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Chapter 1
Introduction

It ought to be remembered that there is nothing more difficult to
take in hand, more perilous to conduct, or more uncertain in its
success, than to take the lead in the introduction of a new order
of things.

—Niccoló Machiavelli
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Introduction

1.1 The linear-quadratic optimal control problem in finite
dimensions

We start by presenting the central objective of our work. To make the reading of this
introduction easier, we avoid using intricate mathematical notations. However, in case of
ambiguity of the notation we use, one should consult Section 1.3.

Let us consider the following finite-dimensional linear time-invariant (LTI) system

Σ :

{
ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Cn,
y(t) = Cx(t), ∀ t ≥ 0,

(1.1)

with matrices A ∈ Cn×n, B ∈ Cn×m, and C ∈ Cp×n. We call x(t) ∈ Cn the state of Σ
at time t, u : (0,∞) → Cm the input function, and y : (0,∞) → Cp the output function.
Systems of type (1.1) are usually described by the diagram shown in Figure 1.1: The state
of Σ is controlled by the input u and observed through the output y.

u
ẋ(t) = Ax+Bu

x
C

y

x0

Figure 1.1: The input-state-output description of the system Σ.

The principal focus of this dissertation is on minimizing the cost of controlling and
observing the system given in (1.1). This means that we want to minimize the cost
functional

J(x0, u) =

∫ ∞
0
‖u(t)‖2 + ‖y(t)‖2 dt, (1.2)

where the output function y : (0,∞) → Cp is subject to the dynamical system (1.1).
This optimization problem is called the “linear-quadratic optimal control problem”. In
order to ensure that the cost functional (1.2) remains finite, we require the input function
u : (0,∞) → Cm and the output function y : (0,∞) → Cp to be L2-integrable (this
condition is called optimizability of System (1.1)). This means that we minimize the cost
functional (1.2) over the set of those control inputs u ∈ L2(0,∞;Cm) which result in
y ∈ L2(0,∞;Cp) (through the dynamical system (1.1)).

The solution to the linear-quadratic optimal control problem can be determined by

inf
u∈L2(0,∞;Cm)

J(x0, u) = J(x0, u
opt) = 〈x0, Xx0〉 , (1.3)

where X = X∗ ∈ Cn×n is the smallest positive semidefinite solution of the algebraic Riccati
equation (ARE)

A∗X +XA+ C∗C −XBB∗X = 0, (1.4)

see for example [38]. The minimizer uopt in (1.3) can be written via the linear state
feedback

uopt(t) := −B∗Xx(t), t ≥ 0. (1.5)

2



1.1 The linear-quadratic optimal control problem in finite dimensions

The closed-loop system obtained via the linear state feedback (1.5) (as depicted in Fig-
ure 1.2) is called the optimal closed-loop system. As shown in Figure 1.2, we have con-
structed the new input relation u = v − B∗Xx(t) for the system Σ. By substituting this
relation in (1.9), we reach the optimal closed-loop system:{

ẋ(t) = (A−BB∗X)x(t) +Bv(t), x(0) = x0 ∈ Cn,
y(t) = Cx(t), ∀ t ≥ 0.

v u
ẋ = Ax+Bu

x

−B∗X

+ C
y

x0

Figure 1.2: The optimal feedback for the system Σ.

If all the eigenvalues of the closed-loop matrix Aopt := A− BB∗X have negative real
part, then we call the closed-loop system stable and the matrix X is called a stabilizing
solution of (1.4). Under certain assumptions on the matrices A, B, and C, one can show
the existence of a unique stabilizing solution X of the ARE (1.4) (see for example [31]).

As a result of the above observation, one way of solving the linear-quadratic optimal
control problem is to solve (1.4) and then the optimal control follows from (1.5). Hence,
the numerical solution of the algebraic Riccati equation (1.4) lies in the central focus of
the linear-quadratic optimal control problem for systems of type (1.1).

There are many algorithms available for solving (1.4) numerically (see [10] for a re-
view). For problems where the model order is small (e.g., n = 100), a direct method based
on calculating the eigenvectors of the associated Hamiltonian works well [2,33]. However,
if the dynamical system (1.1) arises in a finite dimensional approximation of partial dif-
ferential equations, then n becomes typically very large. In this case, the calculation of
eigenvectors turns into a laborious task and a direct method is not suitable anymore.

In this work we focus on two iterative algorithms which provide efficient approximate
solutions of (1.4) in low-rank factored form. This means that they provide sequences
(Xk)k∈N ∈ Cn×n of approximate solutions of the form Xk = R∗kRk for some Rk ∈ C`k×n,
with typically “small” `k. The main computational cost of these algorithms consists of, at
each iteration, solving a linear system of the form (αkI − A)x = v, where v ∈ Cn×p and
the “shift parameter” αk ∈ C satisfies Re(αk) > 0. These features make these algorithms
attractive for the case where n is large, p is small, and A is sparse. This situation arises
for example when considering discretizations of partial differential equations.

The first algorithm that we consider is the recently developed ADI method for solving
(1.4). This algorithm was first proposed in [34] without a complete proof of convergence. In
[35] a new perspective on this method in terms of the underlying linear-quadratic optimal
control problem was introduced. This representation is independent of the Riccati equation
and allows a straightforward proof of convergence. Moreover, the setting introduced in [35]
allows an extension of the algorithm to infinite-dimensional systems [35, Theorem 7.1].

3



Introduction

The second algorithm that we discuss is the well-known Newton-Kleinman iteration.
This algorithm has received considerable attention in the literature since its introduction
by Kleinman [29]. By applying the Newton iteration to the quadratic matrix equation
(1.4), one obtains a sequence of Lyapunov equations

Xk+1(A−BB∗Xk) + (A−BB∗Xk)
∗Xk+1 = −XkBB

∗Xk − C∗C. (1.6)

Given the current approximation Xk, one needs to solve (1.6) to find the next iterate
Xk+1. In this dissertation we solve (1.6) by employing the ADI method for solving the
Lyapunov equation. This method has been proven to be highly efficient for solving large
scale problems when applied in order to compute low-rank factors of the solution (see for
example [8, 9]).

1.2 Extension to infinite-dimensional spaces

In this dissertation we focus on the generalization of the setting presented in Section 1.1
to infinite-dimensional Hilbert spaces. This means that we consider systems whose state
space is not any more Cn, but an infinite-dimensional Hilbert space. This setting arises
naturally when considering partial differential or delay differential equations. Our primary
goal is to generalize the ADI method and the Newton-Kleinman iteration in order to solve
the linear-quadratic optimal control problem for infinite-dimensional systems.

The solution theory for systems of type (1.1) with operators A, B, and C acting on
infinite-dimensional spaces becomes more complicated. In fact, the local description of
the system at a specific time t ≥ 0 requires the definition of “suitable domains”, because
one usually encounters differential, trace and other “unbounded” operators. To deal with
this issue, we focus on the class of well-posed linear systems (Definition 2.4). This class
includes many input-state-output systems described by partial differential equations and
provides a formal resemblance to finite-dimensional theory. The concept of well-posed
linear systems was introduced by Salamon [55, 56] and gives a description of the system
using strongly continuous semigroups (Definition 2.1) and appropriate integral operators.
For a complete overview on this class we refer to [58] and the references therein.

The class of well-posed linear systems will be defined in Chapter 2 (see Definition 2.4).
In order to make the definition easier to understand, let us take a look at the finite-
dimensional LTI system (1.1). Formally, by applying the variation of constants formula
to (1.1) we obtain

x(t) =eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ,

y(t) =CeAtx0 + C

∫ t

0
eA(t−τ)Bu(τ)dτ.

(1.7)

4



1.2 Extension to infinite-dimensional spaces

Now for all t ≥ 0, x0 ∈ Cn, and u ∈ L2 (0,∞;Cm), we define the following four operators:

Ttx0 = eAtx0,

Φtu =

∫ t

0
eA(t−τ)Bu(τ)dτ,

(Ψx0) (t) = CeAtx0,

(Fu) (t) = C

∫ t

0
eA(t−τ)Bu(τ)dτ.

(1.8)

With this notation, we write (1.7) as

x(t) =Ttx0 + Φtu,

y =Ψx0 + Fu.
(1.9)

Here T is a strongly continuous semigroup (Definition 2.1), Φ is called the input map, Ψ the
output map, and F the input-output map. It follows from (1.9) that operators (T,Φ,Ψ,F)
connect the initial state x0 ∈ Cn and the input u : [0,∞) → Cm to the state trajectory
x : [0,∞) → Cn and the output function y : [0,∞) → Cp. These operators describe the
input-state-output behavior of the LTI system (1.1) completely.

Formulas (1.8) and (1.9) hold true when A, B, and C are bounded operators acting
on infinite-dimensional system. However, these operators are typically unbounded (in a
sense that will be more clear in Section 2.3). For example, this is the case when A is a
differential operator, B is a boundary control, and C is a boundary observation. As a
result, the nice (classical) structures presented in (1.7)–(1.9) (and also in Section 1.1) do
not hold in general. By requiring the operators (T,Φ,Ψ,F) to satisfy certain properties
(Definition 2.4), we attempt to “imitate” the input-state-output behavior of the LTI sys-
tem (1.1) also in the infinite-dimensional setting. These properties include in particular
time-invariance and causality. A system for which the operators (T,Φ,Ψ,F) satisfy the
properties listed in Definition 2.4 is called a well-posed linear system.

One can also connect the linear-quadratic optimal control problem to the solution of
an operator algebraic Riccati equation, i.e., equation of type (1.4) where A, B, and C are
not anymore matrices but rather operators acting on infinite-dimensional Hilbert spaces.
If A generates a strongly continuous semigroup (Definition 2.3), B and C are bounded,
then the optimal cost operator X (as in (1.3)) satisfies the following weak form of the
algebraic Riccati equation

〈Ax0, Xz0〉+ 〈Xx0, Az0〉+ 〈Cx0, Cz0〉 − 〈B∗Xx0, B
∗Xz0〉 = 0, (1.10)

for all x0, z0 ∈ D(A), where D(A) denotes the domain of the operator A [18, Theorem
6.2.4]. In addition, the minimizer uopt in (1.3) can again be written via the linear state
feedback (1.5). However, if the control operator B is unbounded, then it may happen that
Xx /∈ D(B∗) for some x ∈ D(A). In this case, the linear feedback (1.5) and the weak form
of the algebraic Riccati equation (1.10) does not make sense anymore. We will address
this problem in more details in Chapter 3 and present a “Riccati-like” equation from [70]
to overcome this problem.
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A common technique in the numerical solution of the linear-quadratic optimal control
of infinite-dimensional systems is to first apply discretization techniques (e.g., finite ele-
ment method) to obtain a finite-dimensional system (of the form (1.1)) and then solve the
algebraic Riccati equation (1.4) numerically (as explained in Section 1.1). This approach
is commonly referred to as “discretizing-then-optimizing”. The main drawbacks of this
method can be summarized as follows:

• The discretization method may not accurately inherit the properties of the infinite-
dimensional operators. Losing these properties may slow down or even destroy the
convergence of the resulting approximations.

• Usually, a very fine discretization is needed to acquire correct approximation of the
infinite-dimensional operators. This results in high-order state-space systems, which
can drastically increase the computational costs of the problem.

• As we have already mentioned, if the control operator B is unbounded, then the
algebraic Riccati equation in the form (1.10) (and its matrix version (1.4)) may
not be the correct equation to solve, because operator B∗X does not make sense
anymore.

Our central motivation in studying numerical algorithms for the optimal control of
infinite-dimensional systems is the possibility to apply the so-called “optimizing-then-
discretizing” approach. The advantages of this technique over the classical method of
“discretizing-then-optimizing” can be summarized as follows:

• In the setting of “optimizing-then-discretizing”, one avoids (initial) matrix approx-
imations of the infinite-dimensional operators. These matrices can be difficult to
obtain for certain problems (such as linearized fluid flow systems).

• A distinct advantage of “optimizing-then-discretizing” is the possibility of using
adaptive refinement techniques: For example, an appropriate mesh adaptation strat-
egy is chosen at each iteration of the optimization method. This leads to significant
computational savings (compared to using fixed grid a priori) and increases the
convergence accuracy (we refine the mesh where the solution is not smooth).

The main drawback of “optimizing-then-discretizing” is the rather involved conver-
gence theory for infinite-dimensional systems which requires many technical tools from
functional analysis and infinite-dimensional control theory.

1.3 Preliminaries and functional analysis notions

In this section we review the functional analytic preliminaries that are important in de-
veloping the theory of well-posed linear systems in the next chapter. Our purpose is to
unify the notations and make the reading of the forthcoming chapters easier. Since the
main focus of this dissertation is on the linear-quadratic optimal control problem, we deal
only with operators acting on Hilbert spaces.

Throughout this dissertation N, Z, R, and C denote the set of natural numbers, integer
numbers, real numbers, and complex numbers, respectively. For a complex number s ∈ C,
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Re(s) and Im(s) denote the real and the imaginary part of s, respectively. For any ω ∈
[−∞,∞), Cω denotes the open right half-plane in C delimited by ω:

Cω := {s ∈ C | Re(s) > ω} ,

and we define C+ := C0.
In every part of this dissertation, U , X , and Y denote Hilbert spaces (possibly

infinite-dimensional). These spaces are usually referred to as the input space, the state
space, and the output space, respectively. Furthermore,

• 〈·, ·〉X : X × X → C denotes the inner product on the Hilbert space X and
‖ · ‖X : X → [0,∞) denotes the norm induced by this inner product. Moreover,
IX denotes the identity operator acting on X . We omit the indices whenever the
associated space is clear from the context.

• L(X ,Y ) and K(X ,Y ) denote the spaces of bounded linear and compact linear
operators T : X → Y , respectively. We define L(X ) := L(X ,X ) and K(X ) :=
K(X ,X ).

• D(T ), Im(T ), and ker(T ) denote the domain, the image, and the kernel of an operator
T , respectively.

• A linear operator T : D(T ) ⊂ X → Y is called closed , if for any sequence (xn) ∈
D(T ), which satisfies limn→∞ xn = x ∈ X and limn→∞ Txn = y ∈ Y , it follows
that x ∈ D(T ) and Tx = y.

• Let T : D(T ) ⊂X → Y be a closed linear operator. D(T ) equipped with the graph
norm is a Hilbert space, where the graph norm ‖·‖gr is defined as

‖x‖gr := ‖x‖2X + ‖Tx‖2Y . (1.11)

• Let T : D(T ) ⊂X → Y be a closed linear operator. ρ(T ) denotes the resolvent set
of T , which is defined as

ρ(T ) := {λ ∈ C | (λI − T ) : D(T )→X is bijective} .

The spectrum of T is defined as the complement of ρ(T ), i.e.,

σ(T ) := C\ρ(T ).

The inverse (λI − T )−1 is called the resolvent operator of T at the point λ ∈ ρ(T ).

Let X be a Hilbert space. C(0,∞; X ) consists of all the continuous functions f :
[0,∞)→X and Cn(0,∞; X ), for n ∈ N, consists of all the n times differentiable functions
f : [0,∞) → X whose derivatives of order ≤ n are in C(0,∞; X ). For p ∈ [1,∞], `p
stands for the p-summable complex sequences and Lp (0,∞; X ) denotes the Lebesgue
space of measurable functions f : [0,∞)→X with the property that ‖f(·)‖X ∈ Lp(0,∞).
Moreover, we define

Lploc(0,∞; X ) := {f : [0,∞)→X | f ∈ Lp (0, τ ; X ) , ∀ τ > 0} .
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The Sobolev space H1(0,∞; X ) consists of those locally absolutely continuous functions
f : [0,∞) → X for which df

dt ∈ L
2 (0,∞; X ). The space H1

0 (0,∞; X ) consists of those
functions in H1(0,∞; X ) with compact support in [0,∞) (in particular, functions in
H1(0,∞; X ) which vanish at zero).

Let X be a Hilbert space. X ′ denotes the dual space of X , which is the space of
bounded linear functionals X . We denote by 〈x, x′〉X ,X ′ the functional x′ ∈ X ′ applied
to x ∈ X , so that 〈x, x′〉X ,X ′ is linear in x and antilinear in x′ (similarly to the inner
product on a Hilbert space). By the Riesz representation theorem [46, p. 48] the operator
J : X →X ′ defined by

〈z, Jx〉X ,X ′ = 〈z, x〉X , ∀ z, x ∈X , (1.12)

is an isometric isomorphism. If we do not distinguish between x and Jx in (1.12) (for all
x ∈ X ), then we say that X is identified by its dual X ′. In this case we call X a pivot
space.

Definition 1.1. Let V and X be Hilbert spaces such that V ⊂ X . The embedding
V ⊂X is called continuous, if there exists an m ≥ 0 such that

‖v‖X ≤ m ‖v‖V , ∀ v ∈ V .

Proposition 1.2. [62, Proposition 2.9.2] Let V and X be Hilbert spaces with continuous
and dense embedding V ⊂X . Then, the function ‖·‖∗ : X → [0,∞) defined by

‖z‖∗ := sup
ϕ∈V , ‖ϕ‖V ≤1

| 〈z, ϕ〉X |, ∀ z ∈X ,

is a norm on X . In addition, let V ∗ denote the completion of X with respect to ‖·‖∗ and
define the operator J : V ∗ → V ′ as follows: For any z ∈ V ∗,

〈Jz, ϕ〉V ′,V = lim
n→∞

〈zn, ϕ〉X , ∀ ϕ ∈ V , (1.13)

where (zn) is a sequence in X such that limn→∞ zn = z in V ∗. Then J is an isomorphism
from V ∗ to V ′.

If V , X , and V ∗ are as in Proposition 1.2, then we identify V ∗ with V ′, by not
distinguishing between z and Jz (for all z ∈ V ∗). Thus, we have the continuous and dense
embedding

V ⊂X ⊂ V ′.

When V ′ is identified with V ∗ (as above), then we call V ′ the dual of V with respect
to the pivot space X . The norm ‖·‖∗ on X defined in Proposition 1.2 is called the dual
norm of ‖·‖V with respect to the pivot space X .

Remark 1.3. V is uniquely determined by V ′: it consists of those ϕ ∈ X for which the
product 〈z, ϕ〉X , regarded as a function of z, has a continuous extension to V ′ (see (1.13)).

The adjoint of T ∈ L(X ,Y ) is the operator T ∗ ∈ L(Y ′,X ′) defined by(
T ∗y′

)
x = y′ (Tx) , ∀ x ∈X , ∀ y′ ∈ Y ′. (1.14)
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If both X and Y are considered to be pivot spaces, then T ∗ ∈ L(Y ,X ) and (1.14)
becomes

〈x, T ∗y〉Y = 〈Tx, y〉Y , ∀ x ∈X , ∀ y ∈ Y .

An operator T ∈ L(X ) is called self-adjoint, if T = T ∗. A self-adjoint operator T is called
positive if

〈x, Tx〉X ≥ 0, ∀ x ∈X . (1.15)

Property (1.15) is written in the form T ≥ 0. The notion of strict positivity (T > 0),
negativity (T ≤ 0), and strict negativity (T < 0) can be defined similarly. For two self-
adjoint operators T1, T2 ∈ L(X ), we say that T1 ≥ T2, if T1 − T2 ≥ 0. The square root of
a nonnegative operator T ∈ L(X ) is denoted by T 1/2.

A compact operator T ∈ K(X ,Y ) admits a singular value decomposition

Tx =
∞∑
i=1

σi〈x, ui〉X · vi,

where the sequence of singular values (σi)i∈N ∈ [0,∞) is monotonically decreasing and
converges to zero as i tends to infinity. (ui, vi) is called the Schmidt pair associated to
the singular value σi, where (ui)i∈N and (vi)i∈N are orthonormal systems in X and Y ,
respectively [46, p. 203].

We close this section, by presenting the operators of p-th Schatten class and the asso-
ciated relations that will be used in the upcoming chapters.

Definition 1.4 (p-th Schatten class). Let X and Y be separable Hilbert spaces and let
p ∈ [1,∞). Then T ∈ K(X ,Y ) is called a p-th Schatten class operator, if the sequence
of its singular values fulfills

(σi)i ∈ `p.

In this case we write T ∈ Sp(X ,Y ). Furthermore, we abbreviate Sp(X ) := Sp(X ,X ).
A p-th Schatten class operator is called nuclear if p = 1, and Hilbert-Schmidt if p = 2.

The space Sp(X ,Y ) equipped with the norm ‖T‖Sp(X ,Y ) = ‖(σi)i‖`p is a Banach

space. The trace of a nuclear operator T ∈ S1(X ) is given by the expression

trace(T ) =
∞∑
i=1

〈ei, T ei〉X ,

where (ei) is an (arbitrary) orthonormal basis of X [46, p. 206]. For self-adjoint and
nonnegative T ∈ S1(X ), the spectral theorem implies that

‖T‖S1(X ) = trace(T ).

In addition, if T ∈ S2(X ,Y ), then T ∗T ∈ S1(X ) and TT ∗ ∈ S1(Y ) with

‖T‖2S2(X ,Y ) = ‖T ∗‖2S2(Y ,X ) = trace(T ∗T ) = trace(TT ∗).
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1.4 Outline of the dissertation

In Chapter 2, we define the class of well-posed linear systems and review those important
properties, which we require to solve the linear-quadratic optimal control problem. In
particular, we study admissibility of control and observation operators (Section 2.3) and
regularity of the transfer function (Section 2.5). Afterwards, we focus on the linear-
quadratic optimal control problem in Chapter 3. We start with the regular optimal control
problem (Section 3.2) and show that the solution to this problem is connected to the
spectral factorization of the associated Popov function (Section 3.3). Subsequently, we
present various generalized Riccati equations (Section 3.4). Later on, we turn our focus
to the singular optimal control problem (Section 3.5), in particular, we deal with the
bounded real and the positive real case (Section 3.6). The main contribution of this work
is presented in Chapters 4 and 5. We present two algorithms which provide approximate
solutions to the linear-quadratic optimal control problem:

• The ADI method

• The Newton-Kleinman iteration

The ADI method will be applied to stable weakly regular linear systems, whereas for the
Newton-Kleinman iteration, we require strong regularity of the well-posed linear system.
We will further show that the ADI method can be extended to solve the singular optimal
control problem in the bounded real and the positive real case. Finally, in Chapter 6,
we apply the algorithms to a heat equation with Robin boundary control and boundary
integral observation. We present three numerical examples to show the applicability of
our algorithms. The first two examples deal with the application of the ADI method and
the Newton-Kleinman iteration to solve the regular optimal control problem. In the last
example, we apply the ADI method to solve the positive real optimal control problem.
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Chapter 2
Well-posed linear systems

Die Mathematiker sind eine Art Franzosen; redet man mit ihnen,
so übersetzen sie es in ihre Sprache, und dann ist es alsobald ganz
etwas anderes. (Mathematicians are [like] a sort of Frenchmen; if
you talk to them, they translate it into their own language, and
then it is immediately something quite different.)

—Johann Wolfgang von Goethe

Contents
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2.5 Regular linear systems . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 The dual of a well-posed linear system . . . . . . . . . . . . . . 25

2.7 Linear output feedback theory . . . . . . . . . . . . . . . . . . . 27

We review the theory of well-posed linear systems and (weak) regularity mainly from
[58,63–68,70]. Since our foremost motive is to study the linear-quadratic optimal control
problem for these systems, we gather just the required tools for the upcoming chapters.
The notation that we use is mostly from [70] and [15]. For a complete overview on well-
posed linear systems we refer to [58].
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Well-posed linear systems

2.1 Well-posed linear systems: basic definitions

We start this section by introducing the essential notions which are necessary for the
definition of well-posed linear systems. We begin with the definition of strongly continuous
semigroups of operators on a Hilbert space X . The following definitions are taken from
[62].

Definition 2.1 (Strongly continuous semigroup). A family of operators T = (Tt)t≥0 in
L(X ) is a strongly continuous semigroup on X if

(a) Tt+τ = TtTτ , for every t, τ ≥ 0 (the semigroup property),

(b) T0 = I,

(c) lim
t↓0
‖Ttx− x‖ = 0, for all x ∈X (strong continuity).

Definition 2.2 (Growth bound of T). For the strongly continuous semigroup T, the
growth bound is defined by

ω0 (T) = inf{ω ∈ R | ∃ M ≥ 1 such that ‖Tt‖L(X ) ≤Meωt ∀ t ≥ 0}.

Equivalently, the growth bound is the number defined by (see, e.g., [62, Proposition 2.1.2])

ω0(T) = inf
t∈(0,∞)

1

t
log ‖Tt‖ .

Definition 2.3 (Generator of T). The linear operator A : D(A) ⊂X →X defined by

D(A) =

{
x ∈X

∣∣∣ lim
t↓0

Ttx− x
t

exists

}
,

Ax = lim
t↓0

Ttx− x
t

, ∀ x ∈ D(A),

(2.1)

is called the generator of the semigroup T.

We introduce some important notations that will be used in defining well-posed linear
systems: For a Hilbert space U , Sτ denotes the right shift by some τ > 0 on L2

loc(0,∞; U ),
so that for all u ∈ L2

loc(0,∞; U ),

(Sτu) (t) =

{
0, 0 ≤ t < τ,

u(t− τ), t ≥ τ.

In a similar way, S∗τ denotes the left shift by some τ > 0 on L2
loc(0,∞; U ). In fact, if we

restrict Sτ and S∗τ from L2
loc to L2, then they are adjoint to each other.

Pτ denotes the projection of L2
loc(0,∞; U ) into L2(0,∞; U ) by truncation, so that for

all u ∈ L2
loc(0,∞; U )

(Pτu) (t) =

{
u(t), 0 ≤ t < τ,

0, t ≥ τ.
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t

u(t)

(u ♦
τ
v)(t)

v(t− τ)

τ

Figure 2.1: An example of the τ -concatenation.

It follows from the definitions of Sτ and Pτ that

S∗τSτ = I, SτS
∗
τ = I −Pτ . (2.2)

For all τ ≥ 0, we use Sτ and Pτ to define the τ -concatenation of the functions u, v ∈
L2
loc(0,∞; U ) by

(u ♦
τ
v)(t) = Pτu+ Sτv =

{
u(t), t ∈ [0, τ),

v(t− τ), else.

An example of the τ -concatenation is depicted in Figure 2.1.

Now we are ready to define the class of well-posed linear systems. We adapt the
notation of [70, Definition 4.1] and [15, Definition 2.2].

Definition 2.4 (Well-posed linear system). A well-posed linear system on the Hilbert
spaces U , X , and Y is a quadruple Σ = (T,Φ,Ψ,F) defined on L2(0,∞; U ), X , and
L2(0,∞; Y ), such that

(a) T = (Tt)t≥0 is a strongly continuous semigroup of bounded linear operators on X .

(b) Φ = (Φt)t≥0 is a family of bounded linear operators from L2(0,∞; U ) to X such that

Φτ+t(u ♦
τ
v) = TtΦτu+ Φtv, (2.3)

for any u, v ∈ L2(0,∞; U ) and all τ, t ≥ 0.

(c) Ψ is a continuous linear operator from X to L2
loc(0,∞; Y ) such that for all τ ≥ 0,

Ψτ = PτΨ is in L(X , L2(0,∞; Y )) and

Ψx0 = Ψx0 ♦
τ

ΨTτx0, (2.4)

for any x0 ∈X .
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(d) F is a continuous linear operator from L2(0,∞; U ) to L2
loc(0,∞; Y ) such that for any

τ ≥ 0, Fτ = PτF is in L(L2(0,∞; U ), L2(0,∞; Y )) and

F(u ♦
τ
v) = Fu ♦

τ
(ΨΦτu+ Fv) , (2.5)

for any u, v ∈ L2(0,∞; U ).

The different components of Σ are named as follows: U is the input space, X the state
space, Y the output space, Φ the input map, Ψ the (extended) output map, and F the
(extended) input-output map.

Remark 2.5. (a) It follows from (2.3) with t = 0 and v = 0 that

ΦτPτ = Φτ , ∀ τ ≥ 0. (2.6)

Property (2.6) says that Φ is causal , i.e., the state does not depend on the future
input. It follows from (2.6) and Definition 2.4 that for all τ, t ≥ 0,

Φτ+tPτ = TtΦτ ,

PτΨτ+t = Ψτ ,

PτFPτ = PτF.
(2.7)

The last property in (2.7) says that F is causal, which means that the past output
does not depend on the future input. Moreover, by taking u = 0 in (2.5) we obtain

SτF = FSτ , ∀ τ ≥ 0.

This means that F is shift-invariant or time-invariant .

(b) If x0 ∈ X is the initial state of Σ = (T,Φ,Ψ,F) and u ∈ L2
loc(0,∞; U ) its input

function, then the state trajectory x : [0,∞) → X and the output function y ∈
L2
loc(0,∞; Y ) of Σ are defined by

x(t) = Ttx0 + Φtu, ∀ t ≥ 0,

y = Ψx0 + Fu.
(2.8)

(c) It follows from (2.5) that the input-output map F satisfies the following functional
equation for all τ ≥ 0:

S∗τF = ΨΦτ + FS∗τ . (2.9)

By combining (2.9) with (2.8) we get

S∗τy = Ψx(τ) + FS∗τu. (2.10)

Definition 2.6 (External, strong, and exponential stability). A well-posed linear system
is called

(a) externally stable, if it is output stable and input-output stable, i.e.,

Ψ ∈ L(X , L2(0,∞; Y )),

F ∈ L(L2(0,∞; U ), L2(0,∞; Y )).
(2.11)
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(b) stable, if the semigroup T is uniformly bounded, i.e.,

sup
t≥0
‖Tt‖ <∞. (2.12)

(c) strongly stable, if the semigroup T is strongly stable, i.e.,

lim
t→∞

Ttx0 = 0, ∀ x0 ∈X . (2.13)

(d) exponentially stable, if the semigroup T is exponentially stable, i.e., there exists M ≥ 1
and ω > 0, such that

‖Tt‖ ≤Me−ωt, ∀ t > 0. (2.14)

2.2 The rigged spaces X1 and X−1

In this section we introduce the spaces X1 and X−1 which are fundamental in the theory
of unbounded control and observation operators for well-posed linear systems. Most of the
results presented in this section are from [62, Section 2.10] and we refer to [58, Section
3.6] for more details.

Definition 2.7. Let A be the generator of a strongly continuous semigroup T (cf. Defini-
tion 2.3) with non-empty resolvent set ρ(A) 6= ∅. For some β ∈ ρ(A),

(a) the space X1 is defined as D(A) equipped with the norm

‖x‖1 := ‖(βI −A)x‖ , ∀ x ∈ D(A). (2.15)

(b) the space X−1 is defined as the completion of X with respect to the norm

‖x‖−1 :=
∥∥(βI −A)−1x

∥∥ , ∀ x ∈X . (2.16)

Remark 2.8. It follows from [62, Proposition 2.10.1 & Proposition 2.10.2] that

(a) X1 and X−1 are Hilbert spaces.

(b) The choice of β ∈ ρ(A) in (2.15) and (2.16) is not important, because different choices
lead to equivalent norms on X1 and X−1.

(c) The norm on ‖·‖1 is equivalent to the graph norm on D(A) (as in (1.11)) and X−1 may
be regarded as the dual of D(A∗) with respect to the pivot space X (cf. Section 1.3).

(d) The Hilbert spaces X1 and X−1 satisfy the continuous and dense embeddings

X1 ⊂X ⊂X−1.
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Let A : D(A) ⊂X →X be the generator of a strongly continuous semigroup T on X .
It follows from [62, Proposition 2.10.3] that A ∈ L(X1,X ) and A has a unique extension
Ã ∈ L(X ,X−1). Moreover, (βI −A)−1 ∈ L(X ,X1) and (βI − Ã) ∈ L(X ,X−1) are two
unitary operators (in particular, β ∈ ρ(Ã)).

The semigroup T can be restricted to X1 and extended to X−1 using the unitary
operators (βI − A)−1 ∈ L(X ,X1) and (βI − Ã) ∈ L(X ,X−1), respectively (see [62,
Proposition 2.10.4]). The restricted operator T is a strongly continuous semigroup on X1,
whose generator is the restriction of A to D(A2). The extended operator T̃ is a strongly
continuous semigroup on X−1, whose generator is the extended operator Ã ∈ L(X ,X−1).
For the rest of this dissertation we use the same notation as for the original operators,
when we restrict or extend the semigroup T and its generator A to the spaces X1 and
X−1.

In Definition 2.7 we may replace A with A∗ and β with β to obtain the spaces Z1 and
Z−1: The space Z1 is defined as D(A∗) equipped with the norm ‖z‖1 := ‖(βI − A∗)z‖
for all z ∈ D(A∗). The space Z−1 is defined as the completion of X with respect to the
norm ‖z‖−1 := ‖(βI − A∗)−1z‖ for all z ∈ X . For these spaces we obtain similar results
as for X1 and X−1. In particular, the following continuous and dense embedding holds

Z1 ⊂X ⊂ Z−1.

Moreover, Z1 and Z−1 are Hilbert spaces. We will use these spaces to define the dual of
a well-posed linear system in Section 2.6.

Remark 2.9. Let 〈·, ·〉X denote the inner product on the Hilbert space X . It follows from
Remark 1.3 that 〈·, ·〉X has the continuous extensions 〈·, ·〉X1,Z−1

and 〈·, ·〉Z1,X−1
. The

Hilbert space Z−1 can be regarded as the dual space of X1 and the Hilbert space X−1

may be regarded as the dual space of Z1.

2.3 Control and observation operators

In this section we define the control and observation operators of a well-posed linear system.
As shown in [64] and [65], the existence of these operators is a consequence of Definition
2.4. We focus in particular on admissible control and observation operators, as they are
necessary for the linear-quadratic optimal control problem (Chapter 3).

We start with the definition of a strong solution of a differential equation of the form
ẋ(t) = Ax(t) + f(t). The following definition and remark are from [62, Section 4.1]:

Definition 2.10. Consider the differential equation

ẋ(t) = Ax(t) + f(t), (2.17)

where f ∈ L1
loc(0,∞; X−1). By a strong solution of the differential equation (2.17) in X−1

we mean the function
x ∈ L1

loc(0,∞; X ) ∩ C (0,∞; X−1) ,

which satisfies the following equation in X−1:

x(t)− x(0) =

∫ t

0
[Ax(τ) + f(τ)] dτ, ∀ t ≥ 0. (2.18)
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Remark 2.11. It follows from Definition 2.10 that the state trajectory x as in (2.18) is
absolutely continuous with values in X−1 and (2.17) holds for almost every t ≥ 0, with
the derivative computed with respect to the norm of X−1.

Let A : D(A) ⊂X →X be the generator of a strongly continuous semigroup T on the
Hilbert space X (cf. Definition 2.3). It follows from [64, Theorem 3.9] that assumptions
(a) and (b) from Definition 2.4 imply the existence of a unique operator B ∈ L(U ,X−1),
called the control operator of Σ, such that for any u ∈ L2

loc(0,∞; U ) and all t ≥ 0,

Φtu =

∫ t

0
Tt−τBu(τ) dτ. (2.19)

Moreover, for every x0 ∈ X , for any u ∈ L2
loc(0,∞; U ), and for all t ≥ 0, the state

trajectory

x(t) = Ttx0 + Φtu (2.20)

is continuous in X and satisfies the differential equation

ẋ(t) = Ax(t) +Bu(t) (2.21)

in the strong sense in X−1 (cf. Definition 2.10). The state trajectory x as in (2.20) is the
unique solution of (2.21) which satisfies the initial condition x(0) = x0 ∈X .

In formula (2.19) T acts on X−1 and the integration is carried out in X−1. We wish
to know when the integral (2.19) is in X (a dense subspace of X−1). This motivates us
to define the concept of an admissible control operator.

Definition 2.12. An operator B ∈ L(U ,X−1) is called an admissible control operator
for the semigroup T, if for some (hence for any) t > 0, there holds

Φtu =

∫ t

0
Tt−τBu(τ) dτ ∈X , ∀ u ∈ L2(0,∞; U ).

This means that the integral in (2.19) is in X for all u ∈ L2(0,∞; U ). If B ∈ L(U ,X ),
then it is called bounded , otherwise it is called unbounded .

If B ∈ L(U ,X−1) is an admissible control operator for the semigroup T, then by [62,
Proposition 4.2.2], for every t ≥ 0 we have

Φt ∈ L(L2(0,∞; U ),X ).

It follows from [65, Theorem 3.3] that assumptions (a) and (c) from Definition 2.4
imply the existence of a unique operator C ∈ L(X1,Y ), called the observation operator
of Σ = (T,Φ,Ψ,F), such that for every x0 ∈X1 and all t ≥ 0

(Ψx0) (t) = C Ttx0. (2.22)

Formula (2.22) determines Ψ completely, because X1 is dense in X .
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Well-posed linear systems

Definition 2.13. An operator C ∈ L(X1,Y ) is called an admissible observation operator
for the semigroup T, if for some (hence for every) t > 0, there exits a constant Kt ≥ 0
such that ∫ t

0
‖CTτx0‖2Y dτ ≤ K2

t ‖x0‖2X , ∀ x0 ∈X1.

If C ∈ L(X ,Y ), then it is called bounded , otherwise it is called unbounded .

It follows from Definition 2.13 that if C ∈ L(X1,Y ) is the (unique) observation oper-
ator of a well-posed linear system Σ (see (2.22)), then C is admissible for the semigroup
T of Σ.

Theorem 2.14. [62, Theorem 4.3.7] Let C ∈ L(X1,Y ) be an admissible observation
operator for the semigroup T and let ω0(T) be the growth bound of T (cf. Definition 2.2).
Then, for every α > ω0(T) there exists Kα ≥ 0 such that∥∥C(sI −A)−1

∥∥ ≤ Kα√
Re(s)− α

, ∀ s ∈ Cα. (2.23)

We refer to [27, 28] for further details regarding admissible control and observation
operators.

Definition 2.15. (see [17, Definition 2.7]) Let Σ = (T,Φ,Ψ,F) be a well-posed linear
system on L2(0,∞; U ), X , and L2(0,∞; Y ). If A is the generator of T (cf. Definition 2.3),
B is the control operator of Σ (see 2.19), and C is the observation operator of Σ (see 2.22),
then we say that (A,B,C) is the triple associated with Σ. A triple of operators (A,B,C)
is called well-posed if there is a well-posed linear system Σ such that (A,B,C) is the triple
associated with Σ

Remark 2.16. So far we have seen how the operators T, Φ, and Ψ of a well-posed linear
system Σ can be represented by the triple (A,B,C) (we refer to [17] for more details).
The formulas (2.19)–(2.21) and (2.22) resemble those from the finite-dimensional theory
(cf. Section 1.1). The representation of F is more complicated and requires additional
tools, mainly the transfer function and regularity which are defined in Sections 2.4 and
2.5, respectively.

In the last part of this section, we define the notions of infinite-time admissibility and
Gramian. Furthermore, we present an important result on testing admissibility from [62].
We will use these concepts mainly in the development of the Newton-Kleinman iteration
given in Chapter 5.

Definition 2.17. Let Φ be the input map given by (2.19). An operator B ∈ L(U ,X−1)
is called an infinite-time admissible control operator for the strongly continuous semigroup
T, if there exists a constant K ≥ 0 such that

‖Φt‖L(L2(0,∞;U ),X ) ≤ K, ∀ t ≥ 0. (2.24)

Equation (2.24) means that for all u ∈ L2(0,∞; U ) we have

Φu :=

∫ ∞
0

TtBu(t) dt ∈X . (2.25)
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2.3 Control and observation operators

Obviously, every infinite-time admissible control operator is an admissible control operator
(cf. Definition 2.12). It follows from [62, Proposition 4.4.5] that if T is an exponentially
stable semigroup and B ∈ L(U ,X−1) is an admissible control operator for T, then B is
infinite-time admissible.

Definition 2.18. An operator C ∈ L(X1,Y ) is called an infinite-time admissible obser-
vation operator for the strongly continuous semigroup T, if there exists a constant K > 0
such that ∫ ∞

0
‖CTtx0‖2Y dt ≤ K2 ‖x0‖2X , ∀ x0 ∈ D(A).

Equivalently, C ∈ L(X1,Y ) is an infinite-time admissible observation operator for the
semigroup T, if the output map Ψ has a continuous extension to X , i.e.,

Ψ ∈ L(X , L2(0,∞; Y )). (2.26)

Remark 2.19. The output map of an externally stable well-posed linear system Σ =
(T,Φ,Ψ,F) (cf. Definition 2.6.a) satisfies (2.26). As a result, Σ has a unique observa-
tion operator C ∈ L(X1,Y ) which is infinite-time admissible for the strongly continuous
semigroup T.

Definition 2.20 (Infinite-time controllability/observability Gramian). Let A : D(A) ⊂
X →X be the generator of a strongly continuous semigroup T.

(a) Let B ∈ L(U ,X−1) be an infinite-time admissible control operator for T and let Φ be
the extended input map defined in (2.25). We define the infinite-time controllability
Gramian of (A,B) by

ΦΦ∗ ∈ L(X ).

(b) Let C ∈ L(X1,U ) be an infinite-time admissible observation operator for T and let
Ψ be the extended output map which satisfies (2.26). We define the infinite-time
observability Gramian of (A,C) by

Ψ∗Ψ ∈ L(X ).

In the following, we present a very important result which allows us to determine if an
observation operator C ∈ L(X1,Y ) is infinite-time admissible for the strongly continuous
semigroup T. This result links the infinite-time observability Gramian of (A,C) to a
solution of the corresponding observation Lyapunov equation. The dual result can be also
formulated using the infinite-time controllability Gramian and the corresponding control
Lyapunov equation. For more details we refer to [62, Chapter 5] and [26].

Theorem 2.21. [62, Theorem 5.1.1] Let A : D(A) ⊂ X → X be the generator of a
strongly continuous semigroup T and let C ∈ L(X1,Y ). In addition, let Ψ be the output
map from (2.22). Then, the following four statements are equivalent:

(i) C is an infinite-time admissible observation operator for the semigroup T.
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Well-posed linear systems

(ii) There exists an operator Γ ∈ L(X ) such that

Γx0 = Ψ∗Ψx0 = lim
t→∞

∫ t

0
T∗τC∗CTτx0 dτ, ∀ x0 ∈ D(A). (2.27)

(iii) There exists an operator Π ∈ L(X ), Π ≥ 0, which satisfies the following equation

〈Ax0,Πz0〉+ 〈Πx0, Az0〉 = −〈Cx0, Cz0〉 , ∀ x0, z0 ∈ D(A). (2.28)

(iv) There exists an operator Π ∈ L(X ), Π ≥ 0, which satisfies the inequality

〈Ax0,Πz0〉+ 〈Πx0, Az0〉 ≤ − 〈Cx0, Cz0〉 , ∀ x0, z0 ∈ D(A). (2.29)

Moreover, if C is infinite-time admissible, then the following statements hold:

(1) Γ = Ψ∗Ψ is the infinite-time observability Gramian of (A,C).

(2) Γ = Ψ∗Ψ satisfies (2.28).

(3) Γ = Ψ∗Ψ is the smallest positive solution of (2.29) [hence, also of (2.28)].

(4) We have

lim
t→∞

Γ
1
2Ttx0 = 0, ∀ x0 ∈X .

In particular, if Γ is strictly positive, then T is strongly stable.

(5) If T is strongly stable, then Γ = Ψ∗Ψ is the unique self-adjoint solution of (2.28).

(6) If T is uniformly bounded and ker(Γ) = 0, then T is weakly stable.

(2.28) is called a Lyapunov equation and (2.29) is called a Lyapunov inequality.

2.4 The transfer function

A well-posed linear system Σ = (T,Φ,Ψ,F) can be described in the frequency domain
by means of a transfer function. When we say “frequency domain description” we mean
a description given in terms of Laplace transformation (Definition 2.23) of the original
functions. In order to define the transfer function of a well-posed linear system, we need
the Hardy space and the notion of Laplace transformation. These are given in the following
definitions:

Definition 2.22 (Hardy spaces). [58, Definition 10.3.1] Let U and Y be Hilbert spaces,
let p ∈ [1,∞] and ω ∈ R. Let Cω denote the open right half-plane Cω := {s ∈ C | Re(s) >
ω}.
• The space Hpω(U ) consists of all analytic U -valued functions ϕ on Cω, which satisfy
‖ϕ‖Hp

ω(U ) <∞, where

‖ϕ‖Hp
ω(U ) =


sup
α>ω

(∫∞
−∞ ‖ϕ(α+ iβ)‖pU dβ

)1/p
, p ∈ [1,∞),

sup
Re(s)>ω

‖ϕ(s)‖U , p =∞.

In the case ω = 0, we abbreviate Hp(U ) := Hp0(U ).
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2.4 The transfer function

• The space Hpω(U ,Y ) consists of all analytic L(U ,Y )-valued functions ψ on Cω,
which satisfy ‖ψ‖Hp

ω(U ,Y ) <∞, where

‖ψ‖Hp
ω(U ,Y ) =


sup

‖u‖U≤1,α>ω

(∫∞
−∞ ‖ψ(α+ iβ)u‖pY dβ

)1/p
, p ∈ [1,∞),

sup
Re(s)>ω

‖ψ(s)‖L(U ,Y ) , p =∞.

In the case ω = 0, we abbreviate Hp(U ,Y ) := Hp0(U ,Y ).

