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Chapter 1

Introduction

Many of the physical processes in the real world can be described mathemat-
ically by using partial differential equations (PDEs). For example heat flow,
diffusion, fluid flow, elastic deformation and wave propagation and many other
phenomena are modelled by PDEs. Modelling such processes in practical ap-
plications like in industry, medicine or engineering may necessitate knowing the
optimal inputs in the considered models for some financial or safety reasons.
This leads to establishing minimization problems with PDEs constraints. Solv-
ing such optimization problems prove challenging since the involved variables
usually belong to infinite dimensional spaces and hence discretization concepts
shall be developed. Therefore, it has been of interest to study optimal control
problems of PDEs with probably additional constraints on the control/state
variables, see [73, 45] for further details.

The thesis is divided into two parts. In the first part, we consider the optimal
control problem

(P) min
u∈Uad

J(u) :=
1

2
‖y − y0‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to the semilinear elliptic PDE

−∆y + φ(y) = u in Ω ⊂ R2,

y = 0 on ∂Ω,

and the pointwise state constraints

ya(x) ≤ y(x) ≤ yb(x), x ∈ K ⊂ Ω.

The precise assumptions on the data of the problem will be given in Section 2.1.
Since the state equation is in general nonlinear, the control problem (P) is
nonconvex. Consequently, there may be several solutions of the necessary first
order conditions. These can be examined further with the help of second order
conditions. However, second order conditions can only decide if the given point
is a local mimimum of (P) and they in general don’t provide any information
about whether the given point is a global solution of the control problem.

Our aim in this part is to establish a sufficient condition that helps us to
decide if a function ū satisfying the necessary first order conditions is a global
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solution of (P). We establish such a condition in Theorem 2.3.5 under certain
growth conditions of the nonlinearity φ. More precisely, this condition has the
form ‖p̄‖Lq(Ω) ≤ η where q and η are constants depending only on the data of
the problem and can be computed explicitly while p̄ denotes the adjoint state
associated with ū. It turns out that an analogous result can also be established
for the variational discrete, (see [46]), counterpart (Ph) of (P), see Theorem 3.3.4.
Furthermore, any sequence (ū)0<h≤h0

of global minima of (Ph) that satisfies
this condition uniformly converges to a global minimum of problem (P) as the
discretization parameter h tends to zero. Relying on these conditions, we can
derive an error bound of order O(h1−ε) for arbitrarily small ε > 0 for the
convergence of the sequence (ū)0<h≤h0 . Finally, we show that the condition
‖p̄‖Lq(Ω) ≤ η also implies the sufficient second order conditions derived in [20].

We give a brief overview of the literature on optimal control of semilinear
PDEs with pointwise state constraints. For a broad overview, the interested
reader is referred to the references of the respective citations. In [16] the anal-
ysis of semiliner elliptic control problems with pointwise state constraints and
boundary controls is considered and the necessary first order conditions are es-
tablished (compare [15] for the linear-quadratic case). See also [21] where the
pointwise constraints are imposed on the gradient of the state and the controls
are distributed in the spatial domain. Further analysis concerning the regular-
ity of the optimal control and the associated multipliers as well as discussion of
sufficient second order conditions can be found in [25] and in [24]. Second order
conditions for finitely/infinitely many poitwise state constraints are established
in [22, 19, 20], and compare [26] for the role of the second order conditions in
PDE constrained control problems.

The finite element discretization of state constrained semilinear elliptic con-
trol problems with plain convergence, that is convergence without any rates of
convergence, is considered in [23] and in [47] for a wider class of perturbations,
including the finite element discretization, of the continuous control problems.
On the other hand, established convergence rates can be found in [60] for finite
dimensional controls and finitely many poitwise state constraints, and in [17] for
control functions and finitely many pointwise state constraints. Just recently
in [64] rates of convergence are derived when the controls are functions and the
state constrains are imposed on infinitely many points in the domain. In [34]
convergence rates are obtained for liner-quadratic control problems. In fact,
we will use the discretization concepts considered there to discretize problem
(P). For the numerical analysis when the pointwise constraints are imposed
only on the control variable we refer to [3, 18]. Finally, a detailed discussion of
discretization concepts and error analysis in PDE-constrained control problems
can be found in [48, 49] and[45, Chapter 3].

In the second part of the thesis we are interested in the control problem

(Pω) min
(y,u)∈H1

0 (D)×L2(D)
J(y, u) =

1

2
‖y − z‖2L2(D) +

α

2
‖u‖2L2(D)

subject to

−∇ · (a(ω, x)∇y(ω, x)) = u(x) in D ⊂ Rd,
y(ω, x) = 0 on ∂D,
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and

ua ≤ u(x) ≤ ub for a.e. x ∈ D,

where a(ω, x) is a random field defined on a given probability space (Ω,A,P).
The precise assumptions on the data of the problem will be formulated in Sec-
tion 4.1. Following the typical notation in the literature on PDEs with stochastic
coefficients, the notation in this part will differ from and is independent of the
one in the first part.

It is clear that for a fixed realization of the coefficient a, the control problem
(Pω) admits a unique solution. In fact, we will show in Theorem 4.3.2 that
the mapping u∗ : Ω → L2(D) where u∗(ω) is the solution of (Pω) defines a
L2(D)-valued random variable.

Our aim is to compute the statistics of the mapping u∗, like the expected
value E[u∗] or the variance var[u∗]. This helps us to understand how random
fluctuations in the state equation affect the optimal controls and provides prac-
tical information on the design of control devices subject to uncertain inputs.
It is clear, however, that the quantity E[u∗] needs not be a solution of an op-
timal control problem in general and is not necessarily a robust control. More
precisely, we will be interested in the numerical analysis of approximating E[u∗]
by a multilevel Monte Carlo (MLMC) estimator, see [5, 32].

Various formulations for optimal control problems of PDEs with random
coefficients have appeared in the literature to date. In what follows we give
a quick overview and classify those formulations according to the type of the
control (deterministic or stochastic) and the form of the cost functional to be
minimized. In addition we comment on solvers for these problems.

Consider a cost functional J = J(u, y(u), a) where u denotes the control, y
denotes the state and a is some parameter associated with the PDE constraint.
In our setting, a is a random function with realizations denoted by aω. We
distinguish the following problem formulations:

(a) Mean-based control, see [9, 10, 11]: Replace a by its expected value E[a].
Minimize J(u, y(u),E[a]) by a deterministic optimal control.

(b) Individual or “pathwise” control, see [9, 11, 62, 63]: Fix aω, minimize
J(u, y(u), aω) and obtain a realization u∗(ω) of a random field u∗. In a
postprocessing step, compute the statistics of u∗, e.g. E[u∗].

(c) Averaged control, see [57, 79]: Control the averaged (expected) state by
minimizing J(u,E[y(u)], a) using a deterministic optimal control.

(d) Robust deterministic control, see [10, 12, 37, 41, 42, 50, 53, 54, 55, 58, 67]:
Minimize the expected cost E[J(u, y(u), a)] by a deterministic optimal
control.

(e) Robust stochastic control, see [6, 7, 29, 30, 31, 56, 72]: Minimize the
expected cost E[J(u, y(u), a)] by a stochastic optimal control.

The mean-based control problem (a) does not account for the uncertainties in
the PDE and it is not clear if the resulting deterministic optimal control is
robust with respect to the random fluctuations. The pathwise control problem
(b) is highly modular and can be combined easily with sampling methods, e.g.
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Monte Carlo or sparse grid quadrature. However, the expected value E[u∗] does
not solve an optimal control problem and is in general not a robust control. The
average control problem (c) introduced by Zuazua [79] seeks to minimize the
distance of the expected state to a certain desired state. This is an interesting
alternative to the robust control problem in (d) where the expected distance of
the (random) state to a desired state is minimized. Since the cost functional
in (c) uses a weaker error measure than the cost functional in (d) the average
optimal control does not solve the robust control problem in general. Stochastic
optimal controls in (e) are of limited practical use since controllers typically
require a deterministic signal. This can, of course, be perturbed by a known
mean-zero stochastic fluctuation which models the uncertainty in the controller
response. For these reasons, deterministic, robust controls in (d) are perhaps
most useful in practice and have attracted considerable attention compared to
the other formulations. However, control problems in (d) or in (c) involve an
infinite number of PDE constraints which are coupled by a single cost functional.
The approximate solution of such problems is extremely challenging and requires
much more computational resources than e.g. a deterministic control problem
with a single deterministic PDE constraint. For this reason it is worthwhile to
explore alternative problem formulations.

Note that the problem (Pω) is of the form (b). Moreover, the expected
value E[u∗] can be used as initial guess for the robust control problem in (d) if
the variance var[u∗] = E[u∗ − E[u∗]]2 is small. This is justified by the Taylor
expansion

E[Ĵ(u∗)] = Ĵ(E[u∗]) +
1

2

d2Ĵ

du2
(E[u∗])var[u∗] + higher order moments,

where we have used the reduced cost functional Ĵ = Ĵ(u) and the assumption

that Ĵ is smooth. However, we recall that E[u∗] is in general not the solution
of an optimization problem.

The control problems (a)–(e) have been tackled by a variety of solver method-
ologies. We mention stochastic Galerkin approaches in [50, 56, 58, 67], stochastic
collocation in [9, 11, 31, 53, 54, 55, 67, 72], low-rank, tensor-based methods in
[6, 7, 37], and reduced basis/POD methods in [12, 29, 30, 41, 62, 63].



Part I





Chapter 2

Optimal Control of
Semilinear Elliptic PDEs
with State Constraints

In this chapter we consider an optimal control problem of a semilinear elliptic
partial differential equation (PDE) where the nonlinearity is monotone and it
satisfies certain growth conditions. The control is distributed in the domain Ω
and the cost functional is of tracking type. Pointwise constraints on the control
and the state are also considered.

The exposition in this chapter is as follows: in Section 2.1 we introduce the
notation and set up the optimal control problem that we will consider and for-
mulate the main assumptions on its data. In Section 2.2 we review some of the
standard results about the state equation like the well-posdness of the PDE, the
regularity of the solution and the differentiability of the control-to-state map-
ping. Section 2.3 is devoted to the study of the optimal control problem. We
recall the associated first order necessary optimality conditions and we derive
our main result which is a sufficient condition for global minima of the con-
trol problem. We also derive a sufficient condition that implies second order
sufficient optimality conditions.

2.1 The Problem Setting

2.1.1 Notation

Let Ω ⊂ R2 be a bounded domain. For 1 ≤ p ≤ ∞ we denote by Lp(Ω) the
usual Banach spaces of equivalence classes of Lebesgue measurable functions
with norm ‖ · ‖Lp(Ω). For m ∈ N0, we denote by Wm,p(Ω) the classical Sobolev
spaces with norm ‖ · ‖Wm,p(Ω). We denote by Wm,p

0 (Ω) the closure of C∞0 (Ω) in

Wm,p(Ω). In particular, the functions in W 1,p
0 (Ω) vanish on ∂Ω in the sense of

traces. In the case p = 2 we write Hm(Ω) := Wm,2(Ω) and Hm
0 (Ω) := Wm,2

0 (Ω).

We denote by Cm(Ω̄) the Banach spaces of functions whose derivatives up to
order m are continuous in Ω̄ with norm ‖·‖Cm(Ω̄). We write C(Ω̄) := C0(Ω̄). For

0 < β ≤ 1, we denote by Cm,β(Ω̄) the classical spaces of β-Hölder continuous
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functions with norm ‖ · ‖Cm,β(Ω̄). The closure of C∞0 (Ω) in C(Ω̄) is denoted by
C0(Ω). In particular, C0(Ω) is the space of all functions which are continuous
in Ω̄ and vanish on ∂Ω.

For a compact subset K ⊂ Ω or K = Ω̄ we denote byM(K) the space of all
real regular Borel measures defined on K. We remark that M(K) can also be
identified with the dual space of C(K) and it is a Banach space for the norm

‖µ‖M(K) = sup
f∈C(K),‖f‖C(K)≤1

∫
K

f dµ.

2.1.2 The Problem Setting

We consider the minimization problem

(P) min
(y,u)∈H1

0 (Ω)×L2(Ω)
J(y, u) =

1

2
‖y − y0‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to

−∆y + φ(y) = u in Ω,

y = 0 on ∂Ω, (2.1)

and the pointwise constraints

ua ≤ u(x) ≤ ub for a.e. x ∈ Ω,

ya(x) ≤ y(x) ≤ yb(x) ∀x ∈ K ⊂ Ω,

where we assume

• Ω ⊂ R2 is a bounded, convex and polygonal domain.

• K is a (possibly empty) compact subset of Ω.

• ua ∈ R ∪ {−∞} and ub ∈ R ∪ {∞} with ua ≤ ub.

• ya, yb ∈ C0(Ω) are given functions that satisfy ya(x) < yb(x), x ∈ K.

• y0 ∈ L2(Ω) and α > 0 are given.

• φ : R→ R is of class C2 and monotonically increasing.

• There exist r > 1 and M ≥ 0 such that

|φ′′(s)| ≤Mφ′(s)
1
r for all s ∈ R, (2.2)

where φ′ and φ′′ denote the first and second derivative of φ, respectively.

We recall that the problem (P) is called an optimal control problem where
the function u is the control, y is the state and the semilinear elliptic PDE (2.1)
is called the state equation.

A function φ satisfying the previous assumptions enjoys some properties that
will be useful in our analysis. We summarize these properties in Appendix A.1.
To have an example for such a function, consider φ(s) = |s|q−2s for q > 3. Then
we have

|φ′′(s)| = (q − 1)(q − 2)|s|q−3 = (q − 2)(q − 1)
1
q−2 [φ′(s)]

q−3
q−2 ,

and thus, (2.2) is satisfied if we choose r = q−2
q−3 and M = (q − 2)(q − 1)

1
q−2 .
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2.2 The State Equation

In this section we will recall the classical results about the state equation (2.1)
that will be relevant in our study of the optimal control problem (P). In partic-
ular, we will investigate the well-posedness of (2.1), the regularity of the state
variable and the differentiability of the control-to-state operator.

We begin by recalling the weak formulation of (2.1) which reads: for a given
u ∈ L2(Ω), find y ∈ H1

0 (Ω) such that∫
Ω

∇y · ∇v + φ(y)v dx =

∫
Ω

uv dx ∀ v ∈ H1
0 (Ω). (2.3)

If such a function y ∈ H1
0 (Ω) exists, it is called a weak solution to (2.1).

Theorem 2.2.1 For every u ∈ L2(Ω) the boundary value problem (2.1) admits
a unique weak solution y ∈ H1

0 (Ω) ∩H2(Ω). Moreover, there exists c > 0 such
that

‖y‖H2(Ω) ≤ c
(
1 + ‖u‖L2(Ω)

)
. (2.4)

Proof: We divide the proof into two steps. In Step 1, we show that for every
u ∈ L2(Ω), there exists a unique solution y ∈ H1

0 (Ω) to (2.3). In Step 2, we
show that the solution y belongs to H1

0 (Ω) ∩H2(Ω) and we verify the estimate
(2.4).
Step 1:
We first observe that for a given u ∈ L2(Ω), a function y ∈ H1

0 (Ω) is a solution
to (2.3) if and only if it is a solution to following variational problem: find
y ∈ H1

0 (Ω) such that∫
Ω

∇y · ∇v + [φ(y)− φ(0)]v dx =

∫
Ω

[u− φ(0)]v dx ∀ v ∈ H1
0 (Ω). (2.5)

In the light of (A.1) and Lemma A.1.4, the superposition operator associated
with φ maps H1

0 (Ω) into Lt(Ω) for 1 ≤ t <∞ and it is also continuous. Hence,
all the integrals in (2.5) are well defined.
Since φ is monotone, the existence and uniqueness of a solution y ∈ H1

0 (Ω)
to (2.5) follows from applying the main theorem on monotone operators in a
standard way, see for instance [77, Theorem 26.A] for this theorem. In fact, it
is more convenient to apply this theorem to (2.5) instead of (2.3) which is why
we introduced the former.
If we test (2.5) by the solution y, it follows from the Poincaré’s inequality and
the monotonicity of φ that

‖y‖2H1(Ω) ≤
∫

Ω

|∇y|2 + [φ(y)− φ(0)]y dx =

∫
Ω

[u− φ(0)]y dx

≤ ‖u− φ(0)‖L2(Ω)‖y‖L2(Ω)

≤ c
(
1 + ‖u‖L2(Ω)

)
‖y‖H1(Ω),

which implies

‖y‖H1(Ω) ≤ c
(
1 + ‖u‖L2(Ω)

)
. (2.6)
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Step 2:
Let y ∈ H1

0 (Ω) be the solution to (2.5) for a given u ∈ L2(Ω). Let f := u−φ(y)
and consider the boundary value problem

−∆w = f in Ω, and w = 0 on ∂Ω. (2.7)

Since f ∈ L2(Ω), it follows from [40, Theorem 4.4.3.7] that (2.7) admits a unique
solution w ∈ H1

0 (Ω) ∩H2(Ω). Furthermore, according to [40, Theorem 4.3.1.4]
there exists a constant c > 0 such that

‖w‖H2(Ω) ≤ c
(
‖f‖L2(Ω) + ‖w‖L2(Ω)

)
. (2.8)

However, y is also the unique weak solution to (2.7) in H1
0 (Ω). Consequently,

we conclude that w = y and y ∈ H1
0 (Ω) ∩H2(Ω).

From the continuous embedding H2(Ω) ↪→ C(Ω̄) we have y ∈ C(Ω̄). Thus, from
(2.8), Lemma A.1.3 and (2.6) we get

‖y‖H2(Ω) ≤ c
(
‖u− φ(y)‖L2(Ω) + ‖y‖L2(Ω)

)
≤ c
(
‖u‖L2(Ω) + ‖φ(y)− φ(0)‖L2(Ω) + ‖φ(0)‖L2(Ω) + ‖y‖L2(Ω)

)
≤ c
(
‖u‖L2(Ω) + ‖y‖L2(Ω) + 1

)
≤ c
(
‖u‖L2(Ω) + 1

)
,

which is the estimate (2.4) and the proof is complete.

Remark 1 Since the domain Ω is assumed to be polygonal, and thus its
boundary is non-smooth, it is essential to demand that Ω is convex to guarantee
the H2 regularity of the state variable y in Theorem 2.2.1. This high regularity
of y is exploited frequently in our analysis and it simplifies it. Domains with
sufficiently smooth boundaries guarantee this regularity for y even if they are
nonconvex (see [40, Chapter 2]), however, such domains lead to some tedious
analysis at the discrete level, which is why we avoid considering them in this
work.

In the light of Theorem 2.2.1, we introduce the mapping

G : L2(Ω)→ H1
0 (Ω) ∩H2(Ω) (2.9)

such that y := G(u) is the solution to (2.3) for a given u ∈ L2(Ω). In the context
of optimal control of PDEs, the mapping G is sometimes called the control-to-
state operator since it assigns to each control u the corresponding state y. We
state some of its properties in what follows for our further analysis.

Proposition 2.2.2 The mapping G introduced in (2.9) is of class C1 and for
every u, v ∈ L2(Ω) the first derivative z := G′(u)v is the solution of the linear
elliptic boundary value problem

−∆z + φ′(y)z = v in Ω,

z = 0 on ∂Ω, (2.10)

where y := G(u).
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Proof: To obtain the proof, we use the Implicit Function Theorem, see for
instance [76, Theorem 4.B] and we argue like in the proof of [22, Theorem 2.5].
To begin, consider the mapping

F : H1
0 (Ω) ∩H2(Ω)× L2(Ω)→ L2(Ω), F (y, u) = −∆y + φ(y)− u.

Notice that F (y, u) = 0 if and only if y = yu := G(u) and that F is of class C1

from the assumptions on φ. Moreover, it is easy to see that

Fy(yu, u) : H1
0 (Ω) ∩H2(Ω)→ L2(Ω), Fy(yu, u)z = −∆z + φ′(yu)z

is bijective. Thus, we conclude from the implicit function theorem that the
mapping u 7→ yu := G(u) is of class C1. Differentiating with respect to u the
following expression

F (G(u), u) = 0

we deduce the PDE (2.10). This completes the proof.

Lemma 2.2.3 Let G be the mapping introduced in (2.9). Then there exists
c > 0 depending only on Ω such that

‖G(u)− G(v)‖L2(Ω) ≤ c‖u− v‖L2(Ω) ∀u, v ∈ L2(Ω).

Proof: The result is obtained by utilizing the Poincaré’s inequality, the mono-
tonicity of φ and the Cauchy-Schwarz inequality as follows. For a given u, v ∈
L2(Ω), let yu := G(u) and yv := G(v). Then we have

1

c
‖yu − yv‖2L2(Ω) ≤

∫
Ω

|∇(yu − yv)|2 dx

≤
∫

Ω

|∇(yu − yv)|2 + [φ(yu)− φ(yv)](yu − yv) dx

=

∫
Ω

(u− v)(yu − yv) dx

≤ ‖u− v‖L2(Ω)‖yu − yv‖L2(Ω).

Here c > 0 is from the Poincaré’s inequality and it depends only on Ω. Dividing
both sides of the previous inequality by ‖yu − yv‖L2(Ω) yields the desired result
and the proof is complete.

Lemma 2.2.4 Let G be the mapping introduced in (2.9). Then for any m > 0
there exists L(m) > 0 such that

‖G(u1)− G(u2)‖H2(Ω) ≤ L(m)‖u1 − u2‖L2(Ω)

for all u1, u2 ∈ L2(Ω) with ‖u1‖L2(Ω), ‖u2‖L2(Ω) ≤ m.

Proof: For a given number m > 0 choose u1, u2 ∈ L2(Ω) with ‖u1‖L2(Ω),
‖u2‖L2(Ω) ≤ m and define y1 := G(u1) and y2 := G(u2). From Theorem 2.2.1
and the continuous embeddingH2(Ω) ↪→ C(Ω̄) it follows that ‖y1‖L∞(Ω), ‖y2‖L∞(Ω) ≤
cm for some cm > 0 depending on m.
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It is clear that the function w := y1−y2 belongs to H2(Ω) and it is a solution
of

−∆w = f in Ω, and w = 0 on ∂Ω,

where f := (u1 − u2)− [φ(y1)− φ(y2)]. Notice that f ∈ L2(Ω). Therefore, [40,
Theorem 4.3.1.4] asserts the existence of a constant c > 0 such that

‖w‖H2(Ω) ≤ c
(
‖f‖L2(Ω) + ‖w‖L2(Ω)

)
.

We may now proceed while employing Lemma 2.2.3 and Lemma A.1.3 to obtain

‖y1 − y2‖H2(Ω) ≤ c
(
‖u1 − u2‖L2(Ω) + ‖φ(y1)− φ(y2)‖L2(Ω) + ‖y1 − y2‖L2(Ω)

)
≤ L(m)

(
‖u1 − u2‖L2(Ω) + ‖y1 − y2‖L2(Ω)

)
≤ L(m)‖u1 − u2‖L2(Ω),

where L(m) > 0 is a constant depending on m. This completes the proof.

We would like to mention that the regularity of the state variable y plays
an important role in the numerical analysis of the optimal control problem as
we will see later. Therefore, it becomes an interesting task to investigate the
regularity of the solution y to (2.3) if u is more regular than an L2(Ω) function.
For this reason, we derive the next result.

Theorem 2.2.5 For a given u ∈ W 1,s(Ω) for some 1 < s < 2, the solution y
to (2.3) belongs to W 2,p(Ω) ∩H1

0 (Ω) and there exists c > 0 such that

‖y‖W 2,p(Ω) ≤ c(‖u‖Lp(Ω) + 1), (2.11)

where p = 2s
2−s for any 1 < s < sΩ := min(2, 2θmax

3θmax−π ) with θmax ∈ [π3 , π) being
the maximum interior angle in Ω. For θmax = π

3 we define sΩ := 2.

Proof: We first observe that for a given u ∈ W 1,s(Ω), 1 < s < 2, the solution
y to (2.3) belongs to H2(Ω)∩H1

0 (Ω). This follows from Theorem 2.2.1 and the
continuous embedding W 1,s(Ω) ↪→ L2(Ω) for 1 < s < 2.
Next, let f := u− φ(y) and consider the PDE

−∆w = f in Ω and w = 0 on ∂Ω. (2.12)

Notice that φ(y) ∈ L∞(Ω) from the continuous embedding H2(Ω) ↪→ C(Ω̄) and
Lemma A.1.3. Moreover, W 1,s(Ω) ↪→ Lp(Ω) where p = 2s

2−s for 1 < s < 2. This

implies that f ∈ Lp(Ω) with p = 2s
2−s for 1 < s < 2.

Consequently, we deduce from [40, Theorem 4.4.3.7] that there exists a unique
w ∈W 2,p(Ω) ∩H1

0 (Ω) solution to (2.12) provided that

1 < s < sΩ := min(2, 2θmax

3θmax−π )

where θmax ∈ [π3 , π) is the maximum interior angle in Ω. For θmax = π
3 we define

sΩ := 2. Furthermore, according to [40, Theorem 4.3.2.4], there exists c > 0
such that

‖w‖W 2,p(Ω) ≤ c(‖∆w‖Lp(Ω) + ‖w‖W 1,p(Ω)). (2.13)
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Since y is also the unique weak solution to (2.12) in H1
0 (Ω), we conclude that

w = y and thus y ∈W 2,p(Ω) ∩H1
0 (Ω).

Finally, to obtain the estimate (2.11) we utilize (2.13), Lemma A.1.3, the con-
tinuous embedding H2(Ω) ↪→W 1,p(Ω) and (2.4) to get

‖y‖W 2,p(Ω) ≤ c
(
‖u‖Lp(Ω) + ‖φ(y)− φ(0)‖Lp(Ω) + ‖φ(0)‖Lp(Ω) + ‖y‖W 1,p(Ω)

)
≤ c
(
‖u‖Lp(Ω) + ‖y‖Lp(Ω) + ‖y‖H2(Ω) + 1

)
≤ c
(
‖u‖Lp(Ω) + ‖u‖L2(Ω) + 1

)
≤ c
(
‖u‖Lp(Ω) + 1

)
.

Observe that Lp(Ω) ↪→ L2(Ω) since p = 2s
2−s > 2 for any 1 < s < 2 and Ω ⊂ R2

is bounded. This completes the proof.

2.3 The Optimal Control Problem (P)

This section is devoted to the study of the optimal control problem (P). In
particular, we review the associated first order conditions and state our main
result about global minima for the problem (P). We also establish a condition
that implies the second order sufficient conditions of problem (P).

After we introduced the control-to-state operator G in (2.9), it will be con-
venient from now on to write J(u) instead of J(y, u). In this way, we can
reformulate our optimal control problem as

(P)
minu∈Uad J(u) := 1

2‖y − y0‖2L2(Ω) +
α

2
‖u‖2L2(Ω)

subject to y = G(u) and y|K ∈ Yad,

where

Uad := {v ∈ L2(Ω) : ua ≤ v(x) ≤ ub a.e. in Ω},
Yad := {z ∈ C(K) : ya(x) ≤ z(x) ≤ yb(x) for all x ∈ K}.

Notice that due to the embedding H2(Ω) ↪→ C(Ω̄) it becomes meaningful to
impose pointwise constraints on the state variable y.

Definition 1 Let Fad := {u ∈ Uad : y|K ∈ Yad, y := G(u)}. Then a function
ū ∈ Fad is called a local minimum (or a local solution) to the problem (P) if
there exists δ > 0 such that

J(ū) ≤ J(u) ∀u ∈ Fad and ‖ū− u‖L2(Ω) ≤ δ.

If ū ∈ Fad satisfies
J(ū) ≤ J(u) ∀u ∈ Fad,

then ū is called a global minimum (or a global solution) to the problem (P).

Theorem 2.3.1 Suppose that Fad := {u ∈ Uad : y|K ∈ Yad, y := G(u)} is
nonempty. Then the problem (P) has at least one solution.

Proof: The proof is classical, for instance, see the proof of [16, Theorem 5.1]
for the details.
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2.3.1 Necessary First Order Conditions for (P)

It is well known that to ensure the existence of Lagrange multipliers associated
with a solution to a minimization problem in Banach spaces, one needs first to
postulate some constraint qualifications at that solution, see for instance [78].
A typical constraint qualification for a local solution ū of the problem (P) is the
linearized Slater condition which reads: there exist u0 ∈ Uad and δ > 0 such
that

ya(x) + δ ≤ G(ū)(x) + G′(ū)(u0 − ū)(x) ≤ yb(x)− δ ∀x ∈ K. (2.14)

The necessary first order optimality conditions for the problem (P) are stated
in the next result.

