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Chapter 1

Introduction

The study of contractible edges in graphs was initiated by Tutte in 1961 who
proved that every 3-connected finite graph of order at least five contains a
contractible edge. From that point forward, research on contractible edges
have blossomed into various areas: investigating the distribution of contractible
edges, studying properties of contraction-critical graphs, discovering sufficient
conditions for their existence, and determining which subgraphs contain con-
tractible edges. Contractible edges are extremely useful in inductive arguments
for proving a number of graph theory results such as Kuratowski’s character-
ization of planar graphs and Lovdsz’ conjecture that every (k + 3)-connected
graph contains a cycle whose deletion results in a k-connected graph. Almost
all results about contractible edges were derived solely for finite graphs due to
the proof techniques available: induction, reductio ad absurdum, and the theory
of atoms and ends. Also, 2-connected graphs were often omitted because of
their apparent simplicity although some results were obtained for 2-connected
matroids.

The purpose of this dissertation is to rectify these situations and provide
a deeper understanding of contractible edges in general. First, it fills in the
remaining gap for results concerning contractible edges in 2-connected finite
graphs. In Chapter 2, the distribution of contractible edges in spanning trees,
longest cycles, longest paths and maximum matchings in 2-connected finite
graphs is studied. Chapter 3 focuses on vertex covers of contractible edges in 2-
connected graphs. Second, results concerning contractible edges in k-connected
graphs (k > 3) are extended to locally finite infinite graphs. In Chapter 4,
several results in Chapter 2 are generalized to locally finite infinite 2-connected
graphs while contraction-critical 2-connected infinite graphs are studied as well.
Chapter 5 deals with the more traditional topic of 3-connected graphs where
the structure and distribution of contractible edges around a vertex of finite
degree are investigated. Chapter 6 extends the well known characterization of
contraction-critical 4-connected graphs by Fontet and Martinov to locally finite
infinite graphs. Finally, sufficient conditions for the existence of contractible
edges in k-connected locally finite infinite graphs were obtained in Chapter 7.






Chapter 2

Contractible edges in
subgraphs of 2-connected
finite graphs

2.1 Introduction

The study of contractible edges started with the work of Tutte [15] who proved
that every 3-connected finite graph nonisomorphic to K4 contains a contractible
edge. Further results on the number of contractible edges and non-contractible
edges in terms of the order and size of a graph were obtained. Ando et al. [1]
proved that every 3-connected finite graph G nonisomorphic to K, has at least
@ contractible edges and characterized all the extremal graphs. Ota [17]
proved that every 3-connected finite graph G of order at least 19 has at least
w contractible edges and determined all the extremal graphs. Egawa et
al. [13] showed that the number of non-contractible edges in a 3-connected finite
graph G nonisomorphic to Ky is at most 3|V (G)| — |2(\/24]V(G)| + 25 — 5)].
The existence of contractible edges in certain types of subgraphs in 3-connected
finite graphs was also investigated. For any 3-connected finite graphs of order
at least seven, Dean et al. [7] proved that for any two distinct vertices z,y,
every longest x-y path contains at least two contractible edges and that every
longest cycle contains at least three contractible edges. Later, Aldred et al. [1, 2]
characterized all 3-connected graphs with a longest path containing exactly two
contractible edges and Aldred et al. [3] characterized all 3-connected graphs
having a longest cycle containing exactly three contractible edges. Ellingham
et al. [10] proved that every non-Hamiltonian 3-connected finite graph has at
least six contractible edges in any longest cycle. For any 3-connected graph of
order at least five, Fujita [12] proved that there exists a longest cycle C' such

that C' contains at least w contractible edges, and later [13] improved the

[V(CO)|+7
—

lower bound to Maximum matchings were shown to contain a con-
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tractible edge by Aldred et al. [4]. They [5] also characterized all 3-connected
finite graphs with a maximum matching containing precisely one contractible
edge. Recently, Elmasry et al. [11] proved that every depth-first search tree in
a 3-connected finite graph nonisomorphic to K4 contains a contractible edge.

For 2-connected finite graphs, several analogous results on contractible and
non-contractible edges were known in the more general context of matroids. Let
M be a simple 2-connected finite matroid with rank r(M). Oxley [18] showed
that M has at least r(M) + 1 contractible elements. Wu [16] characterized the
extremal matroids to be precisely the matroids arised from 2-connected finite
outerplanar graphs. Kahn and Seymour [15] proved that if M has rank at
least two, then M has at least |E(M)| — r(M) + 2 contractible elements, and
characterized all the matroids where equality holds. When restricted to graphs,
these correspond to maximally outerplanar graphs. In Section 3, we will provide
graph-theoretical proofs of the above and related results.

Section 4 deals with contractible edges in spanning trees in 2-connected fi-
nite graphs. From the above result of Kahn and Seymour, every spanning tree
must contain at least two contractible edges. Those graphs having a spanning
tree containing exactly two contractible edges are characterized. In Section 5,
we study contractible edges in longest cycles and longest paths. It is easy to see
that every edge in a longest cycle is contractible, and the first and last edges
in any longest path between two given vertices are contractible. Furthermore,
we characterize all the graphs with a longest path containing exactly two con-
tractible edges to be the square of a path. For 2-connected non-hamiltonian
finite graphs, every longest path is shown to contain at least four contractible
edges which is best possible. We also prove that for any 2-connected finite
graph nonisomorphic to K3, there exists a longest path P containing more than
|E(P)|/2 contractible edges and this bound is asymptotically optimal. Lastly, in
Section 6, every maximum matching is shown to contain a contractible edge. All
2-connected finite graphs with a maximum matching containing precisely one
contractible edge are characterized. We also proved that for any 2-connected
finite graph nonisomorphic to K3, there exists a maximum matching M that
contains at least 2(|M| + 1)/3 contractible edges and the bound is optimal.

2.2 Definitions

All basic graph-theoretical terminology can be found in Diestel [9]. Unless
otherwise stated, all graphs G considered in this paper are simple and finite.
For any vertex z in G, denote the set of neighbors of by Ng(z). Let A and B
be two disjoint subsets of V(G), define Eg (A, B) to be the set of edges between
A and B. The square of G, denoted by G?, is the graph on V(G) where two
vertices are adjacent if and only if they have distance at most two in G. A
matching is a set of independent edges and a mazimum matching is a matching
of largest cardinality. Let M be a matching in G. An M-alternating path is a
path whose edges alternate between M and E(G)\ M. An M-alternating path
is called M-augmenting if the first and last vertices of the path are not incident



to any edges in M. Let H be a path or a cycle. Two chords x1x2 and yiy2 of
H are overlapping if x1,y1, 22, y2 appear in this order in H.

Let G be a k-connected graph. An edge e of G is said to be k-contractible if
the graph obtained by its contraction, G/e, is also k-connected. Otherwise, it
is called k-non-contractible. Since this paper concerns only 2-connected graphs,
we write 2-contractible as contractible. Let G = (V, E) be a 2-connected graph.
Denote the set of contractible edges and non-contractible edges in G by E¢ and
Enc respectively. Define Go := (V, E¢) to be the subgraph induced by all the
contractible edges and Gy¢ = (V, Enc).

A graph is outerplanar if it can be embedded in the plane such that all the
vertices lie on the boundary of one face. A graph is mazimally outerplanar if it
is outerplanar and the addition of any extra edge results in a non-outerplanar
graph.

2.3 Contractible and non-contractible edges in
2-connected finite graphs

Here we group together all the major results concerning contractible and non-
contractible edges in 2-connected finite graphs. Most results are well-known
but a few are new. We start with three fundamental lemmas applicable to all
2-connected graphs nonisomorphic to Ks.

Lemma 2.1. Let G be a 2-connected graph nonisomorphic to Ks. For every
edge e of G, G — e or G/e is 2-connected.

Lemma 2.2. Let G be a 2-connected graph nonisomorphic to K3. Let e and f
be two distinct non-contractible edges of G. Then f is non-contractible in G —e.

Lemma 2.3. Let G be a 2-connected graph nonisomorphic to Kz. Let e be
a mon-contractible edge of G and f be a contractible edge of G. Then f is
contractible in G — e.

Proof. Suppose f is non-contractible in G — e. Since [ is contractible in G,
G — e — V(f) has exactly two components, say C' and D, and e joins C and D
in G. Note that V(e) NV (f) = 0. Denote the endvertex of e in C by ¢ and the
endvertex of e in D by d. Every c-d path except e intersects the endvertices of
f. Consider a component B of G — V(e) not containing f. Then G[BUe] — e
contains a c-d path not intersecting V'(f), a contradiction. (]

Using Lemma 2.1 and 2.2, we can prove the following lemma.

Lemma 2.4. Let G be a 2-connected graph nonisomorphic to K3 and F be a
finite subset of E(QG).

(a) If G — F is disconnected, then F' contains at least two contractible edges.

(b) If G — F is connected but not 2-connected, then F contains at least one
contractible edge.



As a corollary, we have:

Lemma 2.5. Let G be a 2-connected graph nonisomorphic to K. Let {z,y} be
a 2-separator of G and C be a component of G —x —y. If |Eg(z,C)| is finite,
then Eg(x,C) contains a contractible edge.

Lemma 2.4 implies that for any 2-connected finite graph nonisomorphic to
K3, every vertex is incident to at least two contractible edges. Hence, the num-
ber of contractible edges is at least the number of vertices. The 2-connected
graphs satisfying the lower bound were characterized by Wu [16] to be outerpla-
nar graphs. Since Wu’s work concerns simple 2-connected finite matroids, we
give a graph-theoretical proof below. This requires the following theorem which
can be proved easily by Lemma 2.1 and 2.2.

Theorem 2.6. Let G be a 2-connected finite graph nonisomorphic to Ks. Then
the subgraph G¢ induced by all the contractible edges is 2-connected.

Proof. By Lemma 2.1 and 2.2, we can repeatedly delete all the non-contractible
edges so that the resulting graph G¢ is 2-connected. g

Theorem 2.7 (Wu [16]). Every 2-connected finite graph G nonisomorphic to
K3 has at least |V (G)| contractible edges. The equality holds if and only if G is
outerplanar.

Proof. If G is outerplanar, then G consists of a Hamilton cycle with non-
overlapping chords. The edges in the Hamilton cycle are the only contractible
edges and the equality holds. Suppose the equality holds. Then by Lemma
2.4, V(G)| = |Ecl = 1 Yoy [Bo@)] = 3 Xevie 2 = IV(G)]. Therefore,
every vertex of G is incident to exactly two contractible edges. By Theorem
2.6, G¢ is a Hamilton cycle of G. All edges of G outside G¢ are chords of G¢
and are non-contractible. This implies that no chords of G are overlapping.
Hence, G is outerplanar. O

There is also a similar result concerning non-contractible edges in 2-connected
finite graphs. As noted in the Introduction, this was already proved by Kahn
and Seymour [15]. Here we will adopt Kriesell [7]’s arguments.

Theorem 2.8. Fvery 2-connected finite graph G nonisomorphic to Ks has at
most |V (G)| — 3 non-contractible edges. The equality holds if and only if G is
mazimally outerplanar.

Proof. The first part was proved by Kriesell [7]. Here we prove the second part
using the same inductive arguments. (<) Obvious. (=) For |V(G)| = 4, the
result is true. Consider a non-contractible edge xy in G. Let Cy be a component
of G—{xz,y} and Cy := G—{z,y} —C;. Suppose |C2| =1 and let V(Cs) := {a}.
Then degg(a) = 2, and ax and ay are contractible in G by Lemma 2.1. Also,
G —a is 2-connected and xy is a contractible edge in G —a. Therefore, G —a has
|V (G)| — 4 non-contractible edges. By induction hypothesis, G —a is maximally
outerplanar and so is G.
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Now, assume |C7| > 1 and |C3| > 1. Let G; be the graph obtained from
G by contracting C3_; to a vertex a; for ¢ = 1,2. Then G; and G2 are 2-
connected and xy is a non-contractible edge in both G; and Gs. By the first
part of the theorem, G; has at most |V (G;)| — 3 non-contractible edges. Since
V(G)|=3=|Enc(G)| = |Enc(G1)|+|Enc(G2)| =1 < [V(G1)|=3+|V(G2)| -
3—1=|V(C)|+ |V(Cs)| — 1 = |V(G)| — 3, each G; has exactly |V(G;)| — 3
non-contractible edges. By induction hypothesis, each G; is maximally outer-
planar and so is G. O

Combining Theorem 2.7 and 2.8, we obtain a lower bound for the number
of contractible edges and an upper bound for the number of non-contractible
edges in terms of the size of a graph.

Theorem 2.9. Fvery 2-connected finite graph G nonisomorphic to K3 has at
least w contractible edges and at most % non-contractible edges. In
both cases, the equality holds if and only if G is mazximally outerplanar.

