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Chapter 1

Introduction

The study of contractible edges in graphs was initiated by Tutte in 1961 who
proved that every 3-connected finite graph of order at least five contains a
contractible edge. From that point forward, research on contractible edges
have blossomed into various areas: investigating the distribution of contractible
edges, studying properties of contraction-critical graphs, discovering sufficient
conditions for their existence, and determining which subgraphs contain con-
tractible edges. Contractible edges are extremely useful in inductive arguments
for proving a number of graph theory results such as Kuratowski’s character-
ization of planar graphs and Lovász’ conjecture that every (k + 3)-connected
graph contains a cycle whose deletion results in a k-connected graph. Almost
all results about contractible edges were derived solely for finite graphs due to
the proof techniques available: induction, reductio ad absurdum, and the theory
of atoms and ends. Also, 2-connected graphs were often omitted because of
their apparent simplicity although some results were obtained for 2-connected
matroids.

The purpose of this dissertation is to rectify these situations and provide
a deeper understanding of contractible edges in general. First, it fills in the
remaining gap for results concerning contractible edges in 2-connected finite
graphs. In Chapter 2, the distribution of contractible edges in spanning trees,
longest cycles, longest paths and maximum matchings in 2-connected finite
graphs is studied. Chapter 3 focuses on vertex covers of contractible edges in 2-
connected graphs. Second, results concerning contractible edges in k-connected
graphs (k ≥ 3) are extended to locally finite infinite graphs. In Chapter 4,
several results in Chapter 2 are generalized to locally finite infinite 2-connected
graphs while contraction-critical 2-connected infinite graphs are studied as well.
Chapter 5 deals with the more traditional topic of 3-connected graphs where
the structure and distribution of contractible edges around a vertex of finite
degree are investigated. Chapter 6 extends the well known characterization of
contraction-critical 4-connected graphs by Fontet and Martinov to locally finite
infinite graphs. Finally, sufficient conditions for the existence of contractible
edges in k-connected locally finite infinite graphs were obtained in Chapter 7.
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Chapter 2

Contractible edges in
subgraphs of 2-connected
finite graphs

2.1 Introduction

The study of contractible edges started with the work of Tutte [15] who proved
that every 3-connected finite graph nonisomorphic to K4 contains a contractible
edge. Further results on the number of contractible edges and non-contractible
edges in terms of the order and size of a graph were obtained. Ando et al. [1]
proved that every 3-connected finite graph G nonisomorphic to K4 has at least
|V (G)|

2 contractible edges and characterized all the extremal graphs. Ota [17]
proved that every 3-connected finite graph G of order at least 19 has at least
2|E(G)|+12

7 contractible edges and determined all the extremal graphs. Egawa et
al. [13] showed that the number of non-contractible edges in a 3-connected finite
graph G nonisomorphic to K4 is at most 3|V (G)| − b 32 (

√
24|V (G)|+ 25− 5)c.

The existence of contractible edges in certain types of subgraphs in 3-connected
finite graphs was also investigated. For any 3-connected finite graphs of order
at least seven, Dean et al. [7] proved that for any two distinct vertices x, y,
every longest x-y path contains at least two contractible edges and that every
longest cycle contains at least three contractible edges. Later, Aldred et al. [1, 2]
characterized all 3-connected graphs with a longest path containing exactly two
contractible edges and Aldred et al. [3] characterized all 3-connected graphs
having a longest cycle containing exactly three contractible edges. Ellingham
et al. [10] proved that every non-Hamiltonian 3-connected finite graph has at
least six contractible edges in any longest cycle. For any 3-connected graph of
order at least five, Fujita [12] proved that there exists a longest cycle C such

that C contains at least |V (C)|+9
8 contractible edges, and later [13] improved the

lower bound to |V (C)|+7
7 . Maximum matchings were shown to contain a con-
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tractible edge by Aldred et al. [4]. They [5] also characterized all 3-connected
finite graphs with a maximum matching containing precisely one contractible
edge. Recently, Elmasry et al. [11] proved that every depth-first search tree in
a 3-connected finite graph nonisomorphic to K4 contains a contractible edge.

For 2-connected finite graphs, several analogous results on contractible and
non-contractible edges were known in the more general context of matroids. Let
M be a simple 2-connected finite matroid with rank r(M). Oxley [18] showed
that M has at least r(M) + 1 contractible elements. Wu [16] characterized the
extremal matroids to be precisely the matroids arised from 2-connected finite
outerplanar graphs. Kahn and Seymour [15] proved that if M has rank at
least two, then M has at least |E(M)| − r(M) + 2 contractible elements, and
characterized all the matroids where equality holds. When restricted to graphs,
these correspond to maximally outerplanar graphs. In Section 3, we will provide
graph-theoretical proofs of the above and related results.

Section 4 deals with contractible edges in spanning trees in 2-connected fi-
nite graphs. From the above result of Kahn and Seymour, every spanning tree
must contain at least two contractible edges. Those graphs having a spanning
tree containing exactly two contractible edges are characterized. In Section 5,
we study contractible edges in longest cycles and longest paths. It is easy to see
that every edge in a longest cycle is contractible, and the first and last edges
in any longest path between two given vertices are contractible. Furthermore,
we characterize all the graphs with a longest path containing exactly two con-
tractible edges to be the square of a path. For 2-connected non-hamiltonian
finite graphs, every longest path is shown to contain at least four contractible
edges which is best possible. We also prove that for any 2-connected finite
graph nonisomorphic to K3, there exists a longest path P containing more than
|E(P )|/2 contractible edges and this bound is asymptotically optimal. Lastly, in
Section 6, every maximum matching is shown to contain a contractible edge. All
2-connected finite graphs with a maximum matching containing precisely one
contractible edge are characterized. We also proved that for any 2-connected
finite graph nonisomorphic to K3, there exists a maximum matching M that
contains at least 2(|M |+ 1)/3 contractible edges and the bound is optimal.

2.2 Definitions

All basic graph-theoretical terminology can be found in Diestel [9]. Unless
otherwise stated, all graphs G considered in this paper are simple and finite.
For any vertex x in G, denote the set of neighbors of x by NG(x). Let A and B
be two disjoint subsets of V (G), define EG(A,B) to be the set of edges between
A and B. The square of G, denoted by G2, is the graph on V (G) where two
vertices are adjacent if and only if they have distance at most two in G. A
matching is a set of independent edges and a maximum matching is a matching
of largest cardinality. Let M be a matching in G. An M-alternating path is a
path whose edges alternate between M and E(G) \M . An M-alternating path
is called M-augmenting if the first and last vertices of the path are not incident
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to any edges in M . Let H be a path or a cycle. Two chords x1x2 and y1y2 of
H are overlapping if x1, y1, x2, y2 appear in this order in H.

Let G be a k-connected graph. An edge e of G is said to be k-contractible if
the graph obtained by its contraction, G/e, is also k-connected. Otherwise, it
is called k-non-contractible. Since this paper concerns only 2-connected graphs,
we write 2-contractible as contractible. Let G = (V,E) be a 2-connected graph.
Denote the set of contractible edges and non-contractible edges in G by EC and
ENC respectively. Define GC := (V,EC) to be the subgraph induced by all the
contractible edges and GNC := (V,ENC).

A graph is outerplanar if it can be embedded in the plane such that all the
vertices lie on the boundary of one face. A graph is maximally outerplanar if it
is outerplanar and the addition of any extra edge results in a non-outerplanar
graph.

2.3 Contractible and non-contractible edges in
2-connected finite graphs

Here we group together all the major results concerning contractible and non-
contractible edges in 2-connected finite graphs. Most results are well-known
but a few are new. We start with three fundamental lemmas applicable to all
2-connected graphs nonisomorphic to K3.

Lemma 2.1. Let G be a 2-connected graph nonisomorphic to K3. For every
edge e of G, G− e or G/e is 2-connected.

Lemma 2.2. Let G be a 2-connected graph nonisomorphic to K3. Let e and f
be two distinct non-contractible edges of G. Then f is non-contractible in G−e.

Lemma 2.3. Let G be a 2-connected graph nonisomorphic to K3. Let e be
a non-contractible edge of G and f be a contractible edge of G. Then f is
contractible in G− e.

Proof. Suppose f is non-contractible in G − e. Since f is contractible in G,
G− e− V (f) has exactly two components, say C and D, and e joins C and D
in G. Note that V (e) ∩ V (f) = ∅. Denote the endvertex of e in C by c and the
endvertex of e in D by d. Every c-d path except e intersects the endvertices of
f . Consider a component B of G − V (e) not containing f . Then G[B ∪ e] − e
contains a c-d path not intersecting V (f), a contradiction. �

Using Lemma 2.1 and 2.2, we can prove the following lemma.

Lemma 2.4. Let G be a 2-connected graph nonisomorphic to K3 and F be a
finite subset of E(G).

(a) If G− F is disconnected, then F contains at least two contractible edges.

(b) If G − F is connected but not 2-connected, then F contains at least one
contractible edge.

9



As a corollary, we have:

Lemma 2.5. Let G be a 2-connected graph nonisomorphic to K3. Let {x, y} be
a 2-separator of G and C be a component of G− x− y. If |EG(x,C)| is finite,
then EG(x,C) contains a contractible edge.

Lemma 2.4 implies that for any 2-connected finite graph nonisomorphic to
K3, every vertex is incident to at least two contractible edges. Hence, the num-
ber of contractible edges is at least the number of vertices. The 2-connected
graphs satisfying the lower bound were characterized by Wu [16] to be outerpla-
nar graphs. Since Wu’s work concerns simple 2-connected finite matroids, we
give a graph-theoretical proof below. This requires the following theorem which
can be proved easily by Lemma 2.1 and 2.2.

Theorem 2.6. Let G be a 2-connected finite graph nonisomorphic to K3. Then
the subgraph GC induced by all the contractible edges is 2-connected.

Proof. By Lemma 2.1 and 2.2, we can repeatedly delete all the non-contractible
edges so that the resulting graph GC is 2-connected. �

Theorem 2.7 (Wu [16]). Every 2-connected finite graph G nonisomorphic to
K3 has at least |V (G)| contractible edges. The equality holds if and only if G is
outerplanar.

Proof. If G is outerplanar, then G consists of a Hamilton cycle with non-
overlapping chords. The edges in the Hamilton cycle are the only contractible
edges and the equality holds. Suppose the equality holds. Then by Lemma
2.4, |V (G)| = |EC | = 1

2

∑
x∈V (G) |EC(x)| ≥ 1

2

∑
x∈V (G) 2 = |V (G)|. Therefore,

every vertex of G is incident to exactly two contractible edges. By Theorem
2.6, GC is a Hamilton cycle of G. All edges of G outside GC are chords of GC
and are non-contractible. This implies that no chords of GC are overlapping.
Hence, G is outerplanar. �

There is also a similar result concerning non-contractible edges in 2-connected
finite graphs. As noted in the Introduction, this was already proved by Kahn
and Seymour [15]. Here we will adopt Kriesell [7]’s arguments.

Theorem 2.8. Every 2-connected finite graph G nonisomorphic to K3 has at
most |V (G)| − 3 non-contractible edges. The equality holds if and only if G is
maximally outerplanar.

Proof. The first part was proved by Kriesell [7]. Here we prove the second part
using the same inductive arguments. (⇐) Obvious. (⇒) For |V (G)| = 4, the
result is true. Consider a non-contractible edge xy in G. Let C1 be a component
of G−{x, y} and C2 := G−{x, y}−C1. Suppose |C2| = 1 and let V (C2) := {a}.
Then degG(a) = 2, and ax and ay are contractible in G by Lemma 2.1. Also,
G−a is 2-connected and xy is a contractible edge in G−a. Therefore, G−a has
|V (G)|−4 non-contractible edges. By induction hypothesis, G−a is maximally
outerplanar and so is G.
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Now, assume |C1| > 1 and |C2| > 1. Let Gi be the graph obtained from
G by contracting C3−i to a vertex ai for i = 1, 2. Then G1 and G2 are 2-
connected and xy is a non-contractible edge in both G1 and G2. By the first
part of the theorem, Gi has at most |V (Gi)| − 3 non-contractible edges. Since
|V (G)|−3 = |ENC(G)| = |ENC(G1)|+ |ENC(G2)|−1 ≤ |V (G1)|−3+ |V (G2)|−
3 − 1 = |V (C1)| + |V (C2)| − 1 = |V (G)| − 3, each Gi has exactly |V (Gi)| − 3
non-contractible edges. By induction hypothesis, each Gi is maximally outer-
planar and so is G. �

Combining Theorem 2.7 and 2.8, we obtain a lower bound for the number
of contractible edges and an upper bound for the number of non-contractible
edges in terms of the size of a graph.

Theorem 2.9. Every 2-connected finite graph G nonisomorphic to K3 has at

least |E(G)|+3
2 contractible edges and at most |E(G)|−3

2 non-contractible edges. In
both cases, the equality holds if and only if G is maximally outerplanar.

Proof. By Theorem 2.7 and 2.8, |V (G)| ≤ |EC | and |ENC | ≤ |V (G)| − 3 ≤
|EC | − 3. Therefore, 2|ENC | + 3 ≤ |E(G)| = |EC | + |ENC | ≤ 2|EC | − 3. We

have |EC | ≥ |E(G)|+3
2 and |ENC | ≤ |E(G)|−3

2 . In both cases, the equality holds
if and only if |EC | = |V (G)| and |ENC | = |V (G)| − 3 which is equivalent to G
being maximally outerplanar by Theorem 2.7 and 2.8. �

Theorem 2.7 gives a characterization of 2-connected finite graphs of order at
least four having exactly |V (G)| contractible edges. Here we characterize all 2-
connected finite graphs G having exactly |V (G)|+1 and |V (G)|+2 contractible
edges.

Theorem 2.10. Let G be a 2-connected finite graph. Then G contains exactly
|V (G)| + 1 contractible edges if and only if G consists of two vertices joined
by three internally disjoint paths each of length at least two together with non-
overlapping chords on each path.

Proof. SupposeG contains exactly |V (G)|+1 contractible edges. Then
∑
x∈V (G) |EC(x)| =

2|EC | = 2|V (G)|+ 2. By Lemma 2.4, |EC(x)| ≥ 2 for all x ∈ V (G). Therefore,
GC contains exactly two vertices of degree three with the remaining vertices of
degree two. Hence, GC consists of two vertices x, y joined by three internally
disjoint paths, say P1, P2, P3. Since all edges not in GC are non-contractible,
there are no edges joining P̊i and P̊j for i 6= j, the length of each Pi is at least
two, and all chords on Pi are non-overlapping.

Suppose G consists of two vertices x, y joined by three internally disjoint
paths P1, P2, P3 each of length at least two together with non-overlapping chords
on each path. Then GC equals to (V (G), E(P1 ∪ P2 ∪ P3)). Hence, |EC | =
1
2

∑
x∈V (G) |EC(x)| = 1

2 [2(|V (G)| − 2) + 3(2)] = |V (G)|+ 1. �

Theorem 2.11. Let G be a 2-connected finite graph. Then G contains exactly
|V (G)|+ 2 contractible edges if and only if G is one of the following graphs:
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1. G consists of two degree-4 vertices joined by four internally disjoint paths
each of length at least two together with non-overlapping chords on each
path.

2. G has one degree-4 vertex and two degree-3 vertices. The degree-4 vertex
joins each degree-3 vertex by two internally disjoint paths each of length
at least two. The two degree-3 vertices are joined by a path. All the paths
are internally disjoint and each path has no overlapping chords.

3. G consists of a K4 subdivision together with non-overlapping chords on
each path between any two branch vertices of the K4 subdivision.

Proof. SupposeG contains exactly |V (G)|+2 contractible edges. Then
∑
x∈V (G) |EC(x)| =

2|EC | = 2|V (G)| + 4. By Lemma 2.4, |EC(x)| ≥ 2 for all x ∈ V (G). There
are three possibilities: (1) GC has two vertices of degree four and the rest of
degree two; (2) GC has one vertex of degree four, two vertices of degree three
and the rest of degree two; (3) GC has four vertices of degree three and the
rest of degree two. In the first case, GC consists of two vertices joined by four
internally disjoint paths. The remaining edges of G, being non-contractible, can
only be chords of the four paths and no two of which are overlapping. This also
implies that each of the four paths are of length at least two. In the second case,
since GC is 2-connected, the degree-4 vertex in GC joins each degree-3 vertex
in GC by two internally disjoint paths each of length at least two, and the two
degree-3 vertices are joined by a path where all five paths are internally disjoint.
The remaining edges of G, being non-contractible, can only be chords of the five
paths, and no two chords on the same path are overlapping. In the third case,
GC is a K4 subdivision. The remaining edges, being non-contractible, can only
be chords on one of the six paths between two branch vertices in GC . Again no
two chords on the same path are overlapping.

Suppose G is one of the three graphs in the above list. It follows easily that∑
x∈V (G) |EC(x)| = 2|V (G)|+ 4 and |EC | = |V (G)|+ 2. �

2.4 Contractible edges in spanning trees

Another question that can be asked about contractible edges in a 2-connected
finite graph is: How many contractible edges are there in certain types of sub-
graphs? By Theorem 2.6, every 2-connected finite graph nonisomorphic to K3

contains a spanning tree consisting of contractible edges only. Theorem 2.8 im-
plies that every spanning tree of a 2-connected finite graph nonisomorphic to K3

contains at least two contractible edges. Below we characterize all 2-connected
graphs having a spanning tree containing exactly two contractible edges.

Theorem 2.12. Let G be a 2-connected finite graph nonisomorphic to K3. Then
every spanning tree of G contains at least two contractible edges. Moreover, G
has a spanning tree containing exactly two contractible edges if and only if G is
maximally outerplanar and GNC is acyclic.
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Proof. As noted above, the first part follows from Theorem 2.8. Suppose G has
a spanning tree T containing exactly two contractible edges. Since |E(T )| =
|V (G)| − 1 and |ENC | ≥ |E(T )| − 2, |ENC | ≥ |V (G)| − 3. By Theorem 2.8,
|ENC | = |V (G)| − 3 = |E(T )| − 2 and G is maximally outerplanar. Also, GNC
is acyclic as ENC ⊆ E(T ).

Suppose G is maximally outerplanar and GNC is acyclic. Then G being
maximally outerplanar implies that G[ENC ] is connected. Since GNC is acyclic,
G[ENC ] is acyclic and hence is a tree of order |ENC |+ 1 = |V (G)| − 2 by The-
orem 2.8. Now, G[ENC ] can be extended to a spanning tree of G containing
exactly two contractible edges. �

Suppose l is the minimum number of contractible edges a spanning tree of
G can contain. It is easy to show that there exists a spanning tree containing
exactly k contractible edges for l ≤ k ≤ |V (G)| − 1.

Theorem 2.13. Let G be a 2-connected finite graph nonisomorphic to K3 and
l be the minimum number of contractible edges a spanning tree of G contains.
Then, for l ≤ k ≤ |V (G)| − 1, G has a spanning tree containing exactly k
contractible edges.

Proof. Suppose we have proved that G has a spanning tree T containing exactly
k contractible edges. Let xy be a non-contractible edge in T . Denote the subtree
of T − xy containing x by Tx and that containing y by Ty. By Lemma 2.4,
EG(Tx, Ty) contains a contractible edge, say uv. Then T −xy+uv is a spanning
tree containing exactly k + 1 contractible edges. By induction, the theorem
follows. �

2.5 Contractible edges in longest cycles and paths

Inspired by the papers of Dean et al. [7] and Aldred et al. [3], we also study con-
tractible edges in longest paths and longest cycles in 2-connected finite graphs.

Lemma 2.14. Let G be a 2-connected finite graph nonisomorphic to K3, and
x, y be two vertices in G. Suppose P := x1x2 . . . xn is a longest x-y path in G
(x = x1 and y = xn). If xixi+1 is non-contractible, then G−xi−xi+1 has exactly
two components, each of which intersects P , and there is no x1Pxi−1-xi+2Pxn
path in G− xi − xi+1. In particular, x1x2 and xn−1xn are contractible.

Proof. Suppose G− xi − xi+1 contains a component C disjoint from P . Let yi
be a neighbor of xi in C, yi+1 be a neighbor of xi+1 in C, and Q be a yi-yi+1

path in C. Then P − xixi+1 + xiyi + yiQyi+1 + yi+1xi+1 is a x-y path longer
than P which is impossible. �

Lemma 2.14 immediately leads to the following theorem.

Theorem 2.15. Let G be a 2-connected finite graph nonisomorphic to K3.
Then the first and the last edges in a longest path in G are contractible, and all
edges in a longest cycle in G are contractible.
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Proof. The first part follows from Lemma 2.14. Let C be a longest cycle in G.
Suppose C contains a non-contractible edge xy. Let z be a neighbor of y in C
other than x. Then C − yz is a longest y-z path in G. By Lemma 2.14, yx is
contractible, a contradiction. �

As a natural step, we characterize all 2-connected finite graphs having a
longest path containing exactly two contractible edges.

Theorem 2.16. Let G be a 2-connected finite graph nonisomorphic to K3.
Then G has a longest path containing exactly two contractible edges if and only
if G is the square of a path.

Proof. (⇐) Obvious. (⇒) Suppose P := x1x2 . . . xn is a longest path in G
containing exactly two contractible edges. By Lemma 2.14, x1x2 and xn−1xn
are the only contractible edges in P . Note that n ≥ 4. For k = 1, 2, . . . , n − 3,
define Pk to be the subpath x1x2 . . . xk of P and Ck to be the component of
G− xk+1 − xk+2 containing x1.

If C1 6= x1, then there exists a vertex in C1, say y1, adjacent to x1. By
applying Lemma 2.14 to x2x3, y1 /∈ P and y1x1x2 . . . xn is a path longer than
P , a contradiction. Therefore, C1 = x1 and NG(x1) = {x2, x3}.

If C2 6= x1x2, then since NG(x1) = {x2, x3}, there exists a vertex other than
x1 in C2, say y2, adjacent to x2. By applying Lemma 2.14 to x3x4, y2 /∈ P and
y2x2x1x3 . . . xn is a path longer than P , a contradiction. Therefore, C2 = x1x2
and NG(x2) = {x1, x3, x4} as G− x3 is connected.

If C3 6= P 2
3 , then since NG(x1) = {x2, x3} and NG(x2) = {x1, x3, x4}, there

exists a vertex other than x1, x2 in C3, say y3, adjacent to x3. By applying
Lemma 2.14 to x4x5, y3 /∈ P and y3x3x1x2x4 . . . xn is a path longer than P , a
contradiction. Therefore, C3 = P 2

3 and NG(x3) = {x1, x2, x4, x5} as G − x4 is
connected.

Suppose we have proved that for k = 3, 4, . . . ,m−1, Ck = P 2
k and NG(xk) =

{xk−2, xk−1, xk+1, xk+2}. If Cm 6= P 2
m, then there exists a vertex other than

x1, . . . xm−1 in Cm, say ym, adjacent to xm. If m is odd, by applying Lemma
2.14 to xm+1xm+2, ym /∈ P and ymxmxm−2 . . . x1x2x4 . . . xm−1xm+1 . . . xn is
a path longer than P , a contradiction. If m is even, by applying Lemma
2.14 to xm+1xm+2, ym /∈ P and ymxmxm−2 . . . x2x1x3 . . . xm−1xm+1 . . . xn is
a path longer than P , a contradiction. Therefore, Cm = P 2

m and NG(xm) =
{xm−2, xm−1, xm+1, xm+2} as G− xm+1 is connected.

