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Abstract
Cool stars exhibit a chromosphere, classically considered as a thin layer on top of the photosphere.
This region is characterized by a number of phenomena created by strong, changing magnetic fields,
which we refer to as signs of stellar activity. On stars other than the Sun, they cannot be resolved,
and only the effects on a star’s spectrum can be measured. Measurements of these activity-related
phenomena can be used to find magnetic cycles and rotation periods in stars, including the Sun,
and are of great interest, in order to better understand the cause and creation of the magnetic fields,
which are thought to stem from a dynamo process. Most activity related studies focused on changes
in the Ca II H- & K-lines, two spectral lines of single ionized calcium at about 395 nm. They display
prominent emission cores, generated in the chromosphere. Other authors have used the behavior
of the Hα-line, which is also affected by chromospheric activity. However, the recently launched
GAIA satellite and CARMENES missions will obtain many spectra that do not feature all of these
lines. In order to still use these spectra for activity studies, we set out to analyze and compare
the activity-induced changes in the Ca II Infrared Triplet (Ca II IRT), three calcium lines in the
infrared, to those in the Ca II H- & K-lines and the Hα-line.
To do so, we analyze several thousand spectra of F, G and K-stars taken by the TIGRE telescope.
We carefully subtract spectra without contributions related to magnetic activity in order to obtain
the chromospheric excess flux. To perform such a comparison for that large number of spectra, we
have developed an automatic routine, which defines the flux scale, performs normalization, rotational
broadening, and – if necessary – degrades a spectrum to the lower resolution of the TIGRE spectra.
We obtained the excess flux by comparing the spectra of active stars to those of inactive stars of
similar type, and performed a second comparison to PHOENIX model spectra. We perform this
latter step by developing a new approach of interpolating irregularly sampled model spectra, and
used it to fit model spectra to the observed ones. We find the stellar parameters in the process.
The determined excess fluxes show a strong correlation to each other, but also to classical activity
indices. We give relations to convert such fluxes into these indices, and vice versa. The correlation
between the excess flux in the calcium lines is larger than the one between the excess flux in the
Hα-line and the Ca II H- & K-lines, suggesting that the Ca II IRT-lines may be better suited for
activity studies. This correlation is weakened, but still apparent, when performing the analysis for
individual stars only. As we compared with both, spectra of inactive stars and model spectra, we
can analyze the basal flux level – the chromospheric emission unrelated to magnetic activity, which
is included in the spectra of inactive stars, but not in the model spectra – in detail, though the
noise level of the spectra complicates this. We find relations somewhat lower than most cited in the
literature, but they are still in good agreement.
Since the excess fluxes are created within active regions of the chromosphere, moving in and out of
view on the stellar disk as the star rotates, we can use the determined excess fluxes to find periods
in stars, and have demonstrated this for a small sample of stars, confirming literature values in most
cases. We present an outlook for applying this method to binary systems, and to gain information
regarding the position and movements of active regions on the surface.
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Zusammenfassung
Kühle Sterne zeigen eine Chromosphäre, die klassisch als eine dünne Schicht über der Photosphäre
beschrieben wird. Dort entstehen einige Phänomene durch starke, dynamische Magnetfelder, die
wir als Zeichen stellarer Aktivität sehen. Diese Phänomene können nur auf der Sonnenoberfläche
aufgelöst und abgebildet werden, wohingegen auf anderen Sternen nur die Effekte auf das Spektrum
des Sterns beobachtet werden können. Aus Messungen dieser Veränderungen können Rückschlüsse
z.B. über magnetische Zyklen und die Rotationsperiode gezogen werden. Solche Daten verbessern
unser noch immer unvollständiges Verständnis der Prozesse hinter der Struktur und Erzeugung
der stellaren Magnetfelder, von denen wir annehmen, dass sie durch Dynamoprozesse entstehen.
Die meisten Analysen stellarer Aktivität entstanden durch Beobachtung der Veränderungen in den
Ca IIH- & K-Linien, zwei Spektrallinien des einfach ionisierten Kalziums, die bei einer Wellenlänge
von etwa 395 nm liegen. Diese Linien zeigen einen prominenten Emissionskern, der in der Chro-
mosphäre erzeugt wird, und deren Stärke von der magnetischen Aktivität abhängt. Häufig wird
auch das Verhalten der Hα-Spektrallinie analysiert, die ebenfalls durch chromosphärische Aktivität
beeinflusst wird. Die vor kurzem gestarteten GAIA und CARMENES Missionen werden eine große
Zahl Spektren aufnehmen. Sie werden jedoch nicht die Ca IIH- & K-Linien, und im Falle von GAIA
auch nicht die Hα-Linie enthalten. Damit diese Spektren trotzdem für Aktivitätsstudien genutzt
werden können, haben wir in dieser Arbeit das Verhalten des sogenannten Ca II Infrared Triplets
(Ca II IRT), drei Spektrallinien des einfach ionisierten Kalziums im Infraroten, analysiert, und mit
dem der Hα- und Ca IIH- & K-Linien verglichen.
Dazu haben wir mehrere tausend Spektren von F, G und K-Sternen, die vom TIGRE-Teleskop
aufgenommen wurden, untersucht. Wir vergleichen diese Spektren mit solchen ohne den Beitrag
einer magnetisch aktiven Chromosphäre, um über die Differenz der beiden Spektren den chromo-
sphärischen Exzessfluss zu bestimmen. Um dies für diese große Zahl Spektren verlässlich tun zu
können, haben wir eine automatische Routine entwickelt, welche die Spektren normalisiert, verbre-
itert, die Flussskala bestimmt, und ggf. Spektren auf die korrekte Auflösung degradiert. Für die
Exzessbestimmung haben wir als Vergleich zunächst Spektren inaktiver Sterne verwendet, und an-
schließend Spektren, die aus PHOENIX Modellatmosphären berechnet wurden. Wir haben dafür
ein neues Verfahren zur Interpolation von Modellspektren zwischen stellaren Parametern entwickelt.
Mit einem Fit der theoretischen an die beobachteten Spektren können wir die stellaren Parameter
der Sterne bestimmen.
Die so bestimmten Exzessflüsse zeigen eine starke Korrelation zueinander und zu den bekannten
Aktivitätsindizes. Wir finden Relationen, die Exzessflüsse in Aktivitätsindizes oder umgekehrt
umzurechnen. Die Korrelation der Exzessflüsse in den Kalzium-Linien ist größer als die der Exzess-
flüsse in den Ca IIH & K-Linien zum Exzessfluss in der Hα-Linie. Diese Korrelation bleibt auch
erhalten, wenn als Datengrundlage lediglich die Exzessflüsse eines einzelnen Sterns verwandt wer-
den. Da wir den für die Exzessbestimmung nötigen Vergleich sowohl mit inaktiven Sternspektren,
als auch mit Modellspektren durchgeführt haben, können wir durch Vergleich der Ergebnisse auf
den basalen Fluß schließen. Dies ist der chromosphärische Fluss, der nicht von magnetischer stel-
larer Aktivität verursacht wird, und daher in den Spektren inaktiver Sterne enthalten ist, aber nicht
in den Modellspektren, die lediglich die Photosphäre abbilden. Diese Bestimmung wird durch das
vergleichsweise hohe Rauschen in den Spektren erschwert. Die gefundene Beziehung stimmt – in
Anbetracht dieser Fehler – gut mit bekannten Beziehungen aus der Literatur überein.
Da die Exzessflüsse in den aktiven Regionen der Chromosphäre entstehen, die sich durch die Ro-
tation des Sterns über die beobachtete Sternscheibe bewegen, kann aus den gemessenen Werten
auch die Rotationsperiode von Sternen bestimmt werden. Wir demonstrieren dies für eine kleine
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Auswahl an Sternen, und finden in der Regel Werte, die gut mit den Literaturwerten verträglich sind.
Schließlich geben wir noch eine Aussicht darauf, wie dieses Verfahren auf Binärsysteme angewandt
werden kann, und wie aus der Analyse der Form des Exzessflusses auf die Position und Bewegung
aktiver Regionen auf der Oberfläche geschlossen werden kann.
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Chapter 1

Introduction

On stars, a wide variety of phenomena caused by magnetic activity are observed. These range from
spots and faculae to filaments and prominences, which we can directly observe on the Sun, and which
create an ever-changing, different view of the solar disk, depending on the wavelength we perform
this observation in. Some of the phenomena so observed are created in the chromosphere, a layer on
top of the photosphere in a star’s atmosphere.
However, the Sun is actually a star showing only low levels of activity, and it is known that for other
stars, the level of activity, and therefore the chromospheric emission, is much stronger. Analysis
of these stars is therefore a great way of better understanding these phenomena, which will also
allow us to learn more about the Sun. The Mount-Wilson survey, started in 1966, has perhaps been
the most impactful study performed to understand the long-term behavior of stellar activity, and
it relied on the clear, easily distinguished emission cores in the Ca II H- & K-lines. The long-time
analysis of these lines has allowed unprecedented studies regarding magnetic cycles in stars.
With modern telescopes, such as the Telescopio Internacional de Guanajuato Robótico Espec-
toscópico (referred to as “TIGRE”), located in Mexico, such studies are possible as well, with
an additional advantage: the spectra taken by this telescope also include the Calcium II Infrared
Triplet (Ca II IRT) lines. It has been shown before that those lines are activity tracers as well, and
studies have been undertaken to compare their behavior to the Ca II H- & K-lines, e.g. Mart́ınez-
Arnáiz et al. [2011b]. Knowledge of this is now more important than ever, as new missions have
been launched, such as CARMENES or GAIA, that will take spectra of the Ca II IRT, but not
of the Ca II H- & K-lines [Prusti, 2012, Quirrenbach et al., 2014]. These missions are expected to
take an extremely large number of spectra, with the GAIA catalog alone including 1 142 679 769
entries, and CARMENES expected to take ∼ 15 000 spectra of M-dwarfs in the first three years.
Taking these spectra into account for activity studies therefore greatly enhances both the temporal
coverage of stars with existing data on their activity, and adds reliable information of a number of
stars that so far have no activity-related data at all. However, since those spectra do not include the
Ca II H- & K-lines, new indicators to estimate the activity levels are necessary, as well as a relation
between those indicators to compare the new ones to the old values, and to add this new data to
existing results of other studies.
In this work, we want to make use of the very large amount of data taken by the TIGRE telescope,
which simultaneously takes spectra of the Ca II H- & K-lines and Ca II IRT-lines. Analysis of these
spectra then makes it possible to understand how the Ca II IRT-lines change dependent on activity,
which is indicated from the emission core in the Ca II H- & K-lines. Since these observations are
simultaneous, there is no discrepancy of the two indices simply from different moments in the cycle,
or from inherent stochastic changes in activity. This is a major advantage of the TIGRE dataset,
and is an important improvement on the works from e.g. Busà et al. [2007]. Additionally, we will
analyze not only the activity indices, but also the actual chromospheric flux in units of erg s−1 cm−2,
which we obtain by careful removal of photospheric effects.
In the next chapter, we give a basic outline of the chromosphere, observed activity phenomena, the
creation of the magnetic field, and the TIGRE telescope. In the following Chapter 3, we describe
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Figure 1.1: The Sun’s chromosphere,
showing a prominence, on Febru-
ary 3rd, 2016. This image was taken
from NASA/SDO, and shows the Sun in
304 Å, which is chromospheric emission
from He II.

how we perform the removal of the photospheric contribution. We take inactive stars to show only
the photospheric contribution – neglecting the basal flux – and from this determine chromospheric
excess fluxes in Chapter 4. To improve this method, we move towards PHOENIX model spectra as
true photospheric spectra. To perform the comparison correctly, and to not suffer from incorrectly
determined stellar parameters, we first calculate a set of PHOENIX model spectra, and derive a new
way of interpolating them in stellar parameter space, even if they are not sampled in a grid-wise
fashion. This is described in detail in Chapter 5. Fitting these models to TIGRE spectra in order to
obtain the stellar parameters is the focus of Chapter 6. With the best-fitting model determined for
each star, we can finally perform the comparison, and determine the excess fluxes, which we show
in Chapter 7. Since we have now determined different activity indices, we can find a relation to
convert the measurement of one into another, which is useful to supplement existing archival data of
one line with new data of another, for example to add to the archival Mount-Wilson data from the
new GAIA observations. We show how we perform this conversion in a way to minimize sampling
effects in Chapter 8. Carefully contrasting the results of the comparison to inactive models and the
results of comparison to model spectra reveals their major difference, which is the basal flux level.
We show how we can determine it from our results in Chapter 9. We then check the correlation
between the different activity-related indicators and fluxes on the level of an individual star, and
determine periods, in Chapter 10. An outlook of further possibilities, as well as a summary of these
results, is given at the end in Chapter 11.



Chapter 2

Magnetic Activity and the TIGRE
Telescope

In this thesis, we will analyze spectra of stars that show signs of magnetic activity. First, we will
discuss the atmospheric structure of the main-sequence stars we consider here, which will lead us to
differentiate between the photosphere and the chromosphere. We describe some of the observable
physical phenomena that are caused by a star’s magnetic field. We continue with a summary of some
indices that are in use today to characterize and quantify the level of magnetic activity in a star.
We then give a short overview of the dynamo process that is thought to cause the magnetic fields.
These activity processes are often observed to vary in cycles. We will discuss such cycles shortly,
before we give a description of the instrument that observed the spectra we have used in this work.

2.1 Atmospheric structure

We analyze the light emitted by stars in detail, studying the spectral signatures and spectral lines
to figure out tracers for physical processes taking place in the star. Most of the light in the spectra
we work with is created in a star’s photosphere. However, we are most interested in light that was
emitted from the chromosphere, a thin layer on top of the photosphere. We will now describe the
photosphere and chromosphere, using the definition given by Hall [2008]. We give a short outline of
the various features observed there related to activity.

2.1.1 The Photosphere

When observing the sun with the naked eye (hopefully using a solar filter), we see the region in
the atmosphere where the optical depth is τ = 1. It shows granulation, an effect from the energy
transport outwards through convection [Strassmeier, 1997], as well as limb-darkening, which is a
geometric effect. Towards the limb, the regions that we see the emitted light from at τ = 1 is from
greater heights, where there is a lower temperature. Therefore, we measure less light from there,
and correspondingly the limb appears darker1. But it also shows effects from magnetic fields: There
may be spots, where the magnetic field suppresses convection, therefore creating these regions with
lower temperature. We can also observe bright spots called faculae. We know from magnetograms
of the solar disk that these phenomena appear in regions of strong magnetic fields.
The continuum emission is contributed from the photosphere, though it also contributes absorption
lines. In Fig. 2.1, we show an image of the sun’s photosphere, taken from the Solar Dynamics
Observatory (SDO) [NASA/SDO], at a wavelength of λ = 6173 Å. It shows clearly the granulation,
limb-darkening, as well as a well-defined sunspot. The dark core is called the umbra. The spot
shown in Fig. 2.1 is larger than the earth, to give a sense of scale. Around the dark center of the
spot is the penumbra.

1If observing with a small filter centered at the right wavelength, we may observe limb-brightening instead!

3
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Figure 2.1: The sun’s photosphere,
observed by the SDO. This shows a
segment of an image taken from the SDO
Gallery [NASA/SDO], and shows the sun
as it appeared on July 7th, 2017.

As these spots can be made out even with simpler means, a lot of historical data reaching back
centuries is available on the amount of spots on the sun’s surface. Kepler and Galilei were among
the first who analyzed such data. We will see later that this historical data is very interesting as
cycles appear in them. Note that for the sun, spots are only observed in a belt around the equator.
However, for more active stars, spot configurations that feature large spots near the poles have been
found, and are most impressively seen in surface maps from Doppler Imaging (see e.g. Wolter et al.
[2008], Huber et al. [2009]). Because spots are created from magnetic fields, they are an indicator
for magnetic activity. This activity has an even stronger effect in the chromosphere, the thin layer
above the photosphere.

2.1.2 The Chromosphere

In visual light, the chromosphere is hard to make out against the much brighter photosphere, as
the contrast is simply too low against the bright continuum emission of the photosphere. However,
during a solar eclipse, since the light of the photosphere is blocked, light from other atmospheric
structures can be made out, such as the corona, visible as photospheric light is scattered from it,
and also the chromosphere, which appears as a violet-pinkish ring that can be made out around the
solar disk. Unlike the photosphere, the chromosphere emits light mostly in certain lines, such as
the Hα-line at λ = 6563 Å, giving it the pink color. However, most of these chromospheric lines are
outside the visible range. Vernazza et al. [1981] derived a temperature-structure of the atmosphere
of the sun from models they created, which are cited often to this day. This temperature-structure
is shown in Fig. 2.2. When going outwards towards greater heights (right to left in the plot), the
temperature first falls to a minimum, here at about 500 km. This point marks the beginning of
the chromosphere. From there, the temperature rises again, before it flattens out to a plateau at
a temperature of about 6500 K. Then, suddenly, we enter the transition region, where there is a
very steep temperature rise upwards at about 2100 km. Past this very thin layer, the corona begins,
which is a very wide extended region of thin plasma, with extremely high temperatures of more than
one million Kelvin in the case of the sun [Hall, 2008].

Figure 2.2 also marks the formation heights of several lines important to measurements of the
chromosphere, among them the Ca II H- & K-lines, the Mg II h and k doublet in the UV and the
famous Hα-line. Another group of lines that have been used are the Ca II IRT-lines, which are
formed in the lower chromosphere [Linsky et al., 1970], and which we will focus on in this work.
Hall [2008] defines the chromosphere in a review paper as the region where there is “emission in
excess of that expected in radiative equilibrium and [..] where cooling occurs mainly by radiation
in strong resonance lines”. There are processes by which mechanical energy is dumped into the
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Figure 2.2: Temper-
ature structure of
the Sun, as given
by Vernazza et al.
[1981]. The tem-
perature structure is
plotted against the
height, and the forma-
tion heights of certain
lines are given as well.

chromosphere, which heats up, and ionizes hydrogen as a result. The freed electrons allow collisional
radiative cooling, which creates the radiation in the resonance lines [Hall, 2008]. The abrupt end of
the chromosphere towards the high temperatures of the corona marks the point where all hydrogen
is ionized, and this cooling is no longer possible. Possible processes to put the energy into the
chromosphere might be acoustic waves [Biermann, 1948, Schwarzschild, 1948], or a magnetic field
created from a dynamo [Babcock, 1961]. Since these processes require surface convection to work,
hot stars cannot become too active and will not feature an extended chromosphere. Additionally,
their photospheres may already be highly ionized, so that there are already no electrons left at the
end of their photosphere to perform the cooling procedure.
Figure 2.3 shows the sun in a Hα-filter, taken by the ChroTel telescope2. Since the Hα-line is one that
shows strong radiation from the chromosphere (see Fig. 2.2, from Vernazza et al. [1981]), this figure
gives us insight into the chromospheric structure. Clearly visible are thin, dark structures called
filaments. They only appear dark against the brighter solar disk. Those that are seen past the limb
of the solar disk appear bright against the dark background, and are called prominences. We can
also make out regions of bright light, called plages. They are not just visible in the Hα-line, but also
for example in the Ca II H- & K-lines. These structures are not always visible, and are connected to
magnetic activity (see next section). Figure 2.4 shows the chromosphere, as it appears during a time
of low magnetic activity (the “quiet state”), and as it appears during more active phases. In Fig.
2.5, an image of the solar disk taken in the Ca IIK-line, highlighting the chromosphere, is compared
to one in white light, showing the photosphere, taken at the same time. This comparison reveals that
the bright, chromospheric plage structures on the right appear at the positions where we observe
spots and faculae (mostly visible closer to the limb) in the photosphere. The magnetic structures,
and the emission resulting from them, therefore do not appear to be uniformly distributed across
the chromosphere, or even the projected disk, but rather to be formed in certain regions of high

2ChroTel is operated by the Kiepenheuer-Institute for Solar Physics in Freiburg, Germany, at the Spanish Obser-
vatorio del Teide, Tenerife, Canary Islands. The ChroTel filtergraph has been developed by the Kiepenheuer-Institute
in cooperation with the High Altitude Observatory in Boulder, CO, USA.
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Figure 2.3: The sun in Hα-emission,
taken by ChroTel [Bethge et al.,
2011]. This image shows the sun on Au-
gust 31, 2005.

magnetic activity, the position and strength of which varies over time. As singular magnetic regions
vanish – either because they have reached the end of their lifetime, or simply because stellar rotation
moves them out of view – the resulting emission and the measured activity from this will diminish,
too. This can and has been used to determine stellar rotation periods, and we will get back to this
in Chapter 10.
The chromosphere is therefore strongly sensitive to magnetic structure, and can be used to obtain

information regarding the magnetic structure. Since the chromospheric emission is mostly limited to
small spectral line cores, analysis of these spectral regions can be used for such an analysis. Several
different indices for stellar magnetic activity have been derived from such observations.

2.2 Activity indices

Here, we give a short overview of some of the most important activity indices in use today. We
will focus mostly only on those that we are using in this work: The famous Mount-Wilson S-Index
SMWO and the index R′HK, derived from the same spectral lines.
Historically, the first measurement able to be converted into a numerical measurement of the strength
of activity was the amount of sunspots. In order to quantify this more reliably, the Wolf sunspot
index number, also called the Zürich relative sunspot number, was introduced [Schrijver and Zwaan,
2008]:

R = k (10g + f) , (2.1)

with g as the number of spot groups visible on the disk, and f the number of individual spots. The
correction factor k is used to bring measurements from different observers and their instruments into
agreement. This number is of course dependent on the number of spots visible to a specific observer.
However, by taking a monthly average, much of these effects smooth out, and the resulting index
correlates well with less subjective indices.
Over the years, the advances in instrumentation made it possible to observe in other wavelengths,
and better filters, so that observations in other spectral ranges, such as the UV, and even X-Rays,
as well as detailed spectra from individual lines could be used for analysis of the magnetic activity.
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Figure 2.4: The Sun’s chromosphere, as seen on August 14th, 2017 (left) and on July
5th, 2014 (right). The image on the left shows the Sun in a quiet state, whereas that on the right
shows the Sun at the height of its activity in Cycle 24. Both images show the Sun in 304 Å and are
taken from the SDO Gallery [NASA/SDO].

2.2.1 Mount-Wilson SMWO-Index

Possibly the most famous activity index is the Mount-Wilson S-Index SMWO, which is derived from
the Ca II H- & K-lines3, two lines at λ = 3968 Å and λ = 3934 Å, respectively. They are formed by the
transition from the 4p2P1/2 (Ca IIH) and 4p2P3/2 (Ca IIK) states down to the 4s2S1/2 state [Shine
et al., 1975, Kramida et al., 2015]. These two lines sensitive to chromospheric magnetic activity are
perhaps the easiest to observe from the ground. Eberhard and Schwarzschild [1913] noted that for
some stars, the Ca II H- & K-lines featured very strong emission cores. The spectra of these lines
appear strikingly different dependent on the level of activity, as shown in the comparison in Fig. 2.6,
where we compare the spectrum of an “inactive” and an “active” star, using the threshold definition
from Henry et al. [1996], which we will explain later in Chapter 4, Sect. 4.3. We can see that the
Ca II H- & K-lines are very broad with almost a triangular shape, contaminated by a number of
different lines. In the line center, the active star shows a clear peak in both lines, with the peak
in the Ca IIK-line being a bit higher. We interpret these peaks as chromospheric emission due to
magnetic activity, as they would appear as bright regions on the solar disk, which we have seen in
Fig. 2.5 corresponds to regions with strong magnetic fields. Wilson and Vainu Bappu [1957] found
that the width of this emission W0 is correlated with the absolute magnitude M of the star. This
effect is called the “Wilson-Bappu effect”, and can be formulated as:

M = 27.59− 14.94 logW0. (2.2)

The lines also show emission reversal: While it is hard to make out in the smoothed spectra shown
in Fig. 2.6, there is an apparent “dip” in the very center of the emission peak. These points are
often referred to as K1 (minimum furthest out), K2 (maximum) and K3 (minimum in the emission
peak center)4, and are formed in different parts of the chromosphere (Fig. 2.2), and are therefore
subjected to different conditions in the local plasma [Hall, 2008]. Analysis of the position of these
points can therefore be used to better understand the local conditions at different points in the

3They are both Fraunhofer lines, which explains the names “H” and “K”. Since Fraunhofer named them in order
from red to blue, the Ca IIH-line has the higher wavelength of the two.

4There are two K1 and K2 points each, on the red and blue side of K3 respectively.
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Figure 2.5: The solar disk, as seen on February 7th, 2014 by the SDO/HMI (left)
[NASA/SDO], imagining the photosphere in the continuum. On the right, the solar
disk imaged in the Ca II K-line, taken by ChroTel [Bethge et al., 2011], showing chro-
mospheric structure.

chromosphere.
Olin Wilson began observing the Ca II H- & K-lines of a number of stars in 1966, with the stated
goal of determining if “the chromospheric activity of main-sequence stars vary with time, and if
so, how?” [Wilson, 1978], and such observations continued until 2003. The peculiar behavior of
the Ca II H- & K-lines on activity was analyzed by defining the so-called S-Index. By comparing the
count rate in the center of the lines to the count rate outside the lines in the continuum, they arrived
at the numerical value SMWO to describe a star’s activity levels:

SMWO =
NH +NK
NV +NR

α. (2.3)

Here, NH and NK are the count rates inside a triangular, 1.09 Å-wide bandpass in the center of the
Ca IIH- and K-line, respectively. NV and NR are the count rates in a 20 Å rectangular bandpass in
the continuum, centered at 3901.07 Å and 4001.07 Å. The factor α is meant to bring measurements
of different instruments into agreement, as different sensitivity at different wavelengths can result
in different values for this parameter [Strassmeier, 1997]. To determine α, usually measurements
of a set of standard stars are compared. This index is perhaps the most important activity index
there is, with a large amount of archival data available for a number of stars, and many authors
choosing to quantify activity using this index. However, this value depends on stellar parameters,
and therefore is not a good fit to compare the activity levels of stars of different types. Historically,
it soon became apparent for the Sun that this index closely follows the sunspot number [White and
Livingston, 1981], further cementing it as a useful activity indicator.

2.2.2 Emission in Ca II lines

To eliminate the problem of the dependency on stellar parameters, we must adapt the analyzed
parameter. The S-Index simply compares the count rates inside the line and normalizes by those
outside, which is a crude estimator for the emitted chromospheric flux as a fraction of the continuum
flux. A better estimate is given by the index R′HK, which aims to improve the estimate. The first
change is to move from the simple count rates in the triangular bandpasses in the line centers towards
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Figure 2.6: Comparing two spectra taken by the TIGRE telescope (see Sect. 2.5) in
the Ca II H & K-lines for an “active” (red line) and an “inactive” (blue line) star. For
clearer illustration, these spectra have been slightly smoothed to reduce the levels of noise, and to
make the overall structure clearer.

the actual flux. Performing this step is not trivial, as it is notoriously difficult to measure spectra in
real units of physical flux (erg s−1 cm−2 Å−1). Common ways of converting spectra into those units
are by comparing with model spectra, or by scaling relations valid for the Sun. In any case, the
actual value given will also depend on the determination of the continuum in the spectrum, as the
continuum marks the level that can reliably be estimated. For the Ca II H- & K-lines, determining
the continuum from a spectrum is difficult as well, due to their broad shape and the large amount of
line contamination (see Chapter 3, Sect. 3.2). However, if such a value FHK has been determined,
it can subsequently be normalized by the total flux emitted by the star according to the Stefan-
Boltzmann-Law:

RHK =
FHK

σT 4
eff

. (2.4)

Compared to Eq. (2.3), this index has the advantage of a more “physical” value with FHK, rather
than its estimate from count rates, and a better normalization with the Stefan-Boltzmann law in the
denominator. However, this index still suffers from some photospheric contribution to FHK. This
is undesired, as this contribution is unrelated to the magnetic activity, and therefore an improved
index R′HK has been derived that aims to remove this contribution, leaving just the chromospheric
stellar flux:

R′HK =
FHK − FHK,phot

σT 4
eff

. (2.5)

The difficulty here is to determine the value of the purely photospheric FHK,phot. This can be
done e.g. from photospheric model spectra, and several relations to estimate this value exist in
the literature, e.g. those determined by Mittag et al. [2013]. This index is usually of the order of
∼ 10−4.75 for stars starting to show signs of activity [Henry et al., 1996]. While R′HK is much better
suited for activity studies, as it does not show the same dependency on stellar parameters as SMWO

does, it is harder to determine. However, it is possible to convert a measurement of SMWO to the
corresponding value of R′HK, by estimating the conversion from S-Index count rates to physical flux
from the star’s spectral class and temperature, or B−V value. In this work, values for R′HK we give
have been calculated from the measured SMWO-value using the relations from Mittag et al. [2013],
though other such relations are available, e.g. those from Rutten [1984].
At first glance, it would appear that R′HK would reach zero for very inactive stars. However, this
is not the case, as we always have FHK > FHK,phot. The reason for this is that there is always a
residual level of chromospheric flux, called the basal flux, which may [Judge et al., 2003, Schrijver
and Title, 2003] or may not [Schrijver, 1987] be of magnetic origin. Another possibility is that the
mechanisms are both magnetic and acoustic in nature [Hall, 2008]. This flux is about an order of
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magnitude lower than the “typical” emission from active stars, but it is distinctively not zero (we
will try to estimate the basal flux in several lines in Chapter 9). Following the logic of removing
contributions to the flux unrelated to magnetic activity, Mittag et al. [2013] introduced the index
R+

HK, which removes this basal flux component FHK,basal:

R+
HK =

FHK − FHK,phot − FHK,basal

σT 4
eff

. (2.6)

The authors also give a way to estimate FHK,basal. Unfortunately, this index has not yet catched on,
and most authors stick to the more widely-used R′HK. For even remotely active stars, the difference
between R′HK and R+

HK is negligible, however, due to the small contribution of the basal flux. In this
work, we will analyze and compare the directly measured flux from chromospheric activity, which
we obtain by disentangling this flux from the photospheric contribution, to these activity indices,
which serve as our control.
The Ca II H- & K-lines are not the only Ca II-lines sensitive to magnetic activity. The Ca II IRT-
lines have also been known as an activity indicator. These three lines at λ = 8498 Å, λ = 8542 Å and
λ = 8662 Å will be the focus of this work, and we will compare their performance as an indicator
to the Ca II H- & K-lines. The Ca II IRT-lines are formed from the transitions of Ca II from the
4p2P1/2 to the 3d2D3/2 state, and those from the 4p2P3/2 to the 3d2D5/2 and 3d2D3/2 state [Shine
et al., 1975, Kramida et al., 2015].

2.3 Magnetic activity

We have already mentioned that the phenomena we have described are caused by underlying stellar
magnetic fields. For example, sunspots are regions with very strong magnetic fields, as evidenced by
magnetogram images. In fact, these spots mark the points where magnetic flux tubes penetrate the
photosphere. The magnetic fields in stars, including the Sun, cannot simply be static, as its lifetime
would be too short. Therefore, only a consistently regenerating, dynamic process can explain the
observed magnetic fields, not to mention their change that is ultimately observed in the activity
related phenomena. This process is not yet fully understood in all details. The most common
explanation is given by the αΩ-dynamo model5. This theory was first introduced by Parker [1955].
The magnetic field is postulated to consist of a poloidal component, as well as a toroidal component.
The idea behind the dynamo model is that there are underlying processes that turn poloidal fields
into toroidal fields, which in this model is called the Ω-effect, and vice versa turning toroidal fields
into poloidal ones (the α-effect). By doing so, the magnetic field constantly changes and adapts,
keeping the overall magnetic field alive much longer. We will now consider these two effects in more
detail, which are thought to happen at the base of the convection zone.

2.3.1 The Ω-effect

The Ω-effect converts a poloidal magnetic field into a toroidal one, and it is heavily dependent
on differential rotation. Differential rotation describes the phenomenon that the rotation of a star
depends on the latitude. This can directly be observed on the Sun, where spots at the equator
have smaller periods than those closer to the pole. As such a star rotates, the hot plasma moves in
the φ-direction, given the usual definition of spherical coordinates. Due to differential rotation, the
regions at the equator are rotating faster. If there was a poloidal magnetic field, then it will now
be deformed as the ions that generated the magnetic field move, effectively generating a magnetic
field component in the φ-direction. The longer this process goes on, the more are the field lines
“wound up”, and the stronger the generated toroidal field is. This process is shown in Fig. 2.7. As
we have mentioned, it requires a notable amount of differential rotation in order for this effect to
create a toroidal field. This can, however, be done with the α-effect as well, which can also perform
the opposite conversion.

5Depending on which effect dominates, different models are being used. For the αΩ-model, the α-term is much
smaller, but there exists also the α2-model, in which the α term dominates, and the α2Ω, where both α- and Ω-term
are of similar magnitude. [Schrijver and Zwaan, 2008]
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Figure 2.7: The Ω-effect illustrated. A purely poloidal magnetic field (blue line, left) is “stretched
out” by the differential rotation as parts close to the equator rotate faster than those closer to the
pole (shown by violet arrows). The end result is a magnetic field that contains a toroidal component
(blue lines, right). Image based on the ones from Lang [2008], Werne [2000].

2.3.2 The α-effect

In this section, we follow the description by Parker [1955].
Consider a hot region of plasma, rising up in the atmosphere, or radially outward in the star’s frame
of reference, with a purely toroidal magnetic field ~B = B ~eφ. Because this system of reference is
rotating with the star, this region will be subject to the Coriolis force, which will cause the region
to start rotating. The total movement of a fluid element is therefore a combination of a circular
movement around a local rotation axis orthogonal to the surface, assumed to be at R0 in the local
φ− θ-plane, and a radial component outwards. Assuming infinite conductivity of the fluid, we can
set the last part of the magnetohydrodynamics induction equation,

∂ ~B

∂t
= ∇×

(
~v × ~B

)
+ η∇2 ~B, (2.7)

to zero. In Eq. (2.7), the parameter η is the magnetic diffusivity. This can be solved using a Cauchy
integral, and yields:

~B (~r(~r0, t)) =
(
~B(~r00)∇0

)
~r(~r0, t), (2.8)

where ~r(~r0, t) describes the position of a fluid element at time t originally at ~r0, and ∇0 means that
we differentiate with respect to ~r0.
Parameterizing the movement as a combination of a rotation and a radial component, we then find
for ~B:

Bθ = B((R−R0)− Z)

(
sin Ψ + λ

∂Ψ

∂λ
sinψ sin (ψ −Ψ)

)
Bφ = B((R−R0)− Z)

(
sin Ψ + λ

∂Ψ

∂λ
cosψ sin (ψ −Ψ)

)
(2.9)

BR = B((R−R0)− Z)Z sin (ψ −Ψ).

Here, λ is the distance to the local rotation axis, ψ is the angle measured from the local θ−direction
around that same axis, and Z and Ψ are functions dependent on λ that originate from the movement
parameterization. Here, we just note that:

Z(λ) ∝ v0t, Ψ ∝ w0t/a, (2.10)
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Figure 2.8: The yearly mean of the sunspot number (gray) and the 13-month smoothed
number of sunspots (blue) from about 1700 to today. A clear periodical signal can be made
out. Image from SILSO World Data Center.

where v0 is a proportionality constant describing the speed of movement in the radial direction, w0

describing the speed of the local rotation, and a is a parameter describing the depth of the local
toroidal field.
The result of Eq. (2.9) shows that the formerly purely toroidal field now shows a component that is
poloidal. For example, both Bθ and Bφ now include rotated parts of the original field B, creating a
poloidal component. Additionally, there is now a radial component as well, moving outwards. The
result of these effects is that there now appears to be a “loop” perpendicular to the surface area!
This magnetic flux loop shows components circulating around both the (local) θ and the (local) φ-
direction. Careful consideration on the effects of several such loops, including those created from cool
regions falling, shows that this effect creates a net positive magnetic field in the poloidal direction,
created from a toroidal one. These effects explain a possibility of keeping the stellar magnetic field
“alive”. Additionally, careful models have revealed that this αΩ-dynamo also explains cycles, as the
two components periodically grow and shrink in strength, as shown for example for the sun by [Stix,
1976].

2.4 Time Series and periodicity

Activity related phenomena are not constant, but vary with time, and so do their associated activity
indices. For example, if we plot the sunspot number R (Eq. (2.1)), smoothed out over a small
time frame to take care of spots leaving the visible surface area, we can make out a very clearly
defined period of about eleven years. Due to this periodic increase and decrease of spots (and
faculae), the overall irradiance from the sun also varies, therefore the solar constant is actually not a
constant. The change in irradiance is only about 0.1 %, however [Fröhlich and Lean, 1998]. Modern
measurements of the magnetic field have revealed that the polarity switches from one such cycle to
the next, suggesting a 22-year cycle, which is sometimes called Hale’s cycle [Hale and Nicholson,
1925]. Going even further, the sunspot number between 1645 and 1715 was much lower, suggesting
a period of very low activity. This period is referred to as the Maunder Minimum [Eddy, 1976].
Such cycles can not only be found in the sunspot number, but also in other activity indices. For
example, Baliunas and Soon [1995] analyzed the cycle length of about 100 dwarf stars from the
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Mount-Wilson survey, using the SMWO index. They found that for those stars with comparatively
low activity levels – similar to the Sun – larger cycle lengths correlated with generally lower levels
of chromospheric activity, and lower amplitude in the cycles. They found no cycles shorter than
about six years in solar-like stars. Most stars in their sample showed periods between eight and
thirteen years: The range the Sun’s activity cycle length also falls into. Performing such searches for
other stars, with this and other activity indices, will bring forth important data, which may bring
forth better understanding of the dynamo process, as well as understanding the Sun’s cycles better.
It has been suggested that the Earth’s temperature is affected by the level of solar activity, which
may contribute to Global Warming. A more detailed analysis of this effect as it applies to the UV
emission is given by Friis-Christensen and Lassen [1991].

2.4.1 Rotational periods

The eleven year cycle of the Sun is not the only period that can be derived from its activity indices,
or observation of spots. From regular observations of the solar disk, the time it takes them to migrate
across the disk can be measured. This movement is caused by the rotation of the sun, and takes
about 25 days, but is dependent on the latitude due to differential rotation. Since the changes in
spectra highlighted in activity indices are localized to active regions, which move across the star’s
surface as well, it is possible to obtain the rotational periods from activity indices, as well as the
measured chromospheric fluxes. We will describe this process in detail, and demonstrate it with a
subset of our available data in Chapter 10.

2.5 TIGRE Telescope

This section gives a short overview of the instrument used to acquire the spectra we have analyzed
in this work. It follows the much more detailed overview given in Schmitt et al. [2014].
This work has made extensive use of a large number of spectra from the Telescopio Internacional
de Guanajuato Robótico Espectoscópico, or TIGRE for short. This 1.2 m, f/8 telescope has been
robotized and is therefore able to obtain spectra completely autonomously. The TIGRE project is
a collaboration of astronomers from the Hamburger Sternwarte, the University of Guanajuato, as
well as the High Energy Astrophysics group of the University of Liège.
The TIGRE telescope is now stationed near Guanajuato, Mexico, at a height of about 2400 m, after
a series of extensive tests have been performed to characterize and optimize the telescope’s perfor-
mance [Mittag, 2006]. The telescope is a Cassegrain-Nasmyth type, and the signal from one of its
foci is fiber-fed to the HEROS spectrograph (Heidelberg Extended Range Optical Spectrograph)6

[Kaufer et al., 2001]. This spectrograph features two channels, which cover a wavelength range of
about 3800–5700 Å and 5830–8800 Å, respectively7. This large wavelength range, covered simulta-
neously, is a very uncommon selling point for the instrument, and a pivotal advantage that made
this work possible. The echelle spectrograph takes spectra with a resolution of roughly R ≈ 20 000
(see below).
TIGRE’s main goal is the analysis of stellar activity cycles, with a strong focus on the Ca II H- & K-
lines. TIGRE has already proven that it fulfills this goal very well, and papers about searching for
periods from TIGRE spectra on the Ca II H- & K-lines have already been published, e.g. Hempel-
mann et al. [2016], Mittag et al. [2017]. However, TIGRE’s large wavelength range, and the great
flexibility from its automatic approach allowed the investigation of different science as well, for ex-
ample from analyzing Supernovae [Jack et al., 2015b] and Novae [De Gennaro Aquino et al., 2015],
to analyses of chemical abundances [Cazorla et al., 2017].

6http://www.lsw.uni-heidelberg.de/projects/instrumentation/Heros/
7A service mission in 2015 improved these wavelength ranges, and they are given as λBlue Channel = 3738− 5748 Å

and λRed Channel = 5767 − 8779 Å in the TIGRE newsletter [TIGRE Team, 2015].

http://www.lsw.uni-heidelberg.de/projects/instrumentation/Heros/
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2.5.1 Automatic spectra

TIGRE can be operated manually, but it is usually operating fully automatically. The system then
performs the initialization setup (opening the dome, etc.), obtains calibration measurements (such
as flatfield and bias images), as well as a ThAr spectrum, and finally takes scientific measurements.
The choice of the observed star is performed by an automatic scheduling system, which selects a
suitable target according to various parameters, such as the target’s visibility and height or priority
of the measurement. This scheduling system allows TIGRE to automatically obtain data for sev-
eral different science projects, including those that require many measurements at particular time
intervals to measure periods, or to synchronize observations with those of other instruments (such as
X-Ray satellite telescopes). Via various safeguarding measurements, this system also ensures that
observations are only performed if it is safe to do so, with weather conditions permitting.
Afterwards, the spectra are reduced fully automatically. TIGRE uses a modified version of the RE-
DUCE code [Piskunov and Valenti, 2002], as described by Mittag et al. [2010]. In short, it creates
master calibration images (flatfield, bias) from the several ones taken throughout the night: These
are subtracted from the images analyzed in the following steps. It then proceeds to determine the
positions of each spectral echelle order from the flat field images. If no errors occurred in those steps,
the so-called “blaze spectrum” from the flatfield lamp is extracted. Since a flat response is expected
for this, dividing real spectra by this blaze spectrum eliminates differences in the spectrograph’s
responsiveness to wavelength (e.g. from different pixel quantum efficiencies). Next, the spectrum
of the ThAr lamp is analyzed. Since the positions of the lines in this spectrum are known and well
distributed across the range, their positions allow the mapping of pixel positions in each order to
wavelength. Finally, the actual science spectra’s wavelength is determined using the previous result,
and the STIGRE-value is determined.

2.5.2 Calibrating the STIGRE index

TIGRE’s automatic pipeline does not only perform the reduction of spectra. It also performs
a rudimentary activity analysis by determining an S-Index STIGRE. The routine performs this
calculation using the blaze-normalized, echelle-order-merged spectra [Mittag et al., 2016], but it
does use rectangular bandpasses instead of the triangular ones used in the original definition. This
value STIGRE is saved in the header of the spectra, and can be used for activity studies. The resulting
index cannot directly be compared to the SMWO-values. The original definition Eq. (2.3) includes
the factor α which is meant to bring values from different systems into agreement. Mittag et al.
[2016] have determined this factor by means of a linear regression via 50 comparison stars with
SMWO values known from the literature, and found:

SMWO = (0.0360± 0.0029) + (20.02± 0.42) · STIGRE. (2.11)

Since the intercept of ∼ 0.04 is similar to the residuals (at least for stars with SMWO & 0.17), this
is likely just a statistical artifact, and therefore similar to setting α = 20.02 in Eq. (2.3).
The index STIGRE has not been determined for all TIGRE spectra, or at the very least not included
in their header, so we have determined this value ourselves for this work. We used the triangular
bandpass for NH and NK , and summed up the counts in the wavelength bins included in the
respective bandpasses, determined from the non-normalized spectrum, to find SThis Work. We must
now find the correct transformation of this index to the SMWO-scale, like Mittag et al. [2016] have
done. To do this, we take the spectra for which a value STIGRE is available, convert this to a value
SMWO using Eq. (2.11), and compare this value to our value for SThis Work. There is a very clear
linear relation, a linear fit of which yields:

SMWO = (0.04447± 0.0016) + (24.404± 0.152) · SThis Work. (2.12)
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Figure 2.9: Comparing the S-index
determined from Eq. (2.11) (ab-
scissa) to the one calculated from
Eq. (2.12) (ordinate). This plot orig-
inally appeared in Martin et al. [2017].

Figure 2.10: Histogram of the
distribution of stars with spectra
analyzed in this work. There are
further TIGRE spectra available with
B − V outside this range, or of non-
main sequence stars, that are not in-
cluded in this histogram.

Again the intercept is small compared to the residuals, and we find a very similar value8 of α ≈ 24.
The resulting values for SMWO from Eq. (2.11) and Eq. (2.12) agree very well, and are shown in
Fig. 2.9.

2.5.3 TIGRE spectra used in this work

We performed a search through the TIGRE archive for main sequence stars in late 2015. Those
stars, as well as some of their parameters (see Sect. 4.2) have been added to a local database, for
quick access to this data. We filter by only allowing F, G and K stars, with a B − V between 0.4
and 1.25. This range was chosen to hold a large selection of both active and inactive stars with
good quality spectra (defined as in a reasonable signal-to-noise ratio). Since the data we analyze
here was taken for various different projects, the range of signal-to-noise values, exposure time, etc.
varies quite a bit. We will give details in the corresponding sections. Here, we note that the stars
are not evenly distributed. Figure 2.10 shows a histogram of the distribution in B − V . There is a
large peak for B − V in between 0.6 and 0.7, quickly tapering off, with only about eight stars with
B − V > 1.0.
A large part of the spectra analyzed here were recorded for Hempelmann et al. [2016].

8The TIGRE pipeline also provides an additional, normalized spectrum. When using these normalized spectra
instead, SThis Work increases a small amount, so the value found for α would be slightly lower.
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Figure 2.11: Comparing a
spectrum of HD 129333 taken
with the TIGRE default camera
(black) and the replacement cam-
era (red). The quality of the replace-
ment camera spectrum is much worse.

2.6 TIGRE problems and limitations

Unfortunately, the telescope is not completely without issues. While many of them have been fixed,
we had to solve or work around some problems in order to use as much of TIGRE’s large archive as
possible.

2.6.1 Defective camera and replacement

In 2014, it was discovered that the default TIGRE camera did not cool down its chip correctly. The
camera was sent in for repairs, and during that time, replaced by a different camera (FLI ProLine
PL09000). This camera, however, performed much worse, showing much higher noise levels, as well
as more artifacts, than the default camera, as shown in Fig. 2.11. The quality gap between good
and bad spectra varies, and is not always as strongly pronounced as in that example. However, it
is difficult to quantify, and the work we plan to perform on these spectra is very sensitive to these
changes. For this reason, we have disregarded all spectra taken with this camera, which was in use
between December 6th, 2014 and May 15th, 2015. The large amount of TIGRE spectra available
allows us to perform such a drastic step.

2.6.2 Resolution

The spectral resolution is defined as:

R =
λ

∆λ
, (2.13)

where ∆λ is the measured width of a fictitious, infinitely sharp spectral line measured at λ, which
only appears broadened due to the limiting capabilities of the instrument. It can be measured by
taking very narrow, known spectral lines. For this purpose, TIGRE is using a number of lines in a
ThAr-spectrum, and fits Gaussians to them, in order to determine their width ∆λ. The result is
stated on the official TIGRE website as R = 20 484±92 for the red spectral arm and R = 20 738±81
for the blue spectral arm [Mittag, 2015]9. However, these are mean values from the resolution of 28
lines in the blue spectral range and 29 lines in the red.
A byproduct of the automatic reduction are plots revealing more information about a number of
parameters, one of which is the determined resolution of the spectrum. Figure 2.12 shows the
obtained resolutions for a large number of lines across the spectrum in the red arm. The mean
resolution is of a similar value than the one stated on the website. However, it is obvious that the

9http://www.hs.uni-hamburg.de/DE/Ins/HRT/hrt_user/spec_redu_info_res.html

http://www.hs.uni-hamburg.de/DE/Ins/HRT/hrt_user/spec_redu_info_res.html
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Figure 2.12: Obtained resolution
from the ThAr spectrum for many
lines. This figure is a byproduct of the
reduction pipeline written by Marco
Mittag. Used with permission. [Mit-
tag, 2015]

resolution differs very strongly from line to line, and that for some lines it goes down10 as far as
18 000. For some applications, the difference between R ≈ 21 000 and R ≈ 18 000 must be considered.
For example, when fitting a model to the data, the resolution must be known so that the model
can be appropriately degraded. If this is done incorrectly due to an overestimated resolution, the
spectrum’s lines will appear broader than they really are, which a fit would seek to compensate
by varying the stellar parameters, most likely stellar rotational velocity. If the resolution varies as
strongly as it does in Figure 2.12, then it must be tuned in the fit as well, separately for all lines
that are fitted. We come back to this in the chapter on fitting models (Chapter 6).
This variation in resolution does not appear to be stable in time, as visual inspection of several
available plots such as the one in Fig. 2.12 reveals.

2.6.3 Estimates of signal-to-noise ratio and errors

The main part of this work has made use of an extensive number of spectra in an automatic ap-
proach. Such an approach was greatly simplified by the information written into a file’s header by
the TIGRE pipeline, as this fixed the need for an additional pass through the dataset to deter-
mine, for example, the Signal-to-Noise-ratio (SNR). The spectra are delivered as FITS-files, with
the header including general information about the spectrum, such as exposure time, location on
the sky, and weather conditions. Additionally, the TIGRE pipeline determines some parameters in
the course of the reduction from echelle image to spectrum. As the error is determined during this
process, one of the parameters available throughout this reduction is the Mean Signal-to-Noise ratio
of the spectrum, which is saved in the header named as MEAN SNR. While this is generally reliable,
we encountered several cases in which the given ratio differed from what was observed near the lines
we are analyzing, as evidenced by a simple visual check.
Spectra with very poor SNR cannot be used to determine accurate information regarding the devi-
ation in line shape expected in the Ca II IRT-lines. In fact, they can potentially introduce artifacts
into the sample, which limits the possible conclusions to be drawn from it. However, if it is known
that such a spectrum is of low quality, it can either be ignored outright, or the determined pa-
rameters can be assigned an appropriately large error, and thus it would not affect the conclusions
drawn. The worst case is a poor SNR spectra that has been assigned a high SNR erroneously. In
this case, an unrealistic value might be determined that would not carry a correct error, negatively
impacting the conclusions. In many cases, these spectra ultimately result in determined values that
are clear outliers. If not properly taken care of, those can have a very strong impact on a generated
fit compared to a much larger sample of tightly-clustered data.
In this automatic analysis, we have always set a lower limit on SNR – typically twenty – and disre-
garded spectra with SNR lower than that value. We have carefully visually investigated the spectra

10The description of the website states “To optimize the figure, only data are plotted into the range from R=15 000
to R=25 000” [Mittag, 2015]. This implies that it is possible for individual lines to show lower resolutions, but this
seems unlikely given the distribution the points seem to follow in Fig. 2.12.
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Figure 2.13: Spectrum with very
low SNR in the region of the
Ca II H- & K-lines, classified with
a Mean SNR of 20 Plotted here is
the region of the Ca II H- & K-lines,
as taken by TIGRE on October 15th,
2014. Visual inspection makes it clear
that this spectrum is more noisy in this
region than the given mean SNR of 20.

Figure 2.14: Spectrum with a low
SNR in the region of the second
Ca II IRT line, classified with a
Mean SNR of 20. Plotted here is
the second Ca II IRT line, taken by TI-
GRE on October 15th, 2014. The thin
lines shows the pipeline-determined 1σ-
region.

for which we have determined values that are outliers or otherwise unexpected or nonconforming.
The most common case of these were spectra with SNR lower than 20 near the lines we are interested
in. In Fig. 2.13, the region including the Ca II H- & K-lines of a spectrum from HD 197027, taken
on October 15th, 2014 is plotted. The SNR estimated by the pipeline and written in the header is
given as 20.0049246883, however, it is very clear that the spectrum is suffering from a great number
of artifacts,and only very little actual signal can be seen. In fact, it is difficult to even make out
the deep, broad Ca II H- & K-lines! As the pipeline’s determined SNR is given as a mean SNR, this
is an unfortunate case where most regions may very well have a much higher SNR, and only some
regions, including those we are interested in, are affected by such low SNR.
This problem affects not only the given value for SNR. The errors in the spectrum as well seem
underestimated. Figure 2.14 shows the second Ca II IRT-line of the same spectrum. Here, the
situation is better than in the region around the Ca II H- & K-lines, but this region, too, shows a
SNR lower than 20 (it is actually closer to ∼ 8 near the center and inner wings). In Fig. 2.14, we
have also plotted the errors determined by the pipeline. It can be seen that the data fluctuates a lot
more than would be expected given those determined errors. We must stress again that this is not
(necessarily) an error in the TIGRE pipeline, rather that the mean SNR can in some cases not be
meaningful for small regions in the spectrum. In the vast majority of cases, however, TIGRE’s SNR
estimate is a reliable indicator of the quality of the spectrum. However, in the large sample we are
analyzing in this work, some of the spectra had to be disregarded due to the insufficient SNR near
the lines of interest.
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2.6.4 Cosmics and other problems

Figures 2.13 and 2.14 both show strong artifacts in the form of large peaks with a low width,
sometimes of only one wavelength point. As long as those artifacts occur only sporadically, and
do not fall into the line cores, they do not pose a threat to the analysis we perform. It is difficult
to discern whether these spikes are due to the influx of cosmic particles on the detector, or if they
are introduced in the reduction of the echelle images. In any case, they are not caused by stellar
activity. Most spectra are not contaminated by such artifacts, and they rarely affect the determined
quantities. For this reason, no further actions and filters to remove such artifacts have been used,
with one exception: Spectra to be used as comparison have been visually checked to ensure they do
not suffer from these effects.

2.6.5 Corrupt files

In this work, a large part of the TIGRE archive has been searched and analyzed. Many files have
been accessed, opened and read. In some cases, however, this was not possible as the file was corrupt.
Trying to open it therefore triggered an error message.
This is not in itself a problem for this work, as we still have a large number of spectra left to analyze,
but it may be of interest to others to know that some spectra that are mentioned in the archive
do not exist due to a corrupt file. We found that less than 1 % of all files we tried to analyze were
corrupt, usually due to an “Invalid BITPIX”, an incorrect or unexpected setting in the file’s header.

2.7 Telluric correction

TIGRE is a ground based telescope. For this reason, the spectra it takes are contaminated by the
atmosphere. Elements or compounds in the atmosphere absorb and scatter light, which distorts
the recorded spectrum. These effects, caused by spectral lines in the earth’s atmosphere, are called
telluric lines. Neither the Ca II IRT-lines, nor Ca II H- & K-lines are strongly affected by telluric
lines. The spectral region around the Hα-line is affected much more strongly. If the atmospheric
composition and its physical parameters (e.g. temperature) at the time of the observation is known,
then these effects can be estimated and subsequently corrected. This process is called telluric
line correction. For TIGRE, Klocová and Kohl [2015] have adapted the popular Molecfit code
[Smette et al., 2015, Kausch et al., 2015] to work with TIGRE spectra. It can correct the telluric
contamination using available weather data. To this end, we installed Molecfit on our work machine,
and let our code execute a Molecfit call (using the IDL-routine SPAWN). We show the results of
this correction for the lines we are investigating here in Fig. 2.15. There is a small effect in the
second Ca II IRT-line, and a somewhat stronger one in the Hα-line. Generally, however, the telluric
contamination is not significant.
Because the effect is rather small for the Ca II IRT-lines and Ca II H- & K-lines, we have not always

performed this correction. Such a correction is rather time-consuming: it takes about 3 minutes of
computing time per spectrum on our system. For a large sample of roughly 3 000 spectra, that alone
amounts to 150 hours. We mention in the text if this step was performed.
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Figure 2.15: Effect of telluric line correction with Molecfit in the lines we are investigat-
ing. For the Ca II H- & K-lines, the Hα-line and the Ca II IRT-lines, we show the effect of telluric
line correction using Molecfit in this plot for the spectrum of HD 165341A, obtained on August 27th,
2014. The corrected spectrum is shown in orange only where it differs. The differences are not
significant, and almost nonexistent for Ca II H- & K-lines and the first and last Ca II IRT-line.



Chapter 3

Measuring Chromospheric Excess

In this chapter, we describe the algorithm that allowed us to measure the chromospheric stellar flux
in certain lines. First, we give a motivation as to why such an algorithm is desirable, and give a
short overview on how it works, followed by an extensive description of each of the performed steps,
with examples and problem cases shown. Details on the actual implementation in IDL are given in
the appendix.

