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Abstract

In this thesis we study various geometric correspondences that are motivated by con-
structions in string theory.

The first part of this thesis considers the Ké&hler /Kéahler correspondence and its cur-
vature properties. We show that the Kahler/Kéhler correspondence can be recovered
from the more general twist construction, which is due to A. Swann. We present results
on the behavior of the Ricci curvature under this correspondence using a formula by
A. Futaki.

In the second part we formulate a correspondence between affine and projective spe-
cial Kéhler manifolds of the same dimension. We show as an application that under
this correspondence the affine special Kéhler manifolds in the image of the rigid r-map
are mapped to one-parameter deformations of projective special Kéahler manifolds in
the image of the supergravity r-map. The above one-parameter deformations are inter-
preted as perturbative o/-corrections in heterotic and type-II string compactifications
with N' = 2 supersymmetry. Moreover, we prove that the completeness of the deformed
supergravity r-map metric depends only on the already well-understood completeness of
the undeformed metric and the sign of the deformation parameter. We remark on the
striking similarity of this situation to the HK/QK correspondence and its application to
the c-map.

In the last chapter we provide a detailed review of algebraic completely integrable
systems and prove a theorem of D. Freed stating that the base of such an integrable
system is affine special Kéhler. We formulate our statement of this result slightly more
precisely than it appeared in its original paper. Finally, we show that the semi-flat metric
appearing in a certain integrable system is in fact equivalent to the natural hyper-Kéhler

structure on the cotangent bundle of the associated special Kéhler manifold.



Zusammenfassung

In dieser Dissertation studieren wir verschiedene geometrische Korrespondenzen die ihren
Ursprung in aus der String Theorie stammenden Konstruktionen haben.

Im ersten Teil dieser Arbeit untersuchen wir die Kéhler /Kéhler Korrespondenz und
ihre Kriimmungseigenschaften. Wir zeigen, dass die Kéahler/Kéhler Korrespondenz als
Spezialfall der allgemeineren Twist Konstruktion von A. Swann auftritt. Auflerdem
stellen wir Resultate iiber Verhalten der Ricci Kriimmung unter dieser Korrespondenz
vor.

Im zweiten Teil formulieren wir eine Korrespondenz zwischen affin und projektiv
speziellen Kéhlermannigfaltigkeiten der selben Dimension. Wir zeigen, dass unter dieser
Korrespondenz die affin speziellen K&hlermannigfaltigkeiten im Bild der rigiden r-Ab-
bildung auf eine Einparameterfamilie von projektiv speziellen Kéhlermannigfaltigkeiten
im Bild der lokalen r-Abbildung abgebildet werden. Die obigen Einparameterdeforma-
tionen werden als perturbative o/-Korrekturen in heterotischen und Typ-II String Kom-
paktifizierungen mit A/ = 2 Supersymmetrie interpretiert. Auferdem zeigen wir, dass
die Vollsténdigkeit der deformierten lokalen r-Abbildungsmetrik nur von der bereits gut
untersuchten Vollstdndigkeit der undeformierten Metrik und dem Vorzeichen des Defor-
mationsparameters abhéingt. Wir betonen die starke Ahnlichkeit dieser Situation zum
Fall der HK/QK Korrespondenz und dessen Anwendung auf die c-Abbildung.

Im letzen Teil geben wir einen detaillierten Uberblick iiber algebraisch vollstéandig
integrable Systeme und beweisen ein Theorem von D. Freed, das besagt, dass die Ba-
sis eines solchen integrablen Systems affin speziell Kéhler ist. Wir formulieren unsere
Behauptung ein wenig préaziser als im Originalpaper von Freed. Abschliefend zeigen
wir, dass die halbflache Metrik die in einem bestimmten integrablen System auftaucht
tatsachlich dquivalent zur natiirlichen hyper-Kéahlerstruktur des Kotangentialbiindels der

zugehorigen affin speziellen Kéhlermannigfaltigkeit ist.
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Chapter 1

Introduction

1.1 Motivation

The notion of special geometry is one that first appeared in the physics literature as the
scalar target geometries of N’ = 2 supersymmetric theories in four spacetime dimensions
[dWVP84]|. On the side of mathematics, the respective geometries occuring in rigid
supersymmetry and supergravity correspond to what is called affine special (ASK) and
projective special Kdihler (PSK) [Fre99, ACDO02|. Dimensional reduction from the four-
dimensional vector multiplets to three-dimensional hypermultiplets leads to interesting
geometric constructions called the rigid c-map [CFG89, Cor98, Fre99, Hit99, ACDO02]
and the supergravity c-map |FS90|. The rigid c-map associates a hyper-Kéhler manifold
of dimension 4n to any affine special Kéhler manifold of dimension 2n. The local c-
map associates a quaternionic Kahler manifold of dimension 4n to any projective special
Kaéhler manifold of dimension 2n — 2. The constructed quaternionic Kahler metric is
explicit but rather complicated in contrast to the hyper-Kéhler metric of the rigid c-
map. It was shown in [ACDM15| that the supergravity c-map can be understood as a
special case of a much more general construction, the hyper-Kéahler /quaternionic Kahler

(HK/QK) correspondence [Hay08|, as is summarized in the following diagram:

rigid c-map conification ~
2n | 4n ST 4n+4
CASK ' Ny > Ny
Cc* bundlel HK/QK corr. lSwann bundle (111)
— supergravity c-map —
2n—2 4
ML 2 Nk -

In this diagram, M and N are the respective C*- and Swann-bundles of the projective
special and quaternionic Kéhler manifolds M and N. The manifolds N and N are ob-

tained via the respective c-maps from M and M. In order to understand the supergravity

1



2 Chapter 1. Introduction

c-map in terms of the rigid c-map, it is necessary to give a conification procedure to con-
struct N from N. This is achieved by the conification method developed in [ACM13|.
The resulting relation between the hyper-Kéhler manifold NV and the quaternionic Kéhler
manifold N is obtained from the HK/QK correspondence [Hay08, ACM13, ACDM15.
The HK/QK correspondence can essentially be applied to any hyper-Kéahler manifold
with a Hamiltonian Killing vector field and depends on the choice of a Hamiltonian
function which is unique up to a constant. Consequently, one recovers not only the
supergravity c-map but a one-parameter deformation thereof. This deformation was
identified as the one-loop deformed supergravity c-map metric [RLSV06].

The conification procedure of the HK/QK correspondence can also be applied to
(pseudo)-Kihler! manifolds carrying an isometric Hamiltonian flow, thus giving a Kih-
ler/Kahler (K/K) correspondence [ACM13, ACDM15|. Our interest in this correspon-
dence was twofold:

For one, unlike in the hyper-Kéhler and quaternionic Kéhler case, Kéhler manifolds
are not automatically Einstein. It is thus an interesting question to ask under which
conditions the K/K correspondence preserves and/or generates Einstein metrics.

Secondly, the K/K correspondence seemed to be the correct candidate for the analo-
gous situation in the case of the supergravity r-map, introduced in [dWVP92|, which is
the map induced by dimensional reduction of five-dimensional to four dimensional vector

multiplets. The situation is portrayed in the following diagram:

n 2n \J 2n+2

Ulasr ! rigid r-map M5k /t - — == — - > N&ik
~ ~
J{ ~s l@* bundle (1.1.2)
~
supergravity r-map =~

n—1 2n

Hiss ! My -

Here, U is a conical affine special real (CASR) domain containing the projective special
real (PSR) manifold H. It seemed likely to expect that the K/K correspondence would
provide the link between the affine special Kéhler manifold M in the image of the rigid
r-map and the projective special Kihler manifold M in the image of the supergravity
r-map. However, M does not carry a distinguished holomorphic Hamiltonian vector field
to which the K/K correspondence could be applied.

It was therefore natural to ask whether the K/K correspondence could be modified
in order to provide a link between affine special Kéhler and projective special Kéhler

geometry such that in the special case of the r-map we would recover Diagram (1.1.2).

Tn our conventions, metrics are of indefinite signature if not specified otherwise.
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1.2 Main results

In [MS15], Macia and Swann showed that the HK/QK correspondence can be recovered
as a combination of the twist construction with the concept of a so-called elementary
deformation. In particular, they proved that there is essentially only a one parameter
degree of freedom in constructing a quaternionic Kéhler manifold of the same dimension

using this method.

As is the case with the HK/QK correspondence, the twist method can also be applied
to Kédhler manifolds. In Theorem 2.1.18 we give necessary and sufficient conditions
for the twist of an elementary deformation to be Kéhler. We present an alternative
proof of the K/K correspondence (Theorem 2.3.3) using the twist method, establishing,
in particular, that the K/K correspondence can be recovered from a combination of a
twist and an elementary deformation. We also show that in the K&hler case there are
more degrees of freedom in the construction of Kéhler manifolds, see Proposition 2.1.21
and Example 2.1.22.

We study the curvature properties of the K/K correspondence and derive the fol-
lowing result in the case of a conical Kahler manifold M of dimension 2n: If £ is the
Euler vector field of the conical structure and f is Hamiltonian function with respect to
the Hamiltonian Killing vector field Z = J¢ we show in Theorem 2.3.9 that the K/K
correspondence yields an Einstein metric with Einstein constant A = o(2n + 2) only if

M is Ricci flat, where o is the signature of f.

As the main result of this thesis, we establish the ASK/PSK correspondence that
relates affine special Kéhler manifolds to projective special Kdhler manifolds of the same
dimension, providing the missing link of Diagram (1.1.2) as a special case. This is done by
giving a new conification procedure that maps affine special Kéhler manifolds of dimen-
sion 2n to conical affine special Kéahler manifolds of dimension 2n + 2. The conification
does not, unlike in the case of the K/K and HK/QK correspondence, require the exis-
tence of a Hamiltonian Killing vector field. Instead it relies on the fact that affine special
Kéhler manifolds of dimension 2n can locally be realized as a Lagrangian submanifold in
C?" with induced geometric data, whereas projective special Kdhler manifolds of complex
dimension n are locally realized as the projectivization of a Lagrangian cone in C?"*2,
c.f. [ACDO02|. Thus in order to relate an affine special Kéhler manifold M to a projective
special Kahler manifold of the same complex dimension, we essentially have to map a
Lagrangian submanifold £ C C2" to a Lagrangian cone £ C C?"*2. This is done by
embedding £ into the affine hyperplane {2z = 1} C C x C?*, where 2° is the coordinate
on the first factor. Then we take £ to be the graph over {1} x £ with respect to a certain
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holomorphic function f : £ = {1} x £ — C. The function f is what we call a Lagrangian
potential, c.f. Definition 3.2.3, and is unique up to a complex constant C. As it turns
out the real part of the constant C does not influence the resulting geometry. However,
changing the imaginary part ¢ := Im(C) leads to a one-parameter family of projective
special Kihler manifolds (M, g..).

We discuss global properties of the construction by introducing a flat principal bundle
with structure group Gsxk := Sp(R?") x Heisg, 1 1(C). The group Gsxk acts on pairs (£, f)
of Lagrangian submanifolds that are local realizations of the affine special Kéhler man-
ifold and Lagrangian potentials f of £. Moreover, it acts simply transitively on the set
of special Kahler pairs F(U) = {(¢, F)} of an open subset U C M of holomorphic Kéah-
lerian Lagrangian immersions ¢ that locally realize U as a Lagrangian submanifold and
corresponding holomorphic prepotentials F, cf. Definition 3.1.7. The relation between
Lagrangian prepotentials and holomorphic prepotentials is shown in Lemma 3.2.9. In
terms of a prepotential F and special coordinates z := (2!,...,2") on U, the conification

construction can be understood as a homogenization of F'(z) to a holomorphic function
F(Z°,72) = (Z2°)2F(2/)2%), (1.2.1)

homogeneous of degree two in the coordinates (29, 7) := (2°,21,...,2") = (2°,2°z)
of C* x U, cf. Remark 3.4.6.

The group Gsk is a central extension of the group Affsp(Rzn)(C2"), which acts simply
transitively on the set of Kéhlerian Lagrangian immersions of U. The central extension
to Ggk is necessary to encompass the correct transformation behavior of holomorphic
prepotentials F. Although the group action Ggk is equivariant with respect to the conifi-
cation £ — L (and F +— F), it does not leave the induced Kihler metrics on £ invariant,
in contrast to the real subgroup G := Sp(R?") x Heisg,+1(R). In Theorem 3.4.11 we
prove that the conification is globally well defined if the holonomy of the flat connection
of the principal Ggk-bundle is contained in the real group G and a certain notion of
non-degeneracy is satisfied.

Our main application of the ASK/PSK correspondence is a one-parameter deforma-
tion of the supergravity r-map metric. It is obtained by applying the conification to the
affine special Kéhler manifold M obtained from the conical affine special real manifold

U via the rigid r-map, as displayed in the following diagram:

| rigid r-map 2 conification v, 42
Casr | Mg —-—==-- > Nehdi
l ASK/PSK corr. l@* bundle (1.2.2)

supergravity r-map

n—1 A f2n
7-[PSR I MPSK :
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In Theorem 3.7.2 we give a global description of the resulting one-parameter family of
projective special Kéhler manifolds (M., g.), where (Mg, go) = (M, g) recovers the un-
deformed projective special Kédhler manifold obtained from the supergravity r-map. We
analyze completeness of the resulting one-parameter family. First of all, the underformed
Riemannian manifold (M, §) is complete if and only if the projective special real manifold
H C R" is a connected component of a global level set {z € R" | h(z) = 1} of a homo-
geneous cubic polynomial A [CHM12, CNS16]. Recall that the level set is required to be
locally strictly convex for H to be projective special real and Riemannian. Assuming the
undeformed metric (M, g) to be complete, we show that (ML, g.) is Riemannian and com-
plete if and only if ¢ < 0. These results should be contrasted with the more involved com-
pleteness theorems for one-loop deformed c-map spaces [CDS16]. In the case of projective
special Kahler manifolds with cubic prepotential the completeness of the supergravity
c-map metric was shown to be preserved precisely under one-loop deformations with
positive deformation parameter. However, for general c-map spaces this result has been
established only under the additional assumption of regular boundary behavior for the
initial projective special Kéhler manifold, which is satisfied, for instance, for quadratic
prepotentials. As in the case of the one-loop deformed c-map, the isometry type of the
deformed r-map space (M., g.) depends only on the sign of ¢ (positive, negative, or
zero). Note that the completeness of M implies that M is neither isometric to Mg
nor to M _1, since the latter two manifolds are then complete whereas M is incomplete.
Computing the scalar curvature in examples, see Examples 3.7.4 and 3.7.5, we complete
this analysis by showing that M and M _; are in general not isometric. Incidentally,
most, but not all, of the above results extend from cubic polynomials to general homo-
geneous functions, say of degree k > 1, see Remark 3.7.3. For instance, it is not known
whether the above necessary and sufficient completeness criterion for projective special

real manifolds [CNS16, Theorem 2.5 holds for polynomials of quartic and higher degree.

We note that the above one-parameter deformation can be interpreted as perturbative
o’-corrections in heterotic and type-II string compactifications with N = 2 supersymme-

try.

We study further properties of the principal Ggx bundle of affine special Kahler
manifolds. In Theorem 3.5.4 we show that a complex manifold M of complex dimen-
sion n is affine special Kéahler if and only if it admits a flat affine bundle A — M
modelled over the complexification of a flat symplectic vector bundle together with a
global holomorphic section @ satisfying certain properties. We identify this bundle as
the associated bundle to the principal Ggk-bundle with respect to the affine representa-
tion p : Gsk — AHSP(RQn)(C2n). Over a local trivialization, the global section ® gives
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a Kaéhlerian Lagrangian immersion ¢. This result is a generalization of the statement
that the affine special Kéhler structure on M is locally induced by Ké&hlerian Lagrangian
immersions ¢ [ACD02|.

We identify the data used to construct the algebraic completely integrable system
Moy — M of [GMNI10] as a special application of our theorem, see Proposition 3.5.1
and Section 4.2. In this case, the global holomorphic section ® takes values in a vec-
tor bundle, implying that the holonomy of the principal Gsk-bundle is contained in
Sp(R?") x C C Gsk, c.f. Proposition 3.5.2. This provides a surprising potential applica-
tion of the ASK/PSK correspondence to this class of integrable systems.

Finally, in Theorem 4.2.8 we show that the hyper-K&hler structure given on My is
equivalent, up to rescaling and reordering of complex structures, to the c-map hyper-
Kahler structure of T*M.

1.3 Outline

This thesis is structured as follows. In Chapter 2 we give an introduction to Swann’s
twist method and develop a formula due to Futaki [Fut87], relating the Ricci curvatures
of Kéhler quotients. We give necessary and sufficient conditions for the twist of an
elementary deformation to be Kéhler, use the twist method to give an alternative proof
of the K/K correspondence, and derive our curvature results for the K/K correspondence
applied to conical Kéhler manifolds.

In Chapter 3 we introduce the notion of special Kéhler geometry and establish our
conification construction and the ASK/PSK correspondence.

In Section 3.6 we derive our completeness results in terms of elementary deformations
before we give our main application to of the ASK/PSK correspondence the r-map in
Section 3.7.

In Chapter 4 we begin by giving a detailed introduction to algebraic completely
integrable systems from a differential geometric viewpoint following [Fre99, GS90, Corl5].
We reproduce Freed’s result that the base of an algebraic integrable system is affine
special Kéhler [Fre99|. Our statement of the theorem is slightly more precise than Freed’s,
cf. Remark 4.1.16. In Section 4.2 we show that the semi-flat hyper-Kéahler structure of
a certain integrable system [GMN,N] is equivalent to the natural hyper-Kéhler structure
on the cotangent bundle of the associated affine special Kdhler manifold [CFG89, Cor98,
Fre99, Hit99).



Chapter 2
Twisting Kahler geometries

The central theme of this chapter is the twisting of K&hler geometries, by which we un-
derstand constructions that produce new Kéhler manifolds from a given K&hler manifold
(M, g,J) with some additional data.

In Section 2.1 we introduce Swann’s twist method in the context of circle actions. It
can be used to construct Kahler manifolds from a Kéhler manifold endowed with an iso-
metric Hamiltonian S'-action. In particular, we give necessary and sufficient conditions
for the twist of an elementary deformation of a Kéhler metric to be Kahler.

In Section 2.2 we recall the notion of a Kéhler quotient and reproduce a formula by
Futaki [Fut87] that relates the Ricci curvatures of such quotients.

In Section 2.3 we give an alternative proof of the K/K correspondence using the twist
method. We close this chapter by applying our results from Section 2.2 to conical Ké&hler

manifolds.

2.1 The Swann-Twist

Swann’s twist construction [Swal0] is a method of equivariantly lifting the action of a
k-torus T on a manifold M to a torus action on a principal (S')*-bundle P — M that
commutes with the principal action and preserves a principal connection. This allows to
construct the quotient space W = P/T and relate tensor fields on M with tensor fields
on W.

In Sections 2.1.1 and 2.1.2 we give a description of the twist construction and ele-
mentary deformations for circle actions, following [Swal0].

