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Knežević, Daniel Ebel und meiner Mutter für die Mühe, die sie sich beim Korrekturlesen
dieser Arbeit gemacht haben.

Außerdem bedanke ich mich bei vielen Freundinnen und Freunden für ihre liebe Un-
terstützung, ihre Aufmunterungen und ihre entgegengebrachte Nachsicht.

Meinem Freund Dr. Karsten Kruse danke ich von ganzem Herzen für seine hilfreiche
Unterstützung und sein Verständnis bei der Anfertigung dieser Arbeit. Er hat nicht nur
unermüdlich Kapitel für Kapitel Korrektur gelesen, sondern auch mit fachlichen Diskus-
sionen und wertvollen Ideen die Arbeit bereichert.





Contents

Introduction v
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Notations and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I Networks of production-inventory systems 1

1 Introduction 3
1.1 The art of product form modelling: Separable networks . . . . . . . . . . 5
1.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Exchangeable items 11

2 Basic production-inventory model with base stock policy 11
2.1 Own contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Limiting and stationary behaviour . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Comparison with a more complex model with location specific items . . . 21
2.5 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Structural properties of the integrated system . . . . . . . . . . . . . . . . 33

2.6.1 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.2 Effect of pooling demand, inventories and service capacity . . . . . 33

2.6.2.1 Pooling of general homogeneous locations: Refined nu-
merical evaluation on the basis of product form structure 37

2.6.3 Transformation of the stationary distribution . . . . . . . . . . . . 39
2.6.4 Monotonicity properties . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.5 Insensitivity and robustness . . . . . . . . . . . . . . . . . . . . . . 40

3 Load balancing policies 41
3.1 Related literature and own contributions . . . . . . . . . . . . . . . . . . . 41
3.2 Description of the general model . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Load balancing policy: Strict priorities . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Limiting and stationary distribution . . . . . . . . . . . . . . . . . 47
3.3.1.1 Calculation of θ̃ for the special case bj = 1, j ∈ J . . . . . 50

i



Contents

3.3.1.2 Structural properties of the stationary inventory-replenishment
subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Load balancing policy: Weak priorities . . . . . . . . . . . . . . . . . . . . 60
3.4.1 Limiting and stationary distribution . . . . . . . . . . . . . . . . . 60

4 Inventory systems with perishable items 65
4.1 Related literature and own contributions . . . . . . . . . . . . . . . . . . . 65
4.2 Non-separable systems: Single location . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Description of the general model . . . . . . . . . . . . . . . . . . . 69
4.2.2 Phase-type distributed life time . . . . . . . . . . . . . . . . . . . . 71

4.2.2.1 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2.2 Properties of the stationary system . . . . . . . . . . . . . 87

4.2.3 Exponentially distributed life time . . . . . . . . . . . . . . . . . . 91
4.2.3.1 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.3.2 Properties of the stationary system . . . . . . . . . . . . . 93

4.3 Separable systems: Multiple locations . . . . . . . . . . . . . . . . . . . . 103
4.3.1 Description of the general model . . . . . . . . . . . . . . . . . . . 103
4.3.2 Limiting and stationary distribution . . . . . . . . . . . . . . . . . 105
4.3.3 Separable approximation of non-separable systems . . . . . . . . . 111

4.3.3.1 Production-inventory system with base stock level b = 1 . 112
4.3.3.2 Production-inventory system with base stock level b ≥ 2 . 114

Location specific items 123

5 Basic production-inventory model with base stock policy 123
5.1 Own contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3 Limiting and stationary behaviour . . . . . . . . . . . . . . . . . . . . . . 127
5.4 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Supplier with symmetric server 139
6.1 Related literature and own contributions . . . . . . . . . . . . . . . . . . . 139
6.2 Description of the general model . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 Phase-type distributed service time . . . . . . . . . . . . . . . . . . . . . . 142

6.3.1 Limiting and stationary behaviour . . . . . . . . . . . . . . . . . . 144
6.4 Exponentially distributed service time . . . . . . . . . . . . . . . . . . . . 159

7 Production-inventory system with (rj , Sj)-policy 161
7.1 Related literature and own contributions . . . . . . . . . . . . . . . . . . . 161
7.2 Description of the general model . . . . . . . . . . . . . . . . . . . . . . . 162
7.3 (0, Sj)-policy with J locations and M workstations . . . . . . . . . . . . . 164

7.3.1 Limiting and stationary behaviour . . . . . . . . . . . . . . . . . . 165
7.3.2 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.4 (1, Sj)-policy with two locations and one workstation . . . . . . . . . . . . 177
7.4.1 Limiting and stationary behaviour . . . . . . . . . . . . . . . . . . 178

8 Directions for future research 199

ii



Contents

II Production-inventory systems with priority classes 203

9 Introduction 205
9.1 Related literature and own contributions . . . . . . . . . . . . . . . . . . . 205
9.2 Description of the general model . . . . . . . . . . . . . . . . . . . . . . . 208

10 Production-inventory system with (r,Q)-policy 211
10.1 Properties of the stationary system . . . . . . . . . . . . . . . . . . . . . . 212
10.2 Pure inventory system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
10.3 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

11 Production-inventory system with base stock policy 235
11.1 Properties of the stationary system . . . . . . . . . . . . . . . . . . . . . . 236
11.2 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
11.3 Pure inventory system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
11.4 Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Appendix 259

A Basics 259
A.1 Properties for Markov processes . . . . . . . . . . . . . . . . . . . . . . . . 259
A.2 Standard separable networks . . . . . . . . . . . . . . . . . . . . . . . . . . 261
A.3 Jackson network in a random environment . . . . . . . . . . . . . . . . . . 264

B Appendix to Chapter 2 267
B.1 Iterative Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

C Appendix to Chapter 3 271
C.1 Algorithm to obtain θ̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

D Appendix to Chapter 4 325
D.1 Queueing system in a random environment . . . . . . . . . . . . . . . . . 325

D.1.1 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
D.1.2 Properties of the stationary system . . . . . . . . . . . . . . . . . . 343

D.2 Comparing throughputs with different ageing regimes . . . . . . . . . . . . 349

E Appendix to Chapter 11 375
E.1 Proof of irreducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

List of abbreviations 377

Index 379

Bibliography 385

Abstract 397

Zusammenfassung 403

iii





Introduction

Motivation

Today’s production processes and production systems usually are large systems of inter-
acting components, and the components are typically of very different nature, e.g. pro-
duction centres, logistic and transport units, inventories, etc. A supply chain represents a
“(...) network of organizations that are involved, through upstream and downstream link-
ages, in the different processes and activities that produce value in the form of products
and services in the handy of the ultimate consumer” [Chr98, p. 15]. An example of a
supply chain, which consists of customers, a production system, an inventory and a sup-
plier, is presented in Figure 0.0.1. Understanding the functioning of these systems is an
important issue and there is need for insight in the structure of these complex systems
with strongly interacting subsystems. As can be seen from the recent literature, there is
much research in the field of supply chains, but as it can be seen as well, structure theory
for these complex systems is in a very premature status.

Customer Production system Inventory Supplier

Figure 0.0.1.: Supply chain

Production processes are usually investigated using models and methods from queueing
theory. Control of warehouses and their optimization rely on models and methods from
inventory theory. Both theories are fields of Operations Research (OR), but they com-
prise quite different methodologies and techniques. In classical OR queueing and in-
ventory theory are considered as disjoint research areas. On the other side, the emer-
gence of complex supply chains (≡ production-inventory networks) calls for integrated
production-inventory models as well as adapted techniques and evaluation tools. Such
integrated approaches to model production-inventory systems have been developed over
the last decade and it turned out that the problem of determining e.g. steady state distri-
butions of the systems results in either large simulation experiments or in using heuristic
decomposition-aggregation methods or in solving the global balance equations numeri-
cally.

In Operations Research and applied mathematics — especially applied probability —
there exist well established theories for the components of the supply chains and the
production systems. They are connected with, for example, queueing theory, inventory
theory and transport theory. These theories provide structural characteristics, perform-
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ance metrics, conditions for stabilization, and so on, which are useful in running such
systems under optimal conditions. As an example: One of the most important tasks in
business is inventory management, whereby the fundamental problem can be described
by two questions (cf. [BCST09, p. 3]): “When should an order be placed?” and “How
much should be ordered?”. To answer such questions we need the support of inventory
theory, and indeed this theory provides answers at least for small inventories.

In this thesis both — queueing theory and inventory control — are methodologically
relevant, in particular, integrated production-inventory models. Over the last decades
research on queueing systems with attached inventory found much attention, often in
connection with the research on integrated supply chain management. For a general re-
view we refer to Krishnamoorthy et al. [KLM11]. Some additional articles can be found
in [KS16a]. These articles are by no means complete. On page viii we describe the pre-
viously done research, which is relevant for our studies, in more detail.

The integrated models in the literature assume a continuous review structure and
the supply chains of interest consist — in the fundamental version — of customers, a
production system, an inventory and a supplier as shown in Figure 0.0.2.

Single 
server

Waiting room

Inventory

Production
 system

OrderReplenishment

Supplier

Lost 
sales

Demand arrival 
process

Served
customer

Figure 0.0.2.: Supply chain

The production system manufactures products according to customers’ demand on
a make-to-order (MTO) basis1, i.e. the manufacturing starts only after an order of a
customer is received. According to a Poisson process indistinguishable customers arrive
one by one at the production system and require service. There is a single server with
waiting room under a first-come, first-served regime. Each customer needs exactly one

1The use of manufacturing terms in the literature is not consistent. We use the definition of Schnee-
weiß [Sch02, pp. 16f.]. He distinguishes only between make-to-order (MTO) and make-to-stock (MTS)
as strategies for the production environment. In the literature, there are various variants of how many
different strategies exist [Sin12, pp. 43f.]. For example, Stadtler et al. [SKM10, pp. 212-215] split the
strategies further into assemble-to-order (ATO, also called capable-to-order).

vi



Contents

item from the inventory for service. If the server is ready to serve a customer, who is at
the head of the line and the inventory is not depleted, his service begins.
There are two extreme cases of customers’ reaction in the situation that inventory

is depleted when demand arrives (cf. [SPP98, p. 234]): Backordering, which means that
customers are willing to wait for their demands to be fulfilled, and lost sales, i.e. demands
that occur when inventory is empty are lost. In this thesis, we focus on lost sales models,
like for example on a model depicted in Figure 0.0.2.
In these models, a served customer departs from the production system immediately

and the associated item is removed from the inventory. It is assumed that the transpor-
tation time between the production system and the inventory is negligible. An outside
supplier replenishes raw material in the inventory according to a continuous review re-
plenishment policy. At each decision epoch, it is determined according to a prescribed
replenishment policy whether a replenishment order is placed or not, and how many items
are ordered.
In this thesis, we consider the following continuous review replenishment policies,

whereby we focus on the base stock policy.

• Base stock policy:
Each unit taken from the inventory results in a direct order for one unit sent to the
supplier. This means, if a served customer departs from the system, an order of
the consumed raw material is placed at the supplier at this time instant. The local
base stock level b ≥ 1 is the maximal size of the inventory. Note that there can be
more than one outstanding order.
An equivalent definition can, for example, be found in [HS00, p. 65].

• (r,Q)-policy:
If the on-hand inventory falls down to a prefixed value r ≥ 0, a replenishment order
is placed instantaneously. The size of the order is fixed to Q < ∞ units of raw
material. We assume that r < Q (this “(...) ensures that there is no perpetual
shortage” [LFW14, p. 1545]) and that there is at most one outstanding order. The
maximal size of the inventory is r +Q.
Equivalent definitions can, for example, be found in [SSD+06, p. 63], [HS00, p. 65]
and [SPP98, pp. 237f.]. Furthermore, Silver et al. [SPP98, pp. 237f.] give a brief
discussion of the advantages and disadvantages for (r,Q)-policy.

• (r, S)-policy:
If the size of the local inventory is less than or equal to the reorder level r ≥ 0, a
replenishment order is placed instantaneously. With each replenishment the local
inventory level is restocked to exactly S <∞. The maximal size of the inventory is
S. We assume that 0 < S and that there is at most one outstanding order (r < S).
Equivalent definitions can, for example, be found in [SSD+06, p. 65], [BS01, p.
431] and [SPP98, pp. 238f.]. Furthermore, a brief discussion of the advantages and
disadvantages can be found in [SPP98, pp. 238f.] for (r, S)-policy.

The models in the literature under investigation differ in service time distribution, lead
time distribution, waiting room size, inventory capacity, replenishment policy and the
costs which originate from the queueing of customers and from holding inventory. Fur-
thermore, a distinction is made between the lost sales and the backordering case.
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Literature review

For a general review we refer to Krishnamoorthy et al. [KLM11], which is by no means
complete. Some additional articles can be found in [KS16a]. In the following, we describe
the previous research, which is relevant for our studies, in more detail.

The first intensive study on a queueing-inventory model is conducted by Sigman and
Simchi-Levi [SSL92]. They use an approximation procedure to find performance descrip-
tions for an M/G/1 queue with limited inventory.

In a sequence of papers, Berman and his coauthors investigate the behaviour of produc-
tion systems with an attached inventory. They define a Markovian system process and
use classical optimization methods to find the optimal control strategy of the inventory.
In [BK99], Berman and Kim study queueing-inventory systems with Poisson arrivals,

exponentially distributed service times and zero lead time under backordering with an
infinite waiting room. The authors prove that the optimal replenishment policy does
not place an order when the inventory level is positive; it places an order only when the
inventory level drops to zero and the queue length exceeds some threshold value. They
also model the case in which the waiting room is finite and customers, who arrive when
the queue is full, are lost.
In another paper, Berman and Kim [BK01] extend their earlier model with the infinite

waiting room and allows exponential or Erlang lead times for replenishment. For known
order size Q, the optimal policy minimises the expected discounted costs and the average
costs. They find out that the optimal ordering policy has a monotonic threshold structure.
The model in [BK04] can be viewed as an extension of the second paper [BK01] in the

sense that it is assumed that a revenue is generated upon the service. They identify the
optimal replenishment policy which maximizes the system profit.

Berman and Sapna [BS00] analyse queueing-inventory systems with Poisson arrivals,
general service times and zero lead time under backordering. The size of the waiting room
is finite and arriving customers are lost during the time the queue is full. They compute
the steady state probabilities. Furthermore, the optimal value of the maximum allowable
inventory size, which minimises the long-run-expected cost rate, is obtained and some
performance measures are determined. Various examples of service time distributions
(exponential, Erlang, constant) and optimal values for maximum inventory in each of
these cases are also presented. Moreover, the authors consider the infinite waiting space
case.
In another paper [BS01], Berman and Sapna investigate a system with Poisson arrivals,

exponentially distributed service times and lead times under backordering. The size of
the waiting room is finite and arriving customers are lost during the time the queue is full.
They prove the existence of a stationary optimal policy. For given values of maximum
inventory and reorder levels, they determine the service rates such that the long-run ex-
pected cost rate is minimised.

He and his coauthors [HJB02a] analyse M/M/1/∞ production-inventory systems with
zero lead time and backordering. They explore the structure of the optimal replenishment
policy which minimises the average total cost per product.
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In another paper [HJB02b], the authors study M/PH/1/∞ production-inventory sys-
tems with Erlang distributed lead times and backordering. They quantify the value of
information used in inventory control.

Schwarz and her coauthors [SSD+06] investigate M/M/1 systems with inventory man-
agement, exponentially distributed lead times and lost sales. They consider order replen-
ishment policies with a fixed reorder point and a general randomized order size as well
as a deterministic order size. Further, they distinguish between an infinite and a finite
waiting room. They derive stationary distributions of joint queue length and inventory
processes in explicit product form and calculate performance measures of the respective
systems.
Schwarz and Daduna [SD06] study M/M/1/∞ systems with inventory management,

exponentially distributed lead times and backordering. They concentrate on the case
of (0, Q)-policy with and without an additional threshold. They calculate respectively
approximate performance measures and derive optimality conditions under the different
order policies.

Saffari and his coauthors [SHH11] provide an extension of Schwarz et al. [SSD+06].
They prove that the M/M/1/∞ system with inventory under (r,Q)-policy with hyper-
exponential lead times (i.e. mixtures of exponential distributions) has a product form
distribution. The resulting distribution is employed to compute performance measures of
the system.
Saffari and Haji [SH09] study a two-echelon supply chain which consists of a retailer and

a supplier. Demands arrive according to a Poisson process at the retailer, who uses a base
stock policy. The supplier follows an (r,Q)-policy and the service and replenishment lead
times are exponentially distributed. When the supplier has no on-hand inventory, arriving
demands from the retailer are lost. They calculate long-term performance measures of
the system to find the optimal order size.
Haji and his coauthors [HHS11, HSH11] consider a two-echelon supply chain where the

supplier is a service system with an attached inventory and both supplier and retailer
apply a base stock policy. Demands arrive to the retailer according to a Poisson process.
During the time that the supplier has no on-hand inventory, arriving demands are lost
to the supplier and the retailer buys products from another source with zero lead time
and with additional cost. Service times and replenishment lead times of the supplier’s
system are exponentially distributed. They derive the stationary distribution of joint
queue length and on-hand inventory of the supplier and show that it is of product form.
Furthermore, they derive the total expected system cost per unit time.
Saffari and his coauthors [SAH13] investigate M/M/1/∞ systems with inventory un-

der (r,Q)-policy and with lost sales. They derive the stationary distributions of the joint
queue length and on-hand inventory when lead times are random and with various distri-
butions. Furthermore, they formulate long-run average performance measures and cost
functions in some numerical examples. [SHH11] and [SAH13] are (slightly) generalized
(removing restrictions) in [Kre16] and [KD15].

Krishnamoorthy and Viswanath [KV11] are the first who report work on production
inventory system with positive service time. The time for producing each item follows a
Markovian production scheme. The customer arrival process follows a Markovian arrival
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process and the service time of each customer has a phase-type distribution. They inves-
tigate the stability of the system and compute several measures of system performance.
Krishnamoorthy and Viswanath study in [KV13] production-inventory systems with

(r, S)-policy, positive service time and lost sales. They derive the joint stationary distri-
bution in explicit product form. They develop a technique where the steady state vector
of the classical M/M/1 system and the steady state vector of a production-inventory
system, where the service is instantaneous and no backlogs are allowed, are combined.
They apply their technique to the models discussed in [SSD+06].
Krishnamoorthy, Manikandan and Shajin analyse in [KMD15] an M/M/c queueing-

inventory system with positive service time and (r,Q)-policy. The required item is either
provided after service with probability γ or else is not provided at the end of a service.
For the case of two servers they obtain the steady state distribution in product form. For
the case of more than two servers they do not have an analytical solution and analyse
this case by an algorithmic approach. Furthermore, they derive an explicit expression for
the stability condition and some conditional distributions. Moreover, they obtain several
measures of system performance.
Krishnamoorthy, Shajin and Lakshmy study in [KSL16] a supply chain with one pro-

duction centre and one distribution centre. Stocks are kept in both, the production centre
to satisfy customers’ demands and the distribution centre to satisfy demands from the dis-
tribution centre. The inventory at the distribution centre is controlled by an (r,Q)-policy.
The production centre adopts an (sQ,KQ)-policy. The service time at the distribution
centre is exponentially distributed and the lead time follows an exponential distribution.
They derive the joint stationary distribution of the system in explicit product form.
Krishnamoorthy and Shajin analyse in [KS16b] an M/M/1 retrial queue with an in-

ventory system and lost sales. The inventory is controlled by an (r, S)-policy and the
replenishment lead time is exponentially distributed. Whenever the server is idle, arriv-
ing customers enter directly to an orbit. They derive the joint stationary distribution of
the queue length and the on-hand inventory in explicit product form.

Thesis structure

We consider more complex supply chains than those described in the literature review
above. In particular, we consider networks of production-inventory systems as shown in
Figure 0.0.3. More precisely, in Part I production-inventory systems at several locations
are connected by a supplier. Demand of customers arrives at each production system
according to a Poisson process and is lost if the local inventory is depleted. To satisfy
a customer’s demand a server at the production system takes exactly one unit of raw
material from the associated local inventory. The supplier manufactures raw material to
replenish the local inventories, which are controlled by a continuous review base stock
policy.
Chapter 2 to Chapter 4 are devoted to the research of the network’s behaviour, where

the supplier consists only of a single server and replenishes the inventories at all locations.
The items of raw material are indistinguishable (exchangeable).
In Chapter 2, we investigate this model, that we consider to be the basic model.
In Chapter 3, we analyse an extension, where routing of items depends on the on-hand

inventory at the locations (with the aim to obtain “load balancing”). The systems under
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Figure 0.0.3.: Network of production-inventory systems

investigation differ with respect to the load balancing policy.
In Chapter 4, we study the basic model with perishable items, since in certain types

of inventories the items either perish, deteriorate or become obsolete. This model is a
special case of queueing systems in a random environment which we have introduced in
Appendix D.1.

Chapter 5 to Chapter 7 are devoted to the research of the network’s behaviour of more
complex models, where the finished items are delivered exactly to the locations where the
orders were generated, i.e. they are not exchangeable. These models can be classified as
a “multi-product system”.
In Chapter 5, we investigate this model, where the supplier is a complex network. This

model is considered as basic model as well.
In Chapter 6, we look at the aggregation of the supplier network. We can substitute

the complex supplier network by only one node — a supplier who consists of a symmetric
server. The symmetric server enables to deal with non-exponential type-dependent service
time distribution for different order types.
In Chapter 2 to Chapter 6, we focus on base stock policies. Nevertheless, in classic

inventory theory several replenishment policies are considered. Hence, we investigate the
(r, S)-policy in Chapter 7. The systems under investigation differ with respect to the
reorder level and the number of locations and workstations.
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In this thesis, we study the stability behaviour of these integrated production-inventory
systems. For the most of these integrated production-inventory systems the obtained
steady state is of so-called “product form”, which reveals a certain decoupling of the com-
ponents of the system for long time behaviour. The simple structure of this steady state
allows to apply “product form calculus”, a widely used tool, which provides access to easy
performance evaluation procedures. More details about the art of product form modelling
can be found in Section 1.1. Moreover, computational algorithms to calculate important
performance measures are developed and (with the help of these) cost analysis for these
systems is demonstrated.

Up to now, one of the key assumptions of production-inventory models in literature
is that customers are indistinguishable. In practice, however, customers have different
characteristics and/or priorities, which leads to systems where this assumption does not
hold. Therefore, Part II is devoted to the study of multiple customer classes with different
priorities. The research is dedicated to production-inventory systems with two classes of
customers and inventory management under lost sales where the customers’ arrivals are
regulated by a flexible admission control as shown in Figure 0.0.4. We have investigated
the (r,Q)-policy in Chapter 10 and the base stock policy in Chapter 11. We derive
some structural properties of the steady state distribution which provide insights into the
equilibrium behaviour of the systems. Moreover, the existence of a stationary distribution
is investigated. Furthermore, we consider for these systems the case of zero service time,
which is the version of our model in the classical inventory theory.

Single 
server

Inventory

OrderReplenishment

Supplier

Preempted
ordinary
customer

Waiting room
(priority)

Lost 
salesDemand arrival 

process

Lost 
sales

Demand arrival 
process

Priority customer

Ordinary customer

Waiting room
(ordinary)

Figure 0.0.4.: The production-inventory system with distinguishable customers
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Notation and preliminaries

N := {1, 2, 3, . . .}, N0 := {0} ∪ N, R+
0 := [0,∞), R+ := (0,∞). B are the Borel sets of R.

A value is said to be positive if it is greater than zero and a value is said to be negative
if it is less than zero. We call a value non-positive if it is less than or equal to zero. We
call a value non-negative if it is greater than or equal to zero.

The vector 0 is a row vector of appropriate size with all entries equal to 0. The
vector e is a column vector of appropriate size with all entries equal to 1. The vector
ei = (0, . . . , 0, 1︸︷︷︸

i−th element

, 0, . . . , 0) is a vector of appropriate dimension.

The notation ⊂ between sets means “subset or equal” and ( means “proper subset”.
We write C = A ] B to emphasize that C is the union of disjoint sets A and B. For a
set A we denote by |A| the number of elements in A.

The notation x ≈ y means x is approximately equal to y.

1{expression} is the indicator function which is 1 if expression is true and 0 otherwise.

Empty sums are 0, and empty products are 1.

For k > 1 and m, ` ∈ {1, . . . , k} we call for m ≤ ` the sequence m,m + 1, . . . , ` a list.
If m > `, the list m, . . . , ` is the empty list.

For x > 0 we define 1
0 :=∞, 0

0 := 0 and ∞ · 0 := 0 · ∞ := 0.

We call a generator a matrix M ∈ RK×K with countable index set K, whose all off-
diagonal elements are non-negative and all row sums are equal to zero. By definition this
implies that the diagonal elements are finite.

We call a matrix M ∈ [0, 1]K×K with countable index set K stochastic if the row sums
are one.

We call a matrix M ∈ [0, 1]K×K with countable index set K substochastic if the row
sums are less than or equal to one.

Throughout this thesis it is assumed that all random variables are defined on a common
probability space (Ω,F , P ). Furthermore, by Markov process we mean time-homogeneous
continuous-time strong Markov process with discrete state space (≡ Markov jump pro-
cess). Without further mentioning all Markov processes are assumed to be regular and
have cadlag paths, i.e. each path of a process is right-continuous and has left limits every-
where. We call a Markov process regular if it is non-explosive (i.e. the sequence of jump
times of the process diverges almost surely), its transition intensity matrix is conserva-
tive (i.e. row sums are 0) and stable (i.e. all diagonal elements of the transition intensity
matrix are finite).
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In this thesis, different chapters consider different models, which can be read independ-
ently of each other. Because of this, some remarks become repetitive.

In diagrams, see for example Figure 0.0.5, we use rounded rectangles to represent
servers of the queues.

Server

Waiting room

(a) Server with waiting
room

Server

Waiting room

Waiting room

(b) Server with two waiting rooms

(c) Waiting room
with infinite
number of waiting
places

(d) Waiting room
with two waiting
places

(e) Waiting room
with finite but
unknown or large
number of waiting
places

Figure 0.0.5.: Symbolic representation of the queues

The use of manufacturing terms in industry and in the literature is far from stan-
dardized as mentioned by Hopp and Spearman [HS00, p. 215]. Hence, we will define our
terms in the following and caution the reader that the same terms can be used differently
in other sources.

• A queueing system consists of a server (single server or multiple server) and
waiting room(s). A server without waiting room is also called a queueing system.

• A supply chain represents a “(...) network of organizations that are involved,
through upstream and downstream linkages, in the different processes and activ-
ities that produce value in the form of products and services in the handy of the
ultimate consumer” [Chr98, p. 15]. The terms production-inventory system,
production-inventory-replenishment system and queueing-inventory sys-
tem as well as integrated queueing-inventory system are synonymous with
supply chain in this thesis.

• A location consists of a production system with attached inventory.

• A production system is modeled as a queueing system.

• An inventory is replenished by the supplier (network) with raw material.
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• The on-hand inventory is the size of the inventory, i.e. the number of items of
raw material which are on stock or in production.

• Raw materials are “(...) items purchased from suppliers to be used as inputs
into the production process. They will be modified or transformed into finished
goods” [Ter88, p. 4]. Hopp and Spearman mentioned that raw materials are “(...)
components, subassemblies, or materials that are purchased from outside the plant
and used in the fabrication/assembly processes inside the plant” [HS00, p. 582].

• Item is the abbreviation for “item of raw material”. In the literature synonymous
with items are parts, components, subassemblies, assemblies.

• A supplier (network) consists of workstations, it manufactures raw material to
be forwarded to the inventory.

• A workstation is modeled as a queueing system at a supplier.

• Orders are the units at the workstations of the supplier (network). In the literature
it is often called work in process (WIP) (cf. [HS00, p. 582]).
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Part I.

Networks of production-inventory
systems
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1. Introduction

Integrated approaches to model production-inventory systems have been developed over
the last decade and it turned out that the problem of determining e.g. steady states of
the systems usually results in either large simulation experiments or in using heuristic
decomposition-aggregation methods or in solving the global balance equations numeri
cally.

We consider a network of production-inventory systems as shown in Figure 1.0.1, which
consists of parallel production systems (single servers) at different locations each with an
attached local inventory, and a supplier, which produces raw material (discrete units) to
replenish the local inventories.

In Chapter 2 to Chapter 4 the supplier consists only of a single server and replenishes the
inventories at all production locations. The items of raw material are indistinguishable
(exchangeable). Chapter 5 to Chapter 7 is devoted to the research of the network’s
behaviour of a more complex model, where the finished items are delivered exactly to
the locations where the orders were generated, i.e. they are not exchangeable. It can be
classified as a “multi-product system”.

Location 1

Location 

Supplier 

Single 
server

Single 
server

Waiting room

Lost 
sales

Lost 
sales

 Replenishment order

 Replenish
ment order

Demand arrival 
process

Demand arrival 
process

Inventory

Inventory

Replenishment

Replenishment

Waiting room

Figure 1.0.1.: Production-inventory system
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1. Introduction

Each arriving customer at the locations (production systems) initiates a production
process that requires one item of raw material from the attached local inventory. Pro-
duction at a location can start only when raw material at the local inventory is available.
Newly arriving customers who see the inventory depleted will not enter the location (“lost
sales”). Otherwise, new arrivals at a location enter the queue there and will wait until the
previous customers’ processing is finished. If no raw material is available for customers
in the queue to start production, these customers will wait until raw material arrives at
the local inventory. Consequently, there can be more customers waiting than the on-hand
inventory level. All local inventories are replenished by the supplier network according to
a continuous review base stock policy: Taking an item from the associated local inventory
results in an order sent to the supplier network. Production of raw material only starts
when there is a replenishment order.
Although we describe our systems in terms of production and manufacturing, there

are other applications where our model applies, e.g. distributed retail systems where cus-
tomers’ demand has to be satisfied from the local inventories and delivering the goods
to the customers needs a non-negligible amount of time; the replenishment for the local
retail stations is provided by a production network. Another setting is a distributed set
of repair stations where spare parts are needed to repair the brought-in items which are
held in local inventories. Production of the needed spare parts and sending them to the
repair stations is again due to a production network.

Several integrated production-inventory models are the focus of our present research.
Our methodological approach constitutes an alternative to simulations and/or heuristic
decomposition-aggregation techniques. We develop Markovian stochastic models of the
production-inventory systems, which is smooth enough to be amenable to solving the
steady state problem explicitly with closed form expressions for the stationary distri-
bution. Moreover, for most of the models it turns out that the obtained steady state
distribution is of a form which is well-known in pure queueing theory: We come up with
a product form equilibrium for the integrated queueing-inventory system. This product
form structure of the joint stationary distribution is often characterised as the global
process being “separable”, and is interpreted as “the components of the system decouple
asymptotically and in equilibrium”. Clearly, separability is an important (but rather rare)
property of complex systems.
The simple structure of this steady state allows to apply “product form calculus”, a widely
used tool, which provides access to easy performance evaluation procedures. Moreover,
computational algorithms to calculate important performance measures are developed
and (with the help of these) cost analysis for these systems is demonstrated.

Different from the standard product form equilibria in queueing networks the steady
state obtained for some integrated models is stratified. In the upper stratum, we obtain
three vectors for production, inventory, and supplier network. In the lower stratum each of
these vectors is composed of homogeneous coordinates. The product form inside the lower
stratum resembles on one side (for the production subsystem) the independence structure
of Jackson networks, and on the other side (for the inventory-replenishment subsystem)
the conditional independence of Gordon-Newell networks. The inventory-replenishment
subsystem is henceforth referred to as inventory subsystem as usual in inventory theory.
If necessary, we explicitly point out to the difference.
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1.1. The art of product form modelling: Separable networks

1.1. The art of product form modelling: Separable networks

Parts of this section are taken from [OKD17].

The aim of product form modelling as a branch of queueing network theory is to con-
struct easy to understand models for large systems with complicated structure. “Easy
to understand” means that the main first-order performance characteristics of the net-
work can be computed from the steady state distributions which are explicitly accessible.
“Product form” refers to the observation that the steady state distribution of such models
with a vector valued state process (e.g. the joint queue length process of a queueing net-
work) is the product of the marginal steady state distributions (the queue lengths at the
individual nodes of the network). For stable networks this means that in the long run and
in stationary state the local behaviour of the nodes seem to decouple into independent
or conditionally independent processes. Breakthroughs in the field of queueing network
theory and its applications in various fields of operations research were the findings of
Jackson [Jac57, Jac63] and Gordon and Newell [GN67], who discovered product form
solutions of the global balance equations for classes of queueing networks. Their models
are networks of exponential service stations and look rather simple with respect to the
assumptions on the stochastic data underlying the networks’ behaviour. In Appendix
A.2, we summarize definitions and theorems on classical exponential networks. Never-
theless, it turned out that many real world systems exhibit astonishing robustness with
respect to deviations from the structural and distributional assumptions that underlie
the Jackson and Gordon-Newell networks. Subsequently product form models became
popular in many fields of applications. A short review of experiences with modelling
and performance analysis using product form techniques is Vernon’s survey paper [Ver04]
with additional references.
Nevertheless, product form modelling has to impose severe restrictions on the structure

of the systems under consideration. Henderson [Hen90] discussed in detail: “When do we
give up on product form solutions.” But in that paper he presented a nice example of
product form models for transmission protocols in telecommunications.
While the Jackson and Gordon-Newell networks were invented to model production net-

works (flow shops), an important subsequent application was modelling the ARPANET
using Jackson networks by Kleinrock [Kle64]. This popularised product form models in
computer science and enforced research on computer systems and computer and telecom-
munications networks. This lead Baskett, Chandy, Muntz, and Palacios [BCMP75] and
Kelly [Kel76] to develop more complex product form models.
There are books available that deal with modelling, performance analysis and general

network theory in the spirit of product form calculus, e.g. Kelly [Kel79], Walrand [Wal88],
Serfozo [Ser99], Chao, Miyazawa, and Pinedo [CMP99] for networks in continuous time.
Product form networks in discrete time are investigated in [CMP99] and in the books of
Woodward [Woo94] and Daduna [Dad01a]. In addition, [CMP99] presents results from
network theory where explicit steady state distributions are derived analogously, although
the final results are no longer of product form in a strict sense, see for more information
Henderson’s discussion in [Hen90].
On the other side, there exist limitations when modifying the original Jackson and

Gordon-Newell formalisms. Notoriously hard are two classes of models: (i) networks
where nodes (servers) have finite waiting rooms which results in blocking phenomena,
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1. Introduction

see Perros [Per90], Balsamo, De Nitto Persone, and Onvural [BDO01], and (ii) networks
where the nodes (servers) are unreliable, break down and have to be repaired before
servicing can continue, see Chakka and Mitrani [CM96].
Finite waiting rooms can be considered as intrinsic restrictions, breakdown due to

environmental influences are external restrictions for the development of the queueing
networks. Both of these restrictions occurred in some models developed during the last
fifteen years by many researchers: A class of two-component hybrid systems which have a
queueing component and a second component which is an attached inventory. From the
viewpoint of the queue the restrictions imposed on the service process by the inventory
are external, while from the integrated system these restrictions are intrinsic. We will be
faced with both of these restrictions in our quest for product form steady states.

An important question is “Can we use our product form results to obtain simple product
form bounds for the system with unknown non-product form stationary distribution?”.
This question is motivated by van Dijk and his coauthors (e.g. [Dij11b, Section 1,7, pp.
62f.], [Dij98, pp. 311ff.], [DK92], [DW89]). They show that a product form modification
turns out to be quite fruitful to provide product form bounds for the throughput of a
unsolvable (≡ unknown stationary distribution) queueing-inventory system. For example,
van Dijk shows in [Dij11b, Section 1,7, pp. 62f.] a product form approximation for the
simple but unsolvable tandem queue with finite waiting room at both stations. We will
deal with separable approximation of non-separable systems in Section 4.3.3 in the model
with perishable items in the inventory.

1.2. Related literature

Parts of this section are published in [OKD16].

Relevant for our research are queueing theory and inventory control, in particular in-
tegrated queueing-inventory models.

Literature on queueing theory is overwhelming, so we point only to the most relevant
sources for our present investigation. Our production systems are classical M/M/1/∞
queueing systems which constitute a network of parallel queues connected to the central
supplier queue, cf. Kelly [Kel79] and Chao, Miyazawa, and Pinedo [CMP99] for general
networks of queues.

Special queueing networks, which model multi-station maintenance and repair systems,
are investigated by Ravid, Boxma, and Perry [RBP13] and Daduna [Dad90] and refer-
ences therein. In these systems, circulating items are “exchangeable”. This feature will
occur in our model in Part I as well.

A study of queueing networks, which proceeds as we do in Section 2.4, is reported by
van der Gaast et al. [GKAR12]. They describe in a first step a complicated network with
finite buffers and deterministic routing and replace this in a second step by an analytically
tractable network with random routing. Similar to our results they obtain closed-form
expressions for the steady state distribution of the substitute network.
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1.2. Related literature

Literature on inventory theory is, similar to that on queueing theory, overwhelming, so
we only point to some references closely related to our investigations. We mention that
there are two extreme cases of arriving customers’ reactions in the situation that inven-
tory is depleted when demand arrives (cf. Silver, Pyke, and Peterson [SPP98]): Either
backordering, which means that customers are willing to wait for their demands to be
fulfilled, or lost sales, which means that demand is lost when no inventory is available on
hand.

In classical inventory theory it is common to assume that excess demand is backordered
(Silver, Pyke, and Peterson [SPP98], Zipkin [Zip00, p. 40], Axsäter [Axs00]). However,
studies by Gruen, Corsten, and Bharadwaj [GCB02] and Verhoef and Sloot [VS06] ana-
lyse customers’ behaviour in practice and show that in many retail settings most of the
original demand can be considered to be lost in case of a stockout.

For an overview of the literature on systems with lost sales we refer to Bijvank and
Vis [BV11]. They present a classification scheme for the replenishment policies most often
applied in literature and practice, and they review the proposed replenishment policies,
including the base stock policy. According to van Donselaar and Broekmeulen [DB13]
“Their literature review confirms that there are only a limited number of papers dealing
with lost sales systems and the vast majority of these papers make simplifying assump-
tions to make them analytically tractable.”

Rubio and Wein [RW96] and Zazanis [Zaz94] investigated classical single item and
multi-item inventory systems. Similar to our approach they used methods and models
from queueing theory to evaluate the performance of base stock control policies in com-
plex situations.

Reed and Zhang [RZ17] study a single item inventory system under a base stock policy
with backordering and a supplier who consists of a multi-server production system. Their
aim is to minimise a combination of capacity, inventory and backordering costs. They
develop a square-root rule for the joint decision. Furthermore, they justify the rule ana-
lytically in a many-server queue asymptotic framework.

Because we consider queueing-inventory systems where inventories are controlled by
base stock policies, we mention here that Tempelmeier [Tem05, p. 84] argued that base
stock control is economically reasonable if the order quantity is limited because of tech-
nical reasons.
The base stock policy is “(...) more suitable for item with low demand, including the

case of most spare parts” [RM11, p. 661].
Morse [Mor58, p. 139] investigated (pure) inventory systems that operate under a base

stock policy. He gives a very simple example where the concept “re-order for each item
sold” is useful: Items in inventory are bulky, and expensive (automobiles or TV sets1).
He uses queueing theory to model the inventory systems, analogously to [RZ17], etc.

1The paper is from 1958.
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1. Introduction

Literature on integrated queueing-inventory models (i.e. queueing theory in combina-
tion with inventory theory) with non-zero lead times is surveyed by Krishnamoorthy,
Lakshmy, and Manikandan [KLM11]. They give a review on inventory models, where
items are delivered to customers on a first-come, first-served basis and it requires a non
negligible amount of time. This time to deliver an item can be considered as a service
time associated with the arriving demand. Reducing our models to the simplest situation
with only one production (or service) unit and one inventory leads to a model investigated
there. Furthermore, for production-inventory systems with positive service time we refer
to Krishnamoorthy and Viswanath [KV11, KV13].

Literature on the system extensions can be found in the respective subchapters. How-
ever, it is understood that the main literature from this section is relevant for the models
in Chapter 2 to Chapter 7 as well.
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2. Basic production-inventory model
with base stock policy

Parts of this chapter are published in [OKD16].

2.1. Own contributions

We develop a Markov process model of a complex supply chain, which encompasses
production systems at several locations with associated local inventories, and a central
supplier. We derive stationary distributions of joint queue length and inventory processes
in explicit product form. After performing a cost analysis, we find out that the global
search for the vector of optimal base stock levels can be reduced to a set of independent
optimization problems. The explicit form of the stationary distribution enables us to get
additional structural insights, e.g. about monotonicity properties and stability conditions.
We show that our model — with the send out procedure of the central supplier by a
random selection scheme — can be seen as an approximation for a model, where the
finished items are delivered exactly to the locations where the orders were generated (for
more details see Chapter 5).
If we consider the production facilities (queues) at the locations as devices (servers)

which deliver items from the inventory to incoming demand, needing non-negligible
delivering time (as in the single-echelon inventory systems case described by Krish-
namoorthy, Lakshmy, and Manikandan [KLM11]), our results extend their setting to
a multi-dimensional system.
On the other hand, our work is an extension of the investigations of Rubio and Wein

[RW96], Zazanis [Zaz94] and Reed and Zhang [RZ17] on inventory systems under base
stock policy: In their models there is no production-to-order such that the time to satisfy
customer demand is zero. Therefore, their model is a special case of our model when
the service time is set to zero. We need to mention that the replenishment system can
be more complex in the mentioned papers than our replenishment server in this section
(more complex replenishment servers will be considered in Chapter 5).
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2. Basic production-inventory model with base stock policy

2.2. Description of the model

The supply chain of interest is depicted in Figure 2.2.1.1 We have a set of locations
J := {1, 2, . . . , J}. Each of the locations consists of a production system with an attached
inventory. The inventories are replenished by a single central supplier, which is referred
to as workstation J + 1 and manufactures raw material for all locations. The items of
raw material are indistinguishable (exchangeable).

Location 1

Location 

Supplier
Station   +1

Single 
server

Single 
server

Single 
server

Waiting room

Lost 
sales

Lost 
sales

 Replenishment order

 Replenishment order

Demand arrival 
process

Demand arrival 
process

Inventory

Inventory

Replenishment

Replenishment

Waiting room

Waiting room

Figure 2.2.1.: Supply chain with base stock policy

Facilities in the supply chain. Each production system j ∈ J consists of a single
server (machine) with infinite waiting room that serves customers on a make-to-order
basis under a first-come, first-served (FCFS) regime. Customers arrive one by one at
production system j according to a Poisson process with rate λj > 0 and require service.
To satisfy a customer’s demand the production system requires exactly one item of raw
material, which is taken from the associated local inventory. When a new customer ar-
rives at a location while the previous customer’s order is not finished, this customer will
wait. If the inventory is depleted at location j, the customers who are already waiting
in line will wait, but new arriving customers at this location will decide not to join the
queue and are lost (“local lost sales”).

The service requests at the locations are exponentially-1 distributed. All service re-
quests constitute an independent family of random variables which are independent of

1Figure 2.2.1 is the coloured version of the monochrome Figure 1 in our paper [OKD16, Figure 1].
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the arrival streams. The service at location j ∈ J is provided with local queue-length-
dependent intensity. If there are nj > 0 customers present at location j either waiting or
in service (if any) and if the inventory is not depleted, the service intensity is µj(nj) > 0.
If the server is ready to serve a customer who is at the head of the line, and the inven-
tory is not depleted, the service immediately starts. Otherwise, the service starts at the
instant of time when the next replenishment arrives at the local inventory.

The inventory at location j is controlled by prescribing a local base stock level bj ≥ 1,
which is the maximal size of the inventory at location j, we denote b :=

(
bj : j ∈ J

)
.

The central supplier (which is referred to as workstation J + 1) consists of a single
server (machine) and a waiting room under FCFS regime. At most

∑
j∈J bj − 1 replen-

ishment orders are waiting at the central supplier. Service times at the central supplier
are exponentially distributed with parameter ν > 0.

All inter-arrival times at the locations and service times at the central supplier consti-
tute an independent family of random variables.

Routing in the supply chain. A served customer departs from the system imme-
diately after the service and the associated consumed raw material is removed from the
inventory and an order for one item of the consumed raw material is placed at the central
supplier (“base stock policy”).
A finished item of raw material departs immediately from the central supplier and is

sent to location j ∈ J with probability pj > 0, independent of the network’s history.
(pj : j ∈ J) represents a predetermined delivering schedule with

∑
j∈J pj = 1. If the

inventory is not full at location j (this means that the on-hand inventory level at location
j is lower than the base stock level bj), the item is added to the inventory at that location.
Otherwise the item is added to the head of the queue of the central supplier, who will
spend extra time on the already finished item and resend it to a new location i ∈ J
according to the predetermined probabilities pi, independent of the network’s history.
It is assumed that transmission times for orders are negligible and set to zero and that

transportation times between the central supplier and the local inventories are negligible.

Remark 2.2.1. The independence of the inter-arrival times and service times and the
conditional independence of the routing in the supply chain is henceforth summarised as
“usual independence assumptions”.
Similar appropriate independence assumptions for the other models will be summa-

rized by “usual independence assumptions” as well. Model-specific peculiarities will be
mentioned separately, if necessary.

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by Xj(t) the number of customers present at location j ∈ J at time t ≥
0 either waiting or in service (queue length). By Yj(t) we denote the size of the inventory
at location j ∈ J at time t ≥ 0. By WJ+1(t) we denote the number of replenishment
orders at the central supplier at time t ≥ 0 either waiting or in service (queue length)2.

2The number of replenishment orders at the central supplier is denoted by YJ+1(t) in [OKD16].
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2. Basic production-inventory model with base stock policy

We define the joint queueing-inventory process of this system by

Z = ((X1(t), . . . , XJ(t), Y1(t), . . . , YJ(t),WJ+1(t)) : t ≥ 0) .

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process, which we assume to be irreducible and regular. The state space of Z is

E =
{

(n,k) : n ∈ NJ0 , k ∈ K
}

with

K := {(k1, . . . , kJ , kJ+1)|0 ≤ kj ≤ bj , j = 1, . . . , J, kJ+1 =
J∑
j=1

(bj − kj)} ⊂ NJ+1
0 .

Note the redundancy in the state space: WJ+1(t) =
∑

j∈J bj −
∑

j∈J Yj(t). We prefer to
carry all information explicitly with because the dynamics of the system are easier visible.
Our aim is to analyse the long-run system behaviour and to minimise the long-run

average costs.

Discussion of the modelling assumptions
We have imposed several simplifying assumptions on the production-inventory system
to obtain explicit and simple-to-calculate performance metrics of the system, which give
insights into its long-time and stationary behaviour. This enables a parametric and sensi-
tivity analysis that is easy to perform.

First, the assumption of exponentially distributed inter-arrival and service times are
standard in the literature and are the best first-order approximations. The locally state-
dependent service rates are also common and give quite a bit of flexibility. The lead
time is composed of the waiting time plus the production time at the central supplier.
Therefore, it is more complex than exponential, constant or even zero lead times (which
are often assumed in standard inventory literature). Zero lead times in our systems would
result in almost trivial extensions of the queueing systems.
Second, we assume that the local base stock levels are positive (i.e. bj ≥ 1 at location

j). This assumption can be made without loss of generality. Otherwise, all customers at
location j would be lost, which is the same as excluding location j from the production-
inventory system.
Third, the assumption of zero transportation times can be removed by inserting special

(virtual) M/G/∞ workstations into the network.
The fourth and most critical assumption from our point of view is the allocation of raw

material from the central supplier to the production locations. We introduce a randomized
decision scheme to select the target location, based on the “routing probabilities” pj ,
j = 1, . . . , J , and an additional acceptance-rejection rule. If the selected location j
has a replenishment order outstanding, the item of raw material is sent to location j.
Otherwise, the item of raw material remains in the machine of the central supplier for
extra service after which the raw material is sent to a new location according to the same
probabilities pj (this is the same as discarding the item of raw material and placing a
new replenishment order at the central supplier).

14



2.3. Limiting and stationary behaviour

The latter assumption resembles some routing schemes from the literature, implemen-
ted in networks that are quite different from our model. It is well known that networks
which encompass features like queues with buffers of finite size and/or with breakdowns
of nodes have no simple explicit solution of the balance equations for the stationary dis-
tribution (see [Dij11a, Section 9.1, Section 9.4, Section 9.5]). There are two common
strategies of rerouting to handle buffers of finite sizes (which could be applied in case of
full inventories in our setting) in the literature:

1. “Skipping” principle: If a customer selects a node j, where the buffer is full, he only
performs an imaginary jump to that node, spending no time there, but jumps onto
a next node immediately according to the routing matrix and so on until he finds
a free buffer place. This rerouting scheme is also known as “jump over protocol”.

2. Blocking principle “repetitive service — random destination” (RS-RD): If a customer
at node i selects a node j where the buffer is full, the customer stays at node i to
obtain another service, after which the customer again selects a destination node
according to the routing table and so on.

The skipping principle was introduced by Schassberger [Sch84] and later on was used e.g.
in [Dij88], [Dij93] and in [DS96]. The RS-RD principle occurred as ALOHA-protocol e.g.
in [Kle76, Section 5.11]. [SD04] discussed both principles and gave a short survey about
the most prominent routing strategies in case of blocking.
In Section 2.4 we evaluate with the use of simulation whether the model with the

abovementioned assumptions is a useful approximation for a more complex system where
replenishment orders at the central supplier are dealt with in a FCFS order.
Remark 2.2.2. Appropriate discussions can be done for the extended models in Chapter
3 and Chapter 4. However, we will only discuss new assumptions in the extended models.

2.3. Limiting and stationary behaviour

The queueing-inventory process Z has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n,k) ∈ E:

q ((n,k); (n + ei,k)) = λi · 1{ki>0}, i ∈ J,
q ((n,k); (n− ei,k− ei + eJ+1)) = µi(ni) · 1{ni>0} · 1{ki>0}, i ∈ J,

q ((n,k); (n,k + ei − eJ+1)) = νpi · 1{ki<bi}, i ∈ J.

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

Proposition 2.3.1. The strictly positive measure x := (x (n,k) : (n,k) ∈ E) with

x (n,k) = ξ̃(n) · θ̃ (k) , (2.3.1)

where

ξ̃(n) =
∏
j∈J

ξ̃j(nj), ξ̃j(nj) =

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (2.3.2)
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2. Basic production-inventory model with base stock policy

θ̃(k) = θ̃(k1, . . . , kJ , kJ+1) =
∏
j∈J

(
νpj
λj

)kj
, k ∈ K, (2.3.3)

solves the global balance equations x ·Q = 0 and is therefore stationary for Z.

Remark 2.3.2. It has to be noted that kJ+1 occurs only implicitly on the right side of
(2.3.3). This hides a strong negative correlation of the coordinate processes WJ+1(t) and
(Y1(t), . . . , YJ(t)) which is due to the state space restrictions.

Proof of Proposition 2.3.1. Note that kJ+1 > 0 holds if ki < bi for some i ∈ J . Therefore,
the global balance equations x ·Q = 0 of the stochastic queueing-inventory process Z are:

x (n,k) ·
(∑
i∈J

λi · 1{ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{ki>0} +
∑
i∈J

νpi · 1{ki<bi}
)

=
∑
i∈J

x (n− ei,k) · λi · 1{ni>0} · 1{ki>0}

+
∑
i∈J

x (n + ei,k + ei − eJ+1) · µi(ni + 1) · 1{ki<bi}

+
∑
i∈J

x (n,k− ei + eJ+1) · ν · pi · 1{ki>0}.

It has to be shown that the stationary measure (2.3.1) satisfies these global balance
equations. Some of the changes are highlighted for reasons of clarity and comprehensi-
bility.

Substitution of (2.3.1) and (2.3.2) into the global balance equations directly leads to∏
j∈J

ξ̃j(nj)

 · θ̃ (k)

·
(∑
i∈J

λi · 1{ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{ki>0} +
∑
i∈J

ν · pi · 1{ki<bi}
)

=
∑
i∈J

 ∏
j∈J\{i}

ξ̃j(nj)

 ξ̃i(ni − 1) · θ̃ (k) · λi · 1{ni>0} · 1{ki>0}

+
∑
i∈J

 ∏
j∈J\{i}

ξ̃j(nj)

 · ξ̃i(ni + 1) · θ̃ (k + ei − eJ+1) · µi(ni + 1) · 1{ki<bi}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃ (k− ei + eJ+1) · ν · pi · 1{ki>0}.
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2.3. Limiting and stationary behaviour

By substitution of (2.3.2) we obtain∏
j∈J

ξ̃j(nj)

 · θ̃ (k)

·
(∑
i∈J

λi · 1{ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{ki>0} +
∑
i∈J

ν · pi · 1{ki<bi}
)

=
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃ (k) · µi(ni) · 1{ni>0} · 1{ki>0}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃ (k + ei − eJ+1) · λi · 1{ki<bi}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃ (k− ei + eJ+1) · ν · pi · 1{ki>0}.

Cancelling
(∏

j∈J ξ̃j(nj)
)
and the sums with the terms µi(ni) · 1{ni>0} · 1{ki>0} on both

sides of the equation leads to

θ̃ (k) ·
(∑
i∈J

λi · 1{ki>0} +
∑
i∈J

ν · pi · 1{ki<bi}
)

=
∑
i∈J

θ̃ (k+ei − eJ+1) · λi · 1{ki<bi}

+
∑
i∈J

θ̃ (k−ei + eJ+1) · ν · pi · 1{ki>0}. (2.3.4)

The right-hand side of the last equation is∑
i∈J

θ̃ (k) · ν · pi · 1{ki<bi} +
∑
i∈J

θ̃ (k) · λi · 1{ki>0},

which is obviously the left-hand side.

Inspection of the system (2.3.4) reveals that it is a “generator equation”, i.e. the global
balance equation θ̃ · Qred = 0 for a suitably defined ergodic Markov process on state
space K with “reduced generator” Qred. Because the Markov process generated by Qred

is irreducible the solution of (2.3.4) is unique up to a multiplicative constant, which yields
θ̃.

Remark 2.3.3. θ̃ (k) = θ̃(k1, . . . , kJ , kJ+1) is obtained as a strictly positive solution
of (2.3.4) which resembles the global balance equations of an artificial non-standard
Gordon-Newell network of queues with J + 1 nodes and

∑
j∈J bj customers, exponen-

tially distributed service times with rate λj for kj ≤ bj and “∞” otherwise at node
j ∈ {1, . . . , J} and with rate ν at node J + 1 (cf. Figure 2.3.1). More precisely, it is a
starlike network with r(j, J + 1) = 1, j ∈ J , and branching probabilities r(J + 1, j) = pj ,
j ∈ J .
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2. Basic production-inventory model with base stock policy

Location 1

Location 

Supplier
Station   +1

Single 
server

Single 
server

Single 
server

 Order

 Order

Inventory

Inventory

Replenishment

Replenishment

Figure 2.3.1.: Corresponding Gordon-Newell network

Recall that the system is irreducible and regular. Therefore, if Z has a stationary and
limiting distribution, this is uniquely defined.

Definition 2.3.4. For the queueing-inventory process Z on state space E, whose limiting
distribution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞

P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ :=
(
ξ (n) : n ∈ NJ0

)
, ξ (n) := lim

t→∞
P ((X1(t), . . . , XJ(t)) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y1(t), . . . , YJ(t),WJ+1(t)) = k) .

Theorem 2.3.5. The queueing-inventory process Z is ergodic if and only if for j ∈ J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

<∞.

If Z is ergodic, then its unique limiting and stationary distribution is

π (n,k) = ξ(n) · θ (k) , (2.3.5)

with

ξ(n) =
∏
j∈J

ξj(nj), ξj(nj) = C−1
j

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (2.3.6)

θ(k) = θ(k1, . . . , kJ , kJ+1) = C−1
θ

∏
j∈J

(
νpj
λj

)kj
, k ∈ K, (2.3.7)
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2.3. Limiting and stationary behaviour

and normalisation constants

Cj =
∑
nj∈N0

nj∏
`=1

λj
µj(`)

, j ∈ J, and Cθ =
∑
k∈K

∏
j∈J

(
νpj
λj

)kj
.

Proof. Z is ergodic, if and only if the strictly positive measure x of the global balance
equation x ·Q = 0 from Proposition 2.3.1 can be normalised (i.e.

∑
n∈N0

∑
k∈K x(n,k) <

∞). Because of Proposition 2.3.1 it holds

∑
n∈N0

∑
k∈K

x(n,k) =
∑
n∈N0

ξ̃(n) ·
∑
k∈K

θ̃ (k) =

∏
j∈J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

 ·
∑
k∈K

∏
j∈J

(
νpj
λj

)kj .

Hence, since K is finite, the measure x from Proposition 2.3.1 can be normalised if and
only if

∑
nj∈N0

∏nj
`=1

λj
µj(`)

<∞ for all j ∈ J .
Consequently, if the process is ergodic, the limiting and stationary distribution π is

given by

π(n,k) =
x(n,k)∑

n∈N0

∑
k∈K x(n,k)

,

where x(n,k) is given in Proposition 2.3.1.

Remark 2.3.6. The expression (2.3.5) shows that the two-component production-inventory-
replenishment system is separable, the steady states of the production network and the
inventory-replenishment complex decouple asymptotically.
Representation (2.3.6) shows that the equilibrium for the production subsystem decom-

poses in true independent coordinates. A product structure of the stationary distribution
as

ξ(n) =
∏
j∈J

ξj(nj) =
∏
j∈J

C−1
j

nj∏
`=1

λj
µj(`)

is commonly found for standard Jackson networks (see Theorem A.2.2) and their relatives.
In Jackson networks servers are “non-idling”, i.e. they are always busy as long as customers
are present at the respective node. In our production network, however, servers may be
idle while there are customers waiting because a replenishment needs to arrive first.
Consequently, the product form (2.3.5) has been unexpected to us.
Our production-inventory-replenishment system can be considered as a “Jackson net-

work in a random environment” in [KDO16, Section 4]. We can interpret the inventory-
replenishment subsystem, which contributes via θ to (2.3.5), as a “random environment”
for the production network of nodes J , which is a Jackson network of parallel servers (for
more details see Appendix A.3). Taking into account the results of [KDO16, Theorem 4.1]
we conclude from the hindsight that decoupling of the queueing process (X1, . . . , XJ) and
the process (Y1, . . . , YJ ,WJ+1), i.e. the formula (2.3.5), is a consequence of that Theorem
4.1.
Our direct proof of Theorem 2.3.5 is much shorter than embedding the present model

into the general framework of [KDO16].
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2.4. Comparison with a more complex model with location specific items

2.4. Comparison with a more complex model with location
specific items

In this section, we investigate the model of Section 2.2 as approximation for a more
complex system where the central supplier sends raw materials to the locations that se-
quentially ordered them. This more complex system can be classified as a “multi-product
system” because items are not exchangeable. Although we analyse this more complex
model in Chapter 5 and derive an explicit solution for the stationary distribution in
product form, the drawback of this multi-product model with deterministic routing is
that the state space of the associated Markov process explodes. We therefore analyse
the performance of the multi-product system with simulation and compare this to the
results of the analytical expressions derived in Section 2.2 for the simpler model with
exchangeable items and random routing.

Obviously, the main problem is to find correct values for the routing probabilities
(pj : j = 1, . . . , J). We have two approaches, first by simulation and second by an iterative
algorithm. In both cases, we start from the fact that a portion Λj := λJ+1 · p̌j is sent
to location j from the overall departure rate λJ+1 (= throughput) of the central supplier
for some p̌j ∈ (0, 1). In equilibrium this is exactly the replenishment rate originating at
location j. The portion Λj can be obtained by simulations. The natural choice is then

pj := Λj/(
J∑
k=1

Λk) = (λJ+1 · p̌j)/(
J∑
k=1

(λJ+1 · p̌k)) = p̌j

because
∑J

k=1 p̌k = 1.
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2. Basic production-inventory model with base stock policy

(I) SIMULATION. Our first approach is to estimate p̌j using the transfer statistics
from the central supplier to location j obtained in simulation runs of the multi-product
model. Thereafter these estimated values are inserted into the analytical formulas of
the simpler model. Clearly, this is not a practical recipe, but a way to get insights into
possible similarities of both models. Great differences e.g. in inventory sizes or queue
lengths would recommend not to use the simpler model. But fortunately enough, these
differences are small.

For this purpose we construct a fictional system with deterministic routing with two
locations, J = {1, 2}, and parameters λ1 = 2, λ2 = 5, µ1 = 4, µ2 = 10, b1 = 4, b2 = 12
and ν in a range from 0.5 to 40 with step size 0.25. We have chosen the service rates µj
greater than the demand rates λj to keep the system ergodic, and we have chosen the
demand rates λj and the base stock levels bj in such a way that the ratios λ1/λ2 and
b1/b2 are different. A larger base stock level b2 is attributed to a system with a larger
demand stream λ2. Furthermore, we have chosen a very large run time T = 100000 to
obtain the results close to the steady state solution in a single simulation run. We stored
the number dj of finished items sent from the central supplier to location j. The results
of the simulation are plotted in Figure 2.4.1.

From Figure 2.4.1(a) we see, if ν is small, d1/(d1 + d2) seems to approach b1/(b1 + b2),
and if ν is large, d1/(d1 + d2) approaches λ1/(λ1 + λ2). The intuitive explanation of this
behaviour with the help of Figures 2.4.1(b) - 2.4.1(d) is as follows: If the central supplier
is much slower than the production systems at the locations, then the central supplier’s
queue is almost always full and the inventories are almost always depleted. This means,
in the queue of the central supplier there are approximately b1 orders from location 1 and
b2 orders from location 2 in random order.

If the central supplier is much faster than the locations, then the orders pass the central
supplier almost immediately. The order streams from locations 1 and 2 behave similarly
to the superposition of two stochastically independent Poisson streams with rates λ1 and
λ2. When two independent Poisson streams pass the central supplier with no delay, this
is stochastically the same, as to input a Poisson stream with non-distinguishable orders to
the central supplier with a rate λ1 +λ2 and then randomly decide of which type (location)
it is: of type 1 with probability λ1/(λ1 +λ2) and of type 2 with probability λ2/(λ1 +λ2).

Figures 2.4.1(e) - 2.4.1(f) show that the analytically obtained average queue size almost
perfectly matches the simulated (true) values of the average queue sizes at the locations.
Furthermore, we can see that the average queue size is independent of the service rate
ν at the central supplier (see equation (2.3.7)), which is predicted by the product form
stationary distribution (2.3.5).

The comparison of the performance metrics of the simulated more complicated model
with those of our analytically obtained results shows that the analytically obtained values
can be used as an approximation for the multi-product and more complicated system’s
metrics. As noted before, the much more extensive comparisons of [GKAR12] support
such substitutions of complex systems by suitably chosen product form systems as well.
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Figure 2.4.1.: Comparison between the simulated results of the system with deterministic
routing and the analytic results of the system with random routing
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(II) ITERATIVE ALGORITHM. In our second approach we use a queueing model
to set the values of the routing probabilities pj , j ∈ J . In this procedure the routing prob-
abilities are determined as being proportional to the effective arrival rates from location
j at the central supplier. We consider the following model, where an admitted customer
at location j represents an outstanding replenishment order from location j. The process
time of such orders is complex (consisting of waiting and service times at the central sup-
plier). Therefore, the admitted customer’s service time is modelled as a random variable
with a general distribution. Consequently, each location j, j ∈ J , is considered as an
M/G/bj/0-Erlang-loss system3 as depicted in Figure 2.4.2.

The arrival rate λj , j = 1, . . . , J , is diminished by the loss probability qj when all bj
units are on order at the central supplier. The value of qj will be determined iteratively.
Furthermore, the total arrival rate λJ+1 at the central supplier equals

∑J
j=1 λj · (1− qj).

Lost 
customers

1

2

Figure 2.4.2.: Location j approximated as an M/G/bj/0-FCFS queue

The central supplier is modelled as an M/M/1/(b− 1)-FCFS queue with b =
∑

j∈J bj ,
service rate ν, and arrival rate λJ+1 of orders generated by admitted customers at the
local M/G/bj/0 queues (Figure 2.4.3).

Soujourn time T

Lost 
customers

Figure 2.4.3.: Central supplier approximated as an M/M/1/(b− 1)-FCFS queue

To determine the arrival rate at the central supplier, the blocking probabilities (loss
probabilities) qj of the M/G/bj/0 queues need to be known and to determine these
blocking probabilities we need to know the sojourn time T of the replenishment orders
at the central supplier. This can be solved iteratively where the algorithm will stop if
the blocking probabilities qj remain unchanged under further iterations. As a result the
routing probabilities pj , j ∈ J , can be calculated because they are proportional to the
effective customer arrival rates at the central supplier. That is

pj =
(1− qj) · λj∑
k∈J(1− qk) · λk

.

3 bj service channels, no waiting room, Poisson arrivals, general service time distribution
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2.4. Comparison with a more complex model with location specific items

Algorithm Calculation of pj , j ∈ J

Input: number of locations J
service rate of the central supplier ν
arrival rates at the locations j ∈ J λj
base stock levels at the locations j ∈ J bj
stop criterion ε

Output: routing probabilities pj , j ∈ J

Initialize: blocking probabilities qj = 0, ∀j ∈ J

(1) Calculate the effective arrival rate of replenishment orders at the central supplier

λJ+1 =

J∑
j=0

(1− qj) · λj

and the average sojourn time E[T ] of a replenishment order at the central supplier

E[T ] =
1∑b

`=0

(
λJ+1

ν

)` · b−1∑
n=0

(
λJ+1

ν

)n
· n+ 1

ν
with b =

∑
j∈J

bj .

(2) Determine the new blocking probabilities q(new)
j at the locations j ∈ J

q
(new)
j =

(λj · E[T ])bj∑bj
n=0(λj · E[T ])n

.

(3) If ∑
j∈J

|qj − q(new)
j | > ε,

then
qj ← q

(new)
j ∀j ∈ J and return to (1),

else calculate the routing probabilities pj , j ∈ J ,

pj =
(1− q(new)

j ) · λj∑
j∈J(1− q(new)

j ) · λj
.

The iterative algorithm can be modelled in R. The R code is presented in Appendix B.1
on page 267.

We can use the simulation results of the multi-product system again and compare the
values of pj with the results of the iterative procedure. We again consider two locations
J = {1, 2} with the same parameter values, except we do not need the service rates µj
for the algorithm. We have chosen a stop criterion ε = 0.001. Furthermore, we stopped
the algorithm when no convergence was reached within 500 iterations.
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2. Basic production-inventory model with base stock policy

The results are plotted in Figure 2.4.4. We see that the resulting routing probabilities
pj of the algorithm show a good approximation if the service rate of the central supplier ν
is larger than or equal to some value ν∗. In Figure 2.4.4 the value of ν∗ is approximately
5.5. In the grey area of Figure 2.4.4, the iterative algorithm did not satisfy the stop
criterion ε in less than 500 iterations for about 85% of the instances. The resulting values
of pj are not good approximations for the actual values. A series of experiments with λ1

and λ2 in a range from 0.5 to 20 with step size 0.25 supports our conjecture that such a
value ν∗ exists in general. The existence of ν∗ is an open problem.

ν

p 1
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0 5 10 15 20 25 30 35 40

algorithm simulation

Figure 2.4.4.: Comparison between the simulated results and the results of the algorithm

We found it necessary to investigate the relationship between ν∗ and other parameters
of the system,4 i.e. to determine the range of ν-values where the algorithm converges.
For λ1 = λ2 in a range from 0.5 to 20 with step size 0.25 (and all other parameters equal

to the above) we see in Figure 2.4.5 that there is an approximately linear relationship
between the arrival rates at the locations and ν∗.

λ1

ν*

0

10

20

30

0 5 10 15 20

Figure 2.4.5.: Relationship between ν∗ and λ1 = λ2

4The investigation of the relationship between ν∗ and other parameters of the system is an improved
version of [OKD16].
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We mention that the optimal base stock levels bj , which are the final decision vari-
ables, are determined in Theorem 2.5.2. The values pj are needed in γj =

νpj
λj

to cal-
culate P (Yj = 0) and E(Yj) in the cost function gj(bj). The decision in the grey area
seems to be relatively robust because ν is small in this area. However, it depends on
the combination of λj and ν. 5We can use the simulation results of the multi-product
system again and compare the values with the results of the iterative procedure with the
routing probabilities pj in the grey area where ν < ν∗. In our example the value of ν∗ is
approximately 5.5. The results are plotted in Figure 2.4.6.
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Figure 2.4.6.: Comparison between the simulated results and the results of the algorithm
in the grey area (i.e. ν in a range from 0.5 to 5.25 with step size 0.25)

5The following investigations are an improved version of [OKD16].
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2. Basic production-inventory model with base stock policy

Furthermore, we have plotted the relative errors |value of simulation−value of algorithm|
value of simulation for

γj , P (Yj = 0) and E(Yj) in Figure 2.4.7. We see the greatest relative error for P (Y2 = 0)
in Figure 2.4.7(d) which was not clearly visible in Figure 2.4.6(d). However, it seems
to be relatively robust since the value of P (Y2 = 0) is small in this area (see Figure
2.4.6(d)). Consequently, the resulting values for γj , P (Yj = 0) and E(Yj) show a good
approximation for the actual values in our example.
However, the decision of the optimal base stock levels also depends on the specific

cost values. Therefore, further studies are still needed to make a statement about the
robustness of the optimal base stock levels in the grey area.

ν

0.05

0.10

0.15

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(a) γ1 = νp1
λ1

ν

0.05

0.10

0.15

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(b) γ2 = νp2
λ2

ν

0.1

0.2

0.3

0.4

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(c) P (Y1 = 0)

ν

0.1

0.2

0.3

0.4

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(d) P (Y2 = 0)

ν

0.05

0.10

0.15

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(e) E(Y1)

ν

0.05

0.10

0.15

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(f) E(Y2)

Figure 2.4.7.: Relative errors |value of simulation−value of algorithm|
value of simulation
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2.5. Cost analysis

2.5. Cost analysis

The total costs at location j ∈ J consist of shortage costs cls,j for each customer that is
lost, waiting costs cw,j per unit of time for each customer in the system (waiting or in
service), capacity costs cs,j per unit of time for providing inventory storage space (e.g.
rent, insurance), holding costs ch,j per unit of time for each unit that is kept on inventory.
The unit holding costs at the central supplier are ch,J+1. We assume that all of these
costs per unit of time are positive.
Therefore, the cost function per unit of time in the respective states is6

fb : NJ0 ×K −→ R+
0 , fb (n,k) =

∑
j∈J̄

fbj (nj , kj) + fJ+1(kJ+1)


with the cost functions fbj : N2

0 −→ R+
0 at location j of the local system state (nj , kj)

with base stock level bj per unit of time

fbj (nj , kj) = cw,j · nj + cs,j · bj + ch,j · kj + cls,j · λj · 1{kj=0}

and the cost function fJ+1 : N0 −→ R0 per unit of time at the central supplier

fJ+1(kJ+1) = ch,J+1 · kJ+1.

We will analyse average long-term costs of the system as a function of the base stock
levels b = (b1, . . . , bJ).

Lemma 2.5.1. Optimal solutions for the problem described in Definition 2.2 are the set

arg min (g(b))

with

g(b) :=
∑
j∈J

cs,j · bj +
∑
k∈K

∑
j∈J

cls,j · λj · 1{kj=0} +
∑

j∈J∪{J+1}

ch,j · kj

 · θ(k)

=
∑
j∈J

(cs,j + ch,J+1) · bj +
∑
k∈K

∑
j∈J

(
cls,j · λj · 1{kj=0} + (ch,j − ch,J+1) · kj

) · θ(k).

Proof. The asymptotic average costs for an ergodic system can be calculated as

lim
T→∞

1

T

ˆ T

0
fb(Z(ω, t))dt =

∑
(n,k)

fb (n,k) · π (n,k) =: f(b) P − a.s.

6The definition of the cost function in [OKD16] is corrected here.
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2. Basic production-inventory model with base stock policy

Using product form properties of the system we obtain

f(b)

=
∑
(n,k)

∑
j∈J

fbj (nj , kj) + fJ+1(kJ+1)

 ·
∏
`∈J

ξ`(n`)

 · θ (k)

=
∑
(n,k)

∑
j∈J

(cw,j · nj + cs,j · bj + ch,j · kj + cls,j · λj · 1{kj=0}) + ch,J+1 · kJ+1


·

∏
`∈J

ξ`(n`)

 · θ(k)

=
∑
n

∑
k

∑
j∈J

(cw,j · nj)

 ·
∏
`∈J

ξ`(n`)

 · θ(k)

+
∑
n

∑
k

∑
j∈J

(cs,j · bj + ch,j · kj + cls,j · λj · 1{kj=0}) + ch,J+1 · kJ+1


·

∏
`∈J

ξ`(n`)

 · θ(k)

=
∑
k

θ(k)︸ ︷︷ ︸
=1

·
∑
n

∑
j∈J

cw,j · nj ·

∏
`∈J

ξ`(n`)



+
∑
n

∏
`∈J

ξ`(n`)


︸ ︷︷ ︸

=1

·
∑
k

∑
j∈J

(cs,j · bj + ch,j · kj + cls,j · λj · 1{kj=0}) + ch,J+1 · kJ+1


·θ(k).

Let Xj , j ∈ J , denote random variables which are distributed according to ξj . Using

∑
n

∑
j∈J

cw,j · nj

∏
`∈J

ξ`(n`)

 =
∑
j∈J

∞∑
n1=0

· · ·
∞∑

nj=0

· · ·
∞∑

nJ=0

cw,j · nj ·

∏
`∈J

ξ`(n`)


=
∑
j∈J

 cw,j

∞∑
nj=0

nj · ξj(nj) ·
∑

(ni)i 6=j

( ∏
`∈J\{j}

ξ`(n`)

)
︸ ︷︷ ︸

=1



=
∑
j∈J

cw,j ·
∞∑

nj=0

nj · ξj(nj)

=
∑
j∈J

cw,j · Eξj (Xj),
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2.5. Cost analysis

we get for the asymptotic average costs

f(b) =
∑
k

∑
j∈J

(cs,j · bj + ch,j · kj + cls,j · λj · 1{kj=0}) + ch,J+1 · kJ+1

 · θ(k)

+
∑
j∈J

cw,j · Eξj (Xj)

︸ ︷︷ ︸
independent of bj

.

=⇒ arg min
(
f(b)

)
= arg min (g(b)) ,

where

g(b) :=
∑
k∈K

∑
j∈J

(cs,j · bj + ch,j · kj + cls,j · λj · 1{kj=0}) + ch,J+1 · kJ+1

 · θ(k)

=
∑
k∈K

∑
j∈J

(cs,j · bj + cls,j · λj · 1{kj=0}) +
∑

j∈J∪{J+1}

ch,j · kj

 · θ(k)

=
∑
j∈J

cs,j · bj +
∑
k∈K

∑
j∈J̄

cls,j · λj · 1{kj=0} +
∑

j∈J∪{J+1}

ch,j · kj

 · θ(k).

Although the locations and their describing processes are obviously strongly correlated
because of the common replenishment mechanisms, it can be shown that this optimiza-
tion problem is separable in the sense that we can split the global optimization problem
into a set of independent local optimization problems.

Let (Y1, . . . , YJ , YJ+1) denote random variables that are distributed according to θ. For
improved readability we define

γj :=
νpj
λj

.

Theorem 2.5.2. The optimal base stock levels b = (b1, . . . , bJ) are determined as

bj ∈ arg min(gj) ∀j ∈ J (2.5.1)

with

gj(bj) := (cs,j + ch,J+1) · bj + cls,j · λj · P (Yj = 0) + (ch,j − ch,J+1) · E(Yj),

where

P (Yj = 0) =

 bj∑
kj=0

γ
kj
j

−1

=


1−γj

1−γ
bj+1

j

for γj 6= 1,

1
bj+1 for γj = 1

(2.5.2)

and

E(Yj) =

 bj∑
kj=0

γ
kj
j

−1
bj∑

kj=0

kj · γ
kj
j =


γj

1−γj ·
bj ·γ

bj+1

j −(bj+1)·γ
bj
j +1

1−γ
bj+1

j

for γj 6= 1,

bj
2 for γj = 1.

(2.5.3)
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2. Basic production-inventory model with base stock policy

Proof. We transform

θ(k) = θ(k1, . . . , kJ , kJ+1) = C−1
θ

∏
j∈J

γ
kj
j

on

K := {(k1, . . . , kJ , kJ+1)|0 ≤ kj ≤ bj , j = 1, . . . , J, kJ+1 =
J∑
j=1

(bj − kj)} ⊂ NJ+1
0

by an isomorphism to

θ−(k−) = θ−(k1, . . . , kJ) = C−1
θ

J∏
j=1

γ
kj
j = θ(k) (2.5.4)

on

K− := {(k1, . . . , kJ)|0 ≤ kj ≤ bj , j ∈ J} =
J∏
j=1

{0, 1, . . . , bj} .

K− is a product space and θ− is a product measure. This leads to θ−(k−) =
∏J
j=1C

−1
θ,j ·γ

kj
j

and

g(b) =
∑
j∈J

(cs,j + ch,J+1) · bj

+
∑
j∈J

( bj∑
kj=0

C−1
θ,j · γ

kj
j ·

(
cls,j · λj · 1{kj=0} + (ch,j − ch,J+1) · kj

)

·
J∏
i=1
i6=j

bi∑
ki=0

C−1
θ,i · γ

ki
i

︸ ︷︷ ︸
=1

)
.

Set (Y1, . . . , YJ) ∼ θ−, then Yj is distributed according to a truncated geometric distri-
bution. It follows

g(b) =
∑
j∈J̄

(
(cs,j + ch,J+1) · bj + cls,j · λj · P (Yj = 0) + (ch,j − ch,J+1) · E(Yj)

)
.

We can show that a global optimal b∗j exists.

Corollary 2.5.3. For any j ∈ J the scaled costs gj(bj)

bj
are bounded above and below

asymptotically

0 < lim inf
bj→∞

gj(bj)

bj
≤ lim sup

bj→∞

gj(bj)

bj
<∞ (2.5.5)

and a global minimum b∗j exists.
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2.6. Structural properties of the integrated system

Proof. The property (2.5.5) follows from

gj(bj)

bj
= cs,j︸︷︷︸

>0

+ch,J+1 ·

(
1− E(Yj)

bj︸ ︷︷ ︸
∈(0,1)

)
+ cls,j · λj ·

P (Yj = 0)

bj︸ ︷︷ ︸
∈(0,1)

+ch,j ·
E(Yj)

bj︸ ︷︷ ︸
∈(0,1)

.

The consequence of the last equation is limbj→∞ gj(bj) = ∞, which together with re-
quirement bj ≥ 1 and gj(bj) > 0 proves the existence of a global minimum.

2.6. Structural properties of the integrated system

The investigations in this section rely on the fact that the product form of the stationary
distribution (= separability) makes structures easily visible that are hard to detect by
simulations or by direct numerical investigations. As a byproduct we demonstrate the
power of product form calculus.

2.6.1. Ergodicity

As shown in Theorem 2.3.5, ergodicity is determined by
∑

nj∈N0

∏nj
`=1

λj
µj(`)

<∞, j ∈ J ,
because K is finite. Hence, ergodicity is determined by the parameters of the isolated
queueing system without the inventory system at the locations. For instance, if µj(`) =
µj , ∀`, then λj < µj , ∀j, is the correct condition for stabilizing the entire system.
Noteworthy is that the extra idle times of the servers at the production systems do not

destroy ergodicity due to the necessary replenishments. The reason behind this is that
the local lost sales at the individual servers at these locations automatically balance a
possible bottleneck behaviour of the central supplier.

2.6.2. Effect of pooling demand, inventories and service capacity

Pooling of inventories and demand improves performance of inventory systems in many
cases, for an early investigation see Eppen [Epp79]. Similarly, merging service capacities
can improve throughput and reduce delay of production. Li and Zhang [LZ12] analyse how
inventory pooling affects customer service levels. In our integrated production-inventory
systems with a high degree of parallelism of the locations with demand, service, and
inventory, it is therefore of interest whether pooling would improve the system’s behaviour
measured by the cost functions from Section 2.5. This is not a trivial question because
for service systems (queues) van Dijk and van der Sluis [DS09] have shown that in many
situations “Pooling is not the answer” to improve service quality. Similarly, for the classical
newsvendor model there are situations where pooling of the demand is not an optimal
decision. A review is given by Yang and Schrage [YS09] who show that pooling is not
optimal in some cases. Bar-Lev and his coauthors [BL11] give precise necessary and
sufficient conditions for the anomalies to occur or not to occur, i.e. pooling is suboptimal
or optimal.
We utilize our closed-form formulas to show that pooling is favourable for some sets of

parameter settings in the production-inventory system.

33



2. Basic production-inventory model with base stock policy

Definition 2.6.1. We say a subset {φ1, . . . , φN} ⊆ {1, . . . , J} of locations is homogeneous
if

λφk = λφ` and γφk = γφ` , ∀k, ` ∈ {1, . . . , N}.

A homogeneous set {φ1, . . . , φN} of locations is 1-homogeneous if γφk = 1, ∀k ∈ {1, . . . , N}
holds.

Next we show that pooling of homogeneous systems (or locations) reduces the optimal
base stock levels and the costs. This is done first for 1-homogeneous systems. We will
verify this twofold. First by proving the following proposition.

Proposition 2.6.2. Consider an ergodic network as in Section 2.2 that includes (among
others) N locations with demand streams of intensities λ̂φ1 = · · · = λ̂φN , with optimal
base stock levels b̂∗φ1 , . . . , b̂

∗
φN

and corresponding costs ĝφ1 (̂b∗φ1), . . . , ĝφN (̂b∗φN ). Assume that
these locations are 1-homogeneous, i.e. γ̂φi = (νp̂φi)/λ̂φi = 1, i = 1, . . . , N . When the N
arrival streams are pooled to arrive at a single location, denoted by φ, with demand rate
λ̂φ1 + · · ·+ λ̂φN = λ̂φ1 ·N =: λφ and pφ := p̂φ1 ·N , then for the optimal base stock level
b∗φ and costs gφ(b∗φ) at the pooled location φ the following holds:

b̂∗φ1 + · · ·+ b̂∗φN

{
≈
√
N · b∗φ > b∗φ if b̂∗φ1 > 1,

&
√
N · b∗φ > b∗φ if b̂∗φ1 = 1

and

ĝφ1 (̂b∗φ1) + · · ·+ ĝφN (̂b∗φN )

{
≈
√
N · gφ(b∗φ) if b̂∗φ1 > 1

& N · gφ(b∗φ) if b̂∗φ1 = 1

}
> gφ(b∗φ).

An explanation for this decrease in case of pooling is probably that the system with
more stations generates more variability in its performance metrics.
This proposition shows that the optimal base stock level and associated costs in the

pooled system are smaller than the sum of the individual components in the non-pooled
system.

Proof of Proposition 2.6.2. For technical reasons we investigate the reversed process of
pooling: Splitting demand and inventory. For this we distribute the demand of rate λφ
at location φ to N locations {φ1, . . . , φN} with reduced demand of rate λ̂φk := λφ/N and
p̂φk := pφ/N, ∀k ∈ {1, . . . , N}.
We first collect necessary prerequisites and remark that γφ = 1 implies γ̂φk = 1, ∀k ∈
{1, . . . , N} (and vice versa), i.e. the property of 1-homogeneity is hereditary for the N
split locations.

For γφ = 1 the cost function is

gφ(bφ) = (cs,φ + ch,J+1) · bφ + cls,φ · λφ · P (Yφ = 0) + (ch,φ − ch,J+1) · E(Yφ)

(2.5.2)+(2.5.3)
= (cs,φ + ch,J+1) · bφ + cls,φ · λφ ·

1

(bφ + 1)
+ (ch,φ − ch,J+1) ·

bφ
2

=

(
cs,φ +

1

2
(ch,φ + ch,J+1)

)
· bφ + cls,φ · λφ ·

1

(bφ + 1)
.
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2.6. Structural properties of the integrated system

To simplify calculations we will analyse optimal points b∗φ ∈ [1,∞) in the continuous
space. The first two derivatives of gφ(bφ) are

∂gφ
∂bφ

(bφ) = cs,φ +
1

2
(ch,φ + ch,J+1)−

cls,φ · λφ
(bφ + 1)2

, and
∂2gφ
∂2bφ

(bφ) =
2cls,φ · λφ
(bφ + 1)3

.

Note that the second derivative is positive for bφ ≥ 1. So the optimal base stock level b∗φ
for station φ with demand rate λφ is obtained from

∂gφ
∂bφ

(b∗φ) = 0 ∧ b∗φ > 1 or b∗φ = 1 =⇒ b∗φ = max

{√
cls,φ · λφ

cs,φ + 1
2(ch,φ + ch,J+1)

− 1, 1

}
.

According to Corollary 2.5.3 this single local minimum b∗φ is also a global minimum.

To simplify notation we fix location φ1 and compare the performance metrics and costs
for arrival rate λφ and pφ with the situation of reduced demand of rate λ̂φ1 := λφ/N and
only a portion p̂φ1 := pφ/N of items from the replenishment workstation being redirected
to location φ1. The quantities related to the location φ1 will be tagged by a “ ̂ ” and
an index “φ1”. We have γ̂φ1 = γφ = 1. All other cost values ĉls,φ1 , ĉs,φ1 , ĉh,φ1 remain the
same as cls,φ, cs,φ, ch,φ, and ch,J+1 are already fixed. Using the previous results the new
optimal base stock level b̂∗φ1 for the location with reduced demand is

b̂∗φ1 = max

{√
cls,φ · λφ/N

cs,φ + 1
2(ch,φ + ch,J+1)

− 1, 1

}
. (2.6.1)

Comparing the optimal base stock levels b∗φ to b̂∗φ1 , we see that b∗φ ≥ b̂∗φ1 . To be more
precise,

if b̂∗φ1 > 1, then
b̂∗φ1 + 1

b∗φ + 1
=

1√
N
, and if b̂∗φ1 = 1, then

b̂∗φ1 + 1

b∗φ + 1
>

1√
N
. (2.6.2)

This implies for sufficiently large b∗φ

b̂∗φ1 ≈
b∗φ√
N
>
b∗φ
N
, if b̂∗φ1 > 1, and b̂∗φ1 &

b∗φ√
N
>
b∗φ
N
, if b̂∗φ1 = 1. (2.6.3)

Equation (2.6.3) says that whenever the demand is scaled down by 1/N the optimal base
stock level scales only with 1/

√
N . This scaling is maintained for the standard costs

which we consider (at least if b̂∗φ1 > 1). This follows from substituting b̂∗φ1 into

ĝφ1 (̂bφ1) :=

(
cs,φ +

1

2
(ch,φ + ch,J+1)

)
· b̂φ1 + cls,φ · λ̂φ1 ·

1

(̂bφ1 + 1)
.

We directly obtain for b̂∗φ1 > 1

ĝφ1 (̂b∗φ1) ≈
(
cs,φ +

1

2
(ch,φ + ch,J+1)

)
b∗φ√
N

+ cls,φ ·
λφ
N
· 1

(b∗φ+1)
√
N

≈ 1√
N
· gφ(b∗φ) (2.6.4)
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2. Basic production-inventory model with base stock policy

and for b̂∗φ1 = 1

ĝφ1 (̂b∗φ1) &

(
cs,φ +

1

2
(ch,φ + ch,J+1)

)
b∗φ
N

+ cls,φ · λφ ·
b∗φ
N

&
1

N
· gφ(b∗φ). (2.6.5)

Remark 2.6.3. ≈ resp. & in (2.6.3) means the following:

a(b∗φ) :=
b̂∗φ1 + 1

b∗φ + 1
−
b̂∗φ1
b∗φ

=

(
b̂∗φ1 + 1

)
· b∗φ − b̂∗φ1 ·

(
b∗φ + 1

)
(
b∗φ + 1

)
· b∗φ

=
b∗φ − b̂∗φ1(
b∗φ + 1

)
· b∗φ

=
1−

b̂∗φ1
b∗φ

b∗φ + 1
.

Because b∗φ ≥ b̂∗φ1 it follows that
b̂∗φ1
b∗φ
≤ 1. This implies

∣∣∣∣∣ b̂∗φ1 + 1

b∗φ + 1
−
b̂∗φ1
b∗φ

∣∣∣∣∣ =
b̂∗φ1 + 1

b∗φ + 1
−
b̂∗φ1
b∗φ

=
1−

b̂∗φ1
b∗φ

b∗φ + 1
<

1

b∗φ + 1
.

Hence, for every ε > 0 we have for all b∗φ ≥ max
(
1, 1

ε − 1
)
that 0 < a(b∗φ) < ε which

yields

b̂∗φ1
b∗φ

+a(b∗φ) =
b̂∗φ1 + 1

b∗φ + 1

{
= 1√

N
if b̂∗φ1 > 1,

> 1√
N

if b̂∗φ1 = 1
⇔ b̂∗φ1

=
(

1√
N
− a(b∗φ)

)
· b∗φ if b̂∗φ1 > 1,

>
(

1√
N
− a(b∗φ)

)
· b∗φ if b̂∗φ1 = 1.

≈ resp. & in (2.6.4) resp. (2.6.5) means the following:
Let ε > 0. Then we have for all b∗φ ≥ max

(
1, 1

ε − 1
)
that 0 < a(b∗φ) < ε and get

for b̂∗φ1 > 1

ĝφ1 (̂b∗φ1) =

(
cs,φ +

1

2
(ch,φ + ch,J+1)

)(
1√
N
− a

(
b∗φ
))
· b∗φ + cls,φ ·

λφ
N
· 1

(b∗φ+1)
√
N

=

(
cs,φ +

1

2
(ch,φ + ch,J+1)

)(
1√
N
− a

(
b∗φ
))
· b∗φ

+

(
1√
N
− a

(
b∗φ
))
· cls,φ · λφ ·

1

b∗φ + 1
+ a

(
b∗φ
)
· cls,φ · λφ ·

1

b∗φ + 1

=

(
1√
N
− a

(
b∗φ
))((

cs,φ +
1

2
(ch,φ + ch,J+1)

)
· b∗φ + cls,φ · λφ ·

1

b∗φ + 1

)
+a
(
b∗φ
)
· cls,φ · λφ ·

1

b∗φ + 1

=

(
1√
N
− a

(
b∗φ
))
· gφ(b∗φ) + a

(
b∗φ
)
· cls,φ · λφ ·

1

b∗φ + 1
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and for b̂∗φ1 = 1

ĝφ1 (̂b∗φ1) ≥
(
cs,φ +

1

2
(ch,φ + ch,J+1)

)(
1√
N
− a

(
b∗φ
))
· b∗φ + cls,φ ·

λφ
N
· 1

b̂∗φ1 + 1

b∗φ≥b̂
∗
φ1

≥
(
cs,φ +

1

2
(ch,φ + ch,J+1)

)(
1√
N
− a

(
b∗φ
))
· b∗φ +

1

N
· cls,φ · λφ ·

1

b∗φ + 1

≥
(
cs,φ +

1

2
(ch,φ + ch,J+1)

)(
1

N
− a

(
b∗φ
))
· b∗φ

+

(
1

N
− a

(
b∗φ
))
· cls,φ · λφ ·

1

b∗φ + 1
+ a

(
b∗φ
)
· cls,φ · λφ ·

1

b∗φ + 1

=

(
1

N
− a

(
b∗φ
))
· gφ(b∗φ) + a

(
b∗φ
)
· cls,φ · λφ ·

1

b∗φ + 1
.

2.6.2.1. Pooling of general homogeneous locations: Refined numerical evaluation
on the basis of product form structure

For the more general homogeneous system, we resort to a numerical investigation to verify
whether equation (2.6.2) is still satisfied. To do so, we start with a system consisting of one
location, then split it in two equal parts. Utilizing the separability and the decomposition
property (2.5.1), we can reduce the problem to an isolated single location.
We consider the following fictional system with J = {φ}, pφ = 1, λφ = 1, cs,φ = 1,

ch,φ = 2, cls,φ = 400, ch,J+1 = 1 and γφ ∈ [0.1, 10]. The holding costs ch,J+1 at the
central supplier are lower than the holding costs ch,φ at location φ. The very high cost
cls,φ = 400 results from expensive items, which justify the base stock policy, as argued
in the introduction. We chose these numbers to obtain sufficiently large optimal base
stock levels. When the location is split, such that the difference between continuous and
discrete version of b∗φ is negligible.
The results are plotted in Figure 2.6.1, where “full demand” refers to the original system

(one location with λφ = 1) and “partial demand” refers to one of the two split locations
(which are identical, each with demand λ̂φ1 = λ̂φ2 = 1/2).
From Figure 2.6.1(a) we see that the values of b∗φ and b̂∗φ1 are highest, when γφ = 1.

Figure 2.6.1(b) demonstrates monotone decreasing behaviour of the cost functions gφ,

and ĝφ1 in γφ. Figure 2.6.1(c) shows that
b̂∗φ1

+1

b∗φ+1 ≥
1√
2
. The ratio is close to its lowest

value when γφ = 1. That means that if γφ is only slightly different from 1, we soon gain
more than factor 1√

2
when two locations are pooled.

If γφ deviates more from 1 we observe that
b̂∗φ1

+1

b∗φ+1 ≈ 0.9. The consequence is that

pooling two demand streams of equal rate λφ
2 yields a reduction of the needed inventory

by a factor close to 1/2.
This observation and conclusion is supported further by Figure 2.6.1(a). It is shown

that for high replenishment rate ν =
γφ·λφ
pφ

(with λφ = 1 fixed), the optimal base stock

level at demand rate λφ and λφ
2 are almost the same. Finally, from Figure 2.6.1(d) we

conclude that pooling two identical locations in the homogeneous case for large γφ reduced
the optimal total costs by a factor 1/2, too.
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Figure 2.6.1.: The optimal base stock levels of the original system b∗1 and of the splitted
systems b̂∗1 with corresponding optimal costs g1(b∗1) and ĝ1(̂b∗1) from Section
2.6.2.

Summarizing: From pooling two homogeneous locations we can expect roughly at least
a gain of inventory reduction by a factor of 1/

√
2, which is attained (approximately) in the

1-homogeneous case. Hence, for a subset of the parameter space, pooling is advisable,
i.e. the “type-F-anomaly” [YS09, Section 2] does not occur.

Additional comments:

(1) The explicit product form expressions for the stationary distribution allow a more
refined evaluation. We report only some interesting observations, which refer to an
evaluation in the continuous optimization domain.

(i) Although Figure 2.6.1(a) suggests that the optimal base stock levels b∗φ and
b̂∗φ1 are maximal at γφ = 1, we want to stress that this is in general not the
case.

(ii) Although Figure 2.6.1(c) suggests that the quotient
b̂∗φ1

+1

b∗φ+1 is minimal at γφ = 1,
this is in general not the case as well.

(iii) Figure 2.6.1(c) suggests even more that 1√
2
is always a lower bound for

b̂∗φ1
+1

b∗φ+1 .
We performed a detailed numerical evaluation with parameters λφ = 1, pφ = 1,
cs,φ, ch,φ, ch,J+1 and ν from {0.1, 0.2, . . . , 0.9}∪{1, 2, . . . , 9}∪{10, 20, . . . , 100}
and cls,φ from {0, 10, 20, . . . , 1000}, which resulted in 62, 080, 256 different sys-
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2.6. Structural properties of the integrated system

tem settings. They showed that the quotient
b̂∗φ1

+1

b∗φ+1 fell below the value 0.99√
2

for less than 6% of the instances, and below 0.95√
2

for less than 0.5% of the
instances. The smallest quotient was approximately 0.86√

2
.

(2) The strong peaks in Figure 2.6.1 (near γφ = 1) are still waiting for an intuitive
explanation. We emphasize that the possibility to detect these peaks strongly relied
on the fact that due to the product form stationary distribution we could separate
parts of the system (queues at locations) from other parts (inventory and central
supplier).

2.6.3. Transformation of the stationary distribution

We started with evaluation of π (n,k) =
(∏

j∈J ξj(nj)
)
· θ (k), which made it easy to

define and understand the cost structure of the system. Introducing later on for θ the
isomorphic θ− (see (2.5.4) on page 32) offers additional valuable insight into the structure
of the inventory-supplier part of the integrated system.
Consider a situation where the service times for production of raw material at the

workstation of the central supplier are extremely long (by chance). Then it is intuitive
that the on-hand inventory levels at all locations are low (and base stock levels are high
to prevent stockouts). Similarly, for short replenishment production times we see high
stock levels at all locations. Therefore, it is a tempting conjecture that the inventory
levels are positively correlated.
θ− tells us that this intuition goes wrong in the long-run and in equilibrium: Inventory

levels are independent for any fixed time point. Clearly, the inventory processes are not
independent over time.

2.6.4. Monotonicity properties

[RW96] considered systems similar to ours (without service at the locations) and found
by numerical studies that the optimal base stock levels in their network depend on the
utilization of the replenishment server in a monotone fashion. From our product form
equilibrium, monotonicity properties of various quantities can be derived analytically
exploiting the form of π (n,k) with the aid of stochastic order theory. This is a classical
approach and seems to go back in inventory theory to the nineteen-sixties [Kar60]. We
sketch two prototype examples:

(1) Recall that (Y1, . . . , YJ) is a vector distributed like θ−. An intuitive conjecture is
that: Increasing ν, decreasing λj or increasing pj will increase E(Yj) and decrease
P (Yj = 0), which occur in the local cost function gj .

This can be seen by proving that increasing γj to γ̃j , which follows from either of
the mentioned changes, implies stochastic ordering Yj ≤st Ỹj (with self-explaining
notation). This is not directly visible due to the normalisation constants, but
it is immediate that the likelihood ratio ordering Yj ≤lr Ỹj holds, which implies
stochastic ordering. This leads to E(Yj) ≤ E(Ỹj) and P (Yj = 0) ≥ P (Ỹj = 0).
See [MS02, p. 12] for details.
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2. Basic production-inventory model with base stock policy

In a similar way the vector (Y1, . . . , YJ) of the joint inventory sizes with parameters
γj is dominated in the sense of multivariate strong likelihood order (= tp2 order)
by a vector (Ỹ1, . . . , ỸJ) of stock sizes in a system with parameters γ̃j ≥ γj , which
implies multivariate stochastic ordering of the vectors (Y1, . . . , YJ) ≤st (Ỹ1, . . . , ỸJ),
see [MS02, pp. 129f.] for details.

A consequence of this observation is that whenever the demand intensity increases
from λj to λ̃j with λ̃j ≥ λj at some location j, the inventory position at the
other locations will not decrease in the sense of (multivariate) stochastic order,
which again has implications on the local cost functions via E(Yi) and decreases
P (Yi = 0), as described above.

(2) A similar monotonicity prevails for the joint queue lengths vector (X1, . . . , XJ),
which in steady state behaves at fixed time instants like a vector of independent
birth-death processes. The reasoning is the same as in (1).

2.6.5. Insensitivity and robustness

Sensitivity analysis is an important topic in classical inventory theory and is often hard to
perform. In our model the stationary distribution π (n,k) =

(∏
j∈J ξj(nj)

)
·θ (k) reveals

strong insensitivity properties of the system which make sensitivity analysis amenable:
The steady state behaviour of the subnetwork consisting of inventories and the central
supplier does not change when the service rates at the locations are changed as long as
the global system remains ergodic. Therefore θ is robust against estimation errors in
determining the µj(·). Vice versa, the distribution ξj(nj) is robust against changes in
the inventory-supplier network as long as the demand intensity and the service rates are
maintained.
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3. Load balancing policies

In this chapter, we analyse the basic model, which we have introduced in Chapter 2,
where routing of items depends on the on-hand inventory at the locations (with the aim
to obtain “load balancing”). The systems under investigation differ with respect to the
load balancing policy: In Section 3.3, we consider strict priorities (i.e. the finished item is
sent to the location(s) with the highest difference between the on-hand inventory and the
capacity of the inventory) and in Section 3.4, we consider weak priorities (i.e. the finished
item is sent with greater probability to the location with higher difference between the
on-hand inventory and the capacity of the inventory).

3.1. Related literature and own contributions

The research of such systems is motivated by state-dependent routing/branching of cus-
tomers. The “(...) purpose of introducing flexible state-dependent routing strategies
is to optimally utilize network resources and to minimise network delay and response
times” [Dad87, p. 1] and “(...) that introducing state-dependent routing into product form
networks usually destroys the product-form of the steady state probabilities” [Dad87,
p. 1]. Product form solutions under state-dependent routing are, for example, found
in [Pit79], [HD84], [Sch84].