3.1 A new approach and its goals

In this work, we measure the chromospheric excess in the line spectra of active stars. The change
in the line profile differs strongly from the Ca II H- & K-lines to the Ca II IRT-lines, as the former
show a much larger fill-in up to clear emission cores (Fig. 2.6), which we do not normally observe in
the latter, at least not for F, G and K stars. Additionally, we wish to measure this excess in physical
units, however, TIGRE spectra are not flux calibrated. This requires us to find a way to convert
the measurement into physical units. Finally, we wish to analyze a large sample automatically, as
the number of spectra is too large for human intervention, and for reasons of consistency, wish to
perform this analysis with just one algorithm.
We have already introduced the S -Index SMWO in Sect. 2.2, which is the ratio of counts in the
center of the Ca II H- & K-lines to the counts in the region outside the lines. While this index is
easy to measure and very robust, it shows a clear dependence on the spectral type of the star (or
equivalently, its temperature or value of B−V ). This is because of the photospheric contribution to
the central line flux, as well as the different continuum outside the lines. For this reason, this index
works well for analyzing individual time series, but cannot be used to compare the activity levels
of stars with very different temperatures. Therefore, the index R′HK is defined, which subtracts the
photospheric contribution to obtain a flux FHK,chrom = FHK − FHK,phot and normalizes the result
by σT 4

eff [Linsky et al., 1979]. In this work, we similarly want to find the flux free from photospheric
contributions for different lines (Ca II H- & K, Ca II IRT, Hα), which we are then free to normalize
by σT 4

eff if needed. This has been done before in the literature [Mart́ınez-Arnáiz et al., 2011b, Busà
et al., 2007] with promising results. In this work, we make use of the very large TIGRE sample of
simultaneous observations in the different lines. The large sample allows us to analyze the correlation
of these indices in detail – so it is possible for us to estimate the quality of these lines as a stellar
activity diagnostic – and their behavior in time: For example, it has been shown that the activity
indices derived from the Hα-line and the Ca II H- & K-lines are not perfectly correlated for all stars
[Cincunegui et al., 2007, Gomes da Silva et al., 2014]. It is therefore interesting to see the temporal
behavior of these indicators, as they may be formed in different parts of the chromosphere [Vernazza
et al., 1981].
The algorithm we describe below has been written in IDL and performs all necessary steps to find
the chromospheric flux. It does so by subtracting a spectrum that is assumed to be inactive and
therefore chromospherically quiet: Therefore, to good approximation, we have FHK ≈ FHK,phot for

21
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this inactive star. This can be either the observed spectrum of an inactive star, or a model. We
perform these two comparisons in Chapter 4 and Chapter 7, respectively. This comparison spectrum
is also assumed to be passed in physical units of erg s−1 cm−2 Å−1, and this scale is used to convert
the measured flux to physical units. The steps performed are as follows:

1. Normalizing the two spectra

2. Correcting any wavelength shifts

3. Perform rotational broadening, and if necessary instrumental broadening, of comparison spec-
trum

4. Subtracting the spectra from each other

5. Integrating the residuals or performing a fit to them

We now describe how these steps are performed in detail, and give examples. Note that this algorithm
has been described before in my paper [Martin et al., 2017].

3.2 Normalizing the spectrum and obtaining the continuum

TIGRE spectra are not given in erg s−1 cm−2 Å−1. The spectra are also not proportional to those
units across the entire spectral range. Therefore, two spectra of the same object do not show the
same continuum level. However, for our purpose, we need to find the continuum in the spectrum,
as this will define our flux scale. We know the flux in physical units at the continuum level from
flux-calibrated comparison spectra, if we have those available. Otherwise, Hall [1996] gives relations
to determine a star’s continuum level. After normalizing a spectrum, a point at 1.0 will therefore
correspond to the value given at that point in the continuum, a point at 0.5 will be at half that flux
level, etc. As we wish to compare the flux in the center of spectral lines, we need to normalize the
region these lines fall in. We require an approach that works in an automated fashion without user
interaction, in a flexible way for any lines a potential user may wish to analyze: For us, these lines
will be the Ca II IRT-lines, the Ca II H- & K-lines and the Hα-line.
The simplest possible approach is to divide a spectrum by a defined value in its region, such as the
maximum or median value. However, this does not return reliable results (see Fig. 3.1). Since we
analyze spectra of absorption lines, the median value will usually be below the continuum level (blue
dotted line in Fig. 3.1), and create an offset in this way, which we would need to correct. Using the
maximum value does not have this problem, but is sensitive to noise, or cosmics, as the maximum
value is defined by just one value. This will then result in an incorrect normalization as well (red
dashed line in Fig. 3.1). For this reason, we require a better approach, which finds the continuum
in a spectrum from all data points.
The idea here is simple, and follows the approach of top.pro from the REDUCE package [Piskunov

and Valenti, 2002]: In an iterative process, we first fit a polynomial to the region around the spectral
line considered. Then, we remove points more than 2.5σ below the fit value and re-fit the remaining
points, until a convergence criterion has been reached, or until a certain amount of points has been
removed. We use a linear fit and stop the process after 40% of points have been removed. An
example of this process for HD 145675 is shown in Fig. 3.2, where for illustration purposes both a
different normalization region has been used, and more iterations have been performed than in the
actual excess determination. To normalize, the spectrum is subsequently divided by the assumed
continuum.

In most cases, where only a small region around the center of a line is fitted, a linear fit to the
continuum is suitable. However, if a larger region is fitted, which may be required in regions with
very few continuum points, a higher polynomial order fit might be needed. In Fig. 3.3, we show the
normalization result for different orders. It’s apparent that if too large orders are chosen, the fitted
continuum is following the spectrum and its noise too closely, resulting in a worse normalization
with a continuum that is “too curved”.



23 CHAPTER 3. MEASURING CHROMOSPHERIC EXCESS

Figure 3.1: Simple normalization
attempts for noisy spectra. This
plot shows the case of normalizing the
merged TIGRE-spectra of inactive ob-
ject HD 145675 with added synthetic
noise and an outlier. The simple cases
of using the median value (blue dash-
dotted line) results in a continuum level
that is too low, whereas using the high-
est value would be too high due to the
noise spike (red dashed line).

3.2.1 Normalizing the Ca II H- & K-lines

This general process returns a reliable estimate of the continuum, if a large enough part of the
spectrum is passed that contains at least about 60 % continuum, and if the spectrum features only
absorption lines, as it currently does not handle emission lines. In most cases, the region to be
considered is simply the region around a line. However, for the Ca II H- & K-lines, this process can
then fail, as the broad, triangular shape with the large amount of absorption lines nearby leaves no
points at continuum level near the lines. The estimated continuum level will then be too low. To
fix this problem, we use the upper envelope instead of the actual spectrum. This “masks” many of
the narrow absorption lines. To help with the problem of the wide line not leaving any continuum
on its sides, we consider the original definition of the SMWO-value [Vaughan et al., 1978, Duncan
et al., 1991]. There, two 20 Å-wide continuum bands are defined to the “red” and “blue” region of
the continuum, centered at 3901.07 Å and 4001.07 Å. We adapted the procedure above to only take
into account points in these bandpasses. The difference of using this approach and to simply use the
region around Ca II H- & K-lines as we are able to do for the Ca II IRT lines is shown in Fig. 3.4.
The result of this approach is satisfactory, but we still note that this normalization – which affects
the subsequent conversion to the physical flux scale in units of erg s−1 cm−2 Å−1– is much easier,
and therefore more reliable, for the Ca II IRT lines, which has been noted as an advantage of using
the Ca II IRT lines for activity studies [Busà et al., 2007].

This procedure is not meant for spectra with emission lines. For very active stars, the emission
cores in the Ca II H- & K-lines lines become so strong that they have a similar effect. This, however,
is not a problem when using the two regions defined in the SMWO-definition for normalization, as
the emission cores are then simply ignored.

3.3 Correcting wavelength shifts

Stellar spectra feature wavelength shifts. Movement along the line of sight will create a red- or
blueshift in the spectra, which has to be corrected. For all stars analyzed in this work, values for
this shift were available from SIMBAD [Wenger et al., 2000]. To correct the shift, the wavelength
scale is then multiplied by a factor of (1 ± vradial/c), with the sign depending on whether the star
moves away or towards the observer. An additional shift stems from the relative movement of Earth
and star from the Earth’s rotation around the Sun, and the movement of the center of mass. How-
ever, the routine used for reading in TIGRE spectra automatically performs this correction. At this
point, most wavelength shifts are already corrected. However, in practice, these shifts are rarely
perfectly corrected, or other effects create a significant additional shift. For example, in the case of
binaries performing a rotation around their center of mass, the wavelength shift from the projection
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Figure 3.2: Illustrating the Normalization procedure. These plots show three iterations and
the final result for normalizing a TIGRE-spectrum of HD 145675 with added synthetic noise. In
each iteration, the data points shown as blue pluses are fitted to obtain the current best guess of the
continuum (violet dashed line). Afterwards, all points below 2.5σ of the continuum are removed for
the next iteration (red diamonds).

of that movement along the line of sight will differ in time. However, no matter the cause, our
algorithm must be expected to handle these cases and to perform its own wavelength correction
to shift comparison and considered spectrum on top of each other. This step is performed using
cross correlation. For this to work correctly using the standard procedure of calculating the cross
correlation with a Fast Fourier Transform (FFT), however, both spectra need to be sampled on an
equidistant wavelength scale. The comparison spectrum is always resampled to such a scale, as this
requirement is needed for the instrumental and rotational broadening (as those make use of a FFT as
well). The spectrum under consideration is temporarily resampled to the comparison’s wavelength
scale. Afterwards, the cross correlation is calculated. This cross-correlation will appear to be a
smooth function, however, its true maximum may not have been sampled. We fit a parabola to the
five points surrounding the maximum, and use the analytical maximum of that fit as the best-value
for the shift. This approach is more reliable with shifts that are less than the wavelength difference
in the sampling.

3.3.1 Limitations

This method works very well in almost all cases. Only for HD 22468 (HR 1099), a very active star
that shows very strong emission cores, has this method failed. It’s spectra is not “similar enough” to
its comparison spectrum, because of the high emission cores, affecting the shift that was determined.
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Figure 3.3: Fitting the continuum with different polynomials. In this plot, we compare the
fitted continuum for different orders for the polynomial fit. If the order is too large, the fit follows
the spectrum and its noise “too well”, which results in a continuum that appears “too curved”.

This object’s wavelength shift has therefore not been determined automatically, but by hand. Since
no other star has shown problems with the shift, no further efforts to improve on this algorithm has
been performed.

3.4 Adding rotational broadening to the comparison spec-
trum

If a star rotates, spectral lines are broadened. Our procedure compares two spectra with the goal
of obtaining the additional flux from the active chromosphere FExc. We must take care of all other
differences in the spectra, so that the only difference in the two spectra is ideally only the additional
flux FExc. Applying our method, we can obtain not only the integrated flux, but also the function
FExc(λ), which describes how the flux is distributed in the line. One reason why this is interesting is
that it allows a “light” version of Doppler Imaging (See Sect. 11.2.2). Since we artificially broaden
the comparison spectrum to the rotational velocity of the spectrum under consideration, the original
comparison spectrum should be free from any rotational broadening itself.
Figure 3.5 shows how rotational broadening works: As the star rotates, sections of it will move away
from the observer, whereas other sections will move towards them. The light from sections that move
away are redshifted, whereas the contributions of the parts that are moving towards the observer are
blueshifted. The rotation axis of the star does not have to be aligned orthogonal to the line of sight.
The effects of an inclination of this rotation axis means that the broadening observed stems from only
the projected rotational velocity v sin i, which is always smaller than the real rotational velocity of
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Figure 3.4: Normalizing the Ca II H- & K-lines by finding the continuum only in partic-
ular bands (blue) vs. not limiting the region (red). The top plot shows the found continuum
from using the algorithm without any particularly defined regions (red dashed line), and compares
it to the continuum (blue dashed line) that was found by only taking into account the continuum
bandpasses defined in the SMWO-definition, shown as blue, horizontal lines. The blue dashed line
describes the continuum better. The result of normalizing the Ca II H- & K-lines by the continuum is
shown in the lower plots in the colors corresponding to the continuum used. The difference appears
mostly as an offset, which affects the determined flux.

the star. Numerically, this broadening is handled by folding the non-broadened comparison spectra
with a kernel that describes this broadening. Here, we use the kernel provided by the IDL-function
lsf rotate, which is part of the IDL Astronomer’s Library [Landsman, 1993]. It uses the kernel
as given in Chapter 17 of Gray [2005]. One of the more important parameters affecting rotational
broadening is the limb-darkening coefficient ε. Limb-darkening is an effect by which the limb of a
stellar disk appears darker than the center of it, which we have briefly described in Sect. 2.1.1. How
the brightness varies across the stellar disk is described by limb-darkening laws. The parameter ε
describes limb-darkening for the simplest approximation of linear limb-darkening. ε actually depends
on the atmosphere of the star, and therefore on stellar parameters such as temperature, but varies
also by wavelength. To accurately model this effect, we interpolate ε from the relations given by
Gray [2005]. There, they give ε as a function of B−V and wavelength. The result is that the kernel
used for broadening depends on stellar parameters. This is the reason why our algorithm requires
the user to pass a value for B − V . Figure 3.6 shows how the kernel changes for different B − V .
Since the relation ε(B− V ) is monotonous, we can estimate the error on ε from the error on B− V ,
which is another optional input parameter. For a more detailed review on limb-darkening, we refer
to Müller [2016]. Here, we require the comparison spectrum to not show any strong broadening
effects already. Neglecting this would result in the comparison spectrum to be broadened too much,
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Figure 3.5: Rotational broadening. If a star rotates,
sections of it will appear to move away from the observer
(right), whereas some will move towards them (left). The
result is a broadening of the stellar line, as the parts mov-
ing away from the observer are redshifted, and those mov-
ing towards the observer are blueshifted. This illustration
shows the case of the rotational axis being orthogonal to
the view direction. In any other case, the broadening ef-
fect is lessened, and appears to stem from the projected
rotational velocity v sin i, which is lower than the true ro-
tational velocity. This illustration also simplifies the true
rotational broadening by ignoring any effects from limb-
darkening. Image based on one from Strassmeier [1997].

past the effects the rotational velocity of the star under investigation would yield. This will affect
the obtained excess distribution Fexc(λ), making it appear as if flux from the line core was shifted
towards the wings. This is not a strong limitation in practice, as it has been known that inactive
stars tend to be slow rotators [Andretta et al., 2005].

3.5 Degradation of the comparison spectrum

This procedure works regardless if the comparison spectrum stems from a synthetic model, from
observed inactive stars or any other source. However, if using a model spectrum, or a high resolution
observation, another step is necessary. TIGRE observations have a resolution of roughly 20 000,
though the actual resolution varies (see also Sect. 2.6.2). Therefore, lines in TIGRE spectra are
intrinsically broadened just due to the finite resolution. Model spectra are usually calculated at a
much higher resolution (the ones we are using in Chapter 7 are roughly 500 000). Lines of the model
spectra would therefore appear much deeper and more narrow than those in the TIGRE spectra.
We therefore need to correct this effect. Broadening due to the finite resolution is done via a kernel
that models the instrumental profile, which is a simple Gaussian in our case. The Gaussian’s width
is adjusted to fix the difference of the two resolutions, and is for the kernel centered around λ to
degrade a spectrum to resolution R′ [Czesla et al.]1:

k(∆λ) =
1

λ
R′

√
π

exp

(
−4

∆λ2(
λ
R′

)2 · log10 2

)
. (3.1)

If the spectrum to be degraded already has finite resolution Rcurrent, R
′ is not the target resolution

Rtarget, but must be adjusted:

R′ = (R−2
target −R−2

current)
−1/2 (3.2)

If Rcurrent � Rtarget, then to good approximation R′ ≈ Rcurrent. However, if the difference is not as
significant, this adjustment becomes very important. This effect is also referred to as instrumental

1https://github.com/sczesla/PyAstronomy

https://github.com/sczesla/PyAstronomy
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Figure 3.6: Change in the rotational broadening kernel for different stellar parameters.
The rotational broadening must take limb-darkening into account, which depends strongly on stellar
parameters. This plot shows how the kernel the spectra is folded with varies depending on a change
in wavelength (left, middle and right plots), or in B − V (colored lines). The resulting value for ε
was interpolated from wavelength and B − V , and is given in the legend as well.

broadening. In order to differentiate it from the effects of rotational broadening, we refer to it as
“degradation”.

3.6 Subtracting spectra and obtaining the excess

At this point, our comparison spectrum is guaranteed to be at the same resolution, broadened to the
same rotational velocity, and normalized like the spectrum under consideration. If the comparison
spectrum was aptly chosen, the only significant difference left is the chromospheric activity contri-
bution. We can now subtract the comparison spectrum from the spectrum under consideration to
obtain this contribution. We refer to the thus obtained residuals as excess. Slight differences in
stellar parameters in the two stars we are comparing will introduce a slight offset between the two
spectra. The same is true for a normalization that has been performed incorrectly, likely due to
large errors on the two spectra. To fix these errors, we can make use of the fact that the flux from
the active chromosphere is expected to be in the line core [Busà et al., 2007] and shift the line wings
on top of each other. As formally, both incorrect stellar parameters and an erroneous normalization
would not necessarily create a constant offset across the entire spectral region considered, we perform
a linear fit on the excess distribution. For this fit, we ignore points near the line center. Subtracting
this linear trend corrects this problem.
We denote the flux that we are left with the excess flux FExc. For the more active stars, FExc(λ) is

clearly well-defined and often appears close to Gaussian in shape. See Fig. 3.7 for examples. The re-
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Figure 3.7: Determined excess flux for a TIGRE spectrum of HD 152391. For four
chromospherically active lines, the excess flux was determined according to the method described in
this chapter: Top row: Ca II H- & K-lines, Bottom row: Two of the Ca II IRT lines. The remaining
one shows very similar behavior, and was therefore omitted from the plot. The spectrum of the
active star HD 152391 (top panel, black) was compared to the inactive object HD 117176 (top panel,
gray). The resulting excess distributions are shown in the bottom panels. The dotted vertical lines
correspond to 2 Å in the Ca II H- & K-lines plots or 1 Å in the others, which correspond to the region
the excess was determined during this procedure. Only for very active stars like this one this does
not entail the entire excess flux for some lines (bottom row), see Chapter 4 for details. It can be
seen that the excess is well determined for most lines.

lation to estimate the continuum flux from Hall [1996], or the flux-calibrated comparison spectrum’s
continuum provides the physical unit scale that we need to convert this value to erg s−1 cm−2 Å−1(or
erg s−1 cm−2 if using the integrated excess). Note that for the Hα-line, the determined excess flux
differs strongly in shape, with a much wider, and less defined shape, as Fig. 3.8 shows. When
comparing a TIGRE spectrum to a model spectrum, we perform an automatic determination of the
region to integrate the excess flux in. However, if the comparison spectrum is a TIGRE spectrum
as well, the resulting excess flux often becomes too noisy, so that this determination could not be
done reliably. We therefore chose to use a fixed width for the integration intervals, using 2 Å for
Ca II H- & K-lines and 1 Å for all others. The automatic determination assumes a well-defined excess
distribution, and then looks for a minimum in the distribution, which corresponds to the point where
the small remaining signal becomes lost in the noise2.

The excess FExc(λ) can either be integrated over λ to obtain the total flux from the active
chromosphere in that particular line, or it can be fitted, for example by a Gaussian. Fitting a profile

2In the unlikely case that not at least two such minima are found, then the points of 50 % line depth are chosen as
the limits for the bandpass. In case of several minima, the minima closest to the center maximum, but at least four
data points away are picked.
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Figure 3.8: Excess determination for the
Hα-line. This plot shows the excess flux deter-
mination for the same spectrum as in Fig. 3.7.
See caption of Fig. 3.7 for a description of what
the various lines represent. It can be seen that
the shape of the excess determined here differs
from the more Gaussian-like shape of the excess
fluxes determined in Fig. 3.7. The wider shape
places more of the excess flux outside the marked
1Å-wide region.

to it has the additional advantage that more information regarding the distribution is retained: the
width σ, amplitude Af and position ∆λ could be used for more detailed studies (e.g. those we
outline in Sect. 11.2.2).
We set some limits on the fitted parameters. For example, the amplitude of the fit must be positive,
and may not exceed the maximum value of the excess. Tests have shown that single strong noise
structures could dominate this fit. In order to fix this, we optionally allow to fit a smoothed version
of the excess. More accurately, the excess is then first broadened by a Gaussian kernel using the
IDL-routine GAUSS SMOOTH.
Naturally, the flux may be estimated from the Gaussian fit as FGaussian = Afσ

√
2π. Assuming that

the excess profile is indeed Gaussian, this value includes the entire flux in the excess, instead of just
the small bandpass used for integrating. For stars with low activity, the amount of flux outside the
bandpass is negligible, but for the most active stars in the sample, this amounts to at most 10 % of
flux lost (see e.g. Sect. 4.8). In these cases, it may be argued that the approach via the fit is better
than the direct integration, as it is less affected by noise. Since outside the bandpass, the leftover
excess is naturally small (due to the exponential drop-off in the wings), that region is dominated
by residual noise (Fig. 3.7). Integrating that region adds more noise than signal to the obtained
value. When fitting the Gaussian, only the center region is taken into account, where the signal
clearly dominates the noise. The parameters can be reliably determined there, and the behavior in
the wings is then defined by the profile function assumed (the Gaussian we are fitting here) for the
excess core emission, and the flux contribution from outside the bandpass can safely be estimated
this way. The values of the flux estimated from the Gaussian are very similar to those determined
from direct integration. As the parameters for the fit are limited to physical values, clearly wrong
results, such as a negative amplitude, can never be obtained. This makes the fluxes derived from the
fitted Gaussian more desirable than the directly integrated ones for the basal flux determination,
which might be very sensitive to the smallest fluxes, see Chapter 9.
We often present the obtained parameters of a group of lines, e.g. the excess flux in the Ca II H-
& K-lines. In these cases, the estimated flux and amplitude A have been determined individually for
each line, and subsequently added together, with their errors handled according to Gaussian error
propagation:

Af,HK = Af,H +Af,K, (3.3)

and similar equations for the Ca II IRT-lines, or the determined flux as parameter.

3.7 Monte-Carlo iterations

We want to know a reliable error for the excess flux FExc. To recapitulate, we have used two spectra
with known errors, the value used for R′ (Eq. (3.2)), which has an error attached to it (we do not
know the exact resolution of the spectra to full accuracy), as well as v sin i with some degree of
uncertainty. The latter is often quoted with no error given in the literature, so we often need to



31 CHAPTER 3. MEASURING CHROMOSPHERIC EXCESS

Figure 3.9: Obtaining the error from the distribution of obtained parameters. This plot
shows the distribution of the position (left) and width (right) from fitting a Gaussian to the excess
obtained for the case of the second Ca II IRT line of one observation of HD 152391, which is shown
in Fig. 3.7 (bottom left). The distributions appear to be Gaussian. The dashed line corresponds to
the best obtained value, with the dotted lines marking the region encompassing 68 % of all points,
which marks the 1σ-region.

assume an error (we have used 10 % in these cases). All these uncertainties are taken into account,
as well as subsequent ones from the following steps. For example, after normalizing the spectrum,
the error on this normalized spectrum is increased, as the normalization can not be done perfectly.
The errors on R′ and v sin i are not handled in an analytical approach, because their errors would
be strongly correlated. We use a Monte-Carlo approach to still get a reliable estimate: For a
number of iterations N the user may chose (we use N = 150), the degradation and rotational
broadening-step is performed with a randomly chosen value for R′ and v sin i, chosen from within
their errors. After each step j, the spectra are subtracted from each other and the excess parameters
are obtained. From the errors on the spectra, which we handle by Gaussian error propagation, we
find a Gaussian distribution at each step for all parameters FExc,j , Af,j , .... We then add a number
m (we use m = 250) of values for each parameter following that distribution to a list. Therefore,
we end up with N · m values in that list for each parameter determined. The distribution these
parameters make up allows us to estimate the error. This is done by finding the range covering
68% of all determined points, from which we subsequently estimate a 1σ-error. In most cases, this
is indeed valid, because the distribution obtained is Gaussian in shape. Figure 3.9 shows examples
for the obtained distributions. However, for some parameters – most notably the fitted width – the
obtained distributions are not always Gaussian, which usually indicate unusual behavior. Figure
3.10 shows an example. As the excess is not of Gaussian shape (Fig. 3.8, bottom panel), the
Gaussian fit performed resulted in a poor match. For some choices of v sin i and R′ that were
sampled during the Monte-Carlo iterations, the excess distribution subsequently differed so strongly
from the Gaussian shape that extreme values for the width were necessary. This is mirrored in the
histograms (Figure 3.10). Finally, since we limit the range of possible values, for some very noisy
spectra, the resulting histograms of fitted parameters are Gaussians with the wings cut at the limits
for the fitted parameters. This resulting structure is not a Gaussian either, and while the returned
σ may be correct in the sense of 68 % of values falling in that range (depending on where that cutoff
happened), a smaller value ∆x < 2σ may then be required to find 95 % of all values to fall in that
range (or a smaller value ∆x < 3σ for 98 % of all values, and so on). Therefore, the error given
could be interpreted as overestimated, however, it still gives a valid estimation of the quality of the
obtained value.

This procedure, and this routine, as outlined in this chapter, forms the basis for the following
chapters. All measured parameters have been obtained using this procedure. It has been tested



3.7. MONTE-CARLO ITERATIONS 32

Figure 3.10: Non-Gaussian distribution of
fitted parameter values. Same as Fig. 3.9, but
for the excess determined in the Hα-line, shown in
Fig. 3.8. The distribution is clearly not Gaussian,
which mirrors the fact that the determined excess
also did not appear to be Gaussian in shape. A
Gaussian was therefore a poor choice for fitting.

extensively, and provides a variety of optional input and keywords to be adaptable for different
circumstances and available input. More information regarding the IDL implementation can be
found in the Appendix (Sect. A.1).



Chapter 4

Comparing Active Stars to
Inactive Stars

With the method described in Chapter 3, we are now ready to determine the excess flux FExc, and
to analyze its suitability as an activity indicator across various spectral types. In this chapter, we
compare 2274 spectra of 82 F, G and K main-sequence stars to a spectrum of one of 28 inactive
stars. All these spectra have been observed by TIGRE (see Sect. 2.5), therefore, no systematic errors
from the use of spectra observed by different instruments are added. We describe the approach of
determining which object to compare to and how the flux is determined. We then give relations for
the flux in the Ca II IRT lines for the inactive stars, which allows to easily calculate the integrated
excess flux FExc for future spectra, without using the method described in Chapter 3. We then
analyze the resulting correlations of the excess fluxes in the different lines. Finally, we briefly
analyze the parameters of the Gaussians fitted to the excess flux distributions.
A large part of this chapter has previously been published in Martin et al. [2017].

4.1 Rationale

The flux in the center of the spectral lines we are analyzing in this work is composed of several
components. For an active star, the flux in the center consists of a photospheric and a chromospheric
component. However, the latter is made up of two more components, so that we find for the total
observed flux, analogous to the flux in the definition of R+

HK (Eq. (2.6)):

F = Fphot + Fchrom,basal + Fchrom,act, (4.1)

where Fphot is defined by the stellar parameters and could for example be obtained from analyzing
models, and Fchrom,act is the flux in which we are mostly interested in, as it directly relates to stellar
activity. When comparing this measured flux to a hypothetical flux that is made up of only the
photospheric and basal contribution, the difference will be exactly the flux Fchrom,act. Such spectra
are provided in the form of very inactive stars to good approximation, as the level of Fchrom,act they
show is negligible.

4.2 Stellar parameters of stars observed by TIGRE

As outlined above, we require knowledge of certain stellar parameters of the stars we are analyzing
and of the comparison stars. The values for these parameters were mostly taken from the PASTEL
catalog [Soubiran et al., 2010], which includes the majority of our stars in their catalog. Missing
values were adopted from other sources. Tables B.1 and Table B.2 in the Appendix show the
parameters we have used, as well as the corresponding sources. They are already separated into two
groups, called “active stars” and “comparison stars”, according to the threshold defined in the next
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section. In this work, we do not differentiate between [M/H] and [Fe/H], as those values differ less
than the typical error for the main sequence stars under consideration.
Performing the comparison with a poor choice of comparison star will yield incorrect excess flux
results. Incorrect stellar parameters could result in such a poor choice. For this reason, we estimate
the error from incorrect stellar parameters. It has been found before that for the Ca II IRT-lines,
the most significant parameters are Teff and [M/H][Andretta et al., 2005]. This mirrors the results
of our own test, which we present in a later chapter (Chapter 5, Sec. 5.3.1). In Soubiran et al.
[2010], the authors give typical discrepancies of catalog values for stars featuring more than one
literature value as 1.3% and 0.08 dex, respectively. Using PHOENIX models (see Chapter 5), we can
estimate the error in the flux from this discrepancy. Comparing these models shows that a ≈ 2 %
difference in Teff can be neglected. Furthermore, if we incorrectly use a metallicity that deviates by
0.25 dex from the real value, we can evaluate the resulting error in the flux. To do so, we compare
the integrated flux from a PHOENIX model with Teff = 5700 K, log g = 4.40 and [M/H] = 0.0
to one with [M/H] = 0.25 (and the same value for the other parameters). The difference in the
integrated flux is less than 3 %. We therefore conclude that incorrect stellar parameters from the
catalog do not strongly affect our results. Additionally, those errors would be statistically distributed
around the real values, increasing the scatter, and decreasing the correlation, but not significantly
our conclusions.
With this set of stellar parameters, we can pick from the available TIGRE observations those stars
that are F, G or K main-sequence stars. As already mentioned, TIGRE spectra are not flux-
calibrated. To obtain an excess flux in erg s−1 cm−2, we must find the correct scale of the continuum
level. In this chapter, we use the relation of Hall [1996], where the authors give photospheric surface
flux values at the position of a number of spectral lines, for different sets of B − V . We interpolate
these relations in B − V for each star to find the right value.

4.3 Defining the “inactive” state

First, we need to divide the stars with spectra available into two groups: those stars that are “active”
and those that are “inactive”. In reality, this is not a binary switch, but rather there is a continuous
level of activity, which forces us to set a threshold value, as described below. After performing
this division, every spectrum of all active stars is then compared to a spectrum of an inactive star.
Additionally, that comparison star must feature low rotational broadening in order to get a reliable
distribution of the excess. Here, we set somewhat arbitrarily the limit at v sin i ≤ 5 km s−1. We can
estimate the corresponding broadening to be

∆λ

λ
=

∆v

c
⇒ ∆λ ≈ 0.14 Å (4.2)

for ∆v = 5 km s−1. Comparing this to ∆λ from the finite resolution of TIGRE spectra, which is
around 0.425 Å at the position of the Ca II IRT-lines, it becomes clear that those stars rotate slowly
enough to not influence our determined excess fluxes.
Several indices exist that give an estimate of the activity level, such as SMWO or R′HK, which have
been defined in Sec. 2.2. Of these two, SMWO is much easier to calculate, and we have performed
this calculation for every spectrum. The easiest option is therefore to define a threshold value for
SMWO to separate our sample into “active” and “inactive”. We need to find a sensible threshold
value which is high enough so that a sufficient number of stars are available for comparison, but
low enough for those to not show any significant levels of activity. Our first test used a threshold
value of SMWO = 0.17, which is roughly the activity level of the Sun. But this turned out to include
too few comparison objects, so that we slightly increased it to SMWO = 0.18. This allowed us to
perform the comparison and determination of FExc. However, SMWO shows a strong dependence on
B − V or equivalently Teff (as we will later see in Fig. 8.9). This is not the case for R′HK, as this
index aims to remove the photospheric contributions in the Ca II H- & K-lines, and subsequently
normalizes the flux by σT 4

eff . As we have mentioned before, this index can be estimated from a
measured value of SMWO, and the star’s B − V -value. Henry et al. [1996] defined a threshold of
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Table 4.1: Overview of the data used in this chapter, categorized by spectral type. This
table was originally published in Martin et al. [2017].

Type # # SNR Exp. time [s]
Obj. Obs. min/med/max min/med/max

F 9 265 36.1 / 60.7 / 161.3 120 / 360 / 2578
G 46 1419 20.1 / 59.2 / 114.0 60 / 622 / 4767
K 27 590 20.4 / 64.3 / 114.8 60 / 799 / 4846

Total 82 2274 20.1 / 60.4 / 161.3 60 / 610 / 4846

“active” and “inactive” from this index at logR′HK ≥ −4.75. The switch to this index increases the
amount of available comparison objects, especially at higher values for B − V , which improves the
comparison and determined excess for the later types. The results for found correlations, as well
as conversion relations which we attempt to find in a later chapter, do not depend strongly on this
criterion.

4.4 Finding a comparison star

When comparing spectra of active stars to the corresponding spectrum of an inactive one, we must
ensure that the comparison star features values for Fphot and Fchrom,basal that coincide as close as
possible with the active star under consideration. As these fluxes depend on the stellar parameters,
we therefore must pick the comparison star with the least deviation in stellar parameters and there-
fore the line profile. As we have mentioned before, the main influences on the line profile for the
Ca II IRT are Teff and [M/H], with no large dependence on log g. Since the comparison stars will
also determine the flux scale in our method, which depends mainly on Teff , we give that value the
highest priority, followed by [M/H]. Here we mention again the condition of v sin i ≤ 5 km s−1, which
ensures that the comparison spectrum is not too strongly broadened in the comparison process (see
Sect. 3.4). We have tried several different sets of weights for these parameters, and have finally
used the values given below. Using different weights here – as long as the change is not dramatic1

– does not affect the results much. For each inactive star, a score p is calculated by multiplying the
absolute deviation in stellar parameters ∆(B − V ), ∆[M/H], ∆ log g, defining the strength of their
influence by setting a power to those parameters. We also add the typical error on these parameters
as a minimum value:

p = (0.05 + ∆(B − V ))
2.25

(R′HK) (0.1 + ∆ [M/H]) (4.3)

· (0.2 + ∆ log g)
0.25

(1 + (v sin i)inactive)
0.2
.

We have also tried adding parameters to this score calculation, such as the amount of observations,
following the rationale that a low number of spectra increases the chance for faulty spectra, bad
SNR or cosmics. However, in practice this did not improve the results, as there are stars available
with few observations that show a very high quality in the spectrum. The low influence of v sin i
ensures that this parameter works as “tie-breaker” only, and does not dominate the picking process.
The star that features the lowest value for p is then chosen as comparison star.
After this star has been picked, the best spectrum of that star – defined as the spectrum with the
highest SNR and R′HK below the threshold – is used as comparison spectrum for all spectra of the
star under consideration, after correction of telluric line contamination (Sect. 2.7). Table B.3 in the
appendix shows which star was compared to which object. In this way, we obtain a value FExc for
the Ca II IRT-lines, Ca II H- & K-lines and the Hα-line, for every observation with SNR≥ 20, for a
total of 2274 observations of 82 stars. Table 4.1 gives an overview of the distribution of the objects,
and their exposure time.

1e.g. changing the sign of a weight, or increasing it by orders of magnitude.
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Figure 4.1: Comparison of the ex-
cess flux determined from sub-
tracting the resulting value from
a fitting relation from Table 4.2
to the measured line flux (ordi-
nate) to the excess flux in con-
tinuum units determined by using
the method described in Chapter
3 (abscissa). Plotted here are the re-
sults for the 42 most active stars with
observations displaying a level of activ-
ity exceeding logR′HK = −4.52. The
dashed line corresponds to the identity
relation. This plot originally appeared
in Martin et al. [2017].

4.5 Empirical relations for fluxes of stars in inactive state

Instead of performing the steps outlined in Chapter 3, the excess flux can in theory be more easily
determined by finding the difference of the integrated flux in the line center for both the active and
inactive star spectra. Our set of inactive comparison stars can be used for such an analysis. To
do so, we find an empirical relation Fcenter(v sin i), describing the flux in the line center for this
inactive comparison star, that was artificially rotationally broadened with a value of v sin i. Here,
we exemplary perform this and show the results for the sum of the flux in the three Ca II IRT-lines.
In the appendix, we show the corresponding results for the Hα-line and the Ca II H- & K-lines.
We define the line center as the 1 Å-wide region in the line center (2 Å for Ca II H- & K-lines, see
appendix). Then, for each of our comparison spectra, we perform the normalization according to
Sect. 3.2, convert the scale to erg s−1 cm−2, using the relation from Hall [1996] and integrate the
resulting flux in the line center, after performing the rotational broadening according to Sect. 3.4 for
a variety of selected values of v sin i. We use 0 km s−1(no broadening), 5km s−1, 15 km s−1, 20 km s−1,
30 km s−1, 40 km s−1and 50 km s−1. This leaves us with seven values of Finact,center(v sin i) for this
particular inactive star. For each of those, we then fit a second-order polynomial to these values,
which describes the shape of the function well.
Busà et al. [2007] introduced a new activity indicator ∆WIRT, which is similar to our excess flux,
except that it has not been converted to erg s−1 cm−2, using the continuum flux scale. Therefore
this index is given in units of Å. In order to convert to this index, we perform these steps also with
the normalized spectrum without converting to the erg s−1 cm−2 Å−1 scale. The results are given
in Table 4.2. Using these relations, a value for the excess flux FExc in the spectrum of a star can
now be obtained by integrating the flux in that spectrum to estimate Fact,center, and subtracting
the calculated value Finact,center. This value can be found from the relation given for a suitable
comparison star in Table 4.2, by plugging in the star’s rotational velocity. The resulting flux is the
excess flux FExc. If the active star’s spectrum was normalized, the relation for ∆WIRT must be
used, to obtain a value ∆WIRT. It can then, afterwards, be converted to FExc using the relations
given in Hall [1996]. Finding the excess flux using this intermediate step of first finding ∆WIRT is
preferable, as both stars likely feature slightly different values of B − V , which is reflected in their
scale for the flux. We can compare the results obtained from this approach to the integrated excess
flux, as determined by the method described in Chapter 3. The results from this comparison are
shown in Fig. 4.1, for the 42 most active stars with R′HK ≥ 3 · 10−5. The results agree clearly, but
there is an offset of about ≈ 20 mÅ, as determined by the median of the offset. This corresponds
to an error of about 5 %. It should be noted however that the real measured quantity is not the
difference in ∆WIRT, but rather the integrated counts in the normalized spectrum, which is of the
order of ≈ 1.5 Å. The 20 mÅ therefore correspond to a relative measurement error of only about
1.3 %. The calculated value of ∆WIRT can be improved by subtracting the aforementioned 20 mÅ.
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Table 4.2: Relations to estimate the summed up flux in an 1 Å-window in the center of
all three Ca II IRT lines for inactive objects. vrot must be entered in units of km s−1. Values
for B−V , log g and [Fe/H] are taken from Soubiran et al. [2010]. This table was originally published
in Martin et al. [2017].
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It follows that this method of finding a value of FExc or ∆WIRT is a possible alternative to the more
complicated and reliable approach chosen here.
Since our criteria for the selection of the comparison star are mainly based on B−V and [M/H], we
can include those two parameters into a fit. A three-dimensional, second-order polynomial describing
the flux in the Ca II IRT-lines in the inactive state now has the form:

Finact(B − V, [M/H], v sin i) = a000 + a100(B − V ) + a010[M/H] + (4.4)

a001v sin i+

a200(B − V )2 + a020[M/H]2 + a002v sin i2 +

a110(B − V )[M/H] + a101(B − V )v sin i+

a011[M/H]v sin i,

with ten coefficients aijk. Fitting all the values of Finact we have measured at once using MPFit
[Markwardt, 2009] yields:

Finact(B − V, [M/H], v sin i) = 14.983− (4.5)

21.253(B − V )− 2.237[M/H] +

0.061v sin i+ 9.746(B − V )2 −
0.841[M/H]2 + 4.08 · 10−5v sin i2 +

1.379(B − V )[M/H]− 0.065(B − V )v sin i+

3.43 · 10−3[M/H]v sin i,

with the resulting Finact in 106erg s−1 cm−2. The values for v sin i must be entered in km s−1.
Performing such a fit, but neglecting the conversion to erg s−1 cm−2 Å−1 via the continuum relations
yields:

Winact,IRT(B − V, [M/H], v sin i) = 1.248 + (4.6)

0.046(B − V )− 0.417[M/H] +

5.02 · 10−3v sin i− 0.084(B − V )2 −
0.197[M/H]2 + 9.249 · 10−5v sin i2 +

0.158(B − V )[M/H]− 0.001(B − V )v sin i+

7.44 · 10−4[M/H]v sin i,

with the result in Å. Similar relations for the Ca II H- & K-lines and the Hα-line are given in the
appendix.
Equations (4.6) and (4.7) fit the measured values of Finact very well. Especially if no single star in
Table 4.2 is a particular good fit, these relations are a good choice to calculate the necessary inactive
line flux to compare to.

4.6 Outliers and objects not suitable for our method

Not all stars that have observations available can be used for our method. A number of observations
had to be removed because either the automatic approach described in Chapter 3 failed, due to
an error in the stellar parameters, or because of an incorrect assumption. For example, we had to
remove observations from HD 114378, as this object has been found to be a binary star [Malkov
et al., 2012]. Although it is in principle possible to perform this method for a binary star2, we have
not done this here. We have therefore removed binary stars from the sample, except those for which

2To do so, we must compare the binary star’s spectra to a binary, inactive template, which has been created
specifically for the binary star at the observation time. Due to the orbit of the two stars, the shifts in the two
component’s individual spectral contributions depend on time, strongly affecting the spectrum. We will go into detail
on how this can be achieved and show examples in Chapter 11 (Sect. 11.2.1).
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the effects from the secondary star are not significantly affecting the spectrum. Such a spectrum
without the contribution of a secondary component would only show a time-dependent wavelength
shift, which is automatically corrected by the algorithm via cross-correlation, as described previously
in Chapter 3, Sect. 3.3.
The determined excess fluxes from HD 6920 do not follow the correlations between the excess fluxes
clearly outlined by the rest of the sample (see e.g. Fig. 4.5). A possible reason for this is that our
assumption of this object as a main-sequence F8 star is incorrect. Several authors have classified
this star as a subgiant [Abt, 1986, Fuhrmann, 1998, Gray et al., 2001, Anderson and Francis, 2012].
Here, again, we would require a different template star to compare the spectra to. Our result of
this star not following expected main-sequence star behavior strongly suggests that the subgiant-
classification is correct. This star has been removed from the sample as well.
Visual inspection of the spectra of other stars, that do not fall in line with the correlation shown by
the large majority of the sample, shows that the SNR in the line center is simply too low. As we have
described in Sect. 2.6.3, the SNR given can be an inaccurate description of the spectrum’s quality
in the region we are interested in. This is especially troublesome if combined with a large rotational
velocity, as this smears out the already small excess flux over a large amount of highly noisy data
points. At this point, no reliable determination of the excess flux distribution can be performed.
There is no general, physical reason for these stars that suggests that their excess flux could not be
determined from this method, but spectra with higher SNR are required. For this work, we remove
these stars from the sample.

4.7 Resulting excess fluxes and their correlations

We have now obtained integrated excess fluxes from 2274 spectra of 82 stars. Notably, in some cases,
the determined excess flux is negative, of which we show an example in Fig. 4.2. This happens only
for the least active stars included in the sample, that barely pass the “active” threshold. In those
cases, the actual excess can be so low that due to noise, a negative value is obtained. Additionally, this
large noise level also affects the normalization, the normalization correction, and the photospheric
correction described in Chapter 3. Obtaining a negative excess is usually only encountered for faster
rotators, as their excess flux is spread out across a larger region. Therefore, some flux is “shifted”
out of the bandpass we use for integrating. However, most stars that are fast rotators are somewhat
active, so this occurs only for very few stars.
The excess distribution of some of the most active stars is not entirely covered by the 1 Å-wide window
chosen for the Ca II IRT-lines, e.g. for HD 152391. This unfortunately leads to an underestimation
of the value, though only by a few percent, comparable to the errors on these spectra. In this
chapter, we have chosen not to automatically determine the integration region the excess falls in,
instead choosing a constant value. We have done so as tests have shown that due to the high noise
level on some of the spectra, and a subsequent noisy excess, a poor region was chosen in those cases.
Similarly, picking a larger region to integrate in increases the noise on the total sample, as for the
majority of objects, only noise is left outside the line center after subtraction of the comparison
spectrum.

As a first step, we compare the Ca II IRT-lines and the Hα-line to the Ca II H- & K-lines. The
latter have been well-established as an activity indicator, so a good correlation between the excess
fluxes suggests that the line compared to the Ca II H- & K-lines is a good activity indicator as well.
We show the Spearman correlation coefficient ρ here, rather than the Pearson-correlation coefficient
ρPearson

3. ρPearson of two sets x and y is calculated as the covariance of x and y, divided by the
product of their standard deviation [Pearson, 1895]:

ρPearson(x, y) =
1
n

∑
(xi − x̄)(yi − ȳ)

σxσy
. (4.7)

3In some sources, the Pearson-correlation coefficient is given as p or r.
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Figure 4.2: Example of a negative excess flux obtained for Ca II H (left) and one of
the Ca II IRT-lines (right). This plot shows the obtained excess distribution for HD 32147, as
it was observed by TIGRE on February 20th, 2016. The top plot shows the observed spectrum
(black) compared to the template spectrum (gray), that was broadened to the rotational velocity of
HD 32147. The dotted vertical lines in the bottom plot show the bandpass used for integrating, the
gray line shows the best fit to the excess, which is also not reliable in this case.

The covariance (nominator) becomes large if large deviation from the average values occur for x and
y simultaneously (for the same value of i), and the sign of this deviation matches. If the direction
of the deviations is always inverted, the absolute value of ρPearson will be large, but the sign will
be negative. By nature of how ρPearson is defined, it estimates how well two parameters are linearly
correlated. Consider the example of y = x3, with x ∈ [−1, 1]. Then, x̄ = ȳ = 0, and data points with
x close to 0 will deviate less strongly from the average than those with |x| ≈ 1, contributing less to
the covariance (the nominator in Eq. (4.7)). As these deviations are normalized by the standard
deviation, the overall value for ρPearson is then lowered. In our example, ρPearson ≈ 0.9, even though
the values are perfectly correlated in the sense that a higher value of x implies a higher value of
y! However, we are interested whether or not two parameters are well correlated, regardless of the
underlying functional relation between the two. That is, we want to know if the two parameters
have a monotonic relation or not. This is why we use the Spearman correlation coefficient ρ. When
calculating ρ, the data points are first reordered into a new set xR and yR according to their rank in
both dimensions x and y (here, x and y represent the integrated excess flux in a certain line). The
rank is the index the data point would occupy in an ordered list. Then, ρ(x, y) = ρPearson(xR, yR).
Due to the reordering, the actual appearance of the relation between x and y is disregarded, and
any monotonic relation shows a linear relation in the ranks. To determine an error on the value of ρ,
we perform 10 000 Monte-Carlo iterations, vary the obtained excess flux values within their errors,
obtain the value for ρ for this iteration, and then determine ρ and σρ from the resulting distribution,
just like we have described for the error determination of the fitted parameters in Sect. 3.7.
We show the correlations between all individual lines, as well as the sum of the Ca II IRT-lines
and Ca II H- & K-lines in Table 4.3. Generally, the correlations are very high, with the calcium
lines showing values of ρ ≥ 0.9, and the other lines close behind. Our results therefore support the
conclusion that these lines can be used as activity indicators, at least for F, G and K main-sequence
stars. We will see in a later chapter (Chapter 10) that the lines are however not always perfectly
correlated, due to differences in the location or process of the chromospheric excess formation. Still,
it is apparent that either line can be used to estimate the flux in another. Relations to do so will be
given in a later chapter (Chapter 8).
As mentioned earlier, the correlation between the calcium lines is very high. This is expected, and

mirrors results of previous studies (e.g. Andretta et al. [2005], Chmielewski [2000], Mart́ınez-Arnáiz
et al. [2011a]). The largest correlation is found, as expected, between the two Ca II H- & K-lines (Fig.
4.3). Since they show a strong excess that is much larger than the noise level even at comparatively
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Table 4.3: Correlation between the integrated excess flux of different lines. This table
shows the result from obtaining the excess flux by comparing spectra of active stars to spectra of
inactive stars. “Sum” refers to the summed up flux in either both Ca II H- & K-lines, or in all three
Ca II IRT-lines.

— Ca II H & K — — Ca II IRT —

λ3968 λ3934 Sum λ8498 λ8542 λ8662 Sum Hα

C
a

II
H

&
K λ3968 — 0.95 0.98 0.90 0.90 0.88 0.90 0.83

λ3934 0.95 — 0.99 0.90 0.91 0.89 0.91 0.81
Sum 0.98 0.99 — 0.90 0.91 0.89 0.91 0.82

C
a

II
IR

T

λ8498 0.90 0.90 0.90 — 0.97 0.96 0.99 0.86
λ8542 0.90 0.91 0.91 0.97 — 0.97 0.99 0.84
λ8662 0.88 0.89 0.89 0.96 0.97 — 0.98 0.85
Sum 0.90 0.91 0.91 0.99 0.99 0.98 — 0.85

Hα 0.83 0.81 0.82 0.86 0.84 0.85 0.85 —

Figure 4.3: Correlation
of the determined excess
flux in the Ca II H and
Ca II K-lines. This plot in-
cludes data from 2274 obser-
vations of 82 stars.

small activity levels, they manage to beat the still very strong correlation of the Ca II IRT-lines (Fig.
4.4. More interesting is the strong correlation between the two sets of calcium lines, as evidenced in
Fig. 4.5. The combined fluxes from the Ca II IRT-lines and Ca II H- & K-lines show a very strong
correlation of 0.91. Therefore, the Ca II IRT-lines should prove to be an excellent indicator for
stellar activity. The Hα-line is also well correlated, but with a lower value of ρ ≈ 0.8 (Fig. 4.6). The
relation between the Hα-line and the other lines appears to be slightly “curved”. However, the noise
level of the obtained excess flux is too large to conclude this, as the few data points at the highest
levels of activity, which influence the visual appearance of whether or not the structure is curved
the most, are not reliable enough. This might only appear by chance from the large band due to
the scattering from statistical distribution of the noise. We also note that we have found almost no
variation in the excess flux in the Hα-line for some stars. The likely reasons are the aforementioned
difficulties in obtaining the excess flux in this line.

Until now, we have always presented the integrated excess flux in erg s−1 cm−2. But as we have
mentioned, Busà et al. [2007] have introduced a parameter ∆WIRT that is calculated similarly. They
give values of ∆WIRT for two stars that are featured in our sample: HD 25998 and HD 82443. For
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Figure 4.4: Correlation between the excess fluxes in the individual Ca II IRT-lines,
obtained by comparing to inactive template star spectra. The correlation coefficients are
given in the plots.

both of these objects, and all three Ca II IRT-lines, the values of ∆WIRT they give are larger than
ours, however, they all agree within 1σ. The difference is likely due to the fact that Busà et al.
[2007] compare with models – thus, the remainder ∆WIRT still includes a basal flux contribution.
Additionally, we only integrate within a 1 Å-wide bandpass, whereas Busà et al. [2007] do not give
details on their integration range. Details are given in Table 4.4.

Table 4.4: Comparison of the range of our obtained values for ∆WIRT as defined by Busà
et al. [2007] to their values.

∆WIRT in Å
λ8498 λ8542 λ8662

HD 25998
Busà et al. [2007] 104.6± 18.3 133.0± 22.6 111.9± 25.2

Range found in this work
39.9± 13.5 — 80.6± 9.2 — 63.2± 10.0 —
105.1± 10.7 142.9± 6.9 109.5± 9.7

HD 82443
Busà et al. [2007] 273.6± 76.1 416.3± 128.1 367.3± 151.7

Range found in this work
193.4± 7.7 — 281.5± 5.8 — 226.1± 5.3 —
241.4± 5.6 342.8± 5.2 273.0± 7.1

4.8 Fitted parameters

As mentioned in Chapter 3, we also fit Gaussians to the obtained excess distribution. We call
the Amplitude of the fit Af , the positional offset from the line center (∆λ)f , and the width σf .
To improve the fit for very noisy spectra, we perform a smoothing operation on the found excess
distribution, using the IDL-procedure GAUSS SMOOTH. This process folds the spectra with a Gaussian
kernel, equivalently smoothing the data by replacing each data point with a weighted average of the
points in the vicinity. The disadvantage is that the resulting structure will be slightly broadened,
and thus less high. We try to minimize these effects by choosing the Gaussian kernel width carefully,
and set it to only about 1.2 data points.
With this correction, the obtained amplitude correlates very well. Here, we show the amplitude in
fraction of the continuum in the left plot of Fig. 4.7 (that is, the amplitude of the excess distribution
obtained from subtracting two normalized spectra), which can be converted to erg s−1 cm−2 Å−1,
e.g. using the relations from Hall [1996] (right plot in Fig. 4.7). Neglecting to perform this step
results in a strong B − V dependency, as the continuum ratio in the red and blue regions of the
Ca II H- & K-lines and Ca II IRT-lines varies.
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Figure 4.5: Measured chromospheric excess flux in the Ca II H- & K-lines compared with
the excess flux in the individual Ca II IRT-lines, as well as the sum of all Ca II IRT-
lines (bottom right). This plot includes data from 2274 observations of 82 stars, and appeared
originally in Martin et al. [2017].

We have also experimented with fitting functions other than Gaussians, namely Lorentzian- or
Moffat-profiles [Moffat, 1969]. However, the results are not any better or worse, likely because the
resolution of TIGRE is simply not high enough to fully resolve these profiles, turning them into
Gaussian profiles. All in all, Af appears to be slightly worse as an activity indicator compared to
the integrated flux, with ρ “only” reaching up to ∼ 0.88. We give the resulting correlations for Af in
Table 4.5. While the correlation becomes slightly worse between the calcium lines, it does increase
between the calcium lines and the Hα-line. The width shows a smaller correlation of about ρ ≈ 0.75,
but there is much stronger scatter involved. This parameter shows a small correlation of ρ ≈ 0.4
to the star’s rotational velocity. This implies that the width fitted here is not only determined by
rotational broadening, but might be affected by the actual formation of the chromospheric excess.
Of course, due to the varying resolution of TIGRE spectra, some scatter is introduced that is not
physical in nature. Therefore, we do not analyze this parameter any further.
The excess fitted position within the line (∆λ)f is another parameter that suffers highly from noise.

However, this parameter shows a positive correlation between the Ca II H- & K-lines and Ca II IRT-
lines for stars rotating faster than 20 km s−1, which may imply where these excess fluxes are formed.
If the values for (∆λ)f , converted to km s−1 were identical, this would strongly suggest that these
excesses were formed in the same region. However, this is not the case, as the value (∆λ)f tends
to be higher for the Ca II IRT-lines. While this could occur due to a constant offset in latitude for
the regions the lines are formed in, a more likely explanation is that this offset is introduced from
a systematic error in the shift of the comparison stars. As the noise level on this parameter and
the amount of stars rotating fast enough for this kind of analysis is rather low, we do not further
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Figure 4.6: Comparison of the measured chromospheric excess flux in the Hα-line to
the chromospheric excess flux of the Ca II H- & K-lines (left) and the Ca II IRT-lines
(right). This plot includes data from 2274 observations of 82 stars.

Figure 4.7: Comparison of the sum of the amplitudes of Gaussians fitted in the
Ca II H- & K-lines (abscissa) and Ca II IRT-lines (ordinate), after conversion to
erg s−1 cm−2 Å−1 (left) and before conversion in continuum units (right). This plot in-
cludes data from 2274 observations of 82 stars. The triangles that appear to not fit the otherwise
linear relation belong to HD 22468.

investigate here, however, we will get back to this parameter in Sect. 11.2.2.
We can also estimate the excess flux from the fitted parameters:

FGauss,Exc = Afσf
√

2π. (4.8)

Due to the limits on the parameters forced during the fit, the resulting flux can never be negative,
or exceed a certain threshold value. While the overall flux distribution is very well behaved, as
shown in the figures, we have measured a negative excess for some low-activity stars (Fig. 4.2). In
these cases, the error on the obtained value is higher than the (absolute value of the) excess flux.
Unfortunately, the noise in the line center was simply too large compared to the very low excess
flux. Since such a value cannot be found from the flux of the fit, it is more useful for these stars.
Generally speaking, however, it makes little difference which value is used, as they show an extremely
strong correlation of ρ ≈ 0.95. We show the correlation for the case of the Ca II H- & K-lines and
the Ca II IRT-lines in Fig. 4.8. For the high-activity stars, the value calculated from the fitted
parameters is somewhat higher than the directly integrated one. This is due to the flux contribution
that falls outside the integrating bandpass. Therefore, this plot also shows that the loss of flux from
the choice in bandpass has been insignificant for all but the highest-activity stars. In case of the
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Table 4.5: Correlation between the amplitude of the Gaussians fitted to the excess flux
of different lines, converted to erg s−1 cm−2 Å−1. This table shows the result from obtaining
the excess flux by comparing spectra of active stars to spectra of inactive stars.

