbk.

The index consistency allows to make the definition of rAσϕ by considering only

one q P Ξ. For given ϕ, σ and q P Ξ let z P Aσϕ and let ipzq be the index of z

in MpZ, qBq, then

(A1) if there is only one qbj P qB such that z focuses on qbj let z P rAσϕ,

(A2) if there are qbj ‰ qbk P qB with σpbjq “ σpbkq such that z focuses on qbj
as well as on qbk then let z P rAσϕ,

(A3) if there are qbj ‰ qbk P qB with σpbjq ‰ σpbkq and j ă k such that

πpipzqq “ pj, kq then let z P rAσϕ,

(A4) if there are qbj ‰ qbk P qB with σpbjq ‰ σpbkq and j ă k such that

πpipzqq “ pk, jq then let z R rAσϕ.
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Note that in Case (A4), when z R rAσϕ, then there is some x P Z with index ipxq

such that z ´ x “ qbk and x´ z “ qbj. Consequently by definition x P Aσϕ as well

as πpipxqq “ pj, kq and by (A3) holds x P rAσϕ.

Consequently the definition ensures that rAσϕ contains at least one element from

all pairs px, zq of elements which focuses on two different elements of qB. Since Aσϕ
is a hitting set of HpZ,Ξq it follows that also rAσϕ is a hitting set of HpZ,Ξq.

It remains to show that for any two ST-free colourings ϕ, ϕ1 of Z and for

x P rAσϕ X
rAσϕ1 holds ϕpxq “ ϕ1pxq. This follows since ϕpxq is determined by the

elements of qB on which x focuses (the profile) as well as by the colouring σ

on B. Since we have index consistency the focusing is the same for all q P Ξ. The

colouring of σ clearly does not depend on ϕ. Consequently the colour of x can be

determined by the profile of the index of x in MpZ, qBq and by σ which both do

not depend on ϕ and we obtain ϕpxq “ ϕ1pxq. We summarise these consequences

in the following fact.

Fact 47. Let pZ,Ξq be an interactive, almost regular and index consistent pair

with profile π, let σ be an ST-free colouring of B and ϕ, ϕ1 be ST-free colourings

of Z. Then

(A1) rAσϕpZ,Ξq is a hitting set of HpZ,Ξq and

(A2) for all x P rAσϕ X
rAσϕ1 holds ϕpxq “ ϕ1pxq. �

§4.2. Proof of Theorem 8

We adapt the proof of Chapter 3 to Schur triples. As starting point we

apply Bourgain’s criterion (see Lemma 44) to the contradictory assumption that

Zn,p Ñ pSTq2 has a coarse threshold. At this point we also have to define a

family Z of subsets of Zn with typical properties, which in our case are the

properties of Lemma 45 and Lemma 46 that are guaranteed to hold simultaneously

with probability at least 1´ µ for sufficiently large n.
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Lemma 44 yields constants α, ε,K, µ, C1, and C0 and for infinitely many n and

p “ cpnqn´1{2 with C0 ď cpnq ď C1 a set Z Ď Zn of size at most K and a small

booster set Bn Ď Zn such that

(B1) PpZ Y qBn Ñ pSTq2q ą α, with q P Qn chosen uniformly at random,

(B2) PpZ Y Zn,εpq Ñ pSTq2q ă α
2 .

We will find a contradiction to (B2).

Let Φ be the family of all ST-free colourings of Z and consider an arbi-

trary ϕ P Φ. We shall show that the probability that ϕ extends to an ST-free

colouring of Z Y Zn,εp is at most exp
`

´ Ωppnq
˘

. This part uses in particular

Lemma 46 and Janson’s inequality.

To obtain the contradiction to (B2) we want to use a union bound over all

ST-free colourings, but there are in total 2Θppnq ST-free colourings. This problem

is solved by Lemma 45 which yields a family C of cores C with |C| “ 2oppnq such

that we can partition Φ in |C| classes and all colourings in the same class agree on

the corresponding C.

The proof of Lemma 45 basically applies the hypergraph container theorem

(Theorem 17) to the hypergraph HpZ,Ξq, which works for carefully chosen Z

and Ξ (this will be done in Section 4.3). Afterwards the hitting set rAσϕ establishes

a connection between the cores and the colourings in Φ.

Finally the union bound yields that with probability at most op1q there is an

ST-free colouring ϕ P Φ that extends to an ST-free colouring of Z Y Zn,εp which

contradicts (B2). Below we show the details of the proof.

Proof of Theorem 8. Assume for a contradiction that the property

Zn Ñ pSTq2 does not have a sharp threshold. We apply Lemma 44 and ob-

tain constants K P N, α, ε, µ ą 0, C1 ě C0 ą 0 and a function ppnq “ cpnqn´1{2

with C0 ď cpnq ď C1 such that for infinitely many n P N there is Bn Ď Zn of size

at most K and Bn Û pSTq2. Let I Ď N be the set of these n P N. Let pBnqnPN
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be a sequence of subsets Bn Ď Zn that is formed by Bn for n P I and Bn “ ∅

for n R I.

Next we apply Lemma 45 to get α1, β, γ ą 0 and L P N. Set λ “ β{4, then

Lemma 46 yields η ą 0.

For n P N let Zn be the family of subsets of Zn that satisfy pn{2 ď |Z| ď 2pn

and that satisfy the conclusions of Lemma 45 and of Lemma 46 for the chosen

parameters. Since the properties in Lemma 45 hold for sufficiently large n with

probability at least 1´ µ
2 and the property in Lemma 46 as well as pn{2 ď |Z| ď 2pn

hold a.a.s. Lemma 44 yields some Z Ď Zn such that

(B1) PpZ Y qBn Ñ pSTq2q ą α, with q P Qn chosen uniformly at random,

(B2) PpZ Y Zn,εpq Ñ pSTq2q ă α
2 ,

and such that the conclusion of Lemma 46 holds. By (B1) we can apply Lemma 45

to obtain a profile π of length ` ď L and Ξn Ď Qn with |Ξn| ě
α1n

loglogn and

Z Y qBn Ñ pSTq2 for all q P Ξn such that the hypergraph H “ HpZ,Ξnq is almost

regular and index consistent for π and such that there is a family C of subsets

of V pHq satisfying

(C1) log |C| ď |Z|1´γ,

(C2) |C| ě β|Z| for all C P C, and

(C3) every hitting set A of H contains some C P C.

We shall establish a contradiction to the assertion (B2). Let Φ be the set of

all ST-free edge colourings of Z and pick an arbitrary ST-free colouring σ of Bn.

We want to split Φ into “few” classes, for that we use the correspondence between

any colouring ϕ P Φ and the hitting set rAσϕ “
rAσϕpZ,ΞB,nq of H given by Fact 47.

Moreover, for C P C we define

ΦC “ tϕ P Φ: C Ď rAσϕu .

Then Φ “
Ť

CPC ΦC , where this is not necessarily a disjoint union, since by (C3) for

every ϕ P Φ the hitting set rAσϕ contains some C P C and hence ϕ P ΦC . Fact 47 also



4.2. PROOF OF THEOREM 8 81

guarantees that ϕpzq “ ϕ1pzq for all z P rAσϕX
rAσϕ1 and arbitrary colourings ϕ, ϕ1 P Φ.

That means that all colourings in ΦC agree on C and, consequently, there exists

a monochromatic subset RC Ď C of size at least |C|{2 ě β|Z|{2 “ λpn. For the

desired contradiction we add Zn,εp to Z. If we show that

PpZ Y Zn,εp Û pSTq2q “ op1q

this will contradict (B2).

We shall find for all ST-free colourings ϕ of Z an upper bound for the probability

that ϕ is extendible to an ST-free colouring of Z Y Zn,εp. Instead of using the

complete colouring given by ϕ we only need parts of the colouring on the associated

core, on RC Ď C Ď rAσϕ such that we can deal with all colourings from ΦC at once.

We know that |RC | ě λpn and therefore by the conclusion of Lemma 46

there are at least ηn2 Schur triples in the corresponding base set BasepRCq of RC .

Since all edges in RC are coloured with one colour, lets say red, all elements

in UC “ BasepRCq X Zn,εp have to be coloured with blue to prevent a red Schur

triple. Consequently ϕ cannot be extended to a ST-free colouring of Z Y Zn,εp if

there is a Schur triple in UC .

However, BasepRCq contains ηn2 Schur triples and p “ Θpn´1{2q and so we can

use Janson’s inequality [30] (see also [31]) to show that it is unlikely that UC is

ST-free.

In fact Janson’s inequality implies that there exists some γ1 “ γ1pε, η, C0, C1q

such that

P
`

BasepRCq X Zn,εp is ST-free
˘

“ P
`

UC is ST-free
˘

ď exp
`

´ γ1n´1{2˘ . (47)

By combining (C1) and (47) we deduce the desired contradiction:
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PpZ Y Zn,εp Û pSTq2q ď |C| ¨max
CPC

P
`

Dϕ P ΦC : ϕ is extendible to UC
˘

(C1)
ď exp

`

|Z|1´γ
˘

¨max
CPC

P
`

UC is ST-free
˘

(Z1)
ď exp

`

p2pnq1´γ
˘

¨max
CPC

P
`

UC is ST-free
˘

(47)
ď exp

`

p2C1n
1{2
q
1´γ˘

¨ exp
`

´γ1n1{2˘

ă α ,

for sufficiently large n, since γ ą 0 and C1, γ, and γ1 are constants independent

of n. This concludes the proof of Theorem 8. �

§4.3. Proof of Lemma 45

In this section we will give the proof of our main probabilistic lemma, Lemma 45,

which includes the preparation step to choose the family Z of typical sets Z Ď Zn
and a convenient subset Ξ Ď Qn of scalings of the booster. Afterwards we apply

the hypergraph container theorem to obtain the family of cores.

4.3.1. Some Typical Properties of Zn,p. We need properties that hold

with high probability for Zn,p and which give us some control over the hyper-

graph HpZ,Ξq. In particular we want to bound the number of pairs that build

with some element of a booster a Schur triple and we want to get some information

on dpHq, ∆1pHq, and ∆2pHq. For that we define the following for Z Ď Zn and

z P Zn. Let

Ppn, z, Zq “ tpx, yq P Z2 : x ‰ y and px, y, zq is a ST u , (48)

be the pairs in Z2 that form a Schur triple with z and let for B Ď Zn and q P Qn

Spn, z, B, qq “ tx P Zn : Db P B s.t. px, qb, zq is a ST u and

Spn, z, Bq “
ď

qPQn

Spn, z, B, qq (49)
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be the elements of Zn that complete a Schur triple with z P Z and some qb P qB

for fixed q P Qn respectively an arbitrary q P Qn. Further, for z1 P Zn let

S2pn, z, z
1, B, qq “tpx, yq P Z2

n : x ‰ y, Db ‰ b1 PB : pz, qb, xq and pz1, qb1, yq are STu

S2pn, z, z
1, Bq “

ď

qPQn

S2pn, z, z
1, B, qq . (50)

be the pairs in Z2
n that complete z P Z and qb P qB to a Schur triple as well as z1

and qb1 P qB for fixed q P Qn respectively an arbitrary q P Qn.

We will use |Ppn, z, Zq| to bound the number of Schur triples that can use

elements of a given booster, while Spn, z, Bq yields some information on ∆1pHq

and S2pn, z, z
1, Bq on ∆2pHq. Finally we define when a scaling of a booster is

untypical.

Definition 48. We say q P Qn is bad w.r.t. B and Z if there are either

(B1) b P B, z P Z such that pz, z, qbq is a Schur triple, or

(B2) b P B, z P Z, and, x ‰ x1 P Z r tzu such that pz, x, qbq and pz, x1, qbq are

Schur triples, or

(B3) b ‰ b1 P B and z P Z, x ‰ x1 P Z r tzu such that pz, x, qbq and pz, x1, qb1q

are Schur triples, or

(B4) b ‰ b1 P B and x ‰ z P Z such that pz, x, qbq and pz, x, qb1q are Schur

triples but not simultaneously x´ z “ qb and z ´ x “ qb1.

Note that any z P Z can focus onto two booster elements qb ‰ qb1 P qB for q

not bad only in the case if there is an element x P Z with x´z “ qb and z´x “ qb1

(all other cases are excluded by (B3) and (B4)). In this case qb ` qb1 “ 0 and

consequently b` b1 “ 0 follows. We deal with this case in another way later in the

proof. In the following we define which properties a typical subset Z Ď Zn should

have.
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Definition 49. For K P N and a subset Bn Ă Zn with |Bn| ď K, for p P p0, 1q,

and for constants D P N, α, ζ ą 0 we consider the set Zn,p,Bnpα, ζ,D,Kq of subsets

from Zn that is given by Z P Zn,p,Bnpα, ζ,D,Kq if and only if

(Z1) 1
2pn ď |Z| ď 2pn, 0 R Z,

(Z2) |Ppn, z, Zq| ď D for all but at most α
6K2 |Qn| many z P

Ť

qPQn
qBn,

(Z3) |Spn, z, Bnq X Z| ď 8pK|Qn| for all z P Zn,

(Z4) |S2pn, z, z1, Bnq X Z
2| ď n1{4 for all pairs pz, z1q P Z2

n with z ‰ z1,

(Z5) |tq P Qn : q is bad w.r.t. Bn and Zu| ď n1´ζ.