By induction, for k = 3, 4, . . . , n−3, Ck = P 2
k andNG(xk) = {xk−2, xk−1, xk+1, xk+2}.

Since the component of G− xn−2 − xn−1 other than Cn−3 is xn, for otherwise
we can find a longer path than P , G = P 2. �

Since the square of a path is Hamiltonian, the above theorem implies that
every longest path in a 2-connected non-Hamiltonian finite graph contains at
least three contractible edges. In fact, the correct lower bound is four. This is
best possible as demonstrated by K2,n where n ≥ 3.

Theorem 2.17. Let G be a 2-connected non-Hamiltonian finite graph. Then
every longest path contains at least four contractible edges.
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Proof. Suppose P := x1x2 . . . xn is a longest path in G containing exactly
three contractible edges. By Lemma 2.14, x1x2 and xn−1xn are contractible.
Let xkxk+1 be the third contractible edge in P . By arguing as in the proof
of Theorem 2.16, we have NG(x1) = {x2, x3}, NG(x2) = {x1, x3, x4}, NG(x3) =
{x1, x2, x4, x5}, . . . , NG(xk−2) = {xk−4, xk−3, xk−1, xk}, NG(xk+3) = {xk+1, xk+2, xk+4, xk+5}, . . . , NG(xn−2) =
{xn−4, xn−3, xn−1, xn}, NG(xn−1) = {xn−3, xn−2, xn}, NG(xn) = {xn−2, xn−1}.
By the maximality of P , NG(xk−1) ⊆ P and NG(xk+2) ⊆ P . Since xkxk+1 is
contractible, G−xk−xk+1 is connected, and xk−1 and xk+2 are adjacent. Again
by the maximality of P , NG(xk) ⊆ P and NG(xk+1) ⊆ P . Now, V (G) = V (P )
and G is Hamiltonian, a contradiction. �

Theorem 2.15 tells us that every longest path has at least two contractible
edges but is it possible to find a longest path that contains many contractible
edges? The following theorem provides an affirmative answer.

Theorem 2.18. Let G be a 2-connected finite graph nonisomorphic to K3 and
P be a longest path in G containing as many contractible edges as possible. Then
P has more than |E(P )|/2 contractible edges.

Proof. By Theorem 2.15, the result is true if |E(P )| ≤ 4. Therefore, we can
assume |E(P )| ≥ 5. Let P := x1x2 . . . xn.

Claim 2.19. The first four and last four edges of P are contractible.

Proof. Suppose x1x2 is contractible and x2x3 is non-contractible. By the max-
imality of P and by applying Lemma 2.14 to x2x3, NG(x1) = {x2, x3}. Then
x1x3 is a contractible edge and x2x1x3Pxn has more contractible edges than P ,
a contradiction.

Suppose x1x2, x2x3 are contractible and x3x4 is non-contractible. Then
by the maximality of P and by applying Lemma 2.14 to x3x4, NG(x1) ⊆
{x2, x3, x4}. Since x2x3 is contractible, G − x2 − x3 is connected and x1 is
adjacent to x4. Suppose x1x4 is non-contractible. By Lemma 4.6, there exists
a contractible edge incident to x1, say x1y, such that y /∈ {x2, x3, x4} which
is impossible. Therefore, x1x4 is contractible and x3x2x1x4Pxn has more con-
tractible edges than P , a contradiction.

Suppose x1x2, x2x3, x3x4 are contractible and x4x5 is non-contractible. Let
C be the component of G− x4 − x5 containing x1. Then by the maximality of
P and by applying Lemma 2.14 to x4x5, NG(x1) ⊆ {x2, x3, x4, x5}. Suppose
x5 ∈ NG(x1). By arguing as above, x1x5 is contractible and x4x3x2x1x5Pxn
has more contractible edges than P , a contradiction. Therefore, x5 /∈ NG(x1).
Since x2x3 is contractible, G− x2 − x3 is connected and x1x4 ∈ E(G). If x1x4
is non-contractible, then by Lemma 4.6, there exists a contractible edge x1y
such that y /∈ {x2, x3, x5}, a contradiction. Hence, x1x4 is contractible. Since
x3x4 is contractible, there exists a x2-x5 path Q. By applying Lemma 2.14 to
x4x5, Q lies in G[(C ∪ x5) − {x1, x3, x4}]. Then x3x4x1x2Qx5Pxn is a longer
path than P unless Q = x2x5. Suppose x2x5 is non-contractible. Let D be a
component of G−x2−x5 not containing x1. Then there exists a x2-x5 path Q′
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in G[D ∪ {x2, x5}] such that |E(Q′)| ≥ 2 which is impossible. Therefore, x2x5
is contractible. Now, x3x4x1x2x5Pxn has more contractible edges than P , a
contradiction. �

Claim 2.20. Let xixi+1 and xi+1xi+2 be two consecutive non-contractible edges
in P . Then xixi+2 is a contractible edge.

Proof. By Lemma 2.14, i > 1 and i + 2 < n. Let C be the component of
G− xi − xi+1 containing xi+2. By Lemma 4.6, there exists a contractible edge
xiyi such that yi ∈ C. Let Q be a yi-xi+2 path in C. By applying Lemma 2.14
to xi+1xi+2, Q∩P = xi+2. Define R := x1PxiyiQxi+2Pxn. If |E(Q)| ≥ 2, then
R is a longer path than P , a contradiction. If |E(Q)| = 1, then R and P have
the same length, but R has more contractible edges than P , a contradiction.
Therefore, |E(Q)| = 0 and xixi+2 is a contractible edge. �

Claim 2.21. There are no three consecutive non-contractible edges in P .

Proof. Suppose there are three consecutive non-contractible edges xixi+1, xi+1xi+2

and xi+2xi+3 in P . By Claim 4.22, xixi+2 and xi+1xi+3 are contractible edges.
But then x1Pxixi+2xi+1xi+3Pxn has more contractible edges than P , a con-
tradiction. �

Below we will represent contractible and non-contractible edges in P using
the following notation. For example, xixi+1xi+2xi+3xi+4xi+5 := CNCNN
denotes that xixi+1 and xi+2xi+3 are contractible, and xi+1xi+2, xi+3xi+4 and
xi+4xi+5 are non-contractible. Note that NNN is impossible in P by Claim
4.23.

Claim 2.22. There is no NN(CN)kN in P .

Proof. The case k = 0 is Claim 4.23. Suppose xixi+1 . . . xi+2k+2xi+2k+3 :=
NN(CN)kN appears in P where k ≥ 1. Since xi+2jxi+2j+1 is contractible
(1 ≤ j ≤ k), G − xi+2j − xi+2j+1 is connected and contains a x1Pxi+2j−1-
xi+2j+2Pxn path internally disjoint from P , denoted by Qj . By applying
Lemma 2.14 to xi+1xi+2, xi+3xi+4, . . . , xi+2k+1xi+2k+2, for 1 ≤ j ≤ k, Qj ∩
P = {xi+2j−1, xi+2j+2} and all Qj ’s are pairwisely disjoint. Consider P ′ :=
x1Pxixi+2xi+1Q1xi+4xi+3Q2xi+6 . . . xi+2k−3Qk−1xi+2kxi+2k−1Qkxi+2k+2xi+2k+1xi+2k+3Pxn.
By the maximality of P , all Qj ’s are contractible edges. But then P ′ has more
contractible edges than P , a contradiction. �

Claim 2.23. Every 2k+1 consecutive edges in P contain at least k contractible
edges.

Proof. For k = 0, it is trivial. By Claim 4.23, k = 1 is true. Suppose
we have proved that for all 0 ≤ l ≤ k, every 2l + 1 consecutive edges in P
contain at least l contractible edges. Consider any 2k + 3 consecutive edges
in P , say Q := xixi+1 . . . xi+2k+3. Assume Q contains only k contractible
edges. Since xi+1Qxi+2k+2 contains at least k contractible edges, xixi+1 and
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xi+2k+2xi+2k+3 are non-contractible. Since xiQxi+2k+1 contains at least k con-
tractible edges, xi+2k+1xi+2k+2 is non-contractible. Similarly, xi+1xi+2 is non-
contractible. By applying Claim 4.24 to xiQxi+3, xi+2xi+3 is contractible. Sim-
ilarly, xi+2kxi+2k+1 is contractible.

Suppose we have proved that the first 2l + 1 edges of Q are of the form:
N(NC)l and the last 2l + 1 edges of Q are of the form: (CN)lN . By con-
sidering contractible edges in xiQxi+2(k−l)+1, xi+2(k−l)+1xi+2(k−l)+2 is non-
contractible. Similarly, xi+2l+1xi+2l+2 is non-contractible. By applying Claim
4.24 to xiQxi+2l+3, xi+2l+2xi+2l+3 is contractible. Similarly, xi+2(k−l)xi+2(k−l)+1

is contractible. Therefore, by induction, Q = NN(CN)kN , which is impossible
by Claim 4.24. �

Claim 2.24. P has more than |E(P )|/2 contractible edges.

Proof. This immediately follows from Claim 4.21 and Claim 4.25. �

Finally, the bound in Theorem 2.18 is asymptotically best possible as demon-
strated by the family of graphs, Hk (k ≥ 0), constructed below. Define V (Hk) :=

{x1, x2, . . . , x2k+10} and E(Hk) :=
⋃2k+9
i=1 xixi+1∪{x1x4, x2x6, x2k+5x2k+9, x2k+7x2k+10}∪⋃k

i=1 x2i+3x2i+6. It is not difficult to see that the longest path of Hk is either
x1x2 . . . x2k+10 or (x1x4x3x2/x3x4x1x2)x6x5x8x7 . . . x6+4ix5+4ix8+4ix7+4i . . .
x2k+4x2k+3x2k+6x2k+5(x2k+9x2k+8x2k+7x2k+10/x2k+9x2k+10x2k+7x2k+8), and has
the contractible/non-contractible edge pattern: CCCCN(CN)kCCCC.

2.6 Contractible edges in maximum matchings

Here, we prove several results concerning contractible edges in maximum match-
ing. First, it is shown that every maximum matching in a 2-connected finite
graph nonisomorphic to K3 contains a contractible edge.

Lemma 2.25. Let G be a 2-connected finite graph nonisomorphic to K3 and
M be a matching in G such that all of its edges are non-contractible. Then for
every edge e in M , there exists an M -augmenting path containing e.

Proof. Denote e by x0y0. Let X and Y be two components of G − x0 − y0.
Let x1 be a neighbor of x0 in X and y1 be a neighbor of y0 in Y . Note
that x0x1 /∈ M , y0y1 /∈ M and x1x0y0y1 is an M -alternating path. Let
P := x2k+1x2k . . . x1x0y0y1 . . . y2ly2l+1 be a longest M -alternating path such
that x2k+1x2k /∈ M and y2ly2l+1 /∈ M . If x2k+1 ∈ V (M), then there exists
an edge in M incident to x2k+1, say x2k+1x2k+2. Since x2k+1x2k+2 is non-
contractible, x2k+2 is adjacent to a vertex not in P , say x2k+3. But then
x2k+3x2k+2x2k+1x2k . . . x1x0y0y1 . . . y2ly2l+1 is an M -alternating path longer
than P such that x2k+3x2k+2 /∈ M and y2lx2l+1 /∈ M , a contradiction. Hence,
x2k+1 /∈ V (M). Similarly, y2l+1 /∈ V (M). Therefore, P is an M -augmenting
path containing e. �
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Since an M -augmenting path enables one to construct a larger matching
than M , Lemma 2.25 immediately implies the following.

Theorem 2.26. Every maximum matching in a 2-connected finite graph noni-
somorphic to K3 contains a contractible edge.

Next, we characterize all 2-connected finite graphs with a maximum match-
ing containing precisely one contractible edge. For such purpose, we define the
following type of graphs Rn(n ≥ 1) with V (Rn) := {x0, y0, x1, y1, . . . , xn, yn, z}
and E(Rn) := {xiyi, xixi+1, yiyi+1 : 0 ≤ i ≤ n−1}∪{xnyn, xnz, ynz}∪F where
F ⊆ {xiyi+1, yixi+1 : 0 ≤ i ≤ n− 1}.

Theorem 2.27. Let G be a 2-connected finite graph. Then G has a maximum
matching containing precisely one contractible edge if and only if G ∼= Rn.

Proof. (⇐) {xiyi : 0 ≤ i ≤ n} is the desired matching. (⇒) Let M be a
maximum matching containing precisely one contractible edge x0y0. Since M
contains a contractible edge, G has at least four vertices. There exists two
distinct vertices x1 and y1 such that x1 is adjacent to x0 and y1 is adjacent to
y0. Note that x0x1 /∈M and y0y1 /∈M .

We claim that x1y1 ∈M and NG(x0, y0) = {x1, y1}. There are three cases to
consider. (1) If x1 /∈ V (M) and y1 /∈ V (M), then x1x0y0y1 is an M -augmenting
path, contradicting M being maximum. (2) If either x1 /∈ V (M) and y1 ∈ V (M)
or x1 ∈ V (M) and y1 /∈ V (M), then as in the proof of Lemma 2.25, we can
construct an M -augmenting path, a contradiction. (3) Suppose x1 ∈ V (M)
and y1 ∈ V (M). Let x1x

′
1 and y1y

′
1 be the edges in M incident to x1 and

y1 respectively. Again as in the proof of Lemma 2.25, we can construct an
M -augmenting path unless x1x

′
1 = x1y1 = y1y

′
1. Hence, x1y1 is an edge in

M . Suppose there exists a vertex u in NG(x0, y0) other than x1 and y1, and
without loss of generality, assume u ∈ NG(x0). Consider the M -alternating
path ux0y0y1x1. Then we can construct an M -augmenting path as in the proof
of Lemma 2.25, which is impossible. Therefore, NG(x0, y0) = {x1, y1}.

Consider x1y1. Then G−x1− y1 has exactly two components for otherwise,
there exists an M -augmenting path by the construction in Lemma 2.25. De-
note the two components by C1 and D1, and without loss of generality, assume
C1 := x0y0. If |V (D1)| = 1, then G ∼= R1. If |V (D1)| > 1, then there exists two
distinct vertices x2 and y2 such that x2 is adjacent to x1 and y2 is adjacent to
y1. By arguments as above, x2y2 ∈ M and NG(x1, y1) = {x0, y0, x2, y2}. We
can continue this process with x2y2, x3y3, . . . and prove that G ∼= Rn. �

Note that Rn contains not only a maximum matching with exactly one con-
tractible edge but also a maximum matching all of whose edges are contractible.
It is natural to ask whether every 2-connected finite graph nonisomorphic to K3

contains a maximum matching with many contractible edges. The answer is
given by Theorem 2.29 below, and we need a result by Grossman and Häggkvist
[14] concerning properly colored cycles in edge-colored graphs. A cycle is prop-
erly colored if adjacent edges have different colors.
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Theorem 2.28 (Grossman and Häggkvist [14]). Let G be a 2-connected finite
graph with its edges colored by two colors. If every vertex is incident to at least
one edge of each color, then G has a properly colored cycle.

Theorem 2.29. Let G be a 2-connected finite graph nonisomorphic to K3 and
M be a maximum matching that contains as many contractible edges as possible.
Then M contains at least 2(|M |+ 1)/3 contractible edges.

Proof. First, define MNC := M ∩ ENC and MC := M ∩ EC . We say that a
subgraph H in G has property (∗) if for each edge e ∈ MNC ∩H, H − V (e) is
connected. DefineH to be the set of all maximal induced 2-connected subgraphs
in G having property (∗).

Claim 2.30. Every vertex and edge in G belongs to at least one element of H.

Proof. Consider a shortest cycle C containing the vertex or the edge. Then C
has property (∗). �

Claim 2.31. Every edge e ∈MNC belongs to at least two elements of H.

Proof. Let C1 and C2 be two components of G−V (e). Consider a shortest cycle
Di in G[Ci ∪ e] containing e. Then Di has property (∗). But no element of H
contains both D1 and D2 since e is non-contractible. �

Claim 2.32. Let H1 and H2 be two distinct elements of H such that H1∩H2 6=
∅. Then H1 ∩H2 is an edge in MNC .

Proof. Suppose |H1 ∩ H2| = 1 and let x := H1 ∩ H2. Then there exists a
shortest H1-H2 path in G−x, say P . Let x1 := P ∩H1 and x2 := P ∩H2. Since
H ′ := G[H1 ∪H2 ∪P ] is 2-connected and does not belong to H, there exists an
edge e ∈ H ′ ∩MNC such that H ′ − V (e) is not connected. This implies that
x ∈ V (e) and V (e) ∩ P 6= ∅. Let y := V (e) ∩ P . But, then both G[H1 ∪ x1Py]
and G[H2 ∪ x2Py] are 2-connected with property (∗), a contradiction.

Suppose |H1 ∩H2| ≥ 2. Then G[H1 ∪H2] has property (∗) unless H1 ∩H2

is an edge in MNC . �

Now, define the auxillary bipartite graph A with the bipartite vertex sets
H and MNC respectively such that there exists an edge between H ∈ H and
e ∈MNC in A if and only if e ∈ H.

Claim 2.33. A is a tree.

Proof. First, we show that A is connected. By Claim 2.31, without loss of
generality, it suffices to prove that for any H1, H2 ∈ H, there is a path between
H1 and H2 in A. For H1 = H2, it is trivial. For H1∩H2 6= ∅, it is true by Claim
2.32. ForH1∩H2 = ∅, let P := x1x2 . . . xk be aH1-H2 path inG. By Claim 2.30,
every edge xixi+1 belongs to an element of H, say Gi. Note that G1 := H1 and
Gk−1 := H2. By Claim 2.32, if Gi 6= Gi+1, then Gi ∩Gi+1 ∈MNC . Therefore,
there exists a path between H1 and H2 in A.

Next, we show thatA is acyclic. Suppose there is a cycle inA, sayH1e1H2e2 . . . HkekH1.
But then G[H1 ∪H2 ∪ . . . ∪Hk] has property (∗), a contradiction. �
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Claim 2.34. For any H ∈ H, H is not K3.

Proof. Suppose H is K3 with vertices x, y, z. Since G is not isomorphic to K3,
there exists a H ′ ∈ H other than H such that H ∩H ′ 6= ∅. By Claim 2.32, one
edge of H, say xy, belongs to MNC . This means that H is a leaf in A, and xz
and yz are contractible in G. But then M −xy+xz contains more contractible
edges than M , a contradiction. �

Claim 2.35. Let H ∈ H and e be an edge in H. If e is non-contractible in
H, then e is non-contractible in G. If e is contractible in H, then either e is
contractible in G or e ∈MNC .

Proof. Suppose e is contractible in G and H − V (e) is non-connected. Let C1

and C2 be two components of H − V (e). Since G − V (e) is connected, there
exists a shortest C1-C2 path in G−V (e), say P . But then G[H∩P ] has property
(∗), a contradiction.

Suppose e is contractible in H and non-contractible in G. Let C be a compo-
nent of G−V (e) not containing H−V (e). Let D be a shortest cycle in G[C ∪e]
containing e, and H ′ be an element of H containing D. Obviously, H 6= H ′. By
Claim 2.32, e ∈MNC . �

Claim 2.36. |H| ≥ |MNC |+ 1.

Proof. By Claim 2.33 and 2.31, we have 2(|H|+ |MNC | − 1) = 2(|V (A)| − 1) =∑
H∈H degA(H) +

∑
e∈MNC

degA(e) = 2
∑
e∈MNC

degA(e) ≥ 4|MNC |. There-
fore, |H| ≥ |MNC |+ 1. �

Claim 2.37. For each H ∈ H, H contains at least two edges in MC .

Proof. Suppose H contains at most one edge in MC . Since H is not K3 by Claim
2.34, by applying Lemma 2.2 and 2.3 to H, we can delete all non-contractible
edges in H so that the resulting graph H ′ is 2-connected and all edges in H ′ are
contractible in H ′. Note that by Claim 2.35, every edge in H ′ is contractible
in G or belongs to MNC . By the definition of (∗) and Claim 2.35, none of the
edges in M ∩H are deleted. Consider any vertex x in H ′. Suppose x is incident
to an edge in M , say xy. If y /∈ H ′, then xy belongs to an element of H other
than H, say I. By Claim 2.32, I ∩H is an edge in MNC incident to x, which is
impossible. Therefore, any edge in M incident to a vertex in H ′ lies in H ′.

We claim that every vertex in H ′ is incident to an edge in M ∩H ′. Suppose
x is a vertex in H ′ not incident to any edges in M ∩H ′. Let y be any neighbor
of x in H ′. Therefore, xy is contractible in G. By the maximality of M , y is
incident to an edge in M ∩H ′, say yz. If yz ∈MNC , then M −yz+xy contains
more contractible edges than M , a contradiction. Hence, yz ∈ MC . Since y is
an arbitrary neighbor of x and H ′ contains at most one edge in MC , this implies
that y and z are the only neighbors of x in H ′. But then yz is non-contractible
in H ′, a contradiction.

Summing up, every edge in H ′ belongs to either M or EC \M , and every
vertex in H ′ is incident to an edge in M ∩H ′ and an edge in (EC \M) ∩H ′.
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By Theorem 2.28, there exists a cycle x1x2 . . . x2kx1 in H ′ such that F :=
{x1x2, x3x4, . . . , x2k−1x2k} ⊆ M and F ′ := {x2x3, x4x5, . . . , x2kx1} ⊆ EC \M .
Since H contains at most one edge in MC , M − F + F ′ has more contractible
edges than M , a contradiction. �

Claim 2.38. M contains at least 2(|M |+ 1)/3 contractible edges.

Proof. By Claim 2.37 and 2.36, |MC | ≥ 2|H| ≥ 2(|MNC | + 1). Therefore,
3|MC | ≥ 2(|MC |+ |MNC |+ 1) = 2(|M |+ 1). �

Lastly, the bound in Theorem 2.29 is best possible as demonstrated by the
family of graphs below. The building blocks are cycle of length four, C4, and
K2. Define V (Ci4) := {xi1, yi1, xi2, yi2} and E(Ci4) := {xi1yi1, yi1xi2, xi2yi2, yi2xi1},
and V (Ki

2) := {zi1, zi2} and E(Ki
2) := {zi1zi2}. Now, we construct the family of

graphs Gn inductively. Define V (G1) := V (C1
4 )∪V (K1

2 )∪V (C2
4 ) and E(G1) :=

E(C1
4 )∪E(K1

2 )∪E(C2
4 )∪{x11z11 , x12z12 , z11x21, z12x22}. Suppose we have constructed

Gn. Define V (Gn+1) := V (Gn)∪V (Kn+1
2 )∪V (Cn+2

4 ) and E(Gn+1) := E(Gn)∪
E(Kn+1

2 )∪E(Cn+2
4 )∪{xn+1

1 zn+1
1 , xn+1

2 zn+1
2 , zn+1

1 xn+2
1 , zn+1

2 xn+2
2 }. Notice that

any maximum matching of Gn is in fact a perfect matching, and must contain
two independent edges of every C4 and all the K2’s.
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Chapter 3

Covering contractible edges
in 2-connected graphs

Covers for contractible edges in 3-connected graphs were first studied by Ota and
Saito [3] who proved that the set of contractible edges EC(G) in a 3-connected
graph G of order at least six cannot be covered by two vertices (see also Saito
[4]). Later, Hemminger and Yu [2] characterized all 3-connected graphs of order
at least ten whose contractible edges can be covered by three vertices. Yu [5]
showed that for any 3-connected graph G nonisomorphic to K4, if S covers
EC(G) such that |V (G)| ≥ 3|S| − 1, then G − S is not connected. Hemminger
and Yu [1] provided upper bounds for the order, size and number of non-c-
components of G − S (refer to the paper for the definition) in terms of |S|.
Inspired by the above work, we prove the corresponding results for 2-connected
graphs.