— Ca II H & K — — Ca II IRT —

λ3968 λ3934 Sum λ8498 λ8542 λ8662 Sum Hα

C
a

II
H

&
K λ3968 — 0.96 0.99 0.88 0.89 0.87 0.89 0.87

λ3934 0.96 — 0.99 0.87 0.88 0.86 0.88 0.87
Sum 0.99 0.99 — 0.87 0.88 0.87 0.88 0.87

C
a

II
IR

T

λ8498 0.88 0.87 0.87 — 0.94 0.93 0.98 0.86
λ8542 0.89 0.88 0.88 0.94 — 0.94 0.98 0.88
λ8662 0.87 0.86 0.87 0.93 0.94 — 0.97 0.86
Sum 0.89 0.88 0.88 0.98 0.98 0.97 — 0.88

Hα 0.87 0.87 0.87 0.86 0.88 0.86 0.88 —

Figure 4.8: Comparing the measured excess flux (abscissa) to the one calculated from
the fitted Gaussian parameters (ordinate), for the Ca II H- & K-lines (left) and the
Ca II IRT-lines (right). The dashed line corresponds to the identity.

Ca II H- & K-lines, the wider bandpass chosen weakens this effect, to where it is no longer relevant
compared to the scatter.
Some outliers can also be seen in Fig. 4.8. These correspond to spectra with higher levels of noise.

In these cases, the fitting routine favors large widths and offsets, effectively fitting the far out wings
of the Gaussian, which is the closest match to the erratic noise distribution of the excess. Figure 4.9
shows an example of this behavior. While it would be possible to limit the fit width and position to
stricter limits as we have used, we can also use this behavior to filter out spectra where the noise
fully dominates the determined excess. In further sections where we use this value, we perform this
filtering step.
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Figure 4.9: Problematic excess Gaussian
fit for highly noisy spectra. Top: To obtain
the excess, we compare a spectrum of HD 75732
(black) to a spectrum of its comparison star
(HD 145675) (gray). Bottom: We fit a Gaussian
(gray) to the obtained excess (black) inside the
2 Å-wide bandpass (marked by dashed vertical
lines). Due to the large levels of noise, the result-
ing structure is far from Gaussian in shape. The
fit is therefore dominated by the noise, which in
turn results in a very large area under the fitted
Gaussian.



Chapter 5

Modeling stellar spectra with
PHOENIX

This chapter focuses on a new approach in interpolating and extrapolating synthetic spectra gen-
erated by PHOENIX. This approach has been used to allow reliable interpolation even without
available model spectra sampled in a regular grid. We describe the algorithm, and show examples
that illustrate its performance.

5.1 Introduction and rationale

Previously, we have compared the observed spectra of active stars to those of inactive stars with
similar parameters. Assuming that the inherent differences between the two spectra are mostly
caused by activity, this is a valid approach. However, as both the sample of available, inactive
comparison stars, as well as the knowledge of the stars’ stellar parameters is limited, further errors
are introduced: No two stars show a completely similar spectrum, and if both stars have different
effective temperatures or metallicities, the resulting line profile will differ, which we would previously
mistaken as a contribution to the excess flux. While we estimated this effect to be not significant,
for the stars at the lower end of activity, this difference might reach a similar order than the actual
excess flux from activity.This may also be the reason why we have determined a negative excess
value in some cases.
Another aspect of interest is the chromospheric basal flux [Pérez Mart́ınez et al., 2014a]. Even for
“quiet” stars that show very little signs of activity, there is still some residual level of chromospheric
emission (compare Fig. 2.4). This is called the chromospheric basal flux. The spectrum of an
inactive comparison star will also include this contribution, and therefore the determined excess in
the previous chapter has not included this level. It is of interest though to determine a value for this
residual flux level, and to determine its dependence on stellar parameters such as effective temper-
ature (or B − V ). To find this flux, one needs to know the spectrum of a hypothetical star without
a chromosphere. Stellar models may provide such spectra. Here, we use PHOENIX [Hauschildt
et al., 1999], a modern and reliable stellar atmosphere code1. During the calculation of the stellar
atmosphere, PHOENIX only calculates the photospheric structure, and does not feature the tem-
perature minimum that defines the beginning of the chromosphere. The spectrum derived from the
atmosphere will therefore include no chromospheric contributions. It should be mentioned that it is
possible to include the chromospheric structure into the PHOENIX-calculations [Fuhrmeister et al.,
2005, Aquino, 2016], however, this is not standard behavior.
Hypothetically, using models calculated with exactly the stellar parameters of the star of interest
would be ideal. However, stellar parameters are rarely known with sufficient precision, not to men-
tion that different atmosphere codes would yield differing spectra for the same parameters. Put in

1More information about PHOENIX is available on the official website of the Hamburger Sternwarte: http:

//www.hs.uni-hamburg.de/index.php?option=com_content&view=article&id=14&Itemid=294&lang=en
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other words, if fitting a model to the spectrum to determine e.g. Teff , one would find different values
depending on the atmosphere code used. Since we want to compare our spectra to PHOENIX model
spectra, we must find the correct PHOENIX model for the star.

5.2 Short overview of PHOENIX

To quote the official website, “PHOENIX is a general-purpose state-of-the-art stellar and planetary
atmosphere code”2. We use it to generate spectra of main sequence stars of spectral type F, G
and K, though it can also be used to generate model atmospheres and spectra of giants and even
novae (e.g. Petz et al. [2005]) and supernovae (e.g. Jack et al. [2015a]). Additionally, PHOENIX
can perform the calculations both in one dimension, or use a three-dimensional mode (see for ex-
ample Aquino [2016]). For our purposes, 1D-models are sufficient. Model atmosphere generation
in PHOENIX is started from an input file that defines the type of star that should be calculated.
Here, we pass effective temperature Teff , log g, metallicity and stellar mass (estimated from homol-
ogy relations). Additionally, PHOENIX can use an existing atmosphere model as a starting point
to reach convergence faster (though this is not required, and a gray atmosphere can be used as a
starting point), for which we have used the corresponding one from Husser et al. [2013]. PHOENIX
then calculates hydrostatic, rate and radiative transfer equations in subsequent iterations, until the
model has converged or the maximum amount of iterations has been reached. If this is not the
case, PHOENIX performs a temperature correction [Hauschildt et al., 2003] with the intention of
establishing radiative equilibrium, and proceeds with another iteration. PHOENIX can work un-
der the assumption of local thermodynamic equilibrium (LTE), where every point individually is in
thermodynamic equilibrium (though not the star as a whole), which allows to simplify the calcula-
tion and allows to define a temperature T for each point. Level populations are then given by the
Saha-Boltzmann distribution [Rutten, 2003]:

nc
ni

=
1

ne

2gc
gi

(
2πmekT

h2

)3/2

exp
(
−χci
kT

)
, (5.1)

with nx the number of ions in the ionization level x, ne as electron density, gx the statistical weight
for the level x, me the electron mass, and χci as the ionization energy from level i to level c. The
source function is then a Planck function. The process for the calculation of an LTE atmosphere is
shown in Fig. 5.1.

It is possible to forfeit the assumption of LTE for individual elements. This case is called Non-
LTE (NLTE for short). The population may now differ from Eq. (5.1). To solve this, PHOENIX
calculates the rate equations [Hauschildt and Baron, 1999]:

∑
j<i

nj(Rji + Cji)− ni

∑
j<i

(
nj∗
ni∗

)
(Rij + Cji) +

∑
j>i

(Rij + Cij)


+
∑
j>i

nj

(
ni∗
nj∗

)
(Rji + Cij) = 0 (5.2)

with Rab and Cab as the radiative and collisional transition rate coefficients between the levels a and
b and ni∗ as the LTE population density of level i, which is given by:

nx∗ =
gi
gj
nk

2h3ne

(2πmekT )3/2
exp

(
−Ei − Ek

kT

)
, (5.3)

where nk is the non-LTE, population density of the ground state of the next higher ionization state
of the same element, and Ei is the excitation energy of level i, whereas Ek is the ionization energy
from the ground state to the corresponding ground state of the next higher ionization state (i.e.
the same one nk is referring to). In PHOENIX, these equations are solved by operator splitting
[Hauschildt and Baron, 1999].

2http://www.hs.uni-hamburg.de/index.php?option=com_content&view=article&id=14&Itemid=294&lang=de

http://www.hs.uni-hamburg.de/index.php?option=com_content&view=article&id=14&Itemid=294&lang=de
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Figure 5.1: How PHOENIX cal-
culates an LTE atmosphere. This
flowchart shows the process by which
the stellar atmosphere is modeled and
calculated. “EOS” refers to the Equa-
tion of State, “RTE” stands for the Ra-
diative Transfer Equation, “PP” and
“SS” are short for “plane-parallel”
and “spherical symmetry”, two possi-
ble modes for the assumption of the ge-
ometry to simplify calculations. Some
steps are performed for each wavelength
point, indicated by the “λ loop”. This
figure is originally from Wawrzyn [2009].

5.3 Interpolating on irregular grids

The easiest way to perform an interpolation of model spectra is to calculate models (and the spectra
resulting from them) in a regular grid, covering the entire region of interest in equidistant steps. For
example, Husser et al. [2013] calculated model spectra in a grid ranging from an effective temperature
of 2300 to 7000 K in 100 K-steps, log g of 0.0 to 6.0 with a step size of 0.5, and a value of [M/H]
from -2.0 to 1.0 with a step size of 0.5 (in fact, their grid is extended beyond these ranges, but with
larger step sizes). This approach allows for easy interpolation of a spectrum from the eight model
spectra that form the vertices of the cube around the triplet (Teff , log g, [M/H]) of stellar parameters
for the desired spectrum. The disadvantage of this approach is the large amount of computation
time needed to calculate all models required. With the example values above, almost 3400 model
atmospheres alone need to be calculated. This is a daunting task even on modern hardware, and
requires the use of large computer clusters (the use of which PHOENIX is optimized for).
Precalculated grids of this kind are available, such as the aforementioned set. However, we do
require a few elements to be calculated without the assumption of local thermodynamic equilibrium.
In most cases, only a fraction of elements have been calculated in NLTE. Among other elements, we
require iron to be calculated in NLTE, as this affects the determined continuum, which will in turn
set our flux scale. The determined excess flux will be in true physical units only if the continuum
was calculated correctly, as its used to define the physical scale. Of course, calcium must also be
calculated in NLTE, in the most important ionization states. Additionally, to optimize the shape of
the Ca II IRT-lines, we use a profile function, which was provided by Homeier [2015]. Therefore, to
use model spectra fulfilling all these conditions, we need to calculate our own models that require
those conditions. Table 5.1 shows which elements and which ionization states were calculated in
NLTE.
Calculating the large amount of models required to cover the entire range of stellar parameters in
our sample is impractical. Removing models from such a regular grid creates an irregular grid.
Going one step further, if removing the requirement of an equidistant step size, we can optimize the
sample of models to calculate, by sampling the region of interest in stellar parameters finely, while
we sample coarsely further out. As a proof-of-concept, we have decided to proceed with such an
approach, to find out if this is feasible. Additionally, this allows us to automatically and reliably
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Table 5.1: List of atomic species calculated in NLTE. For the calcium lines, line profile
functions were used for the Ca II IRT-lines, as well as the lines at λ = 4226 Å, and the red Ca I triplet
at λ = 6103Å, λ = 6122Å and λ = 6162Å.

Element name Species calculated Comment
in NLTE

Hydrogen H I
Helium He I, He II

Calcium Ca I, Ca II, Ca III Profile functions in use
Sodium Na I, Na II

Magnesium Mg I, Mg II, Mg III
Carbon Ca I, Ca II

Nitrogen N I, N II
Oxygen O I, O II

Iron Fe I, Fe II Strong influence on continuum

determine the stellar parameters from TIGRE observations. We have adapted the algorithm given by
McLain [1976] to the three-dimensional scenario of this problem. The main issue for an interpolation
method on an irregularly sampled grid is that it is not immediately evident which points to use for
interpolating. In this algorithm, this problem is solved by first segmenting the available data points
by grouping them into tetrahedra. To do so, we consider the triplet of (Teff ,log g,[M/H]) of each
model spectrum available as a point in the three dimensional space made up by a Teff -, log g- and
[M/H]-axis. To find a spectrum corresponding to any point in that space, we then need to select the
tetrahedron this point falls into, and use those four points for interpolation. We will describe this
process in more detail below.

5.3.1 Determining the grid

The goal of this exercise is to analyze the differences in the results from the model comparisons to
the results obtained earlier by comparing to inactive objects. For this reason, the same sample was
chosen. Therefore, our models need to cover a part of the main sequence, from earlier F to K stars.
To avoid calculating unnecessary models, only combinations of Teff and log g were chosen that are
relevant to our sample. Table 5.2 shows which models were chosen for our irregular grid. Each of
these combinations were calculated five times, with [M/H] varying from -0.5 to 0.5 in steps of 0.25.
This is a finer step size than the one of 0.5 chosen for existing PHOENIX grids, for instance in
Husser et al. [2013] or Hauschildt et al. [1999]. The same step size of 0.5 was chosen by Castelli and
Kurucz [2004] (on the website3 there is an additional step at [M/H] = +0.2). We chose a smaller step
size as Andretta et al. [2005] found that the Ca II IRT-line wings are very sensitive to changes in
metallicity. To test if this is true for the PHOENIX models as well, we plot the three Ca II IRT-lines
for different sets of Teff , log g and metallicity, only varying one parameter at a time. Figure 5.2 shows
the results. We find the same behavior: A change in gravity (second column in Fig. 5.2) affects
the line profile only weakly, whereas metallicity results in a much stronger effect. The changes are
most pronounced in the first Ca II IRT-line. Effective temperature, as expected, also changes the
line profile, however, the step size shown in Fig. 5.2 between two spectra is three times larger as
the typical grid spacing of 100 K, whereas the extreme cases plotted in the third column differ in
metallicity by the typical step size of 0.5! However, Teff is the main parameter in determining the
actual flux scale, and therefore must also be selected carefully.
Every model spectrum calculated was degraded to the resolution given for TIGRE. As is evident
from the table, our grid is almost regular, and thus, the simpler linear interpolation method could
feasibly be chosen if one adds the missing 55 models to the grid (or potentially only the five for

3http://wwwuser.oats.inaf.it/castelli/grids.html, in the version from January 6th, 2016

http://wwwuser.oats.inaf.it/castelli/grids.html
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Figure 5.2: Line profile changes for the Ca II IRT-lines from varying stellar parameters.
Each row corresponds to one Ca II IRTline, whereas each column fixes two parameters. In the first
column, the effective temperature was changed, while keeping log g and metallicity constant. In
the second and third column, log g and [M/H] were changed respectively, while keeping the other
parameters constant.



5.3. INTERPOLATING ON IRREGULAR GRIDS 52

Table 5.2: Overview of the calculated PHOENIX-models. Fields marked with X have been
computed for metallicity values of -0.5 to 0.5 in steps of 0.25.

Teff log g
3.8 4.0 4.2 4.4 4.6

5500 K X X X X
5600 K X X X X
5700 K X X X X
5800 K X X X X
5900 K X X X X
6000 K X X X X
6100 K X X X X
6200 K X X X X
6300 K X X X X
6400 K X X X X
6500 K X X X X

Teff= 6500, log g= 4.6 and ignores the models with log g= 3.8). The approach chosen requires
some calculations to be done beforehand. Most notably, segmenting the grid into tetrahedra, and
calculating a number of polynomial coefficients. While this is a slow process, predetermining these
values allows very fast calculation of the actual spectra, in turn resulting in a very fast fitting of the
large number of TIGRE spectra.

5.3.2 Partitioning the grid

Here, we look at a three-dimensional problem, with Teff , log g and [M/H] as our axes. We convert
to a problem without any units, by defining:

x = Teff/∆Teff (5.4)

y = log g/∆ log g

z = [M/H]/∆[M/H].

In this work, we have set the values of the steps to:

∆Teff = 100 K (5.5)

∆ log g = 0.2 dex

∆[M/H] = 0.25 dex

This normalizes the problem and defines the scale: each step size is seen as the same distance in the
three-dimensional problem. This definition of scale must be taken with care, as this can define which
existing model spectra are considered “closest”, and thus given the strongest weight in calculating
and interpolating a spectrum.
In partitioning the grid, we define which models should be used to interpolate between for any
arbitrary set of points Teff , log g and [M/H]. While this is trivial in the case of a regular grid, it is
not for an arbitrary selection of data points. The algorithm described in McLain [1976] connects the
points to triangles, as it concerns the two-dimensional case. In our three-dimensional adaptation,
we create a connected structure out of individual tetrahedra. Their vertices are the points (xi, yi, zi)
from each calculated model. Ideally, the partitioning ensures that any point lies at least as close to
one of the tetrahedron’s vertices it is surrounded by as to any other model data point.
We begin by finding a boundary surface of the tetrahedra structure. This is done by taking the
point furthest from the center, then combining it with all combinations of two other points. We
choose as the first surface the combination that forms a triangle surface (i.e. the points are not on
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Figure 5.3: Performing the iteration and finding the
next tetrahedron. Starting with the surface A,B,C of
a tetrahedron A,B,C,D, we iterate through all points X
(star) opposite the surface from D. The sphere with the
points A,B,C and X on its surface, and its center (circle)
is found. The score assigned to the possible tetrahedron
A,B,C,X is the distance d of the surface center to the
sphere center, and considered negative if the sphere center
is on the same side of the surface as D.

a line) and where all other points are on the same side of this triangle. This check is performed
by ensuring the sign of the dot-product of surface normal and directional vector towards any other
point is constant for all points. If there are several such triangles, the one with the smallest area is
chosen. This triangle is used as the starting surface for finding the first tetrahedron. We then cycle
through all remaining points, to find the one that creates a tetrahedron (i.e. is not in the surface)
with the smallest volume. The main iteration stars with this first tetrahedron.
In the three-dimensional case, we start with a surface made up of three vertices A, B and C that

make up a tetrahedron, together with a fourth vertex D, see Fig. 5.3. Now, we iterate through all
other points. For each of those points X (star in Fig. 5.3) on the side opposite to D, we find the
center of the sphere with the points A, B, C, X on it’s surface using the method described in Hollasch
[1993]. We assign this potential tetrahedron A,B,C,X a score according to the distance d of the
sphere’s center to the plane. Like in the two-dimensional case described in McLain [1976], this score
is taken to be negative if the center point lies on the same side as vertex D. After iteration through
all such surfaces A,B,C and suitable points X, the tetrahedron with the lowest score is added to
the current group of tetrahedra, and this procedure is continued until all tetrahedron surfaces are
either shared between two tetrahedra, or do not have any points on the outward side of the surface.
Any added tetrahedron always shares a side with an existing tetrahedron. For each tetrahedron, the
normal of all four surfaces is precalculated now, so that it always points outward (e.g. the normal
of the surface A,B,C of the tetrahedron A,B,C,D points away from D, looking from the surface
center).
This procedure guarantees a convex shape, which is necessary to avoid unnecessary extrapolation.
We describe the reason for this, as well as a method to add to a concave structure until it is convex
in the appendix.

5.3.3 Filling holes

While not common, in certain edge cases, this way of partitioning can result in holes (Volumes in the
space that are not covered by the tetrahedra) in the structure. To fix these problems, an additional
pass can be performed in which any tetrahedron’s side that is not shared with another tetrahedron
is checked if it is part of the external surface (If the surface is made up of points A, B, C of the
tetrahedron A, B, C, D, then it is a boundary surface if all other points are on the same side as D).
The filling of the structure is performed by merging four points on non-boundary surfaces into a new
tetrahedron, if it does not intersect any existing tetrahedron. If several of such tetrahedra exist, the
one with the smallest volume is chosen, and the iteration continues until no more holes exist.
This brute-force algorithm can take a long time if started with a structure featuring many holes, as
each tetrahedron added adds more surfaces to check. It is therefore recommended to only use this
in cases where it can be guaranteed that the holes are filled rather quickly.
After this process, all tetrahedra surfaces at the boundary of the structure are marked as such and
stored in its own array for fast access to this list.
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5.3.4 Problematic partitions

Unlike the case in two dimensions, this implementation of the algorithm can return a structure in
which tetrahedra intersect or where the partitioning was not ideal in every case. A statistical analysis
of 100 000 points has shown that no point lies in two tetrahedra. This check was performed as a sanity
check only, as this result was expected from construction, since any newly placed tetrahedron was
checked to ensure it does not intersect existing tetrahedra. More problematic is the fact that about
∼ 11% of all random positions checked lie in tetrahedra that does not include the point closest to X
– instead, the closest vertex to X is the next closest grid point. This tends to happen when points lie
very close to the shared surface of two tetrahedra. This is not a large problem in practice, however:
Given the spacing of our models, and subset of stellar parameters chosen, interpolating from the
“second-best” choice of models still results in a well-behaved spectrum, as the changes in the spectra
are relatively smooth (compare with Fig. 5.2). To test this, we used the complete partitioned grid
to calculate spectra as described below for the troublesome points and compare them by eye to the
neighboring spectra and the closest point. Figure 5.4 shows such an example. The interpolation
worked fine, and no large artifacts or errors were introduced. This follows expectations: Given the
spacing of our models and subset of stellar parameters chosen, the change in the spectra is rather
smooth and not too large from one point to the next.

Figure 5.4: Interpolating spectra
for points that do not fulfill the
ideal partitioning condition. The
final partition is not completely ideal.
This test of the spectra resulting from
the entire interpolation process shows
that the interpolated spectra are sen-
sible and “well-behaved”, suggesting
that this problem is not severe.

5.3.5 Determining polynomial coefficients

With the partitioning done, the simplest way to do the interpolation to find a spectrum at a point
(Teff , log g, [M/H]) would be to find the tetrahedron that encloses this point, and then interpolating
their spectra, weighting them by the distance to the point in the (Teff , log g, [M/H])-space. However,
this results in sharp edges at the surfaces of the tetrahedra, and is not ideal. Instead, McLain [1976]
suggests to do the interpolation by assigning each point A the coefficients aij of a second-order
polynomial:

fdatapoint(x, y) = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2, (5.6)

These coefficients can be determined numerically exactly by fitting this polynomial using the known
values at A and the five nearest points. McLain [1976], however, suggests to fit these parameters using
all the data of all points available, weighting them by their distance to A. In our three-dimensional
case, we find one such polynomial for each wavelength point λ, and Eq. (5.6) becomes:

fdatapoint(x, y, z, λ) = a000,λ + a100,λx+ a010,λy + a001,λz + (5.7)

a200,λx
2 + a020,λy

2 + a002,λz
2 +

a110,λxy + a101,λxz + a011,λyz,
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with 10 coefficients aijk,λ for every wavelength point λ. Assuming 25 000 wavelength points and
220 models included in the grid, as well as using the double variable type (64 bits), this results
in roughly 440 MB of data. This is a justifiable amount of memory to use for such a purpose, as
keeping this data in memory is the key to interpolating the spectra very fast. The fit is done using the
Levenberg-Marquardt method [Moré, 1978, Moré and Wright, 1993] using the IDL implementation
by Markwardt [2009]. The distance-weighting when calculating the coefficients of point A is done
by assigning each data point B an error of the form:

σAB = exp
d2
AB

25
· (0.2 + d2

AB), (5.8)

with d2
AB =

(
(xA − xB)2 + (yA − yB)2 + (zA − zB)2

)
This is based on the distance-weighting used in McLain [1974], with the constants tweaked for the
best performance in our case. The relative difference in this weighting-factor of two neighboring
points (for which the distance is defined to be 1) is 6.2. This results in a very strong preference of
the fit to return the actual value of the data point and close neighboring points, as desired.

5.3.6 Interpolating and extrapolating from model spectra

We have partitioned the grid and found a second-order polynomial for each point in the grid. We are
now ready to calculate a spectrum for any arbitrary point P = (Teff , log g, [M/H]), or the equivalent
point in the normalized space ~p = (Teff/∆Teff , log g/∆ log g, [M/H]/∆[M/H]). First, we cycle through
all tetrahedra to find the one enclosing P : If the directional vector from any surface center to P
points in the same direction as its normal, the point is not inside that tetrahedron. Let the vertices
of the tetrahedron that includes P be called A1, A2, A3 and A4, each with their own polynomial
Eq. (5.8). For each vertex Ai, a distance di is now calculated. This, however, is not the euclidean
distance from the vertex to P, but rather the distance from the surface opposite to the vertex Ai,
divided by the distance of Ai to that surface (this normalizes the scale). Therefore, this distance
value di is never less than zero, and never more than one, which it is only if P coincides with Ai (it
is lower the further away it is from Ai).
The calculation of this normalized distance from the surface can be expressed as:

d = (~p− ~sc) · ~n · f (5.9)

= (~p · ~n− ~sc · ~n) · f,

where ~sc is any point on the surface (we take the surface center), and f is the factor ensuring the
correct normalization. We can define

~n0 = ~n · f (5.10)

And then express Eq. (5.10) by using a four-dimensional scalar product:

d =


px
py
pz
1

 ·


n0,x

n0,y

n0,z

−~sc · ~n0

 (5.11)

The four parameters n0,x, n0,y, n0,z and ~sc · ~n0 are precalculated and stored for each tetrahedron
surface.
As recommended in McLain [1976], the four thus calculated distances di are then cubed for our three-
dimensional case, and used as weights for the results of the four polynomials, which are evaluated at
the position of P . The so determined value is considered the final interpolated value, and one such
value is calculated for each wavelength point. This creates the interpolated spectrum at point P :

FP (λ) =
1∑4
i=1 d

3
i

4∑
i=1

d3
i fAi

(~p, λ). (5.12)
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Figure 5.5: Extrapolating if a point
falls outside the tetrahedra. If the
point P (black ring, upper left) falls outside
the tetrahedra structure, it is necessary to
extrapolate, instead of interpolating. Since
the structure is always convex, the point P
always falls in one of the extruded bound-
ary surface volumes (transparent blue and
red) of one of the outside tetrahedra (blue
and red, below). In this case, P falls in
the blue extruded surface structure. There-
fore, the polynomials of the vertices (black
dots) of the outward blue tetrahedron sur-
face should be used for estimating the value
at point P .

It is possible that the point P is not inside any tetrahedron, this is the case if the chosen stellar
parameters are outside the parameter range of the models in our sample, because we have guaranteed
for the partitioning structure to be convex. Therefore, there is exactly one defined tetrahedron
surface at the boundary that would include P if extruded along its normal to infinity (Fig. 5.5).
Now, the polynomials of the three vertices A1, A2, A3 making up that surface are calculated, and
weighted according to wi = d3

i , with di here as the euclidean distance from Ai to P . We interpolate
the values of the three polynomials evaluated at P , weighted by wi. This value is considered to be
the final extrapolated value:

FP (λ) =
1∑3
i=1 wi

3∑
i=1

wifAi
(~p, λ). (5.13)

Note that the actual extrapolation is thus done in the second-order polynomial. Far out extrapolation
cannot be reliably done in this fashion, as such a polynomial cannot reliably predict the changes in
the model.

5.3.7 Sanity check: comparing the results

As a sanity check, we can now compare the spectra calculated with the approach described to the
model spectra calculated by PHOENIX. Figure 5.6 shows the simplest case: Here, we compare a
model that was “interpolated” at a vertex of one of the tetrahedra in the partitions. In other words,
that particular model spectrum, calculated with PHOENIX, was available during the interpolation.
Naturally, we expect no large deviations. In fact, the median deviation is actually just 0.03 %,
and the maximum deviation is about 5 %. Unfortunately, the strongest deviation occurs in the line
centers. However, those are mostly contained within one or two wavelength points, which means that
this deviation will not affect the results obtained from integrating within the entire line much. It is
also worth mentioning that since the flux is lowest in the line centers, the relative deviation will be
largest there. Now, we compare the behavior outside of tetrahedra vertices. We pick two calculated
PHOENIX models, and calculate fifteen models with stellar parameters linearly in between those of
the models. We show the results for the case of varying all parameters in Fig. 5.7. In Fig. 5.8, we
vary either one or two parameters: In each row, we show the case of only varying one parameter (left),
or of varying all others and keeping that parameter constant (right). We find that the interpolated
models are changing smoothly from one PHOENIX model to the next, as expected. As we see no
sudden, strong changes, we are confident that this way of interpolating works well and is, in fact, a
good choice for our use case.
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Figure 5.6: Checking the interpo-
lation results for the simple case.
Here, we compare the spectrum cal-
culated from the partitioned grid at
Teff=5800, log g=4.4, [M/H]=0 (red)
with the (degraded) PHOENIX spec-
trum (black). It is hard to make out
differences by eye. The lower plot
shows the residuals: The maximum de-
viation here is 3.6%. The flux is given
in erg s−1 cm−2 Å−1.

Figure 5.7: Checking the in-
terpolation: Varying all param-
eters. These plots show the inter-
polated spectra on a color scale from
black to blue. Their parameters are
interpolated linearly from the starting
PHOENIX model (red) to the final
value (orange).

5.4 Summary

In this chapter, we have described our implementation of an adaption of the interpolation algorithm
described by McLain [1976], for our three-dimensional case for interpolating PHOENIX model spec-
tra. This allows to calculate an inter- or extrapolated spectrum as a function of Teff , log g and
[M/H]. The strength of this algorithm is its great performance on irregular grids, and its high speed
in generating the actual interpolated spectrum. While the grid we are using is close to being regular,
the intention of this algorithm is to allow easy addition to the model grid. By calling this procedure,
the TIGRE pipeline may be able to automatically determine stellar parameters for all kind of stars.
The range of stars for which this is suitable can simply be increased by adding spectra of stars of
various luminosity classes and spectral types to the irregular grid. This addition can be optimized
for high coverage in the region of interest, without being limited by the grid step size, and without
obligation of filling in “unphysical” parts of the grid.
To perform such a determination of stellar parameters, an observed spectrum is fitted by a model
spectra. This process is not trivial, despite the idea being simple in principle. We have performed
such fits to determine the stellar parameter. The next chapter describes this process.
We give a detailed overview on how to use the code in the appendix, Sect. A.2.
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Figure 5.8: Checking the interpolation: Varying one or two parameters. These plots
show the interpolated spectra on a color scale from black to blue. Their parameters are interpolated
linearly from the starting PHOENIX model (red) to the final value (orange). Left column: From top
to bottom, Teff , log g and [M/H] are changed, while the other parameters are kept constant. Right
column: From top to bottom, Teff , log g and [M/H] are kept constant, while the other parameters
are changed.



Chapter 6

Fitting TIGRE spectra with
PHOENIX models

Our goal is to use PHOENIX models to determine the excess flux in the active lines, most notably
the Ca II IRT-lines. However, as we have seen, even relatively small deviations in stellar parameters
can influence the line profile (Fig. 5.2). For this reason, we must carefully choose the right model
to perform the comparison with.
One might think that the easiest way to do so would be to take literature values into consideration.
The problem here is that for many stars, these are not determined to sufficient accuracy. Especially
the metallicity, which shows a strong effect in the Ca II IRT-lines, is often only poorly known. For
example, the star HD 106516 has 41 separate entries listed in the SIMBAD database [Wenger et al.,
2000]1 for the stellar parameters. There, Teff ranges from 5478 K [Wallerstein, 1962] to 6316 K [Gray
et al., 2003] – that is almost the entire range of our grid! The other parameters show a similar range:
log g is given as low as 3.8 [Peterson, 1980], but as high as 4.6 [Gratton et al., 1996], and [M/H] covers
values from -0.98 [Hartmann and Gehren, 1988] to 0.05 [Wallerstein, 1962]. Such deviations can be
systematic, and stem from different approaches in determining these values. Even different model
atmosphere codes will return different spectra, depending on a variety of conditions, one of which
is the line list used. While most stars do not show such large effects, several hundred K difference
in Teff is not uncommon. For our particular case, we require a good fit of the PHOENIX model
spectrum to the observed spectrum. To ensure this, we determine the respective stellar parameters
ourselves by fitting the model spectra to our dataset.

6.1 Method of the fit

To reliably determine the stellar parameters from our TIGRE observation data, we first merge all
available spectra from each object, and weigh them according to their SNR. This is done to increase
the SNR in the resulting spectrum, but it has the fortunate side effect of removing (or at least
drastically reducing) any peculiar effects that a single spectrum may show, such as cosmics (see Fig.
2.13). When merging spectra together, we must ensure that any potential shifts are taken care of.
Shifts in the spectra can occur due to many reasons, such as errors in the wavelength calibration,
an incorrect value for the barycentric velocity, but also due to a red- or blueshift induced from the
physical movement of the star. While constant red- or blueshifts from the radial velocity have been
filtered and are usually well-known, binaries have an additional, time-dependent red- or blueshift
that is not filtered in this fashion. No matter the case, however, such a shift must be corrected
before merging the spectra. A constant, global shift in the spectrum would not be a large problem
and easily taken care of by allowing a wavelength shift in the fit, but a relative shift from one
spectrum to the next will appear as an effective reduction of resolution. Therefore, we perform a

1Database visited on February 16th, 2017.
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Table 6.1: Regions the fit is performed in. The fit is not performed across the entire spectral
region of TIGRE, but instead across a selection of carefully picked regions. These are normalized
individually. Additionally, some points in these regions are ignored in the fit, these are given in
Table 6.2.

Region Comment

5 100 — 5 200
6 099 — 6 200
6 520 — 6 580 Center of Hα-line ignored via mask
7 740 — 7 840
8 480 — 8 520

To ensure agreement in the Ca II IRT-line wings
8 550 — 8 650

cross-correlation on the individual spectra to correct any relative wavelength shift between them.
This spectrum is then compared to a PHOENIX model spectrum. Here, we use the interpolation
system described in Chapter 5, which allows the very fast calculation of a model spectrum for any
set of stellar parameters. We now give more details on this process.

6.1.1 Regions to perform the fit in, and those to ignore

It is impossible to bring our PHOENIX spectra to a complete agreement with observed spectra,
even disregarding the noise of the latter. Some lines in the spectra do not match, even when using
the correct stellar parameters for the model, due to errors in the model spectrum calculation, e.g.
due to an error in the line list in use. Therefore, we must accept the fact that some regions in
the spectra are simply not suitable to determine the stellar parameters. We combine parts of the
regions given in Ryabchikova et al. [2016] with three more regions around the Ca II IRT-lines. Note
that we do not use all regions given in Ryabchikova et al. [2016], even some that were in TIGRE’s
spectral range. The sections used were selected from comparing a PHOENIX spectrum using the
Sun’s stellar parameters and a TIGRE spectrum of the Moon (the Sun’s reflection spectrum). Even
in those sections, some line profiles do not match. We need to ignore these in the fit. For this reason,
there is a mask in use. During the fit, wavelength points covered by the mask are automatically set
to the corresponding value of the observed spectrum: In this way, they will not influence the fit, as
their contribution to the χ2-value will be zero. However, this does affect the number of degrees of
freedom (and thus the value for the reduced χ2

ν).
Regions are normalized individually during the fit. To find those regions, we compare the co-added
TIGRE spectra of the Moon with the corresponding PHOENIX model spectrum. In a first pass, an
automatic detection of poorly matching points is performed, where a point is considered to match
poorly if the residuals are too large compared to the deviation to the normalized continuum flux.
This means that there is a larger effective tolerance for deeper lines. This automatically determined
mask is then adapted and changed by hand.
We give the regions in use in Table 6.1, while Table 6.2 gives the first few entries in the mask used,
whereas the full mask is listed in the appendix in Table B.6. Figure 6.1 shows a 15 Å-section of the
regions and masks given in Tables 6.1 and 6.2, respectively. In this figure, the PHOENIX model is
compared to co-added TIGRE spectra of the Moon, as well as the high-resolution spectrum given
in Neckel and Labs [1984], degraded to TIGRE’s resolution. Regions that are part of the mask are
marked as well.

6.1.2 Fitting normalized spectra

TIGRE spectra are given in arbitrary units, and have not been converted to the physical flux units
PHOENIX model spectra are given in. Additionally, the spectra tend to not follow the same general
structure as the model spectra do. We show this for the case of HD 140538 in Fig. 6.2. This means
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Table 6.2: Mask in use to ignore certain regions in the fit. This table is only the first part
of the complete table given in the appendix in Table B.6.

Mask region

5117.16 – 5117.56 5117.89 – 5118.02 5120.94 – 5121.14
5123.39 – 5124.32 5124.52 – 5124.85 5125.44 – 5125.77
5126.17 – 5127.81 5130.24 – 5130.65 5132.60 – 5132.81
5135.85 – 5136.20 5140.68 – 5140.89 5142.06 – 5142.26
5142.88 – 5143.23 5146.04 – 5146.24 5150.68 – 5151.29
5151.70 – 5152.04 5152.31 – 5152.51 5153.53 – 5153.67

...

Figure 6.1: Determin-
ing the Masks for the
Fit. Comparison of the
PHOENIX model spectrum
created from stellar param-
eters (red) with observed
spectra from both TIGRE
(orange) and Neckel and
Labs [1984] (black). The
masks given in Table 6.2 are
marked as regions with diag-
onal lines.

that we cannot rely on the overall spectrum’s shape to constrain Teff . However, as Teff , affects line
profiles as well (Fig. 5.2), it is possible to fit normalized spectra instead.
Normalizing both TIGRE spectrum as well as the interpolated model spectrum is performed in the
same way as described in Sect. 3.2. The merged TIGRE spectra show some noise, which affects the
normalization to a small degree. This can add up to a small offset across the entire spectral region.
A fit would then seek to correct this offset by adapting stellar parameters. This is not the desired
behavior, so we allow to separately fit two parameters for each region as a linear correction of this
offset. These parameters can vary from 0.5 - 1.5, but they are usually very close to one.

6.1.3 Finding the spectral resolution

As we have mentioned in Sec. 2.6.2, TIGRE spectra do not have a constant resolution R (Eq. (2.13)).
In fact, it does vary quite strongly even across small wavelength ranges (Fig. 2.12). If the TIGRE
spectrum has a lower resolution than we assumed when degrading the model spectra, lines will be
comparatively broader, which a fit would seek to correct by varying the stellar parameters. To avoid
this problem, we fit the resolution and allow it to vary to a value lower than the ∼ 21 000 that the
model spectra were degraded to. In this fashion, every region has been assigned an individual value
for the resolution. Figure 6.3 illustrates the difference in the results obtained from a fit with an
adaptive resolution to the results of a fit without resolution as a free parameter. It shows that the
problem described does indeed happen, and wrong stellar parameters are recovered. An even worse
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Figure 6.2: Comparing the trend
of a TIGRE spectrum (blue) for
HD 140538 to the trend of a
PHOENIX model spectrum (red).
Spectra taken by TIGRE do not follow
the same trend as PHOENIX model
spectra do, which are closer to the
approximation of a blackbody (green
dashed line). Thick lines are upper en-
velopes to see the overall trends more
easily.

Figure 6.3: Checking the neces-
sity of fitting the resolution. This
plot shows the resulting best fit of a
resolution-degraded PHOENIX model
with noise added to it for the two cases
of allowing the resolution to be fitted as
well (blue line) and the case of keeping
the resolution fixed (red line).

problem for our case is a poor fit in the line center and wings, as this results in us determining an
incorrect excess distribution, as well as an incorrect value for the integrated excess flux.

6.2 Performing the fit of PHOENIX model spectra to TIGRE
observations

In this section, we will describe the actual process of fitting TIGRE spectra with PHOENIX model
spectra. Using the process described in Chapter 5, we can quickly generate normalized spectra for
any set of stellar parameters, and subsequently degrade them, too. In an iterative process, constantly
adapting these parameters to optimize the match of calculated to measured spectrum in the regions
given in Table 6.1 allows us to find the best set of such parameters, which we interpret as the “real”
set. The complete set of parameters to fit, including the normalization corrections and resolution
values, is given in Table 6.3. There are several algorithms available for performing such a fit, each
with their own advantages and disadvantages. We have used the Levenberg-Marquardt-algorithm,
as well as a Markov Chain Monte Carlo. In this section, we show the results and compare the two.
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Table 6.3: Parameters to fit. Optionally, the routines can fit a wavelength shift, a normalization
correction and the spectrum’s resolution. The normalization correction is done by dividing the
interpolated model spectrum by a linear fit through the levels N0 and N1 at the beginning and the
end of the region, respectively.

Parameter Constraints Comment

Teff 5.3 - 8.0 In units of 103 K
log g 3.8 - 4.9
[M/H] -1.5 - 1.5
v sin i 1 - 500 In units of km s−1

∆λ -0.5 - 0.5 Wavelength shift in Å

F
or

ea
ch

R
eg

io
n N0 0.5 - 1.5 Start continuum level of norm. spectrum

N1 0.5 - 1.5 End continuum level of norm. spectrum
R 16 000 - 20 738 Resolution in this region.

Interpolated spectra have R0 = 20 738,
unless further degraded to this.

6.2.1 Fitting the spectrum with the Levenberg-Marquardt algorithm

To perform a fit using the Levenberg-Marquardt algorithm, we use again the MPFIT-package [Mark-
wardt, 2009]. We attempted to fit the stellar parameters to the merged TIGRE-spectra three times,
each time varying the starting parameters: First, by using the literature values from Chapter 4 as
starting parameters, second, by always using the Sun’s stellar parameters as starting parameters,
and finally by testing a set of possible starting parameters, and then choosing the best one.
The results show that in many cases, this fitting algorithm tends to stay too close to the starting
values, especially for [M/H] and v sin i. We have experimented by varying the step size, used for the
calculation of the partial derivatives, but the improvements were marginal at best. It appears that
the fitting algorithm quickly finds a local minimum, and stops there. This is expected behavior for
this algorithm [Markwardt, 2009], which may be worsened by the fact that parameters are highly
correlated. For this reason, the algorithm requires a solid set of starting parameters. Therefore,
using completely static starting values does not give great results. In order to obtain those with
just the prior assumption of the star’s stellar parameters being covered by our grid, we first try the
models of a variety of stellar parameters and use the best one of this set as starting parameters,
leaving the actual fit to optimize these parameters. The “best” set is the one that results in the
lowest χ2 values, and a small grid is used for this check. However, this approach suffers from a high
time requirement. The MPFIT fitting algorithm is very fast and highly optimized, but the neces-
sary test of the sets for the starting parameters requires a large amount of calculations, namely the
degradation and normalization, that slows down the entire fitting process. It should be noted that
MPFIT often stops as the relative deviations of the input parameters become too low (the optional
output variable STATUS is set to 2), which suggests that the actual fit cannot be brought to total
agreement, as this would result in a real convergence of the spectrum output. We now describe the
results of the three approaches in detail.
In Fig. 6.4, we compare the result of the first fit to the literature values stemming mostly from
the PASTEL-catalog [Soubiran et al., 2010]. In this first fit, we have used these literature values as
starting values. The dashed line shows the identity, and the dotted lines correspond to given “typical
step sizes” used in many grids of ∆Teff = 100 K, ∆ log g = 0.5 dex and ∆[M/H] = 0.5 dex, since these
values can be considered the “common wisdom” as to a small value deviation with a small effect on
the spectrum. Since we are comparing to the starting parameters here, no change in the parameters
from the fit would result in the best agreement in this plot, but this fit can give us an idea of the
tendency of the offset between the ideal-fit values of our fitted parameters to the literature values.
It is clear that the deviation between the found values and the literature values is very small for the
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Figure 6.4: Comparing fitted stellar parameters to literature values, for the case of using
literature values as starting parameters. This plot shows the fit results of 105 stars. The dashed
line shows the identity, whereas the dotted lines show the offset corresponding to commonly chosen
step sizes of grids with ∆Teff = 100 K, ∆ log g = 0.5 dex and ∆[M/H] = 0.5 dex.

vast majority of cases, with a few outliers mostly in the rotational velocity, which is a parameter
that is difficult to fit (see below). This proves that the approach of fitting does not introduce any
large systematic errors. At the same time, the fit in this case is rather uninteresting, as we use
known values for the stellar parameters to begin with. More interesting is the case of “no prior
information”, in which the fit of the interpolated model spectra alone will find the correct stellar
parameters. It must be mentioned that our set of stars we are analyzing here has been selected to
be a main sequence star of spectral type F, G or K (see Sect. 2.5.3), so that we do actually use
some prior information, namely that a star’s parameters will fall into the ranges best described by
the model grid we have created for this particular purpose.
The simplest way to perform the fit uses a static starting set of parameters. The results when using

solar parameters as starting values for the fit of all stars in our sample is shown in Figure 6.5. It
becomes apparent that this method tends to stay somewhat close to the starting set of parameters,
as evidenced by the tendency of points to cluster around certain values (horizontal lines in Fig.
6.5), rather than being distributed evenly across the entire range. For example, there is a large
band of stars forming around Teff = 5777 K, the solar value, as well as a somewhat smaller band
around log g ≈ 4.44. Rotational velocity has been especially poorly fitted, with most values staying
very low and only a few at ≈ 19km s−1 – a relative increase of ∼ 800% – with almost no points in
between. When calculating the partial derivative for v sin i, the algorithm calculates a new model
with a rotational velocity of v sin i±∆v sin i (the sign is chosen for optimal efficiency, and to avoid
leaving the fitting range). If v sin i is too low in the current iteration, then the model is deeper in the
center, with too narrow wings. If ∆v sin i is too large, the algorithm “overshoots”, and the partial
derivative is estimated from the χ2-value of a spectrum that is now broadened too much, being too
shallow in the center, and too wide in the wings (Fig. 6.6). As this spectrum is so broad, it may
show a higher χ2. In other words, even though the algorithm correctly tested a higher velocity, the
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Figure 6.5: Comparing fitted stellar parameters to literature values, for the case of
using solar values as starting parameters. Same as in Fig. 6.4, with the dashed lines marking
the typical grid-step sizes. Here, we used solar values as the starting values for the fit.

algorithm might actually decrease v sin i for the next iteration in an attempt to improve χ2. The
same is true if the rotational velocity was set too high in the current iteration. To alleviate this,
we set MPSIDE to force a two-directional calculation of the partial derivatives (i.e., it is calculated
from models with v sin i−∆v sin i and v sin i+∆v sin i), and experiment with step-widths, both with
constant absolute, constant relative, and dynamic ones. However, no satisfactory result could be
reached in this fashion. Still, while the overall fit of Teff , log g and [M/H] is acceptable, there is still
room for improvement, especially for v sin i, which is an important parameter in the determination
of the excess flux. We therefore conclude that better starting values are required.
Figure 6.7 shows the result of the fit when the starting parameters were found from the search of

a suitable set from a grid, corresponding to the case of “least information”. First, we compare the
observed spectrum to a set of model spectra corresponding to a particular set of stellar parameters,
arranged in a coarse grid. The set of parameters of the model-spectrum that fits best of this set
is then used as the starting parameter. Again, we compare the resulting values with the literature
values. The found values appear to cluster around the values that have been checked in the coarse
starting parameter grid. While their steps are small compared to the model step sizes, it is still
suggesting that the steps in searching the starting values are too large compared to the changes
the MPFIT algorithm performs. However, as this search for the starting parameter is already the
bottleneck of this method, we decided to go with a Monte-Carlo approach instead. In all cases,
the uncertainties of the stellar parameters returned by the Levenberg-Marquardt-algorithm are very
low. The statistical uncertainties are much smaller than the grid-spacing, which as systematic errors
define our lower limit for the errors: We are only estimating the change in spectra in between those
actually calculated by PHOENIX. It is possible that the spectrum changes in a fashion not described
by our polynomial ansatz, for instance, in reality there might be a sharp change in spectrum at a
particular value, e.g. for Teff , but our interpolation approach assumes a smooth change. We must
conservatively assume the error to be at least as high as half a grid spacing.
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Figure 6.6: Illustrating the prob-
lem of fitting rotational velocity.
We try to fit the black spectrum from
the current iteration (top plot, red
dashed line), where the value for v sin i
is too low. When calculating the par-
tial derivative of χ2 in regards to v sin i,
v sin i is adapted and increased, result-
ing in a spectrum that is too shal-
low (top plot, blue dashed line). The
residual structure (bottom plot, same
colors) has reversed and the value for
χ2 increased. Therefore, the algorithm
will now pick a lower v sin i for the next
iteration.

6.2.2 Fitting the spectrum with a Markov Chain Monte Carlo

Another option of finding the correct stellar parameters is by using a Markov Chain Monte Carlo
(MCMC) sampler2. In this procedure, the parameters are varied randomly. The new set of param-
eters of each step is either accepted or rejected, with a random chance based on how much better
the new parameters describe the data, which in turn is here determined by the χ2-values. Since the
algorithm can allow a step even if the proposed new parameters are a worse fit, this is not a simple
hill-climbing algorithm. We used solar parameters as the starting values, and the code implemen-
tation by Zobitz et al. [2011], which uses the adaptive Metropolis-Hasting Algorithm [Metropolis
et al., 1953]. It defines that the next parameter step is chosen from their current values from a
normal distribution, with the width of it being changed automatically to ensure that 50% of samples
are rejected. This method has the advantage of exploring a larger fraction of the parameter space,
but at the cost of a higher runtime, as a large number of iterations are required. Errors can be
estimated from a histogram obtained from the stellar parameters sampled during the sampling pro-
cedure, which approximates the posterior. The list of all samples is called the trace. If a proposed
sample is rejected, the previous one is added to this list. Figure 6.8 shows the final 10 000 samples
from the trace of HD 111456 for the four parameters fitted, and their resulting histogram. The found
parameter is the maximum of the distribution, whereas the errors are estimated from the width.
To ensure that a reasonable value is found even in asymmetric or otherwise unusual cases, we find
the range around the best parameter that 68 % of samples lie in. However, the errors found in this
fashion are extremely small, and not representative, as the grid-spacing defines the true lower limit
for our errors, as described above. In Fig. 6.9, we show the results from the MCMC algorithm,
where we have used 150 000 iterations for each spectrum and compare them to literature values. We
generally note a good match between fitted and literature values. However, this way of determining
the stellar parameters is much slower than the Levenberg-Marquardt fit.

6.3 Results and comparison

We show the result of the fitting procedure in Table 6.4 and Table 6.5 for the Levenberg-Marquardt
algorithm using the starting parameter set determined from the grid search, or the MCMC approach,
respectively. These two approaches correspond to the interesting case of least information, with
no prior knowledge of the actual star’s parameters, except for the assumption that they can be
suitably described by interpolating our model spectra. The statistical uncertainties as determined
are unrealistically low, no matter the method. For this reason, they have been set from the grid
spacing as described in the previous sections. It is interesting to compare the results of both methods,

2A great introduction to MCMC can be found in Wiecki [2015]
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Figure 6.7: Comparing fitted stellar parameters to literature values, for the case of the
best grid search result as starting parameters. Same as Fig. 6.4, but with starting parameters
chosen from a grid search.

which is done in Figure 6.10.
Generally speaking, both methods are in agreement, as the deviations in fitted values are usually

rather small compared to the scale given by the usual grid-spacing. However, for Teff , a larger
number of objects deviate by more than 100 K. Since the Levenberg-Marquardt algorithm did not
often deviate too far from the starting value obtained from sampling a grid, especially in [M/H] and
v sin i, it may very well have tried correcting the resulting error by adapting Teff . For the other
parameters, the offsets are less strong. We note that the results from the MCMC-approach tend to
be higher in log g, though this tendency disappears at log g ≈ 4.5, close to the solar value. Metallicity,
an important parameter in the description of the Ca II IRT-lines, has been fitted tendentially lower
in the MCMC approach, and additionally does not show the strong clustering around the starting
set of values that the fitted parameters from the Levenberg-Marquardt method show. This may
have been from a poor choice of grid sampling starting values, however.
To find out which of the two methods is the better one, we calculate χ2 across the regions fitted
(ignoring the masked regions), and compare the results. By dividing the values for χ2 of both
approaches, we can easily see which of the two algorithms was a better fit and resulted in stellar
parameters that show less deviation from the observed one. This is shown in Fig. 6.11, where
each point refers to one object. Plotted is the ratio of the χ2-values, so that a value larger than
1 means that the Levenberg-Marquardt results described the spectrum better, whereas a value less
than 1 means that the MCMC results describe the spectrum better. To ensure a fair comparison
of only the stellar parameters, the other parameters given in Table 6.3 where fitted another time
while keeping the stellar parameters constant. Afterwards, the value for χ2 was calculated and the
ratio derived. The results show that the MCMC approach resulted in the “better” parameters in
almost all cases, corresponding to the lower value for χ2. The median value across all objects for
this ratio is 0.91, which implies that one can expect a 10% worse χ2 when using the Levenberg-
Marquardt algorithm. The 11 out of 105 stars for which that algorithm resulted in better fits are
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Figure 6.8: Determining “best-fit” value and errors from the trace. The left-hand side
of these plots show 10 000 elements of the trace, that is the list of accepted points sampled, of
HD 111456 for Teff(top left), log g(top right), [M/H] (bottom left) and v sin i (bottom right).

Figure 6.9: Comparing fitted stellar parameters to literature values, for the MCMC
approach. Same as Fig. 6.4, but this plot shows the result of the MCMC algorithm.
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Table 6.4: Result of the Levenberg-Marquardt-Fit, with starting parameters searched
from a grid search. The fit has been performed as described in the text, with the regions and
masked given in Table 6.1 and Table 6.2. Other parameters have been fitted that are not shown
here, such as resolution and a wavelength shift, see Table 6.3. The errors are defined by the grid
spacing, and are therefore 50 K, 0.10 for log g, and 0.12 for [M/H], and 1 km s−1. This is part of the
full table, which can be found in the Appendix in Table B.7

.

Object Teff/K log g [M/H] v sin i/km s−1

HD 157214 5491 4.36 −0.38 8.5
HD 168009 5499 4.00 −0.00 3.8
HD 129333 5520 3.80 +0.00 14.4
HD 184385 5570 4.56 +0.12 3.3
HD 178428 5570 4.04 +0.12 3.5
HD 43162 5600 4.54 +0.00 8.7
HD 82885 5602 4.59 +0.33 5.5
HD 111395 5603 4.55 +0.07 3.1
HD 68017 5609 4.41 −0.27 9.6
HD 42807 5620 4.38 −0.01 9.0
HD 115617 5621 4.51 −0.00 3.4
HD 140538 5629 4.45 +0.01 5.4
HD 117176 5650 3.98 −0.03 3.1
HD 20619 5674 4.45 −0.22 3.5
HD 20630 5675 4.54 +0.01 5.5

...

Table 6.5: Result of the MCMC-Fit. See caption of Table 6.5. The errors are defined by the
grid spacing, and are therefore 50 K, 0.10 for log g, and 0.12 for [M/H], and 1 km s−1. This is part
of the full table, which can be found in the Appendix in Table B.8

.

Object Teff/K log g [M/H] v sin i/km s−1

HD 82443 5398 4.60 +0.00 5.2
HD 145675 5411 4.60 +0.49 1.8
HD 152391 5454 4.60 −0.03 3.1
HD 131156A 5467 4.60 −0.14 2.9
HD 3795 5477 4.46 −0.47 0.7
HD 117176 5489 4.10 −0.10 2.8
HD 101501 5501 4.60 −0.08 3.5
HD 178428 5524 4.22 +0.07 0.7
HD 82885 5525 4.61 +0.28 3.3
HD 115617 5549 4.60 −0.06 2.8
HD 68017 5569 4.72 −0.36 0.8
HD 224930 5571 4.87 −0.57 3.1
HD 10700 5571 4.90 −0.27 0.6
HD 6582 5571 4.90 −0.48 3.4
HD 184385 5579 4.69 +0.09 2.9

...
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Figure 6.10: Comparing the fitted stellar parameters from the Levenberg-Marquardt-
method combined with a grid search to the results from the MCMC approach. Same as
Fig. 6.4, but this plot compares the results of two different fits.

covering a range in B − V , so it appears that there is no clear range in stellar parameters for which
Levenberg-Marquardt results in a better fit. The same is true when plotting against Teff , log g or
[M/H]. While this strongly implies that MCMC is the better choice, there is an argument to be
made for the Levenberg-Marquardt-approach. After all, its runtime is orders of magnitudes shorter,
which is very useful for the automatic approach of analyzing a large number of objects. Since the
deviations in found values tends to be small compared to the typical grid-spacing (Fig. 6.10), it can
be argued that the result from the Levenberg-Marquardt approach is good enough for many cases,
if combined with a grid-search to find suitable starting parameters. Rotational velocity may need to
be estimated rather reliably beforehand. Still, even then the found parameters often do not deviate
much from those grid-aligned starting values, which can be a problem for some applications, or if the
starting value search samples the grid more coarsely. In that case, either a tighter grid or a switch
to the MCMC approach, both strongly increasing the runtime, can be chosen.
Finally, we note that we can also use the found parameters from the MCMC approach as starting
values for a Levenberg-Marquardt fit. Results of this approach are detailed in the appendix.