Several other stock allocation policies can, for example, be found in the article of
Abouee-Mehrizi and his coauthors [AMBB14]. They consider a two-echelon inventory
system with a capacitated centralized production facility and several distribution centres.
We will not go into any greater detail in this allocation policies.

Daduna [Dad85, p. 624] and Towsley [Tow80, pp. 327f.] argued that an optimal rout-
ing/branching policy for systems with identical peripheral processors is by intuitive reas-
oning: “Customers enter the peripheral processor with the shortest queue”. This is equi-
valent to our strict priorities for load balancing policy.

Literature about strict priorities for load balancing policy :
Chow and Kohler analyse the performance of two-processor distributed computer systems
under several dynamic load balancing policies in [CK77] and [CK79]. They compare the
performance and their results indicate that a simple load balancing policy can signific-
antly improve the performance (turnaround time) of the system.

In [CK77] they analyse the performance of homogeneous (i.e. identical) two-processor
distributed computer systems under several dynamic load balancing policies. Their ana-
lysis is based on the recursive solution technique and they illustrated the algorithm for a
sample system [CK77, Appendix, pp. 51f.]. Their strategy “join the shorter queue without
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3. Load balancing policies

channel transfer” in Chow and Kohler’s Model B [CK77, pp. 42f.] is equivalent to our
strict load balancing policy.
They mention that “the recursive solution technique can be applied to queueing models

with more than one queue” [CK77, p. 45]. Furthermore, they “(...) are currently working
to extend the analysis to (...) systems with more than two processors” [CK77, p. 49].1

Flatto and McKean study also Chow and Kohler’s Model B in [FM77] and derive by the
generating function approach a complicated closed form solution (cf. [FM77, Section 3, p.
261]), where the inter-arrival times of customers are exponentially distributed with rate 1.

Chow and Kohler present in [CK79] a generalization of the recursive solution technique.
They apply the method to non-homogeneous (= heterogeneous) two-processor systems
with special properties in [CK79, Section IV, pp. 358f.] and present a sample system us-
ing the algorithm in [CK79, Appendix, pp. 360f.]. They mention that the generalization
of recursive solution “(...) technique for three or more processors does not appear to be
straightforward” [CK79, p. 359].

Literature about weak priorities for load balancing policy :
Towsley analyses in [Tow75, Example 4.4.3, pp. 63ff. and Appendix D, pp. 138ff.] and
in [Tow80, Example 1, pp. 327ff.] a central server model (called starlike system) with two
identical processors, N customers, exponential service times, FCFS discipline and the
following routing strategy (shortest queue = strict priority): A job leaving the central
server goes to the processor with the shortest queue length. If both have the same queue
length, it enters either with equal probability. He mentions that a numerical solution can
be obtained by solving a discrete-state continuous-transition Markov model.
Towsley compares the performance of this model under different routing policies: con-

stant and functional branching. His investigations show for a system with two identical
processors that the use of functional branching probabilities is an excellent approximation
for the “shortest queue”-system. The functional branching probabilities coincides with
our load balancing policy with weak priorities and the “join the shortest queue”-policy is
similar to our load balancing policy with strict priorities in our inventory-replenishment
subsystem. His results support that functional branching probabilities can be used “(...)
in modelling real-world problems such as load balancing” [Tow80, p. 328].

1We have found a reference to the article

Models for dynamic load balancing in homogeneous multiple processing systems by Y.C. Chow and
W.H. Kohler (IEE Transactions on Computers, volume c–36, pages 667–679)

in three sources:

Load Balancing in Parallel Computers: Theory and Practice by C. Xu, F.C.M. Lau (Springer
Science & Business Media, 1996)

Adaptive Load Sharing in Heterogenous Systems: Policies, Modifications, and Simulation by K.Y.
Kabalan, W.W. Smari and J.Y. Hakimian (International Journal of Simulation, Systems, Science
and Technology, volume 3, number 1–2, pages 9–100, 2002)

Achieving High Performance on Extremely Large Parallel Machines: Performance Prediction and
Load Balancing by G. Zheng (Dissertation, University of Illinois at Urbana-Champaign, 2005)

When we were searching for this article in IEEE Xplore Digital Library, there was no article with this
title. We can only find the article about heterogeneous multiple processing systems. We contacted
the author Professor Yuan Chow and additionally Dr. Zheng, who has referred this article in his
dissertation. But we obtained no precise information.
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Towsley finds in [Tow80] for closed queueing networks a class of network topologies and
a versatile class of state-dependent routing probabilities (branching probabilities) which
lead to a product form equilibrium distribution. Further investigations on product form
distribution and cycle time can be found in [Dad85] and [Dad87].

Our main contributions are the following:
For the system with strict priorities for load balancing policy we develop a Markov pro-
cess. We prove that the stationary distribution has a product form of the marginal
distributions of the production subsystem and of the inventory-replenishment subsystem.

We derive an explicit solution for the marginal distribution of the production subsys-
tem. Furthermore, for some special cases we derive an explicit solution for the marginal
distribution of the inventory-replenishment subsystem: For the case of J homogeneous
locations (i.e. equal arrival rates and any service rates) with base stock levels equal to
one, as well as for the case of two heterogeneous locations (i.e. any arrival and service
rates) with base stock levels equal to one. For systems with base stock levels greater
than one the marginal distribution of the inventory-replenishment subsystem with two
locations can be obtained by a recursive method which is described by an algorithm.

Our work is an extension of the investigations of Chow and Kohler [CK77, CK79]:
Their study is limited to two processors (= our inventories without production systems).
For the heterogeneous case, our load balancing policy is slightly different from that of

Chow and Kohler [CK79, Section IV, pp. 358f.] (for more details see Appendix C.1 on
page 272). Therefore, we construct a new algorithm.

For the system with weak priorities for load balancing policy we develop a Markov
process and derive the stationary distribution in explicit product form. Our work is an
extension of the investigations of Towsley [Tow75, Tow80] and Daduna [Dad85, Dad87]:
Their closed network with branching policies is equivalent to our inventory-replenishment
subsystem, which we have integrated in a complex supply chain with a production sub-
system.
A cost analysis can be performed as for the basic model in Section 2.5 on page 29.

43



3. Load balancing policies

3.2. Description of the general model

The supply chain of interest is depicted in Figure 3.2.1. We have a set of locations
J := {1, 2, . . . , J}, J > 1. Each of the locations consists of a production system with an
attached inventory. The inventories are replenished by a single central supplier, which is
referred to as workstation J + 1 and manufactures raw material for all locations. The
items of raw material are indistinguishable (exchangeable).

Location 1

Location 

Supplier
Station   +1

Single 
server

Single 
server

Single 
server

Waiting room

Lost 
sales

Lost 
sales

 Replenishment order

 Replenish
ment order

Demand arrival 
process

Demand arrival 
process

Inventory

Inventory

Replenishment

Replenishment

Waiting room

Waiting room

Figure 3.2.1.: Supply chain with base stock policies and load balancing policies

Facilities in the supply chain. Each production system j ∈ J consists of a single
server (machine) with infinite waiting room that serves customers on a make-to-order basis
under a FCFS regime. Customers arrive one by one at the production system j according
to a Poisson process with rate λj > 0 and require service. To satisfy a customer’s demand
the production system needs exactly one item of raw material, which is taken from the
associated local inventory. When a new customer arrives at a location while the previous
customers’ order is not finished, this customer will wait. If the inventory is depleted
at location j, the customers who are already waiting in line will wait, but new arriving
customers at this location will decide not to join the queue and are lost (“local lost sales”).

The service requests at the locations are exponentially-1 distributed. All service re-
quests constitute an independent family of random variables which are independent of
the arrival streams. The service at location j ∈ J is provided with local queue-length-
dependent intensity. If there are nj > 0 customers present at location j, either waiting or
in service (if any), and if the inventory is not depleted, the service intensity is µj(nj) > 0.
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3.2. Description of the general model

If the server is ready to serve a customer who is at the head of the line, and the inven-
tory is not depleted, the service immediately starts. Otherwise, the service starts at the
instant of time when the next replenishment arrives at the local inventory.

The inventory at location j ∈ J is controlled by prescribing a local base stock level
bj ≥ 1, which is the maximal size of the inventory there, we denote b :=

(
bj : j ∈ J

)
.

The central supplier (which is referred to as workstation J + 1) consists of a single
server (machine) and a waiting room under FCFS regime. At most

∑
j∈J bj − 1 replen-

ishment orders are waiting at the central supplier. Service times at the central supplier
are exponentially distributed with parameter ν > 0.

Routing in the supply chain. A served customer departs from the system im-
mediately after service and the associated consumed raw material is removed from the
inventory and an order of one item is placed at the central supplier at this time instant
(“base stock policy”).
A finished item of raw material departs from the central supplier immediately and is

sent with probability pj(k), independent of the network’s history, given k, to location j,
j ∈ J , if the state of the inventory-replenishment subsystem is k.
The systems under investigation differ with respect to the load balancing policy in the
following way:

• Strict priorities (Section 3.3):
The finished item of raw material is sent to the location(s) with the highest difference
between the on-hand inventory and the capacity of the inventory (= base stock
level).

• Weak priorities (Section 3.4):
The finished item of raw material is sent with greater probability to the location with
higher difference between the on-hand inventory and the capacity of the inventory
(= base stock level).

It is assumed that transmission times for orders are negligible and set to zero and that
transportation times between the central supplier and the local inventories are negligible.
The usual independence assumptions are assumed to hold as well.

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by Xj(t) the number of customers present at location j ∈ J at time t ≥
0, either waiting or in service (queue length). By Yj(t) we denote the size of the inventory
at location j ∈ J at time t ≥ 0. By WJ+1(t) we denote the number of replenishment
orders at the central supplier at time t ≥ 0, either waiting or in service (queue length).
We define the joint queueing-inventory process of this system by

Z = ((X1(t), . . . , XJ(t), Y1(t), . . . , YJ(t),WJ+1(t)) : t ≥ 0) .

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process, which we assume to be irreducible and regular.
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The state space of Z is
E =

{
(n,k) : n ∈ NJ0 , k ∈ K

}
with

K :=
{

(k1, . . . , kJ , kJ+1)|0 ≤ kj ≤ bj , j = 1, . . . , J, kJ+1 =

J∑
j=1

(bj − kj)
}
⊂ NJ+1

0 .

Note the redundancy in the state space: WJ+1(t) =
∑

j∈J bj −
∑

j∈J Yj(t). We prefer to
carry all information explicitly with because the dynamics of the system are easier visible.

Definition 3.2.1. For the queueing-inventory process Z on state space E, whose limiting
distribution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞

P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ :=
(
ξ (n) : n ∈ NJ0

)
, ξ (n) := lim

t→∞
P ((X1(t), . . . , XJ(t)) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y1(t), . . . , YJ(t),WJ+1(t)) = k) .

3.3. Load balancing policy: Strict priorities

In this section, we study the supply chain with strict priorities as load balancing policy
as described in Section 3.2.

We define

arg max
i∈J

(bi − ki) : =
{
i ∈ J |(bi − ki) maximal

}
=
{
i ∈ J |∀j ∈ J : (bi − ki) ≥ (bj − kj)

}
.

The finished item of raw material is sent to location i ∈ J with probability

pi(k) =



1, if {i} = arg max
j∈J

(bj − kj),

1
|arg max

j∈J
(bj−kj) | < 1, if {i} ( arg max

j∈J
(bj − kj),

0, if i /∈ arg max
j∈J

(bj − kj),

i.e. to the location(s) with the highest difference between the on-hand inventory and the
capacity of the inventory (= base stock level), if the inventory is not full at this/these
location(s) (this means that the on-hand inventory level at this/these location(s) is lower
than the base stock level). The routing probabilities out of the central supplier must sum
to one if there is at least one order at the central supplier.
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3.3.1. Limiting and stationary distribution

The queueing-inventory process Z has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n,k) ∈ E:

q ((n,k); (n + ei,k)) = λi · 1{ki>0}, i ∈ J,
q ((n,k); (n− ei,k− ei + eJ+1)) = µi(ni) · 1{ni>0} · 1{ki>0}, i ∈ J,

q ((n,k); (n,k + ei − eJ+1)) = ν · pi(k) · 1{ki<bi}, i ∈ J.

Note that kJ+1 > 0 holds if ki < bi for some i ∈ J .

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

Proposition 3.3.1. There exists a strictly positive measure θ̃ = (θ̃(k) : k ∈ K), which
will be provided below, such that the measure x := (x (n,k) : (n,k) ∈ E) with

x (n,k) = ξ̃(n) · θ̃ (k) , (3.3.1)

where

ξ̃(n) =
∏
j∈J

ξ̃j(nj), ξ̃j(nj) =

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J,

solves the global balance equations x · Q = 0 and is therefore stationary for Z. Con-
sequently, x is strictly positive.

Proof. The global balance equations x ·Q = 0 of the stochastic queueing-inventory
process Z are given for (n,k) ∈ E by

x (n,k) ·
(∑
i∈J

λi · 1{ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{ki>0} +
∑
i∈J

ν · pi(k) · 1{ki<bi}
)

=
∑
i∈J

x (n− ei,k) · λi · 1{ni>0} · 1{ki>0}

+
∑
i∈J

x (n + ei,k + ei − eJ+1) · µi(ni + 1) · 1{ki<bi}

+
∑
i∈J

x (n,k− ei + eJ+1) · ν · pi(k− ei + eJ+1) · 1{ki>0}.

It has to be shown that the stationary measure from Proposition 3.3.1 satisfies these
global balance equations.

(∏
j∈J ξ̃j(nj)

)
can be separated analogously as shown in the

proof of Proposition 2.3.1 on page 15. Consequently, it holds

θ̃ (k)
(∑
i∈J

λi · 1{ki>0} +
∑
i∈J

ν · pi(k) · 1{ki<bi}
)

=
∑
i∈J

θ̃ (k + ei − eJ+1) · λi · 1{ki<bi}

+
∑
i∈J

θ̃ (k− ei + eJ+1) · ν · pi(k− ei + eJ+1) · 1{ki>0}. (3.3.2)

47



3. Load balancing policies

An inspection of the system (3.3.2) reveals that it is a “generator equation”, i.e. the
global balance equation θ̃ · Qred = 0 for a suitably defined ergodic Markov process on
state space K with “reduced generator” Qred =

(
qred(k; k̃) : k, k̃ ∈ K

)
with the following

transition rates for k ∈ K:

qred (k;k− ei + eJ+1) = λi · 1{ki>0}, i ∈ J,
qred (k;k + ei − eJ+1) = ν · pi(k) · 1{ki<bi}, i ∈ J.

The Markov process generated by Qred is irreducible on K and therefore (3.3.2) has a
solution which is unique up to a multiplicative constant, which yields θ̃.

Remark 3.3.2. In Section 3.3.1.1, the marginal measure θ̃ is derived in explicit form for
the special case with base stock levels bj = 1, j ∈ J .
For systems with two locations and base stock levels greater than one (bj > 1, j ∈ J),

the marginal measure θ̃ can be obtained by a recursive method which is described by the
algorithm given in Appendix C.1.

Recall that the system is irreducible and regular. Therefore, if Z has a stationary and
limiting distribution, this is uniquely defined.

Definition 3.3.3. For the queueing-inventory process Z on state space E, whose limiting
distribution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞

P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ :=
(
ξ (n) : n ∈ NJ0

)
, ξ (n) := lim

t→∞
P ((X1(t), . . . , XJ(t)) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y1(t), . . . , YJ(t),WJ+1(t)) = k) .

Theorem 3.3.4. The queueing-inventory process Z is ergodic if and only if for j ∈ J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

<∞.

If Z is ergodic, then its unique limiting and stationary distribution is

π (n,k) = ξ(n) · θ (k) , (3.3.3)

with

ξ(n) =
∏
j∈J

ξj(nj), ξj(nj) = C−1
j

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (3.3.4)

and normalisation constants

Cj =
∑
nj∈N0

nj∏
`=1

λj
µj(`)

and θ is the probabilistic solution of (3.3.2).

48



3.3. Load balancing policy: Strict priorities

Proof. Z is ergodic if and only if the strictly positive measure x of the global balance
equation x ·Q = 0 from Proposition 3.3.1 can be normalised (i.e.

∑
n∈N0

∑
k∈K x(n,k) <

∞). Because of Proposition 3.3.1 it holds

∑
n∈N0

∑
k∈K

x(n,k) =
∑
n∈N0

ξ̃(n) ·
∑
k∈K

θ̃ (k) =

∏
j∈J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

 ·∑
k∈K

θ̃ (k) .

Hence, since K is finite, the measure x from Proposition 3.3.1 can be normalised if and
only if

∑
nj∈N0

∏nj
`=1

λj
µj(`)

<∞ for all j ∈ J .
Consequently, if the process is ergodic, the limiting and stationary distribution π is

given by

π(n,k) =
x(n,k)∑

n∈N0

∑
k∈K x(n,k)

,

where x(n,k) is given in Proposition 3.3.1.

Remark 3.3.5. The expression (3.3.3) shows that the two-component production-inventory-
replenishment system is separable, the steady states of the production network and the
inventory-replenishment complex decouple asymptotically.
Representation (3.3.4) shows that the equilibrium for the production subsystem decom-

poses in true independent coordinates. A product structure of the stationary distribution
as

ξ(n) =
∏
j∈J

ξj(nj) =
∏
j∈J

C−1
j

nj∏
`=1

λj
µj(`)

is commonly found for standard Jackson networks (see Theorem A.2.2) and their relatives.
In Jackson networks servers are “non-idling”, i.e. they are always busy as long as customers
are present at the respective node. In our production network, however, servers may be
idle while there are customers waiting because a replenishment needs to arrive first.
Consequently, the product form (3.3.3) has been unexpected to us.
Our production-inventory system can be considered as a “Jackson network in a ran-

dom environment” in [KDO16, Section 4]. We can interpret the inventory-replenishment
subsystem, which contributes via θ to Theorem 3.3.4, as a “random environment” for the
production network of nodes J , which is a Jackson network of parallel servers (for more
details see Appendix A.3). Taking into account the results of [KDO16, Theorem 4.1] we
conclude from the hindsight that decoupling of the queueing process (X1, . . . , XJ) and
the process (Y1, . . . , YJ ,WJ+1), i.e. the formula (3.3.3), is a consequence of that Theorem
4.1.
Our direct proof of Proposition 3.3.1 is much shorter than embedding the present model

into the general framework of [KDO16].
The structural properties from Section 2.6.1 (ergodicity) and Section 2.6.5 (insensitivity

and robustness) hold word-by-word for this integrated system as well.
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3.3.1.1. Calculation of θ̃ for the special case bj = 1, j ∈ J

In this section, we will solve the global balance equation θ̃ ·Qred = 0 for the special case
with base stock levels bj = 1, j ∈ J .
We recall the notation for the inventory-replenishment subsystem

θ̃(

inventories
at locations︷ ︸︸ ︷

k1, k2, . . . , kJ ,

supplier︷︸︸︷
kJ+1 ).

Proposition 3.3.6. The strictly positive measure θ̃ =
(
θ̃(k) : k ∈ K

)
of the inventory-

replenishment subsystem with base stock levels b1 = b2 = · · · = bJ = 1 is given by

θ̃(k) = θ̃(k1, k2, . . . , kJ , kJ+1) =

∏
j∈Ak

ν

λj

 ·
 J∏
`=|Ack|+1

1

`

 , (3.3.5)

where Ak :=
{
i ∈ J |ki = 1

}
and Ack :=

{
i ∈ J |ki = 0

}
.

Proof. It has to be shown that the stationary measure (3.3.5) satisfies the global balance
equations θ̃ ·Qred = 0, which are given for k ∈ K by

θ̃ (k) ·
(∑
i∈J

λi · 1{ki>0} +
∑
i∈J

ν · pi(k) · 1{ki<bi}
)

=
∑
i∈J

θ̃ (k + ei − eJ+1) · λi · 1{ki<bi}

+
∑
i∈J

θ̃ (k− ei + eJ+1) · ν · pi(k− ei + eJ+1) · 1{ki>0}

⇔ θ̃ (k) ·
(∑
i∈J

λi · 1{ki=1} +
∑
i∈J

ν · pi(k) · 1{ki=0}

)
=
∑
i∈J

θ̃ (k + ei − eJ+1) · λi · 1{ki=0}

+
∑
i∈J

θ̃ (k− ei + eJ+1) · ν · pi(k− ei + eJ+1) · 1{ki=1}

⇔ θ̃ (k) ·
( ∑
i∈Ak

λi +
∑
i∈Ack

ν · pi(k)
)

=
∑
i∈Ack

θ̃ (k + ei − eJ+1) · λi

+
∑
i∈Ak

θ̃ (k− ei + eJ+1) · ν · pi(k− ei + eJ+1).

It should be noted that for i ∈ Ak holds Ak ∪ {i} = Ak+ei−eJ+1
and for i ∈ Ak holds

Ak \ {i} = Ak−ei+eJ+1
.
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Substitution of (3.3.5) into the global balance equations directly leads
for k with k1 = k2 = · · · = kJ = 0, i.e. |Ak| = 0 and |Ack| = J , to

θ̃ (0, 0, . . . , 0, 0, J) ·
( ∑
i∈Ack

ν · pi (0, 0, . . . , 0, 0, J)︸ ︷︷ ︸
= 1

|Ack|
= 1
J

)
︸ ︷︷ ︸

=ν

=
∑
i∈Ack

θ̃ (k + ei − eJ+1) · λi

⇔ θ̃ (0, 0, . . . , 0, 0, J) · ν =
∑
i∈Ack

θ̃ (k + ei − eJ+1) · λi

⇔

∏
j∈Ak

ν

λj


︸ ︷︷ ︸

=1

·

 J∏
`=|Ack|+1

1

`


︸ ︷︷ ︸

=1

·ν =
∑
i∈Ack

 ∏
j∈Ak∪{i}

ν

λj

 ·
 J∏
`=|Ack\{i}|+1

1

`

 · λi

⇔ ν =
∑
i∈Ack

∏
j∈Ak

ν

λj


︸ ︷︷ ︸

=1

·

 J∏
`=|Ack|+1

1

`


︸ ︷︷ ︸

=1

· ν
λi
· 1∣∣Ack∣∣ · λi

=
∑
i∈Ack

1∣∣Ack∣∣ · ν = |Ack| ·
1∣∣Ack∣∣ · ν = ν,

for k with k1 = k2 = · · · = kJ = 1, i.e. |Ak| = J and |Ack| = 0, to

θ̃ (1, 1, . . . , 1, 1, 0) ·
∑
i∈Ak

λi =
∑
i∈Ak

θ̃ (k− ei + eJ+1) · ν · pi(k− ei + eJ+1)︸ ︷︷ ︸
=1

⇔

∏
j∈Ak

ν

λj

 ·
 J∏
`=|Ack|+1

1

`

 ·∑
i∈Ak

λi =
∑
i∈Ak

 ∏
j∈Ak\{i}

ν

λj

 ·
 J∏
`=|Ack∪{i}|+1

1

`

 · ν

⇔ =
∑
i∈Ak

∏
j∈Ak

ν

λj

 ·
 J∏
`=|Ack|+1

1

`

 · λi
ν
· 1

1
· ν

=
∑
i∈Ak

∏
j∈Ak

ν

λj

 ·
 J∏
`=|Ack|+1

1

`

 · λi,
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for 0 < |Ak| < J and 0 < |Ack| < J to

θ̃ (k) ·
( ∑
i∈Ak

λi +
∑
i∈Ack

ν · pi(k)︸ ︷︷ ︸
= 1

|Ack|︸ ︷︷ ︸
=ν

)

=
∑
i∈Ack

θ̃ (k + ei − eJ+1) · λi

+
∑
i∈Ak

θ̃ (k− ei + eJ+1) · ν · pi(k− ei + eJ+1)︸ ︷︷ ︸
= 1

|Ack|+1

⇔

∏
j∈Ak

ν

λj

 ·
 J∏
`=|Ack|+1

1

`

 · ( ∑
i∈Ak

λi + ν
)

=
∑
i∈Ack

 ∏
j∈Ak∪{i}

ν

λj

 ·
 J∏
`=|Ack\{i}|+1

1

`

 · λi
+
∑
i∈Ak

 ∏
j∈Ak\{i}

ν

λj

 ·
 J∏
`=|Ack∪{i}|+1

1

`

 · ν · 1∣∣Ack∣∣+ 1

=
∑
i∈Ack

∏
j∈Ak

ν

λj

 ·
 J∏
`=|Ack|+1

1

`

 · ν
λi
· 1∣∣Ack∣∣ · λi

+
∑
i∈Ak

∏
j∈Ak

ν

λj

 ·
 J∏
`=|Ack|+1

1

`

 · λi
ν
· (|Ack|+ 1) · ν · 1∣∣Ack∣∣+ 1

=

∏
j∈Ak

ν

λj

 ·
 J∏
`=|Ack|+1

1

`

 · ν
+

∏
j∈Ak

ν

λj

 ·
 J∏
`=|Ack|+1

1

`

 ·∑
i∈Ak

λi.
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Remark 3.3.7. We make a distinction between homogeneous and heterogeneous locations.

We mean by homogeneous locations that the inventories have identical base stock levels
b1 = b2 = · · · = bJ and identical arrival rates λ1 = λ2 = · · · = λJ > 0. Service rates
µj(·) > 0, j ∈ J , obey no such restrictions.
We mean by heterogeneous locations that there may be different arrival rates λj > 0,

j ∈ J (and any service rate µj(·) > 0, j ∈ J) and for the base stock levels hold
b1 ≥ b2 ≥ · · · ≥ bJ .

As a consequence of the preceding Proposition 3.3.6 the following symmetry property
for homogeneous locations with base stock levels b1 = b2 = · · · = bJ = 1 is valid.
For all permutations σ of {1, . . . , J} holds

θ̃(

inventories
at locations︷ ︸︸ ︷

k1, k2, . . . , kJ ,

supplier︷︸︸︷
kJ+1 ) = θ̃(

inventories
at locations︷ ︸︸ ︷

kσ(1), kσ(2), . . . , kσ(J),

supplier︷ ︸︸ ︷
kσJ+1 ).

For b1 = b2 = · · · = bJ > 1 the global balance equations (3.3.2) reveal directly that this
symmetry property holds in this case as well.

3.3.1.2. Structural properties of the stationary inventory-replenishment subsystem

In this section, we assume that the queueing-inventory process Z is ergodic. We make
again a distinction between homogeneous and heterogeneous locations.

In this section, we will use an abbreviated notation because kJ+1 =
∑J

j=1(bj − kj) and
the base stock levels bj , j ∈ J , are fixed parameters:

θ(

inventories
at locations︷ ︸︸ ︷

k1, k2, . . . , kJ) := θ(

inventories
at locations︷ ︸︸ ︷

k1, k2, . . . , kJ ,

supplier︷︸︸︷
kJ+1 ).

Homogeneous locations
In this paragraph, we assume that the locations are homogeneous, i.e. the inventories
have identical base stock levels b1 = b2 = · · · = bJ > 1 and identical arrival rates
λ1 = λ2 = · · · = λJ > 0. We derived in Proposition 3.3.6 an explicit solution for the
special case with base stock levels b1 = b2 = · · · = bJ = 1.

Recall that the following symmetry property for homogeneous locations holds: For all
permutations σ of {1, . . . , J} holds

θ(

inventories
at locations︷ ︸︸ ︷

k1, k2, . . . , kJ) = θ(

inventories
at locations︷ ︸︸ ︷

kσ(1), kσ(2), . . . , kσ(J)).
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Let (Y1, Y2, . . . YJ ,WJ+1) be a random variable which is distributed according to the
marginal steady state probability for the inventory-replenishment subsystem.2

Proposition 3.3.8. For the inventory process holds

P (Y1 = `) = P (Yj = `) , j ∈ J \ {1} , ` ∈ {0, . . . , b1},

and

P (Y1 = `) · λ1 (3.3.6)

= P
(
Yj = `− 1 for j ∈ J

)
· ν
J

+

J−1∑
i=1

P (Yj = `− 1 for j = 1, . . . , i and `− 1 < Yk ≤ bk for k = i+ 1, . . . , J)

·
(
J − 1

i− 1

)
· ν
i
, ` ∈ {1, . . . , b1}.

Proof. It holds

P (Y1 = `) = P (Yj = `) , j ∈ J \ {1} , ` ∈ {0, . . . , b1}

because of the symmetry property for homogeneous locations

θ(k1, k2, . . . , kJ) = θ(k2, k1, . . . , kJ) = · · · = θ(kJ , kJ−1, . . . , k1)

and because

P (Y1 = `) =

b2∑
k2=0

· · ·
bJ∑

kJ=0

θ(`, k2, . . . , kJ).

The equation (3.3.6) can be proven by the cut-criterion for positive recurrent processes,
which is presented in Theorem A.1.1(a) on page 259.
For ` ∈ {1, . . . , b1}, it can be proven by a cut, which divides E into complementary

sets according to the size of the inventory at location 1 that is less than or equal to `− 1
or greater than `− 1, i.e. into the sets{

(k1, k2, . . . , kJ) : k1 ∈ {0, 1, . . . , `−1}, kj ∈ {0, . . . , bj}, j ∈ {2, . . . , J}
}
,{

(k̃1, k̃2, . . . , k̃J) : k̃1 ∈ {`, . . . , b1}, k̃j ∈ {0, . . . , bj}, j ∈ {2, . . . , J}
}
, ` ∈ {1, . . . , b1} .

2It should be noted that θ(k1, k2, . . . , kJ , kJ+1) = P (Y1 = k1, Y2 = k2, . . . , YJ = kJ ,WJ+1 = kJ+1) =
P (Y1 = k1, Y2 = k2, . . . , YJ = kJ) because the base stock levels bj , j ∈ J , are fixed parameters and
kJ+1 =

∑J
j=1(bj − kj).
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Then, it follows for ` ∈ {1, . . . , b1}
`−1∑
k1=0

b2∑
k2=0

· · ·
bJ∑

kJ=0

b1∑
k̃1=`

b2∑
k̃2=0

· · ·
bJ∑

k̃J=0

θ(k1, k2, . . . , kJ)

· qred
(

(k1, k2, . . . , kJ); (k̃1, k̃2, . . . , k̃J)
)

=

b1∑
k̃1=`

b2∑
k̃2=0

· · ·
bJ∑

k̃J=0

`−1∑
k1=0

b2∑
k2=0

· · ·
bJ∑

kJ=0

θ(k̃1, k̃2, . . . , k̃J)

· qred
(

(k̃1, k̃2, . . . , k̃J); (k1, k2, . . . , kJ)
)

⇔ θ(`− 1, `− 1, . . . , `− 1) · ν
J

(3.3.7)

+

J−1∑
i=1

bi+1∑
ki+1=`

· · ·
bJ∑
kJ=`

θ(`− 1, `− 1, . . . , `− 1, ki+1, . . . , kJ) ·
(
J − 1

i− 1

)
· 1

i
· ν (3.3.8)

=

b2∑
k̃2=0

· · ·
bJ∑

k̃J=0

θ(`, k̃2, . . . , k̃J) · λ1.

The only possible transitions from the set, where the size of the inventory at location 1
is less than or equal to `− 1, to the set, where the inventory at location 1 is greater than
`− 1, are transitions according to a replenishment. In particular, transitions from{

(`− 1, k2, . . . , kJ) : kj ∈ {`− 1, . . . , bj}, j ∈ {2, . . . , J}
}
,

to {
(`, k̃2, . . . , k̃J) : k̃j ∈ {`− 1, . . . , bj}, j ∈ {2, . . . , J}

}
, ` ∈ {1, . . . , b1} .

A replenishment at location 1 is only possible if {1} ⊆ arg max
j∈J

(bj−kj). This means that

there is no other location with higher difference between the on-hand inventory and the
capacity of the inventory (= base stock level). Consequently, all possible states where the
other locations have `− 1 items or more items in the inventory have to be considered.
In (3.3.7) all locations have exactly ` − 1 items in the inventory and in (3.3.8) i states
how many locations have exactly `− 1 items in the inventory. This results in the factor
1/i, which is the probability that the finished item is sent to location i. The symmetry
property leads to the factor

(
J−1
i−1

)
.

Hence, we have shown for ` ∈ {1, . . . , b1}

P (Y1 = `) · λ1

= P
(
Yj = `− 1 for j ∈ J

)
· ν
J

+

J−1∑
i=1

P (Yj = `− 1 for j = 1, . . . , i and `− 1 < Yk ≤ bk for k = i+ 1, . . . , J)

·
(
J − 1

i− 1

)
· ν
i
.
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Heterogeneous locations
In this paragraph, we assume that there are two heterogeneous locations with base stock
levels b1 ≥ b2, where b1 > 1 and b2 ≥ 1 and arrival rates λ1, λ2 > 0.

Let (Y1, Y2,W3) be a random variable which is distributed according to the marginal
steady state probability for the inventory-replenishment subsystem.3

Remark 3.3.9. From equation (3.3.9) in the following proposition follows

P (Y1 = `1) = P (Y1 = 0) ·
(
ν

λ1

)`1
, `1 ∈ {1, . . . , b1 − b2} .

Proposition 3.3.10. For the inventory process holds
for `1 = 1, . . . , b1 − b2

P (Y1 = `1) · λ1 = P (Y1 = `1 − 1) · ν, (3.3.9)

for `1 = b1 − b2 + 1, . . . , b1 − 1

P (Y1 = `1) · λ1 = P (Y1 = `1 − 1, Y2 = `1 − 1− b1 + b2) · 1

2
ν

+P (Y1 = `1 − 1, Y2 > `1 − 1− b1 + b2) · ν, (3.3.10)

for `1 = b1

P (Y1 = b1) · λ1 = P (Y1 = b1 − 1, Y2 = b2 − 1) · 1

2
ν

+P (Y1 = b1 − 1, Y2 = b2) · ν, (3.3.11)

for `2 = 1, . . . , b2

P (Y2 = `2) · λ2 = P (Y1 = b1 − b2 + `2 − 1, Y2 = `2 − 1) · 1

2
ν

+P (Y1 > b1 − b2 + `2 − 1, Y2 = `2 − 1) · ν. (3.3.12)

Proof. The equations can be proven by the cut-criterion for positive recurrent processes,
which is presented in Theorem A.1.1(a) on page 259.

For `1 ∈ {1, . . . , b1 − b2}, equation (3.3.9) can be proven by a cut, which divides E into
complementary sets according to the size of the inventory at location 1 that is less than
or equal to `1 − 1 or greater than `1 − 1, i.e. into the sets{

(k1, k2) : k1 ∈ {0, 1, . . . , `1 − 1}, k2 ∈ {0, . . . , b2}
}
,

{
(k̃1, k̃2) : k̃1 ∈ {`1, . . . , b1}, k̃2 ∈ {0, . . . , b2}

}
, `1 ∈ {1, . . . , b1 − b2} .

3It should be noted that θ(k1, k2, k3) = P (Y1 = k1, Y2 = k2,W3 = k3) = P (Y1 = k1, Y2 = k2), because
the base stock levels b1 and b2 are fixed parameters and k3 = (b1 + b2)− (k1 + k2).
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3.3. Load balancing policy: Strict priorities

Then, it follows for `1 ∈ {1, . . . , b1 − b2}

`1−1∑
k1=0

b2∑
k2=0

b1∑
k̃1=`1

b2∑
k̃2=0

θ(k1, k2) · qred
(

(k1, k2); (k̃1, k̃2)
)

=

b1∑
k̃1=`1

b2∑
k̃2=0

`1−1∑
k1=0

b2∑
k2=0

θ(k̃1, k̃2) · qred
(

(k̃1, k̃2); (k1, k2)
)

⇔
b2∑

k2=0

θ(`1 − 1, k2)︸ ︷︷ ︸
=P (Y1=`1−1)

·ν =

b2∑
k̃2=0

θ(`1, k̃2)

︸ ︷︷ ︸
=P (Y1=`1)

·λ1.

Hence, we have shown for `1 ∈ {1, . . . , b1 − b2}

P (Y1 = `1 − 1) · ν = P (Y1 = `1) · λ1.

For `1 ∈ {b1 − b2 + 1, . . . , b1 − 1}, equation (3.3.10) can be proven by a cut, which divides
E into complementary sets according to the size of the inventory at location 1 that is less
than or equal to `1 − 1 or greater than `1 − 1, i.e. into the sets

{(k1, k2) : k1 ∈ {0, 1, . . . , `1 − 1}, k2 ∈ {0, . . . , b2}} ,{
(k̃1, k̃2) : k̃1 ∈ {`1, . . . , b1}, k̃2 ∈ {0, . . . , b2}

}
, `1 ∈ {b1 − b2 + 1, . . . , b1 − 1} .

Then, it follows for `1 ∈ {b1 − b2 + 1, . . . , b1 − 1}

`1−1∑
k1=0

b2∑
k2=0

b1∑
k̃1=`1

b2∑
k̃2=0

θ(k1, k2) · qred
(

(k1, k2); (k̃1, k̃2)
)

=

b1∑
k̃1=`1

b2∑
k̃2=0

`1−1∑
k1=0

b2∑
k2=0

θ(k̃1, k̃2) · qred
(

(k̃1, k̃2); (k1, k2)
)

⇔
b2∑

k2=b2−(b1−`1)

θ(`1 − 1, k2)·

︸ ︷︷ ︸
=P (Y1=`1−1,Y2>b2−(b1−(`1−1))

ν + θ(`1 − 1, b2 − (b1 − (`1 − 1)))︸ ︷︷ ︸
=P (Y1=`1−1,Y2=b2−(b1−(`1−1))

·1
2
ν =

b2∑
k̃2=0

θ(`1, k̃2)

︸ ︷︷ ︸
=P (Y1=`1)

·λ1.

Hence, we have shown for `1 ∈ {b1 − b2 + 1, . . . , b1 − 1}

P (Y1 = `1) · λ1 = P (Y1 = `1 − 1, Y2 = b2 − (b1 − (`1 − 1))) · 1

2
ν

+P (Y1 = `1 − 1, Y2 > b2 − (b1 − (`1 − 1))) · ν

= P (Y1 = `1 − 1, Y2 = `1 − 1− b1 + b2) · 1

2
ν

+P (Y1 = `1 − 1, Y2 > `1 − 1− b1 + b2) · ν.
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For `1 = b1, equation (3.3.11) can be proven by a cut, which divides E into complementary
sets according to the size of the inventory at location 1 that is less than or equal to b1−1
or greater than b1 − 1, i.e. into the sets{

(k1, k2) : k1 ∈ {0, 1, . . . , b1 − 1}, k2 ∈ {0, . . . , b2}
}
,{

(k̃1, k̃2) : k̃1 = b1, k̃2 ∈ {0, . . . , b2}
}
.

Then, it follows for

b1−1∑
k1=0

b2∑
k2=0

b1∑
k̃1=b1

b2∑
k̃2=0

θ(k1, k2) · qred
(

(k1, k2); (k̃1, k̃2)
)

=

b1∑
k̃1=b1

b2∑
k̃2=0

b1−1∑
k1=0

b2∑
k2=0

θ(k̃1, k̃2) · qred
(

(k̃1, k̃2); (k1, k2)
)

⇔ θ(b1 − 1, b2)︸ ︷︷ ︸
=P (Y1=b1−1,Y2=b2)

·ν + θ(b1 − 1, b2 − 1)︸ ︷︷ ︸
=P (Y1=b1−1,Y2=b2−1)

·1
2
ν =

b2∑
k̃2=0

θ(b1, k̃2)

︸ ︷︷ ︸
=P (Y1=b1)

·λ1.

Hence, we have shown

P (Y1 = b1) · λ1 = P (Y1 = b1 − 1, Y2 = b2 − 1) · 1

2
ν

+P (Y1 = b1 − 1, Y2 = b2) · ν.

For `2 ∈ {1, . . . , b2}, equation (3.3.12) can be proven by a cut, which divides E into
complementary sets according to the size of the inventory at location 2 that is less than
or equal to `2 − 1 or greater than `2 − 1, i.e. into the sets{

(k1, k2) : k1 ∈ {0, . . . , b1}, k2 ∈ {0, 1, . . . , `2 − 1}
}
,{

(k̃1, k̃2) : k̃1 ∈ {0, . . . , b1}, k̃2 ∈ {`2, . . . , b2}
}
, `2 ∈ {1, . . . , b2} .

Then, it follows for `2 ∈ {1, . . . , b2}

b1∑
k1=0

`2−1∑
k2=0

b1∑
k̃1=0

b2∑
k̃2=`2

θ(k1, k2) · qred
(

(k1, k2); (k̃1, k̃2)
)

=

b1∑
k̃1=0

b2∑
k̃2=`2

b1∑
k1=0

`2−1∑
k2=0

θ(k̃1, k̃2) · qred
(

(k̃1, k̃2); (k1, k2)
)

⇔ θ(b1 − (b2 − (`2 − 1)) , `2 − 1)

︸ ︷︷ ︸
=P (Y1=b1−(b2−(`2−1)),Y2=`2−1)

·1
2
ν

b1∑
k1=b1−(b2−`2)

θ(k1, `2 − 1)

︸ ︷︷ ︸
=P (Y1>b1−(b2−(`2−1)),Y2=`2−1)

·ν =

b1∑
k̃1=0

θ(k̃1, `2)

︸ ︷︷ ︸
=P (Y2=`2)

·λ2.
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3.3. Load balancing policy: Strict priorities

Hence, we have shown for `2 ∈ {1, . . . , b2}

P (Y2 = `2) · λ2 = P (Y1 = b1 − (b2 − (`2 − 1)) , Y2 = `2 − 1) · 1

2
ν

+P (Y1 > b1 − (b2 − (`2 − 1)) , Y2 = `2 − 1) · ν

= P (Y1 = b1 − b2 + `2 − 1, Y2 = `2 − 1) · 1

2
ν

+P (Y1 > b1 − b2 + `2 − 1, Y2 = `2 − 1) · ν.
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3. Load balancing policies

3.4. Load balancing policy: Weak priorities

In this section, we study the supply chain with weak priorities for load balancing policy
as described in Section 3.2.

We assume that the finished item of raw material is sent with probability
(cf. [Tow80, Section 3, Example 1, pp. 326ff.] and [Dad85, pp. 624f.])

pj(k) = hj (kj) · h

∑
i∈J

ki

 > 0

to location j ∈ J , if the inventory is not full at this location (this means that the on-hand
inventory level at location j is lower than the base stock level bj).

We define

hj : {0, 1, . . . , bj} → {0, 1, . . . , bj} , hj(kj) = bj − kj , j ∈ J,

and

h :

0, 1, . . . ,
∑
j∈J

bj − 1

→ R+, h(m) =

∑
j∈J

bj −m

−1

.

Then, it holds

h

∑
i∈J

ki

 =

∑
i∈J

bi −
∑
i∈J

ki

−1

= (kJ+1)−1 .

The routing probabilities out of the central supplier must sum to one if there is at least
one order at the central supplier. The finished item is sent with greater probability to
the location with higher difference between the on-hand inventory and the capacity of
the inventory.

3.4.1. Limiting and stationary distribution

The queueing-inventory process Z has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n,k) ∈ E:

q ((n,k); (n + ei,k)) = λi · 1{ki>0}, i ∈ J,
q ((n,k); (n− ei,k− ei + eJ+1)) = µi(ni) · 1{ni>0} · 1{ki>0}, i ∈ J,

q ((n,k); (n,k + ei − eJ+1)) = ν · pi(k) · 1{ki<bi}, i ∈ J,

with pi(k) = hi(ki) · h
(∑

j∈J kj

)
. Note that kJ+1 > 0 holds if ki < bi for some i ∈ J .

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.
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3.4. Load balancing policy: Weak priorities

Proposition 3.4.1. The strictly positive measure x := (x (n,k) : (n,k) ∈ E) with

x (n,k) = ξ̃(n) · θ̃ (k) , (3.4.1)

where

ξ̃(n) =
∏
j∈J

ξ̃j(nj), ξ̃j(nj) =

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (3.4.2)

θ̃(k) =

∏
j∈J

kj−1∏
`=0

hj(`)

 ·
∑

j∈J kj−1∏
`=0

h(`)

 ·
∏
j∈J

(
1

λj

)kj · (1

ν

)kJ+1

, k ∈ K,

(3.4.3)
solves the global balance equations x ·Q = 0 and is therefore stationary for Z.

Proof. The global balance equations x ·Q = 0 of the stochastic queueing-inventory
process Z are given for (n,k) ∈ E by

x (n,k)

∑
i∈J

λi · 1{ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{ki>0} +
∑
i∈J

ν · pi(k) · 1{ki<bi}


=
∑
i∈J

x (n− ei,k) · λi · 1{ni>0} · 1{ki>0}

+
∑
i∈J

x (n + ei,k + ei − eJ+1) · µi(ni + 1) · 1{ki<bi}

+
∑
i∈J

x (n,k− ei + eJ+1) · ν · pi(k− ei + eJ+1) · 1{ki>0}.

It has to be shown that the stationary measure (3.4.1) satisfies these global balance equa-
tions. Some of the changes are highlighted for reasons of clarity and comprehensibility.(∏

j∈J ξ̃j(nj)
)
can be separated analogously as shown in the proof of Proposition 2.3.1

on page 15. Consequently, it holds

θ̃ (k)

∑
i∈J

λi · 1{ki>0} +
∑
i∈J

ν · pi(k) · 1{ki<bi}


=
∑
i∈J

θ̃ (k+ei − eJ+1) · λi · 1{ki<bi}

+
∑
i∈J

θ̃ (k−ei + eJ+1) · ν · pi(k− ei + eJ+1) · 1{ki>0}. (3.4.4)
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3. Load balancing policies

Substitution of (3.4.3) we obtain

θ̃ (k) ·

∑
i∈J

λi · 1{ki>0} +
∑
i∈J

ν · pi(k) · 1{ki<bi}


=
∑
i∈J

∏
j∈J

kj−1∏
`=0

hj(`)

 ·
∑

j∈J kj−1∏
`=0

h(`)

 ·
∏
j∈J

(
1

λj

)kj · (1

ν

)kJ+1

︸ ︷︷ ︸
=θ̃(k)

·hi(ki) · h

(∑
j∈J

kj

)
︸ ︷︷ ︸

=pi(k)

· 1
λi
· ν · λi · 1{ki<bi}

+
∑
i∈J

∏
j∈J

kj−1∏
`=0

hj(`)

 ·
∑

j∈J kj−1∏
`=0

h(`)

 ·
∏
j∈J

(
1

λj

)kj · (1

ν

)kJ+1

︸ ︷︷ ︸
=θ̃(k)

· 1

hi(ki − 1)
· 1

h
(∑

j∈J kj − 1
)︸ ︷︷ ︸

= 1
pi(k−ei+eJ+1)

·λi ·
1

ν
· ν · pi(k− ei + eJ+1) · 1{ki>0}.

The right-hand side of the last equation is∑
i∈J

θ̃(k) · ν · pi(k) · 1{ki<bi} +
∑
i∈J

θ̃(k) · λi · 1{ki>0},

which is obviously the left-hand side.

Inspection of the system (3.4.4) reveals that it is a “generator equation”, i.e. the global
balance equation θ̃ · Qred = 0 for a suitably defined ergodic Markov process on state
space K with “reduced generator” Qred. Because the Markov process generated by Qred

is irreducible the solution of (3.4.4) is unique up to a multiplicative constant, which yields
θ̃.

Remark 3.4.2. θ̃ (k) = θ̃(k1, . . . , kJ , kJ+1) is obtained as a strictly positive solution
of (3.4.4) which resembles the global balance equations of an artificial non-standard
Gordon-Newell network of queues with J + 1 nodes and

∑
j∈J bj customers, exponen-

tially distributed service times with rate λj for kj ≤ bj and “∞” otherwise at node
j ∈ {1, . . . , J} and with rate ν at node J + 1 and state-dependent routing probabilities.
More precisely, it is a starlike system with r(j, J+1) = 1, j ∈ J , and with state-dependent
branching probabilities r(J+1, j) = pj(k), j ∈ J . The pj(k) = hj(kj) ·h(

∑
i∈J ki) results

from the load balancing policy with weak priorities.
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3.4. Load balancing policy: Weak priorities

Recall that the system is irreducible and regular. Therefore, if Z has a stationary and
limiting distribution, this is uniquely defined.

Definition 3.4.3. For the queueing-inventory system Z on state space E, whose limiting
distribution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞

P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ :=
(
ξ (n) : n ∈ NJ0

)
, ξ (n) := lim

t→∞
P ((X1(t), . . . , XJ(t)) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y1(t), . . . , YJ(t),WJ+1(t)) = k) .

Theorem 3.4.4. The queueing-inventory process Z is ergodic if and only if for j ∈ J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

<∞.

If Z is ergodic, then its unique limiting and stationary distribution is

π (n,k) = ξ(n) · θ (k) , (3.4.5)

with

ξ(n) =
∏
j∈J

ξj(nj), ξj(nj) = C−1
j

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (3.4.6)

θ(k) = C−1
θ ·

∏
j∈J

kj−1∏
`=0

hj(`)

·
∑

j∈J kj−1∏
`=0

h(`)

·
∏
j∈J

(
1

λj

)kj·(1

ν

)kJ+1

, k ∈ K,

(3.4.7)
and normalisation constants

Cj =
∑
nj∈N0

nj∏
`=1

λj
µj(`)

,

Cθ =
∑
k∈K

∏
j∈J

kj−1∏
`=0

hj(`)

 ·
∑

j∈J kj−1∏
`=0

h(`)

 ·
∏
j∈J

(
1

λj

)kj · (1

ν

)kJ+1

.

Remark 3.4.5. Looking at expression (3.4.5), we observe that the corresponding modific-
ation of Remark 3.3.5 on page 49 holds here as well.
The structural properties from Section 2.6.1 (ergodicity) and Section 2.6.5 (insensitivity

and robustness) hold word-by-word for this integrated system as well.
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Remark 3.4.6. Since it holds∑
j∈J kj−1∏
`=0

h(`) =

∑
j∈J bj−kJ+1−1∏

`=0

h(`) =

∑
j∈J bj−kJ+1−1∏

`=0

1∑
j∈J bj − `

=
1∑
j∈J bj

· 1∑
j∈J bj − 1

· · · 1

kJ+1 + 1

=
1∑
j∈J bj

· 1∑
j∈J bj − 1

· · · 1

kJ+1 + 1
· kJ+1

kJ+1
· · · 2

2
· 1

1︸ ︷︷ ︸
=1

=
1(∑

j∈J bj

)
!
·
kJ+1−1∏
m=0

(m+ 1), (3.4.8)

it follows

θ(k)
(3.4.7)

= C−1
θ ·

∏
j∈J

kj−1∏
`=0

hj(`)

 ·
∑

j∈J kj−1∏
`=0

h(`)

 ·
∏
j∈J

(
1

λj

)kj · (1

ν

)kJ+1

(3.4.8)
= C−1

θ ·

∏
j∈J

kj−1∏
`=0

hj(`)

λj

 ·
 1(∑

j∈J bj

)
!
·
kJ+1−1∏
m=0

m+ 1

ν


= C̃−1

θ ·

∏
j∈J

kj−1∏
`=0

hj(`)

λj

 ·
kJ+1−1∏

m=0

m+ 1

ν

 (3.4.9)

with normalisation constant

C̃θ :=

∑
j∈J

bj

! · Cθ =
∑
k∈K

∏
j∈J

kj−1∏
`=0

hj(`)

λj

 ·
kJ+1−1∏

m=0

m+ 1

ν

 .

Hence, this explicit formula (3.4.9) for θ shows that in fact there exists a three-term
product structure, and that moreover the equilibrium for the integrated model is stratified.
In the upper stratum, we have two independent vectors for production and inventory-
replenishment, the latter splits into two products, a factor for the subsystem comprising
the inventories and a factor for the replenishment subsystem.
In the lower stratum each of the three factors of the upper stratum is decomposed com-

pletely in “single-component” factors concerning the production servers, the inventories,
and the replenishment servers. It should be noted that the factors for the inventories
and the replenishment servers do not indicate internal independence, but they are of
product form as the celebrated conditionally independent coordinates in the equilibrium
of Gordon-Newell networks (see Theorem A.2.6).
It should be noted that the three-term structure of the upper stratum of the product

form steady state π in Theorem 3.4.4 can not be obtained from the general theory about
“Jackson network in a random environment”.
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4. Inventory systems with perishable
items

One of the key assumptions of inventory models is that the items in the inventory are
always available for satisfying demand at any time. However, in certain types of inven-
tories the items either perish, deteriorate, are subject to ageing, or become obsolete. For
example products like foodstuffs, human blood, chemicals, etc. have a maximum life time.

There are many papers describing mathematical models of inventory systems, but a
relatively small number consider items with a finite life time (cf. [Nah11, p. 1]). Analysis
of inventory systems with perishable items is far more difficult than their counterpart hav-
ing infinite life time. This is primarily because the inventory depletion rate is a function
of the on-hand inventory level (cf. [ARS15, p. 26]). Despite their complexity, perishable
inventory systems are investigated in many papers because of its potential applications in
sectors like food, chemicals, pharmaceuticals, photography and blood bank management
(cf. [ARS15, p. 26], [KSWD11, p. 393], [LC97, p. 1022]).

This chapter is devoted to perishable items and represents an extension of the basic
model, which has been introduced in Chapter 2. The systems under investigation differ
with respect to the distribution of the life time of raw material: Exponential distribution
in Section 4.2.3 and general phase-type distribution in Section 4.2.2.

4.1. Related literature and own contributions

We point only the most relevant literature on continuous review perishable inventory
models for our present investigation.

Literature reviews:
We refer to some articles which present a literature review of models for perishable in-
ventory systems.

A review on the early literature on perishable inventory systems is provided by Nah-
mias [Nah82]. Raafat [Raa91] provides a survey of published literature for continuously
deteriorating inventory models, where the deterioration is a function of the on-hand in-
ventory. Shah and Shah [SS00] make a literature survey on inventory models for deterio-
rating items. Goyal and Giri [GG01] give a comprehensive literature review of models
for inventory control of perishable items since the early 1990s. Bakker and his coau-
thors [BRT12] make an extensive review of more recent literature that has been published
since the review of Goyal and Giri. In the article [JCS16] of Janssen and her coauthors,
the literature reviews on inventory models for perishable goods are depicted graphically
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in [JCS16, Figure 1, p. 87]. They give an up-to-date review of perishable inventory mo-
dels as well as of the joint key topics of publications from January 2012 until December
2015 in the research area of inventory models with perishable items.

Nahmias [Nah10] provides an overview of the basic theory and methods for modelling
perishable inventory problems. His article focuses more on periodic review of a single lo-
cation inventory system and it is a more technical discussion of the techniques employed
in the analysis of perishable items.

Baron [Bar10] discusses inventory management of perishable items, including the dif-
ferences between inventory models that consider items’ perishability and the standard
models that ignore this issue. The most common models for perishability are (1) out-
datedness due to reaching expiry date (e.g. food items or medicine), which is typically
modelled as a deterministic time and (2) sudden perishability due to disaster (e.g. spoil-
age because of extreme weather conditions), which is typically modelled as an exponential
(or its discrete counterpart, geometric) time.

For recent overviews of the literature on perishable inventory systems we refer to
Karaesmen, Scheller-Wolf and Deniz [KSWD11]. They provide an overview of research in
Section 15.3.2 on continuous review single-location inventory models with a finite life time.
Moreover, [Nah11] gives an extensive review of the inventory management of perishable
products. Furthermore, Bijvank and Vis [BV11, Section 7.5, p. 10] and Krishnamoorthy
et al. [KLM11] present a review of inventory models including perishable inventory sys-
tems.

Literature on perishable inventory systems with base stock policy:
Focus of our present investigations is the base stock policy. Thus, we point out the most
relevant sources which deal with this replenishment policy and perishable items.

The paper of Schmidt and Nahmias [SN85] is the first that investigate analytically a
model with positive lead times. They analyse a continuous review base stock policy for
a perishable inventory system with fixed life and lead times under Poisson demand and
lost sales. A generalization of this paper is the work of Perry and Posner [PP98] by
considering a waiting time policy.

Pal [Pal89] and Liu and Cheung [LC97] consider a continuous review base stock policy
for a perishable inventory system with exponentially distributed life and lead times. Sim-
ilar to our approach they use methods and models from queueing theory to evaluate the
performance of base stock policies.
Liu and Cheung consider two replenishment mechanisms: (1) each replenishment order

is processed immediately regardless of the number of existing outstanding orders; (2)
replenishment orders never cross and are processed one at a time according to a FCFS
criteria (i.e. the lead time of an order depends on the number of outstanding orders).
In [LC97] the possibilities of partial backorders, complete backorders and complete lost
sales are all included. For these systems they derive the steady state probabilities by
solving the global balance equations and develop some performance measures to perform
a cost analysis.
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In [Pal89] backorders are allowed. He derives the steady state probabilities by solving
the global balance equations and develop some performance measures to perform a cost
analysis.

Literature on production-to-order models with perishable inventory systems:
In most of the models considered in the literature, there is no production-to-order such
that the time to satisfy customer demand is zero. In the following, we present some
articles which consider continuous review models where the demanded items are issued
to the customer only after some service is performed.

Manuel, Sivakumar, Arivarignan [MSA07] study an (r,Q)-policy for a perishable in-
ventory system attached to a service facility with a finite waiting room and a single server,
two types of customers and they adopt a removal rule. The service time is phase-type
distributed and the life times and lead times are exponentially distributed. They obtain
the joint probability distribution of the number of customers in the system and the in-
ventory level in steady state by a recursive computation. Moreover, they compute various
performance measures and calculate the total expected cost rate.

Manuel, Sivakumar and Arivarignan [MSA08] analyse an (r,Q)-policy for a perishable
inventory system attached to a service facility with a finite waiting room and a single
server with phase-type distribution and exponentially distributed life times, lead times
and retrial times of orbiting customers. They derive the joint probability distribution of
the number of customers in the waiting room, number of customers in the orbit and the
inventory level in steady state by using matrix geometric methods (recursive computa-
tion) and obtain a stability condition. Furthermore, they compute various performance
measures and calculate the total expected cost rate.

Krishnamoorthy and Anbazhagan [KA08] investigate an (r,Q)-policy for a perishable
inventory system attached to a service facility with finite waiting room. They consider
the N -policy which means that the service starts only if the customer level reaches N .
They derive the joint stationary distribution of the number of customers in the system
and the inventory levels. Furthermore, they develop various performance measures and
illustrate the results with numerical examples.

Jeganathan [Jeg14] studies a (0, Q)-policy for a perishable inventory system attached
to a service facility with multiple server vacations with a finite waiting room, impatient
customers and zero lead time. The joint stationary distribution of the number of custom-
ers in the system and the inventory levels is obtained algorithmically. He derives various
performance measures and calculates the total expected cost rate.

Amirthakodi, Radhamani and Sivakumar [ARS15] investigate a perishable inventory
system attached to a service facility with a finite waiting room and a single server with
positive service times and lead times and with feedback customers. The inventory is
controlled by a variable ordering policy. They derive the steady state distribution of the
system using matrix recursive methods and obtain a stability condition. Furthermore,
they derive various performance measures, calculate the total expected cost rate and
illustrate the results numerically.
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Yadavalli, Anbazhagan and Jeganathan [YAJ15b] consider an (r,Q)-policy for a perish-
able inventory systems attached to a service facility having two heterogeneous exponential
servers with one unreliable server and repeated attempts. The demands originate from
a finite population. They derive the joint stationary distribution of the number of cus-
tomers in the orbit and the inventory level. They develop various performance measures,
calculate the total expected cost rate and illustrate the results numerically.

Shajin and her coauthors [SBDK16] consider a queueing-inventory model with reser-
vation, cancellation. The items in a batch have a common life time. They investigate
the cases of zero and of positive lead time and derive the stationary distribution of the
queue length and the on-hand inventory in product form. Moreover, they study several
performance measures.

Connection to Literature on impatient customers:
Perishable items of raw material arriving at an inventory can be treated as impatient
customers arriving at a service station (cf. [Kum16, p. 98]), so that the shipment of these
items from the inventory to the production system is a service provided to the waiting
customers in the system.
A review on queueing systems for impatient customers is presented by Wang et al.

[WLJ10]. A recent article about queueing-inventory with impatient customers is [MPB16].

Our main contributions are the following:
In the first part of this chapter, we study single location production-inventory models with
queue-length-dependent arrival and service rates. We develop Markov process models for
a supply chain which consists of a production system with an attached inventory with
perishable raw material, where the item of raw material that is in the production process
cannot perish. The systems under investigation differ with respect to the distribution of
the life time of the raw material.
For the model with exponentially distributed life time we derive a sufficient condition

and a necessary condition of ergodicity and prove that the stationary distribution has
no product form. For the special case with base stock level equal to one, we obtain an
explicit closed solution for the stationary distribution. For the system with base stock
level greater than one we obtain some properties of the stationary system which provide
insights into the equilibrium behaviour of the systems but an explicit expression of the
complete stationary distribution is still an open problem.
For the model with phase-type distributed life time we derive a sufficient and necessary

condition of ergodicity. We prove that the stationary distribution has no product form
and we obtain some properties of the stationary system which provide insights into the
equilibrium behaviour of the systems but an explicit expression of the complete stationary
distribution is still an open problem.

Our work is an extension of the investigations of Pal [Pal89] and Liu and Cheung [LC97]
on perishable inventory systems under base stock policy: In their models there is no
production-to-order such that the time to satisfy customer demand is zero. Therefore,
their model is a special case of our model with exponentially distributed life time when
the service time is set to zero. We need to mention that Pal considers the backordering
case and Liu and Cheung allow order crossing and also investigate the case of partial or

68



4.2. Non-separable systems: Single location

complete backordering.
In the second part of this chapter, we modify the system with exponentially distributed

life times so that we get product form results. More precisely, we take not into consid-
eration whether there are customers in the system. The product form result is even true
for a supply chain with J > 1 locations.
Furthermore, we deal with the question “Can we use the product form results from

Section 4.3.2 to obtain simple product form bounds for the system with unknown non-
product form stationary distribution in Section 4.2.3?”.
Our conjecture that we can find upper and lower product form bounds for the through-

puts is supported by our results for a system with base stock level b = 1. Under additional
conditions for the system’s parameters we can tackle even the case of b ≥ 2.
The articles in the literature about perishable inventory models with production-to-

order are only single location models. Our results extend their settings to a multi-
dimensional system, whereby we consider the base stock policy.
A cost analysis can be performed as for the basic model in Section 2.5 on page 29.

4.2. Non-separable systems: Single location

4.2.1. Description of the general model

The supply chain of interest is depicted in Figure 4.2.1. The location consists of a pro-
duction system with an attached inventory with perishable raw material. The inventory
is replenished by a supplier which manufactures raw material for the location.

Location

Supplier

Single 
server

Single 
server

Waiting room

Lost 
sales

 Replenishment order

Demand arrival 
process

Inventory

Replenishment

Waiting room

Figure 4.2.1.: Supply chain with base stock policy

Facilities in the supply chain. The production system consists of a single server
(machine) with infinite waiting room that serves customers on a make-to-order basis un-
der a FCFS regime. Customers arrive one by one at the production system according to a
Poisson process with queue-length-dependent intensities and require service. To satisfy a
customer’s demand the production system needs exactly one item of raw material, which
is taken from the associated local inventory. When a new customer arrives at the loca-
tion while the previous customer’s order is not finished, this customer will wait. If the
inventory is depleted, the customers who are already waiting in line will wait, but new
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4. Inventory systems with perishable items

arriving customers at this location will decide not to join the queue and are lost (“local
lost sales”). If there are n ≥ 0 customers present and if the inventory is not depleted,
customers arrive with intensity λ(n) > 0 at the production system.

The service requests at the location is exponentially-1 distributed. All service requests
constitute an independent family of random variables which are independent of the arrival
streams. The service at the location is provided with queue-length-dependent intensity.
If there are n > 0 customers present either waiting or in service (if any) and if the in-
ventory is not depleted, the service intensity is µ(n) > 0. If the server is ready to serve
a customer, who is at the head of the line, and the inventory is not depleted, the service
immediately starts. Otherwise, the service starts at the instant of time when the next
replenishment arrives at the local inventory.

For the control of the inventory we use the base stock policy. This means, each item
taken from the inventory results in a direct order for one item of raw material. Hence, if
a served customer departs from the system or a raw material is perished, an order of the
consumed resp. of the perished raw material is placed at the supplier at this time instant.
The base stock level b ≥ 1 is the maximal size of the inventory. Note that there can be
more than one outstanding order.

The items of raw material in the inventory are perishable. In the literature about per-
ishable queueing-inventory systems (e.g. [MSA07, MSA08], [MSA08], [Jeg14], [YAJ15b]),
it is often assumed that an item of raw material, which is in the production process cannot
perish.
The systems under investigation differ with respect to the distribution of the life time

of the raw material in the following way:

• phase-type distribution (Section 4.2.2),

• exponential distribution (Section 4.2.3), which is a special case of the phase-type
distribution, but deserves interest because of simplicity of the results.

The supplier consists of a single server (machine) and a waiting room under FCFS re-
gime. At most b − 1 replenishment orders are waiting at the supplier. Service times at
the supplier are exponentially distributed with parameter ν > 0.

Routing in the supply chain. A customer departs from the system immediately
after the service and the associated consumed raw material is removed from the inven-
tory at this time instant. A finished item of raw material departs immediately from the
supplier and the item is added to the inventory at the location.

We assume that the replenished raw materials are “fresh”. Much of the literature on
perishable items assumes this to avoid to complicate the model (cf. [Bar10, p. 2]).

It is assumed that transmission times for orders are negligible and set to zero and that
transportation times between the supplier and the inventory are negligible.
All inter-arrival times, service times and life times of items constitute an independent

family of random variables.
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4.2. Non-separable systems: Single location

Remark 4.2.1. These models are special cases of queueing systems in a random envir-
onment which we have introduced in Appendix D.1. In Example D.1.2 on page 326 we
show the setting by which the queueing-inventory systems described in this chapter fit
into the definition of the queueing systems in a random environment. An overview of
the corresponding results is presented in Table D.1 on page 348. We provide some dir-
ect proofs here to avoid the general lengthy formalism needed in queueing systems in a
random environment.

4.2.2. Phase-type distributed life time

This section is dedicated to the study of the supply chain with one location (J = 1,
J = {1}) as described in Section 4.2.1, where the life time of each raw material is phase-
type distributed with mean γ−1 and the item of raw material that is in the production
process cannot perish.

Remark 4.2.2. The most common model in the literature to count the inventory is the
following (cf. Section 4.1): One item is removed from the inventory when a served cus-
tomer departs from the system. In the present model with phase-type distributed life
time of perishable items, it is important to know whether a specific item is in production
or on stock, because it is assumed (e.g. [MSA07, MSA08], [MSA08], [Jeg14], [YAJ15b])
that an item which is in production cannot perish (see Section 4.2.1).
It should be noted that in all other sections we do not need this essential distinction.

We consider life time distributions of the following phase-type which are sufficient
versatile to approximate any distribution on R+

0 arbitrary close. The next definition is
based on [Dad01b, Definition 9.2 , pp. 347f.].

Definition 4.2.3. For h ∈ N and β > 0 let

Γβ,h(s) = 1− e−βs
h−1∑
i=0

(βs)i

i!
, s ≥ 0,

denote the cumulative distribution function of the Γ-distribution with parameters β and
h. The parameter h is a positive integer and serves as a phase-parameter for the number
of independent exponential phases, each with mean β−1, the sum of which constitutes a
random variable with distribution Γβ,h. (Γβ,h is called a h-stage Erlang distribution with
scale parameter β.)
We consider the following class of distributions on (R+

0 ,B
+
0 ), which is dense with respect

to the topology of weak convergence of probability measures in the set of all distribu-
tions on (R+

0 ,B
+
0 ) [Sch73, Section I.6]. For β ∈ (0,∞), H ∈ N, and probability b(·) on

{1, . . . ,H} with b(H) > 0 let the cumulative distribution function

B(s) =

H∑
`=1

b(`) · Γβ,`(s), s ≥ 0,

denote a phase-type distribution function. With varying β, H and b(·) we can approxi-
mate any distribution on (R+

0 ,B
+
0 ) sufficiently close.

We refer to [Asm03, Chapter III.4] for a short introduction into this and various other
classes of phase-type distributions.
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4. Inventory systems with perishable items

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by X(t) the number of customers present at the location at time t ≥ 0,
either waiting or in service (queue length). By Y (t) we denote the state of the inventory,
whereby we have to distinguish whether an item of raw material is in production or on
stock, at time t ≥ 0. By W (t) we denote the number of replenishment orders at the
central supplier at time t ≥ 0, either waiting or in service (queue length).
We define the joint queueing-inventory process of this system by

Z = ((X(t), Y (t),W (t)) : t ≥ 0) .

To describe the state of the inventory, we have to distinguish whether an item of raw
material is in production or on stock. For the items of raw material on stock we need the
number of residual phases of each item in the inventory. However, we do not need the
information about the phase of the item in production, since the item of raw material,
which is in the production process cannot perish. This leads to

k =
(

inventory︷ ︸︸ ︷
number of items
in production︷︸︸︷

k ,

number of residual phases
of lifetimes︷ ︸︸ ︷

[h1, . . . , hk]︸ ︷︷ ︸
k=number of items

on stock︸ ︷︷ ︸
k+k=number of items

in inventory

,

supplier︷ ︸︸ ︷
b− (k + k)

)
.

• k ∈ {0, 1} indicates whether there is an item in production or not,

• k denotes the number of items on stock
with k ∈ {0, . . . , b} if k = 0 and k ∈ {0, . . . , b− 1} if k = 1,

• k + k is the total number of items at the location,

• hj ∈ {1, . . . ,H} is the number of residual phases of the item on position j, 0 ≤ j ≤
k, with h1 ≤ h2 ≤ · · · ≤ hk, 0 ≤ k + k ≤ b, i.e. items are sorted in line by their
phases in ascending order. This means if k > 0 items are on stock, that on position
1 resides an item with the smallest number of phases and on position k resides an
item with the highest number of phases.
Note that position numbers are associated only with items on stock (waiting). To
items in production no position number is associated.

This results in

K : =
{(
k, [h1, . . . , hk] , b− (k + k)

)
:

k ∈ {0, 1}, h` ∈ {1, . . . ,H}, 1 ≤ ` ≤ k, h1 ≤ h2 ≤ · · · ≤ hk, 0 ≤ k + k ≤ b
}

=
{

(0, [h1, . . . , hk] , b− k) :

h` ∈ {1, . . . ,H}, 1 ≤ ` ≤ k, h1 ≤ h2 ≤ · · · ≤ hk, 0 ≤ k ≤ b
}

∪
{

(1, [h1, . . . , hk] , b− (1 + k)) :

h` ∈ {1, . . . ,H}, 1 ≤ ` ≤ k, h1 ≤ h2 ≤ · · · ≤ hk, 0 ≤ k ≤ b− 1
}
.
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4.2. Non-separable systems: Single location

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process. The state space of Z is

E = {(n,k) : n ∈ N0, k ∈ K} ,

where n is the number of customers and k describes the state of the inventory and the
central supplier.
Note the redundancy in the state space: W (t) = b − Y (t). We prefer to carry all

information explicitly with because the dynamics of the system are easier visible.

For example,
if ` > 1 items of raw material are in the inventory and there is at least one customer,
then

(n,k) =
(
n,

inventory︷ ︸︸ ︷
number of items
in production︷︸︸︷

1 ,

number of residual phases
of life times︷ ︸︸ ︷

[h1, . . . , h`−1]︸ ︷︷ ︸
`−1=number of items

on stock︸ ︷︷ ︸
`=number of items

in inventory

,

supplier︷︸︸︷
b− `

)
,

if ` > 1 items of raw material are in the inventory and there is no customer,
then

(n,k) =
(

0,

inventory︷ ︸︸ ︷
number of items
in production︷︸︸︷

0 ,

number of residual phases
of life times︷ ︸︸ ︷

[h1, . . . , h`]︸ ︷︷ ︸
`=number of items

on stock︸ ︷︷ ︸
`=number of items

in inventory

,

supplier︷︸︸︷
b− `

)
,

if ` = 1 items of raw material are in the inventory and there is at least one customer,
then

(n,k) =
(
n,

inventory︷ ︸︸ ︷
number of items
in production︷︸︸︷

1 ,

number of residual phases
of life times︷︸︸︷

[0]︸ ︷︷ ︸
1=number of items

in inventory

,

supplier︷ ︸︸ ︷
b− 1

)
,

if ` = 1 items of raw material are in the inventory and there is no customer,
then

(n,k) =
(

0,

inventory︷ ︸︸ ︷
number of items
in production︷︸︸︷

0 ,

number of residual phases
of life times︷ ︸︸ ︷

[h1]︸︷︷︸
1=number of items

on stock︸ ︷︷ ︸
1=number of items

in inventory

,

supplier︷ ︸︸ ︷
b− 1

)
.
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4.2. Non-separable systems: Single location

4.2.2.1. Ergodicity

The queueing-inventory process Z has an infinitesimal generator Q = (q(z; z) : z, z̃ ∈ E)
with the following transition rates for (n,k) ∈ E, where a typical state is

(n,k) =
(
n,

inventory︷ ︸︸ ︷
number of items
in production︷︸︸︷

k ,

number of residual phases
of life times︷ ︸︸ ︷

[h1, . . . , hk]︸ ︷︷ ︸
k=number of items

on stock︸ ︷︷ ︸
k+k=number of items

in inventory

,

supplier︷ ︸︸ ︷
b− (k + k)

)

and we will impose necessary restrictions if needed:1

• Arrival of a customer,
which happens only if there is at least one item at the location (k + k > 0), either
on stock or in production, because of the lost sales rule:

q ((n,k); (n+1,k)) = λ(n) · 1{k+k>0}, n ≥ 0.

• Service completion of a customer,
which happens only if there is at least one customer (n > 0) and an item in pro-
duction (k = 1), i.e. a customer departs from the location and takes an item.
Let T0↘k be the state after the following event:
The item, which is in production, is removed from the location and a replenishment
order is sent to the central supplier, where b − (k + k) orders have already been
present.
If n− 1 > 0, the item on position 1 is taken in production and the items previously
on positions 2, . . . , k move to positions 1, . . . , k − 1
and if n− 1 = 0, there are no changes of the positions, because there are no items
on stock:

q

((
n,k

)
;
(
n−1, T0↘k

))
= µ(n) · 1{n>0} · 1{k=1}.

1Position numbers are associated only with items on stock (waiting). To items in production no position
number is associated.
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• phase completion of a perishable item on position `, ` ∈ {1, . . . , k},
which happens only if there is at least one item on stock (k > 0), i.e. either

- if h` = 1, i.e. there is a perishable item on position `, which is in its last phase.
Let T`↘k be the state after the following event (see Figure 4.2.2(a)):
This perishable item on position ` is removed from the location and an order of
one unit is sent to the central supplier, where b− (k + k) orders have already been
present, and the perishable items previously on positions `+ 1, `+ 2, . . . , k move to
positions `, `+ 1, . . . k − 1:

q

((
n,k

)
;
(
n, T`↘k

))
= β · 1{h`=1} · 1{k>0}, n ≥ 0.

Note, that if k = 1, the list of positions, where other items sit, is empty. Con-
sequently, there are no further changes in the positions. More precisely, for k = 1
holds

q

((
n,k

)
;
(
n, T`↘k

))
= q

((
n, k, [1], b− (k + 1)

)
;
(
n, k, [0], b− (k + 1)+1

))
.

- or if h` > 1, i.e. there is a perishable item on position `, which is not in its last
phase, and either

? if k > 0 and h` − 1 < h1,
let T`→1k be the state after this event (see Figure 4.2.2(b)):
The phase of this perishable item on position ` is shifted one step down and
the item is moved to position 1 and the items on positions 1, . . . , ` − 1 move
to positions 2, . . . , `:

q

((
n,k

)
;
(
n, T`→1k

))
= β · 1{0<h`−1<h1} · 1{k>0}, n ≥ 0.

Note, that if ` = 1, i.e. the phase of the item on position 1 is shifted one step
down and there are no changes in the positions.
Furthermore, if k = 1, the list of positions, where other items sit, is empty.
Consequently, there are no further changes in the positions.

? if k > 1 and hm−1 ≤ h` − 1 < hm, m ∈ {2, . . . , `},
let T`→mk be the state after this event (see Figure 4.2.2(c)):
The phase of this perishable item on position ` is shifted one step down and
the item is moved to position m, m ∈ {2, . . . , `}, and the items on positions
m, . . . , `− 1 move to positions m+ 1, . . . , `:

q

((
n,k

)
;
(
n, T`→mk

))
= β ·1{0<hm−1≤h`−1<hm} ·1{k>1} ·1{m∈{2,...,`}}, n ≥ 0.

Note, that if m = `, the list of positions where other items sit is empty.
Consequently, there are no further changes in the positions.
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• Service completion of an order at the central supplier,
which happens only if at the central supplier is at least one order (b− (k+ k) > 0),
i.e. an item is removed from the central supplier and is sent to the location and if
appropriate, it becomes h̃ phases with probability b(h̃), and either

- if k + k = 0, i.e. there are no items in the inventory, and either

? if n = 0, i.e. there are no customers,
then the item is placed on position 1 of the inventory and obtains h̃ phases
with probability b(h̃):

q

((
0, 0, [0], b

)
;
(

0, 0, [h̃], b−1
))

= ν · b(h̃),

? or if n > 0, i.e. there is at least one customer,
then the item is taken immediately in production:

q

((
n, 0, [0], b

)
;
(
n, 1, [0], b−1

))
= ν · 1{n>0}.

- or if k + k > 0, i.e. there is at least one item in the inventory,
then the item obtains h̃ phases with probability b(h̃) and either

? if k = 0 and k = 1, the item moves into position 1 (note that there must be at
least one customer (n > 0) because there is an item in production (k = 1)):

q

((
n, 1, [0], b

)
;
(
n, 1, [h̃], b− 1

))
= ν · b(h̃) · 1 {0<k+k<b}︸ ︷︷ ︸

={b>1}

, n > 0,

? or if k > 0, k ∈ {0, 1} and h̃ < h1, the item moves into position 1. The items
previously on positions 1, 2, . . . , k move to positions 2, 3, . . . , k + 1.
Let T̃

h̃→1
k be the state after this event (see Figure 4.2.3(a)):

q

((
n,k

)
;
(
n, T̃

h̃→1
k
))

= ν · b(h̃) · 1{h̃<h1} · 1{0<k+k<b} · 1{k>0}, n ≥ 0,

? or if k > 0, k ∈ {0, 1} and hk ≤ h̃, the item moves into position k + 1.
Let T̃

h̃→k+1
k be the state after this event (see Figure 4.2.3(b)):

q

((
n,k

)
;
(
n, T̃

h̃→k+1
k
))

= ν · b(h̃) · 1{hk≤h̃} · 1{0<k+k<b} · 1{k>0}, n ≥ 0,

? or if k > 1, k ∈ {0, 1} and h`−1 ≤ h̃ < h`, ` ∈ {2, . . . k}, the item moves into
position `. The items previously on positions `, `+ 1, . . . , k move to positions
` + 1, ` + 2, . . . , k + 1. Let T̃

h̃→`k be the state after this event (see Figure
4.2.3(c)):

q

((
n,k

)
;
(
n, T̃

h̃→`k
))

= ν · b(h̃) · 1{h`−1≤h̃<h`} · 1{0<k+k<b} · 1{k>1} · 1{`∈{2,...,k}}, n ≥ 0,
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items 
on stock
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(b) 0 < k + k < b, k > 0, hk ≤ h̃

items 
on stock

item in
production

(c) 0 < k + k < b, k > 1, h`−1 ≤ h̃ < h`,
` ∈ {2, . . . , k}

Figure 4.2.3.: Changes in k after service completion of an order at the central supplier



4. Inventory systems with perishable items

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

From the above transition rates follows similarly as in Appendix E.1 that Z is irreducible
on the state space E.
We will show a necessary condition for ergodicity in Proposition 4.2.5. Furthermore, a

sufficient condition for positive recurrence is shown in Proposition 4.2.6.

The proof for the necessary condition is a special case of Proposition D.1.4 (and Pro-
position D.1.3). We provide a direct proof here to avoid the general lengthy formalism
needed in queueing-environment systems.

The proof for the necessary condition depends on the following result.

Proposition 4.2.4. If the queueing-inventory process Z is recurrent, then any solution
x = (x (z) : z ∈ E) of the global balance equations x·Q = 0 fulfils for all n ∈ N0∑

k∈K\{(0,[0],b)}

x(n,k) =
∑

k∈K\{(0,[0],b)}

x(n+ 1,k) · µ(n+ 1)

λ(n)
(4.2.1)

and ∑
k∈K\{(0,[0],b)}

x(n,k) =
∑

k∈K\{(0,[0],b)}

x(0,k) ·
n∏

m=1

λ(m− 1)

µ(m)
. (4.2.2)

Proof. From irreducibility and recurrence of Z follows that there exists one, and up to
a multiplicative factor only one, stationary measure x = (x (z) : z ∈ E). This stationary
measure x has the property x(z) > 0 for all z ∈ E and can be found as a solution of the
global balance equations x·Q = 0 (cf. [Asm03, Theorem 4.2, p. 51]).

Equation (4.2.1) can be proven by the cut-criterion for recurrent processes, which is
presented in Theorem A.1.1(b). For n ∈ N0, equation (4.2.1) can be proven by a cut,
which divides E into complementary sets according to the queue length of customers that
is less than or equal to n or greater than n, i.e. into the sets{

(m,k) : m ∈ {0, 1, . . . , n}, k ∈ K
}
,{

(m̃, k̃) : m̃ ∈ N0 \ {0, 1, . . . .n}, k̃ ∈ K
}
, n ∈ N0.

Thus, it follows for n ∈ N0

n∑
m=0

∑
k∈K

∞∑
m̃=n+1

∑
k̃∈K

x(m,k) · q((m,k); (m̃, k̃))

=
∞∑

m̃=n+1

∑
k̃∈K

n∑
m=0

∑
k∈K

x(m̃, k̃) · q((m̃, k̃); (m, k))

⇔
∑

k∈K\{(0,[0],b)}

x(n,k) · λ(n) =
∑

k∈K\{(0,[0],b)}

x(n+ 1,k) · µ(n+ 1).
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4.2. Non-separable systems: Single location

Consequently, for n ∈ N0 follows equation (4.2.2)

∑
k∈K\{(0,[0],b)}

x(n,k) =
∑

k∈K\{(0,[0],b)}

x(0,k) ·
n∏

m=1

λ(m− 1)

µ(m)
.

Proposition 4.2.5. If queueing-inventory process Z is ergodic,
it holds

∑∞
n=0

∏n
m=1

λ(m−1)
µ(m) <∞.

Proof. If the queueing-inventory process Z is ergodic, the normalisation constant, as the
sum of the solution x = (x (z) : z ∈ E) of the global balance equation x·Q = 0 for Z, is
finite,

∞∑
n=0

∑
k∈K

x(n, k, b− k) <∞.

It holds
∞∑
n=0

∑
k∈K

x(n,k)

=

∞∑
n=0

∑
k∈K\{(0,[0],b)}

x(n,k) +

∞∑
n=0

x(n, 0, [0], b)

(4.2.2)
=

∞∑
n=0

∑
k∈K\{(0,[0],b)}

x(0,k)

︸ ︷︷ ︸
=:W̃

·
n∏

m=1

λ(m− 1)

µ(m)
+

∞∑
n=0

x(n, 0, [0], b)

= W̃ ·
∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)
+

∞∑
n=0

x(n, 0, [0], b).

Because of ergodicity, W̃ ∈ (0,∞) and
∑∞

n=0 x(n, 0, [0], b) <∞.
Hence,

∑∞
n=0

∑
k∈K x(n,k) is finite only if

∑∞
n=0

∏n
m=1

λ(m−1)
µ(m) <∞.

Proposition 4.2.6.

(a) The queueing-inventory process Z is ergodic if for an M/M/1/∞ queue with queue-
length dependent arrival intensities λ(n) > 0 and service intensities µ(n) > 0 there
exists a Lyapunov function L̃ : N0 → R+

0 with finite exception set F̃ and constant
ε̃ > 0, which satisfies the Foster-Lyapunov stability criterion, and supn∈N0

µ(n) <
∞.

(b) The queueing-inventory process Z is ergodic if there exists N ∈ N0 such that
infn≥N (µ(n)− λ(n)) > 0 and supn∈N0

µ(n) <∞.

Remark 4.2.7. The condition supn∈N0
µ(n) < ∞ can be weakened by infn∈N0 ĉn > 0,

where ĉn is defined in Lemma D.1.7.
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4. Inventory systems with perishable items

Proof of Proposition 4.2.6. As mentioned before, the queueing-inventory model is a spe-
cial case of the queueing system in a random environment which we have introduced in
Appendix D.1. Hence, sufficiency follows in (a) from Proposition D.1.8 and in (b) from
Corollary D.1.9 since infn∈N0 ĉn > 0 holds by Example D.1.11(b).

Remark 4.2.8. The queueing-inventory system can be modelled as a level-dependent
quasi-birth-and-death process (LDQBD process). Under the assumptions from the above
proposition, the queueing-inventory system is ergodic and hence, we can use the algorithm
of Bright and Taylor [BT95] to calculate the equilibrium distributions in LDQBD pro-
cesses.

Special case: Queue-length-independent arrival and service rates
In this paragraph, we analyse the queueing-inventory system with state-independent ser-
vice rates µ and arrival rates λ in view of a sufficient and necessary condition for ergodicity.

Theorem 4.2.9. The queueing-inventory process Z is ergodic if and only if λ < µ.

Proof. As mentioned before, the queueing-inventory model is a special case of the queueing
system in a random environment which we have introduced in Appendix D.1. Hence, the
sufficient and necessary condition follows from Proposition D.1.12 and Proposition D.1.13
since infn∈N0 ĉn > 0 holds by Example D.1.11(b). Additionally, we provide a direct proof
here to avoid the general lengthy formalism needed in queueing-environment systems.

Necessity follows from Proposition 4.2.5 with
∑∞

n=0

∏n
m=1

λ(m−1)
µ(m) =

∑∞
n=0

(
λ
µ

)n
<∞.

We will show sufficiency by using the Foster-Lyapunov stability criterion, which is
presented in Theorem A.1.2 on page 260. We will show that L : E → R+

0 with

L(n,k) = n+ 1{k+k=0} ·
µ− λ
2 · µ

and the finite exception set F = {(n,k) : n = 0} ( E is a Lyapunov function.
We define

ε = min

(
ν

µ
· µ− λ

2
,
µ− λ

2

)
.

I First, we will check (Q · L) (n,k) <∞ for (n,k) ∈ F = {(n,k) : n = 0}.

Since 0 < λ < µ <∞, 0 < ν <∞ and 0 < β <∞,
for (0, 0, [0], b) holds

(Q · L) (0, 0, [0], b) =

H∑
h̃=1

ν · b(h̃) ·
(
L(0, 0, [h̃], b− 1)− L(0, 0, [0], b)

)
<∞,
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4.2. Non-separable systems: Single location

if b ≥ 2, for (0, 0, [h1], b− 1) holds

(Q · L) (0, 0, [h1], b− 1)

= λ · (L (1, 0, [h1], b− 1)− L (0, 0, [h1], b− 1)) · 1{k+k>0}︸ ︷︷ ︸
=1

+

h1−1∑
h̃=1

ν · b(h̃) ·
(
L
(

0, 0, [h̃, h1], b− 2
)
− L (0, 0, [h1], b− 1)

)
· 1{h̃<h1}︸ ︷︷ ︸

=1

· 1{0<k+k<b}︸ ︷︷ ︸
=1

· 1{k>0}︸ ︷︷ ︸
=1

+
H∑

h̃=h1

ν · b(h̃) ·
(
L
(

0, 0, [h1, h̃], b− 2
)
− L (0, 0, [h1], b− 1)

)
· 1{h1≤h̃}︸ ︷︷ ︸

=1

· 1{0<k+k<b}︸ ︷︷ ︸
=1

· 1{k>0}︸ ︷︷ ︸
=1

+β · (L (0, 0, [h1 − 1], b− 1)− L (0, 0, [h1], b− 1)) · 1{h1>1} · 1{k>0}︸ ︷︷ ︸
=1

+β · (L (0, 0, [0], b)− L (0, 0, [h1], b− 1)) · 1{h1=1} · 1{k>0}︸ ︷︷ ︸
=1

<∞,

if b > 2, for (0,k) =
(

0, 0, [h1, . . . , hk] , b− k
)
with k = 2, . . . , b− 1 holds

(Q · L) (0,k)

= λ · (L(1,k)− L(0,k)) · 1{k+k>0}︸ ︷︷ ︸
=1

+

h1−1∑
h̃=1

ν · b(h̃) ·
(
L(0, T̃

h̃→1
k)− L(0,k)

)
· 1{h̃<h1}︸ ︷︷ ︸

=1

· 1{0<k+k<b}︸ ︷︷ ︸
=1

· 1{k>0}︸ ︷︷ ︸
=1

+

h`−1∑
h̃=h`−1

ν · b(h̃) ·
(
L(0, T̃

h̃→`k)− L(0,k)
)
· 1{h`−1≤h̃<h`}︸ ︷︷ ︸

=1

· 1{0<k+k<b}︸ ︷︷ ︸
=1

· 1{k>1}︸ ︷︷ ︸
=1

·1{`∈{2,...,k}}

+

H∑
h̃=hk

ν · b(h̃) ·
(
L(0, T̃

h̃→k+1
k)− L(0,k)

)
· 1{hk≤h̃}︸ ︷︷ ︸

=1

· 1{0<k+k<b}︸ ︷︷ ︸
=1

· 1{k>0}︸ ︷︷ ︸
=1

+
k∑
`=1

β · (L (0, T`↘k)− L (0,k)) · 1{h`=1} · 1{k>0}︸ ︷︷ ︸
=1

+

k∑
`=1

β · (L (0, T`→1k)− L (0,k)) · 1{0<h`−1<h1} · 1{k>0}︸ ︷︷ ︸
=1

+
k∑
`=1

β · (L (0, T`→mk)− L (0,k)) · 1{0<hm−1≤h`−1<hm} · 1{k>1}︸ ︷︷ ︸
=1

·1{m∈{2,...,`}} <∞,
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for (0,k) =
(

0, 0, [h1, . . . , hb] , 0
)
with k = b ≥ 1 holds

(Q · L) (0,k)

= λ · ((1,k)− L (0,k)) · 1{k+k>0}︸ ︷︷ ︸
=1

+
b∑
`=1

β · (L (0, T`↘k)− L (0,k)) · 1{h`=1} · 1{k>0}︸ ︷︷ ︸
=1

+

b∑
`=1

β · (L (0, T`→1k)− L (0,k)) · 1{0<h`−1<h1} · 1{k>0}︸ ︷︷ ︸
=1

+
b∑
`=1

β · (L (0, T`→mk)− L (0,k)) · 1{0<hm−1≤h`−1<hm} · 1{b>1}︸ ︷︷ ︸
=1{k>1}

·1{m∈{2,...,`}} <∞.

I Second, we will check (Q · L) (n,k) ≤ −ε for (n,k) /∈ F with

−ε = max

(
ν

µ
· λ− µ

2
,
λ− µ

2

)
=

{
λ−µ

2 < 0 if µ ≤ ν,
ν
µ ·
(
λ−µ

2

)
< 0 if µ > ν.

Note that n > 0 and hence it holds k = 1 if k + k ≥ 1.
For k + k = 0 and n > 0 holds

(Q · L) (n, 0, [0], b)

= ν · (L (n, 1, [0], b− 1)− L (n, 0, [0], b)) · 1{n>0}︸ ︷︷ ︸
=1

= ν ·
(
n− n− µ− λ

2 · µ

)
=
ν

µ
· λ− µ

2
≤ −ε.

If b ≥ 2, for (n, 1, [0], b− 1) with k + k = 1 and n > 0 holds

(Q · L) (n, 1, [0], b− 1)

= λ · (L (n+ 1, 1, [0], b− 1)− L (n, 1, [0], b− 1)) · 1{k+k>0}︸ ︷︷ ︸
=1

+µ · ((n− 1, 0, [0], b)− L (n, 1, [0], b− 1)) · 1{n>0}︸ ︷︷ ︸
=1

· 1{k=1}︸ ︷︷ ︸
=1

+
H∑
h̃=1

ν · b(h̃) ·
(
L
(
n, 1, [h̃], b− 2

)
− L (n, 1, [0], b− 1)

)
· 1{k=0}︸ ︷︷ ︸

=1

· 1{k=1}︸ ︷︷ ︸
=1

·1 {0<k+k<b}︸ ︷︷ ︸
={b>1}

= λ · (n+ 1− n) + µ ·
((

n− 1 +
µ− λ
2 · µ

)
− n

)
+

H∑
h̃=1

ν · b(h̃) · (n− n)

= λ+ µ ·
(
−1 +

µ− λ
2 · µ

)
= λ− µ+

µ− λ
2

=
λ− µ

2
≤ −ε.
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If b > 2, for (n,k) =
(
n, k, [h1, . . . , hk] , b− (k + k)

)
with k + k = 2, . . . , b− 1 and n > 0

holds

(Q · L) (n,k)

= λ · (L (n+ 1,k)− L (n,k)) · 1{k+k>0}︸ ︷︷ ︸
=1

+µ · (L (n− 1, T0↘k)− L (n,k)) · 1{n>0}︸ ︷︷ ︸
=1

· 1{k=1}︸ ︷︷ ︸
=1

+

h1−1∑
h̃=1

ν · b(h̃) ·
(
L(n, T

h̃→1
k)− L(n,k)

)
· 1{h̃<h1}︸ ︷︷ ︸

=1

· 1{0<k+k<b}︸ ︷︷ ︸
=1

· 1{k>0}︸ ︷︷ ︸
=1

+

h`−1∑
h̃=h`−1

ν · b(h̃) ·
(
L(n, T

h̃→`k)− L(n,k)
)
· 1{h`−1≤h̃<h`}︸ ︷︷ ︸

=1

· 1{0<k+k<b}︸ ︷︷ ︸
=1

·1{k>1} · 1{`∈{2,...,k}}

+
H∑

h̃=hk

ν · b(h̃) ·
(
L(n, T

h̃→k+1
k)− L(n,k)

)
· 1{hk≤h̃}︸ ︷︷ ︸

=1

· 1{0<k+k<b}︸ ︷︷ ︸
=1

· 1{k>0}︸ ︷︷ ︸
=1

+

k∑
`=1

β · (L (n, T`↘k)− L (n,k)) · 1{h`=1} · 1{k>0}︸ ︷︷ ︸
=1

+
k∑
`=1

β · (L (n, T`→1k)− L (n,k)) · 1{0<h`−1<h1} · 1{k>0}︸ ︷︷ ︸
=1

+

k∑
`=1

β · (L (n, T`→mk)− L (n,k)) · 1{0<hm−1≤h`−1<hm} · 1{k>1} · 1{m∈{2,...,`}}

= λ · (n+ 1− n) + µ · (n− 1− n)

+

h1−1∑
h̃=1

ν · b(h̃) · (n− n) +

h`−1∑
h̃=h`−1

ν · b(h̃) · (n− n) · 1{k>1} +
H∑

h̃=hk

ν · b(h̃) · (n− n)

+
k∑
`=1

β · (n− n) · 1{h`=1}

+
k∑
`=1

β · (n− n) · 1{0<h`−1<h1}

+
k∑
`=1

β · (n− n) · 1{0<hm−1≤h`−1<hm} · 1{k>1} · 1{m∈{2,...,`}}

= λ− µ ≤ λ− µ
2
≤ −ε.
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For (n,k) =
(
n, k, [h1, . . . , hk] , 0

)
with k + k = b ≥ 1 and n > 0 holds

(Because n > 0 and k + k = b ≥ 1, we know that k = 1.
Consequently, b = 1 implies k = 0, and b > 1 implies k > 0, and b > 2 implies k > 1.)

(Q · L) (n,k)

= λ · (L (n+ 1,k)− L (n,k)) · 1{k+k>0}︸ ︷︷ ︸
=1

+µ · (L (n− 1, T0↘k)− L (n,k)) · 1{n>0}︸ ︷︷ ︸
=1

· 1{k=1}︸ ︷︷ ︸
=1

+
k∑
`=1

β · (L (n, T`↘k)− L (n,k)) · 1{h`=1} · 1{b>1}

+
k∑
`=1

β · (L (n, T`→1k)− L (n,k)) · 1{0<h`−1<h1} · 1{b>1}

+
k∑
`=1

β · (L (n, T`→mk)− L (n,k)) · 1{0<hm−1≤h`−1<hm} · 1{m∈{2,...,`}} · 1{b>2}

= λ · (n+ 1− n) + µ ·
((

n− 1 + 1{b=1} ·
µ− λ
2 · µ

)
− n

)
+

k∑
`=1

β · (n− n) · 1{h`=1} · 1{b>1}

+

k∑
`=1

β · (n− n) · 1{0<h`−1<h1} · 1{b>1}

+

k∑
`=1

β · (n− n) · 1{0<hm−1≤h`−1<hm} · 1{m∈{2,...,`}} · 1{b>2}

= (λ− µ) · 1{b>1} +

(
λ− µ

2

)
· 1{b=1} ≤

λ− µ
2
≤ −ε.
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4.2.2.2. Properties of the stationary system

We assume throughout this section that the queueing-inventory process Z is ergodic.
Some results in this section are special cases of Section D.1.2. An overview of the corres-
ponding results is presented in Table D.1 on page 348. We provide direct proofs here to
avoid the general lengthy formalism needed in queueing-environment systems.

Definition 4.2.10. For the queueing-inventory process Z on state space E, whose lim-
iting distribution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞

P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ := (ξ (n) : n ∈ N0) , ξ (n) := lim
t→∞

P (X(t) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y,W ) (t) = k) .

Let (X,Y,W ) be a random variable which is distributed according to the queueing-
inventory process in equilibrium. Therefore, X resp. (Y,W ) are random variables which
are distributed according to the marginal steady state probability for the production
subsystem resp. for the inventory-replenishment subsystem.2

Proposition 4.2.11. The queueing-inventory process Z fulfils for all n ∈ N0

P (X = n, Y 6= (0, [0])) = P (X = n+ 1, Y 6= (0, [0])) · µ(n+ 1)

λ(n)
(4.2.3)

and

P (X = n, Y 6= (0, [0])) = P (X = 0, Y 6= (0, [0])) ·
n∏

m=1

λ(m− 1)

µ(m)
. (4.2.4)

Hence, the probability that the inventory is not empty fulfils

P (Y 6= (0, [0])) = P (X = 0, Y 6= (0, [0])) ·
∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)
.

Proof. The normalisation constant, as the sum of the solution x = (x (z) : z ∈ E) of the
global balance equation x·Q = 0 for Z, has to be finite because the queueing-inventory
process Z is positive recurrent. Then with

x(n,k)∑∞
n=0

∑
k∈K x(n,k)

= π(n,k) = P
(
X = n, Y =

(
k, [h1, . . . , hk]

))
follows in steady state from (4.2.1)∑

k∈K\{(0,[0],b)}

π(n,k)

︸ ︷︷ ︸
=P (X=n,Y 6=(0,[0]))

=
∑

k∈K\{(0,[0],b)}

π(n+ 1,k)

︸ ︷︷ ︸
=P (X=n+1,Y 6=(0,[0]))

·µ(n+ 1)

λ(n)

2It should be noted that π(n,k) = π(n, k, [h1, . . . , hk] , b − k) = P (X = n, Y =
(
k, [h1, . . . , hk]

)
,W =

b− k) = P (X = n, Y =
(
k, [h1, . . . , hk]

)
), because the base stock level b is a fixed parameter.
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and from (4.2.2)

∑
k∈K\{(0,[0],b)}

π(n,k)

︸ ︷︷ ︸
=P (X=n,Y 6=(0,[0]))

=
∑

k∈K\{(0,[0],b)}

π(0,k)

︸ ︷︷ ︸
=P (X=0,Y 6=(0,[0]))

·
n∏

m=1

λ(m− 1)

µ(m)
. (4.2.5)

Summation of P (X = n, Y 6= (0, [0])) over n ∈ N0 yields

P (Y 6= (0, [0])) =

∞∑
n=0

P (X = n, Y 6= (0, [0]))

(4.2.4)
=

∞∑
n=0

P (X = 0, Y 6= (0, [0]))
n∏

m=1

λ(m− 1)

µ(m)

= P (X = 0, Y 6= (0, [0])) ·
∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)
.