Theorem 2.3.2 Let ū ∈ Uad be a local solution of the problem (P) satisfying
(2.14). Then there exist p̄ ∈W 1,s

0 (Ω) for 1 < s < 2 and a regular Borel measure
µ̄ ∈M(K) such that with ȳ ∈ H1

0 (Ω) ∩H2(Ω) there holds∫
Ω

∇ȳ · ∇v + φ(ȳ)v dx =

∫
Ω

ūv dx ∀ v ∈ H1
0 (Ω), ȳ|K ∈ Yad, (2.15)∫

Ω

p̄(−∆v) + φ′(ȳ)p̄v dx

=

∫
Ω

(ȳ − y0)v dx+

∫
K

v dµ̄ ∀ v ∈ H1
0 (Ω) ∩H2(Ω), (2.16)∫

Ω

(p̄+ αū)(u− ū) dx ≥ 0 ∀u ∈ Uad, (2.17)∫
K

(z − ȳ) dµ̄ ≤ 0 ∀ z ∈ Yad. (2.18)

Proof: The result follows from [16, Theorem 5.2] since the set Yad has a
nonempty interior and the cost functional J is Gâteaux differentiable at ū. Here,
the differentiability of J is a consequence of the chain rule and the differentia-
bility of the control-to-state operator G as mentioned in Proposition 2.2.2.

It is worth pointing out that the variational inequality (2.17) implies a higher
regularity for the optimal control ū which in turn improves the regularity of the
associated state ȳ. In fact, we have the following result.

Lemma 2.3.3 Let ū be a local solution of problem (P) and let ȳ be its associated
state. Then ū ∈W 1,s(Ω) for 1 < s < 2 and ȳ ∈W 2,p(Ω) ∩H1

0 (Ω) such that

‖ȳ‖W 2,p(Ω) ≤ c(‖ū‖Lp(Ω) + 1), (2.19)

for some c > 0, where p = 2s
2−s for 1 < s < sΩ := min(2, 2θmax

3θmax−π ) with
θmax ∈ [π3 , π) being the maximum interior angle in Ω. For θmax = π

3 we define
sΩ := 2.

Proof: The result follows immediately from Theorem 2.2.5 if we show that the
optimal control ū admits the regularity ū ∈ W 1,s(Ω) for 1 < s < 2. To achieve
this, we recall that (2.17) is equivalent to

ū(x) = PUad
(
− 1

α p̄(x)
)

= min
(

max
(
ua,− 1

α p̄(x)
)
, ub
)
∀x ∈ Ω,
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where PUad : L2(Ω)→ Uad is the L2-projection into Uad. Since p̄ ∈W 1,s
0 (Ω) for

1 < s < 2 and PUad is a Lipschitz function, it follows from [51, Corollary A.6]
that ū ∈W 1,s(Ω) for 1 < s < 2 as well. This completes the proof.

The next result states that the Lagrange multiplier µ̄ associated with the
pointwise state constraints is concentrated at the set points in K where the
state constraints are active. For a detailed proof of this result, see for instance
[24].

Proposition 2.3.4 Let µ̄ ∈ M(K) and ȳ ∈ C0(Ω) satisfy (2.18). Then there
holds

supp(µ̄b) ⊂ {x ∈ K : ȳ(x) = yb(x)},
supp(µ̄a) ⊂ {x ∈ K : ȳ(x) = ya(x)}.

where µ̄ = µ̄b − µ̄a with µ̄b, µ̄a ≥ 0 is the Jordan decomposition of µ̄.

2.3.2 Global Minima for (P)

Since the state equation is in general nonlinear, the optimal control problem (P)
is nonconvex and there may be several solutions of the necessary first order
conditions (2.15)–(2.18). These can be examined further with the help of second
order conditions but those will only give local information and usually do not
allow a decision on whether the given point is a global minimum of (P). Second
order sufficient conditions for problem (P) that are closest to the associated
necessary ones can be found in [20]. In what follows, we provide a sufficient
condition that help us to decide if a solution to (2.15)–(2.18) is a global minimum
of (P).

We begin by introducing the following constant:

η(α, r) := α
ρ
2C

2−2r
r

q M−1

(
r − 1

2r − 1

) 1−r
r

q1/qr1/rρρ/2(2− ρ)
ρ
2−1. (2.20)

Here, q := 3r−2
r−1 , ρ := r+q

rq , while M and r appear in (2.2). Furthermore, Cq is
an upper bound on the optimal constant in the Gagliardo-Nirenberg inequality

‖f‖Lq ≤ C‖f‖
2
q

L2‖∇f‖
q−2
q

L2 (2 ≤ q <∞).

For our purposes it will be important to specify a constant Cq that is as sharp
as possible. Theorem A.5.1 in Appendix A.5 will give three such bounds, two
of which can be found in the literature, while the third is new to the best of our
knowledge. Let us now formulate the main result of this section.

Theorem 2.3.5 Suppose that ū ∈ Uad, ȳ ∈ H2(Ω) ∩H1
0 (Ω), p̄ ∈ W 1,s

0 (Ω) for
1 < s < 2, µ̄ ∈M(K) is a solution of (2.15)–(2.18). If

‖p̄‖Lq(Ω) ≤ η(α, r), (2.21)

then ū is a global minimum for Problem (P). If the inequality (2.21) is strict,
then ū is the unique global minimum. Here, η(α, r) and q are as defined in
(2.20).
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Proof: Let u ∈ Uad be a feasible control, y = G(u) the associated state with
y|K ∈ Yad. We have

J(u)− J(ū) =
1

2
‖y − ȳ‖2L2(Ω) +

α

2
‖u− ū‖2L2(Ω) + α

∫
Ω

ū(u− ū) dx

+

∫
Ω

(ȳ − y0)(y − ȳ) dx =: (A)

Using v := y − ȳ in (2.16) we get

(A) =
1

2
‖y − ȳ‖2L2(Ω) +

α

2
‖u− ū‖2L2(Ω) + α

∫
Ω

ū(u− ū) dx

+

∫
Ω

∇p̄ · ∇(y − ȳ) + φ′(ȳ)p̄(y − ȳ) dx−
∫
K

(y − ȳ) dµ̄

≥ 1

2
‖y − ȳ‖2L2(Ω) +

α

2
‖u− ū‖2L2(Ω) + α

∫
Ω

ū(u− ū) dx

+

∫
Ω

∇p̄ · ∇(y − ȳ) + φ′(ȳ)p̄(y − ȳ) dx, (2.22)

by (2.18). Using (2.3) for y and ȳ with test function p̄ we get∫
Ω

∇p̄ · ∇(y − ȳ) dx =

∫
Ω

(u− ū)p̄ dx−
∫

Ω

(φ(y)− φ(ȳ))p̄ dx

=

∫
Ω

(u− ū)p̄ dx

−
∫

Ω

p̄(y − ȳ)

∫ 1

0

φ′(ty + (1− t)ȳ) dt dx.

Using this in (2.22) and recalling (2.17) we arrive at

J(u)− J(ū)

≥ 1

2
‖y − ȳ‖2L2(Ω) +

α

2
‖u− ū‖2L2(Ω) +

∫
Ω

(αū+ p̄)(u− ū) dx

−
∫

Ω

p̄(y − ȳ)

∫ 1

0

φ′(ty + (1− t)ȳ)− φ′(ȳ) dt dx

≥ 1

2
‖y − ȳ‖2L2(Ω) +

α

2
‖u− ū‖2L2(Ω) −R(u), (2.23)

where

R(u) :=

∫
Ω

p̄(y − ȳ)

∫ 1

0

φ′(ty + (1− t)ȳ)− φ′(ȳ) dt dx.

The aim is now to estimate R(u). To begin, Lemma A.1.2 implies that

|R(u)| ≤ Lr
∫

Ω

|p̄||y − ȳ|2
(∫ 1

0

φ′(ty + (1− t)ȳ) dt

) 1
r

dx

= Lr

∫
Ω

|p̄||y − ȳ|
2r−2
r

(∫ 1

0

φ′(ty + (1− t)ȳ) dt|y − ȳ|2
) 1
r

dx,
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where Lr = M
(
r−1
2r−1

)(r−1)/r

. Next, Hölder’s inequality with exponents

q =
3r − 2

r − 1
,

r(3r − 2)

2(r − 1)2
=

qr

2r − 2
and r

yields

|R(u)| ≤ Lr‖p̄‖Lq(Ω)‖y − ȳ‖
2r−2
r

Lq(Ω)

×
(∫

Ω

∫ 1

0

φ′(ty + (1− t)ȳ) dt|y − ȳ|2 dx
) 1
r

.

The Gagliardo–Nirenberg inequality ‖f‖Lq(Ω) ≤ Cq‖f‖
2
q

L2(Ω)‖∇f‖
q−2
q

L2(Ω), f ∈
H1

0 (Ω) (see Theorem A.5.1) together with the relation 2r−2
r (1 − 2

q ) = 2
q then

implies

|R(u)| ≤ LrC
2r−2
r

q ‖p̄‖Lq(Ω)‖y − ȳ‖
4r−4
qr

L2(Ω)‖∇(y − ȳ)‖
2
q

L2(Ω)

×
(∫

Ω

∫ 1

0

φ′(ty + (1− t)ȳ) dt|y − ȳ|2 dx
) 1
r

.

Applying Lemma A.4.2 with

a :=

∫
Ω

|∇(y − ȳ)|2 dx, b :=

∫
Ω

∫ 1

0

φ′(ty + (1− t)ȳ) dt|y − ȳ|2 dx,

λ :=
1

q
, µ :=

1

r

we obtain

|R(u)| ≤ LrC
2r−2
r

q dr‖p̄‖Lq(Ω)‖y − ȳ‖
4r−4
qr

L2(Ω)

×
(∫

Ω

|∇(y − ȳ)|2 dx

+

∫
Ω

∫ 1

0

φ′(ty + (1− t)ȳ) dt|y − ȳ|2 dx
)ρ
, (2.24)

where

dr = q−1/qr−1/rρ−ρ, ρ =
r + q

rq
.

Using again (2.3) for y, ȳ, this time with test function y − ȳ yields∫
Ω

|∇(y − ȳ)|2 dx+

∫
Ω

∫ 1

0

φ′(ty + (1− t)ȳ) dt|y − ȳ|2 dx

≤ ‖u− ū‖L2(Ω)‖y − ȳ‖L2(Ω).

Inserting this estimate into (2.24) and observing that 4r−4
qr +ρ = 2−ρ we deduce

|R(u)| ≤ LrC
2r−2
r

q dr‖p̄‖Lq(Ω)‖y − ȳ‖2−ρL2(Ω)‖u− ū‖
ρ
L2(Ω)

= 2α−
ρ
2LrC

2r−2
r

q dr‖p̄‖Lq(Ω)

(
1

2
‖y − ȳ‖2L2(Ω)

)1− ρ2 (α
2
‖u− ū‖2L2(Ω)

) ρ
2

.
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Applying again Lemma A.4.2, this time with the choices

a :=
1

2
‖y − ȳ‖2L2(Ω), b :=

α

2
‖u− ū‖2L2(Ω), λ := 1− ρ

2
, µ :=

ρ

2
,

we obtain

|R(u)| ≤ 2α−
ρ
2LrC

2r−2
r

q drer‖p̄‖Lq(Ω)

(
1

2
‖y− ȳ‖2L2(Ω) +

α

2
‖u− ū‖2L2(Ω)

)
, (2.25)

where

er =
(

1− ρ

2

)1− ρ2 (ρ
2

) ρ
2

.

Using (2.25) in (2.23) we get

J(u)− J(ū)

≥
(

1

2
‖y − ȳ‖2L2(Ω) +

α

2
‖u− ū‖2L2(Ω)

)(
1− 2α−

ρ
2LrC

2r−2
r

q drer‖p̄‖Lq(Ω)

)
so that J(u) ≥ J(ū) provided that

‖p̄‖Lq(Ω) ≤
(

2α−
ρ
2LrC

2r−2
r

q drer

)−1

. (2.26)

By direct calculations, we have

2drer = q−1/qr−1/rρ−ρ/2(2− ρ)1− ρ2 .

Hence, using the above result and the value of Lr from Lemma A.1.2 we can
rewrite (2.26) as

‖p̄‖Lq(Ω) ≤ α
ρ
2C

2−2r
r

q M−1

(
r − 1

2r − 1

) 1−r
r

q1/qr1/rρρ/2(2− ρ)
ρ
2−1

which is the desired result.

Remark 2 It is of interest to point out that Theorem 2.3.5 doesn’t rely on
the linearized Slater condtion (2.14). Basically, the theorem says that if there
is a solution (ū, ȳ, p̄, µ̄) to (2.15)–(2.18) such that (2.21) is satisfied, then the
function ū is a global minimum of the problem (P).

2.3.3 Sufficient Second Order Conditions for (P)

In this section we show that the techniques used in the proof of Theorem 2.3.5
can also be used to establish a sufficient second order condition for a local
minimum of problem (P). To begin, we review briefly some material relevant to
sufficient second order conditions.

We start by discussing the differentiability of the control-to-state operator.
Recall that, according to Proposition 2.2.2, the mapping G introduced in (2.9) is
of class C1. However, establishing second order conditions requires the second
derivative of G. To guarantee that G is of class C2 we require the following
assumption on the nonlinearity φ:
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• φ : R → R is of class C2 and for any m > 0 there exists L(m) > 0 such
that

|φ′′(y1)− φ′′(y2)| ≤ L(m)|y1 − y2| ∀ yi ∈ R with |yi| ≤ m, i = 1, 2.

Under the above assumption on φ we obtain the next result.

Proposition 2.3.6 The mapping G introduced in (2.9) is of class C2 and for
every u, v1, v2 ∈ L2(Ω) the second derivative z := G′′(u)v1v2 is the solution of

−∆z + φ′(y)z = −φ′′(y)y1y2 in Ω,

z = 0 on ∂Ω,

where y := G(u) and yi := G′(u)vi for i = 1, 2.

Proof: The proof is analogous to that of Proposition 2.2.2.

To state the sufficient second order conditions for (P), we first need to in-
troduce the Lagrange function and the cone of critical directions.
The Lagrange function L : L2(Ω)×(M(K))2 → R associated to the problem (P)
is defined by

L(u, µa, µb) := J(u) +

∫
K

(ya − G(u))dµa +

∫
K

(G(u)− yb)dµb.

Notice that L is of class C2 with respect to the first variable u. This is a
consequence of the C2 differentiability of G and the chain rule.
For any ū ∈ Uad, ȳ ∈ H2(Ω) ∩H1

0 (Ω), p̄ ∈ W 1,s
0 (Ω) for 1 < s < 2, µ̄ ∈ M(K)

satisfying (2.15)–(2.18) the cone of critical directions is defined by

Cū := {h ∈ L2(Ω) : h satisfies (2.27)–(2.30)},

h(x) =

 ≥ 0 if ū(x) = ua,
≤ 0 if ū(x) = ub,
= 0 if p̄+ αū(x) 6= 0,

(2.27)

zh(x) ≤ 0 if ȳ(x) = yb(x), (2.28)

zh(x) ≥ 0 if ȳ(x) = ya(x), (2.29)∫
K

|zh(x)| d|µ̄|(x) = 0, (2.30)

where zh := G′(ū)h and |µ̄| = µ̄b + µ̄a such that µ̄ = µ̄b − µ̄a.
The sufficient second order optimality conditions for problem (P) are stated in
the next result.

Theorem 2.3.7 Suppose that ū ∈ Uad, ȳ ∈ H2(Ω) ∩H1
0 (Ω), p̄ ∈ W 1,s

0 (Ω) for
1 < s < 2, µ̄ ∈M(K) satisfy (2.15)–(2.18). If

∂2L
∂u2

(ū, µ̄a, µ̄b)v
2 > 0 ∀h ∈ Cū \ {0} (2.31)
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with µ̄ = µ̄b − µ̄a, then there exist ε > 0 and δ > 0 such that

J(ū) +
δ

2
‖u− ū‖2L2(Ω) ≤ J(u) ∀u ∈ Fad and ‖u− ū‖L2(Ω) ≤ ε,

where Fad := {u ∈ Uad : y|K ∈ Yad, y := G(u)}.

Proof: See [20, Theorem 4.3 & Section 5].

In fact, it was mentioned in [20] that, under some regularity assumption, the
inequality

∂2L
∂u2

(ū, µ̄a, µ̄b)v
2 ≥ 0 ∀h ∈ Cū

is expected to be a necessary condition for a local solution ū. This is at least
the case when the state constraints are of integral type (see [22]) or when K is
a finite set of points (see [19]).

We are now in a position to formulate a condition on p̄ that serves as a
sufficient second order condition for a local minimum of problem (P).

Theorem 2.3.8 Suppose that ū ∈ Uad, ȳ ∈ H2(Ω) ∩H1
0 (Ω), p̄ ∈ W 1,s

0 (Ω) for
any 1 < s < 2, µ̄ ∈M(K) is a solution of (2.15)–(2.18). If

‖p̄‖Lq(Ω) < 2

(
r − 1

2r − 1

) r−1
r

η(α, r), (2.32)

then there exists δ > 0 such that

∂2L
∂u2

(ū, µ̄a, µ̄b)v
2 ≥ δ‖v‖2L2(Ω) for all v ∈ L2(Ω),

where q and η(α, r) as defined in (2.20) and µ̄ = µ̄b − µ̄a.

Proof: We divided the proof into two steps. In Step 1, we calculate the second
derivative of the Lagrangian L with respect to u at (ū, µ̄a, µ̄b) in the arbitrarily
chosen direction v ∈ L2(Ω), where µ̄ = µ̄b − µ̄a. In Step 2, we proceed by

estimating the nonpositive terms in ∂2L
∂u2 (ū, µ̄a, µ̄b)v

2.
Step 1:
By straightforward calculations, for any v ∈ L2(Ω), we have

∂2L
∂u2

(ū, µ̄a, µ̄b)v
2 =

∫
Ω

y2
v dx+ α

∫
Ω

v2 dx+

∫
Ω

(ȳ − y0)yvv dx+

∫
K

yvv d(µ̄b − µ̄a),

where ȳ = G(ū), yv := G′(ū)v and yvv := G′′(ū)v2.
The task is now to rewrite the last two integrals in the previous identity. To
this end, we test (2.16) by yvv and use Proposition 2.3.6 to obtain∫

Ω

(ȳ − y0)yvv dx+

∫
K

yvv d(µ̄b − µ̄a) =

∫
Ω

p̄(−∆yvv) + φ′(ȳ)p̄yvv dx

= −
∫

Ω

p̄y2
vφ
′′(ȳ) dx.
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To summarize, for any v ∈ L2(Ω), we have

∂2L
∂u2

(ū, µ̄a, µ̄b)v
2 =

∫
Ω

y2
v dx+ α

∫
Ω

v2 dx−
∫

Ω

p̄y2
vφ
′′(ȳ) dx. (2.33)

Step 2:
In view of (2.33) we only have to estimate the integral

R(v) :=

∫
Ω

p̄y2
vφ
′′(ȳ)dx.

Recall that, according to Proposition 2.2.2, yv ∈ H1
0 (Ω) is the unique function

satisfying ∫
Ω

∇yv · ∇w + φ′(ȳ)yvw dx =

∫
Ω

vw dx ∀w ∈ H1
0 (Ω). (2.34)

We shall argue in a similar way to that used to estimate the term R(u) in the
proof of Theorem 2.3.5 and hence, we skip much of the details. In what follows,
the constants ρ, dr and er have the same value as in the proof of Theorem 2.3.5.
To begin, (2.2), Hölder’s inquality and the Gagliardo–Nirenberg inequality imply

|R(v)| ≤M
∫

Ω

|p̄| y2
vφ
′(ȳ)

1
r dx ≤M‖p̄‖Lq(Ω)‖yv‖

2r−2
r

Lq(Ω)

(∫
Ω

φ′(ȳ)y2
vdx

) 1
r

≤MC
2r−2
r

q ‖p̄‖Lq(Ω)‖yv‖
4r−4
qr

L2(Ω)‖∇yv‖
2
q

L2(Ω)

(∫
Ω

φ′(ȳ)y2
vdx

) 1
r

≤MC
2r−2
r

q dr‖p̄‖Lq(Ω)‖yv‖
4r−4
qr

L2(Ω)

(∫
Ω

|∇yv|2dx+

∫
Ω

φ′(ȳ)y2
vdx

)ρ
.

The last integral is estimated by testing (2.34) by yv so that one obtains again
analogous to the proof of Theorem 2.3.5

|R(v)| ≤MC
2r−2
r

q dr‖p̄‖Lq(Ω)‖yv‖2−ρL2(Ω)‖v‖
ρ
L2(Ω)

= α−
ρ
2MC

2r−2
r

q dr‖p̄‖Lq(Ω)

(
‖yv‖2L2(Ω)

)1− ρ2 (
α‖v‖2L2(Ω)

) ρ
2

≤ α−
ρ
2MC

2r−2
r

q drer‖p̄‖Lq(Ω)

(
‖yv‖2L2(Ω) + α‖v‖2L2(Ω)

)
.

Combining this estimate with (2.33) we derive

∂2L
∂u2

(ū, µ̄a, µ̄b)v
2 ≥

(
‖yv‖2L2(Ω) + α‖v‖2L2(Ω)

)(
1− α−

ρ
2MC

2r−2
r

q drer‖p̄‖Lq(Ω)

)
and the result follows from (2.32) and the definition of η(α, r).

Remark 3 It is not difficult to see that 2
(
r−1
2r−1

) r−1
r > 1 for r > 1 so that

(2.32) is less restrictive than (2.21).



Chapter 3

Variational Discretization

This chapter is devoted to the discretization of the problem (P) by the varia-
tional discretization concept introduced in [46]. We establish a sufficient condi-
tion for global minima of the resulting discrete problem (Ph). We also carry out
the convergence and error analysis of a sequence of discrete global minima of
(Ph) that satisfy our condition. We conclude by some numerical examples that
verify our theoretical results.

The organization of this chapter is as follows: in Section 3.1, we introduce
some finite element preliminaries that will be relevant in our study. In Sec-
tion 3.2 we study the discretization of the state equation via continuous and
piecewise linear finite elements. In Section 3.3 we consider the variational dis-
cretization of the control problem (P) and establish a sufficient condition for
global minima of the resulting discrete problem (Ph). The convergence analysis
of the discrete global minima of (Ph) to those of (P) is carried out in Section 3.4
while the associated error analysis is postponed to Section 3.6. In Section 3.5
we discuss some possible generalizations to the data of the control problem
(P). Finally, Section 3.7 is devoted for solving problem (Ph) by the semismooth
Newton’s method while Section 3.8 contains the numerical verifications of our
findings.

3.1 Finite Element Preliminaries

In this section we introduce some finite element preliminaries that will be rele-
vant in our study of the discrete optimal control problem.

To begin, let {Th}0<h≤h0 be a sequence of admissible triangulations of the
polygonal domain Ω ⊂ R2 such that for every h > 0 there holds

Ω̄ =
⋃
T∈Th

T̄ .

Here h := maxT∈Th diam(T ) is the maximum mesh size, where diam(T ) stands
for the diameter of the triangle T . We also assume that the sequence {Th}0<h≤h0

is quasi-uniform in the sense that each T ∈ Th is contained in a ball of radius
γ−1h and contains a ball of radius γh for some γ > 0 independent of h. These
assumptions on {Th}0<h≤h0

should be valid throughout the whole chapter with-
out further explicit mentioning unless otherwise stated.
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On each triangulation Th ∈ {Th}0<h≤h0
, we construct the spaces of linear

finite elements:

Xh := {vh ∈ C(Ω̄) : vh|T is a linear polynomial on each T ∈ Th},
Xh0 := {vh ∈ Xh : vh|∂Ω = 0}.

Functions from the space Xh satisfy the inverse estimate, see [13, Section 4.5],

‖vh‖L∞(Ω) ≤ ch−1‖vh‖L2(Ω) ∀ vh ∈ Xh (3.1)

and the discrete Sobolev inequality, see [13, Section 4.9],

‖vh‖L∞(Ω) ≤ c(1 + | lnh|) 1
2 ‖vh‖H1(Ω) ∀ vh ∈ Xh. (3.2)

We define the Lagrange interpolation operator Ih by

Ih : C(Ω̄)→ Xh, Ihy :=

n∑
i=1

y(xi)φi,

where {x1, . . . , xn} denote the nodes in the triangulation Th and {φ1, . . . , φn}
the basis functions of the space Xh which satisfy φi(xj) = δij . Here δij is the
Kroneker delta function. The following estimates concerning the operator Ih
can be found for instance in [13, Section 4.4].

‖y − Ihy‖L∞(Ω) ≤ ch2− 2
p ‖y‖W 2,p(Ω) ∀ y ∈W 2,p(Ω), 1 < p ≤ ∞, (3.3)

‖y − Ihy‖L2(Ω) ≤ ch2‖y‖H2(Ω) ∀ y ∈ H2(Ω). (3.4)

Let Rh : H1
0 (Ω)→ Xh0 denote the Ritz projection defined by∫

Ω

∇Rhy · ∇vhdx =

∫
Ω

∇y · ∇vhdx ∀vh ∈ Xh0. (3.5)

Then, for any function y ∈W 1,p
0 (Ω) ∩W 2,p(Ω) there holds (see [66])

‖y −Rhy‖W 1,p(Ω) ≤ ch‖y‖W 2,p(Ω), 2 ≤ p ≤ ∞, (3.6)

‖y −Rhy‖Lp(Ω) ≤ cph2‖y‖W 2,p(Ω), 2 ≤ p <∞. (3.7)

Finally, we state the next lemma which requires the following assumption
on Ω and its sequence of triangulations {Th}0<h≤h0

.

Assumption 1 There is a convex polygonal domain Ω̃ containing Ω, that is,
Ω ⊂ Ω̃, such that for h0 small enough each Th ∈ {Th}0<h≤h0

can be extended

to a triangulation T̃h of Ω̃ such that the sequence {T̃h}0<h≤h0
is quasi-uniform

with the same quasi-uniformity constant γ of {Th}0<h≤h0
.

Lemma 3.1.1 Suppose that Assumption 1 holds. Let y ∈ H1
0 (Ω) ∩ C(Ω̄) be

given and let yh ∈ Xh0 be the unique function satisfying∫
Ω

∇yh · ∇vh dx =

∫
Ω

∇y · ∇vh dx ∀ vh ∈ Xh0.

Then there holds

‖y − yh‖L∞(Ω) ≤ c| lnh| inf
χ∈Xh0

‖y − χ‖L∞(Ω), (3.8)

for some c > 0 independent of h.
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Proof: See [69, Theorem 2].

We point out that Lemma 3.1.1 is in general valid when Ω is a polygonal
domain in R2 with maximal interior angle θ, 0 < θ < 2π. In Figure 3.1 we
illustrate Assumption 1 when Ω is an L-shape domain.
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(a) Ω and Th.

1

(b) Ω̃ and T̃h. The inner
L-shape highlighted
region represents Ω.

Figure 3.1 Illustration of Assumption 1: for an L-shape domain Ω (left) together
with its quasi-uniform triangulation Th there exists a convex polygonal domain Ω̃
(right) containing Ω and Th can be extended to a triangulation T̃h of Ω̃ such that T̃h
is quasi-uniform with the same quasi-uniformity constant of Th.

3.2 The Discrete State Equation

In this section we discretize the state equation by means of continuous piecewise
linear finite elements. We recall the relevant error estimates and improve the
uniform convergence under certain conditions on the data. We also introduce
the discrete control-to-state operator and discuss its differentiability.

We start by introducing the finite element discretization of (2.3) which reads:
for a given u ∈ L2(Ω), find yh ∈ Xh0 such that∫

Ω

∇yh · ∇vh + φ(yh)vh dx =

∫
Ω

uvh dx ∀ vh ∈ Xh0. (3.9)

Theorem 3.2.1 There exists a unique yh ∈ Xh0 solution to (3.9) for a given
u ∈ L2(Ω).

Proof: The result follows from the Brouwer fixed-point theorem and the mono-
tonicity of φ. Compare the proof of [77, Theorem 26.A] for the details.

Analogously to (2.9), we introduce, for every h > 0, the mapping

Gh : L2(Ω)→ Xh0 (3.10)

such that yh := Gh(u) is the solution of (3.9) for a given u ∈ L2(Ω). We
sometimes call Gh the discrete control-to-state operator since it assigns to each
control u a discrete state yh.
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Proposition 3.2.2 The mapping Gh introduced in (3.10) is of class C1 and
for every u, v ∈ L2(Ω) the first derivative zh := G′h(u)v ∈ Xh0 is the unique
function satisfying∫

Ω

∇zh · ∇wh + φ′(yh)zhwh dx =

∫
Ω

vwh dx ∀wh ∈ Xh0,

where yh := Gh(u).

Proof: The proof is along the lines of that of Proposition 2.2.2 if one considers
the mapping F : Xh0 × L2(Ω)→ X∗h0 defined by

F (yh, u)· =
∫

Ω

∇yh · ∇ ·+φ(yh) · dx−
∫

Ω

u · dx

where X∗h0 is the dual space of Xh0.

The next result shows the error in approximating the solution of (2.3) by
the one of (3.9) in terms of the mesh size h.