Definition 2.23 (Laplace transformation). The Laplace transform of a function u ∈
L1

loc(0,∞) is given by

û(s) =

∫ ∞
0

e−stu(t)dt, (2.30)

for all s ∈ C for which the integral (2.30) converges absolutely, i.e.,∫ ∞
0

e−tRe(s)|u(t)|dt <∞.

Notation 2.24. For any Hilbert space U , L2
ω(0,∞; U ) is defined as

L2
ω(0,∞; U ) := eωL

2(0,∞; U ), where (eωv) (t) = eωtv(t),

with the norm

‖u‖2ω :=

∫ ∞
0

e−2ωt ‖u(t)‖2 dt.

Theorem 2.25 (Paley–Wiener Theorem). [58, Theorem 10.3.4] Let U be a Hilbert space,
and let ω ∈ R. Then the Laplace transform û of a function u ∈ L2

ω(0,∞; U ) belongs to
H2
ω(U ). Conversely, every function ϕ ∈ H2

ω(U ) is the Laplace transform of a function
u ∈ L2

ω(0,∞; U ). Moreover,

‖û‖H2
ω(U ) =

√
2π ‖u‖ω .

As shown in [68, Section 3], a shift-invariant operator on L2 can be represented by a
transfer function in the Hardy space H∞ (cf. Definition 2.22). For the (shift-invariant)
input-output map F, we define the growth bound of F as

γF = inf
{
ω ∈ R | F ∈ L(L2

ω(0,∞; U ), L2
ω(0,∞; Y ))

}
. (2.31)

If F has a growth bound which satisfies γF < ∞, then there exists a transfer function
representation of F. In fact, the following theorem holds true.

Theorem 2.26. (see [67, Theorem 3.3] and [68, Section 3]) Let U and Y be Hilbert
spaces. Suppose F is a shift-invariant linear operator from L2

loc(0,∞; U ) to L2
loc(0,∞; Y ),

with the growth bound γF < ∞. Then, for all ω > γF, there exists a unique function
G ∈ H∞ω (L(U ,Y )) which satisfies

(̂Fu)(s) = G(s)û(s),

for every s ∈ Cω and any u ∈ L2
ω(0,∞; U ). Moreover, there holds

‖G‖H∞ω = ‖F‖L(L2
ω) . (2.32)
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Well-posed linear systems

Definition 2.27 (Transfer function). If F and G are as in Theorem 2.26, then G is called
the transfer function of F.

Let Σ = (T,Φ,Ψ,F) be a well-posed linear system with the associated triple (A,B,C)
(cf. Definition 2.15) and let G be the transfer function of F. As shown in [56], for any
u ∈ H1

0 (0,∞; U ) and every β ∈ ρ(A), the input-output map F is given by

(Fu) (t) = C

[∫ t

0
Tt−τBu(τ) dτ − (βI −A)−1Bu(t)

]
+ G(β)u(t), ∀ t ≥ 0. (2.33)

Equation (2.33) determines F, because H1
0 (0,∞; U ) is dense in L2

loc(0,∞; U ). The repre-
sentation formula (2.33) shows that (A,B,C) determines F only up to an additive constant,
namely G(β).

By [17, Theorem 4.2] if we substitute s ∈ ρ(A) instead of β in (2.33), subtract the two
equalities side by side, and eventually apply the resolvent identity, then we obtain

G(s)−G(β) = (β − s)C(βI −A)−1(sI −A)−1B

= C
[
(sI −A)−1 − (βI −A)−1

]
B, ∀ s, β ∈ ρ(A),

(2.34)

which results in

G′(s) = −C(sI −A)−2B, ∀ s ∈ ρ(A). (2.35)

Equations (2.34) and (2.35) show that G is determined by the triple (A,B,C) up to an
additive constant operator.

Our main goal in this section was solely to introduce the connection between the input-
output map F, the transfer function G, and the triple (A,B,C). Hence, we have skipped
many important aspects regarding the transfer function and refer to [68] for more details.
At this point, we finish this section by providing an important result from [17] on the
well-posedness of the triple (A,B,C).

Theorem 2.28. [17, Theorem 5.1] Let U , X , Y be Hilbert spaces and let (A,B,C) be
a triple of operators such that

(i) A is the generator of a strongly continuous semigroup T on X ,

(ii) B ∈ L(U ,X−1) is an admissible control operator for T,

(iii) C ∈ L(X1,Y ) is an admissible observation operator for T,

(iv) there exists some α ∈ R such that some (and hence any) solution G : ρ(A) →
L(U ,Y ) of equation (2.34) is bounded on Cα,

then (A,B,C) is well-posed (cf. Definition 2.15). This means that there exists a well-posed
linear system Σ = (T,Φ,Ψ,F) such that (A,B,C) is the triple associated with Σ.
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2.5 Regular linear systems

2.5 Regular linear systems

Until now we have shown that the transfer function G can be determined by the triple
(A,B,C) up to an additive constant operator. Similarly, the input-output map F can be
represented by the triple (A,B,C) only up to an additive constant. This motivates us to
define the concept of regularity, which allows us to further define a feedthrough operator
D ∈ L(U ,Y ). In addition, we show that the transfer function and the input-output map
can be determined uniquely by the generating operators (A,B,C,D).

The following definition gives a characterization of regularity through the transfer
function G. For equivalent characterizations of regularity, we refer to [68].

Definition 2.29 (Regularity). Let Σ = (T,Φ,Ψ,F) be a well-posed linear system with
transfer function G. Let γF be the growth bound of the input-output map F as in (2.31)
and choose ω ∈ R with ω > γF. The system Σ (or its transfer function G) is called

(a) weakly regular , if there exists an operator D ∈ L(U ,Y ), such that for all u ∈ U ,

lim
λ→∞

〈y,G(λ)u〉Y = 〈y,Du〉Y , λ ∈ (ω,∞), ∀ y ∈ Y . (2.36)

(b) (strongly) regular , if there exists an operator D ∈ L(U ,Y ), such that for all u ∈ U

lim
λ→∞

G(λ)u = Du in Y , λ ∈ (ω,∞). (2.37)

(c) line-regular , if there exists an operator D ∈ L(U ,Y ), such that for all u ∈ U

lim
Re(λ)→∞

G(λ)u = Du in Y , ∀ λ ∈ Cω. (2.38)

(d) uniformly line-regular , if there exists an operator D ∈ L(U ,Y ), such that

lim
Re(λ)→∞

‖G(λ)−D‖L(U ,Y ) = 0, ∀ λ ∈ Cω. (2.39)

In all the above definitions, operator D is called the feedthrough operator of Σ.

Uniform line-regularity makes invertibility of the input-output map equivalent to in-
vertibility of its feedthrough operator, as presented in the following proposition.

Proposition 2.30. [39, Proposition 6.3.1] Let Σ = (T,Φ,Ψ,F) be a uniformly line-
regular linear system. Then the input-output map F is boundedly invertible if and only if
the feedthrough operator D ∈ L(U ,Y ) is boundedly invertible.

Definition 2.31 (Λ-extension of C ∈ L(X1,Y )). Let X and Y be Hilbert spaces.
Let A : D(A) ⊂ X → X generate a strongly continuous semigroup T on X and let
C ∈ L(X1,Y ).

(a) The weak Λ-extension of C, denoted by CΛw, is defined as

〈y, CΛwx〉 = lim
λ→∞
λ∈R

〈
y, Cλ (λI −A)−1 x

〉
, ∀ y ∈ Y , (2.40)

with its domain D(CΛw) consisting of those x ∈X for which the limit in (2.40) exists.
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Well-posed linear systems

(b) The (strong) Λ-extension of C, denoted by CΛ, is defined as

CΛx = lim
λ→∞
λ∈R

Cλ (λI −A)−1 x in Y , (2.41)

with its domain D(CΛ) consisting of those x ∈X for which the limit in (2.41) exists.

For weakly regular linear systems, the formulas for the transfer function G and the
input-output map F look much the same as those from finite-dimensional theory, with C
replaced by CΛw (or CΛ if the system is strongly regular). In fact, the following theorem
gives the desired representations.

Proposition 2.32. [15, Theorem 2.6]. Let U , X , Y be Hilbert spaces. Let Σ =
(T,Φ,Ψ,F) be a weakly regular linear system on L2(0,∞; U ), X , and L2(0,∞; Y ), with
semigroup generator A, control operator B, observation operator C, transfer function G,
and feedthrough operator D. Then the following holds:

1. For s ∈ C with Re(s) > ω0(T), there holds

G(s) = CΛw (sI −A)−1B +D.

In particular, we have

(sI −A)−1BU ⊂ D(CΛw). (2.42)

2. F : L2
loc(0,∞; U )→ L2

loc(0,∞; Y ) is given by

(Fu) (t) = CΛw

∫ t

0
Tt−σBu(σ) +Du(t), (2.43)

for almost all t ≥ 0.

3. Let x and y be respectively the state trajectory and the output function of Σ, which
are given by (2.8). Then, for almost all t ≥ 0

x(t) ∈ D(CΛw), (2.44)

and

y(t) = CΛwx(t) +Du(t). (2.45)

If Σ is strongly regular, then CΛw can be replaced by CΛ in (2.44) and (2.45).

Remark 2.33. It follows from Proposition 2.32 and equation (2.21) that the weakly regular
linear system Σ = (T,Φ,Ψ,F) is completely determined via

ẋ(t) = Ax(t) +Bu(t),

y(t) = CΛwx(t) +Du(t).
(2.46)

Definition 2.34. The quadruple of operators (A,B,C,D) satisfying (2.46) is called the
generator of Σ (compare with Definition 2.15).

24
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2.6 The dual of a well-posed linear system

In this section we define the dual system and its anticausal version. Dual systems play
an important role in the linear-quadratic optimal control problem, which will be treated
in the upcoming chapter. An important feature of the duality transformation is that
it preserves weak regularity [61]. The following proposition is from [70] (stated without
proof). We refer to [61, Section 3] for a proof of this proposition.

Proposition 2.35. [70, Proposition 6.1] Let Σ = (T,Φ,Ψ,F) be a well-posed linear sys-
tem with semigroup generator A, control operator B, observation operator C, and transfer
function G. Let Z1 and Z−1 be the rigged spaces defined in Section 2.2 (by replacing
A with A∗ and β with β in Definition 2.7). Then there exists a unique well-posed linear
system Σd = (T∗,Φd,Ψd,Fd), called the dual system of Σ, such that

(i) A∗ ∈ L(Z1,X ) generates the strongly continuous semigroup T∗

(ii) C∗ ∈ L(Y ,Z−1) is the control operator of Σd

(iii) B∗ ∈ L(Z1,U ) is the observation operator of Σd

(iv) Gd(s) = G(s)∗ is the transfer function of Σd

Remark 2.36. It follows from [61, Proposition 3.7] that if the well-posed linear system Σ
is weakly regular with feedthrough operator D, then its dual system Σd is also weakly
regular with feedthrough operator D∗.

For the dual system Σd, let yd denote its input function, xd0 its initial state, xd(t) its
state trajectory at time t ≥ 0, and ud its output function. Then, we have

xd(t) = T∗txd0 + Φd
t y
d,

ud = Ψdxd0 + Fdyd.

If the dual system Σd = (T∗,Φd,Ψd,Fd) is weakly regular, then we can determine Σd

completely via its generating operators (A∗, C∗, B∗, D∗). To this end, we define the (weak)
Λ-extension of B∗ ∈ L(Z1,U ) (compare with Definition 2.31):

Definition 2.37 (Λ-extension of B∗ ∈ L(Z1,U )). Let X and U be Hilbert spaces.
Let A : D(A) ⊂ X → X generate a strongly continuous semigroup T on X and let
B∗ ∈ L(Z1,U ).

(a) The weak Λ-extension of B∗, denoted by B∗Λw, is defined as

〈u,B∗Λwx〉 = lim
λ→∞

〈
u,Bλ (λI −A∗)−1 x

〉
, ∀ u ∈ U , (2.47)

with its domain D(B∗Λw) consisting of those x ∈X for which the limit in (2.47) exists.

(b) The (strong) Λ-extension of B∗, denoted by B∗Λ, is defined as

B∗Λx = lim
λ→∞

Bλ (λI −A∗)−1 x in U , (2.48)

with its domain D(B∗Λ) consisting of those x ∈X for which the limit in (2.48) exists.
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Well-posed linear systems

If the dual system Σd is weakly regular, then it follows from Proposition 2.32 that for
almost all t ≥ 0

ẋd(t) = A∗xd(t) + C∗yd(t),

ud(t) = B∗Λwx
d(t) +D∗yd(t).

(2.49)

The transfer function of the weakly regular linear system Σd is determined by

Gd(s) = B∗Λw(sI −A∗)−1C∗ +D∗.

The following proposition from [70] shows the duality between infinite-time admissi-
bility of control and observation operators:

Proposition 2.38. [70, Proposition 6.2] The following two statements are equivalent:

(i) C is an infinite-time admissible observation operator for the semigroup T.

(ii) C∗ is an infinite-time admissible control operator for the semigroup T∗.

Moreover, if C is infinite-time admissible, then

Ψ∗w = lim
T→∞

∫ T

0
T∗τC∗w(τ)dτ =: Φdw, ∀ w ∈ Y ,

where Φd for Σd is the analogue of Φ for Σ (see (2.25)).

Theorem 2.39 gives a description of operator F∗, which will be used frequently in
Chapters 4 and 5. In addition, this theorem is an important ingredient for the anticausal
interpretation of dual system Σd, which will be presented in the last part of this section.

Theorem 2.39. [70, Theorem 6.3] Let Σ = (T,Φ,Ψ,F) be an externally stable weakly
regular linear system with generating operators (A,B,C,D) (cf. Definition 2.6.a). Let
w ∈ L2(0,∞; Y ) and define the function q : [0,∞)→X by

q(t) = Ψ∗S∗tw = lim
T→∞

∫ T

t
T∗τ−tC∗w(τ) dτ.

Then q(t) ∈ D(B∗Λw) for almost every t ≥ 0 and there holds

(F∗w) (t) = B∗Λwq(t) +D∗w(t), for almost every t ≥ 0. (2.50)

Remark 2.40. (a) From Remark 2.36 we know that the dual of a weakly regular linear
system is also weakly regular. But this is not the case for strongly regular linear
systems (see [59, Example 8.1]).

(b) If the output space Y is finite-dimensional, then weak regularity equals strong regu-
larity. In this case, if Σ is strongly regular, then its dual Σd is also strongly regular.

We close this section by giving the anticausal interpretation of dual system Σd. We
need this interpretation to show the feasibility of Newton-Kleinman iteration in Section 5.2.
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2.7 Linear output feedback theory

Definition 2.41. The state trajectory xa : [0,∞) → X and the output function ua ∈
L2(0,∞; U ) of the anticausal dual system Σa corresponding to the input function ya ∈
L2(0,∞; Y ) are given by

Σa :=

{
xa(t) = Ψ∗S∗t y

a, ∀ t ≥ 0.

ua = F∗ya.
(2.51)

Remark 2.42. It follows from (2.51), together with Theorem 2.39 and [70, Proposition 5.2],
that

lim
t→∞

xa(t) = 0,

and the functions ya, xa, and ua satisfy

−ẋa(t) = A∗xa(t) + C∗ya(t),

ua(t) = B∗Λwx
a(t) +D∗ya(t),

(2.52)

for almost every t ≥ 0.

2.7 Linear output feedback theory

In this section we focus on closed-loop systems obtained by imposing the output feedback
law

u = Ky + v,

with the feedback operator K ∈ L(Y ,U ) and the new input function v. The closed-loop
system, denoted by ΣK , may not be necessarily well-posed [67]. This motivates us to
introduce the concept of admissible output feedback :

Definition 2.43. Let Σ = (T,Φ,Ψ,F) be an externally stable well-posed linear system
(cf. Definition 2.6.a). Operator K ∈ L(Y ,U ) is called an admissible output feedback
for Σ, if the time-invariant operator I − KF ∈ L(L2(0,∞; U )) has a bounded inverse
(equivalently, if the time-invariant operator I − FK ∈ L(L2(0,∞; Y )) has a bounded
inverse).

Using Laplace transformation of the input-output map F (cf. Section 2.4), we obtain
the following equivalent characterization of admissible output feedback (see also [67]):

Proposition 2.44. Let Σ be a well-posed linear system with the transfer function G.
Operator K ∈ L(Y ,U ) is an admissible output feedback for Σ, if the function I −GK
is boundedly invertible on some right half-plane (equivalently, if the function I − KG is
boundedly invertible on some right half-plane).

An immediate consequence of Definition 2.43 is as follows: By applying an admis-
sible output feedback u = Ky + v to the externally stable well-posed linear system
Σ = (T,Φ,Ψ,F), we obtain the following set of equations

x(t) = Ttx0 + Φtu,

y = Ψx0 + Fu,
u = Ky + v.
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Well-posed linear systems

Since I −KF is boundedly invertible, the above set of equations is uniquely solvable with
respect to the initial state x0 ∈ X and the new input function v ∈ L2(0,∞; U ). As a
result, we obtain

x(t) =
(
Tt + ΦtK(I − FK)−1Ψ

)
x0 + Φt (I −KF)−1 v,

y = (I − FK)−1 (Ψx0 + Fv) ,

u = (I −KF)−1 (KΨx0 + v) .

(2.53)

In the above equations we have used the equalities

(I − FK)−1 = I + F (I −KF)−1K,

(I −KF)−1 = I +K (I − FK)−1 F,
(I − FK)−1 F = F (I −KF)−1 ,

(I −KF)−1K = K (I − FK)−1 .

Remark 2.45. It follows from [57, Proposition 20] that ΣK = (TK ,ΦK ,ΨK ,FK) with[
TKt ΦK

t

ΨK FK
]

=

[
Tt + ΦtK(I − FK)−1Ψ Φt (I −KF)−1

(I − FK)−1Ψ (I − FK)−1F

]
is also an externally stable well-posed linear system. As shown in [57, Lemma 21], stability
is preserved under admissible output feedback. In fact, the following result holds:

• ΣK is strongly stable, if and only if, Σ is strongly stable.

• ΣK is exponentially stable, if and only if, Σ is exponentially stable.

The following lemma from [39] is an important ingredient in developing the theory of
Chapters 3 and 5 (see Remark 3.6.b as well as the proof of Theorems 3.11 and 5.3).

Lemma 2.46. [39, Lemma 6.6.7] Let Σ = (T,Φ,Ψ,F) be a well-posed linear system on
L2(0,∞; U ), X , and L2(0,∞; Y ). Let Ψ̃ ∈ L(X , L2(0,∞; Y )) be another admissible
output map such that T̃ := T + ΦΨ̃ is a strongly continuous semigroup.

• If T is strongly stable, then T̃ is also strongly stable.

• If T is exponentially stable, then T̃ is also exponentially stable.

For the rest of this section we assume that Σ = (T,Φ,Ψ,F) is a strongly regular linear
system. The main reason why we focus on the notion of strong regularity is the feedback
theory from [67]. This theory has essential parts that can not be extended to weakly
regular systems. In particular, weak regularity is not preserved under feedback (see for
example [58, Remark 7.5.4]).

We denote the generating operators of the closed-loop system ΣK = (TK ,ΦK ,ΨK ,FK)
by (AK , BK , CK , DK). The following theorem gives a characterization of these operators:
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2.7 Linear output feedback theory

Theorem 2.47. [67, Proposition 7.1, Theorem 7.2] Let K ∈ L(Y ,U ) be an admissi-
ble output feedback operator and assume that Σ is a strongly regular linear system with
feedthrough operator D ∈ L(U ,Y ). Then I−DK (and hence also I−KD) is left invert-
ible.
The closed-loop system ΣK is strongly regular, if and only if, I − DK (and hence also
I −KD) is invertible. In this case we have

AKx0 =
[
A+BK (I −DK)−1CΛ

]
x0, (2.54)

CKx0 = (I −DK)−1CΛx0, (2.55)

for all x0 ∈ D(AK), where

D(AK) =
{
x0 ∈ D(CΛ) |

(
A+BK(I −DK)−1CΛ

)
x0 ∈X

}
.

Moreover, there holds

D(CKΛ ) = D(CΛ), CKΛ = (I −DK)−1CΛ.

Regarding the operators BK and DK we have

BK = B(I −KD)−1,

DK = D(I −KD)−1 = (I −DK)−1D.

Remark 2.48. Equation (2.54) can be understood as a perturbation of the semigroup
generator A by operator BK (I −DK)−1CΛ. With the assumptions of Theorem 2.47, let
TK denote the strongly continuous semigroup generated by AK = A+BK (I −DK)−1CΛ.
It follows from [67, Theorem 6.1] that the perturbation relationship

TKt x0 = Ttx0 +

∫ ∞
0

Tt−τBK (I −DK)−1CΛTKτ x0 dτ (2.56)

holds for every x0 ∈ D(AK) and all t ≥ 0. We will use the relationship (2.56) in Sec-
tion 5.3 to construct a connection between the Newton-Kleinman iteration and the Riccati
operator .

We finish this section by showing that (2.54) can be extended to D(CΛ), as proven
in [58, Theorem 7.5.1 & Theorem 7.5.3] and [67, Proposition 7.10]. Let λ0 ∈ R be such
that [λ0,∞) ⊂ ρ(A). We define the space W1 as D(CΛ) equipped with the norm

‖x0‖W1
:= ‖x0‖X + sup

λ≥λ0

∥∥Cλ(λI −A)−1x0

∥∥
Y
. (2.57)

It follows from [67, Proposition 5.3] that W1 is a Hilbert space, CΛ ∈ L(W1,Y ), and there
holds

X1 ⊂ W1 ⊂X , (2.58)

with continuous embeddings. Furthermore, for some β ∈ ρ(A), we define the Hilbert space
W by

W = (βI −A)W1,
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Well-posed linear systems

with the norm
‖x0‖W :=

∥∥(βI −A)−1x0

∥∥
W1
. (2.59)

It follows from the above definition that (βI − A)−1 is an isomorphism from W to W1,
just as it is an isomorphism from X−1 to X and from X to X1. As a result, by (2.58)
we obtain

X ⊂ W ⊂X−1,

with continuous embeddings. The main advantage of introducing the Hilbert spaces W1

and W is that
A,AK ∈ L(W1,W ),

and
AKx0 =

[
A+BK (I −DK)−1CΛ

]
x0, ∀ x0 ∈ W1,

as proven in [58, Theorem 7.5.1 & Theorem 7.5.3].
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Chapter 3
The linear-quadratic optimal control
problem

Crush your fears like stone turns into dust. Then water that dust
and make cement. With that cement: build an empire.

—Jack Canfield
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We focus on the linear-quadratic optimal control problem for externally stable well-
posed linear systems. We study two cases: the regular optimal control problem, where
the associated Popov function is strictly positive (bounded from below) and the singular
optimal control problem, where the Popov function is just positive. In the regular case,
we show that the solution to the optimal control problem is connected to the spectral fac-
torization of the associated Popov function. Subsequently, we present various generalized
Riccati equations. Later on, we turn our focus to the singular optimal control problem,
in particular, we deal with the bounded real and positive real case. We note that in
the majority of the results presented in this chapter, we do not put any (weak) regular-
ity assumption on the linear systems (in the sense of Section 2.5). The only regularity
assumption is on the spectral factorization.
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The linear-quadratic optimal control problem

3.1 The quadratic cost functional and the Popov operator

Let Σ = (T,Φ,Ψ,F) be an externally stable well-posed linear system (cf. Definition 2.6.a).
Let x : [0,∞) → X and y ∈ L2(0,∞; Y ) be respectively the state trajectory and the
output function of Σ corresponding to the initial state x0 ∈ X and the input function
u ∈ L2(0,∞; U ). This means that there holds

x(t) = Ttx0 + Φtu, ∀ t ≥ 0,

y = Ψx0 + Fu.
(3.1)

We consider the following quadratic cost functional

J(u, x0) =

∫ ∞
0

〈(
y(τ)
u(τ)

)
,

[
Q N∗

N R

](
y(τ)
u(τ)

)〉
Y ×U

dτ, (3.2)

where R = R∗ ∈ L(U ), Q = Q∗ ∈ L(Y ), and N ∈ L(Y ,U ). This cost functional can
be understood as the cost of observing and controlling the system. The linear-quadratic
optimal control problem is to find an input function uopt ∈ L2(0,∞; U ) which minimizes
(3.2) subject to (3.1).

We can transform our constrained optimization problem to an unconstrained one by
substituting y = Ψx0 + Fu into (3.2) to obtain

J(u, x0) =

〈(
x0

u

)
,

(
Ψ∗QΨ Ψ∗(QF +N∗)

(F∗Q+N)Ψ R

)(
x0

u

)〉
L2(0,∞;Y ×U )

, (3.3)

where R ∈ L(L2(0,∞; U )) is called the Popov operator and is defined by

R = R+NF + F∗N∗ + F∗QF. (3.4)

We consider two main cases: the regular and the singular optimal control problem. In
the regular case, we assume that the Popov operator R is coercive. This means that there
exists some ε > 0 such that

〈u,Ru〉L2(0,∞;U ) ≥ ε ‖u‖L2(0,∞;U ) , ∀ u ∈ L2(0,∞; U ). (3.5)

In the singular case we let ε = 0 in (3.5). These cases are treated in Sections 3.2 and 3.5,
respectively.

Let û denote the Laplace transform of a function u ∈ L2(0,∞; U ) (cf. Definition (2.23))
and G be the transfer function corresponding to the shift-invariant operator F (cf. Def-
inition 2.27). As shown in [70, Proposition 7.1], R is a Toeplitz operator, whose unique
symbol is the Popov function Π ∈ L∞(iR;L(U )) defined as

Π(iω) = R+NG(iω) +G(iω)∗N∗ +G(iω)∗QG(iω). (3.6)

By the Paley-Wiener theorem (see Theorem 2.25) there holds

〈u1,Ru2〉L2(0,∞;U ) =
1

2π
〈û1,Πû2〉L2(iR;U ), ∀ u1, u2 ∈ L2(0,∞; U ). (3.7)
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3.2 The regular linear-quadratic optimal control problem

Remark 3.1. Throughout this chapter we assume that Σ = (T,Φ,Ψ,F) is externally stable
(see Definition 2.6.a). For such a system it holds

F ∈ L(L2(0,∞; U ), L2(0,∞; Y )). (3.8)

By Theorem 2.26, (3.8) is equivalent to

G ∈ H∞ (L(U ,Y )) .

It follows from [51, Theorem 3.2] that

lim
σ↓0, σ∈R

G(σ + iω)u = G(iω)u,

for all u ∈ U and almost all ω ∈ R. This means that the Popov function (3.6) correspond-
ing to an externally stable well-posed linear system is well-defined.

3.2 The regular linear-quadratic optimal control problem

In the regular optimal control problem we assume that the Popov operator R from (3.4)
is coercive. This means that (3.5) is satisfied for some ε > 0. Condition (3.5) implies in
particular that R is boundedly invertible. The following proposition from [70] gives the
open-loop solution of the optimal control problem:

Proposition 3.2. [70, Proposition 7.2.] Let Σ = (T,Φ,Ψ,F) be an externally stable
well-posed linear system (cf. Definition 2.6.a) and let J be the cost functional from (3.2).
Then, for every x0 ∈X

min
u∈L2(0,∞;U )

J(u, x0) = 〈x0, Xx0〉X , (3.9)

where operator X = X∗ ∈ L(X ), called the Riccati operator, is defined by

X = Ψ∗QΨ−Ψ∗(QF +N∗)R−1(F∗Q+N)Ψ. (3.10)

The unique minimizing input function is denoted by uopt and is given by

uopt = −R−1(F∗Q+N)Ψx0. (3.11)

We introduce the complementary Popov operator (Definition 3.3), which allows us
to present an alternative formulation of the Riccati operator (3.10). This alternative
formulation is given in Proposition 3.4. In [35], the Riccati-ADI algorithm (discussed in
Chapter 4) was formulated using the projected version of Proposition 3.4.

Definition 3.3. Let Q = Q∗ ∈ L(Y ), R = R∗ ∈ L(U ), and R̃ := R−NQ−1N∗ ∈ L(U )
be all invertible operators. The complementary Popov operator is defined by

Rc := Q−1 + (F +Q−1N∗)R̃−1(F∗ +NQ−1) ∈ L(Y ). (3.12)
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Proposition 3.4. With the assumptions of Definition 3.3, the Riccati operator X ∈ L(X )
from (3.10) can be represented in the alternative form

X = Ψ∗R−1
c Ψ. (3.13)

Moreover, the optimal input function uopt from (3.11) can be expressed by

uopt = −R̃−1(F∗ +NQ−1)R−1
c Ψx0. (3.14)

Proof. First, we show that the inverse of the complementary Popov operator from (3.12)
can be calculated by adapting the generalized Sherman-Morrison-Woodbury formula from
Theorem A.1. In fact, by setting

A = Q−1 ∈ L(Y ), Z∗ = Y = F +Q−1N∗ ∈ L(U ,Y ), G = R̃−1 ∈ L(U ),

and using (3.12), we obtain that

R−1
c = Q− (QF +N∗)R−1(F∗Q+N). (3.15)

As a result, the Riccati operator X from (3.10) can be written as

X = Ψ∗
(
Q− (QF +N∗)R−1(F∗Q+N)

)
Ψ = Ψ∗R−1

c Ψ.

Now in order to show (3.14), we multiply (3.15) from left by F∗ +NQ−1 to get

(F∗ +NQ−1)R−1
c = F∗Q+N − (F∗QF + F∗N∗ +NF +NQ−1N∗)R−1(F∗Q+N)

= F∗Q+N −
(
R − R̃

)
R−1(F∗Q+N)

= R̃ R−1(F∗Q+N).

By invertibility of R̃ we obtain

R̃−1(F∗ +NQ−1)R−1
c = R−1(F∗Q+N), (3.16)

and hence (3.14) follows by substituting (3.16) in (3.11).

Let xopt and yopt denote respectively the optimal state trajectory and the optimal
output function of the well-posed linear system Σ = (T,Φ,Ψ,F) with the optimal input
function uopt and the initial state x0 ∈X . As a result of (3.1) we have

xopt(t) = Ttx0 + Φtu
opt, ∀ t ≥ 0,

yopt = Ψx0 + Fuopt,
(3.17)

for all x0 ∈X . By substituting (3.11) in (3.17) we obtain

xopt(t) =
[
Tt − ΦtR

−1(F∗Q+N)Ψ
]
x0, ∀ t ≥ 0,

yopt =
[
Ψ− FR−1(F∗Q+N)Ψ

]
x0.

(3.18)

We denote
Topt
t := Tt − ΦtR

−1(F∗Q+N)Ψ, ∀ t ≥ 0,

Ψopt := Ψ− FR−1(F∗Q+N)Ψ,

Ψ̃opt := −R−1(F∗Q+N)Ψ,

(3.19)

and observe that
Ψopt = Ψ + FΨ̃opt. (3.20)
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Definition 3.5. Let Topt, Ψopt, and Ψ̃opt be the operators defined in (3.19). For all
x0 ∈X , the extended (open-loop) optimal well-posed linear system Σopt,ext is defined by

Σopt,ext :=


xopt(t) = Topt

t x0, ∀ t ≥ 0,

yopt = Ψoptx0,

uopt = Ψ̃optx0,

(3.21)

with the associated optimal cost

J(uopt, x0) = 〈x0, Xx0〉X .

Remark 3.6. (a) Let Σ = (T,Φ,Ψ,F) be an externally stable well-posed linear system
(cf. Definition 2.6.a). It follows from (2.11), together with (3.19), that

Ψopt ∈ L(X , L2(0,∞; Y )),

Ψ̃opt ∈ L(X , L2(0,∞; U )),
(3.22)

which means that the extended optimal system Σopt,ext is externally stable.

(b) If T is strongly [exponentially] stable, then it follows from Lemma 2.46 that Topt

defined in (3.19) is strongly [exponentially] stable. In this case the extended optimal
system Σopt,ext is called strongly [exponentially] stable.

We would like to determine the generators of the extended optimal system Σopt,ext.
Let Aopt denote the generator of the strongly continuous semigroup Topt. D(Aopt) is a
Hilbert space with the norm

‖x‖opt
1 := ‖(βI −Aopt)x‖,

for some β ∈ ρ(Aopt). It follows from [70, Proposition 9.3] that

D(Aopt) ⊂ D(CΛw),

and that the restriction of CΛw to D(Aopt) is bounded from D(Aopt) to Y . Moreover, for
all x0 ∈ D

(
Aopt

)
and almost every t ≥ 0, there holds

yopt(t) = CΛwx
opt(t). (3.23)

Let R = R∗ ∈ L(U ) be invertible. It follows from [70, Proposition 8.5] that for every
initial state x0 ∈X and for almost every t ≥ 0

xopt(t) ∈ D(CΛw), Xxopt(t) ∈ D(B∗Λw), (3.24)

and there holds

uopt(t) = −R−1(B∗ΛwX +NCΛw)xopt(t). (3.25)

Equation (3.25) shows that the optimal input function uopt of the well-posed linear system
Σ can be written in a feedback form (familiar from the finite-dimensional theory) which
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involves the Riccati operator X. Therefore, we define the optimal feedback operator F opt :
D(Aopt)→ U by

F optx0 := −R−1(B∗ΛwX +NCΛw)x0. (3.26)

Altogether, Aopt, CΛw, and F opt are the generators (cf. Definition 2.34) of the extended
optimal system Σopt,ext. This means that for almost all t ≥ 0 there holds

Σopt,ext :


ẋopt(t) = Aoptxopt(t),

yopt(t) = CΛwx
opt(t),

uopt(t) = F optxopt(t).

(3.27)

For notational simplicity we use “ ” to mean “generator”. With this notation we have

(Aopt, CΛw)  Ψopt,

(Aopt, F opt)  Ψ̃opt.
(3.28)

Remark 3.7. (a) As a result of (3.22) we have that F opt and CΛw are infinite-time admis-
sible observation operators for Topt.

(b) Operator Aopt can be also characterized by the Riccati operator X. In fact, it follows
from [70, Theorem 9.4] that

Aoptx0 = (A+BF opt)x0, (3.29)

for all x0 ∈ D(Aopt).

(c) In all the formulas presented in this section we did not use any regularity assumption.
In fact, they hold for all well-posed linear systems. If Σ as well as its dual system Σd

(cf. Section 2.6) are regular, then we may replace CΛw by CΛ and B∗Λw by B∗Λ in all
the formulas presented in this section.

3.3 Spectral factorization

A problem with formulas (3.10) and (3.11) is that they contain R−1, which is not easy
to compute. In this section we will show that, if a spectral factor of the Popov function
(3.6) is known, then R−1 can be expressed in terms of this spectral factor. To this end,
we review the concept of spectral factorization mainly from [15] and [70].

Definition 3.8 (Spectral factorization, spectral factor system). We say that the Popov
function Π from (3.6) has a spectral factorization, if for almost all ω ∈ R, there exists an
operator Ξ ∈ H∞ (L(U )) such that

Π(iω) = Ξ(iω)∗Ξ(iω), ∀ ω ∈ R. (3.30)

Let FΞ ∈ L(L2(0,∞; U )) denote the shift-invariant operator corresponding to the spec-
tral factor Ξ ∈ H∞ (L(U )) and define the observation operator ΨΞ : X → L2(0,∞; U )
by

ΨΞ = (FΞ)−∗ (F∗Q+N)Ψ.
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3.3 Spectral factorization

Then, it follows from [70, Theorem 11.3] that the spectral factor system

ΣΞ = (T,Φ,ΨΞ,FΞ)

is a well-posed linear system. The spectral factor Ξ is called outer , if its range, as a
multiplication operator on H2(U ), is dense in H2(U ). If Ξ is outer, then the range of FΞ

is also dense.

If the spectral factor Ξ is strongly regular (cf. Definition 2.29), then there exists an
operator DΞ ∈ L(U ) such that

lim
λ→∞
λ∈R

Ξ(λ)v = DΞv, ∀ v ∈ U . (3.31)

DΞ as in (3.31) is called the feedthrough operator corresponding to the strongly regular
spectral factor Ξ. If additionally, DΞ is invertible, then from [70, Theorem 12.4], −DΞF
is the observation operator of the regular spectral factor system ΣΞ, where

Fx0 = −(D∗ΞDΞ)−1(B∗ΛwX +NC)x0, ∀ x0 ∈ D(A).

In particular,

X ∈ L(D(A), B∗Λw).

Altogether, the quadruple (A,B,−DΞF,DΞ) is the generator (cf. Definition 2.34) of the
strongly regular spectral factor system ΣΞ = (T,Φ,ΨΞ,FΞ) and there holds

Ξ(s) = DΞ

(
I − FΛ(sI −A)−1B

)
.

One can observe that F is the optimal state feedback operator for Σ. In fact, it follows
from [70, Theorem 12.5] that for all x0 ∈ D(Aopt),

Aoptx0 = (A+BFΛ)x0,

and

F optx0 = FΛx0,

where D(Aopt) is defined by

D(Aopt) = {x0 ∈ D(FΛ) | (A+BFΛ)x0 ∈X } .

Remark 3.9. It does not always hold that D∗ΞDΞ = R. However, if Y is finite-dimensional,
B ∈ L(U ,X−1) is infinite-time admissible (cf. Definition 2.17) for the semigroup T, and
C is bounded (i.e., C ∈ L(X ,Y )), then from [70, Proposition 12.10] any spectral factor
Ξ of the Popov function Π is regular and its feedthrough operator DΞ satisfies

D∗ΞDΞ = R.
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3.4 Riccati equations

A classical approach in the finite-dimensional optimal control theory is to solve the Riccati
equation to obtain the optimal cost operator (see Section 1.1). This approach can be
extended to infinite-dimensional systems with bounded control and observation operators
(see for example [18]). This extension becomes more difficult when considering well-posed
linear systems with unbounded control and observation operators. Moreover, it is also not
easy to write a meaningful Riccati equation in this case.

Let us, for the moment, assume that the control and observation operators are bounded,
i.e., B ∈ L(U ,X ) and C ∈ L(X ,Y ). A well-posed linear system Σ = (T,Φ,Ψ,F) with
the cost functional (3.2) is called optimizable, if for all x0 ∈ X , there exists an input
function u ∈ L2(0,∞; U ) such that this cost functional is finite (see [18, Definition 6.2.1]).

Considering the cost function (3.2) with invertible operator R = R∗ ∈ L(U ), if the
well-posed linear system Σ is optimizable, then by [18, Theorem 6.2.4], the Riccati operator
X from (3.10) is the minimal nonnegative solution of the following operator algebraic
Riccati equation

〈Ax0, Xz0〉X + 〈Xx0, Az0〉X + 〈Cx0, QCz0〉Y = 〈Fx0, RFz0〉U , (3.32)

for all x0, z0 ∈ D(A), where

Fx0 = −R−1(B∗X +N∗C)x0. (3.33)

By adding the term
〈Fx0, B

∗Xz0〉U + 〈B∗Xx0, Fz0〉U
to both sides of (3.32), we obtain the “closed-loop” form of the operator Riccati equation〈
Aoptx0, Xz0

〉
X

+
〈
Xx0, A

optz0

〉
X

= −
〈
Cx0, Q̃Cz0

〉
Y
−
〈
B∗Xx0, R

−1B∗Xz0

〉
U
, (3.34)

where
Aoptx0 := (A+BF )x0, ∀ x0 ∈ D(Aopt) = D(A),

and
Q̃ := Q−N∗R−1N ∈ L(Y ).

If the control operator is unbounded (i.e., B ∈ L(U ,X−1)), then it may happen that
Xx /∈ D(B∗) for some x ∈ D(A) (see for example [42], [69], and [60]). Therefore, F from
(3.33) does not even make sense. To overcome this problem, we consider the Λ-extension
of B∗ (cf. Definition 2.37) and recall from (3.24) that for all x0 ∈X and almost all t ≥ 0
there holds

Xxopt(t) ∈ D(B∗Λw), with xopt(t) = Topt
t x0.

In addition, we showed that the optimal feedback operator F opt satisfies

F optx0 = −R−1(B∗ΛwX +NCΛw)x0. (3.35)

In the following we show that the Riccati operator X from (3.10) satisfies some Ric-
cati equations which can be understood as a generalization of the “closed-loop” Riccati

38



3.4 Riccati equations

equation (3.34) for unbounded control and observation operators. We refer to [42] for
a discussion on several alternative Riccati equations in the case of unbounded control
operators.

For the rest of this section we assume that R = R∗ ∈ L(U ) is strictly positive (and
hence boundedly invertible). It follows from [70, Proposition 10.4] that the Riccati op-
erator (3.10) satisfies the following “Riccati-like” equation which holds on D

(
Aopt

)
: For

every x0, z0 ∈ D(Aopt),〈
Aoptx0, Xz0

〉
+
〈
Xx0, A

optz0

〉
= −

〈
CΛwx0, (QCΛw +N∗F opt)z0

〉
+
〈
F optx0, B

∗
ΛwXz0

〉
.

(3.36)

This equation is called the “Riccati-like” equation, because it looks like the “closed-loop”
Riccati equation (3.34) for bounded control and observation operators. The main draw-
back of (3.36) is that D(Aopt) is not a priori known [70]. By substituting (3.35) in the
right-hand side of (3.36), we obtain〈

Aoptx0, Xz0

〉
+
〈
Xx0, A

optz0

〉
= −

〈
CΛwx0, Q̃CΛwz0

〉
−
〈
R−1B∗ΛwXx0, B

∗
ΛwXz0

〉
,

(3.37)

where Q̃ = Q − N∗R−1N . In Chapter 5, we will use the Riccati-like equation (3.37) to
construct an iterative method to find approximate solutions of the linear-quadratic optimal
control problem. This method can be understood as an extension of the Newton-Kleinman
approach [29] to infinite-dimensional spaces.

If we assume that Q̃ is positive (Q̃ ≥ 0) and R is strictly positive (R > 0)1, then we
can write the Riccati-like equation (3.37) as〈

Aoptx0, Xz0

〉
+
〈
Xx0, A

optz0

〉
= −

〈
Q̃1/2CΛwx0, Q̃

1/2CΛwz0

〉
−
〈
R−1/2B∗ΛwXx0, R

−1/2B∗ΛwXz0

〉
.

(3.38)

Corresponding to (3.38) we consider the system

Σr :

ẋr(t) = Aoptxr(t),

yr(t) = Coptxr(t),
(3.39)

for almost all t ≥ 0, where

Copt :=

(
Q̃1/2CΛw

−R1/2B∗ΛwX

)
. (3.40)

The following lemma shows that the Riccati operator (3.10) is the infinite-time observ-
ability Gramian of (Aopt, Copt).

Proposition 3.10. Let Σ = (T,Φ,Ψ,F) be an externally stable well-posed linear system
such that (A,B,C) is the triple associated with Σ (cf. Definition 2.15). Let J be the cost
functional (3.2) such that R > 0 and Q̃ = Q − N∗R−1N ≥ 0. Moreover, let Topt, Ψopt,

1This notation has been defined in Section 1.3
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and Ψ̃opt be given by (3.19). Let Aopt denote the generator of the strongly continuous
semigroup Topt. Furthermore, let X be the Riccati operator (3.10) and let Copt be given
by (3.40).
Then the Riccati operator X is the infinite-time observability Gramian of (Aopt, Copt).

Proof. First, we recall the extended optimal well-posed linear system Σopt,ext from (3.21).
As we showed in (3.27), Aopt, CΛw, and F opt generate the extended optimal well-posed
linear system Σopt,ext. In particular, CΛw and F opt are the infinite-time admissible ob-
servation operators for the semigroup Topt (cf. Remark 3.7.a). Moreover, CΛw and F opt

generate the output maps Ψopt and Ψ̃opt, respectively. By recalling the notation introduced
in (3.28), we have

(Aopt, CΛw)  Ψopt,

(Aopt, F opt)  Ψ̃opt.

Hence, with F opt = −R−1(B∗ΛwX +NCΛw), we observe that

(Aopt, Q̃1/2CΛw)  Q̃1/2Ψopt,

(Aopt,−R−1B∗ΛwX)  Ψ̃opt +R−1NΨopt,

(Aopt,−R−1/2B∗ΛwX)  R1/2Ψ̃opt +R−1/2NΨopt.

(3.41)

As a result, the output map associated with (Aopt, Copt) is given by

(Aopt, Copt)  

(
Ψr

Ψ̃r

)
, (3.42)

where
Ψr := Q̃1/2Ψopt ∈ L(X , L2(0,∞; Y )),

Ψ̃r := R1/2Ψ̃opt +R−1/2NΨopt ∈ L(X , L2(0,∞; U )).
(3.43)

Now let Γr denote the infinite-time observability Gramian of (Aopt, Copt) (cf. Defini-
tion 2.20). From (3.42) we conclude that

Γr =

(
Ψr

Ψ̃r

)∗(
Ψr

Ψ̃r

)

=

(
Ψopt

Ψ̃opt +R−1NΨopt

)∗ [
Q̃ 0
0 R

]( Ψopt

Ψ̃opt +R−1NΨopt

)
.

