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“Exactly!” said Deep Thought. “So once you do know what the question actually is,

you’ll know what the answer means.”

— DOUGLAS ADAMS, The Hitchhikers’ Guide to the Galaxy
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1
∣∣ Introduction

Our world is full of ambiguous sensory input, fromwhich we have to extract relevant information to guide our

behaviour. Imagine, for example, that you are walking through a foggy forest at dusk and catch a glimpse

of a feline behind the trees. Not sure if the animal has already spotted you, you have to decide whether

you have seen a large, ordinary house cat or a hungry tiger (Figure 1). The decision to approach it or to

run as fast as you can is crucial for your survival, so you gather as much information as possible about the

situation to arrive at the best decision. In this case, the relevant information is in the visual image as well as

your knowledge about the world. If you are in your local park where you often see your neighbors’ cat roam

around, you have little reason to run. However, after reading a news article about a zoo break-out, you are

much more likely to get away as fast as you can. This example shows that different types of information can

bias decision processes, making our choices highly dependent on not just the current sensory input but also

on our previous experiences.

Figure 1. When sensory information is uncertain, we use our prior knowledge to arrive at the most likely conclusion
about the state of the outside world: in this case, is the animal a friendly cat or a dangerous tiger? © Craig Norton
photography.

Appropriately responding to sensory evidence in the environment, and combining this information with

our prior knowledge and expectations, is a crucial skill needed to survive and thrive in an uncertain world.

How exactly do we use our previous experiences to guide decisions about incoming sensory information?

And how do the networks of neurons in our brain work to efficiently transform sensory information and

previous experiences into these decisions about the world around us?
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Psychophysics and Signal Detection Theory

The question of how people and animals combine different types of information to guide their behaviour

is central to psychology. Early psychological theory relied largely on introspection, and lacked methods to

objectively quantify perceptual and decision processes (Read 2015). This changed in the 19th century with

the birth of psychophysics, “an exact science of the relations between body and soul” (Fechner 1860), which

set out to quantitatively relate properties of physical stimuli to subjective percepts and decisions.

Quantifying such perceptual decision processes requires rigorous experimental control over the input fac-

tors affecting them, combined with precise measurements of their outcome. With these inputs and outputs

in hand, the psychophysicist can then formulate a model which specifies a law-like relationship describing

the transformation happening within the observer. For example, the work by Weber was the first to quantify

people’s choice patterns as a function of the sensory input over many repeated trials (Weber 1846). This

early work introduced the concept of the psychometric function, which relates repeated presentations of

the same stimulus to the average response about the identity of this stimulus (Figure 2). This allows the

experimenter to make inferences about underlying properties of the perceptual and decision-making ma-

chinery, such as the observer’s sensitivity to the external stimulus, the shape of stimulus-response function,

or the bias towards one over the other choice option.
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Figure 2. Left: The psychometric function quantifies separate aspects of choice behaviour. The slope of the function
indicates the observer’s perceptual sensitivity. The intercept indicates a horizontal shift of the psychometric function,
reflecting a bias towards a specific choice independent of the sensory evidence. The vertical offsets from the two
asymptotes indicate the fraction of stimulus-independent errors (‘lapses’). Right: Signal detection theory. On each
trial, the external stimulus is converted into an internal decision variable (DV). To make a binary choice, the observer
compares the value of the DV to an internal choice criterion. Due to internal and external noise, a distribution of DVs
over trials can be modeled as a Gaussian, the variance of which reflects the amount of noise present in the system.
By increasing the available sensory evidence, DV distributions corresponding to the two choice options become more
separable, resulting in better performance. By comparing the proportion of responses for the two external stimulus
identities, SDT can deduce the observers’ perceptual sensitivity (d ′) and her choice criterion (c). Reprinted from Urai
et al. 2017.

Signal Detection Theory (SDT, Green and Swets 1966), was amajor advance in formalizing the relationship

between sensory input and choice behaviour. Originally developed in the field of radar detection, SDT

specifies how to derive information about the presence of a signal which is embedded in noise. It provides

a mathematical framework explaining several properties of the psychometric function, thereby separating
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sensory information from the observer’s decision rule. SDT is based on the idea that to make a single

decision, the observer transforms the available sensory information into an internal decision variable (DV)

which quantifies the decision-relevant evidence for one choice option over the other. For example, to answer

the question ‘did you see the dots on the screenmove up- or downwards?’, the observer takes the difference

between sensory evidence for ‘up’ and ‘down’. This DV is zero when there is no sensory information available

to distinguish between the two stimulus classes, forcing the observer to guess. Importantly, the observer’s

internal DV is not a perfect representation of the true stimulus: it is corrupted by external and internal noise,

which leads to an across-trial distribution of DVs for each external generative stimulus (Figure 2). When

the two stimuli are easier to distinguish, for example by increasing the clarity of the image, these across-

trial distributions become more separable. It is this separability that quantifies the observer’s perceptual

sensitivity, represented in SDT by the quantity d ′.

Equipped with this decision variable, the observer then has to decide which of the two responses to give:

has she seen upwards or downwards motion? Here, SDT postulates a decision criterion, which is the internal

threshold to distinguish the two choice options. The placement of this criterion determines choice bias, or

the tendency to choose one option over the other. The criterion can be determined by several factors: the

relative cost or reward for one choice over another (the importance of this balance is apparent in medical

decision-making, where misses often carry a much higher cost than false alarms) or the prior probability

of one over the other option occurring. Importantly, SDT first formulated this explicit distinction between

perception and the decision rule, by independently quantifying observers’ sensitivity and criterion.

Signal Detection Theory offers several major benefits when analyzing data in perceptual choice experi-

ments. First, it can estimate perceptual sensitivity in a bias-free way. Second, it specifies what the optimal

criterion should be given a certain experimental context: for example, if an observer gets rewarded more

for correctly responding ‘up’ then ‘down’, she should move her criterion such that she answers ‘up’ when

she is not sure about the identity of the stimulus (Macmillan and Creelman 2004). Third, the psychomet-

ric function (Figure 2) can be interpreted as the cumulative distribution function of the underlying decision

variable when multiple levels of external stimuli are presented. Assuming that Gaussian noise corrupts the

decision process, the slope of the probit psychometric function is the inverse of the variance of the noise

distribution (Klein 2001, see also chapter 2.5). The intercept of the psychometric function is related to the

criterion placement, quantifying at which level of input the observer response to the two choice options with

equal frequency. By fitting the psychometric function to data (Wichmann and Hill 2001b), the experimenter

can thus make various deductions about the perceptual and decision processes taking place (Read 2015),

making it one of the most used measurement models in experimental psychology. Lastly, within this simple

framework another crucial variable in decision-making can be defined: the confidence in each binary choice.

Such a model of confidence, and its application to the study of choice behaviour, is presented in chapter

2.1.
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Sequential sampling models

One important aspect absent from SDT is the passage of time. Observers do not just make choices, but take

a certain amount of time to report their judgments. This response time (RT) carries a wealth of information

that can be used to disentangle the components of the decision-making process. The idea that reaction

times can be used to infer the properties of mental processes dates back to the work of Donders (1868). He

first reported that impulses take a measurable amount of time to travel through nerve tissue, and proposed

that the time between stimulus and response can be used to make inferences about cognitive processes.

For example, he measured how long it took observers to respond to the flash of a white light in cases when

they knew a white light would be shown, or when they could see either a red or a white light and had to

respond with one of both hands accordingly. The resulting difference of 150 milliseconds then reflected

the time needed for the nervous system to arrive at a perceptual decision about the identity of the color

(Donders 1868). This ‘mental chronometry’ was later formalized in a class of sequential sampling models,

which represent the accumulation of evidence as a function of time, resulting in both a decision and its

associated RT on each trial (Link and Heath 1975; Luce 1986).

The Drift Diffusion Model (DDM, Ratcliff 1978) is in many ways the standard sequential sampling model,

in the sense that it is simple enough to be mathematically well characterized while at the same time able

to capture a large variety of behavioural data (Bogacz et al. 2006). The DDM represents optimal behaviour

in two-alternative forced choice (2AFC) decision tasks (Laming 1968), and in certain parameter regimes,

a range of more complex sequential sampling models can be reduced to the DDM (Bogacz et al. 2006).

Importantly, the DDM can be fit to psychophysical data (Ratcliff and Childers 2015), allowing for the recovery

of generative parameters. This is not the case for all sequential sampling models, where more complete or

biologically realistic models generally lose in parameter identifiability (Bogacz et al. 2006).
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Figure 3. Schematic of the Drift Diffusion Model. In one example trial (grey), noisy sensory evidence is integrated over
time into a decision variable, until reaching one of two choice bounds. Each reaction time is the sum of this decision
process and a constant non-decision time Ter, resulting in reaction time distributions for each choice.

The DDM conceptualizes the process of evidence integration for 2AFC decisions as follows (Figure 3).

Sensory evidence, corrupted by Gaussian noise, is integrated over time into a DV which represents the
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relative evidence for one over the other choice. The average speed of accumulation across trials is quantified

by the drift rate v. The evidence accumulation process terminates when the integrated DV reaches one of

two bounds, corresponding to the two choice options. Reaction times are then the sum of the duration

of this accumulation process and an additional non-decision time Ter that captures the initial encoding of

sensory input as well as the time needed to execute themotor response. For unbiased decisions, the starting

point of accumulation z is halfway between the two choice bounds 0 and a, and the drift rate is symmetric

between the two choice outcomes. Chapter 2.3 discusses the implementation of different types of bias in

the DDM, and their fit to psychophysical data.

The idea of integrating evidence over time into a better decision is as powerful as generally applicable

(Shadlen and Shohamy 2016), as underscored by its historical background. The sequential probability ratio

test (SPRT), a formal definition of the optimal stopping rule when sequentially gathering information, was

developed in the 1940’s in the US (Wald 1947), and mainly employed for quality control in war-time logistics

(Wallis 1980). Alan Turing independently developed the same statistical framework for dealing with the

large amounts of data generated in the efforts to break the Enigma code (Good 1979). Specifically, the code-

breakers accumulated information over different interceptedmessages to infer themost likely settings of the

Enigma rotor wheels, which changed every day (Gold and Shadlen 2002). These same sequential sampling

models later formed a powerful foundation for the study of decision-making in the brain, allowing neural

activity to be linked to specific algorithmic predictions of evidence accumulation models.

Neural basis of perceptual choice

To study how evidence is integrated in the brain and transformed into a choice, neuroscientists needs ac-

cess to the decision-relevant information being accumulated. Many studies investigating decision-making

in primates use visual tasks, of which the neural basis is relatively well understood. In influential early work

on perceptual decision-making, monkeys performed a random dot motion task where they integrated the

global motion direction of a cloud of moving dots, and reported the perceived motion direction by a sac-

cade. Researchers then established that neural responses in visual area MT, known to be involved in motion

processing, covary with the monkey’s choice (Newsome et al. 1989; Britten et al. 1996). These observations

and further computational modeling were used to deduce that the monkey used a small number of MT

neurons to form his decision about the motion stimulus, and pointed to shared variability between neurons

as the major source of noise determining the monkey’s perceptual sensitivity (Shadlen et al. 1996).

When monkeys make a saccade to report their choice about the perceived motion direction of the cloud

of dots, neurons in the lateral intraparietal area (LIP) were found to reflect integrated evidence towards one

or the other choice (Roitman and Shadlen 2002). Specifically, neurons whose receptive field matched the

location the monkey was preparing to saccade to showed a ramp-like increase in activity (but see Latimer

et al. 2015), that was stronger for trials where the monkey responded faster. The firing rate in LIP neurons

reached a typical fixed level at response execution, analogous to the pre-set decision bound in sequential
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sampling models (Roitman and Shadlen 2002). This showed that neurons in motor-related areas reflected

the integrated decision-variable posited by sequential sampling models (Gold and Shadlen 2007; Shadlen

and Kiani 2013; Kira et al. 2015). Note that this does not, however, imply that LIP neurons are causally

involved in the integration of decision-relevant evidence (Katz et al. 2016).

At the larger scale of neural mass signals, which can be recorded non-invasively in humans, similar electro-

physiological read-outs of decision formation can be measured. Specifically, the lateralization of beta-band

(12-36 Hz) oscillations over motor cortex tracks the gradual build-up of action preparation (Donner et al.

2009), in line with the idea that decision variables can be continually read out using motor signatures. A

central-parietal positive event-related potential also tracks the temporal evolution of an ongoing decision

variable, reaching a stereotypical threshold level at response execution (O’Connell et al. 2012; Twomey et al.

2015). Interestingly, this component predicts the timing but not the identity of the upcoming choice, sug-

gesting it may also be a read-out of the observer’s confidence (Urai and Pfeffer 2014). While motor-related

build-up signatures are thus dependent on a known choice-response mapping (Bennur and Gold 2011; Fil-

imon et al. 2013; de Lafuente et al. 2015; Twomey et al. 2016), they offer the unique advantage of allowing

the neuroscientist to track not only when, but most importantly which decision is being prepared.
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Figure 4. The neural basis of evidence accumulation in the human brain. Sensory evidence is sent from visual cortex
to fronto-parietal decision-making circuits, which are tightly coupled to motor regions during decision formation. Black
arrows denote information flow.

One key tool in the study of decision-making is the quantification of choice probability, the degree to

which a neuron’s activity covaries with the monkey’s final choice over repeated presentations of the same

stimulus. Significant choice probabilities have been reported for neurons throughout the visual cortex (Lo-

gothetis and Schall 1989; Britten et al. 1996; Nienborg and Cumming 2006). How does such correlation

between a sensory neuron’s firing rate and the animal’s final choice arise? Stochastic fluctuations in fir-

ing rate, when shared between sensory neurons, can be integrated into the decision variable and thereby

drive the animal’s choice. In addition, feedback connections from decision circuits may affect the activity of
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sensory neurons, causing them to be more correlated with the higher-level integrated decision variable.

To distinguish between these options, Nienborg and Cumming (2009) compared psychophysical kernels,

which quantify at what point in time sensory evidence most affects an observer’s final decision, with the

timecourse of neural choice correlations. The researchers found that while choice probabilities increased

over the course of a trial, sensory information presented later in the trial had a smaller effect on the monkey’s

final choice (Nienborg and Cumming 2009). These findings indicated that choice probabilities were at least

partly caused by feedback from higher areas, rather than by sensory neurons causally affecting the decision.

Later work using a hierarchical network model of spiking neurons corroborated that feedback connections

from decision to sensory circuits could indeed explain the opposite timecourses of choice probability and

psychophysical kernels (Wimmer et al. 2015; Urai and Murphy 2016). These findings are in line with the idea

that commitment to a choice pushes the system in an attractor-like stable state, where new input has little

effect on its state.

Intrinsic variability in brain and behaviour

The formal models of psychophysics and sequential sampling, combined with neurophysiological measures

of sensory evidence and its integration, offer an exquisite tool to quantitatively study decision-making. They

allow for investigating not just its constancy, but also its variability: humans and animals make different

decisions each time they are presented with exactly the same information. A major goal of the neuroscience

of decision-making is to tease apart the origins and consequences of this variation. Some of the randomness

in behaviour may arise from irreducible unpredictability in neural functioning (Glimcher 2005). However, a

substantial portion of behavioural variability is not noise, but rather a complex deterministic dependence

on previous experiences, preferences and memories (Gold and Stocker 2017). What is the nature of this

“central process which seems relatively independent of afferent stimuli” (Hebb 1949)? In other words, how

exactly are our previous experiences, goals and preferences reflected in brain activity, and how do they

affect choices?

A large body of work in psychology and neuroscience has investigated how decision-making is affected

by factors beyond the immediate sensory input, ranging from attention (Gottlieb 2012), expectations (Sum-

merfield and de Lange 2014) and reward (Hunt and Hayden 2017) to the trade-off between response speed

and accuracy (Bogacz et al. 2010). By experimentally varying and tightly controlling such external factors, a

picture has emerged of decision-making as a dynamic and flexible process, that can be adapted to the task

context and observer’s goals (Gold and Stocker 2017). However, those factors that we can experimentally

manipulate tell us only half the story. To fully understand the rich interplay of causes that influence decision-

making, we need a better grasp on intrinsic behavioural variability arising from sources we cannot control,

but that we may be able to measure.

One important source of intrinsic variability is the history of categorical choices, which, rather than merely

reflecting the endpoint of the decision-making process, bias ongoing brain activity and subsequent choice
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patterns in precise ways. Even though experimenters randomize the order of presented stimuli, observers

are consistently biased by their previous decisions. These intrinsic choice biases are ubiquitous in psy-

chophysical datasets, and may account for some of the previously unexplained variability in neural activity

and choice behaviour.

Serial dependencies in perceptual choice

Dependencies between subsequent perceptual decisions have been reported for almost a century (Fern-

berger 1920; Rabbitt 1968; Cross 1973), and have recently received renewed interest in neuroscience and

psychology. Also called sequential dependencies, decision inertia or choice hysteresis, these serial choice

biases have been observed in mice (Busse et al. 2011; Odoemene et al. 2017), rats (Licata et al. 2017),

monkeys (Gold et al. 2008) and humans (Akaishi et al. 2014; Fründ et al. 2014; Kiyonaga et al. 2017). While

the correlation between subsequent choices decreases with training (Gold et al. 2008), it remains present

even in highly trained psychophysical observers who know that stimulus sequences are not auto-correlated

(Fernberger 1920; Fründ et al. 2014).

Previous choices and stimuli have most effect on decisions when sensory evidence is unreliable (Fründ

et al. 2014; Abrahamyan et al. 2016; Urai et al. 2017). In randomized laboratory experiments, the ideal strat-

egy is to make decisions entirely based on decision-relevant information presented in the current trial: serial

dependencies then result in suboptimal performance. Indeed, serial choice biases impair perceptual thresh-

olds (Abrahamyan et al. 2016), although these effects may be small (Fründ et al. 2014). Previous choices also

interact with external feedback about choice outcomes (Busse et al. 2011; Akaishi et al. 2014; Abrahamyan

et al. 2016), and may relate to high-level cognitive variables and individual differences (Abrahamyan et al.

2016).

Why do sequential dependencies in choice behaviour arise? One intriguing suggestion is that observers

learn that the world is generally stable over time, and bring this expectation with them to randomized

laboratory experiments (Yu and Cohen 2008). Theymay learn the local transition probabilities between items

in a sequence (Meyniel et al. 2016), and combine past observations using a process of leaky integration to

guide their upcoming decisions (Sugrue et al. 2004; Glaze et al. 2015; Kim et al. 2017). This would lead their

choices to be biased by streaks of repetitions and alternations that appear in randomly generated sequence

of stimuli.

Serial dependencies could reflect processing in a range of brain regions, with candidates in early sensory,

higher-level decision-making or motor-related brain areas. In a recent paper, St. John-Saaltink et al. (2016)

used fMRI to show that in a 2AFC orientation discrimination task, previous choices bias the representation

of orientation in early visual cortex. Task-irrelevant, salient stimuli that are presented between trials, which

mask stimulus aftereffects in visual cortex, do not reduce serial dependencies (Akaishi et al. 2014). Together,

these findings suggest that the effect of previous choices on activity in primary visual cortex may be due to

feedback from downstream decision-making brain regions, with neural signatures that are perhaps similar
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to those of top-down attention. Indeed, model-based fMRI shows that a network of frontal and parietal

regions reflects trial-by-trial updates of expected choices, which track serial dependencies (Akaishi et al.

2014). At the motor end, the ‘beta rebound’, an increase in activity between 12-30 Hz that is observed

after a hand movement and higher over contra- vs. ipsilateral motor cortex, carries over to the next trial

and biases observers to alternate their choices (de Lange et al. 2013; Pape and Siegel 2016). These results

suggest that serial dependencies may not be localized to one particular location in the brain, but might be

present in various parts of the decision-making network.

One important potential contributor to biases in brain state and behaviour may be the release of modu-

latory neurotransmitters. These neuromodulators (such as noradrenaline, dopamine and acetylcholine) are

phasically released during perceptual decision-making (Aston-Jones and Cohen 2005; de Gee et al. 2014),

are diffusely released throughout the cortex, and can reflect remarkably specific cognitive and behavioural

processes (Murphy et al. 2014; Kloosterman et al. 2015; Murphy et al. 2016a; de Gee et al. 2017). Decision-

related phasic neuromodulation may thus be an interesting candidate marker for choice-induced biases in

ongoing perceptual decision-making.

Outline of this thesis

A picture thus starts to emerge of serial choice patterns as a ubiquitous and likely fundamental phenomenon

in decision-making. However, several open questions remain. First, how flexible are serial choice patterns?

Can they be adapted to environments where stimulus sequences are structured? And do choices also bias

perceptual inference within, rather than across trials? Second, at what stage of the decision-making process

do serial choice biases arise? Do choice biases mainly arise from previous decisions, or their associated

motor response? And do decisions affect later response preparation, or the perceptual inference process

itself? At the neural level, do sensory, decision-making or motor signals explain serial choice biases? Third,

how are serial choice patterns modulated by physiological and computational variables, such as arousal and

confidence? This thesis investigates these questions from several angles, using psychophysics, computa-

tional modeling, pupillometry and magnetoencephalography.

Chapter 2.1 describes a statistical model of decision uncertainty, and shows data suggesting that both

reaction times and pupil responses, a read-out of neuromodulatory brain state, represent such an uncertainty

signal. This chapter then shows that these measures of decision uncertainty modulate serial choice biases,

decreasing the probability of repeating previous choices.

In chapter 2.2, we show that serial choice biases can be adapted to environments where subsequent

stimuli tend to repeat or alternative, in a way that again depends on decision uncertainty. Additionally,

this chapter describes an experiment where choices and motor responses were dissociated, showing that

choices but not motor responses drive serial choice patterns.

Moving from signal detection theory to sequential sampling models, chapter 2.3 uses drift diffusion



12

modeling to tease apart biases in starting point and in the rate of evidence accumulation, finding that indi-

vidual serial choice biases are mainly reflected in history-dependent bias in the rate of evidence integration.

Chapter 2.4 investigates the neural basis of serial choice patterns, using electrophysiological signatures

of sensory evidence encoding andmotor preparation to link individual serial biases to stages of the decision-

making process. We show that effects of previous choices can be found in human electrophysiological signals

both at the visual and motor end of the decision-making process.

Lastly, in chapter 2.5 we investigate how binary choices halfway through a trial change how observers in-

tegrate subsequently presented evidence into a continuous estimation judgement. We show that observers

are less sensitive to incoming sensory evidence that is inconsistent with a previous binary choice.







2.1
∣∣ Pupil-linked arousal is driven by decision

uncertainty and alters serial choice bias

Urai AE, Braun A, Donner TH. (2017) Nature Communications, 8:14637

Abstract

While judging their sensory environments, decision-makers seem to use the uncertainty about their choices

to guide adjustments of their subsequent behaviour. One possible source of these behavioural adjustments

is arousal: Decision uncertainty might drive the brain’s arousal systems, which control global brain state and

might thereby shape subsequent decision-making. Here, we measure pupil diameter, a proxy for central

arousal state, in human observers performing a perceptual choice task of varying difficulty. Pupil dilation,

after choice but before external feedback, reflects three hallmark signatures of decision uncertainty derived

from a computational model. This increase in pupil-linked arousal boosts observers’ tendency to alternate

their choice on the subsequent trial. We conclude that decision uncertainty drives rapid changes in pupil-

linked arousal state, which shape the serial correlation structure of ongoing choice behaviour.

This chapter was reprinted under a CC-BY 4.0 license. doi: 10.1038/ncomms14637. AUTHOR CONTRIBUTIONS: Conceptualization,
A.E.U. and T.H.D.; Investigation, A.E.U.; Formal Analysis, A.E.U. and A.B.; Software, data curation and visualization, A.E.U.; Writing,
A.E.U. and T.H.D.; Supervision, T.H.D.
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Introduction

In perceptual and sensory-motor tasks, humans and animals behave as if they make use of decision un-

certainty – the probability that a choice is correct, given the sensory evidence (Kepecs et al. 2008; Ma

and Jazayeri 2014; Pouget et al. 2016). Theoretical accounts postulate that decision uncertainty should

shape subsequent decision processing and, thereby, subsequent choice behaviour (Kepecs and Mainen

2012; Meyniel et al. 2015; Pouget et al. 2016). But how decision uncertainty is transformed into subsequent

behavioural adjustments has, so far, remained elusive.

One prominent idea is that the brain broadcasts uncertainty signals across brain-wide neural circuits via

low-level arousal systems (Dayan et al. 2000; Yu 2005; Meyniel et al. 2015). Arousal systems might be driven

by uncertainty (Aston-Jones and Cohen 2005; Yu 2005; Dayan and Yu 2006; Nassar et al. 2012; Meyniel

et al. 2015; de Berker et al. 2016), and they profoundly shape the global state of the brain through the

action of modulatory neurotransmitters (Harris and Thiele 2011; Lee and Dan 2012; McGinley et al. 2015a).

Uncertainty-dependent changes in global brain state, in turn, might translate into adjustments of choice

behaviour. The goal of our study was to investigate whether arousal (1) reflects decision uncertainty in a

perceptual choice task; and (2) predicts changes in subsequent choice behaviour.

Changes in central arousal state (as assessed by variousmeasures of cortical dynamics) are tightly coupled

to fluctuations in pupil diameter under constant luminance (Eldar et al. 2013; Reimer et al. 2014; McGinley

et al. 2015a,b; Vinck et al. 2015). We here built on this connection and monitored pupil diameter as a proxy

for central arousal state. We used a model based on statistical decision theory, illustrated in Figure 1, in

which decision uncertainty is defined as the probability a choice is correct, given the available evidence

(Pouget et al. 2016; Sanders et al. 2016). This operationalization of decision uncertainty obviates the need

for subjective confidence reports (Kepecs and Mainen 2012), bridging to the insight from animal physiology

that neurons in a number of brain regions encode decision uncertainty, as defined in Figure 1 (Kepecs et al.

2008; Komura et al. 2013; Lak et al. 2014; Teichert et al. 2014).

The model assumes that observers base their judgment of each stimulus on a noisy decision variable,

sampled from a distribution that depends on the identity and strength of the stimulus (Figure 1a). Two-

alternative forced choice tasks entail comparing this decision variable with a decision bound. When the

decision variable happens to fall on the wrong side of the bound, errors occur. This happens more often

for weaker stimuli, because the distributions corresponding to the two possible stimuli show higher overlap

(Figure 1b). A monotonic function of the distance between the decision variable and the bound is a metric

of decision confidence; uncertainty is its complement (Kepecs et al. 2008; Hebart et al. 2016; Sanders et al.

2016) (Figure 1a and Methods).

This model predicts three signatures of decision uncertainty (Kepecs et al. 2008; Sanders et al. 2016):

(1) uncertainty decreases with evidence strength for correct choices (blue line in Figure 1c) but, counter-

intuitively, increases with evidence strength for incorrect choices (red line in Figure 1c); (2) uncertainty pre-

dicts a monotonic decrease in choice accuracy from 100 to 50% (Figure 1d); (3) higher uncertainty predicts
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Figure 1. Operationalizing decision uncertainty. (a) Computations underlying choice and decision uncertainty. Due
to noise, repeated presentations of a generative stimulus produce a normal distribution of internal responses centered
at the mean of this generative stimulus. The internal response on each trial dvi is a sample drawn from this distribution.
It is compared to a decision bound or criterion c, to compute the binary choice as well as a graded measure of decision
confidence (or its complement: uncertainty). (b) For two example levels of evidence strength, the average confidence is
indicated by the shaded regions, separately for correct (blue) and error (red) trials. (c) Confidence (top) and uncertainty
(bottom) as a function of evidence strength (100 bins), separately for correct and error trials. The two levels of evidence
indicated by symbols (circles, triangles) correspond to the two example levels of evidence strength in panels a, b. (d)
Accuracy as a function of decision uncertainty (100 bins). (e) Accuracy as a function of evidence strength (100 bins),
separately for trials with high and low decision uncertainty (median split). For details, see Methods and (Kepecs et al.
2008; Sanders et al. 2016).

lower choice accuracy, even for the same evidence strength (Figure 1e). The opposite, monotonic scaling

of uncertainty with evidence strength for correct and error trials (Figure 1c) also emerges from a variety of

dynamic decision-making models, including race models (Kepecs et al. 2008), Bayesian attractor models

(Bitzer et al. 2015), and biophysically detailed circuit models of cortical dynamics (Insabato et al. 2010; Wei

and Stocker 2015).

We systematically manipulated the strength of sensory evidence and tested whether pupil responses

exhibited the three signatures derived above. We then quantified the predictive effects of pupil-linked

arousal on subsequent behaviour in terms of the key elements of the perceptual decision process: response

time (RT), perceptual sensitivity, lapse rate, and choice bias. Choice bias was decomposed into an overall

bias for one choice, and a serial bias dependent on the history of previous choices or stimuli. We found a

predictive effect of pupil-linked arousal responses on serial choice bias.

Results

Pupil responses reflect decision uncertainty

27 human observers performed a 2-interval forced choice visual motion coherence discrimination task (Fig-

ure 2a and Methods). We applied motion energy filtering (Adelson and Bergen 1985) to the stochastic

random dot motion stimuli, yielding a more fine-grained estimate of the decision-relevant sensory evidence

contained in the stochastic stimuli than the nominal level of motion coherence (Figure 2b,c and Methods).
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Figure 2. Perceptual choice task and behaviour. (a) Behavioural task. Dynamic random dot patterns were displayed
throughout each trial. In two successive intervals (onset cued by beeps), the dots moved in one of the four diagonal
directions (fixed per observer): A first ‘reference’ interval with always 70%motion coherence, and a second ‘test’ interval
with varying levels of motion coherence, larger or smaller than the reference. Observers reported whether the test
stimulus contained stronger or weaker motion than the reference by pressing one of two buttons. They received auditory
feedback after a variable delay. (b) Quantifying evidence strength. Each random dot stimulus was convolved with a set
of spatio-temporal filters (Adelson and Bergen 1985) to obtain a time course of motion energy. The difference between
meanmotion energy during test and reference intervals was used as a measure of single-trial measure evidence strength.
(c) Probability distribution of evidence strength as a function of difference in nominal motion coherence. (d) Accuracy
and median RT as a function of evidence strength (6 bins). (e) Median RT as function of evidence strength (6 bins), split
by correct and error trials. (N=27, group mean ± s.e.m.)

The absolute value of this sensory evidence served as a single-trial measure of evidence strength (Figure 2b).

As expected, stronger evidence yielded higher choice accuracy and faster responses (Figure 2d and Fig-

ure S2a).

In line with previous work (Sanders et al. 2016), RT exhibited all three signatures of decision uncertainty

derived in Figure 1 above (Figure 2e and Figure S1b,c). This was true despite the interrogation protocol

(Bogacz et al. 2006), in which the test stimulus had a fixed duration, its offset prompted the choice, and

observers were instructed to maximize accuracy without speed pressure (response deadline was 3 seconds

after test offset). Specifically, RT decreased with evidence strength on correct trials but increased with

evidence strength on errors (Figure 2e). Further, RT predicted accuracy over a wide range, but not below
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Figure 3. Pupil dilation after choice and before feedback reflects decision uncertainty. (a) Time course of pupil
responses throughout the trial. Time courses were baseline-corrected and split by correct and error as well as three bins
of evidence strength. Mean pupil dilation in the 250 ms before feedback (grey box) was used as a single-trial measure
of pupil response. (b) Time course of uncertainty scaling in the pupil, computed as sample-by-sample regression of
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tation test, of the difference between each time course and zero, and between the two time courses. (c) Regression
weights for the linear relationship between evidence strength and pupil responses. (d) Individual perceptual sensitivity,
separately for lowest and highest pupil tertiles. (e) Individual logistic regression weights, using pupil responses to pre-
dict single-trial choice correctness. In b-e z-scored, log-transformed RTs were removed from the pupil signal via linear
regression. *** p < 0.001, ** p < 0.01, permutation test. (N=27, group mean ± s.e.m.)

50% (Figure S1b), indicating that RT reflected decision uncertainty rather than error detection (Kepecs et al.

2008). We next assessed whether decision uncertainty also affected pupil-linked arousal.

The pupil dilated during decision formation, peaking just after the choice (button press) as observed

in previous work (de Gee et al. 2014), and then dilated again after feedback (Figure 3a). Between these

two peaks, dilation amplitudes diverged between different conditions, as predicted by decision uncertainty

(compare with Figure 1c): Pupil responses were smallest after correct decisions based on strong evidence,

they were overall larger after errors than correct choices, and largest after errors made on trials with strong

evidence (Figure 3a).

To quantify the temporal evolution of uncertainty scaling in the pupil, we regressed baseline-corrected

pupil time courses against each trial’s evidence strength, separately for correct and error trials. From choice

onwards, pupil dilation scaled positively with evidence strength on error trials, and negatively on correct

trials (Figure 3b,c and Figure S3a). In other words, the scaling of the pupil response with evidence strength

diagnostic of decision uncertainty emerged in the interval between choice and feedback. Consequently, this

uncertainty scaling was not a response to the external information about choice correctness provided by the
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external feedback, but rather reflected internal decision-related computations as described in Figure 1. For

simplicity, we refer to the single-trial pupil dilation averaged across the 250 ms interval before feedback as

‘pupil response’ in the following.

