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Abstract

The method of filtered back projection (FBP) is a commonly used reconstruction technique in
computerized tomography, which allows us to recover an unknown bivariate function from the
knowledge of its Radon data. The reconstruction is based on the classical FBP formula, which
yields an analytical inversion of the Radon transform provided that the complete Radon data
is available. The FBP formula, however, is highly sensitive with respect to noise and, hence,
numerically unstable. To overcome this problem, suitable low-pass filters of finite bandwidth and
with compactly supported window functions are employed. This reduces the noise sensitivity,
but only leads to an inexact approximation of the target function.

The main objective of this thesis is to analyse the inherent FBP reconstruction error which
is incurred by the application of the low-pass filter. To this end, we present error estimates
in Sobolev spaces of fractional order and provide quantitative criteria to a priori evaluate the
performance of the utilized low-pass filter by means of its window function. The obtained
error bounds depend on the bandwidth of the low-pass filter, on the flatness of the filter’s
window function at the origin, on the smoothness of the target function, and on the order of the
considered Sobolev norm in which the reconstruction error is measured.

Further, we prove convergence for the approximate FBP reconstruction in the treated Sobolev
norms along with asymptotic convergence rates as the filter’s bandwidth goes to infinity, where
we in particular observe saturation at fractional order depending on smoothness properties of
the filter’s window function.

Finally, we develop convergence rates for noisy data as the noise level goes to zero, where we
prove estimates for the data error and combine these with our results for the approximation error.
Furthermore, the filter’s bandwidth is coupled with the noise level to achieve the convergence.

The theoretical results are supported by numerical experiments.
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Chapter 1

Introduction

The development of computerized tomography (CT) has revolutionized the field of diagnostic
radiology and CT is by now one of the standard modalities in medical imaging. Its goal consists
in imaging the interior structure of a scanned object by measuring and processing the attenuation
of X-rays along a large number of lines through the cross-sections of the object to be examined.
In this process, a fundamental feature of CT is the mathematical reconstruction of an image by
the application of a suitable and sophisticated algorithm.

The impact of CT in diagnostic medicine has been revolutionary, since it has provided a
non-invasive imaging modality and has enabled doctors to view internal organs with mould-
breaking precision and safety for the patient. Since the invention of the first CT scanner in the
1970s the number of CT scans for diagnostic purpose has been growing extensively. In addition,
there are numerous non-medical imaging applications which are also based on the methods of
computerized tomography. One example is non-destructive testing (NDT) in materials science,
where we want to evaluate the properties of a material without causing damage. Another
application is electron microscopy, which is a typical example for an incomplete data problem,
because only observations in a limited angular range are available.

Mathematically, an X-ray scan provides the line integral values of the object’s attenuation
function along lines in the plane. Hence, the CT reconstruction problem requires the recovery
of a bivariate function f : R2 −→ R from the knowledge of its line integrals

Rf(t, θ) =
∫
{x cos(θ)+y sin(θ)=t}

f(x, y) d(x, y) for (t, θ) ∈ R× [0, π).

The purely mathematical problem of reconstructing a function from its line integral values was
first studied and analytically solved by the Austrian mathematician Johann Radon in 1917 in his
pioneering paper “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser
Mannigfaltigkeiten”, cf. [94]. In that work, Radon derived an explicit inversion formula for the
linear integral transform

R : f 7−→ Rf

under the assumption that the data Rf(t, θ) is complete, i.e., available for all possible values
(t, θ) ∈ R× [0, π). In his honour, the operator R is now known as the Radon transform and the
corresponding integral values are called Radon data.

Historically, the foundation of CT was laid in 1895 by the German physicist Wilhelm C.
Röntgen, who discovered a new kind of radiation, which he called X-radiation to emphasize its
unknown type. Immediately after the discovery, X-rays have been used to image the interior
of the human body. In 1901 his achievements earned Röntgen the first Nobel Prize in Physics.
The two pioneering scientists who were primarily responsible for the development of computer
assisted tomography in the 1960s and 1970s were Allan M. Cormack and Godfrey N. Hounsfield.
With their work, the hitherto purely mathematical problem of reconstructing a bivariate function
from the knowledge of its Radon transform has finally become relevant for practical applications.
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In [20], [21], Cormack developed mathematical algorithms to create an image from X-ray scans.
At about the same time, but working completely independently of Cormack, Hounsfield designed
the first operational CT scanner as well as the first commercially available model, see [47].
In 1979 the Nobel Prize for Medicine and Physiology was jointly awarded to Cormack and
Hounsfield for their fundamental achievements.

This breakthrough has attracted very much attention in engineering science as well as in
the mathematical community. In particular, the tomographic reconstruction problem has been
studied extensively and many different reconstruction algorithms were developed, cf. [30], [45],
[82]. One of the most applied techniques is still the method of filtered back projection (FBP),
which is based on an analytical inversion formula for the Radon transform and where low-pass
filters with finite bandwidth and compactly supported window functions are employed.

Although the FBP algorithm has been one of the standard reconstruction algorithms in com-
puterized tomography for more than 40 years, its error analysis and convergence behaviour are
not completely settled so far. In [90], Popov showed pointwise convergence restricted to a small
class of functions which are piecewise smooth and have jump discontinuities only along smooth
curves. The approach of Rieder and Schuster [103] leads to L2-convergence with suboptimal rates
for compactly supported target functions from Sobolev spaces with smoothness greater than 1

2 .
Here, the authors assume that the convolution kernel of the utilized low-pass filter has compact
support. However, this is not satisfied for typical choices of the filter, as, for example, for the
well-established Shepp-Logan or Ram-Lak filter. A different approach is taken by Rieder and
Faridani in [100] as well as by Rieder and Schneck in [101], where optimal L2-convergence rates
are proven for sufficiently smooth target functions. However, the authors verify the assumptions
of their theory only for a restricted class of filters which are based on (orthogonalized) B-splines.
Recently, Qu [92] considered the FBP method in the continuous setting and showed convergence
without rates in the L1-norm and the L2-norm for essentially bounded target functions with
compact support as well as in every point of continuity under additional assumptions.

In this thesis, we focus also on the continuous setting and analyse the inherent FBP recon-
struction error which is incurred by the application of the low-pass filter. To this end, we prove
novel error estimates in Sobolev spaces of fractional order and provide quantitative criteria to a
priori evaluate the performance of the utilized low-pass filter by means of its window function.
Further, we prove convergence for the approximate FBP reconstruction in the treated Sobolev
norms along with asymptotic convergence rates as the filter’s bandwidth goes to infinity, where
the smoothness order of the target function is only required to be positive. In addition, our
results allow us to predict saturation of the order of convergence at fractional rates depending
on smoothness properties of the filter’s window function, which can easily be evaluated.

In contrast to that, the estimates in [82, Chapter V.1] by Natterer and in [32] by Faridani and
Ritman deal with different types of errors which are incurred by the discretization of the FBP
method and by the sampling of the Radon transform. In addition, the results are of qualitative
nature in terms of essentially band-limited functions and, since the main tool used is the Poisson
summation formula, the considered target functions are required to be continuous at least.

We finally remark that pointwise error formulas and L∞-error bounds for the inherent FBP
reconstruction error are discussed by Munshi et al. in [78] under rather restrictive differentiability
conditions on the target function. In particular, the authors observe an affine-linear behaviour
of the error with respect to the second derivative of the filter’s window function at the origin. In
this thesis, the above observation is substantiated and generalized under weaker assumptions.

To give a broad overview, the present work contributes to the analysis and assessment of low-
pass filters in the filtered back projection method for approximately solving the two-dimensional
tomographic reconstruction problem. Let us remark that the construction and calculation of
reconstruction filters is still an important and active field of research, both in the two-dimensional
case, cf. [87], [88], as well as in the three-dimensional setting for different scanning geometries,
see, for example, [62], [64], [70], where the method of approximate inverse [65], [68] is applied.
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With designing suitable reconstruction filters one can also tackle the problem of reconstructing
certain features of the unknown target function by only using incomplete or local data, as, for
instance, in contour tomography [66], or of combining the reconstruction with image analysis
tasks like edge-detection or the direct calculation of wavelet coefficients, see [38], [39], [63], [69].
We finally remark that the FBP algorithm and its variants undergo steady improvements, as
recently in [4], [74], [75], and have been adopted to various different settings, cf. [41], [104], [105],
to name just a few recent developments.

The main part of this thesis is organized in four chapters as follows.
Chapter 2 has a introductory character and is devoted to the basic concepts of computerized

tomography. We begin with a brief overview of the principle of X-ray tomography and intro-
duce the Radon transform R as the mathematical model for the tomographic measuring process.
Furthermore, we present some fundamental properties of the Radon transform and define the
back projection operator B. This leads us to an inversion formula for the Radon transform given
by the classical filtered back projection formula, where we also study the ill-posedness of the
tomographic reconstruction problem. In the last section of this chapter, we finally discuss clas-
sical reconstruction techniques, where we distinguish between analytical and algebraic methods.
Most of the material presented in this Chapter is well-known and can be found, for example, in
the textbooks [33], [82] or in the overview article [93].

In Chapter 3 we thoroughly introduce the method of filtered back projection, where low-pass
filters AL with finite bandwidth and compactly supported window functions are employed. This
reduces the noise sensitivity of the FBP formula, but only leads to an inexact reconstruction.
For target functions f ∈ L1(R2)∩L2(R2) we show that the approximate FBP reconstruction fL
satisfies fL ∈ L2(R2) and can be written in standard form as

fL = 1
2 B

(
F−1AL ∗ Rf

)
= f ∗KL,

where the convolution kernel KL ∈ L2(R2) is not compactly supported and not necessarily
integrable on R2. To this end, we first collect some preliminary properties of the Radon transform
R and the back projection operator B. In the last section of this chapter, we then focus on
the convolution kernel KL and investigate some of its properties. We close the chapter with
discussing the concrete example of the classical Ram-Lak filter.

Chapter 4 contains the main results of this thesis. Our principle goal is the analysis of the
inherent FBP reconstruction error being incurred by the application of the low-pass filter. In
particular, we aim at developing quantitative and easy-to-check criteria to a priori evaluate the
performance of the filter by means of its window function W . In Section 4.1 we start with
describing related techniques and results, which can be found in the literature, and explain their
differences to our approach. Based on our L2-error estimates from [6], we then develop refined
error estimates for target functions from Sobolev spaces of fractional order. More precisely, for
functions f ∈ L1(R2) ∩ Hα(R2) with α > 0 we analyse the Hσ-norm of the FBP reconstruction
error

eL = f − fL
for all 0 ≤ σ ≤ α and, under suitable assumptions on the filter’s window function, we prove
convergence of the approximate FBP reconstruction fL to the target function f in the Hσ-norm
as the filter’s bandwidth L tends to infinity. Section 4.3 is then devoted to determining the rate
of convergence in terms of L subject to properties of the windowW . In particular, we show that
the decay rate of the error bound is determined by the difference between the smoothness α of
the target function and the order σ of the Sobolev norm in which the error eL is measures, but
saturates at (possibly) fractional rates depending on smoothness properties ofW . In Section 4.4
we then prove asymptotic error estimates under weaker assumptions, that predict an affine-linear
behaviour of the error with respect to the k-th derivative of the filter’s window at the origin.
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Finally, in Section 4.5 we consider the practically important case of noisy Radon data, where
we combine our results for the approximation error with estimates for the data error and couple
the filter’s bandwidth with the noise level, as standard in the regularization theory of ill-posed
problems. This enables us to determine asymptotic convergence rates for the overall error of the
FBP reconstruction from noisy data as the noise level tends to zero.

In Chapter 5 we finally provide numerical experiments to validate the error theory we derived
in Chapter 4. To this end, in Section 5.1 we first describe a standard discretization of the FBP
method for the reconstruction of target functions from finitely many Radon samples in parallel
beam geometry, cf. [33], [82]. Following this, we introduce two mathematical phantoms of
different smoothness as test cases, for which we compute the Radon transform analytically.
Section 5.3 then contains our numerical results, where we reconstruct both phantoms from finite
Radon data by utilizing the discrete FBP algorithm we derived before. Furthermore, we restrict
ourselves to the L2-case, i.e., σ = 0, and use the standard root mean square error (RMSE) to
measure the reconstruction error and investigate its behaviour for various low-pass filters. In
our first numerical experiments we validate the proven convergence order of the error, where we
in particular observe saturation at the fractional rates predicted by our theory. In addition, our
second set of numerical experiments shows that the error behaves affine-linearly with respect to
different quality indicators which we identified in Chapter 4.

Appendix A contains supplementary material. For the reader’s convenience, in Section A.1
we review the definitions and some basic properties of the Fourier transform and the convolution
product. Following this, we introduce (tempered) distributions in Section A.2 and define Sobolev
spaces of fractional order in Section A.3. We close the appendix with collecting some further
mathematical tools we need for our analysis in Chapters 3 and 4. All presented results are
well-known and can be found, for example, in the textbooks [16], [34], [35], [46], [108], [119].

Parts of the results of this thesis have been published in the conference proceedings

• M. Beckmann and A. Iske: Error Estimates for Filtered Back Projection, IEEE Inter-
national Conference on Sampling Theory and Applications (SampTA), 2015, 553–557,

• M. Beckmann and A. Iske: On the error behaviour of the filtered back projection,
Proceedings in Applied Mathematics and Mechanics (PAMM) 16(1), 2016, 833–834,

• M. Beckmann and A. Iske: Sobolev Error Estimates for Filtered Back Projection
Reconstructions, IEEE International Conference on Sampling Theory and Applications
(SampTA), 2017, 251–255,

or have been disseminated in the preprints

• M. Beckmann and A. Iske: Analysis of the Inherent Reconstruction Error in Filtered
Back Projection, Hamburger Beiträge zur Angewandten Mathematik (HBAM) 2016-01,
University of Hamburg, 2016,

• M. Beckmann and A. Iske: Approximation of Bivariate Functions from Fractional
Sobolev Spaces by Filtered Back Projection, Hamburger Beiträge zur Angewandten Ma-
thematik (HBAM) 2017-05, University of Hamburg, 2017,

• M. Beckmann and A. Iske: Error Estimates and Convergence Rates for Filtered Back
Projection, Hamburger Beiträge zur Angewandten Mathematik (HBAM) 2016-06, Univer-
sity of Hamburg, 2016, accepted for publication in Mathematics of Computation.



Chapter 2

Computerized tomography

In this chapter we give an overview of the basic concept of computerized tomography (CT).
We start with explaining the principle of X-ray tomography and stating the underlying recon-
struction problem. Following this, we introduce the Radon transform as the mathematical model
for the measurement process in CT and study some of its fundamental properties. The main
part of this chapter then deals with the inversion of the Radon transform, given by the classical
filtered back projection formula, and the ill-posedness of the CT reconstruction problem. In the
last section we finally describe some classical reconstruction techniques. We remark that most
of the presented results are well-known and can be found in the monographs [30], [33], [44], [45],
[51], [82], [83] or in the overview articles [93], [112], [116], [117].

2.1 The principle of X-ray tomography

The term computerized tomography (CT) refers to the reconstruction of a bivariate function
from its line integral values. The expression ’tomography’ is derived from the Ancient Greek
words τ óµoς, which means ’slice’, and γράϕω meaning ’to write’.

One of the most prominent examples of X-ray tomography is still transmission CT in medical
imaging and non-destructive testing. Here, the aim consists in recovering the interior of an
unknown two-dimensional object from measurements of one-dimensional X-ray projections. In
order to explore the two-dimensional structure of the object, the X-ray projections are taken from
different views. To this end, a source-detector pair is rotated around the object, see Figure 2.1,
where the source emits X-ray beams of a given initial intensity and the detector measures the
intensity of the beams after passing the object.

Source

Detector

IS

ID

f

Figure 2.1: Imaging principle of X-ray tomography. To explore the inner structure of an object f ,
a source-detector pair is rotated around the object collecting X-ray projections at different views.
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The imaging principle of X-ray tomography is now based on the fact that the X-ray beams
are attenuated when passing the object. The attenuation of the X-rays depends on the inner
structure of the scanned medium and, thus, carries information about the interior of the unknown
object. When a single X-ray beam of known intensity travels along a line ` ⊂ R2 from the X-ray
source to the X-ray detector, a fraction of the energy present in the beam is absorbed by the
material on the line ` and the remaining portion passes through. The intensity of the beam, as
it emerges from the medium, is measured by the detector and the difference of the initial and
the final intensities describes the ability of the material to absorb energy.

Let f : R2 −→ R denote the so called attenuation function of the scanned medium, which
describes the proportion of energy being absorbed by the material and whose support is assumed
to lie in a convex set Ω ⊆ R2. Thus, f is a characteristic quantity of the scanned object and,
mathematically, the goal of X-ray tomography is to recover f from the given X-ray scans.

If the X-rays are monochromatic and I(x) denotes the intensity of the X-ray beam at position
x ∈ Ω, the intensity loss ∆I(x) in a small segment of ` of length ∆x is approximately given by

∆I(x) ≈ −f(x) · I(x) ·∆x.

Taking the limit ∆x −→ 0 leads us to the ordinary differential equation

d
dx
I(x) = −f(x) · I(x), (2.1)

which is known as Beer’s law, cf. [33, Section 1.2]. If IS denotes the initial intensity of the X-ray
at the source and ID its final intensity at the detector, integrating (2.1) from source to detector
yields ∫ ID

IS

1
I

dI = −
∫
`
f(x) dx,

which implies that
log
(
IS
ID

)
=
∫
`
f(x) dx. (2.2)

Since the values IS and ID are measured during the scanning process, the X-ray data provides
us with the line integral values of the attenuation function f along the straight line ` ⊂ R2.
Recovering the absorption coefficient f or, equivalently, reconstructing an object from X-ray
projections therefore reduces to solving the integral equation (2.2).

Consequently, the basic CT reconstruction problem can be formulated as follows.

Problem 2.1.1 (Basic reconstruction problem). Reconstruct a bivariate function f ≡ f(x, y)
on its domain Ω ⊆ R2 from given line integral values∫

`
f(x, y) d(x, y)

along all straight lines ` ⊂ R2 passing through Ω.

We have seen that the CT scanner provides line integral values of the function to be recon-
structed along straight lines in the plane. In order to derive a reconstruction theory, we now
introduce a suitable parametrization of these lines, as illustrated in Figure 2.2.

Definition 2.1.2 (Straight line in the plane, see [33, Definition 1.4.]). For any pair (t, θ) ∈ R2

of parameters, we define `t,θ ⊂ R2 to be the unique straight line that passes through the point
(t cos(θ), t sin(θ)) ∈ R2 and is perpendicular to the unit vector nθ = (cos(θ), sin(θ)) ∈ R2.

We remark that every straight line in the plane can be characterized as `t,θ for some real
numbers t, θ ∈ R. Further, for any pair of parameters (t, θ) ∈ R2 holds that

`t,θ+2π = `t,θ and `t,θ+π = `−t,θ. (2.3)



2.1 The principle of X-ray tomography 7

Thus, each line in the plane has infinitely many different representations of the form `t,θ. To
enforce uniqueness, we restrict the parameter pair (t, θ) to t ∈ R and θ ∈ [0, π) so that the set

{`t,θ | t ∈ R, θ ∈ [0, π)}

contains exactly all straight lines in the plane. For fixed t ∈ R and θ ∈ [0, π) we now parametrize
the line `t,θ as follows.

Remark 2.1.3 (Parametrization of the straight line `t,θ). For any fixed angle θ ∈ [0, π), we
have

nθ = (cos(θ), sin(θ)) ⊥ (− sin(θ), cos(θ)) = n⊥θ .
Therefore, every point (x, y) on the line `t,θ is of the form

(x, y) = t · nθ + s · n⊥θ = (t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) (2.4)

for some s ∈ R and, consequently,

`t,θ = {(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) | s ∈ R} .

We close this paragraph on lines in the plane by noting that for fixed angle θ ∈ [0, π) there
is a unique straight line `t,θ passing through a given point (x, y) ∈ R2.

Remark 2.1.4. For any point (x, y) ∈ R2 in the plane and a given angle θ ∈ [0, π) there exists
a unique value for t ∈ R such that the straight line `t,θ passes through (x, y). The unique t, s ∈ R
satisfying

x = t cos(θ)− s sin(θ) and y = t sin(θ) + s cos(θ)
are given by

t = x cos(θ) + y sin(θ) and s = −x sin(θ) + y cos(θ)
and meet the relation

x2 + y2 = t2 + s2. (2.5)

With the described parametrization of straight lines in the plane, we finally reformulate the
basic CT reconstruction Problem 2.1.1 as follows.

Problem 2.1.5 (Basic CT reconstruction problem). On given domain Ω ⊆ R2, reconstruct a
bivariate function f ≡ f(x, y) from its line integral values∫

`t,θ

f(x, y) d(x, y), (2.6)

which are assumed to be given for all parameters (t, θ) ∈ R× [0, π).

θ

x

y

ℓt,θ

(
t cos(θ), t sin(θ)

)

nθ =
(
cos(θ), sin(θ)

)

•

t

Figure 2.2: Representation of the straight line `t,θ ⊂ R2 with parameters (t, θ) ∈ R× [0, π).
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2.2 Mathematics of computerized tomography

In this section we give an overview of some basics facts about the mathematics of computerized
tomography. To this end, we follow the proceedings in [33], [82], but we also include additional
theorems, relax some assumptions and extend the proofs.

2.2.1 The Radon transform

In Section 2.1 we have seen that the scanning process in CT provides us with the line integrals
of a bivariate function f along straight lines in the plane, from which we have to reconstruct f .
For f ∈ L1(R2) and any parameter pair (t, θ) ∈ R2 the line integral in (2.6) can be rewritten as∫

`t,θ

f(x, y) d(x, y) =
∫
R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds,

where we used the parametrization (2.4) with the arclength element

‖(ẋ(s), ẏ(s))‖R2 ds =
√

(− sin(θ))2 + (cos(θ))2 ds = ds.

The integral transform which maps a function f : R2 −→ R into the set of its line integrals
was firstly investigated by Johann Radon. In his honour, this integral transform is called Radon
transform and, thus, the CT reconstruction Problem 2.1.5 simply seeks for the inversion of the
Radon transform on R2.

Definition and basic properties

In the following, we investigate some basic properties of the Radon transform. For a compre-
hensive treatment of the Radon transform we refer the reader to the monograph [44].

Definition 2.2.1 (Radon transform, see [33, Definition 2.1.]). Let f ∈ L1(R2) be a bivariate
function in Cartesian coordinates. Then, the Radon transform Rf of f at the point (t, θ) ∈ R2

is defined as

Rf(t, θ) =
∫
`t,θ

f(x, y) d(x, y) =
∫
R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds. (2.7)

The graph of the Radon transform Rf in the (t, θ)-plane is called sinogram of f .

Note that the Radon transform Rf of a bivariate function f is 2π-periodic in the angular
variable θ and, due to relation (2.3), it suffices to consider Rf only on the domain R × [0, π).
Further, an application of Fubini’s theorem shows that the Radon transform Rf of f ∈ L1(R2)
is well-defined almost everywhere on R × [0, π) in the sense that for any angle θ ∈ [0, π) the
integral in (2.7) is well-defined for almost all t ∈ R.

Proposition 2.2.2 (Well-definedness of the Radon transform). For f ∈ L1(R2), the Radon
transform Rf is well-defined almost everywhere on R× [0, π).

Proof. Let f ∈ L1(R2). We define the auxiliary function H : R2 × [0, π) −→ R2 as

H(s, t, θ) = (t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) for (s, t, θ) ∈ R2 × [0, π).

Then, H is continuous on R2 × [0, π) and we have

Rf(t, θ) =
∫
R
f(H(s, t, θ)) ds ∀ (t, θ) ∈ R× [0, π).
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Note that, for fixed angle θ ∈ [0, π), the mapping

(s, t) 7−→ (t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))

is a rotation in R2 and, thus, measure preserving. In particular, the mapping

(s, t) 7−→ f(H(s, t, θ))

is in L1(R2) for all θ ∈ [0, π), since f ∈ L1(R2) by assumption. Therefore, Fubini’s theorem
shows that the partial mapping

s 7−→ f(H(s, t, θ))

is integrable on R for almost all t ∈ R and all θ ∈ [0, π). This implies that

(t, θ) 7−→
∫
R
f(H(s, t, θ)) ds = Rf(t, θ)

is well-defined for almost all t ∈ R and all θ ∈ [0, π).

Remark 2.2.3 (see [33, Chapter 2.6]). The Radon transform Rf of a function f is defined
everywhere on R×[0, π) if the integral of f along the line `t,θ exists for all pairs (t, θ) ∈ R×[0, π).
To ensure this, it suffices to require that f is continuous on R2 and has compact support.

With Definition 2.2.1 the classical CT reconstruction problem can be reformulated as follows.

Problem 2.2.4 (Reconstruction problem). For given domain Ω ⊆ R2, reconstruct a bivariate
function f ∈ L1(Ω) from its Radon data

{Rf(t, θ) | t ∈ R, θ ∈ [0, π)} .

Therefore, the CT reconstruction problem seeks for the inversion of the Radon transform R.
However, before explaining the inversion of R, we collect some of its fundamental properties.

Observation 2.2.5. The Radon transform R maps a bivariate function f ≡ f(x, y) in Cartesian
coordinates onto a bivariate function Rf ≡ Rf(t, θ) in polar coordinates.

The first two important properties of the Radon transform are its linearity and evenness.

Proposition 2.2.6 (Linearity of the Radon transform, see [33, Proposition 2.6.]). The Radon
transform R is a positive linear integral operator, i.e., for all α, β ∈ R and f, g ∈ L1(R2) we
have

R(αf + βg) = αRf + βRg.

and
f ≥ 0 =⇒ Rf ≥ 0.

Further, the Radon transform Rf of f ∈ L1(R2) satisfies the evenness condition

Rf(−t, θ + π) = Rf(t, θ) ∀ (t, θ) ∈ R× [0, π).

Proof. The statement follows from the positivity and linearity of the integral and (2.3).

The next theorem is concerned with the continuity of the Radon transform as a mapping

R : L1(R2) −→ L1(R× [0, π)).

Proposition 2.2.7 (Continuity of the Radon transform, see [93, Theorem 2.1.]). The Radon
transform R is a continuous operator from L1(R2) to L1(R×[0, π)). In particular, for f ∈ L1(R2)
we have

‖Rf‖L1(R×[0,π)) ≤ π ‖f‖L1(R2).
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Proof. Let f ∈ L1(R2) and θ ∈ [0, π) be fixed. By the definition of the Radon transform R
follows that ∫

R
|Rf(t, θ)| dt =

∫
R

∣∣∣∣ ∫
`t,θ

f(x, y) d(x, y)
∣∣∣∣ dt

≤
∫
R

∫
R
|f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))| ds dt.

Applying the transformation

x = t cos(θ)− s sin(θ) and y = t sin(θ) + s cos(θ),

we get dx dy = dt ds and, consequently,∫
R
|Rf(t, θ)| dt ≤

∫
R

∫
R
|f(x, y)| dx dy = ‖f‖L1(R2).

This gives

‖Rf‖L1(R×[0,π)) =
∫ π

0

∫
R
|Rf(t, θ)| dt dθ ≤ ‖f‖L1(R2)

∫ π

0
1 dθ = π ‖f‖L1(R2).

Hence, R is a continuous operator from L1(R2) to L1(R× [0, π)).

A special situation occurs if the function f : R2 −→ R is radially symmetric, i.e., f is
invariant under rotations. This means that there exists a function f0 : R −→ R with

f(x, y) = f0(‖(x, y)‖R2) ∀ (x, y) ∈ R2.

Proposition 2.2.8. If the function f ∈ L1(R2) is radially symmetric, its Radon transform Rf
depends only on the modulus |t| of the radial variable t ∈ R, but not on the angle θ ∈ [0, π).

Proof. Let f ∈ L1(R2) be radially symmetric. Thus, there exists a function f0 : R −→ R with

f(x, y) = f0(x2 + y2) ∀ (x, y) ∈ R2.

With this, for all (t, θ) ∈ R× [0, π) follows that

Rf(t, θ) =
∫
`t,θ

f(x, y) d(x, y) =
∫
R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

=
∫
R
f0((t cos(θ)− s sin(θ))2 + (t sin(θ) + s cos(θ))2) ds

=
∫
R
f0(t2 + s2) ds.

This shows that Rf(t, θ) is independent of the angular variable θ ∈ [0, π) and only depends on
the absolute value |t| of the radial variable t ∈ R.

Another important property of R is that the compact support of a function f carries over
to its Radon transform Rf .

Proposition 2.2.9. Let f ∈ L1(R2) have compact support, i.e., there exists an R > 0 such that

f(x, y) = 0 ∀ ‖(x, y)‖R2 > R.

Then, Rf has compact support as well with

Rf(t, θ) = 0 ∀ |t| > R, θ ∈ [0, π).
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Proof. For each fixed θ ∈ [0, π) and t ∈ R with |t| > R, we have

f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) = 0 ∀ s ∈ R.

This implies that
Rf(t, θ) = 0 ∀ (t, θ) ∈ R× [0, π) : |t| > R

and, hence, Rf has compact support as well.

Let Cc(R2) denote the space of continuous functions with compact support in R2, i.e.,

Cc(R2) =
{
f ∈ C (R2) | ∃R > 0 : supp(f) ⊆ BR(0)

}
,

where
BR(0) =

{
(x, y) ∈ R2 | x2 + y2 ≤ R2

}
.

We now show that the Radon transform Rf of a function f ∈ Cc(R2) is continuous on R× [0, π).

Proposition 2.2.10. Let f ∈ Cc(R2) have support in a compact set K ⊂ R2 with diameter

diam(K) = sup {‖(x−X, y − Y )‖R2 | (x, y), (X,Y ) ∈ K} <∞.

Then, we have Rf ∈ Cc(R× [0, π)) and

|Rf(t, θ)| ≤ diam(K) ‖f‖∞ ∀ (t, θ) ∈ R× [0, π).

Proof. Let f ∈ Cc(R2) have compact support in K ⊂ R2 and choose R > 0 such that

f(x, y) = 0 ∀ ‖(x, y)‖R2 > R.

Then, we also have f ∈ L1(R2) and its Radon transform Rf ∈ L1(R × [0, π)) is compactly
supported due to Proposition 2.2.9. To show the continuity of Rf , we fix (t, θ) ∈ R× [0, π) and
consider a sequence (tn, θn)n∈N in R× [0, π) with

lim
n→∞

tn = t and lim
n→∞

θn = θ.

For the sake of brevity, we introduce the notations

f(t,θ)(s) = f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) for s ∈ R

and, analogously,

f(tn,θn)(s) = f(tn cos(θn)− s sin(θn), tn sin(θn) + s cos(θn)) for s ∈ R.

Then, we obtain

|Rf(t, θ)−Rf(tn, θn)| =
∣∣∣∣∫

R
f(t,θ)(s)− f(tn,θn)(s) ds

∣∣∣∣ =
∣∣∣∣∣
∫ R

−R
f(t,θ)(s)− f(tn,θn)(s) ds

∣∣∣∣∣
≤
∫ R

−R

∣∣∣f(t,θ)(s)− f(tn,θn)(s)
∣∣∣ ds,

since for all s ∈ R with |s| > R holds that

f(t,θ)(s) = 0 and f(tn,θn)(s) = 0.

Because f ∈ Cc(R2) is continuous and compactly supported, it is also uniformly continuous and
we obtain

lim
n→∞

∣∣∣f(t,θ)(s)− f(tn,θn)(s)
∣∣∣ = 0
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uniformly in s ∈ [−R,R], i.e.,

max
|s|≤R

∣∣∣f(t,θ)(s)− f(tn,θn)(s)
∣∣∣ n→∞−−−→ 0.

This implies that

|Rf(t, θ)−Rf(tn, θn)| ≤ 2Rmax
|s|≤R

∣∣∣f(t,θ)(s)− f(tn,θn)(s)
∣∣∣ n→∞−−−→ 0,

which shows the continuity of Rf . In particular, we have proven that Rf ∈ Cc(R × [0, π)).
Further, since f is supported on K, for (t, θ) ∈ R× [0, π) holds that

|Rf(t, θ)| =
∣∣∣∣∫

R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

∣∣∣∣
=
∣∣∣∣∫

R
(χK · f)(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

∣∣∣∣ ,
where χK denotes the characteristic function of K. Consequently,

|Rf(t, θ)| ≤ ‖f‖∞
∫
R
χK(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

= ‖f‖∞
∫
`t,θ

χK(x, y) d(x, y) = RχK(t, θ) ‖f‖∞

≤ diam(K) ‖f‖∞,

as stated.

In particular, Proposition 2.2.10 implies that the Radon transform R is continuous as a
mapping

R : C (BR(0)) −→ C ([−R,R]× [0, π)).

We remark that the Radon transform also preserves smoothness and decay properties of the
input function. This has been proven by Helgason in [43]. To state the result, recall that the
Schwartz space S(R2) on R2 is given by all smooth functions f ≡ f(x, y) ∈ C∞(R2) which decay
with all their derivatives faster than any power of 1/‖(x, y)‖R2 at infinity, i.e.,

sup
(x,y)∈R2

|(x, y)α Dβf(x, y)| <∞ ∀α, β ∈ N2
0.

Analogously, the Schwartz space S(R × [0, π)) can be defined on R × [0, π) as the space of all
functions g ≡ g(t, θ) that can be extended to be smooth and 2π-periodic in the angular variable θ
satisfying

g(t, θ) = g(−t, θ − π) ∀ (t, θ) ∈ R× [π, 2π)

and where decay is understood with respect to the radial variable t in the sense that g (along
with all its derivatives in t) decays faster than any power of 1/|t| at infinity uniformly in θ.
Then, in [43, Theorem 4.1] it is proven that the Radon transform R is continuous as a mapping

R : S(R2) −→ S(R× [0, π)).

The Fourier slice theorem

The most important property of the Radon transform is given by the classical Fourier slice
theorem (FST), also known as central slice theorem, which relates the Fourier transform of the
Radon transform to the Fourier transform of the function to be reconstructed.
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Let us first recall that the Fourier transform Ff of a bivariate function f ≡ f(x, y) ∈ L1(R2)
in Cartesian coordinates is given by

Ff(X,Y ) =
∫
R

∫
R
f(x, y) e−i(xX+yY ) dx dy for (X,Y ) ∈ R2.

For a bivariate function h ≡ h(t, θ) in polar coordinates satisfying h(·, θ) ∈ L1(R) for all θ ∈ [0, π)
we define the Fourier transform Fh as the univariate Fourier transform acting only on the radial
variable t, i.e.,

Fh(S, θ) =
∫
R
h(t, θ) e−iSt dt for (S, θ) ∈ R× [0, π).

Now, the Fourier slice theorem reads as follows.

Theorem 2.2.11 (Fourier slice theorem, see [33, Theorem 6.1.]). For f ∈ L1(R2) we have

F(Rf)(S, θ) = Ff(S cos(θ), S sin(θ)) ∀ (S, θ) ∈ R× [0, π).

More generally, we have the following projection slice theorem.

Theorem 2.2.12 (General projection slice theorem, see [93, Theorem 2.2]). Let f ∈ L1(R2)
and h ∈ L∞(R). Then, for all θ ∈ [0, π) we have∫

R
Rf(t, θ)h(t) dt =

∫
R

∫
R
f(x, y)h(x cos(θ) + y sin(θ)) dx dy.

The Fourier slice Theorem 2.2.11 follows by using the function h = e−iS· with fixed S ∈ R.

Proof. We first note that for f ∈ L1(R2), h ∈ L∞(R) and fixed angle θ ∈ [0, π), the function
Fθ : R2 −→ R with

Fθ(x, y) = f(x, y)h(x cos(θ) + y sin(θ)) for (x, y) ∈ R2

satisfies Fθ ∈ L1(R2) with
‖Fθ‖L1(R2) ≤ ‖h‖L∞(R) ‖f‖L1(R2).

Applying the transformation

x = t cos(θ)− s sin(θ) and y = t sin(θ) + s cos(θ),

i.e.,
t = x cos(θ) + y sin(θ) and s = −x sin(θ) + y cos(θ),

again gives dx dy = dt ds and, thus, it follows that∫
R

∫
R
Fθ(x, y) dx dy =

∫
R

∫
R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))h(t) dtds

=
∫
R
Rf(t, θ)h(t) dt

by Fubini’s theorem and the definition of the Radon transform R.

The importance of the Fourier slice theorem lies in the fact that it links together the Radon
transform of a function and its Fourier transform. This connection can be used to derive proper-
ties of the Radon transform from those properties which are known for the Fourier transform.
In particular, the Fourier slice theorem shows the injectivity of the Radon transform on the
domain L1(R2). Indeed, if Rf vanished on R × [0, π), then Ff vanished on R2, which implies
that f is zero due to the injectivity of the Fourier transform, see Corollary A.1.6.
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Corollary 2.2.13 (Injectivity of the Radon transform). For f ∈ L1(R2) we have

Rf = 0 =⇒ f = 0,

i.e., the Radon transform R is injective on L1(R2).

Moreover, Theorem 2.2.11 immediately provides a scheme for reconstructing a function from
the knowledge of its Radon transform. Assuming Rf(t, θ) to be known for all (t, θ) ∈ R× [0, π),
we can gain knowledge about the two-dimensional Fourier transform of f by computing the one-
dimensional Fourier transform of Rf . Subsequent application of the inverse two-dimensional
Fourier transform would yield the function f we want to reconstruct. We remark that such
reconstruction procedures are known as Fourier reconstruction methods, cf. [82], [83].

We close this section on the Radon transform by considering an analytical example.

Example 2.2.14. Consider the characteristic function χBR(0) of the ball BR(0) ⊂ R2 of radius
R > 0 around 0, i.e.,

χBR(0)(x, y) =
{

1 for x2 + y2 ≤ R2

0 for x2 + y2 > R2.

For all (t, θ) ∈ R× [0, π) we then have

χBR(0)(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) =
{

1 for t2 + s2 ≤ R2

0 for t2 + s2 > R2

and, thus, for the Radon transform of χBR(0) follows that

RχBR(0)(t, θ) =
∫
R
χBR(0)(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

=
{

2
√
R2 − t2 for |t| ≤ R

0 for |t| > R.

2.2.2 The back projection

We want to recover the function f ≡ f(x, y) from the values Rf(t, θ) with t ∈ R and θ ∈ [0, π).
First, we observe that each fixed point (x0, y0) ∈ R2 lies on infinitely many different lines `t,θ.
But for a fixed angle θ ∈ [0, π) there exists exactly one t ∈ R for which `t,θ passes through the
point (x0, y0). Indeed, for suitable s ∈ R we have the representation

x0 = t cos(θ)− s sin(θ) and y0 = t sin(θ) + s cos(θ)

if and only if t = x0 cos(θ)+y0 sin(θ), see Remark 2.1.4. Consequently, the lines passing through
(x0, y0) are of the form

`x0 cos(θ)+y0 sin(θ),θ for θ ∈ [0, π).

The first naive idea is now the following: To recover f(x0, y0), we compute the average value of
the line integrals

Rf(x0 cos(θ) + y0 sin(θ), θ) for θ ∈ [0, π)

over all lines passing through (x0, y0). This operation is called back projection.

Definition 2.2.15 (Back projection, see [33, Definition 3.2.]). Let g ∈ L1(R × [0, π)) be a
bivariate function in polar coordinates. Then, the back projection Bg of g at the point (x, y) ∈ R2

is defined as
Bg(x, y) = 1

π

∫ π

0
g(x cos(θ) + y sin(θ), θ) dθ.
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The following proposition shows that the back projection Bg of a function g ∈ L1(R× [0, π))
is defined almost everywhere and locally integrable on R2.

Proposition 2.2.16 (Mapping property of the back projection). For g ∈ L1(R × [0, π)), the
back projection Bg is defined almost everywhere on R2 and satisfies Bg ∈ L1

loc(R2).

Proof. Let g ∈ L1(R× [0, π)). We define the auxiliary function H : R2 × [0, π) −→ R× [0, π) as

H(x, y, θ) = (x cos(θ) + y sin(θ), θ) for (x, y, θ) ∈ R2 × [0, π).

Then, H is continuous on R2 × [0, π) and we have

Bg(x, y) = 1
π

∫ π

0
g(H(x, y, θ)) dθ ∀ (x, y) ∈ R2.

Now, let K ⊂ R2 be an arbitrary compact subset of R2. We then obtain

‖Bg‖L1(K) =
∫
K
|Bg(x, y)| d(x, y) =

∫
K

∣∣∣∣ 1π
∫ π

0
g(H(x, y, θ)) dθ

∣∣∣∣ d(x, y)

= 1
π

∫
R

∫
R

∣∣∣∣ ∫ π

0
g(H(x, y, θ)) dθ

∣∣∣∣χK(x, y) dx dy

≤ 1
π

∫
R

∫
R

(∫ π

0
|g(H(x, y, θ))| dθ

)
χK(x, y) dx dy,

where χK denotes the characteristic function of K. By applying Fubini’s theorem for non-
negative functions and integration by substitution for real-valued functions with

x = t cos(θ)− s sin(θ) and y = t sin(θ) + s cos(θ),

i.e., dx dy = dt ds and

t = x cos(θ) + y sin(θ) and s = −x sin(θ) + y cos(θ),

we obtain

‖Bg‖L1(K) ≤
1
π

∫ π

0

∫
R

∫
R
|g(x cos(θ) + y sin(θ), θ)|χK(x, y) dx dy dθ

= 1
π

∫ π

0

∫
R

∫
R
|g(t, θ)|χK(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) dt ds dθ.

Using again Fubini’s theorem, the definition of the Radon transform R yields

‖Bg‖L1(K) ≤
1
π

∫ π

0

∫
R
|g(t, θ)|

(∫
R
χK(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

)
dt dθ

= 1
π

∫ π

0

∫
R
|g(t, θ)|RχK(t, θ) dtdθ ≤ 1

π
diam(K) ‖g‖L1(R×[0,π)) <∞.

Consequently, we have Bg ∈ L1(K) for all compact subsets K ⊂ R2. In particular, this shows
that the back projection Bg of g ∈ L1(R× [0, π)) is defined almost everywhere on R2 and satisfies

Bg ∈ L1
loc(R2).

Note that the back projection Bg of an essentially bounded function g ∈ L∞(R × [0, π)) is
also defined almost everywhere and essentially bounded on R2. Moreover, the back projection
is continuous as a mapping

B : L∞(R× [0, π)) −→ L∞(R2),

where for g ∈ L∞(R× [0, π))

‖Bg‖L∞(R2) ≤ ‖g‖L∞(R×[0,π)).
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We continue with some basic properties of the back projection operator B.

Observation 2.2.17. The back projection operator B maps a bivariate function g ≡ g(t, θ) in
polar coordinates onto a bivariate function Bg ≡ Bg(x, y) in Cartesian coordinates.

As the Radon transform R, the back projection operator B is a positive linear operator.

Proposition 2.2.18 (Linearity of the back projection, see [33, Proposition 3.3.]). The back
projection B is a positive linear integral operator, i.e., for all α, β ∈ R and g, h ∈ L1(R× [0, π))
we have

B(αg + βh) = αBg + β Bh
and

g ≥ 0 =⇒ Bg ≥ 0.

Proof. The statement follows from the positivity and linearity of the integral.

However, we will observe that the back projection is not the inverse of the Radon transform.
To this end, we first prove the following auxiliary result.

Proposition 2.2.19. Let g ∈ L1(R × [0, π)) be independent of the angular variable θ ∈ [0, π)
and only depend on the absolute value |t| of the radial variable t ∈ R. Then, its back projection
Bg is radially symmetric.

Proof. Since g ∈ L1(R× [0, π)) is assumed to depend only on the absolute value |t| of the radial
variable t ∈ R, there exists a function g0 ∈ L1(R) such that

g(t, θ) = g0(|t|) ∀ (t, θ) ∈ R× [0, π).

Consider now an arbitrary rotation matrix Q ∈ SO(2) given by

Q =
(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
for ϕ ∈ [0, 2π).

To prove the radial symmetry of Bg, we have to show that

Bg(Q(x, y)) = Bg(x, y) ∀ (x, y) ∈ R2.

For fixed (x, y) ∈ R2, the definition of the back projection B gives

Bg(Q(x, y)) = Bg(x cos(ϕ)− y sin(ϕ), x sin(ϕ) + y cos(ϕ))

= 1
π

∫ π

0
g((x cos(ϕ)− y sin(ϕ)) cos(θ) + (x sin(ϕ) + y cos(ϕ)) sin(θ), θ) dθ

= 1
π

∫ π

0
g(x cos(θ − ϕ) + y sin(θ − ϕ), θ) dθ

= 1
π

∫ π

0
g0(|x cos(θ − ϕ) + y sin(θ − ϕ)|) dθ.

To continue our calculations, we note that the mapping

θ 7−→ g0(|x cos(θ) + y sin(θ)|)

is π-periodic. Consequently, the transformation ϑ = θ − ϕ gives

Bg(Q(x, y)) = 1
π

∫ π−ϕ

−ϕ
g0(|x cos(ϑ) + y sin(ϑ)|) dϑ

= 1
π

∫ π

0
g0(|x cos(ϑ) + y sin(ϑ)|) dϑ

= 1
π

∫ π

0
g(x cos(ϑ) + y sin(ϑ), ϑ) dϑ = Bg(x, y),

which shows that Bg is radially symmetric.
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With Proposition 2.2.19 we are now prepared to prove that back projecting the measured
Radon data Rf does not recover the unknown function f .

Observation 2.2.20. The back projection B is not the inverse of the Radon transform R.

Proof. To prove said statement, we give a counterexample. To this end, we consider the char-
acteristic function f = χBR(0) ∈ L1(R2) of the ball BR(0) ⊂ R2 of radius R > 0 around 0,
i.e.,

f(x, y) =
{

1 for x2 + y2 ≤ R2

0 for x2 + y2 > R2,

whose nonnegative Radon transform is given by

Rf(t, θ) =
{

2
√
R2 − t2 for |t| ≤ R

0 for |t| > R
∀ (t, θ) ∈ R× [0, π),

see Example 2.2.14.
We now evaluate the back projection B(Rf) of Rf at the points (R + ε, 0) with ε > 0. For

ε ∈ (0, (
√

2− 1)R) we have R+ ε ∈ (R,
√

2R) and, thus,

|(R+ ε) cos(θ)| < R ∀ θ ∈
(π

4 ,
3π
4
)
.

Consequently, we obtain

B(Rf)(R+ ε, 0) = 1
π

∫ π

0
Rf((R+ ε) cos(θ), θ) dθ ≥ 1

π

∫ 3π
4

π
4

Rf((R+ ε) cos(θ), θ) dθ

= 2
π

∫ 3π
4

π
4

√
R2 − (R+ ε)2 cos2(θ) dθ > 0.

Now, the Radon transform Rf of f is integrable on R × [0, π) and, further, only depends
on the absolute value |t| of the radial variable t ∈ R. Consequently, applying Proposition 2.2.19
shows that B(Rf) is radially symmetric and, for any angle ϕ ∈ [0, 2π), we obtain

B(Rf)((R+ ε) cos(ϕ), (R+ ε) sin(ϕ)) > 0 ∀ ε ∈ (R,
√

2R),

i.e., B(Rf) is positive on the open annulus

B
√

2R
R (0) =

{
(x, y) ∈ R2) | R2 ≤ x2 + y2 ≤ 2R2

}
⊂ R2.

However, the function f vanishes on B
√

2R
R (0), which shows that f is not reconstructed by the

back projection B(Rf) of its Radon transform Rf , i.e.,

B(Rf) 6= f.

We close this paragraph on the back projection operator by stating the following useful
relation between the convolution product, the back projection and the Radon transform. Recall
that the convolution product of two bivariate functions f ≡ f(x, y), g ≡ g(x, y) ∈ L1(R2) in
Cartesian coordinates is given by

(f ∗ g)(x, y) =
∫
R

∫
R
f(X,Y ) g(x−X, y − Y ) dX dY for (x, y) ∈ R2.

Further, we define the convolution product of two bivariate functions h ≡ h(t, θ), k ≡ k(t, θ) in
polar coordinates satisfying h(·, θ), k(·, θ) ∈ L1(R) for all θ ∈ [0, π) as

(h ∗ k)(t, θ) =
∫
R
h(S, θ) k(t− S, θ) dS for (t, θ) ∈ R× [0, π).
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The result now reads as follows.

Theorem 2.2.21 (See [82, Theorem II.1.3]). Let f ≡ f(x, y) ∈ L1(R2) be a bivariate function
in Cartesian coordinates and let g ≡ g(t, θ) ∈ L∞(R× [0, π)) be a function in polar coordinates.
Then, we have

Bg ∗ f = B(g ∗ Rf). (2.8)

Proof. First of all, we note that for f ∈ L1(R2) and g ∈ L∞(R × [0, π)) both expressions
in (2.8) are well-defined as functions in L∞(R2). Indeed, for g ∈ L∞(R × [0, π)) its back
projection Bg is essentially bounded on R2, i.e., Bg ∈ L∞(R2), and, therefore, Young’s inequality,
Theorem A.1.16, shows that

Bg ∗ f ∈ L∞(R2).

On the other hand, for f ∈ L1(R2) we have Rf(·, θ) ∈ L1(R) for all θ ∈ [0, π) according to
Proposition 2.2.7 with

‖Rf(·, θ)‖L1(R) ≤ ‖f‖L1(R2) ∀ θ ∈ [0, π).

Consequently, the convolution product of Rf and g is in L∞(R× [0, π)) and we also obtain

B(g ∗ Rf) ∈ L∞(R2).

Now, for (X,Y ) ∈ R2 the definitions of the back projection and the convolution product give

(Bg ∗ f)(X,Y ) =
∫
R

∫
R
Bg(X − x, Y − y) f(x, y) dx dy,

where
Bg(X − x, Y − y) = 1

π

∫ π

0
g((X − x) cos(θ) + (Y − y) sin(θ), θ) dθ.

By substituting

t = x cos(θ) + y sin(θ) and s = −x sin(θ) + y cos(θ),

we get dx dy = dsdt and, therefore, with

Rf(t, θ) =
∫
R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

we can conclude that

(Bg ∗ f)(X,Y ) = 1
π

∫ π

0

∫
R
g(X cos(θ) + Y sin(θ)− t, θ)Rf(t, θ) dtdθ

= 1
π

∫ π

0
(g ∗ Rf)(X cos(θ) + Y sin(θ), θ) dθ

= B(g ∗ Rf)(X,Y ),

as stated.