Proof. By Theorem 2.7 and 2.8, |V(G)| < |E¢| and |Enxc| < [V(G)] -3 <
|Ec| — 3. Therefore, 2|ENC‘ +3 < |E(G)‘ = |Ec‘ + |ENC" < 2|Ec| —3. We
have |E¢| > % and |Enc| < % In both cases, the equality holds
if and only if |E¢| = |V(G)| and |Enxc| = |V(G)| — 3 which is equivalent to G
being maximally outerplanar by Theorem 2.7 and 2.8. t

Theorem 2.7 gives a characterization of 2-connected finite graphs of order at
least four having exactly |V (G)| contractible edges. Here we characterize all 2-
connected finite graphs G having exactly |[V(G)|+1 and |V (G)|+ 2 contractible
edges.

Theorem 2.10. Let G be a 2-connected finite graph. Then G contains exactly
[V(G)| + 1 contractible edges if and only if G consists of two vertices joined
by three internally disjoint paths each of length at least two together with non-
overlapping chords on each path.

Proof. Suppose G contains exactly [V (G)|+1 contractible edges. Then ", v [Ec(z)| =
2|Ec| =2|V(G)| + 2. By Lemma 2.4, |[Ec(z)| > 2 for all z € V(G). Therefore,
G ¢ contains exactly two vertices of degree three with the remaining vertices of
degree two. Hence, G¢ consists of two vertices x,y joined by three internally
disjoint paths, say Pi, Py, Ps. Since all edges not in G¢ are non-contractible,
there are no edges joining P; and ij for i # j, the length of each P; is at least
two, and all chords on P; are non-overlapping.

Suppose G consists of two vertices x,y joined by three internally disjoint
paths P;, P», P5 each of length at least two together with non-overlapping chords
on each path. Then G¢ equals to (V(G),E(Py U P, U P3)). Hence, |Ec| =
LY v | Eo(@)] = L2(V(G)| - 2) +3(2)] = [V(G)] + L. 0

Theorem 2.11. Let G be a 2-connected finite graph. Then G contains exactly
[V(G)| + 2 contractible edges if and only if G is one of the following graphs:
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1. G consists of two degree-4 vertices joined by four internally disjoint paths
each of length at least two together with non-overlapping chords on each
path.

2. G has one degree-4 vertex and two degree-3 vertices. The degree-4 vertex
joins each degree-3 vertex by two internally disjoint paths each of length
at least two. The two degree-3 vertices are joined by a path. All the paths
are internally disjoint and each path has no overlapping chords.

3. G consists of a K4 subdivision together with non-overlapping chords on
each path between any two branch vertices of the K4 subdivision.

Proof. Suppose G contains exactly [V (G)|+2 contractible edges. Then}_, v () [Ec(z)| =
2|E¢| = 2|V(G)| + 4. By Lemma 2.4, |[Ec(x)| > 2 for all € V(G). There
are three possibilities: (1) G¢ has two vertices of degree four and the rest of
degree two; (2) G¢ has one vertex of degree four, two vertices of degree three
and the rest of degree two; (3) G¢ has four vertices of degree three and the
rest of degree two. In the first case, G¢ consists of two vertices joined by four
internally disjoint paths. The remaining edges of G, being non-contractible, can
only be chords of the four paths and no two of which are overlapping. This also
implies that each of the four paths are of length at least two. In the second case,
since G¢ is 2-connected, the degree-4 vertex in G¢ joins each degree-3 vertex
in G¢ by two internally disjoint paths each of length at least two, and the two
degree-3 vertices are joined by a path where all five paths are internally disjoint.
The remaining edges of GG, being non-contractible, can only be chords of the five
paths, and no two chords on the same path are overlapping. In the third case,
G¢ is a K4 subdivision. The remaining edges, being non-contractible, can only
be chords on one of the six paths between two branch vertices in G¢. Again no
two chords on the same path are overlapping.

Suppose G is one of the three graphs in the above list. It follows easily that
vy [Bo(@)] = 2/V(G)| +4 and [Ec| = [V(G)] + 2 O

2.4 Contractible edges in spanning trees

Another question that can be asked about contractible edges in a 2-connected
finite graph is: How many contractible edges are there in certain types of sub-
graphs? By Theorem 2.6, every 2-connected finite graph nonisomorphic to K3
contains a spanning tree consisting of contractible edges only. Theorem 2.8 im-
plies that every spanning tree of a 2-connected finite graph nonisomorphic to K3
contains at least two contractible edges. Below we characterize all 2-connected
graphs having a spanning tree containing exactly two contractible edges.

Theorem 2.12. Let G be a 2-connected finite graph nonisomorphic to Ks. Then
every spanning tree of G contains at least two contractible edges. Moreover, G
has a spanning tree containing exactly two contractible edges if and only if G is
mazimally outerplanar and G ¢ is acyclic.
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Proof. As noted above, the first part follows from Theorem 2.8. Suppose G has
a spanning tree T containing exactly two contractible edges. Since |E(T)| =
[V(G)| — 1 and |Enc| > |E(T)| — 2, |Enc| > |V(G)| — 3. By Theorem 2.8,
|[Enc|=|V(G)| —3=|E(T)| — 2 and G is maximally outerplanar. Also, Gn¢
is acyclic as Exc C E(T).

Suppose G is maximally outerplanar and Gy¢ is acyclic. Then G being
maximally outerplanar implies that G[En¢]| is connected. Since G y¢ is acyclic,
G[En¢] is acyclic and hence is a tree of order |Enc| + 1 = |V(G)| — 2 by The-
orem 2.8. Now, G[Enc¢]| can be extended to a spanning tree of G containing
exactly two contractible edges. O

Suppose [ is the minimum number of contractible edges a spanning tree of
G can contain. It is easy to show that there exists a spanning tree containing
exactly k contractible edges for I < k < |[V(G)| — 1.

Theorem 2.13. Let G be a 2-connected finite graph nonisomorphic to K3 and
I be the minimum number of contractible edges a spanning tree of G contains.
Then, for I < k < |V(G)| — 1, G has a spanning tree containing ezactly k
contractible edges.

Proof. Suppose we have proved that G has a spanning tree T containing exactly
k contractible edges. Let xy be a non-contractible edge in T'. Denote the subtree
of T'— xy containing x by T, and that containing y by 7. By Lemma 2.4,
Eq(T,,T,) contains a contractible edge, say uv. Then T'— xy+uv is a spanning
tree containing exactly k£ + 1 contractible edges. By induction, the theorem
follows. O

2.5 Contractible edges in longest cycles and paths

Inspired by the papers of Dean et al. [7] and Aldred et al. [3], we also study con-
tractible edges in longest paths and longest cycles in 2-connected finite graphs.

Lemma 2.14. Let G be a 2-connected finite graph nonisomorphic to Ks, and
x,y be two vertices in G. Suppose P := x1x5...%, is a longest x-y path in G
(x =21 andy = xy,). If x;x,41 is non-contractible, then G—x; —x;11 has exactly
two components, each of which intersects P, and there is no x1Px;_1-x;42 P,
path in G — x; — x;41. In particular, x129 and xp,_12, are contractible.

Proof. Suppose G — z; — ;41 contains a component C' disjoint from P. Let y;
be a neighbor of z; in C, y;4+1 be a neighbor of z;,; in C, and @ be a y;-y; 1
path in C. Then P — z;xi11 + Y + ¥:QVit1 + Yi+12i+1 IS a z-y path longer
than P which is impossible. O

Lemma 2.14 immediately leads to the following theorem.

Theorem 2.15. Let G be a 2-connected finite graph monisomorphic to Ks.
Then the first and the last edges in a longest path in G are contractible, and all
edges in a longest cycle in G are contractible.

13



Proof. The first part follows from Lemma 2.14. Let C be a longest cycle in G.
Suppose C' contains a non-contractible edge xy. Let z be a neighbor of y in C
other than z. Then C — yz is a longest y-z path in G. By Lemma 2.14, yz is
contractible, a contradiction. O

As a natural step, we characterize all 2-connected finite graphs having a
longest path containing exactly two contractible edges.

Theorem 2.16. Let G be a 2-connected finite graph nonisomorphic to Ks.
Then G has a longest path containing exactly two contractible edges if and only
if G is the square of a path.

Proof. (<) Obvious. (=) Suppose P := x125...2, is a longest path in G
containing exactly two contractible edges. By Lemma 2.14, x12z9 and x,_1x,
are the only contractible edges in P. Note that n > 4. For k =1,2,...,n — 3,
define Py to be the subpath zizs ...z of P and Cy to be the component of
G — Tp41 — Tr4o containing ;.

If C; # x1, then there exists a vertex in Cy, say y;, adjacent to x;. By
applying Lemma 2.14 to xoxs, y1 ¢ P and y1x125 ... 2, is a path longer than
P, a contradiction. Therefore, C; = 1 and Ng(z1) = {x2,z3}.

If Cy # 19, then since Ng (1) = {z2, 23}, there exists a vertex other than
x1 in Cy, say ya, adjacent to xzo. By applying Lemma 2.14 to xz3xy, y2 ¢ P and
YoToT1T3 ... T, is a path longer than P, a contradiction. Therefore, Co = x4
and Ng(x2) = {x1, 23,24} as G — x3 is connected.

If C3 # PZ, then since Ng(z1) = {72, 23} and Ng(z2) = {x1, 23,74}, there
exists a vertex other than z1,z9 in Cs, say ys, adjacent to z3. By applying
Lemma 2.14 to z4x5, y3 ¢ P and yzz3r12e®y ... 2, is a path longer than P, a
contradiction. Therefore, C3 = P? and Ng(x3) = {21, 22, 74,75} as G — x4 is
connected.

Suppose we have proved that for k = 3,4,...,m—1, Cy = P? and Ng(z) =
{20, Th_1,Tks1, Thro} If Cp # P2, then there exists a vertex other than
T1,..-Tm—1 in Cyy, say Ym, adjacent to x,,. If m is odd, by applying Lemma
2.14 t0 Tym41Tm+2, Ym ¢ P and ymTmTm—2... T122T4 ... Ty 1Tl - - - Ty, 1S
a path longer than P, a contradiction. If m is even, by applying Lemma
2.14 10 Tymt1Tm+2, Ym ¢ P and ypmTmTm—2o. .. T2Z1T3 .. T 1Tmt1 - - - Ty 1S
a path longer than P, a contradiction. Therefore, C,,, = P2 and Ng(z,,) =
{Zm—2,Tm—1, Tm+1, Tm+2} a8 G — Ty 11 is connected.

By induction, for k = 3,4,...,n—3, Cx, = P? and Ng(vx) = {Tk—2, Tk—1, Tht1, Thi2}-
Since the component of G — x,,_o — x,,_1 other than C,,_3 is x,, for otherwise
we can find a longer path than P, G = P2, O

Since the square of a path is Hamiltonian, the above theorem implies that
every longest path in a 2-connected non-Hamiltonian finite graph contains at
least three contractible edges. In fact, the correct lower bound is four. This is
best possible as demonstrated by K>, where n > 3.

Theorem 2.17. Let G be a 2-connected non-Hamiltonian finite graph. Then
every longest path contains at least four contractible edges.
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Proof. Suppose P := x1x5...xz, is a longest path in G containing exactly
three contractible edges. By Lemma 2.14, xiz5 and x,_ix, are contractible.
Let xxzr4+1 be the third contractible edge in P. By arguing as in the proof
of Theorem 2.16, we have Ng(x1) = {z2,23}, Na(z2) = {x1, 25,24}, No(x3) =
{z1, 22,24, 25}, ..., Na(@r—2) = {Th—a, Th—3, Th—1, Tk }, N (Tr43) = {Tht1, Tht2: Thtd Thys }s - Na(Tn_2) =
{xn74; Tn—3,Tn—1, xn}a NG(xnfl) = {xnffﬁa Tn—2, xn}a NG(mn) = {xn72a xnfl}'
By the maximality of P, Ng(zr—1) C P and Ng(zk42) C P. Since xgxpy1 is
contractible, G —x; — 41 is connected, and x;_1 and 49 are adjacent. Again
by the maximality of P, Ng(xx) C P and Ng(zk+1) € P. Now, V(G) = V(P)
and G is Hamiltonian, a contradiction. O

Theorem 2.15 tells us that every longest path has at least two contractible
edges but is it possible to find a longest path that contains many contractible
edges? The following theorem provides an affirmative answer.

Theorem 2.18. Let G be a 2-connected finite graph nonisomorphic to Ks and
P be a longest path in G containing as many contractible edges as possible. Then
P has more than |E(P)|/2 contractible edges.