The pupil response also exhibited the other two signatures of decision uncertainty predicted by the

model in Figure 1. Larger pupil responses were accompanied by an overall lower choice accuracy (Figure 3e

and Figure S3c), and psychophysical sensitivity was lower on trials with a larger pupil response (Figure 3d

and Figure S3b). Specifically, the pupil response did not predict choice accuracy below 50%, suggesting

that it did not signal the detection of errors (Figure S3c).

The scaling of the pupil response with decision uncertainty was not inherited from the analogous scaling

of RT, but was also present after first removing (via linear regression) the trial-to-trial variations accounted for

by RT (Figure S3d-f). Indeed, trial-to-trial correlations between pupil responses and RTs were generally small

(Pearson correlation, average r: 0.087 range: -0.042 to 0.302, for log-transformed RT). For all subsequent

analyses reported in this paper, we removed RT-fluctuations from the trial-to-trial fluctuations of single-trial

pupil responses via linear regression (see Methods).

Pupil-linked arousal alters subsequent choice behaviour

We proceeded to test whether uncertainty-related pupil responses predicted changes in subsequent choice

behaviour. It has been proposed that arousal signals control various aspects of learning and decision-making

(Dayan et al. 2000; Aston-Jones and Cohen 2005; Yu 2005; Dayan and Yu 2006; Meyniel et al. 2015). In the

context of our task, the choice parameters of interest were perceptual sensitivity (measured as the slope of

the psychometric function, Figure S4a), lapse rate (measured as the vertical distance of the asymptotes of

the psychometric function from 0 or 1, Figure S4a), bias (measured as the horizontal shift of the psychometric

function, Figure S4a), and RT. For RT, we focussed on increases after error trials, an effect referred to as post-

error slowing (Dutilh et al. 2012), which was found to be modulated by pupil-linked arousal in a speeded

RT task (Murphy et al. 2016b). Choice bias was further decomposed into two parameters: overall bias

(i.e., a general tendency towards one choice option, averaged across the entire experiment, Figure S4b)

and serial bias (i.e., a local, choice history-dependent tendency towards one option that becomes evident

when conditioning the psychometric function on the preceding choice, Figure S4c) (Fernberger 1920; Yu

and Cohen 2008; Fründ et al. 2014). Because in our task (as common in laboratory choice tasks), the sensory

evidence was independent across trials, any serial bias was maladaptive, reducing observers’ performance

below the optimum they could achieve given their perceptual sensitivity.

The pupil response predicted a reduction of serial choice bias (Figure 4a and Figure S5). When a choice

was followed by a small pupil response, observers tended to repeat this choice on the next trial; when

the previous pupil response was large, this serial bias was abolished (Figure 4a). This predictive effect was

similar for correct and error trials (Figure S6a). An analogous pattern of predictive effects was observed when

binning by previous trial RT: Fast, but not slow, RTs were followed by a tendency to repeat the previous choice
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Figure 4. Pupil responses and RT predict reductions in serial choice bias. (a) Serial choice bias, quantified as the
history-dependent shift of the psychometric function, for tertiles of previous trial pupil responses. (b) Absolute choice
bias, measured as the intercept of a logistic psychometric function, for tertiles of previous trial pupil responses. (c)
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(Figure 4f and Figure S6b).

The pupil response predicted none of the other choice parameters on the next trial (assessed by one-way

repeated measures ANOVA), neither overall choice bias (signed overall bias: F(2,52) = 0.939, p = 0.398, Bf10

= 0.221; absolute value of overall bias: F(2,52) = 1.817, p = 0.173, Figure 4b), nor perceptual sensitivity (F(2,52)

= 1.936, p = 0.155, Figure 4c), nor lapse rate (F(2,52) = 2.213, p = 0.120, Figure 4d), nor RT (overall RT: F(2,52)

= 3.232, p = 0.048, Bf10 = 1.207; post-error slowing: F(2,52) = 2.056, p = 0.138, Figure 4e). Variations in RT,

likewise, did not predict a change in any of the other parameters of the decision process (Figure 4g-j, all p

> 0.05). The overall pattern of results implies that observers did not simply act more randomly after large

pupil responses or RT. Random button presses would have reduced sensitivity, in other words, decreased

the slope of the psychometric function, contrary to our observations (Figure 4c,h). Rather, the pattern of

results implies that, after large pupil responses or RT, observers’ tendency towards one or the other choice

became less history-dependent.

In sum, large pupil responses and slow RTs were neither followed by improved processing of sensory

evidence (a common effect of attention, Ress et al. 2000), nor a change in overall response bias. Large pupil

responses and slow RTs were followed by only minor (and statistically not significant) changes in stimulus-

independent lapses as well as small adjustments in speed accuracy trade-off, as observed after response

conflict, errors, or large pupil responses in speeded RT tasks (Botvinick et al. 2001; Gao et al. 2009; Murphy

et al. 2016b). The weak effect on post-error slowing might be due to the use of an interrogation protocol in

our study, which did not require observers to optimize their speed-accuracy trade-off (Bogacz et al. 2006).

However, both RT and pupil-linked arousal had a robust effect on serial choice bias, reducing an overall

repetition bias that predominated across the group of observers. This effect of both uncertainty-related
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measures on the serial correlation structure of choice behaviour has so far been unknown. We therefore

proceeded to model and comprehensively quantify this effect at the level of individual observers.

Pupil-linked arousal predicts choice alternation

To this end, we extended a previously established regression model of serial choice biases (Fründ et al.

2014) with pupil- and RT-dependent modulatory effects. The basic model (i.e., without modulatory terms)

quantified the impact of the previous seven choices and stimuli on the current choice bias in terms of linear

combination weights (Figure 5a, see Methods and (Fründ et al. 2014). We added to this model multiplicative

interaction terms, that quantified how much the effect of previous stimuli and choices was modulated by

either pupil response or RT on those same trials (Figure 5a). Simultaneously modeling the effects of both

pupil responses and RT enabled us to estimate their independent impact on serial choice bias; we found

the same results when fitting a separate regression model for each modulatory variable (Figure S7).

The model fits revealed robust, and idiosyncratic, patterns of serial choice biases in most observers

(Figure 5c,d; see Figure S2b,c for individual sessions). As expected, the contribution of past stimuli and

choices to current behaviour was strongest when sensory evidence was weak and decayed strongly with

evidence strength (Figure 5b). The weight of the immediately preceding choice was generally stronger than

the weight of the previous stimulus (Figure 5d). The effect of previous choices lasted up to seven trials in

the past (corresponding to about 60 s, Figure 5c), but had the largest absolute magnitude on the preceding

trial (Figure 5c, grey dashed line). There was large inter-individual variability in choice weights (Figure 5c,d).

While the majority of observers systematically repeated their choices (purple symbols; 12 significant at p <

0.05), a good fraction tended to alternate their choices (orange symbols; 7 significant at p < 0.05).

Observers’ serial choices biases were unrelated to the (small) serial correlations between stimuli. The

transition probabilities between stimulus categories (i.e. s2<s1 or s2>s1) were close to 0.5 (range across

observers: 0.475 to 0.508), and did not correlate with individual choice weights (Pearson correlation r =

0.010, p = 0.960, Bf10 = 0.149) or stimulus weights (Pearson correlation r = -0.176, p = 0.381, Bf10 = 0.217).

Likewise, the auto-correlation of absolute motion coherence differences (i.e., absolute levels of evidence

strength) was close to 0 (range across observers: -0.061 to 0.028) and did not correlate with individual choice

weights (Pearson correlation r = 0.123, p = 0.541, Bf10 = 0.179) or stimulus weights (Pearson correlation r =

-0.142, p = 0.480, Bf10 = 0.190).

Critically, pupil responses and RT both negatively interacted with the effect of previous choices (Fig-

ure 5e), in line with the observation that large pupil responses or long RTs were followed by less choice

repetition (Figure 4a,f). By contrast, neither pupil responses nor RT interacted with the effect of the previ-

ous stimulus (Figure 5e). Pupil responses beyond one trial in the past, as well as baseline pupil diameter on

the current trial, did not predict a modulation of serial biases (Figure S8). Moreover, these results were not

accounted for by trial-to-trial variations in trial timing or the passage of time between trials (Figure S9).

The pupil response after feedback did not contain information predictive of serial choice bias, beyond the
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Figure 5. Modeling themodulation of serial choice bias. (a) Schematic of the regressionmodel withmodulatory terms.
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coefficient or permutation test.

information already present during the pre-feedback interval. The post-feedback pupil responses similarly

predicted modulation of serial choice biases, but no longer did so when removing (via linear regression)

variance explained by pre-feedback pupil responses from the post-feedback pupil signal (Figure S10).

While the modulatory effects associated with pupil responses and RT were both negative on average,

such an overall reduction of the group-level repetition bias (Figure 4a,f) might be due to two alternative

scenarios at the level of individual observers: either a reduction of each observer’s intrinsic serial choice bias

for repetition or alternation (referred to as ‘bias reduction’ hereafter); or, alternatively, a general boost of

choice alternation, regardless of the observer’s intrinsic serial bias (referred to as ‘alternation boost’). We

quantified intrinsic serial bias as each observer’s choice weight (i.e., the main effect of the previous on the

current choice estimated by our model). The bias reduction scenario predicts a negative correlation between

choice weights and modulation weights across observers. The alternation boost scenario predicts negative

individual modulation weights for all observers, independently of their corresponding choice weights (i.e.,

no correlation).
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The analysis of these individual behavioural patterns revealed dissociable effects of pupil-linked arousal

and RT (Figure 5f,g). Modulation weights for the pupil were negative for most observers, irrespective of

their individual choice weight. When splitting all 27 observers into ‘alternators’ and ‘repeaters’ based on the

sign of their intrinsic bias (i.e., choice weight), we found no correlation between individual modulation and

choice weights (Figure 5f, Pearson correlation r = -0.017, p = 0.935, Bf10 = 0.149). Further, the modulation

weights were negative for both subgroups, and not significantly different between them (Figure 5g). These

observations are consistent with the idea that pupil-linked arousal generally boosted observers’ tendency

to alternate their choice on the next trial.

The alternation boost scenario for pupil responses was further supported by a striking contrast to RT-

linked modulations, which were in line with the bias reduction scenario. The RT-linked modulation weights

exhibited a strong negative correlation with individual choice weights (Figure 5f, Pearson correlation r =

-0.634, p < 0.001, Bf10= 76.359), were negative only for the group of repeaters, and differed significantly be-

tween alternators and repeaters (Figure 5g). Correspondingly, the correlations with individual choice weights

were significantly different for pupil- and RT-modulation weights (Figure 5f). Moreover, RT-dependent bias

reduction was most pronounced after incorrect choices, whereas the pupil-dependent alternation boost was

most pronounced after correct choices (Figure S11).

In sum, the modulatory effects associated with post-decision pupil-linked arousal and RT both shaped

the serial correlation structure of choices, but in distinct ways: pupil-linked arousal generally promoted

choice alternation, regardless of the observer’s intrinsic bias, whereas RT-linked processes generally reduced

observers’ intrinsic bias.

Discussion

Decisions about an observer’s sensory environment do not only depend on the momentary sensory input,

but also on the behavioural context (Gold and Shadlen 2007). One such contextual factor is the history of

preceding choices and stimuli, which robustly biases even highly trained decision-makers (Fründ et al. 2014).

Although such serial choice biases were first identified in psychophysical tasks about a century ago (Fern-

berger 1920), their determinants have remained poorly understood. Previous treatments of serial choice

biases have conceptualized experimental history as sequences of binary external events (past stimulus iden-

tities, choices, or feedback) (Fründ et al. 2014; Abrahamyan et al. 2016). We here established that these

serial biases were also modulated by the decision-maker’s pupil-linked arousal state on the previous trial,

which, in turn, reflected the uncertainty about the observer’s choice.

Several important features of our approach allowed us to move beyond previous work linking human

pupil dynamics to uncertainty and performance monitoring. First, different from most previous studies, we

here unravelled the temporal evolution of uncertainty information in the pupil response, enabling inferences

about not only the existence, but also the time course of this information (see O’Reilly 2013 for a similar

approach). Second, the model-based definition of decision uncertainty we used helped dissociate decision
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uncertainty from error detection, which has previously been linked to pupil dilation (Wessel et al. 2011). In

a two-choice task, a signal encoding decision uncertainty should predict behavioural performance over a

range from 100% to 50% correct (corresponding to 50% for the maximum uncertainty signal, or larger when

encoding is imprecise). By contrast, an error detection signal should predict performance over the range

100% to 0% correct (Kepecs et al. 2008). Our measurements were more consistent with decision uncertainty

than error detection (Figure S3c). Third, in our task, decision uncertainty critically depended on internal noise

(the primary source of the variance in Figure 1a). By contrast, previous studies linking uncertainty to pupil

dynamics (Preuschoff et al. 2011; Nassar et al. 2012; O’Reilly 2013; de Berker et al. 2016) have used tasks in

which the primary source of uncertainty was in the observers’ environment. Last, in contrast to most previous

pupillometry studies (Preuschoff et al. 2011; de Gee et al. 2014; Lempert et al. 2015) we comprehensively

quantified the predictive effects of pupil-linked arousal on the parameters of choice beyond the current trial,

thereby complementing recent work on the effects of pupil-linked arousal on learning (Nassar et al. 2012;

O’Reilly 2013). Taken together, our results critically advance the understanding of how internal decision

uncertainty is encoded in pupil-linked arousal in humans, in a way that builds a direct bridge to single-unit

recording studies of decision uncertainty in animals (Kepecs et al. 2008; Komura et al. 2013; Lak et al. 2014;

Teichert et al. 2014).

The neural sources of task-evoked pupil responses at constant luminance are not yet fully identified (Mc-

Dougal and Gamlin 2008), but mounting evidence points to the noradrenergic locus coeruleus (LC) (Murphy

et al. 2014; Varazzani et al. 2015; Joshi et al. 2016) (a core component of the brain’s arousal system (Aston-

Jones and Cohen 2005)) as well as the superior and inferior colliculi (Wang and Munoz 2015). Microstim-

ulation of all three structures triggers pupil dilation (Joshi et al. 2016). Among these structures, activity of

the LC (spontaneous or evoked by electrical stimulation) is followed by pupil dilation at the shortest latency

(Joshi et al. 2016). The LC also has widespread, modulatory projections to the cortex implicated in regulat-

ing central arousal (Aston-Jones and Cohen 2005). Dopaminergic and cholinergic systems, which are closely

connected with the LC (Sara 2009), are likewise implicated in central arousal state (McGinley et al. 2015a)

and may also contribute to task-evoked pupil responses.

We propose that decision-makers’ uncertainty about their choices might shape serial choice biases by

recruiting pupil-linked neuromodulatory systems. Frontal brain regions encoding decision uncertainty send

descending projections to several of these systems (Aston-Jones and Cohen 2005; Sara 2009), which in

turn project to large parts of the cortex, including networks of regions involved in perceptual inference and

decision-making (Siegel et al. 2011). Neuromodulators like noradrenaline can profoundly alter the dynamics

and topology of cortical networks (Marder 2012; Eldar et al. 2013; Polack et al. 2013; McGinley et al. 2015a).

Thus, these brainstem arousal systems might be in an ideal position to transform variations in decision

uncertainty into adjustments of choice behaviour (Yu 2005; Meyniel et al. 2015).

The behavioural effect of pupil-linked arousal might be explained by at least two (not mutually exclusive)

scenarios. First, arousal responses might promote choice alternation at the level of response preparation, by

altering the state of the motor system (de Lange et al. 2013). Second, the arousal response might modulate
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the decision stage – specifically the dynamic updating of beliefs about the upcoming evidence, for example

by shifting the criterion (assumed to be constant in signal detection theory, Figure 1) from one choice to the

next. When this criterion is shifted in the direction opposite to the last choice, alternation ensues. In line

with these ideas, changes in pupil-linked arousal state can indeed translate into specific behavioural effects

(Eldar et al. 2013; de Gee et al. 2014), presumably by interacting with selective cortical circuitry (Donner and

Nieuwenhuis 2013).

Our current observations are not easily reconciled with existing theoretical accounts of the impact of pha-

sic arousal on decision-making. One account posits that threshold crossing of the decision variable triggers

phasic noradrenaline release, facilitating the translation of the decision into a behavioural response (Aston-

Jones and Cohen 2005). In contrast to our observations, this framework focuses on functional effects of

phasic arousal within the same trial, rather than subsequent ones, and it predicts improvements in sensitivity

and/or RT (Cavanagh et al. 2014), rather than changes in bias. Other accounts have proposed that phasic

noradrenaline release facilitates a ‘network reset’ (Bouret and Sara 2005), enabling the transition of neural

decision circuits to a new state (Dayan and Yu 2006). Our group-level finding that high pupil-linked arousal

reduces serial biases might be interpreted as the discarding of post-decisional activity traces due to network

reset (Karlsson et al. 2012; Tervo et al. 2014). However, our analysis of individual choice patterns revealed

that pupil-linked arousal boosted alternation also in those observers who already exhibited a tendency to

alternate their choices, which is not easily reconciled with the network reset idea.

Previous theories of arousal and neuromodulation have coarsely distinguished between two timescales

of arousal fluctuations: Tonic fluctuations over the course of seconds to hours, and phasic responses on a

sub-second timescale, time-locked to rapid cognitive acts (Aston-Jones and Cohen 2005; Yu 2005; Dayan

and Yu 2006). Changes in tonic arousal occur spontaneously (Steriade 2000; McGinley et al. 2015a), and

might also track changes in task utility or uncertainty (Aston-Jones and Cohen 2005; Yu 2005; Nassar et al.

2012; de Berker et al. 2016). Pupil-linked changes in tonic arousal strongly shape the operating mode of cor-

tical circuits, including early sensory cortices, on slow timescales (McGinley et al. 2015a). Phasic pupil-linked

arousal responses, on the other hand, predict behaviour related to the same transient cognitive processes

that drive them (Einhäuser et al. 2008; Preuschoff et al. 2011; de Gee et al. 2014). The uncertainty-linked

pupil responses we identified here built up slowly after choice and predicted choice behaviour several sec-

onds later. Thus, our current results suggest that pupil-linked arousal systems are driven by, and interact

with, cognitive processes also at intermediate timescales; faster than tonic arousal, but more sustained than

task-evoked phasic responses.

The dissociation between pupil- and RT-linked modulatory effects (Figure 5f and Figure S11) on serial

choice bias suggests that decision uncertainty signals were propagated along distinct central neural path-

ways, one linked to pupil responses and the other to RT, which then shaped serial choice biases in different

ways. Even if the same uncertainty signals fed into these pathways, they might have become decoupled

through independent internal noise. Specifically, it is tempting to speculate that the pupil-linked alternation

boost reflected neuromodulator release from brainstem centers (such as noradrenaline from the LC, Tervo
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et al. 2014), whereas RT-linked bias reduction was driven by frontal cortical areas involved in explicit perfor-

mance monitoring and top-down control (such as anterior cingulate cortex, Botvinick et al. 2001; Yeung et al.

2004; Ebitz and Platt 2015). Top-down effects of prefrontal cortex on decision-making (Botvinick et al. 2001;

Miller and Cohen 2001) are commonly associated with explicit strategic effects that are adaptive within the

experimental task. Indeed, the RT-linked modulation of serial bias was adaptive, in that it generally reduced

observers’ intrinsic serial bias. By contrast, pupil-linked arousal modulated serial choice patterns in a way

that was maladaptive for part of the observers (the alternators). This finding might be related to the obser-

vation that maladaptive serial choice biases remain prevalent even in highly trained observers who know the

statistics of the task (Fernberger 1920; Fründ et al. 2014). Taken together, the dissociation between pupil-

and RT-linked effects suggest that serial choice biases result from a complex interplay between low-level,

pupil-linked arousal systems and higher-level systems for strategic control. Future studies should pinpoint

the neural systems underlying these distinct effects, as well as their interactions (Tervo et al. 2014).

In conclusion, our study identified decision uncertainty as a high-level driver of phasic arousal, and it

uncovered a role of this pupil-linked arousal response in shaping the dynamics of serial choice biases – a

pervasive but often ignored characteristic of human decision-making. These insights shed new light on the

link between decision uncertainty, pupil-linked arousal state, and serial dependencies in decision-making.

They set the stage for further investigations into the neural bases of arousal-dependent modulations of serial

choice behaviour.

Methods

Operationalizing decision uncertainty

In signal detection theory, a decision variable dvi is drawn on each trial from a normal distribution N (µ, σ)

with µ corresponding to that trial’s sensory evidence and σ reflecting the internal noise. In Figure 1, we

used the range of single-trial motion energy values [−6, 6] as our µ. We estimated σ from the data using a

probit psychometric function fit on data combined across observers. The probit slope β = 0.367, where its

inverse σ = 2.723 reflected the standard deviation of the dv distribution. The decision bound c was set to 0,

reflecting an observer without overall choice bias. The two pairs of distributions in Figure 1 were generated

using µ = −1 and µ = 1 for weak evidence, and µ = −4 and µ = 4 for strong evidence. To calculate

the relationship between evidence strength and decision uncertainty (Figure 1c), we simulated a normal

distribution of dv for each level of evidence strength, with µ = [0, 6] and σ = 2.723. Since these uncertainty

computations are symmetrical with respect to choice identity, we visualized only the pattern corresponding

to µ > 0 (stimulus B in Figure 1a). All samples from such a distribution were split into correct and error parts

based on their position with respect to the decision bound c. For each combination of evidence strength

and choice, the average uncertainty level is w

uncertainty = 1−
1

n

n∑
i=1

f(|dv− c|) (1)
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where f is the cumulative distribution function of the normal distribution

f(x) =
1

2

[
1+ erf

(
x

σ
√
2

)]
(2)

which transforms the distance between dv and c into the probability of a correct response (Lak et al.

2014).

We simulated ten million trials based on the range of evidence in the data, and for each we computed a

binary choice, the corresponding level of decision uncertainty, and the accuracy of the choice. Figure 1c-e

visualises the relationship between evidence strength, uncertainty and choice accuracy in these simulated

data.

Participants and sample size

Twenty-seven healthy human observers (10 male, aged 23 ± 5.2 years) participated in the study. The ethics

committee at the University of Amsterdam approved the study, and all observers gave their informed con-

sent. We included all observers in each analyses presented in the paper. Each observer participated in one

practice session and five main experimental sessions, each of approximately two hours and comprising 500

trials of the task. The number of observers was selected to allow for robust analyses of individual differ-

ences, as in previous pupillometry work from our lab (de Gee et al. 2014), and the total number of trials per

observer was chosen to allow for robust psychometric function fits and detection of subtle changes in the

fit parameters.

Task and procedure

Observers performed a 2-interval forced choice motion coherence discrimination task at constant luminance

(Figure 2a). Observers judged the difference in motion coherence between two successively presented ran-

dom dot kinematograms (RDKs): a constant reference stimulus (70% motion coherence) and a test stimulus

(varying motion coherence levels specified below). The intervals before, in between, and after (until the

inter-trial interval) these two task-relevant stimuli had variable duration (numbers in Figure 2a) and con-

tained incoherent motion. A beep (50 ms, 440 Hz) indicated the onset of each (test and reference) stimulus.

After offset of the test stimulus, observers had 3 seconds to report their judgment (button press with left or

right index finger, counterbalanced across observers). After a variable interval (1.5-2.5 s), a feedback tone

was played (150 ms, 880 Hz or 200 Hz, feedback-tone mapping counterbalanced across observers). Dot mo-

tion was stopped 2-2.5 s after feedback, with stationary dots indicating the inter-trial interval, during which

observers were allowed to blink their eyes. Observers self-initiated the next trial by button press (range of

median inter-trial intervals across observers: 0.68 to 2.05 s).

The difference between motion coherence of test and reference was taken from three sets: easy (2.5, 5,

10, 20, 30), medium (1.25, 2.5, 5, 10, 30) and hard (0.625, 1.25, 2.5, 5, 20). All observers started with the

easy set. We switched to the medium set when their psychophysical thresholds (70% accuracy defined by a
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cumulative Weibull fit) dropped below 15%, and to the hard set when thresholds dropped below 10%, in a

given session.

Motion coherence differences were randomly shuffled within each block. We applied a counterbalancing

scheme ensuring that within a block, each stimulus category (s2 > or < s1) was followed by itself or its

opposite equally often (Brooks 2012). The algorithm generated sequences of 53 trials, of which the first 50

were used per block.

Random dot kinematograms

Stimuli were generated using PsychToolbox-3 (Kleiner et al. 2007) and presented on a 22” CRT monitor

with a resolution of 1024 x 768 pixels and a refresh rate of 60 Hz. A red ‘bulls-eye’ fixation target (Thaler

et al. 2013) of 1.5◦ diameter was present in the centre of the screen. Dynamic random noise was presented

in a central annulus (outer radius 12◦, inner radius 2◦) around fixation. The annulus was defined by a field

of dots with a density of 1.7 dots/degrees2, resulting in 768 dots on the screen in any given frame. Dots

were 0.2◦ in diameter and had 100% contrast from the black screen background. All dots were divided

into ‘signal dots’ and ‘noise dots’, whose proportions defined the varying motion coherence levels. Signal

dots were randomly selected on each frame, and moved with 11.5◦/s in one of four diagonal directions

(counterbalanced across observers). Signal dots that left the annulus wrapped around and reappeared on

the other side. Signal dots had a limited ‘lifetime’ and were re-plotted in a random location after being on

the screen for 4 consecutive frames. Noise dots were assigned a random location within the annulus on

each frame, resulting in ‘random position noise with a ‘different’ rule (Scase et al. 1996). Three independent

motion sequences were interleaved (Roitman and Shadlen 2002), making the effective speed of signal dots

in the display 3.8◦/s.

Motion energy filtering

Due to the stochastic nature of the dynamic random dot kinematograms, the sensory evidence fluctuated

within and across trials, around the nominal motion coherence level. To quantify behaviour and pupil re-

sponses as a function of the actual, rather than the nominal, single-trial evidence, we used motion energy

filtering to estimate those fluctuations (Adelson and Bergen 1985).

Two spatial filters, resembling weighted sinusoids in opposite phase, were defined by

f1(x, y) = cos4(a) cos(4a)exp(−
y ′2

2σ2
g

) (3)

f2(x, y) = cos4(a) sin(4a)exp(−
y ′2

2σ2
g

) (4)

where a = tan−1(x ′/σc). The parameters σg = 0.05 and σc = 0.35 defined the carrier sinusoid and

the Gaussian envelope, respectively, in line with the response properties of MT neurons (Kiani et al. 2008).
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The coordinate system (x, y) was rotated to match the stimulus’ target direction or its 180◦ opposite. Two

temporal filters were defined by

g1(t) = (kt)ns exp(−kt)

[
1

ns!
−

(kt)2

(ns + 2)!

]
(5)

g2(t) = (kt)nf exp(−kt)

[
1

nf!
−

(kt)2

(nf + 2)!

]
(6)

Where k = 60 reflected the envelope of the temporal filters, and ns = 3 and nf = 5 controlled the width

of the slow and fast filters, respectively (Kiani et al. 2008). A pair of spatio-temporal filters in quadrature

pair was obtained by f1g1 + f2g2 and f2g1 − f1g2. We convolved each filter with the single-trial random

dot movies. The resulting values were squared, and summed together across the two filters (Adelson and

Bergen 1985).

This filtering procedure was performed for each observer’s individual target direction as well as its 180◦

opposite. To avoid cardinal biases in motion perception, we used the four diagonals as target directions

counterbalanced across observers. Outputs of the two filtering operations were subtracted to yield a

direction-selective signal over time (Kiani et al. 2008). To obtain a single measure of sensory evidence per

trial, we averaged over all timepoints within each stimulus interval, and took the difference between motion

energy in the first and second interval as our measure of single-trial sensory evidence. Evidence strength

was defined by taking the absolute value of this sensory evidence, collapsing over the two stimulus identities

(Figure 2b).

Pupillometry

Observers sat in a dark room with their head in a chinrest at 50 cm from the screen. Horizontal and vertical

gaze position, as well as the area of the pupil, were monitored in the left eye using an EyeLink 1000 desktop

mount (SR Research, sampling rate: 1,000 Hz). The eye tracker was calibrated before each block of 50 trials.

Missing data and blinks, as detected by the EyeLink software, were padded by 150 ms and linearly inter-

polated. Additional blinks were found using peak detection on the velocity of the pupil signal and linearly

interpolated. We estimated the effect of blinks and saccades on the pupil response through deconvolution,

and removed these responses from the data using linear regression using a procedure detailed in ref (Knapen

and de Gee 2016). The residual pupil time series were band-pass filtered using a 0.01 to 10 Hz second-order

Butterworth filter, z-scored per run, and resampled to 100 Hz. We epoched trials, and baseline corrected

each trial by subtracting the mean pupil diameter 500 ms before onset of the reference stimulus.

We included all trials from all five main sessions (i.e., excluding the practice session) in the analyses

reported in this paper. The time series of consecutive trial-wise stimuli, choices, RTs and pupil responses

was necessary for the regression model of serial bias modulation. Observers were well-practiced in the

task structure after the practice session. As a consequence, they made few blinks during the trial intervals

(on average across observers, only 7.7% of trials contained more than 50% interpolated samples). The
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percentage of interpolated trials did not correlate with the estimated effect of pupil responses on serial

choice bias (r = -0.268, p = 0.175, Bf10 = 0.369).

Quantifying pupil timecourses and single-trial responses

To characterize the time-course of uncertainty encoding in the pupil response, we regressed across-trial evi-

dence strength onto each sample of the baseline-corrected pupil signal, separately for correct and error trials

(Figure 3b). The design matrix for this regression also included an intercept and three nuisance covariates:

(i) log-transformed RTs, (ii) sample-by-sample horizontal gaze coordinates and (iii) sample-by sample vertical

gaze coordinates. We tested the significance of this regression timecourse using cluster-based permutation

statistics (Blair and Karniski 1993).

We took the mean baseline-corrected pupil signal during 250 ms before feedback delivery as our single-

trial measure of pupil response. Because of the temporal low-pass characteristics of the sluggish peripheral

pupil apparatus (Hoeks and Ellenbroek 1993), trial-to-trial variations in RT can cause trial-to-trial in pupil

responses, even in the absence of amplitude variations in the underlying neural responses. To specifically

isolate trial-to-trial variations in the amplitude (not duration) of the underlying neural responses, we removed

components explained by RT via linear regression

y ′ = y− (yT r)r (7)

where y was the original vector of pupil responses, r was the vector of the corresponding single-trial

RTs (log-transformed and normalized to a unit vector), and T denoted matrix transpose. The residual y ′

thus reflected pupil responses, after removing variance explained by trial-by-trial RTs. This residual pupil

response was used for all analyses reported in the main text.

Quantifying post-error slowing

We quantified post-error slowing, for tertiles of previous trial pupil responses, as described by Dutilh et al.

2012. Briefly, we selected those error trials that were both preceded and followed by a correct trial, and

subtracted the pre-error RT from the associated post-error RT. This procedure ensured that estimates of

post-error slowing could not be driven by error-unrelated, intrinsic fluctuations in RT over the course of a

session. Before this subtraction, we removed trial-by-trial evidence strength from RTs using linear regression,

to account for the large variations in RT with stronger sensory evidence (Figure 2d).

Quantifying the psychometric function

We modeled the psychometric function (Figure S4a) as follows. The probability of a particular response

rt = 1 on trial t was described as:

P(rt = 1|s̃t) = γ+ (1− γ− λ)g(δ+ αs̃t) (8)
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where λ and γ were the probabilities of stimulus-independent errors (‘lapses’), s̃t was the signed stimulus

intensity (here: signed sensory evidence as in Figure 2b), g (x) = 1/(1 + e−x) was the logistic function, α

was perceptual sensitivity, and δ was a bias term. The free parameters γ, λ, α and δ were estimated by

minimizing the negative log-likelihood of the data (using Matlab’s fminsearchbnd). We constrained γ and λ

to be identical, so as to estimate a single, choice-independent lapse rate.

For the quantification of serial choice bias (Figure S5), we binned the data by previous choices and by

previous pupil responses or RT. For each of those subsets of trials, we fit the psychometric function (equation

8) to the choices on the subsequent trials. The resulting bias term α was transformed from log-odds into

probability by p = eα/(1 + eα). This quantified P(rt = 1) for ambiguous evidence (i.e., strength of zero).

Collapsing these values across the two choice options (shown separately in Figure S5) yielded the pooled

measure of choice repetition probability in Figure 4a,f.

Quantifying perceptual sensitivity using cumulative Weibull function fits

In Figure 3d, S1c and S3b, we fit a cumulativeWeibull function to accuracy as a function of evidence strength.

The probability of a correct response ct = 1 on trial t was defined as:

P(ct = 1|st) = 1− (0.5− λ)f
(
(
st

θ
)β

)
(9)

where st was the absolute evidence strength, f(x) = (1− e−x) was the cumulative Weibull function, λ

was the lapse rate, θ was the threshold indicating at which level of evidence strength an accuracy of ~80%

is achieved, and β was the slope of the cumulative Weibull function. The free parameters θ, β and λ were

estimated by minimizing the negative log-likelihood of the data (using Matlab’s fminsearchbnd). Perceptual

sensitivity was then defined as 1/θ.