2.2.3 The filtered back projection formula

Based on the Fourier slice Theorem 2.2.11, we are now prepared to prove an inversion formula
for the Radon transform, which is given by the classical filtered back projection (FBP) formula.

Theorem 2.2.22 (Filtered back projection formula, see [33, Theorem 6.2.]). For each bivariate
function f ∈ L1(R2) ∩ C (R2) with Ff ∈ L1(R2) the filtered back projection formula

f(x, y) = 1
2 B

(
F−1[|S|F(Rf)(S, θ)]

)
(x, y) (2.9)

holds for all (x, y) ∈ R2.
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We remark that the FBP formula is also valid under weaker assumptions on the function f .
For the purpose of this work, however, the presented version is sufficient.

Proof. Let f ∈ L1(R2) ∩ C (R2) with Ff ∈ L1(R2) and let (x, y) ∈ R2 be fixed. Applying the
two-dimensional Fourier inversion formula, Theorem A.1.5, to f yields the identity

f(x, y) = F−1(Ff)(x, y) = 1
4π2

∫
R

∫
R
Ff(X,Y ) ei(xX+yY ) dX dY.

By changing the variables (X,Y ) ∈ R2 from Cartesian coordinates to (S, θ) ∈ R× [0, π) in polar
coordinates, i.e.,

X = S cos(θ) and Y = S sin(θ),

we get dX dY = |S| dS dθ. Thus, with the Fourier slice Theorem 2.2.11 follows that

f(x, y) = 1
4π2

∫ π

0

∫
R
Ff(S cos(θ), S sin(θ)) eiS(x cos(θ)+y sin(θ)) |S| dS dθ

FST= 1
4π2

∫ π

0

∫
R
F(Rf)(S, θ) eiS(x cos(θ)+y sin(θ)) |S| dS dθ

= 1
2π

∫ π

0
F−1[|S| F(Rf)(S, θ)](x cos(θ) + y sin(θ), θ) dθ

= 1
2 B

(
F−1[|S|F(Rf)(S, θ)]

)
(x, y)

due to the definition of the back projection.

We remark that without the factor |S| in (2.9), the Fourier transform and its inverse would
cancel out and the FBP formula world reduce to simply applying the back projection operator
B to the Radon data Rf . However, as we have seen in Observation 2.2.20, this is not sufficient
for the exact recovery of the function f .

Remark 2.2.23. The FBP formula (2.9) reveals that multiplying the Fourier transform of Rf
with |S| and applying the inverse Fourier transform is essential before back projecting the Radon
data. In the language of signal processing, we say that the Radon data Rf is filtered by the
multiplication with the filter |S| in Fourier domain, which also explains the expression filtered
back projection.

With Theorem 2.2.22 the stated CT reconstruction Problem 2.2.4 is solved analytically. In
practice, however, the application of the FBP formula (2.9) causes severe numerical problems.

Observation 2.2.24 (FBP is unstable). By the application of the filter |S| to the Fourier
transform F(Rf) in (2.9), especially the high frequency components in Rf are amplified by the
magnitude of |S|. Since noise mainly consists of high frequencies, this shows that the filtered back
projection formula is in particular highly sensitive with respect to noise and, thus, numerically
unstable. In practice, a direct application of the FBP formula would lead to undesired corruptions
in the reconstruction.

This observation can be explained by analysing the ill-posedness of the CT reconstruction
Problem 2.2.4. Before that, we first want to pass the following remark.

Remark 2.2.25. The filtered back projection formula assumes the Radon data Rf(t, θ) to be
available for all straight lines `t,θ in the plane. But in practice, only a finite number of X-ray
samples are taken and, consequently, we have to recover the function f from a finite set of Radon
data

{Rf(tj , θj) | j = 1, . . . ,M} for some M ∈ N.
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Ill-posedness of the CT reconstruction problem

In the previous paragraph we have presented an inversion formula for the Radon transform,
given by the filtered back projection formula. For the application of this reconstruction formula
to real data, we have to assume that perfect Radon data are given. However, this is not a
realistic scenario, because in practice the data is always corrupted by noise.

Therefore, it is important to know how small perturbations in the measurement data are
propagated through the reconstruction process. In particular, we have to analyse whether the
inversion of the Radon transform is continuous, i.e., whether small measurement errors only
lead to small errors in the reconstruction. This leads us to Hadamard’s classical definition of
well-posed problems and the notion of ill-posedness.

For a comprehensive treatment of ill-posed problems and the theory of inverse problems and
their regularization, we refer the reader to the monographs [29], [59], [99].

Definition 2.2.26 (Well-posedness, see [99, Definition 1.5.2]). Let A : X −→ Y be a mapping
between topological spaces X and Y. The problem Ax = y is called well-posed in the sense of
Hadamard, if the following three conditions are satisfies:

(i) Existence: For every y ∈ Y there exists an x ∈ X such that Ax = y.

(ii) Uniqueness: For every y ∈ Y the solution x ∈ X of Ax = y is uniquely determined.

(iii) Stability: The inverse mapping A−1 : Y −→ X is continuous, i.e., the solution x ∈ X
depends continuously on the data y ∈ Y.

If at least one of the above conditions is violated, the problem is called ill-posed.

A standard method to classify the degree of ill-posedness of an operator A is based on the
decay behaviour of its singular values, see [29, Section 2.2]. If A is defined on L2-spaces, another
classification of ill-posedness can be defined in terms of Sobolev spaces Hα, see [59, Section 3.2].

Definition 2.2.27 (Degree of ill-posedness). Let A : X −→ Y be an operator between L2-spaces
X and Y. The problem Ax = y is called ill-posed of degree α > 0 if, for some C1, C2 > 0,

C1 ‖x‖L2 ≤ ‖Ax‖Hα ≤ C2 ‖x‖L2 .

We now state a continuity result for the Radon transform on Sobolev spaces of fractional
order, which implies that the CT reconstruction Problem 2.2.4 is ill-posed of degree 1

2 .
Let us first recall the definitions of the involved Sobolev spaces, see also Appendix A.3. For

functions f ≡ f(x, y) in Cartesian coordinates (x, y) ∈ R2 the Sobolev space Hα(R2) of order
α ∈ R, defined as

Hα(R2) =
{
f ∈ S ′(R2) | ‖f‖Hα(R2) <∞

}
,

is equipped with the norm

‖f‖Hα(R2) =
(∫

R

∫
R

(1 +X2 + Y 2)α |Ff(X,Y )|2 dX dY
)1/2

.

Further, for an open subset Ω ⊂ R2 the space Hα
0 (Ω) consists of those Sobolev functions with

support in Ω, i.e.,
Hα

0 (Ω) =
{
f ∈ Hα(R2) | supp(f) ⊂ Ω

}
.

For functions g ≡ g(t, θ) in polar coordinates (t, θ) ∈ R× [0, π), we define the Sobolev space
Hα(R × [0, π)), for α ∈ R, as the space of all functions g with g(·, θ) ∈ Hα(R) for all θ ∈ [0, π)
and

‖g‖Hα(R×[0,π)) =
(∫ π

0

∫
R

(1 + S2)α |Fg(S, θ)|2 dS dθ
)1/2

<∞.
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Then, we obtain the following continuity result for the Radon transform. Here, it is essential
to assume that we deal with functions with compact support. The result is based on [82,
Theorem II.5.1], but its assumptions are relaxed and the statement is adopted to our situation.

Theorem 2.2.28 (See [82, Theorem II.5.1]). Let Ω ⊂ R2 be an open and bounded set and let
f ∈ L1(R2) ∩ Hα

0 (Ω) with α ∈ R. Then, we have Rf ∈ Hα+1/2(R × [0, π)) and there exists a
constant Cα > 1 such that

‖f‖Hα(R2) ≤ ‖Rf‖Hα+1/2(R×[0,π)) ≤ Cα ‖f‖Hα(R2).

Proof. Since f ∈ L1(R2), the Fourier slice Theorem 2.2.11 gives

F(Rf)(S, θ) = Ff(S cos(θ), S sin(θ)) ∀ (S, θ) ∈ R× [0, π)

and we obtain

‖Rf‖2Hα+1/2(R×[0,π)) =
∫ π

0

∫
R

(1 + S2)α+ 1
2 |Ff(S cos(θ), S sin(θ))|2 dS dθ.

Using the estimate
(1 + S2)

1
2 ≥ |S| ∀S ∈ R,

this implies that

‖Rf‖2Hα+1/2(R×[0,π)) ≥
∫ π

0

∫
R

(1 + S2)α |Ff(S cos(θ), S sin(θ))|2 |S| dS dθ.

By applying the transformation

X = S cos(θ) and Y = S sin(θ),

we get dX dY = |S| dS dθ and with S2 = X2 + Y 2 follows that

‖Rf‖2Hα+1/2(R×[0,π)) ≥
∫
R

∫
R

(1 +X2 + Y 2)α |Ff(X,Y )|2 dX dY = ‖f‖2Hα(R2),

which proves the first inequality. On the other hand, we have

‖Rf‖2Hα+1/2(R×[0,π)) =
∫ π

0

∫
R

(1 + S2)α+ 1
2 |Ff(S cos(θ), S sin(θ))|2 dS dθ

=
∫
R

∫
R

(1 +X2 + Y 2)α+ 1
2 (X2 + Y 2)−

1
2 |Ff(X,Y )|2 dX dY,

where we used the transformation from above and

|S| =
√
X2 + Y 2.

We now split the above representation of the Hα+1/2-norm of Rf into the sum of two integrals,

‖Rf‖2Hα+1/2(R×[0,π)) = I1 + I2,

where we let

I1 =
∫
X2+Y 2≤1

(1 +X2 + Y 2)α+ 1
2 (X2 + Y 2)−

1
2 |Ff(X,Y )|2 d(X,Y )

and
I2 =

∫
X2+Y 2>1

(1 +X2 + Y 2)α+ 1
2 (X2 + Y 2)−

1
2 |Ff(X,Y )|2 d(X,Y ).
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In what follows, we estimate the integrals I1 and I2 separately with respect to the Hα-norm of f .
To bound the second integral I2, we use the estimate

X2 + Y 2 ≥ 1
2 (1 +X2 + Y 2) ∀X2 + Y 2 ≥ 1.

With this, I2 can be estimated from above by

I2 ≤
√

2
∫
X2+Y 2>1

(1 +X2 + Y 2)α+ 1
2 (1 +X2 + Y 2)−

1
2 |Ff(X,Y )|2 d(X,Y )

=
√

2
∫
X2+Y 2>1

(1 +X2 + Y 2)α |Ff(X,Y )|2 d(X,Y ) ≤
√

2‖f‖2Hα(R2).

For the first integral I1, we use the fact that Ff ∈ C0(R2) for f ∈ L1(R2) and get

I1 ≤
∫
X2+Y 2≤1

(1 +X2 + Y 2)α+ 1
2 (X2 + Y 2)−

1
2 d(X,Y ) sup

X2+Y 2≤1
|Ff(X,Y )|2

≤ C1(α) sup
X2+Y 2≤1

|Ff(X,Y )|2

for some constant 0 < C1(α) < ∞. In order to estimate the supremum, we choose an even
function χ ∈ C∞c (R2) which is 1 on Ω and, for fixed (X,Y ) ∈ R2, we define the function

χ(X,Y )(x, y) = e−i(xX+yY ) χ(x, y) for (x, y) ∈ R2.

Then, its inverse Fourier transform F−1χ(X,Y ) exists and is given by

F−1χ(X,Y )(x, y) = F−1χ(x−X, y − Y ) ∀ (x, y) ∈ R2.

Applying Parseval’s identity, Theorem A.1.11, yields

|Ff(X,Y )|2 =
∣∣∣∣∫

R

∫
R
f(x, y) e−i(xX+yY ) dx dy

∣∣∣∣2 =
∣∣∣∣∫

R

∫
R
χ(X,Y )(x, y) f(x, y) dx dy

∣∣∣∣2
=
∣∣∣∣∫

R

∫
R
F−1χ(X,Y )(x, y)Ff(x, y) dx dy

∣∣∣∣2
=
∣∣∣∣∫

R

∫
R
F−1χ(X,Y )(x, y) (1 + x2 + y2)−

α
2 (1 + x2 + y2)

α
2 Ff(x, y) dx dy

∣∣∣∣2
and with Hölder’s inequality follows that

|Ff(X,Y )|2 ≤
(∫

R

∫
R

(1 + x2 + y2)−α |F−1χ(X,Y )(x, y)|2 dx dy
)
‖f‖2Hα(R2),

since χ ∈ C∞c (R2) and f ∈ Hα
0 (Ω), i.e., (1 + x2 + y2)

α
2 |Ff | ∈ L2(R2). We further have

F−1χ(X,Y )(x, y) = 1
4π2 Fχ(X,Y )(−x,−y) ∀ (x, y) ∈ R2,

which implies that

|Ff(X,Y )|2 ≤ 1
16π4 ‖χ(X,Y )‖2H−α(R2) ‖f‖

2
Hα(R2) ∀ (X,Y ) ∈ R2.

The H−α-norm of χ(X,Y ) is a continuous function of (X,Y ) and, consequently, there exists a
constant C2(α) > 0 such that

sup
X2+Y 2≤1

1
16π4 ‖χ(X,Y )‖2H−α(R2) ≤ C2(α).

Combining the estimates yields

‖Rf‖2Hα+1/2(R×[0,π)) ≤
(√

2 + C1(α)C2(α)
)
‖f‖2Hα(R2) = C2

α ‖f‖2Hα(R2)

and the second inequality is also satisfied. In particular, we have Rf ∈ Hα+1/2(R× [0, π)).



2.2 Mathematics of computerized tomography 23

Remark 2.2.29 (See [67, Chapter III.B]). Theorem 2.2.28 shows that the Radon transform R
admits an inverse and that this inverse is continuous as an operator from Hα+1/2(R × [0, π))
into Hα

0 (Ω). Here, the order of the latter Sobolev space is optimal in the sense that the result is
wrong for any larger index. In particular, if α is chosen such that Hα+1/2(R × [0, π)) is simply
the L2-space, i.e., α = −1

2 , then Hα
0 (Ω) is a Sobolev space of negative order, whose norm is

weaker than the L2-norm on L2(Ω). This shows that R−1 is not continuous in an L2-setting,
i.e., the CT reconstruction Problem 2.2.4 is ill-posed in the sense of Hadamard.

We remark that choosing α = 0 in Theorem 2.2.28 shows that the problem of reconstructing
a bivariate function from its Radon data is ill-posed of degree 1

2 in the sense of Definition 2.2.27.
In particular, the Radon transform R smoothes by an order of 1

2 in the Sobolev scale. Since the
inversion has to reverse the smoothing, the reconstruction process is unstable and regularization
strategies have to be applied to stabilize the inversion.

For this purpose, we follow a standard approach in Chapter 3 and replace the filter |S| in the
filtered back projection formula (2.9) by a so called low-pass filter AL(S) of finite bandwidth L
and with a compactly supported window function. For other approaches we refer to the standard
literature on inverse problems and regularization, see, for example, [29], [53], [59], [99].

Reformulation of the filtered back projection formula

We close this section on the mathematics of computerized tomography by reformulating the
filtered back projection formula (2.9) in standard forms, that can be found in the literature, and
by stating Radon’s original formulation of the inversion formula. In the following, we proceed
as in [82] and, for convenience, restrict ourselves to the special case of smooth and rapidly
decreasing functions, i.e., we assume that the target function f lies in the Schwartz space S(R2).

We start with the definition of Riesz potentials. To this end, let α ∈ R satisfy α < 2. Then,
the Riesz potential Iαf of a function f ∈ S(R2) is defined by means of the Fourier transform F
as

Iαf = F−1(‖ · ‖−αR2 Ff).

Note that, for α < 2, we have F(Iαf) ∈ L1(R2) for all f ∈ S(R2) and, thus, the Riesz potential
Iα is well-defined on S(R2). In addition, for |α| < 2, we obtain

I−αIαf = f ∀ f ∈ S(R2).

Note further that the definition of the Riesz potential Iα can be extended to a larger class of
functions and, if Iα is applied to a function g ≡ g(t, θ) in polar coordinates (t, θ) ∈ R× [0, π), it
is defined to act only on the radial variable t, i.e.,

Iαg(·, θ) = F−1(| · |−αFg(·, θ)) for θ ∈ [0, π).

With the definition of the Riesz potential Iα we can now restate the FBP formula (2.9) in
standard form as

f = 1
2 B

(
I−1Rf

)
∀ f ∈ S(R2),

see also [82, Theorem II.2.1]. For more details on Riesz potentials, we refer to [118, Chapter V].
For univariate functions g ∈ S(R), the definition of the Riesz potential and the differentiation

property of the Fourier transform yield

F(I−1g)(ω) = |ω| Fg(ω) = sgn(ω)ωFg(ω) = −i sgn(ω)Fg′(ω) ∀ω ∈ R.

Thus, we obtain the representation

I−1g = Hg′ ∀ g ∈ S(R),
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where Hg denotes the Hilbert transform of g ∈ S(R), which can be defined by means of the
Fourier transform as

Hg = F−1(−i sgn Fg).

With this, we found another reformulation of the filtered back projection formula (2.9) as

f = 1
2 B

(
H
[
(Rf)′

])
∀ f ∈ S(R2),

where the derivative and the Hilbert transform are taken with respect to the radial variable.
For a comprehensive treatment of the Hilbert transform we refer the reader to [120, Chapter 5].

Finally, for f ∈ S(R2) and fixed (x, y) ∈ R2, we define the function

F(x,y)(q) = 1
2π

∫ 2π

0
Rf(x cos(θ) + y sin(θ) + q, θ) dθ for q ∈ R.

Then, the FBP formula (2.9) can be written as

f(x, y) = − 1
π

∫ ∞
0

1
q
F ′(x,y)(q) dq ∀ (x, y) ∈ R2, (2.10)

which is the classical inversion formula that was published by Johann Radon in 1917, see [94]. An
English translation of the original article can be found in [95] and [26, Appendix A]. Moreover,
in [73] it is shown that, for functions f ∈ Lp(R2) with 4

3 < p < 2, the Radon transform Rf exists
almost everywhere on R2 and Radon’s inversion formula (2.10) holds for almost all (x, y) ∈ R2.

2.3 Reconstruction techniques
We close this chapter on computerized tomography by giving a brief overview of the wide range
of reconstruction methods that exist in the literature, cf. [45], [82], [83].

There are basically two major classes of reconstruction techniques, namely analytic (or direct)
and algebraic methods. As an example for the analytic approach, we present the well-known
method of filtered back projection (FBP), which is based on the FBP formula for the inversion of
the Radon transform. On the other hand, one of the most popular algebraic methods is given
by the so called algebraic reconstruction technique (ART), which is based on a fully discrete
formulation of the CT reconstruction problem.

The analysis of the FBP reconstruction technique is the principle goal of this thesis. Thus,
this method is thoroughly introduced and discussed in great detail in Chapter 3 and, as the
main part of this work, the inherent FBP reconstruction error is investigated in Chapter 4.

Before we start with explaining the different reconstruction techniques, we remark that in
practical situations the Radon data g = Rf is usually not known precisely, but only up to an
error bound δ > 0. Thus, in the following we assume that we are given some data gδ with∥∥g − gδ∥∥L2(R×[0,π)) ≤ δ.

The goal is to compute an approximation f δ to the target function f from the noisy data gδ.
Hence, the practical CT reconstruction problem consists in solving the linear operator equation

Rf δ = gδ. (2.11)

2.3.1 Analytic reconstruction methods

The main characteristic of the class of analytic reconstruction methods is the fact that these
techniques are based on analytic inversion formulas for the Radon transform and, hence, deal
with continuous data.
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The method of filtered back projection (FBP) is the most important analytic reconstruction
technique in computerized tomography and is still used in commercial CT scanners, see [85].
It is based on the classical filtered back projection formula (2.9), which yields an analytical
inversion of the Radon transform. However, as we have seen in Observation 2.2.24, the FBP
formula is numerically unstable due to its sensitivity to noise and the ill-posedness of the CT
reconstruction Problem 2.2.4, see Remark 2.2.29. To stabilize the inversion, the filter |S| in (2.9)
is truncated and smoothened by the application of a low-pass filter AL of finite bandwidth L > 0
satisfying

AL(S) L→∞−−−−→ |S| ∀S ∈ R.

We show in Chapter 3 that the resulting approximate reconstruction formula can be written as

f ≈ 1
2 B

(
F−1AL ∗ Rf

)
.

Applying this reconstruction formula to the noisy measurements gδ yields the regularized solution

f δ = 1
2 B

(
F−1AL ∗ gδ

)
and the bandwidth L is usually chosen as a function of the noise level δ such that

f δ −→ f for δ −→ 0.

There are many filters that can be used in this context. Classical examples are given by the
Ram-Lak filter, the Shepp-Logan filter and the Cosine filter, see [83]. We will explain the method
of filtered back projection in great detail in Chapter 3. In the main part of this thesis, Chapter 4,
we then analyse the inherent FBP reconstruction error which is incurred by the application of
the low-pass filter AL and derive convergence rates as the bandwidth L goes to infinity.

We now list some more analytic reconstruction techniques without further explanation. The
summability method is an approximation theoretic approach for reconstructing a function from
Radon data and was introduced in [71]. This technique is related to the method of approximate
inverse, which was developed in [65] as a general framework for linear operator equations and can
also be applied to the tomographic reconstruction problem, see, for instance, [68], [102], [111].
Finally, we want to mention the Fourier reconstruction technique, which is based on a direct
application of the Fourier slice theorem, see Theorem 2.2.11 and the subsequent paragraph.

2.3.2 Algebraic reconstruction methods

The second large class of tomographic reconstruction techniques is given by the class of algebraic
reconstruction methods. In contrast to the analytic approach, these techniques are not based
on analytical inversion formulas for the Radon transform and, further, deal with fully discrete
data. Note that the class of algebraic methods splits into many different subclasses and, in the
following, we only present the basic idea of these methods.

Let us start with the fully discrete formulation of the CT reconstruction problem. In this
setting, the sought function f δ is discretized beforehand to solving the noisy reconstruction
problem (2.11). To this end, a set of basis function {φj}Nj=1 is fixed and the function f δ is
assumed to be given by a linear combination of these basis functions, i.e.,

f δ =
N∑
j=1

cj φj

for some coefficient vector c = (c1, . . . , cN )T ∈ RN . Further, we assume that we deal with a
finite number of Radon data

y = (Rf(t1, θ1), . . . ,Rf(tM , θM ))T ∈ RM .
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Then, the fully discrete version of the noisy reconstruction problem (2.11) is given by the
linear system of equations

R · c = yδ, (2.12)

where yδ ∈ RM is the noisy measurement vector and R ∈ RM×N is the system matrix with
entries

rk,j = Rφj(tk, θk) for k = 1, . . . ,M, j = 1, . . . , N.

There are many algorithms for solving the linear system (2.12), which is usually highly
underdetermined. One of the most applied methods is the so called algebraic reconstruction
technique (ART), which is an implementation of the classical Kaczmarz method, or one of
its variants SART (simultaneous algebraic reconstruction technique) and SIRT (simultaneous
iterative reconstruction technique), see [45], [51], [83] for details. However, for solving (2.12)
one still has to consider the ill-posedness of the reconstruction problem and apply regularization
strategies, which are not yet incorporated in the standard formulation of ART.

A typical regularization strategy is to incorporate prior knowledge into the reconstruction
procedure. This can be done by applying the general framework of variational regularization.
In this setting, a regularized solution of the linear system (2.12) is computed by minimizing a
Tikhonov type functional

cγ = arg min
c∈RN

∥∥R · c− yδ∥∥2
RM + γ · Λ(c),

where γ > 0 is a regularization parameter and Λ : RN −→ R≥0 is the prior function. The first
term denotes the data fidelity term and controls the data error, whereas the second term acts
as a penalty term and encodes the prior knowledge about the solution.

We remark that there are many possible choices for the prior term, depending on the par-
ticular features of the unknown object that shall be preserved or emphasized. One prominent
example is the total variation (TV) seminorm, which can be used for edge-preserving recon-
structions, cf. [40]. For more details on variational regularization, we refer to [109].

Another regularization strategy is pursued in the statistical reconstruction approach. Here,
the unknown coefficient vector c and the measurement vector yδ are considered to be realizations
of certain random variables. For the statistical formulation of the reconstruction problem one
has to model the likelihood density p(y|c), which encodes the measurement process, and the prior
density p(c), which encodes the prior information about the unknown object. The solution of
the statistical reconstruction problem then consists in determining the posteriori density p(c|y),
where a statistical estimator is used to compute an explicit solution to (2.12). For more details,
we refer to [13], [17], [50], [54], [114].

Inspired by multivariate approximation theory, a kernel-based method for the reconstruction
from scattered Radon data is proposed in [24], [25]. Here, a generalized Hermite-Birkhoff in-
terpolation scheme with (weighted) positive definite kernel functions is applied to reconstruct
the target function f from finitely many Radon data along scattered lines. To this end, f is
expanded in a data-dependent basis, which is induced by the chosen kernel function, leading to
a linear system of equations for the coefficients of f with a symmetric positive definite matrix.

Finally, we remark that there are also approaches that combine the ideas from analytical
and algebraic methods, see, for example, [5], [87], [89] and also [31], [84] for the special case of
digital X-ray tomosynthesis.

To close this section on reconstruction techniques we want to mention that there exist various
other methods in the literature and describing them all is far beyond the scopes of this thesis. To
name just a few, in [23] a FBP like approach is considered with angle-dependent filter functions
and, similarly, in [52], [58] the concept of ridge functions is applied. The approach in [126]
is based on an expansion of the target function in orthogonal polynomials leading to a direct
approximation formula and, finally, in [48], [86] (convolutional) neural networks are used for the
image reconstruction from Radon data.



Chapter 3

Method of filtered back projection

In Chapter 2 we have seen that the basic reconstruction problem in computerized tomography
can be formulated as the problem of reconstructing a bivariate function f ≡ f(x, y) ∈ L1(R2)
from given Radon data

{Rf(t, θ) | t ∈ R, θ ∈ [0, π)} .
Based on the filtered back projection (FBP) formula (2.9) and under suitable assumptions on f
we have found the reconstruction formula

f(x, y) = 1
2 B

(
F−1[|S|F(Rf)(S, θ)]

)
(x, y) ∀ (x, y) ∈ R2,

which is highly sensitive with respect to noise and, thus, cannot be used in practice.
In this chapter we explain how the above FBP formula can be stabilized by incorporating a

low-pass filter AL : R −→ R of the form

AL(S) = |S|W (S/L) for S ∈ R

with bandwidth L > 0 and an even window W ∈ L∞(R) of compact support supp(W ) ⊆ [−1, 1].
This standard approach reduces the noise sensitivity of the reconstruction scheme, but leads to
an inexact FBP reconstruction, which we denote by fL.

In the following, we rigorously define the approximate FBP reconstruction fL and analyse
its properties. In particular, we show that fL can be expressed in standard form as

fL = 1
2 B

(
F−1AL ∗ Rf

)
= f ∗KL (3.1)

in the L2-sense with the convolution kernel

KL = 1
2 B

(
F−1AL

)
.

Further, we analyse the properties of the kernel KL, which are entirely determined by the choice
of the window function W and the bandwidth L.

We remark that the approach taken in this work is standard in the mathematics of com-
puterized tomography and some of the upcoming results are well-known from the literature,
especially the representation (3.1) of the approximate FBP reconstruction fL, see, e.g., [33],
[82]. However, in this chapter we provide rigorous derivations of the statements and complete
proofs. In particular, we adjust the assumptions of the results to our setting, where we deal with
target functions f that are only required to satisfy f ∈ L1(R2) ∩ L2(R2) and with convolution
kernels KL that are not necessarily integrable on R2. In the literature, however, it is usually
assumed that f lies in the Schwartz space S(R2), as, for instance, in [82], [83], or that the kernel
KL is integrable, such as in [71], [118]. Furthermore, we also include additional statements and
we complete existing proofs.

Finally, we wish to remark that some parts of the presented material are contained in the
preprint [11].
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3.1 Preliminaries

In this section we first show some preliminary propositions we need for the derivation of the
approximate FBP reconstruction formula (3.1). We start with the following variant of the
Fourier convolution Theorem A.1.19 where one function is assumed to be integrable on Rn, but
the other one is assumed to be square integrable on Rn. The result can be found, for instance,
in [119], but without a proof.

Proposition 3.1.1 (Fourier convolution theorem, see [119, Theorem I.2.6]). Let f ∈ L1(Rn)
and g ∈ L2(Rn). Then,

F(f ∗ g) = Ff · Fg (3.2)

holds in L2-sense and, in particular, almost everywhere on Rn.

For the sake of completeness, we give a proof of the above Fourier convolution theorem.

Proof. For f ∈ L1(Rn) and g ∈ L2(Rn) we have

• f ∗ g ∈ L2(Rn) by Young’s inequality, Theorem A.1.16, with

‖f ∗ g‖L2(Rn) ≤ ‖f‖L1(Rn) ‖g‖L2(Rn),

• F(f ∗ g) ∈ L2(Rn) by the Rayleigh-Plancherel Theorem A.1.12 with

‖F(f ∗ g)‖L2(Rn) = (2π)n/2 ‖f ∗ g‖L2(Rn) ≤ (2π)n/2 ‖f‖L1(Rn) ‖g‖L2(Rn),

• Ff ∈ C0(Rn) by the Riemann-Lebesgue Lemma A.1.2 with

‖Ff‖∞ ≤ ‖f‖L1(Rn),

• Ff · Fg ∈ L2(Rn) by the generalized Hölder inequality, Theorem A.4.1, with

‖Ff · Fg‖L2(Rn) ≤ ‖Ff‖∞ ‖Fg‖L2(Rn) ≤ (2π)n/2 ‖f‖L1(Rn) ‖g‖L2(Rn).

Thus, both expressions in (3.2) are well-defined in L2(Rn). To show the asserted identity, we
approximate the function g ∈ L2(Rn) by a sequence of integrable functions gk ∈ L1(Rn) ∩ L2(Rn)
with

‖gk − g‖L2(Rn) −→ 0 for k −→∞,

since L1(Rn) ∩ L2(Rn) is dense in L2(Rn). Then, the Rayleigh-Plancherel theorem also yields

‖Fgk −Fg‖L2(Rn) = (2π)n/2 ‖gk − g‖L2(Rn) −→ 0 for k −→∞.

We now show that
F(f ∗ gk) = Ff · Fgk.

By Young’s inequality we have f ∗ gk ∈ L1(Rn) and, consequently, we get F(f ∗ gk) ∈ C0(Rn)
due to the Riemann-Lebesgue lemma. By applying Fubini’s theorem, for all ξ ∈ Rn follows that

F(f ∗ gk)(ξ) =
∫
Rn

(f ∗ gk)(x) e−ixT ξ dx =
∫
Rn

(∫
Rn
f(y) gk(x− y) dy

)
e−ixT ξ dx

=
∫
Rn

∫
Rn
f(y) e−i yT ξ gk(x− y) e−i (x−y)T ξ dy dx

=
∫
Rn
f(y) e−iyT ξ

(∫
Rn
gk(x− y) e−i(x−y)T ξ dx

)
dy.
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Hence, using the transformation z = x− y in the inner integral yields

F(f ∗ gk)(ξ) =
∫
Rn
f(y) e−iyT ξ

(∫
Rn
gk(z) e−izT ξ dz

)
dy = (Ff · Fgk)(ξ) ∀ ξ ∈ Rn,

i.e.,
F(f ∗ gk) = Ff · Fgk ∀ k ∈ N.

With this we are now prepared to show the asserted identity for g ∈ L2(Rn). We have

‖F(f ∗ g)−Ff · Fg‖L2(Rn) ≤ ‖F(f ∗ g)−F(f ∗ gk)‖L2(Rn) + ‖F(f ∗ gk)−Ff · Fg‖L2(Rn)

= ‖F(f ∗ (g − gk))‖L2(Rn) + ‖Ff · (Fgk −Fg)‖L2(Rn)

≤ (2π)n/2 ‖f‖L1(Rn) ‖g − gk‖L2(Rn) + ‖f‖L1(Rn) ‖Fg −Fgk‖L2(Rn)
k→∞−−−→ 0.

Consequently,
F(f ∗ g) = Ff · Fg

holds in L2-sense and, in particular, almost everywhere on Rn.

We continue with some additional properties of the Radon transform R. In Proposition 2.2.7
we have seen that R is a continuous operator from L1(R2) to L1(R× [0, π)) with

‖Rf‖L1(R×[0,π)) ≤ π ‖f‖L1(R2) ∀ f ∈ L1(R2).

In the next proposition we analyse the L2-norm of the Radon transform Rf . To this end, we
have to assume that the function f is in the space L2

c(R2) of square integrable functions on R2

with compact support, i.e.,

L2
c(R2) =

{
f ∈ L2(R2) | ∃R > 0 : supp(f) ⊆ BR(0)

}
.

Proposition 3.1.2 (L2-norm of the Radon transform). Let f ∈ L2
c(R2) have support in a

compact set K ⊂ R2 with diameter

cf = diam(K) = sup {‖(x−X, y − Y )‖R2 | (x, y), (X,Y ) ∈ K} <∞.

Then, we have Rf ∈ L2(R× [0, π)) with

‖Rf‖2L2(R×[0,π)) ≤ π cf ‖f‖
2
L2(R2).

Proof. Let f ∈ L2
c(R2) be compactly supported with supp(f) ⊆ K and let (t, θ) ∈ R× [0, π) be

fixed. Then, the definition of the Radon transform gives

|Rf(t, θ)|2 =
∣∣∣∣∫

R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

∣∣∣∣2
=
∣∣∣∣∫

R
(χK · f)(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

∣∣∣∣2
with the characteristic function χK of K. For the sake of brevity, we set

f(t,θ)(s) = f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) for s ∈ R.

Applying the Cauchy-Schwarz inequality yields

|Rf(t, θ)|2 ≤
∫
R
χ2
K(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds ·

∫
R
|f(t,θ)(s)|2 ds

=
∫
`t,θ

χK(x, y) d(x, y) ·
∫
R
|f(t,θ)(s)|2 ds.
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Since K has bounded diameter, it follows that

|Rf(t, θ)|2 ≤ diam(K)
∫
R
|f(t,θ)(s)|2 ds = cf

∫
R
|f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))|2 ds.

Thus,

‖Rf‖2L2(R×[0,π)) =
∫ π

0

∫
R
|Rf(t, θ)|2 dtdθ

≤ cf
∫ π

0

∫
R

∫
R
|f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))|2 ds dt dθ.

Applying the transformation

x = t cos(θ)− s sin(θ) and y = t sin(θ) + s cos(θ)

yields dx dy = dt ds and, consequently,

‖Rf‖2L2(R×[0,π)) ≤ cf
∫ π

0

∫
R

∫
R
|f(x, y)|2 dx dy dθ = π cf ‖f‖2L2(R2),

as stated.

Proposition 3.1.2 indicates that the Radon transform R can be seen as a densely defined
unbounded linear operator from L2(R2) to L2(R× [0, π)) with domain L2

c(R2) ⊂ L2(R2). In fact,
there are functions f ∈ L2(R2) for which Rf(t, θ) does not exists for any t ∈ R and θ ∈ [0, π).
In [37], an example of such a function is given by

f(x, y) =
(
2 + ‖(x, y)‖R2

)−1( log
(
2 + ‖(x, y)‖R2

))−1
for (x, y) ∈ R2.

To restore the continuity of R, [36, Theorem 2.9] suggests to consider, for γ > 0, the weighted
L2-spaces

L2(R2, (1 + x2 + y2)γ) =
{
f ∈ L2(R2) | ‖f‖L2(R2,(1+x2+y2)γ) <∞

}
with norm

‖f‖L2(R2,(1+x2+y2)γ) =
(∫

R

∫
R

(1 + x2 + y2)γ |f(x, y)|2 dx dy
)1/2

and
L2(R× [0, π), (1 + t2)γ) =

{
g ∈ L2(R× [0, π)) | ‖g‖L2(R×[0,π),(1+t2)γ) <∞

}
with norm

‖g‖L2(R×[0,π),(1+t2)γ) =
(∫ π

0

∫
R

(1 + t2)γ |g(t, θ)|2 dt dθ
)1/2

.

Proposition 3.1.3. The Radon transform R is a continuous operator from L2(R2, (1+x2+y2)α)
to L2(R× [0, π), (1 + t2)α−1/2) for α > 1

2 . In particular, for f ∈ L2(R2, (1 + x2 + y2)α) we have

‖Rf‖L2(R×[0,π),(1+t2)α−1/2) ≤ π
3/4
(Γ(α− 1/2)

Γ(α)

)1/2

‖f‖L2(R2,(1+x2+y2)α),

where Γ denotes the gamma function.

Proof. Let f ∈ L2(R2, (1 + x2 + y2)α) with α > 1
2 . For the sake of brevity, we set

rα(x, y) = (1 + x2 + y2)α/2 for (x, y) ∈ R2

and, for fixed (t, θ) ∈ R× [0, π),

x(s) = t cos(θ)− s sin(θ), y(s) = t sin(θ) + s cos(θ) for s ∈ R.
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Then, the definition of the Radon transform R gives

|Rf(t, θ)|2 =
∣∣∣∣∫

R
f(x(s), y(s)) ds

∣∣∣∣2 =
∣∣∣∣∫

R

rα(x(s), y(s))
rα(x(s), y(s))f(x(s), y(s)) ds

∣∣∣∣2
and, by applying the Cauchy-Schwarz inequality, we obtain

|Rf(t, θ)|2 ≤
∫
R

1
r2
α(x(s), y(s)) ds ·

∫
R
r2
α(x(s), y(s)) |f(x(s), y(s))|2 ds.

Using (2.5), we have
r2
α(x(s), y(s)) = (1 + t2 + s2)α ∀ s ∈ R

and the first integral can be calculated as∫
R

1
r2
α(x(s), y(s)) ds = 2

∫ ∞
0

(1 + t2 + s2)−α ds = 2(1 + t2)−α
∫ ∞

0

(
1 + s2

1 + t2

)−α
ds

= (1 + t2)−α+1/2
∫ ∞

0
σ−

1/2 (1 + σ)−α dσ,

where we applied the transformation σ = s2

1+t2 , which gives ds = 1
2(1+ t2)1/2 σ−1/2 dσ. Note that,

for α > 1
2 , we have ∫ ∞

0
σ−

1/2 (1 + σ)−α dσ <∞.

Indeed, substituting σ = u
1−u yields dσ = (1− u)−2 du and σ−1/2 (1 + σ)−α = u−1/2 (1− u)α+1/2,

which implies that∫ ∞
0

σ−
1/2 (1 + σ)−α dσ =

∫ 1

0
u−

1/2 (1− u)α+1/2 (1− u)−2 du =
∫ 1

0
u

1/2−1 (1− u)α−1/2−1 du

= B(1/2, α− 1/2) = Γ(1/2) Γ(α− 1/2)
Γ(α) = π

1/2 Γ(α− 1/2)
Γ(α) ,

where B denotes the beta function and we used its close relation to the gamma function Γ.
Hence, for the modulus of Rf(t, θ) follows that

(1 + t2)α−1/2 |Rf(t, θ)|2 ≤ π1/2 Γ(α− 1/2)
Γ(α)

∫
R
r2
α(x(s), y(s)) |f(x(s), y(s))|2 ds.

Therefore, we get the estimate

‖Rf‖2L2(R×[0,π),(1+t2)α−1/2) =
∫ π

0

∫
R

(1 + t2)α−1/2 |Rf(t, θ)|2 dtdθ

≤ π1/2 Γ(α− 1/2)
Γ(α)

∫ π

0

∫
R

∫
R
r2
α(x(s), y(s)) |f(x(s), y(s))|2 ds dt dθ.

Applying the transformation

x = t cos(θ)− s sin(θ) and y = t sin(θ) + s cos(θ)

yields dx dy = dtds and, consequently,∫
R

∫
R
r2
α(x(s), y(s)) |f(x(s), y(s))|2 dsdt =

∫
R

∫
R

(1 + x2 + y2)α |f(x, y)|2 dx dy

= ‖f‖2L2(R2,(1+x2+y2)α).

Thus, we finally obtain

‖Rf‖2L2(R×[0,π),(1+t2)α−1/2) ≤ π
3/2 Γ(α− 1/2)

Γ(α) ‖f‖2L2(R2,(1+x2+y2)α),

which completes the proof.
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In the next proposition we finally determine the adjoint operator R# of the Radon transform
as an operator

R : L2(R2) ⊃ L2
c(R2) −→ L2(R× [0, π)).

The result can be found in [117], where no complete proof is given.

Proposition 3.1.4 (Adjoint of the Radon transform, see [117, Theorem 12.3]). The adjoint
operator of the Radon transform R : L2

c(R2) −→ L2(R× [0, π)) is given by

R#g(x, y) =
∫ π

0
g(x cos(θ) + y sin(θ), θ) dθ for (x, y) ∈ R2.

For g ∈ L2(R× [0, π)), R#g is defined almost everywhere on R2 and satisfies R#g ∈ L2
loc(R2).

Proof. Let f ∈ L2
c(R2) and g ∈ L2(R × [0, π)). Then, we have Rf ∈ L2(R × [0, π)) due to

Proposition 3.1.2 and by the definition of the Radon transform follows that

(
Rf, g

)
L2(R×[0,π)) =

∫ π

0

∫
R
Rf(t, θ) g(t, θ) dt dθ

=
∫ π

0

∫
R

(∫
R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

)
g(t, θ) dt dθ.

By applying Fubini’s theorem and integration by substitution for real-valued functions with

x = t cos(θ)− s sin(θ) and y = t sin(θ) + s cos(θ),

i.e., dx dy = dtds and

t = x cos(θ) + y sin(θ) and s = −x sin(θ) + y cos(θ),

first for f ≥ 0 and g ≥ 0 and then also for f ∈ L2
c(R2) and g ∈ L2(R× [0, π)), we get

(
Rf, g

)
L2(R×[0,π)) =

∫ π

0

∫
R

∫
R
f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) g(t, θ) ds dtdθ

=
∫ π

0

∫
R

∫
R
f(x, y) g(x cos(θ) + y sin(θ), θ) dx dy dθ

=
∫
R

∫
R
f(x, y)

(∫ π

0
g(x cos(θ) + y sin(θ), θ) dθ

)
dx dy.

Thus, we have (
Rf, g

)
L2(R×[0,π)) =

(
f,R#g

)
L2(R2)

with the adjoint operator R# of R given by

R#g(x, y) =
∫ π

0
g(x cos(θ) + y sin(θ), θ) dθ for (x, y) ∈ R2.

For g ∈ L2(R × [0, π)), the function R#g is defined almost everywhere on R2 and, further, for
all compact subsets K ⊂ R2 we have

‖R#g‖2L2(K) =
∫
K
|R#g(x, y)|2 d(x, y) =

∫
R

∫
R
|R#g(x, y)|2 χK(x, y) dx dy

=
∫
R

∫
R

∣∣∣∣∫ π

0
g(x cos(θ) + y sin(θ), θ) dθ

∣∣∣∣2 χK(x, y) dx dy.

An application of the Cauchy-Schwarz inequality yields

‖R#g‖2L2(K) ≤ π
∫
R

∫
R

∫ π

0
|g(x cos(θ) + y sin(θ), θ)|2 dθ χK(x, y) dx dy.
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By using Fubini’s theorem for non-negative functions and again the transformation

t = x cos(θ) + y sin(θ) and s = −x sin(θ) + y cos(θ),

i.e., dx dy = ds dt and

x = t cos(θ)− s sin(θ) and y = t sin(θ) + s cos(θ),

we finally obtain

‖R#g‖2L2(K) ≤ π
∫ π

0

∫
R

∫
R
|g(t, θ)|2 χK(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds dt dθ

= π

∫ π

0

∫
R
|g(t, θ)|2

(∫
`t,θ

χK(x, y) d(x, y)
)

dtdθ

≤ π diam(K) ‖g‖2L2(R×[0,π)) <∞.

Consequently, R#g ∈ L2
loc(R2) for all g ∈ L2(R× [0, π)).

The above Proposition 3.1.4 shows that the back projection operator B is the adjoint operator
of the Radon transform R up to the constant 1

π , i.e.,

B = 1
π
R#.

In particular, for all g ∈ L2(R× [0, π)) the function Bg is defined almost everywhere on R2 and
satisfies

Bg ∈ L2
loc(R2).

3.2 Approximate reconstruction formula
With the preliminary propositions of the above section we are now prepared to define the approx-
imate FBP reconstruction fL and derive its representation (3.1) under reasonable assumptions.

Throughout this work, we assume that we are given some bandwidth L > 0 and a window
function W : R −→ R that satisfies W ∈ L∞(R) and the following two properties:

(i) W is an even function, i.e., W (S) = W (−S) for all S ∈ R;

(ii) W is compactly supported with supp(W ) ⊆ [−1, 1], i.e., W (S) = 0 for all |S| > 1.

With that we define the low-pass filter AL : R −→ R via

AL(S) = |S|WL(S) = |S|W (S/L) for S ∈ R.

Because of the compact support of W we have AL ∈ L1(R) ∩ L2(R) for all L > 0 and

supp(AL) ⊆ [−L,L].

Now, let the target function f satisfy f ∈ L1(R2) ∩ L2(R2). Based on the filtered back
projection formula (2.9) we define the approximate FBP reconstruction fL via

fL(x, y) = 1
2 B

(
F−1[AL(S)F(Rf)(S, θ)]

)
(x, y) for (x, y) ∈ R2. (3.3)

We will see in this section that (3.3) defines a band-limited approximation of the target function f .

Definition 3.2.1 (Band-limited function). Any function f whose Fourier transform Ff has
compact support is called a band-limited function.
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In the first theorem we show that fL is defined almost everywhere on R2 and can be simplified
as

fL = 1
2 B

(
qL ∗ Rf

)
, (3.4)

where we define the band-limited function qL : R× [0, π) −→ R via

qL(S, θ) = F−1AL(S) for (S, θ) ∈ R× [0, π). (3.5)

We remark that qL is well-defined on R× [0, π) and satisfies qL ∈ L∞(R× [0, π))∩L2(R× [0, π))
due to the Riemann-Lebesgue Lemma A.1.2 and the Rayleigh-Plancherel Theorem A.1.12, since
we have AL ∈ L1(R) ∩ L2(R) for all L > 0. Further, the definition of qL is independent of the
angle θ ∈ [0, π) and only depends on the radial variable S ∈ R.

Note that we call any application of the approximate FBP formula (3.4) an FBP method.

Theorem 3.2.2 (Simplification of fL). Let f ∈ L1(R2) ∩ L2(R2) and let W ∈ L∞(R) be even
with compact support supp(W ) ⊆ [−1, 1]. Then, for given bandwidth L > 0 the approximate
FBP reconstruction fL, given by

fL(x, y) = 1
2 B

(
F−1[AL(S)F(Rf)(S, θ)]

)
(x, y) for (x, y) ∈ R2,

is defined almost everywhere on R2 and satisfies fL ∈ L2
loc(R2). Further, fL can be rewritten as

fL = 1
2 B

(
qL ∗ Rf

)
a.e. on R2,

where the band-limited function qL : R× [0, π) −→ R is defined via

qL(S, θ) = F−1AL(S) for (S, θ) ∈ R× [0, π).

Proof. Let W ∈ L∞(R) be even with supp(W ) ⊆ [−1, 1] and f ∈ L1(R2) ∩ L2(R2) be given.
Then, we have Rf(·, θ) ∈ L1(R) for all θ ∈ [0, π) according to Proposition 2.2.7 with

‖Rf(·, θ)‖L1(R) ≤ ‖f‖L1(R2) ∀ θ ∈ [0, π)

and, thus, F(Rf)(·, θ) ∈ C0(R) for all θ ∈ [0, π) due to the Riemann-Lebesgue Lemma A.1.2.
Since W ∈ L∞(R) has compact support, we further have AL ∈ L2(R) and for fixed θ ∈ [0, π)
follows that the function

S 7−→ AL(S)F(Rf)(S, θ)

is in L2(R). Hence, applying the Rayleigh-Plancherel Theorem A.1.12 shows that the function

(S, θ) 7−→ F−1[AL(S)F(Rf)(S, θ)]

belongs to L2(R× [0, π)) and so

(x, y) 7−→ 1
2 B

(
F−1[AL(S)F(Rf)(S, θ)]

)
(x, y) = fL(x, y)

is defined almost everywhere on R2 by Proposition 3.1.4 and we have fL ∈ L2
loc(R2).

Recall that the band-limited function qL = F−1AL satisfies qL ∈ L2(R × [0, π)). Therefore,
for all θ ∈ [0, π) the Fourier inversion formula

AL(S) = F(F−1AL)(S) = FqL(S, θ)

holds in L2-sense due to Corollary A.1.13 and, in particular, for almost all S ∈ R. Thus, an
application of the Fourier convolution theorem, Proposition 3.1.1, shows that

AL(S)F(Rf)(S, θ) = FqL(S, θ)F(Rf)(S, θ) = F(qL ∗ Rf)(S, θ)

holds in L2-sense for fixed θ ∈ [0, π), since Rf(·, θ) ∈ L1(R) and qL(·, θ) ∈ L2(R) for all θ ∈ [0, π).
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Furthermore, we have (qL∗Rf)(·, θ) ∈ L2(R) for all θ ∈ [0, π) according to Young’s inequality,
Theorem A.1.16, and, consequently, the Fourier inversion formula holds again in L2-sense. Hence,
for fixed θ ∈ [0, π) we obtain the representation

(qL ∗ Rf)(S, θ) = F−1[F(qL ∗ Rf)(S, θ)] = F−1[AL(S)F(Rf)(S, θ)]

for almost all S ∈ R. But this already implies the desired representation of the approximate
FBP reconstruction fL as

fL = 1
2 B

(
qL ∗ Rf

)
a.e. on R2,

where we have fL ∈ L2
loc(R2) due to Proposition 3.1.4, since (qL ∗ Rf) ∈ L2(R× [0, π)).

In the following we show that the approximate FBP reconstruction fL satisfies fL ∈ L2(R2)
and can be directly written in terms of the target function f . To be more precise, we show that

fL = f ∗KL (3.6)

with the convolution kernel KL : R2 −→ R given by

KL(x, y) = 1
2 BqL(x, y) for (x, y) ∈ R2.