In the following lemma we show that Zn,p with probability close to one satis-

fies (Z1)–(Z5).

Lemma 50. For all constants K P N, α, µ ą 0, and C1 ě C0 ą 0 and for

all sequences pBmqmPN of subsets from Zm with |Bm| ď K there are constants

ζ ą 0 and D,n0 P N such that for n ě n0 and C0n
´1{2 ď p ď C1n

´1{2 holds

PpZn,p P Zn,p,Bnpα, ζ,D,Kqq ě 1´ µ
2 .

We remark that in fact all properties but (Z2) hold a.a.s.

Proof. We have to show that properties (Z1)–(Z5) with Z replaced by Zn,p
hold with probability at least 1´ µ{2. (Z1) and (Z3)–(Z5) even hold a.a.s.

(Z1) 1
2pn ď |Z| ď 2pn follows a.a.s. directly from Chernoff’s inequality,

Lemma 20, and 0 R Z a.a.s. since Pp0 P Zn,pq “ p.

(Z2) holds with probability at least 1 ´ µ{3 for any D ě
54C2

1K
3

αµ
. For fixed

z P
Ť

qPQn
qBn we estimate the expectation ofXz “ |Ppn, z,Zn,pq| and use Markov’s

inequality. There are at most 3n possibilities to find a pair x, y P Z2
n such that

px, y, zq is a Schur triple, but px, yq P Ppn, z,Zn,pq only if x and y both are

contained in Zn,p. We get

ErXzs ď 3np2
ď 3C2

1 ,
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and Markov’s inequality, Theorem 18, yields

PpXz ě D ` 1q ď 3C2
1

D ` 1 .

Now we can calculate the expected number of z P
Ť

qPQn
qBn with Xz ą D by

E
“
ˇ

ˇtz P
ď

qPQn

qBn : Xz ą Du
ˇ

ˇ

‰

ď
3C2

1
D ` 1 ¨K|Qn|

and using Markov’s inequality a second time gives

P

˜

ˇ

ˇtz P
ď

qPQn

qBn : Xz ą Du
ˇ

ˇ ě
3C2

1K|Qn|

pD ` 1q ¨
3
µ

¸

ď
µ

3 .

Consequently with probability at least 1´ µ
3 we have Xz ă D for all but at most

9C2
1K|Qn|

pD`1qµ ď α
6K2 |Qn| many z P

Ť

qPQn
qBn.

(Z3) follows a.a.s. from Chernoff’s inequality. For z P Zn the expectation of

|Spn, z, Bnq X Z| clearly has size p|Spn, z, Bnq|. We show |Spn, z, Bnq| “ Θp|Qn|q.

For any q P Qn there is at least one b P Bn and at least one x P Zn r tz, qbu such

that pz, qb, xq is a Schur triple. For example x “ z` qb works since we may assume

z ‰ 0 and qb ‰ 0. In this way we get x P Spn, z, Bnq, where each element from

Zn is reached at most 6K times (three choices for the orientation of pz, qb, xq, two

choices which element is multiplied by q, each element can be used by at most

K different q) which yields the lower bound. On the other hand each q P Qn

contributes at most 4K different elements to Spn, z, Bnq (for each b at most 3

different x and maybe qb itself). Consequently we get

|Qn|

6K ď |Spn, z, Bnq| ď 4K|Qn| ,

in particular,

p|Spn, z, Bnq| “ Θpn´1{2
|Qn|q “ Θ

ˆ

n1{2

loglog n

˙

.

Now Chernoff’s inequality together with a simple union bound yields the

statement.
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(Z4) is done in a similar way as (Z3). For two fixed z ‰ z1 P Zn we will estimate

the size of the family of pairs px, yq P Z2
n such that x ‰ y and for each px, yq there

are b ‰ b1 P B with pz, qb, xq and pz1qb1, yq are Schur triples. We call such pairs

connecting pairs and we will show that such a family has size Op n
loglognq. Then

the expected value of |S2pn, z, z1, Bnq X Z
2| is at most O

`

p2 n
loglogn

˘

“ O
` 1

loglogn

˘

.

Then we want to use Chernoff’s inequality and a union bound again, but in

contrast to (Z3) here the probabilities Pppx, yq P Z2q and Pppx1, y1q P Z2q for two

connecting pairs are not independent if the pairs intersect. We solve this issue by

splitting the family of connecting pairs into a constant number of families such

that in each family all pairs are disjoint.

Let z ‰ z1 P Zn. First we estimate the number of pairs px, yq P Z2
n that

connect z and z1. For any q P Qn there are at most 9K2 possible connecting pairs for

pz, z1q that use the booster qB. Consequently we get |S2pn, z, z1, Bnq| “ Op n
loglognq.

Now consider the auxiliary graph G where the connecting pairs are the vertices

of G and tpx, yq, px1y1qu is an edge of G if and only if px, yq and px1, y1q are not

disjoint. Consequently vpGq “ |S2pn, z, z1, Bnq| “ Op n
loglognq and ∆pGq ă 18K2.

Since in general for the chromatic number χpGq ď ∆pGq ` 1 holds there is a

partition of the vertices into m ď 18K2 independent sets. Each independent

set corresponds to a family of disjoint connecting pairs. In this way we get a

partition of S2pn, z, z1, Bnq into m families S2
1 , . . . ,S2

m of connecting pairs. For

each family S2
i we get

E
“

|S2
i X Z

2
|
‰

ď p2
|S2
i | “ O

ˆ

1
loglog n

˙

and Chernoff’s inequality yields

P
ˆ

|S2
i X Z

2
| ě

n1{4

m

˙

ď exp
`

´ Ωpn1{4
q
˘

.

Clearly |S2pn, z, z1, Bnq X Z
2| ď

řm
i“1 |S2

i X C| and consequently

Pp|S2
pn, z, z1, Bnq X Z

2
| ě n1{4

q ď exp
`

´ Ωpn1{4
q
˘

.
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Now we can use a union bound over all pairs z, z1 P Zn which yields the claim.

For (Z5) we will show that there exists ξ ą 0 such that for all q P Qn and

sufficiently large n

Ppq is bad w.r.t. Bn and Zn,pq ď n´ξ .

Then (Z5) follows from Markov’s inequality with ζ “ ξ{2.

For fixed q P Qn and b P B there are at most two different z P Z such that

pz, z, qbq is a Schur triple. Each z appears with probability p and a union bound

yields

Ppq is bad w.r.t. Bn and Zn,p because of (B1)q ď K ¨ 2 ¨ p ď n´ξ1

for some ξ1 ă 1{2 and sufficiently large n.

For fixed q P Qn we count configurations with b P B, z P Z, and x ‰ x1 P Zrtzu

such that pz, x, qbq and pz, x1, qbq are Schur triples. Then each configuration appears

with probability p3 and consequently

Ppq is bad w.r.t. Bn and Zn,p because of (B2)q ď K ¨ n ¨ 3 ¨ 3 ¨ p3
ď n´ξ2

for some ξ2 ă 1{2 and sufficiently large n.

For the case that a fixed q P Qn is bad because of (B3) or (B4) we count

configurations with b ‰ b1 P B and z, x, x1 P Z such that pz, x, qbq and pz, x1, qb1q

are Schur triples and distinguish between the cases x ‰ x1 and x “ x1. First let

x ‰ x1, then each configuration appears with probability p3 and consequently

Ppq is bad w.r.t. Bn and Zn,p because of (B3)q ď K2
¨ n ¨ 3 ¨ 3 ¨ p3

ď n´ξ3

for ξ3 ă 1{2 and sufficiently large n.

For the last case assume x “ x1. For each b, b1, q the assumptions that pz, x, qbq

and pz, x1, qb1q are Schur triples lead to a system of two linear equations (depending

on the orientation of the Schur triples) which x and z have to satisfy. There are

nine cases, but using symmetries between x and z and between qb and qb1 we can

restrict to the following four cases.
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‚ Case A: qb “ x` z and qb1 “ x` z,

‚ Case B: qb “ x´ z and qb1 “ x´ z,

‚ Case C: qb “ x´ z and qb1 “ z ´ x,

‚ Case D: qb “ z ´ x and qb1 “ x` z,

Case A and B do not have a solution since qb ‰ qb1 for b ‰ b1 and q P Qn.

Solutions of case C do not lead to configurations that are bad in sense of (B4) by

the formulation of (B4). It is left to deal with case D.

Let qb “ z ´ x and qb1 “ x ` z, hence, the equations 2x “ qb1 ´ qb and

2z “ qb1 ` qb hold. Consequently there are at most two possible solutions for x

which determine the value of z. Each such x appears with probability p (and

similarly each such y) and there are at most K2 choices for b, b1 so we conclude

Ppq is bad w.r.t. Bn and Zn,p because of (B4)q ď K2
¨ 2 ¨ p ď n´ξ4

for some ξ4 ă 1. With ξ “ mintξ1, ξ2, ξ3, ξ4u and ζ “ ξ{2 Markov’s inequality

yields (Z5). �

4.3.2. Restricting Embeddings of B. In addition to the properties of Z

we also need some properties for q P Qn, that is why we restrict the family of

scalings Qn. In that sense we define normal scalings.

Definition 51. For constants rα ą 0, D P N and Z,Bn Ď Zn a set Ξ0
n Ď Zn is

called prα,Bn, D, Zq-normal if the following properties are satisfied

(Ξ1 ) |Ξ0
n| ě

rαn
loglogn ,

(Ξ2 ) Z Y qBn Ñ pSTq2 for all q P Ξ0
n,

(Ξ3 ) q is not bad w.r.t. Bn and Z for all q P Ξ0
n,

(Ξ4 ) qBn X q
1Bn “ ∅ for all q ‰ q1 P Ξ0

n,

(Ξ5 ) for all q P Ξ0
n we have qBn X Z “ ∅,

(Ξ6 ) |Ppn, z, Zq| ď D for all z P
Ť

qPΞ0
n
qBn,

(Ξ7 ) for all q P Ξ0
n there are no b, b1 P Bn and z P Z such that pz, qb, qb1q is a

Schur Triple.
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Now we will show that in the setting given by Bourgain’s criterion, Lemma 44,

we can find an prα,Bn, D, Zq-normal family of scalings.

Lemma 52. For all constants α, ζ ą 0, K,D P N, and C1 ą C0 ą 0 and

for a sequence pBmqmPN of subsets Bm Ď Zm with |Bm| ď K there exists n0 P N

such that for all n ě n0 and C0n
´1{2 ď p ď C1n

´1{2 the following holds. If

Z P Zn,p,Bnpα, ζ,D,Kq and

PpZ Y qBn Ñ pSTq2q ą α (51)

where q P Qn chosen uniformly at random, then there exists Ξ0
n Ď Qn such that Ξ0

n

is prα,Bn, D, Zq-normal with rα “ α{p50K6q.

Proof. Given pBmqmPN and the constants as above set rα “ α
50K6 and let n

be sufficiently large. Let C0n
´1{2 ď p ď C1n

´1{2, let Z P Zn,p,Bnpα, ζ,D,Kq, and

let (51) hold. We will obtain the desired set Ξ0
n by starting with Qn and removing

step by step elements.

We start with the family of coprimes Qn which has size |Qn| ě
n

2 loglogn . By

assumption (51) there is a family Q1
n Ď Qn of size at least α|Qn| such that for

all q P Q1
n we have Z Y qBn Ñ pSTq2.

Next we remove from Q1
n all elements q such that q is bad w.r.t. Bn and Z.

Since Z P Zn,p,Bnpα, ζ,D,Kq the family Yn of bad elements w.r.t. Bn and Z has

size at most n1´ζ and we conclude that for sufficiently large n and Q2
n “ Q1

n r Yn

we have |Q2
n| ě

α
2 |Qn|.

Now we want to ensure (Ξ4 ). Since q P Qn is coprime w.r.t. n, the function

ψq : Zn Ñ Zn, n ÞÑ qn is bijective, and thus for every z P Zn there are at most K

many q P Qn such that qb “ z for some b P B. In fact, these are the unique qi with

qibi “ z if we denote by bi the elements from Bn. In a first step we pick greedily

any q P Q2
n and remove all q1 P Q2

n with qBn X q
1Bn ‰ ∅. By the argument above

in this way we pick at least one and remove at most K2 ´ 1 elements from Q2
n.
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Repeating the same procedure as often as possible yields a set Q3
n Ď Q2

n with

|Q3
n| ě

1
K2 |Q

2
n| ě

α
2K2 |Qn| such that qBn X q

1Bn “ ∅ for all q, q1 P Q3
n.

To obtain property (Ξ5 ) we remove all elements q from Q3
n with qBn X Z ‰ ∅.