All graphs considered in this note are finite and simple. Consider any 2-
connected graph G. An edge is contractible if its contraction results in a 2-
connected graph. Denote the set of contractible edges of G by EC(G). Let S be
a subset of V (G). A component of G−S is trivial if its order is one. A fragment
of S is a union of at least one but not all components of G − S. Denote the
vertex set, edge set and component set of all non-trivial components of G−S by
V N(G,S), EN(G,S) and CN(G,S) respectively. We say S is a cover of EC(G)
if every contractible edge in G is incident to a vertex in S. For any two disjoint
subsets A and B of V (G), denote EG(A,B) to be the set of all edges between A
and B in G. Consider the complete bipartite graph K2,k and let {x, y} be the
partition class of the two vertices. Define K+

2,k := K2,k + xy. Also, we define
the following construction of a new 2-connected graph based on G which will be
useful later. For each edge e in a subset F of E(G), add a vertex xe together
with two edges from xe to V (e). Denote the resulting graph by G#F .

We begin with two basic results concerning contractible edges in 2-connected
graphs.

Lemma 3.1. Let G be any 2-connected graph nonisomorphic to K3 and e be
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an edge of G. Then G− e or G/e is 2-connected.

Lemma 3.2. Let G be any 2-connected graph nonisomorphic to K3, and e and
f be two non-contractible edges of G. Then f is a non-contractible edge of G−e.

By the above two fundamental lemmas, every vertex of G is incident to at
least two contractible edges and hence |V (G)| ≤ |EC(G)|. Also, the subgraph
induced by all the contractible edges (V (G), EC(G)) is 2-connected.

Lemma 3.3. Consider any 2-connected graph G nonisomorphic to K3. Let x, y
be any two vertices of G and C be a component of G − x − y. Then EG(x,C)
contains a contractible edge and so does EG(y, C). Moreover, if |C| > 1, then
there exist two independent contractible edges in EG({x, y}, C).

Proof. Suppose all edges in EG(x,C) are non-contractible. By Lemma 4.3
and 4.4, we can delete all edges in EG(x,C) and the resulting graph H :=
G−EG(x,C) is 2-connected. However, either x is an isolated vertex of H or y
is a cutvertex of H, a contradiction.

Now, assume |C| > 1. Suppose EG({x, y}, C) ∩ EC(G) can be covered by
a vertex z in C. From above, xz and yz are contractible edges. By the 2-
connectedness of G, there exists an edge joining {x, y} to a vertex w of C other
than z. Without loss of generality, assume w is adjacent to y. Then wy is
non-contractible. Let D be a component of G− w − y not containing x. Then
D ( C and from above, EG(y,D) contains a contractible edge not covered by
z, a contradiction. Therefore, there exist two independent contractible edges in
EG({x, y}, C). �

Lemma 3.4. Let G be any 2-connected graph nonisomorphic to K3 and S be
a cover of EC(G). Suppose G− S contains two vertices x and y. Let C be any
component of G− x− y. Then the following statements hold.

(a) C ∩ S 6= ∅.

(b) If |C ∩ S| = 1, then |C| = 1.

(c) If |C∩S| > 1, then there exist two independent contractible edges in EG({x, y}, C).

Proof. Suppose C ∩ S = ∅. By Lemma 4.6, EG(x,C) contains a contractible
edge not covered by S, a contradiction. Now, (b) and (c) follow directly from
the second part of Lemma 4.6. �

Theorem 3.5. For any 2-connected graph G nonisomorphic to K3, EC(G)
cannot be covered by one vertex.

Proof. Suppose x is a vertex in G that covers EC(G). Obviously, there exists
an edge yz that is not incident to x. Therefore, yz is non-contractible. But
this contradicts Lemma 3.4(a) by considering a component of G − y − z not
containing x. �
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Theorem 3.6. Let G be any 2-connected graph nonisomorphic to K3. Then
EC(G) can be covered by two vertices if and only if G is isomorphic to K2,k or
to K+

2,k where k ≥ 2.

Proof. (⇐) Easy.
(⇒) Let S := {x, y} be a cover of EC(G). Consider any component C of

G− S. If |C| > 1, then C contains a non-contractible edge, say uv. By Lemma
3.4, G− u− v has exactly two components both of order one, namely x and y.
We have G = K+

2,2.
Now, assume that every component of G− S consists of exactly one vertex.

Then G is isomorphic to K2,k or K+
2,k where k ≥ 2. �

Theorem 3.7. Let G be any 2-connected graph nonisomorphic to K3 and S be
a cover of EC(G). If |V (G)| ≥ 2|S|+ 1, then G− S is not connected.

Proof. The proof is by induction on |V (G)|. The result is true for |V (G)| = 4
by Theorem 3.5. Suppose the theorem is true for all 2-connected graphs with
less than k vertices. Consider any 2-connected graph G with k vertices. Let
S be a cover of EC(G) such that |S| ≤ k−1

2 . Suppose G − S is connected.
Note that all edges in G − S are non-contractible. Let xy be any edge in
G− S and C1, C2, . . . , Cm be the components of G− x− y. For each Ci, define
Gi := (V (Ci) ∪ {x, y, xi}, E(G[Ci ∪ xy]) ∪ {xix, xiy}).

Suppose m ≥ 3, or m = 2 and both C1 and C2 contain at least two vertices.
Then |V (Gi)| < |V (G)|. Now, Si := (S ∩ Ci) ∪ xi is a vertex cover of all
contractible edges of Gi. Since G − S is connected, Gi − Si is also connected.
By induction, |V (Gi)| ≤ 2|Si| = 2|S ∩Ci|+ 2. Now, |V (G)| = 2 +

∑
i |V (Ci)| =

2+
∑
i(|V (Gi)|−3) ≤ 2+

∑
i(2|S∩Ci|−1) = 2−m+2|S| ≤ 2|S|, a contradiction.

Therefore, m = 2, and one of C1 and C2 contains exactly one vertex.
For each edge e in G − S, define xe to be the single vertex component of

G−V (e). Note that xe ∈ S, NG(xe) = V (e), and for any two distinct edges e, f
in G−S, xe 6= xf . Therefore, |S| ≥ |E(G−S)| ≥ |V (G−S)|−1 = |V (G)|−|S|−1
implying |V (G)| ≤ 2|S|+ 1. Consequently, |V (G)| = 2|S|+ 1, |S| = |E(G− S)|
and G− S is a tree. But then G is not 2-connected, a contradiction. �

The bound 2|S| + 1 is best possible as demonstrated by K−4 (K4 minus an
edge) for |S| = 2 and K3#E(K3) for |S| = 3. For |S| = k ≥ 4, let H be any
2-connected outerplanar graph of order k. Consider H#EC(H). Take S to be
the set of verices not in H.

Theorem 3.8. Let G be any 2-connected graph nonisomorphic to K3. Suppose
S is a cover of EC(G) of order three. Then either G − S is independent or
G − S contains exactly one non-trivial component such that |V N(G,S)| ≤ 3
and |EN(G,S)| ≤ 3.

Proof. Let S := {x, y, z}. Suppose G − S contains an edge uv. Obviously, uv
is non-contractible. By Lemma 3.4(a), G− u− v contains exactly two or three
components. Suppose G−u−v consists of three components. By Lemma 3.4(b),
the components are precisely x, y and z, and G[u, v] is the non-trivial component
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of G−S. Otherwise, let C and D be the two components of G−u−v. Without
loss of generality, by Lemma 3.4(a) and (b), assume C = z and x, y ∈ D. Then
uz and vz are contractible edges. By Lemma 3.4(c), we can assume ux and vy
are contractible edges. Denote T := S ∪ {u, v}. Note that G[T ] is connected.
Suppose G−T contains an edge e. Obviously, e is non-contractible. By Lemma
4.6, there exists a contractible edge not covered by S, a contradiction. Therefore,
G− T is independent.

Suppose G − T = ∅. Then xy is an edge and G[u, v] is the non-trivial
component of G− S. Now, let G− T = {a1, a2, . . . , ak}. Then the neighbors of
ai belong to {u, v, x, y}. Obviously, aiu and aiv, if exist, are non-contractible
edges. Therefore, aix and aiy are contractible edges. If the edge xy exists, then
both aiu and aiv must be absent, and G[u, v] is the non-trivial component of
G− S. Therefore, we can assume xy is absent. Suppose k = 1. Then G[u, v] is
the non-trivial component of G− S if both a1u and a1v are absent. Otherwise,
G[u, v, a1] is the non-trivial component of G − S and |V N(G,S)| = 3. Now,
|EN(G,S)| = 3 if and only if both a1u and a1v are present. Suppose k ≥ 2.
Then none of aiu and aiv exist, and G[u, v] is the non-trivial component of
G− S. �

Theorem 3.9. Let G be any 2-connected graph nonisomorphic to K3. Suppose
S is a cover of EC(G) of order four. Then |V N(G,S)| ≤ 4, |EN(G,S)| ≤ 5
and |CN(G,S)| ≤ 2.

Proof. Let S := {w, x, y, z}. If G − S is independent, then |V N(G,S)| =
|EN(G,S)| = |CN(G,S)| = 0. Suppose G− S contains an edge uv. Obviously,
uv is non-contractible. By Lemma 3.4(a), G−u− v contains exactly two, three
or four components.

Suppose G − u − v consists of four components. By Lemma 3.4(b), each
component is precisely one vertex of S. We have |V N(G,S)| = 2, |EN(G,S)| =
1 and |CN(G,S)| = 1.

Suppose G − u − v consists of three components. Then by Lemma 3.4(b),
two components consist of one vertex of S while the third contains two vertices
of S. By arguing as in the proof of Theorem 3.8, we have |V N(G,S)| ≤ 3,
|EN(G,S)| ≤ 3 and |CN(G,S)| = 1.

Suppose G−u−v consists of two components, namely C and D. If |C∩S| =
2 and |D ∩ S| = 2, by arguing as in the proof of Theorem 3.8, we have
|V N(G,S)| ≤ 4, |EN(G,S)| ≤ 5 and |CN(G,S)| = 1. Without loss of gen-
erality, suppose uw, vx, uy and vz are contractible edges where w, x ∈ C and
y, z ∈ D. If |V N(G,S)| = 4 and |EN(G,S)| = 5, then both C and D have order
three. Let c be the vertex of C other than w and x, and d be the vertex of D
other than y and z. Now, |V N(G,S)| = 4 if and only if wx and yz are absent,
c is adjacent to u or v, and d is adjacent to u or v. Whereas |EN(G,S)| = 5
if and only if wx and yz are absent, c is adjacent to both u and v, and d is
adjacent to both u and v.

Suppose |C ∩ S| = 1 and |D ∩ S| = 3. By Lemma 3.4(b), |C| = 1 and
let C = w. By Lemma 3.4(c), there exist two independent contractible edges
in EG({u, v}, D), say ux and vy. Let T := {u, v, w, x, y}. Note that G[T ]
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is connected and z ∈ G − T . Let V (G) − T := {a1, a2, . . . , am} where a1 =
z. Suppose G − T is independent. Every vertex ai other than z, if exists, is
adjacent to both x and y such that aix and aiy are contractible. If m = 1,
then |V N(G,S)| = 2, |EN(G,S)| = 1 and |CN(G,S)| = 1. If m = 2, then
|V N(G,S)| ≤ 3, |EN(G,S)| ≤ 3 and |CN(G,S)| = 1. If m > 2, then for every
i > 1, both aiu and aiv are absent. We have |V N(G,S)| = 2, |EN(G,S)| = 1
and |CN(G,S)| = 1. Now, assume that G− T is not independent.

Suppose G− T contains a non-contractible edge ab. Then by Lemma 3.4(a)
and (b), G−a−b consists of exactly two components, one of which is z. Without
loss of generality, by Lemma 3.4(c), assume ax and by are contractible edges.
By Lemma 4.6, every non-contractible edge of G lies in G[u, v, x, y, a, b]. Every
vertex in H := G − S − u − v − a − b, if exists, is adjacent to x and y only.
Therefore, |V N(G,S)| = 4. We also have |CN(G,S)| ≤ 2 with equality holds
if and only if ua, ub, va and vb are all absent. Lastly, |EN(G,S)| ≤ 5 with
equality holds if and only if H = ∅, xy is absent, ua and vb are present, and
exactly one of ub and va is present.

Therefore, we can assume that all edges in G − T are contractible, and
are thus incident to z. Let a2, . . . , al be all the neighbors of z in V (G) − T .
Note that l ≥ 2. Suppose there exists a vertex a in G − T − z that is not
adjacent to z. Then ax and ay are contractible edges. Now, suppose there
exists a vertex b in G − T − z − a that is adjacent to u. Obviously, ub is
non-contractible. By Lemma 3.4(b), one of the components of G − u − b is z.
Hence, l = 2 and a2 = b. By considering the contractible edge ux, by exists
and we have |V N(G,S)| = 3, |EN(G,S)| = 2 and |CN(G,S)| = 1. Therefore,
assume no vertex in G− T − z − a is adjacent to {u, v}. Then |V N(G,S)| ≤ 3,
|EN(G,S)| ≤ 3 and |CN(G,S)| = 1.

Suppose every vertex in G − T − z is adjacent to z. Since every vertex is
incident to at least two contractible edges, every vertex in G−T − z is adjacent
to x or y. For m = 2, |V N(G,S)| ≤ 3, |EN(G,S)| ≤ 3 and |CN(G,S)| = 1.
For m = 3, |V N(G,S)| ≤ 4, |EN(G,S)| ≤ 4 and |CN(G,S)| = 1 where
|V N(G,S)| = 4 if and only if a2 is adjacent to x and u, a3 is adjacent to y and
v, and zx and zy are absent. For m ≥ 4, without loss of generality, assume a2x
and a3x exist and are both contractible. Suppose a2u exists. Then wvy and
xa3z belong to two different components of G−a2−u, and by Lemma 4.6, a2y is
a contractible edge. For i ≥ 3, aiu and aiv are absent. We have |V N(G,S)| = 3,
|EN(G,S)| ≤ 3 and |CN(G,S)| = 1. Suppose a2v exists. Then wuxa3z and y
belongs to two different components of G − a2 − v, and by Lemma 4.6, a2y is
a contractible edge. For i ≥ 3, aiu and aiv are absent. Again, |V N(G,S)| = 3,
|EN(G,S)| ≤ 3 and |CN(G,S)| = 1. �

Finally, we derive tight upper bounds for the order, size and number of non-
trivial components of G − S in terms of |S|, and characterize all the extremal
graphs.

Theorem 3.10. Let G be any 2-connected graph nonisomorphic to K3 and S
be a cover of EC(G). Then |V N(G,S)| ≤ 2|S| − 4 for |S| ≥ 4.
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Proof. The statement is true for |S| = 4 by Theorem 3.9. Suppose the theorem
holds for all |S| < k where k ≥ 5. Consider a 2-connected graph G and a cover
S of EC(G) such that |S| = k. If G − S is independent, then the theorem is
trivially true. Let xy be any edge in G − S. Suppose G − x − y consists of
two fragments F1 and F2, each of which contains at least two vertices in S.
For each Fi, define Gi := (V (Fi) ∪ {x, y, xi}, E(G[Fi ∪ xy]) ∪ {xix, xiy}) and
Si := xi ∪ (S ∩ Fi). Note that Si covers EC(Gi). Suppose |F1 ∩ S| ≥ 3 and
|F2 ∩S| ≥ 3. Then |V N(G1, S1)| ≤ 2|S1| − 4 and |V N(G2, S2)| ≤ 2|S2| − 4. We
have |V N(G,S)| = |V N(G1, S1)|+ |V N(G2, S2)|−2 ≤ 2|S1|−4+2|S2|−4−2 =
2(|S1|+ |S2|−2)−6 = 2|S|−6 < 2|S|−4. Suppose |F1∩S| = 2 and |F2∩S| ≥ 3.
Then |V N(G1, S1)| ≤ 3 by Theorem 3.8 and |V N(G2, S2)| ≤ 2|S2| − 4. We
have |V N(G,S)| = |V N(G1, S1)| + |V N(G2, S2)| − 2 ≤ 3 + 2|S2| − 4 − 2 =
2(3 + |S2| − 2)− 5 = 2|S| − 5 < 2|S| − 4.

Suppose for every edge e in G−S, G−V (e) consists of two components, one
of which consists of exactly one vertex denoted by xe and the other is denoted
by Ce. Note that xe ∈ S, xe 6= xf for any two distinct edges in G − S, and
Ce contains at least two vertices in S. Therefore, |S| ≥ |E(G − S)| + 2 and
|V N(G,S)| ≤ 2|E(G− S)| ≤ 2|S| − 4. Equality holds if and only if each edge e
in G − S corresponds to a non-trivial component of G − S and |

⋃
e∈G−S Ce ∩

S| = 2. Equivalently, for k ≥ 5, V (G) := {x, y} ∪
⋃k−2
i=1 {xi, yi, zi} ∪

⋃l
j=1{aj},

E(G) :=
⋃k−2
i=1 {zixi, ziyi, xiyi, xix, yiy} ∪

⋃l
j=1{ajx, ajy} ∪ F where F ⊆ xy ∪⋃k−2

i=1 {xiy, yix}, and S := {x, y} ∪
⋃k−2
i=1 {zi}. �

Theorem 3.11. Let G be any 2-connected graph nonisomorphic to K3 and S be
a cover of EC(G). Then |EN(G,S)| ≤ 2|S|−3 for |S| ≥ 2. Equality holds if and
only if G = K−4 for |S| = 2, G = K3#E(K3) for |S| = 3, and G = H#EC(H)
for |S| ≥ 4 where H is any 2-connected maximally outerplanar graph of order
|S|.
Proof. The statement is true for |S| = 2 and |S| = 3 by Theorem 3.6 and
Theorem 3.8. Suppose the theorem holds for all |S| < k where k ≥ 4. Consider
a 2-connected graph G and a cover S of EC(G) such that |S| = k. If G − S is
independent, then the theorem is trivially true. Let xy be any edge in G − S.
Suppose G−x−y consists of two fragments F1 and F2, each of which contains at
least two vertices in S. For each Fi, define Gi := (V (Fi) ∪ {x, y, xi}, E(G[Fi ∪
xy]) ∪ {xix, xiy}) and Si := xi ∪ (S ∩ Fi). Note that Si covers EC(Gi) and
|EN(Gi, Si)| ≤ 2|Si|−3. Now, |EN(G,S)| = |EN(G1, S1)|+|EN(G2, S2)|−1 ≤
2|S1| − 3 + 2|S2| − 3− 1 = 2(|S1|+ |S2| − 2)− 3 = 2|S| − 3.

Suppose for every edge e in G−S, G−V (e) consists of two components, one
of which consists of exactly one vertex denoted by xe. Note that xe ∈ S and
xe 6= xf for any two distinct edges in G − S. Therefore, |EN(G,S)| ≤ |S| <
2|S| − 3.

It follows easily by induction that the equality holds if and only if G is one
of the graphs stated above. �

Theorem 3.12. Let G be any 2-connected graph nonisomorphic to K3 and S
be a cover of EC(G). Then |CN(G,S)| ≤ |S| − 2 for |S| ≥ 3.
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Proof. The statement is true for |S| = 3 by Theorem 3.8. Suppose the theorem
holds for all |S| < k where k ≥ 4. Consider a 2-connected graph G and a cover
S of EC(G) such that |S| = k. If G − S is independent, then the theorem is
trivially true. Let xy be any edge in G − S. Suppose G − x − y consists of
two fragments F1 and F2, each of which contains at least two vertices in S.
For each Fi, define Gi := (V (Fi) ∪ {x, y, xi}, E(G[Fi ∪ xy]) ∪ {xix, xiy}) and
Si := xi ∪ (S ∩ Fi). Note that Si covers EC(Gi) and |CN(Gi, Si)| ≤ |Si| − 2.
Now, |CN(G,S)| = |CN(G1, S1)|+ |CN(G2, S2)|− 1 ≤ |S1|− 2 + |S2|− 2− 1 =
(|S1|+ |S2| − 2)− 3 = |S| − 3 < |S| − 2.

Suppose for every edge e in G−S, G−V (e) consists of two components, one
of which consists of exactly one vertex denoted by xe and the other is denoted
by Ce. Note that xe ∈ S, xe 6= xf for any two distinct edges in G − S, and
Ce contains at least two vertices in S. Therefore, |S| ≥ |E(G − S)| + 2 and
|CN(G,S)| ≤ |E(G − S)| ≤ |S| − 2. Equality holds if and only if each edge e
in G − S corresponds to a non-trivial component of G − S and |

⋃
e∈G−S Ce ∩

S| = 2. Equivalently, for k ≥ 4, V (G) := {x, y} ∪
⋃k−2
i=1 {xi, yi, zi} ∪

⋃l
j=1{aj},

E(G) :=
⋃k−2
i=1 {zixi, ziyi, xiyi, xix, yiy} ∪

⋃l
j=1{ajx, ajy} ∪ F where F ⊆ xy ∪⋃k−2

i=1 {xiy, yix}, and S := {x, y} ∪
⋃k−2
i=1 {zi}. �
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Chapter 4

Contractible edges in
2-connected locally finite
graphs

4.1 Introduction

Since the pioneering work of Tutte [15] who proved that every 3-connected finite
graph nonisomorphic to K4 contains a contractible edge, a lot of research has
been done on contractible edges in finite graphs. One may consult the survey
paper by Kriesell [11] for details.

For any 2-connected graph nonisomorphic to K3, we have the well-known
fact that every edge can either be deleted or contracted so that the resulting
graph remains 2-connected. This immediately leads to the following result.

Theorem 4.1. Let G be a 2-connected finite graph nonisomorphic to K3. Then
the subgraph induced by all the contractible edges in G is 2-connected.

Wu [16] investigated the distribution of contractible elements in matroids
and extended Theorem 4.1 to simple 2-connected matroids. He also character-
ized all simple 2-connected matroids M having exactly r(M) + 1 contractible
elements (where r(M) is the rank of M) as those matroids isomorphic to a
graphic matroid of an outerplanar Hamiltonian graph.

Theorem 4.2 (Wu [16]). Let G be a 2-connected finite graph nonisomorphic to
K3. Then every vertex of G is incident to exactly two contractible edges if and
only if G is outerplanar.