Proof. By Theorem 2.15, the result is true if |[E(P)| < 4. Therefore, we can
assume |E(P)| > 5. Let P:=z125...2p.

Claim 2.19. The first four and last four edges of P are contractible.

Proof. Suppose x1x5 is contractible and xsx3 is non-contractible. By the max-
imality of P and by applying Lemma 2.14 to xoxz3, Ng(z1) = {22,23}. Then
r1x3 is a contractible edge and xox1 23 Px, has more contractible edges than P,
a contradiction.

Suppose x1x9,x2x3 are contractible and zzz4 is non-contractible. Then
by the maximality of P and by applying Lemma 2.14 to x3x4, Ng(x1) C
{z2,x3,24}. Since xox3 is contractible, G — zo — x3 is connected and x; is
adjacent to x4. Suppose xjx4 is non-contractible. By Lemma 4.6, there exists
a contractible edge incident to x1, say z1y, such that y ¢ {2, x5, 24} which
is impossible. Therefore, x1x4 is contractible and z3zsx1x4Px, has more con-
tractible edges than P, a contradiction.

Suppose z1x9, xox3, T3x4 are contractible and x4x5 is non-contractible. Let
C be the component of G — x4 — x5 containing ;. Then by the maximality of
P and by applying Lemma 2.14 to xz4xs, Ng(x1) C {2,253, 24,25} Suppose
x5 € Ng(z1). By arguing as above, zqx5 is contractible and zjxs3zoxixs Py,
has more contractible edges than P, a contradiction. Therefore, x5 ¢ Ng(z1).
Since xox3 is contractible, G — xo — x5 is connected and z124 € E(G). If x124
is non-contractible, then by Lemma 4.6, there exists a contractible edge x1y
such that y ¢ {x9, 23,25}, a contradiction. Hence, x4 is contractible. Since
r3x4 is contractible, there exists a xs-z5 path (). By applying Lemma 2.14 to
2425, Q lies in G[(C' U xs) — {z1,x3,24}]. Then zzzyx122Qx5Px, is a longer
path than P unless Q = zox5. Suppose Taxs is non-contractible. Let D be a
component of G — xs — x5 not containing x1. Then there exists a zo-z5 path Q'
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in G[D U {z2,z5}] such that |E(Q’)| > 2 which is impossible. Therefore, xaxs
is contractible. Now, zsxsxizox5Px, has more contractible edges than P, a
contradiction. O

Claim 2.20. Let x;x;41 and x;412;+2 be two consecutive non-contractible edges
in P. Then x;x;19 is a contractible edge.

Proof. By Lemma 2.14, ¢ > 1 and i + 2 < n. Let C be the component of
G — z; — x;41 containing x;yo. By Lemma 4.6, there exists a contractible edge
x;y; such that y; € C. Let @ be a y;-x;12 path in C. By applying Lemma 2.14
t0 Ziy1%iq2, QNP = x;4o. Define R := x1 Px;y;Qu;y2 Px,. If |E(Q)| > 2, then
R is a longer path than P, a contradiction. If |E(Q)| = 1, then R and P have
the same length, but R has more contractible edges than P, a contradiction.
Therefore, |F(Q)| = 0 and x;x;42 is a contractible edge. O

Claim 2.21. There are no three consecutive non-contractible edges in P.

Proof. Suppose there are three consecutive non-contractible edges ©;x; 41, T;i41%i+2
and z;y1ox;43 in P. By Claim 4.22, x;x;12 and x;112;43 are contractible edges.
But then zy Pz;x;yox;+1%;43Px, has more contractible edges than P, a con-
tradiction. O

Below we will represent contractible and non-contractible edges in P using
the following notation. For example, x;x;11%;42%i4+3Ti14%45 = CNCNN
denotes that TiTi+1 and Tij42T;43 are contractible, and Ti41Ti42y Ti+3Ti+4 and
Zit+4%;+5 are non-contractible. Note that NNN is impossible in P by Claim
4.23.

Claim 2.22. There is no NN(CN)iN in P.

Proof. The case k = 0 is Claim 4.23. Suppose Z;Z;11 ... Ti12k+2Tit2k+3 ‘=
NN(CN)pN appears in P where k > 1. Since ;42242541 is contractible
(1 <j<k), G—xitaj — Titaj4+1 is connected and contains a x1Pxito;_1-
Tit2j+2Pry path internally disjoint from P, denoted by Q;. By applying
Lemma 2.14 to Li41Li42, Li43Li44,« « oy Ti42k+1Li4+2k+2, for 1 S ] S k, Qj n
P = {x;40j_1,%it2542} and all Q,’s are pairwisely disjoint. Consider P’ :=
T1Pxixip2%i41Q1Ti+4Ti+3Q2Tiv6 - - - Tit2k—3Qr—1Tit2kTit2k—1 QrTit2h+2Tit+2k+1Tit2k+3PTn.
By the maximality of P, all Q;’s are contractible edges. But then P’ has more
contractible edges than P, a contradiction. O

Claim 2.23. FEvery 2k+1 consecutive edges in P contain at least k contractible
edges.

Proof. For k = 0, it is trivial. By Claim 4.23, £k = 1 is true. Suppose
we have proved that for all 0 < I < k, every 2l + 1 consecutive edges in P
contain at least [ contractible edges. Consider any 2k + 3 consecutive edges
in P, say Q := x;Tiy1...Tiyok+3. Assume ) contains only k contractible
edges. Since x;41Qx;42r+2 contains at least k contractible edges, z;x;+1 and
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Titok+2Tir2k+3 are non-contractible. Since z;Qx; 211 contains at least k con-
tractible edges, ;yok1+1%i+2k+2 1S non-contractible. Similarly, z; 12,42 is non-
contractible. By applying Claim 4.24 to x;Qx;+3, T;+2%;+3 is contractible. Sim-
ilarly, @; ok 2k+1 is contractible.

Suppose we have proved that the first 2] + 1 edges of @ are of the form:
N(NC); and the last 2] + 1 edges of @ are of the form: (CN);N. By con-
sidering contractible edges in 2;QT;yok—1)+15 Tit2(k—1)+1Tit2(k—1)+2 IS NON-
contractible. Similarly, x;49;41%;121+2 is non-contractible. By applying Claim
4.24 %0 1; Qx4 2143, Tit21+2Ti+21+3 is contractible. Similarly, ;4 ok—1)Tit2(k—1)+1
is contractible. Therefore, by induction, Q@ = NN(CN);N, which is impossible
by Claim 4.24. O

Claim 2.24. P has more than |E(P)|/2 contractible edges.

Proof. This immediately follows from Claim 4.21 and Claim 4.25. O

Finally, the bound in Theorem 2.18 is asymptotically best possible as demon-
strated by the family of graphs, Hy (k > 0), constructed below. Define V (Hy) :=

2k+9
{1, 22,.. ., Topt10} and E(Hy) = ;L] zixip1U{T124, T2%6, Tak45%2k+9, T2k 7T2k410 JU
k . . ..
Ui_; z2i+3%2i46. It is not difficult to see that the longest path of Hj, is either
12 ...T2k4+10 OF (3’51$4$3$2/I3$4$11‘2)$6$5.’L‘8$7 oo 4455447 L8447 L7445 - - -

T2k 4T 2h4+3T 2% 46 L2k+5 (L2k 49T 2k +8 L2k TL2k+10/ L2k+9T2k+10T2k+7T2k+8 ), and has
the contractible/non-contractible edge pattern: CCCCN(CN),,CCCC.

2.6 Contractible edges in maximum matchings

Here, we prove several results concerning contractible edges in maximum match-
ing. First, it is shown that every maximum matching in a 2-connected finite
graph nonisomorphic to K3 contains a contractible edge.

Lemma 2.25. Let G be a 2-connected finite graph nonisomorphic to K3 and
M be a matching in G such that all of its edges are non-contractible. Then for
every edge e in M, there exists an M -augmenting path containing e.

Proof. Denote e by zgyg. Let X and Y be two components of G — g — yo.
Let z; be a neighbor of ¢y in X and y; be a neighbor of yy in Y. Note
that xozry ¢ M, yoy1 ¢ M and z1xoyoy: is an M-alternating path. Let
P = Top11Tok ... T1ToYoY1 - - - Y2uy2u+1 be a longest M-alternating path such
that Tokr122k € M and yoyyop1 ¢ M. If xopy1 € V(M), then there exists
an edge in M incident to xok41, Say Tokt1Tokt2. SINCE Togy1Zak42 IS nNon-
contractible, xor4o is adjacent to a vertex not in P, say xori3. But then
T2kt 3T2%+2L2k+122k - - - TILOYOYL - - - Y21Y21+1 1S an M-alternating path longer
than P such that xory3zok12 ¢ M and yoyxe;+1 ¢ M, a contradiction. Hence,
Zop+1 ¢ V(M). Similarly, yo41 ¢ V(M). Therefore, P is an M-augmenting
path containing e. O
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Since an M-augmenting path enables one to construct a larger matching
than M, Lemma 2.25 immediately implies the following.

Theorem 2.26. Every maximum matching in a 2-connected finite graph noni-
somorphic to K3 contains a contractible edge.

Next, we characterize all 2-connected finite graphs with a maximum match-
ing containing precisely one contractible edge. For such purpose, we define the
following type of graphs R, (n > 1) with V(R,) := {Z0, Y0, 1, Y1, - -, Tny Yn, 2}
and E(Ry) := {z:yi, xi%it1, Yi¥it1 : 0 < i <n—1}U{xnyn, Tnz, ynz} UF where
F CA{xiyit1,yiTiy1: 0 <1 <n—1}.

Theorem 2.27. Let G be a 2-connected finite graph. Then G has a mazimum
matching containing precisely one contractible edge if and only if G = R,,.

Proof. (<) {z;y; : 0 < i < n} is the desired matching. (=) Let M be a
maximum matching containing precisely one contractible edge zgyg. Since M
contains a contractible edge, G has at least four vertices. There exists two
distinct vertices x; and y; such that x; is adjacent to xg and y; is adjacent to
yo- Note that zoz; ¢ M and yoy, ¢ M.

We claim that z1y1 € M and Ng (2o, y0) = {1, y1}. There are three cases to
consider. (1) If 21 ¢ V(M) and y; ¢ V(M), then x120yoy1 is an M-augmenting
path, contradicting M being maximum. (2) If either 1 ¢ V(M) and y; € V(M)
or 1 € V(M) and y; ¢ V(M), then as in the proof of Lemma 2.25, we can
construct an M-augmenting path, a contradiction. (3) Suppose x; € V(M)
and y; € V(M). Let z12) and y1y] be the edges in M incident to x; and
y1 respectively. Again as in the proof of Lemma 2.25, we can construct an
M-augmenting path unless x12] = z1y1 = y1y;. Hence, 21y, is an edge in
M. Suppose there exists a vertex u in Ng(zo,yo) other than x; and y;, and
without loss of generality, assume u € Ng(zp). Consider the M-alternating
path uzgyoy1 1. Then we can construct an M-augmenting path as in the proof
of Lemma 2.25, which is impossible. Therefore, Ng(zo,y0) = {z1,v1}-

Consider x1y;. Then G — z1 — y; has exactly two components for otherwise,
there exists an M-augmenting path by the construction in Lemma 2.25. De-
note the two components by C; and D7, and without loss of generality, assume
Cy = zoyo. If |V(D1)] =1, then G = Ry. If |[V(D1)] > 1, then there exists two
distinct vertices xo and yo such that x5 is adjacent to x; and y, is adjacent to
y1. By arguments as above, xoys € M and Ng(z1,y1) = {x0, Yo, x2,y2}. We
can continue this process with xays, x3ys, ... and prove that G = R,,. g

Note that R,, contains not only a maximum matching with exactly one con-
tractible edge but also a maximum matching all of whose edges are contractible.
It is natural to ask whether every 2-connected finite graph nonisomorphic to K3
contains a maximum matching with many contractible edges. The answer is
given by Theorem 2.29 below, and we need a result by Grossman and Haggkvist
[14] concerning properly colored cycles in edge-colored graphs. A cycle is prop-
erly colored if adjacent edges have different colors.
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Theorem 2.28 (Grossman and Haggkvist [14]). Let G be a 2-connected finite
graph with its edges colored by two colors. If every vertex is incident to at least
one edge of each color, then G has a properly colored cycle.

Theorem 2.29. Let G be a 2-connected finite graph nonisomorphic to Ks and
M be a maximum matching that contains as many contractible edges as possible.
Then M contains at least 2(| M|+ 1)/3 contractible edges.

Proof. First, define Myc := M N Enxc and Me := M N Ec. We say that a
subgraph H in G has property (x) if for each edge e € Myc N H, H — V (e) is
connected. Define H to be the set of all maximal induced 2-connected subgraphs
in G having property ().