In Section 2.1.3 we will present a method similar to [MS14| to produce Kéahler metrics

using the twist method and show that we can recover the Kahler/Kéhler correspondence

7



8 Chapter 2. Twisting Kdhler geometries

in this way.

2.1.1 Lifting of actions

Let M be an n-dimensional manifold carrying the action of a group G, where G is either
R or S'. We denote by Z € X(M) a vector field that generates the G-action.

Definition 2.1.1. Let F € Q?(M) be a closed two-form. We say that Z (or the action
generated by Z) is F'-Hamiltonian if there is a function a € C°°(M) such that

da=—Z JF, (2.1.1)

i.e., [Z1F)=0¢& H'(M). The function a is called a moment map of Z with respect to
F.

Let 7 : P — M be a principal S'-bundle with connection 6 such that its curvature
df = *F is given by a closed two-form F representing an element of H?(M,Z).

Proposition 2.1.2 (|Swal0, Proposition 2.1|). The action induced by Z lifts to an action
preserving the connection form 6 and commuting with the principal action if and only if

7 is F'-Hamiltonian.

Proof. We make the Ansatz
Z=27+aXp, (2.1.2)

for the lifted infinitesimal action on P, where Z is the horizontal lift of Z with respect to
0, a is a function on P, and Xp is the fundamental vector field of the principal S'-action

of P. We compute
Ly0=d(Z20)+Z2d0 =da+ Zn*'F =da+7"(Z 2 F). (2.1.3)

By evaluating Xp 4 L0, we see that L0 = 0 implies that a is necessarily the pullback of
a function on M, say @ = n*a. But then L 0 = 0 if and only if 7*(da+ Z s F') = 0 if and

only if Z 0 F = —da if and only if Z is F-Hamiltonian with moment map a. Computing
(Z,Xp| = [Z,Xp] + [aXp, Xp] = — da(Xp)Xp, (2.1.4)
we see that L0 = 0 already implies [Z, Xp]=0. O

Definition 2.1.3. If Z is F-Hamiltonian with moment map a we call the tuple (Z, F, a)
twist data. We call the vector field Z € X(P) defined as in (2.1.2) the lift of Z with
respect to the twist data (Z, F, a).
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Remark 2.1.4. Note that moment maps are unique up to a constant. Each moment map

a determines a lift Z = Z + aXp for a := 7*a.

Remark 2.1.5. It is shown in [SwalO, Proposition 2.3| that for a given closed integral
two-form F and a vector field Z coming from an arbitrary S!'-action on M there is a
choice of moment map a € C*°(M) and a principal bundle 7 : P — M with connection 6
and curvature 7* F such that the lift Z = Z+aXp in fact generates an S'-action covering
the S'-action generated by Z on M. Here, a is unique up to an integral constant. If we
allow the constant to be rational, then the corresponding lift covers the action of a finite

covering of the S'-action on M.

Lemma 2.1.6. Let Z be a lift with respect to the twist data (Z, F,a). Then LZX = LyX
for any vector field X on M.

Proof. Recall that since the horizontal distribution H = ker# is invariant under the

principal action, we have [Xp, X] = 0. Also, if X,Y are vector fields on M, then
[(X,Y] =[X,Y]+6([X,Y])Xp and 0([X,Y]) = —n*F(X,Y). Now we compute

LyX =[2,X] =2, X] + [aXp, X]
12, X]+0(1Z, X)) Xp — da(X)Xp + 4[Xp, X] (2.1.5)

—~—

=Lz X +0(Z,X))Xp+n"F(Z,X)Xp = LzX.

2.1.2 The twist construction

Let M be a manifold with an F-Hamiltonian vector field Z with respect to a closed
integral two-form F. We assume that Z is nowhere vanishing, i.e., the R- or S'-action
generated by Z is locally free. Let 7 : P — M be a principal S'-bundle with connection
0 and curvature df = 7*F and let Z = Z + aXp be a lift of Z to P with respect to a
moment map a € C*°(M). We assume that Z is transverse to the horizontal distribution

H = ker 0 or, equivalently, that the function a € C*°(M) has no zeroes on M.

Definition 2.1.7. If the quotient space W := P/(Z) is smooth, we call W the twist of
M with respect to the twist-data (F, Z,a) as above.

Let W be a twist of M with respect to the twist-data (F, Z,a) and with projection

maps
P
/ \”iV (2.1.6)
M w.
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By assumption, both maps m and my are transversal to the horizontal distribution H.
Note first that since Xp commutes with Z , Xp is invariant along fibers of my and,
hence, descends to a non-zero vector field Zy, which is my-related to Xp on W, giving
an S'-action that is covered by the principal action on P.

Due to the transversality, 9(Z ) =a # 0and 0 := 410 defines a connection 1-form on

P with horizontal distribution ker § = ker @ = H. Thus 7 and mw induce isomorphisms
LM =Hy =T (W, (2.1.7)

for p € P.
This makes it possible to define pull-backs of tensor fields along 7 and 7y by setting

(X @ @)y = (drl,) " (X)) ® (T°a)p, pE P, (2.1.8)

for a vector field X and a one-form «. If X is a vector field on M, the pull-back coincides
with the horizontal lift X of X. We write Y := (my)*Y for the horizontal lift of a
vector field Y on W. By definition and by the invariance of the horizontal distribution,

pull-backs of tensor fields are invariant with respect to the corresponding principal action.

Definition 2.1.8. Let « be a tensor field on M and aypy a tensor field on W. We say

aw is H-related to a, written as aw ~y a, if 7™a = mj,aw on H.
Lemma 2.1.9. If a ~y aw then « is Z-invariant.

Proof. Suppose a ~4 ay for tensor fields « on M and ay on W of type (p, ¢q). Denote
by ¢; the flow of Z. Let € P and Y1,...,Y, € Hp. Then, since mjaw and 0 are

Z-invariant,

(M a)z(Y1,.... Yp) = (mpaw)a(Y, ..., Yp) = (¢))a(mipaw) (Y1, ..., V)
(T aw) g, (@) (dpe (Y1), - - o, dpe(Y))

= (T )y () (dpt (Y1), - - ., dpe(Yp))

= (})a(m ) (Y1, ..., Yp),

(2.1.9)

which shows that 7*« is invariant under Z. By Lemma 2.1.6 it follows that « is invariant
under Z. O

Conversely, if « is Z-invariant, then 7%« is Z-invariant and therefore projects down
along my to give a well-defined tensor field ayy that is H-related to a. The following

lemma shows the uniqueness of ayy .
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Lemma 2.1.10 ([Swal0O, Lemma 3.4|). For each Z-invariant q-form « on M there is a

unique q-form aw on W, H-related to o given by
myow = e —OAT (a1 Z 1a). (2.1.10)

Proof. Denote by Q} (P) = {a € Q4(P) | Xpaa = 0} the space of g-forms on P that

hor

are horizontal with respect to . We claim that

QI(P) = QI

hor

(P) &0 AQL(P). (2.1.11)

hor

Let pr,(a) := OAN(Xp 2a) and pry(a) := a—pr,(«a) for a € Q4(P). Then it is straightfor-

ward to check that pr, and pr;, are projections onto GAQZ;: (P)and Qf (P), respectively.

hor
Moreover, a = pry,(«) + pr,(«) and pr,, o pr;, = prj, opr, = 0, proving Eq. (2.1.11).

q—1

Now let ay ~3 a. Then we can write 7, aw = 7*a + 60 A 8 for a unique 3 € Q; .

We compute

0=Z myaw = Zan*a+ Z 30 A B)

i (2.1.12)
=7n(Zaia)+aB —0N(Z2p).

Evaluating on H yields g = —7* (a_lZ _:a). Thus aypy is uniquely determined by a and
Eq. (2.1.10) holds. O
Corollary 2.1.11 ([Swal0, Corollary 3.6]). Let oy ~9 . Then

day ~y da—a 'FAZ sa. (2.1.13)

Proof. This follows from a straightforward computation by differentiating Eq. (2.1.10)
and using Lza = 0. O

Remark 2.1.12 (Duality). The curvature of the connection 0=a"'0is given by
iy Fw = 1% (a'F) =0 An*(a™2Z J F), (2.1.14)
where Fyy is the two-form H-related to a='F. Moreover,

mw (Zw 2 Fw) = Xpamy Fyw = Xp Wr*(a TF) =0 A W*(G_QZJF))

(2.1.15)
= (a0 ?Z3F)=—71"d(a™),

so the action of Zy is Fyy-Hamiltonian and the function ay that is H-related to a™!
is a moment map. This shows that M is the twist of W with respect to the twist data

(Fw, Zw,aw).
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Lemma 2.1.13 ([Swal0O, Lemma 3.7]). Let Xy ~y X and Yy ~y Y be vector fields.
Then

[(Xw, Yw] ~u [X,Y]+a ' F(X,Y)Z. (2.1.16)

Proof Since XW ~y X and Yw ~u Y we have X = XW and Y = YW We know that

X, Y] = [Xw, Yiv] + oty B (X, Vi) 2
= [X,Y]+ 7y Fw(X,Y)Z
TR, 1y _ a2 AR A
[{(’}j] (m (Oi F)~ 9/\ ~( Z2F) (X, V)2 (2.1.17)
= [X,Y]+ ( 'PYX,Y)(Z +aXp)
[ ) ] (X Y))XP+7T ( F(X7 Y))Z
= E(VY] + n*(ale(X,Y))Z,
proving the lemma. O

If J is an almost complex structure on M that is invariant under the action of Z,

then we can define an almost complex structure Jy on W that is H-related to J.

Lemma 2.1.14 ([SwalO, Lemma 3.9]). If J is a complex structure on M, then Jw is a
complex structure on W if and only if F' € Q(Ll)(M).

Proof. Applying Lemma 2.1.13 to the Nijenhuis tensor, defined as

Ny(X,Y) = [JX,JY] - J[JX,Y] - J[X,JY] - [X,Y] (2.1.18)

we find that
Ny, ~u Ny+Z(F(J-,J)—F(-,-) = JZ& (F(J-,-) + F(-,J")). (2.1.19)
Since J is complex, Ny, = 0 if and only if F' is of type (1,1). O

Remark 2.1.15 (Local twist). A smooth twist does not exist in general. However, we
can define a local version of the twist construction as follows. Let m# : P — M be an
S1-principal bundle as above with lift 7 with respect to twist data (Z, F,a). Choose
a submanifold W C P that is transverse to the foliation induced by Z and a tubular
neighborhood U of W. Then we can identify W with the leaf space of the local foliation
on U and we let myy : U — W be the quotient map. By the preceding discussion, a

Z-invariant tensor field o on M then defines a well-defined tensor-field on W.
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2.1.3 Twisting Kahler structures

Let (M,g,J) be a 2n dimensional Kahler manifold with K&hler form w = g(J-,-). Let
F be a closed integral two-form of type (1,1) and suppose that the vector field Z is
F-Hamiltonian, preserves the Kéhler structure, and has non-vanishing norm. Let a €
C>®(M) such that da = —Z 1 F. With respect to the twist data (Z, F,a) we let W
either be a smooth twist, in case it exists, or, as explained in Remark 2.1.15, a transverse
submanifold.

Our goal is to use the twist to construct a Kéahler structure on W using the Kéhler
structure on M. By Lemma 2.1.14 we know that Jy is a complex structure on W.
However, the unique two-form wyy that is H-related to w is in general not closed, as is
apparent from Eq. (2.1.13).

To remedy this, we will consider the twist of a deformation of the Kéhler metric on
the distribution spanned by Z and JZ. Let o = g(JZ,-) and 8 = g(Z,-).

Definition 2.1.16. An elementary deformation gV of g (vespectively w’¥ = g™V(J-,-) of
w) with respect to Z is given by

g~ = hig + ha(a® + %), (2.1.20)
wY = hiw + haf A a, (2.1.21)

for Z-invariant functions hy, he € C*°(M) such that hy + 5(Z)he # 0.
Remark 2.1.17. The condition hy+3(Z)ha # 0 is equivalent to g"¥ being non-degenerate.

Theorem 2.1.18. Let wyy be a twist of w¥ with respect to the twist data (Z,F,a). Then
(W, ww, Jw) is Kahler if and only if

dw™ = a7 (hy + hoB(Z))F A a. (2.1.22)

In particular, the Kdhler form ww and metric gw are given by

Z
myww = TN — AT (}W;Qﬂ()a> , (2.1.23)
wirgw = 7t gN — 20 . 1 (}“”Mﬁ) 4t <h1+h§B(Z)B(Z)> 6. (2.1.24)
a a
Remark 2.1.19. Splitting
g—§+71 (a*+ %) and w—dH—il BAa
B(Z) B(Z) ’
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into the distribution spanned by Z and JZ and its orthogonal complement, Eqs. (2.1.23)
and (2.1.24) yield

o hhAE) [, BB,

Tyww = hiw + 3(2) (ﬁ - 9) Ao, (2.1.25)
. hithaB(2) 8(2) )\

Tw9w = h1g + W <C¥2 + (B — a@) ) s (2126)

where tensor fields on M are understood as being pulled back by .

Proof of Theorem 2.1.18. Applying Corollary 2.1.11 to dwyy, we see that wy is closed if
and only if w! is closed with respect to dy = d — a™'F A Z 1, which is equivalent to
Eq. (2.1.22). Let Xy ~3 X and Yy ~4 Y. Then JX = Jm by the definition of
Jw . Since m*w? and myww agree on H, it follows that wyy is of type (1, 1) with respect
to the complex structure Jyy.

To verify the formula for gy, we write 7, g = 7*gN +~-0+ 202 for v a horizontal

one-form and f a function on P. Then from
* 7 x7 N 1 1 5
0=mygw(Z,")=7m"(9"(2,) + 57 +0-(af +57(2) |, (2.1.27)

we find comparing the horizontal and vertical parts that v = —27* (Mﬁ) and
f=n (%@mz)ﬂ(@), vielding Eq. (2.1.24). O

In the following we will give two examples of Kéhler twists. The first one yields a
metric that is identical to the metric obtained through the Kéhler /Kéhler correspondence,
as will be shown in Section 2.3. The second example is an adaptation of a twist of a

hyper-Kéahler structure to a hyper-Kahler structure in [Swal4].

Proposition 2.1.20 (K/K correspondence). Let f be a moment map of Z with respect
tow. Thena= f1:= f — % (Z) is a moment map of Z with respect to F := w — %dﬁ.
Set hy = %, hgy = *ﬁ’ where o = sign f, and assume that f and fi have no zeroes on
M. Then the twist of g% = hig + hao(a? + B%) yields the Kihler metric gw given by

mygw =7"g" — 207" <2Uf2ﬂ) + <‘;§f?> 62 (2.1.28)

R f1 02 _B(2) ?
e <g+fﬁ(Z) ( +(9-7500) )) (2129
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and Kdhler form ww given by

mipwy = WY — AT <20f2a) (2.1.30)
L (. il ( B(Z) ) >
= + 8- 0)Aa). 2.1.31
a7 (4 7t (-5 (2131)
Proof. The function hy + hef(Z) = % has no zeroes by assumption. Thus ¢" and its

twist gy are non-degenerate. The two-form df is of type (1,1) since Z is holomorphic
and, hence, F' is of type (1,1). We compute

ZJF:—df+%ZJdB:—df—%d(B(Z)):—dfl, (2.1.32)

thus (Z, F,a) are twist data. To see that gy is Kéhler, we verify Eq. (2.1.22). First,

note that a=!(hy + heB(2)) = h—fl and then compute

dw®™ = dhi Aw~+dha A BAa+hedB A a
N————

=0
M M
= Fwha-gzdina (2.1.33)
1

= ail(hl + hgﬁ(Z))F AR

Hence, gy defines a Kéhler metric on W by Theorem 2.1.18. O

Proposition 2.1.21. Let f be a moment map of Z with respect to w. Choose hy = 1,
he a polynomial in f, F = d(h2f), and a = 1 4+ heB(Z), assuming a # 0 on M. Then
the twist wy of w is Kdhler with Kdhler form wy given by

T = T W’ — 0 AT (2.1.34)
. a B(Z) )
=w+ B — 0) A a. 2.1.35
i (7 (2:4:39)
The Kdhler metric gw is given by
= — 26 ———4f 2.1.
Tiygw =g Wﬁ+1+h25(z) (2.1.36)

2
— g+ 6(“2) (OP T (5 - B(GZ)9> ) . (2.1.37)
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Proof. First note that since hg is a polynomial in f, he is Z-invariant and F' is of type

(1,1). Also, we easily verify Z 4 F = — da. Finally we compute
dwN =dhay ANBANa+hadB Aa=d(hyB)ANa=F Aa, (2.1.38)
and it follows from Theorem 2.1.18 that the twist is Kéhler. O

Example 2.1.22. Let (Z, F,a) and hy, hy as in Proposition 2.1.21. We work in a local
trivialization of the S!-principal bundle P with local connection form 6 = ds+hsf3, where
s is the coordinate on S'. In this trivialization, the lifted action with respect to the twist
data (Z, F,a) is given by Z = Z+ (14 ho(2))0s = Z+ (1+ho(Z) —0(2))0s = Z +Ds.
We choose W = {s = 0} as the transverse submanifold, and we find the following local

formulas for the twists gy and wyy of ¢V and w?:

wy =w+hfAa—0Na=uw, (2.1.39)

gw =g+ ho <a2 - iﬁ2> (2.1.40)
. 1

=g+ B(GZ) (Oé2 + CL2/82> . (2141)

Hence, the twist leaves the Kédhler form invariant but deforms the complex structure

locally along the distribution spanned by Z and JZ.

2.2 Ricci curvature of Kéahler quotients

Let (M, g, J) be a 2n dimensional (pseudo)-Kéahler manifold with Kéhler form w = g(J-,-)
and suppose there is a non-vanishing time- or spacelike Hamiltonian Killing vector field
Z, inducing an S'-action, with moment map u € C°(M), du = —w(Z,-). Assume that
m € R is a regular value of u. Then N := p~(m) C M is a smooth submanifold that is
invariant under Z. We assume that the induced S'-action on N is free. Let M’ := N/S*
be the quotient and denote by ¢ : N <« M and w : N — M’ the inclusion and the
quotient map, respectively.

The map 7 is a principal S'-bundle with vertical distribution Z := ker d7 spanned by
the vector field Z. The metric defines a J- and S'-invariant complementary distribution

E := Z*+, giving the orthogonal decompositions

TN =FE®Z, and (2.2.1)
UTM =TN® JZ. (2.2.2)
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In fact, F is the horizontal distribution given by the connection one-form
9(Z,-)/9(Z,2) € @' (N,s' = R). (2.2.3)

For any vector field X on N we denote by vX and hX the vertical and horizontal

components of X, respectively. We define a (pseudo)-Riemannian metric on M’ via
g;(p)(dﬂ(U), dn(V)) == gp(U,V), U,V € E,,pe M. (2.2.4)

This turns 7 : (N,t*g) — (M’,¢') into a (pseudo)-Riemannian submersion. We call
a vector field X on N basic if it is the horizontal lift of a vector field X’ on M/, i.e.,
X=X

We denote by V, V¥ = *V, and V' the Levi-Civita connections of M, N, and M’,

respectively.

