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Zusammenfassung

In sämtlichen Lebensbereichen finden sich Graphen. Zum Beispiel verbringen

Menschen viel Zeit mit der Kantentraversierung des Internet-Graphen. Weitere

Beispiele für Graphen sind soziale Netzwerke, öffentlicher Nahverkehr, Moleküle,

Finanztransaktionen, Fischernetze, Familienstammbäume, sowie der Graph, in dem

alle Paare natürlicher Zahlen gleicher Quersumme durch eine Kante verbunden sind.

Graphen können durch ihre Adjazenzmatrix W repräsentiert werden. Darüber hinaus

existiert eine Vielzahl alternativer Graphmatrizen. Viele strukturelle Eigenschaften

von Graphen, beispielsweise ihre Kreisfreiheit, Anzahl Spannbäume, oder Random

Walk Hitting Times, spiegeln sich auf die ein oder andere Weise in algebraischen

Eigenschaften ihrer Graphmatrizen wider. Diese grundlegende Verflechtung erlaubt

das Studium von Graphen unter Verwendung sämtlicher Resultate der Linearen

Algebra, angewandt auf Graphmatrizen. Spektrale Graphentheorie studiert Graphen

insbesondere anhand der Eigenwerte und Eigenvektoren ihrer Graphmatrizen. Dabei

ist vor allem die Laplace-Matrix L = D−W von Bedeutung, aber es gibt derer viele

Varianten, zum Beispiel die normalisierte Laplacian, die vorzeichenlose Laplacian

und die Diplacian. Die meisten Varianten basieren auf einer “syntaktisch kleinen”

Änderung von L, etwa D+W anstelle von D−W . Solcherart Modifikationen ändern

meist vollständig die in den Eigenwerten und Eigenvektoren codierte Information.

Auf diese Weise können sich neuartige Verbindungen zu Grapheigenschaften ergeben.

Die vorliegende Doktorarbeit untersucht neue und existierende Varianten von Laplace-

Matrizen. Die f -adjusted Laplacian wird eingeführt und gezeigt, dass diese als eine

spezielle Diagonalmodifikation der normalisierten Laplace-Matrix aufgefasst werden

kann. Im Kontext zufälliger geometrischer Nachbarschaftsgraphen wird bewiesen,

dass diese Matrix eine konkrete Manipulation der zugrundeliegenden Wahrschein-

lichkeitsdichte beschreibt. Diese Intuition erlaubt neuartige Ansätze für verschiedene

Problemstellungen des Maschinellen Lernens, zum Beispiel für die Bildsegmentierung

im Falle nicht-uniform gesampelter Pixelpositionen. Diese Arbeit untersucht zudem

die iterierte Anwendung des Normalisierungsschrittes W 7→ D−1/2WD−1/2, welcher

der normalisierten Laplace-Matrix zugrunde liegt. Das Ergebnis sind neue Resultate

zum Konvergenzverhalten. Diese führen zur Definition der f -fitted Laplacian, welche

sich beispielsweise zur Behebung eines bestimmten Typs von Stichprobenverzerrung

eignet. Das letzte Kapitel studiert die signed Laplacian. Dabei handelt es sich um

eine Erweiterung der Laplace-Matrix auf Graphen mit sowohl positiven als auch

negativen Kantengewichten. Diese Arbeit bietet eine Neuinterpretation des kleinsten

Eigenwertes der signed Laplacian, wodurch sich der zugehörige Eigenvektor als der

kanonische Kandidat für spektrales Korrelations-Clustering offenbart. Die Ergebnisse

des so entwickelten Algorithmus sind State of the Art. Der Algorithmus wird in

einer umfassenden Praxisanwendung implementiert, deren Ziel die automatisierte

Identifikation von unfairem Verhalten in einem Multiplayer-Online-Spiel ist.





Abstract

Graphs are everywhere. For example, people spend a lot of time on traversing the

hyperlink-edges of the web graph. Other examples of graphs are social networks,

public transportation maps, molecules, financial transactions, fishing nets, family

trees, and the graph that you get by connecting any two natural numbers that

have the same digit sum. A graph can be represented by its adjacency matrix W ,

but there exist several alternative graph matrices. Many structural properties of

a graph such as the absence of cycles, number of spanning trees or random walk

hitting times, reflect in these graph matrices as all kinds of algebraic properties. This

fundamental relation allows to study graph properties by applying all the machinery

from linear algebra to matrices. Spectral graph theory focuses particularly on the

eigenvalues and eigenvectors of graph matrices. In this field of research, the graph

Laplacian matrix L = D −W is particularly well-known, but there are numerous

variants such as the normalized Laplacian, the signless Laplacian and the Diplacian.

Most variants are defined by a “syntactically tiny” modification of L, for example

D+W instead of D−W . Nevertheless, such modifications can drastically affect the

information that is encoded in the eigenvalues and eigenvectors. This can finally lead

to new relations to graph properties. This thesis studies novel and existing variants

of Laplacian matrices. The f -adjusted Laplacian is introduced and proven to be a

specific diagonal modification of the normalized Laplacian matrix. In the context of

random geometric neighborhood graphs, this matrix can be understood as a specific

distortion that is applied to the underlying probability density. This intuition allows

for new approaches to various applications in machine learning, for example to image

segmentation in case of non-uniformly sampled pixel positions. This thesis further

studies the repeated application of the normalization step W 7→ D−1/2WD−1/2 that

underlies the normalized Laplacian. It contributes a novel convergence result that

finally leads to the f -fitted Laplacian as another strategy to remove a certain type

of sampling bias. The last chapter studies the signed Laplacian, which generalizes

the Laplacian to graphs of both positive and negative edge weights. This thesis

contributes a novel re-interpretation of the smallest eigenvalue of the signed Laplacian.

It identifies the corresponding eigenvector as the canonical candidate for a spectral

approach to correlation clustering. The suggested algorithm is shown to compete

with state-of-the-art. The algorithm is implemented in an extensive application from

practice that aims at automatically detecting unfair user behavior in a multi-player

online game.
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List of Symbols

Basic notation

The following symbols are used without any further explicit definition.

Symbol Description

N the natural numbers {0, 1, 2, 3, . . .} including 0

R the real numbers, also further constrained as R>0 or R≥0

a, b, x, y, ε, . . . ∈ R, scalar variables are typeset in italic lower case

v, f ,µ, x, y, . . . ∈ Rn, vector variables are typeset in bold lower case if their entries v = (vi)

are accessed, or in italic lower case if not

(vi) entry-wise representation of vector v, short for v = (vi)i=1,...,n

(a1, . . . , a`) a tuple (row vector) of the given ` entries

(sk) infinite sequence of entries sk, short for (sk)k≥a for some self-evident a ∈ N
0 the all-zero-vector (0, . . . , 0)T

1 the all-one-vector (1, . . . , 1)T

ek the vector (0, . . . , 0, 1, 0, . . . , 0)T with a single 1-entry at position k√
f , f q, x/y entry-wise vector operations, here (

√
fi), (f qi ) and (xi/yi), respectively

A,M,L, . . . ∈ Rm×n, matrix variables are typeset in italic upper case

MT , vT the transpose of matrix M and vector v, respectively

M−1 the inverse of an invertible square matrix M

M+ the Moore-Penrose pseudoinverse of any matrix M

[mij ] entry-wise representation of matrix M , short for M = [mij ]i=1,...,m, j=1,...,n

diag(d1, . . . , dn) the n× n diagonal matrix with di at index position (i, i)

diag(d) the diagonal matrix with the entries of vector d along its main diagonal

V,G,G set names are typed in various styles, depending on their context

V the complement V = Ω \ V of the set V in an obvious superset Ω∑
i sum over all possible values for i, short for

∑
i∈S if set S is self-evident

[pred]10 Iverson bracket, takes value 1 if pred is true, and value 0 if pred is false

1A indicator vector of A ⊂ {1, . . . , n}, that is ([i ∈ A]10) ∈ Rn

x→ · convergence of variable x

x
a.s.−−→ · almost sure convergence of random variable x

‖x‖ = ‖x‖2 Euclidean norm of vector x, that is ‖x‖ =
√

xTx =
√∑

i x
2
i

‖x‖1 L1-norm of vector x, that is ‖x‖1 =
∑

i |xi|
BA(c, r) ball of radius r at c ∈ Rn in A ⊆ Rn, that is BA(c, r) = {x ∈ A | ‖x−c‖ ≤ r}
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Specific notation

These symbols are defined later. They are listed here as a reference for a fast lookup.

Symbol Description Defined on page . . .

W set of weighted graph matrices 23, Equation (1.1)

W� set of weak graph matrices, superset of W 59, Equation (2.5)

W weight matrix of some graph 22

G = (V,E,W ) graph of vertices V and edges E of weights W 22

E(W ) set of indices of the non-zero entries in W 23

G(W ) graph implied by weight matrix W 22

D = DW degree matrix D = diag(W1) 22

P random walk transition matrix P = D−1W 27

vol(S) volume of a set of vertices S ⊆ V 22

cut(S) cut weight of cutting between S ⊆ V and S 23

p+, p− intra-/inter-edge probability of a graph model 24

µ+, µ− Gaussian intra-/inter-mean of the GCG model 147
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Chapter 1

Introduction

1.1 The world of spectral graph theory

Our universe consists of all kinds of entities, such as stars, atoms, numbers, humans and ideas.

These entities can be related to each other in countless ways, for example in terms of distance,

weight, prime divisors, shared ancestors or even by random. Every such relation can be

represented as a time-dynamic hypergraph having entities as vertices and hyperedges between

related entities. If we focus only on snapshots in time and pairwise relations, the model

simplifies to a static graph with edges that connect pairs of vertices. Such graphs are

everywhere. Consider for example street maps, protein structures, file directories, electric

circuits, or the fascinating Collatz graph that connects each natural number n by an edge to

n/2 if n is even, or otherwise to 3n+ 1; nobody knows whether it has other cycles than the

trivial cycle 1→ 4→ 2→ 1. Even if there is no explicit graph, but just a collection of entities,

then it lies in our human nature to start searching for a meaningful relation. For example,

if we are given a large unsorted collection of cooking recipes from a website, our impulse is

to structure them in some way. We may group them into vegetarian or not, or rank them

linearly by cooking time, or we may come up with a similarity relation that is the stronger

the more ingredients two recipes share. So even in cases where no graph is given, we can

come up with several ways for defining some. Interesting graphs provide more than a trivial

structure. The graph that connects cooking recipes if they share ingredients will likely show an

interesting community structure of, say, four large clusters. Recipes are intensively connected
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to others of the same cluster, but less strong to recipes of other clusters. A deeper inspection

might reveal that these clusters can be classified roughly as Western cuisine, Asian cuisine,

African cuisine, and sweet pastries from around the world. Within each cluster, one may

continue the exploratory analysis and detect more fine-granular sub-clusters. An alternative

application of this graph could be to suggest new recipes to users of the website, based on

their search requests and their individual click history.

The basic toolkit of graph exploration contains algorithms such as Breadth-First-Search,

Dijkstra’s algorithm and Kruskal’s algorithm in order to explore neighborhoods, shortest

paths and minimum spanning trees, respectively. Network flows and random walk diffusion

are more advanced techniques. For example, an alternative distance measure to the shortest

path distance between two vertices i and j is the commute time: it is defined as the expected

number of steps required by a random walk started at i to visit j and finally return back to i.

In contrast to the shortest path distance, the commute time is influenced by the global cluster

structure of the graph. If two vertices stay close in the sense of shortest paths, but they lie in

different clusters that are connected just by a thin bridge, then their commute time will be

large because the random walk crosses the bridge only rarely. How can such sophisticated

graph properties be studied and computed efficiently? One approach is by graph matrices,

such as the adjacency matrix W ∈ {0, 1}n×n, which has entry 1 at position (i, j) if and only

if i and j are related. This definition generalizes straightforward to W ∈ Rn×n>0 for relations

that assign arbitrary positive weights. Other examples of graph matrices are the incidence

matrix, the edge-adjacency matrix and the random walk transition matrix P = D−1W for D

the diagonal matrix of the vertex degrees. The graph matrix that lies at the heart of this

thesis is the Laplacian matrix L = D −W of a weighted undirected graph.

Every graph matrix is like a kaleidoscope that allows to look at graphs from the viewpoint of

linear algebra. Structural properties of graphs reflect in manifold ways as algebraic properties

of the corresponding graph matrices. It is easy to see that the length of a shortest unweighted

path from i to j is equal to the smallest exponent k for which the entry (i, j) in the matrix

W k is non-zero. It is definitely much harder to see that the commute time for all pairs of

vertices can be extracted from the entries in the Moore-Penrose pseudoinverse of the Laplacian

matrix (Fouss et al., 2007).

Within the field of graph theory, the subfield of spectral graph theory focuses on

connecting graph properties to the eigenvalues and eigenvectors of graph matrices. See for

example Arsić et al. (2012) for an overview on applications of spectral techniques in computer

science. One aspect of spectral graph theory, which received the most attention in the machine

learning community, is spectral clustering. Early results on spectral clustering are given

by Fiedler (1973) who relates several connectivity properties of an unweighted graph to the

second-smallest eigenvalue of L. In the same year, Donath and Hoffman (1973) give a lower

bound on the number of cut-edges for a k-partition in terms of the k largest eigenvalues of a

family of matrices that contains −L as a special case. Another notable work is by Hall (1970)

who proved that the r smallest positive eigenvectors of L can be used to embed the vertices
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of a graph in r dimensions in a way that minimizes the energy fTLf =
∑

i<j wij(fi − fj)2

subject to certain constraints. This technique is known as spectral embedding. It is still

used in graph visualization in order to determine coordinates at which to plot the vertices of

any given graph in the plane.

Spectral graph theory beyond spectral clustering is much older. Cvetković et al. (1980)

present a comprehensive survey of results from spectral graph theory since the 1950s. However,

the most groundbreaking publication in spectral graph theory, if not even its birth, dates back

to Kirchhoff (1847): he proved the fascinating result that the number of different spanning

trees of an unweighted graph is equal to the product of all positive eigenvalues of the Laplacian

matrix L, divided by n.

Over the decades, spectral graph theory became the active field of research that it is still

today. In particular several alternative variants of the Laplacian matrix L were introduced,

some of which are briefly presented now. The most famous alternatives to L are the symmetric

normalized Laplacian matrix L and the random-walk normalized Laplacian matrix Lrw, both

introduced in detail in Section 1.3.5. Cvetković et al. (2010) study further the spectra of the

signless Laplacian, defined as D+W , and of the Seidel matrix, whose entries are −1 if ij is an

edge, 0 if i = j, and 1 otherwise. Bühler and Hein (2009) introduce the p-Laplacian, a nonlinear

generalization of the Laplacian that focuses on minimizing the energy
∑

i<j wij |fi− fj |p. This

implies L as a special case for p = 2. The authors show that the second-smallest eigenvalue of

the p-Laplacian converges for p→ 1 to the optimal Cheeger cut value. Hou et al. (2003) extend

the Laplacian to graphs of mixed positive and negative edge weights, denoted as the signed

Laplacian. This variant is studied in detail in Chapter 4. There are multiple approaches to

adapt the Laplacian to directed graphs, that is to non-symmetric W . Chung (2005) achieves

this by relating W to a new variant of the Laplacian matrix that is symmetric by definition.

Boley et al. (2011) study an alternative approach that is not based on a symmetrization. Their

so-called Diplacian, which also comes in a normalized variant, particularly allows to express

the commute time for directed graphs. Bapat et al. (2001) study what they call the perturbed

Laplacian, that is U −W for an arbitrary diagonal matrix U , which particularly includes L

and −W as special cases. They generalize several results known for L to this general case.

Finally, some recent work focuses on generalizing spectral graph theory to hypergraphs, see

for example Xie and Qi (2016) and the references therein.

All these approaches have one aspect in common: they study a variant of the original

definition of the Laplacian matrix L. There is no single variant of a Laplacian that outperforms

all others in all aspects. Some of the alternatives are motivated by the need to adapt the

Laplacian to new graph models, others are motivated by exploring whether specific properties

of a graph are captured better by some other graph matrix than by L. In most cases the

Laplacian variant is just a tiny modification, for example D+W instead of D−W . Even the

Laplacian matrix L itself is up to a switch of sign just a diagonal modification of the adjacency

matrix because −L = W −D. However, it turns out that diagonal modifications, and also

other syntactically simple changes, can have a strong impact on the algebraic properties such
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as the eigenvectors.

In this thesis, I study the following variants of Laplacian matrices. Chapter 2 introduces the

f -adjusted Laplacian, which is shown to be a specific diagonal modification of the normalized

Laplacian matrix L. I provide a geometric intuition that allows to play with the parameter

vector f in a way that establishes new approaches to various applications in machine learning,

for example to spectral image clustering of non-uniformly sampled pixel positions. Chapter 3

studies in depth the normalization step W 7→ D−1/2WD−1/2 that underlies the symmetric

normalized Laplacian, and finally introduces the f -fitted Laplacian as an alternative strategy

to remove a certain type of sampling bias. In Chapter 4, I originally discovered an interesting

real-weighted variant of the Laplacian, but it turned out that this variant is already known

in the literature as the signed Laplacian. However, I contribute a novel re-interpretation of

its smallest eigenvector, which suggests the signed Laplacian as the perfect candidate for a

spectral approach to correlation clustering.

Similar to the distinction into Theoretical Physics and Applied Physics, the field of Machine

Learning can be considered as a collaboration between Theoretical Machine Learning and

Applied Machine Learning. Along this axis between theory and practice, this thesis is

definitely located on the side of theory. However, it provides several explicit links into concrete

machine learning applications, and it always focuses on providing a plain intuition that

allows to apply the theoretical results. Moreover, the last chapter includes an extensive

software implementation that particularly shows that real machine learning applications

require additional ad-hoc preprocessing steps before a machine learning algorithm can be

applied. In contrast to such diffuse practical issues, the theoretical findings discover some

of the underlying intrinsic structures in a locally sharp clarity that preserves the magic of

looking through a real kaleidoscope.

1.2 Structural overview on this thesis

This section describes briefly the structure of the entire thesis. The follow-up section presents

various techniques and formal concepts that build a solid foundation of all the following. This

introductory chapter ends with a summary of my contributions and a list of my publications.

Chapter 2, Chapter 3 and Chapter 4 present my research results in detail on both an

intuitive and a technical level, where each chapter focuses on an individual topic. All chapters

are connected by the same leitmotif that is also the title of this thesis: they study three

variants of the graph Laplacian in theory and practice, one variant per chapter. All chapters

follow the same structure:

• Chapter introduction. Introduces the respective topic by providing an application-

oriented context.
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• Informal summary of the main contributions. Provides a high-level summary of

my contributions to this topic.

• Formal setup. Contains details on all relevant formal definitions and concepts that

are required in order to fully understand the later contributions in all aspects.

• Main contributions. Summary of my main contributions, stated formally precise but

without proofs.

• Proofs and technical details. This section goes into depth. It contains mathematical

proofs and additional detailed insights.

• Applications. Puts the theoretical findings into practice by highlighting some concrete

applications that benefit from my contributions.

• Chapter summary. A brief summary of the chapter at an advanced level of detail.

According to the principle “you write what you read”, frequent usage of the singular form

“I” in scientific texts distracts my attention because most publications are written from the

plural “we” perspective. Moreover, in most cases “we” refers to “you and me”. For that

reason, I stick to the plural form in all later technical discussions (unless it sounds strange),

while I reserve the singular form only for lifting the reader up to the meta level.

1.3 Machine learning context

This section briefly introduces some of the context that is relevant for this thesis, in particular

from random graph theory, linear algebra and spectral clustering. Readers that are familiar

with these topics might fly over this section. However, beside introducing basic formalisms,

this section focuses on motivating and connecting these techniques on a more applied, intuitive

level.

1.3.1 Graphs

Data sets are typically defined as collections of entities, in which each entity refers to a

combination of attribute values. Such data sets can be represented as a table: each row

corresponds to an entity, each column to an attribute, and each table cell contains the

respective value. Many machine learning algorithms can more or less directly work on such

tabular data. However, the tabular form is not well-suited to represent relational information

between entities, such as friendship relations in social networks. The natural choice to represent

relational data is by a graph. Each entity corresponds to a vertex of the graph, and each

relation between entities corresponds to an edge that connects vertices. For example, the

world wide web can be represented as a graph that has all web documents as its vertices,
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and hyperlinks between documents as its edges. As another example, consider ad-hoc sensor

networks, where each sensor (vertex) is located at some position, and can communicate with

other sensors (along edges) if they are located sufficiently close.

The large variety of different types of relational information implies a large variety of

different types of graphs. For example, the social network graph is undirected (i is a friend

of j if and only if j is a friend of i), while the hyperlink graph is directed (i may link to j but

not vice versa). The sensor network graph has edges that refer to Euclidean distances, and it

further provides an embedding of its vertices into the plane at the sensor positions, which is

not the case for the other two examples.

Weighted graphs

An undirected graph G = (V,E) consists of a set of vertices V = {1, . . . , n} and a set of

edges E. For i, j ∈ V , we denote by ij ∈ E, equivalently ji ∈ E, that the undirected edge

ij = ji exists in the graph. We particularly allow G to contain edges ii ∈ E that are incident

to a single vertex, denoted as selfloops. An undirected graph has at most (n2 + n)/2 edges.

A directed graph is defined similar, but now it holds that E ⊆ V ×V . The directed edges

ij and ji exist independently of each other in the graph, and equality ij = ji holds if and

only if i = j. A directed graph has at most n2 edges.

Given an undirected or directed graph G = (V,E), every sequence of vertices (v0, v1, . . . , v`)

with vivi+1 ∈ E for all 0 ≤ i < ` is called a walk. It is a closed walk if v0 = v`. A walk is

denoted as a path if vi 6= vj whenever i 6= j.

A (positive-)weighted graph G = (V,E,W ) is an undirected or directed graph together

with positive edge weights wij > 0 for all ij ∈ E. These edge weights can be arranged as

the entries of a non-negative matrix W := [wij ] ∈ Rn×n≥0 with the additional convention that

wij := 0 whenever ij /∈ E. The matrix W is called the (weighted) adjacency matrix of G,

or simply its weight matrix. An unweighted graph is just a special case of a weighted

graph by the convention that wij := 1 for all ij ∈ E.

Any chosen graph G uniquely determines the weight matrix W , and any chosen non-negative

square matrix W uniquely determines G. This gives a bijection between the set of all directed

weighted graphs and the set of all non-negative matrices. In the same way, we can identify

undirected weighted graphs with symmetric non-negative matrices. For that reason, we also

refer by G(W ) to the graph that corresponds to the non-negative matrix W ∈ Rn×n≥0 . Note

that there is a slight abuse of notation for symmetric W , since G(W ) may either refer to the

undirected graph or the directed graph. Whenever this distinction makes a difference (as for

the number of edges), it is always clear from the context whether we consider undirected or

directed graphs.

The (out-)degree of vertex i is di :=
∑

j∈V wij that is the sum along the i’th row in W .

The degree vector d := (di) can also be written as d = W1 with 1 the all-one vector. This

defines the degree matrix D := diag(d) as the diagonal matrix that has the degree vector

d along its diagonal. For S ⊆ V , we denote by vol(S) :=
∑

i∈S di the volume of S, and by
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cut(S) :=
∑

i∈S,j /∈S wij the weight of the cut between S and its complement S.

For every matrix A ∈ Rm×n, we denote by E(A) := {ij | aij 6= 0} the set of all non-zero

index positions in A. We say that A has at least the zeros of B if E(A) ⊆ E(B) and that

they have the same zeros if E(A) = E(B).

A (strongly) connected component of a graph is any maximal subset of vertices S ⊆ V
for which it holds that every i ∈ S can be reached by a walk from every j ∈ S.

An isolated vertex is not incident to any edge, not even to a selfloop. Slightly more

general, a separated vertex is not adjacent to any other vertex, but it may have a selfloop.

Since isolated vertices appear in the weight matrix as a zero row and a zero column, they

often require a special handling without adding much value. For that reason, we usually study

the set

W = {X ∈ Rn×n≥0 | X = XT , X1 > 0} (1.1)

of all graph matrices that belong to a weighted undirected graph of positive degrees (that

is, without any isolated vertex). For the special case of a diagonal matrix W ∈ W, the

graph G(W ) is denoted as a loops-only graph, since all its vertices have a selfloop but are

separated from all others. A graph is simple if it is undirected and has no selfloop.

1.3.2 Random graph models

In machine learning, tabular data is often interpreted as the result of a random sampling

process: each row represents an individual sample point drawn from a probability distribution

on the space of all possible combinations of attribute values (including any label attribute).

This way of thinking allows to apply all kinds of statistical reasoning. In particular, one can

estimate the underlying probability distribution from a given training data set, and then apply

this knowledge to new incoming sample points. For example, the fundamental Bayes Classifier

estimates the label of a sample point by selecting the label that has the maximum probability

to be correct, given the observed values of the other attributes.

Similar to the case of tabular data, there exist different random models for relational data.

A random graph model always refers to some probability distribution on the set of all

graphs. Random graph models are often defined in a generative way that constructs instances

of the model by a random process. This avoids to state the implied probability distribution

explicitly, and further allows to fit the model to applications intuitively.

For example, the earlier mentioned sensor network may be modeled by a graph that connects

each sensor by an edge to all others that lie within a distance of at most m meters, weighted

by the respective distance. This model is hard to define precisely in terms of sets of matrices.

However, one can still exploit individual properties, such as the facts that each entry in such

a matrix is at most m and that all entries satisfy the triangle inequality.
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Planted partition model (PP)

A simple unweighted graph model that is commonly used to study community structures in

social networks is the Planted Partition model:

PP ( (n1, . . . , nk), p+, p−) .

A random graph from this model has ni vertices of community/class i. It is generated as

follows: starting with the edgeless graph on n =
∑k

i=1 ni vertices, every (non-selfloop) edge

is added independently of all others by random choice. Each intra-edge (that is an edge

connecting two vertices of the same class) is added with probability p+, and each inter-edge

(that is an edge connecting two vertices of different classes) is added with probability p−. For

representing communities, one further assumes the model to be assortative, that is p+ > p−.

Such a graph shows higher connectivity within each class, and lower connectivity between

different classes. It is a special case of the stochastic block model by Holland et al. (1983),

which allows to define an individual edge distribution for each pair of classes. If we are given

a graph of which we believe that it approximately fits to the planted partition model (even for

unknown parameters), then we can apply every algorithm and every theory that is developed

for this model. For example, in order to detect the true communities, we can apply the

clustering algorithm by Chen et al. (2012), or the approach by Abbe and Sandon (2015), who

further provide an interesting survey on recent results from this field of research.

Random geometric neighborhood graphs (RGNG)

Another graph model, studied in depth in Chapter 2 of this thesis, is the random geometric

neighborhood graph (RGNG). An RGNG is a weighted graph G = (V,E,W ) plus the

additional information that G is determined by neighborhoods of random sample points. To

make this precise, let us have a look at each of the terms “geometric”, “neighborhood” and

“random” individually. The word “geometric” in RGNG indicates that each vertex i ∈ V is

identified with a position xi in d-dimensional Euclidean space Rd. That is, at the heart of

each RGNG there is a fixed set of n points {x1, . . . ,xn} ∈ Rd. The word “neighborhood” in

RGNG emphasizes that every edge weight wij is a similarity measure, which takes larger

values the closer i lies to j. Since this is the opposite meaning of a distance measure, a simple

similarity measure is given by the inverse Euclidean distance ‖xi − xj‖−1. However, other

similarity measures have more desired properties. We study three variants of RGNGs. One is

unweighted, which is a special case of a similarity measure, and two have Gaussian weights

assigned to every edge, defined as follows for bandwidth parameter σ > 0:

wij :=
1

(2πσ2)d/2
· exp

(
−‖xi − xj‖2

2σ2

)
. (1.2)

Section 2.3.2 provides details on the origins of Equation (1.2). The three variants we study

are undirected graphs, defined for any set {x1, . . . ,xn} as follows:
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• Gaussian graph. Takes one parameter: bandwidth σ > 0. All pairs of vertices i 6= j

are connected by an edge of Gaussian weight (1.2). As a consequence, all off-diagonal

entries in the weight matrix are positive.

• r-graph. Takes one parameter: radius r > 0. Two vertices i 6= j are connected by an

unweighted edge (wij := 1) if and only if their Euclidean distance is ‖xi − xj‖ ≤ r.

• weighted kNN-graph. Takes two parameters: bandwidth σ > 0 and the intended

number of neighbors k < n. Two vertices i 6= j are connected by an edge of Gaussian

weight (1.2) if either xj is among the k closest sample points to xi, or xi is among the

k closest sample points to xj . Precisely, let (xσi(1),xσi(2), . . . ,xσi(n)) denote all sample

points sorted in increasing distance to xi = xσi(1). Further let rk(i) := ‖xσi(k+1) − xi‖
denote the distance of xi to its k-nearest neighbor. Then ij ∈ E if ‖xi − xj‖ ≤ rk(i)

or if ‖xi − xj‖ ≤ rk(j). Note that this definition yields a symmetric relation, hence an

undirected graph. Further every vertex is adjacent to at least k others. The weighted

kNN-graph equals the Gaussian graph with most of its edges omitted.

A geometric neighborhood graph can be constructed on top of any collection of points

{x1, . . . ,xn}, no randomness needs to be involved. The word “random” in RGNG indicates

that the points x1, . . . ,xn ∈ Rd are the result of a random sampling process: the sample

points xi are independently and identically distributed (i.i.d.) drawn according to an

arbitrary but fixed probability distribution on Rd. Generating an RGNG starts with a random

selection of n sample points. Once these are fixed, the remaining construction is deterministic

and adds edges and edge weights according to one of the above definitions of neighborhoods.

Let us summarize the RGNG construction by repeating the following sentence from above:

“ An RGNG is a weighted graph plus the additional information

that it is determined by neighborhoods of random sample points. ”
Two RGNGs from the same model and the same underlying probability distribution look

differently because they are constructed on different sets of sample points. However, as demon-

strated in Figure 1.3.1, we can expect that these graphs show similar structural properties

(for example degree distribution, diameter, etc.) and hence also similar algebraic properties

of their graph matrices (for example in terms of eigenvalues, see Section 1.3.5). Certain

properties of the underlying probability distribution are encoded in structural properties of

the graph as well as in algebraic properties of graph matrices.

Several relation-based machine learning algorithms rely on this link between similarity

graphs and an implicitly underlying probability distribution. Such algorithms assume that

high-density areas that are separated by low-density areas provide valuable information for the

application. Examples of such algorithms are the popular density-based clustering algorithms

DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al., 1999) and their numerous enhancements,

mode-seeking algorithms like Mean Shift (Cheng, 1995), outlier detection algorithms such
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↗
↘

(a) (b) (c) (d) (e)

Figure 1.3.1: Generating random geometric neighborhood graphs. (a) some probability density p
on [0, 1]2 (white = high density). p is the sum of two translated 2-dimensional Gaussian
distributions clipped to the unit square. (b) two different samples (top and bottom) of
1000 sample points drawn from p. (c) vertices (sample points) connected by edges of
the r-graph for r = 0.1. (d) the same graph, but now each vertex i is colored by a heat
color that indicates its degree di (red = high degree). The vertex degree distribution
follows roughly the profile of the underlying density p. (e) the same graph, but now
each vertex is plotted at a random position rather than at its true sample point. This
better visualizes the input to applications in which the true sample points are not
known, but only their relations.
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as Local Outlier Factor (Breunig et al., 2000), semi-supervised label propagation (Zhu and

Ghahramani, 2002), geometric graph spanner construction with density-dependent slack (Chan

et al., 2006), and cluster-detection by density level sets (Chaudhuri et al., 2014). These and

related algorithms differ in two aspects:

• theoretical foundation: some of the algorithms borrow from the setting of RGNGs

only the intuition that groups of strongly connected vertices correspond to high-density

areas, while groups of loosely connected vertices correspond to low-density areas. Other

approaches prove mathematical statements, so they particularly have to formulate

precisely which type of probability distributions they consider. For example, a common

mild restriction is to assume that the probability distribution has a probability density

(which excludes some exotic distributions), and further that the density is continuous

(at least almost everywhere, that is except for a set of zero-measure). The assumptions

that are made in Chapter 2 are stated in Definition 2.3.2. The results in Chapter 2 focus

on both: on a solid theoretical foundation, plus on keeping an intuition that allows to

apply the algorithm creatively in practice.

• input data: some algorithms assume that the sample points x1, . . . ,xn are given as an

input, so they can carry out any neighborhood computations directly on the sample

points. Other algorithms do not require the sample points to be known, they only

consider the similarity matrix W . Similar to kernel methods, such algorithms implicitly

operate on an unknown coordinate embedding. This setting is also in the focus of this

thesis. During the theoretical analysis we may access density p, dimensionality d, sample

points x1, . . . ,xn, weight matrix W , and all parameters of the RGNG construction.

However, the algorithm itself does only take the weight matrix W of similarity weights

as its input, and assumes that W refers (at least approximately) to some RGNG.

1.3.3 Random walks on graphs

A random walk (v0, v1, . . . , v`) is a graph walk that is generated by a random process. At

time t ≥ 0 the current state is vt =: i, and the follow-up vertex vt+1 is chosen randomly

according to the transition probabilities pij = wij/di for all j ∈ V . This random process

satisfies the Markovian property: the probability for choosing the next state depends only

on the current state, but is independent of the older history. Formally,

pij = P (vt+1 = j | vt = i) = P (vt+1 = j | vt = i, . . . , v0 = s) .

The transition probabilities define the entries of the transition matrix P := [pij ], which is

constant for all random walks on this graph. P is related to W by

P = D−1W ,

where we assume that W does not contain an isolated vertex.
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Usually one is not interested in the trajectory of a single random walk, but in the aggregated

behavior of infinitely many alternative random walks simultaneously. This can be achieved by

studying the diffusion process (π0,π1, . . . ,π`), which no longer has a single vertex as its

state, but a probability distribution πt : V → [0, 1] on the vertices. We treat each πi as a

row vector. The diffusion process no longer has to make individual random decisions at each

step, because each distribution πt+1 can be derived from its predecessor πt deterministically

by πt+1 = πtP . By induction it follows that πt = π0P . Thus, the whole diffusion process is

determined by choosing an initial distribution π0. This raises the question of what happens

for t → ∞? Does π := limt→∞ π0P exist? The short answer is: it depends on additional

properties of the graph (Levin et al., 2009). However, any such limit must be a stationary point,

that is π = πP , which is the motivation for denoting such π as a stationary distribution.

In the typical case that G(W ) refers to an undirected, connected, non-bipartite graph, it is

guaranteed that for every initial distribution π0 the diffusion converges to the same unique

stationary distribution π.

1.3.4 Linear algebra background

The following fact sheet provides a brief summary of several properties of real symmetric

matrices. These are applied later without further reference.

Fact 1.3.1 (Properties of real symmetric matrices)

The following statements and definitions apply to every real symmetric matrix A:

(a) A has n real eigenvalues α1 ≤ α2 ≤ . . . ≤ αn ∈ R, denoted as the spectrum of A,

with ρ(A) := max{|α1|, . . . , |αn|} the spectral radius of A.

(b) all corresponding eigenvectors are real-valued, denoted as v1,v2, . . . ,vn ∈ Rn \ {0}.
We denote v1 as the smallest eigenvector, and vn as the largest eigenvector.

(c) all eigenvectors are orthogonal to each other, that is vTi vj = 0 whenever i 6= j.

(d) A can be represented as the sum A =
∑

i αiviv
T
i

(e) A is positive definite if all eigenvalues are positive (α1 > 0)

(f) A is positive semi-definite if all eigenvalues are non-negative (α1 ≥ 0)

(g) every matrix of the form B = SAS−1 for an invertible matrix S is similar to A,

which implies that B has all the same eigenvalues αi, but to the eigenvectors Svi

(h) the Rayleigh quotient R(A,x) := xTAx /xTx satisfies for all vectors x 6= 0 that

α1 ≤ xTAx

xTx
≤ αn .

As a consequence of Fact 1.3.1 (h) we get that if we are interested in the smallest or the largest

eigenvalue of a given real symmetric matrix, then we can get simple upper/lower bounds on
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them by evaluating R(A,x) for arbitrary vectors x 6= 0. Moreover, the extremest possible

values of R(A,x) are exactly these eigenvalues, and the respective minimizer/maximizer is a

corresponding eigenvector:

α1 = min
x 6=0

xTAx

xTx
= R(A,v1) and αn = max

x 6=0

xTAx

xTx
= R(A,vn) . (1.3)

We refer to Equation (1.3) as the Rayleigh quotient characterization of the small-

est/largest eigenvalue. A subtle but fascinating aspect of this characterization is that it

bridges between two worlds: extremal eigenvalues and eigenvectors of a matrix on the one side,

and an optimization problem on the other side. Section 1.3.6 shows how this bridge can be ex-

ploited by algorithms. This connection can even be extended to all other eigenvalues, by further

restricting x to lie in the orthogonal complement of the eigenspace spanned by all smaller/larger

eigenvectors. Precisely, for real symmetric matrix A let Ek−1 := span{v1, . . . ,vk−1} denote

the (k − 1)-dimensional linear subspace spanned by k − 1 smallest eigenvectors of A. Then

the k-smallest eigenvalue can be characterized together with a corresponding eigenvector as:

αk+1 = min
x 6=0

∀z∈Ek−1 :xT z=0

xTAx

xTx
= R(A,vk) . (1.4)

We refer to Equation (1.4) as the Rayleigh quotient characterization of the k-smallest

eigenvalue. A similar result can be stated fully analogously for the k-largest eigenvalue.

In particular we get that Equation (1.3) is a special case of the general characterization.

The Rayleigh quotient characterization is a consequence of the (Courant-Fisher-Weyl)

minimax principle, see for example the book by Bhatia (1997) for details.

We get from this characterization the following intuitive strategy to solve the eigenvalue

problem Ax = αx for real symmetric A: first minimize the Rayleigh quotient over all x 6= 0

to get α1 and v1. Then minimize the Rayleigh quotient over all x 6= 0 subject to xTv1 = 0,

which gives α2 and v2. Continue in this way until αn and vn. In particular, we get that the

second-smallest eigenvalue is characterized by

α2 = min
x6=0

xT v1=0

xTAx

xTx
= R(A,v2) . (1.5)

Numerical eigenvalue solvers apply much more advanced strategies, particularly if they can deal

with sparse matrices (matrices in which most entries are 0). Eigenvalue solvers work more

efficiently and numerically more stable for symmetric matrices than for arbitrary matrices, and

even better for positive (semi-)definite matrices. That is, whenever possible, we should prefer

solving an eigenvalue problem of a positive semi-definite matrix, or at least of a symmetric

matrix, rather than of an arbitrary matrix.
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1.3.5 Graph matrices

The one-to-one correspondence between weighted graphs and weight matrices implies that all

properties of a weighted graph are also encoded in its weight matrix, and vice versa. This

is the fundamental connection between graph theory and matrix analysis. However, the

complexity of formulating properties can differ extremely between the graph language and

the matrix language, particularly if we focus only on linear algebra. Nevertheless, many links

between graph properties and algebraic properties of the weight matrix are known:

• G(W ) can be interpreted as an undirected graph if and only if W is symmetric

• for an unweighted graph, the number of different walks from vertex i to vertex j of

length k is equal to the entry (i, j) in the matrix W k

• G(W ) contains no selfloop if and only if the trace of W (i.e., the sum of all main diagonal

entries) is zero

• two graphs G(W ) and G(W ′) are isomorphic if and only if W and W ′ are similar via

some permutation matrix P , that is W ′ = PWP−1

• G(W ) does not contain any closed walk if and only if W is nilpotent (i.e., if there exists

some k such that W k is the all-zero matrix)

This list does by far not end here. Countless graph theoretical properties reflect in sometimes

sophisticated properties of graph matrices, particularly in eigenvalues and eigenvectors. For

example, as proven by Wilf (1967), if G(W ) is a simple connected graph, then the minimum

number c for which a c-coloring of the graph exists is bounded by c ≤ αn + 1 for αn the

largest eigenvalue of W . While early work like this focused on the adjacency matrix, it turned

out that some graph properties show up better in other graph matrices, particularly in the

Laplacian matrices that are going to be introduced next. The correspondence between graphs

and matrices further allows to think about modifications of matrices as of modifications of

graphs. We elaborate such matrix-driven graph modifications in the later chapters.

Three standard variants of Laplacian matrices

A prominent family of alternative graph matrices, particularly in spectral graph theory,

consists of the (unnormalized) Laplacian matrix L, the (symmetric) normalized Laplacian

matrix L, and the random-walk normalized Laplacian matrix Lrw.
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Definition 1.3.2 (unnormalized Laplacian matrix)

For an undirected graph of weight matrix W , the (unnormalized) Laplacian matrix

L = [lij ] is defined as

L := D −W ,

with D the degree matrix. That is element-wise,

lij =

{
di − wii i = j

−wij i 6= j
.

L is also known in the literature as the graph Laplacian, the discrete Laplacian, the combina-

torial Laplacian, and under several other names.

Definition 1.3.3 (symmetric normalized Laplacian matrix)

For an undirected graph of weight matrix W ∈W, the (symmetric) normalized Laplacian

matrix L = [`ij ] is defined as

L := D−1/2LD−1/2 = I −D−1/2WD−1/2 ,

with D the degree matrix. That is element-wise,

`ij =

{
1− wii/di i = j

−wij/
√
didj i 6= j

.

We refer to L by the general term “normalized Laplacian”, although there are alternative

“normalized” variants. For example, the following definition introduces another variant that is

closely related to L as well as to the transition matrix P .

Definition 1.3.4 (random-walk normalized Laplacian matrix)

For an undirected graph of weight matrix W ∈W, the random-walk normalized Laplacian

matrix Lrw = [`rwij ] is defined as

Lrw := D−1/2LD1/2 = D−1L = I − P ,

with D the degree matrix and P the transition matrix. That is element-wise,

`rwij =

{
1− wii/di i = j

−wij/di i 6= j
.
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If we need to refer to W explicitly, we also denote these three variants of Laplacian matrices

by L(W ), L(W ) and Lrw(W ), respectively. The following fact sheet lists some of their basic

but nevertheless relevant properties.

Fact 1.3.5 (Properties of the three standard Laplacian matrices)

For W ∈W, the Laplacian matrices L, L and Lrw have the following properties:

(a) in L and in Lrw, each row sums up to 0, that is L1 = Lrw1 = 0. This further

implies that 1 is in both cases an eigenvector to the eigenvalue 0.

(b) L is similar to Lrw, thus it has the same eigenvalues with eigenvectors scaled by

D1/2. In particular, the vector (
√
di) is an eigenvector of L to eigenvalue 0.

(c) for each of L, L and Lrw, the multiplicity of the eigenvalue zero equals the number

of connected components in G(W ). Hence the respective sorted list of eigenvalues

0 = α1 = . . . = αk < αk+1 ≤ . . . ≤ αn attests k connected components.

(d) the eigenvalues of L are non-negative but unbounded. The eigenvalues of L and

Lrw are bounded to [0, 2].

(e) L and L are positive semi-definite, but Lrw is not (since not symmetric)

(f) Lrw has the same eigenvectors as P , with eigenvalues mapped by α 7→ 1− α

(g) L(W ) = L(W +X) for every diagonal matrix X, that is, changing the weights of

selfloops does not change the unnormalized Laplacian matrix.

(h) L(W ) = L(c ·W ) for all c > 0. Scaling all edge weights by the same factor does not

change the normalized Laplacian matrix. The same holds true for Lrw.

(i) L, L and Lrw are equal to the zero matrix if and only if G(W ) is a loops-only graph

The basic results in Fact 1.3.5 cannot illustrate the rich variety of deep connections between

structural graph properties and algebraic properties of graph matrices. Merris (1994) gives a

comprehensive survey on graph properties that show up in the unnormalized Laplacian L.

Chung (1997) is the standard reference for the normalized Laplacian L, connecting its spectrum

for example to graph cuts, flows and expansion properties. The survey by Lovász (1993) studies

in particular graph connectivity in terms of eigenvalues and eigenvectors of the transition

matrix P , thus of Lrw. An in-depth discussion on the different characteristics of all three

standard Laplacians is given by von Luxburg (2007).

1.3.6 Spectral clustering

Spectral clustering is a technique to detect clusters in a graph from the eigenvectors of its

Laplacian matrices. This is achieved by describing clusters in terms of a minimization problem
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that is finally relaxed to the Rayleigh quotient characterization of Laplacian eigenvalues. This

section gives a brief introduction — see the tutorial by von Luxburg (2007) for details.

Balanced cuts

For a graph G = (V,E,W ), the MinCut optimization problem asks for a partition of V into

two non-empty sets such that the weight of the corresponding cut is minimal. Formally,

MinCut := min
S⊆V

S/∈{∅,V }

cut(S, S) . (1.6)

The MinCut focuses on a cut of absolute smallest value, even if this is achieved by just cutting

off a single vertex from the rest. Indeed, in most graphs the MinCut gives an extremely

imbalanced partition. It is not suitable for the case where we want to separate two large

clusters that have relatively few connections between them. For example, assume that we are

given a connected similarity graph and we expect to find two clusters that are well-connected

internally, but loosely connected to each other. The MinCut is not the right tool to find these

two clusters. However, we can extend Equation (1.6) by adding a factor that penalizes strongly

imbalanced clusters. This is a common strategy to prefer balanced cluster proportions, and

yields the following generic objective of a balanced cut optimization problem:

BalancedCutimbal := min
S⊆V

S/∈{∅,V }

imbal(S, S) · cut(S, S) , (1.7)

where imbal is an “imbalance penalty” function that gets the larger the stronger the imbalance

between S and S is. This generic balanced cut criterion is also studied by Hein and Setzer

(2011), who further provide a general approximation algorithm to solve it. A popular balanced

cut is the CheegerCut, defined by imbal(S, S) := 1/min{|S|, |S|}. Strongly related to spectral

clustering is the RatioCut, defined as follows:

RatioCut = min
S⊆V

S/∈{∅,V }

(
1

|S|
+

1

|S|

)
· cut(S, S) . (1.8)

The RatioCut treats vertices of high degree in the same way as vertices of low degree. This can

be desired or not in applications. An alternative, denoted as the Normalized Cut (NCut),

balances the size of clusters by their volume rather than by their cardinality:

NCut := min
S⊆V

S/∈{∅,V }

(
1

vol(S)
+

1

vol(S)

)
· cut(S, S) . (1.9)

The choice of the right balancing method for balanced cut minimization depends on the

application, or more abstract, on the graph model. In any case we have to choose some

balancing method, since the MinCut alone does not give meaningful results.
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Spectral relaxation

As originally proven by Hagen and Kahng (1992), the RatioCut can be approximated in terms

of the second-smallest eigenvector of the unnormalized Laplacian matrix L. Two steps are

involved to achieve their result: “rewrite” and “relax”. For the “rewrite” step one can verify

that Equation (1.8) is equivalent to

RatioCut = min
u∈U

uT 1=0

uTLu

2n
, (1.10)

where U is defined as the discrete set of all vectors u = (ui) of the form

ui =

+
√
|S|/|S| , i ∈ S

−
√
|S|/|S| , i ∈ S

, for every non-empty S ( V . (1.11)

The optimization problem (1.10) over the set U relates RatioCut to the unnormalized Laplacian

matrix L in an exact way, so it remains to be NP-hard. Now observe that each of the 2n − 2

many vectors u ∈ U has the squared length n =
∑

i u
2
i = ‖u‖2 = uTu, thus we get that

U ( {f ∈ Rn | fT f = n} =: S. The “relax” step is a relaxation of the discrete optimization

problem by extending the original set of feasible solutions U to the larger set of all vectors

f of length
√
n, that is S. The bad news is that the minima of the relaxed problem can lie

outside of U , in S \ U . However, the good news is that the problem is no longer NP-hard, but

can be solved efficiently as an eigenvalue problem. Precisely, we see that the relaxation of

(1.10) equals Equation (1.5) for v2 the second-smallest eigenvector of L:

RatioCut = min
u∈U

uT 1=0

uTLu

2n

relax→
≈ min

fT f=n
fT 1=0

fTLf

2n
⇔ min

f 6=0

fT 1=0

fTLf

fT f
= R(L,v2) .

The notation “min · ⇔ min ·” refers to the relation “arg min · = arg min ·”, so the minimum

value may change (here, by dropping the factor 1/2), but the set of minimizers is unchanged.

Taking a similar road, it was proven by Shi and Malik (2000) that the NCut can be

approximated in terms of the second-smallest eigenvector of the random-walk normalized

Laplacian matrix Lrw.

Spectral clustering algorithms

The generic approach to two-class spectral clustering of a connected graph is shown by

Algorithm 1.3.2 (2-SpectralClustering). The basic idea is to take the second-smallest

eigenvector of one of the Laplacian matrices, L, L or Lrw, and then derive a two-partition of

the graph vertices by observing whether the corresponding entry in this eigenvector is positive

or not. For L, that is for approximating the RatioCut, this rounding strategy is suggested by

Equation 1.11. A similar result (although not symmetric at 0) holds for NCut, that is for Lrw.
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Algorithm: 2-SpectralClustering

Input:

• G = (V,E,W ) connected undirected graph

• selected type of Laplacian matrix: L, L, or Lrw

Output:

• V = S ·∪ S partition of V

Algorithm:

1. determine the second-smallest eigenvector v2 of the desired matrix (L, L, or Lrw)

2. define the set S ⊆ V from v2 = (vi) by thresholding at 0, that is i ∈ S ⇔ vi ≤ 0

Algorithm 1.3.2: 2-SpectralClustering algorithm

Let us put some comments on this approach:

• the algorithm’s output is exactly the same for L and Lrw, since scaling by
√
di does not

change the sign of vi

• the second-smallest eigenvector of Lrw, which is equal to the D−1/2-multiplied second-

smallest eigenvector of L, is denoted as the NCut score vector of W . Its entries

indicate the strength of “belief” in whether to assign the corresponding vertex to S or S.

• rather than thresholding at 0, one can replace Step 2 by determining an optimal split

point among several candidates (for example at every vi), where “optimal” refers to the

smallest achieved value of the corresponding objective function

• the algorithm can be generalized to unconnected graphs in various ways, for example by

prepending a separate connectivity algorithm that returns any two disjoint unions of

connected components if the graph is not connected

Spectral clustering can be extended to more than two clusters. The definitions of RatioCut

and NCut generalize straightforward. Further, the spectral relaxation can be carried out in a

similar way, incorporating the smallest k eigenvectors. This type of generalization is denoted

as the multi-vector approach. Figure 1.3.3 shows the multi-vector approach for normalized

spectral clustering for k clusters, denoted as NormalizedSpectralClustering.
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Algorithm: NormalizedSpectralClustering

Input:

• G = (V,E,W ) undirected graph with V = {1, . . . , n} and weight matrix W ∈W

• k desired number of clusters

Output:

• V = V1 ·∪ . . . ·∪ Vk′ partition of V into k′ ≤ k clusters

Algorithm:

1. determine the k smallest eigenvectors v1, . . . ,vk of the random-walk normalized
Laplacian matrix Lrw

2. for every i ∈ V , define ai ∈ Rk from the i’th entry in each of v1, . . . ,vk. That is,
with A ∈ Rn×k having vj as its j’th column, ai equals the i’th row of A.

3. apply the k-means algorithm to the set of points {a1, . . . ,an} ∈ Rk in order to
determine up to k clusters V1 ·∪ . . . ·∪ Vk′

Algorithm 1.3.3: NormalizedSpectralClustering algorithm for k clusters

Let us again put some comments:

• in practice it can be beneficial to avoid to compute the eigenvectors of the non-symmetric

matrix Lrw directly, but to compute the eigenvectors of the positive semi-definite matrix

L and finally scale them all by D−1/2, or to solve the generalized eigenvalue problem

Lx = αDx in another way

• instead of k-means one can apply any other clustering algorithm in Step 3. A common

alternative is the single linkage algorithm (Sibson, 1973).

• the same algorithm can be applied without changes to L in place of Lrw. For L, however,

it is proposed by Ng et al. (2002) to additionally normalize each ai to unit length before

applying k-means.

