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Synopsis



2 Synopsis

1.1 Motivation

The basis of our market economy is the incentive to bear entrepreneurial risks in order
to generate appropriate revenues. Financial risk management comprises ’the practice of
defining the risk level a firm desires, identifying the risk level it currently has, and using
derivative or other financial instruments to adjust the actual risk level to the desired risk
level’ (see Chance and Brooks, 2015). Market risk is considered as a major financial risk
describing a loss in value of the invested asset as a result of changed market prices or
volatilities. In order to reduce or eliminate market price risk, firms regularly employ financial
derivatives, which allow to hedge unexpected changes in prices to avoid cashflow uncertainty.
Besides for reasons of managerial risk aversion, firms mainly hedge because it helps to reduce
taxes, and most important, costs of financial distress (see Smith and Stulz, 1985). There
is also strong evidence provided in literature that risk management and hedging improves
the value of a firm by reducing a firm’s equity sensitivity towards changes in interest rates,
exchange rates or commodity prices (see Smithson and Simkins, 2005). Today, there exist
markets for derivatives on a broad range of financial assets like stocks, stock indices, bonds,
interest and exchanges rates or commodities. A particular problem evolves if there is no
active market for derivative contracts on a firm’s source of risk. Common practice in such a
situation is the use of a cross hedge, which means to set up a hedge on an underlying with
a price that shows a high correlation to the actual asset (Ederington, 1979).

Besides the operative risk management through financial derivatives, a firms risk policy
also contains strategic measures. In 2004, the Committee of Sponsoring Organizations of
the Treadway Commission (COSO) issued the Integrated Framework, that defines enterprise
risk management as ’a process (...) designed to identify potential events that may affect
the entity, and manage risk to be within the risk appetite, to provide reasonable assurance
regarding the achievement of objectives’. In this view, risk management further comprises
the adjustment of the long-term strategy, which requires both firms and investors to evaluate
possible adverse market developments at early stages. In classical market risk literature
market data returns are usually considered to be uncorrelated, but dependent, with heavy
tails and random volatility (see Embrechts et al., 2003). However, empirical investigations
of the dependence structure of heavy tails of financial series rarely exist.

This doctoral thesis investigates approaches for the two aforementioned issues of operative
and strategic risk management empirically using the example of the dry bulk shipping
market. The shipping sector is for several reasons an interesting object of investigation. On
the one hand, seaborne transportation is of vital importance for global economy. As of 2015,
world seaborne shipments took around four fifths of total world merchandise trade whereas
dry bulk accounts for about half of the shipped volume (see UNCTAD, 2015). On the other
hand, shipping companies and investors bear substantial risks as the ongoing shipping crisis
has revealed. Significant advantage of a derivative based cross hedging is demonstrated by
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hedging vessel resale prices using freight derivatives. For strategic risk management and
investment decisions in this industry, a shipping-risk indicator is provided, which signals an
increasing crisis risk with an appropriate period for consideration.

A fundamental assumption of derivative pricing, and thus, reliable hedging strategies, is the
no-arbitrage paradigm. By no-arbitrage, a financial cashflow must have one single price,
regardless of how it is comprised. If one and the same cashflow has different market prices
at the same time, traders can gain riskless profits. For financial firms which issue finan-
cial derivatives, risk management therefore also includes to ensure that price quotations are
market-conform. The last part of this thesis presents an empirical study of the German
certificates market, which reveals significant violations of no-arbitrage based on parity rela-
tionships of market prices. This finding gives incentives for further improvements of banks’
pricing engines and mechanisms.

1.2 Cross hedging

The first article ’Modeling and hedging vessel resale values using freight derivatives’ deals
with the problem of practical cross hedging strategies for resale values of vessels. Before
the 2008 shipping crisis, the rising demand of transport capacity led to historical high
freight rates and vessel prices, which both decreased sharply in the beginning of 2009. As a
result, shipping companies not only have to cope with operative losses but particularly with
more existential threats as the values of the vessels usually constitute the main part of the
asset side of the balance sheet. Due to the comparatively high leverage ratios of shipping
companies, these circumstances led to even more fire sales in an already distressed market.

The article provides the first empirical study of hedging the price risk in the market for
second-hand dry bulk vessels. As there is no active market for contracts on future vessel
values, Alizadeh and Nomikos (2012) suggest the use of forward freight agreements (FFAs)
as a cross hedge for vessel prices. To follow this idea, firstly, the part of a particular vessel’s
price exposed to freight rate risk needs to be identified. This is done by a structural model
similar to the approach of Adland and Koekebakker (2007). As independent variables the
model contains both vessel specific and freight rate market factors. The hedge volume is
then given by the model implied, vessel specific exposure towards FFA rates.

The hedge is implemented for 486 individual transactions of second-hand dry bulk vessels
between 2005 and 2012. Using the structural model approach, an average risk reduction
of 80% over a one-year hedging horizon is achieved. Compared to the classical, time series
based, cross hedge as proposed by Alizadeh and Nomikos (2012), the hedge is more effec-
tive and requires on average 25% smaller hedge positions and thus, less costs of hedging.
Furthermore, hedging profits are less volatile and more robust in different subperiods of the
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sample. However, insuring the average sample resale price of 29 million USD would require
a hedge exposure in FFAs of more than 20 million USD, which rises concerns about liquidity,
not only of single shipping companies, but of the FFA market as a whole.

Overall, the study provides two main contributions to academic literature. First, the hedging
of vessel values using freight rate derivatives is demonstrated empirically for the first time
and achieves a significant reduction of resale price risk by means of variance. Second, it is
possible to increase hedging effectiveness by only hedging the non-deterministic part of a
vessel’s value. Especially in the ongoing shipping crisis, an active ship price risk management
as demonstrated could have helped to avoid shipping insolvencies and frequent fire sales of
vessels.

1.3 Conditional extreme dependence

The oversupply of transport capacity is considered a main reason for the 2008 shipping
crisis. A particular problem of shipping companies is the relatively slow ability to respond
to new market conditions. The market can be high at the time a vessel is ordered, but
already depressed at the time of the vessel’s delivery. The study ’Measuring crisis risk using
conditional copulas: An empirical analysis of the 2008 shipping crisis’ presents a tool for the
risk management of shipping firms or investors that estimates the prevailing crisis risk in the
shipping industry based on a conditional copula model. It is further investigated, to which
extent the shipping crisis was caused exogenously by the collapse of the financial system or
by the shipping industry itself. If the latter was the case, it could have been prevented or
at least alleviated.

A ’crisis in shipping’ is understood as the simultaneous, extreme, asymmetric and adverse
movement of both balance sheet risk factors, in particular sharply decreasing freight rates
in terms of the Baltic Dry Index (BDI), and strongly increasing financing costs measured
by corporate bond yields. The dependence structure is assumed to be time-varying and
explained by the supply and demand of shipping services whereas supply is proxied by the
world fleet and demand by the state of the world economy (see Stopford, 2009). Following
Patton (2006), the asymmetric extreme dependence is modeled using a conditional copula.
The copula’s tail dependence coefficient is interpreted as crisis risk.

Analyzing monthly data from 1997 to 2014, it is shown that shipping crisis risk is predom-
inantly driven by the oversupply of vessels (60%), and only to a lower extent due to the
economic downturn during the financial crisis (40%). When conditioning on both factors
simultaneously, tail dependence increases strongly in the second half of 2007, and thus in-
dicates crisis risk in the shipping sector already about one year before the actual outburst
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of the crisis in late 2008. Most important for practitioners, the results still hold in out-
of-sample applications. Accordingly, by stopping or reducing the ordering of new vessels
in 2007, shipping companies could have prevented the excessive fleet growth that led to
overcapacity and slumping freight rates. Furthermore, ship financing banks could have also
intervened by tightening shipping loans.

The article contributes to the literature of ship finance by providing one of the first empirical
applications of copulas in shipping. Furthermore, the potential crisis risk in the shipping
sector is quantified from the econometric model. The concept of conditional tail dependence
is highly useful and can also be applied to further asset classes other than shipping.

1.4 Arbitrage and market efficiency

A fundamental assumption of derivative pricing models which are based on the replication
of profits is no-arbitrage. Two financial securities with identical cashflows must have the
same price, else, there would be opportunities for riskless profits. In the German certificates
market various issuers offer comparable securities with respect to underlying, maturity or
cap level. The question of interest is, if the heterogeneity of pricing models and technical
conditions in different financial institutions leads to pricing inconsistencies, which allow
significant arbitrage opportunities. This would be of vital concern to the risk management
of certificate issuing financial institutions.

The question is investigated in the third article of this thesis, ’Arbitrage and market effi-
ciency in the German certificates market’. For the German certificates market the prices of
riskless portfolios of derivatives are compared with the price of the riskless asset. Following
Stoll’s 1969 famous put-call-parity, riskless portfolios consisting of a long position in a dis-
count certificate and a long position in a put warrant are set up. The payoff at maturity of
such a portfolio always equals the cap level. For this reason, the portfolios are referred to as
’boxes’. Using this parity relationship to identify arbitrage leaves the approach independent
of assumed pricing models such as Black-Scholes. Because of the short-selling restriction for
retail investors in this market, the analysis focuses on the underpricing of long portfolios.
Once an arbitrage opportunity is identified, two different trading strategies are implemented
to estimate theoretical profits. The arbitrage opportunities and profits are then analyzed by
issuers, timely patterns like time of the day or day of the week, as well as maturity, volatility
of the underlying asset and trading fees.

Based on almost 800 million intraday quotes of more than 1.4 million boxes, the study reveals
significant arbitrage in the German certificates market. On average, every 5 of 10,000 box
prices are below the arbitrage-free value. The highest price differences are found on Fridays,
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and in particular, in the morning and in the evening of a trading day. Market volatility is
also identified as a driver for underpricings.

The study provides the first empirical analysis of arbitrage in the German certificates market
as existing literature in this field is mainly focused on the U.S. option and futures markets.
Despite the technical progress, the relative amount of mispricings has not been decreasing
in recent years, such that there is an urgent need for further improvements of banks’ pricing
engines and mechanisms.
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Chapter 2

Modeling and hedging vessel resale
values using freight derivatives

Abstract

We investigate the empirical performance of hedging second-hand vessel
prices in the dry bulk Panamax class using forward freight agreements.
We develop and estimate a structural model incorporating the vessel’s
age and forward freight rates to calculate variance minimizing hedges. As
reference, we also implement the best-practice approach in this context, a
conventional time series based cross hedge. With both models we achieve
average in-sample risk reductions of about 80% over a one-year hedging
horizon. However, the hedge positions are on average 25% lower within
the structural model which reduces the costs of hedging. Also the hedge
profits are less volatile and risk reduction is more robust in pre- and post-
crisis periods compared to the cross hedge. Our results have important
implications for shipping risk management and ship financing.

Acknowledgements

We thank the participants of the 2014 workshop of the German Operations Research Society
(GOR e.V.) in Regensburg for their helpful comments.



10 Hedging vessel values using freight derivatives

2.1 Introduction

The global financial crisis caused a major paradigm shift in shipping. Reduced demands for
maritime transportation caused freight rates to drop sharply. As a consequence, ship values
also decreased remarkably which distorted the balance sheet structures and creditworthiness
of shipping companies. Several hundred shipping funds were forced to file bankruptcy only
between the beginning of 2008 and the end of 2012. Banks responded by reducing or even
stopping their activities in ship finance which worsened the situation for shipping companies
even more and intensified the dynamics of distressed sales (see Müssgens, 2012).

As pointed out by Drobetz et al. (2013), a specific characteristic of shipping companies,
compared to other industrial firms, is a substantial higher leverage ratio. This involves not
only higher financial risks, but also balance sheet risks as the asset side of shipping companies
basically consists of their vessels (see Stopford, 2009). The question is, how shipowners can
effectively hedge the value of their vessels, and thus preserve the structure of their balance
sheets.

Before the financial crisis, shipowners were primarily concerned about freight rate volatil-
ity rather than vessel value risk, as a survey in the Greek shipping market by Kavussanos
et al. (2007) reveals. Accordingly, the topic of managing ship price risk is rarely studied
in literature so far. In 2004 Clarksons introduced a derivative instrument called Forward
Ship Value Agreement (FOSVA) that is intended to guarantee shipowners a specific future
(second-hand) value of a generic vessel (see Adland et al., 2004). Although such a contract
sounds theoretically appealing for the problem considered, there is a lack of liquidity which
might be a result of potential credit risk due to high contract sizes and an over-the-counter
market (see Alizadeh and Nomikos, 2009). For that reason, Alizadeh and Nomikos (2012)
suggest the use of forward freight agreements (FFA) to hedge ship price risk. Freight rates
are closely connected with vessel prices and show a sufficiently liquid derivative market
which makes FFAs a suitable instrument for cross hedging. The authors estimate variance
minimizing hedge ratios for several dry bulk vessel classes and find that FFAs are theoret-
ically well suited for hedging second-hand values. However, their hedge strategies are not
tested empirically such that real world hedge performance cannot be evaluated.

We follow the idea of Alizadeh and Nomikos (2012) and provide the first empirical study of
hedging real sales prices of second-hand vessels by the use of freight derivatives. Therefore,
we develop and estimate a structural model for second-hand ship values which allows to
identify the risky part of vessel prices that is exposed to freight rate risk. We implement the
model over a hedging horizon of one year and achieve a reasonable average risk reduction
of 80%. As reference model, we also test the performance of the classical time series based
cross hedge as proposed by Alizadeh and Nomikos (2012). This approach achieves an average
risk reduction of 70% but requires on average 30% larger hedge positions compared to the
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structural model and thus higher costs of hedging. Besides, in the structural model the risk
reductions are more stable with respect to shorter subperiods. Furthermore, we test both
strategies by hedging the whole period between the buy and resale of a vessel. Additional
robustness analyses are also provided.

The rest of the paper is structured as follows: The next section provides the literature
review. Section 2.3 presents the models and the hedge setup used in this study. Data
description and model estimation are provided by Section 2.4. The hedging results and
robustness analyses are presented in Section 2.5. The paper concludes with a discussion and
implications by Section 2.6.

2.2 Literature review

Vessel price determination is one of the main fields of research in shipping economics. As
cargo ships are capital assets, their value can be viewed as the sum of expected operational
incomes plus the prospective residual or resale value, respectively. In this context Beenstock
(1985) explains fluctuations of vessel prices by means of structural models, whereas the
price is a function of world wealth, fleet size, expected operational earnings1, expected
future second-hand prices and interest rates. Moreover, newbuilding prices are added in
subsequent papers (see for example Beenstock and Vergottis, 1989). Alternatively to the
portfolio theory based approaches by Beenstock and Vergottis, Strandenes (1984) suggests
a simpler present value approach where second-hand prices represent the value of future
freight incomes corrected for depreciation.

The second important strand of vessel value related research focuses on testing for the
Efficient Market Hypothesis (EMH) to hold in this market. If the EMH as proposed by
Fama (1970) holds, current vessel prices reflect all available information, such that it is not
possible for investors to achieve arbitrage profits by buying and selling vessels. In order to
check the validity of the EMH in the market for ships, Hale and Vanags (1992) test series
of second-hand price assessments of three dry bulk size classes for cointegration using the
Engle-Granger approach. Although they do not find cointegrating relationships for all pairs
of vessel price series, they conclude that there are two, not further specified, exogenous
factors driving the prices of vessels. Their finding is partially confirmed by Glen (1997),
except that only one cointegrating vector is found. He concludes that the market might
still be efficient, if the factor that drives the common trend is stochastic. However, both
studies suffer from several major problems as pointed out by Alizadeh-Masoodian (2001).
He clarifies that the existence of cointegration of price series is not inconsistent with market
efficiency as a long run common trend does not rule out opportunities to generate excess

1 Charter rates less operating costs.
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profits in the short run. Furthermore, exploiting such opportunities is costly and risky.
Following studies using several trading techniques also reveal mixed results with respect to
cointegration and market efficiency (see for instance Kavussanos and Alizadeh, 2002; Adland
and Koekebakker, 2004; Sodal et al., 2009).

In a more recent approach Tsolakis et al. (2003) apply cointegration methodology to estimate
a structural model that describes second-hand prices of dry bulk and tanker vessels. Based
on annual data from 1960 to 2001, second-hand prices are modeled as the equilibrium within
a supply and demand framework where the vessel price is a function of time charter rates,
newbuilding prices, the orderbook-to-fleet ratio and cost of capital. They find that the
different vessel types and size classes are affected differently by the various factors, whereas
newbuilding prices and time charter rates have the greatest influence. The volatilities of
second-hand ship prices are analyzed by Kavussanos (1997). Fitting a GARCH model to
monthly dry bulk and tanker price series between 1976 and 1995, he finds that resale prices
are heteroscedastic and vary between vessel sizes, i.e. larger vessel show more volatile prices
than smaller ones.

For the purpose of hedging the most obvious instrument to ensure a certain vessel price in
the future would be the aforementioned FOSVA2. This contract is intended to guarantee
shipowners a specific future (second-hand) value of a generic vessel. However, because of
potential credit risk due to high contract sizes and an over-the-counter market, there is
still a lack of liquidity for this relatively new product3 (see Alizadeh and Nomikos, 2009). A
second-best solution is a cross hedge that has preferably a high correlation to the risk factor,
in this case vessel values. That is the case for freight rate derivatives, namely FFAs, which
also show the required liquidity. Following this idea, Alizadeh and Nomikos (2012) analyze
the relationship between second-hand ship prices and FFAs and find both to be cointegrated.
They estimate variance minimizing hedge ratios and find a theoretical hedging effectiveness
of freight derivatives of about 90%. Real world practicality and hedging performance are
not demonstrated, though. Vessel price series are given by weekly estimates from the Baltic
Exchange Sale & Purchase Assessments (BSPA) which relate to a standardized 5-year-old
vessel, such that these results only indicate the general possibility of using FFAs for hedging
ship price risks.

One shortcoming that all of these studies have in common is the use of second-hand vessel
price series. These series are based on assessments and do in particular not represent
traded market prices. This issue is addressed by Pruyn et al. (2011) in their review of
vessel valuation literature. As the average number of sales in one month is quite low4, one
may doubt the accuracy of reported prices for 5-, 10-, 15- or 20-year-old vessels, such that

2 See Adland et al. (2004) for description and pricing of FOSVAs.
3 There has been no paper trade reported until mid-2013 (see Jallal, 2013).
4 According to Syriopoulos and Roumpis (2006), there are at most five sales per month (per vessel and

size class) over all ages. Only the dry bulk Handysize class shows an average of 12 sales per month.
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’... it is more likely that brokers’ expectations were tested rather than real market behaviour’
(see Pruyn et al., 2011). Furthermore, these estimates refer to exactly defined reference
vessels which introduces a further bias when applying these results to specific vessels. To
overcome this problem, Adland and Koekebakker (2007) estimate a non-parametric model
using realized individual sales data of Handysize vessels in the dry bulk class. In their model
the resale price is determined by age, size and time charter rates at the date of sale. One
important finding is that non-linearity seems to be relevant in vessel valuation, especially
regarding freight rates and the vessels’ ages.

Our study contributes to the existing literature by testing the classical cross hedge method-
ology as proposed by Alizadeh and Nomikos (2012) on real sales data of dry bulk vessels
for the first time. Furthermore, we pick up the idea by Adland and Koekebakker (2007)
and use individual sales data to develop and estimate a structural model for second-hand
vessel prices which allows to distinguish between the deterministic and the risky part of
the price. We include the age as a vessel specific factor as well as forward freight rates
expressing market expectations with respect to the freight market. Non-linear effects are
controlled by a cross term combining age and freight rates. We apply the model to hedge
vessel values and find an average risk reduction of more than 80% which is slightly better
and in particular more stable compared to the classical cross hedge. At the same time the
required hedge position is on average 25% lower and thus less costly.

2.3 Methodology

In this section we introduce our structural model approach and its application for hedging
vessel values. Additionally, we define the conventional cross hedge model which is the
reference model in this context. We also define how we set up the hedges and introduce the
measure of the theoretical hedge effectiveness to compare and evaluate the performance of
both models.

2.3.1 Structural model

We follow the idea of Adland and Koekebakker (2007) and use a structural model for second-
hand vessel values based on actual cross sectional sales data. The main idea is that only
a part of the vessel value is exposed to freight market risk, such that the resulting hedge
position in FFAs is smaller compared to hedging the total vessel value. For example, vessel
prices also include the material value. Furthermore, we consider the age of the vessel as
it indicates the remaining time to earn money and thereby the sensitivity towards freight
rates.
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We apply a multivariate structural model5 that contains the vessel’s age as a vessel individual
element as well as forward freight rates to reflect the systemic risks of the freight market.
In addition, we also pick up non-linearities as detected by Adland and Koekebakker (2007)
by including an interaction term of age and freight rates. The value of the i-th vessel6 V i

at its date of sale ti is then given by

V i
ti = β0 + βAge ·Ageiti + βf · fti + βf ·Age ·

(
fti ·Ageiti

)
+ εi, (2.1)

where Ageiti and fti are the vessel’s age and the price of the freight futures at ti, respectively.
By this setup, we can divide the sales price V i

ti into

V i
ti = V i, det

ti + V i, risk
ti ,

where V i,det
ti represents the deterministic part that is mainly specified by the vessel’s age

and given by

V i, det
ti = β0 + βAge ·Ageiti ,

while V i, risk
ti contains the non-deterministic risk factor reflecting the state and expectations

of the freight market, given by

V i, risk
ti = βf · fti + βf ·Age ·

(
fti ·Ageiti

)
+ εi.

Only the non-deterministic part of the ship value, V i, risk
ti , is exposed to freight rate risk and

determines the hedge volume.

2.3.2 Conventional cross hedge model

As a reference, we also apply a model based on Alizadeh and Nomikos (2012), who use the
well-known regression-based cross hedge approach. Changes in the price of the risk factor
∆Pt are regressed on changes of the price of the hedge instrument ∆Ft, such that

∆Pt = α+ β∆Ft + εt , εt
iid∼ (0, σ2).

In this case, the slope coefficient β can be interpreted as the variance-minimizing hedge ratio
regarding the risky exposure. The regression’s coefficient of determination R2 measures the
proportion of variance that can be explained through the regression and is therefore a
measure for the hedge effectiveness. In the present study we follow Alizadeh and Nomikos
(2012) and look on 52-week price changes of vessels of different ages and freight futures,
5 We also considered the vessel’s cargo carrying capacity as well as higher powers of freight rates as

explaining variables. A detailed model selection analysis is provided in Appendix A.
6 More precisely, i denotes a specific sale.
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respectively. The authors analyze weekly second-hand price series provided by the Baltic
Exchange referring to 5-year-old exactly specified reference vessels. In contrast, the vessels
in our sample show ages of up to 30 years. Therefore, we estimate age specific hedge ratios
with

∆52pAget = α+ βAge∆52ft + ηt , (2.2)

where ∆52pAget = ln(PAge
t )− ln(PAge

t−52) and ∆52ft = ln(Ft)− ln(Ft−52) are the 52-week log-
differences of vessel prices and FFA prices, respectively. Within this setup, the error term
ηt is no longer i.i.d., rather it follows a moving average process of order 51 as a result of
overlapping observations. However, Alizadeh and Nomikos (2012) claim that these estimates
are still consistent and unbiased.

2.3.3 Hedge setup and effectiveness

We consider the owner of vessel i, who plans to sell the respective vessel at date ti which
is the effective sales date in our sample. Furthermore, we assume that the shipowner starts
the hedge li weeks prior to the planned sales date ti, i.e. a hedge for vessel i is started
at ti − li. The realized vessel price V i

ti is not known at inception, but is revealed to the
shipowner at ti when the hedge position is closed. With respect to the choice of a suitable
hedge instrument, we rely on the results presented in Section 2.2, where freight rates have
been identified as one driver of vessel prices. To reduce basis risk, we directly use FFAs as
the corresponding futures contract.

In general, lower levels of (future) freight rates are associated with falling vessel prices.
Because of this positive correlation, the shipowner engages in a short hedge to benefit from
falling freight rates and to compensate decreasing vessel prices. The hedger’s aim at a given
time ti − li before the sale is to minimize the variance of the change of the vessel’s value
plus the hedge contract

Y i :=
(
V i
ti − V̂

i
ti−li

(
Ageiti

))
+

li∑
j=1

hiti−j (fti−j+1 (τij)− fti−j (τij))
j−1∏
k=1

(1 + rti−k) , (2.3)

where V̂ i
ti−li

(
Ageiti

)
is the model dependent estimated value of an Agei-year-old vessel in

ti− li, hiti−j is the number of hedge contracts in ti− j, f denotes the freight futures contract
with contract period τij , li is the length of the hedging period in weeks and rti−k is the
interest rate in ti − k for the return on the margin account. The value of the vessel at the
start of the hedge is V̂ i

ti−li and is estimated by applying the respective model, the structural
or the cross hedge model, using the age at the date of sale, Ageiti . By this setup, we hedge
the value of an Agei-year-old vessel in ti − li and do not further have to take into account
the aging-related loss of value. More precisely, within the structural model (SM), we apply
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the estimates of Equation (2.1) to estimate the theoretical vessel prices V̂ i,SM
ti−li

(
fti−li ,Ageiti

)
.

With respect to the cross hedge (CH) model introduced in Section 2.3.2, the respective
value V̂ i,CH

ti−li(Age
i
ti) is obtained through linear interpolation between the reported estimates

for second-hand ship prices of the adjacent age classes, here referred to as AgeL and AgeU

which is

V̂ i,CH
ti−li

(
Ageiti

)
= pAge

L

ti−li +
Ageiti −AgeL

AgeU −AgeL
(
pAge

U

ti−li − p
AgeL
ti−li

)
, (2.4)

with AgeL < Ageiti < AgeU

and
(
AgeL,AgeU

)
∈ {0, 5, 10, 15, 20, 30} years.

The hedge volume in the structural model is determined by the overall exposure in freight
futures (see Equation (2.1)) given by

hi,SM
ti−li = −

(
βf + βf ·Age ·Ageiti

)
, (2.5)

and therefore depends on the price of the risk factor ft in ti − li. In the cross hedge model
we obtain the respective hedge ratios βiti−li analogous to the vessel values in Equation (2.4)
by a linear interpolation between the hedge ratios of the respective age classes which is

βiti−li = βAge
L

ti−li +
Ageiti −AgeL

AgeU −AgeL
(
βAge

U

ti−li − β
AgeL
ti−li

)
,

with AgeL < Ageiti < AgeU

and
(
AgeL,AgeU

)
∈ {0, 5, 10, 15, 20, 30} years.

The amount of hedge contracts is then determined by the hedged proportion of the vessel’s
value divided by the price of the hedge instrument, given by

hi,CH
ti−li = −βiti−li ·

V̂ i,CH
ti−li

(
Ageiti

)
fti−li

. (2.6)

In order to compare and evaluate the hedge results, we need a measure of the theoretical
potential of risk reduction of the two models, whereas this study understands vessel price
risk as the variance of vessel prices. Within the structural model as given in Equation (2.1)
we assume the regression residuals εi and observed freight rates fti to be independent. Then
the maximum achievable reduction of variance is estimated by

(
h

SM
)2

σ2
f(

h
SM
)2

σ2
f + σ2

ε

, (2.7)
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where hSM represents the arithmetic average of the hedge ratios hi,SM
ti (see Equation (2.5))

and σ2
f and σ2

ε are the variances of the freight futures (at the date of sale) and the error
term εi, respectively (see Equation (2.1)). In the case of the regression based cross hedge,
we follow Ederington (1979) and interpret the regressions’ R2s as the measures of hedge
effectiveness as they indicate the proportion of total variance that can be explained by the
respective models.

2.4 Data and model estimation

In this section we present and analyze the data, in particular we control for heteroscedas-
ticity. Additionally, we estimate the models introduced before and quantify the respective
hedge potentials.

2.4.1 Data

Robust model estimates require extensive data, in our case a large fleet and a correspondingly
high activity in the second-hand market. In the present study we analyze the Panamax class
(60− 99,999 dwt7) of the dry bulk sector. Vessels of this class mainly carry coal, grain, iron
ore and, to a lesser extent, minor bulks as steel products, cement and fertilizers. Despite of
their size, these vessels still show a high flexibility with respect to shipping routes and the
possibility to land in most ports. As of 2012, Panamax vessels account for about 38% of the
carrying capacity of the world’s dry bulk fleet (see Clarkson Research Services, 2013), such
that this class can be seen as important to world merchandise trade and world economy.

Table 2.1: Overview of sales in sample period 2005 - 2012

Year # Sales ∅ Age in
years

∅ Size in
dwt

∅ Price in
USD m.

∅ FFA in
USD/day

∅ FFA in USD
m./year

2005 57 9.95 71,599 33.44 16,258 5.93
2006 94 12.31 72,060 25.62 15,609 5.70
2007 78 11.12 73,134 46.59 30,780 11.23
2008 31 12.13 73,104 52.68 32,909 12.01
2009 78 12.51 72,394 22.15 14,958 5.46
2010 57 13.98 74,347 24.73 17,641 6.44
2011 42 13.48 72,042 19.57 12,980 4.74
2012 49 14.38 72,771 11.66 10,178 3.71

2005 - 2012 486 12.37 72,637 29.04 18,583 6.78

Individual sales data is provided by Clarksons Shipping Intelligence Network (SIN). Data is
available since January 1995 including name and size of the vessel as well as the year and
7 deadweight tonnage
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Table 2.2: Descriptive statistics of vessel value and FFA price series

FFA Newbuilt Second-hand vessels with age Scrap

4TC+2Cal 0 y 5y 10y 15y 20y 30y

Level (USD m.)

Mean 6.94 37.86 42.37 34.19 25.70 17.51 5.27
SD 3.54 8.52 19.99 17.88 14.97 11.30 1.30
Maximum 19.93 55.00 92.00 77.50 62.00 48.00 8.51
Minimum 2.86 25.75 18.00 13.00 8.00 6.00 2.58

52-week log-differences (%)

Mean 5.88 -4.25 -6.32 -7.23 -8.84 -7.27 4.07
SD 49.83 22.10 51.45 57.33 64.03 71.52 40.26

Correlation w.r.t. +2Cal FFA

Level 1.00 0.86 0.96 0.96 0.96 0.94 0.52
Log-differences 1.00 0.82 0.94 0.94 0.93 0.90 0.71
Descriptive statistics for level data and 52-week log-differences for Panamax ship values and 4TC+2Cal
FFA prices. The level series include 394 weeks (06/17/2005 to 12/28/2012) which leaves 342 observations
of 52-week log-differences. The age of scrapped vessels is assumed to be 30 years.

place of construction, price and further details like equipment, speed or fuel consumption.
After removing incomplete data points and en bloc sales8, there remain 765 sales by the
end of 2012. According to the availability of FFA data, we only consider sales between
January 2005 and December 2012 which leaves 486 observations. An overview of the annual
distribution of vessel sales within the sample period is provided by Table 2.1. In each year
there is a representative number of sales whereas we observe the fewest transactions at the
peek of the shipping boom in 2008 when the prices where the highest. While the average
age of the transacted vessels increases from about 10 years to more than 14 years, there is
almost no variation in the size. Average vessel prices as well as future freight rates decrease
as result of the shipping crisis.

For the conventional cross hedge we use series of weekly Panamax ship value assessments
provided by Clarksons SIN. These series include prices of newbuilt (75-77,000 dwt), 5-year-
(76,000 dwt), 10-year- (75,000 dwt), 15-year- (73,000 dwt) and 20-year-old (69,000 dwt)
second-hand vessels as well as scrap values9. The slight differences in the size are neglected.
As pointed out in Section 2.2, these values are assessments and not based on actual trans-
actions.

Weekly data of freight rate derivatives is taken from Baltic Exchange which publishes FFA
assessments since 2005. For the purpose of hedging we work with calendar FFA contracts.
8 En bloc sales contain collectively sold vessels such that it is difficult to attribute a value to each individual

vessel in the sale.
9 As scrap values are only published monthly, we assume these prices to be valid for each week in the

respective month.
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These contracts refer to a whole calendar year available for the following year (+1Cal) up to
the fifth nearest year (+5Cal) with monthly settlement. Freight rates are originally quoted in
US-Dollar per day. By multiplying with the according number of days per year, we annualize
these rates obtaining contract values in million US-Dollar per year. Baltic Forward Freight
contracts are tradable on individual routes or route indices. For the class of Panamax vessels,
the highest trading activity can be observed for contracts on the time charter average of
the Baltic Panamax Index BPI 4TC (see Alizadeh and Nomikos, 2009), which is an equally
weighted average of the trip-charter rates in four Baltic Exchange Panamax routes10. Within
our analysis we follow Alizadeh and Nomikos (2012) and use the end-of-week prices of the
second-nearest calender FFA, the 4TC+2Cal contract. This reduces rollover events within
this study or makes it even redundant to rollover contracts when the hedging periods are
short. For discounting cashflows and interest payments on the margin account we use the
appropriate USD LIBOR rates from Thomson Reuters Datastream. Descriptive statistics
for vessel values and FFA rates are given in Table 2.2. With the exception of the scrap
value, all second-hand as well as the newbuilding price series show negative average changes
over the sample period. In contrast, freight rates increase on average. Furthermore, the
high positive correlations between FFAs and vessel values support the idea of using freight
derivatives to hedge ship values.

The historical development of second-hand values and FFAs for the observation period from
January 2005 to December 2012 is given in Figure 2.1. Obviously, freight rates exhibit a fairly
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Figure 2.1: Second-hand prices and 4TC+2Cal FFA in the Panamax dry bulk sector

10 The Baltic Panamax Index (BPI) contains the routes P1A_03 (Skaw-Gibraltar transatlantic round voy-
age), P2A_03 (Skaw-Gibraltar trip to Taiwan-Japan), P3A_03 (Japan-South Korea transpacific round
voyage) and P4_03 (Japan-South Korea trip to Skaw Passero). The respective reference vessel is at most
12 years old with a size of 74,000 dwt.
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heterogeneous pattern over time with an extreme increase prior to the recent financial crisis
that ended in a big drop in the beginning of 2009. Because of the different volatility regimes,
we analyze the FFA log-return series for heteroscedasticity with respect to the expected
level log-returns and volatility. If such breaks exist, one cannot assume a good hedging
performance by models that are based on the whole sample, and might consider several
subperiods instead. To identify possible change-points, we follow Andreou and Ghysels
(2002) and run a least squares type test which is based on cumulative sums of OLS residuals
of the weekly FFA 4TC+2Cal log-differences from 01/21/2005 to 12/28/2012. In particular,
the absolute log-returns are modeled as a generic process Xt of the form

Xt = µk + εt, tk−1 ≤ t ≤ tk, 1 ≤ k ≤ r,

where t0 = 0 and tr+1 = T = 414. Breakpoints and mean values are given by k = 1, ..., r
and µk, respectively. The objective equation is then given by

Qr(t) = min
µk,tk,

k=1,...,r,
|tk+1−tk|≥ϑ

r+1∑
k=1

tk∑
t=tk−1+1

(Xt − µk)2,

where ϑ is the minimal allowed regime length. The results of the test are given in Table 2.3.
Bayes’ information criterion indicates at most two structural breaks, and thus, three regimes,
in particular 01/21/2005 - 04/13/2007 (I), 04/14/2007 - 02/13/2009 (II) and 02/14/2009
- 12/28/2012 (III). The corresponding average weekly returns and standard deviations are
given in the lower part of the table. While the freight rate volatility increases up to almost
10% during the financial crisis, it is only around 3% before and thereafter. The negative
mean returns of freight rates during the crisis also indicate the possible advantage of short
hedging strategies.