Corollary 4.2.12. For the conditional distribution of the queue length process conditioned
on {Y 6= (0, [0])} holds for n ∈ N0

P (X = n|Y 6= (0, [0])) = P (X = 0|Y 6= (0, [0])) ·
n∏

m=1

λ(m− 1)

µ(m)

with

P (X = 0|Y 6= (0, [0])) =

( ∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)

)−1

.

This shows that the conditional queue length process under the condition that the inventory
is not empty has in equilibrium the same structure as a birth-and-death process with queue-
length-dependent intensities.

Proof. P (Y 6= (0, [0]) > 0 because of ergodicity and equation (4.2.4) imply for n ∈ N0

P (X = n|Y 6= (0, [0])) =
P (X = n, Y 6= (0, [0]))

P (Y 6= (0, [0]))

(4.2.4)
=

P (X = 0, Y 6= (0, [0]))

P (Y 6= (0, [0]))
·

n∏
m=1

λ(m− 1)

µ(m)

= P (X = 0|Y 6= (0, [0])) ·
n∏

m=1

λ(m− 1)

µ(m)
.

Hence,

P (X = 0|Y 6= (0, [0])) =

( ∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)

)−1

.
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Remark 4.2.13. The limiting and stationary distribution of Z is in general not of product
form (4.2.6). From Corollary 4.2.12 follows that if the stationary distribution has a
product form

π (n,k) = ξ(n) · θ (k) , n ∈ N0, k ∈ K, (4.2.6)

then

ξ(n) = C−1 ·
n∏

m=1

λ(m− 1)

µ(m)
, n ∈ N0,

with normalisation constant

C =
∞∑
ñ=0

ñ∏
m=1

λ(m− 1)

µ(m)
.

By substitution of this stationary distribution into the global balance equations we see
that the limiting and stationary distribution of Z in general cannot be of product form.
In Proposition 4.2.29 we show this by contradiction for the production-inventory system
with exponentially distributed life times which is a special case of the system with phase-
type distributed life times.

Special case: Queue-length-independent arrival and service rates
In this paragraph, we analyse the queueing-inventory system with state-independent ser-
vice rates µ and arrival rates λ. Recall that the queueing-inventory process Z is ergodic.

The following proposition is a special case of Proposition 4.2.11.

Proposition 4.2.14. If the queueing-inventory process Z is positive recurrent, in steady
state it fulfils for all n ∈ N0

P (X = n, Y 6= (0, [0])) = P (X = n+ 1, Y 6= (0, [0])) · µ
λ

(4.2.7)

and
P (X = n, Y 6= (0, [0])) = P (X = 0, Y 6= (0, [0])) ·

(
λ

µ

)n
. (4.2.8)

The following proposition is a special case of Corollary 4.2.12.

Corollary 4.2.15. For the conditional distribution of the queue length process conditioned
on {Y 6= (0, [0])} holds for n ∈ N0

P (X = n|Y 6= (0, [0])) = P (X = 0|Y 6= (0, [0])) ·
(
λ

µ

)n
with

P (X = 0|Y 6= (0, [0])) =

(
1− λ

µ

)
.

This shows that the conditional queue length process under the condition that the inventory
is not empty has in equilibrium the same structure as a birth-and-death process with birth-
rates λ and death-rates µ.
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Proposition 4.2.16. For the queueing-inventory process Z holds the following equilib-
rium of probability flows

P (Y 6= (0, [0])) · λ︸ ︷︷ ︸
effective arrival rate

= P (X > 0, Y 6= (0, [0])) · µ︸ ︷︷ ︸
effective departure rate

.

Hence, the probability that the inventory is not empty fulfils

P (Y 6= (0, [0])) = P (X > 0, Y 6= (0, [0])) · µ
λ

and
P (Y 6= (0, [0])) = P (X = 0, Y 6= (0, [0])) · µ

µ− λ
.

Remark 4.2.17. The effective departure rate is usually called throughput.
The loss rate is given by λ · P (Y = (0, [0])).

Proof. Summation of P (X = n, Y 6= (0, [0])) over n ∈ N0 yields

P (Y 6= (0, [0])) =
∞∑
n=0

P (X = n, Y 6= (0, [0]))
(4.2.7)

=
∞∑
n=0

P (X = n+ 1, Y 6= (0, [0])) · µ
λ

= P (X > 0, Y 6= (0, [0])) · µ
λ
.

and

P (Y 6= (0, [0])) =

∞∑
n=0

P (X = n, Y 6= (0, [0]))
(4.2.8)

=

∞∑
n=0

P (X = 0, Y 6= (0, [0])) ·
(
λ

µ

)n
= P (X = 0, Y 6= (0, [0]))

∞∑
n=0

(
λ

µ

)n
= P (X = 0, Y 6= (0, [0])) · µ

µ− λ
.

Remark 4.2.18. The limiting and stationary distribution of Z is in general not of product
form. This can be proven similarly to the proof of Proposition 4.2.35 for the production-
inventory system with queue-length independent arrival and service rates. From Corollary
4.2.15 follows that if the stationary distribution has a product form

π (n,k) = ξ(n) · θ (k) , n ∈ N0, k ∈ K,

then
ξ(n) = C−1 ·

(
λ

µ

)n
, n ∈ N0,

with normalisation constant C−1 =
(

1− λ
µ

)
.

By substitution of this stationary distribution into the global balance equations we see
that the limiting and stationary distribution of Z in general cannot be of product form.
In Proposition 4.2.29 we have shown this by contradiction for the production-inventory
system with exponentially distributed life times which is a special case of the system with
phase-type distributed life times.
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4.2.3. Exponentially distributed life time

As mentioned before by varying the parameters of the phase-type distribution any dis-
tribution on (R+

0 ,B
+
0 ) can be approximated sufficiently close. A phase-type distribution

with one phase is an exponential distribution. In this section, we present the results for
the supply chain with a single location (J = 1, J = {1}) as described in Section 4.2.1,
where the life time of each raw material in the inventory is exponentially distributed with
rate γ > 0. We call γ the ageing rate. The item of raw material that is in the production
process cannot perish. Consequently, we will take into consideration whether there are
customers in the system:

- If there is at least one customer at the location and there are k > 0 items of raw
material in the inventory, the production server is working. Therefore, an item of
raw material is in production, which cannot perish, and so the loss rate of inventory
due to perishing is γ · (k − 1).

- If there are no customers at the location and k > 0 items of raw material in the
inventory, then the loss rate of inventory due to perishing is γ · k.

We call the functions k 7→ γ · k resp. k 7→ γ · (k − 1)+ with (k − 1)+ := max(0, k − 1)
ageing regimes. The different ageing regimes determine the state-dependent overall loss
rates of inventory due to perishing.

An overview of the corresponding results is presented in Table D.1 on page 348.

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by X(t) the number of customers present at time t ≥ 0 either waiting
or in service (queue length). By Y (t) we denote the size of the inventory at time t ≥ 0.
By W (t) we denote the number of replenishment orders at the supplier at time t ≥ 0
either waiting or in service (queue length).

We define the joint queueing-inventory process of this system by

Z = ((X(t), Y (t),W (t)) : t ≥ 0) .

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process. The state space of Z is

E = {(n, k, b− k) : n ∈ N0, k ∈ {0, . . . , b}} .

Note the redundancy in the state space: W (t) = b − Y (t). We prefer to carry all infor-
mation explicitly with because the dynamics of the system are easier visible.

4.2.3.1. Ergodicity

The stochastic queueing-inventory process Z is a homogeneous strong Markov process
and has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E) with the following transition
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rates for (n, k, b− k) ∈ E:

q ((n, k, b− k); (n+ 1, k, b− k)) = λ(n) · 1{k>0},

q ((n, k, b− k); (n, k − 1, b− k + 1)) =
(
γ · (k − 1) · 1{n>0} + γ · k · 1{n=0}

)
1{k>0},

q ((n, k, b− k); (n− 1, k − 1, b− k + 1)) = µ(n) · 1{n>0} · 1{k>0},

q ((n, k, b− k); (n, k + 1, b− k − 1)) = ν · 1{k<b}.

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

From the above transition rates follows similarly as in Appendix E.1 that Z is irreducible
on the state space E.

The following proposition is a special case of Proposition 4.2.4.

Proposition 4.2.19. If the queueing-inventory process Z is recurrent, then any solution
x = (x (z) : z ∈ E) of the global balance equations x·Q = 0 fulfils for all n ∈ N0

b∑
k=1

x(n, k, b− k) =

b∑
k=1

x(n+ 1, k, b− k) · µ(n+ 1)

λ(n)

and
b∑

k=1

x(n, k, b− k) =

b∑
k=1

x(0, k, b− k) ·
n∏

m=1

λ(m− 1)

µ(m)
.

The following proposition is a special case of Proposition 4.2.5.

Proposition 4.2.20. If the queueing-inventory process Z is ergodic,
it holds

∑∞
n=0

∏n
m=1

λ(m−1)
µ(m) <∞.

The following proposition is a special case of Proposition 4.2.6.

Proposition 4.2.21.

(a) The queueing-inventory process Z is ergodic if for an M/M/1/∞ queue with queue-
length dependent arrival intensities λ(n) > 0 and service intensities µ(n) > 0 there
exists a Lyapunov function L̃ : N0 → R+

0 with finite exception set F̃ and constant
ε̃ > 0, which satisfies the Foster-Lyapunov stability criterion, and supn∈N0

µ(n) <
∞.

(b) The queueing-inventory process Z is ergodic if there exists N ∈ N0 such that
infn≥N (µ(n)− λ(n)) > 0 and supn∈N0

µ(n) <∞.

Remark 4.2.22. The condition supn∈N0
µ(n) < ∞ can be weakened by infn∈N0 ĉn > 0,

where ĉn is defined in Lemma D.1.7.
Remark 4.2.23. The queueing-inventory system can be modelled as a level-dependent
quasi-birth-and-death process (LDQBD process). Under the assumptions from the above
proposition, the queueing-inventory system is ergodic and hence, we can use the algorithm
of Bright and Taylor [BT95] to calculate the equilibrium distributions in LDQBD pro-
cesses.
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Special case: Queue-length-independent arrival and service rates
In this paragraph, we analyse the queueing-inventory system with state-independent ser-
vice rates µ and arrival rates λ in view of a sufficient and necessary criterion for ergodicity.

The following theorem is a special case of Theorem 4.2.9.

Theorem 4.2.24. The queueing-inventory process Z is ergodic if and only if λ < µ.

4.2.3.2. Properties of the stationary system

In this section, we assume that the queueing-inventory process Z is ergodic.

Definition 4.2.25. For the queueing-inventory process Z in a state space E, whose
limiting distribution exists, we define

π := (π (n, k, b− k) : (n, k, b− k) ∈ E) , π (n, k, b− k) := lim
t→∞

P (Z(t) = (n, k, b− k))

and the appropriate marginal distributions

ξ := (ξ (n) : n ∈ N0) , ξ (n) := lim
t→∞

P (X(t) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y,W ) (t) = (k, b− k)) .

Let (X,Y,W ) be a random variable which is distributed according to the queueing-
inventory process in equilibrium. Therefore, X resp. (Y,W ) are random variables which
are distributed according to the marginal steady state probability for the production sub-
system resp. for the replenishment-inventory subsystem.3

The following proposition is a special case of Proposition 4.2.11.

Proposition 4.2.26. The queueing-inventory process Z fulfils for all n ∈ N0

P (X = n, Y > 0) = P (X = n+ 1, Y > 0) · µ(n+ 1)

λ(n)

and

P (X = n, Y > 0) = P (X = 0, Y > 0)

n∏
m=1

λ(m− 1)

µ(m)
.

Hence, the probability that the inventory is not empty fulfils

P (Y > 0) = P (X = 0, Y > 0) ·
∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)
.

3It should be noted that π(n, k, b− k) = P (X = n, Y = k,W = b− k) = P (X = n, Y = k) because the
base stock level b is a fixed parameter.
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The following corollary is a special case of Corollary 4.2.12.

Corollary 4.2.27. For the conditional distribution of the queue length process conditioned
on {Y > 0} holds for n ∈ N0

P (X = n|Y > 0) = P (X = 0|Y > 0) ·
n∏

m=1

λ(m− 1)

µ(m)

with

P (X = 0|Y > 0) =

( ∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)

)−1

.

This shows that the conditional queue length process under the condition that the inventory
is not empty has in equilibrium the same structure as a birth-and-death process with queue-
length-dependent intensities.

Proposition 4.2.28. For the inventory process holds for ` = 1, . . . , b

P (Y = `− 1) · ν = P (X = 0, Y = `) · γ · `+ P (X > 0, Y = `) · γ · (`− 1)

+
∞∑
n=1

P (X = n, Y = `) · µ(n). (4.2.9)

Hence, the probability that a replenishment order is outstanding fulfils

P (Y < b) =
1

ν
·

[
γ · E (Y )− P (X > 0, Y > 0) · γ +

b∑
`=1

∞∑
n=1

P (X = n, Y = `) · µ(n)

]
.

Proof. The equation can be proven by the cut-criterion for positive recurrent processes,
which is presented in Theorem A.1.1(a). For ` ∈ {1, . . . , b}, the equation can be proven
by a cut, which divides E into complementary sets according to the size of the inventory
that is less than or equal to `− 1 or greater than `− 1, i.e. into the sets{

(n, k, b− k) : n ∈ N0, k ∈ {0, . . . , `− 1}
}
,{

(ñ, k̃, b− k̃) : ñ ∈ N0, k̃ ∈ {`, . . . , b}
}
, ` ∈ {1, . . . , b} .

Then, it follows for ` ∈ {1, . . . , b}

∞∑
n=0

`−1∑
k=0

∞∑
ñ=0

b∑
k̃=`

π(n, k, b− k) · q((n, k, b− k); (ñ, k̃, b− k̃))

=

∞∑
ñ=0

b∑
k̃=`

∞∑
n=0

`−1∑
k=0

π(ñ, k̃, b− k̃) · q((ñ, k̃, b− k̃); (n, k, b− k))

⇔
∞∑
n=0

π(n, `− 1, b− `+ 1) · ν

= π(0, `, b− `) · γ · `+

∞∑
n=1

π(n, `, b− `) · γ · (`− 1) +

∞∑
n=1

π(n, `, b− `) · µ(n)
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⇔
∞∑
n=0

π(n, `− 1, b− `+ 1)︸ ︷︷ ︸
=P (Y=`−1)

·ν

= π(0, `, b− `)︸ ︷︷ ︸
=P (X=0,Y=`)

·γ · `+
∞∑
n=1

π(n, `, b− `)︸ ︷︷ ︸
=P (X>0,Y=`)

·γ · (`− 1) +
∞∑
n=1

π(n, `, b− `)︸ ︷︷ ︸
=P (X=n,Y=`)

·µ(n).

Then, it follows from (4.2.9)

P (Y < b) · ν =
b−1∑
`=0

P (Y = `) · ν =
b∑
`=1

P (Y = `− 1) · ν

=
b∑
`=1

P (X = 0, Y = `) · γ · `+
b∑
`=1

P (X > 0, Y = `) · γ · (`− 1)

+
b∑
`=1

∞∑
n=1

P (X = n, Y = `) · µ(n)

=

b∑
`=1

P (X = 0, Y = `) · γ · `+

b∑
`=1

P (X > 0, Y = `) · γ · `−
b∑
`=1

P (X > 0, Y = `) · γ

+
b∑
`=1

∞∑
n=1

P (X = n, Y = `) · µ(n)

=

b∑
`=1

P (Y = `) · γ · `−
b∑
`=1

P (X > 0, Y = `) · γ +

b∑
`=1

∞∑
n=1

P (X = n, Y = `) · µ(n)

= γ ·
b∑
`=0

P (Y = `) · `︸ ︷︷ ︸
=E(Y )

−P (X > 0, Y > 0) · γ +

b∑
`=1

∞∑
n=1

P (X = n, Y = `) · µ(n)

= γ · E (Y )− P (X > 0, Y > 0) · γ +

b∑
`=1

∞∑
n=1

P (X = n, Y = `) · µ(n).
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Proposition 4.2.29. The limiting and stationary distribution of the queueing-inventory
process Z is in general not of product form.

Proof. If the stationary distribution has a product form, it holds for any n ∈ N0

P (X = n, Y > 0) = P (X = n) · P (Y > 0) .

Then, it follows from Corollary 4.2.27

P (X = n) = P (X = 0|Y > 0) ·
n∏

m=1

λ(m− 1)

µ(m)

=

( ∞∑
ñ=0

ñ∏
m=1

λ(m− 1)

µ(m)

)−1

·
n∏

m=1

λ(m− 1)

µ(m)
, n ∈ N0.

Consequently, if the stationary distribution has a product form

π (n, k, b− k) = ξ(n) · θ (k, b− k) , n ∈ N0, k ∈ {0, 1, . . . , b} ,

then

ξ(n) = C−1 ·
n∏

m=1

λ(m− 1)

µ(m)
, n ∈ N0,

with normalisation constant

C =
∞∑
ñ=0

ñ∏
m=1

λ(m− 1)

µ(m)
.

It has to be shown that this distribution does not satisfy the global balance equations

π (n, k, b− k) ·
((
λ(n) + γ · (k − 1) · 1{n>0} + γ · k · 1{n=0}

)
· 1{k>0}

+ µ(n) · 1{n>0} · 1{k>0} + ν · 1{k<b}
)

= π (n− 1, k, b− k) · λ(n− 1) · 1{n>0} · 1{k>0}

+π (n+ 1, k + 1, b− k − 1) · µ(n+ 1) · 1{k<b}
+π (n, k + 1, b− k − 1) ·

(
γ · k · 1{n>0} + γ · (k + 1) · 1{n=0}

)
· 1{k<b}

+π (n, k − 1, b− k + 1) · ν · 1{k>0}.

Substitution of π (n, k, b− k) = ξ(n)·θ (k, b− k) into the global balance equations directly
leads to

ξ(n) · θ (k, b− k) ·
((
λ(n) + γ · (k − 1) · 1{n>0} + γ · k · 1{n=0}

)
· 1{k>0}

+ µ(n) · 1{n>0} · 1{k>0} + ν · 1{k<b}
)

= ξ(n− 1) · θ (k, b− k) · λ(n− 1) · 1{n>0} · 1{k>0}

+ξ(n+ 1) · θ (k + 1, b− k − 1) · µ(n+ 1) · 1{k<b}
+ξ(n) · θ (k + 1, b− k − 1) ·

(
γ · k · 1{n>0} + γ · (k + 1) · 1{n=0}

)
· 1{k<b}

+ξ(n) · θ (k − 1, b− k + 1) · ν · 1{k>0}.
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By substitution of ξ(n) = C−1 ·
∏n
m=1

λ(m−1)
µ(m) we obtain

ξ(n) · θ (k, b− k) ·
((
λ(n) + γ · (k − 1) · 1{n>0} + γ · k · 1{n=0}

)
· 1{k>0}

+ µ(n) · 1{n>0} · 1{k>0} + ν · 1{k<b}
)

= ξ(n) · θ (k, b− k) · µ(n)

λ(n− 1)
· λ(n− 1) · 1{n>0} · 1{k>0}

+ξ(n) · θ (k + 1, b− k − 1) · λ(n)

µ(n+ 1)
· µ(n+ 1) · 1{k<b}

+ξ(n) · θ (k + 1, b− k − 1) ·
(
γ · k · 1{n>0} + γ · (k + 1) · 1{n=0}

)
· 1{k<b}

+ξ(n) · θ (k − 1, b− k + 1) · ν · 1{k>0}.

This is equivalent to

ξ(n) · θ (k, b− k) ·
((
λ(n) + γ · (k − 1) · 1{n>0} + γ · k · 1{n=0}

)
· 1{k>0}

+ µ · 1{n>0} · 1{k>0} + ν · 1{k<b}
)

= ξ(n) · θ (k, b− k) · µ(n) · 1{n>0} · 1{k>0}

+ξ(n) · θ (k + 1, b− k − 1) · λ(n) · 1{k<b}
+ξ(n) · θ (k + 1, b− k − 1) ·

(
γ · k · 1{n>0} + γ · (k + 1) · 1{n=0}

)
· 1{k<b}

+ξ(n) · θ (k − 1, b− k + 1) · ν · 1{k>0}.

Cancelling ξ(n) and the sum with the terms µ(n) · 1{n>0} · 1{k>0} on both sides of the
equation leads to

θ (k, b− k) ·
((
λ(n) + γ · (k − 1) · 1{n>0} + γ · k · 1{n=0}

)
· 1{k>0} + ν · 1{k<b}

)
= θ (k + 1, b− k − 1) · λ(n) · 1{k<b}

+θ (k + 1, b− k − 1) ·
(
γ · k · 1{n>0} + γ · (k + 1) · 1{n=0}

)
· 1{k<b}

+θ (k − 1, b− k + 1) · ν · 1{k>0}. (4.2.10)

However, this stands in contradiction to the product form assumption since in general
θ(k, b− k) cannot be defined independently of n.
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Special case: Queue-length-independent arrival and service rates
In this paragraph, we analyse the queueing-inventory system with state-independent ser-
vice rates µ and arrival rates λ. Recall that the queueing-inventory process Z is ergodic.

The following proposition is a special case of Proposition 4.2.26.

Proposition 4.2.30. The queueing-inventory process Z fulfils for all n ∈ N0

P (X = n, Y > 0) = P (X = n+ 1, Y > 0) · µ
λ

(4.2.11)

and
P (X = n, Y > 0) = P (X = 0, Y > 0) ·

(
λ

µ

)n
. (4.2.12)

The following corollary is a special case of Corollary 4.2.27.

Corollary 4.2.31. For the conditional distribution of the queue length process conditioned
on {Y > 0} holds for n ∈ N0

P (X = n|Y > 0) = P (X = 0|Y > 0) ·
(
λ

µ

)n
with

P (X = 0|Y > 0) =

(
1− λ

µ

)
.

This shows that the conditional queue length process under the condition that the inventory
is not empty has in equilibrium the same structure as a birth-and-death process with birth-
rates λ and death-rates µ.

Proposition 4.2.32. For the queueing-inventory process Z holds the following equilib-
rium of probability flows

P (Y > 0) · λ︸ ︷︷ ︸
effective arrival rate

= P (X > 0, Y > 0) · µ︸ ︷︷ ︸
effective departure rate

.

Hence, the probability that the inventory is not empty fulfils

P (Y > 0) = P (X > 0, Y > 0) · µ
λ

(4.2.13)

and
P (Y > 0) = P (X = 0, Y > 0) · µ

µ− λ
. (4.2.14)

Remark 4.2.33. The effective departure rate is usually called throughput.
The loss rate is given by λ · P (Y = 0).

Proof. Summation of P (X = n, Y > 0) over n ∈ N0 yields

P (Y > 0) =
∞∑
n=0

P (X = n, Y > 0)
(4.2.11)

=
∞∑
n=0

P (X = n+ 1, Y > 0) · µ
λ

= P (X > 0, Y > 0) · µ
λ
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and

P (Y > 0) =

∞∑
n=0

P (X = n, Y > 0)
(4.2.12)

=

∞∑
n=0

P (X = 0, Y > 0) ·
(
λ

µ

)n
= P (X = 0, Y > 0)

∞∑
n=0

(
λ

µ

)n
= P (X = 0, Y > 0) · µ

µ− λ
.

The following proposition is a special case of Proposition 4.2.28.

Proposition 4.2.34. For the inventory process holds for ` = 1, . . . , b

P (Y = `− 1) · ν = P (X = 0, Y = `) · γ · `+ P (X > 0, Y = `) ·
(
µ+ γ · (`− 1)

)
= P (X = 0, Y = `) · (γ − µ) + P (Y = `) ·

(
µ+ γ · (`− 1)

)
.

The probability that a replenishment order is outstanding fulfils

P (Y < b) =
1

ν
· [E (Y ) · γ + P (X > 0, Y > 0) · (µ− γ)] .

Proposition 4.2.35. The limiting and stationary distribution of the queueing-inventory
process Z is in general not of product form.

Proof. The structure of the proof is similar to the proof of Proposition 4.2.29 for the
production-inventory system with queue-length-dependent arrival and service rates. If
the stationary distribution has a product form, it holds for any n ∈ N0

P (X = n, Y > 0) = P (X = n) · P (Y > 0) .

Then, it follows from Corollary 4.2.31 for n ∈ N0

P (X = n) =
P (X = n) · P (Y > 0)

P (Y > 0)
=
P (X = n, Y > 0)

P (Y > 0)
= P (X = n|Y > 0)

= P (X = 0|Y > 0) ·
(
λ

µ

)n
=

(
1− λ

µ

)
·
(
λ

µ

)n
.

Consequently, if the stationary distribution has a product form

π (n, k, b− k) = ξ(n) · θ (k, b− k) , n ∈ N0, k ∈ {0, 1, . . . , b} ,

then
ξ(n) = C−1 ·

(
λ

µ

)n
, n ∈ N0,

with normalisation constant C−1 =
(

1− λ
µ

)
.

By substitution of this stationary distribution into the global balance equations we also
get an equation as in (4.2.10) (with λ instead of λ(n)) which is in contradiction to the
product form assumption.
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Queue-length-independent arrival and service rates and base stock level b = 1
In this paragraph, we analyse the queueing-inventory system with state-independent ser-
vice rates µ and arrival rates λ and base stock level b = 1. Recall that the queueing-
inventory process Z is ergodic.

Proposition 4.2.36. Consider a queueing-inventory system with base stock level b =
1 and queue-length-independent service rates µ and arrival rates λ. The limiting and
stationary distribution of the queueing-inventory process Z = ((X(t), Y (t),W (t)) : t ≥ 0)
is

π(0, 0, 1) = C−1 · λ+ γ

ν
,

π(n, 0, 1) = C−1 ·
(
λ

µ

)n
· λ
ν
, n > 0,

π(n, 1, 0) = C−1 ·
(
λ

µ

)n
, n ≥ 0, (4.2.15)

with normalisation constant

C =
µ

µ− λ
·
(

1 +
λ

ν

)
+
γ

ν
. (4.2.16)

Proof. The stochastic queueing-inventory process Z has an infinitesimal generator
Q = (q(z; z̃) : z, z̃ ∈ E) with the following transition rates for (n, k, b− k) ∈ E:

q ((n, 1, 0); (n+ 1, 1, 0)) = λ,

q ((n, 1, 0); (n, 0, 1)) = γ · 1{n=0},

q ((n, 1, 0); (n− 1, 0, 1) = µ · 1{n>0},

q ((n, 0, 1); (n, 1, 0)) = ν.

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

Therefore, the global balance equations π · Q = 0 of the stochastic queueing-inventory
process Z are for (n, k, b− k) ∈ E given by

π (n, k, b− k) ·
((
λ+ γ · 1{n=0}

)
· 1{k=1} + µ · 1{n>0} · 1{k=1} + ν · 1{k=0}

)
= π (n− 1, k, b− k) · λ · 1{n>0} · 1{k=1}

+π (n+ 1, k + 1, b− 1) · µ · 1{k=0}

+π (n, k + 1, b− k − 1) · γ · 1{n=0} · 1{k=0}

+π (n, k − 1, b− k + 1) · ν · 1{k=1}.

It has to be shown that the distribution satisfies these global balance equations.
For n = 0 and k = 0 holds

π (0, 0, 1) · ν = π (1, 1, 0) · µ+ π (0, 1, 0) · γ

⇔ λ+ γ

ν
· ν =

(
λ

µ

)
· µ+ γ ⇔ λ+ γ = λ+ γ.

100



4.2. Non-separable systems: Single location

For n = 0 and k = 1 holds

π (0, 1, 0) ·
(
λ+ γ

)
= π (0, 0, 1) · ν

⇔ λ+ γ =
λ+ γ

ν
· ν ⇔ λ+ γ = λ+ γ.

For n > 0 and k = 0 holds

π (n, 0, 1) · ν = π (n+ 1, 1, 0) · µ

⇔
(
λ

µ

)n
· λ
ν
· ν =

(
λ

µ

)n+1

· µ ⇔ λn+1

µn
=
λn+1

µn
.

For n > 0 and k = 1 holds

π (n, 1, 0) ·
(
λ+ µ

)
= π (n− 1, 1, 0) · λ+ π (n, 0, 1) · ν

⇔
(
λ

µ

)n
·
(
λ+ µ

)
=

(
λ

µ

)n−1

· λ+

(
λ

µ

)n
· λ
ν
· ν

⇔ λn+1

µn
+

λn

µn−1
=

λn

µn−1
+
λn+1

µn
.

C can be calculated by the normalizing condition. Hence,

C =
λ+ γ

ν
+
λ

ν
·

( ∞∑
n=0

(
λ

µ

)n
− 1

)
+
∞∑
n=0

(
λ

µ

)n
=

λ+ γ

ν
+
λ

ν
·

(
1

1− λ
µ

− 1

)
+

1

1− λ
µ

=
λ+ γ

ν
+
λ

ν
·
(

µ

µ− λ
− 1

)
+

µ

µ− λ
=

λ

ν
+
γ

ν
+
λ

ν
·
(

λ

µ− λ

)
+

µ

µ− λ

=
γ

ν
+
λ

ν
·
(

1 +
λ

µ− λ

)
+

µ

µ− λ
=

γ

ν
+
λ

ν
·
(

µ

µ− λ

)
+

µ

µ− λ

=
γ

ν
+

µ

µ− λ
·
(

1 +
λ

ν

)
.

If we rewrite the limiting and stationary distribution as follows

π(0, 0, 1) = C−1 ·
(
λ

µ

)0

· λ+ γ

ν
,

π(n, 0, 1) = C−1 ·
(
λ

µ

)n
· λ
ν
, n > 0,

π(0, 1, 0) = C−1 ·
(
λ

µ

)0

· 1,

π(n, 1, 0) = C−1 ·
(
λ

µ

)n
· 1, n > 0,

we see that in fact the limiting and stationary distribution is not of product form with
ξ(n) = C−1 ·

(
λ
µ

)n
, n ∈ N0, since θ(k, b− k) cannot be defined independently of n as we

argued in Proposition 4.2.35.
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Proposition 4.2.37. The throughput TH of the queueing-inventory system with base
stock level b = 1 and queue-length-independent service rates µ and arrival rates λ is

TH =
λν

ν + λ+ γ − λγ
µ

.

Proof. The throughput can be calculated as follows

TH = µ ·
∞∑
n=1

π(n, 1, 0)
(4.2.15)

= µ ·
∞∑
n=1

C−1 ·
(
λ

µ

)n
(4.2.16)

= µ ·
λ
µ

C ·
(

1− λ
µ

)
=

λ(
µ

µ−λ ·
(
1 + λ

ν

)
+ γ

ν

)
· µ−λµ

=
λ(

1 + λ
ν

)
+ γ

ν ·
µ−λ
µ

=
λ

ν+λ
ν + γ

ν ·
µ−λ
µ

=
λν

ν + λ+ γ − γλ
µ

.
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4.3. Separable systems: Multiple locations

As we have seen in Section 4.2.3 closed form expressions are not available for the queueing-
inventory system with b ≥ 2. The question is: “Can we modify the queueing-inventory
system so that we get product form results?” This is even true for a supply chain with
J > 1 locations as we see in this section.

4.3.1. Description of the general model

The supply chain of interest is depicted in Figure 4.3.1. We have a set of locations
J := {1, 2, . . . , J}. Each of the locations consists of a production system with an attached
inventory with perishable raw material. The inventories are replenished by a single central
supplier, which is referred to as workstation J + 1 and manufactures raw material for all
locations. The items of raw material are indistinguishable (exchangeable).

Location 1

Location 

Supplier
Station   +1

Single 
server

Single 
server

Single 
server

Waiting room

Lost 
sales

Lost 
sales

 Replenishment order

 Replenishment order

Demand arrival 
process

Demand arrival 
process

Inventory

Inventory

Replenishment

Replenishment

Waiting room

Waiting room

Figure 4.3.1.: Supply chain with base stock policy

Facilities in the supply chain. Each production system j ∈ J consists of a single
server (machine) with infinite waiting room that serves customers on a make-to-order basis
under a FCFS regime. Customers arrive one by one at production system j according to
a Poisson process with rate λj > 0 and require service. To satisfy a customer’s demand
the production system needs exactly one item of raw material, which is taken from the
associated local inventory. When a new customer arrives at a location while the previous
customer’s order is not finished, this customer will wait. If the inventory is depleted
at location j, the customers who are already waiting in line will wait, but new arriving
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customers at this location will decide not to join the queue and are lost (“local lost sales”).

The service requests at the locations are exponentially-1 distributed. All service re-
quests constitute an independent family of random variables which are independent of the
arrival streams. The service at location j is provided with local queue-length-dependent
intensity. If there are nj > 0 customers present at location j either waiting or in service
(if any) and if the inventory is not depleted, the service intensity is µj(nj) > 0. If the
server is ready to serve a customer who is at the head of the line, and the inventory is
not depleted, the service immediately starts. Otherwise, the service starts at the instant
of time when the next replenishment arrives at the local inventory.

For the control of the inventories we use base stock policies. Thus, each item taken
from the inventory results in a direct order for one item of raw material. This means, if
a served customer departs from the system or a raw material is perished, an order of the
consumed resp. of the perished raw material is placed at the central supplier at this time
instant. The local base stock level bj ≥ 1 is the maximal size of the inventory at location
j, we denote b :=

(
bj : j ∈ J

)
. Note that there can be more than one outstanding order.

The items of raw material in the inventories are perishable. In the previous section,
we take into consideration whether there are customers in the system. However, closed
form expressions were not available. In this section, we look at a modification:
If there are kj > 0 items of raw material in the inventory at location j ∈ J , the loss

rates of inventory due to perishing are γj · dj (kj). We call the functions kj 7→ γj · dj (kj)
ageing regimes.

The central supplier consists of a single server (machine) and a waiting room under
FCFS regime. At most

∑
j∈J bj − 1 replenishment orders are waiting at the central sup-

plier. Service times at the central supplier are exponentially distributed with parameter
ν > 0.

Routing in the supply chain. A customer departs from the system immediately
after the service and the associated consumed raw material is removed from the inventory
at this time instant.

A finished item of raw material departs immediately from the central supplier and is
sent to location j ∈ J with probability pj > 0, independent of the network’s history. A
predetermined delivering schedule is represented by (pj : j ∈ J) with

∑
j∈J pj = 1. If

the inventory is not full at location j (this means that the on-hand inventory level at
location j is lower than the base stock level bj), the item is added to the inventory at
this location. Otherwise the central supplier will spend extra time on the already finished
item of raw material and resend it to a new location i ∈ J according to the predetermined
probabilities pi, independent of the network’s history. We remark that this is equivalent
to the assumption that the item of raw material is discarded and a new replenishment
order is added at the central supplier.

We assume that the replenished raw materials are “fresh”. Much of the literature on
perishable items assumes this to avoid to complicate the model (cf. [Bar10, p. 2]).
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It is assumed that transmission times for orders are negligible and set to zero and that
transportation times between the central supplier and the local inventories are negligible.
All inter-arrival times, service times and life times of items constitute an independent

family of random variables.

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by Xj(t) the number of customers present at location j ∈ J at time t ≥
0 either waiting or in service (queue length). By Yj(t) we denote the size of the inventory
at location j ∈ J at time t ≥ 0. By WJ+1(t) we denote the number of replenishment
orders at the central supplier at time t ≥ 0 either waiting or in service (queue length).
We define the joint queueing-inventory process of this system by

Z = ((X1(t), . . . , XJ(t), Y1(t), . . . , YJ(t),WJ+1(t)) : t ≥ 0) .

Then, due to the usual independence assumptions Z is a homogeneous Markov process,
which we assume to be irreducible and regular. The state space of Z is

E =
{

(n,k) : n ∈ NJ0 , k ∈ K
}

with

K := {(k1, . . . , kJ , kJ+1)|0 ≤ kj ≤ bj , j = 1, . . . , J, kJ+1 =
J∑
j=1

(bj − kj)} ⊂ NJ+1
0 .

4.3.2. Limiting and stationary distribution

The queueing-inventory process Z has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n,k) ∈ E:

q ((n,k); (n + ei,k)) = λi · 1{ki>0}, i ∈ J,
q ((n,k); (n,k− ei + eJ+1)) = γi · di (ki) · 1{ki>0}, i ∈ J,

q ((n,k); (n− ei,k− ei + eJ+1)) = µi(ni) · 1{ni>0} · 1{ki>0}, i ∈ J,
q ((n,k); (n,k + ei − eJ+1)) = ν pi · 1{ki<bi}, i ∈ J.

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

Note that kJ+1 > 0 holds if ki < bi for some i ∈ J .

Proposition 4.3.1. The strictly positive measure x := (x (n,k) : (n,k) ∈ E) with

x (n,k) = ξ̃(n) · θ̃ (k) , (4.3.1)

where

ξ̃(n) =
∏
j∈J

ξ̃j(nj), ξ̃j(nj) =

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (4.3.2)
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θ̃(k) = θ̃(k1, . . . , kJ , kJ+1) =
∏
j∈J

kj∏
`=1

ν pj
λj + γj · dj (`)

, k ∈ K, (4.3.3)

solves the global balance equations x ·Q = 0 and is therefore stationary for Z.

Proof. Therefore, the global balance equations x · Q = 0 of the stochastic queueing-
inventory process Z are for (n,k) ∈ E given by

x (n,k)

·
(∑
i∈J

(λi + γi · di (ki)) · 1{ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{ki>0} +
∑
i∈J

ν pi · 1{ki<bi}
)

=
∑
i∈J

x (n− ei,k) · λi · 1{ni>0} · 1{ki>0}

+
∑
i∈J

x (n + ei,k + ei − eJ+1) · µi(ni + 1) · 1{ki<bi}

+
∑
i∈J

x (n,k + ei − eJ+1) · γi · di (ki + 1) · 1{ki<bi}

+
∑
i∈J

x (n,k− ei + eJ+1) · ν pi · 1{ki>0}.

It has to be shown that the stationary measure (4.3.1) satisfies these global balance
equations. Some of the changes are highlighted for reasons of clarity and comprehensi-
bility.

Substitution of (4.3.1) and (4.3.2) into the global balance equations directly leads to∏
j∈J

ξ̃j(nj)

 · θ̃ (k)

·
(∑
i∈J

(λi + γi · di (ki)) · 1{ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{ki>0} +
∑
i∈J

ν pi · 1{ki<bi}
)

=
∑
i∈J

 ∏
j∈J\{i}

ξ̃j(nj)

 · ξ̃i(ni − 1) · θ̃ (k) · λi · 1{ni>0} · 1{ki>0}

+
∑
i∈J

 ∏
j∈J\{i}

ξ̃j(nj)

 · ξ̃i(ni + 1) · θ̃ (k + ei − eJ+1) · µi(ni + 1) · 1{ki<bi}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃ (k + ei − eJ+1) · γi · di (ki + 1) · 1{ki<bi}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃ (k− ei + eJ+1) · ν pi · 1{ki>0}.
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By substitution of (4.3.2) we obtain∏
j∈J

ξ̃j(nj)

 · θ̃ (k)

·
(∑
i∈J

(λi + γi · di (ki)) · 1{ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{ki>0} +
∑
i∈J

ν pi · 1{ki<bi}
)

=
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃ (k) · µi(ni) · 1{ni>0} · 1{ki>0}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃ (k + ei − eJ+1) · λi · 1{ki<bi}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃ (k + ei − eJ+1) · γi · di (ki + 1) · 1{ki<bi}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃ (k− ei + eJ+1) · ν pi · 1{ki>0}.

Cancelling
(∏

j∈J ξj(nj)
)
and the sum with the terms µi(ni) · 1{ni>0} · 1{ki>0} on both

sides of the equation leads to

θ̃ (k)
(∑
i∈J

(λi + γi · di (ki)) · 1{ki>0} +
∑
i∈J

ν pi · 1{ki<bi}
)

=
∑
i∈J

θ̃ (k + ei − eJ+1) · λi · 1{ki<bi}

+
∑
i∈J

θ̃ (k + ei − eJ+1) · γi · di (ki + 1) · 1{ki<bi}

+
∑
i∈J

θ̃ (k− ei + eJ+1) · ν pi · 1{ki>0}.

This is equivalent to

θ̃ (k) ·
(∑
i∈J

(λi + γi · di (ki)) · 1{ki>0} +
∑
i∈J

ν pi · 1{ki<bi}
)

=
∑
i∈J

θ̃ (k+ei − eJ+1) · (λi + γi · di (ki + 1)) · 1{ki<bi}

+
∑
i∈J

θ̃ (k−ei + eJ+1) · ν pi · 1{ki>0}. (4.3.4)
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Substitution of (4.3.3) leads to

θ̃ (k)
(∑
i∈J

(λi + γi · di (ki)) · 1{ki>0} +
∑
i∈J

ν pi · 1{ki<bi}
)

=
∑
i∈J

θ̃ (k) · ν pi
λi + γi · di (ki + 1)

· (λi + γi · di (ki + 1)) · 1{ki<bi}

+
∑
i∈J

θ̃ (k) · λi + γi · di (ki)

ν pi
· ν pi · 1{ki>0}.

The right-hand side of the last equation is∑
i∈J

ν pi · 1{ki<bi} +
∑
i∈J

(λi + γi · di (ki)) · 1{ki>0},

which is obviously the left-hand side.

Inspection of the system (4.3.4) reveals that it is a “generator equation”, i.e. the global
balance equation θ̃ · Qred = 0 for a suitably defined ergodic Markov process on state
space K with “reduced generator” Qred. Because the Markov process generated by Qred

is irreducible the solution of (4.3.4) is unique up to a multiplicative constant, which yields
θ̃.

Remark 4.3.2. θ̃ (k) = θ̃(k1, . . . , kJ , kJ+1) is obtained as a strictly positive solution
of (4.3.4) which resembles the global balance equations of an artificial non-standard
Gordon-Newell network of queues with J+1 nodes and

∑
j∈J bj customers, exponentially

distributed service times with state-dependent rates (λj + γj · dj (kj)) for kj ≤ bj and “∞”
otherwise at node j ∈ {1, . . . , J} and with rate ν at node J+1 and state-dependent rout-
ing probabilities. More precisely, it is a starlike system with r(j, J + 1) = 1, j ∈ J , and
branching probabilities r(J + 1, j) = pj , j ∈ J .
Recall that the system is irreducible and regular. Therefore, if Z has a stationary and

limiting distribution, this is uniquely defined.

Definition 4.3.3. For the queueing-inventory process Z on state space E, whose limiting
distribution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞

P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ :=
(
ξ (n) : n ∈ NJ0

)
, ξ (n) := lim

t→∞
P ((X1(t), . . . , XJ(t)) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y1(t), . . . , YJ(t),WJ+1(t)) = k) .

Theorem 4.3.4. The queueing-inventory process Z is ergodic if and only if for j ∈ J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

<∞.
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If Z is ergodic, then its unique limiting and stationary distribution is

π (n,k) = ξ(n) · θ (k) , (4.3.5)

with

ξ(n) =
∏
j∈J

ξj(nj), ξj(nj) = C−1
j ·

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (4.3.6)

θ(k) = θ(k1, . . . , kJ , kJ+1) = C−1
θ ·

∏
j∈J

kj∏
`=1

ν pj
λj + γj · dj (`)

, k ∈ K, (4.3.7)

and normalisation constants

Cj =
∑
nj∈N0

nj∏
`=1

λj
µj(`)

and Cθ =
∑
k∈K

∏
j∈J

kj∏
`=1

ν pj
λj + γj · dj (`)

.

Proof. Z is ergodic, if and only if the strictly positive measure x of the global balance
equation x ·Q = 0 from Proposition 4.3.1 can be normalised (i.e.

∑
n∈N0

∑
k∈K x(n,k) <

∞). Because of Proposition 4.3.1 it holds∑
n∈N0

∑
k∈K

x(n,k) =
∑
n∈N0

ξ̃(n) ·
∑
k∈K

θ̃ (k)

=

∏
j∈J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

 ·
∑

k∈K

∏
j∈J

kj∏
`=1

ν pj
λj + γj · dj (`)

 .

Hence, since K is finite, the measure x from Proposition 4.3.1 can be normalised if and
only if

∑
nj∈N0

∏nj
`=1

λj
µj(`)

<∞ for all j ∈ J .
Consequently, if the process is ergodic, the limiting and stationary distribution π is

given by

π(n,k) =
x(n,k)∑

n∈N0

∑
k∈K x(n,k)

,

where x(n,k) is given in Proposition 4.3.1.

Remark 4.3.5. It has to be noted that kJ+1 occurs only implicitly on the right side of
(4.3.7). This hides a strong negative correlation of the coordinate processes WJ+1(t) and
(Y1(t), . . . , YJ(t)) which is due to the state space restrictions.
The expression (4.3.5) shows that the two-component production-inventory-replenish-

ment system is separable, the steady states of the production network and the inventory-
replenishment complex decouple asymptotically.
Representation (4.3.6) shows that the equilibrium for the production subsystem decom-

poses in true independent coordinates. A product structure of the stationary distribution
as

ξ(n) =
∏
j∈J

ξj(nj) =
∏
j∈J

C−1
j

nj∏
`=1

λj
µj(`)
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is commonly found for standard Jackson networks (see Theorem A.2.2) and their relatives.
In Jackson networks servers are “non-idling”, i.e. they are always busy as long as customers
are present at the respective node. However, in our production network servers may be
idle while there are customers waiting because a replenishment needs to arrive first.
Consequently, the product form (4.3.5) has been unexpected to us.
Our production-inventory system can be considered as a “Jackson network in a random

environment” in [KDO16, Section 4]. We can interpret the inventory-replenishment sub-
system, which contributes via θ to (4.3.5), as a “random environment” for the production
network of nodes J , which is a Jackson network of parallel servers (for more details see
Appendix A.3). Taking into account the results of [KDO16, Theorem 4.1] we conclude
from the hindsight that decoupling of the queueing process (X1, . . . , XJ) and the process
(Y1, . . . , YJ ,WJ+1), i.e. the formula (4.3.5), is a consequence of that Theorem 4.1.
Our direct proof of Theorem 4.3.4 is much shorter than embedding the present model

into the general framework of [KDO16].
The structural properties from Section 2.6.1 (ergodicity) and Section 2.6.5 (insensitivity

and robustness) hold word-by-word for this integrated system as well.
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4.3.3. Separable approximation of non-separable systems

As we have seen in Section 4.2.3 closed form expressions are not available for the single
location production-inventory system with perishable items where ageing is dependent
on whether an item from inventory is already in usage by production for base stock levels
b ≥ 2. The question is: “Can we use the product form results for a single location
from Section 4.3.2 to obtain simple product form bounds for the system with unknown
non-product form stationary distribution in Section 4.2.3?”
Motivated by the works of van Dijk and this coauthors (e.g. [Dij11b, Section 1,7, pp.

62f.], [Dij98, pp. 311ff.], [DK92], [DW89]) we are interested in lower and upper product
form bounds for the throughput of the production-inventory system with unknown non-
product form stationary distribution. Van Dijk shows in [Dij11b, Section 1,7, pp. 62f.]
for the simple but unsolvable (≡ unknown stationary distribution) tandem queue with
both finite first and finite second station, that the product form (modification) turns out
to be quite fruitful to provide a simple (lower and upper) product form bound for the
throughput.

It can intuitively be expected that bounds for the non-product production-inventory
system from Section 4.2.3 can be built by single location production-inventory systems4

from Section 4.3.2 (λ1 := λ, µ1 := µ, p1 := 1 and b1 := b) with perishable items where
ageing is independent of whether an item from inventory is already in usage by produc-
tion. The intuitive explanation of this is as follows: If we have either more inventory and
at least the same number of customers in system, or more customers in system and at
least the same stock size of the inventory, the system should be able to produce more
output.

A lower bound is built by the production-inventory system with perishable items where
all items in the inventory are subject to ageing — even the one already reserved for
production. The ageing regime in state (m, k) ∈ E is k 7→ γ1 · d1(k) := γ · k. This
production-inventory system is called “−”-system. We denote henceforth the state process
of this system by Z−, the stationary distribution of this system under ergodicity by
π− = (π−(m, k) : (m, k) ∈ E) and the throughput for the production-inventory system
with this ageing regime by

TH− =
∑

(m,k)∈E

π−(m, k) · µ · 1{m>0} · 1{k>0}. (4.3.8)

An upper bound is built by the production-inventory system with perishable items
where one item in the inventory (if there is any) is not subject to ageing — even if the
server is idling and no item is reserved for production. This results in an ageing regime
in state (m, k) ∈ E of k 7→ γ1 · d1(k) := γ · (k − 1)+. This production-inventory system
is called “+”-system. We denote henceforth the state process of this system by Z+, the
stationary distribution of this system under ergodicity by π+ = (π+(m, k) : (m, k) ∈ E)
and the throughput for the production-inventory system with this ageing regime by

TH+ =
∑

(m,k)∈E

π+(m, k) · µ · 1{m>0} · 1{k>0}. (4.3.9)

4We will henceforth use an abbreviated notation because the base stock level is a fixed parameter:
(n, k) := (n, k, b− k).
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The production-inventory system with unknown non-product form stationary distribu-
tion from Section 4.2.3 with perishable items where ageing is dependent on whether an
item from inventory is already in usage by production (i.e. the server is busy, or if the
server is idling and the inventory is not empty) henceforth will be called “o”-system. The
ageing regime in state (m, k) ∈ E is k 7→ (γ ·k) ·1{m=0}+(γ ·(k−1)+) ·1{m>0}.We denote
the state process of this system by Zo henceforth. In this case, the throughput for the
ergodic production-inventory system with perishable items is with stationary distribution
πo = (πo(m, k) : (m, k) ∈ E)

THo =
∑

(m,k)∈E

πo(m, k) · µ · 1{m>0} · 1{k>0}. (4.3.10)

The ageing regimes are ordered in the following way. For (m, k) ∈ E holds

γ · (k − 1)+ ≤ (γ · k) · 1{m=0} + (γ · (k − 1)+) · 1{m>0} ≤ γ · k.

This leads to the following conjecture.

Conjecture 4.3.6 (Monotonicity of throughputs). Consider three (exponential) ergodic
production-inventory systems with the same arrival rate λ, service rate µ, replenishment
rate ν, individual ageing rate γ for items in the inventory which are subject to ageing.
Then the following monotonicity property for the throughputs holds

TH− ≤ THo ≤ TH+.

This conjecture is supported by the following results in Section 4.3.3.1 for systems with
base stock level b = 1 and in Section 4.3.3.2 for special systems with base stock level
b ≥ 2.

4.3.3.1. Production-inventory system with base stock level b = 1

Firstly, we will explicitly compute the throughputs of the systems since we have closed
form expressions for the stationary distributions of the “o”-system as well as of the “−”-
system and “+”-system for the case of base stock level equal to one.

The throughput TH of the “o”-system with base stock level b = 1 was calculated in
Proposition 4.2.37 and is

THo =
λ · ν

λ+ ν + γ − λ·γ
µ

.

Proposition 4.3.7. The throughput of the “−”-system with base stock level b = 1 is

TH− =
λ · ν

λ+ γ + ν
.

Proof. From Theorem 4.3.4 we know that the limiting and stationary distribution of the
“−”-system is given by

π− (n, k) = ξ−(n) · θ− (k) , (4.3.11)

with
ξ−(n) =

(
C−
)−1 ·

(
λ

µ

)n
, n ∈ N0, (4.3.12)
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θ−(k) =
(
C−θ
)−1 ·

k∏
`=1

(
ν

λ+ γ · `

)
, k ∈ {0, 1} , (4.3.13)

and normalisation constants(
C−
)−1

=

(
1− λ

µ

)
,

(
C−θ
)−1

=

(
1 +

ν

λ+ γ

)−1

=

(
λ+ γ + ν

λ+ γ

)−1

=

(
λ+ γ

λ+ γ + ν

)
.

The throughput TH− of the “−”-system can be calculated as follows

TH− = µ ·
∞∑
n=1

π−(n, 1) = µ ·
∞∑
n=1

ξ−(n) · θ− (1)

= µ ·
∞∑
n=1

(
1− λ

µ

)
·
(
λ

µ

)n
·
(

λ+ γ

λ+ γ + ν

)
·
(

ν

λ+ γ

)
=

λ · ν
λ+ γ + ν

.

Proposition 4.3.8. The throughput for the “+”-system with base stock level b = 1 is

TH+ =
λ · ν
λ+ ν

.

Proof. From Theorem 4.3.4 we know that the limiting and stationary system of the “+”-
system is given by

π+ (n, k) = ξ+(n) · θ+ (k) , (4.3.14)

with

ξ+(n) =
(
C+
)−1 ·

(
λ

µ

)n
, n ∈ N0, (4.3.15)

θ+(k) =
(
C+
θ

)−1
k∏
`=1

(
ν

λ+ γ · (`− 1)

)
, k ∈ {0, 1} , (4.3.16)

and normalisation constants

(
C+
)−1

=

(
1− λ

µ

)
and

(
C+
θ

)−1
=
(

1 +
ν

λ

)−1
=

(
λ+ ν

λ

)−1

=

(
λ

λ+ ν

)
.

The throughput TH+ of the “+”-system can be calculated as follows

TH+ = µ ·
∞∑
n=1

π+(n, 1) = µ ·
∞∑
n=1

ξ+(n) · θ+ (1)

= µ ·
∞∑
n=1

(
1− λ

µ

)
·
(
λ

µ

)n
·
(

ν

λ+ γ

)
·
(

λ

λ+ ν

)
=

λ · ν
λ+ ν

.
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Corollary 4.3.9 (Monotonicity of throughputs). Consider three (exponential) ergodic
production-inventory systems with the same arrival rate λ, service rate µ, replenishment
rate ν, individual ageing rate γ for items in the inventory which are subject to ageing and
base stock level b = 1.
Then the following monotonicity property for the throughputs holds

TH− < TH < TH+.

4.3.3.2. Production-inventory system with base stock level b ≥ 2

We assume henceforth in this section b ≥ 2.

Preliminaries
Queue-length-dependent ageing
We consider perishable items where ageing is dependent on whether an item from inven-
tory is already in usage by production, i.e. the server is busy, or if the server is idling and
the inventory is not empty. The loss rate of inventory due to perishing in state (m, k) ∈ E
is

(γ · k) · 1{m=0} + (γ · (k − 1)+) · 1{m>0}.

Zo is uniformizable with constant α := λ+ µ+ ν + γ · b. So, whenever the underlying
Poisson-α process indicates a jump, the state of the associated uniformization chain Zou
jumps with probability 1. Zou is ergodic with stationary distribution πo as well. We
denote the one-step transition probability of Zou by Ro = (Ro(z; z̃) : z, z̃ ∈ E), and have
for k = 0 and n ≥ 0

Ro((n, 0) ; (n, 1)) =
ν

α
, Ro((n, 0) ; (n, 0)) =

λ+ µ+ γ · b
α

,

for k ∈ {1, . . . , b− 1} and n = 0

Ro((0, k) ; (1, k)) =
λ

α
, Ro((0, k) ; (0, k + 1)) =

ν

α
,

Ro((0, k) ; (0, k − 1)) =
γ · k
α

, Ro((0, k) ; (0, k)) =
µ+ γ · (b− k)

α
,

for k ∈ {1, . . . , b− 1} and n ≥ 1

Ro((n, k) ; (n+ 1, k)) =
λ

α
, Ro((n, k) ; (n− 1, k − 1)) =

µ

α
,

Ro((n, k) ; (n, k + 1)) =
ν

α
, Ro((n, k) ; (n, k − 1)) =

γ · (k − 1)

α
,

Ro((n, k) ; (n, k)) =
γ · (b− k + 1)

α
,

for k = b and n = 0

Ro((0, b) ; (1, b)) =
λ

α
, Ro((0, b) ; (0, b− 1)) =

γ · b
α
,

Ro((0, b) ; (0, b)) =
ν + µ

α
,
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for k = b and n ≥ 1

Ro((n, b) ; (n+ 1, b)) =
λ

α
, Ro((n, b) ; (n− 1, b− 1)) =

µ

α
,

Ro((n, b) ; (n, b− 1)) =
γ · (b− 1)

α
, Ro((n, b) ; (n, b)) =

ν + γ

α
.

We associate with the uniformization chain Zou a reward chain with one-step immediate
reward vector

r = (r(m, k) : (m, k) ∈ E), with r(m, k) = µ · 1{m>0} · 1{k>0}, (4.3.17)

so
THo =

∑
(m,k)∈E

πo(m, k) · r(m, k). (4.3.18)

We define the n-period reward vector of the reward chain as

von = (von(m, k) : (m, k) ∈ E), n ≥ 1, (4.3.19)

which is according to van der Wal [vdW89, Lemma 2]

von =
n−1∑
h=0

(Ro)h · r, n ≥ 1, (4.3.20)

and
von+1 = r +Ro · von, n ≥ 1. (4.3.21)

From ergodicity of Zou and the equality of the stationary distributions of Zo and Zou it
follows that for any initial state (m, k) ∈ E holds (cf. [vdW89, Lemma 2])

THo = lim
n→∞

1

n
· von(m, k). (4.3.22)

Queue-length-independent ageing
We next consider perishable items where ageing is independent of whether an item from
inventory is already in usage by production. We distinguish two modes of ageing.

Under the ageing regime for the lower bound, all items in the inventory are subject to
ageing — even the one already reserved for production. The loss rate of inventory due to
perishing in state (m, k) ∈ E is γ · k.
The state process Z− of this system is uniformizable with constant α := λ+µ+ν+γ ·b.

The uniformization chain Z−u is ergodic with stationary distribution π− as well. We denote
the one-step transition probability of Z−u by R− = (R−(z; z̃) : z, z̃ ∈ E), and have
for k = 0 and n ≥ 0

R−((n, 0) ; (n, 1)) =
ν

α
, R−((n, 0) ; (n, 0)) =

λ+ µ+ γ · b
α

,

for k ∈ {1, . . . , b− 1} and n = 0

R−((0, k) ; (1, k)) =
λ

α
, R−((0, k) ; (0, k + 1)) =

ν

α
,

R−((0, k) ; (0, k − 1)) =
γ · k
α

, R−((0, k) ; (0, k)) =
µ+ γ · (b− k)

α
,
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for k ∈ {1, . . . , b− 1} and n ≥ 1

R−((n, k) ; (n+ 1, k)) =
λ

α
, R−((n, k) ; (n− 1, k − 1)) =

µ

α
,

R−((n, k) ; (n, k + 1)) =
ν

α
, R−((n, k) ; (n, k − 1)) =

γ · k
α

,

R−((n, k) ; (n, k)) =
γ · (b− k)

α
,

for k = b and n = 0

R−((0, b) ; (1, b)) =
λ

α
, R−((0, b) ; (0, b− 1)) =

γ · b
α
,

R−((0, b) ; (0, b)) =
ν + µ

α
,

for k = b and n ≥ 1

R−((n, b) ; (n+ 1, b)) =
λ

α
, R−((n, b) ; (n− 1, b− 1)) =

µ

α
,

R−((n, b) ; (n, b− 1)) =
γ · b
α
, R−((n, b) ; (n, b)) =

ν

α
.

Under the ageing regime for the upper bound, one item in the inventory (if there is
any) is not subject to ageing — even if the server is idling and no item is reserved for
production. This results in a loss rate of inventory due to perishing in state (m, k) ∈ E
of γ · (k − 1)+.
The state process Z+ of this system is uniformizable with constant α := λ+µ+ν+γ ·b.

The uniformization chain Z+
u is ergodic with stationary distribution π+ as well. We denote

the one-step transition probability of Z+
u by R+ = (R+(z; z̃) : z, z̃ ∈ E), and have

for k = 0 and n ≥ 0

R+((n, 0) ; (n, 1)) =
ν

α
, R+((n, 0) ; (n, 0)) =

λ+ µ+ γ · b
α

,

for k ∈ {1, . . . , b− 1} and n = 0

R+((0, k) ; (1, k)) =
λ

α
, R+((0, k) ; (0, k + 1)) =

ν

α
,

R+((0, k) ; (0, k − 1)) =
γ · (k − 1)

α
, R+((0, k) ; (0, k)) =

µ+ γ · (b− k + 1)

α
,

for k ∈ {1, . . . , b− 1} and n ≥ 1

R+((n, k) ; (n+ 1, k)) =
λ

α
, R+((n, k) ; (n− 1, k − 1)) =

µ

α

R+((n, k) ; (n, k + 1)) =
ν

α
, R+((n, k) ; (n, k − 1)) =

γ · (k − 1)

α
,

R+((n, k) ; (n, k)) =
γ · (b− k + 1)

α
,

for k = b and n = 0

R+((0, b) ; (1, b)) =
λ

α
, R+((0, b) ; (0, b− 1)) =

γ · (b− 1)

α
,

R+((0, b) ; (0, b)) =
ν + µ+ γ

α
,
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for k = b and n ≥ 1

R+((n, b) ; (n+ 1, b)) =
λ

α
, R+((n, b) ; (n, b)) =

ν + γ

α
,

R+((n, b) ; (n− 1, b− 1)) =
µ

α
, R+((n, b) ; (n, b− 1)) =

γ · (b− 1)

α
.

We associate with both uniformization chains Z−u and Z+
u under different ageing regimes

a reward chain with one-step immediate reward vector (the same for all three production-
inventory systems)

r = (r(m, k) : (m, k) ∈ E) with r(m, k) = µ · 1{m>0} · 1{k>0}, (4.3.23)

so

TH− =
∑

(m,k)∈E

π−(m, k) · r(m, k) and TH+ =
∑

(m,k)∈E

π+(m, k) · r(m, k). (4.3.24)

We define the n-period reward vectors of these reward chains as

v−n = (v−n (m, k) : (m, k) ∈ E) resp. v+
n = (v+

n (m, k) : (m, k) ∈ E), n ≥ 1, (4.3.25)

which implies [vdW89, Lemma 2] similarly as above

v−n =
n−1∑
h=0

(R−)h · r resp. v+
n =

n−1∑
h=0

(R+)h · r, n ≥ 1, (4.3.26)

and
v−n+1 = r +R− · v−n resp. v+

n+1 = r +R+ · v+
n , n ≥ 1. (4.3.27)

From ergodicity of Z−u and the equality of the stationary distributions of Z− and Z−u it
follows that for any initial state (m, k) ∈ E holds

TH− = lim
n→∞

1

n
· v−n (m, k). (4.3.28)

Similarly, from ergodicity of Z+
u and the equality of the stationary distributions of Z+

and Z+
u it follows that for any initial state (m, k) ∈ E holds

TH+ = lim
n→∞

1

n
· v+
n (m, k). (4.3.29)

Recall, that TH− and TH+ can be explicitly computed (cf. Theorem 4.3.4).

Our comparison relies on the expressions (4.3.22), (4.3.28) and (4.3.29) for the through-
puts and on additional conditions which will guarantee that for all n ∈ N holds

v−n (m, k) ≤ von(m, k) ≤ v+
n (m, k) for all initial states (m, k) ∈ E, (4.3.30)

for the finite time cumulative (expected) rewards. It turns out that essential properties
to prove (4.3.30) are internal monotonicities of the cumulative rewards. To shorten the
presentation we use the symbol “∗” to refer to all the symbols “o,−,+” in the respective
expressions.
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Definition 4.3.10. We say that v∗n is isotone (with respect to the natural order on
N0 × {0, 1, . . . , b}) if

∀(m, k), (m′, k′) ∈ E :
[
(m ≤ m′ ∧ k ≤ k′)

]
implies

[
v∗n(m, k) ≤ v∗n(m′, k′)

]
. (4.3.31)

Proposition 4.3.11. Consider three (exponential) ergodic queueing inventory systems
with the same arrival rate λ, service rate µ, replenishment rate ν, individual ageing rate
γ for items in the inventory which are subject to ageing.
The ageing regimes of the systems are different, which results in different Markovian state
processes which we denote by Zo under ageing regime k 7→ (γ ·k) ·1{m=0}+ (γ · (k−1)+) ·
1{m>0}, Z− under ageing regime k 7→ γ ·k, and Z+ under ageing regime k 7→ γ · (k−1)+.
Then the following holds.

(a) If v−n is isotone, then for all (m, k) ∈ E holds

v−n (m, k) ≤ von(m, k) ∀n ∈ N,

and consequently TH− ≤ THo.

(b) If v+
n is isotone, then for all (m, k) ∈ E holds

von(m, k) ≤ v+
n (m, k) ∀n ∈ N,

and consequently THo ≤ TH+.

(c) If von is isotone, then for all (m, k) ∈ E holds

v−n (m, k) ≤ von(m, k) ≤ v+
n (m, k) ∀n ∈ N,

and consequently TH− ≤ THo ≤ TH+.

Proof. The equations can be proven by induction. The proof is presented in Appendix
D.2 on page 349.

Isotonicity of the finite time cumulative rewards is an intuitive property under any of
the three ageing regimes: If we have either more inventory and at least the same number
of customers in the system, or more customers in the system and at least the same stock
size of the inventory the system should be able to produce more output.
The proof of this monotonicity does not seem to be direct, we have partial results only.

The conditions µ = γ under ageing regime k 7→ (γ · k) · 1{m=0}+ (γ · (k− 1)+) · 1{m>0} in
Proposition 4.3.13 and λ ≤ γ under ageing regime k 7→ γ · k in Proposition 4.3.12 imply
that ageing is in any case fast.

Proposition 4.3.12. If in the production-inventory system with ageing regime k 7→ γ · k
we have λ ≤ γ, then the finite time cumulative rewards v−n (m, k) are isotone with respect
to the natural order.

We show by induction isotonicity in both directions and that the increase is bounded.
For all n ∈ N holds

v−n (m, k)− v−n (m, k − 1) ≥ 0, ∀k ∈ {1, . . . , b}, m ∈ N0,

v−n (m+ 1, k)− v−n (m, k) ≥ 0, ∀k ∈ {0, 1, . . . , b}, m ∈ N0,

v−n (m+ 1, k)− v−n (m, k) ≤ α, ∀k ∈ {0, 1, . . . , b}, m ∈ N0,

v−n (m, k)− v−n (m, k − 1) ≤ α, ∀k ∈ {1, . . . , b}, m ∈ N0.

The proof is presented in Appendix D.2 on page 354.
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Proposition 4.3.13. If in the production-inventory system with ageing regime k 7→ (γ ·
k) ·1{m=0}+(γ · (k−1)+) ·1{m>0} we have µ = γ, then the finite time cumulative rewards
von(m, k) are isotone with respect to the natural order.

Proof. We show by induction isotonicity in both directions, that the increase is bounded,
and that von is concave in time. For all n ∈ N holds

von(m, k)− von(m, k − 1) ≥ 0, ∀k ∈ {1, . . . , b}, m ∈ N0,

von(m+ 1, k)− von(m, k) ≥ 0, ∀k ∈ {0, 1, . . . , b}, m ∈ N0,

von(m+ 1, k)− von(m, k) ≤ α, ∀k ∈ {0, 1, . . . , b}, m ∈ N0,

von(m, k)− von(m, k − 1) ≤ α, ∀k ∈ {1, . . . , b}, m ∈ N0,

von(m+ 1, k)− 2 · von(m, k) + von(m− 1, k) ≤ 0, ∀k ∈ {0, 1, . . . , b}, m ∈ N.

The proof is presented in Appendix D.2 on page 363.
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5. Basic production-inventory model
with base stock policy

Parts of this chapter are taken from [OKD17].

5.1. Own contributions

We develop a Markov process model of a complex supply chain and derive its station-
ary distributions of the joint queueing-inventory process in explicit product form. This
enables us to perform cost analysis and optimization of the system and to analyse the
structure of the system in detail.
If we consider the production facilities (queues) at the locations as devices which deliver

items from the inventory to incoming demand, needing non-negligible delivering time (as
in the single-echelon inventory systems case described by Krishnamoorthy, Lakshmy, and
Manikandan [KLM11]), our results extend their setting to a multi-dimensional system. On
the other hand our work is an extension of the investigations of Rubio and Wein [RW96],
Zazanis [Zaz94] and Reed and Zhang [RZ17] on inventory systems under base stock policy:
In their models there is no production-to-order such that the time to satisfy customer
demand is zero. Therefore, their model is a special case of our model when service time
is set to zero.
Our system is an extension of [OKD16], which is presented in Chapter 2, and can be

classified as a “multi-product system” because items are not exchangeable. Our network’s
behaviour, where the orders are dedicated to the sending locations, is more complicated
and the supplier can be of a complex structure, e.g. a production network itself.

5.2. Description of the model

The supply chain of interest is depicted in Figure 5.2.1. We have a set J := {1, 2, . . . , J}
of locations. Each location consists of a production system with an attached inven-
tory. The inventories are replenished by a supplier network which consists of a set
M := {J + 1, . . . , J +M} of workstations and manufactures raw material for all lo-
cations, but distinguishes the replenishment orders from different locations. Each order
for raw material is specified by a location j ∈ J and the resulting raw material is sent
back exactly to the location which has placed the order.

Facilities in the supply chain. Each production system j ∈ J consists of a single
server (machine) with infinite waiting room that serves customers on a make-to-order
basis under FCFS regime. Customers arrive one by one at production system j according
to a Poisson process with rate λj > 0 and require service. To satisfy a customer’s demand
the production system requires exactly one item of raw material, which is taken from the
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Figure 5.2.1.: Supply chain with base stock policy

associated local inventory. When a new customer arrives at a location while the previous
customer’s processing is not finished, this customer will wait. If inventory is depleted at
location j, the customers who are already waiting in line will continue to wait, but newly
arriving customers at this location will decide not to join the queue and are lost (“local
lost sales”).

The service requests at the locations are exponentially-1 distributed. All service re-
quests constitute an independent family of random variables which are independent of
the arrival streams. The service at location j ∈ J is provided with local queue-length-
dependent intensity. If there are nj > 0 customers present at location j either waiting or
in service (if any) and if the inventory is not depleted, the service intensity is µj(nj) > 0.
If the server is ready to serve a customer who is at the head of the line, and the inventory
is not depleted, service immediately starts. Otherwise, the service starts at the instant
when the next replenishment arrives at the local inventory.

The inventory at location j is controlled by prescribing a local base stock level bj ≥ 1,
which is the maximal size of the inventory there, we denote b :=

(
bj : j ∈ J

)
.

Each workstation m ∈ M of the supplier network consists of a single server with in-
finite waiting room under FCFS regime. The service requests at the workstations are
exponentially-1 distributed. All service requests constitute an independent family of
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5.2. Description of the model

random variables which are independent of the arrival streams. Service at workstation
m ∈M is provided with local queue-length-dependent intensity. If there are ` > 0 orders
present, the service intensity is νm(`) > 0.

Routing in the supply chain. A served customer departs from the system (with
the consumed material) immediately after service and at the same time an order for one
item of raw material is placed at the supplier network (“base stock policy”).
To distinguish orders from different locations, each order is marked (tagged) by a “type”

which for simplicity is the index of the location, where the order is triggered. We found
that Kelly’s deterministic routing scheme for “customers” in networks (cf. [Kel79, pp.
82ff.]) is a useful device to describe the interaction of inventories and supplier network.
It should be emphasized that the cycling “customer” represents an order in the supplier
network and a item of raw material in the inventories.
An order triggered by location j follows a type-j-dependent route for eventual replen-
ishment, denoted by r(j) =

(
r(j, 1), . . . , r(j, S(j) − 1), r(j, S(j))

)
. Here r(j, `) ∈ M for

` = 2, . . . , S(j) is the identifier of the `-th workstation on the path r(j), and S(j) is the
number of stages of the route of type j. For completeness we fix r(j, 1) := j ∈ J , and
prescribe that a type-j order departing from r(j, S(j)) enters as an item of raw material
immediately the inventory at location j = r(j, 1) to restart its cycle.
It is assumed that transmission times for orders are negligible and set to zero and that

transportation times between the supplier network and the local inventories are negligible.
The usual independence assumptions are assumed to hold as well.

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by Xj(t) the number of customers present at location j ∈ J at time
t ≥ 0 either waiting or in service (queue length). By Yj(t) we denote the contents of the
inventory at location j ∈ J at time t ≥ 0. By Wm(t) we denote the sequence of orders at
workstation m ∈M of the supplier network at time t ≥ 0.
We denote by Km the set of possible states at node m ∈ M (local state space). The

state km := [tm1, sm1; . . . ; tm#km , sm#km ] ∈ Km indicates that there are #km orders at
workstationm ∈M , on position p ∈ {1, . . . ,#km} resides an order of type tmp ∈ J , which
is on stage smp ∈ {1, . . . , S(tmp)} of its route r(tmp) =

(
r(tmp, 1), . . . , r(tmp, S(tmp))

)
.

Here (tm1, sm1) is the order at the head of the line, which is in service and (tm#km , sm#km)
is the order at the tail of the line.

Notational convention. To make reading easier, we use a unified notation for the
states of the inventories at the locations and the states of the workstations in the supplier
network. In doing this we identify items of raw material arriving at the inventory j with
the order sent out to the supplier network when an item is consumed by a departing
customer. Therefore, adopting the state description of the workstations for that of the
inventories, the state of the inventory at location j ∈ J at time t is

Yj(t) = kj = [j, 1; . . . ; j, 1]︸ ︷︷ ︸
#kj items

,

since the route of type j starts in the inventory at location j (i.e. tjp = j for the types
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5. Basic production-inventory model with base stock policy

and sjp = 1 for all p ∈ {1, . . . ,#kj}). A stage number sjp > 1 indicates that the unit (as
an order) is in the supplier network.
Summarizing, global states of the inventory-replenishment subsystem are

k =
( inventories

at locations︷ ︸︸ ︷
k1, . . . , kJ ,

workstations
at supplier network︷ ︸︸ ︷
kJ+1, . . . , kJ+M

)
∈ K ⊆

J+M∏
j=1

Kj ,

where Kj denotes the local state space at j ∈ J ∪M and K denotes the feasible states
composed of feasible local states.
For #kj = 0, j ∈ J , we read[

tj1, sj1; . . . ; tj#kj , sj#kj
]

=: [0],

and for #km = 0, m ∈M , we read

[tm1, sm1; . . . ; tm#km , sm#km ] =: [0].

We define the joint queueing-inventory process of this system by

Z = ((X1(t), . . . , XJ(t), Y1(t), . . . , YJ(t),WJ+1(t), . . . ,WJ+M (t)) : t ≥ 0) .

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process, which we assume to be irreducible and regular. The state space of Z is

E =
{

(n,k) : n ∈ NJ0 , k ∈ K
}
.

Discussion of the modelling assumptions. We have imposed simplifying assump-
tions on the production-inventory system to obtain explicit and simple-to-calculate per-
formance metrics of the system, which give insights into its long-time and stationary
behaviour. This enables a parametric and sensitivity analysis that is easy to perform.
First, the assumption of exponentially distributed inter-arrival and service times are

standard in the literature. The locally state-dependent service rates are also common
and give quite a bit of flexibility. The lead time of an order is composed of the waiting
times plus the service times in the supplier network. They are therefore more complex
than exponential or even constant lead times.
Second, we assume that the local base stock levels are positive (i.e. bj ≥ 1 at location

j). If bj = 0, all customers at location j would be lost, which is the same as excluding
location j from the production-inventory system.
Third, the assumption of zero transportation times can be removed by inserting special

(virtual) M/G/∞ workstations into the network.
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5.3. Limiting and stationary behaviour

5.3. Limiting and stationary behaviour

The queueing-inventory process Z has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n,k) ∈ E, where a typical state is (we will impose
necessary restrictions if needed)

(n,k) =
(
n, [1, 1; . . . ; 1, 1]︸ ︷︷ ︸

#k1

, . . . , [J, 1; . . . ; J, 1]︸ ︷︷ ︸
#kJ

, (5.3.1)

[
t(J+1)1, s(J+1)1; . . . ; t(J+1)#kJ+1

, s(J+1)#kJ+1

]
, . . .

. . . ,
[
t(J+M)1, s(J+M)1; . . . ; t(J+M)#kJ+M , s(J+M)#kJ+M

] )
.

• Arrival of a customer at location i ∈ J ,
which happens only if the inventory at this location is not empty because of the
lost sales rule:

q ((n,k); (n+ei,k)) = λi · 1{#ki>0}, i ∈ J.

• Service completion of a customer at location i ∈ J ,
which happens only if there is at least one customer at location i and the inventory
there is not empty,
i.e. from location i (= station r(i, 1)), where #ki items are present, a customer
departs and an item of raw material is removed from the associated local inventory,
in addition a replenishment order is sent to workstation r(i, 2) ∈M of the supplier
network, where #kr(i,2) orders have already been present:

q

((
n, [1, 1; . . . ; 1, 1]︸ ︷︷ ︸

#k1

, . . . , [i, 1; . . . ; i, 1]︸ ︷︷ ︸
#ki>0

, . . . , [J, 1; . . . ; J, 1]︸ ︷︷ ︸
#kJ

, (5.3.2)

[
t(J+1)1, s(J+1)1; . . . ; t(J+1)#kJ+1

, s(J+1)#kJ+1

]
, . . .

. . . ,
[
tr(i,2)1, sr(i,2)1; . . . ; tr(i,2)#kr(i,2) , sr(i,2)#kr(i,2)

]
︸ ︷︷ ︸

#kr(i,2)

, . . .

. . . ,
[
t(J+M)1, s(J+M)1; . . . ; t(J+M)#kJ+M

, s(J+M)#kJ+M

] )
;(

n−ei, [1, 1; . . . ; 1, 1]︸ ︷︷ ︸
#k1

, . . . , [i, 1; . . . ; i, 1]︸ ︷︷ ︸
#ki−1

, . . . , [J, 1; . . . ; J, 1]︸ ︷︷ ︸
#kJ

,

[
t(J+1)1, s(J+1)1; . . . ; t(J+1)#kJ+1

, s(J+1)#kJ+1

]
, . . .

. . . ,
[
tr(i,2)1, sr(i,2)1; . . . ; tr(i,2)#kr(i,2) , sr(i,2)#kr(i,2) ; i, 2

]
︸ ︷︷ ︸

#kr(i,2)+1

, . . .

. . . ,
[
t(J+M)1, s(J+M)1; . . . ; t(J+M)#kJ+M

, s(J+M)#kJ+M

] ))
= µi(ni) · 1{ni>0} · 1{#ki>0}, i ∈ J.
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Notational convention: For transition rates like the one above we will henceforth
use an abbreviated notation. Using this abbreviation (5.3.2) reads

q

((
n, . . . , [i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki>0

, . . . ,
[
tr(i,2)1, sr(i,2)1; . . . ; tr(i,2)#kr(i,2) , sr(i,2)#kr(i,2)

]
︸ ︷︷ ︸

#kr(i,2)

, . . .
)

;

(
n−ei, . . . , [i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki−1

, . . . ,
[
tr(i,2)1, sr(i,2)1; . . . ; tr(i,2)#kr(i,2) , sr(i,2)#kr(i,2) ; i, 2

]
︸ ︷︷ ︸

#kr(i,2)+1

, . . .
))

= µi(ni) · 1{ni>0} · 1{#ki>0}, i ∈ J.

This means that we will explicitly write only those local states of (n,k) and its
successor state which are relevant for the described transition. Readers interested
in the full expressions may consult [OKD14].

• Service completion of an order at workstation m ∈M ,
which happens only if there is at least one order,
i.e. from workstation m, where #km orders are present, an order of type tm1 on
stage sm1 of its route is removed and is sent to the next stage sm1 + 1 of its route,
i.e. either

- if sm1 < S(tm1), it is sent to workstation r(tm1, sm1 +1) ∈M , where #kr(tm1,sm1+1)
orders have already been present:

q

((
n, . . . , [tm1, sm1; . . . ; tm#km , sm#km ]︸ ︷︷ ︸

#km>0

, . . .

. . . ,
[
tr(tm1,sm1+1)1, sr(tm1,sm1+1)1; . . .

. . . ; tr(tm1,sm1+1)#kr(tm1,sm1+1)
, sr(tm1,sm1+1)#kr(tm1,sm1+1)

]
︸ ︷︷ ︸

#kr(tm1,sm1+1)

, . . .
)

;

(
n, . . . , [tm2, sm2; . . . ; tm#km , sm#km ]︸ ︷︷ ︸

#km−1

, . . .

. . . ,
[
tr(tm1,sm1+1)1, sr(tm1,sm1+1)1; . . .

. . . ; tr(tm1,sm1+1)#kr(tm1,sm1+1)
, sr(tm1,sm1+1)#kr(tm1,sm1+1)

;

; tm1, sm1 + 1]︸ ︷︷ ︸
#kr(tm1,sm1+1)+1

, . . .
))

= ν(#km) · 1{#km>0} · 1{sm1<S(tm1)}, m ∈M,
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5.3. Limiting and stationary behaviour

- or if sm1 = S(tm1), it is sent to the inventory at location tm1 ∈ J , where #ktm1

items of raw material have already been present:

q

((
n, . . . , [tm1, 1; . . . ; tm1, 1]︸ ︷︷ ︸

#ktm1

, . . . , [tm1, sm1; . . . ; tm#km , sm#km ]︸ ︷︷ ︸
#km>0

, . . .
)

;

(
n, . . . , [tm1, 1; . . . ; tm1, 1; tm1, 1]︸ ︷︷ ︸

#ktm1+1

, . . . , [tm2, sm2; . . . ; tm#km , sm#km ]︸ ︷︷ ︸
#km−1

, . . .
))

= ν(#km) · 1{#km>0} · 1{sm1=S(tm1)}, m ∈M.

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

Proposition 5.3.1. The strictly positive measure x := (x (n,k) : (n,k) ∈ E) with

x (n,k) = ξ̃(n) · θ̃ (k) , (5.3.3)

where

ξ̃ (n) =
∏
j∈J

ξ̃j(nj), ξ̃j(nj) =

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (5.3.4)

θ̃(k) = C−1
θ

∏
j∈J

(
1

λj

)#kj

·
∏
m∈M

#km∏
`=1

1

νm(`)
, k ∈ K, (5.3.5)

solves the global balance equations x ·Q = 0 and is therefore stationary for Z.

Proof. Before proving we recall notation for the inventory-replenishment subsystem: It
will be convenient to use the elaborate although redundant notation for k ∈ K

k =
( inventories

at locations︷ ︸︸ ︷
k1, . . . , kJ ,

workstations
at supplier network︷ ︸︸ ︷
kJ+1, . . . , kJ+M

)

=

( inventories
at locations︷ ︸︸ ︷

[1, 1; . . . ; 1, 1]︸ ︷︷ ︸
#k1 items

, . . . , [J, 1; . . . ; J, 1]︸ ︷︷ ︸
#kJ items

,

supplier network︷ ︸︸ ︷[
t(J+1)1, s(J+1)1; . . . ; t(J+1)#kJ+1

, s(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1 orders

, . . .

. . . ,
[
t(J+M)1, s(J+M)1; . . . ; t(J+M)#kJ+M

, s(J+M)#kJ+M

]︸ ︷︷ ︸
#kJ+M orders

)
.
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The global balance equations x · Q = 0 of the queueing-inventory process Z are for
(n,k) ∈ E from (5.3.1) given by

flux out of the state (n,k) through:
• an arrival of a customer at location i ∈ J
if the inventory at this location is not empty (i.e. #ki > 0) because of the lost sales rule,
• a service completion of a customer at location i ∈ J
if there is at least one customer (i.e. ni > 0)
and the inventory at this location is not empty (i.e. #ki > 0),
• a completion of an order at workstation ` ∈M of the supplier network
if there is at least one order at this workstation (i.e. #k` > 0):

x
(
n,k

)
·
(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{#ki>0} +
∑
`∈M

ν`(#k`) · 1{#k`>0}

)

= flux into the state (n,k) through:
• an arrival of a customer at location i ∈ J
if in state (n,k) there is at least one customer at location i (i.e. ni > 0)
and the inventory at this location is not empty (i.e. #ki > 0):

∑
i∈J

x
(
n−ei,k

)
· λi · 1{#ki>0} · 1{ni>0}

• a service completion of a customer at location t`#k` = r(t`#k` , 1) ∈ J
if in state (n,k) there is at least one order at workstation ` (i.e. #k` > 0) and the order
at the tail of the queue at workstation ` is in stage 2 (i.e. s`#k` = 2) of its route
(i.e. a customer departs from location t`#k`
and an item is removed from the associated local inventory there,
and an order is sent to workstation r(t`#k` , 2) = `)
(note that s`#k` = 2 implies #kt`#k`

< bt`#k`
to hold):

+
∑
`∈M

x
(
n + et`#k`

, . . . , [t`#k` , 1; t`#k` , 1; . . . ; t`#k` , 1]︸ ︷︷ ︸
#kt`#k`

+1

, . . .

. . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

·µt`#k`
(nt`#k`

+ 1) · 1{s`#k`
=2} · 1{#k`>0}
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• a transition of an order of type t`#k` from workstation r(t`#k` , s`#k` − 1)

to the next workstation of the supplier network
if in state (n,k) there is at least one order at workstation ` (i.e. #k` > 0) and the order
in the tail of the queue at workstation ` is not in stage 2 (i.e. s`#k` > 2) of its route
(i.e. an order of type t`#k` is removed from workstation r(t`#k` , s`#k` − 1)

and is sent to workstation ` = r(t`#k` , s`#k`)):

+
∑
`∈M

x
(
n, . . . ,

[
t`#k` , s`#k` − 1; tr(t`#k`

,s`#k`
−1)1, sr(t`#k`

,s`#k`
−1)1; . . .

. . . ; tr(t`#k`
,s`#k`

−1)#kr(t`#k`
,s`#k`

−1)
, sr(t`#k`

,s`#k`
−1)#kr(t`#k`

,s`#k`
−1)

]
︸ ︷︷ ︸

#kr(t`#k`
,s`#k`

−1)+1

, . . .

. . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#kt`#k`

−1

, . . .
)

·νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1) · 1{#k`>0} · 1{s`#k`
>2}

• a replenishment of the inventory at location i ∈ J
if in state (n,k) there is at least one item of raw material at location i (i.e. #ki > 0)
(i.e. an order of type i is removed from workstation r(i, S(i))
and is sent to the inventory at location i):

+
∑
i∈J

x
(
n, . . . , [i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki−1

, . . .

. . . ,
[
i, S(i); tr(i,S(i))1, sr(i,S(i))1; . . . ; tr(i,S(i))#kr(i,S(i))

, sr(i,S(i)−1)#kr(i,S(i))

]
︸ ︷︷ ︸

#kr(i,S(i))+1

, . . .
)

·νr(i,S(i))(#kr(i,S(i)) + 1) · 1{#ki>0}.

It has to be shown that the stationary measure (5.3.3) satisfies these global balance equa-
tions. Some of the changes are highlighted for reasons of clarity and comprehensibility.
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5. Basic production-inventory model with base stock policy

Substitution of (5.3.3) and (5.3.4) into the global balance equations directly leads to∏
j∈J

ξ̃j(nj)

 · θ̃(k)

·
(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{#ki>0} +
∑
`∈M

ν`(#k`) · 1{#k`>0}

)

=
∑
i∈J

 ∏
j∈J\{i}

ξ̃j(nj)

 · ξ̃i(ni − 1) · θ̃(k) · λi · 1{ni>0} · 1{#ki>0}

+
∑
`∈M

 ∏
j∈J\{t`#k`}

ξ̃j(nj)

 · ξ̃t`#k`
(nt`#k`

+ 1)

· θ̃
(
. . . , [t`#k` , 1; t`#k` , 1; . . . ; t`#k` , 1]︸ ︷︷ ︸

#kt`#k`
+1

, . . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

· µt`#k`
(nt`#k`

+ 1) · 1{#k`>0} · 1{s`#k`
=2}

+
∑
`∈M

∏
j∈J

ξ̃j(nj)


· θ̃
(
. . . ,

[
t`#k` , s`#k` − 1; tr(t`#k`

,s`#k`
−1)1, sr(t`#k`

,s`#k`
−1)1; . . .

. . . ; tr(t`#k`
,s`#k`

−1)#kr(t`#k`
,s`#k`

−1)
, sr(t`#k`

,s`#k`
−1)#kr(t`#k`

,s`#k`
−1)

]
︸ ︷︷ ︸

#kr(t`#k`
,s`#k`

−1)+1

, . . .

. . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#kt`#k`

−1

, . . .
)

· νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1) · 1{#k`>0} · 1{s`#k`
>2}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)


· θ̃
(
. . . , [i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki−1

, . . .

. . . ,
[
i, S(i); tr(i,S(i))1, sr(i,S(i))1; . . . ; tr(i,S(i))#kr(i,S(i))

, sr(i,S(i)−1)#kr(i,S(i))

]
︸ ︷︷ ︸

#kr(i,S(i))+1

, . . .
)

· νr(i,S(i))(#kr(i,S(i)) + 1) · 1{#ki>0}.
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5.3. Limiting and stationary behaviour

By substitution of (5.3.4) we obtain∏
j∈J

ξ̃j(nj)

 · θ̃(k)

·
(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{#ki>0} +
∑
`∈M

ν`(#k`) · 1{#k`>0}

)

=
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃(k) · µi(ni) · 1{ni>0} · 1{#ki>0}

+
∑
`∈M

∏
j∈J

ξ̃j(nj)


· θ̃
(
. . . , [t`#k` , 1, t`#k` , 1; . . . ; t`#k` , 1]︸ ︷︷ ︸

#kt`#k`
+1

, . . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

· λt`#k`
· 1{#k`>0} · 1{s`#k`

=2}

+
∑
`∈M

∏
j∈J

ξ̃j(nj)


· θ̃
(
. . . ,

[
t`#k` , s`#k` − 1; tr(t`#k`

,s`#k`
−1)1, sr(t`#k`

,s`#k`
−1)1; . . .

. . . ; tr(t`#k`
,s`#k`

−1)#kr(t`#k`
,s`#k`

−1)
, sr(t`#k`

,s`#k`
−1)#kr(t`#k`

,s`#k`
−1)

]
︸ ︷︷ ︸

#kr(t`#k`
,s`#k`

−1)+1

, . . .

. . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#kt`#k`

−1

, . . .
)

· νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1) · 1{#k`>0} · 1{s`#k`
>2}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)


· θ̃
(
. . . , [i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki−1

, . . .

. . . ,
[
i, S(i); tr(i,S(i))1, sr(i,S(i))1; . . . ; tr(i,S(i))#kr(i,S(i))

, sr(i,S(i)−1)#kr(i,S(i))

]
︸ ︷︷ ︸

#kr(i,S(i))+1

, . . .
)

· νr(i,S(i))(#kr(i,S(i)) + 1) · 1{#ki>0}.
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5. Basic production-inventory model with base stock policy

Cancelling
(∏

j∈J ξ̃j(nj)
)
and the sums with the terms µi(ni) · 1{ni>0} · 1{#ki>0} on both

sides of the equation leads to

θ̃(k) ·
(∑
i∈J

λi · 1{#ki>0} +
∑
`∈M

ν`(#k`) · 1{#k`>0}

)
(5.3.6)

=
∑
`∈M

θ̃
(
. . . , [t`#k` , 1, t`#k` , 1; . . . ; t`#k` , 1]︸ ︷︷ ︸

#kt`#k`
+1

, . . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

· λt`#k` · 1{#k`>0} · 1{s`#k`=2}

+
∑
`∈M

θ̃
(
. . . ,

[
t`#k` , s`#k` − 1; tr(t`#k` ,s`#k`−1)1, sr(t`#k` ,s`#k`−1)1; . . .

. . . ; tr(t`#k` ,s`#k`−1)#kr(t`#k`
,s`#k`

−1)
, sr(t`#k` ,s`#k`−1)#kr(t`#k`

,s`#k`
−1)

]
︸ ︷︷ ︸

#kr(t`#k`
,s`#k`

−1)+1

, . . .

. . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#kt`#k`

−1

, . . .
)

· νr(t`#k` ,s`#k`−1)(#kr(t`#k` ,s`#k`−1) + 1) · 1{#k`>0} · 1{s`#k`>2}

+
∑
i∈J

θ̃
(
. . . , [i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki−1

, . . .

. . . ,
[
i, S(i); tr(i,S(i))1, sr(i,S(i))1; . . . ; tr(i,S(i))#kr(i,S(i)) , sr(i,S(i)−1)#kr(i,S(i))

]
︸ ︷︷ ︸

#kr(i,S(i))+1

, . . .
)

· νr(i,S(i))(#kr(i,S(i)) + 1) · 1{#ki>0}.

Now, substitution of (5.3.5) leads to

θ̃(k) ·
(∑
i∈J

λi · 1{#ki>0} +
∑
`∈M

ν`(#k`) · 1{#k`>0}

)

=
∑
`∈M

θ̃(k) ·

(
1

λt`#k`

)
· ν`(#k`) · λt`#k`

· 1{#k`>0} · 1{s`#k`
=2}

+
∑
`∈M

θ̃(k) ·

(
1

νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1)

)
· ν`(#k`)

· νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1) · 1{#k`>0} · 1{s`#k`
>2}

+
∑
i∈J

θ̃(k) · λi ·
(

1

νr(i,S(i))(#kr(i,S(i)) + 1)

)
· νr(i,S(i))(#kr(i,S(i)) + 1) · 1{#ki>0}.

The right-hand side of the last equation is∑
`∈M

θ̃(k) · ν`(#k`) · 1{#k`>0} · 1{s`#k`=2} +
∑
`∈M

θ̃(k) · ν`(#k`) · 1{#k`>0} · 1{s`#k`>2}

+
∑
i∈J

θ̃(k) · λi · 1{#ki>0},

which is obviously the left-hand side.
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5.3. Limiting and stationary behaviour

Inspection of the system (5.3.6) reveals that it is a “generator equation”, i.e. the global
balance equation θ̃ · Qred = 0 for a suitably defined ergodic Markov process on state
space K with “reduced generator” Qred. Because the Markov process generated by Qred

is irreducible the solution of (5.3.6) is unique up to a multiplicative constant, which yields
θ̃.

Remark 5.3.2. The system (5.3.6) of equations resembles the global balance equations
of a closed Kelly network with J + M nodes and

∑
j∈J bj customers and exponentially

distributed service times with rate λj at node j ∈ {1, . . . , J} and with queue-length-
dependent rate νm(·) at node m ∈ {J + 1, . . . , J +M} and with deterministic, type-
dependent routing.

Recall that the system is irreducible and regular. Therefore, if Z has a stationary and
limiting distribution, this is uniquely defined.

Definition 5.3.3. For the queueing-inventory system Z on state space E, whose limiting
distribution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞

P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ :=
(
ξ (n) : n ∈ NJ0

)
, ξ (n) := lim

t→∞
P ((X1(t), . . . , XJ(t)) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y1(t), . . . , YJ(t),WJ+1(t), . . . ,WJ+M (t)) = k) .

Theorem 5.3.4. The queueing-inventory process Z is ergodic if and only if for j ∈ J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

<∞.

If Z is ergodic, then its unique limiting and stationary distribution is

π (n,k) = ξ (n) · θ (k) , (5.3.7)

with

ξ (n) =
∏
j∈J

ξj(nj), ξj(nj) = C−1
j

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (5.3.8)

θ(k) = C−1
θ

∏
j∈J

(
1

λj

)#kj

·
∏
m∈M

#km∏
`=1

1

νm(`)
, k ∈ K, (5.3.9)

and normalisation constants

Cj =
∑
nj∈N0

nj∏
`=1

λj
µj(`)

and Cθ =
∑
k∈K

∏
j∈J

(
1

λj

)#kj

·
∏
m∈M

#km∏
`=1

1

νm(`)
.
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5. Basic production-inventory model with base stock policy

Proof. Z is ergodic, if and only if the strictly positive measure x of the global balance
equation x ·Q = 0 from Proposition 5.3.1 can be normalised (i.e.

∑
n∈N0

∑
k∈K x(n,k) <

∞). Because of Proposition 5.3.1 it holds∑
n∈N0

∑
k∈K

x(n,k) =
∑
n∈N0

ξ̃(n) ·
∑
k∈K

θ̃ (k)

=

∏
j∈J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

 ·
∑

k∈K

∏
j∈J

(
1

λj

)#kj

·
∏
m∈M

#km∏
`=1

1

νm(`)

 .

Hence, since K is finite, the measure x from Proposition 5.3.1 can be normalised if and
only if

∑
nj∈N0

∏nj
`=1

λj
µj(`)

<∞ for all j ∈ J .
Consequently, if the process is ergodic, the limiting and stationary distribution π is

given by

π(n,k) =
x(n,k)∑

n∈N0

∑
k∈K x(n,k)

,

where x(n,k) is given in Proposition 5.3.1.

Remark 5.3.5. The expression (5.3.7) shows that the two-component production-inventory-
replenishment system is separable, the steady states of the production network and the
inventory-replenishment complex decouple asymptotically.
The explicit formula (5.3.9) for θ shows that in fact there exists a three-term product

structure, and that moreover the equilibrium for the integrated model is stratified. In the
upper stratum, we have two independent vectors for production and inventory-replenish-
ment, the latter splits into two products, a factor for the subsystem comprising the
inventories and a factor for the replenishment subsystem.
In the lower stratum each of the three factors of the upper stratum is decomposed com-

pletely in “single-component” factors concerning the production servers, the inventories,
and the replenishment servers. It should be noted that the factors for the inventories
and the replenishment servers do not indicate internal independence, but they are of
product form as the celebrated conditionally independent coordinates in the equilibrium
of Gordon-Newell networks (see Theorem A.2.6). Remark 5.3.2 may explain to a certain
extend the conditional independence inside of θ.
Representation (5.3.8) shows that the equilibrium for the production subsystem decom-

poses in true independent coordinates. A product structure of the stationary distribution
as

ξ(n) =
∏
j∈J

ξj(nj) =
∏
j∈J

C−1
j

nj∏
`=1

λj
µj(`)

is commonly found for standard Jackson networks (see Theorem A.2.2) and their relatives.
In Jackson networks servers are “non-idling”, i.e. they are always busy as long as customers
are present at the respective node. In our production network, however, servers may be
idle while there are customers waiting because a replenishment needs to arrive first.
Consequently, the product form (5.3.7) has been unexpected to us.
Our production-inventory-replenishment system can be considered as a “Jackson net-

work in a random environment” in [KDO16, Section 4]. We can interpret the inventory-
replenishment subsystem, which contributes via θ to Theorem 5.3.4, as a “random envir-
onment” for the production network of nodes J , which is a Jackson network of parallel
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5.4. Cost analysis

servers (for more details see Appendix A.3). Taking into account the results of [KDO16,
Theorem 4.1] we conclude from the hindsight that decoupling of the queueing process
(X1, . . . , XJ) and the process (Y1, . . . , YJ ,WJ+1, . . . ,WJ+M ), i.e. the formula (5.3.7), is a
consequence of that Theorem 4.1. It should be noted that the three-term structure of the
upper stratum of the product form steady state π in Theorem 5.3.4 can not be obtained
from the general theory.
Our direct proof of Theorem 5.3.4 is much shorter than embedding the present model

into the general framework of [KDO16].
The structural properties from Section 2.6.1 (ergodicity) and Section 2.6.5 (insensitivity

and robustness) hold word-by-word for this integrated system as well.

5.4. Cost analysis

We consider the following cost structure for inventory, production, and replenishment.
The total costs at location j ∈ J consist of shortage costs cls,j for each lost customer,
waiting costs cw,j per unit of time for each customer in the system (waiting or in service),
capacity costs cs,j per unit of time for providing inventory storage space (e.g. rent, in-
surance), holding costs ch,j per unit of time for each unit that is kept on inventory. The
unit holding costs per item at workstation m ∈ M of the supplier network are ch,m. All
cls,j , cw,j , cs,j , ch,j , ch,m are positive.
Therefore, the global cost function fb : NJ0 ×K −→ R+

0 per unit of time is

fb (n,k) =

∑
j∈J̄

fbj (nj , kj) +
∑
m∈M

fm(km)

 (5.4.1)

with cost functions fbj : N0 ×Kj −→ R+
0 per unit of time at location j with base stock

level bj

fbj (nj , kj) = cw,j · nj + cs,j · bj + ch,j ·#kj + cls,j · λj · 1{#kj=0}

and fm : Km −→ R+
0 at workstation m of the supplier network per unit of time

fm(km) = ch,m ·#km.