Modeling the modulation of serial choice bias by uncertainty-dependent variables

We modeled the pupil- and RT-linked modulation of serial choice bias by extending an established regres-

sion approach (Fründ et al. 2014). The basic regression model extended the psychometric function model

(equation 8) by means of a history-dependent bias term δhist (ht), which was a linear combination of previous

stimuli and choices

P(rt = 1|s̃tht) = γ+ (1− γ− λ)g(δ(ht) + αs̃t) (10)

with

δ(ht) = δ ′ + δhist(ht) = δ ′ +

K∑
k=1

ωkhkt (11)
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where the bias term δ(ht) was the sum of the overall bias δ ′ (see equation 8) and the history bias

δhist(ht) =
∑K

k=1 ωkhkt, where ωk were the weights assigned to each previous stimulus or choice. We

here modeled

ht = (rt−1, rt−2, rt−3, rt−4, rt−5, rt−6, rt−7, zt−1, zt−2, zt−3, zt−4, zt−5, zt−6, zt−7) (12)

as a concatenation of the last seven responses and stimuli (Fründ et al. 2014). This procedure allowed us

to quantify the effect of past trials on current choice processes (Figure 5c). We convolved every set of seven

past trials with three exponentially decaying basis functions (Fründ et al. 2014). Positive history weights ωk

indicated a tendency to repeat the previous choice, or to make a choice that matched the previous stimulus.

Negative weights described a tendency to alternate the corresponding history feature.

To model the effect of pupil-linked uncertainty on history biases, we extended this model by adding a

multiplicative interaction term
∑K

k=1 ω
′
khktpkt, which described the interaction of pupil responses with the

choice and stimulus identities at the last seven lags:

P(rt = 1|s̃t,ht,pt) = γ+ (1− γ− λ)g(δ(ht,pt) + αs̃t) (13)

with

δ(ht,pt) = δ ′ + δhist(ht,pt) = δ ′ +

K∑
k=1

ωkhkt +ω ′
khktpkt +ω ′′

kpkt (14)

where ω ′
k were the history x pupil interaction weights, ω

′′
k were the pupil weights and

pkt = (pt−1, pt−2, pt−3, pt−4, pt−5, pt−6, pt−7 )

was a concatenation of the last seven pupil responses. The term ω ′′
kpkt acted as a nuisance covariate. To

simultaneously model the effects of pupil responses and log-transformed RT, our model also included RT

and history x RT terms, generated using the same procedure.

All parameters were fit using an expectation maximization algorithm. To assess whether individual ob-

servers were significantly influenced by their experimental history, we ran 1,000 iterations of permuting

all trials, fitting the full model, and subsequently comparing the likelihood of the intact model to this null

distribution (where permutation nullifies true history effects) (Fründ et al. 2014). Confidence intervals for

individual regression weights were obtained from a bootstrapping procedure.

Serial bias and outcome-dependent choice strategies

The history weights for past stimuli and responses allowed us to characterize different decision strategies

(Fründ et al. 2014) (Figure 5d). Positive weights associated with the previous choice, or the previous stimulus
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category, indicate a tendency to repeat this previous choice, or to make a choice corresponding to the

previous stimulus, respectively. Negative weights correspond to a tendency to alternate previous choice or

stimulus. In the left and right triangle of this strategy space, the magnitude of the response weight is larger

than the magnitude of the stimulus weight. Consequently, strategies are dominated by the previous choice

and can be simply defined as choice alternation (left) or choice repetition (right).

In the upper and in the lower triangle, the magnitude of the stimulus weight is larger than the magnitude

of the response weight, so strategies are dominated by the identity of the previous stimulus (which is only

known to the observer as a function of their previous response and feedback). In the upper and lower

triangle, strategies are thus defined by the sign of the stimulus weight. In the upper triangle stimulus weights

are positive, indicating a tendency to repeat the previous stimulus. On a correct trial, previous choice and

stimulus are equal and therefore, repeating the previous stimulus is equal to repeating the previous choice

(a win-stay strategy). On errors, the previous choice is opposite to the previous stimulus and repeating the

previous stimulus is equal to alternating the previous choice (lose-switch strategy). Conversely, in the lower

triangle stimulus weights are negative, reflecting a tendency to alternate the previous stimulus. This implies

a tendency to alternate the previous choice if the previous choice was correct (win-switch strategy) and a

tendency to repeat the previous choice in case of a previous error (lose-stay strategy).

The weights for previous choices and stimuli can easily be combined to obtain weights reflecting a ten-

dency to repeat previous correct or incorrect choices (Figure S6). Specifically, correct weights are defined by

choice+ stimulus, and error weights by choice− stimulus (Fründ et al. 2014). The same holds for modu-

lation weights. This transformation is identical to fitting a model with regressors for previous successes and

failures (Busse et al. 2011; Abrahamyan et al. 2016).

Statistical tests

We used non-parametric permutation testing to test for the group-level significance of individually fitted

parameter values (Figure 3 and Figure 5e,g). We randomly switched labels of individual observations either

between two paired sets of values, between one set of values and zero, or between two unpaired groups.

After repeating this procedure 10,000 times, and computing the difference between the two group means

on each permutation, the p-value was the fraction of permutations that exceeded the observed difference

between the means. All p-values reported were computed using two-sided tests.

In Figure 4, we split the data into tertiles of pupil response or RT, and computed next trial serial choice

bias, signed choice bias, overall choice bias, perceptual sensitivity, lapse rate, RT and post-error slowing

in each bin. We used a repeated-measures ANOVA to test for the main effect of bin on each dependent

variable. We further used Bayes Factors (Bf), obtained from a Bayesian one-factor ANOVA (Rouder et al.

2012), to support conclusions about null effects observed. Bf10 quantifies the evidence in favour of the null

or the alternative hypothesis, where Bf10 < 1
3
or > 3 is taken to indicate substantial evidence for H0 or H1,

respectively. Bf10 = 1 indicates inconclusive evidence. We similarly computed Bf10 for correlations, based



2.1
∣∣ Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias 35

on the Pearson correlation coefficient (Wetzels and Wagenmakers 2012).

The p-value for the difference between the two correlation coefficients (choice weight by pupil mod-

ulation weight vs. choice weight by RT modulation weight), shown in Figure 5f, was obtained through

permutation testing. To generate a null distribution of no difference, we randomly switched (or not, depen-

dent on a simulated coin flip) each observer’s RT and pupil modulation weights, after which we computed

the between-subject correlation between choice weights and pupil modulation weights as well as between

choice and RT modulation weights. Repeating this procedure 10,000 times generated a distribution of the

difference in correlation, under the null hypothesis of no difference.

Data availability

All raw and processed data, as well as the code to reproduce all analyses and figures, are available at

http://dx.doi.org/10.6084/m9.figshare.4300043.
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Supplementary Figures
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Figure S1. RTs scale with decision uncertainty. (a) RT distributions from stimulus offset, shown for all trials (left), split
into five bins of evidence strength (middle), and separately for correct and error trials (right). For each observer, the
number of trials was counted in each 40-ms wide bin from 0 to 1.5 seconds after stimulus offset, and normalized by the
total number of trials. Shaded error bars indicate group median and inter-quartile range. Dotted line indicates group
mean of individual RT medians. (b) RT predicted choice accuracy over a range from about 85% to about 60% correct,
and not below chance level (50%). This relationship is consistent with decision uncertainty, but not error detection,
which predicts accuracies of a range from 100% to 0% correct. Left: Accuracy for 12 bins of RT, shaded error bars
indicate group mean ± s.e.m. Right: Individual logistic regression weights, using RT to predict single-trial accuracy.
(c) Slow RTs reflected lower perceptual sensitivity. Left: Average cumulative Weibull psychometric function fits and
data points (group mean ± s.e.m.), separately for the lowest and highest RT tertiles. Right: Individual perceptual
sensitivity, separately for lowest and highest RT tertiles. In b-c, we z-scored and log-transformed RTs within each block
and removed trial-to-trial variability shared with pupil responses via linear regression before computing statistics. *** p
< 0.001, permutation test. (N=27, group mean ± s.e.m.)
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Figure S2. Behaviour over sessions. Data from each observer were collected over 5 main experimental sessions of 500
trials. Data from the practice session are not shown here. After discarding trials in which no response was recorded, each
session contained an average of 498 trials (range 465-500). (a) Psychometric and chronometric functions, as in Figure 2d,
separately for each session. (b) History kernels as in Figure 5c, separately for each session. (N=27, group mean± s.e.m.)
(c) Individual history kernels as in Figure 5c, separately for each session. Colors indicate the choice weight as derived
from themodel in Figure 5c-d, fit across all sessions combined. To complement these visual representations of behaviour
over sessions, we computed repetition probability for three bins of pupil responses (Figure 4a), separately in each of the
five sessions. Using a repeated measures ANOVA, we found no main effect of session (F4,104 = 1.591, p = 0.182, Bf10 =
0.078) nor an interaction between session and pupil bin (F8,208 = 1.333, p = 0.229, Bf10 = 0.023) on repetition probability.
This analysis indicates that history biases do not detectably change over the course of learning, adding further evidence
to the idea that serial choice biases are stable, individual traits.
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trials. (b) High pupil responses reflected lower perceptual sensitivity. Average cumulative Weibull psychometric function
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Figure S7. Modeling results do not depend on simultaneous fitting of both pupil and RT. Running two separate
regression models, one including only pupil response and one only including RT as a modulatory variable, gives the
same results as shown in Figure 5 (where the two were included in the regression model simultaneously). (a-c) as in
Figure 5e-g, but with data obtained from two separate regression models.
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Figure S8. Predictive effect is specific for pupil response on the preceding trial. (a) Baseline pupil diameter on the
current trial did not predict a modulation of serial choice bias. Repetition probability, for tertiles of current trial baseline
pupil diameter (main effect of one-way repeated measured ANOVA, F2,52 = 1.164, p = 0.320). (b) Pupil modulation of
choice bias was only significant (** p < 0.01) across the group of observers at lag 1 (same data as Figure 5e), and did
not reach significance beyond one trial in the past. This finding indicates that the modulation of choice biases by pupil
responses was more short-lived than the overall serial choice biases shown in Figure 5c. (N=27, group mean ± s.e.m.)

low med high

Previous trial RT

0.45

0.5

0.55

P
(r

e
p

e
a

t)

***

short med long

Latency

current - previous trial

0.45

0.5

0.55

P
(r

e
p

e
a

t)

Pupil x choice

Pupil x stimulus

RT x choice

RT x stimulus

-0.1

-0.05

0

0.05

B
e

ta
 w

e
ig

h
ts

 (
a

.u
.)

**

n.s.

**

n.s.

* n.s.

cba

Bf
10

 = 0.348

Figure S9. Serial choice biases are not explained by variations in interval timing. (a) To measure the passage of time
between trials, we computed the latency between the onset of each test stimulus and the onset of the next trial?s test
stimulus. These latencies correlated with RTs (mean Spearman’s ± 0.296, range 0.086 to 0.726). Removing these trial-
by-trial latencies from RT (using linear regression) did not abolish the effect of RTs on serial choice bias (main effect of RT
bin, F2,52 = 10.846, p < 0.001, Bf10ha = 225.756). (b) Latencies did not predict a modulation of serial choice bias (main
effect of latency bin, F2,52 = 1.541, p = 0.224, Bf10 = 0.349). These results suggest that the uncertainty component of
RTs, rather than the passage of time between trials, modulated serial choice bias. (c) We tested whether the modulation
of serial bias by pupil response could be explained by trial-to-trial variations in the jittered interval between s1 and s2,
or between button press and feedback delivery. When these random variations were long, they could cause larger pupil
responses, irrespective of the amplitude of the underlying neural input, by driving the peripheral pupil apparatus for
a longer duration. We removed these trial-to-trial interval durations from pupil responses using linear regression, and
reran the analysis shown in Figure 5e. Although pupil responses were weakly correlated to the interval between s1 and
s2 (mean Spearman’s ρ -0.007, range -0.055 to 0.047, significant in 3 out of 27 observers) and the interval between
button press and feedback (mean Spearman’s ρ 0.056, range -0.025 to 0.290, significant in 13 out of 27 observers),
removing this variance from trial-by-trial pupil responses did not change the predictive effect of pupil responses on
serial choice bias. Statistics indicate the main effect of a one-way ANOVA (a, b) and permutation test (c). *** p < 0.001,
** p < 0.01, * p < 0.05, n.s. p < 0.05. (N=27, group mean ± s.e.m.)
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Figure S10. Serial choice biases are not explained by post-feedback pupil responses. To test whether serial choice
biases were modulated by pupil responses to the feedback tone beyond pre-feedback uncertainty signaling, we com-
puted post-feedback values as the mean pupil diameter 515-765 ms after feedback tone delivery. This window was
defined as the peak of the grand average pupil response, and its length set equal to our pre-feedback window. (a)
Serial choice bias for tertiles of previous trial post-feedback pupil responses (main effect of pupil bin, F2,52 = 5.479, p
= 0.007, Bf10 = 6.014). (b) Beta weights for the interaction between previous trial post-feedback pupil response and
choice or stimulus, as in Figure 5e. (c) We removed the effect of single-trial pre-feedback from the post-feedback signal
using linear regression. The residual reflected the effect of feedback on uncertainty scaling in the pupil, after taking into
account the scaling already present before the feedback tone. Serial choice bias, for tertiles of residual pupil responses
(main effect of pupil bin, F2,52 = 1.063, p = 0.353) (d) Modulation weights for post-feedback pupil responses, with pre-
feedback pupil responses added as a covariate in the same regression model. The information about serial biases was
already contained in the pupil signal before feedback delivery. Statistics indicate the main effect of a one-way ANOVA
(a, c) and permutation test (b, d) . *** p < 0.001, ** p < 0.01, n.s. p > 0.05. (N=27, group mean ± s.e.m.)
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Figure S11. Differential gating of individual choice modulation by trial outcome. Pupil-and RT-linked modulations
of serial choice bias were differentially gated by trial outcome. We computed correct and error modulation weights
from choice and stimulus modulation weights (see Methods). (a) Correlation between choice weights and pupil modu-
lation weights, separately for correct and incorrect choices. (b) Correlation between choice weights and RT modulation
weights, separately for correct and incorrect choices. Colors indicate the choice weight as derived from the basic model
in Figure 5c. Error bars indicate a 68% confidence interval obtained from a bootstrap. Triangles mark the intercept of a
linear regression line; filled triangles indicate a group-level effect different from zero (as in Figure S6d). *** p < 0.001,
** p < 0.01, * p < 0.05, n.s. p > 0.05. Figure 5f shows that RT reduced observers’ intrinsic serial biases while pupil
responses generally promoted choice alternation. These results further dissociate these modulatory effects, in showing
that they were ‘gated’ by trial outcome in distinct ways: Large pupil-linked arousal pushed observers to increase their
intrinsic serial bias after correct trials, as indicated by the positive correlation in a. After error trials, on the other hand,
a correlation of the opposite sign was observed indicating that across trial outcomes, these two effects nullified and
lead to an overall boost in alternation. This stood in sharp contrast to the group-level effect of RT, which predicted a
reduction in intrinsic serial bias across the group. This effect was strongly present after error trials (b), suggesting an
adaptive control mechanism could be at work only after negative feedback is received. After correct trials, high RTs
indicated a slight reduction in bias, but this negative correlation was not significant across the group.
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Abstract

Perceptual decision-making is biased by previous events, including the history of preceding choices: Ob-

servers tend to repeat (or alternate) their choices more often than expected by chance. Here, we find

that such sequential choice biases result from the accumulation of action-independent, internal decision

variables. Human observers performed different variants of a visual motion discrimination task around psy-

chophysical threshold. First, we decoupled perceptual choices and motor responses on a trial-by-trial basis,

to disentangle their relative contributions to sequential biases. The impact of previous choices outweighed

the impact of previous motor responses and previous stimuli. Second, observers performed the task in both

random and biased environments (containing systematic tendencies towards either repetition or alternation

of motion directions) and in the absence of external feedback about the correctness of their choices. Ob-

servers adapted their sequential choice biases to the biased environmental statistics, in a way that indicated

memory for previous choices and predicted their overall performance. We further found that this adaptation

was enhanced by the confidence about the correctness of previous choices, consistent with the idea that

decision variables driving choice encode both the categorical choice, as well as the graded confidence as-

sociated with it. Thus, our results are consistent with the idea that high-level decision variables, dissociable

from both, sensory input and motor output, are accumulated across choices towards biases for upcoming

choices. These insights constrain the candidate neural sources of sequential choice biases.

This chapter was reprinted under a CC-BY 4.0 license. doi: 10.1101/172049. AUTHOR CONTRIBUTIONS: A.B., A.E.U. and T.H.D.
designed research; A.B. performed research; A.B. analyzed data; AEU re-analyzed the data with separate code; A.B., A.E.U. and T.H.D.
wrote the paper; T.H.D. supervised research. At press time, the manuscript was under revision at Journal of Neuroscience.
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Introduction

Organisms’ judgments about their environment do not only depend on the current sensory input, but are

systematically biased by the history of preceding choices and stimuli (Fründ et al. 2014). Several studies have

found that observers repeat (or alternate) their perceptual choices more often than expected by chance

(Fernberger 1920; Gold et al. 2008; de Lange et al. 2013; Akaishi et al. 2014; Fischer and Whitney 2014;

Abrahamyan et al. 2016; Pape and Siegel 2016; St. John-Saaltink et al. 2016; Fritsche et al. 2017; Urai

et al. 2017). Such sequential biases are ubiquitous across domains of decision-making (Leopold et al. 2002;

Allefeld et al. 2013; Padoa-Schioppa 2013).

One idea holds that sequential choice biases result from accumulation of environmental states across

decisions. Computational models postulate that sequential choice biases result from the accumulation of

decision-related neural signals (Glaze et al. 2015; Bonaiuto et al. 2016). In that way, observers may update

their prior beliefs about the next stimulus and can adapt behavior to their environment (Yu and Cohen

2008; Glaze et al. 2015). In standard perceptual choice tasks used in the laboratory, stimulus sequences are

typically uncorrelated. In this context, sequential biases in observers’ choices degrade their performance

(Abrahamyan et al. 2016). However, more recent studies introduced perceptual choice tasks with correlated

stimulus sequences (Goldfarb et al. 2012; Glaze et al. 2015; Abrahamyan et al. 2016; Kim et al. 2017). Here,

sequential biases should improve performance.

Real-life decisions are often associated with uncertainty about their outcome, due to weak evidence

and the absence of immediate feedback. Then, decision-makers can only accumulate their own inferences

about the state of the environment. These inferences are encoded in the so-called ‘decision variable’, on

which decision-makers base their categorical choices (Bogacz et al. 2006; Gold and Shadlen 2007). Neural

correlates of the decision variable are distributed across many brain regions (Gold and Shadlen 2007; Siegel

et al. 2011; Brody and Hanks 2016). They are expressed as evolving motor plans (Gold and Shadlen 2007;

Donner et al. 2009; de Lange et al. 2013) as well as in action-independent formats (Bennur and Gold 2011;

Hebart and Hesselmann 2012; O’Connell et al. 2012; Hebart et al. 2016). Decision variables not only reflect

the categorical choice but also the observer’s confidence about the correctness of that choice, henceforth

referred to as decision confidence (Kiani and Shadlen 2009; Hebart et al. 2016).

These considerations raise a number of questions. Do sequential biases emerge from the accumulation of

decision variables in motor or action-independent formats? Does this accumulation help to adapt sequential

biases to the statistical structure of the evidence? Does the strength of such adaptation depend on decision

confidence? The latter might be particularly important under conditions, in which no unambiguous external

feedback about the true stimulus category is available. Here, we addressed these issues in a visual motion

discrimination task widely used in the neurobiology of choice (Gold and Shadlen 2007). To this end, we

systematically modeled human choice behavior under experimental manipulations tailored to address the

above questions.
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Materials and Methods

We report results from two experiments (referred to as Experiment 1 and 2) quantifying sequential biases

during a random dot motion discrimination (up vs. down) task widely used in monkey (Gold and Shadlen

2007) and human (Donner et al. 2009; de Lange et al. 2013; Kelly and O’Connell 2013; Hebart et al. 2016)

work on perceptual choice. Analyses of behavior irrespective of sequential effects from Experiment 1 were

previously published (Tsetsos et al. 2015). Here, we re-analyzed these data to quantify the dependence of

choice on previous stimuli, choices, and motor responses. The two experiments aimed at manipulating on

different aspects of choice behavior, and thus used different variants of the basic random dot motion task.

We used variants of the same statistical approach (Fründ et al. 2014) to model sequential biases in both.

Participants

Six healthy human observers (2 males, mean age: 25; range: 22–29 years) participated in Experiment 1,

which was approved by the ethics committee of the Department of Psychology of the University of Ams-

terdam (reference number 2011-OP-1588). 26 healthy observers (15 female, mean age: 26, range: 20 - 36)

participated in Experiment 2, which was approved by the local ethical review board (Ärztekammer Ham-

burg, reference number PV4714). Four participants were excluded from the data analysis: Three of those

did not complete all sessions and one exhibited substantially worse performance than the rest of the group

(64 percent correct overall, and 63 percent correct for the easiest trials in the three levels with highest mo-

tion coherence). 22 participants remained for the data analysis. All observers gave their written informed

consent.

Experimental design

Experiment 1

The following description summarizes the aspects of the experimental design that were most important

to current paper; a comprehensive description can be found in our previous paper (Tsetsos et al. 2015).

Random dot kinematograms (Figure 1A) were composed of 785 (average) white dots on a black screen.

The dots were moving within a circle of 9.1° diameter. A red fixation cross of 0.4° x 0.4° was centered

in the middle of the circle. The dot density was 12.07 dots/deg2. The population of dots was split into

“signal dots” and “noise dots”. The signal dots moved either upwards or downwards with a velocity of

2.6°/s. The noise dots changed position randomly from frame to frame. The percentage of signal dots

defined the motion coherence, a measure of motion strength. On each trial, three different sequences of

dot motion (at the same coherence and direction) were presented in an interleaved fashion, making the

effective speed of signal dots 0.87 °/s. Further, one of six different levels of motion coherence, (0.05, 1.26,

3.15, 7.92, 19.91 and 50%) and one of six different viewing durations (150, 300, 600, 1200, 2400, and 4800

ms) were chosen randomly, under the constraint that they occurred equally often within a block of 144 trials.
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Figure 1. Quantifying sequential choice bias and behavioral task. (a), (b) Behavioral task protocols. In all experiments
presented here, the net direction and motion coherence of a dynamic random dot pattern varied from trial to trial, and
observers were asked to judge the net direction (“up” vs “down”). (a) Experiment 1. Random dot motion task with
variable decision-response mapping. At the beginning of each trial a red fixation cross was shown for 0.4 – 0.5s. A
decision-response cue was shown for 1s before the presentation of the stimulus in the Pre condition and after stimulus
presentation in the Post condition. Six different durations of the stimulus presentation ranging from 0.15s to 4.8s
were used. In both conditions the presentations of the mapping cue (instructing the mapping between choice and
motor response) and of the stimulus were separated by a delay of 0.2 – 0.4s, in which the fixation cross was shown.
Participants were instructed to respond after stimulus presentation in the Pre condition and after the presentation of
the mapping cue in the Post condition. Auditory feedback was given after incorrect responses. (b) Experiment 2. Top:
Random dot motion and a red fixation cross were shown throughout the task. Each trial started with a fixation interval
of 1-5s. A beep indicated the onset of the decision interval, in which a coherent motion signal of dots moving either
upwards or downwards was shown for 0.75s. A second beep indicated the offset of the evidence and the onset of
the response interval, which ended as soon as the participant pressed one of two buttons to state their decision or
after 3s in case no response was given. Bottom: Three different manipulations of the repetition probability between
stimulus directions were used across different sessions, resulting in a Neutral condition (random stimulus sequence with
repetition probability of 0.5), a Repetitive condition (stimulus repetition probability of 0.8) and an Alternating condition
(stimulus repetition probability of 0.2). (c) Local streaks of repeated choices in the face of ambiguous or weak evidence
of opposite sign (example observer from Experiment 2). (d) Psychometric functions of two example participants from
Experiment 2 conditioned on previous choice. Positive values of stimulus intensity correspond to upward motion and
negative ones to downward motion. The dotted line referred to previous ‘up ‘choices (i.e., choice repetitions) and the
dashed curve to previous ‘down’ choices (i.e., choice alternations). Left: Leftward shift from dashed to dotted line,
indicating a bias to repeat the previous choice. Middle: Overlap of dashed and dotted curves, indicating absence of
sequential bias. Gray line, psychometric function computed based on all trials, irrespective of previous choice.

Stimuli were presented on a 22-inch CRT monitor with a resolution of 800 x 600 pixel and a frame rate of

100 Hz at a viewing distance of 68 cm. The participants were instructed to maintain their gaze on the red

cross throughout the trial and judge the net motion direction. The motion viewing interval was followed

by a variable delay (uniform distribution ranging from 200 to 400 ms), after which the observers had to

report their choice by pressing one of two buttons on a computer keyboard, with either the left or the

right index finger. Participants received auditory feedback after incorrect responses (a 1000 Hz tone of 100

ms). Perceptual choices (‘up’ vs. ‘down’ motion direction) were decoupled from motor responses (left vs.
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right button press) by varying their mapping from trial to trial. This mapping was instructed before motion

viewing in one condition (‘Pre’ condition) and after motion viewing in the other (‘Post’), by means of a visual

cue that mapped each of the two possible net motion directions (presented as arrows) onto the left or right

side. This mapping was randomly selected on each trial. Conditions alternated across blocks. Observer 1-5

participated in both conditions. Participant 6 participated only in the Post condition. We pooled the data

from participants 1-5 across both conditions.

Experiment 2

To test for the adaptability of sequential choice biases, we manipulated the sequential stimulus statistics

between experimental sessions, to make people perform the task in ‘Repetitive’, ‘Neutral’ (no sequential

dependence), or ‘Alternating’ environments. Stimuli, task, and procedure for Experiment 2 were identical

to Experiment 1, with the following exceptions (Figure 1B). The circle within which the dots were moving

had an outer radius of 12° and an inner radius of 2°. The density of dots was 1.7 dots/deg2 and each dot

had a diameter of 0.2°. The dots moved with a velocity of 11.5°/s and each dot had a lifetime of 6 frames.

We used the following coherence levels: 0, 5, 10, 20, 40 and 60% (equally many trials per coherence level).

A red bulls-eye fixation target (Thaler et al. 2013) at the center of the screen as well as randomly moving

dots (0% coherence) were presented throughout each block. The first trial of each block started with a

baseline interval of 5 s, with random dot motion. A beep (duration: 50 ms, sine wave at 440 Hz) indicated

the onset of the motion-viewing interval with a fixed duration of 0.75 s and variable coherence levels and

directions (see above). A second beep indicated the offset of the motion-viewing interval and prompted the

observers’ response. Observers reported their perceptual choices by pressing one of two keyboard buttons,

with the index finger of the left or right hand. After button press (or a response deadline of 3 s), the inter-

trial interval started. Inter-trial intervals were uniformly distributed between 1 and 5 s. Observers received

auditory feedback during the training sessions, but no feedback during the subsequent six sessions of the

main experiment. The motion viewing duration of 0.75 s was selected because a previous human study

found little integration of motion information beyond that duration (Tsetsos et al. 2015), similar to what

had been observed in monkeys (Kiani et al. 2008). We used a fixed mapping between choices and motor

responses, whereby the two possible mappings (right-hand button for up, left-hand for down, or vice versa)

were counterbalanced across observers. Experiment 2 consisted of seven sessions per participant (one for

training and six main sessions), whereby each session was divided into 10 blocks of 60 trials. Critically, the

transition probabilities (over trials) between the two alternative motion directions (i.e. up vs. down) were

manipulated across experimental sessions (Figure 1B, right). Specifically, the probability of a repetition of

motion directions (regardless of their identity) was defined as

P(stimulus repetition) = 1− P(stimulus alternation)

= P(stimulusn = up | stimulusn−1 = up)

= P(stimulusn = down | stimulusn−1 = down)

(1)
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whereby n indexes trials. This repetition probability was held constant within each session, but varied

across the main experimental sessions between the following values: 0.5 in the ‘Neutral’ condition, 0.8 in the

‘Repetitive’ condition, and 0.2 in the ‘Alternating’ condition. The Neutral condition allowed for quantifying

observers’ intrinsic sequential choice bias, which we used as a baseline for quantifying their adaptation to

the biased sequential statistics of the Repetitive and Alternating conditions.

During the training session, the motion direction on each trial was chosen randomly and independently,

and all participants started with the ‘Neutral’ condition in session 1 of the main experiment (which was

repeated in session 4). Half of the participants then performed the Repetitive condition in sessions 2 and

5, and the Alternating condition in sessions 3 and 6. For the other half of participants, the order of the

Repetitive and Alternating conditions was flipped.

Observers were instructed to maintain stable fixation and perform the motion discrimination task as

accurately as possible. They were informed that the sequential statistics of the stimulus identities would

change from session to session, but stay constant within each session. Specifically, they were informed that

the stimulus sequences could be ‘like produced by a coin flip’ (Neutral condition), ‘more likely repeating

than alternating’ (Repetitive condition), or ‘more likely alternating than repeating’ (Alternating condition).

Observers were neither informed about the order of these conditions, nor about the exact transition prob-

abilities, nor about the use of this information for their choice behavior.

Modeling sequential choice bias

We used logistic regression (Fründ et al. 2014; Urai et al. 2017) to model observers’ sequential choice biases

under the different experimental conditions assessed here. The basic approach consisted of adding a linear

combination of different components of trial history (which depended on the experiment), as a bias term to

a logistic function model of the choice probability. Another variant of this approach estimates the effect of

previous choices, contingent on their success or failure (Busse et al. 2011; Abrahamyan et al. 2016). We here

used a variant that quantified the relative contributions of previous stimuli, choices, and (for Experiment 1)

motor responses. We also assessed the effect of previous correct vs. incorrect choices, by re-combining

the weights for previous stimuli and choices (Fründ et al. 2014), and the modulation of choice weights by

reaction time (for Experiment 2).

Standard psychometric function fit

The probability of making one of the two choices rt = 1 (rt = 1 for ‘choice up’, rt = −1 for ‘choice down’)

on trial t, given the signed stimulus intensity s̃t (i.e., motion coherence times direction) was described by:

P(rt = 1|s̃t) = γ+ (1− γ− λ) g(δ+ αs̃t). (2)

where γ and λ were the lapse rates for the choices rt = 1 and rt = −1, and g (x) = 1
1+e−x was the logistic

function. The bias term δ, the offset of the psychometric function, described the overall bias for one specific
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choice. α was the slope of the stimulus-dependent part of the psychometric function, describing perceptual

sensitivity.

For visualizing the effect of previous on current choice (Figure 1D), we separated the data from the Neu-

tral condition into two groups, conditioned on the choice from the previous trial, and fitted the psychometric

function, i.e. the probability of upward choices, separately for each of the two conditions. Results from two

example observers are shown in Figure 1D. The first example observer (left panel) showed a sequential bias

towards repeating choices, evident as a rightward shift of the dashed compared to the dotted line. The

second observer (right panel) exhibited no sequential choice bias.

Psychometric function fit with history contributions for stimulus and choice

We estimated the contribution of the recent seven stimuli and choices by adding a history-dependent bias

term to the argument of the logistic function (Fründ et al. 2014):

P (rt = 1|s̃t,ht) = γ+ (1 γ− λ) g (δ(ht) + αs̃t) (3)

with

δ (ht) = δ
′
+ δhist (ht) = δ

′
+

14∑
k=1

ωkhkt (4)

The history bias δhist (ht) =
∑14

k=1 ωkhkt consisted of the sum of the preceding seven responses rt−1 to

rt−7 and the preceding seven stimulus identities (i.e., motion directions) zt−1 to zt−7, each multiplied with

a weighting factor ωk. The vector ht was written as:

ht = (rt−1, rt−2, rt−3, rt−4, rt−5, rt−6, rt−7 , zt−1, zt−2, zt−3, zt−4, zt−5, zt−6, zt−7)

All terms in htwere coded as -1 or 1, with the exception of terms coding for stimuli with zero coherence,

which were set to zero. The weighting factorsωk thus modeled the influence of each of the seven preceding

responses and stimulus identities on the current choice. All weights were estimated with the same procedure

as described previously (Fründ et al. 2014; Urai et al. 2017). Specifically, every set of seven past trials was

convolved with three orthogonalised, exponentially decaying basis functions (with decay constants 0, 0.5

and 0.25), reducing the number of estimated parameters from 7 to 3 for each history feature. The estimated

coefficients were then multiplied with their basis functions, resulting in the full 7-lag kernels shown.

Positive values of ωk described a bias to repeat the preceding response or stimulus identity at the cor-

responding lag, and negative values ofωk described a bias to alternate the preceding response or stimulus

identity. Response and stimulus weights added up to the weights for preceding correct responses and the

difference between response and stimulus weights resulted in the weights for preceding incorrect responses.