Claim 2.30. FEvery vertex and edge in G belongs to at least one element of H.

Proof. Consider a shortest cycle C' containing the vertex or the edge. Then C
has property (). O

Claim 2.31. Ewvery edge e € M ¢ belongs to at least two elements of H.

Proof. Let C; and Cs be two components of G—V (e). Consider a shortest cycle
D; in G[C; U e] containing e. Then D; has property (). But no element of H
contains both D; and D5 since e is non-contractible. O

Claim 2.32. Let Hy and Hy be two distinct elements of H such that Hy N Hy #
(0. Then Hy N Hy is an edge in Myc.

Proof. Suppose |Hy N Hp| = 1 and let « := H; N Hy. Then there exists a
shortest Hi-H, path in G —x, say P. Let x1 := PN H; and x2 := PN Hs. Since
H' := G[H; U Hy U P] is 2-connected and does not belong to H, there exists an
edge e € H' N Myc such that H — V(e) is not connected. This implies that
x € V(e) and V(e)N P # 0. Let y := V(e) N P. But, then both G[H; U z1 Py]
and G[Hy U z9Py] are 2-connected with property (*), a contradiction.

Suppose |Hy N Hy| > 2. Then G[H; U Hs| has property (%) unless Hy N Hy
is an edge in Myc. O

Now, define the auxillary bipartite graph A with the bipartite vertex sets
H and Myc respectively such that there exists an edge between H € H and
e € Myc in A if and only if e € H.

Claim 2.33. A is a tree.

Proof. First, we show that A is connected. By Claim 2.31, without loss of
generality, it suffices to prove that for any Hy, Ho € H, there is a path between
H, and Hs in A. For Hy = Ho, it is trivial. For Hy N Hy # 0, it is true by Claim
2.32. For Hi{NH> = 0, let P := x125 ... 2 be a H;-Hy path in G. By Claim 2.30,
every edge x;z; 1 belongs to an element of H, say G;. Note that Gy := H; and
Gy_1:= Hs. By Claim 2.32, if G; # G;41, then G; N G311 € My¢. Therefore,
there exists a path between H; and Hs in A.
Next, we show that A is acyclic. Suppose there is a cycle in A, say Hie1Hoes ... Hyep Hy.

But then G[Hy U Ha U . ..U Hy] has property (x), a contradiction. O
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Claim 2.34. For any H € H, H is not K.

Proof. Suppose H is K3 with vertices z,y, z. Since G is not isomorphic to Ks,
there exists a H' € H other than H such that H N H' # (). By Claim 2.32, one
edge of H, say xy, belongs to Myc. This means that H is a leaf in A, and xz
and yz are contractible in G. But then M — xy + xz contains more contractible
edges than M, a contradiction. 0

Claim 2.35. Let H € H and e be an edge in H. If e is non-contractible in
H, then e is non-contractible in G. If e is contractible in H, then either e is
contractible in G or e € Mpyc.

Proof. Suppose e is contractible in G and H — V(e) is non-connected. Let Cy
and Cy be two components of H — V(e). Since G — V(e) is connected, there
exists a shortest C1-Cy path in G—V (e), say P. But then G[H N P] has property
(%), a contradiction.

Suppose e is contractible in H and non-contractible in G. Let C be a compo-
nent of G —V(e) not containing H — V' (e). Let D be a shortest cycle in G[C'Ue]
containing e, and H' be an element of H containing D. Obviously, H # H'. By
Claim 2.32, e € Mpyc. O

Claim 2.36. |H| > [Myc|+ 1.

Proof. By Claim 2.33 and 2.31, we have 2(|H| + |[Myc| —1) = 2(]V(A)| - 1) =

Yomendega(H) + 3 cnrve degale) = 23 car. degale) > 4|Mnc|. There-
fore, |H| > |Mnyc| + 1. O

Claim 2.37. For each H € H, H contains at least two edges in M¢.

Proof. Suppose H contains at most one edge in M¢. Since H is not K3 by Claim
2.34, by applying Lemma 2.2 and 2.3 to H, we can delete all non-contractible
edges in H so that the resulting graph H’ is 2-connected and all edges in H' are
contractible in H’. Note that by Claim 2.35, every edge in H' is contractible
in G or belongs to My¢. By the definition of (x) and Claim 2.35, none of the
edges in M N H are deleted. Consider any vertex x in H'. Suppose z is incident
to an edge in M, say zy. If y ¢ H’, then zy belongs to an element of H other
than H, say I. By Claim 2.32, I N H is an edge in M ¢ incident to x, which is
impossible. Therefore, any edge in M incident to a vertex in H’ lies in H'.

We claim that every vertex in H' is incident to an edge in M N H'. Suppose
x is a vertex in H' not incident to any edges in M N H'. Let y be any neighbor
of z in H'. Therefore, xy is contractible in G. By the maximality of M, y is
incident to an edge in M NH', say yz. If y2 € My¢, then M —yz + 2y contains
more contractible edges than M, a contradiction. Hence, yz € M. Since y is
an arbitrary neighbor of 2 and H' contains at most one edge in M, this implies
that y and z are the only neighbors of  in H’. But then yz is non-contractible
in H', a contradiction.

Summing up, every edge in H' belongs to either M or Ec \ M, and every
vertex in H' is incident to an edge in M N H' and an edge in (Ec \ M) N H'.
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By Theorem 2.28, there exists a cycle x1zo...x9pxy in H' such that F :=

{x129, 2324, ..., Top—122k} C M and F' := {xqws,x425,..., 221,21} C Ec \ M.
Since H contains at most one edge in Mg, M — F + F’ has more contractible
edges than M, a contradiction. O

Claim 2.38. M contains at least 2(|M| + 1)/3 contractible edges.

Proof. By Claim 2.37 and 2.36, |M¢| > 2|H| > 2(|]Mnc| + 1). Therefore,
3|Mc| > 2(|Me| + |Mnc| +1) = 2(|M] + 1). U

Lastly, the bound in Theorem 2.29 is best possible as demonstrated by the
family of graphs below. The building blocks are cycle of length four, Cy, and
K. Define V(C}) = {=f,yi, 25,45} and E(C}) = {aiyi,yizh, adys, ysi},
and V(K3}) := {2}, 2L} and F(K2) := {224}, Now, we construct the family of
graphs G,, inductively. Define V(G1) := V(CHUV(K2)UV(C?) and E(G,) :=
E(CHUE(K)UE(C?)U{x1zi, 232} 2123 2123}, Suppose we have constructed
G Define V(Gpy1) == V(G,)UV(KZTHUV(CPH?) and E(Gpyy) = E(Gn)U
E(KyTYUEB(CyT2)u{attlyntt gntlptl pntlpnt2 ,ntlyn+21 Notice that
any maximum matching of G,, is in fact a perfect matching, and must contain
two independent edges of every Cy4 and all the Ky's.
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Chapter 3

Covering contractible edges
in 2-connected graphs

Covers for contractible edges in 3-connected graphs were first studied by Ota and
Saito [3] who proved that the set of contractible edges Ec(G) in a 3-connected
graph G of order at least six cannot be covered by two vertices (see also Saito
[4]). Later, Hemminger and Yu [2] characterized all 3-connected graphs of order
at least ten whose contractible edges can be covered by three vertices. Yu [5]
showed that for any 3-connected graph G nonisomorphic to Ky, if S covers
Ec(G) such that |[V(G)| > 3|S| — 1, then G — S is not connected. Hemminger
and Yu [1] provided upper bounds for the order, size and number of non-c-
components of G — S (refer to the paper for the definition) in terms of |S|.
Inspired by the above work, we prove the corresponding results for 2-connected
graphs.

All graphs considered in this note are finite and simple. Consider any 2-
connected graph G. An edge is contractible if its contraction results in a 2-
connected graph. Denote the set of contractible edges of G by Ec(G). Let S be
a subset of V(G). A component of G— S is trivial if its order is one. A fragment
of S is a union of at least one but not all components of G — S. Denote the
vertex set, edge set and component set of all non-trivial components of G— S by
VN(G,S), EN(G,S) and CN(G, S) respectively. We say S is a cover of Ec(G)
if every contractible edge in G is incident to a vertex in S. For any two disjoint
subsets A and B of V(G), denote Eg(A, B) to be the set of all edges between A
and B in G. Consider the complete bipartite graph K j and let {z,y} be the
partition class of the two vertices. Define K; p = Ko+ xy. Also, we define
the following construction of a new 2-connected graph based on G which will be
useful later. For each edge e in a subset F' of E(G), add a vertex x. together
with two edges from z. to V(e). Denote the resulting graph by G#F.

We begin with two basic results concerning contractible edges in 2-connected
graphs.

Lemma 3.1. Let G be any 2-connected graph nonisomorphic to K3 and e be
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an edge of G. Then G — e or G/e is 2-connected.

Lemma 3.2. Let G be any 2-connected graph nonisomorphic to K3, and e and
f be two non-contractible edges of G. Then f is a non-contractible edge of G—e.

By the above two fundamental lemmas, every vertex of GG is incident to at
least two contractible edges and hence |V(G)| < |Ec(G)|. Also, the subgraph
induced by all the contractible edges (V(G), Ec(G)) is 2-connected.

Lemma 3.3. Consider any 2-connected graph G nonisomorphic to K3. Let x,y
be any two vertices of G and C be a component of G —x —y. Then Eg(z,C)
contains a contractible edge and so does Eg(y,C). Moreover, if |C| > 1, then
there exist two independent contractible edges in Eq({z,y},C).

Proof. Suppose all edges in FEg(z,C) are non-contractible. By Lemma 4.3
and 4.4, we can delete all edges in Eg(x,C) and the resulting graph H :=
G — Eg(z,C) is 2-connected. However, either x is an isolated vertex of H or y
is a cutvertex of H, a contradiction.

Now, assume |C| > 1. Suppose Eq¢({z,y},C) N Ec(G) can be covered by
a vertex z in C. From above, zz and yz are contractible edges. By the 2-
connectedness of G, there exists an edge joining {z, y} to a vertex w of C other
than z. Without loss of generality, assume w is adjacent to y. Then wy is
non-contractible. Let D be a component of G — w — y not containing x. Then
D C C and from above, E¢(y, D) contains a contractible edge not covered by
z, a contradiction. Therefore, there exist two independent contractible edges in
EG({xay}’C)' O

Lemma 3.4. Let G be any 2-connected graph nonisomorphic to K3 and S be
a cover of Ec(G). Suppose G — S contains two vertices x and y. Let C be any
component of G —x —y. Then the following statements hold.

(a) CNS 0.
(b) If |CN S| =1, then |C| = 1.
(c) If|CNS| > 1, then there exist two independent contractible edges in Eq({z,y},C).

Proof. Suppose C NS = (. By Lemma 4.6, Eg(z,C) contains a contractible
edge not covered by S, a contradiction. Now, (b) and (c) follow directly from
the second part of Lemma 4.6. (|

Theorem 3.5. For any 2-connected graph G nonisomorphic to Kz, Ec(QG)
cannot be covered by one verter.

Proof. Suppose z is a vertex in G that covers Ec(G). Obviously, there exists
an edge yz that is not incident to xz. Therefore, yz is non-contractible. But
this contradicts Lemma 3.4(a) by considering a component of G — y — z not
containing x. U
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Theorem 3.6. Let G be any 2-connected graph nonisomorphic to Ks. Then
Ec(G) can be covered by two vertices if and only if G is isomorphic to Ko or
to K;'k where k > 2.

Proof. (<) Easy.

(=) Let S := {z,y} be a cover of Ec(G). Consider any component C of
G — 8. If |C| > 1, then C contains a non-contractible edge, say uv. By Lemma
3.4, G —u — v has exactly two components both of order one, namely x and y.
We have G = K;:Q.

Now, assume that every component of G — .S consists of exactly one vertex.
Then G is isomorphic to K» j, or K;:k where k > 2. O

Theorem 3.7. Let G be any 2-connected graph nonisomorphic to K3 and S be
a cover of Ec(G). If [V(G)| > 2|S| 4+ 1, then G — S is not connected.

Proof. The proof is by induction on |V (G)|. The result is true for |[V(G)| = 4
by Theorem 3.5. Suppose the theorem is true for all 2-connected graphs with
less than k vertices. Consider any 2-connected graph G with k vertices. Let
S be a cover of Ec(G) such that [S| < 251, Suppose G — S is connected.
Note that all edges in G — S are non-contractible. Let xy be any edge in
G — S and C1,Cy,...,C,, be the components of G — z — y. For each C};, define
G; = (V(Cy) U{x,y,x;}, E(G[C; Uzy]) U {xx, x;y}).