An alternative strategy to generalize two-class spectral clustering to k classes is by recursive

bi-partitioning, denoted as recursive spectral clustering. This approach generates a

hierarchical cluster-tree, initialized at the root by applying the two-class spectral clustering

algorithm that splits V in two partitions V = V1 ·∪V2. Then, for each of V1 and V2 independently,

the two-class spectral clustering algorithm is applied to the respective subgraph, giving the

sub-partitions V1 = V1,1 ·∪ V1,2 and V2 = V2,1 ·∪ V2,2. The algorithm continues recursively until

some desired pruning criterion is met (for example the desired number of clusters), or until
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every sub-partition consists of only a single vertex. In the latter case this algorithm creates a

full hierarchical cluster-tree with n leafs. Verma and Meila (2003) compare some multi-vector

approaches and recursive approaches. They conclude that all compared approaches behave

similar on “easy” instances, while on “hard” instances there is no clear winner. However, they

consider the multi-vector approach to perform slightly better if there is clear structure in the

data. Further, the multi-vector approach is simpler to implement and much more popular in

practice.

1.4 Summary of the main results and publications

All that we get from the bare definitions of the normalized Laplacian L = [`ij ] and the

unnormalized Laplacian L = [lij ] are two graph matrices that are related to each other by

`ij = lij/
√
didj . If we add the information that for a connected graph the second-smallest

eigenvector of L is helpful for solving the RatioCut optimization problem — what can we say

about L? Since there are no general results on how eigenvectors are affected by distorting all

entries of a matrix, we would probably not expect to get any similar meaningful result for L.

It would rather be surprising to find out that the second-smallest eigenvector of L helps on

solving a similar problem, precisely on solving the NCut optimization problem.

Of course, if we further consider all results about spectral graph theory from the previous

section, then the formerly hidden connection between L and L will become clear. However,

this does not enable us to understand other types of modifications applied to a Laplacian

matrix. Consider for example the following three “riddles”:

1. Take the normalized Laplacian matrix L and set its main diagonal to arbitrary new

values. Can you provide a meaningful interpretation of the result?

2. Iteratively divide by
√
didj again and again, each time by the new degrees of the

implicitly re-scaled weight matrix. How is the limit of this process related to L?

3. Consider a real-weighted graph and define its degree matrix D from the absolute values

of the edge weights. Which insights can we get from the smallest eigenvectors of L?

All three riddles describe some modification of a standard Laplacian matrix and then ask

for an interpretation of doing so. We are likely not able to come up with an answer to these

questions immediately. In fact, the answers turn out to show a complexity that allows to write

an entire doctoral thesis about them, and to publish two papers on reputable international

conferences. These three questions are precisely at the heart of Chapter 2, Chapter 3, and

Chapter 4, respectively. In the remainder of this section, I provide some details on the

respective context and on my main contributions in it. A technically deeper summary is given

by the “Chapter summary” section to the end of each chapter.

37



Chapter 1: Introduction

• Chapter 2 (“The f-adjusted Laplacian”). Introduces two graph modifications:

f -scaling and f -selflooping. Their concatenation is denoted as f -adjusting, which trans-

forms a given graph into another graph of degree vector f . I prove that f -adjusting

corresponds to modifying the normalized Laplacian matrix L only along its main diago-

nal. Moreover, if f -adjusting is applied to a random geometric neighborhood graph, then

we can interpret this graph modification as a deformation of the underlying probability

density. Cuts and volumes in the modified graph refer no longer to the original density,

but to a different density that can be stated precisely. This interpretation of f -adjusting

allows for a variety of applications in machine learning, for example to correct for a

sampling bias. My results on f -adjusting are published at the International Conference

on Machine Learning (Kurras et al., 2014).

• Chapter 3 (“Symmetric iterative proportional fitting”). Studies an alternative

strategy to transform a given graph into another graph of degree vector f . The idea is

to apply f -scaling iteratively until the resulting matrix converges to some limit matrix.

Iterated f -scaling turns out to be related to a field of research that is known as matrix

scaling, in particular to “Iterative Proportional Fitting (IPF)”. I contribute to this

field by providing a novel interpretation of IPF as a special case of a more general

projection algorithm that explains simultaneously its convergence plus an interpretation

of its limit matrix. I further provide a convergence proof for iterated f -scaling, which

can be seen as a symmetrized variant of IPF that fits better to the case of symmetric

matrices. Moreover, I show for the case of symmetric matrices that certain expansion

properties of the corresponding graph characterize precisely the convergence behavior

of iterated f -scaling. Again these results have an impact on different applications in

machine learning. This work is published at the International Conference on Artificial

Intelligence and Statistics (Kurras, 2015).

• Chapter 4 (“Spectral correlation clustering”). This chapter steps away from

positive-weighted graphs to correlation graphs. These graphs have positive and negative

edge weights that quantify the similarity or dissimilarity between vertices, respectively.

Correlation clustering focuses on detecting cluster structures in correlation graphs. In

contrast to similarity graphs, for correlation graphs the MinCut is highly informative,

but unfortunately NP-hard even for two classes. Together with this shift of relevance

of the MinCut, the relevance of the Laplacian’s smallest eigenvector increases from

trivial to highly interesting. I prove that the Rayleigh quotient characterization of

the smallest eigenvector of the so-called signed Laplacian matrix is a relaxation of an

“optionally” applied MinCut, denoted as OptMinCut. The same eigenvector is already

derived in the literature as a relaxation from a signed variant of the balanced RatioCut,

denoted as SignedRatioCut. However, I provide evidence that we shall interpret this

eigenvector better as an approximation of OptMinCut rather than of SignedRatioCut.

I suggest to carry out recursive spectral clustering on the smallest eigenvector of the
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signed Laplacian as the canonical approach to correlation clustering by spectral methods.

This approach behaves differently from the recursive approach for similarity graphs,

for example, it prunes automatically whenever no negative cut exists. In contrast to

the previous chapters, my work on this chapter was originally motivated by a concrete

practical application: detecting cheaters in an online game. In order to finally apply my

spectral correlation clustering solution to this context, an extensive software engineering

overhead is required that is an additional substantial part of the chapter. The results

of this youngest chapter are not yet published, but I plan to prepare a publication

postdoctoral.

The two relevant publications including their abstracts are listed in Table 1.1 (overleaf).
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Sven Kurras, Ulrike von Luxburg, Gilles Blanchard

The f-adjusted graph Laplacian: a diagonal modification
with a geometric interpretation

31st International Conference on Machine Learning (ICML)
JMLR Workshop and Conference Proceedings, volume 32, pages 1530–1538, 2014
Editors: Eric P. Xing, Tony Jebara

Abstract : Consider a neighborhood graph, for example a k-nearest neighbor graph,
that is constructed on sample points drawn according to some density p. Our goal is
to re-weight the graph’s edges such that all cuts and volumes behave as if the graph
was built on a different sample drawn from an alternative density q. We introduce
the f -adjusted graph and prove that it provides the correct cuts and volumes as
the sample size tends to infinity. From an algebraic perspective, we show that its
normalized Laplacian, denoted as the f -adjusted Laplacian, represents a natural
family of diagonal perturbations of the original normalized Laplacian. Our technique
allows to apply any cut and volume based algorithm to the f -adjusted graph, for
example spectral clustering, in order to study the given graph as if it were built on
an unaccessible sample from a different density. We point out applications in sample
bias correction, data uniformization, and multi-scale analysis of graphs.

Sven Kurras

Symmetric Iterative Proportional Fitting

18th International Conference on Artificial Intelligence and Statistics (AISTATS)
JMLR Workshop and Conference Proceedings, volume 38, pages 526–534, 2015
Editors: Guy Lebanon, S.V.N. Vishwanathan

Abstract : Iterative Proportional Fitting (IPF) generates from an input matrix W a
sequence of matrices that converges, under certain conditions, to a specific limit
matrix W ∗. This limit is the relative-entropy nearest solution to W among all
matrices of prescribed row marginals r and column marginals c. We prove this
known fact by a novel strategy that contributes a pure algorithmic intuition. Then
we focus on the symmetric setting: W = W ′ and r = c. Since IPF inherently
generates non-symmetric matrices, we introduce two symmetrized variants of IPF.
We prove convergence for both of them. Further, we give a novel characterization for
the existence of W ∗ in terms of expansion properties of the undirected weighted
graph represented by W . Finally, we show how our results contribute to recent work
in machine learning.

Table 1.1: List of my publications as a doctoral candidate.
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Chapter 2

The f-adjusted Laplacian

2.1 Chapter introduction

Assume that we are interested in the temperature distribution over Greenland, or in the

concentration of ozone in the stratosphere, or in the degree of contamination around an oil

drilling in the deep sea. All these applications have in common that they study a spatial

distribution of a certain intensity measure (in general, of any measure on a subset of Rd). This

setting is denoted as an intensity landscape. Our goal is to reveal structural properties of

such an intensity landscape. The challenge is that our access is limited to a discrete partial

observation, our “input data”. For example, we may be given a finite collection of sample

points that provide us with the intensity values at specific point-wise locations.

If the given sample points lie on a regular grid, then the input data can be interpreted as a

d-dimensional rasterized image of the intensity landscape. Such data can be processed with

every technique from (d-dimensional) image analysis. In particular, we can apply spectral

image clustering (Shi and Malik, 2000) in order to determine meaningful segments of

homogeneous intensities. We now describe this approach in more details: first, a neighborhood

graph is constructed by connecting all pairs of locations that lie close to each other. In case

of a regular grid, one typically chooses an r-graph that connects each point to its direct grid

neighbors. An edge between sample points i and j is provided with the weight

wij := sims(xi,xj) · simv(ti, tj) , (2.1)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2.1.1: Spectral clustering of an intensity landscape. (a) continuous two-dimensional intensity
landscape that forms the shape of a cloud. (b) discrete snapshot of the intensity
landscape at the positions of a regular grid. Blue color indicates low intensities, black
moderate, and red high intensities. (c) result of spectral image clustering applied
to the grid sample. The true shape is successfully separated from the background.
(d) the same intensity landscape accessed at uniform random positions. (e) result of
spectral image clustering applied to the uniform sample. The true shape is successfully
separated from the background. (f), (h) the same intensity landscape accessed at
non-uniform random positions. (g), (i) results of spectral image clustering applied to
the non-uniform samples. Both results are misguided by the non-uniform sample to a
totally wrong segmentation.

defined as the product of the spatial similarity sims(xi,xj) := exp(−0.5‖xi − xj‖2/σ2
s) of

the locations xi,xj , and the value similarity simv(ti, tj) := exp(−0.5‖ti − tj‖2/σ2
v) of the

corresponding intensity values ti, tj . The bandwidths σs and σv are chosen individually for

each domain. This approach defines a weighted graph that makes properties of the intensity

landscape accessible as corresponding graph properties. Finally, spectral clustering as defined

in Section 1.3.6 is applied to this graph in order to detect meaningful intensity clusters.

Figure 2.1.1 (c) shows an example of this approach.

But what if we cannot access the intensity landscape in such a convenient way as provided

by a regular grid? What if our access is restricted to locations that are randomly distributed

according to a separate sampling distribution? The case of a uniform sampling distribution

turns out to be unproblematic because the random values sims(xi,xj) behave everywhere in

the same way. In particular, spectral image clustering on a uniform sample of an intensity

landscape still yields meaningful intensity clusters, as shown in Figure 2.1.1 (e). However, if the

sample points are distributed non-uniformly, they introduce systematic errors to the weights

wij via the location-dependent expectation of sims(xi,xj) . As a consequence, the above graph

construction no longer gives an adequate discrete representation of the intensity landscape.
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It represents a mixture of the intensity landscape and the unwanted sampling distribution

instead. As shown in Figure 2.1.1 (f)-(i), applying the above approach to non-uniform sample

positions can lead to undesired results.

There is a straightforward approach to circumvent this problem: histograms, also denoted as

the binning approach. The binning approach divides the coordinate space into regular bins

(“grid cells” of equal size). For each bin, its average intensity can be estimated by averaging

over the intensities of all sample points that fall inside the bin. This approach transforms an

arbitrary sample into a regular grid, defined at the bins’ centers. In particular, one can now

apply standard image analysis.

However, there are some issues with the binning approach:

• Required coordinates. Histograms, like other function approximation schemes, re-

quire access to global sample point coordinates. However, some applications do not

provide such, but only pairwise distances ‖xi − xj‖, or even a weaker notion of pair-

wise spatial similarities sims. Such a restricted scenario is common in studying sensor

networks (Younis and Fahmy, 2004) and swarm robotics (Cornejo and Nagpal, 2015).

Rather than global positions, the individual entities observe independent local coordinate

systems, if at all. In practice, GPS is often not accessible because of physical reasons

(e.g., underwater, extraterrestrial), monetary reasons or energy-constraints. Another

scenario is given by social graphs, where pairwise similarity values (e.g., the number

of common topic reads) are provided without an explicit embedding of the sample

points into a coordinate space. A third scenario without explicit coordinates is given by

iterative sampling strategies of structured objects. Here, sample points are generated by

applying sequences of tiny random mutations to an initial object. This has applications

for example in peer-to-peer networks (Cooper et al., 2009) and in automated software

test generation (Jia and Harman, 2011). Whenever global coordinates are not accessible,

binning cannot be applied.

• Non-adaptivity. Since algorithms from image analysis require a regular grid, all bins

must have the same size. This implies a varying number of sample points per bin. Those

bins that contain many sample points lead to a wastefully precise estimate on the bin’s

average intensity. Rather than further improving the bin’s estimation quality, one would

prefer to sub-divide such overstaffed bins into sub-bins of smaller size to yield more

fine-granular results. Such an adaptive approach gets particularly interesting if the

sampling distribution is not independent of the intensity landscape, but concentrated

along the decision boundary.

To the best of my knowledge, there exists so far no approach to clustering of intensity

landscapes that is coordinate-free and adaptive. In this work, I provide a first such approach.

It does not require sample coordinates, and areas of higher sampling density are adaptively

considered at higher resolution without biasing the clustering result. The key to this approach

is a novel technique introduced in this chapter: f -adjusting. It can be applied to spectral
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clustering of intensity landscapes in a way that solves the above introduced problem of

non-uniform sampling distributions. This application is re-visited in Section 2.6.4.

In the following analysis, rather than dealing with intensity values on top of a sampling

distribution, we solely focus on the sampling distribution itself. On a high level, this chapter

studies how certain graph properties (such as vertex degrees, volumes, cut weights) of a

random geometric neighborhood graph correspond to properties of the underlying sampling

distribution. We particularly address the following four questions:

Questions motivating this chapter

(Q1) Can we relate vertex degrees in an RGNG to the underlying sampling distribution?

(Q2) Are there similar correspondences for volumes and cuts, respectively?

(Q3) Can we preserve such correspondences if we modify edge weights to new values?

(Q4) Can such edge modifications be harnessed for machine learning applications?

Questions (Q1) and (Q2) are already studied in the literature, as presented in Section 2.3.2

and Section 2.3.4. Questions (Q3) and (Q4) can be answered in the affirmative as a result of

my contributions that are presented in this chapter. This chapter introduces “f -adjusting” as

a novel tool to modify a given RGNG in a specific way.

A precise definition of f -adjusting is given later in Definition 2.3.6, and fundamental

properties of f -adjusting are studied as the main contributions of this chapter.

Let us now introduce the basic idea of f -adjusting along with Figure 2.1.2. This perspective

on f -adjusting is denoted as its geometric interpretation. We are given an RGNG G (top

left in Figure 2.1.2) that is built from i.i.d. sample points of a probability density p (bottom

left). p is “unknown” in the sense that no representation of p is accessible by the application.

However, some structural properties of p reflect in graph properties of G as outlined before.

Now assume that our main goal is to study another density function p that is different from

p. For example, p may refer to the uniform distribution on the same support as p, or as in

Figure 2.1.2 (bottom right), p may refer to an intensified variant of p. The ideal approach to

gain insights on p is by studying another RGNG G∗ (top right) that is built on top of a new

sample, drawn from p. The challenge in our setting is that we cannot obtain such a graph

G∗ based on a sample from p. Further, p is unknown to us just like p. However, we assume

that we do know how to “modify” p in order to get p. The relation between p and p is in

terms of the equation p ∼ f · p for some function f , where the proportionality operator ∼
means that there exists a scalar α > 0 such that p = α · f · p. That is, p and f · p are “equal

up to normalization”. The example in Figure 2.1.2 assumes that p ∼ p2, which implies that

f = p. In this case, our knowledge is that we have to square the unknown underlying density.

Another example: whenever we are interested in the uniform distribution p ∼ 1, then we

imply that f = p−1. In this case we know that we have to multiply the unknown underlying
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G
f -adjusting7−−−−−−−→ G ≈ G∗

A

S

p
related

< >
(p ∼ f · p)

p

Figure 2.1.2: Geometric interpretation of f -adjusting. (bottom left, bottom right) two different
probability densities defined on the unit square. White color indicates high probability.
Here, p is an intensified variant of p. Precisely, p ∼ p2, hence, f = p. Further, S
cuts the space in two subsets, and A is another subset of the space. (top left, top
right) RGNG built on top of sample points drawn from the respective underlying
sampling distribution. Edges are colored in gray. Vertex heat colors correspond to the
vertex degree, where red indicates high degrees. (top center) graph derived from G by
f -adjusting. All edges are re-weighted in such a way that G’s weight of the cut S and
G’s volume of the set A match the corresponding quantities of G∗, although G has the
same sample points and graph structure as G.
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density by its inverse. Precisely, we assume to have some knowledge on the transformation

function T that transforms p to become proportional to p. Formally: T (p) = f · p ∼ p.
Let us summarize the setting so far: our goal is to learn about p, but we cannot get a

sample or an RGNG from it. Instead, we are given an RGNG from another unknown density

p, plus the knowledge on how p and p are related.

Now the basic idea addressed by f -adjusting is as follows: can we directly modify the edge

weights of the given graph G in a way that “corresponds” to going from p to p? Of course,

we cannot avoid that the result G (top middle) of any such transformation of G will differ

in many aspects from a graph G∗ that is really built on top of p. In particular, G can only

refer to the same p-distributed sample points as G and to the same connectivity structure

as G, while G∗ is built on a different p-distributed sample along with its own set of edges.

However, can we at least define G in such a way that the cut weights and volumes in G are

approximately the same as the cut weights and volumes in G∗ ? Indeed, f -adjusting gives a

positive answer to this question. Its parameter f is a vector that must be chosen according to

the desired transformation function f .

This brief overview sweeps some crucial details under the rug that need to be made precise

in the following. For example, in order to compare G to G∗ we have to define a notion of

cut weights and volumes that allows to compare geometric graphs that are built on different

sample points. Ignoring such details, the overall strategy of f -adjusting can be memorized as

follows:

“ f-adjusting transforms a given RGNG G into another graph G, whose

cut weights and volumes behave as if G were an RGNG that was built

on a different sampling distribution. ”

2.2 Informal summary of the main contributions

The two main contributions of this chapter provide complementary mathematical foundations

of the f -adjusting technique. Contribution 1 (Section 2.4.1) shows that the geometric inter-

pretation, as presented in Figure 2.1.2, is indeed valid: we may think of f -adjusting as of such

a density-shift. As foreshadowed above, there are some hurdles to take in order to be able to

translate the informal intuition into mathematical formalisms. This particularly requires to

carefully work out three different notions of volumes and cuts for geometric graphs. Once

the intuition is formalized, a proof of its correctness is given by Theorem 2.4.1. Although

the analytical details are quite technical, the computation of the f -adjusted graph itself is a

simple and efficient operation. Moreover, it is the geometric intuition rather than the technical

details that finally motivates a couple of applications of f -adjusting in machine learning.
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Contribution 2 (Section 2.4.2) provides an algebraic interpretation of f -adjusting by revealing

a neat equivalence between f -adjusting and a natural family of diagonal modifications of the

normalized Laplacian matrix. This reveals that f -adjusting is not an artificial transformation

of edge weights, but an elementary graph modification of algebraic simplicity. The algebraic

results do not require that G is a geometric graph. However, for geometric graphs we get

the additional fact that we can think of diagonal modifications of the normalized Laplacian

matrix as of a geometrically intuitive density-shift.

2.3 Formal setup

This section introduces all concepts and formalisms that are required to understand the main

contributions in the follow-up section.

2.3.1 Random geometric neighborhood graphs in the large sample limit

A general approach to the analysis of algorithms is by studying the algorithm’s performance

for an arbitrary large input size n→∞. This principle is standard in runtime analysis, but

it also fits well to other properties of an algorithm. For example, assume that we train a

classification algorithm A on a training sample that is arbitrary large; that is we study the

classification performance of A in the large sample limit n → ∞. If the feature space

is bounded (which is a natural assumption in applications), then in the limit the sample

points lie dense in space. Hence, intuitively, more and more training data should enable a

classification algorithm to approximate the exact localization of the correct decision boundary

better and better. In the large sample limit, it is reasonable to demand from A that it should

provide the best possible classification performance. A classification algorithm that satisfies

this optimum limit property is denoted as being consistent — see for example Shalev-Shwartz

and Ben-David (2014) for a formal introduction.

This chapter studies algorithms on random geometric graphs in the large sample limit,

where n refers to the number of sample points on which the graph is constructed. Whenever

shifting n to infinity, one has to make precise how to tune all other parameters with respect

to n. For example, how to choose the neighborhood radius rn of the rn-graph for n → ∞?

If r := rn is fixed to a constant, then neighborhoods cannot adapt to a more fine granular

decision boundary. Therefore, we require rn to shrink to 0 with increasing n. However, rn must

not shrink too fast if we want to provide connectivity of the rn-graph with high probability.

Similarly, the kNN-graph on a random sample will be disconnected with high probability if

we fix k to stay constant while n→∞. Here, we have to increase kn fast enough with n, but

not too fast, in order to study meaningful connected graphs for all n. Identifying interesting

regimes of convergence rates is subject of separate work, see for example Penrose (2003).
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The geometric results in this chapter refine the work by Maier et al. (2009). For that reason

we assume the same limit scenarios for the different types of geometric graphs as in their

work.

Definition 2.3.1 (Limit scenarios)

The parameters of the studied neighborhood graphs are linked to n→∞ as follows:

• σn of the Gaussian graph: σn → 0 at rate nσd+1
n / log n→∞.

• rn of the r-graph: rn → 0 at rate nrd+1
n / log n→∞.

• kn and σn of the weighted kNN graph: kn →∞ and σn → 0 at rates kn/ log n→∞,

kn/n→ 0 and nσd+1
n / log n→∞, with (kn/n)1/d ≥ σαn for some α ∈]0, 1[.

The limit scenarios of Definition 2.3.1 ensure to study “meaningful” RGNGs that connect

the whole sampleable space by small neighborhoods. For the r-graph, the radius rn shrinks

to zero at a rate slower than d+1
√

log n/n. This rate is slow enough to guarantee with high

probability that the rn-graph is connected. As desired, such a graph connects the whole

sampleable space by a covering of vanishing small neighborhoods. Its unweighted diameter

(that is the length of a longest unweighted shortest path) goes to infinity. For the kNN graph,

kn grows faster to infinity than log n, but slower than n. As for the r-graph, this regime

guarantees with high probability that the graph is connected, although all neighborhoods

cover vanishing small space. The weighted kNN graph additionally defines how to set the

bandwidth parameter σn according to n and kn. Here, the rate is chosen such that for most

vertices only a negligible amount of total edge weight is truncated. The Gaussian graph is

always fully connected, however, its bandwidth parameter shrinks to zero at a rate that is

slow enough to “connect” the graph by a skeleton of significant edge weights.

Some of the bounds in Definition 2.3.1 are stricter than necessary for guaranteeing connec-

tivity. This is an artifact of additional requirements in the proofs by Maier et al. (2009) for

their quantitative results on volumes and cuts in RGNGs.

We further assume the following regularity conditions on the underlying distribution,

again the same as in Maier et al. (2009).
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Definition 2.3.2 (Regularity conditions)

The probability density p : Rd → R has support X := {x ∈ Rd | p(x) > 0}. Further,

• X is compact with smooth boundary and bounded curvature,

• p is bounded away from zero by some pmin > 0, that is p(x) ≥ pmin for x ∈ X ,

• p is twice differentiable with bounded gradient (on the interior of X ).

In particular it follows that p is also upper bounded by some pmax ≥ p(x).

These regularity conditions reduce the complexity of the mathematical analysis down to a still

sophisticated level. Some of these constraints do not lower the applicability of the theoretical

results to practical applications. For example, bounded support is a plausible assumption in

practice, and a positive lower bound can easily be achieved approximately by an arbitrary

tiny threshold pmin > 0. For the differentiability constraints there is strong evidence that

the results can be extended to a much more general setting (for example, allowing for some

discontinuities of p), at the price of introducing much more technical difficulties to the proofs

and statements.

All results in this chapter that deal with the large sample limit of RGNGs hold with respect

to the limit scenarios 2.3.1 and regularity conditions 2.3.2. We explicitly denote this setting

as our general assumptions.

2.3.2 Density estimation from the vertex degrees in RGNGs

A function p̂ is called a density estimator if it aims to approximate some probability density

function p. Given n sample points drawn independently from p, a standard non-parametric

approach to define a density estimator p̂ is as follows (see Section 2.5.2 in Bishop (1995) for a

broad introduction):

p(x) ≈ p̂(x) :=
|B(x)|

n · vol(B(x))
. (2.2)

The measurable set B(x) ⊆ Rd denotes a small local neighborhood around x of Lebesgue

volume vol(B(x)), and 0 ≤ |B(x)| ≤ n denotes the number of sample points that fall into

B(x). For example, consider a histogram that partitions the sampleable space into a collection

of finite-sized bins B1, B2, B3, . . .. For each x ∈ Rd let B(x) denote the bin that contains x.

Then the density estimator p̂(x) gives the fraction of all sample points that fall into bin

B(x), divided by the bin size vol(B(x)). This example illustrates further the fundamental

bias-variance trade-off : the bin size must be as small as possible in order to localize the

estimate at x, but it must also be large enough to guarantee that each bin contains sufficiently

many sample points. A larger sample size n allows for choosing smaller bins.

Depending on the precise definition of B(x), one can derive different estimators from

Equation (2.2). The classical histogram approach first fixes all bins B(x) data-independently
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and then considers the hit counts |B(x)| as data-dependent random variables. The following

alternative approach derives another density estimator from Equation 2.2 exactly the other

way round. Lugosi and Nobel (1996) provide strong consistency results, precisely that p̂
a.s.−−→ p

in L1, under very general assumptions that particularly imply both of these approaches.

Density estimation from the distance to the k-nearest neighbor. The basic idea of this

density estimator is to fix |B(x)| := k in advance to a constant and then determine for

each x the smallest possible ball B(x) around x such that B(x) contains exactly k sample

points. This is equivalent to determining the radius of B(x) as the distance from x to its

k-nearest sample point, denoted as the kNN-radius rk(x). The volume of B(x) can then

be computed as vol(B(x)) = ηd · rk(x)d, where ηd := πd/2/(d/2)! denotes the volume of the

d-dimensional unit ball. Thus, Equation 2.2 suggests to estimate p(x) at x ∈ Rd by computing

p̂(x) = rk(x)−d · cn with the constant scaling factor cn := k/(nηd). Consistency of this specific

instance of Equation (2.2) is already shown by Loftsgaarden and Quesenberry (1965). Note

that cn depends on n, k and d, but not on x. In cases where cn cannot be determined, we

still get the result that rk(x)−d is proportional to p(x). However, the explicit knowledge of d

is mandatory, since rk(x)−d cannot be computed otherwise. This is a drawback in practical

applications, where the dimension d may not be known.

We are now going to present three alternative density estimators, one for each studied

RGNG. These density estimators enable us to estimate the density p(xi) at the location of

the sample point of vertex i ∈ V from its degree di. Precisely, for each RGNG and sufficiently

large n there exists a scaling factor cn that provides di · cn
a.s.−−→ p(xi). The factor cn depends

only on n, d and the parameters of the RGNG. In applications where cn cannot be determined,

it still holds that di is proportional to p(x), without requiring any knowledge on n, d,xi, p, ....

This can be stated as follows:

“ The degree di is, up to a global scaling factor, a consistent

estimate on the density p(xi) at the sample point xi. ”
In particular, this answers Question (Q1) from the introduction to this chapter: it is indeed

possible to learn something about the sampling distribution from the vertex degrees of an

RGNG. Note that Figure 1.3.1 (d) on page 26 already indicated this relationship between the

degrees and the underlying density.

Density estimation from the r-graph. For the r-graph it holds that di/(n ·ηd ·rdn)
a.s.−−→ p(xi).

Note that cn := (n · ηd · rdn)−1 depends on n, d, and rn, but not on the location of the

sample point. This result can be proven directly by standard concentration inequalities, see

von Luxburg et al. (2010). It can also be rendered as an instance of Equation 2.2, by defining

B(xi) as the ball of radius rn around the sample point xi. By this, an r-graph can be seen

as a data-dependent histogram. It defines a collection of overlapping bins of equal size, one

placed at each sample point. Consistency of this estimator is also implied by Lugosi and

Nobel (1996).
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Density estimation from the Gaussian graph. For the Gaussian graph with edge weights

as defined in (1.2) it holds that di/n
a.s.−−→ p(xi), thus cn = 1/n.

This can be seen by rendering this setting as an instance of multivariate kernel density

estimation. In multivariate kernel density estimation, any non-negative integrable

function K : Rd → R≥0 that provides unit total volume
∫
K(x) dx = 1 and symmetry

K(x) = K(−x) is denoted as a kernel. Typically studied kernels provide further properties,

in particular they decrease monotonically with the distance to the origin. For example,

consider the uniform kernel K1(x) := η−1
d [‖x‖ ≤ 1]10, which is constant positive only on

the unit ball, and zero everywhere outside. Another example is the multivariate Gaussian

kernel KΩ(x) := (2π)−d/2 · exp
(
−1

2xTx
)
, which concentrates its mass around the origin in

a bell-shape. The kernel density estimator p̂(x) according to any kernel function K is

defined as

p̂(x) :=
1

n

n∑
i=1

K(x− xi) . (2.3)

Illustratively, this estimator places n instances of the kernel K in space, one instance pinned at

each sample point, and then averages over all their contributions to the evaluated location x.

If x lies in a high-density area, hence with many sample points close to it, then p̂(x) sums up

to a much larger value than in low-density areas.

In order to approximate p with arbitrary precision, the kernel must further be scaled

to smaller and smaller bandwidths along with n → ∞. For example, the uniform kernel

can be scaled by any scalar r > 0 to the ball of radius r, resulting in the scaled uniform

kernel Kr(x) = (ηdr
d)−1[‖x‖ ≤ r]10. The multivariate Gaussian kernel can be scaled by any

covariance matrix Σ, yielding the scaled Gaussian kernelKΣ(x) := det(Σ)−1/2·KΩ(Σ−1/2x).

In particular, if we choose Σ to represent independent dimensions of uniform variance, that is

Σ := diag(σ2, . . . , σ2), then KΣ simplifies to

Kσ(x) := (2πσ2)−d/2 · exp

(
−‖x‖

2

2σ2

)
, (2.4)

the Gaussian kernel of bandwidth σ. Under mild assumptions on p and K, and if the

bandwidth decreases at the right rate, then p̂ is a consistent estimate on p. This is a classical

result, see for example Stute (1984) and Devroye and Lugosi (2001).

Let us now see how the Gaussian graph is related to multivariate kernel density estimation:

from Equations (2.3), (2.4) and (1.2) we get from di =
∑

j wij with wii := 0 that

di =
∑
j 6=i

Kσ(xj − xi) = n · p̂(xi)−Kσ(xi − xi) .

Since α := Kσ(xi − xi) = (2πσ2)−d/2 is constant, we get that di/n = p̂(xi) − α/n. The

additive error α/n is asymptotically irrelevant and could even be eliminated by adding a

selfloop of weight wii := α to every vertex of the Gaussian graph.
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Density estimate from... p̂(x) cn

distance to k-nearest neighbor rk(x)−d · cn k/(nηd)

r-graph di · cn 1/(nηdr
d
n)

Gaussian graph di · cn 1/n

weighted kNN-graph di · cn 1/n

Table 2.1: Overview of density estimators.. All four satisfy that p̂(x)
a.s.−−→ p(x) in L1.

The r-graph can similarly be rendered as an instance of multivariate kernel density estimation

by using the uniform kernel in place of the Gaussian kernel.

Density estimation from the kNN-graph. For the weighted kNN-graph it holds that

cn := 1/n, just as for the Gaussian graph. This is because the limit scenario (Definition 2.3.1)

implies that for large enough n it holds that wij ≈ 0 whenever j is not among the k-nearest

neighbors of i or vice versa. Precisely, the expected neighborhood radius E(rk(i)) of ver-

tex i to its k-nearest neighbor can be bounded (Maier et al., 2009) for large enough n as

follows: d
√
kn/((n− 1) · ηd · pmax) ≤ E(rk(i)) ≤ d

√
kn/((n− 1) · ηd · pmin). Hence, because of

kn/n → 0 all expected neighborhood radii E(rk(i)) decrease to 0, at the rate of (kn/n)1/d.

Thus, although the number of neighbors kn increases to infinity, kn grows so slowly that the

volumes of the corresponding kn-neighborhoods shrink to zero. Now, the additional require-

ment (kn/n)1/d ≥ σαn for some α ∈ (0, 1) comes into play: it implies that the bandwidth σn
shrinks asymptotically even faster to zero than (kn/n)1/d, thus also faster than the expected

neighborhood radii E(rk(i)). As a consequence, for sufficiently large n most edges in every

kn-neighborhood have a weight of almost zero because the bandwidth σn � E(rk(i)) puts

significant weight only close to the center within each kn-neighborhood, that is on edges to

the very nearest k′n � kn neighbors. For that reason, truncating all edges after the kn-nearest

neighbor removes only a negligible total weight. Thus, the weighted kNN-graph can be seen

as an approximation of the Gaussian graph.

Note that the unweighted kNN-graph shows a totally different limit behavior than the

weighted kNN-graph. In particular, the unweighted kNN-graph does not allow to estimate the

density from its degrees because the degrees of all vertices concentrate at Θ(kn) regardless of

the underlying density. So the unweighted kNN-graph can best be described as an (almost)

regular unweighted graph. Recent work by von Luxburg and Alamgir (2013) shows how to

nevertheless extract a density estimate from an unweighted kNN-graph by a very different

approach than from the degrees.

Table 2.1 summarizes the consistency results for the above introduced density estimators.

Figure 2.3.1 visualizes them for 10000 sample points drawn from the two-dimensional density

p(x, y) := x+0.5 on the support [0, 1]2. The plots show that all approaches provide reasonable
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Figure 2.3.1: Proof of concept of vertex-degree-based density estimators. (top left) sampling density
defined on [0, 1]2 by p(x, y) = x + 0.5, white indicates higher density. The line plot
below shows the density function in x. (top middle) 10000 sample points drawn from
p. The heat plot shows the ground truth at every sample point, that is p̂(xi) := p(xi).
The box plot below shows summary statistics on the density estimates of all sample
points whose x-coordinate lies in the respective interval (red line: median, box: quartile
range, whiskers: up to 1.5 times the quartile range, red crosses: outliers). All boxes
follow tight along the curve of p(x). (top right) heat plot of p̂(x) on the same sample, p̂
defined by the distance to the kNN-nearest neighbor for k = 70. The corresponding box
plot shows that all boxes stay along the true curve of p, except close to the boundary.
(bottom left) similar pair of heat plot and box plot for p̂ defined by the Gaussian graph
(49995000 edges, hidden) with σ = 0.02. (bottom middle) same for the r-graph (411464
edges) with r = 0.05. (bottom right) same for the weighted kNN-graph (369058 edges)
with k = 70 and σ = 0.02.
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good estimates on p. Only at those sample points xi that lie close to the boundary of the

support, p̂(xi) systematically underestimates the true density. The precise reason for this

boundary effect is individual to each approach, but it always arises from the fact that the

relevant local neighborhood around xi overshoots the support of p, and thus contains “fewer

points than it should”. However, the total area that is affected by this boundary effect vanishes

for n→∞.

In applications where d, n,xi and all other parameters are unknown, the three degree-based

estimators are still able to provide correct results except for an unknown global scaling

factor on the p̂-axis. Because of di/dj
a.s.−−→ p(xi)/p(xj) the degrees can still infer the relative

proportions of the underlying density at the sample points. For example, if in a sufficiently

large RGNG the degree of vertex i is twice as large as the degree of vertex j, then it is

reasonable to assume that the density at xi is twice as high as the density at xj , even if we

we do not know any of xi, xj , n, d, or the parameters of the RGNG.

2.3.3 Three types of volumes and cuts in geometric graphs

The previous section shows how vertex degrees in RGNGs are related to point-wise estimates

of the underlying density, answering Question (Q1). Question (Q2) asks whether in a similar

way volumes and cuts in the graph can be related to continuous volumes and cuts of the

density p in space. Before being able to answer this question in the subsequent section, we

have to state the terms “volumes” and “cuts” more precisely.

Random geometric graphs are the combination of a discrete object (a weighted graph) and a

continuous object (a probability distribution on Rd). These two parts are glued together by the

sampling mechanism: the vertices in the graph are identified with sample points drawn from

the distribution, and pairwise distances in Rd determine edges and edge weights. This sketches

already three different “views” on a geometric graph: a discrete view, and a continuous view,

plus a third view that bridges between the two others. We now make this distinction precise

because it is the fundamental key to understand how modifying edge weights of a geometric

graph can be interpreted as implicitly modifying the underlying probability distribution. For

each of the three views, we define individual notions of volumes and cut weights.

Discrete graph view. This view sees a geometric graph just as an ordinary weighted graph

G = (V,E,W ), ignoring any information on the sample points and the underlying distribution.

Volumes and cuts are defined as usual for weighted graphs (as in Section 1.3.1): the volume

of any subset of vertices U ⊆ V is defined as volG(U) := vol(U) =
∑

i∈U di, and the cut

weight as cutG(U) := cut(U) =
∑

i∈U,j∈U wij . No other information such as the coordinate

embeddings xi, or the density p, or the dimension d is given. These additional parameters

can only be accessed in synthetic examples or theoretical analysis. However, depending on

the type of the underlying graph model, it is still the case that the accessible quantities in

the graph view, such as degrees, volumes, shortest paths, commute times, etc., reflect certain

properties that can be interpreted in a meaningful way.
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A

S
H−

H+

graph view (discrete)

volG(X) =
∑

i∈X di

cutG(Y ) =
∑

i∈Y,j∈Y wij

interspace view

vold(A) =
∑

xi∈A di

cutW (S) =
∑

xi∈H−,xj∈H+ wij

space view (continuous)

volp(A) =
∫
A
p(x) dx

cutp(S) =
∫
S
p(x) dx

Figure 2.3.2: Graph view, space view, and interspace view of an RGNG. The space view refers to
the gray-shaded plane at the bottom, where brighter color indicates higher probability
density. In space view, a volume is assigned to the subset A, and a cut weight to
the cutting surface S (here, more general than a hyperplane). The interspace view
has access to the sample points (black dots in the plane). The neighborhood graph
is built on top of this sample. The graph view refers only to the weighted graph
itself, for arbitrary X,Y ⊆ V . It has no explicit knowledge on the sample points or
the probability density. Nevertheless, its structure and edge weights contain implicit
information. The set A gets a second notion of volume in the interspace, similarly the
cut S another notion of cut weight. Section 2.3.4 shows how the interspace quantities
are related to the space quantities in the large sample limit.

Continuous space view. This view sees only the probability distribution on Rd, ignoring

any information on the sample points and the graph structure. For the analysis, we assume

that this probability distribution has a probability density p : Rd → R that further satisfies

the regularity conditions (Definition 2.3.2). The notion of volumes and cut weights in the

continuous space view is with respect to p. The p-volume of a measurable set A ⊆ Rd is

defined as volp(A) :=
∫
A p(x) dx, that is the natural probability measure implied by p on Rd.

Cuts in continuous space require some concept of (d− 1)-dimensional cutting surfaces that

partition Rd into two measurable parts. As in the work by Maier et al. (2009), we restrict the

mathematical analysis to a hyperplanes S, interpreted as a cut of the underlying space into

two half-spaces denoted by H+ and H− (both including S itself). We define the corresponding

p-weight by integrating p over the cutting surface, that is by cutp(S) :=
∫
S p(x) dx.

Note that there is strong evidence that all following results can be generalized to more

general cut surfaces, as long as they are sufficiently regular. However, this would introduce a

lot of additional technical details to the proofs, without adding something new to the intuition.
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Interspace view. This view “mediates” between the discrete graph view and the continuous

space view by taking the sample point coordinates into account. The interspace view exploits

the fact that vertex i is identified with a sample point located at xi ∈ Rd. This enables us to

evaluate index sets of the form V (A) := {i ∈ V | xi ∈ A} where A is any subset of Rd. These

objects are not accessible to algorithms on graphs, but they serve as a theoretical construction

to relate graph cuts and volumes to their continuous pendants. This is achieved in terms of a

third notion of cuts and volumes: for any vector d and any sample drawn from p, we refer to

vold(A) := volG(V (A)) =
∑

xi∈A di as the interspace volume of A with respect to vector d.

Intuitively, it sums over the degrees as provided in the discrete graph view, while the sum

is indexed by the sample points as provided by the continuous space view. Moreover, let

cutW (S) := cutG(V (H−), V (H+)) =
∑

xi∈H−,xj∈H+ wij denote the interspace cut weight

of the cut surface S with respect to weight matrix W . Again, it sums over the edge weights as

in the graph view, while the summands are indicated by the sample points in the space view.

Summarized, the interspace view connects the graph view to the space view by summing

up discrete quantities from the graph view as indicated by continuous sets in space view.

Figure 2.3.2 visualizes all three views.

2.3.4 The challenge: estimating volumes and cut weights of a density

We know from Section 2.3.2 that the vertex degree di in a random geometric graph can provide

an estimate on the density p at the location of the sample point xi. Further, Section 2.3.3

shows how the notion of volumes and cuts in the graph can be connected to volumes and

cuts in the underlying space — namely, with the help of studying volumes and cuts in the

interspace view. How are the interspace quantities related to the space quantities in the large

sample limit? One is easily tempted by the analogy to the density estimation to expect that

the interspace volume vold(A) should converge (up to a scaling factor) to the p-volume volp(A),

and similarly the interspace cut weight cutW (H) to the p-cut weight cutp(H). However, it

turns out that this is not true. Both interspace quantities converge to volp2(A) and cutp2(H),

respectively, that is to the continuous quantities of the squared density p2, not of p itself! We

refer to this fact as an anomaly.

This anomaly is already observed by Maier et al. (2009), but not investigated any further.

The following theorem is a summary of their results on volumes and cut weights for the

Gaussian graph (their Corollary 12 and Corollary 8), the r-graph (their Corollary 11 and

Corollary 7) and the weighted kNN-graph (their Corollary 6 and Corollary 3).
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Theorem 2.3.3 (Convergence limits of interspace quantities)

Let p : Rd → R denote a probability density that satisfies the regularity conditions 2.3.2.

Consider a random sequence of matrices (Wn), where Wn ∈W is the graph matrix of an

RGNG that is built on n sample points drawn from p, with parameters chosen according to

one of the limit scenarios 2.3.1. Let dn denote the degree vector of Wn. Fix a hyperplane

S in Rd and refer by H to either one of the two halfspaces induced by S. Then the

following L1-convergences hold true:

cn · voldn(H)
a.s.−−→ volp2(H) and c′n · cutWn(S)

a.s.−−→ cutp2(S) ,

where (cn) and (c′n) are sequences of scaling constants that are determined by n, d and

the parameters of the RGNG.

See Maier et al. (2009) for the corresponding proofs. The remainder of this section provides

a demystification of the anomaly. An intuitive reasoning is almost obvious for the interspace

volumes, defined as

vold(A) =
∑
xi∈A

di (?)

for measurable A ⊆ Rd. Think of the vertex degrees as a point-wise weight distribution on the

underlying space: the positions of the sample points xi are distributed according to density

p, and each sample point is additionally weighted by di, which itself is known to serve as a

density estimate on p(xi). This perspective on (?) gives that the sum combines two different

effects, each rising one factor of p. Precisely:

(i) a first factor p comes from the sampling mechanism, which distributes the sample points

according to p, thus the number of sample points that hit the set A is proportional to

p(A). As a consequence, the number of summands in (?) is proportional to p.

(ii) a second factor p comes from the fact that we sum over the the weighted degrees di,

each of which serves as a density estimate on p(xi). As a consequence, each summand’s

value itself is proportional to p.

Thus, strongly simplified, the sum (?) behaves like the sum “
∑

i=1,...,P P = P 2 ”.

A similar intuition can be derived for the interspace cut weights

cutW (S) =
∑

xi∈H−,xj∈H+

wij (??)

for a cutting surface S that cuts the space in two parts H− and H+. This sum cumulates all

edge weights of edges that cross the surface S. Let us for now focus on the r-graph: all edge

weights are wij = 1, so we have to argue why the number of summands (= number of cut
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edges) behaves like p2. In order to see this we take a closer look at the geometry: only those

sample points xi whose neighborhood ball B(xi, rn) of radius rn intersects with S are able to

contribute a positive number of cut edges to the sum. For large enough n, all contributing

sample points lie close to the cut surface S within the thin stripe of distance rn to S. For

H ∈ {H−, H+}, a sample point xi ∈ H is connected to all sample points in its neighborhood

ball, particularly to those that lie in the “cap” Ci := B(xi, r) ∩H. Each edge between xi and

some yi ∈ Ci contributes a single cut edge to the sum (??). In expectation there lie exactly

n · volp(Ci) many sample points in Ci, which is again proportional to p.

This identifies again two effects, this time both arise from the sampling mechanism:

(i) a first factor p comes from the fact that the number of intersecting neighborhood balls

is proportional to the distribution p: in an area of t-times higher density, the cut surface

S is intersected by t-times more neighborhood balls.

(ii) a second factor p comes from the fact the for each single intersecting neighborhood ball,

the number of cut edges it produces is again proportional to the distribution p: the

center sample point xi is connected to all sample points that lie in Ci, whose number is

proportional to p.

Thus, strongly simplified, the sum (??) behaves like the sum
∑

i,j=1,...,P 1 = P 2.

This intuition for the interspace cut weights generalizes to Gaussian graphs and weighted

kNN-graphs by focusing only on edges of significant weight. Depending on σ, there is some

radius rσ that plays the same role as rn for the r-graph: a sample point is connected by an

edge of significant weight, say wij ≥ 0.1, to all points in distance at most rσ, while the edge

weight to sample points farer away than rσ drops exponentially fast to 0. That is, for large

enough n, one may think of the Gaussian graph and of the weighted kNN-graph, as being

similar to the r-graph.

Note that, despite this plausible intuition, carrying out the formal proof details in a

mathematically sound way is technically sophisticated. In particular when further dealing

with effects near to the boundary of the support X of p. We do not dive into technical details

here. The interested reader is referred to the work by Maier et al. (2009).

This anomaly implies the following notable consequence:

“ If applied to RGNGs, all graph algorithms that are based on

volumes and cut weights are misguided by implicitly referring to

the squared density p2 rather than the density p itself. ”
A main contribution of this chapter is a strategy to resolve this anomaly in order to be able

to study volumes and cuts of p without squaring, and even further, a strategy to study other

manipulations of p. Section 2.6.1 presents an example of this anomaly, and further shows how

this anomaly can be resolved by using the technique of f -adjusting.
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2.3.5 Negative selfloops

It turned out during my work on the algebraic properties of f -adjusting that most statements

and proofs simplify if the graph model is extended by a tiny yet powerful detail: we shall

allow graphs to have negative edge weights — under two strict conditions:

• negative weights are only allowed at selfloops (that is along the main diagonal of W )

• negative weights are only allowed as long as degrees remain positive (that is all row

sums stay positive)

Recall that W = {X ∈ Rn×n≥0 | X = XT , X1 > 0} refers to the set of all graph matrices that

represent a weighted undirected graph of positive degrees (that is, in which every vertex is

incident to at least one edge, even if this is just a selfloop). In this chapter, we also consider

the generalization of W to the set of weak graph matrices, defined as

W� := {X ∈ Rn×n≥0 + diag(Rn) | X = XT , X1 > 0}. (2.5)

Its elements further allow for negative diagonal entries as long as all row sums remain positive.

That is, W� captures all graphs that can be derived from a graph in W by adding negative

selfloops under the above restrictions. The subscript � should evoke the association of a

“negative selfloop”. Obviously W ⊂W�.

Section 2.5.1 studies properties of W� and W that are required for later proof details but

that are also interesting on its own.

2.3.6 Graph modifications

By the term graph modification we refer to any strategy that takes a weighted graph

G = (V,E,W ) = G(W ) as its input and produces another weighted graph on the same vertices

Ĝ = (V, Ê, Ŵ ) = G(Ŵ ) as its output. Further, Ĝ should stay “similar” in some sense to G.

This can be made precise in different ways. Here, we focus on the constraint that the edge

sets Ê and E coincide up to selfloops, while the new edge weights Ŵ may differ arbitrarily

from W . A graph modification can be seen as a function m : W� →W� that maps a given

matrix W to another matrix Ŵ := m(W ). Depending on the graph modification, the domain

and/or the image of m can either be W or W�.

In this section we define the following three graph modifications, each one parameterized by

an arbitrary positive vector f :

• f -selflooping: W� →W�, W 7→W ◦f

• f -scaling: W→W, W 7→ W̃f

• f -adjusting: W→W�, W 7→W f
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All three graph modifications are identified by one of the matrix decorations ,̃ ◦ and , which

is considered as an operator on the matrix W with one additional parameter given as index f .

For example, for any matrix A ∈W and any vector x ∈ Rn>0 we refer by Ãx to the f -scaled

graph matrix for f = x, also denoted as the x-scaling of A.

Before providing the definitions for these graph modifications let us first clarify their

intention: the overall goal of f -adjusting is to modify volumes and cut weights simultaneously

in a way that allows to relate the modified interspace quantities to new continuous quantities.

Having that, studying volumes and cut weights of a graph that is modified by f -adjusting

corresponds to studying volumes and cut weights of a different underlying density.

Since volumes in the interspace view are affected by the vertex degrees, a first goal is to

re-weight edges such that the output graph can attain any other degree vector. The parameter

f drives all three graph modifications toward exactly this goal: each graph modification aims

at providing the vector f as the degree vector of its output. Without any further constraints,

this is a trivial task that can easily be achieved by modifying just selfloops in an appropriate

way. However, the second goal is to find a re-weighting scheme that simultaneously modifies all

cut weights in precisely “the right way”. So we have to re-weight all edges, not just selfloops.

A main contribution of this chapter is that f -adjusting fits volumes and cut weights

simultaneously to the new degree vector f in a way that allows for a geometric interpretation:

both quantities represent one and the same new underlying density. Moreover, the algebraic

properties reveal that f -adjusting is a very natural graph modification.

f-selflooping

The naive strategy to adjust the vertex degrees of a graph G(W ) to any prescribed vector

f ∈ Rn>0 is by modifying selfloops: simply redefine the main diagonal of W such that the

new row sums equal f , leaving all off-diagonal entries unchanged. This is made precise in the

following definition.

Definition 2.3.4 (f-selflooping)

For any f ∈ Rn>0 and W ∈W�, the f -selflooped graph matrix W ◦f is defined as:

W ◦f := W −D + F ∈ W� ,

which gives for W ◦f = [w◦ij ] element-wise:

w◦ij :=

{
wii − di + fi for i = j

wij for i 6= j
.

See Figure 2.3.3 for an example. We refer to G(W ◦f ) as the f -selflooped graph. The circle

annotation ◦ should evoke the association of a “loop”. This graph modification yields the
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2 −1 3
0 3 −1
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4
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-1-1
G(W ) W d W ◦f f G(W ◦f )

Figure 2.3.3: Example on f -selflooping. f -selflooping to f = (6, 4, 2)T of the graph G(W ). The
f -selflooped graph G(W ◦f ) has a negative selfloop at vertex b and c. This can be
avoided by cf -selflooping for c = maxi∈V {(di − wii)/fi} = 3/2, which gives W ◦c f =
[7 2 0; 2 1 3; 0 3 0].

intended positive vertex degrees f exactly, because W ◦f 1 = (W −D + F )1 = d− d + f = f .

Note that W = W ◦d.

The set W� is closed under f -selflooping, that is W ∈W� ⇒ W̃ ◦f ∈W�. However, the set W
is not closed under f -selflooping: for example, W =

(
0
2

2
0

)
∈W gives that W ◦1 =

(
−1

2
2
−1

)
/∈W.

