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Abstract
In this thesis, we present our theoretical investigations on non-relativistic QCD (NRQCD)
factorization for double-quarkonium processes as well as phenomenological study on inclusive
charmonium (ηc, J/ψ, hc, χcJ ) production via Υ decay. We give two examples to explicitly
prove that the NRQCD factorization breaks down at tree-level in double-quarkonium processes.
We find a solution to cure this factorization breaking and give a new factorization formalism for
double-quarkonium processes. The inclusive charmonia production via Υ decay are calculated
in Υ color-singlet (CS) and charmonium CS and color-octet (CO) channels, which includes 3S

[1]
1

channel for Υ and 1S
[1,8]
0 , 3S

[1,8]
1 , 1P

[1,8]
1 , 3P

[1,8]
J channels for charmonia. For both CS and CO

channels, the computation are done up to O(α5
s) in strong coupling, where the next-to-leading

order (NLO) corrections forO(α4
s) process are included. Relatively important QED processes are

also considered. With our numerical results, we re-fitted the value of the CO long distance matrix
element (LDME) 〈Oχc0(3S

[8]
1 )〉 with fixed value of 〈Oχc0(3P

[1]
0 )〉 and compare with existed fitted

values. For inclusive J/ψ production, all the existing LDME sets can explain the experimental
data reasonably well in certain range of choosing renormalization scale. The branching ratio of
hc is too small to be measured, while the branching ratio of ηc is large enough to be measured
through current experimental data as long as the 〈Oηc(3S

[8]
1 )〉 is not too small.

Zusammenfassung
In dieser Arbeit präsentieren wir theoretische Untersuchungen im Kontext der nicht-relativistischen
QCD (NRQCD) Faktorisierung. Unsere phänomenologische Studie bezieht sich auf Doppel-
Quarkonium-Erzeugung sowie auf die inklusive Charmonium-Produktion (ηc, J/ψ, hc, χcJ )
im Zerfall von Υ-Mesonen. Wir geben zwei Beispiele an, um explizit zu belegen, dass die
NRQCD-Faktorisierung bei Doppel-Quarkonium Prozessen in führender Ordnung zusammen-
bricht. Wir finden eine Lösung, um dieses Zerbrechen der Faktorisierung zu heilen, indem wir
einen neuen Faktorisierungsformalismus für Doppelquarkoniumprozesse formulieren. Für die
inklusive Charmonium-Produktion im Υ Zerfall berücksichtigen wir die Υ Farb-Singulett (CS)
und die Charmonium Farb-Singulett (CS) und Farb-Oktett (CO) Kanäle, also den 3S

[1]
1 Kanal für

Υ und die 1S
[1,8]
0 , 3S

[1,8]
1 , 1P

[1,8]
1 und 3P

[1,8]
J Kanäle für Charmonia. Für die CS und CO Kanäle

wird die Berechnung bis zuO(α5
s) in der starken Kopplung durchgeführt, welche die Korrekturen

in nächsthöherer Ordnung (NLO) der O(α4
s) Prozesse beinhaltet. Wir berücksichtigen auch die

relativ gesehen wichtigen QED-Prozesse. Mit den erhaltenen numerischen Ergebnissen fitteten
wir den Wert des CO Langstreckenmatrixelements (LDME) 〈Oχc0(3S

[8]
1 )〉 bei einem als fest

angenommenen Wert von 〈Oχc0(3P
[1]
0 )〉 und vergleichen die gefitteten Werte mit Werten, die

bei früheren Analysen erhalten worden sind. Was inklusive J/ψ Produktion angeht, können
unser neuer LDME-Wert ebenso wie alle vorhergehenden LDME Werte die experimentellen
Daten in einem bestimmten Bereich der Renormierungsskala verhältnismäßig gut erklären. Das
Verzweigungsverhältnis von hc ist zu klein, um gemessen zu werden, während das Verzwei-
gungsverhältnis von ηc groß genug ist, um durch aktuelle experimentelle Daten gemessen zu
werden, solange 〈Oηc(3S

[8]
1 )〉 nicht zu klein ist.
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Chapter 1

Introduction

Heavy quarkonia or simply quarkonia are heavy quark Q and heavy anti-quark Q̄ bound states
such as J/ψ, which was discovered by the experimental groups of Samuel Ting [1] and Burton
Richter [2] more than four decades ago. Since then quarkonia have played a crucial role in the
establishment and development of the Standard Model of Particle Physics in general, and the
Quantum Chromodynamics (QCD) as the theory of the strong interaction in particular. During
the past four decades, Quarkonium Physics continuously have attracted much attention of both
experimental and theoretical physicists, which can be seen from the active Quarkonium Working
Group (QWG). On the experiment side, quarkonium states usually have very clean signature
of many observables even when there are only few rare events. This allows the study of both
new emergent phenomena in the realm of QCD and new physics beyond the Standard Model.
On the theoretic side, the hierarchy of energy scales: mQv

2
Q << mQvQ << mQ in addition

with ΛQCD << mQ make Quarkonium Physics serves as an ideal laboratory to study both the
pertubative and nonpertubative aspects of QCD. Here ΛQCD is the hadronic scale and vQ is the
velocity of the heavy quark in the rest frame of the heavy quarkonium, where for charmonium
states v2

c ' 0.3, and for bottomonium states v2
b ' 0.1.

The current default theoretical approach of describing quarkonia production and decay is
the non-relativistic QCD (NRQCD) factorization theorem [3], which is based on the NRQCD
effective quantum field theory [4]. This theorem states that the theoretical predictions can be
separated into process-dependent short-distance coefficients (SDCs) calculated perturbatively
as expansion in strong coupling constant αs and supposedly universal long-distance matrix
elements (LDMEs) scaling with definite power of vQ, which can be obtained through lattice
QCD or phenomenological determinations. In such a way, the theoretical calculations are
organized as double expansion in αs and vQ. The rigorous prove for the factorization for heavy
quarkonium inclusive annihilation processes was already given in Ref. [3], while the prove for
the factorization for heavy quarkonium inclusive production to all orders in αs is still missing.

Although lacking of rigorous prove, the NRQCD factorization has achieved numerous
remarkable successes in describing both production and decay of heavy quarkonium in the past
two decades (see Ref. [5, 6] and references therein for a review). Currently, the challenges are
mainly in understanding charmonium production in particular for J/ψ polarization (namely the
J/ψ polarization puzzle). Thanks to the efforts of various groups, the SDCs for most of the
phenomenologically relevant inclusive quarkonium production processes are now available for
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Butenschön, Ma, Wang, Gong, Wan, Bodwin, Chung,
Kniehl [14, 15] Chao [16] Wang, Zhang [21] Kim, Lee [23]

〈OJ/ψ(3S[1]
1 )〉/GeV3 1.32 1.16

〈OJ/ψ(1S[8]
0 )〉/GeV3 0.0304± 0.0035 0.097± 0.009 0.099± 0.022

〈OJ/ψ(3S[8]
1 )〉/GeV3 0.0016± 0.0005 −0.0046± 0.0013 0.011± 0.010

〈OJ/ψ(3P [8]
0 )〉/GeV5 −0.0091± 0.0016 −0.0214± 0.0056 0.011± 0.010

〈Oχc0(3P
[1]
0 )〉/GeV5 0.107 0.107

〈Oχc0(3S
[8]
1 )〉/GeV3 0.0021± 0.0005 0.0022± 0.0005

Table 1.1: Sets of J/ψ and χc0 LDMEs determined in Refs. [14–16, 21, 23].

Default set Set 2 Set 3
〈OJ/ψ(3S

[1]
1 )〉/GeV3 1.16 1.16 1.16

〈OJ/ψ(1S
[8]
0 )〉/GeV3 0.089± 0.0098 0 0.0146

〈OJ/ψ(3S
[8]
1 )〉/GeV3 0.0030± 0.012 0.014 0.0118

〈OJ/ψ(3P
[8]
0 )〉/GeV5 0.0126± 0.0047 0.054 0.045

Table 1.2: Sets of J/ψ LDMEs determined in Refs. [20, 26]. Since an up limit of the CO LDME
〈OJ/ψ(1S

[8]
0 )〉 = 0.0146Gev3 was given in Ref. [26], we replace the fourth column obtained in

Ref. [20] with the new ones.

the intermediate states 3S
[1/8]
1 , 1S

[8]
0 , 3P

[1/8]
J at next-to-leading order (NLO) in strong coupling :

for the yield [7,8] and polarization [9] in e+e− annihilation, yield in two-photon collision [10,11],
yield [12] and polarization [13] in photoproduction, yield [17, 18] and polarization [19–22] in
hadroproduction, etc. And different sets of LDMEs were obtained by fitting to the experimental
data under different considerations (see Table.1.1, 1.2). With these sets of LDMEs, some
theoretical predictions are plotted in Fig. 1.1 [6], from which, it can be seen that none of the
LDME sets can explain both J/ψ yield and polarization data. This poses a challenge to the
universality of LDMEs.

Very recently, ηc production cross-section in pp collisions was measured by LHCb collab-
oration [24], followed by theoretical investigations from three groups [25–27]. Despite the
consistency of the SDCs obtained by these groups, their conclusions are dramatically different.
In [25], the authors conclude that either the universality of the LDMEs is in question or that
another important ingredient to current NLO NRQCD analyses has so far been overlooked; while
in [26], to describe the ηc hadroproduction data, an up limit of the CO LDME 〈Oηc(3S

[8]
1 )〉 was

given and related to the CO LDME 〈OJ/ψ(1S
[8]
0 )〉 through HQSS (see the fourth column of Table.

