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Abstract

In this study we investigate the influence of large scale surface deformation on sea

ice brightness temperature (TB) at 1.4GHz (L-band). Additionally we investigate the

possibility of detecting the sea ice deformation with L-band radiometry.

The European Space Agency’s SMOS mission is the first space-borne radiometer

carrying out multi-angular measurements at the frequency of 1.4GHz. The L-band TB
is sensitive to sea ice thickness, and therefore is used for sea ice thickness retrieval over

thin sea ice. Snow cover is another factor that influences the L-band TB over sea ice,

this property can be used to infer the snow depth over thick ice. However, the effect

of the surface roughness on sea ice TB is not well characterized.

In the following study we address this knowledge gap by using a combination of

experimental data from field campaign and a sea ice emission model. We use the

airborne laser scanner (ALS) to characterize sea ice surface roughness off-coast of

Svalbard during SMOSice2014 campaign. Then, we use the geometrical optics and

surface slopes probability density functions to simulate emissions from a random faceted

surface. Emissions from individual facets are calculated with MIcrowave L-band

LAyered Sea ice emission model (MILLAS). Finally, we compare several simulations

with different roughness setups with EMIRAD2 radiometer data from SMOSice2014

campaign.

We use areal photography to identify three ice types with distinct roughness

features: “smooth ice”, “medium-deformed ice” and “deformed ice”. We calculate

surface roughness statistics for each ice type: standard deviation of surface height

(σz), mean square slope and the power spectral densities. The σz for “smooth ice” of

0.02m is lower than the ALS accuracy of 0.025m, for the “medium-deformed ice” and

“deformed ice” the σz is 0.15m and 0.25m, respectively. In case of “medium-deformed

ice” and “deformed ice” the auto correlation function is exponential.

We interpolate the ALS raw elevation data to obtain the digital elevation model

(DEM) of the ice surface. The one-meter resolution of the DEM enables the

characterization of large-scale surface roughness in terms of facets altering the local

incidence angle. We found that facet slopes probability density distribution can be

described by an exponential function (PDFα ≈ exp(−α/sα)) with the slope parameter

sα. The values of sα for the three labeled ice types are 0o, 8o and 15o, respectively.

We observe a correlation of 0.68 between sea ice thickness and sα. Additionally, we

investigate the distribution of facet azimuthal orientation, which can be treated as

isotropic only at scales greater than 4.3 km.

The PDFα and MILLAS are integrated in a Monte Carlo method to simulate

brightness temperature over sea ice with different degree of roughness. We found that

as the surface gets rougher, the most pronounced change in TB is the decrease in

vertical polarization, which at high incidence angles can reach up to 8K. Horizontal

polarization is less affected, but still shows an up to 4K increase for high incidence

angles (> 50➦). The change at nadir is a decrease of less then 1K for the most deformed
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ice.

Based on the Monte Carlo simulations we developed a “Fast roughness model”

directly calculating the TB change as a function of sα. The ’Fast roughness model’

consists of parametrization of the polarization mixing and intensity change due to

large scale roughness, the exact formula depends on permittivity and PDFα of the

surface. This method can be used with other surfaces.

We use the SMOSice2014 ice thickness and surface temperature to simulate the TB
with the MILLAS model, and compare the simulations with radiometer data. Model

setups are tested with and without surface roughness. We observe that for all pairs;

simulation vs. radiometer channel, the root-mean-square error is around 27K and the

correlation coefficients do not exceed 0.3. Also, we found that inclusion of snow cover in

the simulation setup is more significant than the inclusion of surface roughness. Setups

with snow parametrization have higher fraction of explained variance (up to 0.08),

whereas inclusion of surface roughness leads to much smaller improvements (from 0.005

to 0.01).
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Zusammenfassung

In dieser Studie untersuchen wir den Einfluss der großflächigen Oberflächenverformung

auf die Meereis-Helligkeitstemperatur (TB) bei 1.4GHz (L-Band). Zusätzlich

untersuchen wir die Möglichkeit, die Meereisverformung mit Hilfe von

L-Band-Radiometrie zu detektieren.

Die SMOS Mission der Europäischen Weltraumorganisation ist das erste

Weltraumradiometer, das Messungen mit einer Frequenz von 1.4GHz unter

verschiedenen Einfallswinkeln durchführt. Die L-Band TB ist empfindlich gegenüber

Meereisdicke und wird daher für die Meereisdicken-Berechnung über dünnem Meereis

verwendet. Schneebedeckung ist ein weiterer Faktor, der die L-Band TB über dem

Meereis beeinflusst. Diese Eigenschaft kann verwendet werden, um auf die Schneetiefe

über dickem Eis zu schließen. Die Wirkung der Oberflächenrauigkeit auf Meereis TB
ist bisher nicht gut beschrieben.

In der folgenden Studie untersuchen wir diese Wissenslücke mit einer

Kombination aus experimentellen Daten aus einer Feldkampagne und einem

Meereis-Emissionsmodell. Wir verwenden den airborne laser scanner (ALS), um die

Meereisoberflächenrauhigkeit vor der Küste von Svalbard während der SMOSice2014

Kampagne zu beschreiben.

Dann verwenden wir die geometrische Optik und die

Warscheinlichkeitsdichtefunktion der Oberflächenneigung, um Emissionen einer

zufällig facettierten Oberfläche zu simulieren. Die Emissionen jeder zufälligen

Oberfläche werden mit dem MIcrowave L-band LAyered Sea ice emission

model (MILLAS) berechnet. Schließlich vergleichen wir mehrere Simulationen

für verschiedene Rauigkeits-Setups mit EMIRAD2 Radiometerdaten von der

SMOSice2014 Kampagne.

Wir verwenden die Luftfotografie, um drei Eisarten mit ausgeprägten

Rauigkeitsmerkmalen zu identifizieren: “Glattes Eis”, “mittelmäßigverformtes Eis”

und “deformiertes Eis”. Wir berechnen die Oberflächenrauhigkeitsstatistiken für jeden

Eistyp: Standardabweichung der Flächenhöhe (σz), mittlere quadratische Steigung und

spektrale Leistungsdichte. Die σz für “glattes Eis” von 0.02m ist niedriger als die

ALS Genauigkeit von 0.025m; für “mittelverformte Eis” und “deformiertes Eis” ist σz
0.15m und 0.25m. Im Falle von “mittelverformtem Eis” und “deformiertem Eis” ist

die Autokorrelationsfunktion exponentiell.

Wir interpolieren die Rohdaten der ALS Höhen, um das digital elevation

model (DEM) der Oberfläche zu erhalten. Die Ein-Meter-Auflösung des DEM

ermöglicht die Charakterisierung einer großflächigen Oberflächenrauhigkeit in Form

von Facetten, die den lokalen Einfallswinkel verändern. Wir haben festgestellt, dass die

Wahrscheinlichkeitsdichteverteilung der Oberflächenneigung durch eine exponentielle

Funktion (PDFα ≈ exp(−α/sα)) mit dem Slope-Parameter sα beschrieben werden

kann. Die Werte von sα für die drei bezeichneten Eisarten sind 0o, 8o und 15o. Wir

beobachten eine Korrelation von 0,68 zwischen Meereisdicke und sα. Darüber hinaus
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untersuchen wir die Verteilung der azimutalen Facettenorientierung, die nur bei Skalen

größer als 4.3 km als isotrop angesehen werden kann.

Die PDFα und MILLAS sind in einer Monte-Carlo-Methode integriert, um

die Helligkeitstemperatur über Meereis mit unterschiedlichem Rauhigkeitsgrad zu

simulieren. Wir haben festgestellt, dass, für rauere Oberflächen die stärkste Änderung

in TB die Abnahme der vertikalen Polarisation ist, die bei hohen Einfallswinkeln bis zu

8K reichen kann. Die horizontale Polarisation ist weniger betroffen, zeigt aber immer

noch eine Erhöhung von bis zu 4K für hohe Einfallswinkel (> 50➦). Bei Nadir nimmt

TB um weniger als 1K bei dem am meisten deformierten Eis ab.

Basierend auf den Monte Carlo Simulationen entwickelten wir ein “Fast roughness

model”, das die TB Änderung direkt als Funktion von sα beschrebt. Das “Fast

roughness model” besteht aus der Parametrisierung der Polarisationsvermischung und

der Intensitätsänderung aufgrund der großen Rauigkeit. Die genaue Formel hängt von

Permittivität und PDFα der Oberfläche ab. Diese Methode kann auch für andere

Oberflächen verwendet werden.

Wir verwenden die SMOSice2014 Eisdicke und Oberflächentemperatur, um die TB
mit dem MILLAS Modell zu simulieren und die Simulationen mit Radiometerdaten

zu vergleichen. Modell-Setups werden mit und ohne Oberflächenrauigkeit getestet.

Wir beobachten, dass für alle Paare “Simulations-Radiometerkanal” der mittlere

quadratische Fehler um 27K liegt und die Korrelationskoeffizienten nicht

mehr als 0.3 betragen. Auch stellen wir fest, dass die Einbeziehung der

Schneedecke im Simulationsaufbau wesentlich wichtiger ist als die Einbeziehung

der Oberflächenrauigkeit. Setups mit Schneeparametrisierung erklären einen höheren

Bruchteil der Varianz (bis zu 0,08), während die Integration der Oberflächenrauhigkeit

zu wesentlich kleineren Verbesserungen führt (von 0.005 bis 0.01).
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Chapter 1

Introduction

Sea ice is one of the essential climate variables, its thickness and extent play key

roles in the climate system (Bojinski et al., 2014). Forming of the sea ice releases

heat, therefore the sea ice volume is an important factor in a polar energy budget.

Another consequence of sea ice formation is the release of salts, the process which

is essential for deep water formation (Aagaard and Carmack, 1989). Furthermore,

the sea ice influences gas, heat and momentum transfer between the ocean and the

atmosphere (Maykut, 1978; Loose et al., 2011). Under sufficient stress exerted by the

winds and ocean currents sea ice can diverge and break apart or converge and pile

up forming a region of thicker and deformed ice with pressure ridges. The regions

with high density of pressure ridges drift differently than the level ice, due to their

higher form drag (Arya, 1973; Tsamados et al., 2014). Those regions of thicker ice

are of spatial interest for commercial activities involving ice braking ships and offshore

constructions, since ridged ice poses danger to navigation (Timco and Weeks, 2010;

Øystein Jensen, 2016). Thus the knowledge of the ice thickness and location of the

ridged ice is of interest for climate studies and exploration of the polar regions, alike.

The Soil Moisture and Ocean Salinity (SMOS) mission carries the first spaceborne

radiometer that makes full-polarization, multi-angular radiation measurements at a

frequency of 1.4GHz, in the L-band (Kerr et al., 2010). At this frequency, the

corresponding wavelength of 21 cm is larger than for any of the previous passive

microwave sensors in orbit. The key advantage of a larger wavelength is that the

radiation registered by the radiometer originates from greater depths in the ice (Carsey,

1992, pp. 63; Ulaby et al., 2014, pp. 139). Thus, the L-band brightness temperature

(TB) is sensitive to sea ice thickness, a feature that is used for sea ice thickness retrieval

from SMOS (over thin ice) (Tian-Kunze et al., 2014; Kaleschke et al., 2016).

Several factors influence the TB measured over ice-covered regions: ice

concentration, ice temperature, snow cover and surface roughness are among

them (Maaß et al., 2013; Ulaby et al., 2014, pp. 422).

Here, we investigate the effect of surface roughness on the L-band TB, a factor that
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has not been included so far in modeling of the ice emissions and in operational sea ice

thickness retrieval from SMOS. Hence, my research questions are:

❼ How are the angular TB characteristics changing with increasing roughness of the

sea ice surface?

❼ What is the magnitude of those changes in comparison to other factors, such as

sea ice concentration?

❼ Is it possible to measure the sea ice deformation with multi-angular SMOS data?

To answer these questions, we use a combination of radiative transfer modeling,

air-borne data and satellite observations.

Sea ice thickness measurements and L-band

radiometry

Measuring sea ice thickness from the Earth orbit is a tool that enables daily coverage

of the polar regions. Several techniques are applied for the global surveying of sea

ice thickness. Altimeter-based techniques rely on measurements of ice freeboard

from which the total ice thickness is calculated (Zwally et al., 2002; Laxon et al.,

2013; Abdalati et al., 2010). However, this method applies only to thick ice, as the

freeboard measurement uncertainty for thin ice (approx. less than 1m), impedes the

retrieval (Wingham et al., 2006; Ricker et al., 2014a). The thickness of thin ice can

be measured with thermal infrared sensors (Yu and Rothrock, 1996). This method is

in turn limited to cold clear-sky cases and prone to errors caused by thin clouds and

fog (Yu and Rothrock, 1996; Mäkynen et al., 2013). Considering these limitations, the

sea ice thickness retrieval with L-band radiometry complements the above mentioned

techniques.

The introduction of the satellites with L-band radiometers (In this work we adopt

the band nameing according to the IEEE Standard 521-2002, L-band:1 to 2GHz. All

the radiometers mentioned in this thesis work in a restricted for passive use only

band; from 1.400 to 1.427GHz, therefore hereinafter by L-band we mean 1.4GHz.)

provides the possibility of monitoring the thin sea ice thickness with passive microwave

(PM) (Lagerloef et al., 2008; Kerr et al., 2010; O’Neill et al., 2010). The L-band

TB is sensitive to sea ice thickness (Kaleschke et al., 2010, 2012; Huntemann et al.,

2014), and therefore can be used for operational sea ice thickness retrieval (Tian-Kunze

et al., 2014). Apart from ice thickness, other factors influence the L-band TB over ice

covered ocean. For example Maaß et al. (2013) developed and used the MIcrowave

L-band LAyered Sea ice emission model (MILLAS) to investigate the effects snow

cover. According to their results, snow causes an increase of the TB, with a most
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pronounced change at horizontal polarization. However, the surface roughness was

so far omitted from the modeling of the TB over sea ice. Mills and Heygster (2011)

used ice topography obtained from ice thickness measurements to characterize surface

roughness. They evaluated the effect of a local incidence angle on the measured TB.

Their result suggests that roughness on the ridged ice makes a significant contribution

to the measured signal. Nonetheless, the later result was derived based on 1-D linear

ice elevation measurements spaced every 2 to 4m, a sampling that barely covered the

elliptical radiometer footprint of 250m. Thus a better validation data set combining

the radiometer data with high-resolution wide-swath surface elevation measurements

is needed.

Brightness temperature observed during

“SMOSice2014” campaign

The SMOSice2014 campaign took place in March 2014 in the area between Edgeøya

and Kong Karls Land, east of Svalbard (Kaleschke et al., 2016). On April 24, 2014,

the Polar 5 research aircraft flew along two lines over sea ice west of Edgeøya. Among

instruments on board the airplane were the airborne laser scanner (ALS), the L-band

radiometer EMIRAD2 developed by DTU-Space (Søbjaerg et al., 2013), a KT19

infrared thermometer and an aerial camera.

The EMIRAD2 radiometer had two antennas, the first pointing at nadir and

the second side-looking at 40➦. Both antennas were registering surface emissions

at horizontal and vertical polarizations. The infrared thermometer was pointing at

nadir. The ALS elevation measurements were spaced every 0.2m along a 70m scan

line in cross-track direction and every 0.5m along flight direction, covering the entire

nadir-looking radiometer footprint.

The obtained surface elevation measurements were used to infer the sea ice thickness

from sea ice freeboard. On figure 1.1 on page 4, EMIRAD2 nadir TB is plotted against

sea ice thickness, there is a ≈10Km❂1 increase in nadir TB over thick ice (>0.7m),

despite MILLAS model prediction plotted as a green dashed line (MILLAS setup

consisted of one ice layer, permittivity parametrized by ice thickness and temperature).