We are interested in the long time average costs of the system as a function of the base
stock levels b = (b1, . . . , bJ), which are considered as the main decision variables.

Lemma 5.4.1. Optimal solutions for minimizing the asymptotic average costs with (5.4.1)
are the elements in the set

arg min (g(b))

with

g(b) :=
∑
j∈J̄

cs,j · bj +
∑
k∈K

∑
j∈J̄

cls,j · λj · 1{#kj=0} +
∑

j∈J∪M

ch,j ·#kj

 · θ(k).

Proof. The structure of the proof is analogue to the proof of Lemma 2.5.1 whereby the
costs for the workstations in the supplier network have to be considered. A detailed proof
is presented in [OKD14, Lemma 5, pp. 16f.].
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6. Supplier with symmetric server

In this chapter, we look at the aggregation of the supplier network. We can substitute
the complex supplier network of Chapter 5 by only one node — a supplier who consists
of a symmetric server.

6.1. Related literature and own contributions

The definition of the symmetric server follows Kelly [Kel79, Chapter 3] and is a well-
known service discipline in network theory. Kelly’s symmetric server is a generalization
and unification of the nodes that are used to built the BCMP networks, which allow for
non-exponential service times (cf. [Dad01b, Remark 9.5, p. 349]):

• Processor sharing:
The capacity of the server is equally shared between the customers.

• Last-come, first-served preemptive resume (LCFS-PR):
A newly arriving customer interrupts immediately an ongoing service. The pre-
empted customer has to wait until the service of the newly arrived customer and
his descendants is finished. Then the service of the preempted customer is resumed.

• Infinite server:
There are infinitely many servers, so newly arriving customers do not need to wait
for a server.

The symmetric server enables to deal with non-exponential type-dependent service time
distribution for different order types.

Our reduction of the supplier network in the supply chain is analogous to Norton’s
theorem proved by Chandy et al. [CHW75]. They construct an “equivalent” network
in which all the “uninteresting” queues outside of a predetermined subnetwork of special
interest are replaced by one composite queue with a FCFS (or processor sharing) discipline
and an appropriate service rate such that the behaviour of the subsystem of special interest
in the equivalent network is identical with those in the original network. Norton’s theorem
holds for certain classes of queueing networks that satisfy local balance.
Towsley ([Tow75, Section 4.5, pp. 67ff.], [Tow80, Section 5, pp. 331ff.]) presents it in

an extended form for locally balanced networks with state-dependent routing. Further
extensions are summarised by Huisman and Boucherie [HB11, pp. 315ff.].
The critical view of Balsamo and Isazeolla [BI83] on the exact aggregation shows that

the aggregation does not introduce computational savings in parametric analysis.
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6. Supplier with symmetric server

Our main contributions are the following:
We develop a Markov process model of a complex supply chain and derive its stationary
distribution of the joint queueing-inventory process in explicit product form. A cost
analysis and an eventual optimization can be performed as for the basic model in Section
5.4 on page 137. The symmetric server is a versatile model for the supplier network.
To the best of our knowledge, symmetric servers have not been considered so far in the
context of complex supply chains.

6.2. Description of the general model

The supply chain of interest is depicted in Figure 6.2.1. We have a set of locations
J := {1, 2, . . . , J}. Each of the locations consists of a production system with an attached
inventory. The inventories are replenished by a single central supplier, which is referred
to as workstation J+1 and manufactures raw material for all locations, but distinguishes
between the replenishment orders from different locations. Each order of raw material is
specified by a location j ∈ J and the resulting raw material is sent to the location which
has placed the order.

Location 1

Location 

Single 
server

Single 
server

Waiting room

Lost 
sales

Lost 
sales

 Replenishment order

 Replenish
ment order

Demand arrival 
process

Demand arrival 
process

Inventory

Inventory

Replenishment

Replenishment

Waiting room

Supplier

Symmetric 
server

Figure 6.2.1.: Supply chain with base stock policy

Facilities in the supply chain. Each production system j ∈ J consists of a single
server (machine) with infinite waiting room that serves customers on a make-to-order
basis under a first-come, first-served (FCFS) regime. Customers arrive one by one at
production system j according to a Poisson process with rate λj > 0 and require service.
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6.2. Description of the general model

To satisfy a customer’s demand the production system needs exactly one item of raw ma-
terial, which is taken from the associated local inventory. When a new customer arrives
at a location while the previous customer’s order is not finished, this customer will wait.
If the inventory is depleted at location j, the customers who are already waiting in line
will wait, but new arriving customers at this location will decide not to join the queue
and are lost (“local lost sales”).

The service requests at the locations are exponentially-1 distributed. All service re-
quests constitute an independent family of random variables which are independent of
the arrival streams. The service at location j ∈ J is provided with local queue-length-
dependent intensity. If there are nj > 0 customers present at location j either waiting or
in service (if any) and if the inventory is not depleted, the service intensity is µj(nj) > 0.
If the server is ready to serve a customer who is at the head of the line, and the inven-
tory is not depleted, the service immediately starts. Otherwise, the service starts at the
instant of time when the next replenishment arrives at the local inventory.

The inventory at location j ∈ J is controlled by prescribing a local base stock level
bj ≥ 1, which is the maximal size of the inventory there, we denote b :=

(
bj : j ∈ J

)
.

The central supplier (which is referred to as workstation J + 1) consists of a symmetric
server. The systems under investigation differ with respect to the service time distribution
of the central supplier in the following way:

• phase-type distribution (Section 6.3),

• exponential distribution (Section 6.4), whereby it is a special case of the phase-type
distribution.

Routing in the supply chain. A served customer departs from the system immediately,
and the associated consumed raw material is removed from the inventory, and an order
of one unit is placed at the central supplier at this time instant (“base stock policy”).
To distinguish orders from different locations, we mark each order by a “type” which

for simplicity is the index of the location where the order is triggered.

The symmetric service discipline to be considered follows Kelly [Kel79, Chapter 3] and
is defined as follows: There is a queue with

∑
j∈J bj positions, where orders may reside.

The positions are numbered 1, 2, . . ., and if there are #kJ+1 > 0 orders at the central
supplier (either waiting or in service), they occupy positions 1, 2, . . . ,#kJ+1.
If there are #kJ+1 orders present, then the central supplier offers a service capacity

φ(#kJ+1) > 0, φ(0) = 0. This service capacity is allocated to orders at the central
supplier according to some function c(·,#kJ+1): The order on position p yields a portion
c(p,#kJ+1) ∈ [0, 1] of the offered service capacity,

∑#kJ+1

p=1 c(p,#kJ+1) = 1.
If there are #kJ+1 orders present and an arrival of a new order at the central supplier

occurs, the new order is placed on some position p ∈ {1, 2, . . . ,#kJ+1+1} with probability
c(p,#kJ+1 + 1). Orders previously on positions p, p + 1, . . . ,#kJ+1 are shifted to one
step up into positions p+ 1, p+ 2, . . . ,#kJ+1 + 1.
If there are #kJ+1 > 0 orders present and the service time of the order on position

p ∈ {1, . . . ,#kJ+1} expires, this order immediately departs from the central supplier and
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6. Supplier with symmetric server

is sent to location t(J+1)p, which has triggered the order. t(J+1)p ∈ J is the type of the
order on position p. Orders previously on positions p + 1, p + 2, . . . ,#kJ+1 are shifted
one step down into positions p, p+ 1, . . . ,#kJ+1 − 1.

It is assumed that transmission times for orders are negligible and set to zero and that
transportation times between the central supplier and the local inventories are negligible.
The usual independence assumptions are assumed to hold as well.

6.3. Phase-type distributed service time

In this section, we study the queueing-inventory system as described in Section 6.2, where
an order triggered by location j ∈ J requests for an amount of service time which is phase-
type distributed. The mean service time request of type j is ν−1

j .
We consider service time distributions of the following phase-type which are sufficiently

versatile to approximate any distribution on R+
0 arbitrary close. The next definition is

based on [Dad01b, Definition 9.2 , pp. 347f.].

Definition 6.3.1. For h ∈ N and βj > 0 let

Γβj ,h(s) = 1− e−βjs
h−1∑
i=0

(βjs)
i

i!
, s ≥ 0,

denote the cumulative distribution function of the Γ-distribution with parameters βj and
h. The parameter h is a positive integer and serves as a phase-parameter for the number
of independent exponential phases, each with mean β−1

j , the sum of which constitutes
a random variable with distribution Γβj ,h. (Γβj ,h is called a h-stage Erlang distribution
with scale parameter βj .)
We consider the following class of distributions on (R+

0 ,B
+
0 ), which is dense with respect

to the topology of weak convergence of probability measures in the set of all distributions
on (R+

0 ,B
+
0 ) [Sch73, Section I.6]. For βj ∈ (0,∞), Hj ∈ N and probability bj(·) on

{1, . . . ,Hj} with bj(Hj) > 0 let the cumulative distribution function

Bj(s) =

Hj∑
`=1

bj(`) · Γβj ,`(s), s ≥ 0,

denote a phase-type distribution function. With varying βj , Hj and bj(·) we can approxi-
mate any distribution on (R+

0 ,B
+
0 ) sufficiently close.
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6.3. Phase-type distributed service time

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by Xj(t) the number of customers present at location j ∈ J at time
t ≥ 0 either waiting or in service (queue length). By Yj(t) we denote the contents of the
inventory at location j ∈ J at time t ≥ 0. By WJ+1(t) we denote the sequence of orders
at the central supplier at time t ≥ 0.

We denote by KJ+1 the set of possible states at the central supplier (local state space).
The state

kJ+1 :=
[
t(J+1)1, h(J+1)1; . . . ; t(J+1)#kJ+1

, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1 orders

∈ KJ+1

indicates that there are #kJ+1 orders at the supplier and on position p ∈ {1, . . . ,#kJ+1}
resides an order of type t(J+1)p ∈ J requesting for exactly h(J+1)p ∈

{
1, . . . ,Ht(J+1)p

}
fur-

ther independent exponential phases of service, each with mean β−1
t(J+1)p

. More precisely,
t(J+1)1 is the order at the head of the line, that is in service and t(J+1)#kJ+1

is the order
at the tail of the line.

Notational convention. To enhance readability, we use a unified notation for the
states of the inventories at the locations and the state of the workstation at the central
supplier. Therefore, if at time t ≥ 0 the inventory size of j ∈ J is Yj(t) = #kj , then the
blown up state of the inventory at location j ∈ J is

kj = [j; . . . ; j]︸ ︷︷ ︸
#kj items

∈ Kj .

The global states of the inventory-replenishment subsystem are then

k =
( inventories

at locations︷ ︸︸ ︷
k1, . . . , kJ ,

central
supplier︷︸︸︷
kJ+1

)
∈ K ⊆

J+1∏
j=1

Kj ,

where Kj denotes the local state space at j, K denotes the feasible states composed of
feasible local states.
For #kj = 0, j ∈ J , we read

[j; . . . ; j] =: [0]

and for #kJ+1 = 0 we read[
t(J+1)1, h(J+1)1; . . . ;h(J+1)#kJ+1

, h(J+1)#kJ+1

]
=: [0].

We define the joint queueing-inventory process of this system by

Z = ((X1(t), . . . , XJ(t), Y1(t), . . . , YJ(t),WJ+1(t)) : t ≥ 0) .

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process, which we assume to be irreducible and regular. The state space of Z is

E =
{

(n,k) : n ∈ NJ0 , k ∈ K
}
.
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6. Supplier with symmetric server

6.3.1. Limiting and stationary behaviour

The queueing-inventory process Z has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n,k) ∈ E, where a typical state is

(n,k) =
(
n,

inventories
at locations︷ ︸︸ ︷

[1; . . . ; 1]︸ ︷︷ ︸
#k1 items

, . . . , [J ; . . . ; J ]︸ ︷︷ ︸
#kJ items

,

central supplier︷ ︸︸ ︷[
t(J+1)1, h(J+1)1; . . . ;h(J+1)#kJ+1

, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1 orders

)
(6.3.1)

and we will impose necessary restrictions if needed:

• Arrival of a customer at location i ∈ J ,
which happens only if the inventory at this location is not empty because of the
lost sales rule:

q ((n,k); (n+ei,k)) = λi · 1{#ki>0}, i ∈ J.

• Service completion of a customer at location i ∈ J ,
which happens only if there is at least one customer at location i and the inventory
there is not empty,
i.e. from location i, where #ki > 0 items are present, a customer departs and an
item of raw material is removed from the associated local inventory,
in addition a replenishment order is sent to the central supplier, where #kJ+1 orders
have been present, more precisely the order moves into position ` with probability
c(`,#kJ+1 + 1) and orders previously in positions `, `+ 1, . . . ,#kJ+1 move to pos-
itions `+ 1, `+ 2, . . . ,#kJ+1 + 1 and the order has to obtain h̃ phases of service at
the central supplier with probability bi(h̃):

q

((
n, [1; . . . ; 1]︸ ︷︷ ︸

#k1

, . . . , [i; . . . ; i]︸ ︷︷ ︸
#ki>0

, . . . , [J ; . . . ; J ]︸ ︷︷ ︸
#kJ

,

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`, h(J+1)`; . . . ; t(J+1)#kJ+1

, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1

)
;

(
n−ei, [1; . . . ; 1]︸ ︷︷ ︸

#k1

, . . . , [i; . . . ; i]︸ ︷︷ ︸
#ki−1

, . . . , [J ; . . . ; J ]︸ ︷︷ ︸
#kJ

,

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`−1, h(J+1)`−1; i, h̃; t(J+1)`, h(J+1)`; . . . ; t(J+1)#kJ+1

]
︸ ︷︷ ︸

#kJ+1+1

))

= µi(ni) · c(`,#kJ+1 + 1) · bi(h̃) · 1{ni>0} · 1{#ki>0}, i ∈ J, ` ∈ {1, . . . ,#kJ+1}.
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6.3. Phase-type distributed service time

• Phase completion of an order on position ` at the central supplier,
which happens only if there is at least one order, i.e. either

- if h(J+1)` = 1, i.e. the order on position ` of type t(J+1)` is in its last phase of
service,
i.e. from the central supplier, where #kJ+1 orders are present, this order is removed
and an item of raw material is sent to the inventory at location t(J+1)` ∈ J , where
#kt(J+1)`

items have already been present, in addition orders previously on positions
`, `+ 1, . . . ,#kJ+1 move to positions `− 1, `+ 1, . . . ,#kJ+1 − 1:

q

((
n, [1; . . . ; 1]︸ ︷︷ ︸

#k1

, . . . ,
[
t(J+1)`; . . . ; t(J+1)`

]︸ ︷︷ ︸
#kt(J+1)`

, . . . , [J ; . . . ; J ]︸ ︷︷ ︸
#kJ

,

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`−1, h(J+1)`−1; t(J+1)`, 1; t(J+1)`+1, h(J+1)`+1; . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1>0

)
;

(
n, [1; . . . ; 1]︸ ︷︷ ︸

#k1

, . . . ,
[
t(J+1)`; . . . ; t(J+1)`; t(J+1)`

]︸ ︷︷ ︸
#kt(J+1)`

+1

, . . . , [J ; . . . ; J ]︸ ︷︷ ︸
#kJ

,

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`−1, h(J+1)`−1; t(J+1)`+1, h(J+1)`+1; . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1−1

))

= βt(J+1)`
· φ(#kJ+1) · c(`,#kJ+1) · 1{

#kt(J+1)`
<bt(J+1)`

}, ` ∈ {1, . . . ,#kJ+1},

- or if h(J+1)` > 1, i.e. the service of the order on position ` of type t(J+1)` is not in
its last phase of service, therefore the phase of this order is shifted one step down:

q

((
n, [1; . . . ; 1]︸ ︷︷ ︸

#k1

, . . . , [J ; . . . ; J ]︸ ︷︷ ︸
#kJ

,

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`−1, h(J+1)`−1; t(J+1)`, h(J+1)`; t(J+1)`+1, h(J+1)`+1; . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1>0

)
;

(
n, [1; . . . ; 1]︸ ︷︷ ︸

#k1

, . . . , [J ; . . . ; J ]︸ ︷︷ ︸
#kJ

,

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`−1, h(J+1)`−1; t(J+1)`, h(J+1)` − 1; t(J+1)`+1, h(J+1)`+1; . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1>0

))

= βt(J+1)`
· φ(#kJ+1) · c(`,#kJ+1) · 1{

#kt(J+1)`
<bt(J+1)`

} · 1{h(J+1)`>1}, ` ∈ {1, . . . ,#kJ+1}.

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.
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Proposition 6.3.2. The strictly positive measure x := (x (n,k) : (n,k) ∈ E) with

x (n,k) = ξ̃(n) · θ̃ (k) , (6.3.2)

where

ξ̃ (n) =
∏
j∈J

ξ̃j(nj), ξ̃j(nj) =

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (6.3.3)

θ̃(k) =
∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
`=1

 1

βt(J+1)`
· φ(`)

·
Ht(J+1)`∑
h̃=h(J+1)`

bt(J+1)`
(h̃)

 , k ∈ K, (6.3.4)

solves the global balance equations x ·Q = 0 and is therefore stationary for Z.

Proof. Let us recall some notation:
• It will sometimes be convenient to use the elaborate notation:

k =
( inventories

at locations︷ ︸︸ ︷
k1, . . . , kJ ,

central
supplier︷ ︸︸ ︷
kJ+1

)

=

( inventories
at locations︷ ︸︸ ︷

[1; . . . ; 1]︸ ︷︷ ︸
#k1 items

, . . . , [J ; . . . ; J ]︸ ︷︷ ︸
#kJ items

,

central supplier︷ ︸︸ ︷[
t(J+1)1, h(J+1)1; . . . ;h(J+1)#kJ+1

, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1 orders

)
.

• The states of the inventories at the locations j ∈ J are of the form [j; . . . ; j] since
there is only raw material of type j at location j.

Note the redundancy of some indicator functions in the global balance equations. We
prefer to carry all indicator functions with because it makes it much easier to follow the
proof of the stationary distribution.

The global balance equations x·Q = 0 of the stochastic queueing-inventory process
Z are given for (n,k) ∈ E from (6.3.1) by

flux out of the state (n,k) through:

• an arrival of a customer at location i ∈ J
if the inventory at this location is not empty (i.e. #ki > 0) because of the lost sales rule,

• a service completion of a customer at location i ∈ J
if there is at least one customer (i.e. ni > 0)
and the inventory at this location is not empty (i.e. #ki > 0),
• a completion of a phase of an order on position ` at the central supplier
if there is at least one order of type t(J+1)` (i.e. #kt(J+1)`

< bt(J+1)`
):

x
(
n,k

)
·
(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) ·

=1︷ ︸︸ ︷
#kJ+1+1∑
`=1

c(`,#kJ+1 + 1) ·

=1︷ ︸︸ ︷
Hi∑
h̃=1

bi(h̃) ·1{ni>0} · 1{#ki>0}

+

#kJ+1∑
`=1

βt(J+1)`
· φ(#kJ+1) · c(`,#kJ+1) · 1{

#kt(J+1)`
<bt(J+1)`

})
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= flux into the state (n,k) through:

• an arrival of a customer at location i ∈ J
if in state (n,k) there is at least one customer at location i (i.e. ni > 0)
and the inventory at this location is not empty (i.e. #ki > 0):

∑
i∈J

x
(
n−ei,k

)
· λi · 1{#ki>0} · 1{ni>0}

• a service completion of a customer at location t(J+1)` ∈ J
if in state (n,k) there is at least one order at the central supplier (i.e. #kJ+1 > 0)
and the order on position ` is of type t(J+1)` and in phase h(J+1)`

(i.e. a customer departs from location t(J+1)`

and an item is removed from the associated local inventory there
and an order is sent to position ` in the queue of the central supplier
and obtain h(J+1)` phases):

+

#kJ+1∑
`=1

x
(
n + et(J+1)`

, [1; . . . ; 1], . . . ,
[
t(J+1)`; . . . ; t(J+1)`

]︸ ︷︷ ︸
#kt(J+1)`

+1

, . . . , [J ; . . . ; J ],

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)(`−1), h(J+1)(`−1); t(J+1)(`+1), h(J+1)(`+1); . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1−1

)
· µt(J+1)`

(nt(J+1)`
+ 1) · c(`,#kJ+1) · bt(J+1)`

(h(J+1)`) · 1{#kt(J+1)`
<bt(J+1)`

}

• phase completion of an order at the central supplier
if in state (n,k) there is at least one order at the central supplier (i.e. #kJ+1 > 0)
and the order on position ` is of type t(J+1)` and in phase h(J+1)` < Ht(J+1)`

(i.e. the phase of the order on position ` is shifted one step down):

+

#kJ+1∑
`=1

x
(
n, [1; . . . ; 1], . . . , [J ; . . . ; J ],[

t(J+1)1, h(J+1)1; . . . ; t(J+1)(`−1)h(J+1)(`−1); t(J+1)`, h(J+1)` + 1; t(J+1)(`+1), h(J+1)(`+1); . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1>0

)
· βt(J+1)`

· φ(#kJ+1) · c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}
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• a replenishment of the inventory at location i ∈ J
if in state (n,k) there is at least one item of raw material at location i (i.e. #ki > 0)
(i.e. an order of type i is in its last phase, i.e. it is removed from the central supplier
and is sent to the inventory at location i):

+
∑
i∈J

#kJ+1+1∑
`=1

x
(
n, [1; . . . ; 1], . . . , [i; . . . ; i]︸ ︷︷ ︸

#ki−1

, . . . , [J ; . . . ; J ],

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`−1, h(J+1)`−1; i, 1; t(J+1)`, h(J+1)`; . . . ; t(J+1)#kJ+1

, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1+1

)
· βi · φ(#kJ+1 + 1) · c(`,#kJ+1 + 1) · 1{#ki>0}.

It has to be shown that the stationary measure (6.3.2) with (6.3.3) and (6.3.4) satisfies
these global balance equations. Some of the changes are highlighted for reasons of clarity
and comprehensibility.
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Substitution of (6.3.2) and (6.3.3) into the global balance equations directly leads to∏
j∈J

ξ̃j(nj)

 · θ̃(k) ·
(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{#ki>0}

+

#kJ+1∑
`=1

βt(J+1)`
· φ(#kJ+1) · c(`,#kJ+1) · 1{

#kt(J+1)`
<bt(J+1)`

})

=
∑
i∈J

 ∏
j∈J\{i}

ξ̃j(nj)

 · ξ̃i(ni − 1) · θ̃(k) · λi · 1{#ki>0} · 1{ni>0}

+

#kJ+1∑
`=1

 ∏
j∈J\{t(J+1)`}

ξ̃j(nj)

 · ξ̃t(J+1)`
(nt(J+1)`

+ 1)

· θ̃
(

[1; . . . ; 1], . . . ,
[
t(J+1)`; . . . ; t(J+1)`

]︸ ︷︷ ︸
#kt(J+1)`

+1

, . . . , [J ; . . . ; J ],

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)(`−1), h(J+1)(`−1); t(J+1)(`+1), h(J+1)(`+1); . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1−1

)
· µt(J+1)`

(nt(J+1)`
+ 1) · c(`,#kJ+1) · bt(J+1)`

(h(J+1)`) · 1{#kt(J+1)`
<bt(J+1)`

}

+

#kJ+1∑
`=1

∏
j∈J

ξ̃j(nj)


· θ̃
(

[1; . . . ; 1], . . . , [J ; . . . ; J ],[
t(J+1)1, h(J+1)1; . . . ; t(J+1)(`−1)h(J+1)(`−1); t(J+1)`, h(J+1)` + 1; t(J+1)(`+1), h(J+1)(`+1); . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1>0

)
· βt(J+1)`

· φ(#kJ+1) · c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}

+
∑
i∈J

#kJ+1+1∑
`=1

∏
j∈J

ξ̃j(nj)


· θ̃
(

[1; . . . ; 1], . . . , [i; . . . ; i]︸ ︷︷ ︸
#ki−1

, . . . , [J ; . . . ; J ],

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`−1, h(J+1)`−1; i, 1; t(J+1)`, h(J+1)`; . . . ; t(J+1)#kJ+1

, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1+1

)
· βi · φ(#kJ+1 + 1) · c(`,#kJ+1 + 1) · 1{#ki>0}.
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By substitution of (6.3.3) we obtain∏
j∈J

ξ̃j(nj)

 · θ̃(k) ·
(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{#ki>0}

+

#kJ+1∑
`=1

βt(J+1)`
· φ(#kJ+1) · c(`,#kJ+1) · 1{

#kt(J+1)`
<bt(J+1)`

})

=
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃(k) · µi(ni) · 1{#ki>0} · 1{ni>0}

+

#kJ+1∑
`=1

∏
j∈J

ξ̃j(nj)


· θ̃
(

[1; . . . ; 1], . . . ,
[
t(J+1)`; . . . ; t(J+1)`

]︸ ︷︷ ︸
#kt(J+1)`

+1

, . . . , [J ; . . . ; J ],

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)(`−1), h(J+1)(`−1); t(J+1)(`+1), h(J+1)(`+1); . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1−1

)
· λt(J+1)`

· c(`,#kJ+1) · bt(J+1)`
(h(J+1)`) · 1{#kt(J+1)`

<bt(J+1)`

}

+

#kJ+1∑
`=1

∏
j∈J

ξ̃j(nj)


· θ̃
(

[1; . . . ; 1], . . . , [J ; . . . ; J ],[
t(J+1)1, h(J+1)1; . . . ; t(J+1)(`−1)h(J+1)(`−1); t(J+1)`, h(J+1)` + 1; t(J+1)(`+1), h(J+1)(`+1); . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1>0

)
· β(J+1)` · φ(#kJ+1) · c(`,#kJ+1) · 1{

#kt(J+1)`
<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}

+
∑
i∈J

#kJ+1+1∑
`=1

∏
j∈J

ξ̃j(nj)


· θ̃
(

[1; . . . ; 1], . . . , [i; . . . ; i]︸ ︷︷ ︸
#ki−1

, . . . , [J ; . . . ; J ],

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`−1, h(J+1)`−1; i, 1; t(J+1)`, h(J+1)`; . . . ; t(J+1)#kJ+1

, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1+1

)
· βi · φ(#kJ+1 + 1) · c(`,#kJ+1 + 1) · 1{#ki>0}.
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Cancelling
(∏

j∈J ξ̃j(nj)
)
and the sums with the terms µi(ni) · 1{ni>0} · 1{#ki>0} on both

sides of the equation leads to

θ̃(k) ·
(∑
i∈J

λi · 1{#ki>0} +

#kJ+1∑
`=1

βt(J+1)`
· φ(#kJ+1) · c(`,#kJ+1) · 1{

#kt(J+1)`
<bt(J+1)`

})

=

#kJ+1∑
`=1

θ̃
(

[1; . . . ; 1], . . . ,
[
t(J+1)`; . . . ; t(J+1)`

]︸ ︷︷ ︸
#kt(J+1)`

+1

, . . . , [J ; . . . ; J ],

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)(`−1), h(J+1)(`−1); t(J+1)(`+1), h(J+1)(`+1); . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1−1

)
· λt(J+1)`

· c(`,#kJ+1) · bt(J+1)`
(h(J+1)`) · 1{#kt(J+1)`

<bt(J+1)`

}

+

#kJ+1∑
`=1

θ̃
(

[1; . . . ; 1], . . . , [J ; . . . ; J ],[
t(J+1)1, h(J+1)1; . . . ; t(J+1)(`−1)h(J+1)(`−1); t(J+1)`, h(J+1)` + 1; t(J+1)(`+1), h(J+1)(`+1); . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1>0

)
· βt(J+1)`

· φ(#kJ+1) · c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}

+
∑
i∈J

#kJ+1+1∑
`=1

θ̃
(

[1; . . . ; 1], . . . , [i; . . . ; i]︸ ︷︷ ︸
#ki−1

, . . . , [J ; . . . ; J ],

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`−1, h(J+1)`−1; i, 1; t(J+1)`, h(J+1)`; . . . ; t(J+1)#kJ+1

, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1+1

)
· βi · φ(#kJ+1 + 1) · c(`,#kJ+1 + 1) · 1{#ki>0}. (6.3.5)
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By substitution of (6.3.4) we obtain for the third summand on the right side of (6.3.5)

∑
i∈J

#kJ+1+1∑
`=1

θ̃
(

[1; . . . ; 1], . . . , [i; . . . ; i]︸ ︷︷ ︸
#ki−1

, . . . , [J ; . . . ; J ],

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)`−1, h(J+1)`−1; i, 1; t(J+1)`, h(J+1)`; . . . ; t(J+1)#kJ+1

, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1+1

)
·βi · φ(#kJ+1 + 1) · c(`,#kJ+1 + 1) · 1{#ki>0}

=
∑
i∈J

#kJ+1+1∑
`=1

∏
j∈J

(
1

λj

)#kj

· λi ·
#kJ+1∏
m=1

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)


·

 1

βi · φ(#kJ+1 + 1)
·
Hi∑
h̃=1

bi(h̃)

 · βi · φ(#kJ+1 + 1) · c(`,#kJ+1 + 1) · 1{#ki>0}

=
∑
i∈J

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)


︸ ︷︷ ︸

=θ̃(k)

·

 Hi∑
h̃=1

bi(h̃)


︸ ︷︷ ︸

=1

·
#kJ+1+1∑
`=1

c(`,#kJ+1 + 1)︸ ︷︷ ︸
=1

·λi · 1{#ki>0}

=
∑
i∈J

θ̃(k) · λi · 1{#ki>0}. (6.3.6)
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By substitution of (6.3.4) we obtain for the second summand on the right side of (6.3.5)

#kJ+1∑
`=1

θ̃
(

[1; . . . ; 1], . . . , [J ; . . . ; J ],[
t(J+1)1, h(J+1)1; . . . ; t(J+1)(`−1)h(J+1)(`−1); t(J+1)`, h(J+1)` + 1; t(J+1)(`+1), h(J+1)(`+1); . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1>0

)
·βt(J+1)`

· φ(#kJ+1) · c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}

=

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1
m6=`

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)



·

 1

βt(J+1)`
· φ(#kJ+1)

·
Ht(J+1)`∑

h̃=h(J+1)`+1

bt(J+1)`
(h̃)


·βt(J+1)`

· φ(#kJ+1) · c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}

=

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1
m6=`

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)

 ·
 Ht(J+1)`∑
h̃=h(J+1)`+1

bt(J+1)`
(h̃)


·c(`,#kJ+1) · 1{

#kt(J+1)`
<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}. (6.3.7)

153



6. Supplier with symmetric server

By substitution of (6.3.4) we obtain for the first summand on the right side of (6.3.5)

#kJ+1∑
`=1

θ̃
(

[1; . . . ; 1], . . . ,
[
t(J+1)`; . . . ; t(J+1)`

]︸ ︷︷ ︸
#kt(J+1)`

+1

, . . . , [J ; . . . ; J ],

[
t(J+1)1, h(J+1)1; . . . ; t(J+1)(`−1), h(J+1)(`−1); t(J+1)(`+1), h(J+1)(`+1); . . .

. . . ; t(J+1)#kJ+1
, h(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1−1

)
·λt(J+1)`

· c(`,#kJ+1) · bt(J+1)`
(h(J+1)`) · 1{#kt(J+1)`

<bt(J+1)`

}

=

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

· 1

λt(J+1)`

·
#kJ+1∏
m=1
m6=`

 1

βt(J+1)m
· φ(m)

·
H(J+1)tm∑
h̃=h(J+1)m

bt(J+1)m
(h̃)


· λt(J+1)`

· c(`,#kJ+1) · bt(J+1)`
(h(J+1)`) · 1{#kt(J+1)`

<bt(J+1)`

}

=

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1
m6=`

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)


· c(`,#kJ+1) · bt(J+1)`

(h(J+1)`) · 1{#kt(J+1)`
<bt(J+1)`

}

=

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1
m6=`

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)


· c(`,#kJ+1) · bt(J+1)`

(h(J+1)`) · 1{#kt(J+1)`
<bt(J+1)`

} · 1{
h(J+1)`=Ht(J+1)`

}

+

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1
m6=`

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)


· c(`,#kJ+1) · bt(J+1)`

(h(J+1)`) · 1{#kt(J+1)`
<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}

=

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)

 · βt(J+1)`
· φ(#kJ+1)

· c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`=Ht(J+1)`

}

+

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1
m6=`

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)


· c(`,#kJ+1) · bt(J+1)`

(h(J+1)`) · 1{#kt(J+1)`
<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}. (6.3.8)

154



6.3. Phase-type distributed service time

Addition of (6.3.8) and (6.3.7) yields
#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)

 · βt(J+1)`
· φ(#kJ+1)

· c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`=Ht(J+1)`

}

+

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1
m6=`

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)


· c(`,#kJ+1) · bt(J+1)`

(h(J+1)`) · 1{#kt(J+1)`
<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}

+

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1
m6=`

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)

 · Ht(J+1)`∑
h̃=h(J+1)`+1

bt(J+1)`
(h̃)

· c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}

=

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)

 · βt(J+1)`
· φ(#kJ+1)

· c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`=Ht(J+1)`

}

+

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1
m6=`

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)

 · Ht(J+1)`∑
h̃=h(J+1)`

bt(J+1)`
(h̃)

· c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}

=

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)

 · βt(J+1)`
· φ(#kJ+1)

· c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`=Ht(J+1)`

}

+

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)

 · βt(J+1)`
· φ(#kJ+1)

· c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

} · 1{
h(J+1)`<Ht(J+1)`

}

=

#kJ+1∑
`=1

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
m=1

 1

βt(J+1)m
· φ(m)

·
Ht(J+1)m∑
h̃=h(J+1)m

bt(J+1)m
(h̃)


︸ ︷︷ ︸

=θ̃(k)

· βt(J+1)`
· φ(#kJ+1) · c(`,#kJ+1) · 1{

#kt(J+1)`
<bt(J+1)`

}

=

#kJ+1∑
`=1

θ̃(k) ·
(
βt(J+1)`

· φ(#kJ+1) · c(`,#kJ+1) · 1{
#kt(J+1)`

<bt(J+1)`

}). (6.3.9)
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Consequently, because of (6.3.6) and (6.3.9) the right-hand side of (6.3.5) is

∑
i∈J

θ̃(k)·λi·1{#ki>0}+

#kJ+1∑
`=1

θ̃(k)

#kJ+1∑
`=1

βt(J+1)`
·φ(#kJ+1)·c(`,#kJ+1)·1{

#kt(J+1)`
<bt(J+1)`

},
which is obviously the left-hand side.

Inspection of the system (6.3.5) reveals that it is a “generator equation”, i.e. the global
balance equation θ̃ · Qred = 0 for a suitably defined ergodic Markov process on state
space K with “reduced generator” Qred. Because the Markov process generated by Qred

is irreducible the solution of (6.3.5) is unique up to a multiplicative constant, which yields
θ̃.

Recall that the system is irreducible and regular. Therefore, if Z has a stationary and
limiting distribution, this is uniquely defined.

Definition 6.3.3. For the queueing-inventory process Z on state space E, whose limiting
distribution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞

P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ :=
(
ξ (n) : n ∈ NJ0

)
, ξ (n) := lim

t→∞
P ((X1(t), . . . , XJ(t)) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y1(t), . . . , YJ(t),WJ+1(t)) = k) .

Theorem 6.3.4. The queueing-inventory process Z is ergodic if and only if for j ∈ J∑
nj∈N0

nj∏
`=1

λj
µj(`)

<∞.

If Z is ergodic, then its unique limiting and stationary distribution is

π (n,k) = ξ (n) · θ (k) , (6.3.10)

with

ξ (n) =
∏
j∈J

ξj(nj), ξj(nj) = C−1
j

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (6.3.11)

θ(k) = C−1
θ

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
`=1

 1

βt(J+1)`
· φ(`)

·
Ht(J+1)`∑
h̃=h(J+1)`

bt(J+1)`
(h̃)

 , k ∈ K,

(6.3.12)
and normalisation constants

Cj =
∑
nj∈N0

nj∏
`=1

λj
µj(`)

,

Cθ =
∑
k∈K

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
`=1

 1

βt(J+1)`
· φ(`)

·
Ht(J+1)`∑
h̃=h`

bt(J+1)`
(h̃)

 .
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Proof. Z is ergodic, if and only if the strictly positive measure x of the global balance
equation x ·Q = 0 from Proposition 6.3.2 can be normalised (i.e.

∑
n∈N0

∑
k∈K x(n,k) <

∞). Because of Proposition 6.3.2 it holds∑
n∈N0

∑
k∈K

x(n,k) =
∑
n∈N0

ξ̃(n) ·
∑
k∈K

θ̃ (k)

=

∏
j∈J

∑
nj∈N0

nj∏
`=1

λj
µj(`)


·

∑
k∈K

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
`=1

 1

βt(J+1)`
· φ(`)

·
Ht(J+1)`∑
h̃=h(J+1)`

bt(J+1)`
(h̃)


 .

Hence, since K is finite, the measure x from Proposition 6.3.2 can be normalised if and
only if

∑
nj∈N0

∏nj
`=1

λj
µj(`)

<∞ for all j ∈ J .
Consequently, if the process is ergodic, the limiting and stationary distribution π is

given by

π(n,k) =
x(n,k)∑

n∈N0

∑
k∈K x(n,k)

,

where x(n,k) is given in Proposition 6.3.2.

Remark 6.3.5. The expression (6.3.10) shows that the two-component production-inven-
tory-replenishment system is separable, the steady states of the production network and
the inventory-replenishment complex decouple asymptotically.
The explicit formula (6.3.12) for θ shows that in fact there exists a three-term product

structure, and that moreover the equilibrium for the integrated model is stratified. In the
upper stratum, we have two independent vectors for production and inventory-replenish-
ment, the latter splits into two products, a factor for the subsystem comprising the
inventories and a factor for the replenishment subsystem.
In the lower stratum, each of the three factors of the upper stratum is decomposed

completely in “single-component” factors concerning the production servers, the invento-
ries, and the replenishment server. It should be noted that the factors for the inventories
and the replenishment server do not indicate internal independence, but they are of
product form as the celebrated conditionally independent coordinates in the equilibrium
of Gordon-Newell networks (see Theorem A.2.6).
Representation (6.3.11) shows that the equilibrium for the production subsystem de-

composes in true independent coordinates. A product structure of the stationary distri-
bution as

ξ(n) =
∏
j∈J

ξj(nj) =
∏
j∈J

C−1
j

nj∏
`=1

λj
µj(`)

is commonly found for standard Jackson networks (see Theorem A.2.2) and their relatives.
In Jackson networks servers are “non-idling”, i.e. they are always busy as long as customers
are present at the respective node. In our production network, however, servers may be
idle while there are customers waiting because a replenishment needs to arrive first.
Consequently, the product form (6.3.10) has been unexpected to us.
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6. Supplier with symmetric server

Our production-inventory-replenishment system can be considered as a “Jackson net-
work in a random environment” in [KDO16, Section 4]. We can interpret the inventory-
replenishment subsystem, which contributes via θ to Theorem 6.3.4, as a “random environ-
ment” for the production network of nodes J , which is a Jackson network of parallel servers
(for more details see Appendix A.3). Taking into account the results of [KDO16, Theorem
4.1], we conclude from the hindsight that decoupling of the queueing process (X1, . . . , XJ)
and the process (Y1, . . . , YJ ,WJ+1), i.e. the formula (6.3.10), is a consequence of that The-
orem 4.1. It should be noted that the three-term structure of the upper stratum of the
product form steady state π in Theorem 6.3.4 can not be obtained from the general
theory.
Our direct proof of Theorem 6.3.4 is much shorter than embedding the present model

into the general framework of [KDO16].
The structural properties from Section 2.6.1 (ergodicity) and Section 2.6.5 (insensitivity
and robustness) hold word-by-word for this integrated system as well.
Note that in (6.3.12) the term

1

βt(J+1)`

·
Ht(J+1)`∑
h̃=h(J+1)`

bt(J+1)`
(h̃)

represents the stationary residual life time distribution in a stationary renewal process
with life time distribution Bt(J+1)`

.
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6.4. Exponentially distributed service time

6.4. Exponentially distributed service time

As mentioned before by varying the parameters of the phase-type distribution any dis-
tribution on (R+

0 ,B
+
0 ) can be approximated sufficiently close. A phase-type distribution

with one phase is an exponential distribution. In this section, we present the results
for the queueing-inventory system where the service time of the central supplier is ex-
ponentially distributed with type-dependent rate νj , j ∈ J , as described in Section 6.2.
Furthermore, the structural properties from Section 2.6.1 (ergodicity) and Section 2.6.5
(insensitivity and robustness) hold word-by-word for this integrated system as well.

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by Xj(t) the number of customers present at location j ∈ J at time
t ≥ 0 either waiting or in service (queue length). By Yj(t) we denote the contents of the
inventory at location j ∈ J at time t ≥ 0. By WJ+1(t) we denote the sequence of orders
at the central supplier at time t ≥ 0.

We denote by KJ+1 the set of possible states at the central supplier (local state space).
The state

kJ+1 :=
[
t(J+1)1; . . . ; t(J+1)#kJ+1

]
∈ KJ+1

indicates that there are #kJ+1 orders at the supplier and on position p ∈ {1, . . . ,#kJ+1}
resides an order of type t(J+1)p ∈ J . More precisely, t(J+1)1 is the order at the head of
the line, that is in service and t(J+1)#kJ+1

is the order at the tail of the line.

Notational convention. In order to make the reading easier, we will use a unified
notation for the states of the inventories at the locations and the state of the workstation
at the central supplier. Hence, if at time t ≥ 0 the inventory size of j ∈ J is Yj(t) = #kj ,
then the blown up state of the inventory at location j ∈ J is

kj = [j; . . . ; j]︸ ︷︷ ︸
#kj items

∈ Kj .

The global states of the inventory-replenishment subsystem are then

k =
( inventories

at locations︷ ︸︸ ︷
k1, . . . , kJ ,

central
supplier︷︸︸︷
kJ+1

)
∈ K ⊆

J+1∏
j=1

Kj ,

where Kj denotes the local state space at j and K denotes the set of feasible states
composed of feasible local states.
For #kj = 0, j ∈ J , we read

[j; . . . ; j] =: [0]

and for #kJ+1 = 0 we read [
t(J+1)1; . . . ; t(J+1)#k(J+1)

]
=: [0].

We define the joint queueing-inventory process of this system by

Z = ((X1(t), . . . , XJ(t), Y1(t), . . . , YJ(t),WJ+1(t)) : t ≥ 0) .
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6. Supplier with symmetric server

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process, which we assume to be irreducible and regular. The state space of Z is

E =
{

(n,k) : n ∈ NJ0 , k ∈ K
}
.

Definition 6.4.1. For the queueing-inventory process Z on state space E, whose limiting
distribution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞

P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ :=
(
ξ (n) : n ∈ NJ0

)
, ξ (n) := lim

t→∞
P ((X1(t), . . . , XJ(t)) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y1(t), . . . , YJ(t),WJ+1(t)) = k) .

Recall that the system is irreducible and regular. This leads to our main result, which
is a special case of Theorem 6.3.4.

Theorem 6.4.2. The queueing-inventory process Z is ergodic if and only if for j ∈ J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

<∞.

If Z is ergodic, then its unique limiting and stationary distribution is

π (n,k) = ξ (n) · θ (k) , (6.4.1)

with

ξ (n) =
∏
j∈J

ξj(nj), ξj(nj) = C−1
j

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (6.4.2)

θ(k) = C−1
θ

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
`=1

1

νt(J+1)`
· φ(`)

, k ∈ K, (6.4.3)

and normalisation constants

Cj =
∑
nj∈N0

nj∏
`=1

λj
µj(`)

and Cθ =
∑
k∈K

∏
j∈J

(
1

λj

)#kj

·
#kJ+1∏
`=1

1

νt(J+1)`
· φ(`)

.
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7. Production-inventory system with
(rj, Sj)-policy

In Chapter 2 to Chapter 6 we have focused on base stock policies. In classic inventory
theory, several replenishment policies are considered. In this chapter, we look at the (r, S)-
policy. The (r, S)-policy means: If the size of the local inventory is less than or equal
to the reorder level r ≥ 0, a replenishment order is placed instantaneously. With each
replenishment the local inventory level is restocked to exactly S <∞. The maximal size
of the inventory is S. We assume that 0 < S and that there is at most one outstanding
order (r < S). A brief discussion of the advantages and disadvantages can be found
in [SPP98, pp. 238f.] for (r, S)-policy.

7.1. Related literature and own contributions

There are some papers on queueing-inventory systems with (r, S)-policy as we see in
the literature review on page viii, so we repeat only the most relevant sources for our
investigation. For a survey paper we refer to Krishnamoorthy et al. [KLM11].
The most relevant source for our present investigations is the article of Schwarz and

her coauthors [SSD+06]. They investigate M/M/1 systems with inventory management,
exponentially distributed lead times and lost sales. They consider among other replenish-
ment policies the (r, S)-policy. Further, they distinguish between an infinite and a finite
waiting room. They derive stationary distributions of joint queue length and inventory
processes in explicit product form and calculate performance measures of the respective
systems.
Krishnamoorthy and Viswanath study in [KV13] production-inventory systems with

(r, S)-policy, positive service time and lost sales. They derive the joint stationary distri-
bution in explicit product form. They develop a technique where the steady state vector
of the classical M/M/1 system and the steady state vector of a production-inventory
system, where the service is instantaneous and no backlogs are allowed, are combined.
They apply their technique to the models discussed in [SSD+06].

Our main contributions are the following:
The systems under investigation differ with respect to the reorder level and the number
of locations and workstations. In Section 7.3 we analyse a system with (0, Sj)-policy with
J locations a supplier network consisting of M workstations and in Section 7.4 a system
with (1, Sj)-policy with two locations and a supplier network consisting of one worksta-
tion. For these systems we develop Markov process models and derive their stationary
distributions of the joint queueing-inventory processes in explicit product form. A cost
analysis can be performed as for the basic model in Section 5.4 on page 137.
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7. Production-inventory system with (rj , Sj)-policy

The articles in the literature about production-inventory systems with (r, S)-policy are
only single location models. Our results extend their settings to a multi-dimensional
system. Furthermore, the lead time of an order is composed of the waiting times plus the
service times in the supplier network. They are therefore more complex than exponential
lead times considered in the literature.

7.2. Description of the general model

The supply chain of interest is depicted in Figure 7.2.1. We have a set of locations
J := {1, 2, . . . , J}. Each of the locations consists of a production system with an attached
inventory. The inventories are replenished by a supplier network, which consists of a set of
workstations M := {J + 1, . . . , J +M} and manufactures raw material for all locations,
but distinguishes between the replenishment orders from different locations. Each order
of raw material is specified by a location j ∈ J and the resulting raw material is sent
back to the location that has placed the order.

Location 1

Location 

Single 
server

Single 
server

Waiting room

Lost 
sales

Lost 
sales

 Replenishment order

 Replenish
ment order

Demand arrival 
process

Demand arrival 
process

Inventory

Inventory

Replenishment

Replenishment

Waiting room

Supplier with M stations

Figure 7.2.1.: Supply chain with (rj , Sj)-policy at location j

Facilities in the supply chain. Each production system j ∈ J consists of a single
server (machine) with infinite waiting room that serves customers on a make-to-order basis
under a FCFS regime. Customers arrive one by one at production system j according to
a Poisson process with rate λj > 0 and require service. To satisfy a customer’s demand
the production system needs exactly one item of raw material, which is taken from the
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7.2. Description of the general model

associated local inventory. When a new customer arrives at a location while the previous
customer’s order is not finished, this customer will wait. If the inventory is depleted
at location j, the customers who are already waiting in line will wait, but new arriving
customers at this location will decide not to join the queue and are lost (“local lost sales”).

The service requests at the locations are exponentially-1 distributed. All service re-
quests constitute an independent family of random variables which are independent of
the arrival streams. The service at location j ∈ J is provided with local queue-length-
dependent intensity. If there are nj > 0 customers present at location j either waiting or
in service (if any) and if the inventory is not depleted, the service intensity is µj(nj) > 0.
If the server is ready to serve a customer who is at the head of the line and the inventory is
not depleted, the service immediately starts. Otherwise, the service starts at the instant
of time when the next replenishment arrives at the local inventory.

The inventory at location j ∈ J is controlled by the (rj , Sj)-policy. This means, if the
size of the local inventory is less than or equal to the reorder level rj , a replenishment
order is instantaneously placed. With each replenishment the local inventory level is re-
stocked to exactly Sj < ∞. The maximal size of the inventory at location j is Sj . We
assume that Sj > 0 and that there is at most one outstanding order.

The systems under investigation differ with respect to the reorder level and the number
of locations and the number of workstations in the supplier network in the following way:

• (0, Sj)-policy with J locations and M workstations (Section 7.3),

• (1, Sj)-policy with 2 locations and one workstation (Section 7.4).

Routing in the supply chain. A customer departs from the system (with the consumed
material) immediately after the service.
To distinguish orders from different locations, we mark each order by a “type”, which

for simplicity is the index of the location where the order is triggered.
An order triggered by location j ∈ J follows a type-j-dependent route for eventual

replenishment, denoted by r(j) = (r(j, 1), . . . , r(j, S(j)−1), r(j, S(j))), where r(j, `) ∈M
for ` = 2, . . . , S(j) is the identifier of the `-th workstation on the path r(j), and S(j) is
the number of stages of the route of type j. For completeness we fix r(j, 1) := j ∈ J .
The workstation m ∈M consists of a single server and a waiting room under a FCFS

regime. The service requests at the workstations are exponentially-1 distributed. All ser-
vice requests constitute an independent family of random variables which are independent
of the arrival streams. The service at workstation m is provided with local queue-length-
dependent intensity. If there are ` > 0 orders present, the service intensity is νm(`) > 0.

It is assumed that transmission times for orders are negligible and set to zero and that
transportation times between the supplier network and the inventory are negligible.
The usual independence assumptions are assumed to hold as well.

Remark 7.2.1. With respect to economic aspects, if at all workstations m ∈ M it holds
νm(1) = ∞ (≡ “lead time is zero” assumption), a reorder level rj > 0 at all locations
j ∈ J under any policy does not make sense, since rj items of raw material are never
touched by the customers and remain in stock forever (cf. [SSD+06, p. 63]).
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7. Production-inventory system with (rj , Sj)-policy

Remark 7.2.2. These are standard notations. Be careful not to confuse the notations Sj
and S(j) as well as rj and r(j). rj and Sj are parameters from the (rj , Sj)-policy of
location j ∈ J , more precisely rj is the reorder level and Sj is the order-up-to level. r(j)
is the type-j-dependent route (path) for eventual replenishment and S(j) is the number
of states of the route of type j ∈ J . These notations are standard in the literature on
inventory theory on one side and queueing theory on the other side.

7.3. (0, Sj)-policy with J locations and M workstations

In this section, we study the production-inventory system as described in Section 7.2,
where the reorder level rj at location j ∈ J is equal to zero. Therefore, if the local in-
ventory at location j is depleted, a replenishment order is instantaneously placed. With
each replenishment the local inventory level is restocked to exactly Sj <∞. We assume
that 0 < Sj and that there is at most one outstanding order. We denote S :=

(
Sj : j ∈ J

)
.

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by Xj(t) the number of customers present at location j ∈ J at time
t ≥ 0 either waiting or in service (queue length). By Yj(t) we denote the contents of the
inventory at location j ∈ J at time t ≥ 0. By Wm(t) we denote the sequence of orders at
workstation m ∈M of the supplier network at time t ≥ 0.

We denote by Km the set of possible states at node m ∈M (local state space).
The state

km := [tm1, sm1; . . . ; tm#km , sm#km ]︸ ︷︷ ︸
#km orders

∈ Km

indicates that there are #km orders at workstation m ∈M , on position p ∈ {1, . . . ,#km}
resides an order of type tmp ∈ J , which is on stage smp ∈ {1, . . . , S(tmp)} of its route
r(tmp) =

(
r(tmp, 1), . . . , r(tmp, S(tmp))

)
. More precisely, (tm1, sm1) is the order at the

head of the line, which is in service, and (tm#km , sm#km) is the order at the tail of the line.

Notational convention. To improve readability, we use a unified notation for the
states of the inventories at the locations and the states of the workstations in the supplier
network. In doing this we identify items of raw material arriving at the inventory j ∈ J
with the order sent out to the supplier network when an item is consumed by a departing
customer. Therefore, adopting the state description of the workstations for that of the
inventories, the blown up state of the inventory at location j ∈ J at time t ≥ 0 is

Yj(t) = kj = [j, 1; . . . ; j, 1]︸ ︷︷ ︸
#kj items

,

since the route of type j starts in the inventory at location j (i.e. sjp = 1 for all p ∈
{1, . . . ,#kj}). A stage number sjp > 1 indicates that the unit (as an order) is in the
supplier network.
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The global states of the inventory-replenishment subsystem are then

k =
( inventories

at locations︷ ︸︸ ︷
k1, . . . , kJ ,

supplier network︷ ︸︸ ︷
kJ+1, . . . , kJ+M

)
∈ K ⊆

J+M∏
j=1

Kj ,

where Kj denotes the local state space at j ∈ J ∪M and K denotes the feasible states
composed of feasible local states.

For #kj = 0, j ∈ J , we read[
tj1, sj1; . . . ; tj#kj , sj#kj

]
=: [0],

and for #km = 0, m ∈M , we read

[tm1, sm1; . . . ; tm#km , sm#km ] =: [0].

We define the joint queueing-inventory process of this system by

Z = ((X1(t), . . . , XJ(t), Y1(t), . . . , YJ(t),WJ+1(t), . . . ,WJ+M (t)) : t ≥ 0) .

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process, which we assume to be irreducible and regular. The state space of Z is

E =
{

(n,k) : n ∈ NJ0 , k ∈ K
}
.

7.3.1. Limiting and stationary behaviour

The queueing-inventory process Z has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n,k) ∈ E, where a typical state is (we will impose
necessary restrictions if needed)

(n,k) =
(
n, [1, 1; . . . ; 1, 1]︸ ︷︷ ︸

#k1

, . . . , [J, 1; . . . ; J, 1]︸ ︷︷ ︸
#kJ

,

[
t(J+1)1, s(J+1)1; . . . ; t(J+1)#kJ+1

, s(J+1)#kJ+1

]
, . . .

. . . ,
[
t(J+M)1, s(J+M)1; . . . ; t(J+M)#kJ+M , s(J+M)#kJ+M

] )
. (7.3.1)

• Arrival of a customer at location i ∈ J ,
which happens only if the inventory at this location is not empty because of the
lost sales rule:

q ((n,k); (n+ei,k)) = λi · 1{#ki>0}, i ∈ J.
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7. Production-inventory system with (rj , Sj)-policy

• Service completion of a customer at location i ∈ J ,
which happens only if there is at least one customer at location i and either

- if there is one item of raw material present at location i (i.e. #ki = 1),
i.e. from location i (= station r(i, 1)), where #ki = 1 items are present, a customer
departs and an item of raw material is removed from the associated local inventory,
in addition a replenishment order is sent to workstation r(i, 2) ∈M of the supplier
network, where #kr(i,2) units (orders) have already been present:

q

((
n, [1, 1; . . . ; 1, 1]︸ ︷︷ ︸

#k1

, . . . , [i, 1]︸︷︷︸
#ki=1

, . . . , [J, 1; . . . ; J, 1]︸ ︷︷ ︸
#kJ

,

[
t(J+1)1, s(J+1)1; . . . ; t(J+1)#kJ+1

, s(J+1)#kJ+1

]
, . . .

. . . ,
[
tr(i,2)1, sr(i,2)1; . . . ; tr(i,2)#kr(i,2) , sr(i,2)#kr(i,2)

]
︸ ︷︷ ︸

#kr(i,2)

, . . .

. . . ,
[
t(J+M)1, s(J+M)1; . . . ; t(J+M)#kJ+M

, s(J+M)#kJ+M

] )
;(

n−ei, [1, 1; . . . ; 1, 1]︸ ︷︷ ︸
#k1

, . . . , [0]︸︷︷︸
#ki−1=0

, . . . , [J, 1; . . . ; J, 1]︸ ︷︷ ︸
#kJ

,

[
t(J+1)1, s(J+1)1; . . . ; t(J+1)#kJ+1

, s(J+1)#kJ+1

]
, . . .

. . . ,
[
tr(i,2)1, sr(i,2)1; . . . ; tr(i,2)#kr(i,2) , sr(i,2)#kr(i,2) ; i, 2

]
︸ ︷︷ ︸

#kr(i,2)+1

, . . .

. . . ,
[
t(J+M)1, s(J+M)1; . . . ; t(J+M)#kJ+M

, s(J+M)#kJ+M

] ))
= µi(ni) · 1{ni>0} · 1{#ki=1}, i ∈ J. (7.3.2)

Notational convention: For transition rates like the one above we will henceforth
use an abbreviated notation. Using this abbreviation (7.3.2) reads

q

((
n, . . . , [i, 1]︸︷︷︸

#ki=1

, . . . ,
[
tr(i,2)1, sr(i,2)1; . . . ; tr(i,2)#kr(i,2) , sr(i,2)#kr(i,2)

]
︸ ︷︷ ︸

#kr(i,2)

, . . .
)

;

(
n−ei, . . . , [0]︸︷︷︸

#ki−1=0

, . . . ,
[
tr(i,2)1, sr(i,2)1; . . . ; tr(i,2)#kr(i,2) , sr(i,2)#kr(i,2) ; i, 2

]
︸ ︷︷ ︸

#kr(i,2)+1

, . . .
))

= µi(ni) · 1{ni>0} · 1{#ki=1}, i ∈ J.

This means that we will explicitly write only those local states of (n,k) and its
successor state that are relevant for the described transition.
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7.3. (0, Sj)-policy with J locations and M workstations

- or if #ki > 1 items of raw material are present at location i,
i.e. from location i (= station r(i, 1)), where #ki > 1 items are present, a customer
departs and an item of raw material is removed from the associated local inventory:

q

((
n, . . . , [i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki>1

, . . . ,
[
tr(i,2)1, sr(i,2)1; . . . ; tr(i,2)#kr(i,2) , sr(i,2)#kr(i,2)

]
︸ ︷︷ ︸

#kr(i,2)

, . . .
)

;

(
n−ei, . . . , [i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki−1>0

, . . . ,
[
tr(i,2)1, sr(i,2)1; . . . ; tr(i,2)#kr(i,2) , sr(i,2)#kr(i,2)

]
︸ ︷︷ ︸

#kr(i,2)

, . . .
))

= µi(ni) · 1{ni>0} · 1{#ki>1}, i ∈ J.

• Service completion of an order at workstation m ∈M ,
which happens only if there is at least one order,
i.e. from workstation m, where #km orders are present, an order of type tm1 on
stage sm1 of its route is removed and is sent to the next stage sm1 + 1 of its route,
i.e. either

- if sm1 < S(tm1), it is sent to workstation r(tm1, sm1 +1) ∈M , where #kr(tm1,sm1+1)
orders have already been present:

q

((
n, . . . , [tm1, sm1; . . . ; tm#km , sm#km ]︸ ︷︷ ︸

#km>0

, . . .

. . . ,
[
tr(tm1,sm1+1)1, sr(tm1,sm1+1)1; . . .

. . . ; tr(tm1,sm1+1)#kr(tm1,sm1+1)
, sr(tm1,sm1+1)#kr(tm1,sm1+1)

]
︸ ︷︷ ︸

#kr(tm1,sm1+1)

, . . .
)

;

(
n, . . . , [tm2, sm2; . . . ; tm#km , sm#km ]︸ ︷︷ ︸

#km−1

, . . .

. . . ,
[
tr(tm1,sm1+1)1, sr(tm1,sm1+1)1; . . .

. . . ; tr(tm1,sm1+1)#kr(tm1,sm1+1)
, sr(tm1,sm1+1)#kr(tm1,sm1+1)

; tm1, sm1 + 1
]

︸ ︷︷ ︸
#kr(tm1,sm1+1)+1

, . . .
))

= νm(#km) · 1{#km>0} · 1{sm1<S(tm1)}, m ∈M,

- or if sm1 = S(tm1), it is sent to the inventory at location tm1 ∈ J , where #ktm1 = 0
items of raw material have already been present:

q

((
n, . . . , [0]︸︷︷︸

#ktm1

, . . . , [tm1, sm1; . . . ; tm#km , sm#km ]︸ ︷︷ ︸
#km>0

, . . .
)

;

(
n, . . . , [tm1, 1; . . . ; tm1, 1; tm1, 1]︸ ︷︷ ︸

Stm1

, . . . , [tm2, sm2; . . . ; tm#km , sm#km ]︸ ︷︷ ︸
#km−1

, . . .
))

= νm(#km) · 1{#km>0} · 1{sm1=S(tm1)}, m ∈M.
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Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

Proposition 7.3.1. The strictly positive measure x := (x (n,k) : (n,k) ∈ E) with

x (n,k) = ξ̃(n) · θ̃ (k) , (7.3.3)

where

ξ̃(n) =
∏
j∈J

ξ̃j(nj), ξ̃j(nj) =

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (7.3.4)

θ̃(k) =
∏
j∈J

(
1

λj

)1{kj>0}

·
∏
m∈M

#km∏
`=1

1

νm(`)
, k ∈ K, (7.3.5)

solves the global balance equations x ·Q = 0 and is therefore stationary for Z.

Proof. We recall the notation for the inventory-replenishment subsystem. It will some-
times be convenient to use the elaborate notation:

k =
( inventories

at locations︷ ︸︸ ︷
k1, . . . , kJ ,

supplier network︷ ︸︸ ︷
kJ+1, . . . , kJ+M

)

=

( inventories
at locations︷ ︸︸ ︷

[1, 1; . . . ; 1, 1]︸ ︷︷ ︸
#k1 items

, . . . , [J, 1; . . . ; J, 1]︸ ︷︷ ︸
#kJ items

,

supplier network︷ ︸︸ ︷[
t(J+1)1, s(J+1)1; . . . ; t(J+1)#kJ+1

, s(J+1)#kJ+1

]︸ ︷︷ ︸
#kJ+1 orders

, . . .

. . . ,
[
t(J+M)1, s(J+M)1; . . . ; t(J+M)#kJ+M

, s(J+M)#kJ+M

]︸ ︷︷ ︸
#kJ+M orders

)
.

Note the redundancy of some indicator functions in the global balance equations. We
prefer to carry all indicator functions with because it makes it much easier to follow the
proof of the stationary distribution.
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The global balance equations x·Q = 0 of the stochastic queueing-inventory process
Z are given for (n,k) ∈ E from (7.3.1) by

flux out of the state (n,k) through:
• an arrival of a customer at location i ∈ J
if the inventory at this location is not empty (i.e. #ki > 0) because of the lost sales rule,
• a service completion of a customer at location i ∈ J
if there is at least one customer (i.e. ni > 0)
and the inventory at this location is not empty (i.e. #ki > 0),
• a completion of an order at workstation ` ∈M of the supplier network
if there is at least one order at this workstation (i.e. #k` > 0):

x
(
n,k

)
·
(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{#ki>0} +
∑
`∈M

ν`(#k`) · 1{#k`>0}

)

= flux into the state (n,k) through:
• an arrival of a customer at location i ∈ J
if in state (n,k) there is at least one customer at location i (i.e. ni > 0)
and the inventory at this location is not empty (i.e. #ki > 0):

∑
i∈J

x
(
n−ei,k

)
· λi · 1{ni>0} · 1{#ki>0}

• a service completion of a customer at location i ∈ J
if in state (n,k) there is at least one item and at most Si − 1 items of raw material
present at location i (i.e. 0 < #ki < Si)
(i.e. a customer departs from location i
and an item is removed from the associated local inventory there):

+
∑
i∈J

x
(
n + ei, . . . , [i, 1; i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki+1>1

, . . .
)
· µi(ni + 1) · 1{#ki>0} · 1{#ki<Si}

• a service completion of a customer at location t`#k` = r(t`#k` , 1) ∈ J
if in state (n,k) there is at least one order at workstation ` (i.e. #k` > 0) and the order
at the tail of the queue at workstation ` is in stage 2 of its route (i.e. s`#k` = 2)
(i.e. a customer departs from location t`#k`
and an item is removed from the associated local inventory there,
and an order is sent to workstation r(t`#k` , 2) = `)
(note that {s`#k` = 2} implies {#kt`#k`

= 0} to hold):

+
∑
`∈M

x
(
n + et`#k`

, . . . , [t`#k` , 1]︸ ︷︷ ︸
#kt`#k`

+1=1

, . . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

·µt`#k`
(nt`#k`

+ 1) · 1{#k`>0} · 1{s`#k`
=2}
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7. Production-inventory system with (rj , Sj)-policy

• a transition of an order of type t`#k` from workstation r(t`#k` , s`#k` − 1)

to the next workstation of the supplier network
if in state (n,k) there is at least one order at workstation ` (i.e. #k` > 0) and the order
in the tail of the queue at workstation ` is not in stage 2 of its route (i.e. s`#k` > 2)
(i.e. an order of type t`#k` is removed from workstation r(t`#k` , s`#k` − 1)

and is sent to workstation ` = r(t`#k` , s`#k`)):

+
∑
`∈M

x
(
n, . . . ,

[
t`#k` , s`#k` − 1; tr(t`#k`

,s`#k`
−1)1, sr(t`#k`

,s`#k`
−1)1; . . .

. . . ; tr(t`#k`
,s`#k`

−1)#kr(t`#k`
,s`#k`

−1)
, sr(t`#k`

,s`#k`
−1)#kr(t`#k`

,s`#k`
−1)

]
︸ ︷︷ ︸

#kr(t`#k`
,s`#k`

−1)+1

, . . .

. . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

·νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1) · 1{#k`>0} · 1{s`#k`
>2}

• a replenishment of the inventory at location i ∈ J
if in state (n,k) there are Si items of raw material present at location i (i.e. #ki = Si)
(i.e. an order of type i is removed from workstation r(i, S(i))
and is sent to the inventory at location i):

+
∑
i∈J

x
(
n, . . . , [0]︸︷︷︸

#ki−Si=0

, . . .

. . . ,
[
i, S(i); tr(i,S(i))1, sr(i,S(i))1; . . . ; tr(i,S(i))#kr(i,S(i))

, sr(i,S(i)−1)#kr(i,S(i))

]
︸ ︷︷ ︸

#kr(i,S(i))+1

, . . .
)

·νr(i,S(i))(#kr(i,S(i)) + 1) · 1{#ki=Si}.
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It has to be shown that the stationary measure (7.3.3) satisfies these global balance
equations. Some of the changes are highlighted for reasons of clarity and comprehensi-
bility.
Substitution of (7.3.3) and (7.3.4) into the global balance equations directly leads to∏

j∈J

ξ̃j(nj)

 · θ̃(k)

·
(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{#ki>0} +
∑
`∈M

ν`(#k`) · 1{#k`>0}

)

=
∑
i∈J

 ∏
j∈J\{i}

ξ̃j(nj)

 · ξ̃i(ni − 1) · θ̃(k) · λi · 1{ni>0} · 1{#ki>0}

+
∑
i∈J

 ∏
j∈J\{i}

ξ̃j(nj)

 · ξ̃i(ni + 1) · θ̃
(
. . . , [i, 1; i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki+1>1

, . . .
)

· µi(ni + 1) · 1{#ki>0} · 1{#ki<Si}

+
∑
`∈M

 ∏
j∈J\{i}

ξ̃j(nj)

 · ξ̃i(ni + 1)

· θ̃
(
. . . , [t`#k` , 1]︸ ︷︷ ︸

#kt`#k`
+1=1

, . . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

· µt`#k`
(nt`#k`

+ 1) · 1{#k`>0} · 1{s`#k`
=2}

+
∑
`∈M

∏
j∈J

ξ̃j(nj)


· θ̃
(
. . . ,

[
t`#k` , s`#k` − 1; tr(t`#k`

,s`#k`
−1)1, sr(t`#k`

,s`#k`
−1)1; . . .

. . . ; tr(t`#k`
,s`#k`

−1)#kr(t`#k`
,s`#k`

−1)
, sr(t`#k`

,s`#k`
−1)#kr(t`#k`

,s`#k`
−1)

]
︸ ︷︷ ︸

#kr(t`#k`
,s`#k`

−1)+1

, . . .

. . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

· νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1) · 1{#k`>0} · 1{s`#k`
>2}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃( . . . , [0]︸︷︷︸
#ki−Si=0

, . . .

. . . ,
[
i, S(i); tr(i,S(i))1, sr(i,S(i))1; . . . ; tr(i,S(i))#kr(i,S(i))

, sr(i,S(i)−1)#kr(i,S(i))

]
︸ ︷︷ ︸

#kr(i,S(i))+1

, . . .
)

· νr(i,S(i))(#kr(i,S(i)) + 1) · 1{#ki=Si}.
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Substitution of (7.3.4) leads to∏
j∈J

ξ̃j(nj)

 · θ̃(k)

·
(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{#ki>0} +
∑
`∈M

ν`(#k`) · 1{#k`>0}

)

=
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃(k) · µi(ni) · 1{ni>0} · 1{#ki>0}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)

 · θ̃( . . . , [i, 1; i, 1; . . . ; i, 1]︸ ︷︷ ︸
#ki+1>1

, . . .
)
· λi · 1{#ki>0} · 1{#ki<Si}

+
∑
`∈M

∏
j∈J

ξ̃j(nj)

 · θ̃( . . . , [t`#k` , 1]︸ ︷︷ ︸
#kt`#k`

+1=1

, . . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

· λt`#k`
· 1{#k`>0} · 1{s`#k`

=2}

+
∑
`∈M

∏
j∈J

ξ̃j(nj)


· θ̃
(
. . . ,

[
t`#k` , s`#k` − 1; tr(t`#k`

,s`#k`
−1)1, sr(t`#k`

,s`#k`
−1)1; . . .

. . . ; tr(t`#k`
,s`#k`

−1)#kr(t`#k`
,s`#k`

−1)
, sr(t`#k`

,s`#k`
−1)#kr(t`#k`

,s`#k`
−1)

]
︸ ︷︷ ︸

#kr(t`#k`
,s`#k`

−1)+1

, . . .

. . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

· νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1) · 1{#k`>0} · 1{s`#k`
>2}

+
∑
i∈J

∏
j∈J

ξ̃j(nj)


· θ̃
(
. . . , [0]︸︷︷︸

#ki−Si=0

, . . .

. . . ,
[
i, S(i); tr(i,S(i))1, sr(i,S(i))1; . . . ; tr(i,S(i))#kr(i,S(i))

, sr(i,S(i)−1)#kr(i,S(i))

]
︸ ︷︷ ︸

#kr(i,S(i))+1

, . . .
)

· νr(i,S(i))(#kr(i,S(i)) + 1) · 1{#ki=Si}.
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Cancelling
(∏

j∈J ξ̃j(nj)
)
and the sums with the terms µi(ni) · 1{ni>0} · 1{#ki>0} on both

sides of the equation leads to

θ̃(k) ·
(∑
i∈J

λi · 1{#ki>0} +
∑
`∈M

ν`(#k`) · 1{#k`>0}

)

=
∑
i∈J

θ̃
(
. . . , [i, 1; i, 1; . . . ; i, 1]︸ ︷︷ ︸

#ki+1>1

, . . .
)
· λi · 1{#ki>0} · 1{#ki<Si}

+
∑
`∈M

θ̃
(
. . . , [t`#k` , 1]︸ ︷︷ ︸

#kt`#k`
+1=1

, . . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

· λt`#k`
· 1{#k`>0} · 1{s`#k`

=2}

+
∑
`∈M

θ̃
(
. . . ,

[
t`#k` , s`#k` − 1; tr(t`#k`

,s`#k`
−1)1, sr(t`#k`

,s`#k`
−1)1; . . .

. . . ; tr(t`#k`
,s`#k`

−1)#kr(t`#k`
,s`#k`

−1)
, sr(t`#k`

,s`#k`
−1)#kr(t`#k`

,s`#k`
−1)

]
︸ ︷︷ ︸

#kr(t`#k`
,s`#k`

−1)+1

, . . .

. . . ,
[
t`1, s`1; . . . ; t`(#k`−1), s`(#k`−1)

]︸ ︷︷ ︸
#k`−1

, . . .
)

· νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1) · 1{#k`>0} · 1{s`#k`
>2}

+
∑
i∈J

θ̃
(
. . . , [0]︸︷︷︸

#ki−Si=0

, . . .

. . . ,
[
i, S(i); tr(i,S(i))1, sr(i,S(i))1; . . . , tr(i,S(i))#kr(i,S(i))

, sr(i,S(i)−1)#kr(i,S(i))

]
︸ ︷︷ ︸

#kr(i,S(i))+1

, . . .
)

· νr(i,S(i))(#kr(i,S(i)) + 1) · 1{#ki=Si}. (7.3.6)

Substitution of (7.3.5) leads to

θ̃(k) ·
(∑
i∈J

λi · 1{#ki>0} +
∑
`∈M

ν`(#k`) · 1{#k`>0}

)
=
∑
i∈J

θ̃(k) · λi · 1{#ki>0} · 1{#ki<Si}

+
∑
`∈M

θ̃(k) · ν`(#k`) ·
1

λt`#k`

· λt`#k`
· 1{#k`>0} · 1{s`#k`

=2}

+
∑
`∈M

θ̃(k) · ν`(#k`) ·
1

νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1)

·νr(t`#k`
,s`#k`

−1)(#kr(t`#k`
,s`#k`

−1) + 1) · 1{#k`>0} · 1{s`#k`
>2}

+
∑
i∈J

θ̃(k) · λi ·
1

νr(i,S(i))(#kr(i,S(i)) + 1)
· νr(i,S(i))(#kr(i,S(i)) + 1) · 1{#ki=Si}.
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1{#ki=Si} = 1 implies 1{#ki>0} = 1. Therefore,

θ̃(k) ·
(∑
i∈J

λi · 1{#ki>0} ·
(
1{#ki<Si} + 1{#ki=Si}

)
+
∑
`∈M

ν`(#k`) · 1{#k`>0} ·
(

1{s`#k`
=2} + 1{s`#k`

>2}
))

=
∑
i∈J

θ̃(k) · λi · 1{#ki>0} · 1{#ki<Si} +
∑
`∈M

θ̃(k) · ν`(#k`) · 1{#k`>0} · 1{s`#k`
=2}

+
∑
`∈M

θ̃(k) · ν`(#k`) · 1{#k`>0} · 1{s`#k`
>2} +

∑
i∈J

θ̃(k) · λi · 1{#ki>0} · 1{#ki=Si}.

The right-hand side of the last equation is obviously the left-hand side.

Inspection of the system (7.3.6) reveals that it is a “generator equation”, i.e. the global
balance equation θ̃ · Qred = 0 for a suitably defined ergodic Markov process on state
space K with “reduced generator” Qred. Because the Markov process generated by Qred

is irreducible the solution of (7.3.6) is unique up to a multiplicative constant, which yields
θ̃.

Recall that the system is irreducible and regular. Therefore, if Z has a stationary and
limiting distribution, this is uniquely defined.

Definition 7.3.2. For the queueing-inventory process Z on state space E, whose limiting
distribution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞

P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ :=
(
ξ (n) : n ∈ NJ0

)
, ξ (n) := lim

t→∞
P ((X1(t), . . . , XJ(t)) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P ((Y1(t), . . . , YJ(t),WJ+1(t), . . . ,WJ+M (t)) = k) .

Theorem 7.3.3. The queueing-inventory process Z is ergodic if and only if for j ∈ J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

<∞.

If Z is ergodic, then its unique limiting and stationary distribution is

π (n,k) = ξ(n) · θ (k) , (7.3.7)

with

ξ(n) =
∏
j∈J

ξj(nj), ξj(nj) = C−1
j

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (7.3.8)

θ(k) = C−1
θ ·

∏
j∈J

(
1

λj

)1{kj>0}

·
∏
m∈M

#km∏
`=1

1

νm(`)
, k ∈ K, (7.3.9)
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and normalisation constants

Cj =
∑
nj∈N0

nj∏
`=1

λj
µj(`)

,

Cθ =
∑
k∈K

∏
j∈J

(
1

λj

)1{kj>0}

·
∏
m∈M

#km∏
`=1

1

νm(`)
.

Proof. Z is ergodic, if and only if the strictly positive measure x of the global balance
equation x ·Q = 0 from Proposition 7.3.1 can be normalised (i.e.

∑
n∈N0

∑
k∈K x(n,k) <

∞). Because of Proposition 7.3.1 it holds∑
n∈N0

∑
k∈K

x(n,k) =
∑
n∈N0

ξ̃(n) ·
∑
k∈K

θ̃ (k)

=

∏
j∈J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

 ·
∑

k∈K

∏
j∈J

(
1

λj

)#kj

·
∏
m∈M

#km∏
`=1

1

νm(`)

 .

Hence, since K is finite, the measure x from Proposition 7.3.1 can be normalised if and
only if

∑
nj∈N0

∏nj
`=1

λj
µj(`)

<∞ for all j ∈ J .
Consequently, if the process is ergodic, the limiting and stationary distribution π is

given by

π(n,k) =
x(n,k)∑

n∈N0

∑
k∈K x(n,k)

,

where x(n,k) is given in Proposition 7.3.1.

Remark 7.3.4. The expression (7.3.7) shows that the two-component production-inventory-
replenishment system is separable, the steady states of the production network and the
inventory-replenishment complex decouple asymptotically.
The explicit formula (7.3.9) for θ shows that in fact there exists a three-term product

structure, and that moreover the equilibrium for the integrated model is stratified. In the
upper stratum we have two independent vectors for production and inventory-replenish-
ment, the latter splits into two products, a factor for the subsystem comprising the
inventories and a factor for the replenishment subsystem.
In the lower stratum each of the three factors of the upper stratum is decomposed com-

pletely in “single-component” factors concerning the production servers, the inventories,
and the replenishment servers. It should be noted that the factors for the inventories
and the replenishment servers do not indicate internal independence, but they are of
product form as the celebrated conditionally independent coordinates in the equilibrium
of Gordon-Newell networks (see Theorem A.2.6).
Representation (7.3.8) shows that the equilibrium for the production subsystem decom-

poses in true independent coordinates. A product structure of the stationary distribution
as

ξ(n) =
∏
j∈J

ξj(nj) =
∏
j∈J

C−1
j ·

nj∏
`=1

λj
µj(`)

is commonly found for standard Jackson networks (see Theorem A.2.2) and their relatives.
In Jackson networks servers are “non-idling”, i.e. they are always busy as long as customers
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7. Production-inventory system with (rj , Sj)-policy

are present at the respective node. In our production network, however, servers may be
idle while there are customers waiting because a replenishment needs to arrive first.
Consequently, the product form (7.3.7) has been unexpected to us.
Comparing our production-inventory-replenishment system with the “Jackson network

in a random environment” in [KDO16, Section 4] it turns out that we can interpret the
inventory-replenishment subsystem, which contributes via θ to Theorem 7.3.3, as a “ran-
dom environment” for the production network of nodes J , which is in this view a Jackson
network of parallel servers (for more details see Appendix A.3). Taking into account
the results of [KDO16, Theorem 4.1] we conclude from the hindsight that decoupling of
the queueing process (X1, . . . , XJ) and the process (Y1, . . . , YJ ,WJ+1, . . . ,WJ+M ), i.e.
the formula (7.3.7), is a consequence of that Theorem 4.1. It should be noted that the
three-term structure of the upper stratum of the product form steady state π in Theorem
7.3.3 can not be obtained from the general theory.
Our direct proof of Theorem 7.3.3 is much shorter than embedding the present model

into the general framework of [KDO16].
The structural properties from Section 2.6.1 (ergodicity) and Section 2.6.5 (insensitivity

and robustness) hold word-by-word for this integrated system as well.

7.3.2. Cost analysis

We consider the following cost structure for inventory, production, and replenishment.
The total costs at location j ∈ J consist of shortage costs cls,j for each customer that is
lost, waiting costs cw,j per unit of time for each customer in the system (waiting or in
service), capacity costs cs,j per unit of time for providing inventory storage space (e.g.
rent, insurance), holding costs ch,j per unit of time for each unit that is kept on inventory.
The unit holding costs per item at workstation m ∈M of the supplier network are ch,m.
We assume that all of these costs per unit of time are positive.
Therefore, the cost function per unit of time in the respective states is

fS : NJ0 ×K −→ R+
0 ,

fS (n,k) =

∑
j∈J̄

fSj (nj , kj) +
∑
m∈M

fm(km)


with the cost functions fSj : N0 × Kj −→ R+

0 at location j of the local system state
(nj , kj) with order-up-to level Sj per unit of time

fSj (nj , kj) = cw,j · nj + cs,j · Sj + ch,j ·#kj + cls,j · 1{#kj=0}

and the cost function fm : N0 −→ R+
0 at workstation m of the supplier network per unit

of time
fm(km) = ch,m ·#km.

We are interested in the long time average costs of the system as a function of the
order-up-to levels S :=

(
Sj : j ∈ J

)
, which are considered as the main decision variables.

The asymptotic average costs for an ergodic system can be calculated as

lim
T→∞

1

T

ˆ T

0
fS(Z(ω, t))dt =

∑
(n,k)

fS (n,k) · π (n,k) =: f(S) P − a.s.

A cost analysis can be performed as for the basic model in Section 5.4 on page 137.
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7.4. (1, Sj)-policy with two locations and one workstation

In this section, we study the supply chain as described in Section 7.2 with two locations
(J = 2, J = {1, 2}) and one workstation (J + 1 = 3) at the supplier network (M = {3}).
Service times at the supplier are exponentially distributed with parameter ν > 0 and are
independent of the queue length. For the control of the inventories we use the (1, Sj)-
policy. Therefore, if the inventory level at location j ∈ J falls down to the reorder level
rj = 1, a replenishment order is instantaneously placed. With each replenishment the
local inventory level is restocked to exactly Sj < ∞. We assume that Sj > 0 and that
there is at most one outstanding order (Sj > 1). We denote S :=

(
Sj : j ∈ J

)
. The

supply chain of interest is depicted in Figure 7.4.1.

Location 1

Location 2 

Single 
server

Single 
server

Waiting room

Lost 
sales

Lost 
sales

 Replenishment order

 Replenish
ment order

Demand arrival 
process

Demand arrival 
process

Inventory

Inventory

Replenishment

Replenishment

Waiting room

Supplier
Station 3

Single 
server

Waiting room

Figure 7.4.1.: Supply chain with two locations, one workstation at the supplier and (1, Sj)-
policy at location j, j ∈ J

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by Xj(t) the number of customers present at location j ∈ J at time
t ≥ 0 either waiting or in service (queue length). By Yj(t) we denote the contents of the
inventory at location j ∈ J at time t ≥ 0. By WJ+1(t) = W3(t) we denote the sequence
of orders at the supplier at time t ≥ 0.
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7. Production-inventory system with (rj , Sj)-policy

We denote by K3 the set of possible states at the supplier (local state space). The state

k3 := [t1, . . . , t#k3 ]︸ ︷︷ ︸
#k3 orders

∈ K3

indicates that there are #k3 orders at the supplier, on position p ∈ {1, . . . ,#k3} resides
an order of type tp ∈ J . More precisely, t1 is the order at the head of the line, which is
in service, and t#k3 is the order at the tail of the line. We do not need the stage of its
route in the supplier network because the supplier only consists of one workstation.

k = (#k1,#k2, k3) ∈ K ⊆
3∏
j=1

Kj ,

where Kj denotes the local state space at j, j ∈ J ∪M , and K denotes the feasible states
composed of feasible local states.
For #k3 = 0 we read

k3 = [t1, . . . , t#k3 ] =: [0].

We define the joint queueing-inventory process of this system by

Z = ((X1(t), X2(t), Y1(t), Y2(t),W3(t)) : t ≥ 0) .

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process, which we assume to be irreducible and regular. The state space of Z is

E =
{

(n,k) : n ∈ NJ0 , k ∈ K
}
.

7.4.1. Limiting and stationary behaviour

The queueing-inventory process Z has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n,k) ∈ E, where a typical state is

(n,k) =
(
n1, n2,#k1,#k2, [t1, . . . , t#k3 ]︸ ︷︷ ︸

=k3

)
, (7.4.1)

and we will impose necessary restrictions if needed:

• Arrival of a customer at location i ∈ J ,
which happens only if the inventory at this location is not empty because of the
lost sales rule:

q ((n,k); (n+ei,k)) = λi · 1{#ki>0}, i ∈ J.

• Service completion of a customer at location i ∈ J ,
which happens only if there is at least one customer at location i and either

- if there are #ki = 1 items of raw material present at the inventory at location i,
i.e. from location i, where #ki = 1 items are present, a customer departs and
an item of raw material is removed from the associated local inventory and no
replenishment order is sent to the supplier because there is at most one outstanding
order:
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? location 1

q

((
n,#k1︸︷︷︸

=1

,#k2, [t1, . . . , t#k3 ]
)

;
(
n−e1,#k1−1︸ ︷︷ ︸

=0

,#k2, [t1, . . . , t#k3 ]
))

= µ1(n1) · 1{n1>0} · 1{#k1=1},

? location 2

q

((
n,#k1,#k2︸︷︷︸

=1

, [t1, . . . , t#k3 ]
)

;
(
n−e2,#k1,#k2−1︸ ︷︷ ︸

=0

, [t1, . . . , t#k3 ]
))

= µ2(n2) · 1{n2>0} · 1{#k2=1},

- if there are #ki = 2 items of raw material present at the inventory at location i,
i.e. from location i, where #ki = 2 items are present, a customer departs and an
item of raw material is removed from the associated local inventory,
in addition a replenishment order of type i is sent to the supplier, where #k3 have
already been present:

? location 1

q

((
n,#k1︸︷︷︸

=2

,#k2, [t1, . . . , t#k3 ]
)

;
(
n−e1,#k1−1︸ ︷︷ ︸

=1

,#k2, [t1, . . . , t#k3 , 1]
))

= µ1(n1) · 1{n1>0} · 1{#k1=2},

? location 2

q

((
n,#k1,#k2︸︷︷︸

=2

, [t1, . . . , t#k3 ]
)

;
(
n−e2,#k1,#k2−1︸ ︷︷ ︸

=1

, [t1, . . . , t#k3 , 2]
))

= µ2(n2) · 1{n2>0} · 1{#k2=2},

- or if #ki > 2 items of raw material are present at location i,
i.e. from location i, where #ki > 2 items are present, a customer departs and an
item of raw material is removed from the associated local inventory:

? location 1

q

((
n,#k1︸︷︷︸

>2

,#k2, [t1, . . . , t#k3 ]
)

;
(
n−e1,#k1−1︸ ︷︷ ︸

>1

,#k2, [t1, . . . , t#k3 ]
))

= µ1(n1) · 1{n1>0} · 1{#k1>2},

? location 2

q

((
n,#k1,#k2︸︷︷︸

>2

, [t1, . . . , t#k3 ]
)

;
(
n−e2,#k1,#k2−1︸ ︷︷ ︸

>1

, [t1, . . . , t#k3 ]
))

= µ2(n2) · 1{n2>0} · 1{#k2>2}.
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• Service completion of an order at the supplier,
which happens only if there is at least one order (i.e. #k3 > 0),
i.e. from the workstation at the supplier, where #k3 orders are present, an order of
type t1 is removed and is sent to the inventory at location t1 ∈ J , where #kt1 ≤ 1
items of raw material have already been present:

? location 1

q

((
n,#k1︸︷︷︸
≤1

,#k2, [1, t2, . . . , t#k3 ]︸ ︷︷ ︸
#k3>0

)
;
(
n, S1︸︷︷︸

#k1

,#k2, [t2, . . . , t#k3 ]︸ ︷︷ ︸
#k3−1

))

= ν · 1{#k3>0},

? location 2

q

((
n,#k1,#k2︸︷︷︸

≤1

, [2, t2, . . . , t#k3 ]︸ ︷︷ ︸
#k3>0

)
;
(
n,#k1, S2︸︷︷︸

#k2

, [t2, . . . , t#k3 ]︸ ︷︷ ︸
#k3−1

))

= ν · 1{#k3>0}.

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

Proposition 7.4.1. The strictly positive measure x := (x (n,k) : (n,k) ∈ E) with

x (n,k) = ξ̃(n) · θ̃ (k) , (7.4.2)

where

ξ̃(n) =
∏
j∈J

ξ̃j(nj), ξ̃j(nj) =

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (7.4.3)

and

θ̃(#k1,#k2, [0]) =
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
, 1 < #k1 ≤ S1,

1 < #k2 ≤ S2, (7.4.4)

θ̃(#k1, 1, [2]) =
ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
, 1 < #k1 ≤ S1, (7.4.5)

θ̃(1,#k2, [1]) =
ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
, 1 < #k2 ≤ S2, (7.4.6)

θ̃(#k1, 0, [2]) =
λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
, 1 < #k1 ≤ S1, (7.4.7)
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θ̃(0,#k2, [1]) =
λ1 · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
, 1 < #k2 ≤ S2, (7.4.8)

θ̃(1, 1, [1, 2]) = ν · (λ2 + ν) , (7.4.9)

θ̃(1, 1, [2, 1]) = ν · (λ1 + ν) , (7.4.10)

θ̃(1, 0, [2, 1]) = λ2 · (λ1 + λ2 + 2 ν) , (7.4.11)

θ̃(0, 1, [1, 2]) = λ1 · (λ1 + λ2 + 2 ν) , (7.4.12)

θ̃(1, 0, [1, 2]) =
λ2 · ν · (λ2 + ν)

(λ1 + ν)
, (7.4.13)

θ̃(0, 1, [2, 1]) =
λ1 · ν · (λ1 + ν)

(λ2 + ν)
, (7.4.14)

θ̃(0, 0, [2, 1]) =
λ1 · λ2 · ((λ2 + ν) · (λ1 + λ2 + 2 ν) + (λ1 + ν) · ν)

ν · (λ2 + ν)
, (7.4.15)

θ̃(0, 0, [1, 2]) =
λ1 · λ2 · ((λ1 + ν) · (λ1 + λ2 + 2 ν) + (λ2 + ν) · ν)

ν · (λ1 + ν)
(7.4.16)

solves the global balance equations x ·Q = 0 and is therefore stationary for Z.

Proof. Before proving the proposition we recall the notation for the inventory-replenishment
subsystem: It will sometimes be convenient to use the elaborate notation

k =
( inventories

at locations︷ ︸︸ ︷
#k1,#k2,

supplier︷︸︸︷
k3

)
=

( inventories
at locations︷ ︸︸ ︷
#k1,#k2,

supplier︷ ︸︸ ︷[
t1, . . . , t#k3

]
︸ ︷︷ ︸

#k3 orders

)
.

Note the redundancy of some indicator functions in the global balance equations. We
prefer to carry all indicator functions with because it makes it much easier to follow the
proof of the stationary distribution.
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The global balance equations x·Q = 0 of the stochastic queueing-inventory process
Z are given for (n,k) ∈ E from (7.4.1) by

flux out of the state (n,k) through:

• an arrival of a customer at location i ∈ J
if the inventory at this location is not empty (i.e. #ki > 0) because of the lost sales rule,

• a service completion of a customer at location i ∈ J
if there is at least one customer (i.e. ni > 0)
and the inventory at this location is not empty (i.e. #ki > 0),
• a completion of an order at the supplier
if there is at least one order (i.e. #k3 > 0):

x
(
n,k

)
·
(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{#ki>0} + ν · 1{#k3>0}

)

= flux into the state (n,k) through:

• an arrival of a customer at location i ∈ J
if in state (n,k) there is at least one customer at location i (i.e. ni > 0)
and the inventory at this location is not empty (i.e. #ki > 0):
◦ location 1

x
(
n− e1,k

)
· λ1 · 1{n1>0} · 1{#k1>0}

◦ location 2

+ x
(
n− e2,k

)
· λ2 · 1{n2>0} · 1{#k2>0}

• a service completion of a customer at location i ∈ J
if in state (n,k) there are at least 2 units
and at most Si − 1 items of raw material present at location i (i.e. 1 < #ki < Si)
(i.e. a customer departs from location i
and an item is removed from the associated local inventory there
and no repelenishment order is sent to the supplier because of the (1, Sj)-policy):
◦ location 1

+ x
(
n+e1,#k1+1,#k2, [0]

)
· µ1(n1 + 1) · 1{1<#k1<S1} · 1{#k2>1} · 1{k3=[0]}

+ x
(
n+e1,#k1+1, 1, [2]

)
· µ1(n1 + 1) · 1{1<#k1<S1} · 1{#k2=1} · 1{k3=[2]}

+ x
(
n+e1,#k1+1, 0, [2]

)
· µ1(n1 + 1) · 1{1<#k1<S1} · 1{#k2=0} · 1{k3=[2]}

◦ location 2

+ x
(
n+e2,#k1,#k2+1, [0]

)
· µ2(n2 + 1) · 1{#k1>1} · 1{1<#k2<S2} · 1{k3=[0]}

+ x
(
n+e2, 1,#k2+1, [1]

)
· µ2(n2 + 1) · 1{#k1=1} · 1{1<#k2<S2} · 1{k3=[1]}

+ x
(
n+e2, 0,#k2+1, [1]

)
· µ2(n2 + 1) · 1{#k1=0} · 1{1<#k2<S2} · 1{k3=[1]}
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• a service completion of a customer at location i ∈ J
if in state (n,k) there is 1 item of raw material present at location i
(i.e. a customer departs from location i
and an item is removed from the associated local inventory there
and a replenishment order of type i is sent to the supplier):
◦ location 1

+ x
(
n+e1, 2,#k2, [0]

)
· µ1(n1 + 1) · 1{#k1=1} · 1{#k2>1} · 1{k3=[1]}

+ x
(
n+e1, 2, 1, [2]

)
· µ1(n1 + 1) · 1{#k1=1} · 1{#k2=1} · 1{k3=[2,1]}

+ x
(
n+e1, 2, 0, [2]

)
· µ1(n1 + 1) · 1{#k1=1} · 1{#k2=0} · 1{k3=[2,1]}

◦ location 2

+ x
(
n+e2,#k1, 2, [0]

)
· µ2(n2 + 1) · 1{#k1>1} · 1{#k2=1} · 1{k3=[2]}

+ x
(
n+e2, 1, 2, [1]

)
· µ2(n2 + 1) · 1{#k1=1} · 1{#k2=1} · 1{k3=[1,2]}

+ x
(
n+e2, 0, 2, [1]

)
· µ2(n2 + 1) · 1{#k1=0} · 1{#k2=1} · 1{k3=[1,2]}

• a service completion of a customer at location i ∈ J
if in state (n,k) there is 0 item of raw material present at location i
(i.e. a customer departs from location i
and an item is removed from the associated local inventory there
and no replenishment order is sent to the supplier
because there is at most one outstanding order):
◦ location 1

+ x
(
n+e1, 1,#k2, [1]

)
· µ1(n1 + 1) · 1{#k1=0} · 1{#k2>1} · 1{k3=[1]}

+ x
(
n+e1, 1, 1, [1, 2]

)
· µ1(n1 + 1) · 1{#k1=0} · 1{#k2=1} · 1{k3=[1,2]}

+ x
(
n+e1, 1, 1, [2, 1]

)
· µ1(n1 + 1) · 1{#k1=0} · 1{#k2=1} · 1{k3=[2,1]}

+ x
(
n+e1, 1, 0, [1, 2]

)
· µ1(n1 + 1) · 1{#k1=0} · 1{#k2=0} · 1{k3=[1,2]}

+ x
(
n+e1, 1, 0, [2, 1]

)
· µ1(n1 + 1) · 1{#k1=0} · 1{#k2=0} · 1{k3=[2,1]}

◦ location 2

+ x
(
n+e2,#k1, 1, [2]

)
· µ2(n2 + 1) · 1{#k1>1} · 1{#k2=0} · 1{k3=[2]}

+ x
(
n+e2, 1, 1, [1, 2]

)
· µ2(n2 + 1) · 1{#k1=1} · 1{#k2=0} · 1{k3=[1,2]}

+ x
(
n+e2, 1, 1, [2, 1]

)
· µ2(n2 + 1) · 1{#k1=1} · 1{#k2=0} · 1{k3=[2,1]}

+ x
(
n+e2, 0, 1, [1, 2]

)
· µ2(n2 + 1) · 1{#k1=0} · 1{#k2=0} · 1{k3=[1,2]}

+ x
(
n+e2, 0, 1, [2, 1]

)
· µ2(n2 + 1) · 1{#k1=0} · 1{#k2=0} · 1{k3=[2,1]}
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• a replenishment of the inventory at location i ∈ J
if in state (n,k) there are Si items of raw material present at location i (i.e. #ki = Si)
(i.e. an order of type i is removed from the supplier
and is sent to the inventory at location i):
◦ location 1

+ x
(
n, 0,#k2, [1]︸︷︷︸

#k3+1

)
· ν · 1{#k1=S1} · 1{#k2>1} · 1{k3=[0]}

+ x
(
n, 0, 1, [1, 2]︸︷︷︸

#k3+1

)
· ν · 1{#k1=S1} · 1{#k2=1} · 1{k3=[2]}

+ x
(
n, 0, 0, [1, 2]︸︷︷︸

#k3+1

)
· ν · 1{#k1=S1} · 1{#k2=0} · 1{k3=[2]}

+ x
(
n, 1,#k2, [1]︸︷︷︸

#k3+1

)
· ν · 1{#k1=S1} · 1{#k2>1} · 1{k3=[0]}

+ x
(
n, 1, 1, [1, 2]︸︷︷︸

#k3+1

)
· ν · 1{#k1=S1} · 1{#k2=1} · 1{k3=[2]}

+ x
(
n, 1, 0, [1, 2]︸︷︷︸

#k3+1

)
· ν · 1{#k1=S1} · 1{#k2=0} · 1{k3=[2]}

◦ location 2

+ x
(
n,#k1, 0, [2]︸︷︷︸

#k3+1

)
· ν · 1{#k1>1} · 1{#k2=S2} · 1{k3=[0]}

+ x
(
n, 1, 0, [2, 1]︸︷︷︸

#k3+1

)
· ν · 1{#k1=1} · 1{#k2=S2} · 1{k3=[1]}

+ x
(
n, 0, 0, [2, 1]︸︷︷︸

#k3+1

)
· ν · 1{#k1=0} · 1{#k2=S2} · 1{k3=[1]}

+ x
(
n,#k1, 1, [2]︸︷︷︸

#k3+1

)
· ν · 1{#k1>1} · 1{#k2=S2} · 1{k3=[0]}

+ x
(
n, 1, 1, [2, 1]︸︷︷︸

#k3+1

)
· ν · 1{#k1=1} · 1{#k2=S2} · 1{k3=[1]}

+ x
(
n, 0, 1, [2, 1]︸︷︷︸

#k3+1

)
· ν · 1{#k1=0} · 1{#k2=S2} · 1{k3=[1]}.