It is important to note that f -selflooping can force some entries on the main diagonal to take

negative values, although the corresponding original entries are non-negative. It is possible to

circumvent this problem of introducing negative selfloops if we accept to attain the intended

degree vector f not exactly, but only up to a scalar multiple: for any choice of f , there exists

a sufficiently large c > 0 such that cf -selflooping (that is f -selflooping with parameter c·f)

will not cause any negative selfloop. Precisely, Proposition 2.5.3 shows that the main diagonal

of W ◦c f is non-negative if and only if c ≥ maxi∈V {(di − wii)/fi} =: c+
W,f . The consequence of

this avoidance strategy is that the cf -selflooped graph has degree vector cf instead of f .

Since f -selflooping keeps all non-selfloop edges unmodified, this graph modification can only

affect volumes but not any cut weights, that is G(W ) and G(W ◦f ) always show exactly the

same cut weights for all cuts. This is a drawback of f -selflooping for our purpose.

f-scaling

A simple strategy to adapt the row sums of a matrix W ∈W to any prescribed vector f ∈ Rn>0

is by proportional scaling, that is by considering FD−1W . This matrix provides row sums f

exactly, but it is no longer symmetric. f -scaling is a (multiplicative) symmetrization of the

proportional scaling approach, defined as follows.
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Definition 2.3.5 (f-scaling)

For any f ∈ Rn>0 and W ∈W, the f -scaled graph matrix W̃f is defined as:

W̃f :=
√
FD−1W

√
FD−1 ∈ W ,

which gives for W̃f = [w̃ij ] element-wise:

w̃ij := wij ·

√
fifj
didj

.

Further, let d̃ = (d̃i) refer to the degree vector of W̃f , and let D̃f := diag(d̃).
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 4.53
4.43
2.40 b c
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2

1.90

2.53
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G(W ) W d W̃f d̃(≈ f) G(W̃f )

Figure 2.3.4: Example on f -scaling. f -scaling to f = (6, 4, 2)T of the graph G(W ). The f -scaled
graph G(W̃f ) has degree vector d̃, which matches the intended degree vector f only
approximately.

See Figure 2.3.4 for an example. We refer to G(W̃f ) as the f -scaled graph. Note that

W = W̃d.

The set W is closed under f -scaling: W ∈W⇒ W̃f ∈W. However, the set W� is not closed

under f -scaling, since for example W =
(
−5

6
6
3

)
∈W� would give that W̃1 =

(
−5

2
2

1/3

)
/∈W�.

For that reason, we consider f -scaling only applied to non-weak graph matrices.

The example in Figure 2.3.4 shows further that d̃ 6= f in general. f -scaling has the drawback

that it does not provide the intended degree vector f exactly, which is a consequence of the

symmetrization of the proportional scaling approach. However, one can see that f -scaling

focuses on reaching the degree vector f approximately if we assume that fi/di ≈ fj/dj whenever

ij ∈ E. In this case it holds that d̃i =
∑

j∈V wij
√

(fifj)/(didj) ≈
∑

j∈V wij(fi/di) = fi. This

assumption is particularly satisfied if fi ≈ fj and di ≈ dj whenever ij ∈ E. The tilde

annotation ˜ of f -scaling hints at this approximation d̃ ≈ f .

f -scaling affects all entries in the matrix, so the graphs G(W ) and G(W̃f ) differ in terms of

volumes and cut weights.
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f-adjusting

Both above graph modifications have their own drawback: f -scaling does not provide the

intended new degree vector f exactly, and f -selflooping does not affect any cut weights.

However, these drawbacks mutually compensate if both methods are combined. f -adjusting is

defined as the concatenation of first applying f -scaling, followed by applying f -selflooping, that

is W f := (W̃f )
◦
f . Slightly more general, (f , c)-adjusting is defined by first applying f -scaling,

followed by cf -selflooping, that is W f ,c := (W̃f )
◦
c f . That is, f -adjusting equals (f , 1)-adjusting.

The output graph of (f , c)-adjusting can have negative selfloops. This can be avoided by

choosing a sufficiently large c.

Definition 2.3.6 (f-adjusting and (f , c)-adjusting)

For any f ∈ Rn>0, c > 0, and W ∈ W, the (f , c)-adjusted graph matrix W f ,c is defined

as the concatenation of f -scaling followed by cf -selflooping, that is W f ,c := (W̃f )
◦
c f .

Explicitly we get that

W f ,c := W̃f − D̃f + cF ∈ W� ,

which gives for W f ,c = [wij ] element-wise:

wij :=


w̃ii − d̃i + cfi = cfi +

∑
k 6=iwik ·

√
fi fk
di dk

for i = j

w̃ij = wij ·
√

fi fj
di dj

for i 6= j
.

f -adjusting is defined as (f , c)-adjusting for c = 1, and we write W f := W f ,1.
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Figure 2.3.5: Example on f -adjusting. f -adjusting to f = (6, 4, 2)T of the graph G(W ). The
f -adjusted graph G(W f ) has a negative selfloop at vertex b. This can be avoided by
(f , c)-adjusting for c := maxi∈V {(d̃i − w̃ii)/fi} ≈ 1.99.

See Figure 2.3.5 for an example. We refer to G(W f ) as the f -adjusted graph, and to G(W f ,c)

as the (f , c)-adjusted graph. Both can produce negative selfloops, but vertex degrees stay

always positive because W f ,c1 = d̃−d̃+cf = cf > 0. In particular, (f , c)-adjusting attains the
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vertex degrees cf exactly: first, just approximately by f -scaling, but then exactly after adding

the residuals to the selfloops by cf -selflooping. This further implies that the (f , c)-adjusted

graph has no negative selfloop if and only if c ≥ maxi∈V {(d̃i − w̃ii)/fi} = c+
W̃f ,f

. If W̃f is clear

from the context, we refer to c+
W̃f ,f

simply by c+. Finally, note that W = Wd.

2.3.7 The f-adjusted Laplacian

Recall the definition of the normalized Laplacian as L(W ) := I−D−1/2WD−1/2 for any graph

matrix W ∈ W. The same definition can be applied to weak graph matrices W ∈ W� and

still give a valid mathematical expression. However, this does not imply that all properties of

the normalized Laplacian (such as positive semi-definiteness) automatically generalize from

W ∈W to W ∈W�. Section 2.5.1 studies this generalization of the normalized Laplacian L
to weak graph matrices in detail, and shows that the interesting properties indeed generalize.

The following lemma can also be seen as a corollary of this generalization, although a direct

proof is given here. It shows that all (f , c)-adjusted graphs for all c > 0 are very similar to

each other in terms of their normalized Laplacian matrix.

Lemma 2.3.7 (Scaling relation)

For all W ∈W, f ∈ Rn>0 and c > 0 it holds that

L(W f ) = c · L(W f ,c).

Proof. Plugging in all definitions gives that:

c · L(W f ,c) = c ·
√

(cF )−1(cF − (W̃f − D̃f + cF ))
√

(cF )−1

=
√
F−1(F − (W̃f − D̃f + F ))

√
F−1

= L(W f ,1)

Consequently, every L(W f ,c) has the same eigenvectors as L(W f ), with all eigenvalues

scaled by c−1. In particular the order of the eigenvalues is preserved. Further, the normalized

Laplacian of the generally weak f -adjusted graph matrix W f ∈ W� equals for any c ≥ c+

the normalized Laplacian of a non-weak graph matrix W f ,c ∈ W up to a scaling factor.

This implies further that every L(W f ,c) inherits many spectral properties from the standard

normalized Laplacian L(W f ,c+) of a non-weak graph such as its positive semi-definiteness and

that
√

f is an eigenvector to eigenvalue 0 whose multiplicity matches the number of connected

components in G(W ).
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As a consequence, the spectral analysis of any (f , c)-adjusted graph can be reduced to the

f -adjusted graph. In particular, it does not matter whether or not the graph has negative

selfloops. We can simply choose the f -adjusted graph as a representative for all (f , c)-adjusted

graphs because their normalized Laplacians are the same up to scaling by c.

We refer by the term f-adjusted Laplacian Lf (W ) to the normalized Laplacian of the

f -adjusted graph L(W f ).

Definition 2.3.8 (f-adjusted Laplacian)

For all W ∈W and f ∈ Rn>0, the f -adjusted Laplacian of W is defined as:

Lf (W ) := L(W f ) ∈ L(W�) ,

that is the normalized Laplacian of the f -adjusted graph matrix W f ∈W�.

The f -adjusted Laplacian shows another interesting property that is crucial for the algebraic

interpretation of f -adjusting. The following lemma states a fundamental connection between

every f -adjusted Laplacian Lf (W ) and the normalized Laplacian L(W ) = I −
√
D−1W

√
D−1.

Lemma 2.3.9 (f-adjusted Laplacian versus normalized Laplacian)

For all W ∈W and f ∈ Rn>0 it holds that

Lf (W ) = D̃fF
−1 −

√
D−1W

√
D−1 .

That is, every Lf (W ) is related to L(W ) by

Lf (W ) = L(W )− diag(h)

for h = (hi) ∈ Rn with

hi = 1−
n∑
j=1

wij

√
fj/fi√
didj

.

Proof. Right from the definitions we get that:

Lf (W ) = I −
√
F−1(W̃ − D̃f + F )

√
F−1

= I −
√
F−1
√
FD−1W

√
FD−1

√
F−1 + D̃fF

−1 − I

= D̃fF
−1 −

√
D−1W

√
D−1 .
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This gives with L(W ) = I −
√
D−1W

√
D−1 that

Lf (W ) = L(W )− (I − D̃fF
−1)︸ ︷︷ ︸

=:diag(h)

,

where h = (I− D̃fF
−1)1 = (I−

√
F−1D−1W

√
FD−1)1 ∈ diag(Rn), which can be expressed

element-wise as stated in the lemma.

Lemma 2.3.9 shows that every f -adjustment corresponds to a specific modification of the

normalized Laplacian along its main diagonal. We can think of f -adjusting as of replacing

the identity matrix in L(W ) = I −
√
D−1W

√
D−1 by the new diagonal matrix D̃fF

−1. Its

diagonal entries reflect the relative deviation d̃/f between the intended new degrees f and the

degrees d̃ that are obtained by f -scaling without subsequent f -selflooping. Note that f -scaling

alone does not reveal any clear relation to L(W ), only its combination with subsequent

f -selflooping collapses down to this “simple” algebraic form. We denote any modification

along the main diagonal of a matrix as a diagonal modification. Whenever it exceeds just

a tiny perturbation, it has a strong non-linear impact on the spectrum: the eigenvalues can

only loosely and abstractly be bounded by Horn’s inequalities (Bhatia, 2001), and nothing

is known on the impact on the eigenvectors. This complexity should not be considered as a

weakness, but rather as a chance: it shows that in principle diagonal modifications are able

to drastically change the interpretation of eigenvalues and eigenvectors. So if we succeed in

linking this graph modification to an interesting change of graph properties, then we gain a

novel analysis tool from that.

A similar approach of studying diagonal modifications is taken by Bapat et al. (2001),

who study the modified unnormalized Laplacian L(W ) + S for S ∈ diag(Rn). Note that

L(W )+S /∈ L(W�) for all S 6= 0, hence no diagonal modification of the unnormalized Laplacian

represents the unnormalized Laplacian of another graph. Nevertheless, this approach still

provides useful meta-information on the graph G(W ). For example Wu et al. (2012) consider

this diagonal modification for S ≥ 0, and show how to interpret (L(W ) +S)−1S as meaningful

random walk absorption probabilities on G(W ).

In contrast to the unnormalized Laplacian, the normalized Laplacian can be diagonally

modified in infinitely many ways to yield the normalized Laplacian L(A) of another graph

A ∈W�. The algebraic intuition, one of the main contributions in this chapter, makes this

relation precise in the sense that “all valid” diagonal modifications of the normalized Laplacian

L(W ) are in a one-to-one correspondence with all possible f -adjustments of W .

We end this section by a corollary that collects the most important algebraic properties of

f -adjusting.
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Corollary 2.3.10 (Algebraic properties of the f-adjusted Laplacian)

For any graph matrix W ∈W, f ∈ Rn>0 and c > 0, the following properties hold:

• Lf (W ) = Lcf (W )

• Lf (W ) = c · L(W f ,c)

• Lf (W ) = Z −
√
D−1W

√
D−1 where Z = D̃f/F shows along its main diagonal the

relative approximation error of f -scaling.

• Lf (W ) is positive semi-definite, despite of any negative selfloops

• Lf (W ) allows for spectral clustering of the f -adjusted graph

2.4 Main contributions

Both contributions in this section can be summarized as follows: modifying the main diagonal

of the Laplacian matrix affects volumes and cuts in a controlled way. This can be utilized for

random geometric graphs in order to study a modification of the original sampling density.

2.4.1 Contribution 1: Geometric interpretation of f-adjusting

The first main contribution is a geometric interpretation of f -adjusting if applied to an RGNG.

Theorem 2.4.1 determines the continuous quantities that are represented by the volumes

and cuts of an f -adjusted graph. This justifies to think of f -adjusting as of modifying the

underlying density: studying volumes and cuts of an f -adjusted RGNG corresponds to studying

a modified variant of the original sampling density. Depending on which modification is

desired in an application, one can choose a corresponding vector f for the f -adjustment.

The key to this interpretation is given by the following theorem, which refines Theorem 2.3.3.
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Theorem 2.4.1 (Convergence limits of interspace quantities under f-adjusting)

Let p : Rd → R denote a probability density that satisfies the regularity conditions 2.3.2,

in particular p has compact support X . Consider a random sequence of matrices (Wn),

where Wn ∈W is the graph matrix of an RGNG that is built on n sample points drawn

from p, with parameters chosen according to one of the limit scenarios 2.3.1. Fix a

hyperplane S in Rd and refer by H to either one of the two halfspaces induced by S.

Let f : X → R>0 denote any positive-valued twice-differentiable function with bounded

gradient on the interior of X . Define fn := (f(xi)), that is the vector of the function

evaluations of f at the sample points. Consider the sequence
(
Wn

)
, where Wn := (Wn)fn

denotes the fn-adjusted graph of Wn. Then the following L1-convergences hold true:

cn · volfn(H)
a.s.−−→ volf ·p(H) and c′n · cutWn

(S)
a.s.−−→ cutf ·p(S) ,

where (cn) and (c′n) are deterministic sequences of scaling constants that depend only on

n, d and the parameters of the RGNG.

Theorem 2.4.1 can be summarized as follows: if the vector f is defined by evaluating a

sufficiently smooth function f at the locations of the sample points, then volumes and cuts in

the f -adjusted graph refer, in the large sample limit, to volumes and cuts of the function f · p
in space.

But how to define such function f in practice, particularly in the case that the sample points

are not even known? The simplest strategy to start with is by choosing f as the constant

1-function on space: f(x) = 1. This gives f := 1 the all-one-vector, and f · p = p. Hence,

volumes and cuts in the 1-adjusted graph refer to volumes and cuts of p itself, without the

squaring bias that is immanent to the original graph.

In applications in which the sample points are known, one can just choose any function

f and define f := (f(xi)) as in the theorem, in order to get that volumes and cuts in the

f -adjusted graph refer to the function f · p in space.

But even if the sample points are not known, there are further alternatives that allow

to apply f -adjusting. The alternative studied here is to define f with respect to the vertex

degrees in the graph, that is with respect to the consistent density estimate di · cn ≈ p(xi) for

some unknown scaling factor cn > 0. In particular, for any q ∈ R we get by dqi an estimate

on the function f = c−qn · pq. As a consequence, for f := (dqi ) the f -adjusted graph refers to

volumes and cuts of the function pq · p = pq+1, up to a scaling factor. Consider the following

three special cases:

• q = 0: this choice corresponds to f := 1 = (d0
i ). Volumes and cuts in the 1-adjusted

graph refer to p0+1 = p itself, without squaring.

• q = 1: this choice corresponds to f := d = (di). Since di is a density estimate on p, we

get that the d-adjusted graph refers to the continuous quantities p2, just as the original
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graph. Indeed the d-adjusted graph equals the original graph: W = Wd.

• q = −1: since p is bounded away from zero, we can even choose negative values for q.

For f := (d−1
i ), we get that volumes and cuts of the f -adjusted graph refer to p−1p = 1,

the uniform distribution on the support X of p, up to a scaling factor.

The following corollary summarizes meaningful choices of f . It can be considered as the

most relevant result of this chapter in order to make the intuition behind the geometric

interpretation of f -adjusting precise.

Corollary 2.4.2 (Choices of parameter f for f-adjusting)

Let p denote a probability density that satisfies the regularity conditions 2.3.2. Further,

let G denote an RGNG that is built on top of a sample drawn from p. Volumes and cuts

in G are related (in the sense of Theorem 2.4.1) to the function p2. Volumes and cuts

in the f -adjusted graph Gf are related to modifications of p, with examples given for the

following choices of f ∈ Rn>0:

f := . . . related continuous volumes and cuts after f -adjusting

d p2 biased toward squaring, as in the original graph G = Gd

1 p unbiased, corrected volumes and cuts of p itself

(d−1
i ) 1 uniform density on the support of p

(dqi ) pq+1 any power of p

(f(xi)) f · p general modification of p as driven by some f(xi)

The applications in Section 2.6 show how these choices of f can provide concrete solutions to

a variety of different problems in machine learning.

2.4.2 Contribution 2: Algebraic interpretation of f-adjusting

f -selflooping is a fairly simple graph modification: it represents every possible way of how to

modify an adjacency matrix W ∈W� along its main diagonal such that the result is again

an adjacency matrix A of another graph. That is, f -selflooping refers to all solutions of the

equation W +X = A for all X ∈ diag(Rn) and A ∈W�.

At first glance, f -adjusting appears to be a much more artificial graph modification. But

the algebraic interpretation shows that this is not the case. f -adjusting is equivalent to a

modification of matrices that can be described in exactly the same way as f -selflooping, but

under the normalized Laplacian operator: it represents every possible way of how to modify a

normalized Laplacian L(W ) along its main diagonal such that the result is the normalized

Laplacian L(A) of another graph. That is, f -adjusting refers to all solutions of the equation

L(W ) +X = L(A) for all X ∈ diag(Rn) and A ∈W�.

As a consequence, both f -selflooping and f -adjusting can be characterized in terms of a

simple matrix equation. However, f -adjusting is more complex than f -selflooping in the sense

that it additionally modifies all non-selfloop edge weights.

69



Chapter 2: The f -adjusted Laplacian

We already know from Lemma 2.3.9 that every f -adjusting can be understood as a diagonal

modification of the form L(W ) +X = L(A) for some X ∈ diag(Rn) and A ∈W�. This raises

the question whether also the converse is true: does every “valid” diagonal modification (that

is any choice of X ∈ diag(Rn) such that L(W ) +X = L(A) for some A ∈W�) imply that A

must be an f -adjustment of W? The following theorem gives a positive answer.

Theorem 2.4.3 (Equivalence between f-adjusting and diagonal modifications)

Let W ∈ W denote any graph matrix. Fix any diagonal matrix X ∈ diag(Rn) and any

weak graph matrix A ∈W�. Then it holds that

L(W ) +X = L(A)

if and only if A = W f and X = D̃fF
−1 − I for any f ∈ Rn>0.

Theorem 2.4.3 gives that f -adjusting is equivalent to modifying the main diagonal of the

normalized Laplacian in any valid way.

Given any f , one can simply determine the corresponding A and X. However, it is unclear

how to achieve the converse direction: given any diagonal modification X, how to decide

whether it is valid, and if yes, for which f . The converse direction is equivalent to deciding

whether the necessary and sufficient condition X = D̃fF
−1− I can be satisfied for some choice

of f ∈ Rn>0. It is not easy to find a suitable f because this condition refers to a system of

rational equations: xi + 1 = d̃i/fi =
∑

j∈V wij
√
fj/
√
didjfi. The following theorem provides

a constructive characterization of all valid choices for X that further allows to compute the

corresponding f explicitly.

Theorem 2.4.4 (Characterization of all valid diagonal modifications)

Let W ∈W denote any graph matrix of a connected graph. Choose any diagonal matrix

Z ∈ diag(Rn) as a replacement for the identity matrix in L(W ) = I −
√
D−1W

√
D−1.

Then it holds that

Z −
√
D−1W

√
D−1 ∈ L(W�)

if and only if Z ∈ diag(Rn>0) and Z is scaled such that M := Z−1
√
D−1W

√
D−1 has

spectral radius 1. This further implies that Z −
√
D−1W

√
D−1 = Lf (W ) is an f -adjusted

Laplacian of W , where
√

f is uniquely determined (up to scaling) as the all-positive

eigenvector corresponding to the simple real eigenvalue 1 of M .

Both theorems together form the algebraic interpretation of f -adjusting. Beside clas-

sifying f -adjusting as a natural graph modification with a simple representation in terms

of normalized Laplacian matrices, this interpretation yields a couple of further interesting

consequences:
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Generating f-adjusted graphs by choosing a new diagonal. Theorem 2.4.4 allows for the

following constructive way to generate other normalized Laplacians from L(W ) by diagonal

modifications: choose any candidate Ẑ ∈ diag(Rn>0) for the goal of replacing the identity

matrix in the normalized Laplacian L(W ) = I −
√
D−1W

√
D−1 toward Ẑ −

√
D−1W

√
D−1.

This will not yield another normalized Laplacian in general. However, every choice of Ẑ

determines by the spectral radius α := ρ(Ẑ−1
√
D−1W

√
D−1) a unique scaling factor such

that αẐ −
√
D−1W

√
D−1 indeed equals the normalized Laplacian L(A) of some A ∈W�. If

we think of the set RẐ as a “direction”, then there lies in every direction exactly one other

normalized Laplacian L(A). Further, A is an f -adjustment of W , and all f -adjustments of W

can be generated this way. Moreover, f is related to Ẑ in the way that
√

f is the eigenvector

to the real eigenvalue α of Ẑ−1
√
D−1W

√
D−1.

Generalization to unconnected graphs. Theorem 2.4.4 can be applied to unconnected

graphs by applying it individually to each connected component. That is, for every connected

component C, the spectral radius of Z−1
C

√
D−1
C WC

√
D−1
C must equal 1, where ZC , DC and

WC refer to the restriction of the graph to component C. Further, the uniqueness of f is

affected because fC can be scaled individually within each connected component without

changing the normalized Laplacian.

Generalization to (f , c)-adjusting. One can generalize the original problem to the problem

of determining all X ∈ diag(Rn) such that L(W ) + X = c · L(A) for any c ∈ R>0 and any

A ∈W�. It is straightforward to show from Lemma 2.3.7 that this equation holds true if and

only if A is an (f , c)-adjustment of W .

2.5 Proofs and technical details

This section provides details on the proofs of the algebraic and of the geometric interpretation

of f -adjusting. Since this requires to deal with weak graph matrices, the first subsection

collects several basic properties of this graph type.

2.5.1 Details on weak graph matrices

In the following we study various properties of weak graph matrices that are essential for the

proofs of the algebraic interpretation in the next section.

Throughout this section, we define for any W ∈W� and f ∈ Rn>0 the variables d := W1,

D := diag(d), F := diag(f). First, let us summarize some basic facts on the main diagonal

entries of the Laplacian L(W ) = [lij ] and the normalized Laplacian L(W ) = [`ij ] for non-weak

and weak graphs.
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Fact 2.5.1 (Main diagonal entries of the Laplacian)

For W ∈W it holds for all i ∈ V that:

(i) 0 ≤ wii ≤ di, 0 ≤ wii/di ≤ 1

(ii) lii = di − wii ∈ [0, di] with lii = 0 if and only if i is a separated vertex.

(iii) `ii = 1− wii/di ∈ [0, 1] with `ii = 0 if and only if i is a separated vertex.

For weak graph matrices (now wii < 0 is possible) the following properties hold.

Fact 2.5.2 (Main diagonal entries of the Laplacian of weak graphs)

For W ∈W� it holds for all i ∈ V that:

(i) −∞ < wii ≤ di, −∞ < wii/di ≤ 1

(ii) lii = di − wii ∈ [0,∞) with lii = 0 if and only if i is a separated vertex, and lii > di
if and only if i has a negative selfloop.

(iii) `ii = 1 − wii/di ∈ [0,∞) with `ii = 0 if and only if i is a separated vertex, and

`ii > 1 if and only if i has a negative selfloop.

As already stated in Section 2.3.6, the set W is not closed under f -selflooping because

W ∈W might be mapped to some W ◦f ∈W� \W. However, for all W ∈W� there exists some

large enough c > 0 such that W ◦c f ∈W. The following proposition quantifies this threshold.

Proposition 2.5.3 (Non-weak output of f-selflooping)

Let W ∈ W�, f ∈ Rn>0 and c > 0. Define c+
W,f := maxi∈V {(di − wii)/fi} ≥ 0. Then it

holds that W ◦c f ∈W if and only if c ≥ c+
W,f .

Proof. From W ◦c f = W − D + cF we get that W ◦c f has no negative selfloop if and only

if wii − di + cfi ≥ 0 for all i ∈ V . In the case c ≥ c+
W,f we get that wii − di + cfi ≥

wii − di + maxi∈V {(di − wii)/fi} · fi = maxi∈V {(di − wii)} − (di − wii) ≥ 0 for all i ∈ V .

For c < c+W,f , choose k ∈ {i ∈ V | (di − wii)/fi = c+
W,f}, and get that wkk − dk + cfk <

wkk − dk + c+
W,f · fk = wkk − dk + (dk − wkk)/fk · fk = 0.

Proposition 2.5.3 directly implies the following two corollaries.
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Corollary 2.5.4 (Partitioning the output of f-selflooping)

For all W ∈W� and all f ∈ Rn>0, we get the following partition:

{W ◦c f | c > 0} = {W ◦c f | 0 < c < c+
W,f}︸ ︷︷ ︸

⊆ W�\W

∪̇ {W ◦c f | c ≥ c+
W,f}︸ ︷︷ ︸

⊆ W

.

Corollary 2.5.5 (f-selflooping of loops-only graphs)

It holds that c+
W,f = 0 if and only if W is loops-only (⇔ di = wii for all i ∈ V ).

Next we study how the output of a graph modification is affected if we choose parameter

af instead of f for some a > 0. First, we show that f -scaling as well as (f , c)-adjusting are

linear in their vector parameter.

Proposition 2.5.6 (Linearity of f-scaling and (f , c)-adjusting)

For every W ∈W, f ∈ Rn>0 and c, a > 0, both f -scaling and (f , c)-adjusting are linear:

W̃af = a · W̃f and W af ,c = a ·W f ,c .

Proof. af -scaling gives that W̃af =
√
aFD−1W

√
aFD−1 = a

√
FD−1W

√
FD−1 = a · W̃f ,

which implies D̃af = a·D̃f . Thus, W af ,c = W̃af−D̃af +caF = a·(W̃f−D̃f +cF ) = a·W f ,c.

For f -selflooping, linearity does not hold, since W ◦af 6= a ·W ◦f whenever W is non-loops-only

(because the right-hand side also affects off-diagonal entries). However, the next lemma shows

that at least for ad-selflooping some other sense of linearity holds, namely an inverse-linear

relation between the normalized Laplacians of W ◦d and of W ◦ad.

Lemma 2.5.7 (L-inverse-linearity of d-selflooping)

For all W ∈W� it holds that L(W ) = L(W ◦d) = a · L(W ◦ad) for all a > 0.

Proof. W = W−D+D = W ◦d. Further, L(W ◦ad) =
√

(aD)−1(aD−(W−D+aD))
√

(aD)−1 =

a−1
√
D−1(D −W )

√
D−1 = a−1L(W ).

This easy yet powerful lemma implies that all matrices in {L(W ◦ad) | a > 0} share the

same eigenvectors with their corresponding eigenvalues scaled according to a. This implies for

example that positive semi-definiteness of L(W ) and L(W ) generalizes to non-weak graph

matrices, as the next lemma shows.
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Lemma 2.5.8 (Generalization of L to weak graph matrices)

For W ∈W� it holds that L(W ) is positive semi-definite. Further, 0 is an eigenvalue of

L(W ) with multiplicity equal to the number of connected components in G(W ), and
√

d

is a corresponding eigenvector.

Proof. All stated properties are well-known for non-weak graph matrices (see Section 1.3.5)

Adding/Removing selfloops does not affect the number of connected components. Thus, all

results follow directly from Lemma 2.5.7 and Proposition 2.5.3, since there exists some c > 0

large enough such that W ◦cd ∈W, thus L(W ) = c · L(W ◦cd) equals the standard normalized

Laplacian matrix of a non-weak graph, up to scaling by c.

Observe that A = cW implies that L(A) = L(W ). The following lemma shows that for

connected graphs this implication even holds as an equivalence.

Lemma 2.5.9 (Equal normalized Laplacians)

For a connected graph G(W ) ∈ G(W�) and any A ∈W� it holds that L(W ) = L(A) if

and only if A = c ·W for some c > 0.

Proof. “⇐”. Assuming A = c ·W for some c > 0 yields L(A) = I −
√

(cD)−1cW
√

(cD)−1 =

I −
√
D−1W

√
D−1 = L(W ). “⇒”. Let t := A1 > 0. Assuming L(W ) = L(A) =: [`ij ]

gives by Lemma 2.5.8 that
√

d is the unique (up to scaling) eigenvector of L(W ) to the

eigenvalue 0, similarly
√

t for L(A) = L(W ). Hence, t = αd for some α ∈ R, that is

ti = α · di for all i ∈ V . For every i 6= j we get from `ij = wij/
√
didj = aij/

√
titj that

aij = wij ·
√
titj(didj)−1 = α · wij . For i = j we get from `ij = (di − wii)/di = (ti − aii)/ti

that di − wii = di − aii/α, hence aii = α · wii. That is A = α ·W .

2.5.2 Proofs for the algebraic interpretation

The goal of this section is to prove Theorem 2.4.3 and Theorem 2.4.4. Their proofs rely

on various aspects of the Perron-Frobenius-Theorem (PFT) applied to irreducible non-

negative matrices. See for example Stańczak et al. (2006) for an overview on Perron-Frobenius

theory. Here, we only take from PFT that the following three properties are satisfied by every

irreducible non-negative matrix A ∈ Rn×n≥0 :

• the spectral radius ρ(A) > 0 is itself a real positive eigenvalue of A, denoted as the

Perron root of A

• the Perron root is a simple eigenvalue, which implies that the corresponding left and

right eigenvectors are unique (up to scaling), denoted as the (left/right) Perron

eigenvector of A
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• the Perron eigenvectors can be chosen such that all entries in it are strictly positive,

and no other eigenvector can be chosen this way

For example, consider the random walk matrix P = D−1W of a strongly connected graph.

P is irreducible because P has the same zero-entries as the irreducible matrix W . Being

row-stochastic means that P1 = 1, thus, 1 is a right eigenvector to eigenvalue 1. PFT gives

further information: since 1 is all-positive, it is the right Perron eigenvector, hence 1 is the

spectral radius of P and there is no other right eigenvector to this eigenvalue. Note that the

left Perron eigenvector is the stationary distribution π, because πP = π.

We are going to prove two preparatory lemmas that finally lead to Lemma 2.5.12, which

almost implies Theorem 2.4.3 and Theorem 2.4.4.

Note that in order to get more compact statements, we use everywhere throughout this

section that W̃1 =
√
D−1W

√
D−1. This gives the syntax that L(W ) = I − W̃1, and according

to Lemma 2.3.9 that Lf (W ) = Z − W̃1 for Z = D̃fF
−1.

Lemma 2.5.10 (Characterization of f-adjusted Laplacians)

For any connected graph G(W ) ∈ G(W) let

Λ := {Lf (W ) | f ∈ Rn>0}

denote the Laplacian orbit of W under f-adjusting. Further define

Λ′ := {Z − W̃1 | Z ∈ diag(Rn>0), ρ(Z−1W̃1) = 1}

for ρ(·) the spectral radius of its argument. Then it holds that Λ = Λ′ with the relation

Z = D̃fF
−1, wherein

√
f := (

√
fi) is the unique (up to scaling) eigenvector of Z−1W̃1

for eigenvalue 1.

Proof. It is well-known that G(W ) is connected if and only if W is irreducible. This implies,

for any choice of Z ∈ diag(Rn>0), that Z−1W̃1 is irreducible (and non-negative), too, since it

has the same non-zero-pattern as W .

Λ ⊆ Λ′: fix any Lf (W ) ∈ Λ for some f > 0 and set Z := D̃fF
−1 ∈ diag(Rn>0). We prove that

ρ(Z−1W̃1) = 1 by finding an all-positive eigenvector x to the following eigenvalue problem:

Z−1
√
D−1W

√
D−1x = x. (?)

We propose that
√

f is such an eigenvector. Plugging D̃f = diag(
√
FD−1W

√
FD−11) into

D̃fF
−1 = Z element-wise, gives with Z = diag(z1, . . . , zn) that
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D̃fF
−1 = Z

⇔
n∑
j=1

wij√
didj

·
√
fj = zi ·

√
fi for all i = 1, . . . , n

⇔
√
D−1W

√
D−1
√

f = Z
√

f

⇔ Z−1
√
D−1W

√
D−1
√

f =
√

f

(??)

Thus
√

f is indeed a solution to (?), hence an all-positive (right) eigenvector of Z−1W̃1 to

the (existing) eigenvalue 1. By PFT, there is exactly one eigenvalue providing all-positive

eigenvectors. Further it determines the spectral radius and is simple. Thus, we have that

ρ(Z−1W̃1) = 1 is the Perron root and that the corresponding left and right eigenvectors are

unique (up to scaling). With Lemma 2.3.9 we get that Z = D̃fF
−1 is a valid choice for Z to

represent Lf (W ) as an element in Λ′.

Λ′ ⊆ Λ: fix any Z− W̃1 ∈ Λ′ for some Z ∈ diag(Rn>0) with ρ(Z−1W̃1) = 1. By irreducibility

of Z−1W̃1, there exists by PFT a unique (up to scaling) all-positive solution x̂ of (?). By

defining f := x̂2 we get that
√

f is a solution to the eigenvalue problem (?). From (??) we see

that this is equivalent to Z = D̃fF
−1. Thus, we get that Z−W̃1 = D̃fF

−1−W̃1 = Lf (W ) ∈ Λ

for this unique (up to scaling) choice of f .

We have already shown in Lemma 2.3.9 that f -adjusting can be understood as a diagonal

modification of the form L(W ) +X = L(A) for some X ∈ diag(Rn) and A ∈W�. So far the

question is left open if further the converse is true: does every such diagonal modification

imply that A is an f -adjustment of W? We now answer this in the affirmative.

Lemma 2.5.11 (Characterization of Diagonally Modified Laplacians)

Let W ∈W. Then L(W ) +X = L(A) holds true for X ∈ diag(Rn) and A ∈W� if and

only if A is an f -adjustment of W for some f ∈ Rn>0. Formally, with

Λ′′ := {L(W ) +X | X ∈ diag(Rn), L(W ) +X ∈ L(W�)}

it holds that Λ = Λ′′, where Λ as defined in Lemma 2.5.10.

Proof. Λ ⊆ Λ′′: this direction is clear by Lemma 2.3.9. Λ′′ ⊆ Λ: choose any L(W ) +X ∈ Λ′′.

With Y := X + I we get that L(W ) +X = Y − W̃1 = L(A) =: [`Aij ] for some A ∈W�. First,

we show that this implies that Y = diag(y1, . . . , yn) has an all-positive diagonal. Fix any

i ∈ V . From A ∈W� and Fact 2.5.2 it follows that `Aii ≥ 0, and from W ∈W that wii ≥ 0.

Thus, we get from `Aii = yi − wii/di ≥ 0 that yi ≥ wii/di ≥ 0. Thus yi is non-negative. Now

assume that yi = 0. This implies that wii = 0, hence `Aii = 0, so i must be (by Fact 2.5.2) a

separated vertex in G(A). In G(W ), wii = 0 implies by the positive degree constraint that

wij > 0 for some j 6= i. For such j it holds that −aij/
√
dAi d

A
j = `Aij = `ij = −wij/

√
didj < 0,
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hence that aij > 0 in contradiction to i being a separated vertex in G(A). Therefore, yi > 0

for all i ∈ V .

In the following we assume w.l.o.g. that W is connected, since all arguments can be applied

to each connected component individually, independent of all other components.

Lemma 2.5.10 gives that for every all-positive diagonal matrix Y (in particular as chosen

above) there exists some α > 0 (to be determined later) plus some h-adjustment Wh =: Mα ∈
W� for some h ∈ Rn>0 such that L(Mα) = αY − W̃1 ∈ Λ. We now show by contradiction

that for no β 6= α any other Mβ ∈ W� of the form L(Mβ) = βY − W̃1 exists: fix any

Mβ ∈ W� with L(Mβ) = βY − W̃1 for some β ∈ R. Setting ε := β − α gives that

L(Mβ) = βY − W̃1 = L(Mα) + εY . Now assume that ε > 0. By Lemma 2.5.8, L(Mβ) is

positive semi-definite with v :=
√
Mβ1 an all-positive eigenvector to the eigenvalue 0. We

get the contradiction 0 = vTL(Mβ)v = vTL(Mα)v + εvTY v > 0, because vTL(Mα)v ≥ 0

by positive semi-definiteness of L(Mα), and εvTY v > 0 by all-positivity of v and Y . Now

assume that ε < 0. Let w :=
√
Mα1 denote the all-positive eigenvector of L(Mα) to the

eigenvalue 0. We get the contradiction 0 ≤ wTL(Mβ)w = wTL(Mα)w+ εwTY w < 0, because

wTL(Mα)w = 0, and εwTY w < 0 by all-positivity of w and Y , and the first inequality due to

positive semi-definiteness of L(Mβ). Thus, no such β 6= α exists.

Now we get from L(A) = Y − W̃1 = L(M1) that α = 1 is the only possible solution of this

form. This gives that L(A) = L(M1) ∈ Λ. Further, we have from above that M1 = Wh is

an h-adjustment of W . From Lemma 2.5.9 it follows that A = a ·M1 for some a > 0, which

gives by linearity (Proposition 2.5.6) that A = W ah is an f -adjustment of W for f := ah.

Now we have all ingredients to prove our main result on the algebraic interpretation of

f -adjusting:

Lemma 2.5.12 (Complete characterization for connected graphs)

For n > 1 and connected G(W ) ∈ G(W) consider all solutions (X,A, c) ∈ diag(Rn) ×
W� × R of the equation

L(W ) +X = c · L(A).

For c ≤ 0 no solution exists. For c > 0, all solutions are given by A = W f ,c and

X + I = D̃fF
−1 = Z for any choice of f ∈ Rn>0. This is equivalent to choosing any

Z ∈ diag(Rn>0) with Perron root ρ(Z−1W̃1) = 1, which determines
√

f as the unique (up

to scaling) right Perron eigenvector.

Proof. Let L(W ) =: [`ij ] and L(A) =: [`Aij ]. W is non-loops-only, so there exist i 6= j with

wij > 0, hence `ij < 0. The case c < 0 would imply that `Aij > 0, which is impossible for

all A ∈ W�. The case c = 0 would imply that L(W ) + X = 0, hence that all off-diagonal

elements in W are zero, in contradiction to being non-loops-only. Thus, no solutions for c ≤ 0

exist.
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Now consider the case c = 1, that is any solution of the form L(W ) +X = L(A). We get

from Lemma 2.5.11 that every such solution corresponds to fixing some f ∈ Rn>0 and setting

A := W f ,1. This implies by Lemma 2.3.9 that X + I = D̃fF
−1. It remains to show that this

is equivalent to choosing Z ∈ diag(Rn>0) with the desired properties. For fixed f , we get from

Lemma 2.5.10 that D̃fF
−1 = X + I = Z for some Z ∈ diag(Rn>0) with Perron eigenvalue

ρ(Z−1W̃1) = 1 and
√

f the corresponding right Perron eigenvector. The other way round,

Lemma 2.5.10 gives that choosing any Z ∈ diag(Rn>0) with ρ(Z−1W̃1) = 1 implies by setting

X := Z − I that L(W ) + X = L(A) for A = W f ,1, and further that Z = D̃fF
−1 with

√
f

being determined as the unique (up to scaling) right Perron eigenvector.

Now consider the case c > 0, that is L(W ) +X = c · L(A) for X ∈ diag(Rn) and A ∈W�.

From c · L(A)
2.5.7
= L(A◦c−1A1) we get that L(W ) + X equals the normalized Laplacian of

a weak graph matrix. Thus, L(W ) + X
2.5.11

= L(W g,1) for some g ∈ Rn>0. This gives

that L(A) = c−1L(W g,1)
2.3.7
= L(W g,c). Thus we have that A

2.5.9
= α ·W g,c

2.5.6
= Wαg,c for

some α > 0. So A is the (f , c)-adjustment of W for f := αg. It follows as before that

X + I = D̃g diag(g)−1 = D̃fF
−1 = Z for some Z ∈ diag(Rn>0) with Perron eigenvalue

ρ(Z−1W̃1) = 1 and
√

g a corresponding right Perron eigenvector as well as
√

f =
√
αg another

one, unique up to scaling.

For the other way round, choose any f ∈ Rn>0 (or equivalently any Z ∈ diag(Rn>0)). Setting

A := W f ,c implies that L(W f ,1)
2.3.7
= c · L(A) = L(W ) + X, hence by Lemma 2.3.9 that

X + I = D̃fF
−1.

We are now ready to prove Theorem 2.4.3 and Theorem 2.4.4.

Proof of Theorem 2.4.3. For n = 1 it holds that L(W ) = 0, and L(A) = 0 for every A ∈W�.

Further, f -scaling yields D̃f = F for every f ∈ Rn>0, hence X = 0. Thus, the above

equation is satisfied for every f -adjustment of W , while for every choice X 6= 0 it holds that

L(W ) +X /∈ L(W�). For a connected graph G(W ) with n > 1 vertices, the stated equivalence

follows directly from Lemma 2.5.12 for c = 1. Now W consists of any number of connected

components, where WS , AS , fS and XS refer to the respective restriction to only the vertices

of component S ⊆ V . Note that W f is an f -adjustment of W if and only if (WS)fS is an

fS-adjustment of WS for every component S individually. Particularly, L(W ) + X = L(A)

if and only if L(WS) + XS = L(AS) individually for each component S. Thus, the stated

equivalence follows by applying Lemma 2.5.12 for c = 1 individually to each component S.

Proof of Theorem 2.4.4. For n = 1 it holds that L(W ) = 0 and further that ρ(M) = 1 if and

only if Z = 1. That is, Z = I is the only possible diagonal that is shared by all f -adjustments

of W , and for all Z 6= 1 we get that 0 6= Z − W̃1 6= L(W�). For n > 1, all results follow

immediately by reformulating the corresponding statements in Lemma 2.5.12 for c = 1 and

from the properties of the Perron root and the Perron eigenvectors.
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2.5.3 Details on the proof of the geometric interpretation

This section provides details on how f -adjusting affects the interspace quantities in terms of

their continuous limit quantities, as made precise in Theorem 2.4.1. A rigorous proof of this

theorem would take more than a dozen pages that are almost a copy of the work by Maier

et al. (2009). For that reason, I solely present the intuitive argument rather than a formal

proof here. The only difference to the original work is to consider the new degrees f(xi) in

place of di and the new edge weights wij ·
√
f(xi)f(xj)/

√
didj in place of wij everywhere

along their proofs. This introduces the function f : Rd → R≥0 as a new function-valued

parameter that can be chosen by us in any way as long as it satisfies the same constraints

that are put on p.

Let us render the overall argument slightly more precise. Recall the definitions of the

interspace quantities:

vold(A) =
∑
xi∈A

di and cutW (S) =
∑

xi∈H−,xj∈H+

wij .

As shown in Theorem 2.3.3, these interspace quantities converge, up to a scaling factor, to

the continuous quantities volp2(A) :=
∫
A p

2(x) dx and cutp2(S) :=
∫
S p

2(x) dx, respectively.

We refer to these integrals also by the simpler notation
∫
A p

2 and
∫
S p

2.

Now let f := (f(x1), . . . , f(xn)) denote the vector of evaluations of some function f at all

sample points. The f -adjusted graph provides the following interspace quantities:

volf (A) =
∑
xi∈A

f(xi) and cutW f
(S) =

∑
xi∈H−,xj∈H+

wij ·
√
f(xi)f(xj)√

didj
.

This holds true for any function f , but in order to achieve limit results in the following, we

have to put the same regularity conditions on f as on p, see Definition 2.3.2. For the volumes,

recall that one factor p in the limit quantity
∫
A p

2 is implied by summing over the vertex

degrees di. Since the new vertex degrees equal f(xi), which corresponds to f instead of p,

we achieve the limit quantity
∫
A fp for the interspace volumes of the f -adjusted graph. This

explains that cn · volfn(H)
a.s.−−→ volf ·p(H) in Theorem 2.4.1.

For the cut weights, recall that the original weights wij imply the limit quantity
∫
S p

2.

In the f -adjusted graph, every edge is re-weighted to wij ·
√
f(xi)f(xj)/

√
didj . Since the

neighborhood radii and bandwidths shrink with n→∞, we get that every edge ij of significant

weight implies that the distance between the corresponding sample points xi and xj decreases

to 0. In particular, we get from the regularity conditions on p that
√
didj → di ≈ dj , and

similarly for f that
√
f(xi)f(xj) → f(xi) ≈ f(xj). Thus, the additional factor on the

edge weights,
√
f(xi)f(xj)/

√
didj , which is the geometric mean of f(xi)/di and f(xj)/dj ,

corresponds in the limit to f/p. Overall, this yields
∫
S p

2 · f/p =
∫
S fp as the continuous limit

quantity of the cut weights after f -adjusting, which shows that c′n · cutWn
(S)

a.s.−−→ cutf ·p(S)

in Theorem 2.4.1.
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The way we apply Theorem 2.4.1 in the following is not by defining some function f on Rd

explicitly, but by defining f(xi) from the degrees di of an RGNG, in particular by f(xi) := dqi
for some q ∈ R. Because of dicn

a.s.−−→ p(xi), this implicitly refers to the function f = pq in

space. Revisit Corollary 2.4.2 for a table of meaningful choices of q.

2.6 Applications

This section highlights some applications of the f -adjusting technique.

2.6.1 Estimating volumes and cut weights of a density

We know from Section 2.3.2 that the vertex degrees in an RGNG provide a density estimate

of the sampling density p. In contrast to that, Section 2.3.4 introduces the “anomaly” that

volumes and cut weights in an RGNG do not refer to the sampling density p itself, but to p2.

Figure 2.6.1 visualizes this anomaly. The plots show that whenever volumes and cuts of the

original graph are considered (that is for f = d), these indeed refer to p2 rather than to p.

Figure 2.6.1 further visualizes that this anomaly can be resolved by considering the 1-adjusted

graph, whose volumes and cut weights indeed refer to the sampling density p. Even further,

the plots show all the correspondences between f := dq and pq+1 for q = −1, 0, 1, 2, just as

proven by the geometric interpretation for the large sample limit.

As a result, whenever we are interested in volumes and cuts of a sampling density p, we

must not consider the original RGNG, but the 1-adjusted graph instead.

2.6.2 f-adjusted spectral clustering

Let G = (V,E,W ) denote an RGNG that is built on a sample drawn from density p. Recall that

2-SpectralClustering (Algorithm 1.3.2) applied to Lrw(W ) or L(W ) focuses on minimizing

the NCut criterion (1.9). Since NCut is determined by cut weights and volumes of G, it is

affected by the anomaly from Section 2.3.4. As a consequence, the normalized cut that is

approximated by 2-SpectralClustering does not refer to the original sampling density p,

but to p2 instead! This is a fundamental but not widely known bias in spectral clustering that

is inherent to all applications in the literature. The same bias affects the multi-vector approach

NormalizedSpectralClustering (Algorithm 1.3.3) and recursive spectral clustering.

In light of the geometric interpretation of f -adjusting, we can expect that by spectral

clustering applied to Lf (W ) the normalized cut will refer to another density, depending on

how f is chosen from the table in Corollary 2.4.2. In particular, for f = 1 we can expect to

solve the anomaly by referring to the original sampling density p rather than to p2.

Before we can approve this as a valid strategy, we have to take a final hurdle: the standard

normalized Laplacian L(W ) is only defined for graphs of positive edge weights, that is for

W ∈ W, while the f -adjusted Laplacian Lf (W ) may refer to some graph with negative
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Figure 2.6.1: Resolving the anomaly via f -adjusting. (top row) four times the same sample of
size n = 10000 from density p : [0, 1]2 → R, p(x, y) = 0.5 + x. This is the same
setting as in Figure 2.3.1, which further defines d as the degree vector of the weighted
kNN-graph. All four heat plots show the degree vector f of the f -adjusted graph for
f ∈ {d,1,d−1,d2}, respectively. Solid vertical lines mark the x-coordinates at which
the total interspace volume volf is split into halves. These empirical split points fit well
to the analytical split points, which are represented by the dashed lines that halve the
space volume volp of the corresponding density function p ∈ {p2/1.083, p, 1, p3/1.25}.
(bottom left) interspace/space volumes of the set A(x) := [0, x] × [0, 1] ⊆ [0, 1]2 as
percentage of the total interspace/space volume. Precisely, volf (A(x))/ volf (A(1)) and
volp(A(x))/ volp(A(1)). (bottom right) interspace/space cut weights for cutting at the
line S(x) := x× [0, 1] ⊆ [0, 1]2. Precisely, c · volW f

(S(x)) and volp(S(x)), where each
scaling constant c is determined by least-squares minimization. For both, volumes
and cuts, the empirical curves as determined by the f -adjusted graph follow their
analytical counterparts as determined by the corresponding density function p. The
slight non-optimal biases arise mainly from the boundary effect at x = 1, which abruptly
cuts off the density landscape at its maximum.
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selfloops, W f ∈ W� \W. We have to ensure that the interpretation of a normalized cut

minimization in terms of the Rayleigh quotient characterization is preserved when generalizing

from L(W ) to Lf (W ). Fortunately, this is easy to see from the findings in Section 2.3.7, in

particular from Lemma 2.3.7. The key is that for every W f ∈ W� there exists some c > 0

such that W f ,c ∈W. Both graph matrices show exactly the same cut weights for all cuts, and

they show the same volumes up to the scaling factor c. So the NCut optimization problem

of W f is the same as that of W f ,c multiplied by the constant c. They have particularly the

same minimizer and refer to the same density. From L(W f ) = c · L(W f ,c) we further get that

their Laplacian matrices have the same spectral properties up to scaling all eigenvalues by c.

As a consequence, spectral clustering by Lf (W ) is essentially the same as spectral clustering

by L(W f ,c) for c ≥ c+. The latter is standard spectral clustering, and it approximates the

minimum normalized cut with respect to the modified density that is implied by f .

After taking this hurdle, we can now introduce f-adjusted spectral clustering as a gen-

eralization of 2-SpectralClustering and NormalizedSpectralClustering. In both cases,

the only difference is to consider the F−1/2-scaled eigenvectors of Lf (W ) in place of v1,v2, . . .

within the algorithms. Precisely, we consider the entries in the vectors F−1/2vf
1, F

−1/2vf
2, . . .,

where vf
i denotes the i’th-smallest eigenvector of Lf (W ). This particularly defines the

f-adjusted NCut score vector as F−1/2vf
2.

In this way, we can indeed solve the anomaly in spectral clustering: replace L(W ) by the

1-adjusted Laplacian L1(W ), where the final eigenvector-scaling by
√
I−1 = I can even be

omitted. However, although 1-adjusting is “correct” in the sense that it allows to study the

density p rather than p2, it is important to note that squaring p can be beneficial for the goal

of determining good clusters, since for all q > 0 the function pq+1 intensifies high-density areas

stronger than low-density areas. This amplification is to a certain extent able to sharpen

cluster boundaries. The advantage of f -adjusting is that we are no longer restricted only to

squaring: we can approximate the normalized cut of the modified density pr for every r ∈ R
by applying standard spectral clustering to the dr−1-adjusted Laplacian.