6.4 Summary

It has become clear that the spectra interpolated are a powerful and useful tool to have. Combined
with a fast and efficient interpolation algorithm that works reliably even for a non-regular grid, it
is possible to fit TIGRE observations to model spectra. Here, we have described and explained
the application of the algorithms described by McLain [1974, 1976] for this purpose, and have
demonstrated the implementation that was done as part of this work. We were able to determine
stellar parameters with this algorithm from just the prior assumption that the observed spectrum can
suitably be described by interpolating our model spectra (i.e. is a main-sequence star of type F, G or
K). It is clear from comparing the found parameters to literature values that this approach is feasible
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Figure 6.11: Comparing the
χ2-values for the fitted param-
eters for the two approaches
discussed: Levenberg-Marquardt
and MCMC. Shown here is the ratio
of the χ2-values, first derived from the
fit using the set of stellar parameters
obtained via MCMC, and this value
then divided by the χ2 value from the
fit using the set of parameters obtained
via Levenberg-Marquardt. Every point
corresponds to one of the stars fitted,
and the result is then plotted against
the star’s B − V . The ratio is below 1
for 94 out of 105 cases, implying that
MCMC resulted in the better fit in al-
most 90% of cases. The median value
of this ratio is 0.91.

and that the obtained parameters can be trusted and used in further science, as we plan on doing
for the excess flux determination in the next chapter. Finally, we have compared the approach using
the Levenberg-Marquardt and MCMC algorithms, and have discussed their differences in detail. It
has become apparent that MCMC resulted in better fits, but both algorithms yielded satisfactory
results. We will continue using the stellar parameters from the MCMC algorithm.
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Chapter 7

Comparing TIGRE Observations
to PHOENIX models

In this chapter, we apply the method described in Chapter 3 to compare TIGRE spectra of stars
with B − V of 0.4 to 0.8 to PHOENIX model spectra. This allows us to find the chromospheric
flux of these stars, including the basal component, which we attempt to isolate and define in a later
chapter. We compare the observed spectra with the PHOENIX models interpolated to the best-fit
values obtained for the observed star in the previous chapter.
In this chapter, we analyze the results of 3630 observations of 109 stars. Unlike before, we also
analyze the inactive stars, increasing the sample size despite the lower range in B−V . We then give
a quick comparison of the results of Chapter 4.

7.1 Introduction and goals

Here, we compare TIGRE spectra to PHOENIX model spectra for an individual star according to
the procedure described in Chapter 3. Unlike before, however, the PHOENIX models we are using
do not include a chromospheric component. This means that the excess after the subtraction of the
PHOENIX model spectrum is:

FExc = Fchrom,basal + Fchrom,act, (7.1)

a combination of the chromospheric basal flux Fchrom,basal [Schrijver, 1987] and the purely activity-
related flux Fchrom,act. The basal flux has not been included in the previous comparison, as it was
also included in the comparison spectrum, and therefore also subtracted. The results of this chapter
will allow us to estimate Fbasal, the residual flux component the chromosphere always contributes,
regardless of activity. In Chapter 9, this will be performed by analyzing the values for FExc we
obtain in this chapter, using various different methods.
In this approach, the search for a comparison star has been replaced by fitting PHOENIX model
spectra to the star, which we have described in Chapter 6. In this chapter, we use the results of
the MCMC-approach (Sect. 6.2.2), as they have been found to be the most reliable. The actual
comparison is similar to that in Chapter 4, with a few differences we describe in the next section.
Previously, we divided our sample into “active” and “inactive” stars, based on the classification of
logR′HK ≥ −4.75, as given in Henry et al. [1996]. Such separation is now no longer necessary. All
stars will be handled in the same way in this approach, as even the inactive stars are expected to
show FExc > 0, due to the non-vanishing component of the basal flux.

7.2 Differences in the method to Chapter 4

As we are now comparing to a PHOENIX model spectrum, some changes were made for the excess
flux determination. Some of these were necessary in order to obtain the real value, while others have
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been made possible due to the lower overall noise. This section lists the major differences between
the procedure performed in this chapter to the one from Chapter 4.

7.2.1 Fit of the resolution

We are now comparing a TIGRE spectrum to a PHOENIX model spectrum. The latter is originally
given in a much higher resolution of R ≈ 500 000. We therefore are required to degrade the resolution
to the TIGRE resolution of R ≈ 20 000. To first order, we can simply degrade all PHOENIX
spectra to this resolution before we begin. We have performed this step, and all model spectra we
are interpolating already have R = 21 000. However, as we have seen in Sect. 2.6.2, the actual
resolution of TIGRE spectra varies strongly, and has been given as low as R ≈ 16 000 in some cases.
Neglecting this effect results in finding a negative excess value, as the additional broadening from
the lower resolution results in shallower lines. However, the exact value of the resolution is unknown,
and depends on the wavelength, and so must be determined individually for each line beforehand.
To do so, we perform a fit using MPFit [Markwardt, 2009], with varying step sizes, to find the
correct value of R. The rotational broadening must, of course, also be considered. At this point, the
value for v sin i has been determined, and so we can simply add the rotational broadening according
to that value of v sin i in the fitting process. The resulting value of R is then passed to our routine,
which performs the degradation and takes the errors into account. This fitting process has not been
performed for the Ca II H- & K-lines. This is due to the broad intrinsic shape of these lines, which
reduces the effects of lower resolution.
We have performed the entire comparison process without this step as well. The overall results are
very similar, but the scatter – especially of the parameters of the Gaussians we fit to the excess
distribution – is higher, and the correlations lower. We conclude that we were right in assuming
the necessity of fitting the resolution. All further results given have been obtained by including this
resolution fit.

7.2.2 Automatic determination of the excess region

Before, we have used TIGRE spectra of inactive stars for comparison. While we have taken great
care to pick the best possible spectrum with the highest SNR, there was naturally still some residual
noise left. The determined excess then suffers from the noise of the two spectra compared. Now, the
comparison spectrum is free of noise (see below), and therefore the resulting excess distribution is
less noisy as well. This allows us to automatically determine the region the integration is performed
in, as described in Sect. 3.6. As a result, we lose less excess flux of the high-activity stars, and suffer
from less noise for the lower-activity stars.

7.2.3 Noise of the comparison spectrum

The comparison spectra are free of noise, since they are PHOENIX model spectra. However, we
have not determined the stellar parameters with infinite precision. An error on Teff , for example,
must therefore propagate into an error on the model. We have thus chosen a conservative approach
and estimate the errors on the model spectra from the expected deviation in the spectrum from
varying the stellar parameters within their errors As the change in the model spectra is monotonous
in this small range of the three stellar parameters Teff , log g and [M/H] (compare Fig. 5.8), it is
enough to test the 23 = 8 limiting cases. Therefore, we calculate the spectra with the following
stellar parameters, and set the error to half the deviation of the largest and smallest flux derived for
each wavelength point:

(Teff + ∆Teff , log g + ∆ log g, [M/H] + ∆[M/H]) (Teff −∆Teff , log g + ∆ log g, [M/H] + ∆[M/H])
(Teff + ∆Teff , log g −∆ log g, [M/H] + ∆[M/H]) (Teff −∆Teff , log g −∆ log g, [M/H] + ∆[M/H])
(Teff + ∆Teff , log g + ∆ log g, [M/H]−∆[M/H]) (Teff −∆Teff , log g + ∆ log g, [M/H]−∆[M/H])
(Teff + ∆Teff , log g −∆ log g, [M/H]−∆[M/H]) (Teff −∆Teff , log g −∆ log g, [M/H]−∆[M/H])

We set the minimum error on the stellar parameters to ∆Teff = 50 K, ∆ log g = 0.125 and for
metallicity ∆[M/H] = 0.125. In Fig. 7.1, we show an example for the case of a solar-like star
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Figure 7.1: Determin-
ing an error on the
PHOENIX model spectra
from the error on the
stellar parameters. The
errors on the stellar parame-
ters propagate to an error on
the model spectrum. Varying
the stellar parameters yield
the upper and lower deviation
(red lines) from the spectrum
(black line).

(black line). Calculating the eight spectra yields a higher and lower value for each wavelength
point (red line). Half this deviation is then taken to be the error at this wavelength point. The
relative error is about a 5 % relative error. This error is not statistical, but systematic in nature: If
the stellar parameters actually were wrong, the effect would be a somewhat different shape of the
model spectrum. This error is now used as if it were statistical in nature and independent for each
wavelength point. This is especially noteworthy, as the formerly mentioned systematic error could,
depending on its severity, be corrected by further steps performed during the comparison (e.g. by
the shift to find an agreement in the wings). Therefore, interpreting this error as the error on the
model is a conservative estimate, and may lead to an overestimation of the final error.

7.2.4 Limitations of the sample

When comparing to inactive stars as we have done in Chapter 4, we finally used a sample of 2274
observations of 82 stars, with B − V values ranging from 0.4 to 1.2. Unfortunately, our model grid
does not fully cover this region. While it is possible to extrapolate spectra from the available dataset
(Sect. 5.3.6), the results are lackluster when extrapolating too far out of the covered range. This
effect is magnified when the covered range is exceeded for several stellar parameters at once (e.g.
Teff and log g). For this reason, it would be desirable to add further models to the model grid in the
future. Because of the poor extrapolation, we now only cover the spectral range of B−V = 0.4 ... 0.8.
This includes the majority of stars from our previous sample (see also Fig. 2.10), and is the reason
why this range was chosen for the model grid. Nevertheless, some stars that have been included in
the previous sample are no longer included in this chapter. This is slightly made up for by the fact
that no further division into two sets of “active” and “inactive” is necessary. Therefore, stars that
did not fulfill the logR′HK ≥ −4.75 criteria [Henry et al., 1996] are included in this sample, but not
in the previous one. These stars are rather inactive, and their determined low excess flux features a
high relative error.

7.3 Outliers and objects not suitable for this analysis

For some spectra, the procedure failed and no adequate excess could be determined. In Table 7.1,
we give a list of the stars that were removed from this particular sample, as well as the reason for it.
B − V values given are literature values, mostly from the PASTEL-catalog [Soubiran et al., 2010],
see Sect. 4.2. We have removed a lower number of stars than when we were comparing to inactive
stars (Chapter 4). The reason for this is that some of the stars removed previously fall outside the
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Table 7.1: Stars that were removed from the sample. This table gives the stars that were
removed from the sample, as no adequate excess could be determined for them, for the reason given
below.

Star B - V Reason
HD 111456 0.43 Low SNR in the line center

and high v sin i
HD 106516 0.46 Binary star
HD 88737 0.53 Low SNR in the line center

HD 100563 0.53 Low SNR in the line center
HD 6920 0.56 Possible subgiant (see Sect. 4.6)

HD 197027 0.65 Low SNR in the line center
HD 133640A 0.65 Binary star

B − V -range considered here, as we had to decrease it due to the limitations of our model grid. For
some stars, the lower levels of noise introduced by the PHOENIX model spectra allows us to use
their results now. For those, it was previously impossible, as the additional noise introduced from
the comparison spectrum pushed the noise of the excess distribution just above the threshold. This
effect is made stronger, as the automatic approach in finding the excess bandpass the integration is
performed in removes regions with no excess flux in them. We give more details on the remaining
sample under consideration here in Table 7.2. The amount of F-stars has dramatically increased.
However, due to the grid sampling, the amount of K-stars is down to only four objects, though
with still more than a hundred observations. All in all, despite the lower B − V -validity range, we
could still perform this procedure with more stars and observations overall, with 109 stars and 3630
spectra analyzed.
For some correlations, we will disregard the “inactive” stars with logR′HK < −4.75. The reason for
this is that their low excess level (close to the basal level), compared to their rather high noise, only
adds scatter to the obtained relations. They should not be used to define the level of correlation of
the activity-related excess flux. An overview over this smaller sample with this enforced condition is
given in Table 7.3. Reintroducing this criterion reduces the sample to 81 stars with 2148 observations.

Table 7.2: Overview of the data used in this chapter, categorized by spectral type.

Type # # SNR Exp. time [s]
Obj. Obs. min/med/max min/med/max

F 33 1113 21.0 / 58.3 / 161.3 60 / 300 / 3550
G 72 2416 20.9 / 60.8 / 136.8 60 / 660 / 4767
K 4 101 35.7 / 63.6 / 83.6 180 / 752 / 4051

Total 109 3630 20.9 / 60.1 / 161.3 60 / 524 / 4767

Table 7.3: Overview of the data sample used in this chapter, categorized by spectral
type, if the criterion logR′HK > −4.75 is reintroduced.

Type # # SNR Exp. time [s]
Obj. Obs. min/med/max min/med/max

F 22 559 25.4 / 59.6 / 161.3 60 / 360 / 3215
G 57 1515 20.9 / 60.6 / 114.0 60 / 793 / 4767
K 2 74 35.7 / 65.5 / 83.6 180 / 692 / 4051

Total 81 2148 20.9 / 60.3 / 161.3 60 / 608 / 4767
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Figure 7.2: Comparing the surface flux relations from Hall [1996] (black) to those
obtained by integrating the continuum derived from PHOENIX model spectra (blue)
at the different lines. Overall, both relations match, but there is an offset that depends on B−V .
The jump, especially noticeable for the Ca II H- & K-lines, appears at B − V ≈ 0.65, corresponding
to a jump in the used tabulated log g-values.

7.4 Difference in flux scale to Chapter 4

We are interested in excess flux values, in units of erg s−1 cm−2. As TIGRE spectra are not flux-
calibrated, we need to convert that arbitrary scale to the real units. This step has made use of the
relation Fcont,Hall(B− V ) by Hall [1996] in Chapter 4, but we now use the flux scale as given by the
PHOENIX model spectra. This alone may produce a systematic difference in the obtained values.
To find this difference, we take the average of the continuum (see Sect. 3.2) of PHOENIX models
with different B−V at the different line positions in a 1 Å-wide bandpass. Since we require Teff and
log g to interpolate the model spectra correctly, but B−V for the relations given by Hall [1996], we
convert the B − V scale to a Teff -scale via the relation of Gray [2005]:

log Teff = 3.981− 0.4728 · (B − V ) + 0.2434 · (B − V )2 − 0.0620 · (B − V )3. (7.2)

To find a realistic main-sequence star value for log g, we interpolate the given typical values of
log g in Gray [2005] (their Table A.2) to the required B − V value. In the end, we obtain a value
Fcont,model(B − V ) in this fashion, which we can now compare to Fcont,Hall. Figure 7.2 shows the
result in the range of B − V from 0.4 to 0.8 for the six lines we are considering here. The relations
are notably similar. For the Ca II IRT-lines, the deviation is always less than 6 %, and about 4 %
on average. Here, the surface flux derived from the PHOENIX model spectra (blue line) is always
higher. Contrary to that, it is always lower for the Ca II H- & K-lines, where the average deviation
is also 6 % higher for Ca II H and 10 % for Ca II K. The maximum deviation is 10 % for Ca II
H and 24 % for Ca II K. For the Hα-line, the deviation is varying – the derived surface flux from
using the relations given by Hall [1996] spectra is higher for the lower B − V values and vice versa.
The deviation is about 5 % on average. The PHOENIX surface flux for the Ca II H- & K-lines shows
an irregular jump, unlike the smooth analytical relation from Hall [1996]. This jump occurs at
B − V ≈ 0.65. This corresponds to a jump in log g from the tabulated values, however, this is
likely by chance, as the position of this jump shifts, depending on the metallicity of the PHOENIX
model. Performing the same procedure to determine the surface fluxes, yet this time using a linear fit
log g(B−V ) to the tabulated values reduces the height of the jump, but does not make it disappear.
It is likely that some lines change so strongly that the continuum determination is affected, especially
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Figure 7.3: Correlation
of the determined excess
flux in the Ca II H and
Ca II K-lines. This plot in-
cludes data from 3630 obser-
vations of 109 stars.

in the complicated region surrounding the Ca II H- & K-lines. However, the effect is not too strong:
This jump is covering a very narrow region in B − V , and therefore not too many stars will be
affected. Additionally, the deviation found is not so large overall, so that this should only increase
the scatter somewhat. Assuming that the relations should be smooth in B − V , we can perform a
linear fit to the surface flux ratio. These can be used to correct the effects of using the different
surface flux deviations. The relations are:

Fcont,H,Hall/Fcont,H,PHOENIX = 1.173− 0.219 · (B − V ) (7.3)

Fcont,K,Hall/Fcont,K,PHOENIX = 1.054 + 0.125 · (B − V )

Fcont,Hα,Hall/Fcont,Hα,PHOENIX = 1.391− 0.589 · (B − V )

Fcont,IRTλ8498,Hall/Fcont,IRTλ8498,PHOENIX = 0.903 + 0.090 · (B − V )

Fcont,IRTλ8542,Hall/Fcont,IRTλ8542,PHOENIX = 0.889 + 0.136 · (B − V )

Fcont,IRTλ8662,Hall/Fcont,IRTλ8662,PHOENIX = 0.897 + 0.105 · (B − V )

This offset in surface flux is especially important when we are comparing the obtained excess fluxes
from comparing to model spectra to those obtained from comparing to inactive stars, as the difference
between the two can be used to estimate the basal flux. As it tends to be small, this ∼10 % difference
must be corrected to not under- or overestimate the basal flux level.

7.5 Resulting flux and correlations

We have obtained the excess fluxes as described, and now show the results from 3630 observations
of 109 stars. First, we consider the correlation between the Ca II H and Ca II K line, shown in
Fig. 7.3. We expect a very large correlation between the two, and in fact we observed exactly that
in Chapter 4, where we found ρ ≈ 0.95. Here, we have a nominally lower Spearman correlation
coefficient of ρ = 0.90. However, the distribution is much smaller, with lower scatter, which is
reflected in a higher Pearson correlation coefficient. It is ρPearson = 0.991 here for our comparison
to models, but “only” ρPearson = 0.965 for the comparison to inactive stars. This mirrors the visual
impression of the tighter linear fit. Since a clear linear relation between the excess fluxes of the
two lines is expected, the higher Pearson correlation coefficient indicates an improvement in the
procedure from the changes discussed in Sect. 7.2. To perform this same comparison for the
Ca II IRT-lines, we need to perform the filtering and only consider stars with logR′HK > −4.75.
The reason for this is that the stars not fulfilling this condition have a very low level of residual
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Figure 7.4: Checking the correlation between the excess fluxes in the individ-
ual Ca II IRT-lines, obtained by comparing to PHOENIX model spectra. The cor-
relation coefficients are given in the plots, but only the data points of active stars fulfilling
logR′HK > −4.75 (black) are taken into account for that calculation. The inactive stars that do
not fulfill this condition are plotted in bright orange.

Figure 7.5: Comparing the
error on the determined
excess fluxes to the cor-
relation distribution. The
gray lines indicate the er-
rors on the determined excess
fluxes (black crosses). They
appear larger than the scat-
ter inherent in the distribu-
tion, suggesting that they may
be overestimated.

flux, which cannot reliably be disentangled from the noise on these spectra. The data points of their
determined excess flux therefore appears as a scattered cloud close to the zero-level. This was less
of a problem in the Ca II H- & K-lines, as the flux is about three times larger there. We show the
correlations of the individual Ca II IRT-lines in Fig. 7.4, where the bright orange points are those of
stars that do not fulfill logR′HK > −4.75, and have not been taken into account when determining the
correlation. Comparing the Pearson correlation values here to the corresponding ones from Chapter
4, which are ρPearson = 0.976, ρPearson = 0.982 and ρPearson = 0.977, respectively, we find that the
previous comparison yielded the better values, in the sense of a stronger linear correlation. This
might be due to the difficulties from the variable resolution fitted, which is less significant for the
broader Ca II H- & K-lines, or a general error on the line profile from the PHOENIX model spectra
in the Ca II IRT-lines. It is therefore clear that this approach is not universally better, however, it
is also not worse, depending on the lines we are interested in. Finally, we note that the correlations
are very high across all lines considered, and we are comparing at a very high quality level. Due
to the large amount of error-prone parameters that go into the determination of the excesses, the
obtained excess fluxes have rather large errors. Comparing the error bars to the correlation (Fig.
7.5) suggests that we may have overestimated the errors for the Ca II IRT lines and the Hα-line,
due to the conservative approach taken. As a result, the correlation coefficient itself has a rather
large error, as determined from Monte-Carlo sampling. To give a fair value for the correlation, we
filter out the stars with logR′HK < −4.75 in the calculation of the correlation. We give the resulting
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Figure 7.6: Measured chromospheric excess flux, obtained by comparing TIGRE spectra
to PHOENIX model spectra, in the Ca II H- & K-lines compared with the excess flux in
the individual Ca II IRT-lines, as well as the sum of all Ca II IRT-lines (bottom right).
This plot includes data from 2148 observations of 81 stars.

values of the individual correlations in Table 7.4, and show the correlations between the Hα-line, the
Ca II IRT-lines and the Ca II H- & K-lines in Fig. 7.6 and Fig. 7.7. In general, we find a very strong
correlation between the calcium lines, both on an individual level, but also when grouped together.
While the correlation tends to be lower than before, likely related to the previously discussed higher
scatter in the Ca II IRT excess fluxes, the correlation coefficients are still very large. However, the
correlation coefficients between the calcium lines and the Hα-line have decreased dramatically. While
ρ ≈ 0.7 still indicates a correlation, this value is lower than our previous result (when comparing
to inactive stars, we found ρ ≈ 0.82). This might be due to difficulties in accurately modeling the
Hα-line profile. It is also apparent that the correlation between the Hα-line and the calcium lines
is not linear, mirroring the result from Chapter 4. We will come back to this when converting the
excess fluxes into one another (Chapter 8).
For all the lines shown, excess fluxes below zero have been determined, however, only for a few spectra
from a small selection of stars. For those, the noise level found is of the order of the chromospheric
flux. Therefore, the noise on the spectrum, as well as the errors on the stellar parameters, can be
enough to dominate the residuals, hiding the excess flux. An example is shown in Fig. 7.8. The
number of points below zero is lower when compared to the results of Chapter 4, despite the similar
number of points total. The likely explanation for this is the additional chromospheric basal flux
that is included in the excess determined here.
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Figure 7.7: Comparing the measured chromospheric excess flux in the Hα-line with the
excess flux in the Ca II H- & K-lines (left) and Ca II IRT-lines (right). This plot includes
data from 2148 observations of 81 stars.

Table 7.4: Obtained Spearman correlation coefficients between the integrated excess
fluxes in the different lines. The excess was determined by comparing the TIGRE spectra of
stars fulfilling logR′HK > −4.75to PHOENIX model spectra.

— Ca II H & K — — Ca II IRT —

λ3968 λ3934 Sum λ8498 λ8542 λ8662 Sum Hα

C
a

II
H

&
K λ3968 — 0.98 0.99 0.93 0.90 0.93 0.94 0.71

λ3934 0.98 — 1.00 0.92 0.90 0.93 0.93 0.72
Sum 0.99 1.00 — 0.93 0.90 0.93 0.94 0.72

C
a

II
IR

T

λ8498 0.93 0.92 0.93 — 0.91 0.92 0.97 0.69
λ8542 0.90 0.90 0.90 0.91 — 0.92 0.97 0.68
λ8662 0.93 0.93 0.93 0.92 0.92 — 0.97 0.70
Sum 0.94 0.93 0.94 0.97 0.97 0.97 — 0.71

Hα 0.71 0.72 0.72 0.69 0.68 0.70 0.71 —

Figure 7.8: Determining a nega-
tive excess flux for HD 18256. Top:
Finding the excess by comparing the
spectrum (black line in top plot), taken
on January 4th, 2014, to the correspond-
ing PHOENIX model spectrum (gray
line). Bottom: The residuals correspond
to the excess, which is shown in black.
The overall distribution is so noisy that
the integrated excess flux would here
determined to be negative. The fitted
Gaussian (gray line) is found to be pos-
itive, due to an introduced offset of it.
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Figure 7.9: Correlation between the sum of
the amplitudes Af of the Gaussians fitted
to the excess distribution of the Ca II H-
& K-lines (abscissa) and the Ca II IRT-
lines (ordinate). This plot only includes data of
spectra fulfilling logR′HK > −4.75: 2148 spectra
of 81 stars.

Table 7.5: Obtained Spearman correlation coefficients between the Gaussian amplitude
Af fitted to the excess distribution in the different lines. The excess was determined by
comparing the TIGRE spectra of stars fulfilling logR′HK > −4.75to PHOENIX model spectra.

— Ca II H & K — — Ca II IRT —

λ3968 λ3934 Sum λ8498 λ8542 λ8662 Sum Hα

C
a

II
H

&
K λ3968 — 0.97 0.99 0.91 0.93 0.91 0.93 0.66

λ3934 0.97 — 0.99 0.91 0.93 0.90 0.93 0.66
Sum 0.99 0.99 — 0.92 0.93 0.91 0.94 0.66

C
a

II
IR

T

λ8498 0.91 0.91 0.92 — 0.94 0.91 0.98 0.69
λ8542 0.93 0.93 0.93 0.94 — 0.93 0.98 0.68
λ8662 0.91 0.90 0.91 0.91 0.93 — 0.96 0.68
Sum 0.93 0.93 0.94 0.98 0.98 0.96 — 0.70

Hα 0.66 0.66 0.66 0.69 0.68 0.68 0.70 —

7.6 Fitted parameters

Like before, we also obtain the parameters Af , σf and (∆λ)f from fitting a Gaussian to the smoothed
excess (see Sect. 3.6). We show the results of the correlation coefficients of the fitted amplitudes,
converted to erg s−1 cm−2 Å−1, for all stars fulfilling logR′HK > −4.75 in Table 7.5 and Fig. 7.9. The
conversion is necessary to remove the B − V dependency, which we have already seen in Fig. 4.7,
though it is less strong here, on account of the smaller range in B − V covered. We again see large
correlations with ρ > 0.9 between the calcium lines, and lower values for the correlations between
those and the Hα-line.

The width σf is very often close to the lower limit set for the fit, which is given by the TIGRE
resolution. Disregarding the many points that lie at this lower limit, we find a correlation for the
width between the Ca II IRT-lines of ρ ≈ 0.8, but this correlation does not extend to the Ca II H-
& K-lines (ρ ≈ 0.13), and neither does it extend to the Hα-line. It is likely then, that this is an
effect of the resolution being approximately constant across the Ca II IRT region. This effect is not
observed for the correlation of the individual Ca II H- & K-lines, as there the correlation for σf is
ρ ≈ 0.24. This suggests that the width we have obtained here is not a useful activity indicator, at
least not when determined from spectra with TIGRE’s resolution.
The position of the excess in the line (∆λ)f does not show a significant correlation this time, with
ρ ≈ 0.25 between the (summed) shifts in the Ca II IRT-lines and the Ca II H- & K-lines, if only the
stars with v sin i > 20kms−1 are taken into account. This rather low value is only a weak indicator
of a real existing correlation. As we have concluded in Chapter 4, the resolution of TIGRE, and the
average SNR in the line centers, is simply too low for this kind of analysis.
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Figure 7.10: Comparison of the measured excess flux (abscissa) to the one calculated
from the fitted Gaussian parameters (ordinate), for the Ca II H- & K-lines (left) and
the Ca II IRT-lines (right).

Figure 7.11: Problematic excess Gaussian
fit of the excess distribution on highly
noisy spectra. Top: Comparison of a spectrum
of HD 75732 (black) to a spectrum of its com-
parison star (HD 145675) (gray). Bottom: Gaus-
sian fit (gray) to the obtained excess distribution
(black) inside the 2 Å-wide bandpass (marked by
dashed vertical lines).

We can estimate the excess flux from the fitted Gaussians FGauss,Exc, using Eq. (4.8), and compare
that value to the measured one, which we show in Fig. 7.10. Since we were able to limit the excess
fit parameters to realistic values (i.e. forcing the excess to be positive and within the line), the
resulting values are also limited to realistic values. The difference between the measured flux and
the one calculated is very small, as is evidenced by the high degree of correlation of ρ = 0.95 for
the Ca II H- & K-lines and ρ = 0.87 for the Ca II IRT-lines. Note that this includes all stars, even
those that do not fulfill logR′HK > −4.75. If that condition is enforced, just like it was in Chapter
4, the correlation coefficients rise to ρ = 0.98 and ρ = 0.95, higher for the Ca II H- & K-lines, where
we have already noticed lower scatter (Fig. 7.3 compared to Fig. 4.3), and about the same level of
scatter for the Ca II IRT-lines. We can also see some outliers in the plot. These can be explained
by a faulty Gaussian fit, where a very low activity level, combined with a relatively high noise level
in the spectrum, results in an excess distribution that is effectively just noise, as shown in Fig. 7.11.
Integrating the Gaussian fitted here results in an incorrect, large value.
We conclude that the fit parameters can also be used as an activity indicator. As we have explained,

the additional limitations on the fit make this value more robust for the very low-activity stars, in
the sense that no negative excess flux is found. Outliers, such as the one seen in Fig. 7.11, could be
handled by either stricter requirements for the SNR, or by imposing additional limitations on the
fitted parameters (most notably the position) for the Gaussian fit. For this reason, we choose to use
the excess flux estimated from this fit in Chapter 9.
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7.7 Comparison to results from Chapter 4

We have seen a strong correlation between the determined excess fluxes and fitted amplitudes in
both this chapter and Chapter 4. As we have seen in Eq. (7.1), the determined excess distributions
in this chapter always include a chromospheric basal flux contribution, which makes up the difference
between the excess fluxes determined here and those found in Chapter 4. Therefore, we expect the
excess fluxes determined in this chapter to be generally higher, though not by much, as the basal flux
is generally low, close to the level of noise inherent in our spectra, and a more in-depth comparison
is necessary to accurately compare the two.
Generally, we find a slightly lower noise level, due to the fact that the comparison spectrum is free
of noise, and the excess region to integrate in can be determined automatically depending on the
excess distribution. Combined with the fit described in Chapter 6, this method has the additional
advantage that no prior information (aside from the star being a main-sequence star, covered by our
grid) is necessary to acquire the excess flux, whereas the excess fluxes shown in Chapter 4 include
information from outside sources (required for the selection of the comparison star). In principle,
a comparison star could have been chosen using the results from the model fit, which would also
require no prior information. Regardless, in both these cases, assumptions have been made in the
line formation in the creation of the model spectra. Both methods work very well and do not yield
very different excess fluxes. We make use of this to obtain a way to convert the excess fluxes, and
activity indices, into one another, and to find a relation for the basal flux level.



Chapter 8

Converting Activity Indices into
one another

We have already seen that there is a correlation between the excess fluxes determined in the various
lines (Chapter 4, Chapter 7). Since this correlation is so strong, we can use the determined excess
flux in one line to estimate the corresponding excess flux in another. By the same logic, data from
the Ca II IRT-lines or the Hα-line could be used to estimate a value for established activity indices,
such as SMWO or R′HK. Finding such conversion relations is the goal of this chapter. From our
sample, we will use two different methods to obtain empirical relations to find a value of one activity
indicator from the value of another. We give such equations from a direct linear regression, followed
by those found using a somewhat more complex method.
Parts of this chapter were previously published in Martin et al. [2017]. Some of the relations given
have changed very slightly: The exact selection of stars in the sample is different, which is the main
reason for this change. Additionally, there is a small degree of randomness in the second method we
are using (see below).

8.1 Rationale

For many stars, archival data for SMWO, or other indicators based on Ca II H- & K-lines, is avail-
able. This large amount of data allows determination of rotational periods and differential rotation
[Baliunas et al., 1995, Hempelmann et al., 2016]. Furthermore, it made it possible to focus on
long-term cycles in stars other than the Sun [Baliunas and Soon, 1995]. With the launch of GAIA
[Prusti, 2012], a large number of Ca II IRT-spectra are expected. These spectra do not cover the
Ca II H- & K-lines, therefore we may determine excess fluxes for the Ca II IRT, but not for the
activity indicators based on Ca II H- & K-lines. With the strong correlation between these lines, it
should be possible to convert the former into the latter, or vice versa. This allows the combination of
datasets focusing on different lines, increasing the temporal baseline for these studies dramatically.
Our large data sample of simultaneous observations of the various lines allows us to find such re-
lations. We first find them using linear regression and follow up with another approach where the
dataset is divided into smaller groups first. We describe and compare these two methods in the next
section. With the two methods explained, we will use them to find a conversion between the various
excess fluxes we obtained, as well as SMWO, R′HK and R+

HK. We will focus on the excess fluxes from
Chapter 4 and Chapter 7 separately, and describe the results in Section 8.3 and Section 8.2.3. We
will start by giving the conversion relation of the various excess fluxes (FExc,HK, FExc,IRT, FExc,Hα)
into the activity indices SMWO, R′HK and R+

HK. This is then followed by the conversion relations of
excess fluxes into the estimated excess flux in another line. Since we have noted that the amplitude
of the Gaussian fitted to the excess distributions is well-suited as an activity index, we also give
conversion relations to convert the amplitudes Af of the Gaussian fitted to the excess distribution
in one line into the corresponding value Af for another line.

85
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8.2 Methods for finding conversion relations

8.2.1 Linear regression

The first method we use to find such a conversion relation is by linear regression. Here, we will
describe the procedure. For the moment, let y be the activity index we want (e.g., FExc,HK) to
estimate from a known activity index x (e.g., FExc,IRT), so that we look for a relation y(x) (e.g., a
relation FExc,HK(FExc,IRT)). From the figures in Chapter 4 and Chapter 7, we see that the relation
is linear for a constant value of B − V . Therefore, we use the ansatz:

y(x) = m(B − V )x+ b(B − V ), (8.1)

with m as the slope and b the intercept, and both of those parameters depending on B − V . If we
consider the errors on x to be of similar order across the sample so that all values can be weighted
equally, we then find that the deviation χ2 to minimize is1:

χ2 =

N∑
i

(yi − y(xi))
2, (8.2)

where xi and yi are the i-th of N total measured values, and y(x) is our relation from Eq. (8.1).
From construction, it is apparent that χ2 can only feature a minimum. Therefore, it is sufficient to
require:

∂χ2

∂mi
=
∂χ2

∂bj
= 0,∀i, j. (8.3)

We assume that m(B − V ) and b(B − V ) can be described by polynomials of order n:

m(B − V ) =

n∑
j=0

mj(B − V )j (8.4)

b(B − V ) =

n∑
j=0

bj(B − V )j

Inserting Eq. (8.4) into Eq. (8.1), and the result into the first part of Eq. (8.3) yields the following
n equations (one for each k), where (B − V )i is the B − V value of the star the i-th measurement
was taken of:

∂χ2

∂mk
= −2

N∑
i=1

(B − V )ki xiyi (8.5)

+2

n∑
j=0

mj

N∑
i=1

x2
i (B − V )j+ki

+2

n∑
j=0

bj

N∑
i=1

xi(B − V )j+ki
!
= 0

⇔
N∑
i=1

(B − V )ki xiyi =

n∑
j=0

mj

N∑
i=1

x2
i (B − V )j+ki + (8.6)

n∑
j=0

bj

N∑
i=1

xi(B − V )j+ki

1This definition is equivalent to the standard definition of a χ2-value if all errors are set to 1.
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Likewise, from the second part of Eq. (8.3):

N∑
i=1

(B − V )ki yi =

n∑
j=0

mj

N∑
i=1

xi(B − V )j+ki + (8.7)

n∑
j=0

bj

N∑
i=1

(B − V )j+ki .

Together, Eq. (8.7) and Eq. (8.8) form a system of 2n equations linear in mj and bj . We solve this
using LU decomposition (Gaussian elimination) via the IDL procedure LA LINEAR EQUATION.
The obtained values mi, bj describe, due to their construction, the polynomial that is the best
approximation of m(B − V ) and b(B − V ). These polynomials can then be used to convert a
parameter x from our sample into the parameter y.

8.2.2 Subdividing sample into groups with similar B-V

The previous approach is highly optimized for the stars in our sample. However, the stars in our
sample are not evenly distributed across the B−V -range, as evidenced from e.g. Fig. 2.10. For this
reason, a relation found by the previous method is optimized to fit well near the regions in B − V
with many stars in our sample, at around B − V ≈ 0.65, at the cost of the less populated regions.
To fix this problem, we use a second approach to find the relation. We still assume a linear relation
y(x) = m(B − V )x + b(B − V ), with polynomial functions m(B − V ), b(B − V ) (Eq. (8.4)). We
divide the B − V range into k segments. For each of these segments, a fit is performed to find the
parameters m and b for stars only with B−V in that segment. In this way, we find k values of m and
b for each value of B − V of every segment. To take the errors into account, we use a Monte-Carlo
approach, and perform this fit a thousand times, varying the parameters x and y within their errors
each time.
The resulting k values are then fitted by a polynomial of n-th order. This gives every B−V -segment
the same weight for the fit, solving the problem of the dominance of the segment with B−V ≈ 0.65.
Due to this different approach, the resulting fit will however appear to show higher residuals than
the one before, since the sample we use for testing is the same we use for determining this relation,
and therefore features the very same B − V imbalance2. We have tested various segmentation of
the B− V -range, and have not noticed this to strongly affect the results. We are using a rather fine
segmentation, with steps of ∆B − V ≈ 0.05 for the lower end of the B − V -range to ∆B − V ≈ 0.1
for the higher B − V values. This was chosen so that no bin holds too many stars. To avoid that
the higher amount of bins near the B − V value of most stars reintroduces the sampling bias, the
weighting of the points in the fit can be adjusted.
In principle, it is possible to fit the entire data sample for every B − V segment, instead of only
fitting data from stars that fall into that B−V segment. One such option is to use a different set of
weights for the available data that depends on the segment under consideration. For example, when
considering the segment with (B − V ) = (B − V )seg, an option for the weights wi for data points of
a star with (B − V ) = (B − V )star could be:

wi ∝ exp

(
− ((B − V )seg − (B − V )star)

2

2σ2

)
, (8.8)

with some width σ chosen from the segment width. We have tried several of these weighting functions,
and have not noticed a strong effect on the resulting conversion relations. Therefore, we use the
simple approach of ignoring observations with B − V outside the currently considered segment,
which is equivalent to a boxcar weighting function. We have also experimented with automatically
determining and ignoring outliers. However, even after experimenting with different criteria for
the outlier recognition, no significant influence on the results was found. We therefore have not

2This problem can be fixed by determining the residuals from an randomly picked subsample of data points that
are evenly distributed in B − V .
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Figure 8.1: Comparing the relations for m(B − V ) (left) and b(B − V ) (right) for
FExc,HK(SMWO, B − V ) from the LR (red) and GS (blue) approach. The slope m is rather
similar, with the largest deviations in b(B−V ) occurring at the limit of the B−V range considered
here.

performed this step in the determination of the relations given below.
This approach can be extended to higher-order polynomials. In most cases, this has not been
necessary, but we have performed such a conversion in order to transform the excess flux from the
Hα-line. We give more details below.
In this approach, we have sometimes opted to fit logm as a polynomial of B − V , instead of m
directly. Using the logarithm for this parameter is commonly done in the literature, for example
by Rutten [1984]. This is especially necessary for relations that yield a flux value from an activity
indicator, as the relation for the continuum flux follow an exponential function [Hall, 1996].

8.2.3 Comparison of the two methods

Both methods yield similar relations, as expected. We recommend using the results from the latter
approach, as it does not feature the bias introduced from the uneven sample, despite the fact that
the results from the linear regression will show lower residuals, due to the testing sample showing
the same sampling bias.
To show how similar the results are, we compare the results of two relations FExc,HK(SMWO) obtained
with the two methods of linear regression (hereafter abbreviated “LR”) and the group-segmenting
approach (“GS”). Figure 8.1 shows the obtained relations for m(B− V ) and b(B− V ) from the two
approaches for the conversion of SMWO to FExc,HK. The slope m (the more important parameter of
the two) is very similar with only very little deviation (left plot in Fig. 8.1). b, on the other hand,
deviates further towards the higher and lower values of B−V . This is likely because the LR approach
yields relations optimized for the B−V region with many stars in our sample, at B−V ≈ 0.65 (see
Fig. 2.10), where the two relations are very similar. However, since this deviation in b results in an
absolute offset, the effect of this is rather limited, with less than 0.5 · 106erg s−1 cm−2 on average.

In Fig. 8.2, we plot the deviation of the two relations in the absolute (left) and relative scale
(right). The deviation is not exceeding 15 % for almost the entire region shown, which corresponds
to the error of the relations, and is therefore expected. Only at the edge of the validity range of the
relation – at high and low values for B − V – do the deviations exceed this, reaching 35 % for very
small values of SMWO and high values of B − V . For B − V higher than 0.95 and low values for
SMWO, the relative deviation becomes rather large, as the absolute values are very small. We have
cut the plot at B − V = 0.9 for this reason, as this structure would dominate the plot otherwise.
This structure is not visible in the plot of the absolute deviation. The dark band (low deviation)
corresponds to the points where both polynomials are congruent. We can conclude that in most
practical settings, it does not matter whether the relation resulting from the GS- or LR-approach
is picked, as their difference is likely small compared to the errors on the measured quantities, or
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Figure 8.2: Comparing the relations for FExc,HK(SMWO, B − V ) from the LR and GS
approach, in the absolute (left) and relative scale (right). The deviation does not exceed
the 15 % level which we give as an error (Sect. 8.3), except for the edges of the validity range
(borders). At the lower B − V values, and the lower SMWO-levels, the relative deviation is strongly
increased, due to the low value for FExc,HK at these points.

the resulting converted values. We give both for completeness’ sake, but stress again that only the
relations from the GS approach are free of sampling bias, and should therefore be picked. (despite
the nominally higher residuals). To give an indicator on the quality of the conversion, we also
determine the linear Pearson correlation (see Sect. 4.7) between converted and measured values, as
we can now expect a linear correlation (actually the identity). In the following, this value is always
very high, indicating that also the resulting distribution of the conversion is valid. For conversion
from the Hα-line excess flux, the correlation is lower at r ≈ 0.85, which is not surprising as there
was a lower degree of correlation between it and the calcium lines to begin with.

8.3 Conversion relations from the result of Chapter 4

In this section, we show the results for the conversion relations from both approaches. To determine
the quality of the conversions, we give the absolute residual value at which 68 % of points lie below,
roughly corresponding to 1σ. The errors are not truly 1σ-error values, however, as the distribu-
tion is not a Gaussian. The residuals are always given in the unit of the converted value, i.e. in
erg s−1 cm−2 for fluxes and in units of 1 for indices. Below, we then give the average, relative devi-
ation across the entire sample. To obtain these relations, HD 22468 was removed from the sample:
This star is very active, and will therefore strongly affect the linear fits performed. As there is a lot
of noise in the obtained values from its spectra, this is not desirable. The found relations are valid
for 0.5 . B − V . 1.0, and they can easily be inverted.

8.3.1 Activity indices and excess fluxes

First, we will give relations to estimate excess fluxes from known activity indices.

Estimating FExc,HK from SMWO

Here, we have started the segmenting for the GS approach only at B − V ≥ 0.5, as we found the
remaining stars to not follow a reliable linear fit, with coefficients falling within the expected ranges:
The data points scatter too much.
This relation converts a known value of SMWO, together with the B−V from the star (necessary for
conversion into flux units), into the value of the excess flux in the Ca II H- & K-lines. As we have
described before, we have fitted logm with a polynomial for the GS approach. In the LR approach,



8.3. CONVERSION RELATIONS FROM THE RESULT OF CHAPTER 4 90

Figure 8.3: Comparing the con-
verted value FExc,HK(SMWO, B − V )
to the measured value, from the
GS-approach. This plot shows the re-
sults from 2137 observations of 79 stars,
and originally appeared in Martin et al.
[2017].

Figure 8.4: Comparing the con-
verted value SMWO(FExc,IRT, B − V )
to the measured value, from the
GS-approach. This plot shows the re-
sults from 2076 observations of 76 stars,
and originally appeared in Martin et al.
[2017].

this is not an option (as the resulting set of equations would no longer be linear in mi).

FExc,HK = (m · SMWO + b) · 106 erg s−1 cm−2 Residuals

GS
logm = 1.027 + 1.718 · (B − V )− 2.440 · (B − V )2 3 · 105

b = −2.908− 0.667 · (B − V ) + 3.249 · (B − V )2 (∼ 11 %)

LR
m = 61.070− 103.516 · (B − V ) + 45.614 · (B − V )2 2.3 · 105

b = −8.399 + 13.846 · (B − V )− 6.284 · (B − V )2 (∼ 11 %)

The relations for m(B − V ) and b(B − V ) were shown already in Sect. 8.2.3, where we have
also compared them in detail. The results of this conversion are compared to the measured values
in Fig. 8.3.

Converting FExc,IRT into activity indices

We now give various relations to convert the summed-up excess flux in all three Ca II IRT-lines
FExc,IRT into SMWO, R′HK and R+

HK. If not all of the Ca II IRT-lines have been measured, the
missing excess fluxes can be estimated, we give relations to do so later. Some spectra in the sample
have a large quality difference in the red- and blue-channel. These have been removed to not affect
the results.
The result from the conversion below is shown in Fig. 8.4:
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SMWO = m · FExc,IRT/
(
erg s−1 cm−2

)
+ b Residuals

GS
logm = −6.501− 2.165 · (B − V ) + 2.264 · (B − V )2 3 · 10−2

b = 0.045 + 0.199 · (B − V )− 0.012 · (B − V )2 (∼ 6 %)

LR
m · 107 = 0.102− 1.492 · (B − V ) + 4.910 · (B − V )2 3 · 10−2

b = 0.718− 1.635 · (B − V ) + 1.203 · (B − V )2 (∼ 5 %)

To convert into R′HK:

R′HK = m · FExc,IRT/
(
erg s−1 cm−2

)
+ b Residuals

GS
logm = −10.223− 1.229 · (B − V ) + 1.136 · (B − V )2 6 · 10−6

b · 105 = −0.154− 3.639 · (B − V )− 1.516 · (B − V )2 (∼ 10 %)

LR
m · 1011 = 1.899− 1.360 · (B − V ) + 4.477 · (B − V )2 6 · 10−6

b · 105 = 4.460− 8.090 · (B − V ) + 5.739 · (B − V )2 (∼ 9 %)

And to convert into R+
HK:

R+
HK = m · FExc,IRT/

(
erg s−1 cm−2

)
+ b Residuals

GS
logm = −10.252− 1.141 · (B − V ) + 1.042 · (B − V )2 5.5 · 10−6

b · 105 = −4.61 + 13.34 · (B − V )− 7.53 · (B − V )2 (∼ 11 %)

LR
m · 1011 = 4.940− 9.559 · (B − V ) + 9.774 · (B − V )2 5.0 · 10−6

b · 105 = −2.019 + 6.933 · (B − V )− 3.708 · (B − V )2 (∼ 9 %)

As expected, the relations for m(B − V ) look very similar for the conversion to R′HK and R+
HK, as

these indicators only differ in the additional correction of the small basal flux contribution. This is
also true for the relation derived using LR: Inserting numbers reveals that along the B − V -validity
interval, the relations m(B − V ) are very similar. The results from these conversions are compared
in Fig. 8.5.

Figure 8.5: Comparing the converted values of R′HK (left) and R+
HK (right), as a function

of FExc,IRT and B− V to the measured value, from the GS-approach. These plots show the
results from 2076 observations of 76 stars, and originally appeared in Martin et al. [2017].

Converting FExc,Hα into activity indices

The relations to convert the excess flux in the Hα-line into SMWO, R′HK and R+
HK were obtained in

the same way, with the same segmenting in the GS approach as before:
SMWO = m · FExc,Hα/

(
106erg s−1 cm−2

)
+ b Residuals

GS
logm = −4.651 + 9.166 · (B − V )− 4.536 · (B − V )2 5 · 10−2

b = 0.447− 0.839 · (B − V ) + 0.711 · (B − V )2 (∼ 14 %)

LR
m = 1.017− 4.038 · (B − V ) + 4.340 · (B − V )2 5 · 10−2

b = 0.458− 8.000 · (B − V ) + 6.616 · (B − V )2 (∼ 13 %)
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R′HK = m · FExc,Hα/
(
106erg s−1 cm−2

)
+ b Residuals

GS
logm = −8.267 + 9.942 · (B − V )− 5.672 · (B − V )2 1.5 · 10−5

b · 105 = 2.032 + 1.469 · (B − V )− 0.599 · (B − V )2 (∼ 23 %)

LR
m · 104 = 1.194− 4.113 · (B − V ) + 4.789 · (B − V )2 1.2 · 10−5

b · 105 = 1.164 + 5.040 · (B − V )− 3.442 · (B − V )2 (∼ 19 %)

R+
HK = m · FExc,Hα/

(
106erg s−1 cm−2

)
+ b Residuals

GS
logm = −10.606 + 17.009 · (B − V )− 10.786 · (B − V )2 1.5 · 10−5

b · 105 = 0.121 + 4.500 · (B − V )− 2.602 · (B − V )2 (∼ 30 %)

LR
m · 104 = 1.527− 4.991 · (B − V ) + 5.342 · (B − V )2 1.2 · 10−5

b · 105 = −3.176 + 1.454 · (B − V )− 9.634 · (B − V )2 (∼ 23 %)

8.3.2 Converting excess fluxes in one line to the excess flux in another
line

Since the excess fluxes in the different lines are strongly correlated, we can convert them into one
another. This is the focus of this section.

Estimating the excess flux in groups of lines from an individual line

The Ca II H- & K-lines are very well correlated. The K-line shows higher levels of flux, and we
have found its flux to be about 33 % higher than the one in the H-line. This value is very close
to the value of 27% observed by Wilson [1968]. Since they are so close to each other, we find no
B − V -dependency, so the GS-approach is not appropriate. The result is then:

FExc,K = 1.332 · FExc,H.

We present the relations to convert the Ca II IRT-lines into each other in Table 8.1. Here, too, the
relations are independent of B − V .

Conversion of excess fluxes in various lines into one another

We find that there is no need for an intercept b for the conversions from FExc,IRT to FExc,HK. The
relation we find is:

FExc,HK = 100.606−0.612·(B−V ) · FExc,IRT, (8.9)

with residuals of about 3.7 · 105erg s−1 cm−2, a relative error of about 20 %. The converted values
are compared to the observed excess fluxes in Fig. 8.6. For completeness’ sake, this same relation
in continuum units is:

FExc,HK = (−0.085 + 1.402 · (B − V )) · FExc,IRT, (8.10)

Table 8.1: Relations to estimate the excess flux in one Ca II IRT-line from measurements
of another. The errors of such a conversion are about 30 000 erg s−1 cm−2. This is a differently
formatted version of a table that originally appeared in Martin et al. [2017]. These are the conversions
obtained by using the results from comparing spectra to those of inactive stars (Chapter 4).

Source line
Target Flux

FExc,IRTλ8498 = FExc,IRTλ8542 = FExc,IRTλ8662 =

Ca II IRT λ8498 1.232 · FExc,IRTλ8498 1.006 · FExc,IRTλ8498

Ca II IRT λ8542 0.801 · FExc,IRTλ8542 0.808 · FExc,IRTλ8542

Ca II IRT λ8662 0.976 · FExc,IRTλ8662 1.210 · FExc,IRTλ8662
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Figure 8.6: Comparison of the
values for FExc,HK, converted from
FExc,IRT, to the measured ones.

Figure 8.7: The best quadratic fit
(red line) to the obtained excess
fluxes of the Hα-line and the sum
of the Ca II IRT-lines. Unlike the
other relations, this one appears to be
quadratic rather than linear. The best
fit is given in Eq. (8.12).

with residuals of about 60 mÅ.
We have removed an additional ten stars from the sample to obtain the conversions with the Hα-line
involved, as for these ten stars, the excess flux in the Hα-line found showed no variation, indicating
that the comparison could not have been done reliably. We have already noted that the relation
between the Hα-line and the calcium lines does not appear to follow a linear relation. In our
tests, a second-order polynomial fits the relation better than the typical linear one (with coefficients
dependent on B − V ), as is evident in Fig. 8.7, where we exemplary show the best quadratic fit to
one dataset. These best fits are:

FExc,Hα = 0.010 · 106erg s−1 cm−2 + 0.092 · FExc,HK + (8.11)

0.038 · F 2
Exc,HK/

(
106erg s−1 cm−2

)
FExc,HK = 0.483 · 106erg s−1 cm−2 + 4.178 · FExc,Hα −

0.806 · F 2
Exc,Hα/

(
106erg s−1 cm−2

)
,

for the conversion between the Hα-line and Ca II H- & K-lines, and

FExc,Hα = 0.026 · 106erg s−1 cm−2 + 0.081 · FExc,IRT + (8.12)

0.140 · F 2
Exc,IRT/

(
106erg s−1 cm−2

)
FExc,IRT = 0.257 · 106erg s−1 cm−2 + 2.672 · FExc,Hα −

0.590 · F 2
Exc,Hα/

(
106erg s−1 cm−2

)
.



8.3. CONVERSION RELATIONS FROM THE RESULT OF CHAPTER 4 94

The residuals of these conversions are about 0.56·106erg s−1 cm−2 for converting to FExc,HK from the
Hα-line, and 0.14 · 106erg s−1 cm−2 when converting to FExc,Hα from the Ca II H- & K-lines. For the
relations given in Eq. 8.12, the respective residuals are about 0.15 · 106erg s−1 cm−2 for converting
to FExc,Hα from the Ca II IRT-lines, and 0.40 ·106erg s−1 cm−2 for converting to FExc,IRT. The ratio
of these errors roughly correspond to the ratio of the excess flux in the lines.
We have also performed a GS approach for such a quadratic polynomial, i.e. finding the coefficients
ci in a relation of the form

y = c0(B − V ) + c1(B − V ) · x+ c2(B − V ) · x2, (8.13)

with x and y for the respective excess fluxes. This slightly improves the relation, however, the large
scatter makes it difficult to reliably determine ci(B − V ). The best result from this approach shows
residuals of about 0.13 ·106erg s−1 cm−2 for the conversion FExc,Hα(FExc,IRT, B−V ), and is given in
Table 8.2. As an example, we compare the conversion from FExc,Hα to FExc,IRT from this approach
(right) and the simple parabola fit to the entire sample according to Eq. (8.12) (left) in Fig. 8.8.
The linear Pearson correlation coefficient is now 0.94, an improvement to the value of 0.92 obtained
from the simple relations in Eq. (8.12), indicating that the conversion was improved as it is now
closer to the ideal linear relation and shows less spread, but at the cost of higher residuals at lower
values. For the conversion to Ca II H- & K-lines, the Pearson correlation coefficient is lower than
before, namely r ≈ 0.88. The resulting relations for the excess fluxes of the other lines are also given
in Table 8.2.

Figure 8.8: Comparing the converted values of FExc,Hα from FExc,IRT to the observed value,
converted from Eq. (8.12) (left) and the advanced GS-approach (right). The advanced
GS approach yields slightly better results overall, but the simpler approach gives better results at
low values. Shown is the data of 2076 observations from 76 stars.

8.3.3 Conversion of the amplitude of Gaussians fitted to the excess dis-
tribution

We now give relations for the amplitude Af of the Gaussian that we fitted to the excess distribution
(see Sect. 3.6). Here, we only give the relations for the fitted amplitude in erg s−1 cm−2 Å−1. The
parameter Af is originally determined in units of the continuum, but later converted to these units
using the relations from Hall [1996]. As we have now established that there is no major difference
between the relations from the two approaches LR and GS (Sect. 8.2.3), we only show the results
of the latter in this Section. Again, we find no intercept b necessary. The relations we find are:

Af,HK = 100.708+0.218·(B−V )Af,Hα, (8.14)

with residuals of 8 · 1013 (∼ 24 %). To convert from the Ca II IRT-line data:

Af,HK = 100.754−0.576·(B−V )Af,IRT, (8.15)
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Table 8.2: Relations to convert the excess flux in the Hα-line to the value in the Ca II H-
& K-lines and Ca II IRT-lines, and vice-versa. These relations have been determined using
the GS-approach. Residuals and fluxes are given in erg s−1 cm−2, and must be entered in these units
as well.

FExc,Hα = c0(B − V ) + c1(B − V ) · FExc,HK + c2(B − V ) · F 2
Exc,HK Residuals

c0 = 1.942 · 106 − 5.035 · 106(B − V ) + 3.141 · 106(B − V )2 1.6 · 105

c1 = −6.996 · 10−1 + 2.166(B − V ) − 1.413(B − V )2 (∼26 %)
c2 = 2.338 · 10−7 − 5.785 · 10−7(B − V ) + 4.024 · 10−7(B − V )2

FExc,HK = c0(B − V ) + c1(B − V ) · FExc,Hα + c2(B − V ) · F 2
Exc,Hα Residuals

c0 = −1.304 · 106 + 5.892 · 106(B − V ) − 4.420 · 106(B − V )2 5.9 · 105

c1 = 1.606 · 10−1 + 1.010 · 101(B − V ) − 5.637(B − V )2 (∼23 %)
c2 = 7.179 · 10−7 − 4.698 · 10−6(B − V ) + 3.109 · 10−6(B − V )2

FExc,Hα = c0(B − V ) + c1(B − V ) · FExc,IRT + c2(B − V ) · F 2
Exc,IRT Residuals

c0 = 1.848 · 105 − 4.452 · 105(B − V ) + 3.134 · 105(B − V )2 1.2 · 105

c1 = 1.484 − 3.065(B − V ) + 1.414(B − V )2 (∼25 %)
c2 = −2.572 · 10−7 + 7.619 · 10−7(B − V ) − 2.658 · 10−7(B − V )2

FExc,IRT = c0(B − V ) + c1(B − V ) · FExc,Hα + c2(B − V ) · F 2
Exc,Hα Residuals

c0 = 2.354 · 106 − 4.915 · 106(B − V ) + 2.684 · 106(B − V )2 3.5 · 105

c1 = −7.207 + 2.321 · 101(B − V ) − 1.196 · 101(B − V )2 (∼19 %)
c2 = 3.601 · 10−6 − 9.944 · 10−6(B − V ) + 5.203 · 10−6(B − V )2

with residuals of 6 · 1013 (∼ 20 %). The last relation is:

Af,Hα = 100.098−0.887·(B−V )Af,IRT, (8.16)

with residuals of 1.2 · 1013 (∼ 26 %).
For all of these, the linear Pearson correlation coefficient is larger than 0.9, indicating a good con-
version.