Since qL ∈ L2(R × [0, π)), the convolution kernel KL is defined almost everywhere on R2 and
satisfies KL ∈ L2

loc(R2) by Proposition 3.1.4.
However, in the next theorem we first show that KL is actually in L2(R2) and determine its

Fourier transform. To this end, we need to define the bivariate window function WL : R2 −→ R
as

WL(x, y) = W

(
r(x, y)
L

)
for (x, y) ∈ R2, (3.7)

where we let
r(x, y) =

√
x2 + y2 for (x, y) ∈ R2.

Theorem 3.2.3 (Convolution kernel KL). Let W ∈ L∞(R) be even with supp(W ) ⊆ [−1, 1].
Then, for all L > 0 the convolution kernel KL : R2 −→ R, defined as

KL(x, y) = 1
2 BqL(x, y) for (x, y) ∈ R2,

satisfies KL ∈ C0(R2) ∩ L2(R2) and its Fourier transform is given by

FKL(x, y) = WL(x, y) for almost all (x, y) ∈ R2.

Proof. Since W ∈ L∞(R) has compact support, the bivariate window function WL is compactly
supported and satisfies WL ∈ Lp(R2) for all 1 ≤ p ≤ ∞. Indeed, for 1 ≤ p <∞ holds that

‖WL‖pLp(R2) =
∫
R

∫
R
|WL(x, y)|p dx dy =

∫
r(x,y)≤L

∣∣∣∣W(
r(x, y)
L

)∣∣∣∣p d(x, y)

≤ ‖W‖pL∞(R) |BL(0)| = π L2 ‖W‖pL∞(R).

In particular, we haveWL ∈ L1(R2)∩L2(R2). Consequently, with the Riemann-Lebesgue lemma
and the Rayleigh-Plancherel theorem follows that F−1WL ∈ C0(R2)∩ L2(R2). Furthermore, for
all (x, y) ∈ R2 we obtain

F−1WL(x, y) = 1
4π2

∫
R

∫
R
WL(X,Y ) ei(xX+yY ) dX dY

= 1
4π2

∫ π

0

∫
R
W (S/L) |S| eiS(x cos(θ)+y sin(θ)) dS dθ

= 1
4π2

∫ π

0

∫
R
AL(S) eiS(x cos(θ)+y sin(θ)) dS dθ

by transforming (X,Y ) = (S cos(θ), S sin(θ)) from Cartesian coordinates to polar coordinates.
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Recall that the filter AL satisfies AL ∈ L1(R)∩L2(R) and we have qL ∈ L2(R× [0, π)). Thus,
with the definition of the back projection operator B follows that

F−1WL(x, y) = 1
2π

∫ π

0
qL(x cos(θ) + y sin(θ), θ) dθ = 1

2 BqL(x, y) = KL(x, y) ∀ (x, y) ∈ R2.

Consequently, KL ∈ C0(R2) ∩ L2(R2) and applying the Fourier inversion formula shows that

FKL = WL

holds in L2-sense and, in particular, almost everywhere on R2.

Before we proceed, we wish to add one remark concerning the convolution kernel KL.

Remark 3.2.4. Since the bivariate window function WL has compact support and satisfies
WL ∈ L1(R2), its inverse Fourier transform is analytic due to the Paley-Wiener Theorem A.1.14.
Consequently, the convolution kernel KL not only satisfies KL ∈ C0(R2) ∩ L2(R2), but also lies
in C∞(R2). Thus, we have KL ∈ C∞0 (R2), where

C∞0 (R2) =
{
f ∈ C∞(R2) | f(x, y) −→ 0 for ‖(x, y)‖R2 −→∞

}
,

and KL has compact support in R2 if and only if W ≡ 0. Furthermore, the Riemann-Lebesgue
Lemma A.1.2 shows that KL is typically not in L1(R2), since this would imply that the window
function W is continuous on R, i.e., W ∈ C (R).

We are now in the position to show the desired representation (3.6) of the approximate FBP
reconstruction fL, i.e.,

fL = f ∗KL,

in the L2-sense. In particular, we show that fL satisfies fL ∈ L2(R2) and that its Fourier
transform is given by

FfL = WL · Ff

with the compactly supported and radially symmetric bivariate window function WL ∈ L∞(R2)
defined in (3.7).

Theorem 3.2.5 (Approximate reconstruction fL). Let f ∈ L1(R2)∩L2(R2) and let W ∈ L∞(R)
be even with supp(W ) ⊆ [−1, 1]. Then, for all L > 0 the approximate FBP reconstruction fL
satisfies fL ∈ L2(R2) and can be written as

fL = f ∗KL

in the L2-sense and, in particular, almost everywhere on R2.

Proof. Since f ∈ L1(R2) by assumption and KL ∈ L2(R2) due to Theorem 3.2.3, applying
Young’s inequality yields (f ∗KL) ∈ L2(R2) and, thus, the Fourier inversion formula

(f ∗KL)(x, y) = 1
4π2

∫
R

∫
R
F(f ∗KL)(X,Y ) ei(xX+yY ) dX dY

holds in L2-sense and, in particular, for almost all (x, y) ∈ R2. Additionally, from the Fourier
convolution theorem, Proposition 3.1.1, and Theorem 3.2.3 we obtain

F(f ∗KL) = Ff · FKL = WL · Ff

in the L2-sense and, thus, almost everywhere on R2. This gives the representation

(f ∗KL)(x, y) = 1
4π2

∫
R

∫
R
Ff(X,Y )WL(X,Y ) ei(xX+yY ) dX dY.
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SinceW ∈ L∞(R) has compact support and f ∈ L1(R2), we can apply integration by substitution
and obtain

(f ∗KL)(x, y) = 1
4π2

∫ π

0

∫
R
Ff(S cos(θ), S sin(θ))W (S/L) |S| eiS(x cos(θ)+y sin(θ)) dS dθ

by transforming (X,Y ) = (S cos(θ), S sin(θ)) from Cartesian coordinates to polar coordinates.
Furthermore, for f ∈ L1(R2) the Fourier slice Theorem 2.2.11 gives

Ff(S cos(θ), S sin(θ)) = F(Rf)(S, θ) ∀ (S, θ) ∈ R× [0, π),

which implies that

(f ∗KL)(x, y) = 1
4π2

∫ π

0

∫
R
F(Rf)(S, θ)W (S/L) |S| eiS(x cos(θ)+y sin(θ)) dS dθ

= 1
4π2

∫ π

0

∫
R
F(Rf)(S, θ)AL(S) eiS(x cos(θ)+y sin(θ)) dS dθ.

Since the filter AL is in L1(R) ∩ L2(R), we have F−1AL ∈ L2(R) and the Fourier inversion
formula gives

AL(S) = F(F−1AL)(S)

in L2-sense and, particularly, for almost all S ∈ R. Therefore, by Young’s inequality we have
(qL ∗ Rf)(·, θ) ∈ L2(R) for all θ ∈ [0, π), where the band-limited function qL ∈ L2(R× [0, π)) is
given by (3.5), i.e.,

qL(S, θ) = F−1AL(S) for (S, θ) ∈ R× [0, π).

Moreover, applying the Fourier convolution theorem, Proposition 3.1.1, shows that the identity

F(qL ∗ Rf)(S, θ) = FqL(S, θ)F(Rf)(S, θ) = AL(S)F(Rf)(S, θ)

holds in L2-sense for fixed θ ∈ [0, π), since Rf(·, θ) ∈ L1(R) and qL(·, θ) ∈ L2(R) for all θ ∈ [0, π).
Hence, we obtain

(f ∗KL)(x, y) = 1
4π2

∫ π

0

∫
R
F(qL ∗ Rf)(S, θ) eiS(x cos(θ)+y sin(θ)) dS dθ

= 1
2π

∫ π

0
F−1[F(qL ∗ Rf)](x cos(θ) + y sin(θ), θ) dθ.

Since (qL ∗ Rf)(·, θ) ∈ L2(R) for all θ ∈ [0, π), the Fourier inversion formula holds again in
L2-sense and, in particular, almost everywhere on R. Thus, for fixed θ ∈ [0, π) we get

(qL ∗ Rf)(S, θ) = F−1[F(qL ∗ Rf)
]
(S, θ)

for almost all S ∈ R and the definition of the back projection operator B in combination with
Theorem 3.2.2 yields

(f ∗KL)(x, y) = 1
2π

∫ π

0
(qL ∗ Rf)(x cos(θ) + y sin(θ), θ) dθ = 1

2 B
(
qL ∗ Rf

)
(x, y) = fL(x, y)

for almost all (x, y) ∈ R2. This finally implies fL ∈ L2(R2) with

fL = 1
2 B

(
qL ∗ Rf

)
= f ∗KL

in the L2-sense and, in particular, almost everywhere on R2.

Combining Theorems 3.2.3 and 3.2.5 allows us to determine the Fourier transform FfL of
the approximate FBP reconstruction fL.
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Corollary 3.2.6 (Fourier transform of fL). Let f ∈ L1(R2) ∩ L2(R2) and W ∈ L∞(R) be even
with supp(W ) ⊆ [−1, 1]. Then, for all L > 0 the Fourier transform FfL of the approximate
FBP reconstruction fL is given by

FfL = WL · Ff
in L2-sense and, in particular, almost everywhere on R2.

Since the window function W is assumed to be compactly supported, Corollary 3.2.6 shows
that the approximate FBP reconstruction formula (3.3) provides a band-limited approximation
fL to the target function f . In particular, the approximation fL is arbitrarily smooth.

Remark 3.2.7. Since the target function f and the convolution kernel KL are both in L2(R2),
the representation (3.6) of the approximate FBP reconstruction fL implies that fL is bounded and
continuous on R2 due to Theorem A.1.17. In addition, Corollary 3.2.6 and the Paley-Wiener
Theorem A.1.14 show that fL is analytic, since the window function W is compactly supported.
Thus, we not only have fL ∈ L2(R2), but also fL ∈ C∞b (R2), where

C∞b (R2) =
{
f ∈ C∞(R2) | ‖f‖∞ <∞

}
.

Moreover, the FBP approximation fL of f 6≡ 0 has compact support in R2 if and only if W ≡ 0.

We now list some window functions of suitable low-pass filters, which are commonly use in
computerized tomography and can be found in the literature, see, e.g., [18], [83], [96], [112],
[113]. To this end, let ⊔L : R −→ R denote the characteristic function of the interval [−L,L]
for L > 0, i.e.,

⊔L(S) = χ[−L,L](S) =
{

1 for |S| ≤ L
0 for |S| > L.

For the sake of brevity, we set ⊔≡ ⊔1.
Example 3.2.8. The Ram-Lak filter is given by the window function

W (S) = ⊔(S) for S ∈ R

such that

AL(S) = |S| · ⊔L(S) =
{
|S| for |S| ≤ L
0 for |S| > L.

A plot of the Ram-Lak window can be found in Figure 3.1(a).

In the following, let sinc denote the unnormalized cardinal sine function.

Example 3.2.9. The Shepp-Logan filter is given by the window function

W (S) = sinc
(πS

2
)
· ⊔(S) for S ∈ R

such that

AL(S) = |S| · sinc
(
πS

2L

)
· ⊔L(S) =


2L
π

∣∣∣sin (πS2L

)∣∣∣ for |S| ≤ L
0 for |S| > L.

A plot of the Shepp-Logan window can be found in Figure 3.1(b).

Example 3.2.10. The Cosine filter is given by the window function

W (S) = cos
(πS

2
)
· ⊔(S) for S ∈ R

such that

AL(S) = |S| · cos
(
πS

2L

)
· ⊔L(S) =

|S| · cos
(
πS
2L

)
for |S| ≤ L

0 for |S| > L.

A plot of the Cosine window can be found in Figure 3.1(c).
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Figure 3.1: Window functions of three typical low-pass filters.

Example 3.2.11. The Hamming filter with parameter β ∈
[1

2 , 1
]
is given by the window function

W (S) = (β + (1− β) cos(πS)) · ⊔(S) for S ∈ R.

Thus, the Hamming filter is a combination of the Ram-Lak filter and a modified Cosine filter.
Plots of the Hamming window with parameters β ∈ {0.5, 0.75, 0.92} can be found in Figure 3.2.
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Figure 3.2: Window functions of the Hamming filter with β ∈ {0.5, 0.75, 0.92}.

Example 3.2.12. The Gaussian filter with parameter β > 1 is given by the window function

W (S) = exp
(
−
(πS
β

)2)
· ⊔(S) for S ∈ R.

Plots of the Gaussian window with parameters β ∈ {2.83, 4.9, 7.5} can be found in Figure 3.3.

We summarize the discussion of this section as follows.
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Figure 3.3: Window functions of the Gaussian filter with β ∈ {2.83, 4.9, 7.5}.



40 3 Method of filtered back projection

Conclusion 3.2.13 (Approximate FBP reconstruction). Let f ∈ L1(R2)∩L2(R2) and consider
the low-pass filter

AL(S) = |S| ·W (S/L) for S ∈ R

with bandwidth L > 0 and an even windowW ∈ L∞(R) with compact support supp(W ) ⊆ [−1, 1].
Then, the approximate FBP reconstruction

fL(x, y) = 1
2 B

(
F−1[AL(S)F(Rf)(S, θ)]

)
(x, y) for (x, y) ∈ R2

satisfies fL ∈ L2(R2) and can be rewritten as

fL = 1
2 B

(
qL ∗ Rf

)
= f ∗KL a.e. on R2

with the band-limited function

qL(S, θ) = F−1AL(S) for (S, θ) ∈ R× [0, π)

and the convolution kernel

KL(x, y) = 1
2 BqL(x, y) for (x, y) ∈ R2.

Moreover, its Fourier transform FfL ∈ L2(R2) is given by

FfL = WL · Ff a.e. on R2

with the radially symmetric bivariate window

WL(x, y) = W

(
r(x, y)
L

)
for (x, y) ∈ R2,

where
r(x, y) =

√
x2 + y2.

3.3 Properties of the convolution kernel
Based on the results of the previous section we now prove some basic properties of the convolution
kernel KL. To be more precise, we show that KL is radially symmetric, possesses a scaling
property with respect to the bandwidth L and is a positive definite function.

The proofs of these features of KL are based on the following general stretch property of the
Fourier transform. Although the result is well-known, we give a proof for completeness.

Proposition 3.3.1 (Fourier stretch theorem). Let f ∈ Lp(Rn) with p ∈ {1, 2} and let A ∈ Rn×n
be an invertible matrix. For 1 ≤ q ≤ ∞, we define the stretch operator σA : Lq(Rn) −→ Lq(Rn)
via

σAg(x) = g(Ax) for x ∈ Rn.

Then, we have
F(σAf) = 1

| det(A)| σA−T (Ff).

Proof. We first note that σAg is again in Lq(Rn) for g ∈ Lq(Rn) with 1 ≤ q ≤ ∞. Indeed, for
1 ≤ q <∞, an application of the transformation theorem yields

‖σAg‖qLq(Rn) =
∫
Rn
|g(Ax)|q dx = 1

| det(A)|

∫
Rn
|g(x)|q dx = 1

| det(A)| ‖g‖
q
Lp(Rn) <∞ (3.8)
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and, for q =∞, the invertibility of A gives

‖σAg‖L∞(Rn) = ess sup
x∈Rn

|σAg(x)| = ess sup
x∈Rn

|g(Ax)| = ess sup
y∈Rn

|g(y)| = ‖g‖L∞(Rn).

Now, let f ∈ L1(Rn). Then, for all ξ ∈ Rn follows that

F(σAf)(ξ) =
∫
Rn
σAf(x) e−i xT ξ dx =

∫
Rn
f(Ax) e−i xT ξ dx = 1

|det(A)|

∫
Rn
f(x) e−i (A−1x)T ξ dx

= 1
|det(A)|

∫
Rn
f(x) e−i xT (A−T ξ) dx = 1

|det(A)| Ff(A−T ξ) = 1
|det(A)| σA−T (Ff)(ξ)

by applying again the transformation theorem. Thus, we have

F(σAf) = 1
|det(A)| σA−T (Ff) ∀ f ∈ L1(Rn).

Using density arguments the result also follows for f ∈ L2(Rn). Indeed, since L1(Rn)∩L2(Rn)
is dense in L2(Rn), for every f ∈ L2(Rn) there is a sequence (fk)k∈N in L1(Rn) ∩ L2(Rn) with

‖f − fk‖L2(Rn) −→ 0 for k −→∞.

We have already proven that

F(σAfk) = 1
|det(A)| σA−T (Ffk) ∀ k ∈ N.

This in combination with the linearity of the involved operators and estimate (3.8) gives∥∥∥∥F(σAf)− 1
|det(A)| σA−T (Ff)

∥∥∥∥
L2(Rn)

=
∥∥∥∥F(σAf − σAfk) + 1

|det(A)| σA−T (Ffk −Ff)
∥∥∥∥

L2(Rn)

≤ ‖F(σA(f − fk))‖L2(Rn) + 1
|det(A)| ‖σA−T (F(f − fk))‖L2(Rn)

≤ (2π)n/2 ‖σA(f − fk)‖L2(Rn) + |det(A)|1/2

|det(A)| ‖F(f − fk)‖L2(Rn)

≤ 2 (2π)n/2

| det(A)|1/2
‖f − fk‖L2(Rn)

k→∞−−−→ 0.

Consequently, we also have

F(σAf) = 1
|det(A)| σA−T (Ff) ∀ f ∈ L2(Rn)

and the proof is complete.

In the first corollary we deduce the radial symmetry of the convolution kernel KL.

Corollary 3.3.2 (Radial symmetry of KL). Let W ∈ L∞(R) be even with supp(W ) ⊆ [−1, 1].
Then, for all L > 0 the convolution kernel KL : R2 −→ R, defined as

KL(x, y) = 1
2 BqL(x, y) for (x, y) ∈ R2,

is radially symmetric, i.e., there exists a univariate function kL : R≥0 −→ R such that

KL(x, y) = kL(r(x, y)) ∀ (x, y) ∈ R2,

where
r(x, y) =

√
x2 + y2 for (x, y) ∈ R2.
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Proof. In the proof of Theorem 3.2.3 we have seen that the convolution kernel KL can be
represented as

KL(x, y) = F−1WL(x, y) ∀ (x, y) ∈ R2

with the compactly supported and radially symmetric bivariate window function WL ∈ L∞(R2)
given by

WL(x, y) = W

(
r(x, y)
L

)
for (x, y) ∈ R2.

Since W ∈ L∞(R) is compactly supported, we also have WL ∈ L1(R2) and its radial symmetry
in combination with Remark A.1.9 implies that we can rewrite KL as

KL(x, y) = 1
4π2 FWL(x, y) ∀ (x, y) ∈ R2.

Now, the function KL is radially symmetric if and only if it is invariant under all rotations that
leave the origin fixed, i.e., if and only if

σQKL = KL ∀Q ∈ SO(2).

This is indeed the case, since for all Q ∈ SO(2) the radial symmetry ofWL and Proposition 3.3.1
yield

σQKL = 1
4π2 σQ(FWL) = 1

4π2 |det(Q)| F(σQWL) = 1
4π2 FWL = KL,

which shows that KL is radially symmetric.

Using Proposition 3.3.1 we can also show the following scaling property of the convolution
kernel KL.

Corollary 3.3.3 (Scaling property of KL). Let W ∈ L∞(R) be even with supp(W ) ⊆ [−1, 1].
Then, for all L > 0 the convolution kernel KL ∈ C0(R2) ∩ L2(R2) satisfies the scaling property

KL(x, y) = L2K(Lx,L y) ∀ (x, y) ∈ R2,

where we set K ≡ K1 for the sake of brevity.

Proof. As we have seen before, the convolution kernel KL can be written as

KL(x, y) = F−1WL(x, y) = 1
4π2 FWL(x, y) ∀ (x, y) ∈ R2

with the radially symmetric bivariate window function WL ∈ L1(R2) satisfying

WL(x, y) = W

(
r(x, y)
L

)
= W

(
r

(
x

L
,
y

L

))
= W

(
x

L
,
y

L

)
for (x, y) ∈ R2,

where W ≡W1 : R2 −→ R. Thus, applying Proposition 3.3.1 yields for all (x, y) ∈ R2

KL(x, y) = 1
4π2 FWL(x, y) = 1

4π2 F(σdiag(L−1)W )(x, y)

= 1
4π2 |det(diag(L))|σdiag(L)(FW )(x, y) = L2K(Lx,L y),

as stated.

We now show that, under suitable conditions on the window function W , the convolution
kernel KL is a positive definite function. These play an important role in the multivariate
approximation theory and are defined as follows.
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Definition 3.3.4 (Positive definite function, see [123, Definition 6.1]). A continuous function
Φ : Rn −→ C is called positive semi-definite on Rn if, for all N ∈ N and all sets of pairwise
distinct points X = {x1, . . . , xN} ⊂ Rn, the quadratic form

N∑
j=1

N∑
k=1

αj αk Φ(xj − xk) (3.9)

is nonnegative for all α ∈ CN . The function Φ is called positive definite on Rn if the quadratic
form (3.9) is positive for all α ∈ CN \ {0}.

The following well-known theorem of Bochner provides a characterization of positive semi-
definite functions in terms of Fourier transforms.

Theorem 3.3.5 (Bochner’s theorem). A continuous function Φ : Rn −→ C is positive semi-
definite if and only if it is the Fourier transform of a finite nonnegative Borel measure µ on Rn,
i.e.,

Φ(x) = Fµ(x) =
∫
Rn

e−ixT ξ dµ(ξ) ∀x ∈ Rn.

Proof. See, for example, [123, Theorem 6.6].

The last auxiliary result deals with a sufficient condition for positive definiteness.

Theorem 3.3.6. A positive semi-definite function Φ : Rn −→ C is positive definite if the support
of the Borel measure µ in the representation

Φ = Fµ

contains an open subset.

Proof. See, for example, [123, Theorem 6.8].

We are now prepared to show that the convolution kernel KL is a positive definite function,
provided that the corresponding window function W satisfies reasonable conditions which are
stated in the following corollary.

Corollary 3.3.7 (Positive definiteness ofKL). LetW ∈ L∞(R) be even with supp(W ) ⊆ [−1, 1].
Further, let W be nonnegative, i.e.,

W (S) ≥ 0 ∀S ∈ R.

Then, for all L > 0 the convolution kernel KL ∈ C0(R2)∩L2(R2) is positive semi-definite on R2.
If, in addition, there exists a non-empty open interval I ⊂ [−1, 1] such that

W (S) > 0 ∀S ∈ I,

then the convolution kernel KL is positive definite on R2.

Proof. We consider the compactly supported bivariate window function WL ∈ L∞(R2) given by

WL(x, y) = W

(
r(x, y)
L

)
for (x, y) ∈ R2.

Thus, we have WL ∈ L1(R2) and WL(x, y) ≥ 0 for all (x, y) ∈ R2. With this we define the
measure µL for any Borel set B ⊂ R2 via

µL(B) =
∫
B
WL(x, y) d(x, y).

Because WL ∈ L1(R2) is nonnegative, µL defines a finite nonnegative Borel measure on R2.
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We now consider the convolution kernel KL : R2 −→ R given by

KL(x, y) = 1
2 BqL(x, y) for (x, y) ∈ R2.

In Theorem 3.2.3, we have seen that KL satisfies KL ∈ C0(R2) ∩ L2(R2) and, further, for all
(x, y) ∈ R2 follows that

KL(x, y) = F−1WL(x, y) = 1
4π2 FWL(x, y) = 1

4π2

∫
R2
WL(X,Y ) e−i(xX+yY ) d(X,Y )

= 1
4π2

∫
R2

e−i(xX+yY ) dµL(X,Y ).

This shows that, up to the constant 1
4π2 , KL is given by the Fourier transform of the finite non-

negative Borel measure µL. Thus, KL is positive semi-definite due to Bochner’s theorem 3.3.5.
If, in addition, there is a non-empty open interval I ⊂ [−1, 1] such that W is positive on I,

then there exists an open subset O ⊂ R2 such that

WL(x, y) > 0 ∀ (x, y) ∈ O.

But this implies that
µL(O) =

∫
O
WL(x, y) d(x, y) > 0,

i.e., the support of the Borel measure µL contains the open subset O ⊂ R2. Thus, in this case
the convolution kernel KL is positive definite according to Theorem 3.3.6.

We close this chapter on the method of filtered back projection by studying the example of
the Ram-Lak filter, of which an intuitive discussion can also be found in [121].

Example 3.3.8. Consider the Ram-Lak filter from Example 3.2.8, whose window W ∈ L∞(R)
is given by

W (S) = ⊔(S) =
{

1 for |S| ≤ 1
0 for |S| > 1,

i.e.,

AL(S) = |S| ·W (S/L) =
{
|S| for |S| ≤ L
0 for |S| > L.

We first compute the corresponding band-limited function qL ∈ L2(R× [0, π)) given by

qL(S, θ) = F−1AL(S) for (S, θ) ∈ R× [0, π).

Since AL is even and compactly supported with supp(AL) ⊆ [−L,L], its inverse Fourier trans-
form is given by the inverse cosine transform and for all (S, θ) ∈ R× [0, π) follows that

qL(S, θ) = 1
2π

∫
R
AL(t) eiSt dt = 1

π

∫ L

0
AL(t) cos(St) dt = 1

π

∫ L

0
t cos(St) dt

= 1
π

[cos(St) + St sin(St)
S2

]t=L
t=0

= 1
π

(cos(LS) + LS sin(LS)− 1
S2

)
.

Because cos(ϕ) = 1− 2 sin2(ϕ/2) for all ϕ ∈ R, this can be rewritten as

qL(S, θ) = 1
π

(
LS sin(LS)− 2 sin2(LS/2)

S2

)
= L2

2π
(
2 sinc(LS)− sinc2(LS/2)

)
.

Plots of the radially symmetric function qL can be found in Figure 3.4 for L ∈ {4, 6, 8}.
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Figure 3.4: Band-limited function qL of the Ram-Lak filter for L ∈ {4, 6, 8}.

We now come to the calculation of the associated convolution kernel KL ∈ C0(R2) ∩ L2(R2)
given by

KL(x, y) = 1
2 BqL(x, y) for (x, y) ∈ R2.

By considering the radially symmetric bivariate window

WL(x, y) = W

(
r(x, y)
L

)
=
{

1 for x2 + y2 ≤ L2

0 for x2 + y2 > L2,

we can alternatively compute KL as the two-dimensional inverse Fourier transform of WL, i.e.,
for fixed (x, y) ∈ R2 we have

KL(x, y) = F−1WL(x, y) = 1
4π2

∫
R

∫
R
WL(X,Y ) ei(xX+yY ) dX dY

= 1
4π2

∫
r(x,y)≤L

ei(xX+yY ) d(X,Y ).

Transforming from Cartesian coordinates (X,Y ) ∈ R2 to polar coordinates (S, θ) ∈ R≥0× [0, 2π)
yields

KL(x, y) = 1
4π2

∫ L

0

∫ 2π

0
S eiS(x cos(θ)+y sin(θ)) dθ dS

= 1
4π2

∫ L

0
S

∫ 2π

0
cos(S(x cos(θ) + y sin(θ))) dθ dS.

Because the mapping θ 7−→ cos(S(x cos(θ) + y sin(θ))) is π-periodic for all S ∈ R, we further
obtain

KL(x, y) = 1
2π2

∫ L

0
S

∫ π

0
cos(S(x cos(θ) + y sin(θ))) dθ dS.

Now, if r(x, y) = 0, i.e., x = 0 and y = 0, we have

KL(0, 0) = 1
2π2

∫ L

0
S

∫ π

0
1 dθ dS = L2

4π .

On the other hand, if r(x, y) > 0, we apply the transformation t = S r(x, y) to obtain

KL(x, y) = 1
2π2

∫ Lr(x,y)

0

t

r(x, y)2

∫ π

0
cos

(
t
x cos(θ) + y sin(θ)

r(x, y)

)
dθ dt.

By defining the angle ϑ ≡ ϑ(x, y) ∈ [−π, π) as

ϑ =


arctan(− y

x) for x > 0
−π

2 sgn(y) for x = 0
arctan(− y

x)− π sgn(y) for x < 0,
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Figure 3.5: Radial part of the convolution kernel KL of the Ram-Lak filter for L ∈ {4, 6, 8}.

we observe that
x cos(θ) + y sin(θ)

r(x, y) = cos(θ + ϑ) ∀ θ ∈ [0, π).

Consequently, we get

1
π

∫ π

0
cos

(
t
x cos(θ) + y sin(θ)

r(x, y)

)
dθ = 1

π

∫ π

0
cos(t cos(θ + ϑ)) dθ = 1

π

∫ π+ϑ

ϑ
cos(t cos(ϕ)) dϕ

and the π-periodicity of the mapping ϕ 7−→ cos(t cos(ϕ)) for fixed t ∈ R yields

1
π

∫ π

0
cos

(
t
x cos(θ) + y sin(θ)

r(x, y)

)
dθ = 1

π

∫ π

0
cos(t cos(ϕ)) dϕ = J0(t),

where J0 denotes the Bessel function of the first kind of zero order given by

J0(z) = 1
π

∫ π

0
cos(z cos(θ)) dθ for z ∈ R.

In general, the Bessel function Jk of the first kind of integer order k ∈ Z is defined as

Jk(z) = 1
π

∫ π

0
cos(z sin(θ)− kθ) dθ for z ∈ R,

see [1, Chapter 9], and satisfies the reduction formula [1, Formula 11.3.20]∫ z

0
tk Jk−1(t) dt = zk Jk(z) ∀ z > 0, k > 0.

Consequently, for the convolution kernel KL follows that

KL(x, y) = 1
2π

∫ Lr(x,y)

0

t J0(t)
r(x, y)2 dt = L2

2π
J1(Lr(x, y))
Lr(x, y) ∀ (x, y) ∈ R2.

By defining the univariate function k : R −→ R via

k(S) = 1
2π

J1(S)
S

for S ∈ R,

we can finally rewrite KL as

KL(x, y) = L2 k(r(Lx,L y)) ∀ (x, y) ∈ R2

and, thus, we indeed observe its radial symmetry and its scaling property with respect to L > 0.
Plots of the radial part of the convolution kernel KL can be found in Figure 3.5 for L ∈ {4, 6, 8}.



Chapter 4

Error estimates for filtered back
projection reconstructions

In Chapter 3 we have explained how the filtered back projection (FBP) formula (2.9) can be
stabilized by incorporating a low-pass filter AL : R −→ R of the form

AL(S) = |S|WL(S) = |S|W (S/L) for S ∈ R

with finite bandwidth L > 0 and an even window function W ∈ L∞(R) with supp(W ) ⊆ [−1, 1].
This reduces the noise sensitivity of the FBP formula, but only leads to an inexact FBP method.
For target functions f ∈ L1(R2) ∩ L2(R2), we have seen that the resulting approximate FBP
reconstruction fL satisfies fL ∈ L2(R2) and can be expressed in standard form (3.1), i.e.,

fL = 1
2 B

(
F−1AL ∗ Rf

)
= f ∗KL.

Therefore, each FBP method provides one approximation fL to f , whose quality depends on
the choice of the low-pass filter AL.

In this chapter, we analyse the inherent reconstruction error of the FBP method which is
incurred by the application of the low-pass filter AL, i.e., we wish to analyse the error

eL = f − fL

with respect to the filter’s bandwidth L and window function W . To this end, we prove error
estimates on eL for target functions f from Sobolev spaces Hα(R2) of fractional order α > 0,
where

Hα(R2) =
{
f ∈ L2(R2) | ‖f‖α <∞

}
is equipped with the Sobolev norm

‖f‖α =
( 1

4π2

∫
R

∫
R

(1 + x2 + y2)α |Ff(x, y)|2 dx dy
)1/2

.

To be more precise, in the following we analyse the Hσ-norm of the intrinsic FBP recon-
struction error eL for all 0 ≤ σ ≤ α, where α > 0 is the assumed smoothness of the target
function f ∈ Hα(R2) and σ = 0 yields the classical L2-case. The obtained error bounds depend
on the bandwidth L of the utilized low-pass filter, on the flatness of the filter’s window function
W at the origin, on the smoothness α of the target function f , and on the order σ of the con-
sidered Sobolev norm. Finally, we prove convergence for the approximate FBP reconstruction
fL in the treated Sobolev norms along with asymptotic convergence rates as the bandwidth L
goes to infinity. In particular, we show that the rate of convergence saturates at fractional order
depending on smoothness properties of the chosen window function.

We remark that some parts of the presented material are already published in the conference
proceedings [7], [10], [12] or can be found in the preprints [8], [9], [11].
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4.1 Related results
Before we start with the derivation of our error analysis of the filtered back projection method,
we describe related techniques and results, which can be found in the literature, and explain
the differences to our approach. To this end, if suitable, we adapt the notations to our setting
and restrict the results to the two dimensional case, although some references treat arbitrary
dimensions.

4.1.1 Summability methods

In [71], Madych describes the reconstruction of functions from Radon data based on summability
formulas. The basic idea is to choose a convolution kernel K : R2 −→ R as an approximation of
the identity and to compute the convolution product f∗KL to approximate the target function f .
Here, for L > 0, the scaled kernel KL is given by

KL(x, y) = L2K(Lx,L y) for (x, y) ∈ R2.

If the kernel K is chosen to be a uniform sum of ridge functions, the convolution f ∗KL can be
expressed in terms of the Radon data Rf as in the approximate FBP formula (3.4), which is
proven in [71, Proposition 1]. Further, convolution kernels K that can be represented as uniform
sums of ridge functions are characterized in [71, Section 2.2].

For target functions f ∈ Lp(R2), 1 ≤ p ≤ ∞, the reconstruction error

f − f ∗KL

is then estimated in terms of the Lp-modulus of continuity ωp(f ; δ), where, for δ > 0,

ωp(f ; δ) = sup
‖(X,Y )‖R2≤δ

(∫
R

∫
R
|f(x−X, y − Y )− f(x, y)|p dx dy

)1/p

for 1 ≤ p <∞

and
ω∞(f ; δ) = sup

‖(X,Y )‖R2≤δ
ess sup
(x,y)∈R2

|f(x−X, y − Y )− f(x, y)|.

Under the assumption that KL, for L > 0, forms a family of integrable convolution kernels
satisfying ∫

R

∫
R
KL(x, y) dx dy = 1,∫

R

∫
R
|KL(x, y)| dx dy ≤ c0,∫

R

∫
R

(x2 + y2)1/2 |KL(x, y)| dx dy ≤ c1 L
−1

for some constants c0, c1 ∈ R≥0 independent of L, it is shown in [71, Proposition 7] that

‖f − f ∗KL‖Lp(R2) ≤ c ωp(f ;L−1), (4.1)

where the constant c ∈ R≥0 is independent of f and L. The proof is based on direct calculations
in the case p ∈ {1,∞}, and on the integral variant of Minkowski’s inequality for 1 < p <∞.

To exploit a higher order moment condition on the convolution kernel KL of the form∫
R

∫
R

(x2 + y2)k/2 |KL(x, y)| dx dy ≤ ck L−k

for some integer k ≥ 2 and a constant ck ∈ R≥0 independent of L, the modified kernels

K̃k
L(x, y) =

k−1∑
j=0

(−1)k−j−1 k!
(k − j)! j! (k − j)−2KL

( x

k − j
,

y

k − j

)
for (x, y) ∈ R2
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are introduced and the corresponding reconstruction error

f − f ∗ K̃k
L

is estimated in terms of the k-th order Lp-modulus of smoothness ωkp(f ; δ) of f via

‖f − f ∗ K̃k
L‖Lp(R2) ≤ c ωkp(f ;L−1), (4.2)

where the constant c ∈ R≥0 is again independent of f and L, see [71, Proposition 8].
The constant c in the estimates (4.1) and (4.2) depends on the L1-norm of the convolution

kernel KL so that the assumption KL ∈ L1(R2) is essential and cannot be omitted. However,
the integrability of KL implies that its Fourier transform FKL is continuous on R2 according
to the Riemann-Lebesgue Lemma A.1.2. In our setting this would mean that the univariate
window function W ∈ L∞(R) has to be continuous on R due to Theorem 3.2.3. As opposed to
this, we assume that W has compact support with supp(W ) ⊆ [−1, 1] and we want to allow
discontinuities of the window at the boundary points of its support. Note that this is the case
in most of the examples we consider in this thesis.

Consequently, the assumptions in [71] are not compatible with our setting and, in particular,
the approach taken here is essentially different from that in [71].

In [72], Madych considers two particular choices of the convolution kernel KL, where the
first one yields a natural approximation of Radon’s classical reconstruction formula from [94]
and where the second one leads to an approximation of an alternative inversion formula derived
in [71, Corollary 2]. For these two choices of KL and for target functions f ∈ L∞(R2) that are
Hölder continuous of order α > 0 at (x, y) ∈ R2 the pointwise reconstruction error

f(x, y)− (f ∗KL)(x, y)

is estimated in terms of the parameter L of the scaled kernel KL and the Hölder exponent α
of the target function f . The proof is again substantially based on the integrability of KL and,
therefore, the estimates in [72] are also not applicable to the setting of this work.

4.1.2 Approximate inverse

The method of approximate inverse was developed by Louis and Maass in [65] to solve ill-posed
linear operator equations

Af = g,

where A : X −→ Y is a continuous linear operator between Hilbert spaces X and Y, the data
g ∈ Y denotes a collection of input measurements and f ∈ X is the quantity we search for. Note
that in the context of this thesis the operator A is given by the Radon transform R.

Now, the basic idea of approximate inverse is to select a smoothing operator Eγ : X −→ X ,
for γ > 0, and to compute a smoothed version

fγ = Eγf

of the target function f . If X is a space of real-valued functions on a domain Ω, this is done by
calculating the moments

fγ(x) = (f, eγ(x, ·))X for x ∈ Ω
with a suitable family of mollifiers eγ : Ω× Ω −→ R satisfying

lim
γ→0
‖f − fγ‖X = 0.

The computation of fγ from the given data g ∈ Y is achieved by approximating eγ(x, ·) in the
range of the adjoint operator A∗ by the reconstruction kernel vγ(x) ∈ Y solving

min
v∈Y
‖A∗v − eγ(x, ·)‖X
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so that
fγ(x) = (f, eγ(x, ·))X ≈ (g, vγ(x))Y for x ∈ Ω.

The mapping Sγ : Y −→ X , defined as

Sγg(x) = (g, vγ(x))Y for x ∈ Ω,

is then called the approximate inverse of the operator A. Applied to the Radon transform this
yields a reconstruction formula of filtered back projection type similar to (3.1). For detailed
investigations on properties of the approximate inverse and its relation to other regularization
methods we refer to the papers [60], [61] of Louis.

In [49], Jonas and Louis consider the case where X and Y are L2-spaces, possibly on different
domains of n dimensions, and A is an operator with smoothing index α > 0 in the Sobolev scale,
i.e., there exist constants c1, c2 > 0 such that

c1 ‖f‖L2 ≤ ‖Af‖Hα ≤ c2 ‖f‖L2 ∀ f ∈ N (A)⊥,

where N (A) denotes the null space of A. For mollifiers eγ of convolution type,

eγ(x, y) = eγ(x− y) ∀x, y ∈ Ω,

sufficient conditions are then derived under which the approximate inverse Sγ yields a regulari-
zation method of optimal order, cf. [49, Theorems 3.2 & 5.3]. The proofs are based on similar
techniques we use in Section 4.2 for the derivation of our Sobolev error estimate. Furthermore,
in the proof of [49, Theorem 5.3], the estimate

‖f − fγ‖L2 ≤ cβ γθ
β
α ‖f‖Hβ ∀ f ∈ Hβ (4.3)

is established for all 0 < β ≤ β∗ with some constant cβ > 0. To this end, it is assumed that
there are positive constants θ, β∗, cβ∗ > 0 such that

sup
ξ

{(
1 + ‖ξ‖22

)−β∗/2 ∣∣(2π)n/2Feγ(ξ)− 1
∣∣} ≤ cβ∗ γθ β∗α ∀ γ > 0. (4.4)

However, in [49] the authors verify assumption (4.4) only for one example with n = 1, where
the mollifier eγ is given by a sinc function. In contrast to that, we aim to develop concrete
and easy-to-check conditions on the window function W which guarantee that the inherent
FBP reconstruction error eL = f − fL behaves in the fashion of estimate (4.3). Moreover,
our estimates in Section 4.3 allow for nontrivial statements concerning the behaviour of the
reconstruction error in the case β > β∗.

In [68], Louis and Schuster apply the method of approximate inverse to the Radon transform
R to derive inversion formulas for the parallel beam geometry in computerized tomography. They
consider both the continuous and discrete setting and explain how to compute the reconstruction
kernel for a chosen mollifier. This again leads to inversion formulas of filtered back projection
type similar to (3.1), where, in the case of finitely many data, the approach in [68] relies on a
truncation of the singular value decomposition of the Radon transform. However, note that [68]
contains no results concerning error estimates or convergence rates.

In [102], [103], Rieder and Schuster focus on semi-discrete systems

Anf = gn,

where the semi-discrete operator An : X −→ Cn and the measurements gn ∈ Cn are defined via
an observation operator Ψn : Y −→ Cn by

An = ΨnA and gn = Ψng.
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The authors propose and analyse a technique for approximating the discrete reconstruction ker-
nel for a given mollifier and show convergence of the resulting discrete version of the approximate
inverse. Further, they apply their results to the Radon transform and derive convergence rates
for the discrete filtered back projection algorithm in parallel beam geometry as the discretization
parameters go to zero. Concrete examples of mollifier/reconstruction kernel pairs for the Radon
transform are given in [98].

Since the approach in [102], [103] considers the semi-discrete setting, the method parameter
γ > 0 is coupled with the discretization parameters. Therefore, the intrinsic approximation
error

f − fγ
for the continuous approximate inverse reconstruction fγ of the target function f from complete
Radon data is not considered explicitly. Consequently, the results of this work are not covered
by the theory of Rieder and Schuster. In addition, in [102], [103] the mollifier is assumed to have
compact support, whereas we choose the window function W to be compactly supported with
supp(W ) ⊆ [−1, 1]. Due to Theorem 3.2.3 and the Paley-Wiener Theorem A.1.14 this implies
that the convolution kernel KL is not compactly supported in the setting of this thesis.

Note that the results in [103] lead to suboptimal convergence rates for the discrete filtered
back projection algorithm, as explained in [103] (cf. the paragraph following [103, Corollary 5.6]).
As opposed to this, in [100] Rieder and Faridani prove optimal L2-convergence rates for a semi-
discrete filtered back projection algorithm in parallel beam geometry, where no discretization
of the back projection operator B is considered. This is incorporated by Rieder and Schneck
in [101] leading to optimal L2-convergence rates for a fully discrete version of the filtered back
projection algorithm, where a sufficiently smooth target function is required.

The proof is based on a new representation of a discretized version of the approximate FBP
formula (3.4) utilizing generalized interpolation operators so that techniques from approximation
theory can be applied. Based on this, the authors derive asymptotic error estimates with generic
constants, that are not given explicitly. Here, the range of Sobolev orders for the assumed
smoothness of the target function yielding optimal convergence rates depends on the chosen
filter function and interpolation procedure. However, the authors verify the assumptions of
their theory only for reconstruction filters which are based on (orthogonalized) B-splines.

We remark that the resulting representation of the discretized approximate FBP formula
depends on the utilized filter function, the interpolation procedure and the discretization para-
meters. In particular, the inherent FBP reconstruction error

eL = f − fL,

which is incurred by a low-pass filter of finite bandwidth L and which we aim to analyse, is not
estimated explicitly in [100], [101].

4.1.3 Other approaches

In [97], in the context of the numerical approximation of solutions of partial differential equations
by particle methods, Raviart analyses the reconstruction error

f − f ∗KL

for target function f from Sobolev spaces of integer order, i.e., f ∈ Hm,p(R2) for some m ∈ N0
and 1 ≤ p ≤ ∞, where

Hm,p(R2) =
{
f ∈ Lp(R2) | ‖f‖m,p <∞

}
with the norm

‖f‖m,p =


(∑

α+β≤m

∥∥∥ ∂α

∂xα
∂β

∂yβ
f
∥∥∥p

Lp(R2)

)1/p

for 1 ≤ p <∞

maxα+β≤m
∥∥∥ ∂α

∂xα
∂β

∂yβ
f
∥∥∥

L∞(R2)
for p =∞.
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Furthermore, the convolution kernel K is required to satisfy K ∈ C (R2)∩L1(R2) and, for L > 0,
the scaled kernel KL is again defined as

KL(x, y) = L2K(Lx,L y) for (x, y) ∈ R2.

In addition, it is assumed that there exists an integer k ≥ 1 such that∫
R

∫
R
K(x, y) dx dy = 1,∫

R

∫
R
xα yβK(x, y) dx dy = 0 ∀α, β ∈ N0 : 1 ≤ α+ β ≤ k − 1,∫

R

∫
R

(x2 + y2)k/2 |K(x, y)| dx dy <∞.

For target functions f ∈ Hk,p(R2), with 1 ≤ p ≤ ∞, [97, Lemma I.4.4] then yields error estimates
of the form

‖f − f ∗KL‖Lp(R2) ≤ C L−k |f |k,p (4.5)

with some constant C > 0 and

|f |k,p =


(∑

α+β=k

∥∥∥ ∂α

∂xα
∂β

∂yβ
f
∥∥∥p

Lp(R2)

)1/p

for 1 ≤ p <∞

maxα+β=k
∥∥∥ ∂α

∂xα
∂β

∂yβ
f
∥∥∥

L∞(R2)
for p =∞.

We remark that the proof of (4.5) is based on a Taylor expansion of the target function f and the
vanishing moment conditions on K. Further, the required differentiability order of f is coupled
with the order k of the moment conditions posed on K and the constant C > 0 in (4.5) is not
given explicitly. However, the k-th order moment condition∫

R

∫
R

(x2 + y2)k/2 |K(x, y)| dx dy <∞

in combination with the integrability of the kernel K implies that its Fourier transform FK is
k-times continuously differentiable on R2. In the setting of this thesis this would mean that the
univariate window function W ∈ L∞(R) has to be k-times continuously differentiable on R due
to Theorem 3.2.3. Thus, as explained before, the assumptions in [97] are not compatible with
our setting.

In Section 4.3 we prove error estimates on eL for target functions from fractional Sobolev
spaces, where we assume that the window function W is k-times continuously differentiable
only on the interval [−1, 1] where it is supported and allow the window to jump to zero at
the boundary of its support. Moreover, the smoothness α > 0 of the target function f is not
coupled with the differentiability order k of W and the constants appearing in the estimates
are given explicitly. Finally, we observe saturation of the decay rate of the error bounds at
order k. However, in the saturation case the constant in the error bounds is strictly monotonically
decreasing in α > k such that a smoother target function still allows for a better approximation.
This behaviour cannot be observed based on the estimates proven in [97].

In [110], Schomburg analyses the convergence rates of certain delta sequences in Sobolev
spaces of negative fractional order, cf. Appendix A.3. To be more precise, for a tempered
distribution φ ∈ H−α(R2) with α > 1, which satisfies further assumptions specified in [110,
Theorem 1], asymptotic estimates of the error

φn − δ

are derived in the H−α-norm. Here, δ ∈ H−α(R2) denotes the Dirac delta distribution, given by

〈δ, ψ〉 = ψ(0) for ψ ∈ S(R2)
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with the duality pairing 〈·, ·〉 on H−α(R2) × Hα(R2), and the sequence (φn)n∈N in H−α(R2) is
defined via

〈φn, ψ〉 = 〈φ, ψ(·/n, ·/n)〉 for ψ ∈ S(R2).
Based on the observation that for an even convolution kernel K ∈ C (R2)∩L2(R2) the scaled

kernels KL with L > 0, given by

KL(x, y) = L2K(Lx,L y) for (x, y) ∈ R2,

can be considered as tempered distributions in H−α(R2) with

〈KL, f〉 =
∫
R

∫
R
KL(X,Y ) f(X,Y )dX dY =

∫
R

∫
R
K(X,Y ) f(X/L, Y/L)dX dY = 〈K, f(·/L, ·/L)〉,

the results from [110] can be used to prove asymptotic pointwise error estimates on

f − f ∗KL

for target functions f ∈ Hα(R2) with α > 1 in terms of the Hα-norm of f . Indeed, for fixed
(x, y) ∈ R2, we have

〈KL(x− ·, y − ·), f〉 =
∫
R

∫
R
KL(x−X, y − Y ) f(X,Y ) dX dY = (f ∗KL)(x, y)

and
‖KL(x− ·, y − ·)− δ(x− ·, y − ·)‖H−α(R2) = ‖KL − δ‖H−α(R2)

so that
|f(x, y)− (f ∗KL)(x, y)| ≤ ‖KL − δ‖H−α(R2) ‖f‖Hα(R2) ∀ (x, y) ∈ R2.

Note that the constants in the asymptotic estimates of [110] are generic and not given
explicitly. Moreover, we are interested in error estimates on f − f ∗ KL for target functions
f ∈ Hα(R2), where the smoothness α of f is only assumed to be positive. Especially the case
0 < α ≤ 1 is of particular interest, as explained in [81], so that the assumption α > 1 is too
restrictive for the setting of this work.

We finally remark that pointwise and L∞-error estimates on eL = f −fL, along with asymp-
totic pointwise error formulas, are discussed by Munshi in [76] and by Munshi et al. in [78]. Their
theoretical results were further supported by numerical experiments in [22], [77], [79], [80], [122].
In their derivations, the authors assume certain moment conditions on the convolution kernel K
and differentiability of the target function f in a strict sense, what we can avoid in this thesis.
To illustrate this, we present the following special case, which is based on the results from [76].

Under the assumption that f ∈ C 2
b (R2) is bounded and twice continuously differentiable

on R2, that the window function W is twice continuously differentiable in a neighbourhood
around 0 and that the convolution kernel KL satisfies KL ∈ L1(R2) with∫

R

∫
R
KL(x, y) dx dy = 1

and ∫
R

∫
R

(x2 + y2) |KL(x, y)| dx dy <∞,

the asymptotic pointwise error formula

eL(x, y) = 1
2 L
−2 ∆f(x, y)W ′′(0) + o(L−2) ∀ (x, y) ∈ R2 (4.6)

can be established, where ∆f denotes the Laplacian of f , i.e.

∆f = ∂2

∂x2 f + ∂2

∂y2 f.