It has to be shown that the stationary measure (7.4.2) with (7.4.3) and (7.4.4)-(7.4.16)
satisfies these global balance equations. Some of the changes are highlighted for reasons
of clarity and comprehensibility.
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Substitution of (7.4.52) into the global balance equations directly leads to(∏
j∈J

ξ̃j(nj)

)
· θ̃(k) ·

(∑
i∈J

λi · 1{#ki>0} +
∑
i∈J

µi(ni) · 1{ni>0} · 1{#ki>0} + ν · 1{#k3>0}

)

=

(∏
j∈J

ξ̃j(nj)

)
· θ̃(k) · µ1(n1) · 1{n1>0} · 1{#k1>0}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃(k) · µ2(n2) · 1{n2>0} · 1{#k2>0}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

#k1 + 1,#k2, [0]
)
· λ1 · 1{1<#k1<S1} · 1{#k2>1} · 1{k3=[0]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

#k1 + 1, 1, [2]
)
· λ1 · 1{1<#k1<S1} · 1{#k2=1} · 1{k3=[2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

#k1 + 1, 0, [2]
)
· λ1 · 1{1<#k1<S1} · 1{#k2=0} · 1{k3=[2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

#k1,#k2 + 1, [0]
)
· λ2 · 1{#k1>1} · 1{1<#k2<S2} · 1{k3=[0]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1,#k2 + 1, [1]
)
· λ2 · 1{#k1=1} · 1{1<#k2<S2} · 1{k3=[1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

0,#k2 + 1, [1]
)
· λ2 · 1{#k1=0} · 1{1<#k2<S2} · 1{k3=[1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

2,#k2, [0]
)
· λ1 · 1{#k1=1} · 1{#k2>1} · 1{k3=[1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

2, 1, [2]
)
· λ1 · 1{#k1=1} · 1{#k2=1} · 1{k3=[2,1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

2, 0, [2]
)
· λ1 · 1{#k1=1} · 1{#k2=0} · 1{k3=[2,1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

#k1, 2, [0]
)
· λ2 · 1{#k1>1} · 1{#k2=1} · 1{k3=[2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 2, [1]
)
· λ2 · 1{#k1=1} · 1{#k2=1} · 1{k3=[1,2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

0, 2, [1]
)
· λ2 · 1{#k1=0} · 1{#k2=1} · 1{k3=[1,2]}
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+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1,#k2, [1]
)
· λ1 · 1{#k1=0} · 1{#k2>1} · 1{k3=[1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 1, [1, 2]
)
· λ1 · 1{#k1=0} · 1{#k2=1} · 1{k3=[1,2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 1, [2, 1]
)
· λ1 · 1{#k1=0} · 1{#k2=1} · 1{k3=[2,1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 0, [1, 2]
)
· λ1 · 1{#k1=0} · 1{#k2=0} · 1{k3=[1,2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 0, [2, 1]
)
· λ1 · 1{#k1=0} · 1{#k2=0} · 1{k3=[2,1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

#k1, 1, [2]
)
· λ2 · 1{#k1>1} · 1{#k2=0} · 1{k3=[2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 1, [1, 2]
)
· λ2 · 1{#k1=1} · 1{#k2=0} · 1{k3=[1,2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 1, [2, 1]
)
· λ2 · 1{#k1=1} · 1{#k2=0} · 1{k3=[2,1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

0, 1, [1, 2]
)
· λ2 · 1{#k1=0} · 1{#k2=0} · 1{k3=[1,2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

0, 1, [2, 1]
)
· λ2 · 1{#k1=0} · 1{#k2=0} · 1{k3=[2,1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

0,#k2, [1]
)
· ν · 1{#k1=S1} · 1{#k2>1} · 1{k3=[0]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

0, 1, [1, 2]
)
· ν · 1{#k1=S1} · 1{#k2=1} · 1{k3=[2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

0, 0, [1, 2]
)
· ν · 1{#k1=S1} · 1{#k2=0} · 1{k3=[2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1,#k2, [1]
)
· ν · 1{#k1=S1} · 1{#k2>1} · 1{k3=[0]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 1, [1, 2]
)
· ν · 1{#k1=S1} · 1{#k2=1} · 1{k3=[2]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 0, [1, 2]
)
· ν · 1{#k1=S1} · 1{#k2=0} · 1{k3=[2]}
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+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

#k1, 0, [2]
)
· ν · 1{#k1>1} · 1{#k2=S2} · 1{k3=[0]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 0, [2, 1]
)
· ν · 1{#k1=1} · 1{#k2=S2} · 1{k3=[1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

0, 0, [2, 1]
)
· ν · 1{#k1=0} · 1{#k2=S2} · 1{k3=[1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

#k1, 1, [2]
)
· ν · 1{#k1>1} · 1{#k2=S2} · 1{k3=[0]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

1, 1, [2, 1]
)
· ν · 1{#k1=1} · 1{#k2=S2} · 1{k3=[1]}

+

(∏
j∈J

ξ̃j(nj)

)
· θ̃
(

0, 1, [2, 1]
)
· ν · 1{#k1=0} · 1{#k2=S2} · 1{k3=[1]}

Cancelling
(∏

j∈J ξ̃j(nj)
)
and the sums with the terms µi(ni) · 1{ni>0} · 1{#ki>0} on both

sides of the equation leads to

θ̃(k) ·
(∑
i∈J

λi · 1{#ki>0} + ν · 1{#k3>0}

)
(7.4.17)

= θ̃
(

#k1 + 1,#k2, [0]
)
· λ1 · 1{1<#k1<S1} · 1{#k2>1} · 1{k3=[0]} (7.4.18)

+ θ̃
(

#k1 + 1, 1, [2]
)
· λ1 · 1{1<#k1<S1} · 1{#k2=1} · 1{k3=[2]} (7.4.19)

+ θ̃
(

#k1 + 1, 0, [2]
)
· λ1 · 1{1<#k1<S1} · 1{#k2=0} · 1{k3=[2]} (7.4.20)

+ θ̃
(

#k1,#k2 + 1, [0]
)
· λ2 · 1{#k1>1} · 1{1<#k2<S2} · 1{k3=[0]} (7.4.21)

+ θ̃
(

1,#k2 + 1, [1]
)
· λ2 · 1{#k1=1} · 1{1<#k2<S2} · 1{k3=[1]} (7.4.22)

+ θ̃
(

0,#k2 + 1, [1]
)
· λ2 · 1{#k1=0} · 1{1<#k2<S2} · 1{k3=[1]} (7.4.23)

+ θ̃
(

2,#k2, [0]
)
· λ1 · 1{#k1=1} · 1{#k2>1} · 1{k3=[1]} (7.4.24)

+ θ̃
(

2, 1, [2]
)
· λ1 · 1{#k1=1} · 1{#k2=1} · 1{k3=[2,1]} (7.4.25)

+ θ̃
(

2, 0, [2]
)
· λ1 · 1{#k1=1} · 1{#k2=0} · 1{k3=[2,1]} (7.4.26)

+ θ̃
(

#k1, 2, [0]
)
· λ2 · 1{#k1>1} · 1{#k2=1} · 1{k3=[2]} (7.4.27)

+ θ̃
(

1, 2, [1]
)
· λ2 · 1{#k1=1} · 1{#k2=1} · 1{k3=[1,2]} (7.4.28)

+ θ̃
(

0, 2, [1]
)
· λ2 · 1{#k1=0} · 1{#k2=1} · 1{k3=[1,2]} (7.4.29)

187



7. Production-inventory system with (rj , Sj)-policy

+ θ̃
(

1,#k2, [1]
)
· λ1 · 1{#k1=0} · 1{#k2>1} · 1{k3=[1]} (7.4.30)

+ θ̃
(

1, 1, [1, 2]
)
· λ1 · 1{#k1=0} · 1{#k2=1} · 1{k3=[1,2]} (7.4.31)

+ θ̃
(

1, 1, [2, 1]
)
· λ1 · 1{#k1=0} · 1{#k2=1} · 1{k3=[2,1]} (7.4.32)

+ θ̃
(

1, 0, [1, 2]
)
· λ1 · 1{#k1=0} · 1{#k2=0} · 1{k3=[1,2]} (7.4.33)

+ θ̃
(

1, 0, [2, 1]
)
· λ1 · 1{#k1=0} · 1{#k2=0} · 1{k3=[2,1]} (7.4.34)

+ θ̃
(

#k1, 1, [2]
)
· λ2 · 1{#k1>1} · 1{#k2=0} · 1{k3=[2]} (7.4.35)

+ θ̃
(

1, 1, [1, 2]
)
· λ2 · 1{#k1=1} · 1{#k2=0} · 1{k3=[1,2]} (7.4.36)

+ θ̃
(

1, 1, [2, 1]
)
· λ2 · 1{#k1=1} · 1{#k2=0} · 1{k3=[2,1]} (7.4.37)

+ θ̃
(

0, 1, [1, 2]
)
· λ2 · 1{#k1=0} · 1{#k2=0} · 1{k3=[1,2]} (7.4.38)

+ θ̃
(

0, 1, [2, 1]
)
· λ2 · 1{#k1=0} · 1{#k2=0} · 1{k3=[2,1]} (7.4.39)

+ θ̃
(

0,#k2, [1]
)
· ν · 1{#k1=S1} · 1{#k2>1} · 1{k3=[0]} (7.4.40)

+ θ̃
(

0, 1, [1, 2]
)
· ν · 1{#k1=S1} · 1{#k2=1} · 1{k3=[2]} (7.4.41)

+ θ̃
(

0, 0, [1, 2]
)
· ν · 1{#k1=S1} · 1{#k2=0} · 1{k3=[2]} (7.4.42)

+ θ̃
(

1,#k2, [1]
)
· ν · 1{#k1=S1} · 1{#k2>1} · 1{k3=[0]} (7.4.43)

+ θ̃
(

1, 1, [1, 2]
)
· ν · 1{#k1=S1} · 1{#k2=1} · 1{k3=[2]} (7.4.44)

+ θ̃
(

1, 0, [1, 2]
)
· ν · 1{#k1=S1} · 1{#k2=0} · 1{k3=[2]} (7.4.45)

+ θ̃
(

#k1, 0, [2]
)
· ν · 1{#k1>1} · 1{#k2=S2} · 1{k3=[0]} (7.4.46)

+ θ̃
(

1, 0, [2, 1]
)
· ν · 1{#k1=1} · 1{#k2=S2} · 1{k3=[1]} (7.4.47)

+ θ̃
(

0, 0, [2, 1]
)
· ν · 1{#k1=0} · 1{#k2=S2} · 1{k3=[1]} (7.4.48)

+ θ̃
(

#k1, 1, [2]
)
· ν · 1{#k1>1} · 1{#k2=S2} · 1{k3=[0]} (7.4.49)

+ θ̃
(

1, 1, [2, 1]
)
· ν · 1{#k1=1} · 1{#k2=S2} · 1{k3=[1]} (7.4.50)

+ θ̃
(

0, 1, [2, 1]
)
· ν · 1{#k1=0} · 1{#k2=S2} · 1{k3=[1]}. (7.4.51)

Now we will show that (7.4.4)-(7.4.16) satisfies the above equation.
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For #k1 = 0 and #k2 = 0 and k3 = [1, 2], which corresponds to (7.4.33) and (7.4.38), we
obtain with (7.4.16), (7.4.13) and(7.4.12)

θ̃(0, 0, [1, 2]) · ν = θ̃(1, 0, [1, 2]) · λ1 + θ̃(0, 1, [1, 2]) · λ2

⇔ λ1 · λ2 · ((λ1 + ν) · (λ1 + λ2 + 2 ν) + (λ2 + ν) · ν)

ν · (λ1 + ν)
· ν

=
λ2 · ν · (λ2 + ν)

(λ1 + ν)
· λ1 + λ1 · (λ1 + λ2 + 2 ν) · λ2

⇔ λ1 · λ2 · (λ1 + ν) · (λ1 + λ2 + 2 ν)

(λ1 + ν)
+
λ1 · λ2 · (λ2 + ν) · ν

(λ1 + ν)

=
λ1 · λ2 · (λ2 + ν) · ν

(λ1 + ν)
+
λ1 · λ2 · (λ1 + ν) · (λ1 + λ2 + 2 ν)

(λ1 + ν)
.

For #k1 = 0 and #k2 = 0 and k3 = [2, 1], which corresponds to (7.4.34) and (7.4.39), we
obtain with (7.4.15), (7.4.11) and (7.4.14)

θ̃(0, 0, [2, 1]) · ν = θ̃(1, 0, [2, 1]) · λ1 + θ̃(0, 1, [2, 1]) · λ2

⇔ λ1 · λ2 · ((λ2 + ν) · (λ1 + λ2 + 2 ν) + (λ1 + ν) · ν)

ν · (λ2 + ν)
· ν

= λ2 · (λ1 + λ2 + 2 ν) · λ1 +
λ1 · ν · (λ1 + ν)

(λ2 + ν)
· λ2

⇔ λ1 · λ2 · (λ2 + ν) · (λ1 + λ2 + 2 ν)

(λ2 + ν)
+
λ1 · λ2 · (λ1 + ν) · ν

(λ2 + ν)

=
λ1 · λ2 · (λ2 + ν) · (λ1 + λ2 + 2 ν)

(λ2 + ν)
+
λ1 · λ2 · (λ1 + ν) · ν

(λ2 + ν)
.

For #k1 = 1 and #k2 = 1 and k3 = [1, 2], which corresponds to (7.4.28), we obtain with
(7.4.9) and (7.4.6)

θ̃(1, 1, [1, 2]) · (λ1 + λ2 + ν) = θ̃(1, 2, [1]) · λ2

⇔ ν · (λ2 + ν) · (λ1 + λ2 + ν) =
ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· λ2

= ν · (λ2 + ν) · (λ1 + λ2 + ν) .

For #k1 = 1 and #k2 = 1 and k3 = [2, 1], which corresponds to (7.4.25), we obtain with
(7.4.10) and (7.4.5)

θ̃(1, 1, [2, 1]) · (λ1 + λ2 + ν) = θ̃(2, 1, [2]) · λ1

⇔ ν · (λ1 + ν) · (λ1 + λ2 + ν) =
ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· λ1

= ν · (λ1 + ν) · (λ1 + λ2 + ν) .
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For 1 < #k1 < S1 and 1 < #k2 < S2 and k3 = [0], which corresponds to (7.4.18) and
(7.4.21), we obtain with (7.4.4)

θ̃(#k1,#k2, [0]) · (λ1 + λ2)

= θ̃(#k1 + 1,#k2, [0]) · λ1 + θ̃(#k1,#k2 + 1, [0]) · λ2

⇔ ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· (λ1 + λ2)

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ1 +

ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ2

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· (λ1 + λ2) .

For #k1 = S1 and #k2 = S2 and k3 = [0], which corresponds to (7.4.40), (7.4.43), (7.4.46)
and (7.4.49), we obtain with (7.4.4), (7.4.8), (7.4.6), (7.4.7) and (7.4.5)

θ̃(S1, S2, [0]) · (λ1 + λ2)

= θ̃
(

0, S2, [1]
)
· ν + θ̃

(
1, S2, [1]

)
· ν + θ̃

(
S1, 0, [2]

)
· ν + θ̃

(
S1, 1, [2]

)
· ν

⇔ ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· (λ1 + λ2)

=
λ1 · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· ν +

ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· ν

+
λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· ν +

ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· ν

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
+
ν · (λ2 + ν) · (λ1 + ν) · (λ1 + λ2 + ν)

λ1

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· (λ1 + λ2).

For #k1 = 0 and #k2 = 1 and k3 = [1, 2], which corresponds to (7.4.31) and (7.4.29), we
obtain with (7.4.12), (7.4.9) and (7.4.8)

θ̃(0, 1, [1, 2]) · (λ2 + ν) = θ̃(1, 1, [1, 2]) · λ1 + θ̃(0, 2, [1]) · λ2

⇔ λ1 · (λ1 + λ2 + 2 ν) · (λ2 + ν) = ν · (λ2 + ν) · λ1 +
λ1 · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· λ2

= λ1 · (λ2 + ν) · (λ1 + λ2 + 2 ν) .

For #k1 = 0 and #k2 = 1 and k3 = [2, 1], which corresponds to (7.4.32), we obtain with
(7.4.14) and (7.4.10)

θ̃(0, 1, [2, 1]) · (λ2 + ν) = θ̃(1, 1, [2, 1]) · λ1

⇔ λ1 · ν · (λ1 + ν)

(λ2 + ν)
· (λ2 + ν) = ν · (λ1 + ν) · λ1

⇔ λ1 · ν · (λ1 + ν) = ν · (λ1 + ν) · λ1.
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For #k1 = 0 and 1 < #k2 < S2 and k3 = [1], which corresponds to (7.4.23) and (7.4.30),
we obtain with (7.4.8) and (7.4.6)

θ̃(0,#k2, [1]) · (λ2 + ν) = θ̃(0,#k2 + 1, [1]) · λ2 + θ̃
(

1,#k2, [1]
)
· λ1

⇔ λ1 · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· (λ2 + ν)

=
λ1 · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· λ2 +

ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· λ1

=
λ1 · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· (λ2 + ν).

For #k1 = 0 and #k2 = S2 and k3 = [1], which corresponds to (7.4.30), (7.4.48) and
(7.4.51), we obtain with (7.4.8), (7.4.6), (7.4.15) and (7.4.14)

θ̃(0, S2, [1]) · (λ2 + ν) = θ̃(1, S2, [1]) · λ1 + θ̃
(

0, 0, [2, 1]
)
· ν + θ̃

(
0, 1, [2, 1]

)
· ν

⇔ λ1 · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· (λ2 + ν)

=
ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· λ1 +

λ1 · λ2 · ((λ2 + ν) · (λ1 + λ2 + 2 ν) + (λ1 + ν) · ν)

ν · (λ2 + ν)
· ν

+
λ1 · ν · (λ1 + ν)

(λ2 + ν)
· ν

⇔ λ1 · λ2 · (λ2 + ν) · (λ1 + λ2 + ν)

λ2

=
λ1 · λ2 · (λ2 + ν) · (λ1 + λ2 + 2 ν) + λ1 · λ2 · ν · (λ1 + ν) + λ1 · ν2 · (λ1 + ν)

(λ2 + ν)

⇔ λ1 · (λ2 + ν) · (λ1 + λ2 + ν)

=
λ1 · λ2 · (λ2 + ν) · (λ1 + λ2 + 2 ν) + λ1 · ν · (λ1 + ν) · (λ2 + ν)

(λ2 + ν)

= λ1 · λ2 · (λ1 + λ2 + 2 ν) + λ1 · ν · (λ1 + ν)

= λ1 · (λ2 · (λ1 + λ2 + ν) + ν · (λ1 + λ2 + ν))

= λ1 · (λ2 + ν) · (λ1 + λ2 + ν) .

For #k1 = 1 and #k2 = 0 and k3 = [1, 2], which corresponds to (7.4.36), we obtain with
(7.4.13) and (7.4.9)

θ̃(1, 0, [1, 2]) · (λ1 + ν) = θ̃(1, 1, [1, 2]) · λ2

⇔ λ2 · ν · (λ2 + ν)

(λ1 + ν)
· (λ1 + ν) = ν · (λ2 + ν) · λ2

⇔ λ2 · ν · (λ2 + ν) = ν · (λ2 + ν) · λ2.
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For #k1 = 1 and #k2 = 0 and k3 = [2, 1], which corresponds to (7.4.37) and (7.4.26), we
obtain with (7.4.11), (7.4.10) and (7.4.7)

θ̃(1, 0, [2, 1]) · (λ1 + ν) = θ̃(1, 1, [2, 1]) · λ2 + θ̃(2, 0, [2]) · λ1

⇔ λ2 · (λ1 + λ2 + 2 ν) · (λ1 + ν) = ν · (λ1 + ν) · λ2 +
λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· λ1

= ν · (λ1 + ν) · λ2 + λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

= λ2 · (λ1 + λ2 + 2 ν) · (λ1 + ν).

For #k1 = 1 and 1 < #k2 < S2 and k3 = [1], which corresponds to (7.4.22) and (7.4.24),
we obtain with (7.4.6) and (7.4.4)

θ̃(1,#k2, [1]) · (λ1 + λ2 + ν)

= θ̃(1,#k2 + 1, [1]) · λ2 + θ̃
(

2,#k2, [0]
)
· λ1

⇔ ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· (λ1 + λ2 + ν)

=
ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· λ2 +

ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ1

=
ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· λ2 +

ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ2

=
ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· (λ1 + λ2 + ν).

For #k1 = 1 and #k2 = S2 and k3 = [1], which corresponds to (7.4.24), (7.4.47), (7.4.34)
and (7.4.50), we obtain with (7.4.6), (7.4.4), (7.4.11) and (7.4.10)

θ̃(1, S2, [1]) · (λ1 + λ2 + ν)

= θ̃(2, S2, [0]) · λ1 + θ̃
(

1, 0, [2, 1]
)
· ν + θ̃

(
1, 1, [2, 1]

)
· ν

⇔ ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· (λ1 + λ2 + ν)

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ1 + λ2 · (λ1 + λ2 + 2 ν) · ν + ν · (λ1 + ν) · ν

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
+ λ2 · (λ1 + λ2 + ν) · ν + λ2 · ν2 + ν2 · (λ1 + ν)

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
+ λ2 · (λ1 + λ2 + ν) · ν + ν2 · (λ1 + λ2 + ν)

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
+ ν · (λ2 + ν) · (λ1 + λ2 + ν)

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν) + λ2 · ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2

=
ν · (λ1 + λ2 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
.
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For 1 < #k1 < S1 and #k2 = 0 and k3 = [2], which corresponds to (7.4.20) and (7.4.35),
we obtain with (7.4.7) and (7.4.5)

θ̃(#k1, 0, [2]) · (λ1 + ν)

= θ̃(#k1 + 1, 0, [2]) · λ1 + θ̃
(

#k1, 1, [2]
)
· λ2

⇔ λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· (λ1 + ν)

=
λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· λ1 +

ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· λ2

=
λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· λ1 +

λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· ν.

=
λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· (λ1 + ν).

For 1 < #k1 < S1 and #k2 = 1 and k3 = [2], which corresponds to (7.4.19) and (7.4.27),
we obtain with (7.4.5) and (7.4.4)

θ̃(#k1, 1, [2]) · (λ1 + λ2 + ν)

= θ̃(#k1 + 1, 1, [2]) · λ1 + θ̃
(

#k1, 2, [0]
)
· λ2

⇔ ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· (λ1 + λ2 + ν)

=
ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· λ1 +

ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1

=
ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· λ1 +

ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1

=
ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· (λ1 + λ2 + ν).

For 1 < #k1 < S1 and #k2 = S2 and k3 = [0], which corresponds to (7.4.18), (7.4.46)
and (7.4.49), we obtain with (7.4.4), (7.4.7) and (7.4.5)

θ̃(#k1, S2, [0]) · (λ1 + λ2)

= θ̃(#k1 + 1, S2, [0]) · λ1 + θ̃
(

#k1, 0, [2]
)
· ν + θ̃

(
#k1, 1, [2]

)
· ν

⇔ ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· (λ1 + λ2)

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ1 +

λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· ν

+
ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· ν

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ1 +

(λ2 + ν) · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· ν

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ1 +

ν · (λ2 + ν) · (λ1 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ2.
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7. Production-inventory system with (rj , Sj)-policy

For #k1 = S1 and #k2 = 0 and k3 = [2], which corresponds to (7.4.35), (7.4.42) and
(7.4.45), we obtain with (7.4.7), (7.4.5), (7.4.16) and (7.4.13)

θ̃(S1, 0, [2]) · (λ1 + ν)

= θ̃(S1, 1, [2]) · λ2 + θ̃
(

0, 0, [1, 2]
)
· ν + θ̃

(
1, 0, [1, 2]

)
· ν

⇔ λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· (λ1 + ν)

=
ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· λ2 +

λ1 · λ2 · ((λ1 + ν) · (λ1 + λ2 + 2 ν) + (λ2 + ν) · ν)

ν · (λ1 + ν)
· ν

+
λ2 · ν · (λ2 + ν)

(λ1 + ν)
· ν

⇔ λ1 · λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1

=
λ1 · λ2 · (λ1 + ν) · (λ1 + λ2 + 2 ν) + λ1 · λ2 · (λ2 + ν) · ν + λ2 · ν2 · (λ2 + ν)

(λ1 + ν)

⇔ λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

=
λ1 · λ2 · (λ1 + ν) · (λ1 + λ2 + 2 ν) + λ2 · ν · (λ2 + ν) · (λ1 + ν)

(λ1 + ν)

= λ1 · λ2 · (λ1 + λ2 + 2 ν) + λ2 · ν · (λ2 + ν)

= λ1 · λ2 · (λ1 + λ2 + ν) + λ1 · λ2 · ν + λ2 · ν · (λ2 + ν)

= λ1 · λ2 · (λ1 + λ2 + ν) + λ2 · ν · (λ1 + λ2 + ν)

= λ2 · (λ1 + ν) · (λ1 + λ2 + ν) .

For #k1 = S1 and #k2 = 1 and k3 = [2], which corresponds to (7.4.27), (7.4.41) and
(7.4.44), we obtain with (7.4.5), (7.4.4), (7.4.12) and (7.4.9)

θ̃(S1, 1, [2]) · (λ1 + λ2 + ν) = θ̃(S1, 2, [0]) · λ2 + θ̃
(

0, 1, [1, 2]
)
· ν + θ̃

(
1, 1, [1, 2]

)
· ν

⇔ ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
· (λ1 + λ2 + ν)

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ2 + λ1 · (λ1 + λ2 + 2 ν) · ν + ν · (λ2 + ν) · ν

=
(λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1
+ λ1 · (λ1 + λ2 + ν) + λ1 · ν + ν · (λ2 + ν)

=
(λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1
+ λ1 · (λ1 + λ2 + ν) + ν · (λ1 + λ2 + ν)

=
(λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1
+ (λ1 + ν) · (λ1 + λ2 + ν)

=
(λ1 + ν) · ((λ2 + ν) + λ1) · (λ1 + λ2 + ν)

λ1
.
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For #k1 = S1 and 1 < #k2 < S2 and k3 = [0], which corresponds to (7.4.21), (7.4.40)
and (7.4.43), we obtain with (7.4.4), (7.4.8) and (7.4.6)

θ̃(S1,#k2, [0]) · (λ1 + λ2)

= θ̃(S1,#k2 + 1, [0]) · λ2 + θ̃
(

0,#k2, [1]
)
· ν + θ̃

(
1,#k2, [1]

)
· ν

⇔ ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· (λ1 + λ2)

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ2 +

λ1 · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· ν

+
ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
· ν

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· λ2 +

ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ2

=
ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
· (λ1 + λ2).

Recall that the system is irreducible and regular. Therefore, if Z has a stationary and
limiting distribution, this is uniquely defined.
For the queueing-inventory process Z on state space E holds Definition 7.3.2 with J = 2

and M = 1. More precisely, it holds

ξ (n) := lim
t→∞

P ((X1(t), X2(t)) = n) ,

θ (k) := lim
t→∞

P ((Y1(t), Y2(t),W3(t)) = k) .

Theorem 7.4.2. The queueing-inventory process Z is ergodic if and only if for j ∈ J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

<∞.

If Z is ergodic, then its unique limiting and stationary distribution is

π (n,k) = ξ(n) · θ (k) , (7.4.52)

with

ξ(n) =
∏
j∈J

ξj(nj), ξj(nj) = C−1
j

nj∏
`=1

λj
µj(`)

, nj ∈ N0, j ∈ J, (7.4.53)

and

θ(#k1,#k2, [0]) = C−1
θ ·

ν · (λ1 + ν) · (λ2 + ν) · (λ1 + λ2 + ν)

λ1 · λ2
, 1 < #k1 ≤ S1,

1 < #k2 ≤ S2,
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θ(#k1, 1, [2]) = C−1
θ ·

ν · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
, 1 < #k1 ≤ S1,

θ(1,#k2, [1]) = C−1
θ ·

ν · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
, 1 < #k2 ≤ S2,

θ(#k1, 0, [2]) = C−1
θ ·

λ2 · (λ1 + ν) · (λ1 + λ2 + ν)

λ1
, 1 < #k1 ≤ S1,

θ(0,#k2, [1]) = C−1
θ ·

λ1 · (λ2 + ν) · (λ1 + λ2 + ν)

λ2
, 1 < #k2 ≤ S2,

θ(1, 1, [1, 2]) = C−1
θ · ν · (λ2 + ν) ,

θ(1, 1, [2, 1]) = C−1
θ · ν · (λ1 + ν) ,

θ(1, 0, [2, 1]) = C−1
θ · λ2 · (λ1 + λ2 + 2 ν) ,

θ(0, 1, [1, 2]) = C−1
θ · λ1 · (λ1 + λ2 + 2 ν) ,

θ(1, 0, [1, 2]) = C−1
θ ·

λ2 · ν · (λ2 + ν)

(λ1 + ν)
,

θ(0, 1, [2, 1]) = C−1
θ ·

λ1 · ν · (λ1 + ν)

(λ2 + ν)
,

θ(0, 0, [2, 1]) = C−1
θ ·

λ1 · λ2 · ((λ2 + ν) · (λ1 + λ2 + 2 ν) + (λ1 + ν) · ν)

ν · (λ2 + ν)
,

θ(0, 0, [1, 2]) = C−1
θ ·

λ1 · λ2 · ((λ1 + ν) · (λ1 + λ2 + 2 ν) + (λ2 + ν) · ν)

ν · (λ1 + ν)

and normalisation constants

Cj =
∑
nj∈N0

nj∏
`=1

(
λj
µj(`)

)

and Cθ, which can be calculated by the normalisation condition.
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Proof. Z is ergodic, if and only if the strictly positive measure x of the global balance
equation x ·Q = 0 from Proposition 7.4.1 can be normalised (i.e.

∑
n∈N0

∑
k∈K x(n,k) <

∞). Because of Proposition 7.4.1 it holds∑
n∈N0

∑
k∈K

x(n,k) =
∑
n∈N0

ξ̃(n) ·
∑
k∈K

θ̃ (k)

=

∏
j∈J

∑
nj∈N0

nj∏
`=1

λj
µj(`)

 ·(∑
k∈K

θ̃ (k)

)
.

Hence, since K is finite, the measure x from Proposition 7.4.1 can be normalised if and
only if

∑
nj∈N0

∏nj
`=1

λj
µj(`)

<∞ for all j ∈ J .
Consequently, if the process is ergodic, the limiting and stationary distribution π is

given by

π(n,k) =
x(n,k)∑

n∈N0

∑
k∈K x(n,k)

,

where x(n,k) is given in Proposition 7.4.1.

Remark 7.4.3. The expression (7.4.52) shows that the two-component production-inventory-
replenishment system is separable, the steady states of the production network and the
inventory-replenishment complex decouple asymptotically.
Representation (7.4.53) shows that the equilibrium for the production subsystem de-

composes in true independent coordinates. A product structure of the stationary distri-
bution as

ξ(n) =
∏
j∈J

ξj(nj) =
∏
j∈J

C−1
j

nj∏
`=1

λj
µj(`)

is commonly found for standard Jackson networks (see Theorem A.2.2) and their relatives.
In Jackson networks servers are “non-idling”, i.e. they are always busy as long as customers
are present at the respective node. In our production network, however, servers may be
idle while there are customers waiting because a replenishment needs to arrive first.
Consequently, the product form (7.4.52) has been unexpected to us.
Comparing our production-inventory-replenishment system with the “Jackson network

in a random environment” in [KDO16, Section 4] it turns out that we can interpret the
inventory-replenishment subsystem, which contributes via θ to Theorem 7.4.2, as a “ran-
dom environment” for the production network of nodes J , which is in this view a Jackson
network of parallel servers (for more details see Appendix A.3). Taking into account
the results of [KDO16, Theorem 4.1] we conclude from the hindsight that decoupling of
the queueing process (X1, X2) and the process (Y1, Y2,W3), i.e. the formula (7.4.53), is a
consequence of that Theorem 4.1.
Our direct proof of Theorem 7.4.2 is much shorter than embedding the present model

into the general framework of [KDO16].
The structural properties from Section 2.6.1 (ergodicity) and Section 2.6.5 (insensitivity

and robustness) hold word-by-word for this integrated system as well.
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8. Directions for future research

The directions of future research in this chapter are relevant for the models in Part II as
well.

Early reservation of items in the inventory
To count the size of inventory, the most common assumption in the literature is to remove
one item of raw material from the inventory when a served customer departs from the
system. With some suitable simplifications this leads to simple regimes for the production-
inventory systems and partly even to explicit steady state analysis.
For example Schwarz and her coauthors ([Sch04], [SSD+06]) investigated M/M/1 sys-

tems with attached inventory, exponentially distributed lead times and lost sales. They
derived the steady state distributions of the joint queue length and inventory process in
explicit product form and calculated important measures of system performance. Schwarz
and her coauthors noted that their “single threshold” policies will only yield suboptimal
results, and can be considered as heuristic decision making with simple policies. How-
ever, Berman and Kim ([BK01], [BK04]) proved that an optimal replenishment policy is
of “multiple threshold” structure and has to take the inventory size and the queue length
into consideration as decision variables. In hindsight, this seems to be intuitive, since
when a long queue has been accumulated, it should be a better policy to send out a
replenishment order earlier than in the case of a nearly empty queue.

A natural, but still simple modelling approach is the following as shown in Figure 8.0.1:
Whenever a customer arrives at the system, one item of raw material is reserved for him.
In the system’s state the free inventory, this means the items of raw material which are
not reserved, is counted.

Single 
server

Waiting room

Lost 
sales

Demand arrival 
process

Inventory

OrderReplenishment

Supplier

Reservation
free

reserved

Figure 8.0.1.: Production-inventory system: Early reservation of items
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8. Directions for future research

This issue seems to be important since such “order promising policies” are becoming
increasingly important in the supply chain management. These policies define the rules
for accepting or rejecting the orders in dependence on the availability of the product
and the capacity. Slotnick gives a review of the literature about order acceptance and
scheduling from a problem-oriented perspective in [Slo11].
Examples for order promising policies are available-to-promise (ATP) and capable-to-

promise (CTP).
The ATP concept “(...) directly links available resources, including both material and

capacity, with customer orders and, thus, affects the overall performance of a supply
chain” [CZB01, p. 477].
The concept of CTP is an extension of the traditional ATP. “In particular, the gen-

eralisation consists in the integration of additional information about capacities and
intermediate product inventories in multi-stage production systems.” [GK15, p. 136]
There exist some extensions of these approaches in the literature. For example Gössinger
and Kalkowski present an extension of the capable-to-promise approach in [GK15] and
Pibernik presents an advanced available-to-promise scheme (AATP) in [Pib05].
For more information about order promising policies and literature reviews see for ex-

ample [CZB01, Section 1.2, pp. 478f.] and [GK15, pp. 135ff.].

However, this modelling approach has not been investigated analytically in the litera-
ture so far. We started to concentrate on the investigation of these production-inventory
models in the master thesis [Ott13, pp. 17-162].
Main contributions in [Ott13, pp. 17-162]: Markov process models for production-

inventory systems with infinite waiting room under standard inventory control policies
and a general randomized reorder scheme. The criterion for ergodicity (stability) is de-
termined and it has been proven that the steady state distribution of the queueing-
inventory process is not of product form. Furthermore, the marginal steady state dis-
tribution of the free inventory process has been determined and the probability of an
empty queue at the production system is found. An iterative matrix scheme to calculate
the steady state probabilities has been derived. However, the needed initial value for the
scheme is not explicitly at hand yet. If this initial value can be computed, this scheme
could be considered as a new computational algorithm to derive steady state distributions
for a specific class of matrix analytic models.

Separable approximation of non-separable systems
The models considered in this thesis can be extended in several directions. Unfortu-
nately, for most extensions closed form solutions for the stationary distribution can not
be expected. Thus, highly expensive numerical or approximative computations have to
be performed.
For example, it would be interesting to analyse the models where the assumption of lost

sales is relaxed to partial backordering or backordering. As mentioned by Schwarz “(...)
things become much more involved if the lost sales assumption is abandoned allowing
now for demand being backordered” [Sch04, p. 87]. Furthermore, van Dijk argued that
practical phenomena such as blocking or dynamic routing, breakdown features, capacity
constraints and prioritisations violate closed-form expressions (cf. [Dij98, p. 296]).
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Further interesting extensions are the following:

- arbitrarily distributed service or lead times,

- interruptions in queue because of e.g. maintenance or repair (for a literature review
about queues with interruptions we refer to [KPC12]),

- transfer of the items between the inventories at the locations,

- multiple supply options (for a literature review about multiple-supplier inventory
models in supply chain management we refer to [Min03]).

As mentioned before in Section 1.1, an important question is “Can we use our product
form results to obtain simple product form bounds for systems with unknown non-product
form stationary distributions?”. Van Dijk and his coauthors (e.g. [Dij11b, Section 1,7,
pp. 62f.], [Dij98, pp. 311ff.], [DK92], [DW89]) show that a product form modification
turns out to be quite fruitful to provide product form bounds for the throughput of a
unsolvable (≡ unknown stationary distribution) queueing-inventory system.
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Part II.

Production-inventory systems
with priority classes
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9. Introduction

Up to now, one of the key assumptions of queueing-inventory models in literature is that
customers are indistinguishable. In practice, however, customers have different charac-
teristics and/or priorities, which leads to systems where this assumption does not hold.
In the following chapters, we therefore consider systems with two customer classes with
different priorities. In this chapter, we focus on queue-length-independent arrival and
service rates.

9.1. Related literature and own contributions

Wang and his coauthors [WBSW15] state there are three main motivations for prioritisa-
tion:

• Different customers may have a different willingness to pay for the same product.

• Customers may require different products or services, where some of these products
are more profitable than others.

• Different service levels may substantially affect long-term profitability.

“Modelling the effects of prioritization due to the first and third motivations can be
achieved with identical service time distributions for different segments.” [WBSW15, p.
733]

According to Isotupa [Iso15, p. 411], there are many situations where it would be finan-
cially beneficial for a supplier to provide different levels of service to different customers.
Wang and his coauthors [WBSW15, p. 733] write that customers with different service

requests have different priorities in many practical applications. “For example, contact
centres prioritize phone calls over emails; renewals of driver’s licenses require a photo-
graph and thus typically take longer than renewals of car licenses; at airports, processing
times of the aircrew are shorter than those of air travellers, who have a lower prior-
ity” [WBSW15, p. 733]. Our models do not have different service requests, but the
priorities have an impact on the costs.

According to Yadavalli and his coauthors [YAJ15a], patients with serious illnesses are
given higher priority than the other patients opting for routine checks or else in multi-
speciality hospitals.
Another example from Liu and his couauthors [LXC13, pp. 1544f.] is that orders with

long term contracts have higher priority than unscheduled order since they may bear
lower shortage cost than the booked orders.
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For a literature review about inventory control systems with multiple customer classes,
we refer to Isotupa ([Iso11, Section 2, pp. 3ff.], [Iso15, Section 1, pp. 411ff.]) and Arslan
and his coauthors [AGR07, pp. 1486ff.].

It can be differentiated between priority disciplines that regulate customer arrivals and
priority disciplines that regulate customer services. In this chapter, we will combine both
disciplines.

In a sequence of papers ([Iso06], [Iso07], [Iso11], [IS13], [Iso15]), Isotupa investigates
inventory systems with the most commonly used replenishment policies — (r,Q)-policy
and base stock policy — with two classes of customers regarding the priority discipline
that regulates customer arrivals, or more precisely, the lost sales conditions for ordinary
customers. Examples are inventory systems of spare parts in the airline or shipping
industries and spare parts for refinery equipment, since the equipment is categorized in
many different classes and different service levels are defined for each type (cf. [Iso11, pp.
1f.]).
According to Isotupa ([Iso07], [Iso11], [Iso15]) the systems under investigation can differ

in terms of the priority discipline that regulates customer arrivals or more precisely the
lost sales conditions for ordinary customers:

Case 1: During the time the inventory is depleted, arriving priority customers and ar-
riving ordinary customers are lost (i.e. no differentiation between customers).

Case 2: During the time the inventory is equal to or less than a threshold level s
satisfying 0 < s ≤ r or r < s ≤ Q, arriving ordinary customers are lost. If
the inventory level is zero, demands due to both types of customers are lost.1

Isotupa derives a closed form expression for the stationary distribution of the invento-
ry levels, the performance measures and the long-run expected cost rate. She proves
in [Iso07], [Iso11] and [Iso15] that under certain conditions the rationing policy yields
lower costs and provides better service levels to both types of customers than the policy
where all customers are treated alike.

Liu and his coauthors ([CZL12], [LXC13], [LFW14]) introduce a flexible admission
control with a priority parameter 0 ≤ p ≤ 1 “for controlling the application of prior-
ity” [LFW14, p. 181] for the inventory system of Isotupa with case 2 of the priority
discipline. The priority parameter p indicates the probability with which the arrivals of
ordinary customers are treated like the arrivals of priority customers. If p = 1, there is
no priority in regulating arrivals. If p = 0, there is a strict priority in regulating arrivals.
In the last case, their model is the same as the model of Isotupa [Iso07]. They derive
the stationary distribution of the inventory levels and some performance measures. To
obtain the optimal inventory control policy they construct a mixed integer optimization
problem in [LXC13] and [LFW14] and develop an efficient searching algorithm in [CZL12].

However, the above systems are inventory systems that do not include a production
system. In an inventory system, when a customer’s demand arrive, “(...) it is typically
required to do some processing on the inventory item (e.g. retrieval, preparation, packing,
and loading) before delivering it to the customer” [HHS11]. To the best of our knowledge,

1Isotupa does not consider the case Q < s ≤ r +Q without any reasoning.
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9.1. Related literature and own contributions

production-inventory systems with different classes of customers were first considered by
Zhao and Lian [ZL11]. They investigate a system with Poisson arrivals, exponentially dis-
tributed service and lead times under backordering. They find a priority service rule to
minimise the long-run expected waiting cost by a dynamic programming method. They
formulate the model as a level-dependent quasi-birth-and-death process such that the
steady state probability distribution of their production-inventory systems can be com-
puted by the Bright-Taylor algorithm.

To the best of our knowledge, this extension has not been considered so far in the
context of a production system with attached inventory and lost sales. Therefore, we
dedicated parts of our research to production-inventory systems with two classes of cus-
tomers and inventory management under lost sales where the customers’ arrivals are
regulated by a flexible admission control.

Jeganathan and his coauthors investigate in a sequence of papers (e.g. [JKA16], [Jeg15],
[YAJ15a]) queueing-inventory systems with two classes of customers. They consider mod-
els with impatient customers, an optional second service and a mixed priority service
(non-preemptive priority and preemptive priority).

Li and Zhao [LZ09] investigate a preemptive priority queueing system (without invento-
ry) with two classes of customers and an exponential single server who serves the two
classes of customers at potentially different rates.

Our main contributions are the following:
We develop a Markov process description for a production-inventory system with two
classes of customers and inventory management under lost sales with (r,Q)-policy in
Chapter 10 and base stock policy in Chapter 11 where customers’ arrivals are regulated
by a flexible admission control. The global balance equations and the existence of a
stationary distribution are investigated. Furthermore, we consider the special case of
zero service time, which results in a pure inventory system, and determine the stationary
distribution.
Our system with (r,Q)-policy is an extension of the production-inventory system of

Zhao and Lian [ZL11] with two classes of customers in the context of lost sales with a
priority parameter.
Furthermore, our work with (r,Q)-policy is an extension of the investigations of Isotupa

([Iso06], [Iso07], [Iso11]), Liu and his coauthors ([LFW14], [LXC13], [CZL12]): In their
models no production processes are considered. Therefore, their models are special cases
of our model when the service time is set to zero. In addition, the priority parameter is
not an issue of the investigations in the models of Isotupa. Moreover, Isotupa assumes
that the threshold level s is not greater than the order quantity Q without any reasoning
and Liu and his authors assume that the threshold level is equal to the reorder level.
Hence, we consider a threshold level that can also be greater than the order quantity.
Moreover, our study with base stock policy is an extension to the investigations of

Isotupa [Iso15]. In her model is no production system. In terms of our production-
inventory scenario, we will arrive at her model when setting the service time to zero. In
her model the replenishment rate depends on the number of pending orders. In Remark
11.1.10, we explain how we can extend our model so that the replenishment lead time
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9. Introduction

depends on the number of orders at the supplier.
On the other hand, it is an extension of the production-inventory systems under (r,Q)-

policy described by Schwarz and her coauthors [SSD+06]: Their study is limited to one
class of customers. Our results extend their setting to two classes of customers with
different priorities and flexible admission control.

9.2. Description of the general model

The supply chain of interest is depicted in Figure 9.2.1 and consists of priority and
ordinary customers, a production system (a single server with two unlimited waiting
rooms), an inventory and a supplier.

Single 
server

Inventory

OrderReplenishment

Supplier

Preempted
ordinary
customer

Waiting room
(priority)

Lost 
salesDemand arrival 

process

Lost 
sales

Demand arrival 
process

Priority customer

Ordinary customer

Waiting room
(ordinary)

Figure 9.2.1.: The production-inventory system with two customer classes

The production system manufactures according to customers’ demand on a make-to-
order basis. There are two types of customers — priority customers and ordinary custom-
ers. C = {1, 2} is the set of customer classes where 1 is the type of priority customers and
2 is the type of ordinary customers — the smaller the number, the higher the priority.
Priority customers arrive according to a Poisson process with rate λ1 > 0 and ordinary
customers arrive according to a Poisson process with rate λ2 > 0.

Customers’ arrivals are regulated by a flexible admission control with priority para-
meter p, 0 ≤ p ≤ 1: If the inventory is depleted all arriving customers are rejected (“lost
sales”). If the on-hand inventory is greater than a prescribed threshold level s, customers
of both classes are admitted to enter the system2. If the on-hand inventory reaches or falls

2The threshold level s is greater than zero and smaller than the maximal size of the inventory. Hence,
in Chapter 10, where the (r, S)-policy is considered, for the threshold level holds 0 < s < r +Q and
in Chapter 11, where the base stock policy is considered, for the threshold level holds 0 < s < b.
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below the threshold level s, priority customers still enter the system but ordinary cus-
tomers are allowed to enter only with probability p and are rejected with probability 1−p.

There is a single server with two separate infinite waiting rooms — one waiting room
for priority customers (priority queue) and one waiting room for ordinary customers (or-
dinary queue) both under a FCFS regime. If both customer queues are not empty, the
server needs to decide which one of them should be served. The choice is made accord-
ing to a prescribed priority discipline. An overview of various priority disciplines can be
found in [Jai68, p. 53].

In Chapter 10 and Chapter 11, the preemptive resume discipline is considered. Ac-
cording to this discipline a newly arriving priority customer interrupts immediately an
ongoing service of an ordinary customer. The preempted ordinary customer returns to
the head of his ordinary queue and then has to wait until the priority queue is exhausted
before he reenters service. The preempted customer resumes service from the point of
interruption so that his service time upon reentry has been reduced by the amount of time
the customer has already spent in service (cf. [Mil58, p. 1]). Since it is assumed that the
service time is exponential, the ordinary customer requires on its reentry stochastically
the same amount of service as it required on its earlier entry. Thus, the preemptive re-
sume discipline is equal to the preemptive repeat-identical discipline where the preempted
customer requires the same amount of service on its reentry as he required on his earlier
entry (cf. [Jai68, p. 53]).

Each customer needs exactly one item from the inventory for service. The service time
for both types of customers is exponentially distributed with parameter µ > 0. If the
server is ready to serve a customer, who is at the head of the line, and the inventory is
not depleted, the service begins immediately. Otherwise, the service starts at the instant
of time when the next replenishment arrives at the inventory.
A served customer departs from the system immediately and the associated item is

removed from the inventory at this time instant. It is assumed that the transportation
time between the production system and the inventory is negligible.

An outside supplier replenishes raw material to the inventory according to a continuous
review replenishment policy. At each decision epoch a replenishment policy determines
whether a replenishment order is placed or not, and how many items are ordered. Admis-
sible decision epochs are arrival and departure epochs. The systems under investigation
differ with respect to the replenishment policy in the following way:

• (r,Q)-policy (Chapter 10),

• base stock policy (Chapter 11).

We investigate systems where the replenishment lead time is exponentially distributed
with parameter ν > 0.

It is assumed that transmission times for orders are negligible and set to zero.
All service times, inter-arrival times and replenishment lead times constitute an inde-

pendent family of random variables.
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10. Production-inventory system with
(r,Q)-policy

In this chapter, we study the production-inventory system with two types of arriving
customers, a flexible admission control and (r,Q)-policy, as described in Section 9.2.

The inventory is controlled by the (r,Q)-policy. This means, if the on-hand inventory
falls down to a prefixed value r ≥ 0, a replenishment order is placed instantaneously. The
size of the order is fixed to Q < ∞ units of raw material. We assume that r < Q (this
“ensures that there is no perpetual shortage” [LFW14, p. 1545]) and that there is at most
one outstanding order. The maximal size of the inventory is r +Q.

Remark 10.0.1. With respect to economic aspects, if ν = ∞ a reorder level r > 0 under
any policy does not make sense, since r items of raw material are never touched by the
customers and remain in stock forever (cf. [SSD+06, p. 63]).

Customer arrivals are regulated by a flexible admission control with priority parameter
p, 0 ≤ p ≤ 1: If the inventory is depleted all arriving customers are rejected (“lost sales”).
If the on-hand inventory is greater than a prescribed threshold level s, 0 < s < r + Q,
the customers of both classes are admitted to enter the system. If the on-hand inventory
reaches or falls below the threshold level s, all priority customers still enter the system,
but ordinary customers are allowed to enter only with probability p and are rejected with
probability 1− p.

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by X1(t) the number of priority customers present in the system at
time t ≥ 0, and by X2(t) the number of ordinary customers in the system at time t ≥ 0
either waiting or in service (queue length). Since the customer in service will always be
of the priority class when at least one priority customer is present, the value of the vector
(X1(t), X2(t)) determines uniquely the type of the customer in service at time t ≥ 0, if
any. Moreover, by Y (t) we denote the on-hand inventory at time t ≥ 0.
We define the joint queueing-inventory process of this system by

Z = ((X1(t), X2(t), Y (t)) : t ≥ 0).

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process. The state space of Z is

E =
{

(n1, n2, k) : (n1, n2) ∈ N2
0, k ∈ {0, . . . , r +Q}

}
,

where r + Q is the maximal size of the inventory, which depends on the replenishment
policy.
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10. Production-inventory system with (r,Q)-policy

10.1. Properties of the stationary system

In this section, we assume that the queueing-inventory process Z is ergodic.

The queueing-inventory process Z has an infinitesimal generatorQ = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n1, n2, k) ∈ E:

q((n1, n2, k); (n1 + 1, n2, k)) = λ1 · 1{k>0},

q((n1, n2, k); (n1, n2 + 1, k)) = p λ2 · 1{0<k≤s} + λ2 · 1{k>s},
q((n1, n2, k); (n1 − 1, n2, k − 1)) = µ · 1{n1>0} · 1{k>0},

q((n1, n2, k); (n1, n2 − 1, k − 1)) = µ · 1{n1=0} · 1{n2>0} · 1{k>0},

q((n1, n2, k); (n1, n2, k +Q)) = ν · 1{k≤r}.

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

Definition 10.1.1. For the queueing-inventory process Z on state space E, whose lim-
iting distribution exists, we define

π := (π (n1, n2, k) : (n1, n2, k) ∈ E) by π (n1, n2, k) := lim
t→∞

P (Z(t) = (n1, n2, k)) .

The global balance equations π ·Q = 0 of the ergodic queueing-inventory process Z are
for (n1, n2, k) ∈ E given by

π(n1, n2, k) ·
(
(λ1 + p λ2) · 1{0<k≤s} + (λ1 + λ2) · 1{k>s}

+µ · 1{n1+n2>0} · 1{k>0} + ν · 1{k≤r}
)

= π(n1 − 1, n2, k) · λ1 · 1{n1>0} · 1{k>0}

+π(n1, n2 − 1, k) · p λ2 · 1{n2>0} · 1{0<k≤s} + π(n1, n2 − 1, k) · λ2 · 1{n2>0} · 1{k>s}
+π(n1 + 1, n2, k + 1) · µ · 1{k<r+Q} + π(n1, n2 + 1, k + 1) · µ · 1{n1=0} · 1{k<r+Q}
+π(n1, n2, k −Q) · ν · 1{k≥Q}. (10.1.1)
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10.1. Properties of the stationary system

Let (X1, X2, Y ) be a random variable that is distributed according to the queueing-
inventory process in equilibrium. Then, Y is a random variable that is distributed ac-
cording to the inventory process in equilibrium and X1 resp. X2 are random variables
that are respectively distributed according to the queue length processes of priority resp.
ordinary customers in equilibrium.

Proposition 10.1.2. For the queueing-inventory process Z holds the following equilib-
rium of probability flows

P (Y > 0) · λ1︸ ︷︷ ︸
effective arrival rate
of priority customers

= P (X1 > 0, Y > 0) · µ︸ ︷︷ ︸
effective departure rate
of priority customers

, (10.1.2)

P (0 < Y ≤ s) · p λ2 + P (Y > s) · λ2︸ ︷︷ ︸
effective arrival rate
of ordinary customers

= P (X1 = 0, X2 > 0, Y > 0) · µ︸ ︷︷ ︸
effective departure rate
of ordinary customers

(10.1.3)

P (Y > 0) · λ1 + P (0 < Y ≤ s) · p λ2 + P (Y > s) · λ2︸ ︷︷ ︸
effective arrival rate

of customers

= P (X1 +X2 > 0, Y > 0) · µ︸ ︷︷ ︸
effective departure rate

of customers

(10.1.4)

and

P (X1 = n1, Y > 0) · λ1

= P (X1 = n1 + 1, Y > 0) · µ, n1 ∈ N0, (10.1.5)

P (X2 = n2, 0 < Y ≤ s) · p λ2 + P (X2 = n2, Y > s) · λ2

= P (X1 = 0, X2 = n2 + 1, Y > 0) · µ, n2 ∈ N0, (10.1.6)

P (X1 +X2 = n, 0 < Y ≤ s) · (λ1 + p λ2)

+P (X1 +X2 = n, Y > s) · (λ1 + λ2)

= P (X1 +X2 = n+ 1, Y > 0) · µ, n ∈ N0. (10.1.7)

Remark 10.1.3. The effective departure rates are usually called throughputs.
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Proof. The equations can be proven by the cut-criterion for positive recurrent processes,
which is presented in Theorem A.1.1(a) on page 259.

For n1 ∈ N0, equation (10.1.5) can be proven by a cut, which divides E into comple-
mentary sets according to the queue length of priority customers that is less than or equal
to n1 or greater than n1, i.e. into the sets

{
(m1,m2, k) : m1 ∈ {0, 1, . . . , n1}, m2 ∈ N0, k ∈ {0, . . . , r +Q}

}
,

{
(m̃1, m̃2, k̃) : m̃1 ∈ N0 \ {0, 1, . . . , n1}, m̃2 ∈ N0, k̃ ∈ {0, . . . , r +Q}

}
, n1 ∈ N0.

Then, the following holds for n1 ∈ N0

n1∑
m1=0

∞∑
m2=0

r+Q∑
k=0

∞∑
m̃1=n1+1

∞∑
m̃2=0

r+Q∑
k̃=0

π(m1,m2, k) · q((m1,m2, k); (m̃1, m̃2, k̃))

=

∞∑
m̃1=n1+1

∞∑
m̃2=0

r+Q∑
k̃=0

n1∑
m1=0

∞∑
m2=0

r+Q∑
k=0

π(m̃1, m̃2, k̃) · q((m̃1, m̃2, k̃); (m1,m2, k))

⇔
n1∑

m1=n1

∞∑
m2=0

r+Q∑
k=1

π(m1,m2, k) · λ1︸ ︷︷ ︸
=P (X1=n1,Y >0)·λ1

=

n1+1∑
m̃1=n1+1

∞∑
m̃2=0

r+Q∑
k̃=1

π(m̃1, m̃2, k̃) · µ

︸ ︷︷ ︸
=P (X1=n1+1,Y >0)·µ

.

Hence, for n1 ∈ N0 holds (10.1.5)

P (X1 = n1, Y > 0) · λ1 = P (X1 = n1 + 1, Y > 0) · µ.

Summation of the equations (10.1.5) over n1 ∈ N0 leads to

∞∑
n1=0

P (X1 = n1, Y > 0) · λ1 =
∞∑

n1=0

P (X1 = n1 + 1, Y > 0) · µ,

which is equivalent to (10.1.2)

P (Y > 0) · λ1 = P (X1 > 0, Y > 0) · µ.
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For n2 ∈ N0, equation (10.1.6) can be proven by a cut, which divides E into comple-
mentary sets according to the queue length of ordinary customers that is less than or
equal to n2 or greater than n2, i.e. into the sets{

(m1,m2, k) : m1 ∈ N0, m2 ∈ {0, 1, . . . , n2}, k ∈ {0, . . . , r +Q}
}
,

{
(m̃1, m̃2, k̃) : m̃1 ∈ N0, m̃2 ∈ N0 \ {0, 1, . . . ., n2}, k̃ ∈ {0, . . . , r +Q}

}
, n2 ∈ N0.

Then, the following holds for n2 ∈ N0

∞∑
m1=0

n2∑
m2=0

r+Q∑
k=0

∞∑
m̃1=0

∞∑
m̃2=n2+1

r+Q∑
k̃=0

π(m1,m2, k) · q((m1,m2, k); (m̃1, m̃2, k̃))

=
∞∑

m̃1=0

∞∑
m̃2=n2+1

r+Q∑
k̃=0

∞∑
m1=0

n2∑
m2=0

r+Q∑
k=0

π(m̃1, m̃2, k̃) · q((m̃1, m̃2, k̃); (m1,m2, k))

⇔
∞∑

m1=0

n2∑
m2=n2

s∑
k=1

π(m1,m2, k) · p λ2︸ ︷︷ ︸
=P (X2=n2,0<Y≤s)·p λ2

+

∞∑
m1=0

n2∑
m2=n2

r+Q∑
k=s+1

π(m1,m2, k) · λ2︸ ︷︷ ︸
=P (X2=n2,Y >s)·λ2

=
0∑

m̃1=0

n2+1∑
m̃2=n2+1

r+Q∑
k̃=1

π(m̃1, m̃2, k̃) · µ

︸ ︷︷ ︸
=P (X1=0,X2=n2+1,Y >0)·µ

.

Thus, for n2 ∈ N0 holds (10.1.6)

P (X2 = n2, 0 < Y ≤ s) · p λ2 + P (X2 = n2, Y > s) · λ2

= P (X1 = 0, X2 = n2 + 1, Y > 0) · µ.

Summation of the equations (10.1.6) over n2 ∈ N0 leads to

∞∑
n2=0

P (X2 = n2, 0 < Y ≤ s) · p λ2 +
∞∑

n2=0

P (X2 = n2, Y > s) · λ2

=

∞∑
n2=0

P (X1 = 0, X2 = n2 + 1, Y > 0) · µ,

which is equivalent to (10.1.3)

P (0 < Y ≤ s) · p λ2 + P (Y > s) · λ2 = P (X1 = 0, X2 > 0, Y > 0) · µ.
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For n ∈ N0, equation (10.1.7) can be proven by a cut, which divides E into comple-
mentary sets according to the total queue length of customers that is less than or equal
to n or greater than n, i.e. into the sets{

(m1,m2, k) : m1,m2 ∈ N0, (m1 +m2) ∈ {0, 1, . . . , n}, k ∈ {0, . . . , r +Q}
}
,{

(m̃1, m̃2, k̃) : m̃1, m̃2 ∈ N0, (m̃1 + m̃2) ∈ N0 \ {0, 1, . . . , n}, k̃ ∈ {0, . . . , r +Q}
}
, n ∈ N0.

Then, the following holds for n ∈ N0

n∑
m1+m2=0

r+Q∑
k=0

∞∑
m̃1+m̃2=n+1

r+Q∑
k̃=0

π(m1,m2, k) · q((m1,m2, k); (m̃1, m̃2, k̃))

=

∞∑
m̃1+m̃2=n+1

r+Q∑
k̃=0

n∑
m1+m2=0

r+Q∑
k=0

π(m̃1, m̃2, k̃) · q((m̃1, m̃2, k̃); (m1,m2, k))

⇔
n∑

m1+m2=n

s∑
k=1

π(m1,m2, k) (λ1 + p λ2)︸ ︷︷ ︸
=P (X1+X2=n,0<Y≤s)·(λ1+p λ2)

+

n∑
m1+m2=n

r+Q∑
k=s+1

π(m1,m2, k) · (λ1 + λ2)︸ ︷︷ ︸
=P (X1+X2=n,Y >s)·(λ1+λ2)

=
n+1∑

m̃1+m̃2=n+1

r+Q∑
k̃=1

π(m̃1, m̃2, k̃) · µ

︸ ︷︷ ︸
=P (X1+X2=n+1,Y >0)·µ

.

Hence, for n ∈ N0 holds (10.1.7)

P (X1 +X2 = n, 0 < Y ≤ s) · (λ1 + p λ2) + P (X1 +X2 = n, Y > s) · (λ1 + λ2)

= P (X1 +X2 = n+ 1, Y > 0) · µ.

Summation of the equations (10.1.7) over n ∈ N0 leads to
∞∑
n=0

P (X1 +X2 = n, 0 < Y ≤ s) · (λ1 + p λ2) +
∞∑
n=0

P (X1 +X2 = n, Y > s) · (λ1 + λ2)

=
∞∑
n=0

P (X1 +X2 = n+ 1, Y > 0) · µ,

which is equivalent to (10.1.4)

P (0 < Y ≤ s) · (λ1 + p λ2) + P (Y > s) · (λ1 + λ2)

= P (X1 +X2 > 0, Y > 0) · µ

⇔ P (Y > 0) · λ1 + P (0 < Y ≤ s) · p λ2 + P (Y > s) · λ2

= P (X1 +X2 > 0, Y > 0) · µ.
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Remark 10.1.4.

(a) From (10.1.5) follows for n1 ∈ N0,

P (X1 = n1, Y > 0) = P (X1 = 0, Y > 0) ·
(
λ1

µ

)n1

. (10.1.8)

(b) In an M/M/c queue with two priority classes under a preemptive priority dis-
cipline without inventory, the priority customers form a classic M/M/c queue
(cf. [WBSW15]). However, our queueing-inventory system with c = 1 (one server)
is not so easy to solve since two customer classes have to share the same inventory
and therefore, the priority customers do not form a classic M/M/1 queue.

(c) Rearranging (10.1.4) shows that the probability that the inventory is not depleted
is given by

P (Y > 0) = P (X1 +X2 > 0, Y > 0) · µ
λ1

−P (0 < Y ≤ s) · p λ2

λ1
− P (Y > s) · λ2

λ1

and from (10.1.2) follows

P (Y > 0) = P (X1 > 0, Y > 0) · µ
λ1
.

Corollary 10.1.5. For the conditional distribution of the queue length process of priority
customers conditioned on {Y > 0} holds for n1 ∈ N0

P (X1 = n1|Y > 0) = P (X1 = 0|Y > 0) ·
(
λ1

µ

)n1

with
P (X1 = 0|Y > 0) =

(
1− λ1

µ

)
.

This shows that the conditional queue length process of priority customers under the con-
dition that the inventory is not empty has in equilibrium the same structure as a birth-
and-death process with birth-rates λ1 and death-rates µ.

Proof. Equation (10.1.8) implies for n1 ∈ N0

P (X1 = n1|Y > 0) =
P (X1 = n1, Y > 0)

P (Y > 0)

(10.1.8)
=

P (X1 = 0, Y > 0)

P (Y > 0)
·
(
λ1

µ

)n1

= P (X1 = 0|Y > 0) ·
(
λ1

µ

)n1

and the normalizing condition leads to

P (X1 = 0|Y > 0) =

( ∞∑
n1=1

(
λ1

µ

)n1
)−1

=

(
1− λ1

µ

)
.
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10. Production-inventory system with (r,Q)-policy

Proposition 10.1.6. The probability that a replenishment order is outstanding fulfils the
following equalities:

P (Y < r + 1) =
µ

ν
· P (X1 +X2 > 0, Y = Q) (10.1.9)

=
µ

ν
· P (X1 +X2 > 0, Y = r + 1) (10.1.10)

and

P (Y < r + 1) =
µ

ν ·Q
· P (X1 +X2 > 0, Y > 0). (10.1.11)

Proof. Equation (10.1.9) can be proven by the cut-criterion for positive recurrent pro-
cesses, which is presented in Theorem A.1.1(a) on page 259. For Q > r, it can be proven
by a cut, which divides E into complementary sets according to the size of the inventory
that is less than or equal to Q− 1 or greater than Q− 1, i.e. into the sets{

(n1, n2, k) : (n1, n2) ∈ N2
0, k ∈ {0, . . . , Q− 1}

}
,{

(ñ1, ñ2, k̃) : (ñ1, ñ2) ∈ N2
0, k̃ ∈ {Q, . . . , r +Q}

}
, r < Q.

Then, the following holds for r < Q

∞∑
n1+n2=0

Q−1∑
k=0

∞∑
ñ1+ñ2=0

r+Q∑
k̃=Q

π(n1, n2, k) · q((n1, n2, k); (ñ1, ñ2, k̃))

=

∞∑
ñ1+ñ2=0

r+Q∑
k̃=Q

∞∑
n2+n2=0

Q−1∑
k=0

π(ñ1, ñ2, k̃) · q((ñ1, ñ2, k̃); (n1, n2, k))

⇔
∞∑

n1+n2=0

r∑
k=0

π(n1, n2, k) · ν︸ ︷︷ ︸
=P (Y <r+1)·ν

=

∞∑
ñ1+ñ2=1

Q∑
k̃=Q

π(ñ1, ñ2, k̃) · µ

︸ ︷︷ ︸
=P (X1+X2>0,Y=Q)·µ

.

Therefore, the probability that a replenishment order is outstanding is given by (10.1.9)

P (Y < r + 1) =
µ

ν
· P (X1 +X2 > 0, Y = Q).

Summation of the global balance equations (10.1.1) over n1 ∈ N0 and n2 ∈ N0 leads to the
following. Some of the changes are highlighted for reasons of clarity and comprehensibility.

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k) ·
(
(λ1 + pλ2) · 1{0<k≤s} + (λ1 + λ2) · 1{k>s}

+µ · 1{n1+n2>0} · 1{k>0} + ν · 1{k≤r}
)

=

∞∑
n1=0

∞∑
n2=0

π(n1 − 1, n2, k) · λ1 · 1{n1>0} · 1{k>0}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2 − 1, k) · p λ2 · 1{n2>0} · 1{0<k≤s}
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+
∞∑

n1=0

∞∑
n2=0

π(n1, n2 − 1, k) · λ2 · 1{n2>0} · 1{k>s}

+
∞∑

n1=0

∞∑
n2=0

π(n1 + 1, n2, k + 1) · µ · 1{k<r+Q}

+

∞∑
n1=0

∞∑
n2=0

π(n1, n2 + 1, k + 1) · µ · 1{n1=0} · 1{k<r+Q}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k −Q) · ν · 1{Q≤k≤r+Q}.

This is equivalent to

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k) ·
(
(λ1 + pλ2) · 1{0<k≤s} + (λ1 + λ2) · 1{k>s}

+µ · 1{k>0} + ν · 1{k≤r}
)
−π(0, 0, k) · µ · 1{k>0}

=

∞∑
n1=1

∞∑
n2=0

π(n1 − 1, n2, k) · λ1 · 1{k>0}

+

∞∑
n1=0

∞∑
n2=1

π(n1, n2 − 1, k) · p λ2 · 1{0<k≤s}

+
∞∑

n1=0

∞∑
n2=1

π(n1, n2 − 1, k) · λ2 · 1{k>s}

+

∞∑
n1=0

∞∑
n2=0

π(n1 + 1, n2, k + 1) · µ · 1{k<r+Q}

+

∞∑
n2=0

π(0, n2 + 1, k + 1) · µ · 1{k<r+Q}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k −Q) · ν · 1{Q≤k≤r+Q}

=

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k) · λ1 · 1{k>0}

+

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k) · p λ2 · 1{0<k≤s} +

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k) · λ2 · 1{k>s}

+
∞∑

n1=1

∞∑
n2=0

π(n1, n2, k + 1) · µ · 1{k<r+Q}

+
∞∑

n2=1

π(0, n2, k + 1) · µ · 1{k<r+Q}

+

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k −Q) · ν · 1{Q≤k≤r+Q}
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10. Production-inventory system with (r,Q)-policy

=
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k) · λ1 · 1{k>0}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k) · p λ2 · 1{0<k≤s} +
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k) · λ2 · 1{k>s}

+

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k + 1) · µ · 1{k<r+Q}−
∞∑

n2=0

π(0, n2, k + 1) · µ · 1{k<r+Q}

+
∞∑

n2=0

π(0, n2, k + 1) · µ · 1{k<r+Q}−π(0, 0, k + 1) · µ · 1{k<r+Q}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k −Q) · ν · 1{Q≤k≤r+Q}.

Cancelling on both sides the terms
∑∞

n1=0

∑∞
n2=0 π(n1, n2, k) · (λ1 + p λ2) · 1{0<k≤s}

and
∑∞

n1=0

∑∞
n2=0 π(n1, n2, k) · (λ1 + λ2) · 1{k>s} yields
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k) ·
(
µ · 1{k>0} + ν · 1{k≤r}

)
− π(0, 0, k) · µ · 1{k>0}

=

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k + 1) · µ · 1{k<r+Q} − π(0, 0, k + 1) · µ · 1{k<r+Q}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k −Q) · ν · 1{Q≤k≤r+Q}.

Hence,

P (X1 +X2 > 0, Y = k) · µ · 1{k>0} + P (Y = k) · ν · 1{k≤r}
= P (X1 +X2 > 0, Y = k + 1) · µ · 1{k<r+Q} + P (Y = k −Q) · ν · 1{Q≤k≤r+Q}.

This leads to

ν · P (Y = 0) = µ · P (X1 +X2 > 0, Y = 1), k = 0, (10.1.12)

ν · P (Y = k) = µ · P (X1 +X2 > 0, Y = k + 1)

−µ · P (X1 +X2 > 0, Y = k), 0 < k ≤ r, (10.1.13)

µ · P (X1 +X2 > 0, Y = k)

= µ · P (X1 +X2 > 0, Y = k + 1), r < k < Q, (10.1.14)

ν · P (Y = k) = µ · P (X1 +X2 > 0, Y = Q+ k)

−µ · P (X1 +X2 > 0, Y = Q+ k + 1), 0 ≤ k < r, (10.1.15)

ν · P (Y = r) = µ · P (X1 +X2 > 0, Y = r +Q), k = r +Q. (10.1.16)
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From (10.1.12) and (10.1.15) with k = 0 follows

P (X1 +X2 > 0, Y = Q)

= P (X1 +X2 > 0, Y = 1) + P (X1 +X2 > 0, Y = Q+ 1). (10.1.17)

From (10.1.13) and (10.1.15) it can be deduced that for k = 1, . . . , r − 1

P (X1 +X2 > 0, Y = k) + P (X1 +X2 > 0, Y = Q+ k)

= P (X1 +X2 > 0, Y = k + 1) + P (X1 +X2 > 0, Y = Q+ k + 1) (10.1.18)

holds. Finally, for k = r (10.1.13) and (10.1.16) yield

P (X1 +X2 > 0, Y = r) + P (X1 +X2 > 0, Y = Q+ r)

= P (X1 +X2 > 0, Y = r + 1). (10.1.19)

Then (10.1.17)-(10.1.19) lead for k = 1, . . . , r to

P (X1 +X2 > 0, Y = Q)

= P (X1 +X2 > 0, Y = k) + P (X1 +X2 > 0, Y = Q+ k)

= P (X1 +X2 > 0, Y = r + 1), (10.1.20)

which together with (10.1.9) yields (10.1.10).
Furthermore, it holds

P (X1 +X2 > 0, Y > 0) =

r+Q∑
k=1

P (X1 +X2 > 0, Y = k)

=

r∑
k=1

P (X1 +X2 > 0, Y = k) +

Q∑
k=r+1

P (X1 +X2 > 0, Y = k)

+

r+Q∑
k=Q+1

P (X1 +X2 > 0, Y = k)

=
r∑

k=1

[P (X1 +X2 > 0, Y = k) + P (X1 +X2 > 0, Y = Q+ k)]

+

Q∑
k=r+1

P (X1 +X2 > 0, Y = k)

(10.1.14)
=

r∑
k=1

[P (X1 +X2 > 0, Y = k) + P (X1 +X2 > 0, Y = Q+ k)]

+ (Q− r) · P (X1 +X2 > 0, Y = r + 1)

(10.1.20)
= r · P (X1 +X2 > 0, Y = r + 1) + (Q− r) · P (X1 +X2 > 0, Y = r + 1)

= Q · P (X1 +X2 > 0, Y = r + 1)
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10. Production-inventory system with (r,Q)-policy

Therefore, the probability that a replenishment order is outstanding is given by (10.1.11)

P (Y < r + 1) =
µ

ν ·Q
· P (X1 +X2 > 0, Y > 0).

In the literature there are several different definitions of a unimodal function. The
following definition is based on [Kei79, Definition 5.3B, p. 63].

Definition 10.1.7 (Weakly unimodal). A distribution P (X ≤ x) with all support on the
lattice of integers will be said to be weakly unimodal if there exists at least one integer
x? such that

P (X = x) ≤ P (X = y) for all x, y with x ≤ y ≤ x? or x? ≤ y ≤ x.

Proposition 10.1.8. The joint probability density P (X1 + X2 > 0, Y = k) is weakly
unimodal

P (X1 +X2 > 0, Y = k) < P (X1 +X2 > 0, Y = k + 1), k = 1, . . . , r,

P (X1 +X2 > 0, Y = k) = P (X1 +X2 > 0, Y = k + 1), k = r + 1, . . . , Q− 1,

P (X1 +X2 > 0, Y = k) > P (X1 +X2 > 0, Y = k + 1), k = Q, . . . , Q+ r − 1.

Hence, the conditional probability density P (Y = k | X1 +X2 > 0) is weakly unimodal

P (Y = k | X1 +X2 > 0) < P (Y = k + 1 | X1 +X2 > 0), k = 1, . . . , r,

P (Y = k | X1 +X2 > 0) = P (Y = k + 1 | X1 +X2 > 0), k = r + 1, . . . , Q− 1,

P (Y = k | X1 +X2 > 0) > P (Y = k + 1 | X1 +X2 > 0), k = Q, . . . , Q+ r − 1.

Proof. For k = 1, . . . , r holds from (10.1.13)

ν

µ
· P (Y = k) = P (X1 +X2 > 0, Y = k + 1)− P (X1 +X2 > 0, Y = k).

Because of ergodicity it holds P (Y = k) > 0. Consequently, for k = 1, . . . r yields

P (X1 +X2 > 0, Y = k) < P (X1 +X2 > 0, Y = k + 1).

From (10.1.14) follows directly

P (X1 +X2 > 0, Y = k) = P (X1 +X2 > 0, Y = k + 1), k = r + 1, . . . , Q− 1.

For k = Q, . . . , Q+ r − 1 holds from (10.1.15)

ν

µ
· P (Y = k −Q) = P (X1 +X2 > 0, Y = k)− P (X1 +X2 > 0, Y = k + 1).

From ergodicity it follows that P (Y = k−Q) > 0. Consequently, for k = Q, . . . , Q+r−1
yields

P (X1 +X2 > 0, Y = k) > P (X1 +X2 > 0, Y = k + 1).

The fact that P (Y = k | X1 +X2 > 0) = P (X1+X2>0,Y=k)
P (X1+X2>0) and P (X1 +X2 > 0) > 0 hold

implies the last three equations in the proposition.
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Remark 10.1.9. The statements of Proposition 10.1.6 and Proposition 10.1.8 exhibit an
insensitivity property with respect to variation of the parameters of the system, more
specifically it is independent of the threshold level s.
Remark 10.1.10. The results in this Section can be generalized in a direct way to the case
of a system with C customer classes, where C = {1, . . . , C} is the set of customer classes
— the smaller the number, the higher the priority. Customers of type c have an arrival
rate λc > 0, a priority parameter pc, 0 ≤ pc ≤ 1, and a threshold level sc, c ∈ C.

10.2. Pure inventory system

In this section, we consider the case of zero service time, which is the version of our model
in the classical inventory theory. The supply chain of interest is depicted in Figure 10.2.1
and consists of priority and ordinary customers, an inventory and a supplier.

Inventory

OrderReplenishment

Supplier

Lost 
salesDemand arrival 

process

Lost 
sales

Demand arrival 
process

Priority customer

Ordinary customer

Figure 10.2.1.: The pure inventory system with two customer classes

There are two types of customers — priority customers and ordinary customers. C =
{1, 2} is the set of these customer classes where 1 is the type of priority customers and
2 is the type of ordinary customers — the smaller the number, the higher the priority.
According to two independent Poisson processes with different parameters the demands
of each type of customer arrive one by one at the production system and require service.
Priority customers arrive according to a Poisson process with rate λ1 > 0 and ordinary
customers arrive according to a Poisson process with rate λ2 > 0.

Customers’ arrivals are regulated by a flexible admission control with priority para-
meter p, 0 ≤ p ≤ 1: If the inventory is depleted all arriving customers are rejected
(“lost sales”). If the on-hand inventory is greater than a prescribed threshold level s,
0 < s < r + Q, the customers of both classes are admitted to enter the system. If the
on-hand inventory reaches or falls below the threshold level s, all priority customers still
enter the system, but ordinary customers are allowed to enter only with probability p and
are rejected with probability 1− p.
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10. Production-inventory system with (r,Q)-policy

The inventory is depleted by an exogenous customer demand and each customer needs
exactly one item from the inventory.

It is assumed that transmission times for orders are zero and that the transportation
time between the production system and the inventory is negligible.
All inter-arrival times and replenishment lead times constitute an independent family

of random variables.

An outside supplier replenishes raw material to the inventory according to the (r,Q)-
policy. The replenishment lead time is exponentially distributed with parameter ν > 0.
Let Y (t) denote the on-hand inventory at time t ≥ 0. Denote by Y = (Y (t) : t ≥ 0)

the pure inventory process. Then, due to the usual independence and memoryless as-
sumptions Y is a homogeneous strong Markov process. The state space of Y is

K = {0, . . . , r +Q},

where r + Q is the maximal size of the inventory, which depends on the replenishment
policy.
The queueing-inventory process Y is irreducible. It can be shown analogously as in

Appendix E on page 375 for the queueing-inventory system with base stock policy. From
|K| <∞ follows ergodicity (cf. [Ser13, Theorem 4.21]).

Definition 10.2.1. For the queueing-inventory process Z in a state space K, whose
limiting distribution exists, we define

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P (Y (t) = k) .

Proposition 10.2.2. The inventory process Y = (Y (t) : t ≥ 0) has the following limiting
and stationary distribution:

(a) If the threshold level is equal or greater than the reorder level, i.e. r ≤ s < r +Q,
then for k = 1, 2, . . . , r holds

θ(k) =

(
1 +

ν

λ1 + p λ2

)k−1

·
(

ν

λ1 + p λ2

)
· θ(0), (10.2.1)

for k = r + 1, . . . , Q holds

θ(k) =

(
1 +

ν

λ1 + p λ2

)r
·
(

ν

λ1 + p λ2 · 1{max(k,s)=s} + λ2 · (1− 1{max(k,s)=s})

)
· θ(0), (10.2.2)

for k = Q+ 1, . . . , Q+ r holds

θ(k) =

[(
1 +

ν

λ1 + p λ2

)r
−
(

1 +
ν

λ1 + p λ2

)k−Q−1
]

·
(

ν

λ1 + p λ2 · 1{max(k,s)=s} + λ2 · (1− 1{max(k,s)=s})

)
· θ(0), (10.2.3)

and θ(0) can be calculated by the normalizing condition.
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(b) If the threshold level is not greater than the reorder level, i.e. s < r,
then for k = 1, 2, . . . , s holds

θ(k) =

(
1 +

ν

λ1 + p λ2

)k−1

·
(

ν

λ1 + p λ2

)
· θ(0), (10.2.4)

for k = s+ 1, . . . r holds

θ(k) =

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)k−s−1

·
(

ν

λ1 + λ2

)
· θ(0), (10.2.5)

for k = r + 1, . . . , Q holds

θ(k) =

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0), (10.2.6)

for k = Q+ 1, . . . , Q+ s holds

θ(k) =

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0)

−
(

1 +
ν

λ1 + p λ2

)k−Q−1

·
(

ν

λ1 + λ2

)
· θ(0), (10.2.7)

for k = Q+ s+ 1, . . . , Q+ r holds

θ(k) =

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0)

−
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)k−Q−s−1

·
(

ν

λ1 + λ2

)
· θ(0), (10.2.8)

and θ(0) can be calculated by the normalizing condition.

Proof. (a) The global balance equations of the pure inventory system with r ≤ s < r+Q
are given as follows:

θ(0) · ν = θ(1) ·
(
λ1 + p λ2

)
, (10.2.9)

θ(j) ·
(
λ1 + p λ2 + ν

)
= θ(j + 1) ·

(
λ1 + p λ2

)
, j = 1, . . . , r − 1, (10.2.10)

θ(r) ·
(
λ1 + p λ2 + ν

)
= θ(r + 1) ·

(
λ1 + p λ2 · 1{max(r+1,s)=s} + λ2 · (1− 1{max(r+1,s)=s})

)
, j = r, (10.2.11)

θ(j) ·
(
λ1 + p λ2 · 1{max(j,s)=s} + λ2 · (1− 1{max(j,s)=s})

)
= θ(j + 1) ·

(
λ1 + p λ2 · 1{max(j+1,s)=s} + λ2 · (1− 1{max(j+1,s)=s})

)
,

j = r + 1, . . . , Q− 1, (10.2.12)
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10. Production-inventory system with (r,Q)-policy

θ(j) ·
(
λ1 + p λ2 · 1{max(j,s)=s} + λ2 · (1− 1{max(j,s)=s})

)
= θ(j + 1) ·

(
λ1 + p λ2 · 1{max(j+1,s)=s} + λ2 · (1− 1{max(j+1,s)=s})

)
+ θ(j −Q) · ν,

j = Q, . . . , Q+ r − 1, (10.2.13)

θ(Q+ r) ·
(
λ1 + λ2

)
= θ(r) · ν. (10.2.14)

I (10.2.1) and (10.2.2) can be directly obtained by recursion from the above global
balance equations.

• From (10.2.9) it follows
θ(1) =

ν

λ1 + p λ2
· θ(0)

and from (10.2.10) it follows for k = 2, . . . , r

θ(k) =

(
1 +

ν

λ1 + p λ2

)
· θ(k − 1).

Hence, it holds (10.2.1) for k = 1, 2, . . . , r

θ(k) =

(
1 +

ν

λ1 + p λ2

)k−1

·
(

ν

λ1 + p λ2

)
· θ(0).

• From (10.2.11) it follows

θ(r + 1) =
λ1 + p λ2 + ν

λ1 + p λ2 · 1{max(r+1,s)=s} + λ2 · (1− 1{max(r+1,s)=s})
· θ(r)

(10.2.1)
=

λ1 + p λ2 + ν

λ1 + p λ2 · 1{max(r+1,s)=s} + λ2 · (1− 1{max(r+1,s)=s})
·
(

1 +
ν

λ1 + pλ2

)r−1

·
(

ν

λ1 + p λ2

)
· θ(0)

=

(
1 +

ν

λ1 + p λ2

)r ( ν

λ1 + p λ2 · 1{max(r+1,s)=s} + λ2 · (1− 1{max(r+1,s)=s})

)
· θ(0)

and from (10.2.12) it follows for k = r + 2, . . . , Q

θ(k) =
λ1 + p λ2 · 1{max(k−1,s)=s} + λ2 · (1− 1{max(k−1,s)=s})

λ1 + p λ2 · 1{max(k,s)=s} + λ2 · (1− 1{max(k,s)=s})
· θ(k − 1).

Consequently, for k = r + 1, . . . , Q holds (10.2.2)

θ(k) =

(
1 +

ν

λ1 + p λ2

)r
·
(

ν

λ1 + p λ2 · 1{max(k,s)=s} + λ2 · (1− 1{max(k,s)=s})

)
· θ(0).
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I Thus, it only has to be shown that the distribution (10.2.3) satisfies the global balance
equations. Substitution of (10.2.1)-(10.2.3) into the global balance equations (10.2.13)
and (10.2.14) directly leads to
for j = Q holds

θ(Q) · (λ1 + p λ2 · 1{max(Q,s)=s} + λ2 · (1− 1{max(Q,s)=s}))

= θ(Q+ 1) · (λ1 + p λ2 · 1{max(Q+1,s)=s} + λ2 · (1− 1{max(Q+1,s)=s})) + θ(0) · ν
(10.2.2),
(10.2.3)⇔

(
1 +

ν

λ1 + pλ2

)r
·
(

ν

λ1 + p λ2 · 1{max(Q,s)=s} + λ2 · (1− 1{max(Q,s)=s})

)
· θ(0)

· (λ1 + p λ2 · 1{max(Q,s)=s} + λ2 · (1− 1{max(Q,s)=s}))

=

[(
1 +

ν

λ1 + p λ2

)r
− 1

]
·
(

ν

λ1 + p λ2 · 1{max(Q+1,s)=s} + λ2 · (1− 1{max(Q+1,s)=s})

)
· θ(0)

·(λ1 + p λ2 · 1{max(Q+1,s)=s} + λ2 · (1− 1{max(Q+1,s)=s})) + θ(0) · ν

⇔
(

1 +
ν

λ1 + p λ2

)r
=

(
1 +

ν

λ1 + p λ2

)r
− 1 + 1,

for j = Q+ 1, . . . , r +Q− 1 holds

θ(j) · (λ1 + p λ2 · 1{max(j,s)=s} + λ2 · (1− 1{max(j,s)=s}))

= θ(j + 1) · (λ1 + p λ2 · 1{max(j+1,s)=s} + λ2 · (1− 1{max(j+1,s)=s})) + θ(j −Q) · ν
(10.2.1),
(10.2.3)⇔

[(
1 +

ν

λ1 + p λ2

)r
−
(

1 +
ν

λ1 + p λ2

)j−Q−1
]

·
(

ν

λ1 + p λ2 · 1{max(j,s)=s} + λ2 · (1− 1{max(j,s)=s})

)
· θ(0)

· (λ1 + p λ2 · 1{max(j,s)=s} + λ2 · (1− 1{max(j,s)=s}))

=

[(
1 +

ν

λ1 + p λ2

)r
−
(

1 +
ν

λ1 + p λ2

)j−Q]

·
(

ν

λ1 + p λ2 · 1{max(j+1,s)=s} + λ2 · (1− 1{max(j+1,s)=s})

)
· θ(0)

·(λ1 + p λ2 · 1{max(j+1,s)=s} + λ2 · (1− 1{max(j+1,s)=s}))

+

(
1 +

ν

λ1 + p λ2

)j−Q−1( ν

λ1 + p λ2

)
· θ(0) · ν
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10. Production-inventory system with (r,Q)-policy

⇔
(

1 +
ν

λ1 + p λ2

)r
−
(

1 +
ν

λ1 + pλ2

)j−Q−1

=

(
1 +

ν

λ1 + p λ2

)r
−
(

1 +
ν

λ1 + p λ2

)j−Q
+

(
1 +

ν

λ1 + p λ2

)j−Q−1

·
(

ν

λ1 + p λ2

)

⇔
(

1 +
ν

λ1 + p λ2

)j−Q
=

(
1 +

ν

λ1 + p λ2

)j−Q−1(
1 +

ν

λ1 + p λ2

)
=

(
1 +

ν

λ1 + p λ2

)j−Q
,

for j = Q+ r holds

θ(Q+ r) · (λ1 + λ2) = θ(r) · ν
(10.2.1),
(10.2.3)⇔

[(
1 +

ν

λ1 + p λ2

)r
−
(

1 +
ν

λ1 + p λ2

)r−1
](

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

=

(
1 +

ν

λ1 + p λ2

)r−1( ν

λ1 + p λ2

)
· θ(0) · ν

⇔
(

1 +
ν

λ1 + p λ2

)r
−
(

1 +
ν

λ1 + p λ2

)r−1

=

(
1 +

ν

λ1 + p λ2

)r−1( ν

λ1 + p λ2

)

⇔
(

1 +
ν

λ1 + p λ2

)r
=

(
1 +

ν

λ1 + p λ2

)r−1(
1 +

ν

λ1 + p λ2

)
=

(
1 +

ν

λ1 + p λ2

)r
.

(b) The global balance equations of the pure inventory system with s < r < r + Q are
given as follows

θ(0) · ν = θ(1) · (λ1 + p λ2), (10.2.15)

θ(j) · (λ1 + p λ2 + ν) = θ(j + 1) · (λ1 + p λ2), j = 1, . . . , s− 1, (10.2.16)

θ(s) · (λ1 + p λ2 + ν) = θ(s+ 1) · (λ1 + λ2), j = s, (10.2.17)

θ(j) · (λ1 + λ2 + ν) = θ(j + 1) · (λ1 + λ2), j = s+ 1, . . . , r, (10.2.18)

θ(j) · (λ1 + λ2) = θ(j + 1) · (λ1 + λ2), j = r + 1, . . . , Q− 1, (10.2.19)
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10.2. Pure inventory system

θ(j) · (λ1 + λ2) = θ(j + 1) · (λ1 + λ2) + θ(j −Q) · ν, j = Q, . . . , Q+ r − 1, (10.2.20)

θ(Q+ r) · (λ1 + λ2) = θ(r) · ν. (10.2.21)

I (10.2.4)-(10.2.6) can be directly obtained by recursion from the global balance equa-
tions.

• From (10.2.15) it follows
θ(1) =

ν

λ1 + p λ2
· θ(0)

and from (10.2.16) it follows for k = 2, . . . , s

θ(k) =

(
1 +

ν

λ1 + p λ2

)
· θ(k − 1).

Hence, it holds (10.2.4) for k = 1, 2, . . . , s

θ(k) =

(
1 +

ν

λ1 + p λ2

)k−1

·
(

ν

λ1 + p λ2

)
· θ(0).

• From (10.2.17) it follows

θ(s+ 1) =
λ1 + p λ2 + ν

λ1 + λ2
· θ(s)

(10.2.4)
=

λ1 + p λ2 + ν

λ1 + λ2
·
(

1 +
ν

λ1 + p λ2

)s−1

·
(

ν

λ1 + p λ2

)
· θ(0)

=

(
1 +

ν

λ1 + p λ2

)s
·
(

ν

λ1 + λ2

)
· θ(0)

and from (10.2.18) it follows for k = s+ 2, . . . , r + 1

θ(k) =

(
1 +

ν

λ1 + λ2

)
· θ(k − 1).

Consequently, for k = s+ 1, . . . , r + 1 holds (10.2.5)

θ(k) =

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)k−s−1

·
(

ν

λ1 + λ2

)
· θ(0).

• From (10.2.19) it follows for k = r + 1, . . . , Q− 1

θ(k) = θ(k + 1).

Hence, for k = r + 1, . . . , Q it holds (10.2.6)

θ(k) =

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0).
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I Thus, it only has to be shown that the distribution (10.2.7) and (10.2.8) satisfy the
global balance equations. Substitution of (10.2.4)-(10.2.8) into the global balance equa-
tions (10.2.20) and (10.2.21) directly leads to
for j = Q holds

θ(Q) · (λ1 + λ2) = θ(Q+ 1) · (λ1 + λ2) + θ(0) · ν
(10.2.15),
(10.2.20)⇔

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

=

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

−
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2) + θ(0) · ν

⇔
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
=

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
− 1 + 1,

for j = Q+ 1, . . . , Q+ s holds

θ(j) · (λ1 + λ2) = θ(j + 1) · (λ1 + λ2) + θ(j −Q) · ν
(10.2.16),
(10.2.20)⇔

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

−
(

1 +
ν

λ1 + p λ2

)j−Q−1

·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

=

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

−
(

1 +
ν

λ1 + p λ2

)j−Q
·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

+

(
1 +

ν

λ1 + p λ2

)j−Q−1

·
(

ν

λ1 + p λ2

)
· θ(0) · ν

⇔
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
−
(

1 +
ν

λ1 + p λ2

)j−Q−1

=

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
−
(

1 +
ν

λ1 + p λ2

)j−Q
+

(
1 +

ν

λ1 + p λ2

)j−Q−1

·
(

ν

λ1 + p λ2

)

⇔ −
(

1 +
ν

λ1 + p λ2

)j−Q−1

= −
(

1 +
ν

λ1 + p λ2

)j−Q
+

(
1 +

ν

λ1 + p λ2

)j−Q−1

·
(

ν

λ1 + p λ2

)
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10.2. Pure inventory system

⇔ − 1 = −
(

1 +
ν

λ1 + p λ2

)
+

(
ν

λ1 + p λ2

)
= −1,

for j = Q+ s+ 1, . . . , Q+ r − 1 holds

θ(j) · (λ1 + λ2) = θ(j + 1) · (λ1 + λ2) + θ(j −Q) · ν
(10.2.16),
(10.2.20)⇔

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

−
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)j−Q−s−1

·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

=

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

−
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)j−Q−s
·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

+

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)j−Q−s−1

·
(

ν

λ1 + λ2

)
· θ(0) · ν

⇔
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
−
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)j−Q−s−1

=

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
−
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)j−Q−s
+

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)j−Q−s−1

·
(

ν

λ1 + λ2

)

⇔ −
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)j−Q−s−1

= −
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)j−Q−s
+

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)j−Q−s−1

·
(

ν

λ1 + λ2

)

⇔ − 1 = −
(

1 +
ν

λ1 + λ2

)
+

(
ν

λ1 + λ2

)
= −1,
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10. Production-inventory system with (r,Q)-policy

for j = r +Q holds

θ(Q+ r) · (λ1 + λ2) = θ(r) · ν
(10.2.18),
(10.2.21)⇔

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

−
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s−1

·
(

ν

λ1 + λ2

)
· θ(0) · (λ1 + λ2)

=

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s−1

·
(

ν

λ1 + λ2

)
· θ(0) · ν

⇔
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s
−
(

1 +
ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s−1

=

(
1 +

ν

λ1 + p λ2

)s
·
(

1 +
ν

λ1 + λ2

)r−s−1

·
(

ν

λ1 + λ2

)

⇔
(

1 +
ν

λ1 + λ2

)
− 1 =

(
ν

λ1 + λ2

)

⇔ 1 +
ν

λ1 + λ2
= 1 +

ν

λ1 + λ2
.

Remark 10.2.3. The equations (10.2.9)-(10.2.14) for s = r have a similar structure as the
global balance equations (1)-(6) of Liu and his coauthors in [LFW14, p. 181] of the single
server inventory system with two classes of customers and flexible service policy. In their
paper, the threshold level is equal to the reorder level.
Furthermore, the equations (10.2.9)-(10.2.14) for p = 0 and r < s ≤ Q have a similar

structure as the global balance equations (A16)-(A22) of Isotupa in [Iso11, p. 16] of the
single server inventory system with two classes of customers where the threshold level is
above the reorder level.
The equations (10.2.15)-(10.2.21) for p = 0 and 0 < s ≤ r have a similar structure as

the global balance equations (A1)-(A7) of Isotupa in [Iso11, p. 14] of the single server
inventory system with two classes of customers where the threshold level is not above the
reorder level.
For p = 1, the model corresponds to the classic inventory system with (r,Q)-policy

with arrival rate λ1 + λ2.
For λ2 → 0, the model corresponds to the classic inventory system with (r,Q)-policy

with arrival rate λ1.
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10.3. Cost analysis

10.3. Cost analysis

We consider the following cost structure for inventory, production and replenishment.
The total costs consist of shortage costs cls,1 resp. cls,2 for each priority resp. ordinary
customer that is lost, waiting costs cw,1 resp. cw,2 per unit of time for each priority resp.
ordinary customer in the system (waiting or in service), capacity costs cs per unit of time
for providing inventory storage space (e.g. rent, insurance), holding costs ch per unit of
time for each unit that is kept on inventory. We assume that all of these costs per unit
of time are positive.
Therefore, the cost function per unit of time in the respective states is

fr,Q,p : N0 × N0 × {0, 1, . . . , r +Q} −→ R+
0

with

fr,Q,p(n1, n2, k) = cw,1 · n1 + cw,2 · n2 + cs · (r +Q) + ch · k + cls,1 · λ1 · 1{k=0}

+cls,2 ·
(
λ2 · 1{k=0} + (1− p) · λ2 · 1{0<k≤s}

)
.

The asymptotic average costs for an ergodic system can be calculated as

lim
T→∞

1

T

ˆ T

0
fr,Q,p(Z(ω, t))dt =

∑
(n1,n2,k)

fr,Q,p (n1, n2, k)·π (n1, n2, k) =: f(r,Q, p) P−a.s.

Since we do not have a closed form expression for the stationary distribution of the
queueing-inventory system, the cost optimization problem falls within the stochastic dy-
namic optimization (e.g. [HRS17], [Sen99]).
For the pure inventory system, the mixed integer optimization model as introduced

in [LXC13, p. 1548] and [LFW14, pp. 182f.] can be used to provide an approximative
solution. Moreover, to find the global optimum of the cost optimization problem for fixed
p, a search algorithm as introduced by Liu and his coauthors [CZL12, Section 4.2, pp.
3085f.] can be used.
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11. Production-inventory system with
base stock policy

In this chapter, we study the production-inventory system with two types of customers,
a flexible admission control and base stock policy, as described in Section 9.2.

Each item taken from the inventory results in a direct order sent to the supplier. This
means, if a served customer departs from the system, an order for one item of the con-
sumed raw material is placed at the supplier at this instant of time. The local base stock
level b ≥ 2 is the maximal size of the inventory. Note that there can be more than one
outstanding order.

Customer arrivals are regulated by a flexible admission control with priority parameter
p, 0 ≤ p ≤ 1: If the inventory is depleted all arriving customers are rejected (“lost sales”).
If the on-hand inventory is greater than a prescribed threshold level s, the customers of
both classes are admitted to enter the system. If the on-hand inventory reaches or falls
below the threshold level s, 0 < s < b, all priority customers still enter the system but
ordinary customers are allowed to enter only with probability p and are rejected with
probability 1− p.

To obtain a Markovian process description of the integrated queueing-inventory
system, we denote by X1(t) the number of priority customers present in the system at
time t ≥ 0, and by X2(t) the number of ordinary customers in the system at time t ≥ 0
either waiting or in service (queue length). Since the customer in service will always be
of the priority class when at least one priority customer is present, the value of the vector
(X1(t), X2(t)) determines uniquely the type of the customer in service at time t ≥ 0, if
any. Moreover, by Y (t) we denote the on-hand inventory at time t ≥ 0.
We define the joint queueing-inventory process of this system by

Z = ((X1(t), X2(t), Y (t)) : t ≥ 0).

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process. The state space of Z is

E =
{

(n1, n2, k) : (n1, n2) ∈ N2
0, k ∈ {0, . . . , b}

}
,

where b is the maximal size of the inventory.

In Section 11.1, we assume that the queueing-inventory process Z is ergodic to analyse
first the properties of the stationary system. In Section 11.2, ergodicity is investigated in
detail. In Section 11.3, we consider the case of zero service time.
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11.1. Properties of the stationary system

In this section, we assume that the queueing-inventory process Z is ergodic.

The queueing-inventory process Z has an infinitesimal generatorQ = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n1, n2, k) ∈ E:

q((n1, n2, k); (n1 + 1, n2, k)) = λ1 · 1{k>0},

q((n1, n2, k); (n1, n2 + 1, k)) = p λ2 · 1{0<k≤s} + λ2 · 1{k>s},
q((n1, n2, k); (n1 − 1, n2, k − 1)) = µ · 1{n1>0} · 1{k>0},

q((n1, n2, k); (n1, n2 − 1, k − 1)) = µ · 1{n1=0} · 1{n2>0} · 1{k>0},

q((n1, n2, k); (n1, n2, k + 1)) = ν · 1{k<b}.

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

Definition 11.1.1. For the queueing-inventory process Z on state space E, whose lim-
iting distribution exists, we define

π := (π (n1, n2, k) : (n1, n2, k) ∈ E) by π (n1, n2, k) := lim
t→∞

P (Z(t) = (n1, n2, k)) .

The global balance equations π ·Q = 0 of the ergodic queueing-inventory process Z are
for (n1, n2, k) ∈ E given by

π(n1, n2, k) ·
(
(λ1 + p λ2) · 1{0<k≤s} + (λ1 + λ2) · 1{k>s}

+µ · 1{n1+n2>0} · 1{k>0} + ν · 1{k<b}
)

= π(n1 − 1, n2, k) · λ1 · 1{n1>0} · 1{k>0}

+π(n1, n2 − 1, k) · p λ2 · 1{n2>0} · 1{0<k≤s} + π(n1, n2 − 1, k) · λ2 · 1{n2>0} · 1{k>s}
+π(n1 + 1, n2, k + 1) · µ · 1{k<b} + π(n1, n2 + 1, k + 1) · µ · 1{n1=0} · 1{k<b}
+π(n1, n2, k − 1) · ν · 1{k>0}. (11.1.1)

Comparing the transition rates of this generator with the transition rates of the genera-
tor on page 212 of the production-inventory system with (r,Q)-policy, we see that they
are identical if we choose r = b − 1, Q = 1 and r + Q = b. Note, that this choice of
parameters is not allowed in the (r,Q)-policy (cf. Definition on page 211) but this has no
influence on the calculations in this section just involving the generator Q. If we ignore
the restriction r < Q of the classic (r,Q)-policy, then most of the following results may
be seen as special cases of the corresponding results in Section 10.1. We provide direct
proofs here.
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11.1. Properties of the stationary system

Let (X1, X2, Y ) be a random variable that is distributed according to the queueing-
inventory process in equilibrium. Then, Y is a random variable that is distributed ac-
cording to the inventory process in equilibrium and X1 resp. X2 are random variables
that are respectively distributed according to the queue length process of priority resp.
ordinary customers in equilibrium.