1.2), where similar conclusions are given in Ref. [27].
To clarify the conflicts described above and further test the NRQCD factorization, we choose

to study inclusive charmonia production via Υ(1S) decay. There are mainly four reasons. Firstly,
NNLO QCD corrections and non-relativistic correction to NLO QCD corrections for inclusive
quarkonium production are far beyond the reach of current techniques. Secondly, as it was
pointed out in Ref. [6], because of the much larger errors of theoretical predictions in all models
comparing with current experimental measurements errors, it is not higher order which is needed,
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Figure 1.1: The first (a, e, i) and second (b, f, j) columns are the predictions of the J/ψ total
e+e− cross section measured by Belle [28] and the transverse momentum distributions in pho-
toproduction measured by H1 at HERA [29, 30] respectively. The third column (c, g, k) are the
predictions in hadroproduction measured by CDF [31] and ATLAS [32]. The fourth column
(d, h, l) are the predictions of polarization parameter λθ measured by CDF in Tevatron run
II [33]. The predictions are plotted using the values of the CO LDMEs given in [14, 15], [21]
and [20] (Default) and listed in Table 1.1, 1.2.
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but rather new and diverse production observables. Thirdly, on the experimental side, there are
large number (102×106) of Υ(1S) decay events collected by the Belle detector and more precise
values of branching ratios of inclusive J/ψ, χc1 production via Υ(1S) decay were measured
very recently [34–36] compared to the previous CLEO [37,38] and ARGUS results [39]. Finally,
on the theoretically, the investigations on these processes are far from complete even at leading
order and next-to-leading order corrections (virtual and real) are completely missing.

While calculating the processes Υ(3P
[8]
J )→ χcJ(3P

[1]
J ) + gg, we find uncanceled infrared

divergences, which appear to be quite general in double P-wave quarkonia involved processes.
This means the NRQCD factorization breaks down for double quarkonia involved processes and
hence put a threat on the application of NRQCD factorization to the double-quarkonium hadron
production, which has been a hot topic in recent years due to the huge discrepancies between
CMS data [40, 41] and NRQCD predictions at leading order in αs [42] as well as being a useful
laboratory to investigate the double parton scattering mechanism [43] at hadron colliders.

We cure the NRQCD factorization breaking issue in double quarkonia involved processes
through introducing a set of LDMEs for double quarkonia production or single quarkonium
production via quarkonium decay, whose QCD corrections can absorb the uncanceled infrared
divergences.

This thesis is organized as follows: In Chapter 2 we demonstrate that the current version of
NRQCD factorization breaks down for double quarkonia involved processes through two explicit
examples. In chapter 3, we give our solutions to absorb the uncanceled infrared divergences as
well as new version of NRQCD factorization formula for double quarkonia involved processes.
Analytic Born level and NLO calculations for inclusive charmonia production via Υ(1S) decay
are describe in chapter 4 and 5 respectively. The numerical evaluation and phenomenological
discussion are done in chapter 6. We summarize our results and give some outlook in chapter 7.
Notations, kinematics, definition of LDMEs, loop integrals, soft integrals and summary of the
results of one-loop corrections to the LDMEs can be found in the appendixes.
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Chapter 2

Breakdown of NRQCD Factorization
in Double Quarkonia Processes

NRQCD factorization theorem has been widely applied in describing quarkonium decay and
production in variety of processes. The NRQCD factorization theorem has been proven valid
at all orders for inclusive quarkonium decay and at next-to-next-to-leading order for most
inclusive charmonium production processes in strong coupling [44–46]. In this chapter we will
demonstrate that for double quarkonia processes, the NRQCD factorization breaks down at
tree-level through two explicit examples.

2.1 NRQCD Factorization for Quarkonium Decay and
Production

The NRQCD factorization theorem for inclusive decay or production of single quarkonium
H (QQ̄) can be written as

Γ(H → X) =
∑
n

Γ̂(QQ̄[n]→ X)〈O[n]〉H , (2.1)

σ(a+ b→ H +X) =
∑
n

σ̂(a+ b→ QQ̄[n] +X)〈OH [n]〉, (2.2)

where Γ̂, σ̂ are perturbatively calculable SDCs, 〈O[n]〉H , 〈OH [n]〉 are decay and production
matrix elements (LDMEs), whose definitions are given in the BBL paper [3] as well as in
Appendix B. Here we absorb all the polarization and color factors into the SDCs (Γ, σ), which
means the SDCs are calculated according to

dΓ̂(QQ̄[n]→ X) =
1

2mH

∑
|M|2dPS, (2.3)

dσ̂(a+ b→ QQ̄[n] +X) =
1

2s

1

NcolNpol(n)

∑
|M|2dPS, (2.4)
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where Ncol = 2Nc, N
2
c − 1 for CS and CO intermediate states respectively, s is the center mass

energy, dPS is the differential phase space, and Npol(n) is the number of polarization of freedom,
which is given by, in D-dimension,

Npol(
1S0) = Npol(

3P0) = 1, Npol(
3S1) = Npol(

1P1) = D − 1, (2.5)

Npol(
3P1) =

(D − 1)(D − 2)

2
, Npol(

3P2) =
(D + 1)(D − 2)

2
. (2.6)

Since we average and summer over the polarization, color degrees for the initial and final states
respectively, a factor of 1

NcolNpol(n)
is absorbed into the averaged decay amplitude square.

The following heavy quark spin symmetry (HQSS) relations [3] are applied for the 3PJ and
χcJ LDMEs

〈O(3P
[8]
J )〉Υ = 〈O(3P

[8]
0 )〉Υ

(
1 +O(v2

b )
)
, (2.7)

〈OJ/ψ(3P
[8]
J )〉 = (2J + 1)〈OJ/ψ(3P

[8]
0 )〉

(
1 +O(v2

c )
)
, (2.8)

〈OχcJ (3S
[8]
1 /3P

[1]
J )〉 = (2J + 1)〈Oχc0(3S

[8]
1 /3P

[1]
0 )〉

(
1 +O(v2

c )
)
. (2.9)

2.2 The Covariant Projection Method

Let us start with considering the processes where a quarkonium in the state QQ̄(2S+1L
[a]
J ) is

involved. We label the quark pair in the full QCD amplitudes as Q(p, s, i)Q̄(p̄, s̄, ī), where s, s̄
are spin indexes, i, ī are color indexes and p, p̄ are 4-momenta.

To calculate the amplitudesM which include the quarkonium state QQ̄(2S+1L
[a]
J ), we apply

color, spin and angular momentum projectors on quark pair in the full QCD amplitude A.
The color projectors are given by

C1 =
δīi√
Nc

, (2.10a)

Ca8 =
√

2T aīi (for production), (2.10b)

where C1, Ca8 project out the CS and CO states respectively. For decay of QQ̄(2S+1L
[8]
J ) state,

the color indexes ī, i in the color matrix T aīi must interchange.
The spin projectors are given by

Π0 =
1√
8m3

Q

×
{
v̄s̄(p̄)γ5u

s(p) (for production),

ūs(p)γ5v
s̄(p̄) (for decay),

(2.11)

Πα =
1√
8m3

Q

×
{
v̄s̄(p̄)γαus(p) (for production),

ūs(p)γαvs̄(p̄) (for decay),
(2.12)
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where Π0, Πα project out spin singlet and triplet states respectively, and mQ is the pole mass of
quark Q.

Defining

P ≡ p+ p̄, q ≡ p− p̄
2

, (2.13)

the S-wave states (L = S) can be obtained by simply setting q = 0, and the P-wave states
(L = P ) can be obtained by differential the amplitudes respecting to q after which q is set to be
zero.

Combining all the projectors and the full QCD amplitudes A, we have

M
1S

[a]
0

=
∑
s,s̄

CaΠ0A|q=0, (2.14a)

M
3S

[a]
1

=
∑
s,s̄

ε∗αCaΠαA|q=0, (2.14b)

M
1P

[a]
1

= ε∗α
d

dqα

[∑
s,s̄

CaΠ0A
]∣∣∣
q=0

, (2.14c)

M
3P

[a]
J

= ε
∗(J)
αβ

d
dqβ

[∑
s,s̄

CaΠαA
]∣∣∣
q=0

(J = 0, 1, 2), (2.14d)

where ε∗ is the polarization vector or tensor of final QQ̄ pair state and a = 1, 8. If the QQ̄ pair
is in the initial state, ε∗ must been replaced by ε.

Note: Here our spin projectors Eq.(2.11, 2.12) and formulas Eq.(2.14a–2.14d) are slightly
different from the ones in Ref. [47], which are given by

Π′0 =
1√
8m3

Q

(
/P

2
− /q −mQ)γ5(

/P

2
+ /q +mQ), (2.15a)

Π′α =
1√
8m3

Q

(
/P

2
− /q −mQ)γα(

/P

2
+ /q +mQ), (2.15b)

M′
1S

[a]
0

= Tr[CaΠ′0A′]|q=0, (2.16)

M′
3S

[a]
1

= εαTr[CaΠ′αA′]|q=0, (2.17)

M′
1P

[a]
1

= εα
d

dqα
Tr[CaΠ′0A′]|q=0, (2.18)

M′
3P

[a]
J

= ε
(J)
αβ

d
dqβ

Tr[CaΠ′αA′]|q=0 (J = 0, 1, 2), (2.19)

where A′ is the full QCD amplitude with the spinors of QQ̄ pair removed.
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The spin projectors given in Ref. [47] are production spin projectors. For the decay spin
projectors, the expressions /P

2
− /q − mQ,

/P
2

+ /q + mQ on the both side of γ5, γα should be
interchanged. In this way, our projectors Eq.(2.11, 2.12) are exactly the same with those in
Ref. [47] after fermion spin sum:∑

s

us(p)ūs(p) = /p+mQ = (
/P

2
+ /q +mQ), (2.20)

∑
s̄

vs̄(p̄)v̄s̄(p̄) = /̄p−mQ = (
/P

2
− /q −mQ). (2.21)

However our formulas Eq.(2.11, 2.12) are easier to be implemented in FEYNCALC [48],
especially for double quarkonia processes as well as open QQ̄ associated processes. For the
processes where more than one quarkonia are involved, we just need to apply the projectors onto
each quarkonium state.