The basic idea for (4.6) comes from Munshi in [76], but has been adopted to our setting in [6].
In this thesis, however, we avoid assuming classical differentiability of the target function f and
pose our assumptions directly on the window function W instead of the convolution kernel KL.
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4.2 Error analysis in fractional Sobolev spaces
In this section we now analyse the reconstruction error of the approximate FBP formula (3.1),
i.e.,

fL = 1
2 B

(
F−1AL ∗ Rf

)
= f ∗KL ∈ L2(R2),

for the reconstruction of an unknown target function f ∈ L1(R2) ∩ L2(R2) from the knowledge
of its Radon transform

Rf(t, θ) =
∫
`t,θ

f(x, y) d(x, y) for (t, θ) ∈ R× [0, π).

Note that in practical applications, however, the Radon data g = Rf ∈ L2(R × [0, π)) is
usually not known precisely, but only up to a noise level δ > 0, and we have to reconstruct f
from given noisy data gδ ∈ L2(R× [0, π)) with∥∥g − gδ∥∥L2(R×[0,π)) ≤ δ.

Applying the FBP method (3.4) to the noisy measurements gδ yields the reconstruction

f δL = 1
2 B

(
F−1AL ∗ gδ

)
and, using standard concepts from the theory of inverse problems and regularization (cf. [29]),
we observe that the overall FBP reconstruction error

eδL = f − f δL

can be split into an approximation error term and a data error term,

eδL = f − fL︸ ︷︷ ︸
approximation

error

+ fL − f δL︸ ︷︷ ︸
data
error

.

In this thesis, we focus on the approximation error term, i.e., we analyse the inherent recon-
struction error of the FBP method which is incurred by the application of the low-pass filter AL.
More precisely, we wish to analyse the inherent FBP reconstruction error

eL = f − fL (4.7)

with respect to the filter’s window function W and bandwidth L.
To this end, we prove error estimates on eL for target functions f from Sobolev spaces Hα(R2)

of fractional order α > 0. Let us recall that the Sobolev space Hα(R2) of order α > 0 is defined
as

Hα(R2) =
{
f ∈ L2(R2) | ‖f‖α <∞

}
,

where
‖f‖2α = 1

4π2

∫
R

∫
R

(1 + x2 + y2)α |Ff(x, y)|2 dx dy.

In relevant applications of (medical) image processing, Sobolev spaces of compactly supported
functions,

Hα
0 (Ω) =

{
f ∈ Hα(R2) | supp(f) ⊆ Ω

}
,

on an open and bounded domain Ω ⊂ R2, and of fractional order α > 0 play an important role
(cf. [81]). In fact, the density function of an image in Ω ⊂ R2 has usually jumps along smooth
curves, but is smooth off these curve singularities. Such functions belong to any Sobolev space
Hα

0 (Ω) with α < 1
2 . Consequently, we can consider the density of an image as a function in a

Sobolev space Hα
0 (Ω) whose order α is close to 1

2 .
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4.2.1 L2-error estimates

We start with proving L2-error estimates for the intrinsic FBP reconstruction error eL in (4.7),
where our upper bound on the L2-norm of eL will be split into one error term depending on the
filter’s window function W and another one depending on its bandwidth L > 0.

Let us first discuss the special case of the Ram-Lak filter from Example 3.2.8, i.e.,

AL(S) =
{
|S| for |S| ≤ L
0 for |S| > L.

Note that the Ram-Lak filter’s window function W is given by the characteristic function χ[−1,1]
of the interval [−1, 1], so that the scaled window WL of bandwidth L > 0 is the characteristic
function χ[−L,L] of the interval [−L,L]. Based on this observation, we see that the reconstruction
error eL = f − fL vanishes identically, eL ≡ 0, for target functions f with band-limited Radon
transform Rf , provided that the filter’s bandwidth L is at least as large as the largest frequency
contained in Rf . Indeed, in this case the approximate Ram-Lak FBP method (3.4) coincides
with the exact FBP formula (2.9), so that f ≡ fL.

Yet it remains to discuss how reasonable it is to assume that the target function f has a
band-limited Radon transform Rf . To further elaborate this, let us recall the classical Fourier
slice Theorem 2.2.11, which states that for any f ∈ L1(R2) the identity

F(Rf)(S, θ) = Ff(S cos(θ), S sin(θ))

holds for all (S, θ) ∈ R × [0, π). Hence, the (univariate) Fourier transform of Rf is entirely
determined by the (bivariate) Fourier transform of f , and vice versa.

Now, Rf is band-limited if and only if Rf has a compactly supported Fourier transform
F(Rf). However, in applications of medical image reconstruction, it is usually assumed that
the target function f 6≡ 0 is compactly supported. But in this case, its Fourier transform Ff
is analytic, due to the Paley-Wiener Theorem A.1.14, and so is F(Rf) an analytic function,
according to the Fourier slice theorem. Hence, F(Rf) cannot have compact support, i.e., Rf
cannot be band-limited.

To conclude our discussion on the special case of the Ram-Lak filter, we see that, for com-
pactly supported f 6≡ 0, the error eL of the Ram-Lak FBP method cannot be zero for finite
bandwidth L > 0. But if we let L go to infinity, the Ram-Lak FBP method (3.4) will coincide,
in the limit, with the exact, but numerically unstable filtered back projection formula (2.9), i.e.,
e∞ ≡ 0. In other words, any admissible target function f can be approximated arbitrarily well
by fL for sufficiently large L.

Let us now turn to the analysis of the reconstruction error eL = f − fL in L2(R2) for general
low-pass filters. To start with, we consider f ∈ L1(R2)∩L2(R2). Further, throughout this section
we assume that the low-pass filter’s window W ∈ L∞(R) is even and compactly supported with
supp(W ) ⊆ [−1, 1]. Due to Theorem 3.2.5 we then have fL ∈ L2(R2) for the approximate FBP
reconstruction, along with the representation (3.6), i.e.,

fL = f ∗KL.

But this immediately implies that

‖eL‖2L2(R2) = ‖f − fL‖2L2(R2) = ‖f − f ∗KL‖2L2(R2) = 1
4π2 ‖Ff −Ff · FKL‖2L2(R2)

by applying the Fourier convolution Theorem 3.1.1 and the Rayleigh-Plancherel Theorem A.1.12.
Moreover, by Theorem 3.2.3, the Fourier transform FKL of the convolution kernel KL is given
by the bivariate window function WL in (3.7), i.e., FKL = WL, so that

‖eL‖2L2(R2) = 1
4π2 ‖Ff −WL · Ff‖2L2(R2) = 1

4π2

∫
R

∫
R
|(Ff −WL · Ff)(x, y)|2 dx dy.
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Using the compact support of the window W , we now split this representation for ‖eL‖2L2(R2)
into the sum of two integrals,

‖eL‖2L2(R2) = 1
4π2

∫
r(x,y)≤L

|(Ff −WL · Ff)(x, y)|2 d(x, y)︸ ︷︷ ︸
=I1

+ 1
4π2

∫
r(x,y)>L

|Ff(x, y)|2 d(x, y)︸ ︷︷ ︸
=I2

,

where we let
r(x, y) =

√
x2 + y2 for (x, y) ∈ R2.

Note that the first error term I1 occurs if the chosen window function W is not constant 1,
W 6≡ 1, on [−1, 1], whereas the second error term I2 occurs if the target function f is not
band-limited, which is usually the case in applications of medical image reconstruction.

In the following, we analyse the two error terms separately. Since the windowW is essentially
bounded on [−1, 1], i.e., W ∈ L∞([−1, 1]), the first integral I1 can be bounded above by

I1 ≤ ‖1−WL‖2L∞([−L,L])
1

4π2

∫
R

∫
R
|Ff(x, y)|2 d(x, y) = ‖1−W‖2L∞([−1,1]) ‖f‖

2
L2(R2).

To estimate the second integral I2, we now assume that the target function f belongs to a
Sobolev space of positive fractional order. In fact, for f ∈ Hα(R2), with α > 0, the integral I2
can be bounded above by

I2 = 1
4π2

∫
r(x,y)>L

(1 + x2 + y2)α (1 + x2 + y2)−α |Ff(x, y)|2 d(x, y)

≤ 1
4π2

∫
r(x,y)>L

(1 + x2 + y2)α L−2α |Ff(x, y)|2 d(x, y) ≤ L−2α ‖f‖2α.

We can summarize our discussion as follows.

Theorem 4.2.1 (L2-error estimate). Let f ∈ L1(R2) ∩ Hα(R2) for α > 0 and let W ∈ L∞(R)
be even and compactly supported with supp(W ) ⊆ [−1, 1]. Then, the L2-norm of the inherent
FBP reconstruction error eL = f − fL is bounded above by

‖eL‖L2(R2) ≤ ‖1−W‖L∞([−1,1]) ‖f‖L2(R2) + L−α ‖f‖α (4.8)

for all L > 0.

We make the following remark about the result in Theorem 4.2.1.

Remark 4.2.2. The first term on the right hand side of (4.8) depends on the choice of W , but
not on L. Therefore, to obtain convergence ‖eL‖L2(R2) −→ 0 for L −→ ∞ from (4.8), we have
to require

‖1−W‖L∞([−1,1]) = 0,

which is only satisfied by the window function W = χ[−1,1] of the Ram-Lak filter. However, in
this case, the smoothness α of the target function f determines the decay rate in (4.8) by

‖eL‖L2(R2) ≤ L−α ‖f‖α = O(L−α) for L −→∞.

4.2.2 Hσ-error estimates

In this section we now prove Hσ-error estimates, for 0 ≤ σ ≤ α, for the FBP reconstruction
error eL = f − fL for target functions f ∈ L1(R2)∩Hα(R2) with α > 0, where we again assume
that the filter’s window W ∈ L∞(R) is even and compactly supported with supp(W ) ⊆ [−1, 1].
As a special case, choosing σ = 0 yields a refined L2-error estimate which allows us to show
convergence of eL for a larger class of window functions than based on Theorem 4.2.1.
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We first show that the approximate FBP reconstruction fL belongs to the Sobolev space
Hσ(R2) for 0 ≤ σ ≤ α. In Theorem 3.2.3 we have proven that the convolution kernel KL belongs
to C0(R2) ∩ L2(R2) and, moreover, that its Fourier transform is given by FKL = WL with the
compactly supported bivariate window function WL ∈ L∞(R2) in (3.7). This in combination
with representation (3.6) for fL and the Fourier convolution Theorem 3.1.1 yields the estimate

‖fL‖2σ = ‖f ∗KL‖2σ = 1
4π2

∫
R

∫
R

(1 + x2 + y2)σ |(WL · Ff)(x, y)|2 dx dy

≤
(

ess sup
r(x,y)≤L

|WL(x, y)|2
)
‖f‖2α = ‖W‖2L∞(R) ‖f‖

2
α,

where we again let
r(x, y) =

√
x2 + y2 for (x, y) ∈ R2.

Thus, for f ∈ L1(R2) ∩Hα(R2) with α > 0, the approximate FBP reconstruction fL belongs to
the Sobolev space Hσ(R2) for all 0 ≤ σ ≤ α.

Let us now turn to the analysis of the FBP reconstruction error eL = f − fL with respect to
the Hσ-norm. For γ ≥ 0, we define

rγ(x, y) = (1 + r(x, y)2)γ = (1 + x2 + y2)γ for (x, y) ∈ R2

so that the Hσ-norm of eL can be expressed as

‖eL‖2σ = 1
4π2

∫
R

∫
R

(1 + x2 + y2)σ |F(f − fL)(x, y)|2 dx dy

= 1
4π2

∫
R

∫
R
rσ(x, y) |(Ff −WL · Ff)(x, y)|2 dx dy = I1 + I2,

where

I1 = 1
4π2

∫
r(x,y)≤L

rσ(x, y) |1−WL(x, y)|2 |Ff(x, y)|2 d(x, y)

and
I2 = 1

4π2

∫
r(x,y)>L

rσ(x, y) |Ff(x, y)|2 d(x, y).

For γ ≥ 0, we define

Φγ,W (L) = ess sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)γ for L > 0 (4.9)

so that we can bound I1 from above by

I1 ≤
(

ess sup
r(x,y)≤L

(1−WL(x, y))2

rα−σ(x, y)

)
‖f‖2α = Φα−σ,W (L)‖f‖2α,

since
ess sup
r(x,y)≤L

(1−WL(x, y))2

rα−σ(x, y) = ess sup
S∈[−L,L]

(1−W (S/L))2

(1 + S2)α−σ = ess sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)α−σ .

In addition, for 0 ≤ σ ≤ α, we can bound I2 by

I2 ≤ L2(σ−α) 1
4π2

∫
r(x,y)>L

rα(x, y) |Ff(x, y)|2 d(x, y) ≤ L2(σ−α) ‖f‖2α.

Combining the estimates for I1 and I2, we finally obtain

‖eL‖2σ ≤
(
Φα−σ,W (L) + L2(σ−α)

)
‖f‖2α.

In summary, we have just established the following result.
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Theorem 4.2.3 (Hσ-error estimate). Let f ∈ L1(R2) ∩ Hα(R2) for α > 0 and let W ∈ L∞(R)
be even and compactly supported with supp(W ) ⊆ [−1, 1]. Then, for 0 ≤ σ ≤ α, the Hσ-norm
of the inherent FBP reconstruction error eL = f − fL is bounded above by

‖eL‖σ ≤
(
Φ1/2
α−σ,W (L) + Lσ−α

)
‖f‖α, (4.10)

where
Φα−σ,W (L) = ess sup

S∈[−1,1]

(1−W (S))2

(1 + L2S2)α−σ for L > 0.

For σ = 0 we obtain an L2-error estimate which is more refined than that in Theorem 4.2.1.

Corollary 4.2.4 (Refined L2-error estimate). Let f ∈ L1(R2) ∩ Hα(R2) for α > 0 and let
W ∈ L∞(R) be even and compactly supported with supp(W ) ⊆ [−1, 1]. Then, the L2-norm of
the inherent FBP reconstruction error eL = f − fL is bounded above by

‖eL‖L2(R2) ≤
(
Φ1/2
α,W (L) + L−α

)
‖f‖α (4.11)

for all L > 0.

In the next paragraph we will see that the refined L2-error estimate (4.11) allows us to
conclude convergence of the FBP reconstructions fL to the target function f in the L2-norm for
a larger class of window functions W than based on Theorem 4.2.1.

4.2.3 Convergence

We now prove that, under suitable assumptions on the window function W , the approximate
FBP reconstruction fL converges to the target function f in the Hσ-norm for all 0 ≤ σ < α. To
this end, we first show that the error term Φγ,W (L) in (4.9) tends to zero as the bandwidth L
goes to infinity.

Theorem 4.2.5 (Convergence of Φγ,W ). Let W ∈ C ([−1, 1]) be even and continuous on [−1, 1]
with W (0) = 1. Then, for any γ > 0,

Φγ,W (L) = max
S∈[0,1]

(1−W (S))2

(1 + L2S2)γ −→ 0 for L −→∞.

Note that we require continuity of the compactly supported window function W only on the
interval [−1, 1], but we allow W to have discontinuities at the boundary points of [−1, 1].

Proof. For the sake of brevity, we define the auxiliary function Φγ,W,L : [−1, 1] −→ R via

Φγ,W,L(S) = (1−W (S))2

(1 + L2S2)γ for S ∈ [−1, 1].

Because W is even and continuous on [−1, 1], Φγ,W,L is also even and continuous on [−1, 1].
Thus, it attains its maximum on [0, 1] and we have

Φγ,W (L) = sup
S∈[−1,1]

Φγ,W,L(S) = max
S∈[−1,1]

Φγ,W,L(S) = max
S∈[0,1]

Φγ,W,L(S).

In the following, let S∗γ,W,L ∈ [0, 1] denote the smallest maximizer of Φγ,W,L on [0, 1]. For all
0 < L1 < L2 now follows that

Φγ,W (L1) = Φγ,W,L1(S∗γ,W,L1) ≥ Φγ,W,L1(S∗γ,W,L2) =
(
1−W (S∗γ,W,L2

)
)2(

1 + L2
1(S∗γ,W,L2

)2)γ
≥
(
1−W (S∗γ,W,L2

)
)2(

1 + L2
2(S∗γ,W,L2

)2)γ = Φγ,W,L2(S∗γ,W,L2) = Φγ,W (L2).



4.2 Error analysis in fractional Sobolev spaces 59

Furthermore,
0 ≤ Φγ,W (L) ≤ ‖1−W‖2L∞([−1,1]) ∀L > 0.

Therefore, Φγ,W (L) is bounded and monotonically decreasing in L > 0 so that Φγ,W (L) is
convergent for L −→∞, i.e.,

∃Φ∗γ,W ≥ 0 : Φγ,W (L) −→ Φ∗γ,W for L −→∞.

To determine the limit Φ∗γ,W , we distinguish two cases.
Case 1: S∗γ,W,L is uniformly bounded away from 0, i.e.,

∃ c ≡ c(γ,W ) > 0 ∀L > 0 : S∗γ,W,L ≥ c.

In this case we get

0 ≤ Φγ,W,L(S∗γ,W,L) =
(
1−W (S∗γ,W,L)

)2(
1 + L2(S∗γ,W,L)2)γ ≤ ‖1−W‖

2
L∞([−1,1])

(1 + L2c2)γ
L→∞−−−−→ 0.

Case 2: S∗γ,W,L tends to 0 as L goes to ∞, i.e.,

S∗γ,W,L −→ 0 for L −→∞.

Because W is continuous on [−1, 1] and satisfies W (0) = 1, we have

W (S∗γ,W,L) −→W (0) = 1 for L −→∞

and, consequently,

0 ≤ Φγ,W,L(S∗γ,W,L) =
(
1−W (S∗γ,W,L)

)2(
1 + L2(S∗γ,W,L)2)γ ≤ (1−W (S∗γ,W,L)

)2 L→∞−−−−→ 0.

Hence, in both cases we have

Φγ,W (L) = Φγ,W,L(S∗γ,W,L) −→ 0 = Φ∗γ,W for L −→∞

and the proof is complete.

By combining Theorems 4.2.3 and 4.2.5, we can now conclude convergence of the approximate
FBP reconstruction fL in the Hσ-norm for all 0 ≤ σ < α.

Corollary 4.2.6 (Convergence of ‖eL‖σ). Let f ∈ L1(R2) ∩ Hα(R2), for some α > 0, and
let W ∈ C ([−1, 1]) be even with W (0) = 1. Then, for 0 ≤ σ < α, the Hσ-norm of the FBP
reconstruction error eL = f − fL converges to 0 as L goes to ∞, i.e.,

‖eL‖σ = o(1) for L −→∞.

In Corollary 4.2.6 we have seen that for target functions f ∈ L1(R2)∩Hα(R2) with α > 0 the
Hσ-norm of the FBP reconstruction error eL = f − fL converges to 0 for L going to ∞, as long
as 0 ≤ σ < α. Additionally, we had to assume that the even window function W is continuous
on the interval [−1, 1] and satisfies W (0) = 1. In the following, we relax these assumptions and
proof convergence for the Hσ-norm of eL for all 0 ≤ σ ≤ α, where especially the case σ = α is
included. However, the proof technique is not suitable for determining the rate of convergence.

Theorem 4.2.7 (Convergence in the Hσ-norm). Let f ∈ L1(R2) ∩ Hα(R2) for some α ≥ 0
and W ∈ L∞(R) be even and compactly supported with supp(W ) ⊆ [−1, 1]. Further, let W be
continuous at 0 with W (0) = 1. Then, for 0 ≤ σ ≤ α, the Hσ-norm of the FBP reconstruction
error eL = f − fL converges to 0 as L goes to ∞, i.e.,

‖eL‖σ = o(1) for L −→∞.
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Proof. For f ∈ L1(R2) ∩ Hα(R2) with α ≥ 0 and an even window function W ∈ L∞(R) with
supp(W ) ⊆ [−1, 1] we have seen that the approximate FBP reconstruction fL belongs to the
Sobolev space Hσ(R2) for all 0 ≤ σ ≤ α and that its Fourier transform is given by

FfL = WL · Ff

with the radially symmetric bivariate window function WL ∈ L∞(R2) in (3.7), i.e.,

WL(x, y) = W

(
r(x, y)
L

)
for (x, y) ∈ R2,

where
r(x, y) =

√
x2 + y2 for (x, y) ∈ R2.

Thus, for the Hσ-norm of the FBP reconstruction error eL = f − fL follows that

‖eL‖2σ = 1
4π2

∫
R

∫
R

(1 + x2 + y2)σ |F(f − fL)(x, y)|2 dx dy

= 1
4π2

∫
R

∫
R

(1 + r(x, y)2)σ |1−WL(x, y)|2 |Ff(x, y)|2 dx dy.

For all L > 0 and almost all (x, y) ∈ R2 holds that

(1 + r(x, y)2)σ |1−WL(x, y)|2 |Ff(x, y)|2 ≤ 2
(
1 + ‖W‖2L∞(R)

)
(1 + r(x, y)2)α |Ff(x, y)|2,

where ∫
R

∫
R

(1 + r(x, y)2)α |Ff(x, y)|2 dx dy = 4π2 ‖f‖2α <∞.

Further,

|1−WL(x, y)|2 =
∣∣∣∣1−W(

r(x, y)
L

)∣∣∣∣2 L→∞−−−−→ 0 ∀ (x, y) ∈ R2,

since the window W is continuous at the origin and satisfies W (0) = 1. Therefore, we can apply
Lebesgue’s theorem on dominated convergence and obtain∫

R

∫
R

(1 + r(x, y)2)σ |1−WL(x, y)|2 |Ff(x, y)|2 dx dy −→ 0 for L −→∞.

Consequently,
lim
L→∞

‖eL‖σ = 0,

i.e., the approximate FBP reconstruction fL converges to f in the Hσ-norm for all 0 ≤ σ ≤ α.

As a corollary we obtain the convergence of the FBP reconstruction fL in L2(R2), which is
also proven in [92] under stronger assumptions.

Corollary 4.2.8 (Convergence in the L2-norm). Let f ∈ L1(R2) ∩ L2(R2) and W ∈ L∞(R) be
even with supp(W ) ⊆ [−1, 1]. Further, let W be continuous at 0 with W (0) = 1. For L > 0,
define the low-pass filter AL ∈ L∞(R) as

AL(S) = |S|W (S/L) for S ∈ R.

Then, the approximate FBP reconstruction

fL = 1
2 B

(
F−1AL ∗ Rf

)
∈ L2(R2)

converges to f in L2-sense as L goes to ∞, i.e.,

‖f − fL‖L2(R2) −→ 0 for L −→∞.
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We wish to make the following remark concerning the assumptions on the target function f .

Remark 4.2.9. In practical situations, the target function f ∈ L2(R2) is usually compactly
supported in an open and bounded domain Ω ⊂ R2. In this case, the assumption f ∈ L1(R2) is
automatically fulfilled and can be omitted in our theory, since Hölder’s inequality yields

‖f‖L1(R2) =
∫

Ω
|f(x, y)| d(x, y) ≤ |Ω| ‖f‖L2(R2)

for all f ∈ L2
c(R2) with supp(f) ⊆ Ω. Consequently, the Hσ-error estimate in Theorem 4.2.3 as

well as the convergence result in Corollary 4.2.6 remain valid if we only assume f ∈ Hα
0 (Ω) for

some α > 0. In the language of inverse problems such an assumption is called source condition
for the target function f .

To close this section we state the following negative result concerning the approximation of
Sobolev functions f ∈ Hα(R2) with smoothness α ≥ 0 by band-limited functions fL ∈ Hα(R2)
of bandwidth L > 0. More precisely, we show that the convergence of the approximation error
can be arbitrarily slow as the bandwidth L goes to ∞. Note that this result is independent of
the concrete approximation scheme.

Theorem 4.2.10. Let (ηk)k∈N0 be a monotonically decreasing sequence of real numbers ηk > 0
with

ηk ↘ 0 for k −→∞

and let (Lk)k∈N0 be a monotonically increasing sequence of bandwidths Lk > 0 satisfying

Lk ↗∞ for k −→∞.

Then, for every given smoothness α ≥ 0 there exists a function f ∈ Hα(R2) with

‖f − fLk‖α ≥ ηk ∀ k ∈ N0.

Proof. For k ∈ N we define νk = η2
k−1−η2

k. By construction we have νk > 0 and (νk)k∈N ∈ `1(N)
with ∑

k∈N
νk =

∑
k∈N

(η2
k−1 − η2

k) = η2
0 <∞.

Furthermore, for given smoothness α ≥ 0 we define the constant µk > 0 via

µk = 1
4π2

∫
Bk\Bk−1

(1 + x2 + y2)α d(x, y) = 1
2π

∫ Lk

Lk−1
(1 + S2)α S dS

= 1
4π

∫ L2
k

L2
k−1

(1 + S)α dS =
(1 + L2

k)α+1 − (1 + L2
k−1)α+1

4π (α+ 1) ,

where (Bk)k∈N0 is the nested sequence of the balls around zero with increasing radius Lk, i.e.,

Bk =
{

(x, y) ∈ R2 | x2 + y2 ≤ L2
k

}
.

With this we now construct the requested function f ∈ Hα(R2) in Fourier domain via

Ff
∣∣∣
B0

= 0 and Ff
∣∣∣
Bk\Bk−1

=
√
νk
µk

χBk\Bk−1 for k ∈ N.

Then, we indeed have

‖f‖2α = 1
4π2

∫
R2

(1 + x2 + y2)α |Ff(x, y)|2 d(x, y)

=
∑
k∈N

νk
µk

1
4π2

∫
Bk\Bk−1

(1 + x2 + y2)α d(x, y) =
∑
k∈N

νk = η2
0 <∞
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and for the band-limited approximation fLk ∈ Hα(R2) with bandwidth Lk > 0 follows that

‖f − fLk‖
2
α = 1

4π2

∫
R2

(1 + x2 + y2)α |F(f − fLk)(x, y)|2 d(x, y)

≥ 1
4π2

∫
R2\Bk

(1 + x2 + y2)α |Ff(x, y)|2 d(x, y)

=
∑
n>k

νn
µn

1
4π2

∫
Bn\Bn−1

(1 + x2 + y2)α d(x, y) =
∑

n≥k+1
νn = η2

k,

which completes the proof.

4.3 Rate of convergence
In the previous section we have proven that, under suitable assumptions on the window function
W , the inherent FBP reconstruction error eL = f−fL in (4.7) converges to zero in the Hσ-norm,
for all 0 ≤ σ ≤ α, as the bandwidth L goes to infinity. Based on the Hσ-error estimate (4.10) in
Theorem 4.2.3, i.e.,

‖eL‖σ ≤
(
Φ1/2
α−σ,W (L) + Lσ−α

)
‖f‖α,

where, for γ ≥ 0,

Φγ,W (L) = ess sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)γ for L > 0,

we now analyse the convergence rate of ‖eL‖σ as L goes to ∞.
Note that the error term Φγ,W (L) only vanishes if the window W with supp(W ) ⊆ [−1, 1]

satisfies
W = 1 a.e. on [−1, 1].

In this sense, the Ram-Lak filter from Example 3.2.8 is the optimal low-pass filter and we obtain

‖eL‖σ ≤ Lσ−α ‖f‖α = O(Lσ−α) for L −→∞.

In particular, the convergence rate of the FBP reconstruction error with the Ram-Lak filter is
determined by the difference between the smoothness α of the target function f ∈ Hα(R2) and
the order σ of the Sobolev norm in which the reconstruction error eL is measured.

Let us now analyse the decay rate of the FBP reconstruction error eL in the Hσ-norm for
arbitrary even window functions W ∈ L∞([−1, 1]) with supp(W ) ⊆ [−1, 1]. To this end, let
S∗γ,W,L ∈ [0, 1], for γ ≥ 0, denote the smallest maximizer in [0, 1] of the even function

Φγ,W,L(S) = (1−W (S))2

(1 + L2S2)γ for S ∈ [−1, 1],

i.e.,
S∗γ,W,L = sup

{
S ∈ [0, 1] | ‖Φγ,W,L‖L∞([0,S]) < ‖Φγ,W,L‖L∞([0,1]) = Φγ,W (L)

}
.

To determine the rate of convergence for ‖eL‖σ, we assume that S∗α−σ,W,L is uniformly bounded
away from 0 for all 0 ≤ σ ≤ α, i.e., there exists a constant cα−σ,W > 0 such that

S∗α−σ,W,L ≥ cα−σ,W ∀L > 0. (A)

Then, the error term Φα−σ,W (L) is bounded above by

Φα−σ,W (L) ≤
‖1−W‖2L∞([0,1])(

1 + L2(S∗α−σ,W,L)2)α−σ ≤ c2(σ−α)
α−σ,W ‖1−W‖

2
L∞([0,1]) L

2(σ−α),

since, for γ = α− σ,

Φγ,W (L) = lim
ε↘0
‖Φγ,W,L‖L∞([S∗γ,W,L−ε,1]) ≤ lim

ε↘0

‖1−W‖2L∞([0,1])(
1 + L2(S∗γ,W,L − ε)2)γ =

‖1−W‖2L∞([0,1])(
1 + L2(S∗γ,W,L)2)γ .
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Consequently, under Assumption (A) we obtain

‖eL‖σ ≤
(
cσ−αα−σ,W ‖1−W‖L∞([0,1]) + 1

)
Lσ−α ‖f‖α,

i.e.,
‖eL‖σ = O(Lσ−α) for L −→∞.

In summary, we have just established the following result.

Theorem 4.3.1 (Convergence rate of ‖eL‖σ). Let f ∈ L1(R2) ∩ Hα(R2) for some α > 0 and
let W ∈ L∞(R) be even and compactly supported with supp(W ) ⊆ [−1, 1]. Further, let Assump-
tion (A) be satisfied. Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent FBP reconstruction
error eL = f − fL is bounded above by

‖eL‖σ ≤
(
cσ−αα−σ,W ‖1−W‖L∞([0,1]) + 1

)
Lσ−α ‖f‖α. (4.12)

In particular,
‖eL‖σ = O(Lσ−α) for L −→∞.

Note that the decay rate α − σ in (4.12) is determined by the difference between the
smoothness α of the target function f and the order σ of the Sobolev norm in which the
reconstruction error eL is measured. Moreover, the bound on the inherent FBP reconstruction
error in (4.12) is affine-linear with respect to ‖1−W‖L∞([0,1]) and this quantity can be used to
evaluate the approximation quality of the chosen window W satisfying Assumption (A).

Finally, we remark that Assumption (A) is fulfilled for a large class of window functions. For
instance, let the window W ∈ L∞([−1, 1]) satisfy

W (S) = 1 ∀S ∈ (−ε, ε) (B)

with ε ∈ (0, 1). Then, Assumption (A) is fulfilled with the constant cα−σ,W = ε for all 0 ≤ σ ≤ α.
To illustrate this, we consider the following concrete example.

Example 4.3.2. The generalized Ramp filter of width β ∈ [0, 1) and with jump height λ ∈ [0, 1]
is given by the window function

W (S) =


1 for |S| ≤ β
1−βλ
1−β −

1−λ
1−β |S| for β < |S| ≤ 1

0 for |S| > 1.

We remark that choosing λ = 1 results in the classical Ram-Lak filter from Example 3.2.8. For
further plots of the generalized Ramp window with different parameters we refer to Figure 4.1.
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Figure 4.1: Window functions of the generalized Ramp filter with different parameters.
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Figure 4.2: Maximizer of Φγ,W (L) for the generalized Ramp filter with β = 0.5, λ = 0.75.

We observe that for all parameters β ∈ (0, 1) and λ ∈ [0, 1) the above window function
satisfies Assumption (B). Consequently, our theory predicts that Assumption (A) is satisfied as
well with cγ,W = β for all parameters γ > 0 and that the error term Φγ,W (L) is of order

Φγ,W (L) = O(L−2γ) for L −→∞.

In fact, numerical calculations of the maximizer S∗γ,W,L ∈ [0, 1] and the error term Φγ,W (L)
show that Assumption (A) is indeed satisfied for all choices of γ > 0 and all parameters β ∈ (0, 1)
and λ ∈ [0, 1) with

S∗γ,W,L ≥ β ∀L > 0.

Further, Φγ,W (L) exactly behaves like

Φγ,W (L) = O(L−2γ) for L −→∞.

To illustrate this, Figure 4.2 shows S∗γ,W,L for γ ∈ {0.5, 1, 2, 4, 8, 16} as a function of the band-
width L > 0 in semi-logarithmic scales exemplary for the parameters β = 0.5 and λ = 0.75. In
addition, Figure 4.3 shows Φγ,W (L) for γ ∈ {0.5, 1, 2, 2.5, 3, 4} in logarithmic scales. We remark
that the same behaviour of S∗γ,W,L and Φγ,W (L) was observed for any other choices of β and λ.

Note that Assumption (A), however, is not always satisfied for typical choices of the low-pass
filter. To further explain this, we now investigate the behaviour of S∗γ,W,L ∈ [0, 1] and Φγ,W (L)
numerically for the following commonly used filter functions AL(S) = |S|W (S/L):

Name W (S) for |S| ≤ 1 Parameter
Shepp-Logan sinc(πS/2) -
Cosine cos(πS/2) -
Hamming β + (1− β) cos(πS) β ∈ [1/2, 1]
Gaussian exp(−(πS/β)2) β > 1

Note that each of these windows W ∈ L∞(R) is even with compact support supp(W ) = [−1, 1].
In our numerical experiments, we calculated S∗γ,W,L and Φγ,W (L) as functions of the band-

width L > 0 for the above mentioned window functions W and for different parameters γ > 0.
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Figure 4.3: Decay rate of Φγ,W (L) for the generalized Ramp filter with β = 0.5, λ = 0.75.

Figure 4.4 shows the behaviour of the maximizer S∗γ,W,L in semi-logarithmic scales for the
Shepp-Logan filter and for the parameters γ ∈ {0.5, 1, 2, 2.5, 3, 4}. For γ ∈ {0.5, 1} we observe
that

S∗γ,W,L = 1 ∀L > 0

and, in particular, S∗γ,W,L is uniformly bounded away from 0 for all L > 0 so that Assumption (A)
is satisfied. In contrast to that, for γ ∈ {2, 2.5, 3, 4} the maximizer S∗γ,W,L goes to 0 as the
bandwidth L tends to ∞ and, thus, Assumption (A) is not fulfilled in this case.
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Figure 4.4: Maximizer of Φγ,W (L) for the Shepp-Logan filter.
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Figure 4.5: Decay rate of Φγ,W (L) for the Shepp-Logan filter.

Additionally, Figure 4.5 shows the behaviour of Φγ,W (L) in logarithmic scales for the same
filter and parameters. For γ ∈ {0.5, 1, 2} we observe that Φγ,W (L) behaves exactly as L−2γ ,
whereas for γ ∈ {2.5, 3, 4} the behaviour of Φγ,W (L) corresponds to L−4. In the latter case,
however, Φγ,W (L) decreases at increasing values γ > 2. We remark that the same behaviour
was observed in our numerical experiments for the other window functions W mentioned above.

We summarize our numerical experiments (for all window functionsW from above) as follows.
For γ < 2, we see that Assumption (A), i.e.,

∃ cγ,W > 0 : S∗γ,W,L ≥ cγ,W ∀L > 0,

is fulfilled, where, in particular,

Φγ,W (L) = O(L−2γ) for L −→∞.

For γ ≥ 2, however, we have

S∗γ,W,L −→ 0 for L −→∞

and the convergence rate of Φγ,W stagnates at

Φγ,W (L) = O(L−4) for L −→∞.

Note that all above windowsW are twice continuously differentiable on [−1, 1],W ∈ C 2([−1, 1]),
and satisfy

W (0) = 1 and W ′(0) = 0.
Based on this, the observed behaviour of the error term Φγ,W (L) can also be proven in theory,
as explained in the subsequent paragraph.

4.3.1 Convergence rates for C k-windows

In this section we consider the special case of even window functions W with compact support
in the interval [−1, 1] that additionally satisfy W ∈ C k([−1, 1]), for some k ∈ N, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.
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We start with analysing the convergence behaviour of the error term Φγ,W (L) in (4.9), i.e.,

Φγ,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)γ for L > 0.

To this end, for parameters γ ≥ 0, L > 0 and ν > 0 we first consider the auxiliary function

φγ,L,ν(S) = S2ν

(1 + L2S2)γ for S ∈ R. (4.13)

Lemma 4.3.3. The maximum of the function φγ,L,ν in (4.13) on [0, 1] is bounded above by

max
S∈[0,1]

φγ,L,ν(S) ≤

L
−2γ for γ ≤ ν ∨

(
γ > ν ∧ L <

√
ν√

γ−ν

)
c2
γ,ν L

−2ν for γ > ν ∧ L ≥
√
ν√

γ−ν ,

where the constant
cγ,ν =

( ν

γ − ν

)ν/2 (γ − ν
γ

)γ/2
for γ > ν

is strictly monotonically decreasing in γ > ν and satisfies

cγ,ν −→ 1 for γ −→ ν and cγ,ν −→ 0 for γ −→∞

with decay rate
cγ,ν ≤ ν

ν/2 γ−
ν/2 = O(γ−ν/2) for γ −→∞.

Proof. The even and continuous function φγ,L,ν in (4.13),

φγ,L,ν(S) = S2ν

(1 + L2 S2)γ for S ∈ R,

attains its maximum on [0, 1] in the half-open interval (0, 1], since we have

φγ,L,ν(S) ≥ 0 ∀S ∈ [0, 1]

and
φγ,L,ν(S) = 0 ⇐⇒ S = 0.

For S ∈ (0, 1) the first derivative of φγ,L,ν(S) is given by

φ′γ,L,ν(S) = 2ν S2ν−1 (1 + L2 S2)− 2γ L2 S2ν+1

(1 + L2 S2)γ+1 = 2S2ν−1 (ν + (ν − γ)L2 S2)
(1 + L2 S2)γ+1

so that the necessary condition for a maximum of φγ,L,ν in (0, 1) reads

φ′γ,L,ν(S) = 0 S>0⇐⇒ (γ − ν)L2 S2 = ν.

Case 1: For 0 ≤ γ ≤ ν the equation

(γ − ν)L2 S2 = ν

has no solution in [0, 1] and, actually,

φ′γ,L,ν(S) > 0 ∀S ∈ (0, 1].

This shows that φγ,L,ν is strictly monotonically increasing in (0, 1] and, thus, maximal at S∗ = 1,
i.e.,

max
S∈[0,1]

φγ,L,ν(S) = φγ,L,ν(1) = 1
(1 + L2)γ ≤ L

−2γ .
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Case 2: For γ > ν the unique positive solution of the equation

(γ − ν)L2 S2 = ν

is given by

S∗ =
√
ν

L
√
γ − ν

,

where
S∗ ∈ [0, 1] ⇐⇒ L ≥

√
ν√

γ − ν
.

For convenience, we define the function gγ,L,ν : R −→ R via

gγ,L,ν(S) = ν + (ν − γ)L2 S2 for S ∈ R.

Since gγ,L,ν is a parabola opening downwards with vertex in 0, we obtain

gγ,L,ν(s) > gγ,L,ν(S) ∀ 0 < s < S

such that
φ′γ,L,ν(S) < φ′γ,L,ν(S∗) = 0 < φ′γ,L,ν(s) ∀ 0 < s < S∗ < S.

Consequently, φγ,L,ν is strictly monotonically increasing on (0, S∗) and strictly monotonically
decreasing on (S∗,∞). Therefore, S∗ is the unique maximizer of φγ,L,ν on R≥0 and it follows
that

arg max
S∈[0,1]

φγ,L,ν(S) =

1 for L <
√
ν√

γ−ν
S∗ for L ≥

√
ν√

γ−ν
=

1 for L <
√
ν√

γ−ν√
ν

L
√
γ−ν for L ≥

√
ν√

γ−ν .

Because of
φγ,L,ν(S∗) =

( ν

γ − ν

)ν (γ − ν
γ

)γ
L−2ν = c2

γ,ν L
−2ν

we finally get

max
S∈[0,1]

φγ,L,ν(S) =

φγ,L,ν(1) for L <
√
ν√

γ−ν
φγ,L,ν(S∗) for L ≥

√
ν√

γ−ν
≤

L
−2γ for L <

√
ν√

γ−ν
c2
γ,ν L

−2ν for L ≥
√
ν√

γ−ν .

Let us now regard the constant cγ,ν as a function cν ≡ cν(γ) of the parameter γ > ν, i.e.,

cν(γ) =
( ν

γ − ν

)ν/2(γ − ν
γ

)γ/2
for γ > ν.

By using the representation (γ − ν
γ

)γ/2
= exp

(
γ

2 log
(
1− ν

γ

))
,

for the derivative of cν follows that

d
dγ cν(γ) = 1

2
( ν

γ − ν

)ν/2 (γ − ν
γ

)γ/2
log

(
1− ν

γ

)
< 0 ∀ γ > ν

and, consequently, the constant cγ,ν is strictly monotonically decreasing in γ > ν. In addition,
we have (γ − ν

γ

)γ/2
=
(
1− ν

γ

)γ/2
−→ e−ν/2 for γ −→∞

and ( ν

γ − ν

)ν/2
−→ 0 for γ −→∞.
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This already implies that
cγ,ν −→ 0 for γ −→∞

with decay rate

cγ,ν = ν
ν/2 (γ − ν)(γ−ν)/2 γ−

γ/2 ≤ νν/2 γ
(γ−ν)/2 γ−

γ/2 = ν
ν/2 γ−

ν/2 = O(γ−ν/2) for γ −→∞.

Since
(γ − ν)(γ−ν)/2 = exp

(γ − ν
2 log(γ − ν)

)
−→ e0 = 1 for γ −→ ν

and
γ−

γ/2 −→ ν−
ν/2 for γ −→ ν,

we further obtain

cγ,ν = ν
ν/2 (γ − ν)(γ−ν)/2 γ−

γ/2 −→ ν
ν/2 ν−

ν/2 = 1 for γ −→ ν

and the proof is complete.

With Lemma 4.3.3 we are now prepared to analyse the convergence rate of the error term
Φγ,W (L) for C k-window functions.

Theorem 4.3.4 (Convergence rate of Φγ,W for C k-windows). Let the window functionW satisfy
W ∈ C k([−1, 1]), for k ∈ N, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, for 0 ≤ γ ≤ k, we have

Φγ,W (L) ≤ 1
(k!)2 ‖W

(k)‖2L∞([0,1]) L
−2γ

and, for γ > k,

Φγ,W (L) ≤


1

(k!)2 ‖W (k)‖2L∞([0,1]) L
−2γ for L < L∗

c2
γ,k

(k!)2 ‖W (k)‖2L∞([0,1]) L
−2k for L ≥ L∗

with the critical bandwidth L∗ =
√
k√
γ−k

and the strictly monotonically decreasing constant

cγ,k =
( k

γ − k

)k/2 (γ − k
γ

)γ/2
for γ > k.

In particular,
Φγ,W (L) = O

(
L−2 min{k,γ}

)
for L −→∞.

Note that we require differentiability of the window W only on the interval [−1, 1] where it
is supported. But we allow discontinuities of W at the boundary points of [−1, 1].

Proof. Since the window W is assumed to be continuous on [−1, 1], we have

Φγ,W (L) = max
S∈[−1,1]

Φγ,W,L(S)

with
Φγ,W,L(S) = (1−W (S))2

(1 + L2S2)γ for S ∈ [−1, 1].

Let S ∈ [−1, 1] be fixed. By assumption, W is even and satisfies W ∈ C k([−1, 1]) with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.



70 4 Error estimates for filtered back projection reconstructions

Thus, we can apply Taylor’s Theorem A.4.2 and with some ξ between 0 and S follows that

W (S) = W (0) +
k−1∑
j=1

1
j! W

(j)(0)Sj + 1
k! W

(k)(ξ)Sk = 1 + 1
k! W

(k)(ξ)Sk.

This leads to

Φγ,W,L(S) = W (k)(ξ)2

(k!)2
S2k

(1 + L2S2)γ ≤
‖W (k)‖2L∞([−1,1])

(k!)2
S2k

(1 + L2S2)γ .

Hence,

Φγ,W (L) ≤
‖W (k)‖2L∞([−1,1])

(k!)2 max
S∈[−1,1]

S2k

(1 + L2S2)γ = 1
(k!)2 ‖W

(k)‖2L∞([0,1]) max
S∈[0,1]

φγ,L,k(S)

and we now need to analyse

φγ,L,k(S) = S2k

(1 + L2S2)γ for S ∈ [0, 1].

Due to Lemma 4.3.3 the maximum of φγ,L,k on [0, 1] is bounded above by

max
S∈[0,1]

φγ,L,k(S) ≤
{
L−2γ for γ ≤ k ∨ (γ > k ∧ L < L∗)
c2
γ,k L

−2k for γ > k ∧ L ≥ L∗

with the critical bandwidth L∗ =
√
k√
γ−k

and the strictly monotonically decreasing constant

cγ,k =
( k

γ − k

)k/2 (γ − k
γ

)γ/2
for γ > k.

Combining our results yields

Φγ,W (L) ≤ 1
(k!)2 ‖W

(k)‖2L∞([0,1]) max
S∈[0,1]

φγ,L,k(S)

≤


1

(k!)2 ‖W (k)‖2L∞([0,1]) L
−2γ for γ ≤ k ∨ (γ > k ∧ L < L∗)

c2
γ,k

(k!)2 ‖W (k)‖2L∞([0,1]) L
−2k for γ > k ∧ L ≥ L∗,

which completes the proof.

We remark that the results of Theorem 4.3.4 comply with our numerical observations from
the previous section, where we have k = 2. In particular, we have observed saturation of the
convergence order of Φγ,W (L) for γ > 2 at rate

Φγ,W (L) = O(L−4) for L −→∞

through our numerical experiments. Further, we have seen that Φγ,W (L) continues to decrease
at increasing values γ > 2, which corresponds to the monotonic decrease of the constant cγ,2.

Combining the Theorems 4.2.3 and 4.3.4 now yields the following Hσ-error estimate for the
approximate FBP reconstruction with C k-windows.

Corollary 4.3.5 (Hσ-error estimate for C k-windows). Let f ∈ L1(R2)∩Hα(R2), for α > 0, and
let W ∈ C k([−1, 1]), for k ∈ N, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.
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Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent FBP reconstruction error eL = f − fL is
bounded above by

‖eL‖σ ≤
( 1
k! ‖W

(k)‖L∞([0,1]) + 1
)
Lσ−α ‖f‖α (4.14)

if α− σ ≤ k and, if α− σ > k, by

‖eL‖σ ≤


(

1
k! ‖W

(k)‖L∞([0,1]) + 1
)
Lσ−α ‖f‖α for L < L∗(

cα−σ,k
k! ‖W (k)‖L∞([0,1]) L

−k + Lσ−α
)
‖f‖α for L ≥ L∗

(4.15)

with the critical bandwidth L∗ =
√
k√

α−σ−k and the strictly monotonically decreasing constant

cα−σ,k =
( k

α− σ − k

)k/2 (α− σ − k
α− σ

)(α−σ)/2
for α− σ > k.

In particular,
‖eL‖σ = O

(
L−min{k,α−σ}

)
for L −→∞.

Note that for α − σ ≤ k the convergence order in Corollary 4.3.5 is determined by the
difference between the smoothness α of the target function f and the order σ of the Sobolev
norm in which the reconstruction error eL is measured, whereas for α− σ > k the convergence
order saturates at rate O(L−k). But in this case the error bound still decreases at increasing
smoothness α, since the involved constant cα−σ,k is strictly monotonically decreasing in α−σ > k.
Thus, a smoother target function allows for a better approximation, as expected. Nevertheless,
the attainable convergence rate is limited by the differentiability order k of the filter’s windowW .

Finally, note that the bound on the inherent FBP reconstruction error in Corollary 4.3.5 is
affine-linear with respect to ‖W (k)‖L∞([0,1]) and that this quantity can be used to evaluate the
approximation quality of the chosen C k-window function W .

We close this section with the following numerical example, which illustrates that the proven
decay rate of Φγ,W (L) is optimal for C k-windows.

Example 4.3.6. We investigate the behaviour of the error term Φγ,W (L) numerically for the
generalized Gaussian filter AL(S) = |S|W (S/L) with the window function

W (S) = exp
(
−
(πS
β

)k)
for S ∈ [−1, 1]

for some k ∈ N and β > 1. Note that W ∈ C ([−1, 1]) is even and compactly supported in [−1, 1]
and that choosing k = 2 gives the classical Gaussian filter from Example 3.2.12. For further
plots of the generalized Gaussian window with different parameters we refer to Figure 4.6.
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Figure 4.6: Window functions of the generalized Gaussian filter with different parameters.
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Figure 4.7: Decay rate of Φγ,W (L) for the generalized Gaussian filter with k = 4, β = 4.

For even k ∈ N we have W ∈ C k([−1, 1]) with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1 and W (k)(0) = −k!
(
π

β

)k
6= 0.

Consequently, our theory in Theorem 4.3.4 predicts that the error term Φγ,W (L) behaves like

Φγ,W (L) = O
(
L−2 min{k,γ}

)
for L −→∞.

On the other hand, for odd k ∈ N we only have W ∈ C k−1([−1, 1]) with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1,

but W (k−1) is not differentiable at 0, as this can be seen in Figure 4.6(a) for the case k = 1.
Therefore, our theory now predicts that Φγ,W (L) behaves like

Φγ,W (L) = O
(
L−2 min{k−1,γ}

)
for L −→∞.

In our numerical experiments, we evaluated Φγ,W (L) as a function of the bandwidth L > 0
for the Gaussian window W using various combinations of parameters k ∈ N, β > 1 and γ > 0.

Figure 4.7 shows the behaviour of Φγ,W (L) in logarithmic scales for the generalized Gaussian
filter with k = 4, β = 4 and for the parameters γ ∈ {2, 3, 4, 4.5, 5, 6}. For γ ∈ {2, 3, 4} we
observe that Φγ,W (L) exactly behaves as L−2γ, whereas for γ ∈ {4.5, 5, 6} the behaviour of
Φγ,W (L) corresponds to L−8. But Φγ,W (L) continues to decrease at increasing γ > k.

We can summarize the results of our numerical experiments for any even k ∈ N as follows.
For γ ≤ k we observe

Φγ,W (L) = O(L−2γ) for L −→∞,

whereas for γ > k the convergence order of Φγ,W (L) saturates at rate

Φγ,W (L) = O(L−2k) for L −→∞.
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Figure 4.8: Decay rate of Φγ,W (L) for the generalized Gaussian filter with k = 3, β = 4.