8.4 Conversion relations from result of Chapter 7

We can now obtain the conversion relations in the same fashion, using the LR and GS method,
but with the data sample obtained in Chapter 7. The major differences are that the excess fluxes
determined in Chapter 7 include a basal flux, and that the flux scale is defined by PHOENIX model
spectra. Since the stars analyzed in that chapter cover a smaller range in B− V , some segments for
the GS-approach previously used are not in use here. For the same reason, these relations are only
valid for 0.5 . B − V . 0.8.

8.4.1 Activity indices and excess fluxes

As we have done before, we can estimate the excess flux from activity indices, and vice versa. We
give relations to do so here.

Estimating FExc,HK from SMWO

For the GS approach, we are using the same B−V segments that we have used previously described
in Section 8.2.2. The resulting relation for FExc,HK(SMWO, B − V ) is very similar, as expected, and
shows a Pearson linear correlation coefficient of 0.99 between converted and measured values. The
higher value of ρPearson is most likely due to the smaller range covered in B−V , as well as the overall
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lower noise in the data. The relations that we find are given by:

FExc,HK = (m · SMWO + b) · 106 erg s−1 cm−2 Residuals

GS
logm = 1.047 + 1.505 · (B − V )− 2.191 · (B − V )2 2 · 105

b = −0.790− 8.641 · (B − V ) + 11.085 · (B − V )2 (∼ 14 %)

LR
m = 16.360 + 21.637 · (B − V )− 42.042 · (B − V )2 2 · 105

b = −2.655− 1.283 · (B − V ) + 4.216 · (B − V )2 (∼ 13 %)

Figure 8.9: Comparing the converted values of FExc,HK from SMWO to the observed value,
converted from the LR approach (left) and the advanced GS-approach (right). The
excess values used are from Chapter 7, and therefore also include the chromospheric basal flux.
Both methods yield very similar conversion results.

In Fig. 8.9, the results of these conversions are compared to the measured values. Independent of the
approach used, the congruence of converted to measured values is very good, as expected from the
high value of ρPearson. There is a somewhat higher spread in the conversion from the GS approach,
but not by much. This is evidenced in the almost identical relative deviation (14 % vs. 13 %), which
is expected to be higher for the GS approach anyway, due to it optimizing without taking the bias
from the irregular sampling in B − V into consideration.

Conversion of FExc,IRT into activity indices

Just like before, we can use the data to obtain relations to convert the combined excess flux in the
Ca II IRT-lines to activity indicators. The values for FExc,IRT also include the chromospheric basal
flux here. We disregard the data points from spectra that are classified as “inactive” according to
the criterion from Henry et al. [1996], as their low excess level compared to the noise introduce
a lot of scatter. Since they also fall into the extreme lower end of the fitting range, they have a
comparatively high weight on the linear fits, which is not desirable due to their scatter. The flux is
expected to be entered in units of erg s−1 cm−2 in these relations. The relations to find a value for
SMWO are given by:

SMWO = m · FExc,IRT/
(
erg s−1 cm−2

)
+ b Residuals

GS
logm = −8.380 + 3.422 · (B − V )− 1.894 · (B − V )2 2 · 10−2

b = 0.602− 1.461 · (B − V ) + 1.234 · (B − V )2 (∼ 6 %)

LR
m · 107 = 1.721− 5.216 · (B − V ) + 6.753 · (B − V )2 2 · 10−2

b = 0.409− 7.836 · (B − V ) + 6.234 · (B − V )2 (∼ 6 %)

The coefficients appear to differ strongly from the ones for the same conversion when using the
values from Chapter 4, however, the resulting values for m and b, if a value B − V in the validity
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range is inserted, do not differ much. The remaining difference can be traced back to the different
flux scale and basal flux. The relations we find to convert the excess flux into R′HK are given by:

R′HK = m · FExc,IRT/
(
erg s−1 cm−2

)
+ b Residuals

GS
m · 1011 = 1.158 + 2.080 · (B − V ) 7 · 10−6

b · 105 = 2.317− 0.320 · (B − V ) (∼ 9 %)

LR
m · 1011 = 3.587− 5.577 · (B − V ) + 6.803 · (B − V )2 6 · 10−6

b · 105 = 8.673− 21.165 · (B − V ) + 15.751 · (B − V )2 (∼ 9 %)

We have fitted m here in the GS approach, rather than logm like we did earlier. This resulted in a
better fit to the data, though the deviations between converted and measured values are of a similar
order if m is we fit a relation to m(B − V ) instead. Finally, the conversion to R+

HK is given by:

R+
HK = m · FExc,IRT/

(
erg s−1 cm−2

)
+ b Residuals

GS
logm = −10.860 + 0.396 · (B − V ) 7 · 10−6

b · 105 = 1.317− 5.083 · (B − V ) (∼ 12 %)

LR
m · 1011 = 3.597− 5.612 · (B − V ) + 6.831 · (B − V )2 6 · 10−6

b · 105 = 7.698− 20.977 · (B − V ) + 15.816 · (B − V )2 (∼ 12 %)

The relations are rather similar again. However, due to the additional correction for the basal flux
from the R+

HK relation by Mittag et al. [2013], which is a logarithmic function of B − V , we now
find a better fit for logm. The converted values according to these relations are compared to the
measured values in Fig. 8.10.

Figure 8.10: Comparing the measured values for the activity indices SMWO (left), R′HK

(middle) and R+
HK (right) to the one converted from FExc,IRT (obtained by comparing to

PHOENIX model spectra). The conversion relations used were obtained using the GS approach.

Conversion of FExc,Hα into activity indices

The Hα-line and the calcium lines show a comparatively lower correlation. We can still find relations
to convert their excess fluxes into one another. The correlation between the Hα-line excess flux and
SMWO is also comparatively low, with ρ ≈ 0.612, even after disregarding stars with low activity.
For this reason, and due to the rather high relative errors (relative errors in excess of 40 % and even
higher are not uncommon), the resulting conversion is rather poor, with a median relative deviation
of converted to measured values of almost 20 %. Because the relative errors are so high (an effect ex-
aggerated due to our conservative estimates) we have used fewer segments, so that more data points
are included in each segment. We have additionally opted to not use the Monte Carlo approach for
these conversions, and to not vary the found data points within their errors. We are underestimating
the resulting error on the coefficients by not using this approach, but since we estimate the error
on the conversion from the residuals, this problem is not severe. The GS-approach further limits
its sampling for each step in B − V , so the large amount of data does not fully alleviate this issue.
The LR algorithm is less sensitive to the high level of noise in the data. The overall rather poor
quality of this conversion is still evident, e.g. from the fact that m(B−V ) may become negative for
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B − V . 0.45, which is highly unphysical. The result is then given by:

SMWO = m · FExc,Hα/
(
erg s−1 cm−2

)
+ b Residuals

GS
m · 106 = −0.803 + 2.943 · (B − V )− 2.008 · (B − V )2 5 · 10−2

b = 0.654− 1.644 · (B − V ) + 1.293 · (B − V )2 (∼ 12 %)

LR
m · 106 = −1.799 + 6.016 · (B − V )− 4.324 · (B − V )2 4 · 10−2

b = 1.491− 4.519 · (B − V ) + 3.721 · (B − V )2 (∼ 11 %)

While typical residuals (in the sense of 68 % of points falling below this value) are about 0.04, about
∼ 4 % of points show large errors in excess of 0.1. The results of the conversion are compared to the
measured values for both approaches in Fig. 8.11.

Figure 8.11: Comparing the measured values for SMWO to the one converted from FExc,Hα

(obtained by comparing to PHOENIX model spectra), with the conversion relations
from the LR approach (left) and the GS approach (right). This conversion is of overall
lower quality than e.g. those shown in Fig. 8.10, due to the high relative errors on the determined
excess fluxes on the Hα-line.

We obtain the following relations for converting to R′HK and R+
HK by performing the same steps as

above:

R′HK = m · FExc,Hα/
(
erg s−1 cm−2

)
+ b Residuals

GS
m · 1010 = −1.852 + 7.052 · (B − V )− 4.939 · (B − V )2 1.2 · 10−5

b · 104 = 1.474− 4.221 · (B − V ) + 3.200 · (B − V )2 (∼ 19 %)

LR
m · 1010 = −5.389 + 1.883 · (B − V )− 1.460 · (B − V )2 1.2 · 10−5

b · 104 = 3.501− 11.187 · (B − V ) + 9.088 · (B − V )2 (∼ 18 %)

R+
HK = m · FExc,Hα/

(
erg s−1 cm−2

)
+ b Residuals

GS
m · 1010 = −1.848 + 7.043 · (B − V )− 4.935 · (B − V )2 1.2 · 10−5

b · 104 = 1.372− 4.179 · (B − V ) + 3.180 · (B − V )2 (∼ 24 %)

LR
m · 1010 = −5.392 + 1.884 · (B − V )− 1.461 · (B − V )2 1.2 · 10−5

b · 104 = 3.406− 1.117 · (B − V ) + 9.099 · (B − V )2 (∼ 23 %)

8.4.2 Estimation of excess fluxes from other excess fluxes

Estimating the excess flux in groups of lines from an individual line

Just like with the results using the determined excess fluxes from Chapter 4, we find that the K-line
shows about 33 % more flux, just like before, again with no B − V dependency:

FExc,K = 1.332 · FExc,H.
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Table 8.3: Relations to estimate the excess flux in one Ca II IRT-line from measurements
of another. The errors of such a conversion are about 30 000 erg s−1 cm−2. Given here are the
conversions obtained using the results from the comparison of spectra to PHOENIX model spectra
(Chapter 7).

Source line
Target Flux

FExc,IRTλ8498 = FExc,IRTλ8542 = FExc,IRTλ8662 =

Ca II IRT λ8498 1.021 · FExc,λ8498 1.051 · FExc,λ8498

Ca II IRT λ8542 0.943 · FExc,λ8542 1.007 · FExc,λ8542

Ca II IRT λ8662 0.926 · FExc,λ8662 0.959 · FExc,λ8662

We present the relations to convert the Ca II IRT-lines into each other in Table 8.3. The relations
are again independent of B−V . Some of them have changed notably from earlier (Table 8.1). These
changes all incorporate the second Ca II IRT-line. This line shows the lowest degree of correlation
to the other two lines (Table 7.4), suggesting that this line may suffer from systematic errors, for
example from errors on the PHOENIX line profile.

Conversion of excess fluxes in various lines into one another

Previously, we set no intercept b for the conversion between the excess fluxes of the Ca II H- & K-
lines and the Ca II IRT-lines, which we argued was unnecessary from the definition of the excess
flux. However, the excess fluxes considered in this section include a basal flux contribution, which
acts like a B − V -dependent offset. Therefore, we require an intercept b here. Due to their high
noise level, we additionally ignore excess fluxes from HD 2454. We obtain the following relations:

FExc,HK = m · FExc,IRT + b Residuals

GS
logm = −0.539 + 2.650 · (B − V )− 2.333 · (B − V )2 3 · 105

b · 10−6 = 5.833− 18.122 · (B − V ) + 14.602 · (B − V )2 (∼ 11 %)

LR
m = 0.215 + 5.440 · (B − V )− 5.222 · (B − V )2 3 · 10−2

b · 10−6 = 3.964− 1.213 · (B − V ) + 9.852 · (B − V )2 (∼ 11 %)

Figure 8.12: The results of the conversion of the excess flux in the Hα-line into the
corresponding summed-up excess fluxes of the Ca II H- & K-lines and Ca II IRT-lines.
The conversion relations used are summarized in Table 8.4.

For the Hα-line, there are now only a few stars available with significantly higher levels of excess
flux. Therefore, using a quadratic fit in the GS approach that we introduced in Sect. 8.3.2 does
not significantly improve the results. Its result shows very similar (yet slightly better) residuals.
However, since the overall dependency appears closer to quadratic than linear, we model the relation
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Table 8.4: Relations to convert the excess flux in the Hα-line to the value in the Ca II H-
& K-lines and Ca II IRT-lines, and vice-versa. These relations were obtained with the GS-
approach. Residuals and fluxes are given in erg s−1 cm−2, and must be entered in these units as
well.

FExc,Hα = c0(B − V ) + c1(B − V ) · FExc,HK + c2(B − V ) · F 2
Exc,HK Residuals

c0 = −3.711 · 104 + 1.461 · 106 ∗ (B − V ) − 1.533 · 106 ∗ (B − V )2 1.3 · 105

c1 = 1.043 − 2.582 · (B − V ) + 1.750 · (B − V )2 (∼15 %)
c2 = −3.021 · 10−7 + 8.430 · 10−7 ∗ (B − V ) − 5.309 · 10−7 ∗ (B − V )2

FExc,HK = c0(B − V ) + c1(B − V ) · FExc,Hα + c2(B − V ) · F 2
Exc,Hα Residuals

c0 = 5.179 · 106 − 1.632 · 107(B − V ) + 1.203 · 107(B − V )2 6.4 · 105

c1 = −1.478 + 1.191 · 10+1(B − V ) − 5.514(B − V )2 (∼26 %)
c2 = −8.993 · 10−6 + 2.955 · 10−5(B − V ) − 2.413 · 10−5(B − V )2

FExc,Hα = c0(B − V ) + c1(B − V ) · FExc,IRT + c2(B − V ) · F 2
Exc,IRT Residuals

c0 = 1.708 · 105 + 7.637 · 105(B − V ) − 9.607 · 105(B − V )2 1.3 · 105

c1 = 1.927 − 4.231(B − V ) + 2.603(B − V )2 (∼15 %)
c2 = −1.087 · 10−6 + 2.787 · 10−6(B − V ) − 1.690 · 10−6(B − V )2

FExc,IRT = c0(B − V ) + c1(B − V ) · FExc,Hα + c2(B − V ) · F 2
Exc,Hα Residuals

c0 = 1.122 · 106 − 4.216 · 106(B − V ) + 3.309 · 106(B − V )2 3.7 · 105

c1 = −1.803 + 9.789(B − V ) − 5.669(B − V )2 (∼31 %)
c2 = −1.052 · 10−6 + 4.184 · 10−6(B − V ) − 3.765 · 10−6(B − V )2

in that way. The relations we find are summarized in Table 8.4. We give two examples of the
conversion results in Fig. 8.12.

Converting fitted amplitudes

We end this section by giving relations for the amplitudes Af of the Gaussians fitted to the excess.
Like before, we only give the relations for the amplitudes in units of erg s−1 cm−2 Å−1.

Af,HK = m(B − V ) ·Af,Hα + b(B − V ), with (8.17)

logm = −2.256 + 8.419 · (B − V )− 5.826 · (B − V )2

b · 10−15 = 1.536− 5.097 · (B − V ) + 3.831 · (B − V )2.

This conversion yields residuals of 1 · 1014 (∼26 %). This high value is due to the rather poor
correlation between the amplitudes of the fitted Gaussians in the two lines. To convert from the
Ca II IRT-line data:

Af,HK = m(B − V ) ·Af,IRT + b(B − V ), with (8.18)

logm = −0.477 + 3.079 · (B − V )− 2.645 · (B − V )2

b · 10−15 = 1.263− 4.299 · (B − V ) + 3.604 · (B − V )2.

The residuals for this conversion are 4.8 · 1013 (∼11 %). Finally, we have:

Af,Hα = m(B − V ) ·Af,IRT + b(B − V ), with (8.19)

logm = −0.099− 1.508 · (B − V ) + 1.409 · (B − V )2

b · 10−14 = 1.678− 1.996 · (B − V ) + 26.01 · (B − V )2.

Here, the residuals are 1.7 · 1013 (∼ 11 %).
The linear Pearson correlation coefficient is always larger than 0.85, which is lower than before, but
still high enough to argue that the converted values can be used as estimate for the real one.
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8.5 Summary and choice of conversion relations

We have made use of the good correlation between the various activity indices and excess fluxes to
find relations to convert them into one another. To eliminate sampling bias, we have introduced
the “Group segmenting” (GS) approach, which do not alter the results significantly (as our tests
suggest), but by construction should eliminate some of the sampling bias. This is important, as it
is rather significant otherwise. The relations found are valid for 0.5 . B − V . 1.0 for Sect. 8.3,
but only up to B − V ≈ 0.8 for the relations from Sect. 8.4. The reason for this is the incomplete
coverage of the PHOENIX model grid used for the excess determination.
This leaves the question which relation one should use to convert activity indices. First, this depends
on which value should be converted. If they obtained their excess flux by comparing to an inactive
star, then no basal flux is included, and the relations given first, in Sect. 8.3 should be used. On the
other hand, if the excess still includes a basal flux component, then the relations from Sect. 8.4 are
the better choice. The relations marked “LR” are suffering from sampling bias, as no effort was made
to correct the fact that most stars are close to B−V ≈ 0.65, while there are only comparatively few
with higher B − V . This suggests that these relations yield more accurate results when converting
values of a star with B − V ≈ 0.65 region. Therefore, if values of stars with B − V very similar
to B − V ≈ 0.65 should be converted, then these relations are the better choice. On the contrary,
if a larger sample is considered, then the relations marked “GS” should be used, as the underlying
procedure fixes this bias. However, the difference between the two relations is rarely significantly
higher than the errors on the excess fluxes we used.
Note that the relations from Sect. 8.3 and Sect. 8.4 use different flux scales. While the difference is
only ∼5-10 % , as shown in Sect. 7.4, an error from this can easily be avoided, and even corrected,
using the relations we gave in the same section.
For activity studies, an excess flux that does not include the basal flux is more desirable. Therefore,
if none of the previously mentioned arguments are of importance, then this final argument suggests
to use the relations from Sect. 8.3.
A short overview on how to use the code written for obtaining these conversions is given in the
appendix, Sect. A.3
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Chapter 9

Obtaining the Chromospheric
Basal Flux

So far, we were most interested in the chromospheric excess flux as a possible indicator for stellar
activity. However, not all of the chromospheric contributions are related to magnetic activity. In
Schrijver [1987], the concept of a chromospheric basal flux was introduced: Even the most inactive
stars show a residual flux level that stems from the chromosphere.
We have acquired a large sample of excess flux values, some of which include a chromospheric basal
flux contribution. By analyzing this sample in detail, or by comparing to the set without the basal
flux contribution, we can estimate the basal flux in the lines we have analyzed. In this chapter, we
perform this determination using our dataset with a variety of different methods, after performing
a simple check and determination with a comparison of literature values. We will also compare the
relations we have found to a number of relations given in the literature.

9.1 Basal flux relations given in the literature

There are some basal flux relations available in the literature. In most cases, these relations are
obtained by finding a relation that fits the lower envelope of the measured flux in the lines of
a large sample of stars. The most inactive stars will make up the lower envelope, as they show
only photospheric and chromospheric basal flux, but no additional flux component stemming from
magnetic activity. If the photospheric flux in the line is known, this component can be subtracted,
leaving only chromospheric contributions. The lower envelope of this sample is then just the basal
flux. This method was used for example by Mittag et al. [2013], where the authors used PHOENIX
model spectra to determine a relation for the photospheric flux, and subtracted that value from an
estimated total line flux in the Ca II H- & K-lines. Combining their photospheric relation with the
lower envelope of the total line flux given by Rutten [1984] or Rutten et al. [1991] similarly yields
such a relation. Other authors used a different approach we will use as well: By subtracting model
spectra directly from observed spectra, only the chromospheric contributions remain. The lower
envelope then estimates the basal flux contribution. This was done e.g. in Pérez Mart́ınez et al.
[2014b], and yields a simple relation for logFCa II H&K as a function of log Teff . Unlike our model
spectra (Chapter 5), their models are strictly LTE, which affects the absolute flux scale in use, or
the region in which the Ca II H- & K-lines lie. Additionally, only 25 stars are used to make up their
lower envelope, distributed among all luminosity classes, leaving only a small fraction of that sample
of main sequence stars. While their data quality is higher (they use UVES data) in the sense of
higher SNR than most of the TIGRE spectra we are using, our larger data sample, as well as better
model spectra suggest that we can improve on their relation.
Finally, Fawzy [2015] used another approach: They try to model the basal flux theoretically. They
find a simple linear relation logFCa II H&K(log Teff), by modeling the energy deposited by acoustic
waves into the chromosphere.
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Figure 9.1: Comparing var-
ious relations for the basal
flux FBasal,HK from the lit-
erature. The relation by
Rutten et al. [1991] has been
interpolated from its low orig-
inal resolution for better visu-
alization.

The general shape of these relations is similar, but there are still some deviations between them.
These are especially noteworthy, as we work on a logarithmic flux scale here. Figure 9.1 shows all
the relations in the B−V -region that we consider here. Especially the early lower envelopes used by
Rutten [1984] and Rutten et al. [1991] show a clear rise towards higher temperatures (lower B−V ),
for B − V . 0.4. In the paper by Rutten et al. [1991], only one data point is given for this region.
In their other paper, there is no such step visible, unless the photospheric contribution is removed.
The other, more modern relations do not show this trend, and all agree well with each other.
Note that all these relations are only for the basal flux in both Ca II H- & K-lines. We will also
attempt to find relations for the other lines we have considered in this work, including each of the
Ca II H- & K-lines individually. This process is difficult, however, as the low values of the basal flux
within them, combined with the high noise in many of the determined excess flux values will result
in large errors. In that sense, the relations we will find can definitely be improved upon by using
spectra with higher SNR.

9.2 Finding the basal flux by comparison of our results to
literature values

Parts of this section were previously published in Martin et al. [2017].
The excess flux determined in Chapter 4 does not include a basal flux contribution, so one might
assume that it is impossible to obtain a value for the basal flux contribution just from this dataset.
While it is true that the excess flux from Chapter 7 is better suited for this purpose, we can make
use of relations from the literature to obtain a rough estimate. The flux in the line is made up of the
three components of a photospheric flux Fphot, the chromospheric basal flux Fchrom,basal and finally,
the activity-related flux Fchrom,act, so that we can write:

FLine = Fphot + Fchrom,basal + Fchrom,act. (9.1)

There are several relations available in the literature to estimate this value from a known value for
SMWO and the star’s B − V . The excess flux from Chapter 4 was determined from subtracting the
value of FLine of an inactive star to the value for an active star. If we assume that the inactive star
is fully inactive, then is has Fchrom.act = 0. Since the comparison star was chosen to be as similar
as possible to the active target star, it should have the same photospheric Fphot and chromospheric
basal flux Fchrom.basal. Therefore, the remaining excess flux determined is simply Fchrom.act. We
can now perform the steps in opposite order: We can calculate FLine using a literature relation
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Figure 9.2: Photospheric
and basal flux, deter-
mined from a compari-
son of the excess flux, ob-
tained by comparing to in-
active stars, to the en-
tire line flux calculated ac-
cording to Rutten [1984].
We compare the resulting best
fit (dotted line) to the rela-
tion from Mittag et al. [2013]
(dashed line). This plot shows
the average measured values
for 82 stars. This plot was
previously published in Mar-
tin et al. [2017].

by inserting that spectrum’s SMWO, and then subtract the determined excess flux, which is just
Fchrom.act. The remainder will then be the photospheric and chromospheric basal flux contribution.
Performing this operation using the relations from Rutten [1984] for the total line flux according to
Eq. (9.1), we end up with the result shown in Fig. 9.2, where we also compare this to the relation
from Mittag et al. [2013]. The two relations are rather similar, with only a slight offset between
the two for most of the B − V -region covered. The two relations start to differ more significantly
only at about B − V ≈ 1.0. The relation from Mittag et al. [2013] is defined in steps, with one
such step occurring at B − V = 0.94. From our data, it appears that the continued linear fit is a
better match. However, we do not have many data points beyond this point, so we cannot make any
definite statement, considering that in Mittag et al. [2013], such datasets were available. Regardless,
the best fit to the data is found to be

log (Fphot,HK + Fbasal,HK) = 7.42− 1.81 · (B − V ). (9.2)

This also includes the photospheric contribution, which we expect to be larger than the chromo-
spheric basal flux. However, we can go one step further by using a relation for only the photospheric
flux. One such relation is given in Mittag et al. [2013] as:

logFphot,HK = 7.49− 2.06 · (B − V ). (9.3)

Subtracting Eq. (9.3) from Eq. (9.2), we find the relation for just the basal flux contribution:

Fbasal,HK = 107.42−1.81·(B−V ) − 107.49−2.06·(B−V ) (9.4)

⇒ logFbasal,HK ≈ 6.26− 1.094 · (B − V ) (9.5)

We have performed a Taylor series around B − V = 0.8 (close to the center of the range covered)
in the last step. We show both relations in Fig. 9.3, from where it is apparent that the relation in
Eq. (9.4) is well described by the Taylor approximation given in Eq. 9.5. The relation Eq. (9.4)
shows somewhat unexpected behavior as it falls towards lower basal fluxes when B − V goes below
0.5. The other relations found do not show this behavior. Therefore, it is likely an artifact from the
fit in Eq. (9.2) being less reliable at the lower end of our B − V range. The overall match of this
relation to the ones from the literature is pretty good, and it falls between the simple relations linear
in log Teff [Fawzy, 2015, Pérez Mart́ınez et al., 2014b] and the point-wise defined one by [Rutten,
1984, Rutten et al., 1991].
This method relies heavily on relations from other sources. However, those may introduce systematic
errors, as the fluxes estimated from external relations may use differently determined flux scales.
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Figure 9.3: Comparing
the relation for the basal
flux in the Ca II H- & K-
lines given in Eq. 9.4
(black line) and its Taylor
approximation to first or-
der Eq. (9.5) (red line) to
the various literature rela-
tions given in Sect. 9.1.

Such errors may very well be of the order of the basal flux level. These results may therefore be less
reliable.
We can only perform this method for the summed up basal flux in both of the Ca II H- & K-lines,

as there are no other relations available for the lines individually, or the other lines considered here.

9.3 Finding the basal flux from the lower envelope of the
chromospheric flux

The “classical” approach used to obtain the relations in Rutten [1984], Rutten et al. [1991], Mittag
et al. [2013] is to determine the line flux for a large sample of stars. Then, the photospheric contribu-
tion can be estimated from models or scaling relations. Subtracting this contribution from the total
line flux then leaves a sample of just the chromospheric contribution for a variety of B − V -values.
The lower envelope of the distribution is then made up by the inactive stars, which now only show
the basal flux.
We find a relation from our determined chromospheric flux in the same way. Because these chromo-
spheric flux values are required to still contain the basal flux, we must use the values determined in
Chapter 7. Our goal is a relation for the basal flux in each spectral line analyzed here as a function
of B − V , in the range of 0.4 < B − V < 0.8, limited from the incomplete model grid we have used.
In a first filtering step, we ignore the highest values – the values that make up the highest fraction
are certainly not the ones to determine the lower envelope, which we verify by visual inspection.
The value for this fraction used for the different lines is given in Table 9.1.
The excess fluxes we have determined include uncertainties, which in many cases are close, or even
larger than the level of the excess flux. Therefore, the “real” lower envelope is unlikely to be the
one obtained from simply connecting the lowest points of the relation FExc(B − V ). With such
large errors, some points are likely to lie below the real lower envelope. Note that this effect will be
visually enhanced by us using a logarithmic scale in the plot. In this sense, this problem is similar
to obtaining the continuum from a noisy spectrum with absorption lines, described in Sect. 3.2.
Performing our method for obtaining the continuum on the inverted excess fluxes yields what can
ultimately be considered the envelope on the data, despite the noise on the data. The exact settings
for the filter of this method used have been tweaked until a good visual match with the data was
achieved. It is necessary to use different filter settings, as the distribution of excess fluxes varies:
A steeper fall-off, as is the case for the Hα-line, means that the fraction of the highest data points
that we can safely ignore must be lower than for other lines. Similarly, the threshold in use for the
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envelope determination is mostly affected by the error levels: The higher the relative error is, the
lower this value needs to be. We tweaked the actual threshold parameters according to two criteria:
First, that less than 32 % of points fall below the envelope at the 1σ level. Second, that even when
disregarding the errors, not more than roughly 25 % of points fall below the envelope. However,
because the errors are so large – likely too large, as we have taken a conservative approach to error
estimation (Sect. 3.6, Sect. 7.2.3) – the second condition was always the limiting factor. We give the
exact filtering thresholds used in Table 9.1.

Table 9.1: Threshold values used for determining the lower envelope for the basal flux
determination. The first row gives the fraction of values ignored for the entire determination.
The lower envelope of the remaining data points was found using the method described in Sect. 3.2,
which continues the procedure until a fraction of points lie below the fit. This fraction is given in
the second row.

Threshold Ca II H Ca II K
— Ca II IRT —

Hα
λ8498 λ8542 λ8662

Upper fraction ignored 0.336 0.336 0.252 0.252 0.252 0.210
Filter for envelope 0.550 0.550 0.525 0.519 0.519 0.519

9.3.1 Basal flux for individual lines

In this way, we obtain the lower envelope of the six lines considered here, which we show in Fig. 9.4.
The line represents the determined lower envelope, which we consider as the basal flux level. The
relations are generally similar, with the basal flux decreasing with higher B − V for all lines. The
Ca II K line shows only a small dependence on B − V . This is surprising, as we expected the same
dependency as for the Ca II H line, which mirrors the behavior of the literature relations much
better. Since its flux is largest of all lines considered, it will have a stronger effect in the relation
for the sum of both lines, lowering the slope to only ≈ −0.5 (see next section), notably lower than
the literature relations. We would have expected this line to be the most “well-behaved”, due to the
largest flux and subsequently lowest relative noise levels.
While this basal flux varies by about 20 %, and is largest for the earlier-type stars, the total flux
σT 4

eff is halved over this B−V -region! The relative amount of chromospheric flux is therefore greatly
increased for the late-type stars, which mirrors the common knowledge of later types being more
active.
The relations we find, and which have been plotted in Fig. 9.4, are given in Table 9.2. In the plots,
we also show the fraction of data points that fall below the envelope with and without taking the
error into account (see previous section). Only for display reasons we have added a small, random
offset added to the B − V -values of each data point in the plots, to more accurately portray the
density of these points.

Table 9.2: Coefficients for calculating the basal flux inside the lines from the lower
envelope determination. Plugging these coefficients into logFBasal = a + b · (B − V ) yields an
estimate of the basal flux. Due to the limiting coverage of our PHOENIX model spectra, these
relations are valid for 0.4 < B − V < 0.8. These relations are plotted in Fig. 9.4.

— logFBasal/
(
erg s−1 cm−2

)
= a+ b · (B − V ) —

Coefficient Ca II H Ca II K
— Ca II IRT —

Hα
λ8498 λ8542 λ8662

a 5.70 5.55 5.46 5.43 5.48 6.67
b -0.61 -0.18 -0.96 -0.90 -0.74 -1.72
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Figure 9.4: Basal flux of the lower fraction of fluxes (orange points) as the lower envelope
of the chromospheric contribution (red line) for the six lines under consideration. Left
column, Top to bottom: Ca II H, Ca II K, Hα. Right column shows the Ca II IRT. In
this method, the lower envelope is obtained from only a fraction of points. Due to the high errors on
the data points (not shown), a fraction of the points lie below this threshold: This fraction is given
in the top left of each plot, both when taking the error into account (first number), and without
(second number). Just for the plot, the points have been randomly moved across the B− V -axis by
no more than 0.01, to more accurately show the density of the points. The resulting relations are
given in Table 9.2.
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Figure 9.5: Obtaining the basal flux (red line) as the lower envelope of the excess fluxes
(black and red dots) determined from Chapter 7 for the summed up basal flux in the
Ca II H- & K-lines (left) and the Ca II IRT-lines (right). Same as Fig. 9.4, but for the
summed-up values for the Ca II H- & K-lines and Ca II IRT-lines.

9.3.2 Combined basal flux in groups of lines

To find the basal flux in groups of lines – such as the summed up value for the Ca II H- & K-lines, as
we have done in the previous section – we could in principle simply form the sum of the individual
relations. However, it is better to first combine the determined excess fluxes, and to find the lower
envelope on this sum, to lower the relative noise on each individual data point, and more accurately
define their lower envelope. The relations we find are then:

logFBasal,CaII H & K/
(
erg s−1 cm−2

)
= 5.96− 0.45 · (B − V ), (9.6)

for the Ca II H- & K-lines, and

logFBasal,Ca II IRT/
(
erg s−1 cm−2

)
= 6.15− 1.11 · (B − V ), (9.7)

for the Ca II IRT-lines. We show the relations in Fig. 9.5, where we also compare Eq. (9.6) to
the various literature relations. Our relation for the basal flux in the Ca II H- & K-lines fits about
as well as the relation from the previous section, and again falls between the literature relations,
though below the “modern” ones. The slope of the relation is lower, however, due to the strong
influence of the almost flat relation from the Ca II K line (Table 9.2). Still, the deviation of our
relation to the modern literature ones of Pérez Mart́ınez et al. [2014b] and Fawzy [2015], especially
at higher B − V is low, considering the large error level on the excess fluxes. This error is even
larger on the excess fluxes from the Ca II IRT-lines, as evidenced by the extremely low fraction of
data points falling below the envelope at the 1σ-level (0.07 %). This makes it hard to accurately
define a basal flux relation for the Ca II IRT-lines, though the one we have chosen appears to fit
well. We will see in the next Section that similar relations are obtained by other methods. For a
typical main sequence star of B − V ≈ 0.8, Eq. (9.6) corresponds to 3.98 · 105 erg s−1 cm−2 for the
Ca II H- & K-lines, and Eq. (9.7) to 1.83 · 105 erg s−1 cm−2 for the Ca II IRT-lines, respectively. We
compare the two relations in Fig. 9.6. The Ca II IRT-lines always show a lower basal flux level,
ranging from roughly 85 % of the basal flux of the Ca II H- & K-lines at the lowest B−V , where the
relation may be least trustworthy, to about half of its flux level. Interestingly, this basal flux fraction
relation goes opposite to the fraction of measured excess fluxes. This may hint at a different physical
source for the chromospheric basal flux, instead of a low residual activity as has been suggested by
some authors [Fawzy et al., 2002].
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Figure 9.6: Comparing basal flux relations for the Ca II H- & K-lines and the Ca II IRT-
lines (left), as well as their fraction (right), from the lower envelope method. The dashed
line on the right corresponds to identical basal flux levels in the Ca II H- & K-lines and Ca II IRT-
lines. The combined basal flux in the Ca II IRT-lines is only about 65 % of the basal flux in the
Ca II H- & K-lines across this region in B − V .

9.4 Finding the basal flux by comparison of our results from
different comparison sources

In the previous section, we performed the basal flux determination by defining the lower envelope of
the FExc(B−V ) relation. A disadvantage of this procedure is that only a fraction of all data points
are of interest then, namely the ones that make up the lower envelope. The large number of excess
fluxes for active stars are of no interest in this case. However, we have access to two types of excess
fluxes for each observation. The one obtained from comparing to inactive stars FExc,inact = Fchrom,act

and the one from comparison to model spectra FExc,model = Fchrom,basal +Fchrom,act. The difference
of the two is therefore just the basal flux level. In principle, every observation of a star, compared
to its specific comparison star, would result in the same basal flux level from this procedure. This
is because subtracting the defined excess fluxes in this fashion is just removing the contribution of
the active star:

FExc,model − FExc,inact = (Fphot + Fchrom,Basal + Fchrom,act − Fphot)− (9.8)

(Fphot + Fchrom,Basal + Fchrom,act − (Fphot + Fchrom,Basal))

= Fchrom,Basal.

Technically, one could therefore simply compare the inactive stars used as comparison from Table 4.2,
or a relation such as Eq. (4.6) and compare the result to PHOENIX model spectra. We however
make use of the large data sample and use all determined excess fluxes individually. The reason
for the preference to this approach is that in the process of the excess flux determination, certain
errors, e.g. an incorrect or different normalization, were handled already by the comparison method
(see Chapter 3). Additionally, over the large sample of data points, the error is more likely to just
result in scatter around the real value, with the average value still being correct. When using only
the very small amount of comparison stars, this is no longer necessarily true.

9.4.1 Comparing the measured values directly

To perform the comparison, we first need to cross-check which observations were actually in both
excess flux samples. Since we found different outliers, and used a different range in B − V for the
object selection, not all stars and observations were analyzed in both Chapter 4 and Chapter 7. We
must correct for the different flux scales in use. We have already seen that the difference is only of
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Table 9.3: Coefficients for calculating the basal flux inside the lines from comparing
the obtained excess fluxes from Chapter 4 and Chapter 7. Inserting these coefficients into
logFBasal = a + b · (B − V ) yields an estimate of the basal flux. Due to the limiting coverage of
our PHOENIX model spectra, these relations are valid for 0.4 < B − V < 0.8. These relations are
plotted in Fig. 9.7.

— logFBasal/
(
erg s−1 cm−2

)
= a+ b · (B − V ) —

Coefficient Ca II H Ca II K
— Ca II IRT —

Hα
λ8498 λ8542 λ8662

a 5.57 5.65 5.49 5.14 5.60 6.60
b -0.59 -0.48 -1.02 -0.49 -1.01 -1.65

the order of a pew percent, rising to about 10 % in the worst case. For each data point, we have
calculated the fraction of the surface flux according to PHOENIX model spectra (used in the excess
fluxes determined in Chapter 7) to the surface flux according to Hall [1996] (used in the excess
fluxes determined in Chapter 4). After correcting the parameters for this value, we can subtract
the determined excess fluxes directly to obtain ∆FExc = Fchrom,basal, which are then given in the
PHOENIX flux scale. Looking at the previous results, we can tell that the basal flux will be roughly
at the level of a few 105 erg s−1 cm−2. Unfortunately, this is right at the noise level of the TIGRE
spectra. For this reason, we often find negative values for the difference between the excess fluxes.
To account for this problem, we disregard all values that are unrealistic according to the relations
we have found so far, those below 105 erg s−1 cm−2and those higher than 107 erg s−1 cm−2. Another
result of the high noise level is that the actual tendency of the basal flux relation, which we obtain
by a linear fit, varies depending on these selection criteria, and on factors such as whether we use
the average value of each star instead of the individual ones from each spectrum. We found better
agreement, as determined by visual inspection, as well as a better match to the previously given
relations, when fitting all data points at once, rather than the average for each star. Considering
Fig. 9.1, we try to optimize for a relatively flat B − V dependency. The overall value should be
correct, but the trend we find might be determined incorrectly, due to the scatter we expect from
the data points.
We use the directly integrated excess flux, as opposed to the one estimated from the Gaussian fit in
the next part. We fit a linear relation to the data points. When doing so, we take their errors into
account, and disregard outliers1. The obtained coefficients are given in Table 9.3. The results of the
fit for the individual lines are shown in Fig. 9.7.

The fits we find are very sensitive to our selection criteria. Neglecting certain stars can have a
strong influence on the results if they feature a large number of data points. While this could in
theory be improved by simply taking the average value for each star and carefully choosing a weight
of each averaged value, we found no clear improvement from this step. The main reasons for the
high sensitivity of the result on the exact set of stars used are likely the large errors in the data
points, and the difficulty in estimating the systematic contribution to them (e.g. from an incorrectly
chosen comparison spectrum in Chapter 4), which affects all observations of one star in the same
fashion. The nominal residuals of each of these are therefore of the order of 30-50 %. Using higher
SNR spectra, and selecting the comparison values from a fit (similar to how we have done it in
Chapter 7, a step that is also affected by the SNR quality of the star’s spectra) would be one way
to improve on this.

9.4.2 Combined lines

We will now use the flux estimated from the fitted Gaussian, as we have mentioned before, instead of
the directly measured one. This value is slightly less prone to errors and does not become negative,
due to the limitations set upon it in the fit. In turn, we have assumed that a Gaussian is a good
description of the excess distribution, however, visual inspection has revealed that this is generally a

1We employ the IDL routine ROBUST POLY FIT for this purpose
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Figure 9.7: Basal flux, determined by fitting the value of ∆FExc = FBasal, which is
the difference of the two excess fluxes determined in Chapter 4 and Chapter 7. Left
column, top to bottom: Ca II H, Ca II, Hα. Right column shows the Ca II IRT-lines.
After careful filtering to remove clearly incorrect data points, we perform a fit disregarding outliers
to the sets of measured basal flux values. This process is rather delicate as the resulting flux is
highly contaminated by noise. For plotting purposes, the points have again been randomly moved
across the B−V -axis by no more than 0.01, to more accurately show the density of the points. The
resulting relations are given in Table 9.3.
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Figure 9.8: Plotting the basal flux relations from comparing the results from Chapter 4
and Chapter 7 for the Ca II H- & K-lines (left), which we also compare to literature
values, and the Ca II IRT-lines (right). The data points are slightly shifted in B−V to better
show their density.

good assumption (see Fig. 3.7). Just like before, we do not simply add together the relations found
for the individual lines, but rather combine the excess fluxes first, and then fit the resulting values.
This lowers the noise on each individual data point, resulting in a slightly more accurate fit. We
find for the Ca II H- & K-lines:

logFBasal,CaII H & K/
(
erg s−1 cm−2

)
= 5.92− 0.72 · (B − V ), (9.9)

and for the Ca II IRT-lines, we find:

logFBasal,CaII IRT/
(
erg s−1 cm−2

)
= 5.96− 0.97 · (B − V ). (9.10)

These two relations are shown in Fig. 9.8.

9.5 Results

We were able to obtain relations for the chromospheric basal flux from a variety of methods, all of
which yielded results that agree well with each other. The relations we have found are somewhat
similar in their tendency to show decreasing absolute excess fluxes towards higher B − V . The first
relation, Eq. (9.5) features the most assumptions and relations from other authors. Since its result
is similar to the other ones, we focus now on our new relations that have been found fully from our
data and methods.All relations for FBasal,CaII H & K fall in between the literature relations, further
solidifying the approach we have taken. If we only consider the more modern literature relations, and
disregard the ones from Rutten [1984] and Rutten et al. [1991], then all our relations fall below the
literature relations, and so do the determined basal fluxes. However, while the determined relative
difference is rather large, we are analyzing fluxes at the very edge of the capabilities of our dataset,
given their noise levels. The actual measured values are much higher, by roughly a factor of ten,
so that the relative error is strongly increased when considering only this small fraction. Because
of this, we can be satisfied with the relations we found, as their deviation from the found literature
values is comparable to the average error on the excess flux points. None of the approaches given is
inherently better than the others. They all make use of an unique method to determine the basal
flux level. Therefore, we can average the relations we found to obtain our final relation:

logFBasal,CaII H & K/
(
erg s−1 cm−2

)
= 5.94− 0.59 · (B − V ) (9.11)

We compare this relation to other literature relations in the left plot of Fig. 9.9. The right plot
shows the corresponding average for the Ca II IRT-lines, given as:

logFBasal,CaII IRT/
(
erg s−1 cm−2

)
= 6.05− 1.04 · (B − V ). (9.12)
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Figure 9.9: Plotting the average flux relations from the basal flux relations we have
found. We compare the relation for the Ca II H- & K-lines in the left plot, and the two relations
Eq. (9.11) and Eq. (9.12) in the right plot.

These relations are valid in the range covered by our PHOENIX model spectra grid (0.4 < B−V <
0.8). The slope of the relation Eq. (9.11) is much flatter than of the literature values, but overall,
the magnitude of the basal flux level is similar. While we find a good match for the late-type stars,
for lower B−V -values our relation is too low. Indeed, the sampling in that region is not very good,
as many spectra could not have been taken into account, or the difference of their determined excess
fluxes became negative, suggesting a systematic error towards the lower B − V values. The sharp
bend observed in the relation by Rutten [1984] and Rutten et al. [1991] is not reproduced in our
sample, but neither is it in the other literature relations.
The quality of the dataset is limited and does not allow a more specific analysis, as we have found
the relations to be very sensitive to the exact selection of stars to use, corresponding to the filter
threshold values given in Table 9.1. Interestingly, for the Ca II IRT-lines, the basal flux absolute
slope is roughly twice as large compared to the Ca II H- & K-lines, and overall, they show roughly
20-30 % less basal flux across the B − V validity range, as seen in the right plot of Fig. 9.9. These
values can be compared to the log gf values of the lines, a measure of the transition probability
that influences a line’s strength. They are given in Kramida et al. [2015] as -0.18 and 0.135 for the
Ca II H- & K-lines, respectively, and -1.318, -0.36 and -0.622 for the Ca II IRT-lines. The ratio of
these summed-up gf values is 0.35, which is quite different from the ratio of the basal fluxes. This
may be an indicator of a different formation process for the basal flux.



Chapter 10

Correlations for Individual Stars
and Finding Periods

We have seen that the excess fluxes determined from the individual lines correlate very well across the
entire sample. In this chapter, we consider the measured excess values of individual stars separately.
Differences in the formation process or region of the excess fluxes in the different lines may introduce
a slightly different behavior in the excess fluxes, which may lower, or in extreme cases even invert
the correlation between them. But even without these effects, we must expect a lower correlation
generally, as the variation observed in the excess fluxes will be much lower compared to the noise
level.
Meunier and Delfosse [2009] used high-resolution (R ≈ 500 000) solar spectra, obtained at Kitt Peak
Observatory, to analyze the normalized line core intensity in the Ca II H- & K-lines and the Hα-
line. They found that there is no perfect, permanent correlation, but rather that the degree of it
varies strongly from -1 to 1, and in case of the Sun depends on the cycle phase. Furthermore, they
interpret this behavior as a result of different behavior of these two lines for plage and filaments:
The emission in the Ca II H- & K-lines becomes larger when plages are present, with no strong effect
from filaments. For the Hα-line, however, filaments increase the absorption in the line, and plages
contribute to its emission. Then, different degrees of correlations could be explained from different
degrees contrast in the Hα-line.
Here, we analyze stars with at least five measurements with errors significantly smaller than the
variation in the excess fluxes. We determine the degree of correlation between these fluxes, and
compare these values to stellar parameters. If the Ca II IRT-lines were to show the same correlations
than the Hα-line, than this could be an indicator for a similar behavior regarding the effects of plages
and filaments.
The variation of the SMWO index has been used to determine periods in a variety of stars. In fact,
the majority of spectra analyzed in this work have originally been taken to determine rotational
periods [Hempelmann et al., 2016]. With the excess fluxes determined in this thesis, we will analyze
the temporal behavior of a few select stars with a variety of methods.

10.1 Correlations for individual stars

In this section, we will perform a statistical analysis of the correlations of the different excess fluxes
obtained, only considering the data for one individual star at a time. Unlike before, the vastly lower
amount of data points, combined with a much lower range for these few values (especially compared
to the errors) means that we must reconsider what we recognize as “well correlated”. We therefore
consider the relative difference of the determined correlations, and the histogram distributions here,
rather than their absolute value. As we have seen in Chapter 8, the relations between two excess
fluxes, or the fitted amplitudes, is linear for a set value of B− V , except for the Hα-line. Therefore,
we use the Pearson correlation coefficient for all lines, except the Hα-line, where we use the Spearman
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Figure 10.1: Histogram of determined correlation coefficients for the determined excess
flux of all stars fulfilling the selection criteria (the amount of stars that fulfill them is
given in the top left of each plot), for the Ca II H- & K-lines (top left) and the Ca II IRT-
lines. We compare the Ca II H- & K-lines with each other (top left), but the Ca II IRT-lines are
compared to their sum, see text. The dashed line shows the median correlation.

correlation coefficient, because of the non-linearity we saw in the correlation plots (See for example
Fig. 8.7). The difference between these indices and the resulting histogram distributions for the
Hα-line is not very significant, with the median value shifting by about 0.08.
For each star and line, we go through our results of Chapter 4 and Chapter 7, and take the larger
set of determined values. In case there is the same amount of values from both chapters, we give
priority to the results from the comparison to model spectra. We disregard stars that are either not
active, as defined by the logR′HK > −4.75 criterion, have less than five data points, or where the
entire range covered by these values is less than two times of a conservative estimate of the typical
uncertainty on the excess fluxes determined for that star. This estimate is defined as the lowest
value that is higher than 70 % of all uncertainty values found for that star. This value is used to
handle strongly-varying uncertainties in a robust way.
The histogram of determined correlations in single stars for the entire sample is given in Fig. 10.1

for the Ca II H- & K-lines individually, and each Ca II IRT-line excess flux compared to their sum.
The reason for this is as follows: As the excess flux is lower for the Ca II IRT-lines, the selection
criteria are only fulfilled by a few stars. For this kind of comparison, it must be fulfilled for two
lines at the same time, however, reducing the amount of stars for the histogram even further. If
we compare with the summed-up excess flux in all three Ca II IRT-lines instead, we can compare a
higher number of stars. For Ca II H- & K-lines, the filtering is less severe, due to the higher levels of
excess flux, and therefore such a step is not necessary. Generally speaking, the correlation is rather
good for all lines. It is positive in almost all cases, with just one single star showing a very weak
negative correlation between the Ca II H- & K-lines. The lower correlation level for the individual
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Figure 10.2: Same as Fig. 10.1, but for the correlation between the excess fluxes in the
Ca II H- & K-lines and the Hα-line (left) and for Ca II H- & K-lines and the Ca II IRT-
lines (right).

Ca II H- & K-lines is explained well by the fact that the single Ca II IRT-lines are compared to the
summed-up excess flux in all three Ca II IRT-lines, which includes the component of the single line.
The median correlation for the Ca II H line to the sum of the excess fluxes in the Ca II H- & K-lines is
0.89, and for Ca II K it is 0.93. Both of these values are higher than the corresponding values for
the Ca II IRT-lines. This is as expected from the higher excess flux levels of the Ca II H- & K-lines.
We will now check how the Hα-line compares. As mentioned before, it has been found that while
there is an overall correlation between the Hα-line and the Ca II H- & K-lines, in individual cases,
negative correlations have been observed. In fact, even with our strict selection criteria employed
here, we find five out of thirty-five (14 %) stars show such a negative correlation1. The histogram
distribution for this correlation, as well as the one between the calcium line groups is given in Fig.
10.2. It is immediately apparent that while the correlation tends to be positive in most cases, it
is significantly stronger for the Ca II IRT-lines compared to the Hα-line. This is mirrored both in
the median correlation found (0.52 compared to 0.76), but also in the distribution, which is less
broad and more defined for the Ca II IRT-line comparison. This is not surprising, given that the
Ca II IRT-lines are also Ca II lines.
We can now go one step further and try to find if there is a particular group of stars, or a stellar

parameter, which determines the quality of correlation between the Ca II H- & K-lines and the Hα-
line. We will use the correlation between the two calcium line groups as our comparison each time.
As we are unfortunately suffering from a rather low number of stars in the sample after the rigorous
selection process, we can only show qualitative tendencies here.

10.1.1 The effect of stellar parameters on the correlations

In Gomes da Silva et al. [2014], the authors analyzed the correlation across their sample depending
on stellar parameters. One of their results was that stars with higher metallicity were more likely to
show a negative correlation coefficient. In Fig. 10.3, we show the histogram distributions, which do
not reproduce this effect. However, our sample is much smaller, and with only about eleven stars
showing a negative correlation coefficient, all of which have ρ > −0.5, this does not negate their
result, which focuses on stars with |ρ| > 0.5. For both cases, Hα and Ca II IRT, no strong shift in
the distribution can be seen. We can now perform this same step with Teff , or B − V , which we
have used so far. In Gomes da Silva et al. [2014], they find that cooler stars show more positive
correlation than hotter stars. Figure 10.4 shows the same tendency in our data: Cooler stars (higher
B − V ) show higher correlation, and form the right end of the histogram distribution. However,

1We find different, higher values here compared to those given in Martin et al. [2017], because of a larger sample
of stars considered, stricter selection criteria, and the usage of the results from model spectra comparison.
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Figure 10.3: Histogram of determined correlation coefficients for all stars (black), as
well as the subsample of stars that exceed a certain metallicity threshold (yellow).
The dashed line and number shows the median value for the correlation coefficient. The histogram
distribution does not change significantly.

Figure 10.4: Histogram of determined correlation coefficients for all stars (black), as
well as the subsample of stars that exceed a certain B−V threshold (yellow, blue). The
dashed line and number shows the median value for the correlation coefficient. Stars with higher
B − V tend to show stronger correlation.

as mentioned by Gomes da Silva et al. [2014], this might be an effect from the effective correlation
between higher activity and cooler stars. If this is true, then we would expect to see a strong effect
of the individual levels of correlation and that star’s activity level, which is the next step in our
analysis.
The value of log g does not appear to affect the correlation at all: The histogram distributions do
not change shape when we filter out low or high gravity values.

10.1.2 Correlation for different levels of activity

Similarly, Gomes da Silva et al. [2014] analyzed their sample in regards to whether a higher level
of activity suggests a stronger correlation. In fact, they found that the correlation between activity
indices from the Ca II H- & K-lines and the Hα-line is always positive if logR′HK > −4.7. In Fig.
10.5, we analyze the sample, and subsets of the sample of more active stars, in regards to the average
value of R′HK. We can see that the higher the activity, the stronger the correlation, for both cases,
which mirrors the earlier result. The explanation from Meunier and Delfosse [2009] for the Hα-line
case is that at the higher activity levels, the absorption contribution in the filaments saturates, and
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Figure 10.5: Histogram of determined correlation coefficients for all stars (black), as
well as the subsample of stars that exceed a certain activity threshold (yellow, blue).
The dashed line and number shows the median value for the correlation coefficient. It is apparent
that the correlation becomes stronger for higher activity.

only the contribution of the plages remain. It stands to reason how much of this effect stems from the
simple fact that the determined excess fluxes of more active stars are relatively less affected by noise.
It is unlikely that this is the sole effect, as we require the range of the data to exceed the noise. Many
stars with logR′HK > −4.75 show low correlation. These stars show very little chromospheric flux,
other than their basal flux. Even before, in Fig. 7.6, we saw that these stars did not fall in line with
the overall linear trend, but rather showed a horizontal branch, dominated by noise. This supports
our observation that we don’t see a strong correlation for these stars. The effect of activity on the
strength of the correlation appears to be different for the case of the correlation between Ca II H-
& K-lines and the Ca II IRT-lines, compared to the correlation between Ca II H- & K-lines and the
Hα-line. In the former case, the improvement in correlation for the group of highest activity stars
(blue in Fig 10.5) to all active stars (orange) is only about half (about 0.07) than it is in the latter
case (where it is 0.14). However, the total improvement in correlation from the entire sample to the
most active stars is similar, and about 0.4 in both cases. For the Hα-line, there is overall much higher
scattering in the data, so that we cannot see such a clear division into two parts in the correlation.
We can still see a clear improvement in the correlation when disregarding the inactive stars, with
further improvements for higher activity thresholds. However, we are suffering from small-number
statistics at this point, so that we unfortunately cannot reach a clear conclusion.

10.1.3 Summary

We have seen that after filtering out stars unsuitable for such an analysis, the stars of our sample
show correlation between the measured excess fluxes in the lines on an individual level, though the
strength of this effect varies by some degree. It is strong between the calcium lines, and less so for
the Hα-line. This degree of correlation is stronger for cooler, more active stars, and less so for the
hotter stars. Unlike Gomes da Silva et al. [2014], we could not reproduce the effect of metallicity
on the individual level of correlation. However, not many stars in our sample fulfilled the selection
criteria, and none of those featured a strong negative correlation, where the metallicity effect is most
pronounced.
The level of correlation between the individual lines is important for our confidence in the conversion
relations found in Chapter 8. If there were no strong correlation for the data set of an individual
star, adding converted activity indices to an existing time series would introduce strong, systematic
errors, up to the possible removal of actual existing periods in the data. While such a systematic
offset possibly exists, especially for some stars that show weaker correlation overall, the more active
and cooler ones do not seem to suffer significantly from such an effect.
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10.2 Measuring periods

As we have mentioned, a large part of the sample investigated in this work was originally taken
to search for rotational periods [Hempelmann et al., 2016]. While a star with a stellar spot on its
surface rotates, the spot moves into view, across the surface, and finally moves out of view, until
the star has finished another half rotation, at which point the spot moves back into view. This
appearance and disappearance of the spot forms a periodic signal. Since such a spot correlates with
chromospheric emission, our data points for the excess flux can be used to find such signals. Other
periodical signals stem from the usually much longer stellar activity cycles, for which we usually do
not have enough data point coverage here, so that we focus on rotational periods.
While such spot-induced signals are not completely sinusoidal in nature, a Lomb-Scargle periodogram
has historically yielded great results in finding their periods. Even from pure rotation, we may expect
to find more than one signal. Due to differential rotation, spots on different latitudes move at different
speeds, and therefore show different periods. The focus of this work is not the determination of
periods. However, as an example of an application of the dataset we have obtained, we analyze the
temporal behavior of the determined activity-related indices and fluxes of a few select stars. We
perform this by analyzing the behavior on the determined excess fluxes FExc,HK, FExc,IRT, their sum
FExc,Ca II and FExc,Hα, as well as the SMWO-index.
As our data is not regularly sampled, we cannot make use of many available methods for finding
periods, for example a Fast Fourier Transform. Therefore, we will explore other options in the
following.