When calculating the SDCs, we have to square the amplitudes and sum over the polarizations
of the external states. For the QQ̄(2S+1L

[1/8]
J ) states, we have∑

pol

εαε
∗
α′ = Παα′ , (2.22a)

∑
pol

ε
(0)
αβε
∗(0)
α′β∗ =

1

D − 1
ΠαβΠα′β′ , (2.22b)

∑
pol

ε
(1)
αβε
∗(1)
α′β∗ =

1

2
(Παα′Πββ′ − Παβ′Πα′β), (2.22c)

∑
pol

ε
(2)
αβε
∗(2)
α′β∗ =

1

2
(Παα′Πββ′ + Παβ′Πα′β)− 1

D − 1
ΠαβΠα′β′ , (2.22d)

where we define

Παβ = −gαβ +
PαPβ
4m2

Q

, (2.23)

and D is the dimension of space-time, which is set to be 4− 2ε to regularize both ultra-violet
and infrared divergences in dimensional regularization approach.

2.3 Infrared Divergences in Double P-Wave
Quarkonia Processes

In this section, we naively apply the NRQCD factorization theorem and covariant projec-
tion method in double quarkonia processes. We give two examples bb̄(3P

[8]
Jb

) → cc̄(3P
[1]
Jc

) +

gg, e+e− → cc̄(3P
[8]
J1

) + cc̄(3P
[1]
J2

) + g to demonstrate that there are infrared divergences, which
cannot been canceled in current version of NRQCD factorization.
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The naive application of NRQCD factorization formula for double-quarkonium processes
implies that we use the following calculation formulas:

Γ(Υ→ χcJ +X)

=
∑
n1,n2

Γ̂(bb̄[n2]→ cc̄[n1] +X)〈O[n2]〉Υ〈OχcJ [n1]〉, (2.24)

σ(e+e− → J/ψ + χcJ +X)

=
∑
n1,n2

σ̂(e+e− → cc̄[n1] + cc̄[n2] +X)〈OJ/ψ[n1]〉〈OχcJ [n2]〉, (2.25)

where

dΓ̂(bb̄[n2]→ cc̄[n1] +X) =
1

4mb

1

Ncol1Npol(n1)

∑
|M|2dPS, (2.26)

dσ̂(e+e− → cc̄[n1] + cc̄[n2] +X) =
1

2s

1

Ncol2Npol(n2)

1

Ncol1Npol(n1)

∑
|M|2dPS.

(2.27)

In our analytical computation, the Feynman diagrams are generated by FEYNARTS [49];
algebraic operations such as color, Dirac algebra, are performed with FEYNCALC [48] and
FORM [50].

2.3.1 Infrared Divergences in Υ(3P
[8]
Jb

)→ χcJc(
3P

[1]
Jc

) + gg

There are 8 Feynman diagrams for the process Υ(3P
[8]
Jb

)→ χcJc(
3P

[1]
Jc

)+gg, whose representative
ones are shown in Figure.2.1.The rest 6 Feynman diagrams can be obtained through attaching the
gluon to the c quark as well as exchanging the two final gluons. For the initial states bb̄(3P

[8]
Jb

),
we sum over different Jb states, leaving the LDMEs to be 〈O(3P

[8]
0 )〉Υ.

Obviously, there exist infrared divergences in the phase-space integration when one of the
final state gluon is soft. In the rest of this section we will show how to analytically extract the
infrared divergences from the SDCs Γ̂(Jc) with the method described in Ref. [51]. We divide
the amplitude into two partsM1, M2, which correspond to the contribution from the diagrams
where the gluon with momentum k1 attached to charm and bottom quark line respectively
(second and first diagrams in Figure.2.1). Thus the amplitude squares are divided into three parts:
|M1|2, |M2|2, 2M1M∗

2. Due to the symmetry of identical particles, it is sufficient to consider
only the case that k1 is soft in extracting the infrared divergences. So the infrared divergent parts
of Γ̂(Jc) can be expressed as

Γ̂div(Jc) = Γ̂div
1 + Γ̂div

2 (Jc) + Γ̂div
mix(Jc), (2.28)

where Γ̂div
1 , Γ̂div

2 (Jc), Γ̂div
3 (Jc) are the divergent parts coming from 2|M1|2, 2|M2|2, 2 ×

2M1M∗
2 respectively, with k2 being soft. The D-dimensional 3-body phase space is given

in Eq.(A.10) in Appendix A. Since we only extract the divergent part and drop the finite part, we
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bb̄(3P
[8]
Jb
)

cc̄(3P
[1]
Jc )

k1

k2

bb̄(3P
[8]
Jb
)

cc̄(3P
[1]
Jc )

k1

k2

bb̄(3P
[8]
Jb
)

cc̄(3P
[1]
Jc )

k1

k2

bb̄(3P
[8]
Jb
)

cc̄(3P
[1]
Jc )

k1

k2

Figure 2.1: Representative tree-level Feynman diagrams for the partonic subprocess
bb̄(3P

[8]
Jb

)→ cc̄(3P
[1]
Jc

) + gg.

bb̄(3P
[8]
Jb
)

cc̄(3S
[8]
1 )

bb̄(3P
[8]
Jb
)

cc̄(3S
[8]
1 )

bb̄(3S
[8]
1 )

bb̄(3S
[8]
1 )

cc̄(3P
[1]
Jc ) cc̄(3P

[1]
Jc )

Figure 2.2: Representative tree-level Feynman diagrams for the partonic subprocess
bb̄(3P

[8]
Jb

)→ cc̄(3S
[8]
1 ) + g and bb̄(3S

[8]
1 )→ cc̄(3P

[1]
Jc

) + g.
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set ε = 0 when it is safe. Then the 3-body phase space is simplified as

dPS1→3 =
m2
b

32π3

[
(1 + r2 − x1)(a1 + a2 − x2)(x2 + a1 − a2)

]−ε
dx1dx2. (2.29)

The phase space integration is divergent at x2 = 0 (k1 soft), or x3 = 0 (k2 soft), where x1 = 1+r2

in both cases. The general idea to extract the divergent part at x2 = 0 is that we do some variable
transformation to isolate the (1 + r2 − x1)−1−2ε pole where at the same time isolate the pole
x2 = 0 rather than x3 = 0. A simple choice is

x1 = y1, x2 =
1 + r2 − y1

1− y2

. (2.30)

With the transformation Eq.(2.30), the 3-body phase space is re-expressed as

dPS1→3 =
m2
b(1 + r2 − y1)1−2ε

32π3(1− y2)2

(
(a′1 + a′2 − x′2)(

1

1− y2

− 1

a′1 + a′2
)
)−ε

dy1dy2,

(2.31)

where a′1, a
′
2, x

′
2 are a1, a2, a3 expressed in terms of y1, y2 rather than x1, x2. And the limits

of phase space integration become

1 + r2 > y1 > 2r, 1− (a′2 − a′1) > y2 > 1− (a′2 + a′1). (2.32)

Then we can extract the expression which contributes to the divergent part according to

dΓ̂div
1 =

f1(1 + r2, y2)

(1 + r2 − y1)1+2ε
dy1dy2, (2.33)

where

f1(1 + r2, y2) = lim
y1→1+r2

(
(1 + r2 − y1)2 dΓ̂1

dy1dy2

)
, (2.34)

with dΓ̂1 representing the full expression obtained at D = 4.
The divergent integration is given by

1+r2∫
2r

(1 + r2 − y1)−1−2εdy1 = − 1

2εIR
+ finite terms. (2.35)
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Therefore, we have

Γ̂div
1 = − 1

2εIR

1−(a′2−a′1)∫
1−(a′2+a′1)

f1(1 + r2, y2)dy2

∣∣∣
y1=1+r2

(2.36)

=
−8αs

27πm2
c

1

εIR
× 5π2α3

s(3r
4 + 2r2 + 7)

72m7
br

3(1− r2)
. (2.37)

With the same procedure, we can get

Γ̂div
2 (J) =

−5αs
9πm2

b

1

εIR
×



π2α3
s(1−3r2)

2

81m7
br

3(1−r2)
Jc = 0,

2π2α3
s(r2+1)

81m7
br

3(1−r2)
Jc = 1,

2π2α3
s(6r4+3r2+1)

405m7
br

3(1−r2)
Jc = 2,

(2.38)

and

Γ̂div
mix(0) =

−10πα4
s

81m9
br

3 (1− r2)4 εIR

(
3r4 − 10r2 + 3

) (
r4 − 4r2 ln (r)− 1

)
,

(2.39a)

Γ̂div
mix(1) =

10πα4
s

81m9
br

3 (1− r2)4 εIR

(
− r6 + 9r4 − 7r2

+4r2(r4 − 3r2 − 2) ln (r)− 1
)
, (2.39b)

Γ̂div
mix(2) =

2πα4
s

81m9
br

3 (1− r2)4 εIR

(
6r8 + 23r6 − 27r4 + r2

−4r4
(
9r2 + 11

)
ln (r)− 3

)
, (2.39c)

with εIR = D−4
2

being the infrared regulator in dimensional regularization. In Eq.(2.37) and
Eq.(2.38), Γ̂div

1 and Γ̂div
2 (Jc) can be factorized as the products of the SDCs of Υ(3P

[8]
Jb

) →
χcJc(

3S
[8]
1 ) + g and Υ(3S

[8]
1 ) → χcJc(

3P
[1]
Jc

) + g (Figure.2.2), with the IR-divergent term that
related to the NLO QCD corrections to the LDMEs 〈OχcJ (3S

[8]
1 )〉 and 〈O(3S

[8]
1 )〉Υ respectively.