(3.44)

Since R is invertible, we have the following decomposition of the operator matrix
[
Q̃ 0
0 R

]
:[

Q̃ 0
0 R

]
=

[
I −N∗R−1

0 I

] [
Q N∗

N R

] [
I 0

−R−1N I

]
,

which can be understood as a generalization of the LDLT factorization [11] to operators
acting on infinite-dimensional spaces. Hence, we can write (3.44) as

Γr =

(
Ψopt

Ψ̃opt

)∗ [
Q N∗

N R

](Ψopt

Ψ̃opt

)
. (3.45)
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From (3.20) we know that Ψopt = Ψ + FΨ̃opt and therefore

Γr =

(
Ψ + FΨ̃opt

Ψ̃opt

)∗ [
Q N∗

N R

](
Ψ + FΨ̃opt

Ψ̃opt

)
,

=

(
Ψ

Ψ̃opt

)∗ [
I 0
F∗ I

] [
Q N∗

N R

] [
I F
0 I

](
Ψ

Ψ̃opt

)
,

=

(
Ψ

Ψ̃opt

)∗ [
Q QF +N∗

F∗Q+N R

](
Ψ

Ψ̃opt

)
.

(3.46)

Now by substituting Ψ̃opt = −R−1(F∗Q + N)Ψ from (3.19) into (3.46) and applying a
direct algebraic calculation, we obtain

Γr = Ψ∗QΨ−Ψ∗(QF +N∗)R−1(F∗Q+N)Ψ = X.

Hence, the Riccati operator X is the infinite-time observability Gramian of (Aopt, Copt).

So far we have shown that the Riccati operator (3.10) is the infinite-time observability
Gramian of (Aopt, Copt) and satisfies the Riccati-like equation (3.37). If additionally, we
assume that Σ = (T,Φ,Ψ,F) is strongly stable, i.e., the semigroup T is strongly stable
(cf. Definition 2.6.c), then we can show that the Riccati operator is the unique solution of
the Riccati-like equation (3.37). In fact, the following theorem holds true:

Theorem 3.11. Under the assumptions of Proposition 3.10, if the semigroup T is strongly
stable (cf. Definition 2.6.c), then the Riccati operator (3.10) is the unique solution of the
Riccati-like equation (3.38).

Proof. By (3.41) – (3.43), we know that

(Aopt, Q̃1/2CΛw)  Ψr,

(Aopt,−R−1/2B∗ΛwX)  Ψ̃r.
(3.47)

Now we follow the lines of the proof for [57, Theorem 41]. If x0, z0 ∈ D(Aopt), then
t 7→ 〈Topt

t x0, XTopt
t z0〉 is continuously differentiable on [0,∞) and we obtain

d

dt

〈
Topt
t x0, XTopt

t z0

〉
=
〈
AoptTopt

t x0, XTopt
t z0

〉
+
〈
Topt
t x0, XA

optTopt
t z0

〉
.

Since the Riccati operator X satisfies the Riccati-like equation (3.38), there holds

d

dt

〈
Topt
t x0, XTopt

t z0

〉
X

= −
〈
Q̃1/2CΛwTopt

t x0, Q̃
1/2CΛwTopt

t z0

〉
Y

−
〈
R−1/2B∗ΛwXTopt

t x0, R
−1/2B∗ΛwXTopt

t z0

〉
U

= −〈(Ψrx0) (t), (Ψrz0) (t)〉Y

−
〈(

Ψ̃rx0

)
(t),

(
Ψ̃rz0

)
(t)
〉

U
,

(3.48)
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where we have used (3.47). By integrating (3.48), we obtain for each t > 0

〈x0, Xz0〉X −
〈
Topt
t x0, XTopt

t z0

〉
X

=

∫ t

0
〈(Ψrx0) (τ), (Ψrz0) (τ)〉Y

+

∫ t

0

〈(
Ψ̃rx0

)
(τ),

(
Ψ̃rz0

)
(τ)
〉

U
.

(3.49)

Since T is a strongly stable semigroup, it follows from Lemma 2.46 that Topt is also a
strongly stable semigroup (cf. Remark 3.6.b). This means that

lim
t→∞

Topt
t x0 = 0, in X .

By letting t→∞ in (3.49), we conclude that

〈x0, Xz0〉X = 〈Ψrx0,Ψrz0〉L2(0,∞;Y ) +
〈

Ψ̃rx0, Ψ̃rz0

〉
L2(0,∞;U )

= 〈x0,Ψ
∗
rΨrz0〉X +

〈
x0, Ψ̃

∗
rΨ̃rz0

〉
X
.

This being true for all x0, z0 ∈ D(Aopt), we must have

X = Ψ∗rΨr + Ψ̃∗rΨ̃r

= Ψ∗QΨ−Ψ∗(QF +N∗)R−1(F∗Q+N)Ψ.

A problem with the Riccati-like equation (3.36) is that it holds on D(Aopt) which is not
a priori known. If the Popov function Π has a regular spectral factorization Ξ such that
the associated feedthrough operator DΞ is invertible, then it follows from [70, Proposition
12.8] that the Riccati operator (3.10) satisfies the “true” Riccati equation

A∗X +XA+ C∗QC = (B∗ΛwX +NC)∗ (D∗ΞDΞ)−1 (B∗ΛwX +NC) (3.50)

in L(X1,Z−1). The term B∗ΛwX + NC is regarded as an operator from X1 to U , so
that its adjoint maps U to Z−1. As already mentioned in Remark 3.9, if Y is finite-
dimensional, B is infinite-time admissible, and C is bounded, then any spectral factor Ξ
of the Popov function Π is regular and the associated feedthrough operator DΞ satisfies
D∗ΞDΞ = R. In this case (3.50) looks much the same as the usual Riccati equation known
for the case of bounded control and observation operators (see (3.32)).

3.5 The singular linear-quadratic optimal control problem

In this section we weaken the assumption (3.5) on the Popov operator R by letting ε = 0.
This means that for all u ∈ L2(0,∞; U ) we assume that

〈u,Ru〉L2(0,∞;U ) ≥ 0. (3.51)

With the notation introduced after (1.15), this condition is written as R ≥ 0.
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Following [15], we assume that the well-posed linear system Σ is strongly stable (cf. Def-
inition 2.6.a). We will show that the solution to the singular linear-quadratic optimal
control problem is closely related to the spectral factorization of the Popov function (3.6).
For the sake of simplicity, we assume throughout this section that Σ has a zero feedthrough
operator. This means that for all u ∈ U

lim
λ→∞

〈y,G(λ)u〉Y = 0, λ ∈ R, ∀ y ∈ Y .

It follows from (3.7) that positivity of the Popov operator (R ≥ 0) is equivalent to pos-
itivity of the Popov function (Π ≥ 0). Let H∞ (L(U )) denote the Hardy space of analytic
L(U )-valued functions on C+ (cf. Definition 2.22). Assuming that the Popov function Π
has a spectral factorization Ξ ∈ H∞ (L(U )) (cf. Definition 3.8), we can characterize the
solution to the singular optimal control problem by using the associated spectral factor
system ΣΞ = (T,Φ,ΨΞ,FΞ):

Theorem 3.12. [15, Theorem 3.2] Let Σ = (T,Φ,Ψ,F) be an externally stable weakly
regular linear system with generating operators (A,B,C, 0). Suppose that the corresponding
Popov function Π from (3.6) has a spectral factorization Ξ(iω) ∈ H∞ (L(U )) which is
outer. Let FΞ denote the shift-invariant operator corresponding to the transfer function Ξ.

(a) If there exists ΨΞ ∈ L(X , L2(0,∞; U )) that satisfies

F∗ΞΨΞ = (F∗Q+N)Ψ, (3.52)

then ΨΞ is the unique solution to (3.52) and the spectral factor system

ΣΞ = (T,Φ,ΨΞ,FΞ)

is a well-posed linear system.

(b) Assume the existence of ΨΞ as in part (i), and denote the corresponding infinite-time
admissible observation operator by CΞ. If we define

X = Ψ∗QΨ−Ψ∗ΞΨΞ, (3.53)

then X satisfies

A∗Xx+XAx = C∗ΞCΞx− C∗QCx, ∀ x ∈ D(A), (3.54)

and
J(x0, u) = 〈x0, Xx0〉+ ‖ΨΞx0 + FΞu‖2. (3.55)

In particular,
inf

u∈L2(0,∞;U )
J(x0, u) = 〈x0, Xx0〉 . (3.56)

(c) If additionally, the spectral factor system ΣΞ is weakly regular with generating opera-
tors (A,B,CΞ, DΞ), then

B∗ΛwXx+NCx = D∗ΞCΞx, ∀ x ∈ D(A). (3.57)
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Remark 3.13. (a) It follows from Theorem 3.12.b that (3.56) holds, if and only if

FΞu
opt + ΨΞx0 = 0, (3.58)

for some uopt ∈ L2(0,∞; U ). The existence of a solution to (3.58) follows from the
property of FΞ having a dense range. Let (A,B,CΞ, DΞ) be the generating operators
of the weakly regular spectral factor system ΣΞ = (T,Φ,ΨΞ,FΞ). It follows from (3.58)
that there exists some x : [0,∞)→X such that the differential-algebraic equation[

I 0
0 0

](
ẋ(t)
u̇(t)

)
=

[
A B
CΞ DΞ

](
x(t)
u(t)

)
, x(0) = x0 ∈X , (3.59)

is fulfilled. We will use the finite-dimensional version of this remark in Chapter 6 to
make a suitable choice of shift parameters for the ADI method and improve numerical
performance of the algorithm.

(b) It follows from [15, Proposition 3.3] that the Riccati operator (3.53) is the maximal
self-adjoint solution of〈[

Ψ∗QΨ−X Ψ∗(QF +N∗)
(F∗Q+N)Ψ R

](
x0

u

)
,

(
x0

u

)〉
≥ 0,

for all x0 ∈X and every u ∈ L2(0,∞; U ).

(c) Let Σ = (T,Φ,Ψ,F) be a weakly regular linear system with generating operators
(A,B,C, 0), such that its spectral factor system ΣΞ = (T,Φ,ΨΞ,FΞ) is weakly regular
with generating operators (A,B,CΞ, DΞ). Then, it follows from Theorem 3.12 that〈[

A∗X +XA+ C∗QC (B∗ΛwX +NC)∗

B∗ΛwX +NC D∗ΞDΞ

](
x0

v

)
,

(
x0

v

)〉
≥ 0

for all x0 ∈ D(A) and every v ∈ U . In fact, it follows from (3.54) and (3.57) that the
following factorization holds true on D(A)[

A∗X +XA+ C∗QC (B∗ΛwX +NC)∗

B∗ΛwX +NC D∗ΞDΞ

]
=

(
C∗Ξ

D∗Ξ

)(
CΞ DΞ

)
. (3.60)

(d) (see Remark 3.9) If Y is finite-dimensional, B is infinite-time admissible for the semi-
group T, and C is bounded, then it follows from [70, Proposition 12.10] that any
spectral factor Ξ of the Popov function Π is regular and its feedthrough operator DΞ

satisfies D∗ΞDΞ = R. In this case, (3.60) can be written as

A∗X +XA+ C∗QC = C∗ΞCΞ,

B∗ΛwX +NC = D∗ΞCΞ,

R = D∗ΞDΞ.

(3.61)

We refer to (3.61) as the Lur’e equations with the unknowns X, CΞ, and DΞ.
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3.6 Bounded real and positive real case

We turn our focus to the bounded real and positive real singular optimal control prob-
lems. An important application of these problems is in the bounded real and positive
real balanced truncation (see, e.g., [40, 49] for the finite-dimensional case and [24] for the
infinite-dimensional case). These are model reduction techniques that preserve contractiv-
ity and passivity , respectively.

In the bounded real case we set R = I ∈ L(U ), Q = −I ∈ L(Y ), and N = 0. Then,
the optimal control problem is to minimize for x0 ∈X

J(x0, u) =

∫ ∞
0
‖u(τ)‖2U − ‖y(τ)‖2Y dτ,

over all u ∈ L2(0,∞; U ) subject to the externally stable well-posed linear system Σ =
(T,Φ,Ψ,F). We prefer the following formulation of the bounded real optimal control
problem: ∫ ∞

0
‖y(τ)‖2Y − ‖u(τ)‖2U dτ = 〈x0, Xx0〉X − ‖ΨΞx0 + FΞu‖2, (3.62)

where the Riccati operator (in the bounded real case) is given by

X = Ψ∗ΞΨΞ + ΨΨ. (3.63)

Our motivation is based on the fact that the optimal cost in (3.62) expresses the available
storage of the system [71]: For all x0 ∈X there holds

〈x0, Xx0〉X = sup
u∈L2(0,∞;U )

∫ ∞
0
‖y(τ)‖2Y − ‖u(τ)‖2U dτ. (3.64)

In the positive real case we set U = Y , R = 0, Q = 0, and N = I ∈ L(U ). Then, the
optimal control problem is to minimize for x0 ∈X

J(x0, u) =

∫ ∞
0

2Re 〈y(τ), u(τ)〉U dτ, (3.65)

over all u ∈ L2(0,∞; U ) subject to the externally stable well-posed linear system Σ =
(T,Φ,Ψ,F). Similarly to the bounded real case we prefer the following formulation of the
positive real optimal control problem:∫ ∞

0
−2Re 〈y(τ), u(τ)〉 dτ = 〈x0, Xx0〉X − ‖ΨΞx0 + FΞu‖2, (3.66)

where the Riccati operator (in the positive real case) is given by

X = Ψ∗ΞΨΞ. (3.67)

Our consideration is based on the fact that the optimal cost in (3.66) expresses the available
storage for passivity [71]: For all x0 ∈X there holds

〈x0, Xx0〉X = sup
u∈L2(0,∞;Cm)

∫ ∞
0
−2Re 〈y(τ), u(τ)〉 dτ. (3.68)
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Remark 3.14. (a) In the bounded real case (R = I, Q = −I, and N = 0) the Popov
operator is given by

R = I − F∗F.

For the singular optimal control problem we assume positivity of the Popov operator
(R ≥ 0). In the bounded real case, this implies

‖F‖L(L2) ≤ 1. (3.69)

This property is called contractivity. It follows from (2.32) that (3.69) is equivalent to

‖G‖H∞ ≤ 1.

(b) In the positive real case (U = Y , R = 0, Q = 0, N = I), the Popov operator is given
by

R = F∗ + F,

whose positivity is called passivity. Passivity is equivalent to positive realness of G(s).
This means that

G(s) +G(s)∗ ≥ 0,

for all s ∈ C with Re(s) > 0 [71].
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Chapter 4
The ADI method for the optimal control
of stable well-posed linear systems

It is in your moments of decision that your destiny is shaped.

—Tony Robbins
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We give an iterative method to solve the linear-quadratic optimal control of stable
well-posed linear systems. The algorithm is based on approximating the output map
and the input-output map of the well-posed linear system using projections on appropri-
ate subspaces. These projection are determined by the so-called “shift parameters” of
the method. We prove that the approximation obtained by this algorithm expresses the
optimal cost for a projected optimal control problem. Furthermore, we show that the
sequence of approximate solutions obtained by this algorithm is non-decreasing. Under
mild assumptions on the shift parameters, we prove convergence of this sequence to the
Riccati operator (3.10). Later on, this method is extended to solve the singular optimal
control problem in the bounded real and positive real case. The results presented in this
chapter are from [35] and [37].
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The ADI method for the optimal control of stable well-posed linear systems

4.1 Introduction

In this chapter we propose an iterative method for solving the linear-quadratic optimal
control of stable well-posed linear systems (cf. Definition 2.6.b). In order to convey the
main idea behind this algorithm we start by giving a short description of the method and
give its important properties. Throughout this chapter the Hilbert spaces U , X , and Y
are assumed to be pivot spaces (cf. Section 1.3).

Let Σ = (T,Φ,Ψ,F) be a stable well-posed linear system. Let x : [0,∞) → X
and y ∈ L2(0,∞; Y ) be respectively the state trajectory and the output function of Σ
corresponding to the initial condition x0 ∈ X and the input function u ∈ L2(0,∞; U ).
This means that there holds

x(t) = Ttx0 + Φtu, ∀ t ≥ 0,

y = Ψx0 + Fu.
(4.1)

Now let us consider the cost functional (3.2) with Q = I, R = I, and N = 0. This means
that we have

J(x0, u) =

∫ ∞
0
‖u(t)‖2U + ‖y(t)‖2Y dt. (4.2)

The linear-quadratic optimal control problem is to find for every x0 ∈X an input function
uopt ∈ L2(0,∞; U ), which minimizes (4.2) subject to (4.1). It follows from Proposition 3.2
that for every x0 ∈X

〈x0, Xx0〉X = min
u∈L2(0,∞;U )

J(u, x0), (4.3)

where the Riccati operator X is given by

X = Ψ∗Ψ−Ψ∗F(I + F∗F)−1F∗Ψ. (4.4)

Moreover, the unique minimizing input function uopt satisfies

uopt = −(I + F∗F)−1F∗Ψx0. (4.5)

By applying the identity (I + F∗F)−1F∗ = F∗(I + FF∗)−1 to (4.4), we can reformulate the
Riccati operator as (see Proposition 3.4)

X = Ψ∗(I + FF∗)−1Ψ. (4.6)

The principal idea behind our algorithm is to find a sequence of orthogonal projectors
(Pk)k∈N : L2(0,∞; Y )→ L2(0,∞; Y ), which allow us to construct approximations of the
output map Ψ and the input-output map F. These approximations are defined by

Ψk : X → L2(0,∞; Y ), Ψk =PkΨ,

Fk : L2(0,∞; U )→ L2(0,∞; Y ), Fk =PkF.

Using the operators Ψk and Fk, we create a sequence of approximations (Xk)k∈N for the
Riccati operator (4.6). This sequence is given by

Xk = Ψ∗k(I + FkF∗k)−1Ψk. (4.7)

48



4.1 Introduction

We will show in Theorem 4.11 that Xk, given by (4.7), solves the projected optimal control
problem

〈x0, Xkx0〉X = min
u∈L2(0,∞;X )

∫ ∞
0
‖u(t)‖2 + ‖ (Pky) (t)‖2 dt, (4.8)

subject to (4.1).
In order to find an appropriate sequence of orthogonal projectors (Pk)k∈N, we need to

introduce suitable subspaces of L2(0,∞). These subspaces are defined in Section 4.2. In
order to make the definition of these subspaces easier to understand, we explain their key
structure in the following: Let (αk)

∞
k=1 be a sequence of shift parameters which satisfies

αk ∈ C and Re(αk) > 0. For k ∈ N we define the following subspace of L2(0,∞)

Vk := span{t 7→ e−α1t, . . . , t 7→ e−αkt}. (4.9)

For notational simplicity we assume, for the moment, that the shift parameters αk are
distinct. In Section 4.2 we drop this assumption and the definition of Vk has to be modified
in case of non-distinct shift parameters. Let Pk : L2(0,∞; Y ) → L2(0,∞; Y ) denote the
orthogonal projector onto Vk ⊗ Y ⊂ L2(0,∞; Y ). It follows from Vk ⊂ Vk+1 and (4.8)
that (Theorem 4.21)

〈x0, Xkx0〉X ≤ 〈x0, Xk+1x0〉X ≤ 〈x0, Xx0〉X , ∀x0 ∈X .

This means that (Xk)
∞
k=1 is a non-decreasing sequence bounded from above by X. Hence,

(Xk)
∞
k=1 converges (see Appendix A.2), but the limit may not necessarily equal X. We will

show in Theorem 4.22 that the sequence of approximations Xk converges to X, provided
that ⋃

k∈N
Vk = L2(0,∞). (4.10)

The property (4.10) is proven in [41, Lemma 4.4] to be equivalent to the non-Blaschke
condition

∞∑
j=1

Re(αj)

1 + |αj |2
=∞. (4.11)

We use the following structure to present our method in this chapter: We begin by
introducing an orthonormal basis for the space Vk (the Takenaka–Malmquist system) in
Section 4.2. This is used in Section 4.3 to determine the projected output maps Ψk and the
projected input-output maps Fk. This approximation method, called the ADI iteration for
the output map Ψ and the input-output map F, is presented in Algorithm 1. This algorithm
is the crucial ingredient of all the methods that will be presented in this chapter:

• the “Riccati-ADI” method for the regular optimal control problem (Algorithm 2 in
Section 4.4)

• the ADI method for the bounded real and positive real singular optimal control
problems (Algorithms 3 and 4 in Section 4.6)

We prove that the approximate solutions obtained by all these algorithms express the
optimal cost for a projected (regular or singular) linear-quadratic optimal control prob-
lem. Furthermore, we show that the sequence of approximate solutions obtained by these
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algorithms are monotonically non-decreasing. In addition, by assuming the non-Blaschke
condition (4.11), we prove convergence of all these algorithms to the respective optimal
costs.

Bibliographical notes:

In the finite-dimensional settings, Algorithms 1 and 2 are arithmetically equivalent to [34,
Algorithm 2] (ILRSI) for solving the algebraic matrix Riccati equation. Monotonicity of
the matrix sequence (Xk)k∈N produced by ILRSI was proven in [34, Theorem 4.2] (using
very different arguments when compared to our setting). An upper bound for the distance
between Xk and X in the gap metric was considered in [34]. However, it was left open
there, whether or not this upper bound converges to zero. In [35] a new perspective
on this method in terms of the underlying linear-quadratic optimal control problem was
introduced. We use this perspective throughout this chapter. This representation is
independent of the Riccati equation and allows a straightforward proof of convergence.
Moreover, the setting introduced in [35] allows an extension of the algorithm to infinite-
dimensional systems, as shown in [35, Theorem 7.1].

In [37] the application of the ADI method for the bounded real and positive real
Lur’e equations is considered. This application is based on Algorithm 1 and allows an
extension to the singular optimal control problem of strongly stable well-posed systems in
the bounded real and positive real case (see Algorithms 3 and 4).

4.2 Convolution and Takenaka–Malmquist systems

In this section we consider two special subspaces of L2(0,∞), namely the convolution
system and the Takenaka–Malmquist system. The application of the Takenaka–Malmquist
system to approximate the input map Φ (or in the dual form the output map Ψ ) was
first introduced in [41]. In that paper the authors used this approximation to solve the
operator Lyapunov equation for controllability (or the operator Lyapunov equation for
observability in the dual form). The application of the Takenaka–Malmquist system to
approximate the input-output map F was first introduced in [35].

The convolution system and the Takenaka–Malmquist system (Definition 4.1) are con-
structed by the convolution product of the exponential functions of the form t 7→ e−αit,
where αi ∈ C and Re(αj) > 0. The convolution product of two functions g and h is defined
by

(g ∗ h)(t) =

∫ t

0
g(t− τ)h(τ) dτ.

Definition 4.1 (Convolution system, Takenaka–Malmquist system). Let (αj)
∞
j=1 ∈ C be

the shift parameters such that Re(αj) > 0 for all j ∈ N. We define

• the convolution system (ϕj)
∞
j=1, ϕj ∈ L2(0,∞) by

ϕ1 := t 7→ e−α1t,

ϕj := e−αj · ∗ ϕj−1,
(4.12)

50



4.2 Convolution and Takenaka–Malmquist systems

and set

Kk(α) := span{ϕ1, ϕ2, . . . , ϕk}. (4.13)

• the Takenaka–Malmquist system (ψj)
∞
j=1, ψj ∈ L2(0,∞) by

φ1 = t 7→ e−α1t, ψ1 =
√

2Re(α1) · φ1,

φj =φj−1 − (αj + αj−1) · (e−αj · ∗ φj−1), ψj =
√

2Re(αj) · φj .
(4.14)

Remark 4.2. If we denote by ϕ̂j and ψ̂j respectively the Laplace transform of ϕj and ψj ,
then

a) For all s ∈ C with Re(s) > 0, the Laplace transformation of (4.12) results in

ϕ̂1(s) =
1

s+ α1
, ϕ̂j(s) =

1

s+ αj
· ϕ̂j−1(s),

and therefore by induction

ϕ̂j(s) =

j∏
`=1

1

s+ α`
. (4.15)

b) Assume that the numbers q1, . . . , qJ are pairwise different and there holds

{q1, . . . , qJ} = {α1, . . . , αk}, J ≤ k.

Further, let `j be the number of times in which qj appears in (αj)
k
j=1 (thus k =

`1 + . . .+ `J). Then

Kk(α) = span{ϕ1, . . . , ϕk} =

J⊕
j=1

span
{
t 7→ tle−qjt

∣∣∣ l = 0, . . . , `j − 1
}
. (4.16)

The relation (4.16) can be obtained by using the partial fraction expansions of (4.15)
and eventually applying the inverse Laplace transformation.

If the numbers α1, . . . , αk are distinct, then

span{ϕ1, . . . , ϕk} = span{e−α1·, . . . , e−αk·}.

c) If (α̃j)
k
j=1 is a permutation of (αj)

k
j=1 and the corresponding convolution systems are

denoted respectively by (ϕ̃j)
k
j=1 and (ϕj)

k
j=1, then it follows from b that

span{ϕ̃1, . . . , ϕ̃k} = span{ϕ1, . . . , ϕk}.

d) The Takenaka–Malmquist system is orthonormal (see, e.g., [41, Appendix B] for a
proof).
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e) For all s ∈ C with Re(s) > 0, the Laplace transformation of (4.14) yields

φ̂1(s) =
1

s+ α1
, ψ̂1(s) =

√
2Re(α1) · φ̂1(s),

φ̂j(s) = φ̂j−1(s)− (αj + αj−1) · 1

s+ αj
· φ̂j−1(s), ψ̂j(s) =

√
2Re(αj) · φ̂j(s), (4.17)

and therefore by induction

ψ̂j(s) =

√
2Re(αj)

(s+ αj)
·
j−1∏
`=1

s− α`
s+ α`

. (4.18)

f) By using partial fraction expansions of (4.15) and (4.18), we obtain

Kk(α) = span{ψ1, . . . , ψk}.

As a result, {ψ1, . . . , ψk} is an orthonormal basis of Kk(α).

For the rest of this section, we assume that Σ = (T,Φ,Ψ,F) is a stable weakly regular
linear system (cf. Definition 2.6.c). As a result, the semigroup T is uniformly bounded and
hence by the theorem of Hille–Yosida (see for example [58, Theorem 3.4.1]), there holds
C+ ⊂ ρ(A).

Now let us determine how the operators Ψ∗ and F∗ act on the considered bases of
Kk(α). To this end, we define the following two operators for t ≥ 0

Υt : L2(0,∞; Y )→X , Υty :=

∫ ∞
t

T∗τ−tC∗y(τ) dτ, (4.19)

Λ : L2(0,∞; Y )→ L2(0,∞; X ), Λy := t 7→
∫ ∞
t

T∗τ−tC∗y(τ) dτ. (4.20)

We have Λy = t 7→ Υty. In addition, by Theorem 2.39, Definition 2.41, and Remark 2.42,
we observe that

xa(t) = Υty
a = Ψ∗S∗t y

a, (4.21)

and

ua = (B∗ΛwΛ +D∗) ya = F∗ya, (4.22)

where ya, xa, and ua are the input, state, and output of the anticausal dual system Σa.
At this point, we are ready to give a crucial technical result which is used to show how
the operators Ψ∗ and F∗ act on the convolution and Takenaka–Malmquist systems:

Lemma 4.3. Let Υt be the operator defined in (4.19) for t ≥ 0. Then for µ ∈ ρ(A),
v ∈ Y and y ∈ L2(0,∞; Y ) there holds

Υt(e
−µ·v) = (µI −A∗)−1C∗ve−µt, (4.23)

and

Υt(e
−µ· ∗ y) = (µI −A∗)−1C∗(e−µ· ∗ y)(t) + (µI −A∗)−1Υt(y). (4.24)
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Proof. We follow the proof of [35, Lemma 3.5]. First, we consider (4.23). By the change
of variables θ := τ − t, we obtain

Υt(e
−µ·v) =

∫ ∞
t

T∗τ−tC∗ve−µτ dτ =

∫ ∞
0

T∗θC∗ve−µθe−µt dθ

= e−µt
∫ ∞

0
e−µθT∗θC∗v dθ.

The result follows then by the definition of the Laplace transform.

Now we consider (4.24). We have

Υt(e
−µ· ∗ y) =

∫ ∞
t

T∗τ−tC∗
∫ τ

0
e−µ(τ−σ)y(σ) dσdτ

=

∫ ∞
t

∫ τ

0
e−µ(τ−t)T∗τ−tC∗e−µ(t−σ)y(σ) dσdτ.

By interchanging the order of integration we obtain

Υt(e
−µ· ∗ y) =

∫ t

0

∫ ∞
t

e−µ(τ−t)T∗τ−tC∗e−µ(t−σ)y(σ) dτdσ

+

∫ ∞
t

∫ ∞
σ

e−µ(τ−t)T∗τ−tC∗e−µ(t−σ)y(σ) dτdσ

=

∫ t

0

[
−(µI −A∗)−1e−µ(τ−t)T∗τ−tC∗e−µ(t−σ)y(σ)

]∞
τ=t

dσ

+

∫ ∞
t

[
−(µI −A∗)−1e−µ(τ−t)T∗τ−tC∗e−µ(t−σ)y(σ)

]∞
τ=σ

dσ

=

∫ t

0
(µI −A∗)−1C∗e−µ(t−σ)y(σ) dσ

+

∫ ∞
t

(µI −A∗)−1e−µ(σ−t)T∗σ−tC∗e−µ(t−σ)y(σ) dσ

= (µI −A∗)−1C∗
∫ t

0
e−µ(t−σ)y(σ) dσ + (µI −A∗)−1

∫ ∞
t

T∗σ−tC∗y(σ) dσ

= (µI −A∗)−1C∗ (e−µ· ∗ y)(t) + (µI −A∗)−1Υt(y),

as claimed.

As a consequence of Lemma 4.3, we obtain the following result on the action of Υt, Ψ∗

and Λ on the convolution system.

Proposition 4.4. Let (αj)
∞
j=1 such that Re(αj) > 0 for all j ∈ N, (ϕj)

∞
j=1 as in Definition

4.1 and v ∈ Y .

1. With Υt as in (4.19) there holds

Υt(ϕ1v) = (α1I −A∗)−1C∗vϕ1(t),

Υt(ϕjv) = (αjI −A∗)−1C∗vϕj(t) + (αjI −A∗)−1Υt(ϕj−1v).
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2. With Ψ as in (2.22) there holds

Ψ∗(ϕ1v) = (α1I −A∗)−1C∗v,

Ψ∗(ϕjv) = (αjI −A∗)−1Ψ∗(ϕj−1v).

3. With Λ as in (4.20) there holds

Λ(ϕ1v) = (α1I −A∗)−1C∗vϕ1,

Λ(ϕjv) = (αjI −A∗)−1C∗vϕj + (αjI −A∗)−1Λ(ϕj−1v).

Proof. We first prove part 1. The first formula follows directly from (4.23) with µ := α1.
The second formula follows from multiplying the iterative definition of (ϕj)

∞
j=1 in (4.12)

by v, applying Υt to the result and using that by Lemma 4.3,

Υt(e
−αj · ∗ ϕj−1v) = (αjI −A∗)−1C∗vϕj(t) + (αjI −A∗)−1Υt(ϕj−1v).

To prove part 2, we consider (4.21) for t = 0 and obtain that Ψ∗ = Υ0. The result
then follows from part 1 by using ϕ1(0) = 1 and ϕj(0) = 0 for j > 1. Part 3 follows from
part 1 using that Λz = t 7→ Υtz.

From Proposition 4.4 and the fact that F∗ = B∗ΛwΛ +D∗ we can conclude that Kk(α)
is, in a certain sense, an invariant subspace of the adjoint input-output map. To this end,
we define the following subspaces of L2(0,∞; U ) and L2(0,∞; Y )

Kk(α)⊗U := {f(·) · v | f ∈ Kk(α), v ∈ U } ⊂ L2(0,∞; U ),

Kk(α)⊗ Y := {f(·) · v | f ∈ Kk(α), v ∈ Y } ⊂ L2(0,∞; Y ).

Corollary 4.5 shows the invariance of Kk(α) with respect to F∗.

Corollary 4.5. Let (αj)
∞
j=1 such that Re(αj) > 0 for all j ∈ N. Then for Kk(α) as in

(4.13) there holds
F∗(Kk(α)⊗ Y ) ⊂ Kk(α)⊗U . (4.25)

Proof. By (2.50), we know that F∗ = B∗ΛwΛ + D∗. The proof follows from Proposition 3
and regarding D as a pointwise operator D : L2(0,∞; U )→ L2(0,∞; Y ) which fulfills

D∗(Kk(α)⊗ Y ) ⊂ Kk(α)⊗U .

Now we describe the action of Υt, Ψ∗ and Λ on the Takenaka–Malmquist system.

Proposition 4.6. Let (αj)
∞
j=1 such that Re(αj) > 0 for all j ∈ N, (φj)

∞
j=1 and (ψj)

∞
j=1 as

in Definition 4.1 and v ∈ Y .

1. For j > 1 and with Ψ as in (2.22) there holds

Ψ∗(φ1v) = (α1I −A∗)−1C∗v,

Ψ∗(φjv) = Ψ∗(φj−1v)− (αj + αj−1)(αjI −A∗)−1Ψ∗(φj−1v).
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2. For j > 1 and with Λ as in (4.20) and γj :=
√

Re(αj)
Re(αj−1) there holds

Λ(ψ1v) = (α1I −A∗)−1C∗vψ1,

Λ(ψjv) = γjΛ(ψj−1v)− γj(αj + αj−1)
[

(αjI −A∗)−1C∗ve−αj · ∗ ψj−1

+ (αjI −A∗)−1Λ(ψj−1v)
]
.

Proof. We first prove part 1. The first equation follows from (4.23) with µ := α1 using
that Ψ∗ = Υ0. The second equation is obtained by multiplying (4.14) by v, applying Ψ∗

to the result and using that by Lemma 4.3 (using that Ψ∗ = Υ0),

Ψ∗(e−αj · ∗ φj−1v) = (αjI −A∗)−1Ψ∗(φj−1v). (4.26)

To prove part 2, we observe from (4.14) that there holds

Λ(ψjv) = γjΛ(ψj−1v)− γj(αj + αj−1)Λ(e−αj · ∗ ψj−1v).

From Lemma 4.3 we get that

Λ(e−αj · ∗ ψj−1v) = (αjI −A∗)−1C∗ve−αj · ∗ ψj−1 + (αjI −A∗)−1Λ(ψj−1v),

and the desired result follows.

4.3 The ADI iteration for the output map and the input-
output map

Using the convolution system and the Takenaka-Malmquist system presented in Section
4.2, we present an iterative method to approximate the output map Ψ and the input-
output map F. The approximation is obtained by projecting Ψ and F on the subspace
Kk(α)⊗ Y defined in Section 4.2.

We consider the Laplace transformation of Kk(α) (from (4.16)), Kk(α) ⊗ U , and
Kk(α)⊗ Y , namely

K̂k(α) =
J⊕
j=1

span

{
1

(s− qj)l

∣∣∣∣∣ l = 0, . . . , `j − 1

}
⊂ H2.

K̂k(α)⊗U :=
{
f̂(·) · v | f̂ ∈ K̂k(α), v ∈ U

}
⊂ H2 (U ) ,

K̂k(α)⊗ Y :=
{
f̂(·) · v | f̂ ∈ K̂k(α), v ∈ Y

}
⊂ H2 (Y ) ,

where H2 denotes the Hardy space (cf. Definition 2.22).
We define the mapping ιYk

as

ιYk
: Y k →Kk(α)⊗ Y ⊂ L2(0,∞; Y ),

(y1, . . . , yk) 7→
k∑
j=1

ψj · yj ,
(4.27)
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and similarly the mapping ιUk
is defined as

ιUk
: U k →Kk(α)⊗U ⊂ L2(0,∞; U ),

(u1, . . . , uk) 7→
k∑
j=1

ψj · uj .
(4.28)

It follows from orthonormality of the Takenaka-Malmquist system that ιYk
and ιUk

define
isometric embeddings. In particular,

Pk := ιYk
ι∗Yk

: L2(0,∞; Y ) 7→ L2(0,∞; Y ),

Ok := ιUk
ι∗Uk

: L2(0,∞; U ) 7→ L2(0,∞; U ),
(4.29)

are orthogonal projectors onto Kk(α)⊗ Y and Kk(α)⊗U , respectively.
Using the orthogonal projector Pk, we define the projected output map Ψk and the

projected input-output map Fk as follows

Ψk : X → L2(0,∞; Y ), Ψk =PkΨ, (4.30)

Fk : L2(0,∞; U )→ L2(0,∞; Y ), Fk =PkF. (4.31)

Using the mappings ιYk
and ιUk

, we introduce the operators

Sk = ι∗Yk
Ψ ∈ L(X ,Y k), (4.32)

Fk = ι∗Yk
FιUk

∈ L(U k,Y k). (4.33)

It follows from (4.30) and (4.31) that

Ψk = PkΨ = ιYk
ι∗Yk

Ψ = ιYk
Sk,

ιYk
Fk = PkFιUk

= FkιUk
.

(4.34)

Remark 4.7. If U , X , and Y are finite-dimensional, i.e., U = Cm, X = Cn, and
Y = Cp for some m,n, p ∈ N, then Sk as in (4.32) is the matrix representation of Ψk :
X → Kk(α) ⊗ Y with respect to the basis given by the tensor product of {ψ1, . . . , ψk}
and the canonical basis of Y . Similarly, Fk as in (4.33) is the matrix representation of
Fk|Kk(α)⊗U : Kk(α) ⊗ U → Kk(α) ⊗ Y with respect to the basis given by the tensor
product of {ψ1, . . . , ψk} and the canonical basis of U (respectively Y ).

Algorithm 1 presents a recursive method to determine Sk and Fk. Note that determi-
nation of Sk is basically the same as in [41]. We call Algorithm 1 “the ADI iteration for
the output map Ψ and the input-output map F”. Theorems 4.9 and 4.10 show that Sk and
Fk in (4.32) and (4.33) are indeed the operators computed in Algorithm 1.

Remark 4.8. (a) If the input and output spaces of Σ are finite-dimensional, i.e., U = Cm
and Y = Cp for some m,n ∈ N, then Algorithm 1 provides finite rank approximations
of the output map Ψ and input-output map F. That is

Sk ∈ L(X ,Ckp), Fk ∈ L(Ckm,Ckp).
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Algorithm 1 ADI iteration for the output map Ψ and the input-output map F.

Input: Σ = (T,Φ,Ψ,F) a stable weakly regular well-posed linear system with generat-

ing operators (A,B,C,D) (cf. Definition 2.6.b). Shift parameters α1, . . . , αk ∈ C with

Re(αi) > 0.

Output: Sk = ι∗Yk
Ψ ∈ L(X ,Y k), Fk = ι∗Yk

FιUk
∈ L(U k,Y k) such that Sk ≈ Ψ and

Fk ≈ F.

1: V1 = (α1I −A∗)−1C∗

2: S1 =
√

2Re(α1) · V ∗1

3: Q1 =
√

2Re(α1) · V ∗1 B

4: L1 = 1√
2Re(α1)

5: F1 = Q1L1 +D

6: for i = 2, 3, . . . , k do

7: Vi = Vi−1 − (αi + αi−1) · (αiI −A∗)−1Vi−1

8: Si = [S∗i−1 ,
√

2Re(αi) · Vi ]
∗

9: Qi = [Qi−1 ,
√

2Re(αi) · V ∗i B ]

10: γi :=
√

Re(αj)
Re(αj−1)

11: Mi,1 :=


1√

2Re(α1)

. . .
1√

2Re(αi)

, Mi,2 =


α1 + αi
α1 − αi α2 + αi

. . .

αi−1 − αi αi + αi

,

Mi,3 =

1 . . . 1
. . .

...

1

, Mi,4 =

[
0 I

1 0

]
, Mi,5 =


−
√

2Re(α1)
. . .

−
√

2Re(αi−1)

1


12: Mi = M−1

i,1 M
−1
i,2 M

−1
i,3 M

−1
i,4 M

−1
i,5

13: Li =

[
γiLi−1 0

0 0

]
−Mi

[
Li−1 0

0 1

][
γi(αi + αi−1)I 0

[0, γi] −1

]

14: Fi =

[
[Fi−1, 0]

Qi
(
Li ⊗ IU

)
+ [0, D]

]
15: end for
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(b) In Algorithm 1 we assume that Σ = (T,Φ,Ψ,F) is a stable well-posed linear system.
This means that the semigroup T is uniformly bounded (Definition 2.6.b), i.e.,

sup
t≥0
‖Tt‖ <∞.

Therefore, we have the growth bound ω0(T) = 0 and the shift parameters α1, . . . , αk ∈
C must satisfy Re(αi) > 0. One could extend the application of Algorithm 1 to
externally stable well-posed linear systems for which the semigroup T is not necessarily
bounded. In this case the shift parameters must satisfy

Re(αi) > ω0(T).

(c) The main computational cost in Algorithm 1 consists of solving Steps 1 and 7, namely

V1 = (α1I −A∗)−1C∗,

Vi = Vi−1 − (αi + αi−1) · (αiI −A∗)−1Vi−1.

If the underlying infinite-dimensional system arises from the abstract formulation of
partial differential equations, then the above equations are equivalent to solving a PDE
system. This can be done efficiently by applying the adaptive refinement techniques,
as will be discussed in Chapter 6.

Theorem 4.9. Let (αj)
∞
j=1 with Re(αj) > 0 for all j ∈ N. Then for all k ∈ N, Sk

determined by Algorithm 1 fulfills (4.32).

Proof. By Algorithm 1, Sk ∈ L(X ,Y k) is the operator row matrix

Sk =
[√

2Re(α1) · V1 . . .
√

2Re(αk) · Vk
]∗
,

where the sequence Vk ∈ L(Y ,X ) is recursively defined by

V1 = (α1I −A∗)−1C∗, Vk = Vk−1 − (αk + αk−1) · (αkI −A∗)−1Vk−1. (4.35)

The result then follows from Proposition 4.6.1 together with the definition of the Takenaka-
Malmquist system in (4.14). We note that Theorem 4.9 was already established in [41],
where the case B = 0 (for which the Riccati equation becomes a Lyapunov equation) was
considered.

Theorem 4.10. Let (αj)
∞
j=1 such that Re(αj) > 0 for all j ∈ N. Then for all k ∈ N, the

operator Fk determined by Algorithm 1 fulfills (4.33).

Proof. By (4.22), the input-output map F fulfills

F∗ = B∗ΛwΛ +D∗.

As a result, it follows from Proposition 4.6.2 that

F∗ψ1v =
(
B∗Λw(α1I −A∗)−1C∗ +D∗

)
vψ1, ∀ v ∈ Y .
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By (4.33), we have for k = 1

F ∗1 = ι∗U1
F∗ιY1 ∈ L(Y ,U ),

and therefore
F ∗1 = B∗Λw(α1I −A∗)−1C∗ +D∗. (4.36)

The adjoint of the expression in (4.36) can be calculated using the definition of B∗Λw
(cf. Definition 2.37). In fact, for λ ∈ (ω0(T),∞), for all v ∈ Y , and every w ∈ U , we have〈

Bw(α1I −A∗)−1C∗v, w
〉
U

= lim
λ→∞

〈
B∗λ(λI −A∗)−1(α1I −A∗)−1C∗v, w

〉
U

= lim
λ→∞

〈
λ(λI −A∗)−1(α1I −A∗)−1C∗v,Bw

〉
X

= lim
λ→∞

〈
C∗v, λ(λI −A)−1(α1I −A)−1Bw

〉
X

= lim
λ→∞

〈
v, Cλ(λI −A)−1(α1I −A)−1Bw

〉
Y

= CΛw(α1I −A)−1Bw.

Thus we obtain
F1 = CΛw(α1I −A)−1B +D. (4.37)

To obtain the structure of the operator Fk, we observe that by (4.33) there holds

ι∗Uk−1
F∗ιYk−1

= F ∗k−1 ∈ L(Y k−1,U k−1).

By Corollary 4.5, the following invariance holds true

F∗ (Kk−1(α)⊗ Y ) ⊂ Kk−1(α)⊗U .

As a result, we have

ι∗Uk
F∗ιYk−1

=

[
F ∗k−1

0

]
.

Therefore, we obtain that Fk has the form

Fk =

[
[Fk−1, 0]
Nk

]
, (4.38)

for some Nk ∈ L(U k,Y ). The operator Nk has the following operator column matrix
structure

Nk =
[
Nk1 · · · Nkk

]
, (4.39)

where Nki ∈ L(U ,Y ). It follows from (4.34), together with (4.38) and (4.39), that

B∗ΛwΛ(ψkv) +D∗ψkv = F∗(ψkv) =
k∑
i=1

N∗kiv · ψi, ∀ v ∈ Y . (4.40)

We set the following ansatz for Λ(ψkv) (compare Proposition 4.6.1 with Proposition 4.6.2)

Λ(ψkv) =

k∑
j=1

Ψ∗(ψjv) ·
j∑
`=1

lj`,k · ψ`, ∀ v ∈ Y , (4.41)
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for some coefficients lj`,k ∈ C.
Applying the resolvent (αkI −A∗)−1 to (4.41) and using (4.26), we obtain that for all

v ∈ Y

(αkI −A∗)−1Λ(ψkv) =

k∑
j=1

(αkI −A∗)−1Ψ∗(ψjv)

j∑
`=1

lj`,k · ψ`

=
k∑
j=1

Ψ∗(e−αk· ∗ ψjv)

j∑
`=1

lj`,k · ψ`.