Psychometric function fit with history contributions for stimulus, choice, and motor response

In Experiment 1, perceptual choices and motor responses were decoupled through a mapping that varied

from trial to trial. Thus, we could independently estimate the relative contribution of previous choices and
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motor responses to the current choice bias. We added the last seven choices ct−1, ct−2, ct−3, ct−4, ct−5,

ct−6, ct−7, each onemultiplied with a separate set of history weightsω
′
k, to the history bias term δhist (ht, ct).

δ (ht, ct) = δ
′
+ δhist (ht, ct) = δ

′
+

14∑
k=1

ωkhkt +

7∑
k=1

ω ′
kckt (5)

We performed this analysis in two stages. First, we fitted the psychometric functions separately for

each of the six different motion-viewing durations (on the current trial) and compared the resulting weights

within each observer. The viewing duration had only negligible impact on the history weights (data not

shown), indicating that the history contributions were invariant across viewing durations. Second, we fitted

the psychometric functions to the data from all trials irrespective of viewing duration. Group level statistical

tests were computed across the six observers, based on the mean weights irrespective of viewing durations.

The corresponding weights are presented in Results.

Psychometric function fit with modulation of sequential bias by reaction time

In order to investigate the impact of decision confidence on sequential bias, we added a modulation by

reaction time (Urai et al. 2017). Specifically, we extended the model from equation 3 by a term describing

the interaction between previous choices and stimuli with previous reaction times
∑14

k=1 ω
′
khtrtkt and a

nuisance covariate
∑7

k=1 ω
′′
k rtkt:

δ (ht, rtt) = δ ′ + δhist (ht, rtt) = δ ′ +

14∑
k=1

ωkhkt +ω ′
khktrtkt +

7∑
k=1

ω ′′
k rtkt (6)

with rtkt = (rtt−1, rtt−2, rtt−3, rtt−4, rtt−5, rtt−6, rtt−7) the vector of the log-transformed and then

z-scored (within participant), reaction times of the preceding seven trials.

In all cases, the parameters α, γ, λ, δ ′, v and the history weights ωk,ω
′
kand ω ′′

k were determined

by maximizing the log-likelihood L =
∑

t logP (rt = 1|s̃t,ht) using an expectation maximization algorithm

(Fründ et al. 2014).

Statistical analysis

We used t-tests and permutation tests (Efron and Tibshirani 1986) for all statistical comparisons reported in

this paper. In particular, we used the following procedure to test the statistical significance of the history

weights as function of previous trials (lags). First, a simple t-test was used to determine if the weights

at each lag were significantly different from zero and a paired t-test was used to determine if choice and

response weights (Experiment 1), or weights for the two biased conditions (Experiment 2), respectively, were

significantly different. Second, false discovery rate correction (Benjamini and Hochberg 1995) was applied

to correct for multiple comparisons across the 7 lags.

The following comparisons were performed using a paired permutation test (N = 10,000 permutations):

(i) individual vectors (i.e., vector lengths, and orientations) pointing from the Neutral to each of the two
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biased conditions; (ii) correlations between individual ‘stimulus kernels’ from each of the biased conditions

and the two ‘history templates’ (see below); (iii) previous correct versus error weights; and (iv) previous

correct versus previous RT*correct weights.

The following correlations were determined using Pearson correlation: (i) correlation between individual

previous choice weights and performance; (ii) correlation between the correlation of stimulus kernels with

history template and performance.

Lastly, we used Rayleigh’s test to assess the clustering of angles in ‘adaptation space’ (Figure 3B) in

both the Repetitive and Alternating conditions, and a Watson-Williams test to assess the difference in mean

directions of adaptation between these two conditions (Berens 2009).

Results

We here use the term ‘sequential choice bias’ to describe the tendency to repeat, or alternate, previous

choices more often than expected by chance. Figure 1C and D illustrate this for example observers from

Experiment 2. Figure 1C shows, for one observer, a ‘streak’ of eight repeats of the same choice, followed

by five repeats of the alternative. These streaks occur in the face of trial-to-trial variations of the direction

and strength of the random dot motion stimuli. Figure 1D summarizes local choice biases in terms of the

psychometric function conditioned on previous choice. The corresponding shifts between the two functions

distinguish observers with repetition bias (left panel) and no bias (right). These shifts are only evident under

consideration of the sequence of previous choices. Thus, they are distinct from the overall (frequency)

bias towards one choice option, irrespective of experimental history (Bogacz et al. 2006; de Lange et al.

2013). The latter are also evident in these observers as leftward (Figure 1D, left) shifts of both psychometric

functions.

The current paper pursued two objectives. First, we aimed to disentangle and compare the contribution

of decisional and motor signals of sequential biases in perceptual choice. In laboratory tasks, perceptual

choice and motor response used for reporting the choice are typically coupled, but can be decoupled with

little effect on performance on the current trial (Tsetsos et al. 2015). While there is evidence for either

decisional or motor origin of sequential biases (Akaishi et al. 2014; Pape and Siegel 2016; St. John-Saaltink et

al. 2016), their relative contributions have not been quantitatively compared. Second, we aimed to quantify

the adaptation of sequential biases to the environment, as a function of varying levels of internal decision

confidence, in the absence of external feedback.

Disentangling the impact of previous stimuli, choices, and motor responses

In order to quantitatively compare the relative contribution of previous choices or motor responses on cur-

rent choice, we reanalyzed data from a previously published study (Tsetsos et al. 2015). In this experiment

(Experiment 1), observers performed a random dot motion task under trial-to-trial variations in the mapping

between choice and motor response. The direction of motion was chosen randomly and independently
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on each trial, so that maximizing performance required basing choices solely on the current stimulus and

not on its history (i.e., previous stimuli, choices, or motor responses). We used a logistic regression model

(Materials and Methods) to quantify the contribution of those three history effects, as well as of the current

sensory evidence, on the current choices.
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Figure 2. Stronger impact of previous choice than of previous motor response, on current bias Contributions of
previous choices, motor responses and stimuli in Experiment 1. (a) Mean history contributions as a function of lags.
Choice weights (purple), response weights (orange), and stimulus weights (blue; see Materials and Methods). Shading,
95% bootstrap confidence intervals. (b) As (a), but averaged across participants. S.e.m. and t-tests are computed across
participants, p < 0.05 (FDR-corrected t-test) of choice, response and stimulus weights and of the difference between
choice and response weights.

Observers showed a significant tendency to repeat their previous choices (indicated by positive choice

weights), but not their motor responses (Figure 2A, upper row). In all individual participants, the effect

of the previous choice on current choice was positive and stronger than the effect of the previous motor

response. The same was true, and statistically significant at lag 2, in the group average (Figure 2B, left

column). By contrast, preceding stimuli had negative, and statistically significant, weights at longer lags in

the group average (Figure 2B, right; compare panel A, bottom row, for individual observers). This indicates
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a long-lasting repulsion of choices from the previous stimulus across a time range of about 35 seconds.

The analyses presented here collapsed across two different conditions, in which observers were in-

structed about the required mapping between choice and response either before or after the presentation

of the sensory evidence. We also analyzed the data from the two conditions separately and found no differ-

ence between them in the group analysis (data not shown). Thus, the predominance of previous choices over

motor responses did not depend on observers’ knowledge about the requiredmapping between choice and

motor response during decision formation.

In sum, previous choices had robust and distinct (in terms of sign and time course) effects on current

choice, while motor responses had only a minor impact. This indicates that the commonly observed choice

repetition biases are specifically due to previous choices and not the motor responses used to the report

them, which has implications for their neural sources (see Discussion). We next investigated the adaptability

of sequential choice biases under fixed mapping.

Confidence-dependent adaptation of sequential choice biases to the environment

In laboratory tasks used to study perceptual choice, it is common to generate random sequences of the

two alternative stimulus categories. But the states of natural environments, and hence the sensory signals

generated by them, often exhibit correlations across time, so that it might be beneficial for decision-makes

to adapt their sequential choice biases to that correlation structure (Yu and Cohen 2008). In Experiment 2,

we tested for such adaptation, by systematically manipulating the repetition probabilities between the two

possible motion directions across three conditions blocked by experimental session: Repetitive, Alternat-

ing, and Neutral (two sessions per condition; see Materials and Methods). Importantly, observers received

no external trial-by-trial feedback about the correctness of their choices, which enabled us to also study

the impact of decision confidence on the adaptation of their sequential biases to changing environmental

statistics.

Also in this experiment, participants exhibited ‘intrinsic’ sequential patterns in their choice behavior (i.e.,

in the absence of biased stimulus sequences) during the Neutral condition (Figure 3A). Choice and stimulus

weights exhibited a similar temporal profile as the weights observed in previous experiments using standard

choice tasks without manipulation of stimulus sequences (e.g., compare with Figure 2B and Urai et al. 2017

Figure 5C). Choice weights were significantly positive for lag 2 and 3. As in the previous experiment, there

was a statistically significant negative impact of previous stimuli on current choice across lags 3-7, indicating

long-lasting repulsion of choices from the previous stimulus across a time range of about 30 s.

Adaptation of sequential choice biases to environmental statistics

The manipulation of the sequential statistics of the environment had clear effects on observers’ sequential

biases (Figure 3B-E). We mapped the individual data into a ‘strategy space’, defined by previous stimulus

weights on the y-axis and previous choice weights on the x-axis (Figure 3B). Absolute x-values larger than
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absolute y-values indicated a strategy to repeat (in case of positive values) or alternate (for negative values)

previous choices independent of their correctness. Whenever stimulus weights were absolutely larger than

choice weights, the resulting strategy depended on the accuracy on the previous trial. Positive stimulus

weights (upper triangle) referred to repeating choices that were consistent with previously seen stimuli (i.e.

repeating previous correct choices and alternating previous incorrect choices), equivalent to a ‘win-stay

lose-switch strategy’. Conversely, values in the lower triangle indicated a ‘win-switch lose-stay strategy’.

Adaptation of observers’ choice patterns to biased stimulus sequences predicts that choice and stimulus

weights shift in the corresponding direction. Specifically, we expected shifts towards the top right for the

Repetitive condition, indicating a bias to repeat the previous choice and stimulus, and towards the bottom

left for the Alternating condition, indicating a tendency to alternate previous choice and stimulus (Figure 3B;

top right and bottom left corners).

In line with these predictions, participants’ weights for both, previous choice and previous stimulus,

changed between conditions (Figure 3B; compare dots of different colors). The mean across observers

moved from close to zero bias in the Neutral condition (indicated with a red ‘x’ in Figure 3B) towards more

choice (and stimulus) repetition in the Repetitive condition (green arrow in Figure 3B), and towards more

choice (and stimulus) alternation in the Alternating condition (blue arrow in Figure 3B), respectively. These

shifts in history bias with conditions were statistically significant across the group: The vector angles indi-

cating the shift with respect to Neutral were significantly different from uniform (p = 0.0002 in Repetitive

and p = 0.0008 in the Alternating condition, Rayleigh’s test) and the mean angles of these vectors (i.e., di-

rection of the shift) were significantly different between Repetitive and Alternating conditions (p < 0.0001,

Watson-Williams test).

The changes of history biases between conditions were not simply ‘inherited from’ the correlations ev-

ident in the stimulus sequences. We simulated the performance of synthetic observers, which were con-

structed individually for each participant, such as to yield the same perceptual sensitivity as that participant

(within each of the three conditions), but without any memory for the preceding stimulus and choice se-

quence. As expected, the choice and stimulus weights obtained for these models varied slightly between

models and lags (due to statistical fluctuations for finite amounts of data), but consistently approached zero

for increasing numbers of simulated choices (data not shown). Thus, the deviations from zero of the exper-

imentally measured weights reflected an active adjustment in observers’ sequential biases to the statistics

of the environment.

Bias adaptation tracks environmental statistics and predicts performance

The statistical structure of both biased conditions implied characteristic, and distinct, time courses of the

probability of stimulus repetition as a function of lag (Figure 3C). The repetition probability wasmost different

from 0.5 for lag 1 and approached 0.5 for larger lags in both conditions. But the Repetitive condition

exhibited a monotonic decay towards 0.5, whereas the Alternating condition exhibited a damped oscillation
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Figure 3. Adaptation of sequential choice biases to environmental statistics. (a) Stimulus and choice weights for the
Neutral condition. (b) Impact of previous stimuli and choices on current choice in Experiment 2. Weight for immediately
preceding trial (i.e. lag 1). Dots, single observers, arrows changes of group mean weights from Neutral (black crosses)
during Repetitive and Alternating conditions, respectively. Green and blue arrows and underlying grey areas in upper
right and lower left in the left panels indicate direction and range of expected effects (see main text for explanation).
(c) Stimulus repetition probabilities for the Repetitive, Alternating and Neutral conditions. In the Repetitive condition,
repetition of the motion direction from two trials back could occur due to a sequence of two repetitions or due to a
sequence of two alternations resulting in a probability of 0.8 x 0.8 + 0.2 x 0.2 = 0.68, and so on for further lags. Likewise,
for the Alternating condition the probability of repetition of the same direction oscillated around 0.5 as a function of
lags, but again with decreasing deviations from 0.5. (d) Choice weights as functions of lags in Repetitive and Alternating
conditions. (e). As (d), but for stimulus weights. Shaded areas, s.e.m.; bars, p < 0.05 (FDR-corrected t-test) across
participants. (f) Correlation of stimulus kernels with history templates in the Repetitive (left) and the Alternating (right)
condition.

around 0.5 (Figure 3C). In what follows, we refer to these two time courses characterizing the statistical

structure of the environment as ‘history templates’.

Adaptation to the structure of environment predicted that participants’ history weights as a function of

lag should exhibit similar profiles. We refer to the latter time courses as ‘history kernels’. Indeed, the history
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kernels for previous choices and stimuli showed similarly decaying profiles (Figure 3D, E). The adaptation

effect was pronounced, and statistically significant, for the stimulus kernels for lag 1 and tracked the shape

of the history templates beyond that lag (Figure 3E). We quantified the similarity between the entire history

templates and participants’ stimulus kernels bymeans of temporal correlation (Figure 3F). For the Alternating

condition, the correlations should be regarded as lower bound of the true similarity between history ker-

nels and history template because the estimation of the former through three independent basis functions

precluded sign reversals from lag 4 onwards (see Materials and Methods). The stimulus kernels of both con-

ditions, Repetitive and Alternating, were significantly correlated with their corresponding history template

(kernel for Repetitive to template for Repetitive: p = 0.0005; kernel for Alternating to template for Alternat-

ing: p < 0.0001). Furthermore stimulus kernels of both conditions were more similar to their corresponding

history template (i.e., kernel for Repetitive to template for Repetitive) than to the non-corresponding history

template (Repetitive: p < 0.0001; Alternating: p < 0.0001; permutation tests; Figure 3F). Thus, participants

adapted their history biases to the statistical structure of their environments with a time course matched to

the time course of the task statistics.
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Figure 4. Correlation between adaptation and proportion of correct trials. Assessing the benefit of adaptation
of sequential bias for overall performance. (a) Left, correlation between previous choice weight and the proportion
of correct choices in the Repetitive condition. Right as left panel, but for Alternating condition. R and p: Pearson
correlation coefficient and p-value. (b) Left: correlation between correlation of stimulus kernels with history template
and the proportion of correct choices in the Repetitive condition. Middle: as left panel, but for Alternating condition.
Right: pooled across Repetitive and Alternating conditions.

While the bias adaptation was highly consistent across participants, individuals differed in the extent to
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which they shifted their history biases between conditions. These individual differences were strongly pre-

dictive of participants’ overall task performance (Figure 4). Choice weights were significantly correlated with

performance, for both the Repetitive (Figure 4A, left) and Alternating (Figure 4A, right) conditions, but with

opposite sign, reflecting the opposite directions of the adaptation of choice weights in the two conditions.

An analogous effect was evident for the similarity of their stimulus kernels to the history templates of the

two conditions: Those participants with a larger similarity to the history templates also performed best, in

both Repetitive and Alternating conditions (Figure 4B, left and middle) and averaged across both biased

conditions (Figure 4B, right). Thus, the more strongly observers adapted their choice biases to the biased

stimulus sequences, the more successful they were on the task. Our results supported the idea that partici-

pants accumulated signals from the past previous trials into biases for the current choice. This helped adapt

their behavior to the statistics of their sensory environment, improving performance. Our interpretation is in

line with current models of sequential effects, which postulate an active accumulation (with leaky memory)

for previous stimuli and choices into their biases for upcoming choices (Yu and Cohen 2008; Glaze et al.

2015; Meyniel et al. 2016). Our final series of analyses, presented next, revealed that this accumulation was

modulated by trial-to-trial variations in decision confidence.

Modulation of sequential bias adaptation by decision confidence

Previous accounts of sequential effects in behavior postulate the accumulation of binary external variables,

such as stimulus repetitions (Yu and Cohen 2008; Meyniel et al. 2016), performance feedback (Abrahamyan

et al. 2016), or reward (Sugrue et al. 2004). Our experimental conditions precluded any of the above:

Observers performed under generally high uncertainty about the actual stimulus identities, and they did not

receive external feedback about choice outcomes. We reasoned that, under these conditions, observersmay

have accumulated internal signals related to the decision process. Specifically, they might have accumulated

the decision variable underlying choice (Glaze et al. 2015), neural representations of which not only encode

the categorical choice, but also the graded confidence associated with that choice (Kepecs et al. 2008;

Kiani and Shadlen 2009; Hebart et al. 2016). Consequently, the impact of previous choices on current bias

should be modulated by the confidence associated with previous choices. We here use the term ‘decision

confidence’ in a statistical sense, to refer to the observer’s internal estimate of the posterior probability of

having made a correct choice, given the evidence (Kepecs et al. 2008; Pouget et al. 2016; Sanders et al.

2016; Urai et al. 2017). This operational definition of confidence is agnostic about the link to subjective

confidence reports (but see Sanders et al. 2016). It is formalized by a model based on signal detection

theory (Kepecs et al. 2008; Sanders et al. 2016; Urai et al. 2017), the key features of which are reproduced in

Figure 5A. We here used two proxies for decision confidence that were consistent with this model: accuracy

(Figure 5B) and reaction time (Figure 5D).

The model shows that correct choices are overall associated with higher confidence (Figure 5A, top).

To assess the effects of the correctness of previous choices on current bias, we recombined the response
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Figure 5. Modulation of adaptation by decision confidence. (a) Scaling of a model-based confidence and uncertainty
with evidence strength in correct and error trials. Adapted from Urai et al. 2017 under a CC-BY 4.0 license. (b) Left,
weights of correct preceding choices as function of lags. Right, weights of incorrect choices as function of lags. Shaded
areas, s.e.m.; bars, p < 0.05 (FDR-corrected t-test). (c) comparison between correct and incorrect weights for previous
trial (lag 1). (d) Reaction time as a function of motion coherence, sorted by correctness, collapsed across Repetitive and
Alternating condition. (e) Left, multiplicative modulation of the weights of previous choice by reaction time (RT). Right,
modulation of the weights of previous correct choices by RT. (f) Comparison between previous correct and previous RT
x correct weights.

and stimulus weights for the previous trials into weights for correct and incorrect choices (Materials and

Methods). As expected, the impact of previous choices on current bias was larger when these choices were

correct (Figure 5B). In both biased conditions, participants’ weights for previous correct choices deviated

from zero at lag 1 and then decayed for further lags (Figure 5B, left), an effect not evident for previous

incorrect choices (Figure 5B, right). At lag 1, the weights were significantly larger for correct than incor-

rect previous choices in the Repetitive condition, and the other way around for the Alternating condition

(Figure 5C). This pattern of results was consistent with the idea that the accumulation of evidence across

choices was boosted by decision confidence. In the present data, the scaling of reaction times with the ab-

solute strength of sensory evidence (i.e., motion coherence) for correct and incorrect choices also replicated

a characteristic signature of decision uncertainty (i.e., the complement of confidence) from previous studies

(Sanders et al. 2016; Urai et al. 2017): reaction times (i.e., uncertainty) decreased with evidence strength for

correct choices, but increased for error choices (Figure 5D, compare to Figure 5A). Correspondingly, linear

regression revealed opposite-signed relationship between motion coherence and reaction times, separately

for correct (β = -0.150, s.e.m. = 0.027, p = 0.005) and error trials (β = 0.628, s.e.m. = 0.025, p = 0.025).

This pattern of evidence- and accuracy-dependent changes in reaction time is consistent with the model of

decision confidence (Kepecs et al. 2008), as well as with previous psychophysical data (Sanders et al. 2016;

Urai et al. 2017). To assess the modulatory effect of reaction times on sequential choice bias, we built on an
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extension of our statistical model by multiplicative (interaction) terms, which quantified the degree to which

the impact of previous choices on current bias was modulated by previous reaction times (see Psychometric

function fit with modulation of sequential bias by reaction time in Materials andMethods for details). Longer

reaction times (i.e. lower decision confidence) reduced the impact of the previous choices on the current bias

(Figure 5E). Specifically, the interaction weights in the Repetitive condition were significantly negative at lag

1 and 2, indicating a confidence-linked reduction of the choice repetition bias in that condition (Figure 5E,

left). Conversely, in the Alternating condition the interaction weight for the previous choice was positive,

indicating a (albeit not significant) reduction of the choice alternation bias (Figure 5E, left). This modulatory

effect of reaction time on the impact of previous choices on current bias was also evident when assessed

for previous correct choices in isolation: here the previous interaction weight was statistically significant

(Figure 5E, right), for the Alternating condition and significantly larger than the corresponding interaction

weight from the Repetitive condition. As expected for a negative modulatory effect of previous decision

uncertainty on current choice bias, most weights of the interaction terms (RT x correct) had opposite sign to

those of the weights for the corresponding (i.e. correct) previous choices (compare Figure 5E, right and 5B,

left). At lag 1, the interaction weights were consistently (and statistically significantly) smaller than the main

effect weights for (correct) choices in the Repetitive condition, and the other way around in the Alternating

condition (Figure 5F). Thus, even for correct choices only, the varying uncertainty (indexed by reaction time)

associated with these choices counteracted their impact on current choice. Taken together, two indepen-

dent proxies of decision confidence, choice accuracy and reaction time, both supported the conclusion that

decision confidence modulated (boosted) the adaption of sequential choice bias to the statistical structure

of the environment.

Discussion

Sequential biases are a long-known, pervasive phenomenon in perceptual choice (Fernberger 1920; Fründ

et al. 2014), which likely reflect the interplay of multiple factors. Here, we systematically quantified the

contributions of a number of important candidate factors: preceding choices versus motor responses, the

sequential statistics of the sensory evidence, and decision confidence in the absence of external feedback.

We showed that the contribution of previous choices to sequential biases dominated over the contribu-

tion of previous motor responses. We further found that, in the absence of explicit feedback about choice

outcome, observers could still adapt their sequential choice biases to biased (repetitive or alternating) se-

quences of sensory evidence. The strength of this adaptation was modulated by observers’ confidence

about their previous choices (with stronger adaptation after more certain choices), as indicated by previous

choice accuracy and reaction time. Finally, we established that the adaptation of sequential bias was bene-

ficial, improving the observer’s overall performance. Our report provides a comprehensive characterization

of these various different history contributions, within a common statistical modeling framework. Further,

our current approach also identified novel effects, in particular the confidence dependent adaptation of se-
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quential choice biases. This yielded a number of new insights into the computations underlying sequential

biases in perceptual choice, with direct implications for their neural bases.

Multiple factors contributing to history biases in perceptual choice

Our analyses revealed that the contributions of previous stimuli, perceptual choices, and motor responses

were dissociable in terms of their strength, sign, and time course (as function of previous trials). For two ex-

periments, we found that previous stimuli exerted weak, but consistently repulsive biases on current choice,

across a long timescale (significant several tens of seconds into the past). The fact that these long-lasting,

repulsive effects of previous stimuli on current choice were present in both, Experiment 1 and 2, indicate

that they are irrespective of the presence of trial-by-trial feedback. Analogous results have been obtained

fine discrimination tasks (Fischer and Whitney 2014; Fritsche et al. 2017). These repulsive effects may reflect

the impact of bottom-up sensory adaptation mechanisms (Kohn 2007) on sensory-guided behavior.

The dominant and consistent bias in uncorrelated stimulus sequences (irrespective of the presence of

trial-by-trial feedback, compare Figures 2 and 3A) was to repeat the preceding one or two choices. Similar

observations have been made in a number of previous studies of perceptual choice (de Lange et al. 2013;

Akaishi et al. 2014; St. John-Saaltink et al. 2016; Fritsche et al. 2017; Urai et al. 2017). Importantly, we

here established that this repetition bias was due to the previous perceptual choices, rather than motor

responses.

Two recent studies similarly decoupled perceptual choice and motor response (Akaishi et al. 2014; Pape

and Siegel 2016). One of them showed that a bias to alternate response hands from trial to trial systemati-

cally contributed to sequential effects, due to activity dynamics within motor cortex (Pape and Siegel 2016).

Effector-selective beta-band activity in motor cortex is suppressed during decision formation (Donner et al.

2009; O’Connell et al. 2012; de Lange et al. 2013), followed by a rebound. The stronger this ‘beta-rebound’,

the stronger the tendency to alternate response hands (Pape and Siegel 2016). This motor response alter-

nation bias was superimposed onto a choice repetition bias in their study, but they did not compare the

magnitude and time course of these two effects directly. Here, we performed such a direct comparison

across seven previous trials. While the lack of a robust response alternation bias in our sample does not rule

out the alternation effect, our comparison revealed that the contribution of previous choices to current bias

was more consistent across observers, significantly stronger, and more prolonged in time (most robust for a

lag of two trials).

This predominance of the impact previous choices over previous motor responses is consistent with the

results from Akaishi et al. 2014, who also focused on the contribution of the immediately preceding trial.

This predominance implies that sequential biases in perceptual decision-making are governed by neural

signals encoding choice in an action-independent format. Such signals exist in associative brain regions,

such as posterior parietal or prefrontal cortex (Bennur and Gold 2011; Hebart and Hesselmann 2012; Hebart

et al. 2016), which also exhibit the short-term memory dynamics necessary for the persistence of biases
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in the decision-making machinery (Wang 2002; Bonaiuto et al. 2016; Morcos and Harvey 2016). Under

the assumption that the same principle holds when the mapping between choices and motor responses is

fixed, the adaptation of sequential biases to the different environmental statistics observed in our second

experiment were also dominated by action-independent decision variables, rather than by motor signals.

Previous evidence for adaptable history biases

Another recent study also revealed adaptable history biases in perceptual choice (Abrahamyan et al. 2016).

However, different from us, Abrahamyan et al. provided unambiguous external feedback about the outcome

of each choice, and their manipulation of the stimulus sequence depended on the participants’ success or

failure. Consequently, the process adapting history biases likely depended on the combination of choices

and their outcome. By contrast, in our task, participants remained uncertain about their choice outcomes,

and could only base their history biases on internal signals (see below). Thus, the adaptation effects in

their and our study likely resulted from different mechanisms, and our current results complement those

from Abrahamyan et al. Indeed, a direct comparison of sequential effects in saccadic choice tasks with and

without feedback points to an important influence of feedback on the profile of stimulus-dependent history

biases (Kim et al. 2017).

Computational basis of adaptable sequential biases

The main novel contribution of the present study is the identification of a confidence-dependent adaptation

of sequential choice biases. This adaptation likely reflected the ongoing accumulation of internal (likely

action-independent) decision variables across trials, in line with recent computational models (Glaze et al.

2015; Bonaiuto et al. 2016). This idea is related to earlier proposals on the origins of sequential effects

in cognition and choice behavior (Yu and Cohen 2008; Meyniel et al. 2016), which however postulate the

accumulation of external observables rather than internal signals. Integration of information over time is a

widely established concept in current models of perceptual choice (Bogacz et al. 2006; Gold and Shadlen

2007; Ratcliff and McKoon 2008; Wang 2008; Ossmy et al. 2013), but, in these models, refers to within-trial

accumulation of incoming sensory evidence across hundreds of milliseconds. The notion of accumulation of

rewards across trials is widely established in the theory of reinforcement learning and value-guided choice,

but there it critically depends on the experience of choice outcomes (i.e., rewards) and spans time scales of

tens of seconds or even longer (Sutton and Barto 1998; Sugrue et al. 2004; Glimcher 2011).

Our interpretation assumes an accumulation mechanism with timescales situated in between these two

classes of models, which operates on internal decision variables that may, in turn, be computed through

within-trial accumulation of sensory evidence. This ‘higher-order’ across-trial accumulation has been de-

scribed by recent belief updating models for perceptual choice in changing environments (Glaze et al. 2015;

Kim et al. 2017). It will be important to explore such mechanisms with biophysical models of inter-choice
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neural dynamics (Bonaiuto et al. 2016), as well as recordings of neural activity during similar tasks as the

ones used here.

The framework outlined above also provides a natural interpretation of the modulatory effect of decision

confidence on the adaptation of sequential choice biases that we observed. Representations of decision

variables in the brain do not only reflect categorical choices, but also the graded certainty about these

choices (Kepecs et al. 2008; Kiani and Shadlen 2009; Hebart et al. 2016). In the face of noisy sensory evidence

and in the absence of single-trial feedback, such internal decision variables are a good proxy for the state of

the environment available to the decision-maker. Uncertain choices are based on a smaller decision variable,

they are likely to be incorrect and accompanied by slow responses (Sanders et al. 2016). Consequently,

accumulation of internal decision variables predicts that incorrect choices, or choices with long reaction time,

have little impact on sequential choice bias. Accumulation of confidence-dependent decision variables into

biases for upcoming choice may also account for the confidence-dependent (as measured by reaction times)

modulation of ‘intrinsic’ sequential choice biases measured under conditions of random stimulus sequences

(Urai et al. 2017). In sum, one possibility is that the ‘confidence-weighting’ of the impact of previous choices

on current bias observed here and in Urai et al. 2017 may directly result from the accumulation of graded

decision variables.

Conclusion

We conclude that, in the absence of certainty about stimulus identities and choice outcome, the brain accu-

mulates confidence-dependent (and likely action-independent) decision variables towards choice biases in

a way that promotes adaptation to correlated environments. Our findings also put strong constraints on the

candidate neural sources of sequential choice biases, setting the stage for future neurophysiological work

into the underlying mechanisms.
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2.3
∣∣ Choices bias the rate of evidence

accumulation in the next trial

Urai AE, Donner TH.

Abstract

Perceptual decision-making under uncertainty is biased by previous choices, a phenomenon referred to as

serial choice bias. We investigated how this bias affects decision dynamics, as described by the accumulation

of noisy sensory evidence towards opposing bounds for each choice option. We used drift diffusion model-

ing to disentangle two possible biasing mechanisms: an offset of the accumulation starting point, versus a

bias in the drift (accumulation rate) towards one of the choice options. Across six different psychophysical

datasets, individual serial choice biases were captured by a history-dependent change in drift bias. Addi-

tionally, when stimulus sequences were biased towards repetition or alternation, observers’ adapted serial

choice patterns also correlated to history-dependent changes in starting point. We conclude that the history

of choices primarily biases the rate of evidence accumulation towards a particular choice option.
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Introduction

Serial patterns in choice sequences have been described in the psychophysical literature for almost a century

(Fernberger 1920), and have recently seen a renewed surge of interest in neuroscience. Both humans (Fründ

et al. 2014) and mice (Busse et al. 2011) show strong and variable serial biases when stimulus sequences

are uncorrelated, as is the case in most psychophysical experiments. These serial choice patterns are most

strongly driven by previous decisions, rather than the associated motor response or sensory stimulus (Braun

et al. 2017; Akaishi et al. 2014; St. John-Saaltink et al. 2016; but see Pape and Siegel 2016). They may

result from the accumulation of decision-relevant evidence across trials, which improves performance when

stimulus sequences are structured (Yu and Cohen 2008; Glaze et al. 2015; Braun et al. 2017; Kim et al. 2017).

Indeed, when presented with structured stimulus sequences, humans can adapt their serial choice biases

(Abrahamyan et al. 2016; Braun et al. 2017; Kim et al. 2017). Serial choice biases are modulated by decision

confidence in both neutral (Urai et al. 2017) and biased environments (Braun et al. 2017), suggesting that

confidence-dependent accumulation of information across trials gives rise to sequential choice patterns.

To quantify serial choice biases, most recent studies have used observers’ choices to compute choice

repetition probabilities or shifts in decision criterion (de Lange et al. 2013; Akaishi et al. 2014) or fit history-

dependent psychometric functions (Busse et al. 2011; Fründ et al. 2014; Abrahamyan et al. 2016; Bonaiuto

et al. 2016; St. John-Saaltink et al. 2016; Braun et al. 2017; Urai et al. 2017).

One crucial factor not captured by this approach is the time needed to choose. Extending signal detec-

tion theory to include a temporal dimension, sequential sampling models posit the integration of evidence

as unfolding over time. The drift diffusion model (DDM) is a popular variant of this class of models (Bo-

gacz et al. 2006; Ratcliff and McKoon 2008). The DDM posits that external sensory evidence, corrupted

by Gaussian noise, is accumulated over time. When the integrated decision variable reaches one of two

pre-set bounds, corresponding to the two choice options, a response is triggered (Figure 1, black lines and

Methods). Each reaction time thus arises from the dynamics of this accumulation process, as well as time

needed to encode the stimulus and execute the motor response.