By (Ξ4 ) we remove at most |Z| many elements from Q3
n and because of

Z P Zn,p,Bnpα, ζ,D,Kq we know |Z| ď 2pn “ Θpn1{2q. On the other hand

|Q3
n| “ Θp n

loglognq and we obtain a set Q4
n Ď Q3

n of size at least α
3K2 |Qn| that

satisfies (Ξ5 ).

In the next step we remove all q P Q4
n that contain some z P qB with

|Ppn, z, Zq| ą D. By Z P Zn,p,Bnpα, ζ,D,Kq (we use (Z2)) there are at most
α

6K2 |Qn| such z and by (Ξ4 ) each z belongs to exactly one q. Consequently we

remove at most α
6K2 |Qn| many q P Q4

n and obtain a set Q5
n of size at least α

6K2 |Qn|

that satisfies (Ξ6 ).

To ensure (Ξ7 ) we do a preparation step first. For q P Qn let

Aq “ ta P Zn r t0u : Db, b1 P Bn s.t. a “ qb´ qb1 or a “ qb` qb1u

be the set of distances between elements of qBn and sums of two elements of qBn.

Pick an arbitrary q P Q5
n and remove from Q5

n all q1 P Q5
n with Aq1 X Aq ‰ ∅. We

count the number of q1 P Q5
n that will be removed in this way. For each of less than

2K2 many a P Aq and for each of at most K2 many combinations b1, b2 P B there is

at most one q1 P Qn such that a “ q1pb1´ b2q (and the same for all a “ q1pb1` b2q).

It follows that less than 4K4 different q1 are removed from Q5
n and consequently we

can repeat this procedure to get a set Q6
n Ď Q5

n of size at least 1
4K4 |Q

5
n| ě

α
24K6 |Qn|

such that Aq X Aq1 “ ∅ for all q, q1 P Q6
n.

Now for any z P Z and b, b1 P B there is at most one q P Q6
n such that z

completes qb and qb1 to a Schur triple: For z ‰ 0 this is ensured by Aq X Aq1 “ ∅,

and Z P Zn,p,Bnpα, ζ,D,Kq yields 0 R Z. Consequently we can obtain (Ξ7 ) by

removing at most |Z| “ op|Qn|q many q P Q6
n.
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The resulting set has the desired properties of the set Ξ0
n, because

|Ξ0
n| ě

α
25K6 |Qn| ě

rαn
loglogn for sufficiently large n and (Ξ2 )–(Ξ7 ) are inherited

in each step.

�

Since there is only a bounded number of profiles we can use a simple averaging

argument to achieve index consistency for a given family of scalings.

Lemma 53. For all constants rα ą 0 and K,D P N, for all sequences pBmqmPN

of subsets Bm Ď Zm with |Bm| ď K for all m P N there exist α1 ą 0 and L, n0 P N

such that for all n ě n0 every subset Z Ă Zn satisfies the following.

For every prα,Bn, D, Zq-normal family Ξ0
n there is an pα1, Bn, D, Zq-normal

family Ξn Ă Ξ0
n and there is a profile π of length at most L such that pZ,Ξnq is

almost regular and index consistent with profile π.

Proof. Let rα, D and pBmqmPN be given. We define

L “ 2DK and α1 “
rα

LL`1K2L

and let n0 be sufficiently large. Given some Z Ď Zn and an prα,Bn, D, Zq-normal

set Ξ0
n Ď Qn we restrict Ξ0

n to Ξn with the desired properties.

Properties (Ξ2 )–(Ξ7 ) from Lemma 52 are inherited from Ξ0
n to Ξn since

restricting does not destroy this properties that are independent of rα. We only

have to ensure (Ξ1 ) that means we have to keep a sufficiently large proportion of

the elements from Ξ0
n.

Consider the pair pZ,Ξ0
nq. Since (Ξ3 ) and (Ξ7 ) the pair pZ,Ξ0

nq is by definition

almost regular and, in particular, each z P Z focuses for each q P Ξ0
n uniquely on

at most two qb P qB. If z P Z focuses for q P Ξ0
n on exactly two qbj, qbk P qB then

there is x P Z such that z ´ x “ qbj and x´ z “ qbk.

By the regularity we also know that each q P Ξ0
n has a profile of length `q

and by (Ξ6 ) this length is at most `q ď 2DK “ L since for each of at most K
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elements qb P qB there are at most L pairs that form a Schur triple with qb. Only

the elements of the pairs can be contained in Mq.

By the pigeonhole principle there is some ` ď L such that at least 1
L
|Ξ0

n|

many q P Ξ0
n have a profile of length exactly `. Since there are at most pK2q`

different profiles of length exactly ` there is a profile π of length ` and there are at

least 1
LK2L |Ξ0

n| different q P Ξ0
n which have all the same profile π. Let Ξ1n be the

set of these q.

Next we apply another averaging argument to achieve index consistency. We

consider some partition Z1 Ÿ . . .ŸZ` of Z into ` classes chosen uniformly at random.

For q P Ξ1n consider Mq “ pz1, . . . , z`q with the natural ordering of Z. We include q

in Ξn if zi P Zi for all i “ 1, . . . , `. Clearly Ppq P Ξnq “
1
``

and Er|Ξn|s “
|Ξ1n|
``

,

which means there is an Ξn Ď Ξ1n with

|Ξn| ě
|Ξ1n|
``

ě
1
LL
¨
|Ξ0
n|

LK2L ě
rαn

LL`1K2L loglog n “
α1n

loglog n .

Now let q, q1 P Ξn and let z PMqXMq1 . Since z P Zj for some partition class Zj we

know that z has index j in both Mq and Mq1 . Therefore pZ,Ξnq is index consistent

which finishes the proof. �

4.3.3. Proof of Lemma 45. Finally in this section we combine the prepara-

tory lemmas for a typical set Z and a normal family of scalings Ξ to apply the

hypergraph container theorem to HpZ,Ξq.

Proof of Lemma 45. First, we fix all constants used in the proof. Let

constants C1 ą C0 ą 0, α, µ ą 0, K P N and a sequence pBmqmPN of subsets

Bm Ď Zm with |Bm| ď K for all m be given. Lemma 50 applied with the constants

above yields ζ ą 0 and D,n50 P N. Similarly Lemma 53 applied with

rα “
α

50K6

yields α1 ą 0 and L, n53 P N. We set

β “
α1

96C2
1K

`

`
2

˘ and γ “
1

10L (52)
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and show that α1, β, γ and L defined in this way have the desired properties.

Further, let p “ ppnq “ cpnqn´1{2 for some cpnq satisfying C0 ď cpnq ď C1. We

shall show that Zn,p satisfies with probability at least 1 ´ µ
2 the properties of

Lemma 45, hence, by Lemma 50 we can assume that for sufficiently large n, in

particular n ě maxtn50, n53u, the set Z considered in Lemma 45 is from the

set Zn,p,Bnpα, ζ,D,Kq. Moreover, let n be sufficiently large such that Lemma 52

applied with α, ζ, D, K, C0, C1, and pBmqmPN holds for n.

Now let Z P Zn,p,Bnpα, ζ,D,Kq such that for q P Qn chosen uniformly at

random we have

PpZ Y qBn Ñ pSTq2q ą α .

then Lemma 52 yields an prα,Bn, D, Zq-normal family Ξ0
n Ď Qn with rα “ α{p50K6q.

By the choice of α1 and L Lemma 53 yields an pα1, Bn, D, Zq-normal family Ξn Ď Ξ0
n

and a profile π of length ` ď L such that pZ,Ξnq is almost regular and index

consistent with profile π. Removing embeddings from Ξn does not destroy any of

the properties (Ξ2 )–(Ξ7 ), regularity, index consistency or a profile, so we can

assume w.l.o.g. that |Ξn| ď r α1n
loglogns.

Consequently now we work with a set Z Ď Zn, Ξn Ď Qn, and a profile π such

that (Z1)–(Z5) from Lemma 50 are satisfied as well as (Ξ1 )–(Ξ7 ) from Lemma 52

and pZ,Ξnq is index consistent with profile π.

We consider the hypergraphs H “ HpZ,Ξnq defined by

V pHq “ Z and EpHq “ tMpZ, qBnq : q P Ξnu ,

where

Mq “MpZ, qBnq “ tz P EpZq : Db P Bn s.t. z focuses on qbu .

Since pZ,Ξnq is index consistent with a profile of length ` we know that H is

an `-uniform hypergraph on |Z| vertices. Our goal is to show that H satisfies the
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assumptions of the hypergraph container theorem for

ε “
1
4 and τ “ n´

1
8p`´1q .

For that we estimate vpHq “ |Z|, epHq, dpHq, ∆2pHq, and finally δpH, τq. To

conclude the properties of Lemma 45 we will also need a bound on ∆1pHq.

By (Z1) we know
1
2pn ď vpHq “ |Z| ď 2pn . (53)

For a bound on epHq remember that Ξn is pα1, Bn, D, Zq-normal and by (Ξ1 )
α1n

loglogn ď |Ξn| ď r α1n
loglogns.

pZ,Ξnq is almost regular and Ξn does not contain bad scalings w.r.t. B and Z, so

each hyperedgeMq of length ` consists of `{2 pairs xi, yi, i “ 1 . . . , `{2, such that xi
and yi focus onto the same element qbi respectively onto the same elements qb

and qb1. There are at most
`

`
2

˘

pairs xi, yi in Mq and each pair can be extended to

a Schur triple by at most three different q P Ξn, since the boosters qBn and q1Bn

are disjoint by (Ξ4 ). Consequently Mq can be the hyperedge for at most 3
`

`
2

˘

different q P Ξn and we get that

α1n

3
`

`
2

˘

loglog n
ď epHq ď

R

α1n

loglog n

V

. (54)

For the average degree we get

dpHq “ ` ¨
epHq
vpHq

ě ` ¨
α1n

3
`

`
2

˘

loglog n
¨

1
2pn ě

α1

3` ¨
1

p loglog n .

Next we look at ∆1pHq, that means we count for z P Z the number of q P Ξn

such that z focuses on qBn. Since qBn X q1Bn “ ∅ an upper bound follows

from (Z3) and we get

∆1pHq “ max
zPZ

 

|Spn, z, Bnq X Z|
(

ď max
zPZ

 

8Kp|Qn|
( (44)
ď

8Kpn
loglog n . (55)

For ∆2pHq we consider pairs z, z1 P Z that focus on the same qBn. By definition

of S2 and since qBn X q
1Bn “ ∅ for q ‰ q1, an upper bound of ∆2pHq is given by
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maxz,z1PZ2tS2pn, z, z
1, Bnqu. Then Property (Z4) yields that

∆2pHq ď max
z,z1PZ2

tS2pn, z, z
1, Bnqu ď n1{4 .

Now we are prepared to estimate δpH, τq to check the assumptions of Theo-

rem 17. We have

δpH, τq “ 2p
`
2q´1

ÿ̀

j“2
2´p

j´1
2 q

1
τ j´1mdpHq

ÿ

vPV pHq

dpjqpvq

ď 2p
`
2q´1

ÿ̀

j“2
2´p

j´1
2 q

1
τ j´1mdpHq

¨m ¨∆2pHq

ď 2p
`
2q´1

ÿ̀

j“2

1
τ `´1dpHq

¨∆2pHq

ď 2p
`
2q´1

¨ ` ¨ n1{8
¨

3`
α1
p loglog n ¨ n1{4

ď 2p
`
2q´1

¨
3`2C1

α1
¨ n´1{8 loglog n

ď
ε

12`!

for sufficiently large n.

By the hypergraph container theorem, Theorem 17, there exist some constant

c “ cp`q and a family J Ă PpV pHqq satisfying (a ), (b ), and (c ) from Theorem 17.

We define

C “ tC Ă V pHq : C “ V pHqr J for one J P J u .

We claim that C has the desired properties (1), (2), and (3) of Lemma 45.

(1) follows from (c ) since |C| “ |J | and

log |J | ď cτ logp1{τq logp1{εqvpHq ď |Z| ¨ n´
1

8p`´1q c logp1{τq logp1{εq ď |Z|1´γ ,

where the last inequality follows for sufficiently large n from

|Z|γ ď nγ
(52)
ď n

1
10L ď n

1
10` ,

since c “ cp`q and logp1{εq are constants independent of n and logp1{τq ă log n.
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(2) follows from (b ). Assume for a contradiction that there is C P C with

|C| ă β|Z| and let J “ V r C P J . Then counting the number of hyperedges

of H will yield a contradiction:

epHq ď epHrV r Csq ` |C| ¨∆1pHq
(55)
ď epHrJsq ` β|Z| ¨ 8Kpn

loglog n
(53)
ď εepHq ` β16C2

1K
n

loglog n
(54)
ď εepHq `

β48C2
1K

`

`
2

˘

α1
epHq

“

˜

ε`
β48C2

1K
`

`
2

˘

α1

¸

epHq

(52)
ă epHq ,

so |C| ě β|Z| for all C P C.