On the other hand, only a few results were known for contractible edges in
infinite graphs. For example, Mader [18] showed that every contraction-critical
locally finite infinite graph has infinitely many triangles. Kriesell [9] provided a
method of constructing contraction-critical k-connected infinite graphs (k ≥ 2).
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In Section 3, we will prove that every contraction-critical 2-connected infinite
graph contains vertices of infinite degree only and has uncountably many ends.

A natural way to extend Theorems 4.1 and 4.2 is to consider locally finite
infinite graphs. Notice that Theorem 4.1 is no longer true as demonstrated
by the infinite double ladder (the cartesian product of a double ray and K2).
The subgraph GC induced by all the contractible edges is the disjoint union of
two double rays and is not even connected. Interestingly, the situation changes
dramatically by looking at the graph from a topological viewpoint as introduced
by Diestel and Kühn [10, 11, 12]. By adding the two ends of the double ladder
to GC , the resulting closure GC is a circle and is 2-arc-connected. In Section
4, we will prove that for every 2-connected locally finite infinite graph G, GC is
2-arc-connected.

Returning to Theorem 4.2, the backward direction is straightforward. For
the forward direction, by Theorem 4.1, GC is spanning and 2-connected. Since
every vertex is incident to exactly two contractible edges, GC is a Hamilton
cycle. Then it is easy to see that G is outerplanar. When extending to locally
finite infinite graphs, we now need the non-trivial statement that if G is a
2-connected locally finite infinite graph such that every vertex is incident to
exactly two contractible edges, then GC is a Hamilton circle. This will be
proved in Section 5. We will use it to prove an infinite analog of Theorem 4.2
for any 2-connected locally finite graph G nonisomorphic to K3. Also we will
show that G is outerplanar if and only if every finite bond of G contains exactly
two contractible edges.

4.2 Definitions

All basic graph-theoretical terminology can be found in Diestel [9]. Unless
otherwise stated, all graphs considered in this paper can be finite or infinite.
An edge of a k-connected graph is said to be k-contractible if its contraction
results in a k-connected graph. Otherwise, it is called k-non-contractible. A k-
connected graph in which every edge is k-non-contractible is called contraction-
critical k-connected. We simply write 2-contractible as contractible. Let G =
(V,E) be a 2-connected graph. Denote the set of all contractible edges in G by
EC and the subgraph induced by all the contractible edges by GC := (V,EC).
Let X and Y be two disjoint subsets of V . An X-Y path P is a path such that
only the starting vertex of P lies in X and only the ending vertex of P lies in Y .
Denote the set of all edges between X and Y by EG(X,Y ). If X and Y form
a partition of V , then EG(X,Y ) is called a cut. A minimal non-empty cut is a
bond. Denote the set of all edges incident to a vertex x by EG(x) and the set of
all neighbors of x by NG(x). Define NG(X) := (

⋃
x∈X NG(x)) \X. A set S of

k vertices is called an k-separator if G− S is not connected.
Let G be a locally finite graph. A ray is a 1-way infinite path, a double

ray is a 2-way infinite path, and the subrays of a ray or double ray are its
tails. An end is an equivalence class of rays where two rays are equivalent if
no finite set of vertices separates them. Denote the set of the ends by Ω(G).
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We define a topological space, denoted by |G|, on G together with its ends,
which is known as the Freudenthal compactification of G as follows. View G as
a 1-complex. Thus, every edge is homeomorphic to the unit interval. The basic
open neighborhoods of a vertex x consists of a choice of half-open half edges
[xz), one for each incident edge xy, where z is any interior point of xy. For
an end ω ∈ Ω(G), we take as a basic open neighborhood the set of the form:
Ĉ(S, ω) := C(S, ω) ∪ Ω(S, ω) ∪ E̊(S, ω), where S ⊆ V is a finite set of vertices,
C(S, ω) is the component of G−S in which every ray from ω has a tail, Ω(S, ω)
is the set of all ends whose rays have a tail in C(S, ω), and E̊(S, ω) is the set of
all interior points of edges between S and C(S, ω). Let H be a subgraph of G.
Then the closure of H in |G| is called a standard subspace and is denoted by H.
We say H contains a point x of |G| if x ∈ H.

Let X and Y be two topological spaces. A continuous map from the unit
interval [0, 1] to X is a path in X. A homeomorphic image of [0, 1] in X is
called an arc in X. This induces an ordering < for the points in the arc. The
images of 0 and 1 are the endpoints of the arc. An arc in X with endpoints x
and y is called an x-y arc. A homeomorphic image of the unit circle in X is
called a circle in X. A (path-)component of X is a maximal (path-)connected
set in X. X is 2-connected (2-arc-connected) if for all x ∈ X, X \x is connected
(arc-connected). We say X can be embedded in Y if there exists an injective
continuous function φ : X → Y such that X is homeomorphic to φ(X) in the
subspace topology of Y . Then φ is called an embedding of X in Y . Take Y
to be R2. A component of R2 \ φ(X) is called a face of φ(X) in R2. A graph
G is planar if G can be embedded in R2. A graph G is outerplanar if there
exists an embedding φ of G in R2 such that there is a face f of φ(G) in R2

whose boundary ∂f contains all the vertices of G. Chartrand and Harary [2]
characterized outerplanar finite graphs as precisely those graphs that do not
contain a K2,3- or K4- subdivision.

Suppose A is an arc in |G| and x is a vertex in A. Then the vertex immedi-
ately before x in A if exists is denoted by x− and the vertex immediately after
x in A if exists is denoted by x+. An arc in |G| is an ω-arc if the end ω is one
of its endpoints and unless otherwise stated, it corresponds to the image of 1.
Following Bruhn and Stein [4], we define the end degree of an end ω in G as the
supremum over the cardinalities of sets of edge-disjoint rays in ω, and denote
this number by degG(ω). In fact, they proved that this is equal to the supremum
over the cardinalities of sets of edge-disjoint ω-arcs in |G|. For a subgraph H of
G, define the degree of ω in H as the supremum over the cardinalities of sets of
edge-disjoint ω-arcs in H which is denoted by degH(ω).

4.3 Contraction-critical 2-connected infinite graphs

It is well-known that the only contraction-critical 2-connected finite graph is
K3. However, there are infinitely many contraction-critical 2-connected infinite
graphs as shown by the following construction due to Kriesell [9]. Define G0 := ∅
and let G1 be any 2-connected finite graph. Suppose we have constructed Gn
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such that Gn−1 ( Gn. For each edge xy in E(Gn) \ E(Gn−1), add a new x-y
path of length at least 2. The resulting graph is Gn+1. Repeat the process
inductively. Then the graph G :=

⋃
i≥1Gi is a contraction-critical 2-connected

infinite graph. Note that G has no vertex of finite degree and has uncountably
many ends. We will show that this holds in general for any contraction-critical
2-connected infinite graph. First, we state a fundamental fact about contractible
edges in 2-connected graphs.

Lemma 4.3. Let G be a 2-connected graph nonisomorphic to K3 and e be an
edge of G. Then G− e or G/e is 2-connected.

Now, we can develop some tools that will be used for the rest of the paper.

Lemma 4.4. Let G be a 2-connected graph nonisomorphic to K3, and e and f
be two non-contractible edges of G. Then f is a non-contractible edge of G− e.

Proof. By Lemma 4.3, G− e is 2-connected. Since V (f) is a 2-separator of G,
V (f) is also a 2-separator of G− e and f is a non-contractible edge of G− e. �

Lemma 4.5. Let G be a 2-connected graph nonisomorphic to K3 and F be a
finite subset of E(G).

(a) If G− F is disconnected, then F contains at least two contractible edges.

(b) If G − F is connected but not 2-connected, then F contains at least one
contractible edge.

Proof. For (a), suppose F contains at most one contractible edge. Then by
Lemma 4.3 and 4.4, we can delete all the non-contractible edges in F and the
resulting graph is still 2-connected, a contradiction.

For (b), suppose all edges in F are non-contractible. Then by Lemma 4.3 and
4.4, we can delete all edges in F and G−F is still 2-connected, a contradiction.
�

Lemma 4.6. Let G be a 2-connected graph nonisomorphic to K3. Let {x, y} be
a 2-separator of G and C be a component of G− x− y. If |EG(x,C)| is finite,
then EG(x,C) contains a contractible edge.

Proof. Note that y is a cutvertex of G−EG(x,C). By Lemma 4.5(b), EG(x,C)
contains a contractible edge. �

Lemma 4.7. Let G be a 2-connected graph nonisomorphic to K3 and x be a
vertex of G. Suppose all edges incident to x are non-contractible. Then

(a) x has infinite degree.

(b) For any edge xy incident to x, every component of G − x − y contains
infinitely many neighbors of x.
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Proof. For (a), Suppose x has finite degree. By applying Lemma 4.5(a) to
EG(x), x is incident to at least two contractible edges, a contradiction.

For (b), let C be a component of G − x − y. By Lemma 4.6, EG(x,C)
contains infinitely many edges. �

Theorem 4.8. Let G be a contraction-critical 2-connected infinite graph. Then
every vertex of G has infinite degree and G has uncountably many ends.

Proof. By Lemma 4.7(a), every vertex of G has infinite degree.
Next, we will construct a rooted binary infinite tree T in G together with

edges incident to each vertex of T with the following properties:

(1) The root of T is denoted by x.

(2) The vertices of T are denoted by xn1n2...nk
where k ∈ N and ni ∈ {0, 1} for

1 ≤ i ≤ k. For k = 0, define xn1n2...nk
:= x.

(3) Each vertex xn1n2...nk
of T is adjacent to two vertices xn1n2...nk0 and xn1n2...nk1

in T .

(4) For each vertex xn1n2...nk
of T , there exists an edge xn1n2...nk

yn1n2...nk
in G

such that yn1n2...nk
does not lie in T .

(5) The subtree of T rooted at xn1n2...nk
is defined as

Tn1n2...nk
:= T [

⋃∞
i=0

⋃
(m1,m2,...,mi)∈{0,1}i xn1n2...nkm1m2...mi

].

For fixed n1, n2, . . . , nk,
⋃k
j=0{xn1n2...nj , yn1n2...nj} separates Tn1n2...nk0 and

Tn1n2...nk1 in G.

Each ray in T starting at x is of the form: xxn1xn1n2xn1n2n3 . . .. Let R :=
xxn1xn1n2

xn1n2n3
. . . and Q := xxm1

xm1m2
xm1m2m3

. . . be two distinct rays in T . Then
there exists a smallest k such that ni = mi for all i ≤ k and nk+1 6= mk+1.

By property (5) above,
⋃k
j=0{xn1n2...nj

, yn1n2...nj
} separates R and Q in G.

Therefore, each ray in T starting at x belongs to a unique end of G, and G has
uncountably many ends.

Now, it remains to construct T inductively. Let x be any vertex in G. Define
T0 := ({x}, ∅). Choose any edge incident to x in G, say xy. Let C0 and C1

be any two components of G − x − y. Let x0 be a neighbor of x in C0 and
x1 be a neighbor of x in C1. Define T1 := ({x, x0, x1}, {xx0, xx1}). Note that
NG(C0) ⊆ {x, y} and NG(C1) ⊆ {x, y}. Also, G − C0 and G − C1 are both
connected.

Suppose we have constructed the rooted binary tree Tk where
V (Tk) :=

⋃k
i=0

⋃
(n1,n2,...,ni)∈{0,1}i xn1n2...ni and

E(Tk) :=
⋃k−1
i=0

⋃
(n1,n2,...,ni)∈{0,1}i{xn1n2...ni

xn1n2...ni0, xn1n2...ni
xn1n2...ni1}

such that

(i) each vertex xn1n2...ni
(0 ≤ i ≤ k) lies in a connected subgraph Cn1n2...ni

of G (for i = 0, xn1n2...ni := x, yn1n2...ni := y and Cn1n2...ni := G),
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(ii) for each vertex xn1n2...ni (0 ≤ i < k), we have found an edge xn1n2...niyn1n2...ni

that lies in Cn1n2...ni such that Cn1n2...ni0 and Cn1n2...ni1 are two compo-
nents of Cn1n2...ni − xn1n2...ni − yn1n2...ni that are adjacent to xn1n2...ni ,

(iii) for fixed n1, n2, . . . , ni (1 ≤ i ≤ k), NG(Cn1n2...ni
) ⊆

⋃i−1
j=0{xn1n2...nj

, yn1n2...nj
},

(iv) for fixed n1, n2, . . . , ni (1 ≤ i ≤ k), G− Cn1n2...ni is connected.

Now, for each vertex xn1n2...nk
in Tk, since it has infinite degree andNG(xn1n2...nk

)\
Cn1n2...nk

⊆ NG(Cn1n2...nk
) is finite by (iii), all but finitely many neighbors

of xn1n2...nk
lie in Cn1n2...nk

. Let z be a neighbor of xn1n2...nk
in Cn1n2...nk

and B := Cn1n2...nk
− xn1n2...nk

− z. Suppose B is connected. Since B′ :=
G − Cn1n2...nk

is connected by (iv), B and B′ are the only two components of
G − xn1n2...nk

− z. By Lemma 4.7(b), B′ contains infinitely many neighbors
of xn1n2...nk

contradicting NG(xn1n2...nk
) \Cn1n2...nk

⊆ NG(Cn1n2...nk
) which is

finite by (iii). Therefore, B is not connected.
Note that at least one component of B is adjacent to xn1n2...nk

. If not,
then, by the 2-connectedness of G, each component of B has a neighbor in
NG(Cn1n2...nk

) ⊆ G − Cn1n2...nk
. By (iv), this implies G − xn1n2...nk

− z is
connected, a contradiction. Suppose there are two components of B, say D
and D′, that are both adjacent to xn1n2...nk

. Then choose yn1n2...nk
:= z,

Cn1n2...nk0 := D and Cn1n2...nk1 := D′. Suppose only one component of B is
adjacent to xn1n2...nk

, say C. Each component of B other than C is adjacent
to z by the connectedness of Cn1n2...nk

and has a neighbor in NG(Cn1n2...nk
) ⊆

G−Cn1n2...nk
by the 2-connectedness of G. Denote the union of components of

B other than C by C ′. Since G−Cn1n2...nk
is connected by (iv), C ′′ := G[(G−

Cn1n2...nk
)∪C ′] is connected. Hence, C and C ′′ are the only two components of

G−xn1n2...nk
−z and NG(C) = {xn1n2...nk

, z}. Let z′ be a neighbor of xn1n2...nk

in C. Then one component D of Cn1n2...nk
− xn1n2...nk

− z′ contains z and C ′.
Since G− xn1n2...nk

− z′ is not connected, D cannot be the only component of
Cn1n2...nk

−xn1n2...nk
−z′. Let D′ be any component of Cn1n2...nk

−xn1n2...nk
−z′

other than D. Then D′ lies in C and NG(D′) ⊆ {xn1n2...nk
, z′}∪ (NG(C)−z) =

{xn1n2...nk
, z′}. Now, choose yn1n2...nk

:= z′, Cn1n2...nk0 := D and Cn1n2...nk1 :=
D′.

In both cases, xn1n2...nk
yn1n2...nk

lies in Cn1n2...nk
, and Cn1n2...nk0 and Cn1n2...nk1

are two components of Cn1n2...nk
− xn1n2...nk

− yn1n2...nk
that are adjacent to

xn1n2...nk
. Let xn1n2...nk0 be a neighbor of xn1n2...nk

in Cn1n2...nk0 and xn1n2...nk1

be a neighbor of xn1n2...nk
in Cn1n2...nk1. Since Cn1n2...nk0 ⊆ Cn1n2...nk

and
Cn1n2...nk1 ⊆ Cn1n2...nk

, NG(Cn1n2...nk0) ⊆ NG(Cn1n2...nk
)∪{xn1n2...nk

, yn1n2...nk
} ⊆⋃k

j=0{xn1n2...nj
, yn1n2...nj

} andNG(Cn1n2...nk1) ⊆ NG(Cn1n2...nk
)∪{xn1n2...nk

, yn1n2...nk
} ⊆⋃k

j=0{xn1n2...nj
, yn1n2...nj

} by (iii). By the connectedness of Cn1n2...nk
, every

component of Cn1n2...nk
−xn1n2...nk

−yn1n2...nk
has a neighbor in {xn1n2...nk

, yn1n2...nk
}.

For nk+1 ∈ {0, 1}, denote the union of the components of Cn1n2...nk
−xn1n2...nk

−
yn1n2...nk

other than Cn1n2...nknk+1
by Unk+1

. Then G[xn1n2...nk
yn1n2...nk

∪
Unk+1

] is connected. Since xn1n2...nk−1
∈ G−Cn1n2...nk

, xn1n2...nk−1
xn1n2...nk

∈
E(G) and G − Cn1n2...nk

is connected by (iv), G − Cn1n2...nknk+1
:= G[(G −

Cn1n2...nk
) ∪ xn1n2...nk

yn1n2...nk
∪ Unk+1

] is connected.
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Define Tk+1 where V (Tk+1) :=
⋃k+1
i=0

⋃
(n1,n2,...,ni)∈{0,1}i xn1n2...ni and

E(Tk+1) :=
⋃k
i=0

⋃
(n1,n2,...,ni)∈{0,1}i{xn1n2...ni

xn1n2...ni0, xn1n2...ni
xn1n2...ni1}.

Finally, define T :=
⋃∞
k=0 Tk. It is easy to see that T satisfies properties

(1) through (4). Let z0 and z1 be any vertices in Tn1n2...nk0 and Tn1n2...nk1 re-
spectively. Then z0 is of the form xn1n2...nk0p1p2...pi while z1 is of the form
xn1n2...nk1q1q2...qj . We have z0 = xn1n2...nk0p1p2...pi ∈ Cn1n2...nk0p1p2...pi ⊆
Cn1n2...nk0p1p2...pi−1

⊆ . . . ⊆ Cn1n2...nk0 and z1 = xn1n2...nk1q1q2...pj ∈ Cn1n2...nk1q1q2...qj ⊆
Cn1n2...nk1q1q2...qj−1 ⊆ . . . ⊆ Cn1n2...nk1. Therefore, Tn1n2...nk0 ⊆ Cn1n2...nk0

and Tn1n2...nk1 ⊆ Cn1n2...nk1. Since
⋃k
j=0{xn1n2...nj

, yn1n2...nj
} contains both

NG(Cn1n2...nk0) and NG(Cn1n2...nk1), it separates Cn1n2...nk0 and Cn1n2...nk1 in
G and thus separates Tn1n2...nk0 and Tn1n2...nk1 in G. Hence, Property (5) holds
for T and the proof is complete. �

4.4 Subgraph induced by all the contractible edges

In this section, we will extend Theorem 4.1 to any 2-connected locally finite
infinite graph G and prove that GC is 2-arc-connected. Note that Lemma 4.5(a)
implies that every vertex is incident to at least two contractible edges. Hence,
GC is spanning. Using the following two lemmas, it is easy to see that GC is
arc-connected.

Lemma 4.9 (Diestel [9]). Let G be a locally finite graph. Then a standard
subspace of |G| is connected if and only if it contains an edge from every finite
cut of G of which it meets both sides.

Lemma 4.10 (Diestel and Kühn [12]). If G is a locally finite graph, then every
closed connected subspace of |G| is arc-connected.

Theorem 4.11. Let G be a 2-connected locally finite infinite graph and GC
be the subgraph induced by all the contractible edges in G. Then GC is arc-
connected.

Proof. Let F be any finite cut of G. By Lemma 4.5(a), F contains at least two
edges in GC . Hence, GC is connected by Lemma 4.9. By Lemma 4.10, GC is
arc-connected. �

Next, we prove that GC is 2-connected.

Lemma 4.12. Let G be a 2-connected locally finite infinite graph and x be
a point of |G|. Suppose there is a partition (X,X ′) of V (G \ x) such that
EG(X,X ′) is non-empty and all edges in EG(X,X ′) are non-contractible. Then
G contains a subdivision of a 1-way infinite ladder L consisting of two disjoint
rays: R := x0P1x1P2x2 . . . and R′ := x′0P

′
1x
′
1P
′
2x
′
2 . . . with the rungs of the

ladder being x0x
′
0, x1x

′
1, x2x

′
2, . . ., all of which are X-X ′ edges such that x /∈ L.

Proof. Since G is 2-connected, |EG(X,X ′)| ≥ 2 unless x is a vertex and
|EG(X,X ′)| = 1. Consider any X-X ′ edge x0x

′
0 that does not contain x. Let
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C be the component of G − x0 − x′0 containing x and C1 be a component of
G− x0 − x′0 not containing x.

Suppose we have constructed the finite ladder Lk consisting of two disjoint
paths Rk := x0P1x1P2x2 . . . xk−1Pkxk and R′k := x′0P

′
1x
′
1P
′
2x
′
2 . . . x

′
k−1P

′
kx
′
k

with the rungs of the ladder being x0x
′
0, x1x

′
1, . . . xkx

′
k, all of which are X-

X ′ edges such that Lk ⊆ G[C1 ∪ x0 ∪ x′0] and G[C ∪ Lk − xk − x′k] is con-
nected. Let Ck+1 be a component of G − xk − x′k not containing x. Then
Ck+1 ⊆ C1 and Ck+1 ∩ Lk = ∅. By applying Lemma 4.6 to EG(xk, Ck+1)
and EG(x′k, Ck+1), there exist contractible edges xkyk+1 and x′ky

′
k+1 where

yk+1 ∈ Ck+1 and y′k+1 ∈ Ck+1. Since x /∈ Ck+1 and all edges in EG(X,X ′)
are non-contractible, yk+1 ∈ X and y′k+1 ∈ X ′. Choose a path Qk+1 in
Ck+1 between yk+1 and y′k+1. Then there exists an X-X ′ edge xk+1x

′
k+1 on

Qk+1 such that V (yk+1Qk+1xk+1) ⊆ X and x′k+1 ∈ X ′. Define Pk+1 :=
xkyk+1 ∪ yk+1Qk+1xk+1, P ′k+1 := x′ky

′
k+1 ∪ y′k+1Qk+1x

′
k+1, Rk+1 := Rk ∪Pk+1,

R′k+1 := R′k ∪ P ′k+1 and Lk+1 := Lk ∪ Pk+1 ∪ P ′k+1 ∪ xk+1x
′
k+1. Note that

Lk+1 ⊆ G[C1 ∪ x0 ∪ x′0] and G[C ∪ Lk+1 − xk+1 − x′k+1] is connected.

Define R :=
⋃
k≥0Rk, R′ :=

⋃
k≥0R

′
k and L :=

⋃
k≥0 Lk. Then L ⊆ G[C1 ∪

x0 ∪ x′0] and x /∈ L. �

Theorem 4.13. Let G be a 2-connected locally finite infinite graph and GC be
the subgraph induced by all the contractible edges in G. Then GC is 2-connected.

Proof. Suppose GC is not 2-connected. Then there exists a point x in GC such
that GC \x is not connected. Let U and U ′ be two disjoint non-empty open sets
in |G| such that GC \x ⊆ U ∪U ′, (GC \x)∩U 6= ∅ and (GC \x)∩U ′ 6= ∅. Define
X := (GC \x)∩U∩V (G) and X ′ := (GC \x)∩U ′∩V (G). Since GC is spanning,
X ∪ X ′ = V (G \ x). Suppose U contains an interior point a of an edge bc of
GC . Then GC \ x contains half edges [ba] or [ca] of bc. By the connectedness
of half edge, U contains b or c. Suppose U contains an end ω of |G|. Then
U contains a basic open neighborhood of ω, say Ĉ(S, ω), and thus contains
infinitely many vertices. The same arguments hold for U ′. Therefore, both X
and X ′ are non-empty. Since G \ x is connected, EG(X,X ′) is non-empty.