2.4.2 Structural model estimation

For the three identified subperiods as well as for the whole sample, regression results based on
Equation (2.1) are given in Table 2.4. Due to the obvious similarity of model parameters in
period I and II, we subsequently run a Chow test11, which confirms that the difference of the
model parameters in the first two subperiods is not significant. Thus, even in the presence
of extreme movements of freight rates and vessel prices in 2007 and 2008, the structural
relationship of vessel prices and freight rates remains unchanged. However, the second
structural break on 02/20/2009 is confirmed by the Chow test. According to this finding,
we re-estimate the structural model (Equation (2.1)) treating the first two subperiods as
one, which is then 01/21/2005 - 02/13/2009 denoted as I∗, while the initial third subperiod
11 The Chow test basically checks whether the sums of squared residuals of two individual (sub-)sample

regressions add up to the residual sum of squares of the aggregate sample regression (see Chow, 1960).
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Table 2.3: Results of CUSUM test for change-points

Change-points Indicated dates of structural breaks BIC

0 -1.303
1 06/19/2009 -1.317
2? 04/20/2007 02/20/2009 -1.346
3 04/20/2007 05/02/2008 05/01/2009 -1.345
4 04/20/2007 05/02/2008 05/01/2009 05/27/2011 -1.343

Weekly FFA returns (in %) in each period for 2-change-points-setup (?)

Period
I+II+III I II III

01/21/2005 -
12/28/2012

01/21/2005 -
04/13/2007

04/14/2007 -
02/13/2009

02/14/2009 -
12/28/2012

Mean -0.06 0.47 -0.27 -0.28
SD 5.39 3.35 9.84 2.70

Upper part: CUSUM test results for weekly 4TC+2Cal FFA log-differences from 01/21/2005-12/28/2012
with a minimum period length of 52 weeks. Shown are the structural breaks identified by the test for each
allowed number of change-points. The BIC-optimal specification is indicated by ?.
Lower part: weekly return in each regime of the BIC-optimal specification.

remains as before 02/14/2009 - 12/28/2012, now denoted as II∗. The results of the second
regression are given in Table 2.5. For the whole sample the estimate of the age coefficient
βAge of -0.488 indicates that the value of a new ship, with age equal to zero, is reduced
by nearly 0.5 million USD per one year of age, while the estimate of the FFA coefficient
βf of 5.461 implies that the value of a new ship contains about five and a half years of
freight rate income. With respect to the two subperiods I∗ and II∗, the coefficients change
considerably in the second period which contains the ongoing crisis in the shipping market
with smaller and less volatile freight rates. Not only is the constant β0 in period II∗ close to
zero, but especially the age of the vessel is less important, whereas the price of the +2Cal
FFA explains most of the value.

The maximum theoretical risk reduction for the structural model is given in the lower part
of Table 2.5. Given the average hedge exposure, the variance might at most be reduced
by about 75%. Especially in the post-crisis period II∗ it becomes evident that the less
volatile shipping market and the increased influence of forward freight prices on second-
hand values (see Table 2.5) enhances the possibility of hedging. The coefficients of the
second regression in Table 2.5 are used for hedging in this study. The results also show the
non-linear relationship between age, freight rates and second-hand prices which is controlled
by the interaction term fti · Ageiti . As illustrated in Figure 2.2, the prices of newer vessels
show a much higher sensitivity towards FFA prices than older ones. For the value of the
average ship in our sample, sold at an age of 12.37 years and observing a freight futures
price of 6.78 million USD per year (18,583 USD per day), the value declines more than 1.5
million USD per one year of age and increases by about 3.5 million USD per each million
USD of additional annual freight income.
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Table 2.4: Descriptive statistics and regression results for sample periods

Period

I + II + III I II III
Whole sample Pre-boom Boom and crisis Post-crisis
01/21/2005 - 01/21/2005 - 04/14/2007 - 02/14/2009 -
12/28/2012 04/13/2007 02/13/2009 12/28/2012

Observations 486 180 88 218
Mean V iti 29.04 29.81 49.60 20.11
Mean Ageiti 12.37 11.43 11.76 13.39
Mean fti 8.19 7.54 16.62 5.32

β0 11.095*** 18.048*** 23.785*** -0.629
[7.930] [7.412] [2.869] [-0.316]

βAge -0.488*** -0.972*** -0.788 -0.203*
[-5.075] [-5.454] [-1.486] [-1.663]

βf 5.461*** 4.895*** 4.436*** 6.982***
[28.179] [12.524] [6.314] [18.811]

βf ·Age -0.158*** -0.099*** -0.132*** -0.184***
[-11.544] [-3.493] [-2.880] [-8.140]

S.E. of Reg. 6.232 3.305 12.089 2.691
Adj. R2 0.875 0.925 0.708 0.940

Chow test1) on identity of model parameters

βI =βII 1.206 2.406
βI =βIII 44.731*** 2.395
βII =βIII 5.497*** 2.402

Linear regression coefficients for different sample periods. Vessel prices and freight forward rates (scaled
to one year) are expressed in USD m., and age in years. *, **, and *** denote statistical significance at
the 10%, 5%, and 1% level, respectively. Figures in [ ] are t-statistics. 1) Chow test checks for identity of
model parameters, whereas β{·} = (β0,{·}, βAge,{·}, βf,{·}, βf ·Age,{·}) and {·} ∈ {I, II, III}.

Additional robustness of the estimated model is given in Figure 2.3, where we plot the
estimated second-hand prices of the structural model (whole sample) against the quoted
Clarksons prices for 5-, 10-, 15- and 20-year-old vessels which are used in the cross hedge
approach introduced above. Obviously, the structural model covers the experts’ estimates
quite well, even without regarding the vessel’s carrying capacity. It is also interesting to
note that the structural model picks up the sharp decline of ship values in 2008 earlier than
the assessments by Clarksons probably because the FFA market shows a higher immediacy
than the expert’s assessments. Newbuilding and scrap prices are not regarded here as these
prices are not actual second-hand prices and also strongly driven by factors other than
freight rates (see Section 2.3.2).

2.4.3 Cross hedge model estimation

The most common hedging approach in practice is the classical time series based cross hedge
as outlined in Section 2.3.2. The estimated slope coefficients βAge and the regressions’ R2s
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Table 2.5: Descriptive statistics and structural model regression results - corrected sample
periods

Period

I∗ + II∗ I∗ II∗

Whole sample Pre-boom and crisis Post-crisis
01/21/2005 - 01/21/2005 - 02/14/2009 -
12/28/2012 02/13/2009 12/28/2012

Observations 486 268 218
Mean V iti 29.04 36.31 20.11
Mean Ageiti 12.37 11.54 13.39
Mean fti 8.19 8.08 5.32

β0 11.095*** 18.740*** -0.629
[7.930] [8.371] [-0.316]

βAge -0.488*** -0.741*** -0.203*
[-5.075] [-4.574] [-1.663]

βf 5.461*** 4.814*** 6.982***
[28.179] [18.162] [18.811]

βf ·Age -0.158*** -0.136*** -0.184***
[-11.544] [-7.147] [-8.140]

S.E. of Reg. 6.232 7.401 2.691
Adj. R2 0.875 0.843 0.940

Maximum potential of variance reduction by hedging (approx.)

hi,SM Mean 3.44 3.17 4.51
SD 1.20 0.95 1.48

σ2
ε 43.10 80.67 7.14
σ2
ft 12.16 14.84 1.13

Max. variance re-
duction (%) 76.98 64.95 76.24

Chow test1) on identity of model parameters

H0 F-statistics 95% critical value

βI∗ =βII∗ 18.076*** 2.391

Linear regression coefficients for different sample periods. Vessel prices and freight forward rates (scaled
to one year) are expressed in USD m., and age in years. *, **, and *** denote statistical significance at
the 10%, 5%, and 1% level, respectively. Figures in [ ] are t-statistics. 1) Chow test checks for identity of
model parameters, whereas β{·} = (β0,{·}, βAge,{·}, βf,{·}, βf ·Age,{·}) and {·} ∈ {I∗, II∗}.

of the six age classes for the whole sample as well as for the two subperiods I∗ and II∗ are
given in Table 2.612. The coefficients βAge for ships between 5 and 20 years are mostly
larger than one with R2s of about 0.90 which is similar to the results found by Alizadeh and
Nomikos (2012). This indicates that hedging second-hand ship prices using FFAs may result
in a risk reduction (in terms of the variance) of about 90%, but the required short position
in FFAs is on average actually larger than the value of the vessel itself. The coefficients
for newbuilt and scrapped vessels deviate from the others and also show lower R2s which

12 The parameter estimates for the three initial subperiods I, II and III are given in Table 2.15 and the
results of Chow’s breakpoint test in Table 2.16 in Appendix B.
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Figure 2.2: Fitted model vs. realized resale prices - whole sample

indicate a poorer explanatory power of freight rates. This appears plausible as prices of
new vessels are negotiated with a large delay to their actual delivery and the scrap value
only contains the material value but no further utility. Additionally, we observe that older
vessels show higher hedge ratios. The lower part of Table 2.6 shows the average hedge ratios
(βAge) and hedge effectiveness (R2s) of each period. The theoretical average risk reductions
are about 80% for the whole sample as well as for the two subperiods. In particular, the
theoretical hedge effectiveness is higher compared to the structural model.

2.5 Hedging results

We apply the two introduced models to two different scenarios. On the one hand, we use all
sales in the sample and calculate the hedge performance over a hedging period of 52 weeks.
On the other hand, we take into account possible model errors, especially as the current
price of the vessel is unknown at the start of the hedge. Therefore, in the second analysis
we only consider those vessels that were sold repeatedly such that we have realized buy and
sell prices.

2.5.1 Hedging over a fixed time horizon

We check the hedging performance over a fixed time horizon of one year before each realized
sale i, such that the hedging period is li = 52 weeks for each sale i. In such a scenario, it
is possible to avoid rolling over contracts when hedging by selling open the third nearest
calendar FFA which has become the second nearest calendar FFA when closing the contract
one year thereafter. For example, the calendar FFA that relates to the calendar year 2008
is called +3Cal in 2005 but +2Cal in 2006. Furthermore, we assume interest rates to
be deterministic which implies that futures and forward prices coincide. In particular, we
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Figure 2.3: Vessel value comparison for different age classes
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Table 2.6: Cross hedge model: coefficients for Panamax vessels of different ages - corrected
sample periods

∆52pAge
t = α+ βAge∆52ft + ηt , Age ∈ {0,5,10,15,20,30}

Period
I∗ + II∗ I∗ II∗

06/16/2006 -
12/28/2012

06/16/2006 -
02/13/2009

02/14/2009 -
12/28/2012

Observations 342 140 202

βAge R2 βAge R2 βAge R2

0 years (new) 0.363 0.676 0.258 0.684 0.342 0.398
5 years 0.963 0.880 1.034 0.897 1.202 0.884
10 years 1.074 0.880 1.119 0.911 1.420 0.894
15 years 1.187 0.862 1.280 0.891 1.535 0.874
20 years 1.282 0.806 1.378 0.872 1.662 0.752
30 years (scrap) 0.570 0.503 0.566 0.742 1.213 0.716

Maximum potential of variance reduction by hedging (approx.)

βAge R2 βAge R2 βAge R2

Mean 1.007 0.810 1.078 0.867 1.317 0.773

The level series include 394 weeks (17/06/2005 to 28/12/2012) which leaves 342 observations of 52-week
log-differences for the whole sample. The age of scrapped vessels is assumed to be 30 years. All parameter
estimates βAge are significant at the 1% level.

neglect interest effects and marking-to-market due to the rather short hedging horizon.
Therefore, Equation (2.3) simplifies to

Y i :=
(
V i
ti − V̂

i
ti−52(Ageiti)

)
+ hiti−52 (fti (τi)− fti−52 (τi)) ,

such that it is ensured that the calendar year τi, to which a specific futures contract relates,
is the same when opening and closing the hedge. In addition, the hedge contract is a +2Cal
FFA contract when the vessel is sold which is consistent to the models considered (see
Equations (2.1) and (2.2)). For reasons of generality, we assume unlimited divisibility of
the annualized hedge contracts hi. The 4TC+3Cal series is only available from 06/17/2005
restricting us to use sales from 06/15/200613 on, resulting into a sample of 387 sales.

The results for a hedge over a 52-week period are given in Table 2.7. Over the whole sample
period (I∗+II∗) both models achieve almost the same good risk reduction of about 80%,
whereas the structural model performs slightly better. At the same time the structural
model is more effective as the required hedge position is on average 25% smaller. In period
I∗ which includes the extreme rising and falling of freight rates, the variance reduction within
the structural model is 67% and thus about 18 percentage points higher than in the cross
hedge model, while the hedge exposures are on average 40% smaller compared to the cross
hedge model. In period II∗ it is notable that the structural model leads to a similar large
13 Recall that hedge ratios in the cross hedge approach are calculated based on 52-week log-returns.
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hedge exposure as the cross hedge approach as the vessel value is almost only determined
by the FFA price (see Table 2.5). However, in this period the hedge compensates almost
exactly the loss in value of the vessels and reduces the variance reasonably by about 80% in
both models.

Table 2.7: Hedging results over a one-year horizon

Model I∗ + II∗ I∗ II∗

Hedged sales
06/15/2006 -
12/28/2012

06/15/2006 -
02/13/2009

02/15/2010 -
12/28/2012

Observations1) 387 169 140

CH SM CH SM CH SM

Hedge position Mean 29.00 21.38 30.06 17.87 25.18 24.14

Hedge profit
Mean -4.24 -3.58 -20.75 -13.05 2.34 2.01
Variance 474.28 235.99 422.44 168.14 41.77 36.46
SD 21.78 15.36 20.55 12.97 6.46 6.04

Change in values Y i :=
(
V iti − V̂

i
ti−52(Ageiti)

)
+ hiti−52

(
fti(τi)− fti−52(τi)

)
Unhedged (h = 0)

Mean -0.52 -1.74 11.39 8.50 -2.12 -3.39
Variance 450.96 395.40 351.40 292.28 46.04 40.40
SD 21.24 19.88 18.75 17.10 6.79 6.36

Hedged
Mean -4.77 -5.32 -9.37 -4.55 0.22 -1.38
Variance 92.57 72.33 178.12 96.26 11.49 6.72
SD 9.62 8.50 13.35 9.81 3.39 2.59

% reduction of ...
Variance 79.47 81.71 49.31 67.07 75.04 83.37
SD 54.69 57.23 28.80 42.61 50.04 59.22

Hedge positions and profits are in USD m. CH denotes the cross hedge model, SM the structural model
and SD the standard deviation. The unhedged changes of vessel values differ in both models as the value
at inception of the hedge, V̂ iti−52, is estimated by the respective model. 1) Due to the 52-week delay, the
observations in the subperiods I∗ and II∗ do not sum up to the total sample observations.

Comparing these results with the estimated hedge potential of about 90% within the cross
hedge model and 77% for the structural model (see Table 2.5), only the latter is able to
achieve or even to exceed the predicted performance throughout the whole sample period
as well as in the two subperiods. Furthermore, the large hedge exposures of the cross hedge
model lead to variances of hedge profits that are actually bigger than the variances of the
unhedged positions. Because of the short position, the variance of the overall position is
still smaller. Another fact that stands out is that the average change of the vessel value and
the average hedge profit only compensate, at least to some extent, if we consider the two
subperiods individually. Over the whole sample period both the average hedge profit and
the average price change are negative while the objective of reducing the risk in terms of
variance is achieved. As mentioned above, compensating the change in value of expensive
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assets as merchant vessels requires large hedge exposures. In this analysis these are mostly
higher than 20 million USD and result in an average loss of about 4 million USD which can
be interpreted as the costs of hedging in this context.

2.5.2 Hedging between two resales

Estimating V i
ti−li , the time value of vessel i when starting the hedge, might distort the hedge

results. Keeping in mind that the structural model shows a standard error of regression of
more than 6 million USD over the whole sample period (see Table 2.5), it is possible that a
gain in value over one year might actually be a loss or vice versa. Furthermore, the market
for second-hand ships is quite heterogeneous not only with respect to age, but also with
respect to technology, special equipment or even the specific route which effects the price
of a vessel, but is not considered in any of the two models. Therefore, we want to verify
the hedge strategies on those vessels, where more than one resale took place during the
sample period from January 2005 to December 2012, such that we also have a real price
when starting the hedge.

For this purpose, we now consider i as a pair of each two consecutive resales of one and the
same vessel. The hedge is accomplished from ti− li, the buy date of the vessel, to ti, the day
of its resale. Overall, we observe 68 pairs of specific buy prices V i

ti−li and resale prices V i
ti

14.
The average realized buy and sell prices are 32.20 and 31.18 million USD, respectively. The
average time between two resales in this sample is 2.49 years and varies between 44 days
and more than seven years, such that it is now necessary to rollover hedge contracts. This
is done by opening a short position in the 4TC+2Cal FFA and, if applicable, rolling over
hedge contracts at the end of November. For calculating the hedge results we use essentially
Equation (2.3) where the estimated vessel value at the sales date V̂ i

ti−li is replaced by the
observed vessel value at inception of the hedging period, the buy price V i

ti−li . This buy price
is further adjusted for the deterministic aging-related loss in value implied by the respective
model. The adjusted buy price in the structural model V̂ i,SM

ti−li is then obtained as

V̂ i,SM
ti−li = V i

ti−li +
[

(βAge + βf ·Age · fti−li) ·
(
Ageiti −Ageiti−li

) ]
, (2.8)

where Ageiti−li and Ageiti denote the age of vessel i at the date of acquisition and resale,
respectively. In the cross hedge model, the adjustment is done similar to Equation (2.4), by
linear interpolation between the quoted second-hand prices by Clarksons, such that

14 Every two resales are analyzed independently, such that the sell price of one pair might be the buy price
of another pair, in case one ship has been sold three or more times within the observed sample period.
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V̂ i,CH
ti−li = V i

ti−li +
pAge

U

ti−li − p
AgeL
ti−li

AgeU −AgeL
(
Ageiti −Ageiti−li

)
, (2.9)

with AgeL ≤ Ageiti < Ageiti−li ≤ AgeU

and
(
AgeL,AgeU

)
∈ {0, 5, 10, 15, 20, 30} years.

As before, we assume that the buyer of the vessel knows ex ante when the vessel is sold,
whereas in principle it is sufficient to know whether the ship is sold in the following year
and if so, when the sale takes place. The method is analogous to Section 2.5.1. At the day
of the ship’s acquisition we estimate the hedge exposure until the first rollover date or the
date of resale, respectively, by applying the model implied age-adjustment to the buy price
(see Equation (2.8)). The same is done at each rollover date. Because of the longer hedging
periods, interest rates are no longer assumed to be deterministic. Therefore, we need to
take into account the interest effects on the margin account which requires an adjustment
of the amount of hedge contracts by applying a tailing factor to Equations (2.5) and (2.6),
respectively, and obtain

hi∗ti−j := hiti−j ·
1

1 + rtsi

(
ts+1
i − tsi

) , s ∈ {0, ..., ni − 1},

where tsi denotes the dates of opening and closing futures positions. In particular, t0i denotes
the buy date and tnii the sales date of the vessel. In between are the rollover dates. For
tailing the hedge ratio we use the respective 12-month USD LIBOR rate. Furthermore, we
consider a marking-to-market of the futures positions on a monthly basis15 and use the one
month USD LIBOR rate for the return on the margin account as stated above. Because of
the long hedging period over several years, a clear assignment of resales to one of the two
subperiods is hardly possible16. Therefore, the two subperiods are considered differently
in this context by using the appropriate model to calculate the hedge dependent if the
acquisition (or rollover) occurs in the first (I∗) or second subperiod (II∗). The results are
aggregated over both subperiods.

The hedge results of this strategy are given in Table 2.8. Surprisingly, there is an average
gain in value of each Agei-year-old vessel of about 3 million USD which indicates a strategic
buying and selling behavior. For the structural model the risk reduction through hedging is
almost the same in both model setups with a variance reduction of almost 70%. On the other
hand, the cross hedge achieves better results when using one model for the whole sample
period with a risk reduction of about 43% compared to only 27% in the two-subperiod setup.
In this context, it is also notable that the average hedge volume is about 40% to 58% larger
within the cross hedge approach compared to the structural model. This confirms our idea

15 For practical reasons, we only consider end-of-month values of FFAs and interest rates in this analysis.
16 Most pairs of sale and resale cover both subperiods.
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Table 2.8: Results of hedging between two resales

Model One model Two models
(I∗ + II∗) I∗, II∗

Observations 68 68

CH SM CH SM

Hedge position Mean 30.01 21.45 32.81 20.82

Hedge profit
Mean -15.72 -13.91 -16.59 -12.28
Variance 768.60 385.89 878.46 318.67
SD 27.72 19.64 29.64 17.85

Change in values Y i :=
(
V iti − V̂

i
ti−li(Age

i
ti

)
)

+
li∑
j=1

hiti−j (fti−j+1 (τij)− fti−j (τij))
j−1∏
k=1

(1 + rti−k)

Unhedged (h = 0)
Mean 3.22 3.17 3.22 3.39
Variance 421.64 406.88 421.64 409.31
SD 20.53 20.17 20.53 20.23

Hedged
Mean -12.49 -10.74 -13.37 -8.90
Variance 238.62 123.73 305.76 110.96
SD 15.45 11.12 17.49 10.53

% reduction of... Variance 43.41 69.59 27.48 72.89
SD 24.77 44.85 14.84 47.93

Hedge positions and profits are in USD m. CH denotes the cross hedge model, SM the structural model
and SD the standard deviation. The holding period li is on average 2.49 years with a standard deviation
of 1.82 years.

that hedging only the risky part of vessel values reduces the hedge exposures. Furthermore,
the cross hedge method does not consider prevailing market prices. In contrast, within the
structural model, lower levels of freight rates result in smaller hedge positions. This also
results in much smaller deviations of the hedge profit within the structural model. However,
the longer hedging periods also generate much higher hedge losses compared to the one-year
scenario analyzed before. The main reason lies in the pattern that FFA prices show during
the observation period. While the rise of freight rates lasts about three years, the drop in
2009 is very sudden and short. Thus, most hedges accumulated big losses rather that they
could benefit from the almost singular but huge profit because of decreasing freight rates.
We conclude that freight rates include a large risk premium that the operator of a vessel
usually earns but which is given away by the hedge. This leads to very high hedging costs
as almost any upside potential is taken away. Therefore, the costs of hedging increase with
the length of the hedging period. At least in the structural model we see no clear evidence
that using different models in each subperiod leads to a better hedging performance than
using one and the same model. In contrast, the effectiveness of the cross hedge becomes
even worse when switching to a less general model setup.
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2.5.3 Robustness analysis

So far, the results reveal the possibility of reducing ship price risk using freight derivatives.
It is confirmed that a structural model approach outperforms a time series based cross hedge
and at the same time requires a smaller hedge exposure. In this section we carry out several
robustness checks whereas the sample as well as the time periods are varied. The results
are compared to those in Section 2.5.1, where we carried out the hedge over a horizon of
one year.

2.5.3.1 Model performance in alternative sample periods

In our analysis we applied the estimated models in the context of hedging in their respective
(sub-)period. This robustness check extends this analysis not by altering the models but
the sample periods they are applied to. The first case to be considered is an isolated look on
the performance of the ’whole-sample-models’ (I∗+II∗) in each of the two subperiods I∗ and
II∗. The results in Table 2.9 reveal no substantial changes in the results. We see smaller
hedge positions within the cross hedge approach than in the initial setup which reduces
the hedge loss when freight rates are rising and vice versa. The structural model ’loses’ its
good fit of regression especially in period II∗ which slightly weakens the performance. In
the second case, we analyze the cumulative performance of the two subperiod models over
the whole period. In particular, we use the respective model in each period, but view the
aggregated hedge results. The results given in Table 2.10 show a better performance of
using one and the same model over the whole model period especially for the cross hedge
approach. One reason might be that the bigger sample size leads to more robust coefficient
estimates. However, both models still achieve reasonable risk reductions with the structural
model being more effective.

Table 2.9: Performance of the whole-sample setup in subperiods

Model (I∗+II∗) (I∗+II∗)
Hedged sales 06/15/2006 - 02/13/2009 02/15/2010 - 12/28/2012
Observations 169 140

CH SM CH SM

% reduction of ... Variance 57.34 68.04 74.63 74.11
SD 34.68 43.47 49.63 49.11

CH denotes the cross hedge model, SM the structural model and SD the standard deviation. The unhedged
changes of vessel values differ in both models as the value at inception of the hedge, V̂ iti−12, is estimated
by the respective model. The complete results are given in Table 2.17 in Appendix C.1.
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Table 2.10: Joint performance of subperiod models over whole sample

Model (I∗+II∗) I∗, II∗

Hedged sales 06/15/2006 - 02/13/2009,
02/15/2010 - 12/28/2012

06/15/2006 - 02/13/2009,
02/15/2010 - 12/28/2012

Observations 309 309

CH SM CH SM

% reduction of ... Variance 59.82 76.17 51.45 72.72
SD 36.61 51.18 30.32 47.77

CH denotes the cross hedge model, SM the structural model and SD the standard deviation. The unhedged
changes of vessel values differ in both models as the value at inception of the hedge, V̂ iti−52, is estimated
by the respective model. Sales between 02/14/2009 and 02/14/2010 are excluded in both analyses. The
complete results are given in Table 2.18 in Appendix C.1.

2.5.3.2 Same estimation period for both models

The structural model is estimated based on sales from 01/21/2005 to 12/28/2012. In con-
trast, the 4TC+3Cal FFA series, which is applied the cross hedge approach, only starts in
06/17/2005, such that the first 52-week log-difference is obtained on 06/16/2006. For this
reason, we correct for the different estimation horizons by re-estimating the structural model
with the first sale on 06/15/2006 which still leaves 387 sales (instead of 486 sales over the
whole period). The estimated model parameters are given in Table 2.19 in Appendix C.2
and reveal no substantial changes with respect to signs or magnitude compared to the co-
efficients estimated before (see Table 2.5). Only the constant term is slightly smaller, such
that the explanatory power of the determinants is increased. The second period (II∗) is not
effected by the smaller sample size at all. Accordingly, the hedge results given in Table 2.11
are almost the same as before (see Table 2.7). We conclude that the superior results of the
structural model are not caused by the longer estimation horizon.

Table 2.11: Shorter estimation horizon for structural model: hedging results over a one-
year horizon

Model I∗+II∗ I∗ II∗

Hedged sales 06/15/2006 -
12/28/2012

06/15/2006 -
02/13/2009

02/15/2010 -
12/28/2012

Observations1) 387 169 140

CH SM CH SM CH SM

% reduction of ... Variance 79.47 82.21 49.31 67.76 75.04 83.37
SD 54.69 57.82 28.80 43.22 50.04 59.22

1) Due to the 52-week delay, the observations in the subperiods I∗ and II∗ do not sum up to the total
sample observations. CH denotes the cross hedge model, SM the structural model and SD the standard
deviation. The unhedged changes of vessel values differ in both models as the value at inception of the
hedge, V̂ iti−52, is estimtated by the respective model. The parameter estimates and complete hedging
results are given in Table 2.19 and 2.20 in Appendix C.2.
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2.5.3.3 Excluding multiple transacted vessels

In Section 2.5.2 we analyze the hedging of second-hand vessel prices with actual pairs of
purchases and sales and find that there is on average a gain in the vessel value. This is
not the case when analyzing value changes over a one-year horizon (see Section 2.5.1). One
reason could be a strategic buying and selling behavior. Especially when the holding period
of a vessel is short, speculative motives are very likely. Therefore, we check if our results
hold, when excluding vessels with more than one resale from our sample17. The coefficient
estimates of the structural model given in Table 2.21 in Appendix C.3 do not indicate
significant differences. Accordingly, the hedge results given in Table 2.12 merely change.

Table 2.12: Sample without resales: hedging results over a one-year horizon

Model I∗+II∗ I∗ II∗

Hedged sales 06/15/2006 -
12/28/2012

06/15/2006 -
02/13/2009

02/15/2010 -
12/28/2012

Observations1) 288 110 112

CH SM CH SM CH SM

% reduction of ... Variance 80.53 82.31 54.45 67.47 75.29 83.97
SD 55.87 57.94 32.51 42.97 50.29 59.96

1) Due to the 52-week delay, the observations in the subperiods I∗ and II∗ do not sum up to the total
sample observations. CH denotes the cross hedge model, SM the structural model and SD the standard
deviation. The unhedged changes of vessel values differ in both models as the value at inception of the
hedge, V̂ iti−52, is estimated by the respective model. The parameter estimates and complete hedging
results are given in Table 2.21 and 2.22 in Appendix C.3.

2.5.3.4 Excluding vessels younger than 5 and older than 20 years

The last robustness check takes into account the way we implement the cross hedge approach
of Alizadeh and Nomikos (2012). Because of the different ages of the vessels in our sample,
we estimate hedge ratios and second-hand values through a linear interpolation between
several quoted price series. For this purpose we also employ newbuilding prices and scrap
values for 0- and 30-year-old vessels, respectively. As explained before, the two series are
no second-hand prices (see Section 2.3.2). We review our study and consider only vessels
between the age of 5 and 20 years. Thus, we drop the (more or less) most and least
expensive vessels in the sample. Re-estimating the coefficients of the structural model (see
Table 2.23 in Appendix C.4) does not uncover important changes, and also the results given
in Table 2.13 do not change considerably compared to the initial setup. Though, in the cross
hedge model the higher average hedge ratios for vessels between the age of 5 and 20 years
(see Table 2.6) lead to increased hedge positions and thus to higher average hedge losses.

17 There might still remain some speculative sales in the sample which cannot be identified properly.
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However, the overall risk reduction in terms of the variance remains on a similar level as in
the initial setup at about 80%.

Table 2.13: Only vessels between age of 5 and 20 years: hedging results over a one-year
horizon

Model I∗+II∗ I∗ II∗

Hedged sales 06/15/2006 -
12/28/2012

06/15/2006 -
02/13/2009

02/15/2010 -
12/28/2012

Observations1) 244 112 76

CH SM CH SM CH SM

% reduction of ... Variance 80.25 80.89 45.06 54.95 81.10 85.94
SD 55.56 56.28 25.88 32.88 56.53 62.50

1) Due to the 52-week delay, the observations in the subperiods I∗ and II∗ do not sum up to the total
sample observations. CH denotes the cross hedge model, SM the structural model and SD the standard
deviation. The unhedged changes of vessel values differ in both models as the value at inception of the
hedge, V̂ iti−52, is estimated by the respective model. The parameter estimates and complete hedging
results are given in Table 2.23 and 2.24 in Appendix C.4.

2.6 Conclusion

This paper provides the first empirical study of the hedging performance of FFAs for second-
hand vessel values in the dry bulk Panamax class. The financial market turmoil of the recent
years caused a crisis of the shipping economy that lasts until today. The surplus of vessels
and their carrying capacity not only leads to lower freight rates, but especially to historically
low vessel prices. For shipowners and other parties involved in ship financing it is therefore
important to have strategies for hedging against falling vessel prices. The problem is that
there is no liquidly traded instrument available to directly hedge ship values. As a second-
best solution Alizadeh and Nomikos (2012) suggest a classical cross hedge model using
forward freight futures which show a high correlation to vessel values. We implement and
adjust such a strategy to check if the theoretical high hedge efficiency is still achieved when
using real transaction data. Based on cross sectional sales data, we estimate a structural
model comprising the vessel’s age as well as freight market information. The model allows
to identify the share of the vessel value that is exposed to freight rate risk. As a reference,
we also apply the conventional time series based cross hedge as proposed by Alizadeh and
Nomikos (2012).

The results show a remarkable risk reduction with either approach, the structural model as
well as the cross hedge model. We find a variance reduction of vessel price changes of more
than 80% over a one-year hedging horizon. However, the subdivision of the vessel value into
a risky and deterministic part leads to a much smaller average hedge position when using the
structural model, such that the costs of hedging are reduced. Over a longer hedging period,
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from resale to resale, risk reduction is lower with about 70% in the structural model, but
only 43% with the conventional cross hedge. Overall, the structural model outperforms the
cross hedge model in every scenario and subsample considered. The reduction of variance
is up to 40 percentage points higher while the required hedge position is up to 40% smaller.
In order to qualify these positive results, we must be aware that models and hedges are
estimated and carried out in-sample which tends to yield better performances than one
might experience in an actual hedge scenario.

Additionally, we perform a comprehensive robustness analysis which especially takes into
account possible disadvantages of the implementation of the cross hedge approach by Al-
izadeh and Nomikos (2012). The analysis confirms the findings without exception. Neither
varying the estimation periods nor restructuring the sample of sales has substantial effects
on the performance or the ranking of the two models.

However, given an average vessel resale value of 29 million USD, it requires an average hedge
exposure within the structural model of more than 20 million USD which corresponds to
more than 1000 days in the 4TC+2Cal FFA contract. Thus, a potential hedger could not
only be deterred by the high hedging volumes, but also the liquidity of the FFA market is
most likely insufficient. Furthermore, the high costs of hedging reveal the large risk premium
included in freight rates which is given away when setting up hedges. It is therefore advisable
to think about less expensive hedging possibilities. For the owner of a vessel, a high variance
of vessel prices caused by an increased demand is beneficial. So it might be enough to hedge
the downside risk and maintain the upside potential. This could be achieved by the use of
(out-of-the-money) freight options which also cost a much lower premium. The existence of
a high premium in ship values may also explain why there is no trading activity in FOSVAs.
When selling such a contract, the owner of a vessel would also lose the large compensation
for holding the asset.

In a practical application, the presented approach might be considered by using smaller
hedge positions than those suggested by the models. The result would be a partial risk
reduction while the possibility to benefit from rising shipping markets remains. Further
research could be helpful to develop more detailed models that contain more variables, both
vessel-specific like speed, equipment or place of construction, as well as market factors like
cost of capital or commodity prices.
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Appendices

A Model selection

We test several model setups incorporating vessel individual factors age and cargo carrying
capacity (measured in dwt) as well as forward freight rates as a proxy of the state of the
freight market and expectations of market participants. The parameter estimates for three
of the regarded setups are given in Table 2.14. Unexpectedly, in setup (1) the coefficient of
the vessel’s capacity βDWT shows a significant negative sign which is against the economic
intuition that larger vessels should be more expensive than smaller ones (see Kavussanos
and Visvikis, 2006). A possible explanation is that the average size of sold vessels increases
in the course of the sample period while vessel prices overall decline as result of the shipping
crisis. For reasons of generality, we therefore do not take the vessel’s capacity into account.
Furthermore, the significant estimate of βf2 in setup (3) indicates a slight non-linearity in
freight rates. However, with respect to a practical application for hedging, we keep things
simple and neglect higher order terms of freight rates. Therefore, setup (2) is the rational
choice for our analysis.