Suppose m > 3, or m = 2 and both C; and Cs contain at least two vertices.
Then |V(G;)| < |[V(G)|. Now, S; := (SN C;)Uux; is a vertex cover of all
contractible edges of G;. Since G — S is connected, G; — S; is also connected.
By induction, |V(G;)| < 2|S;| = 2|SNC;|+2. Now, |[V(G)| =2+, |V(C))| =
243, (IV(Gy)|=3) < 24>°,(21SNC;|—1) = 2—m+2|S| < 2|S5|, a contradiction.
Therefore, m = 2, and one of C; and C5 contains exactly one vertex.

For each edge e in G — S, define z, to be the single vertex component of
G —V(e). Note that z. € S, Ng(z.) = V(e), and for any two distinct edges e, f
in G-, ze # xy. Therefore, |S| > |[E(G-S)| > |[V(G-S5)|-1 = |V(G)|—|S|-1
implying |V (G)| < 2|S| + 1. Consequently, |V (G)| = 2|S| + 1, |S| = |E(G — S)|
and G — S is a tree. But then G is not 2-connected, a contradiction. O

The bound 2|S| + 1 is best possible as demonstrated by K, (K, minus an
edge) for |S| = 2 and K3#E(Kj3) for |[S| = 3. For |S| = k > 4, let H be any
2-connected outerplanar graph of order k. Consider H#Ex(H). Take S to be
the set of verices not in H.

Theorem 3.8. Let G be any 2-connected graph nonisomorphic to Ks. Suppose
S is a cover of Ec(G) of order three. Then either G — S is independent or
G — S contains exactly one non-trivial component such that |VN(G,S)| < 3
and |EN(G, S)| < 3.

Proof. Let S := {z,y,z}. Suppose G — S contains an edge uv. Obviously, uv
is non-contractible. By Lemma 3.4(a), G — u — v contains exactly two or three
components. Suppose G—u—v consists of three components. By Lemma 3.4(b),
the components are precisely x, y and z, and G[u, v] is the non-trivial component
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of G—S. Otherwise, let C and D be the two components of G —u —v. Without
loss of generality, by Lemma 3.4(a) and (b), assume C' = z and z,y € D. Then
uz and vz are contractible edges. By Lemma 3.4(c), we can assume uzx and vy
are contractible edges. Denote T := S U {u,v}. Note that G[T] is connected.
Suppose G — T contains an edge e. Obviously, e is non-contractible. By Lemma
4.6, there exists a contractible edge not covered by S, a contradiction. Therefore,
G — T is independent.

Suppose G — T = (). Then zy is an edge and G[u,v] is the non-trivial
component of G — S. Now, let G —T = {ay,as,...,ax}. Then the neighbors of
a; belong to {u,v,z,y}. Obviously, a;u and a;v, if exist, are non-contractible
edges. Therefore, a;x and a;y are contractible edges. If the edge xy exists, then
both a;u and a;v must be absent, and G[u,v] is the non-trivial component of
G — S. Therefore, we can assume zy is absent. Suppose k = 1. Then G[u,v] is
the non-trivial component of G — S if both aju and aqv are absent. Otherwise,
Glu,v,a1] is the non-trivial component of G — S and |[VN(G,S)| = 3. Now,
|[EN(G, S)| = 3 if and only if both a;u and ajv are present. Suppose k > 2.
Then none of a;u and a;v exist, and G[u,v] is the non-trivial component of
G-S. O

Theorem 3.9. Let G be any 2-connected graph nonisomorphic to Ks. Suppose
S is a cover of Ec(G) of order four. Then |VN(G,S)| < 4, |[EN(G,S)| <5
and |ON(G, S)| < 2.

Proof. Let S := {w,z,y,z}. If G — S is independent, then |[VN(G,S)| =
|[EN(G,S)| =|CN(G,S)| =0. Suppose G — S contains an edge uv. Obviously,
wv is non-contractible. By Lemma 3.4(a), G —u — v contains exactly two, three
or four components.

Suppose G — u — v consists of four components. By Lemma 3.4(b), each
component is precisely one vertex of S. We have |[VN(G, S)| =2, |[EN(G,S)| =
1 and |[CN(G,S)|=1.

Suppose G — u — v consists of three components. Then by Lemma 3.4(b),
two components consist of one vertex of S while the third contains two vertices
of S. By arguing as in the proof of Theorem 3.8, we have |VN(G,S)| < 3,
|[EN(G,S)| <3and |[CN(G,9)| =1.

Suppose G —u— v consists of two components, namely C and D. If |[CNS| =
2 and |D N S| = 2, by arguing as in the proof of Theorem 3.8, we have
[VN(G,S)| <4, |[EN(G,S)| < 5 and |[CN(G,S)| = 1. Without loss of gen-
erality, suppose uw, vz, uy and vz are contractible edges where w,x € C and
y,z € D. If [VN(G,S)| =4 and |[EN(G, S)| = 5, then both C and D have order
three. Let ¢ be the vertex of C' other than w and x, and d be the vertex of D
other than y and z. Now, |[VN(G,S)| = 4 if and only if wa and yz are absent,
¢ is adjacent to u or v, and d is adjacent to u or v. Whereas |[EN(G,S)| =5
if and only if wz and yz are absent, ¢ is adjacent to both u and v, and d is
adjacent to both u and v.

Suppose [C N S| =1 and |[DN S| = 3. By Lemma 3.4(b), |C| = 1 and
let C = w. By Lemma 3.4(c), there exist two independent contractible edges
in Eq¢({u,v}, D), say ux and vy. Let T := {u,v,w,z,y}. Note that G[T]
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is connected and z € G —T. Let V(G) — T := {a1,az,...,a;,} where a; =
z. Suppose G — T is independent. Every vertex a; other than z, if exists, is
adjacent to both x and y such that a;x and a;y are contractible. If m = 1,
then [VN(G,S)| = 2, |[EN(G,S)| = 1 and |[CN(G,S)| = 1. If m = 2, then
[VN(G,S)| <3, |EN(G,S)| <3 and |[CN(G,S)| = 1. If m > 2, then for every
i > 1, both a;u and a;v are absent. We have |VN(G, S)| =2, |[EN(G,S)| =1
and |[CN(G, S)| = 1. Now, assume that G — T is not independent.

Suppose G — T contains a non-contractible edge ab. Then by Lemma 3.4(a)
and (b), G—a—>b consists of exactly two components, one of which is z. Without
loss of generality, by Lemma 3.4(c), assume az and by are contractible edges.
By Lemma 4.6, every non-contractible edge of G lies in G[u, v, z,y, a,b]. Every
vertex in H :== G — § —u — v —a — b, if exists, is adjacent to x and y only.
Therefore, |VN(G,S)| = 4. We also have |[CN(G, S)| < 2 with equality holds
if and only if wa, ub, va and vb are all absent. Lastly, |EN(G,S)| < 5 with
equality holds if and only if H = (), xy is absent, ua and vb are present, and
exactly one of ub and wva is present.

Therefore, we can assume that all edges in G — T are contractible, and
are thus incident to z. Let ag,...,a; be all the neighbors of z in V(G) — T.
Note that [ > 2. Suppose there exists a vertex a in G — T — z that is not
adjacent to z. Then axr and ay are contractible edges. Now, suppose there
exists a vertex b in G — T — z — a that is adjacent to uw. Obviously, ub is
non-contractible. By Lemma 3.4(b), one of the components of G —u — b is z.
Hence, | = 2 and as = b. By considering the contractible edge ux, by exists
and we have |[VN(G,S)| =3, |[EN(G,S)| =2 and |CN(G, S)| = 1. Therefore,
assume no vertex in G — T — z — a is adjacent to {u,v}. Then |VN(G,S)| < 3,
|[EN(G,S)| <3and |[CN(G,95)| = 1.

Suppose every vertex in G — T — z is adjacent to z. Since every vertex is
incident to at least two contractible edges, every vertex in G — T — z is adjacent
to z or y. For m = 2, [VN(G,S)| < 3, |EN(G,5)| < 3 and [CN(G,S)| = 1.
For m = 3, |[VN(G,S)| < 4, |[EN(G,S)| < 4 and |CN(G,S)| = 1 where
|[VN(G, S)| =4 if and only if ay is adjacent to x and u, az is adjacent to y and
v, and zzx and zy are absent. For m > 4, without loss of generality, assume asx
and asx exist and are both contractible. Suppose aou exists. Then wwvy and
zasz belong to two different components of G —ay —u, and by Lemma 4.6, asy is
a contractible edge. For i > 3, a;u and a;v are absent. We have [V N(G, S)| = 3,
|[EN(G,S)| <3 and |[CN(G,S)| = 1. Suppose asv exists. Then wuzaszz and y
belongs to two different components of G — as — v, and by Lemma 4.6, asy is
a contractible edge. For i > 3, a;u and a;v are absent. Again, |VN(G,S)| = 3,
|[EN(G,S)| <3and |[CN(G,95)| = 1. O

Finally, we derive tight upper bounds for the order, size and number of non-
trivial components of G — S in terms of |S], and characterize all the extremal
graphs.

Theorem 3.10. Let G be any 2-connected graph nonisomorphic to K3 and S
be a cover of Ec(G). Then [VN(G,S)| <2|S|—4 for|S| > 4.
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Proof. The statement is true for |S| = 4 by Theorem 3.9. Suppose the theorem
holds for all |S| < k where k > 5. Consider a 2-connected graph G and a cover
S of Ec(G) such that |S| = k. If G — S is independent, then the theorem is
trivially true. Let zy be any edge in G — S. Suppose G — x — y consists of
two fragments F; and F5, each of which contains at least two vertices in S.
For each F;, define G; := (V(F;) U{xz,y,2;}, E(G[F; U zy]) U {z;z, z;y}) and
S; == x; U (SN F;). Note that S; covers Ex(G;). Suppose |F; N S| > 3 and
|F2 ﬂS| > 3. Then |VN(G1,51)| < 2|Sl| —4 and |VN(G2,SQ)| < 2|52‘ —4. We
have [VN(G,S)| = |[VN(G1,81)|+|VN(Gg, So)| =2 < 2|S1| —4+2|Ss| —4—2 =
2(]S1] 4152 —2) —6 = 2|S|—6 < 2|S|—4. Suppose |[F1NS| =2 and |[F,NS| > 3.
Then |[VN(G1,S1)| < 3 by Theorem 3.8 and |[VN(Gg, S2)| < 2[S2] —4. We
have |VN(G,S)| = [VN(G1,51)| + [VN(G2, %) —2 < 3+ 2% —4 -2 =
23+ (S5 —2) —5=2|S| — 5 < 2[5| — 4.

Suppose for every edge e in G— S, G —V (e) consists of two components, one
of which consists of exactly one vertex denoted by z. and the other is denoted
by C.. Note that z. € S, z. # s for any two distinct edges in G — S, and
C. contains at least two vertices in S. Therefore, |S| > |E(G — S)| + 2 and
[VN(G,S)| <2|E(G - S)| <2|S|—4. Equality holds if and only if each edge e
in G — S corresponds to a non-trivial component of G — S and |J,cq_gCe N
S| = 2. Equivalently, for k > 5, V(G) := {z,y} U Uf:_f{xi,yi,zi} U U§:1{aj}»
E(G) := Ui:f{zixi,ziyi,xiyi,xix,yiy} U Uézl{ajx,ajy} U F where F' C zy U
Ui {ziy. wir}, and 8 = {z,y} UUIZ] (=) O
Theorem 3.11. Let G be any 2-connected graph nonisomorphic to K3 and S be
a cover of E¢(G). Then |EN(G,S)| < 2|S|—3 for|S| > 2. Equality holds if and
only if G = K, for|S| =2, G = Ks#E(K3) for |S| =3, and G = H#Ec(H)
for |S| > 4 where H is any 2-connected mazimally outerplanar graph of order

|51

Proof. The statement is true for |S| = 2 and |S| = 3 by Theorem 3.6 and
Theorem 3.8. Suppose the theorem holds for all |S| < k where k > 4. Consider
a 2-connected graph G and a cover S of E¢(G) such that |S| =k. If G — S is
independent, then the theorem is trivially true. Let zy be any edge in G — S.
Suppose G —x —y consists of two fragments F; and F5, each of which contains at
least two vertices in S. For each F;, define G; := (V(F;) U{z,y,x;}, E(G[F; U
zy]) U {x;z, zy}) and S; := x; U (S N F;). Note that S; covers Ec(G;) and
|EN(G;, S:)| < 2|S;]—3. Now, |[EN(G, S)| = |[EN(G1, 81)|+|EN(G3, S5)|—1 <
2|51 — 342|532 —3—1=2(|S1| +|S2| —2) —3=2|5| - 3.