(4.42)

In addition, by Proposition 4.6.1, we have that

(αkI −A∗)−1C∗v = Ψ∗(e−αk·v), ∀ v ∈ Y . (4.43)

By substituting (4.42) and (4.43) in the second equation of Proposition 4.6.2, we obtain

Λ(ψkv) = γkΛ(ψk−1v)− γk(αk + αk−1)
[
Ψ∗(e−αk·v)e−αk· ∗ ψk−1

+
k−1∑
j=1

Ψ∗(e−αk· ∗ ψjv)

j∑
`=1

lj`,k · ψ`
]
.

(4.44)

In order to write Λ(ψkv) in (4.44) as a linear combination of the Takenaka-Malmquist
basis {ψ1, . . . , ψk}, we need a change of coordinates between the bases {ψ1, . . . , ψk−1, e

−αk·∗
ψk−1} and {ψ1, . . . , ψk}, as well as a transformation between the bases {e−αk· ∗ ψ1, . . . ,
e−αk· ∗ ψk−1, e

−αk·} and {ψ1, . . . , ψk}. This means that we will find invertible matrices
Tk,Mk ∈ Ck×k such that


ψ1
...

ψk−1

e−αk· ∗ ψk−1

 = Tk


ψ1
...

ψk−1

ψk

 , (4.45)


e−αk· ∗ ψ1

...
e−αk· ∗ ψk−1

e−αk·

 = M>k


ψ1
...

ψk−1

ψk

 . (4.46)

To find the matrix Tk, we use the recursive definition of the Takenaka–Malmquist basis
in (4.17) to obtain

e−αk· ∗ ψk−1 =
√

2Re(αk−1) e−αk· ∗ φk−1 =
√

2Re(αk−1)
φk−1 − φk
αk + αk−1

=
1

αk + αk−1

(
ψk−1 −

√
2Re(αk−1)√
2Re(αk)

ψk

)
=

1

αk + αk−1
ψk−1 +

1

γk(αk + αk−1)
ψk.
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As a result, we have

Tk =

 Ik−1 0[
0

1

αk + αk−1

]
−1

γk(αk + αk−1)

 . (4.47)

To determine Mk, we apply the Laplace transform to (4.46) and obtain

ψ̂1(s)

s+ αk
...

ψ̂k−1(s)

s+ αk

1

s+ αk


= M>k


ψ̂1(s)

...

ψ̂k−1(s)

ψ̂k(s)

 .

In the sequel, we show that

Mk = (Mk,5Mk,4Mk,3Mk,2Mk,1)−1,

where

Mk,1 :=


1√

2Re(α1)

. . .
1√

2Re(αk)

 , Mk,2 :=


α1 + αk
α1 − αk α2 + αk

. . .

αk−1 − αk αk + αk

 ,

Mk,3 :=

1 . . . 1
. . .

...
1

 , Mk,4 :=

[
0 I
1 0

]
,

Mk,5 :=


−
√

2Re(α1)
. . .

−
√

2Re(αk−1)
1

 .
It follows from (4.18) that

Ek(s) :=
[
ψ̂1(s)
s+αk

. . .
ψ̂k−1(s)
s+αk

1
s+αk

]
=

[ √
Re(α1)

(s+αk)(s+α1) , . . . ,

√
2Re(αk−1)

(s+αk)(s+αk−1)

k−2∏
`=1

s−α`
s+α`

, 1
s+αk

]
.
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Consecutive application of the matrices (Mk,j)
5
j=1 to Ek(s) results in

Ek(s)Mk,5 =

[
−2Re(α1)

(s+αk)(s+α1) , . . . ,
−2Re(αk−1)

(s+αk)(s+αk−1)

k−2∏
`=1

s−α`
s+α`

, 1
s+αk

]
.

Ek(s)Mk,5Mk,4 =

[
1

s+αk
, −2Re(α1)

(s+αk)(s+α1) , . . . ,
−2Re(αk−1)

(s+αk)(s+αk−1)

k−2∏
`=1

s−α`
s+α`

]
.

Ek(s)Mk,5Mk,4Mk,3 =

[
1

s+αk
, s−α1

(s+αk)(s+α1) , . . . , 1
(s+αk)

k−1∏
`=1

s−α`
s+α`

]
.

Ek(s)Mk,5Mk,4Mk,3Mk,2 =

[
2Re(α1)
s+α1

, 2Re(α2)(s−α1)
(s+α2)(s+α1) , . . . , 2Re(αk)

(s+αk)

k−1∏
`=1

s−α`
s+α`

]
.

Ek(s)Mk,5Mk,4Mk,3Mk,2Mk,1 =

[√
2Re(α1)

s+α1
,

√
2Re(α2)(s−α1)

(s+α2)(s+α1) , . . . ,

√
2Re(αk)

(s+αk)

k−1∏
`=1

s−α`
s+α`

]
.

Ek(s)M
−1
k =

[
ψ̂1(s) . . . ψ̂k−1(s) ψ̂k(s)

]
.

We note that the above procedure is similar to the proof of [34, Proposition 3.2].
With the help of the transformation matrices Tk and Mk, we can determine a recursive

formula for the determination of the coefficients lj`,k ∈ C in (4.41). To this end, for v ∈ Y ,
we define the matrices

Lk :=

l11,k
...

. . .

lk1,k . . . lkk,k

 ∈ Ck×k,

S̃k(v) :=


Ψ(ψ1v)

...
Ψ(ψk−1v)

Ψ(ψkv)

 ∈ Ck×n,

Ŝk(v) :=


Ψ(e−αk· ∗ ψ1v)

...
Ψ(e−αk· ∗ ψk−1v)

Ψ(e−αk·v)

 ∈ Ck×n,

(4.48)

and the formal expressions

ψ :=


ψ1
...

ψk−1

ψk

 , ψ̃ :=


ψ1
...

ψk−1

e−αk· ∗ ψk−1

 .
Using the matrices S̃k(v) and Lk we can reformulate (4.41) as

Λ(ψkv) = S̃∗k(v)Lkψ. (4.49)
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4.3 The ADI iteration for the output map and the input-output map

Further, by the definition of Ŝk(v), we obtain

Ψ∗(e−αk·v)e−αk· ∗ ψk−1 +
k−1∑
j=1

Ψ∗(e−αk· ∗ ψjv)

j∑
`=1

lj`,k · ψ` = Ŝ∗k(v)

[
Lk−1 0

0 1

]
ψ̃. (4.50)

By substituting (4.49) and (4.50) in (4.44) we obtain

S̃∗k(v)Lkψ = γkS̃
∗
k(v)

[
Lk−1 0

0 0

]
ψ + γk(αk + αk−1)Ŝ∗k(v)

[
Lk−1 0

0 1

]
ψ̃. (4.51)

It follows from (4.45) and (4.46), together with the definitions of ψ, ψ̃, Ŝ∗k(v) and S̃∗k(v),
that

Tkψ = ψ̃, S̃∗k(v)Mk = Ŝ∗k(v). (4.52)

Now, by substituting (4.52) in (4.51), we obtain

S̃∗k(v)Lkψ = γkS̃
∗
k(v)

[
Lk−1 0

0 0

]
ψ + γk(αk + αk−1)S̃∗k(v)Mk

[
Lk−1 0

0 1

]
Tkψ.

The matrix Lk can therefore be recursively determined by

L1 =
1√

2Re(α1)
,

Lk =

[
γkLk−1 0

0 0

]
+ γk(αk + αk−1)Mk

[
Lk−1 0

0 1

]
Tk, k = 2, 3, . . . ,

(4.53)

where we can determine L1 by considering (4.49) for k = 1

Λ(ψ1v) = S̃∗1(v)L1ψ = Ψ∗(ψ1v)L1ψ1,

and using that by Proposition 4.6, we have

Λ(ψ1v) = (α1I −A∗)−1C∗vψ1, Ψ∗(ψ1v) =
√

2Re(α1) (α1I −A∗)−1C∗v.

Note that (4.53) includes Steps 4 and 13 in Algorithm 1.

It follows from (4.40) and (4.49) that

B∗ΛwS̃
∗
k(v)Lkψ + [0, D∗v]ψ =

[
N∗k1v · · · N∗kkv

]
ψ, ∀ v ∈ Y ,

where [0, D∗] ∈ L(Y k,U ). By equating the coefficients in the above relation and denoting
the i-th unit vector by ei ∈ Ck, we obtain

N∗kiv = B∗ΛwS̃
∗
k(v)Lkei, for i = 1, 2, . . . , k − 1,

N∗kkv = B∗ΛwS̃
∗
k(v)Lkek +D∗v, ∀ v ∈ Y .
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By substituting the definition of the matrices S̃k(v) and Lk from (4.48), the above equa-
tions result in

N∗kiv =
k∑
j=i

B∗ΛwΨ∗(ψjv) · lji,k, for i = 1, 2, . . . , k − 1,

N∗kkv = B∗ΛwΨ∗(ψkv) · lkk,k +D∗v, ∀ v ∈ Y .

(4.54)

From Proposition 4.6.1 and the definition of the operators (Vj)
k
j=1 in (4.35), we obtain

that

Ψ∗(ψjv) =
√

2Re(αj) · Vj v, ∀ v ∈ Y .

We substitute this into (4.54) to get

N∗kiv =
k∑
j=i

√
2Re(αj) ·B∗ΛwVj lji,k v, for i = 1, 2, . . . , k − 1,

N∗kkv =
(√

2Re(αk) ·B∗ΛwVk lkk,k +D∗
)
v, ∀ v ∈ Y .

(4.55)

The adjoint of the expressions in (4.55) can be calculated by using the definition of B∗Λw
(cf. Definition 2.37). In fact, for λ ∈ (ω0(T),∞), for all v ∈ Y , and every w ∈ U we have〈√

2Re(αk) ·B∗ΛwVk lkk,k v, w
〉

U
=
√

2Re(αk) lim
λ→∞

〈
B∗λ(λI −A∗)−1Vk lkk,k v, w

〉
U

=
√

2Re(αk) lim
λ→∞

〈
λ(λI −A∗)−1Vk lkk,k v,Bw

〉
X

=
√

2Re(αk) lim
λ→∞

〈
Vk lkk,k v, λ(λI −A)−1Bw

〉
X

=
√

2Re(αk) 〈Vk lkk,k v,Bw〉X
=
√

2Re(αk)
〈
v, lkk,k V

∗
k Bw

〉
Y
.

As a result, by taking the adjoint of the expressions in (4.55) we obtain

〈v,Nkiw〉Y =

k∑
j=i

√
2Re(αj)

〈
v, lji,k V

∗
j Bw

〉
Y
, for i = 1, 2, . . . , k − 1,

〈v,Nkkw〉Y =
√

2Re(αk)
〈
v, lkk,k V

∗
k Bw

〉
Y

+ 〈v,D∗w〉Y , ∀ v ∈ Y , ∀ w ∈ U .

Hence, we can conclude that for i = 1, 2, . . . , k − 1

Nki =

k∑
j=i

√
2Re(αj) · V ∗j B · lji,k IU

Nkk =
√

2Re(αk) · V ∗k B · lkk,k IU +D.

Using the definition of Lk, this is equivalent to

Nki =
[√

2Re(α1) · V ∗1 B · · ·
√

2Re(αk) · V ∗k B
] ( (

Lkei
)
⊗ IU

)
,

Nkk =
[√

2Re(α1) · V ∗1 B · · ·
√

2Re(αk) · V ∗k B
] ( (

Lkek
)
⊗ IU

)
+D.
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In other words, for Nk =
[
Nk1 · · · Nkk

]
we can conclude that

Nk =
[√

2Re(α1) · V ∗1 B · · ·
√

2Re(αk) · V ∗k B
] (
Lk ⊗ IU

)
+ [0, D].

As a result, the operator Nk can be determined recursively as

Q1 :=
√

2Re(α1) · V ∗1 B,
Qk :=

[
Qk−1

√
2Re(αk) · V ∗k B

]
,

Nk = Qk
(
Lk ⊗ IU

)
+ [0, D],

with [0, D] ∈ L(U k,Y ). It follows from (4.37) and (4.38) that Fk is recursively defined
by

F1 = C(α1I −A)−1B +D =
1√

2Re(α1)
V ∗1 B +D = Q1L1 +D,

Fk =

[
[Fk−1, 0]
Nk

]
=

[
[Fk−1, 0]

Qk
(
Lk ⊗ IU

)
+ [0, D]

]
.

Note that these correspond to Steps 3, 5, 9, and 14 in Algorithm 1.

4.4 The projected regular optimal control problem (Riccati-
ADI)

In this section we consider the projected optimal control problem and show that the
solution to this problem can be formulated using the operators Fk and Sk, which are
calculated by Algorithm 1. Following [36], we call this method the Riccati-ADI algorithm.

Recall the definition of the orthogonal projector Pk, the projected output map Ψk,
and the projected input-output map Fk from (4.29), (4.30), and (4.31), respectively. By
applying Pk to the cost functional (3.2), we can define the projected optimal control
problem by

〈Xkx0, x0〉X = min
u∈L2(0,∞;U )

∫ ∞
0

〈(
(Pky) (τ)
u(τ)

)
,

[
Q N∗

N R

](
(Pky) (τ)
u(τ)

)〉
Y ×U

dτ, (4.56)

where u, y, and x0 are the input function, output function, and the initial state of the
stable weakly regular linear system Σ. Xk ∈ L(X ) is called the projected Riccati operator .

We define the projected Popov operator by Rk : L2(0,∞; U )→ L2(0,∞; U ),

Rk = R+NFk + F∗kN∗ + F∗kQFk. (4.57)

Since Fk|Kk(α)⊗U ∈ L(Kk(α)⊗U ,Kk(α)⊗ Y ), we have that

Rk|Kk(α)⊗U ∈ L(Kk(α)⊗U ).

It follows from R ≥ ε · IU that Rk ≥ ε · IU . Hence, Rk is boundedly invertible and we
have

R−1
k |Kk(α)⊗U ∈ L(Kk(α)⊗U ). (4.58)

In the following, we consider the projected version of Proposition 3.2. Later, we will
show that the operators Fk and Sk in Algorithm 1 indeed provide the solution of (4.56).
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Theorem 4.11. Let (αj)
∞
j=1 such that Re(αj) > 0 for all j ∈ N. Define Ψk and Fk by

(4.30) and (4.31). Then, the unique minimizer of the optimal control problem (4.56) is
given by

uopt
k = −R−1

k (F∗kQ+N) Ψkx0, (4.59)

and the optimal cost is given by 〈Xkx0, x0〉X with the projected Riccati operator

Xk = Ψ∗kQΨk −Ψ∗k (QFk +N∗) R−1
k (F∗kQ+N) Ψk. (4.60)

Proof. Noting that
Pky = Ψkx0 + Fku,

we use a “completion of the square” formula similar to [70, Proposition 7.2]. This means
that

J(x0, u) =

〈(
Pky
u

)
,

[
Q N∗

N R

](
Pky
u

)〉
L2(0,∞;Y ×U )

= 〈Ψkx0 + Fku,Q (Ψkx0 + Fku)〉+ 〈Ψkx0 + Fku,N∗u〉
+ 〈u,N (Ψkx0 + Fku)〉+ 〈u,Ru〉

=
〈[

Ψ∗kQΨk −Ψ∗k (QFk +N∗) R−1
k (F∗kQ+N) Ψk

]
x0, x0

〉
X

+
〈
Rk

[
u+ R−1

k (F∗kQ+N) Ψkx0

]
, u+ R−1

k (F∗kQ+N) Ψkx0

〉
L2(0,∞;U )

.

In particular, for

Xk = Ψ∗kQΨk −Ψ∗k (QFk +N∗) R−1
k (F∗kQ+N) Ψk,

we have that J(x0, u) ≥ 〈Xkx0, x0〉. In the case where the input reads

u = −R−1
k (F∗kQ+N) Ψkx0,

the second summand vanishes. Thus, we have equality between J(x0, u) and the quadratic
form 〈Xkx0, x0〉 in this case.

Corollary 4.12. Under the assumptions and with the notation of Theorem 4.11, we have

uopt
k ∈ Kk(α)⊗U .

Proof. By (4.31) we know that Fk = PkF. As a result, (4.59) can be written as

uopt
k = R−1

k (F∗z + w) ,

where
z := −PkQΨkx0 ∈ Kk(α)⊗ Y , w := −NΨkx0 ∈ Kk(α)⊗U .

From Corollary 4.5 we see that F∗ maps Kk(α)⊗ Y into Kk(α)⊗U . Therefore

F∗z + w ∈ Kk(α)⊗U .

From (4.58) we know that R−1
k |Kk(α)⊗U ∈ L(Kk(α) ⊗ U ). As a consequence, uopt

k ∈
Kk(α)⊗U , as desired.
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In the sequel we show that the projected Riccati operator Xk as in (4.60), can be
indeed calculated using the operators Sk and Fk determined by Algorithm 1. We start by
presenting two lemmas which will be helpful in proving the last theorem of this section.

For Hilbert spaces H1, H2, an operator T ∈ L(H1, H2), and the identity matrix Ik ∈
Rk×k, we define the operator matrix Ik ⊗ T ∈ L(Hk

1 , H
k
2 ) by

Ik ⊗ T :=


T

T
. . .

T

 ∈ L(Hk
1 , H

k
2 ). (4.61)

Lemma 4.13. Let ιYk
and ιUk

be the mappings defined in (4.27) and (4.28), respectively.
Then for operators Q ∈ L(Y ), R ∈ L(U ), and N ∈ L(Y ,U ), there holds

QιYk
= ιYk

(Ik ⊗Q), RιUk
= ιUk

(Ik ⊗R),

N∗ιUk
= ιYk

(Ik ⊗N∗), NιYk
= ιUk

(Ik ⊗N∗).

Proof. For y := (y1, y2, . . . , yk) ∈ Y k, we use the definition of ιYk
and ιUk

in (4.27) and
(4.28) to obtain

QιYk
y = Q

k∑
i=1

ψiyi =

k∑
i=1

Qψiyi =

k∑
i=1

ψiQyi = ιYk
(Ik ⊗Q)y.

The relationships for RιUk
and N∗ιUk

can be proven analogously.

Lemma 4.14. Let Pk and Ok be the orthogonal projectors onto Kk(α)⊗Y and Kk(α)⊗U ,
respectively (as defined in (4.29)). Let the operator Rk ∈ L(U k) be defined by

Rk = ι∗Uk
RkιUk

. (4.62)

Then the following relations hold true:

Rk = (Ik ⊗R) + (Ik ⊗N)Fk + F ∗k (Ik ⊗N∗) + F ∗k (Ik ⊗Q)Fk, (4.63)

ιUk
R−1
k ι∗Uk

= OkR
−1
k Ok. (4.64)

Proof. To show (4.63), we use Lemma 4.13 and the definition of Fk in (4.33) to obtain
that

Rk = ι∗Uk
RkιUk

= ι∗Uk
(R+NFk + F∗kN∗ + F∗kQFk) ιUk

= ι∗Uk
RιUk

+ ι∗Uk
NPkFιUk

+ ι∗Uk
FPkN∗ιUk

+ ι∗Uk
F∗PkQPkFιUk

= ι∗Uk
RιUk

+ ι∗Uk
NιYk

ι∗Yk
FιUk

+ ι∗Uk
FkιYk

ι∗Yk
N∗ιUk

+ ι∗Uk
F∗ιYk

ι∗Yk
QιYk

ι∗Yk
FιUk

= (Ik ⊗R) + (Ik ⊗N)ι∗Yk
FιUk

+ ι∗Uk
F∗ιYk

(Ik ⊗N∗) + ι∗Uk
F∗ιYk

ι∗Yk
QιYk

ι∗Yk
FιUk

= (Ik ⊗R) + (Ik ⊗N)ι∗Yk
FιUk

+ ι∗Uk
F∗ιYk

(Ik ⊗N∗) + ι∗Uk
F∗ιYk

(Ik ⊗Q)ι∗Yk
FιUk

= (Ik ⊗R) + (Ik ⊗N)Fk + F ∗k (Ik ⊗N∗) + F ∗k (Ik ⊗Q)Fk.
(4.65)
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To prove (4.64), we use the definition of Rk in (4.62) to obtain that

ιUk
Rkι∗Uk

= ιUk
ι∗Uk

RkιUk
ι∗Uk

= OkRkOk.

Hence, we have

ιUk
R−1
k ι∗Uk

= OkR
−1
k Ok.

Remark 4.15. If the input space U is finite-dimensional, i.e., U = Cm for some m ∈ N,
then Rk ∈ L(U k) is the matrix representation of the Popov operator R.

Now we are ready to provide an approximation of the Riccati operator (3.10) using
the ADI method, as presented in Algorithm 2. We call this algorithm the “Riccati-ADI”
method.

Algorithm 2 ADI iteration for the Riccati operator (Riccati-ADI).

Input: Σ = (T,Φ,Ψ,F) a stable weakly regular well-posed linear system with generating

operators (A,B,C,D) (cf. Definition 2.6.b). Cost functional (3.2) such that the associated

Popov operator R is coercive. Shift parameters α1, . . . , αk ∈ C with Re(αi) > 0.

Output: Xk ∈ L(X ) such that Xk ≈ X, where X is the Riccati operator (3.10).

1: Perform Algorithm 1 to obtain the operators Fk and Sk for some k ∈ N

2: Rk = (Ik ⊗R) + (Ik ⊗N)Fk + F ∗k (Ik ⊗N∗) + F ∗k (Ik ⊗Q)Fk

3: Xk = S∗k(Ik ⊗Q)Sk − S∗k [(Ik ⊗Q)Fk + (Ik ⊗N∗)]R−1
k [F ∗k (Ik ⊗Q) + (Ik ⊗N)]Sk

Theorem 4.16 (Riccati-ADI). Let Σ = (T,Φ,Ψ,F) be a stable weakly regular linear
system (cf. Definition 2.6.b) and (αj)

∞
j=1 such that Re(αj) > 0 for all j ∈ N. Then for all

k ∈ N, the operator Xk in (4.60) can be determined by

Xk = S∗k(Ik⊗Q)Sk−S∗k [(Ik ⊗Q)Fk + (Ik ⊗N∗)]R−1
k [F ∗k (Ik ⊗Q) + (Ik ⊗N)]Sk, (4.66)

where the operators Fk and Sk are determined by Algorithm 1 and Rk is calculated by

Rk = (Ik ⊗R) + (Ik ⊗N)Fk + F ∗k (Ik ⊗N∗) + F ∗k (Ik ⊗Q)Fk.

Proof. Using Lemma 4.13 and Lemma 4.14, together with the definition of Sk and Fk in
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4.4 The projected regular optimal control problem (Riccati-ADI)

(4.32) and (4.33), we obtain

Xk = Ψ∗kQΨk −Ψ∗k (QFk +N∗) R−1
k (F∗kQ+N) Ψk

= S∗kι
∗
Yk
QιYk

Sk − S∗kι∗Yk
(QFk +N∗) R−1

k (F∗kQ+N) ιYk
Sk

= S∗kι
∗
Yk
ιYk

(Ik ⊗Q)Sk

− S∗k
[
(Ik ⊗Q)ι∗Yk

Fk + (Ik ⊗N∗)ι∗Uk

]
R−1
k [F∗kιYk

(Ik ⊗Q) + ιUk
(Ik ⊗N)]Sk

= S∗k(Ik ⊗Q)Sk

− S∗k
[
(Ik ⊗Q)ι∗Yk

Fk + (Ik ⊗N∗)ι∗Uk

]
OkR

−1
k Ok [F∗kιYk

(Ik ⊗Q) + ιUk
(Ik ⊗N)]Sk

= S∗k(Ik ⊗Q)Sk

− S∗k
[
(Ik ⊗Q)ι∗Yk

Fk + (Ik ⊗N∗)ι∗Uk

]
ιUk
R−1
k ι∗Uk

[F∗kιYk
(Ik ⊗Q) + ιUk

(Ik ⊗N)]Sk

= S∗k(Ik ⊗Q)Sk

− S∗k [(Ik ⊗Q)Fk + (Ik ⊗N∗)]R−1
k [F ∗k (Ik ⊗Q) + (Ik ⊗N)]Sk.

In [35] the projected optimal control problem is formulated using the projected version
of Proposition 3.4 from Chapter 3. All the results presented in this section (with analogous
proofs) can be reformulated using the complementary Popov operator.

Theorem 4.17. Let Q = Q∗ ∈ L(Y ), R = R∗ ∈ L(U ), and R̃ := R−NQ−1N∗ ∈ L(U )
be all invertible operators. Let (αj)

∞
j=1 such that Re(αj) > 0 for all j ∈ N. Define Ψk and

Fk by (4.30) and (4.31), where Pk : L2(0,∞; Y )→ L2(0,∞; Y ) is the orthogonal projec-
tor onto Kk(α) ⊗ Y with Kk(α) as in Definition 4.1. In addition, define the projected
complementary Popov operator by Rc,k : L2(0,∞; Y )→ L2(0,∞; Y )

Rc,k = Q−1 + (Fk +Q−1N∗)
(
R−NQ−1N∗

)−1
(F∗k +NQ−1). (4.67)

The unique minimizer of the optimal control problem (4.56) is given by

uopt
k = −R̃−1

(
F∗k +NQ−1

)
R−1
c,kΨkx0.

The optimal cost is given by 〈Xkx0, x0〉 with

Xk = Ψ∗kR
−1
c,kΨk. (4.68)

Lemma 4.18. Let Q = Q∗ ∈ L(Y ), R = R∗ ∈ L(U ), and R̃ := R − NQ−1N∗ ∈ L(U )
be all invertible operators. Let Pk be the orthogonal projector onto Kk(α)⊗ Y as defined
in (4.29). Let the operator Rc,k ∈ L(Y k) be defined by

Rc,k = ι∗Yk
Rc,kιYk

. (4.69)

Then the following relations hold true:

Rc,k = (Ik ⊗Q−1) +
(
Fk + Ik ⊗ (Q−1N∗)

)
(Ik ⊗ R̃−1)

(
F ∗k + Ik ⊗ (NQ−1)

)
, (4.70)

ιYk
R−1
c,kι
∗
Yk

= PkR
−1
c,kPk. (4.71)
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The ADI method for the optimal control of stable well-posed linear systems

Remark 4.19. If the output space Y is finite-dimensional, i.e., Y = Cp for some p ∈ N,
then Rc,k ∈ L(Y k) is the matrix representation of the complementary Popov operator Rc.

Theorem 4.20 (Riccati-ADI). Let Q = Q∗ ∈ L(Y ), R = R∗ ∈ L(U ), and R̃ :=
R −NQ−1N∗ ∈ L(U ) be all invertible operators. Let Σ = (T,Φ,Ψ,F) be a stable weakly
regular linear system (cf. Definition 2.6.b) and (αj)

∞
j=1 such that Re(αj) > 0 for all j ∈ N.

Then for all k ∈ N, the operator Xk in (4.60) can be determined by

Xk = S∗kR−1
c,kSk, (4.72)

where Rc,k is calculated by

Rc,k = (Ik ⊗Q−1) +
(
Fk + Ik ⊗ (Q−1N∗)

)
(Ik ⊗ R̃−1)

(
F ∗k + Ik ⊗ (NQ−1)

)
,

and the operators Fk and Sk are determined by Algorithm 1.

4.5 Monotonicity and convergence of Riccati-ADI

In this section we prove the monotonicity and convergence of the Riccati-ADI algorithm
(cf. Theorem 4.16) under the following assumption:〈(

w
v

)
,

[
Q N∗

N R

](
w
v

)〉
≥ 0, ∀ v ∈ U , ∀ w ∈ Y . (4.73)

Theorem 4.11 and Theorem 4.16 imply that the operator Xk computed by the Riccati-
ADI method (Algorithm 2) expresses the optimal cost (4.60) of the projected optimal
control problem (4.56). Since the ranges of projectors Pk are nested, we can easily deduce
that the sequence (Xk)k∈N is monotone and bounded from above by X, as shown in the
following theorem.

Theorem 4.21. Let Σ = (T,Φ,Ψ,F) be a stable weakly regular linear system (cf. Defini-
tion 2.6.b) and (αj)

∞
j=1 be the shift parameters such that Re(αj) > 0 for all j ∈ N. Let

X ∈ L(X ) be the Riccati operator (3.10). Let Pk and Ok be the orthogonal projectors
defined as in (4.29). Further, let Ψk and Fk be given by (4.30) and (4.31), respectively.
Let X be the Riccati operator (3.10) and Xk be the projected Riccati operator defined by
(4.60). Moreover, let the assumption (4.73) hold true.
Then the sequence (Xk)k∈N as in (4.60) satisfies

〈x0, Xkx0〉X ≤ 〈x0, Xk+1x0〉X ≤ 〈x0, Xx0〉X , ∀x0 ∈X .

Proof. Since Kk(α) ⊂ Kk+1(α), we have

Pk ≤ Pk+1, Ok ≤ Ok+1. (4.74)

Let u ∈ L2(0,∞; U ), x0 ∈ X , and y ∈ L2(0,∞; Y ) be respectively the input, initial
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state, and output of the well-posed linear system Σ. It follows from (4.74) that

〈(
Pk+1y
u

)
,

[
Q N∗

N R

](
Pk+1y
u

)〉
L2(0,∞;Y ×U )

=

〈(
Pky + (Pk+1 − Pk)y
Oku+ (Ok+1 −Ok)u

)
,

[
Q N∗

N R

](
Pky + (Pk+1 − Pk)y
Oku+ (Ok+1 −Ok)u

)〉
L2(0,∞;Y ×U )

=

〈(
Pky
Oku

)
,

[
Q N∗

N R

](
Pky
Oku

)〉
L2(0,∞;Y ×U )

+

〈(
(Pk+1 − Pk)y
(Ok+1 −Ok)u

)
,

[
Q N∗

N R

](
(Pk+1 − Pk)y
(Ok+1 −Ok)u

)〉
L2(0,∞;Y ×U )

,

(4.75)

where we have used

〈Pky,Q(Pk+1 − Pk)y〉 = 0, 〈Oku,R(Ok+1 −Ok)u〉 = 0,

〈Pky,N∗(Ok+1 −Ok)u〉 = 0, 〈Oku,N(Pk+1 − Pk)y〉 = 0.

Now it follows from (4.75), together with the assumption (4.73), that

min
u∈L2(0,∞;U )

〈(
Pk+1y
u

)
,

[
Q N∗

N R

](
Pk+1y
u

)〉
L2(0,∞;Y ×U )

≥ min
u∈L2(0,∞;U )

〈(
Pky
Oku

)
,

[
Q N∗

N R

](
Pky
Oku

)〉
L2(0,∞;Y ×U )

.

From Corollary 4.12 we know that

uopt
k ∈ Kk(α)⊗U . (4.76)

Consequently, it follows from Theorem 4.11 that

〈x0, Xk+1x0〉 = min
u∈L2(0,∞;U )

〈(
Pk+1y
u

)
,

[
Q N∗

N R

](
Pk+1y
u

)〉
L2(0,∞;Y ×U )

≥ min
u∈L2(0,∞;U )

〈(
Pky
Oku

)
,

[
Q N∗

N R

](
Pky
Oku

)〉
L2(0,∞;Y ×U )

= min
u∈L2(0,∞;U )

〈(
Pky
u

)
,

[
Q N∗

N R

](
Pky
u

)〉
L2(0,∞;Y ×U )

= 〈x0, Xkx0〉 .

Since Pk and Ok are orthogonal projectors, we have

Pk ≤ I, Ok ≤ I.
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Analogously to the first part of this proof we see that〈(
y
u

)
,

[
Q N∗

N R

](
y
u

)〉
L2(0,∞;Y ×U )

=

〈(
Pky + (I − Pk)y
Oku+ (I −Ok)u

)
,

[
Q N∗

N R

](
Pky + (I − Pk)y
Oku+ (I −Ok)u

)〉
L2(0,∞;Y ×U )

=

〈(
Pky
Oku

)
,

[
Q N∗

N R

](
Pky
Oku

)〉
L2(0,∞;Y ×U )

+

〈(
(I − Pk)y
(I −Ok)u

)
,

[
Q N∗

N R

](
(I − Pk)y
(I −Ok)u

)〉
L2(0,∞;Y ×U )

,

(4.77)

where we have used

〈Pky,Q(I − Pk)y〉 = 0, 〈Oku,R(I −Ok)u〉 = 0,

〈Pky,N∗(I −Ok)u〉 = 0, 〈Oku,N(I − Pk)y〉 = 0.

Now it follows from (4.77), together with the assumption (4.73), that

min
u∈L2(0,∞;U )

〈(
y
u

)
,

[
Q N∗

N R

](
y
u

)〉
L2(0,∞;Y ×U )

≥ min
u∈L2(0,∞;U )

〈(
Pky
Oku

)
,

[
Q N∗

N R

](
Pky
Oku

)〉
L2(0,∞;Y ×U )

.

Consequently, we can conclude from Proposition 3.2 and Theorem 4.11, together with
(4.76), that

〈x0, Xx0〉 = min
u∈L2(0,∞;U )

〈(
y
u

)
,

[
Q N∗

N R

](
y
u

)〉
L2(0,∞;Y ×U )

≥ min
u∈L2(0,∞;U )

〈(
Pky
Oku

)
,

[
Q N∗

N R

](
Pky
Oku

)〉
L2(0,∞;Y ×U )

= min
u∈L2(0,∞;U )

〈(
Pky
u

)
,

[
Q N∗

N R

](
Pky
u

)〉
L2(0,∞;Y ×U )

= 〈x0, Xkx0〉 .

So far we have shown that the sequence (Xk)k∈N generated by the Riccati-ADI method

(Algorithm 2) is non-decreasing and bounded from above by the Riccati operator X (The-

orem 4.21). Therefore, it follows from Theorem A.2 that there exists some self-adjoint

operator X̃ ∈ L(X ) such that

Xk ≤ X̃ ≤ X, ∀k ∈ N,

and (Xk)k∈N converges to X̃ in the strong operator topology, i.e.,

lim
k→∞

Xkx = X̃x, ∀ x ∈X .
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We note that it does not necessarily hold that X̃ = X. To deal with this issue, we require
the additional assumption ⋃

k∈N
Kk(α)⊗ Y = L2(0,∞; Y ). (4.78)

It follows from [41, Lemma 4.4] that (4.78) is equivalent to the non-Blaschke condition

∞∑
j=1

Re(αj)

1 + |αj |2
=∞, (4.79)

where (αk)
∞
k=1 is the sequence of shift parameters associated with the Takenaka-Malmquist

system. This non-Blaschke condition is satisfied, for example, if the parameters all belong
to a fixed compact set contained in the open right half-plane. With the help of a numerical
example, we will show in Chapter 6 that if the shift parameters do not satisfy the non-
Blaschke (4.79), then the sequence (Xk)k∈N may converge to an operator which is not the
Riccati operator (3.10).

The following theorem gives the convergence of the Riccati-ADI method to the Riccati
operator (3.10). This convergence result was previously obtained for the special case of
operator Lyapunov equation in [41].

Theorem 4.22. Under the assumptions of Theorem 4.21, the sequence (Xk)k∈N defined
by (4.60) converges in the strong operator topology. If additionally, (αj)

∞
j=1 satisfies the

non-Blaschke condition (4.79), then Xk converges even to X. This means that

lim
k→∞

Xkx = Xx, ∀ x ∈X .

Furthermore, under the additional assumption that Q = Q∗ ∈ L(Y ), R = R∗ ∈ L(U ),
and R̃ := R−NQ−1N∗ ∈ L(U ) are all invertible operators,

(i) if X is compact, then Xk converges to X in the uniform operator topology. This
means that if X ∈ K(X ), then

lim
k→∞

‖Xk −X‖L(X ) = 0.

(ii) if X is in the Schatten class Sp(X ) for p ∈ [1,∞], then Xk converges to X in the
topology of Sp(X ). This means that

lim
k→∞

‖Xk −X‖Sp(X ) = 0.

Proof. Since, by Theorem 4.21, (Xk)k∈N is a non-decreasing sequence which is bounded
from above by X, we obtain convergence in the strong operator topology to some operator
X̃ ∈ L(X ) with X̃ ≤ X (see Theorem A.2). If X is compact, then the non-decreasing
sequence (Xk)k∈N is bounded from above by a compact operator and therefore converges
in the uniform operator topology. If X is in the Schatten class, then the non-decreasing
sequence (Xk)k∈N is bounded from above by a Schatten class operator and therefore con-
verges in the Schatten class topology.
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Since Kk(α) ⊂ Kk+1(α) we have Pk ≤ Pk+1 and since Pk is an orthogonal projector,
we have Pk ≤ I. It follows from [50, p.263] that (Pk)k∈N converges in the strong operator
topology to some orthogonal projector P ≤ I. It was shown in [41, Lemma 4.4] that
P = I, if and only if, the non-Blaschke condition is satisfied (this result is shown there
actually only for the case L2(0,∞), but the behavior of tensor products under the strong
operator topology [30, Theorem 1 part b] gives the general case for L2(0,∞; Y )).

From now on we assume the non-Blaschke condition (4.79), so that P = I. Then, since
the sequence (Pk)k∈N is uniformly bounded by identity (Pk ≤ I), we obtain that

Rk = R+NFk + F∗N∗ + F∗kQFk
= R+NPkF + F∗PkN∗ + F∗PkQPkF

converges to
R = R+NF + F∗N∗ + F∗QF

in the strong operator topology. As a result, R−1
k converges to R−1 in the strong operator

topology (e.g., by [20, Theorem 7.6.1]). It follows from the uniform boundedness principle
that R−1

k is uniformly bounded. Since R−1
k converges to R−1 in the strong operator

topology, we have that
(QPkF +N∗)R−1

k (F∗PkQ+N)

converges in the strong operator topology to

(QF +N∗)R−1(F∗Q+N).

By sequential continuity, we conclude that

Xk = Ψ∗kQΨk −Ψ∗k(QFk +N∗)R−1
k (F∗kQ+N)Ψk

= Ψ∗PkQPkΨ−Ψ∗Pk(QPkF +N∗)R−1
k (F∗PkQ+N)PkΨ

converges to
X = Ψ∗QΨ−Ψ∗(QF +N∗)R−1(F∗Q+N)Ψ

in the strong operator topology.
To prove the last part of this theorem, let us assume additionally that Q = Q∗ ∈ L(Y ),

R = R∗ ∈ L(U ), and R̃ := R − NQ−1N∗ ∈ L(U ) are all invertible operators. Then,
it follows from Proposition 3.4 that the Riccati operator X can be represented in the
alternative form

X = Ψ∗R−1
c Ψ,

where Rc is the complementary Popov operator given by

Rc = Q−1 + (F +Q−1N∗)R̃−1(F∗ +NQ−1).

If X is compact, then (since Rc is self-adjoint and invertible) Ψ is compact. Now it follows
from Theorem A.3.a that

Ψ∗PkQPkΨ −→ Ψ∗QΨ

(QPkF +N∗)R−1
k (F∗PkQ+N)PkΨ −→ (QF +N∗)R−1(F∗Q+N)Ψ

in the uniform operator topology. Hence, we conclude that Xk converges to X in the uni-
form operator topology. The convergence in the Schatten norm Sp(X ) follows analogously
by applying Theorem A.3.b.
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4.6 The ADI iteration for the bounded real and positive
real optimal control problems

In this section we show how the ADI method developed in Section 4.3 can be applied to
find approximate solutions of the singular optimal control problem in the bounded real
and positive real case subject to a strongly stable weakly regular linear system (cf. Def-
inition 2.6.c). We prove that the sequence of approximate solutions is monotonically
increasing. If the shift parameters satisfy the non-Blaschke condition (4.79), then the
sequence is proven to be convergent to the optimal cost of the singular optimal control
problem in the bounded real and positive real case.

Here we assume finite-dimensionality of the input and output spaces (i.e., U = Cm
and Y = Cp for some m, p ∈ N). This implies that we allow only finitely many variables
to control and observe the system (which is justified in the actual applications). In this
case the ADI algorithm provides approximate solutions in low-rank factored form. This
means that we provide sequences (Xk)k∈N ∈ L(X ) of approximate solutions of the form
Xk = R∗kRk for some Rk ∈ L(X ,C`k), with typically “small” `k.

Throughout this section the Riccati operator X is the solution of the singular optimal
control problem (3.62) or (3.66). We construct the projected versions of these singular
optimal control problems by replacing the output function y with Pky, where Pk is the
orthogonal projector given by (4.29). Thereby we present the projected versions of The-
orem 3.12 (for the bounded real or positive real case). In this regard, the output map
Ψ and the input-output map F are replaced with Sk and Fk (generated by Algorithm 1),
respectively. Then the relation (3.52) has to be solved for projected versions of FΞ and
ΨΞ. These are thereafter, by an accordant modification of (3.53), used to construct Xk.

4.6.1 The ADI method for the bounded real singular optimal control
problem

Let the input space U and the output space Y be finite-dimensional, i.e., U = Cm and
Y = Cp for some m, p ∈ N. In the bounded real case we consider the cost functional (3.2)
with Q = −I, R = I and N = 0 (Section 3.6). In the singular optimal control problem
we assume that the Popov operator (3.4) satisfies (3.51). In the bounded real case this
means that

〈u, (I − F∗F)u〉L2(0,∞;Cm) ≥ 0. (4.80)

With the notation introduced after (1.15), this condition is written as I − F∗F ≥ 0. The
following theorem is the projected version of the bounded real singular optimal control
problem.

Theorem 4.23. Let Σ = (T,Φ,Ψ,F) be a strongly stable weakly regular linear system
(cf. Definition 2.6.c) with generating operators (A,B,C,D). Assume that the input space
U and the output space Y are finite-dimensional (i.e., U = Cm and Y = Cp). Further
assume that the Popov operator R = I − F∗F satisfies (4.80). Let (αj)

∞
j=1 be a complex

sequence with Re(αj) > 0 for all j ∈ N. Moreover, let Sk ∈ L(X ,Ckp) and Fk ∈ Ckp×km
be defined as in (4.32) and (4.33), respectively.
Then, the matrix I − F ∗kFk ∈ Ckm×km is positive semidefinite (i.e., I − F ∗kFk ≥ 0). In
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particular, there exists some matrix FΞ,k ∈ C`k×km with full row rank such that

I − F ∗kFk = F ∗Ξ,kFΞ,k. (4.81)

Furthermore, there exists some operator SΞ,k ∈ L(X ,C`k) such that

F ∗Ξ,kSΞ,k = −F ∗kSk. (4.82)

For the orthogonal projector Pk as in (4.29), the operator Xk defined by

Xk = S∗kSk + S∗Ξ,kSΞ,k (4.83)

fulfills

〈x0, Xkx0〉 = sup
u∈L2(0,∞;Cm)

‖PkFu+ PkΨx0‖2 − ‖u‖2, ∀ x0 ∈X . (4.84)

Proof. Recall that definition of the matrix Fk ∈ Ckp×km and the operator Sk ∈ L(X ,Ckp)
from (4.33) and (4.32). Since Pk ≤ I, we have that F∗PkF ≤ F∗F, which implies that
I − F∗PkF ≥ I − F∗F ≥ 0. Hence we obtain

I − F ∗kFk = ι∗Uk
ιUk
− ι∗Uk

F∗ιYk
ι∗Yk

FιUk

= ι∗Uk
ιUk
− ι∗Uk

F∗PkFιUk

= ι∗Uk
(I − F∗PkF)ιUk

≥ 0.

Next, we prove that
Im(F ∗kSk) ⊂ Im(F ∗Ξ,k) (4.85)

By taking orthogonal complements, this is equivalent to

ker(FΞ,k) ⊂ ker(S∗kFk).

It follows from (3.62) that for all u ∈ L2(0,∞;Cm) and x0 ∈X ,

〈x0, Xx0〉 ≥ ‖Fu+ Ψx0‖2 − ‖u‖2.

By further using (4.32), (4.33), and (4.81), we observe that

〈x0, Xx0〉 ≥ ‖Fu+ Ψx0‖2 − ‖u‖2

≥ ‖PkFu+ PkΨx0‖2 − ‖Oku‖2 − ‖(I −Ok)u‖2

= ‖ιYk
Fkι
∗
Uk
u+ ιYk

Skx0‖2 − ‖ι∗Uk
u‖2 − ‖(I −Ok)u‖2

= ‖Fkι∗Uk
u+ Skx0‖2 − ‖ι∗Uk

u‖2 − ‖(I −Ok)u‖2

=
〈
ι∗Uk

u, (F ∗kFk − I)ι∗Uk
u
〉

+ 2Re
〈
ι∗Uk

u, F ∗kSkx0

〉
+ ‖Skx0‖2 − ‖(I −Ok)u‖2

= −
〈
ι∗Uk

u, F ∗Ξ,kFΞ,k)ι
∗
Uk
u
〉

+ 2Re
〈
ι∗Uk

u, F ∗kSkx0

〉
+ ‖Skx0‖2 − ‖(I −Ok)u‖2

= − ‖FΞ,kι
∗
Uk
u‖2 + 2Re

〈
ι∗Uk

u, F ∗kSkx0

〉
+ ‖Skx0‖2 − ‖(I −Ok)u‖2.