This indicates that they will be canceled after taking into account the contribution of Υ(3P
[8]
Jb

)→
χcJc(

3S
[8]
1 ) + g and Υ(3S

[8]
1 ) → χcJc(

3P
[1]
Jc

) + g. However, for Γ̂div
mix(Jc) we find that in current

version of NRQCD factorization formalism there is no operator to describe such kind of soft
gluon effect.
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[1]
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[8]
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Figure 2.3: Representative tree-level Feynman diagrams for the partonic subprocess e+e− →
cc̄(3P

[8]
J1

) + cc̄(3P
[1]
J2

) + g.

2.3.2 Infrared Divergences in e+e− → J/ψ(3P
[8]
J1

) + χcJ2(
3P

[1]
J2

) + g

There are 28 Feynman diagrams for the process e+e− → J/ψ(3P
[8]
J1

) + χcJ2(
3P

[1]
J2

) + g and the
representative ones are shown in Figure.2.3. For the final states cc̄(3P

[8]
J1

), we sum over different
J1 states as well, leaving the LDMEs to be 〈J/ψO(3P

[8]
0 )〉 with the help of heavy quark spin

symmetry. We separate the SDCs into three parts, according to where the final state gluon is
attached: (1) the squared amplitude of the Feynman diagrams where the final state gluon attaches
the 3P

[8]
J1

state, (2) the squared amplitude of the Feynman diagrams where the 3P
[1]
J2

states are
attached with the final state gluon, and (3)the interference terms between the diagrams in the
first and second cases. We denote the corresponding divergent parts as σ̂div

1 , σ̂div
2 (J2), σ̂div

mix(J2),
then the divergent part of the SDC of the total cross section σ(J2) can be expressed as

σ̂div(J2) = σdiv
1 + σdiv

2 (J2) + σdiv
mix(J2). (2.40)

With similar techniques of extracting infrared divergences analytically explained in the last
section, we obtain

σ̂div
1 = − 8αs

27πm2
c

1

εIR

210π3α2α2
s

√
1− 4r2

1

729s5r6
1

×
(
864r10

1 − 144r8
1 − 1568r6

1 + 1224r4
1 − 130r2

1 + 27
)
, (2.41)
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Figure 2.4: Representative tree-level Feynman diagrams for the partonic subprocess e+e− →
cc̄(3S

[1]
1 ) + cc̄(3P

[1]
J2

) and e+e− → cc̄(3P
[8]
J1

) + cc̄(3S
[8]
1 ).

σ̂div
2 (J2) = − 4αs

3πm2
c

1

εIR

218π3α2α2
s

√
1− 4r2

1

19683s5r4
1

×



(144r8
1 + 152r6

1 − 428r4
1 + 182r2

1 + 1) J2 = 0,

8(18r6
1 + 13r4

1 − 12r2
1 + 2) J2 = 1,

2
5
(360r8

1 + 308r6
1 − 188r4

1 + 20r2
1 + 1) J2 = 2,

(2.42)

and

σ̂div
mix(0) =

219π2α2α3
s

38s6r4
1εIR

((
144r8

1 + 184r6
1 − 504r4

1 + 170r2
1 + 33

)√
1− 4r2

1

+8
(
72r10

1 + 56r8
1 − 284r6

1 + 149r4
1 + r2

1

)
tanh−1

√
1− 4r2

1

)
,

(2.43a)
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σ̂div
mix(1) =

219π2α2α3
s

38s6r2
1εIR

((
144r6

1 + 28r4
1 − 176r2

1 + 43
)√

1− 4r2
1

+
(
576r10

1 − 176r8
1 − 792r6

1 + 424r4
1 − 48r2

1

)
tanh−1

√
1− 4r2

1

)
,

(2.43b)

σ̂div
mix(2) =

219π2α2α3
s

5 · 38s6r4
1εIR

(
(720r8

1 + 452r6
1 − 696r4

1 + 7r2
1 − 15)

√
1− 4r2

1

+(2880r10
1 + 368r8

1 − 3560r6
1 + 1856r4

1 − 56r2
1) tanh−1

√
1− 4r2

1

)
,

(2.43c)

where r1 = 2mc√
s

, with
√
s representing the center of mass energy.

It is straightforward to check that σ̂div
1 and σ̂div

2 (J2) will be cancelled after including QCD
corrections to the S-wave LDMEs 〈OχcJ (3S

[8]
1 )〉 of e+e− → J/ψ(3P

[8]
J1

) + χcJ2(
3S

[8]
1 ) and

〈OJ/ψ(3S
[1]
1 )〉 of e+e− → J/ψ(3S

[1]
1 ) + χcJ2(

3P
[1]
J2

) respectively, where the results of the NLO
corrections to these two LDME are listed in Appendix D. The corresponding typical Feynman
diagrams for these 2 processes are show in Fig.(2.4). Unfortunately in standard NRQCD
calculation there is no term to cancel σdiv

mix(J2), which means the NRQCD factorization does not
apply directly to the inclusive J/ψ+χcJ production at v4

c in e+e− annihilation neither.

2.3.3 NRQCD Factorization Break-down in Other Processes
Since σ̂div

mix(J2) originate from the interferences between Feynman diagrams with the gluon
attaching different P-wave QQ̄ pairs having nothing to do with the initial states e+e− nor with
the flavors of the heavy quarks, we conclude that there will be similar uncanceled divergences in
the NRQCD calculation of double J/ψ and J/ψ+Υ hadroproduction at NLO in αs. However
in hadroproduction cases the structure of the uncanceled infrared divergences can be much
more complicate, since more channels can be involved in. For instance, in gg → cc̄(3P

[8]
J1

) +

bb̄(3P
[8]
J2

) + g, there will be 6 combinations of four channels gg → cc̄(3S
[8]
1 ) + bb̄(3P

[8]
J2

), gg →
cc̄(3S

[1]
1 ) + bb̄(3P

[8]
J2

), gg → cc̄(3P
[8]
J1

) + bb̄(3S
[8]
1 ), and gg → cc̄(3P

[8]
J1

) + bb̄(3S
[1]
1 ) related to the

interference terms leading to uncanceled infrared divergences.
Besides, there will be similar uncanceled infrared divergences in the NRQCD calculation of

inclusive charmonium production via χbJ decay. And the uncanceled infrared divergences will
appear in the tree level processes such as χbJ(3P

[1]
J2

)→ J/ψ(3P
[8]
J1

) + gg, which are related to
the interferences between χbJ(3S

[8]
1 )→ J/ψ(3P

[8]
J1

) + g and χbJ(3P
[1]
J2

)→ J/ψ(3S
[8]
1 ) + g.
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Chapter 3

Improve the NRQCD Factorization

Conventionally, heavy quark (anti-quark) fields in the long distance matrix elements of heavy
quarkonia and non-relativistic QCD lagrangian are expressed in terms of two component Pauli
fields. And the long distance matrix elements have to be evaluated non-relativistically in the
heavy quark pair rest frame. However, in processes which include two heavy quarkonia, the
two heavy quark pairs can not be at rest simultaneously. Thus we express all the relevant
fields and operators in covariant form. Our procedures of deriving the covariant form of
NRQCD Lagrangian and relevant four-fermion operators are based on the methods described in
Ref. [52–56] and references therein.

3.1 NRQCD Lagrangian in Covariant Form
We use the timelike (spacetime independent) unit vector vµ to decompose 4-vectors and heavy
quark fields, which is defined as

vµ ≡ P µ

mH

=
P µ

2mQ

+O(q2/m2
Q), (3.1)

where P , q are the total and relative momenta of heavy quark pair QQ̄, respectively.
Thus a 4-vector aµ can be decomposed as

aµ = v · avµ + aµ>. (3.2)

First, we redefine the heavy quark and anti-quark field through phase redefinition

Ψ(+)
v (x) ≡ eimQv·xΨ(+)(x), Ψ(−)

v (x) ≡ e−imQv·xΨ(−)(x), (3.3)

where Ψ(+), Ψ(−) are heavy quark and anti-quark field, respectively.
Then we split the redefined heavy quark and anti-quark field into large and small components

ψv(x) = P+Ψ(+)
v (x), ψs(x) = P−Ψ(+)

v (x), (3.4)
χv(x) = P−Ψ(−)

v (x), χs(x) = P+Ψ(−)
v (x), (3.5)
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with P+, P− being the projectors defined as

P+ =
1 + /v

2
, P− =

1− /v
2

. (3.6)

From the identity

i /DΨ(±)(x) = e−imQv·x(i /D ±mQ/v)Ψ(±)
v (x), (3.7)

it can be seen that the phase redefinitions in Eq.(3.3) correspond to removing the dominant part
mQv of the heavy quark and anti-quark momenta by splitting the heavy (anti-) quark momentum
according to pµ = mvµ + pµ>, where pµ> is the small residual momentum, which is identified
as relative momentum of the heavy (anti) quark pair. The projectors P+, P− project out the
large and small (small and large) components for Ψ

(+)
v

(
Ψ

(−)
v

)
respectively, which means ψv, χv

(ψs, χs) are the large (small) component heavy quark and anti-quark effective fields. They satisfy
/vψv = ψv, /vχv = −χv, and the small component fields are suppressed by the ratio p>/mQ.
Inserting Ψ(+)(x) = e−imQv·x