Table 2.14: Regression results for different structural model setups

(1) V iti = β0 + βAge ·Ageiti + βDWT ·DWTi + βf · fti + βf ·Age ·
(
fti ·Age

i
ti

)
+ εi

(2) V iti = β0 + βAge ·Ageiti + βf · fti + βf ·Age ·
(
fti ·Age

i
ti

)
+ εi

(3) V iti = β0 + βAge ·Ageiti + βf · fti + βf2 · f2
ti + βf ·Age ·

(
fti ·Age

i
ti

)
+ εi

Setup (1) (2) (3)

β0 34.885∗∗∗ (4.754) 11.095∗∗∗ (1.399) −2.316 (1.897)
βAge −0.655∗∗∗ (0.099) −0.488∗∗∗ (0.096) −0.512∗∗∗ (0.088)
βDWT −0.302∗∗∗ (0.058)
βf 5.422∗∗∗ (0.189) 5.461∗∗∗ (0.194) 8.836∗∗∗ (0.394)
βf2 −0.175∗∗∗ (0.018)
βf ·Age −0.151∗∗∗ (0.013) −0.158∗∗∗ (0.014) −0.149∗∗∗ (0.013)

S.E. of Reg. 6.069 6.232 5.715
Adj. R2 0.882 0.875 0.895
BIC 6.498 6.540 6.377

Linear regression coefficients for different model setups. Vessel prices (dependent variable) and annual
freight forward rates (fti) are expressed in USD m., age is in years and DWT is the capacity in 1000 dwt.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. Standard errors
in parentheses.
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B Cross hedge model pre-estimates
Table 2.15: Cross hedge model: coefficients for Panamax vessels of different ages

∆52pAge
t = α+ βAge∆52ft + ηt , Age ∈ {0,5,10,15,20,30}

Period
I + II + III I II III
06/16/2006 -
12/28/2012

06/16/2006 -
04/13/2007

04/14/2007 -
02/13/2009

02/14/2009 -
12/28/2012

Observations 342 44 96 202

βAge R2 βAge R2 βAge R2 βAge R2

0 years (new) 0.363 0.676 0.525 0.881 0.256 0.779 0.342 0.398
5 years 0.963 0.880 1.305 0.924 1.026 0.899 1.202 0.884
10 years 1.074 0.880 1.249 0.946 1.119 0.911 1.420 0.894
15 years 1.187 0.862 1.388 0.904 1.286 0.898 1.535 0.874
20 years 1.282 0.806 1.578 0.912 1.390 0.891 1.662 0.752
30 years (scrap) 0.570 0.503 0.138 0.094 0.578 0.774 1.213 0.716

The level series include 394 weeks (17/06/2005 to 28/12/2012) which leaves 342 observations of 52-week
log-differences for the whole sample. The age of scrapped vessels is assumed to be 30 years.

Table 2.16: Chow’s breakpoint test for regressions of second-hand price series on
+2Cal FFA

∆52pAget = α+ βAge
{·} ∆52ft + ηt , Age ∈ {0,5,10,15,20,30} , {·} ∈ {I, II, III, (I + II)}

H0: βAge
I = βAge

II βAge
II = βAge

III βAge
(I+II) = βAge

III

0 years (new) 40.582 47.588 36.398
5 years 2.357 43.765 60.590
10 years 1.642 61.623 85.023
15 years 4.563 47.298 72.064
20 years 12.839 23.637 41.827
30 years (scrap) 7.767 123.831 140.393

95% critical value 3.063 3.026 3.022
F-statistics for Chow’s breakpoint test according to regression results of the cross hedge approach given
in Table 2.15.

Only for the 5- and 10-year-old second-hand price series the null hypothesis of non-different
coefficients in the first two periods cannot be rejected. The difference of parameters for
15-year-old vessels is not significant at the 1% level. As the average age at the time of
sale in the first two periods is 11.54 years and in accordance to the structural model, we
decide to treat the first two subperiods as one (I∗). Compared to the three-subperiods setup,
the parameters of period I∗ are very similar as in the two individual periods I and II. We
therefore expect no significant influences on the hedging results.
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C Robustness results

C.1 Model performance in alternative sample periods
Table 2.17: Performance of the whole-sample setup in subperiods (detailed)

Model I∗+II∗ I∗+II∗

Hedged sales 06/15/2006 - 02/13/2009 02/15/2010 - 12/28/2012
Observations 169 140

CH SM CH SM

Hedge position Mean 28.73 20.04 19.59 17.88

Hedge profit
Mean -19.86 -14.64 1.80 1.49
Variance 376.42 213.38 25.39 20.77
SD 19.40 14.61 5.04 4.56

Change in values Y i :=
(
V iti − V̂

i
ti−52(Ageiti )

)
+ hiti−52

(
fti (τi)− fti−52(τi)

)
Unhedged (h = 0)

Mean 11.39 10.69 -2.12 -4.95
Variance 351.40 317.08 46.04 42.00
SD 18.75 17.81 6.79 6.48

Hedged
Mean -8.48 -3.95 -0.32 -3.47
Variance 149.91 101.34 11.68 10.88
SD 12.24 10.07 3.42 3.30

% reduction of ...
Variance 57.34 68.04 74.63 74.11
SD 34.68 43.47 49.63 49.11

Hedge positions and profits are in USD m., CH denotes the cross hedge model, SM the structural model, and SD
the standard deviation. The unhedged changes of vessel values differ in both models as the value at inception of
the hedge, V̂ iti−12, is estimated by the respective model.

Table 2.18: Joint performance of subperiod-models over whole sample (detailed)

Model I∗+II∗ I∗, II∗

Hedged sales
06/15/2006 - 02/13/2009,
02/15/2010 - 12/28/2012

06/15/2006 - 02/13/2009,
02/15/2010 - 12/28/2012

Observations 309 309

CH SM CH SM

Hedge position Mean 24.59 19.06 27.85 20.71

Hedge profit
Mean -10.05 -7.34 -10.29 -6.23
Variance 333.50 190.44 381.81 164.52
SD 18.26 13.80 19.54 12.83

Change in values Y i :=
(
V iti − V̂

i
ti−52(Ageiti )

)
+ hiti−52

(
fti (τi)− fti−52(τi)

)
Unhedged (h = 0)

Mean 5.27 3.60 5.27 3.11
Variance 257.81 252.76 257.81 212.77
SD 16.06 15.90 16.06 14.59

Hedged
Mean -4.78 -3.73 -5.02 -3.12
Variance 103.60 60.24 125.17 58.04
SD 10.18 7.76 11.19 7.62

% reduction of ...
Variance 59.82 76.17 51.45 72.72
SD 36.61 51.18 30.32 47.77

Hedge positions and profits are in USD m., CH denotes the cross hedge model, SM the structural model, and SD
the standard deviation. The unhedged changes of vessel values differ in both models as the value at inception of
the hedge, V̂ iti−52, is estimated by the respective model. Sales between 02/14/2009 and 02/14/2010 are excluded
in both analyses.
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C.2 Shorter estimation horizon for the structural model
Table 2.19: Shorter estimation horizon for structural model: descriptive statistics and

structural model parameters

Period I∗ + II∗ I∗ II∗
06/15/2006 - 06/15/2006 - 02/14/2009 -
12/28/2012 02/13/2009 12/28/2012

Observations 387 169 218
Mean V iti 29.04 40.56 20.11
Mean Ageiti 12.81 12.07 13.39
Mean fti 7.17 9.72 5.19

β0 7.658*** 16.829*** -0.629
[4.694] [4.099] [-0.316]

βAge -0.340*** -0.598** -0.203*
[-3.120] [-2.139] [-1.663]

βf 5.703*** 4.936*** 6.982***
[26.814] [11.984 [18.811]

βf ·Age -0.168*** -0.146*** -0.184***
[-11.357] [-5.121] [-8.140]

S.E. of Reg. 6.553 9.052 2.691
Adj. R2 0.879 0.806 0.940

Linear regression coefficients for different sample periods. Vessel prices and freight forward rates (scaled to one
year) are expressed in USD m., and age in years. *, **, and *** denote statistical significance at the 10%, 5%, and
1% level, respectively. Figures in [ ] are t-statistics.

Table 2.20: Shorter estimation horizon for structural model: hedging results over a one-
year horizon (detailed)

Model I∗+II∗ I∗ II∗

Hedged sales
06/15/2006 -
12/28/2012

06/15/2006 -
02/13/2009

02/15/2010 -
12/28/2012

Observations1) 387 169 140

CH SM CH SM CH SM

Hedge position Mean 29.00 22.04 30.06 17.88 25.18 24.14

Hedge profit
Mean -4.24 -3.70 -20.75 -13.08 2.34 2.01
Variance 474.28 252.78 422.44 171.72 41.77 36.46
SD 21.78 15.90 20.55 13.10 6.46 6.04

Change in values Y i :=
(
V iti − V̂

i
ti−52(Ageiti )

)
+ hiti−52

(
fti (τi)− fti−52(τi)

)
Unhedged (h = 0)

Mean -0.52 -0.88 11.39 8.75 -2.12 -3.39
Variance 450.96 408.70 351.40 297.22 46.04 40.40
SD 21.24 20.22 18.75 17.24 6.79 6.36

Hedged
Mean -4.77 -4.58 -9.37 -4.32 0.22 -1.38
Variance 92.57 72.71 178.12 95.84 11.49 6.72
SD 9.62 8.83 13.35 9.79 3.39 2.59

% reduction of ...
Variance 79.47 82.21 49.31 67.76 75.04 83.37
SD 54.69 57.82 28.80 43.22 50.04 59.22

Hedge positions and profits are in USD m. 1) Due to the 52-week delay, the observations in the subperiods I∗

and II∗ do not sum up to the total sample observations. CH denotes the cross hedge model, SM the structural
model and SD the standard deviation. The unhedged changes of vessel values differ in both models as the value at
inception of the hedge, V̂ iti−52, is estimated by the respective model.
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C.3 Excluding multiple transacted vessels

Table 2.21: Sample without resales: descriptive statistics and structural model parameters

Period
I∗ + II∗ I∗ II∗

01/21/2005 - 01/21/2005 - 02/14/2009 -
12/28/2012 02/13/2009 12/28/2012

Observations 356 178 178
Mean V iti 28.65 36.21 21.09
Mean Ageiti 11.92 11.38 12.47
Mean fti 6.53 7.88 5.18

β0 10.671*** 20.643*** -0.627
[6.398] [7.069] [-0.298]

βAge -0.500*** -0.883*** -0.206
[-4.087] [-4.122] [-1.508]

βf 5.445*** 4.559*** 7.006***
[22.714] [12.916] [17.860]

βf ·Age -0.152*** -0.117*** -0.186***
[-8.304] [-4.350] [-7.354]

S.E. of Reg. 6.195 7.595 2.742
Adj. R2 0.874 0.845 0.939

Linear regression coefficients for different sample periods. Vessel prices and freight forward rates (scaled to one
year) are expressed in USD m., and age in years. *, **, and *** denote statistical significance at the 10%, 5%, and
1% level, respectively. Figures in [ ] are t-statistics.

Table 2.22: Sample without resales: hedging results over a one-year horizon (detailed)

Model I∗+II∗ I∗ II∗

Hedged sales
06/15/2006 -
12/28/2012

06/15/2006 -
02/13/2009

02/15/2010 -
12/28/2012

Observations1) 288 110 112

CH SM CH SM CH SM

Hedge position Mean 29.56 22.61 30.83 18.11 25.89 25.47

Hedge profit
Mean -2.04 -1.98 -19.13 -12.03 2.68 2.32
Variance 470.73 232.69 506.44 170.92 43.68 39.43
SD 21.70 15.25 22.50 13.07 6.61 6.28

Change in values Y i :=
(
V iti − V̂

i
ti−52(Ageiti )

)
+ hiti−52

(
fti (τi)− fti−52(τi)

)
Unhedged (h = 0)

Mean -2.48 -3.57 9.50 7.22 -2.41 -3.81
Variance 443.88 390.92 379.46 290.03 48.28 43.39
SD 21.07 19.77 19.48 17.03 6.95 6.59

Hedged
Mean -4.52 -5.54 - 9.63 -4.81 0.27 -1.49
Variance 86.43 69.16 172.84 94.34 11.93 6.95
SD 9.30 8.32 13.15 9.71 3.45 2.64

% reduction of ...
Variance 80.53 82.31 54.45 67.47 75.29 83.97
SD 55.87 57.94 32.51 42.97 50.29 59.96

Hedge positions and profits are in USD m. 1) Due to the 52-week delay, the observations in the subperiods I∗

and II∗ do not sum up to the total sample observations. CH denotes the cross hedge model, SM the structural
model and SD the standard deviation. The unhedged changes of vessel values differ in both models as the value at
inception of the hedge, V̂ iti−52, is estimated by the respective model.



41

C.4 Excluding sales of vessels under 5 and over 20 years
Table 2.23: Only vessels between age of 5 and 20 years: descriptive statistics and structural

model parameters

Period
I∗ + II∗ I∗ II∗

01/21/2005 - 01/21/2005 - 02/15/2010 -
12/28/2012 02/13/2009 12/28/2012

Observations 310 178 132
Mean V iti 29.65 36.38 20.58
Mean Ageiti 12.27 11.97 12.67
Mean fti 6.96 8.27 5.19

β0 12.121*** 16.953*** -3.054
[4.309] [3.958] [-0.835]

βAge -0.573*** -0.554* -0.074
[-2.752] [-1.703] [-0.290]

βf 5.792*** 5.324*** 8.036***
[15.622] [10.797] [11.593]

βf ·Age -0.184*** -0.179*** -0.262***
[-6.789] [-4.922] [-5.374]

S.E. of Reg. 6.568 7.777 2.468
Adj. R2 0.819 0.767 0.907

Linear regression coefficients for different sample periods. Vessel prices and freight forward rates (scaled to one
year) are expressed in USD m., and age in years. *, **, and *** denote statistical significance at the 10%, 5%, and
1% level, respectively. Figures in [ ] are t-statistics.

Table 2.24: Only vessels between age of 5 and 20 years: hedging results over a one-year
horizon

Model I∗+II∗ I∗ II∗

Hedged sales
06/15/2006 -
12/28/2012

06/15/2006 -
02/13/2009

02/15/2010 -
12/28/2012

Observations1) 244 112 76

CH SM CH SM CH SM

Hedge position Mean 34.83 21.85 34.07 17.33 31.32 24.49

Hedge profit
Mean -5.83 -4.20 -26.07 -14.12 2.65 1.90
Variance 636.19 241.43 414.08 127.61 58.32 37.20
SD 25.22 15.54 20.35 11.30 7.64 6.10

Change in values Y i :=
(
V iti − V̂

i
ti−52(Ageiti )

)
+ hiti−52

(
fti (τi)− fti−52(τi)

)
Unhedged (h = 0)

Mean -1.18 -1.56 12.66 10.07 -2.65 -3.35
Variance 529.31 413.18 282.61 205.35 53.56 42.01
SD 25.22 20.33 16.81 14.33 7.64 6.48

Hedged
Mean -6.67 -5.76 -13.44 -4.05 0.00 -1.44
Variance 104.53 78.97 155.27 92.51 10.12 5.91
SD 10.22 8.89 12.46 9.62 3.18 2.43

% reduction of ...
Variance 80.25 80.89 45.06 54.95 81.10 85.94
SD 55.56 56.28 25.88 32.88 56.53 62.50

Hedge positions and profits are in USD m. 1) Due to the 52-week delay, the observations in the subperiods I∗

and II∗ do not sum up to the total sample observations. CH denotes the cross hedge model, SM the structural
model and SD the standard deviation. The unhedged changes of vessel values differ in both models as the value at
inception of the hedge, V̂ iti−52, is estimated by the respective model.



42 Hedging vessel values using freight derivatives

References

Adland, R., Jia, H., and Koekebakker, S. (2004), ‘The pricing of forward ship value
agreements and the unbiasedness of implied forward prices in the second-handand market
for ships’, Maritime Economics & Logistics 6(2), 109–121.

Adland, R. and Koekebakker, S. (2004), ‘Market efficiency in the second-hand market
for bulk-ships’, Maritime Economics & Logistics 6(1), 1–15.

Adland, R. and Koekebakker, S. (2007), ‘Ship valuation using cross-sectional sales
data: a multivariate non-parametric approach’, Maritime Economics and Logistics 9(2),
105–118.

Alizadeh, A. H. and Nomikos, N. K. (2009), Shipping derivatives and risk management,
Palgrave Macmillan, Basingstoke.

Alizadeh, A. H. and Nomikos, N. K. (2012), ‘Ship finance: hedging ship price risk
using freight derivatives’, in W. K. Talley, ed., ‘The Blackwell Companion To Maritime
Economics’, Chapter 22, Wiley-Blackwell, West Sussex, 1st Edition.

Alizadeh-Masoodian, A. H. (2001), An econometric analysis of the dry bulk shipping
industry; seasonality, market efficiency and risk premia, Ph.D. thesis, City University
London.

Andreou, E. and Ghysels, E. (2002), ‘Detecting multiple breaks in financial market
volatility dynamics’, Journal of Applied Econometrics 17(5), 579–600.

Beenstock, M. (1985), ‘A theory of ship prices’, Maritime Policy and Management 12(3),
215–225.

Beenstock, M. and Vergottis, A. (1989), ‘An econometric model of the world market
for dry cargo freight and shipping’, Applied Economics 21(3), 339–356.

Chow, G. C. (1960), ‘Tests of equality between sets of coefficients in two linear regressions’,
Econometrica 28(3), 591–605.

Clarkson Research Services (2013), ‘Dry bulk trade outlook February 2013’, London.

Drobetz, W., Gounopoulos, D., Merikas, A., and Schröder, H. (2013), ‘Capital
structure decisions of globally-listed shipping companies’, Transportation Research Part
E: Logistics and Transportation Review 52, 49–76, Special Issue I: Maritime Financial
Management.

Ederington, L. H. (1979), ‘The hedging performance of the new futures markets’, The
Journal of Finance 34(1), 157–170.



43

Fama, E. F. (1970), ‘Efficient capital markets: a review of theory and empirical work’, The
Journal of Finance 25(2), 383–417.

Glen, D. R. (1997), ‘The market for second-hand ships: further results on efficiency using
cointegration analysis’, Maritime Policy & Management 24(3), 245–260.

Hale, C. and Vanags, A. (1992), ‘The market for second-hand ships: some results on
efficiency using cointegration’, Maritime Policy & Management 19(1), 31–39.

Jallal, C. (2013), ‘The evolution of ship value assessment’, The Baltic Summer 2013,
48–49.

Kavussanos, M. G. (1997), ‘The dynamics of time-varying volatilities in different size
second-hand ship prices of the drycargo sector’, Applied Economics 29(4), 433–443.

Kavussanos, M. G. and Alizadeh, A. H. (2002), ‘Efficient pricing of ships in the dry
bulk sector of the shipping industry’, Maritime Policy & Management 29(3), 303–330.

Kavussanos, M. G. and Visvikis, I. D. (2006), ‘Shipping freight derivatives: a survey
of recent evidence’, Maritime Policy & Management 33(3), 233–255.

Kavussanos, M. G., Visvikis, I. D., and Goulielmou, M. A. (2007), ‘An investigation
of the use of risk management and shipping derivatives: the case of Greece’, Maritime
Policy & Management 34(1), 49–68.

Müssgens, C. (2012), ‘Schiffsfonds droht eine Insolvenzwelle’, Frankfurter Allgemeine
Zeitung 277, 19, 27.11.2012.

Pruyn, J. F. J., Van de Voorde, E., and Meersman, H. (2011), ‘Second hand vessel
value estimation in maritime economics: a review of the past 20 years and the proposal
of an elementary method’, Maritime Economics & Logistics 13(2), 213–236.

Sodal, S., Koekebakker, S., and Adland, R. (2009), ‘Value based trading of real
assets in shipping under stochastic freight rates’, Applied Economics 41(22), 2793–2807.

Stopford, M. (2009), Maritime economics, Taylor & Francis Ltd., New York, NY, 3rd
Edition.

Strandenes, S. (1984), ‘Price determination in the time charter and second hand markets’,
Center for Applied Research, Norwegian School of Economics and Business Administra-
tion, working paper MU 6.

Syriopoulos, T. and Roumpis, E. (2006), ‘Price and volume dynamics in second-hand
dry bulk and tanker shipping markets’, Maritime Policy & Management 33(5), 497–518.

Tsolakis, S., Cridland, C., and Haralambides, H. (2003), ‘Econometric modelling
of second-hand ship prices’, Maritime Economics & Logistics 5(4), 347–377.





Chapter 3

Measuring crisis risk using
conditional copulas: an empirical
analysis of the 2008 shipping crisis

with Sebastian Opitz

Abstract

The shipping crisis starting in 2008 was characterized by sharply de-
creasing freight rates and sharply increasing financing costs. We analyze
the dependence structure of these two risk factors employing a conditional
copula model. As conditioning factors we use the supply and demand
of seaborne transportation. We find that crisis risk strongly increased
already about one year before the actual crisis outburst, and that the
shipping crisis was predominantly driven by an oversupply of transport
capacity. Therefore, market participants could have prevented or allevi-
ated the crisis’ consequences by reducing the ordering and financing of
new vessels.
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3.1 Introduction

Shipping companies and banks involved in ship finance still suffer from the crisis that started in
2008. The vast number of new vessels that have been ordered during the industry’s boom led to
a massive surplus of transportation capacity and caused a sharp decline in freight rates and vessel
values. Hundreds of shipping funds have already collapsed as they are unable to pay back interest
or principal to their lenders (see Goff et al., 2014). As a consequence, ship financing banks are also
deeply involved in the crisis and face immense impairment losses. European banks are especially
hit as they cover about 80% of world shipping loans (see Stoltenberg, 2014). A main reason for the
irrational ordering of new vessels is the delayed feedback of investment decisions because of time
to build which let shipping firms neglect the investments of their competitors (see Greenwood and
Hanson, 2015). Therefore, we investigate whether the shipping crisis was predominantly caused
by the collapse of the financial system, and thus exogenously, or at least partially by the shipping
industry itself. In the latter case it could have been prevented or at least alleviated.

The major risk factors for a shipping company’s balance sheet are the value of its vessels on the asset
side and its financing costs on the liability side. While the financing costs can be approximated by
bond yields of an appropriate rating class, specific vessel values are less easy to observe1. Instead,
one may look on freight rates which not only show a strong correlation to vessel values, but also a
higher liquidity and transparency. We consider freight rates as the suitable instrument to capture
price risks in the shipping market.

We speak of a ’crisis in shipping’ when we simultaneously observe extreme asymmetric adverse
movements of both balance sheet risk factors, a sharp decline of freight rates and a strong increase
of financing costs. The dependence of these two factors is modeled by the main drivers of supply
and demand of shipping services. Following Stopford (2009), these are the world fleet and the
world economy, respectively. For the aim of our study, it is important to note that only the supply of
transportation services can be controlled by market players like shipping companies through ordering
new vessels or scrapping old ones. Moreover, shipping investors can decide whether to lend money
for new vessels or not and at which rate. These measures could have prevented the shipping crisis.

In this paper we follow the approach of Patton (2006) and estimate the conditional asymmetric
dependence of freight rates and financing costs using a conditional copula model. We capture the
crisis vulnerability by interpreting the copula’s tail dependence as shipping crisis risk. As conditioning
factors we use the drivers of supply and demand of shipping services, the orderbook-to-fleet ratio and
the world stock market index, respectively. We analyze whether a sharp increase of supply or a sharp
decrease of demand leads to a rise of shipping crisis risk (c.p.). Both effects are tested individually
as well as simultaneously.

We find highly significant conditional asymmetric dependence when conditioning on both supply
and demand factors, a weak significance when using only the supply side factor and no significance
when employing only demand shocks. Most important, we obtain strong signals for a shipping crisis
already about one year before its actual outburst. The results confirm that the shipping crisis is
mainly driven by overcapacity and could have been prevented to some extent.
1 Clarksons and The Baltic Exchange publish periodic price assessments that refer to certain reference

vessels. These assessments are not actual market prices and hence may not be suitable for determining
the correct market value of a particular vessel.



The shipping crisis starting in 2008 47

The rest of the paper is structured as follows: In the next section we give a concise overview of the
shipping crisis that started in 2008 as well as the related literature. Section 3.3 provides the data
and illustrates the methodology used in our analysis. Section 3.4 discusses the empirical results and
robustness analyses. The paper concludes with a discussion and implications in Section 3.5.

3.2 The shipping crisis starting in 2008
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Figure 3.1: Development of freight rates and financing costs

The main driver for global seaborne transportation is the global economy. It determines the demand
for commodities and goods and thus the demand for global transportation. This dependence on
business cycles causes fluctuations in the demand for shipping services. Usually, a rising demand is
accompanied by increasing freight rates which roughly reflect the cost of transportation and can be
regarded as the main income for shipowners. The naturally strong relation between global economy
and shipping has amongst others been revealed by Grammenos and Arkoulis (2002) or Drobetz et al.
(2010) who find global stock market changes as a long-run systematic risk factor for expected shipping
stock returns. Furthermore, Kavussanos and Tsouknidis (2014) find that stock market volatility is a
main factor of global shipping bond spreads. In particular, the booming industry prior to the recent
financial crisis led to an extreme increase of freight rates (see Figure 3.1) as the demand for maritime
transportation services exceeded the supply. Though, the reaction of vessel supply is slow due to
the time to build delay of typically 18 to 36 months (see Kalouptsidi, 2014). In order to participate
in the booming market shipping companies and investors ordered more and more new vessels or
bought used ones on the second-hand market which also caused vessel prices to rise sharply. The
high ordering activity culminated in an orderbook-to-fleet ratio of almost 80% at the end of 2008
(see Figure 3.2).

Most shipping companies have a quite limited access to the capital market. New vessels are therefore
mainly financed through bank loans usually covering about 50-80% of the market value of the vessel
(see Stopford, 2009). The remaining equity part was often raised by setting up shipping funds which
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Figure 3.2: Development of demand and supply of maritime transportation services

became quite popular especially in Germany because of certain tax benefits. With hindsight, it
appears that the easy and comparably cheap financing via shipping funds was one reason for the
exorbitant ordering in the boom years as it was possible to buy vessels but bear almost no risk.
Because of this financing structure, shipping companies exhibit significantly higher leverage ratios2

of 69% on average compared to an average leverage ratio of 33% for other industrial firms (excluding
financial and utility firms) as pointed out by Drobetz et al. (2013). This comparatively high share
of debt makes shipping companies especially susceptible to changes in interest rates, and because of
mostly speculative grade ratings, risk premiums are very high. The specific risks of shipping bonds
are studied by Grammenos et al. (2008) who observe 50 high-yield shipping bonds issued between
1992 and 2004. Despite of the fact that most bonds in the sample are rated BB or B, 13 of them had
defaulted within the observation period which exceeds by far the empirical default probability (see
Albertijn et al., 2011). Furthermore, Kavussanos and Tsouknidis (2014) find that the average risk
premium of shipping bonds is higher compared to general corporate bonds of the same rating class.

When the world economy was hit by the financial crisis, the demand for shipping services collapsed
and the shipping boom found a sudden end with sharply declining freight rates and vessel values.
The supply overhang of vessels became even worse as more and more vessels entered the market that
had been ordered at peak prices against high lending. Unable to pay back principal or interest many
shipping companies had to sell vessels at large discounts or went insolvent. The decreasing vessel
values also entailed loan losses for the financing banks as shipping loans are usually collateralized
by the respective vessel. Thus, with more and more defaults, banks began to cut back or even
discontinue their shipping investments causing a downward spiral in vessel values (see Wright, 2011).

Freight rate volatility might therefore be regarded as the main risk factor in the shipping industry. On
the one hand, freight earnings are a shipping company’s primary source of income such that freight
rate volatility directly affects the profitability. On the other hand, the values of vessels are directly
determined by freight rates as the price of a vessel can be regarded as the present value of its future

2 Defined as the relative share of debt to equity.
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operational profits plus the discounted expected scrap value. Beenstock (1985) and Beenstock and
Vergottis (1989) introduce the use of freight rates to calculate ship prices within an asset value model
and embed this approach in an extensive supply and demand framework incorporating world wealth,
fleet size, expected operational earnings, expected future second-hand prices and interest rates. A
similar approach is shown by Tsolakis et al. (2003) who develop a structural regression model that
describes second-hand prices as a function of time charter rates, newbuilding prices, the orderbook
as percentage of the total fleet and the cost of capital. For bulk carriers they find that newbuilding
prices, time charter rates and the cost of capital have the biggest effect on second-hand vessel prices.
Significantly negative effects of the orderbook-to-fleet ratio are only detected for tankers. Adland
and Koekebakker (2007) use actual second-hand sales data to estimate a non-parametric model for
ship values of the dry bulk Handysize class and also find the state of freight market to be a significant
factor amongst the vessel individual factors age and size. Accordingly, it is plausible to use freight
rates for capturing ship price risks in shipping companies’ balance sheets.

A further critical aspect in this context is irrational ordering behavior of shipping investors as a
consequence of the time to build delay. As Greenwood and Hanson (2015) show in their behavioral
model of shipping industry cycles, firms overinvest when the market is in a boom leading to overca-
pacity and low returns thereafter. Two main reasons are found. First, shipping investors overestimate
the persistence of prevailing high freight rates and therefore overvalue their investments. Secondly,
firms tend to neglect the investments of their competitors and order too many vessels. Moreover,
Kalouptsidi (2014) finds that the presence of time to build has an increasing effect on ship prices
while level and volatility of investments decline.

In general, modern financial theory implies the independence of a company’s investing and financ-
ing decisions. However, the results of the above-mentioned studies suggest that cross-balance sheet
interdependencies are most likely in shipping companies. Such interdependencies have been empir-
ically proven for several industries (see Stowe et al., 1980; Jang and Ryu, 2006; Van Auken et al.,
1993). They seem to occur especially when assets serve as collateral for their respective loan facil-
ities, when the maturity of loans is matched to the maturities of the assets or when the industry
faces special conditions in terms of refinancing possibilities (see Stowe et al., 1980). These conditions
apply to shipping companies (see Albertijn et al., 2011). The study by Kavussanos and Tsouknidis
(2014) also identifies freight earnings as a main determinant for shipping bond spreads, such that the
transmission channel between asset value and financing costs most likely is bi-directional. From the
perspective of risk management, regardless whether we take the perspective of a shipping company
or a capital lending institution, it is therefore important not only to look at the risk factors of both
sides of the balance sheet but especially at their extreme dependence and co-movement.

Extreme asymmetric dependencies cannot be described by linear dependence measures such as cor-
relation or linear time series models such as cointegration. Alternatively, copulas can be used to
capture such effects. Copulas allow to distinguish between the variables’ marginal and joint distri-
bution (see for example Patton, 2004; Chen and Fan, 2006). Junker et al. (2006) use copulas for
empirically studying extreme asymmetric dependencies of interest rates. Patton (2006) extends the
copula theory and allows for conditioning variables to model asymmetric exchange rate dependence.
A first attempt in the literature to apply copulas in ship finance is the effort of Merikas et al. (2013)
who model joint distributions of dry bulk time charter rates.
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This paper contributes to the literature of ship finance by investigating the extreme dependence
of the two main balance sheet risk factors, ship values/freight rates and financing costs. For that
purpose, we use a conditional copula model. This is one of the first applications of copulas in ship
finance. As a further important contribution we quantify the potential crisis risk in the shipping
sector from the econometric model. We show that shipping crisis risk strongly increased about one
year before the actual outburst of the crisis in 2008 and that the shipping crisis was mainly driven
by overcapacity. Thus, market participants would have had the time and measures to prevent the
intensity and persistence of the shipping crisis. We also contribute to the financial econometrics
literature in general by applying conditional copulas empirically.

3.3 Modeling

In this section we describe the data set and its properties to specify our time series model. We then
present the conditional dependence model for the subsequent empirical analysis.

3.3.1 Data description and properties

We investigate the extreme dependence of the two main risk factors of shipping companies’ balance
sheets, freight rates (assets) and financing costs (liabilities). As a proxy for asset side risk we employ
the Baltic Dry Index (BDI) as it implicitly determines the values of vessels. The BDI is a composite
index of four dry bulk time charter averages and represents the costs for transporting bulk goods like
coal, iron ore, grains and fertilizers. The risks on the liability side are essentially changes in cost of
finance. As shipping bonds are typically of non-investment grade (see Grammenos et al., 2008) we
use the effective yield of the BofA Merrill Lynch U.S. Corporate B-rated Index (BY) to capture the
cost of capital. For both series we use log-differences of end-of-month data over the sample period
from January 1997 to December 2014, altogether 216 observations.

Moreover, we apply factors for supply and demand of maritime services that influence the co-
movement of freight rates and financing costs. On the one hand, we use the orderbook-to-fleet
ratio of dry bulk vessels (OFR) representing the supply of maritime services. Because of the time to
build delay of new vessels, this measure has a forward looking element, where a high ratio indicates
a rising supply in the near future. On the other hand, we employ the MSCI world stock market
index (MSCI) as a proxy for the demand of seaborne transportation. As a worldwide equity index
the MSCI reflects the expectations of future economic conditions and consequently, is connected to
the demand of shipping services. Estimating extreme dependence entails the problem that only few
data drive the estimation outcome. We counteract this issue by using differences over a window of
three months for the conditioning variables. Moreover, we choose a lag of three months to take into
account the time until consideration.3 Table 3.1 gives an overview of the required variables for our
analysis, summary statistics are shown in Table 3.2. We observe negative mean log-differences for
both risk factors. Moreover, with a value of 0.2197 freight rates show a much higher volatility than
corporate bond yields. In particular, the skewness of the BDI is negative with -1.4506 indicating a
heavier loss tail.
3 In the robustness analysis we also investigate different lag lengths and window widths.
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Table 3.1: Glossary and definitions of variables

Symbol Variable Source/Definition

Basic series (end-of-month)

BDI Baltic Dry Index Datastream
BY BofA Merrill Lynch U.S. Corporate B Index Federal Reserve
O Orderbook of dry bulk vessels (DWT) Clarksons Shipping Intelligence
F Fleet of dry bulk vessels (DWT) Clarksons Shipping Intelligence
MSCI MSCI World Price Index Datastream

Derived series

LBDI Log-difference of BDI log (BDI(t))− log (BDI(t− 1))
LBY Log-difference of BY log (BY(t))− log (BY(t− 1))
OFR Orderbook-to-fleet ratio O(t)/F (t)
∆3
OFR Three-months difference of OFR OFR(t)−OFR(t− 3)

∆3
MSCI Three-months log-difference of MSCI log (MSCI(t))− log (MSCI(t− 3))

Table 3.2: Summary statistics

Symbol Mean SD Skewness Kurtosis

LBDI -0.0031 0.2197 -1.4506 10.8532
LBY -0.0016 0.0635 0.7546 5.1946
∆3
OFR 0.0016 0.0318 0.9182 4.8221

∆3
MSCI 0.0010 0.0872 -1.1218 6.3653

This table gives the summary statistics of derived time series over the sample period from January 1997
to December 2014.