Proposition 2.2.1 (|[FPI04, Proposition 1.1|). If X, Y are horizontal lifts of vector fields
X" Y" on M, then h(VYY) is the horizontal lift of V', Y.

Proof. Note first that g(X,Y) = ¢/(X’,Y’) o from Eq. (2.2.4). Let Z be the horizontal
lift of an arbitrary vector field Z" on M'. We find X(¢(Y,Z2)) = X(¢'(Y',Z") o) =
X'(¢(Y',Z"))om and g([X,Y],Z) = g(h[X,Y],Z) = ¢'([X",Y'], Z') o w, where we have
used that h[X,Y] is the horizontal lift of [X’,Y”]. Now, using the Koszul-formula,

29(hVYY, Z) = 29(VYY, Z)
=X(g(Y,2)) +Y(9(X, 2)) - Z(9(X,Y))

(2.2.5)
= g/(V/X/Y’, Z/) O Tr.
Since Z' was arbitrary and 7 is surjective, the claim follows. O

It is well known [HKLR87, Fut87] that ¢’ is a Kéhler metric with K&hler form «’

given by m*w’ = t*w.

Definition 2.2.2. The Kihler manifold M’, constructed above, is called the Kdhler-
quotient of M with respect to the S'-action, the moment map p and the regular value
k, and we write M’ = M J St.

We define the (1, 2)-tensor field A : E x E — Z by

A(X,Y) = AxY = o(VYY).
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The tensor field A is one of the fundamental tensor fields of the (pseudo)-Riemannian

submersion 7 as defined in [O’N66|, satisfies
1
A(X,Y) = S0lX,Y], (2.2.6)

and is related to the second fundamental form IT : TN x TN — TN+ of N ¢ M as

follows.
Proposition 2.2.3 ([Kob87|). Let X,Y € E. Then

AX,JY)=JI(X,Y))
(2.2.7)
II(X,JY)=JAX,Y)).
In particular, A(JX,JY)=A(X,Y) and II(JX,JY) =1I(X,Y).
Proof. Let X,Y be horizontal vector fields, then
VxY =VYY +II(X,Y)
= W(VYY) +0(VYY) + II(X,Y) (2.2.8)
= (VYY) + AX,Y)+ II(X,Y).
The claim follows by comparing Vx(JY) and JVxY and using the directness of the
sum (*TM =T"N & TN & TN+ O

Proposition 2.2.4. Let 7*F be the curvature of the connection Eq. (2.2.3) of the S!-
bundle 7 : N — M’, given by a closed two-form F € QY(M'). Then

1
AX)Y) = —iw*F(X,Y)Z, (2.2.9)
and F is of type (1,1).

Proof. Let X, Y be horizontal vector fields on N. The first claim follows from Eq. (2.2.6)
and the standard formula v[X,Y] = —7*F(X,Y)Z. The second claim is a direct conse-
quence of Eq. (2.2.9) and Proposition 2.2.3. O

Let FF = Z ® JZ such that *TM = FE & F. By J-invariance of E and F' we have

orthogonal decompositions into +i-eigenspaces

E ® C — El»o EB E0’17 (2210)
F ® C — F170 @ F011, (2.2.11)
L*T(l’O)M _ ELO D Fl,O' (2212)
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Note that £ is integrable as we can write E'0 = *T*OM N (TN ® C).

Since Z is a (real) holomorphic vector field the section Z¢ := $(Z — iJZ) of F
is holomorphic. Its (possibly negative) norm || Z||? := g(Z, Z) is invariant under Z and
therefore descends to a function || Z||2 on M’

We will now derive a formula connecting the Ricci tensors of M and M’ following the
treatment of [Fut87].

The connection VN = *V of fTHON = F10) ¢ F(.0) induces connections on
E10) and F(19) which we will denote by V and V?, respectively. By the same symbols
we will also denote the induced connections on the line bundles det M9 M, det EL0),
and det F9) . Let 0, 0" and 0¥ be the corresponding connection forms of VY, V» and
V? with respect to the frames X1 A...AX,,_1AZg, X1 A...ANX,_1 and Zg, respectively,
where {X;}?"' is a pseudo-orthonormal basis of basic vector fields of E(1?) such that
| X;|> = €; € {#1}. Then, by virtue of the wedge product, § = " + 6°.

Let X be a basic vector field. Then, using Proposition 2.2.1, we find

O (dr(X))drn(X1) A ... Adr(Xp—1)

n—1
= dn(X1) A A Vi dm(X) A Ada(Xp)
=1
n—1
= dr(X1) A Ade(VEX) AL A dr(X 1) (2.2.13)
=1

n—1
= m(XIA L LAVEX AL A X, )
=1

= (V’}((Xl A A Xn_l))
= 0" X)dn(X)) A ... Ndr(Xn_1),
hence, 70" = 6" o prj, =: 9. Set 67 := " o pr, and 67 := 0" o pr; for i € {h,v}.
Denote by p’ and p the Ricci form of M’ and M. Then
0 =in*df =id(nx*0') = id6}
=id(— 0" —6Y) (2.2.14)
= ("p) —i(dy + db"),
where we have used 6 = 07" + 0" 4 0¥ and that the curvature form of the canonical line
bundle over a Kéhler manifold is given by ¢ times its Ricci form.

Remark 2.2.5. Note that the curvature form of the canonical line bundle A9 M is given
by —df as A0 M = (det T M)*,
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Lemma 2.2.6. Let Y € E09 and o = sign(|| Z||?). Then
(i) do;, = n*(901og(al| Z|I%)),

(i) do(Y,Y) =i(JA(Y,Y)log(c||Z||?)), and

n—1
(iii) d6"(Y, V) =2 e g(A(Y, V), A(X;, X)).
=1

Proof. (i) Since Z¢ is holomorphic V¥Z¢ and 6} are 1-forms of type (1,0). Further-

more, we have

VyZe, Z¢)

o) Ze = Vi 26 = % Ze

1Z¢||? (2.2.15)
= (Y log(a || Zc|*)) Ze = (91og(a ]| Z|*))(Y) Ze.
2 - ) = > 12
Thus, db}; = dr*(9log(a||Z]")) = 7*(901log(a]| Z]|")) = " (9D log(a ]| Z]]"))-
(ii) We first note that

d02(V,Y) = —0°(v[Y,Y]), for e € {h,v}, (2.2.16)

since 0% = 0° o v vanishes on E by definition. Let X = 2(v[Y,Y] — iJo[Y,Y]) =
A(Y,Y) —iJA(Y,Y). Then, since Z¢ is holomorphic,

0 (v[Y,Y]) Z¢ = VE[YY]ZC = V% $Zc=ViZc
= (Xlog(a]|Z2]1*)) Ze (22.17)
= —i(JA(Y,Y)log(0]|Z]*)) Ze-
The last equation holds, since || Z||? is constant along fibers.
(iii) This follows from Eq. (2.2.16),
'Y, YDX1 A ... A Xn 1
=V Xl/\---/\anl)

h
v[Y,Y] (

n—1
:ZXl/\.../\VZ'[Y’—Xi/\.../\Xn_l
=1

Y]
(2.2.18)
n—1
=Y Xi A AV X X)X A A X
i=1
n—1

= Z Eig<vv[y7?]Xi,yi)X1 AN ANXp 1,

=1
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and
99y 5 X0 o) = g(Vx, 0¥ V), o) — g([o[Y, V), X, o)
= g(Vx,0[Y.Y], X))
=X; Yva?yiz - YY[,Vx, Xi
@OWTLE) g0l TLYR )

= —g[Y,Y],Vx; Xi)
= —g(lY,Y],v(Vx, X))
= —29(A(Y,Y), A(X;, X)),

where we have used that [v]Y, Y], X;] is vertical since X; is basic. O

Proposition 2.2.7 (|Fut87, Proposition 3.12|). Let Ric’ and Ric be the Ricci curvature
of M'" and M, respectively. Then for Y € E9 we have

T Rid (Y, Y) = Ric(Y,Y) — 7*(8dlog(c ]| Z|))(Y,Y)

—iJA(Y,Y)log(co]|Z]%) (2.2.20)

n—1
—2) 6 g(A(Y,Y), A(X;, X3)),
i=1

where {X;} is a basic orthonormal basis of E10).

Proof. The Ricci form is defined as p(X,Y) = Ric(JX,Y) for X, Y € X(M). Hence,
p(Y,Y) = iRic(Y,Y). Using Eq. (2.2.14) and Lemma 2.2.6 the claim follows. O

Corollary 2.2.8. Let M be Kihler-Einstein. If | Z||? is constant on level sets of u and
A =0 then M’ is Kihler-FEinstein.

Proof. By our assumptions all terms but the first vanish on the right hand side of
Eq. (2.2.20). Let Y € EYY. Then

7 Rid'(Y,Y) = Ric(Y,Y) = \g(V,Y) = Mg/ (V,Y), (2.2.21)
where ) is the Einstein constant of M. Thus M’ is Einstein. O

Example 2.2.9. Let (S?"*! g5, Z 1, ®) be a regular pseudo Sasaki-Einstein mani-
fold with contact form 7, Reeb vector field Z, and (1,1)-tensor field ®. We set o =
sign(gs(Z, Z)). Pseudo Sasakian manifolds that are Einstein have Einstein constant 2no.
Its Riemannian cone (M = S x Rsg,§ = o dr? +rigg,& = 2 d(r’n)) is Kihler-Einstein
and Ricci-flat and the Euler vector field rd, satisfies Jrd, = Z and §(Z, Z) = or?. By
regularity of Z, S is a principal S bundle 7 : S — M’ over a Kihler-Einstein manifold
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(M',¢',w') where m*w’ = Jodn and gs = *¢’ + on?. M’ corresponds to the Kihler
quotient of M with respect to the holomorphic Killing vector field Z on the level-set
{r=1}=8x{1} =5.

We have

AYY) = iv[Y, Y] = ~3 dn(Y,Y)Z = —on*J (YV,Y)Z = —iow*g (Y, Y)Z. (2.2.22)

Using V,5.Z = Z we find

JZ(log (o Zc|?)) = —r dr(log(c|| Zc|?)) = —2. (2.2.23)
Thus
iTAY, V) log(0l|Zell?) = 20 7*¢/(V,T), (2.2.24)
and
n—1 n
2) €AY, Y), AX;, X)) = =279 (YV,Y)§(Z,2) ) e ¢/ (Xi, X3)
gt o T (2.2.25)

=€;

= 2non*g (Y,Y).
Finally, using Eq. (2.2.20),
7*Rid (Y,Y) = 20(n+ 1)7*g (Y, Y). (2.2.26)

So M’ is Kahler-Einstein with Einstein constant o(2n + 2). This result is well-known,

see, for instance, [BGO8, Theorem 11.1.3| for the Riemannian case.

2.3 The Kéahler /Kéahler correspondence

Let (M, g, J) be a 2n dimensional (pseudo)-Kéahler manifold with Kéhler form w = g(J-,-)
and a non-vanishing Hamiltonian Killing vector field Z such that ¢(Z, Z) is nowhere
zero. Let f be a Hamiltonian function of Z, i.e., df = —Z Jw and assume that f and
fii=f— %g(Z, Z) are nowhere vanishing. Set §:=g¢(Z,-) and a:=g(JZ, ) = —df.

Assume there is a principal S'-bundle 7 : P — M with connection # and curvature
df = 7 (w — 3B(Z)), and endow it with the metric

2
gp :=7"g+ EQQ, (2.3.1)

and the tensor field .
n:=0+ §B’ (2.3.2)
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where we have identified tensor fields on M with their pullbacks to tensor fields on P.
Denote by Xp the fundamental vector field of P. Let M := P x R with the coordinate
¢ on the Rsg-factor. On M we introduce the following tensor fields.

552 O,

G = (gp + 2f dt*> + 2df dt),

N 2.3.3
0 := et <6’+ ;ﬁ) , and ( )
W= dé,

where we have again identified tensor fields on M and P with their canonical pullback

to M. We will also denote the canonical lift of Xp to M by the same symbol.

Definition 2.3.1. A conical Kdihler manifold (M, g, j,f) is a pseudo-Kahler manifold
(M,g}, j) and a vector field £ such that g(é, é) has no zeroes on M and V& = id, where

V is the Levi-Civita connection of M.

Theorem 2.3.2 ([ACM13, Theorem 1|). Given (M,g,J) and Z, then the manifold

(M,g, J = g—la;,é), constructed as above, is a conical Kdhler manifold.

On M the vector fields Z := J € =7+ f1Xp and Xp are holomorphic Killing vector
fields and commute. We have Xp 1@ = —d(e?'), so P = P x {1} = {€? = 1} and we
recover M as the Kahler quotient of M with respect to the moment map e? and the
regular value m = 1.

Moreover, the manifold (M ,g) is a metric cone over a pseudo-Sasakian manifold
(S, 9s). The norm of the Euler vector field ¢ defines the radial coordinate 2 = |§(é, é)] =
2|fle?* and S = {r = 1} is diffeomorphic to P. The metric § takes the form § =
odr? +r?gg, where o = sign(g(é,é)).

Theorem 2.3.3 (JACDM15, Theorem 3|). The tensor field

2
gp = gp — 21fa2 - ; (0 + ;g) (2.3.4)

on P is tnvariant under Zp and has a one-dimensional kernel RZ. Let W be a subman-
ifold of P which is transversal to the vector field Z. Then

1

/ ~

g ‘= ———9gr\w 2.3.5
21779 (2.3.5)

is a possibly indefinite Kdhler metric on W.
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Remark 2.3.4. (1) The above relation between the Kéhler manifold (M, g, J) together
with its Hamiltonian function f and the K&hler manifold W is what is called the
K/K correspondence.

(2) In the original proof in [ACDM15], the authors show that the metric ¢’ corresponds
under the identification S = P to the transverse Kahler metric of the Sasakian

structure of S. We give an alternative proof using the twist construction.

Proof of Theorem 2.3.3. We note that J& = Z =7+ f1iXp is a lift of Z with respect
to the twist data (Z, F,a), where we have set a := f; and F = w — %B. Solet W C P
be transverse to Z. We choose hi = ﬁ and hy = ]2’} We have already shown in
Proposition 2.1.20 that the twist gy of ¢ = h1g+ho(a?+ 3?) with respect to the above

data is Kéhler. We compute (identifying tensors on M with their pullback to P)

e () (5

= (gpr =t =)~ (5p2) + (37.2)

1 1 2 B( ) 2>
- ~Zpe+ 2%
= g7 (9 gt + 9%~ Jo0+ R 256)
g (o= (5 -52) 022008 5.5 - e
2| f| fi  Af f 2f 2f
2
=7
! _1a2_2<9+15>2
T \7 et U727 )
Hence ¢’ = 7, gw|w = gw is Kéhler. O

2.3.1 Curvature properties of the Kéihler /Ké&hler correspondence for
conical Kihler manifolds

Let (M, g,J) be a Kdhler manifold with Kahler form w = g(J-,-), non-vanishing Hamil-
tonian Killing vector field Z, g = g(Z,-), —df = —-Z 2w, f1 = f — %B(Z), and f, f1 both

non-zero. Set o := sign(f).
Lemma 2.3.5 (JACM13, Lemma 1]). f1 is constant if and only if VzZ = JZ.

Proof. Let h = $3(Z). We have

dh = g(VZ,2) = —g(V32,-) =w(VzJZ,). (2.3.7)
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Thus df; = d(f —h) = —w(Z + JV zZ,-) which is identically zero if and only if VzZ =
JZ. O

Lemma 2.3.6. We have w — %dﬁ =0 if and only if VZ = J.
Proof. We compute

dﬁ(X7Y) = X(g(Z, Y)) - Y(g(Z,X)) - g(Z7 [X’ Y])
=—g9(X,VyZ)+g(Y,VxZ) (2.3.8)
— _29(X,VyZ) = —2w(X,VyJZ).

Thus
(w _ ;d6> (X,Y) = w(X,Y + Vy J2), (2.3.9)

which is identically zero if and only if VZ = J. O

Following the treatment of [Dyc15, Section 4.1.1] in the case of the HK /QK correspon-
dence applied to conical hyper-Kéhler manifolds, we will apply the K/K correspondence
to a conical Kéhler manifold (M, g, J,&) with Z = J¢.

We set g(£,€) = Ar? where A\ = sign(g(&,€)). Then a moment map of Z is given
by f = %(7‘2 +c¢) and f1 = %c. We denote the sign of f by 0. By Lemma 2.3.6 we
can choose P = M x S* and Z = Z + A50s, denoting by s the coordinate in S1. The
submanifold W := {s = 0} =2 M is transverse to Z. The metric obtained from the K /K
correspondence Eq. (2.3.5) on W is then given by

A U SRR U 2( 1))‘
g = gp — " —— |0+ -
2\f\< 2f f 2 w
1
:%(Q*ﬁ(a2+ﬁ2)) (2310)
N 7“2169_ (r? j—c)z(a2 +5:

Example 2.3.7. Consider M = C"\ {0} with standard coordinates given by (2!, ..., 2")
and standard metric g = dz’ dz*. Its conical vector field is given by &€ = rdr = 2Re(z'0.:),
we set Z = J¢, and we find a = —3(2'dz' + z'dz") and B = L(z'dz' — z'dz"). Set
f=21(lz*+¢) and o = sign(f). If ¢ > 0, then f > 0 on M. For ¢ < 0 we restrict M
to M, = {c+ |z||*> < 0} = {f < 0}. Then Eq. (2.3.10) reads

, dz dz’ 7l dzt d7
g =0 — O .
ctllzl? (e lz]?)?

(2.3.11)
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This shows that (M., g’) for ¢ < 0 is isometric to the complex hyperbolic space CH™.
Note that for ¢ > 0 the metric ¢’ on €™ \ {0} extends to all of C"™. Hence (C",¢’) is
isometric to {[z0 :...:2"] | 2Y # 0} c CP™

Proposition 2.3.8. Let (M, g, J, &) be conical Kdihler and set Z = JE. If the conical
Kdhler manifold M obtained from Theorem 2.3.2 is Einstein (or, equivalently, Ricci-flat)

then M is necessarily Ricci-flat as well.

Proof. Since M is conical and Z = J¢, the principal S'-bundle P — M is flat by

Lemma 2.3.6, hence, the tensor A from Section 2.2 is zero. We have §(Xp, Xp) = %e%

and the moment map of Xp is simply e*. So Xp has constant norm on level sets
if and only if f; is constant on M. The statement then follows from Lemma 2.3.5

and Corollary 2.2.8. O

Theorem 2.3.9. Let (M, &) be a 2n-dimensional conical Kdihler manifold with Hamil-
tonian function f. Set o = sign(f). If every manifold W that is obtained from M and
f wvia the K/K correspondence is Einstein with Einstein constant o(2n + 2), then M is

necessarily Ricci-flat.