Suppose for every edge e in G— S, G —V (e) consists of two components, one
of which consists of exactly one vertex denoted by x.. Note that x. € S and
z. # xy for any two distinct edges in G — S. Therefore, |[EN(G,S)| < |S5] <
2|5 — 3.

It follows easily by induction that the equality holds if and only if G is one
of the graphs stated above. O

Theorem 3.12. Let G be any 2-connected graph nonisomorphic to K3 and S
be a cover of Ec(G). Then |[CN(G,S)| < |S|—2 for |S| > 3.
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Proof. The statement is true for |S| = 3 by Theorem 3.8. Suppose the theorem
holds for all |S| < k where k > 4. Consider a 2-connected graph G and a cover
S of Ec(G) such that |S| = k. If G — S is independent, then the theorem is
trivially true. Let xy be any edge in G — S. Suppose G — x — y consists of
two fragments F; and F5, each of which contains at least two vertices in S.
For each F;, define G; := (V(F;) U {x,y,x;}, E(G[F; U zy]) U {z;z, z;y}) and
S; = x; U (SN F;). Note that S; covers Ec(G;) and |[CN(G;, S;)| < |Si| — 2.
Now, [CN(G, S)| = |CN(G1, S1)|+|CN(Ga2,S2)| —1 < |S1| —2+|S2| —2—1 =
(IS1] +1S2] —2)—=3=|5]| -3 < |S| —2.

Suppose for every edge e in G— S, G —V (e) cousists of two components, one
of which consists of exactly one vertex denoted by z. and the other is denoted
by Ce. Note that z. € S, z. # zy for any two distinct edges in G — S, and
C. contains at least two vertices in S. Therefore, |S| > |E(G — S)| + 2 and
|ICN(G, S)| < |E(G - S)| <|S| — 2. Equality holds if and only if each edge e
in G — S corresponds to a non-trivial component of G — S and |J,cq_gCe N
S| = 2. Equivalently, for k > 4, V(G) == {z,y} UU{_ {zi,y, 21} UU)_ {a;},
E(G) = Ui—:f{zixz‘, ZiYi, Tili, i, Yiy } U Ué-:l{ajx, ajy} U F where F C xzy U

Ui @iy, yix}, and S = {z,y} UUIZ {2} O
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Chapter 4

Contractible edges in
2-connected locally finite
graphs

4.1 Introduction

Since the pioneering work of Tutte [15] who proved that every 3-connected finite
graph nonisomorphic to K, contains a contractible edge, a lot of research has
been done on contractible edges in finite graphs. One may consult the survey
paper by Kriesell [11] for details.

For any 2-connected graph nonisomorphic to K3, we have the well-known
fact that every edge can either be deleted or contracted so that the resulting
graph remains 2-connected. This immediately leads to the following result.

Theorem 4.1. Let G be a 2-connected finite graph nonisomorphic to Ks. Then
the subgraph induced by all the contractible edges in G is 2-connected.

Wu [16] investigated the distribution of contractible elements in matroids
and extended Theorem 4.1 to simple 2-connected matroids. He also character-
ized all simple 2-connected matroids M having exactly (M) + 1 contractible
elements (where r(M) is the rank of M) as those matroids isomorphic to a
graphic matroid of an outerplanar Hamiltonian graph.

Theorem 4.2 (Wu [16]). Let G be a 2-connected finite graph nonisomorphic to
Ks3. Then every vertex of G is incident to exactly two contractible edges if and
only if G is outerplanar.

On the other hand, only a few results were known for contractible edges in
infinite graphs. For example, Mader [18] showed that every contraction-critical
locally finite infinite graph has infinitely many triangles. Kriesell [9] provided a
method of constructing contraction-critical k-connected infinite graphs (k > 2).

35



In Section 3, we will prove that every contraction-critical 2-connected infinite
graph contains vertices of infinite degree only and has uncountably many ends.

A natural way to extend Theorems 4.1 and 4.2 is to consider locally finite
infinite graphs. Notice that Theorem 4.1 is no longer true as demonstrated
by the infinite double ladder (the cartesian product of a double ray and Ks).
The subgraph G¢ induced by all the contractible edges is the disjoint union of
two double rays and is not even connected. Interestingly, the situation changes
dramatically by looking at the graph from a topological viewpoint as introduced
by Diestel and Kiihn [10, 11, 12]. By adding the two ends of the double ladder
to G¢, the resulting closure G¢ is a circle and is 2-arc-connected. In Section
4, we will prove that for every 2-connected locally finite infinite graph G, G¢ is
2-arc-connected.

Returning to Theorem 4.2, the backward direction is straightforward. For
the forward direction, by Theorem 4.1, G¢ is spanning and 2-connected. Since
every vertex is incident to exactly two contractible edges, G¢ is a Hamilton
cycle. Then it is easy to see that G is outerplanar. When extending to locally
finite infinite graphs, we now need the non-trivial statement that if G is a
2-connected locally finite infinite graph such that every vertex is incident to
exactly two contractible edges, then G¢ is a Hamilton circle. This will be
proved in Section 5. We will use it to prove an infinite analog of Theorem 4.2
for any 2-connected locally finite graph G nonisomorphic to K3. Also we will
show that G is outerplanar if and only if every finite bond of G contains exactly
two contractible edges.

4.2 Definitions

All basic graph-theoretical terminology can be found in Diestel [9]. Unless
otherwise stated, all graphs considered in this paper can be finite or infinite.
An edge of a k-connected graph is said to be k-contractible if its contraction
results in a k-connected graph. Otherwise, it is called k-non-contractible. A k-
connected graph in which every edge is k-non-contractible is called contraction-
critical k-connected. We simply write 2-contractible as contractible. Let G =
(V, E) be a 2-connected graph. Denote the set of all contractible edges in G by
E¢ and the subgraph induced by all the contractible edges by G¢ := (V, E¢).
Let X and Y be two disjoint subsets of V. An X-Y path P is a path such that
only the starting vertex of P lies in X and only the ending vertex of P liesin Y.
Denote the set of all edges between X and Y by Eq(X,Y). If X and Y form
a partition of V, then Eq(X,Y) is called a cut. A minimal non-empty cut is a
bond. Denote the set of all edges incident to a vertex x by Eg(x) and the set of
all neighbors of x by Ng(x). Define Ng(X) := (U,cx Na(z)) \ X. A set S of
k vertices is called an k-separator if G — S is not connected.

Let G be a locally finite graph. A ray is a 1-way infinite path, a double
ray is a 2-way infinite path, and the subrays of a ray or double ray are its
tails. An end is an equivalence class of rays where two rays are equivalent if
no finite set of vertices separates them. Denote the set of the ends by Q(G).
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We define a topological space, denoted by |G|, on G together with its ends,
which is known as the Freudenthal compactification of G as follows. View G as
a l-complex. Thus, every edge is homeomorphic to the unit interval. The basic
open neighborhoods of a vertex x consists of a choice of half-open half edges
[x2), one for each incident edge xy, where z is any interior point of xy. For
an end w € Q(G), we take as a basic open neighborhood the set of the form:
C(8,w) = C(S,w) UQ(S,w) U E(S,w), where S C V is a finite set of vertices,
C(S,w) is the component of G — S in which every ray from w has a tail, Q(S,w)
is the set of all ends whose rays have a tail in C'(S,w), and E(S,w) is the set of
all interior points of edges between S and C(S,w). Let H be a subgraph of G.
Then the closure of H in |G| is called a standard subspace and is denoted by H.
We say H contains a point x of |G| if z € H.

Let X and Y be two topological spaces. A continuous map from the unit
interval [0,1] to X is a path in X. A homeomorphic image of [0,1] in X is
called an arc in X. This induces an ordering < for the points in the arc. The
images of 0 and 1 are the endpoints of the arc. An arc in X with endpoints x
and y is called an -y arc. A homeomorphic image of the unit circle in X is
called a circle in X. A (path-)component of X is a maximal (path-)connected
set in X. X is 2-connected (2-arc-connected) if for all x € X, X \ z is connected
(arc-connected). We say X can be embedded in Y if there exists an injective
continuous function ¢ : X — Y such that X is homeomorphic to ¢(X) in the
subspace topology of Y. Then ¢ is called an embedding of X in Y. Take Y
to be R%. A component of R?\ ¢(X) is called a face of ¢(X) in R?. A graph
G is planar if G can be embedded in R%2. A graph G is outerplanar if there
exists an embedding ¢ of G in R? such that there is a face f of ¢(G) in R?
whose boundary 0f contains all the vertices of G. Chartrand and Harary [2]
characterized outerplanar finite graphs as precisely those graphs that do not
contain a K3 3- or Ky- subdivision.

Suppose A is an arc in |G| and « is a vertex in A. Then the vertex immedi-
ately before z in A if exists is denoted by = and the vertex immediately after
x in A if exists is denoted by 2. An arc in |G| is an w-arc if the end w is one
of its endpoints and unless otherwise stated, it corresponds to the image of 1.
Following Bruhn and Stein [4], we define the end degree of an end w in G as the
supremum over the cardinalities of sets of edge-disjoint rays in w, and denote
this number by degg(w). In fact, they proved that this is equal to the supremum
over the cardinalities of sets of edge-disjoint w-arcs in |G|. For a subgraph H of
G, define the degree of w in H as the supremum over the cardinalities of sets of
edge-disjoint w-arcs in H which is denoted by degg (w).

4.3 Contraction-critical 2-connected infinite graphs
It is well-known that the only contraction-critical 2-connected finite graph is
K3. However, there are infinitely many contraction-critical 2-connected infinite

graphs as shown by the following construction due to Kriesell [9]. Define G :=
and let G; be any 2-connected finite graph. Suppose we have constructed G,
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such that G,,—1 € G,. For each edge zy in F(G,) \ E(Gy-1), add a new z-y
path of length at least 2. The resulting graph is G, 1. Repeat the process
inductively. Then the graph G := J;~; G; is a contraction-critical 2-connected
infinite graph. Note that G has no vertex of finite degree and has uncountably
many ends. We will show that this holds in general for any contraction-critical
2-connected infinite graph. First, we state a fundamental fact about contractible
edges in 2-connected graphs.

Lemma 4.3. Let G be a 2-connected graph nonisomorphic to K3 and e be an
edge of G. Then G — e or G/e is 2-connected.

Now, we can develop some tools that will be used for the rest of the paper.

Lemma 4.4. Let G be a 2-connected graph nonisomorphic to K3, and e and f
be two non-contractible edges of G. Then f is a non-contractible edge of G — e.

Proof. By Lemma 4.3, G — e is 2-connected. Since V(f) is a 2-separator of G,
V(f) is also a 2-separator of G — e and f is a non-contractible edge of G —e. O

Lemma 4.5. Let G be a 2-connected graph nonisomorphic to K3 and F be a
finite subset of E(G).

(a) If G — F is disconnected, then F contains at least two contractible edges.

(b) If G — F is connected but not 2-connected, then F contains at least one
contractible edge.

Proof. For (a), suppose F contains at most one contractible edge. Then by
Lemma 4.3 and 4.4, we can delete all the non-contractible edges in F' and the
resulting graph is still 2-connected, a contradiction.

For (b), suppose all edges in F are non-contractible. Then by Lemma 4.3 and
4.4, we can delete all edges in F' and G — F is still 2-connected, a contradiction.
O

Lemma 4.6. Let G be a 2-connected graph nonisomorphic to Ks. Let {x,y} be
a 2-separator of G and C be a component of G —x — y. If |Eq(z,C)| is finite,

then Eg(x,C) contains a contractible edge.

Proof. Note that y is a cutvertex of G — Eg(z,C). By Lemma 4.5(b), Eg(z,C)
contains a contractible edge. O

Lemma 4.7. Let G be a 2-connected graph nonisomorphic to K3 and x be a
vertex of G. Suppose all edges incident to x are non-contractible. Then

(a) = has infinite degree.

(b) For any edge xy incident to x, every component of G — x — y contains
infinitely many neighbors of x.
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Proof. For (a), Suppose z has finite degree. By applying Lemma 4.5(a) to
Eq(z), z is incident to at least two contractible edges, a contradiction.

For (b), let C' be a component of G — 2 —y. By Lemma 4.6, Eg(x,C)
contains infinitely many edges. U

Theorem 4.8. Let G be a contraction-critical 2-connected infinite graph. Then
every vertex of G has infinite degree and G has uncountably many ends.

Proof. By Lemma 4.7(a), every vertex of G has infinite degree.
Next, we will construct a rooted binary infinite tree T in G together with
edges incident to each vertex of T with the following properties:

(1) The root of T is denoted by z.

(2) The vertices of T' are denoted by zp,n,..n, Where k € N and n; € {0,1} for
1 <i<k. For k=0, define x,,ny..n, := .