2.6.3 Correcting for a known sampling bias

Consider a data set in which some parts are known to be over- or underrepresented. For

example, a survey among shop customers in the morning will particularly have the ages

20 to 30 being underrepresented. How can we correct for this in a graph-based learning

scenario? Let p = b · p denote the erroneous density that we can access under some bias

b : Rd → R>0 and p the true density that we cannot access. By f -adjusting, one can use any

estimate of b in order to compensate for the bias. This can be achieved by the f -adjusted

graph for f = db−2 := (di/b(xi)
2)i. It provides volumes and cut weights just as if the sample

points were drawn from p instead of p. We only need to estimate the bias b(xi) at the

locations of the sample points without requiring to know xi itself. Such an estimate can be

given by external domain knowledge. In our above example, we could estimate the bias as

b(xi) := 1− α · exp(−(25− agei)
2/(2σ2)) for parameters α ∈ [0, 1) and σ > 0 that reflect the
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Figure 2.6.2: Correcting for a known sampling bias. (top left) exemplary sample from some true
density p that we cannot access. Heat colors indicate the vertex degrees of an RGNG
built from this sample. (bottom left) 3000 sample points from the biased density p = b·p
that underrepresents around x ≈ 0. This is the sample we can access. (top middle) cut
weights of vertical cuts at x ∈ [−4, 4], for a single graph drawn from each the true and
the biased density, and for the db−2-adjusted graph. (bottom middle) same, averaged
over 20 runs. (top right) heat plot of the NCut score vector from spectral clustering of
the biased graph, giving the wrong vertical cut. (bottom right) heat plot of the NCut
score vector of the db−2-adjusted graph. Although it is built on the biased sample,
the correct clusters are identified, since the bias is removed by f -adjusting.

strength and the bandwidth of the underrepresentation, respectively. By f -adjusting, we can

“merge” anti-bias information given at the vertices into volumes and cut weights.

Consider the example in Figure 2.6.2. It shows two Gaussians (top left) that are underrep-

resented around x ≈ 0 due to bias b(x, y) = min{1, (2 + 3|x|)/8}. The minimum normalized

cut of an RGNG built on the biased sample (bottom left) is misdirected by this bias to the

wrong vertical clusters (top right). The f -adjustment appropriately “repairs” the volumes

and cut weights in the graph. Now the correct horizontal cut is revealed (bottom right).

2.6.4 Removing any non-uniform sampling bias

We now revisit the example from the introduction to this chapter, which discusses the scenario

of clustering an intensity landscape. More precise, we are interested in studying the shape of a

continuous intensity function that can only be accessed at the locations of a finite set of sample

points. The sampling distribution itself does not provide information that we are interested

in. Even worse, non-uniformly distributed sample points can totally misguide the output of

clustering algorithms, as demonstrated again in Figure 2.6.3. However, spectral clustering

works well on uniformly distributed sample points. This is exactly where f -adjusting comes

in: can we modify the graph’s edge weights such that volumes and cut weights behave as if

the sample points were uniformly distributed, in order to make spectral clustering of intensity
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Algorithm: UnbiasedSpectralIntensityClustering

Input:

• sims(xi,xj) for i, j = 1, . . . , n the spatial similarity between i and j

• simv(ti, tj) for i, j = 1, . . . , n the intensity value similarity between i and j

Output:

• s ∈ Rn vector of clustering scores to be further processed

Algorithm:

1. define graph Gs by considering the spatial similarities sims(xi,xj) as edge weights

2. with d the vector of vertex degrees in Gs, create the d−1-adjusted graph Gs. It
provides edge weights wij that remove the non-uniform sampling density information
from the volumes and cut weights. Gs appears as if its volumes and cut weights
were based on uniformly distributed sample points.

3. define the graph G from Gs by multiplying all edge weights with the corresponding
intensity value similarities: wij := wij · simv(ti, tj)

4. return s as defined by the NCut score vector of W = [wij ]

Algorithm 2.6.3: UnbiasedSpectralIntensityClustering algorithm

landscapes robust against non-uniform sampling distributions? The modified graph will still

be defined on the same set of non-uniformly distributed sample points, just with different edge

weights than before. Indeed this approach is possible, and it takes only the spatial similarities

sims and the intensity value similarities simv as its input, without requiring access to any

sampling coordinates. Precisely, we suggest to proceed as listed in Algorithm 2.6.3, denoted as

Unbiased Spectral Intensity Clustering. The unbiased approach removes the influence

of the non-uniform spatial distribution from the final edge weights, and focuses solely on

the intensity values. In terms of Equation 2.1 on page 41, the algorithm replaces the spatial

similarities sims(xi,xj) with wij as given from their d−1-adjustment. Figure 2.6.4 shows that

this leads to the correct segmentation, whereas the biased segmentation that is provided by

the original graph is not correct.

2.6.5 Further applications

This section briefly presents some further applications of f -adjusting. Details on these

applications can be found in the supplementary material of Kurras et al. (2014).
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Figure 2.6.4: f -adjusted spectral clustering of an intensity landscape. Same setting as in Figure 2.1.1.
The rows correspond to four different sampling schemes: grid sample, uniform density,
two Gaussians density, stripe-shaped density. The first column shows the sample, colors
indicating the intensity value. The second and the fourth column indicate by color the
entries in the NCut score vector of the original graph matrix (2.1) and of the f -adjusted
graph matrix (vector s in UnbiasedSpectralIntensityClustering), respectively. The
third and the fifth column show the clustering result as derived from the respective NCut
score vector via thresholding at zero. For non-uniform random samples, the clustering
results derived from the original graph matrix are misguided to a wrong segmen-
tation. The clustering results achieved by UnbiasedSpectralIntensityClustering

successfully reconstruct the contour in all cases because the spatial bias is removed.
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Biased random walks. Zlatić et al. (2010) study what they call “vertex centered biased

random walks”, which is a variant of the classical Markov random walk of a graph. Based on

our analysis, we can give an intuitive explanation of their approach: their new random walk

corresponds to f -adjusting for f = (fi) := (di · exp(2β · di/dmax)) with dmax := maxi∈V {di}
and strength parameter β ≥ 0. According to our geometric interpretation, they implicitly

study the modified density p̃(x) = exp(2β · p(x)/pmax)p(x)2. Hence, they amplify high-density

regions in space exponentially stronger than low-density regions, which strongly intensifies

the existing cluster structure, up to a certain extent.

Merging vertex weights into edge weights. Some graph-based applications provide for each

vertex i a positive weight zi that quantifies some sense of “importance” of this vertex. However,

many graph algorithms ignore such external vertex weights and focus only on edge weights —

so does the famous label propagation algorithm by Zhu and Ghahramani (2002). In order to

make vertex weights visible to such algorithms, we have to transform the vertex weights into

edge weights. Our framework suggests to achieve this via f -adjusting with f = (fi) = (di · zi)
in order to “merge” the additional vertex weight information into edge weights in a meaningful

way.

Semi-supervised learning: label propagation limit behavior. If only very few vertices are

labeled in a semi-supervised learning scenario (for example a constant number of labeled

vertices while n→∞), then the soft labels provided by the label propagation algorithm tend

to converge to a single global value, with thin spikes only at the fixed labeled vertices. In

this situation, a meaningful class-separating threshold is increasingly difficult to find (Nadler

et al., 2009). We suggest to avoid this issue by slightly “accelerating” the corresponding

random walk toward labeled nodes. That is, we inform all vertices about their distance to

the nearest labeled vertex, for example by assigning the vertex weight zi := exp(−hd(i, V`))

with hd(i, V`) the shortest hop-distance from i to any labeled vertex (other distance measures

between vertices can capture other structural information). These vertex weights are then

represented as edge weights via f -adjusting with f = (fi) = (di · zi). Experiments show that

this approach can keep a strong class separation in the soft labels intact.

Multi-scale analysis of graphs. The f -adjustment technique can also be used to study a

geometric graph G at multiple scales of granularity. Let h > 0 denote a scaling parameter

and kh some convolution kernel of bandwidth h that is applied to the density by convolution

p ∗ kh. For each vertex i an estimate q̂i of (p ∗ kh)(xi) can be extracted from the graph by

averaging over the vertex degrees in a neighborhood around i. Thus, the f -adjusted graph

for f = (fi) := (q̂i/di) achieves that its cuts and volumes represent p ∗ kh. This approach is

visualized in Figure 2.6.5.
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(a) (b) (c) (d)

Figure 2.6.5: Multi-scale analysis of graphs via f -adjusting. (a) a two-dimensional density p that
shows a hierarchical structure. (b) heat plot of the vertex degrees of an RGNG built
on a sample from p. Degrees, volumes and cut weights refer to a small scale. (c), (d)
f -adjusting allows to study the density at larger scales by incorporating estimates of
p ∗ kh for a scalable kernel kh of different bandwidths h > 0.

2.7 Chapter summary

This chapter introduces f -adjusting as a transformation of the edge weights of a given graph

to new edge weights. At the first glance the definition may appear artificial, but I prove an

algebraic interpretation of this graph modification that shows that f -adjusting is a “natural”

transformation of a graph matrix: f -adjusting acts on the normalized Laplacian in just the

same way as f -selflooping acts on the adjacency matrix. Precisely, I show that f -adjusting

represents all diagonal modifications of L(W ) of the form L(W ) +X ∈ L(W�), which is the

normalized Laplacian’s counterpart to the elementary fact that f -selflooping represents all

diagonal modifications of W of the form W +X ∈W�. This is in line with the leitmotif of

this thesis, since f -adjusting is a novel variant of the graph Laplacian.

I particularly contribute a geometric interpretation, which provides a plain intuition for the

case that f -adjusting is applied to a random geometric neighborhood graph. Volumes and

cut weights in the f -adjusted RGNG refer to a well-specified alternative sampling density p

rather than to the original sampling density. The table in Corollary 2.4.2 serves as the main

reference for how to interpret p depending on certain choices of f . The technical details of the

proofs are mainly a modification of existing work, but I contribute the explicit distinction

into three different views on a graph that help to interpret the results geometrically. The

interspace view is a helpful bridge between the discrete graph view and the continuous view

of density functions beneath.

I sketch various applications that show the variability and general applicability of this

technique. In particular, I introduce f -adjusted spectral clustering as a generalization of

spectral clustering. f -adjusted spectral clustering implies a couple of interesting special

cases. For example, f = 1 removes the inherent squaring bias that always underlies spectral

clustering, f = d−1 simulates a uniform sampling density on top of a non-uniform sample,
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and f = db−1 removes an explicitly given sampling bias b from the graph. Other choices of f

allow for even more applications.

After all, it remains surprising that all the interesting consequences of f -adjusting derive

just from a certain modification of a matrix along its main diagonal.
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Chapter 3

Symmetric iterative proportional fitting

3.1 Chapter introduction

Recall from the previous chapter that f -scaling aims at transforming a given graph matrix

W ∈ W of degree vector d into some other graph matrix of degree vector f . However, the

degree vector d̃ that is actually attained by the f -scaled graph matrix W̃f does not equal f

exactly, but only approximately: d̃ ≈ f . How to correct for the residuals f − d̃? The strategy

taken by f -adjusting is to subsequently apply f -selflooping. This two-step strategy guarantees

to attain degree vector f exactly by adding the residuals to the matrix W̃f as additional

selfloop weights. Since the resulting selfloop weights are potentially negative, the f -adjusting

matrix W f is from the set of weak graph matrices W� ⊇W.

In this chapter we study another strategy to correct for the residuals: iterated f-scaling.

As indicated by its name, the idea is to iteratively apply f -scaling again and again in order

to approximate the intended degree vector f better and better. We refer to f -scaling as the

function sf : W→W, which is defined in accordance with Definition 2.3.5 as

sf (W ) := W̃f =
√
F · diag(W1)−1 ·W ·

√
F · diag(W1)−1 .

Iterated f -scaling yields the following recursively defined sequence (W (k)) of matrices:

W (0) := W, W (k+1) := sf (W
(k)) . (3.1)
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The expectation behind this approach is that the sequence (3.1) eventually converges to some

limit matrix W (∞) := limk→∞W
(k) of degree vector f = W (∞)1. Moreover, since f -scaling

does neither add nor remove zero-entries, that is E(W (k)) = E(W ) for all k ≥ 0, we may

further hope that the limit graph has the same set of edges E(W (∞)) = E(W ) as the original

graph. Unfortunately, all these expectations are disproved. The sequence (3.1) can run into

two subtle problems:

• in some cases W (∞) does not provide degree vector f , that is W (∞)1 6= f

• in some cases W (∞) removes edges of G, that is E(W (∞)) ( E(W )

See Figure 3.1.1 for an example on both issues. Nevertheless, whenever the iterated f -scaling

approach is successful, it has an interesting advantage over f -adjusting: the resulting matrix

is from the set of graph matrices W rather than from its extension to weak graph matrices

W�, and no additional selfloops or other edges are added.
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Figure 3.1.1: Example on iterated f -scaling, for f = (6, 4, 2)T . (a) for this choice of G, the degree
vector d(∞) of the limit graph matches the intended degree vector f exactly. (b) for
the graph with the selfloop at vertex a removed, iterated f -scaling does not converge
to a limit graph of degree vector f . Moreover, the limit graph has one edge less than
the initial graph. (c) with d(k) := W (k)1, the plot shows the distance ‖f − d(k)‖1 at
iteration k for the examples in (a) and (b).
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3.2 Informal summary of the main contributions

This chapter is concerned with the following questions:

Questions motivating this chapter

(Q1) What are necessary and sufficient conditions for W (∞)1 = f to hold true?

(Q2) What are necessary and sufficient conditions for E(W (∞)) = E(W ) to hold true?

(Q3) In which sense is W (∞) related to W?

(Q4) Does iterated f -scaling allow for applications in machine learning?

All four questions are answered in this chapter by contributing novel results. Studying the

iterated f -scaling matrix sequence (3.1) shows a surprisingly rich mathematical complexity and

reveals deep connections to an active field of mathematical research known as matrix scaling.

In particular, iterated f -scaling represents a specific symmetrization of an existing approach

known as Iterative Proportional Fitting (IPF). For that reason, we refer to iterated

f -scaling synonymously by the term Symmetric Iterative Proportional Fitting (SIPF).

As another consequence, we refer to the terms row and column sums synonymously by the

terms row and column marginals.

The fundamental question behind matrix scaling can be seen as a combinatorial “game”

that we denote as Fixed Marginals Matrix Game. It has applications not only in machine

learning, but also in network theory, optimal transportation, statistics, and matrix factorization.

This game is defined as follows.

Fixed Marginals Matrix Game

Input: a non-negative, not necessarily symmetric matrix W ∈ Rm×n≥0 together with two

positive vectors r ∈ Rm>0 and c ∈ Rn>0

Goal: find any non-negative matrix B ∈ Rm×n≥0 that provides row marginals r and column

marginals c, while preserving all zero-entries of W (that is wij = 0⇒ bij = 0).

In a variant of this game, one may further restrict B to have exactly the same zeros as W ,

that is wij = 0⇔ bij = 0. In case of multiple feasible solutions, one may additionally require

to find a solution that is closest to W with respect to some distance function on matrices.

However, it can also happen that no feasible solution exists at all, that is there exists no

matrix of the desired marginals and zero-pattern. This is easy to see for ‖r‖1 6= ‖c‖1, but

this case can also be caused by more subtle combinatorial conditions. Figure 3.1.2 illustrates

this game and its possible outcomes.
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(b) r = (5, 5, 5)
c = (2, 4, 4, 5) , B1 =

0 2 3 0
2 0 1 2
0 2 0 3

 , B2 =

0 4 1 0
2 0 3 0
0 0 0 5



(c) r = (5, 5, 5)
c = (4, 2, 7, 2) , no solution exists

Figure 3.1.2: Fixed marginals matrix game. (a) general goal: given W , r and c, find another
non-negative matrix B that provides row marginals r and column marginals c, while
preserving the zeros of W . (b) two of infinitely many solutions for given W , r and c.
B1 provides exactly the same zeros as W . B2 has two additional zero entries. (c) for
this choice of r and c no solution exists. This can be seen from c2 + c4 < r3.

3.2 Informal summary of the main contributions

Iterative Proportional Fitting (IPF) generates a sequence of matrices that is loosely related to

iterated f -scaling. It is already known in the literature that IPF solves the Fixed Marginals

Matrix Game whenever a feasible solution exists. Moreover, in case of multiple feasible

solutions, IPF converges to the unique solution that is closest to W with respect to the

so-called “relative-entropy error”. These two results are proven in the literature by totally

different and unrelated arguments. Section 3.3.9 covers more details on the background of

IPF. My first main contribution (Section 3.4.1) is to render IPF as a special case of a general

projection algorithm that brings these two separate results together. This contributes a novel

single intuitive argument for the fact that IPF converges to the relative-entropy optimum.

The second main contribution (Section 3.4.2) tackles the problem that IPF does not fit well

to symmetric matrices. In Section 3.3.7 I introduce Symmetric Iterative Proportional Fitting

(SIPF) as an alternative to IPF for symmetric matrices. My main result is a convergence

proof for the SIPF-sequence (3.1).

The third main contribution (Section 3.4.3) focuses on the case of symmetric matrices, too.

It provides necessary and sufficient conditions for the existence of a feasible solution. The

conditions are formulated in terms of graph properties of the graph G(W ).
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3.3 Formal setup

This section introduces all concepts and formalisms that are required to understand the main

contributions in the follow-up section.

3.3.1 Six families of non-negative matrices

Throughout this chapter we deal with six different families of non-negative matrices, that

is with six different subsets of Rm×n≥0 . In order to avoid some trivial cases we assume that

m,n ≥ 2. Each family is characterized by the following properties:

• either allowing for rectangular m× n matrices, or only for symmetric n× n matrices

• constraints on the row and/or column marginals

• constraints on the zero-pattern, that is on the set of positions where matrices of this

family are allowed to have zero-entries.

We start by defining three families of matrices that are not restricted to be symmetric. The

most general family consists of all non-negative m× n matrices that contain no zero row and

no zero column, or stated slightly differently, the set of all non-negative m× n matrices that

have arbitrary positive marginals:

Ω := {X ∈ Rm×n≥0 | X1 > 0, XT1 > 0} (3.2)

The second family is parameterized by two positive vectors r ∈ Rm>0, c ∈ Rn>0 plus a matrix

W ∈ Ω. It is the restriction of Ω to only those matrices that exactly provide row marginals r

and column marginals c, while having at least the zeros of W .

Ω(r, c,W ) := {X ∈ Rm×n≥0 | X1 = r, XT1 = c, E(X) ⊆ E(W )}, (3.3)

The third family is similar to the second, but it is further restricted to having exactly the

same zeros as W , that is

Ω(r, c,W ) := {X ∈ Rm×n≥0 | X1 = r, XT1 = c, E(X) = E(W )}. (3.4)

Note that

Ω(r, c,W ) ⊆ Ω(r, c,W ) ⊆ Ω.

The remaining three families are strongly related to the three families already defined. They

are derived from them simply by additionally restricting to symmetric matrices, where we

assume m = n and r = c, since otherwise this restriction is the empty set. Particularly, we
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rectangular symmetric
m× n n× n

any positive marginals Ω ⊇∗) W

⊇ ⊇

fixed marginals &
zeros at least those of W

Ω(r, c,W ) ⊇∗) W(f ,W )

⊇ ⊇

fixed marginals &
zeros exactly those of W Ω(r, c,W ) ⊇∗) W(f ,W )

Table 3.1: Six families of non-negative matrices for positive vectors r, c, f , and W ∈ Ω. The relations
marked by ∗) require that m = n, r = c = f and W ∈W.

denote both marginals by the vector f := r = c. The restriction of Ω to symmetric matrices

yields precisely the set of graph matrices as already defined in Section 1.3.1,

W = {X ∈ Rn×n≥0 | X = XT , X1 > 0} (3.5)

W contains all non-negative symmetric matrices that have arbitrary positive marginals. For a

positive vector f ∈ Rn>0 and any W ∈W we define

W(f ,W ) := {X ∈ Rn×n≥0 | X = XT , X1 = f , E(X) ⊆ E(W )}, (3.6)

which consists of those matrices in W that have (row and column) marginals f while having at

least the zeros of W . In graph language, the set W(f ,W ) refers to all graphs that are defined

on a subset of the edges of G(W ) while their (positive) edge weights provide degree vector f .

Finally,

W(f ,W ) := {X ∈W(f ,W ) | E(X) = E(W )} (3.7)

additionally restricts to providing exactly the zeros of W . In graph language, the set W(f ,W )

refers to all graphs that are defined on the same edges as G(W ) while their (positive) edge

weights provide degree vector f . Note that

W(f ,W ) ⊆W(f ,W ) ⊆W

Sometimes we drop individual constraints by a dot, for example

Ω(r, ·, ·) = {X ∈ Rm×n≥0 | X1 = r} (6⊆ Ω) .

Table 3.1 shows all six families together with their subset relations. The following lemma

shows that either none or both of Ω(f , f ,W ) and W(f ,W ) are empty.
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Lemma 3.3.1 (Emptiness relations)

For W ∈W and f ∈ Rn>0 all following implications hold true:

Ω(f , f ,W ) = ∅ ⇔ W(f ,W ) = ∅

⇒ ⇒
Ω(f , f ,W ) = ∅ ⇔ W(f ,W ) = ∅

Proof. We first prove that Ω(f , f ,W ) and W(f ,W ) are either none or both empty. From the

definitions we get that W(f ,W ) ⊆ Ω(f , f ,W ), which shows W(f ,W ) 6= ∅ ⇒ Ω(f , f ,W ) 6= ∅.
For the other direction, choose any A ∈ Ω(f , f ,W ). This implies (A+AT )/2 ∈W(f ,W ). The

same argument shows that Ω(f , f ,W ) and W(f ,W ) are either none or both empty. Finally,

both vertical implications follow right from the respective subset relation.

3.3.2 Matrix scaling

We call B ∈ Ω a biproportional scaling of W ∈ Ω if there exist any two sequences (Y (k)) and

(Z(k)) of positive diagonal matrices Y (k), Z(k) ∈ diag(Rn>0) such that B = limk→∞ Y
(k)WZ(k).

For example, B =
(

2
0

0
3

)
is a biproportional scaling of W =

(
2
0

4
1

)
, because B can be expressed

as the limit

lim
k→∞

(
0.5k 0

0 1

)
︸ ︷︷ ︸

Y (k)

·

(
2 4

0 1

)
︸ ︷︷ ︸

W

·

(
2k 0

0 3

)
︸ ︷︷ ︸

Z(k)

= lim
k→∞

(
0.5k · 2 · 2k 0.5k · 4 · 3

1 · 0 · 2k 1 · 1 · 3

)
=

(
2 0

0 3

)
︸ ︷︷ ︸

B

.

Often the goal of a biproportional scaling is to take the original matrix W and to fit it

successively to some intended new row marginals r ∈ Rm>0 and column marginals c ∈ Rn>0.

For that reason we synonymously refer to any biproportional scaling B of W with r = B1

and c = BT1 as a biproportional fit of W to r and c. In the above example, B is a

biproportional fit of W to the new row marginals r =
(

2
3

)
and column marginals c =

(
2
3

)
.

The corresponding scaling sequence (Y (k)WZ(k)) can be seen as an iterative transformation

of W along the matrices W (k) := Y (k)WZ(k), whose limit B achieves the desired marginals.

Uniqueness of biproportional fits

We cannot expect that the choice of W , r and c determines all diagonal scaling matrices Y (k)

and Z(k) in a biproportional fit uniquely. However, it turns out that at least B is uniquely

determined! The following fundamental result (Pukelsheim, 2014, Theorem 1) shows that any

choice of W , r and c uniquely determines the biproportional fit B, if existing at all.
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Lemma 3.3.2 (Biproportional fits are unique)

If B1, B2 are two biproportional fits of W ∈ Ω to row marginals r ∈ Rm>0 and column

marginals c ∈ Rn>0, then it holds that B1 = B2.

This justifies to state that B is the biproportional fit of W to the marginals r and c.

Note that for some combinations of W , r and c no biproportional fit might exist at all, for

example for W =
(

1
1

0
1

)
, r =

(
2
1

)
, c =

(
1
2

)
. The techniques for determining whether or not a

biproportional fit exists are non-trivial, see the details in Section 3.4.3.

Directness of biproportional fits

Although the sequences (Y (k)) and (Z(k)) are not uniquely determined, they have an interesting

property: sometimes they can be chosen to be constant, that is Y = Y (k) and Z = Z(k) for

some diagonal matrices Y, Z ∈ diag(Rn>0) and all k. In this case W and B are simply related

by the factorized form B = YWZ, or stated differently, W factorizes as W = Y −1BZ−1. If a

biproportional scaling can be written this way, then it is denoted as being direct. Directness

is illustrated by the following example.

Example 3.3.3 (Direct and non-direct biproportional fits)

B =
(

6
0

1
6

0
4

)
is the direct biproportional fit of W =

(
2
0

1
3

0
1

)
to r = (7, 10)T and

c = (6, 7, 4)T , because it can be written, for example, as B = diag(1, 2) ·W · diag(3, 1, 2).

B =
(

2
0

0
3

)
is the biproportional fit of W =

(
2
0

4
1

)
to r = c = (2, 3)T , because it can

be written, for example, as B = limk→∞ diag(0.2k, 3) ·W · diag(5k, 1). It is non-direct,

because no factorized form is able to let the top right entry in W “vanish” (i.e., switch

from its positive value to an additional zero-entry in the unique biproportional fit B).

Example 3.3.3 indicates that directness is related to the appearance of additional zero-entries

in B that are not present in W . Indeed, the following lemma characterizes directness precisely

as those biproportional scalings that have exactly the same zeros as W (i.e., E(B) = E(W )).

All biproportional scalings with additional zeros (i.e., E(B) ( E(W )) are non-direct.

Lemma 3.3.4 (Directness)

Let B denote any biproportional scaling of W . Then it holds that E(B) ⊆ E(W ). Further,

E(B) = E(W ) if and only if B is direct.

Lemma 3.3.4 can be derived from results by Menon (1968). It is intuitive to see why

non-direct biproportional fits cannot be expressed in direct/factorized form: since Y (k) and

Z(k) must have positive diagonals due to the positive marginals constraint, the only way to let

entries in W vanish is to let some entries in Y (k) and Z(k) converge to zero, which implies that
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some other entries have to diverge to infinity. This interplay between diverging and vanishing

entries cannot be provided by a single fixed choice of positive diagonal matrices Y and Z.

Symmetric biproportional fits

In contrast to previous work on general matrix scaling of W ∈ Ω, we are particularly interested

in symmetric matrices W ∈ W. We work out specific results that hold only in this special

case. The following lemma shows that assuming W ∈ W and r = c already implies that

every biproportional fit B must be symmetric as well. The term symmetric biproportional

scaling refers to any biproportional scaling B that satisfies B = BT .

Lemma 3.3.5 (Symmetric biproportional fits)

Let B denote the biproportional fit of W ∈ W to row and column marginals f ∈ Rn>0.

Then it holds that

(i) B = BT is symmetric

(ii) B = limk→∞Wk for a sequence of Wk ∈ {XWX | X ∈ diag(Rn>0)} =: Ψ(W )

(iii) B ∈ Ψ(W ) if and only if B is direct

Proof. (i) Let B = limk→∞R
(k)WS(k) denote the biproportional fit of W to f . From W = W T

we get that B = limk→∞R
(k)W TS(k). Transposing both sides gives BT = limk→∞ S

(k)WR(k)

as an alternative biproportional fit of W to f , so by uniqueness (Lemma 3.3.2), BT = B.

(ii) T (k) :=
√
R(k)S(k) has diagonal entries ti := (r

(k)
i s

(k)
i )1/2. For all i, j with ij ∈ E(W ),

we get from limk→∞wij r
(k)
i s

(k)
j = bij = bji = limk→∞wij r

(k)
j s

(k)
i and wij = wji 6= 0 that

limk→∞(r
(k)
i s

(k)
j )1/2 = limk→∞(r

(k)
j s

(k)
i )1/2. Thus, for ij ∈ E(W ),

lim
k→∞

wij t
(k)
i t

(k)
j = lim

k→∞
wij

√
r

(k)
i s

(k)
j r

(k)
j s

(k)
i = wij ·( lim

k→∞

√
r

(k)
i s

(k)
j )2 = lim

k→∞
wij r

(k)
i s

(k)
j = bij .

The case bij 6= 0 implies that ij ∈ E(W ), hence, limk→∞wij t
(k)
i t

(k)
j = bij . If bij = 0,

then either ij ∈ E(W ), thus again limk→∞wij t
(k)
i t

(k)
j = bij , or ij /∈ E(W ), in which case

limk→∞wij t
(k)
i t

(k)
j = limk→∞ 0t

(k)
i t

(k)
j = 0 = bij .

Thus, limk→∞ T
(k)WT (k) = B, which proves (ii) for Wk := T (k)WT (k) ∈ Ψ(W ).

(iii) The implication “⇒” follows from the definitions, and “⇐” follows by applying (ii) to

the direct biproportional scaling B = RWS.

Since B = BT implies that r = c =: f , we get from Lemma 3.3.5 the following corollary on

how to interpret the set Ψ(W ).
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Corollary 3.3.6 (Symmetric direct biproportional fits)

For W ∈ W, let B = YWZ denote any symmetric direct biproportional scaling of W .

Then it holds that B = XWX for X =
√
Y Z. Further, the set

Ψ(W ) := {XWX | X ∈ diag(Rn>0)}

consists of all symmetric direct biproportional scalings of W .

That is, in contrast to the non-symmetric case, where a direct biproportional fit is of the

form B = YWZ, symmetric matrices allow even for a factorization of the form B = XWX.

3.3.3 Affine hull and relative interior

A linear combination
∑k

i=1 αixi of elements xi ∈ Rd with coefficients αi ∈ R is denoted as

an affine combination if further
∑k

i=1 αi = 1 holds. For every set S ⊆ Rd, the affine hull

aff(S) is defined as the set of all elements that can be represented as affine combinations of

the elements in S, that is

aff(S) :=

{
k∑
i=1

αixi | k ∈ N, xi ∈ S, αi ∈ R,
k∑
i=1

αi = 1

}
⊇ S .

The set A is affine if it contains all affine combinations of its elements, that is if and only if

A = aff(A). In this case A is denoted as an affine space because all affine sets in Rd are

translated linear subspaces. aff(S) ⊇ S is the smallest affine space that contains the set S.

Lemma 3.3.7 (Affine hull of sets of matrices)

For every W ∈ Ω, r ∈ Rm>0 and c ∈ Rn>0 it holds that

(i) aff(Ω(r, ·,W )) = {X ∈ Rm×n | X1 = r, E(X) ⊆ E(W )}

(ii) aff(Ω(·, c,W )) = {X ∈ Rm×n | XT1 = c, E(X) ⊆ E(W )}

Proof. (i) “⊆” follows from the fact that every affine combination of elements from Ω(r, ·,W )

lies in Ω±(r, ·,W ) := {X ∈ Rm×n | X1 = r, E(X) ⊆ E(W )}. In order to show “⊇”, fix any

A ∈ Ω±(r, ·,W ) and let N(A) ⊆ E(A) denote the subset of indices at which aij < 0. It holds

that Ω(r, ·, A) 6= ∅ because it contains the matrix that has a single entry ri per row i at the

smallest column index j with aij 6= 0. Let Z ∈ Ω(r, ·, A). For each kl ∈ N(A) define the

matrix Bkl as the matrix that equals Z everywhere except for row k; this row is set to zero
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except for a single entry rk at position kl. Precisely:

bklij =


zij if i 6= k

0 if i = k and j 6= l

rk if i = k and j = l

.

It holds that Bkl ∈ Ω(r, ·, A). Further define

αkl :=
|akl|
rk

, αC := 1 +
∑

kl∈N(A)

|akl|
rk

, C := α−1
C ·

A+
∑

kl∈N(A)

αklB
kl

 .

Observe that E(C) ⊆ E(A), C ≥ 0 and C1 = r, thus C ∈ Ω(r, ·, A). This gives that that A

can be represented as

A = αC · C +
∑

kl∈N(A)

(−αkl) ·Bkl ,

an affine combination of |N(A)|+1 matrices from Ω(r, ·, A). The proof of (ii) is analogous.

The interior of a set S ⊆ Rd is defined as int(S) := {x ∈ S | ∃εx > 0, BRd(x, εx) ⊆ S}.
This standard notion does not fit well to the case of lower-dimensional sets that are embedded

into higher-dimensional spaces, because it provides int(S) = ∅ whenever the set S has not

full dimensionality. For example, the 2-dimensional unit-cube H := [0, 1]2 ⊆ R2 gives that

int(H) = (0, 1)2 as intended, but if H is embedded into R3 as H ′ := {(x, y, 0) ∈ R3 | x, y ∈
[0, 1]}, we get that int(H ′) = ∅, which is often not intended.

A common alternative notion of “interior” is provided by the relative interior, see for

example Boyd and Vandenberghe (2004) for background information. The relative interior

automatically adapts to lower-dimensional sets S ⊆ Rd. It is defined relatively to the topology

of the smallest affine space that contains S.

Definition 3.3.8 (Relative interior)

For all C ⊆ Rd the relative interior is defined as

rel int(C) := {x ∈ C | ∃εx > 0 : BRd(x, εx) ∩ aff(C) ⊆ C} .

In other words, the relative interior of S contains all points x ∈ S around which there exists a

small neighborhood in Rd that is fully contained in C with respect to the subspace topology

implied by aff(C), that is, after intersecting the neighborhood with aff(C). For convex C ⊆ Rd

the relative interior can equivalently be defined as follows:

rel int(C) := {x ∈ C | ∀y ∈ C : ∃εy > 0 : y + (1 + εy)(x− y) ∈ C} ,
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which shows that the relative interior contains all points that do not touch any boundary in

the sense that we can step truly “behind” x from the viewpoint of any other point y ∈ C,

without leaving the set C.

We end this section by providing an example that shows how Ω(r, ·,W ) is related to its

subset Ω(r, ·,W ) in terms of the relative interior.

Example 3.3.9 (Relative interior of sets of matrices)

Let W ∈ Ω contain at least one zero-entry, that is |E(W )| < m · n. Then it holds that

int(Ω(r, ·,W )) = ∅ ,

since for all X ∈ Ω(r, ·,W ) and all ε > 0 the ball BRm×n(X, ε) contains matrices with

negative entries at the zero-positions of X, thus BRm×n(X, ε) ( Ω(r, ·,W ). For the

relative interior we get that

rel int(Ω(r, ·,W )) = Ω(r, ·,W ) ,

since now BRm×n(X, ε) is intersected with aff(Ω(r, ·,W )) before requiring to be a subset

of Ω(r, ·,W ). This rules out only those elements X ∈ Ω(r, ·,W ) that have E(X) ( E(W ).

3.3.4 Bregman divergences and relative entropy

For any set Z, the function d : Z ×Z → R is a metric if it satisfies the following properties:

• non-negativity: d(a, b) ≥ 0

• coincidence: d(a, b) = 0 ⇔ a = b

• symmetry: d(a, b) = d(b, a)

• triangle inequality: d(a, b) ≤ d(a, c) + d(c, b) for all c ∈ Z

A metric provides a strong sense of “distance” between all elements in Z. Many applications

require only a weaker sense, for example the well-known cosine distance provides neither the

triangle inequality nor coincidence.

Another weak sense of “distance” is provided by the family of Bregman divergences,

whose following definition goes back to the original work by Bregman (1967a).

Definition 3.3.10 (Bregman divergence)

For convex Z ⊆ Rd let h : Z → R be a strictly convex differentiable function. The

Bregman divergence implied by h on Z is defined as the function Dh : Z ×Z → R with

Dh(x‖y) := h(x)− h(y)− 〈∇h(y), x− y〉 .
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The standard example for a Bregman divergence is the squared Euclidean distance 1
2‖x− y‖2,

which is implied by h(x) := 1
2‖x‖

2 on Z := Rd. However, other choices for h provide a rich

variety of different Bregman divergences.

Every Bregman divergence provides the following geometric interpretation: Dh(x‖y) is the

amount of underestimating h(x) from the supporting hyperplane tangential to h at y, evaluated

at x. This can be seen as follows: the gradient ∇h(y) gives the direction and the amount of

steepest increase of h at location y. Interpreting 〈∇h(y), x− y〉 as the projection of x− y to

∇h(y) shows that it quantifies the linearly extrapolated total amount of increase/decrease

when stepping from y to x. As a consequence, ĥy(x) := h(y)+〈∇h(y), x−y〉 is the estimate on

h(x) that is given by the supporting hyperplane tangential to h at location y, evaluated at x.

By convexity of h, the tangential plane is always below the epigraph of h, hence ĥy(x) ≤ h(x)

is always an underestimate. By strict convexity of h, equality ĥy(x) = h(x) holds if and only

if x = y. In particular, every Bregman divergence satisfies non-negativity and coincidence.

Depending on additional assumptions on Z and h, stronger properties of Dh can be

guaranteed. Many theoretical studies assume that Z is closed and that h is a function of

Legendre type (see Bauschke and Lewis (2000) for a definition). These additional assumptions

imply slightly stronger properties of Dh, although they still do not guarantee symmetry or

the triangle inequality.

One such function of Legendre type is h(x) :=
∑

i xi log(xi), defined for all x ∈ Rd≥0 with

the continuous extension 0 · log(0) := 0. By choosing Z to be the d-dimensional Simplex, this

function h implies the Kullback-Leibler divergence DKL(x‖y) =
∑

i xi log(xi/yi), also

denoted as relative entropy. This “distance” measure between probability distributions is

well-known in information theory and Bayesian statistics. If Z is extended to non-negative

matrices, the same function h implies the generalized Kullback-Leibler divergence or generalized

relative entropy, defined as follows.

Definition 3.3.11 (Generalized relative entropy)

For matrices X,W ∈ Rm×n≥0 the generalized relative entropy is defined as

RE(X‖W ) :=
∑
i,j

xij log(xij/wij)− xij + wij ,

with the conventions that 0 · log(0/w) := 0 and x · log(x/0) :=∞ for all w ≥ 0, x > 0.

In particular, RE(X‖W ) <∞ if and only if E(X) ⊆ E(W ).

Here and later we identify Rm×n with Rm·n. Note that RE(X‖W ) can only be represented

as a Bregman divergence if E(X) ⊆ E(W ), but we use the additional convention that

RE(X‖W ) :=∞ for E(X) 6⊆ E(W ), which is convenient for some later formal statements.
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3.3.5 Bregman projections

Like other distance measures, Bregman divergences can be used to define a projection in

the sense of mapping to the target element of some set that is closest to the source element.

Precisely, for all closed convex M⊆ Rd the corresponding Bregman projection PhM(Q) of

the element Q ∈ Rd to the set M is defined as

PhM(Q) := arg minM∈M Dh(M‖Q) . (3.8)

The projection target PhM(Q) ∈M is unique whenever existing, that is whenever M 6= ∅.

We are particularly concerned with the following two Bregman projections:

• for h := 1
2‖x‖

2 the corresponding Bregman divergence is the halved squared Euclidean

distance 1
2‖x− y‖2. Minimizing this distance is equivalent to minimizing the Euclidean

distance without squaring. As a consequence, the projection PhM equals the standard

orthogonal projection in Rd, denoted as P⊥M. This projection maps to the element

in M that is closest to Q with respect to Euclidean distance.

• for the generalized relative entropy Dh = RE, we refer to (3.8) as the RE-projection,

denoted by PM without any superscript. The extension to the case RE(X‖W ) =∞ in

Definition 3.3.11 implies that PM(Q) is existing and unique if and only if there exists

any element A ∈M with E(A) ⊆ E(W ).

The following lemma shows the fundamental connection between Bregman projections and

proportional row/column scaling of matrices, which allows to think of matrix scaling as of

projecting to certain convex sets of matrices.

Lemma 3.3.12 (Proportional scaling is the RE-projection)

Let W ∈ Ω provide row marginals dr := W1 and column marginals dc := W T1. Fix

any r ∈ Rm>0 and c ∈ Rn>0. Then the RE-projections to R := Ω(r, ·, ·) and C := Ω(·, c, ·),
respectively, are given by proportional row/column scaling, that is

PR(W ) = diag(r) · diag(dr)
−1 ·W ,

PC(W ) = W · diag(dc)
−1 · diag(c) .

(3.9)

In particular it holds that E(PR(W )) = E(PC(W )) = E(W ).

Proof. We prove that PR(W )
!

= diag(r) · diag(dr)
−1 ·W =: Wr. The proof for PC(W ) is

analogous. For X ∈ Ω define %(X) := RE(X‖W ). From Wr ∈ R 6= ∅ and %(Wr) < ∞ it

follows that PR(W ) ∈ R exists and is the unique global minimizer of % over R. It probably
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equals Wr. We are going to show that %(PR(W )) = %(Wr), which implies that indeed

Wr = PR(W ). Right from the definitions we get that

PR(W ) = arg min
X∈Rm×n

≥0

{ %(X) | X1 = r }

(1)
= arg min

X∈Rm×n
≥0

{ %(X) | X1 = r, E(X) ⊆ E(W ) }

(2)
= arg min

X∈Rm×n
≥0

 ∑
ij∈E(W )

xij log(xij/wij)− xij | X1 = r, E(X) ⊆ E(W )

 ,

where Equality (1) comes from the fact that RE(X‖W ) =∞ whenever E(X) 6⊆ E(W ), and

Equality (2) applies that 0 · log(0/wij) := 0.

At first glance, this may look like a standard convex optimization problem that can be

solved by the Lagrangian approach. But a second view reveals that we must be careful because

the partial derivative ∇xij%(X) “= log(xij/wij)” does not exist for ij ∈ E(W ) \E(X), that is

for xij = 0 < wij . In particular, it is invalid to restrict the summands to ij ∈ E(X) ⊆ E(W )

before taking the derivatives. Hence, the above describes a non-smooth optimization problem,

and we cannot simply apply the standard Lagrangian approach without further considerations.

Here, we solve this issue by studying the limit of the RE-projections to the closed convex

sets

Rε := {X ∈ Rm×n≥0 | X1 = r, E(X) ⊆ E(W ), wij > 0⇒ xij ≥ ε}.

for ε→ 0. Note that R0 = R, and there exists some εr such that for all ε < εr it holds that

Wr ∈ Rε. Similar to the above we get for ε ≥ 0 that PRε(W ) equals

arg min
X∈Rm×n

≥0

 ∑
ij∈E(W )

xij log(xij/wij)− xij | X1 = r, E(X) ⊆ E(W ), wij > 0⇒ xij ≥ ε

 .

For ε > 0, all partial derivatives ∇xijρ(X) = log(xij/wij) exist. So we can take the standard

Lagrangian approach, that is we aim at finding a global minimum of the Lagrangian function

Λ(X,µ) = %(X)−µT (X1−r) =
∑

ij∈E(W )

xij log(xij/wij)−xij−
m∑
i=1

µi

 ∑
j : ij∈E(W )

xij

− ri


over X ∈ RE(W )
≥ε , by which we treat xij := 0 for all ij /∈ E(W ) as zero constants. From

wij 6= 0⇔ xij 6= 0 we get that ∇xijΛ(X,µ) = log(xij/wij)− µi for all ij ∈ E(W ). Setting all
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derivatives to zero gives after entry-wise exponentiation that

xij =

{
exp(µi) · wij for ij ∈ E(W )

0 for ij /∈ E(W )
,

that is in matrix notation X = diag(exp(µ)) ·W . Multiplying 1 from the right gives that

r = X1 = diag(exp(µ)) ·W1, hence diag(exp(µ)) = diag(r) diag(W1)−1. Thus X = Wr is

indeed the (only) critical point, and Wr ∈ Rε for all ε < εr. Further, the Hessian matrix is

the diagonal matrix with the all-positive diagonal ∇xij∇xijΛ(X,µ) = 1/xij , which is positive

definite. Thus Wr is the (unique global) minimizer whenever ε < εr, taking the (unique global)

minimum %(Wr).

By continuity of % on R = R0, we get that %(PR(W )) = limε→0 %(PRε(W )) = %(Wr).

An example application of Lemma 3.3.12 is that the transition matrix P = D−1W of a

graph matrix W can be interpreted as the RE-projection of W to the set of matrices of unit

row sums.

Another consequence of E(PR(W )) = E(PC(W )) = E(W ) is the following sense of maxi-

mality:

A ∈ Ω(r, ·,W )⇒ E(A) ⊆ E(PΩ(r,·,·)(W )) and A ∈ Ω(·, c,W )⇒ E(A) ⊆ E(PΩ(·,c,·)(W )) .

A similar sense of maximality also holds for Ω(r, c,W ), as made precise by the following

lemma.

Lemma 3.3.13 (Maximality of RE-projections)

Let W ∈ Ω, r ∈ Rm>0 and c ∈ Rn>0. Then it holds that

A ∈ Ω(r, c,W ) ⇒ E(A) ⊆ E(PΩ(r,c,·)(W ))

A proof of Lemma 3.3.13 is given by Pretzel (1980, Theorem 1).

3.3.6 Mean functions

In this thesis, we refer by the term mean function to the following definition.
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Definition 3.3.14 (Mean function)

A function m : R≥0×R≥0 → R≥0 is a (homogeneous) mean function on R≥0 if it satisfies

the following properties:

• symmetry: m(x, y) = m(y, x)

• minmax-bounded: m(x, y) ∈ [min(x, y),max(x, y)]

• homogeneity: cm(x, y) = m(c x, c y) for all c > 0

For example, the convex combination cα(x, y) := (1−α)·min(x, y)+α·max(x, y) for parameter

α ∈ [0, 1] provides a family of mean functions, which includes the minimum function for α = 0,

the maximum function for α = 1, and the arithmetic mean for α = 0.5.

Another example is the family of Hölder p-means, defined as

mp(x, y) := p
√

(xp + yp)/2

for parameter p ∈ R ∪ {±∞}. This family contains the following special cases:

• for p = −∞ the minimum function: min(x, y)

• for p =∞ the maximum function: max(x, y)

• for p = 1 the arithmetic mean: mA(x, y) := (x+ y)/2

• for p = 0 the geometric mean: mG(x, y) :=
√
xy

• for p = −1 the harmonic mean: mH(x, y) :=

{
2/(x−1 + y−1) x, y > 0

0 else

One aspect in which mean functions differ is in whether they map closer to the smaller or

closer to the larger value. For example, the arithmetic mean mA(a, b) is always “exactly in

the middle” of a and b, while cα(a, b) for α < 0.5 is closer to min(a, b). The geometric mean is

also biased toward min(a, b), but in contrast to cα this bias gets stronger the larger the ratio

max(a, b)/min(a, b) is.

We denote a mean function m as sub-arithmetic if m(x, y) ≤ mA(x, y) for all x, y ∈ R≥0,

and as super-arithmetic if m(x, y) ≥ mA(x, y). It is strictly sub-/super-arithmetic if x 6= y

implies strict inequality. Every Hölder p-mean for p < 1 is strictly sub-arithmetic.

The geometric mean has a fundamental property that makes it unique among all mean

functions (and even beyond, as the next lemma shows): it is the only mean function that can

be factorized as m(a, b) = f(a) · f(b) for a function f : R≥0 → R. A similar result holds for

the arithmetic mean and m(a, b) = f(a) + f(b).
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Lemma 3.3.15 (Characterization of arithmetic mean and geometric mean)

Let m : R≥0 × R≥0 → R≥0 denote any function that satisfies that m(a, a) = a for all

a ≥ 0. Then the following holds:

(i) if m can be represented as m(a, b) = f(a) + f(b) for some function f : R≥0 → R,

then m = mA is the arithmetic mean (and f(x) = x/2).

(ii) if m can be represented as m(a, b) = f(a) · f(b) for some function f : R≥0 → R,

then m = mG is the geometric mean (and f(x) =
√
x or f(x) = −

√
x).

Proof. (i) a = m(a, a) = f(a) + f(a) = 2f(a) implies immediately that f(a) = a/2 for all

a ≥ 0, hence, m = mA. (ii) Assume there exist a, b ∈ R≥0 such that f(a) > 0 and f(b) < 0.

Then it follows m(a, b) = f(a)f(b) < 0 in contradiction to m being non-negative. Hence,

either f(a) ≥ 0 for all a ≥ 0 or f(a) ≤ 0 for all a ≥ 0. Now we get from a = m(a, a) =

f(a)f(a) = f(a)2 that either f(a) =
√
a for all a ≥ 0 or f(a) = −

√
a for all a ≥ 0. In both

cases we get that m = mG.

3.3.7 Symmetrizations of iterative proportional fitting

In this section we define the following three sequences of matrices, whose elements are

distinguished by the style of brackets used for their superscript:

IPF: traditional IPF-sequence (W 〈k〉)

PSIPF: Pseudo-Symmetric IPF-sequence (W 〈〈k〉〉)

SIPF: Symmetric IPF-sequence (W (k))

Like iterated f -scaling, all three sequences follow the goal to iteratively transform their initial

matrix W 〈0〉, W 〈〈0〉〉 and W (0), respectively, toward a limit matrix that attains some prescribed

row and column marginals. Each sequence is fully determined by choosing the initial matrix

plus the intended marginals that shall be attained in the limit. All further elements of the

sequence are generated deterministically according to its definition.

We study two different settings: the general setting and the symmetric setting.

• In the general setting, the sequence is initialized by any matrix W ∈ Ω plus two

vectors r ∈ Rm>0 and c ∈ Rn>0 with ‖r‖1 = ‖c‖1. The sequence is expected to converge

to a limit matrix that provides row marginals r and column marginals c.

• In the symmetric setting, the sequence is initialized by a symmetric matrix W ∈W
plus a vector f ∈ Rn>0. The sequence is expected to converge to a limit matrix that

provides row marginals f and column marginals f .
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PSIPF and SIPF are restricted to the symmetric setting, only IPF can also be applied to the

general setting. Further, SIPF equals iterated f -scaling.

Each of the three sequences is defined in two equivalent ways: a recursive definition of

the form Wk+1 = g(Wk) for some generator function g, and an alternative representation in

factorized form Wk+1 = Yk+1 ·W0 · Zk+1, which represents every element of the sequence as

the product of the initial matrix with two diagonal matrices. Although both representations

are mathematically equivalent, they show different advantages and drawbacks in practical

applications, as studied in Section 3.3.8.

Iterative Proportional Fitting (IPF)

The idea of IPF is to scale rows and columns alternately. That is, W 〈1〉 is derived from W 〈0〉

by row-scaling to achieve row marginals r exactly (for any column marginals). Then, W 〈2〉

is derived from W 〈1〉 by column-scaling to achieve column marginals c exactly (for any row

marginals). Hence, at odd steps the row marginals equal r (for any column marginals), and

at even steps the column marginals equal c (for any row marginals). The intention is that

eventually both marginals converge to r and c simultaneously.

Recall from Lemma 3.3.12 that proportional row-scaling and column-scaling can be in-

terpreted as RE-projections to the sets R and C, respectively. This notation is used in the

following definition of the IPF-sequence.

Definition 3.3.16 (IPF-sequence)

For W ∈ Ω, r ∈ Rm>0, and c ∈ Rn>0, the IPF-sequence is recursively defined with

W 〈0〉 := W as follows:

W 〈k+1〉 :=

{
PR(W 〈k〉) if k even ,

PC(W 〈k〉) if k odd .

This implies that W 〈k〉 = Y 〈k〉WZ〈k〉 for some positive diagonal matrices Y 〈k〉 = diag(y〈k〉)

and Z〈k〉 = diag(z〈k〉) with y〈0〉 = z〈0〉 = 1. This factorization can be computed explicitly

by directly updating the diagonals y〈k〉 and z〈k〉 in each step as follows:

y〈k+1〉 :=

{
r/(Wz〈k〉) if k even

y〈k〉 if k odd
, and z〈k+1〉 :=

{
z〈k〉 if k even

c/(W Ty〈k〉) if k odd
,

where the division of vectors is meant to be entry-wise.

The factorized approach is also denoted as the RAS-method as studied by Bacharach (1965).

The following theorem shows that IPF indeed converges to some element W 〈∞〉 ∈ Ω(r, c,W )

whenever Ω(r, c,W ) 6= ∅. Even stronger, W 〈∞〉 equals the projection PΩ(r,c,W )(W ) of W to

the set of feasible solutions Ω(r, c,W ).
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Theorem 3.3.17 (Convergence of IPF in the general setting)

Let W ∈ Ω, r ∈ Rm>0, c ∈ Rn>0 such that Ω(r, c,W ) 6= ∅. Then the IPF-sequence converges

to PΩ(r,c,W )(W ).

All parts of this theorem are already proven in the literature in various ways. More

information on these proofs and on my contributions to this field is provided in Section 3.3.9.

Theorem 3.3.17 implies a couple of results that are collected in the following corollary. This

collection provides a detailed understanding on the limit behavior of the IPF-sequence, and is

required for later arguments.