Proof. Note from Eq. (2.3.3) that the signature of (&, €) is determined by o = sign(f).
Let (S C M, gs) be the Sasaki submanifold over which M is the metric cone. We choose
gs such that the norm of the Reeb flow is given by o. Assume that every W obtained
from M and f is Einstein with Einstein constant A := o(2n + 2). Since any such W
is isometric to a submanifold of S transverse to the Reeb foliation this is equivalent to
the transverse metric of the Sasakian structure to be Einstein with Einstein constant A.
From this we conclude that M is Ricci flat, see, for instance, Example 2.2.9, or [BGOS,
Theorem 11.1.3, Lemma 11.1.5] for the Riemannian case. By Proposition 2.3.8 it follows
that M is necessarily Ricci-flat. O

Example 2.3.10. Another interesting case arises when applying the K/K correspon-
dence to a conical Kéhler manifold (M, g, J,&) with Z = 2J¢. We will assume that M
is a cone over a regular Sasaki manifold that fibers over a Kihler manifold (M, g). If M
is only locally a cone or S is not regular, we can instead choose M as a submanifold of
S transverse to the local Reeb flow of S. Let A = sign(g(&,€)) and r? := [g(&,&)|. Tt
was shown in [ACDM15, Theorem 4| that when applying the K/K correspondence to M

with f = Ar2, one obtains a product manifold

(W,2¢") = (R”% x S* x M, —Agem + 9), (2.3.12)
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where geogn = r}ﬂ(dpQ + d¢?), p is a coordinate on R, and ¢ = —4s is related to
the coordinate s on the S'-factor. The metric gegn is Einstein with Einstein constant
Acgr = —4. Recall that a product metric is Einstein if and only if the factors have the
same Einstein constant. Hence, in this case, the metric ¢’ is Einstein if and only if § is

Finstein with Einstein constant A’ = —\.






Chapter 3

The ASK/PSK correspondence

In this chapter we will establish the ASK/PSK correspondence relating affine special
Kahler manifolds to projective special Kahler manifolds.

We begin in Section 3.1 with an introduction to special Kéhler geometry, mostly
following [ACDO02].

In Sections 3.2 to 3.4 we introduce the necessary technical tools needed to formulate
the conification construction and the ASK/PSK correspondence.

Section 3.5 contains the generalization of the statement that the affine special Kéhler
structure of an affine special Kéhler manifold is locally induced by Ké&hlerian Lagrangian
immersions [ACDO02].

In Section 3.6 we prove a completeness result for a one-parameter deformation of a
positive definite Hessian, which will be specialized in Section 3.7 to the case of the r-map.

Finally, Section 3.7 will contain our results of the application of the ASK/PSK cor-
respondence to the case of the r-map, cf. Diagram Eq. (1.2.2).

3.1 Special Kahler geometry

Definition 3.1.1. An affine special Kdhler manifold (M, J,g,V) is a pseudo-Kéahler
manifold (M, J, g) with symplectic form w := g(J-,-) endowed with a flat torsion-free
connection V such that Vw = 0 and dVJ = 0.

An affine special Kéhler manifold has the property that a V-parallel one-form « is
holomorphic as a section of the holomorphic cotangent bundle (7*M, J). This follows

from the next proposition.

29
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Proposition 3.1.2 ([ACDO02, Proposition 1]). Let V be a flat torsion-free connection
on a complex manifold (M,J). Then dV.J = 0 if and only if d(aco J) = 0 for all local

V-parallel one-forms o on M.

Proof. Let a be a local V-parallel 1-form, and X,Y be local vector fields such that
VJX =VJY =0. We compute

@V I)(X,Y) = (VxJ)Y = (Vy )X
=VxJY — JVxY —VyJX + JVyX (3.1.1)
=-JX,Y],

and

d(ao J)(X,Y) = X(a(JY)) - Y(a(JX)) — a(J[X,Y])

const. const. (3 1. 2)
= —ao J([X,Y)).

This shows that dV.J = 0 if and only if d(a o .J) = 0 for all local V-parallel one-forms o
on M. O

Definition 3.1.3. Let M be a complex manifold of complex dimension n and consider the
complex vector space T*C" = C?" endowed with the canonical coordinates (z!,..., 2",
wi, ..., W), standard complex symplectic form Q = "% | dz* A dw;, standard real struc-
ture 7 : C?" — C€?" and Hermitian form v = @Q(,T) A holomorphic immersion
¢ : M — C?>" is called Lagrangian (respectively, Kdhlerian) if ¢*Q = 0 (respectively, if
¢*v is non-degenerate). ¢ is called totally complex if dp(T,M) N 7dp(T,M) = 0 for all
pe M.

Remark 3.1.4. Our conventions differ slightly from [ACD02, CDM17] in that we have set
w = g(J-,+) in contrast to w = g(+, J-). One consequence of this is that a Hermitian form
~ (which, in both conventions, is C-linear in its first argument) and a Kéhler structure
(g,w) are related via v = g — iw. Also, our Hermitian structure on C?" differs from the
Hermitian structure of [ACDO02| by a factor of 1.

Proposition 3.1.5 (JACD02]). Let ¢ : M — C*" be a holomorphic immersion.
(1) ¢ is totally complex if and only if its real part Re ¢ : M — R?" is an immersion.

(2) If ¢ is Lagrangian, then ¢ is Kdhlerian if and only if it is totally complex.
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A Kéhlerian Lagrangian immersion ¢ : M — C€?" induces on M the structure of
an affine special Kéhler manifold. Locally, an affine special Kédhler manifold can always
be realized as a Ké&hlerian Lagrangian immersion. This is reflected in the following

proposition.

Proposition 3.1.6 (|[ACD02|). Let (M, J,g,V) be a simply connected affine special Kih-
ler manifold of complex dimension n. Then there exists a Kdhlerian Lagrangian immer-
sion ¢ : M — C?™ inducing the affine special Kihler structure (J, g, V) on M. Moreover,

s unique up to a rtransjormation o Yy an eement n 2n .
js uni to at ti b I t in Affgppan) (C*"

More precisely, the action of the group Aﬂ"sp(Rzn)(CQ”) on the set of Kéahlerian La-
grangian immersions ¢ : M — C?" is simply transitive, as can be proven along the lines

of the proof of simple transitivity in Proposition 3.2.10.

Definition 3.1.7. Let ¢ : M — C?" be a Kihlerian Lagrangian immersion of an affine
special Kédhler manifold M. Denote by A = w'dz = Y ; w; d2* the Liouville form of
C?". A function F : M — C is called a prepotential of ¢ if dF = ¢*\.

Remark 3.1.8. (1) The function K := (¢, ¢) is a Kahler potential of the Kéahler form
w, i.e., w = %85[(.

(2) Let M be a local affine special Kéhler manifold given as a Kéhlerian Lagrangian
immersion ¢ : M — C?". Then the pullback of the canonical coordinates of
T*C" = C?" gives functions 2, ..., 2", w1,...,w, : M — Csuch that ¢ = (z,w) :=
(z%,...,2" wi,...,wy,). It can always be achieved that z,w : M — C" are holo-
morphic coordinate systems by replacing ¢ with z o ¢ for some x € Sp(R*") and
restricting M if necessary, c.f. [ACDO02, Section 1.2|. In this case, we call (z,w) a

conjugate pair of special holomorphic coordinates.

(3) Let ¢ = (z,w) : M — C?" be a Kihlerian Lagrangian immersion of an affine
special Kéhler manifold given by a conjugate pair of special holomorphic coor-
dinates (z,w) and let F' : M — C be a prepotential of ¢. Then we can iden-
tify M = z(M) C C" and ¢ with dFF : M — T*M = C?". In particular,
d(M) = {(z,w) € C" | w; = aF} is the graph of dF over M. In this case,

0z*
M C C" is called an affine special Kihler domain and K(p) = > i Im(z'F))
where F; := gfz

Definition 3.1.9. A conical affine special Kdahler manifold (M, j,f],@,{) is an affine
special Kihler manifold (M,.J,§,V) and a vector field ¢ such that §(£,€) # 0 and
@5 = ﬁ{ = Id, where D is the Levi-Civita connection of g.
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Note that contrary to [CHM12, Definition 3| here we are not making any assumptions
on the signature of the metric §.

A conical affine special Kéhler manifold M of complex dimension n—+ 1 locally admits
Kihlerian Lagrangian immersions ® : U — C?"*2 that are equivariant with respect to the
local C*-action defined by Z = ¢ — iJ¢ and scalar multiplication on C?" [ACD02]. As a
consequence, the function K := % 3(Z,7) = §(&,¢) is a globally defined Kihler potential
of M. Indeed, if p € U, then f((p) = gp(&,&) =(2(p), ®(p)), where 4 = %Q(,’) for the
standard symplectic form Q) of C2+2,

If the vector field Z generates a principal C*-action then the symmetric tensor field

/ g (0K)(0K)
g = —% + T (313)

induces a Kihler metric § on the quotient manifold M := M /C*, compare [CDS16,
Proposition 2|. It follows that 7% = ¢’ and 7@ = —99log |K|, where @ = g(J-, ) is
the Kihler form of M and m : M — M is the canonical projection. Set D := span{¢, J¢}.
Note that if K > 0, then the signature of g is minus the signature of §lpL, whereas if
K < 0, then the signature of g agrees with the signature of g|p..

Definition 3.1.10. The quotient (M, g) is called a projective special Kdhler manifold.

Remark 3.1.11. Let ® = (Z,W) : M — C?*"*2 be an equivariant Kéhlerian Langrangian
immersion such that (Z, W) is a conjugate pair of special holomorphic coordinates. Iden-
tify M = Z(M) C C""!. Then the prepotential F : M — C can be chosen to be
homogeneous of degree 2 such that ® = dF.

3.2 Symplectic group actions

3.2.1 Linear representation of the central extension of the affine sym-
plectic group

Let G = Sp(R?") x Heisg,1(R) be the extension of the real Heisenberg group by
the group of automorphisms Sp(R?"). The complexification of G is the group G¢ =
Sp(C?") x Heisg,1(C) which contains G as a real subgroup. Given two elements z =
(X,s,v) and 2/ = (X', s',v") € Gg, where X, X' € Sp(C?"), s,s' € C = Z(G), and
v,v" € C?", their product in Gg is given by

1
r-2 = <XX’,3+3’+QQ(U,XU'),XU’—i—v), (3.2.1)

where  is the symplectic form on C?".
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The group G¢ is a central extension of the group Aﬁsp(czn)(02") of affine transfor-
mations of C2" with linear part in Sp(C?"*). The two groups are related by the quotient

homomorphism
Ge — Affgpe2n) (C*") = Ge/Z(Ge), (X, s,v) = (X, v). (3.2.2)

This induces an affine representation p of G¢ on C?" with image Affsp(czn)(CQ") whose
restriction to the real group G has the image p(G) = Affsp(Rzn)(RQ"). In the complex
symplectic vector space C?" we use standard coordinates (z!,..., 2" wy, ..., w,) in which
the complex symplectic form is Q = Y dz? A dw;.

We will now show that p can be extended to a linear symplectic representation

p: Gg — Sp(C*+2) (3.2.3)
in the sense that the group p(G¢) preserves the affine hyperplane {2 = 1} € €?"*2 with
respect to standard coordinates (2°,wq, z' ..., 2" w1,...wy,) on C?"*2 = C2 @ C*" and

~

the distribution spanned by d,,, inducing on the symplectic affine space {2 = 1}/(0,,) =
C?" the symplectic affine representation p.

Remark 3.2.1. Notice that {20 = 1}/(y,) is precisely the symplectic reduction of C2"+2
with respect to the holomorphic Hamiltonian group action generated by the vector field
Owy- The group p(G¢) C Sp(C?"*+2) preserves the Hamiltonian 2" of that action and,
hence, p induces a symplectic affine representation on the reduced space. Similarly, we
will consider the initial real symplectic affine space R?" as the symplectic reduction of

the real symplectic vector space R?"*2 in the context of the real group G.

Proposition 3.2.2. (i) The map

1 0 O
r=(X,s,0) = plx)=|-2s 1 ot |, ©:=X'Quv=0uX v, (3.2.4)
v 0 X
0 id\ . , ) . 2
where Qg = i is the matriz representing the symplectic form on C-",
—1i

defines a faithful linear symplectic representation p : G¢ — Sp(C?"*2), which in-
duces the affine symplectic representation p : Gg — Affsp(czn)(CQ") in the sense

explained above.

(ii) The image p(Gg) C Sp(C?"2) consists of the transformations in Sp(C?"*2) which
preserve the hyperplane {z° = 1} C C?>"*2 and the complex rank one distribution
(Owy)- The image p(G) C Sp(R**2) C Sp(C*'*2) is the group that additionally

preserves the real structure of C*"+2.
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Proof. We first observe that, for K € {R,C}, an element of GL(2n + 2,K) preserves
{2% =1} and (Qy,) if and only if it is of the form

1 0 0
-2s5 ¢ w'|, (3.2.5)
v 0 X

where s € K, 0 # ¢ € K, v,w € K®", and X € GL(2n,K). One then checks that such
a transformation is symplectic if and only if X € Sp(K?"), ¢ = 1, and w = ©. Clearly
an element in GL(2n,K) preserves the real structure of C?" if and only if K = R. This
proves (ii) and shows that the linear transformation p(z) induces the affine transformation
p(x) € Affg,c2n)(C?") for all z € Ge.

To check that p is a representation we put u(z) := —2s, v(x) := 9 = X'Qov. Then

we compute
pw(rx') = p(x) + p@') — wlv, Xv') = pz) + p2’) + o'/, (3.2.6)

which coincides with the matrix element of p(x)p(z’) in the second row and first column.

Next we compute the column vector
Aaa) = (XX Q{0+ Xo') = (X) (1) + Qov') = (X)r(@) + (), (3.2.7)

the entries of which coincide with the last 2n entries of the second row of p(z)p(z’). From
these properties one sees immediately that p is a representation. It is obviously faithful,

since X, s, and v appear in the matrix p(z). O

We define the subgroup Gsk = Sp(R?") x Heisa,+1(C) C G¢ to be the extension of
the complex Heisenberg group by Sp(R?"). It contains the real group G as a subgroup
and is a central extension of the affine group p(Gsk) = Affg,g2n)(C*"). We will show
that Gskg acts on pairs (¢, F') of Kéhlerian Lagrangian immersions and prepotentials.
This gives a transformation formula, see Eq. (3.2.16), of prepotentials of affine special
Kéhler manifolds which generalizes de Wit’s formula (9) in [dW96a| from the case of

linear to affine symplectic transformations.

3.2.2 Representation of G¢ on Lagrangian pairs

Let £ C C?" be a Lagrangian submanifold and denote by 7 be the canonical Sp(R?")-
invariant 1-form given by 7, := Q(g, -), for ¢ € C?". In Darboux coordinates (z1,..., 2",
wy,. .., wy,) we can write n as n = Y 2* dw; — w; dz'. Since dn = 29, this form is closed

when restricted to L.
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Definition 3.2.3. We call a function f : £ — C a Lagrangian potential of £ if df = —n|,
and a pair (£, f) a Lagrangian pair if L C C*" is a Lagrangian submanifold and f is a

Lagrangian potential of L.

Proposition 3.2.4. The group G¢ acts on the set of pairs (L, f), where L C C*" is a
Lagrangian submanifold and f is a holomorphic function on L. The action is defined as
follows. Given x = (X, s,v) € G¢ and a pair (L, f) as above, we define

z- (L, f) = (xL,x- [), (3.2.8)

where zL := p(x)L and x - f is function on L defined as
z-fi=fox ' +Q(,v) - 2s. (3.2.9)
Moreover, if f is a Lagrangian potential of L, then x - f is a Lagrangian potential of zL.

Proof. For the neutral element e € Gg, clearly e - (£, f) = (L, f). Let ¢ € L and
z,2' € Gg with z = (X, s,v) and 2’ = (X', ¢,v'). Then
x- (2" f)(z2'q) = (@' f)(2'q) + Q2a'q, v) — 25

= f(q) + Q(2'q,v") + Q(x2'q,v) — 25 — 25’

1 (3.2.10)
= f(q) + Qza'q,v + X0') — 2 (s + 5 + 5Q(v, Xv’))

= (za') - f(2a'q),

where we have used the second-to-last equation that

Q(a'q,v") = Q(X2'q, XV)
= Qz2'q — v, XV') (3.2.11)
= Qza'q, Xv') — Q(v, X0').

This shows that Eq. (3.2.8) defines an action of G¢. Now let f be a Lagrangian potential
of £ and set § = zq. Then

dg(z - ) = dgf o d(@™") + dg(Q(-, v))
= —TMg©° X +Q(,0)
=g, X 1) +Q(-,0)
= _Q(Xq + v, ) = —Tg,

(3.2.12)

hence, x - f is a Lagrangian potential of = - L. O
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Definition 3.2.5. We call a Lagrangian submanifold £ ¢ C?" Kihlerian if the Hermitian
form v = /—1Q(-,7+) is non-degenerate when restricted to £. Similarly, a Lagrangian
pair (L, f) is called Kdhlerian if £ is Kéhlerian.

Lemma 3.2.6. A Lagrangian submanifold £L C C?" is Kihlerian if and only if L is
totally complex, i.e., ToL N TTLL = {0} for all g € L.

Proof. Since the inclusion ¢ : £ — C?" is a holomorphic Lagrangian immersion, the

statement follows from Prop. 3.1.5. O

Corollary 3.2.7. The group Gsk C G¢ acts on the set of Kihlerian Lagrangian pairs.

Proof. The group Gsk acts on C?" as the group p(Gsk) = Affsp(]Rzn)((DQ”) which is
the affine linear group that leaves invariant the complex symplectic form €2 and the real
structure 7 and, hence, also the Hermitian form v = /=1Q(-,7+). This shows that if
(L, f) is a Kdhlerian Lagrangian pair, then z- (£, F) = (p(x)L, z- f) is again a Kéhlerian
Lagrangian pair for all x € Ggk. O

3.2.3 Representation of Gsix on special Kahler pairs

Definition 3.2.8. Let (M, J,¢g,V) be a connected affine special Kdhler manifold of
complex dimension n and let U C M be an open subset of M. We call a pair (¢, F) a
special Kdihler pair of U if ¢ : U — C?" is a Kihlerian Lagrangian immersion inducing
on U the restriction of the special Kéhler structure (J, g, V) and F' is a prepotential of
¢. We denote the set of special Kéahler pairs of U by F(U).

The following Lemma shows how the notions of prepotentials and Lagrangian poten-

tials are related.