Proposition 11.1.2. For the queueing-inventory process holds the following equilibrium
of probability flows

P (Y > 0) · λ1︸ ︷︷ ︸
effective arrival rate
of priority customers

= P (X1 > 0, Y > 0) · µ︸ ︷︷ ︸
effective departure rate
of priority customers

, (11.1.2)

P (0 < Y ≤ s) · p λ2 + P (Y > s) · λ2︸ ︷︷ ︸
effective arrival rate
of ordinary customers

= P (X1 = 0, X2 > 0, Y > 0) · µ︸ ︷︷ ︸
effective departure rate
of ordinary customers

, (11.1.3)

P (Y > 0) · λ1 + P (0 < Y ≤ s) · p λ2 + P (Y > s) · λ2︸ ︷︷ ︸
effective arrival rate

of customers

,

= P (X1 +X2 > 0, Y > 0) · µ︸ ︷︷ ︸
effective departure rate

of customers

(11.1.4)

and

P (X1 = n1, Y > 0) · λ1

= P (X1 = n1 + 1, Y > 0) · µ, n1 ∈ N0, (11.1.5)

P (X2 = n2, 0 < Y ≤ s) · p λ2 + P (X2 = n2, Y > s) · λ2

= P (X1 = 0, X2 = n2 + 1, Y > 0) · µ, n2 ∈ N0, (11.1.6)

P (X1 +X2 = n, 0 < Y ≤ s) · (λ1 + p λ2)

+P (X1 +X2 = n, Y > s) · (λ1 + λ2)

= P (X1 +X2 = n+ 1, 0 < Y ≤ b) · µ, n ∈ N0. (11.1.7)

Remark 11.1.3. The effective departure rates are usually called throughput.
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11. Production-inventory system with base stock policy

Proof. The equations can be proven by the cut-criterion for positive recurrent processes,
which is presented in Theorem A.1.1(a) on page 259.
For n1 ∈ N0, equation (11.1.5) can be proven by a cut, which divides E into comple-

mentary sets according to the queue length of priority customers that is less than or equal
to n1 or greater than n1, i.e. into the sets{

(m1,m2, k) : m1 ∈ {0, 1, . . . .n1}, m2 ∈ N0, k ∈ {0, . . . , b}
}
,{

(m̃1, m̃2, k̃) : m̃1 ∈ N0 \ {0, 1, . . . .n1}, , m̃2 ∈ N0, k̃ ∈ {0, . . . , b}
}
, n1 ∈ N0.

Then, the following holds for n1 ∈ N0

n1∑
m1=0

∞∑
m2=0

b∑
k=0

∞∑
m̃1=n1+1

∞∑
m̃2=0

b∑
k̃=0

π(m1,m2, k) · q((m1,m2, k); (m̃1, m̃2, k̃))

=

∞∑
m̃1=n1+1

∞∑
m̃2=0

b∑
k̃=0

n1∑
m1=0

∞∑
m2=0

b∑
k=0

π(m̃1, m̃2, k̃) · q((m̃1, m̃2, k̃); (m1,m2, k))

⇔
n1∑

m1=n1

∞∑
m2=0

b∑
k=1

π(m1,m2, k) · λ1︸ ︷︷ ︸
=P (X1=n1,Y >0)·λ1

=

n1+1∑
m̃1=n1+1

∞∑
m̃2=0

b∑
k̃=1

π(m̃1, m̃2, k̃) · µ

︸ ︷︷ ︸
=P (X1=n1+1,Y >0)·µ

.

Hence, for n1 ∈ N0 holds (11.1.5)

P (X1 = n1, Y > 0) · λ1 = P (X1 = n1 + 1, Y > 0) · µ.

Summation of the equations (11.1.5) over n1 ∈ N0 leads to

∞∑
n1=0

P (X1 = n1, Y > 0) · λ1 =

∞∑
n1=0

P (X1 = n1 + 1, Y > 0) · µ,

which is equivalent to (11.1.2)

P (Y > 0) · λ1 = P (X1 > 0, Y > 0) · µ.
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11.1. Properties of the stationary system

For n2 ∈ N0, equation (11.1.6) can be proven by a cut, which divides E into comple-
mentary sets according to the queue length of ordinary customers that is less than or
equal to n2 or greater than n2, i.e. into the sets{

(m1,m2, k) : m1 ∈ N0,m2 ∈ {0, 1, . . . .n2}, k ∈ {0, . . . , b}
}
,{

(m̃1, m̃2, k̃) : m̃1 ∈ N0, m̃2 ∈ N0 \ {0, 1, . . . .n2}, k̃ ∈ {0, . . . , b}
}
, n2 ∈ N0.

Then, the following holds for n2 ∈ N0

∞∑
m1=0

n2∑
m2=0

b∑
k=0

∞∑
m̃1=0

∞∑
m̃2=n2+1

b∑
k̃=0

π(m1,m2, k) · q((m1,m2, k); (m̃1, m̃2, k̃))

=
∞∑

m̃1=0

∞∑
m̃2=n2+1

b∑
k̃=0

∞∑
m1=0

n2∑
m2=0

b∑
k=0

π(m̃1, m̃2, k̃) · q((m̃1, m̃2, k̃); (m1,m2, k))

⇔
∞∑

m1=0

n2∑
m2=n2

s∑
k=1

π(m1,m2, k) · p λ2︸ ︷︷ ︸
=P (X2=n2,0<Y≤s)·p λ2

+
∞∑

m1=0

n2∑
m2=n2

b∑
k=s+1

π(m1,m2, k) · λ2︸ ︷︷ ︸
=P (X2=n2,Y >s)·λ2

=
0∑

m̃1=0

n2+1∑
m̃2=n2+1

b∑
k̃=1

π(m̃1, m̃2, k̃) · µ

︸ ︷︷ ︸
=P (X1=0,X2=n2+1,Y >0)·µ

.

Thus, for n2 ∈ N0 holds (11.1.6)

P (X2 = n2, 0 < Y ≤ s) · p λ2 + P (X2 = n2, Y > s) · λ2

= P (X1 = 0, X2 = n2 + 1, Y > 0) · µ.

Summation of the equations (11.1.6) over n2 ∈ N0 leads to

∞∑
n2=0

P (X2 = n2, 0 < Y ≤ s) · p λ2 +

∞∑
n2=0

P (X2 = n2, Y > s) · λ2

=

∞∑
n2=0

P (X1 = 0, X2 = n2 + 1, Y > 0) · µ,

which is equivalent to (11.1.3)

P (0 < Y ≤ s) · p λ2 + P (Y > s) · λ2 = P (X1 = 0, X2 > 0, Y > 0) · µ.
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11. Production-inventory system with base stock policy

For n ∈ N0, equation (11.1.7) can be proven by a cut, which divides E into comple-
mentary sets according to the size of the total queue length that is less than or equal to
n or greater than n, i.e. into the sets{

(m1,m2, k) : m1 ∈ N0, m2 ∈ N0, (m1 +m2) ∈ {0, 1, . . . , n}, k ∈ {0, . . . , b}
}
,{

(m̃1, m̃2, k̃) : m̃1 ∈ N0, m̃2 ∈ N0, (m̃1 + m̃2) ∈ N0 \ {0, 1, . . . , n}, k̃ ∈ {0, . . . , b}
}
, n ∈ N0.

Then, the following holds for n ∈ N0

n∑
m1+m2=0

b∑
k=0

∞∑
m̃1+m̃2=n+1

b∑
k̃=0

π(m1,m2, k) · q((m1,m2, k); (m̃1, m̃2, k̃))

=
∞∑

m̃1+m̃2=n+1

b∑
k̃=0

n∑
m1+m2=0

b∑
k=0

π(m̃1, m̃2, k̃) · q((m̃1, m̃2, k̃); (m1,m2, k))

⇔
n∑

m1+m2=n

s∑
k=1

π(m1,m2, k) · (λ1 + p λ2)︸ ︷︷ ︸
=P (X1+X2=n,0<Y≤s)·(λ1+p λ2)

+
n∑

m1+m2=n

b∑
k=s+1

π(m1,m2, k) · (λ1 + λ2)︸ ︷︷ ︸
=P (X1+X2=n,Y >s)·(λ1+λ2)

=

n+1∑
m̃1+m̃2=n+1

b∑
k̃=1

π(m̃1, m̃2, k̃) · µ

︸ ︷︷ ︸
=P (X1+X2=n+1,Y >0)·µ

.

Thus, for n ∈ N0 holds (11.1.7)

P (X1 +X2 = n, 0 < Y ≤ s) · (λ1 + p λ2)

+P (X1 +X2 = n, Y > s) · (λ1 + λ2)

= P (X1 +X2 = n+ 1, Y > 0) · µ.

Summation of the equations (11.1.7) over n ∈ N0 leads to
∞∑
n=0

P (X1 +X2 = n, 0 < Y ≤ s) · (λ1 + p λ2)

+

∞∑
n=0

P (X1 +X2 = n, Y > s) · (λ1 + λ2)

=
∞∑
n=0

P (X1 +X2 = n+ 1, Y > 0) · µ,

which is equivalent to (11.1.4)

P (0 < Y ≤ s) · (λ1 + p λ2) + P (Y > s) · (λ1 + λ2)

= P (X1 +X2 > 0, Y > 0) · µ

⇔ P (Y > 0) · λ1 + P (0 < Y ≤ s) · p λ2 + P (Y > s) · λ2

= P (X1 +X2 > 0, Y > 0) · µ.
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11.1. Properties of the stationary system

Remark 11.1.4.

(a) From (11.1.5) follows for n1 ∈ N0

P (X1 = n1, Y > 0) = P (X1 = 0, Y > 0) ·
(
λ1

µ

)n1

. (11.1.8)

(b) In an M/M/c queue with two priority classes under a preemptive priority dis-
cipline without inventory, the priority customers form a classic M/M/c queue
(cf. [WBSW15]). However, our queueing-inventory system with c = 1 (one server)
is more difficult to solve since two customer classes have to share the same inventory
and therefore, the priority customers do not form a classic M/M/1 queue.

(c) Rearranging (11.1.4) shows that the probability that the inventory is not depleted
is given by

P (Y > 0) = P (X1 +X2 > 0, Y > 0) · µ
λ1

−P (0 < Y ≤ s) · p λ2

λ1
− P (Y > s) · λ2

λ1

and from (11.1.2) follows

P (Y > 0) = P (X1 > 0, Y > 0) · µ
λ1
.

Corollary 11.1.5. For the conditional distribution of the queue length process of priority
customers conditioned on {Y > 0} holds for n1 ∈ N0

P (X1 = n1|Y > 0) = P (X1 = 0|Y > 0) ·
(
λ1

µ

)n1

with
P (X1 = 0|Y > 0) =

(
1− λ1

µ

)
.

This shows that the conditional queue length process of priority customers under the con-
dition that the inventory is not empty has in equilibrium the same structure as a birth-
and-death process with birth-rates λ1 and death-rates µ.

Proof. Equation (11.1.8) implies for n ∈ N0

P (X1 = n1|Y > 0) =
P (X1 = n1, Y > 0)

P (Y > 0)

(11.1.8)
=

P (X1 = 0, Y > 0)

P (Y > 0)
·
(
λ1

µ

)n1

= P (X1 = 0|Y > 0) ·
(
λ1

µ

)n1

and the normalizing condition leads to

P (X1 = 0|Y > 0) =

( ∞∑
n=1

(
λ1

µ

)n1
)−1

=

(
1− λ1

µ

)
.
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11. Production-inventory system with base stock policy

Proposition 11.1.6. The probability that a replenishment order is outstanding fulfils the
following equalities:

(a) P (Y < b) =
µ

ν
· P (X1 +X2 > 0, Y > 0). (11.1.9)

(b) P (Y = b− 1) =
µ

ν
· P (X1 +X2 > 0, Y = b).

Proof. (a) Summation of the global balance equations (11.1.1) over n1 ∈ N0 and n2 ∈ N0

leads to the following. Some of the changes are highlighted for reasons of clarity and
comprehensibility.

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k) ·
(

(λ1 + p λ2) · 1{0<k≤s} + (λ1 + λ2) · 1{k>s}

+µ · 1{n1+n2>0} · 1{k>0} + ν · 1{k<b}
)

=
∞∑

n1=0

∞∑
n2=0

π(n1 − 1, n2, k) · λ1 · 1{n1>0} · 1{k>0}

+

∞∑
n1=0

∞∑
n2=0

π(n1, n2 − 1, k) · p λ2 · 1{n2>0} · 1{0<k≤s}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2 − 1, k) · λ2 · 1{n2>0} · 1{k>s}

+
∞∑

n1=0

∞∑
n2=0

π(n1 + 1, n2, k + 1) · µ · 1{k<b}

+

∞∑
n1=0

∞∑
n2=0

π(n1, n2 + 1, k + 1) · µ · 1{n1=0} · 1{k<b}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k − 1) · ν · 1{k>0}.

This is equivalent to
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k)

·
(
(λ1 + p λ2) · 1{0<k≤s} + (λ1 + λ2) · 1{k>s} + µ · 1{k>0} + ν · 1{k<b}

)
−π(0, 0, k) · µ · 1{k>0}

=
∞∑

n1=1

∞∑
n2=0

π(n1 − 1, n2, k) · λ1 · 1{k>0}

+

∞∑
n1=0

∞∑
n2=1

π(n1, n2 − 1, k) · p λ2 · 1{0<k≤s} +

∞∑
n1=0

∞∑
n2=1

π(n1, n2 − 1, k) · λ2 · 1{k>s}

+
∞∑

n1=0

∞∑
n2=0

π(n1 + 1, n2, k + 1) · µ · 1{k<b} +
∞∑

n2=0

π(0, n2 + 1, k + 1) · µ · 1{k<b}

+

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k − 1) · ν · 1{k>0}
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=
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k) · λ1 · 1{k>0}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k) · p λ2 · 1{0<k≤s} +
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k) · λ2 · 1{k>s}

+

∞∑
n1=1

∞∑
n2=0

π(n1, n2, k + 1) · µ · 1{k<b} +

∞∑
n2=1

π(0, n2, k + 1) · µ · 1{k<b}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k − 1) · ν · 1{k>0}

=
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k) · λ1 · 1{k>0}

+

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k) · p λ2 · 1{0<k≤s} +

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k) · λ2 · 1{k>s}

+
∞∑

n1=0

∞∑
n2=0

π(n1, n2, k + 1) · µ · 1{k<b} −
∞∑

n2=0

π(0, n2, k + 1) · µ · 1{k<b}

+
∞∑

n2=0

π(0, n2, k + 1) · µ · 1{k<b}−π(0, 0, k + 1) · µ · 1{k<b}

+

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k − 1) · ν · 1{k>0}.

Cancelling on both sides the terms
∑∞

n1=0

∑∞
n2=0 π(n1, n2, k) · (λ1 + p λ2) · 1{0<k≤s}

and
∑∞

n1=0

∑∞
n2=0 π(n1, n2, k) · (λ1 + λ2) · 1{k>s} yields

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k) ·
(
µ · 1{k>0} + ν · 1{k<b}

)
−π(0, 0, k) · µ · 1{k>0}

=

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k + 1) · µ · 1{k<b} − π(0, 0, k + 1) · µ · 1{k<b}

+

∞∑
n1=0

∞∑
n2=0

π(n1, n2, k − 1) · ν · 1{k>0}.

Hence,

P (X1 +X2 > 0, Y = k) · µ · 1{k>0} + P (Y = k) · ν · 1{k<b}
= P (X1 +X2 > 0, Y = k + 1) · µ · 1{k<b} + P (Y = k − 1) · ν · 1{k>0},

which is equivalent to

P (Y = k) · ν · 1{k<b} − P (Y = k − 1) · ν · 1{k>0}

= P (X1 +X2 > 0, Y = k + 1) · µ · 1{k<b} − P (X1 +X2 > 0, Y = k) · µ · 1{k>0}.
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11. Production-inventory system with base stock policy

This leads to

ν · P (Y = 0) = µ · P (X1 +X2 > 0, Y = 1), (11.1.10)

ν · P (Y = k)− ν · P (Y = k − 1) (11.1.11)
= µ · P (X1 +X2 > 0, Y = k + 1)− µ · P (X1 +X2 > 0, Y = k), 1 ≤ k ≤ b− 1,

ν · P (Y = b− 1) = µ · P (X1 +X2 > 0, Y = b). (11.1.12)
(11.1.13)

From (11.1.10) and (11.1.11) with k = 1 follows

ν · P (Y = 1) = µ · P (X1 +X2 > 0, Y = 2) (11.1.14)

because

ν · P (Y = 1)− ν · P (Y = 0)

(11.1.11)
= µ · P (X1 +X2 > 0, Y = 2)− µ · P (X1 +X2 > 0, Y = 1)

(11.1.10)⇔ ν · P (Y = 1)− µ · P (X1 +X2 > 0, Y = 1)

= µ · P (X1 +X2 > 0, Y = 2)− µ · P (X1 +X2 > 0, Y = 1)

⇔ ν · P (Y = 1) = µ · P (X1 +X2 > 0, Y = 2).

Furthermore, with k = 2 follows from (11.1.11)

ν · P (Y = 2)− ν · P (Y = 1)

= µ · P (X1 +X2 > 0, Y = 3)− µ · P (X1 +X2 > 0, Y = 2)

(11.1.14)⇔ ν · P (Y = 2)− µ · P (X1 +X2 > 0, Y = 2)

= µ · P (X1 +X2 > 0, Y = 3)− µ · P (X1 +X2 > 0, Y = 2)

⇔ ν · P (Y = 2) = µ · P (X1 +X2 > 0, Y = 3)

and so on. Similarly we obtain for k = 1, . . . , b− 1

ν · P (Y = k) = µ · P (X1 +X2 > 0, Y = k + 1). (11.1.15)

Hence,

P (X1 +X2 > 0, Y > 0) =
b∑

k=1

P (X1 +X2 > 0, Y = k)

= P (X1 +X2 > 0, Y = 1) +

b∑
k=2

P (X1 +X2 > 0, Y = k)

(11.1.10),
(11.1.15)

=

b∑
k=1

ν

µ
· P (Y = k − 1) =

b−1∑
k=0

ν

µ
· P (Y = k) =

ν

µ
· P (Y < b).
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11.1. Properties of the stationary system

Therefore, the probability that a replenishment order is outstanding is given by

P (Y < b) =
µ

ν
· P (X1 +X2 > 0, Y > 0).

(b) The equation can be proven by the cut-criterion for positive recurrent processes,
which is presented in Theorem A.1.1(a) on page 259. For b ≥ 2, it can be proven by a
cut, which divides E into complementary sets according to the size of the inventory that
is less than or equal to b− 1 or greater than b− 1, i.e. into the sets{

(n1, n2, k) : (n1, n2) ∈ N2
0, k ∈ {0, . . . , b− 1}

}
,{

(ñ1, ñ2, k̃) : (ñ1, ñ2) ∈ N2
0, k̃ ∈ {b}

}
, b ≥ 2.

Then, the following holds for b ≥ 2

∞∑
n1+n2=0

b−1∑
k=0

∞∑
ñ1+ñ2=0

b∑
k̃=b

π(n1, n2, k) · q((n1, n2, k); (ñ1, ñ2, k̃))

=
∞∑

ñ1+ñ2=0

b∑
k̃=b

∞∑
n1+n2=0

b−1∑
k=0

π(ñ1, ñ2, k̃) · q((ñ1, ñ2, k̃); (n1, n2, k))

⇔
∞∑

n1+n2=0

π(n1, n2, b− 1) · ν︸ ︷︷ ︸
=P (Y=b−1)·ν

=

∞∑
ñ1+ñ2=1

π(ñ1, ñ2, b) · µ︸ ︷︷ ︸
=P (X1+X2>0,Y=b)·µ

.

Thus, for b ≥ 2 follows

P (Y = b− 1) =
µ

ν
· P (X1 +X2 > 0, Y = b).

Proposition 11.1.7. For the joint probability density P (X1 +X2 > 0, Y < k) holds

P (X1 +X2 > 0, Y < k) < P (X1 +X2 > 0, Y < k + 1), k = 0, . . . , b− 1.

Hence, for the conditioned probability density P (Y < k | X1 +X2 > 0) holds

P (Y < k | X1 +X2 > 0) < P (Y < k + 1 | X1 +X2 > 0), k = 1, . . . , b− 1.

Proof. For k = 0, . . . , b− 1 holds from (11.1.10) and (11.1.15)
ν

µ
· P (Y = k) = P (X1 +X2 > 0, Y = k + 1).

Hence, from P (Y < k) < P (Y < k + 1) follows directly for k = 0, . . . b− 1

P (X1 +X2 > 0, Y < k) < P (X1 +X2 > 0, Y < k + 1).

The fact that P (Y < k | X1 +X2 > 0) = P (X1+X2>0,Y <k)
P (X1+X2>0) and P (X1 +X2 > 0) > 0 hold

implies

P (Y < k | X1 +X2 > 0) < P (Y < k + 1 | X1 +X2 > 0), k = 1, . . . , b− 1.
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11. Production-inventory system with base stock policy

Remark 11.1.8. The statements of Proposition 11.1.6 and Proposition 11.1.7 exhibit an
insensitivity property with respect to variation of the parameters of the system, more
specifically it is independent of the threshold level s.

Remark 11.1.9. The results in this Section can be generalized in a direct way to the case
of a system with C customer classes, where C = {1, . . . , C} is the set of customer classes
— the smaller the number, the higher the priority. Customers of type c have an arrival
rate λc > 0, a priority parameter pc (0 ≤ pc ≤ 1) and a threshold level sc, c ∈ C.

Remark 11.1.10. In the models of Isotupa [Iso15] the replenishment rate depends on the
number of pending orders.
We can extend our model so that the replenishment lead time depends on the number

of orders at the supplier. If there are b−k > 0 orders present at the supplier, the intensity
of the replenishment lead time is ν(b−k) > 0. Proposition 11.1.2, Remark 11.1.4, Remark
11.1.4 and Proposition 11.1.7 apply to this extension. In Proposition 11.1.6, we obtain
for the extension

b−1∑
k=0

P (Y = k) · ν(b− k) = µ · P (X1 +X2 > 0, Y > 0),

P (Y = b− 1) =
µ

ν(1)
· P (X1 +X2 > 0, Y = b).

11.2. Ergodicity

If our queueing-inventory process Z is irreducible and positive recurrent, then it is ergodic.
The proof for irreducibility is exemplarily for p = 1 presented in Appendix E on page 375.
We will utilize the Foster-Lyapunov stability criterion, which is presented in The-

orem A.1.2 on page 260. Another approach to show positive recurrence is by matrix
analytic methods for level-dependent and level-independent quasi-birth-and-death pro-
cesses [LR99]. A particular feature of the model is that the state space is infinite in two
dimensions — the dimension of the priority customers and the dimension of the ordinary
customers. Therefore, it is not obvious which dimension should play the role of the levels.

We obtain the following result by the Foster-Lyapunov stability criterion.

Theorem 11.2.1. The queueing-inventory process Z is ergodic if λ1 +λ2 < µ and ν < µ.

Before we prove this theorem above, we prove the following lemma.

Lemma 11.2.2. The following conditions for some ε > 0 and some C > 0

C · (ν − µ) ≤ −ε, (11.2.1)

λ1 + p λ2 − µ+ C ·
(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
≤ −ε, (11.2.2)

λ1 + λ2 − µ+ C ·
(
ν

µ

)s(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
≤ −ε (11.2.3)
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11.2. Ergodicity

imply

λ1 + p λ2 − µ+ C ·
(
ν

µ

)k−1(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
≤ −ε, k = 1, . . . , s,

(11.2.4)

λ1 + λ2 − µ+ C ·
(
ν

µ

)k−1(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
≤ −ε, k = s+ 1, . . . , b− 1.

(11.2.5)

Proof. From condition (11.2.1) and C > 0

C · (ν − µ) ≤ −ε,

it follows
µ > ν. (11.2.6)

I From condition (11.2.2) it follows condition (11.2.4)

λ1 + p λ2 − µ+ C ·
(
ν

µ

)k−1

·
(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
≤ −ε, k = 1, . . . , s,

since the worst case is k = 1. More precisely, from condition (11.2.6) follows

1 >

(
ν

µ

)
>

(
ν

µ

)2

>

(
ν

µ

)3

> . . .

and
µ

ν
>
ν

µ

⇔ µ ·
(
µ− ν
ν

)
> ν ·

(
µ− ν
µ

)
⇒ µ ·

(
µ− ν
ν

)
+ ν ·

(
ν − µ
µ

)
> 0

⇔ µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

)
> 0.

I From condition (11.2.3) it follows condition (11.2.5)

λ1 +λ2−µ+C ·
(
ν

µ

)k−1

·
(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
≤ −ε, k = s+ 1, . . . , b− 1,

since the worst case is k = s+ 1. More precisely, from condition (11.2.6) follows(
ν

µ

)s
>

(
ν

µ

)s+1

>

(
ν

µ

)s+2

> . . .

and as shown above

µ

ν
>
ν

µ
⇔ µ ·

(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

)
> 0.
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11. Production-inventory system with base stock policy

Proof of Theorem 11.2.1. The positive recurrence can be shown by the Foster-Lyapunov
stability criterion. We will show that L : E → R+

0 is a Lyapunov function with

L(n1, n2, k) = n1 + n2 + α(k) (11.2.7)

where

α(k) = C ·
(
ν

µ

)k
· µ
ν
, k = 0, 1, . . . , b, (11.2.8)

with
C =

µ− (λ1 + λ2)

2 · C̃
, (11.2.9)

where

C̃ = max

{
(µ− ν) , µ ·

(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

)
,(

ν

µ

)s(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
,

µ ·
(
ν

µ

)b−1

·
(µ
ν
− 1
)}

(11.2.10)

and with finite exception set

F = {(n1, n2, k) : n1 + n2 = 0} .

We define

ε = min

{
C · (µ− ν) , −λ1 − p λ2 + µ− C ·

(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
,

− λ1 − λ2 + µ− C ·
(
ν

µ

)s(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
,

−λ1 − λ2 + µ− C · µ ·
(
ν

µ

)b−1

·
(µ
ν
− 1
)}

.

Due to the choice of C in (11.2.9) and C̃ in (11.2.10) it holds ε > 0.

I First, we will check (Q · L) (n1, n2, k) <∞ for (n1, n2, k) ∈ F .
Since 0 < λ1 <∞, 0 < λ2 <∞ and 0 < ν <∞,
for k = 0 holds

(Q · L) (0, 0, 0) = ν · (L(0, 0, 1)− L(0, 0, 0)) <∞,

for k = 1, . . . , s holds

(Q · L) (0, 0, k) = λ1 · (L(1, 0, k)− L(0, 0, k)) + p λ2 · (L(0, 1, k)− L(0, 0, k))

+ν · (L(0, 0, k + 1)− L(0, 0, k)) <∞,
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11.2. Ergodicity

for k = s+ 1, . . . , b− 1 holds

(Q · L) (0, 0, k) = λ1 · (L(1, 0, k)− L(0, 0, k)) + λ2 · (L(0, 1, k)− L(0, 0, k))

+ν · (L(0, 0, k + 1)− L(0, 0, k)) <∞,

for k = b holds

(Q · L) (0, 0, b) = λ1 · (L(1, 0, b)− L(0, 0, b)) + λ2 · (L(0, 1, b)− L(0, 0, b)) <∞.

I Second, we will check (Q · L) (n1, n2, k) ≤ −ε for z = (n1, n2, k) /∈ F with

−ε = max

{
C · (ν − µ) , λ1 + p λ2 − µ+ C ·

(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
,

λ1 + λ2 − µ+ C ·
(
ν

µ

)s(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
,

λ1 + λ2 − µ+ C · µ ·
(
ν

µ

)b−1

·
(µ
ν
− 1
)}

.

For k = 0 holds
for n1 = 1, 2, . . . and n2 = 0, 1, 2, . . .

(Q · L) (n1, n2, 0) = ν · (L(n1, n2, 1)− L(n1, n2, 0))

(11.2.7)
= ν · (n1 + n2 + α(1)− n1 − n2 − α(0))

(11.2.8)
= ν ·

(
C − C · µ

ν

)
= C · ν ·

(
1− µ

ν

)
= C · (ν − µ) ≤ −ε

and for n1 = 0 and n2 = 1, 2, . . .

(Q · L) (0, n2, 0) = ν · (L(0, n2, 1)− L(0, n2, 0))

(11.2.7)
= ν · (n2 + α(1)− n2 − α(0))

(11.2.8)
= ν ·

(
C − C · µ

ν

)
= C · ν ·

(
1− µ

ν

)
= C · (ν − µ) ≤ −ε.
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11. Production-inventory system with base stock policy

For k = 1, . . . , s holds
for n1 = 1, 2, . . . and n2 = 0, 1, 2, . . .

(Q · L) (n1, n2, k)

= λ1 · (L(n1 + 1, n2, k)− L(n1, n2, k))

+ p λ2 · (L(n1, n2 + 1, k)− L(n1, n2, k))

+ µ · (L(n1 − 1, n2, k − 1)− L(n1, n2, k))

+ ν · (L(n1, n2, k + 1)− L(n1, n2, k))

(11.2.7)
= λ1 · (n1 + 1 + n2 + α(k)− n1 − n2 − α(k))

+ p λ2 · (n1 + n2 + 1 + α(k)− n1 − n2 − α(k))

+ µ · (n1 − 1 + n2 + α(k − 1)− n1 − n2 − α(k))

+ ν · (n1 + n2 + α(k + 1)− n1 − n2 − α(k))

= λ1 + p λ2 − µ
+ µ · (α(k − 1)− α(k)) + ν · (α(k + 1)− α(k))

(11.2.8)
= λ1 + p λ2 − µ

+ µ ·

(
C ·
(
ν

µ

)k−2

− C ·
(
ν

µ

)k−1
)

+ ν ·

(
C ·
(
ν

µ

)k
− C ·

(
ν

µ

)k−1
)

= λ1 + p λ2 − µ+ C · µ ·
(
ν

µ

)k−1 (µ
ν
− 1
)

+ C · ν ·
(
ν

µ

)k−1

·
(
ν

µ
− 1

)
= λ1 + p λ2 − µ+ C ·

(
ν

µ

)k−1

·
(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
≤ −ε

and for n1 = 0 and n2 = 1, 2, . . .

(Q · L) (0, n2, k)

= λ1 · (L(1, n2, k)− L(0, n2, k))

+ p λ2 · (L(0, n2 + 1, k)− L(0, n2, k))

+ µ · (L(0, n2 − 1, k − 1)− L(0, n2, k))

+ ν · (L(0, n2, k + 1)− L(0, n2, k))

(11.2.7)
= λ1 · (1 + n2 + α(k)− n2 − α(k))

+ p λ2 · (n2 + 1 + α(k)− n2 − α(k))

+ µ · (n2 − 1 + α(k − 1)− n2 − α(k))

+ ν · (n2 + α(k + 1)− n2 − α(k))

(11.2.8)
= λ1 + p λ2 − µ

+ µ ·

(
C ·
(
ν

µ

)k−2

− C ·
(
ν

µ

)k−1
)

+ ν ·

(
C ·
(
ν

µ

)k
− C ·

(
ν

µ

)k−1
)

= λ1 + p λ2 − µ+ C · µ ·
(
ν

µ

)k−1

·
(µ
ν
− 1
)

+ C · ν ·
(
ν

µ

)k−1

·
(
ν

µ
− 1

)
= λ1 + p λ2 − µ+ C ·

(
ν

µ

)k−1

·
(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
≤ −ε.
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11.2. Ergodicity

For k = s+ 1, . . . , b− 1 holds
for n1 = 1, 2, . . . and n2 = 0, 1, 2, . . .

(Q · L) (n1, n2, k)

= λ1 · (L(n1 + 1, n2, k)− L(n1, n2, k))

+ λ2 · (L(n1, n2 + 1, k)− L(n1, n2, k))

+ µ · (L(n1 − 1, n2, k − 1)− L(n1, n2, k))

+ ν · (L(n1, n2, k + 1)− L(n1, n2, k))

(11.2.7)
= λ1 · (n1 + 1 + n2 + α(k)− n1 − n2 − α(k))

+ λ2 · (n1 + n2 + 1 + α(k)− n1 − n2 − α(k))

+ µ · (n1 − 1 + n2 + α(k − 1)− n1 − n2 − α(k))

+ ν · (n1 + n2 + α(k + 1)− n1 − n2 − α(k))

= λ1 + λ2 − µ
+ µ · (α(k − 1)− α(k)) + ν · (α(k + 1)− α(k))

(11.2.8)
= λ1 + λ2 − µ

+ µ ·

(
C ·
(
ν

µ

)k−2

− C ·
(
ν

µ

)k−1
)

+ ν ·

(
C ·
(
ν

µ

)k
− C ·

(
ν

µ

)k−1
)

= λ1 + λ2 − µ+ C · µ ·
(
ν

µ

)k−1 (µ
ν
− 1
)

+ C · ν ·
(
ν

µ

)k−1

·
(
ν

µ
− 1

)
= λ1 + λ2 − µ+ C ·

(
ν

µ

)k−1

·
(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
≤ −ε

and for n1 = 0 and n2 = 1, 2, . . .

(Q · L) (0, n2, k)

= λ1 · (L(1, n2, k)− L(0, n2, k))

+ λ2 · (L(0, n2 + 1, k)− L(0, n2, k))

+ µ · (L(0, n2 − 1, k − 1)− L(0, n2, k))

+ ν · (L(0, n2, k + 1)− L(0, n2, k))

(11.2.7)
= λ1 · (1 + n2 + α(k)− n2 − α(k))

+ λ2 · (n2 + 1 + α(k)− n2 − α(k))

+ µ · (n2 − 1 + α(k − 1)− n2 − α(k))

+ ν · (n2 + α(k + 1)− n2 − α(k))

(11.2.8)
= λ1 + λ2 − µ

+ µ ·

(
C ·
(
ν

µ

)k−2

− C ·
(
ν

µ

)k−1
)

+ ν ·

(
C ·
(
ν

µ

)k
− C ·

(
ν

µ

)k−1
)

= λ1 + λ2 − µ+ C · µ ·
(
ν

µ

)k−1

·
(µ
ν
− 1
)

+ C · ν ·
(
ν

µ

)k−1

·
(
ν

µ
− 1

)
= λ1 + λ2 − µ+ C ·

(
ν

µ

)k−1

·
(
µ ·
(µ
ν
− 1
)

+ ν ·
(
ν

µ
− 1

))
≤ −ε.
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11. Production-inventory system with base stock policy

For k = b holds
for n1 = 1, 2, . . . and n2 = 0, 1, 2, . . .

(Q · L) (n1, n2, b)

= λ1 · (L(n1 + 1, n2, b)− L(n1, n2, b))

+ λ2 · (L(n1, n2 + 1, b)− L(n1, n2, b))

+ µ · (L(n1 − 1, n2, b− 1)− L(n1, n2, b))

(11.2.7)
= λ1 · (n1 + 1 + n2 + α(b)− n1 − n2 − α(b))

+ λ2 · (n1 + n2 + 1 + α(b)− n1 − n2 − α(b))

+ µ · (n1 − 1 + n2 + α(b− 1)− n1 − n2 − α(b))

= λ1 + λ2 − µ+ µ · (α(b− 1)− α(b))

(11.2.8)
= λ1 + λ2 − µ+ µ ·

(
C ·
(
ν

µ

)b−2

− C ·
(
ν

µ

)b−1
)

= λ1 + λ2 − µ+ C · µ ·
(
ν

µ

)b−1 (µ
ν
− 1
)
≤ −ε

and for n1 = 0 and n2 = 1, 2, . . .

(Q · L) (0, n2, b)

= λ1 · (L(1, n2, b)− L(0, n2, b))

+ λ2 · (L(0, n2 + 1, b)− L(0, n2, b))

+ µ · (L(0, n2 − 1, b− 1)− L(0, n2, b))

(11.2.7)
= λ1 · (1 + n2 + α(b)− n2 − α(b))

+ λ2 · (n2 + 1 + α(b)− n2 − α(b))

+ µ · (n2 − 1 + α(b− 1)− n2 − α(b))

= λ1 + λ2 − µ+ µ · (α(b− 1)− α(b))

(11.2.8)
= λ1 + λ2 − µ+ µ ·

(
C ·
(
ν

µ

)b−2

− C ·
(
ν

µ

)b−1
)

= λ1 + λ2 − µ+ C · µ ·
(
ν

µ

)b−1

·
(µ
ν
− 1
)
≤ −ε.
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11.3. Pure inventory system

11.3. Pure inventory system

In this section, we consider the case of zero service time, which is the version of our model
in the classical inventory theory. The supply chain of interest is depicted in Figure 11.3.1
and consists of priority and ordinary customers, an inventory and a supplier.

Inventory

OrderReplenishment

Supplier

Lost 
salesDemand arrival 

process

Lost 
sales

Demand arrival 
process

Priority customer

Ordinary customer

Figure 11.3.1.: The pure inventory system with two customer classes

There are two types of customers — priority customers and ordinary customers. The
set of these customer classes is C = {1, 2}, where 1 is the type of priority customers and
2 is the type of ordinary customers — the smaller the number, the higher the priority.
According to two independent Poisson processes with different parameters the demands
of each type of customer arrive one by one at the production system and require service.
Priority customers arrive according to a Poisson process with rate λ1 > 0 and ordinary
customers arrive according to a Poisson process with rate λ2 > 0.

Customers’ arrivals are regulated by a flexible admission control with priority para-
meter p, 0 ≤ p ≤ 1: If the inventory is depleted all arriving customers are rejected (“lost
sales”). If the on-hand inventory is greater than a prescribed threshold level s, 0 < s < b,
the customers of both classes are admitted to enter the system. If the on-hand inventory
reaches or falls below the threshold level s, all priority customers still enter the system,
but ordinary customers are allowed to enter only with probability p and are rejected with
probability 1− p.

The inventory is depleted by an exogenous customer demand and each customer needs
exactly one item from the inventory.

It is assumed that transmission times for orders are zero and and that the transportation
time between the production system and the inventory is negligible.
All inter-arrival times and replenishment lead times constitute an independent family

of random variables.
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11. Production-inventory system with base stock policy

An outside supplier replenishes raw material to the inventory according to the base
stock policy. The replenishment lead time is exponentially distributed with parameter
ν > 0.
Let Y (t) denote the on-hand inventory at time t ≥ 0. Denote by Y = (Y (t) : t ≥

0) the pure inventory process. Then, due to the usual independence and memoryless
assumptions Y is a homogeneous strong Markov process. The state space of Y is

K = {0, . . . , b},

where b is the maximal size of the inventory, which depends on the replenishment policy.
The queueing-inventory process Y is irreducible. This can be shown analogously as

in Appendix E on page 375 for the queueing-inventory system with (r,Q)-policy. From
|K| <∞ follows ergodicity (cf. [Ser13, Theorem 4.21]).

Definition 11.3.1. For the queueing-inventory process Z in a state space K, whose
limiting distribution exists, we define

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P (Y (t) = k) .

Proposition 11.3.2. The inventory process Y = (Y (t) : t ≥ 0) has the following limiting
and stationary distribution

θ(0) =

 s∑
j=0

(
ν

λ1 + p λ2

)j
+

(
ν

λ1 + p λ2

)s
·
b−s∑
j=1

(
ν

λ1 + λ2

)j−1

=

1−
(

ν
λ1+p λ2

)s+1

1−
(

ν
λ1+p λ2

) +

(
ν

λ1 + p λ2

)s
·

1−
(

ν
λ1+λ2

)b−s+1

1−
(

ν
λ1+λ2

) − 1



−1

=

1−
(

ν
λ1+p λ2

)s+1

1−
(

ν
λ1+p λ2

) +

(
ν

λ1 + p λ2

)s
·
(

ν

λ1 + λ2

)
·

1−
(

ν
λ1+λ2

)b−s
1−

(
ν

λ1+λ2

)


−1

,

θ(k) =

(
ν

λ1 + p λ2

)k
· θ(0), k = 1, . . . , s,

θ(k) =

(
ν

λ1 + p λ2

)s( ν

λ1 + λ2

)k−s
· θ(0), k = s+ 1, . . . , b.

Proof. The global balance equations of the pure inventory system with s < b are given
as follows

θ(0) · ν = θ(1) · (λ1 + p λ2),

θ(k) · (λ1 + p λ2 + ν) = θ(k + 1) · (λ1 + p λ2) + θ(k − 1) · ν, k = 1, . . . , s− 1,

θ(s) · (λ1 + p λ2 + ν) = θ(s+ 1) · (λ1 + λ2) + θ(s− 1) · ν,
θ(k) · (λ1 + λ2 + ν) = θ(k + 1) · (λ1 + λ2) + θ(k − 1) · ν, k = s+ 1, . . . , b− 1,

θ(b) · (λ1 + λ2) = θ(b− 1) · ν.
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θ is the distribution of a finite birth-and-death process with birth-rates ν and death-rates
λ1 + p λ2 for k = 1, . . . , s and λ1 + λ2 for k = s + 1, . . . , b (cf. [Asm03, Corollary 2.5, p.
74]).

Remark 11.3.3. For p = 1, the model corresponds to the classic inventory system with
base stock policy and arrival rate λ1 + λ2 and lost sales.
For λ2 → 0, the model corresponds to the classic inventory system with base stock

policy and arrival rate λ1.

11.4. Cost analysis

We consider the following cost structure for inventory, production and replenishment.
The total costs consist of shortage costs cls,1 resp. cls,2 for each priority resp. ordinary
customer that is lost, waiting costs cw,1 resp. cw,2 per unit of time for each priority resp.
ordinary customer in the system (waiting or in service), capacity costs cs per unit of time
for providing inventory storage space (e.g. rent, insurance), holding costs ch per unit of
time for each unit that is kept on inventory. We assume that all of these costs per unit
of time are positive.
Therefore, the cost function per unit of time in the respective states is

fb,p : N0 × N0 × {0, 1, . . . , b} −→ R+
0

with

fb,p(n1, n2, k) = cw,1 · n1 + cw,2 · n2 + cs · b+ ch · k + cls,1 · λ1 · 1{k=0}

+cls,2 ·
(
λ2 · 1{k=0} + (1− p) · λ2 · 1{0<k≤s}

)
.

The asymptotic average costs for an ergodic system can be computed similar to Section
10.3.
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A.1. Properties for Markov processes

In this section, we summarize some properties for Markov processes, which we need in
some proofs.

Theorem A.1.1 (Cut criteria for Markov processes).

(a) Let Z be an irreducible and positive recurrent Markov process with state space E,
infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E), and stationary distribution π :=
(π (z) : (z) ∈ E). Then, the probability flux each way across a cut balances. That is
for any A ⊂ E, ∑

z∈A

∑
z̃∈Ac

π(z) · q(z, z̃) =
∑
z∈A

∑
z̃∈Ac

π(z̃) · q(z̃, z).

(b) Let Z be an irreducible and recurrent Markov process with state space E, infinitesi-
mal generator Q = (q(z; z̃) : z, z̃ ∈ E), and stationary measure x = (x (z) : z ∈ E).
The probability flux each way across a finitely generated cut balances. That is for
any finite A ⊂ E (or A ⊂ E with finite complement Ac),∑

z∈A

∑
z̃∈Ac

x(z) · q(z, z̃) =
∑
z∈A

∑
z̃∈Ac

x(z̃) · q(z̃, z).

Proof.

(a) The proof for a positive recurrent Markov process is presented in [Kel79, Lemma
1.4, p. 8].

(b) If Z is irreducible and recurrent, there exists one, and up to a multiplicative factor
only one, stationary measure x = (x(z) : z ∈ E). This x has the property x(z) > 0
for all z ∈ E and can be found as solution of the balance equation x ·Q = 0 [Asm03,
Theorem 4.2, p. 51].
The balance equation x ·Q = 0 can be written as∑

z̃∈E
x(z) · q(z, z̃) = 0, z ∈ E,

⇔ x(z) · (−q(z, z)) =
∑

z̃∈E\{z}

x(z̃) · q(z̃, z), z ∈ E,

⇔
∑

z̃∈E\{z}

x(z) · q(z, z̃) =
∑

z̃∈E\{z}

x(z̃) · q(z̃, z), z ∈ E,
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because −q(z, z) =
∑

z̃∈E\{z} q(z, z̃).
Summing up these balance equations over z ∈ A yields∑

z∈A

∑
z̃∈E\{z}

x(z) · q(z, z̃) =
∑
z∈A

∑
z̃∈E\{z}

x(z̃) · q(z̃, z) <∞,

since A is finite, which is equivalent to∑
z∈A

∑
z̃∈A\{z}

x(z) · q(z, z̃) +
∑
z∈A

∑
z̃∈Ac

x(z) · q(z, z̃)

=
∑
z∈A

∑
z̃∈A\{z}

x(z̃) · q(z̃, z) +
∑
z∈A

∑
z̃∈Ac

x(z̃) · q(z̃, z).

Hence, ∑
z∈A

∑
z̃∈Ac

x(z) · q(z, z̃) =
∑
z∈A

∑
z̃∈Ac

x(z̃) · q(z̃, z).

Foster [Fos53] introduced a technique for proving stability of Markov chains. Many vari-
ants of the Foster-Lyapunov stability criterion exist. The following version for continuous
time Markov processes has been adapted from Kelly and Yudovina [KY14, Proposition
D.3].

Theorem A.1.2 (Foster-Lyapunov stability criterion for Markov processes). Let Z be
a (time-homogeneous, irreducible, non-explosive, conservative) continuous time Markov
process with countable state space E and matrix of transition rates Q = (q(z; z̃) : z, z̃ ∈
E). Suppose L : E → R+

0 is a function such that, for some constants ε > 0, some finite
exception set F ( E, and all z ∈ E

(Q · L) (z) =
∑
z̃∈E

q(z; z̃) (L(z̃)− L(z))

{
≤ −ε, z /∈ F,
<∞, z ∈ F.

(A.1.1)

Then the expected return time to K is finite, and Z is positive recurrent.1

1In [KY14, Proposition D.3] it is
∑
z̃∈E q(z; z̃) (L(z̃)− L(z)) < b− ε, z ∈ F , for some b.
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A.2. Standard separable networks

In this section, we summarize definitions and theorems on classical exponential networks.
The open queueing network has been introduced by Jackson [Jac57]. The closed analogue
of the Jackson network — the Gordon-Newell network — has been introduced some years
later by Jackson, see [Jac63], and has been rediscovered by Gordon and Newell [GN67].
We sketch only the relevant results for queueing networks of single server nodes with

state dependent service intensities for our research. The results for a Jackson network
with multi-server stations is summarized in [Dad01b, Definition 2.5, Theorem 2.6, pp.
313f.].

The notation in the next definition follows [SD03, Definition 2.1, pp. 168].

Definition A.2.1 (Jackson network). A Jackson network is a network of J numbered
service stations (nodes), denoted by J := {1, 2, . . . , J}. Each station j consists of a single
server with infinite waiting room under FCFS regime. Customers in the network are
indistinguishable. There is an external Poisson-λj arrival stream at node j with λj ≥ 0.
Customers arrive at node j from the outside or from other nodes of the network and
request for a service there. The service time is exponentially distributed with mean 1. If
there are nj > 0 customers present at node j, service at node j is provided with intensity
µj(nj) > 0, and otherwise µj(0) := 0. All service and inter-arrival times constitute an
independent family of random variables.
Movements of the customers in the network are governed by a Markovian routing

mechanism: A customer when leaving node i selects with probability r(i, j) ≥ 0 to visit
node j next, and then enters node j immediately, starting service if he finds the server
idle, otherwise he joins the tail of the queue at node j; this customer decides to leave the
network immediately with probability r(i, 0) ≥ 0 (

∑J
j=0 r(i, j) = 1 holds for all i ∈ J).

The artificial node 0 represents the external source and sink of the network. Given the
departure node i the customer’s routing decision is made independently of the network’s
history.
We assume that with J0 := {0, 1, . . . , J}, λ :=

∑J
j=1 λj , r(0, j) :=

λj
λ and r(0, 0) := 0

the matrix R :=
(
r(i, j) : i, j ∈ J0

)
is irreducible.

LetXj(t) denote the number of customers present at node j at time t ≥ 0, either waiting
or in service (local queue length at node j). Then X(t) := (Xj(t) : j = 1, . . . , J) is the
local queue length vector of the network at time t ≥ 0. We denote by X = (X(t) : t ≥ 0)
the joint queue length process of the Jackson network with state space E := NJ0 .

Theorem A.2.2 ([Jac57]). The joint queue length process X of the Jackson network is
a Markov process with the following transition rates (q(x; y) : x, y ∈ E):
For i, j ∈ J , i 6= j, and x = (n1, . . . , nJ) ∈ E

q ((n1, . . . , ni, . . . , nJ) ; (n1, . . . , ni + 1, . . . , nJ)) = λi,

q ((n1, . . . , ni, . . . , nJ) ; (n1, . . . , ni − 1, . . . , nJ)) = µi(ni) · r(i, 0) · 1{ni>0},

q ((n1, . . . , ni, . . . , nj , . . . , nJ) ; (n1, . . . , ni − 1, . . . , nj + 1, . . . , nJ)) = µi(ni) · r(i, j) · 1{ni>0}.

Furthermore,

q(x;x) = −
∑
y∈E,
y 6=x

q(x; y) and q(x; y) = 0 otherwise.
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The traffic equation of the network is defined by

ηj = λj +

J∑
i=1

ηi · r(i, j), j ∈ J,

and has a unique solution which we denote by η = (η1, . . . , ηJ).

We assume henceforth X to be ergodic. The unique stationary and limiting distribution
π of X is then

π (n1, . . . , nJ) =
∏
j∈J

πj(nj) =
∏
j∈J

C−1
j

nj∏
`=1

ηj
µj(`)

, (n1, . . . , nJ) ∈ NJ0 , (A.2.1)

with finite normalisation constants Cj, j ∈ J .

Remark A.2.3 (Product form). [Dad01b, Remark 2.7, p. 314 ] The stationary distribu-
tion (A.2.1) is a so-called product form distribution. This means that the joint stationary
distribution π for the network process is a product of its marginal distributions πj . Hence,
in equilibrium the local queue lengths at a fixed time point behave as if they are inde-
pendent. However, it should be stressed that the processes Xj , j = 1, . . . , J , are by no
means independent since the queue lengths rely on the customers moving between those
nodes.
The form of the local equilibria πj , j ∈ J , suggests that in steady state node j be-

haves like an M/M/1/∞-FCFS system in isolation with Poisson-ηj arrival streams and
exponential-µj service times. However, it can be proven that in general the suggestion of
Poisson streams between the nodes is not true (cf. [Mel79]).

Remark A.2.4 (Ergodicity). If the service intensities are independent of the queue length,
i.e. µj(nj) = µj for all nj > 0 and j ∈ J , then the joint queue length process X is ergodic
if and only if ηj < µj for all j ∈ J .

The notation in the next definition follows [SD03, Definition 2.4, pp. 169f.].

Definition A.2.5 (Gordon-Newel network). A Gordon-Newell network consists of a set
of single server nodes J := {1, 2, . . . , J} as described in Definition A.2.1 of the Jackson
network without external arrivals and departures. This means that the probabilities
r(j, 0) for all j ∈ J and the total network arrival rate λ are set to zero. There are
D > 0 indistinguishable customers cycling in the network according to an irreducible
Markov matrix R =

(
r(i, j) : i, J ∈ J

)
. The service times are similar to the open Jackson

network and the independence assumptions on service times and routing decisions are
assumed to hold as well.
Let Xj(t) denote the number of customers present at node j at time t ≥ 0, either

waiting or in service (local queue length at node j), then X(t) := (Xj(t) : j = 1, . . . , J)
is the local queue length vector of the network at time t ≥ 0.
We denote by X = (X(t) : t ≥ 0) the joint queue length process of the Gordon-Newell

network with state space S(J,D) :=
{

(n1, n2, . . . , nJ) ∈ NJ0 : n1 + n2 + . . .+ nJ = D
}
.
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Theorem A.2.6 ([Jac63, GN67]). The joint queue length process X of the Gordon-Newell
network is a Markov process with the following transition rates (q(x; y) : x, y ∈ S(J ;D)):
For i, j ∈ J and x = (n1, . . . , nJ) ∈ S(J,D)

q ((n1, . . . , ni, . . . , nj , . . . , nJ) ; (n1, . . . , ni − 1, . . . , nj + 1, . . . , nJ)) = µi(ni)·r(i, j)·1{ni>0}.

Furthermore,

q(x;x) = −
∑
y∈E,
y 6=x

q(x; y) and q(x; y) = 0 otherwise.

The joint queue length process X is ergodic. Let η = (η1, . . . , ηJ) denote the unique
probability solution of the traffic equation

ηj =
J∑
i=1

ηi · r(i, j), j ∈ J.

The unique stationary and limiting distribution π̂ = π̂(J,D) of X on S(J,D) is

π̂ (n1, . . . , nJ) = G(J,D)−1
J∏
`=1

n∏̀
i=1

(
η`
µ`(i)

)
, (n1, . . . , nJ) ∈ S(J,D) (A.2.2)

with G(J,D) as normalisation constant.

Remark A.2.7. [Dad01b, Remark 2.11, p. 316] The stationary distribution π(·) of the
Gordon-Newell network is said to be of product form as well, although the normalisation
constant G(J,D) does not factorise over the nodes as in the Jackson network. The sta-
tionary distribution (A.2.2) looks like being obtained by conditioning from an equilibrium
in a Jackson network with the same nodes and suitably redefined routing to the set J ,
given the number of customers present.

Baskett, Chandy, Muntz, and Palacios [BCMP75] and Kelly [Kel76] develop more com-
plex product form models:

A Kelly network is a general multiclass Jackson network, which connects as set of
quasi-reversible queues through some very general routing schemes. Instead of probabi-
listic routing, for each class of customers a fixed route through the network is defined. It
may comprise symmetric servers with class-dependent generally distributed service times.
A Kelly network still enjoys the basic properties of Jackson network, namely, the product
form equilibrium distribution and the Poisson-in-Poisson-out property.

The results of Jackson and of Gordon and Newell have been extended in [BCMP75]
by Baskett and his coauthors to queueing networks with several job classes, different
queueing disciplines, and generally distributed service times for specific server types. The
BCMP networks can be open, closed, or mixed (that contain open and closed classes).
The BCMP theorem says that the BCMP networks have product form solution.
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A.3. Jackson network in a random environment

As mentioned previously, comparing our production-inventory-replenishment systems in
Chapter 2, Chapter 3, Section 4.3, Chapter 5, Chapter 6 and Chapter 7 with the “Jack-
son network in a random environment” in [KDO16, Section 4] it turns out that we can
interpret the inventory-replenishment subsystem as a “random environment” for the pro-
duction network of nodes J , which is in this view a Jackson network of parallel servers.

In this section, we exemplary explain for our basic model in Chapter 2 the param-
eters “Jackson network in a random environment” of [KDO16, Section 4], so that for the
interested reader the technique in [KDO16, Section 4] to control a Jackson network in a
nonautonomous environment is easier comprehensible.

In our model, which is depicted in Figure A.3.1, the network process is (X1, . . . , XJ)
with state space NJ and the environment process is (Y1, . . . , YJ ,WJ+1) with state space
K.

Location 1

Location 

Single 
server

Single 
server

Waiting room

Lost 
sales

Lost 
sales

 Replenishment order

 Replenish
ment order

Demand arrival 
process

Demand arrival 
process

Inventory

Inventory

Replenishment

Replenishment

Waiting room

Waiting room

Supplier

Single 
server

Environment

Figure A.3.1.: Supply chain with base stock policy

264



A.3. Jackson network in a random environment

In the following, we will explain the dynamic of the interacting system.
Whenever the environment is in state k = (k1, . . . , kJ , kJ+1) ∈ K at time t ≥ 0, then

the environment changes its status to k̃ ∈ K with rate v(k, k̃).
We set V =

(
v(k, k̃) : k, k̃ ∈ K

)
. V is a generator matrix with

v(k,k + ei) = ν, if 0 ≤ ki < bi,

v(k, k̃) = 0, otherwise for k 6= k̃,

v(k,k) = −
∑

k̃∈K\{k}

v(k, k̃).

Whenever the environment is in state k ∈ K and at node j ∈ J a customer is served
and leaves the network at time t ≥ 0, then this jump of the local queue length triggers
with probability Rj(k, k̃) the environment to jump immediately from state k to state
k̃ ∈ K. We set Rj =

(
Rj(k, k̃) : k, k̃ ∈ K

)
, j ∈ J . Rj are stochastic matrices with

Rj(k,k− ej) = 1, if 1 ≤ kj ≤ bj ,
Rj (k,k) = 1, if kj = 0,

Rj(k, k̃) = 0, otherwise.

Associated with the environment state k ∈ K is a vector γ(k) which determines the
factor by which the service capacities are changed, when the environment enters k. We
set γ(k) =

(
γj(k) : j ∈ J

)
with

γj(k) =

{
0, if kj = 0 (i.e. service down),
1, if kj ≥ 1 (i.e. service up).

This results in state-dependent service rates µj(nj ,k) = γj(k) ·µj(nj) if the queue length
at node j is nj and the environment is in state k.

In our system the arrival rate to the network is not increased as a reaction to the impact
of the environment in state k. Hence, β(k) = 1.

In our model, the reaction to the servers’ changes of capacities is as in randomized
skipping as well as randomized reflection. We will explain the parameters for randomized
skipping in more detail.
The routing matrix of customers (demand) is given by r =

(
r(i, j) : i, j ∈ J0

)
with

r(0, j) =
λj∑
i∈J λi

, j ∈ J,

r(j, 0) = 1, j ∈ J,
r(i, j) = 0, otherwise i, j ∈ J0.

J0 is an extended node set, where “0” refers to the external source and sink of the network.
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The lost sales behaviour of customers (demand) can be represented by rerouting with
either randomized skipping or randomized reflection. For the case of rerouting with
randomized skipping, e.g. we need environment dependent rerouting with acceptance
probabilities α = α (γ(k)) =

(
αj
(
γj(k) : j ∈ J0

))
with

αj(0) = 0 (i.e. not accepted),
αj(1) = 1 (i.e. accepted).

Hence, the modified routing matrix is given by r(α(γ(k))) =
(
r(α(γ(k)))(i, j) : i, j ∈ J0

)
with

r(α(γ(k)))(0, 0) =
λj∑
i∈J? λi

, J
?

:=
{
i ∈ J : ki = 0

}
,

r(α(γ(k)))(0, j) =
λj∑
i∈J λi

, j ∈ J \
{
i ∈ J : ki = 0

}
,

r(α(γ(k)))(j, 0) = 1, j ∈ J,
r(α(γ(k)))(i, j) = 0, otherwise i, j ∈ J0.
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B.1. Iterative Algorithm

R code. The iterative algorithm on page 25 can be modeled in R. The R code is pre-
sented in the following.

Functions in R to calculate the average sojourn time E[T ] (for step 1 in the algorithm)
1 prob_tilde_x2=function(lambda_sup ,nu,b){
2 res <-(lambda_sup/nu)^(0:b)
3 return(res/sum(res))
4 }
5

6

7 ET2 <-function(lambda_sup ,nu,b){
8 prob_tilde_x2_tk<-prob_tilde_x2(lambda_sup ,nu,b-1)
9 if(b>=1){

10 return(sum(prob_tilde_x2_tk*(1:b))/nu)
11 }
12 else{
13 return (1/nu)
14 }
15 }

Functions in R to calculate the blocking probabilities qj (for step 2 in the algorithm)
1 blockprob_1<-function(lambda_1,ET2 ,b_1){
2 res1 <-((( lambda_1/ET2)^(0:b_1))*(1/(factorial (0:b_1))))
3 norm.res1 <-(res1/sum(res1))
4 return(tail(norm.res1 ,n=1))
5 }
6 #
7 blockprob_2<-function(lambda_2,ET2 ,b_2){
8 res2 <-((( lambda_2/ET2)^(0:b_2))*(1/(factorial (0:b_2))))
9 norm.res2 <-(res2/sum(res2))

10 return(tail(norm.res2 ,n=1))
11 }

R-code to find the routing probabilities pj
1 pfind <-function(lambda_1,lambda_2,b_1,b_2,nu){
2 #Initialize
3 b<-b_1+b_2 #
4 tol <-0.001 # stop criterion
5 q_1<-0 # blocking probability at location 1
6 q_2<-0 # blocking probability at location 2
7 q_1_old <-1-q_1+tol # old blocking probability at location 1
8 q_2_old <-1-q_2+tol # old blocking probability at location 2
9 steps <-0 # number of steps

10 max.steps <-500 # maximal number of steps
11 #
12 while(abs(q_1-q_1_old)+abs(q_2-q_2_old)>tol&&steps <max.steps){
13 # Step (1):
14 # Calculation of effective arrival rates of replenishment orders
15 # at the central supplier
16 lambda_1_new <-(1-q_1)*lambda_1 #effective arrival rate from location 1
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17 lambda_2_new <-(1-q_2)*lambda_2 #effective arrival rate from location 2
18 lambda_sup <-lambda_1_new+lambda_2_new
19 #
20 # Step (2):
21 # Calcuation of average sojourn time of a replenishment order at the

central supplier
22 T_sup <-ET2(lambda_sup ,nu,b)
23 #
24 # Step (3):
25 # Determination of new blocking probabilities
26 q_1_old <-q_1 #old blocking probability at location 1
27 q_2_old <-q_2 #old blocking probability at location 1
28 q_1<-blockprob_1( lambda_1_new ,1/T_sup ,b_1) #new blocking probability at

location 1
29 q_2<-blockprob_2( lambda_2_new ,1/T_sup ,b_2) #new blocking probability at

location 2
30 #
31 # Check the stop criterion
32 steps=steps+1 # counting steps
33 #
34 # if the algorithm does not converges in the maximal number of steps ,
35 # stop the algorithm
36 if(steps >=max.steps){
37 q_1<-NA
38 }
39 }
40 #
41 # Calculation of the routing probabilities
42 p_1<-((1-q_1)*lambda_1)/((1-q_1)*lambda_1+(1-q_2)*lambda_2) #routing

probability at location 1
43 p_2<-((1-q_2)*lambda_2)/((1-q_1)*lambda_1+(1-q_2)*lambda_2) #routing

probability at location 2
44 }

Functions in R to calculate γj
1 gamma1find <-function(lambda_1,greynu ,p){
2 gamma1 <-(( greynu*p)/lambda_1) return(gamma1)
3 }
4 #
5 gamma2find <-function(lambda_2,greynu ,p){
6 gamma2 <-(( greynu*(1-p))/lambda_2) return(gamma2)
7 }

Functions in R to calculate P (Yj = 0) (cf. (2.5.3) on page 31)
1 PY1eq0find <-function(gamma1 ,b_1){
2 if(gamma1!=1){
3 return ((1- gamma1)/(1-gamma1 ^(b_1+1)))
4 }
5 else{
6 return (1/(b_1+1))
7 }
8 }
9 #

10 PY2eq0find <-function(gamma2 ,b_2){
11 if(gamma2!=1){
12 return ((1- gamma2)/(1-gamma2 ^(b_2+1)))
13 }
14 else{
15 return (1/(b_2+1))
16 }
17 }
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Functions in R to calculate E(Yj) (cf. (2.5.2) on page 31)
1 EY1find <-function(gamma1 ,b_1){
2 if(gamma1!=1){
3 return (( gamma1/(1-gamma1))*((b_1*gamma1 ^(b_1+1) -(b_1+1)*gamma1^b_1 +1)/(1-

gamma1 ^(b_1+1))))
4 }
5 else{
6 return(b_1/2)
7 }
8 }
9 #

10 EY2find <-function(gamma2 ,b_2){
11 if(gamma2!=1){
12 return (( gamma2/(1-gamma2))*((b_2*gamma2 ^(b_2+1) -(b_2+1)*gamma2^b_2 +1)/(1-

gamma2 ^(b_2+1))))
13 }
14 else{
15 return(b_2/2)
16 }
17 }
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C.1. Algorithm to obtain θ̃

To obtain the exact or approximate solutions of queueing models various analytical, nu-
merical and simulation techniques are available (e.g. the power iteration method, generat-
ing function approach, product form solution and recursive solution technique) (cf. [CK77,
Section III, pp. 44ff.]). The recursive solution technique was first suggested by Herzog,
Woo and Chandy [HWC75]. They demonstrate an efficient solution for single queueing
models with other than exponential arrival or service time distributions. The recursive
technique uses the fact that the steady state probabilities of the system can sometimes
be expressed in terms of other steady state probabilities. This leads to a reduction of the
number of unknowns in the global balance equations.

In this section, we assume that there are two heterogeneous locations with base stock
levels b1 ≥ b2, where b1 > 1 and b2 ≥ 1 and arrival rates λ1, λ2 > 0. The state transition
diagram for such a system is presented in Figure C.1.1. In Section 3.3.1.1 on page 50,
we have derived an explicit solution for θ̃(k), k ∈ K, for the special case with base stock
levels b1 = b2 = 1.

The steady state probabilities can be obtained by a recursive method which is described
by the algorithm given below. This recursive solution technique uses the fact that the
steady state probabilities of the system can be expressed in terms of other steady state
probabilities. As mentioned above, this leads to a reduction of the number of unknowns
in the global balance equations. κ is a variable which represents a temporarily unknown
probability and GBE is used to denote a global balance equation.

-

-

-- - - + - + - -

Figure C.1.1.: State transition diagram of a system with two heterogeneous locations
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Chow and Kohler present in [CK79] a generalization of the recursive solution technique.
They apply the method to non-homogeneous (= heterogeneous) two-processor systems
with special properties in [CK79, Section IV, pp. 358f.] and present a sample system
using the algorithm in [CK79, Appendix, pp. 360f.]. One special property of the load bal-
ancing policy that enables to use their recursive solution technique for the two-processor
heterogeneous systems is that the policy line (= continuous chain of arrival transitions
starting at state (0, 0) given that no departure occurs) partitions the states of the state
transition rate diagram into two regions. Our load balancing policy is slightly different
from that of Chow and Kohler [CK79, Section IV, pp. 358f.] because of 1

2ν (since if both
inventories have the same difference between the on-hand inventory and the capacity of
the inventory, it enters either with equal probability) as can be seen in the state transition
diagram in Figure C.1.1.
They mentioned that the generalization of recursive solution “technique for three or

more processors does not appear to be straightforward” [CK79, p. 359].

We will henceforth use an abbreviated notation because kJ+1 =
∑J

j=1(bj −kj) and the
base stock levels bj , j ∈ J , are fixed parameters:

θ̃
( inventories

at locations︷ ︸︸ ︷
k1, k2

)
:= θ̃

( inventories
at locations︷ ︸︸ ︷
k1, k2,

supplier︷︸︸︷
k3

)
and hence,

pi(k− ei) := pi(k− ei + eJ+1),

pi(k + ei) := pi(k + ei − eJ+1), i ∈ J.

In this section, we present the recursive method to obtain θ̃(k), k ∈ K, from the global
balance equations θ̃ ·Qred = 0 (cf. equation (3.3.2) on page 47)

θ̃ (k)
(∑
i∈J

λi · 1{ki>0} +
∑
i∈J

ν · pi(k) · 1{ki<bi}
)

=
∑
i∈J

θ̃ (k + ei) · λi · 1{ki<bi}

+
∑
i∈J

θ̃ (k− ei) · ν · pi(k− ei) · 1{ki>0},

where pi(k), i ∈ J , includes the cases

pi(k) =



1, if {i} = arg max
j∈J

(bj − kj),

1
|arg max

j∈J
(bj−kj) | < 1, if {i} ( arg max

j∈J
(bj − kj),

0, if i /∈ arg max
j∈J

(bj − kj).

On the next pages, we present an algorithm to obtain θ̃(k) for a system with two
heterogeneous locations and b1 ≥ b2 and b1 > 1, b2 > 1. The algorithm for this system
is illustrated by a simple example in Appendix C.1 on page 312. A few steps of the
algorithm are visualised in the state transition diagram in Figure C.1.2.
The algorithm for a system with base stock levels b1 > b2 = 1 is presented on page 320.

272



-

-

-- - - + - + - -

(1)(b)

(1)(c)

(1)(d)

(1)(e)

(1)(f)

Set to  

(1)(a)

Set to 1 

known inde- 
pendent of  

function of  

(a) First loop with k2 = b2

Set to  

-

-

-- - - + - + -

known inde- 
pendent of  

function of  

(2)(b)(i)

(2)(b)(ii)

(2)(c)

(2)(d)

(2)(a)

(b) Second loop with k2 = b2 − 1

- -

-

-

-- - - +

known inde- 
pendent of  

function of  

(3)(b)(i)

(3)(b)(ii)

(3)(b)(i)

(3)(d)

Set to  

(3)(a)

(c) Last loop with k2 = 1

Figure C.1.2.: Visualisation of a few steps of the algorithm
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ALGORITHM (b1 ≥ b2 with b1 > 1, b2 > 1 and λ1, λ2 > 0)

I Set θ̃(b1, 0) = 1

I For k2 = b2, . . . , 1

(1) if k2 = b2,

(a) set θ̃(0, b2) = κ

(b) for ` = 0, . . . , b2 − 2
use the GBE of state (b1, `)
to find an expression for θ̃(b1, `+ 1) independent of κ

(c) for k1 = 0, . . . , b1 − 2
use the GBE of state (k1, b2)
to find an expression for θ̃(k1 + 1, b2) as a function of κ

(d) use the GBE of state (b1, b2)
to find an expression for θ̃(b1, b2) as a function of κ

(e) use the GBE of state (b1 − 1, b2)
to find an expression for θ̃(b1 − 1, b2 − 1) as a function of κ

(f) use the GBE of state (b1, b2 − 1) to solve for κ

(g) substitute the value of κ into the equations in the above steps (1)(a) and
(1)(c)-(e)

(2) if b2 > k2 ≥ 2 (i.e. b1, b2 ≥ 3),

(a) set θ̃(0, k2) = κ

(b) for k1 = 0, . . . , b1 − (b2 − k2)− 1

(i) if k1 < b1 − (b2 − k2)− 1,
use the GBE of state (k1, k2)
to find an expression for θ̃(k1 + 1, k2) as a function of κ

(ii) if k1 = b1 − (b2 − k2)− 1,
use the GBE of state (k1, k2)
to find an expression for θ̃(k1, k2 − 1) as a function of κ

(c) for ` = k2, . . . , 1
use the GBE of state (b1 − (b2 − k2), `)
to find an expression for θ̃(b1 − (b2 − k2), `− 1) as a function of κ

(d) use the GBE of state (b1 − (b2 − k2), 0) to solve for κ

(e) substitute the value of κ into the equations in the above steps (2)(a)-(c)
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(3) if b2 > k2 = 1

(a) set θ̃(0, 1) = κ

(b) for k1 = 0, . . . , b1 − b2 + 1

(i) if k1 < b1 − b2 (if b1 − b2 > 0),
use the GBE of state (k1, 1)
to find an expression for θ̃(k1 + 1, 1) as a function of κ

(ii) if k1 ∈ {b1 − b2, b1 − b2 + 1},
use the GBE of state (k1, 1)
to find an expression for θ̃(k1, 0) as a function of κ

(c) for k1 = b1 − b2, . . . , 1 (if b1 − b2 > 0),
use the GBE of state (k1, 0)
to find an expression for θ̃(k1 − 1, 0)

(d) use the GBE of state (b1 − (b2 − 1), 0) to solve for κ
(e) substitute the value of κ into the equations in the above steps (3)(a)-(c)

I Normalise all θ̃(k1, k2) by setting

θ̃(k1, k2)← θ̃(k1, k2)∑b1
k1=0

∑b2
k2=0 θ̃(k1, k2)

Explanations of the algorithm
Inside the following equations, we use cyan colour for the expressions which are known
independent of κ, green colour for the expressions which are known as a function of κ
and red colour for the expressions which are unknown. The respective explanations are
marked by bullets of the same colour and the expressions are partly highlighted within
the explanations. Furthermore, some changes within the explanations are underlined.
Furthermore, to support the explanations on the following pages some steps of the al-
gorithm are visualised on the right sides.

We illustrate the algorithm by a simple example with two locations in Appendix C.1.

The algorithm starts by assigning some arbitrary initial value to state (b1, 0).
The algorithm distinguishes between three cases:
(1) k2 = b2, (2) b2 > k2 ≥ 2 and (3) b2 > k2 = 1.

(1) The case, where k2 = b2, starts with step (1)(a) by temporarily setting a variable
κ to the prenormalised probability of (0, b2) and then in step (1)(b)-(1)(e), pren-
ormalised probabilities can be calculated recursively independent of κ resp. as a
function of κ by using GBEs. In step (1)(f), the GBE of state (b1, b2 − 1) can be
used to solve for the variable κ. Hence, in step (1)(g), the value of κ can be sub-
stituted into the prenormalised probabilities, which were calculated in the previous
steps (1)(a) and (1)(c)-(e) as a function of κ.
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(1)(b) The recursion starts with ` = 0.
The GBE of state (b1, 0) is

θ̃ (b1, 0)︸ ︷︷ ︸
=1

·
(
λ1 · 1{k1>0}︸ ︷︷ ︸

=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1, 1) · λ2 · 1{1<b2}︸ ︷︷ ︸
=1

.

• arg max
j∈J

(bj−kj) = {2}, but a flux into the state (b1, 0) through a replenishment

at location 2 is not possible.

• θ̃ (b1, 0) was set to 1 at the beginning of the algorithm.

• Hence, this GBE can be used to solve for θ̃ (b1, 1) independent of κ.

In the next steps, we have ` = 1, . . . , b2 − 2.
The GBE of state (b1, `) is

θ̃ (b1, `) ·
(
λ1 · 1{b1>0}︸ ︷︷ ︸

=1

+λ2 · 1{`>0}︸ ︷︷ ︸
=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1, `+ 1) · λ2 · 1{`<b2}︸ ︷︷ ︸
=1

+θ̃ (b1, `− 1) · ν · p2(k− e2)︸ ︷︷ ︸
=1

· 1{`>0}︸ ︷︷ ︸
=1

.

• p2(k− e2) = 1 holds for the following reason:
Due to 0 < ` < b2 − 1 and k1 = b1, we have b1 − k1 = 0 < b2 − (`− 1),
which leads to arg max

j∈J
(bj − kj) = {2}.

• θ̃ (b1, `) for 0 < ` < b2 − 1 is known independent of κ from the previous steps
because in step (1)(b) the loop of ` goes from 0 to b2 − 2.
More precisely, in the previous step, the GBE of state (b1, `− 1) was used to
find an expression for θ̃ (b1, `).

• θ̃ (b1, `− 1) is known independent of κ from the previous steps. More precisely,

- if ` = 1, because θ̃ (b1, 0) was set to 1 at the beginning of the algorithm,

- if ` > 1, because in step (1)(b) the loop of ` goes from 0 to b2 − 2.
The GBE of state (b1, `− 2) was used to find an expression
for θ̃(b1, `− 1).

• Hence, this GBE can be used to solve for θ̃ (b1, `+ 1) independent of κ.
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(1)(c) The recursion starts with k1 = 0.
The GBE of state (0, b2) is

θ̃ (0, b2)︸ ︷︷ ︸
=κ

·
(
λ2 · 1{b2>0}︸ ︷︷ ︸

=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (1, b2) · λ1 · 1{0<b1}︸ ︷︷ ︸
=1

.

• arg max
j∈J

(bj−kj) = {1}, but a flux into the state (0, b2) through a replenishment

is not possible because 1{k1>0} = 0.

• θ̃ (0, b2) was set to κ in step (1)(a).

• Hence, this GBE can be used to solve for θ̃ (1, b2) as a function of κ.

In the next steps, we have k1 = 1, . . . , b1 − 2.
The GBE of state (k1, b2) is

θ̃ (k1, b2) ·
(
λ1 · 1{k1>0}︸ ︷︷ ︸

=1

+λ2 · 1{b2>0}︸ ︷︷ ︸
=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (k1 + 1, b2) · λ1 · 1{k1<b1}︸ ︷︷ ︸
=1

+θ̃ (k1 − 1, b2) · ν · p1(k− e1)︸ ︷︷ ︸
=1

· 1{k1>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1 holds for the following reason:
Due to 0 < k1 < b1 and k2 = b2, we have b2 − k2 = 0 < b1 − (k1 − 1),
which leads to arg max

j∈J
(bj − kj) = {1}.

• θ̃ (k1, b2) is known as a function of κ from the previous steps because in step (1)(c),
the loop of k1 goes from 0 to b1 − 2.
More precisely, because k1 > 0, in step (1)(c), the GBE of state (k1 − 1, b2) was
used to find an expression for θ̃(k1, b2).

• θ̃ (k1 − 1, b2) is known for k1 > 0 as a function of κ from the previous steps. More
precisely,

- if k1 = 1, because θ̃(0, b2) was set to κ in step (1)(a),

- if k1 > 1, because in step (1)(c), the loop of k1 goes from 0 to b1 − 2.
The GBE of state (k1 − 2, b2) was used
to find an expression for θ̃(k1 − 1, b2).

• Therefore, this GBE can be used to solve for θ̃ (k1 + 1, b2) as a function of κ.
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(1)(d) The GBE of state (b1, b2) is

θ̃ (b1, b2) ·
(
λ1 · 1{b1>0}︸ ︷︷ ︸

=1

+λ2 · 1{b2>0}︸ ︷︷ ︸
=1

)
= θ̃ (b1 − 1, b2) · ν · p1(k− e1)︸ ︷︷ ︸

=1

· 1{b1>0}︸ ︷︷ ︸
=1

+θ̃ (b1, b2 − 1) · ν · p2(k− e2)︸ ︷︷ ︸
=1

· 1{b2>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1 holds for the following reason:
Due to k1 = b1 and k2 = b2, we have b1− (k1−1) = b1− (b1−1) = 1 > 0 = b2−k2,
which leads to arg max

j∈J
(bj − kj) = {1}.

• p2(k− e2) = 1 holds for the following reason:
Due to k1 = b1 and k2 = b2, we have b2− (k2−1) = b2− (b2−1) = 1 > 0 = b1−k1,
which leads to arg max

j∈J
(bj − kj) = {2}.

• θ̃ (b1 − 1, b2) is known as a function of κ from the previous steps because in step
(1)(c), the loop of k1 goes from 0 to b1− 2. More precisely, because b1 > 1, in step
(1)(c), the GBE of state (b1 − 2, b2) was used to find an expression for θ̃(b1 − 1, b2).

• θ̃ (b1, b2 − 1) is known for b2 > 1 independent of κ from the previous steps. More
precisely, because in step (1)(b), the loop of ` goes from 0 to b2 − 2, the GBE of
state (b1, b2 − 2) was used to find an expression for θ̃(b1, b2 − 1).

• Therefore, this GBE can be used to solve for θ̃ (b1, b2) as a function of κ.

280



C.1. Algorithm to obtain θ̃

-

-

-- - - + - + - -

known inde- 
pendent of  

function of  

(1)(b)

(1)(c)

(1)(d)

Figure C.1.5.: Visualisation of step (1)(d) of the algorithm
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(1)(e) The GBE of state (b1 − 1, b2) is

θ̃ (b1 − 1, b2) ·
(
λ1 · 1{b1−1>0}︸ ︷︷ ︸

=1

+λ2 · 1{b2>0}︸ ︷︷ ︸
=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1, b2) · λ1 · 1{b1−1<b1}︸ ︷︷ ︸
=1

+θ̃ (b1 − 2, b2) · ν · p1(k− e1)︸ ︷︷ ︸
=1

· 1{b1−1>0}︸ ︷︷ ︸
=1

+θ̃ (b1 − 1, b2 − 1) · ν · p2(k− e2)︸ ︷︷ ︸
=1/2

· 1{b2>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1 holds for the following reason:
Due to k1 = b1−1 and k2 = b2, we have b1−(k1−1) = b1−(b1−2) = 2 > 0 = b2−k2,
which leads to arg max

j∈J
(bj − kj) = {1}.

• p2(k− e2) = 1/2 holds for the following reason:
Due to k1 = b1 − 1 and k2 = b2, we have b2 − (k2 − 1) = b2 − (b2 − 1) = 1 =
b1 − (b1 − 1) = b1 − k1,
which leads to arg max

j∈J
(bj − kj) = {1, 2}.

• θ̃ (b1 − 1, b2) is known for b1 > 1 as a function of κ from the previous steps because
in step (1)(c), the loop of k1 goes from 0 to b1 − 2. More precisely, in step (1)(c),
the GBE of state (b1 − 2, b2) was used to find an expression for θ̃(b1 − 1, b2).

• θ̃ (b1, b2) is known as a function of κ from the previous step (1)(d).

• θ̃ (b1 − 2, b2) is known as a function of κ from the previous steps. More precisely,

- if b1 = 2, because in step (1)(a) θ̃(0, b2) was set to κ,

- if b1 > 2, because in step (1)(c), the loop of k1 goes from 0 to b1 − 2.
The GBE of state (b1 − 3, b2) was used
to find an expression for θ̃(b1 − 2, b2).

• Therefore, this GBE can be used to solve for θ̃ (b1 − 1, b2 − 1) as a function of κ.
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Figure C.1.6.: Visualisation of step (1)(e) of the algorithm
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(1)(f) The GBE of state (b1, b2 − 1) is

θ̃ (b1, b2 − 1) ·
(
λ1 · 1{b1>0}︸ ︷︷ ︸

=1

+λ2 · 1{b2−1>0}︸ ︷︷ ︸
=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1, b2) · λ2 · 1{b2−1<b2}︸ ︷︷ ︸
=1

+θ̃ (b1 − 1, b2 − 1) · ν · p1(k− e1)︸ ︷︷ ︸
=1/2

· 1{b1>0}︸ ︷︷ ︸
=1

+θ̃ (b1, b2 − 2) · ν · p2(k− e2)︸ ︷︷ ︸
=1

· 1{b2−1>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1/2 holds for the following reason:
Due to k1 = b1 and k2 = b2 − 1, we have
b1 − (k1 − 1) = b1 − (b1 − 1) = 1 = b2 − (b2 − 1) = b2 − k2,
which leads to arg max

j∈J
(bj − kj) = {1, 2}.

• p2(k− e2) = 1 holds for the following reason:
Due to k1 = b1 and k2 = b2−1, we have b2−(k2−1) = b2−(b2−2) = 2 > 0 = b1−k1,
which leads to arg max

j∈J
(bj − kj) = {2}.

• θ̃ (b1, b2 − 1) is known for b2 > 1 independent of κ from the previous steps. More
precisely, because in step (1)(b) the loop of ` goes from 0 to b2 − 2, the GBE of
state (b1, b2 − 2) was used to find an expression for θ̃(b1, b2 − 1).

• θ̃ (b1, b2) is known as a function of κ from the previous step (1)(d).

• θ̃ (b1 − 1, b2 − 1) is known as a function of κ from the previous step (1)(e).

• θ̃(b1, b2 − 2) is known independent of κ from the previous steps. More precisely,

- if b2 = 2, because θ̃(b1, 0) was set to 1 at the beginning of the algorithm.

- if b2 > 2, because in step (1)(b), the loop of ` goes from 0 to b2 − 2. The
GBE of state (b1, b2 − 3) was used to find an expression for θ̃(b1, b2 − 2).

Hence, everything is known and at least one expression is independent of κ.
Thus, we can use this GBE to solve for κ.
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Figure C.1.7.: Visualisation of step (1)(f) of the algorithm

285



C. Appendix to Chapter 3

(2) The case, where b2 > k2 ≥ 2 (this implies that b1 ≥ 3), starts with step (2)(a) by
temporarily setting a variable κ to the prenormalised probability of (0, k2), and then
in step (2)(b) and (2)(c), prenormalised probabilities can be calculated recursively
as a function of κ by using GBEs. In step (2)(d), the GBE of state (b1−(b2−k2), 0)
can be used to solve for the variable κ. Hence, in step (2)(e), the value of κ can
be substituted into the prenormalised probabilities, which were calculated in the
previous steps (2)(a)-(c) as a function of κ.

(2)(b)(i) The recursion starts with 0 = k1 < b1 − (b2 − k2)− 1.
The GBE of state (0, k2) is

θ̃ (0, k2)︸ ︷︷ ︸
=κ

·
(
λ2 · 1{k2>0}︸ ︷︷ ︸

=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (0, k2 + 1) · λ2 · 1{k2<b2}︸ ︷︷ ︸
=1

+θ̃ (1, k2) · λ1 · 1{0<b1}︸ ︷︷ ︸
=1

.

• arg max
j∈J

(bj−kj) = {1}, but a flux into the state (0, k2) through a replenishment

at location 1 is not possible because 1{k1>0} = 0.

• θ̃ (0, k2) was set to κ in step (2)(a).

• θ̃(0, k2 + 1) is known for k2 < b2 independent of κ from the previous for-loop
because the loop of k2 goes from b2 to 1. More precisely,

- if k2 = b2 − 1, because θ̃(0, b2) was calculated in step (1).
More precisely, in step (1)(a), θ̃(0, b2) was set to κ and
in step (1)(g), the value of κ was substituted.

- if k2 < b2 − 1, because θ̃(0, k2 + 1) was calculated in step (2).
More precisely, in step (2)(a), θ̃(0, k2 +1) was set to κ and
in step (2)(e), the value of κ was substituted.

• Hence, this GBE can be used to solve for θ̃ (1, k2) as a function of κ.

286



C.1. Algorithm to obtain θ̃

-

-

-- - - + - + - -
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function of  
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(1)(c)

(1)(d)

(1)(e)

(2)(b)(i)

Figure C.1.8.: Visualisation of step (2)(b)(i) with k2 = b2−1 and k1 = 0 of the algorithm
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In the next steps, we have 0 < k1 < b1 − (b2 − k2)− 1.
The GBE of state (k1, k2) is

θ̃ (k1, k2) ·
(
λ1 · 1{k1>0}︸ ︷︷ ︸

=1

+λ2 · 1{k2>0}︸ ︷︷ ︸
=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (k1, k2 + 1) · λ2 · 1{k2<b2}︸ ︷︷ ︸
=1

+θ̃ (k1 + 1, k2) · λ1 · 1{k1<b1}︸ ︷︷ ︸
=1

+θ̃ (k1 − 1, k2) · ν · p1(k− e1)︸ ︷︷ ︸
=1

· 1{k1>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1 holds for the following reason:
Due to 0 < b2 − k2 < b1 − k1 − 1, we have b2 − k2 < b1 − (k1 − 1),
which leads to arg max

j∈J
(bj − kj) = {1}.

• θ̃ (k1, k2) is known as a function of κ from the previous steps because in step (2)(b),
the loop of k1 goes from 0 to b1 − (b2 − k2)− 1.
More precisely, because k1 > 0, in step (2)(b)(i), the GBE of state (k1 − 1, k2) was
used to find an expression for θ̃(k1, k2).

• θ̃(k1, k2 + 1) is known for k2 < b2 independent of κ from the previous for-loop
because the loop of k2 goes from b2 to 1. More precisely,

- if k2 = b2 − 1, because in step (1)(c), the GBE of state (k1 − 1, b2) was used
to find an expression for θ̃(k1, b2).

- if k2 < b2 − 1, because in step (2)(b)(i), the GBE of state (k1 − 1, k2 + 1)

was used to find an expression for θ̃(k1, k2 + 1).

• θ̃ (k1 − 1, k2) is known for k1 > 0 as a function of κ from the previous steps.
More precisely,

- if k1 = 1, because θ̃ (k1 − 1, k2) = θ̃(0, k2) was set to κ in step (2)(a),

- if k1 > 1, because in step (2)(b), the loop of k1 goes from 0 to b1−(b2−k2)−1.
In step (2)(b)(i), the GBE of state (k1 − 2, k2) was used
to find an expression for θ̃(k1 − 1, k2).

• Therefore, this GBE can be used to solve for θ̃ (k1 + 1, k2) as a function of κ.
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-

-

-- - - + - + - -

known inde- 
pendent of  

function of  

(1)(b)

(1)(c)

(1)(d)

(1)(e)

(2)(b)(i)

(a) Step (2)(b)(i) with k2 = b2 − 2 and k1 = 2

-

-

-- - - + - + - -

(b) Step (2)(b)(i) with k2 = b2 − 2 and k1 = b1 − 3

Figure C.1.9.: Visualisation of step (2)(b)(i) of the algorithm
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(2)(b)(ii) If k1 = b1 − (b2 − k2)− 1, then we have b1 − k1 = b2 − k2 + 1.
The GBE of state (k1, k2) = (b1 − (b2 − k2)− 1, k2) is

θ̃ (b1 − (b2 − k2)− 1, k2)
(
λ1 · 1{b1−(b2−k2)−1>0}︸ ︷︷ ︸

=1

+λ2 · 1{k2>0}︸ ︷︷ ︸
=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1 − (b2 − k2)− 1, k2 + 1) · λ2 · 1{k2<b2}︸ ︷︷ ︸
=1

+θ̃ (b1 − (b2 − k2), k2) · λ1 · 1{b1−(b2−k2)−1<b1}︸ ︷︷ ︸
=1

+θ̃ (b1 − (b2 − k2)− 2, k2) · ν · p1(k− e1)︸ ︷︷ ︸
=1

·1{b1−(b2−k2)−1>0}

+θ̃ (b1 − (b2 − k2)− 1, k2 − 1) · ν · p2(k− e2)︸ ︷︷ ︸
=1/2

·1{k2>0}.

• p1(k− e1) = 1 holds for the following reason:
Due to k1 = b1 − (b2 − k2)− 1, we have
b1 − (k1 − 1) = b1 − (b1 − (b2 − k2)− 2) = (b2 − k2) + 2 > b2 − k2,
which leads to arg max

j∈J
(bj − kj) = {1}.

• p2(k− e2) = 1/2 holds for the following reason:
Due to k1 = b1 − (b2 − k2)− 1,
we have b1 − k1 = b1 − (b1 − (b2 − k2)− 1) = b2 − k2 + 1 = b2 − (k2 − 1),
which leads to arg max

j∈J
(bj − kj) = {1, 2}.

• θ̃ (b1 − (b2 − k2)− 1, k2) is known as a function of κ from the previous steps because
in step (2)(b) the loop of k1 goes from 0 to b1−(b2−k2)−1. More precisely, in step
(2)(b)(i), the GBE of state (b1 − (b2 − k2)− 2, k2) was used to find an expression
for θ̃(b1 − (b2 − k2)− 1, k2).

• θ̃(b1− (b2−k2)−1, k2 + 1) is known for k2 < b2 independent of κ from the previous
for-loop because the loop of k2 goes from b2 to 1. More precisely,

- if k2 = b2 − 1, because in step (1)(c), the GBE of state (b1 − 3, b2) was
used to find an expression for
θ̃(b1 − (b2 − b2)− 1, b2) = θ̃(b1 − 2, b2).

- if k1 < b2 − 1, because in step (2)(b)(i), the GBE of state
(b1 − (b2 − (k2 + 1))− 3, k2 + 1) = (b1 − (b2 − k2)− 2, k2 + 1)
was used to find an expression for
θ̃(b1 − (b2 − (k2 + 1))− 2, k2+1) = θ̃(b1 − (b2 − k2)− 1, k2 + 1).

• θ̃ (b1 − (b2 − k2), k2) is known for b1− (b2− k2)− 1 < b1 independent of κ from the
previous for-loop because the loop of k2 goes from b2 to 1. More precisely,

- if k2 = b2 − 1, because b1 − (b2 − k2) = b1 − (b2 − (b2 − 1)) = b2 − 1,
in step (1)(e), the GBE of state (b1 − 1, b2) was used to find
an expression for θ̃(b1 − (b2 − k2), k2) = θ̃(b1 − 1, b2 − 1),
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- if k2 < b2−1, because b1−(b2−k2) = b1−(b2 − (k2 + 1))−1, in step (2)(b)(ii),
the GBE of state (b1 − (b2 − (k2 + 1))− 1, k2 + 1)
was used to find an expression for
θ̃(b1 − (b2 − (k2 + 1))− 1, k2) = θ̃(b1 − (b2 − k2), k2).

• θ̃ (b1 − (b2 − k2)− 2, k2) is known for b1 − (b2 − k2)− 1 > 0 as a function of κ from
the previous steps. More precisely,

- if b1 − (b2 − k2)− 2 = 0, because in step (2)(a), θ̃(0, k2) was set to κ,

- if b1 − (b2 − k2)− 2 > 0, because in step (2)(b) the loop of k1 goes from 0 to
b1 − (b2 − k2)− 1. In step (2)(b)(i), the GBE of
state (b1 − (b2 − k2)− 3, k2) was used to find an
expression for θ̃(b1 − (b2 − k2)− 2, k2).

• Consequently, this GBE can be used to solve for θ̃ (b1 − (b2 − k2)− 1, k2 − 1) as a
function of κ.

-

-

-- - - + - + - -

known inde- 
pendent of  

function of  

(1)(b)

(1)(c)

(1)(d)

(1)(e)

(2)(b)(i)

(2)(b)(ii)

Figure C.1.10.: Visualisation of step (2)(b)(ii) with k2 = b2 − 1 of the algorithm
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(2)(c) It starts with ` = k2.
The GBE of the state (b1 − (b2 − k2), `) = (b1 − (b2 − k2), k2) is

θ̃ (b1 − (b2 − k2), k2)
(
λ1 · 1{b1−(b2−k2)>0}︸ ︷︷ ︸

=1

+λ2 · 1{k2>0}︸ ︷︷ ︸
=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1 − (b2 − k2), k2 + 1) · λ2 · 1{k2<b2}︸ ︷︷ ︸
=1

+θ̃ (b1 − (b2 − k2) + 1, k2) · λ1 · 1{b1−(b2−k2)<b1}︸ ︷︷ ︸
=1

+θ̃ (b1 − (b2 − k2)− 1, k2) · ν · p1(k− e1)︸ ︷︷ ︸
=1

· 1{b1−(b2−k2)>0}︸ ︷︷ ︸
=1

+θ̃ (b1 − (b2 − k2), k2 − 1) · ν · p2(k− e2)︸ ︷︷ ︸
=1

· 1{k2>0}︸ ︷︷ ︸
=1

. (C.1.1)

• p1(k− e1) = 1 holds for the following reason:
Due to k1 = b1 − (b2 − k2),
we have b1 − (k1 − 1) = b1 − (b1 − (b2 − k2)− 1) = b2 − k2 + 1 > b2 − k2,
which leads to arg max

j∈J
(bj − kj) = {1}.

• p2(k− e2) = 1 holds for the following reason:
Due to k1 = b1 − (b2 − k2),
we have b1 − k1 = b1 − (b1 − (b2 − k2)) = b2 − k2 < b2 − (k2 − 1),
which leads to arg max

j∈J
(bj − kj) = {2}.

• θ̃ (b1 − (b2 − k2), k2) is known independent of κ from the previous for-loop because
the for-loop of k2 goes from b2 to 1. More precisely,

- if k2 = b2 − 1, because in step (1)(e), the GBE of state (b1 − 1, b2) was used
to find an expression for θ̃(b1−(b2−k2), k2) = θ̃(b1 − 1, b2 − 1),

- if k2 < b2 − 1, because in step (2)(b)(ii), the GBE of state
(b1 − (b2 − (k2 + 1))− 1, k2 + 1)
was used to find an expression for
θ̃(b1 − (b2 − (k2 + 1))− 1, k2) = θ̃(b1 − (b2 − k2), k2).

• θ̃(b1 − (b2 − k2), k2 + 1) is known for k2 < b2 independent of κ from the previous
for-loop because the loop of k2 goes from b2 to 1. More precisely,

- if k2 = b2 − 1, because in step (1)(c), the GBE of state
(b1 − (b2 − k2)− 1, b2) = (b1 − 2, b2) was used
to find an expression for θ̃(b1 − (b2 − k2), b2) = θ̃(b1 − 1, b2).

- if k1 < b2 − 1, because in step (2)(b)(i), the GBE of state
(b1 − (b2 − (k2 + 1))− 2, k2 + 1)
was used to find an expression for
θ̃(b1 − (b2 − (k2 + 1))− 1, k2 + 1) = θ̃(b1 − (b2 − k2), k2 + 1).
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• θ̃ (b1 − (b2 − k2) + 1, k2) are known for b1 − (b2 − k2) < b1 independent of κ from
the previous for-loop because the loop of k2 goes from b2 to 1.
More precisely,

- if k2 = b2 − 1, because b1 − (b2 − k2) + 1 = b1 − (b2 − (b2 − 1) + 1) = b1, in
step (1)(b), the GBE of state (b1, b2 − 2) was used to find an
expression for θ̃(b1, b2 − 1),

- if k2 < b2 − 1, because in step (2)(c), the GBE of state
(b1 − (b2 − (k2 + 1)) , k2 + 1)
was used to find an expression for
θ̃(b1 − (b2 − (k2 + 1)) , k2) = θ̃(b1 − (b2 − k2) + 1, k2).

• θ̃ (b1 − (b2 − k2)− 1, k2) is known for b1− (b2− k2) > 0 as a function of κ from the
previous steps because in step (2)(b) the loop of k1 goes from 0 to b1−(b2−k2)−1.
More precisely, in step (2)(b)(i), the GBE of state (b1 − (b2 − k2)− 2, k2) was used
to find an expression for θ̃ (b1 − (b2 − k2)−1, k2).

• Consequently, this GBE can be used to solve for θ̃ (b1 − (b2 − k2), k2 − 1) as a func-
tion of κ.

-

-

-- - - + - + - -

known inde- 
pendent of  

function of  

(1)(b)

(1)(c)

(1)(d)

(1)(e)

(2)(b)(i)

(2)(b)(ii)

(2)(c)

Figure C.1.11.: Visualisation of step (2)(c) with k2 = b2− 1 and ` = k2 of the algorithm
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In the next steps, where k2 > ` > 0.
The GBE of state (b1 − (b2 − k2), `) is

θ̃ (b1 − (b2 − k2), `)
(
λ1 · 1{b1−(b2−k2)>0}︸ ︷︷ ︸

=1

+λ2 · 1{`>0}︸ ︷︷ ︸
=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1 − (b2 − k2), `+ 1) · λ2 · 1{`<b2}︸ ︷︷ ︸
=1

+θ̃ (b1 − (b2 − k2) + 1, `) · λ1 · 1{b1−(b2−k2)<b1}︸ ︷︷ ︸
=1

+θ̃ (b1 − (b2 − k2)− 1, `) · ν · p1(k− e1)︸ ︷︷ ︸
=1/2

· 1{b2−(k2−1)=b2−`}︸ ︷︷ ︸
=1{`=k2−1}

+θ̃ (b1 − (b2 − k2), `− 1) · ν · p2(k− e2)︸ ︷︷ ︸
=1

· 1{`>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1/2 holds for the following reason:
Due to k1 = b1 − (b2 − k2) and if b2 − k2 + 1 = b2 − `,
we have b1 − (k1 − 1) = b1 − (b1 − (b2 − k2)− 1) = b2 − k2 + 1 = b2 − `,
which leads to arg max

j∈J
(bj − kj) = {1, 2}.

• p2(k− e2) = 1 holds for the following reason:
Due to k1 = b1 − (b2 − k2) and k2 > ` > 0,
we have b1 − (b1 − (b2 − k2) = b2 − k2 < b2 − (`− 1),
which leads to arg max

j∈J
(bj − kj) = {2}.

• θ̃ (b1 − (b2 − k2), `) is known as a function of κ from the previous steps because in
step (2)(c) the loop of ` goes from k2 to 1. More precisely, in step (2)(c), the GBE
of state (b1− (b2−k2), `+ 1) was used to find an expression for θ̃ (b1 − (b2 − k2), `).

• θ̃ (b1 − (b2 − k2), `+ 1) is known from the previous steps. More precisely,

- if k2 = b2 − 1 and ` = k2 − 1,
then θ̃(b1−(b2−k2), `+1) = θ̃(b1−1, b2−1) is known independent of κ because
in step (1)(e), the GBE of state (b1− 1, b2) was used to find an expression for
θ̃ (b1 − 1, b2) = θ̃(b1 − 1, b2 − 1).

- if k2 < b2 − 1 and ` = k2 − 1,
then θ̃(b1 − (b2 − k2), `+ 1) = θ̃(b1 − (b2 − k2), k2) is known as a function of κ
because the for-loop of k2 goes from b2 to 1. More precisely, because in step
(2)(b)(ii), the GBE of state (b1− (b2 − (k2 + 1))−1, k2 + 1) was used to find
an expression for θ̃(b1 − (b2 − (k2 + 1))− 1, k2) = θ̃(b1 − (b2 − k2), k2).