Suppose x is a vertex or an end of G. Then all edges in EG(X,X ′) are
non-contractible and (X,X ′) is a partition of V (G\x). Suppose x is an interior
point of an edge e. Then all edges in EG(X,X ′) are non-contractible unless
e ∈ EG(X,X ′)∩EC . Note that, EG(X,X ′)−e is non-empty as G is 2-connected
and every edge in EG(X,X ′)− e is non-contractible. Let e = yy′ where y ∈ X
and y′ ∈ X ′. Suppose X = {y}. By Lemma 4.5(a), since y is incident to at
least two contractible edges, there is a contractible X-X ′ edge other than e,
which is impossible. Therefore, |X| ≥ 2. Now, all edges in EG(X − y,X ′) are
non-contractible and (X − y,X ′) is a partition of V (G \ y). In both cases, by
Lemma 4.12, G contains a subdivision of a 1-way infinite ladder L such that
x /∈ L.

Let ω be the end of |G| containing R and R′. Note that ω 6= x. Since GC
is spanning, GC \ x contains all the ends of |G| except possibly x. Without
loss of generality, assume ω ∈ U . Since U is open, there exists a basic open
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neighborhood Ĉ(S, ω) ⊆ U . Since x′0, x
′
1, x
′
2, . . . ∈ X ′ ⊆ U ′ converge to ω, all

but finitely many of them lie in Ĉ(S, ω), contradicting U ∩ U ′ = ∅. �

Finally, we prove the main result of this section, namely, GC is 2-arc-
connected. This follows from a theorem by Georgakopoulos [7] concerning con-
nected but not path-connected subspaces of locally finite graphs. Note that
since |G| is Hausdorff, path-connectedness is equivalent to arc-connectedness.

Theorem 4.14 (Georgakopoulos [7]). Given any locally finite connected graph
G, a connected subspace X of |G| is path-connected unless it satisfies the follow-
ing assertions:

(1) X has uncountably many path-components each of which consists of one end
only;

(2) X has infinitely many path-components that contain a vertex; and

(3) every path-component of X contains an end.

Theorem 4.15. Let G be a 2-connected locally finite infinite graph and GC
be the subgraph induced by all the contractible edges in G. Then GC is 2-arc-
connected.

Proof. Suppose GC is not 2-arc-connected. Then there exists a point x in GC
such that GC \x is not arc-connected. Note that GC \x is connected by Theorem
4.13. By Theorem 4.14, GC \ x has uncountably many path-components each
of which consists of one end only. Let ω and ω′ be two such path-components
of GC \ x. Since GC is arc-connected by Theorem 4.11, there exists an arc A
joining ω and ω′ in GC . Now, x must lie in A for otherwise ω and ω′ would
lie in the same path-component of GC \ x. But the path-component of GC \ x
containing ω also contains [ωAx), a contradiction. �

4.5 Outerplanarity of 2-connected locally finite
graphs

As mentioned in the introduction, in order to extend Theorem 4.2 to locally
finite infinite graphs, we would like to prove that for any 2-connected locally
finite infinite graph G, if every vertex is incident to exactly two contractible
edges, then GC is a Hamilton circle. This requires several lemmas listed below.

Lemma 4.16. Let G be a locally finite graph. Then every arc in |G| whose two
endpoints are ends contains a vertex.

Proof. Suppose A is an arc in |G| whose two endpoints are ends ω1 and ω2.
Then there exists a finite set S of vertices such that Ĉ(S, ω1) and Ĉ(S, ω2) are
distinct. By the connectedness of A, A contains a vertex of S. �
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Lemma 4.17. Let G be a locally finite graph and ω be an end in |G|. Then
every ω-arc A in |G| contains a vertex, say z, and zA contains a ray starting
with z.

Proof. Denote the starting point of A by a. First, we show that A contains a
vertex. If a is a vertex, then we are done. If a is an end, then it is true by
Lemma 4.16. If a is an interior point of an edge xy, then by the connectedness
of A, A contains x or y.

Let z be a vertex in A. By the connectedness of zA, zA contains an interior
point of an edge incident to z, say zz1. Then the connectedness of zA implies
zz1 lies in zA. Repeat the above argument for z1A and so on. We obtain a ray
that starts with z and lies in zA. �

Lemma 4.18. Let G be a locally finite graph and ω be an end in |G|. Let A1

and A2 be two ω-arcs in |G| that are disjoint except at ω. Then, for all finite
subset S of V (G), Ĉ(S, ω) contains a subarc A′1ωA

′
2 of A1ωA2 and there is an

A′1-A′2 path in C(S, ω).

Proof. Let x1 be the last point of A1 that lies in S and x2 be the last point of
A2 that lies in S. By Lemma 4.17, x1A contains a ray R1 starting with x1 and
x2A contains a ray R2 starting with x2. Let y1 be the neighbor of x1 in R1 and
y2 be the neighbor of x2 in R2. Then y1A1ωA2y2 lies in Ĉ(S, ω). Also there is
a y1-y2 path in C(S, ω) which automatically contains a y1A1-y2A2 path. �

We also need a result on the characterization of a topological circle in |G| in
terms of its vertex and end degrees.

Lemma 4.19 (Bruhn and Stein [4]). Let C be a subgraph of a locally finite
graph G. Then C is a circle if and only if C is connected and every vertex and
end of |G| in C has degree two in C.

Now, we can proceed with the proof.

Theorem 4.20. Let G be a 2-connected locally finite infinite graph and GC be
the subgraph induced by all the contractible edges in G. If every vertex of G is
incident to exactly two contractible edges, then GC is a Hamilton circle.

Proof. Since GC is spanning, GC contains all vertices and ends of |G|. By
Theorem 4.11, GC is arc-connected. Obviously, every vertex of G has degree
two in GC . Therefore, it remains to prove that every end of |G| has degree two
in GC .

Claim 4.21. Let A be an arc in GC and x be a vertex in A. Suppose that both
x− and x+ exist in A. Let y be any neighbor of x other than x− and x+. Then
every x−-x+ arc in |G| intersects {x, y}.

Proof. Since xx− and xx+ are the only contractible edges incident to x, xy is
non-contractible. Lemma 4.6 implies that G−x−y has exactly two components,
and x− and x+ lie in different components. By the connectedness of an arc,
every x−-x+ arc in |G| intersects {x, y}. �
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Claim 4.22. Let ω be an end in |G|. Suppose A1 and A2 are two edge-disjoint
ω-arcs in GC . Then A1 and A2 can intersect only at the ends of |G| with the
only possible exception being that the starting points of A1 and A2 are the same
vertex.

Proof. Obviously, A1 and A2 cannot intersect at an interior point of an edge.
Suppose A1 and A2 intersect at a vertex x. If x is not the starting point for
both A1 and A2, then the degree of x in GC is at least three, a contradiction.
�

Claim 4.23. Let ω be an end in |G|. Suppose A1 and A2 are two edge-disjoint
ω-arcs in GC such that the starting points of A1 and A2 are distinct vertices.
Then there exists an end ω′ in |G| such that there are three ω′-arcs in GC that
are disjoint except at ω′ unless A1 ∩A2 = {ω}.

Proof. Suppose A1 ∩ A2 6= {ω}. Let ω′ be the first point of A2 that intersects
A1. By Claim 4.22, ω′ is an end in |G| different from ω. Then A1ω

′, A2ω
′ and

ωA1ω
′ are the required three ω′-arcs. �

Claim 4.24. Let ω be an end in |G|. Suppose there are three edge-disjoint ω-
arcs in GC . Then there exists an end ω′ in |G| such that there are three ω′-arcs
in GC that are disjoint except at ω′.

Proof. Let A1, A2, A3 be three edge-disjoint ω-arcs in GC . By Lemma 4.17, for
each i ∈ {1, 2, 3}, Ai contains a ray Ri. Denote the first edge of Ri by xiyi.
By Claim 4.22, y1, y2, y3 are all distinct. Therefore, without loss of generality,
we can assume that the starting points of A1, A2, A3 are all distinct vertices.
Consider A1 and A2. If A1 ∩A2 6= {ω}, then the claim follows from Claim 4.23.
Suppose A1 ∩ A2 = {ω}. If A2 ∩ A3 6= {ω}, then again the claim follows from
Claim 4.23. Therefore, suppose A2 ∩ A3 = {ω}. But then, A1, A2, A3 are the
desired three ω-arcs. �

Claim 4.25. For each end ω in |G|, degGC
(ω) ≤ 2.

Proof. Suppose there are three edge-disjoint ω-arcs in GC . By Claim 4.24,
there exists an end ω′ in |G| such that there are three ω′-arcs in GC that are
disjoint except at ω′. Denote these three ω′-arcs by A1, A2, A3. By Lemma
4.16, without loss of generality, we can assume A1, A2, A3 start with vertices
a1, a2, a3 respectively.

By applying Lemma 4.18 to A1 and A2 with S = {a1, a2}, we obtain an
a+1 A1-a+2 A2 path P . Let x1 = P ∩A1, x2 = P ∩A2 and x be the neighbor of x1
in Q. If P intersects A3, then interchange A2 and A3. Therefore, without loss
of generality, there is an a+1 A1-a+2 A2 path P that does not intersect A3.

Now, apply Lemma 4.18 to x2A2 and A3 with S = V (P ). We obtain an
x+2 A2-A3 path Q not intersecting P . Let y2 = Q ∩ x+2 A2 and y3 = Q ∩ A3.
By Claim 4.21, Q cannot intersect A2x

−
2 , and Q cannot intersect both A1x

−
1

and x+1 A1. Suppose Q ∩ A1x
−
1 6= ∅. Let y be the first vertex of Q that lies

in A1x
−
1 . Then x−1 A1yQy2A2ω

′A1x
+
1 is an x−1 -x+1 arc not intersecting {x1, x},
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contradicting Claim 4.21. Suppose Q ∩ x+1 A1 6= ∅. Then there is an x+1 A1-A3

subpath in Q not intersecting A2, and we interchange A1 and A2. Therefore,
without loss of generality, we can assume that there is an x+2 A2-A3 path Q that
does not intersect P ∪A1 ∪A2x

−
2 . Let u2 be the neighbor of y2 in Q and u3 be

the neighbor of y3 in Q.
Finally, apply Lemma 4.18 to x1A1 and y2A2 with S = V (P ∪Q). We obtain

an x+1 A1-y+2 A2 path R not intersecting P ∪ Q. Let z1 = R ∩ x+1 A1 and z2 =
R∩y+2 A2. By Claim 4.21, R cannot intersect A1x

−
1 andR cannot intersect A2y

−
2 .

Also, R cannot intersect both A3y
−
3 and y+3 A3. Suppose R∩A3y

−
3 6= ∅. Let z be

the last vertex ofR that lies in A3y
−
3 . Then y−3 A3zRz2A2ω

′A3y
+
3 is an y−3 -y+3 arc

not intersecting {y3, u3}, contradicting Claim 4.21. Suppose R∩y+3 A3 6= ∅. Let
z′ be the first vertex ofR that lies in y+3 A3. Then y−2 A2x2Px1A1z1Rz

′A3ω
′A2y

+
2

is an y−2 -y+2 arc not intersecting {y2, u2}, contradicting Claim 4.21. Therefore,
R ∩ (A1x

−
1 ∪ A2y

−
2 ∪ A3 ∪ P ∪ Q) = ∅. But, y−2 A2x2Px1A1z1Rz2A2y

+
2 is an

y−2 -y+2 arc not intersecting {y2, u2}, contradicting Claim 4.21. �

Claim 4.26. For each end ω in |G|, degGC
(ω) = 2.

Proof. Let x be a vertex in GC . Since GC is arc-connected, there is an ω-arc A
in GC joining x to ω. Let y be the neighbor of x in A and a be an interior point
of xy. Since GC is 2-connected, GC \ a is connected. Suppose GC − xy is not
connected. Then there exist two disjoint nonempty open sets U and V in |G|
such that GC − xy ⊆ U∪V , U∩GC − xy 6= ∅ and V ∩GC − xy 6= ∅. If x, y ∈ U ,
then U ∪ [x, a)∪ [y, a) and V are two disjoint open sets in |G| both intersecting
GC \ a, and their union contains GC \ a, which is impossible. If x ∈ U and
y ∈ V , then U ∪ [x, a) and V ∪ [y, a) are two disjoint open sets in |G| both
intersecting GC \ a, and their union contains GC \ a, which is also impossible.
Therefore, GC − xy is connected and is arc-connected by Lemma 4.10. Let A′

be an x-ω arc in GC − xy. If yAω∩A′ contains a vertex u, then u has degree at
least three in GC , a contradiction. Let ω′ be the first point in yAω ∩ A′ which
is an end. If ω′ 6= ω, then degGC

(ω′) ≥ 3 contradicting Claim 4.25. Therefore,
ω′ = ω and we have degGC

(ω) ≥ 2. By Claim 4.25, degGC
(ω) = 2. �

We are now ready to prove the infinite analog of Theorem 4.2.

Theorem 4.27. Let G be a 2-connected locally finite graph nonisomorphic to
K3. Then the following are equivalent:

(1) Every vertex of G is incident to exactly two contractible edges.

(2) Every finite bond of G contains exactly two contractible edges.

(3) G is outerplanar.

Proof.
(2)⇒ (1) Trivial.
(1)⇒ (3) By Theorem 4.2, this is true for finite G. Therefore, assume G is

infinite. Suppose every vertex of G is incident to exactly two contractible edges.
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By Theorem 4.20, GC is a Hamilton circle. All edges in E(G)\EC are chords of
GC and are non-contractible. Consider any chord xy of GC . Since every vertex
of G is incident to exactly two contractible edges, by Lemma 4.6, G − x − y
consists of exactly two components C1 and C2. Without loss of generality,
assume that x+GCy

− ⊆ C1 and y+GCx
− ⊆ C2. Then there is no chord of

GC between x+GCy
− and y+GCx

−. Hence, no chords of GC are overlapping.
Embed GC in a circle of R2 and denote the embedding by φ. Now, draw every
chord xy of GC as a straight line segment between φ(x) and φ(y) in R2. This
shows that G is outerplanar.

(3)⇒ (2) Let B be a finite bond of G between two components X and Y of
G−B. By Lemma 4.5(a), B contains at least two contractible edges. Suppose B
contains three contractible edges x1y1, x2y2, x3y3 such that x1, x2, x3 ∈ X and
y1, y2, y3 ∈ Y . Since X and Y are connected, there exists a path P in X joining
x1 to x2 and a path Q in Y joining y1 to y2. Let C := P ∪x1y1 ∪Q∪x2y2. Ob-
viously, x3y3 /∈ E(C). Take any x3-P path P ′ in X joining x3 to P at x and any
y3-Q path Q′ in Y joining y3 to Q at y. Let R′ := P ′ ∪ x3y3 ∪Q′. If R′ = x3y3,
then x3y3 is a chord of C. Since x3y3 is contractible, the two components of
C − x3 − y3 are joined by a path, say R. Then C ∪R ∪R′ is a K4-subdivision
and G is not outerplanar. Suppose R′ 6= x3y3. If both x-y paths in C are not
edges, then C ∪R′ is a K2,3-subdivision and G is not outerplanar. If one of the
two x-y paths in C is an edge, then without loss of generality, assume x2 = x
and y2 = y. Since x2y2 is contractible, the two components of (C∪R′)−x2−y2
are joined by a path, say R. Then C ∪R ∪R′ is a K4-subdivision and G is not
outerplanar. �
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Chapter 5

Contractible and removable
edges in 3-connected
infinite graphs

5.1 Introduction

In 1961, Tutte [15] developed a theory of 3-connected graphs based on the
study of essential edges. He proved the famous Tutte’s Wheel Theorem: every
3-connected finite graph can be obtained from a wheel by edge additions and
vertex splittings. As an immediate corollary, every 3-connected finite graph
nonisomorphic to K4 contains a contractible edge (an edge whose contraction
results in a 3-connected graph). Ever since then, much have been known about
contractible edges in 3-connected finite graphs. One may consult the survey
paper by Kriesell [11] for further details.

Concerning the distribution of contractible edges, Ando, Enomoto and Saito
[1] proved that every 3-connected finite graph G nonisomorphic to K4 contains

at least |V (G)|
2 contractible edges. Dean [8] proved that for every 3-connected

finite graph which is triangle-free or has minimum degree at least 4, the subgraph
induced by all the contractible edges is 2-connected.

Theorem 5.1 (Dean [8]). For every k-connected finite graph (k ≥ 3) which is
triangle-free or has minimum degree at least b 3k2 c, the subgraph induced by all
the contractible edges is 2-connected.

Besides these global results, Kriesell [10] investigated the local structure of
contractible edges around a vertex in a 3-connected finite graph. We call a pair
of paths (P1, P2) in a 2-connected graph H a border pair if

(1) |V (P1)| ≥ 2 and |V (P2)| ≥ 2.

(2) all vertices in P1 ∪ P2 have degree 2 in H.
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(3) P1 ∩ (P2 ∪NH(P2)) = ∅ (and hence P2 ∩ (P1 ∪NH(P1)) = ∅).

(4) H − V (P1) and H − V (P2) are 2-connected.

Theorem 5.2 (Kriesell [10]). Let G be a 3-connected finite graph and x be a
vertex of G. If x is not incident to any contractible edges, then G−x is a cycle,
or G− x contains a border pair in G[NG(x)] and all edges in G− x incident to
the vertices of the border pair are contractible.

Traditionally, research on contractible edges have focused on finite graphs
because of the proof techniques available such as induction, reductio ad absur-
dum, and the theory of atoms and ends as developed by Mader [18]. Only a
few results were known for contractible edges in infinite graphs. For example,
Mader [18] proved that every contraction-critical locally finite infinite graph has
infinitely many triangles. Therefore, a lot remains to be learned about the dis-
tribution and structure of contractible edges in k-connected infinite graphs. As
demonstrated below, such investigations can lead to simplifications of proofs,
generalizations of results, and better understanding of contractible edges in gen-
eral. A first step towards this goal was taken by the author in [6] for 2-connected
locally finite infinite graphs.

The purpose of this paper is to prove infinite versions of Theorem 5.1 and
Theorem 5.2 for 3-connected infinite graphs. Unless otherwise stated, all graphs
considered can be finite or infinite. Note that Theorem 5.1 is no longer true for
3-connected locally finite infinite graphs G which is triangle-free or has minimum
degree at least 4 as demonstrated by the cartesian product of a double ray and
a path of length two, and the cartesian product of a double ray and a triangle
respectively. In both cases, the subgraph GC induced by all the contractible
edges consists of three disjoint double rays and is not connected. However,
the situation can be remedied by viewing the graph topologically as introduced
by Diestel and Kühn [10, 11, 12]. When we add the two ends of G to GC
and form the closure GC in |G| (the Freudenthal compactification of G), GC is
topologically 2-connected. In [6], the author proved that for every 2-connected
locally finite infinite graph G, GC is topologically 2-connected. Using a similar
approach, we will prove an infinite analog of Theorem 5.1 for 3-connected locally
finite infinite graphs.

Theorem 5.3. Let G be a 3-connected locally finite infinite graph which is
triangle-free or has minimum degree at least 4, and GC be the subgraph induced
by all the contractible edges. Then GC is topologically 2-connected.

Kriesell’s proof of Theorem 5.2 [10] makes use of the theory of critically
connected graphs [18] and is not easily generalizable to infinite graphs. We will
use the notion of removable edge (an edge whose deletion results in a subdivision
of a 3-connected graph) together with the ideas from Wu’s paper [16] to establish
an infinite version of Theorem 5.2.

Theorem 5.4. Let G be a 3-connected graph and x be a vertex of finite degree
in G. If x is not incident to any contractible edges, then G− x is a finite cycle,
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or G − x contains a border pair in G[N(x)] and all edges in G − x incident to
the vertices of the border pair are contractible.

This immediately leads to the following result concerning the distribution of
contractible edges in 3-connected locally finite infinite graphs.

Theorem 5.5. Every 3-connected locally finite infinite graph has infinitely
many contractible edges.

The concept of removable edge was introduced by Barnette and Grübaum [2]
who proved that every 3-connected finite graph nonisomorphic to K4 contains a
removable edge, and used it to prove Steinitz’s theorem on convex 3-polytopes.
Holton et al. [9] and Su [14] studied the distribution of removable edges in a 3-
connected finite graph. The former proved that every 3-connected finite graph

G nonisomorphic to K4 has at most b 4|V (G)|−5
3 c non-removable edges. The

latter proved that except for the wheels W5 and W6, the number of removable

edges in a 3-connected finite graph G is at least 3|V (G)|+18
7 and characterized

all the extremal graphs. Here, we will prove an infinite version of Su’s result by
showing that every 3-connected locally finite infinite graph has infinitely many
removable edges.

Theorem 5.6. Every 3-connected locally finite infinite graph has infinitely
many removable edges.

The paper is organized as follows. After introducing the necessary terminol-
ogy in Section 2, Theorem 5.6 is proved in Section 3. Section 4 is devoted to
the proof of Theorem 5.4 and 5.5. We prove Theorem 5.3 in Section 5.

5.2 Definitions

All basic graph-theoretical terminology can be found in Diestel [9]. A triangle is
a cycle of length 3 and a quadrilateral is a cycle of length 4. A triad is a vertex
of degree 3 together with all its incident edges and vertices. A wheel Wn of order
n consists of a cycle of length n − 1 and a vertex, called the center, which is
adjacent to every vertex of the cycle. Let G = (V,E) be a graph and X,Y be two
disjoint subsets of V . Denote the set of all edges between X and Y by EG(X,Y )
or simply E(X,Y ). Denote the set of all edges incident to a vertex x by EG(x)
and the set of all neighbors of x by NG(x). Define NG(X) := (

⋃
x∈X NG(x))\X.

A set S of l vertices is called an l-separator if G− S is not connected. For any
edge e in a graph G, denote the deletion and contraction of e by G− e and G/e
respectively. An edge of a k-connected graph is said to be deletable/contractible
if its deletion/contraction results in a k-connected graph. Let G = (V,E) be
a 3-connected graph. Denote the set of all contractible edges in G by EC and
the subgraph induced by all the contractible edges by GC := (V,EC). Let x
be a vertex of degree two. The suppression of x involves deleting x and adding
an edge between the neighbors of x. Following Holton et al. [9], we define the
operation of edge removal, G	 e, as below:
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(1) Delete e from G to get G− e.

(2) If some endvertices of e have degree two in G− e, then suppress them.

(3) If multiple edges occur after (2), then replace them by single edges to make
the graph simple.

An edge e is said to be removable if G	e is 3-connected. Let S ⊆ V (G)\V (e)
with |S| = 2. We call (e, S) a separating pair of G if G − e − S has exactly
two components A and B, both of which have order at least two. In this case,
(e, S;A,B) is a separating group of G.