3.3.2 Mean and variance model

The mean dynamics of the monthly log-differences of BDI and BY are modeled by a vector autore-
gressive model of order p, i.e.[

LBDIt

LBYt

]
=
[
βBDI,0

βBY,0

]
+

p∑
i=1

Bi

[
LBDIt−i

LBYt−i

]
+
[
σBDI,t εBDI,t

σBY,t εBY,t

]
, t = t0,...,T, (3.1)

where βBDI,0 and βBY,0 denote the constants, Bi is the coefficient matrix of the i-th VAR lag,
i = 1,...,p, εBDI,t and εBY,t describe the error time series and σBDI,t and σBY,t are the corresponding
time-dependent standard deviations. In particular, Bi is specified as

Bi =
[
βBDI1,i βBDI2,i

βBY 1,i βBY 2,i

]
, i = 1,...,p. (3.2)

The bivariate error term [εBDI,t, εBY,t], t = t0,...,T , has zero mean, unit variance and conditional
joint distribution H(·, · |z), where z ∈ Z = {∆3

OFR,∆3
MSCI} is a conditioning variable describing the

dynamics of H. Consequently, the innovations are not identically distributed, but, given z, εBDI,t
and εBY,t are independent.
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In order to identify the model specification for the given data set, we first determine the lag length p
of the VAR model. We find that the mean dynamics follow a VAR(4) process as indicated by AIC.4

Secondly, we control for heteroscedasticity in the variance dynamics. As a GARCH-analysis results
in non-stationary variance estimates, we employ the structural break point analysis by Andreou and
Ghysels (2002). In this test we employ the modulus of the two residual time series of the VAR(4)
model with a minimal period length of 24 months. The obtained change points are given in Table 3.3.
For either of the two risk factors, BDI and BY, we obtain a BIC optimal specification with one change

Table 3.3: Change point analysis for VAR(4)-residuals of BDI and BY

Panel A: BDI

# Change Points 0 1∗ 2 3 4

BIC -406.3662 -415.9446 -415.1311 -413.7200 -412.4956

Change Point 1 - 01/2008 09/2003 09/2003 09/2003
Change Point 2 - - 09/2008 01/2008 01/2008
Change Point 3 - - - 01/2010 10/2010
Change Point 4 - - - - 01/2012

Panel B: BY

# Change Points 0 1∗ 2 3 4

BIC -666.1948 -670.8048 -669.7191 -669.5407 -668.4873

Change Point 1 - 01/2008 11/2005 10/2000 06/2005
Change Point 2 - - 01/2008 08/2003 06/2007
Change Point 3 - - - 06/2007 08/2009
Change Point 4 - - - - 08/2011

This table presents the change point analysis using the structural break point test by Andreou and Ghysels
(2002) for the modulus of the residual time series of BDI in Panel A, and BY in Panel B from January
1997 to December 2014. The minimal period length is set to 24 months. The BIC-optimal specification
is indicated by *.

point in 01/2008. Accordingly, the standard deviations of our time series model σBDI,t and σBY,t

are regime dependent and given by

σBDI,t =

σBDI,I , 5 ≤ t < τ ,

σBDI,II , τ ≤ t ≤ 216
and σBY,t =

σBY,I , 5 ≤ t < τ ,

σBY,II , τ ≤ t ≤ 216 ,
(3.3)

where τ = 133 (01/2008).

The summary statistics in Table 3.2 indicate heavier tailed distributed error terms than the rather
light-tailed normal distribution. To allow for more mass in the tails we therefore assume both vari-
ables to be t-distributed. Figure 3.3 shows the QQ-plots of the empirical quantiles of the standardized
residuals against the t-distribution for BDI (A) and BY (B), respectively.5 For the errors of BDI, the
t-distribution fits well at the lower tail, but shows minor deviations at the upper tail. For the errors

4 In the robustness analysis, we also check the VAR(0) model as indicated by BIC and HQ. It is important
to note that the use of a VAR(0) model results in an autocorrelation up to lag four for the residuals.

5 The standardized residuals are the least squares error terms of the VAR(4) model with time-varying
volatilities.
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Figure 3.3: QQ-plots of standardized residuals

of BY, the results are reversed with a good fit at the upper tail but a discrepancy at the lower tail.
However, we are especially interested in modeling joint adverse movements of both risk factors, in
particular a sharp decline of freight rates and a strong increase of financing costs. For this purpose,
the t-distribution is a suitable choice for the conditional marginal distributions.

3.3.3 Conditional dependence model

Following Joe (1997) and Nelsen (2006), we use the copula framework to model the dependence
structure of multivariate distribution functions. In this analysis, we restrict ourselves to the bivariate
case as we are focusing on only two risk factors. In particular, we apply the extension of Sklar’s
theorem (1959) for conditional distributions as stated in Patton (2006), i.e.

H(x,y | z) = C(F (x | z), G(y | z) | z), (3.4)

where F and G are the conditional univariate distributions of the random variables X and Y ,
respectively, given z ∈ Z, where Z is the domain of the conditioning random variable Z. C denotes
a conditional copula, which is a conditional distribution function on [0,1] × [0,1] × Z with uniform
margins. Thus, any two conditional univariate margins F and G and any conditional copula C can
be used to specify the conditional joint distribution H of two random variables X and Y . In our
case, we apply the t-distribution for both margins, i.e. F (x|z) = tνBDI (x) and G(y|z) = tνBY (y),
where νBDI and νBY are the respective degrees of freedom, representing the conditional univariate
distributions of freight rates and financing costs, respectively.

As we are particularly interested in the asymmetric extreme dependence of freight rates and financing
costs, we apply the upper left version of the tail dependence coefficient λ given by
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λ = lim
u↑1

P(Y > G−1(u)|X < F−1(1− u)). (3.5)

In this setup, λ describes the likelihood of large positive observations in BY given large negative
observations in BDI. Tail dependence is an important property of copulas as it is independent of the
margins and solely determined by the copula itself.

To specify the dependence structure of BDI and BY, we apply the conditional mirrored transformed
Frank copula CmtF (·, · |z)6, which is due to Junker (2003) and defined as

CmtF (u,v | z) = v − 1
θ(z) ln

[
1 + (e−θ(z) − 1) exp

[
−
[(
− ln

(
e−uθ(z) − 1
e−θ(z) − 1

)) ln(2)
ln(2−λ(z))

+
(
− ln

(
e−vθ(z) − 1
e−θ(z) − 1

)) ln(2)
ln(2−λ(z))

] ln(2−λ(z))
ln(2)

]]
.

(3.6)

In our case, the conditional upper left tail dependence λ(z) is quantified through the logistic function,
such that

λ(z) = 1
1 + exp (−(κλ,0 + 〈κλ, z〉))

, (3.7)

where κλ,0 is the constant, and κλ = (κλ,OFR, κλ,MSCI) denotes the parameters of the condition-
ing factors z = (∆3

OFR,∆3
MSCI)>. We interpret λ ∈ [0,1] as shipping crisis risk where the crisis

vulnerability is highest for λ = 1.

Next to the conditional extreme dependence parameter λ(z), the relationship of BDI and BY is
characterized by the conditional broad dependence parameter θ(z) in CmtF (·, · |z). Our focus is
placed on the asymmetric dependence, so we set θ(z) = θ for the main analysis, and explore the
general case θ(z) in the subsequent robustness analysis in Section 3.4.2.

Taken together, the input data for the subsequent empirical analysis is characterized by a VAR(4)
model in Equation (3.1) with time-varying volatilities in Equation (3.3). The corresponding innova-
tions εBDI,t and εBY,t are t-distributed and their dependence structure is specified by the conditional
mirrored transformed Frank copula CmtF (·, · |z) in Equation (3.6) such that the conditional joint
distribution H is given by

H(x,y | z) = CmtF
(
tνBDI (x | z), tνBY (y | z) | z

)
. (3.8)

3.4 Empirical results

We have specified the marginal model in Equation (3.1), the conditional copula CmtF (·, · |z) in Equa-
tion (3.6) as well as the time-dependent conditional tail dependence λ(z) in Equation (3.7). Now,
we present the one-step estimation results using the maximum-likelihood approach and afterwards
check for robustness.

6 For an extensive derivation see Appendix A.
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3.4.1 Estimation results

We calculate the tail dependence in three conditional model setups where the crisis risk λ is con-
ditioned on the supply side factor OFR, the demand side factor MSCI as well as on both factors
simultaneously. In addition, we also investigate the unconditional case. The maximum-likelihood
estimates of the coefficients of the four different model setups are given in Table 3.4. The estimated
degrees of freedom for the t-distributions of the two risk factors BDI and BY are significant in each
setup and indicate non-normally distributed margins. Furthermore, the broad dependence parameter
θ is not significant in any of the setups.

The unconditional shipping crisis risk is obtained by Model (1). Using Equation (3.7) the estimate
of κλ,0 of -2.8616 can be transferred into a λ of 0.0541 or a constant crisis probability of 5.41%.
In Model (2) we only condition on the delayed three-months change of the orderbook-to-fleet ratio
and obtain a coefficient κλ,OFR of 0.9207. Although the coefficient is not significantly different from
zero, the one-sided p-value in Panel C confirms a positive relationship between the orderbook-to-
fleet ratio and shipping crisis risk at the 10% significance level. In Model (3) the coefficient for
the delayed three-months MSCI return κλ,MSCI is negative with -0.4474, though not significant.
In this case, the one-sided test also rejects that a decline of global economy causes crisis risk to
rise. In contrast, the simultaneous consideration of supply and demand side changes in Model (4)
results in strongly significantly positive and negative estimates for both conditioning variables OFR
and MSCI, respectively. Thus, a joint increase/decrease of the orderbook-to-fleet ratio/MSCI World
index significantly increases the risk of a shipping crisis. However, testing simultaneous adverse
movements of both parameters in the way that κλ,OFR > 0 and κλ,MSCI < 0 is not straightforward.
For our setup a conservative upper bound for the p-value can be obtained as the maximum of the
individual parameter p-values which is 0.0046, the p-value of κλ,MSCI < 0. We interpret this as a
clear indication that the probability of a shipping crisis rises remarkably if a sharp increase of the dry
bulk fleet occurs during a global economic downturn. Having standardized series of our conditioning
factors, we can also conclude that the share of the supply side factor influence is about 60% against
a demand side factor influence of 40%. The complete model estimates can be found in Appendix B.

The resulting time-dependent realizations of the tail dependence coefficients λ for each model setup
are plotted in Figure 3.4. Figure 3.4(A) shows the constant unconditional tail dependence of 5.41%.
When including the changes on the supply side, the orderbook-to-fleet ratio (see Figure 3.4(B)),
shipping crisis risk increases sharply between the middle of 2007 and 2009 but remains below 10% in
the remaining sample period. With respect to the drop of the BDI that took place in late 2008 (see
Figure 3.1) this approach generates a well timed warning signal. However, the indicated conditional
crisis probability is at most 46% (04/2008). The third plot in Figure 3.4(C) shows the tail dependence
coefficient obtained by Model (3) where only the lagged demand side changes (MSCI) are employed
as conditional parameter. There is only a short amplitude in the first quarter of 2009 which is too
late to be a warning signal. For Model (4) that includes both supply and demand side factors as
conditions for the extreme dependence of BDI and bond yields, the tail dependence coefficient is
plotted in Figure 3.4(D). While there is no crisis risk indicated before 09/2007 and after 02/2009,
the coefficient fluctuates and rises up to 99% (4/2008) in between. This model setup also yields a
crisis warning signal almost one year before the outbreak of the shipping crisis. Compared to the
second case in Figure 3.4(B) it is much more distinct.
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Table 3.4: Maximum-likelihood coefficient estimates

Model (1) (2) (3) (4)

Conditioning
factors none ∆3

OFR,t−3 ∆3
MSCI,t−3

∆3
OFR,t−3 &

∆3
MSCI,t−3

Panel A: Parameter estimates

κλ,0 -2.8616∗∗ -3.1200∗ -2.9762∗∗ -16.8814∗∗

[1.2813] [1.8899] [1.4633] [7.1626]
κλ,OFR 0.9207 4.9473∗∗∗

[0.6693] [1.8176]
κλ,MSCI -0.4474 -3.4130∗∗∗

[0.7273] [1.3099]
θ 0.1067 -0.0041 0.0660 0.3693

[0.6501] [0.6608] [0.6299] [0.4697]

Panel B: Regression diagnostics

νBDI 4.3479∗∗ 3.6365∗∗ 3.6903∗∗ 4.0193∗∗

[1.8685] [1.7719] [1.8223] [1.6333]
νBY 3.1559∗∗∗ 3.2168∗∗∗ 3.1928∗∗∗ 3.0121∗∗∗

[1.0155] [1.0677] [1.0265] [0.9875]
LL 392.2926 394.5423 392.6298 398.8191

Panel C: Hypotheses testing (one-sided)

H0-hypothesis (2) (3) (4)

κλ,OFR ≤ 0 t-statistic 1.3756 2.7219
p-value 0.0845 0.0032

κλ,MSCI ≥ 0 t-statistic −0.6152 −2.6056
p-value 0.2692 0.0046

κλ,OFR ≤ 0 ∨
κλ,MSCI ≥ 0 p-value 0.00461

∆3
OFR,t−3 is the three months delayed three-months change of the orderbook-to-fleet ratio for

dry bulk vessels and ∆3
MSCI,t−3 the three months delayed three-months log-return of the MSCI

World index. ν denotes the Student-t degrees of freedom and LL is the log-likelihood. *, **, and
*** denote statistical significance at the 10%, 5%, and 1% level, respectively. Figures in [ ] are
standard errors. 1 By some calculation it can be shown that a conservative upper bound for the
joint p-value can be obtained as the maximum of the individual p-values.

Overall, Figure 3.4 depicts that especially observing supply side developments helps to estimate the
conditional crisis risk in the shipping market. While changes of the MSCI World index alone do
not produce an appropriate timed amplitude of crisis risk, a simultaneous consideration of both
factors yields an obvious early warning signal for a potential crisis. These results are in-sample. To
be useful for shipping companies, banks and investors, the results should also hold out-of-sample.
Only then it is possible for market participants to intervene by reducing neworder activities or by
reducing financing neworders and thereby alleviate the enormous scale of the vessel overhang and
depreciated freight rates. In the following section we carry out an extended robustness analysis and,
in particular, test the out-of-sample performance of our approach.
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Figure 3.4: Tail dependence coefficients for different model setups



58 Measuring shipping crisis risk using conditional copulas

3.4.2 Robustness

In order to check the robustness of our analysis, we test the out-of-sample performance of the
presented model. Furthermore, we test for various alternative model specifications. The dependence
model is extended by a time-dependent broad dependence parameter θ(z), z ∈ Z, the marginal model
is reduced to a VAR(0) model, and the lag structures and window widths of the conditioning factors
are altered. In addition, we consider alternative economic variables to capture the cost of finance
and the supply and demand of shipping services.

3.4.2.1 Out-of-sample performance

The empirical results show in-sample that shipping crisis risk is predominantly driven by simultaneous
adverse movements of the supply and demand of shipping services. However, in practice a risk index
is only useful if it also achieves reliable out-of-sample results. Therefore, we split our sample in half
and re-estimate the conditional model up to 06/2006.7 The out-of-sample shipping crisis risk is then
quantified using Equation (3.7). The maximum-likelihood estimates are given in Table 3.5. Due to
the reduced sample size the estimation results are less precise, and consequently, we observe a loss
of statistical significance. Hence, the estimate of κλ,OFR is only statistically significant at the 20%
level, and κλ,MSCI provides statistical evidence at the 5% level.

Table 3.5: Estimation results: out-of-sample analysis

Estimation period # obs. κλ,0 κλ,OFR κλ,MSCI

05/1997-06/2006 110 -8.1254∗ 2.1493• -4.1544∗∗

[4.6208] [1.5026] [1.9648]

κλ,0, κλ,OFR and κλ,MSCI denote the estimates for the intercept and the conditioning factors
∆3OFRt−3 and ∆3MSCIt−3. •, *, and ** denote statistical significance at the 20%, 10%, and
5% level, respectively. Figures in [ ] are standard errors. The complete model estimates can be
found in Table 3.12 in Appendix C.

Figure 3.5 shows the in- and out-of-sample crisis parameter λ(z). In sample, we observe an increase
in λ(z) in late 2002 that might mainly be driven by the MSCI downturn following the burst of the
technology bubble. The out-of-sample graph shows three peaks between 09/2007 and 03/2009 that
reach up to 100% and indicate a strong increase in shipping crisis risk about one year prior to the
actual outburst of the crisis. The results demonstrate the out-of-sample applicability of our model
to estimate shipping crisis risk.

3.4.2.2 Conditional broad dependence model

In the main analysis, we only condition the crisis risk parameter λ(z) and consider the broad de-
pendence parameter θ to be constant. Now, we also condition θ(z) on shipping supply and demand
7 We also analyze different estimation periods, i.e. 05/1997-12/2005 and 05/1997-12/2006 with similar

results. As there are no structural breaks indicated in the first half of the sample (see Table 3.3) we
assume that heteroscedasticity is not an issue and employ a constant volatility in each estimation period.
The model estimates can be found in Table 3.12 in Appendix C.
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Figure 3.5: Out-of-sample estimation of shipping crisis risk

factors using the functional relationship

θ(z) = κθ,0 + (κθ,OFR,κθ,MSCI)
(

∆3
OFR

∆3
MSCI

)
, (3.9)

where κθ,0 is the constant, and κθ,OFR and κθ,MSCI denote the coefficients of the conditioning
factors ∆3

OFR and ∆3
MSCI , respectively. Table 3.6 presents the maximum-likelihood estimates. In

comparison to the initial dependence model the log-likelihood rises by about 1 to 399.8042. However,
the significant influence of the conditioning factors ∆3

OFR and ∆3
MSCI on the extreme dependence

parameter λ(z) reduces to the 5% level as the standard errors increase. The ratios of influence
remain almost unchanged with 59% for the OFR and 41% for the MSCI. Concerning the conditional
parameter θ(z), only κθ,OFR is significantly different from zero at the 10% level. However, the
intercept κθ,0 as well as the sensitivity κθ,MSCI are not significant which is consistent with the
insignificant results for the unconditional estimate of θ in Section 3.4.1. Accordingly, the addition of
the conditional broad dependence parameter θ(z) does not affect the estimation results substantially.
The key results presented in the main analysis are therefore considered robust.

3.4.2.3 Alternative VAR model

Initially, we apply a VAR(4) model in the mean Equation (3.1). Now, we investigate the BIC and
HQ preferred VAR(0) model. The estimates of κ as well as the log-likelihood are shown in Table 3.7.

Each of the relevant parameters is only significant at the 20% level. Analogous to the VAR(4) model,
the signs for κλ,OFR and κλ,MSCI are positive and negative, respectively. Thus, an increase of the
OFR as well as a decline of the MSCI raises the tail dependence coefficient and by this the crisis risk.
Likewise to the VAR(4) model, the ratio of influence is larger for the OFR than for the MSCI, in
particular 65% against 35%. Because of different variance structures regarding numbers and dates
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Table 3.6: Estimation results: full conditional model

Parameter κ·,0 κ·,OFR κ·,MSCI

λ -14.2318∗∗ 4.1649∗∗ -2.9236∗∗
[7.0416] [1.8090] [1.2445]

θ 0.2851 1.0092∗ 0.0691
[0.4880] [0.5208] [0.5653]

Diagnostics νBDI νBY LL

4.0035∗∗ 3.0357∗∗∗ 399.8042
[1.6158] [0.9860]

λ and θ denote the parameters for tail dependence and broad dependence, respectively. κ{·},0,
κ{·},OFR and κ{·},MSCI , {·} ∈ {λ, θ}, denote the estimates for the intercept and the conditioning
factors ∆3OFRt−3 and ∆3MSCIt−3. ν denotes the Student-t degrees of freedom and LL is
the log-likelihood. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level,
respectively. Figures in [ ] are standard errors. The complete model estimates can be found in
Table 3.13 in Appendix C.

Table 3.7: Estimation results: VAR(0) as mean equation

Parameter κλ,0 κλ,OFR κλ,MSCI

λ -3.9943• 1.3787• -0.7322•
[2.6912] [0.9320] [0.5554]

Diagnostics νBDI νBY LL

4.8916∗∗ 3.6118∗∗∗ 398.8738
[2.0693] [1.1692]

κλ,0, κλ,OFR and κλ,MSCI denote the estimates for the intercept and the conditioning factors
∆3OFRt−3 and ∆3MSCIt−3. ν denotes the Student-t degrees of freedom and LL is the log-
likelihood. •, *, **, and *** denote statistical significance at the 20%, 10%, 5%, and 1% level,
respectively. Figures in [ ] are standard errors. The complete model estimates can be found in
Table 3.13 in Appendix C.
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of structural breaks in the VAR(0) model8, it is not possible to reasonably compare the estimates
and the diagnostics with those of the initial VAR(4) setup. However, we observe autocorrelation in
the VAR(0) residuals up to lag four. Our copula analysis requires conditionally independent errors,
and therefore the use of the VAR(4) model in the mean equation is the appropriate choice to control
for these effects.

3.4.2.4 Alternative lag lengths and window widths of conditioning factors

A reliable estimation of extreme dependence parameters is difficult since the estimates are typi-
cally driven by a few data points in the sample. In order to mitigate the misleading effect of
potential outliers, we smooth the conditional variables by aggregating the conditioning factors over
a window width of three months, i.e. one quarter, in our main analysis. In the following we vary the
window width between 1, 2, 3, and 6 months as well as the lag between 1, 2, and 3 months. The
corresponding maximum-likelihood estimates of the conditioning parameters κλ,OFR and κλ,MSCI

are given in Table 3.8.

Table 3.8: Estimation results: alternative lag lengths and window widths

Window width j
Lag i Estimate 1 2 3 6

κλ,0 -6.8661• -4.4550• -3.3677• -3.8987•

1 κλ,OFR 0.3479 0.8696 0.6427 1.1207
κλ,MSCI -2.2168∗ -0.9246 -0.6172 -0.5883

LL 395.2933 394.1147 394.5174 395.1484

κλ,0 -6.7985• -3.4345∗ -3.9251• -4.6770•

2 κλ,OFR 2.1731∗ 1.0990∗ 1.3047• 1.6038•

κλ,MSCI -1.0713 -0.6601• -0.6378• -0.7568
LL 396.8088 396.3303 396.6333 396.9770

κλ,0 -4.4223∗∗ -4.7862∗ -16.8814∗∗ -3.8283
3 κλ,OFR 0.9149∗∗ 1.4781∗ 4.9473∗∗∗ 1.2173

κλ,MSCI -1.5799∗∗∗ -1.2594∗∗ -3.4130∗∗∗ -0.6526
LL 397.0611 397.0805 398.8191 396.9314

κλ,0, κλ,OFR and κλ,MSCI denote the estimates for the intercept and the conditioning factors
∆jOFRt−i and ∆jMSCIt−i. LL denotes log-likelihood. •, *, **, and *** denote statistical
significance at the 20%, 10%, 5%, and 1% level, respectively. The complete estimation results can
be found in Tables 3.14 to 3.17 in Appendix C.

For each setup we obtain the expected signs for both parameters, where the models with a three-
months lag yield the most robust estimates. With respect to the window width, we observe a similar
pattern, an increasing significance up to the three-months window but no reliable estimates at the
six-months window. These findings support our idea of aggregating monthly log-returns to prevent

8 The BDI change points are 09/2003, 01/2008, and 01/2010. The BY change points are 11/2007 and
11/2009.
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outliers from driving the results. However, a window width of half a year seems too restrictive as
the variance in the data is nearly eliminated.

Accordingly, we conclude that a window width of three months with a lag of three months, as used
in our main analysis, is a suitable and economically rational compromise. Moreover, we see that the
results are robust.

3.4.2.5 Alternative time series for cost of finance

As outlined in Section 3.2 the majority of shipping bonds are rated BB or B. Therefore, we capture
the cost of finance for shipping companies using the effective yield series of the BofA Merrill Lynch
Bond Index for B-rated U.S. corporates. But shipping is a very special industry, and so the real
cost of capital for shipping companies might differ from a broad bond index as the one chosen. In
fact, a shipping specific bond index is the U.S. Corporate Shipping Index that is also published by
BofA Merrill Lynch. The effective yield of this index compared to the U.S. Corporate B Index yield
is shown in Figure 3.6. Although both series show a quite similar pattern, the shipping index is
obviously delayed compared to the broad corporate B index. The broad bond index seems to reflect
market changes faster than the shipping bond index that presumably suffers from the sparse amount
of shipping bonds and their liquidity.

However, we re-estimate the main model using the effective yield of the shipping bond index in
Equation (3.1). The corresponding maximum-likelihood estimates of the coefficients of the four
different model setups are given in Table 3.9. The results are generally similar to those when using
the broad U.S. corporate bond yield (see Table 3.4), but the level of statistical significance of the
estimates in the combined setup in Model (4) is reduced.
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Figure 3.6: Effective yields of U.S. corporate bond index and U.S. high-yield shipping
bond index

Taken together, the yield of a shipping bond index is only theoretically appealing, but is impractical
for our use due to its lagged behavior and the illiquidity of the contained bonds. Therefore, we stay
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Table 3.9: Estimation results: shipping bond index yield (SY)

Model (1) (2) (3) (4)

Conditioning
factors none ∆3

OFR,t−3 ∆3
MSCI,t−3

∆3
OFR,t−3 &

∆3
MSCI,t−3

Panel A: Parameter estimates

κλ,0 -2.3006∗∗ -3.5905∗ -2.3198∗ -4.3187•

[1.0785] [1.9935] [1.2340] [3.2101]
κλ,OFR 1.1778• 1.4595•

[0.7517] [1.1317]
κλ,MSCI -1.0594• -1.1154•

[0.6656] [0.8640]
θ 0.2661 0.5081 -0.1635 0.4049

[0.7346] [0.5444] [0.7525] [0.5585]

Panel B: Regression diagnostics

νBDI 4.2686∗∗ 4.3708∗∗ 4.2176∗∗ 4.1554∗∗

[1.9801] [1.9931] [2.0824] [1.7948]
νSY 4.3500∗∗∗ 4.4378∗∗∗ 4.2878∗∗∗ 4.3082∗∗∗

[1.6284] [1.7111] [1.5955] [1.5977]
LL 400.8678 402.4842 404.8459 406.9892

∆3
OFR,t−3 is the three months delayed three-months change of the orderbook-to-fleet ratio for dry

bulk vessels and ∆3
MSCI,t−3 the three months delayed three-months log-return of the MSCI World

index. ν denotes the Student-t degrees of freedom and LL is the log-likelihood. •, *, **, and ***
denote statistical significance at the 20%, 10%, 5%, and 1% level, respectively. Figures in [ ] are
standard errors. The complete model estimates can be found in Table 3.18 in Appendix C.

with the broad index for B-rated U.S. corporate bonds which should theoretically also reflect the
rating implied financing costs of shipping companies.

3.4.2.6 Alternative conditioning variables

A similar argumentation as for the cost of finance can be thought of for the two factors representing
supply and demand of seaborne transportation. The MSCI World index is only indirectly connected
to the shipping market. In order to analyze a more directly related figure for the demand of bulk
shipping, we employ the worldwide aggregated exports of the most important maritime bulk goods
(EX)9, iron ore, coking coal, steam coal and grain.

Furthermore, an increasing orderbook-to-fleet ratio may indicate a possible overcapacity in the future,
but can also result from the age structure of the fleet. When a large share of the current fleet is

9 Data in million tonnes from Clarksons SIN: iron ore exports from Australia, Brazil, Peru, Russia, South
Africa, Ukraine and United States, coking coal exports from Australia, Canada, China, South Africa and
United States, steam coal exports from Australia, Canada, China, Colombia, Indonesia, South Africa
and United States and grain exports from Argentina, Australia, Canada, EU-28 and United States.



64 Measuring shipping crisis risk using conditional copulas

quite old, the need for replacement increases and by this the orderbook-to-fleet ratio. Therefore, we
correct for the share of old vessels in the total fleet. In particular, we regress OFR on the demeaned
share of vessels older than 20 years in the total fleet (FRAge>20y), such that

OFRt = α+ β FRAge>20y
t + ηOFRt . (3.10)

The residuals ηOFR of Equation (3.10) are used as an alternative orderbook-to-fleet figure10. The
plot of the residual orderbook-to-fleet series given in Figure 3.7 reveals a similar pattern as the
original series OFR.
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Figure 3.7: Adjustment of orderbook-to-fleet ratio

We re-estimate the model in two ways replacing OFR by ηOFR and MSCI by EX, respectively, where
the three-months changes of EX are considered by two lags. Table 3.10 shows that the changes of the
conditioning variables still yield robust and significant estimates. The adjustment of the orderbook-
to-fleet ratio hardly effects the estimation results compared to the initial model (see Table 3.4). The
signs of κλ,OFR∗ and κλ,MSCI are as expected and the weights of the influence on crisis risk stay at
about 60% for the supply side and 40% for the demand side. Because of a shorter sample period,
the log-likelihood is not comparable. However, using the exports of bulk goods instead of the world
equity index changes these figures, such that the demand side has the bigger influence on crisis risk
with about 54%.

We conclude that controlling for replacement orders of vessels in the orderbook-to-fleet ratio hardly
effects our analysis as the results are barely changed. Furthermore, the results justify the use of
the MSCI World index to control for the demand of maritime transportation. The results using the
aggregated exports are similar to the main analysis. However, we prefer the MSCI as demand proxy.
As a stock index reflects the expectations of future economic developments it is the appropriate for-
ward looking demand equivalent to the orderbook-to-fleet ratio. It also shows a higher transparency
with a better and more timely data availability than the aggregated export series.
10 Data for fleet age structure is obtained from Clarksons SIN. Data is available only from 03/1999, the

sample period therefore covers 190 months. The coefficients [standard errors] for Equation (3.10) are
α = 0.3104 [0.0145] and β = 1.4253 [0.2423].
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Table 3.10: Estimation results: alternative conditioning variables

Conditioning
factors ∆3

ηOFR,t−3 & ∆3
MSCI,t−3 ∆3

OFR,t−3 & ∆3
EX,t−2

Panel A: Parameter estimates

κλ,0 -14.5813∗∗ -7.9315∗∗∗
[6.0838] [1.9454]

κλ,OFR 2.6782∗∗∗
[0.5552]

κλ,ηOFR 4.3905∗∗∗
[1.5985]

κλ,MSCI -2.9237∗∗∗
[1.0419]

κλ,EX -3.0738∗∗∗
[0.6183]

θ 0.4061 0.1538
[0.5284] [0.4939]

Panel B: Regression diagnostics

νBDI 3.7948∗∗ 3.8366∗∗
[1.6939] [1.9538]

νBY 3.2647∗∗∗ 3.1954∗∗∗
[1.2207] [0.9955]

LL 325.20431 401.8757

∆3
OFR,t−3 and ∆3

ηOFR,t−3 are the three months delayed three-months change of the unadjusted
and the residual orderbook-to-fleet ratio for dry bulk vessels, respectively. ∆3

MSCI,t−3 is the three
months delayed three-months log-return of the MSCI World index and ∆3

EX,t−2 is the two months
delayed three-months relative change of exports of maritime bulk goods. ν denotes the Student-t
degrees of freedom and LL is the log-likelihood. *, **, and *** denote statistical significance at the
10%, 5%, and 1% level, respectively. Figures in [ ] are standard errors. The complete estimation
results can be found in Table 3.19 in Appendix C. 1 Sample period 03/1999 - 12/2014.

3.5 Conclusion

When the world was eventually hit by the financial crisis in late 2008, the shipping sector not only
faced a significant drop in demand, but also an oversupply of vessels and transportation capacity.
Consequently, freight rates and prices of vessels declined sharply and led to a wave of insolvencies of
shipping companies and funds. Because of the dramatic and persistent effects of the shipping crisis,
we investigate whether it could have been prevented or, to some extent, alleviated. We analyze the
extreme dependence of two main balance sheet risk factors of shipping companies, freight rates and
financing costs. We model their extreme co-behavior by fitting a conditional copula model which
has two dependence parameters, one that captures the normal dependence and one reflecting the
tail dependence. Tail dependence in our case is the probability of a sharp adverse observation in one
factor (i.e., BDI down) given an extreme adverse movement in the other factor (i.e., cost of finance
up). We interpret the tail dependence as shipping crisis risk which itself is explained by two factors
representing the supply and demand of seaborne transportation.
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The results show that shipping crisis risk has already strongly increased in the second half of 2007.
A medium strong but clear signal is obtained when using only the supply side as conditioning factor,
whereas the signal becomes strongest and most distinct when considering the supply and demand
side developments simultaneously. We conclude that crisis risk substantially rises when a strong
increase of supply hits a weakening demand. The factor estimates also indicate that positive supply
side shocks might have a larger impact as the share of influence is about 60% against 40% for negative
demand side shocks. In particular, a declining demand alone does not significantly increase the tail
dependence coefficient. To verify our results, we perform a comprehensive robustness analysis that
supports the choice of our variables and the model parametrization. Most important, we test the
out-of-sample performance. The obtained signal of shipping crisis risk appears still early enough at
the end of 2007 and proves the practicality of our approach.

Overall, we can conclude that already in late 2007 there have been warning signals of the possibility
of a crisis in the shipping market. Furthermore, we show that the crisis in shipping is only partly
driven by the drop in demand as a consequence of the financial crisis rather than the massive ordering
of new ships by shipping companies themselves. Accordingly, market participants could have reduced
or even stopped the ordering of new vessels about one year before the crash and thereby prevented
any further fleet growth. Ship financing banks could also have intervened by tightening shipping
loans.

This work is one of the first empirical applications of conditional copulas in shipping. The concept of
conditional tail dependence is highly useful and can also be applied to further asset classes other than
shipping. For example a closer look on the determinants of the stock-bond relationship might reveal
idle diversification possibilities. Further research fields in this context could also be the dependence
structures in other mortgage backed loan markets such as the real estate market.
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Appendices

A Derivation of the conditional copula

We use the copula framework to model the dependence structure of multivariate distribution func-
tions following Joe (1997) and Nelsen (2006). Especially, we follow Patton (2002) and extend the
concept of copulas to the context of conditional distribution functions. In this analysis, we restrict
ourselves to the bivariate case as we are focusing on only two risk factors.

Let X, Y and Z be random variables on a complete probability space (Ω,F ,P), where Ω ≡ R ×
R × Z, Z ⊆ Rj , F ≡ B(R × R × Z) is the Borel σ-algebra, and P is the probability measure.
Let the conditional distribution of (X,Y ) given Z be denoted H, and let the conditional marginal
distributions of X |Z and Y |Z be denoted F and G, respectively. We assume that F , G and H are
continuous.

Definition 1 (Conditional copula). The conditional copula of (X,Y ) |Z, where X |Z ∼ F and
Y |Z ∼ G, is the conditional joint distribution function of U ≡ F (X |Z) and V ≡ G(Y |Z) given Z.