Importantly, the DDM posits that choice bias can have two sources: (i) a change in the starting point of

accumulation (or, equivalently, asymmetric decision bounds), and (ii) a bias in the rate with which evidence

for one or the other choice is accumulated. The latter bias, also termed ‘drift criterion’, is an evidence-

independent constant added to the decision variable per unit time. Throughout this paper, we will refer to

this bias as ‘drift bias’.

The difference between the two biasing mechanisms, and their effect on RT distributions, is shown in

Figure 1. A shift in starting point mostly affects the leading edge of the RT distribution, shifting its mode.

The effect of a biased drift rate instead grows with time, and affects the trailing edge of the distribution

without changing its mode (Ratcliff and McKoon 2008; Leite and Ratcliff 2011; White and Poldrack 2014).

Importantly, these two mechanisms can give rise to the exact same choice frequency (and hence the same

choice bias). Previous work thus leaves open the question which of these two mechanisms better explains
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Figure 1. Bias in the DDM. The effect of biased (a) starting point or (b) drift on choices and RT distributions. Noisy
sensory evidence is accumulated over time, until the integrated decision variable reaches one of two thresholds, trig-
gering a response. Note that the two bounds 0 and a correspond to the two choice options, rather than correct and
error responses. Repeating this process with identical stimuli over many trials gives distributions of reaction times for
the two choice options. From the shape of these RT distributions, the underlying parameters of the decision process
can be inferred. Specifically, a bias in drift towards one option (blue) changes the trailing edge, but not the mode, of
the RT distributions. A bias in starting point (green), on the other hand, affects the leading edge and the mode of the
RT distributions. The RT distributions were simulated according to the equations described by Ratcliff and Tuerlinckx
2002, using code provided by Murphy et al. 2016a.

serial choice behaviour.

Here, we fit the DDM to six psychophysical datasets, conditioning both drift bias and starting point

bias on the previous choice. We find that previous choices affect both starting point and drift bias, with

history-dependent drift bias best able to capture individual serial choice patterns.

Materials and Methods

Bias in the DDM

Unbiased accumulation of evidence towards one of two choice bounds (black lines in Figure 1) is described

by a drift diffusion process

dy = s · v · dt+ cdW, y(0) = z = a/2 (1)

where s is the signed stimulus identity [−1, 1], v is the drift rate, and cdW is Gaussian distributed white

noise with mean 0 and variance c2dt (Bogacz et al. 2006). Accumulation starts at the midpoint z, which in a

unbiased case is situated midway between the two decision bounds 0 and a.

Bias towards one of the two choice options can be implemented in this model in two ways. First, the

starting point of accumulation can be offset from its unbiased midpoint between the two bounds (Figure 1a):

dy = s · v · dt+ cdW, y(0) = z = a/2+ zbias (2)

where zbias reflects the biased starting point (Link and Heath 1975; Ratcliff and McKoon 2008).

Second, the accumulation of evidence per unit time can be biased towards one of the two choices

(Figure 1b):

dy = (s · v+ vbias)dt+ cdW, y(0) = z = a/2 (3)
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where vbias reflects drift bias (Ashby 1983; Ratcliff and McKoon 2008). Importantly, these two biasing

mechanisms can result in an identical pattern of biased choices. They are distinguished by their effects on

the shape of reaction time distributions, with a nonzero zbias affecting the leading edge and the mode, and

vbias affecting the tail of the distribution (Figure 1).

Tasks and datasets

2AFC RT

Twenty-two observers (12 men and 10 women, aged 18-25 years) performed five sessions of 500 trials (di-

vided into ten blocks) of a classical up-down motion discrimination task (Figure 2a). Moving noise-dots were

continually displayed on the screen, starting with a fixation period of 0.6-0.8 seconds. Stimulus onset (the

signal dots starting to move up or down) was indicated with a short beep. The coherently moving dots were

on the screen until the subject pressed a button, or after 3 seconds. After a variable interval of 1.5-2.5s, a

tone was played as feedback. After 2-2.5s, the dots stopped moving for an ISI of 1s, after which the next

trial started.

Psychometric functions were used to determine individual perceptual thresholds before the start of the

experiment. To obtain the psychometric function, 600 stimuli of different difficulties were randomly inter-

leaved (0, 2.5, 5, 10, 20 and 40% motion coherence), and were shown for 1s. To determine each individual

psychometric threshold, we fit a cumulative Weibull as a function of difficulty c, defined as

φ(c) = δ+ (1− δ− γ)
(
1− e(

−c
α

)β
)

(4)

where δ is the guess rate (chance performance), γ is the lapse rate, and α and β are the threshold and

slope of the psychometric Weibull function, respectively (Wichmann and Hill 2001a). While keeping the

guess rate δ bound at 50% correct, we fit the parameters γ, α and β using a maximum likelihood procedure

implemented by minimizing the logarithm of the likelihood function. This was done using a Nelder-Mead

simplex optimization algorithm as implemented in Matlab’s fminsearch function. The individual threshold

was taken as the motion coherence corresponding to a 65% correct fit of the cumulative Weibull.

Dynamical random dot stimuli were presented in a central circle (outer radius 14°, inner radius 2°) around

fixation. The annulus was defined by a field of dots with a density of 1.7 dots/degrees2. Dots were 0.2° in

diameter and were white, at 100% contrast from the black screen background. Signal dots were randomly

selected on each frame, and moved with 11.5°/second in the signal direction. Signal dots that left the

annulus wrapped around and reappeared on the other side. Moreover, signal dots had a limited ‘lifetime’,

and were replotted in a random location after being on the screen for four consecutive frames.
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Figure 2. Tasks and datasets. (a) 2AFC (up/down) reaction time task. Motion coherence was constant, and titrated to
65% correct individual perceptual thresholds. (b) Yes/no auditory reaction time task (de Gee et al. 2017). Within a stream
of auditory noise (TORCs), observers detected whether a pure sine wave (2 KHz) was present. Task difficulty was titrated
using an adaptive staircase procedure, resulting in an average accuracy of 74%. (c) 2IFC-1 coherence discrimination,
with variable evidence strength (Urai et al. 2017). In two consecutive intervals, dots moved in a constant direction with
varying coherence. Motion coherence in the first interval was always 70%, and observers decided whether motion in
the second interval was stronger or weaker than in the first (0.625-30% coherence difference). The same task was used
in the 2IFC-2 replication dataset, but with a fixed level of difficulty titrated to individual thresholds. The timing of the
task differed slightly between the two studies, as indicated in the figure and Methods section. (d) 2AFC-1 (up/down)
task (Braun et al. 2017). Motion coherence varied from trial to trial (0-81%). Between sessions, transition probabilities
between the two stimulus identities were 0.2, 0.5 or 0.8. In an additional replication, observers performed the task in
the MEG scanner, where they additionally received auditory feedback. (e) 2AFC-2 (up/down) task. Motion coherence
varied from trial to trial between two individually titrated difficulty levels (65% and 80%). Between experimental runs,
transition probabilities between the two stimulus identities were 0.2, 0.5 or 0.8.
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Additionally, to avoid subjects tracking individual signal dots as they move through the annulus, three

independent motion sequences were interleaved on subsequent frames, making the effective motion speed

in the display 3.8 11.5°/second. Noise dots were assigned a random location within the annulus on each

frame, resulting in ‘random position’ noise with a ‘different’ rule (Scase et al. 1996). Throughout the ex-

periment, a red ‘bulls-eye’ fixation target of 1.5° diameter (Thaler et al. 2013) was present in the centre of

the screen. These stimulus characteristics were used in all experiments using random dot displays unless

indicated otherwise.

Yes/no RT

These data were previously published by deGee et al. 2017, and are available at https://doi.org/10.6084/

m9.figshare.4806562. Twenty-four observers (20 women and 4 men, aged 19–23) performed an auditory

tone detection task, in which they detected the presence of a pure sine wave (2 KHz) embedded in auditory

noise (TORCs, McGinley et al. 2015b). After an inter-trial interval of 3-4 seconds, either noise or noise with a

superimposed signal was played until the observer’s button press or 2.5s. Each individual’s signal volumewas

determined by an adaptive staircase procedure before the start of the experiment. Observers performed

between 1320 and 1560 trials each, divided over two experimental sessions.

2IFC task

These data were previously reported in Urai et al. 2017, and are available at http://dx.doi.org/10.6084/

m9.figshare.4300043. Twenty-seven observers performed approximately 2500 trials over five sessions of a

two-interval random dot motion discrimination task. Observers saw two consecutive intervals of coherent

dot motion (in a constant direction towards one of the four diagonals, counterbalanced across participants)

and judged whether the second ‘test’ interval contained motion that was stronger or weaker than the first

‘reference’ interval. Stimulus difficulty, defined as the difference in motion coherence between the two

intervals, varied from trial to trial (0.625, 1.25, 2.5, 5, 10, 20, 30%). They received auditory feedback on their

choice after a variable delay.

Additionally, we collected a larger replication sample (n = 61, 19 men and 42 women, aged 19-35 years)

with the same task. The experiment differed from the description in Urai et al. 2017 in the following ways.

Observers performed 5 sessions, of which the first and the last took place in the MEG scanner (600 trials

divided over 10 blocks per session) and the three sessions in between took place in a behavioural lab (1500

trials divided over 15 blocks per session). In an initial screening session, we determined each individual’s

motion discrimination threshold (at 70% of the cumulative Weibull as described above), which was then

kept constant throughout the experiment. The duration of each interval was 750 ms. In the MEG sessions,

auditory feedback was presented 1.5-3s after response, and an ISI with stationary dots started 2-3s after

feedback. Participants initiated the next trial with a button press. In the training sessions, auditory feedback

https://doi.org/10.6084/ m9.figshare.4806562
https://doi.org/10.6084/ m9.figshare.4806562
http://dx.doi.org/10.6084/m9.figshare.4300043
http://dx.doi.org/10.6084/m9.figshare.4300043
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was presented immediately after the response. This was followed by an ISI of 1s, after which the next trial

started.

Participants in the MEG study were assigned to one of three pharmacological groups. At the start of

each experimental session, they orally took 40 mg atomoxetine (Strattera®), 5 mg donepezil (Aricept®), or

placebo. Since the time of peak plasma concentration is 3 hours for donepezil (Rogers and Friedhoff 1998)

and 1-2 hours for atomoxetine (Sauer et al. 2005), we used a placebo-controlled, double-blind, double-

dummy design, entailing an identical number of pills at the same times before every session for all par-

ticipants. Participants in the donepezil group took 5 mg of donepezil 3 hours, and a placebo 1.5 hours

before starting the experimental session. Participants in the atomoxetine group took a placebo 3 hours,

and 40 mg of atomoxetine 1.5 hours before the experimental session. Those in the placebo group took

identical-looking sugar capsules both 3 and 1.5 hours before starting the session. This ensured that either

drug reached its peak plasma concentration at the start of the experimental training. The drug doses were

based previous studies with healthy participants (Chamberlain et al. 2009; Rokem and Silver 2010). Blood

pressure and heart rate were measured and registered before subjects took their first and second pill. In

the three hours before any MEG or training session, participants waited in a quiet room. In total, 19 people

in the placebo, 22 in the atomoxetine, and 20 in the donepezil group completed the full study. We did

not observe differences in serial choice biases between these groups (Figure S1), and therefore pooled all

observers for the analyses presented here.

2AFC-1 fixed duration task

These data were previously reported in Braun et al. 2017. Twenty-two observers (15 women and 7 men,

aged 20 - 36) performed a fixed duration version of the random dot motion discrimination (up/down) task,

with stimuli (0, 5, 10, 20, 40 or 60% motion coherence) displayed for 750 ms. Between sessions of the

experiment, we varied statistics of the trial sequence by setting the stimulus transition probability to 0.2

(alternating), 0.5 (neutral) or 0.8 (repeating). Per condition, observers did 1200 trials. They did not receive

trial-by-trial performance feedback.

Additionally, we added data from fifteen observers who performed the same task in the MEG scanner.

This version of the experiment was different in the following ways. First, observers performed 1782 trials

over 3 sessions, in which the stimulus transition probability varied between blocks of 99 trials. Motion

coherence varied from trial to trial from (0, 3, 9, 27, 81%). Observers received auditory feedback 1.5-2.5s

after their response, and the ISI started 2-2.5s after feedback. The stimuli were confined to a circle of 2.5°

radius, which was placed in the lower half of the visual field at 3.5° from the fixation cross in order to best

record responses from visual cortex.

In both versions of this experiment, observers were informed that the stimulus sequences could be “as

produced by a coin flip”, “more likely repeating than alternating”, or “more likely alternating than repeat-

ing”, but were not told the exact transition probabilities, the order in which these conditions were presented,
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nor what to do with this information to perform the task (Braun et al. 2017).

2AFC-2 fixed duration task

Twenty-one observers performed an up/down motion direction discrimination task in the fMRI scanner. In

total, each observer did 720 trials over 3 separate days. Coherence levels were titrated to individual 65%

and 80% accuracy before the start of the experiment, using a method of constant stimuli and a Weibull fit

(see above). After a fixation baseline of 2 s, an up/down random dot stimulus appeared for 750 ms. After

stimulus offset, observers had 1250 ms to respond with their left or right hand (stimulus-response mapping

counterbalanced across blocks within a session), followed by an ITI of 1.25 s - RT plus 14 s (7 TR). During the

fixation baseline and ITI, 0% coherent random dot motion was continually present, while the fixation cross

changed color to indicate the pre-stimulus baseline and response window (Figure 2e).

The dots moved within a circle of 2.5° radius, which was placed in the lower half of the visual field at

3.5° from the fixation cross. The dots where white on a grey background, and signal moved at 11.5 °/s,

with a maximum lifetime of 10 frames. Additionally, three independent sequences of the moving dot stimuli

were interleaved, making the effective speed of motion 3.8°/second. The cloud of dots had a density of 6

dots/degrees2, with each dot 0.06° in radius.

Stimulus sequences were generated based on repetition probabilities [0.2, 0.5, 0.8]. Within each session

of the experiment, observers did two blocks of 40 trials per block, presented in random order. They were

not instructed about these transition probabilities, and only received cumulative feedback on their average

performance at the end of each block.

Model-free analysis of behaviour

We computed d ′, which measures perceptual sensitivity in a bias-free way (Green and Swets 1966), sepa-

rately for each individual and coherence level:

d ′ = Φ−1(H) −Φ−1(FA) (5)

whereΦ is the normal cumulative distribution function, H is the fraction of hits and FA is the fraction of false

alarms. In the 2AFC and 2IFC datasets, one of the choice options was arbitrarily treated as the stimulus-

absent category. Both H and FA were bounded between 0.001 and 0.999 to allow for computation of d ′ in

case of near-perfect performance (Stanislaw and Todorov 1999).

We quantified serial choice bias by the repetition probability P(repeat), computed as the fraction of

choices that were a repetition of the previously made choice, regardless of the stimulus sequence.

HDDM model fits

We fit hierarchical drift diffusion models to each dataset, using the HDDM toolbox (Wiecki et al. 2013).

Choices were coded as one of the two response identities (termed ‘stimulus coding’ in the toolbox), rather
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than as correct and error responses, which allowed us to estimate bias towards one of two choice options.

For all datasets, we estimated overall drift rate, boundary separation, non-decision time, starting point

and drift bias. Across-trial variability in drift rate was estimated at the group-level only (Ratcliff and Childers

2015). For datasets in which multiple levels of sensory evidence (motion coherence or the difference in

motion coherence between two stimulus intervals) were presented, drift rate was estimated separately for

each level. We specified 5% of responses to be contaminants, meaning they arise from a process other than

the accumulation of evidence - for example, a lapse in attention.

For each model, we ran 15 separate chains with 10,000 samples each. Of those, half were discarded

as burn-in and every second sample was discarded for thinning, reducing autocorrelation in the chains.

This left 2,500 samples per chain, which were concatenated across chains. Individual parameter estimates

were then estimated from each observer’s posterior distribution across the resulting 37,500 samples. All

group-level chains were visually inspected to ensure convergence. Additionally, we computed the Gelman-

Rubin R̂ statistic (which compares within-chain and between-chain variance) and checked that all group-level

parameters had a R̂ between 0.98-1.02 (Wiecki et al. 2013).

To fit serial choice patterns we then allowed starting point, drift bias, or both to vary with the preceding

choices. In the datasets with different stimulus repetition probabilities 2AFC-1 and 2AFC-2, these biases

were estimated separately for the three conditions (neutral, alternating and repetitive). We then computed

the history shift as the difference in bias between the two previous choice identities, such that a positive

history shift reflects repetition, and a negative history shift reflects alternation. Model comparison based on

the Deviance Information Criterion (Spiegelhalter et al. 2002), computed over the appended model chains,

was used for model selection.

Statistical tests

We quantified between-subject correlations using Pearson’s correlation coefficient. The difference between

two correlation coefficients that share a common variable, and its associated p-value, was computed using

Steiger’s test (Steiger 1980). Even though individual subject parameter estimates are not independent due

to the hierarchical nature of the HDDM fit, between-subject variance in parameter point estimates can reli-

ably be correlated to an external variable (in our case, P(repeat)) without inflation of the false positive rate

(Katahira 2016). To test for the significance HDDM parameters, we derived p-values directly from the group

posterior (Kruschke 2013; Wiecki et al. 2013).

Results

We fit a hierarchical DDM (Wiecki et al. 2013) to six psychophysical datasets, estimating the following pa-

rameters: non-decision time, starting point, boundary separation, mean drift rate and an additive drift bias.

The DDM fit the data well, including those datasets from fixed duration tasks. In all datasets, the es-

timated individual drift rate correlated with perceptual sensitivity, quantified as d ′ (Figure 3a). In datasets
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Figure 3. HDDM model fits. (a) Correlation between drift rate v and d ′. In datasets 2IFC-1, 2AFC-1 and 2AFC-2
drift rates were estimated separately for each level of stimulus difficulty. For these datasets, the correlation coefficient
displayed is a partial correlation between v and d ′, accounting for stimulus difficulty (indicated in the colorbar). (b)
Posterior predictive fits. Positive RTs (green) indicate correct, and negative RTs (red) error trials. Histograms show the
RT distributions of all data collapsed across subjects, with predicted RT distributions (estimated for 100 simulated trials
per real trial, and smoothed by a kernel density estimate) overlaid in black.

with multiple levels of evidence strength, drift rate increased for easier stimuli (Figure 3a). Simulated data

from the estimated model parameters show a close correspondence between observed and predicted RTs

(Figure 3b). We computed the median and quartiles of the difference between predicted and observed

RTs for all datasets: 2AFC RT, 0.357 (0.137-1.070); Yes/no RT, 0.647 (0.217-2.013); 2IFC-1, 0.285 (0.098-

1.017); 2IFC-2, 0.361 (0.118-1.028); 2AFC-1, 0.180 (0.072-0.662); 2AFC-2, 0.317 (0.123-1.020). There did

not seem a consistently worse fit for dataset with fixed duration stimuli. This suggests that the DDM well

captures choices and reaction times when the stimulus duration is determined by the observer, as well as

the experimenter (Kiani et al. 2008).

We then asked whether serial choice patterns can be explained by a history-dependent shift in starting
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point, drift bias, or both. We fit the HDDM while allowing starting point, drift bias, or both to vary as a

function of previous choices. We selected the best model based on the Deviance Information Criterion

(DIC, Spiegelhalter et al. 2002), computed over the appended model chains.
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Figure 4. Model comparison. For each dataset, we compared the Deviance Information Criterion (DIC) between
models where drift bias, starting point bias or both were allowed to vary as a function of previous choice. The DIC for
a model without history dependence was used as a baseline for each dataset. Lower DIC values indicate a model that
is better able to explain the data, after taking into account the model complexity. A ∆DIC of 10 is generally taken as a
threshold for considering one model a sufficiently better fit. The winning model for each dataset is indicated by a dark
border.

As compared to a baseline model without history dependence, models with history terms better ex-

plained the data (Figure 4). This corroborates previous reports, which have found that serial choice patterns

are ubiquitous in a broad range of psychophysical data sets and can capture a significant fraction of be-

havioural variability (Fründ et al. 2014). We then compared models where drift bias, starting point bias, or

both were allowed to vary as a function of previous choice. Across datasets, a model with both components

best explained the data, as indicated by the lowest DIC values (Figure 4). Furthermore, a model with only

history-dependent drift bias better captured the data than a model with only history-dependent starting

point bias (except for the 2AFC RT dataset; blue vs green bars in Figure 4).

We used the winning model, in which both starting point bias and drift bias varied with previous choice,

to further investigate the parameter estimates derived from this joint fit. We combined the parameters

estimated separately for the two previous choice options into a measure we call ‘history shift’, quantifying

how much each parameter varies as a function of the immediately preceding choice. We then asked to what

degree the history shift in these two parameters, drift bias and starting point bias, captured model-free

repetition probability. Repetition probability correlated to the history shift in drift bias, and less so with the

history shift in starting point, across datasets (Figure 5, significant correlations indicated with solid regression

lines).

For each dataset, we computed the correlation between P(repeat) and the history shift in starting point,

and the correlation between P(repeat) and the history shift in drift bias (Figure 6). Comparing the two

correlation coefficients showed that model-free serial choice biases were more closely related to shifts in
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Figure 6. Summary of correlations across datasets. Correlations between P(repeat) and history-dependent changes
in starting point bias (left) and history-dependent changes in drift bias (right). Error bars indicate the 95% confidence
interval of the correlation coefficient. ∆r quantifies the extend to which the two DDM bias terms are differentially able
to predict individual P(repeat), and the corresponding p-value was computed using Steiger’s test. The black diamond
indicates the mean correlation coefficient across datasets.
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drift bias than shifts in starting point across datasets.

When environmental statistics were biased towards repetition or alternation (datasets 2AFC-1 and 2AFC-2),

we additionally observed effects on the history shift in starting point. Surprisingly, these shifts went in the

opposite direction from those in drift bias (Figure 7) and correlated negatively with individual repetition

probabilities (Figure 6). To ensure that this pattern was not solely a result of the hierarchical Bayesian fit, we

also did the analyses using χ2 optimization (Ratcliff and Tuerlinckx 2002), and obtained qualitatively similar

results (data not shown).

The opposite shifts in drift bias and starting point as a function of previous choice can be explained when

considering that these parameters not only affect choice bias, but also the associated reaction times. For

example, shifts in drift bias and starting point towards the previous choice not only predict choice repetition,

but also predict faster reaction times for the repeated choice (examining the shape of the RT distribution

is crucial to dissociate between the two; Figure 1). It might be that the biased environments induced serial

biases (repetition or alternation) but without changes in the associated reaction times. In that case, the

model can converge on a regime where a shift drift bias accounts for the serial bias, while the associated

effect on reaction time is neutralized by an opposite shift in starting point.
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Figure 7. Posterior predictives of history effects in the biased conditions. For each of the datasets with biased
stimulus sequences, the posterior predictive distributions are shown for repetitive, neutral and alternating conditions.
Top: history shift in drift bias. Bottom: history shift in starting point bias. P-values show the overlap between each
biased distribution and the neutral distribution in that dataset (Kruschke 2013). Note that the direction of the history
bias is opposite for the two parameters.

Interestingly, the effects of starting point were largest in the 2AFC-1 datasets as compared to the 2AFC-2

dataset. With identical underlying stimulus repetition probabilities, one crucial difference between the two

studies were the instructions given to observers. In the 2AFC-1 dataset, observers were informed that

there could be structure in the stimulus sequence, and that these sequences could vary between sessions

(Braun et al. 2017). In the 2AFC-2 dataset, on the other hand, no mention was made of stimulus transition

probabilities. When debriefed after the final session, the majority of observers indicated that they did not

perceive specifics blocks as repeating or alternating, and reported that they did not feel as if they could
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predict the upcoming stimulus from the previous sequence. This may indicate that a history-dependent

shift in starting point relies on observers’ strategic adjustments of their response strategy.

Discussion

Observers’ choices often depend on choices made before, even in environments where subsequent stimuli

are independent. Such serial biases are ubiquitous in perceptual decision-making, but have so far mainly

been investigated using the binary outcome of each choice. We here used Drift DiffusionModeling to further

decompose serial choice patterns into two possible sources of bias: a shift in the starting point of evidence

accumulation, or a change in the rate with which evidence for one versus the other option is accumulated.

These two effects can lead to identical choice patterns, but they can be distinguished based on their effects

on reaction time distributions. Most importantly, these two sources of bias reflect dissociable algorithmic

components of the decision-process, allowing for an investigation into the specific implementations of bias

during perceptual decision-making.

A number of previous studies have used the drift diffusion model to tease apart starting point and drift

bias effects due to various manipulations of experimentally induced choice bias. When choice bias is induced

by assigning asymmetric prior probabilities to the two available choice options, the starting point of evidence

accumulation shifts in the direction of the more likely choice option (Leite and Ratcliff 2011; Mulder et al.

2012; White and Poldrack 2014). Similarly, a higher reward associated with one response option moves the

starting point towards that option (Gao et al. 2011; Leite and Ratcliff 2011; Mulder et al. 2012; White and

Poldrack 2014). There shifts in starting point correspond to optimal behaviour; within the DDM, performance

is maximized by shifting the starting point by a distance proportional to the relative probability or payoff

between the two alternatives (Edwards 1965; Bogacz et al. 2006; van Ravenzwaaij et al. 2012).

Biases in the drift rate of evidence accumulation can be induced by instructing observers on the criterion

separating stimulus classes - for example, when judging whether there are ‘many’ or ‘few’ items in a display

based on an arbitrary cutoff (Leite and Ratcliff 2011; White and Poldrack 2014). Drift bias is closely related to

stimulus processing, and can either arise from a bias already at the level of sensory encoding or by selective

integration of evidence for one or the other choice option into the decision variable. On the other hand,

shifts in starting point are thought to be more closely related to response preparation, and do not interact

with processing of the stimulus itself. Our findings suggest that serial choice biases most likely arise from a

change in stimulus processing, in a process perhaps akin to history-dependent feature-based attention.

Several previous studies have investigated the effect of previous choices on only the starting point of

evidence accumulation (Gold et al. 2008; Bode et al. 2012; Zhang et al. 2014). To our knowledge, however,

we show for the first time that drift bias captures a major component of behavioural variability resulting from

previous choices.

We additionally observed a history-dependent shift in the starting point of evidence accumulation when

stimulus sequences were biased towards repetition or alternation. Using a different sequential sampling
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model (the LATER model, Carpenter and Williams 1995), Kim et al. 2017 recently found that the starting

point of evidence accumulation tracks the prior of observers making saccades in an environment where

transition probabilities between two stimulus options changed unpredictably throughout the experiment.

Notably, this result was interpreted in the context of a normative model, where observers’ beliefs about the

upcoming stimulus are continually updated based on expectations about the volatility of the environment

(Glaze et al. 2015).

It is interesting to speculate that serial choice patterns in biased environments may reflect the super-

position of two underlying processes. First, an automatic history-dependent shift in attention may bias the

processing of subsequent stimuli, and is reflected in drift bias estimates in experiments without serial de-

pendencies between stimuli. Second, a history-dependent shift in starting point may reflect adjustments in

response preparation, present when biased stimulus sequences lead observers to strategically update the

starting point of accumulation. Future work is needed to investigate not only under what conditions history-

dependent shifts in starting point and drift bias co-occur, but also why they shift in opposite directions in

the datasets with biased environments presented here.

In conclusion, we found that serial choice biases in neutral environments are most closely related to

history-dependent shifts in drift bias; previous choices affect the way stimuli are processed or integrated

into a decision. When stimulus sequences are biased towards consistent repetition or alternation, an addi-

tional shift in the starting point of evidence accumulation was observed. These findings suggest that serial

choice patterns, which are ubiquitous in psychophysical experiments, may arise from a biased evidence

accumulation process that depends on experimental history.

Code availability

Code to fit the HDDM models and reproduce all figures is available at https://github.com/anne-urai/

serialDDM.
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Figure S1. Group-level posterior estimates of serial choice bias for each pharmacological intervention group. (a)
Posterior probability of the history shift in starting point, separately for each group. There was no significant difference
between atomoxetine and placebo (p = 0.267), between donepezil and placebo (p = 0.430), or between atomoxetine
and donepezil (p = 0.338). (b) Posterior probability of the history shift in drift bias, separately for each group. There was
no significant difference between atomoxetine and placebo (p = 0.285), between donepezil and placebo (p = 0.329),
or between atomoxetine and donepezil (p = 0.458).
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Abstract

When making perceptual decisions about sequences of independent stimuli, observers are consistently bi-

ased towards or away from their previously chosen response. We previously found that such serial choice

biases arise mostly from preceding choices, rather than the associated motor responses (Braun et al. 2017)

and that they might reflect the across-trial accumulation of uncertainty-weighted decision variables (Braun

et al. 2017; Urai et al. 2017).

Here, we used MEG to tease apart the contributions of neural signatures of sensory encoding, evidence

accumulation, and motor preparation in driving serial choice patterns. The goals of this paper are two-fold.

First, we found that post-choice pupil responses and reaction times both reflected decision uncertainty.

These two measures reduced observers’ tendency to repeat their responses from one trial to the next,

replicating our previous findings with a larger sample (Urai et al. 2017). Second, we found that previous

choices affect sensory representations as well as motor planning and evidence integration. Neural signatures

of both sensory and motor representations could be used to predict observers’ upcoming choices, over and

above the identity of the current stimulus and previous choice. This suggests that previous choices can affect

neural activity at the level of sensory encoding and response preparation, which may then give rise to serial

choice patterns in behaviour.

AUTHOR CONTRIBUTIONS: A.E.U., A.K.E. and T.H.D. designed research; A.E.U. collected and analyzed the data; A.E.U. wrote the
manuscript; T.H.D. supervised research.
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Introduction

Serial choice biases, individual tendencies to systematically repeat or alternate previous choices, are ubiq-

uitous in perceptual decision-making. These behavioural patterns may be similar across species, and might

arise from the interplay of different mechanistic and algorithmic effects (Fernberger 1920; Gold et al. 2008;

Yu and Cohen 2008; Busse et al. 2011; de Lange et al. 2013; Akaishi et al. 2014). When quantifying be-

haviour globally, these biases can easily go unnoticed; when conditioning on the immediately preceding

choice, however, strong patterns of individual choice patterns emerge.

A range of behavioural studies have started to comprehensively characterized serial choice biases (Akaishi

et al. 2014; Fischer and Whitney 2014; Fritsche et al. 2017; Urai et al. 2017), showing that serial biases

are modulated by decision confidence (Braun et al. 2017; Urai et al. 2017) and can be adapted to the

statistical structure of stimulus sequences (Abrahamyan et al. 2016; Braun et al. 2017). However, the neural

underpinnings of serial choice biases are unclear. Specifically, neural correlates of serial choice biases have

been reported in visual (St. John-Saaltink et al. 2016), motor (Pape and Siegel 2016) and frontal cortices

(Akaishi et al. 2014).

Two studies have used MEG and found that low-frequency lateralization signals reflect the last trial’s

motor response (de Lange et al. 2013; Pape and Siegel 2016), which may bias observers to alternate their

responses (Pape and Siegel 2016). In monkeys performing a perceptual choice task, previous choices bias

the starting point of firing rate levels in oculomotor, but not in sensory areas (Gold et al. 2008). An fMRI study

found that the orientation of previously chosen stimuli can be decoded from early visual cortex (St. John-

Saaltink et al. 2016), possibly through decision-related feedback signals from higher areas. It is thus an

intriguing possibility that previous choices exert an effect on decision processing similar to selective atten-

tion, influencing decision-making and motor circuits as well as early sensory circuits through feedback from

higher areas (Nienborg and Cumming 2009; Buffalo et al. 2010; Wimmer et al. 2015).

It remains an open question whether serial choice biases result from single neural basis, or instead re-

flect the superposition of neural mechanisms that may differentially contribute to behaviour. Here, we used

MEG to address this question. Sixty-one participants performed a perceptual decision-making task in which

subsequent stimuli were independent. We then extracted oscillatory signatures of sensory encoding, ev-

idence integration and response preparation, and found that all three neural signatures were affected by

previous choices. Gamma-band responses over visual cortex, a measure of sensory encoding, reflected not

just the current stimulus but also the previous response. Beta-band lateralization over motor cortex showed

a response-specific ‘rebound’ that carried over to the next trial (de Lange et al. 2013; Pape and Siegel 2016).

During evidence accumulation, the slope of lateralized beta-band buildup was also steeper for decisions that

were a repetition of the previous choice. Importantly, single-trial neural signatures at the sensory and motor

level - measured before stimulus onset - predicted observers’ upcoming choice. This suggests that previ-

ous choices affect neural activity at multiple processing stages during perceptual decision-making, biasing

choice behaviour.
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Materials and Methods

Participants

Sixty-four participants (aged 19-35 years, 43 women and 21men) participated in the study after screening for

psychiatric, neurological or medical conditions. All subjects had normal or corrected to normal vision, were

non-smokers, and gave their informed consent before the start of the study. The experiment was approved

by the ethical review board of the University Medical Center Hamburg-Eppendorf (reference PV4648). Two

participants stopped after the first session, and were excluded from all analyses. One participant was ad-

ditionally excluded from all analyses because of excessive head motion during MEG measurements. The

results are thus based on the data from 61 participants.