Note that the results of Theorem 4.3.4 entirely comply with our numerical observations for the
generalized Gaussian filters with even k ∈ N. So have we, in particular, observed the saturation
of the convergence rate of Φγ,W (L) for γ > k at

Φγ,W (L) = O(L−2k) for L −→∞.

Thus, our numerical results show that the proven convergence order of the error term Φγ,W (L)
is optimal for C k-window functions.

Figure 4.8 now shows the behaviour of Φγ,W (L) in logarithmic scales for the generalized
Gaussian filter with k = 3, β = 4 and for the parameters γ ∈ {1, 2, 3, 3.5, 4, 6}. For γ ∈ {1, 2, 3}
we observe that Φγ,W (L) behaves as L−2γ, whereas for γ ∈ {3.5, 4, 6} the behaviour of Φγ,W (L)
corresponds to L−6. But Φγ,W (L) continues to decrease at increasing γ > k.

We can summarize the results of our numerical experiments also for odd k ∈ N as follows.
For γ ≤ k we observe

Φγ,W (L) = O(L−2γ) for L −→∞,
while for γ > k the convergence order of Φγ,W (L) saturates at rate

Φγ,W (L) = O(L−2k) for L −→∞.

We remark that our numerical results for the generalized Gaussian filters with odd k ∈ N
show a better convergence behaviour of the error term Φγ,W (L) than predicted by Theorem 4.3.4.
Indeed, the above observations correspond to the theoretical results for C k-window functions,
although W (k−1) is not differentiable at 0. However, W (k−1) is Lipschitz continuous on [−1, 1]
so that its pointwise derivative W (k) exists almost everywhere and satisfies W (k) ∈ L∞([−1, 1]).

4.3.2 Convergence rates for Lipschitz-windows

In the previous Section 4.3.1 we have analysed the convergence behaviour of the inherent FBP
reconstruction error eL = f − fL in (4.7) by considering the error term

Φγ,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)γ for L > 0
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for the special case of C k-window functions. In particular, for W ∈ C k([−1, 1]) satisfying

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1 and W (k)(0) 6= 0

we have observed that the convergence rate of the error bound saturates at O(L−2k) for γ > k.
Note that if W (k−1) ∈ C ([−1, 1]) is not continuously differentiable on [−1, 1] but satisfies

W (k−1)(0) = 0,

the theory predicts saturation of the order of convergence at rate O(L−2(k−1)) for γ > k − 1.
However, in our numerical experiments in Example 4.3.6 for the generalized Gaussian filter with
odd k ∈ N we observe saturation at rate O(L−2k) for γ > k, although W (k−1) ∈ C ([−1, 1]) is
not differentiable at the origin.

Therefore, in the following we relax the assumption of our error theory from Section 4.3.1
so that we can predict the convergence behaviour of Φγ,W (L) correctly for a larger class of
low-pass filters. To this end, we now consider even window functions W ∈ L∞(R) with compact
support supp(W ) ⊆ [−1, 1] that are absolutely continuous on [−1, 1], i.e., W ∈ AC([−1, 1]). We
refer to Appendix A.4 for the definition and some basic properties. In particular, this implies
that W is pointwise differentiable almost everywhere on [−1, 1] with an integrable derivative
W ′ ∈ L1([−1, 1]) and the fundamental theorem of calculus for AC-functions, Theorem A.4.4,
yields

W (S) = W (−1) +
∫ S

−1
W ′(t) dt ∀S ∈ [−1, 1].

Furthermore, for some k ∈ N we assume thatW satisfiesW (j) ∈ AC([−1, 1]) for all 1 ≤ j ≤ k−1
with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1

and that W (k) ∈ L∞([−1, 1]) is essentially bounded on [−1, 1]. Equivalently, we can also assume
that W (k−1) is Lipschitz continuous on [−1, 1], W (k−1) ∈ C 0,1([−1, 1]), as explained in the
following remark, see also Remark A.4.6. That is why we henceforth speak of Lipschitz-windows.

Remark 4.3.7. If W ∈ AC([−1, 1]) is absolutely continuous on [−1, 1] with W ′ ∈ L∞([−1, 1]),
then W is in fact Lipschitz continuous on [−1, 1], W ∈ C 0,1([−1, 1]), with Lipschitz constant

|W |C 0,1([−1,1]) ≤ ‖W ′‖L∞([−1,1]).

Conversely, if W ∈ C 0,1([−1, 1]) is Lipschitz continuous on the interval [−1, 1], then W is also
absolutely continuous on [−1, 1], W ∈ AC([−1, 1]), and its derivative W ′, which exists almost
everywhere on [−1, 1], is essentially bounded on [−1, 1], i.e., W ′ ∈ L∞([−1, 1]), with

‖W ′‖L∞([−1,1]) ≤ |W |C 0,1([−1,1]).

We now prove that Theorem 4.3.4 still holds true under the relaxed assumptions listed above.

Theorem 4.3.8 (Convergence rate of Φγ,W for Lipschitz-windows). For k ∈ N, let the window
function W satisfy W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k − 1 and W (k) ∈ L∞([−1, 1]) with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, for 0 ≤ γ ≤ k, we have

Φγ,W (L) ≤ 1
(k!)2 ‖W

(k)‖2L∞([0,1]) L
−2γ

and, for γ > k,

Φγ,W (L) ≤


1

(k!)2 ‖W (k)‖2L∞([0,1]) L
−2γ for L < L∗

c2
γ,k

(k!)2 ‖W (k)‖2L∞([0,1]) L
−2k for L ≥ L∗



4.3 Rate of convergence 75

with the critical bandwidth L∗ =
√
k√
γ−k

and the strictly monotonically decreasing constant

cγ,k =
( k

γ − k

)k/2 (γ − k
γ

)γ/2
for γ > k.

In particular,
Φγ,W (L) = O

(
L−2 min{k,γ}

)
for L −→∞.

Note that any C k-window W ∈ C k([−1, 1]) satisfies W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k− 1
and W (k) ∈ L∞([−1, 1]). In particular, the assumptions of the above Theorem 4.3.8 are weaker
than the assumptions of Theorem 4.3.4.

Proof. Since the window W is assumed to be even and continuous on [−1, 1], we obtain

Φγ,W (L) = max
S∈[0,1]

(1−W (S))2

(1 + L2S2)γ for L > 0.

By assumption we have W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k − 1 so that W (j+1) exists almost
everywhere on [−1, 1] with W (j+1) ∈ L1([−1, 1]) and

W (j)(S) = W (j)(0) +
∫ S

0
W (j+1)(t) dt ∀S ∈ [0, 1].

If k = 1, for S ∈ [0, 1] follows that

W (S) = W (0)︸ ︷︷ ︸
=1

+
∫ S

0
W ′(t) dt = 1 +

∫ S

0
W ′(t) dt

and the assumption W ′ ∈ L∞([−1, 1]) yields

|1−W (S)| =
∣∣∣∣∣
∫ S

0
W ′(t) dt

∣∣∣∣∣ ≤ ‖W ′‖L∞([0,1]) S ∀S ∈ [0, 1].

For k ≥ 2, we can apply integration by parts, Theorem A.4.5, and obtain, for all S ∈ [0, 1],

W (S) = W (0) +
∫ S

0
W ′(t) dt = 1 +

∫ S

0
W ′(t) dt = 1 +W ′(S)S −

∫ S

0
tW ′′(t) dt

= 1 + S

(
W ′(0)︸ ︷︷ ︸

=0

+
∫ S

0
W ′′(t) dt

)
−
∫ S

0
tW ′′(t) dt = 1 +

∫ S

0
(S − t)W ′′(t) dt.

By iteratively applying integration by parts follows that

W (S) = 1 +
[
−1

2 W
′′(t) (S − t)2

]t=S
t=0

+ 1
2

∫ S

0
(S − t)2W ′′′(t) dt

= 1 + 1
2 W ′′(0)︸ ︷︷ ︸

=0

S2 + 1
2

∫ S

0
(S − t)2W ′′′(t) dt = 1 + 1

2

∫ S

0
(S − t)2W ′′′(t) dt

= . . .

= 1 + 1
(k − 1)!

∫ S

0
(S − t)k−1W (k)(t) dt.

Consequently, the assumption W (k) ∈ L∞([−1, 1]) implies that, for all S ∈ [0, 1],

|1−W (S)| =
∣∣∣∣∣ 1
(k − 1)!

∫ S

0
(S − t)k−1W (k)(t) dt

∣∣∣∣∣ ≤ 1
(k − 1)! ‖W

(k)‖L∞([0,1])

∫ S

0
(S − t)k−1 dt

= 1
k! ‖W

(k)‖L∞([0,1]) S
k.
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Hence, for any k ∈ N we have

|1−W (S)| ≤ 1
k! ‖W

(k)‖L∞([0,1]) S
k ∀S ∈ [0, 1]

and, thus, the error term Φγ,W (L) can be bounded above by

Φγ,W (L) = max
S∈[0,1]

(1−W (S))2

(1 + L2S2)γ ≤
1

(k!)2 ‖W
(k)‖2L∞([0,1]) max

S∈[0,1]

S2k

(1 + L2S2)γ .

In Lemma 4.3.3 we have shown that

max
S∈[0,1]

S2k

(1 + L2S2)γ ≤
{
L−2γ for γ ≤ k ∨ (γ > k ∧ L < L∗)
c2
γ,k L

−2k for γ > k ∧ L ≥ L∗

with the critical bandwidth L∗ =
√
k√
γ−k

and the strictly monotonically decreasing constant

cγ,k =
( k

γ − k

)k/2 (γ − k
γ

)γ/2
for γ > k.

Combining our estimates yields

Φγ,W (L) ≤ 1
(k!)2 ‖W

(k)‖2L∞([0,1]) max
S∈[−1,1]

S2k

(1 + L2S2)γ

≤


1

(k!)2 ‖W (k)‖2L∞([0,1]) L
−2γ for γ ≤ k ∨ (γ > k ∧ L < L∗)

c2
γ,k

(k!)2 ‖W (k)‖2L∞([0,1]) L
−2k for γ > k ∧ L ≥ L∗

and the proof is complete.

We remark that the generalized Gaussian filter from Example 4.3.6 satisfies the assumptions
of Theorem 4.3.8 for all choices of the parameters k ∈ N and β > 1. In particular, our error
theory now predicts that the error term Φγ,W (L) behaves like

Φγ,W (L) = O
(
L−2 min{k,γ}

)
for L −→∞

for both even and odd k ∈ N, as observed numerically in Example 4.3.6. Thus, the theoretical
results of Theorem 4.3.8 now totally comply with our numerical observations.

Finally, combining the Theorems 4.2.3 and 4.3.8 shows that the Hσ-error estimate of the
inherent FBP reconstruction error in Corollary 4.3.5 is still valid under the relaxed assumptions
from above.

Corollary 4.3.9 (Hσ-error estimate for Lipschitz-windows). Let f ∈ L1(R2)∩Hα(R2) for α > 0
and, for k ∈ N, let the window W satisfy W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k − 1 and
W (k) ∈ L∞([−1, 1]) with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent FBP reconstruction error eL = f − fL is
bounded above by

‖eL‖σ ≤
( 1
k! ‖W

(k)‖L∞([0,1]) + 1
)
Lσ−α ‖f‖α

if α− σ ≤ k and, if α− σ > k, by

‖eL‖σ ≤


(

1
k! ‖W

(k)‖L∞([0,1]) + 1
)
Lσ−α ‖f‖α for L < L∗(

cα−σ,k
k! ‖W (k)‖L∞([0,1]) L

−k + Lσ−α
)
‖f‖α for L ≥ L∗
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with the critical bandwidth L∗ =
√
k√

α−σ−k and the strictly monotonically decreasing constant

cα−σ,k =
( k

α− σ − k

)k/2 (α− σ − k
α− σ

)(α−σ)/2
for α− σ > k.

In particular,
‖eL‖σ = O

(
L−min{k,α−σ}

)
for L −→∞.

As in Corollary 4.3.5, the convergence rate in Corollary 4.3.9 is determined by the difference
between the smoothness α of the target function f and the order σ of the Sobolev norm in which
the reconstruction error eL is measured, as long as α − σ ≤ k. But for α − σ > k the order of
convergence saturates at rate O(L−k). However, in this case the error bound still decreases at
increasing α, since the involved constant cα−σ,k is strictly monotonically decreasing in α−σ > k.

We close this section by remarking that with Theorem 4.3.8 we are now able to treat the
generalized Ramp filter from Example 4.3.2 also for the width β = 0, in which case its window
function W is given by

W (S) =
{

1− (1− λ) |S| for |S| ≤ 1
0 for |S| > 1

with jump height λ ∈ [0, 1). Figure 4.9 shows some plots of the window for λ ∈ {0.25, 0.5, 0.75}.
We observe that the generalized Ramp window of width β = 0 is Lipschitz continuous on

the interval [−1, 1] and satisfies W (0) = 1, but it is not differentiable at S = 0. Consequently,
the assumptions of Theorem 4.3.8 are satisfies with k = 1 and our error theory predicts that the
error term Φγ,W (L) behaves like

Φγ,W (L) = O
(
L−2 min{1,γ}

)
for L −→∞.

In particular, the convergence order of Φγ,W (L) is prognosticated to stagnate for γ > 1 at rate

Φγ,W (L) = O(L−2) for L −→∞.

In contrast to that, recall that for positive width β ∈ (0, 1) and any jump height λ ∈ [0, 1)
Assumption (A) is satisfied for all parameters γ > 0 so that Φγ,W (L) is always of order

Φγ,W (L) = O(L−2γ) for L −→∞.

We calculated Φγ,W (L) numerically for the above window function W with different jump
heights λ ∈ [0, 1) and for different parameters γ > 0. As an example, Figure 4.10 shows the
behaviour of Φγ,W (L) in logarithmic scales for λ = 0.25 and γ ∈ {0.5, 0.75, 1, 1.25, 1.5, 2}. We
observe that Φγ,W (L) exactly behaves as L−2γ for γ ∈ {0.5, 0.75, 1}, whereas for γ ∈ {1.25, 1.5, 2}
the behaviour of Φγ,W (L) corresponds to L−2. But Φγ,W (L) still decreases at increasing γ > 1.
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Figure 4.9: Window functions of the generalized Ramp filter with β = 0 and different λ ∈ [0, 1).
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Figure 4.10: Decay rate of Φγ,W (L) for the generalized Ramp filter with β = 0, λ = 0.25.

We can summarize the results of our numerical experiments for any jump λ ∈ [0, 1) as follows.
For γ ≤ 1 we observe

Φγ,W (L) = O(L−2γ) for L −→∞,

while for γ > 1 the convergence order of Φγ,W (L) saturates at rate

Φγ,W (L) = O(L−2) for L −→∞.

In conclusion, our numerical observations for the generalized Ramp filter of width β = 0 totally
comply with our theoretical results in Theorem 4.3.8 for Lipschitz-window functions with k = 1.

4.3.3 Convergence rates for AC-windows with Lp-derivatives
We now generalize the results of the previous Section 4.3.2 by considering even window functions
W ∈ L∞(R) with supp(W ) ⊆ [−1, 1] that satisfy W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k − 1 with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1

as well as W (k) ∈ Lp([−1, 1]) for some 1 < p <∞ and k ∈ N. In this case, we will show that the
error term

Φγ,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)γ for L > 0

behaves like
Φγ,W (L) = O

(
L−2 min{k−1/p,γ}

)
for L −→∞

so that its order of convergence saturates for γ > k− 1
p at possibly fractional rate O(L−2(k−1/p)).

Theorem 4.3.10 (Convergence rate of Φγ,W for AC-windows with Lp-derivatives). For k ∈ N,
let the window functionW satisfyW (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k−1 andW (k) ∈ Lp([−1, 1])
for some 1 < p <∞ with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.
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Then, for γ ≤ k − 1
p , we have

Φγ,W (L) ≤ 1
((k − 1)!)2

(1− 1/p

k − 1/p

)2(1−1/p)
‖W (k)‖2Lp([0,1]) L

−2γ

and, for γ > k − 1
p ,

Φγ,W (L) ≤


1

((k−1)!)2

(
1−1/p
k−1/p

)2(1−1/p)
‖W (k)‖2Lp([0,1]) L

−2γ for L < L∗

c2
γ,k,p

((k−1)!)2

(
1−1/p
k−1/p

)2(1−1/p)
‖W (k)‖2Lp([0,1]) L

−2(k−1/p) for L ≥ L∗

with the critical bandwidth L∗ =
√
k−1/p√

γ−k+1/p
and the strictly monotonically decreasing constant

cγ,k,p =
( k − 1/p

γ − k + 1/p

)(k−1/p)/2 (γ − k + 1/p

γ

)γ/2
for γ > k − 1

p
.

In particular,
Φγ,W (L) = O

(
L−2 min{k−1/p,γ}

)
for L −→∞.

Proof. Since the window function W is assumed to be even and continuous on [−1, 1], the error
term Φγ,W (L) can be expressed as

Φγ,W (L) = max
S∈[0,1]

(1−W (S))2

(1 + L2S2)γ for L > 0.

By assumption we further have W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k − 1 implying that W (j+1)

exists almost everywhere on [−1, 1] with W (j+1) ∈ L1([−1, 1]) and

W (j)(S) = W (j)(0) +
∫ S

0
W (j+1)(t) dt ∀S ∈ [0, 1].

As in the proof of Theorem 4.3.8, we (iteratively) apply integration by parts and obtain

W (S) = 1 + 1
(k − 1)!

∫ S

0
(S − t)k−1W (k)(t) dt ∀S ∈ [0, 1]

by using
W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Since W (k) ∈ Lp([−1, 1]) for some 1 < p <∞, Hölder’s inequality, Theorem A.4.1, gives

|1−W (S)| = 1
(k − 1)!

∣∣∣∣∣
∫ S

0
(S − t)k−1W (k)(t) dt

∣∣∣∣∣ ≤ 1
(k − 1)!

∫ S

0
(S − t)k−1 |W (k)(t)| dt

≤ 1
(k − 1)!

(∫ S

0
(S − t)q(k−1) dt

)1/q (∫ S

0
|W (k)(t)|p dt

)1/p

,

where 1 < q <∞ is the Hölder conjugate of p satisfying
1
p

+ 1
q

= 1 ⇐⇒ q = p

p− 1 .

Furthermore, for S ∈ [0, 1] we have∫ S

0
(S − t)q(k−1) dt = − 1

q(k − 1) + 1
[
(S − t)q(k−1)+1

]t=S
t=0

= 1
q(k − 1) + 1 S

q(k−1)+1

= p− 1
pk − 1 S

q(k−1)+1 = 1− 1/p

k − 1/p
Sq(k−1)+1.
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Hence, it follows that

|1−W (S)| ≤ 1
(k − 1)!

(1− 1/p

k − 1/p

)1−1/p
Sk−

1/p ‖W (k)‖Lp([0,1]) ∀S ∈ [0, 1]

and, thus, the error term Φγ,W (L) can be bounded above by

Φγ,W (L) = max
S∈[0,1]

(1−W (S))2

(1 + L2S2)γ ≤
1

((k − 1)!)2

(1− 1/p

k − 1/p

)2−2/p
‖W (k)‖2Lp([0,1]) max

S∈[0,1]

S2(k−1/p)

(1 + L2S2)γ .

Finally, applying Lemma 4.3.3 shows that

max
S∈[0,1]

S2(k−1/p)

(1 + L2S2)γ ≤

L−2γ for γ ≤ k − 1
p ∨

(
γ > k − 1

p ∧ L < L∗
)

c2
γ,k,p L

−2(k−1/p) for γ > k − 1
p ∧ L ≥ L

∗

with the critical bandwidth L∗ =
√
k−1/p√

γ−k+1/p
and the strictly monotonically decreasing constant

cγ,k,p =
( k − 1/p

γ − k + 1/p

)(k−1/p)/2 (γ − k + 1/p

γ

)γ/2
for γ > k − 1

p
.

Combining the estimates completes the proof.

We remark that the error estimates in Theorem 4.3.10, where W (k) ∈ Lp([−1, 1]) for some
1 < p <∞, are consistent with the error estimates in Theorem 4.3.8, where W (k) ∈ L∞([−1, 1]).
Indeed, since

cγ,k,p =
( k − 1/p

γ − k + 1/p

)(k−1/p)/2 (γ − k + 1/p

γ

)γ/2
= (k − 1/p)(k−1/p)/2 (γ − k + 1/p)(γ−k+1/p)/2 γ−

γ/2

with
(k − 1/p)k−1/p −→ kk for p −→∞

and
(γ − k + 1/p)γ−k+1/p −→ (γ − k)γ−k for p −→∞,

we have

cγ,k,p =
( k − 1/p

γ − k + 1/p

)(k−1/p)/2 (γ − k + 1/p

γ

)γ/2 p→∞−−−→
( k

γ − k

)k/2 (γ − k
γ

)γ/2
= cγ,k.

Moreover, (1− 1/p

k − 1/p

)1−1/p
−→ 1

k
for p −→∞

so that in total
1

((k − 1)!)2

(1− 1/p

k − 1/p

)2(1−1/p)
c2
γ,k,p

p→∞−−−→ 1
(k!)2 c

2
γ,k.

Finally, combining the Theorems 4.2.3 and 4.3.10 now yields the following Hσ-error estimates
for AC-windows with Lp-derivatives for 1 < p < ∞, which generalize the Hσ-error estimates in
Corollary 4.3.9 for Lipschitz-windows or, in other words, for AC-windows with L∞-derivatives.

Corollary 4.3.11 (Hσ-error estimate for AC-windows with Lp-derivatives). For α > 0, let
f ∈ L1(R2) ∩ Hα(R2) and, for k ∈ N, let the window W satisfy W (j) ∈ AC([−1, 1]) for all
0 ≤ j ≤ k − 1 and W (k) ∈ Lp([−1, 1]) for some 1 < p <∞ with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.
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Then, for 0 ≤ σ ≤ α, the Hσ-norm of the FBP reconstruction error eL = f − fL is bounded
above by

‖eL‖σ ≤
( 1

(k − 1)!
(1− 1/p

k − 1/p

)1−1/p
‖W (k)‖Lp([0,1]) + 1

)
Lσ−α ‖f‖α

if α− σ ≤ k − 1
p and, if α− σ > k − 1

p , by

‖eL‖σ ≤


(

1
(k−1)!

(
1−1/p
k−1/p

)1−1/p
‖W (k)‖Lp([0,1]) + 1

)
Lσ−α ‖f‖α for L < L∗(

cα−σ,k,p
(k−1)!

(
1−1/p
k−1/p

)1−1/p
‖W (k)‖Lp([0,1]) L

−(k−1/p) + Lσ−α
)
‖f‖α for L ≥ L∗

with the critical bandwidth L∗ =
√
k−1/p√

α−σ−k+1/p
and the strictly monotonically decreasing constant

cα−σ,k,p =
( k − 1/p

α− σ − k + 1/p

)(k−1/p)/2 (α− σ − k + 1/p

α− σ

)(α−σ)/2
for α− σ > k − 1

p
.

In particular,
‖eL‖σ = O

(
L−min{k−1/p,α−σ}

)
for L −→∞.

We again observe that the convergence rate of the error bound in Corollary 4.3.11 is deter-
mined by the difference between the smoothness α of the target function f and the order σ of
the Sobolev norm in which the reconstruction error eL is measured, as long as α − σ ≤ k − 1

p .
But for α−σ > k− 1

p the order of convergence saturates at possibly fractional rate O(L−(k−1/p)).
However, in this case the error bound still decreases at increasing α, since the involved constant
cα−σ,k,p is strictly monotonically decreasing in α − σ > k − 1

p . Thus, although the convergence
rate saturates, a smoother target function still allows for a better approximation, as expected.

Finally, note that the bound on the inherent FBP reconstruction error in Corollary 4.3.11 is
affine-linear with respect to ‖W (k)‖Lp([0,1]) so that this quantity can now be used to evaluate the
approximation quality of the chosen window function W that satisfies the stated assumptions.

To close this section, we give an example of a window W that satisfies the requirements of
our error theory in this section.

Example 4.3.12. Consider the generalized polynomial filter of order ν ∈ R>0 and with jump
height β ∈ [0, 1), whose window function is given by

W (S) =
{

1− (1− β) |S|ν for |S| ≤ 1
0 for |S| > 1.

Plots of the generalized polynomial window of different orders can be found in Figure 4.11.
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Figure 4.11: Window functions of the generalized polynomial filter with different parameters.
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Note that W ∈ L∞(R) is even and compactly supported with supp(W ) = [−1, 1] and that we
have W ∈ C ([−1, 1]) and W (0) = 1.

Case 1: If 0 < ν ≤ 1, the pointwise derivative W ′ of W exists almost everywhere on [−1, 1],
namely for all S ∈ (−1, 1) \ {0} with

W ′(S) = −(1− β) ν sgn(S) |S|ν−1 ∀S ∈ (−1, 1) \ {0}.

Observe that W ′ ∈ L1([−1, 1]) with

‖W ′‖L1([−1,1]) = ν(1− β)
∫ 1

−1
|S|ν−1 dS = 2ν(1− β)

∫ 1

0
Sν−1 dS = 2(1− β) <∞.

Due to the fundamental theorem of calculus for AC-functions, Theorem A.4.4, the window W is
in fact absolutely continuous on [−1, 1], W ∈ AC([−1, 1]), since, for −1 ≤ S ≤ 0, we have

W (−1)+
∫ S

−1
W ′(t)dt = β+ν(1−β)

∫ S

−1
(−t)ν−1 dt = 1−(1−β) (−S)ν = 1−(1−β) |S|ν = W (S)

and, for 0 < S ≤ 1,

W (−1)+
∫ S

−1
W ′(t)dt = β+ν(1−β)

∫ 0

−1
(−t)ν−1 dt−ν(1−β)

∫ S

0
tν−1 dt = 1−(1−β)Sν = W (S).

In addition, for ν = 1, we obtain W ′ ∈ L∞([−1, 1]) with

‖W ′‖L∞([−1,1]) = 1− β = ‖W ′‖L∞([0,1])

and, for 0 < ν < 1, we have W ′ ∈ Lp([−1, 1]) for all 1 ≤ p < 1
1−ν with

‖W ′‖pLp([−1,1]) = νp(1− β)p
∫ 1

−1
|S|p(ν−1) dS = 2νp(1− β)p

∫ 1

0
Sp(ν−1) dS = 2νp(1− β)p

p(ν − 1) + 1 <∞.

Consequently,
‖W ′‖Lp([0,1]) = ν(1− β)

p
√
p(ν − 1) + 1

∀ 1 ≤ p < 1
1− ν .

Case 2: For ν > 1, we split ν into an integer and a fractional part, i.e.,

ν = k + η

with k ∈ N and 0 < η ≤ 1. Then, the window W is k-times continuously differentiable in the
interval [−1, 1], W ∈ C k([−1, 1]), and the derivatives W (j), for 1 ≤ j ≤ k, are given by

W (j)(S) = −j!
(
ν
j

)
(1− β) (sgn(S))j |S|ν−j ∀S ∈ (−1, 1).

Thus, similar calculations as in Case 1 show that W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k.

In particular,

W (k)(S) = −k!
(
ν
k

)
(1− β) (sgn(S))k |S|η ∀S ∈ (−1, 1)

so that, as in Case 1, for η = 1 we have W (k+1) ∈ L∞([−1, 1]) with

‖W (k+1)‖L∞([−1,1]) = (k + 1)! (1− β) = ‖W (k+1)‖L∞([0,1]).
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On the other hand, for 0 < η < 1 we have W (k+1) ∈ Lp([−1, 1]) for all 1 ≤ p < 1
1−η with

‖W (k+1)‖pLp([−1,1]) = 2(1− β)p((k + 1)!)p
(

ν
k + 1

)p ∫ 1

0
Sp(η−1) dS

= 2(1− β)p((k + 1)!)p

p(η − 1) + 1

(
ν

k + 1

)p
<∞

so that
‖W (k+1)‖Lp([0,1]) = (1− β) ν · . . . · (ν − k)

p
√
p(ν − k − 1) + 1

∀ 1 ≤ p < 1
k + 1− ν .

When using the generalized polynomial filter of order ν > 0 from Example 4.3.12 in the FBP
method, our error theory from Theorems 4.3.8 and 4.3.10 predicts that the error term Φγ,W (L)
behaves like

Φγ,W (L) = O
(
L−2 min{ν,γ}

)
for L −→∞

and the order of convergence saturates for γ > ν at (possibly) fractional rate O(L−2ν).
This behaviour was also observed in our numerical experiments, where we calculated Φγ,W (L)

for different choices of ν > 0 and β ∈ [0, 1) as well as different parameters γ > 0. As an example,
Figure 4.12 shows Φγ,W (L) as a function of the bandwidth L > 0 in logarithmic scales for the
generalized polynomial filter of order ν = 0.9 with jump height β = 0.4 and for the parameters
γ ∈ {0.5, 0.75, 0.9, 1, 1.5, 2}. For γ ∈ {0.5, 0.75, 0.9} we observe that Φγ,W (L) exactly behaves
as L−2γ , whereas for γ ∈ {1, 1.5, 2} the behaviour of Φγ,W (L) corresponds to L−1.8, i.e., L−2ν .
But in this case Φγ,W (L) continues to decrease at increasing γ > 0.9.

We can summarize our numerical results for any choice of ν > 0 and β ∈ [0, 1) as follows.
For γ ≤ ν we observe

Φγ,W (L) = O(L−2γ) for L −→∞,

while for γ > ν the convergence order of Φγ,W (L) saturates at fractional rate

Φγ,W (L) = O(L−2ν) for L −→∞.
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Figure 4.12: Decay rate of Φγ,W (L) for the generalized polynomial filter with ν = 0.9, β = 0.4.
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In conclusion, our numerical observations for the generalized polynomial filter totally comply
with our theoretical results in Theorems 4.3.8 and 4.3.10 for AC-windows with Lp-derivatives
for 1 < p ≤ ∞ whose first k− 1 derivatives vanish at the origin. In particular, we have observed
saturation of the convergence order of Φγ,W (L) for γ > k − 1

p at rate

Φγ,W (L) = O(L−2(k−1/p)) for L −→∞

and that Φγ,W (L) continues to decrease at increasing values γ > k − 1
p , which corresponds to

the monotonic decrease of the constant cγ,k,p in the case 1 < p <∞ and cγ,k when p =∞.

4.3.4 Convergence rates for Hölder-windows

In the previous Section 4.3.3 we generalized our results from Section 4.3.2 for Lipschitz-windows
by considering AC-windows with Lp-derivatives for 1 < p <∞, leading to fractional saturation
rates for the order of convergence of the inherent FBP reconstruction error eL = f −fL in (4.7).

In this section we follow a different approach by applying Hölder-windows. To be more
precise, we again consider even window functions W ∈ L∞(R) with supp(W ) ⊆ [−1, 1]. But
now we assume that, for k ∈ N0 and some 0 < ν ≤ 1, the window W satisfies W ∈ C k,ν([−1, 1])
with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k.
In other words, W is k-times continuously differentiable on [−1, 1], W ∈ C k([−1, 1]), and W (k)

is Hölder continuous on [−1, 1], W (k) ∈ C 0,ν([−1, 1]), with Hölder exponent 0 < ν ≤ 1. Then,
there exists a Hölder constant |W (k)|C 0,ν([0,1]) > 0 such that

|W (k)(S)−W (k)(t)| ≤ |W (k)|C 0,ν([0,1]) |S − t|ν ∀S, t ∈ [0, 1].

Under these assumption, we will prove that the convergence rate of the error term

Φγ,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)γ for L > 0

now behaves like
Φγ,W (L) = O

(
L−2 min{k+ν,γ}

)
for L −→∞

so that its order of convergence saturates for γ > k + ν at possibly fractional rate O(L−2(k+ν)).
Theorem 4.3.13 (Convergence rate of Φγ,W for Hölder-windows). Let the window function W
satisfy W ∈ C k,ν([−1, 1]) with k ∈ N0 and Hölder exponent 0 < ν ≤ 1 such that

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k.

Then, for γ ≤ k + ν, we have

Φγ,W (L) ≤
( Γ(ν + 1)

Γ(k + ν + 1)

)2
|W (k)|2C 0,ν([0,1]) L

−2γ

and, for γ > k + ν,

Φγ,W (L) ≤


(

Γ(ν+1)
Γ(k+ν+1)

)2
|W (k)|2C 0,ν([0,1]) L

−2γ for L < L∗

c2
γ,k,ν

(
Γ(ν+1)

Γ(k+ν+1)

)2
|W (k)|2C 0,ν([0,1]) L

−2(k+ν) for L ≥ L∗

with the critical bandwidth L∗ =
√
k+ν√
γ−k−ν

and the strictly monotonically decreasing constant

cγ,k,ν =
( k + ν

γ − k − ν

)(k+ν)/2 (γ − k − ν
γ

)γ/2
for γ > k + ν.

In particular,
Φγ,W (L) = O

(
L−2 min{k+ν,γ}

)
for L −→∞.
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Proof. Since the window W is even and continuous on [−1, 1], the error term Φγ,W (L) is given
by

Φγ,W (L) = max
S∈[0,1]

(1−W (S))2

(1 + L2S2)γ for L > 0.

By assumption we have W ∈ C k,ν([−1, 1]) with k ∈ N0 and Hölder exponent 0 < ν ≤ 1 which
implies that W ∈ C k([−1, 1]) and

|W (k)(S)−W (k)(t)| ≤ |W (k)|C 0,ν([0,1]) |S − t|ν ∀S, t ∈ [0, 1].

Thus, if k = 0, the assumption W (0) = 1 gives

|1−W (S)| ≤ |W |C 0,ν([0,1]) S
ν ∀S ∈ [0, 1].

On the other hand, if k ≥ 1, by the fundamental theorem of calculus holds that

W (j)(S) = W (j)(0) +
∫ S

0
W (j+1)(t) dt ∀ 0 ≤ j ≤ k − 1.

In particular,

W (S) = W (0) +
∫ S

0
W ′(t) dt = 1 +

∫ S

0
W ′(t) dt ∀S ∈ [0, 1]

and, for k > 1, iteratively applying integration by parts yields

W (S) = 1 + 1
(k − 1)!

∫ S

0
(S − t)k−1W (k)(t) dt ∀S ∈ [0, 1],

where we used
W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Since W (k) is Hölder continuous on [−1, 1] with Hölder exponent 0 < ν ≤ 1 and W (k)(0) = 0,
we have

|W (k)(t)| = |W (k)(t)−W (k)(0)| ≤ |W (k)|C 0,ν([0,1]) t
ν ∀ t ∈ [0, 1].

Consequently, for all S ∈ [0, 1] follows that

|1−W (S)| =
∣∣∣∣∣ 1
(k − 1)!

∫ S

0
(S − t)k−1W (k)(t) dt

∣∣∣∣∣ ≤ 1
(k − 1)!

∫ S

0
(S − t)k−1 |W (k)(t)| dt

≤ 1
(k − 1)! |W

(k)|C 0,ν([0,1])

∫ S

0
(S − t)k−1 tν dt,

where, for k = 1, we have ∫ S

0
tν dt = 1

ν + 1 S
ν+1 = Γ(ν + 1)

Γ(ν + 2) S
ν+1

and, for k > 1,∫ S

0
(S − t)k−1 tν dt =

[
(S − t)k−1 1

ν + 1 t
ν+1

]t=S
t=0︸ ︷︷ ︸

=0

+k − 1
ν + 1

∫ S

0
(S − t)k−2 tν+1 dt

= . . .

= (k − 1)!
(ν + 1) · . . . · (ν + k − 1)

∫ S

0
tν+k−1 dt

= (k − 1)!
(ν + 1) · . . . · (ν + k) S

ν+k = (k − 1)! Γ(ν + 1)
Γ(ν + k + 1) S

ν+k.
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Hence, for all k ∈ N0 holds that

|1−W (S)| ≤ Γ(ν + 1)
Γ(ν + k + 1) |W

(k)|C 0,ν([0,1]) S
k+ν ∀S ∈ [0, 1]

and, thus, the error term Φγ,W (L) is bounded above by

Φγ,W (L) = max
S∈[0,1]

(1−W (S))2

(1 + L2S2)γ ≤
( Γ(ν + 1)

Γ(ν + k + 1)

)2
|W (k)|2C 0,ν([0,1]) max

S∈[0,1]

S2(k+ν)

(1 + L2S2)γ .

Finally, applying Lemma 4.3.3 yields

max
S∈[0,1]

S2(k+ν)

(1 + L2S2)γ ≤
{
L−2γ for γ ≤ k + ν ∨ (γ > k + ν ∧ L < L∗)
c2
γ,k,ν L

−2(k+ν) for γ > k + ν ∧ L ≥ L∗

with the critical bandwidth L∗ =
√
k+ν√
γ−k−ν

and the strictly monotonically decreasing constant

cγ,k,ν =
( k + ν

γ − k − ν

)(k+ν)/2 (γ − k − ν
γ

)γ/2
for γ > k + ν.

Combining the estimates completes the proof.

We remark that the error estimates in Theorem 4.3.13 for Hölder-windows are consistent with
the error estimates in Theorem 4.3.8 for Lipschitz-windows, where we have W ∈ C k−1,1([−1, 1])
with

|W (k−1)|C 0,1([0,1]) = ‖W (k)‖L∞([0,1]).

Indeed, choosing the differentiability order k − 1 and Hölder exponent ν = 1 in Theorem 4.3.13
gives

Γ(ν + 1)
Γ(k − 1 + ν + 1) = Γ(2)

Γ(k + 1) = 1
k!

and

cγ,k−1,ν =
( k − 1 + ν

γ − k + 1− ν
)(k−1+ν)/2 (γ − k + 1− ν

γ

)γ/2
=
( k

γ − k

)k/2 (γ − k
γ

)γ/2
= cγ,k

so that for Lipschitz-windows the error bounds obtained from Theorem 4.3.13 agree with the
estimates in Theorem 4.3.8. In particular, the predicted saturation rates for the convergence
order of the error term Φγ,W (L) coincide.

In addition, we note that the results in Theorem 4.3.13 continue to hold true if we assume
that W (k) satisfies a Hölder condition of order 0 < ν ≤ 1 only at the origin in the sense that
there exists a constant CW,k,ν > 0 such that

|W (k)(0)−W (k)(S)| ≤ CW,k,ν Sν ∀S ∈ [0, 1].

Finally, combining the Theorems 4.2.3 and 4.3.13 gives the following generalized Hσ-error
estimate for the approximate FBP reconstruction with Hölder-windows.

Corollary 4.3.14 (Hσ-error estimate for Hölder-windows). Let f ∈ L1(R2)∩Hα(R2) for α > 0
and let the window function W satisfy W ∈ C k,ν([−1, 1]) with k ∈ N0 and Hölder exponent
0 < ν ≤ 1 such that

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k.

Then, for 0 ≤ σ ≤ α, the Hσ-norm of the FBP reconstruction error eL = f − fL is bounded
above by

‖eL‖σ ≤
( Γ(ν + 1)

Γ(ν + k + 1) |W
(k)|C 0,ν([0,1]) + 1

)
Lσ−α ‖f‖α
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if α− σ ≤ k + ν and, if α− σ > k + ν, by

‖eL‖σ ≤


(

Γ(ν+1)
Γ(ν+k+1) |W

(k)|C 0,ν([0,1]) + 1
)
Lσ−α ‖f‖α for L < L∗(

cα−σ,k,ν
Γ(ν+1)

Γ(ν+k+1) |W
(k)|C 0,ν([0,1]) L

−(k+ν) + Lσ−α
)
‖f‖α for L ≥ L∗

with the critical bandwidth L∗ =
√
k+ν√

α−σ−k−ν and the strictly monotonically decreasing constant

cα−σ,k,ν =
( k + ν

α− σ − k − ν

)(k+ν)/2 (α− σ − k − ν
α− σ

)(α−σ)/2
for α− σ > k + ν.

In particular,
‖eL‖σ = O

(
L−min{k+ν,α−σ}

)
for L −→∞.

We observe that the convergence rate of the error bound in Corollary 4.3.14 is determined
by the difference between the smoothness α of the target function f and the order σ of the
Sobolev norm in which the reconstruction error eL is measured, as long as α− σ ≤ k + ν. But
for α − σ > k + ν the order of convergence saturates at fractional rate O(L−(k+ν)). However,
in this case the error bound still decreases at increasing α, since the involved constant cα−σ,k,ν
is strictly monotonically decreasing in α − σ > k + ν. Thus, although the rate of convergence
saturates, a smoother target function still allows for a better approximation, as expected.

We close this section by comparing the generalized error estimates in Theorem 4.3.13 for
Hölder-windows with the generalized error estimates in Theorem 4.3.10 for AC-windows with
Lp-derivatives for 1 < p <∞.

Remark 4.3.15 (Special case). Let the even window W ∈ L∞(R) with supp(W ) ⊆ [−1, 1]
satisfy W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k.

Further, let W (k+1) ∈ Lp([−1, 1]) with 1 < p < ∞. Then, we also have W ∈ C k,ν([−1, 1]) with
Hölder exponent

ν = 1− 1
p
∈ (0, 1)

and Hölder constant
|W (k)|C 0,ν([0,1]) ≤ ‖W (k+1)‖Lp([0,1]).

Indeed, for 0 ≤ t ≤ S ≤ 1, the fundamental theorem of calculus for AC-functions, Theorem A.4.4,
and Hölder’s inequality, Theorem A.4.1, yield

|W (k)(S)−W (k)(t)| =
∣∣∣∣ ∫ S

t
W (k+1)(τ) dτ

∣∣∣∣ ≤ (∫ S

t
|W (k+1)(τ)|p dτ

)1/p (∫ S

t
1 dτ

)1−1/p

≤ ‖W (k+1)‖Lp([0,1]) |S − t|1−
1/p.

Note that the converse is not true in general. As a counterexample we refer to the classical
Weierstraß function, which is Hölder continuous but not absolutely continuous on [−1, 1].

Therefore, we can apply the error estimates in Theorem 4.3.13 for Hölder-windows to bound
the error term Φγ,W (L) from above by

Φγ,W (L) ≤ b2k,ν ‖W (k+1)‖2Lp([0,1])

{
L−2γ for γ ≤ k + ν

c2
γ,k,ν L

−2(k+ν) for γ > k + ν

with
bk,ν = Γ(ν + 1)

Γ(ν + k + 1) for k ∈ N0 and 0 < ν < 1.
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On the other hand, using ν = 1− 1
p in the error analysis from Theorem 4.3.10 for AC-windows

with Lp-derivatives yields

Φγ,W (L) ≤ a2
k,ν ‖W (k+1)‖2Lp([0,1])

{
L−2γ for γ ≤ k + ν

c2
γ,k,ν L

−2(k+ν) for γ > k + ν

with
ak,ν = 1

k!
( ν

ν + k

)ν
for k ∈ N0 and 0 < ν < 1,

since
cγ,k+1,p =

( k + 1− 1/p

γ − k − 1 + 1/p

)(k+1−1/p)/2 (γ − k − 1 + 1/p

γ

)γ/2
= cγ,k,ν .

Consequently, the bounds in the above estimates obtained by Theorems 4.3.10 and 4.3.13
only differ in the constants ak,ν and bk,ν , which we now compare for all k ∈ N0 and ν ∈ (0, 1).
For k = 0 we have

a0,ν = 1 = b0,ν ∀ 0 < ν < 1,

whereas for k ≥ 1 we will show that

ak,ν < bk,ν ∀ 0 < ν < 1.

To this end, recall that a function g : I −→ R≥0 is called completely monotonic on an
interval I ⊆ R if g has derivatives of all orders on I and, for all j ∈ N0,

(−1)j g(j)(x) ≥ 0 ∀x ∈ I.

The set of completely monotonic functions on I is denoted by CM(I). For further details and
properties we refer to [125]. In [28] it is pointed out that if a non-constant function is completely
monotonic on (0,∞), then the above inequality is strictly satisfied. In particular, any non-
constant function g ∈ CM((0,∞)) is positive and strictly monotonically decreasing on (0,∞).

Recall further that a positive function g : I −→ R>0 is called logarithmically completely
monotonic on an interval I ⊆ R if g has derivatives of all orders on I and, for all j ∈ N, its
logarithm log(g) satisfies

(−1)j (log(g))(j)(x) ≥ 0 ∀x ∈ I.

The set of logarithmically completely monotonic functions on I is denoted by LCM(I) and we
have

LCM(I) ⊂ CM(I).

We refer to [91] for details and an overview of (logarithmically) completely monotonic functions.
For 0 < ν < 1 we now consider the function

hν(x) = (x+ ν)1−ν Γ(x+ ν)
xΓ(x) for x > 0.

In [91, Theorem 1.2] it is proven that hν is logarithmically completely monotonic on (0,∞) for
all ν ∈ (0, 1), i.e.,

hν ∈ LCM((0,∞)) ⊂ CM((0,∞)),

with
lim
x↘0

hν(x) = Γ(ν + 1)
νν

and lim
x→∞

hν(x) = 1.

Thus, our above discussion about non-constant completely monotonic functions on (0,∞) gives

hν(x) > hν(y) ∀ 0 < x < y,
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which implies that
lim
y→∞

hν(y) < hν(x) < lim
y↘0

hν(y) ∀x > 0.

Consequently, we have

1 < (x+ ν)1−ν Γ(x+ ν)
xΓ(x) <

Γ(ν + 1)
νν

∀x > 0

such that

bk,ν
ak,ν

= Γ(k + 1) (k + ν)ν

Γ(k + ν + 1)
Γ(ν + 1)

νν
>

Γ(k + 1) (k + ν)ν

Γ(k + ν + 1)
(k + ν)1−ν Γ(k + ν)

k Γ(k)

= Γ(k + 1)
Γ(k + ν + 1)

(k + ν) Γ(k + ν)
k Γ(k) = Γ(k + 1)

Γ(k + ν + 1)
Γ(k + ν + 1)

Γ(k + 1) = 1.

Therefore, for k ≥ 1 we finally obtain

ak,ν < bk,ν ∀ 0 < ν < 1.

In conclusion, we observe that the weaker assumptions in Theorem 4.3.13 for Hölder-windows
with k ∈ N0 and ν ∈ (0, 1) lead to the same convergence rates for the error term Φγ,W (L) we
obtain in Theorem 4.3.10 for AC-windows with Lp-derivatives. However, for k ≥ 1 the involved
constant in the error bounds is smaller under the stronger assumptions in Theorem 4.3.10.

4.4 Asymptotic error estimates
In the previous Section 4.3 we derived Hσ-error estimates for the FBP method and analysed the
convergence rate of the approximate FBP reconstruction for some special cases, where we as-
sumed a certain kind of regularity of the low-pass filter’s windowW on the whole interval [−1, 1].
The presented results are obtained by utilizing the Hσ-error estimate (4.10) from Theorem 4.2.3
and by estimating the error term Φγ,W in (4.9) for γ > 0 given by

Φγ,W (L) = ess sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)γ for L > 0.

In this section we take a different approach to prove asymptotic Hσ-error estimates for the
FBP method, where we assume regularity of the filter’s window function only at the origin. For
this purpose, we consider even window functions W ∈ L∞(R) with compact support in [−1, 1]
that are k-times differentiable at 0 for some k ∈ N with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

As before, we consider target functions f ∈ L1(R2) ∩ Hα(R2) with some α > 0 and analyse
the Hσ-norm of the inherent FBP reconstruction error eL = f − fL in (4.7) for all 0 ≤ σ ≤ α.
For the sake of brevity, we again define

r(x, y) =
√
x2 + y2 for (x, y) ∈ R2

and, for γ ≥ 0,

rγ(x, y) = (1 + r(x, y)2)γ = (1 + x2 + y2)γ for (x, y) ∈ R2.

As in the derivation of Theorem 4.2.3, we start with splitting the Hσ-norm of eL into the
sum of two integrals

‖eL‖2σ = 1
4π2

∫
R

∫
R
rσ(x, y) |F(f − fL)(x, y)|2 dx dy = I1 + I2,
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where

I1 = 1
4π2

∫
r(x,y)≤L

rσ(x, y) |1−WL(x, y)|2 |Ff(x, y)|2 d(x, y)

and
I2 = 1

4π2

∫
r(x,y)>L

rσ(x, y) |Ff(x, y)|2 d(x, y).

Recall that, for 0 ≤ σ ≤ α, the integral I2 can be bounded above by

I2 ≤ L2(σ−α) 1
4π2

∫
r(x,y)>L

rα(x, y) |Ff(x, y)|2 d(x, y) ≤ L2(σ−α) ‖f‖2α,

whereas the integral I1 can be expressed as

I1 = 1
4π2

∫
r(x,y)≤L

rσ(x, y)
∣∣∣∣1−W(r(x, y)

L

)∣∣∣∣2 |Ff(x, y)|2 d(x, y).

Because W ∈ L∞(R) is k-times differentiable at zero, we can apply Taylor’s Theorem A.4.2 and,
thus, there exists a function hk : R −→ R satisfying

W (S) =
k∑
j=0

W (j)(0)
j! Sj + hk(S)Sk ∀S ∈ R

and
lim
S→0

hk(S) = 0.

By assumption, the window W satisfies

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Hence, for (x, y) ∈ R2 and L > 0 follows that

W
(r(x, y)

L

)
= 1 +

(
W (k)(0)
k! + hk

(r(x, y)
L

))(r(x, y)
L

)k
so that we obtain the representation

I1 = 1
4π2

∫
r(x,y)≤L

(
W (k)(0)
k! + hk

(r(x, y)
L

))2 (r(x, y)
L

)2k
rσ(x, y) |Ff(x, y)|2 d(x, y).

For convenience we now define, for γ ≥ 0,

φ∗γ,L,k = max
r(x,y)≤L

(
r(x,y)
L

)2k

rγ(x, y) = max
S∈[0,1]

S2k

(1 + L2 S2)γ .

Then, I1 can be bounded above by

I1 ≤ φ∗α−σ,L,k
1

4π2

∫
r(x,y)≤L

(
W (k)(0)
k! + hk

(r(x, y)
L

))2
rα(x, y) |Ff(x, y)|2 d(x, y)

= φ∗α−σ,L,k

(
I3 + 2 W

(k)(0)
k! I4 + I5

)
,

where we let
I3 = 1

4π2

∫
r(x,y)≤L

(W (k)(0)
k!