Corollary 3.3.18 (Additional limit properties of IPF)

Consider the IPF-sequence in the general setting for Ω(r, c,W ) 6= ∅ as in Theorem 3.3.17.

Then all following results hold true:

(i) W 〈∞〉 = PΩ(r,c,W )(W ) equals the biproportional fit of W to r and c

(ii) E(W ) = E(W 〈k〉) ⊇ E(W 〈∞〉) for all k ≥ 0

(iii) E(W ) = E(W 〈∞〉) if and only if the biproportional fit W 〈∞〉 is direct

(iv) if E(W ) 6= E(W 〈∞〉) then some entries in y〈k〉 and z〈k〉 diverge to infinity

Proof. (i) follows from the factorized representation and convergence of the IPF-sequence. (ii)

the first equality follows from the definition of proportional scaling. The remaining statements

follow from Lemma 3.3.4.

Of course Theorem 3.3.17 implies convergence in the symmetric setting, but the following

corollary makes explicit how the convergence results for Ω(f , f ,W ) carry over to W(f ,W ) plus

additional properties that only hold in the symmetric setting.

Corollary 3.3.19 (Convergence of IPF in the symmetric setting)

Let W ∈W and f ∈ Rn>0 such that W(f ,W ) 6= ∅. Then the IPF-sequence converges to

PW(f ,W )(W ) ∈ Ψ(W ).

Proof. Lemma 3.3.1 gives that W(f ,W ) 6= ∅ if and only if Ω(f , f ,W ) 6= ∅. Together with

Theorem 3.3.17 this gives that IPF converges to W 〈∞〉 = PΩ(r,c,W )(W ), which is the bipro-

portional fit of W to row and column marginals f . Lemma 3.3.5 implies that W 〈∞〉 ∈ Ψ(W ),

particularly symmetry, hence, W 〈∞〉 = PW(f ,W )(W ).
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Corollary 3.3.19 gives that W ∈ Ψ(W ) as well as W 〈∞〉 ∈ Ψ(W ). However, for k > 0

all elements W 〈k〉 of the IPF-sequence lie outside of Ψ(W ), they are not even symmetric.

The IPF-sequence is inherently non-symmetric, even in the symmetric setting. Recall from

Lemma 3.3.5 that in the symmetric setting there exist sequences of matrices in Ψ(W ) that

converge to the biproportional fit. The IPF-sequence is not of this type. As we will see next,

the PSIPF-sequence is derived from the IPF-sequence such that W 〈〈k〉〉 ∈ Ψ(W ). Further, the

SIPF-sequence satisfies that W (k) ∈ Ψ(W ) even without being based on the IPF-sequence.

Pseudo-Symmetric Iterative Proportional Fitting (PSIPF)

We define the PSIPF-sequence only in the symmetric setting. The basic idea is that for

every square matrix A ∈ Ω(f , f , ·) and any mean function m it follows by the symmetry of

m that m(A,AT ) := [m(aij , aji)] ∈W(f , ·). PSIPF applies this idea to every element of the

IPF-sequence, that is PSIPF first determines the whole non-symmetric IPF-sequence, and

afterwards symmetrizes each element individually by W 〈〈k〉〉 := m(W 〈k〉, (W 〈k〉))T . We choose

the geometric mean function mG for this symmetrization because its factorizing property

(Lemma 3.3.15) achieves that each element of the PSIPF-sequence is not just symmetric, but

even lies in the set Ψ(W ). This idea is made precise in the following definition.

Definition 3.3.20 (PSIPF-sequence)

For W ∈W and f ∈ Rn, the PSIPF-sequence (W 〈〈k〉〉) is defined from the IPF-sequence

(W 〈k〉) as follows for k ≥ 0:

W 〈〈k〉〉 := mG(W 〈k〉, (W 〈k〉)T ) =

[√
w
〈k〉
ij w

〈k〉
ji

]
,

which particularly implies that W 〈〈0〉〉 = W . With S〈〈k〉〉 :=
√
Y 〈k〉Z〈k〉 this is equivalent

to the following factorized representation:

W 〈〈k〉〉 = S〈〈k〉〉 W S〈〈k〉〉 =

[√
y
〈k〉
i z

〈k〉
i wij

√
y
〈k〉
j z

〈k〉
j

]
.

In particular it holds that W 〈〈k〉〉 ∈ Ψ(W ).

Note that W 〈〈k〉〉 is solely defined from the corresponding element of the IPF-sequence W 〈k〉.

In particular, the convergence of PSIPF is implied by the convergence of IPF, as the following

theorem shows.

Theorem 3.3.21 (Convergence of PSIPF)

Let W ∈W and f ∈ Rn>0 such that W(f ,W ) 6= ∅. Then the PSIPF-sequence (W 〈〈k〉〉)

converges to PW(f ,W )(W ).
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Proof. Corollary 3.3.19 gives that W 〈∞〉 = PW(f ,W )(W ), in particular ‖W 〈k〉 −W 〈∞〉‖1 → 0.

For i = j it holds that |w〈〈k〉〉ij − w〈∞〉ij | = |w
〈k〉
ij − w

〈∞〉
ij |, and for i 6= j that

|w〈〈k〉〉ij − w〈∞〉ij |+ |w
〈〈k〉〉
ji − w

〈∞〉
ji | ≤ 2 ·max{|w〈k〉ij − w

〈∞〉
ij |, |w

〈k〉
ji − w

〈∞〉
ji |}

≤ 2 · (|w〈k〉ij − w
〈∞〉
ij |+ |w

〈k〉
ji − w

〈∞〉
ji |)

,

where the first inequality uses that W 〈∞〉 is symmetric, that is w
〈∞〉
ij = w

〈∞〉
ji . Hence,

‖W 〈〈k〉〉 −W 〈∞〉‖1 =
∑
i,j

|w〈〈k〉〉ij − w〈∞〉ij | ≤ 2 ·
∑
i,j

|w〈k〉ij − w
〈∞〉
ij | = 2‖W 〈k〉 −W 〈∞〉‖1 → 0 ,

which proves the convergence of (W 〈〈k〉〉) to PW(f ,W )(W ).

The convergence result even holds in much more generality: the symmetrized sequence

(m(W 〈k〉, (W 〈k〉)T )) converges to PW(f ,W )(W ) for any mean function m, and along symmetric

matrices. However, only for m = mG, that is for the PSIPF-sequence, all matrices lie in Ψ(W ).

Symmetric Iterative Proportional Fitting (SIPF)

We define the SIPF-sequence only in the symmetric setting. In contrast to IPF and PSIPF,

which both carry out the RE-projections (3.9) alternately one after the other, the approach

taken by SIPF is to aggregate the two projections to R and C simultaneously at each step by

taking their entry-wise geometric means.

More general, for any mean function m, we define the m-sequence as follows.

Definition 3.3.22 (m-sequence)

For W ∈ W, f ∈ Rn and any mean function m (applied to matrices entry-wise), the

m-sequence is defined by W (0) := W and

W (k+1) := m(PR(W (k)),PC(W (k)))

=

[
m

(
fi

d
(k)
i

· w(k)
ij ,

fj

d
(k)
j

· w(k)
ij

)]
=

[
w

(k)
ij ·m

(
fi

d
(k)
i

,
fj

d
(k)
j

)]
=

[
wij ·

∏k
`=0m

(
fi

d
(`)
i

,
fj

d
(`)
j

)]
,

(3.10)

where d(k) = (d
(k)
i ) := W (k)1 denotes the positive row (and column) marginals of the

symmetric matrix W (k) = [w
(k)
ij ].
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For example, the arithmetic mean gives the sequence W (k+1) := ((PR(W (k)) + PC(W (k)))/2)

denoted as the mA-sequence. In contrast to the PSIPF-sequence, which always converges

to the same limit W (∞) for any choice of m, the limit W
(∞)
m of the m-sequence can differ

depending on the choice of m. If m = min or m = max, then the m-sequence can even

converge to an infeasible limit W
(∞)
m /∈W(f ,W ) 6= ∅, although other choices of m converge to

a feasible limit, see Figure 3.3.1 for an example.

The SIPF-sequence is defined by the geometric mean, that is the mG-sequence. It allows

for the following recursive and factorized representations.

Definition 3.3.23 (SIPF-sequence)

For W ∈W and f ∈ Rn, the SIPF-sequence (W (k)) is defined by W (0) := W and

W (k+1) := mG(PR(W (k)),PC(W (k))) =

√
F

D(k)
·W (k) ·

√
F

D(k)

Note that W (k+1) equals the f -scaling of W (k). The definition implies the following

factorization:

W (k+1) = S(k) ·W · S(k) for S(k) :=

√√√√ k∏
`=0

F

D(`)
,

which particularly shows that W (k) ∈ Ψ(W ).

SIPF has already been studied implicitly in the literature for the special case of f = 1, that is

for a doubly stochastic limit. One aspect that makes the case f = 1 special is that it represents

the projection to the Birkhoff polytope, which allows for a variety of specialized arguments

that do not generalize to the case f 6= 1. Zass and Shashua (2005) sketch a proof idea based

on the monotony of the matrix permanent. Recently, Knight et al. (2014) provide a rigorous

convergence proof based on the monotony of
∏
i d

(k)
i (=

∏
i d

(k)
i /fi). However, in the general

case of f 6= 1 these and other monotony properties do no longer hold. As a consequence, the

proofs for the case f = 1 cannot simply be adapted to the case f 6= 1. Further, in contrast

to PSIPF, the convergence of the SIPF-sequence is not implied by the convergence of the

IPF-sequence, since there is no specific relation between W (k) and W 〈k〉. The convergence

proof for the SIPF-sequence requires individual arguments, and is a main contribution of this

chapter.

3.3.8 Factorized versus non-factorized approaches

All three sequences, here exemplary denoted as (Wk), can be represented in factorized form

as Wk = Yk ·W · Zk by unrolling the recursive definition back to the initial matrix W = W0.

This allows for two different strategies how to compute each sequence in practice:
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Figure 3.3.1: Convergence behavior of the m-sequence toward f = (1, 1, 1)T for different choices of
mean functions m. (a) initial matrix W . (b) the mG-sequence (SIPF-sequence) provides
a feasible solution with marginals f . (c), (d) the min-sequence and the max-sequence
converge to incorrect marginals.

• non-factorized: just compute Wk from Wk−1 according to the recursive definition,

without storing the factors Yk and Zk.

• factorized: directly update Yk and Zk in each step (with Yk = Zk for SIPF). If one is

interested in Wk, then Wk can directly be computed as YkWZk.

In the following, we focus on the SIPF-sequence (W (k)) and its factorization W (k) = S(k)WS(k),

but all arguments hold similarly for the other sequences. The factorized representation has

significant advantages over the recursive definition:

• Efficiency : only a single vector with n elements (the diagonal of S(k)) needs to be stored

and updated at each iteration, rather than the full matrix W (k) with n2 entries.

• Self-stabilization: assume we would not choose W as the initial matrix, but any other

matrix from the set Ψ(W ). Then the factorized SIPF-sequence would still converge to

the correct limit W (∞) ∈ Ψ(W ). More precise, any errors ξ(k) ∈ Rn at step k affect the

computed matrix W̃ (k) in the form of (S(k)+diag(
∑k

i=1 ξ
(k)))·W ·(S(k)+diag(

∑k
i=1 ξ

(k))),

which is still an element of the set Ψ(W ). Even in case of arbitrary large sporadic

errors, the factorized representation always brings the sequence back toward the correct

unique biproportional fit W (∞) because it never deviates from the set Ψ(W ) by more

than machine precision. Thus, whenever the numerically computed matrix W̃ (k) shows

marginals f it is guaranteed to equal W (∞) up to machine precision.

This sense of robustness is not provided by the non-factorized approach: here, numerical

errors ∆(k) ∈ Rn×n at step k affect the computed matrix by W̃ (k) = W (k) +
∑k

i=1 ∆(i).

Thus W̃ (k) might be no longer close to Ψ(W ), but to Ψ(W + Φ(k)) for some unknown

implicit drift Φ(k) ∈ Rn×n. This can finally lead to a computed limit matrix W̃ (∞) ∈
Ψ(W + Φ(∞)) that is very different from the correct limit W (∞) ∈ Ψ(W ), although both

provide the correct marginals! There is no way to check for this without determining

the factors. Thus, whenever the numerically computed matrix W̃ (k) shows marginals f

it is guaranteed to be the biproportional fit of some matrix W + Φ(k), but there is no

way to check whether it is close to Ψ(W ), hence whether it is close to W (∞).
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• Explicit factors: if our goal is explicitly to determine the factorization W = S−1XS−1

for some matrix X of prescribed marginals and a positive diagonal matrix S, then there

is obviously no alternative to the factorized approach.

So why not always choose the factorized approach? Unfortunately, there is a fundamental

problem with the factorized representation: whenever the limit matrix W (∞) turns out to be

a non-direct biproportional fit W (∞) = limk→∞ T
(k)WT (k), then some entries in T (k) tend to

infinity. This makes any factorized approach numerically infeasible. The recommendation is

to prefer the factorized approach whenever it is applicable, that is whenever the limit matrix

is a direct biproportional fit, W (∞) = TWT . A practical strategy would be to always start

with the factorized approach and fall back to the non-factorized approach if some entries in

T (k) exceed a certain threshold. A less pragmatic and more interesting alternative is given in

Section 3.4.3, which provides a characterization of all cases that satisfy directness.

3.3.9 Background on IPF and iterative projection methods

The origins of the IPF-sequence date back almost one century: according to Bregman (1967b),

IPF was proposed by G.V.Sheleikhovskii in the 1930s for calculating passenger flows, although

he did not publish it. Kruithof (1937) published IPF with an application to telephone traffic

networks. IPF is still known under the names “Kruithoff method” and “Sheleikhovskii

method”. It was re-discovered in other fields, in several variants, and with different names

such as “Furness method”, “Evans-Kirby method”, “Murchland method”, “Osborne method”,

“Grad method”, “Jefferson-Scott method”, “Macgill method”, and this list is still far from being

complete. Lamond and Stuart (1981) show that IPF and all above mentioned variants are

special instances of the general framework given by Bregman (1967a). In his work, Bregman

studies the convergence of iterative projection methods. Such methods aim at finding an

element from a non-empty set of the form F = C1 ∩ . . . ∩ C` by repeatedly projecting to Ci,
while i cycles through 1, . . . , `. This method possibly converges for every initial element x0 to

some element x∗ ∈ F . For the special case of orthogonal projections and all Ci’s being linear

subspaces, convergence of this method is already proven by von Neumann (1950). This result

is generalized from linear subspaces to general closed convex sets by Bregman (1965), while

still being limited to orthogonal projections. This setting is known as Projection Onto

Convex Sets (POCS). Two years later, Bregman (1967a) further generalizes POCS to non-

orthogonal projections, in particular to the family of projections introduced in Section 3.3.5,

which were later named after him. His generalization to non-orthogonal projections, here

denoted as Bregman-POCS, is still relevant for recent work, for example for graphical

models (Ghahramani, 2002) and compressed sensing (Yin et al., 2008).

The key how IPF fits to the method of iterative projections is given by Lemma 3.3.12:

proportional row and column scaling of a matrix W corresponds to the RE-projection of W

to C1 := Ω(r, ·,W ) and C2 := Ω(·, c,W ), respectively. This identifies IPF as being an instance

of Bregman-POCS with RE-projections.
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“ IPF equals Bregman-POCS with RE-projections. ”

Thus, Bregman’s generalized POCS framework implies convergence of the IPF-sequence to

some element W 〈∞〉 from the set Ω(r, c,W ) = C1 ∩ C2 whenever it is non-empty. But why

does additionally hold that W 〈∞〉 is not just some element from Ω(r, c,W ), but precisely the

RE-projection PΩ(r,c,W )(W ) ?

On the RE-optimality of IPF

The IPF-sequence is studied by Sinkhorn (1967) for the case that all entries in W are positive:

Sinkhorn proves that for any choice of W ∈ Rm×n>0 , r ∈ Rm>0, c ∈ Rn>0, the IPF-sequence

converges to a limit matrix W 〈∞〉 ∈ Rm×n>0 of the form W 〈∞〉 = YWZ for positive diagonal

matrices Y,Z that are unique up to a scaling factor. Stated differently, W 〈∞〉 is the (direct)

biproportional fit of W to r and c. Moreover, it is straightforward to derive from the

Lagrangian that W 〈∞〉 is closest to W with respect to relative entropy. Hence, W 〈∞〉 is not

just some matrix of marginals r and c, but precisely the RE-optimal solution PΩ(r,c,W )(W ).

However, as soon as one allows for zero-entries in W , the problem becomes much harder.

For the special case of a doubly stochastic limit (r = c = 1), Sinkhorn and Knopp (1967)

show that convergence only holds if the set of non-zeros E(W ) satisfies specific combinatorial

properties. Even in case of convergence, the limit W 〈∞〉 can show zeros where W has non-zeros,

which turns the relative entropy objective into a non-smooth optimization problem. As a

consequence, the Lagrangian approach can no longer be applied without further considerations.

Some publications overlook this pitfall (see Section 3.4.3). They “simply” apply the Lagrangian

approach to the non-negative setting and finally obtain invalid conclusions. Hence, assuming

positivity is not just about “simplifying some arguments”, as sloppily stated by Ireland and

Kullback (1968), but a totally different scenario. Also the proof by Bregman (1967b) claims to

imply the non-negative case, but it deals only superficially with the extension to zero-entries.

The proof for the RE-optimality of IPF was rigorously carried over from the positive to

the non-negative case by Csiszar (1975), who totally avoids any Lagrangian-type arguments

by a measure theoretical approach. Zeros in W 〈∞〉 that are not present in W are handled

technically sound by considering the Radon-Nikodym derivatives, which are able to deal with

absolute continuous measures, that is with E(W 〈∞〉) ( E(W ). The only drawback of this

approach is that it does not provide an algorithmic intuition on why optimality holds. What

is so special about the IPF-sequence that guarantees that the limit is not just some element

from Ω(r, c,W ), but precisely the unique element from Ω(r, c,W ) that is closest to W with

respect to relative-entropy-error?

It is a main contribution of this chapter to provide a novel explanation for the optimality

of IPF. This is achieved by identifying IPF as a special instance of a more general iterative

projection scheme that further guarantees optimality.
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Iterative projection method with reflections

Assume that some non-empty set F ⊆ RN can be written as the intersection of finitely many

closed convex sets, that is F = C1 ∩ . . . ∩ C`. Let Phi (z) denote a Bregman projection of z to

Ci. Further we are given some x0 ∈ RN . We define the following two consecutive goals:

• feasibility goal: our minimum goal is to determine an arbitrary element x∗ ∈ F . This

is also known as the convex feasibility problem, as studied for example by Youla

(1987) with applications in image restoration.

• optimality goal: this goal is stronger than the first. We want to guarantee that x∗ is

not just some element from F , but precisely the projection x∗ = PhF (x0) ∈ F for some

Bregman projection Ph. This is also known as the best approximation problem.

As stated above, the feasibility goal can be approximated by POCS with Bregman pro-

jections (Bregman-POCS), which gives the sequence (xk) defined for k ≥ 1 by

xk := Ph[k](xk−1) , (3.11)

where [k] := 1 + (k − 1 mod `). Observe that (3.11) equals the IPF-sequence for C1 := R,

C2 := C, and F := Ω(r, c,W ) = R∩ C, which aims at approximating PF (W ) for some given

x0 := W ∈ Rm·n. Bregman (1967a) proves that (3.11) converges to some solution x∗ ∈ F ,

but in general with x∗ 6= PF(x0). Note that non-optimality is not just an artifact of non-

orthogonality. See Figure 3.3.2 for a simple example in which iterated orthogonal projections

do not converge to the optimal solution. Moreover, Figure 3.3.2 shows how this problem can

be solved in case of orthogonal projections: at each step, we have to shift the pre-image by

adding a specific reflection term rk before applying the projection. This strategy is denoted

as Dykstra’s projection algorithm (DPA):

xk := P⊥[k](xk−1 + rk−`)

and rk := xk−1 + rk−` − xk
(3.12)

with ri := 0 whenever i ≤ 0. The idea goes back to Dykstra (1983), and was generalized from

convex cones to general closed convex sets by Boyle and Dykstra (1985), who prove that the

DPA-sequence (xk) as given by (3.12) converges to the optimal solution x∗ = P⊥F (x0). Note

that this algorithm has nothing to do with Dijkstra’s algorithm from graph theory.

IPF does not fit into this framework, since IPF applies non-orthogonal projections. However,

Bauschke and Lewis (2000) generalize Dykstra’s idea to a large family of Bregman projections

that particularly includes orthogonal projections and RE-projections. They introduce a similar

reflection term that depends on the function h that induces the Bregman divergence. This

defines Dykstra’s projection algorithm with Bregman projections (Bregman-DPA)
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Figure 3.3.2: Iterative orthogonal projections with and without Dykstra’s reflection terms. (top left)
orthogonal projection of x0 to F = C1 ∩ C2. This is the preferable approach whenever
this projection is directly computable. (top middle) iterative projection method (3.11)
with orthogonal projections (POCS). Reaches the feasible solution x∗ ∈ F after two
iterations, but x∗ does not equal P⊥F (x0). (top right) Dykstra’s projection algorithm
(3.12) including reflection. Converges to the limit x∗ = P⊥F (x0). (bottom row from
left to right) details on Dykstra’s projection algorithm for k = 3, 4, 5, respectively.
By definition, r1 := x0 − x1, r2 := x1 − x2, and r3 = x2 − x3 + x0 − x1. Projecting
xk−1 + rk−2 instead of xk−1 guarantees convergence toward x∗ = P⊥F (x0).
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by:

xk := (Ph[k] ◦ ∇h
∗)(∇h(xk−1) + rk−`)

and rk := ∇h(xk−1) + rk−` −∇h(xk)

(3.13)

with ri := 0 whenever i ≤ 0, and h∗ the convex conjugate of h. Bauschke and Lewis (2000)

prove convergence of (3.13) to the limit x∗ = PhF (x0). Observe the following two special cases:

• for orthogonal projections, that is for h = 1
2‖x‖

2, we get from ∇h = id and ∇h∗ = id

that Bregman-DPA (3.13) includes DPA (3.12) as a special case.

• if we drop all reflection terms, that is if we re-define rk := 0 for all k, then we get from

∇h∗ ◦ ∇h = id that Bregman-DPA (3.13) equals Bregman-POCS (3.11). In particular,

this shows that IPF equals Bregman-DPA with RE-projections, but with all reflection

terms dropped.

“ IPF equals Bregman-DPA with RE-projections, but with all

reflection terms dropped. ”
Bauschke and Lewis (2000, Theorem 4.3) show that if all Ci’s are affine, then dropping all

reflection terms does not affect the limit. Even stronger, their proof reveals that the sequences

(3.13) and (3.11) coincide: Bregman-DPA gives the same sequence as Bregman-POCS in case

of affine Ci’s. As a consequence, whenever Bregman-POCS is carried out on affine sets, then

it is guaranteed to converge not only to some element from F , but to PhF(x0) because the

sequence given by Bregman-POCS is exactly the same as the sequence given by Bregman-DPA

in this case! However, neither R nor C are affine, so this result cannot be applied to IPF.

3.4 Main contributions

This section presents my three main contributions that are already sketched informally in

Section 3.2.

3.4.1 Contribution 1: Novel proof of the IPF limit properties

We have just argued that the sequences given by Bregman-DPA and Bregman-POCS coincide

if all sets Ci are affine. My first main contribution in this chapter is a generalization of this

result, showing that both sequences coincide even under a weaker notion of affinity, which is

satisfied by IPF. As a result, IPF can not only be seen as Bregman-POCS with RE-projections,

but even stronger as Bregman-DPA with RE-projections. The reflection terms can be ignored

in case of this weaker notion of affinity, since they do not affect the sequence at all. This
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guarantees not only convergence to some feasible solution but even convergence to the optimal

solution W 〈∞〉 = PΩ(r,c,W )(W ). This re-interpretation of IPF provides a novel and clear

algorithmic intuition for the convergence and optimality of IPF.

“ IPF equals Bregman-DPA with RE-projections. ”
Let us now make precise what is meant by “weaker notion of affinity”: we do no longer

require the sets Ci to be affine as a whole because it already suffices that every element

xk for k ≥ 1 of the non-reflected sequence (3.11) lies in the relative interior of C[k], that is

xk ∈ rel int(C[k]). This property may be called “local affinity”, since it implies the existence of

a small affine neighborhood within C[k] around each xk. Local affinity is trivially satisfied if

the sets Ci are affine.

This result is formulated in the following theorem.

Theorem 3.4.1 (Coincidence of Bregman-POCS and Bregman-DPA)

Let F = C1 ∩ . . . ∩ C` be the non-empty intersection of ` closed convex sets Ci ⊆ Rd. For

any x̃0 ∈ Rd let (x̃k) denote the sequence generated by Bregman-POCS (3.11) with respect

to the Bregman projection Ph for any suitable (see Section 3.5.1) function h. Further,

for x0 := x̃0 let (xk) denote the sequence generated by Bregman-DPA (3.13) with respect

to Ph. If it holds that x̃k ∈ rel int(C[k]) for all k ≥ 1, then both sequences coincide, that

is x̃k = xk for all k ≥ 0.

The proof is carried out in Section 3.5.1. Theorem 3.4.1 implies the following corollary.

Corollary 3.4.2 (IPF equals Bregman-DPA)

The IPF-sequence is equal to the sequence (3.13) of Bregman-DPA with RE-projections.

Proof. In Section 3.3.9 we show that the IPF-sequence equals Bregman-POCS with RE-

projections. All that remains to show in order to apply Theorem 3.4.1 is that the setting of

IPF further satisfies the local affinity property. First, recall from the proof of Lemma 3.3.12

that PR(W 〈k〉) = PΩ(r,·,W )(W
〈k〉) and PC(W 〈k〉) = PΩ(·,c,W )(W

〈k〉). Rather than thinking of

IPF as the alternating projection to R = Ω(r, ·, ·) and C = Ω(·, c, ·) we can equivalently see it

as the alternating projection to RW := Ω(r, ·,W ) and CW := Ω(·, c,W ). Now it follows from

the fact that E(W 〈k〉) = E(W ) and from Example 3.3.9 that

W 〈k〉 ∈

{
Ω(r, ·,W ) = rel int(RW ) , if k odd

Ω(·, c,W ) = rel int(CW ) , if k even
.

Thus, every element W 〈k〉 lies in the relative interior of the image domain of the projection

of the previous element. This allows to apply Theorem 3.4.1, which gives that dropping the

reflection terms does not affect the sequence.
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The most important consequence of Corollary 3.4.2 is that the IPF-sequence converges to

the RE-optimal limit whenever Ω(r, c,W ) 6= ∅, just like Bregman-DPA does. This is a novel

and intuitive one-line-proof for Theorem 3.3.17.

3.4.2 Contribution 2: Convergence of SIPF

The second main contribution in this chapter is the proof of convergence of the SIPF-sequence,

as stated in the following theorem.

Theorem 3.4.3 (Convergence of SIPF)

Let W ∈ W and f ∈ Rn>0 such that W(f ,W ) 6= ∅. Then the SIPF-sequence (W (k))

converges to PW(f ,W )(W ). Further, ‖f −W (k)1‖1 → 0 monotonously decreasing.

The proof of Theorem 3.4.3 is carried out in Section 3.5.2. Recall that SIPF is synonymous for

iterated f -scaling. Thus, Theorem 3.4.3 allows us particularly to think about f -scaling of some

graph G = (V,E,W ) as follows: the f -scaled graph matrix W̃f is a first-step approximation of

re-weighting all edges such that they yield degree vector f . If f -scaling is iteratively repeated,

then this process is now proven to converge to a graph G(∞) = (V,E(∞),W (∞)) of degree

vector f , whenever any such graph exists. Precisely, the limit graph is the unique graph that

achieves degree vector f on a subset of edges of E, while being closest to W with respect to

relative-entropy. Section 3.6 presents applications of this result.

3.4.3 Contribution 3: Feasibility of SIPF in terms of graph properties

Recall the three convergence results for the symmetric setting: Corollary 3.3.19 for the IPF-

sequence, Theorem 3.3.21 for the PSIPF-sequence and Theorem 3.4.3 for the SIPF-sequence.

The third main contribution in this chapter studies the applicability of these three convergence

results to undirected weighted graphs of weight matrix W . All three results prove convergence

of the respective sequence to the same limit W 〈∞〉 = PW(f ,W )(W ). Further, they all base on

the same fundamental feasibility assumption: they require the existence of an arbitrary

feasible solution A ∈W(f ,W ) 6= ∅. We further distinguish between the case that there exists

a total solution, that is a feasible solution with E(A) = E(W ), and the case that no feasible

solution is a total solution, that is E(A) ( E(W ) for all A ∈W(f ,W ). Summarized, we study

the following three scenarios:

• total feasibility: there exists a total solution, that is A ∈W(f ,W ) with E(A) = E(W ).

The maximality result of Lemma 3.5.6 implies that the limit matrix W 〈∞〉 is another

total solution: E(W 〈∞〉) = E(W ). Further, Lemma 3.3.4 shows that the corresponding

biproportional fit is direct, that is W 〈∞〉 = SWS for some positive diagonal matrix S.

This allows to choose the preferable factorized variant for each of the three algorithms.

• non-total feasibility: there is no total solution, but there exists a non-total solution,

that is some A ∈ W(f ,W ) with E(A) ( E(W ). This particularly implies that W 〈∞〉
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cannot be a total solution neither. So the corresponding biproportional fit is not direct,

thus some entries in the corresponding sequence of diagonal matrices tend to zero and

others to infinity. As a consequence, the factorized approaches cannot be applied, but

one has to choose the non-factorized, more error-prone algorithms.

• infeasibility: there exists no feasible solution at all, that is W(f ,W ) = ∅. In this case

the sequences may or may not converge, and any limit matrix is guaranteed to not

provide the desired marginals f .

Which of the three scenarios applies is fully determined just by the existence of a (total or

non-total) feasible solution. Can we re-formulate this abstract existence criterion in terms of

a more intuitive criterion?

Intuitively, feasibility should be related to some degree of sparsity of the non-zero-entries

in W . As stated in Section 3.3.9, if all entries in W are non-zero, then there always exists

a feasible (even total) solution for every choice of f . The more entries in W are zero in an

inappropriate way, the less likely there exists a feasible solution. Sparsity decreases the degree

of freedom for the existence of a proper edge re-weighting. Can we precisely identify this type

of sparsity and derive an intuitive criterion for the existence of a solution?

Indeed this is exactly the novel contribution of this section. The type of sparsity is adequately

captured by introducing the concept of “weak f -expansion”. Weak f -expansion is a notion of

weighted vertex expansion that is complementary to existent results from expander graph

theory.

Definition 3.4.4 (Weak f-expansion)

Let G = (V,E,W ) for W ∈W denote an undirected weighted graph, and N(S) := {j ∈
V | ∃i ∈ S : ij ∈ E} the vertex neighborhood of S ⊆ V . G is a weak f-expander for a

positive vector f it it holds for all subsets S ⊆ V that

∑
i∈N(S)

fi ≥
∑
i∈S

fi . (3.14)

A weak f -expander is denoted as being strict for S if the inequality in (3.14) is strict

for this choice of S.

A trivial example for a weak f -expander is every graph that has self-loops at all vertices.

Such a graph is a weak f -expander for every choice of f ∈ Rn>0 because N(S) ⊇ S for all S.

The term “weak” in Definition 3.4.4 indicates that weak f -expansion refers to a rather weak

sense of weighted graph expansion. To see this, let f = 1. In this case, weak f -expansion

claims that |N(S)| ≥ |S| for every subset S ⊆ V , thus the neighborhood of a set is never

smaller than the size of the set itself. In contrast to that, in expander graph theory the term

“expansion” typically refers to the much stronger assumption that inequality (3.14) holds true
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for the boundary δ(S) := N(S) \ S in place of the neighborhood N(S). Since the boundary

is usually much smaller than the whole neighborhood, the “classical” notion of expander

graphs is much more restrictive.

We contribute two results in terms of two propositions (Proposition 3.4.5 and Proposi-

tion 3.4.8): the first addresses the existence of any feasible solution at all, the second addresses

the existence of a total solution. The reason to call them “Proposition” rather than “Theorem”

is that both can be derived from existing results in the literature (although this requires a

considerable amount of work).

The first proposition shows that weak f -expansion is exactly the property that a graph

has to satisfy in order to provide feasibility W(f ,W ) 6= ∅, thus in order to guarantee that

IPF/PSIPF/SIPF converge to a feasible solution.

Proposition 3.4.5 (Feasibility)

Let W ∈W and f ∈ Rn>0. Then W(f ,W ) 6= ∅ if and only if G(W ) is a weak f -expander.

While attempting to prove Proposition 3.4.5 it turned out that it can be derived from

existing results in the literature. For example, it can be derived from a similar result for

non-symmetric matrices by Pukelsheim (2014, (c)⇔ (d) in Theorem 3), and also from a result

for multi-graphs by Behrend (2013, Theorem 6). In network theory a similar result for flows

in directed graphs is known as the Gale-Hoffman theorem (Gale, 1957, Hoffman, 1960), which

is a weighted variant of Philip Hall’s famous Marriage Theorem. However, our restriction to

the symmetric and undirected setting allows to re-formulate these abstract results in terms of

weak f -expansion, which is much more crisp and intuitive than all other formulations.

Proposition 3.4.5 characterizes whether or not any (total or non-total) solution exists.

We now refine this result in order to identify whether even a total solution exists, that is

A ∈W(f ,W ) with E(A) = E(W ). Again this can be rendered in terms of weak f -expansion.

The key to the existence of a total solution is that the weak f -expansion of G(W ) must be

strict for all subsets S ⊆ V whenever strictness is “possible in principle”, that is up to “trivial”

cases that obviously enforce Equation (3.14) to hold at most with equality. Such trivial cases

include S = ∅ and S = V . Another trivial case can be identified for a connected graph that

is bipartite with respect to V = V1 ·∪ V2. If S is chosen to equal V1 or V2, then strictness

in (3.14) is impossible, which is easy to see from the fact that mutually N(V1) = V2 and

N(V2) = V1. For connected graphs, this describes already all cases that enforce equality: two

exceptions (S ∈ {∅, V }) for non-bipartite graphs, and four exceptions (S ∈ {∅, V, V1, V2}) for

bipartite graphs. For general unconnected graphs, we must further consider combinations of

these “trivial” cases across all components: whenever S ⊆ V is purely a combination of such

“trivial” cases, one for each connected component, then we cannot achieve strictness for S in

(3.14), but only equality. The following definition helps to formulate all exceptions precisely.
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Definition 3.4.6 (Non-bipartite decomposition)

Let G = (V,E) denote some graph. Let V = D1 ·∪ . . . ·∪DK be a partition of V into K ≥ 1

subsets such that for all ` = 1, . . . ,K it holds that D` 6= ∅ plus one of the following two

statements:

1. D` refers a non-bipartite connected component of the graph

2. D` forms together with D`′ for some `′ ∈ {` − 1, ` + 1} the unique bipartition

D` ·∪D`′ of a bipartite connected component of the graph.

Such a partition
⋃K
`=1D` is denoted as a non-bipartite decomposition of the graph.

For example, a graph is connected and non-bipartite if and only if K = 1, that is V = D1.

A connected bipartite graph has the bipartite decomposition V = D1 ·∪D2. However, a similar

bipartite decomposition for K = 2 can also characterize another graph that consists of two

separate components, both of which are non-bipartite.

The following facts on the non-bipartite decomposition follow right from the defini-

tions:

Fact 3.4.7 (Properties of the non-bipartite decomposition)

Let
⋃K
`=1D` denote a non-bipartite decomposition of a graph G = (V,E). Then all the

following statements hold true:

(i) K equals the number of non-bipartite connected components plus twice the number

of bipartite connected components.

(ii) the non-bipartite decomposition is unique (up to re-indexing the sets D`).

(iii) if S ⊆ V is a combination of the D`’s, that is S =
⋃
i∈I Di for some I ⊆ {1, . . . ,K},

then Equation (3.14) is forced to hold with equality for S.

Finally, our second proposition shows that a total solution exists if and only if all choices

of S ⊆ V that are not a “trivial” combination in the sense of Fact 3.4.7 (iii) provide strict

expansion.

Proposition 3.4.8 (Total feasibility)

Let G(W ) = (V,E,W ) denote a graph and
⋃K
i=`D` its non-bipartite decomposition.

Further let f ∈ Rn>0. Then there exists A ∈W(f ,W ) with E(A) = E(W ) if and only if

G(W ) is a weak f -expander that is strict for all S /∈ {
⋃
`∈I D` | I ⊆ {1, . . . ,K}}.

As before, Proposition 3.4.8 can be seen as a re-formulation of more general existing results.

It can be derived from results on general rectangular matrices by Brualdi (1968), formulated
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in terms of constraints on sub-matrices. It can also be derived from results on multi-graphs by

Behrend (2013, Theorem 7), formulated in terms of tri-partitions of the vertex set. The special

case of connected non-bipartite graphs, that is K = 1, is further equivalent to considering

symmetric “connected matrices” as by Pukelsheim (2014, Theorem 2). However, it takes a

considerable effort to transform any of these results to the plain formulation presented in

Proposition 3.4.8.

To give an example on how to apply Proposition 3.4.8, we show that there always exists a

total solution if all entries in W are positive. Such W characterizes a complete graph with

arbitrary positive weights on all its edges, including self-loops. As argued above, such a graph

is a weak f -expander for every choice of f . In order to further derive the existence of a total

solution, it remains to show that the expansion is strict whenever possible in principle. Since

the complete graph is connected and non-bipartite, exceptions from requiring strictness are

only allowed for S ∈ {∅, V }. For all S /∈ {∅, V }, we get that N(S) ) S, which immediately

implies that Equation 3.14 holds with strict inequality. This gives a short and intuitive proof

for why a total solution must exist in this case. Stated differently, this result also implies

that every symmetric matrix W ∈ Rn×n>0 factorizes as W = SBS, where S is some positive

diagonal matrix, and B can be constrained to any positive marginals f ∈ Rn>0.

3.5 Proofs and technical details

In this section we prove convergence and RE-optimality of the IPF sequence and of the SIPF

sequence, respectively. The last subsection outlines the proof for the total feasibility result.

3.5.1 IPF convergence

We now provide the proof of Theorem 3.4.1. This theorem is a generalization of a result by

Bauschke and Lewis (2000, Theorem 4.3) from sequences in affine spaces to sequences that

always project to the relative interior. We say that function h : Rd → R is suitable if it

satisfies the assumptions in Bauschke and Lewis (2000) of being Legendre, co-finite, and very

strictly convex. The precise definitions of these terms are not further needed in the following,

but it is worth mentioning that they are satisfied by several different Bregman projections, in

particular by orthogonal projections and RE-projections. Each of these two is induced by

a suitable function h as a Bregman divergence. Let (x̃k) denote the sequence generated by

Bregman-POCS (3.11) for some x̃0 ∈ Rd, that is

x̃k := Ph[k](x̃k−1) .
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Further, let (xk) denote the sequence generated by Bregman-DPA (3.13) for x0 = x̃0, that is

xk := (Ph[k] ◦ ∇h
∗)(∇h(xk−1) + rk−`)

and rk := ∇h(xk−1) + rk−` −∇h(xk) .

The key assumption from which it finally follows that (x̃k) and (xk) coincide is that “for

every k ≥ 1 there exists a ball around x̃k in C[k] that contains an affine basis of aff(C[k])

together with its negates”.

Let us give some intuition on how this property can be helpful: if for a linear subspace

L ⊆ Rd and some q ∈ Rd it holds that 〈x, q〉 ≤ 0 for all x ∈ L, then it follows that 〈x, q〉 = 0

for all x ∈ L. This can be seen from the fact that particularly every basis vector b of L
satisfies that 〈b, q〉 ≤ 0 and 〈−b, q〉 ≤ 0⇔ 〈b, q〉 ≥ 0, which gives together that 〈b, q〉 = 0. Now

the important thing to note is that it is already sufficient if this inequality holds just within

an arbitrary small ball around 0, say, for all x ∈ B(0, ε), since this ball already contains a

smaller-scaled basis of L plus its negates. So we get that the local information of 〈x, q〉 ≤ 0

for all x ∈ B(0, ε) implies the global information that 〈x, q〉 = 0 for all x ∈ L.

This insight is re-formulated in the following lemma for L defined as the difference space of

an affine subspace A ⊆ Rd.

Lemma 3.5.1 (Implied global orthogonality)

Let A ⊆ RN denote an affine subspace. Then it holds for all q ∈ Rd and a ∈ A:

∀x ∈ A : 〈x− a, q〉 = 0 ⇔ ∃ε > 0 : ∀x ∈ BA(a, ε) : 〈x− a, q〉 ≤ 0.

The statement holds true if ≤ is replaced by ≥.

Proof. The direction ”⇒” is trivial, so we only have to prove ”⇐”: let L denote the linear

subspace that corresponds to A with the origin translated to a ∈ A, thus, x ∈ A ⇔ x− a ∈ L.

Let b1, . . . , bc denote a basis of L. With b′i := ε · bi/(maxi{‖bi‖}) for i = 1, . . . , c we get that

b′1, . . . , b
′
c is also a basis of L, and that a± b′i ∈ BA(a, ε). Thus, 〈b′i, q〉 ≤ 0 and 〈−b′i, q〉 ≤ 0,

which implies that 〈b′i, q〉 = 0 for all i. Thus, we get for all x ∈ A from the representation

x = a+
∑c

i=1 αib
′
i for some α1, . . . , αc ∈ R that 〈x− a, q〉 =

∑c
i=1 αi 〈b′i, q〉 = 0.

Lemma 3.5.1 is the core tool that we need to generalize (Bauschke and Lewis, 2000,

Theorem 4.3) from affine spaces to locally affine sequences.

Proof (of Theorem 3.4.1). The proof shows by induction that xk = x̃k for all k ≥ 0. By

definition, x0 = x̃0. Now fix k with 1 ≤ k ≤ `. By induction, xk−1 = x̃k−1, and by definition,

rk−` = 0. This gives with ∇h∗ ◦ ∇h = id that

xk = (Ph[k] ◦ ∇h
∗)(∇h(xk−1) + 0) = (Ph[k] ◦ id)(xk−1) = Ph[k](x̃k−1) = x̃k .
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Now fix k > ` with by induction xi = x̃i for all i < k. Let Ai := aff(Ci) denote the affine hull

of Ci for i = 1, . . . , `. Note that C[k] = C[k−`] and A[k] = A[k−`]. From x̃k−` ∈ rel int(C[k]) we

get that there exists εk−` > 0 such that BA[k]
(x̃k−`, εk−`) ⊆ C[k]. Because of xk−` = x̃k−` we

have that BA[k]
(xk−`, εk−`) ⊆ C[k]. From Bauschke and Lewis (2000, Equation 1 in Theorem

3.2) we get that for all c ∈ C[k] it holds that 〈c− xk−`, rk−`〉 ≤ 0. So we can apply Lemma 3.5.1

in order to get that 〈a− xk−`, rk〉 = 0 for all a ∈ A[k]. For the underlying difference space

L[k] = A[k] − xk−` we are free to choose any other element z ∈ A[k] for its representation, that

is A[k] − xk−` = A[k] − z. Choosing z := xk gives that 〈a− xk, rk〉 = 0 for all a ∈ A[k] ⊇ C[k].

Now we have that xk−1 = x̃k−1, and we claim that

x̃k = Ph[k](x̃k−1)
!

= (Ph[k] ◦ ∇h
∗)(∇h(xk−1) + rk−`) = xk. (?)

Applying the characterization

a′ = Ph[k](a) ⇔ ∀c ∈ C[k] :
〈
c− a′,∇h(a)−∇h(a′)

〉
≤ 0 (※)

in the direction of “⇒” with a := ∇h∗(∇h(xk−1) + rk−`) and corresponding a′ := xk to the

right side in (?) gives:

0 ≥ 〈c− xk,∇h(∇h∗(∇h(xk−1) + rk−`))−∇h(xk)〉

= 〈c− xk,∇h(xk−1) + rk−` −∇h(xk)〉 ∇h ◦ ∇h∗ = id

= 〈c− xk,∇h(x̃k−1)−∇h(xk)〉+ 〈c− xk, rk−`〉 xk−1 = x̃k−1

= 〈c− xk,∇h(x̃k−1)−∇h(xk)〉 〈c− xk, rk−`〉 = 0

From (※) again, now in direction of “⇐” with a := x̃k−1 and a′ = xk, we get the result

xk = Ph[k](x̃k−1), hence xk = x̃k.

By induction, the sequences (xk) and (x̃k) coincide.

3.5.2 SIPF convergence

In this section we prove convergence of the SIPF-sequence, that is the m-sequence for m = mG.

The proof is based on four lemmas that are of their own interest because they even hold for

m 6= mG. Throughout this section, (W (k)) denotes the m-sequence of W , where m is always

clear from the context. Further, let d(k) := W (k)1.

The first lemma guarantees L1-monotony for every m-sequence.

Lemma 3.5.2 (L1-monotony)

For all W ∈W and mean function m, the m-sequence of W implies that ‖f − d(k)‖1 is

monotonously decreasing.
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Proof. For k ≥ 0 we get with si := fi/d
(k)
i that

‖f − d(k+1)‖1 =
∑

i |fi − d
(k+1)
i |

=
∑

i |
∑

j w
(k)
ij si −

∑
j w

(k)
ij m(si, sj)|

≤
∑

i

∑
j w

(k)
ij |si −m(si, sj)|

=
∑

i

∑
j>iw

(k)
ij (|si −m(si, sj)|+ |sj −m(sj , si)|)

(?)
=

∑
i

∑
j>iw

(k)
ij |si − sj |

≤
∑

i

∑
j>iw

(k)
ij (|si − 1|+ |sj − 1|)

≤
∑

i

∑
j w

(k)
ij |si − 1|

=
∑

i |si − 1| · d(k)
i =

∑
i |fi − d

(k)
i | = ‖f − d(k)‖1 ,

where equality (?) holds true because of m(si, sj) = m(sj , si) ∈ [min(si, sj),max(si, sj)].

The second lemma bounds the “volume”
∑

ij w
(k)
ij = ‖d(k)‖1 at the k’th iteration from

above or below by ‖f‖1 if the mean function is sub-arithmetic or super-arithmetic.

Lemma 3.5.3 (Volume bounds)

For all W ∈W and mean function m, the m-sequence of W satisfies for all k ≥ 1 that

(i) ‖d(k)‖1 ≤ ‖f‖1 if m is sub-arithmetic

(ii) ‖d(k)‖1 = ‖f‖1 if m = mA

(iii) ‖d(k)‖1 ≥ ‖f‖1 if m is super-arithmetic

If m is strict in (i) or (iii), then equality holds if and only if fi/d
(k)
i = fj/d

(k)
j for all

wij 6= 0.

Proof. (i) For k ≥ 0 we get with si := fi/d
(k)
i that

‖f‖1 − ‖d(k+1)‖1 =
∑

i(
∑

j w
(k)
ij si −

∑
j w

(k)
ij m(si, sj))

=
∑

i

∑
j>iw

(k)
ij (si −m(si, sj) + sj −m(sj , si))︸ ︷︷ ︸

≥0

,

where non-negativity of each summand follows from the fact that for x, y ∈ R≥0 and sub-
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arithmetic m it holds that

x+ y − 2m(x, y) ≥ x+ y − 2 (x+ y)/2 = 0 . (?)

If m is strictly sub-arithmetic, then the inequality in (?) holds with equality if and only if

x = y. This implies that ‖f‖1 − ‖d(k+1)‖1 ≥ 0 holds with equality if and only if it si = sj for

all i, j such that w
(k)
ij 6= 0, that is wij 6= 0. (ii) follows from (i) and the fact that (?) always

holds with equality for m = mA. (iii) equals (i) with all inequalities flipped.

Every sequence in a bounded subset S ⊆ Rd has at least one limit point. The third lemma

characterizes all limit points of m-sequences.

Lemma 3.5.4 (Limit points)

Every m-sequence is bounded, so it has at least one limit point W ∗. If ‖f − d(k)‖1 → 0,

then every limit point W ∗ satisfies W ∗1 = f . If further m = mG, then W ∗ is the

(unique) biproportional fit of W to row and column marginals f , and it holds that

limk→∞W
(k) = W ∗.

Proof. Monotony (Lemma 3.5.2) implies that there exists L > 0 such that w
(k)
ij ≤ L for all

i, j, k. Hence (W (k)) is bounded and thus has at least one limit point W ∗ in compact [0, L]n×n.

We now show that if ‖f − d(k)‖1 → 0, then every limit point W ∗ of the m-sequence satisfies

W ∗1 = f . Let (W (ki)) denote any subsequence that converges to W ∗. Then

‖f −W ∗1‖1 ≤ ‖f − d(ki)‖1 + ‖d(ki) −W ∗1‖1 = ‖f − d(ki)‖1︸ ︷︷ ︸
→ 0

+ ‖(W (ki) −W ∗)1‖1︸ ︷︷ ︸
→ 0

→ 0 .

Now assume that m = mG. Then W (k) = T (k)WT (k) for some T (k) ∈ diag(Rn>0), which gives

that any limit point W ∗ is a biproportional scaling of W , that is W ∗ = limi→∞ T
(ki)WT (ki)

for a subsequence (W (ki)). Because of W ∗1 = f we get that W ∗ is unique by the uniqueness of

biproportional fits (Lemma 3.3.2). So W ∗ is the only limit point, and any bounded sequence

with a single limit point must converge to it, hence W (k) →W ∗.

The fourth lemma proves strong convergence under relative-entropy error if the volumes

bound each other.
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Lemma 3.5.5 (Strong convergence)

For any x := (x1, . . . , xn) ∈ Rn>0 and a := (a1, . . . , an) ∈ Rn>0 with
∑

i xi ≤
∑

i ai let

f(x) :=
∑

i ai log ai
xi

. Then

f(x) ≥ 0 with equality if and only if x = a. (3.15)

Further, for any sequence (x(k))k≥0 in Rn>0 with
∑

i x
(k)
i ≤

∑
i ai it holds that

lim
k→∞

f(x(k)) = 0 ⇔ lim
k→∞

x(k) = a. (3.16)

Proof. (3.15) follows from non-negativity and coincidence (see page 100) of the Bregman di-

vergence RE(a‖x) =
∑

i ai log(ai/xi)−ai+xi ≥ 0, thus
∑

i ai log(ai/xi) ≥
∑

i ai −
∑

i xi ≥ 0

with equality if and only if a = x. We now prove (3.16). “⇐” follows from continuity of

f , so it remains to show “⇒”. From
∑

i x
(k)
i ≤

∑
i ai =: a we get that x

(k)
i ∈ (0, a] for all

i ∈ {1, . . . , n} and k ≥ 0. Compactness of [0, a]n implies that all limit points of S := (x(k))

lie within [0, a]n, and that there exists at least one. Let c denote a limit point of S and

(y(k)) a subsequence that converges to c. Note that limε→0 ai log(ai/ε) =∞. Hence we get

by f(y(k))→ 0 and by continuity of f that c ∈ (0, a]n and f(c) = 0. Now (3.15) implies that

c = a is the unique limit point of S, thus x(k) → a.

Now we are ready to prove Theorem 3.4.3. The proof is inspired by ideas of Pretzel (1980).

Proof (of Theorem 3.4.3). The only missing ingredient is to prove that ‖f − d(k)‖1 → 0,

which is now our goal. By assumption there exists some A = [aij ] ∈W(f ,W ). Equation (3.10)

gives that w
(k+1)
ij = wij · u(k)

ij with u
(k)
ij =

∏k
`=0m

(
s

(`)
i , s

(`)
j

)
6= 0 and s

(`)
i := fi/d

(`)
i for all

i, j ∈ {1, . . . , n} and k ≥ 0. From wij = 0⇔ w
(k)
ij = 0⇒ aij = 0 we get that

v(k+1) :=
∑

i,j aij log(w
(k+1)
ij /wij) =

∑
i,j aij log u

(k)
ij

=
∑

i,j aij
∑k

`=0 logm
(
s

(`)
i , s

(`)
j

)
.