The radiometer and elevation data collected during the campaign provide an

opportunity to test our hypothesis whether the surface roughness can be the cause

of the observed TB increase over thick ice.
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Figure 1.1: Nadir brightness temperature vs. sea ice thickness, measurements from

SMOSice2014, averaged every 60 s. The green dashed line marks the MILLAS model

prediction. The black line marks a linear fit for ice thicker than 0.7 m.

Sea ice surface roughness

The roughness of a random surface is characterized by statistical parameters such

as the standard deviation of surface height (σz), and the correlation function (R(ξ))

measured in units of wavelength (Ulaby et al., 2014, pp.422). The measurements of

surface elevation (z), from which the roughness statistics are drawn, are conducted with

altimeters characterized by their accuracy (δ) and sampling distance (∆x). Thus, the

measurement method has an impact on the result by filtering out spatial frequencies.

The sea ice elevation measurements obtained from air-borne altimeters (Ketchum, 1971;

Dierking, 1995), supplemented with terrestrial laser scanners (Landy et al., 2015),

draw a picture of sea ice roughness as a multi-scale feature covering several orders of

magnitude from large floes and pressure ridges of tens and hundreds meters to frost

flowers and small ripples of centimeters to millimeters scales.

The incident wavelength reacts differently with individual components of the

superimposed roughness (Ulaby et al., 2014). The roughness scales much greater than

the electromagnetic wavelength (λ) alter the local incidence angle. On the other end

of spectrum, when the change of the surface elevation ∆z over sampling distance ∆x

is much smaller than λ, the roughness stays unnoticed. As a rule of thumb, ∆x should

be smaller than 0.1λ (Dierking, 2000; Ulaby et al., 2014).

Sea ice roughness measurements with terrestrial lidar carried out by Landy et al.
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(2015) show that σz ranges from 0.10 cm to 0.64 cm, after high-pass filtering (cut off

at 0.25m, ∆x = 2mm). These results indicate that, according to the Fraunhofer

smoothness criterion (eq. 3.13), most sea ice types (except artificially grown frost

flowers), can be treated as a smooth surface in L-band at scales lower than 0.25m.

Sea ice is “electromagnetically smooth” in L-band at a scale up to 0.25m. Studies

of surface scattering with numerical simulations conclude that a region of 8λ × 8λ is

large enough to represent surface roughness in scattering models (Lawrence et al.,

2011, 2013). Hereby we assume that scales greater than 8λ can be characterized

in terms of Geometrical Optics (GO). In GO the surface is represented as a set

of facets (Ulaby et al., 2014). This approach was applied in modeling the effective

emissivities of mountainous terrain (Matzler and Standley, 2000), as well as other

surfaces such as sea (Prigent and Abba, 1990). The latter used probability distribution

of slopes in across- and downwind directions. A similar method was used in the context

of sea ice to assess the uncertainties caused by the roughness in sea ice concentration

products derived from PM (Stroeve et al., 2006). Liu et al. (2014) measured ice surface

slopes and other roughness statistics in Bohai Sea, but their result was obtained with

linear (1-D) scans under the assumption of isotropic roughness characteristics. The

study by Beckers et al. (2015) has demonstrated that the statistics of sea ice roughness

(mean z, σz, kurtosis and skewness) obtained from 1-D altimeter and 2-D laser scanner

converge, provided that the surface is not strongly heterogeneous. Nonetheless, the 1-D

altimeter data cannot properly represent the spatial orientation of the surface facets,

whose orientation is characterized by both slope (α) and azimuthal angles (γ).

In this work, we address the issue of surface slope orientation by extracting

this information from digital elevation model (DEM) obtained with 2-D ALS

measurements. Then we identify the spatial scales at which sea ice can be treated

as isotropic in terms of surface slopes orientation. The surface roughness statistics are

subsequently used in combination with theMILLAS model to simulate the brightness

temperature over ice with different roughness. Finally, we compare EMIRAD2 data

with modeled TB with and without roughness parametrization.

Outline

This thesis is organized as follows:

In Chapter 2 we present the data sets used in this study. First, we introduce the

SMOS mission and the measuring principle of its radiometer. Then we describe the

SMOSice2014 campaign with an emphasis on the airborne radiometer and the surface

elevation measurements.

In Chapter 3 we summarize the theoretical basis for the subsequent analysis. We

shortly present the concept of brightness temperature and its relation to surface

scattering. Then we describe the sea ice emission model MILLAS. Furthermore,
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we present various scattering approximations and argue for geometrical optics as the

most suitable. Finally, we integrate the MILLAS model with statistical distribution

of surface slopes into the Monte Carlo roughness model.

In Chapter 4 we show the results of sea ice classification based on aerial photography.

Surface roughness statistics for each of the ice type: smooth, medium-deformed and

deformed are presented. Based on the DEM we analyze the spatial variability of

surface slopes, then we compute the probability density functions of surface slopes for

each ice type.

In Chapter 5 we use the surface slopes statistics with our Monte Carlo roughness

model to evaluate the influence of large scale surface roughness on the modeled TB.

We quantify the method’s sensitivity to the input parameters. Subsequently, we

parametrize the model results with an analytical function (“fast roughness model”).

We also demonstrate the possibility of extending the parametrization on surfaces with

different permitivities.

In Chapter 6 we compare the SMOS and EMIRAD2 brightness temperatures from

the SMOSice2014 campaign with the results obtained with our statistical roughness

model. We analyze the percentage of explained variance, bias and root-mean-square

error.

Chapter 7 presents a summary of the main conclusions of this work.
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Chapter 2

Data

In this chapter we provide a description of the main data sets used in this study.

In section 2.1 we briefly summarize the measuring principles of the SMOS mission

and its implications for the brightness temperature data. The SMOS brightness

temperatures are used for the large scale analysis and comparisons. In section 2.2 we

introduce the SMOSice2014 measurement campaign. We choose this data set because

it combines the high resolution surface elevation measurements with simultaneously

registered radiometer data. The surface elevation and radiometer data collected during

SMOSice2014 campaign play a central role in our study of the influence of the surface

roughness on the L-band TB.

2.1 The SMOS mission

The Soil Moisture and Ocean Salinity mission (SMOS) was launched in November

2009 as part of European Space Agency (ESA) Earth Explorers program. The satellite

orbits the Earth at the altitude of 765 km with a period of approximately 100min (Kerr

et al., 2010). The SMOS payload is a 2D, L-band passive microwave interferometer:

the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) (McMullan

et al., 2008).

The MIRAS radiometer consist of 69 receivers distributed over the satellite’s

central hub and three outward stretching 4m-long arms. The interferometric 2D image

reconstruction technique is based on the cross-correlation between the receiver pairs,

so the phase difference of the incident radiation registered at individual receivers is

measured (McMullan et al., 2008). Thanks to this technique it is possible to disentangle

the radiation originating from different regions/footprints of the SMOS field of view.

The reconstruction produces an image of the Earth’s TB in the satellite reference frame

every 1.2 s. The image has a hexagonal shape, but due to the satellite tilt its projection

on the Earth’s surface has an elongated hexagonal shape hundreds kilometers across.

The projected 2D image is called a snapshot, an example of which is presented in
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figure 2.1. The color scale represents the values of incidence angles across the snapshot.

As the satellite passes over a fixed region on the Earth’s surface, it registers the TB
originating from the region in several snapshots. But in each snapshot the region has

a different position, and it is observed under a different incidence angle. The result of

an overpass is an angular characteristic of the L-band radiation originating from the

region.

Before we proceed to the more detailed analysis of the antenna footprint, it

is important to mention that the brightness temperature registered by SMOS is

expressed in the antenna reference frame, which changes with instrument orientation in

space. In order to obtain the angular characteristic of the TB in Earth’s local horizontal

and vertical polarization coordinates several factors must be accounted for. First,

there is the geometrical rotation of the antenna frame with respect to the part of the

snapshot. Second the Faraday rotation should be considered: it is a phenomena caused

by the interaction of the incident radiation with the Earth’s magnetic field and the free

electrons in the ionosphere, which causes the rotation of the plane of polarization.

Third, the satellite measures the TB at the top of the atmosphere (TOA). In order

to obtain the emissions specific to the Earth’s surface a correction accounting for the

atmospheric emission and attenuation, has to be applied. The atmospheric emission

and attenuation factors in L-band are mainly functions of the oxygen and water vapor

concentration in the atmosphere. The model studies indicate that total atmospheric

correction ranges from 2.6K at nadir up to 5.6K in horizontal polarization at 56o

incidence angle (Zine et al., 2008).

2.1.1 The SMOS measurements

The radiometric accuracy of the TB measurements varies across the footprint. Due

to the image reconstruction accuracy depends on the surface type (land, sea) and

on the contrast between the observed TBs within field of view, as well on the

position in the antenna footprint (Corbella et al., 2014; Soldo et al., 2015). The best

accuracy is achieved in the central part of the snapshot. After six years in orbit,

SMOS maintains the designed performance, the instrument’s radiometric accuracy

over the whole snapshot is of about 1.5K and 2K for the X and Y polarization

respectively (Mart́ın-Neira et al., 2016). However, the overall uncertainty of an

individual TB measurement exceeds these values because of other factors such as

thermal stability, image reconstruction issues or radio frequency interference. For the

core applications the radiometric uncertainty are meeting the design criteria: between

3.5K and 5.8K over land and 2.5 to 4.1K over ocean (Kerr et al., 2010).

The SMOS brightness temperature data are projected onto a Discrete Global

Grid (DGG). For this purpose the ISEA4H9 grid was chosen. It has a hexagonal

grid cell shape of 15 km (Suess et al., 2004), so it can maintain the full information

content of SMOS measurements, as well as minimize the interpolation errors. The
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Figure 2.1: Example of a SMOS snapshot, taken south-west of Svalbard on March 24th,

2014. Individual granules of the 15 km ISEA 4H9 grid are marked with circles. The colors

indicate the incidence angle associated with DGG pixels. The black ellipsoids illustrate the

orientation and relative size of the individual measurement footprints (not to scale).
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snapshot geometry and the image reconstruction cause a variation in footprint size

and orientation. The general formula describing the individual beam footprint involves

detailed information about the antenna gains of all the receivers. In practice, a

simplified formula is used to calculate the beam footprint size and orientation (WEFA,

notation taken from the technical documentation) (Kerr et al., 2011):

WEFA(ρDC) =

{

sinc(73.3·ρDC)1.4936

1+524.5·(ρDC)2.1030
, for ρDC · 73.3 ≤ π

0, otherwise
(2.1)

where ρDC is the distance from the beam’s center expressed in directional cosines.

Figure 2.2 shows the footprint size calculated according to the formula (2.1). For some

applications, such as soil moisture retrieval, the formula can be simplified even further.

The Mean antenna weighting function (Mean WEF ), which neglects the incidence

angle and geometrical rotation effects, is described by:

Mean WEF (ρearth) =







WEFA(ρearth · π/2932) + 0.02, for ρearth ∈ [0 km, 40 km]

0.02, for ρearth ∈ ]40 km, 61.5 km]

0, otherwise

(2.2)

where ρearth is the distance from the projection of the beam’s center on the Earth’s

surface expressed in kilometers.

2.2 SMOSice2014 campaign

The SMOSice2014 campaign took place on the 24th and 26th of March 2014 in the

area between Edgeøya and Kong Karls Land, east of Svalbard. A broader description

of the campaign was made by Kaleschke et al. (2016). At this point we evoke just the

parts relevant to the current work.

In the period preceding the experiment, from late January until early March, the

meteorological conditions in the region deviated strongly from the climatological means.

The air temperature measured at Hopen Island meteorological station was on average

9 to 12 ◦C higher than the climatological value for the period 1961 to 1990 (Strübing

and Schwarz, 2014). Prevailing southerly winds pushed sea ice against the coasts of

Nordaustlandet and into Hinlopen Strait, leaving a small strip of compacted ice along

the coasts of Edgeøya. When sea ice returned with southerly drift in early March, it

set a scene for the experiment. The thickest, most deformed ice was located in the

western part of the studied region with gradual decrease in thickness eastwords, where

thin newly-formed ice was dominant. This pattern can be observed in the SMOS sea

ice thickness product displayed on figure 2.3. In this work we analyze only the data
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Figure 2.2: SMOS Antenna patterns. The ❂3 dB footprint contours are marked in solid

lines, the ❂20 dB contours are marked in dashed lines. The mean antenna weighing function

(Mean WEF ) approximation is plotted as a color background, with a color scale showed

in subplot above in a cross section of the Mean WEF cutting through the center. The

actual size for the nadir SMOS measurement is showed in green. The elongated elliptical red

contours correspond to the footprint at 45➦ incidence angle.
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Figure 2.3: Sea ice thickness on March 24, 2014 derived from SMOS. The SMOS sea ice

thickness product with resolution of 40 km is presented on 15 km grid. An aggregation of

thick ice (>1 m) is visible along the Edgeøya’s eastern coast.

from the low altitude flight at 70m, as it has the highest spatial resolution of the ALS

data among all the flights. Also, we limit the analysis to the 24th of March, it is due

to the fact that the region covered on 26th March had a discontinuous ice cover and a

large scale swell was interfering with the surface elevation measurements.

On March 24, the Polar 5 research aircraft of the Alfred Wegener Institute

(Bremenhaven, Germany), undertook measurement flights starting from the eastern

coast of Edgeøya, along the lines marked in red on the figure 2.4. The figure also shows

TerraSAR wide swath scenes, taken in the region. Flight A was made between 10:05

and 10:41 UTC, flight B from 11:25 to 12:07 UTC. A set of instruments was mounted

on the aircraft, including an aerial camera to visually register the ice conditions,

the Heitronics Kt19.85 pyrometer for surface temperature measurements, the L-band

radiometer EMIRAD2 and the Airborn Laser Scanner (ALS) for high-resolution

surface elevation measurements.

2.2.1 Airborne laser scanner

An instrument essential to this study is the Riegel VQ-580 laser scanner mounted on

the Polar5 aircraft. Its near infrared laser (wavelength 1064 nm) is measuring snow
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Figure 2.4: Sea ice conditions in the flights region on March 24. The TerraSAR-X wide swath

mode (HH polarization), with frames taken at 05:35 UTC and 14:58 UTC. The aircraft tracks

are marked in red - A at 10:05-10:41 UTC and B at 11:25-12:07 UTC .
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and ice elevation with the accuracy and precision of 25mm. During the flights it was

operating with pulse repetition frequency of 50 kHz, measuring the surface elevation in

cross track linear scan in the range of ±30➦. Such configuration at the flight altitude of

70m resulted in across-track and along track sampling of 25 cm and 50 cm, respectively.

The data was calibrated and georeferenced to the WGS84 datum. Further processing

involved manual classification of tie points in leads to obtain local sea level and sea ice

freeboard (Hendricks et al., 2014).

In this work, we use the pre-processed ALS data, described in the previous

paragraph. The geo-referenced surface elevations are used to compute surface

roughness statistics. The elevation data are interpolated to a regular 0.5m× 0.5m

grid to obtain a digital elevation model (DEM) of the sea ice surface. The DEM

serves to derive surface slopes orientation.

The ALS freeboard data is used to estimate the sea ice thickness. The estimation

method uses the principle of hydrostatic equilibrium. In order to derive the sea ice

thickness, the densities of water and ice must be known, as well as the load of snow,

described by snow density and snow thickness. Unfortunately, during the flights the

snow radar was still in the test phase of development, therefore we decided not to

use this data. In order to tackle the problem of lack of the snow thickness data, we

follow Kaleschke et al. (2016) and assume an approximation formula used by Yu and

Rothrock (1996) and Mäkynen et al. (2013), which sets the snow thickness to 10%

of the sea ice thickness. As for the respective densities, we assume the water density

as 1027 kg/m3, ice density 917 kg/m3 after (Ricker et al., 2014b) and snow density

300 kg/m3 after (Warren et al., 1999).