Analogous to the unconditional case, Sklar’s Theorem (1959) can be applied to conditional copulas.

Theorem 1 (Sklar’s theorem for continuous conditional distributions). Let F be the conditional
distribution of X |Z, G be the conditional distribution of Y |Z, and H be the joint conditional
distribution of (X,Y ) |Z. Assume that F and G are continuous in x and y. Then there exists a
unique conditional copula C such that

H(x,y | z) = C(F (x | z),G(y | z) | z) , (A.1)

for each (x,y) ∈ R̄ × R̄, R̄ ≡ R ∪ {±∞}, and each z ∈ Z, where Z is the domain of the random
variable Z. Conversely, if we let F be the conditional distribution of X |Z, G be the conditional
distribution of Y |Z, and C be a conditional copula, then the function H defined by Equation (A.1)
is a conditional bivariate distribution function with conditional marginal distributions F and G.

Proof 1. See Patton (2002), p. 58f.

In our study, we are focusing on the conditional copula and we model the relationship of freight rates
and financing costs using the class of Archimedean copulas properly extended to the conditional
setup.

Definition 2 (Strict conditional Archimedean copula generator). A family of functions (ϕ( · | z))z∈Z
is a strict conditional Archimedean copula generator if and only if for all z ∈ Z ϕ( · | z) : [0,1]→ [0,∞]
is a strict conditional Archimedean copula generator, i.e. ϕ( · | z) is a continuous, strictly decreasing
and convex function with ϕ(1 | z) = 0 and ϕ(0 | z) =∞, z ∈ Z.
The bivariate conditional Archimedean copula C : [0,1] × [0,1] × Z → [0,1], (u,v,z) 7→ C(u,v | z) is
then

C(u,v | z) = ϕ−1(ϕ(u | z) + ϕ(v | z) | z) , (A.2)

where ϕ−1( · | z) : [0,∞]→ [0,1] denotes the inverse of ϕ( · | z).
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In this case, the dependence structure between BDI and BY is modeled by a mirrored version of the
conditional transformed Frank copula due to Junker (2003).

Definition 3 (Conditional transformed Frank copula). The conditional transformed Frank copula
is given by the generator ϕtF ( · | z) : [0,1]→ [0,∞] with

ϕtF (u | z) =


(
− ln

(
e−θ(z)u−1
e−θ(z)−1

))δ(z)
, θ(z) ∈ R \ {0} ,

(− ln (u))δ(z)
, θ(z) = 0 ,

(A.3)

where the inverse ϕ−1
tF ( · | z) : [0,∞]→ [0,1] is given by

ϕ−1
tF (t | z) =

−
1
θ(z) ln

(
1 + e−t

1/δ(z) (
e−θ(z) − 1

))
, θ(z) ∈ R \ {0} ,

exp
(
−t

1
δ(z)

)
, θ(z) = 0 ,

(A.4)

for (θ, δ) : Z → R× [1,∞), z 7→ (θ(z), δ(z)). In particular, the conditional transformed Frank copula
CtF : [0,1]× [0,1]×Z → [0,1], (u,v,z) 7→ CtF (u,v | z) is given by

CtF (u,v | z) =− 1
θ(z) ln

[
1 + (e−θ(z) − 1) exp

[
−

[(
− ln

(
e−uθ(z) − 1
e−θ(z) − 1

))δ(z)

+
(
− ln

(
e−vθ(z) − 1
e−θ(z) − 1

))δ(z) ] 1
δ(z)
]]

, for θ(z) ∈ R \ {0}, (A.5)

and

CtF (u,v | z) = exp(−((− ln (u))δ(z) + (− ln (v))δ(z))
1
δ(z) ) , for θ(z) = 0. (A.6)

The conditional transformed Frank copula is a conditional Archimedean copula that contains two
conditional dependence parameters θ and δ coming from the nested conditional copulas, the condi-
tional Frank copula CF (·, · |Z), and the conditional Gumbel copula CG(·, · |Z), respectively. The
conditional transformed Frank copula also combines the properties of CF and CG.11 Thus, parameter
θ(z) from the conditional Frank copula illustrates the broad dependence of the two variables where
a positive value of θ describes positive dependence and vice versa, and the conditional transformed
Frank copula has upper right tail dependence quantified by the extreme dependence parameter δ(z)
from the conditional Gumbel copula. The tail dependence can be calculated through the following
functional relationship:

λ(z) = 2− 21/δ(z) , z ∈ Z , (A.7)

or alternatively

δ(z) = ln (2)
ln (2− λ(z)) . (A.8)

11 For a closer look at the probabilities of the Frank and Gumbel copula see Nelsen (2006), chap. 4.3.
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We model the conditional tail dependence directly through the logistic function with

λ(z) = 1
1 + exp (−(κλ,0 + 〈κλ,z〉))

, (A.9)

where κλ,0 is the constant and κλ ∈ Rj denote the parameters of the conditioning factor z ∈ Z ⊆ Rj .
Thus, λ = 0 indicates the no tail dependence, whereas we obtain pure tail dependence when the tail
dependence coefficient λ = 1.

In order to model asymmetric dependencies, we rotate the first coordinate of CtF (·, · | z). As a
consequence, the broad dependence reverses as a positive value of θ leads to negative dependence
and vice versa. Let the pair (U∗,V ∗) ∼ CtF (·, · | z), z ∈ Z, then for U = 1− U∗, V = V ∗, we get

P(U ≤ u, V ≤ v | z) = P(1− U∗ ≤ u, V ∗ ≤ v | z)

= P(1− u ≤ U∗, V ∗ ≤ v | z)

= P(U∗ ≤ 1, V ∗ ≤ v | z)− P(U∗ ≤ 1− u, V ∗ ≤ v | z)

= v − P(U∗ ≤ 1− u, V ∗ ≤ v | z)

= v − CtF (1− u,v | z)

= CmtF (u,v | z) , (A.10)

where CtF (u,v | z) = P (U∗ ≤ u, V ∗ ≤ v |Z), and thus, (U,V ) ∼ CmtF (·, · | z).

The resulting conditional mirrored transformed Frank copula CmtF (·, · | z) is defined as follows:

Definition 4 (Conditional mirrored transformed Frank copula). The conditional mirrored trans-
formed Frank copula CmtF : [0,1]× [0,1]×Z → [0,1], (u,v,z) 7→ CmtF (u,v | z) is given by

CmtF (u,v | z) = v − CtF (1− u,v | z), z ∈ Z. (A.11)

Replacing δ(z) by λ(z) using Equation (A.8) we obtain

CmtF (u,v | z) = v − 1
θ(z) ln

[
1 + (e−θ(z) − 1) exp

[
−
[(
− ln

(
e−uθ(z) − 1
e−θ(z) − 1

)) ln(2)
ln(2−λ(z))

+
(
− ln

(
e−vθ(z) − 1
e−θ(z) − 1

)) ln(2)
ln(2−λ(z))

] ln(2−λ(z))
ln(2)

]]
. (A.12)
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B Model estimates

Table 3.11: ML-estimates

Model (1) (2) (3) (4)

Conditioning
factors unconditional ∆3

OFR,t−3 ∆3
MSCI,t−3

∆3
OFR,t−3 &

∆3
MSCI,t−3

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

Mean equation (VAR(4))

BDI βBDI,0 0.0123 0.0097 0.0134 0.0097 0.0115 0.0097 0.0137 0.0096
βBDI1,1 -0.2603 0.1815 -0.2468 0.1819 -0.2567 0.1816 -0.2676 0.1780
βBDI1,2 -0.0472 0.1909 -0.0657 0.1911 -0.0538 0.1912 -0.1094 0.1853
βBDI1,3 0.0150 0.1694 0.0305 0.1657 0.0128 0.1695 0.0120 0.1651
βBDI1,4 -0.1182 0.1927 -0.0662 0.1899 -0.1233 0.1948 -0.0389 0.1921
βBDI2,1 0.0928 0.0688 0.0910 0.0688 0.0922 0.0687 0.1053 0.0649
βBDI2,2 -0.0611 0.0732 -0.0559 0.0724 -0.0613 0.0734 -0.0641 0.0695
βBDI2,3 -0.0110 0.0645 -0.0046 0.0649 -0.0046 0.0652 0.0296 0.0635
βBDI2,4 -0.0911 0.0573 -0.0815 0.0568 -0.0932 0.0604 -0.0837 0.0582

BY βBY,0 -0.0053 0.0033 -0.0050 0.0034 -0.0053 0.0034 -0.0048 0.0034
βBY 1,1 0.1489∗∗ 0.0596 0.1500∗∗ 0.0595 0.1491∗∗ 0.0612 0.1503∗∗ 0.0649
βBY 1,2 -0.0529 0.0509 -0.0537 0.0518 -0.0580 0.0513 -0.0950∗ 0.0533
βBY 1,3 0.0120 0.0596 0.0242 0.0607 0.0157 0.0604 0.0220 0.0635
βBY 1,4 0.0974∗ 0.0579 0.1050∗ 0.0581 0.0973∗ 0.0586 0.1305∗∗ 0.0622
βBY 2,1 0.0107 0.0186 0.0130 0.0187 0.0114 0.0185 0.0113 0.0196
βBY 2,2 -0.0348∗ 0.0197 -0.0324∗ 0.0196 -0.0346∗ 0.0197 -0.0345∗ 0.0206
βBY 2,3 0.0295 0.0212 0.0309 0.0211 0.0299 0.0214 0.0340 0.0243
βBY 2,4 -0.0166 0.0187 -0.0165 0.0188 -0.0203 0.0196 -0.0206 0.0211

Regime dependent variances

BDI σ2
BDI,I 0.0165∗∗∗ 0.0049 0.0165∗∗∗ 0.0046 0.0166∗∗∗ 0.0049 0.0168∗∗∗ 0.0056
σ2
BDI,II 0.0882∗∗∗ 0.0264 0.0868∗∗∗ 0.0249 0.0884∗∗∗ 0.0263 0.0845∗∗∗ 0.0266

BY σ2
BY,I 0.0026∗∗ 0.0011 0.0026∗∗ 0.0011 0.0026∗∗ 0.0010 0.0028∗∗ 0.0014
σ2
BY,II 0.0085∗ 0.0045 0.0081∗ 0.0042 0.0083∗ 0.0043 0.0114 0.0070

Degrees of freedom of marginal distributions

νBDI 4.3479∗∗ 1.8685 3.6365∗ 1.7719 3.6903∗ 1.8223 4.0193∗∗ 1.6333
νBY 3.1559∗∗∗ 1.0155 3.2168∗∗∗ 1.0677 3.1928∗∗∗ 1.0265 3.0121∗∗∗ 0.9875

Dependence parameters

κλ,0 -2.8616∗∗ 1.2813 -3.1200∗ 1.8899 -2.9762∗∗ 1.4633 -16.8814∗∗ 7.1626
κλ,OFR 0.9207 0.6693 4.9473∗∗∗ 1.8176
κλ,MSCI -0.4474 0.7273 -3.4130∗∗∗ 1.3099

θ 0.1067 0.6501 -0.0041 0.6608 0.0660 0.6299 0.3693 0.4697

LL 392.2926 394.5423 392.6298 398.8191

ν denotes the Student-t degrees of freedom. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
level, respectively.
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C Robustness results

Table 3.12: ML-estimates for out-of-sample analysis

Model 05/1997-12/2005 05/1997-06/2006 05/1997-12/2006

Parameter Estimate SE Estimate SE Estimate SE

Mean equation (VAR(4))

BDI βBDI,0 -0.0012 0.0110 -0.0006 0.0109 0.0003 0.0102
βBDI1,1 -0.3241 0.2012 -0.3260 0.2193 -0.2962 0.2184
βBDI1,2 0.0728 0.1827 0.0644 0.1832 0.0946 0.1788
βBDI1,3 -0.4794∗∗ 0.2128 -0.4704∗∗ 0.2098 -0.4746∗∗ 0.2038
βBDI1,4 -0.0183 0.1704 -0.0175 0.2013 -0.0053 0.1946
βBDI2,1 0.2016∗∗ 0.0884 0.1818∗∗ 0.0850 0.2261∗∗∗ 0.0786
βBDI2,2 -0.0309 0.0913 -0.0343 0.0884 -0.0154 0.0839
βBDI2,3 -0.0020 0.0869 -0.0011 0.0805 0.0213 0.0795
βBDI2,4 0.0202 0.0792 0.0364 0.0737 0.0327 0.0717

BY βBY,0 -0.0041 0.0043 -0.0030 0.0040 -0.0042 0.0038
βBY 1,1 0.1270 0.1003 0.1395 0.0850 0.1418∗ 0.0852
βBY 1,2 -0.0274 0.0700 -0.0272 0.0652 -0.0305 0.0650
βBY 1,3 -0.0423 0.0844 -0.0501 0.0819 -0.0468 0.0799
βBY 1,4 0.1114 0.0819 0.1238 0.0822 0.1020 0.0727
βBY 2,1 0.0393 0.0352 0.0351 0.0334 0.0314 0.0313
βBY 2,2 -0.0341 0.0364 -0.0295 0.0333 -0.0309 0.0322
βBY 2,3 -0.0172 0.0386 -0.0129 0.0340 -0.0208 0.0317
βBY 2,4 -0.0059 0.0382 -0.0046 0.0334 -0.0097 0.0317

Variances

BDI σ2
BDI 0.0210 0.0229 0.0212 0.0234 0.0210 0.0221

BY σ2
BY 0.0036 0.0032 0.0037 0.0035 0.0033 0.0025

Degrees of freedom of marginal distributions

νBDI 2.7353∗ 1.4016 2.6091∗ 1.4837 2.7410∗∗ 1.3332
νBY 2.7327∗∗ 1.1735 2.6970∗∗ 1.0788 2.7729∗∗∗ 1.0436

Dependence parameters

κλ,0 -6.7711∗∗ 3.3854 -8.1254∗ 4.6208 -6.7427∗ 3.8159
κλ,OFR 1.6769 1.3393 2.1493 1.5026 1.7034 1.3688
κλ,MSCI -3.7184∗∗ 1.4804 -4.1544∗∗ 1.9648 -3.4547∗∗ 1.5859

θ 0.3257 0.7795 0.2722 0.7322 0.2143 0.7344

LL 256.8831 272.1079 292.0951

ν denotes the Student-t degrees of freedom. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
level, respectively.
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Table 3.13: ML-estimates for full model and VAR(0)-mean-model

Model Robustness 1: Full model Robustness 2: VAR(0)-mean-model

Parameter Estimate SE Estimate SE

Mean equation

BDI βBDI,0 0.0155 0.0095 0.0098 0.0082
βBDI1,1 -0.2463 0.1804
βBDI1,2 -0.1260 0.1815
βBDI1,3 -0.0114 0.1644
βBDI1,4 0.0439 0.1847
βBDI2,1 0.0837 0.0639
βBDI2,2 -0.0659 0.0679
βBDI2,3 0.0276 0.0599
βBDI2,4 -0.0650 0.0612

BY βBY,0 -0.0050 0.0034 -0.0048 0.0033
βBY 1,1 0.1487 0.0635
βBY 1,2 -0.0793 0.0529
βBY 1,3 0.0311 0.0637
βBY 1,4 0.1364 0.0638
βBY 2,1 0.0172 0.0188
βBY 2,2 -0.0333 0.0202
βBY 2,3 0.0386 0.0235
βBY 2,4 -0.0221 0.0211

Regime dependent variances

BDI σ2
BDI,I 0.0170 0.0057 0.0079 0.0020
σ2
BDI,II 0.0851 0.0258 0.0325 0.0114
σ2
BDI,III 0.1409 0.0501
σ2
BDI,IV 0.0738 0.0203

BY σ2
BY,I 0.0028 0.0013 0.0024 0.0007
σ2
BY,II 0.0112 0.0066 0.0172 0.0110
σ2
BY,III 0.0063 0.0027

Degrees of freedom of marginal distributions

νBDI 4.0035 1.6158 4.8916 2.0693
νBY 3.0357 0.9860 3.6118 1.1692

Dependence parameters

λ κλ,0 -14.2318 7.0416 -3.9943 2.6912
κλ,OFR 4.1649 1.8089 1.3787 0.9320
κλ,MSCI -2.9236 1.2445 -0.7322 0.5554

θ κθ,0 0.2851 0.4880
κθ,OFR 1.0092 0.5208
κθ,MSCI 0.0691 0.5653

θ -0.1171 0.5615

LL 399.8042 398.8738

ν{·} denotes the Student-t degrees of freedom and LL the log-likelihood.
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Table 3.14: ML-estimates with lag 1 for different window widths

Window 1 month 2 months 3 months 6 months

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

Mean equation (VAR(4))

BDI βBDI,0 0.0145 0.0099 0.0131 0.0097 0.0124 0.0097 0.0131 0.0097
βBDI1,1 -0.2129 0.1738 -0.2344 0.1813 -0.2369 0.1805 -0.2359 0.1801
βBDI1,2 -0.0357 0.1956 -0.0469 0.1913 -0.0659 0.1914 -0.0707 0.1903
βBDI1,3 -0.0069 0.1688 -0.0071 0.1686 -0.0013 0.1685 0.0103 0.1666
βBDI1,4 -0.0688 0.1923 -0.0867 0.1939 -0.0834 0.1929 -0.0614 0.1918
βBDI2,1 0.0517 0.0702 0.0715 0.0686 0.0744 0.0690 0.0791 0.0686
βBDI2,2 -0.0804 0.0727 -0.0632 0.0719 -0.0599 0.0724 -0.0584 0.0721
βBDI2,3 -0.0148 0.0641 -0.0073 0.0639 -0.0031 0.0647 -0.0016 0.0644
βBDI2,4 -0.0988∗ 0.0571 -0.0898 0.0567 -0.0881 0.0567 -0.0861 0.0571

BY βBY,0 -0.0045 0.0034 -0.0049 0.0034 -0.0048 0.0034 -0.0049 0.0034
βBY 1,1 0.1718∗∗∗ 0.0560 0.1552∗∗∗ 0.0593 0.1520∗∗ 0.0592 0.1498∗∗ 0.0598
βBY 1,2 -0.0420 0.0516 -0.0432 0.0513 -0.0433 0.0517 -0.0524 0.0519
βBY 1,3 0.0192 0.0603 0.0162 0.0597 0.0191 0.0601 0.0236 0.0601
βBY 1,4 0.1043∗ 0.0578 0.1007∗ 0.0579 0.1021∗ 0.0578 0.1065∗ 0.0576
βBY 2,1 0.0051 0.0200 0.0083 0.0183 0.0094 0.0181 0.0107 0.0182
βBY 2,2 -0.0396∗ 0.0206 -0.0367∗ 0.0217 -0.0349∗ 0.0210 -0.0350∗ 0.0204
βBY 2,3 0.0282 0.0212 0.0292 0.0212 0.0296 0.0212 0.0292 0.0212
βBY 2,4 -0.0174 0.0183 -0.0160 0.0186 -0.0163 0.0187 -0.0189 0.0186

Regime dependent variances

BDI σ2
BDI,I 0.0175∗∗∗ 0.0054 0.0167∗∗∗ 0.0050 0.0166∗∗∗ 0.0048 0.0166∗∗∗ 0.0048
σ2
BDI,II 0.0927∗∗∗ 0.0246 0.0900∗∗∗ 0.0258 0.0882∗∗∗ 0.0253 0.0881∗∗∗ 0.0246

BY σ2
BY,I 0.0025∗∗∗ 0.0009 0.0025∗∗∗ 0.0009 0.0025∗∗ 0.0010 0.0025∗∗∗ 0.0010
σ2
BY,II 0.0079∗∗ 0.0036 0.0079∗∗ 0.0039 0.0081∗∗ 0.0040 0.0080∗∗ 0.0039

Degrees of freedom of marginal distributions

νBDI 4.0058∗∗∗ 1.4289 4.1860∗∗ 1.6352 4.2600∗∗ 1.6595 4.2353∗∗∗ 1.6329
νBY 3.3235∗∗∗ 1.0577 3.3038∗∗∗ 1.0705 3.2604∗∗∗ 1.0771 3.2739∗∗ 1.0607

Dependence parameters

κλ,0 -6.8661 4.3844 -4.4550 3.2334 -3.3677 2.5144 -3.8987 2.8474
κλ,OFR 0.3477 0.9301 0.8696 0.9970 0.6427 0.6585 1.1207 0.8912
κλ,MSCI -2.2168∗ 1.1860 -0.9246 0.9267 -0.6172 0.7410 -0.5883 0.8019

θ 0.3280 0.5001 0.1985 0.5306 0.0424 0.6763 0.0716 0.5827

LL 395.2933 394.1147 394.5174 395.1484

ν{·} denotes the Student-t degrees of freedom and LL the log-likelihood. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.
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Table 3.15: ML-estimates with lag 2 for different window widths

Window 1 month 2 months 3 months 6 months

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

Mean equation (VAR(4))

BDI βBDI,0 0.0139 0.0098 0.0119 0.0097 0.0123 0.0096 0.0120 0.0096
βBDI1,1 -0.1555 0.1844 -0.2170 0.1821 -0.2249 0.1819 -0.2345 0.1793
βBDI1,2 0.0246 0.1863 -0.0796 0.1860 -0.0821 0.1883 -0.1051 0.1854
βBDI1,3 -0.0618 0.1707 -0.0141 0.1687 -0.0123 0.1649 -0.0044 0.1671
βBDI1,4 -0.0654 0.1981 -0.0584 0.1919 -0.0440 0.1886 -0.0380 0.1897
βBDI2,1 0.1429∗ 0.0673 0.0894 0.0680 0.1049 0.0668 0.0963 0.0676
βBDI2,2 -0.0560 0.0763 -0.0551 0.0720 -0.0457 0.0711 -0.0454 0.0717
βBDI2,3 0.0029 0.0679 0.0143 0.0652 0.0203 0.0660 0.0118 0.0652
βBDI2,4 -0.0703 0.0586 -0.0851 0.0570 -0.0825 0.0568 -0.0843 0.0566

BY βBY,0 -0.0041 0.0033 -0.0046 0.0034 -0.0045 0.0034 -0.0053 0.0034
βBY 1,1 0.1822∗∗∗ 0.0536 0.1520∗∗∗ 0.0588 0.1562∗∗∗ 0.0585 0.1502∗∗ 0.0602
βBY 1,2 -0.0064 0.0504 -0.0338 0.0511 -0.0434 0.0518 -0.0733 0.0518
βBY 1,3 0.0218 0.0594 0.0276 0.0607 0.0319 0.0600 0.0240 0.0601
βBY 1,4 0.1074∗ 0.0574 0.1079∗ 0.0581 0.1141∗∗ 0.0582 0.1154∗∗ 0.0579
βBY 2,1 0.0260 0.0183 0.0139 0.0179 0.0172 0.0181 0.0133 0.0181
βBY 2,2 -0.0422∗∗ 0.0206 -0.0352∗ 0.0203 -0.0355∗ 0.0205 -0.0334 0.0204
βBY 2,3 0.0259 0.0205 0.0304 0.0209 0.0312 0.0208 0.0300 0.0212
βBY 2,4 -0.0139 0.0178 -0.0157 0.0190 -0.0166 0.0189 -0.0192 0.0187

Regime dependent variances

BDI σ2
BDI,I 0.0170∗∗∗ 0.0051 0.0166∗∗∗ 0.0049 0.0163∗∗∗ 0.0045 0.0164∗∗∗ 0.0047
σ2
BDI,II 0.1131∗∗∗ 0.0296 0.0913∗∗∗ 0.0258 0.0913∗∗∗ 0.0252 0.0902∗∗∗ 0.0256

BY σ2
BY,I 0.0025∗∗∗ 0.0009 0.0025∗∗∗ 0.0010 0.0025∗∗∗ 0.0009 0.0025∗∗∗ 0.0009
σ2
BY,II 0.0073∗∗ 0.0032 0.0082∗∗ 0.0041 0.0080∗∗ 0.0040 0.0082∗∗ 0.0040

Degrees of freedom of marginal distributions

νBDI 4.0003 7.5407 4.2091∗∗∗ 1.6176 3.7189∗∗ 1.6174 4.2556∗∗∗ 1.6379
νBY 3.2130∗∗∗ 0.9329 3.2152∗∗∗ 1.0039 3.2515∗∗∗ 1.0302 3.2700∗∗∗ 1.0476

Dependence parameters

κλ,0 -6.7985 4.8304 -3.4345∗ 1.9696 -3.9251 2.5833 -4.6770 3.2405
κλ,OFR 2.1731∗ 1.1211 1.0990∗ 0.6438 1.3047 0.9114 1.6038 1.1358
κλ,MSCI -1.0713 1.0779 -0.6601 0.5127 -0.6378 0.4900 -0.7568 0.6935

θ 0.2367 0.4973 -0.0835 0.6188 -0.0119 0.5869 0.0363 0.5247

LL 396.8088 396.3303 396.6333 396.9770

ν{·} denotes the Student-t degrees of freedom and LL the log-likelihood. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.
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Table 3.16: ML-estimates with lag 3 for different window widths

Window 1 month 2 months 3 months 6 months

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

Mean equation (VAR(4))

BDI βBDI,0 0.0086 0.0096 0.0115 0.0097 0.0137 0.0096 0.0128 0.0097
βBDI1,1 -0.2804 0.1786 -0.2294 0.1831 -0.2676 0.1780 -0.2314 0.1820
βBDI1,2 -0.0756 0.1840 -0.1060 0.1887 -0.1094 0.1853 -0.0949 0.1879
βBDI1,3 -0.1524 0.1711 -0.0078 0.1651 0.0120 0.1651 0.0264 0.1662
βBDI1,4 -0.0760 0.1903 -0.0638 0.1919 -0.0389 0.1921 -0.0613 0.1939
βBDI2,1 0.0874 0.0675 0.0980 0.0670 0.1053 0.0649 0.0851 0.0691
βBDI2,2 -0.0670 0.0715 -0.0450 0.0717 -0.0641 0.0695 -0.0574 0.0725
βBDI2,3 0.0118 0.0637 0.0317 0.0661 0.0296 0.0635 0.0041 0.0655
βBDI2,4 -0.0810 0.0573 -0.0868 0.0595 -0.0837 0.0582 -0.0889 0.0591

BY βBY,0 -0.0051 0.0035 -0.0047 0.0034 -0.0048 0.0034 -0.0050 0.0034
βBY 1,1 0.1447∗∗∗ 0.0633 0.1549∗∗∗ 0.0627 0.1503∗∗∗ 0.0649 0.1466∗∗∗ 0.0629
βBY 1,2 -0.0521 0.0513 -0.0812 0.0525 -0.0950 0.0533 -0.0739 0.0524
βBY 1,3 0.0215 0.0637 0.0352 0.0606 0.0220 0.0635 0.0253 0.0620
βBY 1,4 0.1074∗ 0.0582 0.1202∗∗ 0.0599 0.1305∗∗ 0.0622 0.1118∗ 0.0592
βBY 2,1 0.0094 0.0183 0.0150 0.0182 0.0113 0.0196 0.0121 0.0185
βBY 2,2 -0.0358∗ 0.0194 -0.0315 0.0198 -0.0345∗ 0.0206 -0.0327 0.0200
βBY 2,3 0.0335 0.0232 0.0363∗ 0.0205 0.0340 0.0243 0.0308 0.0214
βBY 2,4 -0.0173 0.0189 -0.0251 0.0192 -0.0206 0.0211 -0.0229 0.0188

Regime dependent variances

BDI σ2
BDI,I 0.0159∗∗∗ 0.0048 0.0162∗∗∗ 0.0046 0.0168∗∗∗ 0.0056 0.0166∗∗∗ 0.0047
σ2
BDI,II 0.0884∗∗∗ 0.0290 0.0862∗∗∗ 0.0265 0.0845∗∗∗ 0.0266 0.0860∗∗∗ 0.0246

BY σ2
BY,I 0.0026∗∗ 0.0011 0.0025∗∗∗ 0.0009 0.0028∗∗ 0.0014 0.0025∗∗∗ 0.0010
σ2
BY,II 0.0088 0.0049 0.0083∗∗ 0.0041 0.0114 0.0070 0.0083∗∗ 0.0041

Degrees of freedom of marginal distributions

νBDI 4.3184∗∗ 1.9207 4.3908∗∗ 1.8299 4.0193∗∗ 1.6333 4.2450∗∗∗ 1.6214
νBY 3.1376∗∗∗ 1.0248 3.3189∗∗∗ 1.0683 3.0121∗∗∗ 0.9875 3.2874∗∗∗ 1.0908

Dependence parameters

κλ,0 -4.4223∗∗ 1.8681 -4.7862∗ 2.5349 -16.8814∗∗ 7.1626 -3.8283 3.9129
κλ,OFR 0.9149∗∗ 0.4604 1.4781∗ 0.7582 4.9473∗∗∗ 1.8176 1.2173 1.1859
κλ,MSCI -1.5799∗∗∗ 0.5428 -1.2594∗∗ 0.6354 -3.4130∗∗∗ 1.3099 -0.6526 0.8364

θ 0.0333 0.5198 -0.0113 0.5224 0.3693 0.4697 -0.0238 0.6752

LL 397.0611 397.0805 398.8191 396.9314

ν{·} denotes the Student-t degrees of freedom and LL the log-likelihood. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.
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Table 3.17: ML-estimates with lag 6 for different window widths

Window 1 month 2 months 3 months 6 months

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

Mean equation (VAR(4))

BDI βBDI,0 0.0138 0.0098 0.0127 0.0097 0.0079 0.0099 0.0133 0.0097
βBDI1,1 -0.2491 0.1750 -0.2821 0.1740 -0.3955∗∗ 0.1695 -0.2315 0.1778
βBDI1,2 -0.0896 0.1939 -0.1270 0.1871 -0.1832 0.1856 -0.1070 0.1855
βBDI1,3 0.0493 0.1675 0.0488 0.1685 0.0836 0.1719 0.0221 0.1668
βBDI1,4 -0.0518 0.1927 -0.0094 0.1897 -0.0226 0.2006 -0.0466 0.1918
βBDI2,1 0.0692 0.0704 0.0693 0.0681 0.0821 0.0689 0.0872 0.0676
βBDI2,2 -0.0720 0.0718 -0.0906 0.0694 -0.1173∗ 0.0686 -0.0601 0.0711
βBDI2,3 -0.0249 0.0629 -0.0171 0.0626 -0.0239 0.0572 -0.0068 0.0649
βBDI2,4 -0.1014∗ 0.0583 -0.1079∗ 0.0576 -0.1235∗∗ 0.0587 -0.1005∗ 0.0567

BY βBY,0 -0.0050 0.0033 -0.0065 0.0033 -0.0083 0.0033 -0.0055 0.0034
βBY 1,1 0.1393∗∗ 0.0582 0.1417∗∗ 0.0573 0.1115∗∗ 0.0548 0.1542∗∗∗ 0.0584
βBY 1,2 -0.0719 0.0516 -0.0833 0.0509 -0.0960 0.0511 -0.0898 0.0516
βBY 1,3 0.0220 0.0600 0.0233 0.0592 0.0216 0.0599 0.0159 0.0599
βBY 1,4 0.1164∗∗ 0.0583 0.1179∗∗ 0.0595 0.1099∗ 0.0609 0.1171∗∗ 0.0591
βBY 2,1 0.0110 0.0178 0.0109 0.0171 0.0150 0.0175 0.0117 0.0181
βBY 2,2 -0.0376∗ 0.0197 -0.0442∗∗ 0.0189 -0.0545∗∗∗ 0.0183 -0.0332∗ 0.0194
βBY 2,3 0.0258 0.0202 0.0277 0.0194 0.0249 0.0179 0.0304 0.0216
βBY 2,4 -0.0291 0.0179 -0.0231 0.0189 -0.0232 0.0191 -0.0186 0.0194

Regime dependent variances

BDI σ2
BDI,I 0.0175∗∗∗ 0.0053 0.0174∗∗∗ 0.0050 0.0183∗∗∗ 0.0054 0.0167∗∗∗ 0.0046
σ2
BDI,II 0.0858∗∗∗ 0.0240 0.0851∗∗∗ 0.0227 0.0828∗∗∗ 0.0217 0.0887∗∗∗ 0.0226

BY σ2
BY,I 0.0026∗∗ 0.0010 0.0026∗∗ 0.0010 0.0026∗∗ 0.0011 0.0024∗∗∗ 0.0008
σ2
BY,II 0.0082∗ 0.0043 0.0080∗∗ 0.0040 0.0088∗ 0.0045 0.0081∗∗ 0.0037

Degrees of freedom of marginal distributions

νBDI 3.8240∗∗ 1.6275 4.3328∗∗∗ 1.6586 4.4340∗∗ 1.8176 3.7811∗∗∗ 1.4417
νBY 3.2072∗∗∗ 1.0529 3.2411∗∗∗ 1.0602 3.1367∗∗∗ 1.0012 3.4109∗∗∗ 1.0945

Dependence parameters

κλ,0 -3.0376 1.8478 -4.7744∗ 2.8246 -11.6163∗∗∗ 2.8048 -8.5466 5.5977
κλ,OFR 1.0933 0.8409 1.9664 1.1975 4.6906∗∗∗ 1.0561 3.2331 2.0146
κλ,MSCI 0.2552 1.0704 1.1397 0.9321 4.4238∗∗∗ 1.0106 0.7202 1.3292

θ -0.1200 0.6576 0.0758 0.5390 0.1915 0.4731 0.1991 0.4746

LL 395.3921 397.9497 399.5967 398.6595

ν{·} denotes the Student-t degrees of freedom and LL the log-likelihood. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.
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Table 3.18: ML-estimates using shipping bond yield as risk factor for cost of capital

Model (1) (2) (3) (4)

Conditioning
factors unconditional ∆3

OFR,t−3 ∆3
MSCI,t−3

∆3
OFR,t−3 &

∆3
MSCI,t−3

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

Mean equation (VAR(4))

BDI βBDI,0 0.0127 0.0098 0.0140 0.0097 0.0103 0.0099 0.0125 0.0095
βBDI1,1 -0.0969 0.1781 -0.0862 0.1768 -0.0783 0.1822 -0.0484 0.1769
βBDI1,2 0.0744 0.2012 0.0685 0.2030 0.0928 0.1935 0.0669 0.1970
βBDI1,3 0.0728 0.1904 0.0956 0.1868 -0.0307 0.1953 -0.0010 0.1924
βBDI1,4 -0.2054 0.1717 -0.1821 0.1684 -0.1841 0.1769 -0.1904 0.1748
βBDI2,1 0.0927 0.0666 0.0872 0.0659 0.1014 0.0671 0.0816 0.0650
βBDI2,2 -0.0569 0.0723 -0.0554 0.0718 -0.0748 0.0741 -0.0575 0.0668
βBDI2,3 -0.0012 0.0633 0.0005 0.0634 0.0593 0.0628 0.0355 0.0601
βBDI2,4 -0.0987 0.0612 -0.0939 0.0614 -0.1473∗∗ 0.0621 -0.0699 0.0655