(3) For a hitting set A of H consider the independent set I “ V r A. Hence

by (a ) of Theorem 17 there exists J P J such that I Ď J and, therefore,

A Ě V r J “ C which is an element of C. �

§4.4. Proof of Lemma 46

Let Y Ď Zn. In the following we consider the single row matrix

A “
´

´1 1 ´1 1 1 ´1
¯

that is chosen in a way such that a solution ~v “ px1, x2, y1, y2, z1, z2q P Y
6 to

A~v “ 0 corresponds to a Schur triple in BasepY q: If ~v is such a solution, then

obviously px2 ´ x1q ` py2 ´ y1q “ pz2 ´ z1q. On the other hand x2 ´ x1, y2 ´ y1,

and z2 ´ z1 are elements from BasepY q and they form a Schur triple (which could

be degenerated). Most of these solutions, however, will lead to non degenerated

Schur triples.
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Fact 54. Let n ě 7 and the single row matrix A “
´

´1 1 ´1 1 1 ´1
¯

be given. Consider the system A~v “ 0 with ~v P Z6
n. Then A is irredundant, density

regular and has density mpAq “ 5
4 .

Proof. Remember that in the introduction we defined A as irredundant if

there exists a solution ~v “ pv1, . . . , vkq of A~v “ 0 with vi ‰ vj for all i ‰ j

(note that in [16] another definition of irredundant is used that is equivalent

for sufficiently large n). These solutions are called proper solutions. For n ě 7

obviously there is a proper solution of A~v “ 0 in Zn, so A is irredundant.

Clearly p1, 1, 1, 1, 1, 1qT is a solution (but not a proper solution) to A~v “ 0

In [16, Theorem 2] it is shown that in this case (A has full rank and is irredundant)

A is also density regular.

We defined the density mpAq by

mA “ max
W ŸW“rks,|W |ě2

|W | ´ 1
|W | ´ 1` rankpAW q ´ rankpAq

and for W “ ∅ also rankW “ 0. For W ‰ ∅ obviously rankW “ 1. It follows that

in our case

mpAq “ max
"

1 , 6´ 1
6´ 1` 0´ 1

*

“
5
4 .

�

The next theorem follows from [52] and it is true even more generally for

arbitrary irredundant, density regular matrices and p ě Cn´1{mpAq for some C ě 0.

Although the theorem (Theorem 2.4.) presented there only guarantees one proper

solution, the proof of the main lemma yields at least a constant fraction of the

expected number of proper solutions (see Lemma 3.4.).

Theorem 55 ([52]). For A “

´

´1 1 ´1 1 1 ´1
¯

and for all λ ą 0

there exist C ą 0, ξ ą 0 such that for every sequence p “ ppnq ě Cn´4{5 the

following a.a.s. holds. Every subset of Zn,p of size at least λpn contains at least

ξp6n5 proper solutions of A~v “ 0.
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We conclude this part with the proof of Lemma 46 which uses the ideas of the

corresponding proof for arithmetic progressions in [21].

Proof of Lemma 46. Let λ ą 0, C1 ą C0 ą 0 be given and consider the

matrix

A “
´

´1 1 ´1 1 1 ´1
¯

.

Owing to Fact 54 for n ě 7 the matrix A has rank 1, is irredundant, and density

regular with mpAq “ 5
4 . Theorem 55 yields constants C, ξ ą 0. We define the

auxiliary constant c “ maxt12, C2
1u and set η “ ξ2C6

0
432c3 . Let C0n

´1{2 ď p ď C1n
´1{2.

Since we want to show that a.a.s. for every subset S Ď Zn,p of size at least λpn

there are at least ηn2 Schur triples in BasepSq we can assume that n is sufficiently

large, in particular p ě C0n
´1{2 ě Cn´4{5 “ Cn´1{mpAq.

For X Ď Zn let

STpXq “ tpx, y, zq P X3 : x, y and z form a Schur tripleu

be the set of (possibly degenerated) Schur triples that are contained inX. Note that

every Schur triple inX appears at most 6 times in STpXq and each non degenerated

Schur triple exactly 6 times. For a Schur triple px, y, zq P STpZnq and Y Ď Zn
we denote by degY px, y, zq the number of six tuples px1, x2, y1, y2, z1, z2q P Y

6 with

pairwise distinct entries such that x “ x2 ´ x1, y “ y2 ´ y1 and z “ z1 ´ z2.

Since px, y, zq is a Schur triple all proper solutions to A~v “ 0 are six tuples that

contribute to UpY q “
ř

px,y,zqPSTpZnq degY px, y, zq.

We are also interested in W pY q “
ř

px,y,zqPSTpZnq
`degY px,y,zq

2

˘

which can be

bounded from above for all Y Ď Zn,p simultaneously by W pZn,pq. In the following

we will estimate the expectation and variance of W pZn,pq. For that we count

for each triple px, y, zq P STpZnq (which are at most 6 times the number of

Schur triples in Zn) the number of pairs of six tuples px1, x2, y1, y2, z1, z2q P Z6
n,p

and px11, x12, y11, y12, z11, z12q P Z6
n,p each with pairwise distinct entries such that both

contribute to degZn,ppx, y, zq. If we count the number of possible choices for
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these tuples we see that there are at most n choices for x1. Any choice of x1

determines the value of x2 since x2 “ x`x1, any choice of y1 determines y2, and z1

determines z2. So for the first six tuple there are at most npn ´ 2qpn ´ 4q ă n3

possible configurations in Zn and since all entries are pairwise distinct each

configuration appears with probability p6 in Zn,p.

Now for fixed x, y, z, x1, x2, y1, y2, z1, z2 we count the number of possible con-

figurations for the second six tuple. First consider the two elements x11 and x12.

Similar to the calculations for the first six tuple we see that as long as x11 and x12
are distinct from the elements of the first six tuple this will yield a factor of at

most np2 for ErW pZn,pqs. If they are not distinct from the first six tuple then

there are either only six choices for x11 or only six choices for x12. In both cases

the remaining element is uniquely determined and we conclude that the resulting

factor for ErW pZn,pqs for the number of possible choices of px11, x12q is at most the

constant 12. The same argument works for the pair y11, y12 and for the pair z11, z12.

Summarising we get

ErW pZn,pqs ď | STpZnq| ¨ pnp2
q
3 maxt12, np2

u
3
ď 6n2

¨ c3n3p6
“ Opn2

q .

The estimation of the variance uses similar calculations. For px, y, zq P STpZnq

we are looking for four six tuples pxi1, xi2, yi1, yi2, zi1, zi2q P Z6
n,p, i P r4s, each with

pairwise distinct entries such that all of them contribute to degZn,ppx, y, zq. For

the first two six tuples we get exactly the same calculation as for ErW pZn,pqs.

For the third six tuple we repeat the calculation as for the second one with the

following difference: If the pair x3
1, x

3
2 is not disjoint from the elements chosen

for the first two six tuples, then we get instead of 6 at most 12 choices for x3
1

respectively x3
2 (and similarly for the pairs y3

1, y
3
2 and z3

1 , z
3
2). Consequently the

factor for VarpW pZn,pqq is equal to maxt24, np2u3. Similarly the factor for the

fourth six tuple is maxt36, np2u3. As np2 “ Θp1q we get in total

VarpW pZn,pqq “ ΘpErW pZn,pqsq “ Opn2
q .
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Then Chebyshev’s inequality, Lemma 19, yields that a.a.s.

W pZn,pq ď 2ErW pZn,pqs ď 12c3n5p6 .

Now let an arbitrary S Ď Zn,p of size at least λpn be given. Since Theorem 55

as well asW pZn,pq ď 12c3n5p6 hold a.a.s. for Zn,p we can assume that in S there are

at least ξn5p6 proper solutions to A~v “ 0 and that W pSq ď W pZn,pq ď 12c3n5p6.

We conclude that

UpSq “
ÿ

px,y,zqPSTpZnq
degSpx, y, zq ě ξn5p6

and

W pSq “
ÿ

px,y,zqPSTpZnq

ˆ

degSpx, y, zq
2

˙

ď 12c3n5p6 .

Note that in UpSq and W pSq the term px, y, zq P STpZnq can be replaced

by px, y, zq P STpBasepSqq since by definition triples in STpZnq r STpBasepSqq

satisfy degSpx, y, zq “ 0. Finally the Cauchy-Schwarz inequality yields
ˆ

ξn5p6

2

˙

ď

ˆ

UpSq

2

˙

ď | STpBasepSqq| ¨W pSq ď | STpBasepSqq| ¨ 12c3n5p6

and consequently

| STpBasepSqq| ě ξ2n10p12

3 ¨ 12c3n5p6 “
ξ2

36c3n
5p6

ě
ξ2C6

0
36c3 n

2
“ 12ηn2 .

In STpBasepSqq we count each Schur triple of BasepSq at most six times,

consequently there are at least 2ηn2 Schur triples contained in BasepSq. On the

other hand there are only Θpnq degenerated Schur triples contained in Zn and

consequently for sufficiently large n there are at least ηn2 non degenerated Schur

triples contained in BasepY q which finishes the proof. �



Part 2

Hamiltonian Cycles in Hypergraphs



CHAPTER 5

Hamiltonian Cycles

In this chapter we will prove Theorem 13. This chapter is based on [2], joint

work with Bastos, Mota, Schacht, and Schnitzer.

§5.1. Main Lemmas

5.1.1. Outline of the Proof of Theorem 13. The proof follows the Ab-

sorbing Method introduced by Rödl, Ruciński, and Szemerédi in [48]. For this, we

derive the following lemmas. The Absorbing Lemma (Lemma 58), the Reservoir

Lemma (Lemma 57), and the Path-Tiling Lemma (Lemma 65).

We call an `-path A Ď H a β-absorbing path for a k-uniform hypergraph H

if for every subset U Ă V pHq of size at most βn there exists an `-path Q such

that V pQq “ V pAq Y U and Q have the same ends as A, for some β ą 0. The

Absorbing Lemma (Lemma 58) ensures the existence of a β-absorbing path A.

This reduces the problem of finding a Hamiltonian `-cycle to that of finding an

almost spanning `-cycle that contains A.

To obtain an almost spanning `-cycle, we first find a bounded number (inde-

pendent of |V pHq|) of `-paths covering almost all vertices of V pHqr A and then

connect them using only vertices from a small set, a so-called reservoir set that

we fix beforehand. The Reservoir Lemma (Lemma 57) shows that it is possible to

find this reservoir set R such that any bounded number of disjoint `-paths can be

connected to an `-cycle, only using vertices from R.

We can choose the sizes of A and R small enough, so that the remaining

hypergraph satisfies almost the same degree condition as H. Then the Path-Tiling

Lemma (Lemma 65) ensures the existence of a collection of `-paths covering almost
102
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all vertices of V pHqr pAYRq. This is the only point in the proof where we use

the exact value of the degree condition and the non-extremality of H. (In fact, a

proof for the corresponding version of the Path-Tiling Lemma for a direct proof of

Theorem 12, which allows us to utilize a slightly larger degree condition, is a bit

simpler.)

As mentioned before, the paths from the Path-Tiling Lemma and A can be

connected by using vertices from R to an almost spanning `-cycle containing A.

Since this `-cycle contains almost all vertices of H, the absorbing property of A

allows us to absorb the leftover vertices, i.e. vertices that are not contained in

any of the `-paths and vertices that were not used to connect the `-paths. The

resulting `-cycle is the desired Hamiltonian `-cycle.

5.1.2. Connecting. In order to construct an almost spanning `-cycle of a

k-uniform hypergraph H, we first find some `-paths and connect them at their

ends. Formally, given an `-path P “ v1 ¨ ¨ ¨ vt in H, we define the ends of P as the

sets tv1, . . . , v`u and tvt´``1, . . . , vtu. For a collection of 2m mutually disjoint sets

of ` vertices Xi, Yi we say that a set of `-paths T1, . . . , Tm connects pXi, YiqiPrms if

all paths are vertex-disjoint and Xi and Yi are the ends of Ti, for all i P rms. The

connections for a given collection of disjoint `-paths are given by the following

lemma. In addition the lemma allows to restrict the edges used for the connection

to a given “well-connected” subset R of vertices.

Lemma 56 (Connecting Lemma). Let η ą 0 and let k ě 4, 1 ď ` ă k{2, and

m ě 1 be integers. Let H “ pV,Eq be a k-uniform hypergraph and R Ă V with

|R| “ r ě 32km{η3. For every collection of 2m mutually disjoint sets Xi, Yi P
`

V
`

˘

and V 1 “
Ť

iPrmspXi Y Yiq YR the following holds.

If
ˇ

ˇNpKq X
`

R
2

˘ˇ

ˇ ě η
`

r
2

˘

for all K P
`

V 1

k´2

˘

, then there exist `-paths T1, . . . , Tm
of size at most 4 connecting pXi, YiqiPrms, which contain vertices from V 1 only.
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M 1

L

L1

Xj

Yj

v x y

x1 y1 v1

Figure 1. The path connecting pXj, Yjq.

Proof. Given η ą 0 and integers k ě 4, 1 ď ` ă k{2 and m ě 1, let

H “ pV,Eq, R Ď V , Xi, Yi for i P rms, and V 1 satisfy the assumptions of the

lemma.