10.2.1 Lomb-Scargle periodograms

The first method we are using is a Lomb-Scargle Periodogram [Lomb, 1976, Scargle, 1982] (using the
IDL implementation scargle), which has also been used to determine the results in Hempelmann
et al. [2016]. The Lomb-Scargle Periodogram compares the dataset (ti, yi) under consideration with
sine and cosine waves sampled at the same times ti, similar to obtaining a cross correlation of
sampled data, and subsequently normalizes the result [Scargle, 1982]:

PLS(ω) =
1

2


(∑

j yj cosω(tj − τ)
)2

cos2 ω(tj − τ)
+

(∑
j yj sinω(tj − τ)

)2

sin2 ω(tj − τ)

 , (10.1)

with the delay τ defined to be:

tan 2ωτ =

∑
j sin 2ωtj∑
j cos 2ωtj

. (10.2)

Introducing the delay parameter ensures that the Periodogram is invariant under shifts in time. In
Eq. (10.1), the data yi is assumed to have zero mean. To fix this, often the mean is subtracted,
effectively replacing yi → yi − ȳ. Another option is to take the mean as an additional fit parame-
ter, this is then called a generalized Lomb-Scargle periodogram. This procedure is widely used in
astrophysics, and is known to yield reliable results. However, one needs to be aware of effects that
can arise from the irregular sampling, such as alias frequencies. The resulting value is often referred
to as “Scargle Power”. To give this number context, one calculates the False-Alarm Probability
(FAP). By calculating many of these Lomb-Scargle Periodograms for white-noise, one can define the
Lomb-Scargle Power reached by a certain fraction of these simulations. In this way, we can define
the point that 95 % of simulated white-noise periodograms do not reach. If the periodogram of our
real dataset reaches this point, then we can say that the probability of this being a “false alarm”
is 5 %. Here, we consider periods that reach that level as significant. We estimate the error on the
period following Eq. (3) in Baliunas et al. [1995], where this error is calculated from the variance
after removal of the found best period.
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Figure 10.6: Illustrating the idea behind the String Length procedure. In this procedure,
the original data (top) is folded with a test period PTest. If the correct period is chosen (bottom
left), the data points align and neighboring points are close together, and the sum of their vertical
distance (black lines) is small. Even with just a small deviation in period (bottom right), neighboring
points sometimes fall far apart, resulting in a large sum for the vertical distance.

10.2.2 String length

Our second method is the String Length method [Dworetsky, 1983]. It makes no assumption of
the shape of the periodic function, unlike the Lomb-Scargle Periodogram, which assumes sinusoidal
relations. As we have mentioned, a single spot does not result in such a relation. In essence, this
method tries several periods, reorders the data points according to their phase in this trial period,
and measures the distance on the ordinate of neighboring points. This process is illustrated in
Fig. 10.6. If there is a period, then the summed-up vertical difference of points reaches a minimum,
if the data points where reordered according to that period. The reason for this is that if the data
points are correctly sorted, they form the shape of their periodical signal. Since we can assume
it to be continuous, neighboring data points will be close together, and the overall difference of
neighboring points will be small. If an incorrect trial period is chosen, however, then reordering the
data points will jumble them, destroying the continuity of the function. As a result, at least some
of the now neighboring points will show a large vertical difference. This method is problematic with
datasets that feature more than one period in their signal, as rearranging according to just one of
their periods will not necessarily result in a minimum, depending on the relative strength of the
periods. We use this method to further analyze stars that we found to show one significant peak
when using the Lomb-Scargle Periodogram.

10.2.3 Wavelets

The previously mentioned methods are good at finding periods across the entire range of the data.
However, it is possible that only segments of the data show a period, or that the period varies in
time, for example due to differential rotation and spots at different latitudes. One way to account
for this is to use one of the previous methods for only selected segments of the entire data. However,
we will use another option, and perform a wavelet analysis. An example of analyzing the Sun’s
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Figure 10.7: Example for the Wavelet procedure. For this simple example of a signal featuring
a small period of 40 days, and a larger one of 150 days from 200 days forward, plus some synthetic
noise (left), we perform a wavelet analysis (right). The resulting values have been normalized, and
mapped to the color scale shown on the right. We can clearly see the two periods, as well as the
lower resolution towards the higher periods.

activity in order to determine its differential rotation from wavelets is given by Hempelmann and
Donahue [1997]. Similar to the Lomb Scargle Method, this method works by comparing the dataset
to a function indicating the period, sampled at the same points. This function is called the wavelet
function. This check is performed for a series of such wavelets, which are all derived from a “mother
wavelet”. Here, we use the Morlet wavelet [Grossmann and Morlet, 1984], also called Gabor wavelet,
in the complex variant. This wavelet is defined as:

Φσ(t) =
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4
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2

π−
1
4 exp (− t

2

2
)

(
exp (iσt)− exp (−1

2
σ2)

)
, (10.3)

with a parameter σ, effectively determining the strength of the exponential falloff. It can therefore
be used to determine the length a periodic signal is required to have in the dataset before it is found,
increasing the confidence in the found period. At the same time, we are losing temporal resolution.
This parameter is therefore a way to select between temporal and frequency resolution. We use
σ = 35 here, after careful consideration on our data sample, as well as the periods we are expecting.
The actual wavelet analysis is then performed by comparing Eq. (10.3) to the dataset, and yields a
value PWL(T, P ) for each time delay T and period P :

PWL(T, P ) =
1√
P

∑
j

yjΦ̄σ(
tj − T
P

), (10.4)

which shows that the mother wavelet is shifted by the time delay T and scaled by the period P .
Generally, to find a complete set of orthogonal base wavelets, one chooses a subset of periods P
and time delays T in a certain combination, which allows reconstruction of the original signal from
the resulting wavelet. There is then a higher resolution towards the lower periods, just like for the
Lomb-Scargle periodograms. For plotting purposes, we have not chosen to only select such a subset,
and have therefore overdetermined the actual resulting 2D plot. We note that the irregular sampling
adds noise structures to the wavelet plot.
An example of a wavelet analysis for a test case is shown in Fig. 10.7. We use this method to further
analyze stars that have shown significant peaks in the Lomb-Scargle Periodogram, to find out where
this signal is coming from. For clarity, we sometimes remove a linear trend beforehand. We do not
make any attempt to determine a significance from the wavelet results.
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Figure 10.8: Lomb-Scargle Periodogram (left) and folded light curve (right) for SMWO of
HD 101501. Horizontal dashed lines mark the 1σ, 2σ and 3σ-level, the vertical dashed line shows
the most significant period.

10.2.4 Determining periods of stars from TIGRE observations

We are analyzing the periods found in the different excess fluxes for some of the stars for which
Hempelmann et al. [2016] have found periods on at least a 1σ-level. Not all of those stars are in
our sample, so we cannot perform this analysis for all of these stars. We have selected only those
that are relatively well sampled in time, and that showed promising periods of less than 40 days.
In their work, Hempelmann et al. [2016] have removed long-term trends by means of subtracting a
best-fit polynomial. We do not perform this step, as it affects the determined significances for the
periods found. We take the same dataset, using the finely sampled data from the same time period,
neglecting other available data, as its less regular, and coarser sampling is not as appropriate to
search for periods. In this way, this work performs a check of the results given by Hempelmann
et al. [2016]. We will now discuss the results of a few select stars in detail. They have been chosen
to show the clearest results in their wavelet plots, so that we can discuss their periods and when
they appear.

HD 101501

HD 101501 is a G8V main sequence star [Keenan and McNeil, 1989] with a B − V value of 0.74
[Soubiran et al., 2010]. This star is rather active, and therefore a good candidate to search periods
for. Hempelmann et al. [2016] found a period of 17.04± 0.09 days on a 3σ-level in the SMWO-index,
without any trend removal. We determine a period of 17.178 ± 0.018 days as well analyzing the
entire dataset, however, we only find it at a 2σ-level there, as shown in Fig. 10.8. We recover this
period (or periods very close to it, with less than a day difference) not only in the SMWO, but also
in the total excess flux in the Ca II lines used here, as well as FExc,Hα. These periods just barely fall
outside each other’s 1σ range, but are still so close that we would consider the period confirmed.
We also show the folded light curve in Fig. 10.8, which illustrates that the overall dataset suffers
from a noise level that is rather close to the amplitude of the assumed sine wave. Since this star is
also very active, this period may not be of rotational origin, as the high activity level suggests a level
of intrinsic variability that may drown out the rotational period. There are also peaks significant
at a 1σ-level at about 3 days (for the excess flux in the Ca II H- & K-lines) and at 4.7 days (for the
excess flux in the Ca II IRT-lines). The String-length procedure has recovered a period of 17.6 days,
which is in good agreement to the earlier period found. In Fig. 10.9, we show the wavelet for the
excess flux in the Ca II H- & K-lines and Ca II IRT-lines, for only the data used by Hempelmann
et al. [2016]. The maximum occurs very close to the found period of ∼ 17 days, and seems to be
most strongly recovered at about 120 days of that signal. While it appears that there is less signal
towards the earlier and later time, this is likely related to the much more coarsely sampled data
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Figure 10.9: Result of
the wavelet procedure
for HD 101501 for the
summed-up excess fluxes
in the Ca II H- & K-
lines and Ca II IRT-lines.
Both Time and Period are
given in days. The strongest
signal is recovered close to
the found period of about 17
days.

Figure 10.10: Lomb-Scargle Periodogram for the excess flux in the Ca II H- & K-lines and
Ca II IRT-lines for the data sample analyzed by Hempelmann et al. [2016] (left) and
the entire data analyzed in this work (right) for HD 97334. Horizontal dashed lines mark
the 1σ, 2σ and 3σ-level, the vertical dashed line shows the most significant period.

there.
All in all, this example shows that we were able to recover the expected period using the excess

flux in all lines, further confirming that the Ca II IRT-lines are well suited for activity studies.

HD 97334

For this G0V star, Hempelmann et al. [2016] found a period of 7.93±0.05 days, on a 2σ-level. We do
recover the same period, at the same error level, when performing the period search for the summed
excess fluxes in the Ca II H- & K-lines and Ca II IRT-lines. We also recover a period of 7.69± 0.08
– well in agreement with the previous one – in the excess flux for the Hα-line, again at a 2σ-level.
However, when the analysis is performed for all data points available, and not just the set analyzed
by Hempelmann et al. [2016], the Lomb-Scargle power of that period falls below the 2σ-level, barely
reaching 1σ, is defined less clearly, and no longer appears stronger compared to other less significant
peaks. This is mostly due to the Ca II H- & K-lines, as the Ca II IRT-lines show a more pronounced
peak at that period. Figure 10.10 compares these two Lomb-Scargle periodograms of the excess
fluxes in the Ca II H- & K-lines and Ca II IRT-lines. The string-length procedure finds tendentially
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Figure 10.11: String-Length procedure for the excess flux in the Ca II H- & K-lines and
Ca II IRT-lines for the data sample analyzed by Hempelmann et al. [2016] (left) and
the entire data analyzed in this work (right) for HD 97334. The dashed horizontal line in
the lower plots mark the string length of the unfolded data, the vertical line the best period found.

Figure 10.12: Result
of the wavelet proce-
dure for HD 97334 for
the summed-up flux ex-
cess fluxes in the Ca II H-
& K-lines and Ca II IRT-
lines. Both Time and Pe-
riod are given in days. The
found period of about 8 days
appears clearly in the plot for
earlier time frames, and disap-
pears towards the later ones.

lower periods of 7.7 days and 8.1 days for the restricted and entire dataset, respectively. In the first
case, the reduction in string length is significantly higher than in the second, as we show in Fig.
10.11. However, in both cases, the folded light curve (top right plots in Fig. 10.11) does not appear
sinusoidal in nature, and features many spikes, likely from noise. The wavelet for this star, shown
in Fig. 10.12 unsurprisingly features a lot of noise structures, but the period found can be made out
clearly for the earlier times, before it weakens later. This is likely due to the much sparser sampling
at days past ∼ 45 days. This example shows clearly that irregular sampling strongly complicates
the search for periods.

HD 37394

Hempelmann et al. [2016] found a period of 10.74 ± 0.03 days at the 3σ level. For the same set of
spectra, we find a very similar period from the calcium lines (10.6 ± 0.08 days), at a 3σ-level, but
not for the excess flux in the Hα-line, where we only recover a peak at about half with P = 5 days,
though only at a 1σ-level (Fig. 10.13). This period is also seen in the calcium lines, albeit at a
lower significance. When analyzing the entire dataset, the entire periodogram becomes more noisy,
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Figure 10.13: Lomb-Scargle periodogram for the excess flux in the Ca II H- & K-lines and
Ca II IRT-lines (left) and for the excess flux in the Hα-line (right), for the data sample
analyzed by Hempelmann et al. [2016], for HD 37394. The horizontal lines correspond to
the 1σ, 2σ and 3σ-level respectively, the vertical line marks the most significant period found.

Figure 10.14: Result of
the wavelet procedure for
HD 37394, for the SMWO.
Both Time and Period are
given in days.

and the significance of the peak lowers to 2σ, yet it is clearly the strongest peak still, with a lower
error of now only 0.02 days. The wavelet for this star is shown in Fig. 10.14. Despite the very
clearly recovered period in the periodogram, the respective wavelet is less well-defined. However, at
around 75 days, a short period of five days dominates the wavelet structure. This corresponds to
the respective periods of that length we have found and already discussed. Outside this region in
time, the sampling becomes worse, and so this period weakens again. We show the folded SMWO

curve in Fig. 10.15. While there is still some noise, the overall shape of the curve appears rather
well-defined, especially in the first half, despite some peak structures.

10.2.5 Periods recovered

In Table 10.1, we list the stars we have analyzed here, and the strongest peak for each line. In
all cases, the period given by Hempelmann et al. [2016] was also recovered by us in the Ca II H-
& K-lines, confirming their result. However, we recover lower levels of significance, which is likely
due to the trend removal performed in their work. In only two cases, we were unable to recover
the same period in the Ca II IRT-lines, and in one more case, a period close to double the one
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Figure 10.15: Curve of the
SMWO index for HD 37394,
folded by the best found
period of 10.7 days.

in the Ca II H- & K-lines was found. In the Ca II IRT, the significance is usually lower, which is
unsurprising given the lower levels of the excess flux in these lines. While we have recovered the
period in the excess flux of the Hα-line in some cases, the overall impression is that the results from
that line are less trustworthy and significant, with no significant period at all recovered for five out
of eleven stars, one case where twice the period from the Ca II H- & K-lines was recovered, and one
with an offset of about a day and a half to the period from the Ca II H- & K-lines for one star.

10.3 Summary

In this chapter, we have analyzed the excess fluxes (or related activity indices) individually, and
compared the results. We have seen that generally speaking, there is a clear, strong correlation
between the excess fluxes in the different lines. While not perfect, this confirms that they are
correlated well enough that a conversion relation like those given in Chapter 8 can in fact be used to
analyze data from one particular spectral line in the scale of another. We also saw no dependence
of the degree of correlation on stellar parameters, however, stars with higher activity tend to show
a stronger correlation. Since B − V is correlated with activity, it follows that there is a correlation
between the degree of correlation and B−V , or equivalently Teff , mirroring the results from Gomes
da Silva et al. [2014].
We have recovered the periods given in Hempelmann et al. [2016] from the same dataset in the other
lines for the small subset of stars we have analyzed here. We were able to confirm their results for
these stars, albeit at a lower confidence level. For most of the stars, we also found the same period
they give in the Ca II IRT-lines, though often at lower significance, likely due to the lower levels
of the excess flux in those lines. Finally, the Hα-line not only shows the lowest correlation to the
Ca II H- & K-lines, but we were able to recover their period from the excess flux in this line only for
about half the cases.
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Table 10.1: Periods recovered for a small sample of stars in the various lines. The values
given in the “Literature” column are by Hempelmann et al. [2016].

— From FExc in —
Star Literature Ca II H- & K Ca II IRT Hα

HD 17925 7.15 (2σ) 7.5 (1σ) 13.0 (1σ) —
HD 35296 3.50 (3σ) 3.5 (1σ) 3.6 (1σ)1 —
HD 37394 10.74 (3σ) 10.74 (3σ) 10.8 (1σ) 5.1 (1σ)
HD 39587 5.14 (3σ) 5.16 (2σ) 5.3 (1σ) —(2)

HD 42807 11.77 (2σ) 11.9 (1σ) 11.8 (1σ), 3 (1σ)(3) —
HD 43162 7.08 (3σ) 7.06 (2σ) 5.82 (1σ) —
HD 72905 5.22 (2σ) 5.2 (2σ) — 5.2 (2σ)
HD 97334 7.93 (2σ) 7.9 (2σ) 7.6 (2σ) 7.7 (2σ)
HD 101501 17.04 (3σ) 17.0 (2σ) 15.9 (1σ) 17.3 (2σ)
HD 115043 5.86 (2σ) 5.9 (2σ) 5.88 (2σ) 4.3 (1σ)
HD 118972 9.41 (3σ) 9.4 (2σ) — 9.4 (1σ)

Footnotes: (1) Very close to 2σ; (2) Period at about 5.2 was almost recovered at 1σ; (3) The peak at three days is
stronger, but the eleven day peak was also recovered in this line group



Chapter 11

Summary and Outlook

We have made use of the large sample of TIGRE spectra available to us, and have carefully compared
the spectra of active stars to those of inactive stars similar in stellar parameters, as well as PHOENIX
model spectra. To do the latter, a new method to interpolate PHOENIX model spectra from an
incomplete, irregularly sampled set was developed, which we have also used to find and determine
stellar parameters of the stars in our sample. Our comparison yielded the excess flux, emitted from
the star’s chromosphere. Detailed analysis has been performed to check the degree of correlation of
these fluxes from different lines, both on a general and an individual level.
In this final chapter, we summarize the major results we have found. We will go through the chapters
about our own work one by one and give a summary of the results found. In the second part, we
will give an outlook into some possible extensions of this work that we have begun work on.

11.1 Summary

For each chapter past the introductory ones, we will give a short summary, both of the method
employed, as well as their results. The most important parts have been set in bold.

Chapter 3 – Obtaining chromospheric excess fluxes

This chapter outlined the method we have used to determine the chromospheric excess flux. The
idea is simple: A spectrum of an active star differs from the one of a fictitious inactive one with the
same stellar parameters by a chromospheric contribution that becomes stronger the more active the
star under consideration is. To find just this contribution therefore requires this fictitious inactive
comparison spectrum. Regardless of the source of it, whether it is the spectrum of a similar, but
inactive star, or a model spectrum, an automated approach for the analysis is necessary, due to the
sheer number of spectra we investigate in this work. With the two spectra, subtracting the compar-
ison spectrum from the potentially active star’s spectrum then yields the activity-related residuals,
which we call the excess flux FExc. This automated approach must take great care in how it handles
the two spectra: They will differ from other reasons as well, and these differences must be corrected
first.
We have developed a robust, automatic procedure that performs automatic normaliza-
tion, degradation, rotational broadening and more, to eliminate as many non-activity related
differences as possible. It also takes into account the error on both spectra, as well as the stellar
parameters used, by performing several Monte Carlo iterations. As a result, it returns both the
integrated excess flux, as well as the parameters of a Gaussian fitted to the excess dis-
tribution. The method takes the comparison spectrum’s physical unit scale to convert the result
into erg s−1 cm−2. The procedure has been tested extensively, and used for all stars in this work.
Only for one star, HD 22468 (HR 1099) did the shift in the procedure fail, as the extreme and very
unusually high level of activity on that star lets the two spectra differ too strongly, so that automatic
wavelength-shift determination via cross-correlation no longer works.

129
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Chapter 4 – Determining the excess flux by comparing to inactive stars’
spectra

In this chapter, we have used the method from Chapter 3 to compare the spectra of active stars
to inactive stars with similar stellar parameters. To perform such a comparison, we first need to
find a suitable comparison star for each active star in our sample. We used literature values – most
from Soubiran et al. [2010] – and developed a score for each pair of one active and one inactive star,
that indicates the quality of their match, weighting the different stellar parameters by their effects
according to the literature. We find the excess fluxes in six lines: the Ca II H- & K-lines, the three
Ca II IRT-lines, as well as the Hα-line. Since it is known that the Ca II H- & K-lines are an excellent
gauge for stellar activity, finding a correlation between the excess fluxes of one of the previously
mentioned lines to the excess fluxes of the Ca II H- & K-lines is a good indicator for the suitability of
this line as an activity indicator. We find excellent correlation between the excess fluxes of
all six lines investigated here. Especially the two groups of Ca II lines are very well correlated,
with a Spearman correlation coefficient of ρ ≈ 0.9. While there is some scatter in the distribution,
the overall correlation is very clear. The correlation is good for both the integrated fluxes, as
well as the amplitude of the Gaussian fitted to the excess distribution, though the latter
requires smoothing the excess beforehand to avoid noise-spikes dominating the fit. The correlation
between the Hα-line and the Ca II lines is less strong, but still noteworthy (ρ ≈ 0.8). When using
the widely-adopted SMWO-index, a clear B − V dependence appears, which agrees with previous
studies.

Chapter 5 – A new way of interpolating model spectra

Our next goal was to optimize and compare the previous analysis by using PHOENIX model spectra
as comparison spectrum. However, we cannot make use of available literature grids, as they do not
feature the required species in NLTE, or do not use a necessary profile function for the Ca II IRT-
lines. With the intended goal of making this a part of the automatic TIGRE pipeline (see below),
we set out to develop a new procedure to interpolate on an irregular grid. Covering the entire range
of stellar parameters with suitable step size, especially if those parameters are actually dependent
on each other, is a time-consuming process. The newly implemented approach allows clever
selection of a much smaller subset of models, drastically reducing the amount of models
required to perform the interpolation. The algorithm is an applied case for the three-dimensional
adaptation of the algorithm described by McLain [1976] for each wavelength point individually.
The resulting interpolation works well, is stable, and fast, making it very suitable for fitting
spectra.

Chapter 6 – Fitting PHOENIX model spectra to TIGRE observations

The interpolated PHOENIX model spectra can be generated very fast. This is ideal for fitting, and
allows quick determination of a star’s stellar parameter. Finding the best-fit spectrum is necessary
for finding the correct comparison spectrum. We cannot simply use literature values, as the different
methods to find the stellar parameters employed by different authors will yield significant, systematic
offsets. For each star, we fitted interpolated PHOENIX model spectra to the TIGRE
spectrum with the highest SNR available for that star. We have analyzed in detail the
difference in results from using either a Levenberg-Marquardt approach, or a MCMC approach, and
determined that the MCMC approach is best suited for this fitting process, despite the
much slower process. For various reasons, most notably the resolution varying across the spectrum,
performing this fit requires finding regions in the spectrum that show good agreement. To find those
regions, we compared TIGRE reflection spectra of the Sun with respective PHOENIX model spectra.
We found regions where these two spectra do not agree well, likely due to errors in the line profile
functions in the model spectrum generation. We have defined a mask so that these parts of otherwise
well-fitting regions are omitted from the fit. For a fit, these regions are normalized individually, and
degraded, with the resolution of each region being a parameter of the fit. The stellar parameter
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we find agree well with literature values, showing deviations that in almost all cases are
noncritical (less than a typical step size for grids). It is still useful to perform this determination
ourselves, rather than using those literature values, so that those stars where we found significant
deviations are also compared to suitable spectra. With the parameters we have found, we could
perform the comparison to the correct PHOENIX model spectra to find the excess flux.

Chapter 7 – Determining the excess flux by comparing to PHOENIX
model spectra

Now that we know the stellar parameters as determined from fitting PHOENIX model spectra to
an active star’s spectrum, we can use the model spectrum to find the excess flux. Unlike before,
the comparison spectrum does not include any basal flux contribution, which means we expect to
find larger excess fluxes, and to find the strongest correlation only past a certain point in the FExc-
FExc-relation. The results confirm these expectations. We find strong correlation between all
lines again, with overall lower values for the correlation coefficient ρ due to the contribution of
the inactive stars that have formerly been discarded. The results are very similar to the ones
from Chapter 4, with the largest correlation between the calcium lines. The correlations involving
the Hα-line are lower, which likely stems from the difficulties in modeling the Hα-line.

Chapter 8 – Converting excess fluxes from different lines

While the value for FExc is useful on its own as an indicator for activity, comparing new measurements
of this value to archival data of other indicators requires knowledge of what that values corresponds
to in these other indices. Close inspection of the distributions reveals that in most cases, for a
set value of B − V , one can find a linear relationship to convert one parameter (excess
flux, activity index, ...) into another, with the excess fluxes in the Hα-line as exception. We
assume that the resulting relationship of slope m(B−V ) and intercept b(B−V ) are polynomials. A
simple linear regression then yields a linear set of equations, solving these yields the best fit for these
relations. However, to avoid selection bias, we divide the sample into groups, find slope
and intercept individually for each group, and fit the result. These relations have nominally
higher residuals, but do not suffer from the bias inherent in the distribution of B − V -values, which
is very uneven. In this way, we were able to find conversion relations for the excess fluxes into one
another, but also ways to convert excess fluxes into known activity indicators SMWO and R′HK.

Chapter 9 – Obtaining basal flux

Even for inactive stars, there is still some contribution from the chromosphere. This contribution is
called the “basal flux”. It is very small compared to the chromospheric excess flux of an active star,
which makes it difficult to determine, since most of the excess fluxes we have determined have errors
of the order of the basal flux. We determine the basal flux from the lower envelope of FExc

that include a basal flux (e.g. from comparing to model spectra) and from comparing the
two sets of FExc-values we have found. We compared our results to literature relations for the
Ca II H- & K-lines, and found that generally, they agree better for the later types, and we find lower
basal fluxes for the earlier types, as Fig. 9.9 shows. The inherent scatter is very large, because of
the low values of the basal flux compared to the error on our fluxes. Still, the overall magnitudes of
the basal flux relations agree well with the literature.

Chapter 10 – Individual correlations and determining periods

In this chapter, we have analyzed the correlation between the excess fluxes on an individual level
for each star. The motivation is that some authors have found that for the Hα-line, there is not
necessarily a correlation for some stars, or even a negative one! Careful analysis of our sample
shows that we see negative correlation between the excess fluxes in the Ca II H- & K-
lines and the Hα-line for some stars, but not for the correlation between the excess
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fluxes in the Ca II H- & K-lines and Ca II IRT-lines. On average, the correlation in the first
case is ρ ≈ 0.52, compared to a much higher ρ ≈ 0.76 for the second. We find no dependence
of this correlation on metallicity, but we do find one on B − V and activity. We have
also used three different methods to find periods in eleven of the candidates given by Hempelmann
et al. [2016]. We were able to confirm their results, but found lower significance levels in most cases.
The excess fluxes in the Ca II IRT-lines were almost as reliable as the SMWO index or
the excess flux in the Ca II H- & K-lines for finding periods, though in one case, we only
recovered twice the period, and in two more we did not find any period. This is a better result than
for the excess flux in the Hα-line, where we found the same period only in about half the cases. This
chapter confirms that the Ca II IRT-lines are a well-suited group of lines for activity studies, and
likely better and easier to obtain results with than the Hα-line is.

11.2 Outlook

We have used the method described in Chapter 3 with great success to obtain the excess fluxes
of a large number of spectra. However, the method could be used for further science. Outside of
analyzing the correlation between the determined excess fluxes in the lines with other activity indices
not investigated in this work (e.g. X-Rays), there are a few additional ways that our method can be
used for. We consider them promising science opportunities. We give the rationale and idea behind
each of them, as well as a short description on some early work we have performed on them, and
finally we mention a few challenges we encountered. Finally, since a large part of the code involved
in the creation of this work has been written with the intent to work autonomously, implementing
them as steps into the TIGRE pipeline is an option. We give reasons for this inclusion and outline
how it may work.

11.2.1 Applying the method to binary systems

So far, we have only investigated single main-sequence stars, opting to even remove binaries from
our sample (see Sect. 4.6) if the secondary star affected the spectrum too strongly. This was a nec-
essary step, as the method does not work if the comparison spectrum has such a strong systematic
difference to the spectrum investigated. Across the orbit, the two stars’ contribution to the spectrum
shift and change, requiring an orbit-depending – and thus time-depending – comparison spectrum.
However, such an analysis would be very interesting, as the interaction between the two stars may
affect their individual contributions to the chromospheric emission. Therefore, plotting the excess
flux against, e.g. the orbital position may yield some insight on this behavior. Here, we examine
how such an analysis may look like.
The first change required is to adapt the comparison spectrum. In fact, it should now be pieced
together from two separate spectra, both of which must be shifted according to their velocity compo-
nent in the observer’s direction, broadened according to their rotational velocity, and finally correctly
scaled according to their brightness and the fraction of the surface visible. Because one star may
block some light of the other, this latter fraction is strongly time-dependent.

Geometrical Blocking

For a first estimate, we neglect limb-darkening, and simplify the procedure by only taking the
geometrical blocking of two circular surfaces into consideration. We must then estimate the area A
of the stellar disk covered by the other star.
Let R1, R2 be the radii of the two stars, with R1 > R2, and let d be the projected distance between
them. For the case of d > R1 + R2, then obviously both stars do not overlap, and we have A = 0.
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Figure 11.1: Calculat-
ing the geometrical over-
lap for the AR Lac System
according to Eq. (11.2).
For the AR Lac System, the
parameters chosen were R1 =
2.61R�, R2 = 1.51R� and
d = 8.869R�, and have
been taken from Siviero et al.
[2006].

Likewise, if d < R1−R2, then the smaller star is completely covered, and A = πR2
2. This leaves the

remaining case, in which the covered area resembles an asymmetric lens, which is given by:
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The function A is plotted as an example in Fig. 11.1. A more accurate procedure would take limb-
darkening into account. However, as limb-darkening depends strongly on wavelength, this would
ideally require obtaining the necessary behavior directly from calculated model atmospheres.

Adding spectra together

With this factor, we can now create the resulting spectrum from the two components. Taking two
comparison spectra relevant to one of the star’s components, we can calculate the orbital phase
either from an available relation from the literature, or we can consider this a free parameter, and
determine it in a fit. Together with an orbital solution1, we can easily determine the red- and
blueshift of the two stars, and shift their spectra accordingly. The orbital solution also determines
which of the two stars is currently in front of the other, knowledge of which is required to scale its
spectrum according to the blocked surface area using Eq. (11.2).
Fig. 11.2 shows the generated comparison spectra for binary system AR Lac. Its parameters
R1 = 2.61R�, R2 = 1.51R� and d = 8.869R�, as well as the other required ones, were taken
from Siviero et al. [2006], from where we have also taken the orbital solution. The original spectra
for the two subgiants were PHOENIX models for the two components [Fuhrmeister, 2015]. With
these comparison spectra, the resulting excess flux can be determined using the method described
in Chapter 3. However, it must be passed a value of v sin i = 0, as the rotational broadening has
already been performed. Similarly, no further wavelength shift due to radial velocity is required, and
the routine will perform a cross-correlation anyhow to correct small discrepancies. However, this
routine must be called twice, with adapted values for the actual line center, as this determines where
the integration is performed. Here, we require the integration around two line centers, which move

1With enough available spectra, the parameters of an orbital solution may also be fitted
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Figure 11.2: Generating
comparison spectra for
the binary system AR Lac
at different Phases around
the second Ca II IRT-line.
The line positions of the first
(“S1”) and second star (“S2”),
shifted by their orbital-phase
dependent radial velocity, are
marked in red and blue. After
subtracting the observed spec-
trum by this comparison spec-
trum, integrating the resid-
uals around these positions
yields the excess fluxes.

and change in time. Of course, at some orbital positions, both lines cannot be measured individually
anymore, as no flux from this line reaches the observer, or, in case of fast rotators, because the two
lines merge into one another.
In this way, excess fluxes could be found for several different orbit phases, analyzing their behavior
in more detail.

11.2.2 Applying the method to fast rotators

In this work, we have focused on the level of the excess flux, as determined either by integrating the
excess distribution, or by the amplitude of a Gaussian fitted to it. However, the shape of the excess
flux may reveal more information. The basic idea here is similar to the one behind Doppler Imaging,
which requires that rotational broadening is the dominant broadening process. A spot moving across
a star’s surface will affect the resulting spectrum. Since the spot is cooler and therefore darker, the
contribution of this surface area is suppressed, resulting in less (continuum) flux emitted from this
area. In turn, a spectral line of this normalized flux contribution is less deep [Strassmeier, 1997]. In
the spectral line’s profile, this is visible as a clear “bump” with a position within the line correspond-
ing to the radial velocity of this spot. This process is illustrated in Fig. 11.3. Detailed analysis of
many spectra of a star taken during its rotation makes it possible to determine an image of the stellar
surface. Normally, an additional condition is required to solve this problem fully, since the nonlin-
earity of the problem does not ensure a unique solution. Often, one solves for maximum entropy,
eliminating this problem. There are several results from this method available in the literature. In
the same vain, an active region moving across the star would create an excess distribution that, too,
moves across the spectral line in the same fashion. Here, we experimentally use part of the dataset
obtained by Wolter et al. [2008], and have determined the excess. We then analyzed its position in
the line, as well as the amplitude, of the Gaussian fitted to the excess. For example, in Fig. 11.3,
fitting a Gaussian to the residual after removal of the undisturbed profile would clearly determine
the position of the dip in the line profile. We can then subsequently convert it to a position in the
line profile in the ∆v-scale. With knowledge of the star’s rotation speed and the observation time,
this can in turn be turned into a longitude on the star’s surface.
In a preliminary analysis, we see a clear shift of this excess position across the spectral line. We
show this effect – after smoothing the obtained data for better clarification – in Fig. 11.4, where
we also compare this result to the one obtained by performing the same step with an iron line not
known to show magnetic activity. This line does not show any obvious moving dips.
We can clearly see in the top left plot that the amplitude Af of a Gaussian fit to the excess distri-
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Figure 11.3: Line profile affected by a stellar spot.
If the broadening of a spectral line is dominated by the
star’s rotation, then the position of a cooler, stellar spot
will result in a visible notch in the line profile, moving
across the spectral line.

bution, shows no real structure for a random iron line: The found peaks are distributed randomly,
with no visual trend recognizable. For the Ca II IRT-lines, this is very different. All three lines
show a clear peak in the beginning, which moves from about −70 km s−1 to roughly 70 km s−1, in
about a quarter of the phase. The literature value for this star is v sin i ≈ 134km s−1, suggesting
that this region is not near the equator. This mirrors the result from Wolter et al. [2008], where
the authors also found spots close to the poles – a result found often with Doppler Imaging. This
also explains the shorter fraction of the phase covered. There is also a black region seen in the
Ca II IRT-line related plots in Fig. 11.4, relating to a negative fitted Gaussian. This implies a dip
in the line profile, rather than the expected notch. Whether this is ultimately an effect from noise
that then dominates the structure of a line that has become flat due to the strong broadening, or
if there is some physical nature to this effect, is difficult to say at this point. Further investigation
into the cause and behavior of this may be necessary to understand how this was caused.
After the steps performed, we end up with a number of Gaussians, all of which describe one par-
ticular peak in the residuals at one particular moment in time. Ideally, the spot moving across the
stellar surface will show part of a sinusoidal as it moves across. Since we know this functional shape,
we can make use of that and fit the position of Gaussian peaks that are close with their amplitude
and width according to a shifted sine wave with an amplitude depending on the latitude of the
emitting region. An example for this is shown in Fig. 11.5. In the future, a comparison of this effect
observed in different lines, as well as a more accurate analysis of the position of the dips appearing
and disappearing, hinting at the spot’s latitude, would yield valuable results. In particular, a simple
method that assigns a Gaussian contribution x(φ, θ) to various points on the stellar surface, which
are then used to calculate an excess flux spectrum could be fitted from a series of spectra resolved
well in time: This is a simplified variant of the actual Doppler Imaging process.

11.2.3 Implementation as part of TIGRE’s pipeline

In this thesis, we have developed a method to determine a star’s excess flux, described in Chapter 3,
as well as a method to determine a star’s stellar parameters (Chapter 6). Both of these methods are
highly automated, ideally requiring no human input after the generation of the model tetrahedra
structure used for interpolating the model spectra (Chapter 5). Therefore, it is feasible to incorporate
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Figure 11.4: Color plot of the height of the Gaussians fitted to the excess. After sub-
tracting a comparison spectrum, we fitted Gaussians to the residuals. This plot shows the result
of these Gaussians. There is no structure in the comparison line (Top left), but there is in the
chromospherically active ones (Ca II IRT-lines, other plots).

these two algorithms into the TIGRE pipeline, and have it automatically determine the stellar
parameters of a star, as well as their excess flux. This would generate a large amount of data
relevant to the study of activity, and among other things would allow to improve the conversion
relations given in Chapter 8, making it valid for a larger range in B − V .
To do so, the model tetrahedra structure needs to be extended, because extrapolation results turn
unreliable even for spectra close to stellar parameters still covered by the grid. The structure as
it has been used here only covers a small part of the main sequence. By adding more models to
the grid to cover the entire main sequence, as well spectra of subgiants and giants should turn this
procedure into a reliable way to find valuable information about any star observed. As we have
described in detail, only model spectra with realistic stellar parameters must be calculated and can
then be added to the tetrahedra structure, and no additional model spectra covering the rest of the
grid are required. This allows much faster generation of the required data, even if covering a large
region in stellar parameters is desired.
After the pipeline has finished reducing the spectrum, it could start our procedure to find the stellar
parameters, and use the results obtained in this way to compare the chromospherically active lines
directly to the model spectrum just found to be the best fit. The results could then be added to the
header, which already stores the TIGRE determined activity indices for the Ca II H- & K-lines and
the Ca II IRT-lines. If the model grid is extended suitably, then this process could be used to
analyze the excess flux behavior of stars other than F, G and K-type stars. Most notably, the results
for M-dwarfs would be of great interest, especially considering that the CARMENES mission will
obtain a great number of spectra of such stars. We could not perform such an analysis in this work,
as there were unfortunately not enough TIGRE spectra available of M-dwarfs.



137 CHAPTER 11. SUMMARY AND OUTLOOK

Figure 11.5: Grouping positions
of Gaussians fitted to the resid-
uals together into “Clusters”.
Making use of the known sinusoidal
shape these points must lie in, we can
group the Gaussians with similar am-
plitudes and width together, hinting
that they may stem from the same
emitting region.

11.3 Closing Remarks

This work has clearly shown that the Ca II IRT-lines are very well suited for activity studies. They
show a strong correlation to the established activity indicators, and can be converted easily into
their scale. We hope that this allows the usage of new data taken by exciting missions such as GAIA
to be combined with archival data, to find new results from their temporal behavior, and to better
understand the processes governing the creation and behavior of stellar magnetic fields.

This work was possible only thanks to the large amount of data obtained by the automatic obser-
vation mode of the TIGRE telescope. While it shows some peculiarities, it is clear that it generates
very valuable science data. This is a very powerful tool that, when combined with automatic pro-
cesses and procedures, can create new science only possible with large datasets. Science like this
will only become more valuable in the future, as the amount of data taken increases every day.
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früheren Promotionsverfahren angenommen oder als ungenügend beurteilt.
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heating in stars . I. Theoretical chromospheric models and emerging radiative fluxes. A&A, 386:971–982,
May 2002. doi: 10.1051/0004-6361:20020256.

D. E. Fawzy. Theoretical basal Ca II and Mg II fluxes for late-type stars: results from acoustic wave spectra
with time-dependent ionization and multilevel radiation treatments. MNRAS, 451:1824–1832, August
2015. doi: 10.1093/mnras/stv1035.

Eigil Friis-Christensen and Knud Lassen. Length of the solar cycle- an indicator of solar activity closely
associated with climate. Science, 254(5032):698–700, 1991.
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Appendix A

Notes on the IDL Implementation

A.1 Measuring chromospheric excess

The procedure described in Chapter 4 is written in IDL (“Interactive Data Language”). The corresponding
function to call is named getexcesspro. It takes the comparison spectrum and the one it should be compared
to, and returns a structure that holds the determined values. It allows the user to pass a variety of key-
words to setup the procedure to their needs. Below, only a fraction of all possible keywords and input is given:

getexcesspro, wavem, specm, errm, waveo, speco, specerr, order, l, rr,

BV=bv, ROTVEL=rotvel, MCITER=mciter, SUBMCITER=submciter,

WHATFIT=whatfit, AUTOEXCESSAREA=autoexcessarea,

USEENVELOPE=useenvelope, EXCESSSIZE=excesssize,

NOSHIFT=noshift, SAVEEXCESS=saveexcess, NORESAMP=noresamp,

NORMALREGION=normalregion

wavem, specm, errm Three arrays holding the wavelength scale (in Å), flux (in physical units) and
error of the comparison spectrum.

waveo, speco, specerr Three arrays holding the wavelength scale (in Å), flux (in arbitrary units)
and error of the spectrum under consideration.

order Polynomial order to be used for normalization. Recommended value is 1.
l Wavelength of the line the excess is to be obtained from.
rr Two-element array of the spectral region to consider. Must include l.

Optional input

BV B − V of the star under consideration.
ROTVEL The comparison spectrum is broadened by this rotational velocity of the star

under consideration. See also text below.
MCITER, SUBMCITER Determines how many Monte-Carlo iterations are performed. See text for

details.
WHATFIT Function to fit to the excess. 0: Gaussian profile (Default), 1: Voigt-profile,

2: Moffat profile.
EXCESSSIZE Size of the region the excess is expected to cover. Used for integrating, if

/AUTOEXCESSAREA is not set.
NORMALREGION See text below.

Keywords

AUTOEXCESSAREA If set, the region the excess is covering is determined automatically.
USEENVELOPE 1: Uses the upper envelope of the spectrum for finding the continuum for

both spectra, 2: Use it only for the considered spectrum, 3: Use it only for
the comparison spectrum.

NOSHIFT If set, performs no wavelength shift as described in Sect. 3.3
SAVEEXCESS If set, an additional field is added to the struct returned by this function,

which holds the average excess distribution.
NORESAMP If set, no resampling of the comparison spectrum to an equidistant wavelength

scale is performed.

Performs the steps outlined in Chapter 3 to obtain the chromospheric excess.
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Table A.1: Overview of the common block FBPF Data used by the code.

Name Type Description

coeffs double[10,NW ,NP ] The 10 coefficients from Eq. (5.8),
for each wavelength point NW and grid point NP .

w double[NW ] The wavelength scale in use.
ts double[NP ] The value of Teffof the model at gridpoint NP .
gs double[NP ] The value of log g of the model at gridpoint NP .
zs double[NP ] The value of [M/H] of the model at gridpoint NP

steps float[3] The values defining the scale of the partitioning.
Here, we use 100, 0.2, 0.25 as given in Eq. (5.6).

tetras struct Holds the parameters of the tetrahedra.
Details given in Table A.2.

fs fs[NP ,NW ] The flux of the degraded model at gridpoint NP ,
for each wavelength point NW .
This value is intended for debugging and can be removed.

This procedure expects an error also for the comparison spectrum. If a model spectrum is used, this can be
estimated from the errors on the stellar parameters (see Sect. 7.2.3). The value for BV is used to estimate
a value for ε, as described in Sec. 3.4. If no value is passed here, a value of ε = 0.6 ± 0.05 is assumed, cor-
responding to the value found from deriving the limb darkening in the Eddington approximation (Hubeny
and Mihalas [2014], pg. 517).
ROTVEL can be set to a two-element array. The second value in that array is then used as the error on the value
on the rotational velocity. Otherwise, an error of 10% is assumed. As described above, for error determina-
tion this procedure performs Monte-Carlo iterations. The value MCITER gives the amount of iterations where
one value for R′ and v sin i is sampled, whereas SUBMCITER defines how many randomly chosen values from
the resulting distribution of each iterations are stored. The higher this value, the more accurate the result, at
the cost of a bigger memory use. The default value is 250, and is suitable for most cases. Set NORMALREGION
to a 2N -element array with N as the amount of regions, to give the regions to consider when obtaining the
continuum, as described in Sec. 3.2. For Ca II H- & K-lines, use [3991.07,4011.07,3891.07,3911.07].
This procedure calls a variety of helper routines, which can also be used on their own, such as the afore-
mentioned obtain continuum and normalize spectrum1. For degradation and rotational broadening, two
more functions are available for use for either large or non-equidistantly sampled spectral regions. Since the
kernel cannot be assumed to be constant to good approximation, the computationally fast approach using
the FFT must not be used. Instead, degrade large and rotbroaden large perform the folding with the
changing kernel individually for each wavelength point. These procedures are therefore much slower.

A.2 Interpolating model spectra on irregular grids

A.2.1 Using the code

This interpolation algorithm was written in the IDL programming language. It consists of several procedures
and functions, which we will describe below. We also provide an overview of the common block datastructure
FBPF Data used by these procedures in Table A.1 and Table A.2. The actual usage of this code can be seper-
ated into two parts: Preparing the interpolation, and using the resulting partitioning to calculate spectra.
All names of functions and procedures part of this code begin with either fbpf or findbestphoenixfit ,
depending on whether or not it is an internal use function or is involved in the creation of the partitioning,
or if it works on a higher level, such as functions for fitting, see Sec. A.4.

1This routine calculates the error on the result as the quadratic sum from the error on the obtained continuum
and the spectrum. This is not perfectly valid, since these errors are correlated. However, this approach serves as a
conservative estimation of the real error.
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Table A.2: Overview of the struct tetras storing the tetrahedra data.

Name Type Description

tetras.—
.boundary long[Ns,2] Holds the indices of tetrahedra surfaces making up the bound-

ary of the structure. The n-th boundary surface is the
tetras.boundary[n,1]’s surface of the tetras.boundary[n,0]

tetrahedron.

tetras.tetrahedra[Nt].—
.pts long[4] The four indices of the points making up this tetrahedron.

.normals double[4,3] The components of the normal of the four surfaces. .normals[i,j]
holds the j-th component of the normal of tetrahedron surface i.

.distfac double[4,4] The four components to use for the quick calculation of the distance
to a surface via a four-dimensional dot product, according to Eq.
(5.11).

Preparing the interpolation

In the process of preparing the interpolation, the model spectra must be created, loaded in and assigned a
place in the grid. Afterwards, the partitioning into tetrahedra must be performed, the polynomials from Eq.
(5.8) determined, and finally the distance factors from Eq. (5.11) need to be calculated. The first procedure
that needs to be called is:

FBPF CreateBlock, w, res, steps, NONCONVEX=nonconvex, VERBOSE=verbose, USEIDL=useidl,

FASTDEGRADE=fastdegrade, NOTETRA=notetra, CAREFUL=careful

w An array of wavelength points the model spectra will be interpolated on.
res The resolution the models will be degraded to.

steps A 3-element array that holds the step sizes for Teff , log g and [M/H], which define
the scale of this parameter. Default: [100,0.2,0.25].

Keywords

NOCONVEX If set, no additional pass to ensure a convex structure is performed.
VERBOSE Prints out additional information.
USEIDL Uses IDL routines for the partitioning. Will not result in an ideal partition, and

may find tetrahedra that overlap.
FASTDEGRADE Uses a fast routine for degrading. Will introduce strong errors if the wavelength

region is too large, or not equidistant.
NOTETRA Does not perform the actual partitioning into tetrahedra.
CAREFUL Temporarlily interpolates the model spectra to a higher resolution before degrading

for higher accuracy.

Finds, loads and degrades spectra data, performs further preparations and then calls the next routine for
partitioning the space into tetrahedra. The result is then saved.

This function searches for all available ilte*.sav-files in the current folder, assuming all of those are
PHOENIX model spectra in IDL sav-format with (at least) two saved arrays:

wave An array of wavelength points.
flux The spectrum, one point for each in wave.

The resolution of this spetra is then determined, and they are then interpolated to the wavelength scale
w, or a much finer one if /CAREFUL is set, in which case the spectrum is then interpolated again to the real
wavelength scale w afterwards. The filename is then analyzed to determine the corresponding values of Teff ,
log g and [M/H]. For this to work, the filename must follow the structure given: ilteTTTTT GGGG ZZZZZ—
.sav, whereas the characters T are replaced by the value of Teff(five characters), G are replaced by the value
of log g (four characters), and Z are replaced by the value of metallicity (five characters, including sign), and
any combination of text afterwards, with a file extension of .sav. For example, a valid filename would be
ilte06100 3.90 +0.20.PHOENIX-ACES-AGSS-COND-2015hr.sav.
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The so determined values determine the space of the corresponding point in the grid. Then, the degraded
flux is stored in fs, necessary for determining the polynomial coefficients later.
Afterwards, the routine stores the so obtained values, and saves them in a file called
GridTetraData MINW-MAXWA.sav, though with MINW and MAXW replaced by the minimum and maximum values
of w replaced, respectively. Next, it calls the routine for dividing the layout into tetrahedra, either calling the
IDL routine if USEIDL is set - however the resulting partition may not be ideal, and may feature overlapping
tetrahedra. Otherwise, the next routine is called, and the result stored in a new file with the same name as
before, but beginning with GridTetraData.

FBPF Tetrahedrate, x, y, z, KEEPCONCAVE=keepconcave, FILLHOLES=fillholes, DEBUG=debug,

QUICKSTART=quickstart

x An array of x-coordinates. Usually the normalized values Teff/∆Teff .
y An array of y-coordinates. Usually the normalized values log g/∆ log g.
z An array of z-coordinates. Usually the normalized values [M/H] /∆ [M/H].

Keywords

KEEPCONCAVE If set, no additional pass is performed to ensure a convex structure. Disregarding
errors due to numerical inaccuracies, the structure created will always be convex.

FILLHOLES If set, the resulting structure will be checked for holes and those will be fixed.
DEBUG Prints and plots various debug related information.

QUICKSTART If set, a faster approach to find the starting surface at the boundary is chosen.
Otherwise, another approach ensures the smallest boundary surface is taken.

Performs the actual partitioning into tetrahedra and determines the boundary surfaces. It then returns
a structure holding this data, as described in Table A.2.

This procedure performs the actual partitioning, as described in the previous sections. Before the structure
can be used, however, a few more parameters must be calculated, namely the polynomial coefficients accord-
ing to Eq. (5.8) and the distance factors according to Eq. (5.11). To have this done, call the next procedure:

FBPF GenerateCoefficients, fname, RANDVAR=randvar

fname Name of the file that stores the result of the previous steps.

Optional Input

RANDVAR Set to a value to vary the coordinates by a random amount of this
magnitude.

Calculates the coefficients for the polynomial, and the distance factors.

The calculations are performed as described in the previous sections. The result will be saved in a file named
according to the passed filename fname and the suffix coeffs.sav. This file can then be used for the actual
interpolation and calculation of spectra.
The previous process can be simplified by simply calling:

FBPF Setup, w,res

w An array of wavelength points the model spectra will be interpolated on.
res The resolution the models will be degraded to.

A wrapper function that calls FBPF CreateBlock and FBPF GenerateCoefficients with default parame-
ters.

Calculating spectra

To calculate and create spectra using this method and an existing partition, some initialization is required.
These routines rely heavily on a common block called FBPF Data, which stores the required information re-
garding the tetrahedra, their positions, as well as the interpolation coefficients. Note that it is also possible
to load the actual spectral data from the models. This has been included for debugging purposes, and can
be removed from the code by removing the variable fs from the common block. This will heavily reduce the
amount of memory needed, as well as the disk space required. To initialize, call:
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FBPF LoadBlock, filename, RANDOM=random, WAVESCALE = wavescale

filename Name of the file to load to initialize the common block FBPF Data with.

Optional Input

RANDOM A random value that varies the tetrahedra’s vertex positions (without changing the
partitioning).

WAVESCALE Set this to a named variable that will afterwards store the wavelength points corre-
sponding to the model flux.

Initializes the common block for all subsequent calls to generate the spectra.

filename is a required parameter, and the name of the file to load that will initialize the common block. It is
possible, but not recommended, to pass a nonzero floating point value using the RANDOM keyword. It can be
used to vary the tetrahedra’s vertex positions (without changing the partitioning), for example to determine
the changes in the interpolation that stem from the errors on the model’s stellar parameters. However, in
practice, varying these points by anything small compared to the step size does not affect the interpolation
results by much2. wavescale is an optional argument that may be passed as well. If set, the wavescale
the models are calculated on is returned in this variable. If FBPF LoadBlock is not called, any attempt to
generate a spectrum will result in the warning to be displayed:

FBPF Common Block not loaded! Call FBPF_LoadBlock first!

With the block loaded, a spectrum can be generated using:

FBPF GenerateSpectra, teff, logg, met, vrot, CENTER=center, DEBUGPLOT=debugplot

teff The value of Teff for the model spectrum to calculate.
logg The value of log g for the model spectrum to calculate.
met The value of [M/H] for the model spectrum to calculate.
vrot The value of v sin i for the model spectrum to calculate.

Optional Input & Keywords

CENTER If set, this center wavelength will be used for the kernel determination for the
rotational broadening. This also increases the speed greatly for the broaden-
ing, but will return wrong result across large wavelength regions.

DEBUGPLOT If this keyword is set, plots for debugging purposes are generated.

Generates a spectrum with the given stellar parameters.

The code will then automatically determine the point X corresponding to that set of stellar parameters,
and attempt to find a tetrahedron that includes X. If found, it will use the coefficients determined for this
tetrahedron’s vertices to calculate the polynomial that ultimately returns the spectrum at X. If no such
tetrahedron is found, it will call FBPF ExtrapolateSpectra, which attempts to extrapolate using the method
described in Sect. 5.3.6.
This function returns the spectrum, on the wavescale that FBPF LoadBlock optionally returns, so a quick
way to plot a spectrum in the Ca II IRT region is:

FBPF_LoadBlock,filename,WAVESCALE = wave

plot, wave, FBPF_GenerateSpectra(5700,4.4,0.0,2.2), &

xtitle= ’wavelength’, ytitle=’flux’, xr = [8490, 8560]

Of course, filename has to be replaced by the actual name of the file containing the partitioning data. In
this work, this file is called:

GridTetraData_3500.0000-8999.9000A.sav_coeffs.sav .

This spectrum plotted is very solar like with parameters of Teff=5700 K, log g=4.4 and [M/H]=0.0, as well
as being a slow rotator with a velocity of v sin i = 2.2kms−1. The resulting plot from these two lines is shown
in Fig. A.1.

2In old versions of the code, problems occured when tetrahedra where regular or the grid points arranged in a
regular fashion. In that case, some of the required dot products would then become zero, but due to numerical
inaccuracies a small non-zero value would be returned. In a similar vain, very small angles would also be determined
incorrectly. Then, the code may determine a point to lie in a tetrahedron it did not lie in at all, resulting in wrong
interpolation. This parameter can also help in such case, as it breaks the regular gridding, and avoids parallel surfaces.
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Figure A.1: Simple
Example of using
this code. Result-
ing plot from calling
FBPF LoadBlock and
FBPF GenerateSpectra,
with additional settings
for chars and thick to
make this plot easier
to read in the printed
version.

A.3 Obtaining conversion relations

To obtain these relations, we have written code that takes as input the output of get correlation, which is
a procedure used to generate the correlation plots and distributions shown in Chapter 4 and Chapter 7. This
routine saves the collected data in a subfolder CorrelationsResult. These files can directly be passed to
get conversion, which opens the file and performs the Monte-carlo iterations and subsequent fit according
to the GS approach described above:

get conversion, fname, bvstep, polydeg, NOB=nob, MLOG=mlog, MCIT = mcit, FLIP=flip,

KEEPOUTLIERS=keepoutliers, NOTTHESE=notthese

fname File to load which holds the results of a previos call to get correlation.
bvstep Either an array of the B−V -values used for the different segments, or a number that

holds the step size for equidistant segmenting. Segments that no stars fall into are
ignored.

polydeg The order of the polynomials for the coefficients (as function of B − V ).

Keywords & Optional Inputs

NOB If set, only a fit of y = m(B − V ) · x is performed, with no intercept b.
MLOG If set, not m is assumed to be polynomial in B − V , but rather logm.
MCIT Can be set to the number of iterations to be performed during the Monte Carlo

process.
FLIP Flips the two parameters from the get correlation file, in order to find x(y) instead

of y(x).
KEEPOUTLIERS If set, no attempt is made to remove outliers or errorneous data from the fit in the

segments.
NOTTHESE Can be set to an array of string, holding the names of stars to ignore during the

procedure.
DEBUG Creates additional debugging plots.

Finds a conversion formula using the GS approach from output of get correlation.

On the other hand, get conversion allatonce performs the simpler linear regression. Its procedure cannot
be customized as much. The signature of this procedure is explained in detail below:
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get conversion allatonce, fname, polydeg, FLIP=flip, NOTTHESE=notthese

fname File to load which holds the results of a previos call to get correlation.
polydeg The order of the polynomials for the coefficients (as function of B − V ).

Keywords & Optional Inputs

FLIP Flips the two parameters from the get correlation file, in order to find
x(y) instead of y(x).

NOTTHESE Can be set to an array of string, holding the names of stars to ignore
during the procedure.

Finds a conversion formula using the LR approach from output of get correlation.