(4.86)
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Assume that kerFΞ,k 6⊂ kerS∗kFk. Then there exists some û ∈ Ckm with S∗kFkû 6= 0 and
FΞ,kû = 0, and thus we can choose some non-trivial x0 ∈ X such that 〈Skx0, Fkû〉 6= 0.
Then, for λ ∈ C, by substituting x0 and u := ιUk

(λû) ∈ L2(0,∞;Cm) into (4.86), we
obtain

〈x0, Xx0〉 ≥ −‖FΞ,kι
∗
Uk
ιUk

(λû)‖2 + 2Re
〈
ι∗Uk

ιUk
(λû), F ∗kSkx0

〉
+ ‖Skx0‖2−‖(I−Ok)ιUk

(λû)‖2

=− ‖λFΞ,kû‖2 + 2Re(λ 〈û, F ∗kSkx0〉) + ‖Skx0‖2

= 2Re(λ 〈û, F ∗kSkx0〉) + ‖Skx0‖2.
In particular, by an appropriate choice of λ ∈ C, we can make the expression on the right-
hand side arbitrarily large, which leads to a contradiction. Hence ker(FΞ,k) ⊂ ker(S∗kFk).

Since FΞ,k has full row rank, FΞ,kF
∗
Ξ,k is invertible and therefore

SΞ,k := (FΞ,kF
∗
Ξ,k)

−1FΞ,kFkSk (4.87)

is well-defined. We now show that SΞ,k as in (4.87) satisfies (4.82). From (4.85) we have
that for all x ∈X there exists a z ∈ Ckm such that F ∗kSkx = F ∗Ξ,kz. Then

F ∗Ξ,kSΞ,kx = F ∗Ξ,k(FΞ,kF
∗
Ξ,k)

−1FΞ,kFkSkx = F ∗Ξ,k(FΞ,kF
∗
Ξ,k)

−1FΞ,kF
∗
Ξ,kz = F ∗Ξ,kz = F ∗kSkx.

Since x ∈ X was arbitrary, this proves that F ∗Ξ,kSΞ,k = F ∗kSk. Hence, SΞ,k ∈ L(X ,C`k)
satisfies (4.82).

It remains to prove that Xk as in (4.83) fulfills (4.84). Using (4.81) and (4.82), we
have for all x0 ∈X and u ∈ L2(0,∞;Cm) that

‖PkFu+ PkΨx0‖2 − ‖u‖2

=−
〈
ι∗Uk

u, F ∗Ξ,kFΞ,kι
∗
Uk
u
〉

+ 2Re
〈
ι∗Uk

u, F ∗kSkx0

〉
+ ‖Skx0‖2 − ‖(I −Ok)u‖2

=−
〈
ι∗Uk

u, F ∗Ξ,kFΞ,kι
∗
Uk
u
〉
− 2Re

〈
ι∗Uk

u, F ∗Ξ,kSΞ,kx0

〉
+ ‖Skx0‖2 − ‖(I −Ok)u‖2

=− ‖FΞ,kι
∗
Uk
u+ SΞ,kx0‖2 + ‖SΞ,kx0‖2 + ‖Skx0‖2 − ‖(I −Ok)u‖2

=− ‖FΞ,kι
∗
Uk
u+ SΞ,kx0‖2 − ‖(I −Ok)u‖2 + 〈x0, Xkx0〉

≤ 〈x0, Xkx0〉 .

This gives rise to

〈x0, Xkx0〉 ≥ sup
u∈L2(0,∞;Cm)

‖PkFu+ PkΨx0‖2 − ‖u‖2.

On the other hand, using the surjectivity of FΞ,k ∈ C`k×km, there exists some û ∈ Ckm
with FΞ,kû = −SΞ,kx0. Then, for u = ιUk

û we see that equality holds true in the above
calculations. This proves (4.84).

Remark 4.24. The formula (4.87) for SΞ,k ∈ L(X ,C`k) shows that

Xk = S∗k [I + FkF
∗
Ξ,k(FΞ,kF

∗
Ξ,k)

−2FΞ,kF
∗
k ]Sk.

It is easily verified that F ∗Ξ,k(FΞ,kF
∗
Ξ,k)

−2FΞ,k is the Moore-Penrose inverse of F ∗Ξ,kFΞ,k.
Therefore, we have

Xk = S∗k [I + Fk(I − F ∗kFk)+F ∗k ]Sk.
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Next we prove that the sequence (Xk)k∈N is monotonically increasing with respect to
definiteness. We further present a criterion on the shift parameters such that convergence
to the solution of the bounded real singular optimal control problem is achieved.

Theorem 4.25. Let Σ = (T,Φ,Ψ,F) be a strongly stable weakly regular linear system
(cf. Definition 2.6.c) with generating operators (A,B,C,D). Assume that the input space
U and the output space Y are finite-dimensional (i.e., U = Cm and Y = Cp). Further
assume that the Popov operator R = I − F∗F satisfies (4.80). Let (αj)

∞
j=1 be a complex

sequence with Re(αj) > 0 for all j ∈ N. Moreover, let Sk ∈ L(X ,Ckp) and Fk ∈ Ckp×km
be defined as in (4.32) and (4.33), respectively. Let Xk be defined as in Theorem 4.23.
Then,

〈x0, Xkx0〉 ≤ 〈x0, Xk+1x0〉 ≤ 〈x0, Xx0〉 , ∀ x0 ∈X , ∀ k ∈ N,

and the sequence (Xk)k∈N converges in the strong operator topology. Additionally, if
(αj)

∞
j=1 satisfies the non-Blaschke condition (4.79), then (Xk)k∈N converges even to X.

This means that for all x0 ∈X

lim
k→∞

Xkx0 = Xx0.

Moreover, if X is compact, then (Xk)k∈N converges to X in the uniform operator topology.
If X is in the Schatten class Sp(X ) for p ∈ [1,∞], then (Xk)k∈N converges to X in the
topology of Sp(X ).

Proof. For x0 ∈X and u ∈ L2(0,∞;Cm) we have

‖PkFu+ PkΨx0‖2L2 ≤ ‖Pk+1Fu+ Pk+1Ψx0‖2L2 ,

since Kk(α) ⊂ Kk+1(α). It follows that

〈x0, Xkx0〉 = sup
u∈L2(0,∞;Cm)

‖PkFu+ PkΨx0‖2 − ‖u‖2

≤ sup
u∈L2(0,∞;Cm)

‖Pk+1Fu+ Pk+1Ψx0‖2 − ‖u‖2 = 〈x0, Xk+1x0〉 .

Similarly, using that

‖PkFu+ PkΨx0‖2L2 ≤ ‖Fu+ Ψx0‖2L2 ,

we obtain

〈x0, Xkx0〉 ≤ 〈x0, Xx0〉 , ∀ x0 ∈X .

Since the sequence (Xk)k∈N is non-decreasing and bounded from above by X, it follows

from Theorem A.2 that (Xk)k∈N converges in the strong operator topology to some oper-

ator X̃ ∈ L(X ), such that X̃ ≤ X.

In the case where the non-Blaschke condition (4.79) is fulfilled, by [41, Lemma 4.4] there

holds ⋃
k∈N

Kk(α)⊗ Cp = L2(0,∞;Cp).
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Therefore, the sequence (Pk)k∈N converges to the identity in the strong operator topology,
that is

lim
k→∞

Pky = y, ∀ y ∈ L2(0,∞;Cp). (4.88)

Let x0 ∈X and ε > 0. By (3.62) there exists some u ∈ L2(0,∞;Cm) with

〈x0, Xx0〉 < ‖Fu+ Ψx0‖2 − ‖u‖2 + ε
2 .

By (4.88), there exists some N ∈ N with ‖(Fu+Ψx0)−Pk(Fu+Ψx0)‖2 ≤ ε
2 for all k ≥ N .

Then we obtain that for all k ≥ N there holds

〈x0, Xx0〉 < ‖Fu+ Ψx0‖2 − ‖u‖2 + ε
2

≤ ‖PkFu+ PkΨx0‖2 + ‖(Fu+ Ψx0)− Pk(Fu+ Ψx0)‖2 − ‖u‖2 + ε
2

≤ ‖PkFu+ PkΨx0‖2 − ‖u‖2 + ε ≤ 〈x0, Xkx0〉+ ε.

Using further that Xk ≤ X, we obtain

| 〈x0, (X −Xk)x0〉 | = 〈x0, Xx0〉 − 〈x0, Xkx0〉 < ε, ∀ k ≥ N.

Hence, it follows that the sequence (Xk)k∈N converges to X.

If additionally, we assume thatX is compact, then the non-decreasing sequence (Xk)k∈N
is bounded from above by a compact operator and therefore converges in the uniform op-
erator topology. If X is in the Schatten class, then the non-decreasing sequence (Xk)k∈N is
bounded from above by a Schatten class operator and therefore converges in the Schatten
class topology.

Next, we introduce a slightly different representation for the operator Xk as in (4.83),
which is numerically more advantageous.

Theorem 4.26. Let Σ = (T,Φ,Ψ,F) be a strongly stable weakly regular linear system
(cf. Definition 2.6.c) with generating operators (A,B,C,D). Assume that the input space
U and output space Y are finite-dimensional (i.e., U = Cm and Y = Cp). Further
assume that the Popov operator R = I − F∗F satisfies (4.80). Let (αj)

∞
j=1 be a complex

sequence with Re(αj) > 0 for all j ∈ N. Moreover, let Sk ∈ L(X ,Ckp) and Fk ∈ Cmp×km
be defined as in (4.32) and (4.33), respectively.
Then there exists some matrix Gk ∈ C`k×kp with finite rank such that

I − FkF ∗k = G∗kGk. (4.89)

Further, there exists some Rk ∈ L(X ,C`k) such that

G∗kRk = Sk. (4.90)

The operator Xk as in (4.83) fulfills

Xk = R∗kRk. (4.91)
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Proof. By Theorem 4.23, the matrix I − F ∗kFk ∈ Ckm×km is positive semidefinite. There-
fore, I − FkF ∗k ∈ Ckp×kp is positive semidefinite as well. Hence, there exists some matrix
Gk ∈ C`k×kp with full row rank such that (4.89) holds.

By (4.81) we have ker(I − F ∗kFk) = ker(FΞ,k). It follows from (4.82) that ker(FΞ,k) ⊂
ker(S∗kFk) and hence

ker(I − F ∗kFk) ⊂ ker(S∗kFk). (4.92)

We now prove
Im(Sk) ⊂ Im(I − FkF ∗k ). (4.93)

By taking orthogonal complements, this is equivalent to

ker(I − FkF ∗k ) ⊂ ker(S∗k).

Taking y ∈ ker(I − FkF ∗k ), it follows that y = FkF
∗
k y. Therefore

S∗ky = S∗kFkF
∗
k y (4.94)

and F ∗k y = F ∗kFkF
∗
k y. The latter is equivalent to (I − F ∗kFk)F ∗k y = 0. Thereby we obtain

that F ∗k y ∈ ker(I − F ∗kFk), which by (4.92) gives F ∗k y ∈ ker(S∗kFk). Hence S∗kFkF
∗
k y = 0.

From (4.94) we then obtain S∗ky = 0. We conclude that ker(I − FkF
∗
k ) ⊂ ker(S∗k), as

desired.
From (4.89) we obtain ker(I − FkF ∗k ) = ker(Gk), so that Im(I − FkF ∗k ) = Im(G∗k).

Together with (4.93), this shows that Im(Sk) ⊂ Im(G∗k). Since Gk has full row rank,
GkG

∗
k is invertible and therefore

Rk := (GkG
∗
k)
−1GkSk (4.95)

is well-defined. We now show that the operator Rk satisfies (4.90). It follows from
Im(Sk) ⊂ Im(G∗k) that for all x ∈ X , there exists a z ∈ Ckp such that Skx = G∗kz.
Then

G∗kRkx = G∗k(GkG
∗
k)
−1GkSkx = G∗k(GkG

∗
k)
−1GkG

∗
kz = G∗kz = Skx.

Since x ∈ X was arbitrary this proves that G∗kRk = Sk, i.e., Rk as defined in (4.95)
satisfies (4.90).

By Remark 4.24 we have Xk = S∗k [I + Fk(I − F ∗kFk)+F ∗k ]Sk. Using (4.93) and the
fact that (I − FkF ∗k )+(I − FkF ∗k ) is the orthogonal projection onto Im(I − FkF ∗k ) we may
alternatively write Xk as

Xk = S∗k [(I − FkF ∗k )+(I − FkF ∗k ) + Fk(I − F ∗kFk)+F ∗k ]Sk.

The following identity for Moore-Penrose pseudo-inverse is most easily proven by verifying
the Moore-Penrose conditions [23, Sec. 5.5.4]:

(I − FkF ∗k )+ = (I − FkF ∗k )+(I − FkF ∗k ) + Fk(I − F ∗kFk)+F ∗k .

From this we see that
Xk = S∗k(I − FkF ∗k )+Sk. (4.96)

On the other hand, by using (4.95), we obtain

R∗kRk = S∗kG
∗
k(GkG

∗
k)
−2GkSk,

and it is easily verified that G∗k(GkG
∗
k)
−2Gk is the Moore-Penrose pseudo-inverse of G∗kGk.

Since G∗kGk = I − FkF ∗k by (4.89), it follows that R∗kRk = Xk.
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Remark 4.27 (Projected bounded real singular optimal control problem). It follows from
Algorithm 1 that the matrix Fi ∈ Cip×im has the lower triangular block structure

Fi =

[
[Fi−1, 0]

Qi(Li ⊗ Im) +
[
0, D

]] . (4.97)

As a result, we can determine the matrix Gi ∈ C`i×pi and the operator Ri ∈ L(X ,C`i)
recursively as follows: We have

I − FiF ∗i

=

[
I − Fi−1F

∗
i−1 −

[
Fi−1 0

] (
Qi(Li ⊗ Im)

)∗
−
(
Qi(Li ⊗ Im)

) [
Fi−1 0

]∗
I −

(
Qi(Li ⊗ Im) +

[
0, D

]) (
Qi(Li ⊗ Im) +

[
0, D

])∗] .
By making the ansatz Gi =

[
Gi−1 G12,i

0 G22,i

]
, we obtain

[
G∗i−1Gi−1 G∗i−1G12,i

G∗12,iGi−1 G∗12,iG12,i +G∗22,iG22,i

]
= G∗iGi = I − FiF ∗i

=

[
I − Fi−1F

∗
i−1 −

[
Fi−1 0

] (
Qi(Li ⊗ Im)

)∗
−
(
Qi(Li ⊗ Im)

) [
Fi−1 0

]∗
I −

(
Qi(Li ⊗ Im) +

[
0, D

]) (
Qi(Li ⊗ Im) +

[
0, D

])∗] .
Thus, the matrix G12,i is the unique solution of the linear equation

G∗i−1G12,i = −
[
Fi−1 0

] (
Qi(Li ⊗ Im)

)∗
.

Thereafter, the operator G22,i can be obtained by a factorization

G∗22,iG22,i = I −
(
Qi(Li ⊗ Im) +

[
0, D

]) (
Qi(Li ⊗ Im) +

[
0, D

])∗ −G∗12,iG12,i.

It follows from Algorithm 1 that Si is obtained from Si−1 by

Si =

[
Si−1√

2Re(αi) · V ∗i

]
. (4.98)

Hence, by making the ansatz Ri =
[
Ri−1

R2,i

]
, we can rewrite equation (4.90) as

[
G∗i−1 0
G∗12,i G∗22,i

] [
Ri−1

R2,i

]
=

[
Si−1√

2Re(αi) · V ∗i

]
.

Hence, R2,i is the solution of the linear equation

G∗22,iR2,i =
√

2Re(αi) · V ∗i −G∗12,iRi−1.
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Algorithm 3 ADI iteration for the bounded real singular optimal control problem.

Input: Σ = (T,Φ,Ψ,F) a strongly stable weakly regular linear system with generating

operators (A,B,C,D), such that I − F∗F ≥ 0. Finite-dimensional input space U = Cm

and output space Y = Cp. Shift parameters α1, . . . , αk ∈ C with Re(αi) > 0.

Output: Rk ∈ L(X ,C`k) such that R∗kRk = Xk ≈ X, where X is given by (3.63)

1: Perform Steps 1–5 in Algorithm 1

2: Determine a matrix G1 ∈ C`1×p with full row rank such that

G∗1G1 = I − F1F
∗
1

3: Determine an operator R1 ∈ L(X ,C`1) such that

G∗1R1 = S1

4: for i = 2, 3, . . . , k do

5: Perform Steps 7–14 in Algorithm 1

6: Determine a matrix G12,i such that

G∗i−1G12,i = −
[
Fi−1 0

] (
Qi(Li ⊗ Im)

)∗
7: Determine a matrix G22,i with full row rank such that

G∗22,iG22,i = I −
(
Qi(Li ⊗ Im) +

[
0, D

])(
Qi(Li ⊗ Im) +

[
0, D

])∗
−G∗12,iG12,i

8: Gi =

[
Gi−1 G12,i

0 G22,i

]
9: Determine an operator R2,i such that

G∗22,iR2,i =
√

2Re(αi) · V ∗i −G∗12,iRi−1

10: Ri =

[
Ri−1

R2,i

]
11: end for
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4.6.2 The ADI method for the positive real singular optimal control
problem

In the positive case we assume that Y = U = Cm and consider the cost functional (3.2)
with Q = 0, R = 0, and N = I (Section 3.6). In the singular optimal control problem we
have that the Popov operator (3.4) satisfies (3.51). In the positive real case this means
that

〈u, (F∗ + F)u〉L2(0,∞;Cm) ≥ 0. (4.99)

With the notation introduced after (1.15), this condition is written in the form F∗+F ≥ 0.
The following theorem is the projected version of the positive real singular optimal control
problem. The proof can be done by adapting the lines of the proof of Theorem 4.23 and
therefore is omitted.

Theorem 4.28. Let Σ = (T,Φ,Ψ,F) be a strongly stable weakly regular linear system
(cf. Definition 2.6.c) with generating operators (A,B,C,D). Let Y = U = Cm. Further
assume that the Popov operator R = F∗ + F satisfies (4.99). Let (αj)

∞
j=1 be a complex

sequence with Re(αj) > 0 for all j ∈ N. Moreover, let Sk ∈ L(X ,Ckm) and Fk ∈ Ckm×km
be defined as in (4.32) and (4.33), respectively.
Then, the matrix F ∗k + Fk ∈ Ckm×km is positive semidefinite. In particular, there exists
some matrix FΞ,k ∈ C`k×km such that

F ∗k + Fk = F ∗Ξ,kFΞ,k. (4.100)

Further, there exists some operator SΞ,k ∈ L(X ,C`k) such that

F ∗Ξ,kSΞ,k = Sk. (4.101)

For the orthogonal projector Pk as in (4.29), the operator Xk defined by

Xk = S∗Ξ,kSΞ,k (4.102)

fulfills

x∗0Xkx0 = sup
u∈L2(0,∞;Cm)

−2Re 〈u, PkFu+ PkΨx0〉 , ∀ x0 ∈X . (4.103)

Again, we can formulate a convergence result. The proof is analogous to that of
Theorem 4.25 and therefore omitted.

Theorem 4.29. Let Σ = (T,Φ,Ψ,F) be a strongly stable weakly regular linear system
(cf. Definition 2.6.c) with generating operators (A,B,C,D). Let Y = U = Cm. Further
assume that the Popov operator R = F∗ + F satisfies (4.99). Let (αj)

∞
j=1 be a complex

sequence with Re(αj) > 0 for all j ∈ N. Moreover, let Sk ∈ L(X ,Ckm) and Fk ∈ Ckm×km
be defined as in (4.32) and (4.33), respectively. Let Xk be defined as in Theorem 4.28.
Then

〈x0, Xkx0〉 ≤ 〈x0, Xk+1x0〉 ≤ 〈x0, Xx0〉 , ∀ x0 ∈X , ∀ k ∈ N,
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and the sequence (Xk)k∈N converges in the strong operator topology. Additionally, if
(αj)

∞
j=1 satisfies the non-Blaschke condition (4.79), then (Xk)k∈N converges even to X.

This means that for all x0 ∈X

lim
k→∞

Xkx0 = Xx0.

Moreover, if X is compact, then Xk converges to X in the uniform operator topology and
if X is in the Schatten class Sp(X ) for p ∈ [1,∞], then Xk converges to X in the topology
of Sp(X ).

Remark 4.30 (Projected positive real singular optimal control problem). We know that
Fi ∈ Cim×im has the lower triangular block structure (4.97). This allows us to determine
FΞ,i ∈ C`i×mi and SΞ,i ∈ L(X ,C`i) recursively as follows (cf. Remark 4.27): We have

Fi + F ∗i

=

[
Fi−1 + F ∗i−1

[
I 0

]
(Qi(Li ⊗ Im))∗

(Qi(Li ⊗ Im))
[
I 0

]∗
D +D∗ +

[
I 0

]
(Qi(Li ⊗ Im))∗ + (Qi(Li ⊗ Im))

[
I 0

]∗
]
.

By making the ansatz FΞ,i =
[
FΞ,i−1 FΞ12,i

0 FΞ22,i

]
, we obtain[

F ∗Ξ,i−1FΞ,i−1 F ∗Ξ,i−1FΞ12,i

F ∗Ξ12,iFΞ,i−1 F ∗Ξ12,iFΞ12,i + F ∗Ξ22,iFΞ22,i

]
= F ∗Ξ,iFΞ,i = Fi + F ∗i

=

[
Fi−1 + F ∗i−1

[
I 0

]
(Qi(Li ⊗ Im))∗

(Qi(Li ⊗ Im))
[
I 0

]∗
D +D∗ +

[
I 0

]
(Qi(Li ⊗ Im))∗ + (Qi(Li ⊗ Im))

[
I 0

]∗
]
.

Thus, the matrix FΞ12,i is the unique solution of the linear equation

F ∗Ξ,i−1FΞ12,i =
[
I 0

]
(Qi(Li ⊗ Im))∗.

Thereafter, the matrix FΞ22,i can be obtained by a factorization

F ∗Ξ22,iFΞ22,i = D +D∗ +
[
I 0

]
(Qi(Li ⊗ Im))∗ + (Qi(Li ⊗ Im))

[
I 0

]∗ − F ∗Ξ12,iFΞ12,i.

It follows from Algorithm 1 that the operators Si and Si−1 are related by (4.98). Hence,

by making the ansatz SΞ,i =
[
SΞ,i−1

SΞ2,i

]
, we see that (4.101) can be written as[

F ∗Ξ,i−1 0

F ∗Ξ12,i F ∗Ξ22,i

] [
SΞ,i−1

SΞ2,i

]
=

[
Si−1√

2Re(αi) · V ∗i

]
.

Hence, SΞ2,i is the solution of the linear equation

F ∗Ξ22,iSΞ2,i =
√

2Re(αi) · V ∗i − F ∗Ξ12,iSΞ,i−1.

Remark 4.31 (Numerical effort for ADI iteration). Consider the discretized state space
Vh ⊂ X with dimension n such that p � n (p is the dimension of the output space
Y = Cp). In this case the numerical effort for all steps in Algorithm 3 and Algorithm 4,
except for the computation of the operator Vi = Vi−1 − (αi + αi−1) · (αiI − A∗)−1Vi−1,
are relatively negligible. The computation of Vi requires the solution of a PDE equation,
which can be done by applying adaptive finite element methods, as shown by the help of
a numerical example in Chapter 6.
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4.6 The ADI iteration for the bounded real and positive real optimal control problems

Algorithm 4 ADI iteration for the positive real singular optimal control problem.

Input: Σ = (T,Φ,Ψ,F) a strongly stable weakly regular linear system with generating

operators (A,B,C,D) such that F + F∗ ≥ 0 and Y = U = Cm. Shift parameters (αi)
k
i=1

with αi ∈ C and Re(αi) > 0.

Output: SΞ,k ∈ L(X ,C`k) such that S∗Ξ,kSΞ,k = Xk ≈ X, where X is given by (3.67).

1: Perform Steps 1–5 in Algorithm 1

2: Determine a matrix FΞ,1 ∈ C`1×m with full row rank such that

F ∗Ξ,1FΞ,1 = F1 + F ∗1

3: Determine an operator SΞ,1 ∈ L(X ,C`1) such that

F ∗Ξ,1SΞ,1 = S1

4: for i = 2, 3, . . . , k do

5: Perform Steps 7–14 in Algorithm 1

6: Determine a matrix FΞ12,i such that

F ∗Ξ,i−1FΞ12,i =
[
I 0

]
(Qi(Li ⊗ Im))∗

7: Determine a matrix FΞ22,i with full row rank such that

F ∗Ξ22,iFΞ22,i = D +D∗ +
[
I 0

]
(Qi(Li ⊗ Im))∗

+ (Qi(Li ⊗ Im))
[
I 0

]∗
− F ∗Ξ12,iFΞ12,i

8: FΞ,i =

[
FΞ,i−1 FΞ12,i

0 FΞ22,i

]
9: Determine an operator SΞ2,i such that

F ∗Ξ22,iSΞ2,i =
√

2Re(αi) · V ∗i − F ∗Ξ12,iSΞ,i−1

10: SΞ,i =

[
SΞ,i−1

SΞ2,i

]
11: end for
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Chapter 5
The Newton-Kleinman method for the
optimal control of regular linear systems

Truth is ever to be found in simplicity, and not in the multiplicity
and confusion of things.

—Isaac Newton
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We give an algorithmic approach to find the approximate solution of the linear-
quadratic optimal control problem for regular linear systems whose dual system is also
regular. The algorithm is an extension of the Newton-Kleinman method [29] to the infinite-
dimensional spaces. This extension was studied in [12] for exponentially stable well-posed
linear systems with bounded control and observation operators. We propose an extension
to externally stable regular linear systems with unbounded control and observation op-
erators. We construct a sequence of infinite-time observability Gramians to approximate
the Riccati operator (3.10). We show the feasibility of the iterations by establishing an
interconnection of the system with its anticausal dual at each Newton’s iteration. To
prove monotonicity and convergence of our algorithm, we set the additional assumption
of strong stability on the system and require the control operator to be bounded.
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The Newton-Kleinman method for the optimal control of regular linear systems

5.1 The Newton-Kleinman iteration

Throughout this chapter the Hilbert spaces U , X , and Y are assumed to be pivot spaces
(cf. Section 1.3). Moreover, we suppose that Σ = (T,Φ,Ψ,F) is an externally stable regular
linear system with generating operators (A,B,C, 0), such that its dual system Σd is also
regular (cf. Section 2.6). Moreover, we consider the cost functional (3.2) such that

R > 0, Q̃ := Q−N∗R−1N ≥ 0.

Our setting is mostly based on the results presented in Chapter 3. Note that we did not
make any regularity assumption on Σ = (T,Φ,Ψ,F) in Chapter 3 and the results presented
there hold for all well-posed linear systems. In this chapter we mainly assume that Σ and
its dual Σd are regular. Hence, we may replace CΛw by CΛ and B∗Λw by B∗Λ in all the
formulas from Chapter 3.

We start by recalling the “Riccati-like” equation (3.37) from Chapter 3. This equation
is our main inspiration for proposing the Newton-Kleinman iteration. We know from
Section 3.2 that F opt and Aopt can be characterized by the Riccati operator (3.10) as
follows:

F optx0 = −R−1 (B∗ΛX +NCΛ)x0, (5.1)

Aoptx0 = (A+BF opt)x0, ∀ x0 ∈ D(Aopt). (5.2)

The Riccati operator (3.10) satisfies the following Riccati-like equation, which holds on
D
(
Aopt

)
: For every x0, z0 ∈ D(Aopt),〈
Aoptx0, Xz0

〉
+
〈
Xx0, A

optz0

〉
=

−
〈
CΛx0, (QCΛ +N∗F opt)z0

〉
+
〈
F optx0, B

∗
ΛXz0

〉
.

(5.3)

By substituting (5.1) in the right-hand side of (5.3), we obtain〈
Aoptx0, Xz0

〉
+
〈
Xx0, A

optz0

〉
= −

〈
CΛx0, Q̃CΛz0

〉
−
〈
R−1B∗ΛXx0, B

∗
ΛXz0

〉
, (5.4)

where Q̃ = Q − N∗R−1N . The Riccati-like equation (5.4) motivates us to propose an
iterative method, presented in Algorithm 5, to find an approximation of the Riccati
operator (3.10). Algorithm 5 can be understood as a generalization of the Newton-
Kleinman method [29]: Given a self-adjoint operator Xk ∈ L(X ), k = 0, 1, 2, . . . , define
Ak : D(Ak) ⊂X →X and Fk : D(Ak) ⊂X → U as

Akx0 := (A+BFk)x0,

Fkx0 := −R−1 (B∗ΛXk +NCΛ)x0,

for all x0 ∈ D(Ak), where D(Ak) is defined by

D(Ak) := {x0 ∈ D(Fk) | (A+BFk)x0 ∈X } .

The Newton-Kleinman iteration is to find a self-adjoint operator Xk+1 ∈ L(X ), for k =
0, 1, 2, . . . , which satisfies the Lyapunov equation

〈Akx0, Xk+1z0〉+ 〈Xk+1x0, Akz0〉 =

−
〈
CΛx0, Q̃CΛz0

〉
−
〈
R−1B∗ΛXkx0, B

∗
ΛXkz0

〉
,

(5.5)
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5.1 The Newton-Kleinman iteration

for all x0, z0 ∈ D(Ak). In Algorithm 5 we give the Newton-Kleinman method to solve
the linear-quadratic optimal control problem for externally stable regular linear systems
whose dual system is also regular. Without loss of generality, we assume that the system
has a zero feedthrough operator.

Algorithm 5 The Newton-Kleinman method for the optimal control of externally stable
regular linear systems.

Input: Σ = (T,Φ,Ψ,F) an externally stable regular linear system with generating opera-

tors (A,B,C, 0) such that its dual system is also regular. Cost functional (3.2) such that

R > 0 and Q̃ := Q−N∗R−1N ≥ 0.

Output: Ψaug
n ∈ L

(
X , L2 (0,∞; Y ×U )

)
, such that (Ψaug

n )
∗

Ψaug
n ≈ X, where X is the

Riccati operator (3.10).

1: Ψaug
0 :=

(
Q̃1/2Ψ

0

)
2: for k = 1, 2, . . . , n do

3: Xk =
(
Ψaug
k−1

)∗
Ψaug
k−1, Fk = −R−1 (B∗ΛXk +NCΛ), Ak = A+BFk

4: Caug
k =

(
Q̃1/2CΛ

R−1/2B∗ΛXk

)
∈ L(D(CΛ),Y ×U ), Σaug

k :=

ẋ(t) = Akx(t)

y(t) = Caug
k x(t)

5: Find the output map Ψaug
k corresponding to the pair (Ak, C

aug
k )

6: k = k + 1

7: end for

In the upcoming section we will show that

(i) The Lyapunov equation (5.5) is well-defined.

(ii) Ak generates a strongly continuous semigroup Tk on X .

(iii) Caug
k defined as

Caug
k :=

(
Q̃1/2CΛ

R−1/2B∗ΛXk

)
∈ L(D(CΛ),Y ×U ),

is an infinite-time admissible observation operator for the semigroup Tk.

(iv) There exists a solution to (5.5) given by

Xk+1 =
(
Ψaug
k

)∗
Ψaug
k ∈ L(X ),
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where
Ψaug
k ∈ L

(
X , L2 (0,∞; Y ×U )

)
is defined as (

Ψaug
k x0

)
(t) = Caug

k Tkt x0, ∀ x0 ∈X , t ≥ 0.

Remark 5.1. If the input and output spaces are finite-dimensional (i.e., U = Cm and
Y = Cp, for some m, p ∈ N), then Algorithm 5 provides approximative solutions of finite
rank.

Remark 5.2. (a) Each iteration of the Newton-Kleinman method consists of a state feed-
back and a subsequent solution of the corresponding Lyapunov equation. In general,
weak regularity is not preserved under feedback (see for example [58, Remark 7.5.4]).
This is the main reason why we restrict ourselves to regular linear systems. Moreover,
the dual of a regular linear system is not necessarily regular (see [61, Example 8.1]).
Hence, it is necessary to further assume that the dual system is also regular.

(b) If the output space is finite-dimensional (i.e., Y = Cp for some p ∈ N), then the
dual of a regular linear system is also regular. The reason is that weak regularity is
equivalent to (strong) regularity, if the output space is finite-dimensional. Note that
weak regularity is preserved under duality transformation [61].

5.2 Feasibility of the algorithm

In this section we show that equation (5.5) is well-defined for all k = 0, 1, 2, . . . . To this
end, we first recall the anticausal interpretation of the dual system Σd on the interval [0,∞)
(cf. Section 2.6). This is an important ingredient in proving feasibility of Algorithm 5. In
fact, we will show that at each iteration of the Newton-Kleinman algorithm, the infinite-
time observability Gramian

Xk+1 =
(
Ψaug
k

)∗
Ψaug
k

can be interpreted in terms of an interconnection of Σaug
k (Step 4 of Algorithm 5) with

its anticausal dual. This idea is inspired by [70, Section 8] and we refer to this paper for
more details.

Let ya ∈ L2(0,∞; Y ), xa : [0,∞) → X , and ua ∈ L2(0,∞; U ) be respectively the
input function, the state trajectory, and the output function of the anticausal dual system
Σa. As a result, we have (see Section 2.6)

xa(t) = Ψ∗S∗t y
a, ∀ t ≥ 0,

ua = F∗ya.
(5.6)

It follows from [70, Theorem 6.3 and Proposition 5.2] that the state trajectories xa :
[0,∞)→X vanish at infinity. This means that

lim
t→∞

xa(t) = 0.

For almost all t ≥ 0, the functions ya, xa, and ua satisfy

−ẋa(t) = A∗xa(t) + C∗ya(t),

ua(t) = B∗Λx
a(t).

(5.7)
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5.2 Feasibility of the algorithm

Now we are ready to show feasibility of Algorithm 5 for externally stable regular linear
systems whose dual system is also regular.

Theorem 5.3. Let Σ = (T,Φ,Ψ,F) be an externally stable regular linear system with
generating operators (A,B,C, 0), such that its dual system is also regular. Let J be the
cost functional (3.2) such that R > 0 and Q̃ := Q−N∗R−1N ≥ 0. For all k ∈ N, let Xk,
Fk, Ak, Caug

k , and Ψaug
k be the operators generated by Algorithm 5. Then, for all k ∈ N

(a) Ak generates a strongly continuous semigroup Tk on X .

(b) D(Ak) ⊂ D(CΛ).

(c) CΛ, B∗ΛXk, and Fk are infinite-time admissible observation operators for the semigroup

Tk. In particular,

Caug
k =

(
Q̃1/2CΛ

R−1/2B∗ΛXk

)
∈ L(D(CΛ),Y ×U )

is an infinite-time admissible observation operator for Tk.

(d) There exists a solution to (5.5) given by

Xk+1 =
(
Ψaug
k

)∗
Ψaug
k ∈ L(X ).

Proof. The proof is done by induction. Inspired by [70, Section 8], we interpret the
sequence of infinite-time observability Gramians

Xk+1 =
(
Ψaug
k

)∗
Ψaug
k

in terms of an interconnection of the respective systems with their anticausal dual systems.
Step 1 (base case). We start the induction by showing that the first iteration of the

Newton-Kleinman algorithm is well-defined. Let X0 = 0 and consider (5.5) for k = 0, i.e.,

〈Ax0, X1z0〉+ 〈X1x0, Az0〉 = −
〈
CΛx0, Q̃CΛz0

〉
, ∀ x0, z0 ∈ D(A). (5.8)

The external stability of the regular linear system Σ (cf. Definition 2.6.a) means in par-
ticular that CΛ is an infinite-time admissible observation operator for T. Hence, it follows
from Theorem 2.21 that X1 given by

X1 = Ψ∗Q̃Ψ, (5.9)

is a solution of the Lyapunov equation (5.8).
Next, we show that B∗ΛX1 and F1 are infinite-time admissible observation operators

for the semigroup T. We follow a procedure similar to [70, Section 8]. Let x : [0,∞)→X
and y ∈ L2(0,∞; Y ) be the state trajectory and output function of Σ = (T,Φ,Ψ,F)
corresponding to the input function u ∈ L2(0,∞; U ) and initial state x0 ∈ X . As a
result, we have

y = Ψx0 + Fu.
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Since Σ is time-invariant, we have for all t ≥ 0 (see (2.10))

S∗t y = Ψx(t) + FS∗tu.

By setting u = 0 we obtain

S∗t y = Ψx(t). (5.10)

Now let ya, xa, and ua be respectively the input function, the state trajectory, and the
output function of the anticausal dual system Σa. We interconnect Σ with its anticausal
dual system Σa by setting

ya = Q̃y, (5.11)

as depicted in Figure 5.1.

u = 0

x0

Σ := (A, B, C)
y

Q̃

ua

xa0

Σa := (−A∗,−C∗, B∗)
ya

Figure 5.1: Interconnection of Σ and Σa.

At this point, by using the relations (5.6), (5.9) – (5.11), we obtain for all t ≥ 0

xa(t) = Ψ∗S∗t y
a = Ψ∗Q̃S∗t y = Ψ∗Q̃Ψx(t) = X1x(t). (5.12)

Now it follows from Proposition 2.32 and Theorem 2.39 that x(t) ∈ D(CΛ) and xa(t) ∈
D(B∗Λ). Hence, we conclude from (5.12) that

X1x(t) ∈ D(B∗Λ).

The output of the anticausal dual system is an L2 function (cf. Section 2.6). In this regard,
we obtain that

ua (·) = B∗Λx
a(·) = B∗ΛX1x (·) ∈ L2(0,∞; U ).

Therefore, B∗ΛX1 is an infinite-time admissible observation operator for the semigroup T.
Since CΛ and B∗ΛX1 are infinite-time admissible observation operators for T, we have that

F1 := −R−1 (B∗ΛX1 +NCΛ)

is also an infinite-time admissible observation operator for T. As a result, it follows from
Theorem 2.47 that A1 := A + BF1 generates a strongly continuous semigroup T1 (set

92



5.2 Feasibility of the algorithm

K = I and D = 0 in Theorem 2.47). Moreover, CΛ, B∗ΛX1, and F1 are infinite-time
admissible observation operators for T1. Hence,

Caug
1 =

(
Q̃1/2CΛ

R−1/2B∗ΛX1

)
∈ L(D(CΛ),Y ×U )

is also an infinite-time admissible observation operator for T1. It remains to prove that

D(A1) ⊂ D(CΛ).

Let x0 ∈ D(A1) and s ∈ C with Re(s) > max
{
ω0(T), ω0(T1)

}
. Then, there exists some

w0 ∈X such that x0 = (sI−A1)−1w0. By using the resolvent identity for A1 = A+BF1,
we obtain

x0 = (sI −A)−1w0 + (sI −A)−1BF1x0.

We know that (sI−A)−1w0 ∈ D(A) ⊂ D(CΛ). In addition, since Σ is regular, there holds
(see (2.42) in Theorem 2.32)

(sI −A)−1BF1x0 ∈ D(CΛ).

As a result, we obtain that x0 ∈ D(CΛ) and therefore D(A1) ⊂ D(CΛ).
Step 2 (inductive step). In order to show the main step of the induction, let us make

the following induction hypothesis: For some k ∈ N

(i) Xk ∈ L(X ) is the k-th operator generated by Algorithm 5.

(ii) Ak := A+BFk generates a strongly continuous semigroup Tk.

(iii) Caug
k ∈ L(D(CΛ),Y ×U ) is an infinite-time admissible observation operator for Tk.

(iv) D(Ak) ⊂ D(CΛ).

Let us consider the augmented observation operator Caug
k ∈ L(D(CΛ),Y × U ), which is

defined by

Caug
k =

(
Q̃1/2CΛ

R−1/2B∗ΛXk

)
.

Furthermore, for almost all t ≥ 0, let us define the augmented system

Σaug
k :=

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Caug
k x(t).

(5.13)

At this point we set up the state-feedback relationship u(t) := Fkx(t)+v(t) (see Figure 5.2)
and obtain the augmented closed-loop system

Σaug,cl
k :=

{
ẋ(t) = (A+BFk)x(t) +Bv(t),

y(t) = Caug
k x(t).

(5.14)
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Σaug,cl
k := (Ak, B, Caug

k )

x0

u
ẋ = Ax+Bu

x

Fk

v
+ Caug

k

y

Figure 5.2: The augmented closed-loop system Σaug,cl
k .

Now let Ψaug
k and Faug

k denote the output map and the input-output map of Σaug,cl
k ,

respectively. As a result, we have

y = Ψaug
k x0 + Faug

k v.

Since Σaug,cl
k is time-invariant, we have for all t ≥ 0

S∗t y = Ψaug
k x(t) + Faug

k S∗t v.

By setting v = 0 we obtain

S∗t y = Ψaug
k x(t). (5.15)

At the beginning of our inductive step we assumed that Ak := A + BFk generates a
strongly continuous semigroup Tk and Caug

k is an infinite-admissible observation operator
for Tk. Hence, it follows from Theorem 2.21 that the infinite-time observability Gramian
of the pair (Ak, C

aug
k ) is a solution of the Lyapunov equation (5.5). This means that

Xk+1 =
(
Ψaug
k

)∗
Ψaug
k (5.16)

is a solution of (5.5). At this point we show that Xk+1, as in (5.16), can be constructed

using an interconnection of Σaug,cl
k with its anticausal dual system:

(1) Let Σa,aug
k denote the anticausal dual of the augmented closed-loop system Σaug,cl

k .

(2) Let ya, xa, and ua be the input function, the state trajectory, and the output function
of Σa,aug

k , respectively.

Then, for all t ≥ 0 we have {
xa(t) =

(
Ψaug
k

)∗
S∗t y

a,

ua =
(
Faug
k

)∗
ya.

(5.17)
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Moreover, for almost all t ≥ 0 there holds (see (5.6) and (5.7))

Σa,aug
k :=

{
−ẋa(t) = A∗kx

a(t) +
(
Caug
k

)∗
ya(t),

ua(t) = B∗Λx
a(t).

(5.18)

We interconnect Σaug,cl
k with Σa,aug

k by setting

ya = y, (5.19)

as shown in Figure 5.3.

Σaug,cl
k := (Ak, B, Caug

k )

x0

u
ẋ = Ax+Bu

x

Fk

v
+ Caug

k

y

ya

Σa,aug
k := (−A∗k,− (Caug

k )
∗
, B∗)

ua

xa0

Figure 5.3: Interconnection of Σaug
k and Σa,aug,cl

k .

Using the relations (5.15) – (5.17) and (5.19), we obtain for all t ≥ 0

xa(t) =
(
Ψaug
k

)∗
S∗t y

a =
(
Ψaug
k

)∗
S∗t y

=
(
Ψaug
k

)∗
Ψaug
k x(t) = Xk+1x(t).

(5.20)

Now it follows from Proposition 2.32 and Theorem 2.39 that x(t) ∈ D(CΛ) and xa(t) ∈
D(B∗Λ), for almost all t ≥ 0. Hence, we conclude from (5.20) that

Xk+1x(t) ∈ D(B∗Λ).

The output of the anticausal dual system is an L2 function (cf. Section 2.6). In this regard,
we obtain

ua(·) = B∗ΛXk+1x(·) ∈ L2(0,∞; U ).
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Therefore, B∗ΛXk+1 is an infinite-time admissible observation operator for the semigroup
Tk. At this point, since CΛ and B∗ΛXk+1 are infinite-time admissible observation operators
for the semigroup Tk, we obtain that

Fk+1 := −R−1 (B∗ΛXk+1 +NCΛ) (5.21)

is also an infinite-time admissible observation operator for Tk. It follows from Theo-
rem 2.47 that

Ak+1 := A+BFk+1 = Ak +B(Fk+1 − Fk)

generates a strongly continuous semigroup Tk+1 on X (set K = I and D = 0 in Theo-
rem 2.47). Moreover, CΛ and B∗ΛXk+1 are infinite-time admissible observation operators
for Tk+1. Hence,

Caug
k+1 =

(
Q̃1/2CΛ

R−1/2B∗ΛXk+1

)
∈ L(D(CΛ),Y ×U )

is also an infinite-time admissible observation operator for Tk+1. Finally, by the resolvent
identity (see the proof of D(A1) ⊂ D(CΛ) in Step 1), we can show that

D(Ak+1) ⊂ D(CΛ).

Its proof is analogous to Step 1 and therefore omitted.

Remark 5.4. In the proof of Theorem 5.3, we showed that B∗ΛXk is a bounded operator
from D(CΛ) to U , for all k ∈ N. In addition, D(Ak) ⊂ D(CΛ). Hence, the right-hand
side of the Lyapunov equation (5.5) is well-defined for all iterations k ∈ N.

5.3 Connection between observability Gramians and the Ric-
cati operator

In this section we establish a direct connection between the Riccati operator (3.10) and
the infinite-time observability Gramians generated by Algorithm 5. Recall the augmented
observation operator

Caug
k =

(
Q̃1/2CΛ

R−1/2B∗ΛXk

)
∈ L(D(CΛ),Y ×U ),

and the augmented closed-loop system

Σaug
k :=

{
ẋ(t) = Akx(t) +Bv(t),

y(t) = Caug
k x(t).