Theorem 3.2.3 For a given u ∈ L2(Ω), let y := G(u) and let yh := Gh(u),
where G and Gh are as defined in (2.9) and (3.10), respectively. Then, there
exists c > 0 independent of h such that

‖y − yh‖L2(Ω) ≤ ch2
(
‖u‖L2(Ω) + 1

)
, (3.11)

‖y − yh‖L∞(Ω) ≤ ch
(
‖u‖L2(Ω) + 1

)
. (3.12)

Proof: The derivation of the estimate (3.11) can be found in [23, Theorem 2].
On the other hand, the estimate (3.12) can be deduced from (3.11) as follows:

‖y − yh‖L∞(Ω) ≤ ‖y − Ihy‖L∞(Ω) + ‖Ihy − yh‖L∞(Ω)

≤ ch‖y‖H2(Ω) + ch−1‖Ihy − yh‖L2(Ω)

≤ ch‖y‖H2(Ω) + ch−1
(
‖Ihy − y‖L2(Ω) + ‖y − yh‖L2(Ω)

)
≤ ch‖y‖H2(Ω) + ch−1

(
h2‖y‖H2(Ω) + h2

(
‖u‖L2(Ω) + 1

))
≤ ch

(
‖u‖L2(Ω) + 1

)
,

where we used (3.1), (3.3), (3.4) and (2.4).

We remark that the finite element uniform convergence of the state equation
plays a crucial rule in deriving error estimates for the numerical approximation
of the problem (P) if the pointwise state constraints are considered. For this
reason, we establish the next theorem which asserts that for a better regularity
of u and under certain conditions on Ω it is possible to improve the uniform
estimate (3.12).

Theorem 3.2.4 Suppose that Assumption 1 holds. For a given u ∈ W 1,s(Ω),
for 1 < s < 2, let y := G(u) and let yh := Gh(u), where G and Gh are as defined
in (2.9) and (3.10), respectively. Then there exists c > 0 independent of h such
that

‖y − yh‖L∞(Ω) ≤ c| lnh|h2− 2
p
(
‖u‖Lp(Ω) + 1

)
, (3.13)
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where p = 2s
2−s for 1 < s < sΩ := min(2, 2θmax

3θmax−π ) with θmax ∈ [π3 , π) being the
maximum interior angle in Ω. For θmax = π

3 we define sΩ := 2.

Proof: We begin by considering

‖y − yh‖L∞(Ω) ≤ ‖y −Rhy‖L∞(Ω)︸ ︷︷ ︸
(I)

+ ‖Rhy − yh‖L∞(Ω)︸ ︷︷ ︸
(II)

(3.14)

where Rhy ∈ Xh0 is the Ritz projection of y as introduced in (3.5).
To get an upper bound for the term (I), we apply Lemma 3.1.1, Theo-

rem 2.2.5 and (3.3) to obtain

‖y −Rhy‖L∞(Ω) ≤ c| lnh| inf
χ∈Xh0

‖y − χ‖L∞(Ω)

≤ c| lnh|‖y − Ihy‖L∞(Ω)

≤ c| lnh|h2− 2
p ‖y‖W 2,p(Ω)

≤ c| lnh|h2− 2
p (‖u‖Lp(Ω) + 1), (3.15)

where p is as defined in Theorem 2.2.5.
To estimate (II), we first show that there exists c > 0 independent of h such

that

‖Rhy − yh‖H1(Ω) ≤ c‖yh − y‖L2(Ω). (3.16)

To achieve this, we observe that from the definitions of Rhy and y = G(u) we
have ∫

Ω

∇Rhy · ∇vh dx =

∫
Ω

uvh dx−
∫

Ω

φ(y)vh dx ∀ vh ∈ Xh0.

Thus, subtracting yh = Gh(u) from the previous equality and testing by vh :=
Rhy − yh yields∫

Ω

|∇(Rhy − yh)|2 dx =

∫
Ω

[φ(yh)− φ(y)](Rhy − yh) dx

≤ ‖φ(yh)− φ(y)‖L2(Ω)‖Rhy − yh‖L2(Ω)

≤ c‖yh − y‖L2(Ω)‖∇(Rhy − yh)‖L2(Ω), (3.17)

where we used Lemma A.1.3 and the Poincaré’s inequality. Notice that it fol-
lows from (3.12) that ‖yh‖L∞(Ω) is uniformly bounded in h which implies that
the constant c in (3.17) is independent of h. Dividing both sides of (3.17) by
‖∇(Rhy − yh)‖L2(Ω) and using again the Poincaré’s inequality gives (3.16).
We are now in a position to estimate (II). For this purpose, we use (3.2), (3.16)
and (3.11) to get

‖Rhy − yh‖L∞(Ω) ≤ c(1 + | lnh|) 1
2 ‖Rhy − yh‖H1(Ω)

≤ c(1 + | lnh|) 1
2 ‖yh − y‖L2(Ω)

≤ c(1 + | lnh|) 1
2h2
(
‖u‖L2(Ω) + 1

)
. (3.18)

Finally, combining (3.14), (3.15), (3.18) and observing that Lp(Ω) ↪→ L2(Ω)

and (1+ | lnh|) 1
2h2 ≤ | lnh|h2− 2

p for h small enough gives the desired result and
the proof is complete.
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Remark 4 The advantage of postulating Assumption 1 in Theorem 3.2.4 is to
obtain the estimate (3.13) on the whole domain Ω. In other words, without this
assumption we can only establish (3.13) on a subdomain of Ω. In the following
steps, we summarise the main modifications that apply to the theorem and its
proof if we drop this assumption.

Step 1. We consider the estimate from [70, Theorem 5.1], that is,

‖y − yh‖L∞(Ωb) ≤ c
(
| lnh| inf

χ∈Xh0
‖y − χ‖L∞(Ωa) + ‖y − yh‖L2(Ωa)

)
(3.19)

for some Ωb ⊂⊂ Ωa ⊂⊂ Ω, where y and yh are as defined in Lemma 3.1.1. We
emphasise that (3.19) holds without requiring Assumption 1.

Step 2. We establish the inequality (3.14) on Ωb instead of Ω. Then, we estimate
the term (I) there using (3.19) instead of (3.8). The rest of the modifications
in the proof are obvious.

Step 3. We may now drop Assumption 1 from the hypothesis of Theorem 3.2.4
and replace (3.13) by

‖y − yh‖L∞(Ωb) ≤ c| lnh|h
2− 2

p
(
‖u‖Lp(Ω) + 1

)
.

3.3 The Discrete Optimal Control Problem (Ph)
In this section we consider the variational discretization, see [46], of Problem (P).
Then, we review the necessary first order conditions for the discrete control
problem (Ph). Finally, we derive an analogous result to Theorem 2.3.5 for the
discrete problem (Ph).

To begin, let us introduce, for 0 < h ≤ h0, the following set of nodes:

Nh := {xj |xj is a vertex of T ∈ Th, where T ∩K 6= ∅}.

We remark that ya(xj) < yb(xj), xj ∈ Nh provided that h0 is small enough. This
follows from the fact that dist(xj ,K) ≤ h, xj ∈ Nh and ya, yb are continuous
functions with ya(x) < yb(x), x ∈ K.

The variational discretization of Problem (P) now reads:

(Ph)
minu∈Uad Jh(u) := 1

2‖yh − y0‖2L2(Ω) +
α

2
‖u‖2L2(Ω)

subject to yh = Gh(u), (yh(xj))xj∈Nh ∈ Y had,

where

Y had := {(zj)xj∈Nh | ya(xj) ≤ zj ≤ yb(xj), xj ∈ Nh}.

We note that Problem (Ph) is still an infinite dimensional optimization problem
since the controls are sought in Uad. Therefore, many of the techniques used in
the analysis of (P) can also be used for (Ph). We have the next result whose
proof is analogous to that of Theorem 2.3.1.

Theorem 3.3.1 Suppose that there exists u ∈ Uad such that (yh(xj))xj∈Nh ∈
Y had where yh := Gh(u). Then the problem (Ph) has at least one solution.
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3.3.1 Necessary First Order Conditions for (Ph)

To establish the necessary first order conditions of (Ph) at a local solution ūh,
we first assume the following linearized Slater condition: there exist u0 ∈ Uad
and δ > 0 such that

ya(xj) + δ ≤ Gh(ūh)(xj) + G′h(ūh)(u0 − ūh)(xj) ≤ yb(xj)− δ, xj ∈ Nh. (3.20)

We state the optimality conditions of (Ph) in the next theorem.

Theorem 3.3.2 Let ūh ∈ Uad be a local solution of the problem (Ph) satisfying
(3.20). Then there exist p̄h ∈ Xh0 and µ̄j ∈ R, xj ∈ Nh such that with ȳh ∈ Xh0

there holds∫
Ω

∇ȳh · ∇vh + φ(ȳh)vh dx =

∫
Ω

ūhvh dx ∀ vh ∈ Xh0, (ȳh(xj))xj∈Nh ∈ Y had

(3.21)∫
Ω

∇p̄h · ∇vh + φ′(ȳh)p̄hvh dx

=

∫
Ω

(ȳh − y0)vh dx+
∑
xj∈Nh

µ̄jvh(xj) ∀ vh ∈ Xh0, (3.22)

∫
Ω

(p̄h + αūh)(u− ūh) dx ≥ 0 ∀u ∈ Uad, (3.23)∑
xj∈Nh

µ̄j(zj − ȳh(xj)) ≤ 0 ∀ (zj)xj∈Nh ∈ Y had. (3.24)

Proof: The result follows from [16, Theorem 5.2] since the cost functional Jh
is Gâteaux differentiable at ūh and Y had has a nonempty interior. The differen-
tiability of Jh is deduced from that of the discrete control-to-state operator Gh,
according to Proposition 3.2.2, and the chain rule.

We note that the condition (3.23) is equivalent to the relation

ūh(x) = PUad
(
− 1

α p̄h(x)
)

= min
(

max
(
ua,− 1

α p̄h(x)
)
, ub
)
∀x ∈ Ω,

so that the control variable is implicitly discretized and (3.21)–(3.24) amounts
to solving a nonlinear finite-dimensional system.

It will be convenient in the upcoming analysis to associate with the multipli-
ers (µ̄j)xj∈Nh from the optimality system (3.21)–(3.24) the measure µ̄h ∈M(Ω)
defined by

µ̄h :=
∑
xj∈Nh

µ̄jδxj , (3.25)

where δxj is the Dirac measure at xj . We can easily deduce from (3.24) the
following result about the support of the measure µ̄h.

Proposition 3.3.3 Let µ̄h ∈M(Ω) be the measure introduced in (3.25) satis-
fying (3.24). Then there holds

supp(µ̄bh) ⊂ {xj ∈ Nh : ȳh(xj) = yb(xj)},
supp(µ̄ah) ⊂ {xj ∈ Nh : ȳh(xj) = ya(xj)}.
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where µ̄h = µ̄bh − µ̄ah with µ̄bh, µ̄
a
h ≥ 0 is the Jordan decomposition of µ̄h.

3.3.2 Global Minima for (Ph)

We now derive an analogous result to Theorem 2.3.5 for the discrete control
problem (Ph).

Theorem 3.3.4 Suppose that ūh ∈ Uad, ȳh ∈ Xh0, p̄h ∈ Xh0, (µ̄j)xj∈Nh is a
solution of (3.21)–(3.24). If

‖p̄h‖Lq(Ω) ≤ η(α, r), (3.26)

then ūh is a global minimum for Problem (Ph). If the inequality (3.26) is strict,
then ūh is the unique global minimum. Here, η(α, r) and q are as defined in
(2.20).

Proof: The proof is obtained by arguing in almost the same way as in the proof
of Theorem 2.3.5, that is, using the discrete counterpart of every continuous
quantity there. To begin, let uh ∈ Uad be a feasible control, yh = Gh(uh) the
associated state with (yh(xj))xj∈Nh ∈ Y had. We have

Jh(uh)− Jh(ūh) =
1

2
‖yh − ȳh‖2L2(Ω) +

α

2
‖uh − ūh‖2L2(Ω) + α

∫
Ω

ūh(uh − ūh) dx

+

∫
Ω

(ȳh − y0)(yh − ȳh) dx =: (A)

Using vh := yh − ȳh in (3.22) we get

(A) =
1

2
‖yh − ȳh‖2L2(Ω) +

α

2
‖uh − ūh‖2L2(Ω) + α

∫
Ω

ūh(uh − ūh) dx

+

∫
Ω

∇p̄h · ∇(yh − ȳh) + φ′(ȳh)p̄h(yh − ȳh) dx−
∑
xj∈Nh

µ̄j(yh(xj)− ȳh(xj))

≥ 1

2
‖yh − ȳh‖2L2(Ω) +

α

2
‖uh − ūh‖2L2(Ω) + α

∫
Ω

ūh(uh − ūh) dx

+

∫
Ω

∇p̄h · ∇(yh − ȳh) + φ′(ȳh)p̄h(yh − ȳh) dx, (3.27)

by (3.24). Using (3.9) for yh and ȳh with test function p̄h we get∫
Ω

∇p̄h · ∇(yh − ȳh) dx =

∫
Ω

(uh − ūh)p̄h dx−
∫

Ω

(φ(yh)− φ(ȳh))p̄h dx

=

∫
Ω

(uh − ūh)p̄h dx

−
∫

Ω

p̄h(yh − ȳh)

∫ 1

0

φ′(tyh + (1− t)ȳh) dt dx.
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Using this in (3.27) and recalling (3.23) we arrive at

Jh(uh)− Jh(ūh)

≥ 1

2
‖yh − ȳh‖2L2(Ω) +

α

2
‖uh − ūh‖2L2(Ω) +

∫
Ω

(αūh + p̄h)(uh − ūh) dx

−
∫

Ω

p̄h(yh − ȳh)

∫ 1

0

φ′(tyh + (1− t)ȳh)− φ′(ȳh) dt dx

≥ 1

2
‖yh − ȳh‖2L2(Ω) +

α

2
‖uh − ūh‖2L2(Ω) −Rh(uh), (3.28)

where

Rh(uh) :=

∫
Ω

p̄h(yh − ȳh)

∫ 1

0

φ′(tyh + (1− t)ȳh)− φ′(ȳh) dt dx.

The aim is now to estimate Rh(uh). To begin, Lemma A.1.2 implies that

|Rh(uh)| ≤ Lr
∫

Ω

|p̄h||yh − ȳh|2
(∫ 1

0

φ′(tyh + (1− t)ȳh) dt

) 1
r

dx

= Lr

∫
Ω

|p̄h||yh − ȳh|
2r−2
r

(∫ 1

0

φ′(tyh + (1− t)ȳh) dt|yh − ȳh|2
) 1
r

dx,

where Lr = M
(
r−1
2r−1

)(r−1)/r

. Next, Hölder’s inequality with exponents

q =
3r − 2

r − 1
,

r(3r − 2)

2(r − 1)2
=

qr

2r − 2
and r

yields

|Rh(uh)| ≤ Lr‖p̄h‖Lq(Ω)‖yh − ȳh‖
2r−2
r

Lq(Ω)

×
(∫

Ω

∫ 1

0

φ′(tyh + (1− t)ȳh) dt|yh − ȳh|2 dx
) 1
r

.

The Gagliardo–Nirenberg inequality ‖f‖Lq(Ω) ≤ Cq‖f‖
2
q

L2(Ω)‖∇f‖
q−2
q

L2(Ω), f ∈
H1

0 (Ω) (see Theorem A.5.1) together with the relation 2r−2
r (1 − 2

q ) = 2
q then

implies

|Rh(uh)| ≤ LrC
2r−2
r

q ‖p̄h‖Lq(Ω)‖yh − ȳh‖
4r−4
qr

L2(Ω)‖∇(yh − ȳh)‖
2
q

L2(Ω)

×
(∫

Ω

∫ 1

0

φ′(tyh + (1− t)ȳh) dt|yh − ȳh|2 dx
) 1
r

.

Applying Lemma A.4.2 with

a :=

∫
Ω

|∇(yh − ȳh)|2 dx, b :=

∫
Ω

∫ 1

0

φ′(tyh + (1− t)ȳh) dt|yh − ȳh|2 dx,

λ :=
1

q
, µ :=

1

r
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we obtain

|Rh(uh)| ≤ LrC
2r−2
r

q dr‖p̄h‖Lq(Ω)‖yh − ȳh‖
4r−4
qr

L2(Ω)

×
(∫

Ω

|∇(yh − ȳh)|2 dx

+

∫
Ω

∫ 1

0

φ′(tyh + (1− t)ȳh) dt|yh − ȳh|2 dx
)ρ
, (3.29)

where

dr = q−1/qr−1/rρ−ρ, ρ =
r + q

rq
.

Using again (3.9) for yh, ȳh, this time with test function yh − ȳh yields∫
Ω

|∇(yh − ȳh)|2 dx+

∫
Ω

∫ 1

0

φ′(tyh + (1− t)ȳh) dt|yh − ȳh|2 dx

≤ ‖uh − ūh‖L2(Ω)‖yh − ȳh‖L2(Ω).

Inserting this estimate into (3.29) and observing that 4r−4
qr +ρ = 2−ρ we deduce

|Rh(uh)| ≤ LrC
2r−2
r

q dr‖p̄h‖Lq(Ω)‖yh − ȳh‖2−ρL2(Ω)‖uh − ūh‖
ρ
L2(Ω)

= 2α−
ρ
2LrC

2r−2
r

q dr‖p̄h‖Lq(Ω)

(
1

2
‖yh − ȳh‖2L2(Ω)

)1− ρ2 (α
2
‖uh − ūh‖2L2(Ω)

) ρ
2

.

Applying again Lemma A.4.2, this time with the choices

a :=
1

2
‖yh − ȳh‖2L2(Ω), b :=

α

2
‖uh − ūh‖2L2(Ω), λ := 1− ρ

2
, µ :=

ρ

2
,

we obtain

|Rh(uh)| ≤ 2α−
ρ
2LrC

2r−2
r

q drer‖p̄h‖Lq(Ω)

(
1

2
‖yh− ȳh‖2L2(Ω) +

α

2
‖uh− ūh‖2L2(Ω)

)
,

(3.30)
where

er =
(

1− ρ

2

)1− ρ2 (ρ
2

) ρ
2

.

Using (3.30) in (3.28) we get

Jh(uh)− Jh(ūh)

≥
(

1

2
‖yh − ȳh‖2L2(Ω) +

α

2
‖uh − ūh‖2L2(Ω)

)(
1− 2α−

ρ
2LrC

2r−2
r

q drer‖p̄h‖Lq(Ω)

)
so that Jh(uh) ≥ Jh(ūh) provided that

‖p̄h‖Lq(Ω) ≤
(

2α−
ρ
2LrC

2r−2
r

q drer

)−1

. (3.31)

By direct calculations, we have

2drer = q−1/qr−1/rρ−ρ/2(2− ρ)1− ρ2 .
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Hence, using the above result and the value of Lr from Lemma A.1.2 we can
rewrite (3.31) as

‖p̄h‖Lq(Ω) ≤ α
ρ
2C

2−2r
r

q M−1

(
r − 1

2r − 1

) 1−r
r

q1/qr1/rρρ/2(2− ρ)
ρ
2−1

which is the desired result.

Remark 5 We point out that we don’t need the triangulation Th of Ω̄ to be
quasi-uniform in order to derive Theorem 3.3.4.

Remark 6 Notice that Theorem 3.3.4 doesn’t require the linearized Slater
condition (3.20). All what the theorem says is that if there exists a solution
(ūh, ȳh, p̄h, µ̄h) to (3.21)–(3.24) such that (3.26) is satisfied, then the function
ūh is a global minimum of the problem (Ph). In practice this means that we
first set up the system (3.21)–(3.24) and then try to solve it. If it has a solution
such that (3.26) holds, then we have a global minimum of the problem (Ph) at
hand.

3.4 Convergence Analysis

Since the quantities η(α, r) and ‖p̄h‖Lq(Ω) can be computed explicitly, Theo-
rem 3.3.4 allows us to decide if a function ūh obtained from solving (3.21)–(3.24)
is a global minimum of (Ph). A natural question which arises then is whether
a sequence (ūh)0<h≤h0 of minima satisfying (3.26) uniformly in h converges to
a global minimum of (P) as the discretization parameter h tends to zero. We
address this problem in this section.

To begin, let ūh ∈ Uad, ȳh ∈ Xh0, p̄h ∈ Xh0, (µ̄j)xj∈Nh satisfy (3.21)–(3.24)
as well as

‖p̄h‖Lq(Ω) ≤ η(α, r), 0 < h ≤ h0. (3.32)

As we mentioned earlier, it is convenient to introduce the measure µ̄h ∈ M(Ω)
by

µ̄h :=
∑
xj∈Nh

µ̄jδxj .

Since K ⊂ Ω, dist(xj ,K) ≤ h, xj ∈ Nh and ya(x) < yb(x), x ∈ K there exists

a compact set K̃ ⊂ Ω, δ > 0 and 0 < h1 ≤ h0 such that K ⊂ K̃ and

ya(x) < yb(x), x ∈ K̃,
Nh ⊂ K̃, 0 < h ≤ h1,

ya(x) + δ ≤ 1

2
(ya(x) + yb(x)) ≤ yb(x)− δ, x ∈ K̃.

For the existence of such a compact set K̃, see for instance [68, Theorem 2.7].
Since C0(Ω) is the closure of C∞0 (Ω) in C(Ω̄), there exists a function w ∈ C∞0 (Ω)
approximating 1

2 (ya + yb) ∈ C0(Ω) uniformly such that

ya(x) +
δ

2
≤ w(x) ≤ yb(x)− δ

2
, x ∈ K̃. (3.33)
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Let Rhw denote the Ritz projection of w as introduced in (3.5). Then it follows
from the continuous embedding W 1,p(Ω) ↪→ C(Ω̄), 2 < p <∞, and the estimate
(3.6) that

‖w −Rhw‖C(Ω̄) ≤ c‖w −Rhw‖W 1,p(Ω) ≤ ch‖w‖W 2,p(Ω).

From the previous uniform convergence we may assume after choosing h1 smaller
if necessary that

ya(x) +
δ

4
≤ Rhw(x) ≤ yb(x)− δ

4
, x ∈ K̃. (3.34)

Our first step in the convergence analysis are uniform bounds on the optimal
control ūh as well as on its state ȳh and µ̄h.

Lemma 3.4.1 Let ūh ∈ Uad, ȳh, p̄h ∈ Xh0 and (µ̄j)xj∈Nh be a solution of
(3.21)–(3.24) satisfying (3.32). Then there exists a constant C > 0, which is
independent of h, such that

‖ūh‖L2(Ω), ‖ȳh‖H1(Ω), ‖µ̄h‖M(K̃) ≤ C.

Proof: To begin, fix a function u0 ∈ Uad. Inserting u0 into (3.23) we infer

α‖ūh‖2L2(Ω) ≤
∫

Ω

u0(αūh + p̄h)dx−
∫

Ω

ūhp̄hdx

≤ ‖u0‖L2(Ω)

(
α‖ūh‖L2(Ω) + ‖p̄h‖L2(Ω)

)
+ ‖ūh‖L2(Ω)‖p̄h‖L2(Ω)

≤ α

2

(
‖u0‖L2(Ω) +

1

α
‖p̄h‖L2(Ω)

)2

+
α

2
‖ūh‖2L2(Ω) + ‖u0‖L2(Ω)‖p̄h‖L2(Ω).

Since q = 3r−2
r−1 ≥ 3 we deduce with the help of (3.32)

‖ūh‖L2(Ω) ≤ C
(
‖u0‖L2(Ω) + ‖p̄h‖L2(Ω)

)
≤ C

(
‖u0‖L2(Ω) + ‖p̄h‖Lq(Ω)

)
≤ C.

Testing (3.21) with ȳh, using the monotonicity of φ and Poincaré’s inequality in
a similar way to that of deriving (2.6) we infer

‖ȳh‖H1(Ω) ≤ C
(
1 + ‖ūh‖L2(Ω)

)
≤ C. (3.35)

Furthermore, (A.1), (A.2) along with the continuous embedding H1(Ω) ↪→
Lt(Ω) for all 1 ≤ t <∞ yield

‖φ(ȳh)‖L2(Ω), ‖φ′(ȳh)‖L2(Ω) ≤ C. (3.36)

In order to verify the uniform boundedness of ‖µ̄h‖M(K̃) we first observe that

(3.24) implies

ȳh(xj) =

{
yb(xj), if µ̄j > 0,
ya(xj), if µ̄j < 0.
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As a result we deduce with the help of (3.34)

δ

4
‖µ̄h‖M(K̃) =

δ

4

∑
xj∈Nh

|µ̄j |

=
δ

4

∑
xj∈Nh:µ̄j>0

µ̄j +
δ

4

∑
xj∈Nh:µ̄j<0

−µ̄j

≤ δ

4

∑
xj∈Nh:µ̄j>0

µ̄j
4

δ

(
yb(xj)−Rhw(xj)

)
+
δ

4

∑
xj∈Nh:µ̄j<0

µ̄j
4

δ

(
ya(xj)−Rhw(xj)

)
=
∑
xj∈Nh

µ̄j
(
ȳh(xj)−Rhw(xj)

)
.

Using vh = ȳh −Rhw in (3.22) we may continue

δ

4
‖µ̄h‖M(K̃) ≤

∫
Ω

∇p̄h · ∇ȳh dx−
∫

Ω

∇p̄h · ∇Rhw dx

+

∫
Ω

φ′(ȳh)p̄h(ȳh −Rhw) dx−
∫

Ω

(ȳh − y0)(ȳh −Rhw) dx

≡
4∑
i=1

Si. (3.37)

If we let vh = p̄h in (3.21) we obtain with the help of (3.36) and (3.32)

|S1| =
∣∣∣∣ ∫

Ω

(ūh − φ(ȳh))p̄hdx

∣∣∣∣ ≤ (‖ūh‖L2(Ω) + ‖φ(ȳh)‖L2(Ω)

)
‖p̄h‖L2(Ω) ≤ C.

Next, the definition of the Ritz projection and integration by parts yields

S2 = −
∫

Ω

∇p̄h · ∇w dx =

∫
Ω

p̄h∆w dx

so that

|S2| ≤ ‖p̄h‖L2(Ω)‖∆w‖L2(Ω) ≤ C.

Hölder’s inequality along with (3.36), (3.32) and (3.35) implies that

|S3| ≤ ‖φ′(ȳh)‖L2(Ω)‖p̄h‖Lq(Ω)‖ȳh −Rhw‖
L

2q
q−2 (Ω)

≤ C‖ȳh −Rhw‖H1(Ω) ≤ C.

Notice that the uniform boundedness of ‖Rhw‖H1(Ω) can be seen from (3.6).
Finally,

|S4| ≤
(
‖ȳh‖L2(Ω) + ‖y0‖L2(Ω)

)(
‖ȳh‖L2(Ω) + ‖Rhw‖L2(Ω)

)
≤ C.

Inserting the above estimates into (3.37) yields the bound on ‖µ̄h‖M(K̃).

We are now in a position to formulate the main theorem in this section:
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Theorem 3.4.2 Suppose that (ūh, ȳh, p̄h, µ̄h)0<h≤h1
is a sequence satisfying

(3.21)–(3.24) as well as (3.32). Then

ūh → ū in L2(Ω) for a subsequence h→ 0,

where ū is a global minimum for Problem (P). If

‖p̄h‖Lq(Ω) ≤ κη(α, r), 0 < h ≤ h1, (3.38)

for some 0 < κ < 1, then ū is the unique global solution of (P) and the whole
sequence (ūh)0<h≤h1

converges to ū.

Proof: From Lemma 3.4.1, we deduce the existence of a subsequence h → 0
and ū ∈ L2(Ω), ȳ ∈ H1

0 (Ω), p̄ ∈ Lq(Ω), µ̄ ∈M(K̃) such that

ūh ⇀ ū in L2(Ω), (3.39)

ȳh ⇀ ȳ in H1
0 (Ω), (3.40)

p̄h ⇀ p̄ in Lq(Ω), (3.41)

µ̄h ⇀ µ̄ in M(K̃). (3.42)

Our aim is to show that (ū, ȳ, p̄, µ̄) is a solution of (2.15)–(2.18). Firstly, since
Uad is closed and convex, it is weakly sequentially closed and thus ū ∈ Uad. To
show that ȳ = G(ū), consider the Ritz projection Rhv ∈ Xh0 for any v ∈ H1

0 (Ω).
Then, testing (3.21) by Rhv gives∫

Ω

∇ȳh · ∇Rhv + φ(ȳh)Rhv dx =

∫
Ω

ūhRhv dx. (3.43)

Using (3.39), (3.40), the convergence Rhv → v in H1
0 (Ω) from (3.6), (A.1)

together with Lemma A.1.4 we can pass to the limit h→ 0 in (3.43) to obtain
ȳ = G(ū).
Next, the fact that dist(xj ,K) ≤ h, xj ∈ Nh implies that supp(µ̄) ⊂ K. Com-
bining this with the bound ‖µ̄h‖M(K̃) ≤ C we infer that∫

K̃

zh dµ̄h →
∫
K

z dµ̄ as h→ 0 (3.44)

for every sequence (zh)0<h≤h1
⊂ C(K̃) converging uniformly to z on K̃.

