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Chapter 1

Introduction

Many of the physical processes in the real world can be described mathemat-
ically by using partial differential equations (PDEs). For example heat flow,
diffusion, fluid flow, elastic deformation and wave propagation and many other
phenomena are modelled by PDEs. Modelling such processes in practical ap-
plications like in industry, medicine or engineering may necessitate knowing the
optimal inputs in the considered models for some financial or safety reasons.
This leads to establishing minimization problems with PDEs constraints. Solv-
ing such optimization problems prove challenging since the involved variables
usually belong to infinite dimensional spaces and hence discretization concepts
shall be developed. Therefore, it has been of interest to study optimal control
problems of PDEs with probably additional constraints on the control/state
variables, see [73] [45] for further details.

The thesis is divided into two parts. In the first part, we consider the optimal
control problem

. 1 o
(P) Jnin J(u) = 5”1/ - y0||2L2(Q) + 5”“”%2(51)

subject to the semilinear elliptic PDE

~Ay+o¢(y) =u in QCR?
y=0 on 09,

and the pointwise state constraints
Yo(z) <y(z) <yp(z), z€ K CQ.

The precise assumptions on the data of the problem will be given in Section [2.1
Since the state equation is in general nonlinear, the control problem (P) is
nonconvex. Consequently, there may be several solutions of the necessary first
order conditions. These can be examined further with the help of second order
conditions. However, second order conditions can only decide if the given point
is a local mimimum of (P) and they in general don’t provide any information
about whether the given point is a global solution of the control problem.

Our aim in this part is to establish a sufficient condition that helps us to
decide if a function u satisfying the necessary first order conditions is a global
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solution of (P). We establish such a condition in Theorem under certain
growth conditions of the nonlinearity ¢. More precisely, this condition has the
form [|p|| e(o) < 1 where ¢ and 7 are constants depending only on the data of
the problem and can be computed explicitly while p denotes the adjoint state
associated with u. It turns out that an analogous result can also be established
for the variational discrete, (see [46]), counterpart (P, ) of (P), see Theorem 3.3.4]
Furthermore, any sequence (#)o<n<h, of global minima of (IP,) that satisfies
this condition uniformly converges to a global minimum of problem (P) as the
discretization parameter h tends to zero. Relying on these conditions, we can
derive an error bound of order O(h!=¢) for arbitrarily small ¢ > 0 for the
convergence of the sequence (@)o<p<p,- Finally, we show that the condition
12l La(o) < 1 also implies the sufficient second order conditions derived in [20].

We give a brief overview of the literature on optimal control of semilinear
PDEs with pointwise state constraints. For a broad overview, the interested
reader is referred to the references of the respective citations. In [16] the anal-
ysis of semiliner elliptic control problems with pointwise state constraints and
boundary controls is considered and the necessary first order conditions are es-
tablished (compare [I5] for the linear-quadratic case). See also [21] where the
pointwise constraints are imposed on the gradient of the state and the controls
are distributed in the spatial domain. Further analysis concerning the regular-
ity of the optimal control and the associated multipliers as well as discussion of
sufficient second order conditions can be found in [25] and in [24]. Second order
conditions for finitely /infinitely many poitwise state constraints are established
in [22] 19, 20], and compare [26] for the role of the second order conditions in
PDE constrained control problems.

The finite element discretization of state constrained semilinear elliptic con-
trol problems with plain convergence, that is convergence without any rates of
convergence, is considered in [23] and in [47] for a wider class of perturbations,
including the finite element discretization, of the continuous control problems.
On the other hand, established convergence rates can be found in [60] for finite
dimensional controls and finitely many poitwise state constraints, and in [I7] for
control functions and finitely many pointwise state constraints. Just recently
in [64] rates of convergence are derived when the controls are functions and the
state constrains are imposed on infinitely many points in the domain. In [34]
convergence rates are obtained for liner-quadratic control problems. In fact,
we will use the discretization concepts considered there to discretize problem
(P). For the numerical analysis when the pointwise constraints are imposed
only on the control variable we refer to [3, [I§]. Finally, a detailed discussion of
discretization concepts and error analysis in PDE-constrained control problems
can be found in [48, [49] and[45], Chapter 3].

In the second part of the thesis we are interested in the control problem

. 1 o
(Pu) R L T(y,w) = 5lly = 21720y + 5 llulliz (o)

subject to

—V - (a(w,2)Vy(w,z)) = u(z) in D CRY,
ylw,z) =0 on dD,



and

Ug < ul(x) < up for a.e. x € D,

where a(w, ) is a random field defined on a given probability space (92,4, P).
The precise assumptions on the data of the problem will be formulated in Sec-
tion[d] Following the typical notation in the literature on PDEs with stochastic
coefficients, the notation in this part will differ from and is independent of the
one in the first part.

It is clear that for a fixed realization of the coefficient a, the control problem
(P,) admits a unique solution. In fact, we will show in Theorem that
the mapping u* : Q — L2?(D) where u*(w) is the solution of (P,) defines a
L?(D)-valued random variable.

Our aim is to compute the statistics of the mapping u*, like the expected
value E[u*] or the variance var[u*]. This helps us to understand how random
fluctuations in the state equation affect the optimal controls and provides prac-
tical information on the design of control devices subject to uncertain inputs.
It is clear, however, that the quantity E[u*] needs not be a solution of an op-
timal control problem in general and is not necessarily a robust control. More
precisely, we will be interested in the numerical analysis of approximating E[u*]
by a multilevel Monte Carlo (MLMC) estimator, see [5], 32].

Various formulations for optimal control problems of PDEs with random
coefficients have appeared in the literature to date. In what follows we give
a quick overview and classify those formulations according to the type of the
control (deterministic or stochastic) and the form of the cost functional to be
minimized. In addition we comment on solvers for these problems.

Consider a cost functional J = J(u,y(u),a) where u denotes the control, y
denotes the state and a is some parameter associated with the PDE constraint.
In our setting, @ is a random function with realizations denoted by a,. We
distinguish the following problem formulations:

(a) Mean-based control, see [9] 10} TI]: Replace a by its expected value Ela].
Minimize J(u,y(u),E[a]) by a deterministic optimal control.

(b) Individual or “pathwise” control, see [9 1T}, 62, 63]: Fix a,, minimize
J(u,y(u),a,) and obtain a realization u*(w) of a random field v*. In a
postprocessing step, compute the statistics of u*, e.g. E[u*].

(c¢) Averaged control, see [57, [79]: Control the averaged (expected) state by
minimizing J(u, E[y(u)], a) using a deterministic optimal control.

(d) Robust deterministic control, see [10} 12} 37 [41] 42} 50, 53}, 54, 53] B8, [67]:
Minimize the expected cost E[J(u,y(u),a)] by a deterministic optimal
control.

(e) Robust stochastic control, see [0 [7, 29, B0, B1, 56, [72]: Minimize the
expected cost E[J(u,y(u),a)] by a stochastic optimal control.

The mean-based control problem (a) does not account for the uncertainties in
the PDE and it is not clear if the resulting deterministic optimal control is
robust with respect to the random fluctuations. The pathwise control problem
(b) is highly modular and can be combined easily with sampling methods, e.g.
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Monte Carlo or sparse grid quadrature. However, the expected value E[u*] does
not solve an optimal control problem and is in general not a robust control. The
average control problem (c) introduced by Zuazua [79] seeks to minimize the
distance of the expected state to a certain desired state. This is an interesting
alternative to the robust control problem in (d) where the expected distance of
the (random) state to a desired state is minimized. Since the cost functional
in (c) uses a weaker error measure than the cost functional in (d) the average
optimal control does not solve the robust control problem in general. Stochastic
optimal controls in (e) are of limited practical use since controllers typically
require a deterministic signal. This can, of course, be perturbed by a known
mean-zero stochastic fluctuation which models the uncertainty in the controller
response. For these reasons, deterministic, robust controls in (d) are perhaps
most useful in practice and have attracted considerable attention compared to
the other formulations. However, control problems in (d) or in (c) involve an
infinite number of PDE constraints which are coupled by a single cost functional.
The approximate solution of such problems is extremely challenging and requires
much more computational resources than e.g. a deterministic control problem
with a single deterministic PDE constraint. For this reason it is worthwhile to
explore alternative problem formulations.

Note that the problem (P,) is of the form (b). Moreover, the expected
value E[u*] can be used as initial guess for the robust control problem in (d) if
the variance var[u*] = E[u* — E[u*]]? is small. This is justified by the Taylor
expansion

E[T(w)] = W)+ 7

(E[u*])var[u®] + higher order moments,
where we have used the reduced cost functional J = J(u) and the assumption
that .J is smooth. However, we recall that E[u*] is in general not the solution
of an optimization problem.

The control problems (a)—(e) have been tackled by a variety of solver method-
ologies. We mention stochastic Galerkin approaches in [50] 506} 58] [67], stochastic
collocation in [0, 1T} BT] B3], B4, (5L 67, [72], low-rank, tensor-based methods in
[6, [7, 37], and reduced basis/POD methods in [12] 29, [30, 411 [62], [63].
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Chapter 2

Optimal Control of
Semilinear Elliptic PDEs
with State Constraints

In this chapter we consider an optimal control problem of a semilinear elliptic
partial differential equation (PDE) where the nonlinearity is monotone and it
satisfies certain growth conditions. The control is distributed in the domain 2
and the cost functional is of tracking type. Pointwise constraints on the control
and the state are also considered.

The exposition in this chapter is as follows: in Section [2.1] we introduce the
notation and set up the optimal control problem that we will consider and for-
mulate the main assumptions on its data. In Section we review some of the
standard results about the state equation like the well-posdness of the PDE, the
regularity of the solution and the differentiability of the control-to-state map-
ping. Section [2.3]is devoted to the study of the optimal control problem. We
recall the associated first order necessary optimality conditions and we derive
our main result which is a sufficient condition for global minima of the con-
trol problem. We also derive a sufficient condition that implies second order
sufficient optimality conditions.

2.1 The Problem Setting

2.1.1 Notation

Let Q@ C R? be a bounded domain. For 1 < p < oo we denote by LP(f) the
usual Banach spaces of equivalence classes of Lebesgue measurable functions
with norm || - || zr(q). For m € Ng, we denote by W™ P(Q) the classical Sobolev
spaces with norm || - [|ym.» (). We denote by Wi (Q) the closure of C5°(Q) in
W™P(). In particular, the functions in Wy ?(Q) vanish on 9 in the sense of
traces. In the case p = 2 we write H™ () := W™2(Q) and HJ*(2) := WJ?(Q).

We denote by C™(£2) the Banach spaces of functions whose derivatives up to
order m are continuous in Q with norm ||-{|cm (). We write C(Q) := C°(Q2). For
0 < B < 1, we denote by C"™# () the classical spaces of 3-Holder continuous
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functions with norm || - [[¢m.s (). The closure of C§°(€2) in C(9Q) is denoted by
Co(R2). In particular, Co() is the space of all functions which are continuous

in ©Q and vanish on 2.

For a compact subset K C 2 or K = 2 we denote by M(K) the space of all
real regular Borel measures defined on K. We remark that M(K) can also be
identified with the dual space of C(K) and it is a Banach space for the norm

[P — / fdp.
FeC(K) | flle)<1J/K

2.1.2 The Problem Setting

We consider the minimization problem

. 1 o
(P) (y,u)eHIﬁlﬂn)xm(Q) J(y,u) = §|Iy - yOHiQ(Q) + 5”“”%2(9)

subject to

y=0 on 0, (2.1)

and the pointwise constraints

g < u(r) < up for a.e. z € Q,
Ya(z) <y(z) <yp(z) VeeKcCQ,

where we assume
e O C R? is a bounded, convex and polygonal domain.

e K is a (possibly empty) compact subset of (.

ug € RU{—00} and up € RU {oo} with u, < uy.

Ya, Yb € Co(Q2) are given functions that satisfy y,(z) < yp(z), 2 € K.

Yo € L*(Q) and a > 0 are given.

e ¢:R — Ris of class C? and monotonically increasing.

There exist » > 1 and M > 0 such that
1¢/(s)] < M¢/(s)* for all s € R, (2.2)
where ¢’ and ¢” denote the first and second derivative of ¢, respectively.

We recall that the problem (P) is called an optimal control problem where
the function u is the control, y is the state and the semilinear elliptic PDE ([2.1)
is called the state equation.

A function ¢ satisfying the previous assumptions enjoys some properties that
will be useful in our analysis. We summarize these properties in Appendix [A-1]
To have an example for such a function, consider ¢(s) = |s|??s for ¢ > 3. Then
we have

16" ()] = (¢ — 1)(q — 2)Is]778 = (¢ — 2)(¢ — V)72 [¢'(s)] 72,

and thus, (2.2) is satisfied if we choose r = % and M = (¢ —2)(q — l)q+2

Q
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2.2 The State Equation

In this section we will recall the classical results about the state equation
that will be relevant in our study of the optimal control problem (). In partic-
ular, we will investigate the well-posedness of , the regularity of the state
variable and the differentiability of the control-to-state operator.

We begin by recalling the weak formulation of which reads: for a given
u € L?(Q), find y € HE(2) such that

/ Vy-Vu+¢(y)vde = / wwdr Yv e Hi(Q). (2.3)
Q Q
If such a function y € H}(Q) exists, it is called a weak solution to (2.1

Theorem 2.2.1 For every u € L*(Q) the boundary value problem (2.1)) admits
a unique weak solution y € HE(Q) N H%(Q). Moreover, there exists ¢ > 0 such
that

yllz2@) < e(1+ [[ullz2@))- (2.4)

Proof: We divide the proof into two steps. In Step 1, we show that for every
u € L?(Q), there exists a unique solution y € Hg () to . In Step 2, we
show that the solution y belongs to HE(2) N H2(£2) and we verify the estimate
24).

Step 1:

We first observe that for a given u € L*(Q2), a function y € H}(Q2) is a solution
to if and only if it is a solution to following variational problem: find
y € Hi(Q) such that

| 9y ot 00— oOde = [ u-oOlvde Ve i@, (25)

Q

In the light of and Lemma the superposition operator associated
with ¢ maps Hg () into L!(Q) for 1 < ¢ < oo and it is also continuous. Hence,
all the integrals in are well defined.

Since ¢ is monotone, the existence and uniqueness of a solution y € HZ ()
to follows from applying the main theorem on monotone operators in a
standard way, see for instance [(7, Theorem 26.A] for this theorem. In fact, it
is more convenient to apply this theorem to instead of which is why
we introduced the former.

If we test by the solution y, it follows from the Poincaré’s inequality and
the monotonicity of ¢ that

120 < /Q IVl + [6(y) — (0)]y da = /Q fu — $(0)]y da

< lu = (0)|| 22 1yl 220
< c(1+ JJullz2@) Yl #19),

which implies

yllz @) < e(1+ llullz2@)- (2.6)
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Step 2:
Let y € H}(Q) be the solution to (2.5) for a given u € L*(Q). Let f := u— ¢(y)
and consider the boundary value problem

—Aw=f inQ, and w=0 ondN. (2.7)

Since f € L?(2), it follows from [40, Theorem 4.4.3.7] that (2.7)) admits a unique
solution w € HJ(2) N H?(Q). Furthermore, according to [40, Theorem 4.3.1.4]
there exists a constant ¢ > 0 such that

lwllg2) < c(Iflle2@) + llwllL2e))- (2.8)

However, y is also the unique weak solution to (2.7) in Hg(£2). Consequently,
we conclude that w =y and y € H3(Q) N H2(Q).
From the continuous embedding H?(Q2) < C(Q) we have y € C(Q). Thus, from

, Lemma and we get

Iyl a2y < e(llu = dW)llL2) + yll2@)

c(llull L2 + o) — @0) |l L2y + [16(0) || 20y + N1yl L2(e))
c(llullL2) + Iyl L2@) + 1)
o(

<
<
<
< c(llullrz2@) + 1),

which is the estimate (2.4) and the proof is complete. |

Remark 1 Since the domain 2 is assumed to be polygonal, and thus its
boundary is non-smooth, it is essential to demand that € is convex to guarantee
the H? regularity of the state variable y in Theorem This high regularity
of y is exploited frequently in our analysis and it simplifies it. Domains with
sufficiently smooth boundaries guarantee this regularity for y even if they are
nonconvex (see [40, Chapter 2]), however, such domains lead to some tedious
analysis at the discrete level, which is why we avoid considering them in this
work.

In the light of Theorem [2.2.1] we introduce the mapping
G:L*(Q) — H}(Q) N H*(Q) (2.9)

such that y := G(u) is the solution to for a given u € L?(Q). In the context
of optimal control of PDEs, the mapping G is sometimes called the control-to-
state operator since it assigns to each control u the corresponding state y. We
state some of its properties in what follows for our further analysis.

Proposition 2.2.2 The mapping G introduced in [2.9)) is of class C' and for
every u,v € L2(Q) the first derivative z := G'(u)v is the solution of the linear
elliptic boundary value problem

Az + ¢ (y)z=v inQ,
z=0 on 09, (2.10)

where y := G(u).
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Proof: To obtain the proof, we use the Implicit Function Theorem, see for
instance [76, Theorem 4.B] and we argue like in the proof of [22] Theorem 2.5].
To begin, consider the mapping

F:HY(Q)N H*(Q) x L*(Q) — L*(Q), F(y,u) = —Ay + ¢(y) — u.

Notice that F(y,u) = 0 if and only if y = y,, := G(u) and that F is of class C*
from the assumptions on ¢. Moreover, it is easy to see that

Fy(yuw ) : Ho(Q) NH*(Q) = L2(Q),  Fy(yu,u)z = —Az+ ¢/ (yu)2

is bijective. Thus, we conclude from the implicit function theorem that the
mapping u + y, := G(u) is of class C1. Differentiating with respect to u the
following expression

F(G(u),u) =0

we deduce the PDE (2.10]). This completes the proof. |

Lemma 2.2.3 Let G be the mapping introduced in (2.9)). Then there exists
¢ > 0 depending only on Q such that

1G(u) = G()llr2(0) < cllu—vL20) Yu,v € L*(Q).

Proof: The result is obtained by utilizing the Poincaré’s inequality, the mono-
tonicity of ¢ and the Cauchy-Schwarz inequality as follows. For a given u,v €
L?(Q), let y, := G(u) and y, := G(v). Then we have

S =l < [ 1900l
= / IV (= yo)|* + [6() — &(y)] (v — yo) dv
Q
= /(“ —0)(Yu — Yo) dx
Q

<l =vllz2@) lyu — yollL2(0)-

Here ¢ > 0 is from the Poincaré’s inequality and it depends only on 2. Dividing
both sides of the previous inequality by ||y, — ¥u||£2(q) yields the desired result
and the proof is complete. |

Lemma 2.2.4 Let G be the mapping introduced in (2.9). Then for any m > 0
there exists L(m) > 0 such that

1G(u1) — G(u2)||m2(q) < L(m)[Jur — uz|lr2(q)
Jor all uy, up € L*() with ||luy|| 20y, uzlliz@) < m.
HU2||L2(Q) < m and define y; := G(u1) and ys := G(uz). From Theorem [2.

and the continuous embedding H?(Q2) < C(Q) it follows that [|y1 || Lo (0), [[y2][L= () <
¢ for some ¢, > 0 depending on m.

Proof: For a given number m > 0 choose ui, up € L?(Q) with ||u1]|z2(q),
*2.1
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It is clear that the function w := y; —y» belongs to H2(Q2) and it is a solution
of

—Aw=f inQ, and w=0 onJN,

where f:= (u1 — ua) — [¢(y1) — é(y2)]. Notice that f € L?(2). Therefore, [40,
Theorem 4.3.1.4] asserts the existence of a constant ¢ > 0 such that

lwllg2) < c(I1flle2@) + llwllL2e))-

We may now proceed while employing Lemma and Lemma to obtain

lyr — vallmzeo) < e(llur — uzll2) + 0(w1) — d(y2) |2 + llvr — v2ll22(0)
< L(m)([lur — uzllz2) + v — v2ll2@)
< L(m)|lur — uz2|lp2 ()

where L(m) > 0 is a constant depending on m. This completes the proof. MW

We would like to mention that the regularity of the state variable y plays
an important role in the numerical analysis of the optimal control problem as
we will see later. Therefore, it becomes an interesting task to investigate the
regularity of the solution y to if u is more regular than an L2(Q) function.
For this reason, we derive the next result.

Theorem 2.2.5 For a given u € W1*(Q) for some 1 < s < 2, the solution y
to ([2.3) belongs to W*P(Q) N HL(Q) and there exists ¢ > 0 such that

[Yllw2r@) < cllullLe@) + 1), (2.11)
where p = 525 for any 1 < s < sq := min(2, goemex_) with Omax € [%,7) being

the mazximum interior angle in Q. For Onax = 5 we define sq 1= 2.

Proof: We first observe that for a given u € W1*(2),1 < s < 2, the solution
y to belongs to H?(Q) N H} (). This follows from Theorem and the
continuous embedding W5(Q) < L2(Q) for 1 < s < 2.

Next, let f:=u — ¢(y) and consider the PDE

—Aw=finQ and w=0 on . (2.12)

Notice that ¢(y) € L>(£2) from the continuous embedding H?(f2) — C(Q) and
Lemma Moreover, W#(Q) < LP(Q) where p = 52 for 1 < s < 2. This
implies that f € LP(Q) with p = 2% for 1 < s < 2.

Consequently, we deduce from [40, Theorem 4.4.3.7] that there exists a unique

w € W2P(Q) N HL(Q) solution to (2.12) provided that

1 < s < sq :=min(2, gomex_)

max — T

where Oax € [§,7) is the maximum interior angle in Q. For 0. = § we define
sq = 2. Furthermore, according to [40, Theorem 4.3.2.4], there exists ¢ > 0
such that

[wllwzr@) < c(lAwllze@) + [[wllwrr@)- (2.13)
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Since y is also the unique weak solution to (2.12) in Hg(£2), we conclude that
w =y and thus y € W2P(Q) N H}(Q).
Finally, to obtain the estimate (2.11)) we utilize (2.13]), Lemma the con-
tinuous embedding H?(Q) — WP(Q) and (2.4) to get

[yllw=2r(0) < c(lullzr@) + l6(y) = ¢0)llLr(0) + [6(0)]Lr@) + lyllwrr)
c(llull o) + 9l o) + lyllaz@) +1)
c(llullLr ) + llullL2(0) + 1)
C(HUHLP(Q) + 1).

VAN VAN VAN

Observe that LP(2) < L*(f2) since p = 22 > 2 for any 1 < s < 2 and Q C R?

is bounded. This completes the proof. |

2.3 The Optimal Control Problem (P)

This section is devoted to the study of the optimal control problem (P). In
particular, we review the associated first order conditions and state our main
result about global minima for the problem (P). We also establish a condition
that implies the second order sufficient conditions of problem (P).

After we introduced the control-to-state operator G in , it will be con-
venient from now on to write J(u) instead of J(y,u). In this way, we can
reformulate our optimal control problem as

. e
P) minyey,, J(u) = %Hy - ?JO||2L2(Q) + 5”“”%2(9)
subject to y = G(u) and y|x € Yaq,
where
Uad := {v € L*(Q) : uy < v(x) < up ace. in O},
Yoa :={z € C(K) : yo(2) < 2(z) < yp(z) for all z € K}.