Figure 2.5 shows the sea ice thickness distributions obtained from ALS freeboard

data during both flights. Both flights exhibit similar sea ice thickness distribution,

with double maxima at ice thickness of 0.3m and 1.4m.

2.2.2 EMIRAD2 radiometer

Another vital instrument on board of the aircraft was the L-band radiometer -

EMIRAD2. The EMIRAD-2 L-band radiometer, developed by DTU-Space, is a

fully polarimetric system with advanced radio frequency interference (RFI) detection

features (Søbjaerg et al., 2013). Two Potter horn antennas, one nadir pointing, one side

looking at 40➦ incidence angle measure the radiation from the surface with a footprint

of approximately 60m for a 70m flight altitude. The receiver has a sensitivity of 0.1K

for 1 s integration time. During all flight operations navigation data are collected and

used to transform the polarimetric brightness temperature into the Earth reference

frame (Hendricks et al., 2014)

The EMIRAD-2 data have been screened by evaluating kurtosis,

polarimetric (Balling et al., 2012), and TB anomalies, this revealed up to 30%
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Figure 2.5: Histograms of sea ice thickness along flight A and B computed from ALS

freeboard.

RFI contamination. When subtracting the mean value of the RFI-flagged data from

the mean value of the full data a difference of typically a few K is present for side

looking horn and typically 10K for the nadir looking horn. Data analysis further

revealed a 20K offset relative to the nadir vertical channel caused by a continuous

wave signal from the camera that was mounted on the airplane to obtain visual

images. This contamination could not be detected by the RFI filters but the analysis

concludes a purely additive characteristic and allowed a bias correction (Hendricks

et al., 2014). In this study we use the data pre-processed by the DTU-team. The

radiometer data was RFI-cleaned and bias-corrected and validated using aircraft wing

wags and nose wags over open ocean (Hendricks et al., 2014).

The overview of the mentioned data set is presented in Figures 2.6 to 2.9. The

one-second time resolution data are presented in light colors and the thirty-second

averages in thick lines. For each flight there are two associated figures: the first

presenting the nadir brightness temperatures, and the second presenting the brightness

temperatures at 40➦ registered by a side looking antenna.
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Figure 2.6: Flight A, Nadir antenna (zero kilometer marks the start of the track at the coast

of Edgeøya). Thin lines show 1 s measurements, thick lines mark the 30 s averaged values.

The sea ice thickness from ALS freeboard (dice) is marked in green, surface temperature

registered by KT19 in cyan (Tsurface) and nadir brightness temperature (TB(0)) in black.
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Figure 2.7: Flight A, Side antenna (zero kilometer marks the start of the track at the coast

of Edgeøya). Thin lines show 1 s measurements, thick lines mark the 30 s averaged values.

The sea ice thickness from ALS freeboard (dice) is marked in green, surface temperature

registered by KT19 in cyan (Tsurface) and brightness temperatures from side-looking antenna

are marked in blue for horizontal polarization (TB(H, 40)) and red for vertical polarization

(TB(V, 40)).



18 Data

Figure 2.8: Flight B, Nadir antenna (zero kilometer marks the start of the track at the coast

of Edgeøya). Thin lines show 1 s measurements, thick lines mark the 30 s averaged values.

The sea ice thickness from ALS freeboard (dice) is marked in green, surface temperature

registered by KT19 in cyan (Tsurface) and nadir brightness temperature (TB(0)) in black.
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Figure 2.9: Flight B, Side antenna (zero kilometer marks the start of the track at the coast

of Edgeøya). Thin lines show 1 s measurements, Thick lines mark the 30 s averaged values.

The sea ice thickness from ALS freeboard (dice) is marked in green, surface temperature

registered by KT19 in cyan (Tsurface) and brightness temperatures from side-looking antenna

are marked in blue for horizontal polarization (TB(H, 40)) and red for vertical polarization

(TB(V, 40)).
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Chapter 3

Methods

In this chapter we briefly introduce the basic concepts of microwave remote sensing used

in this work. In sections 3.1 and 3.2 we present the theoretical background of microwave

emissions. These concepts are implemented in the sea ice emission model presented in

section 3.3. Then, in section 3.4 we proceed with an analysis of surface roughness and

its role in microwave remote sensing. In section 3.5 we argue for geometrical optics as

a suitable method for representing the sea ice surface roughness. Finally, in section 3.6

we connect the sea ice emission model with geometrical optics.

3.1 Brightness temperature

Every physical body emits energy in a form of electromagnetic radiation. The amount

of radiation in specific frequency (f) for a perfectly emitting/absorbing “black body”

is described by Planck law equation (3.1) (Ulaby et al., 2014, pp. 229-230):

If =
2hf 3

c2

(

1

ehf/kBT − 1

)

, (3.1)

where h is the Planck constant, kB is the Boltzmann constant, c is the speed

of light in vacuum and T is the physical temperature of the body. For the low

microwave frequency (f/T < 3.9×108Hz K−1) an approximation called Rayleigh-Jeans

law equation 3.2 can be used with deviation from original curve of less than 1% (Ulaby

et al., 2014, pp. 231):

If ≈
2kBT

λ2
, (3.2)

where λ denotes the electromagnetic wavelength and λ = c/f . Figure 3.1 shows

two Planck functions corresponding to physical temperatures of 300K (in black) and

6000K (in red). The Rayleigh-Jeans’s approximation for T =300K is marked in black
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Figure 3.1: Planck curves for 300 K (black solid line) and 6000 K (red solid line). The

Rayleigh-Jeans approximation is marked in dashed line. The L-band frequency of 1.4 GHz is

marked by a blue vertical line.

dashed line. The frequency of 1.4GHz, relevant for this study is denoted by a blue

vertical line. In the microwave domain of the spectrum, where the Rayleigh-Jeans’s law

holds well, physical temperature is a convenient measure of the body’s brightness, i.e.

the amount of energy emitted at a given frequency. Hence, the brightness temperature

(TB) is a measure of emitted energy.

The “black body” is a theoretical concept that is an approximation for some

real bodies. Nonetheless, the real physical bodies are not perfect absorbers/emitters

(Schanda, 1986a, pp. 143-145). They emit less energy than a “black body” with the

same physical temperature. The proportional ratio of the real body brightness to the

theoretical ’Black body’ is called the emissivity (0 < e < 1) and in general, depends

on frequancy, polarization and direction of the measurement (θ, φ):

e(θ, φ) =
I

Iblackbody
=
TB(θ, φ)

T
. (3.3)

The non-polarized radiation originating in the medium needs to cross the

medium-air boundary to reach the antenna, where it is subsequently registered. When

the electromagnetic wave is propagating across the boundary, the electric and magnetic

fields must fulfill a set of continuity conditions for their horizontal and vertical
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Figure 3.2: Emissivities calculated with Fresnel equations. Horizontal (H) polarization in

blue solid lines, Vertical polarization (V ) in red dashed lines. The L-band permittivities of

ice (ǫ = 3.18) and water (ǫ = 81.51) cause the difference in calculated emissivities.

components (Jackson, 1975, pp. 278-282). As a result, the values of the brightness

temperature observed above the surface depend on the polarization and the incidence

angle (θ). Fresnel equations (3.4) describe the reflectivity (Γ∗) for horizontal (H) and

vertical (V ) polarization as a function of the incidence angle. Mind that Kirchhoff’s

law states that under thermodynamic equilibrium ep = 1 − Γ∗

p (Ulaby et al., 2014,

pp. 253).

Γ∗

H(θ1) =
∣

∣

∣

√
ǫ1 cos θ1 −

√
ǫ2 cos θ2√

ǫ1 cos θ1 +
√
ǫ2 cos θ2

∣

∣

∣

2

, Γ∗

V (θ1) =
∣

∣

∣

√
ǫ1 cos θ2 −

√
ǫ2 cos θ1√

ǫ1 cos θ2 +
√
ǫ2 cos θ1

∣

∣

∣

2

(3.4)

where ǫ1/2 denotes the permittivities of the respective medium. The Snell law

(equation 3.5) relates the respective angles (Ulaby et al., 2014, pp. 248).

√
ǫ1 sin θ1 =

√
ǫ2 sin θ2 (3.5)

Figure 3.2 shows two examples of the angular dependence of the emissivities of

ice with ǫ = 3.18 (temperature 263K, and bulk salinity 1 g/kg for frequency 1.4GHz,

values coresponding to thick multi year ice) and water with ǫ = 81.51 (temperature

273K and salinity 20 g/kg for frequency 1.4GHz) calculated with Fresnel equations 3.4.
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The complex permittivity constant ǭ comprises of the real term ǫ, characterizing

the reaction of the medium to the applied electric filed and the imaginary part κ

characterizing the attenuation of the electric field in the medium:

ǭ = ǫ+ iκ (3.6)

3.2 Brightness temperature over sea ice

Sea ice forms on the ocean surface as a result of a net heat flux between warm

water (≈273K) and cold air (≈253K). When water cools to its critical temperature

(depending on its salinity), the ice crystals start to form, expelling the salts from its

structure. Some of the salts precipitate into the water below, yet part of them are

trapped dissolved in the so-called brine pockets surrounded by the crystalline H2O

structure. The salt content and brine volume influence the complex permittivity of ice.

As ice gets thicker it isolates the ocean from the atmosphere, restoring the thermal

equilibrium by adjusting the heat flux. This leads to a temperature gradient within

the ice (Maykut G., 1971).

The ice is not isothermal and its permittivity varies with depth and

temperature (Vant et al., 1978; Cox and Weeks, 1982). Furthermore, the absorption

(κ) of radiation at 1.4GHz in sea ice is weak (Carsey, 1992, pp. 63; Ulaby et al.,

2014, pp. 139). As a result, the TBs emitted by layers with different temperature

and emissivity/absorptivity are contributing to the TB measured at the surface. Thus,

the TB is described by the following radiative transfer equation (Ulaby et al., 2014,

pp. 245):

TB(θ;Z) = TB(θ, 0)e
−τ(0,Z) +

∫ Z

0

κa(z
′)T (z′) sec θe−τ(z

′,Z)dz′, (3.7)

where τ(z1, z2) =
∫ z2
z1
κa sec θdz

′ is called the optical depth and κa is the absorption

coefficient of the ice. In equation 3.7 the extinction of radiation caused by volume

scattering is neglected. This is due to the fact that usual scattering centers within

the ice such as air bubbles and brine pockets, have much smaller dimensions than

the wavelength at our frequency of interest (Obbard et al., 2009; Ulaby et al., 2014,

pp. 461)

The measurements of TB over ice need to take into account also other factors.

The Earth’s atmosphere also emits and absorbs radiation. The upwelling brightness

temperature observed over sea ice at the top of the atmosphere (TOA) (eq. 3.8), at

polarization p and incidence angle θ consists of several elements. This comprises ice
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component (TBice), contributions from the atmosphere (TBatm) and cosmic emissions

(TBcosm).

TB,TOA = katm · TB,ice + katm(1− eice)TB,atm + 2katm(1− eice) · TB,sky + TB,atm (3.8)

where katm is the atmospheric attenuation, TB,atm is the emission from the atmosphere

and TB,cosm are the cosmic emissions. Depending on the antenna’s height, we have to

include the atmosphere’s emissions reflected from the sea ice surface and the emissions

from the portion of atmosphere between the antenna and the surface. The influence of

the atmosphere on the L-band TB can be parametrized by surface values of pressure,

temperature and water vapor density (Zine et al., 2008)

The sky emissions is a broad term which aims at describing all emissions coming

from beyond the Earth’s atmosphere, including the cosmic background radiation,

the galactic noise and the emissions from other celestial bodies. All these factors,

apart from the cosmic background radiation, vary with geographical location and

seasons (Vine and Abraham, 2004). Since an analysis of these factors lies beyond the

scope of this work, we consider TBsky to be identical to cosmic background radiation

of 2.7K (Le Vine et al., 2005; Peng et al., 2013)

3.3 Sea ice emission model

For the simulation of sea ice brightness temperature (TB,ice) we use the MIcrowave

L-band LAyered Sea ice emission model described by Maaß et al. (2013), further

referred to as MILLAS. This model is based on the radiative transfer model of Burke

et al. (1979)(who used it for soils), with infinite half-space of sea water covered with

layers of sea ice, snow and top semi-infinite layer of air. In contrast to the original

model of Burke et al. (1979) and its usage by Maaß et al. (2013), the current version

of MILLAS takes into account multiple reflections at the layer boundaries. The

MILLAS model describes the brightness temperature above snow-covered sea ice as a

function of temperature and permittivity of the layers. The water permittivity depends

mainly on the water temperature and salinity (Klein and Swift, 1977). Ice permittivity

can be approximately described as a function of brine volume fraction (Vant et al.,

1978), which depends on ice salinity and the densities of the ice and brine (Cox and

Weeks, 1982), which in turn depend mainly on ice temperature. The permittivity of

dry snow can be estimated from its density and temperature (Tiuri et al., 1984). In the

simulation setup the ice and water salinity are kept constant. Furthermore, we assume

that the system is in thermal equilibrium, and the water beneath the ice is at freezing

point. In this configuration the TB is simulated as a function of ice thickness (dice), snow

thickness (dsnow) and surface temperature (Tsurf ). In our setup the snow is assumed to

be dry with density of 300 kg/m3, which is the average snow density value for December
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Parameter Value
S
n
ow

surface temperature measured (KT19)

snow wetness 0%

snow density 300 kg/m3

snow thermal conductivity 0.31W/(mK)

Ic
e

ice thermal conductivity 2.034W/(mK)+ 0.13W/m ·Sice(g/kg)/Tice(K)

ice salinity 4 g/kg

W
at
er water salinity 33 g/kg

water temperature 271.2K

Table 3.1: Brightness temperature simulation setup of the MIcrowave L-band LAyered Sea

ice emission model (MILLAS).

Arctic measurements from 1954-91 (Warren et al., 1999). The TB simulations are only

slightly sensitive to snow density, see fig 3 in Maaß et al. (2013). The permittivities of

snow and ice are linked to their temperature. The temperature profiles within snow and

ice are assumed to be continuous and linear. The values for the ice and snow thermal

conductivity are taken from Yu and Rothrock (1996); Untersteiner (1964), shown in

table 3.1. Figure 3.3 illustrates the temperature and permitivity profiles computed

with MILLAS for input values: Tsurf =260K, dsnow =0.15m, dice =1.35m. Presented

setup involves 20 layers within the ice.
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Figure 3.3: An example of temperature (black) and permittivity (green and red) profiles

calculated with multilayer setup of MILLAS. The snow permittivity ǫsnow ≈ 1.5 + 0.001i is

not visible at this axis scale. Input values: Tsurf =260 K, dsnow =0.15 m, dice =1.35 m.
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3.4 Surface roughness

Surface roughness (or simply roughness) describes the interface between two media. It

is quantified by the deviation of the local normal vector from the normal vector of the

plane approximation of a larger region. There are multiple possibilities to quantify the

roughness. The most common is computing the standard deviation of surface height

(σz) (Ulaby et al., 2014, pp. 422). Higher statistical moments and root mean square

slope (mss) are also used (Dierking, 2000). A random surface is a surface that cannot

be described by an analytical function. Such a surface can be characterized by the

distribution of surface heights and the spatial correlation function R(ξ) (Ulaby et al.,

2014, pp. 422). Commonly the surface height distribution is assumed to be Gaussian,

and the correlation function either Gaussian or exponential as shown by equation (3.9).