Task

Participants compared the strength of random-dot motion stimuli in two intervals (Figure 1b, Urai et al.

2017). Throughout the experiment, a red ‘bulls-eye’ fixation target of 1.5° diameter (Thaler et al. 2013)

was present in the centre of the screen. Each trial started with a pre-stimulus interval of 500 - 1000 ms of

randomly moving dots. A beep (50 ms, 440 Hz) indicated the onset of a reference stimulus, consisting of

70% coherence motion, that lasted for 750 ms. This was followed by a variable (300 – 700 ms) interval of

dynamic random motion. An identical beep indicated the onset of the second test stimulus, which had a

variable difficulty (motion coherence deviation from the baseline of 70% coherent motion). We applied a

counterbalancing scheme to ensure that each stimulus type (weaker or stronger second interval) is followed

by itself and the other stimulus equally often (Brooks 2012). Dots moved in one of the four diagonal di-

rections, counterbalanced across and constant within participants. After the offset of the second stimulus,

observers indicated whether they perceived the test stimulus as stronger or weaker compared to the refer-

ence stimulus, with a maximum response time of 3 seconds. The hands used to indicate weaker and stronger

stimuli were counterbalanced across subjects. Feedback (correct/incorrect) was then indicated by a tone of

150 ms (880 Hz or 200 Hz, feedback-tone mapping counterbalanced between subjects).

Stimuli

Dynamical random dot stimuli were presented in a central annulus (outer radius 14°, inner radius 2°) around

fixation. The annulus was defined by a field of dots with a density of 1.7 dots/degrees2. Dots were 0.2° in

diameter and had 100% contrast from the black screen background. Signal dots were randomly selected on

each frame, and moved with 11.5°/second in one of four diagonal directions (counterbalanced across, and

constant within participants). Signal dots that left the annulus wrapped around and reappeared on the other

side. Moreover, signal dots had a limited ‘lifetime’, and were replotted in a random location after being on

the screen for four consecutive frames. Noise dots were assigned a random location within the annulus on

each frame, resulting in ‘random position’ noise with a ‘different’ rule (Scase et al. 1996). Additionally, to
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Figure 1. Pharmacology and task. (a) Schedule of pharmacological intervention. Reproduced with permission from
Pfeffer et al. 2017. (b) 2-interval motion strength discrimination task. Dynamic random dot patterns were displayed
throughout each trial. In two successive intervals (onset cued by beeps), the dots moved in one of the four diagonal
directions (fixed per observer): A first ‘reference’ interval s1 with always 70% motion coherence, and a second ‘test’
interval s2 with motion coherence larger or smaller than the reference. The motion coherence difference between the
two intervals was titrated at each individual’s 70% accuracy threshold. Observers reported whether the test stimulus
contained stronger or weaker motion than the reference, by pressing one of two buttons. They received auditory
feedback after a variable delay. Adapted from Urai et al. 2017.

avoid subjects tracking individual signal dots as they move through the annulus, three independent motion

sequences were interleaved on subsequent frames (Roitman and Shadlen 2002).

Thresholding

Before their first MEG session, participants received instructions and then did a short thresholding session

in which a total of 600 stimuli of 1.25, 2.5, 5, 10, 20 and 30% motion difference (from the 70% coherence

baseline) were randomly interleaved. The inter-stimulus interval was 1 second, and subjects took a short

break after each set of 125 trials. They did not receive feedback. Stimuli were presented on an LCD screen

at 1920x1080 resolution and 60 Hz refresh rate, 60 cm away from the subjects’ eyes. To determine each

individual’s psychometric threshold, we fit a cumulative Weibull as a function of difficulty c, defined as

Φ(c) = δ+ (1− δ− γ)
(
1− e(

−c
α

)β
)

(1)

where δ is the guess rate (chance performance), γ is the lapse rate, and α and β are the threshold and

slope of the psychometric Weibull function, respectively (Wichmann and Hill 2001b). While keeping the

guess rate δ bound at 50% correct, we fit the parameters α, β and γ using a maximum likelihood procedure

implemented by minimizing the logarithm of the likelihood function. This was done using a Nelder-Mead

simplex optimization algorithm as implemented inMatlab’s fminsearch function. A parametric bootstrap was

used to obtain 95% confidence intervals around the Weibull parameter fits (Wichmann and Hill 2001a). The

individual threshold was taken as the stimulus difficulty corresponding to a 70% correct fit of the cumulative

Weibull.

Participants additionally went through a short staircase procedure, using a 2-up 1-down method. The

coherence difference between the two stimuli started at their 70% threshold as obtained from theWeibull fit,

and was increased by 0.1% coherence on making an error, and decreased by 0.1% on giving two consecutive



2.4
∣∣ Neural bases of serial choice bias 87

correct answers. Participants did 100 trials, over which we computed the average threshold. This procedure

ensured that any early learning effects or strategy adjustments during the thresholding session would not

lead to artificially high threshold values (and possible ceiling effects in behavioural performance). Thresholds

ranged from 3.3% to 13.4% (mean 6.9%) motion coherence difference.

Training

Participants performed the task at their individual motion threshold for 600 trials during the first MEG ses-

sion, three times for 1500 trials outside the scanner (on separate days), and for a last MEG session of 600

trials. During MEG sessions, when the pupil was recorded, random dots were displayed 1.5-3 seconds

before, and 2-3 seconds after feedback. These ‘pupil-rebound’ intervals served to optimally measure the

pre-feedback pupil response by (i) allowing the pupil to return to baseline before presenting the feedback

sound and (ii) encouraging the participants to keep their eyes open and fixated after the feedback for clear

measurement of pupil size. After this second ‘rebound’ interval, subjects could blink during a break indicated

by stationary dots on the screen, and continued to the next trial by pressing a button.

In the behavioural training sessions, we did not record the pupil, and presented feedback immediately af-

ter the subjects’ response. An ISI of 1s was observed before continuing to the next trial. Subjects completed

training on 4500 trials, over 3 separate sessions, between the two MEG recordings.

Pharmacology

At the start of each experimental session, participants orally took 40 mg atomoxetine (Strattera®), 5 mg

donepezil (Aricept®), or placebo. Since the time of peak plasma concentration is 3 hours for donepezil

(Rogers and Friedhoff 1998) and 1-2 hours for atomoxetine (Sauer et al. 2005), we used a placebo-controlled,

double-blind, double-dummy design, entailing an identical number of pills at the same times before every

session for all participants (Figure 1a). Participants in the donepezil group took 5 mg of donepezil 3 hours,

and a placebo 1.5 hours before starting the experimental session. Participants in the atomoxetine group

took a placebo 3 hours, and 40 mg of atomoxetine 1.5 hours before the experimental session. Those in the

placebo group took identical-looking sugar capsules both 3 and 1.5 hours before starting the session. This

ensured that either drug reached its peak plasma concentration at the start of the experimental training.

The drug doses were based previous studies with healthy participants (Chamberlain et al. 2009; Rokem and

Silver 2010). Blood pressure and heart rate were measured and registered before subjects took their first

and second pill. In the three hours before any MEG or training session, participants waited in a quiet room.

To avoid the accumulation of drugs, we ensured a minimum of 2 days between subsequent experimental

sessions. In total, 19 participants in the placebo, 22 in the atomoxetine, and 20 in the donepezil group

completed the full study.
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Personality questionnaires

In the waiting time before their last MEG session, participants filled out three personality questionnaires

in German or English. The behavioural inhibition/activation (BIS/BAS) questionnaire, measuring behaviour

activation and inhibition, was scored according to (Carver and White 1994). The Autism Quotient (AQ)

questionnaire, which measures autistic traits (Baron-Cohen et al. 2001), was scored according to (Freitag et

al. 2007). The Penn State Worry Questionnaire (PSWQ-D), which measures worrying behaviour, was scored

according to (Meyer et al. 1990). See Figure S2 for an overview of personality scores.

Eye-tracking and pupillometry

During MEG sessions, horizontal and vertical gaze position and pupil diameter were recorded at 1000 Hz

using an MEG-compatible EyeLink 1000 on a long-range mount (SR Research) at 60 cm from the subject’s

eye. The eye tracker was calibrated before each block of training. To minimize any effect of light on pupil

diameter, the overall luminance of the display was held constant throughout the experiment by always

displaying a cloud of white dots on the screen.

Missing data and blinks, as detected by the EyeLink software, were padded by 150 ms and linearly

interpolated. Additional blinks were found using peak detection on the velocity of the pupil signal and

linearly interpolated. We used a deconvolution approach to estimate the effect of blinks and saccades

on the pupil signal and removed these artefacts from the data using linear regression (Knapen and de Gee

2016). The residual pupil time series were band-pass filtered using a 0.01 to 10 Hz second-order Butterworth

filter, z-scored per run of 60 trials, and resampled to 400 Hz.

Behavioural analyses

To test whether RT reflected decision uncertainty, we used data from both MEG sessions and did a paired t-

test on the median RT for correct and error trials for each subject. On the pupil timecourses, we performed

a cluster-corrected permutation test on the mean pupil response between correct and error trials, which

takes into account the temporal autocorrelation in the signal to correct for multiple comparisons (Maris and

Oostenveld 2007).

We then tested whether these two proxies for decision uncertainty affected serial choice patterns, i.e.

the tendency to repeat the last choice. To visualize the effect, we split the data into three equal-sized

bins of RT or pupil, and computed the probability that the next choice was a repetition of the current

choice (Figure 2c,d). Because we only used one fixed level of task difficulty, we could not fit the full logistic

regression model previously used (Fründ et al. 2014; Urai et al. 2017). Instead, we used generalized linear

mixed models (GLMMs) to predict each choice as a repetition or alternation from the previous choice. We

included an intercept (capturing group-level repetition behaviour), a vector of across-trial pupil responses or

response times (normalized by z-scoring the log-transformed RT for each subject and session), and random
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intercepts for each observer. For each GLMM, we report the estimated fixed effects coefficient β, its lower

and upper 95% confidence intervals, and its p-value.

MEG acquisition

MEG was recorded using a 275-channel CTF system in a shielded room. Horizontal, vertical and radial EOG,

bipolar ECG, and an electrode at location POz (about 4 cm above the inion) were recorded simultaneously.

See Figure S1 for an analysis of ECG data. All signals were low-pass filtered online (cut-off: 300 Hz) and

recorded with a sampling rate of 1200 Hz. To minimize the displacement of the subject’s head with respect

to the MEG sensors, we used online head-localization (Stolk et al. 2013) to show the head position to the

subject inside the MEG chamber before each block. Subjects were then asked to move themselves back

into their original position, correcting slow drift of their head position during the experiment. Moreover,

between the two recording days, the original head position from day one was used as a template for day

two.

Stimuli were projected into the MEG chamber using a beamer with a resolution of 1024 x 768 pixels and

a refresh rate of 60 Hz. The screen was positioned 65 cm away from their eyes.

MEG preprocessing

Data were analyzed in Matlab using the Fieldtrip Toolbox (Oostenveld et al. 2011) and custom scripts. MEG

data were first resampled to 400 Hz, matched with the corresponding EyeLink timecourses, and epoched

into single trials from fixation to 2s after feedback. Trials with squid jumps were detected by fitting a line

to each single-trial log-transformed Fourier spectrum, and rejecting trials where the intercept was detected

as an outlier based on Grubb’s test. To remove the effect of line noise on the data (which were not always

restricted to 50 Hz and its harmonics due to technical issues), we computed the cross-spectrum of the data at

50 Hz, resulting in a complex matrix of size n by n, where n is the number of channels. We applied singular

value decomposition to this cross-spectrum, and took the first eigenvector (corresponding to the largest

singular value) as the spatial topography reflecting line noise. The two-dimensional space spanned by the

real and imaginary parts of this eigenvector was then projected out of the data, effectively suppressing any

signal that co-varies with activity at 50 Hz. Line noise around 50, 100 and 150 Hz was then removed by a

bandstop filter, and each trial was demeaned and detrended.

We also removed trials where (i) no response was recorded in the 3s after stimulus offset, (ii) head motion

of any of the 3 fiducial coils (nasion, right and left pre-auricular point) exceeded a translation of 6 mm from

the first trial of the recording (Stolk et al. 2013), (iii) the min-max data range was larger than 7.5 pT, usually

caused by cars driving by close to the building, (iv) muscle bursts, eye blinks or saccades were detected in

the time before buttonpress. Blinks were detected by applying a 1-15Hz bandpass filter to the horizontal

and vertical EOG channels, z-scoring the data, and marking any epochs with a z-score larger than 5 as a

blink event. Muscle bursts were detected by applying a 9th-order 110-140 Hz Butterworth filter to all MEG
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channels, z-scoring the data, and marking any z-score above 20 as a muscle burst. We then epoched the

data on each trial around the reference stimulus s1 (-0.5 to 1.5s), test stimulus s2 (-0.5 to 1.5s), buttonpress

(-1 to 1s) and feedback (-0.5 to 1.5s).

MEG time-frequency analysis

We computed time-frequency representations for each of the four time windows of interests. High and low

frequency ranges were analyzed separately. For the low frequencies (3-35 Hz in steps of 1 Hz), we used

a Hanning window with a length of 400 ms in steps of 50 ms and a frequency smoothing of 2.5 Hz. For

high frequencies (36-120 Hz in steps of 2 Hz), we used the multitaper technique with five discrete proloid

slepian tapers (Mitra and Pesaran 1999), a window length of 400 ms in steps of 50 ms, and 8 Hz frequency

smoothing. We decomposed the data into two planar gradients before estimating power, and combined

these afterwards to simplify the topographical representation of evoked power.

We converted the time-frequency representations into % signal change from the pre-trial baseline. This

baseline was defined as the across-trial average in the -300 to -200 ms before reference onset across, sep-

arately for each sensor and frequency.

On the time-frequency spectra, we used cluster-based permutation testing (Maris and Oostenveld 2007)

to find clusters across time and frequency that differed for our contrast of interest.

Frequency selection

We based our choice of frequency bands on previous work: for motor lateralisation in the beta-band, we

used the range 12-36 Hz (Donner et al. 2009) and for visual gamma-band responses we used 65-95 Hz

(Siegel et al. 2006). Note that while the original paper by Siegel et al. (2006) found the frequency range

from 60-100 Hz to have the strongest response to coherent motion, we here excluded 60Hz to avoid the

evoked steady-state visual evoked potential (Figure S3). Similarly, we excluded 100 Hz to avoid including

power-line noise into our estimates of gamma-band responses.

Sensor selection

To define sensors/voxels corresponding to visual motion encoding, we contrasted trials with strong vs. weak

motion coherence in the second interval, and computed power in the gamma-range (65-95 Hz) from 150 to

750 ms after stimulus onset. We then selected the 25 most active sensors in the first and second session

separately.

Similarly, for sensors/voxels corresponding to response preparation, we contrasted trials in which the

left vs. the right hand was used to respond. We computed power in the beta range (12-36 Hz) in the 500

ms before button press (Donner et al. 2009), and used the same split-half approach to define the 25 most

active sensors for the contrast left vs. right, as well as the 25 most active sensors the for opposite contrast,

to extract left and right motor regions respectively.
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For each session, we then extracted single-trial values at each point in time by collapsing over the se-

lected frequency range and the sensors defined on the other session.

MEG source reconstruction

Structural T1-weighted magnetization prepared gradient-echo images (TR = 2300 ms, TE = 2.98 ms, FoV =

256 mm, 1 mm slice thickness, TI = 1100 ms, 9° flip angle) with 1x1x1 mm3 voxel resolution were obtained

on a 3T Siemens Magnetom Trio MRI scanner (Siemens Medical Systems, Erlangen, Germany). Fiducials

(nasion, left and right intra-aural point) were marked on the MRI. A single-sphere volume conduction model

(Nolte 2003) was created for each individual, and individual source models were warped to the Colin27 brain

(Holmes et al. 1998) using a nonlinear transformation for group analyses and visualization. We were not able

to obtain an individual MRI for one of the 61 observers; this participant was included in sensor-level, but not

in source-level analyses.

We extracted virtual sensors based on source-reconstructed voxel timecourses from a sliding window

DICS beamformer (Van Veen et al. 1997; Gross et al. 2001). Within each frequency range (beta/gamma),

we computed a common filter based on the cross-spectral density matrix separately for each stable epoch.

For both the reference and test stimulus epoch separately, those were the baseline (-300 to 0 ms) and the

evoked response (150 to 750 ms). For the response epoch, this was the pre-buttonpress window (-400 to

100 ms) and for the feedback, those were the pre-tone (-400 to 0) and post-tone (200 to 700) windows.

We then applied the beamformer in a sliding window of 250 ms, with steps of 50 ms, keeping single-trial

source estimates, using the appropriate common filter for each epoch. There were then converted into %

signal change from the pre-trial baseline, making the units of MEG oscillatory responses comparable across

sensor- and source-level analyses.

ROI definition

To define visually selective voxels, we used the atlas by Wang and Munoz (2015). We first performed source

reconstruction for each voxel, then averaged all voxels within each atlas region. Lastly, we grouped the

individual regions into visual field maps (Wandell et al. 2007): medial occipital (ventral and dorsal V1, V2

and V3); lateral occipital (LO1, LO2 and hMT); ventral occipital (hV4, VOI and VO2); dorsal occipital (V3A,

V3B); and posterior parietal (IPS0 to IPS4). See Figure S4 for a representation of these visual regions on the

template brain, and Figure S5 for data for each visual field map separately). To increase the signal strength

of visually evoked source-level activity, we averaged all visual areas together for the main analyses reported.

To define motor regions, we manually defined three coordinate locations on the Colin27 template brain,

and averaged together those three motor regions. In MNI coordinates, we located the ‘handknob’ of the

precentral gyrus, the intersection of the precentral and superior frontal sulcus, and lastly the postcentral

aIPS (see Table S1 for MNI coordinates).
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We computed the difference between each left and right region into an index of lateralization, and

subsequently averaged the three motor regions. This lateralization was flipped for half of the observers

who responded ‘stronger’ with their left and ‘weaker’ with their right hand, enabling us to express motor

lateralization relative to the stimulus identity for all observers.

MEG source statistics

We extracted source-level single-trial estimates of sensory encoding (visual gamma-band responses from

150 to 750 ms after the onset of the test stimulus) and motor preparation (beta-band lateralization during

the 500 ms pre-trial fixation baseline).

We used GLMMs (see also Behavioural analyses) to test for the effect of previous choices on these neural

measures (using a linear link function), and for the predictive value on these neural measures on current

choices (using a logistic link function), including a random effects intercept for each observer.

To assess the effect of previous choices on the build-up of beta-band lateralization (Donner et al. 2009),

we first averaged all trials within observers and conditions (previous and current choice) and then computed

a linear regression on the time window from 150 ms to 750 after the onset of the test stimulus. This ap-

proach allowed for robust estimate of the build-up slope, as compared to fitting regressions on single-trial

timecourses. Across observers, we use a repeated measures ANOVA to test for the effect of current and

previous choice on the slope of this beta-band lateralization.

Choice probability

Wecomputed ROC indices to quantify the degree of separability between distributions of single-trial gamma-

band responses when observers responded ‘stronger’ vs ‘weaker’ (Green and Swets 1966; Britten et al.

1996). This measure quantifies, for each observer, the degree to which gamma-band responses during the

reference interval predict the upcoming choice. A value of 0.5 indicates completely overlapping distribu-

tions, whereas values of 0 or 1 indicate completely separate classes. Across the group, we used a two-tailed

t-test and compared the ROC indices to 0.5.

Results

Pupil-linked arousal reflects decision uncertainty and modulates serial choice bias

We first replicated the two main findings from Urai et al. (2017). First, both pupil responses and response

times scaled with decision uncertainty. Since we used only one level of stimulus difficulty in this version

of the experiment, the statistical model of decision uncertainty (Kepecs et al. 2008) makes the prediction

that average uncertainty signals should be higher on error than on correct trials. This was indeed the case

for both response times (Figure 2a) and pupil responses in the interval between response and feedback

(Figure 2b).
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Intriguingly, we also observed a significant cluster in the pupil timecourse already during stimulus pre-

sentation (Figure 2b). Here, the pupil was larger on correct trials, possibly reflecting decision confidence

rather than uncertainty. A similar pattern (albeit small and not significant) was observed in Urai et al. (2017),

Figure 3b. Notably, in both datasets, this effect was already present during viewing of the reference stim-

ulus - before any decision-relevant information was presented to the observer. In monkeys performing a

disparity discrimination task with long stimulus presentation times, the pupil was also found to scale posi-

tively with confidence during stimulus viewing (Kawaguchi et al. (2017) Decision confidence and motivation

are differently associated with task-strategy during perceptual decision making. European Conference on

Visual Perception, Berlin). Future studies could use long stimulus presentation times as well as a long post-

response delay to investigate the possibility that pupil responses scale with decision confidence during

stimulus viewing, and with decision uncertainty (the complement of confidence) after response.

Response times (Figure 2c, β = -0.0363 [-0.0512, -0.0214], p < 0.0001) and pre-feedback pupil responses

(Figure 2d, β = -0.0174 [-0.0325, -0.0023], p = 0.0242) predicted an overall reduction in choice repetition

on the next trial. Despite a few differences in experimental design (most importantly, only one level of

difficulty) we thus replicated our previous finding that two proxies of decision uncertainty modulate serial

choice patterns (Urai et al. 2017).
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offset of the test stimulus, error bars show group mean ± s.e.m. of individual RT medians) are larger on error vs correct
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We also investigated the overall group-level patterns of serial choice bias. We quantified serial choice

bias using three measures: (i) P(repeat), the average probability of repeating the previous choice regardless

of the stimulus sequence, and two measures derived from hierarchical drift diffusion model fits (see chapter

2.3), (ii) the history-shift in drift bias and (iii) the history-shift in starting point. As reported in chapter 2.3,
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we observed a strong correlation between individual repetition probability and the history-shift in drift bias,

but not in starting point (Figure S2, top left). While stimulus sequences were uncorrelated, average choice

repetition patterns were biased towards repetition (average P(repeat) = 0.5167, t60 = 4.6569, p < 0.0001).

This repetition behaviour did not differ between the two MEG sessions (P(repeat) = 0.5202 in the first

session and 0.5141 in the last session, t60 = 1.2125, p = 0.2301).

Visual gamma-band responses scale with stimulus motion and previous choice

We then used our MEG data to ask which stages of the decision-making process are affected by previous

choices. We extracted measures of sensory encoding, response preparation and evidence integration, and

tested whether these proxies for different components of decision-making reflect previous choices.

At the sensory stage, we first confirmed that gamma-band responses over occipital cortex scaled with

the strength of coherent motion on the screen (Siegel et al. 2006). We selected occipital sensors based on

a split-half analyses (see Methods), and computed the full time-frequency response over all trials (Figure 3a)

and for the contrast strong vs weak motion (Figure 3b). This shows a narrow-band response at the screen

refresh rate of 60 Hz (the steady-state visual evoked potential or SSVEP), as well as a high gamma-band

response to the onset of visual motion (Figure 3, see also Figure S3). More importantly, we observed a

higher gamma-band response in the test interval for motion that was stronger vs. weaker than the 70%

coherence baseline (Siegel et al. 2006), reflecting the decision-relevant stimulus information on the screen.

As we titrated the motion threshold for each observer individually, the physical difference in motion

strength (in % coherence) ranged from 6.6% to 26.8% across observers. Across participants, motion co-

herence did not correlate to the source-level gamma-band response to strong vs. weak motion stimuli (r =

0.1127, p = 0.3912). We did not observe any significant time-frequency clusters for the contrast of previous

strong vs. weak choices at the sensor level.

We then used a linear beamformer to obtain source-level estimates of visual gamma-band responses

(Hipp and Siegel 2013), extracting retinotopic visual cortical areas as defined byWang andMunoz (2015). As

expected, the resulting time-courses showed a robust effect of stronger vs weaker coherent motion during

the test stimulus interval (Figure 4a). From this, we extracted single-trial estimates of sensory evidence,

averaging the visual cortical gamma-band response over the 150-750 ms after the onset of the test stimulus,

and tested whether these visual responses reflect not just current visual input, but also previous choices.

As expected, cortical gamma-band responses increased with strong current motion (Figure 4b, blue vs.

green, β = 4.1022 [2.5592, 5.6453], p < 0.0001). Moreover, we observed higher visual cortical gamma-band

responses when the observer chose ‘stronger’ motion on the previous trial (Figure 4b, β = 2.2843 [0.7510,

3.8176], p = 0.0035). This effect was already present during the reference interval (β = 2.5338 [0.9712,

4.0964], p = 0.0015). This suggests that visual responses were boosted in line with the observer’s previous

choice. The effect of previous choices was also significant when only current correct trials were included (β

= 2.4810 [0.7064, 4.2556], p = 0.0061). We repeated this analysis separately for all visual field maps; we
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found significant modulation by the visual stimulus in all, and significant modulation by the previous choice

in dorsal occipital, medial occipital, and posterior parietal regions (Figure S5).

Motor lateralization in the beta-band carries over to the next trial

At themotor end, we computed time-frequency responses based on themotor sensors contra- vs. ipsilateral

to the trial’s button press (Figure 5a). This showed a typical reduction in the beta-band already during

stimulus viewing, building up towards the choice (Donner et al. 2009). This beta lateralization also showed
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a strong ‘rebound’, reversing in sign after the button press. We also observed that the beta-rebound in

lateralization was long-lasting, and carried over into the beginning of the next trial (Figure 5b, de Lange

et al. 2013; Pape and Siegel 2016). In contrast, lateralization in the gamma range emerged around the time

of the button press, and was not sustained after the response (Figure 5a, Donner et al. 2009).

We confirmed these results at the source level. As already visible in the sensor-level TFR (Figure 5b),

there was a carry-over effect of the ‘beta-rebound’ from the last trial (Figure 6a). Pre-trial beta lateralization

reflected the previous response (β = 7.6802 [5.4352, 9.9252], p < 0.0001) but not the current response (β =

-1.7374 [-3.9806,0.5058], p = 0.1290), nor the interaction between the two (β = -1.2489 [-4.3845, 1.8867],

p = 0.4350), as visualized in Figure 6c. This replicates the findings by de Lange et al. 2013; Pape and Siegel

2016, who reported that fluctuations of pre-trial beta-rebound lateralization reflected a carry-over from the

previous trial. The gamma-band response, which also showed strong lateralization around the time of the

choice (Donner et al. 2009), did not affect the next trial (Figure 6b).

Previous work established that the slope of the motor beta build-up can be used as a read-out for an

internally accumulating decision variable (Donner et al. 2009). We quantified this buildup using a linear

regression fit on the average beta-band timecourse, from 150 ms to 750 ms after stimulus onset. This was

done separately for the previous choice r−1 and the current choice r0. As expected, there was a strong

effect of the current choice, with beta-band lateralization reaching opposite endpoints depending on the

hand used to indicate the response (Figure 6d).

A repeated measures ANOVA showed a significant effect of current response (F1,59 = 70.18, p < 0.001)

and a significant effect of previous response (F1,59 = 12.39, p = 0.001) without an interaction between the

two (F1,59 = 0.48, p = 0.489). This was also the case when considering only correct current trials (data not

shown). Interestingly, we also saw that the previous choice affected this build-up slope, with steeper build-

up on trials that were a repetition of the previous choice (Figure 6e). This suggests that decision-relevant

evidence is more efficiently integrated into a motor plan when the choice is a repetition of the previously

made choice.

Pre-stimulus sensory and motor signals predict the upcoming choice

Using the beamformed source estimates, we extracted two single-trial oscillatory neural signatures that

could be defined during the reference interval, before any decision-relevant information was presented to

the subject. First, to capture early visual encoding of the stimulus, we used the gamma-band response

(65-95 Hz) in visual cortical areas during presentation of the reference stimulus (150-750 ms). Second, we

used the residual ‘beta-rebound’ from the previous trial to capture the carry-over of motor lateralization

(Pape and Siegel 2016). Having identified signatures that reflect the previous choice, we then asked if

these signatures could be used to predict the participant’s upcoming choice. Using a generalized logistic

regression model, we were able to predict each trial’s choice based on that trial’s gamma-band response

during the reference, that trial’s motor lateralization in the beta band, as well as the previous trial’s choice
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(while allowing for subject-specific intercepts as random factors). We found that, while taking into account

both the current trial’s stimulus (β = 2.0262 [1.9852, 2.0671], p < 0.0001) and the behavioural response on

the previous trial (β = 0.1044 [0.0634, 0.1453], p < 0.0001), both visual gamma-band (β = 0.0004 [0.0001,

0.0007], p = 0.0206) and motor beta lateralization at the start of the trial (β = -0.0004 [-0.0006, -0.0001], p =

0.0022) predicted the subject’s upcoming choice. As can be seen from the opposite sign of the two neural

measures, higher gamma-band responses preceded more ‘stronger’ choices, while higher beta-band motor

lateralization towards ‘stronger’ choices precede the opposite ‘weaker’ choice.

For the visual gamma-band responses we also computed choice probability, or the degree to which

a signal covaries with the observers’ response on that trial. Importantly, we used single-trial gamma-band

responses during the reference interval, before decision-relevant information was presented to the observer.

Visual gamma-band responses showed small but significant choice probabilities (ROC = 0.5068 ± 0.0230,

t60 = 2.3270, p = 0.0234), suggesting that fluctuations in the visual response reflect the observers’ upcoming

choice even before decision-relevant evidence is presented.

We then asked if these neural signatures of the previous choice also explain the range of individual

serial choice biases present across individuals. We computed, for each participant, the effect of previous

choices on visual gamma-band responses, motor beta-band lateralization at the start of the trial, and the

slope of beta-band build-up. We then correlated each of these measures to individual measures of serial

choice bias. There were no significant correlations between individual behavioural measures of serial choice

bias and the effect of previous choices on neural signatures of sensory processing, motor preparation and

evidence integration (data not shown). One previous study previously reported a correlation between indi-

vidual repetition behaviour and pre-trial beta-band lateralization (Pape and Siegel 2016). Here, with a larger

sample (n = 20 versus n = 60), we did not replicate this correlation with individual serial choice behaviour.

We did not observe differences in neural measures of serial choice biases between the three pharmacology

groups (all uncorrected p > 0.0899, Mann-Whitney U-test).

Discussion

Here, we used MEG to extract single-trial measure of sensory encoding and motor preparation in sixty-one

observers performing a perceptual decision-making task. While subsequent stimuli were independent, ob-

servers’ choice behaviour was consistently biased by their previously made choices. We found that previous

choices affected neural activity at the sensory and motor level, and that both these signatures predicted

observers’ upcoming decisions.

Firing rates of neurons in visual cortex have shown choice probabilities in the range of 0.5-0.6, increasing

up to 0.7 in areas more closely related to the motor response (Britten et al. 1996; Nienborg and Cumming

2006, 2009; reviewed in Crapse and Basso 2015). Here, we observed choice probabilities in visual gamma-

band signals in the range of 0.5-0.51, just differing from the 0.5 baseline across our group of observers. This

low level of choice probability could have several reasons: single-trial MEG signals contains noise arising
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from several non-neural sources, such as physiological noise and head motion. Indeed, we observed sig-

nificant effects of previous choices on visual gamma-band activity at the source, but not the sensor-level,

suggesting that the beamformer improved estimates of the visual response (Hipp and Siegel 2013). More-

over, over and above the already pooled nature of the MEG signal, we combined voxels from a broad set

of visual areas (Wandell et al. 2007; Wang and Munoz 2015). Future work could pinpoint cortical regions

most predictive of the upcoming choice, increasing the anatomical specificity of our findings. Also, since

between-subject variability in gamma-band responses may arise from a number of physiological and and

anatomical differences (Shaw et al. 2017) our estimates of sensory encoding could be optimized by deter-

mining the gamma-band frequency range for each observer individually. Lastly, it remains an open question

to what degree scalp-level electrophysiological signatures allow for the same level of inferential specificity

as the firing rate of single neurons in sensory cortex.

Although we did not find a link between algorithmic components of serial choice bias and individual

neural signatures between observers, it is tempting to speculate that such a relationship may hold within

each participant. Specifically, previous behavioural work suggests a tight link between response preparation

and the starting point of evidence accumulation, and between drift bias and the quality of decision-relevant

sensory evidence (Leite and Ratcliff 2011; White and Poldrack 2014). This suggests that residual beta-band

lateralization from the previous trial may affect the starting point of evidence accumulation, whereas visual

gamma-band responses may bias the rate of evidence accumulation towards the previously chosen option.

Combined with results from HDDM model fits (Figure S2 and chapter 2.3), which show that drift bias best

captures individual choice patterns, this may suggest that the effect of previous choices on sensory cortices

may be the dominant factor in driving behavioural serial biases. This would be in line with finding that

visual choice probabilities arise at least partly due to feedback connections from higher areas (Nienborg and

Cumming 2009; Wimmer et al. 2015); one intriguing avenue for future research is to test to what degree

these feedback connections carry information about preceding choices.