Notice that due to the embedding H?(Q2) — C(€) it becomes meaningful to
impose pointwise constraints on the state variable y.

Definition 1 Let Fyg := {u € Unq : Y|k € Yaa,y := G(u)}. Then a function
@ € Fuq is called a local minimum (or a local solution) to the problem (P) if
there exists § > 0 such that

J(w) < J(u) Vu€ Foq and ||t — ul[z2(q) < 0.

If u € F,, satisfies
J(@) < J(u) Yu € Fyq,

then @ is called a global minimum (or a global solution) to the problem (P).

Theorem 2.3.1 Suppose that Foq = {u € Uuq : ylxg € Yaa,y = G(u)} is
nonempty. Then the problem (P) has at least one solution.

Proof: The proof is classical, for instance, see the proof of [16], Theorem 5.1]
for the details. |
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2.3.1 Necessary First Order Conditions for (P)

It is well known that to ensure the existence of Lagrange multipliers associated
with a solution to a minimization problem in Banach spaces, one needs first to
postulate some constraint qualifications at that solution, see for instance [78§].
A typical constraint qualification for a local solution @ of the problem (IP) is the
linearized Slater condition which reads: there exist ug € U,q and 6 > 0 such
that

Ya(x) + 0 < G(1)(x) + G (0)(up — u)(z) < yp(z) — 6 Vze K. (2.14)

The necessary first order optimality conditions for the problem (P) are stated
in the next result.

Theorem 2.3.2 Let 4 € Uyq be a local solution of the problem (P) satisfying
(2.14). Then there exist p € Wol’s(Q) for 1 < s <2 and a regular Borel measure
i € M(K) such that with y € HE(2) N H2(Q) there holds

/ Vy-Vu+ ¢(gode = / awdr Yve Hy(Q), Uk € Yad, (2.15)
Q Q

/S 2 p(—Av) + ¢'(§)pv dx

:/(gj—yo)vdx—i—/ vdi Yo e Hy(Q)n H*(Q), (2.16)

Q K

/(ﬁ—|— at)(u —a)dx >0 Vu € Uy, (2.17)
Q

/ (z—15)dp <0 Vz € Yaq. (2.18)
K

Proof: The result follows from [I6, Theorem 5.2] since the set Y,4 has a
nonempty interior and the cost functional J is Gateaux differentiable at @. Here,
the differentiability of J is a consequence of the chain rule and the differentia-
bility of the control-to-state operator G as mentioned in Proposition |

It is worth pointing out that the variational inequality ([2.17)) implies a higher
regularity for the optimal control @ which in turn improves the regularity of the
associated state g. In fact, we have the following result.

Lemma 2.3.3 Let @ be a local solution of problem (P) and let i be its associated
state. Then i € WH(Q) for 1 < s <2 and j € W2P(Q) N HL(Q) such that

7llw2p ) < c(l|@llLr ) + 1), (2.19)

for some ¢ > 0, where p = 22;95 for 1 < s < sq := min(2, 3929f“"‘ —) with
Omax € [%, ) being the maximum interior angle in Q. For Omax = 5 we define

sq = 2.

Proof: The result follows immediately from Theorem if we show that the
optimal control % admits the regularity u € W1*(Q) for 1 < s < 2. To achieve
this, we recall that (2.17) is equivalent to

i(z) = Py,,(— 2p(z)) = min (max (uq, —1p(z)), ) V€,
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where Py, : L*(€2) — U,q is the L2-projection into U,q. Since j € W, *(Q) for
1 < s < 2and Py,, is a Lipschitz function, it follows from [51, Corollary A.6]
that @ € Wh*(Q) for 1 < s < 2 as well. This completes the proof. |

The next result states that the Lagrange multiplier zi associated with the
pointwise state constraints is concentrated at the set points in K where the
state constraints are active. For a detailed proof of this result, see for instance
[24].

Proposition 2.3.4 Let i € M(K) and § € Cy(Q) satisfy (2.18)). Then there
holds

supp(fiy) C {z € K : g(x) =
supp(fia) C {z € K : y(z) =

yn(2)},
Ya(2)}-

where i = [y — flq With [y, tq > 0 is the Jordan decomposition of [i.

2.3.2 Global Minima for (P)

Since the state equation is in general nonlinear, the optimal control problem (P)
is nonconvex and there may be several solutions of the necessary first order
conditions (2.15)~(2.18). These can be examined further with the help of second
order conditions but those will only give local information and usually do not
allow a decision on whether the given point is a global minimum of (P). Second
order sufficient conditions for problem (P) that are closest to the associated
necessary ones can be found in [20]. In what follows, we provide a sufficient
condition that help us to decide if a solution to f is a global minimum
of (P).
We begin by introducing the following constant:

1—r
2—2r -1\
nlo,r) :=a%Cy " M~ (2: — 1) gt pel2(2 — p)s 1t (2.20)

Here, ¢ := 3:__12, p = T:;q, while M and r appear in (2.2). Furthermore, Cjy is
an upper bound on the optimal constant in the Gagliardo-Nirenberg inequality

Ifllze < CIAIZNVEILE  (2<a<o0)

For our purposes it will be important to specify a constant C, that is as sharp
as possible. Theorem in Appendix will give three such bounds, two
of which can be found in the literature, while the third is new to the best of our
knowledge. Let us now formulate the main result of this section.

Theorem 2.3.5 Suppose that @ € Uyq, § € H*(Q) N HE(Q), p € WOI’S(Q) for
1<s<2, pe M(K) is a solution of (2.15)—(2.18). If
||?HL‘1(Q) < 77(0477‘% (221)

then @ is a global minimum for Problem (P). If the inequality is strict,
then @ is the unique global minimum. Here, n(a,r) and q are as defined in
[@-20).
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Proof: Let u € Uyy be a feasible control, y = G(u) the associated state with
Y|k € Yaq. We have

1
J(u) = J(@) = =y — gl 720 + g||u —l|Za +a [ u(u—1u)de
2 2 0

+ [ == do = (4)
Using v := y — ¢ in (2.16) we get
1 12 o 12 _ _
(4) = §||?J =2 + 5”“ — |72 + Q“(“ —u)dx
+ [ VY= + 0 @Dt~ [ (v5)di
K
1 12 « 12 _ _
> §||y —Yli2@) + 5”“ =72 + QU(U —u)dx

4 / V- V(y—9) + @)y — §) de, (2.22)
Q

by (2.18). Using (2.3)) for y and y with test function p we get

/Q Vp-Viy - g)de = /Q (u— w)pdz — /Q (6(y) — 9(7))Pda

= / (u—1u)pdx
Q
1
- [stw=9 [ v+ a-paa.
0
Using this in (2.22)) and recalling (2.17) we arrive at
J(u) = J(u)
1 _ « _ _ _
> 5l =l + lu— il + [ (0a+ P =) de

- / oy —7) / &ty + (1 - 1)g) — () dt da
Q 0

1 _ e} _
ly = Gl172) + 5 llu = @llF20) — R(u), (2.23)

>
- 2

|

where
R(u) := /Q py=5) [ ¢+ (1= 07) — /) drda.

The aim is now to estimate R(u). To begin, Lemma implies that

[R(u)| < erglﬁly—yl2</ol¢’(ty+(1—t)y)dt>ida:

™

1
— o [1plly =57 ([ ottu+ 0 omaly - 52) s
0
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(r—=1)/r
where L, = M <2Tr_—11) . Next, Holder’s inequality with exponents

_3r—2 r(3r —2) qr

- d
r—17 2r—12 2r—2 7

q
yields

2r—2
R@)| < Lyllplloolly — 3,50

x (/{de(tw(lt)y) dtym?dx)i.

2 q=2
The Gagliardo—Nirenberg inequality || f|lLe) < Cq\|f||22(ﬂ)\|Vf||IEQ), f e
HY(Q) (see Theorem together with the relation 2°=2(1 — %) = % then
implies
2r—2 4r—4

2 4r—4 2
|R(u)| < L.Cq Hﬁ”LQ(Q) ly — g”LgEQ)HV(y - g)HZZ(Q)

x (/Q/ ¢>’<ty+<1—t>y>dt|y—y|2da:)i.

Applying Lemma [A.4.2] with
1
0= / V(y—§)2dz, b= / / & (ty + (1 — O)7) dtly — 52 da,
Q QJO
1
Ai=—, pi=-—

q r

we obtain

2r—2 4r—4

[R(u)| < LCq ™ dilpllzaceyly = 91l 30

YRR

1 P
+ [ [ o+ a-opay - y|2da:) , (2.24)
QJO
where
de=q Mo e, p= Y
) ’,"q

Using again (2.3)) for y, g, this time with test function y — 7 yields

1
[V-pPar+ [ [+ a-opdly-gP ds
Q QJo
< lu=allz2@)lly = 9llr2(0)-
Inserting this estimate into (2.24) and observing that 42—;4 +p = 2—p we deduce

R 12— _
[R(u)| < LiCy ™ dr|pll oo lly — y”L?(pQ)Hu - uH?ﬁ(Q)

L

P 2r—2

1
_e - _ 1 _ 2 r _
=2078L,C, drnpnm(m(Qny—y||iz<m) (Sl =)

[S)
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Applying again Lemma [A42] this time with the choices

)

1 S112 _a 2112 ._ p P
a = §Hy - y||L2(Q)7 b= 5““ - UHLZ(Q)a A=1- 5 H=35

we obtain

2r—2

_e s _ 1 _ « _
R < 2074 2,05 doe ooy (1 = 91 + 5= ey ). (229

SO
=(1-£ 2)*.
© ( 2 2
Using (2.25) in (2.23) we get

J(u) = J(u)

where

2r—
T

1 _ o _ _e 2 _
> (3= 9l + llu =l ) (1 - 20 41,07 e Il unco

so that J(u) > J(u) provided that

-1
2r—2
”pHL‘I(Q) < <2agLqu " dr€r> . (226)

By direct calculations, we have
2dye, = q VT2 — )17 E,

Hence, using the above result and the value of L, from Lemma we can
rewrite ([2.26)) as

1—7r

> ’ g pPl2(2 — p)5t

r—1

_ p =2
[Plloey < @2Cq ™ M 1(27«—1

which is the desired result. [ |

Remark 2 It is of interest to point out that Theorem doesn’t rely on

the linearized Slater condtion (2.14)). Basically, the theorem says that if there
is a solution (@, q,p, ) to (2.15)—(2.18) such that (2.21)) is satisfied, then the
function @ is a global minimum of the problem (P).

2.3.3 Sufficient Second Order Conditions for (P)

In this section we show that the techniques used in the proof of Theorem
can also be used to establish a sufficient second order condition for a local
minimum of problem (P). To begin, we review briefly some material relevant to
sufficient second order conditions.

We start by discussing the differentiability of the control-to-state operator.
Recall that, according to Proposition the mapping G introduced in is
of class C'. However, establishing second order conditions requires the second
derivative of G. To guarantee that G is of class C? we require the following
assumption on the nonlinearity ¢:
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e ¢: R — R is of class C? and for any m > 0 there exists L(m) > 0 such
that

16" (y1) = ¢"(y2)| < L(m)lyr — g2 Vy; € R with [y;] <m, i=1,2.
Under the above assumption on ¢ we obtain the next result.

Proposition 2.3.6 The mapping G introduced in (2.9) is of class C* and for
every u, vy, vy € L2(Q) the second derivative z :== G" (u)vive is the solution of

Az +¢'(y)z=—¢"(Wyya i Q,
z=0 on 09,

where y := G(u) and y; := G'(u)v; fori=1,2.
Proof: The proof is analogous to that of Proposition [2.2.2 |

To state the sufficient second order conditions for (IP), we first need to in-
troduce the Lagrange function and the cone of critical directions.
The Lagrange function £ : L?(2) x (M(K))? — R associated to the problem (P)
is defined by

L(w, g, o) = J(u) +/

K

(Ya — G(u))dpa + / (G(u) — yp)dpup.

K

Notice that £ is of class C? with respect to the first variable w. This is a
consequence of the C? differentiability of G and the chain rule.

For any @ € Uuq, § € H*(Q) N HY(Q), p € Wy (Q) for 1 < s <2, i € M(K)
satisfying f the cone of critical directions is defined by

Cy = {h € L*(Q) : h satisfies (2.27)(2.30)},

>0 if a(z) = ug,
hz) =<9 <0 ifa(z)=up, (2.27)
=0 ifp+au(z)#0,

zp(x) <0 if g(x) = yo(x),
zp(z) >0 if §(x) = ya(2), (2.29)

/ o ()] d|l () = 0
K

where zp, := G'(@)h and |fi| = fip + [iq such that i = iy — fig-
The sufficient second order optimality conditions for problem (P) are stated in
the next result.

Theorem 2.3.7 Suppose that @ € U,q, § € H>(Q) N HE(Q), p € Wy (Q) for
1<s5<2, pe M(K) satisfy (2.15)(2.18). If
9L

W(ﬂ’ fia, fip)v® >0 YheCy\ {0} (2.31)
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with it = fiy — fiq, then there exist € > 0 and § > 0 such that
., 90 12 _
J(u) + §Hu — 7o) < J(u) YVu € Fuq and |lu— 1 L2) <,

where Foq :={u € Usq : Y|k € Yaa,y :=G(u)}.
Proof: See [20, Theorem 4.3 & Section 5]. |

In fact, it was mentioned in [20] that, under some regularity assumption, the
inequality

0L

W(ﬂ’ fia, fin)v2 >0 VheCy

is expected to be a necessary condition for a local solution u. This is at least
the case when the state constraints are of integral type (see [22]) or when K is
a finite set of points (see [19]).

We are now in a position to formulate a condition on p that serves as a
sufficient second order condition for a local minimum of problem (P).

Theorem 2.3.8 Suppose that i € U,q, 5 € H>(Q) N HE (), p € Wy (Q) for
any 1 < s <2, i€ M(K) is a solution of (2.15)—(2.18). If

r—1

_ r—1Y\ "
Pl < 2( 5= ) " ) (2.32)

then there exists 6 > 0 such that

oL,
W(U, fia, fin)0% > 8|07 20 for all v € L*(9),

where q¢ and n(a, ) as defined in (2.20) and i = fip — fig-

Proof: We divided the proof into two steps. In Step 1, we calculate the second
derivative of the Lagrangian £ with respect to w at (@, fiq, fip) in the arbitrarily
chosen direction v € L2(f2), where i = iy — jia. In Step 2, we proceed by

estimating the nonpositive terms in ngS(a, flas fip) V2.
Step 1:
By straightforward calculations, for any v € L?(Q), we have

oL _ _ _
W(uv Has ,ub)v2 = / y12) dx + a/ ’1}2 dr + / (y - yO)yvv dz + / Yoo d(,ub - Ma)a
u Q Q Q K

where §j = G(u), ¥y, := G'(@)v and y,, = G (u)v2.
The task is now to rewrite the last two integrals in the previous identity. To
this end, we test (2.16)) by y,, and use Proposition to obtain
/ (?j - yO)yvU dx + / Yov d(ﬂb - ﬂa) = / p(_Ayvv) + (bl(g)pyvv dx
Q K Q

=— / pyrd” () da.
Q
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To summarize, for any v € L?(Q), we have

62
o W m)? = [Zdova [ do- [ pReran (2
U Q Q Q

Step 2:
In view of (2.33)) we only have to estimate the integral

R(v) = /Q pys¢" (y)dz.

Recall that, according to Proposition Yo € H} () is the unique function
satisfying

/ Vyy - Vw + ¢ (§)ypw dz = / vwdr Yw € Hy(Q). (2.34)
Q Q

We shall argue in a similar way to that used to estimate the term R(u) in the
proof of Theorem [2.3.5] and hence, we skip much of the details. In what follows,
the constants p,d, and e, have the same value as in the proof of Theorem [2:3.5
To begin, , Holder’s inquality and the Gagliardo—Nirenberg inequality imply

1

ol <8 [ 1als20' ) do < Mipluso ol 17 ([ ¢ @nias)

1
2r—2 ar—a 2 >
< Me, ||za|Lq(m||yv||Lz;m|Vyvnzzm)( [ o)
27— 4r—4 ) p
< M0 iyl T ([ 1P+ [ oonias )

The last integral is estimated by testing (2.34) by y, so that one obtains again
analogous to the proof of Theorem [2.3.5

R(v)| < MC, ™ d, ||p||m<muyv|\L2(m||v||L2(Q)
= 000y Bl (Il By (alolEeey)”
<@ EMC, T drerlpl ooy (el + ollol3ae )-

Combining this estimate with we derive

o’L, .
W(Uvﬂaaﬂb)vz = (||yv||%2(sz) + 0‘||U||2L2(Q)> (1 -« QMC d rer||DllLa(0) )

and the result follows from (2.32)) and the definition of n(«, r). ]

Remark 3 It is not difficult to see that 2(9-—%) = > 1 for r > 1 so that

(12.32) is less restrictive than (2.21]).




Chapter 3

Variational Discretization

This chapter is devoted to the discretization of the problem (IP) by the varia-
tional discretization concept introduced in [46]. We establish a sufficient condi-
tion for global minima of the resulting discrete problem (P;). We also carry out
the convergence and error analysis of a sequence of discrete global minima of
(Pp,) that satisfy our condition. We conclude by some numerical examples that
verify our theoretical results.

The organization of this chapter is as follows: in Section we introduce
some finite element preliminaries that will be relevant in our study. In Sec-
tion we study the discretization of the state equation via continuous and
piecewise linear finite elements. In Section we consider the variational dis-
cretization of the control problem (IP) and establish a sufficient condition for
global minima of the resulting discrete problem (P). The convergence analysis
of the discrete global minima of (P;,) to those of (P) is carried out in Section [3.4]
while the associated error analysis is postponed to Section In Section [3.5
we discuss some possible generalizations to the data of the control problem
(P). Finally, Section [3.7]is devoted for solving problem (Pj) by the semismooth
Newton’s method while Section contains the numerical verifications of our
findings.

3.1 Finite Element Preliminaries

In this section we introduce some finite element preliminaries that will be rele-
vant in our study of the discrete optimal control problem.

To begin, let {7n}o<h<hn, be a sequence of admissible triangulations of the
polygonal domain 2 C R? such that for every h > 0 there holds

o=

TETh

Here h := maxrpe7;, diam(7T) is the maximum mesh size, where diam(7") stands
for the diameter of the triangle T. We also assume that the sequence {7}, }o<n<n,
is quasi-uniform in the sense that each T' € T}, is contained in a ball of radius
~~'h and contains a ball of radius vk for some v > 0 independent of h. These
assumptions on {7 }o<n<h, should be valid throughout the whole chapter with-
out further explicit mentioning unless otherwise stated.
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On each triangulation 75, € {7 }o<n<n,, We construct the spaces of linear
finite elements:

Xp, == {vp, € C(Q) : vp|r is a linear polynomial on each T' € Tj},
Xpo := {”Uh € Xp: Vh|oQ = O}
Functions from the space X}, satisfy the inverse estimate, see [I3 Section 4.5],
lvallLee ) < ch ™ HlonllLz@) Yon € X (3.1)
and the discrete Sobolev inequality, see [13, Section 4.9],
HUhHLoo(Q) § C(]. —+ |lIl h|)% ||’UhHH1(Q) V’Uh S Xh. (32)
We define the Lagrange interpolation operator I, by

L,:C(Q) = Xn, Iy i= Y y(@)si,
=1

where {z1,...,2,} denote the nodes in the triangulation 7, and {¢1,...,d,}
the basis functions of the space X, which satisfy ¢;(x;) = d;;. Here d;; is the
Kroneker delta function. The following estimates concerning the operator I
can be found for instance in [I3] Section 4.4].

_2
Iy~ Tlim < b Hlylweney Yy WHPQ),1<p<oo,  (33)
ly = Inyll 2y < ch®lyllmz@) Yy € H*(Q).

Let Ry, : H} () — Xjo denote the Ritz projection defined by

/ VRyy - Vopdr = / Vy - Vopdzx Yo, € Xho- (3.5)
Q Q
Then, for any function y € Wy (Q2) N W?22(Q) there holds (see [66])
ly — Ruyllwir) < chllyllwzr@), 2<p< oo, (3.6)
Iy = Ruyllr @) < cph®|lyllwar), 2 <p<oo. (3.7)

Finally, we state the next lemma which requires the following assumption
on 2 and its sequence of triangulations {7 }o<h<hy-

Assumption 1  There is a convex polygonal domain Q containing €2, that is,
Q C Q, such that for hg small enough each 75, € {75} o<n<n, can be extended
to a triangulation Ty, of € such that the sequence {7~'h}0<h§ho is quasi-uniform
with the same quasi-uniformity constant v of {75, }o<n<n,-

Lemma 3.1.1 Suppose that Assumption holds. Let y € H () N C(Q) be
given and let yp, € Xpo be the unique function satisfying

/Vyh-Vvhdx:/Vy-Vvhdx Yo, € Xpo.
Q Q
Then there holds
- ooy < cllnh| inf — o (Q), 3.8
ly — ynllL= () < c/In |Xg)1<h0 ly — Xl () (3.8)

for some ¢ > 0 independent of h.
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Proof: See [69, Theorem 2]. |

We point out that Lemma is in general valid when 2 is a polygonal
domain in R? with maximal interior angle §, 0 < # < 2. In Figure we
illustrate Assumption [T when € is an L-shape domain.

(a) Q and Ts. (b) Q and 75,. The inner
L-shape highlighted
region represents ().

Figure 3.1 Illustration of Assumption |1} for an L-shape domain Q (left) together
with its quasi-uniform triangulation 7, there exists a convex polygonal domain {2
(right) containing Q and 7, can be extended to a triangulation T, of 2 such that T,
is quasi-uniform with the same quasi-uniformity constant of 7j,.

3.2 The Discrete State Equation

In this section we discretize the state equation by means of continuous piecewise
linear finite elements. We recall the relevant error estimates and improve the
uniform convergence under certain conditions on the data. We also introduce
the discrete control-to-state operator and discuss its differentiability.

We start by introducing the finite element discretization of which reads:
for a given u € L?(2), find yj, € X0 such that

/ Vyn - Vo, + d)(yh)vh dr = / uvp dr Vv, € Xpo. (3.9)
Q Q

Theorem 3.2.1 There exists a unique y, € Xpo solution to (3.9) for a given
u € L*(Q).

Proof: The result follows from the Brouwer fixed-point theorem and the mono-
tonicity of ¢. Compare the proof of [77, Theorem 26.A] for the details. |

Analogously to (2.9), we introduce, for every h > 0, the mapping
Gn : L*(Q) = Xno (3.10)

such that y, := Gp(u) is the solution of (3.9) for a given u € L2(2). We
sometimes call G, the discrete control-to-state operator since it assigns to each
control u a discrete state yy,.



3.2. The Discrete State Equation 25

Proposition 3.2.2 The mapping Gy, introduced in (3.10) is of class C* and
for every u,v € L*(Q) the first derivative z, = G (u)v € Xpo is the unique
function satisfying

/ Vzp - Vwy, + ¢ (yp)zpwp, de = / vwpdr Ywp, € Xno,
Q Q

where yp, := Gp(u).