- if k2 ≤ b2 − 1 and ` < k2 − 1,
because in step (2)(c) the loop of ` goes from k2 to 1. The GBE of state
(b1−(b2−k2), `+ 2) was used to find an expression for θ̃(b1 − (b2 − k2), `+ 1).
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• θ̃ (b1 − (b2 − k2) + 1, `) is known for k2 > ` > 0 independent of κ from a previous
for-loop. More precisely,

- if k2 = b2 − 1, θ̃ (b1 − (b2 − k2) + 1, `) = θ̃ (b1, `) is known independent of κ,
because in step (1)(b) the GBE of state (b1, `− 1) was used
to find an expression for θ̃(b1, `),

- if k2 < b2 − 1, is known independent of κ because the loop of k2 goes from b2
to 1. Since b1 − (b2 − k2) + 1 = b1 − (b2 − (k2 + 1)), in step
(2)(c) the GBE of state (b1 − (b2 − (k2 + 1)) , `+ 1) was used
to find an expression for θ̃(b1 − (b2 − (k2 + 1)) , `).

• θ̃ (b1 − (b2 − k2)− 1, `) is known for ` = k2 − 1 as a function of κ. More precisely,
because in step (2)(b)(ii), the GBE of state (b1 − (b2 − k2) − 1, k2) was used to
find an expression for θ̃(b1 − (b2 − k2)− 1, k2 − 1) = θ̃(b1 − (b2 − k2)− 1, `).

• Consequently, this GBE can be used to solve for θ̃ (b1 − (b2 − k2), `− 1) as a func-
tion of κ.
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-

-- - - + - + - -

known inde- 
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function of  

(1)(b)

(1)(c)

(1)(d)

(1)(e)

(2)(b)(i)

(2)(b)(ii)

(2)(c)

(a) Step (2)(c) with k2 = b2 − 1 and ` = k2 − 1

-

-

-- - - + - + - -

(b) Step (2)(c) with k2 = b2 − 1 and ` = 1

Figure C.1.12.: Visualisation of step (2)(c) of the algorithm
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(2)(d) The GBE of state (b1 − (b2 − k2), 0) is

θ̃ (b1 − (b2 − k2), 0)
(
λ1 · 1{b1−(b2−k2)>0}︸ ︷︷ ︸

=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1 − (b2 − k2), 1) · λ2 · 1{0<b2}︸ ︷︷ ︸
=1

+θ̃ (b1 − (b2 − k2) + 1, 0) · λ1 · 1{b1−(b2−k2)<b1}︸ ︷︷ ︸
=1

• θ̃ (b1 − (b2 − k2), 0) is known as a function of κ from the previous steps because in
step (2)(c) the for-loop of ` goes from k2 to 1. More precisely, in step (2)(c), the
GBE of state (b1−(b2−k2), 1) was used to find an expression for θ̃(b1 − (b2 − k2), 0).

• θ̃ (b1 − (b2 − k2), 1) is known as a function of κ from the previous steps because in
step (2)(c) the loop of ` goes from k2 to 1. More precisely, in step (2)(c), the GBE
of state (b1 − (b2 − k2), 2) was used to find an expression for θ̃(b1 − (b2 − k2), 1).

• θ̃ (b1 − (b2 − k2) + 1, 0) is known independent of κ from the previous steps.
More precisely,

- if k2 = b2 − 1, because θ̃ (b1, 0) was set to 1 at the beginning of the algorithm.

- if k2 < b2 − 1, because the loop of k2 goes from b2 to 1.
More precisely, because b1− (b2−k2)+1 = b1− (b2 − (k2 + 1)),
in step (2)(c) the GBE of state (b1− (b2− k2) + 1, 1) was used
to find an expression for θ̃(b1 − (b2 − k2) + 1, 0).

Hence, everything is known and at least one expression is independent of κ.
Thus, we can use this GBE to solve for κ.
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Figure C.1.13.: Visualisation of step (2)(d) with k2 = b2 − 1 of the algorithm
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(3) The case, where b2 > k2 = 1 (this implies that b1 ≥ 3), starts with step (3)(a) by
temporarily setting a variable κ to the prenormalised probability of (0, 1), and then
in step (3)(b) and (3)(c), prenormalised probabilities can be calculated recursively
as a function of κ by using GBEs. In step (3)(d), the GBE of state (b1−(b2−1), 0)
can be used to solve for the variable κ. Hence, in step (3)(e), the value of κ can
be substituted into the prenormalised probabilities which were calculated in the
previous steps as a function of κ.

(3)(b)(i) The recursion starts with 0 = k1 < b1 − b2.
The GBE of the state (0, 1) is

θ̃ (0, 1)︸ ︷︷ ︸
=κ

(
λ2 · 1{1>0}︸ ︷︷ ︸

=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (0, 2) · λ2 · 1{1<b2}
+θ̃ (1, 1) · λ1 · 1{0<b1}︸ ︷︷ ︸

=1

.

• arg max
j∈J

(bj − kj) = {1}, but a flux into the state (0, 1) through a replenishment is

not possible because 1{k1>0} = 0.

• θ̃ (0, 1) was set to κ in step (3)(a).

• θ̃ (0, 2) is known for 1 < b2 from the previous for-loop independent of κ because the
loop of k2 goes from b2 to 1. More precisely,

- if b2 = 2, because θ̃(0, b2) = θ̃(0, 2) was calculated in step (1).
More precisely, in step (1)(a), θ̃(0, 2) was set to κ and
in step (1)(g), the value of κ was substituted.

- if b2 > 2, because θ̃(0, 2) was calculated in step (2).
More precisely, in step (2)(a), θ̃(0, 2) was set to κ and
in step (2)(e), the value of κ was substituted.

• Hence, this GBE can be used to solve for θ̃ (1, 1) as a function of κ.
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Figure C.1.14.: Visualisation of step (3)(b)(i) with k1 = 0 of the algorithm
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In the next steps, where 0 < k1 < b1 − b2
The GBE of state (k1, 1) is

θ̃ (k1, 1)
(
λ1 · 1{k1>0}︸ ︷︷ ︸

=1

+λ2 · 1{1>0}︸ ︷︷ ︸
=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (k1, 2) · λ2 · 1{1<b2}︸ ︷︷ ︸
=1

+θ̃ (k1 + 1, 1) · λ1 · 1{k1<b1}︸ ︷︷ ︸
=1

+θ̃ (k1 − 1, 1) · ν · p1(k− e1)︸ ︷︷ ︸
=1

· 1{k1>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1 holds for the following reason:
Due to k1 < b1 − b2 and k2 = 1, we have b1 − (k1 − 1) > b2 − 1 = b2 − k2,
which leads to arg max

j∈J
(bj − kj) = {1}.

• θ̃ (k1, 1) is known for k1 > 0 as a function of κ from the previous steps because in
step (3)(b), the loop of k1 goes from 0 to b1 − b2 + 1.
More precisely, in step (3)(b)(i), the GBE of state (k1 − 1, 1) was used to find an
expression for θ̃(k1, 1).

• θ̃ (k1, 2) is known for b2 > 1 from the previous for-loop independent of κ because
the loop of k2 goes from b2 to 1. More precisely,

- if b2 = 2, because in step (1)(c), the GBE of state (k1 − 1, b2) = (k1 − 1, 2)

was used to find an expression for θ̃(k1, b2) = θ̃(k1, 2).

- if b2 > 2, because in step (2)(b)(i), the GBE of state (k1 − 1, 2) was used
to find an expression for θ̃(k1, 2).

• θ̃ (k1 − 1, 1) is known for k1 > 0 as a function of κ from the previous steps.
More precisely,

- if k1 = 1, because θ̃ (k1 − 1, 1) = θ̃ (0, 1) was set to κ in step (3)(a),

- if k1 > 1, because in step (3)(b), the loop of k1 goes from 0 to b1 − b2 + 1.
In step (3)(b)(i), the GBE of state (k1 − 2, 1) was used to find an
expression for θ̃(k1 − 1, 1).

• Therefore, this GBE can be used to solve for θ̃ (k1 + 1, 1) as a function of κ.
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(a) Step (3)(b)(i) with k1 = 1
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(b) Step (3)(b)(i) with k1 = b1 − b2 − 1

Figure C.1.15.: Visualisation of step (3)(b)(i) of the algorithm
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(3)(b)(ii) If k1 = b1 − b2.
The GBE of state (b1 − b2, 1) is

θ̃ (b1 − b2, 1)
(
λ1 · 1{b1−b2>0} + λ2 · 1{1>0}︸ ︷︷ ︸

=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1 − b2, 2) · λ2 · 1{1<b2}︸ ︷︷ ︸
=1

+θ̃ (b1 − b2 + 1, 1) · λ1 · 1{b1−b2<b1}︸ ︷︷ ︸
=1

+θ̃ (b1 − b2 − 1, 1) · ν · p1(k− e1)︸ ︷︷ ︸
=1

·1{b1−b2>0}

+θ̃ (b1 − b2, 0) · ν · p2(k− e2)︸ ︷︷ ︸
=1/2

· 1{1>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1 holds for the following reason:
Due to k1 = b1 − b2 and k2 = 1,
we have b1 − (k1 − 1) = b1 − (b1 − b2 − 1) = b2 + 1 > b2 − 1 = b2 − k2,
which leads to arg max

j∈J
(bj − kj) = {1}.

• p2(k− e2) = 1 holds for the following reason:
Due to k1 = b1 − b2 and k2 = 1,
we have b2 − (k2 − 1) = b2 − (1− 1) = b2 = b1 − (b1 − b2) = b1 − k1,
which leads to arg max

j∈J
(bj − kj) = {1, 2}.

• θ̃ (b1 − b2, 1) is known as a function of κ from the previous steps. More precisely,

- if b1 − b2 = 0, because θ̃ (b1 − b2, 1) = θ̃(0, 1) was set to κ in step (3)(a),

- if b1− b2 > 0, because in step (3)(b), the loop of k1 goes from 0 to b1− b2 + 1.
In step (3)(b)(i), the GBE of state (b1 − b2 − 1, 1) was used to
find an expression for θ̃(b1 − b2, 1).

• θ̃ (b1 − b2, 2) is known for b2 > 1 from the previous for-loop independent of κ because
the loop of k2 goes from b2 to 1. More precisely,

- if b2 = 2, because in step (1)(c), the GBE of state (b1 − b2 − 1, b2) = (b1 − 3, 2)

was used to find an expression for θ̃(b1 − b2, b2) = θ̃(b1 − 2, 2).

- if b2 > 2, because in step (2)(b)(i), the GBE of state (b1 − b2 − 1, 2) was used
to find an expression for θ̃(b1 − b2, 2).

• θ̃ (b1 − b2 + 1, 1) is known independent of κ from the previous for-loop because the
for-loop of k2 goes from b2 to 1.
More precisely,

- if b2 = 2, because in step (1)(e), the GBE of state (b1 − 1, b2) was used
to find an expression for θ̃ (b1 − b2 + 1, 1) = θ̃ (b1 − 1, b2 − 1),
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- if b2 > 2, because in step (2)(b)(ii), the GBE of state
(b1 − (b2 − 2)− 1, 2) = (b1 − b2 + 1, 2)
was used to find an expression for
θ̃ (b1 − (b2 − 2)− 1, 1) = θ̃ (b1 − b2 + 1, 1).

• θ̃ (b1 − b2 − 1, 1) is known for b1 − b2 > 0 as a function of κ from a previous step
because in step (3)(b), the loop of k1 goes from 0 to b1 − b2 + 1. More precisely,

- if b1 − b2 − 1 = 0, then θ̃ (b1 − b2 − 1, 1) = θ̃(0, 1) was set to κ in step (3)(a),

- if b1− b2−1 > 0, in step (3)(b)(i), the GBE of state (b1 − b2 − 2, 1) was used
to find an expression for θ̃(b1 − b2 − 1, 1).

• Therefore, this GBE can be used to solve for θ̃ (b1 − b2, 0) as a function of κ.
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-- - - +- +

known inde- 
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(2)(b)(i)

(2)(b)(ii)

(2)(c)

(3)(b)(i)

(3)(b)(ii)

Figure C.1.16.: Visualisation of step (3)(b)(ii) with k1 = b1 − b2 of the algorithm
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If k1 = b1 − b2 + 1.
The GBE of state (b1 − b2 + 1, 1) is

θ̃ (b1 − b2 + 1, 1)
(
λ1 · 1{b1−b2+1>0}︸ ︷︷ ︸

=1

+λ2 · 1{1>0}︸ ︷︷ ︸
=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1 − b2 + 1, 2) · λ2 · 1{1<b2}︸ ︷︷ ︸
=1

+θ̃ (b1 − b2 + 2, 1) · λ1 · 1{b1−b2+1<b1}︸ ︷︷ ︸
=1

+θ̃ (b1 − b2, 1) · ν · p1(k− e1)︸ ︷︷ ︸
=1

· 1{b1−b2+1>0}︸ ︷︷ ︸
=1

+θ̃ (b1 − b2 + 1, 0) · ν · p2(k− e2)︸ ︷︷ ︸
=1

· 1{1>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1 holds for the following reason:
Due to k1 = b1 − b2 + 1 and k2 = 1,
we have b1 − (k1 − 1) = b1 − (b1 − b2 + 1− 1) = b2 > b2 − 1 = b2 − k2,
which leads to arg max

j∈J
(bj − kj) = {1}.

• p2(k− e2) = 1 holds for the following reason:
Due to k1 = b1 − b2 + 1 and k2 = 1,
we have b1 − k1 = b1 − (b1 − b2 + 1) = b2 − 1 < b2 = b2 − (k2 − 1),
which leads to arg max

j∈J
(bj − kj) = {2}.

• θ̃ (b1 − b2 + 1, 1) is known independent of κ from the previous for-loop.
More precisely,

- if b2 = 2, because in step (1)(e), the GBE of state (b1 − 1, b2) was used
to find an expression for θ̃ (b1 − b2 + 1, 1) = θ̃ (b1 − 1, b2 − 1),

- if b2 > 2, because the for-loop of k2 goes from b2 to 1.
More precisely, because in step (2)(b)(ii), the GBE of state
(b1 − (b2 − 2)− 1, 2) = (b1 − b2 + 1, 2)
was used to find an expression for
θ̃ (b1 − (b2 − 2)− 1, 1) = θ̃ (b1 − b2 + 1, 1).

• θ̃ (b1 − b2 + 1, 2) is known for b2 > 1 from the previous for-loop independent of κ
because the loop of k2 goes from b2 to 1. More precisely,

- if b2 = 2, because in step (1)(c), the GBE of state (b1 − 2, 2)

was used to find an expression for θ̃(b1 − 1, 2).

- if b2 > 2, because in step (2)(b)(i), the GBE of state (b1 − b2, b2)

was used to find an expression for θ̃(b1 − b2 + 1, b2).
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• θ̃ (b1 − b2 + 2, 1) is known independent of κ from the previous for-loop because the
loop of k2 goes from b2 to 1. More precisely,

- if b2 = 2, θ̃ (b1 − b2 + 2, 1) = θ̃ (b1, 1) is known independent of κ,
because in step (1)(b) the GBE of state (b1, 0) was used
to find an expression for θ̃(b1, 1),

- if b2 > 2, is known independent of κ because the loop of k2 goes from b2
to 1. More precisely, in step (2)(c) the GBE of state
(b1 − b2 + 2, 2) was used to find an expression for θ̃(b1 − b2 + 2, 1).

• θ̃ (b1 − b2, 1) is known for b1− b2 + 1 > 0 as a function of κ from the previous steps.
More precisely,

- if b1 − b2 = 0, then θ̃(0, 1) was set to κ in step (3)(a),

- if b1− b2 > 0, because in step (3)(b), the loop of k1 goes from 0 to b1− b2 + 1.
In step (3)(b)(i), the GBE of state (b1 − b2 − 1, 1) was
used to find an expression for θ̃(b1 − b2, 1).

• Therefore, this GBE can be used to solve for θ̃ (b1 − b2 + 1, 0) as a function of κ.
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Figure C.1.17.: Visualisation of step (3)(b)(ii) with k1 = b1 − b2 + 1 of the algorithm
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(3)(c) If b1 > b2, it starts with k1 = b1 − b2.
The GBE of the state (b1 − b2, 0) is

θ̃ (b1 − b2, 0)
(
λ1 · 1{b1−b2>0} +

∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1 − b2, 1) · λ2 · 1{0<b2}︸ ︷︷ ︸
=1

+θ̃ (b1 − b2 + 1, 0) · λ1 · 1{b1−b2<b1}︸ ︷︷ ︸
=1

+θ̃ (b1 − b2 − 1, 0) · ν · p1(k− e1)︸ ︷︷ ︸
=1

· 1{b1−b2>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1 holds for the following reason:
due to k1 = b1 − b2 and k2 = 0,
we have b1 − (k1 − 1) = b1 − (b1 − b2 − 1) = b2 + 1 > b2 = b2 − k2,
which leads to arg max

j∈J
(bj − kj) = {1}.

• θ̃ (b1 − b2, 0) is known as a function of κ from the previous steps because in step
(3)(b)(ii) the GBE of state (b1−b2, 1) was used to find an expression for θ̃(b1 − b2, 0).

• θ̃ (b1 − b2, 1) is known for b1 − b2 > 0 as a function of κ from the previous steps
because in step (3)(b), the loop of k1 goes from 0 to b1 − b2 + 1. More precisely,
in step (3)(b)(i), the GBE of state (b1 − b2 − 1, 1) was used to find an expression
for θ̃(b1 − b2, 1).

• θ̃ (b1 − b2 + 1, 0) is known for b1−b2 < b1 as a function of κ from the previous steps
because in step (3)(b), the loop of k1 goes from 0 to b1 − b2 + 1.
More precisely, in step (3)(b)(ii), the GBE of state (b1− b2 +1, 1) was used to find
an expression for θ̃(b1 − b2 + 1, 0).

• Therefore, this GBE can be used to solve for θ̃ (b1 − b2 − 1, 0) as a function of κ.
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Figure C.1.18.: Visualisation of step (3)(c) with k1 = b1 − b2 of the algorithm
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In the next steps, where b1 − b2 > k1 > 0.
The GBE of state (k1, 0) is

θ̃ (k1, 0)︸ ︷︷ ︸
=κ

(
λ1 · 1{k1>0}︸ ︷︷ ︸

=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (k1, 1) · λ2 · 1{0<b2}︸ ︷︷ ︸
=1

+θ̃ (k1 + 1, 0) · λ1 · 1{k1<b1}︸ ︷︷ ︸
=1

+θ̃ (k1 − 1, 0) · ν · p1(k− e1)︸ ︷︷ ︸
=1

· 1{k1>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1 holds for the following reason:
Due to b1 − b2 > k1 > 0 and k2 = 0,
we have b1 − (k1 − 1) > b2 = b2 − k2,
which leads to arg max

j∈J
(bj − kj) = {1}.

• θ̃ (k1, 0) is known for k1 < b1−b2 as a function of κ from the previous steps because
in step (3)(c) the loop of k1 goes from b1 − b2 to 1.
More precisely, in step (3)(c), the GBE of state (k1 + 1, 0) was used to find an
expression for θ̃(k1, 0).

• θ̃ (k1, 1) is known for 0 < k1 < b1− b2 as a function of κ from the previous steps be-
cause in step (3)(b)(i), the GBE of state (k1 − 1, 1) was used to find an expression
for θ̃(k1, 1).

• θ̃ (k1 + 1, 0) is known for k1 < b1 as a function of κ from the previous steps. More
precisely,

- if k1 = b1 − b2 − 1, because k1 + 1 = b1 − b2 in step
(3)(b)(ii), the GBE of state (b1 − b2, 1) = (k1 + 1, 1) was
used to find an expression for (b1 − b2, 0) = θ̃(k1 + 1, 0).

- if k1 < b1 − b2 − 1, because in step (3)(c) the loop of k1 goes from b1 − b2
to 1. More precisely, because k1 < b1 − b2 − 1,
in step (3)(c), the GBE of state (k1 + 2, 0) was used to
find an expression for θ̃(k1 + 1, 0).

• Therefore, this GBE can be used to solve for θ̃ (k1 − 1, 0) as a function of κ.
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(a) Step (3)(c) with k1 = b1 − b2 − 1
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(b) Step (3)(c) with k1 = 1

Figure C.1.19.: Visualisation of step (3)(c) of the algorithm
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(3)(d) The GBE of state (b1 − b2 + 1, 0) is

θ̃ (b1 − b2 + 1, 0)
(
λ1 · 1{b1−b2+1>0}︸ ︷︷ ︸

=1

+
∑
i∈J

ν · pi(k) · 1{ki<bi}︸ ︷︷ ︸
=ν

)

= θ̃ (b1 − b2 + 1), 1) · λ2 · 1{0<b2}︸ ︷︷ ︸
=1

+θ̃(b1 − b2 + 2, 0) · λ1 · 1{b1−b2+1<b1}︸ ︷︷ ︸
=1

+θ̃(b1 − b2, 0) · ν · p1(k− e1)︸ ︷︷ ︸
=1/2

· 1{b1−b2+1>0}︸ ︷︷ ︸
=1

.

• p1(k− e1) = 1 holds for the following reason:
Due to k1 = b1 − b2 + 1 and k2 = 0,
we have b1 − (k1 − 1) = b1 − (b1 − b2 + 1− 1) = b2 = b2 − k2,
which leads to arg max

j∈J
(bj − kj) = {1, 2}.

• θ̃ (b1 − b2 + 1, 0) is known as a function of κ because in step (3)(b)(ii), the
GBE of state (b1−b2 +1, 1) was used to find an expression for θ̃(b1 − b2 + 1, 0).

• θ̃ (b1 − b2 + 1, 1) is known independent of κ from the previous for-loop.
More precisely,

- if b2 = 2, because in step (1)(e), the GBE of state (b1 − 1, b2) was used
to find an expression for θ̃ (b1 − b2 + 1, 1) = θ̃ (b1 − 1, b2 − 1),

- if b2 > 2, because the for-loop of k2 goes from b2 to 1.
More precisely, because in step (2)(b)(ii), the GBE of state
(b1 − (b2 − 2)− 1, 2) = (b1 − b2 + 1, 2)
was used to find an expression for
θ̃ (b1 − (b2 − 2)− 1, 1) = θ̃ (b1 − b2 + 1, 1).

• θ̃ (b1 − b2 + 2, 0) is known independent of κ for b1−b2 +1 < b1. More precisely,

- if b1 = 2, because θ̃ (b1 − b2 + 2, 0) = θ̃ (b1, 0) was set to 1 at the beginning
of the algorithm,

- if b1 > 2, because in step (2)(c), the GBE of state (b1 − b2 + 2, 1) was
used to find an expression for θ̃ (b1 − b2 + 2, 0).

• θ̃ (b1 − b2, 0) is known as a function of κ because in step (3)(b)(ii), the GBE
of state (b1 − b2, 1) was used to find an expression for θ̃(b1 − b2, 0).

Hence, everything is known and at least one expression is independent of κ.
Thus, we can use this GBE to solve for κ.
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Figure C.1.20.: Visualisation of step (3)(d) of the algorithm
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Example: Two heterogeneous locations Motivated by the computational example
in [CK79, Appendix, pp. 360f.] we consider an example with two locations, base stock
levels b1 = 4, b2 = 3 and arrival rates λ1, λ2 > 0. We recall the notation for this system:

k =
( inventories

at locations︷ ︸︸ ︷
k1, k2,

supplier︷︸︸︷
k3

)
.

The state transition diagram is presented in Figure C.1.21.

Figure C.1.21.: State transition diagram of a system with two locations and b1 = 4, b2 = 3
and λ1, λ2 > 0

Inside the following equations, we use cyan colour for the expressions which are known
independent of κ, green colour for the expressions which are known as a function of κ
and red colour for the expressions which are unknown.

Example C.1.1. The solution steps for this system using the algorithm follow:

I Set θ̃(4, 0) = 1.

I For k2 = 3:

(1)(a) Set θ̃(0, 3) = κ.
(b) For ` = 0: Use the GBE of state (4, 0)

to find an expression for θ̃(4, 1) independent of κ:

θ̃(4, 0) · (λ1 + ν) = θ̃(4, 1) · λ2,

which is equivalent to

θ̃(4, 1) =
λ1 + ν

λ2
=: c(4,1) (λ1, λ2, ν) .

For ` = 1: Use the GBE of state (4, 1)

to find an expression for θ̃(4, 2) independent of κ:

θ̃(4, 1) · (λ1 + λ2 + ν) = θ̃(4, 2) · λ2,

which is equivalent to

θ̃(4, 2) =
(λ1 + λ2 + ν)

λ2
· c(4,1) (λ1, λ2, ν) =: c(4,2) (λ1, λ2, ν) .
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(c) For k1 = 0: Use the GBE of state (0, 3)

to find an expression for θ̃(1, 3) as a function of κ:

θ̃(0, 3) · (λ2 + ν) = θ̃(1, 3) · λ1,

which is equivalent to

θ̃(1, 3) =
λ2 + ν

λ1
· κ =: c(1,3) (λ1, λ2, ν) · κ.

For k1 = 1: Use the GBE of state (1, 3)

to find an expression for θ̃(2, 3) as a function of κ:

θ̃(1, 3) · (λ1 + λ2 + ν) = θ̃(2, 3) · λ1 + θ̃(0, 3) · ν,

which is equivalent to

θ̃(2, 3) =
θ̃(1, 3) · (λ1 + λ2 + ν)− θ̃(0, 3) · ν

λ1

=
c(1,3) (λ1, λ2, ν) · κ · (λ1 + λ2 + ν)− κ · ν

λ1

=
c(1,3) (λ1, λ2, ν) · (λ1 + λ2 + ν)− ν

λ1
· κ

=: c(2,3) (λ1, λ2, ν) · κ.

For k1 = 2: Use the GBE of state (2, 3)

to find an expression for θ̃(3, 3) as a function of κ:

θ̃(2, 3) · (λ1 + λ2 + ν) = θ̃(3, 3) · λ1 + θ̃(1, 3) · ν,

which is equivalent to

θ̃(3, 3) =
θ̃(2, 3) · (λ1 + λ2 + ν)− θ̃(1, 3) · ν

λ1

=
c(2,3) (λ1, λ2, ν) · κ · (λ1 + λ2 + ν)− c(1,3) (λ1, λ2, ν) · κ · ν

λ1

=
c(2,3) (λ1, λ2, ν) · (λ1 + λ2 + ν)− c(1,3) (λ1, λ2, ν) · ν

λ1
· κ =: c(3,3) (λ1, λ2, ν) · κ.

(d) Use the GBE of state (4, 3)

to find an expression for θ̃(4, 3) as a function of κ:

θ̃(4, 3) · (λ1 + λ2) = θ̃(3, 3) · ν + θ̃(4, 2) · ν

which is equivalent to

θ̃(4, 3) =
θ̃(3, 3) · ν + θ̃(4, 2) · ν

λ1 + λ2

=
c(3,3) (λ1, λ2, ν) · κ · ν + c(4,2) (λ1, λ2, ν) · ν

λ1 + λ2

=
c(3,3) (λ1, λ2, ν) · ν

λ1 + λ2
· κ+

c(4,2) (λ1, λ2, ν) · ν
λ1 + λ2

=: c
(4,3)
1 (λ1, λ2, ν) · κ+ c

(4,3)
2 (λ1, λ2, ν) .
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(e) For k1 = 3: Use the GBE of state (3, 3)

to find an expression for θ̃(3, 2) as a function of κ:

θ̃(3, 3) · (λ1 + λ2 + ν) = θ̃(4, 3) · λ1 + θ̃(2, 3) · ν + θ̃(3, 2) · 1

2
· ν

which is equivalent to

θ̃(3, 2) =
θ̃(3, 3) · (λ1 + λ2 + ν)− θ̃(4, 3) · λ1 − θ̃(2, 3) · ν

1
2 · ν

=
c(3,3) (λ1, λ2, ν) · κ · (λ1 + λ2 + ν)

1
2 · ν

−

(
c
(4,3)
1 (λ1, λ2, ν) · κ+ c

(4,3)
2 (λ1, λ2, ν)

)
· λ1

1
2 · ν

−c
(2,3) (λ1, λ2, ν) · κ · ν

1
2 · ν

=
c(3,3) (λ1, λ2, ν) · (λ1 + λ2 + ν)− c(4,3)1 (λ1, λ2, ν) · λ1 − c(2,3) (λ1, λ2, ν) · ν

1
2 · ν

· κ

−c
(4,3)
2 (λ1, λ2, ν) · λ1

1
2 · ν

=: c
(3,2)
1 (λ1, λ2, ν) · κ+ c

(3,2)
2 (λ1, λ2, ν) .

(f) Use the GBE of state (4, 2) to solve for κ.

θ̃(4, 2) · (λ1 + λ2 + ν) = θ̃(4, 3) · λ2 + θ̃(3, 2) · 1

2
· ν + θ̃(4, 1) · ν

which is equivalent to

c(4,2) (λ1, λ2, ν) · (λ1 + λ2 + ν)

=
(
c
(4,3)
1 (λ1, λ2, ν) · κ+ c

(4,3)
2 (λ1, λ2, ν)

)
· λ2

+
(
c
(3,2)
1 (λ1, λ2, ν) · κ+ c

(3,2)
2 (λ1, λ2, ν)

)
· 1

2
· ν + c(4,1) (λ1, λ2, ν) · ν

⇔ c
(4,3)
1 (λ1, λ2, ν) · κ · λ2 + c

(3,2)
1 (λ1, λ2, ν) · κ · 1

2
· ν

= c(4,2) (λ1, λ2, ν) · (λ1 + λ2 + ν)− c(4,1) (λ1, λ2, ν) · ν

−c(3,2)2 (λ1, λ2, ν) · 1

2
· ν − c(4,3)2 (λ1, λ2, ν) · λ2

⇔ κ

=
[
c(4,2) (λ1, λ2, ν) · (λ1 + λ2 + ν)− c(4,1) (λ1, λ2, ν) · ν

−c(3,2)2 (λ1, λ2, ν) · 1

2
· ν − c(4,3)2 (λ1, λ2, ν) · λ2

]
· 1

c
(4,3)
1 (λ1, λ2, ν) · λ2 + c

(3,2)
1 (λ1, λ2, ν) · 12 · ν

if the denominator is not equal to zero.
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(g) Substitute the value of κ into the equations in the above steps (1)(a) and
(1)(c)-(e).

I For k2 = 2:

(2)(a) Set θ̃(0, 2) = κ.
(b)(i) For k1 = 0: Use the GBE of state (0, 2)

to find an expression for θ̃(1, 2) as a function of κ
(θ̃(0, 3) is known independent of κ from step (1)):

θ̃(0, 2) · (λ2 + ν) = θ̃(0, 3) · λ2 + θ̃(1, 2) · λ1,

which is equivalent to

θ̃(1, 2) =
θ̃(0, 3) · λ2 − θ̃(0, 2) · (λ2 + ν)

λ1

=
θ̃(0, 3) · λ2 − κ · (λ2 + ν)

λ1

=
θ̃(0, 3) · λ2

λ1
− (λ2 + ν)

λ1
· κ

=: c
(1,2)
1 (λ1, λ2) + c

(1,2)
2 (λ1, λ2, ν) · κ.

For k1 = 1: Use the GBE of state (1, 2)

to find an expression for θ̃(2, 2) as a function of κ
(θ̃(1, 3) is known independent of κ from step (1)):

θ̃(1, 2) · (λ1 + λ2 + ν) = θ̃(2, 2) · λ1 + θ̃(1, 3) · λ2 + θ̃(0, 2) · ν,

which is equivalent to

θ̃(2, 2) =
θ̃(1, 2) · (λ1 + λ2 + ν)− θ̃(1, 3) · λ2 − θ̃(0, 2) · ν

λ1

=

(
c
(1,2)
1 (λ1, λ2) + c

(1,2)
2 (λ1, λ2, ν) · κ

)
· (λ1 + λ2 + ν)− θ̃(1, 3) · λ2 − κ · ν

λ1

=
c
(1,2)
1 (λ1, λ2) · (λ1 + λ2 + ν)− θ̃(1, 3) · λ2

λ1

+

[
c
(1,2)
2 (λ1, λ2, ν) · (λ1 + λ2 + ν)− ν

]
λ1

· κ

=: c
(2,2)
1 (λ1, λ2, ν) + c

(2,2)
2 (λ1, λ2, ν) · κ.
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(b)(ii) For k1 = 2: Use the GBE of state (2, 2)

to find an expression for θ̃(2, 1) as a function of κ
(θ̃(3, 2) and θ̃(2, 3) are known independent of κ from step (1)):

θ̃(2, 2) · (λ1 + λ2 + ν) = θ̃(3, 2) · λ1 + θ̃(2, 3) · λ2 + θ̃(1, 2) · ν + θ̃(2, 1) · 1

2
ν,

which is equivalent to

θ̃(2, 1) =
θ̃(2, 2) · (λ1 + λ2 + ν)− θ̃(3, 2) · λ1 − θ̃(2, 3) · λ2 − θ̃(1, 2) · ν

1
2ν

=

(
c
(2,2)
1 (λ1, λ2, ν) + c

(2,2)
2 (λ1, λ2, ν) · κ

)
· (λ1 + λ2 + ν)

1
2ν

−
θ̃(3, 2) · λ1 + θ̃(2, 3) · λ2 +

(
c
(1,2)
1 (λ1, λ2) + c

(1,2)
2 (λ1, λ2, ν) · κ

)
· ν

1
2ν

=
c
(2,2)
1 (λ1, λ2, ν) · (λ1 + λ2 + ν)− θ̃(3, 2) · λ1 − θ̃(2, 3) · λ2 − c(1,2)1 (λ1, λ2) · ν

1
2ν

+
c
(2,2)
2 (λ1, λ2, ν) · (λ1 + λ2 + ν)− c(1,2)2 (λ1, λ2, ν) · ν

1
2ν

· κ

=: c
(2,1)
1 (λ1, λ2, ν) + c

(2,1)
2 (λ1, λ2, ν) · κ.

(c) For ` = 2: Use the GBE of state (3, 2)

to find an expression for θ̃(3, 1) as a function of κ
(θ̃(3, 2), θ̃(4, 2) and θ̃(3, 3) are known independent of κ from step (1)):

θ̃(3, 2) · (λ1 + λ2 + ν) = θ̃(4, 2) · λ1 + θ̃(3, 3) · λ2 + θ̃(2, 2) · ν + θ̃(3, 1) · ν,

which is equivalent to

θ̃(3, 1) =
θ̃(3, 2) · (λ1 + λ2 + ν)− θ̃(4, 2) · λ1 − θ̃(3, 3) · λ2 − θ̃(2, 2) · ν

ν

=
θ̃(3, 2) · (λ1 + λ2 + ν)− θ̃(4, 2) · λ1 − θ̃(3, 3) · λ2

ν

−
(
c
(2,2)
1 (λ1, λ2, ν) + c

(2,2)
2 (λ1, λ2, ν) · κ

)
=
θ̃(3, 2) · (λ1 + λ2 + ν)− θ̃(4, 2) · λ1 − θ̃(3, 3) · λ2 − c(2,2)1 (λ1, λ2, ν) · ν

ν

−c(2,2)2 (λ1, λ2, ν) · κ

=: c
(3,1)
1 (λ1, λ2, ν) + c

(3,1)
2 (λ1, λ2, ν) · κ.

For ` = 1: Use the GBE of state (3, 1)

to find an expression for θ̃(3, 0) as a function of κ
(θ̃(4, 1) and θ̃(3, 2) are known independent of κ from step (1)):

θ̃(3, 1) · (λ1 + λ2 + ν) = θ̃(4, 1) · λ1 + θ̃(3, 2) · λ2 + θ̃(2, 1) · 1

2
ν + θ̃(3, 0) · ν,
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which is equivalent to

θ̃(3, 0) =
θ̃(3, 1) · (λ1 + λ2 + ν)− θ̃(4, 1) · λ1 − θ̃(3, 2) · λ2 − θ̃(2, 1) · 12ν

ν

=

(
c
(3,1)
1 (λ1, λ2, ν) + c

(3,1)
2 (λ1, λ2, ν) · κ

)
· (λ1 + λ2 + ν)

ν

− θ̃(4, 1) · λ1 + θ̃(3, 2) · λ2
ν

−

(
c
(2,1)
1 (λ1, λ2, ν) + c

(2,1)
2 (λ1, λ2, ν) · κ

)
· 12ν

ν

=
c
(3,1)
1 (λ1, λ2, ν) · (λ1 + λ2 + ν)− θ̃(4, 1) · λ1 − θ̃(3, 2) · λ2 − c(2,1)1 (λ1, λ2, ν) 1

2ν

ν

+
c
(3,1)
2 (λ1, λ2, ν) · κ(λ1 + λ2 + ν)− c(2,1)2 (λ1, λ2, ν) · 12ν

ν
· κ

=: c
(3,0)
1 (λ1, λ2, ν) + c

(3,0)
2 (λ1, λ2, ν) · κ.

(d) Use the GBE of state (3, 0) to solve for κ
(θ̃(4, 0) is known independent of κ from step (1)):

θ̃(3, 0) · (λ1 + ν) = θ̃(4, 0) · λ1 + θ̃(3, 1) · λ2,

which is equivalent to(
c
(3,0)
1 (λ1, λ2, ν) + c

(3,0)
2 (λ1, λ2, ν) · κ

)
· (λ1 + ν)

= θ̃(4, 0) · λ1 +
(
c
(3,1)
1 (λ1, λ2, ν) + c

(3,1)
2 (λ1, λ2, ν) · κ

)
· λ2

⇔ c
(3,0)
2 (λ1, λ2, ν) · κ · (λ1 + ν)− c(3,1)2 (λ1, λ2, ν) · κ · λ2
= θ̃(4, 0) · λ1 + c

(3,1)
1 (λ1, λ2, ν) · λ2 − c(3,0)1 (λ1, λ2, ν) · (λ1 + ν)

⇔ κ

=
[
θ̃(4, 0) · λ1 + c

(3,1)
1 (λ1, λ2, ν) · λ2 − c(3,0)1 (λ1, λ2, ν) · (λ1 + ν)

]
· 1

c
(3,0)
2 (λ1, λ2, ν) · (λ1 + ν)− c(3,1)2 (λ1, λ2, ν) · λ2

if the denominator is not equal to zero.

(3)(a) Set θ̃(0, 1) = κ.

(b)(i) For k1 = 0: Use the GBE of state (0, 1)

to find an expression for θ̃(1, 1) as a function of κ
(θ̃(0, 2) is known independent of κ from step (2)):

θ̃(0, 1) · (λ2 + ν) = θ̃(0, 2) · λ2 + θ̃(1, 1) · λ1,

which is equivalent to

θ̃(1, 1) =
(λ2 + ν)

λ1
· κ− θ̃(0, 2) · λ2

λ1
=: c

(1,1)
1 (λ1, λ2) · κ+ c

(1,1)
2 (λ1, λ2) .
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(b)(ii) For k1 = 1: Use the GBE of state (1, 1)

to find an expression for θ̃(1, 0) as a function of κ
(θ̃(2, 1) and θ̃(1, 2) are known independent of κ from step (2)):

θ̃(1, 1) · (λ1 + λ2 + ν) = θ̃(2, 1) · λ1 + θ̃(1, 2) · λ2 + θ̃(0, 1) · ν + θ̃(1, 0) · 1

2
ν,

which is equivalent to

θ̃(1, 0) =
θ̃(1, 1) · (λ1 + λ2 + ν)− θ̃(2, 1) · λ1 − θ̃(1, 2) · λ2 − θ̃(0, 1) · ν

1
2ν

=

(
c
(1,1)
1 (λ1, λ2) · κ+ c

(1,1)
2 (λ1, λ2)

)
· (λ1 + λ2 + ν)

1
2ν

− θ̃(2, 1) · λ1 + θ̃(1, 2) · λ2 + κ · ν
1
2ν

=
c
(1,1)
1 (λ1, λ2) · (λ1 + λ2 + ν)− ν

1
2ν

· κ

+
c
(1,1)
2 (λ1, λ2) · (λ1 + λ2 + ν)− θ̃(2, 1) · λ1 − θ̃(1, 2) · λ2

1
2ν

=: c
(1,0)
1 (λ1, λ2, ν) · κ+ c

(1,0)
2 (λ1, λ2, ν) .

For k1 = 2: Use the GBE of state (2, 1)

to find an expression for θ̃(2, 0) as a function of κ
(θ̃(2, 1), θ̃(3, 2) and θ̃(2, 2) are known independent of κ from steps (1) and (2)):

θ̃(2, 1) · (λ1 + λ2 + ν) = θ̃(3, 2) · λ1 + θ̃(2, 2) · λ2 + θ̃(2, 0) · ν + θ̃(1, 1) · ν,

which is equivalent to

θ̃(2, 0) =
θ̃(2, 1) · (λ1 + λ2 + ν)− θ̃(3, 2) · λ1 − θ̃(2, 2) · λ2 − θ̃(1, 1) · ν

ν

=
θ̃(2, 1) · (λ1 + λ2 + ν)− θ̃(3, 2) · λ1 − θ̃(2, 2) · λ2

ν

−

(
c
(1,1)
1 (λ1, λ2) · κ+ c

(1,1)
2 (λ1, λ2)

)
· ν

ν

= −c
(1,1)
1 (λ1, λ2) · ν

ν
· κ

+
θ̃(2, 1) · (λ1 + λ2 + ν)− θ̃(3, 2) · λ1 − θ̃(2, 2) · λ2 − c(1,1)2 (λ1, λ2) · ν

ν

=: c
(2,0)
1 (λ1, λ2, ν) · κ+ c

(2,0)
2 (λ1, λ2, ν) .

(c) For k1 = 1: Use the GBE of state (1, 0)

to find an expression for θ̃(0, 0) as a function of κ:

θ̃(1, 0) · (λ1 + ν) = θ̃(2, 0) · λ1 + θ̃(1, 1) · λ2 + θ̃(0, 0) · ν,
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which is equivalent to

θ̃(0, 0) =
θ̃(1, 0) · (λ1 + ν)− θ̃(2, 0) · λ1 − θ̃(1, 1) · λ2

ν

=

(
c
(1,0)
1 (λ1, λ2, ν) · κ+ c

(1,0)
2 (λ1, λ2, ν)

)
· (λ1 + ν)

ν

−

(
c
(2,0)
1 (λ1, λ2, ν) · κ+ c

(2,0)
2 (λ1, λ2, ν)

)
· λ1

ν

−

(
c
(1,1)
1 (λ1, λ2) · κ+ c

(1,1)
2 (λ1, λ2)

)
· λ2

ν

=
c
(1,0)
1 (λ1, λ2, ν) · (λ1 + ν)− c(2,0)1 (λ1, λ2, ν) · λ1 − c(1,1)1 (λ1, λ2) · λ2

ν
· κ

+
c
(1,0)
2 (λ1, λ2, ν) · (λ1 + ν)− c(2,0)2 (λ1, λ2, ν) · λ1 − c(1,1)2 (λ1, λ2) · λ2

ν

=: c
(0,0)
1 (λ1, λ2, ν) · κ+ c

(0,0)
2 (λ1, λ2, ν) .

(d) Use the GBE of state (2, 0) to solve for κ
(θ̃(3, 0), θ̃(2, 1) are known independent of κ from steps (2)):

θ̃(2, 0) · (λ1 + ν)

= θ̃(3, 0) · λ1 + θ̃(2, 1) · λ2 + θ̃(1, 0) · 1

2
ν

⇔
(
c
(2,0)
1 (λ1, λ2, ν) · κ+ c

(2,0)
2 (λ1, λ2, ν)

)
· (λ1 + ν)

= θ̃(3, 0) · λ1 + θ̃(2, 1) · λ2

+
(
c
(1,0)
1 (λ1, λ2, ν) · κ+ c

(1,0)
2 (λ1, λ2, ν)

)
· 1

2
ν

⇔ κ ·
(
c
(2,0)
1 (λ1, λ2, ν)− c(1,0)1 (λ1, λ2, ν)

)
= θ̃(3, 0) · λ1 + θ̃(2, 1) · λ2 − c(2,0)2 (λ1, λ2, ν) · (λ1 + ν) + c

(1,0)
2 (λ1, λ2, ν) · 1

2
ν

⇔ κ

=
θ̃(3, 0) · λ1 + θ̃(2, 1) · λ2 − c(2,0)2 (λ1, λ2, ν) · (λ1 + ν) + c

(1,0)
2 (λ1, λ2, ν) · 12ν

c
(2,0)
1 (λ1, λ2, ν)− c(1,0)1 (λ1, λ2, ν)

if the denominator is not equal to zero.
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Special case: b1 > b2 = 1
If we consider a system with base stock levels b1 > 1 and b2 = 1 the algorithm reduces to
the following algorithm on the next page. Step (1)(b) and step (2) are cancelled because
b2 = 1. Furthermore, in step (3) we can skip directly to step (3)(c) and we do not need
to set a prenormalised probability to κ. In Figure C.1.22 the steps of the algorithm are
visualised.

ALGORITHM (b1 ≥ b2 with b1 > 1, b2 = 1 and λ1, λ2 > 0)

I Set θ̃(b1, 0) = 1.

(1)(a) set θ̃(0, 1) = κ

(c) for k1 = 0, . . . , b1 − 2
use the GBE of state (k1, 1)
to find an expression for θ̃(k1 + 1, 1) as a function of κ

(d) use the GBE of state (b1, 1)
to find an expression for θ̃(b1, 1) as a function of κ

(e) use the GBE of state (b1 − 1, 1)
to find an expression for θ̃(b1 − 1, 0) as a function of κ

(f) use the GBE of state (b1, 0) to solve for κ

(g) substitute the value of κ into the equations from steps (1)(a) and (1)(c)-(e)

(3)(c) for k1 = b1 − 1, . . . , 1,
use the GBE of state (k1, 0)
to find an expression for θ̃(k1 − 1, 0)

I Normalise all θ̃(k1, k2) by setting

θ̃(k1, k2)← θ̃(k1, k2)∑b1
k1=0

∑b2
k2=0 θ̃(k1, k2)

.
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- -

Set to  

Set to 1 
(1)(c)

(1)(d)

(1)(e)

(1)(f)

(1)(a)

known inde- 
pendent of  

function of  

(3)(b)(i)

Figure C.1.22.: Visualisation of the steps of the algorithm with b1 > b2 = 1
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Special case: Two homogeneous locations
Our algorithm for two locations can also be applied to obtain θ̃ for a system with two
homogeneous locations, i.e. where the inventories have identical base stock levels b1 =
b2 > 1 and identical arrival rates λ1 = λ2 > 0 (and any service rates µ1, µ2 > 0). The
state transition diagram for such a system is presented in Figure C.1.23.
However, the algorithm can be simplified for the case of two homogeneous locations,

since in the state transition diagram of a system with two homogeneous locations is
symmetric about the diagonal elements (k1, k2). Hence, the state transition diagram
can be folded to obtain a triangle as shown in Figure C.1.24. Consequently, it holds
θ̃(k1, k2) = θ̃(k2, k1).

Chow and Kohler analyse in [CK77] the performance of homogeneous two-processor
distributed computer systems under several dynamic load balancing policies. Their analy-
sis is based on the recursive solution technique and they illustrated the algorithm for a
sample system [CK77, Appendix, pp. 51f.]. Their strategy “join the shorter queue without
channel transfer” in Chow and Kohler’s Model B [CK77, pp. 42f.] is equivalent to our
strict load balancing policy.
Additionally, they allow a channel transfer in Model C [CK77, pp. 42f.] and show that

under heavy load this strategy can improve the performance (turnaround time) of the
two-processor system (cf. [CK77, pp. 47f.]).
We can also extend our model with two locations by a channel transfer and obtain

a stationary distribution of product form. Then, the inventories at the locations are
connected through a transfer channel. The transfer time of the channel is exponentially
distributed with rate β > 0. If the difference between the number of items in location
i and the number of items at location j is equal to or greater than two (≡ disbalance
condition), then the transfer channel initiates a transfer from items from location i to
location j. There can be only one transfer at a time and the transfer of an item is
discontinued if the disbalance condition changes before the transfer is completed. The
state transition diagram can still be folded into a triangle, so that the symmetry property
holds. Second, because the channel transfer leads to a further summand on the left side
of the GBE (flow into the state). The state transition diagram as well as the folded state
transition diagram for such a system with two locations are presented in Figure C.1.25
and Figure C.1.26.
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- -

-

-

Figure C.1.23.: State transition diagram of a system with two homogeneous locations

- -

-

-

Figure C.1.24.: Folded state transition diagram of a system with two homogeneous
locations
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- -

-

-

Figure C.1.25.: State transition diagram of a system with two homogeneous locations and
transfer channel

- -

-

-

Figure C.1.26.: Folded state transition diagram of a system with two homogeneous loca-
tions and transfer channel
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D. Appendix to Chapter 4

D.1. Queueing system in a random environment

In this section, we consider a queueing system, which consists of a single server system
under a first-come, first-served (FCFS) regime with infinite waiting room, in a random
environment, where the queueing system and the environment interact in both directions
as in [KD15] and [Kre16, Section 2]. The queueing-environment system of interest is
depicted in Figure D.1.1. For a literature review about related research on queueing
system in a random environment we refer to [KD15, p. 129] and [Kre16, Section 1].

Single 
server

Waiting roomLost 
sales

Demand arrival 
process

Environment

Queueing system

two-sided
interaction

Figure D.1.1.: Queueing-environment system

For the integrated queueing-environment system, we denote by (Y (t) : t ≥ 0) the
environment process and by (X(t) : t ≥ 0) the queue length process. Therefore, by
Z = ((X(t), Y (t)) : t ≥ 0) we define the joint queueing-environment process of this sys-
tem.
The state space of Z is E = N0 × K, where N0 denotes the queue length and K is

the environment space of the process. We assume |K| < ∞. The environment space is
partitioned into disjoint components K := KW ] KB. Whenever the environment pro-
cess enters KB, the service process is completely “blocked”, i.e. service is interrupted and
newly arriving customers are lost. Whenever the environment process returns to KW ,
the server “works” again and the arrival process is resumed. We assume that the sets KW

and KB are not empty.

Facilities in the queueing-environment system. The queueing system consists
of a single server with infinite waiting room that serves customers on a make-to-order
basis under a first-come, first-served (FCFS) regime. Customers arrive one by one at the
system according to a Poisson process with queue-length-dependent intensities. If the en-
vironment is in state Y (t) = k ∈ KW and if there are X(t) = n ≥ 0 customers present in
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the queueing system at time t ≥ 0, customers arrive at the system with intensity λ(n) > 0.

The queueing-environment system develops over time as follows:

(1) If the environment is in state Y (t) = k ∈ KW and if there are X(t) = n > 0
customers present in the queueing system (either waiting or in service) at time
t ≥ 0, service is provided to the customer at the head of the line with intensity
µ(n) > 0. A customer departs from the system immediately after service and the
environment changes with probability Rn(k, `) to state ` ∈ K, independent of the
history of the system, given k and n. We consider Rn = (Rn(k, `) : k, ` ∈ K),
n ∈ N, as a stochastic matrix for the environment driven by the departure process.

(2) If the environment is in state Y (t) = k ∈ KB at time t ≥ 0, no service is provided
to customers in the queue and new arriving customers decide not to join the queue
and are lost (“lost sales”).

(3) Whenever the environment is in state Y (t) = k ∈ K and if there are X(t) = n
customers present at the queueing system (either waiting or in service) at time
t ≥ 0, then the environment changes with rate vn(k, `) ≥ 0 to state ` ∈ K, ` 6=
k, independent of the history of the system, given k and n. We consider Vn =
(vn(k, `) : k, ` ∈ K) for all n ∈ N0, as a generator, i.e.

∑
`∈K vn(k, `) = 0 for all

k ∈ K.

To obtain a Markovian process description of the integrated queueing-environment
system via Z we make the usual independence and memoryless assumptions. Then Z is
a homogeneous Markov process. We assume henceforth that Z is irreducible and regular.
Remark D.1.1. In [KD15, Section 2], the stochastic matrix for the environment R =
(R(k, `) : k, ` ∈ K) and the generator V = (v(k, `) : k, ` ∈ K) do not depend on n. In
contrast, in (1) and (3) above the changes of the environment’s status are coupled with
the queue length process.
In [KD15, Section 2], the set KB may be empty, this means that no interruption of the

server and the arrival process occurs.
Krenzler and Daduna prove in [KD15, Section 2] for the case Vn = V , n ∈ N, and Rn =

R, n ∈ N0, a product form steady state distribution of the joint queueing-environment
process. The problem of our model is that at present the stationary distribution seems
to be out of reach.

Example D.1.2. Special cases of the model in this section are the queueing-inventory
systems described in Chapter 4 (server = production system, environment = inventory-
replenishment subsystem). The queueing-inventory system is depicted in Figure D.1.2.
The corresponding results are presented in Table D.1 on page 348.
(a) The queueing-inventory system with exponentially distributed life times described in
Section 4.2.3 fits into the definition of the queueing system in a random environment by
setting

K = {(k, b− k) : k ∈ {0, 1, . . . , b}} ,
KB = {(k, b− k) : k = 0} , KW = {(k, b− k) : k ∈ {1, . . . , b}} ,

where KW indicates for the inventory that there is stock on hand for production, and

Rn((0, b), (0, b)) = 1, Rn((k, b− k), (k − 1, b− k + 1)) = 1, 1 ≤ k ≤ b, n ∈ N,
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Single 
server

Waiting roomLost 
sales

 Replenishment order

Demand arrival 
process

Waiting room

Environment

Inventory

Location

Replenishment

Supplier

Single 
server

Figure D.1.2.: Production-inventory system with base stock policy

v0((k, b− k), (`, b− `)) =


ν, if 0 ≤ k < b, ` = k + 1,

γ · k, if 0 < k ≤ b, ` = k − 1,

0, otherwise for k 6= `,

vn((k, b− k), (`, b− `)) =


ν, if 0 ≤ k < b, ` = k + 1,

γ · (k − 1), if 0 < k ≤ b, ` = k − 1,

0, otherwise for k 6= `, n ≥ 1.

(b) The queueing-inventory system with phase-type distributed life times described in
Section 4.2.2 fits into the definition of the queueing system in a random environment by
setting

K =
{(
k, [h1, . . . , hk] , b− (k + k)

)
:

k ∈ {0, 1}, h` ∈ {1, . . . ,H}, 1 ≤ ` ≤ k, h1 ≤ h2 ≤ · · · ≤ hk, 0 ≤ k + k ≤ b
}
,

KB =
{(
k, [h1, . . . , hk] , b− (k + k)

)
: k + k = 0

}
= {(0, [0], b)} ,

KW =
{(
k, [h1, . . . , hk] , b− (k + k)

)
: k + k > 0

}
,

where KW indicates for the inventory that there is stock on hand for production, and

Rn((0, [0], b), (0, [0], b)) = 1, Rn(k;T0↘k) = 1, k = 1, n ∈ N,

for n = 0

v0

((
0, [0], b

)
;
(

0, [h̃], b− 1
))

= ν · b(h̃),
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for n > 0

vn

((
0, [0], b

)
;
(

1, [0], b− 1
))

= ν,

vn

((
1, [0], b

)
;
(

1, [h̃], b− 1
))

= ν · b(h̃) · 1 {0<k+k<b}︸ ︷︷ ︸
={b>1}

,

for n ≥ 0

vn

(
k; T̃

h̃→1
k

)
= ν · b(h̃) · 1{h̃<h1} · 1{0<k+k<b} · 1{k>0},

vn

(
k; T̃

h̃→k+1
k

)
= ν · b(h̃) · 1{hk≤h̃} · 1{0<k+k<b} · 1{k>0},

vn

(
k; T̃

h̃→`k
))

= ν · b(h̃) · 1{h`−1≤h̃<h`} · 1{0<k+k<b} · 1{k>1} · 1{`∈{2,...,k}},

vn

(
k;T`↘k

)
= β · 1{h`=1} · 1{k>0},

vn

(
k;T`→1k

)
= β · 1{0<h`−1<h1} · 1{k>0},

vn

(
k;T`→mk

)
= β · 1{0<hm−1≤h`−1<hm} · 1{k>1} · 1{m∈{2,...,`}}.

D.1.1. Ergodicity

The stochastic queueing-environment process Z is a homogeneous Markov process and ir-
reducible on the state space E, and has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E)
with the following transition rates for (n, k) ∈ E:

q ((n, k); (n+ 1, k)) = λ(n) · 1{k∈KW },
q ((n, k); (n− 1, `)) = µ(n) ·Rn(k, `) · 1{n>0} · 1{k∈KW },

q ((n, k); (n, `)) = vn(k, `), k 6= `.

Furthermore, q(z; z̃) = 0 for any other pair z 6= z̃, and

q (z; z) = −
∑
z̃∈E,
z 6=z̃

q (z; z̃) ∀z ∈ E.

We will show a necessary condition for ergodicity in Proposition D.1.4. Furthermore,
a sufficient condition for positive recurrence is shown in Proposition D.1.8.

The proof for the necessary condition depends on the following result.

Proposition D.1.3. If the queueing-environment process Z is recurrent, then any solu-
tion x = (x (z) : z ∈ E) of the global balance equations x·Q = 0 fulfils for all n ∈ N0∑

k∈KW

x(n, k) =
∑
k∈KW

x(n+ 1, k) · µ(n+ 1)

λ(n)
(D.1.1)
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and ∑
k∈KW

x(n, k) =
∑
k∈KW

x(0, k) ·
n∏

m=1

λ(m− 1)

µ(m)
. (D.1.2)

Proof. From irreducibility and recurrence of Z follows that there exists one, and up to
a multiplicative factor only one, stationary measure x = (x (z) : z ∈ E). This stationary
measure x has the property x(z) > 0 for all z ∈ E and can be found as a solution of the
global balance equations x·Q = 0 (cf. [Asm03, Theorem 4.2, p. 51]).
The global balance equations x·Q = 0 of the stochastic queueing-environment process

Z are for (n, k) ∈ E given by

x (n, k)
(
λ(n) · 1{k∈KW } +

∑
`∈K\{k}

vn(k, `)

︸ ︷︷ ︸
=−vn(k,k)

+µ(n) · 1{n>0} · 1{k∈KW }
)

= x (n− 1, k) · λ(n− 1) · 1{n>0} · 1{k∈KW }
+
∑
`∈KW

x (n+ 1, `) · µ(n+ 1) ·Rn+1(`, k)

+
∑

`∈K\{k}

x (n, `) · vn(`, k). (D.1.3)

Equation (D.1.1) can be proven by the cut-criterion for recurrent processes, which is
presented in Theorem A.1.1(b). For n ∈ N0, equation (D.1.1) can be proven by a cut,
which divides E into complementary sets according to the queue length of customers that
is less than or equal to n or greater than n, i.e. into the sets{

(m, k) : m ∈ {0, 1, . . . , n}, k ∈ K
}
,{

(m̃, k̃) : m̃ ∈ N0 \ {0, 1, . . . , n}, k̃ ∈ K
}
, n ∈ N0.

Then, the following holds for n ∈ N0

n∑
m=0

∑
k∈K

∞∑
m̃=n+1

∑
k̃∈K

x(m, k) · q((m, k); (m̃, k̃))

=
∞∑

m̃=n+1

∑
k̃∈K

n∑
m=0

∑
k∈K

x(m̃, k̃) · q((m̃, k̃); (m, k))

⇔
∑
k∈KW

x(n, k) · λ(n) =
∑
k̃∈KW

x(n+ 1, k̃) · µ(n+ 1) ·
∑
`∈K

Rn+1(k̃, `)︸ ︷︷ ︸
=1

⇔
∑
k∈KW

x(n+ 1, k) =
∑
k∈KW

x(n, k) · λ(n)

µ(n+ 1)
.

Consequently, for n ∈ N0 follows∑
k∈KW

x(n, k) =
∑
k∈KW

x(0, k) ·
n∏

m=1

λ(m− 1)

µ(m)
.
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Proposition D.1.4. If the queueing-environment process Z is ergodic, it holds∑∞
n=0

∏n
m=1

λ(m−1)
µ(m) <∞.

Proof. If the queueing-environment process Z is ergodic, the normalisation constant, as
the sum of the solution x = (x (z) : z ∈ E) of the global balance equations (D.1.3) for Z,
is finite:

∞∑
n=0

∑
k∈K

x(n, k) <∞.

It holds
∞∑
n=0

∑
k∈K

x(n, k)

=

∞∑
n=0

∑
k∈KW

x(n, k) +

∞∑
n=0

∑
k∈KB

x(n, k)

(D.1.2)
=

∞∑
n=0

∑
k∈KW

x(0, k)

︸ ︷︷ ︸
=:W̃

·
n∏

m=1

λ(m− 1)

µ(m)
+
∞∑
n=0

∑
k∈KB

x(n, k)

= W̃ ·
∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)
+
∞∑
n=0

∑
k∈KB

x(n, k).

Because of ergodicity, W̃ ∈ (0,∞) and
∑∞

n=0

∑
k∈KB x(n, k) <∞.

Hence,
∑∞

n=0

∑
k∈K x(n, k) is finite only if

∑∞
n=0

∏n
m=1

λ(m−1)
µ(m) <∞.

A sufficient condition for positive recurrence of a Markov process can be shown by the
Foster-Lyapunov stability criterion, which is presented in Theorem A.1.2 on page 260.
This leads to the sufficient condition for ergodicity in Proposition D.1.8.
Foss and his coauthors [FST12] analyse the stability of two-component Markov chains

by using Lyapunov functions under the additional assumption that one component forms
a Markov chain itself. In our investigations neither the environment process nor the
queueing process is a Markov process itself.

We start with three preparatory lemmas.

Lemma D.1.5. For anM/M/1/∞ queue with queue-length-dependent arrival intensities
λ(n) > 0 and service intensities µ(n) > 0 let there exists a Lyapunov function L̃ : N0 →
R+

0 with finite exception set F̃ and constant ε̃ > 0, which satisfies the Foster-Lyapunov
stability criterion. Then, the following inequalities are satisfied:

λ(0) ·
(
L̃(1)− L̃(0)

)
≤ −ε̃, if 0 /∈ F̃ , (D.1.4)

λ(n) ·
(
L̃(n+ 1)− L̃(n)

)
+ µ(n) ·

(
L̃(n− 1)− L̃(n)

)
≤ −ε, if n /∈ F̃ , n > 0. (D.1.5)
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Proof. It holds
(
Q · L̃

)
(n) ≤ −ε̃ for n /∈ F̃ and therefore, we have

λ(0) ·
(
L̃(1)− L̃(0)

)
=

∑
m∈N0\{0}

q (0;m) ·
(
L̃(m)− L̃(0)

)
=
(
Q · L̃

)
(0) ≤ −ε̃

if n = 0 /∈ F̃ , and

λ(n) ·
(
L̃(n+ 1)− L̃(n)

)
+ µ(n) ·

(
L̃(n− 1)− L̃(n)

)
=

∑
m∈N0\{n}

q (n;m) ·
(
L̃(m)− L̃(n)

)
=
(
Q · L̃

)
(n) ≤ −ε

if n /∈ F̃ , n > 0.

Lemma D.1.6. We define the function τn : K → R+
0 for n ∈ N0, where τn(k) > 0 for

k ∈ KB is the mean first entrance time in KW when starting in k ∈ KB and for ` ∈ KW

we set τn(`) = 0, since it means that entrance in KW has already happened.
For k ∈ KB holds

τn(k) =
1

−vn(k, k)
+

∑
`∈KB\{k}

vn(k, `)

−vn(k, k)
· τn(`),

which is equivalent to

− 1 =
∑

`∈KB\{k}

vn(k, `) · (τn(`)− τn(k))−
∑
`∈KW

vn(k, `) · τn(k), n ∈ N0. (D.1.6)

Proof. Because of the irreducibility of Z it holds the “flow condition” which is defined
in [Kre16, Definition A.1.1, p. 195]:

∀K̃B ⊂ KB, K̃B 6= ∅ : ∃k ∈ K̃B, ` ∈ K̃c
B : vn(k, `) > 0.

Consequently, if K̃B = KB, then for all n ∈ N0 there exists some k ∈ KB and ` = `(n) ∈
KW such that vn (k, `) > 0 because of irreducibility.

Because of the finite state space K := KW ] KB and the flow condition, for every
starting point k ∈ KB the environment process will enter KW after a positive finite mean
time. Hence, for all k ∈ KB holds 0 < τn(k) <∞.
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The set (τn(k) : k ∈ KB) satisfies the following set of first entrance equations:

τn(k) =
∑

`∈KB\{k}

vn(k, `)

−vn(k, k)
·
(

1

−vn(k, k)
+ τn(`)

)

+
∑
`∈KW

vn(k, `)

−vn(k, k)
·
(

1

−vn(k, k)
+ τn(`)

)
=

∑
`∈K\{k}

vn(k, `)

−vn(k, k)
· 1

−vn(k, k)

+
∑

`∈KB\{k}

vn(k, `)

−vn(k, k)
· τn(`) +

∑
`∈KW

vn(k, `)

−vn(k, k)
· τn(`)︸ ︷︷ ︸

=0

(?)
=

1

−vn(k, k)
+

∑
`∈KB\{k}

vn(k, `)

−vn(k, k)
· τn(`), n ∈ N0. (D.1.7)

(?) holds because Vn = (vn(k, `) : k, ` ∈ K) is a conservative generator, i.e. for n ∈ N0

holds ∑
`∈K

vn(k, `) = 0 ⇔
∑

`∈K\{k}

vn(k, `) = −vn(k, k).

(D.1.7) is equivalent to

−1 =

 ∑
`∈KB\{k}

vn(k, `) · τn(`)

+ vn(k, k) · τn(k)

=
∑

`∈KB\{k}

vn(k, `) · τn(`)−
∑

`∈K\{k}

vn(k, `) · τn(k)

=
∑

`∈KB\{k}

vn(k, `) · (τn(`)− τn(k))−
∑
`∈KW

vn(k, `) · τn(k), n ∈ N0.

Lemma D.1.7. We define for n ∈ N0

ĉn =

min

 1

maxk∈KW

{
µ(n+ 1) ·

∑
`∈KB Rn+1(k, `) · τn(`)

} ,
1

maxk∈KW

{∑
`∈KB vn(k, `) · τn(`)

}

 , (D.1.8)

where τn(·) is defined in Lemma D.1.6.
It holds 0 < ĉn <∞ for n ∈ N0.
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Proof. First, we will show that ĉn > 0. It holds

ĉn > 0 ⇔ 1

maxk∈KW

{
µ(n+ 1) ·

∑
`∈KB Rn+1(k, `) · τn(`)

} > 0

∧ 1

maxk∈KW

{∑
`∈KB vn(k, `) · τn(`)

} > 0

⇔ 0 < µ(n+ 1) <∞ ∧ 0 < τn(`) <∞, ` ∈ KB

∧ 0 ≤ Rn+1(k, `) <∞, k ∈ KW , ` ∈ KB

∧ 0 ≤ vn(k, `) <∞, k ∈ KW , ` ∈ KB.

The service intensity µ(n+ 1) is positive and finite. Moreover, in Lemma D.1.6 we have
shown that the mean first entrance time τn(k) for k ∈ KB is positive and finite. In addi-
tion, the elements Rn+1(k, `) ≥ 0 of the stochastic matrix and the off-diagonal elements
vn(k, `) ≥ 0 of the generator matrix for k ∈ KW and ` ∈ KB are non-negative and finite.
Hence, it holds ĉn > 0.

Second, we will show that ĉn <∞. It holds

ĉn <∞ ⇔ 1

maxk∈KW

{
µ(n+ 1) ·

∑
`∈KB Rn+1(k, `) · τn(`)

} <∞

∨ 1

maxk∈KW

{∑
`∈KB vn(k, `) · τn(`)

} <∞

⇔ max
k∈KW

µ(n+ 1) ·
∑
`∈KB

Rn+1(k, `) · τn(`)

 6= 0

∨ max
k∈KW

∑
`∈KB

vn(k, `) · τn(`)

 6= 0

⇔ ∃ k ∈ KW , ` ∈ KB : Rn+1(k, `) 6= 0 ∨ vn(k, `) 6= 0.

The last equivalence holds because µ(n+ 1) > 0 and τn(`) > 0 for ` ∈ KB.

Now, we will prove that it exists k ∈ KW , ` ∈ KB with Rn+1(k, `) 6= 0 or vn(k, `) 6= 0.

Because of irreducibility, all states communicate with each other. In particular, any
state (n, `) ∈ E with ` ∈ KB must be reachable from some state (ñ, k) ∈ E with k ∈ KW

in a finite number of steps. In Figure D.1.3, we illustrate the possible transitions into
state (n, `) ∈ E with ` ∈ KB.
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If the environment is in state ` ∈ KB, no service is provided to customers in the queue
and newly arriving customers are lost (“lost sales”). Hence, no transitions from the states
(n+ 1, `) or (n− 1, `) to state (n, `) are possible.

Furthermore, a transition from state (n−1, k) with k ∈ KW to state (n, `) with ` ∈ KB

for all n ∈ N is not possible, since the changes of the environment’s status are not coupled
with the arrival process (cf. transition rates on page 328).

Figure D.1.3.: Typical transitions into state (n, `) ∈ E with ` ∈ KB. Transitions marked
by red crosses are impossible

The only remaining possible transitions are

• transitions from KW to KB

with vn(k, `) > 0 from some state (n, k) ∈ N0 ×KW to state (n, `) ∈ N0 ×KB

or with µ(n + 1) · Rn+1(k, `) > 0 from some state (n + 1, k) ∈ N0 × KW to state
(n, `) ∈ N0 ×KB (see in Figure D.1.3)

• or transitions from inside of KB

with vn(˜̀, `) > 0 from some state (n, ˜̀) ∈ N0 ×KB to state (n, `) ∈ N0 ×KB.

Hence, as we mentioned before, because of irreducibility any state (n, `) ∈ N0×KB must
be reachable from a state (ñ, k) ∈ E with ñ ∈ {n, n+ 1} and k ∈ KW in a finite number
of steps.

Definition. A finite path from state (n0, k0) ∈ E to state (nm, km) ∈ E is a sequence of
vertices

((n0, k0), (n1, k1), (n2, k2), . . . , (nm−1, `m−1), (nm, `m)) ,

where
q ((ni, ki); (ni+1, ki+1)) > 0, i ∈ {0, 1, . . . ,m} ,

and m is the length of the path (number of edges).
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Let M ⊆ N be the set of the lengths of the possible paths from states in {n, n+1}×KW

to state (nm, km) = (n, `) ∈ N0 ×KB. Let m∗ ≥ 1 be the minimal length.

Because of irreducibility and the abovementioned “only remaining possible transitions”
there must exist a minimal path from a state in {n, n + 1} × KW to state (nm, km) =
(n, `) ∈ N0 ×KB of length m∗ ≥ 1 (see Figure D.1.4).

Figure D.1.4.: Path of minimal length m∗

If m∗ = 1, the state (n, `) ∈ N0×KB is reachable directly from a state in {n, n+1}×KW

in one step.
Consequently, for ` ∈ KB there exits k ∈ KW such that Rn+1(k, `) > 0 or
vn(k, `) > 0 holds, because these are the only possible transitions to reach the
state (n, `) ∈ N0 ×KB from {n, n+ 1} ×KW in one step (see Figure D.1.3).

If m∗ > 1, the state (n, `) ∈ N0×KB is reachable from a state in {n, n+ 1}×KW in m∗

steps.
Hence, there exists a minimal path of length m∗, where the state (n, `1) ∈
N0 ×KB is reachable directly from a state in {n, n+ 1} ×KW in one step.
Consequently, for `1 ∈ KB there exits k ∈ KW so that Rn+1(k, `1) > 0 or
vn(k, `1) > 0 holds.
Furthermore, it holds vn(`1, `2), vn(`2, `3), . . . , vn(`m−1, `) > 0, because
these are the only possible transitions to reach the state (n, `) ∈ N0 × KB

from state (n, `1) ∈ N0 ×KB in m∗ − 1 steps.
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Proposition D.1.8. The queueing-environment process Z is ergodic if for anM/M/1/∞
queue with queue-length-dependent arrival intensities λ(n) > 0 and service intensities
µ(n) > 0 there exists a Lyapunov function L̃ : N0 → R+

0 with finite exception set F̃ and
constant ε̃ > 0, which satisfies the Foster-Lyapunov stability criterion, and

inf
n∈N0

ĉn > 0,

where ĉn is defined in Lemma D.1.7.

Proof. The sufficient condition for positive recurrence can be shown by the Foster-Lyapunov
stability criterion. We will show that L : E → R+

0 with

L(n, k) = L̃(n) + 1{k∈KB} · cn · τn(k) (D.1.9)

is a Lyapunov function with finite exception set F = F̃ ×K and constant

ε = min

(
ε̃

2
, inf cn

)
> 0,

where cn := ε̃
4 · ĉn.

I First, we will check (Q · L) (n, k) <∞ for (n, k) ∈ F = F̃ ×K.
Since |K| <∞,
for k ∈ KB and n ∈ F̃ , n ≥ 0, holds

(Q · L) (n, k) =
∑

(m,`)∈E\{(n,k)}

q ((n, k); (m, `)) · (L(m, `)− L(n, k))

=
∑

`∈K\{k}

vn(k, `) · (L(n, `)− L(n, k)) <∞,

if n = 0 ∈ F̃ , then for k ∈ KW holds

(Q · L) (0, k) =
∑

(m,`)∈E\{(0,k)}

q ((0, k); (m, `)) · (L(m, `)− L(0, k))

= λ(0) · (L(1, k)− L(0, k)) +
∑

`∈K\{k}

v0(k, `) · (L(0, `)− L(0, k)) <∞,

for k ∈ KW and n ∈ F̃ , n > 0, holds

(Q · L) (n, k) =
∑

(m,`)∈E\{(n,k)}

q ((n, k); (m, `)) · (L(m, `)− L(n, k))

= λ(n) · (L(n+ 1, k)− L(n, k))

+
∑
`∈K

µ(n) ·Rn(k, `) · (L(n− 1, `)− L(n, k))

+
∑

`∈K\{k}

vn(k, `) · (L(n, `)− L(n, k)) <∞.
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I Second, we will check (Q · L) (n, k) ≤ −ε for (n, k) /∈ F = F̃ ×K.
For k ∈ KB and n /∈ F̃ , n ≥ 0, holds

(Q · L) (n, k) =
∑

(m,`)∈E\{(n,k)}

q ((n, k); (m, `)) · (L(m, `)− L(n, k))

=
∑

`∈K\{k}

vn(k, `) · (L(n, `)− L(n, k))

=
∑

`∈K\{k}

vn(k, `) ·
((
L̃(n) + 1{`∈KB} · cn · τn(`)

)
−
(
L̃(n) + 1{k∈KB} · cn · τn(k)

))
=

∑
`∈K\{k}

vn(k, `) · 1{`∈KB} · cn · τn(`)−
∑

`∈K\{k}

vn(k, `) · 1{k∈KB}︸ ︷︷ ︸
=1

cn · τn(k)

=
∑

`∈KB\{k}

vn(k, `) · cn · τn(`)−
∑

`∈K\{k}

vn(k, `) · cn · τn(k)

=
∑

`∈KB\{k}

vn(k, `) · (cn · τn(`)− cn · τn(k))−
∑
`∈KW

vn(k, `) · cn · τn(k)

= cn ·

[ ∑
`∈KB\{k}

vn(k, `) · (τn(`)− τn(k))−
∑
`∈KW

vn(k, `) · τn(k)

]
︸ ︷︷ ︸

(D.1.6)
= −1

= −cn ≤ −ε = −min

(
ε̃

2
, inf cn

)
.

If n = 0 /∈ F̃ , then for k ∈ KW holds

(Q · L) (n, k) =
∑

(m,`)∈E\{(0,k)}

q ((0, k); (m, `)) · (L(m, `)− L(0, k))

= λ(0) · (L(1, k)− L(0, k))

+
∑

`∈K\{k}

v0(k, `) · (L(0, `)− L(0, k))

= λ(0) ·

((
L̃(1) + 1{k∈KB}︸ ︷︷ ︸

=0

·c1 · τ1(k)

)
−

(
L̃(0) + 1{k∈KB}︸ ︷︷ ︸

=0

·c0 · τ0(k)

))

+
∑

`∈K\{k}

v0(k, `) ·

((
L̃(0) + 1{`∈KB} · c0 · τ0(`)

)
−

(
L̃(0) + 1{k∈KB}︸ ︷︷ ︸

=0

·c0 · τ0(k)

))

= λ(0) ·
(
L̃(1)− L̃(0)

)
+

∑
`∈K\{k}

v0(k, `) ·
(
1{`∈KB} · c0 · τ0(`)

)
= λ(0) ·

(
L̃(1)− L̃(0)

)
︸ ︷︷ ︸

(♦)

≤ −ε̃

+
∑
`∈KB

v0(k, `) · c0 · τ0(`)

≤ −ε̃+
∑
`∈KB

v0(k, `) · c0 · τ0(`)

︸ ︷︷ ︸
(D.1.8)
≤ ε̃

4

≤ −3

4
· ε̃ ≤ −ε = −min

(
ε̃

2
, inf cn

)
.
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(♦) holds because of (D.1.4) since L̃ : E → R+
0 is a Lyapunov function for theM/M/1/∞

queue with queue-length-dependent arrival and service intensities with constant ε̃.

For k ∈ KW and n /∈ F̃ , n > 0, holds

(Q · L) (n, k) =
∑

(m,`)∈E\{(n,k)}

q ((n, k); (m, `)) · (L(m, `)− L(n, k))

= λ(n) · (L(n+ 1, k)− L(n, k))

+
∑
`∈K

µ(n) ·Rn(k, `) · (L(n− 1, `)− L(n, k))

+
∑

`∈K\{k}

vn(k, `) · (L(n, `)− L(n, k))

= λ(n) ·

((
L̃(n+ 1) + 1{k∈KB}︸ ︷︷ ︸

=0

·cn+1 · τn+1(k)

)
−

(
L̃(n) + 1{k∈KB}︸ ︷︷ ︸

=0

·cn · τn(k)

))

+
∑
`∈K

µ(n) ·Rn(k, `) ·

((
L̃(n− 1) + 1{`∈KB} · cn−1 · τn−1(`)

)

−

(
L̃(n) + 1{k∈KB}︸ ︷︷ ︸

=0

·cn · τn(k)

))

+
∑

`∈K\{k}

vn(k, `) ·

((
L̃(n) + 1{`∈KB} · cn · τn(`)

)
−

(
L̃(n) + 1{k∈KB}︸ ︷︷ ︸

=0

·cn · τn(k)

))

= λ(n) ·
(
L̃(n+ 1)− L̃(n)

)
+ µ(n) ·

∑
`∈K

Rn(k, `)︸ ︷︷ ︸
=1

·
(
L̃(n− 1)− L̃(n)

)

+ µ(n) ·
∑
`∈K

Rn(k, `) · 1{`∈KB} · cn−1 · τn−1(`) +
∑

`∈K\{k}

vn(k, `) ·
(
1{`∈KB} · cn · τn(`)

)
= λ(n) ·

(
L̃(n+ 1)− L̃(n)

)
+ µ(n) ·

(
L̃(n− 1)− L̃(n)

)
︸ ︷︷ ︸

(4)

≤ −ε̃

+ µ(n) ·
∑
`∈KB

Rn(k, `) · cn−1 · τn−1(`) +
∑
`∈KB

vn(k, `) · cn · τn(`)

≤ −ε̃+ µ(n) ·
∑
`∈KB

Rn(k, `) · cn−1 · τn−1(`)

︸ ︷︷ ︸
(D.1.8)
≤ ε̃

4

+
∑
`∈KB

vn(k, `) · cn · τn(`)

︸ ︷︷ ︸
(D.1.8)
≤ ε̃

4

≤ − ε̃
2
≤ −ε = −min

(
ε̃

2
, inf cn

)
.

(4) holds because of (D.1.5) since L̃ : E → R+
0 is a Lyapunov function for theM/M/1/∞

queue with queue-length-dependent arrival and service intensities with constant ε̃.
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Corollary D.1.9. The queueing-environment process Z is ergodic if there exists N ∈ N0

such that infn≥N (µ(n)− λ(n)) > 0 and

inf
n∈N0

ĉn > 0,

where ĉn is defined in Lemma D.1.7.

Proof. Let there be N ∈ N0 such that infn≥N (µ(n)− λ(n)) > 0. Then, for every
M/M/1/∞ queue with queue-length-dependent arrival intensities λ(n) > 0 and service in-
tensities µ(n) > 0 is L̃ : N0 → R+

0 with L̃(n) = n, finite exception set F̃ = {0, . . . , N − 1}
and constant ε̃ = infn≥N (µ(n)− λ(n)) > 0 a Lyapunov function, which satisfies the
Foster-Lyapunov stability criterion. Hence, we can apply Proposition D.1.8.

Remark D.1.10. The queueing-environment system can be modelled as a level-dependent
quasi-birth-and-death process (LDQBD process). Under the assumptions from the above
proposition, the queueing-environment system is ergodic and hence, we can use the al-
gorithm of Bright and Taylor [BT95] to calculate the equilibrium distributions in LDQBD
processes.

Example D.1.11. If supn∈N0
µ(n) <∞, then in the following examples holds infn∈N0 ĉn >

0. It should be noted, that ĉn is only defined by µ(n + 1), the generator Vn and the
stochastic matrix Rn (since τn is defined by the generator Vn).

(a) For the generator Vn = (vn(k, `) : k, ` ∈ K) holds

V2n+1 = V1 and V2n = V2, n ∈ N0,

and for the stochastic matrix Rn = (Rn(k, `) : k, ` ∈ K) holds

R2n−1 = R1 and R2n = R2, n ∈ N.

A similar structure is found in birth-and-death processes with alternating rates
which are considered e.g. by Di Crescenzo et al. ([DCMM14], [DCIM12]).

(b) For the generator Vn = (vn(k, `) : k, ` ∈ K) holds

Vn = V ∀n ≥ N0,

and for the stochastic matrix Rn = (Rn(k, `) : k, ` ∈ K) holds

Rn = R ∀n ≥ N0.

Then, ĉn can be arbitrarily for n ≤ N0 − 1 and from N0 it is bounded below by a
ĉmin > 0.
A similar structure is found in multi-server models (M/M/s queue) which are stud-
ied e.g. by Neuts [Neu81, Section 6.2, Section 6.5].
Moreover, such a structure is found in a queue with N servers subject to break-
downs and repairs. This is studied by Neuts and Lucantoni [NL79].
Furthermore, this structure can be found in the study of Neuts and Rao [NR90].
Since an analytical solution for their multi-server retrial model is difficult, they
make a simplifying approximation, which yields an infinitesimal generator with a
modified matrix-geometric steady state vector which can be efficiently computed.
Additionally, such a structure with N0 = 1 can be found in the queueing-inventory
systems described in Section 4.2.3 and Section 4.2.2 (cf. Example D.1.2).
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Special case: Queue-length-independent arrival and service intensities
In this paragraph, we analyse the queueing-inventory system with state-independent ser-
vice rates µ and arrival rates λ in view of a sufficient and necessary criterion for ergodicity.

Necessity follows from Proposition D.1.4 with
∑∞

n=0

∏n
m=1

λ(m−1)
µ(m) =

∑∞
n=0

(
λ
µ

)n
<∞.

Proposition D.1.12. If the queueing-environment process Z is ergodic, it holds λ < µ.

Sufficiency follows from Proposition D.1.8 and Corollary D.1.9.

Proposition D.1.13.

(a) The queueing-environment process Z is ergodic if for an M/M/1/∞ queue with ar-
rival rate λ > 0 and service rate µ > 0 there exists a Lyapunov function
L̃ : N0 → R+

0 with finite exception set F̃ and constant ε̃ > 0, which satisfies the
Foster-Lyapunov stability criterion, and

inf
n∈N0

ĉn > 0.

(b) The queueing-environment process Z is ergodic if λ < µ and infn∈N0 ĉn > 0.

Example D.1.14. We consider systems with state-independent rates λ and µ.

(a) We first discuss the structure of the constants ĉn, where the occurring levels are
shifted: Rn+1 versus vn, n ≥ 0.
We construct an example where

max
k∈KW

µ · ∑
`∈KB

R1(k, `) · τ1(`)

 = 0 ∧ max
k∈KW

∑
`∈KB

v1(k, `) · τ1(`)

 = 0,

while
inf
n∈N0

ĉn > 0.

We consider a queueing-environment system with KW = {0}, KB = {1}, stochastic
matrix Rn = (Rn(k, `) : k, ` ∈ K) and generator matrix Vn = (vn(k, `) : k, ` ∈ K)
with

R1 =

 0 1

0 1 0
1 0 1

 , Rn =

 0 1

0 1/2 1/2

1 0 1

 , n ≥ 2,

V0 =

 0 1

0 −η η
1 η −η

 , Vn =

 0 1

0 0 0
1 η −η

 , n ≥ 1.

The queueing-environment process is irreducible because all states communicate
with each other (see the state transition diagram in Figure D.1.5).
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Figure D.1.5.: State transition diagram

For such a system it holds

ĉ0 = min

{
1

µ ·R1(0, 1) · τ0(1)
,

1

v0(0, 1) · τ0(1)

}
= min

{
1

µ · 0 · 1
η

,
1

η · 1
η

}
= min {∞, 1} = 1,

ĉ1 = min

{
1

µ ·R2(0, 1) · τ1(1)
,

1

v1(0, 1) · τ1(1)

}
= min

{
1

µ · 1
2 ·

1
η

,
1

0 · 1
η

}

= min

{
2 · η
µ
,∞
}

=
2 · η
µ
,

ĉn = min

{
1

µ ·Rn+1(0, 1) · τn(1)
,

1

vn(0, 1) · τn(1)

}
= min

{
1

µ · 1
2 ·

1
η

,
1

0 · 1
η

}
=

= min

{
2 · η
µ
,∞
}

=
2 · η
µ
.

Hence,
inf
n∈N0

ĉn > 0.
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(b) We next discuss the condition infn∈N0 ĉn > 0 in Proposition D.1.8.
We can modify example (a) such that infn∈N0 ĉn = 0 while the queueing-environment
process is irreducible.
We consider a queueing-environment system with KW = {0}, KB = {1}, stochastic
matrix R̆n = (R̆n(k, `) : k, ` ∈ K) and generator matrix V̆n = (v̆n(k, `) : k, ` ∈ K)
with

R̆1 = R1 =

 0 1

0 1 0
1 0 1

 , R̆n = Rn =

 0 1

0 1/2 1/2

1 0 1

 , n ≥ 2,

V̆0 = V0 =

 0 1

0 −η η
1 η −η

 , V̆1 = V1 =

 0 1

0 0 0
1 η −η

 ,

V̆n =

 0 1

0 0 0
1 1

n·η
1
−n·η

 , n ≥ 2.

The queueing-environment process is still irreducible.
For such a system it holds

ĉ0 = min

{
1

µ ·R1(0, 1) · τ0(1)
,

1

v0(0, 1) · τ0(1)

}
= min

{
1

µ · 0 · 1
η

,
1

η · 1
η

}
= min {∞, 1} = 1,

ĉ1 = min

{
1

µ ·R2(0, 1) · τ1(1)
,

1

v1(0, 1) · τ1(1)

}
= min

{
1

µ · 1
2 ·

1
η

,
1

0 · 1
η

}

= min

{
2 · η
µ
,∞
}

=
2 · η
µ
,

ĉn = min

{
1

µ ·Rn+1(0, 1) · τn(1)
,

1

vn(0, 1) · τn(1)

}
= min

{
1

µ · 1
2 · n · η

,
1

0 · n · η

}
=

= min

{
2

µ · n · η
,∞
}

=
2

µ · n · η
.

Thus,
inf
n∈N0

ĉn = 0.

The condition infn∈N0 ĉn > 0 is required in Proposition D.1.8 to work with the
specific Lyapunov function (D.1.9).
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D.1.2. Properties of the stationary system

We assume throughout this section that the queueing-environment process Z is ergodic.

Definition D.1.15. For the queueing-environment system Z in a state space E, whose
limiting distribution exists, we define

π := (π (n, k) : (n, k) ∈ E) , π (n, k) := lim
t→∞

P (Z(t) = (n, k))

and the appropriate marginal distributions

ξ := (ξ (n) : n ∈ N0) , ξ (n) := lim
t→∞

P (X(t) = n) ,

θ := (θ (k) : k ∈ K) , θ (k) := lim
t→∞

P (Y (t) = k) .

Let (X,Y ) be a random variable which is distributed according to the queueing-
environment process in equilibrium. Then, X resp. Y are random variables which are
distributed according to the marginal steady state probability for the queue length resp.
for the environment.

Proposition D.1.16. The queueing-environment process Z fulfils for all n ∈ N0

P (X = n, Y ∈ KW ) = P (X = n+ 1, Y ∈ KW ) · µ(n+ 1)

λ(n)
(D.1.10)

and

P (X = n, Y ∈ KW ) = P (X = 0, Y ∈ KW ) ·
n∏

m=1

λ(m− 1)

µ(m)
. (D.1.11)

Hence, the probability that the environment is in KW fulfils

P (Y ∈ KW ) = P (X = 0, Y ∈ KW ) ·
∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)
.

Proof. The normalisation constant, as the sum of the solution x = (x (z) : z ∈ E) of the
global balance equations (D.1.3) for Z, is finite because the queueing-environment process
Z is ergodic. Then, with

x(n, k)∑
n∈N0

∑
k∈K x(n, k)

= π(n, k) = P (X = n, Y = k)

follows in steady state for n ∈ N0 from (D.1.1)∑
k∈KW

π(n, k)

︸ ︷︷ ︸
=P (X=n,Y ∈KW )

=
∑
k∈KW

π(n+ 1, k)

︸ ︷︷ ︸
=P (X=n+1,Y ∈KW )

·µ(n+ 1)

λ(n)

and from (D.1.2) ∑
k∈KW

π(n, k)

︸ ︷︷ ︸
=P (X=n,Y ∈KW )

=
∑
k∈KW

π(0, k)

︸ ︷︷ ︸
=P (X=0,Y ∈KW )

·
n∏

m=1

λ(m− 1)

µ(m)
. (D.1.12)
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Summing up equation (D.1.11) over n ∈ N0 yields

P (Y ∈ KW ) =
∞∑
n=0

P (X = n, Y ∈ KW )
(D.1.11)

= P (X = 0, Y ∈ KW ) ·
∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)
.

Corollary D.1.17. For the conditional distribution of the queue length process condi-
tioned on {Y ∈ KW } holds for n ∈ N0

P (X = n|Y ∈ KW ) = P (X = 0|Y ∈ KW ) ·
n∏

m=1

λ(m− 1)

µ(m)

with

P (X = 0|Y ∈ KW ) =

( ∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)

)−1

.

This shows that the conditional queue length process under the condition that the envir-
onment is in KW has in equilibrium the same structure as a birth-and-death process with
queue-length-dependent intensities.

Proof. P (Y ∈ KW ) > 0 because of ergodicity and equation (D.1.11) imply for n ∈ N0

P (X = n|Y ∈ KW ) =
P (X = n, Y ∈ KW )

P (Y ∈ KW )

(D.1.11)
=

P (X = 0, Y ∈ KW )

P (Y ∈ KW )
·

n∏
m=1

λ(m− 1)

µ(m)

= P (X = 0|Y ∈ KW ) ·
n∏

m=1

λ(m− 1)

µ(m)

and the normalisation condition leads to

P (X = 0|Y ∈ KW ) =

( ∞∑
n=0

n∏
m=1

λ(m− 1)

µ(m)

)−1

.

An alternative direct proof is presented in the proof of Lemma 2.1.11 in [Kre16, p. 17].

Proposition D.1.18. The limiting and stationary distribution of the queueing-environment
process Z is in general not of product form.

Proof. If the stationary distribution has a product form, it holds for any n ∈ N0

P (X = n, Y ∈ KW ) = P (X = n) · P (Y ∈ KW ) .

Then, it follows from Corollary D.1.17

P (X = n) = P (X = 0|Y ∈ KW ) ·
n∏

m=1

λ(m− 1)

µ(m)

=

( ∞∑
ñ=0

ñ∏
m=1

λ(m− 1)

µ(m)

)−1

·
n∏

m=1

λ(m− 1)

µ(m)
, n ∈ N0.
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Consequently, if the stationary distribution has a product form

π (n, k) = ξ(n) · θ (k) , n ∈ N0, k ∈ K,

then

ξ(n) = C−1 ·
n∏

m=1

λ(m− 1)

µ(m)
, n ∈ N0,

with normalisation constant

C =
∞∑
ñ=0

ñ∏
m=1

λ(m− 1)

µ(m)
.

It has to be shown that this distribution satisfies the global balance equations

π (n, k) ·
(
λ(n) · 1{k∈KW } − vn(k, k) + µ(n) · 1{n>0} · 1{k∈KW }

)
= π (n− 1, k) · λ(n− 1) · 1{n>0} · 1{k∈KW } +

∑
`∈KW

π (n+ 1, `) · µ(n+ 1) ·Rn+1(`, k)

+
∑

`∈K\{k}

π (n, `) · vn(`, k).

Substitution of π (n, k) = ξ(n) · θ (k) into the global balance equations directly leads to

ξ(n) · θ (k) ·
(
λ(n) · 1{k∈KW } − vn(k, k) + µ(n) · 1{n>0} · 1{k∈KW }

)
= ξ(n− 1) · θ (k) · λ(n− 1) · 1{n>0} · 1{k∈KW } +

∑
`∈KW

ξ(n+ 1) · θ (`) · µ(n+ 1) ·Rn+1(`, k)

+
∑

`∈K\{k}

ξ(n) · θ (`) · vn(`, k).

By substitution of ξ(n) = C−1 ·
∏n
m=1

λ(m−1)
µ(m) we obtain

ξ(n) · θ (k) ·
(
λ(n) · 1{k∈KW } − vn(k, k) + µ(n) · 1{n>0} · 1{k∈KW }

)
= ξ(n) · θ (k) · µ(n) · 1{n>0} · 1{k∈KW } +

∑
`∈KW

ξ(n) · θ (`) · λ(n) ·Rn+1(`, k)

+
∑

`∈K\{k}

ξ(n) · θ (`) · vn(`, k).

Cancelling ξ(n) and the sum with the terms µ(n) · 1{n>0} · 1{k∈KW } on both sides of the
equation leads to

θ (k) ·
(
λ(n) · 1{k∈KW } − vn(k, k)

)
=
∑
`∈KW

θ (`) · λ(n) ·Rn+1(`, k) +
∑

`∈K\{k}

θ (`) · vn(`, k). (D.1.13)

However, this stands in contradiction to the product form assumption since θ(k) cannot
be defined independently of n.
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Special case: Queue-length-independent arrival and service rates
In this paragraph, we analyse the queueing-environment system with state-independent
service rates µ and arrival rates λ. Recall that the queueing-environment process Z is
ergodic.

The following proposition is a special case of Proposition D.1.16.

Proposition D.1.19. The queueing-environment process Z fulfils for all n ∈ N0

P (X = n, Y ∈ KW ) = P (X = n+ 1, Y ∈ KW ) · µ
λ

(D.1.14)

and

P (X = n, Y ∈ KW ) = P (X = 0, Y ∈ KW ) ·
(
λ

µ

)n
. (D.1.15)

The following corollary is a special case of Corollary D.1.17.

Corollary D.1.20. For the conditional distribution of the queue length process condi-
tioned on {Y ∈ KW } holds for n ∈ N0

P (X = n|Y ∈ KW ) = P (X = 0|Y ∈ KW ) ·
(
λ

µ

)n
with

P (X = 0|Y ∈ KW ) =

(
1− λ

µ

)
.

This shows that the conditional queue length process under the condition that the envir-
onment is in KW has in equilibrium the same structure as a birth-and-death process with
positive birth-rates λ and positive death-rates µ.

Proposition D.1.21. For the queueing-environment process Z holds the following equi-
librium of probability flows

P (Y ∈ KW ) · λ︸ ︷︷ ︸
effective arrival rate

= P (X > 0, Y ∈ KW ) · µ︸ ︷︷ ︸
effective departure rate

.

Hence, the probability that the environment is in KW fulfils

P (Y ∈ KW ) = P (X > 0, Y ∈ KW ) · µ
λ

(D.1.16)

and
P (Y ∈ KW ) = P (X = 0, Y ∈ KW ) · µ

µ− λ
. (D.1.17)

Proof. Summation of equation (D.1.14) over n ∈ N0 yields

P (Y ∈ KW ) =
∞∑
n=0

P (X = n, Y ∈ KW )
(D.1.14)

=
∞∑
n=0

P (X = n+ 1, Y ∈ KW ) · µ
λ

= P (X > 0, Y ∈ KW ) · µ
λ
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and summation of equation (D.1.15) over n ∈ N0 yields

P (Y ∈ KW ) =

∞∑
n=0

P (X = n, Y ∈ KW )
(D.1.15)

=

∞∑
n=0

P (X = 0, Y ∈ KW ) ·
(
λ

µ

)n
= P (X = 0, Y ∈ KW )

∞∑
n=0

(
λ

µ

)n
= P (X = 0, Y ∈ KW ) · µ

µ− λ
.

Proposition D.1.22. The limiting and stationary distribution of Z is in general not of
product form.

Proof. The structure of the proof is similar to the proof of Proposition D.1.18 for the
queueing-environment system with queue-length-dependent arrival and service rates. If
the stationary distribution has a product form, it holds for any n ∈ N0

P (X = n, Y > 0) = P (X = n) · P (Y > 0) .

Then, it follows from Corollary D.1.20 for n ∈ N0

P (X = n) =
P (X = n) · P (Y > 0)

P (Y > 0)
=
P (X = n, Y > 0)

P (Y > 0)
= P (X = n|Y > 0)

= P (X = 0|Y > 0) ·
(
λ

µ

)n
=

(
1− λ

µ

)
·
(
λ

µ

)n
.

Consequently, if the stationary distribution has a product form

π (n, k) = ξ(n) · θ (k) , n ∈ N0, k ∈ K,

then
ξ(n) = C−1 ·

(
λ

µ

)n
, n ∈ N0,

with normalisation constant C−1 =
(

1− λ
µ

)
.

By substitution of this stationary distribution into the global balance equations we also
get an equation as in (D.1.13) (with λ instead of λ(n)) which is in contradiction to the
product form assumption.
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D.2. Comparing throughputs with different ageing regimes

D.2. Comparing throughputs with different ageing regimes

The following proposition is Proposition 4.3.11.

Proposition. Consider three (exponential) ergodic production-inventory systems with the
same arrival rate λ, service rate µ, replenishment rate ν, individual ageing rate γ for items
in the inventory which are subject to ageing.
The ageing regimes of the systems are different, which results in different Markovian state
processes which we denote by Zo under ageing regime (γ ·k)·1{m=0}+(γ ·(k−1)+)·1{m>0},
Z− under ageing regime γ ·k, and Z+ under ageing regime γ ·(k−1)+. Then the following
holds.

(a) If v−n is isotone, then for all (m, k) ∈ E holds

v−n (m, k) ≤ von(m, k) ∀n ∈ N, (D.2.1)

and consequently TH− ≤ THo.

(b) If v+
n is isotone, then for all (m, k) ∈ E holds

von(m, k) ≤ v+
n (m, k) ∀n ∈ N, (D.2.2)

and consequently THo ≤ TH+.

(c) If von is isotone, then for all (m, k) ∈ E holds

v−n (m, k) ≤ von(m, k) ≤ v+
n (m, k) ∀n ∈ N, (D.2.3)

and consequently TH− ≤ THo ≤ TH+.

Proof. We proceed by induction over the number of jumps of the uniformization chains
Z−u , Z

o
u, Z

+
u and compare the respective cumulative rewards. By definition is in any case

v−1 (m, k) = vo1(m, k) = v+
1 (m, k) = r(m, k) ∀(m, k) ∈ E.

Assume that for some n ≥ 1 holds

v−n (m, k) ≤ von(m, k) ≤ v+
n (m, k), ∀(m, k) ∈ E.

To perform the induction step we have to show

v−n+1(m, k) ≤ von+1(m, k) ≤ v+
n+1(m, k), ∀(m, k) ∈ E.