R(ξ) = exp

(

−
(

ξ

lC

)n)

, (3.9)

where n = 1 for an exponential and n = 2 for a Gaussian correlation function, lC
is the correlation length and ξ is the displacement distance. Considering the above,

random surface roughness can be characterized by statistical properties σz and R(ξ).

The σz is measure of roughness vertical scale, whereas horizontal scale is characterized

by the lC .

3.4.1 Impact on surface reflectivity

The reflectivity of a rough surface (Γp) can be described as the integral of the bi-static

scattering coefficient (σ0
pq) over the upper half-space as shown in eq. 3.10 (Ulaby et al.,

2014, pp. 252), were p and q stand for polarization H/V .

Γp(θi, φi) =
1

4π cos θi

∫ 2π

0

∫ π/2

0

[σ0
pp(θi, φi; θs, φs)+σ

0
pq(θi, φi; θs, φs)] sin θsdθsdφs (3.10)

Generally, the σ0
pq are complex functions of the medium dielectric properties,

direction of incidence (θi, φi), direction of scattering (θs, φs), as well as the surface

roughness characterized by σz and R(ξ). The equation 3.10 can be also expressed as a

sum of the reflectivity along the specular direction and all other directions:

Γp = Γ∗

pe
−4ψ2

+ Γdiff,p, (3.11)

where the first term in the sum is called the coherent component, with ψ =
2π
λ
σz cos θi, and the second term is called the diffusive component (Ulaby et al., 2014,

pp. 197). The coherent component exists only along the specular direction. Figure 3.4



3.4 Surface roughness 29

(a) Specular surface (b) Medium-rough surface

(c) Rough surface

Figure 3.4: Surface scattering from surfaces with different degree of roughness: a) specular,

b) medium-rough, c) rough. Adapted from Ulaby et al. (2014, pp. 252)

illustrates that with increasing σz the coherent component decreases and more radiation

is scattered in a diffused manner.

Just like the reflectivity is influenced by the surface roughness, the transmissivity

and the emissivity are also affected. Due to the roughness the refraction and emissions

are no longer following the specular directions, as the Snell law would predict.

Figure 3.5 shows a conceptual sketch of these processes.

(a) Transmission across rough surface (b) Emission by rough surface

Figure 3.5: A Single beam transmitted through a rough surface results in a pattern of

radiation in the upper medium. Similarly, the emissions from the rough surface originate

from many directions. Adapted from (Ulaby et al., 2014, pp. 252)
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3.4.2 Semi-empirical roughness model for surface reflectivity

The increase in surface roughness has two effects on the reflectivity. According

to equations 3.10 and 3.11, it causes a decrease in coherent component and an

increase in polarization mixing. These effects of the roughness are the foundation

of the semi-empirical roughness model introduced by Wang and Choudhury (1981),

hereinafter referred to as the HQ−model. The model (eq. 3.12) uses four parameters

(HR, QR, NRp, NRq) to relate the smooth and rough surface reflectivities at a given

incidence angle θ and polarization p:

Γp = [(1−QR)Γ
∗

p +QRΓ
∗

q] exp(−HR cosNRp θ). (3.12)

The HR is related to the roughness vertical scale σz, in a similar way as ψ in

equation 3.11. The QR is a polarization mixing parameter and NRp/q parameters are

accounting for the changes in angular dependency of Γp/q.

Commonly, to relate these four parameters to surface roughness, empirical relations

are used (Wigneron et al., 2011; Lawrence et al., 2013). However, the HQ − model

and the mentioned relations were developed for soil-related applications. The different

permittivities and roughness scales of the sea ice, make these relations inappropriate

for the sea ice reflectivity modeling. We present a new parametrization suitable for the

sea ice applications in chapter 5.

3.4.3 Rough surface scattering models

Surface reflectivity can be expressed in terms of bi-static scattering coefficients (σ0
pq) as

shown in eq. 3.10. The development of mathematical models connecting the statistical

parameters of random roughness (σz, lC) with σ
0
pq resulted in three scattering models,

described below. The applicability of the scattering models depends on the horizontal

and vertical roughness scales with respect to the incident wavelength (λ).

Small Perturbation Model

The small perturbation model was developed by Rice (1951) to calculate scattering

coefficients of a slightly rough surface. The model is applicable for surfaces with

mean-square slope less than 0.3 and with both the σz and the lC are much smaller

than the incident wavelength. These conditions are expressed as follows: mss < 0.3

and kσz < 0.3 and klC < 0.3, where k = 2π/λ is the wave number of the incident wave.
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Kirchoff Models

An approximation known as the Kirchoff scattering model was developed by Beckmann

and Spizzichino (1963). This approximation is applicable for surfaces with horizontal

roughness scales greater than σz. That means lc > λ, l2c > 2.76 · σzλ.
This method has two variants depending on the vertical roughness scale. The

first variant, is the stationary phase approximation or geometrical optics (GO).

Geometrical Optics approximation is applicable for surfaces with large σz, with

σz cos θ0/λ > 0.25. The second variant is the scalar approximation or physical

optics. This approximation is suitable for surfaces with smaller vertical roughness

scale expressed in terms of mean-square slope: mss < 0.25.

I2EM Model

The small perturbation model and the Kirchoff models have their respective domains

of applicability. The model developed by Fung et al. (2002) is not constrained to

specific horizontal and vertical roughness scale. This so-called I2EM model allows

for computation of σ0
pq with contributions from multiple scattering and inclusion of

shadowing.

3.5 Sea ice roughness

As indicated in section 3.4, the σz and the lC are describing the vertical and horizontal

roughness scales. These parameters need to be considered in the context of the local

reference plane. The plane is an approximation of a surface at a given scale L. It

is often the case for natural surfaces that several roughness scales are super-imposed,

as illustrated in figure 3.6. Surface scattering occurs differently at each scale and

therefore the selection of the domain size L has an influence on the σz and lC (Mattia

and Le Toan, 1999; Landy et al., 2015).

One way of dealing with multiple-scale roughness is to treat it as a random

stationary process and apply the Wiener–Khinchin theorem to obtain the normalized

auto-correlation function from the power spectrum of the surface profile (Dierking,

2000; Rivas et al., 2006). Then the calculation is limited by the maximum sampling

frequency (fmax = 1/(2∆x)), calculated from sampling distance ∆x and minimum

(fmin = 1/L) sampling frequency. The resulting values are the band-limited roughness

parameters σbl, lbl. The power spectrum is crucial for analytical calculation of the

surface scattering coefficients (σ0
pq) and reflectivities.

Another option is based on the assumption that the roughness profile can

be described as small ripples super-imposed over large-scale topography. Recent

measurements of sea ice roughness with terrestrial lidar show that after high-pass
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Figure 3.6: Illustration of the decomposition of the surface roughness into large scale and

small scale roughness.

filtering (cut off at 0.25m) the σz for different ice types, ranges from 0.16 to

0.64 cm (Landy et al., 2015). These results indicate that according to the Fraunhofer

criterion (eq. 3.13), most sea ice types (except artificially grown frost flowers) can be

treated as electromagnetically smooth surface for L-band radiation.

σz <
λ

32 cos θ0
, (3.13)

where θ0 is the incidence angle.

Figure 3.7 shows the regions of validity of scattering approximations. The

Fraunhofer criterion for incidence angles 0➦and 60➦are marked in dotted and dashed

lines. The dots mark the lidar roughness measurements: in green over natural sea ice,

in red over artificially grown ice (Landy et al., 2015).
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Figure 3.7: Scattering approximations and their applicability domains for λ =0.21 m. The

Fraunhofer smoothness criterion for θ0 =0➦ and 60➦ marked in dashed and dotted line,

respectively. Dots mark the results of surface roughness measurements made by Landy et al.

(2015), in green over natural sea ice, in red over artificially grown ice.

We assumed that at the scale of 0.25m sea ice is electromagnetically smooth,

meaning that Γ∗ = Γ. The large scale roughness is represented as a set of specular

surfaces, the facets. The radiation is following the paths described by Fresnel and Snell

equations (eq. 3.4 3.5). The large scale roughness changes the local incidence angle.

such an approach is called the Geometrical Optics Approximation (Ulaby et al., 2014;

Schanda, 1986b).

An analytical formula for the TB of periodically undulating surface was shown

by Wang et al. (1980). In this work we consider a surface consisting of multiple

randomly oriented facets. First steps of of our derivation, consist of the analysis of the

coordinate systems associated with the radiometer and a local surface (Ulaby et al.,

2014, pp. 564-567).

The radiometer antenna is placed over the center of the XY plane in global

Cartesian coordinates (x̂ ,ŷ ,̂z ). The antenna look-direction is denoted by r̂ , and is

described by the incidence angle θ0 and the antenna azimuthal angle φ0 (We consider

a coordinate system with φ0 = 0 ):

r̂ = x̂ sin(θ0)cos(φ0) + ŷsin(θ0)sin(φ0)− ẑ cos(θ0). (3.14)

The facet orientation is described by two angles: the local slope α and the facet

azimuthal angle γ. Each facet has a local coordinate system (x̂ ′,ŷ ′ ,̂z ′), with local
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normal vector n̂ ′, whose orientation in the global reference frame is described by:

n̂ ′ = −x̂ sin(α)cos(γ)− ŷsin(γ)sin(α) + ẑ cos(α). (3.15)

Therefore:

ẑ ′ = n̂ , ŷ ′ =
n̂ × r̂

|n̂ × r̂ | , x̂ ′ = ŷ ′ × ẑ ′ (3.16a,b,c)

Each facet has a local horizontal and vertical polarization coordinates (ĥ
′

, v̂ ′),

which are rotated with respect to the horizontal and vertical vectors defined in the

global reference frame (ĥ , v̂):

ĥ
′

= ŷ ′ (3.17a)

v̂ ′ = −x̂ ′cosθ′ − ẑ ′sinθ′ (3.17b)

ĥ = −x̂ sinγ + ŷcosγ (3.17c)

v̂ = −x̂cosθ0cosγ − ŷcosθ0sinγ − ẑ sinθ0 (3.17d)

The facet orientation in relation to the antenna look-angle results in local incidence

angle θ′:

θ′ = cos−1(−r̂ · n̂ ′). (3.18)

Shadowing occurs when the local incidence angle θ′ > π/2, see figure 3.8, meaning

that the facet is facing away from the radiometer. Such a facet is not contributing to

the radiation registered by the radiometer. Our simulations do not include multiple

reflections.

When calculating the TBi contribution originating from the i-th facet at the antenna

aperture, the polarization rotation must be taken into account:

TBi(θ
′

i;H) = (ĥ · ĥ ′

i)
2T ∗

B(θ
′

i;H) + (ĥ · v̂ ′

i)
2T ∗

B(θ
′

i;V ) (3.19a)

TBi(θ
′

i;V ) = (v̂ · ĥ ′

i)
2T ∗

B(θ
′

i;H) + (v̂ · v̂ ′

i)
2T ∗

B(θ
′

i;V ) (3.19b)

where T ∗

B(θ
′

i, p) is the brightness temperature originating from the i -th facet. For a

visible facet (θ′i < π/2), the corresponding solid angle under it is observed is expressed

by eq. 3.20.

Ωi =
Acosθ′i
R2cosαi

, (3.20)
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Figure 3.8: Schematic view of the faceted surface. The radiometer look direction r̂ is marked

in blue. The sampling interval ∆x is mark by arrow-span. The radiometer sees facets 1-3

under different local incidence angle. Facet 4 faces away from the radiometer, in this case

shadowing occurs.

where A is the surface area of the facet. The sum over the entire antenna footprint

consisting of N facets, with corresponding antenna gain ωi, results in:

TB(p; θ0) =
1

Ncos(θ0)

N
∑

i=1

wiTBi(p; θ
′

i)Ωi (3.21)

Assuming that the antenna gain function is constant across the footprint and

radiometer is situated in the far field, so the θ0 and r̂ can be considered constant

across the antenna footprint, therefore:

TB(p; θ0) =
1

Ncos(θ0)

N
∑

i=1

TBi(p; θ
′

i)sec(αi)(−r̂ · n̂ i) (3.22)

3.6 Merging the geometrical optics with the

radiation model

In the previous section the equation describing the brightness temperature of the

faceted surface was introduced. It was assumed that the antenna is in a far field and the

antenna gain function is constant across the footprint. The emissions from individual

facets are described by theMILLAS model. The summation over the N facets requires

knowledge about their orientation in space (αi, γi) and with respect to the antenna

looking-angle. Including N pairs of angles in eq 3.22 is possible, however impractical.

Instead, we describe the surface topography with the probability distribution functions
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(a) PDFX (b) CDFX

Figure 3.9: Conceptual sketch illustrating the inverse transform sampling method. u is a

random number drawn from a uniform distribution [0,1], than we invert the CDFX so that

CDF−1
X (u) = x

of its slopes (PDFα) and of slopes azimuths (PDFγ). We calculate the cumulative

distribution function of the facet slopes (CDFα) from the PDFα. Subsequently, the

inverse transform sampling (ITS) is used to compute the facet orientation (Devroye,

2006) based on the CDFα. Figure 3.9 illustrates the ITS concept.

In the inverse transform sampling method we assumes that X is a continuous

random variable with cumulative distribution function CDFX . We obtain a population

of xi values drawn from the distribution described by CDFX in three steps. First, we

generate a random number u from a uniform distribution [0, 1]. Secondly, we look for

a point that satisfies the condition CDFX(x) = u. Finally, the algorithm returns the

x, a random number from non-uniform distribution.

3.7 Summary

In this chapter we have presented the emission model that we use to simulate the

brightness temperature (TB) of the sea ice. As input parameters we use surface

temperature and ice thickness. As the main purpose of this work is to investigate the

surface roughness, for further studies we use a simplified setup of the MILLAS with

one layer of snow on top of a one layer of ice, for the TB simulations. We have presented

arguments for neglecting the “small scale” roughness and using the geometrical optics

approximation. At scales of 0.25m sea ice is electromagnetically smooth. The large

scale surface roughness can be characterized with ALS data as a faceted structure.

Subsequently, we have presented how we simulate an orientation of multiple facets with

inverse transform sampling, summarizing flow-chart of the used method is presented

in figure 3.10. By merging the MILLAS model with geometrical optics, we obtained

a statistical model to investigate the influence of the large scale roughness on the sea
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Figure 3.10: Flow chart presenting the individual components of the statistical roughness

model. The brightness temperature simulation is done with MILLAS model, with Tsurf ,

dice, dsnow as inputs. Antenna look angle is another input parameter (r̂(θ0, φ0)). The

N -facet orientation (αi, γi) is computed with inverse transform sampling ITS, based

on cumulative distribution functions of surface slopes orientation (CDFα). Brightness

temperature contributions from respective facets are weighted with solid angles under which

they are observed (Ωi). The TB(θ0, p) is the end-simulated brightness temperature of a rough

surface.



38 Methods

ice TB. In this place it is important to note the method assumptions. Firstly, the

internal scattering within the ice is neglected. In addition, only bulk temperature and

permittivity are considered. Secondly, the small scale roughness is neglected as well

as multiple reflections from the surface facets. Thirdly, the radiometer is positioned

in a far field, r̂(θ0, φ0) = const., and its idealized antenna has a constant gain across

the footprint ωi = 1. This model setup will be used together with surface roughness

characteristics from the SMOSice2014 campaign, presented in the next chapter.
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Chapter 4

Surface roughness characteristics

during SMOSice2014

In this chapter we present the measurements of the sea ice roughness made during

the SMOSice2014 campaign. The first section describes the identification of three

ice types with distinct roughness characteristics by aerial photography. The ice types

are labeled ❷smooth❶, ❷medium-deformed❶and ❷deformed❶. We chose three ice types

that can be easily distinguished from each other, so we can look in to robust method of

characterizing the surface roughness from elevation data. Once labeled, we investigated

the standard deviation of surface height (σz) each of the ice types. The second section

focuses on the power spectral analysis of the surface elevation profiles measured over the

three ice types. The best fitting type of auto-correlation function is calculated with a set

of band-limited roughness parameters (σbl, lbl). The third section presents the results

of the Geometrical Optics approach to surface roughness description. Here the surface

facets slopes orientation are derived from the digital elevation model (DEM). The

probability distribution function of the surface slopes is a key input to the statistical

roughness model described in the chapter 3.