Proof: The proof is along the lines of that of Proposition if one considers
the mapping F : Xpo x L?(2) = X, defined by

F(yn,u)- = / Vyn -V - +é(yn) - dx—/ u- dx
Q Q
where X} is the dual space of Xp,. |

The next result shows the error in approximating the solution of (2.3)) by
the one of (3.9) in terms of the mesh size h.

Theorem 3.2.3 For a given u € L?(Q), let y := G(u) and let y = Gp(u),
where G and Gy, are as defined in (2.9) and (3.10)), respectively. Then, there
exists ¢ > 0 independent of h such that
ly = ynllz2() < ch®(lullr2(a) +1), (3.11)
ly = ynllze (@) < ch(llullrz(o) +1). (3.12)
Proof: The derivation of the estimate (3.11)) can be found in [23, Theorem 2].
On the other hand, the estimate (3.12)) can be deduced from (3.11)) as follows:
1y = ynll= @) < lly = InyllL= (o) + 11ny = ynllL=(q)
< chllyll a2y + e Ihy — yull2 o)

< chllyllm2(o) +ch™! (”Ihy —yllz2) + ly — yh||L2(Q)>

< chllyll =y + b (R2llyllmeo) + W (lull 2y +1))
< ch(|lullr2@) + 1),

where we used , , and . |

We remark that the finite element uniform convergence of the state equation
plays a crucial rule in deriving error estimates for the numerical approximation
of the problem (P) if the pointwise state constraints are considered. For this
reason, we establish the next theorem which asserts that for a better regularity
of u and under certain conditions on £ it is possible to improve the uniform
estimate ((3.12]).

Theorem 3.2.4 Suppose that Assumption holds. For a given u € W1s(Q),
for1 <s <2, lety:=G(u) and let y, := Gp(u), where G and Gy, are as defined
in (2.9) and (3.10)), respectively. Then there exists ¢ > 0 independent of h such
that

_2
1y — ynll () < el Inhh>7% (|[ul| Loy + 1), (3.13)
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where p = 22_55 for 1 < s < sq := min(2, 30211%) with Omax € [5,7) being the

mazimum interior angle in Q. For Op.x = 5 we define sq = 2.

Proof: We begin by considering

ly — ynllze@) < Iy — Ruyllze () + 1RrY — ynllL= () (3.14)
(9] (I1)

where Rpy € Xy is the Ritz projection of y as introduced in (3.5)).
To get an upper bound for the term (I), we apply Lemma Theo-

rem and (3.3]) to obtain

— R 0o <c|lnh| inf — .
ly — Rnyll L) < ¢ |X€Xh0 ly — Xl ()

< Inh|lly = InyllL= (o)
< o/ Inh[h*7 7 |lyllwer o)
§c\lnh|h2_%(|\u||Lp(Q) +1), (3.15)
where p is as defined in Theorem [2.2.5
To estimate (II), we first show that there exists ¢ > 0 independent of h such
that
IRy — ynll a1 ) < cllyn — yll2(o)- (3.16)

To achieve this, we observe that from the definitions of Ryy and y = G(u) we
have

/VRhy~Vvhdx:/uvhdx—/¢(y)vhdx Yo, € Xpo.
Q Q Q

Thus, subtracting y, = Gp(u) from the previous equality and testing by vy, :=
Rpy — yp yields

/ IV (Ruy — yn)? de = / () — S (Bny — ) da
Q Q

< é(yn) — oWz @) IBrY — ynllz2 (o)

< cllyn = yll2 @) IV(Bry = yn)ll 2 (0), (3.17)
where we used Lemma and the Poincaré’s inequality. Notice that it fol-
lows from (3.12)) that ||yn ||z (q) is uniformly bounded in ~ which implies that
the constant ¢ in (3.17)) is independent of h. Dividing both sides of (3.17) by
I\V(Rry — yn)ll 12 () and using again the Poincaré’s inequality gives (3.16)).
We are now in a position to estimate (II). For this purpose, we use , (3.16])

and (3.11)) to get
1Ry — ynllo=@) < c(1+[In hl)2 || Ry — ynlla (@)
< 1+ k)2 lyn = yll 2oy
< e(L+ [ A 21> (fJul 20y + 1) (3.18)
Finally, combining (3.14), (3.15), (3.18) and observing that LP(Q) < L?(12)

and (1+|Inh|)2h% < |In h|h27% for h small enough gives the desired result and
the proof is complete. |
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Remark 4  The advantage of postulating Assumption[I]in Theorem [3.2:4]is to
obtain the estimate on the whole domain 2. In other words, without this
assumption we can only establish on a subdomain of 2. In the following
steps, we summarise the main modifications that apply to the theorem and its
proof if we drop this assumption.

Step 1. We consider the estimate from [70, Theorem 5.1], that is,

ly = wnlli=on < e(Imhl gy = xllen) + Iy = wlliz@,)  (319)
XE€Xho

for some Q, CC Q, CC , where y and ¥, are as defined in Lemma We
emphasise that holds without requiring Assumption

Step 2. We establish the inequality on {2 instead of Q). Then, we estimate
the term (I) there using instead of (3.8). The rest of the modifications
in the proof are obvious.

Step 8. We may now drop Assumption [1| from the hypothesis of Theorem

and replace (3.13) by

2
Iy — ynll L= (o) < el AR5 (Jull Loy + 1)

3.3 The Discrete Optimal Control Problem (P)

In this section we consider the variational discretization, see [46], of Problem (PP).
Then, we review the necessary first order conditions for the discrete control
problem (P,). Finally, we derive an analogous result to Theorem for the
discrete problem (Pp,).

To begin, let us introduce, for 0 < h < hg, the following set of nodes:

N, = {z;|z; is a vertex of T € Tj,, where TN K # (}.

We remark that y,(z;) < yp(x;), 2; € N} provided that hg is small enough. This
follows from the fact that dist(z;, K) < h,z; € N} and yq,ys are continuous
functions with y,(z) < yp(z),z € K.
The variational discretization of Problem (P) now reads:
: J 1 _ 2 @ 2
P minyeu, , Jr(w) == 5lyn yOHLz(Q) + ||u||L2(Q)
(Pn) ) 2 n
subject to yn = Gn(u), (Yn(25))z;ens € Yaas

where
Y= {(2)a,enn 1Ya() < 25 < yplaj), 25 € Ny}

We note that Problem (IP,,) is still an infinite dimensional optimization problem
since the controls are sought in U,y. Therefore, many of the techniques used in
the analysis of (P) can also be used for (Py). We have the next result whose
proof is analogous to that of Theorem [2.31]

Theorem 3.3.1 Suppose that there exists u € Uqq such that (yn(2;))z;en;, €
Y, where yp, := Gi(w). Then the problem (Py,) has at least one solution.
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3.3.1 Necessary First Order Conditions for (IP;)

To establish the necessary first order conditions of (Py,) at a local solution ay,
we first assume the following linearized Slater condition: there exist ug € Uyqg
and § > 0 such that

Ya(5) + 0 < Gn(an)(x;) + Gy () (uo — an)(w5) < yp(aj) — 9, x5 € Npp. (3.20)

We state the optimality conditions of (P,) in the next theorem.

Theorem 3.3.2 Let uy, € Uyq be a local solution of the problem (Py,) satisfying
(3.20). Then there exist pr, € Xno and fij € R,z; € Ny, such that with gp € Xpo
there holds

/ Vijn - Vop + ¢(Gn)vn dox = / upvpdr Yop € Xpo, (T (25))a,ens € Yau
Q

Q
(3.21)
/ Vpn - Voy, + ¢ (Gn)pron dx
Q
= /(gh — yo)’Uh dr + Z ﬂjl}h(fﬂj) Yo, € Xpo, (322)
Q wjeNh
/ (ﬁh + aﬂh)(u - I_Lh) dx >0 Vu € U, (323)
Q
> (2 = n(@)) 0 Y (2)asen, € Yo (3.24)

:vjENh

Proof: The result follows from [16], Theorem 5.2] since the cost functional .Jj,
is Gateaux differentiable at @, and Ya’fi has a nonempty interior. The differen-
tiability of J, is deduced from that of the discrete control-to-state operator Gy,
according to Proposition and the chain rule. |

We note that the condition (3.23)) is equivalent to the relation
un(z) = Py,,( — 1pn(z)) = min (max (ue, —2pp(x)),us) Va €Q,
so that the control variable is implicitly discretized and (3.21))—(3.24]) amounts

to solving a nonlinear finite-dimensional system.
It will be convenient in the upcoming analysis to associate with the multipli-

ers (fij)e;en; from the optimality system (3.21))—(3.24) the measure fi;, € M(£2)
defined by

fin =Y [j6s,, (3.25)
a:jENh

where 6, is the Dirac measure at x;. We can easily deduce from (3.24) the
following result about the support of the measure fiy,.

Proposition 3.3.3 Let ji, € M(Q2) be the measure introduced in (3.25)) satis-
fying (3.24). Then there holds

supp(fiy) C {x; € Niy 2 n(x5) = yola;)},
supp(fiy,) C {z; € N @ Jn(2j) = yal;)}.
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where fip, = [ — ¢ with ib, p¢ > 0 is the Jordan decomposition of fip,.

3.3.2 Global Minima for (P,)
We now derive an analogous result to Theorem for the discrete control
problem (Py,).

Theorem 3.3.4  Suppose that ty, € Uaq, Y € Xno, Pr € Xnos (fj)z;en;, 15 a

solution of (3.21)—(3.24). If
1PnllLace) < nla,7), (3.26)

then ay, is a global minimum for Problem (Py). If the inequality (3.26|) is strict,
then uy, is the unique global minimum. Here, n(a,r) and q are as defined in
[2-20).

Proof: The proof is obtained by arguing in almost the same way as in the proof
of Theorem that is, using the discrete counterpart of every continuous
quantity there. To begin, let up € U,q be a feasible control, y, = Gp,(up,) the
associated state with (yn(z;))s,en;, € Y. We have

() = (i) = gl = 33 oy + 5 o = oy o [ o = ) d
+ /Q (5 — 10) (un — ) d = (A)
Using vy, := yp — Yn in we get
(4) = gl = sy + 5 s = sy + @ [ anon = ) da
+ /Q Vin - V(yn — Gn) + &' (U)o (yn — Gn) dx — gv i (yn(z5) — gn(x5))

_ a _ _ _
> =llyn — GnllZ20) + o lun = unlZ2) +a [ anlun — ) de

Q

+ /Q Von - V(yn — gn) + &' (Gn)or(yn — yn) d, (3.27)

DO =

by (3.24)). Using (3.9)) for y, and g, with test function pp we get
/ Vpn - V(yn — yn) dx = / (up — up)pn dx — / (¢(yn) — ¢(Yn))pn dx
Q Q Q
= / (uh - ’L_Lh)ﬁh dz
Q

1
_ / nlyn — ) / &ty + (1 — 1)) dt de.
Q 0
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Using this in (3.27)) and recalling (3.23]) we arrive at

Jn(un) — Jn(tin)
1 _ « _ _ _ _
> S llyn = Tl 720 + §||Uh — tn |72y + /Q(auh + Pn)(un — Up) dz

1
- / Pu(yn — 1) / & (tyn + (1 — 1)gn) — &/ (gn) dt dz
Q 0

_ a _
lyn — Gnll 200y + 5 llun = unF2) — Rau(un), (3.28)

N —

>

where
1
Ra(un) = /Q Puyn — ) /0 & (tyn + (1 — ) — & () dt da.

The aim is now to estimate Rp(uy). To begin, Lemma implies that
1 T
Rt < L [ pllo = o[ oo+ 0= o) o
Q 0

1
:Lr/ﬂ|ﬁh||yh_?jh|r</ ¢/(tyh+(l_t)yh)dt|yh_gh|2> dx,
0

(r=1)/r
where L, = M (2’";11) . Next, Holder’s inequality with exponents
3r—2  r(3r-—2) qr

= = d
T=571 912 22 e’

yields

2r—2
|Bn(un)| < LelprllLa)llyn = Unll 1diq)

1 H
X (// &' (tyn + (1 = t)Jn) dt|yn —yh2d$> :
QJo

2 a2
The Gagliardo-Nirenberg inequality || f||Lq) < Cq||f||zz(m||VfHL§(Q), /€
2) = % then

H& (Q) (see Theorem j together with the relation 2-=2(1 — 7
implies
4r—4

202 ar—4
|Rn(un)| < LrCq ™ [|pnll Lo lyn — nll 1310) IV (Y — 5n)

1
< ([ [ otm+ - om) dti — o)
aJo
Applying Lemma with

1
0= / V(g —gn)Pdz, b= / / & (tyn + (1 — t)gn) delyn — gn® da,
Q QJo

1
A= u::;

2(9)

= N

r
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we obtain

2r—2 4r—4
™

|Ru(un)| < LyCq ™ dr|PrllLacoyllyn — Unll3(a)

X (/Q|V(yhyh)2dz
oy "t + (L~ )7) diln wia). (29

where

r+gq
rq
Using again (3.9) for yp, yp, this time with test function yp — g yields

dr = q—l/qr—l/rp—p’ P =

1
/ IV (yn — on) | da + / / ¢ (tyn + (1 — t)n) dt|yn — gn|” da
Q Jo
< un = @nll L2 llyn — Unll2(o)-
Inserting this estimate into (3.29) and observing that 42—;4 +p = 2—p we deduce

2r—2

|Ri(un)| < LoCq ™ drl|pnll ooy llyn — Tnll72 00y lun — @152 q)

. L
2r— 5
T

P
iy 2 _ 1 _ 72 a _
=2078L,Cy 7 dyllpnll ooy (2||yh - yhn%z(m) (5l = nll3e(ey )

Applying again Lemma, this time with the choices

. 1 — 12 Lo _ 2 . p o
a:= §||yh - thL2(Q)a b= §||Uh - Uh||L2(Q)7 Ai=1-— oL = .
we obtain
_r 2r—2 B 1 ) o i
|Rp(un)| <207 2L,.Cq 7 drer|pnllpa) <2||yh —yh”%Q(Q) + §||Uh _Uh||2L2(Q)>,
(3.30)
where

(= (=57 6)
" 2 2/
Using (3.30) in (3.28) we get
Jh(uh) — Jh(ﬁh)
2r—2

1 B « _ _e 2 _
> (ln = Al + Sl =l ) (1= 20742, C3T e e
so that Jp(up) > Jp(a@p) provided that
_ _r 2r—2 -t
15 2oy < <2a i1, d) . (3:31)

By direct calculations, we have

2d,e, = q M T2 (2 — p)tTE,
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Hence, using the above result and the value of L, from Lemma we can

rewrite (3.31]) as

1—r

) . gt pP2(2 = p) 5T

which is the desired result. [ |

r—1

_ p A=z
1rllza) < a2Cq ™ M 1<2r—1

Remark 5 We point out that we don’t need the triangulation 7, of Q to be
quasi-uniform in order to derive Theorem [3.3.4]

Remark 6 Notice that Theorem doesn’t require the linearized Slater
condition (3.20). All what the theorem says is that if there exists a solution
(@h, Jn, Pry ) to (3.21)—(3.24) such that is satisfied, then the function
4y, is a global minimum of the problem (P,). In practice this means that we
first set up the system f and then try to solve it. If it has a solution
such that holds, then we have a global minimum of the problem (P) at
hand.

3.4 Convergence Analysis

Since the quantities n(c, ) and ||pn|/La(q) can be computed explicitly, Theo-
rem allows us to decide if a function @ obtained from solving f
is a global minimum of (Pp). A natural question which arises then is whether
a sequence (Un)o<n<h, of minima satisfying uniformly in h converges to
a global minimum of (P) as the discretization parameter h tends to zero. We
address this problem in this section.

To begin, let @y, € Uad, Yn € Xnos Pn € Xno, (fij)e;en; satisfy f
as well as

||15h||L<I(Q) <nla,r), 0<h < hg. (3.32)

As we mentioned earlier, it is convenient to introduce the measure fip, € M()

by
Hh 1= Z /jtjém]
zje./\/h

Since K C Q, dist(zj, K) < h, z; € N}, and y.(z) < yp(x), € K there exists
a compact set K C 2,6 >0 and 0 < hy < hg such that K € K and

Ya(x) < yp(2), reK,
Ny C K, 0<h<hy,

1
Ya(@) +0 < S(ya(2) +p(2) S m(2) =6,z K.
For the existence of such a compact set_f( , see for instance [68, Theorem 2.7].
Since C(9) is the closure of C§°(02) in C(2), there exists a function w € C§° ()
approximating 3(ya + y) € Co(Q2) uniformly such that

b cwl@) <p@) -3 wek (333)

Ya(z) + < 5
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Let Rpw denote the Ritz projection of w as introduced in (3.5). Then it follows
from the continuous embedding WP (Q) < C(Q), 2 < p < oo, and the estimate

(3.6) that
||w — RthC(Q) < cllw — Rpwllwrr o) < chllwllwzrq)-

From the previous uniform convergence we may assume after choosing h; smaller
if necessary that

Ya(z) + g < Rpw(x) < yp(z) — %, reK. (3.34)

Our first step in the convergence analysis are uniform bounds on the optimal
control uy as well as on its state g, and fip,.

Lemma 3.4.1 Let Uy € Uad, Y, Pn € Xno and (fij)z;en;, be a solution of

(13.21)—(3.24) satisfying (3.32). Then there exists a constant C > 0, which is
independent of h, such that

lanllzz), 19nllm @), 1Enlpmz) < C-

Proof: To begin, fix a function ug € U,q. Inserting ug into (3.23) we infer

allanl|7z(q) S/QUo(aﬂh +I7h)d$—/ﬂﬂhﬁhd$

< ol 2o (@ll@nll L2y + 1Bl L2(0)) + 1wl L2 @) 10l L2 @)

« 1, _ 2 o 9 _
< 2 (loll 2@y + Zl1Bnll 2@y + S anlaqe) + luollzao 1Bl 2.

Since ¢ = 3[:12 > 3 we deduce with the help of (3.32)

lanllr2) < C(lluollz) + 1PrllL2)) < C(lluollr2) + |1PwllLa)) < C-

Testing (3.21)) with g5, using the monotonicity of ¢ and Poincaré’s inequality in
a similar way to that of deriving (2.6) we infer

|l ) < C(1+ lanllz2 () < C. (3.35)

Furthermore, (A.1]), (A.2) along with the continuous embedding H!(Q) <
LY(Q) for all 1 <t < oo yield

lo@n) L2y 19" (Gn)llL2) < C- (3.36)
In order to verify the uniform boundedness of ||fin|| v4(z) We first observe that
(3.24)) implies

_ N yb(l‘j), if ﬂj > 0,
yh(xj) o { ya(l'j), if ,L_Lj < 0.
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As a result we deduce with the help of (3.34)

J, o _
Z||Mh||M(f<):1 Z ||

:c_,ENh
) _ 1 _
=1 Zﬁ i+ 1 Z — [
x; ENp:fi; >0 2 ENp: ;<0
) _ 4
<31 > Mjg(?/b(ﬂﬁj) — Ryw(z))
x;ENp:fi; >0
) !
+7 > Mjg(ya(ffj) — Ryw(z;))
x; ENp:fi; <0
= Y B (On(x;) — Ruw(a))).
ijNh

Using vy, = §n, — Rpw in (3.22)) we may continue
d, _ _ _
1||,uh||M(f{) < | Vpn-Viypdx— | Vpy-VRywdx
Q Q

+ /Q &' (Gn)Pn(Yn — Rpw) do — /Q@h —40)(Un — Rpw) dx

4

> S (3.37)
i=1

If we let v, = pp, in (3.21)) we obtain with the help of (3.36) and (3.32))

|S1| = ‘/Q(ﬂh — ¢(gn))pndz| < (llanll L2y + 0@l L2)) 1Prll L2y < C-

Next, the definition of the Ritz projection and integration by parts yields

ng—/Vﬁh-dex:/ﬁhAwdx
Q Q

so that
|1S2| < IPrllLz@) | Awl L2y < C.

Hélder’s inequality along with (3.36]), (3.32) and (3.35)) implies that

1S3 < 116" () |2 l|Pr || oo l19n — RthLTZ—%(Q) < Cllgn — Rpwllgi(a) < C.

Notice that the uniform boundedness of ||Rjwl| g1y can be seen from (3.6).
Finally,

1S4l < (19l e2c0) + ol 2)) 17kl L2 @) + 1 Rhw] L2 @)) < C.

Inserting the above estimates into (3.37) yields the bound on ||z || v (- |

We are now in a position to formulate the main theorem in this section:
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Theorem 3.4.2 Suppose that (Gp, Gn, Ph, Bh)o<h<h, 5 @ Sequence satisfying

(13-21)—(3.24) as well as (3.32)). Then

iy, — @ in L*(Q) for a subsequence h — 0,
where @ is a global minimum for Problem (P). If
IPnllLao) < knla,r), 0<h < h, (3.38)

for some 0 < k < 1, then @ is the unique global solution of (P) and the whole
sequence (Tp)o<n<h, converges to u.

Proof: From Lemma [3.4.1) we deduce the existence of a subsequence h — 0
and @ € L?(Q), y € HY(Q), p € LY(Q), i € M(K) such that

ap, —u in L*(Q), (3.39)
g — g in H3(Q), (3.40)
phn—p in LY(Q), (3.41)
fn — g in M(K). (3.42)

Our aim is to show that (@, g, p, i) is a solution of (2.15)—(2.18)). Firstly, since
U,q is closed and convex, it is weakly sequentially closed and thus @ € U,q. To

show that §j = G(u), consider the Ritz projection Ryv € Xjo for any v € H}(Q).
Then, testing (3.21) by Rpv gives

Vin - VRyv + ¢(gn)Rpv de = / up Rpv dx. (3.43)

Q Q

Using (3.39), (3.40), the convergence Rpv — v in Hg(Q) from (3.6), (A.1)
together with Lemma [A.1.4] we can pass to the limit h — 0 in (3.43]) to obtain

y=9(u)
Next, the fact that dist(x;, K) < h, x; € N} implies that supp(zz) C K. Com-
bining this with the bound [|fin[| vz < C we infer that

/zhdﬂh%/ zdii  ash—0 (3.44)
K K

for every sequence (2")g<p<p, C C(K) converging uniformly to z on K.
Our next claim is that

Un — 7 uniformly in Q. (3.45)
To see this, denote by y" € H2(Q) N H () the solution of
Ay =, — p(n) inQ, y" =0 on Q.
We deduce from Lemma and that (y")o<n<n, is bounded in H2(12),
so that there exists a further subsequence and a function § € H2(2) N HE(Q)
with

y" = gin H3(Q), y" = §in C(Q).
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In the light of (A.1)) and Lemma we have @, — ¢(gn) — 14— ¢(y) in L*(Q)
from which we find that —Aj = —Ag a.e. in Q. Hence § = g and y* — § in

C(€Q). On the other hand, the definition of 3" implies that 4, = Rpy", so that

the standard estimates (3.3)),(3.4)),(3.1),(3.7) imply

I9n — Fll L) < IRY"™ — ¥ 1) + 1" = Ullz=(o)
<N Rry" — Iny" | 2oy + 1ny" — vz (0) + 1¥" — Gl L= (0)
< Ch™ Y| Rpy" — Ih@/hHH(Q) + Ch||yh||H2(Q) + [ly" — Ul Lo ()

< ChH (IBny" = " e + " = Iy lla2co )

+ Chlly™ g2y + 1" = ¥l L@
SCh”yh”H2(Q)JF||Z,lh*1,_IHL<>c(Q) -0 ash—0,

since ||y" || m2(q) < C. This proves (3.45).