Our next claim is that

ȳh → ȳ uniformly in Ω̄. (3.45)

To see this, denote by yh ∈ H2(Ω) ∩H1
0 (Ω) the solution of

−∆yh = ūh − φ(ȳh) in Ω, yh = 0 on ∂Ω.

We deduce from Lemma 3.4.1 and (3.36) that (yh)0<h≤h1
is bounded in H2(Ω),

so that there exists a further subsequence and a function ŷ ∈ H2(Ω) ∩ H1
0 (Ω)

with

yh ⇀ ŷ in H2(Ω), yh → ŷ in C(Ω̄).
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In the light of (A.1) and Lemma A.1.4 we have ūh−φ(ȳh) ⇀ ū−φ(ȳ) in L2(Ω)
from which we find that −∆ŷ = −∆ȳ a.e. in Ω. Hence ŷ = ȳ and yh → ȳ in
C(Ω̄). On the other hand, the definition of yh implies that ȳh = Rhy

h, so that
the standard estimates (3.3),(3.4),(3.1),(3.7) imply

‖ȳh − ȳ‖L∞(Ω) ≤ ‖Rhyh − yh‖L∞(Ω) + ‖yh − ȳ‖L∞(Ω)

≤ ‖Rhyh − Ihyh‖L∞(Ω) + ‖Ihyh − yh‖L∞(Ω) + ‖yh − ȳ‖L∞(Ω)

≤ Ch−1‖Rhyh − Ihyh‖L2(Ω) + Ch‖yh‖H2(Ω) + ‖yh − ȳ‖L∞(Ω)

≤ Ch−1
(
‖Rhyh − yh‖L2(Ω) + ‖yh − Ihyh‖L2(Ω)

)
+ Ch‖yh‖H2(Ω) + ‖yh − ȳ‖L∞(Ω)

≤ Ch‖yh‖H2(Ω) + ‖yh − ȳ‖L∞(Ω) → 0 as h→ 0,

since ‖yh‖H2(Ω) ≤ C. This proves (3.45).
Let us check that ȳ|K ∈ Yad. For a fixed point x ∈ K we can choose a sequence
(xjh)0<h≤h1

such that xjh ∈ Nh and |xjh − x| ≤ h. Since ya(xjh) ≤ ȳh(xjh) ≤
yb(xjh) and

|ȳh(xjh)− ȳ(x)| ≤ |ȳh(xjh)− ȳ(xjh)|+ |ȳ(xjh)− ȳ(x)|
≤ ‖ȳh − ȳ‖L∞(Ω) + |ȳ(xjh)− ȳ(x)|,

we obtain ya(x) ≤ ȳ(x) ≤ yb(x) by passing to the limit h→ 0 and using (3.45).

Next, let us fix z ∈ Yad. By Lemma A.3.1 we extend z to a function z̃ ∈ C(K̃)
satisfying ya(x) ≤ z̃(x) ≤ yb(x), x ∈ K̃. We obtain from (3.24), (3.44) and (3.45)

0 ≥
∑
xj∈Nh

µ̄j(z̃(xj)− ȳh(xj)) =

∫
K̃

(z̃ − ȳh)dµ̄h →
∫
K

(z − ȳ)dµ̄,

which yields (2.18).

In order to derive (2.16) we fix v ∈ H2(Ω)∩H1
0 (Ω) and insert vh = Rhv into

(3.22), i.e.∫
Ω

∇p̄h · ∇Rhv + φ′(ȳh)p̄hRhv dx =

∫
Ω

(ȳh − y0)Rhv dx+

∫
K̃

Rhv dµ̄h.

Using the definition of Rh and integration by parts we may write∫
Ω

∇p̄h · ∇Rhv dx =

∫
Ω

∇p̄h · ∇v dx =

∫
Ω

p̄h(−∆v) dx

so that (2.16) follows from passing to the limit h→ 0 taking into account (3.41),
(3.45), Lemma A.1.3 and (3.44).

Our next goal is to show that ūh → ū in L2(Ω). Inserting ū into (3.23) and
rearranging we infer

α‖ūh‖2L2(Ω) ≤
∫

Ω

ū(αūh + p̄h)dx−
∫

Ω

ūhp̄hdx. (3.46)



3.4. Convergence Analysis 37

The second integral can be rewritten with the help of (3.21) and (3.22), namely∫
Ω

ūhp̄hdx =

∫
Ω

∇ȳh · ∇p̄hdx+

∫
Ω

φ(ȳh)p̄hdx

= −
∫

Ω

φ′(ȳh)p̄hȳhdx+

∫
Ω

(ȳh − y0)ȳhdx+

∫
K̃

ȳhdµ̄h

+

∫
Ω

φ(ȳh)p̄hdx.

This relation allows us to pass to the limit in a similar way as above to give∫
Ω

ūhp̄hdx→ −
∫

Ω

φ′(ȳ)p̄ȳdx+

∫
Ω

(ȳ − y0)ȳdx+

∫
K

ȳdµ̄+

∫
Ω

φ(ȳ)p̄dx

=

∫
Ω

(−∆ȳ)p̄dx+

∫
Ω

φ(ȳ)p̄dx =

∫
Ω

ūp̄dx,

where we used (2.16) and the fact that ȳ = G(ū). We can now pass to the limit
in (3.46) and deduce that

lim sup
h→0

‖ūh‖2L2(Ω) ≤ ‖ū‖
2
L2(Ω).

Since ‖ū‖2L2(Ω) ≤ lim infh→0 ‖ūh‖2L2(Ω) we infer that ‖ūh‖L2(Ω) → ‖ū‖L2(Ω),

which together with the fact that ūh ⇀ ū in L2(Ω) implies that ūh → ū in
L2(Ω).

Combining this with the weak convergence p̄h ⇀ p̄ in L2(Ω), one can pass
to the limit in (3.23) to obtain∫

Ω

(p̄+ αū)(u− ū) dx ≥ 0 ∀u ∈ Uad,

which is (2.17). In conclusion we see that (ū, ȳ, p̄, µ̄) is a solution of (2.15)–
(2.18). Furthermore, the lower semicontinuity of the Lq-norm implies that

‖p̄‖Lq(Ω) ≤ lim inf
h→0

‖p̄h‖Lq(Ω) ≤ η(α, r)

and we infer from Theorem 2.3.5, that ū is a global minimum of Problem (P).
If (3.38) holds, then p̄ satisfies ‖p̄‖Lq(Ω) ≤ κη(α, r) < η(α, r) and ū is the
unique global minimum of (P). A standard argument then shows that the whole
sequence (ūh)0<h≤h1

converges to ū.

We conclude this section by the following general remarks.

Remark 7 The proof of Theorem 3.4.2 shows that if (ūh, ȳh, p̄h, µ̄h)0<h≤h1

satisfies (3.21)–(3.24) with

‖p̄h‖Lq(Ω) ≤ κη(α, r)

for some 0 < κ < 1, then there exists (ū, ȳ, p̄, µ̄) satisfying (2.15)–(2.18) with

‖p̄‖Lq(Ω) ≤ κη(α, r)

and ūh → ū in L2(Ω) as h → 0, where ūh and ū are the unique global minima
for Problem (Ph) and Problem (P), respectively. Importantly, neither (3.20) nor
(2.14) are required.
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Remark 8 1. It is well known that (3.21)–(3.24) can be rewritten equiva-
lently as a system of semi-smooth equations and thus can be solved by a semi-
smooth Newton method, see for instance [35, 44, 74]. In particular, we can avoid
the use of relaxation methods such as Moreau-Yosida relaxation, interior point
methods, or Lavrentiev-type regularization. We will come back to this point
again in Section 3.7 where we will develop an algorithm to solve (3.21)–(3.24)
by the semismooth Newton’s method.

2. Since we solve (3.21)–(3.24) in practice on the computer, we consider ūh
a global minimum if the inequality (3.26) is satisfied up to machine precision.
Here, the integral ‖p̄h‖Lq on the left hand side of this inequality is assumed to be
calculated exactly. However, this assumption can be achieved easily whenever q
is an integer because in this case the function |p̄h|q restricted to every triangle
in the mesh is a (possibly piecewise) polynomial of degree q. Hence, one can
use an appropriate quadrature rule to evaluate such an integral exactly.

3.5 Generalizations

It is possible to obtain the previous results, like Theorem 3.3.4 and Theo-
rem 3.4.2, if the choices K = Ω̄, nonlinearity of the type φ(x, y) and a domain
Ω ⊂ R3 are considered for the Problem (P). In this section we discuss the main
changes that apply to the analysis of the previous results if these choices are
considered.

3.5.1 The Case K = Ω̄

Here we briefly outline how the convergence analysis can be carried out for the
case K = Ω̄, provided that the bounds ya, yb ∈ C(Ω̄) satisfy in addition to
ya < yb in Ω̄ the compatibility condition ya < 0 < yb on ∂Ω.

The main change concerns the construction of the function w ∈ C∞0 (Ω) at
the beginning of Section 3.4. From the above assumptions on ya, yb we infer the
existence of δ > 0 and ε > 0 such that

ya(x) + δ ≤ 1

2
(ya(x) + yb(x)) ≤ yb(x)− δ, x ∈ Ω̄,

ya(x) + δ ≤ 0 ≤ yb(x)− δ, x ∈ Ω̄, dist(x, ∂Ω) ≤ ε.

According to Urysohn’s lemma, there exists χ ∈ C0(Ω), 0 ≤ χ ≤ 1 such that

χ(x) =

{
0 if dist(x, ∂Ω) ≤ ε

2 ,
1 if dist(x, ∂Ω) ≥ ε.

Then one can easily see that

ya(x) + δ ≤ 1

2
(ya(x) + yb(x))χ(x) ≤ yb(x)− δ, x ∈ Ω̄

and applying a smoothing procedure to x 7→ 1
2 (ya + yb)χ ∈ C0(Ω) gives the

desired function w ∈ C∞0 (Ω) satisfying (3.33) with K̃ = Ω̄. The remainder of
the analysis in Section 3.4 can be carried out as before if one chooses Nh :=
{xj |xj is a vertex of T ∈ Th, xj /∈ ∂Ω}.
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3.5.2 The Nonlinearity φ(x, y)

All the results derived so far remain valid for a nonlinearity of the type φ :
Ω× R→ R, φ = φ(x, y) provided that it satisfies the following assumptions:

• For any fixed y ∈ R, φ(·, y) is measurable with respect to x ∈ Ω and for
almost all x ∈ Ω, φ(x, ·) is of class C2 with respect to y ∈ R.

• For almost all x ∈ Ω and all y ∈ R it holds that φy(x, y) ≥ 0, where φy
denotes the partial derivative of φ with respect to y.

• There exists c > 0 such that

|φ(x, 0)|+ |φy(x, 0)| ≤ c for a.e. x ∈ Ω.

• There exist r > 1 and M ≥ 0 such that

|φyy(x, y)| ≤Mφy(x, y)
1
r for a.e. x ∈ Ω and all y ∈ R. (3.47)

Analogously to the proof of Lemma A.1.1 one can use the bound on φ(x, 0)
and φy(x, 0) in order to show that

φy(x, y) ≤ c1(1 + |y|r1) for a.e. x ∈ Ω, y ∈ R, r1 =
r

r − 1
;

|φ(x, y)| ≤ c0(1 + |y|r0) for a.e. x ∈ Ω, y ∈ R, r0 =
2r − 1

r − 1
.

In particular, φ is locally Lipschitz with respect to y uniformly in x ∈ Ω so that
the corresponding semilinear PDE is well-posed.

For instance, if φ(x, y) = a(x)|y|q−2y, where q > 3 and a ∈ L∞(Ω) with
a(x) ≥ 0 a.e. in Ω, then

|φyy(x, y)| = (q − 2)[(q − 1)a(x)]
1
q−2 [(q − 1)a(x)|y|q−2]

q−3
q−2 .

Hence, (3.47) holds with r = q−2
q−3 and M = (q − 2)(q − 1)

1
q−2 ‖a‖

1
q−2

L∞(Ω).

3.5.3 The 3D case

It is possible to obtain a result similar to Theorem 3.3.4 for the case without
state constraints if the domain Ω ⊂ R3 is bounded, convex and polyhedral. The
proof of this result will be the same as that of Theorem 3.3.4 except that in-
stead of Theorem A.5.1, one needs to use the Gagliardo–Nirenberg interpolation
inequality in R3 which reads

‖f‖Lq(R3) ≤ GNq‖f‖1−θL2(R3)‖∇f‖
θ
L2(R3) ∀ f ∈ H1(R3), 2≤q≤6, θ := 3

2 −
3
q .

An upper bound for GNq can be found, for instance, in [75]. However, since
our analysis relies on the choice q := 3r−2

r−1 , the condition 2 ≤ q ≤ 6 leads to a

restriction on r, namely, r ≥ 4
3 . The convergence analysis can then be carried

out in almost the same way as in the 2D case. For the uniform convergence of
the Ritz projection when Ω ⊂ R3 is a convex polyhedral domain we refer to the
work in [59].
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In the case of state constraints the adjoint variable p in general only belongs
to W 1,s(Ω) with s ∈ [1, 3

2 ), and hence p ∈ Lq(Ω) for 1 ≤ q < 3. In particular, the
choice q := 3r−2

r−1 is no longer possible and an extension of our approach to the
3D case would require a better regularity result for p. A corresponding result
which gives p ∈ H1(Ω) ∩ L∞(Ω) has recently been obtained in [24] under mild
restrictions on the bounds ya, yb. Namely, for a linear elliptic state equation
the state bounds should satisfy

ya, yb ∈ C(Ω̄),

ya(x) < yb(x) ∀x ∈ Ω̄,

ya(x) < 0 < yb(x) ∀x ∈ ∂Ω,

Aya,Ayb ∈ L∞(Ω),

where A is the differential operator associated with the state equation which is
assumed to be uniformly elliptic with coefficient funtions bounded in the domain
Ω ⊂ Rn for n = 2, 3 with Lipschitz boundary ∂Ω. We point out that the state
equation satisfies a homogeneous Dirichlet boundary condition and the control
is distributed in Ω. If, in addition, control constraints of box type with bounds
ua, ub ∈ R and ua < ub are considered, then one should require

ua < Ayb and ub > Aya in Ω.

For a semilinear elliptic state equation the state bounds should, in addition to
the previous conditions, satisfy

φ(·, ya(·)), φ(·, yb(·)) ∈ L∞(Ω),

where φ : Ω×R→ R is the nonlinearity of the PDE which has classical assump-
tions, for example those in Section 3.5.2, that guarantee the well-posedness of
the state equation and the continuity of the state variable in Ω̄.

3.6 Error Analysis

Recall that, according to Remark 7, if (ūh, ȳh, p̄h, µ̄h)0<h≤h1 satisfies (3.21)–
(3.24) with

‖p̄h‖Lq(Ω) ≤ κη(α, r) for some 0 < κ < 1, (3.48)

then there exists (ū, ȳ, p̄, µ̄) satisfying (2.15)–(2.18) with

‖p̄‖Lq(Ω) ≤ κη(α, r) (3.49)

and ūh → ū in L2(Ω) as h → 0, where ūh and ū are the unique global minima
for Problem (Ph) and Problem (P), respectively. Our goal now is to investigate
the error in approximating ū by ūh.

To start, let us introduce the auxiliary functions ỹ ∈ H2(Ω) ∩H1
0 (Ω), ỹh ∈
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Xh0, p̃h ∈ Xh0 such that∫
Ω

∇ỹ · ∇v + φ(ỹ)v dx =

∫
Ω

ūhv dx ∀ v ∈ H1
0 (Ω), (3.50)∫

Ω

∇ỹh · ∇vh + φ(ỹh)vh dx =

∫
Ω

ūvh dx ∀ vh ∈ Xh0, (3.51)∫
Ω

∇p̃h · ∇vh + φ′(ȳ)p̃hvh dx

=

∫
Ω

(ȳ − y0)vh dx+

∫
K

vh dµ̄ ∀ vh ∈ Xh0. (3.52)

Then, the following error estimates hold

‖ȳh − ỹ‖L2(Ω) ≤ ch2
(
‖ūh‖L2(Ω) + 1

)
, (3.53)

‖ỹh − ȳ‖L2(Ω) ≤ ch2
(
‖ū‖L2(Ω) + 1

)
, (3.54)

‖ỹh − ȳ‖L∞(Ω) ≤ c| lnh|h2− 2
p
(
‖ū‖Lp(Ω) + 1

)
, (3.55)

‖p̃h − p̄‖L2(Ω) ≤ ch
(
‖ȳ − y0‖L2(Ω) + ‖µ̄‖M(K)

)
. (3.56)

The estimates (3.53) and (3.54) follow from Theorem 3.2.3. Notice that ‖ūh‖L2(Ω)

is uniformly bounded in h according to Lemma 3.4.1. On the other hand, (3.55)
follows from Theorem 3.2.4 since ū ∈ W 1,s(Ω), 1 < s < 2, by Lemma 2.3.3.
Finally, the estimate (3.56) is a consequence of [14, Theorem 3].

To guarantee a high order of convergence for the sequence (ūh)0<h≤h1 when
the pointwise state constraints are considered, we make the next assumptions.
Firstly, we require the bounds ya, yb to be regular enough, namely,

• ya, yb ∈ C0(Ω) ∩W 2,∞(Ω) such that ya(x) < yb(x), x ∈ K.

Next, we make an assumption on ∇ȳ at the set of points in K where the state
constraints are active. This assumption shall be mentioned explicitly wherever
it is needed.

Assumption 2 For the optimal state ȳ there holds

∇ȳ(x) = ∇yb(x) ∀x ∈ K : ȳ(x) = yb(x),

∇ȳ(x) = ∇ya(x) ∀x ∈ K : ȳ(x) = ya(x).

Notice that Assumption 2 is satisfied automatically at the state constraints
active points that belong to the interior of K, denoted by intK. To see this,
consider the function fb : K → R defined by fb := ȳ − yb. If fb(x

∗) = 0 for
some x∗ ∈ K, then x∗ is a global maximum for the function fb since fb ≤ 0
in K. Consequently, the first order necessary optimality condition at x∗ reads
∇fb(x∗) = 0 provided that x∗ ∈ intK. On the other hand, if x∗ ∈ ∂K, then
∇fb(x∗) 6= 0 in general.

Since the optimal state ȳ is usually not known a priori, the previous as-
sumption might be practically restrictive. For this reason, we make the next
assumption which guarantees the same convergence order for (ūh)0<h≤h1 as the
one that Assumption 2 guarantees but it is relatively easier to be fulfilled.

Assumption 3 For every h > 0 there exists a set of triangles T ⊂ Th such
that

K =
⋃
T∈T

T̄ .
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Observe that if the set K is polygonal, the previous assumption can be easily
satisfied.

We can now formulate our main theorem of this section which establishes the
error estimate of approximating the unique global minimum ū of problem (P)
by the sequence (ūh)0<h≤h1 of the unique global minima of the corresponding
problems (Ph).

Theorem 3.6.1 Suppose that Assumption 1 holds. Let (ūh)0<h≤h1
be obtained

from solving (3.21)–(3.24) such that (3.48) is satisfied. Then there exists c > 0
independent of h such that

‖ūh − ū‖L2(Ω) + ‖ȳh − ȳ‖H1(Ω) ≤ ch
1
2 ,

where ū is the unique global minimum of Problem (P). Here, ȳ and ȳh are the
optimal states corresponding to ū and ūh, respectively. If in addition Assump-
tion 2 or Assumption 3 holds, then

‖ūh − ū‖L2(Ω) + ‖ȳh − ȳ‖H1(Ω) ≤ c
√
| lnh|h 3

2−
1
s (3.57)

for any 1 < s < sΩ := min(2, 2θmax

3θmax−π ) with θmax ∈ [π3 , π) being the maximum
interior angle in Ω. For θmax = π

3 we define sΩ := 2.

Proof: Throughout the proof, the sequence (ūh, ȳh, p̄h, µ̄h)0<h≤h1 and (ū, ȳ, p̄, µ̄)
are exactly as described at the beginning of this section.

Testing (2.17) with ūh and (3.23) with ū and adding the resulting inequalities
gives ∫

Ω

(p̄h − p̄)(ū− ūh)− α(ūh − ū)2 dx ≥ 0

from which we obtain

α‖ū− ūh‖2L2(Ω) ≤
∫

Ω

(ū− ūh)(p̄h − p̄) dx

=

∫
Ω

(p̃h − p̄)(ū− ūh) dx︸ ︷︷ ︸
S1

+

∫
Ω

(p̄h − p̃h)(ū− ūh) dx. (3.58)

We see that from (3.21) and (3.51) with the choice vh = p̄h − p̃h we have∫
Ω

(p̄h − p̃h)(ū− ūh) dx =

∫
Ω

[φ(ỹh)− φ(ȳh)](p̄h − p̃h) dx

+

∫
Ω

∇(ỹh − ȳh) · ∇(p̄h − p̃h) dx

=

∫
Ω

(ȳh − ȳ)(ỹh − ȳh) dx︸ ︷︷ ︸
S2

+

∫
K̃

(ỹh − ȳh) dµ̄h −
∫
K

(ỹh − ȳh) dµ̄︸ ︷︷ ︸
S3

+

∫
Ω

[φ(ỹh)− φ(ȳh)](p̄h − p̃h) dx−
∫

Ω

[φ′(ȳh)p̄h − φ′(ȳ)p̃h](ỹh − ȳh) dx︸ ︷︷ ︸
S4

,
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where we utilized (3.22) and (3.52) with the test function vh = ỹh−ȳh to rewrite
the term containing the gradients in the first equality. Consequently, adding the
terms S2, S3, S4 to S1 in (3.58) gives

α‖ū− ūh‖2L2(Ω) ≤
4∑
i=1

Si. (3.59)

Estimating S1: To obtain an upper bound for S1 we use the Cauchy-Schwarz
inequality, Lemma A.4.3 for some ε > 0 and (3.56) to get

S1 ≤ ‖p̃h − p̄‖L2(Ω)‖ū− ūh‖L2(Ω)

≤ 1

2αε
‖p̃h − p̄‖2L2(Ω) +

αε

2
‖ū− ūh‖2L2(Ω)

≤ c

αε
h2
(
‖ȳ − y0‖2L2(Ω) + ‖µ̄‖2M(K)

)
+
αε

2
‖ū− ūh‖2L2(Ω)

=
αε

2
‖ū− ūh‖2L2(Ω) +O(h2).

Estimating S2: we argue in a similar way to that of estimating S1 and we use
(3.54) to obtain

S2 = −‖ȳh − ȳ‖2L2(Ω) +

∫
Ω

(ȳh − ȳ)(ỹh − ȳ) dx

≤ −‖ȳh − ȳ‖2L2(Ω) + ‖ȳh − ȳ‖L2(Ω)‖ỹh − ȳ‖L2(Ω)

≤ −‖ȳh − ȳ‖2L2(Ω) +
ε

2
‖ȳh − ȳ‖2L2(Ω) +

1

2ε
‖ỹh − ȳ‖2L2(Ω)

≤ (
ε

2
− 1)‖ȳh − ȳ‖2L2(Ω) +

c

ε
h4
(
‖ū‖2L2(Ω) + 1

)
= (

ε

2
− 1)‖ȳh − ȳ‖2L2(Ω) +O(h4).

Estimating S3: Before we start estimating S3, we first introduce some notation.
Let us define fb := ȳ−yb and fa := ya−ȳ. It is clear that fb, fa ≤ 0 inK and that

fb, fa ∈W 2,p(Ω) ↪→ C1,1− 2
p (Ω̄) since ȳ ∈W 2,p(Ω) according to Lemma 2.3.3.

Next, we recall the decomposition µ̄h = µ̄bh − µ̄ah from Proposition 3.3.3 and we
introduce, for 0 < h ≤ h1, the sets Ah, Bh ⊂ Nh by

Ah := {xj ∈ supp(µ̄ah) \K : fa(xj) ≥ 0},
Bh := {xj ∈ supp(µ̄bh) \K : fb(xj) ≥ 0}.

We have the following claims:

Ah 6= ∅ ∀h > 0⇒ ∃x ∈ ∂K : fa(x) = 0, (3.60)

Bh 6= ∅ ∀h > 0⇒ ∃x ∈ ∂K : fb(x) = 0. (3.61)

To show (3.60), suppose that fa(x) < 0 for all x ∈ ∂K. Then, from the
continuity of fa and the fact that dist(xj , ∂K) ≤ h for any xj ∈ Ah we deduce
that Ah = ∅ for sufficiently small h, which is a contradiction. The claim (3.61)
can be shown analogously.

Thanks to (3.60), we can assign to each xj ∈ Ah a point x∗j ∈ ∂K such
that |xj − x∗j | ≤ h and fa(x∗j ) = 0. Notice that if Assumption 2 holds, then
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∇fa(x∗j ) = 0 as well. Since fa ∈ C1,1− 2
p (Ω̄) as explained at the beginning, we

conclude from Lemma A.2.1 that there exists a constant c > 0 independent of
h such that

fa(xj) = fa(xj)− fa(x∗j ) ≤ c|xj − x∗j |γ ≤ chγ ∀xj ∈ Ah, (3.62)

where we define

γ :=

{
2− 2

p , if Assumption 2 holds,

1, otherwise.

Using a similar argumentation, we have

fb(xj) = fb(xj)− fb(x∗j ) ≤ c|xj − x∗j |γ ≤ chγ ∀xj ∈ Bh. (3.63)

We are now ready to estimate S3 and we start by establishing an upper
bound for the first integral in S3.

Using µ̄h = µ̄bh − µ̄ah, Lemma 3.4.1, the estimate (3.55) as well as (3.62) and
(3.63), we have

∫
K̃

(ỹh − ȳh) dµ̄h =

∫
K̃

(ỹh − yb) dµ̄bh −
∫
K̃

(ỹh − ya) dµ̄ah

=

∫
K̃

(ỹh − ȳ) dµ̄bh +

∫
K̃

fb dµ̄
b
h +

∫
K̃

(ȳ − ỹh) dµ̄ah +

∫
K̃

fa dµ̄
a
h

≤ ‖ỹh − ȳ‖L∞(K̃)‖µ̄h‖M(K̃) +
∑
xj∈Bh

fb(xj)µ̄j +
∑
xj∈Ah

fa(xj)µ̄j

≤ c| lnh|h2− 2
p
(
‖ū‖Lp(Ω) + 1

)
+ chγ

∑
xj∈Bh

µ̄j + chγ
∑
xj∈Ah

µ̄j

≤ O(| lnh|h2− 2
p ) + chγ‖µ̄h‖M(K̃).

Observe that if Assumption 3 holds, then Nh ⊂ K and

fa(xj) ≤ 0 ∀xj ∈ supp(µ̄ah) and fb(xj) ≤ 0 ∀xj ∈ supp(µ̄bh).

This implies that the summation terms containing fa and fb in the previous

estimate can be dropped and then one ends up with the order O(| lnh|h2− 2
p ).

Consequently, we conclude that

∫
K̃

(ỹh − ȳh) dµ̄h =

 O(| lnh|h2− 2
p ), if Assumption 2

or Assumption 3 holds,
O(h), otherwise.

(3.64)

To estimate the second integral in S3 we use the decomposition µ̄ = µ̄b − µ̄a
from Proposition 2.3.4, the fact that Ihya ≤ ȳh ≤ Ihyb in K, the interpolation
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error (3.3) and the uniform estimate (3.55) to obtain∫
K

(ȳh − ỹh) dµ̄ =

∫
K

(ȳh − ỹh) dµ̄b −
∫
K

(ȳh − ỹh) dµ̄a

=

∫
K

(ȳh − Ihyb + Ihyb − yb + yb − ȳ + ȳ − ỹh) dµ̄b

+

∫
K

(ỹh − ȳ + ȳ − ya + ya − Ihya + Ihya − ȳh) dµ̄a

≤
∫
K

(Ihyb − yb) dµ̄b +

∫
K

(ȳ − ỹh) dµ̄b +

∫
K

(ỹh − ȳ) dµ̄a +

∫
K

(ya − Ihya) dµ̄a

≤ ‖µ̄‖M(K)

(
‖ỹh − ȳ‖L∞(K) + ‖ya − Ihya‖L∞(K) + ‖yb − Ihyb‖L∞(K)

)
≤ c‖µ̄‖M(K)

(
| lnh|h2− 2

p (‖ū‖Lp(Ω) + 1) + h2‖ya‖W 2,∞(Ω) + h2‖yb‖W 2,∞(Ω)

)
≤ c| lnh|h2− 2

p ‖µ̄‖M(K)

(
‖ū‖Lp(Ω) + ‖ya‖W 2,∞(Ω) + ‖yb‖W 2,∞(Ω) + 1

)
= O(| lnh|h2− 2

p ), (3.65)

where we used that h2 ≤ | lnh|h2− 2
p for sufficiently small h.

Combining (3.64) and (3.65) yields

S3 =

{
O(| lnh|h2− 2

p ), if Assumption 2 or Assumption 3 holds,
O(h), otherwise.