4.1 Sea ice classification

The roughness-based sea ice classification is done manually by visual interpretation of

the camera images. The photos were not taken continuously during the flight. The

ice is flagged as “deformed” when ridges or rubble fields are dominating the image.

When floes of similar dimensions without dominant ridges are visible, the ice is labeled

as “medium-deformed”. The ice is classified as “smooth” when finger rafting or dark

nilas are visible, indicating that the ice is newly formed. Images that contained few ice

types are discarded.

The ALS elevation data is grouped into one-second sections. The section size

corresponds to the footprint of the nadir-looking antenna of the radiometer. It consists
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Figure 4.1: Locations of the three identified ice types smooth in blue, medium-deformed

in green and deformed in red. In background is the TerraSAR-X wide swath mode (HH

polarization), with frames taken at 05:35 UTC and 14:58 UTC. The aircraft tracks are marked

in black dashed lines - A at 10:05-10:41 UTC and B at 11:25-12:07 UTC .

dice (m) Flight A Flight B Sum

Smooth ice 0.08±0.23 54 100 154

Medium-deformed ice 1.42±0.25 25 60 85

Deformed ice 1.90±0.97 55 161 216

Table 4.1: Ice classification summary with the number of one-second sections in each flight

and corresponding sea ice thickness.

of 150 scan lines spaced every 0.5m. Each scan line is 70m long and composed of

340 elevation measurements. Flights A and B contained 2189 and 2473 sections,

respectively. All sections, in both flights, have the surface elevation distributions that

fail the χ2 test for ”normal distribution” (p-value=0.05, Nbins = 24).

One-second sections corresponding to the ice type regions are used in the subsequent

analysis. Figure 4.2 shows an example of “smooth ice” seen on a photography and in

the raw ALS elevations. Table 4.1 presents the summary of the manual classification.

We calculate the standard deviation of surface height (σz) in the one-second sections

associated with each of the defined ice types. Figure 4.3 shows the histograms of the

σz for the three ice types, while table 4.2 summarizes the statistics of the histograms.

The values corresponding to “smooth ice” are considerably lower that those of the

other two ice types. The mean σz for this ice type is 0.02m and it is less than the

ALS accuracy. The “medium-deformed” ice has a symmetric distribution centered at

0.15m with skewness of 0.04. The “deformed” ice has an asymmetric distribution with

a mean of 0.25m tailing towards higher values.
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Figure 4.2: An example of “smooth ice” region. The aerial photography shows finger rafting,

a feature also visible in the ALS raw elevation data in the upper subplot. The photo was

taken at 10:03:14 at position: 78 5’ 6.39”N , 27 30’ 57.75”E.

(a) Smooth ice (b) Medium-deformed ice (c) Deformed ice

Figure 4.3: Histograms of the σz, calculated over one-second sections, for the three identified

ice types.

Distribution parameters

mean standard

deviation

skewness kurtosis

Smooth ice 0.02 0.01 1.13 1.18

Medium-deformed ice 0.15 0.04 -0.04 0.19

Deformed ice 0.25 0.16 9.77 121.79

Table 4.2: Surface roughness (σz) distribution parameters for the three ice classes.
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4.2 Power spectral densities

Given elevation profiles z(x), where x represents the cross-track position in ALS

scanline of length L with N samples, the roughness power spectral density (PSD(fx))

is estimated in terms of the discrete Fourier transform of z(x):

PSD(fx) = |F(z(x))|2, (4.1)

where fx = k∆fx, ∆f = 1/L, k = 1, ..., N . Similarly, in the spatial domain the discrete

positions are x = n∆x, ∆x = L/N and n = 1, .., N

The band-limited roughness parameters σbl and lbl are calculated from the PSD.

According to the Wiener–Khinchin theorem for a stationary random process, the

Fourier transform of the auto-correlation function (R(ξ)) is the PSD (Champeney,

1973). The PSDs obtained from the ALS scans are confined to the interval [fmin, fmax].

For the sampling distance ∆x = 0.25m and scan length L = 70m we obtain the values

fmin= 0.014m❂1, fmax= 2m❂1.

We derive the PSDs in three steps. Firstly, the scanlines are linearly interpolated

to obtain a regular spacing of 0.2m. Only scanlines with less than 5% missing values

are considered. The remaining missing values are patched with white noise. Secondly,

the discrete Fourier transform of the profile is computed and the modulus-squared

taken. Thirdly, the PSDs of each scanlines are averaged over one second to increase

the statistical significance. Figure 4.4 shows the mean PSD over the three ice types,

obtained by averaging the one-second sections falling in the regions attributed to the

respective ice types. The gray area marks the sampling bandpass, a tail of values

greater of 2m❂1 resouts from oversamping of the original data. The dashed line marks

the best fit of the Lorentzian function.

The theoretical noise level (N0) for the mean roughness spectra is N0 ≈ 10❂7m2

(a) Smooth ice (b) Medium-deformed ice (c) Deformed ice

Figure 4.4: The power spectral densities of surface roughness profiles over the three ice types

(solid black line). The dashed line marks the best-fit empirical spectral model (the Lorentzian

function). Gray area marks the sampling bandpass, ranging from fmin to fmax.
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derived from:

N0 =
δ2ALS

N
√
NAV

, (4.2)

where δALS is the single elevation measurement uncertainty, NAV is the number

of profiles averaged. All three PSD are above the noise threshold. However, other

sources of uncertainty need to be considered. The process of selecting the scenes with

aerial photography is most difficult to assess. Surfaces put together in one ice type

by visual interpretation can differ significantly, which explains the spread of σz shown

in Figure 4.3c. Figure 4.4a suggest an exceptionally strong contribution from the low

spatial frequency lower than 0.1m❂1. We interpret this feature as one related to the

swell that causes the undulations of the elastic thin ice. This partly explains the PSD

- “model best-fit” mismatch.

In order to retrieve the R(ξ), two empirical models are fitted to the PSDs. The first

assumes that R(ξ) is an exponential function, the second assumes it as Gaussian. The

PSDs of the stationary random processes characterized by these R(ξ) types correspond

to Lorentzian and Gaussian functions, respectively (Champeney, 1973). Table 4.3

contains the relevant formulas.

R(ξ)
F−→ PSD(f)

Spatial Frequency

Exponential σ2
bl exp(−|ξ|/lbl) Lorentzian σ2

bl
2lbl/L

1+(2πlblf)2

Gaussian σ2
bl exp(−ξ2/l2bl) Gaussian σ2

bl(lbl/L)
√
π exp(−π2f 2lbl)

Table 4.3: Empirical models for autocorrelation function R(ξ) and their PSD counterparts

in a frequency domain.

The best-fit parameters σbl, lbl for the Exponential-Lorentzian and

Gaussian-Gaussian models are presented in the Table 4.5. In the case of “smooth ice”

the correlation length is fitted to be less than the sampling interval. This indicates

that the roughness signal is weak and σbl is comparable with ALS accuracy. Thus it

is justified to treat “smooth ice” as a specular surface for the sampled frequencies.

The two model estimations for the roughness parameters differ significantly, although

in both models “deformed ice” has the highest σbl.

The values of mss are smaller than 0.4, which is critical value above which

contributions from multiple scattering should be included (Dierking, 2000). In order

to determine which spectral model represents better the PSD in the band-pass range,

a normalized χ2 test is performed as follows:

χ2/ν =
1

ν

N
∑

i

(PSD(fi)−model(fi))
2

σi
(4.3)
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m
ss

Model fits

Lorentzian Gaussian

lbl σbl lbl σbl
Smooth ice 0.008 0.14 0.01 0.17 0.01

Medium deformed ice 0.054 1.64 0.08 0.36 0.05

Deformed ice 0.167 1.33 0.14 0.35 0.09

Table 4.4: Fitted Band-limited roughness parameter values (σbl, lbl), for the two proposed

empirical autocorrelation functions.

χ2/ν smooth ice medium-deformed ice deformed ice

Lorentzian 15.5 10.7 6.4

Gaussian 14.6 80.5 59.3

Table 4.5: Values of the normalized χ2

where ν = N − 2 denotes the degrees of freedom, model is the candidate fitting

function (Gaussian or Lorentzian), and σi = PSD(fi)/
√
NAV describes the uncertainty

in each spectral density estimate. Values χ2/ν < 1 is a sign of overestimation of the

uncertainties, whereas the values of χ2/ν > 1 indicate a good model fit, χ2/ν >> 1

means poor model fit. Table 4.5 presents the results of this test. Both models have

high values of normalized χ2 statistic. Nonetheless, the Lorentzian spectral model is

a better fit to the averaged PSDs for “medium-deformed ice” and “deformed ice”. In

the case of ‘smooth ice” both models have comparable results.

4.3 Geometrical optics and facet slopes orientation

The results from the previous sections show how the three ice types differ in terms of

their σz and PSDs. In this section, we derive the slopes orientation statistics from

the digital elevation model (DEM). The surface elevations measured by the ALS are

spatially interpolated to a regular 0.5m× 0.5m grid. The cross-track dimension is

over sampled, whereas grid resolution matches the along-track distance between scan

lines. The result is a DEM of the ice surface. Based on the DEM corresponding to

each one-second section, the surface slopes α and their azimuthal orientations γ are

calculated. Figure 4.5 presents examples of the DEMs for the three ice types, together

with derived slopes and their orientation.

The azimuthal directions are expressed with respect to the true north.

Subsequently, histograms of the α and γ are made in order to evaluate whether there is

a preferential direction for the facet orientation. The number of bins in the histograms

(Nbins) is set according to the formula 4.4 after Schönwiese (2013), first proposed
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by Panofsky Hans A. and Brier Glenn W. (1958)

Nbins = 5 log10(Nm) (4.4)

where Nm is the number of measurements. In the case of one-second sections N is

approximately 6000 and the number of bins Nbins=23.

We found that in all one-second sections, in both flights, the distribution of azimuths

fails the χ2 test for the uniform distribution with a confidence level of 0.95. This means

that in the studied region at the scale of one section (70m) the hypothesis that slopes

have no preferred orientation is rejected.

In the next step we validate at which length scale the slopes azimuthal distribution

can be treated as uniform. For that, we approach this matter similarly to Beckers

et al. (2015) and select 1000 random samples from the flights, each sample has a length

of 15 km. We then compute the cumulative azimuth distribution statistics along the

sample’s length.

In order to evaluate the relative deviations from the uniform distribution, we define

a fR parameter (eq. 4.5). This parameter equals to zero for the perfectly uniform

distribution, in which case the number of counts in each bin (ni) equals to a mean

number of counts (µ). The fR parameter reaches its maximum value of fRmax = 2−4/K

when the slopes are aligned, i.e. grouped in two bins.

fR =

∑Nbins

i (|ni − µ|)
Nbinsµ

, µ =
1

Nbins

Nbins
∑

i

ni (4.5)

The analysis of 1000 samples show that the deviation from the uniform distribution

decreases sharply with increasing distance over first kilometer. In 90% of the samples

the curve flattens at value of fR = 0.05 for distance along the sample greater than

4.3 km. We assume that at scale greater than 4.3 km (vertical dashed line on figure 4.6

on page 48) the slopes orientations do not have a preferential direction beyond natural

variability. This distance corresponds to approximately 60 one-second sections. In

figure 4.6 the average value of the fR is marked as thick black line. Several profiles are

plotted in color lines to illustrate the variability.

In all three ice classes we have identified more than 60 one-second sections.

Considering the above, we assume that there will be no preferential direction of the

surface facets azimuthal orientation. As a result, we find that the 3 ice types show

different characteristics with respect to facet slopes. Figure 4.7 on page 48 presents

the histograms of measured slopes angles for the three ice types. In order to obtain the



46 Surface roughness characteristics during SMOSice2014

GAUSS EXP EXP − n

RMSD sα,g RMSD sα,e RMSD sα,n n

Smooth ice 3× 10−5 2.94 2× 10−5 2.94 2× 10−5 0.85 0.91

Medium-deformed ice 660× 10−5 7.33 55× 10−5 7.33 11× 10−5 3.73 0.76

Deformed ice 473× 10−5 14.79 3× 10−5 14.78 2× 10−5 10.96 0.98

Table 4.6: Facet slope distribution parameters.

slopes distributions, three types of curves are fitted: Gaussian (GAUSS), exponential

(EXP ), and Exponential with free exponent (EXP − n)(eq. 4.6).

PDFα ≈ exp(−|α/sα,X |n) (4.6)

where sα,X is the parameter characterizing the slop distribution. X stands for g, e

or n for Gaussian, exponential or exponential with free exponent variants, respectively.

The results of the fit are displayed in table 4.6. Among these three curves the

Gaussian function has the poorest fit with respect to the root-mean-square difference

(RMSD). At the same time, the exponent parameter in EXP − n is close to one for

“smooth” and “deformed ice” 0.91 and 0.98, respectively. For the “medium-deformed”

ice this parameter is equal to 0.76. For further analysis we will use the one-parameter

exponential curve for slope distribution description.
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DEM Slopes (α) Azimuths (γ)

(a) DEM Smooth ice (b) Slopes Smooth ice (c) Azimuths Smooth ice

(d) DEM Med.-deformed ice (e) Slopes Med.-deformed ice (f) Azimuths Med.-deformed ice

(g) DEM Deformed ice (h) Slopes Deformed ice (i) Azimuths Deformed ice

Figure 4.5: First columns contains examples of digital elevation model (DEM) for three

ice classes: smooth ice (a), medium-deformed ice (d) and deformed ice (g). Second column

(b,e,h) presents surface facet slopes derived from the DEM . In the third column (c,f,i) the

azimuthal orientation of the facet is shown.
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Figure 4.6: The values of the distribution parameter fR calculated along the random samples.

Thick red line marks the average value. To illustrate the variability, we present the fR values

for several samples, marked in gray lines.

Figure 4.7: Histogram of surface slope distributions. The three ice types “smooth”, “medium

deformed” and “deformed” are marked in blue, green, red, respectivly. The dashed lines mark

the exponential function fits to the slope histograms for “medium deformed” in green and

“deformed” in red.
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4.4 Summary and discussion

In this chapter we investigated roughness characteristics of the three ice types that

we identified by aerial photography. We analyzed the standard deviation of surface

heights and the power spectral densities of the “smooth”, “medium-deformed” and

“deformed” ice types. Both methods showed clear differences between the ice types.

Also, the “smooth ice” shows little difference to a specular surface. Furthermore, we

determined that the exponential auto-correlation function is more appropriate than the

gaussian one, regardless of the ice type. According to Oh and Kay (1998), the sampling

interval should not be greater than 0.2lc for an accurate calculation of the correlation

length. The exponential band-limited correlation lengths for “medium-deformed”

(lbl,med =1.64m), and “deformed” (lbl,def =1.33m) satisfy this criterion.

The facet orientation probability distribution function (PDF ) is a key parameter

in the statistical roughness model described in chapter 3. The facet orientation is

described by two angles: the slope α and the azimuth γ. Dynamical processes such

as piling of the ice against the coast or forming of pressure ridges can result in local

elongated structures, which is a sign of a preferential slopes direction. On a larger scale,

where wind and currents bring ice from different regions, these anisotropies should be

negligible. However, in surface roughness analysis it is often assumed that surface

slopes have an isotropic azimuthal distribution even on a scale of tens of meters (Liu

et al., 2014). We evaluated the slopes orientation along the flight tracks during the

SMOSice2014 campaign. We found that at a scale larger than 4.3 km the sea ice

surface slopes do not have any preferential azimuthal direction (PDFγ ≈ const.).