By v∗n+1 = r +R∗ · v∗n for ∗ ∈ {o,−,+} this reduces to

(R−v−n )(m, k) ≤ (Rovon)(m, k) ≤ (R+v+
n )(m, k), ∀(m, k) ∈ E.

For states (m, 0), m ∈ N0, we have for ∗ ∈ {o,−,+}

(R∗v∗n)(m, 0) =
ν

α
· v∗n(m, 1) +

λ+ µ+ γ · b
α

· v∗n(m, 0),

which proves the induction step in this case for (a), (b), (c). The other cases need
more detailed arguments. We first compute expressions (R∗v∗n)(m, k) and discuss then
the comparison arguments.
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For state (0, b) we have

(R−v−n )(0, b) =
λ

α
· v−n (1, b) +

γ · b
α
· v−n (0, b− 1) +

µ+ ν

α
· v−n (0, b), (D.2.4)

(Rovon)(0, b) =
λ

α
· von(1, b) +

γ · b
α
· von(0, b− 1) +

µ+ ν

α
· von(0, b), (D.2.5)

(R+v+
n )(0, b) =

λ

α
· v+
n (1, b) +

γ · (b− 1)

α
· v+
n (0, b− 1) +

µ+ ν + γ

α
· v+
n (0, b). (D.2.6)

For states (0, k) with k ∈ {1, . . . , b− 1} we have

(R−v−n )(0, k) =
λ

α
· v−n (1, k) +

ν

α
· v−n (0, k + 1) +

γ · k
α
· v−n (0, k − 1)

+
µ+ γ · (b− k)

α
· v−n (0, k), (D.2.7)

(Rovon)(0, k) =
λ

α
· von(1, k) +

ν

α
· von(0, k + 1) +

γ · k
α
· von(0, k − 1)

+
µ+ γ · (b− k)

α
· von(0, k), (D.2.8)

(R+v+
n )(0, k) =

λ

α
· v+
n (1, k) +

ν

α
· v+
n (0, k + 1) +

γ · (k − 1)

α
· v+
n (0, k − 1)

+
µ+ γ · (b− k + 1)

α
· v+
n (0, k). (D.2.9)

For states (m, b) with m ∈ N we have

(R−v−n )(m, b) =
λ

α
· v−n (m+ 1, b) +

µ

α
· v−n (m− 1, b− 1)

+
γ · b
α
· v−n (m, b− 1) +

ν

α
· v−n (m, b), (D.2.10)

(Rovon)(m, b) =
λ

α
· von(m+ 1, b) +

µ

α
· von(m− 1, b− 1)

+
γ · (b− 1)

α
· von(m, b− 1) +

ν + γ

α
· von(m, b), (D.2.11)

(R+v+
n )(m, b) =

λ

α
· v+
n (m+ 1, b) +

µ

α
· v+
n (m− 1, b− 1)

+
γ · (b− 1)

α
· v+
n (m, b− 1) +

ν + γ

α
· v+
n (m, b). (D.2.12)
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For states (m, k) with m ∈ N and k ∈ {1, . . . , b− 1} we have

(R−v−n )(m, k) =
λ

α
· v−n (m+ 1, k) +

µ

α
· v−n (m− 1, k − 1) +

ν

α
· v−n (m, k + 1)

+
γ · k
α
· v−n (m, k − 1) +

γ · (b− k)

α
· v−n (m, k), (D.2.13)

(Rovon)(m, k) =
λ

α
· von(m+ 1, k) +

µ

α
· von(m− 1, k − 1) +

ν

α
· von(m, k + 1)

+
γ · (k − 1)

α
· von(m, k − 1) +

γ · (b− k + 1)

α
· von(m, k), (D.2.14)

(R+v+
n )(m, k) =

λ

α
· v+
n (m+ 1, k) +

µ

α
· v+
n (m− 1, k − 1) +

ν

α
· v+
n (m, k + 1)

+
γ · (k − 1)

α
· v+
n (m, k − 1) +

γ · (b− k + 1)

α
· v+
n (m, k). (D.2.15)

(a) Comparing (D.2.4) and (D.2.5) resp. (D.2.7) and (D.2.8) shows that for initial states
(0, k) for all k ∈ {1, . . . , b} the proposed inequality v−n+1(0, k) ≤ von+1(0, k) holds.

We rewrite (D.2.10) and (D.2.11) as

(R−v−n )(m, b) =
λ

α
· v−n (m+ 1, b) +

µ

α
· v−n (m− 1, b− 1) +

γ · (b− 1)

α
· v−n (m, b− 1)

+
ν + γ

α
· v−n (m, b) +

[γ
α
· v−n (m, b− 1)− γ

α
· v−n (m, b)

]
,

(Rovon)(m, b) =
λ

α
· von(m+ 1, b) +

µ

α
· von(m− 1, b− 1)

+
γ · (b− 1)

α
· von(m, b− 1) +

ν + γ

α
· von(m, b)

and rewrite (D.2.13) and (D.2.14) as

(R−v−n )(m, k) =
λ

α
· v−n (m+ 1, k) +

µ

α
· v−n (m− 1, k − 1) +

ν

α
· v−n (m, k + 1)

+
γ · (k − 1)

α
· v−n (m, k − 1) +

γ · (b− k + 1)

α
· v−n (m, k)

+
[γ
α
· v−n (m, k − 1)− γ

α
· v−n (m, k)

]
,

(Rovon)(m, k) =
λ

α
· von(m+ 1, k) +

µ

α
· von(m− 1, k − 1) +

ν

α
· von(m, k + 1)

+
γ · (k − 1)

α
· von(m, k − 1) +

γ · (b− k + 1)

α
· von(m, k).

If v−n is isotone, the differences in the blue squared brackets are non-positive.
This proves (a).
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(b) Comparing (D.2.11) and (D.2.12) resp. (D.2.14) and (D.2.15) shows that for ini-
tial states (m, k) with m ≥ 1 and k ∈ {1, . . . , b} the proposed inequality von+1(m, k) ≤
v+
n+1(m, k) holds.

We rewrite (D.2.5) and (D.2.6) as

(Rovon)(0, b) =
λ

α
· von(1, b) +

γ · b
α
· von(0, b− 1) +

µ+ ν

α
· von(0, b),

(R+v+
n )(0, b) =

λ

α
· v+
n (1, b) +

γ · b
α
· v+
n (0, b− 1) +

µ+ ν

α
· v+
n (0, b)

+
[γ
α
· v+
n (0, b)− γ

α
· v+
n (0, b− 1)

]
and rewrite (D.2.8) and (D.2.9) as

(Rovon)(0, k) =
λ

α
· von(1, k) +

ν

α
· von(0, k + 1) +

γ · k
α
· von(0, k − 1)

+
µ+ γ · (b− k)

α
· von(0, k),

(R+v+
n )(0, k) =

λ

α
· v+
n (1, k) +

ν

α
· v+
n (0, k + 1) +

γ · k
α
· v+
n (0, k − 1)

+
µ+ γ · (b− k)

α
· v+
n (0, k) +

[γ
α
· v+
n (0, k)− γ

α
· v+
n (0, k − 1)

]
.

If v+
n is isotone, the differences in the blue squared brackets are non-negative.

This proves (b).

(c) To prove the two-sided bounds v−n+1(m, k) ≤ von+1(m, k) ≤ v+
n+1(m, k) we first check

again first (D.2.4) and (D.2.5) resp. (D.2.7) and (D.2.8) and see that for initial states
(0, k) for all k ∈ {1, . . . , b} the proposed inequality v−n+1(0, k) ≤ von+1(0, k) holds.
We rewrite (D.2.5) and (D.2.6) as

(Rovon)(0, b) =
λ

α
· von(1, b) +

γ · (b− 1)

α
· von(0, b− 1) +

µ+ ν + γ

α
· von(0, b)

+
[γ
α
· von(0, b− 1)− γ

α
· von(0, b)

]
,

(R+v+
n )(0, b) =

λ

α
· v+
n (1, b) +

γ · (b− 1)

α
· v+
n (0, b− 1) +

µ+ ν + γ

α
· v+
n (0, b)
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and rewrite (D.2.8) and (D.2.9) as

(Rovon)(0, k) =
λ

α
· von(1, k) +

ν

α
· von(0, k + 1) +

γ · (k − 1)

α
· von(0, k − 1)

+
µ+ γ · (b− k + 1)

α
· von(0, k) +

[γ
α
· von(0, k − 1)− γ

α
· von(0, k)

]
,

(R+v+
n )(0, k) =

λ

α
· v+
n (1, k) +

ν

α
· v+
n (0, k + 1) +

γ · (k − 1)

α
· v+
n (0, k − 1)

+
µ+ γ · (b− k + 1)

α
· v+
n (0, k).

If von is isotone, the differences in blue squared brackets are non-positive, which proves
this part of (c).

We next check (D.2.11) and (D.2.12) resp. (D.2.14) and (D.2.15) and see that for
initial states (m, k) with m ≥ 1 and k ∈ {1, . . . , b} the proposed inequality von+1(m, k) ≤
v+
n+1(m, k) holds.
We rewrite (D.2.10) and (D.2.11) as

(R−v−n )(m, b) =
λ

α
· v−n (m+ 1, b) +

µ

α
· v−n (m− 1, b− 1)

+
γ · b
α
· v−n (m, b− 1) +

ν

α
· v−n (m, b),

(Rovon)(m, b) =
λ

α
· von(m+ 1, b) +

µ

α
· von(m− 1, b− 1)

+
γ · b
α
· von(m, b− 1) +

ν

α
· von(m, b) +

[γ
α
· von(m, b)− γ

α
· von(m, b− 1)

]
and rewrite (D.2.13) and (D.2.14) as

(R−v−n )(m, k) =
λ

α
· v−n (m+ 1, k) +

µ

α
· v−n (m− 1, k − 1) +

ν

α
· v−n (m, k + 1)

+
γ · k
α
· v−n (m, k − 1) +

γ · (b− k)

α
· v−n (m, k),

(Rovon)(m, k) =
λ

α
· von(m+ 1, k) +

µ

α
· von(m− 1, k − 1) +

ν

α
· von(m, k + 1)

+
γ · k
α
· von(m, k − 1) +

γ · (b− k)

α
· von(m, k)

+
[γ
α
· von(m, k)− γ

α
· von(m, k − 1)

]
.

If von is isotone, the differences in blue squared brackets are non-negative.
This proves the remaining part of (c).
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The following proposition is Proposition 4.3.12.

Proposition. If in the production-inventory system with ageing regime k → γ ·k we have
λ ≤ γ, then the finite time cumulative rewards v−n (m, k) are isotone with respect to the
natural order.

Proof. We show by induction isotonicity in both arguments and that the increase is
bounded. For all n ∈ N holds

v−n (m, k)− v−n (m, k − 1) ≥ 0, ∀k ∈ {1, . . . , b}, m ∈ N0, (D.2.16)
v−n (m+ 1, k)− v−n (m, k) ≥ 0, ∀k ∈ {0, 1, . . . , b}, m ∈ N0, (D.2.17)
v−n (m+ 1, k)− v−n (m, k) ≤ α, ∀k ∈ {0, 1, . . . , b}, m ∈ N0, (D.2.18)
v−n (m, k)− v−n (m, k − 1) ≤ α, ∀k ∈ {1, . . . , b}, m ∈ N0. (D.2.19)

For n = 1 we have v−1 (m, k) = r(m, k) = µ · 1{m>0} · 1{k>0}, ∀k ∈ {0, 1, . . . , b}, m ∈ N0,
so (D.2.16)-(D.2.19) are trivially true.

Assume that (D.2.16)-(D.2.19) hold for some n ∈ N. We shall verify these properties
for v−n+1. In any case we exploit v−n+1 = r +R−v−n , n ≥ 1.

I First we check (D.2.16).
For m = 0 and k = 1 holds

v−n+1(0, 1)− v−n+1(0, 0)

=

[
λ

α
· v−n (1, 1) +

ν

α
· v−n (0, 2) +

γ

α
· v−n (0, 0) +

µ+ γ · (b− 1)

α
· v−n (0, 1)

]
−
[
ν

α
· v−n (0, 1) +

λ+ µ+ γ · b
α

· v−n (0, 0)

]
=
λ

α
· (v−n (1, 1)− v−n (1, 0))︸ ︷︷ ︸

≥0, by (D.2.16)

+
λ

α
· (v−n (1, 0)− v−n (0, 0))︸ ︷︷ ︸

≥0, by (D.2.17)

+
ν

α
· (v−n (0, 2)− v−n (0, 1))︸ ︷︷ ︸

≥0, by (D.2.16)

+
µ+ γ · (b− 1)

α
· (v−n (0, 1)− v−n (0, 0))︸ ︷︷ ︸

≥0, by (D.2.16)

≥ 0.

For m = 0 and k ∈ {2, . . . , b− 1} holds

v−n+1(0, k)− v−n+1(0, k − 1)

=

[
λ

α
· v−n (1, k) +

ν

α
· v−n (0, k + 1) +

γ · k
α
· v−n (0, k − 1) +

µ+ γ · (b− k)

α
· v−n (0, k)

]
−
[
λ

α
· v−n (1, k − 1) +

ν

α
· v−n (0, k) +

γ · (k − 1)

α
· v−n (0, k − 2)

+
µ+ γ · (b− k + 1)

α
· v−n (0, k − 1)

]
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=
λ

α
· (v−n (1, k)− v−n (1, k − 1))︸ ︷︷ ︸

≥0, by (D.2.16)

+
ν

α
· (v−n (0, k + 1)− v−n (0, k))︸ ︷︷ ︸

≥0, by (D.2.16)

+
γ · (k − 1)

α
· (v−n (0, k − 1)− v−n (0, k − 2))︸ ︷︷ ︸

≥0, by (D.2.16)

+
µ+ γ · (b− k)

α
· (v−n (0, k)− v−n (0, k − 1))︸ ︷︷ ︸

≥0, by (D.2.16)

≥ 0.

For m = 0 and k = b holds

v−n+1(0, b)− v−n+1(0, b− 1)

=

[
λ

α
· v−n (1, b) +

γ · b
α
· v−n (0, b− 1) +

µ+ ν

α
· v−n (0, b)

]
−
[
λ

α
· v−n (1, b− 1) +

ν

α
· v−n (0, b) +

γ · (b− 1)

α
· v−n (0, b− 2) +

µ+ γ

α
· v−n (0, b− 1)

]
=
λ

α
· (v−n (1, b)− v−n (1, b− 1))︸ ︷︷ ︸

≥0, by (D.2.16)

+
γ · (b− 1)

α
· (v−n (0, b− 1)− v−n (0, b− 2))︸ ︷︷ ︸

≥0, by (D.2.16)

+
µ

α
· (v−n (0, b)− v−n (0, b− 1))︸ ︷︷ ︸

≥0, by (D.2.16)

≥ 0.

For m ≥ 1 and k = 1 holds

v−n+1(m, 1)− v−n+1(m, 0)

=

[
µ+

λ

α
· v−n (m+ 1, 1) +

µ

α
· v−n (m− 1, 0) +

ν

α
· v−n (m, 2) +

γ

α
· v−n (m, 0)

+
γ · (b− 1)

α
· v−n (m, 1)

]
−
[
0 +

ν

α
· v−n (m, 1) +

λ+ µ+ γ · b
α

· v−n (m, 0)

]
=
λ

α
· (v−n (m+ 1, 1)− v−n (m, 1))︸ ︷︷ ︸

≥0, by (D.2.17)

+
λ

α
· (v−n (m, 1)− v−n (m, 0))︸ ︷︷ ︸

≥0, by (D.2.16)

+
ν

α
· (v−n (m, 2)− v−n (m, 1))︸ ︷︷ ︸

≥0, by (D.2.16)

+
γ · (b− 1)

α
· (v−n (m, 1)− v−n (m, 0))︸ ︷︷ ︸

≥0, by (D.2.16)

+µ− µ

α
· (v−n (m, 0)− v−n (m− 1, 0))︸ ︷︷ ︸
∈[0,α], by (D.2.17), (D.2.18)︸ ︷︷ ︸

≥0

≥ 0.
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For m ≥ 1 and k ∈ {2, . . . , b− 1} holds

v−n+1(m, k)− v−n+1(m, k − 1)

=

[
µ+

λ

α
· v−n (m+ 1, k) +

µ

α
· v−n (m− 1, k − 1) +

ν

α
· v−n (m, k + 1)

+
γ · k
α
· v−n (m, k − 1) +

γ · (b− k)

α
· v−n (m, k)

]
−
[
µ+

λ

α
· v−n (m+ 1, k − 1) +

µ

α
· v−n (m− 1, k − 2) +

ν

α
· v−n (m, k)

+
γ · (k − 1)

α
· v−n (m, k − 2) +

γ · (b− k + 1)

α
· v−n (m, k − 1)

]
=
λ

α
· (v−n (m+ 1, k)− v−n (m+ 1, k − 1))︸ ︷︷ ︸

≥0, by (D.2.16)

+
µ

α
· (v−n (m− 1, k − 1)− v−n (m− 1, k − 2))︸ ︷︷ ︸

≥0, by (D.2.16)

+
ν

α
· (v−n (m, k + 1)− v−n (m, k))︸ ︷︷ ︸

≥0, by (D.2.16)

+
γ · (k − 1)

α
· (v−n (m, k − 1)− v−n (m, k − 2))︸ ︷︷ ︸

≥0, by (D.2.16)

+
γ · (b− k)

α
· (v−n (m, k)− v−n (m, k − 1))︸ ︷︷ ︸

≥0, by (D.2.16)

≥ 0.

For m ≥ 1 and k = b holds

v−n+1(m, b)− v−n+1(m, b− 1)

=

[
µ+

λ

α
· v−n (m+ 1, b) +

µ

α
· v−n (m− 1, b− 1) +

γ · b
α
· v−n (m, b− 1) +

ν

α
v−n (m, b)

]
−
[
µ+

λ

α
· v−n (m+ 1, b− 1) +

µ

α
· v−n (m− 1, b− 2) +

ν

α
· v−n (m, b)

+
γ · (b− 1)

α
· v−n (m, b− 2) +

γ

α
· v−n (m, b− 1)

]
=
λ

α
· (v−n (m+ 1, b)− v−n (m+ 1, b− 1))︸ ︷︷ ︸

≥0, by (D.2.16)

+
µ

α
· (v−n (m− 1, b− 1)− v−n (m− 1, b− 2))︸ ︷︷ ︸

≥0, by (D.2.16)

+
γ · (b− 1)

α
· (v−n (m, b− 1)− v−n (m, b− 2))︸ ︷︷ ︸

≥0, by (D.2.16)

≥ 0.
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I Second we check (D.2.17).
For m = 0 and k = 0 holds

v−n+1(1, 0)− v−n+1(0, 0)

=

[
ν

α
· v−n (1, 1) +

λ+ µ+ γ · b
α

· v−n (1, 0)

]
−
[
ν

α
· v−n (0, 1) +

λ+ µ+ γ · b
α

· v−n (0, 0)

]
=
ν

α
· (v−n (1, 1)− v−n (0, 1))︸ ︷︷ ︸

≥0, by (D.2.17)

+
λ+ µ+ γ · b

α
· (v−n (1, 0)− v−n (0, 0))︸ ︷︷ ︸

≥0, by (D.2.17)

≥ 0.

For m = 0 and k ∈ {1, . . . , b− 1} holds

v−n+1(1, k)− v−n+1(0, k)

=

[
µ+

λ

α
· v−n (2, k) +

µ

α
· v−n (0, k − 1) +

ν

α
· v−n (1, k + 1) +

γ · k
α
· v−n (1, k − 1)

+
γ · (b− k)

α
· v−n (1, k)

]
−
[
0 +

λ

α
· v−n (1, k) +

ν

α
· v−n (0, k + 1) +

γ · k
α
· v−n (0, k − 1) +

µ+ γ · (b− k)

α
· v−n (0, k)

]
=
λ

α
· (v−n (2, k)− v−n (1, k))︸ ︷︷ ︸

≥0, by (D.2.17)

+
ν

α
· (v−n (1, k + 1)− v−n (0, k + 1))︸ ︷︷ ︸

≥0, by (D.2.17)

+
γ · k
α
· (v−n (1, k − 1)− v−n (0, k − 1))︸ ︷︷ ︸

≥0, by (D.2.17)

+
γ · (b− k)

α
· (v−n (1, k)− v−n (0, k))︸ ︷︷ ︸

≥0, by (D.2.17)

+µ− µ

α
· (v−n (0, k)− v−n (0, k − 1))︸ ︷︷ ︸
∈[0,α], by (D.2.16), (D.2.19)︸ ︷︷ ︸

≥0

≥ 0.

For m = 0 and k = b holds

v−n+1(1, b)− v−n+1(0, b)

=

[
µ+

λ

α
· v−n (2, b) +

µ

α
· v−n (0, b− 1) +

γ · b
α
· v−n (1, b− 1) +

ν

α
· v−n (1, b)

]
−
[
0 +

λ

α
· v−n (1, b) +

γ · b
α
· v−n (0, b− 1) +

µ+ ν

α
· v−n (0, b)

]
=
λ

α
· (v−n (2, b)− v−n (1, b))︸ ︷︷ ︸

≥0, by (D.2.17)

+
ν

α
· (v−n (1, b)− v−n (0, b))︸ ︷︷ ︸

≥0, by (D.2.17)

+
γ · b
α
· (v−n (1, b− 1)− v−n (0, b− 1))︸ ︷︷ ︸

≥0, by (D.2.17)

+µ− µ

α
· (v−n (0, b)− v−n (0, b− 1))︸ ︷︷ ︸
∈[0,α], by (D.2.16), (D.2.19)︸ ︷︷ ︸

≥0

≥ 0.
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For m ≥ 1 and k = 0 holds

v−n+1(m+ 1, 0)− v−n+1(m, 0)

=

[
ν

α
· v−n (m+ 1, 1) +

λ+ µ+ γ · b
α

· v−n (m+ 1, 0)

]
−
[
ν

α
· v−n (m, 1) +

λ+ µ+ γ · b
α

· v−n (m, 0)

]
=
ν

α
· (v−n (m+ 1, 1)− v−n (m, 1))︸ ︷︷ ︸

≥0, by (D.2.17)

+
λ+ µ+ γ · b

α
· (v−n (m+ 1, 0)− v−n (m, 0))︸ ︷︷ ︸

≥0, by (D.2.17)

≥ 0.

For m ≥ 1 and k ∈ {1, . . . , b− 1} holds

v−n+1(m+ 1, k)− v−n+1(m, k)

=

[
µ+

λ

α
· v−n (m+ 2, k) +

µ

α
· v−n (m, k − 1) +

ν

α
· v−n (m+ 1, k + 1)

+
γ · k
α
· v−n (m+ 1, k − 1) +

γ · (b− k)

α
· v−n (m+ 1, k)

−
[
µ+

λ

α
· v−n (m+ 1, k) +

µ

α
· v−n (m− 1, k − 1) +

ν

α
· v−n (m, k + 1)

+
γ · k
α
· v−n (m, k − 1) +

γ · (b− k)

α
· v−n (m, k)

]
=
λ

α
· (v−n (m+ 2, k)− v−n (m+ 1, k))︸ ︷︷ ︸

≥0, by (D.2.17)

+
µ

α
· (v−n (m, k − 1)− v−n (m− 1, k − 1))︸ ︷︷ ︸

≥0, by (D.2.17)

+
ν

α
· (v−n (m+ 1, k + 1)− v−n (m, k + 1))︸ ︷︷ ︸

≥0, by (D.2.17)

+
γ · k
α
· (v−n (m+ 1, k − 1)− v−n (m, k − 1))︸ ︷︷ ︸

≥0, by (D.2.17)

+
γ · (b− k)

α
· (v−n (m+ 1, k)− v−n (m, k))︸ ︷︷ ︸

≥0, by (D.2.17)

≥ 0.

For m ≥ 1 and k = b holds

v−n+1(m+ 1, b)− v−n+1(m, b)

=

[
µ+

λ

α
· v−n (m+ 2, b) +

µ

α
· v−n (m, b− 1) +

γ · b
α
· v−n (m+ 1, b− 1) +

ν

α
· v−n (m+ 1, b)

]
−
[
µ+

λ

α
· v−n (m+ 1, b) +

µ

α
· v−n (m− 1, b− 1) +

γ · b
α
· v−n (m, b− 1) +

ν

α
· v−n (m, b)

]
=
λ

α
· (v−n (m+ 2, b)− v−n (m+ 1, b))︸ ︷︷ ︸

≥0, by (D.2.17)

+
µ

α
· (v−n (m, b− 1)− v−n (m− 1, b− 1)︸ ︷︷ ︸

≥0, by (D.2.17)

+
γ · b
α
· (v−n (m+ 1, b− 1)− v−n (m, b− 1))︸ ︷︷ ︸

≥0, by (D.2.17)

+
ν

α
· (v−n (m+ 1, b)− v−n (m, b))︸ ︷︷ ︸

≥0, by (D.2.17)

≥ 0.
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I Third we check (D.2.18).
For m = 0 and k = 0 holds

v−n+1(1, 0)− v−n+1(0, 0)

=

[
ν

α
· v−n (1, 1) +

λ+ µ+ γ · b
α

· v−n (1, 0)

]
−
[
ν

α
· v−n (0, 1) +

λ+ µ+ γ · b
α

· v−n (0, 0)

]
=
ν

α
· (v−n (1, 1)− v−n (0, 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+
λ+ µ+ γ · b

α
· (v−n (1, 0)− v−n (0, 0))︸ ︷︷ ︸

≤α, by (D.2.18)

≤ α.

For m = 0 and k ∈ {1, . . . , b− 1} holds

v−n+1(1, k)− v−n+1(0, k)

=

[
µ+

λ

α
· v−n (2, k) +

µ

α
· v−n (0, k − 1) +

ν

α
· v−n (1, k + 1) +

γ · k
α
· v−n (1, k − 1)

+
γ · (b− k)

α
· v−n (1, k)

]
−
[
0 +

λ

α
· v−n (1, k) +

ν

α
· v−n (0, k + 1) +

γ · k
α
· v−n (0, k − 1) +

µ+ γ · (b− k)

α
· v−n (0, k)

]
=
λ

α
· (v−n (2, k)− v−n (1, k))︸ ︷︷ ︸

≤α, by (D.2.18)

+
ν

α
· (v−n (1, k + 1)− v−n (0, k + 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+
γ · k
α
· (v−n (1, k − 1)− v−n (0, k − 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+
γ · (b− k)

α
· (v−n (1, k)− v−n (0, k))︸ ︷︷ ︸

≤α, by (D.2.18)

+µ− µ

α
· (v−n (0, k)− v−n (0, k − 1))︸ ︷︷ ︸
∈[0,α], by (D.2.16), (D.2.19)︸ ︷︷ ︸

≤µ

≤ α.

For m = 0 and k = b holds

v−n+1(1, b)− v−n+1(0, b)

=

[
µ+

λ

α
· v−n (2, b) +

µ

α
· v−n (0, b− 1) +

γ · b
α
· v−n (1, b− 1) +

ν

α
· v−n (1, b)

]
−
[
0 +

λ

α
· v−n (1, b) +

γ · b
α
· v−n (0, b− 1) +

µ+ ν

α
· v−n (0, b)

]
=
λ

α
· (v−n (2, b)− v−n (1, b))︸ ︷︷ ︸

≤α, by (D.2.18)

+
ν

α
· (v−n (1, b)− v−n (0, b))︸ ︷︷ ︸

≤α, by (D.2.18)

+
γ · b
α
· (v−n (1, b− 1)− v−n (0, b− 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+µ− µ

α
· (v−n (0, b)− v−n (0, b− 1))︸ ︷︷ ︸
∈[0,α], by (D.2.16), (D.2.19)︸ ︷︷ ︸

≤µ

≤ α.
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For m ≥ 1 and k = 0 holds

v−n+1(m+ 1, 0)− v−n+1(m, 0)

=

[
ν

α
· v−n (m+ 1, 1) +

λ+ µ+ γ · b
α

· v−n (m+ 1, 0)

]
−
[
ν

α
· v−n (m, 1) +

λ+ µ+ γ · b
α

· v−n (m, 0)

]
=
ν

α
v (v−n (m+ 1, 1)− v−n (m, 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+
λ+ µ+ γ · b

α
· (v−n (m+ 1, 0)− v−n (m, 0))︸ ︷︷ ︸

≤α, by (D.2.18)

≤ α.

For m ≥ 1 and k ∈ {1, . . . , b− 1} holds

v−n+1(m+ 1, k)− v−n+1(m, k)

=

[
µ+

λ

α
· v−n (m+ 2, k) +

µ

α
· v−n (m, k − 1) +

ν

α
· v−n (m+ 1, k + 1)

+
γ · k
α
· v−n (m+ 1, k − 1) +

γ · (b− k)

α
· v−n (m+ 1, k)

]
−
[
µ+

λ

α
· v−n (m+ 1, k) +

µ

α
· v−n (m− 1, k − 1) +

ν

α
· v−n (m, k + 1)

+
γ · k
α
· v−n (m, k − 1) +

γ · (b− k)

α
· v−n (m, k)

]
=
λ

α
· (v−n (m+ 2, k)− v−n (m+ 1, k))︸ ︷︷ ︸

≤α, by (D.2.18)

+
µ

α
· (v−n (m, k − 1)− v−n (m− 1, k − 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+
ν

α
· (v−n (m+ 1, k + 1)− v−n (m, k + 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+
γ · k
α
· (v−n (m+ 1, k − 1)− v−n (m, k − 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+
γ · (b− k)

α
· (v−n (m+ 1, k)− v−n (m, k))︸ ︷︷ ︸

≤α, by (D.2.18)

≤ α.

For m ≥ 1 and k = b holds

v−n+1(m+ 1, b)− v−n+1(m, b)

=

[
µ+

λ

α
· v−n (m+ 2, b) +

µ

α
· v−n (m, b− 1) +

γ · b
α
· v−n (m+ 1, b− 1) +

ν

α
· v−n (m+ 1, b)

]
−
[
µ+

λ

α
· v−n (m+ 1, b) +

µ

α
· v−n (m− 1, b− 1) +

γ · b
α
· v−n (m, b− 1) +

ν

α
· v−n (m, b)

]
=
λ

α
· (v−n (m+ 2, b)− v−n (m+ 1, b))︸ ︷︷ ︸

≤α, by (D.2.18)

+
µ

α
· (v−n (m, b− 1)− v−n (m− 1, b− 1))

+
γ · b
α
· (v−n (m+ 1, b− 1)− v−n (m, b− 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+
ν

α
· (v−n (m+ 1, b)− v−n (m, b))︸ ︷︷ ︸

≤α, by (D.2.18)

≤ α.
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I Fourth we check (D.2.19).
For m = 0 and k = 1 holds

v−n+1(0, 1)− v−n+1(0, 0)

=

[
λ

α
· v−n (1, 1) +

ν

α
· v−n (0, 2) +

γ

α
· v−n (0, 0) +

µ+ γ · (b− 1)

α
· v−n (0, 1)

]
−
[
ν

α
· v−n (0, 1) +

λ+ µ+ γ · b
α

v−n (0, 0)

]
=
λ

α
· (v−n (1, 1)− v−n (0, 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+
λ

α
· (v−n (0, 1)− v−n (0, 0))︸ ︷︷ ︸

≤α, by (D.2.19)

+
ν

α
· (v−n (0, 2)− v−n (0, 1))︸ ︷︷ ︸

≤α, by (D.2.19)

+
µ+ γ · (b− 1)

α
· (v−n (0, 1)− v−n (0, 0))︸ ︷︷ ︸

≤α, by (D.2.19)

≤ (2λ+ µ+ ν + γ(b− 1))
(λ≤γ)

≤ α.

For m = 0 and k ∈ {2, . . . , b− 1} holds

v−n+1(0, k)− v−n+1(0, k − 1)

=

[
λ

α
· v−n (1, k) +

ν

α
· v−n (0, k + 1) +

γ · k
α
· v−n (0, k − 1) +

µ+ γ · (b− k)

α
· v−n (0, k)

]
−
[
λ

α
· v−n (1, k − 1) +

ν

α
· v−n (0, k) +

γ · (k − 1)

α
· v−n (0, k − 2)

+
µ+ γ · (b− k + 1)

α
· v−n (0, k − 1)

]
=
λ

α
· (v−n (1, k)− v−n (1, k − 1))︸ ︷︷ ︸

≤α, by (D.2.19)

+
ν

α
· (v−n (0, k + 1)− v−n (0, k))︸ ︷︷ ︸

≤α, by (D.2.19)

+
γ · (k − 1)

α
· (v−n (0, k − 1)− v−n (0, k − 2))︸ ︷︷ ︸

≤α, by (D.2.19)

+
µ+ γ · (b− k)

α
· (v−n (0, k)− v−n (0, k − 1))︸ ︷︷ ︸

≤α, by (D.2.19)

≤ α− γ.

For m = 0 and k = b holds

v−n+1(0, b)− v−n+1(0, b− 1)

=

[
λ

α
· v−n (1, b) +

γ · b
α
· v−n (0, b− 1) +

µ+ ν

α
· v−n (0, b)

]
−
[
λ

α
· v−n (1, b− 1) +

ν

α
· v−n (0, b) +

γ · (b− 1)

α
· v−n (0, b− 2) +

µ+ γ

α
· v−n (0, b− 1)

]
=
λ

α
· (v−n (1, b)− v−n (1, b− 1))︸ ︷︷ ︸

≤α, by (D.2.19)

+
γ · (b− 1)

α
· (v−n (0, b− 1)− v−n (0, b− 2))︸ ︷︷ ︸

≤α, by (D.2.19)

+
µ

α
· (v−n (0, b)− v−n (0, b− 1))︸ ︷︷ ︸

≤α, by (D.2.19)

≤ α− ν − γ.
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For m ≥ 1 and k = 1 holds

v−n+1(m, 1)− v−n+1(m, 0)

=

[
µ+

λ

α
· v−n (m+ 1, 1) +

µ

α
· v−n (m− 1, 0) +

ν

α
· v−n (m, 2) +

γ

α
· v−n (m, 0)

+
γ · (b− 1)

α
· v−n (m, 1)

]
−
[
0 +

ν

α
· v−n (m, 1) +

λ+ µ+ γ · b
α

· v−n (m, 0)

]
=
λ

α
· (v−n (m+ 1, 1)− v−n (m, 1))︸ ︷︷ ︸

≤α, by (D.2.18)

+
λ

α
· (v−n (m, 1)− v−n (m, 0))︸ ︷︷ ︸

≤α, by (D.2.19)

+
ν

α
· (v−n (m, 2)− v−n (m, 1))︸ ︷︷ ︸

≤α, by (D.2.19)

+
γ · (b− 1)

α
· (v−n (m, 1)− v−n (m, 0))︸ ︷︷ ︸

≤α, by (D.2.19)

+µ− µ

α
· (v−n (m, 0)− v−n (m− 1, 0))︸ ︷︷ ︸
∈[0,α], by (D.2.17), (D.2.18)︸ ︷︷ ︸

≤µ

≤ 2λ+ ν + µ+ γ(b− 1)
(λ≤γ)

≤ α.

For m ≥ 1 and k ∈ {2, . . . , b− 1} holds

v−n+1(m, k)− v−n+1(m, k − 1)

=

[
µ+

λ

α
· v−n (m+ 1, k) +

µ

α
· v−n (m− 1, k − 1) +

ν

α
· v−n (m, k + 1)

+
γ · k
α
· v−n (m, k − 1) +

γ · (b− k)

α
· v−n (m, k)

]
−
[
µ+

λ

α
· v−n (m+ 1, k − 1) +

µ

α
· v−n (m− 1, k − 2) +

ν

α
· v−n (m, k)

+
γ · (k − 1)

α
· v−n (m, k − 2) +

γ · (b− k + 1)

α
· v−n (m, k − 1)

]
=
λ

α
· (v−n (m+ 1, k)− v−n (m+ 1, k − 1))︸ ︷︷ ︸

≤α, by (D.2.19)

+
µ

α
· (v−n (m− 1, k − 1)− v−n (m− 1, k − 2))︸ ︷︷ ︸

≤α, by (D.2.19)

+
ν

α
· (v−n (m, k + 1)− v−n (m, k))︸ ︷︷ ︸

≤α, by (D.2.19)

+
γ · (k − 1)

α
· (v−n (m, k − 1)− v−n (m, k − 2))︸ ︷︷ ︸

≤α, by (D.2.19)

+
γ · (b− k)

α
· (v−n (m, k)− v−n (m, k − 1))︸ ︷︷ ︸

≤α, by (D.2.19)

≤ α− γ.
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For m ≥ 1 and k = b holds

v−n+1(m, b)− v−n+1(m, b− 1)

=

[
µ+

λ

α
· v−n (m+ 1, b) +

µ

α
· v−n (m− 1, b− 1) +

γ · b
α
· v−n (m, b− 1) +

ν

α
· v−n (m, b)

]
−
[
µ+

λ

α
· v−n (m+ 1, b− 1) +

µ

α
· v−n (m− 1, b− 2) +

ν

α
· v−n (m, b)

+
γ · (b− 1)

α
· v−n (m, b− 2) +

γ

α
· v−n (m, b− 1)

]
=
λ

α
·(v−n (m+ 1, b)− v−n (m+ 1, b− 1))︸ ︷︷ ︸

≤α, by (D.2.19)

+
µ

α
· (v−n (m− 1, b− 1)− v−n (m− 1, b− 2))︸ ︷︷ ︸

≤α, by (D.2.19)

+
γ · (b− 1)

α
·(v−n (m, b− 1)− v−n (m, b− 2))︸ ︷︷ ︸

≤α, by (D.2.19)

≤ (λ+ µ+ γ · (b− 1)) = α− ν − γ.

The following proposition is Proposition 4.3.13.

Proposition. If in the production-inventory system with ageing regime k → (γ · k) ·
1{m=0} + (γ · (k − 1)+) · 1{nm>0} we have µ = γ, then the finite time cumulative rewards
von(m, k) are isotone with respect to the natural order.

Proof. We show by induction isotonicity in both arguments, that the increase is bounded,
and that von is concave in the time parameter m. For all n ∈ N holds

von(m, k)− von(m, k − 1) ≥ 0, ∀k ∈ {1, . . . , b}, m ∈ N0, (D.2.20)
von(m+ 1, k)− von(m, k) ≥ 0, ∀k ∈ {0, 1, . . . , b}, m ∈ N0, (D.2.21)
von(m+ 1, k)− von(m, k) ≤ α, ∀k ∈ {0, 1, . . . , b}, m ∈ N0, (D.2.22)
von(m, k)− von(m, k − 1) ≤ α, ∀k ∈ {1, . . . , b}, m ∈ N0, (D.2.23)

von(m+ 1, k)− 2 · von(m, k) + von(m− 1, k) ≤ 0, ∀k ∈ {0, 1, . . . , b}, m ∈ N. (D.2.24)

For n = 1 we have vo1(m, k) = r(m, k) = µ · 1{m>0} · 1{k>0}, ∀k ∈ {0, 1, . . . , b}, m ∈ N0,
so (D.2.20)-(D.2.23) are trivially true.

Assume that (D.2.20)-(D.2.24) hold for some n ∈ N. We shall verify these properties
for von+1. In any case we exploit again: von+1 = r +Ro · von, n ≥ 1.
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I First we check (D.2.20).
For m = 0 the proof of (D.2.20) is similar to that of (D.2.16).

For m ≥ 1 and k = 1 holds

von+1(m, 1)− von+1(m, 0)

=

[
µ+

λ

α
· von(m+ 1, 1) +

µ

α
· von(m− 1, 0) +

ν

α
· von(m, 2) +

γ · b
α
· von(m, 1)

]
−
[
0 +

ν

α
· von(m, 1) +

λ+ µ+ γ · b
α

· von(m, 0)

]
=
λ

α
· (von(m+ 1, 1)− von(m, 1))︸ ︷︷ ︸

≥0, by (D.2.21)

+
λ

α
· (von(m, 1)− von(m, 0))︸ ︷︷ ︸

≥0, by (D.2.20)

+
ν

α
· (von(m, 2)− von(m, 1))︸ ︷︷ ︸

≥0, v(D.2.20)

+
γ · b
α
· (von(m, 1)− von(m, 0))︸ ︷︷ ︸

≥0, by (D.2.20)

+µ− µ

α
· (von(m, 0)− von(m− 1, 0))︸ ︷︷ ︸
∈[0,α], by (D.2.21), (D.2.22)︸ ︷︷ ︸

≥0

≥ 0.

For m ≥ 1 and k ∈ {2, . . . , b− 1} holds

von+1(m, k)− von+1(m, k − 1)

=

[
µ+

λ

α
· von(m+ 1, k) +

µ

α
· von(m− 1, k − 1) +

ν

α
· von(m, k + 1)

+
γ · (k − 1)

α
· von(m, k − 1) +

γ · (b− k + 1)

α
· von(m, k)

]
−
[
µ+

λ

α
· von(m+ 1, k − 1) +

µ

α
· von(m− 1, k − 2) +

ν

α
· von(m, k)

+
γ · (k − 2)

α
· von(m, k − 2) +

γ · (b− k + 2)

α
· von(m, k − 1)

]
=
λ

α
· (von(m+ 1, k)− von(m+ 1, k − 1))︸ ︷︷ ︸

≥0, by (D.2.20)

+
µ

α
· (von(m− 1, k − 1)− von(m− 1, k − 2))︸ ︷︷ ︸

≥0, by (D.2.20)

+
ν

α
· (von(m, k + 1)− von(m, k))︸ ︷︷ ︸

≥0, by (D.2.20)

+
γ · (k − 2)

α
· (von(m, k − 1)− von(m, k − 2))︸ ︷︷ ︸

≥0, by (D.2.20)

+
γ · (b− k + 1)

α
· (von(m, k)− von(m, k − 1))︸ ︷︷ ︸

≤α, by (D.2.20)

≥ 0.
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For m ≥ 1 and k = b holds

von+1(m, b)− von+1(m, b− 1)

=

[
µ+

λ

α
· von(m+ 1, b) +

µ

α
· von(m− 1, b− 1) +

γ · (b− 1)

α
· von(m, b− 1)

+
ν + γ

α
· von(m, b)

]
−
[
µ+

λ

α
· von(m+ 1, b− 1) +

µ

α
· von(m− 1, b− 2) +

ν

α
· von(m, b)

+
γ · (b− 2)

α
· von(m, b− 2) +

γ · 2
α
· von(m, b− 1)

]
=
λ

α
· (von(m+ 1, b)− von(m+ 1, b− 1))︸ ︷︷ ︸

≥0, by (D.2.20)

+
µ

α
· (von(m− 1, b− 1)− von(m− 1, b− 2))︸ ︷︷ ︸

≥0, by (D.2.20)

+
γ · (b− 2)

α
· (von(m, b− 1)− von(m, b− 2))︸ ︷︷ ︸

≥0, by (D.2.20)

+
γ

α
· (von(m, b)− von(m, b− 1))︸ ︷︷ ︸

≥0, by (D.2.20)

≥ 0.

I Second we check (D.2.21).
For m = 0 the proof of (D.2.21) is similar to that of (D.2.17).

For m ≥ 1 and k ∈ {1, . . . , b− 1} holds

von+1(m+ 1, k)− von+1(m, k)

=

[
µ+

λ

α
· von(m+ 2, k) +

µ

α
· von(m, k − 1) +

ν

α
· von(m+ 1, k + 1)

+
γ · (k − 1)

α
· von(m+ 1, k − 1) +

γ · (b− k + 1)

α
· von(m+ 1, k)

]
−
[
µ+

λ

α
· von(m+ 1, k) +

µ

α
· von(m− 1, k − 1) +

ν

α
· von(m, k + 1)

+
γ · (k − 1)

α
· von(m, k − 1) +

γ · (b− k + 1)

α
· von(m, k)

]
=
λ

α
· (von(m+ 2, k)− von(m+ 1, k))︸ ︷︷ ︸

≥0, by (D.2.21)

+
µ

α
· (von(m, k − 1)− von(m− 1, k − 1))︸ ︷︷ ︸

≥0, by (D.2.21)

+
ν

α
· (von(m+ 1, k + 1)− von(m, k + 1))︸ ︷︷ ︸

≥0, by (D.2.21)

+
γ · (k − 1)

α
· (von(m+ 1, k − 1)− von(m, k − 1))︸ ︷︷ ︸

≥0, by (D.2.21)

+
γ · (b− k + 1)

α
· (von(m+ 1, k)− von(m, k))︸ ︷︷ ︸

≥0, by (D.2.21)

≥ 0.
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For m ≥ 1 and k = b holds

von+1(m+ 1, b)− von+1(m, b)

=

[
µ+

λ

α
· von(m+ 2, b) +

µ

α
· von(m, b− 1) +

γ · (b− 1)

α
· von(m+ 1, b− 1)

+
ν + γ

α
· von(m+ 1, b)

]
−
[
µ+

λ

α
· von(m+ 1, b) +

µ

α
· von(m− 1, b− 1) +

γ · (b− 1)

α
· von(m, b− 1)

+
ν + γ

α
· von(m, b)

]
=
λ

α
· (von(m+ 2, b)− von(m+ 1, b))︸ ︷︷ ︸

≥0, by (D.2.21)

+
µ

α
· (von(m, b− 1)− von(m− 1, b− 1)︸ ︷︷ ︸

≥0, by (D.2.21)

+
γ · (b− 1)

α
· (von(m+ 1, b− 1)− von(m, b− 1))︸ ︷︷ ︸

≥0, by (D.2.21)

+
ν + γ

α
· (von(m+ 1, b)− von(m, b))︸ ︷︷ ︸

≥0, by (D.2.21)

≥ 0.

I Third we check (D.2.22).
For m ≥ 0 and k = 0 holds

von+1(m+ 1, 0)− von+1(m, 0)

=

[
ν

α
· von(m+ 1, 1) +

λ+ µ+ γ · b
α

· von(m+ 1, 0)

]
−
[
ν

α
· von(m, 1) +

λ+ µ+ γ · b
α

· von(m, 0)

]
=
ν

α
· (von(m+ 1, 1)− von(m, 1))︸ ︷︷ ︸

≤α, by (D.2.22)

+
λ+ µ+ γ · b

α
· (von(m+ 1, 0)− von(m, 0))︸ ︷︷ ︸

≥≤α, by (D.2.22)

≤ α.

For m = 0 and k ∈ {1, . . . , b− 1} holds

von+1(1, k)− von+1(0, k)

=

[
µ+

λ

α
· von(2, k) +

µ

α
· von(0, k − 1) +

ν

α
· von(1, k + 1)

+
γ · (k − 1)

α
· von(1, k − 1) +

γ · (b− k + 1)

α
· von(1, k)

]
−
[
0 +

λ

α
· von(1, k) +

ν

α
· von(0, k + 1) +

γ · k
α
· von(0, k − 1) +

µ+ γ · (b− k)

α
· von(0, k)

]
=
λ

α
· (von(2, k)− von(1, k))︸ ︷︷ ︸

≤α, by (D.2.22)

+
ν

α
· (von(1, k + 1)− von(0, k + 1))︸ ︷︷ ︸

≤α, by (D.2.22)

+
γ · (k − 1)

α
· (von(1, k − 1)− von(0, k − 1))︸ ︷︷ ︸

≤α, by (D.2.22)

+
γ · (b− k + 1)

α
· (von(1, k)− von(0, k))︸ ︷︷ ︸

≤α, by (D.2.22)

+µ+ (
γ

α
− µ

α
)︸ ︷︷ ︸

=0, by (γ=µ)

·(von(0, k)− von(0, k − 1)) ≤ α.
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For m = 0 and k = b holds

von+1(1, b)− von+1(0, b)

=

[
µ+

λ

α
· von(2, b) +

µ

α
· von(0, b− 1) +

γ · (b− 1)

α
· von(1, b− 1) +

ν + γ

α
· von(1, b)

]
−
[
0 +

λ

α
· von(1, b) +

γ · b
α
· von(0, b− 1) +

µ+ ν

α
· von(0, b)

]
=
λ

α
· (von(2, b)− von(1, b))︸ ︷︷ ︸

≤α, by (D.2.22)

+
γ · (b− 1)

α
· (von(1, b− 1)− von(0, b− 1))︸ ︷︷ ︸

≤α, by (D.2.22)

+
ν + γ

α
· (von(1, b)− von(0, b))︸ ︷︷ ︸

≤α, by (D.2.22)

+µ+ (
γ

α
− µ

α
)︸ ︷︷ ︸

=0, by (γ=µ)

·(von(0, b)− von(0, b− 1)) ≤ α.

For m ≥ 1 and k ∈ {1, . . . , b− 1} holds

von+1(m+ 1, k)− von+1(m, k)

=

[
µ+

λ

α
· von(m+ 2, k) +

µ

α
· von(m, k − 1) +

ν

α
· von(m+ 1, k + 1)

+
γ · (k − 1)

α
· von(m+ 1, k − 1) +

γ · (b− k + 1)

α
· von(m+ 1, k)

]
−
[
µ+

λ

α
· von(m+ 1, k) +

µ

α
· von(m− 1, k − 1) +

ν

α
· von(m, k + 1)

+
γ · (k − 1)

α
· von(m, k − 1) +

γ · (b− k + 1)

α
· von(m, k)

]
=
λ

α
· (von(m+ 2, k)− von(m+ 1, k))︸ ︷︷ ︸

≤α, by (D.2.22)

+
µ

α
· (von(m, k − 1)− von(m− 1, k − 1))︸ ︷︷ ︸

≤α, by (D.2.22)

+
ν

α
· (von(m+ 1, k + 1)− von(m, k + 1))︸ ︷︷ ︸

≤α, by (D.2.22)

+
γ · (k − 1)

α
· (von(m+ 1, k − 1)− von(m, k − 1))︸ ︷︷ ︸

≤α, by (D.2.22)

+
γ · (b− k + 1)

α
· (von(m+ 1, k)− von(m, k))︸ ︷︷ ︸

≤α, by (D.2.22)

≤ α.
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For m ≥ 1 and k = b holds

von+1(m+ 1, b)− von+1(m, b)

=

[
µ+

λ

α
· von(m+ 2, b) +

µ

α
· von(m, b− 1) +

γ · (b− 1)

α
· von(m+ 1, b− 1)

+
ν + γ

α
· von(m+ 1, b)

]
−
[
µ+

λ

α
· von(m+ 1, b) +

µ

α
· von(m− 1, b− 1) +

γ · (b− 1)

α
· von(m, b− 1)

+
ν + γ

α
· von(m, b)

]
=
λ

α
· (von(m+ 2, b)− von(m+ 1, b))︸ ︷︷ ︸

≤α, by (D.2.22)

+
µ

α
· (von(m, b− 1)− von(m− 1, b− 1))︸ ︷︷ ︸

≤α, by (D.2.23)

+
γ · (b− 1)

α
· (von(m+ 1, b− 1)− von(m, b− 1))︸ ︷︷ ︸

≤α, by (D.2.22)

+
ν + γ

α
· (von(m+ 1, b)− von(m, b))︸ ︷︷ ︸

≤α, by (D.2.22)

≤ α.

I Fourth we check (D.2.23).
For m = 0 the proof of (D.2.23) is the same as of (D.2.19).

For m ≥ 1 and k = 1 holds

von+1(m, 1)− von+1(m, 0)

=

[
µ+

λ

α
· von(m+ 1, 1) +

µ

α
· von(m− 1, 0) +

ν

α
· von(m, 2) +

γ · b
α
· von(m, 1)

]
−
[
0 +

ν

α
· von(m, 1) +

λ+ µ+ γ · b
α

· von(m, 0)

]
= µ+

ν

α
· (von(m, 2)− von(m, 1))︸ ︷︷ ︸

≤α, by (D.2.23)

+
γ · b
α
· (von(m, 1)− von(m, 0))︸ ︷︷ ︸

≤α, by (D.2.23)

+
λ

α
· (von(m+ 1, 1)− von(m+ 1, 0))︸ ︷︷ ︸

≤α, by (D.2.23)

+
λ

α
· (von(m+ 1, 0)− von(m, 0))− µ

α
· (von(m, 0)− von(m− 1, 0))︸ ︷︷ ︸

≤0, by λ<µ and (D.2.21), (D.2.24)

≤α.
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For m ≥ 1 and k ∈ {2, . . . , b− 1} holds

von+1(m, k)− von+1(m, k − 1)

=

[
µ+

λ

α
· von(m+ 1, k) +

µ

α
· von(m− 1, k − 1) +

ν

α
· von(m, k + 1)

+
γ · (k − 1)

α
· von(m, k − 1) +

γ · (b− k + 1)

α
· von(m, k)

]
−
[
µ+

λ

α
· von(m+ 1, k − 1) +

µ

α
· von(m− 1, k − 2) +

ν

α
· von(m, k)

+
γ · (k − 2)

α
· von(m, k − 2) +

γ · (b− k + 2)

α
· von(m, k − 1)

]
=
λ

α
· (von(m+ 1, k)− von(m+ 1, k − 1))︸ ︷︷ ︸

≤α, by (D.2.23)

+
µ

α
· (von(m− 1, k − 1)− von(m− 1, k − 2))︸ ︷︷ ︸

≤α, by (D.2.23)

+
ν

α
· (von(m, k + 1)− von(m, k))︸ ︷︷ ︸

≤α, by (D.2.23)

+
γ · (k − 2)

α
· (von(m, k − 1)− von(m, k − 2))︸ ︷︷ ︸

≤α, by (D.2.23)

+
γ · (b− k + 1)

α
· (von(m, k)− von(m, k − 1))︸ ︷︷ ︸

≤α, by (D.2.23)

≤ α− γ.

For m ≥ 1 and k = b holds

von+1(m, b)− von+1(m, b− 1)

=

[
µ+

λ

α
· von(m+ 1, b) +

µ

α
· von(m− 1, b− 1) +

γ · (b− 1)

α
· von(m, b− 1)

+
ν + γ

α
· von(m, b)

]
−
[
µ+

λ

α
· von(m+ 1, b− 1) +

µ

α
· von(m− 1, b− 2) +

ν

α
· von(m, b)

+
γ · (b− 2)

α
· von(m, b− 2) +

γ · 2
α
· von(m, b− 1)

]
=
λ

α
· (von(m+ 1, b)− von(m+ 1, b− 1))︸ ︷︷ ︸

≤α, by (D.2.23)

+
µ

α
· (von(m− 1, b− 1)− von(m− 1, b− 2))︸ ︷︷ ︸

≤α, by (D.2.23)

+
γ · (b− 2)

α
· (von(m, b− 1)− von(m, b− 2))︸ ︷︷ ︸

≤α, by (D.2.23)

+
γ

α
· (von(m, b)− von(m, b− 1))︸ ︷︷ ︸

≤α, by (D.2.23)

≤ (λ+ µ+ γ · (b− 1)) = α− ν − γ.

369



D. Appendix to Chapter 4

I Fifth we check (D.2.24).
For m ≥ 1 and k = 0 holds

von+1(m+ 1, 0)− 2 · von+1(m, 0) + von+1(m− 1, 0)

=

[
ν

α
· von(m+ 1, 1) +

λ+ µ+ γ · b
α

· von(m+ 1, 0)

]
−2 ·

[
ν

α
· von(m, 1) +

λ+ µ+ γ · b
α

· von(m, 0)

]
+

[
ν

α
· von(m− 1, 1) +

λ+ µ+ γ · b
α

· von(m− 1, 0)

]
=
ν

α
· (von(m+ 1, 1)− 2 · von(m, 1) + von(m− 1, 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
λ+ µ+ γ · b

α
· (von(m+ 1, 0)− 2 · von(m, 0) + von(m− 1, 0))︸ ︷︷ ︸

≤0, by (D.2.24)

≤ 0.

For m = 1 and k ∈ {1, . . . , b− 1} holds

von+1(2, k)− 2 · von+1(1, k) + von+1(0, k)

=

[
µ+

λ

α
· von(3, k) +

µ

α
· von(1, k − 1) +

ν

α
· von(2, k + 1) +

γ · (k − 1)

α
· von(2, k − 1)

+
γ · (b− k + 1)

α
· von(2, k)

]
−2 ·

[
µ+

λ

α
· von(2, k) +

µ

α
· von(0, k − 1) +

ν

α
· von(1, k + 1)

+
γ · (k − 1)

α
· von(1, k − 1) +

γ · (b− k + 1)

α
· von(1, k)

]
+

[
0 +

λ

α
· von(1, k) +

ν

α
· von(0, k + 1) +

γ · k
α
· von(0, k − 1) +

µ+ γ(b− k)

α
· von(0, k)

]
= −µ+

λ

α
· (von(3, k)− 2 · von(2, k) + von(1, k))︸ ︷︷ ︸

≤0, by (D.2.24)

+
ν

α
· (von(2, k + 1)− 2 · von(1, k + 1) + von(0, k + 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ(k − 1)

α
· (von(2, k − 1)− 2 · von(1, k − 1) + von(0, k − 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ

α
· von(0, k − 1)

+
γ · (b− k + 1)

α
· (von(2, k)− 2 · von(1, k) + von(0, k))︸ ︷︷ ︸

≤0, by (D.2.24)

−γ
α
· von(0, k)

+
µ

α
· (von(1, k − 1)− 2 · von(0, k − 1) + von(0, k))
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=
λ

α
· (von(3, k)− 2 · von(2, k) + von(1, k))︸ ︷︷ ︸

≤0, by (D.2.24)

+
ν

α
· (von(2, k + 1)− 2 · von(1, k + 1) + von(0, k + 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ(k − 1)

α
· (von(2, k − 1)− 2 · von(1, k − 1) + von(0, k − 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ · (b− k + 1)

α
· (von(2, k)− 2 · (von(1, k) + von(0, k))︸ ︷︷ ︸

≤0, by (D.2.24)

+
µ

α
· (von(1, k − 1)− von(0, k − 1))︸ ︷︷ ︸
∈[0,α] by (D.2.21), (D.2.22)

−µ

+
µ

α
· (von(0, k)− von(0, k − 1))− γ

α
· (von(0, k)− von(0, k − 1))︸ ︷︷ ︸

=0, by γ=µ

≤ 0.

For m = 1 and k = b holds

von+1(2, b)− 2 · von+1(1, b) + von+1(0, b)

=

[
µ+

λ

α
· von(3, b) +

µ

α
· von(1, b− 1) +

γ · (b− 1)

α
· von(2, b− 1) +

ν + γ

α
· von(2, b)

]
−2 ·

[
µ+

λ

α
· von(2, b) +

µ

α
· von(0, b− 1) +

γ · (b− 1)

α
· von(1, b− 1) +

ν + γ

α
· von(1, b)

]
+

[
0 +

λ

α
· von(1, b) +

γ · b
α
· von(0, b− 1) +

µ+ ν

α
· von(0, b)

]
= −µ+

λ

α
· (von(3, b)− 2 · von(2, b) + von(1, b))︸ ︷︷ ︸

≤0, by (D.2.24)

+
ν

α
· (von(2, b)− 2 · von(1, b) + von(0, b))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ · (b− 1)

α
· (von(2, b− 1)− 2 · von(1, b− 1) + von(0, b− 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ

α
· von(0, b− 1)

+
γ

α
· (von(2, b)− 2 · von(1, b) + von(0, b))︸ ︷︷ ︸

≤0, by (D.2.24)

−γ
α
· von(0, b)

+
µ

α
· (von(1, b− 1)− 2 · von(0, b− 1) + von(0, b))

=
λ

α
· (von(3, b)− 2 · von(2, b) + von(1, b))︸ ︷︷ ︸

≤0, by (D.2.24)

+
ν

α
· (von(2, b)− 2 · von(1, b) + von(0, b))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ · (b− 1)

α
· (von(2, b− 1)− 2 · von(1, b− 1) + von(0, b− 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ

α
· (von(2, b)− 2 · von(1, b) + von(0, b))︸ ︷︷ ︸

≤0, by (D.2.24)

−µ+
µ

α
· (von(1, b− 1)− von(0, b− 1))︸ ︷︷ ︸
∈[0,α] by (D.2.21),(D.2.22)︸ ︷︷ ︸

≤0

+
µ

α
· (von(0, b)− von(0, b− 1))− γ

α
· (von(0, b)− von(0, b− 1))︸ ︷︷ ︸

=0, by γ=µ

≤ 0.
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For m ≥ 2 and k ∈ {1, . . . , b− 1} holds

von+1(m+ 1, k)− 2 · von+1(m, k) + von+1(m− 1, k)

=

[
µ+

λ

α
· von(m+ 2, k) +

µ

α
· von(m, k − 1) +

ν

α
· von(m+ 1, k + 1)

+
γ · (k − 1)

α
· von(m+ 1, k − 1) +

γ · (b− k + 1)

α
· von(m+ 1, k)

]
−2 ·

[
µ+

λ

α
· von(m+ 1, k) +

µ

α
· von(m− 1, k − 1) +

ν

α
· von(m, k + 1)

+
γ · (k − 1)

α
· von(m, k − 1) +

γ(b− k + 1)

α
· von(m, k)

]
+

[
[µ+

λ

α
· von(m, k) +

µ

α
· von(m− 2, k − 1) +

ν

α
· von(m− 1, k + 1)

+
γ · (k − 1)

α
· von(m− 1, k − 1) +

γ · (b− k + 1)

α
· von(m− 1, k)

]
=
λ

α
· (von(m+ 2, k)− 2 · von(m+ 1, k) + von(m, k))︸ ︷︷ ︸

≤0, by (D.2.24)

+
µ

α
· (von(m, k − 1)− 2 · von(m− 1, k − 1) + von(m− 2, k − 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
ν

α
· (von(m+ 1, k + 1)− 2 · von(m, k + 1) + von(m− 1, k + 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ · (k − 1)

α
· (von(m+ 1, k − 1)− 2 · von(m, k − 1) + von(m− 1, k − 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ · (b− k + 1)

α
· (von(m+ 1, k)− 2 · von(m, k) + von(m− 1, k))︸ ︷︷ ︸

≤0, by (D.2.24)

≤ 0.

For m ≥ 2 and k = b holds

von+1(m+ 1, b)− 2 · von+1(m, b) + von+1(m− 1, b)

=

[
µ+

λ

α
· von(m+ 2, b) +

µ

α
· von(m, b− 1)

+
γ · (b− 1)

α
· von(m+ 1, b− 1) +

ν + γ

α
· von(m+ 1, b)

]
−2 ·

[
µ+

λ

α
· von(m+ 1, b) +

µ

α
· von(m− 1, b− 1)

+
γ · (b− 1)

α
· von(m, b− 1) +

ν + γ

α
· von(m, b)

]
+

[
µ+

λ

α
· von(m, b) +

µ

α
· von(m− 2, b− 1)

+
γ · (b− 1)

α
· von(m− 1, b− 1) +

ν + γ

α
· von(m− 1, b)

]
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=
λ

α
· (von(m+ 2, b)− 2 · von(m+ 1, b) + von(m, b))︸ ︷︷ ︸

≤0, by (D.2.24)

+
µ

α
· (von(m, b− 1)− 2 · von(m− 1, b− 1) + von(m− 2, b− 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
γ · (b− 1)

α
· (von(m+ 1, b− 1)− 2 · von(m, b− 1) + von(m− 1, b− 1))︸ ︷︷ ︸

≤0, by (D.2.24)

+
ν + γ

α
· (von(m+ 1, b)− 2 · von(m, b) + von(m− 1, b))︸ ︷︷ ︸

≤0, by (D.2.24)

≤ 0.
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E. Appendix to Chapter 11

E.1. Proof of irreducibility

The stochastic queueing-inventory process Z as described in Chapter 11 is irreducible
because it can be shown that the state (0, 0, 0) can be reached from any other state and
vice versa. We sketch the arguments for the case p = 1.

Firstly, we will show that the state (0, 0, 0) can be reached from any other state
(n1, n2, k) with n1 ≥ 0, n2 ≥ 0 and 0 ≤ k ≤ b. The inter-arrival times of raw ma-
terial at the inventory can be arbitrarily small, so that the replenishment of raw material
at the inventory is very fast. Therefore, the inventory becomes greater than zero so that
after a finite number of transitions the priority queue will become zero. The ordinary
customers can be served only if no priority customer is present. Due to the fact that
the priority queue will become zero after a finite number of transitions and that the
inter-arrival times of the priority customers can be arbitrarily large and the service times
can be arbitrarily small, the ordinary queue can also become zero after a finite number
of transitions. Since the number of services in a busy period of the server1 can be any
positive number with positive probability, it is possible that at the end of the described
busy period the inventory level becomes zero.
Secondly, we will show that the states (n1, n2, k) with n1 ≥ 0, n2 ≥ 0 and 0 < k ≤ b

can be reached from (0, 0, 0). The inter-arrival times of the raw material at the inventory
can be arbitrarily small, so that the replenishment of the raw material at the inventory is
very fast. Thus, it is possible that the inventory level becomes k. Then, the inter-arrival
times of ordinary and priority customers can be arbitrarily small. Hence, it is possible
that n1 resp. n2 customers are in the priority queue resp. in the ordinary queue.
Thirdly, we will show that the states (n1, n2, 0) with n1 ≥ 0 and n2 ≥ 0 can be reached

from (0, 0, 0). The inter-arrival times of raw material at the inventory can be arbitrarily
small, so that the replenishment of raw material at the inventory is very fast. Thus, it
is possible that the inventory level becomes m. Then, the inter-arrival times of ordinary
and priority customers can be arbitrarily small. Hence, it is possible that n1 + m resp.
n2 customers are in the priority queue resp. in the ordinary queue, m ∈ N. Since the
number of services in a busy period of the server can be any positive number with positive
probability, it is possible that at the end of a busy period the inventory level becomes zero
and that n1 resp. n2 customers are in the priority queue resp. in the ordinary queue.

1A busy period is defined as a time period during which the server serves without interruption customers,
i.e. a time period during which at least one customer is present and the inventory is not empty. Hence,
a busy period begins when an idling server restarts serving some customer and ends when the inventory
or the queue at the production system becomes empty next.
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Index

α, uniformization constant, 114–116
β, parameter of the phase-type distribu-

tion, 71
β−1
t(J+1)p

, mean of exponential phases of
service, 143

Γβ,h, h-stage Erlang distribution with scale
parameter β, 142

βj , parameter of the phase-type distribu-
tion, 142

ε, stop criterion, 25
γj , 27, 28
γ, rate of life time, 91
γ−1, mean of phase-type distribution, 71
γj , 31
γ̃j , 39
γ̂φi , 34
Γβ,h, h-stage Erlang distribution with scale

parameter β, 71
κ, variable, 271
λ(n), arrival rate if there are n customers

present, 70, 326
λ1, arrival rate of priority customers, 208
λ2, arrival rate of ordinary customers,

208
λj , arrival rate at location j, 12, 44, 103,

123, 140, 162
λ̃j , arrival rate at location j, 40
λJ+1, overall departure rate, 21
λφ, arrival rate at pooled location φ, 34
λ̂φk , arrival rate at location k in splitted

system, 34
Λj portion from the overall departure rate

of the central supplier that is sent
to location j, 21

L, Lyapunov function, 82, 336
L̃, Lyapunov function for theM/M/1/∞

queue, 330, 339
µ, service rate, 209
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tomers present, 70, 326
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13, 44, 104, 124, 141, 163

ν, service rate of the central supplier, 13,
45, 70
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163

φ, pooled location, 34
φk, location number, 33
φ(#kJ+1), service capacity if there are

#kJ+1 order present, 141
π, limiting and stationary distribution of

Z, 16, 18, 48, 63, 87, 93, 109,
135, 156, 160, 174, 195, 343

π+, limiting and stationary distribution
of Z+, 111

π−, limiting and stationary distribution
of Z−, 111

πo, limiting and stationary distribution
of Zo, 112

τn(k), mean first entrance time when start-
ing in k, 331

θ, stationary distribution of the pure in-
ventory process, 224, 254

θ, stationary marginal distribution of the
environment, 343

θ, stationary marginal distribution of the
inventory-replenishment subsys-
tem, 18, 48, 63, 87, 93, 109, 135,
156, 160, 174, 196

θ̃, stationary measure for the inventory-
replenishment subsystem, 15, 47,
61, 105, 129, 146, 160, 168, 180

θ−, product measure, 32
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ξ, stationary marginal distributions of the
queue, 343

ξ, stationary marginal distributions of the
queue at the location (produc-
tion system), 87, 93

ξ, stationary marginal distributions of the
queues at the locations (produc-
tion systems), 18, 48, 63, 109,
135, 156, 160, 174, 195

ξ̃, stationary measure for the queues at
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15, 47, 61, 105, 129, 146, 160,
168, 180
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ξ̃j(nj), stationary measure for the queue
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j, 15, 47, 61, 105, 129, 146, 160,
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b(·), probability on {1, . . . ,H} (parameter

of the phase-type distribution),
71
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124, 141

bj , base stock level at location j, 13, 45,
104, 124, 141

b∗j , optimal base stock level at location j,
32

b∗φ, optimal base stock level of pooled loc-
ation φ, 34

b̂∗φk , optimal base stock level of location
k in splitted system, 34

Bj(s), cumulative distribution function
(phase-type distribution), 142

B(s), cumulative distribution function,
71

c(p,#kJ+1), portion of the service capa-
city that the order on position p
yields of the offered service ca-
pacity, 141

ch,j , holding costs per unit of time for
each unit that is kept on invent-

ory at location j, 29, 137, 176
ch,J+1, unit holding costs at the central

supplier, 29
ch,m, unit holding costs per item at work-

stationm of the supplier network,
137, 176

cls,j , shortage costs for each customer that
is lost at location j, 29, 137, 176

cls,1, shortage costs for each priority cus-
tomer that is lost, 233, 255

cls,2, shortage costs for each ordinary cus-
tomer that is lost, 233, 255

cs, capacity costs per unit of time for
providing inventory storage space,
233, 255

cs,j , capacity costs per unit of time for
providing inventory storage space
at location j, 29, 137, 176

cw,j , waiting costs per unit of time for
each customer at location j, 29,
137, 176

cw,1, waiting costs per unit of time for
each priority customer, 233, 255

cw,2, waiting costs per unit of time for
each ordinary customer, 233, 255

C, set of customer classes, 208
C, normalization constant, 89, 96, 100,

113, 345
Cj , normalization constant, 19, 48, 63,

109, 113, 135, 156, 160, 175, 196
Cθ, normalization constant, 19, 63, 109,

113, 135, 156, 160, 175, 196

dj , number of finished items sent from
the central supplier to location
j, 22

E, state space, 14, 46, 73, 91, 105, 126,
143, 160, 165, 178, 211, 235, 325

f , cost function, 29
fb, cost function, 137
fS, cost function, 176
fb,p, cost function, 255
fr,Q,p, cost function, 233
f(b), asymptotic average cost, 29
f(r), asymptotic average cost, 233
f(S), asymptotic average cost, 176
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fbj , cost function at location j, 29
fj , cost function at location j, 137, 176
fJ+1, cost function at the central sup-

plier, 29
fm, cost function at workstationm of the

supplier network, 137, 176
F , finite exception set, 248, 336
F̃ , finite exception set for theM/M/1/∞

queue, 330, 339

g(b), cost function, 29, 137
gj(bj), cost function of location j, 27, 31
gφ(b∗φ), optimal costs of pooled location

φ, 34
ĝφk (̂b∗φk), optimal costs of location k in

splitted system, 34

H, parameter of the phase-type distribu-
tion, 71

h, parameter of the Γ-distribution, 71,
142

hj , number of residual phases of the item
on position j, 72

h(J+1)p, exponential phases of service for
an order on position p, 143

J , number of locations, 12, 44, 103, 123,
140, 162

J , set of locations, 12, 44, 103, 123, 140,
162

k, number of items in production, 72
k, number of items on stock, 72
k, size of the inventory, 91, 211, 235
k, global states of the inventory-replenish-

ment subsystem, 14, 46, 73, 105,
126, 143, 159, 165

k−, state of K−, 32
kj , size of the inventory at location j, 14,

46, 105
kj , state of the inventory at location j,

125, 143, 159, 164, 178
#kj , number of items in the inventory

at location j, 125, 143, 159, 164,
178

kJ+1, number of orders at the supplier,
14, 46, 105

kJ+1, state of the supplier, 143, 159

#kJ+1, number of orders at the supplier,
141, 143, 159

k3, state of the supplier, 178
#k3, number of orders at the supplier,

178
km, state of workstation m, 125, 164
#km, number of orders at workstationm,

125, 164
K, environment space, 325
K, set of feasible states of the inventory-

replenishment subsystem, 14, 46,
105, 126, 143, 159, 165, 178

K−, product space, 32
KB, set of the blocking environment states,

325
Kj , local state space at j, 126, 143, 159,

165, 178
KJ+1, set of possible states at the sup-

plier, 143, 159
K3, set of possible states at the supplier,

178
Km, set of possible states at workstation

m, 125, 164
KW , set of the environment states when

server works, 325

M , number of workstations at the sup-
plier network, 123, 162

M , set of workstations at the supplier
network, 123, 162

n, queue length, 73, 91
n, joint queue length vector, 14, 46, 105,

126, 143, 160, 165, 178
n1, number of priority customers, 211,

235
n2, number of ordinary customers, 211,

235
nj , number of customers present at loca-

tion j, 13, 44, 104, 124, 141, 163
N , number of locations, 34
N0, bound, 339

p, position, 125, 141, 143, 159, 164, 178
p, priority parameter, 208, 211, 235
pj , routing probability to location j, 13,

104
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p̌j , simulated routing probability to loc-
ation j, 21, 22

pj(k), state-dependent routing probabil-
ity to location j, 45

pφ, routing probability to pooled location
φ, 34

q(·, ·), transition rates, 15, 47, 60, 75, 92,
105, 127, 144, 165, 178, 212, 236,
328

qj , blocking probability at location j, 24
Q, order quantity, 211
Q, infinitesimal generator, 15, 47, 60, 75,

92, 105, 127, 144, 165, 178, 212,
236, 328

Qred, reduced generator, 17, 48, 62, 108,
135, 156, 174

r, one-step immediate reward vector, 115
r, reorder level, 211
rj , reorder level at location j, 163
r(j), type-j-dependent route (path) for

eventual replenishment, 125, 163
r(j, `), `-th workstation on the path r(j),

125, 163
R+, one-step transition probability of Z+

u ,
116

R−, one-step transition probability of Z−u ,
115

Ro, one-step transition probability of Zou,
114

R, stochastic matrix, 326
Rn, stochastic matrix if there are n cus-

tomers present, 326
Rn(k, `), transition rate, 326
R̂n, stochastic matrix if there are n cus-

tomers present, 342
R̆n(k, `), transition rate, 342

s, threshold level, 208, 211, 235
smp, stage of the order on position p at

workstation m, 125, 164
S, set of order-up-to levels, 164, 177
S(j), number of stages of the route of

type j, 125, 163
Sj , order-up-to level, 142, 163

t, time, 13, 45, 72, 91, 105, 125, 143, 159,
164, 177, 211, 235

t(J+1)p, type of an order on position p at
the central supplier, 159

tmp, type of an order on position p at
workstation m, 125, 164

tp, type of an order on position p at the
supplier, 178

T , run time, 22
T , sojourn time of the replenishment or-

der at the central supplier, 24
TH+, throughput of Z+, 111
TH−, throughput of Z−, 111
THo, throughput of Zo, 112

vn(k, `), transition rate, 326
v−n , n-period reward vector of the reward

chain Z−u , 117
von, n-period reward vector of the reward

chain Zou, 115
v̆n(k, `), transition rate, 342
V , generator of the environment, 326
Vn, generator of the environment if there

are n customers present, 326
V̂n, generator of the environment if there

are n customers present, 342

W (t), number of replenishment orders at
the supplier at time t ≥ 0, 72,
91

W3(t), sequence of orders at the supplier,
177

WJ+1(t), number of replenishment orders
at the central supplier at time
t ≥ 0, 13, 45, 105, 143, 159

Wm(t), sequence of orders at workstation
m, 125, 164

x, stationary measure, 80, 329
X random variable which is distributed

according to the queue length pro-
cesses, 87, 93, 343

X, queue length process, 325
X(t), number of customers at time t ≥ 0,

72, 91
X1 random variable which is distributed

according to the queue length pro-
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cesses of priority customers, 213,
237

X1(t), number of priority customers present
in the system at time t ≥ 0, 211,
235

X2 random variable which is distributed
according to the queue length pro-
cesses of ordinary customers, 213,
237

X2(t), number of ordinary customers present
in the system at time t ≥ 0, 211,
235

Xj , random variable which is distributed
according to ξj , 30

Xj(t), number of customers present at
location j at time t ≥ 0, 13, 45,
105, 125, 143, 159, 164, 177

Y , environment process, 325
Y , pure inventory process, 224, 254
Y , random variable which is distributed

according to the environment pro-
cess, 343

Y , random variable which is distributed
according to the inventory pro-
cess in equilibrium, 213, 237

Y (t), size of the inventory at time t ≥ 0,
91, 211, 235, 237

Y (t), state of the inventory at time t ≥ 0,
72

Yj(t), size of the inventory at location j
at time t ≥ 0, 13, 45, 105, 125,
143, 159, 164, 177

Ỹj , 39
(Y,W ), random variable which is distrib-

uted according to the inventory-
replenishment process, 87, 93

Z, joint queueing-environment process,
325

z, state of the process Z, 15, 47, 60, 75,
92, 105, 127, 144, 165, 178, 212,
236, 328

Z, joint queueing-inventory process, 14,
45, 72, 91, 105, 126, 143, 159,
165, 178, 211, 235

Z+, joint queueing-inventory process, 111

Z−, joint queueing-inventory process, 111
Zo, joint queueing-inventory process, 112
Z+
u , associated uniformization chain to

Z+ (reward chain), 116
Z−u , associated uniformization chain to

Z− (reward chain), 115
Zou, associated uniformization chain to Zo

(reward chain), 114
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Abstract

Production processes are usually investigated using models and methods from queueing
theory. Control of warehouses and their optimization rely on models and methods from
inventory theory. Both theories are fields of Operations Research, but they comprise
quite different methodologies and techniques. In classical Operations Research queueing
and inventory theory are considered as disjoint research areas. On the other side, the
emergence of complex supply chains (≡ production-inventory networks) calls for inte-
grated production-inventory models as well as adapted techniques and evaluation tools.

Integrated production-inventory models are the focus of our research. We have de-
veloped Markovian stochastic models of several production-inventory systems, which are
smooth enough to be amenable to solving the steady state problem explicitly with closed
form expressions for the stationary distribution. Moreover, for most of the integrated
production-inventory systems the obtained steady state is of so-called “product form”,
which reveals a certain decoupling of the components of the system for long time beha-
viour. This product form structure of the joint stationary distribution is often character-
ised as the global process being “separable”. It is an important (but rather rare) property
of complex systems. The simple structure of these steady states allows to apply “product
form calculus”, a widely used tool, which provides access to easy performance evaluation
procedures.

Different from this standard product form equilibria in queueing networks, the steady
state obtained for some integrated models is stratified. In the upper stratum, we obtain
three vectors for production, inventory and supplier network. In the lower stratum, each
of these vectors is composed of homogeneous coordinates. The product form inside the
lower stratum resembles on one side (for the production subsystem) the independence
structure of Jackson networks, and on the other side (for the inventory-replenishment
subsystem) the conditional independence of Gordon-Newell networks. We briefly call this
stratified product form “three-term product structure”. On the other side, we mean by
“two-term product form structure” that the steady states of the production network and
the inventory-replenishment complex decouple asymptotically and the equilibrium for the
production subsystem decomposes in true independent coordinates.

In the following, we will summarize our results in more detail for the investigated mod-
els of Part I and Part II. In Table E.1 on page 401, we compare the models from Part I to
give an overview of the similarities and differences of the models, especially with regard
to the modelling assumptions and the stationary distribution of the investigated models.

In Part I, we have developed Markov process models for several networks of production-
inventory systems. More precisely, production-inventory systems at several locations are
coupled by a common supplier. Demand of customers arrives at each production system
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and is lost if the local inventory is depleted. To satisfy a customer’s demand a server at
the production system takes exactly one unit of raw material from the associated local
inventory. The supplier manufactures raw material to replenish the local inventories,
which are controlled by a continuous review base stock policy.

Chapter 2 to Chapter 4 focus on the research of the network’s behaviour, where the
supplier consists only of one machine (single server) and replenishes the inventories at all
locations. The items of raw material are indistinguishable (exchangeable).

In Chapter 2, we have investigated the basic model. We have proven that the stationary
distribution of the global integrated system is of two-term product form. Our model —
with the send out procedure of the central supplier by a random selection scheme — can
be seen as an approximation for the more complex model in Chapter 5, where the finished
items are delivered exactly to the locations where the orders were generated and where
the supplier consists of one workstation. The following conclusions can be drawn from
our analytically obtained formulas: The global search for the vector of optimal base stock
levels can be reduced to a set of independent optimization problems. In addition, the
system exhibits various stochastic monotonicity properties. Additionally, for a subset of
the parameter space, pooling is advisable. Moreover, ergodicity is determined by arrival
and service intensities only. Finally, the system exhibits a strong insensitivity property
for the inventory and replenishment process with respect to variation of the service rates.
Both last structural properties about ergodicity and insensitivity hold for the following

models with product form results as well.

In Chapter 3, we have investigated a refined model, where routing of items depends on
the on-hand inventory at the locations (with the aim to obtain “load balancing”). The
systems under investigation differ with respect to the load balancing policy: In Section
3.3, we have considered strict priorities (i.e. the finished item of raw material is sent to the
location(s) with the highest difference between the on-hand inventory and the capacity
of the inventory) and in Section 3.4, we have considered weak priorities (i.e. the finished
item of raw material is sent with greater probability to the location with higher difference
between the on-hand inventory and the capacity of the inventory).
For the system with strict priorities for load balancing policy we have proven that the

stationary distribution has a two-term product form of the marginal distributions of the
production subsystem and the inventory-replenishment subsystem.
We have derived an explicit solution for the marginal distribution of the production

subsystem. For the special case with base stock levels equal to one we have derived
an explicit solution for the marginal distribution of the inventory-replenishment subsys-
tem. For systems with two locations and base stock levels greater than one the marginal
distribution of the inventory-replenishment subsystem can be obtained by a recursive
algorithm.
For the system with weak priorities for load balancing policy we have derived the sta-

tionary distribution in explicit three-term product form.

In Chapter 4, we have analysed the basic model with perishable items, since in certain
types of inventories, the items either perish, deteriorate or become obsolete.
In the first part of this chapter, we have studied single location production-inventory
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systems with perishable raw material, where the item of raw material that is in the
production process cannot perish.
For phase-type distributed life time and queue-length-dependent arrival and service

rates we have derived a sufficient and a necessary condition for ergodicity and have proven
that the stationary distribution is not of product form. Furthermore, we have obtained
structural properties of the stationary system which provide insights into the equilibrium
behaviour of the system. An explicit expression of the complete stationary distribution is
still an open problem. For the case with base stock level equal to one, we have obtained
an explicit closed solution for the stationary distribution for the model with exponentially
distributed life times and queue-length-independent arrival and service rates.
In the second part of this chapter, we have modified the system with exponentially

distributed life times so that we have got product form results. The product form result
is even true for a supply chain with J > 1 locations.
Furthermore, we have dealt with the question “Can we use the product form results

from Section 4.3.2 to obtain simple product form bounds for the system with unknown
non-product form stationary distribution in Section 4.2.3?”. Our conjecture that we can
find upper and lower product form bounds for the throughputs has been supported by
our results for a system with base stock level b = 1. Under additional conditions for the
system’s parameters we can tackle even the case of b ≥ 2.
The model can be considered as a special case of queueing systems in a random envi-

ronment which we have introduced in Appendix D.1. We have derived a sufficient and a
necessary condition for ergodicity and have proven that the stationary distribution is not
of product form. Moreover, we have derived structural properties of the stationary system.

Chapter 5 to Chapter 7 is devoted to research of the network’s behaviour of the more
complex model where the finished items of raw material are delivered exactly to the lo-
cations where the orders were generated, i.e. they are not exchangeable.

In Chapter 5, we have investigated the basic model where the supplier is a complex
network. We have proven that the stationary distribution of the global integrated system
is of three-term product form. Furthermore, we have performed a cost analysis to find
the optimal base stock levels.

In Chapter 6, we have aggregated the supplier network. We can substitute the com-
plex supplier network only by one node — a supplier who consists of a symmetric server.
The symmetric server enables to deal with non-exponential type-dependent service time
distribution for different order types. For a complex supply chain with phase-type dis-
tributed service times at the supplier we have derived its stationary distributions of the
joint queueing-inventory process in explicit three-term product form.

In Chapter 2 to Chapter 6, we have focused on base stock policies. In Chapter 7, we
have investigated the (r, S)-policy. The systems under investigation differ with respect to
the reorder level and the number of locations and workstations. In Section 7.3, we have
analysed a system with (0, Sj)-policy with J locations and a supplier network consisting
of M workstations and in Section 7.4 a system with (1, Sj)-policy with two locations
and a supplier network consisting of one workstation. For these systems we have derived
the stationary distributions of the joint queueing-inventory processes in explicit product
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form, which is of three-term product form for the (0, Sj)-policy and of two-term product
form for the (1, Sj)-policy.

In Part II, we have studied a production-inventory system with two classes of customers
and inventory management under lost sales with (r,Q)-policy in Chapter 10 and base
stock policy in Chapter 11 where customers’ arrivals are regulated by a flexible admission
control. For each of these systems we have developed a Markov process description and
have analysed the global balance equations and the existence of a stationary distribution.
We have derived structural properties of the steady state distribution which provide

insights into the equilibrium behaviour of the systems but an explicit expression of the
complete stationary distribution is still an open problem. For the system with base
stock policy we have derived a sufficient condition for ergodicity by the Foster-Lyapunov
stability criterion.
We have considered the special case of zero service time in Section 10.2 and in Section

11.3, which results in a pure inventory system and have determined the stationary distri-
bution.

In Table E.1 on page 401, the symbols are used as follows.

Symbol Meaning
π X stationary distribution has an explicit solution
ξ X only the marginal distribution of the production subsystem has an explicit

solution
θ X only the marginal distribution of the inventory-replenishment subsystem has

an explicit solution
(?) no difference between exchangeable and location specific items since there is

only one location
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Zusammenfassung

Produktionsprozesse werden in der Regel mit Hilfe von Modellen und Methoden der
Warteschlangentheorie untersucht, während bei der Kontrolle und Optimierung von La-
gersystemen Modelle und Methoden der Lagerhaltungstheorie zum Einsatz kommen.
Beide Theorien sind Gebiete des Operations Research, sie verwenden jedoch unterschied-
liche Methoden und Techniken. Im klassischen Operations Research werden Warteschlan-
gen- und Lagerhaltungstheorie als getrennte Forschungsgebiete betrachtet. Andererseits
werden integrierte Produktions-Lagermodelle sowie geeignete Techniken und Bewertungs-
werkzeuge aufgrund des Entstehens komplexer Supply Chains (≡ Produktions-Lager-
Netzwerke) benötigt.

In dieser Arbeit stehen integrierte Produktions-Lagermodelle im Fokus unserer Unter-
suchungen. Für verschiedene Produktions-Lager-Systeme haben wir stochastische Markov
Modelle entwickelt, die es ermöglichen die stationäre Verteilung in geschlossener Form zu
bestimmen. Für die meisten hier untersuchten integrierten Produktions-Lager-Systeme
erhalten wir die stationäre Verteilung in sogenannter “Produktform”. Diese zeigt bestimm-
te Entkopplungen von Komponenten des Systems für das Langzeitverhalten auf. Die
Produktformstruktur der gemeinsamen stationären Verteilung wird oft dadurch charak-
terisiert, dass der globale Prozess separabel ist. Das ist eine wichtige (aber seltene) Ei-
genschaft komplexer Systeme. Die einfache Struktur dieser stationären Zustände ermög-
licht es einen “Produktformkalkül” anzuwenden. Dies ist ein weitverbreitetes Werkzeug,
das Zugang zu einfachen Leistungsbewertungsverfahren ermöglicht.

Im Unterschied zum Standard-Produktform-Gleichgewicht, ist der stationäre Zustand
für einige unserer integrierten Modelle “geschichtet”. In der oberen Schicht erhält man
Vektoren für Produktion, Lager und Zulieferer-Netzwerk. In der unteren Schicht setzt sich
jeder dieser Vektoren aus homogenen Koordinaten zusammen. Die Produktform inner-
halb der unteren Schicht entspricht auf der einen Seite (für das Produktions-Teilsystem)
der unabhängigen Struktur eines Jackson-Netzwerkes und auf der anderen Seite (für das
Lager-Zulieferer-Teilsystem) der bedingten Unabhängigkeit eines Gordon-Newell-Netz-
werkes. Wir nennen diese geschichtete Produktform “Drei-Term-Produktformstruktur”.
Hingegen sprechen wir von “Zwei-Term-Produktformstruktur”, wenn sich die stationären
Zustände des Produktions-Netzwerkes und des Lager-Zulieferer-Komplexes entkoppeln.
Dabei zerfällt das Gleichgewicht für das Produktions-Teilsystem weiter in unabhängige
Koordinaten.

Unsere Resultate der untersuchten Modelle aus Teil I und Teil II sollen im Folgenden
zusammengefasst werden. Die Gemeinsamkeiten und Unterschiede der verschiedenen
Modelle aus Teil I — insbesondere im Hinblick auf die Modellannahmen und die sta-
tionären Verteilungen — werden in Tabelle E.1 verdeutlicht.

403



Zusammenfassung

In Teil I haben wir uns mit verschiedenen Netzwerken von Produktions-Lager-Systemen
befasst, die wir als Markov-Prozesse modelliert haben. In diesen Netzwerken sind Produk-
tions-Lager-Systeme an mehreren Standorten über einen Zulieferer miteinander verbunden.
An jedem Produktionssystem kommen Kunden an. Falls das lokale Lager leer ist, gehen
diese verloren. Damit der Bediener des Produktionssystems die Kundennachfrage erfüllen
kann, benötigt er ein Teil aus dem angeschlossenen lokalen Rohmateriallager. Das Lager
wird gemäß einer kontinuierlichen Base-Stock-Politik vom Zulieferer aufgefüllt, der das
Rohmaterial herstellt.

In Kapitel 2 bis 4 haben wir das Verhalten dieser Netzwerke untersucht. Wir haben
insbesondere angenommen, dass der Zulieferer nur aus einer Arbeitsstation (einem Be-
diener) besteht und dieser die Lager an allen Standorten auffüllt. Das Rohmaterial ist
austauschbar, das bedeutet, dass die Auffüllungsprozedur nach einem zufälligen Aus-
wahlsystem stattfinden kann.

Unsere Untersuchungen in Kapitel 2 wenden sich dem Grundmodell zu. Wir haben be-
wiesen, dass die stationäre Verteilung des gesamten Systems eine Zwei-Term-Produktform-
struktur aufweist. Unser Modell — mit der zufallsgesteuerten Auffüllungsstrategie —
kann als eine Approximation für das komplexere Modell in Kapitel 5 (mit einer Arbeitssta-
tion) angesehen werden. In dem komplexeren Modell wird das Rohmaterial genau zu dem
Standort geliefert, der die Bestellung aufgegeben hat. Aus unseren analytischen Ergeb-
nissen erhalten wir die folgenden Resultate: (1) Die globale Suche nach dem Vektor der
optimalen Base-Stock-Level kann auf eine Menge unabhängiger Optimierungsprobleme
reduziert werden. (2) Das System weist mehrere stochastische Monotonie-Eigenschaften
auf. (3) Pooling ist für eine Teilmenge des Parameterraums empfehlenswert. (4) Ergodi-
zität wird nur durch die Ankunfts- und Bedienintensitäten bestimmt. (5) Das System
weist starke Unempfindlichkeitseigenschaften für den Lager- und Auffüllprozess mit Vari-
ation der Bedienraten auf.
Die letzten beiden Struktureigenschaften (4) und (5) sind ebenfalls für die nachfol-

genden Modelle mit Produktformstruktur gültig.

In Kapitel 3 haben wir das Grundmodell weiterentwickelt. Das Routing des Rohma-
terials hängt nun von den Lagerbeständen an den verschiedenen Standorten ab. Ziel ist
der “Belastungsausgleich durch Ausgleich der Lagerbestände”. Hierzu haben wir zwei La-
gerausgleichspolitiken analysiert: In Abschnitt 3.3 strikte Prioritäten und in Abschnitt
3.4 schwache Prioritäten. Strikte Prioritäten bedeutet, dass das produzierte Rohmate-
rial zu dem Standort gesendet wird, der die größte Differenz zwischen dem Lagerbestand
und der Kapazität des Lagers hat. Hingegen drücken schwache Prioritäten aus, dass das
produzierte Rohmaterial mit größerer Wahrscheinlichkeit zu dem Standort gesendet wird,
der eine größere Differenz zwischen dem Lagerbestand und der Kapazität des Lagers hat.
Für das System mit strikten Prioritäten haben wir bewiesen, dass die stationäre Ver-

teilung eine Zwei-Term-Produktformstruktur aufweist. Die Randverteilung des Produkti-
ons-Teilsystems ist explizit bekannt. Weiter ist die Randverteilung des Lager-Zulieferer-
Teilsystems für den Spezialfall mit Base-Stock-Leveln gleich eins explizit gelöst. Für
Systeme mit zwei Standorten und einem Base-Stock-Level größer als eins kann die Rand-
verteilung des Lager-Zulieferer-Teilsystems durch einen rekursiven Algorithmus ermittelt
werden.
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Für das System mit schwachen Prioritäten haben wir die stationäre Verteilung in ex-
pliziter Drei-Term-Produktformstruktur ermittelt.

Häufig verderben oder altern Lagerbestände oder werden nicht mehr nachgefragt. Aus
diesem Grund haben wir Kapitel 4 der Analyse des Grundmodells mit verderblichem
Rohmaterial gewidmet.
Im ersten Teil des Kapitels haben wir ein Netzwerk mit einem einzigen Standort

(Produktions-Lager-System) untersucht. Das Rohmaterial hat phasenverteilte Lebenszei-
ten. Es wird angenommen, dass das Rohmaterial, das sich im Produktionsprozess befin-
det, nicht verderben kann. Ferner werden warteschlangenlängenabhängige Ankunfts- und
Bedienraten betrachtet.
Wir haben hinreichende und notwendige Ergodizitätsbedingungen hergeleitet und be-

wiesen, dass die stationäre Verteilung keine Produktformgestalt hat. Des Weiteren haben
wir Struktureigenschaften für das System erhalten, die Einsichten in das Gleichgewichts-
verhalten des Systems geben. Eine explizite Lösung für die stationäre Verteilung ist
weiterhin ein offenes Problem. Für den Fall eines Base-Stock-Levels gleich eins konnten
wir bereits eine explizite Lösung für das System mit exponentialverteilten Lebenszeiten
und warteschlangenunabhängigen Ankunfts- und Bedienraten ermitteln.
Im zweiten Teil des Kapitels haben wir uns mit einer Modifikation des Systems mit ex-

ponentialverteilten Lebenszeiten befasst, dessen stationäre Verteilung Produktformgestalt
besitzt. Die zugehörigen Resultate sind sogar für ein Netzwerk mit J > 1 Standorten
gültig.
Abschließend haben wir uns mit der Frage beschäftigt, ob unsere Produktform-Resultate

aus Abschnitt 4.3.2 genutzt werden können, um Produktformschranken für unser Sys-
tem aus Abschnitt 4.2.3 mit unbekannter Nicht-Produkformstruktur der stationären Ver-
teilung zu erhalten. Unsere Vermutung, dass eine Monotonie-Eigenschaft der Durchsätze
vorliegt, wird durch unsere Resultate für den Spezialfall mit Base-Stock-Level gleich eins
sowie für Spezialfälle mit Base-Stock-Level größer gleich zwei unterstützt.
Die Modelle aus Kapitel 4 können als Spezialfall von Warteschlangensystemen in zufäl-

liger Umwelt betrachtet werden, welche wir in Appendix D.1 eingeführt haben. Wir
haben eine hinreichende und eine notwendige Bedingung für die Ergodizität hergeleitet.
Zusätzlich haben wir bewiesen, dass die stationäre Verteilung keine Produktformgestalt
hat. Ferner, haben wir Struktureigenschaften für das stationäre System ermittelt.

In Kapitel 5 bis 7 haben wir das Verhalten von komplexeren Netzwerken (Supply
Chains) untersucht. Das vom Zulieferer produzierte Rohmaterial wird genau zu dem
Standort gesendet, wo die Bestellung aufgegeben wurde. Somit ist in diesen Modellen
das Rohmaterial nicht austauschbar.

In Kapitel 5 haben wir das Grundmodell untersucht, in dem der Zulieferer aus einem
komplexen Netzwerk von Arbeitsstationen besteht. Wir haben bewiesen, dass die sta-
tionäre Verteilung des globalen integrierten Systems eine Drei-Term-Produkformstruktur
aufweist. Ferner haben wir eine Kostenanalyse durchgeführt, mit dem Ziel die optimalen
Base-Stock-Level zu bestimmen.

In Kapitel 6 haben wir das komplexe Zulieferernetzwerk aggregiert. Genauer gesagt,
kann das komplexe Zulieferernetzwerk durch einen Knoten — einen Zulieferer, der aus
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Zusammenfassung

einem symmetrischen Bediener besteht — substituiert werden. Der symmetrische Be-
diener ermöglicht es mit nicht-exponentiellen typabhängigen Bedienzeitverteilungen für
verschiedene Typen zu arbeiten. Wir haben die stationäre Verteilung des gesamten
Warteschlangen-Lager Prozesses einer komplexen Supply Chain mit phasenverteilten Be-
dienzeiten in expliziter Drei-Term-Produktformstruktur ermittelt.

In Kapitel 2 bis 6 haben wir uns mit Base-Stock-Politiken als Lagerhaltungspolitik
beschäftigt. In Kapitel 7 haben wir uns der (r, S)-Politik als Lagerhaltungspolitik gewid-
met. Die untersuchten Systeme unterscheiden sich hinsichtlich des Meldebestands, der
Anzahl der Standorte sowie der Anzahl der Arbeitsstationen beim Zulieferer. In Abschnitt
7.3 haben wir die (0, Sj)-Politik mit J Standorten und einem Zulieferer-Netzwerk, das
aus M Arbeitsstationen besteht, und in Abschnitt 7.4 die (1, Sj)-Politik mit zwei Stand-
orten und einem Zulieferer, der aus einer Arbeitsstation besteht, behandelt. Für diese
Systeme haben wir die stationären Verteilungen des Warteschlangen-Lager-Prozesses in
expliziter Produktform bestimmt, welche für die (0, Sj)-Politik eine Drei-Term- und für
die (1, Sj)-Politik eine Zwei-Term-Struktur aufweisen.

In Teil II haben wir Produktions-Lager-Systeme mit zwei Kundenklassen, Kunden-
verlust und (r,Q)-Politik in Kapitel 10 und Base-Stock-Politik in Kapitel 11 analysiert,
in denen die Kundenankünfte durch eine flexible Zugangskontrolle reguliert werden. Diese
Systeme haben wir als Markov-Prozesse modelliert und ihre globalen Gleichgewichtsgleich-
ungen sowie die Existenz ihrer stationären Verteilung studiert.
Des Weiteren haben wir Struktureigenschaften für die Systeme gezeigt, die Einsichten

in das Gleichgewichtsverhalten der Systeme geben. Allerdings sind explizite Lösungen
der stationären Verteilungen noch ein offenes Problem. Für das System mit Base-Stock-
Politik haben wir eine hinreichende Bedingung für Ergodizität mit Hilfe des Foster-
Lyapunov Stabilitätskriteriums ermittelt.
In Abschnitt 10.2 und 11.3 haben wir reine Lagersysteme analysiert, die aus Setzen

der Bedienzeiten gleich Null resultieren. Für diese Systeme haben wir die stationären
Verteilungen bestimmt.

In Tabelle F.2, werden folgende Symbole verwendet.

Symbol Bedeutung
π X Stationäre Verteilung besitzt explizite Lösung
ξ X Nur Randverteilung des Lager-Zulieferer-Teilsystems hat explizite Lösung
θ X Nur Randverteilung des Lager-Zulieferer-Teilsystems hat explizite Lösung
(?) Keine Unterscheidung zwischen austauschbarem und standortspezifischem

Rohmaterial, da das System nur einen Standort besitzt
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