Estimating S4: To have an upper bound for S4, we first rewrite S4 as

S4 =

∫
Ω

[φ(ỹh)− φ(ȳh) + φ′(ȳh)(ȳh − ỹh)]p̄h dx︸ ︷︷ ︸
S4.1

+

∫
Ω

[φ(ỹ)− φ(ȳ) + φ′(ȳ)(ȳ − ỹ)]p̄ dx︸ ︷︷ ︸
S4.2

+

∫
Ω

[φ(ỹ)− φ(ȳ) + φ′(ȳ)(ȳ − ỹ)](p̃h − p̄) dx︸ ︷︷ ︸
S4.3

+

∫
Ω

[φ(ȳ)− φ(ỹh) + φ′(ȳ)(ỹh − ȳ)]p̃h dx︸ ︷︷ ︸
S4.4

+

∫
Ω

[φ(ȳh)− φ(ỹ) + φ′(ȳ)(ỹ − ȳh)]p̃h dx︸ ︷︷ ︸
S4.5

.

To estimate S4.1, we first use the same argumentation used for estimating
Rh(uh) in the proof of Theorem 3.3.4. Then, we apply (3.48), the triangle
inequality, Lemma A.4.3 for some ε > 0 and (3.54) to obtain

S4.1 =

∫
Ω

p̄h(ỹh − ȳh)

∫ 1

0

φ′
(
ỹht+ (1− t)ȳh

)
− φ′(ȳh) dt dx

≤ η(α, r)−1‖p̄h‖Lq(Ω)

(1

2
‖ỹh − ȳh‖2L2(Ω) +

α

2
‖ū− ūh‖2L2(Ω)

)
≤ κ

(1 + ε

2
‖ȳh − ȳ‖2L2(Ω) +

1 + ε−1

2
‖ỹh − ȳ‖2L2(Ω) +

α

2
‖ū− ūh‖2L2(Ω)

)
≤ κ

(1 + ε

2
‖ȳh − ȳ‖2L2(Ω) +

α

2
‖ū− ūh‖2L2(Ω)

)
+ κc(1 + ε−1)h4

(
‖ū‖2L2(Ω) + 1

)
= κ

(1 + ε

2
‖ȳh − ȳ‖2L2(Ω) +

α

2
‖ū− ūh‖2L2(Ω)

)
+O(h4).
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In a similar way, but this time while using (3.49) and (3.53), we have for S4.2

S4.2 =

∫
Ω

p̄(ỹ − ȳ)

∫ 1

0

φ′
(
ỹt+ (1− t)ȳ

)
− φ′(ȳ) dt dx

≤ η(α, r)−1‖p̄‖Lq(Ω)

(1

2
‖ỹ − ȳ‖2L2(Ω) +

α

2
‖ūh − ū‖2L2(Ω)

)
≤ κ

(1 + ε

2
‖ȳh − ȳ‖2L2(Ω) +

1 + ε−1

2
‖ỹ − ȳh‖2L2(Ω) +

α

2
‖ūh − ū‖2L2(Ω)

)
≤ κ

(1 + ε

2
‖ȳh − ȳ‖2L2(Ω) +

α

2
‖ūh − ū‖2L2(Ω)

)
+ κc(1 + ε−1)h4

(
‖ūh‖2L2(Ω) + 1

)
= κ

(1 + ε

2
‖ȳh − ȳ‖2L2(Ω) +

α

2
‖ūh − ū‖2L2(Ω)

)
+O(h4).

To have an upper bound for S4.3 we apply the Cauchy-Schwarz inequality,
Lemma A.1.3, Lemma 2.2.3, Lemma A.4.3 for some ε > 0 and (3.56) to get

S4.3 ≤ ‖φ(ỹ)− φ(ȳ) + φ′(ȳ)(ȳ − ỹ)‖L2(Ω)‖p̃h − p̄‖L2(Ω)

≤
(
L(m) + ‖φ′(ȳ)‖L∞(Ω)

)
‖ỹ − ȳ‖L2(Ω)‖p̃h − p̄‖L2(Ω)

≤ c‖ūh − ū‖L2(Ω)‖p̃h − p̄‖L2(Ω)

≤ αε

2
‖ūh − ū‖2L2(Ω) +

c2

2αε
‖p̃h − p̄‖2L2(Ω)

≤ αε

2
‖ūh − ū‖2L2(Ω) +

c

αε
h2
(
‖ȳ − y0‖2L2(Ω) + ‖µ̄‖2M(K)

)
=
αε

2
‖ūh − ū‖2L2(Ω) +O(h2),

where L(m) > 0 is a constant from Lemma A.1.3.
Arguing like above and using (3.54), we obtain for S4.4

S4.4 ≤
(
L(m) + ‖φ′(ȳ)‖L∞(Ω)

)
‖ỹh − ȳ‖L2(Ω)‖p̃h‖L2(Ω)

≤ ch2
(
‖ū‖L2(Ω) + 1

)
= O(h2).

Notice that ‖p̃h‖L2(Ω) is uniformly bounded for sufficiently small h as it can be
seen from (3.56).
In a similar way and while using (3.53) this time, we have for S4.5

S4.5 ≤
(
L(m) + ‖φ′(ȳ)‖L∞(Ω)

)
‖ỹ − ȳh‖L2(Ω)‖p̃h‖L2(Ω)

≤ ch2
(
‖ūh‖L2(Ω) + 1

)
= O(h2).

Gathering the estimates for S4.1, . . . , S4.5, we conclude that S4 can be bounded
by

S4 ≤ κ(1 + ε)‖ȳh − ȳ‖2L2(Ω) + (κα+
αε

2
)‖ūh − ū‖2L2(Ω) +O(h2).

The Final Step: Inserting the estimates of the terms S1, . . . , S4 into (3.59)
yields

α‖ūh − ū‖2L2(Ω) ≤
(
κ(1 + ε) + (

ε

2
− 1)

)
‖ȳh − ȳ‖2L2(Ω) + α(κ+ ε)‖ūh − ū‖2L2(Ω)

+

{
O(| lnh|h2− 2

p ), if Assumption 2 or Assumption 3 holds,
O(h), otherwise.
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Since κ < 1, choosing ε > 0 to be small enough in the above expression yields
the existence of c > 0 independent of h such that

c‖ūh − ū‖2L2(Ω) + c‖ȳh − ȳ‖2L2(Ω) =

 O(| lnh|h2− 2
p ), if Assumption 2

or Assumption 3 holds,
O(h), otherwise,

from which we obtain the desired estimate for the control. It remains to estab-
lish an upper bound for ‖ȳh − ȳ‖H1(Ω). To this end, let Rhȳ denote the Ritz
projection of ȳ. Then, from the triangle inequality and (3.6) we obtain

‖ȳh − ȳ‖H1(Ω) ≤ ‖ȳh −Rhȳ‖H1(Ω) + ‖Rhȳ − ȳ‖H1(Ω)

≤ ‖ȳh −Rhȳ‖H1(Ω) + ch‖ȳ‖H2(Ω). (3.66)

We now derive an upper bound for ‖ȳh−Rhȳ‖H1(Ω). Firstly, from the definition
of Rhȳ and the weak formulation of ȳ we have∫

Ω

∇Rhȳ · ∇wh dx =

∫
Ω

∇ȳ · ∇wh dx =

∫
Ω

ūwh dx−
∫

Ω

φ(ȳ)wh dx ∀wh ∈ Xh0.

From this and (3.21) we get∫
Ω

∇(Rhȳ − ȳh) · ∇wh dx =

∫
Ω

(ū− ūh)wh dx+

∫
Ω

[φ(ȳh)− φ(ȳ)]wh dx ∀wh ∈ Xh0.

Using wh = Rhȳ − ȳh in the previous variational equation and then applying
the Cauchy-Schwarz inequality, Lemma A.1.3 and the Poincaré’s inequality we
obtain∫

Ω

|∇(Rhȳ − ȳh)|2 dx =

∫
Ω

(ū− ūh)(Rhȳ − ȳh) dx

+

∫
Ω

[φ(ȳh)− φ(ȳ)](Rhȳ − ȳh) dx

≤
(
‖ū− ūh‖L2(Ω) + ‖φ(ȳh)− φ(ȳ)‖L2(Ω)

)
‖Rhȳ − ȳh‖L2(Ω)

≤ c2
(
‖ū− ūh‖L2(Ω) + c1‖ȳh − ȳ‖L2(Ω)

)
‖∇(Rhȳ − ȳh)‖L2(Ω).

Dividing both sides of the previous inequality by ‖∇(Rhȳ− ȳh)‖L2(Ω) and using
again the Poincaré’s inequality yields

‖ȳh −Rhȳ‖H1(Ω) ≤ c2
(
‖ū− ūh‖L2(Ω) + c1‖ȳh − ȳ‖L2(Ω)

)
, (3.67)

where c1, c2 > 0 are constants coming from Lemma A.1.3 and the Poincaré’s
inequality, respectively, and they are independent of h. Here, c1 is independent
of h because ‖ȳh‖L∞(Ω) is uniformly bounded as it can be seen from the uniform
convergence (3.45).
Finally, from (3.66) and (3.67) we have

‖ȳh − ȳ‖H1(Ω) ≤ c
(
‖ū− ūh‖L2(Ω) + ‖ȳh − ȳ‖L2(Ω) + h‖ȳ‖H2(Ω)

)
from which we obtain the desired estimate after recalling the bounds that we
established for ‖ū− ūh‖L2(Ω) and ‖ȳh − ȳ‖L2(Ω).
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The reason for postulating Assumption 1 in the hypothesis of Theorem 3.6.1
is that we use the estimate (3.55), which follows from Theorem 3.2.4 which
requires this assumption, to bound the integrals∫

K̃

(ỹh − ȳ) dµ̄h and

∫
K

(ỹh − ȳ) dµ̄ (3.68)

that appear in the term S3 in the proof of the theorem. However, since both of
the previous integrals are on subdomains of Ω, Remark 4 suggests the next one.

Remark 9 Assumption 1 in the hypothesis of Theorem 3.6.1 is superfluous
as it can be seen from the following steps.
Step 1. We replace (3.55) by

‖ỹh − ȳ‖L∞(Ωb) ≤ c| lnh|h
2− 2

p
(
‖ū‖Lp(Ω) + 1

)
, (3.69)

where Ωb ⊂⊂ Ω is as described in Remark 4.
Step 2. If we choose Ωb in a way such that K̃ ⊂⊂ Ωb, then the first integral in
(3.68) can be bounded as follows∫

K̃

(ỹh − ȳ) dµ̄h ≤ ‖ỹh − ȳ‖L∞(K̃)‖µ̄h‖M(K̃) ≤ c‖ỹh − ȳ‖L∞(Ωb).

The second integral in (3.68) can be estimated in a similar way since K ⊂⊂ K̃.

We would like to comment on the work in [64] where the error estimate of the
finite element discretization of the problem (P) is also considered there but it
was established using a different approach. In particular, it is considered there
the same class of problems as (P) with the exceptions that the nonlinearity φ
need not satisfy (2.2) and that the control bounds are dropped. In fact, with the
absence of the control constraints it becomes easy to verify that there exists a
Slater point in any given L2(Ω)-neighbourhood of a local solution ū of (P). This
Slater point plays an essential rule in the overall analysis there. The discrete
counter part (Ph) of (P) is obtained via discretizing the state and the control
variables by means of piecewise linear and continuous finite elements. Under the
assumption that a local solution ū of (P) satisfies a quadratic growth condition,
that is, there exist constants δ > 0 and β > 0 such that

β‖u− ū‖2L2(Ω) ≤ J(u)− J(ū)

for all feasible controls u of (P) with ‖u − ū‖L2(Ω) ≤ δ where J is the cost
functional, it was shown that there exists a sequence (ūh)h>0 of local solutions
of (Ph) such that ūh → ū in L2(Ω) as h → 0 with order O(h2−d/2−ε), for
arbitrarily small ε > 0 in space dimensions d = 2, 3 for a convex polygonal
or polyhedron domain Ω. This was achieved by first considering an auxiliary
discrete problem (Prh) which is basically the same as (Ph) but the controls uh
of (Prh) are sought in a L2(Ω)-neighbourhood of the local solution ū of (P), that
is, ‖uh − ū‖L2(Ω) ≤ r for a fixed r > 0 but sufficiently small such that uh is a
feasible test function in the previous quadratic growth condition. Next, it was
shown that (Prh) admits at least one global solution ūrh and that any sequence of
global solutions (ūrh)h>0 converges to ū in L2(Ω) with order O(h2−d/4). Since a
global solution of (Prh) is a local solution of (Ph), the existence of the sequence
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(ūh)h>0 of the local solutions of (Ph) is now verified and then the corresponding
first necessary optimality conditions can be formulated which in turn are used to
improve the convergence rate to O(h2−d/2−ε). We remark that this convergence
rate, namely O(h2−d/2−ε), for the controls was obtained only when the state
constraints are prescribed in a compact subdomain K ⊂ Ω and it was mentioned
there that the case K = Ω̄ will lead to a lower order of convergence.

3.6.1 The Case K = Ω̄

Recall that in Section 3.5.1 we mentioned that the choice K = Ω̄ is possible
for Problem (P) provided that the bounds ya, yb ∈ C(Ω̄) satisfy in addition to
ya < yb in Ω̄ the compatibility condition ya < 0 < yb on ∂Ω. In the following,
we discuss how this choice affects Theorem 3.6.1 and its proof.

First of all, the set Nh should be in this case defined as

Nh := {xj |xj is a vertex of T ∈ Th, xj /∈ ∂Ω}.

Next, to insure a high order of convergence the bounds ya, yb should admit a
higher regularity, namely,

• ya, yb ∈W 2,∞(Ω) such that ya < yb in Ω̄ and ya < 0 < yb on ∂Ω.

Theorem 3.6.2 If K = Ω̄ such that the previous settings hold, then the es-
timate (3.57) in Theorem 3.6.1 holds without requiring Assumption 2 nor As-
sumption 3.

Proof: The proof is exactly the same as the one of Theorem 3.6.1 except for
small modifications in the analysis of the term S3. More precisely, one should
use Ω̄ in place of K̃ and K there. Then, the analysis is the same as when
Assumption 3 is satisfied.

We now address the question that whether Assumption 1 is actually needed
to obtain the convergence order O(

√
| lnh|h 3

2−
1
s ) for the controls if the case

K = Ω̄ is considered.
Firstly, the integrals in (3.68) become∫

Ω̄

(ỹh − ȳ) dµ̄h and

∫
Ω̄

(ỹh − ȳ) dµ̄.

At first glance, one should use the estimate (3.55) to bound the previous integrals
since they are over the whole domain Ω and thus Assumption 1 is needed.
However, using the fact that ya, yb ∈ C(Ω̄), ya < yb in Ω̄ and ya < 0 < yb on
∂Ω, it is possible to show that there exists Ωc ⊂⊂ Ω such that supp(µ̄) ⊂ Ωc
and supp(µ̄h) ⊂ Ωc for h small enough, see [24, Corollary 5.4] for the proof.
Consequently, it is enough to consider the estimate (3.69) to bound the previous
integrals provided that Ωb is chosen in a way such that Ωc ⊂⊂ Ωb. For instance,
for the first integral we have∫

Ω̄

(ỹh − ȳ) dµ̄h =

∫
Ω̄c

(ỹh − ȳ) dµ̄h ≤ ‖ỹh − ȳ‖L∞(Ωc)‖µ̄h‖M(Ω̄c)

≤ c‖ỹh − ȳ‖L∞(Ωb).

In summary, we have the next remark.
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Remark 10 Theorem 3.6.2 is valid without the need for postulating Assump-
tion 1.

We conclude this section by deriving an error bound for the uniform conver-
gence of the optimal state ȳh associated with the unique global minimum ūh of
problem (Ph) to the optimal state ȳ associated with the unique global minimum
ū of problem (P).

Theorem 3.6.3 Under the hypothesis of Theorem 3.6.1, apart from Assump-
tion 1, let ȳh be the state associated with the unique global minimum ūh of (Ph).
Then there exists a constant c > 0 independent of h such that

‖ȳh − ȳ‖L∞(Ω) ≤ ch
1
2 ,

where ȳ is the state associated with the unique global minimum ū of (P). More-
over, if in addition either Assumption 2 or Assumption 3 is satisfied, or if
K = Ω̄ under the hypothesis of Theorem 3.6.2, then

‖ȳh − ȳ‖L∞(Ω) ≤ c
√
| lnh|h 3

2−
1
s ,

for any 1 < s < sΩ where sΩ is as defined in Theorem 3.6.1.

Proof: Since ȳ = G(ū) and ȳh = Gh(ūh), we get from the continuous embedding
H2(Ω) ↪→ C(Ω̄), Lemma 2.2.4 and (3.12) that

‖Gh(ūh)− G(ū)‖L∞(Ω) ≤ ‖Gh(ūh)− G(ūh)‖L∞(Ω) + ‖G(ūh)− G(ū)‖L∞(Ω)

≤ ch
(
‖ūh‖L2(Ω) + 1

)
+ c‖ūh − ū‖L2(Ω),

from which the result follows after recalling Theorem 3.6.1 and Theorem 3.6.2.
The dispensing with Assumption 1 is justified in Remark 9 and in Remark 10.

3.7 Implementation Issues

Our aim in this section is to develop an algorithm to solve the nonlinear system
(3.21)–(3.24) numerically by the semismooth Newton’s method.

To start, let µ̄h be the measure defined in (3.25) and let µ̄h = µ̄bh − µ̄ah be
its Jordan decomposition where we define

µ̄bh :=
∑
xj∈Nh

µ̄bjδxj and µ̄ah :=
∑
xj∈Nh

µ̄aj δxj ,

where µ̄bj , µ̄
a
j ≥ 0 are real numbers for any corresponding xj ∈ Nh and δxj is

the Dirac measure at xj . Then, it is well known that the inequality (3.24) is
equivalent to the system

µ̄bj ≥ 0, ȳh(xj) ≤ yb(xj), xj ∈ Nh and
∑
xj∈Nh

µ̄bj(ȳh(xj)− yb(xj)) = 0,

µ̄aj ≥ 0, ȳh(xj) ≥ ya(xj), xj ∈ Nh and
∑
xj∈Nh

µ̄aj (ya(xj)− ȳh(xj)) = 0,
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or, equivalently,

µ̄bj = max
(

0, µ̄bj + cj
(
ȳh(xj)− yb(xj)

))
, xj ∈ Nh, for any cj > 0,

µ̄aj = max
(

0, µ̄aj + cj
(
ya(xj)− ȳh(xj)

))
, xj ∈ Nh, for any cj > 0,

where the function max(0, ·) is defined by

max(0, x) =

{
x if x ≥ 0,
0 if x < 0.

Also, we recall that the inequality (3.23) is equivalent to

ūh(x) = P[ua,ub]

(
− 1

α p̄h(x)
)

= min
(

max
(
ua,− 1

α p̄h(x)
)
, ub
)
∀x ∈ Ω. (3.70)

Consequently, we see that the system (3.21)–(3.24) can be rewritten as a set of
equations for five unknowns, namely, uh, yh, ph, µbh and µah where µh := µbh−µah.
In fact, if we use the equation of uh in the one of yh, we are left with only four
unknowns, namely, yh, ph, µbh and µah. The control uh can be recovered easily
via (3.70) once we have computed ph. Our task now is to write the equations
for the unknowns yh, ph, µbh and µah in matrix-vector form and then establish an
algorithm to solve them by the semismooth Newtons method. To achieve this,
we first introduce some notation.

Let {x1, . . . , xn} be the set of the inner nodes of the triangulation Th so
that n ∈ N is the dimension of the space Xh0 and let {ϕ1, . . . , ϕn} be the
corresponding basis functions. Moreover, let m ∈ N be the number of the nodes
in the set Nh. For simplicity and without loss of generality, we assume that
the nodes in Nh are the first m nodes in the set {x1, . . . , xn}. In other words,
the constraints on the discrete state variable yh are imposed only in the nodes
xj , for j = 1, . . . ,m. Notice that for the case K ⊂ Ω we have m ≤ n while if
K = Ω̄, then m = n. Next, we define the following one-to-one correspondence
between the discrete objects and their nodal representations

y = [yj ]
n
j=1 ∈ Rn ⇔ yh =

n∑
j=1

yjϕj ,

p = [pj ]
n
j=1 ∈ Rn ⇔ ph =

n∑
j=1

pjϕj ,

µb = [µbj ]
m
j=1 ∈ Rm ⇔ µbh =

m∑
j=1

µbjδxj ,

µa = [µaj ]mj=1 ∈ Rm ⇔ µah =

m∑
j=1

µaj δxj .

We also introduce the mappings

Rn 3 y 7→ Φ(y) :=

[ ∫
Ω

φ(yh)ϕj dx

]n
j=1

∈ Rn, (3.71)

Rn 3 y 7→ Φ′(y) :=

[ ∫
Ω

φ′(yh)ϕiϕj dx

]n
i,j=1

∈ Rn×n, (3.72)

Rn 3 p 7→ f(p) :=

[ ∫
Ω

P[ua,ub]

(
− 1

αph
)
ϕj dx

]n
j=1

∈ Rn. (3.73)
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Notice that Φ′ is the derivative of the map Φ. Next, we define

ya := [ya(xj)]
m
j=1, yb := [yb(xj)]

m
j=1, y0 :=

[ ∫
Ω

y0ϕj dx

]n
j=1

,

M :=

[ ∫
Ω

ϕiϕj dx

]n
i,j=1

, A :=

[ ∫
Ω

∇ϕi · ∇ϕj dx
]n
i,j=1

.

Using the previous notation, solving (3.21)–(3.24) is equivalent to solving
for (y,p,µb,µa) ∈ Rn × Rn × Rm × Rm the following system

Ay + Φ(y) = f(p), (3.74)

Ap + Φ′(y)p = My − y0 + Eµb −Eµa, (3.75)

µb = max
(
0,µb + c(E>y − yb)

)
, (3.76)

µa = max
(
0,µa + c(ya −E>y)

)
. (3.77)

Here, E ∈ Rn×m is a matrix defined by

E :=

[
Im

0r×m

]
where Im ∈ Rm×m is the identity matrix while 0r×m ∈ Rr×m is the zero matrix
with r := n − m. Notice that E is the embedding of Rm into Rn by zero
extension, that is,

Rm 3 x 7→ Ex =

[
x
0

]
∈ Rn.

The presence of E makes the addition of the terms on the right hand side of
(3.75) feasible. It is clear that in the case m = n, E becomes the identity matrix.

On the other hand, E> ∈ Rm×n is the transpose of E and it functions as
the projection of Rn into Rm by considering the first m components, that is,

E> =
[

Im 0m×r
]

and

Rn 3 z 7→ E>z =

 z1

...
zm

 ∈ Rm.

Recall that, by convention, the constraints on the variable y are imposed only
on its first m components.

The quantity c in (3.76) and in (3.77) can be chosen to be simply an arbitrary
positive constant c > 0, or a diagonal matrix c = diag(c1, . . . , cm) with arbitrary
real numbers cj > 0 for j = 1, . . .m. We emphasize that the choice for c in (3.76)
need not be the same as the one in (3.77). Finally, for a given x ∈ Rm, max(0,x)
is understood in a component wise sense, that is,

max(0,x) :=
[

max(0, xj)
]m
j=1

.

Remark 11 One could avoid using the matrix E and its transpose E> in
(3.75)–(3.77) by simply considering µb, µa to be elements from Rn instead of
Rm and by replacing (3.76) and (3.77) by

µb = max
(
0,µb + c(y − ỹb)

)
, and µa = max

(
0,µa + c(ỹa − y)

)
, (3.78)
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respectively, where ỹb, ỹa ∈ Rn are the extensions of yb, ya ∈ Rm defined as

ỹb :=

[
yb
∞

]
, ỹa :=

[
ya
−∞

]
.

It is clear from (3.78) that µbj = µaj = 0, for j = m + 1, . . . , n, which is exactly
the same effect of E on the elements of Rm. However, from practical point of
view, this strategy might lead to an unnecessary increase in the dimension of
the system (3.74)–(3.77) especially if m � n which is the case when the state
constraints are imposed on a relatively very small subset K of the domain Ω.

It is convenient in what follows to introduce the function

G : Rn × Rn × Rm × Rm → Rn × Rn × Rm × Rm

by

G(y,p,µb,µa) :=


Ay + Φ(y)− f(p)

Ap + Φ′(y)p−My + y0 −Eµb + Eµa

µb − rb(y,µb)

µa − ra(y,µa)

 ,
where

rb(y,µb) := max
(
0,µb + c(E>y − yb)

)
,

ra(y,µa) := max
(
0,µa + c(ya −E>y)

)
.

Then, solving (3.74)–(3.77) is equivalent to solving the equation

G(y,p,µb,µa) = 0. (3.79)

Since the functions max(0, ·) and P[ua,ub](·) are not differentiable in a classical
sense, the function G is nonsmooth and hence the Newton’s method can’t be
applied directly to solve (3.79). Instead, we utilize the semismooth Newton’s
method, which uses the generalized Jacobian of G, to solve (3.79), see for in-
stance [45, Chapter 2] for more details about the semimooth Newton’s method.

The generalized Jacobian of G at a given point (y,p,µb,µa) ∈ Rn × Rn ×
Rm × Rm reads

DG(y,p,µb,µa) =

=


A + Φ′(y) −Df(p) 0 0

Φ′′(y)p−M A + Φ′(y) −E E

−Dyrb(y,µb) 0 Im −Dµbrb(y,µb) 0

−Dyra(y,µa) 0 0 Im −Dµara(y,µa)

 .

Here, Df denotes the generalized Jacobian of f and it is given by

Df(p) =

[ ∫
Ω

− 1
α∂P[ua,ub]

(
− 1

αph
)
ϕiϕj dx

]n
i,j=1

(3.80)
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where ∂P[ua,ub](·) denotes the generalized derivative of P[ua,ub](·), that is,

∂P[ua,ub](x) :=

 {0} x < ua or x > ub,
{1} ua < x < ub,
[0, 1] x = ua or x = ub.

(3.81)

Furthermore, Φ′′ is the second derivative of the mapping Φ. More precisely, we
have

Φ′′(y)p =

[ ∫
Ω

φ′′(yh)phϕiϕj dx

]n
i,j=1

. (3.82)

Finally, we have

Dyrb(y,µb) = cDmax
(
0,µb + c(E>y − yb)

)
E>,

Dµbrb(y,µb) = Dmax
(
0,µb + c(E>y − yb)

)
,

Dyra(y,µa) = −cDmax
(
0,µa + c(ya −E>y)

)
E>,

Dµara(y,µa) = Dmax
(
0,µa + c(ya −E>y)

)
,

where, for a given x ∈ Rm, Dmax(0,x) is a diagonal matrix given by

Dmax(0,x) = diag
(
∂max(0, x1), . . . , ∂max(0, xm)

)
with ∂max(0, ·) being the generalized derivative of max(0, ·), that is,

∂max(0, x) :=

 {0} x < 0,
{1} x > 0,
[0, 1] x = 0.

(3.83)

Notice that (3.81) and (3.83) are set-valued mappings which implies that there
might be several choices for DG(y,p,µb,µa) at a given point (y,p,µb,µa) ∈
Rn × Rn × Rm × Rm. In general, to guarantee the convergence of the semis-
mooth Newton’s method to a solution (ȳ, p̄, µ̄b, µ̄a) of the system (3.79), i.e.,
G(ȳ, p̄, µ̄b, µ̄a) = 0, we assume that for all points (y,p,µb,µa) sufficiently close
to the solution (ȳ, p̄, µ̄b, µ̄a) any choice for DG(y,p,µb,µa) is invertible, see
[45, Chapter 2] for further details.

We are now ready to state the algorithm for solving the system (3.79) by
the semismooth Newton’s method.

Algorithm 1 (Semismooth Newton’s method)

0. Choose (y0,p0,µ0
b ,µ

0
a) ∈ Rn × Rn × Rm × Rm (sufficiently close to the

solution (ȳ, p̄, µ̄b, µ̄a)).

For k = 0, 1, 2, . . . :

1. Obtain (δyk, δpk, δµkb , δµ
k
a) ∈ Rn × Rn × Rm × Rm by solving

DG(yk,pk,µkb ,µ
k
a)


δyk

δpk

δµkb
δµka

 = −G(yk,pk,µkb ,µ
k
a).

2. Set yk+1 = δyk + yk, pk+1 = δpk + pk, µk+1
b = δµkb +µkb , µk+1

a = δµka +µka.
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We conclude this section by a general remark.

Remark 12 1. For a given p ∈ Rn, the vector f(p) introduced in (3.73) can
be written as

f(p) =

[ ∫
A(p)

uaϕj dx

]n
j=1

− 1

α

[ ∫
I(p)

phϕj dx

]n
j=1

+

[ ∫
B(p)

ubϕj dx

]n
j=1

= MA(p)ua −
1

α
MI(p)p + MB(p)ub,

where

A(p) := {x ∈ Ω : − 1
αph(x) ≤ ua}, B(p) := {x ∈ Ω : − 1

αph(x) ≥ ub},
I(p) := {x ∈ Ω : ua < − 1

αph(x) < ua},

and

ua := [ua]nj=1, ub := [ub]
n
j=1, MI(p) :=

[ ∫
I(p)

ϕiϕj dx

]n
i,j=1

,

MA(p) :=

[ ∫
A(p)

ϕiϕj dx

]n
i,j=1

, MB(p) :=

[ ∫
B(p)

ϕiϕj dx

]n
i,j=1

.