(
ψv(x) + ψs(x)

)
into the Dirac Equation for heavy quark field,

(i /D −mQ)Ψ(+)(x) = 0, (3.8)

and projecting the resulting equation with P±, gives

ψs(x) =
i /D>

iv ·D + 2mQ

ψv(x), (3.9)

where /D> = /D − /vv · D. Similarly, we can get the relation between the small and large
component effective field for heavy anti-quark field

χs(x) =
i /D>

−iv ·D + 2mQ

χv(x). (3.10)

The same relations Eq.(3.9,3.10) have also been derived in Ref. [53] by integrating out the small
component fields ψs(x), χs(x) from the generating functional of QCD Green functions.
Finally, the heavy quark and anti-quark field can be re-express as

Ψ(+)(x) = e−imQv·x
(
1 +

i /D>
iv ·D + 2mQ

)
ψv(x), (3.11a)

Ψ(−)(x) = eimQv·x
(
1 +

i /D>
−iv ·D + 2mQ

)
χv(x). (3.11b)

To obtain NRQCD Lagrangian, we have to expanding Ψ(±)(x) as power series of 1/mQ

Ψ(+)(x) = e−imQv·x
(
1 +

i /D>
2mQ

+O(1/m2
Q)
)
ψv(x), (3.12a)

Ψ(−)(x) = eimQv·x
(
1 +

i /D>
2mQ

+O(1/m2
Q)
)
χv(x). (3.12b)
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Thus the heavy quark and anti-quark sectors of full QCD can be expressed as

LΨ(+) = Ψ̄(+)(i /D −mQ)Ψ(+)

= ψ̄v(x)(iv ·D)ψv(x) +
1

2mQ

ψ̄v(x)(iD>)2ψv(x)

+
gs

4mQ

ψ̄v(x)σµνG
µνψv(x) +O(1/m2

Q), (3.13)

LΨ(−) = Ψ̄(−)(i /D −mQ)Ψ(−)

= χ̄v(x)(−iv ·D)χv(x) +
1

2mQ

χ̄v(x)(iD>)2χv(x)

+
gs

4mQ

χ̄v(x)σµνG
µνχv(x) +O(1/m2

Q). (3.14)

Eq.(3.13, 3.14) are the same with the Lagrangian of heavy quark effective theory (HQET).
However, their power counting are different. In NRQCD, the leading order contains the first two
terms in Eq.(3.13, 3.14), while in HQET, the leading order only contains the first term. Although
the terms proportional to the gluon field strength tensor Gµν scale as 1/mQ, they describe the
interaction of heavy (anti-) quark spin with the gluon field, and hence belong to the relativistic
corrections.
Combining Eq.(3.13, 3.14), we get our final result for leading order NRQCD Lagrangian

LLO
NRQCD = ψ̄v

(
iv ·D +

(iD>)2

2mQ

)
ψv + χ̄v

(
− iv ·D +

(iD>)2

2mQ

)
χv, (3.15)

where we drop all the terms connecting heavy quark and anti-quark fields, since they are only
relevant to creation or annihilation of heavy (anti) quark pairs.
It is also straightforward to check that Eq.(3.15) is identical to

LLO,non-covariant
NRQCD = ψ†

(
iDt +

D2

2mQ

)
ψ + χ†

(
iDt −

D2

2mQ

)
χ, (3.16)

with v = (1, 0, 0, 0), where ψ, χ are two component spinors.
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p = i

p·v−mQ+
p2⊤
2mQHeavy (anti−) quark propagator :

Gluon propagator :

l
= [−gµν + lµlν−(l·v)(lµvν+vµlν)

l2−(l·v)2 ] iδ
ab

l2

Qurk gluon vertex :

p

= −igsT
a(vµ +

(2p+k)
µ
⊤

2mQ
)

µ, a, k

Anti− quark gluon vertex :

p
µ, a, k

= igsT
a(vµ +

(2p−k)
µ
⊤

2mQ
)

Figure 3.1: NRQCD Feynman rules

3.2 NRQCD Feynman Rules

To calculate the non-relativistic scattering of QQ̄ pairs, we must derive the corresponding
Feynman rules.
Expanding Eq.(3.15) gives

LLO
NRQCD = ψ̄v

(
iv ·D +

(iD>)2

2mQ

)
ψv + χ̄v

(
− iv ·D +

(iD>)2

2mQ

)
χv

= ψ̄v

(
v · (i∂) +

(i∂>)2

2mQ

− gs
(
A · v +

A · (i∂>)

mQ

+
(i∂> · A)

2mQ

))
ψv

+χ̄v

(
v · (−i∂) +

(i∂>)2

2mQ

− gs
(
− A · v +

A · (i∂>)

mQ

+
(i∂> · A)

2mQ

))
χv

+O(g2
s). (3.17)

Then with the definitions in Eq.(3.4–3.10), we can directly read the Feynman rules (Figure 3.1)
from Eq.(3.17). For the gluon propagator, we adopt the Coulomb gauge, which is a natural
choice in describing bound states such as heavy quarkoium.

28



3.3 Heavy Quark Bilinear Operators in Covariant Form

Here we introduce a set of relevant heavy quark bilinear operators at leading order of 1/mQ

expansion [57]

K[1S
[1]
0 ] ≡ ψ̄vγ5χv, (3.18a)

Kµ[3S
[1]
1 ] ≡ ψ̄vγ

µ
>χv, (3.18b)

Kµ[1P
[1]
1 ] ≡ ψ̄v(−

i

2
)
←→
D µ
>γ5χv, (3.18c)

Kµν [3P [1]
J ] ≡ ψ̄v(−

i

2
)
←→
D µ
>γ

ν
>χv, (3.18d)

Kµν [3P [1]
0 ] ≡ gµν − vµvν

3
ψ̄v(−

i

2
)
←→
/D >χv, (3.18e)

Kµν [3P [1]
1 ] ≡ ψ̄v(−

i

2
)
←→
D

[µ
>γ

ν]
>χv, (3.18f)

Kµν [3P [1]
2 ] ≡ ψ̄v(−

i

2
)
←→
D

(µ
> γ

ν)
> χv, (3.18g)

Ka[1S[8]
0 ] ≡ ψ̄vT

aγ5χv, (3.19a)

Ka,µ[3S
[8]
1 ] ≡ ψ̄vγ

µ
>χv, (3.19b)

Ka,µ[1P
[8]
1 ] ≡ ψ̄vT

a(− i
2

)
←→
D µ
>γ5χv, (3.19c)

Ka,µν [3P [8]
J ] ≡ ψ̄vT

a(− i
2

)
←→
D µ
>γ

ν
>χv, (3.19d)

Ka,µν [3P [8]
0 ] ≡ gµν − vµvν

3
ψ̄vT

a(− i
2

)
←→
/D >χv, (3.19e)

Ka,µν [3P [8]
1 ] ≡ ψ̄vT

a(− i
2

)
←→
D

[µ
>γ

ν]
>χv, (3.19f)

Ka,µν [3P [8]
2 ] ≡ ψ̄vT

a(− i
2

)
←→
D

(µ
> γ

ν)
> χv, (3.19g)

where we have used the notation a[µbν] ≡ 1
2
(aµbν−aνbµ), a(µbν) ≡ 1

2
(aµbν+aνbµ)− gµν−vµvν

3
a·b.

To obtain the corresponding complex transpose of above heavy quark bilinear operators, we first
evaluate the following

(
ψ̄vγ5χv

)†
= χ†v(γ5)†(γ0)†ψv = −χ†vγ0γ5ψv = −χ̄vγ5ψv, (3.20)(

ψ̄vγ
µ
>χv

)†
= χ†v(γ

µ
>)†(γ0)†ψv = χ†vγ

0γµ>ψv = χ̄vγ
µ
>ψv, (3.21)
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then we have

K†[1S[1]
0 ] = −χ̄vγ5ψv, (3.22a)

K†µ[3S
[1]
1 ] = χ̄vγ

µ
>ψv, (3.22b)

K†µ[1P
[1]
1 ] = −χ̄v(−

i

2
)
←→
D µ
>γ5ψv, (3.22c)

K†µν [3P [1]
0 ] =

gµν − vµvν
3

χ̄v(−
i

2
)
←→
/D >ψv, (3.22d)

K†µν [3P [1]
1 ] = χ̄v(−

i

2
)
←→
D

[µ
>γ

ν]
>ψv, (3.22e)

K†µν [3P [1]
2 ] = χ̄v(−

i

2
)
←→
D

(µ
> γ

ν)
> ψv (3.22f)

K†a[1S[8]
0 ] = −χ̄vT aγ5ψv, (3.23a)

K†a,µ[3S
[8]
1 ] = χ̄vT

aγµ>ψv, (3.23b)

K†a,µ[1P
[8]
1 ] = −χ̄vT a(−

i

2
)
←→
D µ
>γ5ψv, (3.23c)

K†a,µν [3P [8]
0 ] =

gµν − vµvν
3

χ̄vT
a(− i

2
)
←→
/D >ψv, (3.23d)

K†a,µν [3P [8]
1 ] = χ̄vT

a(− i
2

)
←→
D

[µ
>γ

ν]
>ψv, (3.23e)

K†a,µν [3P [8]
2 ] = χ̄vT

a(− i
2

)
←→
D

(µ
> γ

ν)
> ψv (3.23f)

3.4 One-Loop Corrections to the Single-quarkonium LDMEs
It is natural to do the matching between perturbative QCD and NRQCD with the same gauge, reg-
ularization and renormalization scheme. In the perturbative QCD calculations, the dimensional
regularization and on-shell renormalization scheme for heavy quark are applied. Therefore,
in the perturbative NRQCD calculation, we use the same regularization and renormalization
scheme. As for the choice of gauge, the Feynman gauge is commonly adopted in the perturbative
QCD calculations, which is also our choice. However, we will use Coulomb gauge for the
gluon propagator in the perturbative NRQCD calculations, where the vanishing of Coulomb
gluon contribution in each loop diagram will be explicit and the gauge independent results are
guaranteed by the gauge invariance of the LDMEs. Explicit calculations with different covariant
gauges confirms the gauge invariance of the LDMEs at one-loop level, where the cancellations
between different diagrams also indicate the cancellations between real and virtual corrections in
the perturbative QCD calculations with the same gauge.
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Mloop
1 [n] Mloop

2 [n] Mloop
3 [n] Mloop

4 [n]

Mloop
5 [n] Mloop

6 [n] MBorn[n]

Q

Q̄

Q

Q̄

n n

p1

p2

p′1

p′2

Figure 3.2: Feynman diagrams for Born-level and one-loop corrections to long distance matrix
elements.