In a case of an isotropic slopes orientation Schanda (1986b) proposed a symmetrical

PDFα with a maximum around zero. We used an exponential function to parametrize

the PDFα. This one-parameter function is a better fit to the measured data than

the Gaussian function and is easier to handle than the two-parameter EXP − n

model, which brings some improvement to the fit, but too insignificant to prove

computationally cost-effective. Therefore, in further analysis we will use an exponential

PDFα model for all ice types. And sα as way of measuring the degree of surface

roughness.
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Chapter 5

Influence of the surface roughness

on the modeled brightness

temperature

In this chapter we will combine the surface roughness characterization presented in

chapter 4 with the statistical roughness model from Chapter 3. The aim is to investigate

the change in angular characteristics of horizontal and vertical brightness temperature

(TB).

In section 5.1 we look into the model’s sensitivity to input parameters: surface

temperature (Tsurf ), ice thickness (dice), snow thickness (dsnow), as well as the surface

slopes probability distribution described by sα parameter. Section 5.2 combines

the sensitivity study with typical uncertainty ranges of the input parameters. This

allows to evaluate of the relative importance of surface roughness. In section 5.3

we propose a “fast model” parametrization of the time-consuming statistical model

results. Section 5.4 presents a discussion on the possibility of extending the “fast

model” parametrization to other surfaces with different permittivity.

5.1 The sensitivity study

We generate N randomly oriented facets with a Monte Carlo roughness model which

takes as input the probability distribution function of surface slopes (PDFα). The

azimuthal orientation of the facet is assumed to be uniform and random, following

the analysis in section 4.3. In this statistical approach the value of N must be large

enough for accurate results. If N is too small, the individual model runs with identical

setups will produce different results. In order to determine the optimal value for N

we evaluate the standard deviation of 20 model runs, which is a reasonable sample

size to draw conclusion on the distribution (Chelli, 2012). As a metric we chose the
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Figure 5.1: Standard deviation of the 20 model runs at nadir (black) and at 40➦ (H-blue,

V -red) as a function of number of the facets N . The horizontal dashed line marks the

EMIRAD2 accuracy of 0.1 K obtained after 1 s integration time.

TB at nadir and at 40➦, which corresponds to the incidence angle of the side looking

antenna of EMIRAD2 and the one of SMAP (SMOS multi-angle measurements also

include those angles). The setup for the MILLAS model is as follows: Tsurf =260K,

dice =1.42m, dsnow =0.14m. These values correspond to the conditions encounter over

“medium-deformed ice” during SMOSice2014 campaign (see chapter 4).

Figure 5.1 shows the standard deviation of 20 model runs at nadir (black) and at

40➦ (H-blue, V -red) as a function of the facet number N . The EMIRAD2 radiometer

accuracy is 0.1K for a 1 s integration time (Søbjaerg et al., 2013; Hendricks et al.,

2014), marked with a dashed line in the figure. The standard deviation of the selected

measurements is lower than the 0.1K threshold for N ≥ 104. Therefore, for further

analysis we set the number of facets to N = 10000.

5.1.1 The impact of ice concentration

In our simulations we assume that the sea ice concentration (C) is equal to 100%.

However, this assumption is seldomly fulfilled on the scale of SMOS resolution

(≈40 km). Ice openings, leads, polynya and constant movement of the ice contribute

to the open water fraction, reducing C. We account for sea ice concentration with a
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Figure 5.2: Sensitivity of the modeled brightness temperature to sea ice concentration (C).

The other parameters are kept constant: Tsurf =260 K, dice =1.42 m, dsnow =0.14 m, sα =0➦

simple linear mixing approach:

TB(θ) = C · TBice(θ) + (1− C) · TBwater(θ) (5.1)

where TBice and TBwater denote the brightness temperatures for sea ice and open

water (the equation is valid for both polarizations). This method requires auxiliary

data about the sea ice concentration. Figure 5.2 shows the effect of the changing ice

concentration on the observed TB, as calculated with eq. 5.1.

The respective slopes for nadir and 40➦are ∂TB(0)
∂C

=1.47K/1%,
∂TB(H,40)

∂C
=1.50K/1%, ∂TB(V,40)

∂C
=1.37K/1%.

5.1.2 The impact of ice thickness

Sensitivity of the L-band TB to the sea ice thickness is essential for the sea ice thickness

retrieval. The strongest increase in TB is observed for ice thinner than 0.5m (figure 5.3).

Thin ice rarely has a deformed/rough surface which is characteristic of dynamic ice

growth. The MILLAS model predicts little increase in TB for thick ice. We focus on

ice thicker than 0.7m to single out the contribution of the surface roughness.

For the thick ice (dice >0.7m) the sensitivity of the nadir TB to the ice thickness is
∂TB(0)
∂dice

=0.73Km❂1. At an incidence angle of 40➦ the sensitivities of polarized TBs are
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Figure 5.3: Sensitivity of the modeled brightness temperature to sea ice thickness (dice). The

other parameters are kept constant: Tsurf =260 K, dsnow =0 m, sα =0➦

∂TB(H,40)
∂dice

=0.49Km❂1 for horizontal polarization and ∂TB(V,40)
∂dice

=0.57Km❂1 for vertical

polarization.
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5.1.3 The impact of snow thickness

Snow on sea ice has two main implications for measured TB (Maaß et al., 2013). First,

it acts as an isolator separating sea ice from the cold atmosphere. This results in

an increase of ice effective temperature, which also influences its dielectric properties.

Secondly, the layer of snow, even with negligible absorption as it is the case of dry snow,

refracts the L-band radiation (Maaß et al., 2015). During the SMOSice2014 the snow

radar was not functioning properly (Hendricks et al., 2014, Data acquisition report). To

tackle this problem we use an approximation formula that sets snow thickness to 10%

of ice thickness, a method previously applied for snow on sea ice (Yu and Rothrock,

1996; Mäkynen et al., 2013). Figure 5.4 shows the influence of snow thickness on the

modeled TB, with the other parameters kept constant (Tsurf =260K, dice =1.42m,

sα =0➦). The simulated snow thickness changes from 0.01m to 0.30m, covering values

up to 20% of the sea ice thickness.

The TB curves have the strongest gradient for the snow thickness lower than 0.1m:
∂TB(0)
∂dsnow

=21Km❂1, ∂TB(H,40)
∂dsnow

=16Km❂1,∂TB(V,40)
∂dsnow

=22Km❂1. For the thicker snow cover

the increase in modeled TBs is less pronounced. For the snow thickness between 0.1m

and 0.2m the respective sensitivities are: ∂TB(0)
∂dsnow

=5.7Km❂1, ∂TB(H,40)
∂dsnow

=3.5Km❂1,
∂TB(V,40)
∂dsnow

=7.6Km❂1.
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Figure 5.4: Sensitivity of modeled brightness temperature to snow thickness (dsnow). Other

parameters are kept constant: Tsurf =260 K, dice =1.42 m, sα =0➦

5.1.4 The impact of surface temperature

Surface temperature is a crucial boundary condition that determines the temperature

gradient within snow and ice. In theMILLAS model the permittivity of ice is linked to

the ice temperature through brine volume fraction (Vant et al., 1978; Cox and Weeks,

1982). Therefore the surface temperature influences the ice effective temperature,

as well as its emissivity. The effect on the sea ice emissivity is pronounced for the

relatively warm conditions Tsurf >265K. This is shown in figure 5.5 where the

values of TB are decreasing as the surface temperature rises above (265K). Below

this critical temperature the TBs increase monotonically with approximately constant

pace: ∂TB(0)
∂dsnow

=0.14KK❂1, ∂TB(H,40)
∂dsnow

=0.1KK❂1, ∂TB(V,40)
∂dsnow

=0.17KK❂1.
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Figure 5.5: Sensitivity of the modeled brightness temperature to surface temperature (Tsurf ).

The other parameters are kept constant: dice =1.42 m, dsnow =0.14 m, sα =0➦

5.1.5 The impact of large scale surface roughness

In this work we evaluate the impact of surface roughness on the L-band TB of sea ice.

In our statistical roughness model we characterize the probability density function of

surface slopes using an exponential function (PDFα). The surface roughness parameter

sα describes the shape of PDFα. Figure 5.6 presents the results of the TB(0) and

TB(H/V, 40) simulations for the roughness parameter range 1o < sα < 15o with the

other parameters kept constant (Tsurf =260K, dice =1.42m, dsnow =0.14m).

For the sα < 4 we observe little change in the modeled TBs. Beyond this value

the most noticeable difference is the decrease in vertical polarization TB(V, 40). A

smaller trend is visible for the nadir TB(0). The change in TB(H, 40) is five times

smaller than for the TB(0) and TB(H, 40). The maximal sensitivities are observed

for the most deformed ice (high sα):
∂TB(0)
∂sα

=❂0.25K/deg, ∂TB(H,40)
∂sα

=0.05K/deg,
∂TB(V,40)

∂sα
=❂0.31K/deg.
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Figure 5.6: Sensitivity of the modeled brightness temperature to sea ice roughness (sα). The

other parameters are kept constant: Tsurf =260 K, dice =1.42 m, dsnow =0.14 m

5.2 The assessment of uncertainty factors in the

modeled brightness temperature

In section 5.1, we have calculated the partial sensitivities of the simulation results to

the model inputs. The partial sensitivities vary depending on the range of parameter

change. The most pronounced example is the sea ice thickness which has high

sensitivity for thin ice and low sensitivity for thick ice.

We compare the uncertainties associated with input parameters by constraining

their variations to “realistic” ranges. We assume that sea ice is at least 0.7m thick and

has a snow cover proportional to its thickness. It is justified by the fact that thin sea ice

is unlikely to exhibit large surface deformations. Furthermore, we assume that surface

temperature is close to ❂20 ◦C. As for uncertainties related to Tsurf and dice we take

as reference two satellite products with polar coverage. Sea ice surface temperature

can be inferred from the thermal infrared channels of MODIS. Hall et al. (2004) have

estimated the root mean square error of the MODIS sea ice temperature product to

be equal to 3.7K. For the sea ice thickness measurement uncertainty we take the value

of 0.28m, as calculated by Zygmuntowska et al. (2014) in the analysis of ”Cryosat2”

sea ice thickness product accuracy. Sea ice concentration is not specifically included in

our roughness model. In the ”realistic” scenario we consider C to be close to 100% but

with the uncertainty taken from Ivanova et al. (2015). In their study the uncertainty

of several passive microwave sea ice contraction algorithms was considered. For the
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arctic winter and high sea ice concentration the C standard deviation varied between

3.1% and 8.5%. In this study we take as C uncertainty the arithmetic mean of their

results - 5.3% .

Figure 5.7 illustrates the absolute contributions of the mentioned factors to the

simulated TB change. When the respective sensitivities are multiplied by ”realistic”

parameter changes, the effect of sea ice concentration stands out. The variation in

C is the only factor with an effect greater than the uncertainty of a single SMOS

measurement (4K). The 2.8K change in vertical polarization due to roughness is

also prominent. Figure 5.7 shows the absolute change in modeled TB. To present

not only the magnitude but also the sign of the respective changes, we plot the

modeled TB(H/V, 40) in Ist and IInd Stokes coordinates (1
2
(TB(V, 40) + TB(V, 40)),

TB(V, 40) − TB(H, 40)). The simulation for the nadir-looking antenna shows little

dependency on the surface roughness, which is shown in figure 5.6. Figure 5.8 uses the

Stokes coordinates to present the simulation results for the three ice types: “smooth”,

“medium-deformed” and “deformed” marked in blue, green and red, respectively.

Each point represents one simulation setup. In the simulations setups the sea ice

concentration varies from 94% to 100%, dice from 1.2 to 1.5m, dsnow from 0.12 to

0.15m and Tsurf from 253 to 257K.

The decrease in sea ice concentration results in a lower intensity (x axis - Ist Stokes

coordinate) and greater polarization difference (y axis - IInd Stokes coordinate). As

a result, the entire cloud of points is spread along NW-SE direction. The point

clouds corresponding to the three roughness setups are separated. This suggests that

retrieving surface roughness information from bi-polar data at 40➦ incidence angle might

be possible.
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Figure 5.7: Absolute values of the ∆TB caused by the “realistic” parameter variations.

(∆Tsurf =3.7 K, ∆C =5.3 %, ∆dice =0.28 m, 0o < sα < 15o). The dashed lines mark the

levels of TB change attributed to surface roughness.

Figure 5.8: Scatter plot of polarization difference vs. mean intensity at 40➦ for different model

setups. The three ice types, “smooth”, “medium-deformed” and “deformed” are marked in

blue, green and red, respectively. The sea ice concentration varies from 94 % to 100 %, dice
from 1.2 to 1.5 m, dsnow from 0.12 to 0.15 m and Tsurf 253 to 257 K and sα varies from 0o to

15o.
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5.3 Fast roughness model

So far in this chapter we have described the influence of surface roughness on the

brightness temperature at two incidence angles: 0➦ and 40➦. The influence of the

surface roughness on the nadir TB is important for the SMOS sea ice thickness

product (Kaleschke et al., 2013, ESA report). The angle of 40➦ is important

because of SMAP scanning geometry and it is also the incidence angle of the

side-looking EMIRAD2 antenna. In this section we will describe changes in angular TB
characteristics in a wider range of angles from: 0➦ to 60➦. We propose a parametrization

that connects the changes in the modeled TB with the large scale random surface

roughness parameter sα. Such parametrization eliminates the need for the time

consuming Monte Carlo simulations.

Figure 5.9 shows the change in angular TB characteristic induced by the increase

in the roughness parameter sα from 1➦ to 15➦. The set of blue curves corresponds

to the horizontal polarization, while the set of red curves corresponds to the vertical

polarization. The more saturated is the color the greater is the value of sα. The

computation is made with the other input parameters kept constant (Tsurf =260K,

dice =1.42m, dsnow =0.14m). The most pronounced change is the decrease in vertical

polarization TB. The behavior of the horizontal polarization is more complex and can

be decomposed into two counteracting factors. The first is the polarization mixing

which elevates the TB(H) by adding to it part of the higher TB(V ). The second factor

is the slight decrease in TB caused by the inclusion of high incidence angles (θ > 30➦)

for which the sum of the two polarizations has a negative trend. This factor becomes

stronger with increasing sα, as observation of high incidence angles is more likely.

We propose a parametrization of the two mentioned effects, the polarization mixing

and the drop in TB, inspired by the HQ −model described in chapter 2. Like in the

HQ−model, we propose two parameters: theHα that reproduces the change in total TB
intensity and the Qα that is responsible for polarization mixing. The subscript marks

the difference to the parameters from the original HQ − model which was dealing

with small scale roughness. Equation 5.2 illustrates the relation between emissions

from a flat surface (T ∗

B(q, θ)) and the one composed of randomly oriented facets with

a probability distribution characterized by sα:

TB(p, θ, sα) = [(1−Qα) · T ∗

B(p, θ) +Qα · T ∗

B(q, θ)] ·Hα (5.2)

where p/q denotes the polarization (horizontal or vertical). For the results depicted

in figure 5.9, we made a least square polynomial fit of the eq. 5.2 to determine the

following relations: Hα = f(sα), Qα = f(sα). The input data consists of TB(H/V )

pairs for 30 incidence angles spaced at equal intervals in the range from 0➦ to 60➦. Two

versions of the parametrization are tested. The first neglects the intensity effect and

assumes that Hα = 1, named the one parameter version or 1p. The second version
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Figure 5.9: Brightness temperature as a function of the incidence angle. The family of red

and blue curves represent the results for increasing sα for each polarizations, the black lines

mark the TB curves for the smooth surface with sα = 0➦. The color of the lines intensifies with

increasing surface roughness parameter from 1➦to 15➦. Other parameters are kept constant.