Both of these procedures find and print the resulting relations to the terminal. Afterwards, a conversion
using the same sample is performed, and various values from a comparision of these values to the original,
measured ones are printed out. Among these is the residual value that 68 % of residual values fall below,
which we also give as an error. Another parameter printed is the “Relative deviation”, which is the median
value of the residuals divided by the real value. We have given these two values for all conversion relations
given. Additionally, the conversion results are plotted by these procedures. get conversion additionally
plots various other functions, most notably m(B − V ) and b(B − V ). If the /DEBUG keyword is set, then an
additional file is created, which shows the fitted relation for each B − V segment, and lists the stars used
for it.
These procedures are ready to be used, in conjunction with get correlation. They do not require much
user input, and could therefore be used to automatically derive conversion relations from different large
datasets, if combined with sensible segments (in bvstep), for the case of the GS approach. The simpler
linear regression can always be used in this fashion.
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A.4 Determining stellar parameters from TIGRE spectra and
PHOENIX model spectra

Here, we describe the process of performing a fit using the method and interpolation stated above. First
ensure that the common block is loaded using FBPF LoadBlock. Then, call the following IDL function to
perform a fit according to the Levenberg-Marquardt method:

FindBestPhoenixFit super, wave,flux,err, Teff, logg, met, vrot, ERRORS=errors,

REGIONS=regions, MASK=mask, NOPLOT=noplot, SILENT=silent,

FITRESULT=fitresult, FITRESOL=fitresol, FITSHIFT=fitshift,

NORMCORRECTION=normcorrection, OTHERP=otherp, OTHERE=othere,

CHISQ=chisq, MPFITINFO=mpfitinfo, EXTRAVEL=extravel,

IGNOREERRORS=ignoreerrors, FIXPARAMS=fixparams

wave An N -element array of wavelengths.
flux An array of flux points. Must have N elements.
err An array of errors on flux. Must have N elements.

Teff, logg, met, vrot Named variables that hold the starting value for Teff , log g, [M/H] and
v sin i respectively, and which will hold the fitted value afterwards.

Optional Inputs

REGIONS Defines the region for the fit. See text.
MASK Further defines the region for the fit. See text.

FIXPARAMS Allows to fix (not fit) certain parameters. See text.

Optional Output

ERRORS This four-element array will hold the errors on the stellar parameters.
OTHERP This array will hold the rest of the parameters fitted (see Table 6.3).
OTHERE Same as OTHERP, but this array holds the error on the parameters.

FITRESULT 2-dimensional array that holds wavelength and flux of the fitted spec-
trum.

CHISQ The χ2
ν-value of the fit.

Keywords

NOPLOT If set, no plots to compare the fits are generated.
SILENT If set, no output is given.

FITRESOL If set, the resolution in each region is considered a parameter of the fit.
Otherwise, the resolution is not fitted.

FITSHIFT If set, a global wavelength shift is considered a parameter of the fit.
NORMCORRECTION If set, a normalization correction is considered a parameter of the fit.

MPFITINFO If set, the /QUIET-keyword for MPFit is suppressed.
EXTRAVEL If set, an additional fit for just v sin i is performed after the main fit.

IGNOREERRORS If set, no weighting according to err is performed.

Fits a spectrum using the Levenberg-Marquardt-approach.

After this procedure is called, Teff, logg, met and vrot will store the best-fitted stellar parameters. If set,
additional optional output is stored as well. If regions is not set, the two regions from 5100–5200 Å and
6100–6200 Å are fitted. If a different set of N regions should be fitted, pass an array with an even amount of
datapoints of the form [λl,1, λu,1, · · · , λl,N , λu,N ], where λl,i is the lower wavelength limit of the i-th region,
and λu,i the upper wavelength of the same region. The array to pass to mask follows the same structure,
except that any wavelength point inside its region are ignored in the fit.
Afterwards, the code attempts to fit a number of parameters: 4 in any case, an additional one if FITSHIFT

is set, additional N more if FITRESOL is set, and finally an additional 2N if NORMCORRECTION is set. For
the full recommended set, 5 + 3N parameters are set. If desired, an array of 1’s and 0’s can be passed in
FIXPARAMS. If it’s i-th element is 1, then the corresponding parameter is fixed and not fitted. For example,
if fixparams[3] is set to 1, then v sin i is fixed, whereas fixparams[5] = 1 would fix the first normalization
correction coefficient if NORMCORRECTION is set, or the resolution in the first region if FITRESOL is set and
NORMCORRECTION is not set. The output given via OTHERP is following the same structure, i.e. it holds the two
normalization correction coefficients of the first region if NORMCORRECTION is set, followed by one value for the
resolution in the first region if FITRESOL is set, and then this set of three values for the second region, and
so on. EXTRAVEL allows an additional fit for just v sin i, which in many cases was not varied very much from
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its starting value in this approach (see Fig. 6.5 and Fig. 6.7). However, tests indicate that this additional
step is not enough to correct this wrong behaviour, and that this may very well be a systematic problem of
the approach (Fig. 6.6).
To instead perform a fit using the MCMC approach:

FindBestPhoenixFit mcmc, wave, flux, err, Teff, logg, Feh, vrot, ERRORS=errors,

REGIONS=regions, MASK=mask, NOPLOT=noplot, SILENT=silent,

FITRESULT=fitresult, FITRESOL=fitresol, FITSHIFT=fitshift,

NORMCORRECTION=normcorrection, OTHERP=otherp, OTHERE=othere,

V=v

See FindBestPhoenixFit super for description on input & output.

Additional output

V A [k,N ]-element array that holds the N accepted values for parameter k
(Teff , log g, ..., according to Table 6.3).

Fits a spectrum using the MCMC-approach.

The use of this procedure is almost identical, except for the use of V, which allows to store the trace by
obtaining the list of accepted parameter values. For example, after the call, V[0,*] will hold the trace for
the first parameter, Teff . This procedure calls mcmc.pro by Zobitz et al. [2011] with the /medium-keyword,
which was the best compromise of speed and accuracy. It calculates the result from 6 individual chains. By
setting a different keyword to select a preset, or by passing different values for numchains, numatonce, etc.
to mcmc (Line 164 of FindBestPhoenixFit mcmc), this behaviour can be changed. Additionally, if desired,
further conditions can be added into the likelihood estimator fbpf mcmclikelihood.
Both these function call fbpf fitfuncpro, which calculates, shifts, normalizes, broadens and degrades the
model spectrum, and finally interpolates it to the correct wavelength scale.
For convenience sake, an additional wrapper findestphoenixfit wrapper is provided, that can merge TI-
GRE observation together until a target SNR is reached, and to then fit the result.
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Appendix B

Additional Information, Figures
and Tables

Chapter 4

In the following pages, we present the following tables:

• Stellar parameters for the active stars investigated in this work

• Stellar parameters for comparison stars

• List of comparison stars, and which stars were compared to them

• Relations to estimate the inactive line flux in the center of the Ca II H- & K-lines

• Relations to estimate the inactive line flux in the center of the Hα-line

All of these tables are referred to and explained in the main text. We also give second-order polynomials,
fitted to the results of the inactive line flux in the center of the Ca II H- & K-lines and the Hα-line.
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Table B.1: Stellar parameters for the active stars investigated in this work. Values missing were inferred from a fit to the values of other stars.
References are numbered in superscript and correspond to the following sources: (1) Soubiran et al. [2010]; (2) Schröder et al. [2009]; (3) Mart́ınez-Arnáiz
et al. [2010]; (4) Marsden et al. [2014]; (5) Mishenina et al. [2012]; (6) Bernacca and Perinotto [1970]; (7) Ammler-von Eiff and Reiners [2012]; (8) Torres
et al. [2006]; (9) White et al. [2007]; (10) Glebocki and Gnacinski [2005]; (11) Maldonado et al. [2012]; (12) Takeda et al. [2005]; (13) Torres et al. [2012];
(14) Uesugi and Fukuda [1970]; (15) McCarthy and Wilhelm [2014]; (16) Prugniel et al. [2011]; (17) Jenkins et al. [2011]

Name B-V log g [Fe/H] v sin i Name B-V log g [Fe/H] v sin i

HD 88355 0.43(1) - 0.00(1) - HD 75332 0.50(1) 4.41(1) 0.13(1) 11.00(11)

HD 25457 0.50(1) 4.30(1) -0.03(1) 20.24(3) HD 179949 0.50(1) 4.44(1) 0.20(1) 6.40(2)

HD 35296 0.52(1) 4.28(1) -0.02(1) 16.00(2) HD 19019 0.52(1) 4.00(1) -0.17(1) 10.00(9)

HD 20367 0.52(1) 4.46(1) 0.13(1) - HD 137107 0.55(1) 4.22(1) -0.03(1) -

HD 100180 0.57(1) 4.25(1) -0.06(1) 3.59(3) HD 150706 0.57(1) 4.47(1) -0.03(1) 10.00(9)

HD 154417 0.58(1) 4.38(1) -0.01(1) 8.00(3) HD 206860 0.58(1) 4.49(1) -0.08(1) 12.81(3)

HD 209458 0.58(1) 4.45(1) 0.01(1) 4.5(10) HD 70573 0.59(1) 4.58(1) -0.11(1) 19.39± 4.00(9)

HD 114710 0.59(1) 4.43(1) 0.07(1) 4.72(3) HD 115383 0.59(1) 4.25(1) 0.13(1) 7.20 ± 1.10(7)

HD 129333 0.59(1) 4.47(1) 0.16(1) 22.01 ± 3.95(9) HD 26913 0.60(1) 4.49(1) -0.02(1) 1.83(5)

HD 39587 0.60(1) 4.45(1) -0.03(1) 10.79(3) HD 97334 0.61(1) 4.35(1) 0.06(1) 7.74(3)

HD 75767 0.61(1) 4.33(1) -0.04(1) 4.00(4) HD 165401 0.61(1) 4.39(1) -0.41(1) 13.90(3)

HD 190406 0.61(1) 4.39(1) 0.04(1) 8.27(3) HD 25680 0.62(1) 4.52(1) 0.05(1) 3.20(5)

HD 72905 0.62(1) 4.53(1) -0.08(1) 11.21(3) HD 197076 0.62(1) 4.41(1) -0.11(1) 10.22(9)

HD 126053 0.63(1) 4.43(1) -0.38(1) 3.08(3) HD 181321 0.63(1) 4.42(1) -0.01(1) 13.00(8)

HD 30495 0.64(1) 4.49(1) -0.01(1) 3.57(5) HD 38858 0.64(1) 4.48(1) -0.22(1) 2.61(3)

HD 71148 0.64(1) 4.36(1) -0.00(1) 12.37(3) HD 146233 0.65(1) 4.42(1) 0.03(1) 4.07(3)

HD 140538 0.65(1) 4.47(1) 0.05(1) 11.01(3) HD 159222 0.65(1) 4.34(1) 0.10(1) 3.01(3)

HD 190771 0.65(1) 4.41(1) 0.14(1) 4.20(5) HD 20619 0.66(1) 4.42(1) -0.24(1) 3.20(3)

HD 28099 0.66(1) 4.43(1) 0.13(1) 3.54(5) HD 42618 0.66(1) 4.46(1) -0.11(1) 4.40(15)

HD 20630 0.67(1) 4.49(1) 0.06(1) 5.86(3) HD 43162 0.67(1) 4.38(1) -0.05(1) 9.63(3)

HD 73350 0.67(1) 4.46(1) 0.11(1) 4.00(4) HD 76151 0.67(1) 4.46(1) 0.08(1) 3.58(3)

HD 145825 0.67(1) 4.46(1) 0.03(1) 3.10± 1.20(8) HD 224930 0.67(1) 4.41(1) -0.77(1) 4.07(3)

HD 42807 0.68(1) 4.46(1) -0.03(1) 3.80(5) HD 6582 0.69(1) 4.50(1) -0.80(1) 4.17(3)

HD 10086 0.69(1) 4.39(1) 0.12(1) 2.40(4) HD 68017 0.69(1) 4.46(1) -0.44(1) 1.49(3)

HD 111395 0.69(1) 4.54(1) 0.10(1) 2.60(5) HD 101501 0.74(1) 4.55(1) -0.07(1) 3.26(3)

HD 103095 0.75(1) 4.63(1) -1.34(1) 9.28(3) HD 184385 0.75(1) 4.49(1) 0.12(1) 2.70(5)

HD 152391 0.76(1) 4.47(1) -0.05(1) 3.06(5) HD 82443 0.77(1) 4.45(1) -0.13(1) 5.90(5)

HD 82885 0.77(1) 4.49(1) 0.32(1) 7.22(3) HD 131156A 0.77(1) 4.54(1) -0.12(1) -

HD 149661 0.78(1) 4.50(1) 0.03(1) 1.63(5) HD 185144 0.78(1) 4.49(1) -0.22(1) 6.79(3)

Continued on next page



Table B.1 – Continued from previous page

Name B-V log g [Fe/H] v sin i Name B-V log g [Fe/H] v sin i

HD 100623 0.81(1) 4.60(1) -0.41(1) 6.79(3) HD 165341A 0.83(1) 4.49(1) -0.04(1) 16.00(11)

HD 10476 0.84(1) 4.45(1) -0.05(1) 1.20(3) HD 115404 0.85(1) 4.45(1) -0.19(1) -

HD 17925 0.86(1) 4.52(1) 0.07(1) 4.80(5) HD 97658 0.86(1) 4.49(1) -0.30(1) 8.70(5)

HD 118972 0.86(1) 4.36(1) -0.02(1) 4.10 ± 1.20(8) HD 166620 0.87(1) 4.47(1) -0.17(1) 4.82(3)

HD 75732 0.87(1) 4.41(1) 0.28(1) 2.27(3) HD 22049 0.88(1) 4.53(1) -0.10(1) 4.08(3)

HD 37394 0.90(1) 4.51(1) 0.08(1) 2.80(5) HD 4628 0.90(1) 4.63(1) -0.27(1) 1.50(5)

HD 145675 0.90(1) 4.45(1) 0.41(1) 2.6(10) HD 22468 0.92(1) - - -

HD 189733 0.93(1) 4.49(1) -0.02(1) 2.30(13) HD 5133 0.94(1) 4.66(1) -0.11(1) 3.52(3)

HD 160346 0.96(1) 4.46(1) -0.03(1) 3.37(3) HD 16160 0.98(1) 4.54(1) -0.12(1) 0.90(5)

HD 87883 0.99(1) 4.47(1) 0.05(1) 1.20(3) HD 32147 1.06(1) 4.41(1) 0.26(1) 5.18(3)

HD 131977 1.11(1) 4.35(1) -0.00(1) 2.48(5) HD 190007 1.12(1) 4.38(1) 0.16(1) 2.55(5)

HD 156026 1.16(1) 4.60(1) -0.20(1) 4.40(2) HD 201091 1.18(1) 4.70(1) -0.38(16) 4.72(3)

Table B.2: Stellar parameters for the comparison stars used in this work. Same as Table B.1, but for the comparison stars.

Name B-V log g [Fe/H] v sin i Name B-V log g [Fe/H] v sin i

HD 739 0.40(3) 4.27(3) -0.09(3) 4.40(2) HD 159332 0.45(3) 3.85(3) -0.23(3) 5.00(6)

HD 216385 0.48(3) 3.95(3) -0.29(3) 3.00(12) HD 45067 0.53(3) 4.01(3) -0.09(3) 5.00(6)

HD 187691 0.56(3) 4.26(3) 0.10(3) 3.00(12) HD 100180 0.57(3) 4.25(3) -0.06(3) 3.59(3)

HD 124570 0.58(3) 4.05(3) 0.08(3) 3.00(12) HD 19373 0.59(3) 4.21(3) 0.08(3) 3.15(3)

HD 168009 0.60(3) 4.23(3) -0.01(3) 3.00(12) HD 10307 0.62(3) 4.32(3) 0.03(3) 4.07(3)

HD 34411 0.62(3) 4.22(3) 0.08(3) 3.15(3) HD 95128 0.62(3) 4.30(3) 0.01(3) 3.15(3)

HD 157214 0.62(3) 4.31(3) -0.40(3) 3.15(3) HD 126053 0.63(3) 4.43(3) -0.38(3) 3.08(3)

HD 38858 0.64(3) 4.48(3) -0.22(3) 2.61(3) HD 146233 0.65(3) 4.42(3) 0.03(3) 4.07(3)

HD 186427 0.65(3) 4.32(3) 0.07(3) 2.18± 0.50(4) HD 12846 0.66(3) 4.38(3) -0.26(3) 2.20(4)

HD 42618 0.66(3) 4.46(3) -0.11(3) 4.40(15) HD 43587 0.67(3) 4.29(3) -0.04(3) 2.98(3)

HD 3795 0.70(3) 3.91(3) -0.63(3) 1.70(17) HD 115617 0.70(3) 4.39(3) -0.01(3) 3.90± 0.90(7)

HD 178428 0.70(3) 4.25(3) 0.14(3) 1.50(5) HD 117176 0.71(3) 3.97(3) -0.06(3) 4.83(3)

HD 10700 0.72(3) 4.48(3) -0.50(3) 1.60(17) HD 26965 0.85(3) 4.51(3) -0.27(3) 2.10(17)

HD 75732 0.87(3) 4.41(3) 0.28(3) 2.27(3) HD 145675 0.90(3) 4.45(3) 0.41(3) 2.10(17)



Table B.3: List of comparison stars and which stars were compared to them.

Comparison Stars compared to it

HD 739 HD 182101, HD 157856, HD 10032, HD 49933, HD 40136
HD 159332 HD 111456, HD 114378, HD 194012, HD 106516, HD 18256, HD 88355
HD 216385 HD 25998, HD 17206, HD 16673
HD 45067 HD 25457, HD 35296, HD 88737, HD 19019, HD 100563, HD 6920, HD 137107

HD 187691 HD 75332, HD 179949, HD 20367
HD 124570 HD 206860, HD 115043, HD 150706, HD 154417, HD 100180, HD 209458
HD 19373 HD 115383, HD 114710, HD 70573

HD 168009 HD 26913, HD 39587, HD 75767
HD 10307 HD 190406

HD 157214 HD 165401, HD 126053
HD 34411 HD 97334, HD 25680
HD 95128 HD 181321, HD 72905, HD 30495, HD 197076, HD 71148

HD 186427 HD 129333, HD 190771, HD 140538, HD 159222, HD 146233, HD 28099, HD 197027,
HD 76151, HD 73350

HD 12846 HD 133640A, HD 38858, HD 20619, HD 42618
HD 43587 HD 43162, HD 42807, HD 145825, HD 20630

HD 115617 HD 131977, HD 149661
HD 178428 HD 111395, HD 75732, HD 184385, HD 82885, HD 145675, HD 10086

HD 3795 HD 224930, HD 6582
HD 117176 HD 82443, HD 152391, HD 101501, HD 131156A
HD 10700 HD 103095, HD 68017
HD 26965 HD 17925, HD 156026, HD 201091A, HD 118972, HD 22049, HD 201091, HD 115404,

HD 165341A, HD 4628, HD 16160, HD 10476, HD 100623, HD 166620, HD 185144,
HD 97658, HD 201092, HD 201091

HD 145675 HD 190007, HD 37394, HD 5133, HD 32147, HD 160346, HD 22468, HD 87883, HD 189733,
HD 75732



Table B.4: Relations to estimate the summed-up flux in a 2 Å-window in the center of
both Ca II H- & K-lines for inactive objects. vrot must be entered in units of km s−1. Values
for B − V , log g and [Fe/H] are taken from Soubiran et al. [2010].
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Table B.5: Relations to estimate the summed up flux in an 1 Å-window in the center of
the Hα-line for inactive objects. vrot must be entered in units of km s−1. Values for B − V ,
log g and [Fe/H] are taken from Soubiran et al. [2010].
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We can fit a three-dimensional, second-order polynomial to the results of the inactive line flux in the
Ca II H- & K-lines and Hα-line, just like we did before. As described in the main text, the line flux is esti-
mated in a 2 Å-bandpass for the Ca II H- & K-lines. The results for the flux in erg s−1 cm−2 are:

Finact,H&K(B − V, [M/H], v sin i) = 38.373 − (B.1)

86.775(B − V ) − 0.699[M/H] +

0.012v sin i+ 51.228(B − V )2 −
1.170[M/H]2 + 5.950 · 10−5v sin i2 −
0.397(B − V )[M/H] − 0.017(B − V )v sin i+

0.683 · 10−3[M/H]v sin i,

Finact,Hα(B − V, [M/H], v sin i) = 7.554 − (B.2)

13.694(B − V ) − 0.087[M/H] +

0.034v sin i+ 7.490(B − V )2 −
0.167[M/H]2 + 3.082 · 10−4v sin i2 −
0.391(B − V )[M/H] − 0.041(B − V )v sin i−
0.654 · 10−3[M/H]v sin i,

and for the line flux in continuum units:

Winact,H&K(B − V, [M/H], v sin i) = 0.421 + (B.3)

0.092(B − V ) − 0.280[M/H] +

0.246 · 10−3v sin i− 0.095(B − V )2 −
0.105[M/H]2 + 0.567 · 10−5v sin i2 +

0.295(B − V )[M/H] − 0.254 · 10−3(B − V )v sin i+

0.233 · 10−4[M/H]v sin i,

Winact,Hα(B − V, [M/H], v sin i) = 0.338 − (B.4)

0.317(B − V ) + 0.021[M/H] −
0.193 · 10−3v sin i+ 0.323(B − V )2 −
0.022[M/H]2 + 4.294 · 10−5v sin i2 −
0.062(B − V )[M/H] + 2.009 · 10−3(B − V )v sin i−
2.417 · 10−4[M/H]v sin i.



A

B
Figure B.1: Unnecessary extrapolation in then two-
dimensional case of a concave partitioning shape.
If the desired position (star) falls outside the partitioning
structure, the result will be extrapolated from the known
data (points). However, in this particular case of a concave
shape, it is unclear whether to use the information from
point A or point B. In fact, here the correct choice would
be an interpolation (three arrows). Had the partitioning
be continued to ensure a convex shape, an additional trian-
gle connecting the points A and B, enclosing the position,
would exist, and the algorithm would correctly interpolate
the result.

Chapter 6

In the following pages, we present the following tables:

• Complete mask in use for the fit to determine stellar parameters (Complete version from Table 6.2)

• Complete results of the various fitting procedures (Levenberg-Marquardt, MCMC)

We then proceed to shortly describe the procedure where the Levenberg-Marquardt-method was used to
finalize the result of the MCMC approach, including a table of the results. However, we first give the reason
why it is important for the tetrahedra structure to be convex, and how to achieve this if it is not.

Guaranteeing a convex shape

Using the method described above, the structure made up of the tetrahedra is always convex. However, it is
of use to create an additional function that takes a partitioning with a concave shape, and adds tetrahedra
until the structure is convex. This is useful for instance when manually adding tetrahedra to an existing
structure, for example after adding another point to the set. The requirement for a convex shape is necessary
as any point X that falls inside the tetrahedra structure can then be assigned to a tetrahedron in the structure
generated with the algorithm described. The vertices of a boundary surface of the structure are used when
extrapolating a spectrum. In case of a concave shape, it is possible to find a point that is not included in
any tetrahedron of the structure, even though it would be possible to define a suitable one that includes
this point. The equivalent case in two dimensions is shown in Fig. B.1. The algorithm iterates through all
tetrahedra surfaces that are not yet shared between two tetrahedra, and looks for those that share either an
edge or a point. If they share an edge, the total of four points (two surfaces with three vertices each, but
both share two of them, so each surface features one more vertex for a total of four) are checked to see that a
tetrahedron formed from this does not intersect with any existing ones. If they share a point, two tetrahedra
could be formed: The two surfaces each have three vertices, but one of those is shared, so a total of five
vertices must be taken into account. Connecting the three points of the first surface with either unshared
vertex from the second results in a tetrahedron, so two tetrehadra in total. These are, again, checked to not
intersect any existing ones. Of all the possible tetrahedra found in this fashion, the one with the smallest
volume is then added to the structure and the cycle begins anew.



Additional Tables

Table B.6: Masks in use to ignore certain regions in the fit. The regions given here are
ignored in our fit, as the model shows different behaviour here than the observed spectra, e.g. due
to wrong line profiles.

Mask region

5117.16 – 5117.56 5117.89 – 5118.02 5120.94 – 5121.14 5123.39 – 5124.32
5124.52 – 5124.85 5125.44 – 5125.77 5126.17 – 5127.81 5130.24 – 5130.65
5132.60 – 5132.81 5135.85 – 5136.20 5140.68 – 5140.89 5142.06 – 5142.26
5142.88 – 5143.23 5146.04 – 5146.24 5150.68 – 5151.29 5151.70 – 5152.04
5152.31 – 5152.51 5153.53 – 5153.67 5154.28 – 5154.35 5154.96 – 5155.16
5155.50 – 5155.57 5159.35 – 5159.56 5159.82 – 5160.09 5162.59 – 5162.72
5163.46 – 5163.53 5163.86 – 5164.06 5166.48 – 5166.81 5168.28 – 5168.48
5169.28 – 5169.42 5169.68 – 5169.82 5170.62 – 5170.88 5171.22 – 5171.48
5174.01 – 5174.54 5176.38 – 5177.30 5178.56 – 5179.12 5179.96 – 5180.24
5181.29 – 5181.43 5181.85 – 5182.06 5184.91 – 5185.12 5187.76 – 5188.04
5188.25 – 5188.32 5188.74 – 5189.08 5189.36 – 5189.64 5189.85 – 5190.19
5190.75 – 5190.81 5191.71 – 5192.06 5194.54 – 5195.23 5195.37 – 5195.99
5197.85 – 5198.05 5199.08 – 5199.29 5199.84 – 5199.91 5100.62 – 5101.34
5102.41 – 5102.85 5103.61 – 5104.76 5111.01 – 5112.85 5113.92 – 5114.77
5115.56 – 5116.46 5129.08 – 5129.91 5131.39 – 5132.12 5134.17 – 5134.98
5143.40 – 5144.03 5144.77 – 5145.71 5146.79 – 5147.86 5148.45 – 5149.17
5149.70 – 5150.38 5156.89 – 5158.13 5175.00 – 5175.56 5177.71 – 5178.37
6103.60 – 6103.75 6106.45 – 6106.67 6107.12 – 6107.49 6112.83 – 6113.13
6120.88 – 6121.12 6131.49 – 6131.97 6142.29 – 6142.69 6144.88 – 6145.50
6159.21 – 6159.59 6189.22 – 6189.55 6104.90 – 6105.49 6123.93 – 6125.44
6125.86 – 6126.62 6128.62 – 6130.61 6133.32 – 6134.36 6145.91 – 6146.69
6157.40 – 6158.24 6156.59 – 6157.14 6154.83 – 6156.36 6163.06 – 6165.75
6166.60 – 6167.14 6183.11 – 6184.07 6185.30 – 6186.53 6189.90 – 6192.63
6194.73 – 6195.37 6195.98 – 6196.90 6199.00 – 6199.45 6523.41 – 6524.05
6527.07 – 6527.39 6538.77 – 6539.20 6543.67 – 6544.10 6549.66 – 6550.59
6551.36 – 6551.70 6552.47 – 6552.81 6553.23 – 6553.49 6556.03 – 6556.88
6557.56 – 6557.81 6558.74 – 6560.18 6564.81 – 6568.58 6569.00 – 6569.41
6569.67 – 6570.25 6561.70 – 6563.90 6530.43 – 6533.42 6536.27 – 6538.09
6540.99 – 6542.95 6546.06 – 6546.42 6546.60 – 6549.24 6571.58 – 6573.63
6577.40 – 6577.97 6561.50 – 6564.50 7746.07 – 7746.65 7758.68 – 7758.68
7758.55 – 7760.06 7796.78 – 7796.78 7796.78 – 7796.78 7798.60 – 7799.71
7799.98 – 7801.16 7810.21 – 7812.04 7816.20 – 7817.01 7821.27 – 7822.25
7826.06 – 7827.47 7832.94 – 7834.09 7837.48 – 7838.65 8519.55 – 8519.77
8496.90 – 8499.10 8481.45 – 8482.53 8485.15 – 8487.60 8490.88 – 8494.59
8501.08 – 8503.78 8504.56 – 8508.06 8509.05 – 8516.76 8517.72 – 8519.00
8553.76 – 8556.51 8557.04 – 8557.35 8635.97 – 8636.31 8540.90 – 8543.10
8534.12 – 8538.53 8525.56 – 8528.61 8560.97 – 8563.81 8580.88 – 8587.09
8603.41 – 8605.68 8609.65 – 8617.16 8625.24 – 8626.39 8630.52 – 8631.84
8621.05 – 8623.39 8637.35 – 8639.91 8642.95 – 8644.16 8646.53 – 8647.41



Table B.7: Result of the Levenberg-Marquardt-Fit, with starting parameters searched from a grid
search. The fit has been performed as described in the text, with the regions and masked given in Table 6.1 and
Table 6.2. Other parameters have been fitted that are not shown here, such as resolution and a wavelength shift, see
Table 6.3. If no error is given, the statistical error has been determined to be less than the step size in the grid, or
unrealistic in the case of v sin i, and shold then be considered to be 50 K for Teff , 0.10 for log g, 0.12 for [M/H] and
1 km s−1 for v sin i.

Object Teff log g [M/H] v sin i Object Teff log g [M/H] v sin i
in K in km s−1 in K in km s−1

HD157214 5491 4.36 −0.38 8.5 HD168009 5499 4.00 −0.00 3.8
HD129333 5520 3.80 +0.00 14.4 HD184385 5570 4.56 +0.12 3.3
HD178428 5570 4.04 +0.12 3.5 HD43162 5600 4.54 +0.00 8.7
HD82885 5602 4.59 +0.33 5.5 HD111395 5603 4.55 +0.07 3.1
HD68017 5609 4.41 −0.27 9.6 HD42807 5620 4.38 −0.01 9.0
HD115617 5621 4.51 −0.00 3.4 HD140538 5629 4.45 +0.01 5.4
HD117176 5650 3.98 −0.03 3.1 HD20619 5674 4.45 −0.22 3.5
HD20630 5675 4.54 +0.01 5.5 HD115043 5684 4.31 −0.16 5.2
HD26913 5687 4.56 −0.01 8.9 HD86728 5688 4.16 +0.19 3.1
HD1461 5689 4.17 +0.20 3.2 HD73350 5700 4.38 +0.11 3.8
HD75767 5700 4.39 −0.00 8.8 HD10086 5705 4.52 +0.09 3.3
HD38858 5710 4.39 −0.22 2.7 HD89269 5712 4.47 −0.12 3.6
HD12846 5718 4.30 −0.22 3.6 HD126053 5737 4.34 −0.31 3.4
HD159222 5750 4.32 +0.11 3.3 HD190771 5756 4.58 +0.12 3.6
HD165401 5765 4.12 −0.33 1.2 HD30495 5780 4.58 −0.01 3.5
HD186427 5782 4.32 +0.10 3.3 HD106116 5784 4.33 +0.19 3.3
HD76151 5788 4.52 +0.11 3.7 HD19373 5795 4.20 +0.12 2.7
HD42618 5796 4.44 −0.10 3.6 HD150706 5800 4.40 +0.00 9.5
HD43587 5804 4.38 −0.00 8.3 HD75528 5810 3.84 +0.18 5.1
HD186408 5815 4.30 +0.10 5.3 HD95128 5828 4.29 +0.09 8.8
HD92719 5840 4.37 −0.03 9.5 HD28099 5842 4.40 +0.30 3.5
HD197027 5843 4.37 +0.05 3.2 HD25680 5847 4.59 +0.10 3.6
HD145825 5855 4.57 +0.10 3.4 HD196850 5858 4.32 −0.03 9.5
HD72905 5865 4.58 −0.01 10.3 HD197076 5869 4.54 −0.02 9.9
HD79028 5870 4.14 +0.01 5.4 HD32923 5882 4.29 −0.02 9.7
HD146233 5886 4.56 +0.08 3.5 HD70573 5894 4.44 +0.11 14.4
HD133640A 5900 4.60 −0.38 11.7 HD19019 5900 4.40 −0.12 9.6
HD181321 5912 4.45 +0.09 13.5 HD41330 5919 4.12 −0.13 5.2
HD107213 5959 3.88 +0.19 3.0 HD34411 5961 4.31 +0.13 9.9
HD71148 5967 4.52 +0.10 3.0 HD39587 5973 4.58 −0.00 10.2
HD45067 5976 3.96 −0.02 9.9 HD90508 5988 4.42 −0.14 9.6
HD143761 5995 4.49 −0.11 2.5 HD142373 5997 4.25 −0.36 2.9
HD216385 5999 4.00 −0.25 2.5 HD10307 6000 4.52 +0.10 3.3
HD154417 6003 4.59 −0.00 2.7 HD20367 6004 4.59 +0.12 2.5
HD50692 6004 4.47 −0.11 3.1 HD124570 6008 3.85 +0.06 1.2
HD206860 6010 4.60 +0.00 10.2 HD89744 6014 4.00 +0.12 10.5
HD97334 6018 4.60 +0.13 2.9 HD190406 6020 4.59 +0.12 2.7
HD88737 6051 3.85 +0.22 2.6 HD9826 6060 4.01 +0.10 10.3
HD209458 6065 4.54 −0.00 2.9 HD100180 6066 4.57 +0.00 3.7
HD114710 6074 4.53 +0.09 3.7 HD6920 6082 3.82 +0.10 9.0
HD137107 6101 4.60 −0.00 10.0 HD115383 6134 4.53 +0.14 5.4
HD106516 6152 4.57 −0.51 8.6 HD159332 6153 3.93 −0.12 10.2
HD194012 6179 4.22 −0.12 9.5 HD187691 6181 4.34 +0.22 3.6
HD100563 6182 4.17 +0.10 17.5 HD75332 6204 4.37 +0.11 10.4
HD35296 6206 4.40 +0.09 15.5 HD182101 6206 4.19 −0.02 14.4
HD16673 6222 4.35 +0.00 10.1 HD179949 6227 4.59 +0.13 5.7
HD111456 6229 4.60 −0.12 41.3 HD58855 6240 4.31 −0.25 10.7
HD25457 6255 4.42 +0.11 19.1 HD88355 6278 4.10 −0.02 18.1
HD84117 6308 4.53 −0.00 5.4 HD18256 6340 4.03 −0.01 19.2
HD76572 6359 3.85 −0.12 5.4 HD72945 6375 4.56 +0.12 5.2
HD25998 6400 4.60 +0.25 16.1 HD114378 6476 4.56 −0.13 20.0
HD157856 6477 4.03 −0.02 15.2 HD17206 6510 4.61 +0.12 23.6
HD160915 6616 4.59 −0.01 12.2



Table B.8: Result of the MCMC-Fit. The fit has been performed as described in the text, with the regions
and masked given in Table 6.1 and Table 6.2. Other parameters have been fitted that are not shown here, such as
resolution and a wavelength shift, see Table 6.3. If no error is given, the statistical error has been determined to be
less than the step size in the grid, or unrealistic in the case of v sin i, and shold then be considered to be 50 K for Teff ,
0.10 for log g, 0.12 for [M/H] and 1 km s−1 for v sin i.

Object Teff log g [M/H] v sin i Object Teff log g [M/H] v sin i
in K in km s−1 in K in km s−1

HD82443 5398 4.60 +0.00 5.2 HD145675 5411 4.60 +0.49 1.8
HD152391 5454 4.60 −0.03 3.1 HD131156A 5467 4.60 −0.14 2.9
HD3795 5477 4.46 −0.47 0.7 HD117176 5489 4.10 −0.10 2.8 ± 1.99
HD101501 5501 4.60 −0.08 3.5 HD178428 5524 4.22 +0.07 0.7
HD82885 5525 4.61 +0.28 3.3 HD115617 5549 4.60 −0.06 2.8 ± 2.42
HD68017 5569 4.72 −0.36 0.8 HD224930 5571 4.87 −0.57 3.1
HD10700 5571 4.90 −0.27 0.6 HD6582 5571 4.90 −0.48 3.4
HD184385 5579 4.69 +0.09 2.9 HD106116 5587 4.40 +0.07 1.2
HD43162 5601 4.65 −0.06 3.0 HD140538 5628 4.59 −0.02 5.2
HD111395 5631 4.67 +0.03 1.4 ± 1.30 HD42618 5638 4.44 −0.17 0.3 ± 1.19
HD186427 5642 4.36 −0.02 1.3 HD20630 5647 4.52 −0.01 5.2
HD42807 5650 4.53 −0.09 0.2 ± 1.50 HD32923 5650 4.24 −0.18 5.2
HD197027 5653 4.41 −0.08 2.3 HD1461 5661 4.36 +0.14 2.2 ± 1.70
HD168009 5665 4.30 −0.08 1.3 ± 1.03 HD129333 5672 4.49 −0.12 13.7
HD89269 5673 4.67 −0.17 0.5 ± 1.06 HD75528 5678 3.91 +0.06 3.0
HD26913 5684 4.66 −0.10 3.5 HD157214 5686 4.61 −0.32 3.1
HD38858 5696 4.60 −0.24 2.9 HD75767 5697 4.43 −0.14 1.7 ± 1.27
HD86728 5701 4.44 +0.15 1.3 HD76151 5701 4.52 +0.05 3.4
HD28099 5704 4.47 +0.12 1.6 ± 1.25 HD126053 5717 4.73 −0.32 3.1
HD90508 5720 4.53 −0.32 5.2 HD143761 5731 4.38 −0.24 2.6
HD186408 5740 4.38 +0.02 3.0 HD73350 5746 4.55 +0.03 3.4
HD145825 5747 4.54 −0.00 2.8 HD146233 5758 4.54 −0.01 3.4
HD190771 5768 4.60 +0.07 2.9 HD10086 5769 4.66 +0.11 0.6
HD20619 5774 4.72 −0.17 1.3 HD12846 5774 4.72 −0.20 0.6
HD159222 5774 4.47 +0.07 3.1 HD142373 5775 4.20 −0.48 0.2 ± 1.34
HD41330 5777 4.30 −0.22 3.0 HD25680 5779 4.53 −0.01 1.4 ± 1.10
HD30495 5782 4.60 −0.05 1.5 ± 1.19 HD92719 5783 4.64 −0.14 5.2
HD71148 5791 4.49 −0.05 7.7 HD197076 5791 4.61 −0.14 5.2
HD70573 5794 4.57 −0.11 13.7 HD196850 5797 4.49 −0.12 5.2
HD165401 5811 4.80 −0.35 2.5 HD72905 5838 4.63 −0.10 5.2
HD133640A 5840 4.54 −0.51 9.1 HD190406 5847 4.44 −0.02 7.7
HD97334 5847 4.49 +0.03 7.6 HD43587 5848 4.38 −0.06 3.0
HD95128 5849 4.44 −0.00 1.5 ± 1.18 HD10307 5849 4.46 +0.01 2.7
HD34411 5853 4.41 +0.05 3.3 HD50692 5862 4.51 −0.19 1.1
HD181321 5872 4.60 −0.07 13.5 HD79028 5873 4.21 −0.01 5.2
HD206860 5874 4.51 −0.12 7.7 HD45067 5885 4.03 −0.15 3.9
HD39587 5896 4.60 −0.09 5.2 HD150706 5897 4.59 −0.08 3.0
HD19373 5900 4.31 +0.06 3.2 HD100180 5902 4.44 −0.08 3.2
HD114710 5910 4.46 −0.04 1.6 ± 1.27 HD154417 5927 4.46 −0.06 2.5
HD115383 5929 4.39 +0.06 4.0 HD137107 5933 4.46 −0.10 12.1
HD187691 5940 4.22 +0.02 0.3 ± 1.16 HD209458 5947 4.42 −0.08 2.2 ± 1.84
HD20367 5948 4.43 −0.02 1.4 ± 1.08 HD6920 5952 3.93 −0.04 2.3
HD75332 5959 4.28 −0.08 9.0 HD19019 5963 4.45 −0.16 5.2
HD84117 5981 4.26 −0.15 4.0 HD115043 5982 4.77 −0.05 2.6
HD124570 6015 3.99 +0.03 3.5 HD88737 6035 3.93 +0.14 2.5
HD89744 6037 3.98 +0.08 5.2 HD194012 6050 4.28 −0.20 5.1
HD107213 6050 3.98 +0.11 7.6 HD9826 6061 4.23 +0.03 5.2
HD179949 6065 4.42 +0.06 3.0 HD35296 6081 4.50 −0.08 14.8
HD159332 6093 3.91 −0.18 5.0 HD72945 6109 4.33 −0.01 5.2
HD16673 6138 4.46 −0.09 2.3 ± 1.90 HD216385 6141 4.07 −0.21 1.4 ± 1.08
HD25998 6155 4.46 +0.04 15.6 HD25457 6165 4.51 −0.02 17.4
HD111456 6191 4.48 −0.25 41.8 HD76572 6204 3.88 −0.20 3.0
HD58855 6207 4.36 −0.31 5.2 HD114378 6218 4.39 −0.29 19.8
HD88355 6222 4.17 −0.09 17.4 HD18256 6222 4.07 −0.15 15.6
HD157856 6235 3.91 −0.20 13.6 HD160915 6244 4.31 −0.21 11.9
HD17206 6249 4.38 −0.03 23.9 HD106516 6324 4.90 −0.56 7.6
HD2454 6339 4.21 −0.30 3.0 HD182101 6354 4.44 −0.14 12.1
HD100563 6371 4.43 +0.04 13.5 HD739 6404 4.35 −0.09 2.9



B.1 Combining Levenberg-Marquardt and the MCMC ap-
proach

We can use the best value for the stellar parameters, as determined by the MCMC approach, as
starting values for a subsequent Levenberg-Marquadt fit, which is a more goal-oriented fit. The
“random-walk” behaviour of the former ensures that we do not suffer from a final distribution of
found values showing a grid-structure, whereas the optimized behaviour of the latter quickly finds a
(local) minimum from the parameters provided. Of course, the final runtime is now the sum of both
individual runtimes. However, since the MCMC runtime is so much larger, the relative increase is
acceptable. Table B.9 shows the found parameters of such a fit, where the stellar parameters from
the MCMC result have been used as starting parameters, however, shift normalization corrections
and resolution have not. The χ2-values differ by about 4 % on average, however, the resulting fit is
more often slightly worse compared to the original MCMC fit. The high correlation of resolution and
rotational velocity might be the reason for this. We compare the new fitted stellar parameters to the
starting values in Fig. B.2. There is a tendency towards lower log g, reaching up towards the grid
spacing of ∆ log g = 0.25. For metallicity, the values were changed to slightly higher [M/H], though
to a lesser degree. All in all, these changes in stellar parameters is below the uncertainty given by
the grid spacing, so that we do not consider this additional Levenberg-Marquardt-fit essential.

Figure B.2: Comparing the fitted stellar parameters of just the MCMC fit to the fitted
stellar parameters from an additional Levenberg-Marquardt fit using the MCMC values
as starting values (“Sequential”). The dashed line corresponds to the identity, the dotted lines
show the typical grid-spacing, corresponding to “small changes”. Adding an additional pass of a
subsequent Levenberg-Marquardt fit with the MCMC-derived stellar parameters as starting values
does not change the resulting values by much. The tendency is towards lower values in log g, and
slightly higher [M/H].



Table B.9: Result of the Levenberg-Marquardt-fit from MCMC starting parameters. The fit has been
performed as described in the text, with the regions and masked given in Table 6.1 and Table 6.2. Other parameters
have been fitted that are not shown here, such as resolution and a wavelength shift, see Table 6.3. If no error is given,
the statistical error has been determined to be less than the step size in the grid, or unrealistic in the case of v sin i,
and shold then be considered to be 50 K for Teff , 0.10 for log g, 0.12 for [M/H] and 1 km s−1 for v sin i.

Object Teff log g [M/H] v sin i Object Teff log g [M/H] v sin i
in K in km s−1 in K in km s−1

HD82443 5398 4.60 +0.00 5.7 HD145675 5411 4.60 +0.49 1.8
HD3795 5429 4.00 −0.42 1.0 HD152391 5433 4.57 +0.03 3.0
HD131156A 5467 4.60 −0.14 3.3 HD117176 5490 4.00 −0.08 2.8
HD82885 5501 4.59 +0.29 3.3 HD101501 5503 4.53 −0.01 3.5
HD115617 5538 4.33 +0.01 2.8 HD89269 5548 4.19 −0.15 1.0
HD43162 5549 4.55 +0.01 3.0 HD6582 5568 4.69 −0.49 3.4
HD10700 5569 4.76 −0.27 1.0 HD224930 5573 4.81 −0.55 3.1
HD106116 5574 4.35 +0.09 1.2 HD68017 5577 4.64 −0.36 1.0
HD184385 5577 4.68 +0.09 2.9 HD111395 5581 4.49 +0.09 1.4
HD178428 5589 4.09 +0.13 1.0 HD42807 5606 4.39 −0.04 1.0
HD140538 5616 4.40 +0.06 5.2 HD38858 5622 4.16 −0.19 2.9
HD129333 5627 4.56 −0.06 13.8 HD20619 5628 4.29 −0.17 1.3
HD42618 5629 4.13 −0.11 1.0 HD20630 5642 4.49 +0.03 5.2
HD197027 5646 4.12 −0.03 2.3 HD12846 5649 4.26 −0.19 1.0
HD32923 5650 4.11 −0.17 5.1 HD26913 5655 4.58 −0.04 3.5
HD157214 5664 4.07 −0.24 3.1 HD1461 5668 4.23 +0.19 2.2
HD168009 5679 4.00 −0.00 1.3 HD76151 5680 4.32 +0.11 3.4
HD75528 5682 3.80 +0.05 3.0 HD186427 5686 4.13 +0.06 1.3
HD73350 5690 4.33 +0.10 3.4 HD28099 5691 4.43 +0.16 1.6
HD86728 5692 4.29 +0.19 1.3 HD70573 5693 4.38 −0.04 13.7
HD75767 5700 4.15 −0.06 1.7 HD92719 5700 4.19 −0.10 5.2
HD126053 5702 4.50 −0.28 3.1 HD90508 5706 4.04 −0.25 5.2
HD146233 5712 4.24 +0.04 3.4 HD145825 5714 4.29 +0.04 2.8
HD25680 5714 4.33 +0.04 1.4 HD186408 5720 4.10 +0.08 3.0
HD72905 5730 4.41 −0.06 5.4 HD159222 5738 4.23 +0.12 3.0
HD143761 5742 4.00 −0.17 2.6 HD30495 5746 4.49 −0.01 1.5
HD190771 5754 4.51 +0.16 2.9 HD43587 5761 4.00 −0.04 3.0
HD34411 5763 3.99 +0.08 3.3 HD10307 5765 4.06 +0.03 2.7
HD10086 5769 4.66 +0.11 1.0 HD41330 5772 4.00 −0.16 3.0
HD197076 5774 4.40 −0.08 5.3 HD181321 5775 4.49 −0.04 13.6
HD71148 5782 4.40 −0.01 7.7 HD196850 5788 4.49 −0.12 5.2
HD50692 5791 4.07 −0.15 1.1 HD150706 5803 4.33 −0.04 3.0
HD165401 5808 4.68 −0.34 3.0 HD142373 5818 4.00 −0.39 1.0
HD97334 5835 4.47 +0.09 7.7 HD206860 5840 4.35 −0.05 7.7
HD95128 5842 4.29 +0.03 1.5 HD79028 5844 3.98 +0.03 5.2
HD133640A 5845 4.49 −0.50 9.1 HD190406 5852 4.34 +0.05 7.7
HD19373 5856 4.01 +0.10 3.3 HD45067 5859 3.80 −0.11 3.9
HD115043 5878 4.53 −0.02 2.6 ± 1.04 HD39587 5878 4.56 −0.10 5.6
HD114710 5882 4.22 +0.02 1.6 HD100180 5884 4.16 −0.02 3.2
HD6920 5905 3.94 −0.04 2.3 HD154417 5912 4.33 −0.02 2.5
HD115383 5928 4.32 +0.10 5.7 HD20367 5935 4.31 +0.08 1.4
HD137107 5938 4.41 −0.09 12.5 HD209458 5938 4.17 −0.02 2.2
HD19019 5949 4.30 −0.13 5.2 HD75332 5960 4.28 −0.08 9.0
HD84117 5984 4.20 −0.13 7.2 HD187691 5995 4.05 +0.14 1.0
HD124570 6019 3.93 +0.10 3.5 HD88737 6032 3.91 +0.14 2.5
HD89744 6038 3.99 +0.08 4.7 HD9826 6045 4.04 +0.09 5.2
HD35296 6066 4.47 −0.07 14.8 HD179949 6069 4.35 +0.09 5.5
HD72945 6075 4.06 +0.04 5.2 HD107213 6089 3.97 +0.20 7.7
HD159332 6109 3.90 −0.13 5.1 HD16673 6112 4.30 −0.03 2.3 ± 1.66
HD194012 6125 4.16 −0.11 5.1 HD25998 6140 4.38 +0.09 15.7
HD111456 6160 4.52 −0.21 41.8 HD216385 6164 4.02 −0.15 1.4
HD25457 6165 4.51 −0.02 18.9 HD106516 6192 4.24 −0.53 7.7
HD58855 6198 4.16 −0.26 5.2 HD76572 6208 3.88 −0.19 3.0
HD88355 6223 4.17 −0.08 18.1 HD18256 6225 4.06 −0.13 15.6
HD17206 6225 4.32 +0.00 23.9 HD114378 6238 4.28 −0.22 19.8
HD160915 6263 4.24 −0.13 11.9 HD182101 6277 4.16 −0.11 12.1
HD157856 6302 3.90 −0.10 13.8 HD100563 6316 4.29 +0.08 13.5
HD2454 6325 4.09 −0.28 3.0 HD739 6330 4.21 −0.06 2.9
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Previously published works

Here, we list the previous publications that have been derived from the results of this thesis.

Poster

I presented preliminary results as a poster contribution at the Cool Stars 19 workshop in Uppsala,
Sweden:

J. Martin, M. Mittag, B. Fuhrmeister, T. O. B. Schmidt, A. Hempelmann, J. N. González-Pérez, K.-
P. Schröder, J. H. M. M. Schmitt. Determining activity and rotation periods from TIGRE
Ca II observations. Poster contribution for Cool Stars 19 workshop, June 2016.

Paper

Some of the results of this thesis were previously published in my paper entitled “The Ca II
infrared triplet’s performance as an activity indicator compared to Ca II H and K:
Empirical relations to convert Ca II infrared triplet measurements to common activity
indices” [Martin et al., 2017]. Such content has been marked accordingly. This paper is reproduced
here in its entirety. Permission to do so was graciously provided by Astronomy & Astrophysics.

The paper’s copyright is as follows:

Credit: J. Martin, B. Fuhrmeister, M. Mittag, T.O.B. Schmidt, A. Hempelmann, J.N. González-
Pérez, and J.H.M.M. Schmitt; A&A, 605, id.A113, 2017, reproduced with permission, c© ESO.

My contribution to the paper was the development of the method (as it is also described in Chap-
ter 3), the “manual” S-Index determination and its conversion to the SMWO scale, the relations to
estimate inactive flux (see also Chapter 4), as well as the excess flux determination and the analysis
of their correlations. I also obtained the conversion relations given.
The other authors contributed with important input on how to solve some challenges in the method,
the interpretation of the results, and with the exact selection of stars to use, most of them from a
subset preselected by M. Mittag, A. Hempelmann and J. H. M. M. Schmitt. All spectra in use were
reduced by the automatic TIGRE pipeline, developed by M. Mittag.
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ABSTRACT

Aims. A large number of Calcium infrared triplet (IRT) spectra are expected from the Gaia and CARMENES missions. Conversion
of these spectra into known activity indicators will allow analysis of their temporal evolution to a better degree. We set out to find
such a conversion formula and to determine its robustness.
Methods. We have compared 2274 Ca ii IRT spectra of active main-sequence F to K stars taken by the TIGRE telescope with those of
inactive stars of the same spectral type. After normalizing and applying rotational broadening, we subtracted the comparison spectra
to find the chromospheric excess flux caused by activity. We obtained the total excess flux, and compared it to established activity
indices derived from the Ca ii H and K lines, the spectra of which were obtained simultaneously to the infrared spectra.
Results. The excess flux in the Ca ii IRT is found to correlate well with R′HK and R+

HK, as well as S MWO, if the B − V-dependency is
taken into account. We find an empirical conversion formula to calculate the corresponding value of one activity indicator from the
measurement of another, by comparing groups of datapoints of stars with similar B − V .

Key words. stars: activity – stars: chromospheres – stars: magnetic field – stars: atmospheres

1. Introduction

Cool stars with outer convective envelopes ubiquitously show
signatures of magnetic activity. Such activity manifests itself in a
plethora of observable signatures, such as spots, chromospheric
emission lines, emission at X-ray and XUV wavelengths, and
many others. On quite a few stars these activity phenomena are
more pronounced than what we observe in the Sun, and it is
therefore useful to perform activity studies on other, more ac-
tive stars, both to learn about the underlying physical processes,
but also to learn more about the Sun.

One of the best-known measures of activity is the so-called
Mount-Wilson S -index S MWO, defined as the ratio of the flux in
the center of the Ca ii H and K lines, where activity results
in a sometimes very large excess emission, relative to the flux
in the continuum on either side of the lines. As we have ac-
cess to a large number of such observations dating back many
years, this S -index is well-suited for long-term activity stud-
ies (Duncan et al. 1991). It has, in fact, been used to deter-
mine periods for activity cycles and/or rotation in cool stars
(Baliunas et al. 1995).

Since the photosphere also contributes in the center of
the Ca ii H and K lines, the S -index characterizes not only
chromospheric activity, and it becomes difficult to compare
stars with different effective temperatures, where these photo-
spheric contributions will vary. To overcome these shortcomings,

Linsky et al. (1979) introduced the so-called R′HK-index. The
photospheric flux is first subtracted from the flux measured in
the Ca ii H and K lines, and the remainder subsequently nor-
malized by dividing by σT 4

eff
. This correction allows a direct

comparison of stars of various stellar types, which have differ-
ent photospheric fluxes. Given Teff , it is possible to convert the
measured values of S MWO into R′HK (Rutten 1984; Linsky et al.
1979), hence the large amount of archival data for S MWO can
directly be used to compare in the R′HK-scale.

Both the Gaia mission (Prusti 2012) and CARMENES
(Quirrenbach et al. 2014) are expected to provide very large
numbers of spectra that can be used for activity studies of stars.
The Radial Velocity Spectrometer (RVS) onboard Gaia has a
resolution of about 11 500 with a wavelength coverage of 8470–
8740 Å, and CARMENES covers the region between 5 500–
17 000 Å with a resolution of 82 000. The Gaia RVS is expected
to yield spectra down to a magnitude of about 17, which corre-
sponds to 15–16% of the Gaia catalog of presently 1 142 679 769
entries (Gaia Collaboration 2016). CARMENES will yield time
series of selected M dwarfs and the total number of spectra in
the first three years will be approximately 15 000.

In both cases, the Ca ii H and K lines at 3933.7 Å and
3968.5 Å are not covered, and thus no data to enhance tempo-
ral studies of activity can be combined with the existing S MWO
data. However, spectra obtained with either of these instruments
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cover the calcium infrared triplet (IRT), three lines centered at
8498 Å, 8542 Å and 8662 Å. Like the Ca ii H and K lines, the
IRT are Ca ii lines, which have been reported to be sensitive to
activity as well (Martínez-Arnáiz et al. 2011). In contrast to the
Ca ii H and K lines, these IRT lines usually only show a smaller
fill-in due to activity, rather than stronger fill-in up to a clear
emission core as the Ca iiH and K lines do. While the rather sim-
ple indicator of the central depression in the IRT lines correlates
well with S MWO (Chmielewski 2000), it is difficult to disentan-
gle the effects from activity on the central depression from those
of rotational broadening, which is also known to correlate well
with activity (Andretta et al. 2005). Busà et al. (2007) presented
a new indicator ∆WIRT, based on the excess flux from the chro-
mosphere, obtained by subtracting a model of the photosphere.
Their new indicators turned out to correlate well with R′HK, and
they were able to obtain a conversion formula from this index to
R′HK by analyzing the spectra of 42 stars of type F5 to K3.

In this paper, we have adopted a similar approach, but have
subtracted the observed spectra of an inactive object with sim-
ilar stellar parameters. We performed this comparison not only
for the calcium lines, but also for Hα, and we also fit a Gaussian
to the obtained excess flux to test the feasibility of using such
a fit as an activity indicator. We used more than two thousand
observations obtained with the TIGRE telescope, which simul-
taneously records the Ca ii H and K lines, the Ca ii IRT and Hα
(see Sect. 2.1). This means that there is no scatter from tempo-
ral variation, which can be a rather significant introduced error
(Baliunas et al. 1995), and yet we are also able to more accu-
rately quantify the expected derivation simply from inherent dif-
ferences in the two activity indices.

The plan of our paper is as follows: first, we describe the
TIGRE telescope and give an overview of the objects and ob-
servations used in this paper. We then describe the method used
to determine the excess flux, and show the results for the mea-
sured line flux for inactive objects. Then, we show the observed
correlations for the excess flux in the lines to other indicators. Fi-
nally, we give relations to convert the measured values to other
indicators.