)2
rα(x, y) |Ff(x, y)|2 d(x, y)

and

Ij = 1
4π2

∫
r(x,y)≤L

(
hk
(r(x, y)

L

))j−3
rα(x, y) |Ff(x, y)|2 d(x, y) for j ∈ {4, 5}.
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To continue our analysis, we observe that, for S 6= 0, the function hk can be written as

hk(S) = (W (S)− 1)S−k − W (k)(0)
k! .

Since the window W has compact support in [−1, 1], we further obtain

hk(S) = −S−k − W (k)(0)
k! ∀ |S| > 1,

which implies that

hk(S) −→ −W
(k)(0)
k! for S −→ ±∞.

From W ∈ L∞(R) and
hk(S) −→ 0 for S −→ 0

it follows that hk is essentially bounded on R, so that there exists a constant M > 0 satisfying

|hk(S)| ≤M for almost all S ∈ R.

Hence, for j ∈ {4, 5} and all L > 0 the integrand in Ij ,

hjk,L(x, y) =
(
hk
(r(x, y)

L

))j−3
rα(x, y) |Ff(x, y)|2,

is bounded almost everywhere on R2 by the function

Φj(x, y) = M j−3 rα(x, y)|Ff(x, y)|2 for (x, y) ∈ R2,

which is integrable over R2 due to the assumption f ∈ Hα(R2). Moreover, we have

hk
(r(x, y)

L

)
−→ 0 for r(x, y)

L
−→ 0,

implying that, for any (x, y) ∈ R2, the integrand hjk,L(x, y) tends to zero as L goes to ∞.
Consequently, we can apply Lebesgue’s theorem on dominated convergence and for j ∈ {4, 5}
follows that

Ij = 1
4π2

∫
r(x,y)≤L

hjk,L(x, y) d(x, y) = o(1) for L −→∞.

On the other hand, we have

I3 ≤
(W (k)(0)

k!
)2
‖f‖2α

leading to the asymptotic estimate

I1 ≤ φ∗α−σ,L,k
(W (k)(0)

k!
)2
‖f‖2α + φ∗α−σ,L,k o(1).

In Lemma 4.3.3 we have shown that, for γ ≥ 0, the maximum φ∗γ,L,k is bounded above by

φ∗γ,L,k ≤
{
L−2γ for γ ≤ k ∨ (γ > k ∧ L < L∗)
c2
γ,k L

−2k for γ > k ∧ L ≥ L∗

with the critical bandwidth L∗ =
√
k√
γ−k

and the strictly monotonically decreasing constant

cγ,k =
( k

γ − k

)k/2 (γ − k
γ

)γ/2
for γ > k.
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Thus, for α− σ ≤ k follows that

I1 ≤
1

(k!)2 |W
(k)(0)|2 L2(σ−α) ‖f‖2α + o

(
L2(σ−α)

)
and, for α− σ > k,

I1 ≤
c2
α−σ,k
(k!)2 |W

(k)(0)|2 L−2k ‖f‖2α + o
(
L−2k

)
.

By combining our derived bounds for I1 and I2, we finally get the asymptotic Hσ-error estimate

‖eL‖σ ≤
(
Cα−σ,k |W (k)(0)|L−min{k,α−σ} + Lσ−α

)
‖f‖α + o

(
L−min{k,α−σ}

)
.

In summary, we have proven the following error theorem for the approximate FBP method.

Theorem 4.4.1 (Asymptotic Hσ-error estimate). Let f ∈ L1(R2) ∩ Hα(R2) for α > 0 and let
the window W ∈ L∞(R) be even and compactly supported with supp(W ) ⊆ [−1, 1]. Moreover,
let W be k-times differentiable at the origin for k ∈ N with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, for 0 ≤ σ ≤ α, the Hσ-norm of the inherent FBP reconstruction error eL = f − fL is
bounded above by

‖eL‖σ ≤
( 1
k! |W

(k)(0)|+ 1
)
Lσ−α ‖f‖α + o(Lσ−α) (4.16)

if α− σ ≤ k and, if α− σ > k, by

‖eL‖σ ≤
cα−σ,k
k! |W (k)(0)|L−k ‖f‖α + o(L−k) (4.17)

with the strictly monotonically decreasing constant

cα−σ,k =
( k

α− σ − k

)k/2 (α− σ − k
α− σ

)(α−σ)/2
for α− σ > k.

In particular,
‖eL‖σ = O

(
L−min{k,α−σ}

)
for L −→∞.

We wish to draw the following conclusions from Theorem 4.4.1.
Firstly, the flatness of the filter’s window function W determines the convergence rate of

the error bounds (4.16) and (4.17) for the inherent FBP reconstruction error. Indeed, if W is
k-times differentiable at the origin such that the first k − 1 derivatives of W vanish at zero,
then the convergence rate in (4.16) is given by the difference between the smoothness α of the
target function f and the order σ of the Sobolev norm in which the reconstruction error eL is
measured, as long as α − σ ≤ k. For α − σ > k, however, the order of convergence in (4.17)
saturates at rate O(L−k).

Note that this observation is consistent with our results in Corollary 4.3.5, where we more
restrictively assumed that the window W is k-times continuously differentiable on the whole
interval [−1, 1] where it is supported. Consequently, the weaker assumptions in Theorem 4.4.1
lead to the same convergence rates for the Hσ-norm of the inherent FBP reconstruction error as
our error theory for C k-windows. However, the estimates (4.16) and (4.17) are only asymptotic
in contrast to the estimates (4.14) and (4.15) in Corollary 4.3.5.

Secondly, the quantity |W (k)(0)|, i.e., the k-th derivative of W at the origin, dominates the
error bound in both (4.16) and (4.17). Therefore, the value |W (k)(0)| can be used as an indicator
to predict the approximation quality of the proposed FBP method in the Hσ-norm.
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As a corollary, choosing σ = 0 in Theorem 4.4.1 yields the following asymptotic L2-error
estimate for the approximate FBP reconstruction.

Corollary 4.4.2 (Asymptotic L2-error estimate). For α > 0 let f ∈ L1(R2)∩Hα(R2). Moreover,
let W ∈ L∞(R) be even with supp(W ) ⊆ [−1, 1] and k-times differentiable at the origin with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, for α ≤ k, the L2-norm of the inherent FBP reconstruction error eL = f − fL is bounded
above by

‖eL‖L2(R2) ≤
( 1
k! |W

(k)(0)|+ 1
)
L−α ‖f‖α + o(L−α).

On the other hand, for α > k and sufficiently large L > 0, the L2-norm of eL is bounded above
by

‖eL‖L2(R2) ≤
cα,k
k! |W

(k)(0)|L−k ‖f‖α + o(L−k)

with the strictly monotonically decreasing constant

cα,k =
( k

α− k

)k/2 (α− k
α

)α/2
for α > k.

In particular,
‖eL‖L2(R2) = O

(
L−min{k,α}

)
for L −→∞.

To conclude our discussion, we finally consider the following special case.

Remark 4.4.3 (Special case). Let the filter’s window function W fulfil the assumptions of
Corollary 4.4.2 with k ∈ N and let the smoothness α of the target function f ∈ Hα(R2) satisfy

α > k.

Then, the asymptotic L2-error estimate of the FBP method reduces to

‖f − fL‖L2(R2) ≤ Cα,k |W (k)(0)|L−k ‖f‖α + o(L−k).

Consequently, the L2-norm of the intrinsic FBP reconstruction error is proportional to |W (k)(0)|,
if we neglect the higher order terms.

We remark that the commonly used low-pass filters AL(S) = |S|W (S/L) we considered after
Example 4.3.2 satisfy the assumptions of our theory with k = 2 so that we obtain

‖f − fL‖L2(R2) ≤ C |W ′′(0)|L−2 ‖f‖α + o(L−2).

Therefore, in this case the intrinsic FBP reconstruction error is proportional to |W ′′(0)| and its
decay rate is of order O(L−2). This observation complies with the results of Munshi [76] and
Munshi et al. [78], [80], see also the asymptotic pointwise error formula (4.6). Finally, Table 4.1
lists the quality indicator |W ′′(0)| for the commonly used low-pass filters mentioned above.

Name W (S) for |S| ≤ 1 Parameter |W ′′(0)|
Shepp-Logan sinc(πS/2) - π2/12
Cosine cos(πS/2) - π2/4
Hamming β + (1− β) cos(πS) β ∈ [1/2, 1] (1− β)π2

Gaussian exp(−(πS/β)2) β > 1 2π2/β2

Table 4.1: Quality indicator |W ′′(0)| for commonly used low-pass filters.



94 4 Error estimates for filtered back projection reconstructions

4.5 Error estimates for noisy data
To close this chapter on error estimates for the method of filtered back projection, we reconsider
the important case of noisy data. Recall that, in many relevant applications, the Radon data
Rf ∈ L2(R × [0, π)) is usually not known exactly, but only up to a noise level δ > 0 so that
we have to reconstruct the target function f ∈ L1(R2) ∩ Hα(R2), for α > 0, from given noisy
measurements gδ ∈ L1(R× [0, π)) ∩ L2(R× [0, π)) satisfying

‖Rf − gδ‖L2(R×[0,π)) ≤ δ.

By applying the FBP method (3.4) to the noisy data gδ, we obtain the reconstruction

f δL = 1
2 B

(
qL ∗ gδ

)
(4.18)

and, as mentioned at the beginning of Section 4.2, the overall FBP reconstruction error

eδL = f − f δL (4.19)

can be split into an approximation error term and a data error term,

eδL = f − fL︸ ︷︷ ︸
approximation

error

+ fL − f δL︸ ︷︷ ︸
data
error

.

In the following, we analyse the L2-norm of the overall FBP reconstruction error eδL in (4.19)
with respect to the noise level δ as well as the filter’s window function W and bandwidth L.
To this end, we first show that for even window W ∈ L∞(R) with supp(W ) ⊆ [−1, 1] the noisy
FBP reconstruction f δL in (4.18) also satisfies f δL ∈ L2(R2). By the triangle inequality, we then
have

‖eδL‖L2(R2) ≤ ‖f − fL‖L2(R2) + ‖fL − f δL‖L2(R2)

and, consequently, we can treat the approximation error and the data error separately. Note that
the approximation error is just the inherent FBP reconstruction error eL in (4.7) we considered
earlier in this chapter. Hence, for the analysis of the approximation error we can in particular
rely on our results from Section 4.3.

4.5.1 Analysis of the data error

We start with analysing the data error fL − f δL in the L2-norm. To this end, recall that the
Radon transform R is continuous as a mapping

R : S(R2) −→ S(R× [0, π)).

In particular, the Radon transform of a Schwartz function f ∈ S(R2) belongs to the Schwartz
space S(R × [0, π)) ⊂ L2(R × [0, π)), see [43, Theorem 4.1]. Since, up to the constant 1

π , the
back projection operator B is the formal dual operator of the Radon transform R satisfying

(Rf, g)L2(R×[0,π)) = π (f,Bg)L2(R2) ∀ f ∈ S(R2), g ∈ S(R× [0, π)),

we can conclude that Bg is a tempered distribution on R2, Bg ∈ S ′(R2), for all g ∈ S ′(R× [0, π)).
Because further L2(R× [0, π)) ⊂ S ′(R× [0, π)), we especially obtain

Bg ∈ S ′(R2) ∀ g ∈ L2(R× [0, π)). (4.20)

Based on this, we now show that
RLg = 1

2 B
(
qL ∗ g

)
(4.21)

defines a continuous linear operator

RL : L1(R× [0, π)) ∩ L2(R× [0, π)) −→ L2(R2),

which we call FBP regularization operator.
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Theorem 4.5.1 (FBP regularization operator). Let g ∈ L1(R× [0, π)) ∩ L2(R× [0, π)) and let
W ∈ L∞(R) be even with supp(W ) ⊆ [−1, 1]. Then, we have RLg ∈ L2(R2) with

‖RLg‖L2(R2) ≤
1√
2π

(
ess sup
S∈[−1,1]

|S| |W (S)|2
)1/2

L
1/2 ‖g‖L2(R×[0,π)).

Proof. Recall that the band-limited function qL defined in (3.5) is well-defined on R× [0, π) and
we have qL ∈ L2(R× [0, π))∩L∞(R× [0, π)). In addition, for all θ ∈ [0, π) the Fourier inversion
formula

AL(S) = F(F−1AL)(S) = FqL(S, θ)

holds in L2-sense and, in particular, for almost all S ∈ R. Because further g ∈ L1(R × [0, π)),
we obtain the representation

AL(S)Fg(S, θ) = F(qL ∗ g)(S, θ) for almost all S ∈ R

by the Fourier convolution Theorem 3.1.1. Moreover, Young’s inequality, Theorem A.1.16, yields
(qL ∗g)(·, θ) ∈ L2(R) for any θ ∈ [0, π) and by the Fourier inversion formula (in L2-sense) follows
that

(qL ∗ g)(S, θ) = F−1[AL(S)Fg(S, θ)] for almost all S ∈ R.

In particular, for g ∈ L1(R × [0, π)) ∩ L2(R × [0, π)) we have (qL ∗ g) ∈ L2(R × [0, π)) and,
therefore,

RLg = 1
2 B

(
qL ∗ g

)
is defined almost everywhere on R2 and satisfies RLg ∈ L2

loc(R2) due to Proposition 3.1.4.
On the other hand, we also have RLg ∈ S ′(R2) according to (4.20). This allows us to

determine the (distributional) Fourier transform of RLg, as being defined via the duality relation

〈F(RLg), w〉 = 〈RLg,Fw〉 = 1
2 (B(qL ∗ g),Fw)L2(R2) ∀w ∈ S(R2).

Now, for an arbitrary Schwartz function w ∈ S(R2) the definition of the back projection B gives

〈RLg,Fw〉 = 1
2π

∫
R

∫
R

∫ π

0
(qL ∗ g)(x cos(θ) + y sin(θ), θ) dθFw(x, y) dx dy

and by applying the parameter transformation

x = t cos(θ)− s sin(θ) and y = t sin(θ) + s cos(θ),

we obtain

〈RLg,Fw〉 = 1
2π

∫
R

∫
R

∫ π

0
(qL ∗ g)(t, θ)Fw(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) dθ dtds

= 1
2π

∫ π

0

∫
R

(qL ∗ g)(t, θ)R(Fw)(t, θ) dt dθ

by Fubini’s theorem and the definition of the Radon transform R. Recall that the operators

F : S(R2) −→ S(R2) and R : L1(R2) −→ L1(R× [0, π))

are continuous and S(R2) ⊂ L1(R2). Consequently, for any θ ∈ [0, π), we obtain

R(Fw)(·, θ) ∈ L1(R) ∀w ∈ S(R2)

and the application of Parseval’s identity∫
R
F−1f(x)h(x) dx =

∫
R
f(x)F−1h(x) dx ∀ f, h ∈ L1(R)
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in combination with the representation

(qL ∗ g)(t, θ) = F−1[AL(t)Fg(t, θ)] for almost all t ∈ R

yields
〈RLg,Fw〉 = 1

2π

∫ π

0

∫
R
AL(t)Fg(t, θ)F−1(R(Fw))(t, θ) dtdθ.

To continue our analysis, we note that the Fourier transform F and its inverse F−1 are related
via

F−1f = (2π)−n (Ff)∗ ∀ f ∈ L1(Rn),

where ∗ : Lp(Rn) −→ Lp(Rn) denotes the parity operator, defined as

f∗(x) = f(−x) for x ∈ Rn.

Since Fw ∈ L1(R2), the Fourier slice Theorem 2.2.11 now gives, for all (t, θ) ∈ R× [0, π),

F−1(R(Fw)
)
(t, θ) = (2π)−1F(R(Fw))(−t, θ) = (2π)−1F(Fw)(−t cos(θ),−t sin(θ))

= 2πF−1(Fw)(t cos(θ), t sin(θ)) = 2π w(t cos(θ), t sin(θ))

by applying the Fourier inversion formula on S(R2). Using this, we subsequently obtain

〈RLg,Fw〉 = 1
2π

∫ π

0

∫
R
AL(t)Fg(t, θ) 2π w(t cos(θ), t sin(θ)) dt dθ

=
∫ π

0

∫
R
WL(t)Fg(t, θ)w(t cos(θ), t sin(θ)) |t| dt dθ.

Transforming back to Cartesian coordinates, i.e., (x, y) = (t cos(θ), t sin(θ)), finally shows that
the (distributional) Fourier transform of RLg is given by

F(RLg)(S cos(θ), S sin(θ)) = WL(S)Fg(S, θ) for almost all (S, θ) ∈ R× [0, π).

Since W ∈ L∞(R) is compactly supported with supp(W ) ⊆ [−1, 1] and g ∈ L2(R × [0, π)),
we can conclude that F(RLg) ∈ L2(R2). Indeed, by transforming to polar coordinates we obtain

‖F(RLg)‖2L2(R2) =
∫ π

0

∫
R
|F(RLg)(S cos(θ), S sin(θ))|2 |S| dS dθ

=
∫ π

0

∫
R
|WL(S)|2 |S| |Fg(S, θ)|2 dS dθ.

Because the scaled window function WL has compact support in [−L,L], we finally obtain

‖F(RLg)‖2L2(R2) ≤
(

ess sup
S∈[−L,L]

|S| |WL(S)|2
)∫ π

0

∫
R
|Fg(S, θ)|2 dS dθ

= 2π L
(

ess sup
S∈[−1,1]

|S| |W (S)|2
)
‖g‖2L2(R×[0,π)) <∞.

By the Rayleigh-Plancherel Theorem A.1.12, we then also have RLg ∈ L2(R2) with

‖RLg‖2L2(R2) = 1
4π2 ‖F(RLg)‖2L2(R2) ≤

L

2π

(
ess sup
S∈[−1,1]

|S| |W (S)|2
)
‖g‖2L2(R×[0,π)),

i.e.,

‖RLg‖L2(R2) ≤
1√
2π

(
ess sup
S∈[−1,1]

|S| |W (S)|2
)1/2

L
1/2 ‖g‖L2(R×[0,π)),

and the proof is complete.
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We are now prepared to analyse the data error fL − f δL in the L2-norm for target functions
f ∈ L1(R2) ∩Hα(R2) with some α > 0 satisfying Rf ∈ L2(R× [0, π)), where

fL = 1
2 B

(
qL ∗ Rf

)
= RL(Rf) and f δL = 1

2 B
(
qL ∗ gδ

)
= RL(gδ)

with noisy measurements gδ ∈ L1(R× [0, π)) ∩ L2(R× [0, π)).

Theorem 4.5.2 (Data error). For α > 0 let f ∈ L1(R2) ∩Hα(R2) satisfy Rf ∈ L2(R× [0, π)).
Further, let W ∈ L∞([−1, 1]) be even and, for δ > 0, let gδ ∈ L1(R× [0, π)) ∩ L2(R× [0, π)) be
given with

‖Rf − gδ‖L2(R×[0,π)) ≤ δ.

Then, the L2-norm of the data error fL − f δL is bounded above by

‖fL − f δL‖L2(R2) ≤ cW L
1/2 δ,

where
c2
W = 1

2π ess sup
S∈[−1,1]

|S| |W (S)|2.

Proof. Since f ∈ L1(R2) implies Rf ∈ L1(R× [0, π)) due to Proposition 2.2.7 and, additionally,
Rf ∈ L2(R × [0, π)) as well as gδ ∈ L1(R × [0, π)) ∩ L2(R × [0, π)) by assumption, we can use
the linear FBP regularization operator RL : L1(R × [0, π)) ∩ L2(R × [0, π)) −→ L2(R2) defined
in (4.21) to obtain the representation

fL − f δL = RL(Rf)−RL(gδ) = RL(Rf − gδ) ∈ L2(R2).

Consequently, applying Theorem 4.5.1 gives the estimate

‖fL − f δL‖L2(R2) ≤
1√
2π

(
ess sup
S∈[−1,1]

|S| |W (S)|2
)1/2

L
1/2 ‖Rf − gδ‖L2(R×[0,π)) ≤ cW L

1/2 δ,

as stated.

4.5.2 Analysis of the overall FBP reconstruction error

We now combine the above results for the data error with previous of our findings for the
approximation error to estimate the L2-norm of the overall FBP reconstruction error eδL in (4.19)
via

‖eδL‖L2(R2) ≤ ‖f − fL‖L2(R2) + ‖fL − f δL‖L2(R2).

For that purpose, we first recall two representative estimates on the approximation error f − fL
from Section 4.3 in the L2-norm depending on properties of the filter’s window function W .

The first estimate on the approximation error f − fL relies on the basic assumption that the
smallest maximizer S∗α,W,L ∈ [0, 1] of the even function

Φα,W,L(S) = (1−W (S))2

(1 + L2S2)α for S ∈ [−1, 1]

is uniformly bounded away from 0, i.e., there exists a constant cα,W > 0 such that

S∗α,W,L ≥ cα,W ∀L > 0. (A)

Theorem 4.5.3 (see Theorem 4.3.1). Let f ∈ L1(R2)∩Hα(R2), for α > 0, andW ∈ L∞([−1, 1]).
Then, the L2-norm of the approximation error f − fL is under Assumption (A) bounded above
by

‖f − fL‖L2(R2) ≤
(
c−αα,W ‖1−W‖L∞([0,1]) + 1

)
L−α ‖f‖α.
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The second L2-error estimate on the approximation error f − fL from Section 4.3 works
with conditions only on the window function W and predicts that the decay rate of the error
saturates depending on the flatness of W at the origin.

Theorem 4.5.4 (see Corollaries 4.3.9 and 4.3.11). For α > 0 let f ∈ L1(R2)∩Hα(R2). Further,
for k ∈ N let W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k − 1 and W (k) ∈ Lp([−1, 1]) with 1 < p ≤ ∞
such that

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, the L2-norm of the approximation error f − fL is bounded above by

‖f − fL‖L2(R2) ≤
(
cα,k,p ‖W (k)‖Lp([0,1]) + 1

)
L−min{k−1/p,α} ‖f‖α

with some constant cα,k,p > 0 independent of W and f .

We are now in the position to bound the overall FBP reconstruction error eδL in the L2-norm.
On the one hand, combining Theorem 4.5.2 with Theorem 4.5.3 gives the estimate

‖eδL‖L2(R2) ≤
(
c−αα,W ‖1−W‖L∞([0,1]) + 1

)
L−α ‖f‖α + cW L

1/2 δ.

By coupling the bandwidth L with the noise level δ via

L = δ−
2

2α+1 ‖f‖
2

2α+1
α

we obtain
‖eδL‖L2(R2) ≤

(
c−αα,W ‖1−W‖L∞([0,1]) + cW + 1

)
‖f‖

1
2α+1
α δ

2α
2α+1 .

Thus, we have just established the following result.

Corollary 4.5.5 (Convergence rates for noisy data I). Let f ∈ L1(R2) ∩ Hα(R2) with α > 0
satisfy Rf ∈ L2(R × [0, π)) and let W ∈ L∞([−1, 1]) such that Assumption (A) is fulfilled.
Further, let gδ ∈ L1(R× [0, π)) ∩ L2(R× [0, π)) be given with

‖Rf − gδ‖L2(R×[0,π)) ≤ δ.

Then, the L2-norm of the overall FBP reconstruction error eδL = f − f δL is bounded above by

‖eδL‖L2(R2) ≤
(
c−αα,W ‖1−W‖L∞([0,1]) + cW + 1

)
‖f‖

1
2α+1
α δ

2α
2α+1 ,

where the bandwidth L is chosen as

L = δ−
2

2α+1 ‖f‖
2

2α+1
α .

In particular,
‖eδL‖L2(R2) = O

(
δ

2α
2α+1

)
for δ ↘ 0.

On the other hand, combining Theorem 4.5.2 with Theorem 4.5.4 yields the estimate

‖eδL‖L2(R2) ≤
(
cα,k,p ‖W (k)‖Lp([0,1]) + 1

)
L−min{k−1/p,α} ‖f‖α + cW L

1/2 δ.

By choosing

L = δ
− 2

2 min{k−1/p,α}+1 ‖f‖
2

2 min{k−1/p,α}+1
α

we now obtain

‖eδL‖L2(R2) ≤
(
cα,k,p ‖W (k)‖Lp([0,1]) + cW + 1

)
‖f‖

1
2 min{k−1/p,α}+1
α δ

2 min{k−1/p,α}
2 min{k−1/p,α}+1 .

We summarize our discussion as follows.
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Corollary 4.5.6 (Convergence rates for noisy data II). Let f ∈ L1(R2) ∩ Hα(R2) with α > 0
satisfy Rf ∈ L2(R× [0, π)). Further, for k ∈ N let W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k− 1 and
W (k) ∈ Lp([−1, 1]) with 1 < p ≤ ∞ such that

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Finally, let gδ ∈ L1(R× [0, π)) ∩ L2(R× [0, π)) be given with

‖Rf − gδ‖L2(R×[0,π)) ≤ δ.

Then, the L2-norm of the overall FBP reconstruction error eδL = f − f δL is bounded above by

‖eδL‖L2(R2) ≤
(
cα,k,p ‖W (k)‖Lp([0,1]) + cW + 1

)
‖f‖

1
2 min{k−1/p,α}+1
α δ

2 min{k−1/p,α}
2 min{k−1/p,α}+1 ,

where the bandwidth L is chosen as

L = δ
− 2

2 min{k−1/p,α}+1 ‖f‖
2

2 min{k−1/p,α}+1
α .

In particular,

‖eδL‖L2(R2) = O
(
δ

2 min{k−1/p,α}
2 min{k−1/p,α}+1

)
for δ ↘ 0.

Note that the decay rate of the L2-error bound in Corollary 4.5.5 is given by

‖f − f δL‖L2(R2) = O
(
δ

2α
2α+1

)
for δ ↘ 0,

where the filter’s bandwidth L > 0 has to go to ∞ as the noise level δ > 0 goes to 0 with rate

L = O
(
δ−

2
2α+1

)
for δ ↘ 0.

In particular, we observe that the L2-error bound approaches the optimal convergence order

‖f − f δL‖L2(R2) = O(δ) for δ ↘ 0

as the smoothness α of the target function f goes to ∞. In contrast to that, the order of
convergence of the L2-error bound in Corollary 4.5.6 saturates at rate

‖f − f δL‖L2(R2) = O
(
δ

2(k−1/p)
2(k−1/p)+1

)
for δ ↘ 0.

To achieve convergence, the bandwidth L again has to go to ∞ as the noise level δ tends to 0,
but now with rate

L = O
(
δ
− 2

2(k−1/p)+1
)

for δ ↘ 0.

Optimal choice of the bandwidth L

In this last paragraph we now determine the optimal bandwidth L minimizing the error bound
in

‖f − f δL‖L2(R2) ≤ c1 L
−γ ‖f‖α + c2 L

1/2 δ,

where
c1 = c−αα,W ‖1−W‖L∞([0,1]) + 1, c2 = cW , γ = α

or
c1 = cα,k,p ‖W (k)‖Lp([0,1]) + 1, c2 = cW , γ = min{k − 1/p, α},

respectively, see Corollaries 4.5.5 and 4.5.6.
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To this end, we define the auxiliary function

ϕ(L) = c1 L
−γ ‖f‖α + c2 L

1/2 δ for L > 0.

Differentiating yields

ϕ′(L) = −γ c1 L
−γ−1 ‖f‖α + 1

2 c2 L
−1/2 δ ∀L > 0

such that
ϕ′(L) = 0 ⇐⇒ L =

(
2γ c1

c2

) 2
2γ+1

δ
− 2

2γ+1 ‖f‖
2

2γ+1
α .

This choice of L yields the global minimum of the continuously differentiable function ϕ on R>0,
since it is the only stationary point of ϕ : R>0 −→ R>0 and

ϕ(L) −→∞ for L↘ 0

as well as
ϕ(L) −→∞ for L −→∞.

Consequently, the minimal error bound on ‖f − f δL‖L2(R2) is given by

‖f − f δL‖L2(R2) ≤ c1
(
2γ c1

c2

)− 2γ
2γ+1

δ
2γ

2γ+1 ‖f‖
− 2γ

2γ+1
α ‖f‖α + c2

(
2γ c1

c2

) 1
2γ+1

δ
− 1

2γ+1 ‖f‖
1

2γ+1
α δ

= c
1

2γ+1
1 c

2γ
2γ+1
2 (2γ + 1) (2γ)−

2γ
2γ+1 δ

2γ
2γ+1 ‖f‖

1
2γ+1
α .

In summary, we obtain the following result concerning the convergence rates for noisy data.
Corollary 4.5.7 (Convergence rates for noisy data III). Let f ∈ L1(R2) ∩ Hα(R2) for α > 0
and let the window function W satisfy one of the following assumptions:
(i) W ∈ L∞([−1, 1]) such that Assumption (A) is fulfilled,

(ii) W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k−1 with k ∈ N andW (k) ∈ Lp([−1, 1]) with 1 < p ≤ ∞
such that

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Further, let gδ ∈ L1(R× [0, π)) ∩ L2(R× [0, π)) be given with

‖Rf − gδ‖L2(R×[0,π)) ≤ δ.

Then, the L2-norm of the overall FBP reconstruction error eδL = f − f δL is bounded above by

‖eδL‖L2(R2) ≤ cγ δ
2γ

2γ+1 ‖f‖
1

2γ+1
α

with
cγ = c

1
2γ+1
1 c

2γ
2γ+1
2 (2γ + 1) (2γ)−

2γ
2γ+1

and
L =

(
2γ c1

c2

) 2
2γ+1

δ
− 2

2γ+1 ‖f‖
2

2γ+1
α ,

where
(i) c1 = c−αα,W ‖1−W‖L∞([0,1]) + 1, c2 = cW , γ = α

or
(ii) c1 = cα,k,p ‖W (k)‖Lp([0,1]) + 1, c2 = cW , γ = min{k − 1/p, α}.

In particular,
‖eδL‖L2(R2) = O

(
δ

2γ
2γ+1

)
for δ ↘ 0.

In conclusion, we observe that the choice of the bandwidth L in Corollaries 4.5.5 and 4.5.6
leads to optimal convergence rates of the error bounds as the noise level δ goes to 0.



Chapter 5

Numerical experiments

In Chapter 2 we have seen that we can reconstruct a bivariate function f ∈ L1(R2) from its
given Radon data

{Rf(t, θ) | t ∈ R, θ ∈ [0, π)}
under suitable assumptions by applying the classical filtered back projection (FBP) formula (2.9),
i.e.,

f(x, y) = 1
2 B

(
F−1[|S|F(Rf)(S, θ)]

)
(x, y) ∀ (x, y) ∈ R2.

However, the FBP formula is highly sensitive with respect to noise and, thus, cannot be used
in practice. For that reason, in Chapter 3 we have explained how the FBP formula can be
stabilized by incorporating a low-pass filter AL : R −→ R of the form

AL(S) = |S|WL(S) = |S|W (S/L) for S ∈ R

with finite bandwidth L > 0 and an even window function W ∈ L∞(R) with supp(W ) ⊆ [−1, 1].
This reduces the noise sensitivity of the FBP formula, but only leads to an approximate FBP
reconstruction fL given by

fL = 1
2 B

(
F−1AL ∗ Rf

)
.

In Chapter 4 we have then analysed the inherent FBP reconstruction error eL = f −fL which is
incurred by the application of the low-pass filter AL. To this end, we have proven error estimates
on eL for target functions f from Sobolev spaces Hα(R2) of fractional order α > 0 depending
on the bandwidth L and window W . To be more precise, we have estimated the Hσ-norm of eL
for all 0 ≤ σ ≤ α. In particular, we have proven convergence rates for the approximate FBP
reconstruction fL as the bandwidth L goes to infinity, where we have observed saturation of the
order of convergence at fractional rates depending on smoothness properties of the window W .

In this chapter we finally provide numerical experiments to evaluate the inherent FBP recon-
struction error eL numerically and to validate our error theory from Chapter 4. In the following,
however, we restrict ourselves to the classical L2-case and let σ = 0. Further, we remark that
the approximate FBP reconstruction formula assumes the Radon data Rf(t, θ) to be available
for all parameters (t, θ) ∈ R × [0, π). In practice, however, only finitely many Radon samples
are given and we have to recover the function f from a finite set of Radon data

{Rf(tj , θj) | j = 1, . . . , J} for some J ∈ N.

This requires a suitable discretization of the approximate FBP method, leading to inevitable
discretization errors that are not covered by our error theory in Chapter 4. In the first section of
this chapter we describe a standard discretization of the FBP method. Following this, we explain
the notion of mathematical phantoms and introduce analytical test cases for our numerical
experiments. In the last part, we finally investigate the reconstruction error of the FBP method
numerically, where our findings will be consistent with our theoretical results and, in particular,
the predicted saturation of the order of convergence at fractional rates will be observed.
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5.1 Discretization of the FBP method
In this section we describe how to implement the method of filtered back projection for the
reconstruction of a bivariate function f ∈ L1(R2) ∩ L2(R2) from finitely many Radon samples

{(Rf)j,k | j = −M, . . . ,M, k = 0, . . . , N − 1} .

The starting point for our elaborations is the representation (3.4) of the approximate FBP
reconstruction fL, i.e.,

fL = 1
2 B

(
F−1AL ∗ Rf

)
, (5.1)

where AL denotes a fixed low-pass filter of the form

AL(S) = |S|WL(S) = |S|W (S/L) for S ∈ R

with finite bandwidth L > 0 and an even window function W ∈ L∞(R) with supp(W ) ⊆ [−1, 1].
The implementation of the FBP method requires a suitable discretization of the approximate

reconstruction formula. To be more precise, we have to discretize the convolution product ∗ and
the back projection operator B. This also includes the specification of a sampling scheme for
the Radon transform Rf and the inverse Fourier transform F−1AL of the chosen low-pass filter.
To this end, we follow a standard discretization approach and proceed as in [82, Section V.1].

5.1.1 Parallel beam geometry

A commonly used sampling scheme for the data acquisition is given by the so called parallel
beam geometry, where the Radon lines `t,θ are equally spaced in both the radial parameter t ∈ R
and the angular parameter θ ∈ [0, π). More precisely, for N uniformly distributed angles we
collect Radon samples along 2M + 1 parallel lines per angle with a fixed spacing d > 0. Hence,
the Radon data are of the form

(Rf)j,k = Rf(tj , θk)

with
θk = k · π

N
for k = 0, . . . , N − 1

and
tj = j · d for j = −M, . . . ,M

so that in total N · (2M + 1) Radon samples are taken. For illustration, Figure 5.1 shows the
arrangement of 108 Radon lines in [−1, 1]2 with N = 12, M = 4 and sampling spacing d = 0.25.

Figure 5.1: Parallel beam geometry with N = 12, M = 4 and d = 0.25.
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Shannon sampling

Before we come to the discretization of the FBP method (5.1), we first discuss the sampling
process in more detail, which will help to select a sample spacing d. In this paragraph we will see
that we can uniquely recover a band-limited function h ∈ L2(R) from uniformly spaced discrete
function values h(tj), for j ∈ Z, if the sampling distance d = tj+1− tj is chosen reasonably. This
is the statement of the classical Shannon sampling theorem and the sample spacing d corresponds
to the smallest detail in h that is still recognizable after sampling the function.

Theorem 5.1.1 (Shannon sampling theorem, see [16, Theorem 4.35] or [19, Theorem 3.10.1]).
Let h ∈ L2(R) be a band-limited function with supp(Ff) ⊆ [−L,L] for some bandwidth L > 0.
Then, h is uniquely determined by the discrete values h

(
πk
L

)
, for k ∈ Z, and we have

h(t) =
∑
k∈Z

h
(πk
L

)
sinc(Lt− kπ) ∀ t ∈ R. (5.2)

Proof. Let h ∈ L2(R) be band-limited with supp(Fh) ⊆ [−L,L] for some bandwidth L > 0. By
the Rayleigh-Plancherel Theorem A.1.12 we then have Fh ∈ L2([−L,L]) ⊂ L1([−L,L]), which
implies that h has a continuous representative due to the Riemann-Lebesgue Lemma A.1.2.
Thus, the Fourier inversion formula (A.3) holds pointwise and in L2-sense yielding

h(t) = F−1(Fh)(t) = 1
2π

∫ L

−L
Fh(ω) eiωt dω = 1

2L

∫ π

−π
Fh
(Lω
π

)
eiωLt/π dω ∀ t ∈ R.

For fixed t ∈ R we now consider the Fourier expansion of eiωLt/π as a function in L2([−π, π]),
which is given by

eiωLt/π =
∑
k∈Z

ck eiωk ∀ω ∈ [−π, π]

with the Fourier coefficients

ck = 1
2π

∫ π

−π
eiωLt/π e−iωk dω = 1

2

∫ 1

−1
ei (Lt−kπ)ω dω = sinc(Lt− kπ) ∀ k ∈ Z.

Recall that the partial sums of the above Fourier series converge in the L2-norm, i.e.,∫ π

−π

∣∣∣∣eiωLt/π −
n∑

k=−n
ck eiωk

∣∣∣∣2 dω −→ 0 for n −→∞.

Since Fh ∈ L2([−L,L]), this in combination with the Cauchy-Schwarz inequality implies that∣∣∣∣∣∣
∫ π

−π
Fh
(Lω
π

)
eiωLt/π dω −

n∑
k=−n

ck

∫ π

−π
Fh
(Lω
π

)
eiωk dω

∣∣∣∣∣∣ −→ 0 for n −→∞.

Consequently, we can interchange the order of summation and integration so that, for all t ∈ R,

h(t) = 1
2L

∫ π

−π
Fh
(Lω
π

) ∑
k∈Z

sinc(Lt− kπ) eiωk dω =
∑
k∈Z

sinc(Lt− kπ) 1
2L

∫ π

−π
Fh
(Lω
π

)
eiωk dω

=
∑
k∈Z

sinc(Lt− kπ) 1
2π

∫ L

−L
Fh(ω) eiωπk/L dω =

∑
k∈Z

h
(πk
L

)
sinc(Lt− kπ),

where we again use the Fourier inversion formula (A.3).

We remark that the formula (5.2) is also called Shannon-Whittaker interpolation formula
and the sample spacing d = π

L is known as the Nyquist rate. Since a band-limited function h
of bandwidth L > 0 contains no details smaller than 2π

L , the Nyquist rate requires that h is
sampled with a sampling distance d at most half of the smallest detail contained in h.
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Remark 5.1.2. If h ∈ S(R) is only essentially L-band-limited in the sense that, for 0 < ε� 1,∫
R\[−L,L]

|Fh(ω)| dω ≤ ε,

the reconstruction of h from discrete samples h(k · d), for k ∈ Z and sampling distance d > 0,
by using

Sdh(t) =
∑
k∈Z

h(k · d) sinc
(π
d

(t− k · d)
)

for t ∈ R

is no longer exact. If d ≤ π
L , however, [82, Theorem III.1.3] shows that the reconstruction error

can be bounded by
‖Sdh− h‖L∞(R) ≤

ε

π
.

5.1.2 Discrete FBP reconstruction formula

We now address the discretization of the FBP method (5.1) for the approximate reconstruction
of a target function f from discrete Radon data {(Rf)j,k} given in parallel beam geometry, i.e.,

(Rf)j,k = Rf(tj , θk)

with
tj = j · d for −M ≤ j ≤M and θk = k · π

N
for 0 ≤ k ≤ N − 1.

To this end, from now on we assume that f is compactly supported with

supp(f) ⊆ Br(0) for some r ∈ N.

Note that this is typically satisfied in relevant applications, cf. Remark 4.2.9, and implies that
the Radon transform Rf of f has compact support as well due to Proposition 2.2.9, since for
all angles θ ∈ [0, π) follows that

Rf(t, θ) = 0 ∀ |t| > r.

We start with discretizing the convolution product ∗ in (5.1) between the Radon dataRf and
the inverse Fourier transform F−1AL of the low-pass filter AL. Here, for fixed angle θ ∈ [0, π),
we have to approximate the convolution integral

(F−1AL ∗ Rf)(S, θ) =
∫
R
F−1AL(S − t)R(t, θ) dt for S ∈ R

by only using the discrete data

Rf(tj , θ) = Rf(j · d, θ) for j ∈ Z

taken at equally spaced sampling points tj = j ·d, for j ∈ Z, with fixed sampling distance d > 0.
To achieve this, we apply the composite trapezoidal rule and replace the above convolution
integral by the (infinite) sum

(F−1AL ∗ Rf)(S, θ) ≈ d
∑
j∈Z
F−1AL(S − tj)Rf(tj , θ) for (S, θ) ∈ R× [0, π).

Since f is assumed to have compact support, the above sum is in fact finite and, consequently,
we obtain

(F−1AL ∗ Rf)(S, θ) ≈ d
M∑

j=−M
F−1AL(S − tj)Rf(tj , θ) for (S, θ) ∈ R× [0, π),

where M ∈ N is chosen sufficiently large such that, for any angle θ ∈ [0, π),

Rf(t, θ) = 0 ∀ |t| > M · d.
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Let us continue with the discretization of the back projection operator B. By Definition 2.2.15
the back projection Bh of a function h ≡ h(S, θ) in polar coordinates is given by

Bh(x, y) = 1
π

∫ π

0
h(x cos(θ) + y sin(θ), θ) dθ for (x, y) ∈ R2.

In (5.1), this has to be applied to the function

h(S, θ) = (F−1AL ∗ Rf)(S, θ) for (S, θ) ∈ R× [0, π),

where the Radon data Rf(t, θ) is only known for a finite set of N angles

θk = k · π
N

for k = 0, . . . , N − 1.

Thus, for the discretization of B we again use the composite trapezoidal rule and replace the
above integral by the sum

Bh(x, y) ≈ 1
N

N−1∑
k=0

h(x cos(θk) + y sin(θk), θk) for (x, y) ∈ R2.

Combining the discretization steps leads us to a discrete version of the FBP method (5.1)
given by

fD(x, y) = d

2N

N−1∑
k=0

M∑
j=−M

F−1AL(x cos(θk) + y sin(θk)− tj)Rf(tj , θk) for (x, y) ∈ R2.

By defining the discrete convolution ∗D of F−1AL and Rf as

(F−1AL ∗D Rf)(S, θ) = d
M∑

j=−M
F−1AL(S − tj)Rf(tj , θ) for (S, θ) ∈ R× [0, π)

and the discrete back projection BD of a function h ≡ h(S, θ) in polar coordinates via

BDh(x, y) = 1
N

N−1∑
k=0

h(x cos(θk) + y sin(θk), θk) for (x, y) ∈ R2,

we can rewrite fD in compact form as

fD = 1
2 BD

(
F−1AL ∗D Rf

)
.

The evaluation of the discrete reconstruction fD requires the computation of the values

(F−1AL ∗D Rf)(x cos(θk) + y sin(θk), θk) ∀ 0 ≤ k ≤ N − 1

for each reconstruction point (x, y) ∈ R2. To reduce the computational costs, we evaluate, for
each 0 ≤ k ≤ N − 1, the function

h(t, θk) = (F−1AL ∗D Rf)(t, θk) = d
M∑

j=−M
F−1AL(t− tj)Rf(tj , θk) for t ∈ R

only at the sampling points ti = i · d for i ∈ I with a sufficiently large index set I ⊂ Z. For each
reconstruction point (x, y) ∈ R2 we then interpolate the value h(t, θk) at t = x cos(θk)+y sin(θk)
by using a suitable interpolation method I. This leads us to the discrete FBP reconstruction
formula

fFBP = 1
2 BD

(
I
[
F−1AL ∗D Rf

])
. (5.3)
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According to [82, Section III.3] the optimal sampling conditions for the reconstruction of an
essentially L-band-limited target function f supported in the unit disc B1(0), i.e., r = 1, are
given by

d ≤ π

L
, M ≥ 1

d
, N ≥ L

leading to the well-known optimal sampling relation

N = π ·M.

Here, the restriction d ≤ π
L ensures that the convolution ∗ in (5.1) is properly discretized, while

N ≥ L guarantees a satisfactory discretization of the back projection B via the trapezoidal rule.
Since for fixed angle θ ∈ [0, π) the function

h(S) = (F−1AL ∗ Rf)(S, θ) for S ∈ R

is band-limited with bandwidth L, the condition on d corresponds to the Nyquist rate for h
according to the Shannon sampling Theorem 5.1.1. Finally, the relation M ≥ 1

d ensures that
the whole support of the target function f is covered during the acquisition of the Radon data.

Since we assume that f is supported in Br(0) for some r ∈ N and N,M have to be integers,
we couple the discretization parameters d > 0 and M,N ∈ N with the bandwidth L via

d = π

L
, M = r · L

π
, N = 3 ·M

and choose L to be a multiple of π, i.e., L = π ·K for some K ∈ N.
We summarize the discrete FBP method in the following image reconstruction algorithm,

where we assume that the reconstruction fFBP in (5.3) is evaluated in Cartesian grid points{
(xm, yn) ∈ R2 | (m,n) ∈ Ix × Iy

}
with finite index sets Ix × Iy ⊂ N× N.

Algorithm 1 Discrete FBP method
Input: Radon data (Rf)j,k = Rf(tj , θk) for j = −M, . . . ,M , k = 0, . . . , N − 1

1: choose low-pass filter AL with bandwidth L > 0

2: for k = 0, . . . , N − 1 do . Computation of the discrete convolution
3: for i ∈ I do

4: h(ti, θk) = π

L

M∑
j=−M

F−1AL(ti − tj)Rf(tj , θk)

5: end for
6: end for

7: choose interpolation method I

8: for m ∈ Ix do . Computation of the discrete back projection
9: for n ∈ Iy do

10: fFBP(xm, yn) = 1
2N

N−1∑
k=0
Ih(xm cos(θk) + yn sin(θk), θk)

11: end for
12: end for

Output: Approximate reconstruction fFBP on Cartesian grid {(xm, yn) | (m,n) ∈ Ix × Iy}
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There are many possible choices for the interpolation method I. In the following, we give
two examples that are commonly used.

Example 5.1.3 (Interpolation schemes, see [33, Section 8.8]). Let the samples gj = g(tj) of a
univariate function g ≡ g(t) be given at equidistant sampling points tj = j · d for j ∈ Z and a
fixed sampling distance d > 0. To approximate the function value g(t) at a given point t ∈ R we
use one of the following interpolation schemes.

• Nearest neighbour interpolation:
Let t ∈ [tm, tm+1) for some m ∈ Z. Then, the function value g(t) is approximated by

I0g(t) =
{
g(tm) for t− tm ≤ tm+1 − t
g(tm+1) for t− tm > tm+1 − t.

This defines a piecewise constant interpolant I0g of g, which is discontinuous in general.
Note that by considering the characteristic function

χ[− 1
2 ,

1
2 )(t) =

{
1 for t ≥ −1

2 ∧ t <
1
2

0 for t < −1
2 ∨ t ≥

1
2 ,

we can express I0g as

I0g(t) =
∑
m∈Z

gm · χ[− 1
2 ,

1
2 )

(
t

d
−m

)
∀ t ∈ R.

• Linear spline interpolation:
Let t ∈ [tm, tm+1) for some m ∈ Z. Then, the function value g(t) is approximated by

I1g(t) = 1
d

[(t− tm) g(tm+1) + (tm+1 − t) g(tm)] .

This defines a piecewise linear interpolant I1g of g, which is globally continuous. Note
that by considering the hat function

∧
(t) =

{
1− |t| for |t| ≤ 1
0 for |t| > 1,

we can express I1g as

I1g(t) =
∑
m∈Z

gm ·
∧( t

d
−m

)
∀ t ∈ R.

We remark that for target functions f of low regularity it is sufficient to use linear spline
interpolation in the discrete FBP method (5.3), whereas nearest neighbour interpolation is
usually not satisfactory. This has also been found in practical tests in [106]. To exploit a higher
regularity of f , we additionally use cubic spline interpolation with not-a-knot end conditions in
our numerical simulations. Here, we refrain from giving the details on standard spline theory
and instead refer the reader to the textbooks [3], [15], [56].

Finally, we remark that the different discretization steps introduce additional discretization
errors that are not included in our error theory in Chapter 4. However, the discretization of the
FBP method (5.1) is necessary for providing numerical examples and analysing the resulting
discretization errors is beyond the aims and scopes of this thesis. For work in this direction, we
refer to the standard reference [82, Section V.1] and to the research articles [32], [57].
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5.1.3 Inverse Fourier transform of low-pass filters

The computation of the discretized approximate FBP reconstruction fFBP in (5.3), i.e.,

fFBP = 1
2 BD

(
I
[
F−1AL ∗D Rf

])
,

requires the evaluation of the inverse Fourier transform F−1AL of the utilized low-pass filter AL
at the sampling points

tj = j · π
L

for j ∈ Z.

Thus, in the following we derive analytical expressions for the samples F−1AL
( jπ
L

)
, for j ∈ Z, for

typical choices of the low-pass filter AL, including the Ram-Lak, Shepp-Logan, Cosine, Hamming
and Gaussian filters we introduced in Examples 3.2.8 – 3.2.12.

We begin with the Ram-Lak filter from Example 3.2.8, see also Example 3.3.8.

Proposition 5.1.4. The inverse Fourier transform of the Ram-Lak filter

AL(S) = |S| · ⊔L(S) for S ∈ R

is given by

F−1AL(t) = L2

2π
(
2 sinc(Lt)− sinc2(Lt/2)

)
∀ t ∈ R.

Further, the evaluation of F−1AL at tj = j · d for j ∈ Z and sample spacing d = π
L yields

F−1AL
(jπ
L

)
=


L2

2π for j = 0
0 for j 6= 0 even
− 2L2

π3j2 for j 6= 0 odd.

Proof. In Example 3.3.8 we have already seen that the inverse Fourier transform of AL is given
by

F−1AL(t) = L2

2π
(
2 sinc(Lt)− sinc2(Lt/2)

)
∀ t ∈ R.

Thus, the evaluation at tj = jπ
L , for j ∈ Z, yields

F−1AL
(jπ
L

)
= L2

2π
(
2 sinc(jπ)− sinc2(jπ/2)

)
=


L2

2π for j = 0
0 for j 6= 0 even
− 2L2

π3j2 for j 6= 0 odd.

and the proof is complete.

Let us continue with the Shepp-Logan filter from Example 3.2.9.

Proposition 5.1.5. The inverse Fourier transform of the Shepp-Logan filter

AL(S) = |S| · sinc
(πS

2L
)
· ⊔L(S) for S ∈ R

is given by

F−1AL(t) = 4L2

π2
π − 2Lt sin(Lt)
π2 − 4L2t2

∀ t ∈ R.