In a similar way, for the matrix Df(p) defined in (3.80) we have

Df(p) = − 1

α

[ ∫
I(p)

ϕiϕj dx

]n
i,j=1

= − 1

α
MI(p).

Since ph is a continuous and piecewise linear function on Ω̄, the sets A(p), B(p)
and I(p) are polygonal and thus the entries of the matrices MA(p), MB(p) and
MI(p) can be computed exactly. The determination of the sets A(p), B(p) and
I(p) is a very classical task in variational discretization, see [46], and it can be
achieved simply by looping over the triangles in the mesh and comparing − 1

αph
with the bounds ua and ub.

2. It is also possible to compute the entries of Φ(y), Φ′(y) and Φ′′(y)p
defined by (3.71), (3.72) and (3.82), respectively, exactly for certain types of
the nonlinearity φ. For example, for the choices φ(s) := s3 and φ(s) := s5,
which we will consider for our numerical examples in Section 3.8, the functions
φ(yh), φ′(yh) and φ′′(yh) restricted to each triangle in the mesh are polynomials.

3.8 Numerical Examples

In this section we consider variational discretization of the problem (P) for dif-
ferent choices of the nonlinearity φ and the data y0, ua, ub, ya, yb, α, while
Ω := (0, 1) × (0, 1) is kept fixed in all considered examples. The numerical so-
lution of the corresponding systems (3.21)–(3.24) is performed with the semis-
mooth Newton method proposed in Section 3.7.

3.8.1 Examples with Unique Global Minima

In this part all the computations are performed on a uniform triangulation of
Ω̄ with mesh size h = 2−5

√
2.
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Example 1 We start with the example presented in [64, Section 7], where
the nonlinearity is given by φ(s) = s3, and unilateral state constraints of the
form y ≥ ya are considered, with

ya(x) := −1

2
+

1

2
min(x1 + x2, 1 + x1 − x2, 1− x1 + x2, 2− x1 − x2).

The desired state is given by y0 := −1. It is easy to see that the nonlinearity
satisfies (2.2) with r = 2 and M = 2

√
3. Hence, in view of Theorem 3.3.4 we

have q = 4 and a control ūh obtained from solving (3.21)–(3.24) is a global
minimum of (Ph) if the associated adjoint state p̄h satisfies

‖p̄h‖L4(Ω) ≤ 5−
5
8 3

3
8

√
2C−1

4 α
3
8 =: η(α),

where C4 = C
(3)
4 ≈ 0.648027075 is the constant from Theorem A.5.1.

The numerical findings for this example with varying α are presented in
Table 3.1 and they are illustrated graphically for the case α = 10−2 in Figure 3.2.
It is clear that ūh is a global minimum for the given values of α, and that it is
most likely that the related continuous problem admits a unique global solution
for all values of α > 0. We will consider this example again in the next subsection
to investigate the convergence rates.

Table 3.1 Example 1 from [64, Section 7]: The values of ‖p̄h‖L4 , η(α) and J(ūh)
for different values of α.

α ‖p̄h‖L4 η(α) J(ūh)

1.0e-06 1.782757474150e-04 6.776197632762e-03 3.151530945981e-01

1.0e-05 6.588913644647e-04 1.606889689070e-02 3.337051126085e-01

1.0e-04 2.476579707110e-03 3.810535956559e-02 3.680280814272e-01

1.0e-03 9.826749689797e-03 9.036204771862e-02 4.264978699222e-01

1.0e-02 2.919304462314e-02 2.142821839497e-01 4.866764267990e-01

1.0e-01 3.012357097331e-02 5.081431366100e-01 4.986253239639e-01

1.0e+00 3.021974315533e-02 1.204997272869e+00 4.998620947749e-01

1.0e+01 3.022939247330e-02 2.857498848277e+00 4.999862050864e-01

1.0e+02 3.023035772702e-02 6.776197632762e+00 4.999986204647e-01

1.0e+03 3.023045425561e-02 1.606889689070e+01 4.999998620460e-01

We now examine a series of numerical examples with different constraints and
desired states, where we consider the nonlinearities φ(s) := s3 and φ(s) := s5.
For the desired state y0 we make the following two choices

A1 : y0(x) := 2 sin(2πx1) sin(2πx2),

A2 : y0(x) := 60 + 160(x1(x1 − 1) + x2(x2 − 1)).

We note that in choice A1 the desired state y0 vanishes on the boundary ∂Ω
of the domain, i.e. it satisfies the boundary condition of the state equation and
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thus is reachable, while in choice A2 it is not reachable. As constraints we
consider the cases
Case 1 (unconstrained problem)

ub = −ua =∞, yb = −ya =∞.

Case 2 (constrained control)

ua = −5, ub = 5, yb = −ya =∞.

Case 3 (constrained state)

ub = −ua =∞, ya = −1, yb = 1.

Example 2 Let us first consider φ(s) := s3 with η specified as above. The
numerical findings are summarized in Figure 3.3, where we compare ‖p̄h‖L4

with η(α). We conclude that unique global solutions exist more likely in the
case where the desired state is reachable.

Example 3 In this example we consider φ(s) := s5. We see that (2.2) is
satisfied with

r =
4

3
and M =

20

5
3
4

.

Hence, in view of Theorem 3.3.4 we have q = 6 and a control ūh obtained
from solving (3.21)–(3.24) is a global minimum if the associated adjoint state
p̄h satisfies

‖p̄h‖L6(Ω) ≤
11

11
24

13
13
24 2

1
6

√
3
C
− 1

2
6 α

11
24 =: η(α),

where C6 = C
(1)
6 ≈ 0.610888 is the constant from Theorem A.5.1.

The numerical findings are summarized in Figure 3.4. Again we can conclude
that problems with reachable desired states more likely admit unique global
solutions.

3.8.2 Convergence Rates

We now examine numerically the error bounds established in Theorem 3.6.1
and in Theorem 3.6.3. For this purpose, we consider again Example 1 with
α = 10−2.

The numerical computations, which are illustrated in Figure 3.2, show that
the state constraints are active at one point, namely x̃ := ( 1

2 ,
1
2 ), and the corre-

sponding multiplier is approximately given by

µ̄ah = 0.3386 δx̃,

where δx̃ is a Dirac measure at x̃. We can easily find a polygonal subdomain
K ⊂⊂ Ω that contains the active point x̃ so that Assumption 3 holds. Recall
that Assumption 1 can be dropped in the light of Remark 9. Consequently, we
are expecting the bound

√
| lnh|h 3

2−
1
s , or equivalently h1−ε for arbitrarily small

ε > 0, for the computed errors according to Theorem 3.6.1 and Theorem 3.6.3.
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Figure 3.2 Example 1 from [64, Section 7]: The values of ‖p̄h‖L4 , η(α) and J(ūh)
vs. α. The optimal state ȳh, the optimal control ūh, the adjoint state p̄h and the
multiplier µ̄a

h for α = 10−2.
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Figure 3.3 Results for φ(s) = s3
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Figure 3.4 Results for φ(s) = s5



3.8. Numerical Examples 61

To deduce the convergence rates numerically, we compute the experimental
order of convergence (EOC) which is defined as

EOC :=
logE(hi)− logE(hi−1)

log hi − log hi−1
,

where E is a given positive error functional and hi−1, hi are two consecutive
mesh sizes. For our experiment, we consider the error functionals

EuL2
(hi) := ‖ūref − ūhi‖L2(Ω),

EyH1
(hi) := ‖ȳref − ȳhi‖H1(Ω),

EyL2
(hi) := ‖ȳref − ȳhi‖L2(Ω),

EyL∞(hi) := ‖ȳref − ȳhi‖L∞(Ω),

and denote the corresponding experimental orders of convergence by EOCuL2
,

EOCyH1
, EOCyL2

and EOCyL∞ , respectively. Furthermore, we consider the
sequence of mesh sizes hi = 2−i

√
2, for i = 1, . . . , 9. Since we don’t have

the exact solution of Example 1 at hand, we consider the numerical solution
computed at mesh size h10 = 2−10

√
2 to be the reference solution, that is, we

define ūref := ūh10
and ȳref := ȳh10

.
In Table 3.2 we report the values of the previous error functionals at differ-

ent mesh sizes. The plots of these values versus the corresponding mesh sizes
are illustrated in Figure 3.5. The computed values of the associated EOC are
presented in Table 3.3.

From the numerical findings we see that as the mesh size h decreases the er-
rors EuL2

(h) and EyH1
(h) behave like O(h) which indicates that the convergence

rate, namely O(h1−ε) for arbitrarily small ε > 0, predicted in Theorem 3.6.1
is optimal. On the other hand, for EyL2

(h) and EyL∞(h) we see the behaviour
O(h2) and O(h1.6), respectively, from which we conclude that the error bounds
for the discrete optimal state in the spaces L2(Ω) and L∞(Ω) which are deduced
from the error bound of the discrete optimal control via the Lipschitz continuity
of the control-to-state map are not sharp.

In fact, the O(h2) behaviour of EyL2
(h) could be explained in the light of

the work [65] where it was shown there that for an elliptic control problem with
finitely many pointwise inequality state constraints the error of the discrete
optimal state in L2(Ω) is of order h4−d up to logarithmic factor in d = 2 or
d = 3 space dimensions when the control problem is discretized by piecewise
linear and continuous finite elements.
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Figure 3.5 Errors for the optimal control and its state of Example 1 with
α = 10−2 versus the mesh size.
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Table 3.2 Errors for the optimal control and its state of Example 1 with α = 10−2.

h/
√

2 EuL2
(h) EyH1

(h) EyL2
(h) EyL∞(h)

2−1 1.6151338799381 0.1881784634445 0.0305960611799 0.0465574255352

2−2 0.7094890598326 0.1098931145143 0.0140288901847 0.0250260522632

2−3 0.3114790933874 0.0616536701645 0.0050825086327 0.0120171679655

2−4 0.1475243025114 0.0319521773619 0.0015547890304 0.0035520156534

2−5 0.0723799608480 0.0161391228724 0.0004482149627 0.0011256351724

2−6 0.0357734199802 0.0080807758796 0.0001259623551 0.0003940261492

2−7 0.0174753747282 0.0040194139919 0.0000345959726 0.0001271705046

2−8 0.0081450867872 0.0019615865181 0.0000090359657 0.0000390725086

2−9 0.0032211298694 0.0008772740328 0.0000019527627 0.0000116353242

Table 3.3 EOC for the optimal control and its state of Example 1 with α = 10−2.

Levels EOCuL2
EOCyH1

EOCyL2
EOCyL∞

1-2 1.186801 0.776001 1.124945 0.895581

2-3 1.187645 0.833842 1.464788 1.058334

3-4 1.078183 0.948273 1.708822 1.758387

4-5 1.027290 0.985352 1.794456 1.657899

5-6 1.016702 0.997996 1.831198 1.514376

6-7 1.033565 1.007509 1.864317 1.631527

7-8 1.101321 1.034964 1.936853 1.702538

8-9 1.338363 1.160921 2.210162 1.747642
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Chapter 4

Optimal Control of Elliptic
PDEs with Random
Coefficients

In this chapter we consider a parameter-dependent optimal control problem.
More precisely, we minimize a quadratic cost functional subject to a linear
elliptic PDE with homogeneous Dirichlet boundary condition where the diffusion
coefficient is a random field defined on a given probability space. Our aim is
to carry out the error analysis and the computational cost associated to the
computation of the expectation of the solutions of this problem.

The exposition in this chapter is organized as follows: in Section 4.1, we
establish the notation and the problem setting. In Section 4.2, we study the state
equation. In Section 4.3, we study the optimal control problem and construct the
map that assigns to each realization of the diffusion coefficient the corresponding
solution of the control problem.

4.1 The Problem Setting

4.1.1 Notation

In the sequel, (Ω,A,P) denotes a probability space, where Ω is a sample space,
A ⊂ 2Ω is a σ-algebra and P : A → [0, 1] is a probability measure. Given a
Banach space (X, ‖ · ‖X), the space Lp(Ω, X) is the set of strongly measurable
functions v : Ω→ X such that ‖v‖Lp(Ω,X) <∞, where

‖v‖Lp(Ω,X) :=


(∫

Ω
‖v(ω)‖pXdP(ω)

)1/p

for 1 ≤ p <∞,

esssupω∈Ω‖v(ω)‖X for p =∞.

For Lp(Ω,R) we write Lp(Ω). For a bounded Lipschitz domain D ⊂ Rd, the
spaces C0(D̄) and C1(D̄) are the usual spaces of uniformly continuous func-
tions and continuously differentiable functions, respectively, with their standard
norms. The space Ct(D̄) with 0 < t < 1 denotes the space of Hölder continuous
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functions with the norm

‖v‖Ct(D̄) := sup
x∈D̄
|v(x)|+ sup

x,y∈D̄,x6=y

|v(x)− v(y)|
|x− y|t

.

For k ∈ N, the space Hk(D) is the classical Sobolev space, on which we define
the norm and semi-norm, respectively, as

‖v‖Hk(D) :=

( ∑
|α|≤k

∫
D

|Dαv|2 dx

)1/2

and |v|Hk(D) :=

( ∑
|α|=k

∫
D

|Dαv|2 dx

)1/2

.

Recall that, for bounded domains D ⊂ Rd, the norm ‖ · ‖Hk(D) and semi-norm

| · |Hk(D) are equivalent on the subspace Hk
0 (D) of Hk(D). For r := k + s with

0 < s < 1 and k ∈ N, we denote by Hr(D) the space of all functions v ∈ Hk(D)
such that ‖v‖Hr(D) <∞, where the norm ‖ · ‖Hr(D) is defined by

‖v‖Hr(D) :=

(
‖v‖2Hk(D) +

∑
|α|=k

∫
D

∫
D

|Dαv(x)−Dαv(y)|2

|x− y|d+2s
dx dy

)1/2

.

Finally, for any two positive quantities a and b, we write

a . b

to indicate that a
b is uniformly bounded by a positive constant independent of

the realization ω ∈ Ω or the discretization parameter h.

4.1.2 The Problem Setting

Let (Ω,A,P) be a probability space. For P-a.s. ω ∈ Ω, we consider the following
optimal control problem

min
(y,u)∈H1

0 (D)×L2(D)
J(y, u) =

1

2
‖y − z‖2L2(D) +

α

2
‖u‖2L2(D) (4.1)

subject to
−∇ · (a(ω, x)∇y(ω, x)) = u(x) in D,

y(ω, x) = 0 on ∂D,
(4.2)

and

ua ≤ u(x) ≤ ub for a.e. x ∈ D,

where we assume

• D ⊂ Rd, d = 1, 2, 3, is a bounded, convex and polyhedral domain.

• ua ∈ R ∪ {−∞} and ub ∈ R ∪ {∞} with ua ≤ ub.

• z ∈ L2(D) is a given deterministic function and α > 0 is a given real
number.
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The differential operators ∇· and ∇ are with respect to x ∈ D. The σ-algebra
A associated with Ω is generated by the random variables {a(·, x) : x ∈ D}. Let
us formally define for all ω ∈ Ω,

amin(ω) := min
x∈D̄

a(ω, x) and amax(ω) := max
x∈D̄

a(ω, x).

We make the following assumptions on the coefficient a.

A1. a ∈ Lp(Ω, Ct(D)) for some 0 < t ≤ 1 and for all p ∈ [1,∞),

A2. amin ≥ 0 almost surely and a−1
min ∈ Lp(Ω), for all p ∈ [1,∞).

From Assumption A1 we see that the quantities amin and amax are well defined
and that amax ∈ Lp(Ω) for all p ∈ [1,∞) since amax(ω) = ‖a(ω, ·)‖C0(D̄). More-
over, together with Assumption A2, we have amin(ω) > 0 and amax(ω) <∞ for
almost all ω ∈ Ω.

An example for a coefficient a that satisfies Assumptions A1–A2 is a log-
normal random field a(ω, x) = eg(ω,x) where g : Ω × D̄ → R is a Gaussian
field with a Hölder-continuous mean function ḡ(x) := E[g(ω, x)] and a Lipschitz
continuous covariance function

C(x, y) := E
[(
g(ω, x)− ḡ(x)

)(
g(ω, y)− ḡ(y)

)]
, x, y ∈ D̄.

For a detailed exposition of log-normal random fields that satisfy Assump-
tions A1–A2, we refer the reader to [27, Section 2.3].

4.2 The State Equation

We start by recalling the weak formulation of (4.2), parametrized by ω ∈ Ω,
which reads: for a given u ∈ L2(D), find yω ∈ H1

0 (D) such that∫
D

aω∇yω · ∇v dx =

∫
D

uv dx ∀ v ∈ H1
0 (D). (4.3)

If such a function yω ∈ H1
0 (D) exists, it is called a weak solution to (4.2). Here

and in what follows, we use the subscript ω to indicate the dependence on the
random parameter ω, for instance, yω := y(ω, ·) and aω := a(ω, ·).

The next result, which is a special case of [71, Theorem 2.1], is about the
existence, uniqueness and the regularity of the solution to (4.3).

Theorem 4.2.1 Let Assumptions A1–A2 hold for some 0 < t ≤ 1. Then, for
P-a.s. ω ∈ Ω, the boundary value problem (4.2) admits a unique weak solution
yω ∈ H1

0 (D) ∩H1+s(D) for every u ∈ L2(D). Moreover, it holds

|yω|H1(D) .
‖u‖L2(D)

amin(ω)
, (4.4)

and
‖yω‖H1+s(D) . C4.2.1(ω)‖u‖L2(D), (4.5)

for all 0 < s < t except s = 1
2 , where

C4.2.1(ω) :=
amax(ω)‖aω‖2Ct(D̄)

amin(ω)4
.
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Furthermore, y ∈ Lp(Ω, H1+s(D)), for all p ∈ [1,∞). If t = 1, then y ∈
Lp(Ω, H2(D)) and the bound (4.5) holds with s = 1.

Proof: Let us define, for P-a.s. ω ∈ Ω, the bilinear form bω : H1
0 (D)×H1

0 (D)→
R by

bω(y, v) :=

∫
D

aω∇y · ∇v dx. (4.6)

Then, from Assumptions A1–A2, we have

|bω(y, v)| ≤ amax(ω)|y|H1(D)|v|H1(D) ∀ y, v ∈ H1
0 (D), (4.7)

bω(y, y) ≥ amin(ω)|y|2H1(D) ∀ y ∈ H1
0 (D).

Hence, according to the Lax-Milgram lemma, for a given u ∈ L2(D) there exists
a unique yω ∈ H1

0 (D) such that

bω(yω, v) =

∫
D

uv dx ∀ v ∈ H1
0 (D), and |yω|H1(D) .

‖u‖L2(D)

amin(ω)
.

The H1+s(D) regularity of the solution yω and the estimate (4.5) were shown in
[71, Theorem 2.1]. From (4.5), Assumptions A1–A2 and the Hölder’s inequality,
it follows that y ∈ Lp(Ω, H1+s(D)), for all p ∈ [1,∞).

Thanks to Theorem 4.2.1, we may now introduce for P-a.s. ω ∈ Ω the mapping

Sω : L2(D)→ H1
0 (D) (4.8)

such that yω := Sωu is the weak solution of (4.2) for a given right hand side
u ∈ L2(D) and a realization aω. The mapping Sω is sometimes referred to as
the control-to-state operator since it assigns to a given control u its associated
state yω. Obviously, Sω is bounded and linear.

4.3 The Optimal Control Problem

In this section we rewrite the problem (4.1) into its reduced form (Pω) and
discuss the existence of a unique global solution to (Pω) for a given ω ∈ Ω.
Then we construct a map that assigns to a given ω ∈ Ω the solution to (Pω).
We show that this map is a L2(D)-valued random variable and establish some
properties of it.

By means of the control-to-state operator Sω introduced in (4.8), the prob-
lem (4.1) is equivalent to, for P-a.s. ω ∈ Ω,

(Pω) minu∈Uad Jω(u) :=
1

2
‖Sωu− z‖2L2(D) +

α

2
‖u‖2L2(D)

where
Uad := {u ∈ L2(D) : ua ≤ u(x) ≤ ub for a.e. x ∈ D} (4.9)

is the set of admissible controls, which is closed and convex.

Theorem 4.3.1 Suppose that Uad is non-empty. Then, for P-a.s. ω ∈ Ω,
there exists a unique global solution for the Problem (Pω).
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Proof: For a fixed ω ∈ Ω, the Problem (Pω) is a deterministic minimization
problem. The existence and uniqueness of a global solution to (Pω) follows by
a classical argument, see for instance [45, Section 1.5] for a detailed proof.

Owing to Theorem 4.3.1, we can now introduce the map

u∗ : Ω→ L2(D) such that u∗(ω) := arg min
u∈Uad

Jω(u) for P-a.s. ω ∈ Ω. (4.10)

In other word, for a given ω ∈ Ω, u∗(ω) is the solution of (Pω). In what
follows, we show that u∗ is indeed a L2(D)-valued random variable, i.e., it is a
measurable map between Ω and L2(D), and then we establish some properties
of it.

Theorem 4.3.2 The map u∗ : Ω→ L2(D) introduced in (4.10) is measurable.

Proof: Throughout the proof, we write J(ω, u) instead of Jω(u) for any (ω, u) ∈
Ω× L2(D) for convenience.

Recall that for a fixed control u ∈ L2(D) the map Ω 3 ω 7→ Sωu ∈ L2(D)
is measurable. This implies, by [33, Proposition 1.2], that Ω 3 ω 7→ ‖Sωu −
z‖L2(D) ∈ R is measurable as well. From this, we can easily see that the map
J : Ω × L2(D) → R defined in Problem (Pω) is Carathéodory, i.e., for every
u ∈ L2(D), J(·, u) is measurable and for every ω ∈ Ω, J(ω, ·) is continuous.
Since J is Carathéodory, we deduce from [4, Theorem 8.2.11] that the set valued
map R defined by

Ω 3 ω 7→ R(ω) := {u ∈ Uad : J(ω, u) = min
v∈Uad

J(ω, v)},

is measurable. Consequently, according to [4, Theorem 8.1.3], there exists a
measurable selection of R, that is to say, there exists a measurable map f : Ω→
L2(D) satisfying

∀ω ∈ Ω, f(ω) ∈ R(ω).

However, since Theorem 4.3.1 guarantees that for every ω ∈ Ω, the set R(ω)
has a unique element, which we denote by u∗(ω), we conclude that the map
Ω 3 ω 7→ u∗(ω) ∈ L2(D) is the measurable selection of R. This is the desired
conclusion.

Theorem 4.3.3 Let Assumptions A1–A2 hold for some 0 < t ≤ 1 and let u∗

be the map defined in (4.10). Then, for P-a.s. ω ∈ Ω, there holds

‖u∗(ω)‖L2(D) . C4.3.3(ω) :=

√(
2

αamin(ω)2
+ 1

)
‖u‖2L2(D) +

2

α
‖z‖2L2(D)

(4.11)

for any u ∈ Uad. Moreover, u∗ ∈ Lp(Ω, L2(D)) for all p ∈ [1,∞).

Proof: We begin by establishing the bound in (4.11). From the optimality of
u∗(ω) together with the estimate (4.4) it follows that for any u ∈ Uad there
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holds

α

2
‖u∗(ω)‖2L2(D) ≤ Jω(u∗(ω)) ≤ Jω(u) =

1

2
‖Sωu− z‖2L2(D) +

α

2
‖u‖2L2(D)

.

(
1

amin(ω)2
+
α

2

)
‖u‖2L2(D) + ‖z‖2L2(D),

from which we obtain the desired result.
From (4.11) and Assumption A2 it follows that u∗ ∈ Lp(Ω, L2(D)) for all p ∈
[1,∞). This completes the proof.

Remark 13 Under the hypothesis of Theorem 4.3.3, if moreover we assume
that Uad is bounded or 0 ∈ Uad, then we have u∗ ∈ L∞(Ω, L2(D)). We can see
this from the following.
If Uad is bounded, then u∗ is uniformly bounded in ω since ua ≤ u∗(ω) ≤ ub
and the bounds ua, ub are finite and independent of ω.
On the other hand, if 0 ∈ Uad, then choosing u = 0 in (4.11) gives

‖u∗(ω)‖L2(D) .

√
2

α
‖z‖L2(D)

which is also a uniform bound with respect to ω.

Remark 14 The estimate in (4.11) holds for any u ∈ Uad. In the proof
of Theorem 5.3.4 we will see that it is desirable to choose u ∈ Uad such that
the constant C4.3.3(ω) in (4.11) is small. This can be achieved by using the
projection of 0 onto Uad, that is u := min{max{0, ua}, ub} in (4.11).



Chapter 5

Variational Discretization

In this chapter we are interested in approximating the expectation of the solu-
tions of the control problem (Pω), ω ∈ Ω, using the Monte Carlo finite element
method. In particular, we discretize the control problem using the variational
discretization concept developed in [46] to obtain discrete optimal controls.
Then, we take the sample average for these discrete solutions.

This chapter is organized as follows: Section 5.1 contains the finite element
setting. In Section 5.2 we discretize the state equation using piecewise linear and
continuous finite elements. In Section 5.3, we apply the variational discretization
to the control problem (Pω), ω ∈ Ω, and construct the map that assigns to each
ω ∈ Ω the solution of the corresponding discrete control problem. In Section 5.4,
we study the Monte Carlo finite element method applied to the problem (Pω),
ω ∈ Ω. Particularly, we will investigate the error and the computational cost
associated to the single-level and multilevel Monte Carlo finite element method.
Finally, we verify our theoretical findings numerically in Section 5.5.

5.1 Finite Element Preliminaries

Let {Thl}l≥0 be a sequence of triangulations of the domain D such that Thl
is obtained from an initial coarse triangulation Th0 via l successive uniform
refinements, that is to say, hl = 1

2hl−1 = 2−lh0 for l = 1, 2, . . ., where hl :=
maxT∈Thl diam(T ) denotes the maximum mesh size of Thl . Here, diam(T ) stands
for the diameter of the triangle T . In addition, for any triangulation Thl we
assume that

D̄ =
⋃

T∈Thl

T̄ .

We point out that a sequence of triangulations generated as above is qausi-
uniform, see [13, Remark 4.4.17].

On each Thl , for l = 0, 1, . . ., we construct the space of linear finite elements
Xhl defined by

Xhl := {v ∈ C0(D̄) : v is a linear polynomial on each T ∈ Thl and v|∂D = 0}.

It is clear that for these spaces there holds

Xh0
⊂ Xh1

⊂ · · · ⊂ Xhl ⊂ · · · .
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Moreover, we have dim(Xhl) = Nl where Nl is the number of the inner nodes
in the triangulation Thl and dim(Xhl) is the dimension of the space Xhl .

The above notation will be used in Section 5.4. On the other hand, the
results that we will establish in Section 5.2–5.3 are still valid if the sequence of
triangulations of D is assumed to be only regular, in other words, the sequence
needs not to be generated via uniform refinements of Th0 . Therefore, in these two
sections we drop the subscript l = 1, 2, . . . , and we use the notation {Th}0<h≤h0

,
h, Xh instead of {Thl}l≥0, hl, Xhl , respectively. Here, {Th}0<h≤h0

is regular in
the sense that there exists ρ > 0 such that for all T ∈ Th and for all h ∈ (0, h0],

diam(BT ) ≥ ρ diam(T ),

where diam(BT ) is the diameter of the largest ball contained in T .
Finally, we state the next lemma which will be useful in our analysis.

Lemma 5.1.1 Let v ∈ H1
0 (D) ∩H1+s(D) for some 0 < s ≤ 1. Then

inf
vh∈Xh

|v − vh|H1(D) . ‖v‖H1+s(D)h
s,

where the hidden constant is independent of v and h.

Proof: See [43, Lemma 8.4.9].

5.2 The Discrete State Equation

In this section we approximate the solution of (4.3) by continuous piecewise
linear finite elements and then estimate the resulting error.

For a given ω ∈ Ω, the finite element discretization of (4.3) reads: find
yω,h ∈ Xh such that∫

D

aω∇yω,h · ∇vh dx =

∫
D

uvh dx ∀ vh ∈ Xh. (5.1)

Theorem 5.2.1 Let Assumptions A1–A2 hold for some 0 < t ≤ 1. Then, for
P-a.s. ω ∈ Ω, there exists a unique solution yω,h ∈ Xh to (5.1). Moreover,

|yω,h|H1(D) .
‖u‖L2(D)

amin(ω)
. (5.2)

Proof: The result follows from applying the Lax-Milgram lemma as in the proof
of Theorem 4.2.1.