Let ΨC,k and ΨB,k denote the output maps corresponding to the pairs (Ak, CΛ) and
(Ak, B

∗
ΛXk), respectively. With the “generator notation” (3.28) we have

(Ak, CΛ)  ΨC,k,

(Ak, B
∗
ΛXk)  ΨB,k.

(5.22)
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As a result, we conclude that

(Ak, C
aug
k )  Ψaug

k =

[
Q̃1/2ΨC,k

R−1/2ΨB,k

]
.

As we have already shown, Xk+1 (generated by Algorithm 5) is the infinite-time observ-
ability Gramian of the pair (Ak, C

aug
k ). In this regard, we obtain that

Xk+1 =
(
Ψaug
k

)∗
Ψaug
k =

[
Ψ∗C,k Ψ∗B,k

] [Q̃ 0
0 R−1

] [
ΨC,k

ΨB,k

]
. (5.23)

Now we present an important relation between the Riccati operator (3.10) and the ob-
servability Gramian (5.23).

Theorem 5.5. Let Σ = (T,Φ,Ψ,F) be an externally stable regular linear system with
generating operators (A,B,C, 0), such that its dual system is also regular. Let J be the
cost functional (3.2) such that R > 0 and Q̃ := Q − N∗R−1N ≥ 0. Let R be the Popov
operator (3.4) and assume that R is coercive, i.e., there exists some ε > 0 such that

〈u,Ru〉L2(0,∞;U ) ≥ ε ‖u‖L2(0,∞;U ) , ∀ u ∈ L2(0,∞; U ).

Furthermore, let X be the Riccati operator (3.10). Let Xk, Fk, and Ak be the operators
generated by Algorithm 5.
Then, with the notation (5.22), there holds

Xk+1 = X + Π∗kRΠk, ∀ k ∈ N, (5.24)

where
Πk := R−1ΨB,k +R−1NΨC,k −R−1(F∗Q+N)Ψ.

In particular, for all x0 ∈X and every k ∈ N, it follows that

〈x0, Xkx0〉 ≥ 〈x0, Xx0〉 . (5.25)

Proof. Let T and Tk be strongly continuous semigroups with generators A and Ak =
A + BFk, respectively. We apply the perturbation relationship (2.56) to Ak = A + BFk
and obtain that for every x0 ∈ D(Ak) and all t ≥ 0 there holds

Tkt x0 = Ttx0 +

∫ ∞
0

Tt−τBFkTkτx0 dτ,

= Ttx0 −
∫ ∞

0
Tt−τBR−1(B∗ΛXk +NCΛ)Tkτx0 dτ.

(5.26)

We multiply (5.26) from left by CΛ and use the notation (5.22) to obtain

ΨC,k = Ψ− FR−1 (ΨB,k +NΨC,k) . (5.27)

We further consider the following decomposition of the operator matrix
[
Q̃ 0
0 R

]
:[

Q̃ 0
0 R

]
=

[
I −N∗R−1

0 I

] [
Q N∗

N R

] [
I 0

−R−1N I

]
. (5.28)
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Using (5.28), we write Xk+1 (given by (5.23)) as

Xk+1 =
[
Ψ∗C,k Ψ∗B,kR

−1
] [Q̃ 0

0 R

] [
ΨC,k

R−1ΨB,k

]
=
[
Ψ∗C,k Ψ∗B,kR

−1
] [I −N∗R−1

0 I

] [
Q N∗

N R

] [
I 0

−R−1N I

] [
ΨC,k

R−1ΨB,k

]
=
[
Ψ∗C,k

(
Ψ∗B,k −Ψ∗C,kN

∗)R−1
] [Q N∗

N R

] [
ΨC,k

R−1 (ΨB,k −NΨC,k)

]
.

(5.29)

By substituting (5.27) in (5.29), we obtain

Xk+1 =

[
Ψ− FR−1 (ΨB,k +NΨC,k)

R−1 (ΨB,k −NΨC,k)

]∗ [
Q N∗

N R

] [
Ψ− FR−1 (ΨB,k +NΨC,k)

R−1 (ΨB,k −NΨC,k)

]
= P ∗k

[
Q N∗

N R

]
Pk,

(5.30)

where

Pk :=

[
Ψ
0

]
+

[
−F
I

]
R−1ΨB,k −

[
F
I

]
R−1NΨC,k.

Now we observe that the Riccati operator (3.10) can be reformed as

X = Ψ∗QΨ−Ψ∗(QF +N∗)R−1(F∗Q+N)Ψ

= Ψ∗QΨ−
[
Ψ∗ 0

] [Q N∗

N R

] [
F
I

]
R−1

[
F∗ I

] [Q N∗

N R

] [
Ψ
0

]
.

(5.31)

Using (5.30) and (5.31), we can apply a direct algebraic calculation to obtain

Xk+1 = X + Π∗kRΠk, (5.32)

where

Πk = R−1ΨB,k +R−1NΨC,k −R−1
[
F∗ I

] [Q N∗

N R

] [
Ψ
0

]
,

= R−1ΨB,k +R−1NΨC,k −R−1 (F∗Q+N) Ψ.

Since the Popov operator R is coercive, we have that

〈x0,Π
∗
kRΠkx0〉 ≥ 0, ∀ x0 ∈X .

As a result, it follows from (5.32) that

〈x0, Xkx0〉 ≥ 〈x0, Xx0〉 , ∀ x0 ∈X .
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5.3.1 Open problem: calculation of Xk in terms of Ψ and F

Note: Since this section is left as an open problem, the reader may skip this part and
continue with Section 5.4.

The convergence analysis of Algorithm 5 would be much simpler if we could compute
ΨB,k and ΨC,k in terms of Ψ and F. In such case, we could determine Xk in terms of Ψ
and F via (5.23). In order to make our claim easier to perceive, we present our idea by
considering the first two iterations of the Newton-Kleinman algorithm (Algorithm 5). If
we could generalize these calculations to all iterations, then we would be able to prove
convergence of our algorithm independently of any Lyapunov equation. At this moment
of time, we leave this part as an open problem.

The first iteration of Algorithm 5 produces the infinite-time observability Gramian X1,
which is given by

X1 = Ψ∗Q̃Ψ. (5.33)

Let Σ = (T,Φ,Ψ,F) be an externally stable regular linear system with generating operators
(A,B,C, 0), whose dual system is also regular. For almost all t ≥ 0, let us construct the
feedback relation u(t) = F1x(t) + v(t), where

F1 := −R−1 (B∗ΛX1 +NCΛ) (5.34)

and u, v ∈ L2(0,∞; U ) (as depicted in Figure 5.4). This means that for all x0 ∈ X and
for almost all t ≥ 0, we have the following closed-loop system

ẋ(t) = Ax(t) +Bu(t),

y(t) = CΛx(t),

z(t) = F1x(t),

u(t) = z(t) + v(t).

(5.35)

v u
ẋ(t) = Ax+Bu

x

F1

z

+ C
y

x0

Figure 5.4: The system Σ with the state feedback u(t) = F1x(t) + v(t).

Let Ψ̃1 and F̃1 denote respectively the output map and the input-output map corre-
sponding to the observation operator F1 in (5.35). As a result, for every x0 ∈ X and all
t ≥ 0 we have 

x(t) = Ttx0 + Φtu,

y = Ψx0 + Fu,
z = Ψ̃1x0 + F̃1u,

u = z + v = Ψ̃1x0 + F̃1u+ v,

(5.36)
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where (
Ψ̃1x0

)
(t) := F1Ttx0,(

F̃1u
)

(t) := F1Φtu.
(5.37)

The following proposition gives a representation of Ψ̃1 and F̃1 in terms of Ψ and F.

Proposition 5.6. Let Σ = (T,Φ,Ψ,F) be an externally stable regular linear system with
generating operators (A,B,C, 0), whose dual system is also regular. Let X1 be as in (5.33)
and let F1 be given by (5.34). Moreover, let J be the cost functional (3.2) such that R > 0
and Q̃ = Q−N∗R−1N ≥ 0. Furthermore, let Ψ̃1 and F̃1 be defined by (5.37).
Then,

Ψ̃1 = −R−1
(
F∗Q̃+N

)
Ψ,(

F̃1u
)

(t) = −R−1
(
F∗Q̃FPtu

)
(t)−R−1 (NFu) (t), ∀ t ≥ 0.

(5.38)

Proof. Recall the anticausal dual system Σa (Section 2.6) with generating operators
(A∗, C∗, B∗, 0): For almost all t ≥ 0{

−ẋa(t) = A∗xa(t) + C∗ya(t),

ua(t) = B∗Λx
a(t).

Moreover, we have {
xa(t) = Ψ∗S∗t y

a, ∀ t ≥ 0,

ua = F∗ya.

As a result, for almost all t ≥ 0 there holds

B∗ΛΨ∗S∗t y
a = B∗Λx

a(t) = ua(t) = (F∗ya) (t). (5.39)

To determine Ψ̃1, we choose the input ya of the anticausal dual system Σa to be

ya = Q̃Ψx0

(see Figure 5.1), and observe that for all t ≥ 0

ya = Q̃Ψx0 = Q̃ΨT0x0 = Q̃ΨStTtx0 = StQ̃ΨTtx0.

By the property S∗tSt = I we obtain

S∗t y
a = Q̃ΨTtx0. (5.40)

It follows from (5.33), together with (5.39) and (5.40), that

B∗ΛX1Ttx0 = B∗ΛΨ∗Q̃ΨTtx0 = B∗ΛΨ∗S∗t y
a = (F∗ya) (t) =

(
F∗Q̃Ψx0

)
(t).

Hence, we conclude that(
Ψ̃1x0

)
(t) = F1Ttx0 = −R−1(B∗ΛX1 +NCΛ)Ttx0 = −R−1

(
F∗Q̃Ψx0 +NΨx0

)
(t).
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Therefore,

Ψ̃1 = −R−1
(
F∗Q̃+N

)
Ψ.

To compute F̃1, we recall from (2.9) that for all t ≥ 0 there holds

ΨΦt = S∗tF− FS∗t . (5.41)

From (5.33) together with (5.41) we see that

B∗ΛX1Φtu = B∗ΛΨ∗Q̃ΨΦtu = B∗ΛΨ∗Q̃(S∗tFu− FS∗tu).

Using the properties S∗tSt = I, StS
∗
t = I − Pt (see (2.2)), and the shift-invariance of F

(i.e., StF = FSt), we obtain

B∗ΛX1Φtu = B∗ΛΨ∗S∗t Q̃(Fu− StFS∗tu)

= B∗ΛΨ∗S∗t Q̃(Fu− FStS
∗
tu)

= B∗ΛΨ∗S∗t Q̃(Fu− F(I −Pt)u)

= B∗ΛΨ∗S∗t Q̃FPtu

=
(
F∗Q̃FPtu

)
(t).

As a result of the above observation, we conclude that(
F̃1u

)
(t) = F1Φtu = −R−1(B∗ΛX1 +NCΛ)Φtu

= −R−1
(
F∗Q̃FPtu

)
(t)−R−1 (NFu) (t).

At this point, it seems to be intricate (if not impossible) to show that I−F̃1 is invertible
for unbounded control operators B ∈ L(U ,X−1) (a proof for bounded control operators
B ∈ L(U ,X ) is given as part of the proof of Proposition 5.7). If we could show that
I − F̃1 is boundedly invertible, then we would be able to calculate X2 (generated by the
second iteration of Algorithm 5) by

X2 = X + Π∗1RΠ1, (5.42)

where

Π1 =
[
(I − F̃1)−1R−1 −R−1

]
(F∗Q+N)Ψ.

Calculation of X2:

In order to obtain (5.42), we observe that if I − F̃1 is boundedly invertible, then we get
from the last equation in (5.36) that

u = (I − F̃1)−1Ψ̃1x0 + (I − F̃1)−1v. (5.43)
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By substituting (5.43) in the other equations of (5.36), we would obtain for all t ≥ 0

x(t) =
(
Tt + Φt(I − F̃1)−1Ψ̃1

)
x0 + Φt(I − F̃1)−1v(t),

y =
(

Ψ + F(I − F̃1)−1Ψ̃1

)
x0 + F(I − F̃1)−1v,

z =
(

Ψ̃1 + F̃1(I − F̃1)−1Ψ̃1

)
x0 + F̃1(I − F̃1)−1v,

u = (I − F̃1)−1Ψ̃1x0 + (I − F̃1)−1v.

(5.44)

Let us consider the closed-loop system (5.35). By substituting u(t) = F1x(t) + v(t) in
ẋ(t) = Ax(t) +Bu(t), we obtain for almost all t ≥ 0

ẋ(t) = Ax(t) +B (F1x(t) + v(t)) = (A+BF1)x(t) +Bv(t) = A1x(t) +Bv(t).

Therefore, (5.35) can be reformed as
ẋ(t) = A1x(t) +Bv(t),

y(t) = CΛx(t),

z(t) = F1x(t),

u(t) = z(t) + v(t).

(5.45)

By comparing (5.45) with (5.44) and using the “generator notation” (5.22), we conclude
that

(A1, CΛ)  Ψ + F(I − F̃1)−1Ψ̃1,

(A1, F1)  Ψ̃1 + F̃1(I − F̃1)−1Ψ̃1 = (I − F̃1)−1Ψ̃1.

Moreover, with F1 = −R−1(B∗ΛX1 +NCΛ) we obtain

ΨC,1 = Ψ + F(I − F̃1)−1Ψ̃1,

−R−1ΨB,1 −R−1NΨC,1 = (I − F̃1)−1Ψ̃1.
(5.46)

At this point, we can determine X2 by setting k = 1 in (5.24) and applying (5.46) to
obtain

X2 = X + Π∗1RΠ1,

where
Π1 = R−1ΨB,1 +R−1NΨC,1 −R−1(F∗Q+N)Ψ

= −(I − F̃1)−1Ψ̃1 −R−1(F∗Q+N)Ψ

= (I − F̃1)−1R−1
(
F∗Q̃+N

)
Ψ−R−1(F∗Q+N)Ψ.

(5.47)

Note that in the last equality of (5.47) we have used (5.37).

Altogether, we are able to determine Ψ̃1 and F̃1 in terms of Ψ and F as in Proposi-
tion 5.6. If we could additionally compute (I − F̃1)−1 in terms of Ψ and F, then we would
be able to determine X2 completely in terms of Ψ and F (see (5.42)).
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5.4 Monotonicity and convergence of the Newton-Kleinman
iterations

The principal objective of this work was to prove convergence of the Newton-Kleinman
algorithm for externally stable regular linear systems with unbounded control and obser-
vation operators. As we have already mentioned in Section 5.3.1, our idea to represent Xk

in terms of Ψ and F would result into intricate lines of proof. In this regard, one could
try to use the Lyapunov equations (5.5) to show convergence of the Newton-Kleinman
iterations, similarly to the finite-dimensional case (see, e.g., [38, Chapter 11]). However,
the main obstacle of this approach is to characterize D(A + BFk) at each Newton’s it-
eration in the case where the control operator B is unbounded (i.e., B ∈ L(U ,X−1)).
Specifically, for all k ∈ N, the relation between D(Ak) and D(Ak+1) is not known to us
at this very moment in time. Nevertheless, we could circumvent this hurdle by assuming
that the control operator B is bounded, i.e., B ∈ L(U ,X ). In this case we can show that
(see Appendix A.6)

D(A) = D(Ak) = D(Aopt).

In addition, we let Σ = (T,Φ,Ψ,F) be strongly stable, i.e., we let T be strongly stable
(cf. Definition 2.6.c). This assumption is needed so that we can apply Theorem 3.11 to
our setting.

In [12] monotonicity and convergence of the Newton-Kleinman iterations was proven
for exponentially stable well-posed linear systems with bounded control and observation
operators. The authors used Lyapunov equations of type (5.5) to prove monotonicity and
convergence. In this section we extend their approach to show convergence of Newton’s
iterations for strongly stable regular linear systems with bounded control and unbounded
observation operators. In addition, as for the previous sections, we let the dual system be
regular.

Proposition 5.7. Let Σ = (T,Φ,Ψ,F) be a strongly stable regular linear system such
that its dual system is also regular. Let (A,B,C, 0) be the generating operators of Σ
such that B ∈ L(U ,X ). Let J be the cost functional from (3.2) such that R > 0 and
Q̃ = Q−N∗R−1N ≥ 0. For all k ∈ N, let Fk = −R−1 (B∗ΛXk +NCΛ) and Ak = A+BFk
be the operators generated by Algorithm 5.
Then, Fk is an admissible feedback operator for Σ (cf. Definition 2.43) and Ak generates
a strongly stable semigroup Tk.

Proof. For almost all t ≥ 0, let us consider Σ with feedback relation u(t) = Fkx(t) + v(t),
where u, v ∈ L2(0,∞; U ). This means that we have the closed-loop system

ẋ(t) = Ax(t) +Bu(t),

y(t) = CΛx(t),

z(t) = Fkx(t),

u(t) = z(t) + v(t).

(5.48)

Let Ψ̃k and F̃k denote respectively the output map and the input-output map correspond-
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ing to the observation operator Fk in (5.48). As a result, for all t ≥ 0 we have
x(t) = Ttx0 + Φtu,

y = Ψx0 + Fu,
z = Ψ̃kx0 + F̃ku,
u = z + v = Ψ̃kx0 + F̃ku+ v.

(5.49)

In what follows we will show that I − F̃k is boundedly invertible, which means that Fk
is an admissible feedback operator for Σ (compare with Section 5.3.1). To this end, we
show that the transfer function of F̃k is uniformly line-regular with feedthrough operator
D̃k = 0 (cf. Definition 2.29.d).

Let G̃k denote the transfer function of F̃k. Because the semigroup T is strongly stable,
the growth bound of T (cf. Definition 2.2) satisfies ω0(T) = 0 and therefore

G̃k(s) = Fk (sI −A)−1B, for Re(s) > 0.

As shown in the proof of Theorem 5.3, Fk is an infinite-time admissible observation oper-
ator for the semigroup T. As a result, it follows from Theorem 2.14 that for every α > 0,
there exists Kα ≥ 0 such that∥∥∥Fk (sI −A)−1

∥∥∥ ≤ Kα√
Re(s)− α

, ∀ s ∈ Cα.

Therefore, for all s ∈ Cα we obtain∥∥∥G̃k(s)
∥∥∥ ≤ Kα ‖B‖√

Re(s)− α
, ∀ s ∈ Cα. (5.50)

It follows from (5.50) that for any ε > 0, we can choose Re(s) sufficiently large such that∥∥∥G̃k(s)
∥∥∥ ≤ ε.

Therefore, we obtain

lim
Re(s)→∞

∥∥∥G̃1(s)
∥∥∥ = 0. (5.51)

Condition (5.51) means that G̃k is uniformly line-regular with feedthrough operator D̃k =
0. Since I− D̃k = I is boundedly invertible, it follows from Proposition 2.30 that I− F̃k is
also boundedly invertible. This means that Fk is an admissible feedback operator for Σ.

Since I − F̃k is boundedly invertible, we get from the last equation in (5.49) that

u = (I − F̃k)−1Ψ̃kx0 + (I − F̃k)−1v. (5.52)

By substituting (5.52) in the other equations of (5.49), we obtain for all t ≥ 0 that

x(t) =
(
Tt + Φt(I − F̃k)−1Ψ̃k

)
x0 + Φt(I − F̃k)−1v,

y =
(

Ψ + F(I − F̃k)−1Ψ̃k

)
x0 + F(I − F̃k)−1v,

z =
(

Ψ̃k + F̃k(I − F̃k)−1Ψ̃k

)
x0 + F̃k(I − F̃k)−1v,

u = (I − F̃k)−1Ψ̃kx0 + (I − F̃k)−1v.

(5.53)
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In the closed-loop system (5.48), if we substitute u(t) = Fkx(t) + v(t) into ẋ(t) = Ax(t) +
Bu(t), we obtain for almost all t ≥ 0

ẋ(t) = Ax(t) +B (Fkx(t) + v(t)) = (A+BFk)x(t) +Bv(t) = Akx(t) +Bv(t).

Therefore, (5.48) can be reformed as
ẋ(t) = Akx(t) +Bv(t),

y(t) = CΛx(t),

z(t) = Fkx(t),

u(t) = z(t) + v(t).

(5.54)

By comparing (5.54) with (5.53), we conclude that the strongly continuous semigroup

Tk = T + Φ(I − F̃k)−1Ψ̃k

is generated by Ak = A + BFk. Since T is strongly stable, it follows from Lemma 2.46
that Tk is also strongly stable.

We are now ready to provide the main theorems of this section. Theorem 5.8 shows
that the operator sequence (Xk)k∈N ∈ L(X ) generated by Algorithm 5 is monotonically
non-increasing. Subsequently, Theorem 5.9 demonstrates convergence of this sequence to
the Riccati operator (3.10) in appropriate norms.

Theorem 5.8. Let Σ = (T,Φ,Ψ,F) be a strongly stable regular linear system such that
its dual system is also regular. Let (A,B,C, 0) be the generating operators of Σ such
that B ∈ L(U ,X ). In addition, let J be the cost functional (3.2) such that R > 0 and
Q̃ = Q − N∗R−1N ≥ 0. Let Xk, Fk, and Ak be the operators produced by Algorithm 5.
Then, the self-adjoint operators Xk ∈ L(X ) satisfy

〈x0, Xkx0〉X ≥ 〈x0, Xk+1x0〉X ≥ 〈x0, Xx0〉X ,

for every x0 ∈X and all k ∈ N, where X ∈ L(X ) is the Riccati operator (3.10).

Proof. It follows from Theorem 5.3 that for all k ∈ N, Ak = A+BFk generates a strongly
continuous semigroup Tk and the feedback operator Fk is an infinite-time admissible ob-
servation operator for Tk. Furthermore, by Remark 3.7.a, we know that F opt is an infinite-
time admissible observation operator for the semigroup Topt with generator Aopt.

Since B is bounded, i.e., B ∈ L(X ,U ), it follows from Theorem A.6 (with C = Fk
and C = F opt) that D(A) = D(Ak) = D(Aopt). Hence, the Lyapunov equation (5.5) can
be written as

〈Akx0, Xk+1z0〉X + 〈Xk+1x0, Akz0〉X =

−
〈
CΛx0, Q̃CΛz0

〉
Y
−
〈
R−1B∗Xkx0, B

∗Xkz0

〉
U
,

(5.55)

for all x0, z0 ∈ D(Ak) = D(A) = D(Aopt). Since Σ is a strongly stable regular linear
system, it follows from Proposition 5.7 that the semigroup Tk is strongly stable for all k ∈
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N. Therefore, by part (5) of Theorem 2.21, we conclude that the infinite-time observability
Gramian

Xk+1 =
(
Ψaug
k

)∗
Ψaug
k

is the unique solution of (5.55). Because B is bounded, the feedback operator Fk generated
by Algorithm 5 satisfies Fk = −R−1(B∗Xk +NCΛ). By adding the expression

〈B(Fk+1 − Fk)x0, Xk+1z0〉X + 〈Xk+1x0, B(Fk+1 − Fk)z0〉X

to both sides of (5.55) and rearranging the terms, we obtain

〈Ak+1x0, Xk+1z0〉X + 〈Xk+1x0, Ak+1z0〉X =

−
〈
CΛx0, Q̃CΛz0

〉
U
−
〈
R−1B∗Xk+1x0, B

∗Xk+1z0

〉
U

(5.56)

−
〈
R−1B∗(Xk+1 −Xk)x0, B

∗(Xk+1 −Xk)z0

〉
U
.

Furthermore, by increasing the index in (5.55), we get

〈Ak+1x0, Xk+2z0〉X + 〈Xk+2x0, Ak+1z0〉X =

−
〈
CΛx0, Q̃CΛz0

〉
Y
−
〈
R−1B∗Xk+1x0, B

∗Xk+1z0

〉
U
,

(5.57)

for all z0, x0 ∈ D(Ak+1) = D(A). Next, we subtract (5.57) from (5.56) to obtain

〈Ak+1x0, (Xk+1 −Xk+2)z0〉X + 〈(Xk+1 −Xk+2)x0, Ak+1z0〉X
= −

〈
R−1B∗(Xk+1 −Xk)x0, B

∗(Xk+1 −Xk)z0

〉
U
.

(5.58)

Since Ak+1 generates a strongly stable semigroup Tk+1 (see Proposition 5.7), it follows
from part (5) of Theorem 2.21 that Xk+1 − Xk+2 is the unique solution of (5.58) which
satisfies

〈x0, (Xk+1 −Xk+2)x0〉 ≥ 0, ∀ x0 ∈X .

By Theorem 5.5, we know that for all x0 ∈X and every k ∈ N there holds

〈x0, Xkx0〉X ≥ 〈x0, Xx0〉X .

Hence, we conclude that for all k ∈ N and every x0 ∈X

〈x0, Xkx0〉X ≥ 〈x0, Xk+1x0〉X ≥ 〈x0, Xx0〉X .

Now we are ready to prove convergence of the Newton-Kleinman algorithm to the
Riccati operator (3.10).

Theorem 5.9. With the assumptions of Theorem 5.8, the sequence of self-adjoint oper-
ators (Xk)k∈N ∈ L(X ) produced by Algorithm 5 converges to the Riccati operator (3.10)
in the strong operator topology as k →∞, i.e.,

lim
k→∞

Xkx = Xx, ∀ x ∈X .

In addition,
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(i) if X1 is compact, then

lim
k→∞

‖Xk −X‖L(X ) = 0.

(ii) if X1 is in the Schatten class Sp(X ) for some p ∈ [1,∞), then

lim
k→∞

‖Xk −X‖Sp(X ) = 0.

Proof. By Theorem 5.8, we know that for all x0 ∈X and every k ∈ N there holds

〈x0, Xkx0〉X ≥ 〈x0, Xk+1x0〉X ≥ 〈x0, Xx0〉X .

As a result, it follows from Theorem A.2 that Xk converges to some operator X∞ ∈ L(X )
which satisfies

〈x0, X∞x0〉X ≥ 〈x0, Xx0〉X , ∀ x0 ∈X .

In what follows we show that X∞ = X. In terms of (5.24), this means that

lim
k→∞

Π∗kRΠk = 0.

Let us assume that limk→∞Π∗kRΠk = ∆∞ ≥ 0. As a result, we have

X∞ = X + ∆∞. (5.59)

Recall that for every x0, z0 ∈ D(Ak) = D(A) and all k ∈ N, the operator Xk+1 satisfies
the Lyapunov equation

〈Akx0, Xk+1z0〉X + 〈Xk+1x0, Akz0〉X =

−
〈
CΛx0, Q̃CΛz0

〉
Y
−
〈
R−1B∗Xkx0, B

∗Xkz0

〉
U
.

(5.60)

By adding the expression〈
B(F opt − Fk)x0, Xk+1z0

〉
X

+
〈
Xk+1x0, B(F opt − Fk)z0

〉
X

to both sides of (5.60) and rearranging the terms, we obtain〈
Aoptx0, Xk+1z0

〉
X

+
〈
Xk+1x0, A

optz0

〉
X

=

−
〈
CΛx0, Q̃CΛz0

〉
U
−
〈
R−1B∗Xx0, B

∗Xz0

〉
U

−
〈
R−1B∗(Xk −Xk+1)x0, B

∗(Xk −Xk+1)z0

〉
U

+
〈
R−1B∗(Xk+1 −X)x0, B

∗(Xk+1 −X)z0

〉
U
.

(5.61)

Now we subtract the Riccati-like equation (5.4) from (5.61) to get〈
Aoptx0, (Xk+1 −X)z0

〉
+
〈
(Xk+1 −X)x0, A

optz0

〉
=

−
〈
R−1B∗(Xk −Xk+1)x0, B

∗(Xk −Xk+1)z0

〉
U

+
〈
R−1B∗(Xk+1 −X)x0, B

∗(Xk+1 −X)z0

〉
U
.

(5.62)
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Passing the limit k →∞ in (5.62) results in〈
Aoptx0,∆∞z0

〉
X

+
〈
∆∞x0, A

optz0

〉
X

= 〈B∗∆∞x0, B
∗∆∞z0〉U . (5.63)

Let Ψ̃∞ denote the output map corresponding to the pair (Aopt, B∗∆∞). This means that
for every x0 ∈X and all t ≥ 0 there holds(

Ψ̃∞x0

)
(t) = B∗∆∞Topt

t x0. (5.64)

At this point, we follow the lines of the proof for Theorem 3.11 to show that ∆∞ = 0. If
x0, z0 ∈ D(A) = D(Aopt), then t 7→ 〈Topt

t x0,∆∞Topt
t z0〉 is continuously differentiable on

[0,∞) and we obtain

d

dt

〈
Topt
t x0,∆∞Topt

t z0

〉
X

=
〈
AoptTopt

t x0,∆∞Topt
t z0

〉
X

+
〈
Topt
t x0,∆∞A

optTopt
t z0

〉
X
.

Since ∆∞ satisfies (5.63), there holds

d

dt

〈
Topt
t x0,∆∞Topt

t z0

〉
X

=
〈
B∗∆∞Topt

t x0, B
∗∆∞Topt

t z0

〉
U

=
〈(

Ψ̃∞x0

)
(t),

(
Ψ̃∞z0

)
(t)
〉

U
,

(5.65)

where we have used (5.64). By integrating (5.65), we obtain for each t > 0〈
Topt
t x0,∆∞Topt

t z0

〉
X
− 〈x0,∆∞z0〉X =

∫ t

0

〈(
Ψ̃∞x0

)
(τ),

(
Ψ̃∞z0

)
(τ)
〉

U
dτ. (5.66)

Since T is a strongly stable semigroup, it follows from Lemma 2.46 that Topt is also a
strongly stable semigroup (cf. Remark 3.6.b). This means that

lim
t→∞

Topt
t x0 = 0.

By letting t→∞ in (5.66), we conclude that

−〈x0,∆∞z0〉 =
〈

Ψ̃∞x0, Ψ̃∞z0

〉
L2(0,∞;U )

.

This being true for all x0, z0 ∈ D(Aopt), we must have

∆∞ = −Ψ̃∗∞Ψ̃∞ ≤ 0.

As a result, the only possibility for ∆∞ as above, is to fulfill ∆∞ = 0. Hence, we obtain
from (5.59) that

X∞ = X,

which shows convergence of the Newton-Kleinman iterations to the Riccati operator (3.10).
If additionally, we assume that X1 (generated by the first Newton’s iteration) is com-

pact, then the non-increasing sequence (Xk)k∈N is bounded from above by a compact
operator and therefore converges in the uniform operator topology. If X1 is in the Schat-
ten class, then the non-increasing sequence (Xk)k∈N is bounded from above by a Schatten
class operator and therefore converges in the Schatten class topology.
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If Σ = (T,Φ,Ψ,F) is exponentially stable (i.e., T is exponentially stable), then the
semigroup Topt is also exponentially stable (cf. Remark 3.6). In this case one can show
the quadratic rate of convergence for the Newton-Kleinman iterations [12, Theorem 6.4].
To this end, we need the following result from [18, p. 252] (see also [12, Theorem 5.5]):

Proposition 5.10. Let T denote a strongly continuous semigroup on the Hilbert space
X with generating operator A : D(A) ⊂ X → X . If T is exponentially stable and
S = S∗ ∈ L(X ), then

Γ =

∫ ∞
0

T∗tSTt dt

is the unique solution of the Lyapunov equation

〈Ax0,Γz0〉X + 〈Γx0, Az0〉X + 〈x0, Sz0〉X = 0, ∀ x0, z0 ∈ D(A).

With the help of Proposition 5.10, we are now ready to show the quadratic rate of
convergence for Algorithm 5:

Theorem 5.11. (see [12, Theorem 6.4]) Let Σ = (T,Φ,Ψ,F) be an exponentially stable
regular linear system (cf. Definition 2.6.d) such that its dual system is also regular. Let
(A,B,C, 0) be the generating operators of Σ such that B ∈ L(U ,X ). In addition, let J
be the cost functional (3.2) such that R > 0 and Q̃ = Q−N∗R−1N ≥ 0. Furthermore, let
X be the Riccati operator (3.10) and for all k ∈ N, let Xk, Fk, and Ak be the operators
produced by Algorithm 5. Then, the self-adjoint operators Xk satisfy

‖Xk+1 −X‖ ≤ c ‖Xk −X‖2 , ∀ k ∈ N,

where

c =

∫ ∞
0

∥∥∥(Topt
t

)∗∥∥∥∥∥BR−1B∗
∥∥∥∥∥Topt

t

∥∥∥ dt ≤ M2

2ω

∥∥BR−1B∗
∥∥ ,

with the constants M ≥ 1 and ω > 0 given by (2.14).

Proof. We follow the lines of the proof of [12, Theorem 6.4]. As we showed in the proof
of Theorem 5.9, the following Lyapunov equation holds for all x0, z0 ∈ D(A) = D(Aopt)
(see (5.62)):〈

Aoptx0, (Xk+1 −X)z0

〉
X

+
〈
(Xk+1 −X)x0, A

optz0

〉
X

=

−
〈
R−1B∗(Xk −Xk+1)x0, B

∗(Xk −Xk+1)z0

〉
U

+
〈
R−1B∗(Xk+1 −X)x0, B

∗(Xk+1 −X)z0

〉
U
.

This means that ∆k+1 := Xk+1 −X satisfies the Lyapunov equation〈
Aoptx0,∆k+1z0

〉
X

+
〈
∆k+1x0, A

optz0

〉
X

+ 〈x0, Sz0〉 = 0, (5.67)

with

S = (Xk −Xk+1)BR−1B∗(Xk −Xk+1)− (Xk+1 −X)BR−1B∗(Xk+1 −X).
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Because T is exponentially stable, we know from Remark 3.6 that the semigroup Topt (gen-
erated by Aopt) is also exponentially stable. As a result, it follows from Proposition 5.10
that ∆k+1 is the unique solution of the Lyapunov equation (5.67) and is given by

∆k+1 =

∫ ∞
0

(
Topt
t

)∗
S Topt

t dt. (5.68)

By Theorem 5.5, we know that Xk+1 −X = Π∗kR
−1Πk ≥ 0. In addition, it is clear that

(Xk+1 −X)BR−1B∗(Xk+1 −X) ≥ 0.

Hence, we observe from (5.68) that

0 ≤ Xk+1 −X ≤
∫ ∞

0

(
Topt
t

)∗ [
(Xk −Xk+1)BR−1B∗(Xk −Xk+1)

]
Topt
t dt.

Taking norms in the above inequality results in

‖Xk+1 −X‖ ≤ ‖Xk −Xk+1‖2
∫ ∞

0

∥∥∥(Topt
t

)∗∥∥∥∥∥BR−1B∗
∥∥∥∥∥Topt

t

∥∥∥ dt
= c ‖Xk −Xk+1‖2 ,

(5.69)

where

c =

∫ ∞
0

∥∥∥(Topt
t

)∗∥∥∥∥∥BR−1B∗
∥∥∥∥∥Topt

t

∥∥∥ dt

=
∥∥BR−1B∗

∥∥∫ ∞
0

∥∥∥(Topt
t

)∗∥∥∥∥∥∥Topt
t

∥∥∥ dt ≤ M2

2ω

∥∥BR−1B∗
∥∥ .

We know from Theorem 5.8 that for every x0 ∈X and all k ∈ N there holds

〈x0, Xx0〉 ≤ 〈x0, Xk+1x0〉 ≤ 〈x0, Xkx0〉 .

As a consequence, we have

0 ≤ 〈x0, (Xk −Xk+1)x0〉 ≤ 〈x0, (Xk −X)x0〉 ,

and therefore

‖Xk −Xk+1‖ ≤ ‖Xk −X‖. (5.70)

Now by using (5.69) and (5.70), we can conclude the quadratic rate of convergence

0 ≤ ‖Xk+1 −X‖ ≤ c‖Xk −X‖2.
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5.5 The ADI method for approximation of the augmented
output map

At Step 5 of Algorithm 5, one has to calculate the augmented output map Ψaug
k corre-

sponding to the pair (Ak, C
aug
k ). For all k ∈ N, we approximate Ψaug

k by applying the
ADI method from [41]. Specifically, we adapt [41, Algorithm 1] to our setting in order to
approximate the infinite-time observability Gramian

Xk+1 =
(
Ψaug
k

)∗
Ψaug
k .

The adaptation of [41, Algorithm 1] to our setting is presented in Algorithm 6. For
all k ∈ N, this algorithm produces Sk ∈ L

(
X ,Y ik ×U ik

)
which approximates Ψaug

k (the
numbers ik ∈ N are to be determined a posteriori by a suitable stopping criteria). If the
input and output spaces are finite-dimensional (i.e., U = Cm and Y = Cp, for some
m, p ∈ N), then Algorithm 6 provides approximative solutions of finite rank.

Algorithm 6 The ADI method for approximation of the output map Ψaug
k .

Input: Operators Ak and Caug
k from Step 4 of Algorithm 5, such that Ak generates a

bounded semigroup Tk. Shift parameters α1, . . . , αik ∈ C with Re(αi) > 0.

Output: Sk := Skik = ι∗Yik
Ψaug
k ∈ L

(
X ,Y ik ×U ik

)
, such that X̃

(ik)
k+1 :=

(
Sk
)∗
Sk ≈

Xk+1, where Xk+1 is the infinite-time observability Gramian of the pair (Ak, C
aug
k ).

1: V k
1 = (α1I −A∗k)−1

(
Caug
k

)∗
2: Sk1 =

√
2Re(α1) ·

(
V k

1

)∗
3: for i = 1, 2, . . . , ik do

4: V k
i = V k

i−1 − (αi + αi−1) · (αiI −A∗k)−1V k
i−1

5: Ski =
[(
Ski−1

)∗ √
2Re(αi) · V k

i

]
6: end for

Remark 5.12. In Algorithm 6, we assumed that Ak generates a bounded semigroup Tk.
Therefore, the growth bound of Tk satisfies ω0(Tk) = 0 and the shift parameters α1, . . . ,
αik ∈ C must satisfy Re(αi) > 0. One could extend Algorithm 6 to the case where the
semigroup Tk is not necessarily bounded. In this case the shift parameters must satisfy
Re(αi) > ω0(Tk).

If the shift parameters α1, . . . , αik ∈ C satisfy the non-Blaschke condition (4.79), then
the convergence of Algorithm 6 follows from [41, Theorem 4.7]. In fact, the following
convergence theorem holds true:

Theorem 5.13. (see [41, Theorem 4.7]) Let U , X , Y be Hilbert spaces. For all k ∈ N, let
Ak and Caug

k be the operators generated by Algorithm 5, such that Ak : D(Ak) ⊂X →X
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generates a bounded semigroup Tk. Let Xk+1 ∈ L(X ) be the infinite-time observability
Gramian of the pair (Ak, C

aug
k ), which is given by

Xk+1 =
(
Ψaug
k

)∗
Ψaug
k .

Assume that the sequence of shifts parameters (αi)i∈N ∈ C satisfies the non-Blaschke
condition

∞∑
j=1

Re(αj)

1 + |αj |2
=∞.

Then, Algorithm 6 is feasible and the operator sequence(
X̃

(i)
k+1

)
i∈N

=
(

(Ski )∗Ski

)
i∈N

is monotonically non-decreasing and converges strongly to Xk+1. This means that

lim
i→∞

X̃
(i)
k+1 = Xk+1.

Moreover, the following holds true:

(i) If the Gramian Xk+1 is compact, then the operator sequence (X̃
(i)
k+1)i∈N is also com-

pact and there holds

lim
i→∞

∥∥∥X̃(i)
k+1 −Xk+1

∥∥∥
L(X )

= 0.

(ii) If, for some p ∈ [1,∞), the Gramian Xk+1 is of p-th Schatten class, then the operator

sequence (X̃
(i)
k+1)i∈N is also of p-th Schatten class and there holds

lim
i→∞

∥∥∥X̃(i)
k+1 −Xk+1

∥∥∥
Sp(X )

= 0.

An a posteriori stopping criteria for Algorithm 6

As we have already mentioned, for all k ∈ N, the numbers ik ∈ N within Algorithm 6 are
to be determined a posteriori. In this part we give an efficient stopping criterion which is
taken from [41, Remark 4.1.f ].

For i ∈ N, i ≥ 2, let Ski and Ski−1 be two successive approximations of the augmented
output map Ψaug

k . Hence,

X̃
(i)
k+1 :=

(
Ski

)∗
Ski and X̃

(i−1)
k+1 :=

(
Ski−1

)∗
Ski−1

are two consecutive approximations of the infinite-time observability Gramian Xk+1. Now
the recursively-defined operator

Ski =
[(
Ski−1

)∗ √
2Re(αi) · V k

i

]∗
allows us to calculate the norm of X̃

(i)
k+1 − X̃

(i−1)
k+1 as follows:∥∥∥X̃(i)

k+1 − X̃
(i−1)
k+1

∥∥∥
L(X )

= 2Re(αi)
∥∥∥V k

i

(
V k
i

)∗∥∥∥
L(X )

= 2Re(αi)
∥∥∥(V k

i

)∗
V k
i

∥∥∥
L(Y ×U )

.
(5.71)
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As a result, a suitable stopping criterion for Algorithm 6 is to check whether the norm of
(V k
i )∗V k

i is below a certain absolute or relative threshold. If in addition, the input and
output spaces are finite-dimensional (i.e., U = Cm and Y = Cp, for some m, p ∈ N), then
(V k
i )∗V k

i becomes an (m+ p)× (m+ p) matrix. We note that (5.71) holds true also in the
Schatten norm Sp for p ∈ [1,∞) (see (6.32)).

Remark 5.14. (a) In [54, Section 4.6] an overview on possible stopping criteria for the ADI
iteration to solve matrix Lyapunov equations is presented. These stopping criteria
include the relative change based criterion, residual based criterion, and stagnation
based criterion. The stopping criterion presented in this section is a relative change
based criterion.

(b) Assume that the infinite-time observability Gramian

Xk+1 =
(
Ψaug
k

)∗
Ψaug
k

is nuclear, i.e., Xk+1 ∈ S1(X ). Let X̃
(i)
k+1 be an approximation of Xk+1 generated by

Algorithm 6. Then, it follows from Theorem 5.13 that X̃
(i)
k+1 ∈ S1(X ) and we have∥∥∥Xk+1 − X̃

(i)
k+1

∥∥∥
S1(X )

= trace [Xk+1]− trace
[
X̃

(i)
k+1

]
.

The trace of X̃
(i)
k+1 can be determined by

trace
[
X̃

(i)
k+1

]
= trace

 i∑
j=1

2Re(αj)V
k
j

(
V k
j

)∗
=

i∑
j=1

2Re(αj) trace
[
V k
j

(
V k
j

)∗]

=

i∑
j=1

2Re(αj) trace
[(
V k
j

)∗
V k
j

]
.

(5.72)
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Chapter 6
Numerical examples

Only those who will risk going too far can possibly find out how
far one can go.

—T. S. Eliot

Contents

6.1 Heat equation with Robin boundary control and boundary
integral observation . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Regular linear-quadratic optimal control problem . . . . . . . . 117

6.2.1 The Riccati-ADI method . . . . . . . . . . . . . . . . . . . . . . 118

6.2.2 Newton-Kleinman algorithm . . . . . . . . . . . . . . . . . . . . 129

6.3 Singular linear-quadratic optimal control problem: positive
real case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

We show the applicability of the algorithms developed in the previous chapters by
applying them to a concrete example. The example that we consider throughout this
chapter, is a two-dimensional heat equation with Robin boundary control and boundary
integral observation. This example is taken from [41, Section 6], with the addition of a
one-dimensional boundary integral observation. For ease of reference, we gather all the
necessary results in Section 6.1 and refer the reader to [41, Section 6] for more details and
proofs. We demonstrate the expected performance of the ADI method (cf. Chapter 4) and
the Newton-Kleinman method (cf. Chapter 5) to solve the linear-quadratic optimal control
problem, mainly in terms of monotonicity and convergence behavior. All the calculations
were done either using the C++ library deal.II [3] or MATLAB 8.5 (R2015a) on a 64-bit
server with 24 CPU cores of type Intel Xeon X5650 at 2.67 GHz and 48 GB main memory
available. In particular, all the finite-element discretizations and mesh adaptations were
done using the deal.II library.
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Numerical examples

6.1 Heat equation with Robin boundary control and bound-
ary integral observation

Let Ω ⊂ R2 be a bounded domain with piecewise C2-boundary ∂Ω. We consider the
two-dimensional heat equation

∂x

∂t
(ξ, t) = ∆x(ξ, t), (ξ, t) ∈ Ω× [0,∞), (6.1)

with initial condition x(0, ξ) = x0(ξ), ξ ∈ Ω. Moreover, we consider the Robin boundary
control

u(t) = ν(ξ)>∇x(ξ, t) + ax(ξ, t), (ξ, t) ∈ ∂Ω× [0,∞), a ∈ R, (6.2)

and one-dimensional boundary integral observation

y(t) =

∫
∂Ω
x(ξ, t) dσξ, (6.3)

where dσξ denotes the surface measure and ν(ξ) denotes the outward normal. Equations
(6.1)–(6.3) can be formulated as an abstract dynamical system

ẋ(t) = Ax+Bu,

y(t) = Cx.

To this end, we define the state space

x(t) := x(·, t) ∈ L2(Ω) := X ,

and let the input and output spaces both be one-dimensional, i.e.,

Y = U = C.