Let G be a locally finite graph. A ray is a 1-way infinite path, a double
ray is a 2-way infinite path, and the subrays of a ray or double ray are its
tails. An end is an equivalence class of rays where two rays are equivalent if
no finite set of vertices separates them. Denote the set of all ends by Ω(G).
We define a topological space, denoted by |G|, on G together with its ends,
which is known as the Freudenthal compactification of G as follows. View G as
a 1-complex. Thus, every edge is homeomorphic to the unit interval. The basic
open neighborhoods of a vertex consists of a choice of half-edges, one for each
incident edge. For an end ω ∈ Ω(G), we take as a basic open neighborhood the
set of the form: Ĉ(S, ω) := C(S, ω)∪Ω(S, ω)∪ E̊(S, ω), where S ⊆ V is a finite
set of vertices, C(S, ω) is the component of G − S in which every ray from ω
has a tail, Ω(S, ω) is the set of all ends whose rays have a tail in C(S, ω), and
E̊(S, ω) is the set of inner points of edges between S and C(S, ω). Let H be a
subgraph of G. Then the closure of H in |G| is called a standard subspace and is
denoted by H. A homeomorphic image of the unit interval [0, 1] in |G| is called
an arc. A homeomorphic image of the unit circle in |G| is called a circle. Let X
be a topological space. We say X is topologically 2-connected if for all x ∈ X,
X \ x is connected.

5.3 Removable edges

First, we list several lemmas concerning removable and non-removable edges
from Holton et al.’s paper [9]. Although they work primarily on finite graphs,
many of their results hold true for infinite graphs as well.

Lemma 5.7 (Holton et al. [9]). Let G be a 3-connected graph of order at least
six and e ∈ E(G). Then e is non-removable if and only if there is a separating
pair (e, S) (or a separating group (e, S;A,B)) of G.

Using Lemma 5.7, we can derive the following fundamental lemma concern-
ing contractible and removable edges in 3-connected graphs.

Lemma 5.8. Every edge of a 3-connected graph nonisomorphic to K4 is con-
tractible or removable.

Combining the above two lemmas, we immediately have:
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Lemma 5.9 (Holton et al. [9]). Let G be a 3-connected graph of order at
least six and (xy, S) be a separating pair of G. Then every edge joining S and
{x, y} or joining the two vertices in S, if exists, is non-contractible and hence
removable.

Lemma 5.9 guarantees the existence of removable edges in a triangle and in
a quadrilateral.

Lemma 5.10 (Holton et al. [9]). Let G be a 3-connected graph nonisomorphic
to K4. Then every triangle contains at least two removable edges. If G � W5,
then every quadrilateral contains a removable edge.

Using Lemma 5.7 and 5.9, Holton et al. [9] proved that every cycle in a
3-connected finite graph nonisomorphic to K4 contains a removable edge or is
incident to two removable edges.

Theorem 5.11 (Holton et al. [9]). Let G be a 3-connected finite graph noni-
somorphic to K4 and C be a cycle of G. Suppose no edges of C are removable.
Then there exists an edge xy in C and a vertex a of G such that ax and ay are
removable edges, degG(x) = degG(y) = 3, and degG(a) ≥ 4.

Their proof involves analyzing the separating group (e, S;A,B) in G where
e and S are chosen so that e ∈ E(C) and min{|A|, |B|} is minimal. Here,
we generalize the above theorem to 3-connected infinite graphs. We call an
edge e super-non-removable if there exists a separating group (e, S;A,B) such
that both |A| and |B| are infinite. The separating group (e, S;A,B) is then
called a super-separating group. Super-non-removable edge has the following
nice property.

Lemma 5.12. Let G be a 3-connected infinite graph and e be a super-non-
removable edge. Then for all contractible edge f 6= e, e is super-non-removable
in G/f .

Proof. Let (e, S;A,B) be a super-separating group in G. Let e = xy, x ∈ A
and y ∈ B. Without loss of generality, assume f ∈ E(G[A ∪ S]). Let xf be
the vertex corresponding to f in G/f . Note that if f is adjacent to e, then e in
G/f is defined to be the edge xfy. If f is not incident to S, then (e, S;A/f,B)
is a super-separating group of G/f . If f is incident to S, then f ∈ E(A− x, S)
by Lemma 5.9. Let f = uv where u ∈ A − x and v ∈ S, and S = {v, w}. If
A − u is not connected, then {u, v, w} is a 3-separator contradicting f = uv
is contractible. Therefore, A − u is connected and (e, {xf , w};A − u,B) is a
super-separating group of G/f . �

Lemma 5.13. Let G be a 3-connected infinite graph and C be a finite cycle in
G. Then not all edges in C are super-non-removable.

Proof. Suppose all edges in C are super-non-removable. By Lemma 5.8 and
5.12, we can keep contracting edges in C until we get a quadrilateral consisting
of super-non-removable edges contradicting Lemma 5.10. �
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Lemma 5.13 enables us to apply Holton et al.’s arguments to 3-connected
infinite graphs without any changes.

Theorem 5.14. Let G be a 3-connected graph nonisomorphic to K4 and C be
a finite cycle of G. Suppose no edges of C are removable. Then there exists
an edge xy in C and a vertex a of G such that ax and ay are removable edges,
degG(x) = degG(y) = 3, and degG(a) ≥ 4.

As an immediate corollary, every 3-connected graph nonisomorphic to K4

has a removable edge. Moreover, we can show that every 3-connected locally
finite infinite graph has infinitely many removable edges. This will follow from
Theorem 5.14 if we can find infinitely many finite cycles that are pairwisely far
apart.

Lemma 5.15. Every 2-connected locally finite infinite graph G has an infinite
set C of finite cycles so that the distance between any two cycles in C is at least
two.

Proof. We construct C inductively. Obviously, G contains a finite cycle, say
C1. Define C1 := {C1}. Suppose we have constructed Cn := {C1, C2, . . . , Cn}
such that the distance between any two cycles in Cn is at least two. Define
Dn :=

⋃n
i=1(Ci ∪ NG(Ci)). Since G is locally finite, Dn is finite. Suppose

Fn := G −Dn is a forest. Since G is connected and locally finite, Fn contains
finitely many trees. Hence, there exists an infinite tree T as a component in
Fn. For any two vertices x, y in T , denote the unique path joining x and y
in T by xTy. Define D′n := NG(Dn) ∩ V (T ) and Hn :=

⋃
x,y∈D′n

xTy. Note

that Hn is finite and connected. Let z be a vertex in T \ Hn. Since T is a
tree and Hn is connected, there is a unique path P in T joining z to Hn with
V (P ) ∩ V (Hn) = {w}. But then w is a cutvertex of G, a contradiction.

Therefore, G − Dn contains a finite cycle, say Cn+1, and define Cn+1 :=
Cn ∪ {Cn+1}. Then C :=

⋃∞
i=1 Ci is the desired infinite set of cycles. �

Theorem 5.6. Every 3-connected locally finite infinite graph has infinitely
many removable edges.

Proof. By Lemma 5.15 and Theorem 5.14. �

5.4 Contractible edges around a vertex

One nice feature of Tutte’s theory of 3-connected graphs is that it is true for all
3-connected graphs, finite or infinite. An edge is essential if both its deletion
and its contraction without removing parallel edges result in a graph that is not
simple 3-connected.

Lemma 5.16 (Tutte [15]). Let G be a 3-connected graph.

(a) Every essential edge belongs to a triangle or a triad.
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(b) Let xyz be a triangle of G such that xy and xz are essential. Then xy
belongs to a triad of G.

(c) Let xa, xb, xc be a triad of G such that xa and xb are essential. Then xa
belongs to a triangle of G.

The following lemma concerns contractible and non-contractible edges inci-
dent to a degree-3 vertex in a 3-connected graph and was proved by Ando et al.
[1] (see also Wu [16]).

Lemma 5.17 (Ando et al. [1]). Let G be a 3-connected graph nonisomorphic
to K4 and x be a degree-3 vertex with neighbors a, b, c. If xa and xb are non-
contractible, then

(a) both a and b have degree 3 and ab ∈ E(G), and

(b) each of x, a, b is incident to exactly one contractible edge, the edges forming
a matching of G.

Using the above two lemmas, Wu [16] proved the existence of contractible
edges near a vertex of finite degree for both finite and infinite 3-connected
graphs.

Lemma 5.18 (Wu [16]). Let G be a 3-connected graph nonisomorphic to K4

and x be a vertex of finite degree in G. If x is not incident to any contractible
edges, then x has at least four degree-3 neighbors, each of which is incident to
exactly two contractible edges.

Lemma 5.18 implies that every vertex in a contraction-critical 3-connected
graph nonisomorphic to K4 has infinite degree. Kriesell [7] provided a construc-
tion of such graphs. On the other hand, if all vertices have finite degree, then
there are infinitely many contractible edges.

Theorem 5.5. Every 3-connected locally finite infinite graph has infinitely
many contractible edges.

Proof. Let G be a 3-connected locally finite infinite graph. Suppose there are
only finitely many contractible edges. Then the set S of vertices incident to a
contractible edge is finite. By Lemma 5.18, every vertex in V (G)−S is adjacent
to a vertex in S. But this is impossible since G is locally finite. �

The rest of this section is devoted to proving Theorem 5.4 which can be
regarded as a generalization of Theorem 5.2 and Lemma 5.18. We need the
following two lemmas.

Lemma 5.19. Let G be a 3-connected graph nonisomorphic to K4 and x be a
vertex in G. If y and z are non-adjacent neighbors of x such that xy and xz are
non-contractible in G, then xz is non-contractible in G	 xy.
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Proof. By Lemma 5.17, degG(x) ≥ 4. Since xz is non-contractible, there exists
a 3-separator S := {x, z, w} in G. Suppose w 6= y. Let C be the component of
G − S containing y. Since y and z are non-adjacent, |V (C)| ≥ 2. Then S is a
3-separator in G	 xy and xz is non-contractible in G	 xy.

Suppose w = y. Let C1 and C2 be two components of G−S. If degG(y) ≥ 4,
then G	xy = G−xy. Hence, {x, z, y} is a 3-separator of G	xy and xz is non-
contractible in G	xy. Suppose degG(y) = 3. Let y1 be the neighbor of y in C1

and y2 be the neighbor of y in C2. If |V (Ci)| ≥ 2, then {x, z, yi} is a 3-separator
in G 	 xy and xz is non-contractible in G 	 xy. If |V (C1)| = |V (C2)| = 1,
then G is a wheel of order five with center x. Hence, G 	 xy is K4 and xz is
non-contractible in G	 xy. �

Lemma 5.20. Let G be a 3-connected graph nonisomorphic to K4 and x be a
vertex of finite degree in G. Suppose all edges incident to x are non-contractible
and non-deletable. Then

(1) degG(x) ≥ 4.

(2) For all y ∈ NG(x), degG(y) = 3.

(3) For all y ∈ NG(x), y is incident to exactly two contractible edges.

(4) G[NG(x)] is not independent.

(5) If G[NG(x)] is connected, then G− x is a finite cycle.

(6) If G[NG(x)] is not connected, then each component P of G[NG(x)] is a
finite path and G− V (P ) is 2-connected. Also, there exist two components
of G[NG(x)] each having order at least 2.

Proof. By Lemma 5.17, degG(x) ≥ 4. For all y ∈ NG(x), since xy is removable
by Lemma 5.8 but not deletable, degG(y) = 3. By Lemma 5.17, y is incident to
exactly two contractible edges in G. This proves (1), (2) and (3).

Suppose G[NG(x)] is independent. By Lemma 5.8 and 5.19, we can re-
peatedly remove edges in EG(x) so that the resulting graph G′ is 3-connected
nonisomorphic to K4, degG′(x) = 3, and all edges in EG′(x) are non-contractible
in G′. But this is impossible by Lemma 5.17. This proves (4).

Suppose G[NG(x)] is connected. By (2), G[NG(x)] is a finite path or a finite
cycle containing all the vertices of NG(x). If G[NG(x)] is a path, then the two
endvertices of the path form a 2-separator of G, a contradiction. Therefore,
G[NG(x)] is a cycle. By (2), G− x = G[NG(x)] and we have (5).

Suppose G[NG(x)] is not connected. By (2), each component P of G[NG(x)]
is a finite path or a finite cycle. But P is not a cycle for otherwise x is a cutvertex
of G. Suppose there is only one component P of G[NG(x)] having order at least
2 (the existence of P is guaranteed by (4)). By Lemma 5.8 and 5.19, we can
repeatedly remove edges in EG(x) \ EG(x, P ). If |V (P )| ≥ 3, then all edges
in EG(x) \ EG(x, P ) are removed. In the resulting 3-connected graph G′, the
endvertices of P form a 2-separator of G′, a contradiction. If |V (P )| = 2, then
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all but one edges in EG(x)\EG(x, P ) are removed. In the resulting 3-connected
graph G′, degG′(x) = 3 and all edges in EG′(x) are non-contractible in G′.
But this is impossible by Lemma 5.17. Hence, there exist two components of
G[NG(x)] each having order at least 2.

Finally, we complete the proof of (6) by showing thatG−V (P ) is 2-connected
for each component P of G[NG(x)]. This is trivial if |V (P )| = 1. Suppose
|V (P )| ≥ 2, and let a and b be the endvertices of P . If G − V (P ) is not con-
nected, then {a, b} is a 2-separator of G, a contradiction. Suppose G− V (P ) is
connected but not 2-connected. Let w be a cutvertex of G − V (P ). If w = x,
then {x, a} is a 2-separator of G, a contradiction. Suppose w 6= x. Let C be
the component of G − V (P ) − w containing x and D be the other component
of G− V (P )− w. Since G is 3-connected, NG(D) = {a, b, w}. But then {x,w}
is a 2-separator of G unless C = {x} which is impossible as there exist two
components of G[NG(x)] each having order at least 2. �

Theorem 5.4. Let G be a 3-connected graph nonisomorphic to K4 and x be a
vertex of finite degree in G. If x is not incident to any contractible edges, then
G − x is a finite cycle, or G − x contains a border pair in G[NG(x)] and all
edges in G− x incident to the vertices of the border pair are contractible.

Proof. Let F ⊆ EG(x) be maximal such that G′ := G−F is 3-connected. Then
for all e ∈ EG′(x), e is non-contractible and non-deletable in G′. By Lemma 5.20
(2) and (3), all edges in G−x incident to the vertices of NG′(x) are contractible
in G′ and thus contractible in G.

If G′[NG′(x)] is connected, then by Lemma 5.20 (5), G′ − x is a cycle.
Moreover, G− x = G′ − x for otherwise x is a cutvertex of G.

If G′[NG′(x)] is not connected, then by Lemma 5.20 (6), each component
of G′[NG′(x)] is a path. Also, there exist two components of G′[NG′(x)] each
having order at least 2. Denote the set of components of G′[NG′(x)] having
order at least 2 by P. Then |P| ≥ 2. We will show that there exist at least two
paths P, P ′ ∈ P such that G′ − x− V (P ) and G′ − x− V (P ′) are 2-connected.

Let P be a path in P. By Lemma 5.20 (6), G′ − x − V (P ) is connected.
Suppose G′−x−V (P ) is not 2-connected. Let w be a cutvertex of G′−x−V (P ).
Then for all e ∈ EG′(x, P ), V (e) ∪ {w} is a 3-separator of G′. Therefore, we
can remove all but one edges in EG′(x, P ) and the remaining edge in EG′(x, P )
is non-contractible in the resulting graph G′′. By Lemma 5.19, all edges in
EG′(x) \ EG′(x, P ) are also non-contractible in G′′.

Denote Q to be the set of paths Q ∈ P such that G′ − x − V (Q) is 2-
connected. Perform the above edge removal procedure for as many P ∈ P \ Q
as possible and denote the resulting 3-connected graph by H. Suppose |Q| =
0. Then either degH(x) = 3 and all edges in EH(x) are non-contractible in
H contradicting Lemma 5.17, or degH(x) ≥ 4 and H[NH(x)] is independent
contradicting Lemma 5.20 (4). Suppose |Q| = 1. Then H[NH(x)] has only one
component of order at least 2 contradicting Lemma 5.20 (6). Therefore, |Q| ≥ 2
and the proof is complete. �
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5.5 Subgraphs induced by all the contractible
edges

In this section, we use the method in [6] and prove that for every 3-connected
locally finite infinite graph G which is triangle-free or has minimum degree at
least 4, GC is topologically 2-connected. This requires the following lemma
concerning the existence of contractible edges between a 3-separator and its
components.

Lemma 5.21. Let G be a 3-connected locally finite graph which is triangle-free
or has minimum degree at least 4, and xy be a non-contractible edge. Let S be
a 3-separator containing xy and C be a component of G − S. Then EG(x,C)
contains a contractible edge.

Proof. Let S := {x, y, z}. Suppose all edges in EG(x,C) are non-contractible.
Delete a maximal subset F of EG(x,C) so that G′ := G − F is 3-connected.
Let EG′(x,C) = {xx1, xx2, . . . , xxk}. Note that EG′(x,C) is non-empty and all
xxi’s are non-contractible and hence removable in G′.

Suppose k = 1. Since G is triangle-free or has minimum degree at least 4,
|V (C)| ≥ 2. But then {y, z} is a 2-separator of G′ 	 xx1, a contradiction.

Suppose k ≥ 2. Then degG′(x) ≥ 4. By the maximality of F , degG′(xi) =
degG(xi) = 3 for 1 ≤ i ≤ k. Therefore, both G and G′ are triangle-free.
This implies that {x1, . . . , xk} are independent in G, |V (C)| ≥ k + 1, and
|V (G)| ≥ k+6. Let x, u, v be the neighbors of x1 and {x, xi, yi} be a 3-separator
of G′ for 2 ≤ i ≤ k. Since G′ is triangle-free, u 6= y and v 6= y. Therefore, one
of u and v, say u, lies in C \ {x1, . . . , xk}. Suppose yi 6= x1. Let D be the
component of G′ − {x, xi, yi} containing x1. Since x1 and xi are non-adjacent
in G′, |V (D)| ≥ 2 and {x, xi, yi} is a 3-separator of G′ 	 xx1. If yi = x1, then
{x, xi, u} or {x, xi, v} is a 3-separator of G′	xx1 since |V (G′)| ≥ k+ 6. Hence,
xxi is non-contractible in G′ 	 xx1 for 2 ≤ i ≤ k. Note that {x2, . . . , xk} are
independent in G′ 	 xx1 and |V (G′ 	 xx1)| ≥ k + 5.

Similarly, we can repeatedly remove edges xx1, xx2, . . . , xxk−1 from G′ so
that G′′ := G′ 	 xx1 	 . . . 	 xxk−1 is 3-connected and xxk is non-contractible
in G′′. However, {y, z} is a 2-separator of G′′ 	 xxk, a contradiction. �

Corollary 5.22. Let G be a 3-connected locally finite infinite graph which is
triangle-free or has minimum degree at least 4. Then every vertex is incident to
at least two contractible edges.

Another lemma we will need is the following well-known result for locally
finite infinite graphs.

Lemma 5.23 (Diestel [9]). Let U be an infinite set of vertices in a connected lo-
cally finite infinite graph. Then there exists a ray R such that there are infinitely
many disjoint U -R paths.

Lemma 5.24. Let G be a 3-connected locally finite infinite graph which is
triangle-free or has minimum degree at least 4 and x be a point of |G|. Suppose
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there is a partition (X,X ′) of V (G \ x) such that E(X,X ′) is non-empty and
all edges in E(X,X ′) are non-contractible. Then G contains infinitely many
disjoint X-X ′ edges: x0x

′
0, x1x

′
1, . . . such that xix

′
i converges to an end ω of G

with ω 6= x.

Proof. Let x0x
′
0 be a X-X ′ edge and S0 be a 3-separator containing x0 and x′0.

Let C0 be a component of G− S0 such that x /∈ C0 and C ′0 be a component of
G− S0 such that x ∈ C ′0 ∪ S0. By Lemma 5.21, there exists contractible edges
x0y0 and x′0y

′
0 with y0 ∈ X ∩ C0 and y′0 ∈ X ′ ∩ C0. Note that y0 6= y′0. Choose

a path Q0 in C0 between y0 and y′0. Then there exists a X-X ′ edge x1x
′
1 in Q0.

Let S1 be a 3-separator containing x1 and x′1. Let C ′1 be the component of
G−S1 so that C ′1∩{x0, x′0} 6= ∅ and C1 be any component of G−S1 other than
C ′1. Then {x0, x′0} ⊆ C ′1 ∪ S1. By Lemma 5.21, there exists contractible edges
x1y1 and x′1y

′
1 with y1 ∈ X ∩ C1 and y′1 ∈ X ′ ∩ C1. Choose a path Q1 in C1

between y1 and y′1. Then there exists a X-X ′ edge x2x
′
2 in Q1. Note that x2x

′
2

is disjoint from x0x
′
0 and x1x

′
1. Let z10 ∈ C ′1∩{x0, x′0}. Then any two internally

disjoint paths between z10 and x2 must meet {x1, x′1}.
Let S2 be a 3-separator containing x2 and x′2. Let C ′2 be the component of

G − S2 so that C ′2 ∩ {x1, x′1} 6= ∅ and C2 be any component of G − S2 other
than C ′2. Then {x1, x′1} ⊆ C ′2 ∪ S2. Since G is 3-connected, G[C2 ∪ {x2, x′2}] is
2-connected. Because any two internally disjoint paths between z10 and x2 must
meet {x1, x′1}, z10 /∈ C2. If z10 ∈ C ′2, then {x0, x′0} ⊆ C ′2 ∪ S2. If z10 ∈ S2, then
there can only be one z10 − C2 edge for otherwise there will be two internally
disjoint paths between z10 and x2 not intersecting {x1, x′1}. This z10 −C2 edge is
contractible by Lemma 5.21. Since x0x

′
0 is non-contractible, {x0, x′0} ⊆ C ′2∪S2.