The Feynman diagrams for the Born level and loop corrections for Q(p1)Q̄(p2)(n) →
Q(p′1)Q̄(p′2)(n) scattering are shown in Figure.3.2.

At Born level,

MBorn[1S
[1,8]
0 ] = v̄v(p

′
2)Tcolγ5uv(p

′
1)ūv(p1)Tcolγ5vv(p2), (3.24)

MBorn[3S
[1,8]
1 ] = v̄v(p

′
2)Tcolγ>µuv(p

′
1)ūv(p1)Tcolγ

µ
>vv(p2), (3.25)

MBorn[1P
[1,8]
1 ] = −p · p′v̄v(p′2)Tcolγ5uv(p

′
1)ūv(p1)Tcolγ5vv(p2), (3.26)

J=2∑
J=0

MBorn[3P
[1,8]
J ] = −p · p′v̄v(p′2)Tcolγ>µuv(p

′
1)ūv(p1)Tcolγ

µ
>vv(p2), (3.27)

where Tcol = 1 for CS LDMEs, Tcol = T a for CO LDMEs, and

pµ =
(p1 − p2)µ

2
= pµ1> = −pµ2>, p′µ =

(p′1 − p′2)µ

2
= p′µ1> = −p′µ2>, (3.28)

uv(p1) = P+u(p1), vv(p2) = P−v(p2). (3.29)

For the loop contributions, we take n =3 S
[8]
1 as an example, all the other cases can be

obtained in a similar way. Taking p1 · v = p′1 · v = mQ and Eq.(3.28) into account, the
contribution ofMloop

1 [3S
[8]
1 ] in Figure.3.2 reads

Mloop
1 [3S

[8]
1 ] = v̄v(p

′
2)γ>µuv(p

′
1)ūv(p1)Tcolγ

µ
>vv(p2)T bT a ⊗ T aT bI single, (3.30)
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where

I single = g2
sµ

4−D
∫

dDl

(2π)D
i

l2
[−gρσ +

lρlσ − (l · v)(lρvσ + vρlσ)

l2 − (l · v)2
]

×
(vρ +

(2p+l)ρ>
2mQ

)(vσ +
(2p′+l)σ>

2mQ
)

(l · v +
(p+l)2>
2mQ

)(l · v +
(p′+l)2>

2mQ
)
, (3.31)

with µ representing the renormalization scale and D = 4− 2ε. Through our whole calculation
we use dimensional regularization to regularize both ultra-violet and infrared divergences.
Since NRQCD calculations are only valid in the region p, p′, l << mQ, we must expand the
heavy (anti-) quark propagators in 1/mQ before loop integration. Expanding the heavy quark
propagators in 1/mQ and keeping terms up to order 1/m2

Q, we get

I single =
−ig2

sµ
4−D

m2
Q

∫
dDl

(2π)D

[
1

l2(l · v)2

(
p · p′ + (l · p)(l · p′)

(l · v)2

)

+ m2
Q

( 1

l2(l · v)2
+

1

l2
(
l2 − (l · v)2

))]

= − αs
3πm2

Q

µ4−Dp · p′
( 1

εUV
− 1

εIR

)
, (3.32)

where we have dropped all the terms which vanish after integration (see Appendix D.1.).
The term

∫
dDl

(2π)D

(
1

l2(l·v)2
+ 1

l2
(
l2−(l·v)2

)) =
∫

dDl
(2π)D

1

(l·v)2
(
l2−(l·v)2

) = 0 in Eq. (3.32) corresponds

to the Coulomb gluon exchange, which vanishes as expected.
The contributions ofMloop

2,3,4[3S
[8]
1 ] in Figure.3.2 are the same withMloop

1 [3S
[8]
1 ] except for

color factors, which can be expressed as

Mloop
2 [3S

[8]
1 ] = v̄v(p

′
2)γ>µuv(p

′
1)ūv(p1)Tcolγ

µ
>vv(p2)T aT b ⊗ T bT aI single, (3.33)

Mloop
3 [3S

[8]
1 ] = v̄v(p

′
2)γ>µuv(p

′
1)ūv(p1)Tcolγ

µ
>vv(p2)T aT b ⊗ T aT bI single, (3.34)

Mloop
4 [3S

[8]
1 ] = v̄v(p

′
2)γ>µuv(p

′
1)ūv(p1)Tcolγ

µ
>vv(p2)T bT a ⊗ T bT aI single. (3.35)

The contributions of the last two diagrams read

Mloop
5 [3S

[8]
1 ] = ūv(p

′
1)γµ>vv(p

′
2)v̄v(p2)γ>µuv(p1)T bT aT b ⊗ T a

× (−ig2
sµ

4−D)

∫
dDl

(2π)D

( 1

l2(l · v)2
+

1

l2
(
l2 − (l · v)2

)), (3.36)
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Mloop
6 [3S

[8]
1 ] = ūv(p

′
1)γµ>vv(p

′
2)v̄v(p2)γ>µuv(p1)T a ⊗ T bT aT b

× (−ig2
sµ

4−D)

∫
dDl

(2π)D

( 1

l2(l · v)2
+

1

l2
(
l2 − (l · v)2

)), (3.37)

which represent the Coulomb gluon exchange and vanish as expected.
Note: the O(v2

Q) corrections are not considered here, namely the terms proportional to p2 or p′2

are dropped.
Using the identity

T aT b =
δab

2CA
+

1

2
(dabc + ifabc)T c, (3.38)

we can decompose the following color structure as

T aT b ⊗ T aT b =
CF
2CA

(1⊗ 1)− 1

CA
(T c ⊗ T c), (3.39)

T aT b ⊗ T bT a =
CF
2CA

(1⊗ 1) + (
CA
2
− 1

CA
)(T c ⊗ T c). (3.40)

Adding up the loop contributions Eq.(3.30–3.35), we have

Mloop[3S
[8]
1 ] = 2ūv(p

′
1)γµ>vv(p

′
2)v̄v(p2)γ>µuv(p1)

×
(CF
CA

(1⊗ 1) + (
CA
2
− 1

CA
)(T c ⊗ T c)

)
I single. (3.41)

Comparing with Eq.(3.27), gives

〈OH [3S
[8]
1 ]〉NLO = 〈OH [3S

[8]
1 ]〉Born +

2αs
3πm2

Q

µ4−D( 1

εUV
− 1

εIR

)
×

J=2∑
J=0

[CF
CA
〈OH [3P

[1]
J ]〉Born + (

CA
2
− 1

CA
)〈OH [3P

[8]
J ]〉Born

]
.

(3.42)

The ultraviolet divergences can be removed by renormalization. In order to be consistent
with the literature, we adopt MS scheme and define

〈OH [3S
[8]
1 ]〉ren = 〈OH [3S

[8]
1 ]〉NLO −

2αs
3πm2

Q

(4πµ2

µ2
Λ

e−γE
)ε 1

εUV

×
J=2∑
J=0

[CF
CA
〈OH [3P

[1]
J ]〉Born + (

CA
2
− 1

CA
)〈OH [3P

[8]
J ]〉Born

]
,

(3.43)
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where µΛ is the NRQCD scale and γE is the Euler gamma constant.
Substitute Eq.(3.43) with Eq.(3.42), then we get

〈OH [3S
[8]
1 ]〉ren = 〈OH [3S

[8]
1 ]〉Born −

2αs
3πm2

Q

(4πµ2

µ2
Λ

e−γE
)ε 1

εIR

×
J=2∑
J=0

[CF
CA
〈OH [3P

[1]
J ]〉Born + (

CA
2
− 1

CA
)〈OH [3P

[8]
J ]〉Born

]
.

(3.44)

As addressed in Ref. [3, 47, 58], the infrared divergences appearing in the SDCs calculated in
perturbative QCD must be the same with those in perturbative NRQCD, since these two theories
are equivalent at the long-distance regime. This is the so-called matching between two theories
in the same regime. Therefore, we have to subtract the long-distance contributions in the SDCs
to avoid double counting, which can be done through multiplying the SDCs by the Born level
S-wave LDMEs

〈OH [3S
[8]
1 ]〉Born = 〈OH [3S

[8]
1 ]〉ren +

2αs
3πm2

Q

(4πµ2

µ2
Λ

e−γE
)ε 1

εIR

×
J=2∑
J=0

[CF
CA
〈OH [3P

[1]
J ]〉Born + (

CA
2
− 1

CA
)〈OH [3P

[8]
J ]〉Born

]
.

(3.45)

rather than the renormalized ones.