Let us check that 3k € Y,q. For a fixed point 2 € K we can choose a sequence
(@}, )o<h<h, such that z;, € N, and |z;, —z| < h. Since yo(z;,) < yn(xj,) <
yb(xjh) and

(T (5,) = 5(@)] < G (x5,) — §(25,)] + 15(25,) — 5(2)]
< NGn = Yl @) + [5(x5,) — v(2)];
we obtain y,(z) < g(x) < yp(z) by passing to the limit h — 0 and using (3.45)).

Next, let us fix z € Y,4. By Lemma we extend z to a function Z € C(f()
satisfying y,(z) < Z(x) < yp(x), z € K. We obtain from (3.24), (3.44) and (3.45)

0> > ﬂj(z(a:j)—gh(a:j))=/R(z—gh)dﬂh_>/l((z_g)dﬂ7

xj ENp
which yields (2.18)).

In order to derive (2.16]) we fix v € H?(2) N H} () and insert v, = Rpv into
B2, ic.

/ Vi - VRyv + &' (gn)pnByv dr = / (Un — yo) Rpv dz + / Rpvdfip,.
Q Q K
Using the definition of Rj; and integration by parts we may write
/ Vpn - VRyvdx = / Vpp - Vodx = / Pr(—Av) dx
Q Q Q

so that ([2.16|) follows from passing to the limit h — 0 taking into account (3.41)),

(3.45), Lemma [A.1.3[ and (3.44]).

Our next goal is to show that 4, — @ in L?(2). Inserting 4 into (3.23) and

rearranging we infer

a||ﬂh||%2(9) S/Qﬂ(aﬁh Jrﬁh)dxf/ﬂﬂhﬁhdx. (3.46)
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The second integral can be rewritten with the help of (3.21]) and (3.22), namely
/ Upppdr = / Viyn - Vppdx +/ ®(Un)pndzx
Q Q Q
= —/ ¢/(@h)ﬁh§hd$+/(§h —yo)@hd$+/ Yndjin,
Q Q K
+ [ otwmpnde
Q

This relation allows us to pass to the limit in a similar way as above to give
e =~ [ &@pgdz+ [ - whpds+ [ gdn+ [ o@pda
Q Q Q K Q

~ [-anpts+ [ o@pds = [ apds
Q Q Q
where we used (2.16]) and the fact that § = G(@). We can now pass to the limit
in (3.46) and deduce that

limsup [|@n[|72(q) < 720
h—0

Since ||11H%2(Q) < liminfy 0 ||ﬁh||%2(ﬂ) we infer that |unllz2) — ||@llL2(),
which together with the fact that i, — @ in L?(Q) implies that i;, — @ in
L2(Q).

Combining this with the weak convergence p;, — p in L?(Q2), one can pass
to the limit in to obtain

/(ﬁ—i—aﬂ)(u—ﬂ)d:v >0 Yué€ Uy,
Q

which is (2.17). In conclusion we see that (@,y,p, i) is a solution of ([2.15)—
(2.18)). Furthermore, the lower semicontinuity of the L9-norm implies that

e < lminf 5 v <
15l sy < llgln;gfllphIIL @ < nla,7)

and we infer from Theorem that @ is a global minimum of Problem (PP).
If holds, then p satisfies ||pl|za(o) < mn(a,r) < n(a,r) and @ is the
unique global minimum of (P). A standard argument then shows that the whole
sequence (@p)o<h<h, converges to «. |

We conclude this section by the following general remarks.

Remark 7 The proof of Theorem shows that if (@, Jn, Ph, Br)o<h<h,
satisfies (3.21)—(3.24]) with

1Prll L) < Knla,r)
for some 0 < k < 1, then there exists (@, g, p, i) satisfying (2.15)—(2.18) with
1Pl a@) < wnla,r)

and iy, — 4 in L?(Q2) as h — 0, where @, and @ are the unique global minima
for Problem (PP ) and Problem (PP), respectively. Importantly, neither (3.20)) nor

(2.14) are required.
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Remark 8 1. It is well known that (3.21)—(3.24) can be rewritten equiva-
lently as a system of semi-smooth equations and thus can be solved by a semi-
smooth Newton method, see for instance [35, 44} [74]. In particular, we can avoid
the use of relaxation methods such as Moreau-Yosida relaxation, interior point
methods, or Lavrentiev-type regularization. We will come back to this point
again in Section where we will develop an algorithm to solve f
by the semismooth Newton’s method.

2. Since we solve (3.21))-(3.24)) in practice on the computer, we consider @y,
a global minimum if the inequality (3.26] is satisfied up to machine precision.
Here, the integral ||pp|| L« on the left hand side of this inequality is assumed to be
calculated exactly. However, this assumption can be achieved easily whenever ¢
is an integer because in this case the function |py|? restricted to every triangle
in the mesh is a (possibly piecewise) polynomial of degree q. Hence, one can
use an appropriate quadrature rule to evaluate such an integral exactly.

3.5 Generalizations

It is possible to obtain the previous results, like Theorem and Theo-
rem if the choices K = €, nonlinearity of the type ¢(z,y) and a domain
Q C R? are considered for the Problem (P). In this section we discuss the main
changes that apply to the analysis of the previous results if these choices are
considered.

3.5.1 The Case K =)

Here we briefly outline how the convergence analysis can be carried out for the
case K = 1, provided that the bounds y,,y, € C(Q) satisfy in addition to
Ya < p in  the compatibility condition g, < 0 < y; on 9.

The main change concerns the construction of the function w € C§°(Q2) at
the beginning of Section [3:4] From the above assumptions on y,, y, we infer the
existence of § > 0 and ¢ > 0 such that

bal@) 40 < S(0a(a) + @) S o) — 5, w0,

Ya(z) +6 <0< yp(x) — 6, =z €Q,dist(z,09Q) <e.
According to Urysohn’s lemma, there exists x € Cp(£2),0 < x < 1 such that

() = 0 if dist(z,00) < 3,
XETZ0 1 if dist(z,00) > ¢

Then one can easily see that

o) 8 < 5 (0a(e) + w(@)X(@) S la) 6, €D

and applying a smoothing procedure to z +— %(ya + yp)x € Co(2) gives the
desired function w € C§°(Q) satisfying with K = €. The remainder of
the analysis in Section [3:4] can be carried out as before if one chooses N}, :=
{zj|z; is a vertex of T' € Ty, x; ¢ OQ}.
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3.5.2 The Nonlinearity ¢(z,y)

All the results derived so far remain valid for a nonlinearity of the type ¢ :
QxR =R, ¢ =¢(x,y) provided that it satisfies the following assumptions:

e For any fixed y € R, ¢(-,y) is measurable with respect to €  and for
almost all x € Q, ¢(x, ) is of class C? with respect to y € R.

e For almost all € Q and all y € R it holds that ¢,(x,y) > 0, where ¢,
denotes the partial derivative of ¢ with respect to y.

e There exists ¢ > 0 such that

|o(z,0)| + |¢y(x,0)] <c for ae. €.

e There exist r > 1 and M > 0 such that

|byy(z,y)] < M(;Sy(x,y)% for a.e. z € Q and all y € R. (3.47)

Analogously to the proof of Lemma one can use the bound on ¢(z,0)
and ¢, (z,0) in order to show that

dy(z,y) <cr1(l+y|™) forae z€QyeR, r= ﬁ;
T 2r—1
|o(x,y)| <co(l+|y|™) forae z€QyeR, rog= -

In particular, ¢ is locally Lipschitz with respect to y uniformly in z € 2 so that
the corresponding semilinear PDE is well-posed.

For instance, if ¢(z,y) = a(x)|y|?" 2y, where ¢ > 3 and a € L>®(Q) with
a(x) > 0 a.e. in €, then

|pyy (7, y)| = (¢ —2)[(qg — 1)a(gc)]qlf2[(q — 1)a(x)|y|q—2]2%§.

Hence, (3.47) holds with r = Z:—?} and M = (¢ —2)(q — 1)ﬁ ||a\|§(m.

3.5.3 The 3D case

It is possible to obtain a result similar to Theorem for the case without
state constraints if the domain Q C R3 is bounded, convex and polyhedral. The
proof of this result will be the same as that of Theorem except that in-
stead of Theorem[A-5.1] one needs to use the Gagliardo-Nirenberg interpolation
inequality in R? which reads

11z < ONGIS iaben IV lSa sy WS € H'(R®), 2<q<6, 0:=

[S][98)
Q|

An upper bound for GNy can be found, for instance, in [75]. However, since

our analysis relies on the choice ¢ := 3;":12, the condition 2 < ¢ < 6 leads to a

restriction on r, namely, r > %. The convergence analysis can then be carried
out in almost the same way as in the 2D case. For the uniform convergence of
the Ritz projection when Q C R? is a convex polyhedral domain we refer to the
work in [59].
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In the case of state constraints the adjoint variable p in general only belongs
to Whs(Q) with s € [1, 2), and hence p € L(12) for 1 < ¢ < 3. In particular, the
choice q := % is no longer possible and an extension of our approach to the
3D case would require a better regularity result for p. A corresponding result

which gives p € HY(Q) N L>°(9) has recently been obtained in [24] under mild
restrictions on the bounds y,, y»- Namely, for a linear elliptic state equation
the state bounds should satisfy

Yar Yo € C(Q),

ya(z) < yp(x) Vo eQ,
Yo(x) <0 < yp(x) VaedQ,
Aya, Ayp € L (Q),

where A is the differential operator associated with the state equation which is
assumed to be uniformly elliptic with coefficient funtions bounded in the domain
Q C R™ for n = 2,3 with Lipschitz boundary 9€2. We point out that the state
equation satisfies a homogeneous Dirichlet boundary condition and the control
is distributed in Q. If, in addition, control constraints of box type with bounds
Ug, up € R and u, < up are considered, then one should require

ug < Ayp and up > Ay, in Q.

For a semilinear elliptic state equation the state bounds should, in addition to
the previous conditions, satisfy

¢('7ya('))7 ¢("yb(')) € LOO(Q)a

where ¢ :  x R — R is the nonlinearity of the PDE which has classical assump-
tions, for example those in Section that guarantee the well-posedness of
the state equation and the continuity of the state variable in €.

3.6 Error Analysis

Recall that, according to Remark EI, if (G, Yn, Dh, bh)o<h<h, satisfies (3.21])—
B21) with

1Pl Lao) < mnla, ) for some 0 < k < 1, (3.48)

then there exists (@, 7y, p, i) satisfying (2.15)—(2.18]) with
5] La(o) < Kna,T) (3.49)

and iy, — 4 in L?(Q)) as h — 0, where @, and @ are the unique global minima
for Problem (IP,) and Problem (), respectively. Our goal now is to investigate
the error in approximating u by ay,.

To start, let us introduce the auxiliary functions § € H?(Q) N H(Q), g5 €
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X0, Pn € Xpo such that

/ Viy-Vou+ (b(ﬂ)v dr = / upv dx Vv e H&(Q), (3.50)

Q Q

/ Vin - Vo, + d)(gjh)vh dr = / avy, dx Yo € Xpo, (3.51)
Q Q

/ Vpn - Vop + ¢ (§)pron dx
Q

= /Q(g — yo)vp dx + /th di Yup € Xpo. (3.52)
Then, the following error estimates hold
190 = Fllz20) < ch®(lan] 20 + 1), (3.53)
19n — ¥l L2y < cb®([|t]l L2y + 1), (3.54)
0 =l L=y < el AR5 (] oy + 1), (3.55)
151 = Pllz2@) < ch([17 = vollz2 o) + Il mex))- (3.56)

The estimates (3.53)) and (3.54)) follow from Theorem 3.2.3} Notice that ||ap| 2 (q)
is uniformly bounded in h according to Lemma [3.4.1} On the other hand, (3.55)

follows from Theorem [3.2.4] since u € W*(Q2), 1 < s < 2, by Lemma
Finally, the estimate (3.56|) is a consequence of [I4] Theorem 3.

To guarantee a high order of convergence for the sequence (@ )o<n<n, when
the pointwise state constraints are considered, we make the next assumptions.
Firstly, we require the bounds y,, y, to be regular enough, namely,

® Yo,y € Co(2) N W22(Q) such that y,(z) < yp(x), v € K.

Next, we make an assumption on Vy at the set of points in K where the state
constraints are active. This assumption shall be mentioned explicitly wherever
it is needed.

Assumption 2  For the optimal state y there holds
Viy(z) = Vyp(z) Vee K :y(x) =yp(z),
Viy(z) = Vyu(x) Ve e K :g(x) =yq(z).

Notice that Assumption [2] is satisfied automatically at the state constraints
active points that belong to the interior of K, denoted by int K. To see this,
consider the function f, : K — R defined by f, := g — yp. If fi(z*) = 0 for
some x* € K, then z* is a global maximum for the function f; since f, < 0
in K. Consequently, the first order necessary optimality condition at x* reads
V fo(z*) = 0 provided that «* € int K. On the other hand, if z* € 0K, then
V fp(z*) # 0 in general.

Since the optimal state ¢ is usually not known a priori, the previous as-
sumption might be practically restrictive. For this reason, we make the next
assumption which guarantees the same convergence order for (@p)o<n<n, as the
one that Assumption [2] guarantees but it is relatively easier to be fulfilled.

Assumption 3 For every h > 0 there exists a set of triangles T C 7T}, such

that -
K= U T.
TeT
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Observe that if the set K is polygonal, the previous assumption can be easily
satisfied.

We can now formulate our main theorem of this section which establishes the
error estimate of approximating the unique global minimum @ of problem (P)
by the sequence (up)o<n<p, of the unique global minima of the corresponding
problems (Py,).

Theorem 3.6.1 Suppose that Assumption holds. Let (@p)o<h<h, be obtained

from solving (3.21)) —(3.24) such that (3.48)) is satisfied. Then there exists ¢ > 0

independent of h such that
_ _ _ 1
[an — tllr2(0) + 19n — Yllm1 (@) < ch?,

where @ is the unique global minimum of Problem (P). Here, §j and gy, are the
optimal states corresponding to 4 and Uy, respectively. If in addition Assump-
tion[g or Assumption[3 holds, then

lan — |20 + |19n — Gl < ev/]Inhlh3~% (3.57)

for any 1 < s < sq := min(2, 392‘9""‘1 ) with Omax € [5,7) being the mazimum

interior angle in Q. For 0. = § we define sq = 2.

Proof: Throughout the proof, the sequence (un, ¥n, Ph, fn)o<n<n, and (4, y, D, i)
are exactly as described at the beginning of this section.

Testing ([2.17)) with up, and (3.23) with @ and adding the resulting inequalities
gives

[ n =)@ m) — a(m 0 ds 20
Q
from which we obtain

ol = 0 < [ (= ) n ~ ) do

= / (Pn — P)(u — up) dz + / (Pr — pn)(@ — tp)dz.  (3.58)
Q Q
S1

We see that from (3.21)) and (3.51)) with the choice v}, = pj, — p, we have

/Q (B — ) (@ — ) der = / (6(Fn) — (@) (Bn — Pn) d

Q

+ /Q V(Gn —yn) - V(Pr — D) dx

=/Q@h—g)(zyh—gh>das+/~ @h—gh)dnh—/ (G — n) di

K K

Sz SS

+ / [9(Fn) — &(Un)](Pr — Pr) dx — / (9" (GJn)Dn — &' (9)Dn](Gn — Yn) de,
Q

Q

S4
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where we utilized (3.22)) and (3.52)) with the test function vy, = gj, —gp to rewrite
the term containing the gradients in the first equality. Consequently, adding the

terms S, S3, Sy to S1 in (3.58)) gives
4
aHﬂf”L_LhH%z(Q) < ZS@ (3.59)
i=1

Estimating S7: To obtain an upper bound for S; we use the Cauchy-Schwarz
inequality, Lemma for some € > 0 and to get
St < |[pn — Pllz2 @) 1@ — nll22()
< I~ Pl + Sl —
S 5o IPh Pllz2 ) + B 1% — tn|[Z2 (o)
< = (1l = yoll3a(o) + 17lhar) + 511 = nll3a
= e (@ M(K) 2 L2 ()

«eE | _
- 7||u — |72y + O(R?).

Estimating Ss: we argue in a similar way to that of estimating S; and we use

(13.54)) to obtain

&zﬂm—wam+4@em@—@m

IN

—Nl9n = 9lZ2) + 100 — Fll 2@ 190 — Fll L2

IN

o € _ 1 _
—llgn — 9l720) + §||Z/h — Gl + §€||yh —l720)

¢ I Coapn-
(5 = Dllgn — 9l 720) + gh4(||u||%2(§2) +1)

€ o
(5 = D[gn — y||%2(g) +O(hY).

IN

Estimating S3: Before we start estimating Ss, we first introduce some notation.

Let us define f := y—yp and f, := y,—7. It is clear that f, f, < 0in K and that
2 1 1_2 ~ . — 2 .

fo, fo € W2P(Q2) — C"7»(Q) since § € W*P(Q) according to Lemma

Next, we recall the decomposition fij, = i — i from Proposition and we

introduce, for 0 < h < hq, the sets Ay, B, C N}, by

Ap, :={x; € supp(ig,) \ K = fa(x;) > 0},
By, := {x; € supp(ii) \ K : fy(x;) > 0}.

We have the following claims:

An#0 VYh>0=3z €K : f.(z) =0, (3.60)
B,#0 Yh>0= 3z €K : fo(z) =0. (3.61)

To show , suppose that f,(z) < 0 for all z € K. Then, from the
continuity of f, and the fact that dist(z;,0K) < h for any z; € Aj, we deduce
that Aj, = 0 for sufficiently small h, which is a contradiction. The claim
can be shown analogously.

Thanks to , we can assign to each z; € A a point ¥ € 0K such
that |z; — 27| < h and fu(z}) = 0. Notice that if Assumption [2| holds, then
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Vfa(z}) = 0 as well. Since f, € Cl’l_%(Q) as explained at the beginning, we
conclude from Lemma that there exists a constant ¢ > 0 independent of
h such that

fa(zj) = fo(xj) = fa(x}) < claj — ;" <ch” Va; € Ap, (3.62)
where we define

p’

[ 2—2_ if Assumption [2] holds,
V= 1, otherwise.

Using a similar argumentation, we have
folxy) = folz;) — folaf) < clzj — a7 <ch? Va; € By (3.63)
J J

We are now ready to estimate S3 and we start by establishing an upper
bound for the first integral in S3.

Using jip, = i — ¢, Lemma the estimate (3.55) as well as (3.62) and
(3.63]), we have
/~ (Gn — Yn) diin, = / (Tin — wo) dfiy, — / (Un — Ya) it
K K K
— [ Gn-wyaa+ [ o+ [ - adi+ [ fod
K K K K
< NFn = Yl Loo iy 1R | pa i) + Z fol@j)ig + Z fa(@;);

z;EBy ;€A
< el hlh? 5 (fall ooy +1) +ch” > ek’ >
z;€B ;€A

< O(Imhlh?=7) + ch™||finl| pa 2)-
Observe that if Assumption [3] holds, then A}, C K and
falz;) <0 Va; esupp(ig) and  fiy(z;) <0 Va; € supp(ip).

This implies that the summation terms containing f, and f; in the previous

2
estimate can be dropped and then one ends up with the order O(]In h|h27?).
Consequently, we conclude that

O(|lnh|h>"7), if Assumption [2]
/ (Gn — Un) dppn, = or Assumption [3] holds, (3.64)
K O(h), otherwise.

To estimate the second integral in S3 we use the decomposition i = iy — jiq
from Proposition [2.34] the fact that Iy, < yn < Iy in K, the interpolation
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error (3.3) and the uniform estimate (3.55) to obtain

/K(Qh — Jn) dfi = /K@h — Un) djiy — / (Un — Un) diia

K

=/ On —Inyo + Inys — Yo + Yo — U+ Y — Un) diip
K
+/ Oh =0+ 9= Ya +Ya — InYa + InYa — n) dfia
K
< [ G -wdm+ [ @) dm+ [ G- Ddpa+ [ (o~ T dia
K K K K
< I All amcsy <||§h =l )y + 1Wa = Inyall oo (i) + lys — fhybHLoo(K))
_2 _
< ||l mxy (| In2[R*~ % (|| o) + 1) + B2 |yallwae o) + h2||ybHW2~°°(Q))
< c|Inh|R* ¥ ||l pcx) (”aHLl’(Q) +[Yallwz.e @) + lullwze @) + 1)
= O(|lnh|n*"7), (3.65)

where we used that h? < |In h|h27% for sufficiently small h.

Combining (3.64) and (3.65) yields

g — O(|Inh|n*~ » ), if Assumption [2] or Assumption [3| holds,
3= .
O(h), otherwise.

Estimating S;: To have an upper bound for Sy, we first rewrite Sy as

Sy = /Q [¢(Gn) — ¢(Gn) + ¢ (Tn) (Yn — Fn)Pn dz + / [6(7) — o) + ¢'(9)(y — §)lpdz

Q
San S4.2
+ / 6@) — 6@) + @) T — D) Gn — p) da+ / (6) — 6dn) + &' (5) (@ — 9] de
Q Q
Si.3 S4.a

+ 160 - 906) + 6/ 6)5 - 3l
Q

Sa.s

To estimate Sy, we first use the same argumentation used for estimating
Ry (up) in the proof of Theorem m Then, we apply (3.48)), the triangle
inequality, Lemma for some € > 0 and (3.54) to obtain

1
Syq = /Qﬁh(ﬂh - Qh)/o ¢ (Gnt + (1 — t)gn) — ¢ (Gn) dt dz

1y - 1, o,
<n(a,7) 1thHLQ(Q)(§”yh - yh”%mz) + 5”“ - UhH%z(sz))

14+e, T+t a

< r( 5l = 9200y + —5—ln = T30 + Sl = Wllfee )
14+€,_ _ o, _ _

< w5l = Gll3a@) + T = TnllFaq) ) + re(l+ R (a2 +1)

14+€,_ _ o,
r (=5l = 32 + 18— llae) ) + O).
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In a similar way, but this time while using (3.49) and (3.53|), we have for Sy o
1
Sia= [ pa=9) [ (it + 01— 09) ~ ¢ @ dedo
0

1y .. a,
< oy~ ol i (515 — Hl3eq) + 5 Nin — @llEzey)

1+e€e,_ _ T+et a, _

< (590 = 720 + —5— 115 = BnllFage) + 5 70— l3acey)
1+e€e,_ _ a _ _ _

< (30 = 13200 + 5 = @llFay ) + wel + €A (] Fao + 1)
14¢€, _ _ o _

= n( 530 = 320y + 5 170 = i3y ) + O,

To have an upper bound for Sy 3 we apply the Cauchy-Schwarz inequality,

Lemma Lemma [2.2.3) Lemma for some € > 0 and (3.56) to get
Sas < 6(7) = ¢@) + &' (DG = D2 1Pn = Dllz2(e)
< (L(m) + 19" @)l o ) 17 = Fll 2 l1Bn — Dl 2

IN |

clln — all L2l — Pll2 (o)
2
QE | _ C ~ _
< 7||Uh — |72y + TQEHPh —pl72q)
Qe | _ C _ _
< 7||Uh — al|Z2 0 + &h2(|\y =90l 72(0) + 1213 ())

e _
S Nan = ey + Oh2),

where L(m) > 0 is a constant from Lemma
Arguing like above and using (3.54]), we obtain for Sy 4

Saa < (Lm) 4+ 10" @) e ) in — 3l L2 150l 20
< ch®(|Jull 2oy + 1)
= O(h?).