By Lemma 5.21, there exists contractible edges x2y2 and x′2y
′
2 with y2 ∈ X ∩C2

and y′2 ∈ X ′ ∩ C2. Choose a path Q2 in C2 between y2 and y′2. Then there
exists a X-X ′ edge x3x

′
3 in Q2. Note that x3x

′
3 is disjoint from x0x

′
0, x1x

′
1 and

x2x
′
2. Let z20 ∈ C ′2 ∩ {x0, x′0} and z21 ∈ C ′2 ∩ {x1, x′1}. Then for i = 0, 1, any two

internally disjoint paths between z2i and x3 must meet {x2, x′2}.
Suppose we have constructed pairwisely disjointX-X ′ edges x0x

′
0, x1x

′
1, . . . , xnx

′
n

together with:

1. a 3-separator Sn−1 containing xn−1 and x′n−1,

2. a component C ′n−1 of G − Sn−1 such that x0, x
′
0, x1, x

′
1, . . . , xn−2, x

′
n−2 ∈

C ′n−1 ∪ Sn−1,

3. a component Cn−1 of G− Sn−1 other than C ′n−1 such that xn, x
′
n ∈ Cn−1,

4. vertices yn−1 and y′n−1 in Cn−1 such that xn−1yn−1 and x′n−1y
′
n−1 are con-

tractible edges,

5. a path Qn−1 in Cn−1 between yn−1 and y′n−1 containing an X-X ′ edge xnx
′
n,

and

6. vertices zn−10 , zn−11 , . . . , zn−1n−2 such that zn−1i ∈ C ′n−1∩{xi, x′i} for i = 0, 1, . . . , n−
2.
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Let Sn be a 3-separator containing xn and x′n. Let C ′n be the component
of G − Sn so that C ′n ∩ {xn−1, x′n−1} 6= ∅ and Cn be any component of G −
Sn other than C ′n. Then {xn−1, x′n−1} ⊆ C ′n ∪ Sn. Since G is 3-connected,
G[Cn ∪ {xn, x′n}] is 2-connected. For each i = 0, 1, . . . , n − 2, because any
two internally disjoint paths between zn−1i and xn must meet {xn−1, x′n−1},
zn−1i /∈ Cn. If zn−1i ∈ C ′n, then {xi, x′i} ⊆ C ′n ∪ Sn. If zn−1i ∈ Sn, then
{xn−1, x′n−1} ⊆ C ′n. If there are at least two zn−1i − Cn edges, then since
G[Cn∪{xn, x′n}] is 2-connected, we can find two internally disjoint paths between
zn−1i and xn not meeting {xn−1, x′n−1}, a contradiction. Thus, there can only

be one zn−1i −Cn edge which is contractible by Lemma 5.21. Since xix
′
i is non-

contractible, {xi, x′i} ⊆ C ′n∪Sn. By Lemma 5.21, there exists contractible edges
xnyn and x′ny

′
n with yn ∈ X ∩ Cn and y′n ∈ X ′ ∩ Cn. Choose a path Qn in Cn

between yn and y′n. Then there exists a X-X ′ edge xn+1x
′
n+1 in Qn. Note that

xn+1x
′
n+1 is disjoint from x0x

′
0, x1x

′
1, . . . , xnx

′
n. For each i = 0, 1, . . . , n − 1,

since {xi, x′i} ⊆ C ′n ∪ Sn, we can choose zni ∈ C ′n ∩ {xi, x′i}.
By applying Lemma 7.17 to U := {x0, x1, . . . , }, there exists a ray R such

that there are infinitely many disjoint U -R paths. Let ω be the end containing
R. Without loss of generality, we may assume x0x

′
0, x1x

′
1, . . . converges to ω. If

x is not an end, then clearly, ω 6= x. Suppose x is an end. Then x ∈ C ′0. By
construction, x0, x

′
0, x1, x

′
1 ∈ C0 ∪ S0. Consider Q′1 := x1y1 ∪Q1 ∪ x′1y′1. Since

{x0, x′0} ⊆ C ′1 ∪ S1, Q′1 ∩ {x0, x′0} = ∅. Therefore, {x2, x′2} ⊆ C0 ∪ S0. Suppose
we have shown that {xn, x′n} ⊆ C0 ∪ S0. Consider Q′n := xnyn ∪ Qn ∪ x′ny′n.
Since {x0, x′0} ⊆ C ′n∪Sn, Q′n∩{x0, x′0} = ∅. Therefore, {xn+1, x

′
n+1} ⊆ C0∪S0.

By induction, {xi, x′i} ⊆ C0∪S0 for all i = 0, 1, 2, . . .. Hence, ω ∈ C0 and ω 6= x.
�

We are now ready for the proof of Theorem 5.3.

Theorem 5.3. Let G be a 3-connected locally finite infinite graph which is
triangle-free or has minimum degree at least 4, and GC be the subgraph induced
by all the contractible edges. Then GC is topologically 2-connected.

Proof. Suppose GC is not topologically 2-connected. Then there exists a point
x in GC such that GC \ x is not connected. Let U and U ′ be two disjoint
non-empty open sets in |G| such that GC \ x ⊆ U ∪ U ′, (GC \ x) ∩ U 6= ∅
and (GC \ x) ∩ U ′ 6= ∅. Define X := (GC \ x) ∩ U ∩ V (G) and X ′ := (GC \
x) ∩ U ′ ∩ V (G). Since GC is a spanning subgraph of G by Corollary 5.22,
X ∪ X ′ = V (G \ x). By the connectedness of an edge and the definition of
a basic open neighborhood of an end, both X and X ′ are non-empty. Since
G \ x is topologically connected, E(X,X ′) is non-empty. Suppose x is a vertex
or an end of G. By the connectedness of an edge, all edges in E(X,X ′) are
non-contractible. Suppose x is an interior point of an edge e. Then all edges in
E(X,X ′) are non-contractible unless e ∈ E(X,X ′)∩EC . Note that in this case,
E(X,X ′)−e is non-empty as G is 2-connected, and every edge in E(X,X ′)−e is
non-contractible. Let e = yy′ where y ∈ X and y′ ∈ X ′. Suppose X = {y}. By
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Corollary 5.22, y is incident to at least two contractible edges, a contradiction.
Therefore, we can use y instead of x and (X − y,X ′) as the required partition
of V (G \ y) in Lemma 5.24.

By Lemma 5.24, G contains infinitely many disjointX-X ′ edges: x0x
′
0, x1x

′
1, . . .

such that xix
′
i converges to an end ω of G with ω 6= x. Since GC is spanning,

GC \ x contains all the ends of |G| except possibly x. Without loss of gener-
ality, assume ω ∈ U . Since U is open, there exists a basic open neighborhood
Ĉ(S, ω) ⊆ U . Since x′0, x

′
1, x
′
2 . . . ,∈ U ′ converge to ω, infinitely many of them

lie in Ĉ(S, ω) contradicting U ∩ U ′ = ∅. �

Note that Theorem 5.3 is best possible as demonstrated by the cartesian
product of a ray and a triangle which contains a triangle and has minimum
degree 3. Here, GC contains 3 disjoint rays together with their common end,
and is connected but not topologically 2-connected.

Lemma 5.25 (Diestel and Kühn [12]). Let G is a locally finite graph. Then
every closed connected subspace of |G| is arc-connected.

Corollary 5.26. Let G be a 3-connected locally finite infinite graph which is
triangle-free or has minimum degree at least 4. Then every contractible edge of
G lies in a circle consisting of contractible edges.

Proof. Let xy be a contractible edge in G. Since GC is topologically 2-connected,
GC − xy is connected. By Lemma 5.25, GC − xy is arc-connected and there is
an arc A between x and y in GC − xy. Then A ∪ xy is a circle consisting of
contractible edges. �

Unfortunately, the arguments used in the proof of Theorem 5.3 cannot be
generalized directly to k-connected locally finite infinite graphs for k ≥ 4. We
end this paper with the following conjecture.

Conjecture 5.27. Let G be a k-connected locally finite infinite graph (k ≥ 4)
which is triangle-free or has minimum degree greater than 3

2 (k − 1), and GC
be the subgraph induced by all the contractible edges. Then GC is topologically
2-connected.
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Chapter 6

Contraction-critical
4-connected locally finite
infinite graphs

6.1 Introduction

It is well-known that the only contraction-critical 2-connected and 3-connected
finite graphs are K3 and K4 respectively. For 4-connected graphs, Fontet [6] and
Martinov [8] independently proved that every contraction-critical 4-connected
finite graph is either the square of a cycle or the line graph of a cyclically 4-
edge-connected cubic graph. This is equivalent to the characterization that a
4-connected finite graph is contraction-critical if and only if it is 4-regular and
every edge lies in a triangle (see also Martinov [9]).

Recently, Ando and Egawa [1] proved that for any vertex of degree greater
than four in a 4-connected finite graph, there exists a contractible edge at dis-
tance one or less from that vertex. They [2] also showed that for every non-
contractible edge not lying in a triangle, there exists a contractible edge at
distance one or less from that edge.

For infinite graphs, Kriesell [7] gave a construction of contraction-critical
k-connected graphs for k ≥ 2 such that all vertices have infinite degree. On the
other hand, the author [6, 7] showed that for k = 2, 3, every k-connected locally
finite infinite graph contains infinitely many contractible edges. In this paper,
we modify the results in Ando and Egawa’s paper [1] slightly and extend Fontet
and Martinov’s result to locally finite infinite graphs.

Theorem 6.1. A 4-connected locally finite graph is contraction-critical if and
only if it is 4-regular and every edge lies in a triangle.

Theorem 6.2. A 4-connected locally finite infinite graph is contraction-critical
if and only if it is the line graph of a 3-edge-connected and cyclically 4-edge-
connected cubic graph.
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Moreover, a theorem of Ando and Egawa [1] on the lower bound of con-
tractible edges can be generalized to 4-connected locally finite graphs.

Theorem 6.3. Every 4-connected locally finite graph G has at least |V≥5(G)|
contractible edges.

6.2 Definitions

All graph-theoretical terminology not defined here can be found in Diestel [9].
For any graph G, denote the set of degree i vertices in G by Vi(G) and the set
of vertices of degree at least i in G by V≥i(G). A subset S of V (G) is called a k-
separator if |S| = k and G−S is not connected. Now suppose G is k-connected.
An edge e in G is contractible if the graph obtained by contracting e, denoted
by G/e, is k-connected. Otherwise, e is non-contractible. Let x be a vertex in G.
Denote the neighbors of x by NG(x) and the set of contractible edges incident
to x by EC(x). A k-connected graph is contraction-critical if all of its edges are
non-contractible. A graph G is cyclically k-edge-connected if for any edge cut
F with |F | < k, at least one of the components of G−F contains no cycle. Let
H be a graph. The square of H, denoted by H2, is the graph on V (H) such
that two vertices are adjacent if and only if they have distance at most two in
H. We call a subgraph H of G squareable if H2 ⊆ G. A ray is a 1-way infinite
path.

6.3 Contraction-critical 4-connected locally fi-
nite infinite graphs

First, we need two results from Ando and Egawa’s paper [1] which can be
generalized to infinite graphs by essentially the same proofs (see Appendix for
details).

Lemma 6.4 (Ando and Egawa [1]). Let G be a 4-connected graph and x be a
vertex of finite degree such that EC(x) = ∅. Then G[NG(x)] contains a subgraph
H1 ∪ H2 such that V (H1) ∩ V (H2) = ∅, Hi

∼= K2 for i = 1, 2, and V (Hi) ∩
V4(G) 6= ∅ for i = 1, 2.

Lemma 6.5 (Ando and Egawa [1]). Let G be a 4-connected graph and x be a
vertex of finite degree greater than 4. Then there is a contractible edge whose
distance from x is one or less. Moreover, if G[NG(x)∩ V4(G)] � P4, then there
are at least two contractible edges whose distance from x is one or less.

By combining Lemma 6.4 and 6.5, we immediately obtain Theorem 6.1.

Theorem 6.1. A 4-connected locally finite graph is contraction-critical if and
only if it is 4-regular and every edge lies in a triangle.
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Proof. (⇐) Obvious. (⇒) Lemma 6.5 implies that every vertex of G has degree
4. By Lemma 6.4, every edge of G lies in a triangle. �

Now, we are ready to prove Theorem 6.2. The proof follows closely as that
of Martinov [8]. The only difference is that in his proof, Martinov used the
fact that a cubic finite graph is cyclically 4-edge-connected if and only if its line
graph is 4-connected. This is no longer true for infinite graphs as demonstrated
by the cubic infinite tree. For arbitrary cubic graphs, we have the following
analogous results.

Lemma 6.6. Let G be a cubic graph. Then G is 3-edge-connected and cyclically
4-edge-connected if and only if L(G) is 4-connected.

Proof. (⇐) Suppose G is not 3-edge-connected. Let F be an edge cut with
|F | < 3. Since G is cubic, every component of G− F contains an edge. Hence,
L(G) is not 3-connected. Suppose G is not cyclically 4-edge-connected. There
exists an edge cut F with |F | < 4 such that every component of G−F contains
a cycle. Then L(G) is not 4-connected.

(⇒) Suppose L(G) is not 4-connected. Let S be a separator of L(G) with
|S| < 4 and F be the set of edges in G corresponding to S in L(G). Then F is
an edge cut of G. If G is not 3-edge-connected, then we are done. Suppose G
is 3-edge-connected. Consider any component C of G − F . If C is not 2-edge-
connected, then C has a cut edge, say e. Let C1 and C2 be the two components
of C − e. Since |F | < 4, one of C1 and C2 is incident to less than two edges
in F , contradicting the 3-edge-connectedness of G. Therefore, every component
of G − F is 2-edge-connected and contains a cycle. Hence, G is not cyclically
4-edge-connected. �

Lemma 6.7. Let G be a 3-edge-connected and cyclically 4-edge-connected cubic
graph. Then L(G) is contraction-critical 4-connected.

Proof. By Lemma 6.6, L(G) is 4-connected. Since G is cubic, every vertex of
L(G) has degree 4 and every edge of L(G) lies in a triangle. By Theorem 6.1,
L(G) is contraction-critical 4-connected. �

Lemma 6.8. Let G be a contraction-critical 4-connected locally finite infinite
graph. Then no edge of G lies in two triangles.

Proof. Suppose G has an edge that lies in two triangles. Then G contains a
squareable finite path of length at least three, say P . Let P = x1x2 . . . xk where
k ≥ 4. By Theorem 6.1, every vertex of G has degree 4. Let x be the neighbor of
x2 other than x1, x3, x4. If x ∈ P , then x = xk−1 or x = xk. Suppose x = xk−1.
Then k ≥ 6 and {x1, xk} is a 2-separator of G, a contradiction. Suppose x = xk.
Then k ≥ 5 and {x1, xk−1, xk} is a 3-separator of G or G = C2

k , a contradiction.
Hence, x /∈ P .

By Theorem 6.1, xx2 lies in a triangle. Therefore, x is adjacent to x1, x3 or
x4. If x is adjacent to x1, then xx1x2 . . . xk is squareable. If x is adjacent to
x3, then k = 4 for otherwise degG(x3) > 4. Now, {x, x1, x4} is a 3-separator of

69



G or G = K5, a contradiction. If x is adjacent to x4, then k = 4 or k = 5 for
otherwise degG(x4) > 4. For k = 4, x1x3x2x4x is a squareable path. For k = 5,
{x, x1, x5} is a 3-separator of G or G = C2

6 , a contradiction.
From the arguments above, we see that G contains a squareable ray, say

R := y1y2y3 . . .. But then {y2, y3} separates y1 and y4R inG which is impossible.
�

Lemma 6.9. Let G be a contraction-critical 4-connected locally finite infinite
graph. Then G is the line graph of a 3-edge-connected and cyclically 4-edge-
connected cubic graph.

Proof. By Theorem 6.1, G is 4-regular and every edge of G lies in a triangle.
Consider any vertex x of G. Since no edge of G lies in two triangles by Lemma
6.8, G[x∪NG(x)] consists of two triangles intersecting at x. It follows that G is
the line graph of a cubic graph, say H. Since L(H) is 4-connected, by Lemma
6.6, H is 3-edge-connected and cyclically 4-edge-connected. �

Theorem 6.2 follows from Lemma 6.7 and 6.9.

6.4 Appendix

Here we give the necessary modifications to Ando and Egawa’s paper [1] for
proving Lemma 6.4 and 6.5. Let G be a k-connected graph and S be a k-
separator of G. A union of at least one but not all components of G − S is
called a fragment. For any fragment A, denote Ā := G − A − NG(A). For
an edge e of G, a fragment A of G is said to be a fragment with respect to e
if V (e) ⊆ NG(A). For a subset F of E(G), we say that A is a fragment with
respect to F if A is a fragment with respect to some e ∈ F . For a subset U of
V (G), a fragment A of G is said to be U-opposite if U ⊆ Ā. For a vertex x of
G, a subset U ⊆ V (G) \ {x} is said to be x-admissible if (i) EC(x) ⊆ E(x, U)
and (ii) U is contained in a fragment with respect to E(x).

First, we need the following modification of Lemma 3 of Ando and Egawa
[1] whose proof is exactly the same.

Lemma 6.10 (Ando and Egawa [1]). Let x be a vertex of finite degree of a
4-connected graph G and let U be an x-admissible subset of G. Let A be a U -
opposite fragment with respect to E(x) such that |A ∩NG(x)| is minimum, and
let y ∈ NG(x) ∩ A. Then NG(y) ∩ U = ∅, and there exists z ∈ NG(x) ∩NG(A)
such that (i) U ∩ {y, z} = ∅, (ii) yz ∈ E(G) and (iii) {y, z} ∩ V4(G) 6= ∅.

Using the above lemma, we can easily prove Lemma 6.4 which corresponds
to Lemma 4 of Ando and Egawa [1].

Lemma 6.4 (Ando and Egawa [1]). Let G be a 4-connected graph and x be
a vertex of finite degree such that EC(x) = ∅. Then G[NG(x)] contains a sub-
graph H1 ∪ H2 such that V (H1) ∩ V (H2) = ∅, Hi

∼= K2 for i = 1, 2, and
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V (Hi) ∩ V4(G) 6= ∅ for i = 1, 2.

Proof. The proof is basically the same as that of Lemma 4 of Ando and Egawa
[1] except that we consider a fragment A with respect to Ẽ(x) := E(x) − xz
such that |A ∩ NG(x)| is minimum. Also, the proof of Lemma 4 of Ando and
Egawa [1] on P.107 is modified as follows.

If |B| = 1 or |B̄| = 1, then without loss of generality, assume |B| = 1.
Suppose B ⊆ A. We have S ∩B = ∅ and |(S ∩B)∪ (S ∩T )∪ (T ∩A)| = 4. But
then B is a fragment with respect to Ẽ(x) such that |B∩NG(x)| < |A∩NG(x)|, a
contradiction. Suppose B ⊆ Ā. Then S∩B = ∅ and |(S∩B)∪(S∩T )∪(T∩Ā)| ≤
3, which is impossbile. Therefore, B ⊆ S. Notice that |B ∩NG(x)| = 1 implies
|A ∩NG(x)| = 1.

If |S∩T | = 3, then S∩B̄ = T ∩Ā = ∅. Since |(S∩B̄)∪(S∩T )∪(T ∩Ā)| = 3,
Ā ∩ B̄ = ∅. But then Ā = ∅ which is absurd. If |S ∩ T | = 2, |A ∩ T | = 2 and
|S∩B̄| = 1, then T∩Ā = ∅. Since |(S∩B̄)∪(S∩T )∪(T∩Ā)| = 3, Ā∩B̄ = ∅. But
then Ā = ∅ which is absurd. Therefore, |S ∩ T | = 2 and |A ∩ T | = |S ∩ B̄| = 1.
Now, B̄ ∩A = ∅ for otherwise |A∩NG(x)| ≥ 2. Hence, |A| = 1. The rest of the
proof proceeds as in [1]. �

As a result, we can generalize Proposition 1, 2 and 3 of Ando and Egawa [1]
to arbitrary 4-connected graphs.

Proposition 6.11 (Ando and Egawa [1]). Let G be a 4-connected graph and let
xy be a non-contractible edge such that x, y ∈ V4(G). If both EC(x) and EC(y)
are empty, then NG(x)∩NG(y)∩ V4(G) 6= ∅ and NG(x)∩NG(y)∩ V≥5(G) = ∅.

Proposition 6.12 (Ando and Egawa [1]). Let G be a 4-connected graph and
let xy be a non-contractible edge such that x, y ∈ V4(G), |EC(x)| ≤ 1 and
|EC(y)| ≤ 1. If NG(x) ∩NG(y) ∩ V≥5(G) 6= ∅, then |NG(x) ∩NG(y)| ≥ 2.

Proof. The proof is the same as that of Proposition 2 of Ando and Egawa [1]
except that we choose a fragment A so that z ∈ A and |A ∩ (NG(x) ∪NG(y))|
is minimum. �

Proposition 6.13 (Ando and Egawa [1]). Let G be a 4-connected graph and let
xy be a non-contractible edge such that x, y ∈ V4(G), EC(x) = ∅ and |EC(y)| ≤
1. If NG(x) ∩NG(y) ∩ V≥5(G) 6= ∅, then NG(x) ∩NG(y) ∩ V4(G) 6= ∅.

Finally, we can prove Lemma 6.5 corresponding to Theorem 1 of Ando and
Egawa [1].

Lemma 6.5 (Ando and Egawa [1]). Let G be a 4-connected graph and x be a
vertex of finite degree greater than 4. Then there is a contractible edge whose
distance from x is one or less. Moreover, if G[NG(x)∩ V4(G)] � P4, then there
are at least two contractible edges whose distance from x is one or less.

Proof. The proof follows that of Theorem 1 of Ando and Egawa [1] except that
we consider a U -opposite fragment A with respect to E(x) so that |A∩NG(x)| is
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minimum. Note that for such fragment A, |NG(y)∩A| = 2. The second last sen-
tence of the proof of Theorem 1 of Ando and Egawa [1] on P.115 is replaced by
the following. By the minimality of |A∩NG(x)|, |A∩B∩NG(x)| = |A∩NG(x)|.
However, this implies |NG(y)∩A∩B| = 2 contradictingNG(y)∩(A∩B) = {v}. �

Based on the above results, Theorem 2 of Ando and Egawa [1] can be gen-
eralized to 4-connected locally finite graphs which is Theorem 6.3 in the Intro-
duction.
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Chapter 7

Contractible edges in
k-connected infinite graphs

7.1 Introduction

Thomassen [20] proved the existence of contractible edges in any k-connected
triangle-free finite graphs. Later, Egawa, Enomoto and Saito [14] generalized
Thomassen’s result and proved that every k-connected triangle-free finite graph
G contains at least min{|V (G)| + 3

2k
2 − 3k, |E(G)|} contractible edges. Dean

[8] studied the distribution of contractible edges and proved that for every k-
connected finite graph (k ≥ 3) which is triangle-free or has minimum degree at
least b 3k2 c, the subgraph induced by all the contractible edges is 2-connected.
Other sufficient conditions for the existence of contractible edges in k-connected
finite graphs are: minimum degree at least b 5k4 c (Egawa [13]), k odd and K−4 -
free (Kawarabayashi [15]), and bowtie-free (Ando et al. [3]). One may consult
the survey papers by Kriesell [16] and Ando [1] for further details.

For infinite graphs, Mader [18] proved that every contraction-critical k-
connected locally finite infinite graph has infinitely many triangles. This im-
plies that every k-connected triangle-free locally finite infinite graph contains
a contractible edge. For 2-connected locally finite infinite graphs, it is easy to
see that every vertex is incident to at least two contractible edges. The author
[7] proved that every 3-connected locally finite infinite graph contains infinitely
many contractible edges. This paper investigates various sufficient conditions
that guarantee the existence of contractible edges in k-connected locally finite
infinite graphs. In Section 3 and 4, we prove the existence of contractible edges
in any k-connected triangle-free locally finite graphs and in any k-connected
locally finite graphs with minimum degree greater than 3

2 (k − 1) respectively.

Theorem 7.1. Let G be a k-connected triangle-free graph and x be a vertex of
finite degree. Suppose S is a k-separator containing x and an edge. Then for
any component C of G− S, there is a contractible edge joining x and C.
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Theorem 7.2. Let G be a k-connected graph with minimum degree greater than
3
2 (k−1) and x be a vertex of finite degree. Suppose S is a k-separator containing
x. Then for any component C of G − S, there is a contractible edge joining x
and C.

In Section 5, we prove the existence of contractible edges in k-connected
locally finite graphs with no adjacent triangles.