Lemma 3.2.9. Let M be a special Kdhler manifold together with a Kdhlerian Lagrangian
embedding ¢ : M — ¢(M) C C?>" inducing the special Kihler structure of M. Set
L:=¢(M) and (z,w) := ¢. Then a Lagrangian potential f of L defines a prepotential
F of ¢ via

F= %(¢*f + 2'w), (3.2.13)

and vice versa.
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Proof. Let f be a Lagrangian potential of £. We compute

dF = %((;5* df + d(z'w))

1
= 5(—925*77 +w' dz + 2 dw)

N (3.2.14)
= i(wtdz — 2t dw + w' dz + 2 dw)
=w'dz.
Since ¢ is a biholomorphism onto its image, the converse follows easily. O

Proposition 3.2.10. Let M be a connected affine special Kdhler manifold of complex
dimension n and U C M an open subset such that F(U) # (). Then the group Gsk acts
simply transitively on F(U). The action is defined as follows. Given xz = (X, s,v) € Gsk
and a special Kahler pair (¢, F) of U, we define

x- (¢, F):=(z¢,x - F), (3.2.15)
where x¢ := p(x) o ¢ and
x-F:=F— %ztw + %z’tw/ + %(mqﬁ)*Q (r,v) —s, (3.2.16)

where (z,w) := ¢ and (Z',w’) := x¢d are the components of ¢ and xp, respectively.

Proof. We begin by showing that Eq. (3.2.15) defines a Ggk-action on F(U). Clearly,
the neutral element of Ggk acts trivially. We can locally rewrite Eq. (3.2.16) as

20 - F — 2" = 2F — 2w + (2¢)*Q(-,v) — 25
= (z¢)*(foa™" +Q(-,v) — 25) (3.2.17)
= (2¢)"(x - f)

where f is the Lagrangian potential locally corresponding to F' according to Lemma 3.2.9,
i.e., ¢*f = 2F — z'w. This shows that z - F is a prepotential, namely the prepotential
locally corresponding to the Lagrangian potential x - f via x¢. The remaining group
action axioms now follow easily from Proposition 3.2.4.

It remains to show that the action is simply transitive. Let (¢, F'), (¢/, F’) be two
special Kéhler pairs of U. Since ¢ and ¢’ are both Kéhlerian Lagrangian immersions
inducing same special Kéhler structure, we know from Prop. 3.1.6 that there is an element
(X,v) € AH‘SP(RQn)(C2n) such that ¢’ = (X,v) o ¢. Since prepotentials are unique up to
a constant, there is an s € C such that x - F = F’ for x = (X, s,v) € Ggk. This shows
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x- (¢, F) = (¢, F') and, hence, the transitivity. To see that the action is free, assume
that z- (¢, F') = (¢, F) for some x = (X, s,v) € Ggk. Then X o¢p+v = ¢. Differentiating
and taking the real part gives (X — ida,) o Red¢ = 0. Since ¢ is Kéhlerian, Re ¢ is an
immersion and this implies X = ids,. But then from X o ¢ + v = ¢ it also follows that
v = 0. Finally, - (¢, F) = (¢, F — s) implies s = 0 and, hence, x is the identity of
Gsk. O

Corollary 3.2.11. Under the assumptions of Prop. 3.2.10, the subgroup Sp(R?") C Gsk
acts by

1 1
- (¢, F) = <¢’ =x¢,F' =0 -F=F — iztw + 2z’tw’> (3.2.18)

on the set of special Kdhler pairs (¢, F'). In particular, in the case of conical affine special

Kiihler manifolds, Sp(R*™) acts on the set of homogeneous prepotentials of degree 2.

Remark 3.2.12. By Corollary 3.2.11, the function F' — %ztw is invariant under the above
action of Sp(R?") in the sense that
oty oLy, (3.2.19)
2 2

This is precisely the statement of de Wit, see eq. (10) in [dW96a], that F — 1zlw trans-
forms as a symplectic function under linear symplectic transformations.

In terms of the Lagrangian potentials f and f’ corresponding to F' and F’, eq. (3.2.19)
is equivalent to

fod=fod. (3.2.20)

3.3 Conification of Lagrangian submanifolds

The aim is to associate (under some assumptions) a Lagrangian cone £ c C?"*2 with a
Lagrangian submanifold £ € €C??, and vice versa.

Fix a linear symplectic splitting C>"*2? = C? x €C?" of the symplectic vector space
C?"*+2 with its standard symplectic form Q) and linear Darboux coordinates 29 wp in C?
such that the symplectic form on C? is given by dz° A dwg. Then the symplectic vector
space C?" with its standard symplectic form € is recovered as the symplectic reduction

0 as explained in Rem. 3.2.1. Let

with respect to the Hamiltonian flow of the function z
7 {20 =1} — {2 = 1}/(Ou,) = C?" be the quotient map and ¢ : {20 = 1} — C?"+2
the inclusion.

In one direction, let £ be a Lagrangian submanifold of €C2". A submanifold £; C

{29 =1} € €?"*2 is called a lift of L if the projection

g L1 L (3.3.1)
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is a diffeomorphism. Equivalently, a lift is a section over L of the trivial C-bundle
m: {20 = 1} — €?". Hence, a lift £; is of the form £; = {(1, f(¢),q) | ¢ € L} for a
function f: L — C.

Proposition 3.3.1. Let L1 be a lift of a Lagrangian submanifold £ C C2" with respect
to the function f : £ — C. Then the cone L = C* - L1 is Lagrangian if and only if f is

a Lagrangian potential.

Proof. By the above £1 = {(1, f(¢),q) | ¢ € £}. To show that £ := C*- £ is Lagrangian
it is sufficient to show that Q(p, Xp) =0 for all p € £1 and Xp € Tpﬁl. A tangent vector
X, € T, Ly is of the form X, = df (X)dy, + X for X € T,L with ¢ = 7(p). Then

Q(p7 Xp) = Q(azo + f(Q)awo +q, XP)
= dz" A dwo (020 + f(q)Oug Af (X)Owg) + g, X) (3.3.2)
= df (X) + 1¢(X).

Hence, L is Lagrangian if and only if df = —n|. O

Definition 3.3.2. Let £; be the lift of the Lagrangian pair (L, f). We call the La-
grangian cone con(L, f) := C* - L1 the conification of (L, f).

Conversely, let £ C €2"*2 be a Lagrangian cone such that the submanifold £; :=
£N {29 = 1} is transverse to the Hamiltonian vector field d,, and each integral curve
intersects £1 at most once. We will call Lagrangian cones with this property regular.
Then we define £ C C?" as the image of £, under the quotient map 7 : {2’ =1} -
{2 = 1}/(0w,) = C?". Since the pullback 7*Q of the symplectic form © on C*" is
given by 7*Q = *Q), it follows that £ is Lagrangian. By the regularity, the function
f= woo(7r|£1)_1 is a well-defined function on £ and £; is of the form £; = {(1, f(q), q) |
q € L}. In particular, £; is the lift of £ with respect to the function f.

Definition 3.3.3. We call the pair red(£) := (£, f) the reduction of the regular La-

grangian cone £ C €272,

Proposition 3.3.4. With respect to a splitting C*"t2 = C2 x C*" and linear Darbouz

coordinates 2°, wy of C?, we obtain a one-to-one correspondence

{Regular Lagrangian cones in C*"2}

|1

{Lagrangian pairs (L, f) in C*"},
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given by conification and reduction.

Moreover, conification and reduction are equivariant with respect to the action of the

group Gg, i.e., con(z - (L, f)) = p(z) con(L, f) and red(p(z)L) = = -red(L) for x € G¢.

Proof. Let L C 02 he g regular Lagrangian cone. We have already seen that L =
£N{z° = 1} is the same as the lift of the pair (£, f) := red(£). Since the cone £ = C*- £,
is Lagrangian, it follows from Prop. 3.3.1 that f is a Lagrangian potential and, hence,
con(red(£)) = L. Conversely, if (£, f) is a Lagrangian pair and £; C {20 = 1} is the
lift of £ with respect to f, then con(L, f) = C* - L1 is a regular Lagrangian cone by

Prop. 3.3.1. Since con(L, f) N {z° = 1} = L1, it follows that red(con(L, f)) = (£, f).

This shows red = con!.

Now let x = (X, s,v) € G¢ and L1 be the lift of a Lagrangian pair (L, f). Then

+ dlg — 2s,2q) € C*"T2 | g € L}

+ Q(2q,v) — 2s,2q) € C*"*2 | g L} (3.3.3)
1) + Qg ,v) = 25,¢) € €2 | ¢ € 2L}

f(d),q) € €2 | d € uL}.

This shows that p(z)£; is the lift of the Lagrangian pair = - (£, f) = (z£,x - f). Since
the action of G¢ on C?"2 leaves level-sets of z¥ and the distribution spanned by 0y,

invariant, it follows that
con(z - (L, f)) = C* - (p(z)L1) = p(x)(C* - L1) = p(z) con(L, ). (3.3.4)
The equivariance of red follows immediately from red = con™". O

Proposition 3.3.5. Let (L, f) be a Lagrangian pair such that L is Kahlerian. If there
is a point ¢ € L such that q is real and f(q) ¢ R, then there is an open neighborhood
U C L of q such that the Lagrangian cone U := con(U, f) C L= con(L, f) is Kdhlerian.

Proof. Let q € L be real such that f(q) ¢ R and choose an arbitrary ¢ € Tpﬁ N TTpﬁ for
p=(1,f(q),q) € L. Since Tpﬁ = spang(p) ®T,L, we have v = X(1, f(q), q)+ (0,df (v), v)
for A € C and v € T L. The condition v — 70 = 0 gives three equations

= A=\, (3.3.5)

0=Af(q) = Af(q) +df (v) — df (v), (3.3.6)
0=Aq¢—Aqg+v—7. (3.3.7)
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From the first, we immediately see that A € R. From the third we find v—v = A(§—¢) =0
since ¢ is a real point. But v — v = 0 is only possible if v = 0 as £ is Kéhlerian. The
second equation then implies A(f(¢q) — f(q)) = 0 which, as f(¢q) & R, is only possible
if A = 0. Hence, ¥ = 0 and this shows Tpﬁ N TTp[‘, = 0. Since L is Lagrangian, this
is equivalent to the Hermitian form 4 = Q(, 7-) being non-degenerate when restricted
to L at the point p. By continuity, it is then also non-degenerate on a neighborhood
U, c L1 =LnN {z% = 1} of p. Non-degeneracy is invariant under multiplication by
20 € C*, which acts by homothety on the Hermitian form 4. Therefore, 4| / 1s non-
degenerate on U := C* - U; which is the conification of the Lagrangian pair (U, f) for

U =n(Uy). O

Proposition 3.3.6. If (L, f) is a Lagrangian pair and L is Kdhlerian, then there is
an open subset U C L and an element v € Ggk such that the cone con(x - (U, f)) is

Kahlerian.

Proof. Let (L, f) be a Lagrangian pair such that £ is K&hlerian. If £ does not have
real points, set £ = £ — ¢ for an arbitray ¢ € £. Then 0 € £’ is a real point and we
can choose a Lagrangian potential f’ such that f’(0) € R. This determines an element
x € Ggk such that (L', f') =z - (L, f). The statement now follows from Prop. 3.3.5. [

3.4 Conification of affine special Kahler manifolds

3.4.1 Conification of special Kéihler pairs

Since special Kéahler pairs locally correspond to Lagrangian pairs we can use the results

from the previous chapter to give a conification procedure for special Kéhler pairs.

Proposition 3.4.1. Let (¢, F') be a special Kdhler pair of an affine special Kdihler man-
ifold M and denote by (z,w) := ¢ the components of ¢ as before. Set M:=C*x M=
{(z°,p) € C* x M} with C*-action defined by - (2°,p) := (A\2°,p). Then the map

O : M — ¢ t2

. . t (3.4.1)
(z°,p) = 27 (1, (2F — 2'w)(p), ¢(p))

is a C*-equivariant Lagrangian immersion of M.

Proof. Consider open subsets U of M of the form U = C* x U where U C M is open
such that ¢|y is an embedding. Let (£, f) be the Lagrangian pair corresponding to
(¢, F)|y by Lemma 3.2.9. Then ®(z2°,p) = 2°(1, f(¢(p)), d(p)) for all (22, p) € U, ie.,
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®(U) = con(L, f). This shows that ® is a Lagrangian immersion. The equivariance is

obvious. O

Definition 3.4.2. Let (¢, F') be a special Kéhler pair of an affine special K&hler manifold
M. We call the complex manifold M=C*x M together with the map @ : M — C2+2
the conification of the special Kéhler pair (¢, F') and we write ® = con(¢, F'). We say
that the special Kéhler pair (¢, F') is non-degenerate if the immersion ® is Kéhlerian and

5(®,@) £ 0.

Proposition 3.4.3. Let (¢, F') be a special Kdhler pair of an affine special Kahler man-
ifold M. Then conification is equivariant with respect to the action of Gsk in the sense
that con(z - (¢, F')) = p(z) o con(¢, F') for x € Ggk.

Proof. This follows since conification locally corresponds to the conification of Lagrangian

pairs. O

Theorem 3.4.4. Let (¢, F) be a non-degenerate special Kdihler pair of an affine spe-
cial Kdhler manifold M. Then ® = con(¢, F') induces on M the structure of a conical
affine special Kdahler manifold. This structure is independent of the representative of the

equivalence class of (¢, F') in F(M)/G.

Proof. Let ® be the conification of a non-degenerate special Kahler pair (¢, F'). Then
® is by definition a Kéhlerian Lagrangian immersion of M inducing the special Kahler
metric § = Re ®*(%). Since & is also equivariant with respect to the C*-action, it follows
that the real part £ := Re(Z) of the vector field Z generating the C* action satisfies
VE = DE =1d. Its length is given by

§(6,6) = 4(®,9) = [2°(Im f + K) # 0, (34.2)

where f = 2F — ztw for (z,w) := ¢ and K = (¢, ¢). This shows that ® induces on M
a conical affine special Kéahler structure.

Let (¢, F') € F(M) with ®" = con(¢’, F’). Then (¢, F') = x - (¢, F) for a unique
z € G¢ and by Proposition 3.4.3 & = p(x) o . Now ® and ¢’ induce the same conical
affine Kihler structure on M if and only if p(z) € Sp(R?"*2) which is the case if and
only if x € G. O

Proposition 3.4.5. Let (¢, F) be a special Kdhler pair defined on U C M and set
[ =2F = zw for (z,w) := ¢ and K = v(¢,¢). Then (¢, F) is non-degenerate if and
only if Im f + K # 0 and @ := —%8510g |Im f + K| is non-degenerate.

Proof. This follows easily from Egs. (3.1.3) and (3.4.2). O
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Remark 3.4.6. A special Kahler domain M C C™ with coordinates z!,..., 2" of C" and
prepotential F' : M — C determines a special Kéhler pair (¢, F) by setting ¢ = dF' :
M — T*C"™ = C?". Then the conification

M={(2°2",...,2") e C xC"| 2//2" € M,i=1,...,n},

. (3.4.3)
® = con(dF, F) : M — C?"2

is the graph of dF', where F is a holomorphic homogeneous function of degree 2 given by

. 9 Zl zn
F(Z°...,2™" = (2% F<Z0Z0> (3.4.4)

The special Kéhler pair (¢, F)) is non-degenerate if and only if the matrix given by
Im (aZ,aZJ> for I,J =0,...,n is invertible and

. i OF
0 ny __ 1
K((2°,....Z )_IEZOIm <Z aZI>

(3.4.5)
= ‘ZO‘Q (K(z', ..., 2") +Im(f(2',...,2")))
is non-zero, where 2! = Z'/Z° f =2F - 3" | zlgf:, and K = > " Im(”'aF). Note
that in this case, K = 4(®, ®) is the Kéahler potential, Im (82‘9,25ZJ) = 828 (;( are the
components of the metric, and
K'(zY,...,2") = —log | K (2!, ..., 2") + Im(f(z},..., 2"
()= gl K ) I )

= —log|K(1,z2%,...,2")]
gives a Kéhler potential of the projective special Kéhler metric g defined on M JC* =M

Example 3.4.7. Let M C C" with standard coordinates (z!, ..., 2") be an affine special
aijzizj + %C for
a;; = aj;,C € C. Note how the parameter C' does not affect the affine special Kahler
geometry of M. We have K =23 1., 2 iZ0 Im(a;j) and f = 2F = > ZaF = (C. Con-
sider the conification of the special Kahler pair (dF, F'). We denote by (ZO, ..., Z™) the
homogeneous coordinates on C* x M. The holomorphic prepotential F of the conification
is then given by F'(Z°,Z) = > =1 aijZ2'Z9 + C(ZO)Q. The matrix

O2F ImC 0
Im - - (3.4.7)
( GZIGZJ>IJ_ . < 0 Q(Imaij)i,jzl,...,n>

) goooy

Kahler domain with a holomorphic prepotential given by F' = ZZL =1

is non-degenerate if and only if ¢ := ImC # 0. Thus (dF, F') is non-degenerate if and
onlyifc#0and K+Imf=K+c#0on M.
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Assuming (dF, F') is non-degenerate, then the projective special Kéhler metric g on

M is given by

021077
IS B
K+c? (K +c)?

g=— Z 0 log |K + c| dz" dz’
i,j=1 (3.4.8)
OK) (9K,

where g is the affine special K&hler metric of M.

3.4.2 The ASK/PSK correspondence

In this section we will give a global description of the conification procedure of the pre-
vious section and establish the ASK/PSK correspondence which will assign a projective
special Kéhler manifold to any affine special Kéahler manifold given a non-degenerate
special Kéahler pair. For this, we will prove that every affine special Kéhler manifold
admits a flat principal Ggk-bundle. Using this bundle, we show that if the holonomy
of the flat connection is contained in the group G C Gsk, then the local conification of
a non-degenerate special Kahler pair (¢, F') can be extended to the largest domain on

which analytic continuation of (¢, F') is non-degenerate.

Lemma 3.4.8. Let G be a Lie group and F be a presheaf on a manifold M with values
in the category of principal homogeneous G-spaces. Then the disjoint union of stalks
P := UpemF, carries the structure of a principal G-bundle m : P — M with a flat

connection 1-form 6 such that the horizontal sections of P over U are given by F(U).

Proof. Fix a point p € M and a neighborhood U of p such that F(U) # (). We claim
that evaluation of sections, i.e., the map taking a section s € F(U) to its germ [s], € Fp,
is a bijection. Let [sy], € Fp, where sy € F(V) for some open neighborhood V' of p.
Without loss of generality, we can assume V C U. If s € F(U) is a section, then there is
a unique x € G such that x - s|y = sy. Hence, x - s and sy define the same germ at p.
This shows the surjectivity. Now let 5,5 = x-s € F(U) such that [s], = [5],. Then there
is a neighborhood V' C U of P such that s|y = §|y. Since s = x - § for a unique x € G
this implies © = e, where e € G is the neutral element, showing the injectivity. It follows
that the stalks of F are also principal homogeneous G-spaces with G-action defined as
- [s]p = [z - slp.