Suppose we have constructed `-paths T1, . . . , Tj´1 connecting for some j ď m

the pairs pXi, YiqiPrj´1s using only vertices from V 1. We want to construct a path

Tj with ends Xj and Yj. We define Fj “
Ť

iPrmspXi Y Yiq Y
Ť

iPrj´1s V pTiq as the

set of forbidden vertices for Tj.

If k ´ 2 ě 2` “ |Xj Y Yj|, fix a set Z of size k ´ 2 ´ 2` from R r Fj. Since

|R| “ r ě 32km{η3, we know that
ˇ

ˇ

ˇ

ˇ

NpXj Y Yj Y Zq X

ˆ

R

2

˙
ˇ

ˇ

ˇ

ˇ

ě η

ˆ

r

2

˙

ą

ˆ

r

2

˙

´

ˆ

r ´ 4km
2

˙

ě

ˆ

r

2

˙

´

ˆ

|Rr Fj|

2

˙

.

Hence, there exists a hyperedge Xj Y Yj YZ
1 with Z 1 Ď RrFj , which realizes the

path Tj.

It is left to consider the case that 2` “ k´ 1. See Figure 1 for a drawing of the

path we will construct in this case. For a set A Ď V , let NApSq “ NpSq X
`

A
k´s

˘

.

Observation. For any Z P tXj, Yju and L P
`

RrFj
`´1

˘

, there are at least ηr{4

many vertices z P Rr pFj Y Lq with |NRrFjpZ Y LY tzuq| ě ηr{4.

To see the observation note that we can consider NRrFjpZ YLq as the edge set

of a 2-graph with vertex set Rr pFj Y Lq. Since r ě 32km{η3, it follows from the
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degree condition of H into the set R that this graph has edge density at least η{2

and the observation follows.

Let L P
`

RrFj
`´1

˘

and let x, y P Rr pFj YLq be distinct. We say that px, L, yq is

an extendable triple in Rr Fj if

|NRrFjpXj Y LY txuq| ě ηr{4 and |NRrFjpYj Y LY tyuq| ě ηr{4.

The observation yields at least pηr{4qpηr{4 ´ 1q ą pηr{8q2 extendable triples

px, L, yq for any fixed L P
`

RrFj
`´1

˘

.

Given S P
`

RrFj
`´2

˘

and an extendable triple px, L, yq disjoint from S, SYLYtx, yu

is a pk´2q-element set. Consequently, the minimum degree condition of the lemma

yields at least η
`

r
2

˘

pairs M P
`

R
2

˘

such that S YM Y LY tx, yu is an edge of H.

Moreover, similarly as in the proof of the observation at least pη{2q
`

|RrFj |
2

˘

of these

pairs avoid Fj. Since this is true for every extendable triple and there are at least
`

|RrFj |
`´1

˘

pηr{8q2 extendable triples, there exists anM P
`

RrFj
2

˘

that, together with S,

forms an edge of H with at least pη{2qpηr{8q2
`

|RrFj |
`´1

˘

extendable triples. Since

r ě 32km{η3, this is more than the number of triples that any single extendable

triple can intersect with, so there exist two completely disjoint extendable triples

px, L, yq and px1, L1, y1q that form an edge of H together with M 1 “M Y S.

By the definition of extendable triples we have

ˇ

ˇNRrFjpXj Y LY txuq
ˇ

ˇ ě ηr{4 ą k ` 1 “
ˇ

ˇM 1
Y L1 Y tx1, y1, yu

ˇ

ˇ

and

ˇ

ˇNRrFjpYj Y L
1
Y ty1uq

ˇ

ˇ ě ηr{4 ą k ` 2 “
ˇ

ˇM 1
Y LY tx, y, x1u

ˇ

ˇ` 1.

Consequently there are v, v1 P Rr Fj such that the hyperedges

tXjYLYtv, xuu, tM 1
YLYtx, yuu, tM 1

YL1Ytx1, y1uu, and tYjYL
1
Yty1, v1uu

are edges of H, which form a path of size 4 connecting pXj, Yjq. �
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In the main proof we will connect `-paths to an almost spanning `-cycle. The

Reservoir Lemma (stated below) ensures the existence of a small set R such that

we can connect an arbitrary collection of at most 2m many `-sets, only using

vertices of R.

Lemma 57 (Reservoir Lemma). Let η, ε ą 0 and let k ě 4, 1 ď ` ă k{2,

and m ě 1 be integers. Then for every sufficiently large k-uniform hypergraph

H “ pV,Eq on n vertices with δk´2pHq ě η
`

n
2

˘

there is a set R Ă V with |R| ď εn

such that the following holds.

For every collection Xi, Yi for i P rjs of 2j mutually disjoint sets of ` vertices,

where j ď m, there exist `-paths T1, . . . , Tj of size at most 4 connecting pXi, YiqiPrjs

that, moreover, contain vertices from
Ť

iPrjspXi Y Yiq YR only.

Lemma 57 is a consequence of Lemma 56, since one can show that with high

probability a suitably sized random subset R Ď V inherits an appropriately scaled

minimum degree condition from H. As a consequence such a set satisfies the

assumptions of Lemma 56 (with η{2) and the lemma yields the conclusion of

Lemma 57 (see, e.g. [6, Lemma 6] for a very similar argument).

5.1.3. Absorption. Given a k-uniform hypergraph H and U Ă V with

|U | P pk ´ `qN, we say that an `-path A absorbs U if there exists an `-path Q with

the same ends as A and V pQq “ V pAq Y U . At the end of the main proof we will

absorb all vertices outside of an almost spanning `-cycle to obtain a Hamiltonian

`-cycle using an absorbing path A, i.e. a path that can absorb any set U of small

linear size. The existence of such a path A is given by the following lemma.

Lemma 58 (Absorbing Lemma). For every η, ζ ą 0 and all integers k ě 4

and 1 ď ` ă k{2 there exists ε ą 0 such that the following holds for sufficiently

large n. Let H “ pV,Eq be a k-uniform hypergraph on n vertices that satisfies

δk´2pHq ě η
`

n
2

˘

. Then there is an `-path A with |V pAq| ď ζn such that for all

subsets U Ă V rV pAq of size at most εn with |U | P pk´ `qN there exists an `-path

Q Ă H with V pQq “ V pAq Y U such that A and Q have the same ends.
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Proof. Let η, ζ ą 0 and let k ě 4 and 1 ď ` ă k{2 be integers, and assume

w.l.o.g. that ζ ď 1. Fix auxiliary constants

rη “
η

4k! and q “ 3k ´ 2`

and set

ε “
ζrη10

56k .

Let n be sufficiently large and let H “ pV,Eq be a k-uniform hypergraph on n

vertices that satisfies δk´2pHq ě η
`

n
2

˘

. First, we will show that for any S P
`

V
k´`

˘

there exist many, i.e. Ωpnqq, 3-edge `-paths that absorb S (see Claim 1 below). For

that we will use the following consequence of the minimum degree condition. Let

A,B Ă V pHq be disjoint sets of vertices with |A| ď k ´ 2 and |B| ď q ` k. Then,

degHrV zBspAq ě
pn´ |A|q ¨ ¨ ¨ ¨ ¨ pn´ k ` 3q

pk ´ |A|q! ¨η

ˆ

n

2

˙

´|B|nk´|A|´1
ě rηnk´|A|. (56)

Claim 1. For every S P
`

V
k´`

˘

there exist at least rη5nq many 3-edge `-paths that

absorb S.

Proof. Let S1 Y S2 “ S be chosen in some way such that

|S1| ě |S2| ě |S1| ´ 1 and maxt0, 3`´ ku ď |S1 X S2| ă ` (57)

and set s1 “ |S1|, s2 “ |S2|, and s3 “ |S1 X S2|. Clearly, we have

s1 ` s2 ´ s3 “ |S| “ k ´ `. (58)

It follows from the choices above that s1 ` s2 ě 2`. Indeed, since s3 ě 3`´ k we

have k´ ` “ s1` s2´ s3 ď s1` s2´ 3`` k and, hence, s1` s2 ě 2`. Furthermore,

s1 ě s2 ě s1 ´ 1 yields

s1 ě s2 ě `. (59)

We then select the following sets. See Figure 2 for a drawing of the chosen sets

and edges containing them. In each step, we will only select sets that are disjoint

from S and anything chosen in a previous step.
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(i ) Since s1 ď k ´ ` ´ 1 ď k ´ 2, by (56) there exist rηnk´s1 choices for a

pk´s1q-setX such that f1 “ X ŸS1 is an edge of H. Since |X| “ k´s1
(58)
“

`` s2 ´ s3 it follows from (59) that we may partition X “ L1 Ÿ F Ÿ F1

such that |L1| “ ` and |F | “ `´ s3
(57)
ą 0.

(ii ) Since k ě 4 we have k ´ ` ě 3 and, consequently, s1 ě rpk ´ `q{2s ě 2.

Thus, by (56) and |S2YF | “ s2` `´ s3 “ k´ s1, there exist rηns1 choices

for a set Y of size s1 such that f2 “ S2 Ÿ F Ÿ Y is an edge of H. Again

owing to (59) we may partition Y “ L2 Ÿ F2 such that |L2| “ `.

(iii ) Fix L11 Ă L1 and L12 Ă L2 subsets of size `´ 1. Note that

|L11 Ÿ L
1
2 Ÿ F Ÿ F1 Ÿ F2| “ |X| ` |Y | ´ 2 “ k ´ 2.

Therefore, there exist at least rηn2 choices for a pair of vertices tx1, x2u

such that e2 “ tx1, x2u Ÿ L
1
1 Ÿ L

1
2 Ÿ F Ÿ F1 Ÿ F2 is an edge of H.

(iv ) Since k ě 4 we have ` ` 1 ď k ´ 2. Therefore, there exist rηnk´p``1q

choices each for two disjoint edges e1 and e3 such that tx1u ŸL1 Ă e1 and

tx2u Ÿ L2 Ă e3.

By construction we have

e1 X e2 “ tx1u Ÿ L
1
1 and e2 X e3 “ tx2u Ÿ L

1
2,

so the edges e1, e2, and e3 form an `-path P in H. Moreover, since

e1 X f1 “ L1, |f1 X f2| “ |pS1 X S2q Y F |
(i )
“ `, and f2 X e3 “ L2,

the edges e1, f1, f2, and e3 form an `-path P 1. Since k ´ `´ 1 ě `, we may select

for P and P 1 the same ends in e1 and e3. Moreover, V pP 1q “ V pPq Y S and,

therefore, the `-path P absorbs S. From (i )–(iv ) it is clear that there are at least

rη5nq choices for P . �

Following the scheme from [48], let F Ă V pHqq be a family of ordered q-sets of

vertices such that each of these sets are selected from V pHqq independently with
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S1 S2

F1 F2F
x1 x2

L11L1 L12 L2
e1

e2
e3

f1 f2

Figure 2. The path P , consisting of e1, e2, and e3, that absorbs S.

probability

p “
4ε

rη5nq´1 .

An `-path in V pHqq is an ordered set pv1, . . . , vqq of vertices such that

e1 “ tv1, . . . , vku, e2 “ tvk´``1, . . . , v2k´`u, and e3 “ tv2k´2``1, . . . , v3k´2`u

are edges in H. Using Chernoff’s inequality, with high probability we have

|F | ď 2pnq “ 8ε
rη5n.

By Claim 1, for each set S of size k ´ `, at least rη5nq `-paths in V pHqq absorb S.

By Chernoff’s inequality w.h.p. for all S P
`

V
k´`

˘

, there are at least 2εn `-paths

in F that absorb S. The expected value of the number of intersecting pairs of

q-sets in F is at most

nn2q´2p2
“ n2q´1

ˆ

4ε
rη5nq´1

˙2

“ εn
16ζ
56k ď

1
2εn

So by Markov’s inequality the number of intersecting pairs of q-sets in F is at

most εn with probability at least 1{2.

Let F be a family that satisfies the above conditions. For each of the intersecting

pairs in F , delete one of the q-sets and let F 1 Ă F be the remaining family. Using

Lemma 56 with R “ V (so r “ |R| is sufficiently large), we can connect all `-paths

in F 1 to an `-path A with

|V pAq| ď |F 1
| ¨ p4k ` tq ď 2pnq ¨ 7k “ 56k

rη5 εn ď ζn

and this path absorbs all sets U Ă V zV pAq with |U | P pk´ `qN and |U | ď εn. �
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5.1.4. Path-Tiling. In this part we will find a path-tiling of `-paths in H

that covers all but a small fraction of the vertices of H. For that purpose we use

the so-called weak regularity lemma for hypergraphs, which is the straightforward

extension of Szemerédi’s regularity lemma for graphs [57] (see also Lemma 37).

Roughly speaking, we will show that there exists a fractional C`-tiling, a so-called

β-hompC`q-tiling in the resulting reduced hypergraph R of H, where C` is the

k-uniform “cherry” consisting of two hyperedges that share exactly 2` vertices.

The fractional C`-tiling of R will transfer to a path-tiling of H.