3.5 One-loop Corrections to the Un-Decoupled
Double-quarkoniumLDMEs

As mentioned in last chapter, the four-fermion operators are not sufficient in the case of double
quarkonia involved processes. Therefore we introduce a set of eight-fermion operators and un-
decoupled LDMEs to describe the double-quarkonium related processes in the first subsection,
where the decoupling of the color and Dirac indexes of the un-decoupled LDMEs will be done
after one-loop corrections. Detailed calculation of one-loop corrections for one specific un-
decoupled LDME is shown in the second subsection. In the third subsection we summarize our
results of one-loop corrections for the other un-decoupled LDMEs.

3.5.1 Definitions of the Un-Decoupled Double-quarkonium LDMEs
First we introduce a set of quasilinear operators which are relevant to two quarkonia H1, H2 in
the states n1, n2:

Q(n1, n2) ≡ K[n1]K[n2], (3.46a)

Q(n1, n
†

2) ≡ K[n1]K† [n2], (3.46b)
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(QQ̄)1

(QQ̄)2 (QQ̄)2

(QQ̄)1

(QQ̄)2 (QQ̄)2

(QQ̄)1 (QQ̄)1

Figure 3.3: Representive Feynman diagrams for one-loop corrections for process including
the annihilation and production of 2 heavy quark pairs Q1Q̄1 and Q2Q̄2, where each diagram
represent a type of Feynman diagrams.

where n1, n2 can be any states among 1S
[1,8]
0 , 3S

[1,8]
1 , 1P

[1,8]
1 , 3P

[1,8]
J , and K, K† are defined in

Eq.(3.18, 3.19). The corresponding complex conjugate operators are

Q†(n1, n2) = K† [n1]K† [n2], (3.47a)

Q†(n1, n
†

2) = K† [n1]K[n2], (3.47b)

Then the un-decoupled LDMEs for production of two quarkoniaH1, H2 and inclusive production
of quarkonium H1 through quarkonium H2 decay can be defined as

〈QH1,H2 [n′1, n
′
2, n1, n2]〉 ≡ 〈0|Q†(n′1, n′2)PH1H2Q(n1, n2)|0〉, (3.48a)

〈QH1 [n1, n2, n
′
1, n

′
2]〉H2 ≡ 〈H2|Q

†
(n′1, n

†′
2 )PH1Q(n1, n

†

2)|H2〉, (3.48b)

with

PH1H2 ≡
∑
X

|H1H2X〉〈H1H2X|, (3.49)

where the un-decoupled LDMEs carry certain color and Dirac indexes. In addition, n1 and
n′1 (n2 and n′2) are not necessary identical.

3.5.2 One-loop Corrections

In this subsection, we take 〈QH1,H2 [3P
[a′]
J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[b]
J2

]〉 as an example to show how to
calculate the one-loop correction for the un-decoupled double-quarkonium LDMEs. All the
other cases can be obtained simply by replacing the corresponding color and Dirac structures.

The representative Feynman diagrams for one-loop corrections to 〈QH1,H2 [n′1, n
′
2, n1, n2]〉

are shown in Figure.3.3. The first two types of Feynman diagrams actually correspond to
the one-loop corrections to 〈OH1(n1)〉, 〈OH2(n2)〉 respectively, which are computed in last
section with n1 = n′1, n2 = n′2. The third type of Feynman diagrams are the interference
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between initial Q1Q̄1 and final Q2Q̄2; the fourth type of Feynman diagrams correspond to the
interference between final Q1Q̄1 and initial Q2Q̄2. For the case of one-loop corrections for
〈QH1,H2 [3P

[a′]
J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[b]
J2

]〉, the corresponding Feynman diagrams belong to the third type
(including 4 Feynman diagrams), whose corresponding short distance coefficients represent the
interferences between the amplitudes of production of Q1Q̄1(3S

[a]
1 , εµ) Q2Q̄2(3P

[b]
J2
, ερσ) pairs

and the complex conjugate of the amplitudes of production ofQ1Q̄1(3P
[a′]
J ′1
, ε∗µ′ν′)Q2Q̄2(3S

[b′]
1 , ε∗ρ′)

pairs. Here a, a′, b, b′ are the corresponding color indexes in CO states or 1 in CS cases, ε, ε∗

are the polarization vectors or tensors with explicit Dirac indexes.
With the NRQCD Feynman rules presented in last section (Figure.3.1), we can straightfor-

wardly write the contributions of third type diagrams as

Mµρσµ′ν′ρ′,aba′b′

3,1 = Cρσµ′ν′,ba′ v̄v2(p2)γρ
′

>2
uv2(p̄2)ūv1(p̄1)γµ>1

vv1(p1)

×T eT a ⊗ T eT b′Idouble, (3.50)

Mµρσµ′ν′ρ′,aba′b′

3,2 = Cρσµ′ν′,ba′ v̄v2(p2)γρ
′

>2
uv2(p̄2)ūv1(p̄1)γµ>1

vv1(p1)

×T eT a ⊗ T b′T eIdouble, (3.51)

Mµρσµ′ν′ρ′,aba′b′

3,3 = Cρσµ′ν′,ba′ v̄v2(p2)γρ
′

>2
uv2(p̄2)ūv1(p̄1)γµ>1

vv1(p1)

×T aT e ⊗ T eT b′Idouble, (3.52)

Mµρσµ′ν′ρ′,aba′b′

3,4 = Cρσµ′ν′,ba′ v̄v2(p2)γρ
′

>2
uv2(p̄2)ūv1(p̄1)γµ>1

vv1(p1)

×T aT e ⊗ T b′T eIdouble, (3.53)

where Cρσµ′ν′,ba′ is an overall common factor corresponding to the contributions of the P-wave
states, and Idouble is given by

Idouble = g2
sµ

4−D
∫

dDl

(2π)D
i

l2
[−gρσ +

lρlσ − (l · v1)(lρv1σ + v1ρlσ)

l2 − (l · v1)2
]

×
(vρ1 +

(2q1+l)ρ>1

2m1
)(vσ2 +

(2q2+l)σ>2

2m2
)

(l · v1 +
(q1+l)2>1

2m1
)(l · v2 +

(q2+l)2>2

2m2
)
, (3.54)

with m1, m2 representing the masses of heavy quarks Q1, Q2, and

q1 ≡
p1 − p̄1

2
, q2 ≡

p2 − p̄2

2
, (3.55)

v1 ≡
p1 + p̄1

2m1

, v2 ≡
p2 + p̄2

2m2

. (3.56)
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Expanding the heavy quark propagators in 1
m1
, 1
m2

and keeping only the terms proportional
to 1

m1m2
gives

Idouble = −ig
2
sµ

4−D

m1m2

∫
dDl

(2π)D
1

l2

( q1 · q2

(l · v1)(l · v2)
− (l · q1)(v1 · q2)

(l · v1)2(l · v2)

−(l · q2)(v2 · q1)

l · v1(l · v2)2
+

(v1 · v2)(l · q1)(l · q2)

(l · v1)2(l · v2)2

)
=

αsµ
4−D

πm1m2

( 1

εUV
− 1

εIR

)(
c1q1 · q2 + c2(v1 · q2)(v2 · q1)

)
, (3.57)

where

c1 =
ln(ω +

√
ω2 − 1)− ω

√
ω2 − 1

2(ω2 − 1)3/2
, (3.58a)

c2 =
(ω2 + 2)

√
ω2 − 1− 3ω ln(

√
ω2 − 1 + ω)

2(ω2 − 1)5/2
, (3.58b)

with ω = v1 · v2.

Note: For the double quarkonia case, there are no natural choice of Coulomb gauge for both
quarkonia. Here we choose Coulomb gauge in the v1 frame, which means the terms proportional
to 1

m1
will be canceled in each diagram while the terms proportional to 1

m2
will only be totally

canceled after adding up all the diagrams. The details of the cancellation, or in other words, the
gauge independence, will be discussed elsewhere.

With Eq.(3.38), the color structure (T eT a +T aT e)⊗ (T eT b
′
+T b

′
T e) can be decomposed as

cf ≡ (T eT a + T aT e)⊗ (T eT b
′
+ T b

′
T e)

= δab
′ 2CF
CA

(1⊗ 1) +
dab
′e

2CA
(T e ⊗ 1 + 1⊗ T e) +

daecdb
′ec′

4
(T c ⊗ T c′). (3.59)

Re-expressing c1q1 · q2 + c2(v1 · q2)(v2 · q1) as qν1q
σ′
2 (c1gνσ′ + c2v1σ′v2ν) and adding up all the

contributions fromM3,(1,2,3,4), we get the total contribution

Mµρσµ′ν′ρ′,aba′b′

3 = qν1q
σ′

2 C
ρσµ′ν′,ba′ v̄v2(p2)γρ

′

>2
uv2(p̄2)ūv1(p̄1)γµ>1

vv1(p1)Idouble
νσ′ cf ,

(3.60)

where

Idouble
νσ′ =

αsµ
4−D

πm1m2

( 1

εUV
− 1

εIR

)(
c1gνσ′ + c2v1σ′v2ν

)
. (3.61)

For any given 4-dimensional rank-2 tensor aµbν , we can decompose it as

aµbν =
gµν − vµvν

3
a · b+ a[µbν] + a(µbν), (3.62)
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thus

γρ
′

>2
qσ
′

2 ⊗ γµ>1
qν1 =

(gρ′σ′ − vρ′2 vσ′2

3
/q2

+ γ
[ρ′

>2
q
σ′]
2 + γ

(ρ′

>2
q
σ′)
2

)
⊗
(gµν − vµ1 vν1

3
/q1

+ γ
[µ
>1
q
ν]
1 + γ

(µ
>1
q
ν)
1

)
, (3.63)

which meansMµρσµ′ν′ρ′,aba′b′

3 can be written as summations over J1, J
′
2 states.