Set P =UpepFp and m: P — M, [s], — p. We can now consider a section s € F(U)
as a section of P over U by setting s(p) := [s],. Choose an open covering U = (Uy)acr
such that F(U,) # 0 and for each U, pick a section s, € F(U,). Define G-equivariant
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maps ¥, : 71 (U,) — U, x G such that W, (sa(p)) = (p,e). These maps are bijective by
the first part of the proof. Let Uyg = Uy NUp be a non-empty overlap. Then F(Uyg) # 0
and by the simply transitive action of G on F(U,g) there is a unique 2,4 € G such that

Sq = TapSg, showing that the transition maps

Vos(p,g) = (Y50 ¥y ")(p, g)

(3.4.9)
= VUs(g-50(p)) = Va(92ap - 55(p)) = (P, 9Tap)

are smooth and the transition functions gag : Usg — Gsk, gag(p) = Tap are constant.
On a non-empty overlap U,y = Uy NUg N U, we have sg = 23, -5y and sq = 2355 =
Tap¥p, - Sy Hence, the transition functions satisfy gay = gapgg,- This shows that
7w : P — M is a principal Ggk bundle, see, e.g., [KN63, Chapter 1, Proposition 5.2]).

The transformation rule for local connection 1-forms 6, € Q(U,, Lie(Gsk)) is
95 = Ad(gaﬁ_l)ea + gaﬁ_l dgocﬁ (3.4.10)

for transition functions gog : Uag — G. In our case, the transition functions go3(p) = xap
are constant. Thus we see that setting 6, = 0 defines a flat connection 1-form 6 on P.
In the above we have seen that a section s € F(U) gives a local trivialization W :
71 (U) = U x G. A section § of 7~1(U) is horizontal with respect to 6 if and only if it
is constant in this trivialization. Thus it is of the form 5(p) = [z - s], for some z € G.
Under the identification F, = F(U), § thus corresponds to = - s € F(U), completing the
proof. O

Now let (M, J, g, V) be an affine special Kdahler manifold of complex dimension n.
Consider the map F assigning to each open subset U of M the set F(U) of special Kahler
pairs of U. The map F is a sheaf with values in the category of Ggk-principal homoge-
neous spaces. The restriction map is given by (¢, F)|y = (¢|v, F|lv). By Lemma 3.4.8
the sheaf F thus defines a flat principal Ggk-bundle 7 : P — M with flat connection
1-form 6 where P = UpepnFp.

Definition 3.4.9. We call the flat principal Gsk-bundle of germs of special Kéhler pairs
7w : P — M the bundle of special Kdhler pairs.

Definition 3.4.10. (1) We call a germ u in the fiber P, non-degenerate if there is a
non-degenerate special Kéhler pair (¢, F') of an open neighborhood of p such that
[(¢, F)]p = u. Note that every fiber contains at least one non-degenerate germ by

Proposition 3.3.6.
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(2) Let u = [(¢, F)]p be a non-degenerate germ in the fiber P, and (¢, F') be a non-
degenerate special Kéhler pair. Define dom(u) C M to be the set of points in M
that are connected to p via a path ~ along which the analytic continuation of (¢, F')

is non-degenerate. We call dom(u) the domain of non-degeneracy of u.

Note that analytic continuation of a special Kahler pair (¢, F') defined on a neigh-
borhood of a point p along a path ~ corresponds to parallel transport of the germ
u = [(¢,F)]p € P, along . Therefore, if u is non-degenerate, then a point p’ € M
is in dom(u) if and only if there is a horizontal path from u to the fiber over p’ such that

all points of v are non-degenerate.

Theorem 3.4.11. Let M be a connected affine special Kdihler manifold of complex di-
mension n and ™ : P — M be the bundle of special Kdhler germs of M with its flat
connection 1-form 0. Assume that Hol(§) C G. Let uw € P be a non-degenerate point.

Then the manifold M, = C* x dom(u) carries a conical affine special Kdhler structure.

Proof. Due to the condition on the holonomy, we can reduce the bundle 7 : P — M and
the connection 1-form 6 to a Hol(6)-bundle

P(u) := {u’ € P | there is a #-horizontal path connecting u and u'} C P.

First note that if v' € P(u), is a non-degenerate germ in the fiber over p’, then all
germs in the fiber are non-degenerate. Indeed, if u” € P(u),/, then v’ = x - «’ for some
x € Hol(f) C G. Thus if (¢, F') is the non-degenerate special Kéhler pair corresponding
to ' then con(x - (¢/, F")) = p(z)con(¢', F') is Kihlerian since p(z) € Sp(R?") for all
zeG.

By the definition of dom(u) the fibers of P(u)|gom(u) are all non-degenerate. Hence,
we can find an open covering U = (Uy )aer of dom(u) and non-degenerate special Kéhler
pairs (¢q, Fo) € F(Uy) such that [(¢a, Fa)lp € P(u), for all p € dom(u). This gives
a covering U = (U,) := (C* x Uy)aer and conic Kihlerian Lagrangian immersions
o, = con(dq, Fu) : ﬁa — C?**2. The induced conical affine special Kihler structure
on U, is independent of the choice of special Kahler pairs (¢, Fo) for each a € I by
Theorem 3.4.4 and agrees on overlaps, since the transistion functions take values in
Sp(R?"*2). This shows that the @, induce a well-defined conical affine special Kihler
structure on M, = C* x dom(u). O

The C*-action on M, is principal. Hence, the quotient M, = MU/C* is projective
special Kahler with metric g, given by Eq. (3.1.3). In particular, a K&hler potential of
Gu is given by K/ (p) := —log|K,(1,p)| for p € dom(u).
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Definition 3.4.12. We call the map taking the affine special K&hler manifold (M, g)
and a special Kihler germ u of M to the projective special Kihler manifold (M, g,) the
ASK/PSK correspondence.

3.5 Affine bundles and affine special Kahler structures

Let (V,Q, V) be a flat real symplectic vector bundle of rank 2n over a complex manifold M
of complex dimension n such that VQ = 0. Since V is flat, we can choose trivializations
such that the components of Q and the transition functions g;; : U;; — Sp(R?*) C
GL(C?) are constant and, hence, holomorphic. This shows that the complexification
Ve := V®C is a holomorphic bundle and the complex-linear extension of 2 (also denoted
by ) defines a holomorphic symplectic structure on Vg. The connection V extends to a
complex connection on Vg which we also denote by V. Moreover, v := %Q(,’) defines a
Hermitian metric on V. Note that if ® : M — V¢ is a holomorphic section, then we can
interpret the covariant derivative V® : T'M — Vg as a morphism of holomorphic vector

bundles.

Proposition 3.5.1. Let (M,J) be a complex manifold of complex dimension n and
(V,Q, V) a flat real symplectic vector bundle of rank 2n such that VQ = 0. If there is a
global holomorphic section ® : M — Ve such that

(1) (V®)*Q =0 and
(i) (V®)*vy is non-degenerate,

then M carries the structure of an affine special Kdhler manifold. Moreover, Vg is
associated to the principal Gsk-bundle P — M of special Kdhler pairs with the linear
representation Gsg — Sp(R?™) acting on C?".

Proof. Write ® = p + i€ for sections p,£ : M — V. Since ¢ is holomorphic and V is
complex, we have VpoJ = —V¢. Condition (ii) implies that + pulls back to a Hermitian
metric on TM and, hence, g — iw := (V®)*y defines a (pseudo)-Kahler structure on
(M, J). Computing w in terms of p and &, we find
* 1 vz 3
w=—Im(V®)"y = . ReQ(VO, Vo)
1

= — (Y5, Vp) — QVE, VE)) (3.5.1)

= (Vo))
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where in the last equation we have made use of condition (i) which implies Q(Vp, Vp) =
Q(VE,VE). Since w is non-degenerate, Vp and V¢ are isomorphisms of vector bundles.
Therefore, the connection V pulls back via Vp to a flat connection V' on T M, i.e., a
vector field X is parallel if and only if Vxp is a parallel section of V. This also shows
that V'w = 0, since (s, s) is constant for parallel sections s, s’ of V.

To prove that M is affine special Kahler, it remains to show that V' is torsion-free

and satisfies dV'.J = 0. For arbitrary vector fields X,Y on M, we compute

dVpaV'id(X,Y)) = dVp(VY — V4 X — [X,Y])
= VxdVp(Y) = Vy dVp(X) — dVp([X,Y]) (3.5.2)
= dV(dVp)(X,Y) = ((dV)?p)(X,Y) =0,

and
dVp(dV'J(X,Y)) = dVp(Vix (JY) — Vi (JX) — J[X,Y])
= Vx dVp(JY) = Vy d¥p(JX) — d¥p(J[X, Y])

= —VxdVe(Y) + Vy dVe(X) +aVe([X, Y))
= —dV(dV)(X,Y) = —(dV)%(X,Y) =0.

(3.5.3)

Since dVp = Vp is an isomorphism, this shows dV'id = dV'J = 0. It follows that M is
an affine special Kéahler manifold.

It remains to show that Vg is associated to the bundle of special Kéhler pairs Gk
defined by the affine special Kéhler structure on M. Let (Uy, ¥y )aer be a local trivial-
ization of Vg, i.e., ¥y, : Vg — Uy x C?" corresponding to a choice of a V-parallel Darboux
frame of V on each U,. The (constant) transition functions gag : Uy N Us — Sp(R?")

are defined via

Vg0, Hz,v) = (2,905 "0). (3.5.4)

Note that in our conventions, transition functions act from the right whereas actions on

principal bundles are left actions. Each « defines a map ¢, : Uy, — C?" via

U, 0@y, () = (2, da(x)), (3.5.5)

which is a Kéhlerian Lagrangian immersion by conditions (i) and (ii). Hence, there is
an element x,5 € Gsk such that p(xag) © ¢35 = ¢o. This element x5 is unique for an
arbitrary choice of prepotential F,, such that (¢4, Fy,) is a special Kéhler pair for each a.

However, the element p(z,5) € Sp(R*") is independent of this choice.
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Let x € U, N Ug. We compute

(x,¢8(x)) = Vg o P(x)
=Vg00, o, o0d(x)
=Wgo \I/a_l(% Pa(T)) (3.5.6)
= U0 B (2 plras) 0 65(0))
= (2,908 " 0 p(zap) 0 5(x)).

It follows by Proposition 3.2.10 that go5 = p(xas). Hence, the transition functions of V¢
are related to the transition functions of the Ggk-bundle P — M of special Kéhler pairs
via the linear representation Gsk — Sp(R?"). O

The existence of a global section ® : M — Vg in the sense of Proposition 3.5.1
is closely linked to the holonomy of the flat connection 8 of the principal Gsk-bundle
P— M.

Proposition 3.5.2. Let M be an affine special Kihler manifold of complexr dimension
n and P its bundle of special Kdhler pairs with flat connection 1-form 6. Let V¢ be the
associated bundle of P with respect the linear representation Gsk — Sp(R*™). Then
Ve has a global holomorphic section in the sense of Proposition 3.5.1 if and only if
Hol(f) C Sp(R?") x C C Gsk.

Proof. A global holomorphic section ® in the sense of Proposition 3.5.1 gives a covering
U = (Uy)aer and Kéhlerian Lagrangian immersions ¢, : U, — C?" for each a such that
on overlaps Ung := Uy NUg # 0, ¢po = Xopodp for Xag € Sp(R?™). For each a, choose a
prepotential F, of ¢. Then on Uyg: (¢, Fo) = xap - (95, F3) for x4 = (Xa8,0,508) €
Gsk where s, € C is determined uniquely from our choice of prepotentials. The family
(zap) is a cocycle with values in the subgroup Sp(R*") x C C Ggk. This shows that P
reduces to a principal Sp(R?*") x C-bundle. It follows that Hol(f) C Sp(R?") x C.
Conversely, if Hol(6) C Sp(RR?") x C, then we can cover M with Kihlerian Lagrangian
immersions ¢, differing only by a linear transformation in Sp(IR?"). They determine a
well-defined global holomorphic section ® : M — Vg satisfying conditions (i) and (ii) of
Proposition 3.5.1. ]

Definition 3.5.3. Let V' — M be a vector bundle. An affine bundle modelled on the
vector bundle V' — M is a fiber bundle A — M such that the following conditions hold.

(1) Each fiber A, over p € M is an affine vector space over the vector space V.
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(2) There is a bundle atlas of A such that the transition functions are given by affine

isomorphisms whose linear parts give transition functions of V.

Let A — M be a flat complex affine bundle modelled on the complex vector bundle V¢
from above. Since A is flat, there is a covering U = (Uy)aer of M and local horizontal
sections s, of A giving local identifications of A|y, = Vely,. Let ® : M — A be a
holomorphic section of A. Thus we can locally identify ® on U, with a local holomorphic
section ®,, of V¢ over U,. We set V® : TM — V¢ by defining V®|y, = V®,. This is
well-defined, for if s/, is a different choice of local horizontal sections of A, then s/, — s,
is a V-parallel section of Vg over U, and @/, = &, — (s, — s4).

The following theorem is a generalization of Proposition 3.1.6.

Theorem 3.5.4. Let A — M be a flat complex affine bundle modelled on the complex
vector bundle Vg = V & C where (V,Q,V) is a flat real symplectic vector bundle such
that V2 = 0. If there is a global holomorphic section ® : M — A such that

(i) (V®)*Q =0 and
(i) (V®)*vy is non-degenerate,

then M carries the structure of an affine special Kdhler manifold. Moreover, A is asso-
ciated to the principal Gsk-bundle of special Kdhler pairs with the affine representation
p:Gsk — AHSP(RQn)(C2") acting on C?".

Conversely, if M is affine special Kdhler, then the associated complex affine bundle
A — M corresponding to the affine representation p : Gsg — Affsp(Rzn)(Czn) acting on
C?" has a global section ® : M — A satisfying conditions (i) and (ii).

Proof. Note that in general we can only locally write &, = p,+1i€, on an open subset U,
for functions pq,&q : Uy — V|y,. However, the bundle morphisms Vp and V¢ are still
well-defined. Hence, it follows from the proof of Proposition 3.5.1 that M is affine special

Kahler. A similar argument also shows that A is associated to Ggk via the representation

p.

For the converse, we simply note that a coverinng of M with Kéahlerian Lagrangian
immersions ¢, defines a well-defined global section ® in a similar way as in the proof of
Proposition 3.5.2. [

Remark 3.5.5. With respect to a V-parallel frame (A1,..., Aay) of Vy,, we can write
the local function p, = Re ®, : U, — V|y, as

2n
p=>_p (3.5.7)
=1
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The functions (p!,...,p?") then define an affine coordinate system around any point
p € U,. Indeed, Vp, = 21221 dp'\; is an isomorphism of vector bundles, which shows that
the differentials dp’ are linearly independent. Since (dV)? = 0 it follows that V dp’ = 0.
The symplectic form w then takes the form w = —w;; dp’ A dp? for w;; == Q(\i, \j) € R.

3.6 Completeness of Hessian metrics associated with a hy-

perbolic centroaffine hypersurface

In this section we will prove a completeness result for a one-parameter deformation of
a positive definite Hessian metric with Hesse potential of the form — logh where h is a
homogeneous function on a domain in R™. The latter metric is isometric to a product
of the form dr? + gy, where g3 is proportional to the canonical metric on a centroaffine
hypersurface H C R™. This will be specialized in Section 3.7 to the case of a cubic
polynomial h and related to the r-map.

Let 4/ C R™ be a domain such that R>° -2/ ¢ ¢ and let h : i/ — R be a smooth
positive homogeneous function of degree k¥ > 1. Then H := {h = 1} C U is a smooth
hypersurface and & = R>? - H. We assume that for g := —0?h the metric gy := t* gy
is positive definite, where ¢ : H < U is the inclusion. The manifold (7—[, %QH) is a
hyperbolic centroaffine hypersurface in the sense of [CNS16].

Definition 3.6.1. If h is a cubic homogeneous polynomial, then the manifold (#, g3),

defined as above, is called a projective special real manifold.

Let ¢’ := —0%logh = %gu + h%(dh)? Denote by ¢ := 20, the position vector field
on U and by E C TU the distribution of tangent spaces tangent to the level sets of h.
Then TU decomposes into

TU=E®(€). (3.6.1)

gu(gv')2

(60 is positive semidefinite with

Proposition 3.6.2. The bilinear form § := gy —

kernel RE, and we can write

k—1

gu=9g— W(dh)Q, (3.6.2)
1. 1
g = X4 + W(dh)2' (3.6.3)

In particular, gy is a Lorentzian metric, ¢’ is a Riemannian metric on U, and the de-

composition (3.6.1) is orthogonal with respect to gy and g'.
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Proof. By homogeneity of h, we have dh(§) = kh, gy (£, ) = —(k — 1) dh and gy(£,€) =
—k(k — 1)h. This implies §|pxr = gu|Exe > 0 and, hence, ker § = RE. Observing that
(&) (k,;}}) (dh)? we obtain the formulas for g, and ¢’. The distributions £ and R¢

gl/{(&‘aé‘) -
are obviously orthogonal with respect to ¢ and (dh)? and, therefore, also with respect

to gy and ¢’ which are linear combinations (with functions as coefficients) of these two

tensors. 0

Definition 3.6.3. For ¢ € R we define the bilinear symmetric form

1
(h+c)?

g, = —0%log(h+c) = qu + (dh)? (3.6.4)

h+c

on the set

{reU|h(x)+c>0} for ¢ <0,
U, = (3.6.5)
{zeU|h(x)—ck—1)>0} forc>D0.

Proposition 3.6.4. (1) As in Proposition 3.6.2 we can write

, 1 h—ek-1) 1
Je = pied kh (h+ o)

(dh)?. (3.6.6)

(2) The metric g.. is Riemannian on Ue.
(3) If e > 0, then (U, g,) is isometric to Uy, gls).
Proof. (1) Equation (3.6.6) follows by inserting (3.6.2) into (3.6.4).

(2) The positive definiteness of g.. follows directly from Eq. (3.6.6) since the coefficients

of the two terms are positive.

(3) Scalar multiplication by A > 0 is a diffeomorphism on Y. Let ¢y : U. — U be the
restriction. Using the homogeneity of h it easily follows that ¢y (U.) = Uyk,.

Computing

N N 1 1
Prge = O3 (MQM + h + o) (dh)2>
1 k

1

S A2k (dp)?
Mhgo Mt g W

1

_ 1 2
S hra M ke (dh)

(3.6.7)

/
= Gr—ke

we see that for A = (c//c)Y/* we have ¢%(g’,) = g.. Hence, ¢, gives the required

isometry. O
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Theorem 3.6.5. Assume that g’ is a complete metric on U and ¢ < 0. Then g. is a

complete metric on Ue.

Remark 3.6.6. The metric ¢’ on U is complete if and only if gy is complete, since (U, g')
is isometric to (R x H,dr? + gy).

Proof. Denote by L(y) and L.() the Riemannian length of a curve ~ in U, with respect
to ¢’ and g, respectively. Note first that

o 11\, 1 h—ck-1) 1 N\,

= (—— 2 - — — \(dn

9e =9 (h—i—c R )9t e hror nz )
—_——

S (3.6.8)
1 1 1
2k<(h+c)2_h2> (dh)* > 0

on U'. Hence, L () > L(~) for any curve ~ in Ue.