SY βSY,0 -0.0002 0.0033 0.0009 0.0033 -0.0003 0.0032 0.0018 0.0031
βSY 1,1 0.0307 0.0594 0.0403 0.0600 0.0417 0.0569 0.0319 0.0575
βSY 1,2 0.0610 0.0596 0.0677 0.0617 0.0745 0.0583 0.0714 0.0598
βSY 1,3 0.0730 0.0596 0.0925 0.0595 0.0723 0.0548 0.1172∗∗ 0.0576
βSY 1,4 0.0532 0.0571 0.0647 0.0563 0.0951 0.0599 0.0811 0.0547
βSY 2,1 0.0242 0.0172 0.0212 0.0171 0.0257 0.0164 0.0214 0.0163
βSY 2,2 -0.0240 0.0175 -0.0223 0.0177 -0.0302∗ 0.0163 -0.0138 0.0165
βSY 2,3 0.0079 0.0174 0.0072 0.0173 0.0153 0.0161 -0.0013 0.0154
βSY 2,4 -0.0112 0.0189 -0.0100 0.0187 -0.0327∗ 0.0170 -0.0170 0.0181

Regime dependent variances

BDI σ2
BDI,I 0.0167∗∗∗ 0.0052 0.0165∗∗∗ 0.0049 0.0174∗∗∗ 0.0058 0.0165∗∗∗ 0.0052
σ2
BDI,II 0.0901∗∗∗ 0.0293 0.0862∗∗∗ 0.0255 0.0943∗∗∗ 0.0331 0.0932∗∗∗ 0.0285

SY σ2
SY,I 0.0021∗∗∗ 0.0007 0.0021∗∗∗ 0.0007 0.0022∗∗∗ 0.0007 0.0021∗∗∗ 0.0007
σ2
SY,II 0.0084∗∗ 0.0041 0.0082∗∗ 0.0040 0.0093∗∗ 0.0047 0.0085∗∗ 0.0042
σ2
SY,III 0.0018∗∗∗ 0.0005 0.0019∗∗∗ 0.0005 0.0018∗∗∗ 0.0005 0.0017∗∗∗ 0.0005
σ2
SY,IV 0.0122∗ 0.0074 0.0112∗ 0.0063 0.0088∗∗ 0.0039 0.0129∗∗ 0.0063
σ2
SY,V 0.0031∗∗∗ 0.0009 0.0031∗∗∗ 0.0009 0.0030∗∗∗ 0.0009 0.0033∗∗∗ 0.0010

Degrees of freedom of marginal distributions

νBDI 4.2686∗∗ 1.9801 4.3708∗∗ 1.9931 4.2176∗∗ 2.0824 4.1554∗∗ 1.7948
νSY 4.3500∗∗∗ 1.6284 4.4378∗∗∗ 1.7111 4.2878∗∗∗ 1.5955 4.3082∗∗∗ 1.5977

Dependence parameters

κλ,0 -2.3006∗∗ 1.0785 -3.5905∗ 1.9935 -2.3198∗ 1.2340 -4.3187 3.2101
κλ,OFR 1.1776 0.7517 1.4595 1.1317
κλ,MSCI -1.0594 0.6656 -1.1154 0.8640

θ 0.2661 0.7346 0.5081 0.5444 -0.1635 0.7525 0.4049 0.5585

LL 400.8678 402.4842 404.8459 406.9892

ν{·} denotes the Student-t degrees of freedom and LL the log-likelihood. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.
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Table 3.19: ML-estimates for alternative conditioning variables

Conditioning
factors

∆3
ηOFR,t−3 & ∆3

MSCI,t−3 ∆3
OFR,t−3 & ∆3

EX,t−2

Parameter Estimate SE Estimate SE

Mean equation (VAR(4))

BDI βBDI,0 0.0206∗ 0.0114 0.0085 0.0097
βBDI1,1 -0.2813 0.2132 -0.2755 0.1786
βBDI1,2 -0.1901 0.1999 -0.1302 0.1844
βBDI1,3 0.2524 0.1756 -0.0034 0.1706
βBDI1,4 -0.1502 0.2412 -0.1165 0.1922
βBDI2,1 0.1365∗ 0.0703 0.1006 0.0687
βBDI2,2 -0.0733 0.0793 -0.0780 0.0734
βBDI2,3 0.0383 0.0684 0.0233 0.0658
βBDI2,4 -0.1123∗ 0.0619 -0.0959 0.0606

BY βBY,0 -0.0059 0.0041 -0.0069∗∗ 0.0033
βBY 1,1 0.2172∗∗∗ 0.0696 0.1404∗∗ 0.0593
βBY 1,2 -0.1869∗∗∗ 0.0646 -0.1060∗∗ 0.0509
βBY 1,3 0.0854 0.0728 0.0157 0.0592
βBY 1,4 0.0981 0.0687 0.1053∗ 0.0566
βBY 2,1 0.0084 0.0209 0.0143 0.0183
βBY 2,2 -0.0268 0.0218 -0.0395∗∗ 0.0192
βBY 2,3 0.0376 0.0236 0.0364∗ 0.0193
βBY 2,4 -0.0198 0.0224 -0.0260 0.0180

Regime dependent variances

BDI σ2
BDI,I 0.0196∗∗ 0.0081 0.0173∗∗∗ 0.0060
σ2
BDI,II 0.0847∗∗∗ 0.0326 0.0940∗∗∗ 0.0305

BY σ2
BY,I 0.0027∗∗∗ 0.0012 0.0025∗∗∗ 0.0010
σ2
BY,II 0.0099∗ 0.0055 0.0086∗∗ 0.0041

Degrees of freedom of marginal distributions

νBDI 3.7948∗∗ 1.6939 3.8366∗∗ 1.9538
νBY 3.2647∗∗∗ 1.2207 3.1954∗∗∗ 0.9955

Dependence parameters

κλ,0 -14.5813∗∗ 6.0838 -7.9315∗∗∗ 1.9454

κλ,ηOFR 4.3905∗∗∗ 1.5985
κλ,MSCI -2.9237∗∗∗ 1.0419

κλ,OFR 2.6782∗∗∗ 0.5552
κλ,EX -3.0738∗∗∗ 0.6183

θ 0.4061 0.5284 0.1538 0.4939

LL 325.20431 401.8757

ν{·} denotes the Student-t degrees of freedom and LL the log-likelihood. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively. 1 Sample period 03/1999 - 12/2014.
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Chapter 4

Arbitrage and market efficiency in
the German certificates market

with Alexander Szimayer

Abstract

We investigate arbitrage in the German market for retail structured finan-
cial products between October 2006 and April 2015. Based on the put-
call parity, we compare the risk-adjusted intraday prices of more than 1.4
million portfolios consisting of discount certificates and put warrants with
the price of the risk-free asset. As there is no short-selling in this market,
we only regard underpriced portfolios. Risk-free profits are quantified by
two different arbitrage trading strategies, a static buy-and-hold strategy
and a dynamic one. Our results show frequent arbitrage opportunities,
which indicate slightly inconsistent bank pricing engines. We find market
volatility to be a main driver of the occurrence and degree of arbitrage.
Further factors are the day of the week, the time of the day and the is-
suer of the financial product. Our results indicate that the market for
structured financial products in Germany is not efficient in general, but
arbitrage diminishes when the costs of trading increase.
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4.1 Introduction

The market for structured financial products is still one of the most important markets
for retail investors in Germany. After the recent financial crisis, the outstanding notional
decreased from about 139 billion Euro in September 2007 to about 69 billion Euro in March
2015 (see German Derivatives Association, 2015). The share of investment and leverage
products is quite constant with about 97% and 3%, respectively. Different from other
markets, the issuing financial institutions also act as market makers1. In this function, they
are obliged to quote prices regularly, which requires pricing models that instantly reflect new
market information. Especially in turbulent markets, the high volatility of the underlyings’
prices requires more frequent adjustments of models and quoted market prices. We analyze
whether the heterogeneity of pricing models of various issuers leads to violations of no-
arbitrage in the market for structured financial products in Germany and thus to market
inefficiency. In particular, we test for parity conditions of portfolios of structured products
and implement trading strategies to evaluate possible risk-free profits. As there is no short-
selling for retail investors in this market, we only investigate the case of long positions
of portfolios that are priced below the arbitrage-free value. Our results indicate slightly
inconsistent bank pricing engines resulting in frequent arbitrage opportunities.

The no-arbitrage paradigm describes a pricing relationship between two perfect financial
substitutes. A financial cashflow must have one single price, no matter how it is established.
We apply parity relationships based on no-arbitrage in order to analyze market efficiency in
the German certificates market. In comparison to analyzing arbitrage with pricing models
like Black-Scholes, parity relationships offer the advantage of detecting mispricings by simply
analyzing the consistency of quoted market prices. Thus, uncertainty regarding models or
parameters is avoided. We follow the usual understanding of market efficiency in this context
as the absence of arbitrage opportunities (see for example Capelle-Blancard and Chaudhury,
2001).

In this article we focus on a popular subgroup of investment products, the class of discount
certificates, which show a market volume of 4.4 billion Euro as of March 2015 (see German
Derivatives Association, 2015). The investor of a discount certificate buys the underlying
security at a discount to the prevailing market price. In compensation for the discount, the
upward participation is limited by a cap level, and there are no dividend payments. The
payoff of a discount certificate can be replicated by a long position in the underlying and a
short position in a call option. According to the put-call parity, by adding the respective
long position in a put option, this portfolio replicates the risk-free investment. We refer
to such risk-free portfolios, consisting of discount certificates and put warrants, as boxes.

1 Issuers of structured financial products follow a voluntary undertaking, which requires them to "ensure
that trading is possible in principle for their own structured products" (see German Derivatives Associ-
ation, 2013).
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Overall, we establish more than 1.4 million boxes within the given data. By analyzing
intraday prices, we identify arbitrage quotes and quantify the possible risk-free profits of
two arbitrage trading strategies, a static one and a dynamic one.

To the best of our knowledge, this is the first empirical study on arbitrage in the German
certificates market as prevailing literature in this field is mainly focused on U.S. option and
futures markets. We analyze patterns in the occurrence of arbitrage in general as well as
in the degree of mispricing. In particular, we test if a higher market volatility leads to
more frequent mispricings. Furthermore, we assume that the relative frequency of arbitrage
decreases in the course of the sample period due to the general technical progress in pricing
models as well as in trading systems. With respect to the remaining time to maturity, we
investigate the presence of the life cycle hypothesis as shown by Wilkens et al. (2003). This
effect describes a surcharge on market prices charged by issuers when initiating a structured
financial product. Therefore, we expect fewer arbitrage opportunities when the remaining
time to maturity is high. Finally, we have a look on the performance of the issuing financial
institutions.

The remainder of this paper is structured as follows: In the next section we provide the
literature on parity relationship based arbitrage. Section 4.3 presents the no-arbitrage con-
dition and the method applied in this study. Data is briefly described in Section 4.4. In
Section 4.5 we present our empirical findings and provide robustness checks. The final
Section 4.6 concludes the main results and provides implications.

4.2 Literature review

Evaluating market efficiency and arbitrage is one of the largest fields in empirical finance
literature. We focus on literature analyzing market efficiency based on parity relationships
between financial instruments. The main advantage of such methods is that they do not
depend on explicit valuation models such as Black-Scholes, and hence, cannot suffer from
misspecifications. Preferred tests in this field regularly employ no-arbitrage price bounds,
box spreads2 or the put-call parity.

After the first years of trading U.S. index options, Evnine and Rudd (1985) find that options
on the S&P 100 frequently violate no-arbitrage conditions and the put-call parity. As they
use intraday prices, they assume that problems with the real-time pricing of options lead to
arbitrage opportunities. One of the first studies employing the box spread strategy is Chance
(1987). He finds significant violations of arbitrage-free box spread prices and the put-call
parity for options on the S&P 100 index in the first four months of 1984. However, market

2 A box spread is a portfolio of a bull spread and a corresponding bear spread, which, under no-arbitrage,
has a constant payoff consistent to the difference in exercise prices.



84 Arbitrage in the German certificates market

efficiency may still not be rejected as he uses closing prices which might not be tradable.
In a similar study Ronn and Ronn (1989) analyze the box spread strategy using intraday
prices of several trading days over an eight-year period from 1977 to 1984 and find small
arbitrage profits only at low transaction costs. Hemler and Miller (1997) find increased box
spread arbitrage profits in the aftermath of the 1987 market crash, which indicates pricing
problems in highly volatile markets.

Because of the possibility of early exercise, Kamara and Miller (1995) move away from
American options and use European options on the S&P 500 index. They analyze the put-
call parity condition on two different samples. On the one hand, they use daily closing
prices from the Chicago Board Options Exchange (CBOE) from May 1986 to May 1989,
where they find much less frequent and smaller arbitrage violations than previous studies.
On the other hand, results are verified against possible non-synchronicity of option prices
by a sample of intraday prices. They find that mostly intraday arbitrage results in a loss
as soon as the execution is delayed, and that remaining positive profits bear a substantial
risk of immediacy. Also Ackert and Tian (2001) study theoretical pricing relationships
implied by no-arbitrage conditions for S&P 500 index options. The results for their sample
period from February 1992 to January 1994 are in line with those of the earlier studies.
Frequent arbitrage possibilities are found, but diminish if considering market frictions like
short-selling constraints, transaction costs or bid-ask spreads. The study of Bharadwaj and
Wiggins (2001) confirms this finding for long term index options on the S&P 500.

All the above mentioned studies focus on the highly liquid U.S. options market. Similar
results, i.e. no real arbitrage, have also been found for other markets, see for example Fung
et al. (2004) and Fung and Mok (2001) for the Asian market (Hang Seng Index), Berg et al.
(1996) for Norway (OBX stock index), Capelle-Blancard and Chaudhury (2001) for France
(CAC 40 index) or Brunetti and Torricelli (2005) for Italy (MIB index).

Literature regarding the German market also addresses behavioral aspects with respect to
investors’ product choice and the pricing of structured financial products. The efficiency of
the market for German index options is analyzed by Mittnik and Rieken (2000) who exploit
put-call parity violations between February 1992 and September 1995 and obtain positive
profits mainly for short hedge strategies. Thus, because of the short-selling restriction in
Germany and transaction costs, market efficiency cannot be rejected. Furthermore, they
find that market efficiency improves towards the end of the sample period. Stoimenov and
Wilkens (2005) analyze the pricing of equity-linked structured products between August 2001
and October 2002. They find evidence for the life-cycle hypothesis for most products which
means that products are priced above their fair value at issuance but the surcharge decreases
towards maturity. In a recent study Entrop et al. (2015) address the characteristic of the
certificates market that there are usually certain issuers offering comparable products with
respect to underlying, maturity and cap level. The authors analyze the pricing and investors’
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product choice of 72,200 discount certificates between 2004 and 2008. They find that prices
are quoted on average 0.88% above the fair value, whereas the overpricing decreases as the
products mature. The issuer credit risk accounts for about 85% of the surcharge, but does
not influence investors’ product choice resulting in significant performance losses.

This paper contributes to the small group of literature on markets for structured financial
products in Europe, especially in Germany. In particular, we analyze market efficiency based
on parity relationships. For this purpose, we screen about 794 million prices of more than
1.4 million boxes consisting of discount certificates and put warrants on euro-denominated
underlyings for violations of the put-call parity. Because of the short-selling restriction for
these product classes, we only consider long investments in the box portfolio and therefore,
focus on underpriced boxes. Furthermore, we quantify possible gains of arbitrage trading
and investigate patterns in the occurrence of arbitrage. We find significant violations of
the put-call parity, which cumulate especially in periods of high market volatility. There
are on average more mispricings on Fridays as well as at the beginning and the end of a
trading day. With respect to the issuers of the products, there are noticeable differences in
the pricing performance between the various combinations of issuers. In general, there is a
lower chance of an arbitrage opportunity for boxes with one and the same issuer for both
products.

4.3 Methodology

We attempt to find arbitrage by violations of price parity relationships. For this reason,
we develop the no-arbitrage condition in this section and explain the concept of a box.
Furthermore, we describe the method and the underlying assumptions for our empirical
analysis.

4.3.1 No-arbitrage

Discount certificates are tradable covered call positions, and as such they belong to the
class of structured financial products. The buyer of a discount certificate purchases a certain
underlying at a price less than the current market price. At maturity, the certificate promises
to deliver the underlying stock or the cash equivalent if the price of the underlying is below a
previously fixed cap level. If the price is equal to or above the cap level, this specific amount
is paid in cash. Thus, the discount at the purchase of the certificate is exchanged against
a limited upside potential in comparison to a direct investment in the underlying. Besides,
discount certificates do not provide any dividend claims. Legally, these papers are classified
as bearer bonds, and as such they are exposed to the risk of issuer default including a total
loss of the invested capital. For the moment, we assume a default-free world, but regard the
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adjustment to issuer default risk in the following Section 4.3.2. The payoff further depends
on the cover ratio 1

δD
of the security which expresses the portion of the underlying the

certificate relates to. Let D be a discount certificate with maturity T and payoff ΦDT and
ST the ex-dividend price of the underlying in T , then

ΦDT =
( 1
δD
ST

)
1(ST<X) +

( 1
δD
X

)
1(ST≥X), (4.1)

where X denotes the cap of the certificate. The payoff ΦDT can be replicated by a portfolio
containing a long position in the underlying3 and a short position in a call option with
strike and maturity according to the discount certificate. Let 1

δC
be the call’s cover ratio

and δD = 1, then the replication portfolio is

R = St − δCCt(T )

= 1
δD

min{Sτ , X}
(4.2)

with payoff at maturity T

ΦRT = ST − δC
( 1
δC

max{ST −X, 0}
)

= min{ST , X}

= ST 1(ST<X) +X 1(ST≥X)

= ΦDT .

(4.3)

In a next step we consider the well known put-call parity (see Stoll, 1969). Because of
no-arbitrage it is

St − Ct(T ) + Pt(T ) = e−rf (T−t)X, (4.4)

where Ct(T ) and Pt(T ) are the prices of a European call option C and a European put option
P written on the same underlying with equal strike price X and maturity T . The (continu-
ously compounded) risk-free rate is denoted by rf 4. In practice, the option’s repayment at
maturity T is fixed several days before the actual maturity at a reference date τ , τ ≤ T

such that the payoff at maturity T is given by

ΦCT = 1
δC

max{Sτ −X, 0} and ΦPT = 1
δP

max{X − Sτ , 0}. (4.5)

3 For the purpose of valuation, the non-dividend paying underlying is usually replaced by a zero-strike call
option.

4 We use the appropriate annualized rate for the period from t to T but neglect the index to keep the
notation clear. Exactly written, we have rt,T .
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By inserting Equation (4.5) in Equation (4.3) we obtain the fair value of the discount
certificate at any time t before τ , given by

Dt(T ) = 1
δD

(St − Ct(T )) , t ≤ τ ≤ T. (4.6)

Now, we can substitute (St−Ct(T )) in Equation (4.4) by the price of the discount certificate
Dt(T ) and define boxes B as a portfolio of discount certificates and put warrants, which is

B = δDD + δPP, (4.7)

where both derivatives are written on the same underlying with equal strike price X, equal
maturities TD = TP and equal reference dates τD = τP . Adjusting the positions with the
respective multiples δD and δP ensures that one box is written on one unit of the underlying.
The payoff of such a portfolio at maturity T is given by

ΦBT = δDDT (T ) + δPPT (T )

= δD
1
δD

min{Sτ ,X}+ δP
1
δP

max{X − Sτ ,0} (4.8)

= X,

which is shown in Figure 4.1. Accordingly, the arbitrage-free price of a box at any given
time t, t ≤ τ , is

Bt(T ) = e−rf (T−t)X. (4.9)

We see that dividends can be neglected without loss of generality. For the valuation of
discount certificates and put warrants, future dividend payments of the underlying are es-
sential to calculate fair market prices. However, by construction, the box’ payoff at maturity
is always given by the strike price or cap level X.

4.3.2 Default risk adjustment

A major assumption of no-arbitrage is a risk-free world. In contrast, the certificates and
warrants considered here are regularly traded on OTC markets and are therefore exposed
to issuer default risk. Especially in the aftermath of the recent financial crisis, the market
became aware that the default of financial institutions is not only theoretically possible,
and that these risks have to be considered in the pricing of financial instruments. Since
the enactment of the regulation framework Basel III, banks are obliged to calculate a credit
value adjustment (CVA) of their derivative positions to correct for the counterparty default
risk. We approximate this risk surcharge following Hull and White (1995), and adjust the
prices with the credit spreads of the respective issuer and time to maturity. In our setup,
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Figure 4.1: Box payoff with strike price X = 100

the arbitrage trader implements this adjustment by buying credit default swaps (CDS) as
default insurance with a notional equal to the prevailing market prices Dt(T ) and Pt(T )
as the actual payoff is unknown. For this purpose we assume a liquid CDS market where
insurance can be bought and sold on any given notional amount at negligible costs. Let sD

and sP5 be the credit spreads of the issuers of the discount certificate D and put warrant
P. Assume further that the issuers’ credit spreads and the prices of the underlyings are
independent, then the risk-adjusted prices are given by

Ddf
t (T ) = Dt(T )esD(T−t) and P df

t (T ) = Pt(T )esP (T−t), (4.10)

such that the default-free market price of a box is

Bdf
t (T ) = δDDdf

t (T ) + δPP df
t (T ). (4.11)

4.3.3 Methodology and assumptions

We combine each discount certificate and put warrant to a box given that they are written
on the same underlying with equal maturity and equal cap or strike price, respectively.
Furthermore, we assign all available quotes of the two products to the respective query
times and calculate the default-free market prices of the box using Equation (4.11). Credit
risk does not only apply to the issuers of financial products, but also to the arbitrage trader
which we assume to be an institutional investor like a hedge fund or a bank. Therefore, the
lending rate is assumed to be above the risk-free rate rf , and the cost of refinancing of the

5 We use the maturity matching credit spreads but neglect the index to keep the notation clear. Exactly
written, we have sDt,T and sPt,T .
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arbitrage investor rA is given by

rA := rf + sA, (4.12)

where sA is the arbitrage trader’s own risk premium. With respect to Equation (4.11), an
arbitrage opportunity is given every time we observe a risk-adjusted box price below the
risk-adjusted present value of the strike price, which yields the arbitrage condition

Bdf
t (T ) < e−rA(T−t)X. (4.13)

A box price satisfying Equation (4.13) is referred to as arbitrage quote.

As outlined in Section 4.3.1, the put-call parity explicitly regards European-style options,
while most put warrants in our sample are American-style. In contrast to European options,
American options allow the holder to exercise the option at any time t ≤ τ . The right of
exercising the option before maturity enhances the value of the option. Especially for put
options, it can be rational to exercise early if the price of the underlying is close to 0 such
that the payoff of the put is maximum. Therefore, the value of an American-style put option
is at least the value of the European-style put option,

PAmerican
t (T ) ≥ PEuropean

t (T ). (4.14)

For this reason, we treat American-style options as Europeans, which leads at most to a
slight increase of the left hand side of Equation (4.4) and thus, to a more conservative
arbitrage condition.

Furthermore, we have to make various assumptions in order to implement the outlined
method. The main principle behind each assumption is to achieve a conservative arbitrage
condition.

(A.1) All products, especially all discount certificates, are assumed to be cash settled. This
is not only because of the lack of information about this feature, but also for technical
reasons. As soon as there is a physical delivery, there is an additional stock price risk
between the reference date τ and the delivery at maturity T that the investor may
have to hedge. In our analysis, we also have a special look on index boxes, which are
inevitably cash settled.

(A.2) As the data set contains only the reference date τ , we assume the maturity of all
products to be seven calendar days after this settlement date, which is the market
standard for the products considered. For the sake of plausibility, we do not regard
maturities of less than one day.

(A.3) The day count conventions for interest rates are not known and may even differ
between issuers. Common day count conventions are actual/360, actual/365 or ac-
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tual/actual. For a conservative approach we assume the day count convention to
be actual/360, which is always greater than the other two. This has two favorable
effects with respect to the arbitrage condition in Equation (4.13). The left side is
compounded with the issuers’ credit spreads and increases with a longer time to ma-
turity while the right side holds the discounted strike price and decreases with time to
maturity. Thus, with a larger day count method it is less likely to obtain an arbitrage
box price.

(A.4) Contracts are not divisible and there is no short-selling. As short-selling is not possible
for retail investors in Germany, we will only invest in long positions of the box portfolio
and only investigate boxes priced below the arbitrage-free market price. Lending and
investing is possible without restrictions, especially liquidity issues are not considered.
For each product, issuer default protection is bought in the form of CDS positions
on corporate bonds of the respective issuer. Once entered, each CDS position is held
to maturity even if the position is closed before. In particular, there is no reselling of
CDS on a secondary market, although we are aware of waiving potential profits from
reselling the credit insurance.

(A.5) We treat American-style warrants as European ones assuming no additional costs for
early exercise. Because of the possibility of early exercise, we allow maturities for
American-style put warrants up to 15 days after the maturity of the discount certifi-
cate. However, we do not consider any early exercising before the settlement date of
the discount certificate. As a consequence, the maturity of the box is determined by
the discount certificate.

(A.6) There is a unique interest rate for borrowing and lending, which equals the yield
for German bank bonds. By assuming a higher rate for lending, opportunity costs
increase, such that possible excess returns decrease, which is in line with our aim of
a conservative approach.

4.3.4 Arbitrage strategies

Having identified all underpriced box quotes, we evaluate the profits of two different trading
strategies. For this purpose, we also regard trading fees payable for each individual trade,
i.e. buying a box involves buying the appropriate positions in the discount certificate and in
the put warrant, thus two trades6. The two strategies considered are a static buy-and-hold
strategy and a dynamic one.

Within the buy-and-hold strategy, the box is bought whenever Equation (4.13) applies, i.e.
if the risk-adjusted ask price of the box portfolio plus trading fees g is below the arbitrage-
6 We assume equal trading fees for both products.
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free price. At maturity T the holder receives the strike price X times the number of boxes
bought nB 7. The net return is

ρt,T = nBX(
nBBask, df

t + 2g
)
erA(T−t)

− 1, (4.15)

where Bask, df
t is the default-free ask-price of one box and rA is the respective bank lending

rate for the time to maturity. The absolute profit at maturity T is given by

ωt,T = nBX −
(
nBBask, df

t + 2g
)
erA(T−t). (4.16)

Besides holding until maturity, the arbitrage trader may sell the position as soon as the
underpricing is gone, and in particular if net profits are positive. Therefore, the rational
for buying the box is the same as in Equation (4.15), but we now constantly check whether
there are positive profits when selling the box prior to maturity at time t+ k including fees
for two additional trades. The investor sells the box as soon as the net return of the box
sold in t+ k and compounded to maturity T ,

ρt+k,T =

 nDDbid
t+k + nPP bid

t+k(
nBBask, df

t+k + 2g
)
erAk + 2g

 erA(T−(t+k)) − 1 , (t+ k) ≤ τ < T, (4.17)

is positive and in particular if ρt+k,T > ρT . The compounding from t + k to maturity T is
necessary to make a decent trading decision in the sense that the advantage of selling the
portfolio compared to further holding can be evaluated. Note that a credit risk adjustment
of the bid prices is not necessary. The corresponding absolute profit is

ωt+k,T =
(
nDDbid

t+k + nPP bid
t+k −

(
nBBask, df

t+k + 2g
)
erAk − 2g

)
erA(T−(t+k)) , (4.18)

(t+ k) ≤ τ.

4.4 Data

We use daily data of German discount certificates and put warrants between October
31, 2006 and April 2, 2015 on euro-denominated underlyings. Prices are from EUWAX
(Stuttgart, Germany) and Deutsche Börse Zertifikate (Frankfurt, Germany)8. The initial
data comprises 559,519 discount certificates and 445,242 put warrants of which 389,847
(87.6%) are American-style and 55,395 (12.4%) are European-style. We observe market
prices on four points of time on each trading day, in particular at 9:50 AM, 1:20 PM,
7 Depending on the cover ratios of both instruments, the number of boxes must not necessarily be an

integer, only puts and discount certificates are indivisible.
8 We thank Certox GmbH for providing the data.
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4:20 PM and 7:50 PM, resulting in about 544 million data sets for discount certificates and
331 million data sets for put warrants.9 Each data set contains the bid and ask price as well
as the exact timestamp of the quote. A quote represents the issuers offer to buy or sell a
financial product at the given price. Therefore, we generally assume all quoted prices to be
valid at the time of the query regardless of the actual timestamp.

Overall, there are 34 different issuers, but with quite heterogeneous shares in the whole
sample. While some issuers, such as the Bayerische Landesbank, Credit Suisse or Morgan
Stanley, are only represented by a few products, others provide up to 20% of one of the two
products classes. A full list of all issuers and the number of products in the sample can be
found in Table 4.14 in Appendix A.

Furthermore, we use issuer specific CDS quotations for maturities of one to five years for
credit risk adjustments obtained from Thomson Reuters Datastream. For maturities in
between, we use linear interpolation. When there is no CDS available for a specific issuer we
follow Entrop et al. (2015) and estimate the spread as the difference between the redemption
yield of the iBoxx Europe Financial bond index and the risk-free rate. In this case, the risk-
free rate is given by the Euro area yield curve of AAA rated government bonds (YC.AAA.SR)
published by the European Central Bank. In most cases, the iBoxx approximation results
in much higher spreads compared to the given CDS quotations of the other issuers such that
it can be regarded as a conservative assumption. For maturities of less than one year, the
respective one year spread is employed.

The arbitrage trader in our setup is assumed to be an institutional investor like a bank or
a hedge fund and therefore entails a slight credit risk (see Section 4.3.3). Thus, we cannot
employ the risk-free rate to reflect the cost of finance. In contrast, we use the rate for German
bank bonds, which is published daily by Deutsche Bundesbank (series BBK01.WT1032) and
regularly ranks above the risk-free rate. These rates are published for intervals of maturities,
in particular from 1 to 2 years, 2 to 3 years, and so on. In order to obtain the cost of capital
for a particular trading day, we assign each interval the respective mid-maturities (1.5 years,
2.5 years, and so on) and interpolate between these rates. For maturities of less than 1.5
years we use the "1 to 2 years"-rate.

4.5 Empirical results

The first part of this section presents the dirty results of arbitrage quotes. As some of the
hits are obviously caused by faulty quotations, we correct for implausible quotes to obtain
more reliable results within the later analysis. The actual results are based on the cleaned
data and start in Section 4.5.2.
9 There are mostly four quotes per day and products, but also days with fewer or no quote.
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4.5.1 Primary results and data cleaning

We combine each discount certificate and put warrant to a box if they are written on the
same underlying with equal maturity and equal cap or strike price, respectively. Therefore,
most products participate in more than one combination. Overall we identify 1,413,656
boxes in our data with more than 794 million pairs of quotes10. There are 457,473 (81.8%)
discount certificates and 354,292 (74.9%) put warrants involved in boxes. An overview of
all boxes by issuers and underlying is provided in Table 4.15 in Appendix A.

Underlying EURO STOXX 50

(ISIN) (EU0009658145)

WKN DT2YJZ

issuer DBK

issuance February 26, 2014

settlement March 18, 2015

maturity March 25, 2015

cover ratio 0.01

cap € 3,050

WKN DE8BWV

issuer DBK

issuance December 15, 2011

type American

settlement March 18, 2015

maturity March 25, 2015

cover ratio 0.01

strike price € 3,050
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Figure 4.2: Price development of a sample box with arbitrage quotes

Within the found combinations of discount certificates and put warrants, we identify 910,773
(0.12%) box quotes allowing for arbitrage in 166,614 (12%) different boxes. Figure 4.2 shows
the price development of a typical arbitrage box with three arbitrage opportunities. The
distribution of arbitrage quotes per box in Table 4.1 indicates that some boxes are much
more often priced below their arbitrage-free price. Mostly there have been increases of
capital, share splits/re-splits or share buybacks of the underlying company. Such measures
lead, inter alia, to adjustments of the cover ratio of the respective derivative instruments,
but our data only covers the most recent cover ratio as of February 2015. To correct for such
data issues, we choose the 95% quantile of the number of arbitrage quotes per box (at most
15 hits) and exclude boxes with implausbile high numbers of mispricings from our further
analysis. This sample reduction of 7,896 boxes decreases the number of arbitrage quotes to
418,490.

A further criterion for cleaning the resulting data set is the difference to the fair value. As
shown in Table 4.2, the majority of the arbitrage quotes are at most about 1% below the
respective fair value. In contrast, some boxes are priced up to 99% below their arbitrage-

10 Including multiple participations of the same product in different boxes. We only count the quotes during
the duration of the boxes, i.e. only when there are quotes for both products.
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Table 4.1: Arbitrage opportunities per box

# Arbitrage
opportunities

# Boxes

Absolute Relative Cumulative

1 78,732 47.25% 47.25%
2 30,648 18.39% 65.65%
3 15,554 9.34% 74.98%
4 9,551 5.73% 80.72%
5 6,135 3.68% 84.40%
6 4,054 2.43% 86.83%
7 3,084 1.85% 88.68%
8 2,371 1.42% 90.11%
9 1,834 1.10% 91.21%
10 1,612 0.97% 92.17%

11 - 20 7,815 4.69% 96.86%
21 - 30 2,355 1.41% 98.28%
31 - 40 865 0.52% 98.80%
41 - 50 420 0.25% 99.05%
51 - 100 648 0.39% 99.44%

100 and more 936 0.56% 100.00%

Total 166,614 100.00%

Quantiles

8 (90.0%) 150,129 90.11%
15 (95.0%)∗ 158,718 95.26%
24 (97.5%) 162,671 97.63%
48 (99.0%) 164,956 99.00%

∗ indicates the chosen quantile for data cleaning.

free price. A main reason for this problem are most likely errors in the reported prices11,
which can either be due to the issuers, the exchange or the data gathering process. We
treat such quotes as misquotes and correct the sample by regarding only quotes with a
difference between the market price of a box and its corresponding fair value of at most
9.0934% reflecting the 99% quantile of all relative box price differences. This measure leads
to a further small sample reduction of 4,185 arbitrage quotes and 2,263 boxes resulting in a
final arbitrage sample 414,305 arbitrage opportunities in 156,455 boxes.