In the light of Theorem 5.2.1, we introduce for P-a.s. ω ∈ Ω the mapping

Sω,h : L2(D)→ Xh (5.3)

such that yω,h := Sω,hu is the solution of (5.1) for a given u ∈ L2(D) and a given
realization aω. Sometimes, Sω,h is referred to as the discrete control-to-state
operator. Notice that the operator Sω,h is bounded and linear.

In the next two theorems, we estimate the error in approximating the solu-
tion of (4.3) by the one of (5.1).
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Theorem 5.2.2 Let Assumptions A1–A2 hold for some 0 < t ≤ 1. For a
given u ∈ L2(D), let yω := Sωu and let yω,h := Sω,hu where Sω and Sω,h are as
defined in (4.8) and (5.3), respectively. Then, for P-a.s. ω ∈ Ω, there holds

|yω − yω,h|H1(D) . C5.2.2(ω)‖u‖L2(D)h
s, (5.4)

for all 0 < s < t except s = 1
2 , where

C5.2.2(ω) :=
(a3

max(ω)

a9
min(ω)

) 1
2 ‖aω‖2Ct(D̄).

If t = 1, the above estimate holds with s = 1.

Proof: For a given ω ∈ Ω, let bω : H1
0 (D) ×H1

0 (D) → R be the bilinear form
introduced in (4.6). From Assumptions A1–A2, we conclude that bω(·, ·) defines

an inner product over H1
0 (D) and its induced norm |v|bω := (bω(v, v))

1
2 , for any

v ∈ H1
0 (D), satisfies√

amin(ω)|v|H1(D) . |v|bω .
√
amax(ω)|v|H1(D). (5.5)

Using the Galerkin orthogonality

bω(yω − yω,h, vh) = 0 ∀ vh ∈ Xh,

it is a classical task to show that

|yω − yω,h|bω = min
vh∈Xh

|yω − vh|bω .

Thus, from the previous relation and (5.5) we get

|yω − yω,h|H1(D) .

√
amax(ω)

amin(ω)
inf

vh∈Xh
|yω − vh|H1(D).

Recalling Theorem 4.2.1 and Lemma 5.1.1, we may continue

|yω − yω,h|H1(D) .

√
amax(ω)

amin(ω)
‖yω‖H1+s(D)h

s

.

√
amax(ω)

amin(ω)
C4.2.1(ω)‖u‖L2(D)h

s,

which is the desired result.

Theorem 5.2.3 Let Assumptions A1–A2 hold for some 0 < t ≤ 1. For a
given u ∈ L2(D), let yω := Sωu and let yω,h := Sω,hu where Sω and Sω,h are as
defined in (4.8) and (5.3), respectively. Then, for P-a.s. ω ∈ Ω, there holds

‖yω,h − yω‖L2(D) . C5.2.3(ω)‖u‖L2(D)h
2s, (5.6)

for all 0 < s < t except s = 1
2 , where

C5.2.3(ω) :=
(a7

max(ω)

a17
min(ω)

) 1
2 ‖aω‖4Ct(D̄).
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Moreover,
‖yh − y‖Lp(Ω,L2(D)) ≤ ch2s, for all p ∈ [1,∞), (5.7)

with c > 0 independent of ω and h. If t = 1, the above two estimates hold with
s = 1.

Proof: The key idea is a duality argument. For a given ω ∈ Ω, let eω :=
yω,h − yω and let ỹω ∈ H1

0 (D) be the solution of the problem

bω(ỹω, v) = (eω, v)L2(D) :=

∫
D

eωv dx ∀ v ∈ H1
0 (D),

where bω is the bilinear form defined in (4.6). Recall that ỹω ∈ H1
0 (D)∩H1+s(D)

according to Theorem 4.2.1 and that we have the Galerkin orthogonality

bω(eω, vh) = 0 ∀ vh ∈ Xh.

Consequently, we obtain

‖eω‖2L2(D) = (eω, eω)L2(D) = bω(ỹω, eω) = bω(ỹω − vh, eω)

≤ amax(ω)|ỹω − vh|H1(D)|eω|H1(D) (using (4.7))

≤ amax(ω)‖ỹω‖H1+s(D)|eω|H1(D)h
s (using Lemma 5.1.1)

. amax(ω)C4.2.1(ω)‖eω‖L2(D)|eω|H1(D)h
s (using (4.5))

. amax(ω)C4.2.1(ω)‖eω‖L2(D)C5.2.2(ω)‖u‖L2(D)h
2s. (using (5.4))

Dividing both sides of the previous inequality by ‖eω‖L2(D) gives the estimate
(5.6) from which we get (5.7) after applying the Hölder’s inequality together
with the Assumptions A1–A2. This completes the proof.

We conclude this section by the next remark.

Remark 15 The order of convergence O(h2s) in the estimate (5.6) is ob-
tained while assuming that the integrals in (5.1) are computed exactly. In
general, those integrals can’t be computed exactly, instead, they are approx-
imated by quadrature which introduces another sort of error that one should
consider. However, it is still possible to achieve the order O(h2s) in (5.6) even
with quadrature provided that the function a(ω, ·) belongs to at least C2s(D̄)
as it was explained in [27, Section 3.3]. It is important to mentioned this at this
stage because all the upcoming error estimates related to the optimal control
problem are heavily depending on (5.6).

5.3 The Discrete Optimal Control Problem

In this section we discretize the problem (Pω) using the variational discretization
approach developed in [46]. Then, we construct the discrete counter part of the
map u∗ introduced in (4.10) and carry out the associated error analysis.

Using the discrete control-to-state operator Sω,h introduced in (5.3), the
variational discretization of (Pω), for P-a.s. ω ∈ Ω, reads

(Pω,h) minu∈Uad Jω,h(u) :=
1

2
‖Sω,hu− z‖2L2(D) +

α

2
‖u‖2L2(D).
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Notice that problem (Pω,h) is again an optimization problem in infinite di-
mensions as the controls are still sought in Uad. Thus all techniques we used
previously to study problem (Pω) can also be used for (Pω,h).

Theorem 5.3.1 Suppose that Uad is non-empty. Then, for P-a.s. ω ∈ Ω,
there exists a unique global solution for the Problem (Pω,h).

Proof: The result can be established analogously to Theorem 4.3.1.

We may introduce in the light of the previous theorem, for a given mesh size
h, the map

u∗h : Ω→ L2(D) such that u∗h(ω) := arg min
u∈Uad

Jω,h(u) for P-a.s. ω ∈ Ω. (5.8)

That is to say, for a given ω ∈ Ω, u∗h(ω) is the solution of (Pω,h). The next
result tells us that u∗h is a L2(D)-valued random variable.

Theorem 5.3.2 The map u∗h : Ω→ L2(D) introduced in (5.8) is measurable.

Proof: The proof is analogous to that of Theorem 4.3.2.

Theorem 5.3.3 Let Assumptions A1–A2 hold for some 0 < t ≤ 1 and let u∗h
be the map defined in (5.8). Then, for P-a.s. ω ∈ Ω, there holds

‖u∗h(ω)‖L2(D) . C5.3.3(ω) :=

√(
2

αamin(ω)2
+ 1

)
‖u‖2L2(D) +

2

α
‖z‖2L2(D) (5.9)

for any u ∈ Uad. Moreover, u∗h ∈ Lp(Ω, L2(D)) for all p ∈ [1,∞).

Proof: Let us firstly verify the bound in (5.9). From the optimality of u∗h(ω)
and the estimate (5.2) we obtain for any u ∈ Uad
α

2
‖u∗h(ω)‖2L2(D) ≤ Jω,h(u∗h(ω)) ≤ Jω,h(u) =

1

2
‖Sω,hu− z‖2L2(D) +

α

2
‖u‖2L2(D)

.

(
1

amin(ω)2
+
α

2

)
‖u‖2L2(D) + ‖z‖2L2(D),

from which we get the desired bound.
From (5.9) and Assumption A2 it follows that u∗h ∈ Lp(Ω, L2(D)) for all p ∈
[1,∞). This completes the proof.

Remark 16 If Uad is bounded or if 0 ∈ Uad, then u∗h ∈ L∞(Ω, L2(D)) can
be shown analogously to Remark 13.

We now show that the map u∗h converges to u∗ in Lp(Ω, L2(D)) as the
discretization parameter h tends to zero and we derive the corresponding error
estimate.

Theorem 5.3.4 Let Assumptions A1–A2 hold for some 0 < t ≤ 1 and let u∗

and u∗h be the maps defined in (4.10) and (5.8), respectively. Then, for P-a.s.
ω ∈ Ω, there holds

‖u∗(ω)− u∗h(ω)‖L2(D) . C5.3.4(ω)h2s, (5.10)
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for all 0 < s < t except s = 1
2 , where

C5.3.4(ω) :=
1

α

√
α‖u∗(ω)‖2L2(D) + max(1, a−1

min(ω))2
(
‖u∗(ω)‖L2(D) + ‖z‖L2(D)

)2×C5.2.3(ω).

Moreover,

‖u∗ − u∗h‖Lp(Ω,L2(D)) ≤ C(α, z, Uad)h
2s, for all p ∈ [1,∞), (5.11)

with C(α, z, Uad) > 0 independent of ω and h and depending only on the deter-
ministic data α, z and Uad. If t = 1, the above two estimates hold with s = 1.

Proof: For a given ω ∈ Ω, the realizations u∗(ω) and u∗h(ω) are the solutions of
(Pω) and (Pω,h), respectively. Hence, according to [45, Theorem 3.4] we have

α‖u∗(ω)− u∗h(ω)‖2L2(D) ≤ ‖(Sω − Sω,h)uω‖2L2(D)

+
1

α
‖(Sω − Sω,h)(yω − z)‖2L2(D), (5.12)

where we define here and subsequently uω := u∗(ω) and yω := Sωuω.
The first term in (5.12) can be estimated with the help of Theorem 5.2.3, to
obtain

‖(Sω − Sω,h)uω‖L2(D) . C5.2.3(ω)‖uω‖L2(D)h
2s.

The second term can be bounded using again Theorem 5.2.3 and (4.4) as follows:

‖(Sω − Sω,h)(yω − z)‖L2(D) . C5.2.3(ω)‖yω − z‖L2(D)h
2s

. C5.2.3(ω)
(
‖yω‖L2(D) + ‖z‖L2(D)

)
h2s

. C5.2.3(ω)

(‖uω‖L2(D)

amin(ω)
+ ‖z‖L2(D)

)
h2s

. C5.2.3(ω) max(1, a−1
min(ω))

(
‖uω‖L2(D) + ‖z‖L2(D)

)
h2s.

Inserting the above estimates into (5.12) gives the estimate (5.10) from which
one obtains (5.11) after using the Hölder’s inequality together with Assump-
tions A1–A2 as well as recalling (4.11). This completes the proof.

5.4 Monte Carlo FE Methods

In this section we study the approximation of the expectation of the map u∗

defined in (4.10) by Monte Carlo finite element methods. In particular, we will
carry out the error and the cost analysis for the single-level MC FE and the
multilevel MC FE methods. To begin, we first make a quick review for Monte
Carlo methods.

For a given u ∈ L2(Ω, L2(D)), the expectation or the expected value of u is

E[u] :=

∫
Ω

u(ω) dP(ω).

The Monte Carlo (MC) estimator for E[u] is the sample average

EM [u] :=
1

M

M∑
i=1

u(ωi),
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where u(ωi), i = 1, . . . ,M , are M independent identically distributed samples
of u. Notice that, for a fixed M , the estimator EM [u] can be interpreted as
a L2(D)-valued random variable. The next result gives the statistical error
associated with this estimator.

Theorem 5.4.1 Let u ∈ L2(Ω, L2(D)). Then, for any M ∈ N, we have

‖E[u]− EM [u]‖L2(Ω,L2(D)) ≤M−
1
2 ‖u‖L2(Ω,L2(D)).

Proof: Using the fact that u(ωi), i = 1, . . . ,M , are independent, identically
distributed random samples, we obtain

E
[
‖E[u]− EM [u]‖2L2(D)

]
= E

[∥∥∥E[u]− 1

M

M∑
i=1

u(ωi)
∥∥∥2

L2(D)

]
=

1

M2
E
[∥∥∥ M∑

i=1

(
E[u]− u(ωi)

)∥∥∥2

L2(D)

]
=

1

M2

M∑
i=1

E
[∥∥∥E[u]− u(ωi)

∥∥∥2

L2(D)

]
=

1

M
E
[∥∥E[u]− u

∥∥2

L2(D)

]
=

1

M

(
E
[
‖u‖2L2(D)

]
− ‖E[u]‖2L2(D)

)
≤ 1

M
E
[
‖u‖2L2(D)

]
.

Taking the square root of both sides of the previous inequality gives the desired
result.

Lemma 5.4.2 Let u∗ be the map introduced in (4.10). Then, for any M ∈ N,
there holds

‖E[u∗]− EM [u∗]‖L2(Ω,L2(D)) ≤M−
1
2 ‖u∗‖L2(Ω,L2(D)).

Proof: The result is a direct consequence of Theorem 5.4.1 as u∗ ∈ L2(Ω, L2(D))
according to Theorem 4.3.3.

The previous lemma shows that E[u∗] can by approximated by EM [u∗] which is
the sample average of M independent realizations u∗(ωi), i = 1, . . . ,M . How-
ever, evaluating u∗ at a given ω ∈ Ω can be a difficult task in practice since u∗ is
usually not known explicitly. To overcome this difficulty, we consider sampling
from u∗hl at a given refinement level l ∈ N instead of sampling from u∗ directly.
Recall that u∗hl is the finite element approximation of u∗ introduced in (5.8).

In the rest of this section we study two approaches to approximate E[u∗]
while using u∗hl , namely, we will study the single-level and the multilevel Monte
Carlo finite element methods. Before we start, we make the following assump-
tion on the computational cost of computing u∗hl .

A3. For a given ω ∈ Ω, the computational cost Cl of computing u∗hl(ω) such
that (5.10) holds is asymptotically, as l→∞, bounded by

Cl . h−γl ≈ N
γ
d

l
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for some real number γ > 0, where Nl = dim(Xhl) and d is the dimension
of the computational domain D.

In the previous assumption we adopt the convention that hl ≈ N
− 1
d

l . It is worth
to mention that the ideal value of γ in the above assumption would be γ = d,
in this case for instance, doubling the number of unknowns Nl should result in
doubling the computational cost Cl.

5.4.1 Single-Level Monte Carlo FE Method

For a given refinement level l ∈ N, the single-level MC FE estimator for E[u∗] is

EM [u∗hl ] :=
1

M

M∑
i=1

u∗hl(ωi), (5.13)

where u∗hl(ωi), i = 1, . . . ,M are M independent samples of u∗hl . The error bound
associated with this estimator is stated in the next theorem.

Theorem 5.4.3 Let Assumptions A1–A2 hold for some 0 < t ≤ 1. Then

‖E[u∗]− EM [u∗hl ]‖L2(Ω,L2(D)) ≤ C(α, z, Uad)(M
− 1

2 + h2s
l )

for all 0 < s < t except s = 1
2 where C(α, z, Uad) > 0 is a constant independent

of hl and depending only on the data α, z and on Uad. If t = 1, the above
estimate holds with s = 1.

Proof: We start the proof by using the triangle inequality to obtain

‖E[u∗]−EM [u∗hl ]‖L2(Ω,L2(D)) ≤ ‖E[u∗]−E[u∗hl ]‖L2(Ω,L2(D))+‖E[u∗hl ]−EM [u∗hl ]‖L2(Ω,L2(D)).

The task is now to estimate the two terms on the right hand side of the previous
inequality. The estimate for the first term follows from Theorem 5.3.4 after
utilizing the Cauchy-Schwarz inequality. In fact, we have

‖E[u∗]− E[u∗hl ]‖L2(Ω,L2(D)) = ‖E[u∗ − u∗hl ]‖L2(Ω,L2(D)) = ‖E[u∗ − u∗hl ]‖L2(D)

≤ E[‖u∗ − u∗hl‖L2(D)] ≤ ‖u∗ − u∗hl‖L2(Ω,L2(D))

≤ C(α, z, Uad)h
2s
l .

For the second term, we use Lemma 5.4.2 to obtain

‖E[u∗hl ]− EM [u∗hl ]‖L2(Ω,L2(D)) ≤M−
1
2 ‖u∗hl‖L2(Ω,L2(D))

≤ C(α, z, Uad)M
− 1

2 ,

where we used the fact that ‖u∗hl‖L2(Ω,L2(D)) is uniformly bounded with respect
to hl according to (5.9). Combining the estimates of the two terms gives the
desired result.

We can see from Theorem 5.4.3 that the error that comes from using (5.13) as
an approximation to E[u∗] can be split into two parts; a statistical part which is
of order M−1/2 and a discretization part of order h2s

l . This suggests that there
should be some coupling between the number of samples M and the mesh size
hl in order to achieve a certain overall error. We provide such coupling in the
next theorem and establish the corresponding error and computational cost.
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Theorem 5.4.4 Let Assumptions A1–A3 hold for some 0 < t ≤ 1. Then, the
MC estimator (5.13) with the following choice of number of samples

M = O(h−4s
l ),

yields the error bound

‖E[u∗]− EM [u∗hl ]‖L2(Ω,L2(D)) ≤ C(α, z, Uad)h
2s
l (5.14)

for all 0 < s < t except s = 1
2 , with a total computational cost Cl which is

asymptotically, as l→∞, bounded by

Cl . h−γ−4s
l , (5.15)

for some C(α, z, Uad) > 0 depending on the data α, z and on Uad. If t = 1, the
above estimates (5.14) and (5.15) hold with s = 1.

Proof: The estimate (5.14) follows from Theorem 5.4.3 after choosing M ≈
h−4s
l . To obtain the bound (5.15), it is enough to multiply the computational

cost of one sample, that is h−γl , from Assumption A3 by the total number of
samples M ≈ h−4s

l .

Remark 17 It is important to point out that the previous theorem is valid
provided that hl ≤ h̃, where h̃ is a mesh size such that (5.10) is satisfied for all
h ≤ h̃. Since, by assumption, we have hl = 2−lh0, l = 0, 1, . . ., we can either
choose h0 = h̃ or l large enough to satisfy hl ≤ h̃.

5.4.2 Multilevel Monte Carlo FE Method

We start by observing that at a given refinement level L ∈ N the random variable
u∗hL can be written as

u∗hL =

L∑
l=0

(u∗hl − u
∗
hl−1

),

where u∗h−1
:= 0. The linearity of the expectation operator E[·] implies

E[u∗hL ] =

L∑
l=0

E[u∗hl − u
∗
hl−1

]. (5.16)

If we approximate E[u∗hl − u
∗
hl−1

] in (5.16) by the single-level Monte Carlo esti-

mator (5.13) with a number of samples Ml that depends on the refinement level
l, we obtain the so called multilevel MC FE estimator for E[u∗], that is,

EL[u∗hL ] :=

L∑
l=0

EMl
[u∗hl − u

∗
hl−1

], (5.17)

where the samples over all levels, l = 0, . . . , L, are independent of each other.
The next theorem gives the error bound associated with the estimator (5.17).
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Theorem 5.4.5 Let Assumptions A1–A2 hold for some 0 < t ≤ 1. Then

‖E[u∗]− EL[u∗hL ]‖L2(Ω,L2(D)) ≤ C(α, z, Uad)
(
h2s
L +

L∑
l=0

M
− 1

2

l h2s
l

)
, (5.18)

for all 0 < s < t except s = 1
2 , where C(α, z, Uad) > 0 depends on the data α, z

and on Uad. If t = 1, the above estimate holds with s = 1.

Proof: Throughout the proof, we use the notation ‖ ·‖V := ‖ ·‖L2(Ω,L2(D)). We
begin by using the triangle inequality and recalling (5.16), (5.17) to obtain

‖E[u∗]− EL[u∗hL ]‖V ≤ ‖E[u∗]− E[u∗hL ]‖V + ‖E[u∗hL ]− EL[u∗hL ]‖V
≤ I + II, (5.19)

where we define

I := ‖E[u∗]−E[u∗hL ]‖V and II :=

L∑
l=0

‖E[u∗hl−u
∗
hl−1

]−EMl
[u∗hl−u

∗
hl−1

]‖V .

To estimate the term I, it is enough to argue like in the proof of Theorem 5.4.3
to obtain

‖E[u∗]− E[u∗hL ]‖V ≤ C(α, z, Uad)h
2s
L .

On the other hand, the term II can be bounded by utilizing Theorem 5.4.1, the
triangle inequality, Theorem 5.3.4 and the fact that hl−1 = 2hl to get

L∑
l=0

‖E[u∗hl − u
∗
hl−1

]− EMl
[u∗hl − u

∗
hl−1

]‖V ≤
L∑
l=0

M
− 1

2

l ‖u
∗
hl
− u∗hl−1

‖V

≤
L∑
l=0

M
− 1

2

l

(
‖u∗hl − u

∗‖V + ‖u∗ − u∗hl−1
‖V
)

≤ C(α, z, Uad)

L∑
l=0

M
− 1

2

l (h2s
l + h2s

l−1)

= C(α, z, Uad)

L∑
l=0

M
− 1

2

l (1 + 22s)h2s
l .

Inserting the bounds of the terms I, II in (5.19) gives

‖E[u∗]− EL[u∗hL ]‖V ≤ C(α, z, Uad)
(
h2s
L +

L∑
l=0

M
− 1

2

l h2s
l

)
,

which is the desired result and the proof is complete.

The previous theorem holds for any choice of {Ml}Ll=0 in (5.17), where Ml is
the number of samples over the refinement level l. However, it is desirable that
{Ml}Ll=0 is chosen in such a way that the statistical error and the discretization
error in (5.18) are balanced. The next theorem suggests a choice for {Ml}Ll=0

such that the overall error in (5.18) is of order h2s
L and it gives the associated

computational cost.
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Theorem 5.4.6 Let Assumptions A1–A3 hold for some 0 < t ≤ 1. Then, the
MLMC estimator (5.17) with the following choice of {Ml}Ll=0 where

Ml =


O(h−4s

L h
γ+4s

2

l ), 4s > γ

O
(
(L+ 1)2h−4s

L h
γ+4s

2

l

)
, 4s = γ

O(h
− γ+4s

2

L h
γ+4s

2

l ), 4s < γ

yields the error bound

‖E[u∗]− EL[u∗hL ]‖L2(Ω,L2(D)) ≤ C(α, z, Uad)h
2s
L (5.20)

for all 0 < s < t except s = 1
2 , with a total computational cost CL which is

asymptotically, as L→∞, bounded by

CL .


h−4s
L , 4s > γ

(L+ 1)3h−4s
L , 4s = γ

h−γL , 4s < γ.

(5.21)

Here, C(α, z, Uad) > 0 depends on the data α, z and on Uad. If t = 1, the above
estimates (5.20) and (5.21) hold with s = 1.

Proof: We give the proof only for the case 4s > γ; the other two cases 4s = γ
and 4s < γ can be treated analogously. To verify the estimate (5.20) it is enough
to utilize Theorem 5.4.5 together with the choice

Ml ≈ h−4s
L h

γ+4s
2

l , l = 0, . . . , L, (5.22)

as well as the approximation hl ≈ 2−l to obtain

‖E[u∗]− EL[u∗hL ]‖L2(Ω,L2(D)) ≤ C(α, z, Uad)
(
h2s
L +

L∑
l=0

M
− 1

2

l h2s
l

)
= C(α, z, Uad)

(
h2s
L + h2s

L

L∑
l=0

h
4s−γ

4

l

)
≈ C(α, z, Uad)

(
h2s
L + h2s

L

L∑
l=0

2−( 4s−γ
4 )l

)
= C(α, z, Uad)h

2s
L

(
1 +

2−( 4s−γ
4 )(L+1) − 1

2−
4s−γ

4 − 1

)
. C(α, z, Uad)h

2s
L , as L→∞.

It remains to verify the asymptotic upper bound for the total computational
cost (5.21). To achieve this, we see that from Assumption A3 together with the
choice (5.22) and hl ≈ 2−l, we have

CL =

L∑
l=0

MlCl .
L∑
l=0

h−4s
L h

γ+4s
2

l h−γl = h−4s
L

L∑
l=0

h
4s−γ

2

l ≈ h−4s
L

L∑
l=0

2−( 4s−γ
2 )l

≈ h−4s
L

2−( 4s−γ
2 )(L+1) − 1

2−( 4s−γ
2 ) − 1

. h−4s
L , as L→∞,

which is the desired result.
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Remark 18 It should be emphasized that in Theorem 5.4.5 and in Theo-
rem 5.4.6, the mesh size h0 of the initial triangulation Th0

should be chosen in
such a way that (5.10) is satisfied for all h ≤ h0.

By comparing the total cost of MC in (5.15) and MLMC in (5.21) we see
that the multilevel estimator achieves the same accuracy as classical Monte
Carlo at a fraction of the cost. For example, to achieve the error bound h2s

L

using the MC estimator we need computations with the cost bound h−γ−4s
L . On

the other hand, we can get the same error bound with computations whose cost
is bounded by h−γL if we use the MLMC estimator provided that 4s < γ. Note

that the bound h−γL is the largest possible cost bound for the MLMC estimator.
Nevertheless, it is still smaller than the cost bound of the MC estimator by a
factor of h−4s

L .
We remark that the hidden constant in O(·) in the sequence {Ml}Ll=0 from

Theorem 5.4.6 plays a crucial rule in determining the size of the statistical
error. This can be seen in (5.18) where it is clear that the larger the value of the
constant in O(·), the smaller the statistical error. In order to obtain a minimal
choice of {Ml}Ll=0 we adapt the strategy presented in [52, Remark 4.11], that is,
{Ml}Ll=0 is chosen to be the solution of the following minimization problem

(PN) minx∈Mad
J (x) :=

∑L
l=0 xlCl (5.23)

where

Mad :=
{

(x0, . . . , xL) ∈ NL+1 : xl ≥ 1 for l = 0, . . . , L and

L∑
l=0

x
− 1

2

l h2s
l ≤ c0h2s

L , for a fixed c0 > 0
}
.

Here, Cl is the computational cost of one sample at level l. The problem (PN)
is a convex minimization problem. Moreover, for a fixed c0 > 0, the set Mad is
non-empty because it contains {Ml}Ll=0 from Theorem 5.4.6 provided that the
hidden constant in O(·) is large enough. Consequently, if x∗ is the solution of
(PN), then we have

J (x∗) ≤ J ({Ml}Ll=0) =

L∑
l=0

MlCl =: CL.

In other words, the solution of (PN) satisfies (5.21).

Remark 19 Observe that the admissible set of controls Uad is a convex set.
However, it is clear that the MLMC estimate for E[u∗] in (5.17) is in general
not admissible since the corrections in (5.17) are computed using different re-
alizations of the random coefficient. In contrast, the classical MC estimate
in (5.13) is always admissible since it is a convex combination of admissible
controls. This has already been observed in the context of random obstacle
problems [8, 52]. Nevertheless, one may obtain an admissible approximation
to E[u∗] using the MLMC estimator (5.17) by considering PUad(EL[u∗hL ]) where
PUad : L2(D)→ Uad is the projection into Uad. Recall that PUad is nonexpansive
and since E[u∗] ∈ Uad it follows that

‖E[u∗]− PUad(EL[u∗hL ])‖L2(D) ≤ ‖E[u∗]− EL[u∗hL ]‖L2(D).

Hence, PUad(EL[u∗hL ]) has at least the same rate of convergence as EL[u∗hL ].
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5.4.3 Variational Discrete Controls

We discuss now some general properties of variational discrete controls that will
be useful to know if we aim to compute their expected value.

To begin, we consider again problem (Pω,h) from Section 5.3 and let us
denote by Nh the set of the nodes in the considered triangulation Th of the
domain D, that is,

Nh := {x1, . . . , xn},
where xi ∈ D for i = 1, . . . , n are the vertices of the triangles in Th.

It is well known that, for a given ω ∈ Ω, the solution of (Pω,h), which we
shall denote by uh(ω), satisfies the following optimality condition

uh(ω) = PUad
(
− 1

α
pω,h

)
(5.24)

where PUad : L2(D)→ Uad is the projection into Uad and pω,h := Sω,h(yω,h− z)
is the adjoint state while yω,h := Sω,huh(ω) denotes the state associated with
the solution uh(ω). Note that in our case the operator Sω,h is self-adjoint.

It is clear from (5.24) that uh(ω) 6∈ Xh in general and hence the function
uh(ω) : D → R can’t be simply characterized by its values at the nodes in Nh.
For this reason, we should also determine the active set of uh(ω), or equivalently,
the set of points

Nvd(ω) := {x̃1, . . . , x̃m}
where x̃i ∈ D for i = 1, . . . ,m are the intersection points of the active set
boundary with the edges of the triangles in Th. Note that the boundary of
the active set is polygon since pω,h is continuous and piecewise linear over each
triangle in Th, see Figure 5.1 for an illustration of such an active set. Moreover,
the points in Nvd(ω) need not belong to Nh in general and that they depend on
the realization ω ∈ Ω.