For k ≥ 1 this gives for m = mG that

v(k+1) − v(k) =
∑

i,j aij logm
(
s

(k)
i , s

(k)
j

)
= 1

2

∑
i,j aij(log s

(k)
i + log s

(k)
j )

= 1
2

∑
i fi log s

(k)
i + 1

2

∑
j fj log s

(k)
j

=
∑

i fi log fi/d
(k)
i .
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Since mG is sub-arithmetic, we get from Lemma 3.5.3 that
∑

i d
(k)
i ≤

∑
i fi. This allows to

apply Lemma 3.5.5 which gives that v(k+1) ≥ v(k), thus, (v(k))k≥0 is monotonously increasing.

Further v(k) is bounded from above because w
(k)
ij ≤ ‖d(k)‖1 ≤ ‖f‖1 =

∑
i,j aij implies together

with wmin := min{wij | wij > 0} that

v(k)=
∑

i,j aij log(w
(k)
ij /wij) ≤

∑
i,j aij log(‖f‖1/wmin)

= ‖f‖1 · log(‖f‖1/wmin) < ∞. (※)

It follows that limk→∞ v
(k) exists, which implies that

∑
i fi log fi/d

(k)
i = v(k+1) − v(k) → 0

and hence with Lemma 3.5.5 that d
(k)
i → fi for all i ∈ {1, . . . , n}. Thus ‖f − d(k)‖1 → 0

with monotony given by Lemma 3.5.2. This proves that W(f ,W ) 6= ∅ is sufficient to let

the mG-sequence converge to some W (∞) ∈W(f ,W ). By Lemma 3.5.4 we get that W (∞) is

the unique biproportional fit of W to f , hence the same limit as for the IPF-sequence. In

particular this implies that W (∞) is RE-optimal, thus W (∞) = PW(f ,W )(W ).

Corollary 3.5.6 (Maximality)

For all A ∈W(f ,W ) it holds that E(A) ⊆ E(PW(f ,W )(W )).

Proof. For all A ∈W(f ,W ), equation (※) implies that

aij log(w
(k)
ij /wij) + (‖f‖1 − aij) log(‖f‖1/wmin) ≥ v(k) ≥ v(1) > −∞ ,

thus aij 6= 0⇒ limk→∞w
(k)
ij 6= 0.

We denote this property of W (∞) = PW(f ,W )(W ) as having maximum possible support.

In particular we get with Lemma 3.3.4 that the biproportional fit W (∞) is direct if and only

if there exists some A ∈W(f ,W ) with E(A) = E(W ).

3.5.3 Feasibility results

This section presents details on the proof of Proposition 3.4.8. It is straightforward to derive

Proposition 3.4.8 from the following Proposition 3.4.8? by applying the latter individually to

each connected component.

Proposition 3.4.8F (Total feasibility of a connected graph)

Let G = (V,E,W ) denote a connected graph. Further let f ∈ Rn>0. Then there exists

A ∈W(f ,W ) with E(A) = E(W ) if and only if G is a weak f -expander that is strict for

all S /∈ {∅, V } if G is non-bipartite, or strict for all S /∈ {∅, V1, V2, V } if G is bipartite

with respect to V = V1 ·∪ V2.
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We prove Proposition 3.4.8? by a reduction to Theorem 7 of Behrend (2013), who formulates

a related result in terms of tri-partitions of multi-graphs. We need some additional notation for

sketching how to carry out this reduction: for i ∈ V and X ⊆ V we write i ∼ X if i is adjacent

to a vertex from X, that is if ix ∈ E for some x ∈ X. Otherwise we write i 6∼ X. For X,Y ⊆ V
let G[X,Y ] := {ij = ji ∈ E | (i, j) ∈ X×Y } denote the set of edges connecting some vertex in

X to some vertex in Y . B ⊆ V is an independent set if and only if G[B,B] = ∅. Observe that

for all X,Y ⊆ V it holds that G[X ∪ Y, Y ] = ∅ ⇔ G[X,Y ] = G[Y, Y ] = ∅. For any set B ⊆ V ,

we call any disjoint B̃ ⊆ V \B satisfying G[B̃, B] = ∅ a non-adjacent opponent of B. This

also defines their rest R(B, B̃) := V \ (B ·∪ B̃), which partitions V into V = B ·∪ B̃ ·∪R(B, B̃).

The set B∗ := {i ∈ V \ B | i 6∼ B} is the (unique) maximum non-adjacent opponent

of B. Thus, all vertices from the rest R(B,B∗) are adjacent to B. Any other non-adjacent

opponent B̃ of B satisfies that B̃ ⊂ B∗. Let δB := {i ∈ V \B | ∃j ∈ B : ij ∈ E} denote the

vertex boundary of B. It holds that δB = N(B) \B. Further δB = N(B) if and only if B

is an independent set. For any set B and its maximum non-adjacent opponent B∗ their rest

is R(B,B∗) = δB.

Proof (sketch) of Proposition 3.4.8F. We start with Theorem 7 of Behrend (2013),

restricted to a connected graph with n ≥ 2 vertices. This is equivalent to the tri-partition

statement (i) below. We then transform (i) along a sequence of equivalent statements (i) ⇔
(ii) ⇔ (iii) ⇔ (iv) ⇔ (v) to the more intuitive statement (v) in terms of f -expansion, which is

equivalent to Proposition 3.4.8?.

Let G = (V,E,W ) for W ∈ Ω be connected, and f ∈ Rn>0. Then there exists a total solution

in W(f ,W ) if and only if any of the following equivalent statements holds:

(i)
∑

i∈A fi ≥
∑

j∈B fj for all A, Ã,B with V = A ·∪ Ã ·∪ B and G[Ã ·∪ B,B] = ∅, where

equality holds if and only if additionally G[A,A ·∪ Ã] = ∅.

(ii)
∑

i∈A fi ≥
∑

j∈B fj for all A, Ã,B with V = A ·∪ Ã ·∪ B and G[Ã ·∪ B,B] = ∅, where

equality holds if and only if additionally either A = B = ∅ or (V = A ·∪ B and

G[A,A] = G[B,B] = ∅).

(iii)
∑

i∈A fi ≥
∑

j∈B fj for all independent sets B, non-adjacent opponents B̃ and A =

R(B, B̃), where equality holds if and only if additionally either A = B = ∅ or (V = A ·∪B
and G[A,A] = G[B,B] = ∅).

(iv)
∑

i∈A fi ≥
∑

j∈B fj for all independent sets B, and A = N(B), where equality holds if

and only if additionally either A = B = ∅ or (V = A ·∪B and G[A,A] = G[B,B] = ∅).

(v)
∑

i∈A fi ≥
∑

j∈B fj for all subsets B ⊆ V , and A = N(B), where equality holds if and

only if additionally either B = ∅, or B = V , or (V = A ·∪B and G[A,A] = G[B,B] = ∅).

Each intermediate step follows more or less straightforward by carefully applying all definitions.
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3.6 Applications

IPF is widely used in theory and practice across several different disciplines, so this chapter has

a potential impact on a variety of applications. Let us point out some examples: in quadratic

non-negative matrix factorization (Yang and Oja, 2012), SIPF is the canonical candidate for

determining the factorization of W ∈ W into the form W = Y XY for a positive diagonal

matrix Y and with X being further constrained to prescribed marginals f . In numerical

analysis of matrices, similar to Knight et al. (2014) for the doubly stochastic case (f = 1),

SIPF can serve as a matrix preconditioner while providing the flexibility of the case f 6= 1.

As another example, Corollary 3.5.6 corresponds to the combinatorial problem of identifying

the unique minimum set of edges in a graph that must be removed (set to weight 0) in order

to be able to achieve degree vector f on the remaining edges.

Before we highlight further applications in more detail, let us focus again on the relevance of

the feasibility studies: it is important to remember that feasibility of IPF/PSIPF/SIPF is not

guaranteed in general, but only for a specific family of graph matrices. The graph G must be

a weak f -expander, and whenever a factorized approach is used, G must additionally satisfy

the strictness assumptions in Proposition 3.4.8. This fact is overseen by Zass and Shashua

(2005), who misleadingly state their Proposition 1 (convergence to a doubly stochastic limit)

to hold for every non-negative symmetric matrix, without the necessary feasibility conditions

(a counterexample that does not converge to a doubly stochastic limit is the simple path graph

on 3 vertices). In particular the factorization stated in Proposition 2 by Zass and Shashua

(2006) does not apply in general. The authors take the tempting Lagrangian approach for

their proof, which is invalid whenever E(W (∞)) 6= E(W ). Rendering feasibility in terms of

weak f -expansion makes this requirement intuitively accessible.

3.6.1 Restricted earth mover distance

Let the vectors a,b ∈ Rd≥0 represent two distributions of some kind of mass weights on

d dimensions. Assume further that the d dimensions themselves are arranged in some distance

relation to each other as specified by a matrix M ∈ Rd×d≥0 , denoted as the ground metric.

For example, we can think of an image with d pixels arranged in r rows and c columns as of a

single point in d-dimensional space, whose dimension axes (pixel positions) can further be

related to each other by the Euclidean distance between the corresponding pixel coordinates.

The ground metric M = [mij ] specifies the costs for moving one unit of mass from one

dimension to another. For example, the cost of moving mass x ≥ 0 from dimension i to

dimension j is x ·mij . Based on this intuition, the Earth Mover Distance (EMD) between

a and b is defined as the minimum cost of a transportation plan for moving all masses (initially

distributed according to a) between the dimensions in a single step such that the result is b.

Known algorithms for computing EMD take at least time super-cubic in d. Cuturi (2013)

introduces the Sinkhorn distance by adding an entropic regularization to EMD that avoids

over-complex transportation plans in a precise sense. This solution comes at the price of having
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higher than optimal overall costs. However, this approach reduces not only the solution’s

structural complexity, but also the computational complexity: the dual of the Sinkhorn distance

can be approximated efficiently by performing IPF of the matrix K := exp(−M) toward

row marginals a and column marginals b. Since all entries in K are positive, convergence is

guaranteed for all positive vectors a, b.

In the light of the results in this chapter, we suggest to relax from positive to non-negative

IPF, that is to allow for 0-entries in K. Such entries in K correspond to ∞-entries in M , thus

to pairs of dimensions between which mass transport is impossible. For example, such M

can be chosen to restrict the mass transport being possible only between nearby dimensions.

This approach allows to yield sparse matrices K, which can be a crucial improvement: a

three-dimensional CRT-image of size 100 × 100 × 100 pixels (i.e., d = 1000000) requires

8 · d2 ≈ 8000 GB of data storage for the d× d-matrix K at double precision. This lets the

Sinkhorn distance become computationally infeasible on standard hardware. If we instead

restrict the mass transportation to only pixels in Euclidean distance at most 10, then each

dimension is connected to at most 213 · π/4 other dimensions, yielding a storage size for K of

less than 60 GB, that is 0.75%, which even fits into RAM of a standard server hardware. The

drawback of the sparsity of K is that for some choices of a and b there might be no solution,

that is Ω(a,b,K) = ∅. For such “incompatible” pairs of a and b the Sinkhorn distance

becomes infinity, indicating that there exists no suitable transportation plan. Depending on

the application, this issue can be addressed as follows:

1. in classification problems, data is often normalized before being processed further (e.g.,

images by centering, scaling, and rotation). After normalization, the mass transport can

likely be restricted to smaller radii without leading to incompatible pairs of elements, at

least if these are from the same or similar classes. This allows for meaningful (finite)

Sinkhorn distances whenever a and b belong to the same class or to similar classes,

while an infinite distance is tolerable if a and b belong to very different classes.

2. instead of a single sparse K, we might consider a sequence K1,K2, ...,KR of matrices

with decreasing sparsity (e.g., by doubling the radii of possible mass transport when

going from Ki to Ki+1). Then one may first compute the sparse Sinkhorn distance on

K1 efficiently, and only in case of an infinite distance continue with K2, K3, ..., until a

finite distance is attained. This can drastically speed up the average computation time,

while still yielding a finite Sinkhorn distance for all pairs of elements.

A similar generalization from positive to non-negative IPF applies to the work of Cuturi and

Doucet (2014) on computing the Barycenter of multiple points a1,a2, · · · ,an ∈ Rd≥0 with

respect to a regularized 2-Wasserstein distance.

3.6.2 Iterative correction of Hi-C data

Imakaev et al. (2012) introduce a method called “Iterative Correction and Eigenvector

decomposition” (ICE) for studying genomes by observing the interactions between different
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locations on it. Experimental measurements provide a histogram of pairwise interactions

between the locations (denoted as double-sided reads). Optionally, additional oriented actions

(so-called single-sided reads) are considered, which we do not consider here. The double-sided

reads define a graph G(W ) with the locations as vertices and with the empirical amounts

of pairwise interaction as edge weights. Degrees in this graph refer to the observed overall

“visibility” of that location. These empirical visibilities are non-uniform due to several biases in

the experimental setup. However, deeper domain knowledge suggests that the “true” visibilities

should be uniform. This motivates to find a degree-balanced matrix that “best approximates”

the empirical data matrix W . The authors consider the relative-entropy nearest doubly

stochastic matrix W (∞) := PW(1,W )(W ) as the most interesting approximation. We have

shown in this chapter that it can be approximated by IPF or any of its symmetrized variants.

However, the authors suggest another iterative algorithm, denoted as Iterative Correction (IC).

They do not provide a convergence proof, and indeed the convergence behavior is different: IC

may diverge for unconnected graphs in cases where IPF and its variants still converge. And

even for connected graphs, IC can run into serious numerical problems, producing extremely

large numbers (outside the range of double precision) for representing intermediate steps of the

iteration. So we suggest to replace IC by SIPF whenever one-sided reads are skipped. SIPF

does not only fix all above mentioned issues, but further enables to deal with non-uniform

visibilities f 6= 1. This allows for related applications where the uniform visibility assumption

does not hold, or where some of the biases are known and can be corrected separately, so

we only need to correct for the remaining (non-uniform) bias. Another improvement can

be achieved for the comparison of two different genome matrices W1 and W2. The authors

suggest to 1-balance W1 and W2 individually before comparing them. SIPF alternatively

allows to directly compare the d2-fitted W1 to W2 and vice versa.

The ICE method ends with an analysis of the largest eigenvectors of the “corrected” graph

matrix W (∞). For doubly stochastic W (∞) this is equal to classical spectral analysis, that

is to explore structural properties of W (∞) by the smallest eigenvectors of its normalized

Laplacian matrix. Hence, in this case the ICE method can compactly be summarized as

classical spectral analysis of the normalized Laplacian of the “1-fitted” graph. This motivates

the following application, which generalizes this approach to f 6= 1.

3.6.3 Inference using the f-fitted Laplacian

Recall that the normalized graph Laplacian L(W ) of a matrixW ∈W has the same eigenvectors

(with eigenvalue λi mapped to 1−λi) as the matrix D−1/2WD−1/2 = W (1), the first element of

the SIPF-sequence for f = 1. This allows for a novel interpretation of the type of normalization

that is considered by L(W ):

“ Eigenvalues and eigenvectors of L(W ) refer to the first step of

SIPF-scaling W toward the uniform degree vector 1. ”
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Thus, L(W ) captures properties that show up when transforming W into a matrix of approxi-

mately degree vector 1, precisely of degree vector d(1) := W (1)1 ≈ 1. However, in general it

holds that d(1) 6= 1 and that d(1) is still correlated to the original degree vector d. The previ-

ous chapter presented an approach to correct for the residual errors d(1) − 1: by subsequent

1-selflooping of W (1) we get the 1-adjusted graph matrix W 1, which achieves degree vector 1

exactly. This also led to the definition of the f -adjusted Laplacian as Lf (W ) := L(W f ). In

this chapter, we suggest to repeatedly iterate 1-scaling instead, eventually converging to a

well-understood limit matrix W (∞) of degree vector 1. Complementary to the definition of the

f -adjusted Laplacian, this suggests to define the f-fitted Laplacian by L̂f (W ) := L(PW(f ,W )),

where SIPF is the natural candidate to approximate PW(f ,W ) = W (∞).

Whenever W (1) ≈ W (∞), the geometric interpretation of W f for geometric graphs as a

density shift also applies to W (∞). In this case the f -adjusted Laplacian and the f -fitted

Laplacian capture similar properties. Whenever W (1) and W (∞) differ substantially, Lf (W )

and L̂f (W ) focus on different aspects. The spectral analysis of the f -fitted Laplacian focuses

on inferring about W after “correcting” its degrees to f by replacing W with the relative-

entropy nearest re-weighting that provides degree vector f . For ‖f‖1 = 1 this allows for a

statistical intuition: the entries of W (∞) can be interpreted as joint probabilities that achieve

the marginal probability distribution f on the support of W (i.e., restricted to non-zero entries

of W ). Depending on the application, this statistical interpretation of the f -fitted Laplacian

can be better suited for a problem than the geometric intuition of the f -adjusted Laplacian.

In particular, the above presented ICE method refers to this statistical interpretation and

provides a prominent application of the spectral analysis of the 1-fitted Laplacian.

3.7 Chapter summary

This chapter is complementary to the previous chapter: both chapters study a method to

transform a symmetric matrix W of unspecified degree vector into another symmetric matrix

of a prescribed degree vector f . The solution studied in the previous chapter is based on

concatenating a single execution of f -scaling followed by f -selflooping. The solution in this

chapter is based on the repeated application of f -scaling until convergence. I relate this

iteration to known iterative projection methods from the literature, in particular to IPF.

I contribute to this field by providing a novel algorithmic argument for the fact that IPF

converges to the relative-entropy optimum. Precisely, I show that local affinity is already

sufficient for the limit to be the Bregman projection of the initial element. Further, I address

the issue that IPF does not fit well to symmetric matrices by introducing two symmetric

alternatives: PSIPF is a straightforward symmetrization of IPF, and SIPF is equal to iterated

f -scaling. Both variants allow for a factorized approach that is preferable over the recursive

approach whenever applicable. I give convergence proofs for both approaches. Further, I
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study the feasibility problem of whether the limit in the symmetric setting is indeed a feasible

solution or not. I contribute a novel characterization of all feasible scenarios in terms of

intuitive graph expansion properties, precisely by introducing the concept of weak f -expansion.

This type of expansion is not yet studied in depth in graph theory, although it provides an

interesting complexity. The feasibility study particularly separates between “total feasibility”

and “non-total feasibility”, which is shown to determine precisely the applicability of the

factorized algorithm variant.

Finally, practical relevance is emphasized by connecting the contributions of this chapter to

various applications.
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Spectral correlation clustering

4.1 Chapter introduction

This chapter is motivated by an application from practice that was driven by me from its

theoretical analysis through to a full-fledged software implementation. The term Massively

Multiplayer Online Role Playing Game (MMORPG) refers to a computer game that

allows thousands of people across the Internet to interact with each other in a virtual world.

Every human user controls a virtual character that is denoted as a player in the sequel. A

big aspect of most MMORPGs is to allow players to fight against each other in a player

versus player combat (PVP combat). Most long-term-users ally their players with others

in large groups such as guilds, which may consist of hundreds of players. Large PVP combats

between two or more guilds are often planned events that require their participants to arrange

to be online at the same time around the world. These users are often enthusiasts that enjoy

to dive deep into the virtual world, while investing a lot of time and money, for example in

order to buy virtual goods. Games are designed to provide an addictive experience for its

faithful users.

The impression of virtual reality is intensified by providing the feeling of an open world:

everybody is free to do what she wants, for example talk to each other, share goods, etc. In

particular, everybody can attack everybody else at any time. This “freedom” comes at a

price. MMORPGs often face a problem known as “Zerging”. A Zerg is a larger group of

players who simply search for much smaller groups in order to kill and plunder them. Often
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the Zerg’s users are not interested in celebrating the virtual reality, and often they even

intentionally spoil the game experience of other players (this behavior is denoted as griefing).

While this kind of player behavior is generally permitted, it is considered as being unfair, and

repeated victims of Zergs will loose their joy about the game. Game developers are serious

about balancing the game experience between competition and fun, so they are particularly

interested in strategies to discourage people from Zerging.

Albion Online1 is an MMORPG developed at Sandbox Interactive GmbH in Berlin,

Germany. This company came up with a novel idea that is so far not implemented in any

MMORPG: detect and penalize Zergs automatically by a suitable algorithm. Once a Zerg is

identified, the game physics can then assign any type of debuff (temporary disadvantage)

to these players in order to antagonize Zerging. An appropriate algorithm has the following

input and output:

• input: potentially the complete world information, particularly a record of all inter-

actions between all players. There are three basic types of interactions: adversarial

activities (damage points by weapons or magic attacks), friendly activities (positive

effects such as health points by magic spells, or staying close to each other for a long

time without fighting), and neutral activities. Adversarial and friendly activities can be

quantified as dissimilarity values and similarity values, respectively.

• output: There are two outputs. The first output is, separately for each PVP combat in

the virtual world, a meaningful assignment of all participating players to an unspecified

number of teams (= clusters). The second output is derived from this clustering: each

player has attached a time-smoothed debuff score from the interval [0, 1], which gets

the larger the stronger the team of this player is.

The output of this algorithm is then taken to identify and penalize Zergs. In the prototype,

the game physics simply applies debuffs that are directly determined by the players’ debuff

scores, hence, proportional to their team strengths. By this, all teams are encouraged to fight

against teams of a comparable overall strength. A final version may focus on an additional

classification of whether a team forms a Zerg or not, for example by taking the team strengths

in relation to each other into account or by analyzing behavioral patterns of the players in a

team.

As soon as any debuff strategy is in action, users will try to avoid getting a debuff. That is,

they want to hide their true membership in a clearly superior team. Many examples from

practice show that there are always some users that act out an enormous creativity in finding

ways to “cheat” computer algorithms. For example, in virtual trading systems there might be

complex interactions of buying, producing and selling goods that finally lead to a universal

recipe of generating virtual money. Similar problems arise in complex customizable equipment

systems, where some specific combinations might turn out to provide overreaching advantages.

1www.albiononline.com
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Thus, the clustering algorithm must be as robust as possible against the most creative cheaters.

Because of this, one may also denote the overall goal as “clustering against adversaries”.

There are basically two strategies for a player to avoid being recognized as an actor of a

superior team A:

• Friendly fire. Attack some team colleague from team A in order to hinder the algorithm

to detect the affiliation to them. If the cheater is a successful fake-enemy of team A

then team A appears weaker than it is, receiving a decreased debuff.

• Unfriendly help. Help adversaries from another team B in order to hide the true

opposite affiliation. If the cheater is a successful fake-ally of team B, then team B

appears stronger than it is, receiving an increased debuff.

The clustering strategy has to be aware of these ways of cheating. However, note that players

can always cheat so strongly, for example by vehement friendly fire, that it is impossible for

any algorithm to detect the true team affiliation (where “true” refers to the secretly shared

knowledge of the users that form a team). Hence, it is impossible to detect the true teams in

general. Fortunately, both cheating strategies require a behavior that increasingly weakens

the true team. This has the following important consequence: we do not have to focus on the

(impossible) goal of detecting the true team affiliation. It is sufficient to focus on detecting

effective teams. The difference is that we do not care about whether a player truly belongs to

team A, we only care about whether the player effectively acts for or against team A. If a

player contributes in total significantly more damage than heal to its true team A, then it is

alright to misclassify this player to another team.

“ Strong cheaters are debuff enough for their true team. ”
So the output team assignment is expected to identify the effective teams, separately for each

combat. The corresponding clustering technique has to respect the following considerations:

• the number of effective teams in a PVP combat is not known in advance, in particular it

is not always 2. However, we may assume that it is a rather small number, say, up to 5.

• since our goal is to detect teams especially in the case of a strong team that attacks a

weak team, the clustering algorithm should not assume that the clusters are roughly

balanced

• the clustering strategy should support adding must-have-edges because additional world

information can allow to definitely assign some players explicitly to the same team

• the world’s clustering will be repeated over and over again. Each repetition should finish

its computation within just a few seconds in order to react fast enough to Zergs.
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Sandbox Interactive GmbH entrusted me with developing a prototype of the “Anti-Zerging

Clustering Software” in order to solve the above described goals. This challenge stimulated

my research toward developing a novel spectral approach to correlation clustering. My

approach consists of a theoretical contribution (Section 4.4.1) that yields a novel algorithm

(Section 4.4.2). Finally this approach is put into practice, which requires to solve additional

practical integration issues and an extensive preprocessing, as presented in Section 4.6.

4.2 Informal summary of the main contributions

Our goal is to cluster the players of a PVP combat into an unspecified number of effective

teams. This goal is formalized in the subsequent formal setup as an instance of correlation

clustering. The canonical objective in correlation clustering is to minimize the multicut of

a graph that has both positive (similarity) edge weights and negative (dissimilarity) edge

weights. The signed Laplacian L, as introduced in Section 4.3.6, captures interesting properties

of real-weighted graphs. L = D −W is defined in almost the same way as the Laplacian

L = D −W with the only difference that its degree matrix D is defined by summing over

the absolute values of the edge weights. For positive-weighted graphs both matrices L = L

coincide. My first contribution in this chapter is to show that the smallest eigenvector of L,

which is the “trivial” eigenvector in case of pure similarity-based clustering, becomes highly

interesting as soon as we mix positive and negative edge weights. Precisely, I prove that

the smallest eigenvector solves a relaxation of the correlation clustering problem for at most

two classes, denoted as OptMinCut This is in contrast to existing literature, which considers

the smallest eigenvector as the relaxation of a signed variant of RatioCut. I argue that my

interpretation is more appropriate. These findings are the first main contribution of this

chapter (Section 4.4.1).

The second main contribution (Section 4.4.2) applies these insights by introducing a novel

spectral approach to correlation clustering. The suggested algorithm is recursive spectral

clustering with respect to the smallest eigenvector of the signed Laplacian. It shows some

interesting properties that make it very different from recursive spectral clustering of similarity-

graphs. The later experiments study the performance of this approach in comparison to

existing spectral and non-spectral approaches to correlation clustering. It turns out that my

approach can outperform or at least measure up to all other alternatives.
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4.3 Formal setup

This section introduces all the concepts and formalisms that are required in order to understand

the main contributions.

4.3.1 Correlation measures

Many algorithms from machine learning require access to either a similarity measure or a

dissimilarity measure. Applications often provide one of these measures, so this requirement fits

well to practice. However, some applications provide a combination of both measures, denoted

as a correlation measure. For any set V of objects, a correlation measure γ : V × V → R
quantifies the relation of two objects in terms of a real value c that is interpreted as follows:

• (c� 0) high positive values indicate high confidence about a strong similarity

• (c� 0) low negative values indicate high confidence about a strong dissimilarity

• (c ≈ 0) the closer the absolute value is to zero, the lower is the confidence on a significant

similarity (c > 0) or dissimilarity (c < 0)

• (c = 0, equivalent to a missing edge) value exactly zero indicates zero-confidence on any

attitude, that is effectively the same as having no explicit information given

• (c vs. −c) positive/negative values are scaled such that a positive correlation c > 0 is of

roughly the same relevance as a negative correlation −c

Summarized, a correlation measure is the combination of a similarity measure (positive values)

and a dissimilarity measure (negative values) together with an intermediate area of high

uncertainty (values around zero). Clustering with respect to a correlation measure is denoted

as correlation clustering (CC).

The various types of correlation coefficients, such as Pearson’s, Spearman’s and Kendall’s

correlation coefficients, fit to the above informal description on the interval [−1, 1]. However, a

correlation measure is not required to base on a mathematical precise definition. For example,

pairs of books may be labeled by humans either as being similar (value 1) or dissimilar

(value −1), which provides an informally defined correlation measure. As another example,

consider an Internet platform like reddit on which users frequently up-vote or down-vote

individual items (posts or comments) of others. A simple measure of correlation between

two users i and j can then be defined by cij =
∑

k∈Vij ak, where Vij is the set of all items for

which both i and j gave any vote, and ak = 1 if their votes agree, and ak = −1 if they gave

opposite votes.

4.3.2 Cluster Matrices

Any partition of V = {1, . . . , n} into k non-empty disjoint subsets C1 ·∪ . . . ·∪ Ck is denoted

as a k-clustering. Each k-clustering can be represented by a vector y ∈ {1, . . . , k}n that
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has its i’th entry equal to ` ∈ {1, . . . , k} if and only if i ∈ C`. An alternative representation

is by a matrix Y ∈ {0, 1}n×n that has entry Yij = 1 if and only if i and j belong to the

same cluster. Such a matrix is denoted as a cluster-matrix. Y = Y T is symmetric and has

all main diagonal entries equal to 1. We denote by Ck the set of all cluster-matrices that

indicate any k-clustering. For example, the partition {1, 3} ∪ {2, 4, 5} can be represented by

the following cluster matrix Y ∈ C2:

Y =


1 0 1 0 0

0 1 0 1 1

1 0 1 0 0

0 1 0 1 1

0 1 0 1 1

 =


1 0 1 0 0

0 0 0 0 0

1 0 1 0 0

0 0 0 0 0

0 0 0 0 0


︸ ︷︷ ︸

=1C1
1T
C1

+


0 0 0 0 0

0 1 0 1 1

0 0 0 0 0

0 1 0 1 1

0 1 0 1 1


︸ ︷︷ ︸

=1C2
1T
C2

.

Note that the i’th row/column equals the characteristic vector 1Cj = ([i ∈ Cj ]10) of the

corresponding cluster, which implies the representation

Y =

k∑
i=1

1Ci1
T
Ci

.

The following proposition lists some basic properties of cluster matrices.

Proposition 4.3.1 (Properties of cluster matrices)

For a cluster matrix Y ∈ Ck all the following statements hold true:

(i) there exists a permutation P such that PY P−1 has block-diagonal form of k blocks

(ii) Y has rank k

(iii) Y is positive semi-definite

(iv) the nuclear norm ‖Y ‖∞, that is the sum of all singular values, equals n

(v) the function ϕ : {−1, 1}n → C1 ∪ C2, f 7→ (ffT + 11T )/2 is well-defined and

surjective. Further, it holds with f = (fi) and Y := ϕ(f) that

a) fi = fj ⇔ Yij = 1, and equivalently fi 6= fj ⇔ Yij = 0

b) (1− Yij) = (fi − fj)2/4 and Yij = (fi + fj)
2/4 for all i, j

c) every Y ∈ C1 ∪ C2 has exactly two pre-images in {−1, 1}n

d) Y ∈ C1 ⇔ f ∈ {−1,1} ⇔ fi = fj for all i, j

e) for Y ∈ C2 the two pre-images are given by 1C1 − 1C2 and 1C2 − 1C1
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Proof. (i) and (ii) are straightforward to see. For (iii), note that the spectrum of a block-

diagonal matrix is the union of the spectra of all blocks. The block that corresponds to

cluster Ci equals 11T ∈ R|Ci|×|Ci|, which has |Ci| as a simple eigenvalue, plus the eigenvalue 0

of algebraic multiplicity |Ci| − 1. For (iv), note that for a positive semi-definite matrix its

singular values and eigenvalues coincide. Thus, we get from the proof of (iii), or simply

from the trace of Y , that they sum up to n. For (v), observe that for all f ∈ {−1, 1}n

and Y := (ffT + 11T )/2 it holds that Yij = (fifj + 1)/2, thus, fi = fj ⇒ Yij = 1 and

fi 6= fj ⇒ Yij = 0. This proves a) and the fact that ϕ is well-defined. b) follows from a).

c) follows from the fact that ϕ(f) = ϕ(−f) and that for f ′ /∈ {−f , f} there exists some i, j

such that fifj 6= f ′if
′
j , thus ϕ(f) 6= ϕ(f ′). d) follows from a) and c). For e), observe that

f := 1C1 − 1C2 satisfies ((1C1 − 1C2)(1C1 − 1C2)T + 11T )/2 = (1C11
T
C1
− 1C21

T
C1
− 1C11

T
C2

+

1C21
T
C2

+ 11T )/2 = (2 · 1C11
T
C1

+ 2 · 1C21
T
C2

)/2 =
∑

k=1,2 1Ck
1TCk

= Y , where we use that

11T = 1C11
T
C1

+ 1C21
T
C1

+ 1C11
T
C2

+ 1C21
T
C2

. Further, −(1C1 − 1C2) = 1C2 − 1C1 .

4.3.3 Complexity of the minimum cut problem

For graphs with non-negative weights, the minimum k-cut for fixed k can be computed in

polynomial time O(|V |k2), as shown by Goldschmidt and Hochbaum (1994). In contrast to

that, the maximum cut problem is NP-hard for every k ≥ 2. Even worse, maximum cuts

are even hard to approximate (“APX-hard”). Trevisan et al. (2000) show that there exists

no polynomial time approximation algorithm that achieves an approximation ratio better

than 16/17 ≈ 0.941. Goemans and Williamson (1995) give a randomized polynomial time

approximation algorithm (by a semi-definite program plus randomized rounding) that achieves

the approximation ratio ≈ 0.879. The remaining gap is subject of active research, where it is

believed that the latter bound is already sharp.

However, all these results do only consider graphs of non-negative weights. If we allow for

negative edges, the complexity of the minimum cut also increases to be NP-hard, which can

be seen as follows: any algorithm that can find the minimum k-cut in a real-weighted graph is

particularly able to solve the maximum k-cut on a non-negative graph, simply by determining

the minimum k-cut after negating all edge weights. Indeed, for real-weighted graphs, the

minimum cut problem and the maximum cut problem coincide. Hence, the minimum k-cut

problem on real-weighted graphs is NP-hard for every k ≥ 2, and even hard to approximate.

4.3.4 Correlation clustering

This section introduces correlation clustering, including a formal definition and related work.

Overview on correlation clustering

The problem of correlation clustering was introduced by Bansal et al. (2004). They study

complete graphs with every edge weighted by either +1 or −1. Their goal is to find a

k-clustering that maximizes the number of +1 edges within clusters plus the number of −1
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edges between different clusters. In contrast to most other clustering problems, k is not given

as an input, but is determined by the algorithm. In particular, the output of the trivial

clustering k = 1 is possible. This makes correlation clustering substantially different from other

clustering problems that force k > 1. Bansal et al. (2004) show that correlation clustering of

the complete {−1,+1}-weighted graph is NP-hard. They present an approximation algorithm

that is based on combinatorial arguments and that provides a constant-factor approximation

of the optimum.

A perfect correlation clustering is a partitioning of V into clusters for which every

positive edge is an intra-edge and every negative edge is an inter-edge. Such a perfect clustering

exists if and only if every cycle traverses only an even number of negative edges. This can easily

be checked algorithmically by a Depth-First-Search, which can also be modified to construct

the corresponding perfect clustering (if existing). For that reason, the only interesting case for

correlation clustering is that the graph contains erroneous edges (+1 edges between different

clusters or −1 edges within a cluster), for example triangles of edge weights (+1,+1,−1).

Charikar et al. (2003) provide an O(log n) approximation algorithm that can deal with

general {−1,+1}-weighted graphs. For the same type of graphs, Berg and Jarvisalo (2013)

provide an exact algorithm that determines the optimal solution (with exponential worst-

case running time) by a reduction to MaxSAT. An O(log n) approximation algorithm for

general real-weighted graphs is given by (Demaine and Immorlica, 2003), and independently

by (Emanuel and Fiat, 2003), later published by all four authors together in Demaine

et al. (2006). Similar to Charikar et al. (2003), all their solutions base on a formulation of

correlation clustering as a linear program, followed by the rounding technique of “region

growing” as introduced by Leighton and Rao (1999) for multicommodity max-flow min-cut

problems. However, their linear programs base on O(n3) inequality constraints, which makes

this approach infeasible for large-scale applications. Charikar and Wirth (2004) reformulate

correlation clustering as a quadratic program that is maximized by semi-definite programming

plus randomized rounding, similar to the approach by Goemans and Williamson (1995) for

the maximum cut for non-negative weights. They achieve an O(log n) approximation to

the optimum cut weight. However, they achieve this bound by a clustering that consists of

either 2 or n clusters, which is often not sufficient for applications. The above approaches do

not scale well beyond some hundreds of vertices. Their focus lies on proving best-possible

approximation guarantees. In contrast to that, Bagon and Galun (2011) introduce three

heuristics without proving any bounds: Expand, Swap and AICM. The first two heuristics

are greedy iterative strategies that exploit a concept known as “roof duality” (Rother et al.,

2007) to solve binary subproblems in a way that allows partial access to their global optimum.

The third heuristic is another greedy iterative strategy, based on ICM (iterated conditional

modes) by Besag (1986). In contrast to the original ICM method, AICM varies k over the

iterations in order to adapt to the unknown number of clusters. Expand and Swap do not

scale well, but AICM can be applied to graphs with hundreds of thousands of vertices on

standard computer hardware.
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There further exist spectral approaches to correlation clustering, presented in Section 4.3.7.

The CC functional

In its most general form, correlation clustering is defined as the following non-convex opti-

mization problem for any given matrix W ∈ Rn×n:

arg max
k=1,...,n
Y ∈Ck

∑
i,j

wijYij . (4.1)

Without loss of generality, we can assume that W is symmetric because by symmetry of Y the

edges ij and ji are either both inter-cluster edges or both intra-cluster edges, so the objective

value for any W is the same as for (W + W T )/2. We can further assume, without loss of

generality, that the main diagonal of W is zero, since Yii = 1 for all i implies that
∑

iwiiYii is

just a constant additive term to the objective function. The objective function
∑

i,j wijYij
is denoted as the CC functional. It sums over all intra-cluster edges. Since

∑
i,j wij is

constant, we get for all constants a > 0, b < 0, and A,B ∈ Rn×n that

arg max
k=1,...,n
Y ∈Ck

∑
i,j

wijYij = arg max
k=1,...,n
Y ∈Ck

∑
i,j

wij(aYij +Aij) = arg min
k=1,...,n
Y ∈Ck

∑
i,j

wij(bYij +Bij)

In particular, we get for b = −1 and B = 11T that maximizing the CC functional is equivalent

to finding the minimum real-weighted multi-cut:

arg min
k=1,...,n
Y ∈Ck

∑
i,j

wij(1− Yij) . (4.2)

Similar, for Z := 2Y − 11T and C±k := 2 Ck − 11T we get that maximizing the CC functional

is equivalent to

arg max
k=1,...,n

Z∈C±
k

∑
i,j

wijZij , (4.3)

that is maximizing the total weight of intra-edges minus the total weight of inter-edges. This

matches the original formulation by Bansal et al. (2004).

Some publications study the matrix W by its AR-decomposition, which is defined as

follows.
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Definition 4.3.2 (AR-decomposition)

For W ∈ Rm×n, let A ∈ Rm×n≥0 be defined by the positive entries in W , and R ∈ Rm×n≥0

by the absolute values of the negative entries in W . Then

W = A−R

is the unique decomposition of W into the difference of two non-negative matrices

A,R ∈ Rm×n≥0 such that for every ij it holds that at most one of aij and rij is non-

zero. We refer to this decomposition as the AR-decomposition. A is denoted as the

attraction matrix, and R as the rejection matrix. Further, we set DA := diag(A1)

and DR := diag(R1).

Constrained correlation clustering

Some applications provide additional information on the correlations between objects. For

example, a domain expert may identify some pairs of vertices that definitely not belong to the

same class, or in semi-supervised learning some true labels may be known. Such additional

information can be encoded as “must-links” and “cannot-links”. A must-link (ML) refers

to a pair of vertices that is forced to stay in the same cluster. A cannot-link (CL) forces

two vertices to stay in different clusters. This line of research is denoted as constrained

clustering, and is typically studied in similarity-based clustering. However, the same

constraints can be applied on top of correlation clustering.

The literature is ambiguous on how to interpret “to force” the vertices to stay in the same

or different clusters. This term refers either to hard constraints or soft constraints:

• One can think of hard constraints as of adding special edges of weight ∞ and −∞,

respectively, to the graph. Hard constraints are required to be conflict-free because

otherwise no feasible solution exists. Hard ML constraints are transitive: all vertices

that are connected by a sequence of must-links will definitely end in the same cluster.

Hard CL constraints are not transitive, instead, any sequence of CL constraints forces

its vertices to hop conflict-free between the clusters. Note that not all algorithms allow

to implement hard constraints directly by adding ±∞ edges. For example, spectral

clustering cannot consider hard constraints in this way because there is no generalization

of eigenvectors to deal with ±∞ entries. However, there exist spectral approaches to

constrained clustering, see Wang et al. (2014) for an overview.

• Soft constraints are allowed to be violated if absolutely necessary. One way to think

about soft constraints is to fix an arbitrarily large constant C >
∑

i,j |wij | and then

connect any two vertices of a must-link by an edge of weight C + wij , and any two

vertices of a cannot-link by an edge of weight −C + wij . The result minimizes the

number of non-satisfied constraints as a primary goal, since reducing the objective
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Figure 4.3.1: Edge weight distribution for a graph sampled from the Gaussian correlation graph
model GCG( (100, 100), 1, µ, 1, −µ). Weights of intra-edges are sampled from N (µ, 1),
and weights of inter-edges from N (−µ, 1). (left) histograms for the case of µ = 2,
which represents a correlation measure that separates classes strongly. In particular,
most inter-edges have positive weights and most inter-edges negative weights, since the
probability perr of an error (having a misguiding sign) is only perr = 2.3%. (center)
similar for µ = 1. Now perr = 15.9%. (right) now µ = 0.5. This correlation measure
separates only weakly, since perr = 30.9%. For µ = 0 we would reach perr = 50%,
hence, the weights would not contain any class-separating information.

function by C is more important than reducing it by any combination of cut edges.

Constrained clustering with soft constraints shows parallels to correlation clustering:

every instance of correlation clustering on {−1, 1}-weighted graphs can equivalently be

interpreted as constrained clustering with +1/−1 edges that represent soft ML/CL con-

straints on an originally empty graph. Further, some publications (Cucuringu et al., 2016)

consider soft constraints just as an additional measure of weighted similarity/dissimilarity,

which effectively makes their setting equivalent to correlation clustering.

4.3.5 Gaussian correlation graph model

In order to study properties of correlation clustering algorithms, we need a graph model that

generates the graph structure plus a correlation measure on its edges. Such a graph model

should provide some parameters that allow for interesting and intuitive variations. Here, I

introduce the Gaussian Correlation Graph model,

GCG( (n1, . . . , nk), p+, µ+, p−, µ−) ,

which takes four parameters in addition to the vector of k cluster sizes (n1, . . . , nk): two

probabilities p+, p− ∈ [0, 1] and two Gaussian means µ+, µ− ∈ R. The edge generation

strategy of GCG equals that of the planted partition model, but it additionally assigns

Gaussian distributed edge weights. A random graph is created according to this model by

sampling each intra-cluster edge independently with probability p+, plus assigning an edge

weight from the normal distribution N (µ+, 1) with mean µ+ and standard deviation 1. The

parameters p− and µ− apply analogously to inter-edges.

For p+ = p− and µ+ = µ−, the graph does not contain any meaningful correlation

information. No clusters can be detected by any strategy. If p+ > p− and µ+ = µ−, then
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some clustering algorithms may start to work, although the edge weights still contain no

information. The intended parameter setting is µ+ > 0 and µ− < 0. The larger the absolute

values of µ+ and µ−, the stronger is the separation, which helps in detecting clusters. The

stronger the separation is, the more it even allows for an arbitrary relation between p+ and

p−, that is even the case p+ < p− is allowed in this graph model. Figure 4.3.1 visualizes the

separation quality by showing histograms of the edge weights of intra-edges and inter-edges.

The parameters of the GCG model allow for example to study a clustering algorithm in the

following scenarios:

• minimal separation. p := p+ = p− and µ := µ+ = −µ− > 0. In this setting we let

µ→ 0 in order to see how well (for different fixed choices of p) the clustering algorithm

is able to find the correct clusters if the separation strength decreases, that is if all edge

weights become noisier.

• dis-/similarity information boost. For any p+, p− and µ := µ+ = −µ− > 0.

This setting studies how the clustering algorithm considers similarity information and

dissimilarity information. In particular, a correlation clustering algorithm should benefit

from increasing p− for any fixed p+.

4.3.6 Signed Laplacian matrices

This section presents a generalization of graph Laplacians from positive edge weights to any

real-valued edge weights. The unoriented incidence matrix U ∈ {0, 1}|V |×|E| of a graph

G = (V,E,W ) has its entry uie set to 1 if and only if e is a non-selfloop edge that is incident

to vertex i. Each column in U has either none or two 1-entries. The oriented incidence

matrix O ∈ {−1, 0, 1}|V |×|E| equals U but flips the sign of any one of the two non-zero entries

in a column. The unnormalized Laplacian of a positive-weighted graph can be represented

as L = O ·M ·OT , where M ∈ diag(R|E|>0) is the diagonal matrix that lists the weights of all

edges along its diagonal. A straightforward approach to generalize L to negative edge weights

is to simply allow for negative edge weights along M . This approach preserves the original

representation as L = D −W for D being defined by the row sums of the real symmetric

matrix W . However, such L is no longer positive semi-definite in general, and it is not clear

how its applicability to minimizing balanced cuts is affected.

Another approach to generalizing Laplacians to real symmetric matrices W ∈ Rn×n is

already studied in the field of graph theory on signed graphs by Zaslavsky (1982). A

signed graph is an ordinary graph that labels every edge to be of one the following two types:

positive or negative. This edge label is independent of any edge weights, but one can interpret

every real-weighted graph as a signed graph with positive edge weights, where the edge label

represents the sign of the original edge weight. For signed graphs, an individual type of

an incidence matrix is used, denoted as the signed incidence matrix. It combines the

oriented incidence matrix with the unoriented incidence matrix: for every positive edge, the

corresponding column equals that of the oriented incidence matrix, and for every negative
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edge, the column equals that of the unoriented incidence matrix. The signed incidence matrix

implies the following definition of the signed Laplacian L.

Definition 4.3.3 (Signed Laplacian)

For a real-weighted undirected graph G = (V,E,W ), the signed Laplacian L is defined

as

L := S ·M · ST ,

where S is the signed incidence matrix, and M the corresponding diagonal matrix that

lists all absolute edge weights along its main diagonal. L has the following entry-wise

representation:

L :=

{∑
k 6=i |wik| i = j

−wij i 6= j .

Note that L is “just” a diagonal modification of the matrix D −W . However, it turns out

that L has several interesting properties: it is easy to see by Gershgorin’s circle theorem, or

by representing L as a Gramian matrix L = (S
√
M)(S

√
M)T , that L is positive semi-definite.

Moreover, Kunegis et al. (2010) prove that L is even positive definite in all interesting cases:

L has a strictly positive smallest eigenvalue if and only if it is “unbalanced”, which is here

equivalent to the case that no perfect correlation clustering exists (this gives together with the

results by Germina et al. (2011) that the multiplicity of the eigenvalue 0 equals the number of

connected components for which a perfect clustering exists). The authors study extensions

of balanced cuts to negative weights as well as normalized variants of L. In particular, they

generalize some graph kernels to the real-weighted case, including a signed variant of the

resistance distance (Kunegis et al., 2008).

Definition 4.3.3 implies the following representation of L as

L = D −W − 2 ·Rdiag ,

where D := diag(d1, . . . , dn) with di :=
∑

k |wik|, and Rdiag := diag(r11, . . . , rnn) with

W = A−R the AR-decomposition. Note that L is not affected by any selfloops at all,

only its representation in terms of the adjacency matrix. If we restrict any existing selfloops

to have positive weights, then we get the simple representation as

L = D −W ,

and further the interesting fact that

L = L(A) + Lsignless(R) .

Since I could not find any reference that explicitly states this connection to the unnormalized
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Laplacian and the signless Laplacian, I emphasize this relation again (for graphs with no

negative-weighted selfloops):

“ The signed Laplacian is the sum of the unnormalized Laplacian

of the attraction plus the signless Laplacian of the rejection. ”
Fully analogous to the non-negative case, normalized variants of L can be defined.

Definition 4.3.4 (Signed symmetric normalized Laplacian)

For symmetric W ∈ Rn×n with non-negative main diagonal and no zero-row, the signed

normalized Laplacian L is defined as

L := D
−1/2 · L ·D−1/2

= I −D−1/2
WD

−1/2
.

It has the following entry-wise representation:

L :=

1− wii

di
i = j

−wij√
di
√
dj

i 6= j .

Definition 4.3.5 (Signed random walk normalized Laplacian)

For symmetric W ∈ Rn×n with non-negative main diagonal and no zero-row, let

P := D
−1
W denote the signed random walk transition matrix, and

Lrw := D
−1/2 · L ·D1/2

= I − P

the signed random walk normalized Laplacian.

The reason to exclude zero-rows in Definition 4.3.4 and Definition 4.3.5 is just to avoid

division by zero due to di = 0. However, one can easily generalize to this case by considering

the pseudoinverse (D
+

)1/2 instead of D
−1/2

.

In contrast to the unnormalized Laplacian, the normalized variants are affected by selfloops.

Allowing for positive selfloops is possible without any changes to the notation, and already

considered in both definitions. However, negative selfloops are problematic: in order to achieve

a meaningful Rayleigh quotient characterization of the normalized Laplacians, we should

multiply by (D− 2 ·Rdiag)−1/2 rather than by D
−1/2

, but this raises the question how to deal

with non-positive entries in D − 2 ·Rdiag. For that reason, the definitions of the normalized

Laplacians are restricted to positive-weighted selfloops.
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Finally, note that for all positive-weighted graphs, the signed Laplacian L coincides with

the standard unnormalized Laplacian L, and similarly L = L and Lrw = Lrw. That is, the

signed Laplacian (and its variants) can be interpreted as a straightforward generalization

of the standard unnormalized Laplacian (and its variants) from positive-weighted graphs to

real-weighted graphs.

4.3.7 Spectral approaches to correlation clustering

This section gives an overview on existing spectral approaches to correlation clustering and

finally motivates my alternative approach.

The workaround approach: transform dissimilarities into similarities

Like many other clustering algorithms, spectral clustering is based on a similarity measure.

Now consider an application that provides a correlation measure, or equivalently, both a

similarity measure s and a dissimilarity measure d. A common approach to such problems in

practice is to first combine s and d into a single new similarity measure ŝ, and then provide ŝ

as the input to a similarity-based clustering algorithm. This approach has two issues that one

should be aware of:

• there is usually no canonical choice for how to convert a dissimilarity measure d into a

similarity measure sd and vice versa, but this choice can have a strong impact on the

result. Some typical choices are sd := exp(−d) and sd := (1 + d)−1/2, transforming large

dissimilarity values into small positive similarity values in the unit interval. There are

even more alternatives to finally combine sd and s into a single similarity measure ŝ.

• the second issue is more fundamental: the transformed dissimilarities might affect

the result not as intended! We expect that strongly similar objects get assigned to

the same cluster, while strongly dissimilar objects get assigned to different clusters.

However, treating strong dissimilarities as very low similarity values in order to apply

similarity-based clustering is often not the right strategy. This is because similarity-

based clustering algorithms put their focus only on the influence of high similarity

values, which are interpreted as high similarities plus high confidence, while low values

indicate either low similarity or low confidence. In particular, very low similarity values

(wij ≈ 0) are treated as if no information were given (wij = 0), rather than having a

strong opposite influence on the result. For spectral clustering, this property can be seen

from its implicit objective function. For example, the spectral relaxation of minimizing

the RatioCut (1.8) is equivalent to minimizing the following objective function over

certain choices of f ∈ Rn with ‖f‖ = 1:∑
i,j

wij(fi − fj)2 .

Minimizing this term implies that high similarity weights wij � 0 enforce that fi ≈ fj
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p = 0.6 p = 0.4 p = 0.2 p = 0

(a)

(b)

(c)

(d)

(e)

Figure 4.3.2: Spectral clustering with embedded dissimilarities. Each column shows five times the
same two-cluster graph that is sampled from GCG( (64, 16), p, 0.8, 0.6, −0.8). The
smaller p the fewer intra-edges/similarities are contained in the graph, thus any clus-
tering algorithm has to exploit the information given by the inter-edges/dissimilarities.
The vertex colorings are the result of five different clustering strategies, one per row.
Each strategy computes a vector f = (fi) and assigns vertex i to the red cluster if fi > 0,
or to the blue cluster if fi ≤ 0. Along row (a), f is the second smallest eigenvector of the
unnormalized Laplacian L(W ) = D −W directly applied to the real-valued matrix W .
(b) f is the second smallest eigenvector of L(A) for W = A−R the AR-decomposition,
hence, all dissimilarity information is simply ignored. (c) f is the second smallest
eigenvector of L(W̃ ), where w̃ij := wij + 1 if wij > 0 and w̃ij := exp(wij) otherwise.
This way of embedding dissimilarities gives even worse results than ignoring them as in
(b). (d) f is the second smallest eigenvector of L(W̃ ), where w̃ij := wij + 1 if wij ≥ 0
and w̃ij := exp(wij) otherwise. In contrast to all other approaches, this matrix does
not preserve sparsity, however, it outperforms all previous approaches. (e) f is the
smallest eigenvector of the signed Laplacian matrix L(W ). It yields the correct result
in all examples. This shows that even in the case of just a few or no similarities, the
information given by the dissimilarities can still be sufficient to find the true clusters.