(3) Each vertex @y, n,..n, of T is adjacent to two vertices Zn,ny...nu0 a0d Zyyn,. np1
inT.

(4) For each vertex p,n,..n, of T, there exists an edge Tpn,ny...nyYnine..ny i G
such that yp,n,..n, does not lie in 7'

(5) The subtree of T rooted at @y, n,..n, is defined as
Tnlng...nk = T[Uloio U(’rrn,Tnz,.uﬂni)E{O,l}i xnlng...nkmlmQ...mi]'

k
For fixed ny, na, ..., ng, szo{xnm_“nj s Yning...n; } separates Ty n, . .n,o and
Tnlng...nkl m G'

Each ray in T starting at x is of the form: x%pn, Zn,n,Tningns ---- Let R =
TLpy Tnqng
Tnynang - - - A Q = Ty Ty maeTmymams - - - P€ two distinet rays in 7. Then

there exists a smallest k such that n; = m; for all ¢« < k and ng41 # Mpy1.
By property (5) above, Ufzo{xmm__,nj,ynlm...nj} separates R and @ in G.
Therefore, each ray in T starting at = belongs to a unique end of G, and G has
uncountably many ends.

Now, it remains to construct 7" inductively. Let x be any vertex in G. Define
To := ({z},0). Choose any edge incident to z in G, say xy. Let Cy and C
be any two components of G — x — y. Let ¢ be a neighbor of z in Cy and
x1 be a neighbor of z in Cy. Define Ty := ({z, zo, x1}, {zzo,zx1}). Note that
Ng(Co) C {z,y} and Ng(Cy) C {z,y}. Also, G — Cy and G — C; are both
connected.

Suppose we have constructed the rooted binary tree Tj, where

k
V(T) = Ui:o U(”la"?v“'ani)e{ovl}i Tning...n; and

k—1
E(Tk) = Ui:O U(nl,n27,__,ni)e{071}i{xnlng...nixnlng...n,ﬂaxnlng...nixnlng...ntl}
such that

(i) each vertex Xy n,..n, (0 <i < k) lies in a connected subgraph Cy,n,. .,
of G (fOI' 1= 07 Tning..mg “— Ly Yning..m; =Y and Cnlnz.“ni = G)7
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(ii) for each vertex n,n,..n, (0 <i < k), we have found an edge T, ny...n; Yning...n;

that lies in Cpyny...n,; such that Cyn,. n,0 and Cpyn, . 0,1 are two compo-
nents of Ch ny...ni — Tning...n; — Yning..n; that are adjacent to Tn,n,.. .n,,

(111) fOr ﬁXed n17n27 ce 7ni (1 S Z S k)? NG(Cn1n2n7) g U;;B{l’nlng...nﬁynlng...nj}7
(iv) for fixed ny,ma,...,n; (1 <i<k), G —Cpyn,. n, is connected.

Now, for each vertex n,n,...n, in Tk, since it has infinite degree and Ng(Zn,n,...np )\
Chins..ny C Na(Chrying..m,) is finite by (iii), all but finitely many neighbors
of Zping..n, lie in Chin,..n,.- Let z be a neighbor of @y ny. m, 0 Cping..ny
and B := Cpiny..ny — Tnyng..ny — 2. Suppose B is connected. Since B’ :=
G — Chyn,..n, 18 connected by (iv), B and B’ are the only two components of
G — Znyny..n, — 2. By Lemma 4.7(b), B’ contains infinitely many neighbors
of Zyyny..m,, contradicting Na(Zniny..ni) \ Crans..np © NG (Ching...n, ) Which is
finite by (iii). Therefore, B is not connected.

Note that at least one component of B is adjacent to Zn,n,..n,. If not,

then, by the 2-connectedness of G, each component of B has a neighbor in
Ne(Ching..m) € G — Ching..ny- By (iv), this implies G — Tpiny..ny, — 2 18
connected, a contradiction. Suppose there are two components of B, say D
and D’, that are both adjacent t0 Xy n,.. n,- Then choose Yn n, n. = 2,
Ching..muo := D and Cpypn,. ne1 = D’. Suppose only one component of B is
adjacent to Tpyn,...n.s say C. Each component of B other than C is adjacent
to z by the connectedness of Cy,n,...n, and has a neighbor in Ng(Chpiny..ny) C
G — Chyns...n, by the 2-connectedness of G. Denote the union of components of
B other than C by C’. Since G — Cyy .., is connected by (iv), C” := G[(G —
Chring...my, ) UC] is connected. Hence, C' and C” are the only two components of
G—Zning..m, —% and Ng(C) = {Tn,ny...ny.» 2} Let 2’ be a neighbor of 2y, ny .,
in C. Then one component D of Ch ny. . — Tning..n, — 2 contains z and C”.
Since G — Ty ny..ny, — 2 1s DOt connected, D cannot be the only component of
Crins..ng —Tnyng..ny — % - Let D' be any component of Ch, s ny —Tnyng..ng — 2
other than D. Then D’ lies in C and Ng(D') C {Zn,ny..np, 2" TU(NG(C) —2) =
{‘/I’;TLl’I’LQ.‘.nk7z/}' Now, choose Ynins..ny, ‘= Z/a Cn1n2...nk0 =D and Cnlng.‘.nkl =
D'.

In both Cases, Tniny..npYning...ny lies in Cnlng...nka and Onlng...nko and Cnlnz...nkl
are two components of Cp ny..np — Tnyng...ne — Yninse..ns, that are adjacent to
Tnyng..ng- L€t Tniny. . n.o be aneighbor of ©n,n,. ny, i Chying. npo a0d Tpyng. gl
be a neighbor of %y ny. ., I Cping..np1- Sice Ching. .m0 C Ching..n, and
Cnlnz...nkl - Cnlng...nkv NG(Cnlnz..AnkO) - NG(Cnlnz.A.nk)U{xnlnz.“nkaynlng...nk} c
Uﬁzo{znlnz.“nj , ynlng.“nj} and NG(CanLQ...?’Lkl) - NG(Onlng...nk)U{mnlng...nkaynlngu.nk} C
U?ZO{mnlnzan,ynlnzmnj} by (iii). By the connectedness of Cy n,. n,., €very
component of Cp,ny .y —Tning...ng —Yning...n, Das aneighbor in {n,n,. s Yning...np b-
For ni41 € {0, 1}, denote the union of the components of Cp,ny...np —Tnyng...ny, —
Yning...ny, other than Cyin,. mpngsy DY Unpyy- Then Gln,ng..nYnins...n, U
Up,...,] is connected. Since p,ny..mp; € G — Cring..ns Tning..ng—1 Tnins..np, €
E(G) and G — Cy py..n,, is connected by (iv), G — Cpyny..npnpry = Gl(G —

Cring..on) Y Zning..ng Ynang..n, Y Un,y 1] is connected.
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Define Tj41 where V(T41) := Uf:ol U(nl,nz,...,ni)e{o,l}i Tnyng..n; and

E(TkJrl) = Uf:o U(nl,nQ,...,n,;)E{O,l}i{$n1n2-~-ﬂz‘xn1n2mni07xnlnz-umxmnmunil}'

Finally, define T := UEOZO Ty. It is easy to see that T satisfies properties
(1) through (4). Let zp and z; be any vertices in Ty,ny...n.0 a0d Thyny. ng1 TE-
spectively. Then 2y is of the form Z,,n,.. .n.0pips..p; While 21 is of the form

Tning..nklqigz...q; - We have zgp = Tnyng..n,0p1pz...pi € Cnlnzmnkoplpz-npi -
Cnlng.A.nkOplpg...pi,l g .. g Onlng...nko and 21 = xn]’!LQ“.TLk1Q1qg...pJ‘ S CTL17’L2...7Lk1Q1Q2...qj g
Cnlng...nqulqg...qj_l g AR g Cnlng...nkL Therefore7 Tnlnz...nko g Cnlng...nko

and Thiny.mu1 © Ching..mp1- Since U?;o{wnlnz.unﬂil/nlnz...n]-} contains both
Ne(Cring..npo) and Ng(Chiny. ni1), it separates Cpiny. im0 a0d Cryny. . np1 i
G and thus separates T, n,...n,0 a0d Thyny . np1 in G. Hence, Property (5) holds
for T and the proof is complete. O

4.4 Subgraph induced by all the contractible edges

In this section, we will extend Theorem 4.1 to any 2-connected locally finite
infinite graph G and prove that G¢ is 2-arc-connected. Note that Lemma 4.5(a)
implies that every vertex is incident to at least two contractible edges. Hence,
G is spanning. Using the following two lemmas, it is easy to see that G¢ is
arc-connected.

Lemma 4.9 (Diestel [9]). Let G be a locally finite graph. Then a standard
subspace of |G| is connected if and only if it contains an edge from every finite
cut of G of which it meets both sides.

Lemma 4.10 (Diestel and Kiihn [12]). If G is a locally finite graph, then every
closed connected subspace of |G| is arc-connected.

Theorem 4.11. Let G be a 2-connected locally finite infinite graph and Geo
be the subgraph induced by all the contractible edges in G. Then G¢ is arc-
connected.

Proof. Let F' be any finite cut of G. By Lemma 4.5(a), F' contains at least two
edges in G¢. Hence, G¢ is connected by Lemma 4.9. By Lemma 4.10, G¢ is
arc-connected. U

Next, we prove that G¢ is 2-connected.

Lemma 4.12. Let G be a 2-connected locally finite infinite graph and x be
a point of |G|. Suppose there is a partition (X,X') of V(G \ ) such that
Eq(X,X') is non-empty and all edges in Eq(X, X') are non-contractible. Then
G contains a subdivision of a 1-way infinite ladder L consisting of two disjoint
rays: R = xoPix1Pyxs... and R = x(P{z| Pz} ... with the rungs of the
ladder being woxf, v12, 222, . . ., all of which are X-X' edges such that x ¢ L.

Proof. Since G is 2-connected, |Eqg(X,X’)| > 2 unless x is a vertex and
|[Ec(X,X")| = 1. Consider any X-X' edge zox} that does not contain z. Let
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C' be the component of G — xy — x{, containing x and C; be a component of
G — xo — z{, not containing x.

Suppose we have constructed the finite ladder Ly consisting of two disjoint
paths Ry = zoPix1Poxs...xp—1Pyxy and R), = z(P{z|Pyxh...x)_, Plx)
with the rungs of the ladder being xox(, z12), ... zkx}, all of which are X-
X' edges such that L, C G[Cy Uz U xg] and G[C U Ly, — zp, — z}] is con-
nected. Let Ciy1 be a component of G — xp — x}, not containing x. Then
Cry1 € Cy and Cyy1 N Ly = 0. By applying Lemma 4.6 to Eg(zk, Cri1)
and Eg(z),Cry1), there exist contractible edges xryri1 and .y, where
Yrt1 € Cpp1 and yy € Ciyy. Since x ¢ Ciyq and all edges in Eg(X, X')
are non-contractible, yx11 € X and y;,, € X’. Choose a path Q41 in
Cry1 between ygy1 and ;. Then there exists an X-X' edge xp 412}, on
Qr+1 such that V(yx1Qry12141) € X and 25, € X'. Define Ppyy =
TeYrr1 Y Uk1Qrr 111, Pl = 2051 Ui Qri1%hy 1, Rigr i= R U Py,
Ry == R, UP , and Lyyy := Ly U Py U P Uxzppixy, . Note that
Liy1 € G[C1Uxo U] and G[CU Lyyq — Tpq1 — o] is connected.

Define R := J;~ Rk, R’ := U~ R}, and L :=J;~( Lx. Then L C G[Cy U
roUx)] and z ¢ L. O

Theorem 4.13. Let G be a 2-connected locally finite infinite graph and G¢ be
the subgraph induced by all the contractible edges in G. Then G¢ is 2-connected.

Proof. Suppose G is not 2-connected. Then there exists a point « in G¢ such
that G¢ \ z is not connected. Let U and U’ be two disjoint non-empty open sets
in |G| such that Go\z CUUU’, (G \2)NU # 0 and (Go \x)NU’ # (). Define
X = (Gc\2)NUNV(G) and X’ := (G \2)NU'NV(G). Since G¢ is spanning,
X UX'=V(G\ z). Suppose U contains an interior point a of an edge bc of
Gc. Then Ge \ z contains half edges [ba] or [ca] of be. By the connectedness
of half edge, U contains b or ¢. Suppose U contains an end w of |G|. Then
U contains a basic open neighborhood of w, say CA'(S’,w)7 and thus contains
infinitely many vertices. The same arguments hold for U’. Therefore, both X
and X’ are non-empty. Since G \ x is connected, Eg(X, X’) is non-empty.