Theorem 7.3. Let G be a k-connected graph (k ≥ 3) with no adjacent triangles
and x be a vertex of finite degree. Then x is incident to a contractible edge.

In Section 6, we investigate k-connected locally finite infinite graphs with
minimum end vertex-degree greater than k, and generalize Egawa’s [13] and
Dean’s [8] results mentioned above.

Theorem 7.4. Every k-connected locally finite infinite graph such that the min-
imum degree is at least b 5k4 c and all ends have vertex-degree greater than k
contains a contractible edge.

Theorem 7.5. Let G be a k-connected locally finite infinite graph (k ≥ 4)
which is triangle-free or has minimum degree at least b 3k2 c, and all ends have
vertex-degree greater than k. Suppose GC is the subgraph induced by all the
contractible edges. Then the closure of GC in the Freudenthal compactification
of G is topologically 2-connected.

7.2 Definitions

All graph-theoretical terminology not defined here can be found in Diestel [9].
Denote a cycle of length n by Cn and a complete graph with n vertices by
Kn. The complete graph K3 is called a triangle. Denote K−4 to be the graph
obtained by deleting an edge from K4. A bowtie is the graph formed by two
triangles with exactly one vertex in common. We say two triangles are adjacent
if they have a vertex or an edge in common. Therefore, a graph with no adjacent
triangles is K−4 - and bowtie-free. For two disjoint graphs H and H ′, denote by
H ∗H ′ the graph obtained from H∪H ′ by joining all the vertices of H to all the
vertices of H ′. Define the expansion of H by H ′, H/H ′, to be the graph G such
that V (G) := V (H)× V (H ′) and E(G) := {((x, x′), (y, y′)) : x = y and x′y′ ∈
E(H ′); or x 6= y and xy ∈ E(H)}.

Let G be a k-connected graph. An edge e in G is contractible if the graph
obtained by contracting e, denoted by G/e, is k-connected. Denote the set of
contractible edges by EC and the set of non-contractible edges by ENC . We say
G is contraction-critical if every edge of G is non-contractible. A subset S of
V (G) is called a separator if G−S is not connected. If |S| = l, then S is called
a l-separator. Denote the set of all k-separators of G by S. We say S contains
an edge if G[S] contains an edge. Denote the connectivity of G by κ(G). A
vertex x of G is critical if κ(G−x) = κ(G)− 1. Define Cr(G) := {x ∈ V (G) : x
is critical}.
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Let S ∈ S. A union of at least one but not all components of G−S is called
a fragment of S. For any fragment F , define F̃ := G− F −N(F ) which is also
a fragment. Let X be a set of subsets of V (G). Define SX := {S ∈ S : ∃X ∈ X
with X ⊆ S}. A X -fragment is a fragment of S ∈ SX . An X -end is an inclusion-
minimal X -fragment while an X -atom is a X -fragment of the minimum size. If
X = {{x}}, then we simply write x-fragment, x-end and x-atom. We say G is
X -critical if (1) for all X ∈ X , there exists S ∈ S such that X ⊆ S, and (2)
for all X -fragment F , there exists X ∈ X and S ∈ S such that S ∩ F 6= ∅ and
X ⊆ S \ F̃ . Note that if X := {V (e) : e ∈ E(G)}, then being X -critical is the
same as being contraction-critical. If X := {∅}, then a X -critical graph is called
almost critical. Equivalently, G is almost critical if and only if every fragment
of G intersects some k-separator.

Mader [18] studied the properties of ends and atoms extensively, and proved
the following useful tools for k-connected graphs.

Lemma 7.6 (Mader [18]). Let B be a X -end of G such that |B| > κ(G)
2 and

|B̃| ≥ κ(G)
2 . If there exists a k-separator T such that T ∩ B 6= ∅ and T ∩

(B ∪N(B)) contains an X ∈ X , then there exists a fragment F of T such that

F ⊆ N(B) and |F | < κ(G)
2 .

Lemma 7.7 (Mader [18]). Let A be a X -atom of G. If there exists a k-separator
T such that T ∩ A 6= ∅ and T ∩ (A ∪ N(A)) contains an X ∈ X , then A ⊆ T
and |A| ≤ 1

2 |T −N(A)|.

7.3 Contractible edges in k-connected triangle-
free graphs

First, we state a lemma for k-connected triangle-free graphs whose proof can be
found in [14, 20].

Lemma 7.8. Let G be a k-connected triangle-free graph, S be a k-separator
containing an edge, and C be a component of G− S. Then |C| ≥ k.

Now, we combine the ideas and techniques used in Egawa et al. [14]’s and
Mader [18]’s papers to prove the following useful lemma.

Lemma 7.9. Let G be a k-connected graph (k ≥ 3) and x be a vertex of finite
degree. Let X be any one of the following three sets of subsets of V (G): {{x}},
{V (e) : e ∈ E(G) and x ∈ V (e)} or {{x} ∪ V (e) : e ∈ E(G)}. Suppose there
exists a X -fragment F such that E(x, F ) ⊆ ENC . Then there exists a finite
X -fragment F ′ such that

(1) F ′ lies in a k-separator containing x,

(2) |F ′| < k − 1, and

(3) E(x, F ′) ⊆ ENC .
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Proof. We need only to prove (1) and (2) since (1) implies (3). Choose a X -
fragment F such that E(x, F ) ⊆ ENC and |F ∩ N(x)| is minimum. Denote
S := N(F ). Let y be a neighbor of x in F , and T be a k-separator containing
x and y. Let C be a fragment of T and C̃ = G− T − C.

If F \ T = ∅, then F ( T and |F | ≤ k − 1. Suppose |F | = k − 1. Then
S ∩ T = {x} and F̃ ∩ T = ∅. If C ∩ S = ∅, then C ∩ F̃ = ∅ and C = ∅, a
contradiction. Therefore, C ∩S 6= ∅. Similarly, C̃ ∩S 6= ∅. But now, C ∩ F̃ = ∅
and C̃ ∩ F̃ = ∅ implying F̃ = ∅, a contradiction. Hence, |F | < k − 1 and F is
the desired X -fragment.

Suppose F \ T 6= ∅. Without loss of generality, assume C ∩ F 6= ∅. Since
y ∈ F ∩ N(x) and y /∈ C, |C ∩ F ∩ N(x)| < |F ∩ N(x)|. Therefore, C ∩ F
is not a X -fragment and |(S ∩ C) ∪ (S ∩ T ) ∪ (F ∩ T )| > k. This implies
|(S ∩ C̃)∪ (S ∩ T )∪ (F̃ ∩ T )| < k and C̃ ∩ F̃ = ∅. If C̃ ∩ F 6= ∅, then by similar
arguments, C ∩ F̃ = ∅ and F̃ is the desired X -fragment. If C̃ ∩ F = ∅, then
C̃ ( S. Since |(S ∩ C̃)∪ (S ∩ T )∪ (F̃ ∩ T )| < k and x ∈ S ∩ T , |C̃| < k− 1 and
C̃ is the desired X -fragment. �

Using the above two lemmas, we can easily prove Theorem 7.1. Note that
k = 1 is trivial, and k = 2 was proved by the author in [6] for any 2-connected
graphs nonisomorphic to K3.

Theorem 7.1. Let G be a k-connected triangle-free graph and x be a vertex of
finite degree. Suppose S is a k-separator containing x and an edge. Then for
any component C of G− S, there is a contractible edge joining x and C.

Proof. Suppose E(x,C) ⊆ ENC . Let X = {{x} ∪ V (e) : e ∈ E(G)}. Then
C is a X -fragment. By Lemma 7.9, there exists a finite X -fragment F with
|F | < k − 1, contradicting Lemma 7.8. �

Corollary 7.10. Let G be a k-connected triangle-free graph (k ≥ 2) and x be a
vertex of finite degree. Then x is incident to at least two contractible edges.

7.4 Contractible edges in k-connected graphs with
minimum degree greater than 3

2(k − 1)

Lemma 7.11. Let G be a k-connected graph with minimum degree greater than
3
2 (k− 1), S be a k-separator, and C be a component of G− S. Then |C| > k−1

2

or equivalently, |C| ≥ k
2 .

Proof. We have |C| + k ≥ 1 + δ(G) > 3k−1
2 implying |C| > k−1

2 which is

equivalent to |C| ≥ k
2 . �

Lemma 7.12. Let G be a k-connected graph with minimum degree greater than
3
2 (k − 1) and x be a vertex of finite degree. If A is an x-atom of G, then
E(x,A) ⊆ EC .
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Proof. Suppose E(x,A) * EC . Then there exists a neighbor y of x in A
such that xy is non-contractible. Let T be a k-separator containing x and y. By
Lemma 7.7, |A| ≤ k−1

2 . But this contradicts Lemma 7.11. Hence, E(x,A) ⊆ EC .
�

Theorem 7.2. Let G be a k-connected graph with minimum degree greater than
3
2 (k−1) and x be a vertex of finite degree. Suppose S is a k-separator containing
x. Then for any component C of G − S, there is a contractible edge joining x
and C.

Proof. Suppose there exists a x-fragment F such that E(x, F ) ⊆ ENC . By
Lemma 7.9, there exists a finite x-fragment F ′ that lies in a k-separator con-
taining x and E(x, F ′) ⊆ ENC . Without loss of generality, we can assume that
F ′ is an x-end. By Lemma 7.12, F ′ is not an x-atom. Therefore, by Lemma
7.11, |F ′| > k

2 . Let y be a neighbor of x in F ′ and T be a k-separator containing
x and y. Then y ∈ T ∩ F ′ and x ∈ T ∩ N(F ′). By Lemma 7.6, there exists a
fragment of T with size less than k

2 contradicting Lemma 7.11. �

Corollary 7.13. Let G be a k-connected graph (k ≥ 2) with minimum degree
greater than 3

2 (k − 1) and x be a vertex of finite degree. Then x is incident to
at least two contractible edges.

Since an integer which is at least b 3k2 c is greater than 3
2 (k − 1) but not vice

versa, Theorem 7.2 is slightly stronger than the corresponding result in Dean’s
paper [8].

The bound 3
2 (k − 1) is best possible as demonstrated by the following ex-

amples. For k = 2l + 1, define G := (C4 / Kl) ∗K1 and let x be the vertex in
K1. For k = 2l, define G := (C4 /Kl−1) ∗K2 and let x be one of the vertices in
K2. In both cases, G is k-connected, δ(G) ≤ 3

2 (k− 1), and all edges incident to
x are non-contractible.

7.5 Contractible edges in k-connected graphs with
no adjacent triangles

As shown in Section 3, every k-connected triangle-free locally finite infinite graph
contains infinitely many contractible edges. Here we generalize this result to k-
connected locally finite infinite graphs that may contain triangles but have no
adjacent triangles (i.e. K−4 -free and bowtie-free).

Lemma 7.14 (Ando et al. [2]). Let G be a k-connected K−4 -free graph and e
be a non-contractible edge not contained in a triangle. Let S be a k-separator
containing e and C be a component of G− S. Then |C| ≥ k − 1.

Lemma 7.15. Let G be a k-connected graph (k ≥ 3) and x be a vertex of finite
degree. Let X ′ := {V (e) : e ∈ E(G), x ∈ V (e) and e does not lie in a triangle}.
Suppose there exists a X ′-fragment F such that for any edge e ∈ E(x, F ), e
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is non-contractible and e does not lie in a triangle. Then there exists a finite
X ′-fragment F ′ such that

(1) F ′ lies in a k-separator containing x,

(2) |F ′| < k − 1, and

(3) E(x, F ′) ⊆ ENC .

Proof. The proof is the same as that of Lemma 7.9 and is omitted. Note that
some edges in E(x, F ′) may lie in a triangle. �

Lemma 7.16. Let G be a k-connected K−4 -free graph (k ≥ 3). Suppose x is
a vertex of finite degree and is contained in at most one triangle. Then x is
incident to a contractible edge.

Proof. Suppose all edges incident to x are non-contractible. Since x is contained
in at most one triangle, there exists a X ′-fragment F such that for any edge
e ∈ E(x, F ), e is non-contractible and e does not lie in a triangle. By Lemma
7.15, there exists a finite X ′-fragment F ′ such that |F ′| < k − 1. But this con-
tradicts Lemma 7.14. �

This immediately implies Theorem 7.3.

Theorem 7.3. Let G be a k-connected graph (k ≥ 4) with no adjacent triangles
and x be a vertex of finite degree. Then x is incident to a contractible edge.

7.6 Generalization of Egawa’s and Dean’s re-
sults

In this section, an end refers to an equivalence class of rays where two rays are
equivalent if no finite set of vertices separates them. Basic results concerning
the Freudenthal compactification of G can be found in the papers by Diestel
and Kühn [10, 11, 12]. Following Bruhn and Stein [4], we define the vertex-
degree of an end ω in G as the supremum (in fact, this is a maximum) over the
cardinalities of sets of disjoint rays in ω. For k-connected locally finite graphs,
Bruhn and Stein [5] (see also Stein [19]) proved that the vertex-degree of any
end is at least k.

As we saw in the Introduction, Egawa [13] proved that every k-connected
finite graph with minimum degree at least b 5k4 c contains a contractible edge.
Here the same conclusion holds for locally finite infinite graphs if we also require
that every end has vertex-degree greater than k. The key is Lemma 7.18 which
guarantees the existence of a minimal fragment within each fragment.

Lemma 7.17. Let G be a connected locally finite infinite graph and U be an
infinite set of vertices in G. Then G contains a ray R with infinitely many
disjoint U −R paths.
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Lemma 7.18. Let G be a k-connected locally finite infinite graph and X be a
set of subsets of V (G). If every end has vertex-degree greater than k, then every
X -fragment of G contains a minimal X -fragment.

Proof. Suppose F0 is a X -fragment of G not containing a minimal X -fragment.
Then there exists a strictly decreasing infinite sequence of X -fragments of G:
F0 ) F1 ) F2 ) . . .. Denote Si := N(Fi) and F ′i := G[Fi ∪ Si] for i ∈ N.
Obviously, F ′0 ) F ′1 ) F ′2 ) . . . and all F ′i are connected. Note that for all j ≥ i,
Si∩Fj = ∅. Define S :=

⋃∞
i=0 Si. Since all Si’s are distinct, S contains infinitely

many vertices. By Lemma 7.17, there exists a ray R in F ′0 such that there are
infinitely many disjoint S − R paths in F ′0. Let ω be the end in G containing
R. Note that for all i ∈ N, Fi contains a subray of R. Otherwise, there exists
a subray R′ of R that lies in G − Si − Fi contradicting the fact that there are
infinitely many disjoint paths between

⋃
j>i Sj and R′. Hence, ω ∈

⋂∞
i=0 Fi.

Consider any ray Q in ω. There are infinitely many disjoint S −Q paths in
F ′0. Denote these paths by xiPiyi for i ∈ N where xi ∈ S and yi ∈ Q. Without
loss of generality, we can assume that xi ∈ Si, Pi ∩ S = {xi}, and y0, y1, y2, . . .
appear in that order in Q.

Suppose Q ∩ S = ∅. Then for all i ∈ N, Q ⊆ Fi. For all j ≥ i, Q ⊆ Fj
implies that xi ∈ Sj ∪Fj . Since xi ∈ Si and Si ∩Fj = ∅, xi ∈ Sj . In particular,
x0, x1, . . . , xk ∈ Sk+1 which is impossible. Therefore, Q ∩ S 6= ∅.

Suppose Q ∩ Si 6= ∅ for some i ≥ 0. Let z be a vertex in Q ∩ Si. Consider
any j ≥ i. If z ∈ Sj , then z ∈ Q ∩ Sj . If z /∈ Sj , then since Si ∩ Fj = ∅,
z ∈ G − Sj − Fj . Because Fj contains a subray of Q, zQ ∩ Sj 6= ∅. In both
cases, Q ∩ Sj 6= ∅ .

Consider any k + 1 disjoint rays R0, R1, . . . , Rk in ω. For 0 ≤ i ≤ k, let ni
be the smallest integer such that Ri ∩ Sni

6= ∅. Take m = max{n0, n1, . . . , nk}.
Then, Ri ∩ Sm 6= ∅ for all 0 ≤ i ≤ k which is impossible. �

Using Lemma 7.18, we can proceed as in Mader’s proof [18] and prove that
the cardinality of an atom in a contraction-critical k-connected locally finite
infinite graph with minimum end vertex-degree greater than k is at most k

4 .

Lemma 7.19 (Mader [18]). Let G be a k-connected graph and X be a set of
subsets of V (G). Suppose A is an X -atom of G and F is a X -fragment of G
such that A ⊆ N(F ). Then |F ∩N(A)| ≥ |A|.
Lemma 7.20 (Mader [18]). Let A be an X -atom of a X -critical graph G. If
for all x ∈ NG(A), there is a X ∈ X containing x such that X ∪ A 6= ∅ and
X ⊆ A ∩ NG(A), then G − A is almost critical, κ(G − A) = κ(G) − |A|, and
NG(A) ⊆ Cr(G−A).

Theorem 7.21 (Mader [18]). Every almost critical k-connected locally finite
infinite graph G with minimum end vertex-degree greater than k has fragments
F1, F2, F3, F4 such that F1, F2, F3, F4 ∩ Cr(G) are pairwise disjoint.

Proof. The proof goes through as in Mader’s paper [18] for finite graphs (see
also Mader [17]) because Lemma 7.18 guarantees that every fragment contains
a minimal fragment. �
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Theorem 7.22. Let G be a contraction-critical k-connected locally finite infinite
graph with minimum end vertex-degree greater than k. Then G contains an atom
of cardinality at most k

4 .

Proof. The proof is implicit in Mader’s paper [18] and is included here for com-
pleteness. Let X := {V (e) : e ∈ E(G)}. Then G is X -critical. By Lemma 7.9, G
has a X -atom A. By Lemma 7.20, G−A is almost critical, κ(G−A) = κ(G)−|A|,
and NG(A) ⊆ Cr(G−A). By Theorem 7.21, G−A has fragments F1, F2, F3, F4

such that F1, F2, F3, F4 ∩ Cr(G − A) are disjoint. Note that F1, F2, F3, F4 are
fragments of G and NG(Fi) = NG−A(Fi) ∪ A. Since κ(G − A) = κ(G) − |A|,
A ⊆ NG(Fi). By Lemma 7.19, |Fi ∩NG(A)| ≥ |A|. Since NG(A) ⊆ Cr(G−A),

all Fi∩NG(A) are disjoint. Therefore, k = |NG(A)| ≥
∑4
i=1 |Fi∩NG(A)| ≥ 4|A|

and |A| ≤ k
4 . �

As a corollary, we obtain Theorem 7.4.

Theorem 7.4. Every k-connected locally finite infinite graph such that the
minimum degree is at least b 5k4 c and all ends have vertex-degree greater than k
contains a contractible edge.

Finally, we will generalize Dean’s result [8] for locally finite infinite graphs
with minimum end vertex-degree greater than k as mentioned in the Introduc-
tion. This partially answered a conjecture raised in [7]. Note that the author
proved the cases when k = 2 [6] and k = 3 [7] without the end vertex-degree
condition. First, we need the following lemma due to Dean [8].

Lemma 7.23 (Dean [8]). Let G be a k-connected graph and F be a subset of
E(G). Define X := {V (e) : e ∈ F}. Suppose every X -fragment contains at
least bk2 c + 1 vertices. Let B be a minimal X -fragment. Then every edge of F
incident to a vertex in B is contractible.

Proof. Suppose there is a non-contractible edge e ∈ F such that V (e) ∩B 6= ∅.
Note that V (e) ⊆ B ∪ N(B). Let T be a k-separator containing e. Then
T ∩B ⊇ V (e)∩B 6= ∅ and V (e) ⊆ T ∩ (B ∪N(B)). By Lemma 7.6, there exists

a fragment F of T such that |F | < κ(G)
2 , a contradiction. �

Theorem 7.5. Let G be a k-connected locally finite infinite graph (k ≥ 4)
which is triangle-free or has minimum degree at least b 3k2 c, and all ends have
vertex-degree greater than k. Suppose GC is the subgraph induced by all the
contractible edges. Then the closure of GC in the Freudenthal compactification
of G is topologically 2-connected.

Proof. Denote the closure of GC in the Freudenthal compactification of G by
GC . Suppose GC is not topologically 2-connected. Then there exists a point
x in GC such that GC \ x is not connected. Let U and U ′ be two disjoint
non-empty open sets in |G| such that GC \ x ⊆ U ∪ U ′, (GC \ x) ∩ U 6= ∅ and
(GC \ x) ∩ U ′ 6= ∅. Define X := (GC \ x) ∩ U ∩ V (G) and X ′ := (GC \ x) ∩
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U ′ ∩ V (G). Since GC is a spanning subgraph of G by Corollary 7.10 and 7.13,
X ∪ X ′ = V (G \ x). By the connectedness of an edge and the definition of a
basic open neighborhood of an end, both X and X ′ are non-empty. Since G \ x
is topologically connected, E(X,X ′) is non-empty. Suppose x is a vertex or
an end of G. By the connectedness of an edge, all edges in E(X,X ′) are non-
contractible. Define Z := X, Z ′ := X ′, F := E(Z,Z ′), X := {V (e) : e ∈ F}
and w := x. Suppose x is an interior point of an edge e. Then all edges in
E(X,X ′) are non-contractible unless e ∈ E(X,X ′)∩EC . Note that in this case,
E(X,X ′)− e is non-empty as G is 2-connected, and every edge in E(X,X ′)− e
is non-contractible. Let e = yy′ where y ∈ X and y′ ∈ X ′. By Corollary 7.10
and 7.13, |X| ≥ 2 and |X ′| ≥ 2. Define Z := X − y, Z ′ := X ′, F := E(Z,Z ′),
X := {V (e) : e ∈ F} and w := y. Note that all edges in E(Z,Z ′) are non-
contractible.

By Lemma 7.18, there is a minimal X -fragment not containing w, say B.
Let zz′ be an Z-Z ′ edge in NG(B). By Theorem 7.1 and 7.2, there are two
contractible edges za and z′a′ such that a, a′ ∈ B. Since B does not contain w
and all edges in E(Z,Z ′) are non-contractible, we have a ∈ X and a′ ∈ X ′. As
B is connected, there exists an a-a′ path P in B. This implies that B contains
a non-contractible edge in F = E(Z,Z ′) contradicting Lemma 7.23. �
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Chapter 8

Summary

Zusammenfassung

In der vorliegenden Dissertation werden die Verteilung der kontrahierbaren
Kanten in bestimmten Arten von Untergraphen und die Eckenüberdeckungen
kontrahierbaren Kanten in 2-zusammenhängenden endlichen Graphen unter-
sucht. Verschiedene Ergebnisse über der Existenz und Verteilung der kontrahier-
baren Kanten in k-zusammenhängenden endlichen Graphen zu unendlichen,
lokal endlichen Graphen verallgemeinern werden.

Summary

In this dissertation, the distribution of contractible edges in certain types of
subgraphs and vertex covers of contractible edges in 2-connected finite graphs
are investigated. Various results concerning the existence and distribution of
contractible edges in k-connected finite graphs are generalized to locally finite
infinite graphs.

Publications derived from the dissertation
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