Notice that ||pnl[z2(q) is uniformly bounded for sufficiently small A as it can be

seen from (3.56]).
In a similar way and while using (3.53)) this time, we have for Sy 5
Sas < (Lm) 4+ 10" @) o)) 17 = inll L2 180l 20

< ch®(||un ]l 2@) + 1)

= O(h?).
Gathering the estimates for Sy.1,..., 545, we conclude that S, can be bounded
by

ae

Sa < K(L+ llgn = llZ ) + (ko + ) an — @72 () + O(R?).

The Final Step: Inserting the estimates of the terms Si,..., Sy into (3.59)
yields
_ _ € _ _ _ _
allan — a2 < (K(1+€) + (5= D)lgn - Ill72@) + ok +o)llan — 72
O(|Inh|h?~ B ), if Assumption [2] or Assumption [3] holds,
+ .
O(h), otherwise.
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Since k < 1, choosing € > 0 to be small enough in the above expression yields
the existence of ¢ > 0 independent of A such that

O(]1In h|h27%), if Assumption
c|lan — a||2L2(Q) + c||gn — ;QH%Q(Q) = or Assumption [3] holds,
O(h), otherwise,

from which we obtain the desired estimate for the control. It remains to estab-
lish an upper bound for ||gn — 7| g1 (o). To this end, let R,y denote the Ritz
projection of §. Then, from the triangle inequality and (3.6 we obtain

9n = 9l e @) < N9n — Bugllar ) + |1Rey — llar @)
< g — Ruyllar ) + chllglla20)- (3.66)

We now derive an upper bound for ||g, — Rayl|g1(q). Firstly, from the definition
of R,y and the weak formulation of § we have

/ VRyy-Vwy, dx = / Vi Vw,dr = / awy, dx — / d(G)wp dr Ywp, € Xpo.
Q Q Q Q
From this and (3.21) we get

/ V(Ruj— ) - Vo do — / (i — @in)wn dz + / (6(5n) — d@)]wndz Ywn € Xno.
Q Q Q

Using wyp = Rpy — U, in the previous variational equation and then applying
the Cauchy-Schwarz inequality, Lemma and the Poincaré’s inequality we
obtain

/ V(R — )2 der = / (@ — ) (B — ) de
Q Q

+ [ 166) = o) (R = ) do
< (lu = anll2) + 19@n) — 6@l L2()) 1R — Unll L2 (o)
< ea(a = anllLz) + cllgn — Gl L2 @) IV(BRG — Fn) |l 22 () -
Dividing both sides of the previous inequality by ||V(RnY —7n)| r2(q) and using
again the Poincaré’s inequality yields
150 — Badll ) < c2(ll@ = anllr2) + cillgn — llr2o)) (3.67)

where ¢1, ¢a > 0 are constants coming from Lemma [AT1:3] and the Poincaré’s
inequality, respectively, and they are independent of h. Here, c; is independent

of h because ||gn || (o) is uniformly bounded as it can be seen from the uniform
convergence ([3.45)).

Finally, from (3.66|) and (3.67]) we have
1Tn = Fllm@) < el = nllL2co) + 17n = Fllr2@) + 27l H2(0)

from which we obtain the desired estimate after recalling the bounds that we
established for || — | 22(q) and ||gn — 7| L2(q)- |
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The reason for postulating Assumption [I]in the hypothesis of Theorem
is that we use the estimate (3.55), which follows from Theorem which
requires this assumption, to bound the integrals

[(yh—@dﬂh and / (G — §) di (3.68)
K K

that appear in the term Ss in the proof of the theorem. However, since both of
the previous integrals are on subdomains of €2, Remark [d] suggests the next one.

Remark 9  Assumption [l}in the hypothesis of Theorem [3.6.1 is superfluous
as it can be seen from the following steps.

Step 1. We replace (3.55) by
L _2
190 = Gll oo @) < el AR 77 (||E] o) + 1), (3.69)

where €, CC Q is as described in Remark [
Step 2. If we choose €, in a way such that K CC €, then the first integral in
(3.68)) can be bounded as follows

[ = i < = 9l iy < el = 2o

The second integral in (3.68)) can be estimated in a similar way since K cC K.

We would like to comment on the work in [64] where the error estimate of the
finite element discretization of the problem (P) is also considered there but it
was established using a different approach. In particular, it is considered there
the same class of problems as (P) with the exceptions that the nonlinearity ¢
need not satisfy and that the control bounds are dropped. In fact, with the
absence of the control constraints it becomes easy to verify that there exists a
Slater point in any given L?(Q)-neighbourhood of a local solution @ of (P). This
Slater point plays an essential rule in the overall analysis there. The discrete
counter part (P,) of (P) is obtained via discretizing the state and the control
variables by means of piecewise linear and continuous finite elements. Under the
assumption that a local solution @ of (IP) satisfies a quadratic growth condition,
that is, there exist constants 6 > 0 and 8 > 0 such that

Bllu— ﬂ“?m(sz) < J(u) — J(u)

for all feasible controls u of (P) with |lu — @l z2q) < 0 where J is the cost
functional, it was shown that there exists a sequence (@ )0 of local solutions
of (Py) such that @, — @ in L*(Q) as h — 0 with order O(h?~%/27¢), for
arbitrarily small € > 0 in space dimensions d = 2,3 for a convex polygonal
or polyhedron domain 2. This was achieved by first considering an auxiliary
discrete problem (P} ) which is basically the same as (IP;) but the controls uy,
of (P}) are sought in a L?(£2)-neighbourhood of the local solution @ of (P), that
is, [lup — ul[f2() < r for a fixed r > 0 but sufficiently small such that uj, is a
feasible test function in the previous quadratic growth condition. Next, it was
shown that (P} ) admits at least one global solution @, and that any sequence of
global solutions (@} )0 converges to @ in L?(Q) with order O(h?~%4/*). Since a
global solution of (IP}) is a local solution of (P), the existence of the sequence
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(@ )h>o of the local solutions of (Py) is now verified and then the corresponding
first necessary optimality conditions can be formulated which in turn are used to
improve the convergence rate to O(hz’d/ 2=¢). We remark that this convergence
rate, namely O(h?~%/27%) for the controls was obtained only when the state
constraints are prescribed in a compact subdomain K C Q and it was mentioned
there that the case K = Q will lead to a lower order of convergence.

3.6.1 The Case K =)

Recall that in Section we mentioned that the choice K = Q is possible
for Problem (P) provided that the bounds y,, y» € C(f) satisfy in addition to
Ya < yp in Q the compatibility condition y, < 0 < 3, on 9Q. In the following,
we discuss how this choice affects Theorem [3.6.1] and its proof.

First of all, the set N} should be in this case defined as

Ny i={xj|z; is a vertex of T € Tp,,x; ¢ 0Q}.

Next, to insure a high order of convergence the bounds y,, y» should admit a
higher regularity, namely,

® Ya,yp € W2°°(Q) such that y, < vy in Q and y, < 0 < 1, on 9.

Theorem 3.6.2 If K = Q such that the previous settings hold, then the es-
timate (3.57)) in Theorem holds without requiring Assumption |d nor As-
sumption [

Proof: The proof is exactly the same as the one of Theorem [3.6.1| except for
small modifications in the analysis of the term S3. More precisely, one should
use ) in place of K and K there. Then, the analysis is the same as when
Assumption [3]is satisfied. [ ]

We now address the question that whether Assumption [1]is actually needed

. : 1 .

to obtain the convergence order O(y/|In hlhz=%) for the controls if the case
K = () is considered.

Firstly, the integrals in (3.68]) become

_/(@h —y)dpn  and ﬁ(ﬂh —y) dp.
Q Q

At first glance, one should use the estimate to bound the previous integrals
since they are over the whole domain 2 and thus Assumption [I| is needed.
However, using the fact that y,, 1, € C(Q), ya < yp in Q and y, < 0 < y;, on
09, it is possible to show that there exists ., CC € such that supp(i) C Q.
and supp(fip) C Q. for h small enough, see [24, Corollary 5.4] for the proof.
Consequently, it is enough to consider the estimate to bound the previous
integrals provided that €2 is chosen in a way such that Q. CC €. For instance,
for the first integral we have

/Q (5 — 7) ditn = /Q (@ — 5 dfin < lin — Tl Bl asco
< cllgn — Gl (a,)-

In summary, we have the next remark.
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Remark 10  Theorem [3.6.2]is valid without the need for postulating Assump-
tion [

We conclude this section by deriving an error bound for the uniform conver-
gence of the optimal state 4, associated with the unique global minimum #u;, of
problem (IP;,) to the optimal state § associated with the unique global minimum
@ of problem (P).

Theorem 3.6.3 Under the hypothesis of Theorem|3.6.1], apart from Assump-
tion let gp, be the state associated with the unique global minimum Gy, of (Pp).
Then there exists a constant ¢ > 0 independent of h such that

_ _ 1
19n — ll () < ch?,

where § is the state associated with the unique global minimum @ of (P). More-
over, if in addition either Assumption |4 or Assumption [3 is satisfied, or if
K = Q under the hypothesis of Theorem then

= 3_1
9 — Gl Lo () < ev/[InhlhZ7%,
for any 1 < s < sq where sq is as defined in Theorem[3.6.1]

Proof: Since §j = G(@) and g, = Gp(@p), we get from the continuous embedding

H?(Q) — C(Q), Lemma and (3.12)) that

1Gn (n) — G(@)[| Lo (@) < NG (Un) — G(Un)|lL< (@) + 1G(Tn) — G(@) || L~ ()
< ch(||anllp2) + 1) + cllan — | 2(q),

from which the result follows after recalling Theorem and Theorem [3.6.2
The dispensing with Assumption [I]is justified in Remark [0 and in Remark
|

3.7 Implementation Issues

Our aim in this section is to develop an algorithm to solve the nonlinear system
f numerically by the semismooth Newton’s method.

To start, let fip, be the measure defined in and let fip, = b — i be
its Jordan decomposition where we define

ihi= Y phdy, and  ppi= Y @96,

:vjENh IjENh

where ﬂ;’-, pj = 0 are real numbers for any corresponding z; € Ny and §,. is
the Dirac measure at x;. Then, it is well known that the inequality (3.24) is
equivalent to the system

A >0, gn(x;) < wlag), o5 € Ny and Y @(ga(a;) — w(x;)) =0,
ijNh

i >0, Jn(x5) = yalx;), v; € Ny and > 1§ (yalx;) — gala;)) =0,
ijNh
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or, equivalently,
ﬂ? = max (O,ﬂg + ¢j (gn(z;) — yb(xj))>, z; € Ny, for any ¢; > 0,
fij = max (O,ﬂ? + ¢ (Yalz;) — yjh(xj))), xj € N, for any ¢; > 0,
where the function max(0, -) is defined by

x ifx >0,
maX(O’x){o if z < 0.

Also, we recall that the inequality (3.23)) is equivalent to
n(z) = Py i) (— 2P0(2)) = min (max (uq, —1pn(2)),up) Vo € Q. (3.70)

Consequently, we see that the system 7 can be rewritten as a set of
equations for five unknowns, namely, up, Yn, Dn, 17, and uj where py, := /12 — .
In fact, if we use the equation of uj in the one of y;, we are left with only four
unknowns, namely, Y5, pr, p8 and p¢. The control uj, can be recovered easily
via once we have computed py. Our task now is to write the equations
for the unknowns yy,, pn, ,uz and pf in matrix-vector form and then establish an
algorithm to solve them by the semismooth Newtons method. To achieve this,
we first introduce some notation.

Let {x1,...,2,} be the set of the inner nodes of the triangulation 7, so
that n € N is the dimension of the space Xpo and let {p1,...,p,} be the
corresponding basis functions. Moreover, let m € N be the number of the nodes
in the set N},. For simplicity and without loss of generality, we assume that
the nodes in N}, are the first m nodes in the set {z1,...,2,}. In other words,
the constraints on the discrete state variable y; are imposed only in the nodes
x;, for j =1,...,m. Notice that for the case K C {2 we have m < n while if
K = Q, then m = n. Next, we define the following one-to-one correspondence
between the discrete objects and their nodal representations

n
y=[ljo €R" Sy = w5,
j=1

n
p=[plj—i ER" S pp=> pjg;

j=1
= ()7 € R™ & pp = pubd,
j=1
to = )7y ER™ & pft = 45,
j=1
We also introduce the mappings
Ry ®(y) = / (b(yh)(Pj dCL':| € R, (3.71)
LJQ 7j=1
R">y— ®'(y) = / &' (yn)pip; dx} e R (3.72)
LJQ i,j=1
R*">pr—f(p) = /QP[%M]( —L1pn)e; dx} € R". (3.73)
L j=1
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Notice that ®’ is the derivative of the map ®. Next, we define

m

Ya = [ya(xj)]j:h Yo = [yb(gcj)];-”:l, Yo = [/QyOSDj dx]

M := [/ Pip; dx} , A= {/ Vgpingojdx] .
Q i,5=1 Q 1,5=1

Using the previous notation, solving f is equivalent to solving
for (y,p, py, 1,) € R" x R™ x R™ x R™ the following system
Ay + @(y) = f(p), (3.74)
Ap + @'(y)p = My —yo + Ep,, — Ep,, (3.75)
py, = max (0, i, + ¢(BE'y — yp)), (3.76)
tq = max (0, pt, +c(y. —E'y)). (3.77)

Here, E € R™*"™ is a matrix defined by

I
E = m
[ 07 xm }

where I,,, € R"™*™ is the identity matrix while 0,.«,, € R"*™ is the zero matrix
with r := n — m. Notice that E is the embedding of R™ into R™ by zero
extension, that is,
R™>x+— Ex = { )5
The presence of E makes the addition of the terms on the right hand side of
(3.75)) feasible. It is clear that in the case m = n, E becomes the identity matrix.
On the other hand, ET € R™*" is the transpose of E and it functions as
the projection of R™ into R™ by considering the first m components, that is,

|ex

ET = [ Im 0m><7" }

and
Z1

R'5z—E'z= : e R™.
Zm
Recall that, by convention, the constraints on the variable y are imposed only
on its first m components.
The quantity ¢ in (3.76]) and in (3.77)) can be chosen to be simply an arbitrary
positive constant ¢ > 0, or a diagonal matrix ¢ = diag(cy, . . ., ¢, ) with arbitrary
real numbers ¢; > 0 for j = 1,...m. We emphasize that the choice for ¢ in (3.76)

need not be the same as the one in (3.77)). Finally, for a given x € R™, max(0, x)
is understood in a component wise sense, that is,

m

max(0,x) := [maX(O,xj)]jzl.

Remark 11  One could avoid using the matrix E and its transpose ET in

(3-75)—(3.77) by simply considering g, p, to be elements from R™ instead of
R™ and by replacing (3.76)) and (3.77) by

py, = max (0, py, + ¢y — ¥5)), and p, = max (0, u, +c(Ja —y)), (3.78)
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respectively, where ¥, y, € R™ are the extensions of y;, y, € R™ defined as

we[2] ne[2]

It is clear from that ,ug’. = pg =0, for j =m+1,...,n, which is exactly
the same effect of E on the elements of R™. However, from practical point of
view, this strategy might lead to an unnecessary increase in the dimension of
the system 7 especially if m < n which is the case when the state
constraints are imposed on a relatively very small subset K of the domain (2.

It is convenient in what follows to introduce the function

G:R"XR"XR™ xR™ - R" xR" x R™ x R™

by
Ay +@(y) — f(p)
Ap + @' (y)p — My +yo — Ey, + Epe,,
G(y7p7u’b7“a) = )
ty, — 1o (Y, 1)
Hq — ra(y, ll’a)
where

rb(Ya p’b) ‘= max (07 Hy + C(ETy - yb))7
ro(y, p,) := max (O, w, +c(yq — ETy)).

Then, solving (3.74)—(3.77) is equivalent to solving the equation

G(Y?I:)a#'bvu’a) =0. (379)

Since the functions max(0,-) and Py, ,,)(-) are not differentiable in a classical
sense, the function G is nonsmooth and hence the Newton’s method can’t be
applied directly to solve . Instead, we utilize the semismooth Newton’s
method, which uses the generalized Jacobian of G, to solve , see for in-
stance [45, Chapter 2| for more details about the semimooth Newton’s method.

The generalized Jacobian of G at a given point (y, p, gy, #,) € R™ x R™ X
R™ x R™ reads

DG(Y7 P, /'l’ba “a) =

A+ d(y) —Df(p) 0 0

' (y)p—-M A+®(y) -E E

| —Dyry(y, ) 0 L, — Dy, ro(y, py) 0
—Dyra(y, o) 0 0 Ly — Dy, va(y, 14a)

Here, Df denotes the generalized Jacobian of f and it is given by

n

Df(p) = {/Q ~L0P, uy) (= Lpn)pipj do (3.80)

ij=1
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where 0Py, .,)(-) denotes the generalized derivative of Py, 4,1(-), that is,

{0} T < Ug OT T > Uy,
Py, () =4 {1} Uy < T < up, (3.81)
[0,1] T = Uqg O T = Up.

Furthermore, ®” is the second derivative of the mapping ®. More precisely, we
have

@ ij=1
Finally, we have
D rb( ) = cDmax (O I»‘zb+C(ETy—yb))ET’
w, To (Y, py) = Dmax (0, p,, + c(ETy — 1)),
a(y ) = —cDmax (O n, + ( _ET ))ET,
uara(y K,) = Dmax (0 w, +c(yo—ET )>

where, for a given x € R™, Dmax(0,x) is a diagonal matrix given by
Dmax(0,x) = diag(@ max (0, 1), ..., max(0, xm))

with dmax(0, -) being the generalized derivative of max(0, -), that is,

{0} x <0,
Omax(0,z) := ¢ {1} x>0, (3.83)
[0,1] x =0.

Notice that and are set-valued mappings which implies that there
might be several choices for DG(y, p, iy, t4,) at a given point (y, p, ty, 1,) €
R™ x R™ x R™ x R™. In general, to guarantee the convergence of the semis-
mooth Newton’s method to a solution (¥, P, i1y, it,) of the system (3.79), i.e.,
G(y,D, iy, B,) = 0, we assume that for all points (y, p, &, it,,) sufficiently close
to the solution (y, P, i1y, it,) any choice for DG(y, p, py, i) is invertible, see
[45, Chapter 2] for further details.

We are now ready to state the algorithm for solving the system by
the semismooth Newton’s method.

Algorithm 1 (Semismooth Newton’s method)

0. Choose (y%,p% ud,ud) € R™ x R® x R™ x R™ (sufficiently close to the
solution (ya 157 p’bv iaa))'

For k=0,1,2,...:

1. Obtain (8y*,dp*, dur,dpk) € R® x R™ x R™ x R™ by solving

dy*
opF
Spp
Sy

DG(ykvpkalJ’l]ja”’];) _G(ykvpkvll'llfvp";)’

k+1

2. Set y"+! = gy" +y*, phtl = 6pF 4+ pF, it = pk + pf, phtt = opk + pk.
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We conclude this section by a general remark.

Remark 12 1. For a given p € R”, the vector f(p) introduced in (3.73]) can
be written as

n 1 n n
f(p) = {/ UaPj dx} - = {/ Dhp; dz:] + {/ UpP; dx}
A(p) j=1 Y LJZ(p) j=1 B(p) j=1

1
=Map)ta = ~Mzp)p + Mpp)u,

where
A(p) = {z € Q: ~Lpu(e) < ug}, B(p):={reQ: —Lpi(a) > w},
I(p) = {x €Q: Uq < _éph(w) < ua}v

and

n

o= [l = [y, Mg = [ / wjdx} ,
Z(p)

i,j=1

/ Lpig@j d.%‘:| 5 MB(p) = |:/ SDiSDj d.’L‘:| .
A(p) i,j=1 B(p) i,j=1

In a similar way, for the matrix Df(p) defined in (3.80) we have

M) =

1 " 1
Df(p) = —— [/I( )‘Pi‘Pj dﬂ?} = _aMI(p)~
P

a ij=1

Since py, is a continuous and piecewise linear function on 2, the sets A(p), B(p)
and Z(p) are polygonal and thus the entries of the matrices M 4(p), Mp(py and
Mz (p) can be computed exactly. The determination of the sets A(p), B(p) and
Z(p) is a very classical task in variational discretization, see [46], and it can be
achieved simply by looping over the triangles in the mesh and comparing féph
with the bounds u, and wuy.

2. Tt is also possible to compute the entries of ®(y), ®'(y) and ®"(y)p
defined by (3.71)), (3.72) and (3.82)), respectively, exactly for certain types of
the nonlinearity ¢. For example, for the choices ¢(s) := s* and ¢(s) := s°,
which we will consider for our numerical examples in Section [3.8 the functions
o(yn), ¢'(yn) and @ (yp,) restricted to each triangle in the mesh are polynomials.

3.8 Numerical Examples

In this section we consider variational discretization of the problem (PP) for dif-
ferent choices of the nonlinearity ¢ and the data yg, ua, Us, Yo, Yp, @, While
Q:=(0,1) x (0,1) is kept fixed in all considered examples. The numerical so-
lution of the corresponding systems (|3.21))—(3.24)) is performed with the semis-
mooth Newton method proposed in Section

3.8.1 Examples with Unique Global Minima

In this part all the computations are performed on a uniform triangulation of
Q with mesh size h = 2751/2.
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Example 1  We start with the example presented in [64, Section 7], where
the nonlinearity is given by ¢(s) = s3, and unilateral state constraints of the
form y > y, are considered, with

1 1
Yo () := ~5 + 3 min(xy + @9, 1 + 21 — 29,1 — 21 + 22,2 — 1 — 2).
The desired state is given by yo := —1. It is easy to see that the nonlinearity

satisfies (2.2) with r = 2 and M = 2v/3. Hence, in view of Theorem [3.3.4] we
have ¢ = 4 and a control u, obtained from solving (3.21)—(3.24) is a global
minimum of (P,) if the associated adjoint state pj, satisfies

_ 5,3 _ 3
PnllLa) <5 §35v20, 'as = (a),

where Cy = C’f’) ~ 0.648027075 is the constant from Theorem

The numerical findings for this example with varying a are presented in
Tableand they are illustrated graphically for the case o = 1072 in Figure
It is clear that uy is a global minimum for the given values of «, and that it is
most likely that the related continuous problem admits a unique global solution
for all values of @ > 0. We will consider this example again in the next subsection
to investigate the convergence rates.