4.5.2 Arbitrage analysis

We mainly focus on two characteristics of arbitrage. On the one hand, we analyze the
relative proportion of arbitrage quotes narbt compared to all observed box quotes nt in a

11 For example, one quote is 0.01 Euro while the ones before and thereafter are around 10 Euro.



Empirical results 95

Table 4.2: Relative underpricing of boxes (with at most 15 arbitrage quotes)

Distance to fair value
# Quotes

Absolute Relative Cumulative

[0.00% - 0.01%) 30,372 7.26% 7.26%
[0.01% - 0.02%) 25,655 6.13% 13.39%
[0.02% - 0.03%) 21,549 5.15% 18.54%
[0.03% - 0.04%) 18,966 4.53% 23.07%
[0.04% - 0.05%) 16,998 4.06% 27.13%
[0.05% - 0.06%) 15,407 3.68% 30.81%
[0.06% - 0.07%) 14,289 3.41% 34.23%
[0.07% - 0.08%) 12,967 3.10% 37.33%
[0.08% - 0.09%) 11,968 2.86% 40.19%
[0.09% - 0.10%) 11,400 2.72% 42.91%

[0.10% - 0.20%) 79,133 18.91% 61.82%
[0.20% - 0.30%) 45,603 10.90% 72.72%
[0.30% - 0.40%) 29,184 6.97% 79.69%
[0.40% - 0.50%) 19,569 4.68% 84.37%
[0.50% - 0.60%) 13,515 3.23% 87.59%
[0.60% - 0.70%) 8,968 2.14% 89.74%
[0.70% - 0.80%) 6,692 1.60% 91.34%
[0.80% - 0.90%) 5,247 1.25% 92.59%
[0.90% - 1.00%) 3,873 0.93% 93.52%

[1.00% - 2.00%) 15,054 3.60% 97.11%
[2.00% - 3.00%) 4,365 1.04% 98.16%
[3.00% - 4.00%) 1,541 0.37% 98.52%
[4.00% - 5.00%) 660 0.16% 98.68%
[5.00% - 6.00%) 448 0.11% 98.79%
[6.00% - 7.00%) 311 0.07% 98.86%
[7.00% - 8.00%) 303 0.07% 98.94%
[8.00% - 9.00%) 245 0.06% 98.99%
[9.00% - 10.00%) 163 0.04% 99.03%

[10.00% and more) 4,045 0.97% 100.00%

418,490 100.00%

Quantile # Quotes Max. distance to fair value

90.00% 376,641 0.7152%
95.00% 397,565 1.2295%
97.50% 408,027 2.2631%
99.00%∗ 414,305 9.0934%
99.50% 416,397 62.0953%

∗ indicates the chosen quantile for data cleaning.
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specific period of time t, which we denote as

pt = narbt
nt

. (4.19)

On the other hand, we calculate the average relative difference to the fair value dt for each
time period t, given by

dt = 1
narbt

∑
ti∈t

di with di = 1−
Bdf
ti (Ti)

e−rA(Ti−ti)Xi
, (4.20)

where i, i = 1, . . . , 414,305, denotes the identified arbitrage quotes. We analyze various
patterns of arbitrage over time, by the remaining time to maturity, and by the issuers of
the products.

4.5.2.1 Time patterns of arbitrage

The occurrence of arbitrage is assumed to be equally distributed over time. In order to check
this hypothesis, we analyze the arbitrage patterns per weekday and daytime of the query.
The distribution of arbitrage by weekdays is presented in Table 4.3. While the absolute
number of all box quotes is similar for each day of the week with about 157 million, the
number of arbitrage opportunities varies. Especially on Fridays, there are comparatively
few arbitrage quotes with 0.04% of all Friday quotes, but the average proportion of arbi-
trage quotes is still not significantly different from the other weekdays (see Table 4.18 in
Appendix B). With respect to the difference to the fair value, the average mispricing is 0.1
percentage points larger on Fridays compared to the other four weekdays. The ANOVA test
in the lower part of Table 4.3 confirms this finding as the low p-values of about 0 indicate
significant differences to all other mean differences. A possible explanation may be the week-
end effect of stock returns as found by Jaffe and Westerfield (1985). The effect describes
empirically observable, abnormally high stock returns on Fridays12. In general, higher re-
turns imply a higher market volatility, which hampers an appropriate pricing of structured
financial products. A further explanation for a higher market volatility on Fridays is also
provided by Berument and Kiymaz (2001). They argue that traders may take weekend
expectations into account, knowing that they are unable to respond on the weekend. Thus,
overall trading activity is higher on Fridays. Furthermore, many futures contracts, such as
the DAX index futures, mature on Fridays resulting in additional trading activity by large
institutional investors.

Besides the differences between weekdays, we analyze arbitrage opportunities by the time
of the day the quote is obtained. The results in Table 4.4 show that the number of overall

12 The effect also describes abnormally low returns on Mondays, which is not the case in our sample.
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Table 4.3: Market inefficiency by weekday

Weekday Box quotes
Arbitrage quotes Price difference

Absolute Mean
proportion Mean SD

Monday 157,914,682 87,780 0.0007 0.0029 0.0056
Tuesday 159,257,609 79,809 0.0008 0.0028 0.0055
Wednesday 158,756,120 84,876 0.0007 0.0027 0.0053
Thursday 157,964,356 97,272 0.0007 0.0028 0.0055
Friday 153,493,756 64,568 0.0008 0.0040 0.0077

All quotes 787,386,5231 414,305 0.0007 0.0030 0.0059

Differences in mean price differences

Monday Tuesday Wednesday Thursday

Tuesday 0.0001
[0.2518]

Wednesday 0.0002 0.0001
[0.0000] [0.0000]

Thursday 0.0001 0.0000 -0.0001
[0.0024] [1.0000] [0.0012]

Friday -0.0011 -0.0011 -0.0013 -0.0012
[0.0000] [0.0000] [0.0000] [0.0000]

1 The difference in total box quotes is due to the exclusion of boxes as explained in Section 4.5.1. Figures
in [ ] are Bonferroni-adjusted p-values, which are capped at 1.0.

box quotes is almost equally distributed over the day while the proportion of boxes priced
below their fair value is not. In the morning and in the afternoon there are on average
more arbitrage opportunities whereas the largest mispricings occur in the morning and the
evening. These findings can be explained by the course of a typical trading day. In the
morning, new information from the previous evening, the morning or the past weekend is
being processed in the market. Trade volume, price volatility and by that the absolute
number of mispricings increase. The same applies in the afternoon at the 4:30 pm inquiry
when the U.S. stock exchanges start trading. The fewest number of arbitrage quotes is found
at the last time of inquiry (7:50 pm) when the main exchanges in Germany and Europe are
already closed 13. Afterwards, it is only possible to trade stocks over-the-counter with higher
bid-ask spreads leading to fewer underpricings. The still higher average mispricing might
be caused by the less liquid market and less frequent quotations by the issuers after the
closing of floor trading14. This finding raises doubts regarding our assumption that each
quote represents the current price regardless of the time it was published (see Section 4.4).

13 Floor trading in Frankfurt ends at 5:30 pm CET.
14 The average time difference of quotes of the put warrant and the discount certificate is highest at the last

quote inquiry of the day. In particular, the average quote time differences are: morning 20.0 minutes,
noon 30.0 minutes, afternoon 36.7 minutes and evening 60.1 minutes.
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Table 4.4: Market inefficiency by query time

Query time Box quotes
Arbitrage quotes Price difference

Absolute Mean
proportion Mean SD

Morning (09:50 am) 196,858,565 110,261 0.0009 0.0035 0.0072
Noon (1:20 pm) 197,017,001 74,130 0.0006 0.0030 0.0066
Afternoon (4:20 pm) 198,401,153 175,687 0.0008 0.0024 0.0039
Evening (7:50 pm) 195,109,804 54,227 0.0006 0.0036 0.0071

All quotes 787,386,5231 414,305 0.0007 0.0030 0.0059

Differences in mean price differences

Morning Noon Afternoon

Noon 0.0005 - -
[0.0000]

Afternoon 0.0011 0.0006 -
[0.0000] [0.0000]

Evening -0.0001 -0.0005 -0.0011
[0.1639] [0.0000] [0.0000]

1 The difference in total box quotes is due to the exclusion of boxes as explained in Section 4.5.1. Figures
in [ ] are Bonferroni-adjusted p-values.

Overall, we see significant heterogeneity in the occurrence of arbitrage box prices. For both
day of the week and time of the day, there is also a slight, non-significant negative relation
between the number of arbitrage quotes and the average price difference to the fair value.
Taken together, a preferable time for arbitrage trading is Friday in the afternoon and evening
when the chance to observe mispriced boxes and the average mispricings are highest.

4.5.2.2 Arbitrage by day

As shown by Hemler and Miller (1997) there is a higher chance of arbitrage quotes when
the stock market is more volatile and stock prices fluctuate more. In such situations issuers
may have problems to adjust the prices of their derivative contracts in time, which reveals
extraordinarily more arbitrage opportunities for traders. Figure 4.3 shows the relative share
of daily arbitrage boxes to all combinations of discounters and puts examined on the respec-
tive trading day. Moreover, the development of overall box quotes per day is given15. We see
that the average underpricing was higher during the 2007 sub-prime crisis and the financial
turmoil after the Lehmann collapse in September 2008. On the most turbulent days, about
one in every 50 box prices was priced below the fair value. However, we cannot draw general
conclusions as with fewer observations the relative weight of outliers increases. A second

15 Recall that there are at most four quotes per product and day, and that one and the same product is
likely to be part of several boxes. The number of box quotes must not necessarily reflect the market
volume of trades.
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accumulation of arbitrage quotes can be identified after the ’Black Monday’ on August 18,
2011 when the market was shocked by the first downgrade of the United States sovereign
debt in history. Finally, the ’Flash Crash’ of 10-year U.S. Treasury yields on October 15,
2014 also led to a share of arbitrage quotes of more than 2%. For a detailed analysis of the
influence of volatility on arbitrage, we have a closer look at index boxes in the following
section.
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Figure 4.3: Relative share of arbitrage quotes per day

4.5.2.3 Arbitrage quotes by time to maturity

The pricing of structured financial products is said to be subject to a lifetime surcharge as
shown by Wilkens et al. (2003), Stoimenov and Wilkens (2005) or Entrop et al. (2015). The
essence of this life cycle hypothesis is that there is an additional surcharge on the theoretical
price besides the risk premium. This premium is highest at the issuance of a product and
decreases towards maturity. As there is no short-selling, certificates can only be sold back
by investors if they have been purchased before such that issuers gain extra profits when
buying back certificates because of the reduced lifetime premium. Therefore, we expect a
negative influence of the remaining time to maturity on both the average price difference
to the arbitrage-free box price as well as the proportion of arbitrage quotes. However, our
sample is quite inhomogeneous and shows a high data density for maturities of less than one
year, but much fewer observations for longer maturities. For this reason, we aggregate the
observations into (non-equidistant) maturity buckets (see Table 4.20 in Appendix B). Mean
price differences and standard deviations are then obtained as Nadaraya-Watson regression
estimates based on bucket means and standard deviations using an Epanechnikov kernel
and a bandwith of 2.5 (see for example Härdle et al., 2004). In this case, the proportion of
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arbitrage is obtained as equally weighted moving average of order three as p̃t = 1
3(pt−1 +

pt + pt+1).

The plots of both characteristics are presented in Figure 4.4 and lead to contradictory
conclusions. On the one hand, the proportion of arbitrage quotes decreases with increasing
time to maturity, which can be interpreted as a support of the life cycle hypothesis. In
addition, more than 99% of all arbitrage quotes occur with a remaining time to maturity of
less than one year while the overall sample of all considered box quotes shows a 99% quantile
of 742 days. On the other hand, the degree of underpricing, if it is the case, increases slightly
up to 0.6% for maturities of at most one year. For longer maturities we observe increasing
price differences, which is contrary to the life cycle hypothesis. The reason might be a less
liquid trading with less frequent price quotations. Taken together, we cannot confirm the
existence of a life cycle pricing in the German certificates market based on the given sample.
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Figure 4.4: Mean price difference and proportion of arbitrage quotes by time to maturity

4.5.2.4 Arbitrage by underlying and volatility

More than 30% of all boxes are written on indices (see Table 4.15), most of them on the
German lead index DAX 30 (about 25% of all boxes) or the EURO STOXX 50 index (about
5% of all boxes). As a physical settlement is not possible, certificates written on indices are
always cash settled. Therefore, there is no price risk in the period between the settlement
date and maturity, which is one of our assumptions16. We have a closer look at these boxes
and compare them to the boxes written on single stocks. Table 4.5 provides an overview of
all arbitrage opportunities of index boxes compared to boxes written on single stocks. About
16 The interest rate risk for such a brief span may be neglected.
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one in every 1000 index boxes is priced below its fair value. Thus, the ratio of arbitrage
boxes in all regarded quotes is about 60% higher for index underlyings than for single stock
underlyings. Especially boxes written on the DAX show a smaller average price difference
to the fair value and a smaller standard deviation than boxes written on other indices or
single stocks. The worst pricing is observed for boxes written on indices other than DAX
or EURO STOXX 50.

Table 4.5: Arbitrage by underlying: indices vs. stocks

Underlying Box quotes
Arbitrage quotes Price difference

Absolute Mean
proportion Mean SD

Indices 206,449,113 161,173 0.0010 0.0023 0.0041
DAX 30 149,480,500 123,355 0.0010 0.0021 0.0034
EURO STOXX 50 53,616,677 35,574 0.0010 0.0030 0.0054
Other 3,351,936 2,244 0.0052 0.0043 0.0091

Single stocks 580,937,410 253,132 0.0006 0.0034 0.0068

All quotes 787,386,5231 414,305 0.0007 0.0030 0.0059
1 The difference in total box quotes is due to the exclusion of boxes as explained in Section 4.5.1.

In order to make a decent statement of the influence of the underlying’s volatility on arbi-
trage, we further analyze boxes written on the DAX 30 index and the EURO STOXX 50
index with respect to their volatility indices VDAX and VSTOXX, respectively. Figure 4.5
shows the proportions of arbitrage quotes compared to the developments of the two volatil-
ity indices. Evidently, accumulations of arbitrage quotes occur in times when the volatility
indices are above normal levels. We test the influence of the demeaned volatility indices
on the proportion of arbitrage quotes by estimating linear regression models. Quotes are
accumulated on a monthly basis to obtain more distinct signals. Furthermore, we include a
time trend variable as technical progress may also explain part of the pricing performance.

The estimation results are given in Table 4.6. On the one hand, for both indices the influence
of volatility on the proportion of arbitrage is significantly positive with 0.0105% per one point
increase of the VDAX and 0.0077% per one point increase of the VSTOXX, respectively.
On the other hand, the trend variable t is not significantly different from zero in neither of
the two regressions. Thus, technical progress does not lead to lower ratios of mispricings in
the German certificates market. For an arbitrage trader these results have two implications.
The number of arbitrage opportunities is not necessarily decreasing because of more precise
pricing models and computer trading, and chances for risk-free profits are best in volatile
markets.
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Figure 4.5: Proportion of arbitrage quotes compared to the volatility of the underlying

4.5.2.5 Arbitrage by issuers

We analyze the arbitrage quotes by the respective issuers involved. To draw plausible
conclusions we only focus on issuers that participate in at least 1000 boxes17. Due to
the setup of this parity based study, we cannot see which part of the box, put warrant or
discount certificate, is causing the underpricing of the box. However, the comparison of issuer
combinations shows if certain issuers tend to produce comparatively more arbitrage box
quotes than others. As a crosscheck, we also analyze those boxes where one issuer provides

17 See Table 4.15 in Appendix A. The issuers considered are Barclays Bank, BHF-Bank, BNP Paribas,
Commerzbank, Citibank, Deutsche Bank, DZ Bank, Goldman Sachs, Interactive Brokers, Landesbank
Berlin, LBBW, Lang & Schwarz, Merrill Lynch, Macquarie, Morgan Stanley, Royal Bank of Scotland,
Raiffeisen Centrobank, Société Générale, HSBC Trinkaus & Burkhardt, UBS, UniCredit Bank, Bankhaus
Vontobel, WGZ BANK AG, and WestLB.
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Table 4.6: Regression results of DAX and EURO STOXX 50 arbitrage

DAX 30 EURO STOXX 50

pDAX
t = β0 + β1VDAXt + β2t+ εt pStoxx

t = β0 + β1VSTOXXt + β2t+ εt

Estimate S.E. t-Statistic Estimate S.E. t-Statistic

β0 0.0735∗∗ 0.0348 2.1101 0.1346∗∗∗ 0.0350 3.8409
β1 0.0105∗∗∗ 0.0019 5.5026 0.0077∗∗∗ 0.0019 4.0797
β2 0.0005 0.0006 0.7870 -0.0008 0.0006 -1.2862

n 101 101
R2 0.2394 0.1853
F-stat. 15.4264 11.1456

pDAX
t and pStoxx

t (in %) are calculated according to Equation (4.19). VDAX and VSTOXX are demeaned
series. The sample comprises 101 months from 11/2006 to 03/2015.

both parts of the box. If the underpricings of box portfolios are caused by inconsistent
pricing methods or models, single issuer boxes should show a superior performance.

The proportion of arbitrage quotes by pairs of issuers is given in Table 4.7. The overall
arbitrage proportion is given in the lower right corner and is 0.05%, which equals about one
in every 2000 box quotes. Though, some of the issuers exhibit far higher ratios of arbitrage
quotes. For the put issuers, we see the highest ratios of underpriced boxes for LBW, which
is not quite conclusive as there are only 40 box participations with puts. High ratios are
also found for boxes with INT or LSW as put issuers with average proportions of arbitrage
quotes of 0.17% and 0.12%. For these issuers there are no actual credit spreads available
such that the iBoxx Financial spread is applied. Even if this approximation results in general
in a quite conservative risk surcharge, it may still be too low for some of the smaller issuers.
Among the issuers with fully available credit spread information, CBK reveals an above
average arbitrage proportion of 0.09% of all box quotes it participates in. Even the boxes
where CBK issues both the put warrant and the discount certificate, are underpriced at
0.13% on average. The CDS of CBK seems to not fully reflect the default risk as considered
by the market.

On the side of the discount certificate, the highest proportions of arbitrage prices are found
among the issuers with the fewest products within the sample (BHF, LBW, ML, WLB).
Besides these four banks, CBK again shows a high tendency to box prices below the fair
value (0.09% or about 1 in every 1100 box quotes). The combination with CBK as issuer of
the put warrant and BNP as issuer of the discount certificate shows the highest arbitrage
proportion amongst those issuers where CDS information are available. The other way round
(put warrant by BNP and discount certificate by CBK) reveals no extraordinary arbitrage.

The lowest ratios of arbitrage prices on the discount certificate side are found for INT, LBB,
VON and GS (at most 0.02%) and thus among those issuers without available CDS data. On
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the put warrant side RCB, RBS and DZB exhibit the lowest proportions of arbitrage prices
with 0.01%, 0.02% and 0.03%, respectively. Overall, mainly those issuers with comparatively
small numbers of price data show the smallest ratios of underpricings.

The average differences of the risk-adjusted box prices to the arbitrage-free prices by pairs of
issuers are presented in Table 4.8. The sample average is given in the lower right corner and
is 0.30%. The highest average mispricing18 is found for boxes with ML as issuer of the put
warrant and RBS as discount certificate issuer with 2.09%. In general, the arbitrage quotes
of these issuers show a high average price difference. Even boxes, where only RBS products
are involved are considerably worse with an average 1.99% distance to the arbitrage-free
box price. The smallest average mispricing is found for put-discount combinations of UNC
and TUB (0.03%), CBK and BNP (0.05%) or CBK and TUB (0.06%).

Up to this point, we can conclude that the big players in the certificates market show a
similar (mis-)pricing behavior as the smaller ones. Furthermore, we observe that boxes
by only one issuer (elements marked with a circle in Tables 4.7 and 4.8) are on average
priced more accurately than those with two issuers participating. Therefore, we isolate the
single issuer boxes and test if the sample proportions are the same as for two issuer boxes
by applying the normal approximation of the binomial test. To avoid distortions, we do
not regard issuers that participate only on the put side or only on the discount side of a
box or that have no CDS spread available. The results in Table 4.9 show that on average
0.0359% of all single issuer boxes are priced below the fair value. As the proportion for
boxes by two different issuers is 0.0550%, the assumption can be overall verified at high
significance. However, there are no significant differences of arbitrage proportions for CIT,
DBK, EB, ML, RBS and SG. For two banks, CBK and TUB, there are even significantly
more underpriced boxes among the single issuer boxes compared to having a second issuer
involved. Given that our CDS data adequately reflects the issuers credit risk, this finding
raises concerns about the adequacy of the different models used within these two banks.
The fewest arbitrage opportunities are found for single issuer boxes of GS and DZB with
slightly more than one in every 10,000 box quotes. In contrast, an analysis of the mean
underpricings reveals no significant differences between two- and single issuer boxes (see
Table 4.21 in Appendix B).

4.5.3 Profits of arbitrage trading

After we found that there is a significant number of mispricings in our sample, we are inter-
ested in the possible profits of an arbitrage trader in this market. We follow the minimum
quoting volume requirements of the two considered exchanges EUWAX (Stuttgart) and
Zertifikate Börse Frankfurt, which are 3,000 Euro or 10,000 units for leverage products like

18 Here, we only consider pairs of issuers, where there are at least 4 arbitrage boxes.
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Table 4.9: Proportion of arbitrage quotes by issuers and box participation (only issuers
with available CDS spreads)

Issuer
One-sided participations Single issuer boxes H0 : p2 = p1

# Box quotes thereof
arbitrage # Box quotes thereof

arbitrage
Z-Score(
p̂2−p̂1
σ̂(p̂2−p̂1)

) p-value

BNP 163,809,926 0.0445% 28,919,173 0.0234% 2.8048 0.0025***
CBK 114,652,852 0.0875% 5,643,211 0.1220% -3.6551 0.0001***
CIT 68,343,350 0.0639% 6,464,000 0.0619% 0.1663 0.4340
DBK 104,370,704 0.0608% 9,986,460 0.0525% 0.8598 0.1949
DZB 107,889,369 0.0325% 10,635,684 0.0161% 1.7497 0.0401*
EB 356,125 0.2207% 116,944 0.0829% 0.8938 0.1857
GS 77,964,421 0.0422% 7,065,119 0.0123% 2.7169 0.0033***
ML 4,561,288 0.1490% 10,266 0.0779% 1.5190 0.0644
MQ 24,534,335 0.0713% 2,762,441 0.0331% 1.9463 0.0258*
RBS 26,048,529 0.0367% 1,028,791 0.0241% 0.6474 0.2587
SG 26,433,308 0.0716% 1,298,658 0.0699% 0.0872 0.4652
TUB 46,475,723 0.0287% 122,527 0.0530% -1.6554 0.0489*
UBS 129,184,523 0.0606% 9,972,595 0.0340% 3.0731 0.0011***
UNC 46,056,439 0.0508% 5,938,185 0.0202% 2.1537 0.0156**

All 470,340,446 0.0550% 89,964,054 0.0359% 4.2548 0.0000***

This table only regards box participations between the issuers listed here. One-sided participations contain
only boxes where a particular issuer provides either the put warrant or the discount certificate. Single
issuer boxes are boxes where a particular issuer provides both put warrant and discount certificate. *, **,
and *** denote (two-sided) statistical significance at the 10%, 5%, and 1% level, respectively.

warrants, and 10,000 Euro or 10,000 units for investment products like discount certificates
(see EUWAX, 2015; Börse Frankfurt, 2015). In practice, most issuers guarantee a much
higher volume per trade of 100,000 units and more such that our results only reflect the
minimum possible arbitrage gains.

Furthermore, we presume a signalling effect in the moment we buy an underpriced product.
A rational issuer might immediately realize the mistake and correct the quoted price. For
this reason, we do not regard directly consecutive arbitrage quotes. This applies to about
10% of the 414,305 arbitrage quotes resulting in 373,419 quotes remaining. As soon as there
is at least one arbitrage-free quote between two arbitrage quotes, we count these as two
different arbitrage prices.

As a further consequence of the volume restriction, we cannot trade boxes where the put or
the discount certificate are also part of another box at the exact same date and time. This
applies to more than half of the products that participate in the identified arbitrage boxes.
As the profit at maturity is known ex ante, we only trade the box with the highest prospective
profit in such a situation. This leads to a final sample of 162,186 trades, which are analyzed
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in this setup. However, we cannot fully exclude that the volume restriction is violated when
selling the box19.

Trading fees are varied from 0 to 6 Euro per trade reflecting the different types of investors.
While 6 Euro is a common fee for retail investors or semi-professional traders when trading
via discount brokers, the costs of an individual trade might be significantly lower for insti-
tutional investors like banks or hedge funds. In the base scenario trading fees are neglected.

We implement the arbitrage trading strategy in two ways as described in Section 4.3.4, on
the one hand in a static way as buy-and-hold strategy, and on the other hand in a dynamic
way.

4.5.3.1 Static arbitrage strategy

Once an arbitrage quote occurs, we determine the required units of put warrants and dis-
count certificates per box and buy the maximum number of boxes under the volume restric-
tions mentioned above. Non-divisibility of contracts is taken into account, and there are no
investing restrictions. In this scenario the future profit is known as soon as the underpricing
is observed as the payoff at maturity is certain and equals the cap level. Profits and returns
are calculated according to Equations (4.15) and (4.16). The results of such a strategy for
different trading fees is presented in Table 4.10. Unsurprisingly, the number of profitable
boxes decreases with higher trading fees. At the same time, the average return per box
increases as only those boxes remain profitable, which show a comparatively high difference
to the arbitrage-free price. The sum of all profits over the sample period of about 8 years
is at least about 3.5 million Euro. Recalling that we only analyze four quotes per day, the
overall possible arbitrage profits might be even larger. The average time to maturity is also
increasing with higher trading fees. This is in line with our finding in Section 4.5.2.3 that
mispricings slightly increase with a longer time to maturity.

Even if the overall arbitrage profits could be higher if we considered market prices more
frequently than four times per day, the required capital would also increase. Thus, because
of regulatory restrictions and usual investing limits for traders, a buy-and-hold strategy as
presented here is not very advisable to be implemented.

4.5.3.2 Dynamic arbitrage strategy

In a more realistic, dynamic implementation of an arbitrage trading strategy profitable
positions are closed to set free liquidity for new trades. The results given in Table 4.11 show

19 This applies to at most 4.7% of all box resales with at most 6 boxes containing the same put warrant or
discount certificate at the same query time. Therefore, this issue, if relevant at all, is neglected.
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Table 4.10: Static arbitrage strategy: mean profits at different trading fees

Fee Traded
boxes

Mean
portfolio
(m.)

Profit per box Sum of
profits
(m.)

Return Days to mat.

Mean SD Mean SD Mean SD

0 157,820 36.57 31.12 62.44 4.91 0.0029 0.0057 72.42 81.63
1 137,177 32.93 33.66 65.78 4.62 0.0031 0.0061 75.01 83.29
2 122,379 29.96 35.61 68.59 4.36 0.0033 0.0063 76.42 84.25
3 110,514 27.49 37.32 71.18 4.13 0.0034 0.0065 77.54 85.12
4 100,646 25.49 38.88 73.63 3.91 0.0036 0.0068 78.78 86.01
5 92,258 23.72 40.32 75.96 3.72 0.0037 0.0070 79.90 87.07
6 84,727 22.11 41.81 78.32 3.54 0.0038 0.0072 80.96 87.96

Because of indivisibility of contracts, there are boxes with slightly negative profits that are not included
in the analysis. Fees, portfolio volumes and profits are in Euro. Return figures are not time-adjusted.

Table 4.11: Dynamic arbitrage strategy: mean profits at different trading fees

Fee Traded
boxes

Mean
portfolio
(m.)

Profit per box Sum of
profits
(m.)

Return Days hold

Mean SD Mean SD Mean SD

0 148,465 2.52 53.90 79.50 8.00 0.0050 0.0074 3.77 17.37
1 130,199 2.38 56.82 82.80 7.40 0.0052 0.0077 4.16 18.40
2 116,444 2.26 59.03 85.75 6.87 0.0054 0.0080 4.54 19.35
3 105,358 2.17 60.93 88.47 6.42 0.0056 0.0082 4.89 20.00
4 96,062 2.10 62.62 90.96 6.02 0.0057 0.0085 5.24 20.52
5 88,053 2.04 64.30 93.41 5.66 0.0059 0.0087 5.67 21.39
6 80,974 1.99 65.93 95.90 5.34 0.0060 0.0089 6.09 22.08

Fees, portfolio volumes and profits are in Euro. Return figures are not time-adjusted.

that the invested capital decreases remarkably while at the same time the average return per
box as well as the overall profits increase despite of a smaller absolute number of trades. A
main reason is that bid prices at which boxes are sold are regularly at least slightly above the
arbitrage-free price. Secondly, there is an immense reduction of the average holding period
from about 80 days in the buy-and-hold strategy to about 5 days in the dynamic strategy
resulting in fewer costs of capital. The advantage of a shorter credit risk insurance period
is not even considered here, as CDS are not resold on a secondary market (see assumption
(A.4) in Section 4.3.3).

In Figure 4.6 we compare the quarterly profits of both strategies for a transaction fee of
6 Euro per trade. When there are more underpriced boxes as a result of a higher market
volatility (see Figure 4.3), arbitrage profits are also higher. However, within the dynamic
strategy profits can usually be realized within hours or days while a trader following a buy-
and-hold strategy has to wait until maturity such that profits are postponed to following
periods depending on the remaining time to maturity.
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Figure 4.6: Profits in Euro per quarter (close of trade) by arbitrage strategy (fee = 6 Euro)

4.5.4 Robustness analysis

Before we draw further remarks of our results, we check the robustness of the most crucial
assumptions. We analyze the time between the timestamps of the quotes of put warrants
and discount certificates as we assume all quoted prices to be valid at the time of the query
regardless of the actual timestamp (see Section 4.4). Furthermore, we recalculate profits
in two ways. By neglecting issuers without actual CDS information, we control for the
iBoxx approximation of default risk, and we check possible liquidity or trading restrictions
by trading boxes only if they show an underpricing of 1% or more.

4.5.4.1 Time between quotes of discounter and put

An important requirement of the two considered exchanges in our study, EUWAX and
Zertifikate Börse Frankfurt, is the obligation for issuers of structured financial products to
submit quotes for their products between 9:00 am and 7:55 pm. Even in times without any
trading activity, prices have to be renewed every 30 to 240 minutes (see Börse Frankfurt,
2014). Therefore, when the last available quotes of put warrants and discount certificates
are gathered at the four fixed points of time on each trading day, the actual timestamps
of the quote may be older. In particular, the timestamps of the two products are likely to
differ by several minutes to some hours. However, a crucial assumption of our study is that
the last available quote is always valid and tradable.

Figure 4.7 shows the number of arbitrage boxes (cleaned sample according to Section 4.5.1)
by the difference in timestamps of the involved products. The majority of arbitrage quotes
occurs at acceptable differences of quote timestamps such that we can assume that the
identified arbitrage opportunities are actually tradable. Additionally, the plot of the aver-
age relative difference of the arbitrage box price and the arbitrage-free price in Figure 4.7
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indicates no relevant dependence on the time difference in timestamps of put warrant and
discount certificate.20
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Figure 4.7: Difference between timestamps of put warrant and discount certificate per
arbitrage quote (in minutes)

4.5.4.2 Only issuers with full CDS information

In order to account for issuer default risk, we adjust the market prices of put warrants
and discount certificates using the approximation by Hull and White (1995) as described in
Equation (4.10). For issuers with no available CDS spread, we use the difference between the
yield of the iBoxx Europe Financial bond index and the risk-free rate. In our main results
we did not see obvious differences for those issuers. However, if the approximation is far too
conservative, we see less and smaller arbitrage opportunities such that the results could be
biased. In contrast, if the actual credit risk is not fully covered by the iBoxx spread, there
would be more arbitrage boxes with higher price differences. Due to our conservative setup
of the study, the latter are removed by the sample cleaning as described in Section 4.5.1.

We recalculate the arbitrage profits for both strategies, but leave out all issuers with no
actual CDS information to see if there are major differences to the profits presented in
Section 4.5.3. For trading fees of 0 and 6 Euro the results are given in Table 4.12. The
number of traded boxes decreases by about 20% in all four scenarios. All other relevant
figures remain more or less unchanged. Therefore, we conclude that there are no major
distortions by using the iBoxx spread, except that some arbitrage opportunities might be
unidentified because of a too expensive risk insurance.

20 The median time difference is 22.1 minutes. A linear regression of price differences on quote time
differences (in minutes) results in a significant positive coefficient of 0.0007, which indicates an increase
of underpricing of 0.0428 percentage points per 60 minutes differences of timestamps.
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Table 4.12: Arbitrage profits: only issuers with full CDS information

Fee Traded
boxes

Mean
portfolio
(m.)

Profit per box Sum of
profits
(m.)

Return Days hold

Mean SD Mean SD Mean SD

Static arbitrage strategy

0 123,501 29.64 30.73 58.53 3.80 0.0028 0.0054 75.32 83.26
6 67,286 17.91 40.31 72.44 2.71 0.0037 0.0066 82.83 88.39

Dynamic arbitrage strategy

0 116,934 1.96 53.28 75.14 6.23 0.0049 0.0070 3.73 18.30
6 64,166 1.59 63.79 89.81 4.09 0.0058 0.0083 6.20 23.19

Fees, portfolio volumes, and profits are in Euro. Return figures are not time-adjusted.

4.5.4.3 Only trade for noteworthy profits

As shown in Table 4.2, about 95% of all arbitrage quotes show a difference to the respective
arbitrage-free box price of at most 1%. More than 40% of those prices are even only 0.10%
or less below the fair value. The arbitrage profit of such boxes is usually low. A trader
under liquidity restrictions may therefore only invest if the expected profit is noteworthy.
Furthermore, small box price differences might be due to minor data or methodological
issues.

We recalculate the arbitrage profit neglecting all arbitrage quotes which are less than 1%
below the arbitrage-free box price. By this measure only about 5% of the trades regarded
in the main analysis remain. The results for trading fees of 0 and 6 Euro are given in
Table 4.13. As most of these boxes’ profits compensate the trading fees, the number of
profitable trades is similar or even the same in all four presented scenarios. Furthermore,
the volume per trade is quite homogeneous such that the average capital invested over the
sample period is proportionally reduced by more than 90%. In contrast to the main analysis
(see Tables 4.10 and 4.11), we clearly observe that higher trading fees lead to longer holding
periods within the dynamic strategy, and the average invested capital increases. At the
same time, the average profit per traded box is about five to seven times as high in case
of the buy-and-hold arbitrage strategy (228/216 Euro vs. 31/41 Euro). The difference in
mean profits between the ’0 Euro’ and the ’6 Euro’ scenario is about 12 Euro, and therefore
can almost completely be explained by the trading fees. The dynamic strategy achieves on
average a profit of 263 to 280 Euro per traded box, which is more than five times higher
compared to the main analysis. Most important, the overall sum of all profits decreases by
54% to 65% in the static strategy and by 65% to 75% in the dynamic arbitrage strategy,
which is far less compared to the reduction of the trading volume. In other words, about
5% of all trades account for 25% to 46% of the overall profits, depending on order fees and
arbitrage strategy.
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Table 4.13: Arbitrage profits: only underpricings of 1% and more

Fee Traded
boxes

Mean
portfolio
(m.)

Profit per box Sum of
profits
(m.)

Return Days hold

Mean SD Mean SD Mean SD

Static arbitrage strategy

0 7,549 2.91 228.90 172.17 1.73 0.0212 0.0158 121.31 122.41
6 7,549 2.91 216.80 172.15 1.64 0.0201 0.0157 121.31 122.41

Dynamic arbitrage strategy

0 7,274 0.14 280.70 199.85 2.04 0.0263 0.0187 4.84 30.27
6 7,263 0.18 263.08 198.80 1.91 0.0246 0.0185 6.65 32.04

Fees, portfolio volumes, and profits are in Euro. Return figures are not time-adjusted.