A large body of literature has investigated the neural basis of attention and expectations (Summerfield

and de Lange 2014). In these experiments, attention and expectations are usually manipulated by adjust-

ing the relative frequency of stimuli, or by cueing observers towards one feature or spatial location. Such

cue-induced expectations can activate stimulus-like representational templates in visual cortex (Kok et al.

2013; Kok et al. 2017), suggesting that top-down factors can bias early neural sensory responses. We here

observed such choice-predictive activity as a result of the observer’s previous choices, rather than experimen-

tally manipulated external variables. This raises the possibility that at least some of the variability observed

in neural activity and choice behaviour is not merely noise, but relies on the observer’s choice history in

systematic ways.

In conclusion, our findings point to previous choices as an important source of variability at the level

neural dynamics and the resulting choice behaviour. These results thus contribute to our understanding of

exactly how decision processes arise from a rich interplay of sensory information and contextual factors.
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Figure S1. Heart rate increases under atomoxetine, but does not change under donepezil. We used ECG, recorded
continuously during the MEG sessions, to test whether pharmacology changed participant’s peripheral arousal levels.
ECG data were band-pass filtered between 5 and 40 Hz and epoched within each block of trials of approximately 10
minutes. For each participant and block, we then counted the number of peaks in the ECG timeseries, detected based
on the constraint that the minimum distance between subsequent peaks was 400 ms (corresponding to a maximum
of 150 bpm) and the minimum peak amplitude 0.5 mV. We visually inspected the data to ensure that the algorithm
found the R peak of each heartbeat; blocks with insufficient quality for the algorithm to work were discarded. We then
computed heart rate in beats per minute (bpm) for each block.

To test whether heart rate changed in response to the pharmacological intervention, we subtracted from the time-
course the participant’s heart rate that was measured at the start of the experimental session before receiving their first
pill, 3 hours before MEG recording. For statistics, we averaged over all ten MEG blocks. We used a Mann–Whitney
U-test to compare the different pharmacological groups, and single-sample Wilcoxon signed rank tests to compare each
group’s heart rate change from baseline to zero.

Heart rates were stable within the timecourse of the 2-hour MEG session, but the change from baseline (3 hours
earlier) depended strongly on pharmacology. The atomoxetine group had a higher heart rate than both the placebo
(p = 0.003) and donepezil (p = 0.032) groups (Wernicke et al. 2003). In contrast to previous reports (Park-Wyllie et al.
2009), we did not observe a significantly different heart rate between the donepezil and placebo groups (p = 0.590).
Heart rates were lower during MEG scanning than at the beginning of the session in the placebo (p = 0.0100) but not
the atomoxetine (p = 0.1311) or donepezil groups (p = 0.0840). This probably results from the timing of the first baseline
measurement, which we took immediately after participants arrived in the lab (and therefore after walking or cycling
through the hospital campus).
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Figure S2. Correlation between serial choice bias, personality scores and pharmacology. Least-squares regres-
sion lines are shown for correlations that are significant at the critical FDR-corrected p = 0.0062 level (Benjamini and
Hochberg 1995). Histograms indicate the distribution of behavioural measures and personality scores for each of the
three pharmacological groups. The top-left indicates correlations between behavioural variables, the bottom-left in-
dicates correlations between serial bias and personality scores, and the bottom-right indicates correlations between
different personality measures. Colors indicate the pharmacological intervention that each participant received.

Between the four different personality questionnaires, we observed a positive correlation between PSWQ-D (which
measures worry) and BIS scores (which measures behavioural inhibition), as previously reported (Muris et al. 1999; Spiel-
berg et al. 2011). We also observed a previously reported correlation between AQ (which measures autistic traits) and
BAS scores (which measures behavioural activation) (Gallitto and Leth-Steensen 2015).

None of the personality scores were related to individual measures of serial choice bias. We did not observe signifi-
cant differences between the pharmacological groups for any of the behavioural or personality variables (Mann–Whitney
U test, all uncorrected p > 0.0703).



102

30 60 90 120
Frequency (Hz)

0

1

2

E
vo

ke
d 

po
w

er
 (

%
)

0

2

4

T
ot

al
 p

ow
er

 (
%

)

Figure S3. Evoked and total visual responses. High-frequency power spectra of the difference between strong and
weak visual motion during the test stimulus. Power was either computed after averaging trials in the time domain
(evoked power, grey) or computed on single trials before averaging (total power, green). Power is expressed in % from
the average pre-reference baseline. To obtain these sensor-level spectra, we used the occipital electrodes from a split-
half sensor definition shown in Figure 3a. Error bars indicate group mean ± s.e.m. Green dots indicate the frequency
range of 65-95 Hz used to define the induced gamma-band range.

Figure S4. Visual cortical areas used for source reconstruction. We used all visual cortical areas defined in the atlas
by Wang and Munoz 2015, and grouped those together into one large visual ROI to maximize power. Shown are the
included areas, interpolated onto the Colin27 template brain (Holmes et al. 1998).
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Figure S5. Gamma-band responses for all for all retinotopic visual cortical field areas. We reran the analysis from
Figure 4b separately for each visual field map, obtained by combining the areas defined in the atlas by Wang and
Munoz 2015 into the clusters specified by Wandell et al. 2007. P-values for the effect of current stimulus s0 and previous
response r−1 are printed in each panel.
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Region X Y Z
Precentral ‘handknob’ left −3.5 −2.6 5.8
Precentral ‘handknob’ right 3.4 −2.7 5.8
Precentral/superior frontal sulcus left −3.1 −0.7 4.9
Precentral/superior frontal sulcus right 2.9 −0.7 5.3
Postcentral aIPS left −3.9 −4.0 5.6
Postcentral aIPS right 4.1 −4.2 5.6

Table S1. MNI coordinates of motor regions. These three regions (both left and right, respectively) were manually
defined on the template brain, and interpolated to the nearest MNI coordinate on the voxel grid.
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Figure S6. Motor beta build-up slopes separately for each ROI. Dashed lines indicate the average fitted regression
line in the interval from 150 to 750 ms after stimulus onset.
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perceptual evidence

Talluri BC*, Urai AE*, Tsetsos K, Usher M, Donner TH.

Abstract

Perceptual inference does not only depend on sensory evidence, but also on top-down factors. One of

these is categorical perceptual choice, which might alter subsequent inference in a top-down fashion. Here,

we tested the impact of overt perceptual choices on the integration of subsequent sensory evidence into

continuous estimation judgments. Observers made a continuous estimation of the average motion direction

across two intervals of random dot motion. In addition, an unpredictable auditory cue at the offset of

the first interval prompted the observers for a response (button press) halfway through the stream: a fine

discrimination judgment based on the first interval of dot motion, or an evidence-independent response.

We independently varied the sensory evidence (i.e. motion direction) presented in each interval, and fit

statistical models to quantify how observers integrated this sensory evidence into their final estimation of

motion direction.

We found that observers decrease their sensitivity to incoming sensory evidence that is inconsistent with

their previously made choice. In addition, we found that overt categorical choices reduce overall sensitivity

to subsequent evidence (Bronfman et al. 2015). We thus identify two sources of bias in perceptual inference,

both of which act to reduce observers’ sensitivity to specific incoming sensory evidence.

* Shared first authors. AUTHOR CONTRIBUTIONS: T.H.D. and M.U. formulated the idea for the study and designed the experiment.
A.E.U. programmed the task and collected data. B.C.T., A.E.U. and K.T. analyzed data. B.C.T., A.E.U. and T.H.D. wrote the paper.
T.H.D. supervised research.
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Introduction

Humans and animals make sense of the world around them by performing perceptual inference, combining

sensory information with prior knowledge to choose the best possible outcome in a given situation. Tra-

ditional models of perceptual decision-making often conceptualize the encoding of sensory information as

relying mostly on feed-forward neural mechanisms from low-level sensory areas, and prior knowledge being

implemented in the form of top-down modulation using feedback neural mechanisms from higher order ar-

eas (Bogacz et al. 2006; Jazayeri and Movshon 2006; Gold and Shadlen 2007; Glaze et al. 2015). Due to this

interaction between bottom-up and top-down factors, perceptual inference is influenced by expectations

and biases (Rahnev and Denison 2016; Gold and Stocker 2017).

Categorical judgments about sensory evidence are one such biasing factor. In psychophysical experi-

ments, categorical choices bias subsequent decision processes and lead to serial dependencies across trials

(Fründ et al. 2014; Braun et al. 2017). Physiologically, categorical choices are more than just the endpoint

of the neural inference process: choices can themselves cause feedback signals to sensory areas, thereby

altering subsequent perceptual inference (Nienborg and Roelfsema 2015). Specifically, feedback signals

from higher choice-related areas contribute to choice-predictive neural activity in early visual areas, a phe-

nomenon termed choice probability (Nienborg and Cumming 2009; Siegel et al. 2015; Wimmer et al. 2015;

Goris et al. 2017). When making continuous direction judgments, observers give estimates that are repulsed

away from a category boundary used for a binary choice (Jazayeri and Movshon 2007). This behaviour may

arise from choice-induced perceptual biases, which are apparent when observers make both a binary choice

and a continuous estimation about the same stimulus (Stocker and Simoncelli 2008; Luu and Stocker 2016).

We here set out to quantify the behavioural effects of overt categorical choices on the integration of sub-

sequently presented perceptual evidence. We probed the perceptual inference process by asking observers

to report a continuous estimation of perceived motion direction across two stimulus intervals, of which we

independently varied the directional evidence (Figure 1A). We then quantified the degree to which each

interval’s sensory information contributed to the final estimation. After the first interval, observers were

prompted to either make a binary judgment about motion direction relative to a reference mark on the

screen during the entire duration of a trial (Choice trials), or make a similar motor response that did not

require a decision (No-Choice trials). We quantified different effects of making an overt choice on the inte-

gration of subsequently presented evidence by fitting statistical models to the continuous motion direction

judgements. Moreover, we independently varied the sensory evidence presented in both intervals, and in-

vestigated how the consistency between observers’ binary choice and the subsequently presented evidence

affected their perceptual estimation judgements.
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Materials and Methods

Participants

Sixteen participants (six men and ten women, aged 18-29) participated in the study. Two participants did

not complete the full experiment, and were discarded from all analyses. The data presented are thus based

on the remaining 14 participants. All gave written informed consent prior to participation, and were naive

to the aim of the experiment. The University of Amsterdam ethics review board approved the project.

Thresholding

On the first day, observers received initial instructions about the task and performed a thresholding session.

Individual observers’ motion coherence threshold was determined by a method of constant stimuli on a

coarse direction discrimination task (up/down judgment). 600 trials of different difficulties (0, 2.5, 5, 10,

20 and 40% motion coherence), lasting 750 ms, were randomly interleaved. To determine each individual

psychometric threshold, we fit a cumulative Weibull as a function of difficulty c, defined as

φ(c) = δ+ (1− δ− γ)
(
1− e(

−c
α

)β
)

(1)

where δ is the guess rate (chance performance), γ is the lapse rate, and α and β are the threshold and

slope of the psychometric Weibull function, respectively. While keeping the guess rate δ fixed at 50%

correct, we fit the parameters γ, α and β maximizing the likelihood function (Wichmann and Hill 2001a)

using a Nelder-Mead simplex optimization algorithm. The individual threshold was taken as the stimulus

difficulty corresponding to an 80% correct fit of the cumulativeWeibull. Across observers, motion coherence

thresholds ranged from 11% to 28% (mean 18%).

Task

After thresholding, observers did a total of 11 experimental sessions across six days. Each session consisted

of 345 trials, divided into five experimental blocks of 69 trials. We used the first two sessions (690 trials) as

training sessions to get observers acquainted to the task.

Figure 1A shows a schematic of the task. Each trial began with the appearance of a red fixation ‘bulls-

eye’ (Thaler et al. 2013) for 600-800 ms. The first motion interval (X1) was then displayed for 750 ms, during

which the dots moved in one of five directions relative to a reference mark: -20°, -10°, 0° (i.e. aligned with

reference mark), 10° or 20°. During display of the motion stimulus, a white line plotted on top of the circle

served as a reference mark, which changed position from trial to trial. To minimize confusion about the

mapping between clockwise/counter clockwise motion and left/right button presses, each subject saw the

reference mark in a random position in only the top 0°-180° of the stimulus unit circle, or only in the bottom

180°-360°, and was asked to discriminate motion to the left or to the right of the reference mark.
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Figure 1. Task and behavioral performance. (A) Schematic of the two-interval random dot motion direction estimation
task. After the first interval of the motion stimulus X1, observers received an auditory cue about whether or not to report
an overt choice (CW/CCW) about the direction of dots with respect to the reference line. After half of the choice trials
(which constituted a third of all trials), auditory feedback was given and the trial terminated. In the other half of choice
trials and in No-Choice trials (which together constituted the other two-thirds of all trials), a second interval of moving
dots X2 followed after which observers should estimate the average direction of dots in both the intervals by dragging
a line along the direction of average motion. Stimulus directions in X1 and X2 were independent of each other and
were balanced between Choice and No-Choice trials. In a single block, observers made an overt choice in two-thirds
of trials and an estimation in two-thirds of trials. (B) Psychometric curve showing the proportion of CW choices for
stimulus direction presented in X1 across observers, along with an illustration of the noise and bias parameters. (C) Top:
Observers’ estimations as a function of mean evidence across the two intervals. The zero-degree direction indicates
the reference mark. Deviation from the diagonal shows that observers’ estimations showed attraction towards the
reference line. Bottom: The distribution of presented mean evidence across all trials and observers. Note that we
excluded extremely inconsistent -20°/20°and 20°/-20°trials, leading to a slight decrease in the number of trials with 0°
mean (see Figure S1 and Figure S2). (D) The mean estimation error across both intervals correlated to bias estimated
from the psychometric function on binary choices. N = 14 observers, error bars denote group mean ± s.e.m.
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Following X1 offset, observers received an auditory prompt to either click the central mouse wheel (No-

Choice trials, a third of total number of trials) or use the left and right mouse button to indicate whether

the dots were moving to the left or to the right of the reference mark (Choice trials, two thirds of the total

number of trials). This response window lasted 2 seconds regardless of the reaction time of the subject,

ensuring an identical temporal structure between Choice and No-Choice trials.

After half of the choice trials (one-third of all trials), observers received auditory feedback about their

binary choice, after which the trial ended. We call these Choice-only trials, and included them to keep

observers motivated to perform well on the binary task. If the stimulus angle of motion was at 0° from the

reference mark (no angular motion evidence), random feedback was provided. In the other two-thirds of

the trials (half of which were Choice, and the other half No-Choice trials), a second motion stimulus interval

(X2) was presented for 750 ms. Following X2 offset, the reference mark turned red to cue the start of the

estimation task. Here, observers estimated the average angle of motion across the first and second intervals

by dragging the red line around the circle, and clicking the mouse to confirm their estimate. After the end

of estimation, the screen turned black to signify the end of the trial. Observers self-initiated the next trial,

to allow enough time to blink their eyes. Feedback about their estimation performance was given at the

end of each block as the mean estimation error.

Each trial was defined by the angle of motion (the decision-relevant evidence) in each of the intervals.

Twenty-three permutations of the angle pairs for the directions of motion were used with five possible angles

(-20°, -10°, 0°, 10°, 20°). The most obviously conflicting direction combinations, -20°/20° and 20°/-20°, were

not used. The full experiment presented exactly 90 trials for each set of X1 and X2 to the subject, of which

45 in the Choice and 45 in the No-Choice condition.

We used trials where observers made an estimation (Choice and No-Choice trials) in all further analyses.

We excluded trials in which observers did not comply with the instructions, i.e. when they pressed themouse

wheel on Choice trials or a choice key on No-Choice trials. We also excluded trials in which the binary choice

response time was below 200 ms, and trials where estimations were outliers. Outliers were defined as those

trials whose estimations fall beyond 1.5 times the interquartile range above the upper-quartile or below the

lower-quartile of estimations. Together, these excluded trials corresponded to 7% of the total trials across

observers. The final trial distributions used are shown in Figure S1 and Figure S2.

Stimuli

Stimuli were presented using PsychToolbox-3 (Kleiner et al. 2007) in Matlab and were viewed in a dark,

quiet room on a CRT monitor with a resolution of 1024 pixels x 768 pixels and a refresh rate of 60 Hz.

Observers placed their heads on a chinrest with a viewing distance of 50 cm from the screen. Dynamical

random dot stimuli were presented in a central circle (outer radius 12°, inner radius 2°) around fixation.

A field of dots with a density of 1.7 dots/degrees2 defined the annulus. Dots were 0.2° in diameter and

were white, at 100% contrast from the black screen background (see Figure 1A). Signal dots were randomly
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selected on each frame, and moved with 11.5°/second in the signal direction. Signal dots that left the

annulus wrapped around and reappeared on the other side. Moreover, signal dots had a limited “lifetime”,

and were replotted in a random location after being on the screen for four consecutive frames. Noise dots

were assigned a random location within the annulus on each frame, resulting in ”random position” noise

with a ”different” rule (Scase et al. 1996). Additionally, to avoid observers tracking individual signal dots

as they move through the annulus, three independent motion sequences were interleaved on subsequent

frames (Roitman and Shadlen 2002), making the effective speed of dots 3.8°/second.

Behavioural performance

We measured each participant’s performance on the binary task in Choice and Choice-only trials, by fitting

a sigmoidal probit psychometric function (Figure 1B, left panel) on response probabilities as a function of

the directional evidence in X1

P(choice = CW|X1) = Φ(δ+ αX1) (2)

where CW was clockwise choice for evidence in X1, Φ was a cumulative Gaussian, α was the slope of the

psychometric function and indicates the observer’s perceptual sensitivity, and δwas the horizontal shift of the

psychometric function and reflects a perceptual bias towards a specific choice independent of the sensory

evidence (see Figure 1B with the slope and bias indicated). The free parameters α and δ were estimated

by maximum likelihood estimation. σ = 1
α
gives an estimate of the noise, with which sensory evidence is

encoded.

Modeling

For simplicity, we accounted for the effects of bias (δ) and noise (σ) in binary choice using the parameters

obtained from the psychometric function in equation 2. Specifically, we replaced the directional evidence

(X) in both intervals with X ′ = X + N (δ, σ). This accounts for overall perceptual bias (δ) and sensory noise

(σ) without adding additional parameters to fit.

Unbiased model

We started with a basic model with three free parameters, two weights accounting for attraction towards

the reference and an additional estimation noise. Importantly, this model is unbiased by overt choices or

the congruency of sensory evidence. This model was fit so as to obtain a baseline value for the goodness

of fit to compare other models.

y = w1X
′

1 +w2X
′

2 +N (0, ξ) (3)

where y is the vector of estimations in all trials, w1 and w2 are the weights assigned to corresponding

evidence in intervals X1 and X2 respectively, N (0, ξ) is zero-mean Gaussian estimation noise with variance

ξ. w1, w2 and ξ are the free parameters in the model. w1 and w2 capture observers’ overall attraction
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relative to the reference mark, and ξ captures additional noise in the continuous estimations that cannot be

explained by the noise-levels estimated from the psychometric function.

Selective gain model

We modeled a selective change in sensitivity to consistent vs. inconsistent sensory evidence. This selective

change in sensitivity can arise in two forms: consistency defined based on the binary choice, or on the sen-

sory evidence presented in both intervals.

Choice-based consistency

Evidence presented following an overt choice can be up-weighted or down-weighted depending onwhether

the evidence with respect to the reference line is consistent or inconsistent with the overt choice. To model

such a selective, consistency related change in sensitivity to evidence following an overt choice, we allowed

weights to vary depending on whether evidence in X2 is consistent (consistent trials) or inconsistent (incon-

sistent trials) with overt-choice. The estimations are thus given by

y = w1ccX
′
1cc +w2ccX

′

2cc +N (0, ξcc) sign (X2cc) = D (4)

y = w1icX
′
1ic +w2icX

′

2ic +N (0, ξic) sign (X2ic) 6= D (5)

where w1cc (w2cc) and w1ic (w2ic) are the weights assigned to noisy evidence in the first (second) interval in

consistent trials and inconsistent trials respectively, D is the vector of intermediate binary choice and takes

the values [1,−1]. Since consistency cannot be defined in trials where evidence in X2 = 0°, we excluded the

subset of these trials before fitting the Choice-based consistency model to the Choice trials.

Evidence-based consistency

Consistency can also be defined between evidence in the two intervals. We model estimations as

y = w1ccX
′

1cc + w2ccX
′

2cc +N (0, ξcc) sign (X2cc) = sign (X1cc) (6)

y = w1icX
′

1ic + w2icX
′

2ic +N (0, ξic) sign (X2ic) 6= sign (X1ic) (7)

Since consistency cannot be defined in trials where evidence in either X1 = 0° or X2 = 0°, we excluded the

subset of these trials before fitting the Evidence-based consistency model. The evidence-based consistency

model was fit separately on Choice trials and No-Choice trials, and the resulting parameters were averaged

to obtain a single consistent and inconsistent measure per subject.

The choice-based consistency model and evidence-based consistency model capture different aspects

of a selective change in sensitivity. While evidence-based consistency allows us to investigate changes in

sensitivity arising due to an externally induced change in consistency of evidence, choice-based consistency

allows us to investigate changes in sensitivity due to internal decision-induced changes in consistency. In

addition, evidence-based consistency model can be fit to both Choice and No-Choice trials whereas choice-

based consistency model can only be fit to Choice trials.
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Global gain model

We also modeled a global, choice-related reduction in sensitivity to evidence following an overt choice, by

allowing perceptual weights to vary separately in Choice trials and No-Choice trials (Bronfman et al. 2015).

Estimations are given by

y = w1cX
′

1c + w2cX
′

2c+ N (0, ξc) (8)

y = w1ncX
′

1nc + w2ncX
′

2nc+ N (0, ξnc) (9)

where w1c and w2c are the weights for the noisy evidence encoded in intervals 1 and 2 in Choice trials.

Similarly, w1nc and w2nc represent the weights for noisy evidence in the two intervals in No-Choice trials.

Model SNR

The parameters obtained from themodel-fitting give information about the weight given to evidence in each

interval in the estimations in each trial. However, the weight parameters by themselves need not necessarily

measure the sensitivity to evidence in an interval, which is composed of both the weight and noise in the

estimation process. To resolve this, we calculated a model signal-to-noise ratio (Model SNR) as a measure

of sensitivity to evidence in an interval

SNR =
w√

σ2 + (0.5ξ)
2

(10)

Likelihood computation

We used maximum likelihood estimates to estimate parameters and the goodness of fit of different models.

In each trial, we generated Gaussian probability distributions X ′
1 and X ′

2 (which incorporated individual bias

and noise from the psychometric function, see Behavioural performance). These distributions were then

multiplied by the respective weight w. In Choice trials, we set the probability of non-chosen side in X1 to

zero and renormalized the probability distribution to make its area 1.

We combined the distributions corresponding to X1 and X2 using convolution and renormalized the

resulting distribution. To account for estimation noise, we then additionally generated a zero-mean Gaussian

probability distribution with variance ξ and combined this distribution with the probability distribution from

the previous step, resulting in a distribution of estimations on each trial.

We used this probability distribution to calculate the likelihood of the observer’s reported estimation

on each trial. Finally, we summed the logarithm of likelihood values over all trials to obtain the final log-

likelihood value for a given set of parameters. This log-likelihood was then optimized to find the best-fitting

parameters for each model and observer. Using this analytical method avoids the need to use multiple

starting points to obtain the best-fitting parameters.
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Fitting procedures

To obtain the best fitting parameters that maximize the likelihood function of each model, we used the

subplex algorithm (Rowan 1990; Bogacz and Cohen 2004), a generalization of the Nelder-Mead simplex

method, which is well suited to optimize high dimensional noisy objective functions. Subplex starts at a

specified starting point of the objective function and works by dividing the parameter space into subspaces.

It then performs a simplex search in each of these subspaces before converging on the set of parameters

that maximize the function. The starting points were chosen in the interval [0, 20] for ξ and [0, 1] for w1 and

w2.

Bootstraps

We bootstrapped the computational models of each subject to obtain confidence intervals for the fitted

parameters. Specifically, we randomly selected trials with replacement and fit the global gain and selective

gain models to these resampled datasets. We repeated this procedure 500 times, each time using sub-

plex optimization with starting points at the best-fitting parameters of the actual data. We then obtained

confidence intervals from the distribution of estimated parameters.

Parameter recovery

To ensure that the models we specified could be recovered, we simulated data with different sets of pa-

rameters with the number of trials as a typical dataset, and fit the model. This allowed us to confirm that

our fitting procedures are able to recover the parameters, with the ground truth of the data known (see

Figure S5). Moreover, we verified that all models captured the attraction towards the reference seen in es-

timations (Figure 1C). To this end, we confirmed that the sum of weights across two intervals as less than 1.

Unbiased model: mean across observers = 0.5054, p = 0.00004; Global gain model: mean across conditions

and observers = 0.4869, p = 0.0003; Evidence-based selective gain model: mean across conditions and ob-

servers = 0.3687, p = 0.00009; Choice-based selective gain model: mean across conditions and observers

= 0.4037, p = 0.00005; p values for one-tailed permutation test.

Model selection

We used Bayesian Information Criterion (BIC) to select the model that best explains the data:

BIC = −2ln(L) +m ln(n) (11)

where L is the likelihood value, m is the number of free parameters in the model and n is the number of

observations that are used to fit the model (Schwarz 1978). BIC values were compared across models and

the model with lowest BIC value was identified as the model that best explains the data among all candidate

models. Specifically, a difference of 10 in BIC values suggests very strong evidence in favor of the model
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with the lower BIC value (Kass and Raftery 1995). Since BIC values depend on the number of observations

used to fit the model, we fit all the models on the same subset of Choice trials to enable us identify the

model that best explains the data.

We calculated BIC values for all individual models in each subject to identify the model that better ex-

plains the data for that subject. In addition, we calculated a group BIC value by using the sum of log-

likelihood values, the sum of number of trials and the sum of number of parameters for all observers.

ROC analysis for sensitivity to differences in evidence

We assessed the impact of sensory evidence in X2 on observers’ bias-free estimations by means of ROC

analyses. The analyses were based on the receiver operating characteristic (Green and Swets 1966), but

focused on different effects (the overall effect of choice or consistency). Both quantified the effect of a

certain directional difference in evidence on the final estimation distributions. We used the ROC-index (the

area under the ROC-curve, Figure 2), to quantify the separability between two distributions of estimations

on trials where X2 differs by 10°. The ROC-index ranges from 0 to 1. An ROC-index of 0.5 implies indistin-

guishable distributions (i.e., no effect of difference in evidence) and any deviation from 0.5 implies a change

in sensitivity of the estimation distributions due to the evidence. Specifically, an ROC-index of 1 or 0 means

that two distributions are completely separable, with opposite direction of the shift. By computing ROC

indices between sets of trials that differed in their directional evidence, we could assess the sensitivity of

the observer in using that input to guide their final estimation reports.

We ran the analyses on all pairs of distributions of directions separated by 10° of evidence in X2: -20°

vs. -10°, -10° vs. 0°, 0° vs. 10°, and 10° vs. 20° (or a subset of those for the selective gain analysis; see

below). This gave us four ROC-indices per subject, one index for every pair of distributions compared. We

then averaged the resulting ROC-indices across all these comparisons, resulting in a single average ROC

index per observer. This average index was finally compared between conditions. To make sure that each

trial contributes to the ROC indices only once, we randomly split the trials in distributions which were used

more than once (-10°, 0° and 10°) into two halves such that all the pairs of distributions have unique trials.

We repeated this process 500 times to obtained confidence intervals for the ROC indices.

Each of the above distributions was made up of trials containing several different directions in X1. For

example, the distribution of estimations produced for X2 = −10° consisted of trials with all different direc-

tions in X1 (-20°, -10°, 0°, 10°, 20°). We used linear projection to remove the effect of these trial-to-trial

variations in X1 evidence on the final estimation distributions

y ′ = y− (yT r)r (12)

where y was the vector of mean-centered estimations, r was the vector of single-trial evidence directions

on X1 (normalized to unit length), and T denotes matrix transpose. Adding the mean back to the resulting

vector y’ yielded the distribution of residual estimations, which was now only affected by the evidence in X2.

Two separate analyses compared the effects of either choice (comparing Choice vs. No-Choice conditions)
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or consistency (comparing Consistent vs. Inconsistent conditions) on sensitivity to differences in evidence in

X2. The specifics of these two analyses are described the subsequent sections.
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Figure 2. ROC-index. The ROC-index was calculated from the receiver-operating characteristic (ROC) curve. Left:
Estimation distributions for two different values of X2 directions in Choice trials after regressing out the effect of X1

(equation 12) for an example subject. Right: An ROC curve is constructed by shifting a criterion across both distributions,
and for each position of the criterion the fraction of estimations from each distribution that were larger than the criterion
were plotted against each other. The area under the resulting curve (grey shaded area in right panel) is the ROC-index
(= 0.7739 in this example) that we used to quantify the separability of the two estimation distributions. The dashed line
indicates an ROC-index of 0.5, which implies that the distributions are not separable.

To test for an overall reduction in sensitivity due to overt choice, we computed the ROC index separately

for Choice and No-Choice trials using the analysis described above. The orthogonal projection (equation

12) was done on both Choice and No-choice trials together. To test for a selective reduction in sensitivity

due to consistency, we obtained all Choice trials (or No-Choice trials) and performed the ROC analysis on

Consistent and Inconsistent trials separately for X2 (and X1, see Figure S3). Here, the orthogonal projection

to remove the evidence from one interval on the estimations was done on Choice trials (or No-Choice trials)

separately.

For the choice-based selective gain, we defined consistency as between the direction of evidence pre-

sented in X2 and the binary choice. Since consistency in this case could not be defined when the X2 = 0°,

we excluded this subset of trials. For the evidence-based selective gain, we defined consistency between

the direction of evidence presented in both intervals. Since consistency in this case could not be defined

when the directional evidence was 0°, we excluded the subset of trials where the evidence was 0° in either

X1 or X2. This analysis was done separately for Choice trials and No-Choice trials.

Statistical tests

Non-parametric permutation tests (Efron and Tibshirani 1986) were used to test for group-level significance

of individual measures. This was done by randomly switching the labels of individual observations either

between two paired sets of values, or between one set of values and zero. After repeating this procedure

10,000 times, we computed the difference between the two groupmeans on each permutation and obtained

the p value as the fraction of permutations that exceeded the observed difference between the means. All

p-values reported were computed using two-sided tests, unless otherwise specified.
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Results

Fourteen observers performed a two-interval random dot motion task, consisting of a binary choice or

neutral button press halfway through the trial, and a final estimation of the average motion direction at the

end (Figure 1A). The trials with choice-independent button press halfway through the trial were used as

control trials to compare with the effect of making an overt choice halfway through the trial. On the binary

choice task, performance improved for motion directions further away from the reference mark (Figure 1B).

Observers were faster responding on Choice trials than on No-Choice trials (Choice RT = 0.68 ± 0.04 s,

No-Choice RT = 0.83 ± 0.04 s, difference p = 0.0011; mean of median RT across observers ± s.e.m). This

suggests that observers may have needed additional time to press the mouse wheel as they were only

prompted to do so in one third of trials.

Observers’ mean estimation judgments scaled with the average motion direction, and were biased to-

wards the reference line (Figure 1C). This attraction to the reference mark could have arisen from the struc-

ture of our task: across the experiment, observers were presented with fewer trials where the mean evidence

was far away from 0°, than trials where the mean evidence was close to 0° (Figure 1C, histogram, see also

Figure S1 and Figure S2). Observers may have learned this, and adapted their estimation behaviour accord-

ingly.

Lastly, individual biases in estimation judgments, measured as the mean estimation error in degrees,

were correlated with individual bias on the binary choice task, obtained from the psychometric function

(Figure 1D). Across observers, these biases were correlated, suggesting they originate from the inference

process itself rather than a preference for a specific effector (i.e. index or ring finger used to make the binary

choice, compared to just the index finger used to make the estimation response).

Selective down-weighting of inconsistent subsequent evidence

We then asked whether (i) observers change their sensitivity to incoming sensory evidence depending on

whether that evidence is consistent or inconsistent with a previously made binary choice, and (ii) observers

change their sensitivity to incoming sensory evidence depending on a previously made overt choice, as

compared to a choice-neutral motor act. Wemodeled single-trial estimations as the noisy weighted average

of noisy sensory evidence in both intervals by splitting trials into various conditions: Choice trials, No-Choice

trials, Consistent trials and Inconsistent trials. We then compared estimated perceptual sensitivity across

these conditions to investigate the effect of overt choice or consistency on estimation behaviour.