Suppose x is a vertex or an end of G. Then all edges in Fg(X,X') are
non-contractible and (X, X”’) is a partition of V(G \ z). Suppose x is an interior
point of an edge e. Then all edges in Eg(X,X’) are non-contractible unless
e € Eq(X, X")NE¢c. Note that, Eg(X, X’)—e is non-empty as G is 2-connected
and every edge in Eg (X, X') — e is non-contractible. Let e = yy’ where y € X
and ¢y € X’. Suppose X = {y}. By Lemma 4.5(a), since y is incident to at
least two contractible edges, there is a contractible X-X’ edge other than e,
which is impossible. Therefore, |X| > 2. Now, all edges in Eg(X — y, X’) are
non-contractible and (X — y, X') is a partition of V(G \ y). In both cases, by
Lemma 4.12, G contains a subdivision of a 1-way infinite ladder L such that
¢ L.

Let w be the end of |G| containing R and R’. Note that w # z. Since G¢
is spanning, G¢ \ = contains all the ends of |G| except possibly z. Without
loss of generality, assume w € U. Since U is open, there exists a basic open
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neighborhood C(S,w) C U. Since x(, 21,25, ... € X' C U’ converge to w, all
but finitely many of them lie in C'(S,w), contradicting U N U’ = 0. O

Finally, we prove the main result of this section, namely, G¢ is 2-arc-
connected. This follows from a theorem by Georgakopoulos [7] concerning con-
nected but not path-connected subspaces of locally finite graphs. Note that
since |G| is Hausdorff, path-connectedness is equivalent to arc-connectedness.

Theorem 4.14 (Georgakopoulos [7]). Given any locally finite connected graph
G, a connected subspace X of |G| is path-connected unless it satisfies the follow-
g assertions:

(1) X has uncountably many path-components each of which consists of one end
only;

(2) X has infinitely many path-components that contain a verter; and

(3) every path-component of X contains an end.

Theorem 4.15. Let G be a 2-connected locally finite infinite graph and Gc
be the subgraph induced by all the contractible edges in G. Then G¢ is 2-arc-
connected.

Proof. Suppose G¢ is not 2-arc-connected. Then there exists a point z in G¢
such that G\ z is not arc-connected. Note that G\ is connected by Theorem
4.13. By Theorem 4.14, G¢ \ « has uncountably many path-components each
of which consists of one end only. Let w and w’ be two such path-components
of Go \ z. Since G¢ is arc-connected by Theorem 4.11, there exists an arc A
joining w and w’ in G¢. Now, 2 must lie in A for otherwise w and w’ would
lie in the same path-component of G \ 2. But the path-component of G¢ \ =
containing w also contains [wAzx), a contradiction. ]

4.5 QOuterplanarity of 2-connected locally finite
graphs

As mentioned in the introduction, in order to extend Theorem 4.2 to locally
finite infinite graphs, we would like to prove that for any 2-connected locally
finite infinite graph G, if every vertex is incident to exactly two contractible
edges, then G¢ is a Hamilton circle. This requires several lemmas listed below.

Lemma 4.16. Let G be a locally finite graph. Then every arc in |G| whose two
endpoints are ends contains a vertex.

Proof. Suppose A is an arc in |G| whose two endpoints are ends w; and wa.
Then there exists a finite set S of vertices such that C(S,w;) and C(S,ws) are
distinct. By the connectedness of A, A contains a vertex of S. O
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Lemma 4.17. Let G be a locally finite graph and w be an end in |G|. Then
every w-arc A in |G| contains a vertex, say z, and zA contains a ray starting
with z.

Proof. Denote the starting point of A by a. First, we show that A contains a
vertex. If a is a vertex, then we are done. If @ is an end, then it is true by
Lemma 4.16. If @ is an interior point of an edge zy, then by the connectedness
of A, A contains x or y.

Let z be a vertex in A. By the connectedness of zA, zA contains an interior
point of an edge incident to z, say zz;. Then the connectedness of zA implies
zz1 lies in zA. Repeat the above argument for z; A and so on. We obtain a ray
that starts with z and lies in zA. O

Lemma 4.18. Let G be a locally finite graph and w be an end in |G|. Let Ay
and Az be two w-arcs in |G| that are disjoint except at w. Then, for all finite

subset S of V(G), C(S,w) contains a subarc AjwAb of AjwAs and there is an
Al -Al path in C(S,w).

Proof. Let x1 be the last point of A; that lies in S and z2 be the last point of
As that lies in S. By Lemma 4.17, £1 A contains a ray R; starting with x; and
T2 A contains a ray Ry starting with xo. Let y; be the neighbor of z1 in Ry and
y2 be the neighbor of x5 in Ry. Then y; AjwAsys lies in C’(S, w). Also there is
a y1-y2 path in C(S,w) which automatically contains a y3 A1-y2 As path. O

We also need a result on the characterization of a topological circle in |G| in
terms of its vertex and end degrees.

Lemma 4.19 (Bruhn and Stein [4]). Let C be a subgraph of a locally finite
graph G. Then C' is a circle if and only if C' is connected and every vertex and
end of |G| in C' has degree two in C.

Now, we can proceed with the proof.

Theorem 4.20. Let G be a 2-connected locally finite infinite graph and G¢ be
the subgraph induced by all the contractible edges in G. If every vertex of G is
incident to exactly two contractible edges, then G¢ is a Hamilton circle.

Proof. Since G¢ is spanning, G¢ contains all vertices and ends of |G|. By
Theorem 4.11, G¢ is arc-connected. Obviously, every vertex of G has degree
two in G¢. Therefore, it remains to prove that every end of |G| has degree two
in Ge.

Claim 4.21. Let A be an arc in Go and x be a verter in A. Suppose that both
2~ and xv emist in A. Let y be any neighbor of x other than x— and x+. Then
every x— -zt arc in |G| intersects {x,y}.

Proof. Since xz~ and zx™' are the only contractible edges incident to x, zy is
non-contractible. Lemma 4.6 implies that G—x —y has exactly two components,
and = and 27 lie in different components. By the connectedness of an arc,
every x -z arc in |G| intersects {z,y}. O
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Claim 4.22. Let w be an end in |G|. Suppose A1 and As are two edge-disjoint
w-arcs in Go. Then Ay and Ay can intersect only at the ends of |G| with the
only possible exception being that the starting points of A1 and Ay are the same
vertez.

Proof. Obviously, A; and A5 cannot intersect at an interior point of an edge.
Suppose A; and Ay intersect at a vertex x. If z is not the starting point for
both A; and A,, then the degree of x in G¢ is at least three, a contradiction.
O

Claim 4.23. Let w be an end in |G|. Suppose Ay and Ay are two edge-disjoint
w-arcs in Go such that the starting points of A1 and A are distinct vertices.
Then there exists an end w' in |G| such that there are three w'-arcs in G¢ that
are disjoint except at ' unless A1 N Ay = {w}.

Proof. Suppose A1 N Ay # {w}. Let w’ be the first point of Ay that intersects
A;. By Claim 4.22, ' is an end in |G| different from w. Then A;w’, Asw’ and
wAqw' are the required three w’-arcs. O

Claim 4.24. Let w be an end in |G|. Suppose there are three edge-disjoint w-
arcs in Go. Then there exists an end w' in |G| such that there are three w'-arcs
in Go that are disjoint except at w'.

Proof. Let Ay, Ay, Az be three edge-disjoint w-arcs in G¢. By Lemma, 4.17, for
each i € {1,2,3}, A; contains a ray R;. Denote the first edge of R; by z;y;.
By Claim 4.22, y1,y2,ys are all distinct. Therefore, without loss of generality,
we can assume that the starting points of A, As, A3 are all distinct vertices.
Consider A; and As. If A1 N Az # {w}, then the claim follows from Claim 4.23.
Suppose A; N Ay = {w}. If A3 N Az # {w}, then again the claim follows from
Claim 4.23. Therefore, suppose As N Az = {w}. But then, Ay, Ay, Az are the
desired three w-arcs. O

Claim 4.25. For each end w in |G|, degg, (w) < 2.

Proof. Suppose there are three edge-disjoint w-arcs in G¢. By Claim 4.24,
there exists an end w’ in |G| such that there are three w’-arcs in G that are
disjoint except at w’. Denote these three w’-arcs by A, Az, A3. By Lemma
4.16, without loss of generality, we can assume Aj, Ay, As start with vertices
ai, as, ag respectively.

By applying Lemma 4.18 to A; and As with S = {a;,a2}, we obtain an
afAl—a;'Az path P. Let z1 = PN Ay, xo = PN Ay and x be the neighbor of xq
in Q. If P intersects As, then interchange As and Agz. Therefore, without loss
of generality, there is an a] A1-aj As path P that does not intersect As.

Now, apply Lemma 4.18 to x2As and Az with S = V(P). We obtain an
x] Ay-Az path Q not intersecting P. Let yo = Q N 25 Ay and y3 = Q N As.
By Claim 4.21, () cannot intersect Az, , and () cannot intersect both A;x]
and ] A;. Suppose Q N Ajz] # 0. Let y be the first vertex of @ that lies
in Ajz;. Then x] A1yQy2Asw’ A1z is an z] -z arc not intersecting {xy,z},
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contradicting Claim 4.21. Suppose Q Nx] A; # 0. Then there is an ] A;-A3
subpath in @ not intersecting A,, and we interchange A; and As. Therefore,
without loss of generality, we can assume that there is an ] A;-A3 path Q that
does not intersect P U Ay U Asz, . Let ug be the neighbor of yo in @) and ug be
the neighbor of y3 in Q.

Finally, apply Lemma 4.18 to 21 A; and y2 Ao with S = V(PUQ). We obtain
an mfAl—y;rAg path R not intersecting P U Q. Let z; = RN 961+A1 and zo =
RNyy Ay. By Claim 4.21, R cannot intersect A;z] and R cannot intersect Asy, .
Also, R cannot intersect both Asy; and y3 A3. Suppose RNAzy; # 0. Let 2 be
the last vertex of R that lies in A3y . Then y; A3zR2s Asw’ Azyd is an y5 -y3 arc
not intersecting {ys, u3}, contradicting Claim 4.21. Suppose RNy3 Az # (). Let
2’ be the first vertex of R that lies in y3 Az. Then y, Agzo Pr1A121 R2' Asw’ Agys
is an y, -y, arc not intersecting {y2, us}, contradicting Claim 4.21. Therefore,
RN (Ajx] UAyy, UA3UPUQ) = 0. But, y, AszoPr A2 Reo Asyy is an
Y5 -y4 arc not intersecting {ya,us}, contradicting Claim 4.21. O

Claim 4.26. For each end w in |G|, degg, (w) = 2.

Proof. Let x be a vertex in G¢. Since G is arc-connected, there is an w-arc A
in G¢ joining x to w. Let y be the neighbor of z in A and a be an interior point
of ry. Since G¢ is 2-connected, G¢ \ @ is connected. Suppose G¢ — xy is not
connected. Then there exist two disjoint nonempty open sets U and V in |G]
such that Go —xy CUUV, UNGe —a2y #Dand VNGe —ay # 0. Ifz,y € U,
then U U [z,a) U [y,a) and V are two disjoint open sets in |G| both intersecting
Gc \ a, and their union contains G¢ \ a, which is impossible. If 2 € U and
y € V, then U U [z,a) and V U [y,a) are two disjoint open sets in |G| both
intersecting G¢ \ a, and their union contains G¢ \ a, which is also impossible.
Therefore, G — xy is connected and is arc-connected by Lemma 4.10. Let A’
be an z-w arc in G¢ — zy. If yAwN A’ contains a vertex u, then u has degree at
least three in G¢, a contradiction. Let w’ be the first point in yAw N A” which
is an end. If w’ # w, then degg, (w') > 3 contradicting Claim 4.25. Therefore,
w’ = w and we have degg. (w) > 2. By Claim 4.25, degg, (w) = 2. O

We are now ready to prove the infinite analog of Theorem 4.2.

Theorem 4.27. Let G be a 2-connected locally finite graph nonisomorphic to
Ks3. Then the following are equivalent:

(1) Every vertex of G is incident to exactly two contractible edges.
(2) Every finite bond of G contains exactly two contractible edges.

(3) G is outerplanar.

Proof.

(2) = (1) Trivial.

(1) = (3) By Theorem 4.2, this is true for finite G. Therefore, assume G is
infinite. Suppose every vertex of G is incident to exactly two contractible edges.

46



By Theorem 4.20, G is a Hamilton circle. All edges in E(G)\ E¢ are chords of
G and are non-contractible. Consider any chord xy of G¢. Since every vertex
of GG is incident to exactly two contractible edges, by Lemma 4.6, G — z — y
consists of exactly two components C; and Cy. Without loss of generality,
assume that ztGeoy~ C C; and y*Gex~ C C,. Th