For the operator A, we have

Ax = ∆x, ∀ x ∈ D(A),

D(A) =
{
x ∈ H1(Ω) | ∆x ∈ L2(Ω), νT∇x+ ax = 0 on ∂Ω

}
.

(6.4)

The spaces X1, X−1, Z1, and Z−1 are defined as in Section 2.2. In particular, we have

D(A∗)′ = X−1, D(A∗) = Z1.

For the control operator B, we have

〈Bu, x〉X−1,Z1
= u ·

∫
∂Ω
x(ξ) dσξ,

and it follows from the above construction of B that

B∗x = Cx =

∫
∂Ω
x(ξ) dσξ, ∀ x ∈ D(A∗) = D(A). (6.5)

Note that the system has a zero feedthrough operator (i.e., D = 0), because there is no
direct relation between the input u and the output y.

As a result of the above formulation, the operators A, B, and C satisfy the following
properties [41, Section 6]:

116



6.2 Regular linear-quadratic optimal control problem

• A is self-adjoint and negative.

• A has a compact resolvent with 0 ∈ ρ(A).

• The input operator fulfills B ∈ S2(U , D((−A)1/2)), which is equivalent to

(−A)−1/2B ∈ S2(U ,X ).

• C = B∗ ∈ L(X ,Y ).

Remark 6.1. By [41, Corollary 6.1], A generates an exponentially stable semigroup T on
X and B is admissible for T. As a result, the associated input map Φ satisfies Assumption
(b) in Definition 2.4. Furthermore, as a consequence of the exponential stability of T, we
have that the operators Ψ and F are bounded, that is

Ψ ∈ L(X , L2(0,∞; Y )), F ∈ L(L2(0,∞; U ), L2(0,∞; Y )).

Altogether, we have that the quadruple (A,B,C, 0) generates an exponentially stable
regular well-posed linear system Σ = (T,Φ,Ψ,F) [13].

Remark 6.2. Since the output space is one-dimensional (i.e., Y = C), we have that weak
regularity is equivalent to strong regularity (cf. Remark 2.40). Hence, Σ and its dual Σd

are both regular (cf. Remark 5.2.b).

6.2 Regular linear-quadratic optimal control problem

We consider the regular optimal control problem for the heat equation (6.1) with the
scalar input function u formed by the Robin boundary condition (6.2) and the scalar
output function y formed by the integral of Dirichlet boundary values (6.3). We consider
the cost functional (3.2) with Q = R = 1 and N = 0 (recall that U = Y = C). As a
result, the quadratic optimal control problem is to minimize the cost functional

J(x0, u) =

∫ ∞
0
|y(t)|2 + |u(t)|2 dt, (6.6)

subject to
x(t) = Ttx0 + Φtu, ∀ t ∈ [0,∞),

y = Ψx0 + Fu.

From Proposition 3.2 (with Q = R = 1 and N = 0) we obtain

〈x0, Xx0〉 = min
u∈L2(0,∞;U )

J(x0, u),

where the Riccati operator X is given by

X = Ψ∗Ψ−Ψ∗F(I + F∗F)−1F∗Ψ. (6.7)

By applying the identity (I + F∗F)−1F∗ = F∗(I + FF∗)−1 to (6.7), we can reformulate the
Riccati operator as (see Proposition 3.4)

X = Ψ∗(I + FF∗)−1Ψ.
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Remark 6.3. Let (A,B,C) be the triple of operators defined in Section 6.1. Since B∗ = C
is bounded (i.e., B∗ = C ∈ L(X ,Y )) and R = 1, it follows from [70, Proposition 10.5]
that X satisfies the following Riccati equation: for all x0, z0 ∈ D(Aopt),

〈z0, A
∗Xx0〉X + 〈A∗Xz0, x0〉X + 〈Cz0, Cx0〉Y = 〈B∗Xz0, B

∗Xx0〉Y . (6.8)

In the first part of Section 6.2.1 (labeled as “Part I”), we use the discretized version of
(6.8) and compute its residual norm in order to have a measure of convergence for the
matrix version of the Riccati-ADI method (see [35, Section 8]).

Remark 6.4. Let (A,B,C) be the triple of operators defined in Section 6.1. The operator
A generates an exponentially stable analytic semigroup T on X = L2(Ω) (analyticity of
T follows from [32, Chapter 3, Appendix 3A]; see also [16, Example 1]). As a result, the
operators A, B, and C satisfy the assumptions of Theorem A.5. Therefore, the following
holds true:

(i) The Riccati operator X from (6.7) is the unique solution of (6.8) for all x0, z0 ∈ D(A).

(ii) X is nuclear, i.e., X ∈ S1(X ).

(iii) The feedback operator F := B∗X is Hilbert-Schmidt, i.e., F ∈ S2(X ,U ).

6.2.1 The Riccati-ADI method

We apply the Riccati-ADI method (see Theorem 4.16) to find an approximation of the
Riccati operator (6.7). To do so, we approximate the operators Ψ and F by Algorithm 1
to obtain the operators Sk and Fk. Then, the approximated Riccati operator is obtained
by

Xk = S∗k(I + F ∗kFk)
−1Sk. (6.9)

Throughout this section we consider the L-shaped domain Ω := (0, 1)2\(0.5, 1)2 and choose
the Robin boundary coefficient to be a = 1.

Part I: The choice of shift parameters

In the first part of this section, we show the importance of choosing the correct set of shift
parameters. Specifically, we show that if the non-Blaschke condition (4.79) is not fulfilled,
then the ADI method may converge to the wrong solution of the optimal control problem
(this being true even in the finite-dimensional setting). To simplify the analysis in this
part we perform all the iterations on a fixed grid. This is equivalent to using the matrix
version of the Riccati-ADI algorithm as in [35]. Later on in “Part II” of this section, we
will apply adaptive mesh refinements to construct an efficient approximation of the Riccati
operator.

For the discretization of the PDE (6.1), we apply the finite element method with
uniform square elements of maximal diameter h. On this mesh, we define the subspace
Vh ⊂ H1(Ω) using piecewise-linear basis functions. We refine the mesh 5 times globally
and obtain 3072 (active) cells with 3201 degrees of freedom (for piecewise-linear basis
functions). To illustrate our global refinement strategy, an example of the mesh for one
and two times global refinement is shown in Figure 6.1. Note that the dimension of the
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6.2 Regular linear-quadratic optimal control problem

discretized problem is chosen to be small enough, so that we are able to compare the
Riccati-ADI method with a direct solver (e.g., the “care” routine in MATLAB).

(a) One time global refinement will result
in 12 cells with 16 degrees of freedom for
piecewise-linear basis functions.

(b) Two times global refinement will result
in 48 cells with 65 degrees of freedom for
piecewise-linear basis functions.

Figure 6.1: Uniform global refinement of the domain Ω = (0, 1)2\(0.5, 1)2 with square
elements.

By discretizing the PDE (6.1), we obtain a finite-dimensional dynamical system

Eẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Cn,
y(t) = Cx(t),

(6.10)

with the state space dimension n = 3201. The matrix E ∈ Rn×n is a symmetric positive
definite mass matrix, A ∈ Rn×n is a symmetric stiffness matrix, B ∈ Rn×1 is the input
matrix, and C ∈ R1×n the output matrix. The system (6.10) is asymptotically stable and
the matrix A is negative definite. Furthermore, we have B = C∗ and a simple calculation
shows that the system is passive.

Remark 6.5. For invertible E ∈ Cn×n, if we consider the cost functional (6.6) subject to
the discretized system (6.10), then its unique minimum satisfies

〈Ex0, XEx0〉 = min
u∈L2(0,∞)

∫ ∞
0
|u(t)|2 + |y(t)|2 dt,

where X ∈ Cn×n is the unique positive semidefinite solution of the algebraic Riccati
equation

A∗XE + E∗XA+ C∗C − E∗XBB∗XE = 0. (6.11)

If we modify Steps 1 and 7 in Algorithm 1 to

1: V1 = (α1E
∗ −A∗)−1C∗,

7: Vk = Vk−1 − (αk + αk−1) · (αkE∗ −A∗)−1E∗Vk−1,

then for Xk as computed by the Riccati-ADI method we have

〈Ex0, XkEx0〉 = min
u∈L2(0,∞)

∫ ∞
0
|u(t)|2 + |(PYk

y)(t)|2 dt.

We note that if E is the positive definite mass matrix of a finite element discretization,
then 〈Ex0, XEx0〉 equals 〈x0, XEx0〉, where the inner-product in the latter expression is
the one induced by the underlying function space.
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We find approximations of the Riccati operator corresponding to the cost functional
(6.6) subject to the discretized system (6.10) once using the “care” routine of MATLAB
and once using the Riccati-ADI method with the modification of Algorithm 1 as in Remark
6.5. We note that although “care” does work for the example considered, the computation
takes about 2 hours. For comparison, Riccati-ADI requires just 20 seconds. We denote
by X the approximate solution obtained from the “care” routine and use it as a reference
for the comparisons with the approximations obtained by Algorithm 1 (denoted by Xk).

The choice of the shift parameters has a major effect on the convergence speed of the
ADI algorithm. We illustrate that if the shift parameters do not satisfy the non-Blaschke
condition (4.79), then the matrix Xk obtained by the Riccati-ADI method may converge
to a positive semidefinite matrix which is not a solution to (6.11) (cf. Theorem 4.22). To
this end, we choose the following two different sets of shift parameters in our example:

1. The first set of shift parameters is chosen using Penzl’s heuristic procedure [44]
on the matrix pencil λE − A. The underlying Arnoldi process is initialized with
a random vector in Rn. We compute 32 Ritz values by the Arnoldi process to
approximate the eigenvalues of the matrix pencil λE−A. Out of these 32 Ritz values,
11 values are calculated using the inverse Arnoldi method (to increase the accuracy
of approximation). By this choice, we generate a set of 10 shift parameters, which
we re-use every 10 iterations. We sort these 10 shift parameters in an increasing
order with respect to the values of their real parts in order to obtain a smooth
convergence in Algorithm 1. This cyclic choice of shift parameters satisfies the non-
Blaschke condition (4.79). We note that since the matrices E and A are self-adjoint,
the computed shift parameters are positive real numbers.

2. As a second set of shift parameters, we choose the infinite sequence αk = k3, k =
1, 2, . . . , for which the non-Blaschke condition is not satisfied.

We perform the simulations using the above two sets of shift parameters. At each
iteration, we observe the absolute residual norm of (6.11) using the approach proposed
in [34, Section 3.3]. This means that we exploit the low-rank form of the approximate
solution Xk = Sk(I + FkF

∗
k )−1S∗k to calculate the residual norm. Figure 6.2 shows the

absolute residual norm with respect to the iteration for n = 3201 degrees of freedom.
Considering Figure 6.2, we observe that by choosing the second set of shift parameters,

αk = k3, our sequence converges to a matrix which is not the solution of the corresponding
algebraic Riccati equation. On the contrary, the first choice of shift parameters provides
convergence to the desired solution. Specifically, with a tolerance of 10−13 on the absolute
residual norm, the Riccati-ADI algorithm converges to the solution of (6.11) in fewer than
50 iterations for the state space dimension n = 3201. Accordingly, we use the first set of
shift parameters to continue with further analyses in “Part II” of this section.

We finish our analyses in this part by observing the relative 2-norm difference

‖Xk −X‖2
‖X‖2

at every iteration to show the convergence behavior of the Riccati-ADI algorithm. Fig-
ure 6.3 shows the relative 2-norm difference of the approximations obtained by the Riccati-
ADI method with respect to the approximate solution obtained by the “care” routine in

120



6.2 Regular linear-quadratic optimal control problem
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Figure 6.2: Comparison of two sets of shift parameters for Riccati-ADI: absolute residual
norm of the Riccati equation (6.11) with respect to the iteration for n = 3201 degrees of
freedom.

MATLAB. Note that since the matrices Xk and X are self-adjoint, their 2-norm differ-
ence equals the absolute value of the largest eigenvalue of (Xk − X). This eigenvalue
can be approximated efficiently using a power iteration without forming the product
Xk = Sk(I + FkF

∗
k )−1S∗k (see, e.g., [9]).

Part II: Monotonicity and convergence in the nuclear norm

In the second part of this section, we illustrate monotonicity and convergence of the
Riccati-ADI method, which are proven in Theorems 4.21 and 4.22, respectively. Moreover,
we demonstrate the efficiency of applying adaptive refinement techniques in Algorithm 1.
In fact, we show that Riccati-ADI provides a good approximation of the Riccati operator
using fewer degrees of freedom, when compared to the same method applied to a fixed
grid.

To start the analysis, we refine the mesh 6 times globally (cf. Figure 6.1). As a result,
we obtain 12288 (active) cells with 12545 degrees of freedom (for piecewise-linear basis
functions). In all the analysis of this part, we use the first set of shift parameters from
“Part I” (i.e., Penzl’s heuristic procedure on the matrix pencil λE −A).

The main computational effort of Algorithm 1 is the calculation of operators Vk, k =
1, 2, . . . , in Steps 1 and 7, namely

1: V1 = (α1I −A∗)−1C∗,

7: Vk = Vk−1 − (αk + αk−1) · (αkI −A∗)−1Vk−1, k = 2, 3, . . . ,

Since the output space is one-dimensional (i.e., Y = C), we have vk := Vk ∈ L2(Ω).
Besides, since in our example we have A∗ = A and C∗ = B, Step 1 in Algorithm 1 can be
written as

v1 = (α1I −A)−1B,
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Figure 6.3: The relative 2-norm difference of the approximations obtained by the Riccati-
ADI method with respect to the approximate solution obtained by the “care” routine in
MATLAB.

and is therefore equivalent to the following boundary value Helmholtz problem [41]:
Find the function v1 ∈ L2(Ω) which satisfies

α1 · v1(ξ)−∆v1(ξ) = 0, ξ ∈ Ω,

ν(ξ)T∇v1(ξ) + av1(ξ) = 1, ξ ∈ ∂Ω.
(6.12)

Similarly, expression v̂k := (αkI − A∗)−1vk−1 in Step 7 of Algorithm 1 is equivalent to
solving an inhomogeneous boundary value Helmholtz problem:
Given vk−1 ∈ L2(Ω), find the function v̂k ∈ L2(Ω) which satisfies the differential equation

αk · v̂k(ξ)−∆v̂k(ξ) = vk−1, ξ ∈ Ω,

ν(ξ)T∇v̂k(ξ) + av̂k(ξ) = 0, ξ ∈ ∂Ω.
(6.13)

Eventually, we can determine vk via

vk = vk−1 − (αk + αk−1)v̂k. (6.14)

In the following, we put particular focus on calculating the solutions of (6.12) and
(6.13). We solve these equations efficiently by applying the adaptive finite element method.
Note that if we chose a fixed grid, then our algorithm would be equivalent to the approach
of semi-discretization of the heat equation on a fixed grid with respect to space and then
applying the matrix version of the Riccati-ADI method as shown in Part I of this section.

To ensure the reproducibility of the results presented in this section we list the impor-
tant aspects regarding our implementation of the example using the C++ library deal.II:

(i) To discretize equations (6.12) and (6.13), we use uniform square elements and define
the subspace Vh ⊂ H1(Ω) using piecewise-linear basis functions (as in Part I of this
section).
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(ii) For numerical integration, we use the Gauss-Legendre quadrature rule of degree 2.
This family is implemented in the class “QGauss” in the deal.II library.

(iii) To solve the discretized Helmholtz equations (6.12) and (6.13), we use a precon-
ditioned conjugate gradient method for symmetric positive definite matrices. As a
preconditioner, we use the symmetric successive overrelaxation (SSOR), see [52, Sec-
tions 9 & 10].

(iv) To approximate the discretization error of the PDEs (6.12) and (6.13), we use an
a posteriori error estimator based on the discrete approximation of the gradient, as
explained in Appendix A.1.1. This error estimator is computationally efficient, easy
to implement, and works well for the example considered in this section. However,
one may improve the approximation of the discretization error by applying a standard
residual based L2-error estimator (see, e.g., [1]). We note that more investigations
are required to inspect the relation between the error estimates of the discretization
and the convergence errors of the ADI algorithm. This is beyond the scope of this
dissertation and is left as an open problem.

(v) For the successive mesh adaptations, we apply the bulk criterion from Appendix A.1.2,
with top fraction (r) and bottom fraction (c) set to be

r = c = 0.01.

In order to capture the numerical error at the edges, the cells at the boundary are
just allowed to be refined (i.e., we clear all the coarsening flags for the cells at the
boundary).

Figure 6.4 shows a sequence of the adapted meshes produced by Algorithm 1. It is
important to note that after each mesh adaptation one needs to interpolate the previ-
ous solution vk−1 on the new mesh, because vk−1 acts as the right-hand side of (6.13).
This interpolation can be done by employing the class “SolutionTransfer” in the deal.II
library. Figure 6.5 shows a sequence of solutions vk on the adapted meshes produced by
Algorithm 1.

Now we demonstrate monotonicity and convergence of the Riccati-ADI method. We
recall from Remark 6.4 that the Riccati operator (6.7) corresponding to our example is
nuclear, i.e., X ∈ S1(X ). By Theorem 4.22, we have that Xk ∈ S1(X ) for all k ∈ N
and the sequence (Xk)k∈N convergences to X in the nuclear norm (provided that the shift
parameters satisfy the non-Blaschke condition (4.79)).

We compute the nuclear norm of Xk at each iteration of the Riccati-ADI algorithm.
This can be done efficiently by using the low-rank factors of Xk = S∗k(I + FkF

∗
k )−1Sk.

More specifically, by computing the Cholesky factorization I + FkF
∗
k = LkL

∗
k we obtain

‖Xk‖S1(X ) = trace [Xk] =
∑
i

〈ei, Xkei〉X

=
∑
i

〈
ei, S

∗
k(LkL

∗
k)
−1Skei

〉
X

=
∑
i

〈
ei, S

∗
kL
−∗
k L−1

k Skei
〉
X

=
∑
i

〈
L−1
k Skei, L

−1
k Skei

〉
Y k =

∑
i

∥∥L−1
k Skei

∥∥2

Y k ,
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(a) iteration k=1 (b) iteration k=5 (c) iteration k=10

(d) iteration k=15 (e) iteration k=20 (f) iteration k=30

(g) iteration k=40 (h) iteration k=50 (i) iteration k=60

Figure 6.4: Sequence of adapted meshes produced by the ADI method using the a pos-
teriori error estimator from Appendix A.1.1 and the bulk mesh adaptation strategy from
Appendix A.1.2 with r = c = 0.01.
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Figure 6.5: Sequence of solutions vk (k = 1, 5, 10, 15) on the adapted meshes produced by
Algorithm 1.
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(d) iteration k=35

Figure 6.6: Sequence of solutions vk (k = 20, 25, 30, 35) on the adapted meshes produced
by Algorithm 1.
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where the sequence (ei) is an (arbitrary) orthonormal basis of X = L2(Ω). Figure 6.7
shows the sequence of nuclear norms for operators Xk. From this figure, we observe that

‖Xk‖S1(X ) ≤ ‖Xk+1‖S1(X ) ,

which is consistent with Theorem 4.21. In addition, it is important to note that our
computations (see Table 6.1) provide an approximation for the nuclear norm of the Riccati
operator (cf. Theorem 4.22):

‖X‖S1(X ) ≈ 0.716352. (6.15)
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Figure 6.7: Monotonicity of the Riccati-ADI method: the sequence of nuclear norms for
operators Xk.

A computationally efficient a posteriori relative stopping criterion for the Riccati-ADI
algorithm in our example can be obtained by

Cadi :=
‖Xk+1 −Xk‖S1(X )

‖Xk+1‖S1(X )

=
trace [Xk+1]− trace [Xk]

trace [Xk+1]
.

Figure 6.8 shows the values of Cadi at each iteration of the Riccati-ADI algorithm.

In the last part of this section we make a closer look at the iteration history of the
Riccati-ADI algorithm for the fixed mesh and the successively adapted meshes. As shown
in Table 6.1, including the possibility to successively adapt the mesh allows an almost
identical approximation of the Riccati operator with severely fewer unknowns needed in the
calculation. In this table we have used the abbreviation “DoF” for “degrees of freedom”.
We note that the computation time of the Riccati-ADI method for this example using
successively adapted meshes (including the computation of the error estimates and trace
of the approximate solution at each iteration) is about 96 seconds for 70 iterations. For
comparison, it takes about 210 seconds to perform 70 iterations of the Riccati-ADI method
using a fixed mesh with 12545 degrees of freedom.
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Figure 6.8: A posteriori relative stopping criterion (Cadi) for the Riccati-ADI algorithm.

Table 6.1: Iteration history for the fixed mesh (left) and successively adapted mesh (right).

Iteration DoF ‖Xk‖S1(X ) ‖vk‖L2(Ω) DoF ‖Xk‖S1(X ) ‖vk‖L2(Ω)

1 12545 0.303810 0.436148 12545 0.303812 0.436148
2 12545 0.538603 0.0515985 12455 0.538610 0.0515969
3 12545 0.644775 0.0238922 12270 0.644791 0.0238912
4 12545 0.679861 0.00899946 12148 0.679884 0.00900023
5 12545 0.699991 0.0030076 12221 0.699995 0.00300568
6 12545 0.706117 0.00122848 11922 0.706088 0.00122468
7 12545 0.710498 0.00060155 11356 0.710420 0.000597781
8 12545 0.713933 0.000249875 11048 0.713821 0.000248304
9 12545 0.715233 7.66E − 005 10260 0.715206 7.84E − 005
10 12545 0.715280 7.73E − 006 8597 0.715373 1.28E − 005
15 12545 0.716324 8.05E − 005 7173 0.716518 7.86E − 005
20 12545 0.716349 4.44E − 007 6705 0.716607 1.37E − 006
25 12545 0.716351 3.57E − 006 6173 0.716648 3.66E − 006
30 12545 0.716352 2.64E − 008 6223 0.716671 2.24E − 007
35 12545 0.716352 1.81E − 007 5975 0.716692 2.17E − 007
40 12545 0.716352 1.60E − 009 5818 0.716718 5.62E − 008
45 12545 0.716352 9.75E − 009 5577 0.716743 3.75E − 008
50 12545 0.716352 9.77E − 011 5617 0.716971 1.94E − 008
55 12545 0.716352 5.48E − 010 4933 0.716994 1.28E − 008
60 12545 0.716352 6.02E − 012 4860 0.717653 7.59E − 009
65 12545 0.716352 3.16E − 011 3299 0.717673 5.19E − 009
70 12545 0.716352 3.72E − 013 3179 0.717970 3.19E − 009
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6.2.2 Newton-Kleinman algorithm

In this section we solve the regular optimal control problem corresponding to our example
using the Newton-Kleinman algorithm (Algorithm 5). Although we proved monotonicity
and convergence of the Newton-Kleinman iteration for bounded control operators (see
Theorems 5.8 and 5.9), in this example we show the applicability of the algorithm even
for the case where the control operator is unbounded. In fact, we will illustrate in this
example that the sequence of operators produced by the Newton iteration is monotone
and converges quadratically to the Riccati operator (6.7). As we showed in Chapter 5,
at each step of the Newton-Kleinman iteration, one needs to solve a Lyapunov equation
of the form (5.5). We solve this Lyapunov equation by applying the ADI method (see
Algorithm 6). Hence, we refer to our implementation as the “Newton-ADI” method (see,
e.g., [6]).

Throughout this section we use the first set of shift parameters from Section 6.2.1.
These shift parameters are calculated a priori by employing the Penzl’s heuristic procedure
as explained in Part I of Section 6.2.1. In addition, we make use of the same finite element
space, quadrature rule, preconditioner, and solver, as we did in Part II of Section 6.2.1.
Hence, to avoid repetition, we mainly focus on those features which are exclusive to the
Newton iteration. Nevertheless, to ensure consistency of our presentation, we recall some
important implementation aspects of the ADI algorithm from the previous section. More
details on the implementation of the Newton-ADI iteration in our example are included
in Section A.3 of the appendix.

Now let us observe the first Newton iteration for our example: Let A and C be the
operators given by (6.4) and (6.5), respectively. The first iteration is to solve the Lyapunov
equation (5.5) with k = 0. By making the initialization X0 = 0 we obtain

A∗X1 +X1A+ C∗C = 0, (6.16)

for some X1 ∈ L(X ). Since A generates an exponentially stable semigroup T, it follows
from Theorem 2.21 that X1 = Ψ∗Ψ is the unique solution of (6.16). Furthermore, since
operators A and C satisfy the assumptions of Theorem A.4, we conclude that the output
map Ψ is Hilbert-Schmidt, i.e., Ψ ∈ S2(X , L2(0,∞; Y )). Therefore, there holds

X1 = Ψ∗Ψ ∈ S1(X ).

Now it follows from Theorem 5.8 that the sequence of observability Gramians produced
by Algorithm 5 satisfies

X ≤ Xk+1 ≤ Xk, ∀ k ∈ N.

Since X1 ∈ S1(X ), the min-max-Theorem of Courant-Fischer [47, Section 7.5] gives rise
to

Xk ∈ S1(X ), ∀ k ∈ N, (6.17)

and one can expect convergence of this sequence to the Riccati operator X in the nuclear
norm, as shown in Theorem 5.9.

In order to approximate X1, we apply the ADI method in Algorithm 7. This algorithm
is an adaptation of [41, Algorithm 1] to our setting. Note that this is equivalent to
choosing B = 0 in Algorithm 1. Since X1 is nuclear, it follows from Theorem 4.22 (see
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Algorithm 7 ADI iteration for Lyapunov equation (6.16).

Input: The generator A of a bounded strongly continuous semigroup T, an infinite-time

admissible observation operator C ∈ L(X1,Y ), and shift parameters α1, α2, . . . , αi0 ∈ C,

with Re(αi) > 0.

Output: S0 := Si0 ∈ L(X ,Y i0), such that X̃
(i0)
1 :=

(
S0
)∗
S0 ≈ X1, where X1 is the

unique solution of the Lyapunov equation (6.16).

1: V1 = (α1I −A∗)−1C∗

2: S1 =
√

2Re(α1) · V ∗1

3: for i = 2, 3, . . . , i0 do

4: Vi = Vi−1 − (αi + αi−1) · (αiI −A∗)−1Vi−1

5: Si = [S∗i−1 ,
√

2Re(αi) · Vi ]
∗

6: end for

also Theorem 5.13) that the approximation of X1 by Algorithm 7 converges in the nuclear
norm.

As we have already stated in Section 6.2.2, since the output space is one-dimensional
(i.e., Y = C), operators Vi calculated by Algorithm 7 satisfy vi := Vi ∈ L2(Ω). Since
A∗ = A and C∗ = B, Step 1 in Algorithm 7 can be written as

v1 = (α1I −A)−1B,

and is therefore equivalent to solving the boundary value Helmholtz problem (6.12). Simi-
larly, calculating v̂i := (αiI−A∗)−1vi−1 in Step 4 of Algorithm 7 is equivalent to solving the
inhomogeneous boundary value Helmholtz problem (6.13). Eventually, we can determine
vi via (6.14).

Operator S0 generated by Algorithm 7 approximates the output map Ψ corresponding
to the pair (A,C) and we have

X̃
(i0)
1 :=

(
S0
)∗
S0 ≈ X1,

where X1 is the unique solution of (6.16) and i0 denotes the number of iterations performed
by Algorithm 7. In our example, since B∗ = C ∈ L(X ,C), we can define the approximated
feedback operator at the first Newton iteration by

F̃1 := B∗X̃
(i0)
1 ∈ L(X ,C).

For the rest of the iterations, we proceed as follows: For k ∈ N, let X̃
(ik−1)
k :=

(
Sk−1

)∗
Sk−1

and F̃k := B∗X̃
(ik−1)
k be the operators generated by applying Algorithm 6 at the k-th

Newton iteration. The (k + 1)-st Newton iteration is to solve the following Lyapunov
equation

A∗kXk+1 +Xk+1Ak +
(
Caug
k

)∗
Caug
k = 0, (6.18)
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for Xk+1 ∈ L(X ), where

Ak = A−BF̃k, Caug
k =

[
C

F̃k

]
.

To solve (6.18), we apply Algorithm 6 to approximate the output map Ψaug
k generated by

the pair (Ak, C
aug
k ). From (6.17) we know that Xk+1 ∈ S1(X ). Hence, it follows from

Theorem 5.13 that the approximations of Xk+1 by Algorithm 6 converge in the nuclear
norm.

Proposition 6.6. Let (A,B,C) be the triple of operators corresponding to equations (6.1)
– (6.3) defined in Section 6.1. Let V k

i be the operators generated by Algorithm 6 applied
to the Lyapunov equation (6.18). Then, operators V k

i have the structure

V k
i =

[
vki vF̃k

i

]
, i = 1, 2, . . . , ik,

where vki , v
F̃k
i ∈ L2(Ω) are determined recursively by[

vk1 vF̃k
1

]
=

[
v1 − fk1

b1

1 + ck1
fk1 − fk1

ck1
1 + ck1

]
,

[
vki vF̃k

i

]
=
[
vki−1 vF̃k

i−1

]
− (αi + αi−1) ·

[
v̂ki v̂F̃k

i

]
, i = 2, 3, . . . , ik.

(6.19)

The recursive formula (6.19) is evaluated as follows:

(i) The function fk1 ∈ L2(Ω) is the solution of the following boundary value Helmholtz
problem:

α1 · fk1 (ξ)−∆fk1 (ξ) = F̃ ∗k , ξ ∈ Ω,

ν(ξ)T∇fk1 (ξ) + αfk1 (ξ) = 0, ξ ∈ ∂Ω,

where
b1 := B∗v1 ∈ C, ck1 := B∗fk1 ∈ C.

(ii) The functions v̂ki and v̂F̃k
i in (6.19) are determined recursively by

v̂ki = ṽki−1 − fki
b̃ki−1

1 + cki
,

v̂F̃k
i = ṽF̃k

i−1 − f
k
i

b̃F̃k
i−1

1 + cki
,

(6.20)

where

b̃ki−1 := B∗ṽki−1 ∈ C, b̃F̃k
i−1 := B∗ṽF̃k

i−1 ∈ C, cki := B∗fki ∈ C. (6.21)

The functions ṽki−1, ṽF̃k
i−1, and fki in (6.20) are the solutions of the following boundary

value Helmholtz problem: Find w ∈ L2(Ω), such that

αi · w(ξ)−∆w(ξ) = v̆, ξ ∈ Ω,

ν(ξ)T∇w(ξ) + αw(ξ) = 0, ξ ∈ ∂Ω,
(6.22)
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with the corresponding right-hand side function v̆ ∈ L2(Ω), v̆ ∈ {vki−1, v
F̃k
i−1, F̃

∗
k }.

More specifically,

• w = ṽki−1 corresponds to the right-hand side function v̆ = vki−1,

• w = ṽF̃k
i−1 corresponds to the right-hand side function v̆ = vF̃k

i−1,

• w = fki corresponds to the right-hand side function v̆ = F̃ ∗k .

Proof. The first Step in Algorithm 6 is to solve

V k
1 := (α1I −A∗k)−1

(
Caug
k

)∗
=
[
(α1I −A∗k)−1C∗ (α1I −A∗k)−1F̃ ∗k

]
. (6.23)

We define
vk1 := (α1I −A∗k)−1C∗, vF̃k

1 := (α1I −A∗k)−1F̃ ∗k .

Since the input and output spaces are one-dimensional (i.e., U = Y = C), there holds

vk1 , v
F̃k
1 ∈ L2(Ω). For the resolvent operator (α1I−A∗k)−1, we use the generalized Sherman-

Morrison-Woodbury formula (Theorem A.1) to obtain

(α1I −A∗k)−1 = (α1I −A∗ + F̃ ∗kB
∗)−1

=

(
I − (α1I −A∗)−1F̃ ∗k

(
I +B∗(α1I −A∗)−1F̃ ∗k

)−1
B∗
)

(α1I −A∗)−1.

As a result, the functions vk1 and vF̃k
1 can be determined by

vk1 =

(
1− (α1I −A∗)−1F̃ ∗k

(
1 +B∗(α1I −A∗)−1F̃ ∗k

)−1
B∗
)

(α1I −A∗)−1C∗,

vF̃k
1 =

(
1− (α1I −A∗)−1F̃ ∗k

(
1 +B∗(α1I −A∗)−1F̃ ∗k

)−1
B∗
)

(α1I −A∗)−1F̃ ∗k .

(6.24)

Hence, in order to find vk1 and vF̃k
1 we require the following two ingredients:

• v1 = (α1I−A∗)−1C∗ ∈ L2(Ω), which has already been computed at the first Newton
iteration and does not need to be computed again.

• fk1 = (α1I−A∗)−1F̃ ∗k ∈ L2(Ω), which is the solution of the following boundary value
Helmholtz problem:

α1 · fk1 −∆fk1 (ξ) = F̃ ∗k , ξ ∈ Ω,

ν(ξ)T∇fk1 (ξ) + αfk1 (ξ) = 0, ξ ∈ ∂Ω.
(6.25)

Consequently, we have

vk1 =

(
1− (α1I −A∗)−1F̃ ∗k

(
1 +B∗(α1I −A∗)−1F̃ ∗k

)−1
B∗
)

(α1I −A∗)−1C∗

= v1 − fk1
(

1 +B∗fk1

)−1
B∗v1

= v1 − fk1
b1

1 + ck1
,
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with
b1 := B∗v1 ∈ C, ck1 := B∗fk1 ∈ C.

Similarly, we obtain

vF̃k
1 =

(
1− (α1I −A∗)−1F̃ ∗k

(
1 +B∗(α1I −A∗)−1F̃ ∗k

)−1
B∗
)

(α1I −A∗)−1F̃ ∗k

= fk1 − fk1
(

1 +B∗fk1

)−1
B∗fk1

= fk1 − fk1
ck1

1 + ck1
.

From the above observations, we conclude that V k
1 in (6.23) can be determined by solving

(6.25) for fk1 and subsequently applying the formula

V k
1 =

[
vk1 vF̃k

1

]
=

[
v1 − fk1

b1

1 + ck1
fk1 − fk1

ck1
1 + ck1

]
. (6.26)

For i = 2, 3, 4, . . . , ik, operators V k
i are determined recursively by Step 4 of Algorithm 6,

namely,
V k
i = V k

i−1 − (αi + αi−1) · (αiI −A∗k)−1V k
i−1. (6.27)

In view of (6.26) it is reasonable to make the ansatz

V k
i =

[
vki vF̃k

i

]
. (6.28)

By substituting (6.28) in (6.27) we obtain[
vki vF̃k

i

]
=
[
vki−1 vF̃k

i−1

]
− (αi + αi−1) · (αiI −A∗k)−1

[
vki−1 vF̃k

i−1

]
.

We define
v̂ki := (αiI −A∗k)−1vki−1, v̂F̃k

i := (αiI −A∗k)−1vF̃k
i−1.

Similarly to Step 1 of Algorithm 6, we apply the Sherman-Morrison-Woodbury formula
(Theorem A.1) to the resolvent (αiI −A∗k)−1 and obtain

v̂ki =

(
1− (αiI −A∗)−1F̃ ∗k

(
1 +B∗(αiI −A∗)−1F̃ ∗k

)−1
B∗
)

(αiI −A∗)−1vki−1,

v̂F̃k
i =

(
1− (αiI −A∗)−1F̃ ∗k

(
1 +B∗(αiI −A∗)−1F̃ ∗k

)−1
B∗
)

(αiI −A∗)−1vF̃k
i−1.

(6.29)

As a result, we need the following three ingredients to determine v̂ki and v̂F̃k
i :

ṽki−1 := (αiI −A∗)−1vki−1 ∈ L2(Ω),

ṽF̃k
i−1 := (αiI −A∗)−1vF̃k

i−1 ∈ L
2(Ω),

fki := (αiI −A∗)−1F̃ ∗k ∈ L2(Ω).
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The functions ṽki−1, ṽF̃k
i−1, and fki are the solutions of the following boundary value Helmholtz

problem: Find w ∈ L2(Ω), such that

αi · w(ξ)−∆w(ξ) = v̆, ξ ∈ Ω,

ν(ξ)T∇w(ξ) + αw(ξ) = 0, ξ ∈ ∂Ω,
(6.30)

with the corresponding right-hand side function v̆ ∈ L2(Ω), v̆ ∈ {vki−1, v
F̃k
i−1, F̃

∗
k }. Alto-

gether, we obtain

v̂ki = ṽki−1 − fki
(

1 +B∗fki

)−1
B∗ṽki−1

= ṽki−1 − fki
b̃ki−1

1 + cki
,

v̂F̃k
i = ṽF̃k

i−1 − f
k
i

(
1 +B∗fki

)−1
B∗ṽF̃k

i−1

= ṽF̃k
i−1 − f

k
i

b̃F̃k
i−1

1 + cki
,

where we have defined

b̃ki−1 := B∗ṽki−1 ∈ C, b̃F̃k
i−1 := B∗ṽF̃k

i−1 ∈ C, cki := B∗fki ∈ C.

As a result, in order to determine V k
i = [vki vF̃k

i ], one has to solve three boundary value

Helmholtz problems (i.e., equations (6.30) with the right-hand sides v̆ ∈ {vki−1, v
F̃k
i−1, F̃

∗
k })

to find the functions ṽki−1, ṽF̃k
i−1, fki and then apply the recursive formulas (6.20) and

(6.19).

Remark 6.7. By applying the Sherman-Morrison-Woodbury formula (Theorem A.1) in
Steps 1 and 4 of Algorithm 6 (see, in particular, equations (6.24) and (6.29)), we can
preserve the sparsity pattern of the finite element discretization of operator A in all Newton
iterations. This reduces the computational costs of our algorithm significantly.

We solve the obtained sequence of boundary value Helmholtz equations by applying
the adaptive finite element method. Similarly to Part II of Section 6.2.1, we start the
iterations by refining the mesh 6 times globally (cf. Figure 6.1) to obtain 12545 degrees of
freedom. To adaptively refine/coarsen the mesh, we use an error estimator based on the
discrete approximation of ∇ṽk (cf. Section A.1.1), where ṽk is the solution of (6.22) with
the right-hand side function v̆ = vki−1. Our mesh adaptation strategy is based on the bulk
criterion (cf. Section A.1.2) with

r = 0.02, c = 0.01.

Algorithm 6 generates an approximation of the augmented output map Ψaug
k . If Sk

denotes an approximation of Ψaug
k , then we have

X̃
(ik)
k+1 := (Sk)∗Sk ≈ Xk+1,
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where Xk+1 ∈ L(X ) is the solution of (6.18) and ik denotes the number of iterations
performed by Algorithm 6. Since B∗ = C ∈ L(X ,C), we define the approximated feedback
operator at the (k + 1)-st Newton iteration by

F̃k+1 := B∗X̃
(ik)
k+1 ∈ L(X ,C).

More details on the approximation of the feedback operator F̃k are presented in Sec-
tion A.3. Figure 6.9 shows the approximated feedbacks F̃h,1 and F̃h,7 generated by the
Newton-ADI method in our example.
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Figure 6.9: Approximated feedbacks F̃h,1 and F̃h,7 generated by the Newton-ADI method.

We use the a posteriori stopping criterion (5.71) for Algorithm 6: For i ∈ N, i ≥ 2, let

X̃
(i)
k+1 be an approximation of Xk+1. Since Xk+1 ∈ S1(X ), it follows from Theorem 5.13

that X̃
(i)
k+1 ∈ S1(X ). Hence, we can use the following a posteriori relative stopping

criterion:

Kadi :=

∥∥∥X̃(i)
k+1 − X̃

(i−1)
k+1

∥∥∥
S1(X )∥∥∥X̃(i)

k+1

∥∥∥
S1(X )

. (6.31)

To compute Kadi, we observe that∥∥∥X̃(i)
k+1 − X̃

(i−1)
k+1

∥∥∥
S1(X )

= 2Re(αi)
∥∥∥(V k

i

)∗
V k
i

∥∥∥
S1(Y ×U )

= 2Re(αi) trace
[(
V k
i

)∗
V k
i

]
.

(6.32)
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Because of

(
V k
i

)∗
V k
i =

[
vki vFk

i

]∗ [
vki vFk

i

]
=


(
vki
)∗
vki

(
vki
)∗
vFk
i(

vFk
i

)∗
vki

(
vFk
i

)∗
vFk
i

 ,
with vki , v

Fk
i ∈ L2(Ω), there holds∥∥∥X̃(i)

k+1 − X̃
(i−1)
k+1

∥∥∥
S1(X )

= 2Re(αi)

[∥∥∥vki ∥∥∥2

L2(Ω)
+
∥∥∥vFk

i

∥∥∥2

L2(Ω)

]
.

Similarly, we have (see also (5.72))

∥∥∥X̃(i)
k+1

∥∥∥
S1(X )

= trace
[
X̃

(i)
k+1

]
=

i∑
j=1

2Re(αj)

[∥∥∥vkj ∥∥∥2

L2(Ω)
+
∥∥∥vFk

j

∥∥∥2

L2(Ω)

]
. (6.33)

At each Newton iteration we terminate Algorithm 6 whenever we reach Kadi < 10−11.
Figure 6.10 shows the sequence of adapted degrees of freedom and a posteriori relative
stopping criteria (Kadi as in (6.31)) for the first three iterations of the Newton-ADI method.

To illustrate monotonicity of the Newton-Kleinman iteration (Theorem 5.8), at each

Newton iteration we observe the nuclear norm of X̃k := X̃
(ik−1)
k (the approximation of Xk

generated by Algorithm 6, where we drop the index ik−1 for simplicity). These values are
depicted in Figure 6.11. From this figure we see that∥∥∥X̃k+1

∥∥∥
S1(X )

≤
∥∥∥X̃k

∥∥∥
S1(X )

, ∀ k ∈ N,

which is consistent with Theorem 5.8. Furthermore, we can determine an approximation
for the nuclear norm of the Riccati operator (cf. Theorem 5.9):

‖X‖S1(X ) ≈
∥∥∥X̃7

∥∥∥
S1(X )

= 0.716532,

which is the same as the value obtained by the Riccati-ADI algorithm in the previous
section (see (6.15)).

We close this section by providing an efficient a posteriori relative stopping criterion
for the Newton iterations. We use the stopping criterion

‖Xk+1 −Xk‖S1(X )

‖Xk+1‖S1(X )

=
trace [Xk+1]− trace [Xk]

trace [Xk+1]
,

which can be approximated by operators X̃k:

Knk :=
trace

[
X̃k+1

]
− trace

[
X̃k

]
trace

[
X̃k+1

] , (6.34)

where the trace of X̃k can be computed efficiently as shown in (6.33). Table 6.2 shows the
sequence of a posteriori relative stopping criteria Knk for the Newton iterations.
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(e) Third Newton iteration (k = 3)
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(f) Third Newton iteration (k = 3)

Figure 6.10: Sequence of adapted degrees of freedom and a posteriori relative stopping
criterion (Kadi) for the first three iterations of the Newton-ADI method.
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Newton iteration
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Figure 6.11: Nuclear norm of X̃k.

Looking at the values of Knk in Table 6.2, one observes the quadratic rate of con-
vergence for the Newton-Kleinman iterations, which we showed in Theorem 5.11 in case
of bounded control and unbounded observation operators. Our numerical example shows
that the Newton-Kleinman iteration may provide a quadratic rate of convergence, even in
case of unbounded control operators. As already stated in Section 5.4, we were able to
give a complete proof of convergence for the Newton-Kleinman iteration only in case of
bounded control operators. Proving the convergence of Algorithm 5 in case of unbounded
control operator is an open problem for our future research.

Table 6.2: Degrees of freedom (DoF) and the a posteriori relative stopping criterion (Knk

in (6.34)) at the end of each Newton iteration.

Iteration DoF Knk

0 12545 –

1 5975 1

2 5442 0.739965

3 4993 0.307568

4 4993 0.0418406

5 4993 0.000733626

6 4993 2.39101× 10−7

7 4993 3.3239× 10−14
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6.3 Singular linear-quadratic optimal control problem: pos-
itive real case

In this section we solve the positive real optimal control problem (cf. Section 3.6) for
the heat equation (6.1) with the Robin boundary control (6.2) and the boundary integral
observation (6.3) (see Section 6.1). In this case, the positive real optimal control problem
is to maximize for x0 ∈X

J(x0, u) = −2Re

∫ ∞
0

y(τ)u(τ) dτ, (6.35)

over all u ∈ L2(0,∞; U ) subject to (6.1)–(6.3). We apply Algorithm 4 to solve this
problem and observe its expected performance in terms of monotonicity and convergence
behavior.

Part I:

In the first part of this section, we focus on an appropriate choice of the shift parameters for
Algorithm 4. To this end, we focus on the finite-dimensional positive real optimal control
problem (see [37]) and present an effective strategy for choosing the shift parameters.

We discretize the PDE (6.1) by applying a finite element discretization with uniform
square elements of maximal diameter h (cf. Figure 6.1). We define the subspace Vh ⊂
H1(Ω) using piecewise-linear basis functions. As a result, we obtain the finite-dimensional
dynamical system (6.10) with the state space dimension n. We note that the finite element
discretization was done using the C++ library deal.II and the rest of the calculations in
this part were done using MATLAB 8.5 (R2015a).