Further, the evaluation of F−1AL at tj = j · d for j ∈ Z and sample spacing d = π
L yields

F−1AL
(jπ
L

)
= 4L2

π3(1− 4j2) .
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Proof. Since AL is even and compactly supported with supp(AL) ⊆ [−L,L], its inverse Fourier
transform is given by the inverse cosine transform and for all t ∈ R follows that

F−1AL(t) = 1
π

∫ L

0
S sinc

(πS
2L
)

cos(tS) dS = L

π2

∫ L

0
sin
(( π

2L − t
)
S
)

+ sin
(( π

2L + t
)
S
)

dS

= L

π2

(cos(Lt− π/2)− 1
t− π/(2L)

− cos(Lt+ π/2)− 1
t+ π/(2L)

)
= 4L2

π2
π − 2Lt sin(Lt)
π2 − 4L2t2

by using the trigonometric identity

sin(x) cos(y) = sin(x− y) + sin(x+ y)
2 ∀x, y ∈ R.

Thus, by evaluating at tj = jπ
L , for j ∈ Z, we obtain

F−1AL
(jπ
L

)
= 4L2π

π2(π2 − 4j2π2) = 4L2

π3(1− 4j2) ,

as stated.

We now consider the Cosine filter from Example 3.2.10.

Proposition 5.1.6. The inverse Fourier transform of the Cosine filter

AL(S) = |S| · cos
(πS

2L
)
· ⊔L(S) for S ∈ R

is given by

F−1AL(t) = 2L2 cos(Lt)
π2 − 4L2t2

+ 16L3t sin(Lt)
(π2 − 4L2t2)2 −

4L2(π2 + 4L2t2)
π(π2 − 4L2t2)2 ∀ t ∈ R.

Further, the evaluation of F−1AL at tj = j · d for j ∈ Z and sample spacing d = π
L yields

F−1AL
(jπ
L

)
= 2L2

π2

(
(−1)j

1− 4j2 −
2(1 + 4j2)
π(1− 4j2)2

)
.

Proof. Since AL is even, we again apply the inverse cosine transform and obtain, for all t ∈ R,

F−1AL(t) = 1
π

∫ L

0
S cos

(πS
2L
)

cos(tS) dS = 1
2π

∫ L

0
S

(
cos

(
tS − πS

2L

)
+ cos

(
tS + πS

2L

))
dS

= L2

π

(sin(Lt− π/2)
2Lt− π + sin(Lt+ π/2)

2Lt+ π

)
− L

π

∫ L

0

sin
(
(t− π

2L)S
)

2Lt− π +
sin
(
(t+ π

2L)S
)

2Lt+ π
dS

by using the trigonometric identity

cos(x) cos(y) = cos(x− y) + cos(x+ y)
2 ∀x, y ∈ R.

Consequently, we have

F−1AL(t) = 2L2 cos(Lt)
π2 − 4L2t2

+ 2L2

π

(cos(Lt− π/2)− 1
(2Lt− π)2 + cos(Lt+ π/2)− 1

(2Lt+ π)2

)
= 2L2 cos(Lt)
π2 − 4L2t2

+ 16L3t sin(Lt)
(π2 − 4L2t2)2 −

4L2(π2 + 4L2t2)
π(π2 − 4L2t2)2 .

Hence, for t = jπ
L with j ∈ Z follows that

F−1AL
(jπ
L

)
= 2L2 cos(jπ)
π2 − 4j2π2 −

4L2(π2 + 4j2π2)
π(π2 − 4j2π2)2 = 2L2

π2

(
(−1)j

1− 4j2 −
2(1 + 4j2)
π(1− 4j2)2

)
,

which completes the proof.
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The next proposition deals with the Hamming filter from Example 3.2.11.
Proposition 5.1.7. The inverse Fourier transform of the Hamming filter

AL(S) = |S| ·
(
β + (1− β) cos

(πS
L

))
· ⊔L(S) for S ∈ R

with parameter β ∈
[1

2 , 1
]
is given by

F−1AL(t) = β RL(t) + (1− β)CL(t) ∀ t ∈ R

with
RL(t) = L2

2π
(
2 sinc(Lt)− sinc2(Lt/2)

)
for t ∈ R

and
CL(t) = L2

π

(
Lt sin(Lt)
π2 − L2t2

− (cos(Lt) + 1) (π2 + L2t2)
(π2 − L2t2)2

)
for t ∈ R.

Further, the evaluation of F−1AL at tj = j · d for j ∈ Z and sample spacing d = π
L yields

F−1AL
(jπ
L

)
=


β L2

2π − (1− β) 2L2

π3 for j = 0
(1− β) L2

4π − β
2L2

π3 for j ∈ {−1, 1}
−(1− β) 2L2(1+j2)

π3(1−j2)2 for j 6∈ {−1, 0, 1} even
−β 2L2

π3j2 for j 6∈ {−1, 0, 1} odd.

Proof. The Hamming filter is a combination of the Ram-Lak filter and a modified Cosine filter.
Thus, for t ∈ R we have

F−1AL(t) = β RL(t) + (1− β)CL(t),
where

RL(t) = L2

2π
(
2 sinc(Lt)− sinc2(Lt/2)

)
due to Proposition 5.1.4 and, analogous to the calculations in Proposition 5.1.6,

CL(t) = 1
π

∫ L

0
S cos

(πS
L

)
cos(tS) dS = 1

2π

∫ L

0
S

(
cos

(
tS − πS

L

)
+ cos

(
tS + πS

L

))
dS

= L2

2π

(sin(Lt− π)
Lt− π

+ sin(Lt+ π)
Lt+ π

)
− L

2π

∫ L

0

sin
(
(t− π

L)S
)

Lt− π
+

sin
(
(t+ π

L)S
)

Lt+ π
dS

= L2

2π

(2Lt sin(Lt)
π2 − L2t2

+ cos(Lt− π)− 1
(Lt− π)2 + cos(Lt+ π)− 1

(Lt+ π)2

)
= L2

π

(
Lt sin(Lt)
π2 − L2t2

− (cos(Lt) + 1) (π2 + L2t2)
(π2 − L2t2)2

)
.

Thus, evaluating at tj = jπ
L , for j ∈ Z, yields

F−1AL
(jπ
L

)
= β RL

(jπ
L

)
+ (1− β)CL

(jπ
L

)
with

RL
(jπ
L

)
= L2

2π
(
2 sinc(jπ)− sinc2(jπ/2)

)
=


L2

2π for j = 0
0 for j 6= 0 even
− 2L2

π3j2 for j 6= 0 odd
and

CL
(jπ
L

)
= L2

π

(
j sin(jπ)
π(1− j2) −

(cos(jπ) + 1) (1 + j2)
π2(1− j2)2

)
=


L2

4π for j ∈ {−1, 1}
0 for j 6∈ {−1, 1} odd
−2L2(1+j2)
π3(1−j2)2 for j 6∈ {−1, 1} even,

where we use l’Hospital’s rule in the last step. Combining the results completes the proof.
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Before we come to the inverse Fourier transform of the Gaussian filter from Example 3.2.12,
we first recall the definitions of the error function

erf(z) = 2√
π

∫ z

0
e−w2 dw for z ∈ C

and the Dawson function
D(z) = e−z2

∫ z

0
ew2 dw for z ∈ C,

which are related via
i ez2

D(z) =
√
π

2 erf(iz) ∀ z ∈ C. (5.4)

Proposition 5.1.8. The inverse Fourier transform of the Gaussian filter

AL(S) = |S| · exp
(
−
(πS
βL

)2)
· ⊔L(S) for S ∈ R

with parameter β > 1 is given by

F−1AL(t) = −β
2L2

2π3

(
cos(Lt) e−(π

β
)2
− 1 + βLt

π
DL(t)

)
∀ t ∈ R

with
DL(t) = Re

(
D
(βLt

2π
)
− eiLt−(π

β
)2
D
(βLt

2π + iπ
β

))
for t ∈ R.

Further, the evaluation of F−1AL at tj = j · d for j ∈ Z and sample spacing d = π
L yields

F−1AL
(jπ
L

)
= β2L2

2π3

(
1− (−1)j e−(π

β
)2
− βj Re

(
D
(βj

2
)
− (−1)j e−(π

β
)2
D
(βj

2 + iπ
β

)))
.

Proof. Since AL is even, its inverse Fourier transform is given by the inverse cosine transform
and for t ∈ R follows that

F−1AL(t) = 1
π

∫ L

0
S exp

(
−
(πS
βL

)2)
cos(tS) dS = −β

2L2

2π3

∫ L

0

d
dS

(
e−(πS

βL
)2
)

cos(tS) dS

= −β
2L2

2π3

(
cos(Lt) e−(π

β
)2
− 1 + t

∫ L

0
sin(tS) e−(πS

βL
)2

dS
)
.

By using the identity
sin(x) = 1

2i
(
eix − e−ix

)
∀x ∈ R,

we obtain∫ L

0
sin(tS) e−(πS

βL
)2

dS = 1
2i

(∫ L

0
eitS−(πS

βL
)2

dS −
∫ L

0
e−itS−(πS

βL
)2

dS
)

= 1
2i e−(βLt2π )2

(∫ L

0
e−(πS

βL
− iβLt

2π )2
dS −

∫ L

0
e−(πS

βL
+ iβLt

2π )2
dS
)
,

where∫ L

0
e−(πS

βL
± iβLt

2π )2
dS = βL

π

∫ π
β
±iβLt2π

±iβLt2π

e−w2 dw = βL

π

(∫ π
β
±iβLt2π

0
e−w2 dw −

∫ ±iβLt2π

0
e−w2 dw

)

= βL

2
√
π

(
erf
(π
β
± iβLt2π

)
− erf

(
± iβLt2π

))
.
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This, in combination with the property

erf(z) = erf(z) ∀ z ∈ C,

implies that∫ L

0
sin(tS) e−(πS

βL
)2

dS = βL

2
√
π

e−(βLt2π )2 Im
(

erf
(π
β
− iβLt

2π
)
− erf

(
− iβLt

2π
))
.

Further, the relation (5.4) between the Dawson function D and the error function erf yields
√
π

2 e−(βLt2π )2 erf
(
− iβLt

2π
)

= iD
(
− βLt

2π
)

and √
π

2 e−(βLt2π )2 erf
(π
β
− iβLt

2π
)

= i eiLt−(π
β

)2
D
(
− βLt

2π −
iπ
β

)
so that ∫ L

0
sin(tS) e−(πS

βL
)2

dS = βL

π
Re
(
e

iLt−(π
β

)2
D
(
− βLt

2π −
iπ
β

)
−D

(
− βLt

2π
))
.

Since D is an odd function, combining the results now shows that

F−1AL(t) = −β
2L2

2π3

(
cos(Lt) e−(π

β
)2
− 1 + βLt

π
DL(t)

)
with

DL(t) = Re
(
D
(βLt

2π
)
− eiLt−(π

β
)2
D
(βLt

2π + iπ
β

))
.

Finally, the evaluation at t = jπ
L , for j ∈ Z, yields

F−1AL
(jπ
L

)
= β2L2

2π3

(
1− (−1)j e−(π

β
)2
− βj Re

(
D
(βj

2
)
− (−1)j e−(π

β
)2
D
(βj

2 + iπ
β

)))
,

as stated.

In Example 4.3.2 we defined the generalized Ramp filter. The next proposition deals with
its inverse Fourier transform.

Proposition 5.1.9. The inverse Fourier transform of the generalized Ramp filter

AL(S) =


|S| for |S| ≤ βL

1
1−β

(
1− βλ− 1−λ

L |S|
)
|S| for βL < |S| ≤ L

0 for |S| > L

of width β ∈ [0, 1) and jump height λ ∈ [0, 1] is given by

F−1AL(t) = L2

2π(1− β) FL(t)− 2(1− λ)
π(1− β) GL(t) ∀ t ∈ R

with

FL(t) = 2λ(1− β) sinc(Lt)− (1− βλ) sinc2
(Lt

2
)

+ (1− λ)β3 sinc2
(βLt

2
)

for t ∈ R

and

GL(t) =
{
L2

3 (β3 − 1) for t = 0
cos(Lt)−sinc(Lt)

t2 − β cos(βLt)−sinc(βLt)
t2 for t 6= 0.
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Further, the evaluation of F−1AL at tj = j · d for j ∈ Z and sample spacing d = π
L yields

F−1AL
(jπ
L

)
=


L2

6π (β(1 + β)(1− λ) + 2λ+ 1) for j = 0
L2

2π(1−β) Fj −
2(1−λ)L2

j2π3(1−β) Gj for j 6= 0

with
Fj = (1− λ)β3 sinc2

(βjπ
2
)
− (1− βλ) sinc2

(jπ
2
)

and
Gj = (−1)j − β (cos(βjπ)− sinc(βjπ)) .

Proof. Due to the evenness of AL we again apply the inverse cosine transform and, for t ∈ R,
by the definition of AL follows that

F−1AL(t) = 1
π

∫ βL

0
S cos(tS) dS + 1− βλ

π(1− β)

∫ L

βL
S cos(tS) dS − 1− λ

πL(1− β)

∫ L

βL
S2 cos(tS) dS.

If t = 0, we obtain

F−1AL(0) = L2β2

2π + (1− βλ)(1− β2)L2

2π(1− β) − (1− λ)L2(1− β3)
3π(1− β)

= L2

6π (β(1 + β)(1− λ) + 2λ+ 1) .

On the other hand, for t 6= 0 we have∫ βL

0
S cos(tS) dS = βLt sin(βLt) + cos(βLt)− 1

t2

and ∫ L

βL
S cos(tS) dS = Lt sin(Lt) + cos(Lt)

t2
− βLt sin(βLt) + cos(βLt)

t2

as well as∫ L

βL
S2 cos(tS) dS = (L2t2 − 2) sin(Lt) + 2Lt cos(Lt)

t3
− (β2L2t2 − 2) sin(βLt) + 2βLt cos(βLt)

t3
.

Because cos(ϕ) = 1− 2 sin2(ϕ/2) for all ϕ ∈ R, this implies that

F−1AL(t) = L2

2π(1− β) FL(t)− 2(1− λ)
π(1− β) GL(t)

with
FL(t) = 2λ(1− β) sinc(Lt)− (1− βλ) sinc2(Lt/2) + (1− λ)β3 sinc2(βLt/2) for t ∈ R

and
GL(t) = cos(Lt)− sinc(Lt)

t2
− β cos(βLt)− sinc(βLt)

t2
for t ∈ R,

where
lim
t→0

GL(t) = L2

3 (β3 − 1).

Finally, evaluating at tj = jπ
L , for j ∈ Z \ {0}, yields

F−1AL
(jπ
L

)
= L2

2π(1− β) FL
(jπ
L

)
− 2(1− λ)
π(1− β) GL

(jπ
L

)
with

FL
(jπ
L

)
= (1− λ)β3 sinc2(βjπ/2)− (1− βλ) sinc2(jπ/2)

and
GL
(jπ
L

)
= L2

j2π2

(
(−1)j − β (cos(βjπ)− sinc(βjπ))

)
.

Combining the results completes the proof.
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We close this section with considering the generalized polynomial filter from Example 4.3.12.
This involves a special integral representation of the generalized hypergeometric function 1F2 as

1F2
(
a; 1

2 , b;−z
)

= Γ(b)
Γ(a) Γ(b− a)

∫ 1

0
(1− σ)b−a−1 σa−1 cos(2

√
σz) dσ for z ≥ 0 (5.5)

with parameters b > a > 0. For details, we refer the reader to the textbook [115].

Proposition 5.1.10. The inverse Fourier transform of the generalized polynomial filter

AL(S) =

|S|
(
1− 1−β

Lν |S|
ν
)

for |S| ≤ L
0 for |S| > L

of order ν ∈ R>0 and with jump height β ∈ [0, 1) is given by

F−1AL(t) = L2

2π

(
2 sinc(Lt)− sinc2

(Lt
2
))
− L2(1− β)

π(ν + 2) 1F2
(ν

2 + 1; 1
2 ,
ν

2 + 2;−L
2t2

4
)
∀ t ∈ R.

Further, the evaluation of F−1AL at tj = j · d for j ∈ Z and sample spacing d = π
L yields

F−1AL
(jπ
L

)
= L2

2π

(
2 sinc(jπ)− sinc2

(jπ
2
)
− 2(1− β)

ν + 2 1F2
(ν

2 + 1; 1
2 ,
ν

2 + 2;−j
2π2

4
))

.

Proof. Because AL is even and supported in [−L,L], we apply the inverse cosine transform and
for t ∈ R follows that

F−1AL(t) = 1
π

∫ L

0
AL(S) cos(tS) dS = 1

π

∫ L

0
S cos(tS) dS − 1− β

πLν

∫ L

0
Sν+1 cos(tS) dS.

We already know that

1
π

∫ L

0
S cos(tS) dS = L2

2π
(
2 sinc(Lt)− sinc2(Lt/2)

)
.

Further, applying the substitution σ = S2 and the integral representation (5.5) of 1F2 yields

1
πLν

∫ L

0
Sν+1 cos(tS) dS = L2

π

∫ 1

0
Sν+1 cos(LtS) dS = L2

2π

∫ 1

0
σ
ν/2 cos

(
2
√
σL2t2/4

)
dσ

= L2

2π
Γ
(
ν
2 + 1

)
Γ(1)

Γ
(
ν
2 + 2

) 1F2
(ν

2 + 1; 1
2 ,
ν

2 + 2;−L
2t2

4
)

= L2

π(ν + 2) 1F2
(ν

2 + 1; 1
2 ,
ν

2 + 2;−L
2t2

4
)
.

Thus, in total we have

F−1AL(t) = L2

2π

(
2 sinc(Lt)− sinc2

(Lt
2
))
− L2(1− β)

π(ν + 2) 1F2
(ν

2 + 1; 1
2 ,
ν

2 + 2;−L
2t2

4
)
.

Finally, evaluating at tj = jπ
L , for j ∈ Z, yields

F−1AL
(jπ
L

)
= L2

2π

(
2 sinc(jπ)− sinc2

(jπ
2
))
− L2(1− β)

π(ν + 2) 1F2
(ν

2 + 1; 1
2 ,
ν

2 + 2;−j
2π2

4
)

and the proof is complete.
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5.2 Mathematical phantoms
Testing the accuracy of a reconstruction algorithm requires the exact knowledge of the function
we wish to recover. Otherwise, we cannot determine differences between the true function and
its reconstruction. Consequently, we have to apply the algorithm to a test object whose internal
structure is known. Nevertheless, some obstacles may still occur.

Our discrete reconstruction algorithm, Algorithm 1, is based on sampled Radon data of the
object’s attenuation function. Although the internal structure of the test object is known, errors
may be incurred during the sampling of the Radon data. In turn, these errors cause inaccuracies
in the image reconstruction process. Unfortunately, we are not able to distinguish between the
errors caused by the algorithm itself and the errors incurred by the data acquisition.

To resolve this problem, Shepp and Logan introduced the concept of a so called mathematical
phantom in their innovative paper [113]. This denotes a simulated test object whose structure is
entirely determined by mathematical formulas. Hence, we can analytically compute its Radon
transform and, thus, no errors occur during the acquisition of the Radon data so that all observed
errors in the image are cause by the discretized reconstruction algorithm we applied.

In this section we describe two different phantoms we use for the validation of our error theory
from Chapter 4 and give analytic expressions for their Radon transforms. We start with the well-
known Shepp-Logan phantom, which consists of ten ellipses of various sizes and simulates a cross-
section of the human brain. Since the Shepp-Logan phantom is of low regularity, we additionally
consider a smooth phantom of higher regularity to observe higher orders of convergence and, in
particular, saturation at the rates given in Chapter 4.

5.2.1 Additional properties of the Radon transform

To calculate the Radon transform of the phantoms mentioned above, we need some additional
basic properties of the Radon transform, namely its shift, scaling and rotation property.

We start with studying the effect of shifting the argument in the target function f .

Proposition 5.2.1 (Shift property of the Radon transform). Let f ≡ f(x, y) be a bivariate
function with Radon transform Rf ≡ Rf(t, θ). For a given vector c = (cx, cy) ∈ R2 we define
the shifted function fc via

fc(x, y) = f(x− cx, y − cy) for (x, y) ∈ R2.

Then, the Radon transform Rfc of fc is given by

Rfc(t, θ) = Rf(t− cx cos(θ)− cy sin(θ), θ) ∀ (t, θ) ∈ R× [0, π).

Proof. For fixed (t, θ) ∈ R× [0, π), the definition of the Radon transform R yields

Rfc(t, θ) =
∫
R
fc(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

=
∫
R
f(t cos(θ)− s sin(θ)− cx, t sin(θ) + s cos(θ)− cy) ds,

where

t cos(θ)− s sin(θ)− cx = (t− cx cos(θ)) cos(θ)− (s+ cx sin(θ)) sin(θ)
= (t− cx cos(θ)− cy sin(θ)) cos(θ)− (s+ cx sin(θ)− cy cos(θ)) sin(θ)

and

t sin(θ) + s cos(θ)− cy = (t− cy sin(θ)) sin(θ) + (s− cy cos(θ)) cos(θ)
= (t− cx cos(θ)− cy sin(θ)) sin(θ) + (s+ cx sin(θ)− cy cos(θ)) cos(θ).
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Consequently, by substituting

τ = t− cx cos(θ)− cy sin(θ) and σ = s+ cx sin(θ)− cy cos(θ),

we obtain dσ = ds and can conclude that

Rfc(t, θ) =
∫
R
f(τ cos(θ)− σ sin(θ), τ sin(θ) + σ cos(θ)) dσ = Rf(τ, θ)

= Rf(t− cx cos(θ)− cy sin(θ), θ),

which completes the proof.

We continue with the effect of scaling the argument in the target function f .

Proposition 5.2.2 (Scaling property of the Radon transform). Let f ≡ f(x, y) be a bivariate
function with Radon transform Rf ≡ Rf(t, θ). For given positive constants a, b > 0 we define
the scaled function fa,b via

fa,b(x, y) = f
(x
a
,
y

b

)
for (x, y) ∈ R2.

Then, the Radon transform Rfa,b of fa,b is given by

Rfa,b(t, θ) = ab

ca,b(θ)
Rf
(

t

ca,b(θ)
, atan

( b
a

tan(θ)
))

∀ (t, θ) ∈ R× [0, π),

where
ca,b(θ) =

√
a2 cos2(θ) + b2 sin2(θ) > 0

and

atan
( b
a

tan(θ)
)

=


arctan

(
b
a tan(θ)

)
for sin(θ) cos(θ) > 0

0 for sin(θ) = 0
π
2 for cos(θ) = 0
arctan

(
b
a tan(θ)

)
+ π for sin(θ) cos(θ) < 0

∈ [0, π).

Proof. For fixed (t, θ) ∈ R× [0, π), the definition of the Radon transform yields

Rfa,b(t, θ) =
∫
R
fa,b(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds

=
∫
R
f
( t
a

cos(θ)− s

a
sin(θ), t

b
sin(θ) + s

b
cos(θ)

)
ds.

By considering the modified angle

ϑ = atan
( b
a

tan(θ)
)
∈ [0, π),

we have
cos(ϑ) = a cos(θ)

ca,b(θ)
and sin(ϑ) = b sin(θ)

ca,b(θ)
.

Consequently, using the relation

c2
a,b(θ) = a2 cos2(θ) + b2 sin2(θ)

we obtain

t

a
cos(θ)− s

a
sin(θ) = t

ca,b(θ)
a cos(θ)
ca,b(θ)

− t

a

a2 − c2
a,b(θ)

c2
a,b(θ)

cos(θ)− s

a
sin(θ)

= t

ca,b(θ)
cos(ϑ)− ca,b(θ)

ab

(
s+ t

a2 − b2

c2
a,b(θ)

sin(θ) cos(θ)
)

sin(ϑ)
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and
t

b
sin(θ) + s

b
cos(θ) = t

ca,b(θ)
b sin(θ)
ca,b(θ)

− t

b

b2 − c2
a,b(θ)

c2
a,b(θ)

sin(θ) + s

b
cos(θ)

= t

ca,b(θ)
sin(ϑ) + ca,b(θ)

ab

(
s+ t

a2 − b2

c2
a,b(θ)

sin(θ) cos(θ)
)

cos(ϑ).

Therefore, by substituting

τ = t

ca,b(θ)
and σ = ca,b(θ)

ab

(
s+ t

a2 − b2

c2
a,b(θ)

sin(θ) cos(θ)
)
,

we have
dσ = ca,b(θ)

ab
ds

and can conclude that

Rfc(t, θ) = ab

ca,b(θ)

∫
R
f(τ cos(ϑ)− σ sin(ϑ), τ sin(ϑ) + σ cos(ϑ)) dσ = ab

ca,b(θ)
Rf(τ, ϑ)

= ab

ca,b(θ)
Rf
(

t

ca,b(θ)
, atan

( b
a

tan(θ)
))
,

as stated.

Finally, we come to the effect of rotating the argument in the target function f .
Proposition 5.2.3 (Rotation property of the Radon transform). Let f ≡ f(x, y) be a bivariate
function with Radon transform Rf ≡ Rf(t, θ). For a given rotation angle ϕ ∈ [−π, π) we define
the rotated function fϕ via

fϕ(x, y) = f(x cos(ϕ) + y sin(ϕ),−x sin(ϕ) + y cos(ϕ)) for (x, y) ∈ R2.

Then, the Radon transform Rfϕ of fϕ is given by

Rfϕ(t, θ) = Rf(t, θ − ϕ) ∀ (t, θ) ∈ R× [0, π).

Proof. For fixed (t, θ) ∈ R× [0, π), the definition of the Radon transform R yields

Rfϕ(t, θ) =
∫
R
fϕ(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds =

∫
R
f(x(s), y(s)) ds

with

x(s) = (t cos(θ)− s sin(θ)) cos(ϕ) + (t sin(θ) + s cos(θ)) sin(ϕ)
= t(cos(θ) cos(ϕ) + sin(θ) sin(ϕ))− s(sin(θ) cos(ϕ)− cos(θ) sin(ϕ))
= t cos(θ − ϕ)− s sin(θ − ϕ)

and

y(s) = −(t cos(θ)− s sin(θ)) sin(ϕ) + (t sin(θ) + s cos(θ)) cos(ϕ)
= t(sin(θ) cos(ϕ)− cos(θ) sin(ϕ)) + s(sin(θ) sin(ϕ) + cos(θ) cos(ϕ))
= t sin(θ − ϕ) + s cos(θ − ϕ).

Consequently, we obtain

Rfϕ(t, θ) =
∫
R
f(t cos(θ − ϕ)− s sin(θ − ϕ), t sin(θ − ϕ) + s cos(θ − ϕ)) ds

= Rf(t, θ − ϕ)

and the proof is complete.

We are now prepared to describe the phantoms we use in our numerical experiments and,
moreover, to determine analytic expressions for their Radon transforms.
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(a) Phantom (b) Sinogram

Figure 5.2: The Shepp-Logan phantom and its sinogram.

5.2.2 The Shepp-Logan phantom

We start with the well-known Shepp-Logan phantom, which was introduced by Shepp and
Logan in [113] and provides a standard test case for tomographic reconstruction methods. It
schematically depicts a highly simplified cross-section of the human head and consists of ten
ellipses of constant densities, but different sizes, eccentricities and locations, see Figure 5.2(a).
In our version, however, we modified the densities of the different ellipses compared to the
original phantom in order to get a higher contrast in the image for a better visual perception.

The corresponding attenuation function fSL of the Shepp-Logan phantom is given by

fSL =
10∑
j=1

cj fj ,

where each function fj , for 1 ≤ j ≤ 10, is of the form of the characteristic function fe of an
ellipse, defined as

fe(x, y) = χB1(0)
(xr
a
,
yr
b

)
for (x, y) ∈ R2

with

xr = (x− h) cos(ϕ) + (y − k) sin(ϕ) and yr = −(x− h) sin(ϕ) + (y − k) cos(ϕ),

where the parameters a, b, h, k and ϕ denote the following attributes of the ellipse:

a: major axis, h: x-coordinate of the center, ϕ: rotation angle,
b: minor axis, k: y-coordinate of the center.

The parameters of the ellipses the Shepp-Logan phantom consists of are summarized in Table 5.1.
Before we compute the Radon transform of the Shepp-Logan phantom, we first determine the

Radon transform Rfe of the characteristic function fe of an ellipse with parameters a, b, h, k, ϕ.

j 1 2 3 4 5 6 7 8 9 10

aj 0.69 0.6624 0.11 0.16 0.21 0.046 0.046 0.046 0.023 0.023
bj 0.92 0.874 0.31 0.41 0.25 0.046 0.046 0.023 0.023 0.046
hj 0 0 0.22 −0.22 0 0 0 −0.08 0 0.06
kj 0 0.0184 0 0 −0, 35 −0, 1 0.1 0.605 0.605 0.605
ϕj 0 0 π

10 − π
10 0 0 0 0 0 0

cj 1 −0.8 −0.2 −0.2 0.1 0.1 0.1 0.1 0.1 0.1

Table 5.1: Parameters of the ellipses in the Shepp-Logan phantom.
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Proposition 5.2.4 (Radon transform of an ellipse). We consider the characteristic function fe
of an ellipse with parameters a, b > 0, h, k ∈ R and ϕ ∈ [−π, π), i.e.,

fe(x, y) = χB1(0)
(xr
a
,
yr
b

)
for (x, y) ∈ R2

with

xr = (x− h) cos(ϕ) + (y − k) sin(ϕ) and yr = −(x− h) sin(ϕ) + (y − k) cos(ϕ).

Then, the Radon transform Rfe of fe is given by

Rfe(t, θ) = 2ab
c2
a,b,ϕ(θ)

√
c2
a,b,ϕ(θ)− t2h,k(t, θ) ⊔ca,b,ϕ(θ)(th,k(t, θ)) ∀ (t, θ) ∈ R× [0, π)

with

ca,b,ϕ(θ) =
√
a2 cos2(θ − ϕ) + b2 sin2(θ − ϕ) and th,k(t, θ) = t− h cos(θ)− k sin(θ).

Proof. For the sake of brevity, we define the functions

g(x, y) = χB1(0)
(x
a
,
y

b

)
for (x, y) ∈ R2

and
h(x, y) = g(x cos(ϕ) + y sin(ϕ),−x sin(ϕ) + y cos(ϕ)) for (x, y) ∈ R2

so that the function fe can be written as

fe(x, y) = h(x− h, y − k) ∀ (x, y) ∈ R2.

Therefore, we can determine Rfe by applying the shift, scaling and rotation properties of the
Radon transform. In Example 2.2.14 we have seen that the Radon transform of the characteristic
function χBR(0) of a ball with radius R > 0 around 0 is given by

RχBR(0)(t, θ) =
{

2
√
R2 − t2 for |t| ≤ R

0 for |t| > R
= 2

√
R2 − t2 ⊔R(t) ∀ (t, θ) ∈ R× [0, π).

Consequently, for fixed (t, θ) ∈ R× [0, π), applying the scaling property of the Radon transform,
Proposition 5.2.2, yields

Rg(t, θ) = ab√
a2 cos2(θ) + b2 sin2(θ)

RχB1(0)

(
t√

a2 cos2(θ) + b2 sin2(θ)
, atan

( b
a

tan(θ)
))

= 2ab
a2 cos2(θ) + b2 sin2(θ)

√
a2 cos2(θ) + b2 sin2(θ)− t2 ⊔√a2 cos2(θ)+b2 sin2(θ)(t).

Further, by defining
ca,b,ϕ(θ) =

√
a2 cos2(θ − ϕ) + b2 sin2(θ − ϕ)

the rotation property of the Radon transform, Proposition 5.2.3, shows that

Rh(t, θ) = Rg(t, θ − ϕ) = 2ab
c2
a,b,ϕ(θ)

√
c2
a,b,ϕ(θ)− t2 ⊔ca,b,ϕ(θ)(t).

Finally, by applying the shift property of the Radon transform, Proposition 5.2.1, and setting

th,k(t, θ) = t− h cos(θ)− k sin(θ),

for the Radon transform Rfe of fe follows that

Rfe(t, θ) = Rh(t− h cos(θ)− k sin(θ), θ) = 2ab
c2
a,b,ϕ(θ)

√
c2
a,b,ϕ(θ)− t2h,k(t, θ) ⊔ca,b,ϕ(θ)(th,k(t, θ)),

as stated.
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With Proposition 5.2.4 we can now determine the Radon transformRfSL of the Shepp-Logan
phantom. Indeed, due to the linearity of R we obtain

RfSL(t, θ) =
10∑
j=1

cj Rfj(t, θ) ∀ (t, θ) ∈ R× [0, π),

where
Rfj(t, θ) = 2ajbj

c2
aj ,bj ,ϕj

(θ)
√
c2
aj ,bj ,ϕj

(θ)− t2hj ,kj (t, θ) ⊔caj,bj ,ϕj (θ)(thj ,kj (t, θ))

with
caj ,bj ,ϕj (θ) =

√
a2
j cos2(θ − ϕj) + b2j sin2(θ − ϕj) for θ ∈ [0, π)

and
thj ,kj (t, θ) = t− hj cos(θ)− kj sin(θ) for (t, θ) ∈ R× [0, π).

The sinogram of the Shepp-Logan phantom fSL, i.e., the plot of its Radon transform RfSL in
the (t, θ)-plane, is shown in Figure 5.2(b).

5.2.3 The smooth phantom

As explained at the beginning of Section 4.2, the attenuation function fSL of the Shepp-Logan
phantom belongs to the Sobolev space Hα

0 (R2) with α < 1
2 , which in turn is an upper bound for

the convergence rate of the inherent FBP reconstruction error eL = fSL − fL in the L2-norm.
To observe higher orders of convergence and saturation at the rates given in Chapter 4 we need
a test case of higher regularity and with an analytically computable Radon transform.

To this end, we consider the radially symmetric bump-shaped function pν : R2 −→ R given
by

pν(x, y) =
{(

1− x2 − y2)ν for x2 + y2 ≤ 1
0 for x2 + y2 > 1

with smoothness parameter ν ∈ R>0, which is in Hα
0 (R2) for any α < ν + 1

2 . Adapting the
approach in [100], we now define the smooth phantom of order ν via

fsmooth = f1 −
3
2 f2 + 3

2 f3 ∈ Hα
0 (R2) ∀α < ν + 1

2 ,

where each function fj , for j = 1, 2, 3, is given by

fj(x, y) = pν
(xr
aj
,
yr
bj

)
for (x, y) ∈ R2

with

xr = (x− hj) cos(ϕj) + (y − kj) sin(ϕj) and yr = −(x− hj) sin(ϕj) + (y − kj) cos(ϕj)

and the parameters

a1 = 0.51, b1 = 0.31, h1 = 0.22, k1 = 0, ϕ1 = 2
5π,

a2 = 0.51, b2 = 0.36, h2 = −0.22, k2 = 0, ϕ2 = 3
5π,

a3 = 0.5, b3 = 0.8, h3 = 0, k3 = 0.2, ϕ3 = 1
2π.

For illustration, Figure 5.3 shows the smooth phantom fsmooth of order ν ∈ {0.5, 1.5, 3}, which
satisfies

fsmooth ∈ Hα
0 (R2) ∀α < αmax

with maximal smoothness αmax ∈ {1, 2, 3.5}, respectively.
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(a) ν = 0.5 (b) ν = 1.5 (c) ν = 3

Figure 5.3: The smooth phantom of order ν ∈ {0.5, 1.5, 3}.

Before we compute the Radon transform of the smooth phantom, we first have to determine
the Radon transform Rpν of the bump-shaped function pν with parameter ν > 0.

Proposition 5.2.5 (Radon transform of pν). We consider the radially symmetric bump-shaped
function pν : R2 −→ R with smoothness parameter ν > 0, i.e.,

pν(x, y) =
{(

1− x2 − y2)ν for x2 + y2 ≤ 1
0 for x2 + y2 > 1.

Then, the Radon transform Rpν of pν is given by

Rpν(t, θ) =
√
π Γ(ν + 1)
Γ
(
ν + 3

2
) (

1− t2
)ν+ 1

2 ⊔(t) ∀ (t, θ) ∈ R× [0, π).

Proof. For fixed (t, θ) ∈ R× [0, π) the definition of the Radon transform R yields

Rpν(t, θ) =
∫
R
pν(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) ds,

where

pν(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ)) =
{

(1− t2 − s2)ν for t2 + s2 ≤ 1
0 for t2 + s2 > 1

by using (2.5). Therefore, for |t| ≥ 1 we have

Rpν(t, θ) = 0

and, for |t| < 1,

Rpν(t, θ) =
∫ √1−t2

−
√

1−t2
(1− t2 − s2)ν ds = 2

∫ √1−t2

0
(1− t2 − s2)ν ds.

Substituting s =
√

1− t2 σ gives ds =
√

1− t2 dσ and, thus, we have

Rpν(t, θ) = 2
∫ 1

0
(1− t2 − (1− t2)σ2)ν

√
1− t2 dσ = 2(1− t2)ν+ 1

2

∫ 1

0
(1− σ2)ν dσ.

Further, by applying the transformation σ =
√
s we obtain dσ = 1

2 s
− 1

2 ds so that

2
∫ 1

0
(1− σ2)ν dσ =

∫ 1

0
(1− s)ν s−

1
2 ds = B

(1
2 , ν + 1

)
=

Γ
(1

2
)

Γ(ν + 1)
Γ
(
ν + 3

2
) =

√
π Γ(ν + 1)
Γ
(
ν + 3

2
) ,

where B denotes the beta function and we used its close relation to the gamma function Γ.
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(a) ν = 0.5 (b) ν = 1.5 (c) ν = 3

Figure 5.4: The sinogram of the smooth phantom of order ν ∈ {0.5, 1.5, 3}.

Hence, for |t| < 1 follows that

Rpν(t, θ) =
√
π Γ(ν + 1)
Γ
(
ν + 3

2
) (1− t2)ν+ 1

2

and the proof is complete.

With Proposition 5.2.5 we are now prepared to determine the Radon transform Rfsmooth of
the smooth phantom of order ν > 0. Using the linearity of the Radon transform R and following
along the lines of the proof of Proposition 5.2.4, we obtain

Rfsmooth(t, θ) = Rf1(t, θ)− 3
2 Rf2(t, θ) + 3

2 Rf3(t, θ) ∀ (t, θ) ∈ R× [0, π),

where

Rfj(t, θ) =
√
π Γ(ν + 1)
Γ
(
ν + 3

2
) ajbj

c2ν+2
aj ,bj ,ϕj

(θ)
(
c2
aj ,bj ,ϕj (θ)− t

2
hj ,kj (t, θ)

)ν+ 1
2 ⊔caj,bj ,ϕj (θ)(thj ,kj (t, θ))

with
caj ,bj ,ϕj (θ) =

√
a2
j cos2(θ − ϕj) + b2j sin2(θ − ϕj) for θ ∈ [0, π)

and
thj ,kj (t, θ) = t− hj cos(θ)− kj sin(θ) for (t, θ) ∈ R× [0, π).

The sinogram of the smooth phantom fsmooth of order ν ∈ {0.5, 1.5, 3} is shown in Figure 5.4.

5.3 Numerical investigation of the reconstruction error
As announced in the introductory paragraph of this chapter, we henceforth investigate the recon-
struction error of the FBP method numerically to validate our error theory from Chapter 4. To
this end, we use the discrete image reconstruction Algorithm 1, which we derived in Section 5.1
and which is based on the discrete FBP reconstruction formula (5.3), i.e.,

fFBP = 1
2 BD

(
I
[
F−1AL ∗D Rf

])
.

As test cases we use the Shepp-Logan phantom and the smooth phantom of order ν = 3
we introduced in the previous Section 5.2. For illustration, the FBP reconstructions of both
phantoms are displayed in Figure 5.5, where we used linear interpolation for the Shepp-Logan
and cubic spline interpolation for the smooth phantom. Further, we applied the Ram-Lak filter
from Example 3.2.8 with window

W (S) = ⊔(S) for S ∈ R

and bandwidth L = 50π. This corresponds toM = 50 and N = 150 so that (2M +1)N = 15150
equally distributed Radon samples are taken.
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(a) Shepp-Logan phantom (b) Smooth phantom with ν = 3

Figure 5.5: FBP reconstructions of the phantoms with the Ram-Lak filter and L = 50π.

To measure the reconstruction error and, therefore, the approximation quality of the FBP
reconstructions, we use the standard root mean square error (RMSE), which is defined for images
with J ×K pixels as

RMSE =

√√√√ 1
J ·K

J∑
j=1

K∑
k=1

(
fj,k − (fFBP)j,k

)2
.

In our numerical experiments, we evaluated the phantoms and their FBP reconstructions with
different window functions and bandwidths on a square grid with 512× 512 pixels.

5.3.1 Validation of the order of convergence

We start with numerically validating the rates of convergence for the L2-norm of the inherent
FBP reconstruction error eL = f − fL we have proven in Section 4.3. As a representative result,
we first recall that for target functions f ∈ L1(R2) ∩ Hα(R2) with α > 0 and window functions
W ∈ AC([−1, 1]) withW (j) ∈ AC([−1, 1]) for all 1 ≤ j ≤ k−1, for k ∈ N, andW (k) ∈ Lp([−1, 1])
with 1 < p ≤ ∞ such that

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1

the L2-norm of eL is bounded above by

‖eL‖L2(R2) ≤
(
cα,k,p ‖W (k)‖Lp([0,1]) L

−min{k−1/p,α} + L−α
)
‖f‖α (5.6)

with some constant cα,k,p > 0 independent of W and f , see Corollaries 4.3.9 and 4.3.11. In
particular, our theory predicts that the decay rate of the error is of order O(L−α) for α ≤ k− 1

p ,
but saturates at (possibly) fractional order O(L−(k−1/p)) for α > k − 1

p .

In our first numerical simulations we have employed the three commonly used low-pass filters
AL(S) = |S|W (S/L) from Examples 3.2.9, 3.2.11 and 3.2.12:

Name W (S) for |S| ≤ 1 Parameter
Shepp-Logan sinc(πS/2) –
Hamming β + (1− β) cos(πS) β ∈ [1/2, 1]
Gaussian exp

(
−(πS/β)2) β > 1

Recall that each window function W is even and compactly supported with supp(W ) = [−1, 1].
Further, W is twice continuously differentiable on the interval [−1, 1], W ∈ C 2([−1, 1]), with

W (0) = 1, W ′(0) = 0, W ′′(0) 6= 0.
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Consequently, these windows satisfy the assumptions of Corollary 4.3.9 with k = 2 and our
error theory states that, for any function f ∈ L1(R2) ∩ Hα(R2) with smoothness α > 0, the
L2-norm of the inherent FBP reconstruction error is bounded above by

‖f − fL‖L2(R2) ≤
(
Cα ‖W ′′‖L∞([0,1]) + 1

)
L−min{2,α} ‖f‖α. (5.7)

Figure 5.6 shows the RMSE of the FBP reconstruction of the Shepp-Logan phantom fSL as a
function of the bandwidth L in logarithmic scales for different window functions. In addition to
the popular Shepp-Logan filter (Figure 5.6(a)), we applied the Hamming filter with parameter
β = 0.92 (Figure 5.6(b)) and the Gaussian filter with parameter β = 4.9 (Figure 5.6(c)). These
parameters were chosen such that the Hamming and Gaussian filters have the same value for
the quality indicator ‖W ′′‖L∞([0,1]) as the Shepp-Logan filter, see Table 5.2 below. Hence, the
corresponding reconstruction errors should behave similarly due to our error estimate (5.7).

As expected, we see that the RMSE for the Shepp-Logan filter, the Hamming filter with
β = 0.92 and the Gaussian filter with β = 4.9 are nearly the same. Moreover, in all three cases
we observe a decrease of the RMSE with rate L−0.5. This is exactly the behaviour we expected
due to our L2-error estimate (5.7), since fSL ∈ Hα(R2) for all α < 1

2 .
Figure 5.7 now shows the RMSE of the FBP reconstruction for the smooth phantom fsmooth

of order ν = 3, which belongs to Hα(R2) for all α < 7
2 . Hence, according to the estimate (5.7),

the convergence rate of the RMSE should saturate at order L−2. Indeed, this behaviour can be
observed in our numerical results, see Figures 5.7(a)–5.7(c). Furthermore, the RMSE for the
Shepp-Logan filter again coincides with the RMSE of the Hamming filter with β = 0.92 and of
the Gaussian filter with β = 4.9. Note that this behaviour is more pronounced for the smooth
phantom fsmooth than for the Shepp-Logan phantom fSL.

In conclusion, our numerical results for C 2-windows totally comply with our L2-error theory
with k = 2 and p =∞, although the inevitable discretization errors are not covered.

In our second set of numerical simulations we considered the generalized polynomial filter
AL(S) = |S|W (S/L) with window function

W (S) =
{

1− (1− β) |S|ν for |S| ≤ 1
0 for |S| > 1

of order ν ∈ R>0 and with jump height β ∈ [0, 1), see Example 4.3.12. Recall that for this filter
our error theory from Corollaries 4.3.9 and 4.3.11 states that, for any f ∈ L1(R2)∩Hα(R2) with
α > 0, the L2-norm of the inherent FBP reconstruction error is bounded above by

‖f − fL‖L2(R2) ≤
(
Cα,ν,β + 1

)
L−min{ν,α} ‖f‖α, (5.8)

where, for fixed α and ν, the constant Cα,ν,β > 0 decreases with increasing values for 0 ≤ β < 1.
In particular,

‖f − fL‖L2(R2) = O
(
L−min{ν,α}

)
for L −→∞

and the rate of convergence saturates at fractional order L−ν .
The numerical results for the reconstruction of the Shepp-Logan phantom fSL are displayed

in Figures 5.6(d)–5.6(i) and can be summarized as follows. For ν = 0.2, the convergence rate
of the RMSE saturates at fractional order L−0.2. Moreover, when increasing the parameter β
from β = 0 to β = 0.2, the RMSE decreases (Figures 5.6(d)–5.6(f)). But for ν ∈ {0.9, 1.8, 2.7},
the RMSE behaves like L−0.5, see Figures 5.6(g)–5.6(i), where we always chose the jump height
β = 0.8. Since fSL ∈ Hα(R2) for all α < 1

2 , this is exactly the behaviour we expected due to our
L2-error estimate (5.8). In particular, for ν ∈ {0.9, 1.8, 2.7} the rate of convergence is given by
the smoothness of the target function fSL.
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(i) Poly (ν = 2.7, β = 0.8)
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(k) Ramp (β = 0.7, λ = 0)
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(o) Ramp (β = 0.5, λ = 0.75)

Figure 5.6: Decay rate of the discrete L2-error for the Shepp-Logan phantom.
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(b) Hamming (β = 0.92)
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(c) Gaussian (β = 4.9)
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(d) Poly (ν = 0.2, β = 0)
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(e) Poly (ν = 0.2, β = 0.1)
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(f) Poly (ν = 0.2, β = 0.2)

50π 100π 200π 300π 400π

10
−8

10
−6

10
−4

10
−2

L

R
M
S
E

RMSE
L
−0.9

(g) Poly (ν = 0.9, β = 0.8)
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(h) Poly (ν = 1.8, β = 0.8)
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(i) Poly (ν = 2.7, β = 0.8)
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(j) Ram-Lak
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(k) Ramp (β = 0.7, λ = 0)
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(l) Ramp (β = 0.1, λ = 0)
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(m) Ramp (β = 0.5, λ = 0.25)
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(n) Ramp (β = 0.5, λ = 0.5)
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(o) Ramp (β = 0.5, λ = 0.75)

Figure 5.7: Decay rate of the discrete L2-error for the smooth phantom with ν = 3.
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In contrast to that, our numerical results for the FBP reconstruction of the smooth phantom
fsmooth of order ν = 3 show that the rate of convergence saturates for all our choices of ν, see
Figures 5.7(d)–5.7(i). Indeed, for ν = 0.2, the convergence rate of the RMSE again saturates at
fractional order L−0.2 and, further, increasing the parameter β from β = 0 to β = 0.2 decreases
the RMSE (Figures 5.7(d)–5.7(f)). But also for ν ∈ {0.9, 1.8, 2.7}, the RMSE behaves like L−ν ,
see Figures 5.7(g)–5.7(i). However, this was expected, since we have fsmooth ∈ Hα(R2) for α < 7

2 .
Consequently, our numerical results again totally comply with our L2-error theory and,

especially, the saturation of the convergence rate at fractional order is observable.
In our third and last sequence of numerical simulations we selected the generalized ramp

filter AL(S) = |S|W (S/L) with window function

W (S) =


1 for |S| ≤ β
1−βλ
1−β −

1−λ
1−β |S| for β < |S| ≤ 1

0 for |S| > 1

of width β ∈ (0, 1) and with jump height λ ∈ [0, 1], see Example 4.3.2. Recall that choosing
λ = 1 gives the classical Ram-Lak filter. Further, these window functions satisfy Assumption (A)
and our error theory from Theorem 4.3.1 states that, for any f ∈ L1(R2) ∩Hα(R2) with α > 0,
the L2-norm of the inherent FBP reconstruction error is bounded above by

‖f − fL‖L2(R2) ≤
(
(1− λ)β−α + 1

)
L−α ‖f‖α. (5.9)

In particular,
‖f − fL‖L2(R2) = O(L−α) for L −→∞

and the rate of convergence is always determined by the smoothness α of the target function f .
Further, for fixed L and f , we see that the L2-error decreases when increasing the window’s
width β ∈ (0, 1) or jump height λ ∈ [0, 1].

In all our numerical simulations for the reconstruction of the Shepp-Logan phantom fSL
(Figures 5.6(j)–5.6(o)) we observe that the RMSE behaves like L−0.5, as predicted by the theory.
Moreover, increasing the width β of the window W leads to an decrease of the RMSE, see
Figures 5.6(j)–5.6(l), where we chose the Ram-Lak filter and the ramp filter with β ∈ {0.1, 0.7}
and λ = 0. This can also be seen when fixing the width β = 0.5 and increasing the jump
height from λ = 0.25 to λ = 0.75 (Figures 5.6(m)–5.6(o)). Consequently, we exactly observe the
behaviour predicted by the L2-error estimate (5.9).