Table 3.1 Examplefrom [64, Section 7]: The values of ||pr||14, n(a) and J(@n)
for different values of a.

a 1P 2 n(e) J(un)

1.0e-06 1.782757474150e-04 6.776197632762e-03 3.151530945981e-01
1.0e-05 6.588913644647e-04 1.606889689070e-02 3.337051126085e-01
1.0e-04 2.476579707110e-03 3.810535956559e-02 3.680280814272e-01
1.0e-03 9.826749689797e-03 9.036204771862e-02 4.264978699222e-01
1.0e-02 2.919304462314e-02 2.142821839497e-01 4.866764267990e-01
1.0e-01 3.012357097331e-02 5.081431366100e-01 4.986253239639e-01
1.0e+00 3.021974315533e-02 1.204997272869¢e4-00 4.998620947749e-01
1.0e+01 3.022939247330e-02 2.857498848277e+00 4.999862050864e-01
1.0e+02 3.023035772702e-02 6.776197632762e+00 4.999986204647e-01
1.0e+03 3.023045425561e-02 1.606889689070e+-01 4.999998620460e-01

We now examine a series of numerical examples with different constraints and
desired states, where we consider the nonlinearities ¢(s) := s* and ¢(s) := s°.
For the desired state yo we make the following two choices

Al :
A2 :

yo(x) := 2sin(27x1 ) sin(2mx2),
yo(x) := 60 4+ 160(z1 (z1 — 1) + x2(x2 — 1)).

We note that in choice A1l the desired state yo vanishes on the boundary 952
of the domain, i.e. it satisfies the boundary condition of the state equation and
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thus is reachable, while in choice A2 it is not reachable. As constraints we
consider the cases
Case 1 (unconstrained problem)

Up = —Ug = 00, Yp = —Yaq = OO
Case 2 (constrained control)

Ug = —D,Up =D, Yp = —Yq = 0.
Case 3 (constrained state)

Up = —Ug = 00, Yg = —1,yp = 1.
Example 2 Let us first consider ¢(s) := s® with 7 specified as above. The
numerical findings are summarized in Figure where we compare ||pp||r4

with n(«). We conclude that unique global solutions exist more likely in the
case where the desired state is reachable.

Example 3 In this example we consider ¢(s) := s°. We see that (2.2) is
satisfied with

4 20
r=g and MZB—%.

Hence, in view of Theorem we have ¢ = 6 and a control #; obtained
from solving (3.21])—(3.24) is a global minimum if the associated adjoint state
Py, satisfies
1=
Prllzs) < —m 7 =C
Il < 0o

-

1

ol
2l

a2 = n(a)7

where Cs = Cél) ~ 0.610888 is the constant from Theorem

The numerical findings are summarized in Figure[3.4] Again we can conclude
that problems with reachable desired states more likely admit unique global
solutions.

3.8.2 Convergence Rates

We now examine numerically the error bounds established in Theorem [3.6.1]
and in Theorem [3.6.3] For this purpose, we consider again Example [1| with
a=1072

The numerical computations, which are illustrated in Figure show that
the state constraints are active at one point, namely Z := (%, %), and the corre-

sponding multiplier is approximately given by
[ = 0.3386 0z,

where d;z is a Dirac measure at Z. We can easily find a polygonal subdomain
K cC © that contains the active point & so that Assumption [3] holds. Recall
that Assumption [I] can be dropped in the light of Remark [0] Consequently, we
are expecting the bound \/|In h|h? %, or equivalently h!~¢ for arbitrarily small
e > 0, for the computed errors according to Theorem [3.6.1] and Theorem [3.6.3]
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To deduce the convergence rates numerically, we compute the experimental
order of convergence (EOC) which is defined as

log E(h;) —log E(hi—1)
logh; —logh;_1

EOC =

where F is a given positive error functional and h;_1, h; are two consecutive
mesh sizes. For our experiment, we consider the error functionals

Eupy(hi) i= |[trey — tn, || 2(0),
By (hi) := [Grey — ghiHHl(Q)7
By, (hi) := Grey — In, 2 )
By (hi) = |Grer — Un, |l ()

and denote the corresponding experimental orders of convergence by EOC,,,,
EOC,,,, EOC,,, and EOC,, _, respectively. Furthermore, we consider the
sequence of mesh sizes h; = 27%/2, for i = 1,...,9. Since we don’t have
the exact solution of Example [1| at hand, we consider the numerical solution
computed at mesh size hip = 271°/2 to be the reference solution, that is, we
define tyef 1= Upy, aNd Yref = Yhyo-

In Table [3:2] we report the values of the previous error functionals at differ-
ent mesh sizes. The plots of these values versus the corresponding mesh sizes
are illustrated in Figure [3.5] The computed values of the associated EOC are
presented in Table

From the numerical findings we see that as the mesh size h decreases the er-
rors E, ., (h) and E,,,, (h) behave like O(h) which indicates that the convergence
rate, namely O(h'~¢) for arbitrarily small ¢ > 0, predicted in Theorem m
is optimal. On the other hand, for E,,,(h) and E,, _(h) we see the behaviour
O(h?) and O(h*%), respectively, from which we conclude that the error bounds
for the discrete optimal state in the spaces L?(Q) and L>(2) which are deduced
from the error bound of the discrete optimal control via the Lipschitz continuity
of the control-to-state map are not sharp.

In fact, the O(h?) behaviour of E,,,(h) could be explained in the light of
the work [65] where it was shown there that for an elliptic control problem with
finitely many pointwise inequality state constraints the error of the discrete
optimal state in L?(Q) is of order h*~? up to logarithmic factor in d = 2 or
d = 3 space dimensions when the control problem is discretized by piecewise
linear and continuous finite elements.
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Table 3.2 Errors for the optimal control and its state of Examplewith a=10"2%

h/V3

Eup, (h)

By, (h)

EyL2 (h)

Eyp. (h)

1.6151338799381
0.7094890598326
0.3114790933874
0.1475243025114
0.0723799608480
0.0357734199802
0.0174753747282
0.0081450867872
0.0032211298694

0.1881784634445
0.1098931145143
0.0616536701645
0.0319521773619
0.0161391228724
0.0080807758796
0.0040194139919
0.0019615865181
0.0008772740328

0.0305960611799
0.0140288901847
0.0050825086327
0.0015547890304
0.0004482149627
0.0001259623551
0.0000345959726
0.0000090359657
0.0000019527627

0.0465574255352
0.0250260522632
0.0120171679655
0.0035520156534
0.0011256351724
0.0003940261492
0.0001271705046
0.0000390725086
0.0000116353242

Table 3.3 EOC for the optimal control and its state of Example [1| with o = 1072.

Levels  EOC,,, EOC,,,, EOC,,, EOC,,
1-2 1186801 0776001  1.124945  0.895581
23 1187645 0.833842  1.464788  1.058334
3-4 1.078183 0948273  1.708822  1.758387
45 1.027290 0985352  1.794456  1.657899
5-6 1.016702  0.997996  1.831198  1.514376
6-7 1.033565  1.007509  1.864317  1.631527
7-8 1101321 1.034964  1.936853  1.702538
8-9 1.338363  1.160921  2.210162  1.747642
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Chapter 4

Optimal Control of Elliptic
PDEs with Random

Coeflicients

In this chapter we consider a parameter-dependent optimal control problem.
More precisely, we minimize a quadratic cost functional subject to a linear
elliptic PDE with homogeneous Dirichlet boundary condition where the diffusion
coefficient is a random field defined on a given probability space. Our aim is
to carry out the error analysis and the computational cost associated to the
computation of the expectation of the solutions of this problem.

The exposition in this chapter is organized as follows: in Section we
establish the notation and the problem setting. In Section[4.2] we study the state
equation. In Section[4.3] we study the optimal control problem and construct the
map that assigns to each realization of the diffusion coefficient the corresponding
solution of the control problem.

4.1 The Problem Setting

4.1.1 Notation

In the sequel, (€2, .4, P) denotes a probability space, where € is a sample space,
A C 2% is a o-algebra and P : A — [0,1] is a probability measure. Given a
Banach space (X, || - ||x), the space LP(€2, X) is the set of strongly measurable
functions v : 2 — X such that [|v||z»(q,x) < 00, where

1/p

1]l Lo ax) = (fg [lv(w) |5 dP(w) for 1 < p < oo,

esssup,cql|v(w)| x for p = oo.

For LP(Q,R) we write LP(Q). For a bounded Lipschitz domain D C RY, the
spaces C°(D) and C!(D) are the usual spaces of uniformly continuous func-
tions and continuously differentiable functions, respectively, with their standard
norms. The space C*(D) with 0 < t < 1 denotes the space of Hélder continuous
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functions with the norm

vlr) — vy
[vllet(py = sup [v(z)| +  sup M
€D vweDazy T =Yl

For k € N, the space H*(D) is the classical Sobolev space, on which we define
the norm and semi-norm, respectively, as

1/2 1/2
ol g oy = ( > |Dav|2d:c> and  |v|gx(p) = ( > D%|2dx> .
la|=k P

laj<k /P

Recall that, for bounded domains D C R, the norm || - || x(py and semi-norm
|- |gr(p) are equivalent on the subspace H{(D) of H*(D). For r :=k 4 s with
0 < s<1andk € N, we denote by H"(D) the space of all functions v € H¥(D)

such that ||v| g+py < oo, where the norm || - || z-(py is defined by
Do)~ Do)\
v(z) — D*(y
lolloy = (Wl + 3 [ [ O ey
(D) H*(D) alz_k /o |z — y|d+2s

Finally, for any two positive quantities a and b, we write
asb

to indicate that ¢ is uniformly bounded by a positive constant independent of
the realization w € ) or the discretization parameter h.

4.1.2 The Problem Setting

Let (2, A, P) be a probability space. For P-a.s. w € Q, we consider the following
optimal control problem

1 «o
i J(y,u) = =y — z|| + —||ul? 4.1
(y,u)eHéH(l}jn)Xp(D) (y,u) 2Hy Z||L2(D) D) ||U||L2(D) (4.1)
subject to
=V (a(w,z)Vy(w,x)) = u(z) in D, (4.2)
y(w,2) =0 on 0D, '
and

where we assume
e DCRY d=1,2,3,is a bounded, convex and polyhedral domain.
o u, e RU{—00} and u € RU {0} with u, < up.

e z € L?(D) is a given deterministic function and o > 0 is a given real
number.
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The differential operators V- and V are with respect to x € D. The o-algebra
A associated with ) is generated by the random variables {a(-,z): x € D}. Let
us formally define for all w € Q,

Gmin (W) := mina(w, x) and Amax(w) := maxa(w, x).
zeD zeD

We make the following assumptions on the coefficient a.
Al. a € LP(Q,CY(D)) for some 0 < t < 1 and for all p € [1, 00),

A2. Gy > 0 almost surely and a_}, € LP(Q), for all p € [1, c0).

From Assumption Al we see that the quantities api, and amay are well defined
and that amax € LP() for all p € [1,00) since amax(w) = [la(w,")|l¢o(py. More-
over, together with Assumption A2, we have amin(w) > 0 and amax(w) < 0o for
almost all w € Q.

An example for a coefficient a that satisfies Assumptions A1-A2 is a log-
normal random field a(w,z) = e9*) where g : @ x D — R is a Gaussian
field with a Holder-continuous mean function g(z) := E[g(w, z)] and a Lipschitz
continuous covariance function

Cla,y) = E[(g(w,2) - 9(2)) (9(w.9) —9()|, 2.y € D,

For a detailed exposition of log-normal random fields that satisfy Assump-
tions A1-A2, we refer the reader to [27, Section 2.3].

4.2 The State Equation

We start by recalling the weak formulation of (4.2]), parametrized by w € ,
which reads: for a given u € L?(D), find y,, € Hg(D) such that

/ VY, - Vodr = / wdr Yov € Hi(D). (4.3)
D D
If such a function y,, € Hj (D) exists, it is called a weak solution to (4.2)). Here
and in what follows, we use the subscript w to indicate the dependence on the
random parameter w, for instance, y,, := y(w, ) and a,, = a(w, -).

The next result, which is a special case of [71, Theorem 2.1], is about the
existence, uniqueness and the regularity of the solution to (4.3]).

Theorem 4.2.1 Let Assumptions A1-A2 hold for some 0 <t < 1. Then, for
P-a.s. w € Q, the boundary value problem (4.2) admits a unique weak solution
Yo € HY(D) N HYT$(D) for every u € L*(D). Moreover, it holds

il S LD, (1.4
and
Yool #2420y S Gaz(w)llull 2oy, (4.5)
for all0 < s <t except s = %, where
() o= "ol

Amin (w)4
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Furthermore, y € LP(Q, H'T5(D)), for all p € [1,00). Ift = 1, then y €
LP(Q, H?(D)) and the bound (4.5) holds with s = 1.

Proof: Let us define, for P-a.s. w € Q, the bilinear form b,, : H} (D) x H}(D) —
R by

by (y,v) := / a,Vy - Vudz. (4.6)
D
Then, from Assumptions A1-A2, we have

|bw(yav)| < amax(w)|y|H1(D)‘v|H1(D) VyvU € H&(D)7 (47)
bo(y,y) = amin(w)|y|§{1(D) Vye H&(D)-

Hence, according to the Lax-Milgram lemma, for a given u € L?(D) there exists
a unique y,, € Hg (D) such that

be (o, V) :/ wdr YveHy(D), and |yo|lm(p) S Hu”Lﬂ.
b amin(w)

The H'*$(D) regularity of the solution y,, and the estimate ([4.5)) were shown in
[71, Theorem 2.1]. From (4.5), Assumptions A1-A2 and the Holder’s inequality,
it follows that y € LP(Q, H'*5(D)), for all p € [1,00). |

Thanks to Theorem [4.2.1} we may now introduce for P-a.s. w € Q) the mapping
S, : L*(D) — H}(D) (4.8)

such that vy, := S,u is the weak solution of for a given right hand side
u € L*(D) and a realization a,. The mapping S, is sometimes referred to as
the control-to-state operator since it assigns to a given control u its associated
state y,,. Obviously, S, is bounded and linear.

4.3 The Optimal Control Problem

In this section we rewrite the problem into its reduced form (P,) and
discuss the existence of a unique global solution to (P,) for a given w € .
Then we construct a map that assigns to a given w € € the solution to (P,).
We show that this map is a L?(D)-valued random variable and establish some
properties of it.

By means of the control-to-state operator S, introduced in , the prob-
lem is equivalent to, for P-a.s. w € €,

. 1 «
(Po)  mingep,, Jo(u) == 3 I1Swu — 2l|Z2py + §||U||2Lz(p)

where
Uwa := {u € L*(D) : uq < u(x) < uy for ae. x € D} (4.9)

is the set of admissible controls, which is closed and convex.

Theorem 4.3.1 Suppose that U,q is non-empty. Then, for P-a.s. w € €,
there exists a unique global solution for the Problem (P,).
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Proof: For a fixed w € Q, the Problem (P,) is a deterministic minimization
problem. The existence and uniqueness of a global solution to (P,,) follows by
a classical argument, see for instance [45 Section 1.5] for a detailed proof. M

Owing to Theorem [4.3.1] we can now introduce the map

u* : Q — L*(D) such that u*(w) := argmin J,(u) for P-as. w € Q. (4.10)
u€Uqyq

In other word, for a given w € Q, u*(w) is the solution of (P,). In what
follows, we show that u* is indeed a L?(D)-valued random variable, i.e., it is a
measurable map between 2 and L?(D), and then we establish some properties
of it.

Theorem 4.3.2 The map u* : Q — L?(D) introduced in ([4.10)) is measurable.

Proof: Throughout the proof, we write J(w, u) instead of J,, (u) for any (w,u) €
Q x L?(D) for convenience.

Recall that for a fixed control u € L?(D) the map Q 3 w + S,u € L?(D)
is measurable. This implies, by [33 Proposition 1.2], that Q 3> w — ||S,u —
z||z2(py € R is measurable as well. From this, we can easily see that the map
J : Qx L*(D) — R defined in Problem (P,) is Carathéodory, i.e., for every
u € L*(D), J(-,u) is measurable and for every w € Q, J(w,-) is continuous.
Since J is Carathéodory, we deduce from [4, Theorem 8.2.11] that the set valued
map R defined by

Dow— Rw) :={u€ Uy : J(w,u) = m[ijn J(w,v)},
veUad
is measurable. Consequently, according to [4, Theorem 8.1.3], there exists a

measurable selection of R, that is to say, there exists a measurable map f : Q —
L?(D) satisfying

YweQ, f(w)eRW).

However, since Theorem [4.3.1] guarantees that for every w € Q, the set R(w)
has a unique element, which we denote by u*(w), we conclude that the map
Q> w— u*(w) € L3(D) is the measurable selection of R. This is the desired
conclusion. |

Theorem 4.3.3 Let Assumptions A1-A2 hold for some 0 <t <1 and let u*
be the map defined in (4.10). Then, for P-a.s. w € Q, there holds

X 2 2
[l (w)”LZ(D) S (w) := \/(OéaminW + 1) HU||2L2(D) + EHZ”QLz(D)
(4.11)
for any u € Uya. Moreover, u* € LP(Q, L*(D)) for all p € [1,00).

Proof: We begin by establishing the bound in (4.11). From the optimality of
u*(w) together with the estimate (4.4) it follows that for any u € U,q there
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" N 1 «
Sl (@)72(py < Jo(u*(w)) < Ju(u) = §||Swu — 2|32 p) + §|\U||i2(D)

1 o ) ,
s (amm(W)2 + 2) [ullz2(py + 120122(p)»

from which we obtain the desired result.
From (4.11]) and Assumption A2 it follows that u* € LP(Q2, L?(D)) for all p €
[1,00). This completes the proof. [

Remark 13  Under the hypothesis of Theorem if moreover we assume
that U,q is bounded or 0 € U4, then we have u* € L>(£2, L?(D)). We can see
this from the following.

If U,q is bounded, then w* is uniformly bounded in w since u, < u*(w) < wy
and the bounds u,, up are finite and independent of w.

On the other hand, if 0 € U,q, then choosing « = 0 in gives

N /2
[|lu (W)HLz(D) S EHZ”L?(D)

which is also a uniform bound with respect to w.

Remark 14 The estimate in holds for any u € Ugq. In the proof
of Theorem we will see that it is desirable to choose u € U,q such that
the constant Cgzg(w) in is small. This can be achieved by using the
projection of 0 onto Ugg, that is u := min{max{0,u,},us} in (LI11).



Chapter 5

Variational Discretization

In this chapter we are interested in approximating the expectation of the solu-
tions of the control problem (P,), w € €, using the Monte Carlo finite element
method. In particular, we discretize the control problem using the variational
discretization concept developed in [46] to obtain discrete optimal controls.
Then, we take the sample average for these discrete solutions.

This chapter is organized as follows: Section contains the finite element
setting. In Section[5.2]we discretize the state equation using piecewise linear and
continuous finite elements. In Section[5.3] we apply the variational discretization
to the control problem (P,,), w € Q, and construct the map that assigns to each
w € Q the solution of the corresponding discrete control problem. In Section[5.4]
we study the Monte Carlo finite element method applied to the problem (P,),
w € . Particularly, we will investigate the error and the computational cost
associated to the single-level and multilevel Monte Carlo finite element method.
Finally, we verify our theoretical findings numerically in Section

5.1 Finite Element Preliminaries

Let {7, }i>0 be a sequence of triangulations of the domain D such that 7,
is obtained from an initial coarse triangulation 7, via ! successive uniform
refinements, that is to say, h; = %hl,l = 927lhg for I = 1,2,..., where h; :=
maxre7;, diam(7) denotes the maximum mesh size of 7,. Here, diam(T’) stands
for the diameter of the triangle 7. In addition, for any triangulation 7;, we

assume that - -
D= |J T
TETh,

We point out that a sequence of triangulations generated as above is qausi-
uniform, see [13, Remark 4.4.17].

On each Ty,, for I = 0,1, ..., we construct the space of linear finite elements
X}, defined by

Xp, == {v € C°(D) : v is a linear polynomial on each T' € Ty, and vjsp = 0}.
It is clear that for these spaces there holds

Xpy CXpy Coo-CXpy Coov
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Moreover, we have dim(Xp,) = N; where N; is the number of the inner nodes
in the triangulation 75, and dim(X},) is the dimension of the space Xp,.

The above notation will be used in Section On the other hand, the
results that we will establish in Section [5.2H5.3| are still valid if the sequence of
triangulations of D is assumed to be only regular, in other words, the sequence
needs not to be generated via uniform refinements of 75,. Therefore, in these two
sections we drop the subscript [ = 1,2, ..., and we use the notation {7, }o<h<hgs
h, X}, instead of {7Tp, }i>0, ki, X»,, respectively. Here, {75 }o<n<n, is regular in
the sense that there exists p > 0 such that for all T' € T, and for all h € (0, ho],

diam(Br) > p diam(T),

where diam(Br) is the diameter of the largest ball contained in T.
Finally, we state the next lemma which will be useful in our analysis.

Lemma 5.1.1 Letv € H}(D)N H'$(D) for some 0 < s < 1. Then

n o=l o) S ol b,

where the hidden constant is independent of v and h.

Proof: See [43, Lemma 8.4.9]. |

5.2 The Discrete State Equation

In this section we approximate the solution of by continuous piecewise
linear finite elements and then estimate the resulting error.

For a given w € €, the finite element discretization of reads: find
Yw,h € Xp such that

/ ' VYyyn - Vopdr = / uvp dr Vv, € Xp. (5.1)
D D

Theorem 5.2.1 Let Assumptions A1-A2 hold for some 0 <t < 1. Then, for
P-a.s. w € Q, there exists a unique solution Yy, n € Xp to (5.1). Moreover,

< ||u||L2(D).

Yoo,n| 1 (D) S i () (5.2)

Proof: The result follows from applying the Lax-Milgram lemma as in the proof
of Theorem [£.2.11 ]

In the light of Theorem we introduce for P-a.s. w €  the mapping
Swn: L*(D) = X}, (5.3)

such that y,, p := S, pu is the solution of for a given u € L?(D) and a given
realization a,. Sometimes, S, ; is referred to as the discrete control-to-state
operator. Notice that the operator S, ;, is bounded and linear.

In the next two theorems, we estimate the error in approximating the solu-

tion of (4.3)) by the one of (5.1)).
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Theorem 5.2.2 Let Assumptions A1-A2 hold for some 0 < t < 1. For a
given u € LZ(D), let y., := Syu and let y,, p, := S, nu where S, and S, 5 are as
defined in (4.8) and (5.3), respectively. Then, for P-a.s. w € Q, there holds

Yo — Yuul 1 (p) S Gsz(w) ||ullL2(pyh®, (5.4)

for all0 < s <t except s = %, where

Cieza(e) = (2=l

Umin (W)

If t =1, the above estimate holds with s = 1.