First, we introduce the standard notation for the regularity lemma. Let

H “ pV,Eq be a k-uniform hypergraph and let V1, . . . , Vk be non-empty, mutually

disjoint subsets of V . We denote the number of edges with one vertex in each Vi
by eHpV1, . . . , Vkq and define the density of H w.r.t. pV1, . . . , Vkq by

dHpV1, . . . , Vkq “
eHpV1, . . . , Vkq

|V1| ¨ ¨ ¨ |Vk|
.

For ε ą 0 and d ą 0, a k-tuple pV1, . . . , Vkq of mutually disjoint subsets of

vertices is called pε, dq-regular if for all k-tuples pA1, . . . , Akq of subsets Ai Ď Vi

with |Ai| ě ε|Vi|, we have

|dHpA1, . . . , Akq ´ d| ď ε.

Moreover, the tuple pV1, . . . , Vkq is called ε-regular if it is pε, dq-regular for some

d ą 0. Below we state the weak hypergraph regularity lemma (see, e.g. [7,18,56]).

Lemma 59 (Weak regularity lemma). For all integers k ě 2 and t0 ě 1 and

for every ε ą 0, there exists T0 “ T0pk, t0, εq such that for every sufficiently

large k-uniform hypergraph H “ pV,Eq on n vertices, there exists a partition

V “ V0 Ÿ V1 Ÿ . . . Ÿ Vt satisfying

(i ) t0 ď t ď T0,

(ii ) |V1| “ ¨ ¨ ¨ “ |Vt| and |V0| ď εn, and

(iii ) for all but at most ε
`

t
k

˘

many k-subsets ti1, . . . , iku Ă rts, the k-tuple

pVi1 , . . . , Vikq is ε-regular.
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A vertex partition of a hypergraph H satisfying (i )–(iii ) of the conclusion

of Lemma 59 will be referred to as an ε-regular partition. For ε ą 0 and d ą 0,

we define the reduced hypergraph R “ Rpε, dq of H w.r.t. such a partition as the

k-uniform hypergraph on the vertex set rts and

ti1, . . . , iku P EpRq ðñ pVi1 , . . . , Vikq is pε, d1q-regular, for some d1 ě d.

In typical applications of the regularity lemma, the reduced hypergraph inherits

some key features of the given hypergraph H. In fact, the following observation

shows that the reduced hypergraph inherits approximately the minimum degree

condition of the original hypergraph. A similar result can be found in [27, Propo-

sition 16] and for completeness we include its proof below.

Lemma 60. Given c, ε, d ą 0 and integers k ě 3 and t0 ě 2k{d. Let H be a

k-uniform hypergraph on n ě t ě t0 vertices such that

δk´2pHq ě c

ˆ

n

2

˙

.

If H has an ε-regular partition V0ŸV1Ÿ. . .ŸVt with reduced hypergraph R “ Rpε, dq,

then at most
?
ε
`

t
k´2

˘

many pk ´ 2q-subsets K of rts violate

degRpKq ě pc´ 2d´
?
εq

ˆ

t

2

˙

.

Proof. Let D “ Dpdq and N “ N pεq be the hypergraphs with vertex set rts

and

‚ EpDq consists of all sets ti1, . . . , iku such that dpVi1 , . . . , Vikq ě d,

‚ EpN q consists of all sets ti1, . . . , iku such that pVi1 , . . . , Vikq is not ε-regular.

Note that the reduced hypergraph Rpε, dq is the hypergraph with vertex set rts

and edge set EpDq r EpN q. For an arbitrary K “ ti1, . . . , ik´2u P
`

rts
k´2

˘

we will

show that

degDpKq ě pc´ 2dq
ˆ

t

2

˙

. (60)
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Let n{t ě |Vij | “ m ě p1´ εqn{t be the size of the partition classes and let x be

the number of edges in H that intersect each Vij in exactly one vertex for each

j P rk ´ 2s. By the condition on δk´2pHq and t ě t0 ě 2k{d, we obtain

x ě mk´2
ˆ

c

ˆ

n

2

˙

´ pk ´ 2qmn
˙

ě pc´ dqmk´2
ˆ

n

2

˙

.

If (60) did not hold, then we would find for x the upper bound

x ă pc´ 2dq
ˆ

t

2

˙

mk
`

ˆ

t

2

˙

dmk
ď pc´ dqmk´2

ˆ

n

2

˙

contradicting the lower bound for x.

Next we observe that at most
?
ε
`

t
k´2

˘

many pk ´ 2q-sets K satisfy

degN pKq ď
?
ε
`

t
2

˘

since the number of non-ε-regular k-tuples in R is at most

ε
`

t
k

˘

. Consequently, it follows from the degree conditions on D and N that all but

at most
?
ε
`

t
k´2

˘

many pk ´ 2q-sets K satisfy

degRpKq ě
`

c´ 2d´
?
ε
˘

ˆ

t

2

˙

.

�

We will find a suitable fractional C`-tiling in the reduced hypergraph R, where

the cherry C` is the k-uniform hypergraph with vertex set r2k ´ 2`s and edges

t1, . . . , ku and tk ´ 2`` 1, . . . , 2k ´ 2`u.

Definition 61. Let C and R be k-uniform hypergraphs, β ą 0, and let

Φ be a multiset of hypergraph homomorphisms from C to R. A function

h : Φ Ñ taβ : a P Ną0u is called a β-hompCq-tiling if the weight whpvq of a ver-

tex v satisfies

whpvq “
ÿ

uPV pCq

ÿ

φPΦ:v“φpuq
hpφq ď 1

for all v P V pRq. We call

wphq “
ÿ

vPV pRq

whpvq “
ÿ

φPΦ
hpφq|V pCq|

the weight of the tiling.
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The following building block allows us to easily define a tiling on a single edge.

Fact 62. Given an edge e “ tv1, . . . , vku, there exists a 1
2pk´`´1q-hompC`q-

tiling h that is non-zero only on e, such that whpviq “ 1 for i P rk ´ 2s and

whpvk´1q “ whpvkq “
k´2

2pk´`´1q . Note that we may scale the weight of h by any

q P p0, 1s and obtain a q
2pk´`´1q-hompC`q-tiling with whpviq “ q for i P rk ´ 2s

and whpvk´1q “ whpvkq “
qpk´2q

2pk´`´1q . Similarly, for any q P p0, 1s there exists a
q

2pk´`q-hompC`q-tiling with whpviq “ q for i P rks.

Proof. For this consider the homomorphism that maps C` to e such that

v1, . . . , v2`´2, vk´1 and vk are the image of the intersection of the two edges of C`.

By cyclically shifting the image of the first 2`´ 2 vertices of the intersection and

appropriate scaling, we obtain all homomorphisms for the required tiling. We

obtain the even weight distribution for the last part of the fact by cyclically shifting

the whole image k times. �

The following lemma is the main part of the proof of the Path-Tiling Lemma.

For this we introduce a fractional notion of extremality. We say that a k-uniform

hypergraph R on t vertices is β-fractionally p`, ξq-extremal if there is a function

b : V pRq Ñ t0u Y rβ, 1s with
ÿ

vPV pRq

bpvq ě
2pk ´ `q ´ 1

2pk ´ `q t and
ÿ

ePEpRq

ź

vPe

bpvq ď ξ

ˆ

t

k

˙

.

Note that the function b can be viewed as a set of weighted vertices, which plays

the rôle of the vertex set B in the definition of extremality.

Lemma 63. For all integers k ě 3 and 1 ď ` ă k{2, there exist C and γ0

such that for all α ą 0 and γ P p0, γ0q, there exist β ą 0 and ε ą 0 such that

the following holds for sufficiently large t. Let R be a k-uniform hypergraph on t

vertices that is not β-fractionally p`, Cγq-extremal and

degpKq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ γ

˙ˆ

t

2

˙

(61)
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holds for all but at most ε
`

t
k´2

˘

sets K P
`

V pRq
k´2

˘

. Then there exists a β-hompC`q-

tiling h with weight at least p1´ αqt.

Proof. Clearly, it is sufficient to prove the lemma for small values of α.

Consequently the quantification of the lemma allows us to fix the parameters and

auxiliary constants C 1 and c to satisfy the following hierarchy of constants

1
k
,
1
`
"

1
C 1
"

1
C
" γ0 ě γ " α " c, ε, (62)

where “" x” denotes that x is chosen sufficiently small with regard to all constants

to its left. Moreover, we fix β inductively such that

1 “ β0 " β1 " ¨ ¨ ¨ " βt1{cu “ β and 16 ¨ k! divides βi
βi`1

,

and let t be sufficiently large such that c, ε, β " 1{t. Note that any βi-hompC`q-

tiling is also a β-hompC`q-tiling as βi is a multiple of β. To prove the lemma, we

show that given a βi-hompC`q-tiling h with weight wphq ă p1 ´ αqt, there exists

a βi`1-hompC`q-tiling h1 with weight wph1q ě wphq ` ct. We can begin with the

trivial 1-hompC`q-tiling with weight zero and hence, after at most 1{c steps, we

obtain a β-hompC`q-tiling with weight at least p1´ αqt.

For the rest of the proof fix a βi-hompC`q-tiling h with weight wphq ă p1´ αqt

and assume for a contradiction that there is no βi`1-hompC`q-tiling with weight

wphq ` ct. It follows from the upper bound on the weight that there are at least

αt{2 vertices v P V pRq with whpvq ă 1´ α{2 and we may fix a subset W of them

of size αt{2.

Although a tiling with bigger weight implies the existence of more edges, we

will not use these edges for an improvement. So we may actually assume w.l.o.g.

that

p1´ 2αqt ď wphq ă p1´ αqt,

as we can otherwise add edges on V rW until this weight can be trivially achieved

and remove these edges after the improvement step.
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We view Φ, the set of homomorphisms from C` to R, as a multiset, where we

include φ with multiplicity hpφq
βi

, so that we can assume h : Φ Ñ tβiu. With this

notion the following bounds on the size of Φ follow from the above

p1´ 2αq t

βivpC`q
ď |Φ| ă p1´ αq t

βivpC`q
. (63)

Also, we identify a homomorphism φ in Φ with the – not necessarily distinct

– vertices pv1, . . . , v2k´2`q in its image, where vi “ φpiq so that tv1, . . . , vku and

tvk´2``1, . . . , v2k´2`u form edges in R. We refer to the elements of Φ as cherries

C P Φ.

Consider the pk ´ 2q-sets in W that satisfy the degree condition (61) of the

lemma. Since α " ε, among those pk ´ 2q-sets we find a collection W whose

elements are pairwise disjoint and cover at least |W |{2 vertices. For later reference

we note

|W | ě
|W |

2pk ´ 2q ą
αt

4k . (64)

For K P W we consider the link graph LK of K in R, which is the (2-uniform)

graph containing all edges e such that K Y e P EpRq. At most t
βi

`

vpC`q
2

˘

ď γ
`

t
2

˘

edges have both ends in the same C P Φ and at most αt2{2 ď γ
`

t
2

˘

edges contain a

vertex from W , so let L1K be the graph obtained from LK by removing all these

edges. Combined with the degree condition (61) we have

epL1Kq ě

ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ 3γ

˙ˆ

t

2

˙

(65)

for every such pk ´ 2q-set K P W .

We will find pairs C, C 1 P Φ on which the link graph allows us to find a better

tiling. For this we only want to consider edges in the bipartite induced link graph

LKpC, C 1q. Formally the vertex classes of LKpC, C 1q are given by two disjoint copies

of r2k ´ 2`s. In particular, LKpC, C 1q has 4k ´ 4` vertices even when C and C 1

intersect or when C or C 1 are not given by injective homomorphisms from C`.

Moreover, two vertices i and j from different classes are adjacent in LKpC, C 1q if

tvi, v
1
ju is an edge in the link graph LK , where vi is the image of i P V pC`q in C
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and v1j is the image of j in C 1. However, similar as above we canonically identify

the vertices of LKpC, C 1q with the vertices of C and C 1.

We show in the following that for most K P W the bipartite link graph between

most C and C 1 has a very specific structure. We call C, C 1 P Φ an extremal pair

for K if there exist special vertices u P C and u1 P C 1 such that LKpC, C 1q contains

exactly all edges incident to these two vertices. In particular, in such a case

LKpC, C 1q has 4pk ´ `q ´ 1 edges.

Claim 2. There exists a βi`1-hompC`q-tiling h1 with wph1q ą wphq` ct, or for every

C P Φ there exists uC P C such that the following holds. For all but at most γ|W |

sets K P W all but at most C 1γ|Φ|2 pairs C, C 1 P Φ2 are extremal for K with

special vertices uC and uC1 .

Proof. The proof of the claim consists of three steps. First we show that if

for a given pk ´ 2q-tuple K P W and some pair of cherries C, C 1 P Φ the induced

bipartite link graph LKpC, C 1q contains more than 4pk ´ `q ´ 1 edges, then there

is a local improvement of the tiling by a weight of at least βi{4. In a second step

we shall bound the number of possible local improvements, as otherwise we could

combine them to arrive at a desired tiling h1 with a weight increased by ct, which

would conclude the proof. In the last step we utilise this bound on the number of

local improvements to show that “typically” LKpC, C 1q contains only 4pk ´ `q ´ 1

edges and displays the structural conditions stated in the claim.