(Tsurf =260 K, dice =1.42 m, dsnow =0.14 m)

allows variations of both parameters, being named the 2p version. Figures 5.10 and 5.11

show the Hα and Qα as functions of the roughness parameter sα.

The boundary conditions for the polynomial fit require that no change in TB will

occur when the surface is flat (sα = 0). Among the functions satisfying this condition

the second degree polynomial serves well for the parametrization of both coefficients.

Hα = a1s
2
α + a0, Qα = b1s

2
α + b0 (5.3)

Table 5.1 contains the best fitting parameter values. The two-parameter version

2p has a better fit to the data, having root mean square difference (RMSD) of 0.45K

in comparison to the one-parameter version that has a RMSD equal to 0.91K.
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Figure 5.10: The intensity modifying parameter Hα as a function of the roughness parameter

sα. The input TBs were simulated with statistical roughness model for the following reference

values: Tsurf =260 K, dice =1.42 m, dsnow =0.14 m.

Method Parameter RMSD (K)

1p
a1 = 0, a0 = 1

0.91
b1 = 0.545× 10−3, b0 = 0

2p
a1 = −0.020× 10−3, a0 = 1

0.45
b1 = 0.537× 10−3, b0 = 0

Table 5.1: Values of the polynomial coefficients describing the Hα and Qα as a function of

the roughness parameter sα
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Figure 5.11: The polarization mixing parameter Qα as a function of the roughness parameter

sα. The two parametrization variants 1p and 2p are shown. The input TBs were simulated

with the statistical roughness model with the following reference values: Tsurf =260 K,

dice =1.42 m, dsnow =0.14 m



5.4 Extending the parametrization for other surfaces 65

5.4 Extending the parametrization for other

surfaces

The statistical roughness model simulates the brightness temperature of a faceted

surface with uniformly random azimuthal orientation and predefined slopes probability

distribution (PDFα). In this work we used the slopes statistics derived from airborne

laser scanner over sea ice and the MILLAS model to simulate the sea ice brightness

temperature. Nonetheless, it is possible to use our statistical roughness model with

a different emissivity model, such as the one used for soil moisture retrieval, with a

PDFα more suitable for the studied surface.

To demonstrate this principal we substitute the MILLAS model with specular

emissivity described by Fresnel equations. The permitivities correspond to loamy soil

(30.6% sand, 55.9% silt, 13.5% clay) with different volumetric water content (mv)

computed with Mironov et al. (2015), and the effective temperature of 300K. Then we

run the simulation just like in case of sea ice, assuming PDFα ≈ exp(α/sα) with sα
varying from 1➦ to 15➦. This procedure is repeated for several values of the permittivity

ǫ (imaginary part ǫim = 0).

Figures 5.12 and 5.13 present Hα and Qα, respectively, as a function of roughness

for a range of permittivities. The intensity parameter Hα depends strongly on the

angular characteristics of the TB i.e. the Brewster angle and the spread between H

and V polarizations. Those in turn are functions of the permittivity. Unlike Hα, Qα

varies little with changing ǫ, therefore Qα mainly depends on surface slopes statistics

rather than material properties.

The root mean square difference (RMSD) between the TBs simulated with

statistical roughness model and the TB obtained from the simplified parametrization

is shown in figure 5.14 as a function of surface permittivity. The RMSD is highest

for the low values of ǫ and decreases with increasing surface permittivity. It indicates

that the simple parametrization captures better the polarization characteristic change

for higher ǫ.

The relation between Hα and sα depends on the surface permitivity. The bulk

permittivity of sea ice simulated with theMILLAS model varies with ice temperature

and salinity. The values likely to occur during Arctic conditions are confined between

ǭ = 3.1 + 0.05i (for T=271K, Sice=7g kg❂1) and ǭ = 4.6 + 0.8i (for T=253K,

Sice=1g kg❂1). For this interval little adjustment of Hα and Qα is needed. Therefore

we recommend the use of the 2p parametrization introduced in the previous section

for all first year ice types.



66 Influence of the surface roughness on the modeled brightness temperature

Figure 5.12: Parameter Hα as a function of roughness plotted for a range of permittivities.

Figure 5.13: Parameter Qα as a function of roughness plotted for a range of permittivities.

(For the two-parameter parametrization schema)
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Figure 5.14: Root mean square difference between simulated with statistical roughness model

TBs and the simplified parametrization, for several values of surface permitivity. Colors and

shapes corespond to permitivity values.
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5.5 Summary and discussion

In this chapter, we have investigated two aspects of the brightness temperature (TB)

change caused by large scale surface roughness. The first one is the theoretical

study involving the statistical roughness model initialized with sea ice roughness

characteristics derived in chapter 4. We examined the magnitude of the TB change

and compared it with other prominent factors influencing the sea ice L-band emissions.

The second aspect is the simple “fast model” parametrization of roughness effects on

the TB, which makes redundant the use of Monte Carlo simulations.

Brightness temperature over deformed sea ice.

For the simulation of sea ice TB we used the MILLAS model with one layer of ice and

one layer of snow equal to 10% of ice thickness. The model is initialized with surface

temperature (Tsurf ), sea ice thickness (dice) and snow thickness (dsnow). The large scale

surface roughness is included in a form of change in local incidence angles at multiple

facets. The orientation of the facet with respect to the antenna look-angle is uniformly

random in azimuthal direction and the facet slope is characterized by slope probability

density function (PDFα ≈ exp(−α/sα)). In the sensitivity study we also include the

sea ice concentration C, which has to be considered during the uncertainty analysis of

the roughness retrieval from radiometer data.

We choose the TB(0) and TB(H/V, 40) to measure the effect of the variations in

model input parameters. The partial sensitivities can locally reach high values which

are not indicative of real TB uncertainties. We therefore constrain the parameter

variations with uncertainty values specific to some satellite data. We take Cryosat2

for a sea ice thickness uncertainty (we set dsnow = 0.1 · dice ), and MODIS for sea ice

temperature and ice concentration uncertainty after Ivanova et al. (2015). We found

that the sea ice concentration has a strongest effect for the simulated TBs. The absolute

changes in TB(0) and TB(H/V, 40) are about 7K for the concentration variations of

5.3%. The overall result of decreasing C is the drop in total intensity and the increase

in polarization difference of 1.3K.

The variation in the other factors (Tsurf , dice, dsnow) have non-monotonic

sensitivities because of their interdependence in the thermodynamic part of the

emissivity model. For that we made the uncertainty assessment for a thick ice in cold

conditions (Tsurf =253K, dice =1.42m, dsnow =0.14m), that represents the conditions

encountered over “medium-deformed” ice. The thickness and temperature factors each

make less than 1K change in the investigated channels. Their influence is mainly on

the total intensity, having little influence on the polarization difference.

As for the surface roughness, the strongest change is the reduction by of almost 3K

in vertical polarization at 40➦, accompanied by a small increase (<0.2K) in horizontal
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TB for the same incidence angle. Nadir TB experiences a decrease of less than 1K.

These changes are calculated for the roughness parameter sα varying from 0➦ to 15➦.

The pace of changes, however, increases with increase of sα and is mostly pronounced

in the vertical polarization resulting in polarization difference decrease.

When all the mentioned perturbations in the input data are included in the

calculation (figure 5.8), the polarization difference in IInd Stokes parameter (TB(V )−
TB(H)) between “smooth ice” and “deformed ice” is 1.5K. Such a small dynamic

range makes the roughness types hard to distinguish in single SMOS measurement.

X → C(%) dice(m) dsnow(m) Tsurf (K) sα(deg)

θ
=

0o ∂TB/∂X 1.47 0.73 5.7 0.14 -0.25

∆TB 7.33 0.32 0.12 0.55 0.75

θ
=

40
o ∂TB(H)/∂X 1.50 0.49 3.5 0.1 0.05

∆TB(H) 7.51 0.22 0.07 0.38 0.15

∂TB(V )/∂X 1.37 0.57 7.6 0.17 -0.31

∆TB(V ) 6.83 0.25 0.15 0.69 2.87

Table 5.2: Table with partial sensitivities of the modeled brightness temperature to the

variations in input parameters: C, dsnow, dice, Tsurf , sα. Rows labeled ∆TB contain

the brightness temperature change caused by “realistic” variation of input parameters.

Partial sensitivities calculated with other values constant: Tsurf =260 K, dice =1.42 m,

dsnow =0.14 m)

Table 5.2 contains the values of partial sensitivities of the TBs to the model variables

together with changes in TB caused by perturbations in the input parameters within

the “realistic ranges”.

Fast roughness model

A Monte Carlo simulation used for predicting the TB characteristics of a rough surface

is time consuming. For that reason we have developed a “Fast Roughness Model”

(FRM) parametrization connecting the statistical model results directly to the TBs of a

smooth surface and surface roughness (sα). The FRM is inspired by the semi-empirical

HQ−model of Choudhury et al. (1979) and, likewise, it aims at capturing the change

in emissions by introducing a factor for the change in the total intensity (Hα) and one

responsible for polarization mixing (Qα). Nonetheless, the physical mechanism behind

it is different. The HQ−model deals with changes in reflectivity caused by small scale

roughness. The FRM aims at capturing the purely geometric effect of multiple local

incidence angles and their orientation.
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As the FRM is focusing on the geometrical effects it can work with any kind of

emissivity model. In section 5.4 we tested its application for different TB polarization

curves calculated with the Fresnel formula and for range of permittivities. The

results indicate that the FRM can be extended to other surfaces provided that the

corresponding T ∗

B(p/q, θ) and PDFα are given.
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Chapter 6

The influence of surface roughness

in the measured brightness

temperature

In the previous chapter we have presented the statistical roughness model setup and

studied its sensitivities to the input parameters. This chapter focuses on investigating

the brightness temperature measured during the SMOSice2014 campaign. We use the

data from the campaign flights to test if the inclusion of surface roughness into TB
modeling leads to an improvement in the fraction of explained variance.

6.1 The emissivity model setup

In chapter 3 the MIcrowave L-band LAyered Sea ice emission model (MILLAS) is

presented. Emissivity model optimization was not an aim of this work, therefore we use

a simple model setup that consists of four layers: air, snow, ice and water. Table 6.1

shows the values of the parameters characterizing the layers.

In the presented configuration the MILLAS model simulates the snow-covered sea

ice brightness temperature as a function of ice thickness and surface temperature. The

snow thickness dsnow is set to 10% of ice thickness dice. The snow is assumed to be

dry, with a density of 300 kg/m3. The permittivities of snow and ice are linked to

their temperature. A linear temperature gradient is assumed and the values of thermal

conduction are as used in Maaß et al. (2013). We set the water salinity to 33 g/kg and

the water temperature to 271.2K.
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Parameter Value
S
n
ow

surface temperature measured (KT19)

snow wetness 0%

snow density 300 kg/ m3

snow thermal conductivity 0.31W/(mK)

snow thickness (dsnow) 0.1 · dice

Ic
e

ice thermal conductivity 2.034W/(mK)+ 0.13W/m ·Sice(g/kg)/Tice(K)

ice thickness (dice) measured (ALS)

ice salinity (Sice) 4 g/kg

W
at
er water salinity 33 g/ kg

water temperature 271.2K

Table 6.1: Brightness temperature simulation setup used in MILLAS emission model.

6.2 Brightness temperature: modeled vs.

measured

Following the introduction of the data set in chapter 2, we present the roughness

parameter statistics derived from the digital elevation model (DEM). The surface

roughness is well correlated with sea ice thickness, as illustrated in figure 6.1. The

negative values of the thickness are attributed to measurement uncertainties over thin

ice. The coefficient of determination is equal to r2 = 0.68, and a simple least-square fit

of a power function to the data is sα(dice) = d2.53ice . This result agrees with the findings

of Petty et al. (2016), who observed a strong correlation between ice topography and

ice thickness. The high correlation between sα and dice might indicate that the surface

deformation causes the unexpected increase in observed TB.

Nonetheless, the change caused by the large scale surface roughness should have

little effect on the near-nadir TB. Our simulation predicts that a small negative

difference of less than 1K is to be expected for the heavy deformed ice. This is

contradictory to the TB(0) increase with sea ice thickness of around 8K/ m.

The positive trend observed in TB(0) from EMIRAD2 over thick ice is not present

in the co-located SMOS data (figure 6.2). The observations from space seem to confirm

that TB(0) saturates over thick ice. It is important to note that the difference in

footprint size of these measurements. The aircraft-mounted radiometer footprint is

70m across and the data is averaged approximately every 4.3 km, whereas the SMOS

nadir footprint is >30 km, as shown in chapter 3. Therefore the footprint heterogeneity

must be considered. It is likely that different ice types, as well as open water and land

are present within SMOS footprint.

An analogous comparison for the EMIRAD2 side-looking antenna and SMOS is

shown in the figure 6.3. This plot is made in Stokes parameters coordinates i.e. the sum
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Figure 6.1: Surface roughness parameter sα vs. sea ice thickness derived from ALS. The

green curve fit equation: sα(dice) = d2.53ice
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Figure 6.2: Near-nadir brightness temperatures from EMIRAD2 and SMOS vs. sea ice

thickness derived from ALS. Error bars mark the standard deviation of sea ice thickness

measurements from ALS and SMOS radiometric accuracy.



6.2 Brightness temperature: modeled vs. measured 75

Figure 6.3: Polarization difference against mean intensity at 40➦ registered by SMOS and

EMIRAD2. The color coding corresponds to the value of surface roughness parameter sα.

The points with corresponding mean sea ice thickness below 0.7 m are plotted in pale color.

and the difference of polarization channels. The color coding of the points corresponds

to the roughness parameter computed over the respective footprints. The points of

SMOS and EMIRAD2 data are aligned along two lines with slightly different slopes.

We expect the strongest deformation over thick ice. Thus we are excluding the thin

ice (dice <0.7m) from the analysis (crossed out in figure 6.3). The points attributed

to the thick ice are displayed in the zoomed-in box in figure 6.3. The values of the

total intensity (Ist Stokes) for the EMIRAD2 are higher than for SMOS, just like in

the case of the near-nadir antenna (fig. 6.2). The polarization difference in both data

sets (IInd Stokes) is comparable. Due to the SMOS footprint geometry and its size

difference in comparison with EMIRAD2, we cannot single out the effect of surface

roughness.

Until this point, it may appear that we cannot observe the surface roughness in the

SMOSice2014 data. In the studied region we have only a handful (8) of independent

SMOS measurements, the effect of surface roughness is small compared with the one of

sea ice concentration and land contamination (up to 25% of the footprint, not shown).

Furthermore, the increase in EMIRAD2 nadir TB cannot be explained with large scale

surface roughness. However, we have to also analyze the data from the side-looking
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antenna. The limitation of this approach is that we assume the ice observed at 40➦angle

and the ice below the flight path as having the same properties.

We consider the surface temperature, the sea ice thickness and the surface roughness

along the flight and we use them to run the statistical roughness model with a single

ice layer MILLAS setup as the brightness temperature module. The snow thickness

is set to be 10% of the sea ice thickness. The calculation is done for 60 s averages.

We simulate the TB of the EMIRAD2 channels (nadir, side H/V polarizations).