4.5.5 Discussion

For the sample period from October 2006 to April 2015 we analyze more than 794 million
prices of more than 1.4 million box portfolios, each consisting of a discount certificate and
a matching put warrant. After correcting for data issues, we identify 414,305 quotes where
the risk-adjusted market price of the portfolio is below the arbitrage-free price. Thus, about
0.05%, or one in every 2,000, observed quotes gives the opportunity for risk-free profits.
With an average underpricing of 0.30% these boxes allow for a profit of at least 5.34 million
Euro by following a dynamic arbitrage strategy and assuming transaction fees of 6 Euro
per trade. At this point we revisit our main assumptions and discuss the main research
question, whether or not these findings actually indicate market inefficiency.

Since we have no detailed information, we assume all contracts to be cash settled rather
than having a physical delivery of the underlying. As outlined in Section 4.3.3, a physical
delivery always entails the price risk of the delivered underlying during the period between
settlement and the actual delivery. We control for this issue by analyzing the performance
of boxes written on indices, which are inevitably cash settled and do not find any generally
different characteristics compared to boxes written on single stocks.

Furthermore, we control for possible issuer default risk by following the approach of Hull
and White (1995) and adjust the market prices with the CDS spreads of the relevant issuer.
The primary aim of this measure is to establish the risk-free world for our study rather than
purchasing an actual risk insurance in an economic sense. Therefore, we do not consider
it to be an issue that CDS contracts may not be tradable in a tailored way. Our results
show fewer arbitrage opportunities for single issuer boxes. Assuming that the pricing model
is consistent within one and the same financial institution, this can be interpreted as a
proof for the applicability of the credit risk adjustment by Hull and White. For a practical
implementation we recommend one of the two following workarounds. On the one hand, the
more risk-averse arbitrage trader may be holding CDS of a relevant issuer with a nominal
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that covers the average invested capital in products of this issuer. On the other hand, a
dynamic arbitrage strategy only requires short holding periods of several days such that an
arbitrage trader may knowingly take the risks and not buy any default insurance at all.

A further issue is the opportunity of reporting mistrades. At both considered exchanges,
Börse Frankfurt and EUWAX, ’a transaction can be subsequently cancelled (...) if the
transaction came about as a result of a technical failure or was based on an order that was
obviously placed at a price that was not the market standard at the time the transaction was
concluded, or at a market maker quote that was not in line with the market’ (EUWAX, 2015).
This option entails a significant risk for arbitrage traders who buy a portfolio consisting of
two different financial products. If the mispriced part of the box is reported and approved
as a mistrade, the trader is left with the full price risk in the remaining contract. Both
exchanges publish lists of mistrades of which neither contained a trade from our study.

In general, for every assumption we choose the more conservative alternative in order to
reduce the chance that a box price is below the fair value. This applies for example for
the day count convention, the use for a single rate for borrowing and lending, or treating
American-type options as European ones. Additionally, the available data set contains only
four queries per day. It is therefore most certain that we only identify the tip of the iceberg,
and there are more quotes allowing for risk-free profits. The overall profits could also
be higher as most issuers allow multiple trading volumes instead of the minimum trading
restrictions we implemented.

Consequently, we cannot confirm the efficient market hypothesis in the German certificates
market in general. When taking into account the actual costs for running an arbitrage
trading desk, we conclude that arbitrage opportunities exist especially at low transaction
costs. At higher fees per trade, there are periods where the average arbitrage profits may
not fully cover the costs for trading systems or license fees.

4.6 Conclusion

This article provides the first empirical investigation of arbitrage in the German certificates
market. The vast majority of literature on this issue focuses on U.S. option and futures
markets and hardly finds significant arbitrage. Arbitrage is found when markets are highly
volatile or when transaction costs are low. We apply the model independent put-call parity
to investigate market efficiency in the German certificates market. For this purpose, we
build risk-free portfolios of put warrants and discount certificates that we refer to as boxes.
Our method is straightforward. Whenever the risk-adjusted price of such a box is below the
discounted cap or strike price, there is the chance of a risk-free profit and thus arbitrage. If
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found, we analyze the characteristics of the arbitrage boxes like the time of appearance, the
remaining time to maturity and the issuers of the products involved.

We identify four major determinants of arbitrage. The time of the day, the day of the week,
the volatility of the underlying asset and the issuing financial institution. We observe the
highest differences between market and arbitrage-free box prices in the morning and in the
evening with about 0.35%. Regarding the day of the week, the effect is stronger on Fridays
with an average mispricing of 0.40% compared to about 0.28% from Monday to Thursday.
Furthermore, we confirm the finding of Hemler and Miller (1997) and find a significant
positive relationship between the volatility of the stock indices DAX 30 and EURO STOXX
50 and the proportion of arbitrage. In contrast, we find no proof for the validity of the
life-cycle hypotheses by Entrop et al. (2015). With respect to the issuers of arbitrage boxes,
we see that almost all issuers perform significantly better if they provide both parts of a
box, the put warrant and the discount certificate, which indicates that at least within one
and the same financial institution pricing models are consistent.

Based on four queries per day, and depending on strategy and trading fees, the maximum
achievable arbitrage profit is between 3.5 and 8.0 million Euro over the whole sample period
of more than 8 years. However, profits are not equally distributed over time, but rather
occur cumulatively in periods with a high market volatility. Thus, in less volatile markets,
arbitrage profits are lower and may not cover the fix costs for an arbitrage trading desk.
Taken together, we cannot confirm market efficiency in the market for structured financial
products in Germany in general, but arbitrage diminishes when considering higher costs for
trading or technical equipment and license fees.
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Appendices

A Issuers and underlyings

Table 4.14: List of issuers and number of products in sample

Issuer Symbol Puts Discount certificates

Full CDS information

Bayerische Landesbank BAY - 2
Barclays Bank PLC BC - 7,775
BNP Paribas BNP 70,869 62,525
Commerzbank CBK 37,173 96,358
Citibank CIT 39,119 49,216
Credit Suisse CSF - 2
Deutsche Bank DBK 45,045 54,434
DZ Bank DZB 28,528 63,835
Erste Bank EB 671 326
Goldman Sachs GS 53,397 30,717
JP Morgan JPM 12 6
Merrill Lynch ML 213 4,089
Macquarie MQ 9,355 18,026
Morgan Stanley MS 6 4,157
Nomura NOM 1 -
Rabobank RB - 1
Royal Bank of Scotland RBS 6,044 26,917
Societe Generale SG 6,219 12,164
HSBC Trinkaus & Burkhardt TUB 7,462 28,597
UBS UBS 48,006 32,422
UniCredit Bank UNC 20,624 23,921

Partial / no CDS information

BHF-Bank BHF - 842
DekaBank DKB - 5
Leonteq Securities AG EFG - 121
Interactive Brokers INT 15,999 449
Landesbank Berlin LBB - 795
Landesbank Hessen-Thüringen
(Helaba)

LBH - 22

LBBW LBW 19 2,056
Lang & Schwarz LSW 3,496 35
Österreichische Volksbanken AG OEV - 7
Raiffeisen Centrobank AG RCB 1,168 1,025
Bankhaus Vontobel VON 51,816 36,861
WGZ BANK AG WGZ - 977
WestLB WLB - 834

Sum 445,242 559,519
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Table 4.15: Box participations and box quotes per issuer

Puts Discount certificates Put & Discount certificate
Issuer Box partici-

pations
Box quotes Box partici-

pations
Box quotes Box partici-

pations
Box quotes

Complete CDS information

BAY - - 2 176 - -
BC - - 18,746 8,936,356 - -
BNP 276,294 188,803,704 139,133 70,405,208 41,532 28,919,173
CBK 74,415 37,116,046 192,815 113,921,778 8,945 5,643,211
CIT 72,624 33,711,666 129,691 65,545,779 13,153 6,464,000
CSF - - 7 983 - -
DBK 103,617 60,620,388 146,706 84,707,751 15,919 9,986,460
DZB 105,587 59,486,025 167,459 95,366,332 17,852 10,635,684
EB 868 473,785 272 121,899 222 116,944
GS 145,610 46,692,990 106,115 58,056,003 19,453 7,065,119
JPM - - 2 1,601 - -
ML 1,106 813,997 11,246 6,066,327 25 10,266
MQ 40,814 19,161,356 33,830 17,083,756 5,847 2,762,441
MS 11 1,107 12,230 8,446,657 4 424
NOM - - - - - -
RB - - 6 3,908 - -
RBS 14,139 11,620,289 41,431 25,662,841 1,134 1,028,791
SG 34,483 17,885,385 30,339 17,658,071 2,132 1,298,658
TUB 15,377 13,015,507 76,092 47,442,934 84 122,527
UBS 189,158 124,447,001 89,252 47,149,495 14,761 9,972,595
UNC 42,028 22,678,389 82,950 46,268,898 10,174 5,938,185

Partial / no CDS information

BHF - - 2,104 1,685,408 - -
DKB - - 9 2,421 - -
EFG - - 730 562,283 - -
INT 79,226 14,308,230 1,920 653,308 194 71,482
LBB - - 2,503 1,146,441 - -
LBH - - 86 16,346 - -
LBW 40 42,530 6,325 3,324,501 - -
LSW 22,861 14,819,838 100 79,989 12 11,208
OEV - - 7 3,916 - -
RCB 6,848 6,005,128 2,098 1,510,127 310 334,843
VON 188,550 123,098,727 112,483 68,659,144 19,231 13,853,943
WGZ - - 4,548 3,157,707 - -
WLB - - 2,419 1,153,744 - -

Sum 1,413,656 794,802,088 1,413,656 794,802,088 170,984 104,235,954
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Table 4.16: Number of boxes per underlying

Underlying Boxes Underlying Boxes

DAX (Performance-Index) 359,748 Südzucker 2,426
EURO STOXX 50 71,875 GEA Group Aktiengesellschaft 2,403
Daimler AG 40,139 Wacker Chemie 2,318
BASF SE 38,525 Banco Bilbao 2,302
Deutsche Bank 37,430 Hugo Boss AG 2,218
E.ON 35,584 Repsol YPF 2,181
BMW 35,381 DIALOG SEMICOND. LS-,10 2,082
Volkswagen Vz 34,086 FUCHS PETROL.AG VZO O.N. 1,986
Siemens 33,761 Qiagen 1,968
Bayer AG 33,628 RHEINMETALL AG 1,904
Deutsche Telekom 30,736 Aareal Bank 1,901
Commerzbank 28,077 United Internet 1,872
Lufthansa 27,872 NORDEX AG 1,816
ThyssenKrupp 27,481 Aurubis 1,751
RWE 27,109 MTU AERO ENGINES NA 1,748
Allianz 26,495 Freenet AG 1,726
Deutsche Post 25,412 Saint GOBAIN 1,708
adidas AG Namens-Aktien 23,594 Credit Agricole 1,704
SAP 22,731 ProSiebenSat.1 1,673
Infineon 22,637 SGL Carbon 1,645
K+S AG 21,457 Software AG 1,645
Münchener Rück 19,924 Renault 1,607
Linde 18,903 SolarWorld 1,533
HeidelbergCement 17,667 ENI 1,531
Metro 16,470 Fraport 1,526
Deutsche Börse AG 16,092 MDAX (Performance) 1,501
Continental 15,939 ALSTOM ORD 1,498
Lanxess 13,718 ELRINGKLINGER AG NA O.N. 1,443
Henkel Vz. 13,010 Osram Licht 1,421
Beiersdorf 12,812 Celesio 1,418
Fresenius M.C. 12,657 Hamburger Hafen und Logistik AG 1,363
Merck KGaA 12,423 SYMRISE AG INH. O.N. 1,320
Fresenius 9,582 CAC 40 1,294
Nokia 7,494 Hochtief 1,282
AXA 7,157 TecDAX (Performance) 1,151
Salzgitter 6,842 Schneider Electric 1,123
TUI 6,023 Wincor Nixdorf AG 1,067
STADA Arzneimittel 5,868 Siemens/Osram Basket 1,010
Airbus Group (EADS) 5,803 Aegon Namen 873
Société Générale 5,798 Peugeot 859
Orange 5,387 Talanx 831
Total Fina Elf 5,309 Volkswagen St 813
BNP Paribas 5,248 Vossloh 808
ArcelorMittal S.A. 5,011 Air Liquide 794
Aixtron AG 4,489 DUERR AG O.N. 794
SANOFI-AVENTIS 4,473 VINCI S.A. EO 10 754
ING 4,212 ELECTRICITE DE FRANCE EDF 724
Leoni 4,138 Drägerwerk 679
LVMH 4,101 Enel 676
Klöckner & Co SE 4,005 ALCATEL-Lucent 653
Hannover Rück 3,919 Sky Deutschland AG 648
MAN ST 3,818 Evonik Industries AG 640
Philips 3,817 ATX 579
TELEFONICA EO 1 3,652 Gerresheimer AG 567
L’Oréal 3,046 UniCredit 562
Bilfinger+Berger 3,030 GAGFAH S.A. NOM. EO 1,25 538
GDF SUEZ 2,937 Hugo Boss Vz. 535
Unilever 2,897 Veolia Environment 533
DMG MORI SEIKI 2,678 RHOEN-KLINIKUM O.N. 514
Porsche Automobil Holding SE 2,610 Michelin 512
Carrefour 2,555 BAUER AG 507
Danone 2,552 KUKA 505
Banco Santander 2,519 OMV 493
Vivendi Universal 2,497 Erste Bank 483
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Table 4.16: Number of boxes per underlying (continued)

Underlying Boxes Underlying Boxes

CARL ZEISS MEDITEC 481 Baywa NA. 83
DEUTZ AG O.N. 475 Arcandor AG 75
Deutsche Postbank 453 DBIX INDIA KURSINDEX EUR 67
Heidelberger Druckmaschinen 452 Suess Micro Tec 69
Q-Cells 422 KON. DSM NV NAM. EO 1,50 66
ASML Holding N.V. 406 PRAKTIKER BAU-U.H.HLDG ON 66
Assic. Generali 401 Unibail Eo 5 65
Iberdrola S.A. Acciones Port. EO -,75 399 OESTERREICH. POST AG 61
Morphosys 396 Kabel Deutschland Holding 58
GERRY WEBER INTERNAT.O.N. 379 PORSCHE AG VORZ AKT 55
Hypo Real Estate Holding 358 MEDION AG NPV 53
DRILLISCH AG O.N. 341 FTSE MIB 52
voestalpine 339 LPKF 52
MLP 325 ACCOR 50
MAN SE 300 Conergy 50
WIRECARD AG 294 Suez 50
Ahold 278 RHI 48
Demag Cranes AG 240 WIENER ST.VERSICHER. INH. 46
CECE (EUR, Composite Eastern 231 Ageas 45
European) AIR BERLIN PLC EO -,25 45
RDX (Russian Depository Receipt 228 Cancom IT Systeme 45
Index) Deutsche Annington Immobilien SE 45
Brenntag AG 227 CRH 44
Lafarge 221 FAZ 44
Telefónica Deutschland Holding AG 220 Borussia Dortmund 43
SMA Solar Technology 215 Kontron 43
DEUTSCHE WOHNEN AG INH 207 Pfeiffer Vacuum 42
PERNOD-RICARD FF 20 200 STE AIR FRANCE S.A. FF 54 42
VALLOUREC INH. EO 4 200 Strabag SE 42
Fielmann 189 FTSE 100 38
Zalando 186 Douglas Holding 38
Tognum AG 177 Rational 38
Altana 176 SAF Holland AG 37
Deutsche EuroShop 176 INTERCELL AG INH. 36
TELECOM ITALIA 160 QS Communications (QSC) 35
HEINEKEN NV EUR 2.5 153 S-BOX Dresdner Middle East 34
ANDRITZ AG 151 Kursindex
Telekom Austria Ag 150 FIAT ORD. EO 5 33
IVG Immobilien 149 BCA INTESA LI 1000 32
Essilor Intl Eo -.35 148 COMDIRECT BANK AG 31
Pinault Print.-Red. 145 Gigaset 31
Puma 145 MSCI THE WORLD INDEX 30
Axel Springer 144 ZUMTOBEL AG INH. A 30
INDITEX 143 BWIN INTERACTIVE ENTMT AG 29
INTERBREW S.A. PARTS S. 137 Roth und Rau AG 29
Wienerberger 136 ADVA AG OPT.NETW.O.N. 27
RAIFFEISEN INTL BK-HO.INH 132 Mayr-Melnhof 27
Krones 129 RTL Group 24
Cap Gemini S.A. 120 SAGEM S.A. EO 1 24
JUNGHEINRICH AG O.N.VZO 119 Gemalto N.V. 22
Norma Group AG 116 Legrand S.A. Actions au Port. EO 4 20
Verbund 110 STMicroelectronics 20
Kion Group 106 centrotherm photovoltaics AG 19
Rocket Internet 104 TOMTOM NV AMSTERDAM 19
Singulus 104 SOLON AG F.SOLARTECH.AG 18
DAXGLOBAL BRIC KURSINDEX 103 UNIQA VERSICHERUNGEN 18
IBEX 35 103 Manz Automation AG 17
SCHOELLER-BLECKMANN OILF. 98 BOUYGUES SA EO 1 16
ArcelorMittal-Basket 97 PATRIZIA IMMOBILIEN NA ON 15
Epcos 95 Suez Environnement 15
Evotec 93 Bechtle 14
Lagardere 88 GAMESA CORP TECNOLOGICA 14
SIXT AG ORD 88 RTX EUR 13
AKZO NOBEL 83 ASML Holding N.V. 13
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Table 4.16: Number of boxes per underlying (continued)

Underlying Boxes Underlying Boxes

EVN AG 13 GRAMMER AG O.N. 3
Phoenix Solar AG 13 IMMOEAST AG INH. 3
FLUGHAFEN WIEN AG 12 MPC MUENCHMEYER 3
Immofinanz Immob. Anlagen 12 S+T SYST.INTEG.TECH. 3
Jenoptik 12 SEMPERIT AG HLDG 3
GSW Immobilien AG 11 Solarworld AG 3
Pfleiderer 11 TELE ATLAS N.V. EO-,10 3
DEPFA BANK plc 10 ACS,ACT.CO.SER.INH.EO-,50 2
TAG TEGERNSEE IMMOB. 10 KPN 2
SMARTRAC N.V. INH. EO-,50 8 MEDIGENE AG 2
LEG Immobilien AG 7 PALFINGER AG 2
VIVACON AG O.N. 7 SCHERING A G 2
Immobilien ATX 6 CECE Real Estate 1
BWT AG 6 CTX (EUR, Czech Traded Index) 1
Randstad Holdings 6 HTX (EUR, Hungarian Traded Index) 1
AT & S 5 A-TEC INDUSTRIES AG INH. 1
Fondiaria-Sai SpA 5 AEX Amsterdam 1
SOLAR MILLENNIUM AG 5 ARCELOR MITTAL A EO 0,01 1
ABN Amro 4 CA IMMOBILIEN ANLAGEN AG 1
AWD 4 Inhaber-Aktien o.N.
BOEHLER-UDDEHOLM 4 CONWERT IMMOBILIEN INVEST 1
COLON.REAL ESTATE AG 4 H+R WASAG AG 1
EM.SPORT MEDIA AG 4 HCI CAPITAL NA O.N. 1
Fugro 4 POLYTEC HLDG AG INH. EO 1 1
GrenkeLeasing 4 Schwarz Pharma 1
ERSOL SOLAR ENERGY AG 3 Total S.A. Basket 1
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B Results statistics

Table 4.17: Development of arbitrage opportunities per year

Year Box quotes
Arbitrage quotes Price difference

Absolute Relative Mean SD

2006 546,844 105 0.0002 0.0031 0.0071
2007 10,424,029 10,569 0.0010 0.0038 0.0069
2008 15,511,382 40,641 0.0026 0.0065 0.0095
2009 19,879,307 6,139 0.0003 0.0039 0.0090
2010 44,033,100 9,287 0.0002 0.0056 0.0108
2011 93,079,381 68,000 0.0007 0.0038 0.0058
2012 132,511,987 21,478 0.0002 0.0026 0.0068
2013 200,645,587 15,524 0.0001 0.0015 0.0056
2014 219,537,432 188,227 0.0009 0.0019 0.0037
2015 51,217,474 54,335 0.0011 0.0030 0.0052

2006-2015 787,386,523 414,305 0.0005 0.0030 0.0059
2006 and 2015 are not fully contained in the sample as the observation period starts on October 31, 2006
and ends on April 2, 2015.

Table 4.18: Market inefficiency by weekday - analysis of proportion of arbitrage

Weekday Box quotes
Arbitrage quotes Price difference

Absolute Mean
proportion Mean SD

Monday 157,914,682 87,780 0.0007 0.0029 0.0056
Tuesday 159,257,609 79,809 0.0008 0.0028 0.0055
Wednesday 158,756,120 84,876 0.0007 0.0027 0.0053
Thursday 157,964,356 97,272 0.0007 0.0028 0.0055
Friday 153,493,756 64,568 0.0008 0.0040 0.0077

All quotes 787,386,5231 414,305 0.0007 0.0030 0.0059

Differences in mean arbitrage proportions

Monday Tuesday Wednesday Thursday

Tuesday 0.0000
[1.0000]

Wednesday 0.0001 0.0001
[1.0000] [1.0000]

Thursday 0.0000 0.0000 -0.0001
[1.0000] [1.0000] [1.0000]

Friday 0.0000 0.0000 -0.0001 0.0000
[1.0000] [1.0000] [1.0000] [1.0000]

1 The difference in total box quotes is due to the exclusion of boxes as explained in Section 4.5.1. Figures
in [ ] are Bonferroni-adjusted p-values.
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Table 4.19: Market inefficiency by query time - analysis of proportion of arbitrage

Query time Box quotes
Arbitrage quotes Price difference

Absolute Mean
proportion Mean SD

Morning (09:50 am) 196,858,565 110,261 0.0009 0.0035 0.0072
Noon (1:20 pm) 197,017,001 74,130 0.0006 0.0030 0.0066
Afternoon (4:20 pm) 198,401,153 175,687 0.0008 0.0024 0.0039
Evening (7:50 pm) 195,109,804 54,227 0.0006 0.0036 0.0071

All quotes 787,386,5231 414,305 0.0007 0.0030 0.0059

Differences in mean arbitrage proportions

Morning Noon Afternoon

Noon 0.0003
[0.0342]

Afternoon 0.0001 -0.0002
[1.0000] [0.4759]

Evening 0.0003 0.0000 0.0002
[0.0204] [1.0000] [0.3287]

1 The difference in total box quotes is due to the exclusion of boxes as explained in Section 4.5.1. Figures
in [ ] are Bonferroni-adjusted p-values.
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Table 4.20: Market inefficiency by time to maturity at moment of arbitrage

Time to
maturity
(days)

Box quotes
Arbitrage quotes Price difference

Absolute Relative Cumu-
lative

Mean
proportion Mean SD

(0 - 7] 144,835 6,112 1.48% 1.48% 0.0422 0.0082 0.0085
(7 - 10] 8,954,436 46,481 11.22% 12.69% 0.0052 0.0024 0.0041
(10 - 15] 11,591,358 33,468 8.08% 20.77% 0.0029 0.0019 0.0029
(15 - 20] 11,107,223 27,925 6.74% 27.51% 0.0025 0.0019 0.0028
(20 - 25] 16,254,197 30,515 7.37% 34,88% 0.0019 0.0019 0.0035
(25 - 30] 13,035,509 16,063 3.88% 38.76% 0.0012 0.0021 0.0045
(30 - 35] 11,217,395 14,411 3.48% 42.23% 0.0013 0.0023 0.0035
(35 - 40] 13,241,799 17,686 4.27% 46.50% 0.0013 0.0024 0.0033
(40 - 45] 15,474,384 28,154 6.80% 53.30% 0.0018 0.0026 0.0037
(45 - 50] 11,654,540 15,620 3.77% 57.07% 0.0013 0.0025 0.0038
(50 - 55] 10,582,812 10,994 2.65% 59.72% 0.0010 0.0028 0.0057
(55 - 60] 14,648,182 13,644 3.29% 63.01% 0.0009 0.0028 0.0057
(60 - 65] 12,093,626 12,188 2.94% 65.96% 0.0010 0.0030 0.0050
(65 - 70] 9,945,325 12,014 2.90% 68.86% 0.0012 0.0028 0.0048
(70 - 75] 12,000,820 20,951 5.06% 73.91% 0.0017 0.0026 0.0032
(75 - 80] 14,018,762 11,338 2.74% 76.65% 0.0008 0.0022 0.0037
(80 - 85] 9,454,349 4,067 0.98% 77.63% 0.0004 0.0033 0.0060
(85 - 90] 9,157,577 3,593 0.87% 78.50% 0.0004 0.0031 0.0051
(90 - 95] 13,793,141 6,956 1.68% 80.18% 0.0005 0.0048 0.0095
(95 - 100] 11,855,355 6,701 1.62% 81.80% 0.0006 0.0057 0.0110
(100 - 110] 21,031,180 7,208 1.74% 83.53% 0.0003 0.0032 0.0060
(110 - 120] 22,188,210 4,359 1.05% 84.59% 0.0002 0.0033 0.0067
(120 - 130] 21,303,727 4,733 1.14% 85.73% 0.0002 0.0042 0.0065
(130 - 140] 19,206,682 5,336 1.29% 87.02% 0.0003 0.0041 0.0074
(140 - 150] 21,043,255 4,143 1.00% 88.02% 0.0002 0.0052 0.0117
(150 - 160] 16,669,091 7,347 1.77% 89.79% 0.0004 0.0039 0.0064
(160 - 170] 20,741,879 9,165 2.21% 92.00% 0.0004 0.0029 0.0050
(170 - 180] 14,783,249 1,913 0.46% 92.46% 0.0001 0.0029 0.0045
(180 - 190] 17,942,007 2,153 0.52% 92.98% 0.0001 0.0055 0.0105
(190 - 200] 18,627,430 1,979 0.48% 93.46% 0.0001 0.0036 0.0055
(200 - 210] 16,572,865 871 0.21% 93.67% 0.0001 0.0066 0.0146
(210 - 220] 18,595,028 1,341 0.32% 94.00% 0.0001 0.0043 0.0082
(220 - 230] 14,861,567 1,655 0.40% 94.40% 0.0001 0.0058 0.0126
(230 - 240] 17,649,795 2,079 0.50% 94.90% 0.0001 0.0069 0.0121
(240 - 250] 14,265,802 2,782 0.67% 95.57% 0.0002 0.0031 0.0061
(250 - 300] 71,637,628 8,945 2.16% 97.73% 0.0001 0.0053 0.0102
(300 - 350] 62,817,593 5,189 1.25% 98.98% 0.0001 0.0084 0.0144
(350 - 400] 40,891,530 1,070 0.26% 99.24% 0.0000 0.0050 0.0109
(400 - 450] 30,817,936 1,303 0.31% 99.55% 0.0000 0.0099 0.0160
(450 - 500] 22,957,890 905 0.22% 99.77% 0.0000 0.0162 0.0188
(500 - 600] 28,286,380 643 0.16% 99.93% 0.0000 0.0117 0.0171
(600 - 700] 15,069,454 163 0.04% 99.97% 0.0000 0.0145 0.0228
(700 - 800] 5,796,893 107 0.03% 99.99% 0.0000 0.0133 0.0257
(800 - 1100] 4,257,461 35 0.01% 100.00% 0.0000 0.0178 0.0311
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Table 4.21: Price difference by issuers and box participation (only issuers with available
CDS spreads)

Issuer
One-sided participation Single issuer boxes H0 : d2 = d1

Arbitrage
quotes Mean SD Arbitrage

quotes Mean SD Z-Score p-value

BNP 72,876 0.0029 0.0057 6,758 0.0022 0.0045 0.9697 0.1661
CBK 100,345 0.0026 0.0049 6,883 0.0023 0.0040 0.5308 0.2978
CIT 43,696 0.0023 0.0038 4,003 0.0021 0.0031 0.2323 0.4081
DBK 63,506 0.0028 0.0052 5,241 0.0029 0.0057 -0.1779 0.4294
DZB 35,083 0.0029 0.0059 1,708 0.0038 0.0065 -0.6254 0.2659
EB 786 0.0061 0.0094 97 0.0089 0.0111 -0.3262 0.3721
GS 32,885 0.0029 0.0051 871 0.0042 0.0067 -0.7446 0.2282
ML 6,797 0.0061 0.0111 8 0.0027 0.0034 0.1224 0.4513
MQ 17,484 0.0046 0.0069 913 0.0043 0.0062 0.1251 0.4502
RBS 9,562 0.0046 0.0095 248 0.0199 0.0234 -3.3868 0.0004***
SG 18,930 0.0035 0.0063 908 0.0036 0.0063 -0.0631 0.4748
TUB 13,357 0.0028 0.0054 65 0.0008 0.0011 0.3110 0.3779
UBS 78,263 0.0021 0.0034 3,388 0.0026 0.0045 -0.5793 0.2812
UNC 23,412 0.0024 0.0039 1,200 0.0028 0.0041 -0.2661 0.3951

All 258,491 0.0028 0.0053 32,291 0.0028 0.0054 0.0277 0.4889

This table only regards box participations between the issuers listed here. One-sided participations contain
only boxes where a particular issuer provides either the put warrant or the discount certificate. Single
issuer boxes are boxes where a particular issuer provides both put warrant and discount certificate. ***
denotes (two-sided) statistical significance at the 1% level.

Table 4.22: Dynamic arbitrage strategy: boxes held until maturity

Fee
Traded boxes Profit per box Average holding

daysAbsolute % of all Mean SD

0 12,502 8.4 22.19 52.09 27.11
1 11,861 9.1 23.50 54.07 28.06
2 11,262 9.6 25.01 56.45 29.28
3 10,913 10.3 26.20 60.02 29.71
4 10,569 11.0 27.29 61.47 29.97
5 10,330 11.7 28.18 62.77 30.52
6 10,166 12.5 28.83 63.34 30.64
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Concluding remarks
Risks are an inevitable part of every entrepreneurial activity. The financial crisis of 2007/08
revealed the stringent necessity of an effective management of these risks. While most
industries recovered quite well in the post-crisis years, the international merchant shipping
branch still suffers from the crisis’ consequences. The irrational ordering of new vessels
in the boom years prior to the crisis led to enormous transport overcapacities, which will
not be utilized by demand for years. The results are lower freight incomes, historically low
vessel prices, and in consequence insolvencies of shipping companies and funds as well as
loan losses of the financing banks and investors.

The tasks for all parties involved are on the one hand to find strategies for operative risk
management, and on the other hand instruments for a strategic risk allocation. For the
shipping branch, both issues lack an adequate interest in academic literature, especially with
respect to a practical application. The empirical results of this doctoral thesis demonstrate
various approaches of quantitative risk management to identify and reduce financial risks in
the shipping sector.

Usually, price risks can be hedged using the respective derivative instrument. However,
this is not possible for the resale value of vessels as there are no corresponding derivative
contracts available. As a second-best solution, this thesis presents a so called cross hedge
strategy employing freight derivatives. With such a strategy, financial losses during the crisis
could have been reduced, at least to some extent. Furthermore, we introduce a measure for
the crisis vulnerability in the shipping sector. As this measure indicates an increasing crisis
risk with a suitable period of time before the actual outburst, it could have been useful to
adjust the business strategy in time. Both approaches can also be applied to further asset
classes like the real estate market.

For the issuers of financial derivatives, risk management also includes to ensure market
conform pricing methods. In this context, it is especially important to avoid the underpricing
of financial instruments. For the German certificates market, this thesis reveals numerous
underpricings which allow professional traders risk-free profits. This result indicates the
urgent need for further improvements of banks’ pricing models and mechanisms.



Zusammenfassung
Risiken sind ein Teil jeder unternehmerischen Aktivität. Durch ein aktives Risikomanage-
ment sollen diese Risiken gesteuert und begrenzt werden. Nicht zuletzt durch die zurücklie-
gende Finanzkrise der Jahre 2007/08 wurde einmal mehr die hohe Relevanz dieser Aufgabe
deutlich. Während sich nach der Krise der Großteil der Realwirtschaft innerhalb weniger
Jahre wieder erholte, leidet insbesondere die internationale Schiffsbranche bis heute an den
Folgen. Das massenhafte Bestellen neuer Schiffe vor der Krise führte in den Folgejahren
zu einem derartigen Wachstum der Transportkapazität, dass die Nachfrage diese auf viele
Jahre nicht auszulasten vermag. Die Folgen sind sinkende Einnahmen aus Frachtraten, his-
torisch niedrige Schiffspreise und in der Konsequenz zahlreiche Insolvenzen von Reedereien
und Schiffsfonds sowie Kapitalverluste bei den geldgebenden Banken und Investoren.

Aus Sicht der beteiligten Unternehmen stellen sich daher die Fragen nach wirksamen opera-
tiven Methoden der Risikoabsicherung einerseits und Instrumenten zur strategischen Risiko-
allokation andererseits. Beide Themen wurden für den Sektor der Handelsschifffahrt in der
Literatur bisher nur unzureichend berücksichtigt, insbesondere in Hinblick auf die prakti-
sche Anwendbarkeit. Die empirischen Ergebnisse dieser Doktorarbeit zeigen am Beispiel der
Schifffahrtsbranche verschiedene Möglichkeiten des quantitativen Risikomanagements auf,
um finanzielle Risiken aufzudecken und zu reduzieren.

Lassen sich die meisten Preisrisiken üblicherweise mittels entsprechender derivativer Fi-
nanzprodukte absichern, ist dies für Wiederverkaufspreise von Schiffen nicht ohne Weiteres
möglich, da entsprechende Kontrakte nicht gehandelt werden. Diese Arbeit untersucht eine
sogenannte Cross-Hedge Strategie mittels Frachtderivaten als mögliche Alternative, wodurch
zumindest ein Teil der Kapitalverluste in der Krise hätte vermieden werden können. Wei-
terhin wird ein Maß für die Krisenanfälligkeit des Schiffssektors hergeleitet, welches das
steigende Risiko schon frühzeitig anzeigt. Solch ein Maß könnte in Zukunft helfen, die Ge-
schäftsstrategie rechtzeitig vor Ausbruch einer Krise anzupassen. Beide Ansätze lassen sich
auch auf ähnlich kapitalintensive Wirtschaftszweige beziehungsweise Assetklassen übertra-
gen, wie zum Beispiel den Immobiliensektor.

Auf der Seite der Emittenten derivativer Finanzinstrumente umfasst Risikomanagement
insbesondere auch das Sicherstellen marktgerechter Bewertungsmethoden. In diesem Zu-
sammenhang gilt es insbesondere zu vermeiden, Finanzprodukte zu günstig am Markt zu
offerieren. Für den deutschen Zertifikatemarkt zeigt diese Arbeit zahlreiche solcher Fälle auf,
die es professionellen Anlegern ermöglichen würden, risikolose Erträge zu realisieren. Für die
betroffenen Institute deutet dies dringend notwendige Weiterentwicklungen der eingesetzten
Bewertungsmodelle und Algorithmen an.
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