Now, for some 7" > 0 let v : [0,7) — U, be a curve that is not contained in any
compact set in U.. If v already has infinite length with respect to ¢’ then it also has
infinite length with respect to g/, by Eq. (3.6.8) and we are done.

Assume that L(y) < oo. Since ¢’ is complete, there exists a compact set K C U
such that v € K. Then {y(¢)} has a limit point p € U that is not in U. because
otherwise {y(t)} C U, is a compact subset of U, containing ~ which is a contradiction.
By continuity of h, this limit point lies in {h + ¢ = 0}. Hence, we can find a sequence
ti € [0,T), t; — T, such that h(y(t;)) — —c.

Using the estimate

, 1 h—c(k—1)

g = g+ (dlog(h + c))?
’11+ c kh (3.6.9)
> %(dlog(h + c))2

we find

;1og(h(7(t)) +c)|dt

1 [t
L.(y) > /
vk Jo (3.6.10)
1 t;i—T

> log(h(y(t:)) + ) — log(h(7(0)) + ¢)| = oo

Hence, any curve that is not contained in any compact set in U, has infinite length with

respect to g... This is equivalent to the completeness of g. O

Remark 3.6.7. In the case of ¢ > 0 the metric g.. is not complete. One can find a curve
with limit point in {h — ¢(k — 1) = 0} that has finite length.
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The following lemma will be used in the proof of Theorem 3.7.2 in the next section.

Lemma 3.6.8. Let (M7, g1) be a complete Riemannian manifold. Then the metric

R
g:= (0 gl> (3.6.11)

defined on the product M = My x R™ is complete.

Proof. This is a special case of [CHM12, Theorem 2]. O

3.7 Application to the r-map

Let us first recall the definition of the supergravity r-map, following [CHM12].

Let (H,g3) be a projective special real manifold defined by a homogeneous cubic
polynomial A such that % C {h = 1}. Set & := R>? - H and define gy := —0?h.

Define M = R" + ild C C™ with coordinates (z* = y’ + \/jlxi)izly,”’n e R™ + iU.
We endow M with a Kihler metric g defined by the Kihler potential K(z) = —log h(z).

As a matrix, this metric is given by

_ 1 —02log h(x) 0
i=7 ( . o 1ogh(a:)> : (3.7.1)

Take note that g is positive definite and is the quotient metric of the conical affine special
Kihler manifold C* x M defined by the prepotential

F(Z°...,2") = -h(Z,...,2™) ) 2", (3.7.2)
where Z° is the coordinate in the C*-factor and Z% := Z% fori =1,..., n.

Definition 3.7.1. The correspondence (H,gy) — (M,g) is called the supergravity r-

map.

Related to the projective special real manifold (#, g3 ) is the so-called conical affine
special real manifold (U, gy). The rigid r-map assigns it to the affine special Kéhler
manifold (M := M,g) with metric g induced by the holomorphic prepotential F(z) =

—h(2). As a matrix with respect to the real coordinates (y’, %), this metric is given by

_ [—9*h(z) 0
g—( . —8%@:))' (3.7.3)

Let U, be defined as in Eq. (3.6.5) and set M, = R™ +ild. C M. Note that My = M.
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Theorem 3.7.2. Applying the ASK/PSK correspondence to the special Kdhler pair
(¢ey Fe) == (dF, F — 2v/—1c¢), (3.7.4)

defined on M. with F'(z) = —h(z) and ¢ € R gives a projective special Kdihler manifold
(Mc,gc) For ¢ = 0 we recover the supergravity r-map metric g = go. For any pair
¢, € R such that cc > 0, the obtained manifolds (M., g.) and (M., ge) are isometric.
Moreover, if ¢ <0 and (H,gy) is complete, then (M, g.) is complete.

Proof. We will use Proposition 3.4.5 to show that (dF, F' — 2/—1c) is a non-degenerate
special Kihler pair on M. Set f(z) = 2(F —2y/—1c) — > | 2* gﬁ = h(z) —4v/—1c and
K(z)=Y7" Im (% 8F) Using the identity

Im h(z 2}m<zh)>4Mbm% (3.7.5)

we compute Im f(z) + K(z) = —4(h(Im z) + ¢), which is nonzero on M,. The function

K':= —log|Im f + K| = —log(4]|h(Im z) + ¢|) defines a symmetric bilinear tensorfield
Ge = Z”] 1 88221223 dz' dz’ which, as a matrix, is of the form
_ 1 [=0%log(h(x) +c 0 1 (g.(z 0
. (o) +e) B N IR
4 0 —0%log(h(z) + ¢) 4\ 0  gi(x)

where 02 is the real Hessian operator with respect to the real coordinates x and g, is
the deformed metric of the previous section. Hence, we see that g. is positive definite by
Proposition 3.6.4. This proves that (dF, F — 2y/—1c) is a non-degenerate special Kéhler
pair on M,. In particular, g. is the projective special Kahler metric that is obtained via
Eq. (3.1.3) from the conical affine special Kéhler metric § on the cone C* x M, with
structure induced by con (dF, F—2y-1 c) The supergravity r-map metric is recovered
for ¢ = 0. If gy is complete and ¢ < 0, then g, is complete by Theorem 3.6.5 and
Lemma 3.6.8. It was proven in Proposition 3.6.4.(3) that scalar multiplication on U by
A > 0 induces a family of isometries ¢y : (Ue, gc) = (Upse, 93s,). The differential defines
a corresponding family of isometries doy : (M, = TU,., g.) — (M 3, = TUxs., Ge)- O

Remark 3.7.3. The above proof shows that the family of Kihler manifolds (M, g.) with
Jc given by Eq. (3.7.6) is still defined if the projective special real manifold is replaced by
a general hyperbolic centroaffine hypersurface associated with a homogeneous function
h. The statements about completeness and isometries relating members of the family
(M., g.) remain true under the assumption that the centroaffine hypersurface is complete.

However, the metrics g. are in general no longer projective special Kéahler. In fact, the



56 Chapter 3. The ASK/PSK correspondence

ASK/PSK correspondence can not be applied, as the Kahler metric g obtained by the
generalized r-map is in general no longer affine special Kéhler. However, it turns out that
the metrics g and g, are related by an elementary deformation, c.f., Definition 2.1.16 or
[MS14, Definition 1|, with the symmetry replaced by the vector field X = grad h(x) and
Jo = g(X, )2 + g(JX, )2 = (dh)? + (dh o J)2. Indeed, the metric g is of the form

ge = f19 + f29a

1/ 1 1 - - (3.7.7)
=== + = dh2+cmOJ2),
(oo g (@2 + e 77)
for f1 = m and fy = m. Its Kahler potential is —log(ﬁ(lm z) +c).

Example 3.7.4. Consider the complete projective special real manifold
H={(2z,y,2) €ER? | z(xy — 2°) = 1,2 > 0} (3.7.8)

and set U = R>?-H. Computing the scalar curvature of the metric g’ := —9?log(h + c)
for h = x(xy — 2?) and ¢ € R, for example with Mathematica [Wol| using the RGTC

package [Bon03|, gives
3(h? — 11ch + 6¢2)

ly = — 3.7.9
"o 4(h — 20)? (3.7.9)
For ¢ = 0 we find that scaly, = —% is constant. For ¢ # 0 we can further substitute
u:= h/c and find
3(u? —11u+6
scaly = — (u u+6) (3.7.10)

4(u — 2)?
which is constant only on the level sets of h. This shows that the deformed metrics are in
general not isometric to the undeformed metric. Since the manifold (U, g.) is contained

in (M., gc) as a totally geodesic submanifold, this shows that the deformed metrics are

in general not isometric to the undeformed metric.
Example 3.7.5. Consider the complete projective special real manifold
H={(z,y,2) €eR® | zyz =1,z > 0,y > 0} (3.7.11)

and set U = R>?- . Computing the scalar curvature of the metric g’ := —9%log(h + ¢)

for h = zyz and ¢ € R, gives

3c(4h? — 3ch + 2¢2)
2h(h — 2¢)?

For ¢ = 0 we find that scaly = 0 is constant. For ¢ # 0 we can substitute u := h/c and

find

scaly = (3.7.12)

3(4u? — u +2)
2u(u — 2)2
which is constant only on the level sets of h.

scaly = (3.7.13)
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Special Kahler geometry of

integrable systems

The base of an algebraic completely integrable system carries an affine special Kéhler
structure. This fact was first asserted by Donagi and Witten [DW96b| and proved by
Freed [Fre99]. In Section 4.1 we give an introduction to algebraic integrable systems and
give a detailed proof of Freed’s result, following a combination of [GS90, Fre99]. Our
statement of Freed’s theorem is slightly more precise, see Remark 4.1.16

In Section 4.2 we analyze the integrable system of [GMN10] and show its relation to

the natural hyper-Kahler structure on the cotangent bundle.

4.1 Integrable systems and Freed’s theorem

Definition 4.1.1. An algebraic completely integrable system (m : X — M,n,{pp}) is a
holomorphic submersion 7 : X — M such that

(1) (X,n) is a complex symplectic manifold with holomorphic symplectic form 7 €
Q20 (x),

(2) the fibers Xj, := 771(b),b € M are compact connected Lagrangian submanifolds of
X, and

(3) there is a continuous family {py}sers where p, € Q%(X;) is a Hodge form on Xy,

i.e., a closed, positive form of type (1, 1) representing an integral cohomology class.

Definition 4.1.2. Let V = C" be a complex vector space and I' C V be a lattice of rank
2n. We call the quotient M = V/T' a complex torus. A complex torus M is called an

57
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Abelian variety if M is a projective algebraic variety, i.e., if it admits an embedding into
some projective space. By an affine torus or an affine Abelian variety we understand a

principal homogeneous space of a complex torus or an Abelian variety, respectively.
We recall Kodaira’s embedding theorem, see, e.g., [GH7S].

Theorem 4.1.3 (Kodaira). A compact comlex manifold M admits a holomorphic em-

bedding into complex projective space if and only if M admits a Hodge form.

For the most part of this section we follow [Fre99| and have adapted some proofs of
[GS90] to the holomorphic setting.

Lemma 4.1.4 (|GS90, Theorem 44.14|). Let X be a holomorphic symplectic manifold
with holomorphic submersion w : X — M such that the fibers are compact connected

Lagrangian submanifolds. Then the following holds.
(i) There is a holomorphic fiberwise transitive action of T*M on X.
(i) The fibers are affine tori.

(i1i) Each (local) holomorphic 1-form o on M defines a (local) automorphism ke of the
fibration such that
Ken =1+ dr*a (4.1.1)

holds.

Proof. Let b € M. Then for every x € X = 7~ 1(b) the dual of the map dr, gives a rise

to a short exact sequence

0 —— TrM U

TxX » T Xy —— 0, (4.1.2)

from which we deduce that (dm,)* gives an identification between T;M and its image
(T Xp)° C T X. Here (T, X3)° is the annihilator of T, X}, which is the space of covectors
vanishing on 7, X3. Since X, is a Lagrangian submanifold 7, identifies (7,X})° with
T:Xp:

* *’V) o*’\‘>
LM s (1) = T X, (4.1.3)

In particular, for every b € B we have
TXp =" (Ty M). (4.1.4)

So every § € T, M gives rise to a holomorphic vector field f on X; which is tangent to
X, by setting &, := ;1 o (dm)%(€) for z € X,
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Suppose £ = — dfp for some holomorphic function f. Then for x € X

~

—d(m" f)a = =, (dfy) = (dm2)*(§) = (€ 47)a- (4.1.5)

So é is just the restriction to X of the Hamiltonian vector field Z«; of the function 7* f
on X.

For & = —(dfi)y € Ty M, i € {1,2}, we compute on X
[§1: 8] = [Zre iy B o] = D i o 12} = Zn(él,g}) =0. (4.1.6)

This shows that the map *: Ty M — X(X3), { — é is a complex Lie algebra homomor-
phism.

Since X is compact and connected, and T*M is connected, this exponentiates to a
holomorphic action ¥ : Ty M x X — X. If ke 1= exp(ft) is the complex holomorphic
flow of £ for some £ € Ty M, then the action is simply given by W(§, x) = ke 1(z) =: Ke(x).
Denote by W, : TyM — X3, ¥, (&) = ke(x) the orbit map of x € Xp. Then d(¥;)o :
Ty M — T, Xy is the isomorphism of Eq. (4.1.3). This implies that the action is locally
transitive and, since the fibers are compact and connected, also transitive. It follows
that the isotropy subgroups of any two points are conjugate, and must be the same due
to the fact that Ty M is an Abelian group. Denote this subgroup by A, C TyM. A,
is necessarily discrete and therefore a lattice, giving the fibers the structure of complex
affine tori. This shows (i) and (7).

Now let a be a local holomorphic 1-form on M considered as a local section of T% M.
Then using the fiberwise action we get a vertical holomorphic vector field & = n~!(7*a)
locally over M on X.

Using the closedness of 17 and the definition of &, we find
Lan=d(aon) + aadn=d(r*a). (4.1.7)

Let kot = exp(t&) be the complex holomorphic flow of &. Note that the flow is
vertical, i.e., m o Kot = 7. Using
d

K, =K

PR > La, (4.1.8)

a,t

and

Ld
r=id — ko dt 4.1.9
wo=id+ [ Gt (119)
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we find
1 d 1
Rl =N+ [ —hRamdt= 77+/ R tLan dt
o dt ™ o
1 1
=n-+ / Kgpd(m ) dt =n+ / d((m o Ket) o) dt (4.1.10)
0 0
1
=n-+ / d(m*a)dt = n+ dr*a.
0
This shows (iii). O

Corollary 4.1.5. The fibers of an algebraic completely integrable system are affine

Abelian varieties.

Proof. This follows from (ii) of the previous lemma and Kodaira’s embedding theorem,
as pp is a Hodge form on the fiber X} for all b € M. O

Let & be a vector field on the fiber Xj that is invariant under the action of 7, M,
ie., Ii;d = & for all 8 € Ty M. Then & is determined by its value &, € T, X, = T M at
an arbitrary point « € X. It follows that we can identify invariant vertical vector fields
with sections of the bundle V :=T*M.

Denote by A C V the subbundle of those elements acting trivially on X. Then each
fiber X is a principal homogeneous space for the complex Lie group Gj := V;/Ap, and
by specifying a point zp in X, we can identify (Xp,z¢) with the complex Lie group
Vo /Ay = Ty M/ Ay,

Denote by T*M /A = (Jycpr Ty M /Ay the bundle of fiberwise quotients. In the next
steps, we want to show that one can even identify T*M/A with X at least over open

neighborhoods of M by giving a local Lagrangian section of .

Lemma 4.1.6. For each b € M and x € X, there exists a neighborhood U of b and a
holomorphic section s : U — X of m: X — M such that s(b) = x, and s*n =0, i.e., s is

a local Lagrangian section.

Proof. Since 7 is a holomorphic submersion, there exist local holomorphic sections by
the implicit function theorem. Choose a contractible open neighborhood U of a point
b € M such that there is a local holomorphic section 5 : U — X|y;. Then [§*n] = 0, so

§*n = da for a local holomorphic 1-form «. Setting s = kK_, 0 § we find

s'n=5"(kL,m) =5 (n—7n"da) =doa—da =0, (4.1.11)

and hence s is Lagrangian. O

"because U is contractible, H*(U) = 0
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For a local Lagrangian section s we define an equivariant map x : 7*M |y — X |y via
Xx(@) == a - s(b) = kq 0 s(b), (4.1.12)
foracTyM,becU.

Lemma 4.1.7 (|GS90, Theorem 44.2|). The map x is a local holomorphic symplectic
bundle morphism, i.e., xX*n = ng, where 1y is the canonical holomorphic symplectic form
of T*M

Proof. Since the statement is local we will assume M = U.

By the equivariance of x it is sufficient to show that x is a holomorphic symplectic
map along the zero section My C T*M. Note that by definition x(My) = s(M). Let
(b,0) € Mp. We identify T(pT*M = TyM © Ty M and Ty X = Typ)s(B) © Ty Xp-
The tangent space T, M and the tangent space to the fiber T;’ M are Lagrangian. Their
images under dx are given by dx(TyM) = Typys(B) and dx(Ty M) = Typ)Xp. Now
T's»)Xp is Lagrangian since X is a Lagrangian submanifold and T s s(B) is Lagrangian
because s*n = 0. So the equation x*n = ng holds for tangent vectors lying in the same

Lagrangian factor. Thus in order to show x*n = ng it suffices to show

xXn(&, X) =mo(¢, X) = &(X), (4.1.13)

for X € TyM and Y € Ty M. By definition of x we have dx(§) = &) and dx(X) =
dsp(X). We compute

(x*n)(b,O)(ﬁ,X)= Ns(v) (Ax(§), dx (X))
(&, dsp(X))
= 5 215 (dsp(X)) (4.1.14)
= ((dm) 5 €) (dsp(X))
= {(dm o dsp(X)) = £(X),

which proves the lemma. ]

Lemma 4.1.8 ([GS90, Theorem 44.3|). The bundle A C'V of elements acting trivial on
X is a complex Lagrangian submanifold of V. =T*M.

Proof. The statement follows from Lemma 4.1.7 and the fact that A = x~!(s(B)). For if
£ € Ty M such that x(£) = s(b) we can apply the holomorphic inverse function theorem
to construct a local inverse x ! : x(U) — U on an open neighborhood U of ¢ such that
x (s(B)Nx(U)) C A. Therefore A is a complex Lagrangian submanifold of 7% M which
is locally biholomorphic to the Lagrangian submanifold s(B) C X via the holomorphic
symplectic map . O
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Lemma 4.1.9. The continuous family {pp}vers of Hodge forms defines a smooth section
p:M — /\2 TM such that p(b) can be identified with an invariant Hodge form on the
fiber Xp.

Proof. We can assume that py, is invariant under the left multiplication Ly of G = V4 /Ay,.

Indeed, we can instead take the form
pp = / Lypy dp, (4.1.15)
9€Gs

where we interpret p, as a smooth function on X; with values in /\2 TXy, and dp is a
volume form on X} with volume 1 which is induced by a translational invariant volume
form on Vj,. The form pj will still represent the same integral cohomology class as py, since
left multiplication induces the identity on Ha(M,Z). For details, we refer to [Corl5|.
The continuous family of Hodge-forms thus gives a continuous section p : M — /\2 V* =
A’ TM, where p(b) corresponds to the invariant form p, € Q2(Xy) via the identification
TXp, = 7*(T*M). By identifying Ay & Hq(Xyp, Z), p(\,N) € Z for local sections A, N
of A. Tt follows that the section p is smooth and defines an invariant Hodge form pj on

each fiber X}, proving the lemma. O

Corollary 4.1.10. FEach algebraic integrable system (w : X — M,n,{pp}) has a canon-
ically associated algebraic integrable system (A — M, 1o, [ps]) whose fibers are Abelian

varieties.