When considering the FBP reconstruction of the smooth phantom fsmooth of order ν = 3,
we see that for all choices of the parameters β and λ the RMSE behaves like L−3.5, as observed
in Figures 5.7(j)–5.7(o). Thus, the rate of convergence is determined by the smoothness of the
target function and the numerical observations comply with our L2-error estimate (5.9). Further,
as for the Shepp-Logan phantom fSL, increasing the width β results in a decrease of the RMSE
(Figures 5.7(j)–5.7(l)). The same holds true when fixing β and increasing the jump height λ,
see Figures 5.7(m)–5.7(o).

In conclusion, our numerical results totally comply with our L2-error theory. In particular,
we observe that the decay rate of the L2-error is indeed determined by the smoothness α of the
target function f if Assumption (A) is satisfied. Finally, we remark that for the two phantoms
the RMSE is minimal for the Ram-Lak filter. This also complies with our error theory, since in
our L2-error estimate

‖f − fL‖L2(R2) ≤
(
Φ1/2
α,W (L) + L−α

)
‖f‖α

from Theorem 4.2.3 (with σ = 0) the error term

Φα,W (L) = ess sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)α for L > 0

only vanishes if W ≡ 1 on [−1, 1], i.e., when choosing the Ram-Lak filter.
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Figure 5.8: Affine-linear behaviour of the discrete L2-error with respect to the quality indicator
‖W ′′‖L∞([0,1]) for the Shepp-Logan phantom and different bandwidths L > 0.

5.3.2 Validation of the affine-linear behaviour

To close this chapter on numerical experiments we finally validate the affine-linear behaviour of
the inherent FBP reconstruction error eL = f−fL with respect to different quality indicators for
the low-pass filter’s window W . Summarizing Corollaries 4.3.9 and 4.3.11, we have seen in (5.6)
that for target functions f ∈ L1(R2) ∩ Hα(R2) with α > 0 the L2-norm of eL is bounded above
by

‖eL‖L2(R2) ≤
(
cα,k,p ‖W (k)‖Lp([0,1]) + 1

)
L−min{k−1/p,α} ‖f‖α,

provided that the window W satisfies W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k − 1 with k ∈ N and
W (k) ∈ Lp([−1, 1]) with 1 < p ≤ ∞ such that

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

In particular, we observe that, for fixed target function f and bandwidth L, the performance of
the utilized low-pass filter is governed by the Lp-norm of its window’s k-th derivative W (k) on
the interval [0, 1]. Moreover, our theory predicts that the L2-norm of the error eL is affine-linear
with respect to the quality indicator ‖W (k)‖Lp([0,1]).

In our first numerical experiments we again consider the reconstruction of the Shepp-Logan
phantom. In addition to the classical Shepp-Logan filter, we also applied the Hamming filter for
different choices of the parameter β ∈ [1

2 , 1], namely for β ∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.92, 0.97},
and the Gaussian filter for various parameters β > 1, here for β ∈ {2.6, 3.4, 4.7, 7.5, 10, 15}.
Moreover, we chose the generalized polynomial filter of order ν = 2 from Example 4.3.12 for
different jump heights β ∈ [0, 1), more precisely for β ∈ {0.45, 0.59, 0.75, 0.8, 0.9, 0.95}.

Note that the corresponding window functions satisfy the assumptions of our theory for
k = 2 and p =∞ so that the FBP reconstruction error eL is predicted to behave affine-linearly
with respect to the quality indicator ‖W ′′‖L∞([0,1]), i.e., the L∞-norm of the window’s second
derivativeW ′′. The values of ‖W ′′‖L∞([0,1]) for the filters mentioned above are listed in Table 5.2.

Figure 5.8 now shows the RMSE of the FBP reconstruction of the Shepp-Logan phantom as
a function of the quality indicator ‖W ′′‖L∞([0,1]) for different choices of the bandwidth L > 0.

Name W (S) for |S| ≤ 1 Parameter ‖W ′′‖L∞([0,1])
Shepp-Logan sinc(πS/2) - π2/12
Hamming β + (1− β) cos(πS) β ∈ [1/2, 1] (1− β)π2

Gaussian exp(−(πS/β)2) β > 1 2π2/β2

Polynomial 1− (1− β)S2 β ∈ [0, 1) 2(1− β)

Table 5.2: Quality indicator ‖W ′′‖L∞([0,1]) for different low-pass filters.
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Figure 5.9: Affine-linear behaviour of the discrete L2-error with respect to the quality indicator
‖W ′′‖L∞([0,1]) for the smooth phantom of order ν = 1 and different bandwidths L > 0.

Firstly, we observe an increasing RMSE when increasing the quality indicator ‖W ′′‖L∞([0,1])
in all of our numerical experiments. This is exactly the behaviour we expected due to the first
term in our L2-error estimate, which is in this case given as

‖eL‖L2(R2) ≤
(1

2 ‖W
′′‖L∞([0,1]) + 1

)
L−α ‖f‖α,

since the attenuation function fSL of the Shepp-Logan phantom satisfies fSL ∈ Hα(R2) for all
α < 1

2 so that, in particular, we are in the case α < k. Moreover, the predicted affine-linear
behaviour of the RMSE with respect to ‖W ′′‖L∞([0,1]) is clearly visible.

Secondly, we see that the RMSE decreases at increasing bandwidth L. This behaviour
complies with the second term in our L2-error estimate,

L−α ‖f‖α for α > 0.

In more details, comparing the numerical results for the bandwidths L = 40π (Figure 5.8(a)),
L = 46π (Figure5.8(b)) and L = 50π (Figure 5.8(c)) we see that the RMSE decreases for all
filters, as predicted by our error estimate. Moreover, the affine-linear behaviour of the error eL
with respect to ‖W ′′‖L∞([0,1]) is more distinct for a larger bandwidth.

In our second sequence of numerical experiments we utilize the same low-pass filters as well
as linear interpolation for reconstructing the smooth phantom of order ν = 1, whose attenuation
function fsmooth belongs to Hα(R2) for all α < 3

2 so that we are again in the case α < k.
Summarizing our results, we observe exactly the same behaviour of the error as described

before for the Shepp-Logan phantom, see Figure 5.9. However, the affine-linear behaviour of the
discrete L2-error is more pronounced when reconstructing the smoother phantom.

Recall that the window functions of the Shepp-Logan, Hamming and Gaussian filters satisfy
Assumption (A) as long as the smoothness α > 0 of the target function f is smaller than 2. This
has been observed in our numerical experiments, as reported exemplary for the Shepp-Logan
filter in Section 4.3. Therefore, our error theory from Theorem 4.3.1 states that, for any function
f ∈ L1(R2) ∩Hα(R2) with 0 < α < 2, the L2-norm of the error eL is bounded above by

‖eL‖L2(R2) ≤
(
cα,W ‖1−W‖L∞([0,1]) + 1

)
L−α ‖f‖α.

Name W (S) for |S| ≤ 1 Parameter ‖1−W‖L∞([0,1])
Shepp-Logan sinc(πS/2) - 1− 2/π
Hamming β + (1− β) cos(πS) β ∈ [1/2, 1] 2(1− β)
Gaussian exp(−(πS/β)2) β > 1 1− exp(−π2/β2)

Table 5.3: Quality indicator ‖1−W‖L∞([0,1]) for different low-pass filters.
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Figure 5.10: Affine-linear behaviour of the discrete L2-error with respect to the quality indicator
‖1−W‖L∞([0,1]) for the Shepp-Logan phantom and different bandwidths L > 0.

Note that the smoothness α of both the Shepp-Logan phantom and the smooth phantom of
order ν = 1 satisfy the assumption α < 2. Thus, in both cases our theory now predicts that the
L2-norm of the error eL is affine-linear with respect to the quality indicator ‖1−W‖L∞([0,1]). To
validate this behaviour numerically, we applied the Shepp-Logan filter, the Hamming filter with
parameters β ∈ {0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.92, 0.97, 1} and the Gaussian filter with parameters
β ∈ {2, 4.7, 7.5, 10, 15}. The corresponding values for ‖1−W‖L∞([0,1]) are listed in Table 5.3.

Figure 5.10 shows the RMSE of the FBP reconstruction of the Shepp-Logan phantom as a
function of the quality indicator ‖1 −W‖L∞([0,1]) for different choices of the bandwidth L > 0.
As predicted, for each choice of L ∈ {40π, 46π, 50π} the discrete L2-norm of the error eL behaves
affine-linearly with respect to ‖1−W‖L∞([0,1]). Further, increasing L decreases the RMSE and
the affine-linear behaviour becomes more distinct. The same observations remain valid when
considering the FBP reconstruction of the smooth phantom of order ν = 1, see Figure 5.11.
However, as reported before, the affine-linear behaviour of the reconstruction error is more
pronounced for the smoother phantom.

In conclusion, our numerical results for both the FBP reconstruction of the Shepp-Logan
phantom and the smooth phantom of order ν = 1 totally comply with our L2-error theory.
On the one hand, under Assumption (A) we observe an affine-linear behaviour of the L2-error
with respect to ‖1 −W‖L∞([0,1]) as predicted by the estimate in Theorem 4.3.1. On the other
hand, for window functions W with vanishing derivatives at the origin up to the order k−1 and
W (k) ∈ Lp([−1, 1]) we observe that the L2-error is affine-linear with respect to ‖W (k)‖Lp([0,1]),
exactly as in the estimates in Corollaries 4.3.9 and 4.3.11. Here, we reported the numerical
results only for two different phantoms and the case k = 2 and p = ∞. However, the affine-
linear behaviour is also observable for other test functions and values of k ∈ N and 1 < p ≤ ∞.
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Figure 5.11: Affine-linear behaviour of the discrete L2-error with respect to the quality indicator
‖1−W‖L∞([0,1]) for the smooth phantom of order ν = 1 and different bandwidths L > 0.



Chapter 6

Summary and outlook

This thesis was concerned with the approximation of bivariate functions from the knowledge of
their Radon data by utilizing the filtered back projection method from computerized tomography.
The focus was on the analysis of the inherent FBP reconstruction error being incurred by the
application of a low-pass filter with finite bandwidth and compactly supported window function.

Under suitable assumptions, the reconstruction of a bivariate target function f ≡ f(x, y)
from given Radon data

{Rf(t, θ) | t ∈ R, θ ∈ [0, π)}
can be achieved by applying the classical filtered back projection formula, which states that

f(x, y) = 1
2 B

(
F−1[|S|F(Rf)(S, θ)]

)
(x, y) ∀ (x, y) ∈ R2.

Unfortunately, the FBP formula is highly sensitive with respect to noise and, thus, cannot be
used in practice. A standard approach for stabilizing the FBP formula consists in incorporating
a low-pass filter

AL(S) = |S|W (S/L) for S ∈ R
with finite bandwidth L > 0 and an even window function W ∈ L∞(R) with supp(W ) ⊆ [−1, 1].
This reduces the noise sensitivity, but only leads to an approximate FBP method.

In this work, we rigorously defined the approximate FBP reconstruction fL and showed that
fL ∈ L2(R2) can be expressed in standard form as

fL = 1
2 B

(
F−1AL ∗ Rf

)
= f ∗KL,

where the target functions f is only required to satisfy f ∈ L1(R2)∩L2(R2) and the convolution
kernel KL is not compactly supported and not necessarily integrable on R2.

In the main part of this thesis we have then considered the inherent FBP reconstruction
error eL = f − fL which is incurred by the application of the low-pass filter AL. More precisely,
for target functions f from Sobolev spaces Hα(R2) of fractional order α > 0 we have estimated
the Hσ-norm of eL for all 0 ≤ σ ≤ α subject to the filter’s bandwidth L and window functionW .
In particular, we have proven convergence rates for the approximate FBP reconstruction fL as
the bandwidth L goes to infinity, where we have observed saturation of the order of convergence
at fractional rates depending on smoothness properties of the window W . For that purpose, we
have considered various scenarios. Here, we wish to highlight two special cases.

If the window function W satisfies W (j) ∈ AC([−1, 1]) for all 0 ≤ j ≤ k − 1 with k ∈ N and
W (k) ∈ Lp([−1, 1]) for some 1 < p ≤ ∞ such that

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1,

we have proven that the Hσ-norm of eL is bounded above by

‖eL‖σ ≤
(
Cα−σ,k,p ‖W (k)‖Lp([0,1]) L

−min{k−1/p,α−σ} + Lσ−α
)
‖f‖α. (6.1)
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Thus, under these assumptions the order of convergence is predicted to saturate at fractional rate
L−(k−1/p). Further, the error estimate indicates that, for fixed function f , the performance of the
low-pass filter is governed by the Lp-norm of its window’s k-th derivative. On top of that, the
estimate predicts an affine-linear behaviour of the Hσ-norm of eL with respect to ‖W (k)‖Lp([0,1])
so that this quantity acts as a quality indicator for the utilized low-pass filter.

On the other hand, if the window W satisfies Assumption (A), e.g., if, for some 0 < ε < 1,

W (S) = 1 ∀S ∈ (−ε, ε),

the Hσ-norm of eL is proven to be bounded above by

‖eL‖σ ≤
(
Cα−σ,W ‖1−W‖L∞([0,1]) + 1

)
Lσ−α ‖f‖α. (6.2)

Therefore, in this case the order of convergence is always determined by the difference between
the smoothness α of the target function f and the order σ of the Sobolev norm in which the
reconstruction error is measured. In addition, the error estimate now predicts an affine-linear
behaviour of the Hσ-norm of eL with respect to the quality indicator ‖1 −W‖L∞([0,1]) so that
this quantity can be used to evaluate the approximation quality of the chosen low-pass filter.

From both our results we conclude that the flatness of the low-pass filter’s window function
at the origin determines the convergence rate of the Hσ-error bounds for the inherent FBP
reconstruction error eL = f − fL. Moreover, the estimates provided for the approximation error
can be combined with estimates for the data error to obtain convergence rates for noisy data.

Finally, we described a standard discretization of the FBP method and provided numeri-
cal experiments for the L2-case, where we applied the standard root mean square error and
considered two phantoms of different smoothness. In our first set of numerical experiments we
investigated the convergence rate of the RMSE for various low-pass filters. Here, we observed
exactly the decay rates predicted by our estimates (6.1) and (6.2). In particular, the saturation
of the order of convergence at fractional rates was observable. In our second set of numerical
experiments we analysed the behaviour of the RMSE with respect to different quality indicators.
As predicted by (6.1) with k = 2 and p = ∞, we clearly observed an affine-linear behaviour of
the error with respect to ‖W ′′‖L∞([0,1]). In addition, under Assumption (A) we saw that the
RMSE behaves affine-linearly with respect to ‖1−W‖L∞([0,1]), as prognosticated in (6.2). All in
all, our numerical results totally comply with our L2-theory and validate our theoretical results.

This thesis leaves room for further investigations and improvements. First of all, in practical
applications, only finitely many Radon samples are given. Therefore, the approximate FBP
reconstruction formula has to be discretized in order to be applicable. This introduces inevitable
discretization error that are not covered by our error theory, since we consider the continuous
setting. In future considerations, one could include these discretization errors, for which a rich
literature is available. Moreover, in practice, the Radon data is not only discrete, but also
corrupted with noise. In this thesis, we briefly discussed the noisy case, where we analysed the
worst case overall reconstruction error from noisy data. For future works, it would be interesting
to improve the derived error estimates when a concrete distribution of the noise is known. In
particular, the question for an optimal low-pass filter for a given noise distribution is of interest.

Secondly, by deriving asymptotic error estimates, we observed that assuming differentiability
of the filter’s window only at zero allows us to derive saturation rates for the FBP reconstruction.
Indeed, if W is k-times differentiable at 0 such that its first k − 1 derivatives vanish at 0, the
convergence order saturates at rate L−k and the quantity |W (k)(0)| dominates the error bound.
For the future, it would be interesting to generalize these results so that also fractional saturation
rates can be predicted, while not assuming regularity of the window on its entire support.

Finally, it might be worthwhile to generalize our results to other notions of smoothness for
the target function. Instead of fractional Sobolev space, one could consider Besov spaces or even
more general smoothness concepts, as common in regularization theory of ill-posed problems.



Appendix A

Mathematical tools

In this chapter we summarize some basic facts about the Fourier transform and introduce Sobolev
spaces of fractional order. To this end, we also explain the notion of (tempered) distributions
and define the distributional Fourier transform. Finally, we list some general mathematical
tools that are used throughout this work. For a comprehensive treatment of Fourier analysis
and distribution theory we refer the reader to the monographs [27], [46], [108], [119]. Further
details on Sobolev spaces can be found in the textbooks [2], [16].

A.1 Fourier transform and convolution
The Fourier transform is a basic tool in the mathematics of computerized tomography and is
used extensively in this work. In this section we define the n-dimensional Fourier transform and
collect some important properties. Further, we introduce the convolution product and describe
its interplay with the Fourier transform.

The Fourier transform

We start with the definition of the Fourier transform on the space L1(Rn) of integrable functions.

Definition A.1.1 (Fourier transform). The Fourier transform Ff of a function f ∈ L1(Rn) is
defined as

Ff(ω) =
∫
Rn
f(x) e−ixTω dx for ω ∈ Rn. (A.1)

We remark that the Fourier transform Ff of a function f ∈ L1(Rn) is well-defined on Rn.
The first important observation is that in this case the Fourier transform Ff is even continuous
and, in particular, its point evaluation makes sense.

Lemma A.1.2 (Riemann-Lebesgue lemma). For f ∈ L1(Rn), its Fourier transform Ff is
uniformly continuous on Rn and satisfies

|Ff(ω)| −→ 0 for ‖ω‖Rn −→∞.

Proof. See, for example, [119, Theorem I.1.1] and [119, Theorem I.1.2].

Let C0(Rn) denote the space of continuous functions vanishing at infinity, i.e.,

C0(Rn) = {f ∈ C (Rn) | f(x) −→ 0 for ‖x‖Rn −→∞} ,

which is equipped with the norm ‖ · ‖∞ given by

‖f‖∞ = sup
x∈Rn

|f(x)| for f ∈ C0(Rn).

Then, we have the following continuity result for the Fourier transform.
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Theorem A.1.3. The Fourier transform F : L1(Rn) −→ C0(Rn) is a continuous linear operator
with norm ‖F‖ ≤ 1, i.e.,

‖Ff‖∞ ≤ ‖f‖L1(Rn) ∀ f ∈ L1(Rn).

Proof. See, for example, [124, Theorem V.2.2].

We now define the inverse Fourier transform on L1(Rn).

Definition A.1.4 (Inverse Fourier transform). For f ∈ L1(Rn), the inverse Fourier transform
F−1f is defined as

F−1f(x) = (2π)−n
∫
Rn
f(ω) eixTω dω for x ∈ Rn. (A.2)

Although, by Lemma A.1.2, the Fourier transform Ff of f ∈ L1(Rn) vanishes at infinity,
this does not necessarily imply that Ff ∈ L1(Rn). Thus, in order to apply the inverse Fourier
transform to Ff , we have to assume that Ff ∈ L1(Rn) is satisfied. In this case we indeed get
the following inverse relationship.

Theorem A.1.5 (Fourier inversion). Let f ∈ L1(Rn) with Ff ∈ L1(Rn). Then, the identity

F−1(Ff)(x) = f(x) = F(F−1f)(x)

holds for almost all x ∈ Rn with equality in every continuity point of f .

Proof. See, for example, [119, Corollary I.1.21].

As a corollary we get the injectivity of the Fourier transform on L1(Rn).

Corollary A.1.6 (Injectivity of F). For f ∈ L1(Rn) we have

Ff = 0 =⇒ f = 0,

i.e., the Fourier transform F is injective on L1(Rn).

We have the following variant of the Fourier inversion theorem.

Theorem A.1.7 (Fourier inversion formula). For f ∈ L1(Rn), the Fourier inversion formula

F−1(Ff)(x) = f(x) = F(F−1f)(x) (A.3)

holds for almost all x ∈ Rn, where the (inverse) Fourier transforms have to be defined as

Ff(x) = lim
ε→0

∫
Rn
f(ω) e−ixTω e−ε‖ω‖2

Rn dω for x ∈ Rn (A.4)

and
F−1f(ω) = (2π)−n lim

ε→0

∫
Rn
f(x) eixTω e−ε‖x‖2

Rn dx for ω ∈ Rn. (A.5)

Further, for f ∈ L1(Rn) ∩ C (Rn) the identity (A.3) holds for all x ∈ Rn.

Proof. See, for example, [34, Chapter 7.5].

Remark A.1.8. For f ∈ L1(Rn) the definitions (A.1) and (A.4) as well as (A.2) and (A.5)
coincide due to Lebesgue’s theorem on dominated convergence.

We remark that the inverse Fourier transform F−1 can be expressed in terms of the Fourier
transform F and the parity operator ∗ : Lp(Rn) −→ Lp(Rn) for 1 ≤ p ≤ ∞, which is defined as

f∗(x) = f(−x) for x ∈ Rn. (A.6)
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Remark A.1.9. For f ∈ L1(Rn) we have F−1f = (2π)−nFf∗ = (2π)−n (Ff)∗.

We now list some basic properties of the Fourier transform.

Proposition A.1.10. For f ∈ L1(Rn) the following properties hold true.

(i) Translation: For y ∈ Rn we consider the function

g(x) = f(x− y) for x ∈ Rn.

Then,
Fg(x) = e−ixT y Ff(x) ∀x ∈ Rn.

(ii) Scaling: For a > 0 we consider the function

g(x) = f(ax) for x ∈ Rn.

Then,
Fg(x) = a−nFf(a−1x) ∀x ∈ Rn.

(iii) Modulation: For y ∈ Rn we consider the function

g(x) = eixT y f(x) for x ∈ Rn.

Then,
Fg(x) = Ff(x− y) ∀x ∈ Rn.

(iv) Let α ∈ Nn0 be a multi-index and Dα = ∂α

∂xα . If Dαf exists and is in L1(Rn), then

F(Dαf) = i|α| xαFf,

whereas, if xαf is integrable on Rn, then

F(xαf) = i|α|Dα(Ff).

Proof. See, for example, [34, Theorem 7.8].

Another important property of the Fourier transform is Parseval’s identity.

Theorem A.1.11 (Parseval’s identity). For f, g ∈ L1(Rn) we have∫
Rn
Ff(x) g(x) dx =

∫
Rn
f(x)Fg(x) dx.

Proof. See, for example, [119, Theorem I.1.15].

The next theorem is the classical Rayleigh-Plancherel theorem, which shows that the Fourier
transform preserves the L2-norm up to a multiplicative constant.

Theorem A.1.12 (Rayleigh-Plancherel). Let f ∈ L1(Rn) and f ∈ L2(Rn) or Ff ∈ L2(Rn).
Then, we have Ff ∈ L2(Rn) or f ∈ L2(Rn), respectively, and

‖f‖L2(Rn) = (2π)−n/2 ‖Ff‖L2(Rn).

More generally, for f, g ∈ L1(Rn) ∩ L2(Rn) we have

(f, g)L2(Rn) = (2π)−n (Ff,Fg)L2(Rn).

Proof. See, for example, [119, Theorem I.2.1].
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Since L1(Rn) ∩ L2(Rn) ⊂ L2(Rn) is dense, the Rayleigh-Plancherel Theorem A.1.12 shows
that the Fourier transform can be continuously extended to an operator

F : L2(Rn) −→ L2(Rn),

which is an isometry up to a multiplicative constant. Further, the extended operator F is
bijective on L2(Rn) and its inverse F−1 is the continuous extension of the inverse Fourier trans-
form. In this work, however, we will not distinguish between the regular Fourier transform and
its extension.

Consequently, the Fourier transform and its inverse are now defined on the whole of L2(Rn).
But for f ∈ L2(Rn), the point evaluation of Ff makes sense only almost everywhere and the
Fourier inversion formula holds in L2-sense.

Corollary A.1.13 (Fourier inversion in L2(Rn)). For f ∈ L2(Rn) the Fourier inversion formula

F−1(Ff) = f = F(F−1f)

holds in L2-sense and, in particular, almost everywhere on Rn.

We close this paragraph on the Fourier transform with a variant of the classical Paley-Wiener
theorem, which characterizes the Fourier transform of compactly supported functions.

Theorem A.1.14 (Paley-Wiener). Let f ∈ L1(Rn) \ {0} be compactly supported. Then, its
Fourier transform Ff is analytic and cannot have compact support.

Proof. See, for example, [108, Lemma 7.21] and [108, Theorem 7.23].

The convolution product

We now define the convolution product of functions in L1(Rn) and investigate its interaction
with the Fourier transform.

Definition A.1.15 (Convolution product). The convolution product f ∗ g of two functions
f, g ∈ L1(Rn) is defined as

(f ∗ g)(x) =
∫
Rn
f(x− y) g(y) dy for x ∈ Rn.

We remark that the convolution product of f, g ∈ L1(Rn) exists and is again in L1(Rn).
More generally, we have the following result.

Theorem A.1.16 (Young’s inequality). Let f ∈ Lp(Rn) and g ∈ Lq(Rn) with 1 ≤ p, q ≤ ∞.
Then, we have f ∗ g ∈ Lr(Rn) with 1 ≤ r ≤ ∞ satisfying

1
p

+ 1
q

= 1
r

+ 1

and Young’s inequality
‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lp(Rn) ‖g‖Lq(Rn)

holds with equality if f and g are non-negative almost everywhere on Rn.

Proof. See, for example, [14, Theorem 3.9.4].

A special situation occurs if f ∈ Lp(Rn) and g ∈ Lq(Rn) with dual exponents 1 ≤ p, q ≤ ∞,
i.e.,

1
p

+ 1
q

= 1.
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Theorem A.1.17. Let f ∈ Lp(Rn) and g ∈ Lq(Rn) with 1 ≤ p, q ≤ ∞ satisfying

1
p

+ 1
q

= 1.

Then, f ∗ g is bounded and continuous on Rn, i.e., f ∗ g ∈ Cb(Rn), where

Cb(Rn) = {f ∈ C (Rn) | ‖f‖∞ <∞} .

If we further have 1 < p, q <∞, then f ∗ g vanishes at infinity, i.e., f ∗ g ∈ C0(Rn).

Proof. See, for example, [16, Theorem 3.14].

We now list some basic properties of the convolution product.

Proposition A.1.18. The convolution product satisfies the following properties.

(i) Commutativity:
f ∗ g = g ∗ f ∀ f, g ∈ L1(Rn)

(ii) Linearity:

f ∗ (α g + β h) = α (f ∗ g) + β (f ∗ h) ∀α, β ∈ R, f, g, h ∈ L1(Rn)

(iii) Integration:∫
Rn

(f ∗ g)(x) dx =
(∫

Rn
f(x) dx

)(∫
Rn
g(x) dx

)
∀ f, g ∈ L1(Rn)

(iv) Translation: For f ∈ L1(Rn) and a ∈ Rn we consider the function

fa(x) = f(x− a) for x ∈ Rn.

Then,
fa ∗ g = (f ∗ g)a ∀ g ∈ L1(Rn).

(v) Let f ∈ L1(Rn) and let g ∈ C k(Rn), k ∈ N, be bounded such that its derivatives Dαg are
also bounded for all multi-indices α ∈ Nn0 with |α| ≤ k. Then, we have f ∗ g ∈ C k(Rn) and

Dα(f ∗ g) = f ∗Dαg.

Proof. See, for example, [16, Chapter 3.3] and [55, Chapter 10.1].

We finish this section by stating the most important property of the convolution product,
which is given by the classical Fourier convolution theorem and describes the interaction between
the convolution product and the Fourier transform.

Theorem A.1.19 (Fourier convolution theorem). Let f, g ∈ L1(Rn) be given functions. Then,
we have

F(f ∗ g) = Ff · Fg

and
F−1(f ∗ g) = (2π)nF−1f · F−1g.

Additionally, if Ff,Fg ∈ L1(Rn), then

F(f · g) = (2π)−n (Ff) ∗ (Fg).

Proof. See, for example, [119, Theorem I.1.4].



138 A Mathematical tools

A.2 Distributions
Distributions or, to be more precise, tempered distributions play an important role in the defi-
nition of Sobolev spaces of fractional order. Thus, in this section we introduce distributions as
generalized functions and extend the Fourier transform to the space of tempered distributions.
Here, we restrict ourselves to the most basic facts, which can be found in [16], [27], [46], [108].

The space of distributions is given by the topological dual of the space of test functions,
which is defined as follows.

Definition A.2.1 (Space of test functions). Let Ω ⊆ Rn be a domain in Rn. Then, the space
of test functions on Ω is defined as

D(Ω) = {f ∈ C∞(Ω) | supp(f) ⊆ Ω compact} .

The following lemma explains the expression ’test function’.

Lemma A.2.2 (Fundamental lemma of variational calculus). Let Ω ⊆ Rn be a domain in Rn
and f ∈ L1

loc(Ω) be locally integrable. Then, we have

f ≡ 0 a.e. on Ω ⇐⇒
∫

Ω
f(x)φ(x) dx = 0 ∀φ ∈ D(Ω).

Proof. See, for example, [16, Lemma 2.75].

Calculating the integral
∫

Ω f(x)φ(x) dx is also called testing the function f ∈ L1
loc(Ω) with

φ ∈ D(Ω). Thus, the fundamental lemma of variational calculus, Lemma A.2.2, states that
f ∈ L1

loc(Ω) is almost everywhere uniquely determined by testing with all functions φ ∈ D(Ω).

Example A.2.3. The function f : Rn −→ R with

f(x) =

exp
(
− 1

1−‖x‖2
Rn

)
for ‖x‖Rn < 1

0 for ‖x‖Rn ≥ 1

is a test function on Rn, i.e., it satisfies f ∈ D(Rn).

We now introduce the notion of a distribution.

Definition A.2.4 (Distribution). Let Ω ⊆ Rn be a domain in Rn. The topological dual space of
D(Ω) with respect to the natural topology, denoted by D ′(Ω), is called the space of distributions.

We note that, for a domain Ω ⊆ Rn, each function f ∈ L1
loc(Ω) induces a distribution

Tf ∈ D ′(Ω) via
Tf (φ) =

∫
Ω
f(x)φ(x) dx for φ ∈ D(Ω).

In this sense we have L1
loc(Ω) ⊂ D ′(Ω) and distributions of the form Tf are called regular.

Because of the relation between f and Tf , distributions are also called generalized functions.
However, there also exist distributions that are not regular. One example is the well-known

Dirac distribution δ ∈ D ′(Rn) with

δ(f) = f(0) for f ∈ D(Rn)

or, for fixed x0 ∈ Rn, the shifted Dirac distribution δx0 ∈ D ′(Rn) with

δx0(f) = f(x0) for f ∈ D(Rn).

In what follows, we denote the action of a distribution T ∈ D ′(Ω) on a test function φ ∈ D(Ω)
by the duality pairing

〈T, φ〉 = T (φ).
With this we define the derivative of a distribution as follows.
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Definition A.2.5 (Derivative of a distribution). Let Ω ⊆ Rn be a domain and T ∈ D ′(Ω). For
α ∈ Nn0 , we define the derivative DαT ∈ D ′(Ω) of T via

〈DαT, φ〉 = (−1)|α| 〈T,Dαφ〉 for φ ∈ D(Ω).

We use the same technique to define the multiplication of a distribution with a C∞-function.
To this end, we note that the product g · φ of g ∈ C∞(Ω) and φ ∈ D(Ω) is again in D(Ω).

Definition A.2.6 (Multiplication with a C∞-function). Let Ω ⊆ Rn be a domain. Further, let
T ∈ D ′(Ω) be a distribution and g ∈ C∞(Ω). Then, the distribution g · T ∈ D ′(Ω) is defined as

〈g · T, φ〉 = 〈T, g · φ〉 for φ ∈ D(Ω).

We would like to use this technique to also define the Fourier transform of a distribution.
However, the Fourier transform of a non-trivial test function is not a test function, since it cannot
have compact support due to the Paley-Wiener Theorem A.1.14. To resolve this problem,
we have to restrict ourselves to a smaller subspace of distributions, the so called tempered
distributions. This space is given by the topological dual of the so called Schwartz space of
rapidly decreasing functions, which is defined as follows.

Definition A.2.7 (Schwartz space). The Schwartz space S(Rn) of rapidly decaying functions
is defined as

S(Rn) = {f ∈ C∞(Rn) | ∀α, β ∈ Nn0 : |f |α,β <∞} ,

where
|f |α,β = sup

x∈Rn
|xα Dβf(x)| for α, β ∈ Nn0 .

The space of Schwartz functions plays a central role in the theory of Fourier transforms.

Theorem A.2.8. The Fourier transform F : S(Rn) −→ S(Rn) is an automorphism of S(Rn).
In particular,

F−1(Ff) = f = F(F−1f) ∀ f ∈ S(Rn).

Proof. See, for example, [16, Theorem 4.15].

Since D(Rn) ⊂ S(Rn), we have S ′(Rn) ⊂ D ′(Rn) and the dual space of S(Rn) consists of a
special class of distributions. These are called tempered distributions.

Definition A.2.9 (Tempered distribution). The topological dual space of S(Rn) with respect to
the natural topology, denoted by S ′(Rn), is called the space of tempered distributions.

Since the Fourier transform of a Schwartz function is again a Schwartz function, we can now
define the Fourier transform of tempered distributions.

Definition A.2.10 (Fourier transform of tempered distributions). Let T ∈ S ′(Rn) be tempered.
Then, its Fourier transform FT ∈ S ′(Rn) is defined via

〈FT, f〉 = 〈T,Ff〉 for f ∈ S(Rn).

Analogously, its inverse Fourier transform F−1T ∈ S ′(Rn) is given by

〈F−1T, f〉 = 〈T,F−1f〉 for f ∈ S(Rn).

We remark that, if T ∈ S ′(Rn) is regular and given by T = Tf for some function f ∈ L1(Rn),
we have

FTf = TFf

due to Parseval’s identity, cf. Theorem A.1.11. Hence, the definition of the classical and the
distributional Fourier transform coincide on L1(Rn).
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Remark A.2.11. We have Lp(Rn) ⊂ S ′(Rn) for all 1 ≤ p ≤ ∞ in the sense that the functional
Tf : S(Rn) −→ R,

〈Tf , φ〉 =
∫
Rn
f(x)φ(x) dx for φ ∈ S(Rn),

is a tempered distribution. This observation implies that the Fourier transform is now defined
for all Lp-spaces. However, the Fourier transform of f ∈ Lp(Rn) with p > 2 is in general not a
function, but only a distribution, in contrast to the case of p ≤ 2.

Like the Schwartz space S(Rn), also the space of tempered distributions S ′(Rn) plays a
central role in Fourier analysis.

Theorem A.2.12. The Fourier transform F : S ′(Rn) −→ S ′(Rn) is an automorphism of S ′(Rn)
with respect to the weak topology. In particular, we have

F−1(Ff) = f = F(F−1f) ∀ f ∈ S ′(Rn).

Proof. See, for example, [16, Theorem 4.25].

Many properties of the regular Fourier transform carry over to the distributional Fourier
transform. We start with the property that F translates differentiation into multiplication.
To this end, we first remark that for T ∈ S ′(Rn) and α ∈ Nn0 the distributional derivative
DαT ∈ S ′(Rn) is again tempered. Further, the multiplication with a function f ∈ C∞(Rn) of
at most polynomial growth is well-defined via

〈f · T, φ〉 = 〈T, f · φ〉 for φ ∈ S(Rn).

Proposition A.2.13. For T ∈ S ′(Rn) and α ∈ Nn0 , we have

F(DαT ) = i|α| xαFT.

Proof. See, for example, [124, Theorem VIII.5.12].

We proceed to the distributional definition of the convolution product. For this, recall the
definition of the parity operator ∗ : S(Rn) −→ S(Rn) in (A.6).

Definition A.2.14 (Convolution of a tempered distribution with a function). For T ∈ S ′(Rn)
and f ∈ S(Rn) the convolution product f ∗ T ∈ S ′(Rn) is defined as

〈f ∗ T, φ〉 = 〈T, f∗ ∗ φ〉 for φ ∈ S(Rn).

We close this section on distributions by stating the Fourier convolution theorem for the
distributional Fourier transform.

Theorem A.2.15 (Fourier convolution theorem). Let T ∈ S ′(Rn) and f ∈ S(Rn) be given.
Then, we have

F(f ∗ T ) = Ff · FT.

Proof. See, for example, [46, Theorem 7.1.18].

A.3 Sobolev spaces
Sobolev spaces play an important role in our error analysis of the filtered back projection method
in Chapter 4 and are of particular interest for understanding of the ill-posedness of the CT
reconstruction problem, see Section 2.2.3. For this reason, we now define Sobolev spaces of
fractional order and list some basic properties. This is based on a characterization of regular
Sobolev spaces by means of the Fourier transform. For further details we refer to the textbook [2].
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We begin with the standard definition of Sobolev spaces. To this end, let us recall that for a
domain Ω ⊆ Rn, a multi-index α ∈ Nn0 and a distribution T ∈ D ′(Ω) the derivative Dαf ∈ D ′(Ω)
is defined via

〈DαT, φ〉 = (−1)|α| 〈T,Dαφ〉 for φ ∈ D(Ω).

In general, the distributional derivative Dαf of a function f ∈ L1
loc(Ω) ⊂ D ′(Ω) is not a function

itself. But in case it is, Dαf is called weak derivative of f .

Definition A.3.1 (Weak derivative). Let Ω ⊆ Rn be a domain, f ∈ L1
loc(Ω) be locally integrable

and α ∈ Nn0 . If there exists a function g ∈ L1
loc(Ω) with∫

Ω
g(x)φ(x) dx = (−1)|α|

∫
Ω
f(x) Dαφ(x) dx ∀φ ∈ D(Ω),

then f is called weakly differentiable on Ω with weak derivative Dαf = g. If the weak derivatives
Dαf ∈ L1

loc(Ω) exist for all |α| ≤ k with k ∈ N, then f is called k-times weakly differentiable.

Remark A.3.2. Weak derivatives are uniquely determined almost everywhere on Ω according
to the fundamental lemma of variational calculus, Lemma A.2.2.

Now, the common Sobolev spaces are defined as spaces of functions whose weak derivatives
belong to certain Lp-spaces.

Definition A.3.3 (Sobolev space). Let Ω ⊆ Rn be a domain, 1 ≤ p ≤ ∞ and k ∈ N0. Then,
the Sobolev space Hk,p(Ω) is defined as

Hk,p(Ω) = {f ∈ Lp(Ω) | ∀ |α| ≤ k : Dαf ∈ Lp(Ω)}

and equipped with the Sobolev norm

‖f‖Hk,p(Ω) =


(∑
|α|≤k ‖Dαf‖pLp(Ω)

)1/p
for p <∞

max|α|≤k ‖Dαf‖L∞(Ω) for p =∞.

Remark A.3.4. For p = 2 we simply write Hk(Ω) ≡ Hk,2(Ω) and these spaces are Hilbert spaces
with the inner product

(f, g)Hk(Ω) =
∑
|α|≤k

(Dαf,Dαg)L2(Ω) for f, g ∈ Hk(Ω).

Since Hk,p(Rn) ⊂ Lp(Rn), we further have Hk,p(Rn) ⊂ S ′(Rn) in virtue of Remark A.2.11.
In particular, we get the following variant of Proposition A.2.13.

Lemma A.3.5. Let f ∈ L2(Rn) and α ∈ Nn0 so that the weak derivative Dαf is also in L2(Rn).
Then, we have

F(Dαf) = i|α| xαFf

and, if xαf ∈ L2(Rn),
F(xαf) = i|α|DαFf.

Proof. See, for example, [16, Lemma 4.28].

This lemma yields the following characterization of regular Sobolev spaces by means of the
Fourier transform.

Theorem A.3.6 (Characterization of Hk(Rn)). For k ∈ N we have

f ∈ Hk(Rn) ⇐⇒
∫
Rn

(
1 + ‖ω‖2Rn

)k |Ff(ω)|2 dω <∞.
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Proof. See, for example, [16, Theorem 4.29].

Observe that Theorem A.3.6 relates the weak differentiability of a function f ∈ L2(Rn) to the
decay properties of its Fourier transform Ff . This characterization does not only give a useful
tool to investigate the smoothness of a function but also offers a possibility to generalize the
definition of Sobolev spaces Hk(Rn) of integer order to spaces Hα(Rn) of arbitrary smoothness
order α ∈ R. However, if α < 0, we have to enlarge the basic set from L2(Rn) to the space of
tempered distributions S ′(Rn).

Definition A.3.7 (Sobolev space of fractional order). The Sobolev space Hα(Rn) of fractional
order α ∈ R is defined as

Hα(Rn) =
{
f ∈ S ′(Rn) | ‖f‖Hα(Rn) <∞

}
,

where the Sobolev norm ‖ · ‖Hα(Rn) is given by

‖f‖2Hα(Rn) =
∫
Rn

(
1 + ‖ω‖2Rn

)α |Ff(ω)|2 dω.

Further, for an open subset Ω ⊆ Rn, we define the Sobolev space Hα
0 (Ω) by

Hα
0 (Ω) =

{
f ∈ Hα(Rn) | supp(f) ⊆ Ω

}
,

where the support supp(f) of a tempered distribution f ∈ S ′(Rn) is defined as the complement
of the largest open set U ⊂ Rn for which 〈f, φ〉 = 0 for all φ ∈ S(Rn) with supp(φ) ⊂ U .

For α ∈ N0, Theorem A.3.6 shows that the space Hα(Rn) consists of those functions whose
(distributional) derivatives up to order α are square-integrable. Therefore, Definition A.3.7 is
compatible with the classical definition of Sobolev spaces. In particular, for α = 0 we simply
have

H0(Rn) = L2(Rn).

By defining the equivalent Sobolev norms ‖ · ‖α on Hα(Rn) for α ∈ R via

‖f‖2α = (2π)−n
∫
Rn

(
1 + ‖ω‖2Rn

)α |Ff(ω)|2 dω for f ∈ Hα(Rn),

we further obtain
‖ · ‖0 = ‖ · ‖L2(Rn)

according to the Rayleigh-Plancherel Theorem A.1.12.

We close this section with some final remarks on Sobolev spaces.

(i) The Sobolev space Hα(Rn) is a Hilbert space with the inner product

(f, g)Hα(Rn) =
∫
Rn

(
1 + ‖ω‖2Rn

)αFf(ω)Fg(ω) dω for f, g ∈ Hα(Rn).

(ii) For α < β we have Hβ(Rn) ⊂ Hα(Rn) and, in particular,

Hα(Rn) ⊂ L2(Rn) ∀α > 0.

Thus, for α > 0, the Sobolev space Hα(Rn) can equivalently be defined as

Hα(Rn) =
{
f ∈ L2(Rn) | ‖f‖α <∞

}
.

(iii) The dual space of Hα(Rn) is topologically isomorphic to H−α(Rn).
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A.4 General mathematical tools
In this section we finally list some general tools that are used in the derivation of the approximate
reconstruction formula in Chapter 3 and in our error analysis of the FBP method in Chapter 4.

We start with the following generalized Hölder inequality.

Theorem A.4.1 (Hölder inequality). Let fj ∈ Lpj (Rn) with 1 ≤ pj ≤ ∞ for all j = 1, . . . , k.
Then, we have

∏k
j=1 fj ∈ Lr(Rn) with 1 ≤ r ≤ ∞ satisfying

k∑
j=1

1
pj

= 1
r

and ∥∥∥∥ k∏
j=1

fj

∥∥∥∥
Lr(Rn)

≤
k∏
j=1
‖fj‖Lpj (Rn).

Proof. See, for example, [14, Corollary 2.11.5].

We continue with Taylor’s theorem in one variable.

Theorem A.4.2 (Taylor’s theorem). For k ∈ N, let the function f : R −→ R be k-times
differentiable at a point x0 ∈ R. Then, there exists a function hk : R −→ R such that

f(x) =
k∑
j=0

f (j)(x0)
j! (x− x0)j + hk(x) (x− x0)k ∀x ∈ R

and
lim
x→x0

hk(x) = 0.

Further, if f is k-times differentiable on the open interval with f (k−1) continuous on the closed
interval between x0 and x, then there exists some ξ ∈ R between x0 and x such that

f(x) =
k−1∑
j=0

f (j)(x0)
j! (x− x0)j + f (k)(ξ)

k! (x− x0)k.

Proof. See, for example, [42, Chapter VII].

We now turn to absolutely continuous functions on the real line, see [35], [107] for details.

Definition A.4.3 (Absolute continuity). A function f : [a, b] −→ R is absolutely continuous
on the interval [a, b] ⊂ R if for every ε > 0 there exists some δ > 0 such that for any finite set
of pairwise disjoint open subintervals {(aj , bj)}j∈J of [a, b] we have∑

j∈J
(bj − aj) < δ =⇒

∑
j∈J
|f(bj)− f(aj)| < ε.

We define the function spaces

AC([a, b]) = {f : [a, b] −→ R | f is absolutely continuous on [a, b]}

and
C 0,1([a, b]) = {f : [a, b] −→ R | f is Lipschitz continuous on [a, b]} ,

where a function f : [a, b] −→ R is Lipschitz continuous on [a, b] if there exists a constant C > 0
such that

|f(x)− f(y)| ≤ C |x− y| ∀x, y ∈ [a, b].
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We remark that we have

C 1([a, b]) ( C 0,1([a, b]) ( AC([a, b]) ( C ([a, b]).

In addition, any absolutely continuous function f ∈ AC([a, b]) is of bounded variation and its
pointwise derivative exists almost everywhere on [a, b], see [107, Lemma 4.11 & Corollary 4.12].

Further note that for any f ∈ L1([a, b]) the function g : [a, b] −→ R with

g(x) =
∫ x

a
f(t) dt for x ∈ [a, b]

is absolutely continuous on [a, b], i.e., g ∈ AC([a, b]), and differentiable almost everywhere with

g′(x) = f(x) for almost all x ∈ [a, b].

In fact, much more holds true.

Theorem A.4.4 (Fundamental theorem of calculus of AC-functions). For g : [a, b] −→ R the
following statements are equivalent:

(i) g is absolutely continuous on [a, b], i.e., g ∈ AC([a, b]).

(ii) There exists some function f ∈ L1([a, b]) such that

g(x)− g(a) =
∫ x

a
f(t) dt ∀x ∈ [a, b].

(iii) g is differentiable almost everywhere on [a, b] with g′ ∈ L1([a, b]) and

g(x)− g(a) =
∫ x

a
g′(t) dt ∀x ∈ [a, b].

Proof. See, for example, [35, Theorem 3.35].

An important fact is that integration by parts is valid for absolutely continuous functions.

Theorem A.4.5 (Integration by parts). Let f, g ∈ AC([a, b]). Then,∫ b

a
f(x) g′(x) dx = f(b) g(b)− f(a) g(a)−

∫ b

a
f ′(x) g(x) dx.

Proof. See, for example, [35, Theorem 3.36].

We close this section with the following remark on Lipschitz continuous functions.

Remark A.4.6. Let f ∈ C 0,1([a, b]) be Lipschitz continuous on the interval [a, b] with Lipschitz
constant C > 0, i.e.,

|f(x)− f(y)| ≤ C |x− y| ∀x, y ∈ [a, b].

Then, f is also absolutely continuous on [a, b], f ∈ AC([a, b]), and its pointwise derivative f ′,
which exists almost everywhere on [a, b], is essentially bounded with

|f ′(x)| ≤ C for almost all x ∈ [a, b].

Conversely, if f ∈ AC([a, b]) is absolutely continuous on [a, b] and has an essentially bounded
derivative f ′ ∈ L∞([a, b]), then f is also Lipschitz continuous on [a, b], f ∈ C 0,1([a, b]), and
satisfies

|f(x)− f(y)| ≤ ‖f ′‖L∞([a,b]) |x− y| ∀x, y ∈ [a, b].
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Zusammenfassung

Die Methode der gefilterten Rückwärtsprojektion (filtered back projection), kurz FBP-Methode,
stellt eine weit verbreitete Rekonstruktionstechnik in der Computertomographie dar, bei der
eine unbekannte bivariate Funktion durch Kenntnis ihrer Radon-Daten wiederhergestellt wird.
Die Rekonstruktion basiert auf der klassischen FBP-Formel, die eine analytische Inversion der
Radon-Transformation aus vollständigen Radon-Daten liefert. Allerdings ist die FBP-Formel
sensitiv gegenüber Störungen in den Radon-Daten und somit numerisch instabil. Ein Standard-
ansatz zur Stabilisierung ist die Verwendung eines Tiefpass-Filters von beschränkter Bandbreite
und mit einer Fenster-Funktion mit kompaktem Träger. Dies reduziert die Störungssensibilität
der Rekonstruktionsformel, liefert jedoch nur eine inexakte Approximation der Zielfunktion.

Das Hauptziel dieser Arbeit ist die Analyse des inhärenten FBP-Rekonstruktionsfehlers, der
durch die Einführung des Tiefpass-Filters hervorgerufen wird. Zu diesem Zweck entwickeln wir
Fehlerabschätzungen in Sobolev-Räumen mit gebrochener Ordnung und stellen quantitative Kri-
terien bereit, mit denen die Leistungsfähigkeit des verwendeten Tiefpass-Filters anhand der zuge-
hörigen Fenster-Funktion a priori evaluiert werden kann. Die gewonnenen Fehlerschranken hän-
gen ab von der Bandbreite des Tiefpass-Filters, der Flachheit der zugehörigen Fenster-Funktion
im Ursprung, der Glattheit der Zielfunktion und der Ordnung der verwendeten Sobolev-Norm,
in der der Rekonstruktionsfehler gemessen wird.

Des Weiteren beweisen wir Konvergenz der approximativen FBP-Rekonstruktion gegen die
Zielfunktion in den betrachteten Sobolev-Normen, wenn die Bandbreite des Tiefpass-Filters ge-
gen Unendlich strebt. Dabei ermitteln wir asymptotische Konvergenzraten in der Bandbreite und
beobachten insbesondere Saturation der Konvergenzordnung bei fraktionalen Raten in Abhän-
gigkeit von Glattheitseigenschaften der zum Filter gehörigen Fenster-Funktion.

Schließlich entwickeln wir Konvergenzraten auch für den Fall von Störungen in den Radon-
Daten, wenn das Störungslevel gegen Null strebt. Dazu beweisen wir Fehlerabschätzungen für
den Datenfehler und kombinieren diese mit unseren Resultaten für den Approximationsfehler.
Weiterhin wird die Bandbreite des Tiefpass-Filters an das Störungslevel der Radon-Daten ge-
koppelt, um die gewünschte Konvergenz des Rekonstruktionsfehlers zu erzielen.

Die theoretischen Resultate werden gestützt durch numerische Experimente.
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