First, we modeled estimations using an “Unbiased” model that did not include any effects of consistency

or choice, and served as a baseline for model comparison. Second, we created an extended “Selective gain”

model that allocates different weights to evidence that is consistent or inconsistent with the observers’

previously made binary choice. Model comparison shows that across the group, the Selective gain model

best explains the data (Figure 3; strong evidence in favor of Selective gainmodel over Unbiasedmodel across
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the group, and in 8 out of 14 individual observers), indicating that consistency of perceptual evidence with

a previous choice affects perceptual inference.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Group
Subjects

-800

-700

-600

-500

-400

-300

-200

-100

0

100

200

∆ 
BI

C
3 -8

-153
-110

-60
12 -5 -6

-78
-25

-94

-2 -23

-182

-622

Figure 3. Model comparison. ∆BIC values for Choice-based Selective gain model (6 free parameters) as compared
to the Unbiased model (3 free parameters) in Choice trials. We only used trials where X2 6= 0°, since consistency is
undefined for those trials. Negative ∆BIC values indicate evidence in favor of Selective gain model and ΔBIC < -10
indicates strong evidence in favor of the model.

We then compared the estimated weights between consistent and inconsistent trials in the Selective gain

model. Observers assigned higher weight to evidence in X2 that was consistent with their binary choice

than to evidence in X2 inconsistent with their binary choice (Figure 4A, mean difference across observers,

X2 Consistent – X2 Inconsistent = 0.1693; p = 0.0036).

We designed a similar model, now defining consistency between directional evidence presented in X1

and X2. This revealed a similar pattern, showing that inconsistent information was down-weighted (Fig-

ure 4A, left panel) compared to consistent information (mean difference across observers, X2 Consistent –

X2 Inconsistent = 0.0938; p = 0.0166). Importantly, the evidence-based consistency could be fit on both

Choice and No-Choice trials (whereas choice-based consistency is undefined on No-Choice trials). These

separate fits showed a similar pattern of higher weights to consistent information in both Choice trials and

No-Choice trials. Specifically, the weights in No-Choice trials (Figure 4B, right-bottom panel; mean differ-

ence across observers, X2 Consistent – X2 Inconsistent = 0.1112; p = 0.0115) show that the evidence-based

selective effect is present even in the absence of an overt choice. This suggests that subjects may have had

an internal estimate of choice in No-Choice trials as they received the prompt about whether or not to make

an overt choice after X1.

Model SNR, a measure of sensitivity to evidence in X2 (see Model SNR under Modeling in Materials and

Methods), also shows a similar pattern as that of model weights in choice-based (Figure 4C) and evidence-

based (Figure 4D) selective gain models.

To corroborate these results using a method that does not rely on model fitting, we computed ROC

indices that quantify observers’ sensitivity to evidence in X2. ROC indices quantify the degree of separability

of two distributions, in this case the estimation distributions whose evidence in X2 is separated by 10°
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Figure 4. Selective gain model parameters. Model weights (top panel) and signal-to-noise ratio calculated from the
model parameters (Model SNR: bottom panel) showing the selective change in sensitivity to evidence in X2 depending
on its consistency to the overt choice (Choice-based selective gain) or to the evidence in X1 (Evidence-based selective
gain). (A) Evidence in X2 consistent with the overt choice is up-weighted compared to evidence inconsistent with the
overt choice midway through the trial. (B) Evidence in X2 consistent with the evidence in X1 is up-weighted compared to
the evidence in X2 inconsistent with the evidence in X1. Panels on the right shows the parameters computed separately
for Choice and No-Choice trials and panel on the left shows the same parameters averaged across Choice and No-
Choice trials. (C-D) Model SNR corresponding to the Choice-based and Evidence-based selective gain models. Model
weights andModel SNR corroborate each other. Error bars show 95% confidence intervals frombootstrapped parameter
estimates with 500 iterations in each subject. Dashed line is the identity line. p values were computed using permutation
test. N = 14 observers.

after linearly regressing out the effect of evidence in X1. The ROC indices showed an increased sensitivity

in consistent as compared to inconsistent trials, both in Choice-based and Evidence-based selective gain

models. This difference however, did not reach statistical significance across the group in Choice-based

Selective Gain model. The difference between Consistent and Inconsistent model SNR and ROC indices

showed a strong correlation across observers, confirming that these two ways of analyzing the data capture

the same pattern (Spearman’s correlation = 0.7187, p = 0.0052).

Perhaps surprisingly, observers showed a decrease in sensitivity to evidence that was inconsistent with

their previously choice as well as the previously presented evidence; the latter effect wasmoreover present in
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Figure 5. ROC indices for Selective gainmodel. (A) ROC indices showing the selective change in sensitivity to evidence
in X2, depending on its consistency to the binary choice (Choice-based selective gain). Evidence in X2 consistent with
the binary choice has higher sensitivity compared to the evidence in X2 inconsistent with the binary choice. (B) ROC
indices showing the selective change in sensitivity to evidence in X2 depending on its consistency to the evidence in X1

(Evidence-based selective gain). Evidence in X2 consistent with the evidence in X1 has higher sensitivity compared to
the evidence in X2 inconsistent with the evidence in X1. Panels on the right shows the ROC indices computed separately
for Choice and No-Choice trials and panel on the left shows the same ROC indices averaged across Choice and No-
Choice trials. Error bars show 95% confidence intervals from bootstrapped ROC indices with 500 bootstraps per subject.
Dashed line is the identity line. p values are computed using permutation test. N = 14 observers.

No-Choice trials as well as Choice trials. Do binary choices induce any additional change in the weighting of

sensory evidence, over and above that caused by inconsistent evidence? To answer this question, we directly

compared the explanatory power of the Choice-based and the Evidence-based Selective gain model, when

fit on exactly the same subset of trials (i.e. including those trials were X1 6= 0° and X2 6= 0°). First, we

confirmed that on this smaller subset of trials the Choice-based selective gain effect still held (X2 Consistent

- X2 Inconsistent = 0.1729; p = 0.0058). Second, we compared the BIC values between those two models.

The Choice-based Selective gain had a lower BIC for 13 out of 14 observers (and ∆BIC < -10 for 7 out of

those 13). The group-level ∆BIC was -324 in favor of the Choice-based over the Evidence-based Selective

gain model. Combined with the results on No-Choice trials (Figure 4B, bottom right), this suggests two

things. First, inconsistent evidence within a trial leads observers to down-weigh this evidence into their final

estimation judgment, regardless of whether they made a Choice or No-Choice judgment halfway through

the evidence stream. Second, when making an overt binary choice, consistency with this binary choice more

strongly predicts the weighting of subsequent evidence than consistency with perceptual evidence. Choices

thus seem to be the dominant, but not only, factor driving the reduction in sensitivity to incoming perceptual

evidence.

Down-weighting of subsequent evidence following an overt choice

Earlier work by Bronfman et al. 2015 showed that overt choices reduce sensitivity to subsequent evidence,

regardless of its consistency in a numerical integration task. To test this prediction in our data, we first
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averaged the ROC indices across Consistent and Inconsistent trials from the Evidence-based selective gain

model, separately in Choice and No-Choice trials (Figure 6A).

Consistent

X2 Choice vs. X2 No-Choice:
p = 0.0137

Inconsistent

X2 Choice vs. X2 No-Choice:
p = 0.5086

X2 Choice

X2
 N

o-
C

ho
ic

e

X2 Choice vs. X2 No-Choice: p = 0.1113

X2 Choice

Global Gain

X2 Choice vs. X2 No-Choice: p = 0.0306

Model Weights
A B

C D

Consistent

X2 Choice vs. X2 No-Choice:
p = 0.0026

Inconsistent

X2 Choice vs. X2 No-Choice:
p = 0.0936

X2 Choice

X2
 N

o-
C

ho
ic

e

X2 Choice vs. X2 No-Choice: p = 0.0057

X2 Choice

X2
 N

o-
C

ho
ic

e

X2 Choice vs. X2 No-Choice: p = 0.0131

ROC index

Model WeightsROC index

X2
 N

o-
C

ho
ic

e

0 0.5 1

0

0.5

1

0 1
0

1

0 1
0

1

0.35 0.55 0.75

0.35

0.55

0.75

0.35 0.75
0.35

0.75

0.35 0.75
0.35

0.75

0 0.5 1

0

0.5

1

0.45 0.6 0.75

0.45

0.6

0.75

Figure 6. Measures quantifying the effect of overt choice on subsequent behaviour. (A) Model-free ROC indices
comparing the values from evidence-based selective gain model across Choice and No-Choice trials. Evidence in X2

following an overt-choice had reduced sensitivity compared to evidence in X2 following a choice-independent button
press. Panels on the right show the ROC indices computed separately for Consistent and Inconsistent trials and panel
on the left shows the same ROC indices averaged across Consistent and Inconsistent trials. (B) Model weights estimated
from the evidence-based selective gain model comparing the Choice and No-Choice conditions. Model weights show
a similar trend as that of the ROC indices in (A) but do not reach statistical significance across the group. Panels on the
right show the Model weights separately for Consistent and Inconsistent trials and panel on the left shows the same
values averaged across Consistent and Inconsistent trials. (C-D) Model-free ROC indices andModel weights respectively,
quantifying the global gain model. Both measures corroborate each other and show that overt choices reduce overall
sensitivity to subsequent evidence. Error bars show 95% confidence intervals from bootstrapped parameter estimates
with 500 bootstraps per subject. Dashed line is the identity line. p-values are computed using permutation test. N =
14 observers.

Choice trials showed reduced sensitivity to evidence in X2 compared to No-Choice trials (Figure 6A). We

found that this Choice effect was present in Consistent trials and Inconsistent trials separately.

The averaged model weights from the evidence-based selective gain model did not show this choice

effect (Figure 6B). This could be because the evidence-based selective gain model is primarily defined to

capture the variance in the data due to changes in consistency and is less sensitive to the Choice effect

found in ROC indices. Hence, we fit a separate Global gain model and redid the model-free ROC analysis,

separating Choice trials and No-Choice trials irrespective of their consistency. Model-free ROC indices
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(Figure 6C) andmodel weights from the Global gain model (Figure 6D) both show that overt-choices result in

reduced sensitivity to evidence inX2, replicating the findings of Bronfman et al. 2015 in a low-level perceptual

task. This suggests that committing to a choice mid-way through a trial reduces overall sensitivity to later

evidence.

Comparing the BIC values across different models show that the Global gain model provides a better fit

to the data than Unbiased model (Group ∆BIC value on Choice trials where X2 6= 0°: Global gain model vs.

Unbiased model = -138). Moreover, the Choice-based selective gain model provides a better fit to the data

than the Global gain model (Group ∆BIC value on Choice trials where X2 6= 0°: Choice-based selective gain

model vs Global gain model = -484). These comparisons suggest that among all models, the Choice-based

selective gain model provides a better fit to the data while the Unbiased model provides the worst fit to the

data.
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Figure 7. Correlation between Global and Selective reductions in perceptual weighting. For each observer, we
quantified the degree to which they show reduced sensitivity to subsequent evidence following an overt choice (x-axis),
and the degree to which they reduce their sensitivity to evidence that is inconsistent with their previously made binary
choice (y-axis). Across observers, these two choice-induced changes in sensitivity were positively correlated (Pearson’s
r = 0.7909, p = 0.0008). Error bars show 95% confidence intervals from the model bootstrap.

We observed two types of choice-induced biases in the down-weighting of subsequent evidence: a

‘global’ effect, which lead observers to reduce their sensitivity to any incoming evidence after an overt

choice, and a ‘selective’ effect, which lead observers to reduct their sensitivity to incoming evidence that

was inconsistent with their binary choice. Intriguingly, we observed that these two biases were positively

correlated across observers Figure 7. Although this post-hoc analysis has limited power with n = 14, and thus

warrants further replication, it is interesting to speculate that both choice-induced biases share a common

substrate, with some observers being overall more influenced by their overt binary choice both in comparison

to No-Choice trials and in selectively down-weighting evidence inconsistent with that choice.

Discussion

Perceptual inference combines bottom-up sensory evidence with top-down factors. Earlier work on choice-

induced biases in perceptual estimation explained these biases as by-products of mechanisms of sensory

decoding (Jazayeri and Movshon 2007) or due to the tendency of observers to be self-consistent with their
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choices in the absence of external feedback (Stocker and Simoncelli 2008; Luu and Stocker 2016). However,

these studies did not explicitly test the effect of choice-induced biases on new sensory information. Here,

we quantified these choice-induced biases using an experimental paradigm where new information was

presented after the choice and observers were required to use this new information in their estimation

judgements. The continuous estimation judgment observers provided is a direct readout of the perceptual

inference process where they infer the posterior distribution over the motion directions given the random

dot motion input.

Using statistical modeling, we quantified distinct components of the perceptual inference process, and

investigated the degree to which they are affected by overt choices. We found that new information that

was inconsistent with the observer’s intermittent choice in a trial was down-weighted. This selective bias

against inconsistent evidence may be a consequence of observers’ self-consistency to their choices. As

proposed in an earlier work, in the absence of external feedback observers assume their choices to be

correct and base subsequent inference on this assumption (Stocker and Simoncelli 2008). This tendency

for self-consistency could then give rise to a bias that up-weighs subsequent incoming information that

supports this assumption and down-weigh subsequent evidence that contradicts this assumption. Further

support for this is our observation that the choice-based selective gain model (defining consistency on the

basis of reported intermittent choice) provides a better explanation to the data than the evidence-based

selective gain model (defining consistency on the basis of sensory evidence).

Modeling studies have highlighted the role of interaction between top-down and bottom-up signals in

perceptual decision making (Glaze et al. 2015; Wimmer et al. 2015). This interaction has also been corrob-

orated by physiological studies in non-human primates (Gold and Shadlen 2007; Nienborg and Cumming

2009; Siegel et al. 2015; Goris et al. 2017). Our findings fit well into this framework where decisions not only

influence subsequent decisions (Fründ et al. 2014; St. John-Saaltink et al. 2016; Braun et al. 2017; Fritsche

et al. 2017) but also other forms of perceptual inference tasks.

Additionally, we find that overt choices led to an overall reduction in sensitivity to subsequent evidence.

This is in line with the finding that overt choices reduce observers’ sensitivity to subsequently presented

information in both a numerical integration and luminance estimation task (Bronfman et al. 2015). The cor-

respondence between these and our current findings show that choice-induced decreases in perceptual

sensitivity occur in decision-making regardless of the precise experimental setup, or the modality of the

stimulus to be integrated. This speaks to the generality of our findings, and further suggests that percep-

tual and value-based decision making can be understood within one common framework (Summerfield and

Tsetsos 2012). Together, our findings demonstrate that rather than just being the end-point of a perceptual

decision, overt choices themselves are an important context factor biasing subsequent perceptual inference.

Taking this generality one step further, we may speculate that choice-induced biases in sensitivity to

sensory evidence may be a low-level form of confirmation bias. Such biases form a broad class (Nickerson

1998), which may or may not arise from a single computational mechanism. These are usually studied in

the context of consumer choice, but such studies can be confounded by asking observers for the value of
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each option as well as their preference (Chen and Risen 2010). Using low-level sensory stimuli to study such

biases offers the advantage of being able to precisely manipulate the identity and reliability of the relevant

signal, allowing for a more strictly controlled estimate of biases over and above the known sensory evidence.

Moreover, extensive knowledge about the neural substrates of visual perceptual decisions (Nichols and

Newsome 2002; Shadlen and Kiani 2013) allows for a natural link to biologically realistic models of perceptual

inference in the visual domain (Liu and Wang 2008) which may show signs of choice-induced sensitivity

reduction.
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Figure S1. Trial distributions for Choice trials. The distribution matrices of X1 and X2 directions in Choice trials for
each observer. Each cell in the matrix represents the number of trials presented to the observer for the corresponding
values of X1 and X2 directions where the observer made a valid response (see Task in Methods). The cells are color
coded for better visualization.
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Figure S2. Trial distributions for No-Choice trials. The distribution matrices of X1 and X2 directions in Choice trials for
each observer. Each cell in the matrix represents the number of trials presented to the observer for the corresponding
values of X1 and X2 directions where the observer made a valid response (see Task in Methods). The cells are color
coded for better visualization.
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Was there ever in anyone’s life span a point free in time, devoid of memory, a night when choice

was any more than the sum of all the choices gone before?

— JOAN DIDION, Run, River

Decisions about the sensory environment do not only depend on the momentary sensory input, but also

on the history of preceding choices and stimuli, which robustly biases even highly trained decision-makers.

Although such choice biases were first identified in two-alternative forced choice tasks about a century

ago, our understanding of the underlying mechanisms remains incomplete. In this thesis, I investigate the

computational and mechanistic basis of choice-induced biases in perceptual decision-making.

Chapter 2.1 identifies a link between decision uncertainty, the brain’s arousal state, and serial biases in

decision-making. When making difficult perceptual decisions, observers’ pupils dilated as predicted by a

statistical model of decision uncertainty, with the largest pupil dilation after maximally uncertain decisions.

Pupil-linked brainstem arousal centers have traditionally been viewed as low-level systems that govern slow

and automatic fluctuations of central arousal state; in contrast, our findings add to a growing realization

that these systems can rapidly change their activity in accord with high-level computational variables, such

as decision uncertainty. Moreover, pupil responses predicted the degree to which observers subsequently

change their behavioral bias, reducing an overall tendency to repeat previous choices. These findings pin-

point a novel functional role of decision uncertainty in behavior: modulating serial dependencies between

choices.

Chapter 2.2 first investigates whether serial choice patterns are mostly driven by perceptual decisions or

the motor responses used to report those decisions. By instructing participants about the stimulus-response

mapping on each trial, we decoupled perceptual decisions from the associated motor responses. We found

that decisions, but not motor responses, had a strong effect on subsequent choice bias. Second, we report

data from an experiment where observers performed a perceptual choice task in ‘biased environments’,

where subsequent stimuli predominantly repeated or alternated. In the absence of external feedback about

choice outcome, observers adapted their choice patterns to these environmental statistics. This adaptation

was beneficial for performance: observers who adapted most strongly to the stimulus sequence showed the
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highest choice accuracy. Extending our findings of uncertainty-modulated serial biases from chapter 2.1, we

found that observers’ adaptation to biased environmental statistics was reduced by decision uncertainty (as

measured by choice correctness and reaction times). These observations indicate that serial choice biases

may result from the across-trial accumulation of the internal, graded decision variables on which binary

choices are based.

Chapter 2.3 extends the characterization of serial choice bias into the temporal dimension, and differen-

tiates between two possible algorithmic implementations of choice bias. We fit a hierarchical drift diffusion

model (DDM) to six psychophysical datasets, allowing both starting point (the offset of evidence accumu-

lation) and drift bias (an evidence-independent constant added to the decision variable at every time step)

to vary as a function of previous choices. While these two types of bias can result in the same pattern of

choices, they have different effects on response time distributions. Model comparison showed that DDMs

with a history-shift (a dependence on the previous choice) in starting point and a history-shift in drift bias

were best able to explain most datasets. We then correlated parameter estimates with observers’ indi-

vidual choice patterns, measured as their model-free probability of repeating subsequent choices. Across

datasets, repetition probability was robustly correlated with the history-shift in drift bias, but not the history-

shift in starting point. This suggests that previous choices primarily bias the rate of evidence accumulation

towards a particular choice option. Intriguingly, only for those datasets with biased stimulus sequences did

we observe an additional correlation between individual serial biases and their history-shift in starting point.

These finding set the stage for further detailed analyses of choice patterns and reaction times in biased

environments.

Chapter 2.4 describes data from a large group of observers who performed a perceptual decision-

making task while we measured their brain activity using magnetoencephalography. We first replicated

the findings described in chapter 2.1, showing that both post-decision pupil responses and reaction times

reflect decision uncertainty and reduce choice repetition. We then extracted neural signatures of visual sen-

sory encoding, evidence accumulation and response preparation, and tested whether these neural markers

of decision-making were affected by previous choices. At the beginning of the trial, beta-band motor lat-

eralization reflected the previous trial’s button press. Visual gamma-band responses, reflecting incoming

sensory evidence, also scaled with the previous choice. Both these single-trial neural signatures could be

used to predict observers’ upcoming choices over and above the sensory evidence and the previous choice.

Moreover, the build-up slope of beta-band lateralization during decision formation, a measure of evidence

integration, was biased by previous choices. This suggests that previous choices can affect neural activity

as early as sensory encoding, possibly through feedback connections from higher decision-making circuits,

which may then give rise to serial choice patterns in behaviour.

Chapter 2.5 investigates choice-induced biases in perceptual inference, using a task where observers

made continuous perceptual estimation judgments (reporting the average direction of motion across two

intervals of moving dots). We independently varied the sensory evidence (i.e. the direction of motion) in

those two intervals, and asked observers to make a binary choice about the perceived motion direction (left
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or right of a reference mark) after the first interval. Using a computational model of the final perceptual

estimation judgment, we quantified observers’ sensitivity to information presented in the second interval,

in trials where that information was either consistent or inconsistent with the binary choice made before.

Observers showed reduced sensitivity to incoming evidence that was inconsistent with their previous choice.

Additionally, we quantified sensitivity to incoming evidence on a subset of trials were observers were cued to

make a choice-neutral motor act, rather than a binary choice. Observers reduced their overall sensitivity to

subsequent information after a choice, as compared to the choice-neutral button press. We thus observed

choice-induced biases in perceptual inference, where choices reduce the influence to inconsistent incoming

evidence. This may reflect a low-level version of confirmation bias that has been described in value-based

choice.

Uncertainty-weighted across-trial accumulation

In neutral (unpredictable) environments and in environments where stimuli consistently tended to repeat

or alternate, observers showed uncertainty-dependent serial choice biases: more confident choices had a

larger impact on later behaviour (Braun et al. 2017; Urai et al. 2017). This may point to an underlying process

of evidence accumulation not just within, but across trials, that gives rise to serial choice patterns and to their

dependence on decision uncertainty. Specifically, the integrated decision variable on which binary choices

are based can also reflect the degree of confidence in that decision (Kiani and Shadlen 2009; Hebart et al.

2016). Observers may combine these trial-by-trial graded decision variables through a (leaky) across-trial

integration process. If a confident trial has a high decision variable, it will strongly influence the state of

the accumulator, which then exerts greater bias on subsequent choices. The modulation of serial choice

patterns by confidence may thus naturally arise from the graded nature of the decision variables that are

accumulated.

Confidence-weighted serial dependencies also arise in a Bayesian model, where each trial’s prior de-

pends to a certain degree on the previous trial’s posterior (van Bergen 2017, chapter 5). However, whether

or not the neural representations underlying uncertainty-dependent perceptual decision-making are based

on on fully probabilistic computations remains to be experimentally tested (Rahnev 2017).

Idiosyncratic serial choice patterns

Why are decisions biased by previous choices, even when observers know that stimulus sequences are ran-

dom? One appealing idea is that observers learn the temporal statistics of real-world visual input, and bring

this expectation with them to randomized laboratory experiments. Specifically, observers’ choice strategies

may have developed to maximize rewards in naturalistic environments, which are rarely composed of dis-

crete, independent consecutive trials. The pervasiveness of local stationarities in real-world sensory data

leads observers to accumulate these local patterns, and use them to inform their subsequent decisions.
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When put into an artificial laboratory situation with independent trials, this strategy produces maladaptive

sequential effects (Yu and Cohen 2008).

A recent model formalized the process of across-trial accumulation, showing that optimal behaviour in

dynamic environments requires the integration of decision-relevant evidence with dynamics that depend

on the environment’s expected instability (Glaze et al. 2015). The timescale of accumulation depends on a

parameter called the hazard rate, which quantifies an individual’s beliefs about the stability of the environ-

ment. The hazard rate varies between zero (stability) and one (continuous alternation), with a value of 0.5

reflecting an unpredictable input sequence. The model assumes a fixed hazard rate, which is specified as a

free parameter; with the correct hazard rate (i.e. reflecting the generative stability of the input) this model

can be shown to produce statistically optimal behaviour. Our adaptation results from chapter 2.2 suggest

that observers can (at least partially) adjust their hazard rate to the statistics of the environment. The preva-

lence of intrinsic serial choice biases in randomized psychophysical experiments can be interpreted within

the same framework; observers may use a non-zero subjective hazard rate, that does not exactly match

the generative statistics of the task. Specifically, repeaters estimate the environment to be stable, whereas

alternators expect the generative input to consistently change.

While this overarching framework for serial choice biases is attractive, it does not specify how observers

determine their hazard rate and adapt it to the dominant statistics of biased environments. An interesting

possibility is that an observers’ belief about the stability of the environment is continually estimated from

the data itself. In such dynamic belief models, individuals assume that the stability of the environment may

itself change unannounced, and combine previous observations into a time-varying hazard rate estimate (Yu

and Cohen 2008; Zhang et al. 2014). This hazard rate then governs across-trial accumulation of decision-

relevant evidence, giving rise to intrinsic serial choice patterns even in uncorrelated experimental contexts.

An exciting idea arising from this framework, which remains to be experimentally addressed, is that each

observer’s serial choice bias might (at least partially) be attributed to the precise sequence of stimuli they

encountered before.

Starting point and rate of evidence accumulation

While models of across-trial evidence accumulation may explain how people combine information from pre-

vious choices, they leave open the question of how exactly this accumulated information affects subsequent

decision dynamics. Most previous studies on serial choice bias have conceptualized and implemented serial

biases as an offset (i.e. starting point) of the evidence accumulation process (Cho et al. 2002; Gold et al.

2008; Bode et al. 2012; Goldfarb et al. 2012; Zhang et al. 2014). However, in the framework of sequential

sampling, biased choice patterns can also arise from a bias in the rate of evidence accumulation. When

simultaneously allowing both starting point as well as a bias in the rate of evidence accumulation to vary

with previous choices, we found that individual repetition patterns were more closely related to a bias in the

rate of evidence accumulation (chapter 2.3).
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One recent study compared the effect of previous choices on both the starting point and rate of evidence

accumulation (Kim et al. 2017). They fit the LATER model (which represents the rise of a single accumulator

to a bound, Carpenter and Williams 1995) to data from a saccadic reaction time task. Kim et al. found that

the starting point of saccade initiation - but not the rate at which the sensory cue was processed to determine

the saccade direction - reflected the accumulation of previous decision-relevant information. These findings

stand in contrast to the data presented in chapter 2.3, where we observed the most consistent effect of

previous choices on the bias in drift, not starting point.

Future studies could directly compare different response modalities (saccades vs button presses) and dif-

ferent sequential sampling models (LATER vs DDM), to see in what cases this leads to different conclusions

about the way in which previous choices affect within-trial decision dynamics. It is also interesting to spec-

ulate that these two components governing decision dynamics (drift bias vs starting point) may arise from

automatic and strategic processes, respectively. Specifically, trial-by-trial updates in starting point agree

with predictions from a normative model (Glaze et al. 2015; Kim et al. 2017), and are only correlated to

individual choice biases in our datasets with biased transition probabilities (chapter 2.3). History-dependent

drift biases, on the other hand, reflect individual choice biases in neutral environments, possibly through

history-dependent allocation of selective attention (see below).

An important next step will be to determine the degree to which serial choice biases arise from similar

neural and computational processes in neutral and biased environments. Lastly, an important future ex-

tension of these ideas will be to investigate serial choice patterns in the context of more flexible and even

biologically realistic models of evidence accumulation (Jones et al. 2002; Gao et al. 2009; Bonaiuto et al.

2016).

Choice-induced biases in decision-making

What can these results tell us about decision-making more broadly? It is tempting to speculate that the bi-

ases in perceptual decision-making described in this thesis are reflective of cognitive biases more generally.

Specifically, confirmation bias reflects the tendency to seek out or assign value to new evidence that is com-

patible with previously held beliefs or choices (Nickerson 1998), and may arise due to cognitive dissonance

experienced when incoming information conflicts with people’s existing beliefs or values (Festinger 1957).

Confirmation bias is most often studied in the context of economic choice; in the ‘free-choice paradigm’,

people assign higher value to an item they have chosen from several equally desirable items. However,

since the value of each item can only determined from people’s ratings, it can be hard or even impossible

to disentangle existing preference differences from bias caused by the choice itself (Chen and Risen 2010;

Izuma and Murayama 2013). Studying choice-induced bias in perceptual tasks, where the decision-relevant

evidence is exactly known and can be tightly controlled, allowed us to precisely identify the effects of choices

on later evidence integration. Specifically, we found that observers’ sensitivity to incoming visual evidence

depended on the consistency of that evidence with the observer’s previous choice. This finding suggests
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that some form of confirmation bias may be present in low-level visual perceptual decision-making. This

sets the stage for attempts to further bridge theoretical accounts of perceptual and economical decision

processes (Summerfield and Tsetsos 2012).

Internal brain states driving serial choice biases

What may be the neural bases underlying serial choice patterns in behaviour? Our finding, that individual

serial choice patterns are mainly reflected in a history-dependent shift in the rate of evidence accumulation,

is in line with two possible scenarios at the neural level. Previous choices could either affect neural activity

at the level of visual processing, or the efficiency with which sensory information is integrated into a choice.

Cortical feedback and belief states

The idea that serial choice biases are reflected at the level of visual cortex is borne out by the findings

presented in chapter 2.4, where we describe an effect of previous choices on visual cortical gamma-band

responses to decision-relevant motion stimuli. These effects could arise from a local memory in visual circuits,

perhaps akin to sensory adaptation (Kohn 2007). It seems unlikely, however, that purely local effects in

visual cortex can account for behavioural choice patterns: Akaishi et al. (2014) found that serial biases in

behaviour remained intact even when observers viewed strong, irrelevant sensory stimuli between trials,

which would presumably interfere with ongoing activity at the level of visual cortex. Moreover, ‘choice

probability’ in visual cortical neurons cannot fully be explained through bottom-up effects originating in

visual cortex (Nienborg and Cumming 2009; Wimmer et al. 2015).

A more probable account is that choice-selective signals in visual cortex arise through feedback con-

nections from higher decision-related areas. Such top-down signals may reflect the allocation of selective

attention, communicate behavioural relevance, or reflect a cortical ‘belief state’ about the most likely visual

input (reviewed in Nienborg and Roelfsema 2015; Roelfsema and de Lange 2016). Some part of the net-

works involved in decision-makingmay keep amemory of the previous choice and feed this information back

to lower-level sensory areas when a new stimulus is presented, which then biases the input to the decision

process towards the previous choice. This account would predict that the same trial-to-trial variability in

visual cortex that reflects previous choices also feeds back into the decision process, producing serial biases

in behaviour.

Biased sampling and long-range cortical connections

Serial biases may also arise through the biased sampling of sensory information by higher decision-related

brain regions: frontal and parietal cortical circuits may selectively ‘read-out’ those sensory neural populations

encoding the previously chosen stimulus. Long-range cortical connections can gate information flow in

cortical networks, flexibly enhancing specific channels conveying sensory evidence (Desimone and Duncan

1995; Siegel et al. 2008; Gilbert and Li 2013; Siegel et al. 2015). Such selective ‘read-out’ may increase the
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rate at which sensory evidence for one over the other choice alternative is sampled and integrated into the

decision variable, giving rise to behavioural serial choices patterns.

This idea of history-dependent ‘biased sampling’, where the brain uses previous choices to selectively

allocate attention, is consistent with our findings of a history-dependent change in the rate of evidence

accumulation (chapter 2.3) as well as the decrease in perceptual sensitivity to evidence inconsistent with

previous choices (chapter 2.5). Even if the input to the evidence accumulation process remains unaffected

by choice history, the efficiency with which this evidence is integrated by higher decision circuits may be

asymmetrically biased as a function of previous choices.

Central arousal systems

The release of modulatory neurotransmitters from brainstem arousal systems may be an important factor

that alters the neural processes underlying serial choice bias. In chapters 2.1 and 2.4, we found that post-

decisional pupil responses, a proxy for phasic neuromodulatory activity, reduced trial-by-trial choice repeti-

tion. Similar findings were obtained in a dynamic learning task, where pupil responses caused by a sudden

change in the environment increased the probability of discarding previously learned information (Nassar

et al. 2012; Krishnamurthy et al. 2017).

These findings are line with the idea that the locus coeruleus-noradrenaline system, one of the brainstem

centers linked to pupil dilation (Joshi et al. 2016; de Gee et al. 2017), can cause a ‘network reset’ in cortical

circuits, enabling rapid behavioural adaptation (Bouret and Sara 2005; Karlsson et al. 2012). Further work

- for example using pharmacological manipulation (chapter 4) or single-trial measurements of brainstem

arousal centers (de Gee et al. 2017) - is needed to pinpoint how different neuromodulators interact with

information processing in cortical circuits to bring about the neural state changes that produce serial choice

bias.

Concluding remarks

In this thesis, I present several new insights into the computational and mechanistic basis of serial choice

biases. These biases are pervasive in perceptual decision-making, can be flexibly adapted to environmental

demands, and depend not only on previous choices but also the associated uncertainty. Moreover, serial

choice biases may arise from biased brain states underlying selective sensory encoding or read-out, which

bias the rate of evidence accumulation in line with previous choices.

The precise nature of the neural network dynamics underlying serial choice biases, and their interaction

with the brain’s arousal systems, remain to be explored. Another exciting question for future research is to

assess the nature of individual differences in serial biases, and their possible underlying causes. All in all,

the findings presented here start to elucidate how previous choices affect our decisions, in ways that may

reflect fundamental principles of decision-making in an uncertain world.
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