152



4.3 Formal setup

just as intended. However, formerly strong dissimilarities now refer to small weights

wij ≈ 0 that indeed allow for a large difference between fi and fj , but there is no

penalty term that explicitly enforces fi and fj to differ. In case wij ≈ 0 it does simply

not matter whether fi ≈ fj or fi 6≈ fj . In this case, any larger difference between fi
and fj in the result is caused only implicitly due to structural dependencies on some

other high similarities. Spectral clustering treats low values and missing values in the

same way: by mostly ignoring both. Figure 4.3.2 visualizes this issue.

So, how to solve this problem? The answer is pragmatic: rather than combining similarity

and dissimilarity measures into a single similarity measure, keep them separated and apply

another strategy that exploits both aspects. There already exist such algorithms, some of

which are presented in Section 4.3.4, and some others will be presented now.

Direct spectral approaches to correlation clustering

There already exist spectral approaches to correlation clustering that can directly deal with

correlation weights.

• Yu and Shi (2001) define a generalization of the NCut objective to real weights, and

show how a relaxed version of this objective can be solved by the largest K eigenvectors

of the following generalized eigenvalue problem:

(DR + δI −W )v = λ(DA +DR + 2δI)v ,

where δ ≥ 0 acts as a regularization parameter. We refer to their approach as AR.

• Kunegis et al. (2010) study the signed variants of the Laplacian matrices as presented

in Section 4.3.6, including generalizations of the balanced cut objectives to real weights.

They suggest to consider the smallest K eigenvectors of one of the signed Laplacian

matrices, that is they study particularly the eigenvalue problems

unnormalized: (D −W )v = λv , random walk normalized: (D −W )v = λDv .

We only consider the random walk normalized variant, denoted as SL, since it outper-

forms the unnormalized variant in the experiments.

• Cucuringu et al. (2016) formulate their approach as soft constrained clustering, which

can also be understood as correlation clustering. They take the AR-decomposition of

W and then consider the smallest K eigenvectors of the eigenvalue problem

L(A)v = λL(R)v ,
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for L(A) = DA − A and L(R) = DR −R the corresponding unnormalized Laplacians.

We refer to their approach as LL.

All these spectral approaches to correlation clustering agree on two aspects:

1. they all focus on minimizing a balanced cut by adapting classical spectral clustering to

the non-negative setting.

2. they all focus on solving multi-class instances by running k-means (or a similar algorithm)

on the spectral embedding of the vertices into RK as given by the entries of the K

smallest/largest eigenvectors.

Regarding the second point, Lee et al. (2014) show that considering the spectral embedding is

near-optimal for the goal of minimizing a specific balanced k-cut, namely the Cheeger cut

generalized to higher orders k ≥ 2. As a consequence, considering the spectral embedding is a

reasonable choice for the goal of the first aspect: minimizing balanced cuts.

However, my alternative spectral approach, as presented in Section 4.4.2, differs from the

other spectral approaches in both aspects. In particular, it does not focus on balanced cuts.

4.3.8 Correlation clustering without balance constraints

As already discussed in Section 1.3.6, the minimum cut of a similarity graph prefers to cut off

individual vertices. This issue is the original motivation for studying the minimum cut under

balance constraints, such as RatioCut and NCut. However, it is a fallacy to believe that this

issue applies to correlation graphs, too. Even quite the contrary is true: the minimum cut of

a correlation graph is no longer biased toward meaningless imbalanced partitions, but toward

the correct clusters! The reason for this fact is that correlation weights provide a stronger

separation than similarity weights: intra-edges tend to be positive, but inter-cluster edges

tend to be negative. This is far more informative than in similarity-based clustering, where

all edge weights are positive.

This simple, yet fundamental insight can be illustrated in terms of the following graph

model for {−1, 1}-weighted graphs, denoted as the Signed Planted Partition model:

SPP ( (n1, . . . , nk), p+, ξ+, p−, ξ−) .

This model takes four parameters in addition to the vector of the k cluster sizes: p+ ∈ [0, 1]

is the sampling probability for each intra-edge. The weight of an intra-edge is either 1

(“correct”) or −1 (“erroneous”), where the “erroneous” case occurs randomly according to the

intra-error probability ξ+ ∈ [0, 1]. Similarly, p− ∈ [0, 1] is the sampling probability for each

inter-edge. Its weight is either −1 (“correct”) or 1 (“erroneous”), according to the inter-error

probability ξ− ∈ [0, 1]. Graphs from SPP ( (n1, . . . , nk), p+, 0, p−, 0) trivially provide a

perfect correlation clustering that can be determined simply by cutting at all negative edges.

For small error probabilities ξ+ and ξ−, most correlation clustering algorithms are still able
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MinCut (Planted Partition) MinCut (Signed Planted Partition)

Figure 4.3.3: Unbalanced minimum cut of a correlation graph. (left) clustering result
given by the minimum 4-cut of a graph from the planted partition model
PP ((100, 64, 36, 16), 0.3, 0.15). The cut simply cuts off 3 individual vertices of mini-
mum degree. Only under additional balance constraints (like the normalized 4-cut, not
shown here) the correct 4-clustering is found. (right) the same graph after “correcting”
all inter-edge weights from 1 to −1. Now the minimum cut easily finds the correct
4-clustering (even for an unspecified number of clusters k ≥ 1). No balance constraints
are required.

to find the correct clusters. The standard planted partition model can be identified as an

instance of the signed planted partition model as follows:

PP ( (n1, . . . , nk), p+, p−) = SPP ( (n1, . . . , nk), p+, 0, p−, 1) .

That is, in the standard planted partition model, every inter-edge is erroneous because it has

a misguiding positive weight rather than a helpful negative weight. Figure 4.3.3 provides an

example which shows that a hard instance of the planted partition model becomes trivial as

soon as the implicit inter-error probability ξ− switches from 1 to 0, which turns all inter-edge

weights from +1 into −1. This insight generalizes to weighted similarity graphs: every inter-

edge in a similarity graph is principally misguiding and should better not even exist rather

than existing with a positive weight. Let us summarize this insight in a catchy statement:

“ Correlation clustering is simpler than similarity clustering. ”
Of course this statement is not meant in a precise complexity theoretical sense: both, similarity

clustering (= balanced cut minimization of non-negative graphs) and correlation clustering

(= minimization of the CC functional, that is unbalanced cut minimization of real-weighted

graphs) are NP-hard problems. However, there is a difference: correlation clustering provides

with the CC functional a canonical objective function to minimize. In contrast to that,

similarity-based clustering provides no universal answer to the question which objective
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function to choose — choosing the right balancing method is an inductive bias that must be

made individually for each problem domain (although normalized cuts work often well).

All non-spectral correlation clustering algorithms in this chapter focus on unbalanced cut

minimization. In contrast to that, all existing spectral approaches to correlation clustering

focus on balanced cut minimization - motivated by its usefulness for similarity clustering. But

since balance constraints are not required in correlation clustering, I suggest that spectral

strategies should rather focus on unbalanced cut minimization, too. Additional balance

constraints should be considered only if an application explicitly requires them. In this sense,

unbalanced spectral correlation clustering is the “canonical” spectral approach to correlation

clustering.

4.3.9 Performance metrics for evaluation

In order to compare different correlation clustering algorithms, we need to choose a performance

metric that allows for a fair comparison between clusterings of a different number of clusters.

A performance metric is extrinsic if it compares a clustering to some given true classes. A

common extrinsic metric is purity, defined as follows.

Definition 4.3.6 (Purity)

For any finite set V = C1 ·∪ . . . ·∪ C` of n elements partitioned into ` classes, the purity

of any k-clustering V = V1 ·∪ . . . ·∪ Vk is defined as

1

n

k∑
i=1

max
j=1...`

|Vi ∩ Cj | ∈ [0, 1] .

In words, each cluster Vi is “assigned” to the class Cj to which it has the largest overlap.

Summing over the sizes of these overlaps defines the purity (after finally dividing by n). Purity

is the fraction of elements that is labeled correctly if each cluster is assigned to a class by

majority vote. The higher the purity, the more likely it is that most or all elements in a cluster

belong to the same class. While this is a simple and intuitive score, it has a caveat. Purity

equals 1 if and only if every cluster Vi is a subset of some class, regardless of the total number

of clusters. That is, purity focuses on achieving perfect homogeneity within a cluster, while

totally ignoring the number of clusters. In particular, the trivial clustering into n singleton

clusters achieves the best-possible purity score of 1, too. Thus, purity alone is not a good

choice when comparing clustering results of a different number of clusters, since it prefers

partitions that have more clusters. However, if we consider purity together with the number

of clusters as a two-parameter-criterion, then we can achieve a fair comparison. We consider

one clustering better than another, if it provides higher purity and a lower number of clusters

at the same time.

There are several alternative metrics that deal with the trade-off between homogeneity

and the number of clusters in various ways. Amigó et al. (2009) compare several extrinsic
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precision(i) = 4/5

i

recall(i) = 4/6

i

(a) (b)

Figure 4.3.4: BCubed precision and recall. Both plots show the same 14 elements of three classes
(colors) grouped into three clusters (ellipsoids). (a) the precision of element i is the
fraction of elements in the same cluster that belong to the class of i. (b) the recall of
element i is the fraction of all elements of the same class that stay in the same cluster
with i. The overall BCubed precision/recall of the clustering is defined by averaging
over all elements.

clustering metrics by an interesting axiomatic approach: first, they define and justify four

properties that a good metric should provide. Informally, a metric is good if it acts according

to the following four principles.

• homogeneity: each cluster should only contain elements of a single class

• completeness: each cluster should contain all elements of a class

• rag bag: assigning an element wrongly to a homogeneous cluster is worse than assigning

it wrongly to a heterogeneous cluster

• clusters size vs. quantity: a small error in a single large cluster is better than several

small errors in several small clusters

Then, the authors study which axioms are satisfied by which clustering metrics. For example,

the purity measure does not satisfy completeness, since it does not penalize the segmentation

of a class into multiple homogeneous clusters. It turns out that only the metrics “BCubed

precision” and “BCubed recall” (Bagga and Baldwin, 1998) satisfy all four axioms, as well

as their harmonic mean “BCubed F”. The BCubed metrics are based on an element-wise

definition of precision and recall, finally taking their respective average scores. Figure 4.3.4

visualizes the idea of this element-wise precision and recall, and Definition 4.3.7 states it

precisely.
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Definition 4.3.7 (BCubed metrics)

Let V = C1 ·∪ . . . ·∪ C` denote a finite set of n elements partitioned into ` classes, and

V = V1 ·∪ . . . ·∪ Vk another partition into k clusters. BCubed precision BCP and

BCubed recall BCR of the clustering are defined as

BCP :=
1

n

∑
i∈V

|C(i) ∩ V (i)|
|V (i)|

, BCR :=
1

n

∑
i∈V

|C(i) ∩ V (i)|
|C(i)|

,

where C(i) denotes the class that contains i, and V (i) the cluster that contains i.

BCubed F is defined as the harmonic mean of BCP and BCR:

BCF :=
1

0.5/BCP + 0.5/BCR
.

We consider the following quantities for the later comparison of different clusterings:

NC The number of clusters. Should not deviate much from the number of true classes.

PUR Purity as made precise in Definition 4.3.6. The higher the better, but always considered

together with the number of clusters.

BCF The BCubed F metric as defined in Definition 4.3.7. The higher the better.

CWD Cut Weight Difference. That is the difference c− c∗ between the cut weight c given

by the clusters and the cut weight c∗ given by the true classes. The closer to 0 the

better. Negative values indicate the presence of strong noise on the edge weights, which

misguides the cut minimization approach toward a non-intended clustering.

4.4 Main Contributions

This section presents my main contributions to spectral correlation clustering. The first main

contribution is that the smallest eigenvector of the signed Laplacian matrix can be interpreted

as a spectral relaxation of the CC functional constrained to at most 2-clusterings. The second

contribution is an efficient algorithm that exploits this insight in order to approximately

maximize the CC functional of correlation-weighted graphs.

4.4.1 Contribution 1: Unbalanced spectral relaxation of the optional MinCut

It is a well-known fact (see Fact 1.3.5) that the smallest eigenvalue of the unnormalized

Laplacian equals zero, with 1 a corresponding eigenvector. The same result holds true for the

random walk normalized Laplacian matrix, and a similar result holds true for the symmetric
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normalized Laplacian matrix, where the corresponding eigenvector is
√

d instead of 1. In

all cases, the multiplicity of the zero-eigenvalue equals the number of connected components

in the graph. For connected graphs, the second smallest eigenvector is an interesting object

for studying balanced 2-cuts, and higher eigenvectors are helpful in determining a larger

number of clusters. The alternative recursive spectral clustering approach focuses solely on

the second-smallest eigenvector of the subgraphs. In all these scenarios, the “trivial” smallest

eigenvector of the graph Laplacians is no longer of interest.

However, the smallest eigenvector is less trivial than it seems! In order to see why, consider

the Rayleigh quotient characterization (1.3) for the unnormalized Laplacian matrix L = D−W
of non-negative symmetric W , which can be re-formulated as follows (see Section 4.5.1 for

details):

R(L,v1) = min
f 6=0

fTLf

fT f
⇔ min

fT f=n

∑
i,j
i6=j

wij(fi − fj)2

← relax
≈ min

f∈{−1,1}n

∑
i,j
i 6=j

wij(fi − fj)2

⇔ max
k=1,2
Y ∈Ck

∑
i,j

wijYij .

(4.4)

Equation (4.4) shows that the “trivial” smallest eigenvector of L focuses on solving all the

following equivalent problems:

• maximize the CC functional (4.1), restricted to at most 2-clusterings

• find a 1-or-2-clustering of V that minimizes the sum of all cut edges. Since the term

“MinCut” does not allow for the trivial 1-clustering, we denote this extended definition

as the “optional MinCut”, see Definition 4.4.1.

• determine the strongest negative 2-cut, or return the 1-clustering of cut weight 0 if no

negative cut exists

The “optional MinCut” is made precise in the following definition.

Definition 4.4.1 (optional MinCut)

Let G = (V,E,W ) denote an undirected graph with real-weighted edges. The optional

MinCut, also denoted as OptMinCut, is defined as

OptMinCut(W ) := min
S⊆V

cut(S) = min
S⊆V

∑
i∈S,j /∈S

wij ,

where the trivial cases S = ∅ and S = V are particularly allowed.
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The optional MinCut is always non-positive, since the trivial 1-clustering has cut weight 0.

Let us again state the following important relation between the CC functional and the optional

MinCut, as given by Equation 4.2:

“ Maximizing the CC functional restricted to at most two clus-

ters is equivalent to determining the OptMinCut. ”
Hence, every time we run an algorithm to compute the smallest eigenvector of L, this

algorithm implicitly minimizes a rather non-trivial objective function: the optional MinCut.

For positive-weighted graphs, every eigensolver successfully outputs a vector v according to

the minimum eigenvalue 0 (= weight of the optional MinCut). It either holds that v = 1,

which indicates the “trivial” clustering into a single cluster of cut weight 0, or v indicates a

2-cut that separates disconnected graph components from each other, which “trivially” yields

cut weight 0, too. In any case, it is not the smallest eigenvector that is trivial per se, it is the

context of a positive-weighted graph that only allows for trivial solutions to the OptMinCut

optimization problem. When stepping from positive-weighted graphs to real-weighted graphs,

the relevance of the information contained in the smallest eigenvector changes drastically,

together with the complexity of computing the exact minimum cut.

The enriched interpretation of the smallest eigenvector gets apparent for the signed Laplacian

L, as shown by the following lemma.

Lemma 4.4.2 (Signed Laplacian relaxation)

Let G = (V,E,W ) denote a real-weighted graph with W = A−R the AR-decomposition

of its weight matrix. The smallest eigenvector of the signed Laplacian L is a minimizer

of the following relaxation of OptMinCut:

min
f∈Rn

fTLf

fT f
⇔ min

fT f=n

∑
i,j
i6=j

aij(fi − fj)2 +
∑
i,j
i 6=j

rij(fi + fj)
2 (?)

← relax
≈ min

f∈{−1,1}n

∑
i,j
i 6=j

aij(fi − fj)2 +
∑
i,j
i6=j

rij(fi + fj)
2

⇔ OptMinCut(W ) .

Let us study the two sums in (?). They represent two contrary effects on how the entries fi of

the smallest eigenvector are located along the real line:

•
∑
aij(fi − fj)2 is affected only by positive entries in W : minimizing this sum implies

that high similarity values aij > 0 force the entries fi and fj to stay close to each other,

fi ≈ fj . In particular, it is likely that both entries have the same sign, sgn(fi) = sgn(fj).
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•
∑
rij(fi + fj)

2 is affected only by negative entries in W . This is an extra penalty term

that is missing in purely similarity-based approaches. High dissimilarity values rij > 0

force the entries fi and fj to stay away from each other in order to provide fi ≈ −fj .
In particular, it is likely that both entries have opposite signs, sgn(fi) = − sgn(fj).

This observation suggests to define a clustering V = V+ ∪ V− from the entries in f as follows:

i ∈ V+ if fi > 0, and i ∈ V− if fi ≤ 0, that is to split at zero.

A similar spectral relaxation of the OptMinCut can be achieved by the largest eigenvector

of the adjacency matrix, as shown in the following Lemma.

Lemma 4.4.3 (Adjacency matrix relaxation)

The largest eigenvector of the real-weighted adjacency matrix W is a maximizer of the

following relaxation of OptMinCut:

max
f∈Rn

fTW f

fT f
⇔ max

fT f=n

∑
i,j

wijfifj
← relax
≈ max

f∈{−1,1}n

∑
i,j

wijfifj ⇔ OptMinCut(W )

Let us study the sum
∑
wijfifj :

• similarity values wij > 0 force the entries fi and fj to tend to sgn(fi) = sgn(fj)

• dissimilarity values wij < 0 force the entries fi and fj to tend to sgn(fi) = − sgn(fj)

In both cases, a stronger confidence |wij | encourages larger values of |fi| and |fj |. Again this

suggests to split the entries of f at zero in order to get a 2-cut that approximately minimizes

the optional MinCut.

Both approaches perform well in the experiments, but they are sensitive to strong degree

imbalances, as for example in case of a hub vertex. For that reason, a third candidate is

superior to both: the relaxation by the signed random walk Laplacian.

Lemma 4.4.4 (Signed random walk Laplacian relaxation)

The smallest eigenvector of the signed random walk Laplacian Lrw is a maximizer of the

following relaxation of OptMinCut:

max
f∈Rn

fTW f

fTDf
⇔ max

fT f=n

∑
i,j wijfifj∑
i dif

2
i

← relax
≈ max

f∈{−1,1}n

∑
i,j wijfifj∑
i dif

2
i

⇔ OptMinCut(W )

Let us summarize the above: for correlation-weighted graphs, the smallest eigenvector of

L (and its variants) provides a novel spectral approach to correlation clustering. This stems

from the fact that the smallest eigenvector solves a relaxation of the OptMinCut optimization
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problem, which is equivalent to maximizing the CC functional restricted to at most two

partitions. For positive-weighted graphs OptMinCut is solved by every “trivial” cut of weight

0, which is always correctly selected by any “trivial” eigenvector of L = L and its variants.

4.4.2 Contribution 2: The SCC algorithm

In contrast to all alternative spectral approaches from Section 4.3.7, which focus on balanced

clustering, my approach focuses on the minimum cut without any balance constraints. As

suggested by the previous section, it considers only the smallest eigenvector of the signed

normalized Laplacian.

Main idea

The idea of the Spectral Correlation Clustering (SCC) algorithm is to recursively

subdivide the graph into two subgraphs by solving the spectral relaxation of the optional

MinCut. If this yields a 2-cut, then we continue the recursive processing for each of the

two identified subgraphs. If we get the trivial 1-clustering (which implies cut weight 0),

then we apply no further subdivision. The subdivision can also be stopped earlier (optional)

by any additional explicit pruning strategy. The output of SCC is a partitioning of the

vertices into an unspecified number of clusters. Spectral Correlation Clustering is equal to

recursive spectral clustering carried out on the smallest eigenvector of the signed normalized

Laplacian matrix. Beside the fact of being defined with respect to the smallest rather than

the second-smallest eigenvector, SCC shows two fundamental differences to recursive spectral

clustering of similarity graphs:

• auto-balancing/adaptivity: for similarity graphs, every subdivision step requires

explicit balance constraints (by taking second-smallest eigenvectors) in order to avoid

meaningless cuts and early over-segmentation. In contrast to that, SCC does not require

any additional constraints. It adapts automatically to any class balance. Moreover,

the hierarchy of unconstrained minimum 2-cuts is conceptually simple and formally

accessible — in contrast to a hierarchy of balanced cuts, for which it is hard to grasp

the interplay of the balance constraints across different levels of the hierarchy.

• auto-pruning/efficiency: in contrast to similarity-based recursive clustering, which

always subdivides a graph down to n single-vertex clusters at its leafs, SCC does not

require an explicit pruning strategy because it automatically prunes at subgraphs that

provide no negative cut. Since all higher-level subgraphs are split at their strongest

negative cut, this implicit pruning even favors early stopping.

Because of its implicit pruning, SCC does not require the number of clusters to be given as an

input parameter. For simple instances of correlation clustering, SCC finds the correct number

of clusters automatically. For more complex (noisy and sparse) instances, SCC tends to

identify too many clusters. However, these over-segmented results from SCC are good-natured

in the sense that the clusters still respect class boundaries, so the correct class can be recovered
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by a union of clusters. Although there is no formal proof for this property, it can be seen

intuitively from the hierarchy of unconstrained minimum 2-cuts, and it is also justified in the

later experiments by the high purity scores. Like other spectral clustering techniques, SCC

can be computed efficiently and is highly scalable.

The SCC algorithm

The SCC algorithm recursively sub-divides the vertex set V of the input graph G = (V,E,W )

into a hierarchical structure of bi-partitions. This structure is represented as a binary tree,

the cluster-tree. Each tree node has either none or two children. The root node corresponds

to V , and any other tree node refers to a non-empty subset of V . Whenever a tree node t has

children u and v, they represent a proper bi-partition of their parent, that is Vt = Vu ·∪ Vv. As

a consequence, the leafs of the tree (that is all tree nodes that have no children) provide a

k-clustering V = V1 ·∪ V2 ·∪ . . . ·∪ Vk, where k ∈ {1, . . . , n} is defined by the number of leafs.

The cluster-tree is created in the SCC algorithm by a call to the recursive subroutine

ClusterTree (Algorithm 4.4.1). The SCC algorithm itself is listed as Algorithm 4.4.2. Beside

creating the cluster-tree, it further deals with the case of unconnected graphs by executing

the SCC algorithm on each connected component separately.

Alternative spectral relaxations. In Step 4 of the ClusterTree subroutine, the SCC al-

gorithm employs the signed normalized Laplacian L for solving the spectral relaxation of

the CC functional. The reason for picking L is that it performs better than the alternative

candidates Lrw, L and W . Choosing Lrw would give exactly the same clustering results as

L, since the smallest eigenvector v of L implies that w := D
−1/2

v is the smallest eigenvector

of Lrw, yielding the same bi-partition V+ ·∪ V− when splitting at 0. The advantage of L is

rather practical, as already stated in Section 1.3.4: since L is guaranteed to be symmetric

and positive semi-definite, we can apply more efficient eigenvector approximation algorithms

than those available for non-symmetric Lrw. Further, an empirical comparison of L, L and

W similar to the experiments in Section 4.5.3 revealed that L is consistently outperformed

by L and W on instances that have just a weak class separation, even if other thresholding

techniques than splitting at 0 are applied. W and L perform equally well in many cases unless

the graph contains hub vertices that introduce strong degree imbalances. In that case L is

superior over W . Thus, since L is consistently superior over its alternatives, we only consider

SCC defined with respect to L in the following.

Pruning strategies. There is no need to define an explicit pruning strategy for the SCC al-

gorithm. However, pruning strategies allow to incorporate additional domain knowledge into

the clustering process. There exist several different pruning strategies that can be applied

“online” in Step 3 of the ClusterTree subroutine. Moreover, one can also add an additional

“offline” pruning strategy that is applied after the creation of the cluster-tree has finished. In

contrast to online-pruning, such an offline-pruning approach is able to base its decision on

information on the whole tree.
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Algorithm: ClusterTree

Input:

• G = (V,E,W ) a real-weighted graph (constant global input)

• t tree node with no children

• V̂ ⊆ V set of vertices attached to t

Output:

• via side-effect: either t is left unchanged, or two new tree nodes are attached to t
as its children (both already processed recursively by ClusterTree).

Algorithm:

1. determine the subgraph Ĝ := (V̂ , Ê, Ŵ ) that is induced by V̂ in G

2. if Ê = ∅, then return

3. (optional) evaluate any additional explicit pruning strategy, and return if it applies

4. compute f as the smallest eigenvector of the signed normalized Laplacian L of Ŵ

5. if all entries in f are non-negative, or if all entries are non-positive, then return

6. split V̂ into V+ ∪ V− according to the positive and non-positive entries in f , that is
V+ := {i ∈ V̂ | fi > 0} and V− := {i ∈ V̂ | fi ≤ 0}

7. create two new tree nodes: t+ for V+ and t− for V−, and attach them to t as its
children. Call ClusterTree(t+) and ClusterTree(t−).

Algorithm 4.4.1: ClusterTree algorithm
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Algorithm: SCC

Input:

• G = (V,E,W ) a real-weighted graph

Output:

• ` : V → N cluster label for each vertex

Algorithm:

1. determine the connected components of G. If G consists of multiple components,
then call SCC for each component individually, define ` by combining the outputs
using individual cluster labels for each component, and return `.

2. create a tree node t with V attached to it and call ClusterTree(t)

3. determine the partition V = V1 ·∪ V2 ·∪ . . . ·∪ Vk from the k leafs of the cluster-tree
(as found by a tree-walk started at t)

4. define `(i) := c for i ∈ Vc and return `

Algorithm 4.4.2: SCC algorithm
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Two examples for pruning online during the creation of the cluster-tree are:

1. during the recursive calls to ClusterTree, keep track of the current recursion level and

prune if the level exceeds some threshold d. This bounds the number of leafs in the

cluster-tree to at most 2d.

2. compute the partition V+ ·∪ V− and the corresponding (negative) cut weight of splitting

V̂ . Prune if this cut weight is negligibly close to zero.

Two examples for offline-pruning after constructing the cluster-tree are:

1. compute the unpruned cluster-tree and the (negative) total cut weight c that is achieved

by it. Merge two siblings of leafs that increase the total cut weight as least as possible

if the new total cut weight is still below 0.95c. Iteratively merge in this way until any

further merge would raise the total cut weight above 0.95c.

2. for a fixed k and a cluster-tree with more than k leafs, try to extract the best k-clustering

as follows: randomly select any k vertices that form a partition of V , for example by a

sequence of k−1 randomly selected splits started at the root. Repeat this randomization

multiple times and keep the solution with the minimal total cut.

The application of any explicit pruning strategy should be motivated from additional

knowledge on the respective problem domain, rather than being applied in general. For

example, in the application in Section 4.6 we prune as soon as it holds for every vertex i ∈ V̂
that

∑
j∈V̂ wij −

∑
j /∈V̂ wij > τ for some threshold parameter τ . This pruning criterion can

be interpreted in its context as a level of user satisfaction, so we prune if all users “tolerate”

to be grouped together as V̂ .

Must-links. The SCC algorithm can directly be applied to soft-constrained must-links and to

soft-constrained cannot-links. It is further possible to deal with hard-constrained must-links by

preprocessing the input graph to the SCC algorithm as follows: all vertices that are connected

via must-links are replaced together by a single representative super-vertex. This super-vertex

aggregates all edge weights of its vertices in such a way that it contributes the same amounts

to volumes and cut weights as if all individual vertices were present. Precisely, grouping the

vertices A ⊆ V of an undirected graph into the super-vertex a defines the new set of vertices

V ′ = (V \A) ∪ {a} and the following edge weights wai for i ∈ V ′:

wai =

{∑
k∈Awki i 6= a∑
k,`∈Awk` i = a

In contrast to must-links, there is no straightforward way to deal with hard-constrained

cannot-links.
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Other variants of the SCC algorithm. The SCC algorithm can be varied in many ways

that further improve its performance. For example, there exist several strategies to increase

the robustness of the ClusterTree subroutine against suboptimal choices of V+ and V−.

A simple such strategy is to finally move vertices between V+ and V− as long as this further

decreases the cut weight. Furthermore, since each of the subgraphs induced by V+ and V−
can be disconnected, one could further split V+ and V− into their connected components

V+,1, . . . , V+,a, V−,1, . . . , V−,b at the end of each call to ClusterTree. Optionally, one could

then further check for every pair of connected subsets (V+,x, V+,y) for x = 1, . . . , a and

y = 1, . . . , b, whether merging these two subsets improves the cut weight. In these variants,

each inner node of the resulting cluster-tree can have more than two children.

A similar merging strategy can particularly be applied to the partition V = V1 ·∪V2 ·∪ . . . ·∪Vk
in Step 3 of SCC in order to reduce the number of clusters as long as this improves the cut.

As another alternative, one could consider each Vi as a super-vertex and recursively apply

the SCC algorithm to the graph that consists of these k super-vertices with aggregated edges

between them. The general approach of these strategies is to first split in too many, but not

far too many, high-purity subcomponents, and finally merge them as long as this improves

the overall cut.

Indeed, although not presented here, the usefulness of the above and other strategies is con-

firmed by additional experiments. However, any such algorithmic fine-tuning steps away from

the plain spectral approach and is about to make the comparison to non-optimized strategies

less fair. For that reason, this thesis focuses on the performance of the bare SCC algorithm as

such, without any additional enhancements.

4.5 Proofs and technical details

This section proves and discusses the spectral relaxation of the OptMinCut optimization

problem. Further, it compares the SCC algorithm quantitatively and qualitatively to the

spectral and non-spectral alternative approaches to correlation clustering.

4.5.1 Proofs of the spectral relaxations

Before we prove the relaxations, let us first motivate the definition of the signed Laplacian

from a Rayleigh quotient point of view.
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Motivation by the Rayleigh quotient characterization

The Rayleigh quotient characterization of the smallest eigenvector of L = D −W can be

related as follows to the CC functional for non-negative symmetric W :

min
f∈Rn

fTLf

fT f
⇔ min

fT f=n

∑
i,j
i 6=j

wij(fi − fj)2

← relax
≈ min

f∈{−1,1}n

∑
i,j
i 6=j

wij(fi − fj)2

⇔ max
k=1,2
Y ∈Ck

∑
i,j

wijYij .

This can be derived as a special case from the next equation block by setting rij := 0. If we

apply the definitions of L and D unchanged to a real-valued matrix W , then we get with

W = A−R the AR-decomposition (Definition 4.3.2) of W that

L = D −W =

{
dAi − dRi − aii + rii i = j

rij − aij i 6= j
.

The Rayleigh quotient characterization of this real-valued alternative can be related to the

CC functional as follows:

min
f∈Rn

fTLf

fT f
⇔ min

fT f=n

∑
i,j
i 6=j

aij(fi − fj)2 +
∑
i,j
i6=j

rij(fi + fj)
2 − 4 ·

∑
i,j
i6=j

rijf
2
i (?)

← relax
≈ min

f∈{−1,1}n

∑
i,j
i6=j

aij(fi − fj)2 +
∑
i,j
i 6=j

rij(fi + fj)
2 − 4 ·

∑
i,j
i 6=j

rijf
2
i

⇔ min
f∈{−1,1}n

∑
i,j
i 6=j

aij(fi − fj)2 +
∑
i,j
i 6=j

rij(fi + fj)
2

⇔ min
k=1,2
Y ∈Ck

∑
i,j

aij(1− Yij) +
∑
i,j

rijYij

⇔ max
k=1,2
Y ∈Ck

∑
i,j

wijYij .

(4.5)

Two of the three summands that appear in (?), namely
∑
aij(fi − fj)2 and

∑
rij(fi + fj)

2,

are already discussed in Lemma 4.4.2. The third summand in (?) is −4 ·
∑
rijf

2
i . In the

non-relaxed objective function this summand vanishes because −4 ·
∑
rij · (±1)2 is just an

additive constant that does not affect the minimizer. However, this third summand drastically

worsens the quality of the fractional relaxation because every negative entry in W distorts the
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resulting eigenvector through rijf
2
i in an unwanted way. Numerical experiments show that

this kind of straightforward generalization of the unnormalized Laplacian to real-weighted

graphs performs bad in practice because of this distortion term.

This raises the question whether we can find an alternative variant L of the unnormalized

Laplacian, whose Rayleigh quotient characterization finally achieves the “perfect” relaxation

for real-weighted W without any additional distortion, namely

min
f∈Rn

fTLf

fT f
⇔ min

fT f=n

∑
i,j
i6=j

aij(fi − fj)2 +
∑
i,j
i 6=j

rij(fi + fj)
2 .

Indeed, as proven in the next section, this goal can be achieved by choosing the following

modification along the main diagonal of L:

L = [`ij ] :=

{
dAi + dRi − aii − rii i = j

rij − aij i 6= j
(4.6)

In particular, L fits to the central theme of this thesis of studying variants of Laplacian

matrices. I discovered the matrix L precisely as sketched here, by studying how to modify the

unnormalized Laplacian in order to fit its Rayleigh quotient characterization to the CC func-

tional without any additional distortion terms. It turned out that L is the correct definition

to achieve this, so in this sense it is the optimal choice for linking some Rayleigh quotient

characterization to the CC functional. Further, L has several other interesting properties.

Later I realized that L is already known in the literature as the signed Laplacian matrix

(Definition 4.3.3 matches exactly (4.6)). However, its correspondence to the CC functional by

focusing on the smallest eigenvector of the AR-decomposition is a novel contribution.

Proofs

The proofs of Lemma 4.4.2, Lemma 4.4.3 and Lemma 4.4.4 apply the following lemma, which

shows a general way to constrain the minimization over a generalized Rayleigh quotient

without affecting the result.

Lemma 4.5.1 (Freescale)

Let s : S(n−1) → R>0 denote any function on the (n − 1)-dimensional unit sphere

S(n−1) := {x ∈ Rn | ‖x‖ = 1}. For all A,B ∈ Rn×n with fTBf 6= 0 for all f 6= 0 it holds

that

min
f 6=0

fTAf

fTBf
= min

‖f‖=s(f/‖f‖)

fTAf

fTBf
.
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Proof. For all f 6= 0 and all c 6= 0 it holds that

(cf)TA(cf)

(cf)TB(cf)
=

c2

c2
· f

TAf

fTBf
=

fTAf

fTBf
.

Thus, any minimum that is achieved at some f∗ ∈ Rn is also achieved at cf∗ for all c 6= 0, in

particular for c chosen such that ‖cf∗‖ = s(f∗/‖f∗‖).

Proof. (of Lemma 4.4.2) First, observe that

min
f 6=0

fTLf

fT f

4.5.1
= min

‖f‖=
√
n

fTLf

fT f
= min

fT f=n

fTLf

n
⇔ min

fT f=n
fTLf .

Further, fTLf can be expressed with (4.6) as:

fTLf =
∑
i,j

`ijfifj

=
∑
i,j
i 6=j

(rij − aij)fifj +
∑
i

(−rii − aii)f2
i +

∑
i

(
∑
j

aij +
∑
j

rij)f
2
i

=
∑
i,j
i 6=j

−aijfifj +
∑
i

−aiif2
i + 2 · 1

2

∑
i,j

aijf
2
i

+
∑
i,j
i 6=j

rijfifj +
∑
i

−riif2
i + 2 · 1

2

∑
i,j

rijf
2
i

aij=aji
rij=rji

=
∑
i,j
i 6=j

−aijfifj +
∑
i

−aiif2
i +

1

2

∑
i,j

aijf
2
i +

1

2

∑
i,j

aijf
2
j

+
∑
i,j
i 6=j

rijfifj +
∑
i

−riif2
i +

1

2

∑
i,j

rijf
2
i +

1

2

∑
i,j

rijf
2
j

=
1

2

∑
i,j
i 6=j

aij(f
2
i − 2fifj + f2

j ) +
1

2

∑
i,j
i6=j

rij(f
2
i + 2fifj + f2

j )

=
1

2

∑
i,j
i 6=j

aij(fi − fj)2 +
1

2

∑
i,j
i 6=j

rij(fi + fj)
2

This proves the equivalence at the relaxed side of the relaxation:

min
f∈Rn

fTLf

fT f
⇔ min

fT f=n

∑
i,j
i 6=j

aij(fi − fj)2 +
∑
i,j
i6=j

rij(fi + fj)
2

.
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For the non-relaxed side, observe that

min
f∈{−1,1}n

∑
i,j
i 6=j

aij(fi − fj)2 +
∑
i,j
i 6=j

rij(fi + fj)
2

4.3.1(v)
= min

k=1,2
Y ∈Ck

4
∑
i,j
i 6=j

aij(1− Yij) + 4
∑
i,j
i 6=j

rijYij

aij=aji
rij=rji

= min
k=1,2
Y ∈Ck

8
∑
i<j

(rij − aij)Yij + 4
∑
i,j
i 6=j

aij

⇔ min
k=1,2
Y ∈Ck

∑
i<j

(rij − aij)Yij

wij=wji⇔ min
k=1,2
Y ∈Ck

∑
i,j

wij(11T − Yij)

= min
k=1,2
Y ∈Ck

−
∑
i,j

wijYij +
∑
i,j

wij

⇔ max
k=1,2
Y ∈Ck

∑
i,j

wijYij

Proof. (of Lemma 4.4.3) Similar to above we get that

max
f∈Rn

fTW f

fT f
⇔ max

fT f=n

∑
i,j

wijfifj
← relax
≈ max

f∈{−1,1}n

∑
i,j

wijfifj
4.3.1(v)⇔ max

k=1,2
Y ∈Ck

∑
i,j

wijYij .

Proof. (of Lemma 4.4.4) The eigenvalues and eigenvectors of Lrw can be related as follows to

the eigenvalues and eigenvectors of D
−1/2

WD
−1/2

:

Lrwf = αf

⇔ f −D−1
W f = αf

⇔ D
−1
W f = (1− α)f

⇔ D
−1/2

W f = (1− α)D
1/2

f

⇔ D
−1/2

WD
−1/2

g = βg ,
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where g := D
1/2

f and β := 1 − α. In particular, the smallest eigenvalue αmin (with

corresponding eigenvector fmin) is determined by the largest eigenvalue βmax = 1−αmin (and

the corresponding eigenvector gmax = D
1/2

fmin). Using the Rayleigh quotient characterization,

the eigenvalue maximization of D
−1/2

WD
−1/2

can be written as

max
g 6=0

gTD
−1/2

WD
−1/2

g

gTg

= max
g 6=0

(D
−1/2

g)TWD
−1/2

g

gTg

f=D
−1/2

g
= max

f 6=0

fTW f

fTDf

4.5.1⇔ max
fT f=n

∑
i,j wijfifj∑
i dif

2
i

← relax
≈ max

f∈{−1,1}n

∑
i,j wijfifj∑
i dif

2
i

4.3.1(v)⇔ max
k=1,2
Y ∈Ck

∑
i,j

wijYij .

4.5.2 Discussion on the spectral relaxations

All proofs in the previous section reformulate the maximization of the CC functional as

the problem of finding an extremal point of an objective function defined on {−1, 1}n. The

NP-hard optimization problem is then “relaxed” by extending this discrete domain to the

continuous domain S := {f ∈ Rn | ‖f‖ =
√
n} = {f ∈ Rn | fT f = n} of all vectors of length√

n. Geometrically, the set {−1, 1}n contains the 2n corners of an n-dimensional hypercube of

side length 2 that is centered at the origin. The relaxation extends this set of feasible solutions

to the sphere of radius
√
n centered at the origin, which particularly contains all hypercube

corners. The optimization over the sphere S can finally be stated via the Rayleigh quotient

characterization as an eigenvalue problem. The eigenvalue problem can be solved efficiently to

get a fractional solution f∗ that serves as an approximation of the original discrete problem.

From the optimal solution f∗ ∈ S of the relaxed problem, we determine its closest discrete

solution in {−1, 1}n by setting each entry to −1 or 1, depending on whether it is positive

(rounding to 1) or non-positive (rounding to −1).

All other steps along the way from the CC functional to the eigenvalue problem are

equivalences and equalities, so it is only the relaxation which transforms the NP-hard problem

into an efficient approximation. Since the relaxed domain S is a superset of the original
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domain {−1, 1}n, the value of an optimal solution of the relaxed problem gives a lower bound

on the optimum of the non-relaxed problem. As a consequence, we can derive from the smallest

eigenvalue a lower bound on the best-possible value of the CC functional for k ≤ 2 (after

carefully collecting the additive/multiplicative constants that canceled out in the equivalence

steps of the above proofs). An upper bound is given by the rounded solution itself. Hence

although there is no general result on the approximation quality of this relaxation, one can

derive a lower bound and an upper bound on OptMinCut for each graph individually by this

spectral approach.

In general, it is possible to obtain one and the same optimization problem as a relaxation of

different other optimization problems. Here, we relax the NP-hard problem minf∈{−1,1}n fTLf

of finding the optional MinCut to the eigenvalue problem minf∈S fTLf . Interestingly, Kunegis

et al. (2010) take another road to the same eigenvalue problem. They adapt the idea of the

RatioCut from similarity graphs to real-weighted graphs, denoted as SignedRatioCut. The

problem of finding the minimum SignedRatioCut can be expressed in almost the same way as

for the MinCut, precisely as minu∈U uTLu, where U consists of all vectors u = (ui) of the

form

ui =

+1
2

(√
|V1|/|V2|+

√
|V2|/|V1|

)
i ∈ V1

−1
2

(√
|V1|/|V2|+

√
|V2|/|V1|

)
i ∈ V2

, for any bi-partition V = V1 ·∪ V2.

(4.7)

The authors suggest to solve the minimization of the SignedRatioCut by a relaxation to

the smallest eigenvector of L, that is by the same eigenvalue problem minf∈S fTLf as for

the optional MinCut. Thus, although OptMinCut the SignedRatioCut are different discrete

optimization problems, their relaxation leads to exactly the same eigenvalue problem. This

raises the question, which of the two non-relaxed problems is “better” represented by the

eigenvalue problem: SignedRatioCut or OptMinCut?

Comparison of OptMinCut to SignedRatioCut. Since there exist no general approximation

bounds for the relaxations, I argue informally that the smallest eigenvector of the signed

Laplacian focuses stronger on minimizing the unbalanced OptMinCut than on minimizing the

balanced SignedRatioCut. Or stated differently, the term “SignedRatioCut” as an adaption

of the RatioCut from positive-weighted graphs to real-weighted graphs is misleading because

it shows an unintuitive way of balancing. Instead, the SignedRatioCut behaves in almost the

same way as OptMinCut, which provides a far simpler intuition.

1. Explaining 1-clusterings. The SignedRatioCut is not defined for the trivial clustering

V = V ·∪ ∅, but only for proper 2-clusterings. This comes from the RatioCut that also

enforces a 2-clustering. However, the RatioCut is based on an additional orthogonality

constraint that guarantees that the corresponding eigenvector has positive and negative

values, thus always giving a proper 2-clustering. Here, there is no such additional con-

straint, and it happens frequently that all entries of the smallest eigenvector of the signed
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Laplacian have the same sign. This case has no representation as a SignedRatioCut, one

cannot define a value for the SignedRatioCut of a 1-clustering that is consistent with

the values of 2-clusterings. From the viewpoint of the SignedRatioCut, the eigenvector

approximation returns occasionally a 1-clustering without explaining why. In contrast

to that, the OptMinCut includes this case consistently as the case that all cuts in the

graph are non-negative, and thus the 1-clustering is simply a best cut of value zero.

2. Relaxation accuracy. From (4.7) we get that every vector u ∈ U is a scaled version

of some vector f ∈ {−1, 1}n, precisely u = s(f) · f for the scaling factor s(f) =

(
√
|{fi = 1}|/|{fi = −1}|+

√
|{fi = −1}|/|{fi = 1}|)/2. If the objective function for the

SignedRatioCut were uTLu/uTu rather than uTLu, then we would get by Lemma 4.5.1

that the SignedRatioCut is almost equivalent to OptMinCut (up to 1-clusterings).

Precisely, for F := {−1, 1}n \ {−1,1} we would get that

min
u∈U

uTLu

uTu

4.5.1
= min

f∈F

fTLf

fT f
= min

f∈F

fTLf

n
⇔ min

f∈F
fTLf

relax→
≈ min

f∈S
fTLf .

But since the SignedRatioCut relaxes from minu∈U uTLu to minf∈S fTLf , it introduces

an additional distortion because of uTu being non-constant. Precisely, we can see from

min
u∈U

uTLu = min
f∈F

s(f)2fTLf
relax→
≈ min

f∈S
fTLf

that the relaxation of the SignedRatioCut is two-fold: it extends the domain from

discrete points to a continuous domain, and additionally omits the individual lengths

of the discrete points. It holds that s(u) = 1 if and only if |V1| = |V2|, but s increases

with stronger imbalances to values above
√
n/2 for |V1| = 1. The relaxation of the

SignedRatioCut omits the individual factors s(f)2, which indicates that some deeper

properties of the SignedRatioCut are invisible to the eigenvalue problem. In contrast to

that, OptMinCut refers for all f ∈ F to the perfectly regular, constant function s(f) = 1.

3. Intuition. For positive-weighted graphs it is easy to give examples that demonstrate

the strong difference between RatioCut and MinCut. See for example Figure 4.5.1 (a)

and let α = 1 and β = 2. The MinCut (if forced to provide a 2-clustering) would cut

at α, yielding the unbalanced 2-clustering (V3, V1 ∪ V2) of cut weight 1. The RatioCut

prefers because of its balance constraints to cut at β, yielding the balanced 2-clustering

(V2, V1 ∪ V3) of non-minimal cut weight 2. Figure 4.5.1 (a) is also an example in which

OptMinCut and SignedRatioCut suggest different solutions. The optional MinCut would

not cut the graph at all, which coincides with the shown 1-clustering that is given by

the entries of the smallest eigenvector of L. In contrast to that, for positive-weighted

graphs the minimum SignedRatioCut coincides with the minimum RatioCut. Thus the

minimum SignedRatioCut is not represented by the smallest eigenvector, but rather by

the second-smallest eigenvector that is orthogonal to it.
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α

β

V1 V2

V3

−α

β

−α

−β

(a) (b) (c)

Figure 4.5.1: SignedRatioCut versus OptMinCut. Three different cuts (indicated by red/blue
color), as given by the positive/negative entries of the smallest eigenvector of L for
arbitrary edge weights α, β > 0. All other edges have unit weight. (a) the graph does
not provide a negative cut. OptMinCut agrees with the eigenvector to provide the
trivial 1-clustering of cut weight zero. SignedRatioCut disagrees since it prefers the
balanced cut (V2, V1 ∪ V3), as long as β is not extremely larger than α. (b) the graph
provides a negative cut (V3, V1 ∪ V2) that is found by the eigenvector. OptMinCut
and SignedRatioCut agree with the eigenvector cut. However, SignedRatioCut does
no longer respect any balance constraints that would stop it from cutting the single
vertex, even for arbitrarily small α, β > 0. (c) both edges have a negative weight. The
eigenvector suggests the cut (V1, V2 ∪ V3). OptMinCut and SignedRatioCut agree, even
without any balance constraints taking effect.

For positive-weighted graphs the RatioCut penalizes unbalanced cuts in an intuitive way.

For real-weighted graphs, this intuition is not well preserved by the SignedRatioCut.

The balance effect of the SignedRatioCut is much more subtle, and it extremely depends

on whether cuts of positive or negative weights are considered. In Figure 4.5.1 (b) the

cut given by the eigenvector coincides with optional MinCut and with the minimum

SignedRatioCut. However, while the cut is easy to interpret in terms of the minimum

cut, it is hard to grasp why SignedRatioCut gives this extremely unbalanced cut. The

benefit of cutting at −α rather than at β can be arbitrary small, that is α + β < ε

for any ε > 0. For example, α = −0.0001 and β = 0.0001. Despite the negligible

absolute improvement, the SignedRatioCut always favors the extremely unbalanced cut

(V3, V1 ∪ V2) over the balanced cut (V1, V2 ∪ V3). It considers cutting a slightly negative

edge as more important than respecting any balance constraints, which contradicts the

intuition of a ratio cut.

In Figure 4.5.1 (c), the cut given by the eigenvector coincides again with the optional

MinCut and with the SignedRatioCut. The cut is well-balanced. However, this is not

because of any balance constraints, but only because of the fact that the unconstrained

minimum cut adapts to the true clusters in case of correlation weights.
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Summarized, in Figure 4.5.1 (a) the smallest eigenvector agrees with the optional

MinCut, but it differs from the minimum SignedRatioCut. In (b) and (c) the eigenvector

agrees with OptMinCut and with SignedRatioCut. However, in (b) the SignedRatioCut

shows that its bias to balanced clusters is by far not that intuitive as for the RatioCut

on positive-weighted graphs. Further (c) shows that the more complex explanation of

balancing constraints is not required to explain a balanced clustering result.

If we interpret the smallest eigenvector of the signed Laplacian as an approximation of

the SignedRatioCut, then we have to accept that it occasionally suggests 1-clusterings that

contradict the minimum SignedRatioCut, and that its balance constraints fail to work under

some circumstances. Further its spectral relaxation is more hand-wavy.

If we interpret the smallest eigenvector of the signed Laplacian as an approximation of the

unconstrained, optional MinCut, then this interpretation is simple and consistent in all cases,

even in the special case of positive-weighted graphs. Further the whole relaxation can be

described in terms of a plain geometric intuition: the set of feasible solutions is extended from

the discrete set of hypercube corners to the sphere they span.

4.5.3 Comparing SCC to other spectral approaches

This section compares the SCC algorithm (Algorithm 4.4.2) to the spectral approaches

introduced in Section 4.3.7, denoted as AR, SL and LL. The SCC algorithm does not require to

set any additional parameters. All other spectral approaches require an additional strategy

to determine the intended number of clusters k and the number of relevant eigenvectors K

(smallest or largest) to consider for the embedding. This is a major drawback of these methods

if the number of clusters is unknown. Even worse, in contrast to the case of similarity graphs,

where several heuristics for choosing k and K exist, the literature does not yet provide general

heuristics for spectral k-way correlation clustering. For that reason we determine the best

choice of k and K by a computationally expensive grid-search. Precisely, for all other spectral

approaches we apply the following three strategies to a graph that is known to have c clusters:

• FIXED. Find k := c clusters from the selected K := c eigenvectors by one of the clustering

algorithms below. This choice is suggested by Yu and Shi (2001) for the AR algorithm.

• EQUAL. For all K = k ∈ {1, . . . , 2 c} run the clustering algorithm and select from these

2 c alternatives one that provides minimal cut weight.

• GRID. For all combinations of 1 ≤ K ≤ k ≤ 2 c run the clustering algorithm and finally

select the best combination (in terms of minimal cut weight) among these 2 c2 + c

candidates. Although this brute-force approach is computationally intense, its results

are better than those of any heuristic for choosing k and K.

For every choice of k and K, we apply the following two clustering algorithms on the embedding

of the vertices into RK as given by the K selected eigenvectors.
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• SLINK. Run the single linkage algorithm (Sibson, 1973) to identify up to k clusters.

• KMEANS. Run k-means to identify up to k clusters.

In total we compare the SCC algorithm (denoted as SCC) to 18 alternatives, namely to all

combinations of the following name schema:

(AR | SL | LL)− (SLINK | KMEANS)− (FIXED | EQUAL | GRID) (4.8)

SCC refers to the unpruned SCC algorithm. In some of the experiments we further consider

a pruned variant by aborting the recursion at depth ` for ` = 1, 2, 3, 4 (denoted as SCC-`),

which bounds the number of clusters to at most 2`.