1
) lowlZe )

Proof: For a given w € Q, let b, : H (D) x Hi(D) — R be the bilinear form
introduced in . From Assumptions A1-A2, we conclude that b, (-, -) defines
an inner product over H(D) and its induced norm |v]y,, := (by(v,v))?, for any
v € HE(D), satisfies

V amin(w)|U|H1(D) < |v|bw NRY amaX(w)|U|H1(D)~ (5-5)
Using the Galerkin orthogonality

bes (Yos — Yoo,y V) = 0 Vop € Xy,

it is a classical task to show that

|Z/w — Yw,hlb, = Uirél)lgh |yw - 'Uh|bw~

Thus, from the previous relation and (5.5) we get

O inf |y, — vnlE (D)

. <
Yo = Yw,nl 1 (D) S Gmin (W) vhEXR

Recalling Theorem and Lemma [5.1.1] we may continue

Amax (W)
. < max . e
1Yo = Yoonlmr (D) S (@) Yoo || 145 (D)

< | max(w)

S o) 20

which is the desired result. [ |

Theorem 5.2.3 Let Assumptions A1-A2 hold for some 0 < t < 1. For a
given u € L?(D), let y,, := S,u and let Yow,h 1= Su pu where S, and S, , are as
defined in (4.8) and (5.3)), respectively. Then, for P-a.s. w € Q, there holds

”yw,h - yme(D) N CEZSJ(W)HUHL?(D)}IZS, (5.6)

for all 0 < s <t except s = %, where

Chra(w) = (aLax(w)

1
2 4
i (w)) lawlice ).

min
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Moreover,
||yh — y”Lp((Z’LZ(D)) < Chgs, for all pe [1, OO), (57)

with ¢ > 0 independent of w and h. Ift =1, the above two estimates hold with
s=1.

Proof: The key idea is a duality argument. For a given w € Q, let ¢, :=
Yu.h — Yo and let §, € HY(D) be the solution of the problem

b (Juos V) = (€w, V) L2(D) = / ewvdr Vv e Hy(D),
D

where b, is the bilinear form defined in (4.6)). Recall that §,, € H}(D)NH**(D)
according to Theorem and that we have the Galerkin orthogonality

bo(ew,vn) =0 Yo, € Xp.

Consequently, we obtain

lewll7e(py = (ewrew)r2(p w (s €w) = b (Jur — Vn, €w)
< Gmax(W)|Pw — vh|H1 ylew| a1 (D) (using )
< tmax (W) [Tl 71+ (D) lew |51 (DY A® (using Lemma [5.1.1))
S max (W) Grzm(w )||€w||L2 ‘ew|H1(D)hS (using )
< max () Grzn(@) llew || 220y Gz ) [l L2 () B (using (5.4))

Dividing both sides of the previous inequality by |le,||r2(p) gives the estimate
(5.6) from which we get (5.7]) after applying the Holder’s inequality together
with the Assumptions A1-A2. This completes the proof. |

We conclude this section by the next remark.

Remark 15 The order of convergence O(h?%) in the estimate is ob-
tained while assuming that the integrals in are computed exactly. In
general, those integrals can’t be computed exactly, instead, they are approx-
imated by quadrature which introduces another sort of error that one should
consider. However, it is still possible to achieve the order O(h%*) in even
with quadrature provided that the function a(w,-) belongs to at least CQS( )
as it was explained in [27, Section 3.3]. Tt is important to mentioned this at this
stage because all the upcoming error estimates related to the optimal control

problem are heavily depending on ([5.6).

5.3 The Discrete Optimal Control Problem

In this section we discretize the problem (P,,) using the variational discretization
approach developed in [46]. Then, we construct the discrete counter part of the
map u* introduced in and carry out the associated error analysis.

Using the discrete control-to-state operator S, ; introduced in , the
variational discretization of (P,,), for P-a.s. w € Q, reads

. «
(Pw,h) mingev,, Ju h( ) = *”Sw RU — Z”%P(D) + 5”“”%2 D
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Notice that problem (P, ;) is again an optimization problem in infinite di-
mensions as the controls are still sought in U,y. Thus all techniques we used
previously to study problem (P,,) can also be used for (P, ).

Theorem 5.3.1 Suppose that Uyq is non-empty. Then, for P-a.s. w € Q,
there exists a unique global solution for the Problem (Py, ).

Proof: The result can be established analogously to Theorem [4.3.1 |

We may introduce in the light of the previous theorem, for a given mesh size
h, the map

u} : Q0 — L?(D) such that u}(w) := arg(rjnin Jon(u) for P-as. we Q. (5.8)
u ad

That is to say, for a given w € Q, uj(w) is the solution of (P, ;). The next
result tells us that u} is a L?(D)-valued random variable.

Theorem 5.3.2 The map uj, : @ — L*(D) introduced in (5.8) is measurable.

Proof: The proof is analogous to that of Theorem [4.3.2 |

Theorem 5.3.3 Let Assumptions A1-A2 hold for some 0 <t <1 and let uj,
be the map defined in (5.8). Then, for P-a.s. w € Q, there holds

2
Qmin(w)?

N 2
memwﬁﬂka%:¢< 1) 1l + 21l (59

for any u € Uuq. Moreover, uj € LP(Q2, L?(D)) for all p € [1,00).

Proof: Let us firstly verify the bound in (5.9). From the optimality of uj} (w)
and the estimate (5.2)) we obtain for any u € U,q

o, . 1 o
S Ih ) < o (0h @) < ) = St = Wy + Sl
1 @ 2 2
S+ 5 ) ey + Vel

from which we get the desired bound.
From (5.9) and Assumption A2 it follows that u} € LP(Q, L?(D)) for all p €
[1,00). This completes the proof. |

Remark 16 If U,q is bounded or if 0 € Uuq, then uj € L>(Q2, L?(D)) can
be shown analogously to Remark

We now show that the map uj converges to u* in LP(Q2, L*(D)) as the
discretization parameter h tends to zero and we derive the corresponding error
estimate.

Theorem 5.3.4 Let Assumptions A1-A2 hold for some 0 < t <1 and let u*

and u}, be the maps defined in (4.10) and (5.8), respectively. Then, for P-a.s.
w € §, there holds

[[u*(w) = uh (W)l z2(p) S Cal(w)h™, (5.10)
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for all0 < s <t except s = %, where

1 _ 2
Uezalw) = a\/@llﬂ*(w)lliz(m + max(1, agg, ()2 ([w (@) 20y + 1]l 2(0)) " % Grz(w)-
Moreover,
[u* —uhllLe,22(p)) < Cla, 2, Usa)h®,  for all p € [1,00), (5.11)

with C(a, z,Uqq) > 0 independent of w and h and depending only on the deter-
ministic data o, z and Uyq. If t = 1, the above two estimates hold with s = 1.

Proof: For a given w € Q, the realizations u*(w) and u},(w) are the solutions of
(P,) and (P, p), respectively. Hence, according to [45, Theorem 3.4] we have

allu*(w) = up (@) 172 () < (S = Swn)ualliz(p)
1
+ — (S = Sun) (o = 2172y, (5.12)

where we define here and subsequently u,, := v*(w) and y,, := S, ug,-.
The first term in (5.12)) can be estimated with the help of Theorem to
obtain

1080 = Sup)twllzz(p) S Gaz(w) v || 2(pyh*.
The second term can be bounded using again Theorem and (4.4]) as follows:

1080 = Seo,n) (W = 2 z2(p) S Ceza(w) Iy — 2llz2(p)h**
< Geza(w) (lyollz2 ) + 2]l 20y ) B
l[teo || 2 (0 s
 Chma() (o) s ) 12
< Geza(w) max(1, agyi, (@) (1wl 220y + N2l 22y ) .
Inserting the above estimates into (5.12)) gives the estimate (5.10) from which

one obtains (5.11)) after using the Holder’s inequality together with Assump-
tions A1-A2 as well as recalling (4.11)). This completes the proof. |

5.4 Monte Carlo FE Methods

In this section we study the approximation of the expectation of the map u*
defined in by Monte Carlo finite element methods. In particular, we will
carry out the error and the cost analysis for the single-level MC FE and the
multilevel MC FE methods. To begin, we first make a quick review for Monte
Carlo methods.

For a given u € L?(Q, L?(D)), the expectation or the expected value of u is

E[u] ::/Qu(w)dIP’(w).

The Monte Carlo (MC) estimator for E[u] is the sample average
1M
Epnlu) :== i ;u(wi),
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where u(w;), ¢ = 1,..., M, are M independent identically distributed samples
of u. Notice that, for a fixed M, the estimator Ejs[u] can be interpreted as
a L?(D)-valued random variable. The next result gives the statistical error
associated with this estimator.

Theorem 5.4.1 Let u € L?>(Q, L*(D)). Then, for any M € N, we have

_1
|E[u] — Exlu]llz20,02(p)) < M ™2 ||lull 20,02 (D)) -

Proof: Using the fact that u(w;), ¢ = 1,..., M, are independent, identically
distributed random samples, we obtain

LM 5
E[|E[u] — Ealu]?- D) [HE M & u(wi) L2(D)}

el

2

Mz

u] - u(w)|

o)

I
-

3

M 2
ﬁ; [l - ute )L2<D>}
- LB{IE0 —ul?, )

- M( 2= ) — VBRI 0)
< SElula)]

Taking the square root of both sides of the previous inequality gives the desired
result. |

Lemma 5.4.2 Let u* be the map introduced in (4.10). Then, for any M € N,
there holds

IE[u*] — Earfu*]ll e ,r2(my) < M”72 |u* || L2 (0,02())-

Proof: The result is a direct consequence of Theorem asu* € L%(Q, L*(D))
according to Theorem [1.3.3 |

The previous lemma shows that E[u*] can by approximated by Fj;[u*] which is
the sample average of M independent realizations u*(w;), i = 1,..., M. How-
ever, evaluating u* at a given w € ) can be a difficult task in practice since u* is
usually not known explicitly. To overcome this difficulty, we consider sampling
from uj, at a given refinement level [ € N instead of sampling from u* directly.
Recall that uj, is the finite element approximation of u* introduced in (15.8)).

In the rest of this section we study two approaches to approximate E[u*]
while using uy, , namely, we will study the single-level and the multilevel Monte
Carlo finite element methods. Before we start, we make the following assump-
tion on the computational cost of computing uj, .

A3. For a given w € 2, the computational cost C; of computing uj}, (w) such
that ( - ) holds is asymptotically, as | — oo, bounded by

’Y

CSh 7=
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for some real number v > 0, where N; = dim(Xy,) and d is the dimension
of the computational domain D.

In the previous assumption we adopt the convention that h; = IV, I_%. It is worth
to mention that the ideal value of 7 in the above assumption would be v = d,
in this case for instance, doubling the number of unknowns N; should result in
doubling the computational cost C;.

5.4.1 Single-Level Monte Carlo FE Method

For a given refinement level [ € N| the single-level MC FE estimator for E[u*] is

M
* 1 *
Enlun,] = 57 > up, (wi), (5.13)
i=1
where uy, (wi),i=1,...,M are M independent samples of up, - The error bound

associated with this estimator is stated in the next theorem.

Theorem 5.4.3 Let Assumptions A1-A2 hold for some 0 <t < 1. Then
IE[u*] — Earlup )l c2(,r2(py) < Clov, 2,Uag) (M™% + )

for all0 < s <t except s = % where C(a, z,Uqq) > 0 is a constant independent

of h; and depending only on the data o,z and on U,q. If t = 1, the above
estimate holds with s = 1.

Proof: We start the proof by using the triangle inequality to obtain
IE[u*]=Enmlup, ]l 2.r20)) < Elu’]=Elup, || L20,22(0) +I1E[ur, | = Enmup, 22 (9,22(D))-

The task is now to estimate the two terms on the right hand side of the previous
inequality. The estimate for the first term follows from Theorem after
utilizing the Cauchy-Schwarz inequality. In fact, we have

|E[w*] — Elu, 2,20y = |E[u” —up )l z2(0,22(0)) = [[E[w" — up, |l L2(p)
< EffJu” —up, l2(py] < |w* = up, |2 (e,22(D))
< Cla, 2, Ugg) W3S,

For the second term, we use Lemma [5.4.2] to obtain

IEfuh,] — Enrlup, ]2 ,c20y) < M 2||up, |22 (0,22(D))
< O, 2,Upg) M™%,

where we used the fact that |lu}; [|12(q,r2(p)) is uniformly bounded with respect
to h; according to (5.9). Combining the estimates of the two terms gives the
desired result. [ ]

We can see from Theorem that the error that comes from using as
an approximation to E[u*] can be split into two parts; a statistical part which is
of order M~1/2 and a discretization part of order hlzs. This suggests that there
should be some coupling between the number of samples M and the mesh size
h; in order to achieve a certain overall error. We provide such coupling in the
next theorem and establish the corresponding error and computational cost.
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Theorem 5.4.4 Let Assumptions A1-A83 hold for some 0 <t < 1. Then, the
MC estimator (5.13)) with the following choice of number of samples

M = O(h ™),
yields the error bound
[E[u*] = Enr[up | 22(@.22(0)) < Ol 2, Uag)hi® (5.14)
for all0 < s < t except s = %, with a total computational cost C; which is

asymptotically, as | — oo, bounded by
CSh T, (5.15)

for some C(a, 2,Uqq) > 0 depending on the data «,z and on Uyq. If t =1, the
above estimates (5.14)) and (5.15) hold with s = 1.

Proof: The estimate - follows from Theorem after choosing M =
h, 45 To obtain the bound ( -, it is enough to multlply the computational

cost, of one sample, that is h; 7, from Assumption A3 by the total number of
samples M ~ hl_4s. ]

Remark 17 It is important to point out that the prev1ous theorem is valid
provided that h; < h where £ is a mesh size such that ( is satisfied for all
h < h. Since, by assumption, we have h; = 2~ lho7 = O7 1, ..., we can either
choose hg = h or [ large enough to satisfy h; < h.

5.4.2 Multilevel Monte Carlo FE Method

We start by observing that at a given refinement level L € N the random variable
uy, can be written as
L

*L = Z(UZ[ - UZ[,l)?

Up,
1=0

where uj  := 0. The linearity of the expectation operator E[-] implies

L

Eluj, ] = ZIE[UZZ —up, ] (5.16)
1=0

If we approximate E[uj; —wuj ] in (5.16) by the single-level Monte Carlo esti-
mator (5.13)) with a number of samples M; that depends on the refinement level
I, we obtain the so called multilevel MC FE estimator for E[u*], that is,

Dlup - ZEMl up, —up, (5.17)

where the samples over all levels, [ = 0, ..., L, are independent of each other.
The next theorem gives the error bound associated with the estimator (5.17]).
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Theorem 5.4.5 Let Assumptions A1-A2 hold for some 0 <t < 1. Then

L
_1
IB[u*] = E¥[u, lre(o,c2my < Clas 2 Ua) (B3 + 30 M P0E),  (5.18)
1=0
for all0 < s <t except s = %, where C(a, z,Uqyq) > 0 depends on the data o, z

and on Ugq. If t = 1, the above estimate holds with s = 1.
Proof: Throughout the proof, we use the notation || - ||y := || - ||L2(q,L2(p)). We
begin by using the triangle inequality and recalling (5.16|), (5.17) to obtain
|E[w*] = E*[u, ]llv < [E[u*] - Eluj, v + [|E[u}, ] — E*[u},]llv
<I+1I, (5.19)

where we define

L
I:=|E[w]-Eluj, )lv and II:= |Eluf, —uj,_ ] Ealuj, —uf,_ v
=0

To estimate the term I, it is enough to argue like in the proof of Theorem [5.4.3]
to obtain

IE[u*] = Efuj, ]lv < Cla, 2, Uaa) T
On the other hand, the term IT can be bounded by utilizing Theorem the
triangle inequality, Theorem [5.3.4] and the fact that h;_; = 2h; to get

—1
My ®lup, —ug, v

M=

L
Z ||E[u;kll - uzl_l] - EMI, [u;kll - u’;”_l]”v. S
=0

I
=)

1
0y (1, = v+l = i, )

M=

I
o

< Ol 2,Uag) S My 2 (B2 + 1)

M- 1M~

= Ol 2,Uag) S M 2 (1 + 2202

~
Il
=]

Inserting the bounds of the terms I, IT in (5.19)) gives
L 1
IE[] = B fui, Tllv < Cla, 2 Ua) (W + > M, #0),
1=0

which is the desired result and the proof is complete. |

The previous theorem holds for any choice of {M;}E  in , where M is
the number of samples over the refinement level [. However, it is desirable that
{M,}}_, is chosen in such a way that the statistical error and the discretization
error in are balanced. The next theorem suggests a choice for {Ml}{;o
such that the overall error in is of order h2* and it gives the associated
computational cost.
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Theorem 5.4.6 Let Assumptions A1-A3 hold for some 0 <t < 1. Then, the
MLMC estimator (5.17) with the following choice of {M;}E , where

yt4s

O(h;*h, 2 ), 4s > v
M= O((L+1)%h*h, 2 ), 4s=~

_yt4s  ~y+t4ds
2

O(h, 2 h

), 4s <y
yields the error bound
IE[w*] — E*[u}, )| r2.2(py) < Clv, 2, Uga) B3 (5.20)

for all 0 < s < t except s = %, with a total computational cost Cp which is
asymptotically, as L — oo, bounded by

hpts, 4s >y
CoL SR(L+1)3hp*, 4s=1x (5.21)
h,”, 4s < 7.

Here, C(a, 2,Uquq) > 0 depends on the data o, z and on Uyg. If t =1, the above

estimates (5.20) and (5.21) hold with s = 1.

Proof: We give the proof only for the case 4s > +; the other two cases 4s =
and 4s < ~ can be treated analogously. To verify the estimate ([5.20) it is enough
to utilize Theorem together with the choice

4 yt4s
My~h;*h, 2, 1=0,...,L, (5.22)
as well as the approximation h; ~ 2! to obtain

L

1
IE[u) = B2 [uf, e, 2my < Clen 2, Uad) (B3 + 3 M2 )
=0

L
= C(a,2,Uqa) (his +hE hf%)
=0

L
~ Clay 2, Una) (B3 + 3 30275
=0

o= (BFH)(L+1) _q
= C(a, 2, Uuq)h2? (1 + —

2777 -1
< Cla, 2, Ugq) W3, as L — oo.
It remains to verify the asymptotic upper bound for the total computational

cost (5.21]). To achieve this, we see that from Assumption A3 together with the
choice (5.22) and h; ~ 27!, we have

L L L L

P _4s Loy 4 —(Asz1y

Co=> MC <> hp*h = b7 =hp™> b2 mhp) 2705
=0 =0 =0 =0

9—(R52)(L+1) _
~ hp* 2457 <hpt, as L — oo,
2-(5%) -1

which is the desired result. [ |
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Remark 18 It should be emphasized that in Theorem and in Theo-
rem [5.4.6] the mesh size hg of the initial triangulation 7p, should be chosen in
such a way that (5.10) is satisfied for all A < hy.

By comparing the total cost of MC in and MLMC in we see
that the multilevel estimator achieves the same accuracy as classical Monte
Carlo at a fraction of the cost. For example, to achieve the error bound h%*
using the MC estimator we need computations with the cost bound hz"74s. On
the other hand, we can get the same error bound with computations whose cost
is bounded by h;” if we use the MLMC estimator provided that 4s < ~. Note
that the bound h;” is the largest possible cost bound for the MLMC estimator.
Nevertheless, it is still smaller than the cost bound of the MC estimator by a
factor of h;4s.

We remark that the hidden constant in O(-) in the sequence {M;} ; from
Theorem [5.4.0] plays a crucial rule in determining the size of the statistical
error. This can be seen in where it is clear that the larger the value of the
constant in O(-), the smaller the statistical error. In order to obtain a minimal
choice of {M;}}, we adapt the strategy presented in [52, Remark 4.11], that is,
{M;}E_, is chosen to be the solution of the following minimization problem

(PN)  mingep,, J(z) = S G (5.23)
where

Mg = {(mo,...,xL)ENL+1:mlzlforlzo,...,Land

L
_1
Za:l ZthS < coh?*, for a fixed ¢y > O}.
1=0
Here, C; is the computational cost of one sample at level I. The problem (PN)
is a convex minimization problem. Moreover, for a fixed cg > 0, the set M4 is
non-empty because it contains {Ml}lL:() from Theorem provided that the

hidden constant in O(-) is large enough. Consequently, if z* is the solution of
(PN), then we have

L
j(ZL'*) S j({Ml}lL:O) = ZM[CZ =: CL.

1=0
In other words, the solution of (PN) satisfies ([5.21)).

Remark 19 Observe that the admissible set of controls U,q is a convex set.
However, it is clear that the MLMC estimate for E[u*] in is in general
not admissible since the corrections in are computed using different re-
alizations of the random coefficient. In contrast, the classical MC estimate
in is always admissible since it is a convex combination of admissible
controls. This has already been observed in the context of random obstacle
problems [8, [52]. Nevertheless, one may obtain an admissible approximation
to E[u*] using the MLMC estimator by considering Py, (EX[uj, ]) where
Py,, : L*(D) — Uyq is the projection into U,q. Recall that Py, , is nonexpansive
and since E[u*] € U,gq it follows that

|E[u*] = Pu,. (B [uh, D20y < |E[uw*] = E*[uj,, )2 (py.

Hence, Py, ,(E"[u}; ]) has at least the same rate of convergence as EX[uj; ].
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5.4.3 Variational Discrete Controls

We discuss now some general properties of variational discrete controls that will
be useful to know if we aim to compute their expected value.

To begin, we consider again problem (P, ;) from Section and let us
denote by A}, the set of the nodes in the considered triangulation 7; of the
domain D, that is,

Ny =A{x1,..., 20},

where x; € D for i = 1,...,n are the vertices of the triangles in 7},.
It is well known that, for a given w € €, the solution of (P, ), which we
shall denote by up(w), satisfies the following optimality condition

up(w) = PUad( B épw,h) (5.24)

where Py, : L?(D) — Uyq is the projection into Uuq and py, 4 := Sw.n(Yuw.n — 2)
is the adjoint state while y,, 5 := S pun(w) denotes the state associated with
the solution wup(w). Note that in our case the operator S,, j, is self-adjoint.

It is clear from that up(w) € Xj in general and hence the function
up(w) : D — R can’t be simply characterized by its values at the nodes in Nj.
For this reason, we should also determine the active set of u,(w), or equivalently,
the set of points

Noa(w) :=={Z1,...,Tm}
where Z; € D for i = 1,...,m are the intersection points of the active set
boundary with the edges of the triangles in 7. Note that the boundary of
the active set is polygon since p,, j is continuous and piecewise linear over each
triangle in 7Ty, see Figure for an illustration of such an active set. Moreover,
the points in M,4(w) need not belong to A}, in general and that they depend on
the realization w € €.

Figure 5.1 The active set of a variational discrete control (highlighted in grey).
The boundary of the active set is polygon whose line segments need not coincide
with the edges of the triangles in the mesh.

In conclusion, the function up(w) : D — R is fully determined if we know its
values on the set of points

Ny UNq(w).

In particular, if we would like to perform the sum

1 M
i > un(w;) (5.25)
i=1
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for a given number of samples M, then we need to know the set of points

NoU o Noa(wi). (5.26)

ief{l,....,M}

We observe that, for a fixed mesh size h, the number of points in the set
doesn’t have a uniform bound with respect to M. In other words, as M — oo the
number of points in might also tend to infinity even if the mesh size h is
kept fixed. This reflects the fact that the variational discrete controls are indeed
infinite dimensional functions even if they can be computed on computers.
Performing the sum might be a tedious task in practice, especially for
large values of M, and it might cause storage problems in computers because
of (5.26). However, a remedy for this is to consider an approximation of

in X}, that is to say,
1 M
M Z Hh (uh(wl))
i=1

where I1;, : L?(D) — X, is a projection or an interpolation operator.