Remark 6.8. The finite-dimensional positive real optimal control problem is to maximize
the cost function (6.35) subject to the linear system (6.10). The cost function (6.35) can
be characterized by (cf. Section 3.6)

J(x0, u) = 〈Ex0, EXx0〉 − ‖ΨΞx0 + FΞu‖2, (6.36)

with
X = Ψ∗ΞΨΞ ∈ Cn×n.

The matrix X ∈ Cn×n is the minimal solution of the positive real Lur’e equations

A∗XE + E∗XA = −C∗ΞCΞ,

B∗XE − C = −DΞCΞ,

0 = − |DΞ|2 .
(6.37)

with CΞ ∈ C1×n and DΞ ∈ C. It follows from (6.37) that DΞ = 0.

Remark 6.9. We consider the finite-dimensional version of Remark 3.13.a for the linear
system (6.10) (recall that in our example we have U = Y = C). It follows from (6.36)
that the optimal cost

sup
u∈L2(0,∞;C)

J(x0, u) = 〈Ex0, EXx0〉

139



Numerical examples

holds true, if and only if,
FΞu

opt + ΨΞx0 = 0, (6.38)

for some uopt ∈ L2(0,∞;C). If FΞ ∈ L(L2(0,∞;C)) is outer (i.e., FΞ has a dense range),
then there exists a solution to (6.38). It follows from (6.10) and (6.38) that there exists
some x : [0,∞)→ Cn such that the differential-algebraic equation[

E 0
0 0

] [
ẋ(t)
u̇(t)

]
=

[
A B
CΞ DΞ

] [
x(t)
u(t)

]
, x(0) = x0 ∈X ,

is fulfilled for CΞ ∈ C1×n and DΞ ∈ C. By a transformation of the matrix pencil[
sE −A −B
−CΞ −DΞ

]
, (6.39)

into the Kronecker form (see [21, Chap. XII, §7]), we can conclude that x and u can be
expressed by sums of exponential functions of type

x(t) =
∑̀
k=1

pk(t)e
−λkt, u(t) =

∑̀
k=1

p̃k(t)e
−λkt, with ` ≤ n+ 1, (6.40)

where p1, . . . , p` and p̃1, . . . , p̃` are vector-valued complex polynomials, and the pairwise
distinct numbers λ1, . . . , λ` are the generalized eigenvalues of the pencil (6.39). By using
the three equations in (6.37), we obtain the deflating subspace relation 0 −sE +A B

sE∗ +A∗ 0 −C∗

B∗ −C 0


XE 0

I 0

0 I

 =

 −I 0

E∗X C∗Ξ
0 DΞ

[sE −A −B
−CΞ −DΞ

]
.

Hence, it follows from [48, Theorem 5.1] (see also [37, Remark 2]) that the generalized
eigenvalues of the pencil (6.39) (denoted by λ1, . . . , λ`) are the negatives of the stable
generalized eigenvalues of the even matrix pencil

sE − A =

 0 −sE +A B
sE∗ +A∗ 0 −C∗

B∗ −C 0

 . (6.41)

We will make use of this fact to improve the numerical performance of our implementation
by making a suitable choice of the shift parameters.

We refine the mesh 5 times globally (cf. Figure 6.1). As a result, we obtain 3072
(active) cells with 3201 degrees of freedom (for piecewise-linear basis functions). We
find an approximate solution Xk ∈ Cn×n of the positive real optimal control problem by
applying the matrix version of Algorithm 4 (see [37]), where we use the modifications
proposed in Remark 6.5 (see also [34, Remark 3.3]), which allow computations without
explicit inversion of E. In addition, in Steps 6 and 7 of Algorithm 4, we do not need to
compute the expression Qi(Li⊗Im), because we compute it once in Step 14 of Algorithm 1.
In fact, we just need to access the last p rows of the matrix Fi in order to obtain the value
of Qi(Li ⊗ Im) (cf. Remark 4.30).
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The choice of shift parameters has a major effect on the convergence speed of the
ADI algorithm. In our example, we propose the following strategy for choosing the shift
parameters, which is motivated by Remark 6.9:

(i) We generate a set of 30 shift parameters by applying Penzl’s heuristic procedure [44]
on negatives of the stable eigenvalues of the even matrix pencil (6.41). In order to
approximate the spectrum of this even matrix pencil, we calculate 450 Ritz values
using the shift-and-invert Arnoldi process [53, Section 8.1.3] with the shift σ = 1.
The Arnoldi process is initialized with a random vector in Rn. The computation
time of these shift parameters for the state-space dimension n = 3201 is about 58
seconds.

(ii) We add a large real shift parameter of order 1012 to the set of shift parameters
from (i) and consider it to be the first parameter of the set. We use this large
shift parameter just in the first iteration of Algorithm 4 and do not repeat it in the
further iterations. The reason for adding a very big shift parameter can be explained
as follows: Since in the positive real case, the Popov function has a zero at infinity,
a delta impulse will occur in the optimal control. The Takenaka-Malmquist basis
function corresponding to a big shift parameter should suitably approximate the
behavior of this delta impulse.

(iii) We sort the obtained 31 shift parameters from (i) and (ii) in an increasing order with
respect to the values of their real part in order to obtain a smooth convergence for our
algorithm. We perform 31 iterations of Algorithm 4 using these shift parameters.
At each iteration, we observe the relative residual norm of the positive real Lur’e
equations (6.37) using the approach proposed in [45, Section 6]. Subsequently, we
extract a subset of 10 shift parameters which provide the highest reduction in the
value of the residual norm. These parameters are then re-used every 10 iterations.

Figure 6.12 shows the relative residual norm with respect to the iteration for the state
space dimension n = 3201 with the above choice of shift parameters. With a tolerance of
10−13 on the relative residual norm, our choice of shift parameters leads to convergence
in 31 iterations. We note that the execution time of the ADI algorithm for this example
(including the computation of the relative residual norm at each iteration) is about 188
seconds for 100 iterations.

Remark 6.10. In the example considered in this section the spectrum of the even ma-
trix pencil (6.41) consists of only real values. If the spectrum was complex, containing
eigenvalues with widely varying real and imaginary parts which dominate the behavior,
then the selection of shift parameters would become a more delicate task. For example,
see [37, Section 5], where the authors considered a convection-diffusion equation with the
same boundary conditions as in (6.2) and (6.3). The authors illustrated that for convec-
tion dominated problems, an inaccurate choice of the shift parameters may result in a slow
convergence of the ADI algorithm.

Part II:

In the second part of this section, we use the shift parameters obtained from Part I to
show monotonicity and convergence of the ADI algorithm for the positive real optimal
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Figure 6.12: Relative residual norm of the positive real Lur’e equations (6.37) for the
approximate solution Xk obtained by the matrix version of Algorithm 4 with the state
space dimension n = 3201.

control problem. We note that Algorithm 4 requires the execution of Algorithm 1 in order
to approximate the output map Ψ and the input-output map F. As we have already
discussed in Part II of Section 6.2.1, Steps 1 and 7 in Algorithm 1 require the solution of
boundary value Helmholtz problems (6.12) and (6.13), respectively. These equations can
be solved efficiently by applying the adaptive finite element method. We use the same
setting as in Part II of Section 6.2.1 in terms of the finite element space and the adaptive
solver. Hence, to avoid repetition, we just focus on the differing attributes of Algorithm 4.

In order to illustrate monotonicity of the ADI iteration (cf. Theorem 4.29), we observe
the nuclear norm of Xk = S∗Ξ,kSΞ,k at each iteration of Algorithm 4. The recursive
structure of SΞ,k allows us to compute the nuclear norm of Xk efficiently. In fact, because
the input and output spaces are one-dimensional (i.e., Y = U = C), we have vk := Vk ∈
L2(Ω) for all k ∈ N, and Steps 3, 9, and 10 of Algorithm 4 give rise to

S∗Ξ,k =
[
s1 s2 . . . sk

]
,

where the functions si ∈ L2(Ω), i = 1, 2, . . . , k, are determined recursively by

s1FΞ,1 =
√

2Re(α1)v1,

siFΞ22,i =
√

2Re(αi)vi − S∗Ξ,i−1FΞ12,i.

As a result, the nuclear norm of Xk = S∗Ξ,kSΞ,k can be computed efficiently by

‖Xk‖S1(X ) = trace
[
S∗Ξ,kSΞ,k

]
=

k∑
j=1

‖sj‖2L2(Ω) . (6.42)

Figure 6.13 shows the nuclear norm of Xk at each iteration of Algorithm 4. From this
figure we observe that

‖Xk‖S1(X ) ≤ ‖Xk+1‖S1(X ) , ∀ k ∈ N,
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6.3 Singular linear-quadratic optimal control problem: positive real case

which is consistent with Theorem 4.29. Moreover, our calculations give an approximation
for the nuclear norm of X = Ψ∗ΞΨΞ ∈ L(X ) (cf. Theorem 4.29):

‖X‖S1(X ) ≈ 2.226080.

We close this section by proposing the following computationally efficient a posteriori
relative stopping criterion for Algorithm 4:

Cpr :=
‖Xk+1 −Xk‖S1(X )

‖Xk+1‖S1(X )

=
trace [Xk+1]− trace [Xk]

trace [Xk+1]
=

‖sk‖2L2(Ω)∑k
j=1 ‖sj‖

2
L2(Ω)

.

Figure 6.14 shows the value of Cpr at each iteration of Algorithm 4.
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Figure 6.13: Nuclear norm of Xk.
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Figure 6.14: A posteriori relative stopping criterion (Cpr) for Algorithm 4.
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Chapter 7
Summary and outlook

Change is the law of life. And those who look only to the past or
present are certain to miss the future.

—John F. Kennedy
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Summary and outlook

7.1 Summary and conclusions

The purpose of this PhD project was to develop two main algorithms for solving the linear-
quadratic optimal control problem of externally stable well-posed linear systems, namely,
the ADI method and the Newton-Kleinman iteration. These algorithms were the main
contribution of this dissertation and were presented in Chapters 4 and 5. Furthermore,
applicability and performance of these algorithms were illustrated by means of numerical
examples arising from a two-dimensional heat equation with Robin boundary control and
boundary integral observation (Chapter 6).

In the first part of Chapter 4 we proposed an extension of the ADI iteration to solve the
regular linear-quadratic optimal control problem. This algorithm is called the Riccati-ADI
method. We established a connection between this algorithm and the underlying linear-
quadratic optimal control problem (Theorem 4.11). We assumed that Σ = (T,Φ,Ψ,F)
is a stable weakly regular linear system (cf. Definition 2.6.b), so that the output map
Ψ and the input-output map F are bounded. This allowed us to apply an explicit for-
mula for the solution of the linear-quadratic optimal control problem in terms of Ψ and
F (Proposition 3.2). The link to the optimal control problem was established by consid-
ering a sequence of subspaces of L2(0,∞). For these subspaces we chose the Takenaka–
Malmquist basis (Definition 4.1), which allowed us to construct projections of the output
map Ψ and the input-output map F (Algorithm 1). The sequence of subspaces is deter-
mined by the choice of shift parameters. We proved that the sequence of approximate
solutions calculated by the Riccati-ADI algorithm is monotonically non-decreasing (Theo-
rem 4.21). Furthermore, if the shift parameters satisfy the non-Blaschke condition (4.79),
then the approximate solutions converge to the Riccati operator (3.10) in the strong oper-
ator topology. In addition, if the Riccati operator is of Schatten class (compact), then the
convergence holds even in the Schatten norm (uniform operator topology). If the input
and output spaces are finite-dimensional (i.e., U = Cm and Y = Cp for some m, p ∈ N),
then the Riccati-ADI algorithm provides approximate solutions in low-rank factored form.

In the second part of Chapter 4 we turned our focus to the singular linear-quadratic
optimal control problem in the bounded real and positive real case. We showed that
the ADI method can be applied to find approximate solutions of these singular optimal
control problems (Algorithms 3 and 4). Following [15], we worked on the class of strongly
stable weakly regular linear system (cf. Definition 2.6.c). Moreover, we assumed finite-
dimensionality of the input and output spaces (which is justified in the actual applications).
In this case, the ADI algorithms provide approximate solutions in low-rank factored form.
This means that these algorithms produce sequences (Xk)k∈N ∈ L(X ) of approximate
solutions of the form Xk = R∗kRk for some Rk ∈ L(X ,C`k), with small `k. In order to
show convergence of the algorithms, we established a connection to the projected versions
of the underlying singular linear-quadratic optimal control problem (Theorems 4.23 and
4.28). As in the regular case, we proved that the sequence of approximate solutions
is monotonically non-decreasing. If the shift parameters are chosen appropriately, the
sequence converges to the solution of the singular optimal control problem in the bounded
real and positive real case.

Chapter 5 dealt with an extension of the Newton-Kleinman iteration [29] to infinite-
dimensional spaces. We proposed an extension to solve the regular linear-quadratic opti-
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mal control problem subject to regular linear systems which have regular dual systems.
The reason for this restriction is that weak regularity is not preserved under feedback (see
for example [58, Remark 7.5.4]). Moreover, because the dual of a regular system is not
necessarily regular (unless the output space is finite-dimensional), we needed the extra
assumption of regularity also on the dual system. Algorithm 5 presented our extension
of the Newton-Kleinman iteration. This algorithm constructs a sequence of infinite-time
observability Gramians to approximate the Riccati operator (3.10). These Gramians have
finite rank, if the input and output spaces are finite-dimensional. Inspired by [70, Section
8], feasibility of iterations was shown with the help of an interconnection of the system
with its anticausal dual (Theorem 5.3). In addition, we established a direct connection
between the Riccati operator (3.10) and the infinite-time observability Gramians gener-
ated by Algorithm 5. By assuming strong stability of the semigroup and boundedness
of the control operator, we proved monotonicity and convergence of our algorithm to the
Riccati operator (Theorems 5.8 and 5.9). If additionally, the first iteration of the Newton-
Kleinman iteration is of Schatten class (compact), then the convergence holds even in
the Schatten norm (uniform operator topology). Moreover, the quadratic rate of conver-
gence of the Newton-Kleinman iterations was proven under the additional assumption of
exponential stability of the semigroup. The results presented in Chapter 5 extend those
of [12], which were developed for the class of exponentially stable well-posed linear sys-
tems with bounded control and observation operators. The presented numerical example
in Section 6.2.2 suggests that it is even possible to apply Algorithm 5 in case of unbounded
control operators. The proof of convergence in this case requires more investigations and
is left as an open problem (see Section 5.3.1 for a potential idea).

The two algorithms given in this dissertation are developed for the class of well-posed
linear systems. If these systems arise from abstract formulation of partial differential equa-
tions, then our algorithms allow us to find approximate solutions to the linear-quadratic
optimal control problem using the approach “optimizing-then-discretizing”. In Chapter 6,
applicability and performance of our algorithms were illustrated by means of numerical
examples arising from a two-dimensional heat equation with Robin boundary control and
boundary integral observation. Section 6.2 focused on the regular linear-quadratic opti-
mal control problem. The Riccati operator (6.7) associated with our example satisfies the
assumptions of Theorem A.5 and is therefore nuclear (Remark 6.4).

In Section 6.2.1, approximations of the Riccati operator (6.7) were obtained via the
Riccati-ADI algorithm. In the first part of this section we focused on the choice of shift
parameters. We showed that if the shift parameters do not satisfy the non-Blaschke
condition (4.79), the Riccati-ADI method may converge to an operator which is not the
correct approximation of the Riccati operator (6.7) (see Figure 6.2). In the second part of
this section monotonicity and convergence of the Riccati-ADI algorithm were illustrated
by observing the nuclear norm of the approximate solution at each iteration (Figure 6.7).

Section 6.2.2 dealt with the approximation of the Riccati operator (6.7) via the Newton-
Kleinman iteration. At each Newton iteration, we solved the respective Lyapunov equation
by adapting the ADI method from [41] to our setting (Algorithm 6). Hence, we referred
to our method as the “Newton-ADI” iteration. Monotonicity and (quadratic rate of)
convergence for the Newton iterations were illustrated by observing the nuclear norms of
the approximate solutions (Figure 6.11 and Table 6.2).

147



Summary and outlook

Section 6.3 demonstrated an application of Algorithm 4 to solve the singular linear-
quadratic optimal control problem in the positive real case. In the first part of this section
we proposed an effective strategy for choosing the shift parameters. The shift parameters
were obtained by applying the Penzl’s heuristic procedure [44] on negatives of the stable
eigenvalues of the even matrix pencil (6.41). The second part of Section 6.3 illustrated
monotonicity and convergence of the approximate solutions produced by Algorithm 4.
This was obtained by observing the nuclear norm of the approximate solution at each
iteration (Figure 6.13)

All the algorithms applied in Chapter 6 required numerical solutions of a sequence of
Helmholtz equations, which were solved efficiently by employing an adaptive finite-element
solver. Section 6.2.1 provided the most important aspects regarding our implementation
of the ADI algorithm. The efficiency of applying an adaptive finite-element solver was
shown by comparing the results with the case of a fixed mesh (Table 6.1).

7.2 Future research perspectives

The work presented in this dissertation opens the path to a wide range of future research
perspectives. Without attempting to give a complete overview, we mention several possi-
bilities for extending the work in this thesis.

• The choice of shift parameters is essential for the speed of convergence in the Riccati-
ADI algorithm. In [34, Section 3.2] it is stated that a choice based on the stable
eigenvalues of the Hamiltonian

H =

[
A −BB∗

−C∗C −A∗
]

is effective. However, the efficient numerical computation of dominant stable eigen-
values of a Hamiltonian matrix seems not to have been explored so far. The Riccati-
ADI method would be an application for this research area.

• In our numerical examples we calculated the shift parameters a priori (before starting
the ADI iteration). In case of adaptively refined meshes, it might be reasonable to
make a posteriori choices of shift parameters. The self-generating shift parameters
as proposed by [7] is worthwhile to investigate for our examples.

• As we have shown in Section 6.3, an effective choice of shift parameters for Algo-
rithm 4 can be made according to the generalized eigenvalues of the even matrix
pencil (6.41). Nevertheless, selection of (sub-)optimal shift parameters in this case
remains an open problem.

• In Chapter 6 we worked with suitable approximations of boundary value Helmholtz
equations arising from ADI iterations. As a result, our approach could be referred to
as inexact ADI iteration [41]. Providing an error analysis for inexact ADI iteration
(as in [41, Section 5]) would be an interesting topic for further research.
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• A distinct advantage of our algorithms is the possibility of using adaptive refinement
techniques. To ensure convergence to correct solutions, one needs to choose accurate
error estimators as well as appropriate mesh adaptation strategies. In fact, making
inaccurate choices may slow down or destroy convergence of the resulting approxi-
mations. These aspects require more investigations in our implementations and are
left as open problems.

• Monotonicity and convergence of the Newton-Kleinman iteration were proven in
Section 5.4 by assuming boundedness of the control operator and strong stability of
the semigroup. Convergence of Algorithm 5 in case of unbounded control operators is
an open problem for our future research. It seems that Section 5.3.1 is an appropriate
way of looking at this problem, because it is independent of the Lyapunov equation
(5.5) and one does not require the characterization of D(Ak).

• In this work we considered exclusively the class of well-posed linear systems. How-
ever, there are important input-state-output systems that do not belong to the class
of well-posed linear systems. A particular example of such a system is the heat equa-
tion with Dirichlet control and Neumann observation [43]. It would be interesting
to investigate the extension of our algorithms to non-well-posed linear systems.
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Appendix A
Appendix

Life is found in the dance between your deepest desire and your
greatest fear.

—Tony Robbins

Contents

A.1 Error estimator and mesh adaptation strategy . . . . . . . . . . 152

A.1.1 Error estimator based on a discrete approximation of the gradient 152

A.1.2 Bulk criterion for the mesh adaptation . . . . . . . . . . . . . . . 153

A.2 Woodbury formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.3 Approximation of the feedback operator in the Newton-ADI
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.4 Convergence of operator sequences . . . . . . . . . . . . . . . . . 157

A.5 Nuclearity of the Riccati operator . . . . . . . . . . . . . . . . . 157

A.6 Perturbation of semigroup generator by unbounded observa-
tion operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

151



Appendix

A.1 Error estimator and mesh adaptation strategy

In this section we present an error indicator and a mesh adaptation strategy that are used
in numerical simulations of Chapter 6. The material presented in this section are mainly
from [3–5] and we refer to these references for more details. We start by defining the
notation used in this section.

Assume that Th is a decomposition of the d-dimensional domain Ω ⊂ Rd into cells K
(e.g., triangles or quadrilaterals in R2) of maximal diameter h. Let P (K) denote a suitable
space of ploynomial-like functions defined on the cell K ∈ Th. For a Hilbert space V , we
define the finite element subspaces Vh ⊂ V by

Vh =
{
v ∈ V : v|K ∈ P (K), K ∈ Th

}
.

For a function u ∈ V , we denote its approximation on the finite-dimensional subspace
Vh ⊂ V by uh ∈ Vh.

A.1.1 Error estimator based on a discrete approximation of the gradient

We present an error indicator that is based on the discrete approximation of the gradient.
This error indicator is taken from [4, Tutorial programs, Step 9].

For any cell K ∈ Th, we denote its adjacent cell by K ′. We connect the centers of K
and K ′ by the vector yKK′ , e.g., as depicted in Figure A.1.

yKK′

K K ′

K ′

K ′

K ′

Figure A.1: Connecting the centers of two adjacent cells K and K ′ by the vector yKK′ .

The directional derivative of a function u ∈ H1(Ω) on the cell K can be approximated
by

yTKK′

|yKK′ |
∇u ≈ u(K ′)− u(K)

|yKK′ |
, (A.1)

where u(K) and u (K ′) denote the evaluation of the function u ∈ H1(Ω) at the center of
the cells K and K ′. Multiplying (A.1) by

yKK′
|yKK′ |

and summing over all neighboring cells
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K ′ of K result in (∑
K′

yKK′y
T
KK′

|yKK′ |2

)
∇u ≈

∑
K′

yKK′ [u(K ′)− u(K)]

|yKK′ |2
.

If the cell K has neighbors in all directions, then the vectors yKK′ span the whole space
Vh ⊂ H1(Ω). As a result, the matrix

Y :=
∑
K′

yKK′y
T
KK′

|yKK′ |2

is invertible and we have

∇u ≈ Y −1
∑
K′

yKK′ [u(K ′)− u(K)]

|yKK′ |2
. (A.2)

The approximation of the right-hand side in (A.2) on the cell K is denoted by ∇hu(K)
and the following error indicator will be used as refinement criterion:

ηK = h1+ d
2 |∇huh(K)| .

A.1.2 Bulk criterion for the mesh adaptation

We review a mesh adaptation strategy from [3] and [5]. This mesh adaptation is called the
bulk criterion, which controls the total reduction of the error estimates on a given mesh
Th.

Let uh ∈ Vh be an approximation of the function u ∈ V and define the approximation
error by e := u−uh. Let ηK denote the local error indicator on the cell K (e.g., constructed
as in Appendix A.1.1) such that the following error estimate holds

‖e‖L2 ≤ η :=
∑
K∈Th

ηK .

Let TOL denote a suitable tolerance for the mesh adaptation, that is

η ≤ TOL. (A.3)

If condition A.3 is satisfied on the current mesh Th, then uh ∈ Vh is accepted as an
approximation to u ∈ V and we are allowed to coarsen the mesh. Otherwise, we refine the
mesh so that condition A.3 is satisfied. Now the bulk criterion for the mesh adaptation
reads as follows:

(i) We order the cells on the current mesh Th according to their respective local error
indicator ηK :

ηK1 ≥ ηK2 ≥ · · · ≥ ηKn , (A.4)

where n ∈ N is the number of cells on the current mesh.

(ii) Using the ordering (A.4), we define
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• r: top fraction of cells to be refined

• c: bottom fraction of cells to be coarsened

(iii) We refine the smallest subset R ⊂ Th, such that

r · η ≤
∑

K∈R⊂Th

ηK ,

and coarsen the biggest subset C ⊂ Th, such that

c · η ≥
∑

K∈C⊂Th

ηK .

A.2 Woodbury formula

In finite dimensions the Sherman-Morrison-Woodbury formula (or just Woodbury formula)
reads as follows: Assume that the matrices A ∈ Cn×n and C ∈ Ck×k are both invertible.
Let U ∈ Cn×k and V ∈ Ck×n. Then A+ UCV is invertible, if and only if, C−1 + V A−1U
is invertible. In this case there holds

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (A.5)

Formula (A.5) says that the inverse of a rank-k correction of an invertible matrix A, can
be computed by the rank-k correction of A−1. In (A.5) if we replace C by −C−1, then
we obtain an expression for the inverse of the Schur complement (see, e.g., [14]). We refer
to [25] for a survey on the Woodbury formula and its applications.

The following Theorem gives the generalization of the Sherman-Morrison-Woodbury
formula to Hilbert spaces. This formula is used in the proofs of Proposition 3.4 and
Proposition 6.6.

Theorem A.1. [19, Theorem 1.1] Let X and Y be Hilbert spaces. Let A ∈ L(X ) and
G ∈ L(Y ) be both invertible and let Y, Z ∈ L(Y ,X ). Then A + Y GZ∗ is invertible, if
and only if, G−1 + Z∗A−1Y is invertible. In this case there holds

(A+ Y GZ∗)−1 = A−1 −A−1Y (G−1 + Z∗A−1Y )−1Z∗A−1.

A.3 Approximation of the feedback operator in the Newton-
ADI method

In this section we give more details regarding the implementation of the Newton-ADI
method for the example presented in Section 6.2.2.

Recall the first iteration of the Newton-ADI method in Section 6.2.2, in which an
operator S0 is generated such that

X̃
(i0)
1 :=

(
S0
)∗
S0 ≈ X1,
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where X1 is the unique solution of (6.16). In our example, since B∗ = C ∈ L(X ,C), the
approximate feedback operator F̃1 satisfies

F̃1 := B∗X̃
(i0)
1 ∈ L(X ,C),

and can be calculated by

F̃1 = B∗X̃
(i0)
1

= B∗(S0)∗S0

= B∗
[
v1 v2 · · · vi0

]


2Re(α1)
2Re(α2)

. . .

2Re(αi0)




(v1)∗

(v2)∗

...
(vi0)∗



=
[
B∗v1 B∗v2 · · · B∗vi0

]


2Re(α1)
2Re(α2)

. . .

2Re(αi0)




(v1)∗

(v2)∗

...
(vi0)∗

 .
Since B∗ = C is a boundary integral operator, we have

B∗vi =

∫
Γ
vi(ξ) dξ ∈ C, i = 1, 2, . . . , i0.

Let vh,i be an approximation of vi obtained by the finite element discretization of the
Helmholtz equations (6.12) and (6.13). Then,

vh,i =

n∑
j=1

xi,jϕj , xi,j ∈ C, ϕj ∈ Vh ⊂ H1(Ω), j = 1, 2, . . . , n, (A.6)

where n ∈ N is the number of degrees of freedom (DoF) corresponding to the finite element
discretization. Consequently, we can calculate B∗vh,i by

b0i := B∗vh,i =

∫
Γ
vh,i(ξ) dξ =

n∑
j=1

xi,j

∫
Γ
ϕj(ξ) dξ ∈ C. (A.7)

Let F̃h,1 denote the approximation of F̃1. Then, we observe that

F̃h,1 =
[
b01 b02 · · · b0i0

]


2Re(α1)
2Re(α2)

. . .

2Re(αi0)



v∗h,1
v∗h,2

...
v∗h,i0


= 2

i0∑
i=1

Re(αi)b
0
i · v∗h,i.

(A.8)
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We note that if the functions vh,i, i = 1, 2, . . . , i0, are computed using adaptive mesh refine-
ments, then one has to interpolate all these functions on a unified mesh before computing
the feedback F̃1 in (A.8).

We can generalize the above calculations to all iterations of the Newton-ADI method:
Let Sk denote the approximation of the augmented output map Ψaug

k , generated by Algo-
rithm 6. Then,

X̃
(ik)
k+1 := (Sk)∗Sk ≈ Xk+1,

where Xk+1 ∈ L(X ) is the unique solution of (6.18). Since B∗ = C ∈ L(X ,C), the
approximated feedback operator generated by the (k + 1)-Newton iteration satisfies

F̃k+1 := B∗X̃
(ik)
k+1 ∈ L(X ,C).

The feedback F̃k+1 can be calculated by

F̃k+1 = B∗X̃
(ik)
k+1

= B∗(Sk)∗Sk

= B∗
[
V k

1 V k
2 · · · V k

ik

]


2Re(α1)
2Re(α2)

. . .

2Re(αik)




(V k
1 )∗

(V k
2 )∗

...
(V k
ik

)∗

 .
From Proposition 6.6 we know that V k

i have the structure V k
i = [vki vF̃k

i ]. Since B∗ = C
is a boundary integral operator, we have

B∗V k
i =

[∫
Γ v

k
i (ξ) dξ

∫
Γ v

F̃k
i (ξ) dξ

]
∈ C1×2, i = 1, 2, . . . , ik.

Let vkh,i and vF̃k
h,i be respectively the approximations of vki and vF̃k

i (see (A.6)) obtained
by the finite element discretization of equations (6.22) and a further application of the
recursive formulas (6.19) and (6.20) (see Proposition 6.6). Then,

vh,i =
n∑
j=1

yi,jϕj , vF̃k
h,i =

n∑
j=1

zi,jϕj ,

with yi,j , zi,j ∈ C, ϕj ∈ Vh ⊂ H1(Ω), for j = 1, 2, . . . , n, where n ∈ N is the number of
degrees of freedom (DoF) corresponding to the finite element discretization. We define

V k
h,i :=

[
vkh,i vF̃k

h,i

]
.

Consequently, we obtain

Bk
i := B∗V k

h,i

=
[
B∗vkh,i B∗vF̃k

h,i

]
=
[∫

Γ v
k
h,i(ξ) dξ

∫
Γ v

F̃k
h,i(ξ) dξ

]
=

n∑
j=1

[
yi,j
∫

Γ ϕj(ξ) dξ zi,j
∫

Γ ϕj(ξ) dξ
]
∈ C1×2.
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Eventually, if F̃h,k+1 denotes an approximation of F̃k+1, then we observe that

F̃h,k+1 =
[
Bk

1 Bk
2 · · · Bk

ik

]


2Re(α1)
2Re(α2)

. . .

2Re(αik)




(
V k
h,1

)∗(
V k
h,2

)∗
...(

V k
h,ik

)∗


= 2

ik∑
i=1

Re(αi)B
k
i ·
(
V k
h,i

)∗
.

A.4 Convergence of operator sequences

The results presented in this section are taken directly from [41, Appendix A]. Our purpose
is to simplify the referencing.

Theorem A.2. (see [50, p. 263]) Let X be a Hilbert space and (Xk)k∈N ∈ L(X ) be a
sequence of self-adjoint operators such that Xk ≥ Xk+1, for all k ∈ N. Moreover, assume
that there exists some X ∈ L(X ) such that Xk ≥ X, for all k ∈ N.

Then, there exists some self-adjoint operator X̃ ∈ L(X ) such that Xk ≥ X̃ ≥ X, for all
k ∈ N, and the sequence (Xk)k∈N converges to X̃ in the strong operator topology, i.e.,

lim
k→∞

Xkx = X̃x, ∀ x ∈X .

Theorem A.3. (see [22, Theorem III.6.3]) Let X1 and X2 be Hilbert spaces, and let
Πk ∈ L(X1) be a sequence of self-adjoint operators converging in the strong operator
topology to Π ∈ L(X1).

(a) If T ∈ K(X1,X2), then

lim
k→∞

‖ΠkT −ΠT‖L(X1,X2) = 0.

(b) If T ∈ Sp(X1,X2) with p ∈ [1,∞), then

lim
k→∞

‖ΠkT −ΠT‖Sp(X1,X2) = 0.

A.5 Nuclearity of the Riccati operator

In this section we gather two important theories that are needed in the analysis of Chap-
ter 6. In particular, Theorem A.5 will help us to show that the Riccati operator (6.7) is
nuclear (i.e., X ∈ S1(X )). The results presented here are from [16] and we refer to this
paper as well as the references therein for more details.

Theorem A.4. [16, Theorem 3.2] Suppose that A is the generator of an exponentially
stable semigroup T on the Hilbert space X , and that C ∈ L(X ,Cp). Then the output map
Ψ : X → L2(0,∞;Cp) defined by

(Ψx0) (t) = CTtx0, ∀ t ≥ 0, ∀ x0 ∈X ,
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is Hilbert–Schmidt, i.e., Ψ ∈ S2(X , L2(0,∞;Cp)).

Theorem A.5. [16, Theorem 4.1 & 4.6] Suppose that:

(i) A is the generator of a strongly continuous analytic semigroup T on a Hilbert space
X . Let ω0(T) be the growth bound of T (cf. Definition 2.2).

(ii) There exists some β ∈ (−1, 0] such that (ωI −A)βB ∈ L(U ,X ), for all ω > ω0(T).
This means that B ∈ L(U ,Xβ).

(iii) C ∈ L(X ,Y ).

(iv) (Exponential detectability) There exists L ∈ L(Y ,X ) such that A + LC generates
an exponentially stable analytic semigroup on X .

(v) (Finite cost condition) For each x0 ∈X , there exists u ∈ L2(0,∞; U ) such that the
mild solution x to d

dtx(t) = Ax(t) +Bu(t), x(0) = x0, satisfies Cx(·) ∈ L2(0,∞; Y ).

Then, there exists a self-adjoint, nonnegative X ∈ L(X ) such that:

1. X is the unique self-adjoint nonnegative solution of the following algebraic Riccati
equation

〈Ax0, Xz0〉X + 〈Xx0, Az0〉X + 〈Cx0, Cz0〉Y = 〈B∗Xx0, B
∗Xz0〉U ,

for all x0, z0 ∈ D((ωI −A)ε) and any ε > 0.

2. B∗X ∈ L(X ,U ).

If in addition to the assumptions (i)–(v), the input and the output spaces are finite-
dimensional (i.e., U = Cm and Y = Cp for some m, p ∈ N), then

(1) X ∈ S1(Xγ , (Xγ)′) for all γ > −1
2 .

(2) If β > −1
2 , then B∗X ∈ S2(Xγ ,U ) for all γ > −1

2 .

A.6 Perturbation of semigroup generator by unbounded ob-
servation operator

Theorem A.6. [62, Theorem 5.4.2] Let T be a strongly continuous semigroup on X with
generating operator A. If C : D(A) ⊂ X → Y is an admissible observation operator for
T and B ∈ L(Y ,X ), then the operator A+BC : D(A) ⊂X →X is the generator of a
strongly continuous semigroup Tcl on X . This semigroup satisfies the integral equation

Tclt x0 = Ttx0 +

∫ t

0
Tt−σBCTclσ x0 dσ, ∀ x0 ∈ D(A) = D(A+BC), ∀ t ≥ 0.

Moreover, for any Hilbert space Y1, the space of all admissible observation operators for
T that map into Y1 is equal to the corresponding space for Tcl.
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[22] I. Gohberg and M. Krĕin, Introduction to the Theory of Linear Nonselfadjoint
Operators, vol. 18 of Trans. Math. Monogr., AMS, Providence, RI, 1969.

[23] G. H. Golub and C. F. Van Loan, Matrix Computations, vol. 3, JHU Press, 2012.

[24] C. Guiver and M. R. Opmeer, Bounded real and positive real balanced truncation
for infinite-dimensional systems, Mathematical Control and Related Fields, 3 (2013),
pp. 83–119.

[25] W. W. Hager, Updating the inverse of a matrix, SIAM review, 31 (1989), pp. 221–
239.

160



BIBLIOGRAPHY

[26] S. Hansen and G. Weiss, New results on the operator Carleson measure criterion,
IMA J. Math Control Inform., 14 (1997), pp. 3–32.

[27] B. Jacob and J. R. Partington, Admissibility of control and observation operators
for semigroups: a survey, in Current Trends in Operator Theory and its Applications,
Springer, 2004, pp. 199–221.

[28] B. Jacob, J. R. Partington, and S. Pott, Conditions for admissibility of obser-
vation operators and boundedness of Hankel operators, Integral Equations and Oper-
ator Theory, 47 (2003), pp. 315–338.

[29] D. Kleinman, On an iterative technique for Riccati equation computations, IEEE
Trans. Automatic Control, 13 (1968), pp. 114–115.

[30] C. S. Kubrusly and P. C. Vieira, Convergence and decomposition for tensor
products of Hilbert space operators, Oper. Matrices, 2 (2008), pp. 407–416.

[31] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Clarendon Press,
Oxford, 1995.

[32] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations:
Continuous and Approximation Theories, Part 1, Cambridge University Press, 2000.

[33] A. Laub, A Schur method for solving algebraic Riccati equations, IEEE Transactions
on Automatic Control, 24 (1979), pp. 913–921.

[34] Y. Lin and V. Simoncini, A new subspace iteration method for the algebraic Riccati
equation, Numerical Linear Algebra with Applications, 22 (2015), pp. 26–47.

[35] A. Massoudi, M. Opmeer, and T. Reis, Analysis of an iteration method for the
algebraic Riccati equation, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 624 – 648.

[36] A. Massoudi, M. R. Opmeer, and T. Reis, The ADI method for the algebraic Ric-
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Abstract

In this dissertation we develop two algorithms for solving the linear-quadratic optimal
control problem of externally stable well-posed linear systems.

The first algorithm is an extension of the Alternating Direction Implicit (ADI) iteration
in order to solve the regular linear-quadratic optimal control problem. The algorithm is
based on approximating the output map and the input-output map of the well-posed lin-
ear system using projections on appropriate subspaces. These projections are determined
by the so-called “shift parameters”. We prove that the approximation obtained by this
algorithm expresses the optimal cost for a projected optimal control problem. Further-
more, we show that the sequence of approximate solutions obtained by this algorithm is
monotonically non-decreasing. Under mild assumptions on the shift parameters, we prove
convergence of this sequence to the optimal cost operator (Riccati operator).
Later on, we turn our focus to the singular linear-quadratic optimal control problem in
the bounded real and positive real case. We show that the ADI iteration can be applied
to find approximate solutions of these singular optimal control problems. By assuming
finite-dimensionality of the input and output spaces (which is justified in the actual ap-
plications), our method provides approximate solutions in low-rank factored form. In
order to show convergence, we establish a connection to the projected singular linear-
quadratic optimal control problem. As in the regular case, we show that the sequence of
approximate solutions is monotonically non-decreasing. If the shift parameters are chosen
appropriately, the sequence converges to the optimal cost of the singular optimal control
problem in the bounded real and positive real case.

The second algorithm is an extension of the Newton-Kleinman iteration to the infinite-
dimensional spaces. We propose an extension for solving the regular linear-quadratic
optimal control problem subject to regular linear systems which have regular dual systems.
We construct a sequence of infinite-time observability Gramians to approximate the Riccati
operator. These Gramians have finite rank, if the input and output spaces are finite-
dimensional. The feasibility of iterations is shown with the help of an interconnection of
the system with its anticausal dual. In addition, we establish a direct connection between
the Riccati operator and the sequence of infinite-time observability Gramians. In order to
prove monotonicity and convergence of our algorithm, we further assume strong stability
of the semigroup and boundedness of the control operator. Moreover, the quadratic rate of
convergence of the Newton-Kleinman iterations is proven under the additional assumption
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of exponentially stability on the semigroup. The presented numerical example suggests
that it is even possible to apply our method in case of unbounded control operators.
However, the proof of convergence in this case requires more investigations and is left as
an open problem.

The two algorithms given in this dissertation are developed for the class of well-posed
linear systems. If these systems arise from abstract formulation of partial differential equa-
tions, then our algorithms allow numerical solutions of the optimal control problems using
the approach “optimizing-then-discretizing”. We verify the applicability of our algorithms
by applying them to a two-dimensional heat equation with Robin boundary control and
boundary integral observation. We present three numerical examples. The first two deal
with the regular linear-quadratic optimal control problem. The Riccati operator associ-
ated with these examples is nuclear. We find approximations of the Riccati operator once
by applying the ADI method and once by employing the Newton-Kleinman iteration.
The last example demonstrates the applicability of the ADI method for solving the singular
linear-quadratic optimal control problem in the positive real case. A correct choice of shift
parameters is crucial for convergence of the ADI method. We propose an effective strat-
egy for choosing the shift parameters based on the stable eigenvalues of the even matrix
pencil. In all the examples, monotonicity and convergence of the approximate solutions
are illustrated by observing the nuclear norm of the approximations at each iteration.
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Kurzfassung

In der vorliegenden Arbeit entwickeln wir zwei Algorithmen für die linear-quadratische op-
timale Steuerung von extern-stabilen wohl-definierten linearen Systemen (externally stable
well-posed linear systems).

Der erste Algorithmus ist eine Erweiterung der Alternating Direction Implicit (ADI)
Iteration für die Lösung des regulären linear-quadratischen optimalen Steuerungsprob-
lems. Dieser Algorithmus basiert auf den Approximationen des Ausgangsoperators sowie
des Eingang-Ausgang Operators anhand der Projektionen in geeignete Unterräume. Diese
Projektionen werden durch die sogenannten “Shift-Parameter” definiert. Wir zeigen, dass
die Approximation, die durch diesen Algorithmus erzeugt wird, dem optimalen Kosten-
operator eines projizierten optimalen Steuerungsproblems entspricht. Außerdem zeigen
wir, dass die Folge der approximierten Lösungen monoton wachsend ist. Unter milden
Voraussetzungen an die Shift-Parameter beweisen wir die Konvergenz dieser Folge gegen
den optimalen Kostenoperator (Riccati Operator).
Desweiteren betrachten wir das singuläre optimale Steuerungsproblem im “beschränkten
reellen” (bounded real) und “positiven reellen” (positive real) Fall. Wir zeigen die An-
wendbarkeit der ADI Iteration, um approximierte Lösungen dieser Probleme zu finden.
Falls der Eingangs- und Ausgangsraum endlichdimensional sind, dann liefert unser Al-
gorithmus approximierte Lösungen in faktorisierter Form mit endlichem Rang. Um die
Konvergenz zu zeigen, erstellen wir eine Verbindung mit dem projizierten singulären op-
timalen Steuerungsproblem. Wir beweisen, dass die Folge der approximierten Lösungen
monoton wachsend ist. Mit “geeigneten” Shift-Parametern konvergiert diese Folge gegen
optimalen Kostenoperator im beschränkten reellen und positiven reellen Fall.

Der zweite Algorithmus ist eine Erweiterung der Newton-Kleinman Iteration auf un-
endlichdimensionalen Räumen. Wir schlagen eine Erweiterung dieser Iteration vor, um das
reguläre optimale Steuerungsproblem gemäß regulären linearen Systemen mit regulären
Dualsystemen zu lösen. Eine Folge der Gramschen-Steuerbarkeitsoperatoren wird kon-
struiert, um den Riccati Operator zu approximieren. Diese Gramschen-Steuerbarkeits-
operatoren haben endlichen Rang, wenn der Eingangs- und Ausgangsraum endlichdimen-
sional sind. Die Durchführbarkeit der Iterationen wird anhand einer Verbindung zwischen
dem System und seinem antikausalen Dualsystem gezeigt. Darüber hinaus stellen wir
eine direkte Beziehung zwischen dem Riccati Operator und den Gramschen-Steuerbar-
keitsoperatoren her. Um die Monotonie und Konvergenz unseres Algorithmus zu be-
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weisen, nehmen wir zusätzlich an, dass die Halbgruppe stark stabil und der Kontrolloper-
ator beschränkt ist. Anhand eines numerischen Beispieles zeigen wir die Anwendbarkeit
unserer Methode sogar im Fall der unbeschränkten Kontrolloperatoren. In diesem Fall
benötigt der Konvergenzbeweis weitere Recherche und bleibt ein offenes Problem.

Beide Algorithmen wurden für die Klasse der wohl-definierten linearen Systemen en-
twickelt. Wenn diese Systeme ihren Ursprung in abstrakter Form der partiellen Dif-
ferentialgleichungen haben, dann ermöglichen unsere Algorithmen numerische Lösungen
der optimalen Steuerungsprobleme anhand der sogenannten “Optimierung-dann-Diskret-
isierung” Methode. Wir überprüfen die Realisierbarkeit unserer Algorithmen, indem wir
diese auf die zweidimensionale Wärmeleitungsgleichung mit Robin Randsteuerung und
Randintegral Beobachtung anwenden. Im letzten Teil der Arbeit präsentieren wir drei
numerische Beispiele. Die ersten beiden handeln von dem Fall eines regulären optimalen
Steuerungsproblems. Der Riccati Operator in diesen Beispielen ist nuklear. Wir finden
Approximationen des Riccati Operators einerseits mittels der ADI Methode und ander-
seits durch die Anwendung der Newton-Kleinman Iteration.
Das letzte Beispiel demonstriert die Anwendbarkeit der ADI Methode bei der Lösung des
optimalen Steuerungsproblems im positiven reellen Fall. Die geeignete Wahl der Shift-
Parameter ist entscheidend für die Konvergenz der ADI Methode. Weiter schlagen wir eine
effektive Strategie vor, die auf stabilen Eigenwerten des geraden Matrixbüschels basiert.
In allen Drei Beispielen werden Monotonie und Konvergenz der approximierten Lösungen
durch Beobachtung der nuklearen Normen illustriert.
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