2. Observations

2.1. The TIGRE telescope

The Telescopio Internacional de Guanajuato Robótico Espec-
troscópico (TIGRE) is operated by a collaboration between the
Hamburger Sternwarte, the University of Guanajuato and the
University of Liège. TIGRE is a 1.2 m telescope stationed at
the La Luz Observatory in central Mexico near Guanajuato at a
height of about 2400 m. Equipped with the refurbished Heidel-
berg Extended Range Optical Spectrograph (HEROS), TIGRE
takes spectra with a resolution of ∼20 000, covering a wave-
length range of ∼3800–8800 Å, with only a small gap of about
130 Å centered at 5765 Å. This wide wavelength coverage al-
lows to obtain measurements of the Ca ii IRT simultaneously
with those taken of the Ca ii H and K lines. TIGRE can be op-
erated both manually and fully automatically, including the se-
lection of the observation time for each object, based on factors
such as weather, position, visibility in other nights, and the as-
signed priority. More detailed information about TIGRE can be
found in Schmitt et al. (2014).

After every night the system automatically reduces the
data, running a modified version of the REDUCE package
(Piskunov & Valenti 2002), as described in Mittag et al. (2010).

Fig. 1. Comparison of our measured value for S MWO with the converted
TIGRE S -Index.

This reduction pipeline includes flatfielding and the wavelength
calibration. Moreover, TIGRE determines its own S -index, de-
fined almost identically to the original Mount-Wilson S -Index
S MWO (Vaughan et al. 1978; Duncan et al. 1991),

S MWO =
NH + NK

NV + NR
α, (1)

where NH and NK are the countrates in a bandpass with a FWHM
of 1.09 Å in the center of the Ca ii H and K line, respectively.
In the original definition, this bandpass is triangular, whereas
the TIGRE S -Index uses a rectangular bandpass. NV and NR

are the countrates in 20 Å-wide continuum bands outside the
lines, centered at 3901.07 Å and 4001.07 Å. The factor α en-
sures that countrates measured by different instruments are in
agreement. The TIGRE S -Index can be converted to the S MWO-
scale (Mittag et al. 2016).

In this paper, we have measured the S -index “manually”
from the spectra for every observation using the same band-
passes as given in the original definition, including the triangu-
lar shape in the center of the lines. To determine α correctly for
our values, we compare our values to the corresponding TIGRE
S -index values converted to S MWO. As shown in Fig. 1, there
is a clear linear relation between the two S -indices, allowing
us to transform our values to the S MWO-scale. We cannot sim-
ply always use the TIGRE-determined S -index, because older
versions of the pipeline did not calculate that value. To ensure
that we can also use these spectra, but do not introduce system-
atic errors due to a different approach in calculating the S -index,
we have always calculated it manually according to the original
definition.

2.2. Overview of data used

In this paper, a total of 2807 individual observations of 102 stars
were analyzed. Some of these observations were not suitable
for the excess flux determination (see Sect. 3.4), so that only
2274 observations of 82 stars were eventually used. The stars
with observations used here were not originally selected for this
paper, but rather for other science purposes. The largest part of
the data was originally taken to determine stellar rotation peri-
ods of solar-like stars (Hempelmann et al. 2016). Here, we only
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Table 1. Overview of the data used in this paper, categorized by spectral
type.

Type # # S/N Exp. time [s]
Obj. Obs. min/med/max min/med/max

F 9 265 36.1/60.7/161.3 120/360/2578
G 46 1419 20.1/59.2/114.0 60/622/4767
K 27 590 20.4/64.3/114.8 60/799/4846

Total 82 2274 20.1/60.4/161.3 60/610/4846

look at data from main-sequence stars with B − V-colors rang-
ing from 0.4 to 1.2, corresponding to F, G and K stars. The
earliest data points are from April 15, 2013, ranging up to the
latest from May 4, 2016. We have excluded data points obtained
between December 6th, 2014 and May 15th, 2015, since there
was a different camera for the red channel in use at that time.
Because these objects were observed for different projects, the
signal-to-noise-ratio (S/N) and exposure time are not constant
in our sample. We only analyzed observations with an average
S/N of at least 20, because otherwise their noise level introduces
large errors in our sample. Finally, telluric line correction was
done using Molecfit (Smette et al. 2015; Kausch et al. 2015). We
have used the stellar parameters given in Soubiran et al. (2010)
whenever possible. Table 1 shows an overview of the number of
analyzed observations for each spectral type, as well as the min-
imum, median and maximum values for S/N and exposure time
in that class. We provide a full list of all objects, with sources for
values B−V , v sin i, log g and [Fe/H] that we used, in Tables A.1
and A.2.

3. Method

3.1. Selecting comparison objects

The changes in the Ca ii IRT lines due to activity are much
smaller than those seen in the Ca ii H and K lines. To measure
this change, we compared our observations with those from an
inactive star. The comparison star must be similar in its parame-
ters to the active star in question, to ensure that the difference in
the line profiles stems from activity rather than from differences
in the photosphere. Whether a star is considered active or inac-
tive is determined by its value of R′HK, defined by Linsky et al.
(1979) as:

R′HK =
FHK − FHK,phot

σT 4
eff

, (2)

where FHK is the flux measured in the Ca ii H and K lines and
FHK,phot the photospheric contribution to that flux. Since this in-
dex is normalized to σT 4

eff
, it is only marginally dependent on

B − V , and thus, while slightly more difficult to determine, bet-
ter suited for activity studies. We have used the relation given
in Mittag et al. (2013) to convert our measured values for S MWO
to R′HK. We only study stars with log R′HK ≥ −4.75, and define
those with smaller R′HK as inactive, following the definition by
Henry et al. (1996). This threshold value is close to the lower
levels of the Sun’s activity. For each potentially active star in
question, we select one inactive star as close as possible in stel-
lar parameters and slowly rotating, so that v sin i ≤ 5 kms−1.
These criteria have been given different weights: a similar value
for B − V is given the highest priority, followed by similar val-
ues for metallicity and then gravity. For each comparison object,
the “best” comparison spectrum – defined as the one with the
highest S/N – is selected, and visually checked to ensure that no

artifacts remain, for example from uncorrected cosmics. Every
observation of the star in question is compared to that spectrum,
referred to as comparison spectrum in the following.

3.2. Errors from incorrect stellar parameters

The stellar parameters are not always well-determined, and
sometimes even a rather large range of possible values is
given in the literature. The Ca ii IRT line profiles, especially
the wings, are affected quite strongly by changes in metallic-
ity as analyses of model spectra show (Smith & Drake 1987;
Erdelyi-Mendes & Barbuy 1991). In Fig. 2, we show the nor-
malized spectra of the first Ca ii IRT line from several interpo-
lated PHOENIX models (Hauschildt et al. 1999), that are based
on those from Husser et al. (2013). In these spectra, H i, He i,
He ii, Ca i, Ca ii, Ca iii, Fe i and Fe iiwere, among others, all cal-
culated in Non Local Thermodynamic Equilibrium (NLTE). The
plotted first Ca ii IRT line shows the strongest effects, and allows
us to give a “worst-case” estimate. It is obvious that the lines are
not very sensitive to gravity, but show a strong dependence on
metallicity, confirming the result by Andretta et al. (2005). Tem-
perature also affects the line profile, but values for Teff tend to be
determined more reliably.

Most of the stellar parameters we have used are taken from
Soubiran et al. (2010), where the authors have compiled the stel-
lar parameters from the literature. The average discrepancy in
metallicity for stars that have more than one set of stellar pa-
rameters available is given there as 0.08 dex, and the discrep-
ancy in Teff as 1.3%. For our rough determination on the errors
introduced in the final excess flux, we ignored the low discrep-
ancy on Teff , as we can confidently say from Fig. 2 that a de-
viation of ∼10 K will have neglibile effects compared to those
from the deviation in metallicity. We then considered the conser-
vative case of template and active star to both have incorrectly
determined metallicity, and that the real difference between the
two is ∆ [M/H] = 0.25 dex. We took two model spectra with
Teff = 5700 K, log g = 4.40 and [M/H] = 0.25 and [M/H] = 0,
respectively, and integrated the flux of those two spectra numer-
ically, across a 1 Å-wide bandpass in the center of the first Ca ii
IRT line. The results differ by less than 3%. We therefore con-
clude that the error from incorrect stellar parameters will not
strongly affect our results.

3.3. Comparing active stars to inactive template stars

The Ca ii H and K lines, the Ca ii IRT lines, and Hα were
checked individually with a procedure (written in IDL) that
worked as follows: for each line, a region was defined that en-
compasses the line and continuum on either side. Both obser-
vation and comparison spectrum were then normalized in this
region by finding a linear fit to the upper envelope in small re-
gions defined as continuum. Observation and comparison spec-
trum were then shifted on top of each other by cross-correlation.
In this way, any potential wavelength-shift, no matter the cause,
is corrected. Afterwards, the comparison is rotationally broad-
ened to the rotational velocity of the actual star, following the
procedure described by Gray (2005), with a limb-darkening co-
efficient interpolated from the figure given there (their Fig. 17.6,
p. 437). As a local normalization, a fit was performed to match
the photospheric wings. This can be done, since only the core of
the line should be affected by chromospheric activity (Busà et al.
2007). Finally, we subtracted the comparison spectrum from
the spectrum, and ended up with the excess flux, thought to
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Fig. 2. Effects of stellar parameters on the Ca ii IRT lines. Shown here
are PHOENIX spectra, degraded to the resolution of TIGRE spectra,
with Teff varied in the top plot, log g in the middle, and metallicity in
the bottom plot. Unless varied in that plot, stellar parameters were set
to Teff = 5700 K, log g = 4.40 and [M/H] = 0.0.

come from chromospheric activity. We integrated this excess
curve in an 1 Å-wide region for the Ca ii IRT lines and Hα,
and a 2 Å-wide region for Ca ii H and K to obtain the result-
ing excess flux FExc. The larger bandpass for the Ca ii H and
K-lines has been purposefully selected to be larger than the
expected width of ∼1 Å according to the Wilson-Bappu-effect
(Wilson & Vainu Bappu 1957), to ensure that all of the flux is
included in these rather wide lines.

In Fig. 3 we show the result of such a comparison for three
objects with different levels of activity, i.e., for a star with low
activity (S MWO = 0.19), medium activity (S MWO = 0.23) and
high activity (S MWO = 0.36). Figure 3 also shows that the ob-
served excess flux in the lines is increased for the more ac-
tive objects. The excess fluxes shown here correspond to 0.1 ×
105 erg s−1 cm−2, 2.0×105 erg s−1 cm−2 and 4.4×105 erg s−1 cm−2

respectively. In order to assess the error of the excess flux, we use
Gaussian error propagation where possible, for example propa-
gation of the errors on the normalization fit, or a Monte Carlo-
approach, for example by broadening the line 150 times with the
values for v sin i varying within its error; in those cases where no
error is given, we have assumed a 10% error. The resulting dis-
tribution of the values for the integrated excess flux are Gaussian
in almost every case, so that we interpret the resulting error as
a 1σ-error; see Sect. 3.4 for a description of objects for which
the distribution is not Gaussian. A typical example for our pro-
cedure is shown in Fig. 4. Since the spectra are normalized to
unity, this implies that this excess flux is given in units of the
continuum flux. To convert this to a stellar surface flux in units
of erg cm−2 s−1 Å−1, we use the relation from Hall (1996) for the
continuum flux at different wavelength points. We also fit Gaus-
sians or Lorentzians to the resulting excess flux distribution us-
ing the MPFIT routine (Markwardt 2009). These fit parameters
can in principle also be used as activity indicators (see Sect. 4.4).
The equivalent width has also been determined, but gives less
reliable results than the integrated flux. We present a formula to
determine the flux of inactive objects in Sect. 4.1, which can be
subtracted from a measured flux to estimate the excess flux.

In some cases, we obtain a negative value for the excess flux,
implying that the comparison star was more active than the star
under investigation. Indeed, this only occured for observations
that also feature a low value for established activity indicators,

Fig. 3. Comparison of different stars’ spectra (black) with the spectra of
inactive stars (gray). For the lowest-activity stars (top), no excess flux
can be seen, whereas for higher activity, the observed fill-in increases
with activity. The determined excess flux in the first Ca ii line in these
three cases are 0.1 × 105 erg s−1 cm−2, 2.0 × 105 erg s−1 cm−2 and 4.4 ×
105 erg s−1 cm−2.

as well as a higher noise level. Our procedure is not well suited
for these objects, because the change in the line that stems from
activity is smaller than the errors introduced from the line pro-
file differences as the stellar parameters of the two objects do
not match exactly. A future study that compares the spectra to
models will hopefully resolve this.
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Fig. 4. Determination of the excess flux measured for HD 152391
in the second Ca ii IRT line at 8542 Å and resulting distribution of
the integrated excess flux after performing the Monte-Carlo-iterations.
Top: comparison of the observation (black) with the rotationally broad-
ened comparison spectrum (gray). The resulting excess flux, shifted
to find an agreement in the wings, is shown in the lower plot. The
dotted vertical lines show the 1 Å-region used for integrating. Bot-
tom: histogram resulting from performing the excess flux determina-
tion 150 times, varying rotation and other parameters within their er-
rors. The gray dashed line shows the average excess flux, the gray
dotted lines the found 1σ values. Here, we found an excess flux of
(7.9 ± 0.09) × 105 erg s−1 cm−2.

As mentioned earlier, Busà et al. (2007) introduced a new
activity index ∆WIRT, which is obtained in a similar fashion.
Two objects studied by Busà et al. (2007) are also in our sam-
ple: HD 25998 and HD 82443. A slight change in our calculation
allows us to also obtain this parameter from our data. For both
objects and all three lines, the values agree to within 1σ.

In our approach we have chosen to make use of the large
sample of available stellar TIGRE spectra, and to compare the
spectra of active stars to the spectra of inactive stars. This ap-
proach requires no further assumptions on the formation of the
spectrum. One advantage of this approach compared to the one
of subtracting a model spectrum, as is the case in Busà et al.
(2007), is that we remove the basal flux level as well, leaving
only the “true” activity related excess flux. An additional advan-
tage is that we avoid errors due to incorrect parameters in the
line list, or incomplete or otherwise erroneous line profiles. This
error is hard to quantify and likely to be systematic in nature. On

the other hand, the observed spectra of inactive stars will have a
certain degree of noise in them, which introduces some scatter
as well. However, across a large sample, these errors are statisti-
cally distributed, and average out.

Since the comparison star has slightly different parameters
to the star we compare to, some scatter is introduced as a sys-
tematic offset to the determined excess fluxes of that star (see
also Sect. 3.2). In fairness, such scatter will also be introduced
from an incorrect set of stellar parameters when using a model.
It is possible to vary the stellar parameters in use to fit the model
spectra so both spectra agree in the wings, this approach can not
eliminate those errors completely. The best way to handle these
errors is to use as many stars as possible, as those errors will then
broaden the distribution, but should not affect the resulting fit by
much.

3.4. Outliers

Fifteen objects for which observations were available had to be
removed from further analysis as they could not be handled ade-
quately with our approach.

– HD 114378: the comparison shows that the line shape differs
to the one from the comparison spectrum, resulting in what
appears to be a well-defined excess flux. However, this ob-
ject has been found to be a binary star (Malkov et al. 2012).
The observed line in the spectrum is then a combination of
two (shifted) line profiles with different degrees of fill-in de-
pending on their individual activity. The approach used here
– comparing with a spectrum of a single, main-sequence star
– is not appropriate for double stars and thus cannot be ex-
pected to yield correct results. For the same reason, we re-
jected results from other binary systems, such as HD 106516
and HD 133640.

– HD 6920: this object is often listed as an F8V star (e.g.,
Hillen et al. 2012), but has also been classified as sub-
giant, for example Abt (1986), Fuhrmann (1998), Gray et al.
(2001), Anderson & Francis (2012). Should the latter classi-
fication be correct, it appears reasonable that the line profile
differs from that of a main-sequence star to some degree. We
have therefore excluded this object from further analysis.

– HD 25998, HD 111456, HD 115043: these objects all have
both a comparatively low value for B − V , as well as a
high rotational velocity. The latter causes the excess flux
to be smeared out across a wider spectral region than nor-
mal, which requires a high resolution and a very high S/N to
disentangle the chromospheric excess flux from the photo-
spheric contributions. Checking these spectra by eye shows
that this could not be done reliably, so we excluded results
from these stars. To determine their excess flux, follow-up
observations with higher S/N are needed.

Removing these objects and an additional five stars with obser-
vations featuring too-low S/N in the lines of interest leaves us
with a sample of 82 objects with a total of 2274 observations that
are used to determine the conversion. Unfortunately, this leaves
a rather small number of F-stars (nine objects with 265 observa-
tions in total). The other spectral types are not affected as much,
with 46 G-stars (1419 observations) and 27 K-stars (590 obser-
vations). The lowest value of B − V in the sample is changed to
0.43, the highest value is 1.18. See Table 1 for full details.

A113, page 5 of 15



A&A 605, A113 (2017)

Table 2. Formulae to estimate the summed up flux in an 1 Å-window in the center of all three Ca ii IRT lines for inactive objects.

Estimated total flux in 1 Å-bandpasses in all Ca ii IRT lines
Object B − V log g [Fe/H] log R′HK in 106 erg s−1 cm−2 from normalized spectra in Å

HD 739 0.40 4.27 –0.09 –4.91 8.645 + 0.026 × vrot + 6.106 × 10−4v2
rot 1.371 + 0.004 × vrot + 0.972 × 10−4v2

rot

HD 159332 0.45 3.85 –0.23 –4.99 7.326 + 0.024 × vrot + 5.770 × 10−4v2
rot 1.250 + 0.004 × vrot + 0.987 × 10−4v2

rot

HD 216385 0.48 3.95 –0.29 –4.98 7.318 + 0.025 × vrot + 5.791 × 10−4v2
rot 1.309 + 0.005 × vrot + 1.039 × 10−4v2

rot

HD 45067 0.53 4.01 –0.09 –4.90 6.323 + 0.025 × vrot + 4.679 × 10−4v2
rot 1.224 + 0.005 × vrot + 0.909 × 10−4v2

rot

HD 187691 0.56 4.26 +0.10 –4.89 5.862 + 0.022 × vrot + 4.432 × 10−4v2
rot 1.190 + 0.004 × vrot + 0.903 × 10−4v2

rot

HD 100180 0.57 4.25 –0.06 –4.76 6.134 + 0.020 × vrot + 4.188 × 10−4v2
rot 1.265 + 0.004 × vrot + 0.866 × 10−4v2

rot

HD 124570 0.58 4.05 +0.08 –5.05 5.504 + 0.023 × vrot + 4.536 × 10−4v2
rot 1.153 + 0.005 × vrot + 0.953 × 10−4v2

rot

HD 19373 0.59 4.21 +0.08 –4.84 5.698 + 0.021 × vrot + 4.367 × 10−4v2
rot 1.213 + 0.004 × vrot + 0.931 × 10−4v2

rot

HD 168009 0.60 4.23 –0.01 –4.77 5.711 + 0.019 × vrot + 4.289 × 10−4v2
rot 1.242 + 0.004 × vrot + 0.935 × 10−4v2

rot

HD 10307 0.62 4.32 +0.03 –4.84 5.635 + 0.019 × vrot + 3.969 × 10−4v2
rot 1.257 + 0.004 × vrot + 0.888 × 10−4v2

rot

HD 157214 0.62 4.31 –0.40 –4.80 5.922 + 0.018 × vrot + 3.963 × 10−4v2
rot 1.321 + 0.004 × vrot + 0.886 × 10−4v2

rot

HD 34411 0.62 4.22 +0.08 –4.85 5.458 + 0.021 × vrot + 3.975 × 10−4v2
rot 1.218 + 0.005 × vrot + 0.890 × 10−4v2

rot

HD 95128 0.62 4.30 +0.01 –4.85 5.888 + 0.018 × vrot + 4.288 × 10−4v2
rot 1.312 + 0.004 × vrot + 0.957 × 10−4v2

rot

HD 38858 0.64 4.48 –0.22 –4.79 5.798 + 0.017 × vrot + 3.754 × 10−4v2
rot 1.335 + 0.004 × vrot + 0.868 × 10−4v2

rot

HD 146233 0.65 4.42 +0.03 –4.75 5.380 + 0.018 × vrot + 3.774 × 10−4v2
rot 1.258 + 0.004 × vrot + 0.885 × 10−4v2

rot

HD 186427 0.65 4.32 +0.07 –4.80 5.166 + 0.019 × vrot + 3.785 × 10−4v2
rot 1.208 + 0.004 × vrot + 0.888 × 10−4v2

rot

HD 12846 0.66 4.38 –0.26 –4.78 5.875 + 0.015 × vrot + 3.984 × 10−4v2
rot 1.391 + 0.004 × vrot + 0.946 × 10−4v2

rot

HD 43587 0.67 4.29 –0.04 –4.80 5.528 + 0.018 × vrot + 3.879 × 10−4v2
rot 1.327 + 0.004 × vrot + 0.933 × 10−4v2

rot

HD 115617 0.70 4.39 –0.01 –4.80 4.934 + 0.017 × vrot + 3.450 × 10−4v2
rot 1.248 + 0.004 × vrot + 0.874 × 10−4v2

rot

HD 178428 0.70 4.25 +0.14 –4.88 4.659 + 0.018 × vrot + 3.663 × 10−4v2
rot 1.178 + 0.005 × vrot + 0.929 × 10−4v2

rot

HD 3795 0.70 3.91 –0.63 –4.83 5.331 + 0.015 × vrot + 4.096 × 10−4v2
rot 1.347 + 0.004 × vrot + 1.037 × 10−4v2

rot

HD 117176 0.71 3.97 –0.06 –4.90 4.584 + 0.018 × vrot + 3.628 × 10−4v2
rot 1.177 + 0.005 × vrot + 0.934 × 10−4v2

rot

HD 10700 0.72 4.48 –0.50 –4.75 5.163 + 0.014 × vrot + 3.325 × 10−4v2
rot 1.347 + 0.004 × vrot + 0.869 × 10−4v2

rot

HD 26965 0.85 4.51 –0.27 –4.89 3.944 + 0.012 × vrot + 2.855 × 10−4v2
rot 1.265 + 0.004 × vrot + 0.919 × 10−4v2

rot

HD 75732 0.87 4.41 +0.28 –4.84 3.372 + 0.014 × vrot + 2.740 × 10−4v2
rot 1.110 + 0.005 × vrot + 0.905 × 10−4v2

rot

HD 145675 0.90 4.45 +0.41 –4.80 3.150 + 0.013 × vrot + 2.729 × 10−4v2
rot 1.087 + 0.005 × vrot + 0.944 × 10−4v2

rot

Notes. vrot must be entered in units of km s−1. To obtain the best fit, it is recommended to compare the values from normalized spectra and to
subtract an additional 20 mÅ, as described in the text. Values for B − V , log g and [Fe/H] are taken from Soubiran et al. (2010).

4. Results

4.1. Flux of inactive stars

Determining the excess flux requires a comparison spectrum to
subtract the line flux of an inactive star. However, an observer
may not always have a suitable spectrum at hand. In this case
an estimate of the excess flux can still be performed, by cal-
culating the inactive line flux. Table 2 shows a list of inactive
(log R′HK ≤ 4.75), slowly-rotating stars, which we used as com-
parison. In this paper, we always directly subtracted their nor-
malized spectra from the normalized spectra of the object un-
der investigation, which also allows an independent check on
the quality of the comparison by the spectra’s alignment in the
wings. However, to determine the excess flux, only the (rotation-
ally broadened) flux in the center of the line is of importance.
In Fig. 5, we show the resulting values for the summed-up stel-
lar surface flux FIRT,1 Å in 1 Å-bandpasses for all three lines for
the different inactive objects with varying simulated rotational

broadening. We provide empirically derived formulae for the
summed-up flux in 1 Å-wide bandpasses in the center of all the
three Ca ii IRT lines for these inactive objects as a function of ro-
tational velocity v sin i. The rotational broadening was performed
according to Gray (2005). The relations are second-order poly-
nomials fitted to the artificially rotationally broadened TIGRE
spectra with a resolution of roughly 20 000. To use these rela-
tions for determining the excess flux in a spectrum with a very
different resolution, the “bleeding” of the flux from within the
wings due to the finite resolution must be taken into account.
These relations can be used to estimate the inactive line flux,
and therefore to determine a value for the Ca ii IRT excess flux
from the spectrum of an active star. To determine this value from
a spectrum, a suitable comparison star from Table 2 must first
be found. Then, the value of v sin i of the observed star should
be plugged into the relation given there. The result will be the
summed up flux FInactive,IRT,1 Å of all three Ca ii IRT lines of this
best-fitting inactive star broadened by the v sin i of the star under
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Fig. 5. Comparison of the obtained values for the summed-up Flux FIRT,1 Å for rotational velocities 0, 5, 15, 20, 30, 40, and 50, all in km s−1 (flux
increases with higher rotational velocity). Dotted lines connect to the name of the inactive object in question. Left: flux in continuum units, or
equivalent width in Å. Right: flux converted to erg s−1 cm−2.

consideration, or in other words, the line flux expected if the star
under consideration was inactive. This value must then be sub-
tracted from the value obtained from an observation of an active
star. We give both a relation for the converted flux FInactive,IRT,1 Å
in 106 erg s−1 cm−2, as well as for the flux in “continuum units”,
which is the integrated flux of a normalized spectrum in units
of Å. Subtracting the flux in continuum units yields an excess
flux value that can be compared to ∆WIRT of Busà et al. (2007).
Alternatively, this resulting value in Å can then be converted to
physical units (erg s−1 cm−2), for example using the relation in
Hall (1996), which tends to be more reliable than directly com-
paring values in erg s−1 cm−2, as no error is introduced due to
different values for B − V of comparison and analyzed object.

Figure 6 shows a comparison of the values measured for the
excess flux using the method described in this paper against the
value obtained from simply subtracting the value calculated from
Table 2 from the measured line flux (in continuum units) for the
42 active stars with observations where R′HK ≥ 3 × 10−5. On
average, the discrepancy is about 20 mÅ, determined as the me-
dian of the residuals (68% of points differ less than 45 mÅ). It
should be noted that the actual measured value is on the order of
1.5 Å, so this error is only about 1.3%. Since the excess flux is
the comparatively small difference of two larger values, the rela-
tive error is dramatically increased. The calculated values tend to
be lower than the measured ones. The likely reason for this is the
additional correction of shifting the observed spectrum to reach
an agreement in the line wings to the comparison spectrum, and
could thus be interpreted as the result of an additional correction
for photospheric effects. Adding the aforementioned 20 mÅ to
the subtracted value would be a possibility to fix this.

4.2. Measured flux in the Ca II H and K lines

The procedure mentioned was also carried out for the Ca ii H
and K lines. While they exhibit strong changes in excess flux
amplitude, the shape of these lines is very broad and contami-
nated by other lines, making the determination of the excess flux
more difficult. Nevertheless, we obtain a measured excess flux in
the center of the Ca ii H and K lines, by integrating over a 2 Å-
wide region. This value can be compared against the flux in the

Fig. 6. Comparison of the excess flux in continuum units determined us-
ing the method described in Sect. 3.3 to the excess flux determined from
subtracting the resulting value from a fitting relation from Table 2 to the
measured line flux, for the 42 objects with observations displaying a
level of activity exceeding R′HK = 3×10−5. The dashed line corresponds
to the identity relation.

Ca iiH and K lines, which can be calculated from S MWO using
one of several available relations in the literature. In the top plot
in Fig. 7, we compare our measured excess flux with the one cal-
culated from the relation in Mittag et al. (2013) for the 82 stars
in our sample. There, the authors present a relation for the to-
tal flux in the Ca ii H and K lines, but they also give relations
for just the photospheric flux as well as chromospheric basal
flux contribution. Subtracting these from the total flux should
in theory result in just the excess flux. Our values are lower
than the calculated ones. As a second test, we can correct the
fluxes calculated according to Rutten (1984) using the same rela-
tions for photospheric and basal flux contributions and compare
our measurements to that result. In that comparison, the mea-
sured values are higher than the calculated ones. In Mittag et al.
(2013), the authors used PHOENIX-models to convert to fluxes
in erg s−1 cm−2, whereas in Rutten (1984), the calibration is done
using the measured solar flux. It is likely that the discrepancy
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Fig. 7. Comparison of the measured chromospheric excess flux in the
Ca ii H and K-lines to the one calculated from various sources. The
dashed line corresponds to the identity relation. Top: comparing to the
chromospheric excess flux according to Mittag et al. (2013) for 82 ob-
jects. Bottom: comparing for these same stars to the flux given in Rutten
(1984) but corrected for photospheric and basal flux contribution, also
according to Mittag et al. (2013).

originates in the different approaches of calibrating the values to
physical units. To test this, we compared the total flux in the lines
calculated according to Mittag et al. (2013) with the relation in
Rutten (1984). We find that the latter relation yields lower values,
consistent with Fig. 7. Our measurements and the relations from
the literature for the total stellar flux in the Ca ii H and K-lines
can be used to find a relation for the photospheric and basal flux
for a star of given B − V . The relations describe a value for the
total flux in the Ca ii H and K-lines, including the photospheric
and basal component, as well as the flux from activity, which we
measure as excess flux: FHK = Fphot,HK + Fbasal,HK + FExc,HK, as
a function of S MWO. Since our measured value is FExc,HK, sub-
tracting the measured from the calculated value leaves us with
just the photospheric and basal flux contributions to the line flux.
We performed this determination using the relation from Rutten
(1984) for the total line flux (shown in Fig. 8). We could then
perform a linear fit to the resulting values, and compare this rela-
tion to the one in Mittag et al. (2013). While our relation yields
lower values, the difference is not significant compared to the
scatter in the datapoints for most of the covered range in B − V .
Only for values B− V > 1.0 do the two relations differ from one

Fig. 8. Comparison of the determined photospheric and basal flux from
this work to the relation given in Mittag et al. (2013). Shown are the
average measured values for the 82 stars left after removal of the outliers
described in Sect. 3.4.

another. The relation given in Mittag et al. (2013) is defined in
a step-wise fashion, and the relation changes for B − V > 0.94.
From Fig. 8, it appears as if a linear extrapolation of the previ-
ous relation would result in a better fit. However, we note that
our sample does not reach much further beyond this threshold
value in B − V . The relation found is:

log
(
Fphot,HK + Fbasal,HK

)
= 7.42 − 1.81 × (B − V). (3)

4.3. Comparing measured excess fluxes of different lines

We obtained 2274 values from 82 stars for the measured chro-
mospheric flux in the Ca ii H, K and IRT lines, as well as Hα,
converted to real physical units by interpolating the relations in
Hall (1996). The determined excess fluxes do not include any
photospheric or chromospheric basal flux contributions, as those
have been removed by subtraction of the comparison spectrum.
The resulting plots for the three individual lines in the Ca ii IRT,
as well as the sum of all three lines, compared to the measured
flux in the Ca ii H and K lines are shown in Fig. 9. The sec-
ond Ca ii IRT line shows both a strong correlation, as well as the
largest fill-in, implying that it is the most sensitive line of the
three. We obtain a very obvious correlation. We determined
the Spearman’s correlation value ρ to be largest (ρ ≈ 0.908) for
the correlation between the summed-up excess flux in all three
Ca ii IRT lines and the excess flux in the Ca ii H and K lines.

Hα, another often-used indicator, also shows a correlation
(Fig. 10), but the scatter is larger, and therefore we obtain a
lower value with ρ ≈ 0.824. It has been shown previously
that Hα does not always correlate with the Ca ii H and K line
indicators (Cincunegui et al. 2007; Meunier & Delfosse 2009;
Gomes da Silva et al. 2014). Many stars in our sample show less
variation in the excess fluxes than the errors on the individual
measurements, so that they cannot be used to reliably estimate
the correlation for an individual star. Using only the 68 stars
with five or more observations for which the errors on the ex-
cess fluxes are significantly lower than their variation, we found
the Spearman correlation to cover the entire range from –1.0 for
some stars to 1.0 for others. The median correlation between
the two excess fluxes is only ρ ≈ 0.24. In contrast, performing
the same analysis for Ca ii excess fluxes, the median correlation
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Fig. 9. Measured chromospheric excess flux in the Ca ii H and K lines compared with the excess flux in the individual Ca ii IRT lines, as well as
the sum of all Ca ii IRT lines (bottom right). These plots include data from 2274 observations of 82 stars.

is ρ ≈ 0.54, significantly higher. Additionally, the number of
stars with a negative correlation between the two excess fluxes
is much lower.

The obtained excess fluxes in the Ca ii H and K line correlate
very well with each other (ρ ≈ 0.95), and the measured flux in
the K line is about 33% higher than in the H line. This is similar
to the value of 27% observed by Wilson (1968).

4.4. Fits to the excess

For each observation, we fit Gaussians to the excess flux. We
then checked if parameters obtained in this way showed any cor-
relation to known activity indices. The amplitudes of the fitted
Gaussians do show a correlation to the integrated flux in the
Ca ii H and K lines with ρ ≈ 0.7 after removal of obvious out-
liers, yet the determined amplitudes have very large errors and
are thus less suited for conversion than the integrated flux. Ad-
ditionally, this method suffers more strongly from high noise in
the spectra, as single spikes from noise can dominate the fit. This
is the reason for the larger number of outliers. The width of the
fitted Gaussian shows no correlation to the integrated flux in the
Ca ii H and K lines, or any of the established activity indicators.

5. Conversion relations

Because the excess fluxes in the Ca ii lines and the indices de-
rived from them are well-correlated, we can make use of our
comparatively large sample size and find relations to convert one
parameter into another. We assume that the two indices we wish
to convert into one another follow a linear relation. We do how-
ever, allow the coefficients in the conversion to depend on stellar
parameters. Here, we use B − V , but equivalently Teff could also
be used. Letting x be the index to be converted into another index
y, we then set out to find the relation:

y = m(B − V) × x + b(B − V). (4)

If we assume m and b to be a polynomial, we can perform a re-
gression to determine the coefficients. However, our data is not
equally sampled in B − V . Therefore, if we perform the regres-
sion without taking this fact into consideration, we might find
the resulting polynomial to just be optimized for the regions in
B − V where many stars of our sample lie in. To avoid this, we
selected subsets of all datapoints. For fifteen different values of
B−V , we select only observations of stars close to that value, and
then fit Eq. (4) only for the datapoints from that subset of stars,
which yields the values m, b only for that specific B − V . Since
our objects are not evenly distributed in B − V , our sampling in
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Fig. 10. Measured chromospheric excess flux from 2274 observations
of 82 stars in the Ca ii H and K lines compared with the excess flux in
Hα. Fluxes given in erg s−1 cm−2.

Fig. 11. Measured excess flux in the Ca ii H and K lines as a func-
tion of S MWO. This plot shows data from 2154 observations of 80 stars.
For reasons of clarity, we have removed HD 22468 from this plot,
as it contributes a number of datapoints clustering around a value of
S MWO ≈ 1.25, as well as some observations with a negative value of
FExc,HK that is consistent with zero considering its error.

B−V is not equidistant. Instead, we selected the different values
for B−V for which we perform this fit so there are datapoints of
at least three stars for each subset. On average, a subset includes
∼190 observations and seven stars. Finally, we fit a polynomial
to the found values m and b, or their logarithm, for each B − V
sampled to obtain the relations m(B−V) and b(B−V). For com-
pleteness’ sake, we have determined the coefficients with regres-
sion as well. The values converted by that approach are of similar
quality. In the following, we will discuss the relations found in
more detail for some specific pairs of observed indicators.

5.1. Excess flux in the Ca II H and K lines computed from
SMWO

Figure 11 shows our measured excess flux compared with the
corresponding value for S MWO, with different symbols again

Fig. 12. Comparison of the measured excess flux in the Ca ii H and K
lines to the one converted from S MWO using Eq. (5). The dashed line is
the identity (top), or the zero-level (bottom). This plot shows data from
2137 observations of 79 stars. After conversion, the Pearson correlation
coefficient is 0.97, indicating a strong linear correlation.

corresponding to different values of B − V . It appears that the
relation between the two parameters is linear, yet the exact val-
ues of the linear fit coefficients depend on B − V . As previously
described, we obtained relations for slope (m) and intercept (b)
for individual values of B − V , after removal of 120 observa-
tions that were either clearly inaccurate (e.g., negative excess
flux values), or too noisy with a strong influence on any linear
fit performed (HD 22468), to not have the fit dominated by noisy
data. We found a second-order polynomial fit for log m and b
respectively to give good results:

FExc,HK = (m × S MWO + b) × 106 erg s−1 cm−2, with (5)

log m = 1.027 + 1.718 × (B − V) − 2.440 × (B − V)2

b = −2.908 − 0.667 × (B − V) + 3.249 × (B − V)2

As this formula was found using data from only F, G and K main
sequence stars, it is only valid for those, with a valid B − V
ranging from ∼0.5 to ∼1.0. Figure 12 compares the converted
value from S MWO to the measured value. We can estimate the
error of the converted values from the average of the residuals
to be 3.0 × 105 erg s−1 cm−2. This value is not a true 1σ-value,
however, as the distribution is not Gaussian (68% lie within
3.0 × 105 erg s−1 cm−2, 95% within 7.0 × 105 erg s−1 cm−2). The
stated error corresponds to an average relative error of about
11%. The quality of the conversion can be estimated from the
Pearson correlation coefficient, which is a measure on the lin-
ear correlation. Here, we find ρPearson = 0.97, indicating that the
conversion worked well, as expected.

5.2. Flux conversion

As shown in Sect. 4.3, the excess flux in the Ca ii IRT lines is
strongly correlated with the one seen in the Ca ii H and K lines
(Fig. 9). From definition of those values, it is apparent that no in-
tercept b is needed here. We find a dependence of the logarithm
of the slope m to B − V in our dataset. First, due to the different
temperatures, the surface flux ratio at the different lines intro-
duces a rather strong dependence, towards higher excess fluxes
in the Ca ii H and K lines for lower values of B − V . However,
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Fig. 13. Comparison of the measured values of the excess flux in the
Ca ii H and K lines with the one converted from the excess flux in the
Ca ii IRT lines using Eq. (7). This plot includes data from 2234 obser-
vations of 80 stars. The dashed line corresponds to the identity relation
(top), or the zero-level (bottom).

when using the excess flux in continuum units, this effect disap-
pears. The resulting B − V-dependence now results in the oppo-
site direction, and there is a trend towards higher excess fluxes
for higher B − V , evident from the different sign in the slope re-
lation below (Eqs. (7) and (8)). Of those two effects, the surface
flux ratio at the different points in the continuum is larger and
thus dominates. For our sample of stars, relations linear in B−V
result in a good fit. To convert fluxes in erg s−1 cm−2:

FExc,HK = 101.095−0.587·(B−V) × FExc,IRT λ8498 (6)

FExc,HK = 101.036−0.631·(B−V) × FExc,IRT λ8542

FExc,HK = 101.137−0.663·(B−V) × FExc,IRT λ8662

FExc,HK = 100.606−0.612·(B−V) × FExc,IRT. (7)

And to convert normalized fluxes in continuum units:

FExc,HK = (−0.085 + 1.402 × (B − V)) × FExc,IRT. (8)

As before, these relations are, by nature of how they were de-
termined, only valid for F, G and K main-sequence stars with
B − V ranging from ∼0.5 to ∼1.0. The Pearson correlation coef-
ficient of the converted to observed values is larger than 0.95 in
all cases.

The errors of such a conversion have been estimated from the
residuals to be about 4 × 105 erg s−1 cm−2 and 60 mÅ, respec-
tively. In Fig. 13, we compare the converted values from Eq. (7)
to the measured values.

We note that the Ca ii IRT lines are well correlated with each
other. Therefore, measuring the excess flux in just one allows
estimating it in the others from a linear relation. Equations for
such a conversion are shown in Table 3. From these parameters,
it is evident that the second line is the most sensitive of them,
with the largest fill-in observed.

5.3. Converting Ca II IRT measurements to known activity
indices

We have already shown the activity indices S MWO and R′HK,
which are both widely used. In Mittag et al. (2013), the au-
thors define an additional index that does not include basal flux

contributions:

R+
HK =

FHK − FHK,phot − FHK,basal

σT 4
eff

=
FExc,HK

σT 4
eff

, (9)

with FHK,basal as the basal chromospheric flux contribution.
Both R′HK and R+

HK show a strong correlation (ρ ≥ 0.9) to our
excess flux obtained here.

Since we have already provided relations to convert Ca ii IRT
measurements to FExc,HK, converting them to R+

HK is simply a
matter of dividing by σT 4

eff
. This parameter can be estimated

from B − V , so it could be included in the fit.
Here, we find the conversion from Ca ii IRT-measurements

to the indices in Eqs. (2) and (9), calculated from S MWO using
the relation in Mittag et al. (2013). This allows us to compare
the equations to convert to R′HK and R+

HK in a more consistent
fashion than if we used the measured value FExc,HK, as we have
not measured a FHK,chrom that still includes a basal flux contri-
bution. However, FExc,HK/σT 4

eff
and R+

HK are very close to iden-
tical, except for an offset already discussed in Sect. 4.2. We find
similar parameters for the formulae when using a value for R+

HK
determined using our measured FExc,HK. Applying the method
described in Sect. 5 yields:

R′HK = m · FExc,IRT + b, with (10)

log m = −10.014 − 1.815 · (B − V) + 1.501 · (B − V)2

b = −0.277 × 10−4 + 1.069 × 10−4(B − V)

− 0.586 × 10−4(B − V)2,

R+
HK = m · FExc,IRT + b, with (11)

log m = −10.257 − 1.127 · (B − V) + 1.033 · (B − V)2

b = −0.459 × 10−4 + 1.334 × 10−4(B − V)

− 0.753 × 10−4 · (B − V)2,

with FExc,IRT in erg s−1 cm−2. The error is again estimated from
residuals and is roughly 5.5 × 10−6 for both R′HK and R+

HK, cor-
responding to an average error of ∼10%. The relations for slope
and intercept are very similar in shape, and in case of the slope m
also the actual function values. However, the intercepts b shows
a clear offset that stems from the small chromospheric basal flux
correction that forms the difference in the two indices. For the
determination of this conversion, we have removed 198 data-
points with very different S/N in the red and blue channels. The
Pearson correlation coefficient between the converted and ob-
served values is 0.97. Figure 14 compares the converted to the
measured values.

To convert Ca ii IRT measurements into S MWO, the following
relation can be used:

S MWO = m × FExc,IRT + b, with (12)

log m = −6.500 − 2.165 × (B − V) + 2.264 × (B − V)2

b = 0.044 + 0.202 × (B − V) − 0.013 × (B − V)2,

where FExc,IRT has to be entered in erg s−1 cm−2. We estimate the
errors from the residuals to be 0.03, a relative error of about 6%.
We find a Pearson correlation coefficient of ρPearson = 0.97. The
converted values are compared to the measured ones in Fig. 15.
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Table 3. Relations to estimate the excess flux in a Ca II IRT line from measurements of another.

Source line Target line

Ca ii IRT λ8498 Ca ii IRT λ8542 Ca ii IRT λ8662
Ca ii IRT λ8498 FExc,IRT λ8542 = 1.232 × FExc,IRT λ8498 FExc,IRT λ8662 = 1.006 × FExc,IRT λ8498
Ca ii IRT λ8542 FExc,IRT λ8498 = 0.801 × FExc,IRT λ8542 FExc,IRT λ8662 = 0.808 × FExc,IRT λ8542
Ca ii IRT λ8662 FExc,IRT λ8498 = 0.976 × FExc,IRT λ8662 FExc,IRT λ8542 = 1.210 × FExc,IRT λ8662

Notes. The errors of such a conversion are about 30 000 erg s−1 cm−2.

Fig. 14. Comparison of the measured value for R′HK (top), resp. R+
HK

(bottom) to the one converted from the excess flux in the Ca ii IRT lines,
using Eqs. (10) and (11). These plots include data from 2076 observa-
tions of 76 stars. The dashed line corresponds to the identity relation
(top), or the zero-level (bottom). The Pearson correlation coefficient of
converted to observed values is 0.97 in both cases, indicating a good
conversion.

6. Conclusions

We have analyzed more than two thousand spectra of almost a
hundred main-sequence stars of type F, G and K obtained by
the TIGRE telescope, which simultaneously records the spec-
tral range of the Ca ii H and K-lines, as well as Hα and the
Ca ii IRT. By carefully selecting an inactive comparison star of
similar spectral type as the target star and artificially broadening
the comparison star’s spectrum to the target star’s rotational ve-
locity, we are able to derive a purely-activity related excess flux
in the center of these chromospheric lines without any photo-
spheric or basal flux contributions. This excess flux is obtained

Fig. 15. Comparison of the measured value for S MWO to the one con-
verted from the excess flux in the Ca ii IRT lines, using Eq. (12). This
plot includes data from 2076 observations of 76 stars. The dashed line
corresponds to the identity relation (top), or the zero-level (bottom). The
Pearson correlation coefficient of converted to observed values is 0.97,
indicating a good conversion.

both in terms of fraction of the continuum and in physical units
(i.e., as a flux in erg s−1 cm−2), and it is free from any scatter
from temporal variations.

This large sample of data shows that the excess flux in these
lines are well correlated, with the Spearman correlation coeffi-
cients exceeding ρ = 0.9 for the Ca ii lines, and ρ ≈ 0.8 for the
correlation of Hα and the Ca ii lines. Due to this strong corre-
lation, it is possible to convert the observed excess flux of the
Ca ii IRT lines into the corresponding excess flux of the other
lines, or into activity indices derived from them, despite the
lower excess flux and subsquently lower sensitivity.

We provide such conversion relations and the errors on them,
estimated directly from the residuals. The relations have been
obtained by fitting the relations individually for stars with similar
B−V , in order to remove any sampling bias. The given relations
are valid for stars with 0.5 . B − V . 1.0; they can be used
to indirectly obtain values for activity indicators such as R′HK or
S MWO from infrared spectra, for example, those expected from
the Gaia mission. This makes it possible to compare these new
measurements with the large amount of archival data available
for these activity indices, which in turn allows new studies in
the temporal behavior of these indices. To obtain the excess flux
without an available comparison spectrum, we give empirically
derived relations to estimate the photospheric and basal flux in
the Ca ii IRT lines in Table 2. Subtracting the value calculated
from these relations from the flux measured in the Ca ii IRT lines
of the active star in question returns the excess flux value, which
can subsequently be converted into other quantities, if so desired.

We hope to increase the B − V validity range of the relations
when more M-dwarfs have been observed by TIGRE, assuming
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that the strong correlations between the lines still hold for later
types. Spectra taken by CARMENES could then also be used to
obtain a value of the activity indices derived from the Ca iiH and
K-lines, despite these lines falling outside the spectral range of
CARMENES.
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Appendix A: Stellar parameters used

Here, in Tables A.1 and A.2 we list the stellar parameters that we used in this work, and give their source.

Table A.1. Stellar parameters for the stars investigated in this work.

Name B − V log g [Fe/H] v sin i Name B − V log g [Fe/H] v sin i

HD 88355 0.43(1) – 0.00(1) – HD 75332 0.50(1) 4.41(1) 0.13(1) 11.00(11)

HD 25457 0.50(1) 4.30(1) –0.03(1) 20.24(3) HD 179949 0.50(1) 4.44(1) 0.20(1) 6.40(2)

HD 35296 0.52(1) 4.28(1) –0.02(1) 16.00(2) HD 19019 0.52(1) 4.00(1) –0.17(1) 10.00(9)

HD 20367 0.52(1) 4.46(1) 0.13(1) – HD 137107 0.55(1) 4.22(1) –0.03(1) –
HD 100180 0.57(1) 4.25(1) –0.06(1) 3.59(3) HD 150706 0.57(1) 4.47(1) –0.03(1) 10.00(9)

HD 154417 0.58(1) 4.38(1) –0.01(1) 8.00(3) HD 206860 0.58(1) 4.49(1) –0.08(1) 12.81(3)

HD 209458 0.58(1) 4.45(1) 0.01(1) 4.5(10) HD 70573 0.59(1) 4.58(1) –0.11(1) 19.39± 4.00(9)

HD 114710 0.59(1) 4.43(1) 0.07(1) 4.72(3) HD 115383 0.59(1) 4.25(1) 0.13(1) 7.20 ± 1.10(7)

HD 129333 0.59(1) 4.47(1) 0.16(1) 22.01 ± 3.95(9) HD 26913 0.60(1) 4.49(1) –0.02(1) 1.83(5)

HD 39587 0.60(1) 4.45(1) –0.03(1) 10.79(3) HD 97334 0.61(1) 4.35(1) 0.06(1) 7.74(3)

HD 75767 0.61(1) 4.33(1) –0.04(1) 4.00(4) HD 165401 0.61(1) 4.39(1) –0.41(1) 13.90(3)

HD 190406 0.61(1) 4.39(1) 0.04(1) 8.27(3) HD 25680 0.62(1) 4.52(1) 0.05(1) 3.20(5)

HD 72905 0.62(1) 4.53(1) –0.08(1) 11.21(3) HD 197076 0.62(1) 4.41(1) –0.11(1) 10.22(9)

HD 126053 0.63(1) 4.43(1) –0.38(1) 3.08(3) HD 181321 0.63(1) 4.42(1) –0.01(1) 13.00(8)

HD 30495 0.64(1) 4.49(1) –0.01(1) 3.57(5) HD 38858 0.64(1) 4.48(1) –0.22(1) 2.61(3)

HD 71148 0.64(1) 4.36(1) –0.00(1) 12.37(3) HD 146233 0.65(1) 4.42(1) 0.03(1) 4.07(3)

HD 140538 0.65(1) 4.47(1) 0.05(1) 11.01(3) HD 159222 0.65(1) 4.34(1) 0.10(1) 3.01(3)

HD 190771 0.65(1) 4.41(1) 0.14(1) 4.20(5) HD 20619 0.66(1) 4.42(1) –0.24(1) 3.20(3)

HD 28099 0.66(1) 4.43(1) 0.13(1) 3.54(5) HD 42618 0.66(1) 4.46(1) –0.11(1) 4.40(15)

HD 20630 0.67(1) 4.49(1) 0.06(1) 5.86(3) HD 43162 0.67(1) 4.38(1) –0.05(1) 9.63(3)

HD 73350 0.67(1) 4.46(1) 0.11(1) 4.00(4) HD 76151 0.67(1) 4.46(1) 0.08(1) 3.58(3)

HD 145825 0.67(1) 4.46(1) 0.03(1) 3.10± 1.20(8) HD 224930 0.67(1) 4.41(1) –0.77(1) 4.07(3)

HD 42807 0.68(1) 4.46(1) –0.03(1) 3.80(5) HD 6582 0.69(1) 4.50(1) –0.80(1) 4.17(3)

HD 10086 0.69(1) 4.39(1) 0.12(1) 2.40(4) HD 68017 0.69(1) 4.46(1) –0.44(1) 1.49(3)

HD 111395 0.69(1) 4.54(1) 0.10(1) 2.60(5) HD 101501 0.74(1) 4.55(1) –0.07(1) 3.26(3)

HD 103095 0.75(1) 4.63(1) –1.34(1) 9.28(3) HD 184385 0.75(1) 4.49(1) 0.12(1) 2.70(5)

HD 152391 0.76(1) 4.47(1) –0.05(1) 3.06(5) HD 82443 0.77(1) 4.45(1) –0.13(1) 5.90(5)

HD 82885 0.77(1) 4.49(1) 0.32(1) 7.22(3) HD 131156A 0.77(1) 4.54(1) –0.12(1) –
HD 149661 0.78(1) 4.50(1) 0.03(1) 1.63(5) HD 185144 0.78(1) 4.49(1) –0.22(1) 6.79(3)

HD 100623 0.81(1) 4.60(1) –0.41(1) 6.79(3) HD 165341A 0.83(1) 4.49(1) –0.04(1) 16.00(11)

HD 10476 0.84(1) 4.45(1) –0.05(1) 1.20(3) HD 115404 0.85(1) 4.45(1) –0.19(1) –
HD 17925 0.86(1) 4.52(1) 0.07(1) 4.80(5) HD 97658 0.86(1) 4.49(1) –0.30(1) 8.70(5)

HD 118972 0.86(1) 4.36(1) –0.02(1) 4.10 ± 1.20(8) HD 166620 0.87(1) 4.47(1) –0.17(1) 4.82(3)

HD 75732 0.87(1) 4.41(1) 0.28(1) 2.27(3) HD 22049 0.88(1) 4.53(1) –0.10(1) 4.08(3)

HD 37394 0.90(1) 4.51(1) 0.08(1) 2.80(5) HD 4628 0.90(1) 4.63(1) –0.27(1) 1.50(5)

HD 145675 0.90(1) 4.45(1) 0.41(1) 2.6(10) HD 22468 0.92(1) – – –
HD 189733 0.93(1) 4.49(1) –0.02(1) 2.30(13) HD 5133 0.94(1) 4.66(1) –0.11(1) 3.52(3)

HD 160346 0.96(1) 4.46(1) –0.03(1) 3.37(3) HD 16160 0.98(1) 4.54(1) –0.12(1) 0.90(5)

HD 87883 0.99(1) 4.47(1) 0.05(1) 1.20(3) HD 32147 1.06(1) 4.41(1) 0.26(1) 5.18(3)

HD 131977 1.11(1) 4.35(1) –0.00(1) 2.48(5) HD 190007 1.12(1) 4.38(1) 0.16(1) 2.55(5)

HD 156026 1.16(1) 4.60(1) –0.20(1) 4.40(2) HD 201091 1.18(1) 4.70(1) –0.38(16) 4.72(3)

References. References are numbered in superscript and given below. Values missing were inferred from a fit to the values of other
stars. (1) Soubiran et al. (2010); (2) Schröder et al. (2009); (3) Martínez-Arnáiz et al. (2010); (4) Marsden et al. (2014); (5) Mishenina et al.
(2012); (6) Bernacca & Perinotto (1970); (7) Ammler-von Eiff & Reiners (2012); (8) Torres et al. (2006); (9) White et al. (2007);
(10) Glebocki & Gnacinski (2005); (11) Maldonado et al. (2012); (12) Takeda et al. (2005); (13) Torres et al. (2012); (14) Uesugi & Fukuda
(1970); (15) McCarthy & Wilhelm (2014); (16) Prugniel et al. (2011).
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Table A.2. Stellar parameters for the comparison stars used.

Name B − V log g [Fe/H] v sin i Name B − V log g [Fe/H] v sin i

HD 739 0.40(1) 4.27(1) –0.09(1) 4.40(9) HD 159332 0.45(1) 3.85(1) –0.23(1) 5.00(6)

HD 216385 0.48(1) 3.95(1) –0.29(1) 3.00(4) HD 45067 0.53(1) 4.01(1) –0.09(1) 5.00(6)

HD 187691 0.56(1) 4.26(1) 0.10(1) 3.00(4) HD 100180 0.57(1) 4.25(1) –0.06(1) 3.59(1)

HD 124570 0.58(1) 4.05(1) 0.08(1) 3.00(4) HD 19373 0.59(1) 4.21(1) 0.08(1) 3.15(1)

HD 168009 0.60(1) 4.23(1) –0.01(1) 3.00(4) HD 10307 0.62(1) 4.32(1) 0.03(1) 4.07(1)

HD 34411 0.62(1) 4.22(1) 0.08(1) 3.15(1) HD 95128 0.62(1) 4.30(1) 0.01(1) 3.15(1)

HD 157214 0.62(1) 4.31(1) –0.40(1) 3.15(1) HD 126053 0.63(1) 4.43(1) –0.38(1) 3.08(1)

HD 38858 0.64(1) 4.48(1) –0.22(1) 2.61(1) HD 146233 0.65(1) 4.42(1) 0.03(1) 4.07(1)

HD 186427 0.65(1) 4.32(1) 0.07(1) 2.18± 0.50(5) HD 12846 0.66(1) 4.38(1) –0.26(1) 2.20(5)

HD 42618 0.66(1) 4.46(1) –0.11(1) 4.40(8) HD 43587 0.67(1) 4.29(1) –0.04(1) 2.98(1)

HD 3795 0.70(1) 3.91(1) –0.63(1) 1.70(2) HD 115617 0.70(1) 4.39(1) –0.01(1) 3.90± 0.90(3)

HD 178428 0.70(1) 4.25(1) 0.14(1) 1.50(7) HD 117176 0.71(1) 3.97(1) –0.06(1) 4.83(1)

HD 10700 0.72(1) 4.48(1) –0.50(1) 1.60(2) HD 26965 0.85(1) 4.51(1) –0.27(1) 2.10(2)

HD 75732 0.87(1) 4.41(1) 0.28(1) 2.27(1) HD 145675 0.90(1) 4.45(1) 0.41(1) 2.10(2)

References. References are numbered in superscript and given below. (1) Martínez-Arnáiz et al. (2010); (2) Jenkins et al. (2011);
(3) Ammler-von Eiff & Reiners (2012); (4) Takeda et al. (2005); (5) Marsden et al. (2014); (6) Bernacca & Perinotto (1970); (7) Mishenina et al.
(2012); (8) McCarthy & Wilhelm (2014); (9) Schröder et al. (2009).
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