5.5 Numerical Example

In this section we verify numerically the assertion of Theorem namely, the
order of convergence ([5.20) and the upper bound ([5.21)) for the computational
cost. For this purpose, we consider the optimal control problem

. 1
min J(w) = 3 llg = 23y + G el (5.21)

subject to
-V (a(w,z)Vy(w,z)) = u(z) in D,
y(w,2) =0 on 0D,

where we define D := (—0.5,0.5) x (—0.5,0.5) C R? and U,y := L*(D). The
data is chosen as follows:

a=1072,
z(x) = sin(27x1 ) cos(mze),
a(w,z) = @) (5.28)

with the random field x defined by

k(z,w) :=0.84 cos(0.42mx1) cos(0.42m22) Y1 (w) + 0.45 cos(0.427z1 ) sin(1.17mx2) Ya(w)
+0.45sin(1.177z1 ) cos(0.42mwx2)Ys(w) + 0.25sin(1.177z1 ) sin(1.177x2) Ya(w),

where Y; ~ N(0,1), i =1,...,4, are independent normally distributed random
variables. In fact, the random field x approximates a Gaussian random field
with zero mean and covariance function C(z,z) = e ll"=%lh 2 & € D, where
| - |l1 denotes the l;-norm in R%. The terms in x are the four leading terms
in the associated Karhunen-Loéve expansion, see [38] for more details. As a
consequence, the random field a in is a (truncated) lognormal field.
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Assumptions A1-A2 are satisfied for all ¢ < 1/2 for any lognormal random
field a where log(a) has a Lipschitz continuous, isotropic covariance function
and a mean function in C*(D), see [27, Proposition 2.4]. The property 1/amin €
LP(Q) for all p € [1,00) is proved in [28, Proposition 2.3]. In our example the
covariance function of  is in fact analytic in Dx D. This gives realizations of k =
log(a) (and thus a) which belong to C*(D) almost surely. Hence Assumption A1
is satisfied for ¢t = 1.

For a given realization of the coefficient a(w, ), the problem in is dis-
cretized by means of the variational discretization as described in Section [5.3
To compute the solution, which we denote by w,, p, of the discrete control prob-
lem at a given mesh size h and realization w, we solve the corresponding first
order necessary conditions, which reads: there exist a state y,,, € X}, and an
adjoint state p,,,n € Xp, such that

/ awaw,h-Vvhdac:/ Uy, nUp dx Yoy € Xy,
D D

/ A VPuw,h - Vop dr = / (Yw,h — Z)opdz Yoy € Xy,
D D

Puw,h + QU h = 0.

All the computations are done using a Matlab implementation running on
3.40 GHz 4 xIntel Core i5-3570 processor with 7.8 GByte of RAM. For solving
the linear system corresponding to the previous optimality conditions we use the
Matlab backslash operation. Note that the linear system is a 3 x 3 block system
of order O(N;) with sparse blocks. Hence the backslash costs about O(N}!*%) =
O(hflﬁd) operations in d-dimensional space. In summary, the cost to obtain
one sample of the optimal control is O(h; *5) and hence Assumption A3 is
satisfied with v = 1.5 x d. We mention that it is possible to achieve the ideal
value v = d by using a multigrid based method (see e.g. [39]).

5.5.1 FE Convergence Rate and Computational Cost

Observe that Theorem requires the values of v and s a priori. These can
be estimated easily via numerical computations as illustrated in Figure[5.2] The
value of v for our solver can be deduced from Figure where we plot the
average cost (CPU-time in seconds) of computing uy,, the approximate solution
of for a given realization a(w, x), versus the number of degrees of freedom
N, in the mesh when h; = 27! for [ = 0,...,8. We see in the figure that the
asymptotic behavior of the average cost is O(N}?) and thus v ~ 2.4. This is
slightly better than v = 1.5 x d = 3 which we expect in 2D space. Here, the
average cost at a given N; is considered to be the average of the total CPU-
time in seconds required to solve for 500 independent realizations of the
coefficient a(w, x) at the given mesh size h;. To confirm that the cost per sample
does not vary significantly across the realizations a, we plot the CPU-time in
seconds with respect to IV; for individual realizations of a,, in Figure @

The value of s can be obtained from Figure[5.2b] where we plot Esgq|||ttw,n+ —
U p, || 2(py) versus byt = 2! for [ = 0,...,7. Here, Esq[] denotes the sample
average of 500 independent samples. Furthermore, wu, 5, is the approximate
solution of at a given mesh size h; and realization of a(w,x). The control
Uy p= With A* := 278 is considered to be the reference solution since the exact
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solution of is not available at hand. We see clearly from the plot that the
asymptotic behavior of the error is O(h}) as h; — 0, and thus s = 1. In fact,
this quadratic order of convergence should be expected since the realizations of
belong to C*(D) with ¢ = 1 and according to Theoremwe haves =1
if t = 1. Furthermore, we observe that the error enters the asymptotic regime
when the mesh size is hy = 272 or smaller. This suggests that in the MLMC
estimator one should choose the mesh size hg of the coarsest level to be
ho = 272. Finally, for all the experiments used in Figure the triangulation
of the domain D when [ = 0 consists of four triangles with only one degree of
freedom located at the origin.

5.5.2 Multilevel Monte Carlo Simulation

Having estimated the values of 7 and s, we are in a position to verify the error
estimate (5.20) and the upper bound for the computational cost in for
the MLMC estimator EX[uj, ], where uj is the random variable associated to
as defined in . To this end, let {7y, }£, for L =1,...,5, be sequences
of triangulations of the domain D as described in Section Here, we choose
the mesh size ho of the initial coarse triangulation 73, to be hy = 2-2 (the
reason for this choice of hg is explained in the previous subsection). Since the
expected value E[u*] is not known explicitly, we consider the MLMC estimator
EY [uf,,.] to be the reference expected value with L* = 6 and hr- = 278,

It is clear that the asymptotic behavior of the error E[u*] — E[u}; ] in the
L*(Q, L*(D))-norm and in the L?(D)-norm is the same. To simplify the compu-
tations we thus calculate the error in the L?(D)-norm. Finally, for L =1,...,5,
we obtain the sequence {M;}£ , of number of samples per refinement level
through solving with the choice cg = % by the fmincon function from the
Matlab Optimization Toolbox. We round non-integer values in the sequence
using the ceiling function. In Table we report the sequences {M;}E ., for
L=1,...,5 used in computing EL[’LL;;L].

Figure represents the plot of the CPU-time (in seconds) of computing
EL [uj, ] vs. the number of degrees of freedom Np in a triangulation with
mesh size hy, = 2=C*L) for L = 1,...,5. It is clear from the figure that the
computational cost is asymptotically bounded by O(N?) as L — oo. Since
Ni = O(h;?), this confirms the theoretical cost bound in in the case
4s > ~ (recall that s = 1 and v &~ 2.4). In fact, the theoretical cost bound is
sharp in this case.

Note that we did not verify the cost bound for the MC estimator in
due to limited computational time. In our example the MC estimator requires
O(h£2‘4) more operations on level L than the MLMC estimator to achieve the
same accuracy.

In addition we report the error associated with E*[u} ] in Figure We
can see clearly that the best fitting curve for the error behaves like O(h7) as

L — oo. This is predicted by (5.20)).
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(b) The average error Esoo||tw,n* — tw,n, | L2(p)] Vs- hy' = 2" for
1=0,...,7, where u, n, is the approximate solution of (5.27) for a
given realization a(w,z) and wu, p+ the reference solution with

h* =278,

Figure 5.2 The computations of s and « for the estimate (5.10) and
Assumption A3, respectively.
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Figure 5.3 The cost (CPU-time in seconds) of computing us, the approximate

solution of (5.27) for a given realization of a(w,z) vs. the number of degrees of
freedom N; when by = 27" with [ = 0,...,8 for 500 independent realizations.
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(b) The error |EX [up, ] — EL[u;‘LL]HLz(D) vs. hpt =242 for
L=1,...,5 where EF [uh,.] with L™ = 6 is the reference expected
value.

Figure 5.4 The error order of convergence and the computational cost upper
bound for the MLMC estimator £~ [u},, ], where uj,, is the discrete random variable

associated to (5.27)) as defined in (5.8).
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Table 5.1 The sequences {M;},, for L =1,...,5, used in computing E* [ur, ],
where M is the number of samples over a refinement level [ which has a mesh size
hy = 27D,

MO Ml M2 M3 M4 M5
183 24
4815 631 83

102258 13387 1753 230
1948277 255053 33390 4372 573
34878076 4565950 597737 78251 10244 1342

U W N




Conclusion

We have seen in the first part that it is possible to establish a sufficient condition
for global minima of a certain class of optimal control problems of semilinear el-
liptic PDEs with pointwise constraints on the state and/or the control variables
provided that the nonlinearity in the PDE satisfies certain growth conditions.
This sufficient condition can also give information about the uniqueness of the
global solutions. Moreover, one can establish in an analogous way to the con-
tinuous setting a similar condition for the variational discrete control problem.
It turns out that a sequence of discrete unique global minima satisfying this
condition uniformly converges strongly to the unique global minimum of the
corresponding continuous control problem as the discretization parameter tends
to zero. A rate of convergence for the sequence of the discrete unique global
minima can be established using this sufficient condition as well. The numerical
experiments show that this convergence rate is optimal. In addition, we man-
aged to compute the unique global minima for several examples. The results of
this part are partially published in [IJ.

In the second part we considered optimal control problems of elliptic PDEs
with stochastic coefficients. The task was to compute the expected value of
the optimal controls corresponding to the different realizations of the random
coefficient of the state equation utilizing the finite element Monte Carlo and
multilevel Monte Carlo methods and to carry out the associated error analysis.
However, the computed expected value needs not to be an optimal control in
general. The results of this part are published in [2].



Zusammenfassung

Im ersten Teil betrachten wir ein Optimalsteuerungsproblem mit semilinearer,
elliptischer, partieller Differentialgleichung sowie punktweisen Restriktionen an
Zustand und/oder Steuerung. Eine hinreichende Bedingung fiir globale Minima
der Optimierungsaufgabe wird bewiesen, wenn die Nichtlinearitdt der semilin-
earen PDE bestimmte Wachstumsbedingungen erfiillt. Die gleiche Bedingung
gilt auch fiir das diskrete Gegenstiick zur Optimierungsaufgabe. Wir haben
gezeigt, dass eine Folge der globalen Minima der diskreten Optimierungsprob-
leme gegen ein globales Minimum der stetigen Optimierungsaufgabe konvergiert,
wenn die Folge diese Bedingung erfiillt. Zuséatzlich haben wir mit der Hilfe dieser
Bedingung eine Fehlerabschéitzung und eine hinreichende Bedingung zweiter
Ordnung fiir lokale Minima bewiesen. Die Ergebnisse dieses Teils sind teilweise
in [I] verdffentlicht.

Im zweiten Teil untersuchen wir ein elliptisches Steuerungsproblem, wobei
die PDE eine Zufallsvariable als Koeffizient besitzt. Unser Ziel ist den Er-
wartungswert der optimalen Steuerungen mit der Monte Carlo und Multilevel
Monte Carlo Finite Elemente Methode zu berechnen und die verbundene Anal-
yse durchzufithren. Dieser Erwartungswert ist im Allgemeinen keine globale
Steuerung. Die Ergebnisse dieses Teils sind in [2] ver6ffentlicht.



Appendix A

A.1 Properties of ¢

Lemma A.1.1 Let ¢ : R — R be of class C? and monotonically increasing
such that (2.2)) is satisfied. Then

r

¢ (s) <y (1 + |s|”), sER, r = T (A1)
2r—1
|p(s)] < co(L+1s]™), s€R, 1= 1 (A.2)

where c1,c9 > 0 depending on r, M and ¢'(0).

Proof: We will show (A.1]) and (A.2) for s > 0. The case s < 0 can be treated
analogously. To this end we see that (2.2)) implies

r—1

d . -
F1GORD)

for any € > 0, from which after integrating on [0, s] for some s > 0, we deduce

that J )
S r—1 _ S
/ d—(¢/(t)+e)7dt§r M/ 1dt.
o dt 0

r

<M

r—1

r

Evaluating the integrals in the previous inequality and taking the limit e — 0%
yields

d'(s) <eci(l+s71) Vs >0,
where ¢; > 0 depending on r, M and ¢’(0). This gives (A.I)). Integrating the
previous inequality on [0, s] once more gives

d(s) <c(1+ s—l—s%) Vs >0,
where ¢ > 0. Considering the cases s < 1 and s > 1 we see that the previous
estimate implies
2r—1

o(s) <co(l+s—1) Vs>0,

for ¢y > 0 chosen appropriately. This gives (A.2) and the proof is complete. W

Lemma A.1.2 Let ¢ : R — R be of class C? and monotonically increasing
such that (2.2) is satisfied. Then we have for a,b € R

r

‘/01 ¢/(ta+(1—t)b)—¢/(b)dt‘ < a—er(/Olqs/(er(l_t)b)dt) 7
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where

r—1
Lo=m( =) "
2r —1

Proof: We start by noticing that

/qu(ta—i—(l—t)b)—qﬁ(b)dt:/o /0 ¢ (ra + (1 — 7)b)(a — b) dr dt
1

= (a—b)/ (1—1¢)¢"(ta+ (1 —t)b) dt.
0

Therefore, taking the absolute value and using ([2.2) we get

‘/Olqb’(ta—i— (1 —1t)b) — ' (b) dt‘ <la— b|M/01(1 — )¢/ (ta+ (1 — t)b)7 dt
< la — b M1 —¢|

L(0,1)
1 %
x (/ & (ta+ (1—D)b) dt) ,
0
where % + % = 1. It is easy to see that
1\ L\
v’ r— r
11—tz 01y = (7”+1> = <2r1> :
Denoting M1 — || o1y by L completes the proof. [

Lemma A.1.3 Let ¢ : R — R be of class C*. Then for any 1 < r < oo, there
holds

[6(v) = (W)L (@) < L(m)[lv —wlL-()

for all v,w € L*>(2) such that ||v]| L), [|w|L=@) < m. Here L(m) > 0 is a
constant depending on m > 0.

Proof: The result is a direct consequence of [73, Lemma 4.11]. |

Lemma A.1.4 Let Q C R? be open and bounded. Let ¢ : R — R be of class
C' such that its first derivative ¢' satisfies

19/ (s)| < c(1+]s]"), s€R, for somec>0 andr > 1.
Then for any 1 <t < oo there holds
[¢(v) — (W)t ) < Lim)[[v — w|m(a)
for all v, w € H(Q) with vl g1 (@), wllm o)

constant depending on m > 0. Moreover, if (yx)
then ¢(yx) — ¢(y) in LY(Q) for 1 <t < oo.

Here, L(m) > 0 is a

< m.
C HY(Q) such that yp — y,
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Proof: Let v, w € Hj() be given such that ||v]|g1(q), [|w]| g1 ) < m for some
constant m > 0. Then, for a.e. x € (2, it follows from the mean value theorem
and the assumption on |¢'| that

6(v()) = d(w(z))] = /0 ¢'(to(x) + (1 = w(x))(v(z) — w(x)) dt

< Jo(z) - w($)|/0 ¢/ (tv(z) + (1 = thw(x))| dt
1
< clv(z) —w(z)| /o (1 + |to(z) + (1 — t)w(:c)\r) dt

< cfo(z) — w(z)] /0 (1 +t(@)" + 1 = )w(@)[") dt
< clv(z) —w(@)| (1 + [v(@)|" + [w(z)|"),

Note that » > 1 and the function | - |" is thus convex. Moreover, ¢(v(-)) and
#(w(-)) are measurable by the continuity of ¢. Taking the norm || - ||5¢(q) for
some 1 <t < oo of both sides of the previous inequality gives

[6(v) = d(w)llLe () < clllv = w|(X+ o] + [w]")]|Le()-

For the given > 1 and a given 1 < ¢ < oo, we choose a real number p such
that p > rt and we define q := pt_ﬁ - Applying the generalization of Holder’s
inequality with the exponents

|~
—_

+ o=

)t

to the right hand side of the previous inequality results in

Q| =
SIS

[6(v) = p(w)llze@) < clllv — w1+ [o]" + |w[) |y

T T
< cllo — wllzayllt + ol + [l 2

< cllv = wllza@) (X + 070 @) + 1wz @)
< cllv = wllm @) 1+ vl @) + 1wl @)
< Lim)llv = wllz @),
where we utilized the continuous (which is also compact) embedding Hg () <
L#(2), 1 < s < co. Here, L(m) is a positive constant depending on m.
The intermediate steps in the above inequality suggest that if y, — y in

HY(Q), then ¢(yr) — ¢(y) in LY(Q) for 1 < t < oo because then y, — y in
L4(Q) from the compact embedding Hg (2) < L9(Q) with ¢ being as above. W

A.2 Holder Continuous Functions

Lemma A.2.1 Let Q C R™ be open. For f € CYA(Q) for some 0 < B < 1
there holds

|f (@) = f(y)| < cle =yl (A.3)
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for some ¢ > 0 independent of |x — y| where

1 V:c,yEK:Z,
= 1+p8 Va,yeQ with Vf(x)=0.

Proof: The estimate (A.3) holds with v = 1 for any z,y € Q since the function
f is Lipschitz continuous. On the other hand, if Vf(z) = 0 we see from the
Mean Value Theorem that

f(9) — flz) = / Vi@ + by — ) - (y — ) dt

- / Vf(@+ty —2) — V@) - (y — 2) dt

< clz —y|'t?

where we used the fact that Vf € [C%8(Q)]". [ |

A.3 Tietze’s Extension Theorem

Lemma A.3.1 Let K, K C R" be compact sets such that K C K and let
Yar o € C(K) satisfy yo(z) < yp(x), © € K. Then for a given z € C(K) with
Ya(z) < 2(z) < yo(x), © € K there exists Z € C(K) such that 2|x = z and
yal2) < 2(x) < (), v € K.

Proof: Let z € C(K) be given. Then the Tietze’s extension theorem, see for
example [68, Theorem 20.4], asserts that there exists a compactly supported
continuous function 2 € C.(R™) such that Z|x = z. Next, define 2 : K — R by

Z(z) := max (ya(x), min (2(93), yb(x))>

It is clear that Z € C(K), 2(z) = 2(z), z € K, and ya(z) < 2(z) < (),
x € K. Hence, Z is the desired function and the proof is complete. |

A.4 Young’s Inequality

Lemma A.4.1 (Young’s inequality) Let x,y >0, p,q > 1, % + = =1. Then

1

q
p q

xygx—+y—.
p q

Lemma A.4.2 We have for a,b > 0, )\, > 0 that

P
CL/\b'u < W(a + b)Aer'.

Proof: Apply Young’s inequality to p = MT“, q= ’\% and ¢ = (pa)%, Yy =

(qb)s.
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Lemma A.4.3 Leta,b>0,¢>0, p,g>1, 1% + 2 =1. Then

1
q

eaP €l TIpe
ab < — +
p q

b
Proof: Apply Young’s inequality to x = a, y = -. |
€

A.5 Gagliardo—Nirenberg Inequality

Theorem A.5.1 (Gagliardo—Nirenberg interpolation inequality)
For2 < g < oo we deﬁne,uzlf% as well as

£l o (re
GN, = up —h ( )u .
FEH (R?),f#0 ||f||L2(R2)HVf||L2(R2)

Then GNy < Cy := min(Cél), Cf), 053)), where

Cél) = (uCa2,) ", ifqa >4 (A.4)
1— n/2
SR — T . (=10 SR
(L — )t 2 2+ 21
1 =2 o 0 2942-9
2q 27 q
(3) — [ = s
SRON (P
j=2
Here,
_ o\ (smD)/s 1/2
Co s =25 2-s 2B 3,3—2 L 1<s<2; Cyq =2V
’ s—1 ] ] ’
_ D(a)l'(b)
B(a,b) = T(ath) a,b>0

U\ 11
k(v) = (L) (;) Ctelo
Proof: The bounds and can be found in the paper [75] by Veling.
We remark that GN, = )\2_7,1“ where \g,, is defined in [75, (1.7)]. The estimate
is [75, (1.31)] (note that > 1 < ¢ > 4), while is [75, (1.42),(1.43)],
where the latter bound has been proved by Nasibov in [61].
Let us now turn to the proof of . To begin, we claim that for all £ € Ny

2J42—¢q

1(1-2k) k41 .
1\?2 q 29 274 ax 1_9k
< ()" M (5a5ms)  MERIALT. @

j=2
where
G = 2_k(q 122k - 1)).

The inequality clearly holds for £k = 0. Suppose that (A.7) is true for some
k € Ng. We infer from Theorem 1 in [36] for the case d = 2 that

1Fllzzr < ANV A2, L<p < oo (A.8)
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Here,
A (Yp—1)? Py -2\F( Ty \* with g 2=
4w 2y I'y—1) 4p
_p+1
-7

Using the formula for y and observing that I'(y) = (y—1)I'(y—1), the expression

1 o +1 o_ 1
(1 2 /p 27 2p
=)0

We apply (A.8) for p = %qk and obtain

for A can be simplified to

—0 0
I llzoe < AN IV AN,

g /1
e 1\ [aa +1
T 2

where

Since %qk + 1 = gi+1 we find that

A= () ("

which, inserted into (A.9) yields

6
1N 2 (qre1\ 2 a1
Il < (=) (B52)7 ™AL

Using the induction hypothesis we infer

9k yy 6 9k
q )+2 q

1(1,
1 2
Il < (5)
™

Jj=2

Elementary calculations show that

2
gk
1-0)L =
( )q
1— Ly gk
q q

k+1 i
27
<11 (2j +q- 2)

(A.9)
g_L
qj _ 2
and =2 "%
2qx
1
T"' and H:Iquﬂ
a
IV£I9.. (A.10)
Qk+1)(g_qlk>q§
2
2J42—¢q
' (1-6) 2k 1-k gk
||f||L‘1k+1 ”Vf”[,?

1
-3(-2)
2 q

ok+2 10 g

9k+2 2kT24
242 4 g —2 ’

_ Gk+1

)

4
] — Tkt1

q

b

which implies (A.7) for & + 1. The result now follows by sending k¥ — oo in
(A.7) and by observing that limy_,o qx = 2. ]
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Figure A.1 The values of the constants 0(52), C’ég) over the range 2 < ¢ < 10 and
Cél) over 4 < ¢ < 10.

Figure illustrates the values of the constants f for a certain
range of ¢, namely, 2 < ¢ < 10 for Cé2),Cq(3) and 4 < ¢ < 10 for Cél). We
can see clearly that the values of Cél) are smaller than those of 0,52), Cég) for
approximately ¢ > 6. In order to derive a computable upper bound on Cég) we

note that % <1 for j € N, and therefore

a=2 p_1 29 42-¢

1 2q 2j 27q
(3) il | I s
Cq S (7‘(’> J (2] q2) ) kaOa

Jj=2

where kg > 2 is chosen so large that 2¥ +2 — ¢ > 0. In our calculations
we used k — 1 = 200. All the computations of these constants are done using
Mathematica 8.
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