For the first step we consider two cases. Suppose that there is a matching with

three edges in LKpC, C 1q for some K P W and C, C 1 P Φ. Recall that LKpC, C 1q is

a bipartite graph with partition classes of size 2pk ´ `q. Then we assign weight
k´2

6pk´`´1qβi to the vertices of the matching edges and weight βi to the vertices

of K. Setting in addition h1pCq “ h1pC 1q “ p1 ´ k´2
6pk´`´1qqβi, this defines a valid

βi`1-hompC`q-tiling h1 by applying Fact 62 (with q “ 1
3βi) to the three edges in R

corresponding to the matching edges in the link graph. Note that the weights on

the vertices of K remain unchanged, and by considering the vertices on which the
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weight has changed, it is easy to see that

wph1q “ wphq `

ˆ

k ´ 2´ p4k ´ 4`´ 6q ¨ k ´ 2
6pk ´ `´ 1q

˙

βi ě wphq `
1
3βi ,

which yields a local improvement in this case.

For the next case suppose that there are two vertices in C each incident to two

edges such that all four neighbours in C 1 are distinct. On the vertices of these edges

we put weights k´2
8pk´`´1qβi and βi on the vertices of K. Set h1pCq “ p1´ k´2

4pk´`´1qqβi

and h1pC 1q “ p1´ k´2
8pk´`´1qqβi. Again, this defines a tiling h1 with

wph1q“ wphq`

ˆ

k´2´ p2k ´ 2`´ 2q k ´ 2
4pk ´ `´ 1q ´ p2k ´ 2`´ 4q k ´ 2

8pk ´ `´ 1q

˙

βi

ě wphq `
k ´ 2

4 βi ě wphq `
1
4βi . (66)

This establishes a local improvement for this case and concludes the discussion of

the first step.

For the second step suppose that there is a subset W 1 Ă W of size at least

γ|W |{2, such that for each K P W 1 we can define a local improvement for γ|Φ|2

cherry pairs. We apply these local improvements greedily, only using each cherry

C P Φ at most once (over all K P W 1), to increase the weight of the tiling. This

procedure may end, either when every K P W 1 contains a saturated vertex, in

which case we enlarge the total weight by at least α
2 ¨ |W

1|, or when for every

K P W 1 for each of the γ|Φ|2 pairs of cherries at least one cherry was used for

some local improvement already. Since any collection of γ|Φ|2 pairs of cherries

contains γ|Φ|{2 such pairs none of which share a cherry, then the latter case would

imply that we applied γ|Φ|{2 local improvements before.

In summary we showed that if for at least γ|W |{2 ě γ αt8k (see (64)) many

K P W we can define a local improvement for γ|Φ|2 cherry pairs then we can

aggregate local improvements leading to a βi`1-hompC`q-tiling h2 with weight at

least

wph2q ě wphq `min
!α

2 ¨ γ
αt

8k ,
βi
4 ¨

γ

2 |Φ|
) (62),(63)

ą wphq ` ct,
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which would conclude the proof of Claim 2.

Consequently, for the third step we need only consider those K P W for which

at most a γ-fraction of its cherry pairs C, C 1 allow one of the two local improvements

discussed in the first step. In particular, those pairs induce no matching of size

three in LKpC, C 1q and by König’s theorem [36] LKpC, C 1q spans at most 4pk ´ `q

edges. On the other hand, in view of (63) the degree condition (65) of K P W

translates to an average number of edges of at least 4pk´`q´1´4p3γ`4αqpk´`q2

in the link graphs. So, as C 1 was chosen big enough, all but pC 1 ´ 1qγ|Φ|2 cherry

pairs C, C 1 induce exactly 4pk ´ `q ´ 1 edges in LKpC, C 1q. Since in addition these

pairs allow no local improvement as considered in (66), there must be a vertex on

each side that has a complete neighbourhood on the other side, so most pairs are

indeed extremal.

It remains to show that typically the special vertex u P C in an extremal pair

LKpC, C 1q is independent of K and C 1. So assume for a moment that there are

two vertices u and v in C P Φ such that u is a special vertex for an extremal

pair LKpC, C 1q and v is special for an extremal pair LK1pC, C2q for some (possibly

non-distinct) K, K 1 P W and C 1, C2 P Φ. In this case we can define a local

improvement by “splitting” the case with four edges above. Indeed choose four

edges incident with u in LKpC, C 1q and four for v in LK1pC, C2q. Assign weights 1
2βi

to the vertices of K and K 1, and k´2
16pk´`´1qβi to the vertices of the eight chosen edges.

Set h1pCq “ p1 ´ k´2
4pk´`´1qqβi and reduce the weights on C 1 and C2 by k´2

16pk´`´1qβi

(or by k´2
8pk´`´1qβi in case C 1 “ C2). Similar calculations as in (66) lead to a local

improvement of βi{4 involving the three cherries C, C 1, and C2.

For each cherry C fix uC P C as the vertex that occurs most often as a special

vertex over all extremal pairs LKpC, C 1q. If for at least γ|W |{2 many K P W we

can define a local improvement for γ|Φ|2 extremal pairs, i.e. pairs C, C 1 for which

there exist K 1 and C2 as above, we can aggregate them as in the second step.

Otherwise the chosen uC satisfy the statement of the claim. �
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We call C P Φ good if it is contained in at least 1
2 |Φ| extremal pairs for at

least 1
2 |W | many K P W and bad otherwise. As a βi`1-hompC`q-tiling h1 with

wph1q ą wphq ` ct would complete the proof of Lemma 63, it follows from Claim 2

that at most 5C 1γ|Φ| cherries are bad. Moreover, for every vertex v P V we denote

by Φbadpvq the set of bad cherries C P Φ that contain it.

To complete the proof of Lemma 63 we will show that we find a matching M

in R such that every vertex v P e PM is contained in “many” good cherries. For

each good cherry C P Φ there are a lot of choices for C 1 and K P W such that C

and C 1 are an extremal pair for K. We will redistribute the weights to transfer

weight from the non-special vertices of C (and C 1) to K, which will reduce the

weight on v (since we will ensure that v is a non-special vertex). Repeating this

for every v P e will allow us to obtain a local improvement for the tiling and

repeating this for sufficiently many hyperedges e PM leads to the desired global

improvement.

We define the function a : V pRq Ñ r0, 1s by v ÞÑ βi ¨
ř

CPΦ 1tvupuCq, which

assigns to a vertex the sum of weights used by special vertices. As any cherry

contains 2pk ´ `q vertices, it is clear that
ř

vPV pRq apvq ď
t

2pk´`q and, therefore, we

can utilise the β-fractional non-extremality of R for bp¨q “ 1´ ap¨q and obtain

ÿ

ePEpRq

ź

vPe

bpvq ě Cγ

ˆ

t

k

˙

.

Since there are at most 5C 1γ|Φ| bad cherries, they contribute at most

βi
ÿ

vPV pRq

ˇ

ˇΦbadpvq
ˇ

ˇ ď βivpC`q ¨ 5C 1γ|Φ|
(63)
ď 5C 1γt (67)

to the overall weight of the βi-hompC`q-tiling h. We shall only use good cherries to

redistribute weights for the desired βi`1-hompC`q-tiling, so we consider the function

b1 : V pRq Ñ r0, 1s given by

b1pvq “ max
 

0, bpvq ´ βi ¨ |Φbadpvq|
(
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and in view of (67) and C 1 ! C (cf. (62)) we have
ÿ

ePEpRq

ź

vPe

b1pvq ě
C

2 γ
ˆ

t

k

˙

.

By a simple double counting argument there is a matching M Ă EpRq with
ÿ

ePM

ź

vPe

b1pvq ě
C

2 γ ¨
t

k

and since b1pvq P r0, 1s we have
ÿ

ePM

k ¨min
vPe
tb1pvqu ě

ÿ

ePM

k
ź

vPe

b1pvq ě
C

2 γt. (68)

In particular, we may assume that minvPetb1pvqu ą 0 for every e P M , since this

has no effect on inequality (68). Moreover, from the definition of the function b1p¨q

it then follows that minvPetb1pvqu ě βi for every e PM .

For each vertex v P
Ť

M , we consider good cherries that contain v as a

non-special vertex. Assume that we have K P W and an extremal pair C, C 1

such that v is a non-special vertex in C. Recall that this means that LKpC, C 1q

contains all edges incident to the two special vertices. We define a local weight

shift as follows. Assign weights 1
2pk´`q´1 ¨

k´2
4pk´`´1qβi to the vertices of all edges

incident with exactly one of the special vertices, βi to the vertices of K and set

h1pCq “ h1pC 1q “ p1´ k´2
4pk´`´1qqβi. By similar calculations as before, this defines a

valid βi`1-hompC`q-tiling h1 with wph1q “ wphq. On the other hand, the weight of

the vertex v and all other non-special vertices in LKpC, C 1q is reduced by k´2
4pk´`q´2βi,

i.e.

wh1pvq “ whpvq ´
k ´ 2

4pk ´ `q ´ 2βi .

It follows from the definition of b1pvq that we have at least b1pvq{βi many good cher-

ries that contain v as non-special vertex and we shall apply at most minuPetb1puqu{βi
local weight shifts for a vertex v P e PM .

For every edge e PM we would like to apply these local weight shifts for every

vertex v P e, where we cycle through all k vertices and apply one shift at a time.

In other words, we evenly reduce the weights on the vertices of e. Note that we
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can apply these local weight shifts using K, C, and C 1 unless we have saturated the

vertices in K or used one of the cherries before. The procedure stops as soon as

we reach a vertex for which no local weight shift is possible.

We first discuss the ideal case that this procedure does not stop, i.e. for every

e PM and every v P e we applied minuPetb1puqu{βi local weight shifts. In this case,

for every e PM we reduced the weight of all vertices v P e by at least

1
βi

min
uPe
tb1puqu ¨

k ´ 2
4pk ´ `q ´ 2βi “

k ´ 2
4pk ´ `q ´ 2 min

uPe
tb1puqu.

Consequently, we may appeal to Fact 62 to increase the tiling on the edge e by

the same amount. Repeating this for all e PM , we obtain a βi`1-hompC`q-tiling

h2 satisfying

wph2q ě wphq `
ÿ

ePM

k ¨
k ´ 2

4pk ´ `q ´ 2 min
uPe
tb1puqu

(68)
ě wphq `

Cγt

2 ¨
k ´ 2

4pk ´ `q ´ 2
(62)
ě wphq ` ct,

which would conclude the proof of Lemma 63 in this case.

In the case that the procedure stops, there is some v P V pMq and a good

cherry C for v such that C cannot be used for a local weight shift for v. This means,

since C is a good cherry, that either 1
2 |W | many K P W contain a saturated vertex

or that at least 1
2 |Φ| cherries were used in local weight shifts before. In the case

that 1
2 |W | many K P W contain a saturated vertex, each of these vertices was

used in at least α
2βi local weight shifts, so in total we have applied

1
2 |W | ¨

α

2βi
(64)
ě

αt

8k ¨
α

2βi

local weight shifts. If on the other hand all 1
2 |Φ| possible cherries C 1 were used in

local weight shifts before, then we have applied at least 1
4 |Φ| local weight shifts.

As in the ideal case, using Fact 62, we conclude that we can increase the tiling on
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the edges in M and obtain a βi`1-hompC`q-tiling h2 with

wph2q ě wphq `
´

min
! α2t

16kβi
,
|Φ|
4

)

´ k
¯

¨
pk ´ 2qβi

4pk ´ `q ´ 2
(62),(63)
ě wphq ` ct,

which concludes the proof of Lemma 63. �

Next we want to transfer the β-hompC`q-tiling of R into a path-tiling of H. For

that purpose we will use the following lemma from [28, Lemma 2.7].

Lemma 64. Fix k ě 3, 1 ď ` ă k{2 and ε, d ą 0 such that d ą 2ε. Let

m ą k2

ε2pd´εq
. Suppose V “ pV1, . . . , Vkq is an pε, dq-regular k-tuple with

|V1| “ ¨ ¨ ¨ “ |V2`| “ m and |V2``1| “ ¨ ¨ ¨ “ |Vk| “ 2m.

Then there are at most 2k
pd´εqε

vertex disjoint `-paths that together cover all but at

most 2kεm vertices of V. �

Finally, by using Lemma 64 on the edges of the β-hompC`q-tiling of R given by

Lemma 63, we obtain a path-tiling from H of the desired size.

Lemma 65 (Path-Tiling Lemma). For all integers k ě 3 and 1 ď ` ă k{2,

there exist C, γ0 ą 0 such that for all α ą 0, γ ď γ0 there exists an integer s

such that the following holds for all sufficiently large n. Let H be a k-uniform

hypergraph on n vertices and

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ γ

˙ˆ

n

2

˙

.

Then either there is a family of at most s disjoint `-paths that cover all but at most

αn vertices of H or H is p`, Cγq-extremal.