1

Figure 5.1 The active set of a variational discrete control (highlighted in grey).
The boundary of the active set is polygon whose line segments need not coincide
with the edges of the triangles in the mesh.

In conclusion, the function uh(ω) : D → R is fully determined if we know its
values on the set of points

Nh ∪Nvd(ω).

In particular, if we would like to perform the sum

1

M

M∑
i=1

uh(ωi) (5.25)
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for a given number of samples M , then we need to know the set of points

Nh ∪
⋃

i∈{1,...,M}

Nvd(ωi). (5.26)

We observe that, for a fixed mesh size h, the number of points in the set (5.26)
doesn’t have a uniform bound with respect to M . In other words, as M →∞ the
number of points in (5.26) might also tend to infinity even if the mesh size h is
kept fixed. This reflects the fact that the variational discrete controls are indeed
infinite dimensional functions even if they can be computed on computers.

Performing the sum (5.25) might be a tedious task in practice, especially for
large values of M , and it might cause storage problems in computers because
of (5.26). However, a remedy for this is to consider an approximation of (5.25)
in Xh, that is to say,

1

M

M∑
i=1

Πh

(
uh(ωi)

)
where Πh : L2(D)→ Xh is a projection or an interpolation operator.

5.5 Numerical Example

In this section we verify numerically the assertion of Theorem 5.4.6, namely, the
order of convergence (5.20) and the upper bound (5.21) for the computational
cost. For this purpose, we consider the optimal control problem

min
u∈Uad

Jω(u) =
1

2
‖yω − z‖2L2(D) +

α

2
‖u‖2L2(D) (5.27)

subject to
−∇ · (a(ω, x)∇y(ω, x)) = u(x) in D,

y(ω, x) = 0 on ∂D,

where we define D := (−0.5, 0.5) × (−0.5, 0.5) ⊂ R2 and Uad := L2(D). The
data is chosen as follows:

α = 10−2,

z(x) = sin(2πx1) cos(πx2),

a(ω, x) = eκ(ω,x), (5.28)

with the random field κ defined by

κ(x, ω) :=0.84 cos(0.42πx1) cos(0.42πx2)Y1(ω) + 0.45 cos(0.42πx1) sin(1.17πx2)Y2(ω)

+0.45 sin(1.17πx1) cos(0.42πx2)Y3(ω) + 0.25 sin(1.17πx1) sin(1.17πx2)Y4(ω),

where Yi ∼ N(0, 1), i = 1, . . . , 4, are independent normally distributed random
variables. In fact, the random field κ approximates a Gaussian random field
with zero mean and covariance function C(x, x̃) = e−‖x−x̃‖1 , x, x̃ ∈ D, where
‖ · ‖1 denotes the l1-norm in R2. The terms in κ are the four leading terms
in the associated Karhunen-Loève expansion, see [38] for more details. As a
consequence, the random field a in (5.28) is a (truncated) lognormal field.
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Assumptions A1–A2 are satisfied for all t < 1/2 for any lognormal random
field a where log(a) has a Lipschitz continuous, isotropic covariance function
and a mean function in Ct(D), see [27, Proposition 2.4]. The property 1/amin ∈
Lp(Ω) for all p ∈ [1,∞) is proved in [28, Proposition 2.3]. In our example the
covariance function of κ is in fact analytic inD×D. This gives realizations of κ =
log(a) (and thus a) which belong to C1(D) almost surely. Hence Assumption A1
is satisfied for t = 1.

For a given realization of the coefficient a(ω, x), the problem in (5.27) is dis-
cretized by means of the variational discretization as described in Section 5.3.
To compute the solution, which we denote by uω,h, of the discrete control prob-
lem at a given mesh size h and realization ω, we solve the corresponding first
order necessary conditions, which reads: there exist a state yω,h ∈ Xh and an
adjoint state pω,h ∈ Xh such that∫

D

aω∇yω,h · ∇vh dx =

∫
D

uω,hvh dx ∀ vh ∈ Xh,∫
D

aω∇pω,h · ∇vh dx =

∫
D

(yω,h − z)vh dx ∀ vh ∈ Xh,

pω,h + αuω,h = 0.

All the computations are done using a Matlab implementation running on
3.40 GHz 4×Intel Core i5-3570 processor with 7.8 GByte of RAM. For solving
the linear system corresponding to the previous optimality conditions we use the
Matlab backslash operation. Note that the linear system is a 3×3 block system
of order O(Nl) with sparse blocks. Hence the backslash costs about O(N1.5

l ) =
O(h−1.5d

l ) operations in d-dimensional space. In summary, the cost to obtain

one sample of the optimal control is O(h−1.5d
l ) and hence Assumption A3 is

satisfied with γ = 1.5 × d. We mention that it is possible to achieve the ideal
value γ = d by using a multigrid based method (see e.g. [39]).

5.5.1 FE Convergence Rate and Computational Cost

Observe that Theorem 5.4.6 requires the values of γ and s a priori. These can
be estimated easily via numerical computations as illustrated in Figure 5.2. The
value of γ for our solver can be deduced from Figure 5.2a where we plot the
average cost (CPU-time in seconds) of computing uhl , the approximate solution
of (5.27) for a given realization a(ω, x), versus the number of degrees of freedom
Nl in the mesh when hl = 2−l for l = 0, . . . , 8. We see in the figure that the
asymptotic behavior of the average cost is O(N1.2

l ) and thus γ ≈ 2.4. This is
slightly better than γ = 1.5 × d = 3 which we expect in 2D space. Here, the
average cost at a given Nl is considered to be the average of the total CPU-
time in seconds required to solve (5.27) for 500 independent realizations of the
coefficient a(ω, x) at the given mesh size hl. To confirm that the cost per sample
does not vary significantly across the realizations aω we plot the CPU-time in
seconds with respect to Nl for individual realizations of aω in Figure 5.3.

The value of s can be obtained from Figure 5.2b where we plot E500[‖uω,h∗−
uω,hl‖L2(D)] versus h−1

l = 2l for l = 0, . . . , 7. Here, E500[·] denotes the sample
average of 500 independent samples. Furthermore, uω,hl is the approximate
solution of (5.27) at a given mesh size hl and realization of a(ω, x). The control
uω,h∗ with h∗ := 2−8 is considered to be the reference solution since the exact
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solution of (5.27) is not available at hand. We see clearly from the plot that the
asymptotic behavior of the error is O(h2

l ) as hl → 0, and thus s = 1. In fact,
this quadratic order of convergence should be expected since the realizations of
(5.28) belong to Ct(D) with t = 1 and according to Theorem 5.3.4 we have s = 1
if t = 1. Furthermore, we observe that the error enters the asymptotic regime
when the mesh size is h2 = 2−2 or smaller. This suggests that in the MLMC
estimator (5.16) one should choose the mesh size h0 of the coarsest level to be
h0 = 2−2. Finally, for all the experiments used in Figure 5.2, the triangulation
of the domain D when l = 0 consists of four triangles with only one degree of
freedom located at the origin.

5.5.2 Multilevel Monte Carlo Simulation

Having estimated the values of γ and s, we are in a position to verify the error
estimate (5.20) and the upper bound for the computational cost in (5.21) for
the MLMC estimator EL[u∗hL ], where u∗hL is the random variable associated to

(5.27) as defined in (5.8). To this end, let {Thl}Ll=0, for L = 1, . . . , 5, be sequences
of triangulations of the domain D as described in Section 5.1. Here, we choose
the mesh size h0 of the initial coarse triangulation Th0

to be h0 = 2−2 (the
reason for this choice of h0 is explained in the previous subsection). Since the
expected value E[u∗] is not known explicitly, we consider the MLMC estimator
EL
∗
[u∗hL∗ ] to be the reference expected value with L∗ = 6 and hL∗ = 2−8.

It is clear that the asymptotic behavior of the error E[u∗]− EL[u∗hL ] in the
L2(Ω, L2(D))-norm and in the L2(D)-norm is the same. To simplify the compu-
tations we thus calculate the error in the L2(D)-norm. Finally, for L = 1, . . . , 5,
we obtain the sequence {Ml}Ll=0 of number of samples per refinement level l
through solving (5.23) with the choice c0 = 1

2 by the fmincon function from the
Matlab Optimization Toolbox. We round non-integer values in the sequence
using the ceiling function. In Table 5.1, we report the sequences {Ml}Ll=0, for
L = 1, . . . , 5, used in computing EL[u∗hL ].

Figure 5.4a represents the plot of the CPU-time (in seconds) of computing
EL[u∗hL ] vs. the number of degrees of freedom NL in a triangulation with

mesh size hL = 2−(2+L), for L = 1, . . . , 5. It is clear from the figure that the
computational cost is asymptotically bounded by O(N2

L) as L → ∞. Since
NL = O(h−2

L ), this confirms the theoretical cost bound in (5.21) in the case
4s > γ (recall that s = 1 and γ ≈ 2.4). In fact, the theoretical cost bound is
sharp in this case.

Note that we did not verify the cost bound for the MC estimator in (5.15)
due to limited computational time. In our example the MC estimator requires
O(h−2.4

L ) more operations on level L than the MLMC estimator to achieve the
same accuracy.

In addition we report the error associated with EL[u∗hL ] in Figure 5.4b. We
can see clearly that the best fitting curve for the error behaves like O(h2

L) as
L→∞. This is predicted by (5.20).
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(a) The average cost (CPU-time in seconds) of computing uhl the
approximate solution of (5.27) for a given realization of a(ω, x) vs.
the number of degrees of freedom Nl when hl = 2−l for l = 0, . . . , 8.
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(b) The average error E500[‖uω,h∗ − uω,hl‖L2(D)] vs. h−1
l = 2l for

l = 0, . . . , 7, where uω,hl is the approximate solution of (5.27) for a
given realization a(ω, x) and uω,h∗ the reference solution with
h∗ = 2−8.

Figure 5.2 The computations of s and γ for the estimate (5.10) and
Assumption A3, respectively.
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Figure 5.3 The cost (CPU-time in seconds) of computing uhl the approximate
solution of (5.27) for a given realization of a(ω, x) vs. the number of degrees of
freedom Nl when hl = 2−l with l = 0, . . . , 8 for 500 independent realizations.
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L = 1, . . . , 5, where EL∗ [u∗
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] with L∗ = 6 is the reference expected
value.

Figure 5.4 The error order of convergence and the computational cost upper
bound for the MLMC estimator EL[u∗

hL
], where u∗

hL
is the discrete random variable

associated to (5.27) as defined in (5.8).
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Table 5.1 The sequences {Ml}Ll=0, for L = 1, . . . , 5, used in computing EL[u∗
hL

],
where Ml is the number of samples over a refinement level l which has a mesh size
hl = 2−(2+l).

L M0 M1 M2 M3 M4 M5

1 183 24
2 4815 631 83
3 102258 13387 1753 230
4 1948277 255053 33390 4372 573
5 34878076 4565950 597737 78251 10244 1342



Conclusion

We have seen in the first part that it is possible to establish a sufficient condition
for global minima of a certain class of optimal control problems of semilinear el-
liptic PDEs with pointwise constraints on the state and/or the control variables
provided that the nonlinearity in the PDE satisfies certain growth conditions.
This sufficient condition can also give information about the uniqueness of the
global solutions. Moreover, one can establish in an analogous way to the con-
tinuous setting a similar condition for the variational discrete control problem.
It turns out that a sequence of discrete unique global minima satisfying this
condition uniformly converges strongly to the unique global minimum of the
corresponding continuous control problem as the discretization parameter tends
to zero. A rate of convergence for the sequence of the discrete unique global
minima can be established using this sufficient condition as well. The numerical
experiments show that this convergence rate is optimal. In addition, we man-
aged to compute the unique global minima for several examples. The results of
this part are partially published in [1].

In the second part we considered optimal control problems of elliptic PDEs
with stochastic coefficients. The task was to compute the expected value of
the optimal controls corresponding to the different realizations of the random
coefficient of the state equation utilizing the finite element Monte Carlo and
multilevel Monte Carlo methods and to carry out the associated error analysis.
However, the computed expected value needs not to be an optimal control in
general. The results of this part are published in [2].



Zusammenfassung

Im ersten Teil betrachten wir ein Optimalsteuerungsproblem mit semilinearer,
elliptischer, partieller Differentialgleichung sowie punktweisen Restriktionen an
Zustand und/oder Steuerung. Eine hinreichende Bedingung für globale Minima
der Optimierungsaufgabe wird bewiesen, wenn die Nichtlinearität der semilin-
earen PDE bestimmte Wachstumsbedingungen erfüllt. Die gleiche Bedingung
gilt auch für das diskrete Gegenstück zur Optimierungsaufgabe. Wir haben
gezeigt, dass eine Folge der globalen Minima der diskreten Optimierungsprob-
leme gegen ein globales Minimum der stetigen Optimierungsaufgabe konvergiert,
wenn die Folge diese Bedingung erfüllt. Zusätzlich haben wir mit der Hilfe dieser
Bedingung eine Fehlerabschätzung und eine hinreichende Bedingung zweiter
Ordnung für lokale Minima bewiesen. Die Ergebnisse dieses Teils sind teilweise
in [1] veröffentlicht.

Im zweiten Teil untersuchen wir ein elliptisches Steuerungsproblem, wobei
die PDE eine Zufallsvariable als Koeffizient besitzt. Unser Ziel ist den Er-
wartungswert der optimalen Steuerungen mit der Monte Carlo und Multilevel
Monte Carlo Finite Elemente Methode zu berechnen und die verbundene Anal-
yse durchzuführen. Dieser Erwartungswert ist im Allgemeinen keine globale
Steuerung. Die Ergebnisse dieses Teils sind in [2] veröffentlicht.



Appendix A

A.1 Properties of φ

Lemma A.1.1 Let φ : R → R be of class C2 and monotonically increasing
such that (2.2) is satisfied. Then

φ′(s) ≤ c1
(
1 + |s|r1

)
, s ∈ R, r1 =

r

r − 1
, (A.1)

|φ(s)| ≤ c0
(
1 + |s|r0

)
, s ∈ R, r0 =

2r − 1

r − 1
, (A.2)

where c1, c0 > 0 depending on r,M and φ′(0).

Proof: We will show (A.1) and (A.2) for s ≥ 0. The case s ≤ 0 can be treated
analogously. To this end we see that (2.2) implies

r

r − 1

∣∣∣ d
dt

(
φ′(t) + ε

) r−1
r

∣∣∣ ≤M
for any ε > 0, from which after integrating on [0, s] for some s ≥ 0, we deduce
that ∫ s

0

d

dt

(
φ′(t) + ε

) r−1
r dt ≤ r − 1

r
M

∫ s

0

1 dt.

Evaluating the integrals in the previous inequality and taking the limit ε→ 0+

yields
φ′(s) ≤ c1(1 + s

r
r−1 ) ∀ s ≥ 0,

where c1 > 0 depending on r,M and φ′(0). This gives (A.1). Integrating the
previous inequality on [0, s] once more gives

φ(s) ≤ c(1 + s+ s
2r−1
r−1 ) ∀ s ≥ 0,

where c > 0. Considering the cases s ≤ 1 and s ≥ 1 we see that the previous
estimate implies

φ(s) ≤ c0(1 + s
2r−1
r−1 ) ∀ s ≥ 0,

for c0 > 0 chosen appropriately. This gives (A.2) and the proof is complete.

Lemma A.1.2 Let φ : R → R be of class C2 and monotonically increasing
such that (2.2) is satisfied. Then we have for a, b ∈ R∣∣∣∣ ∫ 1

0

φ′(ta+ (1− t)b)− φ′(b) dt
∣∣∣∣ ≤ |a− b|Lr(∫ 1

0

φ′(ta+ (1− t)b) dt
) 1
r

,
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where

Lr := M

(
r − 1

2r − 1

) r−1
r

.

Proof: We start by noticing that∫ 1

0

φ′(ta+ (1− t)b)− φ′(b) dt =

∫ 1

0

∫ t

0

φ′′(τa+ (1− τ)b)(a− b) dτ dt

= (a− b)
∫ 1

0

(1− t)φ′′(ta+ (1− t)b) dt.

Therefore, taking the absolute value and using (2.2) we get∣∣∣∣ ∫ 1

0

φ′
(
ta+ (1− t)b

)
− φ′(b) dt

∣∣∣∣ ≤ |a− b|M ∫ 1

0

(1− t)φ′(ta+ (1− t)b) 1
r dt

≤ |a− b|M‖1− t‖Lr′ (0,1)

×
(∫ 1

0

φ′(ta+ (1− t)b) dt
) 1
r

,

where 1
r + 1

r′ = 1. It is easy to see that

‖1− t‖Lr′ (0,1) =

(
1

r′ + 1

) 1
r′

=

(
r − 1

2r − 1

) r−1
r

.

Denoting M‖1− t‖Lr′ (0,1) by Lr completes the proof.

Lemma A.1.3 Let φ : R→ R be of class C1. Then for any 1 ≤ r ≤ ∞, there
holds

‖φ(v)− φ(w)‖Lr(Ω) ≤ L(m)‖v − w‖Lr(Ω)

for all v, w ∈ L∞(Ω) such that ‖v‖L∞(Ω), ‖w‖L∞(Ω) ≤ m. Here L(m) > 0 is a
constant depending on m > 0.

Proof: The result is a direct consequence of [73, Lemma 4.11].

Lemma A.1.4 Let Ω ⊂ R2 be open and bounded. Let φ : R → R be of class
C1 such that its first derivative φ′ satisfies

|φ′(s)| ≤ c
(
1 + |s|r

)
, s ∈ R, for some c > 0 and r > 1.

Then for any 1 ≤ t <∞ there holds

‖φ(v)− φ(w)‖Lt(Ω) ≤ L(m)‖v − w‖H1(Ω)

for all v, w ∈ H1
0 (Ω) with ‖v‖H1(Ω), ‖w‖H1(Ω) ≤ m. Here, L(m) > 0 is a

constant depending on m > 0. Moreover, if (yk) ⊂ H1
0 (Ω) such that yk ⇀ y,

then φ(yk)→ φ(y) in Lt(Ω) for 1 ≤ t <∞.
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Proof: Let v, w ∈ H1
0 (Ω) be given such that ‖v‖H1(Ω), ‖w‖H1(Ω) ≤ m for some

constant m > 0. Then, for a.e. x ∈ Ω, it follows from the mean value theorem
and the assumption on |φ′| that

|φ(v(x))− φ(w(x))| =
∣∣∣∣ ∫ 1

0

φ′(tv(x) + (1− t)w(x))(v(x)− w(x)) dt

∣∣∣∣
≤ |v(x)− w(x)|

∫ 1

0

|φ′(tv(x) + (1− t)w(x))| dt

≤ c|v(x)− w(x)|
∫ 1

0

(
1 + |tv(x) + (1− t)w(x)|r

)
dt

≤ c|v(x)− w(x)|
∫ 1

0

(
1 + t|v(x)|r + (1− t)|w(x)|r

)
dt

≤ c|v(x)− w(x)|
(
1 + |v(x)|r + |w(x)|r

)
,

Note that r > 1 and the function | · |r is thus convex. Moreover, φ(v(·)) and
φ(w(·)) are measurable by the continuity of φ. Taking the norm ‖ · ‖Lt(Ω) for
some 1 ≤ t <∞ of both sides of the previous inequality gives

‖φ(v)− φ(w)‖Lt(Ω) ≤ c‖|v − w|(1 + |v|r + |w|r)‖Lt(Ω).

For the given r > 1 and a given 1 ≤ t < ∞, we choose a real number p such
that p > rt and we define q := tp

p−rt . Applying the generalization of Hölder’s
inequality with the exponents

1

q
+

1

(pr )
=

1

t

to the right hand side of the previous inequality results in

‖φ(v)− φ(w)‖Lt(Ω) ≤ c‖|v − w|(1 + |v|r + |w|r)‖Lt(Ω)

≤ c‖v − w‖Lq(Ω)‖1 + |v|r + |w|r‖
L
p
r (Ω)

≤ c‖v − w‖Lq(Ω)

(
1 + ‖v‖rLp(Ω) + ‖w‖rLp(Ω)

)
≤ c‖v − w‖H1(Ω)

(
1 + ‖v‖rH1(Ω) + ‖w‖rH1(Ω)

)
≤ L(m)‖v − w‖H1(Ω),

where we utilized the continuous (which is also compact) embedding H1
0 (Ω) ↪→

Ls(Ω), 1 ≤ s <∞. Here, L(m) is a positive constant depending on m.
The intermediate steps in the above inequality suggest that if yk ⇀ y in

H1
0 (Ω), then φ(yk) → φ(y) in Lt(Ω) for 1 ≤ t < ∞ because then yk → y in

Lq(Ω) from the compact embedding H1
0 (Ω) ↪→ Lq(Ω) with q being as above.

A.2 Hölder Continuous Functions

Lemma A.2.1 Let Ω ⊂ Rn be open. For f ∈ C1,β(Ω̄) for some 0 < β ≤ 1
there holds

|f(x)− f(y)| ≤ c|x− y|γ (A.3)
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for some c > 0 independent of |x− y| where

γ =

{
1 ∀x, y ∈ Ω̄,
1 + β ∀x, y ∈ Ω̄ with ∇f(x) = 0.

Proof: The estimate (A.3) holds with γ = 1 for any x, y ∈ Ω̄ since the function
f is Lipschitz continuous. On the other hand, if ∇f(x) = 0 we see from the
Mean Value Theorem that

f(y)− f(x) =

∫ 1

0

∇f(x+ t(y − x)) · (y − x) dt

=

∫ 1

0

[∇f(x+ t(y − x))−∇f(x)] · (y − x) dt

≤ c|x− y|1+β

where we used the fact that ∇f ∈ [C0,β(Ω̄)]n.

A.3 Tietze’s Extension Theorem

Lemma A.3.1 Let K, K̃ ⊂ Rn be compact sets such that K ⊂ K̃ and let
ya, yb ∈ C(K̃) satisfy ya(x) ≤ yb(x), x ∈ K̃. Then for a given z ∈ C(K) with
ya(x) ≤ z(x) ≤ yb(x), x ∈ K there exists z̃ ∈ C(K̃) such that z̃|K = z and
ya(x) ≤ z̃(x) ≤ yb(x), x ∈ K̃.

Proof: Let z ∈ C(K) be given. Then the Tietze’s extension theorem, see for
example [68, Theorem 20.4], asserts that there exists a compactly supported
continuous function ẑ ∈ Cc(Rn) such that ẑ|K = z. Next, define z̃ : K̃ → R by

z̃(x) := max
(
ya(x),min

(
ẑ(x), yb(x)

))
.

It is clear that z̃ ∈ C(K̃), z̃(x) = z(x), x ∈ K, and ya(x) ≤ z̃(x) ≤ yb(x),
x ∈ K̃. Hence, z̃ is the desired function and the proof is complete.

A.4 Young’s Inequality

Lemma A.4.1 (Young’s inequality) Let x, y ≥ 0, p, q > 1, 1
p + 1

q = 1. Then

xy ≤ xp

p
+
yq

q
.

Lemma A.4.2 We have for a, b ≥ 0, λ, µ > 0 that

aλbµ ≤ λλµµ

(λ+ µ)λ+µ
(a+ b)λ+µ.

Proof: Apply Young’s inequality to p = λ+µ
λ , q = λ+µ

µ and x = (pa)
1
p , y =

(qb)
1
q .
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Lemma A.4.3 Let a, b ≥ 0, ε > 0, p, q > 1, 1
p + 1

q = 1. Then

ab ≤ εap

p
+
ε1−qbq

q
.

Proof: Apply Young’s inequality to x = a, y =
b

ε
.

A.5 Gagliardo–Nirenberg Inequality

Theorem A.5.1 (Gagliardo–Nirenberg interpolation inequality)
For 2 ≤ q <∞ we define µ = 1− 2

q as well as

GNq := sup
f∈H1(R2),f 6=0

‖f‖Lq(R2)

‖f‖1−µL2(R2)‖∇f‖
µ
L2(R2)

.

Then GNq ≤ Cq := min(C
(1)
q , C

(2)
q , C

(3)
q ), where

C(1)
q =

(
µC2,2µ

)−µ
, if q ≥ 4; (A.4)

C(2)
q =

1√
µµ(1− µ)1−µ

(
2πB

(
1,

2(1− µ)

2µ

))µ/2
kB

(
4

2 + 2µ

)
; (A.5)

C(3)
q =

(
1

π

) q−2
2q
∞∏
j=2

(
2j

2j + q − 2

) 2j+2−q
2jq

. (A.6)

Here,

C2,s = 21/s

(
2− s
s− 1

)(s−1)/s(
2πB

(
2

s
, 3− 2

s

))1/2

, 1 < s < 2; C2,1 = 2
√
π;

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, a, b > 0

kB(p) =
( p

2π

)1/p
(
p′

2π

)−1/p′

,
1

p
+

1

p′
= 1.

Proof: The bounds (A.4) and (A.5) can be found in the paper [75] by Veling.
We remark that GNq = λ−1

2,µ, where λ2,µ is defined in [75, (1.7)]. The estimate

(A.4) is [75, (1.31)] (note that µ ≥ 1
2 ⇔ q ≥ 4), while (A.5) is [75, (1.42),(1.43)],

where the latter bound has been proved by Nasibov in [61].
Let us now turn to the proof of (A.6). To begin, we claim that for all k ∈ N0

‖f‖Lq ≤
(

1

π

) 1
2 (1− qkq ) k+1∏

j=2

(
2j

2j + q − 2

) 2j+2−q
2jq

‖f‖
qk
q

Lqk ‖∇f‖
1− qkq
L2 , (A.7)

where
qk = 2−k

(
q + 2(2k − 1)

)
.

The inequality clearly holds for k = 0. Suppose that (A.7) is true for some
k ∈ N0. We infer from Theorem 1 in [36] for the case d = 2 that

‖f‖L2p ≤ A‖f‖1−θLp+1‖∇f‖θL2 , 1 < p <∞. (A.8)
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Here,

A =

(
y(p− 1)2

4π

) θ
2
(

2y − 2

2y

) 1
2p
(

Γ(y)

Γ(y − 1)

) θ
2

with θ =
2(p− 1)

4p
,

y =
p+ 1

p− 1
.

Using the formula for y and observing that Γ(y) = (y−1)Γ(y−1), the expression
for A can be simplified to

A =

(
1

π

) θ
2
(
p+ 1

2

) θ
2−

1
2p

.

We apply (A.8) for p = 1
2qk and obtain

‖f‖Lqk ≤ A‖f‖1−θ
L

1
2
qk+1
‖∇f‖θL2 , (A.9)

where

A =

(
1

π

) θ
2

(
1
2qk + 1

2

) θ
2−

1
qk

and θ =
qk − 2

2qk
.

Since 1
2qk + 1 = qk+1 we find that

A =

(
1

π

) θ
2(qk+1

2

) θ
2−

1
qk and θ = 1− qk+1

qk
,

which, inserted into (A.9) yields

‖f‖Lqk ≤
(

1

π

) θ
2(qk+1

2

) θ
2−

1
qk ‖f‖1−θ

Lqk+1‖∇f‖θL2 . (A.10)

Using the induction hypothesis we infer

‖f‖Lq ≤
(

1

π

) 1
2 (1− qkq )+ θ

2

qk
q (qk+1

2

)( θ
2−

1
qk

)
qk
q

×
k+1∏
j=2

(
2j

2j + q − 2

) 2j+2−q
2jq

‖f‖(1−θ)
qk
q

Lqk+1 ‖∇f‖1−
qk
q +θ

qk
q

L2 .

Elementary calculations show that

1

2

(
1− qk

q

)
+
θ

2

qk
q

=
1

2

(
1− qk+1

q

)
,

(qk+1

2

)( θ
2−

1
qk

)
qk
q

=

(
2k+2

2k+2 + q − 2

) 2k+2+2−q
2k+2q

,

(1− θ)qk
q

=
qk+1

q
,

1− qk
q

+ θ
qk
q

= 1− qk+1

q
,

which implies (A.7) for k + 1. The result now follows by sending k → ∞ in
(A.7) and by observing that limk→∞ qk = 2.
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Figure A.1 The values of the constants C
(2)
q , C

(3)
q over the range 2 ≤ q ≤ 10 and

C
(1)
q over 4 ≤ q ≤ 10.

Figure A.1 illustrates the values of the constants (A.4)–(A.6) for a certain

range of q, namely, 2 ≤ q ≤ 10 for C
(2)
q , C

(3)
q and 4 ≤ q ≤ 10 for C

(1)
q . We

can see clearly that the values of C
(1)
q are smaller than those of C

(2)
q , C

(3)
q for

approximately q ≥ 6. In order to derive a computable upper bound on C
(3)
q we

note that 2j

2j+q−2 ≤ 1 for j ∈ N, and therefore

C(3)
q ≤

(
1

π

) q−2
2q

k−1∏
j=2

(
2j

2j + q − 2

) 2j+2−q
2jq

, k ≥ k0,

where k0 ≥ 2 is chosen so large that 2k0 + 2 − q ≥ 0. In our calculations
we used k − 1 = 200. All the computations of these constants are done using
Mathematica 8.
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