For each channel we made four simulation setups, two without roughness: Flat no-snow,

Flat snow, and two with roughness included: Rough no-snow, Rough snow. As for

the performance metrics of the model setups, we use the coefficient of determination

(r2), the root-mean-square error (RMSE), the bias and unbiased root-mean-square

error (ubRMSE). These metrics are widely used in the assessment of performance

of satellite measurements (Entekhabi et al., 2010). Table 6.2 holds the results of the

comparison expressed in terms of r2, RMSE, bias and ubRMSE.

r2 RMSE(K) bias(K) ubRMSE(K)

T
B
,
θ
=

0o

Flat, no snow 0.21 30.9 12.6 27.8

Flat, snow 0.29 26.1 1.3 26.7

Rough, no snow 0.20 30.8 12.5 27.8

Rough, snow 0.29 26.2 1.5 26.1

T
B
H
,
θ
=

40
o Flat, no snow 0.22 29.9 4.6 29.5

Flat, snow 0.30 30.3 -13.2 27.3

Rough, no snow 0.22 29.8 4.5 29.4

Rough, snow 0.30 30.3 -13.2 27.3

T
B
V
,
θ
=

40
o Flat, no snow 0.16 29.1 4.0 28.9

Flat, snow 0.24 27.2 -1.9 27.1

Rough, no snow 0.15 29.3 5.0 28.9

Rough, snow 0.22 27.1 -1.2 27.1

Table 6.2: Performance of the different TB simulation setups in terms of coefficient of

determination (r2), RMSE(K), bias(K), ubRMSE(K). For EMIRAD2 channels four model

setups are tested: Flat no snow, Flat snow, Rough no snow, Rough snow. Nadir-looking

antenna channels are treated together.

The values of r2 for all channel - setup combinations do not exceed 0.3. The

simplified one-layer model managed to capture only 30% of the signal variance even
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with surface roughness included. Furthermore, the inclusion of surface roughness brings

little improvement to the statistics. In case of vertical polarization, where the model

studies indicate the most sensitivity to roughness, the r2 is even worse. Our very

crude snow thickness parametrization is more successful in capturing the radiometer

measurements variability. Also, all metrics show the four model setups perform poorly

in reproducing the EMIRAD2 measurements. The bias is lowest for the side-looking

vertical channel (−1.9K to 5K). For nadir channel the inclusion of snow in the model

reduces the bias by 11K to the value of 1.5K. For the horizontal polarization channel

the inclusion of snow has an opposite effect, changing the absolute value of bias from

4.5K to ❂13.2K. The high values of RMSE and ubRMSE show a general miss-fit of

the model to the data.
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(a) Horizontal, Flat (b) Horizontal, Rough

(c) Vertical, Flat (d) Vertical, Rough

Figure 6.4: Scatterplots of modeled vs. measured brightness temperature for the

nadir-looking EMIRAD2 antenna channels (θ = 0o). The TBs are averaged over 60 s.

The simulations including geometrical roughness are placed in the right column. Flights A

and B are combined.
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(a) Horizontal, Flat (b) Horizontal, Rough

(c) Vertical, Flat (d) Vertical, Rough

Figure 6.5: Scatterplots of modeled vs. measured brightness temperature for the

side-looking EMIRAD2 antenna channels (θ = 40o). The TBs are averaged over 60 s.

The simulations including geometrical roughness are placed in the right column. Flights A

and B are combined.
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6.3 Summary and discussion

In this chapter we have investigated the brightness temperature measured by SMOS

and EMIRAD2 in the region of Barents Sea covered by SMOSice2014 campaign.

The increase in near-nadir TB over thick ice is only present in the EMIRAD2

data. Due to the footprint size differences such comparison is far from conclusive (the

time difference is less than 6h). It is possible that the large SMOS footprint captures

open water or thin ice, which decrease the TB. If the lower SMOS TB is caused by

open water or thin ice beyond the EMIRAD2 field of view, we should also observe an

increase in polarization difference. However, as shown in figure 6.3, the polarization

difference for the points with comparable roughness remains at the same level for both

radiometers. It is a puzzling result which encouraged us to take a deeper look into

radiometer data along the flight tracks.

During the campaign flights the sea ice thickness, surface temperature and surface

elevation were co-registered with the TB. We used those variables to simulate the

sea ice TB with MILLAS and the corresponding slopes statistics (PDFα(sα)). The

roughness parameter sα is highly correlated (r2 = 0.68) with sea ice thickness (fig. 6.1).

This can be intuitively explained by the fact that the thick ice in the region was formed

by dynamic processes which also influenced the surface roughness.

We evaluated four model setups in terms of the percent of the explained variance

in the radiometer data at nadir and at 40➦ H/V channels (tab. 6.2). All setups are

clearly imperfect failing to reproduce more than 30% of the total variance. We observe

that including snow adds 7 to 10% to the explained variance. The surface roughness

accounts for up to 1% improvement in the nadir and the TBH(40) explained variance.

In case of vertical polarization the inclusion of roughness has an opposite effect: it

lowers the result by 1 to 4%. Regardless of the r2, the large values of RMSE show

that the simple model setup reproduces poorly the measured TBs.

Our hypothesis that the large scale surface roughness causes the ≈8K/m increase

in TB is not supported by the theoretical study of the geometrical effects related to

the change of local incidence angle. The roughness parameter sα is highly correlated

with sea ice thickness, but simulations with the statistical roughness model suggest

little change in the nadir TB. The most pronounced effect is predicted for the

vertical polarization. The comparison with field data indicates that roughness is a less

important factor than snow cover. Based on modeling results and field measurements

we conclude that large scale (geometrical) surface roughness is not responsible for the

observed increase in the nadir TB of thick ice.
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Chapter 7

Summary and conclusions

In this study we have investigated the effect of surface roughness on the L-band

brightness temperature of sea ice. We have used a combination of field measurements

from the SMOSice2014 campaign, satellite observations from SMOS and radiative

transfer model MILLAS simulations. We have focused on the large scale surface

roughness, as sea ice is electromagnetically smooth for L-band radiation on the scale of

0.25m (Landy et al., 2015; Ulaby et al., 2014, pp.427). The studies with finite element

models (FEM) show that a domain of 8λ × 8λ is large enough for the scattering

simulations involving small scale roughness (Lawrence et al., 2013). This leaves the

larger scales to be characterized with geometrical optics. The airborne laser scanner

(ALS) data used in this study measured surface elevation with 0.5×0.25m resolution.

The derived from the interpolated ALS data digital elevation model (DEM) has a

resolution of 1m. For L-band the electromagnetic wavelength in sea ice is ≈ 0.12m

(λice = λ/
√
ǫ). Thus, our DEM is suitable for characterizing the large scale roughness.

In chapter 4, we have presented the sea ice classification based on aerial

photography. We made an analysis of surface roughness encountered over three ice

classes: “smooth”, “medium-deformed”, “deformed” ice. The three ice types differ

significantly. “Smooth” ice has a thickness of 0.08±0.23m and without elevated surface

features can be treated as a specular surface. The thicknesses of “medium-deformed”

and “deformed” ice are 1.42±0.25m and 1.90±0.97m, respectively. We found that the

correlation function is best characterized by an exponential function.

The core section of chapter 4 covers the surface slopes statistics. We derive surface

slopes (α) and their orientation (γ) from the DEM . We found that probability

density functions of surface slopes (PDFα) can be parametrized with an exponential

function. The shape of the PDFα ≈ exp(−α/sα) is characterized by sα. We use the

sα as a roughness parameter, characterizing the large scale surface roughness. The

“medium-deformed” and “deformed” ice have sα values of 8➦ and 15➦, respectively.

Unlike previous studies we have not assumed the isotropic distribution of γ. Instead,

we have evaluated the deviation from the isotropic distribution along 1000 random
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samples from the flight track. On average the PDFγ was isotropic on a scale greater

than 4.3 km, which corresponds to approximately 60 s of flight time.

In chapter 5, we used the PDFα to simulate a rough surface with the Monte Carlo

method. We varied the roughness parameter sα from 0o to 15o in order to obtain

faceted surfaces with different degrees of roughness. For each of the surfaces we have

computed the sum of emissions from the facets at horizontal and vertical polarizations.

The computation was done under the assumption of a constant antenna gain and for

the case of far field (Constant antenna look-direction.) Further, we have parametrized

the results of the Monte Carlo simulations with a “fast roughness model”.

In chapter 6, we compered the EMIRAD2 and SMOS radiometer data with

brightness temperature simulations done with our statistical roughness model. The

comparison was done with values averaged every 60 s. For the input parameters we

used the surface temperature measured by KT19, the sea ice thickness and the PDFα
from ALS. As for the snow thickness, we used an approximate formula relating it to

sea ice thickness: dsnow = 0.1 · dice.

7.1 Back to the research questions

The results presented in the chapters 5, 4 and 6 enabled as to address the main research

questions posed in the introduction to this work.

How are the angular TB characteristics changing with

increasing roughness of the sea ice surface?

An increase in large scale surface roughness results in a change in TB angular

characteristics. The most pronounced effect is the decrease in vertical polarization,

which for a deformed ice can reach up to 8K close to the Brewster angle. Changes

in horizontal polarization range from a small decrease (≈1K) for incidence angles

<40➦ to 4K increase at 60➦. The nadir TB decreases monotonically with increasing

roughness. For the deformed ice the change in TB(0) is less than 1K. The changes

in angular TB(H/V ) can be expressed as a superposition of two effects: the change in

total intensity (Hα) and polarization mixing (Qα) equasion 5.2. The “fast roughness

model” expresses the Hα, Qα as a function of slope distribution parameter sα. The

exact formula for Hα(sα), Qα(sα) depends on PDFα and shape of T ∗

B(p/q). The latter

is a function of permittivity. This approach can be used to characterize the TB(θ) for a

variety of surfaces if a corresponding emissivity model and PDFα are provided. In the

case of sea ice (ǫ < 5), the large scale surface roughness is not a cause of the observed

increase in nadir TB over thick ice.
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What is the magnitude of the TB changes due to

roughness in comparison with other factors?

To evaluate the magnitude of TB changes we considered as metrics the values at

incidence angles of θ = 0o and θ = 40o. The partial sensitivities to the model

parameters can locally reach very high values. For that reason we have constrained the

sensitivity analysis to a “realistic case”, where the model input variables (C, dice, dsnow,

Tsurf ) are constrained with satellite product uncertainties. The analysis was done for

a case of thick ice (dice >0.7m) where the greatest variability of surface roughness is

to be expected. As shown in figure 5.7 the sea ice concentration uncertainty results

in around 7K decrease in TB channels under investigation. The decrease in TB(V, 40)

of 2.8K resulting from surface roughness change (sα from 0o to 15o) is the only other

contribution of surface roughness that exceeds 1K. The relatively high sensitivity is

promising for the surface roughness retrieval (see figure 5.8).

However, it is important to note the limitations of the used method. The first

limitation is the assumption of one ice type within the radiometer footprint, whereas

in nature one can expect several ice types of different thickness and emissivities. The

second limitation is the set of assumption in the emissivity model: as a goal of this

work is to characterize the large scale geometrical roughness, we took the simplest

four-layer setup for theMILLAS model to compute the ice emissivities. Furthermore,

we parametrize the thickness of snow with ice thickness. Additionaly we assumed

that the side looking anttena of EMIRAD2 is observing the same ice conditions as

the nadir one and the ALS. These factors contribute to the mismatch between the

observed and simulated brightness temperature for the SMOSice2014 campaign. We

have tested four different model setups to simulate the TB of the EMIRAD2 channels.

The setups involved combinations of surface roughness and snow cover: Flat no-snow,

Flat snow, Rough no-snow, Rough snow. The results of the comparison are to be

found in table 6.2. The high root-mean-square error (values of ≈ 28K) for all setups

indicate poor model fitting. As far as the r2 is concerned, i.e. the fraction of explained

variance, an inclusion of surface roughness in the simulation brings little improvement

(from −0.01 to 0.005). On the other hand, the inclusion of snow adds 7-8% of explained

variance.

To conclude, the surface roughness reveals itself strongest in the vertical TB. But

in order to distinguish its effect from the other factors a more sophisticated emissivity

model is needed. Another possible improvement might come from the direct simulation

of surface facet orientation instead of the PDFα.
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Is it possible to measure the sea ice deformation with

multi-angular SMOS data?

The question if SMOS multi-angular brightness temperatures can be used for the

detection of sea ice deformation remains open. Our model studies indicate that the

vertical polarization at high incidence angle ≈ 50➦ is most affected by the surface

roughness (8K). In order to take advantage of this effect in detecting the sea ice

deformation two main issues have to be addressed. The first is the lack of an appropriate

validation data set. During the SMOSice2014 the ALS data covered only a small

fraction of heterogeneous SMOS footprints. Furthermore we had only few independent

SMOS measurements in the region, and of them the ones contain the most deformed

ice were contained significant land fraction (8-25%). The second issue, as shown in

Chapters 5 and 6, is the accurate representation of snow cover, ice thickness and all

other factors influencing the TB, as these are crucial for the detection of ice deformation

from SMOS. For example, using a region of deformed ice such as Lincoln Sea for

studding the surface roughness has it limitations, mainly the because that little is

know about the permittivity and snow cover.
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Appendix A

Coordinates of the identified ice

types

In this work we used aerial photography to identify ice types with distinct surface

roughness features. Tables with the coordinates of the scenes by ice type:
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Appendix B

Atmospheric corrections

In this work we used a simplified model allowing for atmospheric coercions in L-band,

as used in SMOS sea surface salinity prototype processor (Zine et al., 2008). The

atmospheric attenuation and emissions are described as:

katm = kO2 + kH2O (B.1)

TB,atm = TB,O2 + TB,H2O (B.2)

TB,X = (T0 −∆TX)kX (B.3)

where X stand for H2O or O2.

kO2
=

a0 + a1T0 + a2P0 + a3T
2
0 + a4P

2
0 + a5T0P0

cos θ
10−6 (B.4)

∆TO2
= b0 + b1T0 + b2P0 + b3T

2
0 + b4P

2
0 + b5T0P0 (B.5)

kH2O = max

(

c0 + c1P0 + c2WVC

cos θ
10−6, 0

)

(B.6)

∆TH2O = d0 + d1P0 + d2WVC (B.7)

where P0 is the surface pressure in hPa, T0 is surface temperature in K and WV C

is the total precipitable water-vapor content.
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Figure A.1: Table with parameter values used in atmospheric correction. Taken from Zine

et al. (2008).
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Acronyms and symbols

ALS Airborne laser scanner

AMSR− E Advanced Microwave Scanning Radiometer onboard EOS

α angle of the facet slope

C sea ice concentration

CDF Cumulative probability distribution function

δALS elevation measurement accuracy

∆x sampling distance

e emissivity

ESA European Space Agency

ǫ permittivity

γ azimuth angle of the facet orientation

Γ surface reflectivity

Γ∗ reflectivity of a specular surface

H Horizontal Polarization

ka absorption coefficient

katm atmospheric attenuation coefficient

lC correlation length

lbl band-limited correlation length

L scan/domain length

λ electromagnetic wavelength

MILLAS Microwave L-band Layered Sea ice emission model



xii Acronyms

MODIS Moderate Resolution Imaging Spectroradiometer

mss root-mean square slope

n̂ normal vector

NASA National Aeronautics and Space Administration, USA

PDF probability distribution function

PM passive microwave

PSD power spectral density

RFI radio frequency interference

R(ξ) surface auto-correlation function

r̂ antenna looking direction

SMAP Soil Moisture Active and Passive

SMOS Soil Moisture and Ocean Salinity

sα surface slope distribution parameter

σ0 radar backscatter

σz standard deviation of surface height

σbl band-limited standard deviation of surface height

TB Brightness Temperature

θ incidence angle

V Vertical Polarization

WEF antenna gain function

x̂ ,ŷ ,̂z Cartesian reference frame vectors

x̂ ’,ŷ’ ,̂z’ local/facet reference frame
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