Proof. Let k ě 3 and 1 ď ` ă k{2 be given. Let C 1 and γ10 be the constants

given by Lemma 63 for k and `. Set C “ 6C 1 and γ0 “
γ10
4 , and let α ą 0 and

γ ď γ0. Following the quantification of Lemma 63 with α
2 and γ we obtain β and

ε1 and a sufficiently large t0. Let ε be sufficiently small. Then the weak regularity
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lemma (Lemma 59) for ε0 “
βε
2 ă γ2 and t0 yields T0. Let s be a sufficiently large

constant. Let H be a k-uniform hypergraph on n vertices such that

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ γ

˙ˆ

n

2

˙

and n is sufficiently large. By the regularity lemma there exists an ε0-regular

partition V0 Ÿ . . . Ÿ Vt of H with |V1| “ ¨ ¨ ¨ “ |Vt| “ m, |V0| ď ε0n and t0 ď t ď T0

and the corresponding reduced hypergraph R “ Rpε0, γq on t vertices satisfies, by

Lemma 60,

degRpKq ě

ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ 4γ

˙ˆ

t

2

˙

for all but at most ?ε0
`

t
k´2

˘

ď ε1
`

t
k´2

˘

many pk ´ 2q-sets K P
`

rts
k´2

˘

. We split the

remainder of the proof in two cases, depending on whether R is β-fractionally

p`, 4C 1γq-extremal.

Suppose that R is not β-fractionally p`, 4C 1γq-extremal. Then Lemma 63

implies that there exists a β-hom(C`)-tiling h of R with weight p1´ α
2 qt. Let Φ`

be the set of homomorphisms φ from C` to R with hpφq ą 0, which implies in fact

hpφq ě β. We will use Lemma 64 to obtain `-paths covering almost all vertices

of H and for this we split the partition classes according to the tiling h. Let

tRφ
1 , . . . , R

φ
2k´2`uφPΦ` be a family such that for all φ ‰ φ1 P Φ`

‚ Rφ
i Ă Vφpiq for all i P r2k ´ 2`s,

‚ Rφ
i XR

φ1

j “ ∅ for all i, j P r2k ´ 2`s,

‚ |Rφ
i | “ 2thpφqm2 u for all i P r2k ´ 2`s.

For each φ P Φ` and all i P tk ´ 2` ` 1, . . . , ku let Sφi Y Uφ
i “ Rφ

i be a partition

of Rφ
i into two classes of equal size. Note that

pRφ
1 , . . . , R

φ
k´2`, S

φ
k´2``1, . . . , S

φ
k q and pUφ

k´2``1, . . . , U
φ
k , R

φ
k`1, . . . , R

φ
2k´2`q

are pε, γq-regular, where we used that hpφq ě β for all φ P Φ`. Then, with

Lemma 64 we obtain at most 2k
pγ´εqε

many `-paths that cover all but kε|Rφ
i | vertices.

Applying this to each homomorphism φ P Φ` we obtain at most s many `-paths.
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We claim that the number of vertices in V pHq that are not covered by these

paths is less then αn. For this note that the uncovered vertices are the vertices

from the partition class V0, the vertices that are not contained in any Rφ
i and those

vertices in some Rφ
i that are not contained in any `-path. At most α

2n vertices are

not in any Rφ
i due to the weight of the β-hompC`q-tiling h and we lose at most 2t

β

vertices due to the rounding in the definition of Rφ
i . The `-paths cover all but a

pkεq-fraction of vertices in
Ť

i,φR
φ
i . Consequently the total number of uncovered

vertices is at most

ε0n`
α

2n`
2t
β
` kεn ă αn.

Now suppose that R is β-fractionally p`, 4C 1γq-extremal. This means by

definition that there is a function b : V pRq Ñ t0u Y rβ, 1s with
ÿ

vPV pRq

bpvq ě
2pk ´ `q ´ 1

2pk ´ `q t and
ÿ

ePEpRq

ź

vPe

bpvq ď 4C 1γ
ˆ

t

k

˙

.

For each i P rts we fix a subset Ai Ď Vi with |Ai| “ tbpiq|Vi|u and defineB“
Ť

iPrtsAi.

Thus, recalling the definition of the reduced hypergraph R “ Rpε0, γq

eHpBq ď
ÿ

ePEpRq

ź

vPe

´

bpvq
n

t

¯

`

ˆ

t

k

˙

γ
´n

t

¯k

` ε0

ˆ

t

k

˙

´n

t

¯k

` t

ˆ

n{t

2

˙ˆ

n

k ´ 2

˙

ď 4C 1γ
ˆ

n

k

˙

` γ

ˆ

n

k

˙

` ε0

ˆ

n

k

˙

`
kpk ´ 1q

2t

ˆ

n

k

˙

ď 5C 1γ
ˆ

n

k

˙

.

Note that

|B| ě

ˆ

2pk ´ `q ´ 1
2pk ´ `q t

˙

p1´ ε0q
n

t
´ t ě

ˆ

2pk ´ `q ´ 1
2pk ´ `q ´ ε0

˙

n.

Therefore, by adding at most ε0n vertices from V r B to B we obtain a set B1

with |B1| “
Y

2pk´`q´1
2pk´`q n

]

such that

eHpB
1
q ď eHpBq ` ε0n

ˆ

n

k ´ 1

˙

ď 6C 1γ
ˆ

n

k

˙

“ Cγ

ˆ

n

k

˙

,

from which we conclude that H is p`, Cγq-extremal. �
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§5.2. Proof of Theorem 13

Below we give the proof of the main technical result, which details the outline

from Section 5.1.1 and is based on the lemmas from the last section.

Proof of Theorem 13. Let 0 ă ξ ă 1 and let k ě 4 and 1 ď ` ă k{2 be

integers. Let C and γ0 be given by the Path-Tiling Lemma (Lemma 65) for k and `.

Let γ ă γ0 be a sufficiently small constant, in particular we may assume γ ! ξ. By

the Absorbing Lemma (Lemma 58) for γ, ζ “ γ, k, and ` we obtain ε. Following

the quantification of the Path-Tiling Lemma for α “ ε{2 and 5γ we obtain an

integer s. We will use the Reservoir Lemma (Lemma 57) with η “ 4pk´`q´1
4pk´`q2 ´ 3γ,

ε1 “ mintε{2, γu, k, and m “ s ` 1. Let n P pk ´ `qN be sufficiently large and

let H be a k-uniform hypergraph on n vertices.

Suppose H is not p`, ξq-extremal and

δk´2pHq ě
ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ γ

˙ˆ

n

2

˙

.

Let A be the absorbing path obtained with the Absorbing Lemma and let X0

and Y0 be the ends of A. Then |V pAq| ď γn and A has the following absorption

property: for every subset U Ă V r V pAq with |U | ď εn and |U | P pk ´ `qN there

exists an `-path Q Ă H such that V pQq “ V pAq Y U and Q has the ends X0

and Y0.

Let V 1 “ pV r V pAqq Y tX0, Y0u and let H1 “ HrV 1s be the subhypergraph

of H induced by V 1. Note that

δk´2pH1
q ě

ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ 3γ

˙ˆ

n

2

˙

.

The Reservoir Lemma guarantees the existence of a set R Ă V 1 with |R| ď ε1n ď γn

such that for every j ď s ` 1 and every family pXi, YiqiPrjs of mutually disjoint

pairs of sets of ` vertices can be connected by paths that contain vertices of
Ť

iPrjspXi Y Yiq YR only.



5.2. PROOF OF THEOREM 13 126

Let V 2 “ V r pV pAq Y Rq and let H2 “ HrV 2s be the subhypergraph of H

induced by V 2. Then

δk´2pH2
q ě

ˆ

4pk ´ `q ´ 1
4pk ´ `q2 ´ 5γ

˙ˆ

n

2

˙

.

Now we apply the Path-Tiling Lemma to H2 and obtain a family of at most s

disjoint `-paths that cover all but at most α|V 2| ď αn vertices of H2, or H2

is p`, Cγq-extremal. Set n2 “ |V 2| and suppose for a contradiction that H2 is

p`, Cγq-extremal. Then there exists a set B Ă V 2 such that |B| “
X2pk´`q´1

2pk´`q n
2
\

and epBq ď Cγpn2qk. By adding at most n´ n2 ď 2γn vertices from V rB to B,

we obtain a vertex set B1 Ă V such that |B1| “
X2pk´`q´1

2pk´`q n
\

and

epB1q ď Cγpn2qk ` 2γn
ˆ

n´ 1
k ´ 1

˙

ď ξnk,

a contradiction to the fact that H is not p`, ξq-extremal. Therefore, we may assume

that there exist disjoint `-paths P1, . . . ,Pj with j ď s that cover all but at most

α|V 2| ď αn vertices of H2.

For all i P rjs, we denote the ends of Pi by Xi and Yi. Let Yj`1 “ Y0. By using

the Reservoir Lemma to connect the family pXi, Yi`1q0ďiďj , we connect the `-paths

A,P1, . . . ,Pj to an `-cycle C Ă H.

Let U “ V r V pCq be the set of vertices not contained in C, i.e. the vertices

that were leftover in the reservoir R or uncovered by the path-tiling. We have

|U | ď pε1 ` αqn ď εn. Furthermore, since C is an `-cycle and n P pk ´ `qN, we

have |U | P pk ´ `qN. Therefore, we can utilise the absorbing property of A to

replace A in C by a path Q with the same ends as A, obtaining a Hamiltonian

`-cycle of H. �
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Appendix

Summary/Zusammenfassung

In this thesis we investigate two problems in extremal and probabilistic combi-

natorics. In the first part we analyse sharp thresholds for Ramsey-type properties

of random discrete structures, which contributes to the common theme in recent

years to transfer classical results to sparse random structures. For two graphs F

and G let GÑ pF qer denote that for every edge colouring of G with r colours there

exists a monochromatic copy of F . In 1995 Rödl and Ruciński determined the

threshold p “ ppF, rq for Gpn, pq Ñ pF qer for the binomial random graph Gpn, pq

and any F and r. Furthermore, in 2006 Friedgut et al. proved that in the case

that r “ 2 and F being a triangle the threshold is sharp. In the first part we gener-

alise Friedgut’s result to a larger class of graphs F including all cycles. Related to

this question we also show that the property that a random subset of the integers

contains in every 2-colouring a monochromatic Schur triple has a sharp threshold.

In the second part we present a result concerning Hamiltonian cycles in hyper-

graphs. In 1952 Dirac showed that every graph on n ě 3 vertices with minimum

degree at least n{2 contains a Hamiltonian cycle. Transferring Dirac’s Theorem

to hypergraphs leads to multiple open questions since there are several notions of

cycles and of minimum degree in k-uniform hypergraphs for k ě 3. Over the last

20 years various researchers proved such extensions to hypergraphs. In this thesis

we continue this line of research and obtain an approximate version for so-called

loose `-cycles and a δk´2-degree condition in k-uniform hypergraphs.

In dieser Arbeit werden zwei Probleme der extremalen Kombinatorik unter-

sucht. Eine typische Fragestellung der letzten Jahre in diesem Forschungsbereich

beschäftigt sich mit der Übertragung klassischer Resultate auf dünne zufällige

Strukturen. In dieses Themengebiet fällt auch der erste Teil dieser Arbeit, in der

Ramsey-Eigenschaften von zufälligen Teilmengen diskreter Strukturen analysiert
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werden. Für zwei Graphen F und G schreibe dabei G Ñ pF qer, wenn für jede

Kantenfärbung von G mit r Farben eine einfarbige Kopie von F existiert. Im Jahr

1995 haben Rödl und Ruciński für den binomialen Zufallsgraphen Gpn, pq sowie

alle Graphen F und jede Anzahl an Farben r den Schwellenwert p “ ppF, rq der

Eigenschaft Gpn, pq Ñ pF qer bestimmt. Friedgut et al. erweiterten dies 2006 für

den Fall eines Dreiecks F und r “ 2, indem sie zeigten, dass der Schwellenwert

dann scharf ist. In dieser Arbeit wird Friedgut’s Ergebnis auf eine größere Klasse

von Graphen inklusive aller Kreise F erweitert. Auf eine ähnliche Weise wird

zudem gezeigt, dass die Eigenschaft, dass eine zufällige Teilmenge der ganzen

Zahlen in jeder 2-Färbung ein einfarbiges Schur Trippel enthält, einen scharfen

Schwellenwert hat.

Der zweite Teil der Arbeit beschäftigt sich mit Hamiltonkreisen in Hyper-

graphen. 1952 hat Dirac gezeigt, dass jeder Graph auf n ě 3 Ecken mit Minimal-

grad mindestens n{2 einen Hamiltonkreis enthält. Die Übertragung von Dirac’s

Theorem auf Hypergraphen führt zu verschiedenen Fragestellungen, da es für

Kreise und Minimalgrad unterschiedliche Konzepte in Hypergraphen gibt. Über

die letzten 20 Jahre haben unterschiedliche Forscher Ergebnisse zu diesem The-

menkomplex beigetragen. In dieser Arbeit wird diese Forschung fortgesetzt und

eine approximative Version des Falles von sogenannten dünnen `-Kreisen und einer

δk´2-Gradbedingung in k-uniformen Hypergraphen vorgestellt.
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