Qualitative comparison

Figure 4.5.2 shows that SCC can correctly recover strongly imbalanced clusters, while all other

spectral alternatives fail. Precisely, the alternatives are AR, SL, and LL, each in the 2 different

variants SLINK and KMEANS. For all 6 alternative approaches, the number of eigenvectors K for

the embedding and the number of clusters k are determined by the GRID approach, that is by

keeping the best result among all combinations of 1 ≤ K ≤ k ≤ 8. The graph in Figure 4.5.2 (a)

is sampled from the Gaussian Correlation Graph model GCG( (64, 64, 64, 64), 0.5, 1, 0.5, −1).

It has four clusters of size 64, and every edge is present with probability 0.5. The edge weights

are sampled from N (1, 1) in case of an intra-edge and from N (−1, 1) in case of an inter-edge,

which causes small errors in 15.9% of the cases (see Figure 4.3.1). The SCC algorithm finds

the correct clusters. The alternatives find the correct clusters if they rely on SLINK for the

cluster identification, only LL provides an almost correct result even for KMEANS.

The graph in Figure 4.5.2 (b) is sampled from GCG( (144, 16, 9, 4), 0.5, 1, 0.5, −1). The

only difference to the above is that now the clusters have strongly imbalanced sizes 144, 16, 9, 4.

The SCC algorithm still finds the correct clusters. All alternatives correctly identify the large

cluster, but they all fail in identifying the three small clusters. Since the results derive from

the GRID approach, this fail is not caused by choosing suboptimal parameters k and K. It is

rather likely, as also demonstrated in Figure 4.5.3, that the embeddings given by the most

relevant eigenvectors do not separate the small clusters well enough, so no clustering algorithm

is able to detect the correct clusters by following any embedding-based approach.

Quantitative comparison

This section compares the SCC algorithm to the other spectral approaches quantitatively. The

experimental setup is as follows: we create graphs of n = 3400 vertices from 7 different classes

according to the random graph model GCG( (100, 200, 300, 400, 600, 800, 1000), p, µ, p, −µ)

for p ∈ {120/n, 60/n, 30/n} and µ ∈ {1.5, 1, 0.75}. For each of the 9 parameter combinations

(p, µ), we sample 10 random instances and apply the following 22 algorithms to every instance:

SCC, SCC-2, SCC-3, SCC-4, and the 18 alternative spectral approaches from (4.8). We study
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Figure 4.5.2: Balanced versus unbalanced spectral correlation clustering. Clustering results for
SCC versus 3 spectral clustering alternatives (AR, SL, LL) in 2 different variants (SLINK,
KMEANS). For all 6 alternative approaches, their best result via the GRID approach
is shown. (a) clustering results for a graph with four equal-sized clusters, sampled
from GCG( (64, 64, 64, 64), 0.5, 1, 0.5, −1). SCC finds the correct clusters, the other
approaches succeed in case of the SLINK approach. (b) clustering results for a graph
with strongly imbalanced clusters, sampled from GCG( (144, 16, 9, 4), 0.5, 1, 0.5, −1).
SCC still finds the correct clusters, but all other approaches fail in identifying the three
small clusters.

178



4.5 Proofs and technical details

W

L

L
SCC

Lrw
SL

AR

LL

Figure 4.5.3: Eigenvectors of spectral approaches to correlation clustering. Details on the
three most relevant eigenvectors for correlation clustering of a graph sampled from
GCG( (144, 16, 9, 4), 0.1, 1, 0.1, −1). From top row to bottom row: largest eigenvectors
of the adjacency matrix W , smallest of the signed Laplacian L, smallest of the signed
normalized Laplacian L (as used in SCC), smallest of the signed random-walk normalized
Laplacian Lrw (equals those of L re-scaled, and same as used in SL), largest of AR,
smallest of LL. For each eigenvector, after normalizing to unit norm, a histogram of
its entries is shown (horizontal axis ranging from 0.005 quantile to 0.995 quantile).
The graph to its left has vertices colored in red/blue (edges not shown) depending
on whether the corresponding entry in the eigenvector is above/below 0. SCC and SL

yield a perfect 2-cut with their first eigenvector, AR an almost perfect cut. However,
instead of continuing recursively (as SCC), both SL and AR consider the noisier higher
eigenvectors for their embedding-based clustering strategy. The first eigenvector of LL
is constant as expected (since the graph has a single component), but also the higher
eigenvectors do not provide clearly separable entries for this graph.
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the performance metrics NC (number of clusters), PUR (purity), CWD (cut weight difference)

and BCF (BCubedF) as defined in Section 4.3.9. Figure 4.5.4 shows the results for NC and

PUR, similar does Figure 4.5.5 for CWD and BCF of exactly the same experiments. For

all four performance metrics, an individual 3× 3 grid shows one box-plot for each of the 9

parameter combinations (p, µ). The top left grid cell refers to the easiest instances (largest p

and largest µ). Edge weight noise increases toward the right (decreasing µ), and edge sparsity

increases toward the bottom (decreasing p). The bottom right grid cell refers to the hardest

instances.

The purity of all 22 algorithms worsens when moving toward harder instances. SCC achieves

clearly the best purity in all cases, but we see from the NC results that SCC also generates the

largest number of clusters (even exceeding 20, reaching values between 76 and 203). So the

good purity performance of SCC could just be an effect of the large number of clusters, rather

than being the result of a good clustering. However it turns out that the clustering must be

reasonably good: SCC-2, SCC-3 and SCC-4 apply level-pruning to the cluster-tree of SCC in

order to provide at most 4, 8 and 16 clusters, respectively. Although they strongly reduce the

number of clusters, they reach a similar high purity as unpruned SCC. This shows that SCC-2

and SCC-3 are superior to all other approaches in most cases because they simultaneously

achieve higher purity and a smaller or equal number of clusters. This further shows that SCC

indeed provides a good-natured over-segmentation that only rarely overlaps the boundaries

between true classes. A closer look reveals that several clusters determined by SCC consist of a

single or few vertices. These mini-clusters derive from a slightly erroneous cut at a higher level

in the cluster-tree, which packs some vertices wrongly together with a large group of others

that refer to another class. Such vertices are finally separated from the group on a deeper

level in the cluster-tree and form a mini-cluster. Such mini-clusters can likely be merged

into other clusters that is not a sibling in the cluster-tree. This insight suggests to apply a

post-processing strategy that takes the result of SCC and then merges its smallest clusters into

larger clusters according to some precise criteria (for example, as long as the total cut weight

decreases). However, as stated above, our focus lies on comparing the spectral techniques

“as is” without applying advanced post-processing strategies to any of them.

For the non-SCC variants, there is no consistent winner among SLINK and KMEANS. Each

outperforms the other in some cases and under different performance aspects. The comparison

between FIXED (k = K = 7), EQUAL (best of 1 ≤ K = k ≤ 14) and GRID (best of 1 ≤ K ≤
k ≤ 14) is less ambiguous: the FIXED approach is clearly outperformed by the others. It

always provides the correct number of clusters by definition, but the bad scores of PUR,

CWD and BCF show that the identified clusters deviate strongly from the true classes. SCC-3

demonstrates that it is indeed possible to yield far better clustering results with the same

number of clusters (±1). The EQUAL approach performs often slightly better than FIXED

in terms of purity, but it tends to over-segment by doubling the number of clusters. In all

parameter settings, and for each of SL, AR and LL, the best result for PUR, CWD and BCF is

always achieved by a GRID approach (either SLINK or KMEANS). Although GRID also tends to
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over-segment, the clustering result seems to respect class boundaries well, as indicated by the

good BCF and PUR scores. The GRID approach selects the best out of the 105 combinations

of 1 ≤ K ≤ k ≤ 14. The optimal combination of K and k varies strongly over the instances,

but in many cases K is significantly lower than k. In some cases even K = 1 and k ≈ 7 is

selected, which means for SL that the whole k-clustering result is found by running k-means

on the entries of the single smallest eigenvector. Further note that the alternative spectral

approaches do not benefit from allowing for much higher K and k than 2 c. Extending the

parameter search grid, for example to 1 ≤ K ≤ k ≤ 28, does not further improve Purity,

CWD or BCubedF, but only increases median and variance of the number of clusters, and

the computation time by another factor of four.

Figure 4.5.5 shows that all variants of SCC achieve significantly smaller cut weights than

all other spectral approaches. This demonstrates the focus of SCC on minimizing the cut.

The other approaches seem to respect additional constraints, such as balance constraints,

that prevent them from reaching smaller cut weights. This does not imply that they perform

worse: it is not guaranteed that a smaller cut weight always achieves better clustering results.

However, also in terms of BCubedF, which scores a combination of precision (like purity)

and recall between the clustering results and the true classes, SCC and its pruned variants

yield in most cases higher scores than all other spectral approaches. This gives evidence that

the CC functional is a good optimization criterion for correlation clustering, and that SCC

performs well in maximizing it, without requiring any additional balance constraints.

Another benefit of SCC in the current implementation is that computing the cluster-tree

is much more efficient (even if unpruned) than the GRID approach. While SCC completes in

1 second on average, the GRID approach with KMEANS takes more than 1 minute. However,

this is not a rigorous performance evaluation, since both approaches can further be optimized

or modified. For example, both approaches could compute their subproblems in parallel, and

one could also choose an adaptive grid approach on 1 ≤ K ≤ k ≤ n rather than GRID.

These experiments show that SCC is an interesting candidate for correlation clustering, in

particular on sparse, noisy and imbalanced instances that are in the focus of the clustering

application in Section 4.6. SCC performs better than all embedding approaches that cluster n

embedded points in RK into k clusters for any K and k.
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Figure 4.5.4: SCC versus other spectral approaches by number of clusters and purity. Boxes and whiskers are determined as follows
from the 10 independent repetitions of each individual experiment: the median is plotted as a dot, the solid box marks the
quartile range (from 0.25 to 0.75 quantile), a line extends to the farthest value that is not considered as an outlier (at most
1.5 times the length of the quartile range), and every outlier is marked by a cross. The left plot shows the number of clusters
(the closer to 7 the better) as returned by the respective algorithm. The right plot shows the purity of the clustering (the
larger the better). SCC has an excellent purity, but yields more than 20 clusters in all experiments. In most cases, SCC-2 and
SCC-3 still outperform all other approaches in terms of purity while having the same or a fewer number of clusters.
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Figure 4.5.5: SCC versus other spectral approaches by cut weight and BCubedF. Boxes and whiskers are defined as in Figure 4.5.4. The
left plot shows the difference of the cut weight that is achieved by the algorithm’s clustering and the cut weight of the
respective true class partition (the smaller the better). The right plot shows the BCubedF performance metric that quantifies
the quality of the overlap of the algorithm’s clustering with the true class partition (the larger the better). In almost all
cases, the SCC variants achieve significant smaller cut weights and larger BCubedF scores than all other spectral approaches.
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Chapter 4: Spectral correlation clustering

4.5.4 Comparing SCC to state-of-the-art

In this section, we compare SCC to the non-spectral approaches Expand, Swap and AICM of

Bagon and Galun (2011), as introduced in Section 4.3.4. Expand and Swap are computationally

intense and do not scale well beyond a couple of hundreds of vertices on standard computer

hardware. AICM is as fast as SCC, so we can compare these approaches also on larger instances.

In all experiments, we also present results for six alternative spectral approaches, namely for

all six combinations of (SL | AR | LL)− (SLINK | KMEANS)− GRID.

Quantitative comparison

This experiment studies graphs from the model GCG( (100, 100, 100, 100), p, µ, p, −µ) for

every combination of parameters p ∈ {0.4, 0.2, 0.1} and µ ∈ {1.0, 0.8, 0.6}. Similar to Sec-

tion 4.5.3, we compare SCC, SCC-2 and SCC-3 to the 9 alternatives in terms of the performance

measures NC, PUR, CWD and BCF. Figure 4.5.6 shows the results of these experiments.

On relatively dense and low-noise instances (large p and µ), some approaches achieve per-

fect results (Expand, AICM and all SLINK variants). The approaches Swap, SCC and SCC-3

find too many clusters, but since their purity is 1.0, the correct classes could be recovered

exactly by merging appropriate clusters. As in the previous section, this suggests to apply a

post-processing strategy that merges mini-clusters into larger clusters as long as the total cut

weight shrinks. Including such a post-processing, Swap, SCC and SCC-3 would also achieve

perfect results on these instances. The other approaches (SCC-2 and all KMEANS variants)

detect the correct number of clusters, but they wrongly group some vertices from different

classes together (as indicated by the non-optimal purity).

On sparser and noisier instances, SCC and AICM show a strong bias toward over-segmentation.

However, both approaches still achieve high purity, which indicates that a sufficient post-

processing strategy can mostly correct this over-segmentation. In particular, SCC-3 demon-

strates that one can indeed reach a similar high purity by a small number of clusters, even

simply by level-pruning rather than by an advanced post-processing strategy. Expand and

Swap do much slower tend to over-segment, although they are also unbounded in the number

of clusters to find, too. In contrast to the approaches SCC, Expand, Swap and AICM, all other

approaches are restricted by definition to at most 8 or 4 clusters, respectively, so they cannot

over-segment too strongly.

The computation time of Expand lies between 10 and 120 seconds, Swap between 2 and 10

seconds, and all other approaches far below 1 second.

Summarized, one can rank the algorithms by their clustering performance as follows: Expand

and Swap share the first place, where Swap is slightly worse than Expand, but faster by an

order of magnitude. However, none of the two approaches is able to scale-up to thousands

of vertices. The second place is shared by SCC and AICM. They both tend to over-segment

in a good-natured way, which can mostly be corrected by an additional post-processing

strategy. While AICM is slightly better than SCC on dense graphs, SCC outperforms AICM on

sparse instances, which particularly reflects in a far better BCubedF score. So as before, the
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Figure 4.5.6: SCC versus state-of-the-art, quantitatively. Average statistics over 10 graphs sampled
from the model GCG( (100, 100, 100, 100), p, µ, p, −µ) for each parameter combination
(p, µ) in terms of the number of clusters (the closer to 4 the better), purity (the larger
the better), cut weight difference to the true cut weight (the smaller the better), and
the BCubedF metric (the larger the better). Boxes and whiskers are defined as in
Figure 4.5.5. Overall, Expand and Swap show the best cluster quality, followed by SCC

and AICM, outperforming all other spectral alternatives.
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performance of SCC is relatively robust against sparsity and noise. The third place is taken by

all other spectral approaches, which are clearly outperformed on all harder instances, even

though they base on the respective best-possible GRID result.

Qualitative comparison

In this section we compare SCC to AICM, SL-SLINK-GRID and SL-KMEANS-GRID on graphs

of size n = 3400, for which it is no longer feasible to compute Expand or Swap. Precisely,

we sample a graph from the model GCG( (100, 200, 300, 400, 600, 800, 1000), p, µ, p, −µ) for

the parameter combinations (p, µ) ∈ {(2.0, 0.1), (1.4, 0.08), (1.0, 0.1), (0.8, 0.8)} and apply all

four clustering algorithms to the instance. Figure 4.5.7 plots the resulting cluster-matrices

Y ∈ {0, 1}3400×3400 as a black-and-white image. Pixel (i, j) is black if and only if vertices i and

j are assigned by the algorithm to the same cluster (i.e., Yij = 1). Because of the meaningful

ordering of the generated vertices, the correct clustering corresponds to a block-diagonal

form of 7 blocks. For the easiest instance (top row), AICM and SL-SLINK recover the correct

clustering exactly. SCC over-segments the smallest cluster, but the correct clustering could

be recovered by a sufficient post-processing strategy. SL-KMEANS is not able to distinguish

the smallest four clusters well from each other. With increasing sparsity and noise (toward

bottom), each approach shows an individual behavior on how it looses the ability to recover

the true classes. SL-KMEANS always finds some clusters that represent true classes at least

roughly, while making an increasing amount of errors across the board. SL-SLINK separates

supersets of true classes from each other sharply, but it tends to put all vertices into a single

large cluster, plus keeping a few singleton-clusters. Both these embedding-based approaches

perform bad in recovering the small clusters. AICM looses the ability to detect clusters in

increasing order of their size, while it reveals larger clusters quite reliably. This behavior is

similar to that of SCC, but while SCC over-segments the smaller clusters earlier than AICM

does, SCC is able to detect fuzzier clusters more robustly than AICM. For p = 0.01, SCC is still

able to partially detect 3 classes with reasonable accuracy, while AICM cannot find more than

the single largest class.

In accordance with the previous section, this experiment shows that SCC and AICM perform

similarly, with SCC having a slight advantage on sparse and noisy instances. This makes SCC

particularly interesting for the exploratory analysis, where SCC might point to fuzzy structures

that are invisible to other approaches.

4.6 Application: Anti-zerging clustering software

This section presents the main application that motivated my research on correlation clustering.

It provides several details on the software architecture (Section 4.6.1) and on the algorithmic

superstructure (Section 4.6.2) that is required to finally apply the correlation clustering
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SCC AICM SL-SLINK-GRID SL-KMEANS-GRID

p = 0.1
µ = 2.0

p = 0.04
µ = 1.4

p = 0.02
µ = 1.0

p = 0.01
µ = 0.8

Figure 4.5.7: SCC versus state-of-the-art by exemplary cluster-matrices. Each
row corresponds to a graph that is sampled from the model
GCG( (100, 200, 300, 400, 600, 800, 1000), p, µ, p, −µ) for the respective parame-
ters (p, µ). Each column shows the cluster matrices as being computed by the
respective algorithm. The cluster matrix is a 3400 × 3400 matrix with entry (i, j)
colored in black if and only if the corresponding vertices i and j are grouped by the
algorithm into the same cluster. The perfect block-diagonal form vanishes for sparser
and noisier instances.
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algorithm to individual combats. This section ends with a performance evaluation of the SCC

algorithm in this context (Section 4.6.3).

4.6.1 Overview on the software architecture

The architecture of the Anti-Zerging Clustering Software follows the structure of how the

virtual world is partitioned into smaller subparts: the full world map is divided into ca. 300

individual regions. Each region covers a virtual area of a few square kilometers. Every active

player is located at a position in exactly one region. A player can potentially interact with all

other players in the same region, but no interaction is possible across region boundaries. Players

can move from one region to a neighbored region by crossing their common boundary. The

regions are technically supplied by a few dozens of dedicated game servers. Each game server

is responsible for computing the game physics of a number of regions plus the communication

to all user client machines that currently act in one of the regions.

In order to avoid that players who received a debuff can get rid of it by just moving to

another region, we have to keep track of all information on a player even if it moves to another

region. A centralized approach for storing player information across regions is to maintain

a global world graph: the vertices of this graph are all active players in all regions, and

edges hold aggregated information on all recent interactions between two players. The world

graph is dynamically updated by all current activities in all regions. Further, it slowly forgets

about old activities and removes an edge if no recent interactions exist. This yields a sparse

graph: there might be up to 10000 players simultaneously playing across all regions, but each

player is connected to only, say, 5− 200 other players. The world graph is at the heart of the

clustering software.

The overall structure of the Anti-Zerging Clustering Software and its environment is

visualized in Figure 4.6.1, which shows three of the following four main components.

• Game server. Beside its other tasks, each game server collects information on all

activities in its regions, and aggregates them over a time window of a few seconds

into a region snapshot. Each snapshot gets a server timestamp attached and is then

transmitted over TCP to the clustering server, serialized as a JSON string. Further,

each game server expects to repeatedly receive an information update on the most

recent debuff scores of all its players. The debuff scores affect the game physics in an

appropriate way.

• Clustering server. The clustering server is implemented in Java. It consists of three

components that run as separate threads.

– Server agent. Manages the connections to all game servers, based on the

server socket of the the standard java.nio package, which allows to deal asyn-

chronously with a large number of incoming connections of TCP clients. An efficient

de-/serialization between the JSON format and internal Java objects is provided
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Figure 4.6.1: Environment and overall structure of the clustering software. The environment consists
of the game servers, the clustering server, and the visualization client. Not shown:
the test simulator that can replace the game servers in order to replay (and modify)
previously recorded real data streams. See the text for details on the clustering server.
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by Google’s GSON-library2, which outperformed other tested alternatives.

– World agent. Maintains the world graph, which holds present and past infor-

mation on all interactions of active players. Further, the world agent repeatedly

prepares the next clustering phase by partitioning the world graph into separate

region graphs (see the details in the following section) and finally starts a thread

pool with one clustering task per region.

– Clustering task. Executes the clustering process for a single region independently

of all others. The clustering process starts with a heuristic that identifies all

individual combats in the region. Each player is assigned to one of the combats, or

to the “no-team” if it is not involved in any combat. Teams are identified separately

for each combat by executing a correlation clustering algorithm on the combat

graph. The resulting team information is integrated into the update strategy for

the debuff scores. The updated debuff scores are finally sent to the server agent in

order to forward them to the appropriate game servers.

• Visualization client. This component is a separate windowed application that can

remotely connect via TCP to a running clustering server in order to display real-time

information about the world and the clustering processes. It enables a live-visualization

of every region graph (including a navigable history per region), plus detailed text output

for statistical information on the clustering results. See Figure 4.6.2 for an example.

Technically, this TCP-connection uses the Kryo-library3 at both ends, which turned out

to be superior over a couple of tested alternatives in terms of de-/serialization speed of

Java objects as well as in simplicity of use.

• Test simulator. This component simulates one or more game servers for testing

purposes without requiring any real game server. It has access to real data sets that

were recorded during a session with 30 volunteers who played through ten different

variants of PVP combats. These data feeds can be modified before transmission in order

to allow for more variety. For example, test scenarios can be duplicated and translated,

and the cheating strategies “friendly fire” and “unfriendly health” can be injected at

configurable rates. For all combats in this test data, the ground truth of the correct

team association is accessible, which allows to study the performance of the clustering

algorithm quantitatively. If data with ground truth is sent to the clustering software,

then the visualization shows extra information that is not available otherwise, such as

the confusion matrix, classification performance, etc.

Each region can have an individual configuration for its clustering process, or it falls back

to a default configuration. All parameters can be re-configured live without downtime by

2https://github.com/google/gson
3https://github.com/EsotericSoftware/kryo
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Figure 4.6.2: Screenshot of the visualization client. The left panel lists all regions that are currently
known at the clustering server to which the GUI is connected. The user can select up
to 16 regions and is henceforth notified by the server about all related updates. The
right panel shows details for all selected regions: a plot of the region graph (including
configurable color-encoded information) plus a text box that provides several details
on the region’s state and the clustering process. The plots are updated live as soon as
new region information comes in. Alternatively, the user can browse back and forth in
history in order to manually inspect details or to export the data in various formats.

modifying the configuration files (using Java’s WatchService to get notified on file changes).

A modified configuration is automatically reloaded and injected into the running system.

4.6.2 From the world graph to updated debuff scores

This section provides details on the construction of the world graph and on the chain of steps

that are required to finally derive updated debuff scores from it.

The world graph

The world graph is a dynamic directed graph with properties attached to its vertices and

edges. Since the graph changes over time, it can be modeled as a sequence of static graphs

Gt = (Vt, Et) for some time parameter t. Every vertex corresponds to a player that is currently

acting or that became inactive recently (the user just exited the game, leaving behind recent

player interactions that still continue to have an effect in the world graph). Together with

each vertex, information on the corresponding player is stored, for example:
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• region: the region in which the player currently resides

• location: the location in the region at which the player was placed at the end of the

latest region snapshot

• health points: the number of remaining health points of this player (a player dies if

its health points fall below 0)

• guild: the guild, if any, to which this player belongs

• strength: a parameter that quantifies the overall strength of this player, that is its

potential power depending on its equipment and magic capabilities

A directed edge from player i to j exists if and only if player i recently acted toward player j,

for example by a weapon attack, a magic spell, or just by staying close to j. Together

with each edge, additional information on all recent interactions of this oriented pair (i, j)

is stored, in particular a timestamp of the last edge update together with several similarity

scores and dissimilarity scores. All dis-/similarity scores take non-negative values. Each such

dis-/similarity score is aggregated over the past in a way that cumulates repeated activities,

but that also damps outdated activities over time back to zero. If eventually all dis-/similarity

scores for the edge (i, j) fall below a certain threshold, then this edge is removed from the

world graph. The following example shows such an aggregated update of a dissimilarity score.

Example 4.6.1 (Aggregation of absolute damage points)

Let t(i, j) denote the timestamp (in seconds) of the latest update of edge (i, j), and

dabs(i, j) the dissimilarity score of the aggregated absolute damage points caused by

player i on player j. If a region snapshot at time t tells that player i caused 50 additional

damage points on player j, then the new score d′abs(i, j) is computed as d′abs(i, j) :=

0.9t−t(i,j) · dabs(i, j) + 50. That is, the old score decays exponentially at the rate −0.1

before the current damage points are added.

Note that Example 4.6.1 gives just a simplified impression of the overall world graph update

mechanism, as carried out by the world agent. The world agent particularly implements

strategies to handle various race conditions:

• region snapshots can be received out of time-order from different game servers due to

irregular transmission latencies

• region snapshots are taken by each game server independently of the others at individual

time intervals that are not in sync with the other servers

• whenever a player moves from one region to another, then it shows up in two time-

overlapping snapshots of different regions
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The following list shows some of the information that is stored along with every edge (i, j):

• timestamp: the time of the latest update of this edge, that is t(i, j) in Example 4.6.1

• absolute damage: aggregated score of absolute damage points caused by player i on j,

that is dabs(i, j) in Example 4.6.1. Similar aggregated scores are defined separately for

healing points donated by player i to j as well as for other kinds of benevolent and

malevolent magic spells. All these scores act on roughly the same scale, so that 10

adversarial (dissimilarity) points outweigh 10 friendly (similarity) points.

• relative damage: rather than adding the absolute damage points, this aggregation

cumulates the damage points divided by the remaining health points of player j. Similar

relative scores are defined for the other similarities and dissimilarities. Relative scores

treat both adversarial and friendly activities more serious if the (resulting or preceding)

number of health points is close to zero, while the activity is less relevant if the number

of health points is large. This further limits the options of cheaters, since cheating

activities have less impact as long as they are not essentially harmful or helpful.

• friendly close time: a similarity score that is updated in a very different way than

the other scores. The basic idea is to increase this score over time if players i and j

stay close to each other without performing any combat operations. Thus, high scores

means that they acted peaceful next to each other, although no environmental reasons

preclude them from attacking each other. This value decreases at individual speeds if

the players are far away from each other, or if one attacks the other. The corresponding

rates of increase and decrease depend further on the distance between the players (very

close, close, medium, far), resulting in several individual parameters to tune.

All the aggregated scores that are stored at the world graph’s edges can be combined in

several different ways into a single correlation score cij for that edge, for example via

cij := αh · heal(i, j)− αd · damage(i, j) + αf · friendlyCloseTime(i, j) (4.9)

for some positive scaling parameters αh, αd, αf . This shows that we can think of the world

graph as a correlation graph. High positive scores cij � 0 indicate high confidence that both

players belong to the same team, low negative scores cij � 0 give evidence that players i

and j are adversaries, and scores close to zero reflect uncertainty. In particular, cheaters can

provoke erroneous negative scores via friendly fire and erroneous positive scores via unfriendly

help. This suggests to determine the unknown number of participating teams by maximizing

the corresponding CC functional. Here it is a particularly useful property of the CC functional

that the case of non-symmetric scores cij 6= cji can be reduced to the case of symmetric scores,

without affecting the result, by considering the symmetric weights wij := wji := cij + cji for

the correlation clustering algorithm.
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From the world graph to region graphs

The world graph usually contains several independent PVP combats at a time, even multiple

independent combats per region. Our goal is to identify the effective teams within each combat

individually, so we first have to define a way to separate one combat from another combat.

Since no interaction is possible across region boundaries, it is reasonable to define that one

and the same combat can only include players that stay in the same region. Hence, if some

players of an ongoing combat in region A move to another region B and continue fighting each

other, then they will be treated as a separate combat. This is reasonable because the balance

of power in these two regions can be very different. Moreover, all historical information

between players that currently reside in different regions is still kept in the world graph. So

as as soon as other players move between regions A and B, all their previous associations will

immediately have an effect on the clustering.

Treating regions separately allows for a convenient intermediate step toward identifying

individual combat graphs, as carried out by the world agent: the world graph is subdivided

into region graphs, that is the subgraph of the world graph that is induced by all players that

currently stay in the same region. This splitting particularly holds back any region-crossing

edges from the further processing. There is one more step involved in defining a region graph:

since all edges still refer to different individual time stamps, all information in a region graph

needs to be extrapolated (damped) to the latest timestamp for which a snapshot from this

region was received. After this extrapolation, all information in a region graph refers to the

same time, although different regions may refer to different times.

Finally, the world agent enqueues one new clustering task per region to a processing queue.

The processing queue is worked through by a thread pool of multiple threads, which allows

to exploit multi-core CPU-power. In parallel to the execution of the clustering tasks, the

world agent continues updating the original world graph from the newest incoming region

snapshots. When all tasks in the processing queue are finished, the world agent initiates the

next clustering phase as soon as possible (after a minimum total delay of at least one second

from the beginning of the previous clustering phase).

From a region graph to combat graphs

For a human observer it is in most cases easy to see where in a region a PVP combat happens,

and which players participate. However, algorithms need precise instructions that are applied

to all cases. This requires to think carefully about the boundary cases, where it is even for

a human no longer easy to see whether there is a single combat, or multiple combats close

to each other, and which player precisely belongs to which combat. There is no canonical

solution to make this sharp definition of a PVP combat precise. After carefully considering its

consequences, I developed the following two-step strategy: first, the region graph is subdivided

into sub-combats and the no-team. the second step is to merge sub-combats if they likely

belong to a single combat.

A sub-combat is defined according to the following informal idea:
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“ A player belongs to a sub-combat, if it is directly or indirectly

associated by recent activities to any adversarial activity. ”
The following strategy makes this idea precise:

1. an edge (i, j) is denoted as active if the timestamp of its last harmful or helpful activity

lies back no longer than 60 seconds

2. consider the subgraph of the region graph that consists only of active edges, and find

all its weak connected components (that is, connectivity ignores the direction of all

interactions)

3. every component that contains any adversarial edge is defined as a sub-combat, and

consists of at least two players. All other components consist of players that are not

associated to any sub-combat, so they are added to the no-team.

This strategy assigns actively fighting players to a sub-combat as well as magicians that only

focus on healing their team members (even if they operate just indirectly by helping others

that help others). This strategy further implies that players can become part of a sub-combat

against their wish by being attacked.

Particularly at the beginning of a larger combat, when harmful and helpful activities do not

form a single weak graph component yet, it happens that a single large combat is subdivided

into multiple sub-combats. However, in this case there are usually many non-active edges

(for example due to friendly close time similarities or from outdated actions) between several

players from different sub-combats. For that reason, the second part of the strategy iteratively

merges two sub-combats into a single one, whenever they are connected by several non-active

edges (relatively to the size of the smaller sub-combat). This merging process ends up with a

number of combats, each consisting of one or more sub-combats. The individual combats in a

region show a lot of internal interaction, but no or almost no interaction in between. Each

combat defines its combat graph, that is the subgraph of the region graph that is induced

by all players of the combat. All combat graphs are further processed one after the other,

independently of all others.

Note that the problem of subdividing the region graph into combats and the no-team is

similar to the general problem of identifying clusters (combats) on a noise floor (no-team).

However, in contrast to some generic clustering algorithm, the hand-crafted clustering strategy

presented here allows for a far better control of the precise details. It turns out that this

specific problem is simple enough to be rigorously solved by explicit and intuitive connectivity

rules.

From combat graphs to team assignments

Identifying the teams within a combat is much more difficult than identifying combats as a

whole in a region. The first step is to transform the given combat graph into an undirected
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simple graph G = (V,E,W ) with correlation weights on its edges. This is achieved as described

in the text following Equation (4.9) on page 193, although in practice we consider some more

edge parameters than shown there. Further, we may choose either the absolute or the relative

dis-/similarity scores for defining cij . A comparison of these two approaches showed that the

relative scores perform better than the absolute scores.

Once the graph G is defined, we can apply any correlation clustering algorithm in order to

partition the vertices into V = V1 ·∪ . . . ·∪ Vk for some unspecified number of clusters k. This

k-clustering assigns the players of this combat to an unspecified number of teams.

The clustering algorithm that is used in the later experiments is the SCC algorithm in two

variants: unpruned, that is the original SCC algorithm without any pruning strategy, and a

(satisfaction-)pruned variant, which stops the further subdivision within the ClusterTree

algorithm whenever all players of the current vertex subset are “satisfied” with being grouped

together. This approach bases on the following definition of the level of satisfaction of player i

about its assignment to team T .

Definition 4.6.2 (Satisfaction)

For a correlation graph G = (V,E,W ), any team T ⊆ V , and every player i ∈ T , the

satisfaction si(T ) of player i about staying in team T is defined as

si(T ) :=
∑
j∈T

wij −
∑
j /∈T

wij .

The satisfaction about staying in team T increases with strong team-internal similarities

and with strong dissimilarities to players in other teams. Satisfaction is reduced if there are

strong team-internal dissimilarities or strong similarities to players that are assigned to a

different team. Whenever si(T ) is above some threshold τ , then player i is “satisfied” with its

team members and with the separation to other teams. Note that si(T ) does not depend on

how the external players j /∈ T are clustered into teams exactly, so the satisfaction remains

unchanged even if the external players are going to change their teams (without entering T ).

In the Anti-Zerging application it makes sense to set τ to a negative value, so that players

accept to stay in team T as long as their satisfaction does not fall below some negative

“tolerance” τ . A negative value of τ has the effect of making the clustering more robust

against cheating by friendly fire and against over-segmentation (since the hurdle for creating

a new team is higher) at the price of an increased chance for under-segmentation and wrong

assignments (a player can wrongly be assigned to a team as long as this is tolerated by the

player and the team members).

The pruning parameter τ is a single intuitive parameter that controls the overall behavior

of the satisfaction-pruned SCC algorithm.
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From team assignments to debuff scores

Once the team assignments are computed, the final step is to determine new debuff scores for

all players. In the current implementation this is achieved by the following straightforward

solution:

1. for every team T , compute its strength by summing over all team members’ individual

strengths:

strength(T ) :=
∑
i∈T

strength(i) .

2. map the team strengths to team debuff scores in the interval [0, 1], where 0 means no

debuff, 0.5 moderate debuff, and 1 the strongest possible debuff. The team debuff is

computed from the team strength as follows:

debuff(T ) :=

0 , strength(T ) ≤ offset

1− exp
(
−strength(T )−offset

damping

)
, strength(T ) > offset

for some fixed parameters offset and damping that control the horizontal shift and the

initial slope of the curve (see Figure 4.6.3).

3. for each player i, update its individual debuff score debuff(i). This is achieved by a

time-smoothed interpolation from the previous value of debuff(i) toward i’s new team

debuff (or toward value 0 if player i is in the “no-team”) as the new intended value.

Precisely, the interpolation results from constraining debuff(i) to increase toward the

intended value by at most `+ > 0 units per second (or to decrease by at most `− < 0

units per second) for some parameters `+ and `−.

The updated scores debuff(i) of all players i are finally sent back to the appropriate game

servers in order to consider them in the game physics.

This strategy assigns positive debuff scores to almost all teams that participate in any

combat. Zergs are penalized indirectly by receiving higher debuff scores than their strongly

inferior victims. One can think of sophisticated alternative strategies to define debuff scores,

for example, by first detecting which team fights against which other teams, emitting positive

debuff scores only in case of strong imbalances. However, the optimal solution depends to a

great extent on the way how the debuff scores affect the game physics: if a positive debuff

score would directly lower the power of the players’ weapons and show up a warning symbol,

then the implemented strategy of assigning debuff scores to almost all teams would likely

annoy users. But if the debuff scores affect players more subtle, then such a strategy might

be accepted by users. For example, positive debuff scores could cause a tiny slowdown of the

maximum sprinting speed. Strongly inferior teams will then have a slightly better chance to

flee, which can even be justified by the psychological aspect that they run for their life, while

strongly superior players cannot exploit their full potential in sprinting. At the end of the day,
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Figure 4.6.3: Mapping from team strength to team debuff. Example plot for three different
combinations of the parameters (offset, damping). Red: (2, 10). Green: (4, 10). Blue:
(1, 20). The function equals zero as long as the team strength is below offset. For
larger values it grows monotonically toward approximating 1. The initial slope depends
on damping.

the whole approach of “clustering against Zergs” can only be successful if it is possible to

include debuff scores into the gameplay in a way that is approved by the users. However, this

aspect is out of the scope of this thesis.

4.6.3 Findings from the experiments

In order to have some ground truth available, Sandbox Interactive GmbH arranged a session

with 30 test users that played through ten different combat scenarios. During the session all

interactions including the information on which player belongs to which team were recorded

as a stream of region snapshots. The combats followed coarse storyboards that I prepared in

advance, including scenarios such as “three teams against each other”, “two teams against

each other, where one team is fully surrounded by the other” and “a small team of strong

players against a large team of weak players”. The recorded data streams build the basis for

the test simulator described in Section 4.6.1. By replaying (and transforming) these streams,

we can compare the clustering results against the true team assignments.

However, as already discussed in Section 4.1, sometimes it is not possible or not even

desired to recover the true teams. We should rather focus on identifying the effective teams,

although there is no such ground truth data available (even not easy to define). Sometimes

the clustering results deviate from the true teams, but a human observer agrees with the

clustering results rather than considering them as a misclassification. Let us show this issue

exemplary on the “three teams against each other” scenario. In Figure 4.6.4 (a) the true teams

are visualized as (blue) circles, (yellow) squares, and (cyan) triangles, respectively. Since no

combat is going on, all players are assigned to the no-team (grayed out), connected only by
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(a)

(b)

(c)

Figure 4.6.4: True teams versus effective teams. (a) before the combat starts, all players are assigned
to the no-team (grayed out). The only available information is by spatial closeness
between players. (b) to the beginning of the combat, the clustering process suggests
that there are four teams: to the left a team of size 9 against another team of size 4,
and to the right a team of size 2 against a single player. (c) the clustering process
suggests that there is one team of size 11 in a combat against another team of size 7,
although the ground truth suggests a three-on-three combat of 11 versus 4 versus 3
remaining players.
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spatial similarities (such as the friendly close time). At the top of the map, some player i

of the triangle team spies for some time on the square team. During its stay, player i looses

the spatial similarity to its true team, but gains some spatial similarity to the opponent team.

Every clustering algorithm on this graph would return the three connected graph components

as three separate clusters, and a human observer (without seeing the true teams) would agree

that this is indeed the best solution. However, with respect to the true team associations,

this clustering is suboptimal because player i is known to be a member of the left cluster. No

reasonable clustering algorithm would ever assign i to the left cluster, since there is absolutely

no intrinsic reason (without additional knowledge) why i should belong to the left cluster.

Thus, rather than rating this clustering as erroneous, we should consider our ground truth

(based on true teams) as erroneous, and put our focus on effective teams instead. In terms

of effective teams it is totally acceptable to assign player i to the cluster at the top. In

Figure 4.6.4 (b) the combat has just begun with currently 16 participants. The clustering

algorithm splits these 16 players into four teams rather than three. This is reasonable, since

the two sub-combats (left: 9 versus 4, right: 2 versus 1) are only connected indirectly via

some spatial similarities. In particular it is plausible to not use the spatial similarities for

merging the 4 teams into a smaller number of teams: the “correct” (with respect to true

teams) merging strategy would join the singleton cluster (the attacked player in the top right)

with the team of square players. However, there is no reason provided by the graph for doing

so. Any plausible merging strategy would rather merge the intensively connected circle team

with the square team, while the single victim to the top right would either form its own team,

or it would be merged with the triangle team. Therefore, rather than penalizing the clustering

algorithm for this 4-clustering, we should treat it as the correct solution for this graph. In

Figure 4.6.4 (c) to the end of the combat there are still 18 players fighting. The clustering

algorithm suggests to cluster them into just two teams, one of size 11 and another of size 7.

The true teams would instead further split the 7 players into 3 and 4, since they originate from

different true teams. However, a closer look at the interactions reveals that these 7 players

started to cooperate once they realized that they are even together in an inferior position to

the square team. So again it is acceptable that the clustering algorithm splits the combat in a

different way than given by the true teams.

These examples show that although we have access to some ground truth, a rigorous

quantitative analysis of the data is hardly possible. In order to get a clear understanding

of the overall clustering performance it is rather necessary to explore manually all kinds of

special cases, while comparing several different parameter settings. The true team labels

provide a helpful guidance for this exploratory analysis. I followed this approach up to a

certain extent, and my impression is that the overall performance is less a matter of choosing

the right algorithm (SCC with satisfaction-pruning works “very well” without quantifying

this further), but the performance depends much more on the details how to define the graph

weights and all other parameters of the algorithmic superstructure. This parameter tuning

cannot be achieved just from the artificial test scenarios. So as a next step it is required
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to plug the Anti-Zerg Clustering Software into the real-time productive system in order to

evaluate the clustering performance on real combats and to continue tuning the parameters.

But this would still not give the final solution. No experiment and no live inspection is able to

simulate the feedback loop that is caused by the change in behavior of players that receive a

penalty in the game because of computed debuff scores. So the final step will be to implement

such penalty strategies into the game physics, and then continue the live inspection and

parameter tuning. All these further steps are out of the scope of this thesis. My part finishes

with this feasibility study and the insight that the idea of “clustering against Zergs” appears

to be possible to become true.

During my visit to the game company’s site I learned that a major part of game development

is the patient process of tuning hundreds of core parameters plus thousands of deeper

parameters. Obviously, game developers prefer parameters that provide a plain intuition rather

than cryptic parameters with unforeseeable effects. The threshold τ of the satisfaction-pruned

variant of the SCC algorithm is such an intuitive parameter to tune. This is demonstrated

in Figure 4.6.5 and Figure 4.6.6 by showing the expected effect of satisfaction-pruning on

the clustering results in case of cheating. Both figures show the course of the test scenario

“two-front attack of one team against another” at five different times, one per row. The left

half of Figure 4.6.5 visualizes the original stream data and the achieved clustering results.

The right half of Figure 4.6.5 as well as Figure 4.6.6 show the clustering results for the same

data modified according to two different strategies of cheating by adding friendly fire:

• moderate, focused friendly fire. Every 5th player fixes one other player of its own

team and then repeatedly reduces the other’s health points by 1% per second.

• heavy, spread friendly fire. All players choose randomly every second another player

of their own team and reduce its health points by 1%.

Along each row, the combat graph is plotted together with a heat plot of the corresponding

non-symmetric adjacency/correlation matrix [cij ]. Rows and columns of the matrix are sorted

according to the ground truth. This allows to easily observe from the plot that the graph

contains two clusters. Next to the correlation plot, the confusion matrix of the SCC algorithm’s

output is shown. The entry mij of the confusion matrix shows the number of players that are

clustered into team i, while originally belonging to the true team j. In the non-cheating case,

the confusion matrix of the unpruned SCC algorithm coincides with the confusion matrix of

the satisfaction-pruned SCC-algorithm (for τ = −2). Both show perfect results with respect

to the true teams. In the presence of moderate cheating, the unpruned SCC algorithm starts

to over-segment the true teams. For example at second 50, six players are split off from

the larger team, so the cheaters reached their goal of hiding their association. However,

with satisfaction-pruning enabled, this error is corrected and the true teams are recovered.

Satisfaction-pruning is able to correct all but one of the cases. This positive effect is even

stronger in case of heavy friendly fire as in Figure 4.6.6. The unpruned algorithm gets strongly

misguided by the several dissimilarities and tends to put every player in its own singleton team.
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no cheating with cheating (moderate, focused friendly fire)

secs graph correlations un-/pruned graph correlations unpruned pruned

5

(
11 0
0 17

) (
11 0
1 18

) (
11 0
1 18

)

25

(
13 0
0 19

) (
14 0
0 19

) (
14 0
0 19

)

35

(
13 0
0 19

) 12 0
2 0
0 19

 (
14 0
0 19

)

50

(
13 0
0 19

) 14 0
0 6
0 13

 (
14 0
0 19

)

95

(
7 0
0 15

) 7 0
0 5
0 10

 (
7 0
0 15

)

Figure 4.6.5: Satisfaction-pruning in case of moderate friendly fire. Course of a combat at five
different times (rows). (left half) original test scenario data. The three individual
columns show the combat graph, a heat plot of the correlation weights (light/dark green
indicates weak/strong similarities, light/dark red indicates weak/strong dissimilarities),
and the confusion matrix of the clustering results (row = cluster, column = true team).
(right half) the same test scenario, but with some friendly fire added. While the
unpruned SCC algorithm starts to over-segment, the satisfaction-pruned SCC algorithm
is still able to recover the true teams almost perfectly.
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with cheating (heavy, spread friendly fire)

secs graph correlations unpruned pruned

5



5 2
4 2
1 0
1 0
2 6
1 6
0 1
0 1
0 1


(
11 5
3 14

)

25


8 0
4 0
1 0
1 9
0 7
0 2
0 1


(
13 0
1 19

)

35


11 0
3 0
0 8
0 8
0 1
0 1
0 1


(
14 0
0 19

)

50



12 0
1 0
1 8
0 4
0 3
0 2
0 2


(
14 0
0 19

)

95


7 3
1 1
1 8
0 6
0 1


(
9 1
0 18

)

Figure 4.6.6: Satisfaction-pruning in case of heavy friendly fire. Similar to the right half of
Figure 4.6.5, but here for more frequent and distributed friendly fire. The SCC algorithm
with satisfaction-pruning is still able to recover the true teams to a great extent.
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With satisfaction-pruning enabled, the SCC algorithm is again able to recover almost all cases.

Note that it may even be true that in the “incorrect” cases the clustering result provides a

more reasonable solution in terms of effective teams than the “correct” clustering. From the

definition of satisfaction-pruning we get that a player is only assigned to any team if all team

members (including itself) tolerate this assignment. This gives us the calming insight that a

player can only ever be misclassified because of a debatable gray-zone decision rather than

because of an epic fail.

4.7 Chapter summary

This chapter studies another variant of graph Laplacian matrices. Like in both chapters

before, a tiny modification to the standard definitions causes strong differences in the algebraic

properties and their interpretation. Just by defining the entries in the degree matrix in terms

of absolute edge weights rather than by the original real-valued edge weights, the interpretation

of the Laplacian’s smallest eigenvector changes fundamentally: while the smallest eigenvector

of the standard Laplacian is meaningless in similarity-based clustering, the smallest eigenvector

of the signed Laplacian becomes the most informative one for correlation-clustering. I prove

this by a novel spectral relaxation of the NP-hard problem of determining the optional

real-weighted MinCut, denoted as OptMinCut. I particularly argue that one should think

about the smallest eigenvector of the signed Laplacian as an approximation of OptMinCut,

rather than as an approximation of SignedRatioCut as currently stated in the literature.

These theoretical insights result in an algorithm: the SCC algorithm. Its main idea is that

of recursive spectral clustering, but it shows two additional interesting properties. First, it

refers to unbalanced cuts, which I claim to be desired in correlation clustering rather than

balanced cuts. It is a fundamental paradigm shift to no longer focus on balanced cuts, but to

study unbalanced cuts for spectral clustering. Second, it automatically prunes the cluster-tree

as soon as no cut of negative weight exists. I compare this algorithm to several alternative

approaches to correlation clustering. It turns out that the SCC algorithm is able to outperform

existing spectral and non-spectral methods, so it is at least on par with state-of-the-art. It

shows a particular strength on sparse graphs with noisy edge weights.

This chapter is originally motivated by a practical application from online gaming, where the

goal is to robustly detect a certain type of cheaters. My suggested solution is a pruned variant

of the SCC algorithm that provides an intuitive parameter of tolerance to misclassification.

In order to transfer the theoretical contributions to practice, several additional algorithmic

challenges were solved as presented in this chapter.

204



Conclusions

Studying graphs by linear algebra is still a fascinating and effective approach, even after

decades of highly active research across different communities. There are still countless new

results published every year that reveal surprising and useful properties of graphs in terms of

algebraic properties of their graph matrices. This thesis contributes a couple of novel results

to this field, with a focus on machine learning and its applications. Since every result in

research is accompanied by even more questions that point into possible directions of future

work, I am going to conclude this thesis by describing some of these challenges.

Chapter 2 provides a quite complete picture of the technique of f -adjusting, but it still

leaves many questions open. The geometric interpretation refers to the convergence of volumes

and cut weights to well-understood limit quantities, given that the number of sample points

goes to infinity. As demonstrated by applications, these asymptotic results provide already

meaningful explanations for samples of realistic sizes. Future work on f -adjusting could focus

on elaborating explicit approximation guarantees for finite sample sizes.

Another line of future work could focus on weakening the assumptions that are put on the

underlying density as well as on the cut surface to be a hyperplane. The current assumptions

are made because of technical requirements of certain proof steps, and in order to keep the

overall complexity of the proof manageable. Probably one can find an elegant argument to

generalize the proof from hyperplanes to more general smooth cut surfaces, or one can even

base the proof on less restrictive techniques such as Γ-convergence (Trillos and Slepčev, 2016).

Finally, it could be interesting to connect f -adjusting to manifold learning, for exam-

ple to Locally-linear embedding (Roweis and Saul, 2000), since these techniques often

work poorly in case of non-uniform sampling densities. Probably it is possible to assist

these techniques by removing the non-uniform distortion in a similar way as achieved by

UnbiasedSpectralIntensityClustering (Algorithm 2.6.3).

In Chapter 3 it is shown that the SIPF sequence equals the m-sequence for m = mG chosen

as the geometric mean function. In contrast to PSIPF, the m-sequence converges to a different

limit for a different choice of m. It is a challenging question how to generalize the convergence

of m-sequences to other mean functions than mG, and how to interpret their limit matrix.

As shown in Figure 3.3.1, for m the minimum or the maximum function no convergence to a

feasible solution can be guaranteed. However, there is some evidence that the m-sequence
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converges to a feasible solution for any other Hölder p-mean function, that is for any finite p.

Probably the limit matrix can then be expressed as being optimal with respect to a more

general family of f -divergences, yielding relative-entropy just as a special case for m = mG.

Since the proof of convergence of SIPF exploits the factorizing property of the geometric mean,

proving the above conjecture will require other techniques.

Another interesting direction is the comparison of the single-step f -scaled matrix W (1) of

degree vector d̃ to the f -fitted matrix W (∞) of degree vector f . A larger relative deviation

between d̃i and fi can indicate critical vertices that are “stressed” more than others. Similarly,

the deviation between w
(1)
ij and w

(∞)
ij could indicate certain edges that are crucially important

for a successful balancing. Both scores may provide interesting semantics in studying networks.

Finally, it would further be interesting to study the rate of convergence of SIPF and of

general m-sequences, in particular as a function of the sparsity of W or of the ratios fi/di.

For the SCC algorithm introduced in Chapter 4, an interesting challenge is to study in

deep the various improvements that are stated in Section 4.4.2. This can be done in a

heuristic, experimental way, or formally. One step into the latter direction could be the formal

analysis of the “ideal” cluster-tree that is generated by providing the SCC algorithm with a

perfect solver for OptMinCut. The ideal cluster-tree is a hierarchical partition into subsets of

non-negative minimum cut. Probably one can give theoretical guarantees on the cut weight

or the cardinality of such an ideal partition.

Another interesting line of future work is to connect the SCC algorithm deeper to the

literature on the well-studied MaxCut problem, see also the brief summary in Section 4.3.3.

Since many results on MaxCut focus on proving constant-factor approximation guarantees,

these results could help to find such for the SCC algorithm.

Finally, one could study the spectral relaxation of OptMinCut and SignedRatioCut in

more detail. The approach in Section 4.5.2 suggests a large class of alternative non-relaxed

optimization problems, all of which can be relaxed to the same eigenvalue problem. Among

all these alternative interpretations, it is likely that OptMinCut is the best approximation

in some precise sense. A rigorous proof for this kind of optimality would demonstrate again

that the smallest eigenvector of the signed Laplacian should be interpreted as an approximate

solution to the OptMinCut optimization problem rather than to any other.

In whatever direction the hypothetic future work would go, it should continue to equip its

results with an intuition that is as simple as possible. The bridge between Theoretical Machine

Learning and Applied Machine Learning, and even more general between Data Science and

Data Engineering, requires intuitive abstractions of the technical details on both sides. In order

to creatively apply theoretical results in practice, an intuitive access to the application-relevant

aspects is required. The other way round, physical, economic and other domain-dependent

constraints must be abstracted away by an adequate model in order to be accessible for

theoretical research. The collective continuous advancement of this bridge is one of the biggest

challenges in this day and age.
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D. Cvetković, M. Doob, and H. Sachs. Spectra of graphs: theory and application, volume 87.

Academic Press, 1980.
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