Proof. For a local Lagrangian section s the map x descends to the quotient A = T*M /A
and gives a local fiberwise identification of (Xp, s(b)) with the complex Lie group A, =
Ty M/Ay. The invariant Hodge form py defined in Eq. (4.1.15) pulls back to a Hodge form
on Ay that is, by its invariance, independent of the choice of the local Lagrangian section
s. Hence, the continuous family of Hodge forms {pp}rers on X defines a continuous
family of polarizations {p,} on A.

Locally we can identify A with the Z-span of a local system of holomorphic sections
aq,...,09, such that at each b € M the forms comprise a (real) basis of Ap. Since A
is Lagrangian, the forms are closed. Therefore the action of A on T*M is holomorphic
symplectic by Eq. (4.1.1) and, hence, the canonical holomorphic symplectic form 7y of
T* M induces a well-defined holomorphic symplectic form 7 on the quotient. This proves
the claim. O

Lemma 4.1.11. Let w be a non-degenerate skew-symmetric bilinear form on a vector

space V =2 R?™ that is integer-valued on a lattice T C V' of full rank. Then there is a
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basis (A, ..., N y1,...,9m) of I such that
w=Y GNAY, & EN (4.1.16)
=1

and 0; | 641 fori=1,....,n— 1.

We refer to [GH78, Chapter 2.6] for a proof.
Remark 4.1.12. The components of 6 := (61,...,0,) € IN" are called the elementary

divisors of the non-degenerate form w. We conclude that the family {p;} of Hodge forms
determines a set § = (d1,...,0d,) € IN" of elementary divisors associated to the algebraic

completely integrable system.

Definition 4.1.13. Let (e, ..., e2,) be a standard basis of R?", § € Z" a set of elemen-
tary divisors, and set ws = Y ;| dief A €; - We define

Sp(6,R) = {A € CL(R*") | A*ws = ws} (4.1.17)
and Sp(d,Z) = Sp(6, R) N GL(Z?"). Note that Sp(d, R) = Sp(R?").
Lemma 4.1.14. Let X\ be a local section of A. Then d(Ao J) = 0.

Proof. Since A is a complex submanifold of T*M that is locally biholomorphic to a
local Lagrangian section of X, X is a (real) holomorphic section of T*M. Since a real
holomorphic form A is closed if and only if its (1,0)-part A — iJ*\ is closed, it follows
that d(Ao J) =0. O

Remark 4.1.15. A non-degenerate bilinear form w on a vector space V defines an iso-
morphism w : V — V* via v = w(v,-). Likewise, the inverse w™! : V* — V defines a
non-degenerate bilinear form on V* via w™1(£,7n) := (w™1(€),n) = n(w™1(€)), also called
the dual of w.

Remark 4.1.16. The following theorem is due to Freed [Fre99]. We remark that our for-
mulation of part (2) is slightly more precise than the original statement. In particular, we
do not need to assume that the V-parallel lattice A C T*M is complex and Lagrangian.
Instead, we show that this follows directly from the special Kéhler condition. It was also
necessary to add the condition that the dual w™"! of the special Kihler form is integral

on A in order to get a continuous family of Hodge-forms on the quotient A = T*M/A.

Theorem 4.1.17. (1) Let (X — M,n,{pp}) be an algebraic completely integrable sys-
tem. Then the base M has a canonically induced special Kdhler structure (J,w, V).

The holonomy of V is contained in the subgroup Sp(6,7Z.).
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(2) Let (M, J,w,V) be a special Kdhler manifold such that there exists a V-parallel

lattice A C TM*. Assume that w™! is integral when restricted to A. Then the
quotient A = T*M/A admits a canonical holomorphic form n and a continuous
family of Hodge-forms {pp} such that (A — M,n,{pp}) is an algebraic completely

integrable system.

Proof. (1) Let (A1,...,A2,) be a local frame of A. Then

V(fA) = df ® \; (4.1.18)

defines a flat connection V. Since A is a complex Lagrangian submanifold by
Lemma 4.1.8, the one-forms A; are closed and holomorphic. Hence, any V-parallel
one-form is closed and holomorphic. Let TV be the torsion of V and let a be a

V-parallel one-form. Then
0=do(X,Y)=a(TV(X,Y)), (4.1.19)

shows that V is torsion-free. Since « is holomorphic, we also have that daoJ =0
by Lemma 4.1.14. This implies dV.J = 0 by Proposition 3.1.2.

Let p be the smooth section of Lemma 4.1.9. Since p(b) is positive, of type (1,1),
and integral when restricted to A, it follows that w := p~! € Q?(M) is a Kihler
form that is parallel with respect to V. This shows that M carries an affine special

Kahler structure.

Since the connection V preserves both p and A and p is an integral non-degenerate
skew-symmetric bilinear form on A, the holonomy of V must be contained in the
group Sp(d, Z) defined in Definition 4.1.13 by Lemma 4.1.11.

As A is V-parallel, any local section A of A is closed since V is torsion-free and
holomorphic by Proposition 3.1.2. This shows that A is a complex Lagrangian
submanifold of T*M. Thus the canonical holomorphic symplectic form on 7% M

descends to a holomorphic symplectic form 1 on the quotient A := T*M/A.

The dual p := w™! of w defines an invariant 2-form p on each fiber A := Ty M/Ay
which is closed, positive definite and of type (1,1) because w is a Kéahler form. By
assumption, py is integral on A and hence [py] € HY'(Ay) N H?(Ay,Z). Thus,
{pv} is a continuous family of Hodge-forms, and (A — M,n,{pp}) is an algebraic
integrable system. O
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4.2 The semi-flat metric
Recall the initial data for the construction [GMN10, Neil4]:

e (M, J) a complex manifold of real dimension 2n.

e [' — M abundle of lattices of rank 2n. Also, the bundles V = I'®R and V¢ = ' C.
The bundle I' induces a flat connection on V' and V¢ which we will denote by V.

e A symplectic, skew-symmetric, and integer-valued bilinear form (-,-) on I". We will
also denote the inverse pairing on I'* by (-, ). Also, we define (- A-) a bilinear form
on T*"M ® V& with values in A%T* M by

(a@ENBRN) = nBEn).
for a, 8 € Ty M and §,n € V|, u € M.
e ®: M — V& a holomorphic section such that

(d@q) A dﬁq)) =0 (Lagrangian), (4.2.1)
(@Yo AdY®) >0  (Positivity). (4.2.2)

Remark 4.2.1. One can check (p A ¢) = 2(p,p) and (p A @) = 2Re(p,p) for ¢ €
"M ® T'g, where (¢, 9)(X,Y) = (p(X), p(Y)).

The bundle (V*,Q, @) is a flat real symplectic vector bundle of rank 2n with a V-
parallel symplectic form € = (-, -}, Hermitian form v = %Q(, %), and a global holomorphic
section ® : M — V{ such that (V®)*Q = 0 and (V®)*y > 0. Hence, it immediately
follows from Proposition 3.5.1 that ® induces an affine special Kéhler structure on M,
which we denote by (g, J, V). We let w = g(J-,-) be its K&hler form.

4.2.1 Hyper-Kihler structure on the cotangent bundle

We follow [ACDO02| to construct a hyper-Kéhler structure on 7M.

At each p € T*M the flat connection V induces a decomposition
T,(T*M) =My @ TY(T*M) = T,M & T;M, =(p)=u, (4.2.3)

of the tangent space to T*M, where T (1™ M) = ker dm), is the vertical subspace and HY

is the integrable horizontal distribution defined by the connection V.
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We define the following structures on 7% M with respect to the splitting (4.2.3),

g 0 J 0 0 —w!
o = = = C Js=Juds, (424
9T M (0 g_1> 1 <O J*> 2 (w 0 > 3 1J2 ( )

where we have identified w as an isomorphism TM = T*M via w(v)(w) := w(v,w). It

is easy to verify that .Jy, Jo, and J3 are almost complex structures.

Theorem 4.2.2 (|ACD02, Theorem 11|). (T*M, gr+r, J1, J2, J3) is a hyper-Kdhler man-
ifold.

Proof. In affine coordinates Jo has constant coefficients and, hence, is a complex struc-

ture. To see J1Jo = —JoJ1 one uses J* ow = —w o J. We compute wy, = gr=pr(Jar, ) =
grm o J:
0 0o —-J* 0 -—-1Id
w1 = v 1] Wy = , W3 = " . (4.2.5)
0 w™ J 0 1d, 0
So let p!, ..., p*™ be affine coordinates on M and py,...,pa, be the conjugate momenta

corresponding to the p’ such that w = %wij dp' A dp?. Then the local forms are given by

1 , 1

wi = gwijdp" Adp’ + S0t dpi A\ dp; (4.2.6)
wo = (J*dp') A dp; (4.2.7)
wg = dp* A dp;. (4.2.8)

From the local description we see that they are closed. Indeed, the coefficients of w are
constant in affine coordinates and J* dp’ is closed, as dV.J = 0. By Hitchin’s Lemma
[Hit87, Lemma 6.8|, the closedness of w, implies that Ji, Jo, and J3 are complex struc-
tures. Therefore (T*M, gr=pr, J1, J2, J3) is hyper-Kéhler. O

Remark 4.2.3. The map assigning the hyper-Kéhler manifold (T*M, gp«pr, J1, J2, J3) to
the affine special Kahler manifold (M,g,.J,V) is called the rigid c-map. We call the
natural hyper-Kahler structure on T*M the rigid c-map hyper-Kéhler structure. The

metric gr+)s is called the rigid c-map metric.

We are interested in the associated hyper-Kéahler structure on the tangent bundle T'M.
The symplectic form w gives a vector bundle isomorphism ¢ : TM — TM*, (u, X) —
(u,w(X)) with differential dp = (Idrar,w). We define grar = ©* g7+ 1, @a = ¢*wa, and

Jo = @*Ja.
As matrices with respect to the splitting (4.2.3) and

T(TM) :=H¥ @& T°(TM) = TM & TM (4.2.9)
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the differential dy corresponds to the matrix

Id
d<p=< o 0>,
0 w

and we can compute the matrix forms of the hyper-Kéhler structure as follows. For the

metric, we find

« Idry O g 0 Idpy O g 0
= M = = , 4.2.10
grMm = ¥ 9r*M ( 0 ) (0 g_1> ( 0 ) (O p ( )

which is the canonical metric on the tangent bundle.

The forms @, = ©*wa = (dp)! 0 wy o de and complex structures J, = (de) ' Jo(dy)

P o D G A T D (4.2.11)
0 —w —g 0 w 0
- (7 o - 0 —Id . 0 J
Ji = o= R A : 4212
! (0 —J> ? (Id 0) ’ (J 0) (4.2.12)

Let p', ..., p?" be affine coordinates on M and €', ..., €2” be the adapted fiber coordinates

are given by

corresponding to the p’. Then the local forms are given by

1 . 1 . .
w1 = §Wij dp' Ndp? — 5(,«.)2']' de* A dé?, (4.2.13)
@y = —(g*dp") Nde' = —(J*dp' ow) Nde' = —w;;(J* dp") A dé, (4.2.14)
@3 = —wjj dp' A dé’ (4.2.15)

Corollary 4.2.4. (T'M, grur, Ji, Ja, jg) s a hyper-Kdhler manifold.

Proof. This follows immediately from the proof of Theorem 4.2.2 since the forms @, are
closed. O

Ultimately, we will also need to make a different choice of basis for the complex

structures to be able to compare the local formulas later. Set jg = jl and jl = —jg.

Then
0 0 0
o= ), = o IR g . (4.2.16)
w 0 —g 0 0 —w
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4.2.2 Structure of the bundle of lattices
We now describe the integrable system defined by our data.

Definition 4.2.5. We set
Mo :=Hom(I\R/Z) ={6:T = R/Z | 6(v+~') =60(7) +6(7)}, (4.2.17)
M= Homn, (B /2) = {81 = R/Z | 60+ +) =00 +00) + 307 }.
(4.2.18)

and we call M the set of twisted characters of I'.

Remark 4.2.6. (1) We can identify Hom(I', R/Z) = I'* ®z R/Z = V*/T'*, hence, My

gives an algebraic integrable system over M whose fibers are Abelian varieties.

(2) M, is affine over Myl,. Indeed, if 6,6’ € M,, then § — ¢ € My|,. In particular, if
0y € My, then M, = 0y + Myl,. Thus M is an algebraic integrable system over
M which can locally be identified with M.

Proposition 4.2.7. M, #
Proof. By Lemma 4.1.11 we choose a local frame (A!,..., A", v1,...,v,) of V such that

() =20 6:A™* Aqf, for elementary divisors §; € IN. For «y € T set

1 . % *
Oo(v) =5 D diX* (V)7 (v) + Z. (4.2.19)
=0
Then

1 . 1% *
bo(y +9) = 5 D diX* (v )i (v + o) + 2
=0

= 00(7) +00(7") + % > di (A + X () + Z

=0 (4.2.20)
1 = % * Q% *
=00(7) +00(v') + 5 D di (A (N (V) = A (I () + Z
=0
1
= 00(7) +00(7) + 517" + Z,
and, thus, 0y € M,,. O

Let (71,...,72n) be a local frame of I' and (77,...,73,) its dual. We have already

seen in Remark 3.5.5 that this defines an affine coordinate system (p!,...,p*") on M.
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The evaluation maps € : V* — R given by €/(y*) := v*(7;) are coordinate functions of
the fibers.

Consider the decomposition
TV  =HY @ T°V* = TM ¢ V* (4.2.21)

induced by V. Let © € Q'(V*,V*) be the connection 1-form of V. That is, © vanishes
on the horizontal part and gives the identification TV* = V*[1(y) on the vertical space.

In the coordinates (p’,€’), © can be written as
0 =dé @dp. (4.2.22)
Recall that Vp := Re V® : TM — V* is an isomorphism of vector bundles.
Theorem 4.2.8. The forms
_ R (VO A VD) ! (© A O) (4.2.23)
w3 = 1 ™ R 4.
Wi = wy +iwg = (VO A O) (4.2.24)

define a hyper-Kdhler structure on V* =2 TM for all R € R* which agrees up to the
multiplicative factor R and a permutation of the complex structure with the hyper-Kdhler
structure of Eq. (4.2.16).

Proof. Let ® = p +if. Then p = p' ® 7 and (p,...,p?" €l ..., €®) form a local
coordinate system of V*. Using (VB AV®) = 2(VpAVp), Vp = dp’ ®7;, O = de’ ®;,
and w;; = (7;,7;) we find

R .o on 1
R ,. = 1
=57 (VpAVp) — ﬁ<@/\@>
: o L (4.2.25)

1 i 4 1 i :
= B (Rwij dp* Ndp? — EwijdE /\dﬁj) ,

and
wy = (T*Vp A O) +i(n*VEAO)
= (T*VpAO) —i(n*Vpo JAO)
= dp' Nde (3], v7) — i(JHdp') Adel (v, ]) (4.2.26)
= wjj dp’ A de’ — iw;;(J*dp") A de?
= (w*dp") Ade' —i(w o J)* dp' A de'.
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Thus
0 0 J R 0
wy = “ ; w2 = “e , wg= “ R (4.2.27)
w 0 —woJ 0 0 —pw
and
w1 = wijdp’ A de (4.2.28)
wo = —wjj J*dp" A de? (4.2.29)
1 . | S
w3 = 5 (Rwijdp’ Adp? — Ewijde’ VAN 6]> . (4.2.30)
The differential of the fibre bundle isomorphism ¢g := RVp : TM — V*, (z, X) —
(z, RVp(X)) with respect to the bases (8%1, e w%) of TM and (vf,...,73,) of V*is
Id 0
dop = , 4.2.31
PR <0 R Id) ( )

so using @hwa = (dpr)'wa(dpr) we obtain
<p*w1 = Rd)l, QO*LUQ = RC:)Q, gD*UJg = R@g. (4.2.32)

This is up to a factor of R the hyper-Kéhler structure on TM induced by the c-map
hyper-Kéahler structure on T*M with respect to the choice of complex structures as in
Eq. (4.2.16).

Hence, (w3, w4 ) is a hyper-Kéhler structure on V*. O
Corollary 4.2.9. The hyper-Kdihler on V* induces a hyper-Kdhler structure on M.

Proof. Since the structure is invariant under translation along the fibers of the bundle
V*, it induces a well-defined hyper-Kahler structure on My = V* /T, O



Outlook

In Theorem 2.1.18 we give necessary and sufficient conditions for the twist of an el-
ementary deformation with respect to some twist data to be Kahler. Together with
an example (Proposition 2.1.20) of such a Kéahler twist, this proves that, unlike in the
hyper-Kahler/quaternionic Kéhler case, the twist construction provides more degrees of
freedom to produce Kéahler manifolds. In this context it would be worthwile to research
further examples of twists of elementary deformations.

In Section 2.3.1 we have analyzed the behavior of the Ricci curvature and the Einstein
condition for the special class of conical Kéhler manifolds where the Hamiltonian Killing
vector field is related to the Euler vector field. In this respect it would be desirable to
find more general formulas relating the curvatures of the Kéhler manifolds in the hope
of using the K/K correspondence to construct new Einstein metrics.

For the global ASK/PSK correspondence it would be worthwile to try to get a better
understanding of the holonomy condition for the flat connection of the principal Ggk-
bundle. In Sections 3.5 and 4.2 we have already seen special cases where the holonomy
reduces to Sp(R?") x C. The factor C can be interpreted as the (constant) difference of
a prepotential and its analytic continuation along closed loops. It is a natural question
to ask, under which conditions this difference is real, independent of the chosen path.

In Section 4.2 we show that the integrable system M carries a hyper-Kéahler structure
that is induced from the natural hyper-Kéhler structure on the cotangent bundle 7% M
of the affine special Kahler manifold M. It is, however, still unclear whether this also
induces a hyper-Kéhler structure on the bundle M of twisted characters. Recall that
the bundle M is affine over M, thus the difference of two local sections s, s’ of M gives
a section of M. If these sections can be chosen in such a way that s — s’ is in fact
a @—parallel section of My, then this would give a well-defined hyper-Kéhler structure
on M. We can formulate the following question: Does the bundle of twisted characters
M carry a flat connection? We close this chapter by pointing out the relevance of the

quadratic form Eq. (4.2.19) to this question.
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This collaboration was part of my doctoral project. Chapter 3 is based on this publica-
tion. Key ideas, such as the determination of the correct group extension, the lift of the
group action as in Section 3.2.1, and the local conification (Section 3.3) were developed in
joint discussions with my co-authors. The physical interpretation of the deformation of
the supergravity r-map metric as an o’-correction is due to T. Mohaupt. The complete-
ness result of Section 3.6, the explicit transformation behavior of Lagrangian potentials
and prepotentials (Sections 3.2.2 and 3.2.3), and the description of the principal Gsk-
bundle as well as the global description of the ASK/PSK correspondence (Section 3.4.2)

are results of my own work.
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