Therefore we have

〈QH1,H2 [3P
[a′]
J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[b]
J2

]〉NLO

= 〈QH1,H2 [3P
[8]

J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[8]
J2

]〉Born

+Idouble
νσ′ Paba

′b′,µνρσµ′ν′ρ′σ′

1 [3P
[a′]
J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[b]
J2

], (3.64)

with

Paba′b′,µνρσµ′ν′ρ′σ′1 [3P
[a′]
J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[b]
J2

]

=
∑
J1, J ′2

(
δab
′ 2CF
CA
〈QH1,H2 [3P

[a′]
J ′1
,3 P

[1]

J ′2
,3 P

[1]
J1
,3 P

[b]
J2

]〉Born

+
dab
′e

2CA

(
〈QH1,H2 [3P

[a′]
J ′1
,3 P

[1]

J ′2
,3 P

[e]
J1
,3 P

[b]
J2

]〉Born

+〈QH1,H2 [3P
[a′]
J ′1
,3 P

[e]

J ′2
,3 P

[1]
J1
,3 P

[b]
J2

]〉Born
)

+
daecdb

′ec′

4
〈QH1,H2 [3P

[a′]
J ′1
,3 P

[c′]
J ′2
,3 P

[c]
J1
,3 P

[b]
J2

]〉Born

)
, (3.65)

where the J1, J
′
2 states carry µν and ρ′σ′ Dirac indexes respectively. From Eq. (3.64, 3.65),

it can be seen that the S-wave states flip to be P-wave states and may lead to non-vanishing
contributions at NLO.

The ultra-violet divergence in Idouble
νσ′ indicates that the un-decoupled doube-quarkonium

LDMEs need renormalization at NLO. Thus we define

〈QH1,H2 [3P
[a′]
J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[b]
J2

]〉ren = 〈QH1,H2 [3P
[a′]
J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[b]
J2

]〉NLO

− αs
πm1m2

(4πµ2

µ2
Λ

e−γE
)ε 1

εUV
(c1gνσ′ + c2v1σ′v2ν)Paba

′b′,µνρσµ′ν′ρ′σ′

1 [3S
[8]
1 ,3 S

[8]
1 ].

(3.66)

When m1 = m2, it is natural to choose µΛ = m1 or 2m1. However, when m1 6= m2, there
is no natural choice of NRQCD scale µΛ. The consequences of scale ambiguity need further
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clarification elsewhere.
Substituting Eq. (3.64) with Eq. (3.66), we get our final result

〈QH1,H2 [3P
[a′]
J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[b]
J2

]〉ren = 〈QH1,H2 [3P
[a′]
J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[b]
J2

]〉Born

+Idouble
νσ′ (m1,m2)Pµνρσµ′ν′ρ′σ′,aba′b′1 [3S

[8]
1 ,3 S

[8]
1 ], (3.67)

where 〈QH1,H2 [3P
[a′]
J ′1
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[b]
J2

]〉Born vanishes due to symmetric reasons and Idouble
νσ′ (m1,m2)

is defined as

Idouble
νσ′ (m1,m2) = − αs

πm1m2

(4πµ2

µ2
Λ

e−γE
)ε 1

εIR
(c1gνσ′ + c2v1σ′v2ν). (3.68)

Up to P-wave, there are other 19 and 20 similar interference results for the one-loop correction
to the double-production and decay-production un-decouple LDMEs respectively, which can be
obtained in the same manner and expressed as

〈QH1,H2 [n′1, n
′
2, n1, n2]〉ren = Idouble

νσ′ (m1,m2)P1[n′1, n
′
2, n1, n2], (3.69)

〈QH1 [n′1, n
′
2, n1, n2]〉H2,ren = Idouble

νσ′ (m1,m2)P2[n′1, n
′
2, n1, n2], (3.70)

where P1[n′1, n
′
2, n1, n2], P2[n′1, n

′
2, n1, n2] carry certain color and Dirac indexes, whose explicit

results for each cases are shown in Appendix D.2.
As for the decoupling of the color and Dirac indexes, they are closely connected with the

SDCs and the factorization formulas, therefore we will discuss them in detail in the next section.

3.6 NRQCD Factorization Formulas for Double-quarkonium
Processes

In order to give correct polarization and color factors for the interference contributions, we
sketch the procedures of decoupling the color, Dirac indices (indexes) and the integration over
the relative momentum q from short distance and long distance parts in covariant way for single
quarkonium involved processes. Here we distinguish indice and index, where for color matrix T aij
and Dirac matrix γµij , i, j are color, Dirac indices while a, µ are color, Dirac indexes, respectively.
Then we apply the same method to double quarkonia involved processes, which leads to our
formulas for NRQCD factorization for double-quarkonium processes.

3.6.1 Single-quarkonium Processes
At amplitude level, with the validity of factorization theorem, the amplitude of inclusive produc-
tion or decay of single-quarkonium H can be written as

Asingle
1 =

∑
X

T īijj̄ 〈HX|Ψ̄i
jΨ

ī
j̄|0〉, (3.71a)

Asingle
2 =

∑
X

T īijj̄ 〈X|Ψ̄i
jΨ

ī
j̄|H〉, (3.71b)
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where the short distance part T īijj̄ is the matrix element for the inclusive production or decay of
the Q(p1)Q̄(p2) with the spinors of the heavy quark pair removed, i, ī and j, j̄ are the color and
Dirac indices repectively. 〈HX|Ψ̄i

jΨ
ī
j̄|0〉 and 〈X|Ψ̄i

jΨ
ī
j̄|H〉 are the long distance parts, which

represent the amplitudes for production or decay of quarkonium H through intermediate QQ̄
state, and the sum is over all possible extra soft partons.
The decoupling of the color indices can be achieved by using the Fierz rearrangement

δii′δī̄i′ =
1√
Nc

δīi ⊗
1√
Nc

δi′ ī′ +
√

2T aīi ⊗
√

2T ai′ ī′ , (3.72)

which implies the color projectors given in Section 2.2.
To decouple the Dirac indices and project the heavy quark pair onto spin singlet and triplet

states, we first decouple the large and small components of the heavy (anti-) quark field, which
can be done in a similar way with Eq. (3.11) for on-shell heavy quarks at tree level. Thus, for
production case, the on-shell heavy quark pair can be expanded as

Ψ̄jΨj̄ = e2imQv·x
[
ψ̄v(1 +

/p1>
p1 · v +mQ

)
]
j

[
(1− /p2>

p2 · v +mQ

)]χv

]
j̄

= e2imQv·x
[
ψ̄vP+(1 +

/p1>
p1 · v +mQ

)
]
j

[
(1− /p2>

p2 · v +mQ

)]P−χv

]
j̄
. (3.73)

Applying the trace formula

P+ΓP− =
1

2
Tr
[
ΓP−γ5P+

]
P+γ5P− +

1

2
Tr
[
ΓP−γ

µP+

]
P+γ>µP−, (3.74)

where Γ is any combinations of Dirac matrix, we get

Tjj̄〈HX|Ψ̄jΨj̄|0〉 = Tr
[
T (1− /p2>

p2 · v +mQ

)
γ5P+√

2
(1 +

/p1>
p1 · v +mQ

)
]〈HX|ψ̄vγ5χv|0〉√

2

+Tr
[
T (1− /p2>

p2 · v +mQ

)
γµP+√

2
(1 +

/p1>
p1 · v +mQ

)
]〈HX|ψ̄vγ>µχv|0〉√

2
.

(3.75)

Here we have dropped the overall phase factor e2imQv·x, after all it will be canceled after
multiplying with its complex conjugate.
Considering that we start from the full QCD, the normalization of the quarkonium state H(P )〉
is relativistic:

〈H(P )|H(P ′)〉QCD = (2π)32EP δ
3(P−P′), (3.76)

where EP is total energy of quarkonium H , which is different from the usual NRQCD conven-
tions :

〈H(P )|H(P ′)〉NRQCD = (2π)3δ3(P−P′). (3.77)
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Therefore, we have to rescale 〈HX|ψ̄vγ5χv|0〉 and 〈HX|ψ̄vγ>µχv|0〉 by a factor of
√

2EP .
Although, we have decoupled the large and small components of the heavy (anti-) quark fields,
there are still some relative momentum q dependence in ψv, χv:

u(q) =

√
EQ +mQ

2EQ

(
ξ

q·σ
EQ+mQ

ξ

)
(3.78a)

v(−q) =

√
EQ +mQ

2EQ

(
η

−q·σ
EQ+mQ

η

)
, (3.78b)

which are defined in the rest frame of quarkonium H . And the conventional LDMEs are also
defined in the quarkonium rest frame, where

EP = 2EQ, p1 · v = p2 · v = EQ, /p1> = −/p2> = /q. (3.79)

Consequently, in the quarkonium rest frame,

Tjj̄〈HX|Ψ̄jΨj̄|0〉 =
Tr
[
T (/p2

−mQ)γ5P+(/p1
+mQ)

]
−
√

2EQ(EQ +mQ)

〈HX|ψ̄vγ5χv|0〉√
2

+
Tr
[
T (/p2

−mQ)γµP+(/p1
+mQ)

]
−
√

2EQ(EQ +mQ)

〈HX|ψ̄vγ>µχv|0〉√
2

, (3.80)

where the covariant spin singlet and triplet production projectors to all order of q expansion are
implied

Π0
production = −

(/p2
−mQ)γ5P+(/p1

+mQ)√
2EQ(EQ +mQ)

(3.81a)

Πµ
production = −

(/p2
−mQ)γµP+(/p1

+mQ)√
2EQ(EQ +mQ)

, (3.81b)

which are consistent with the ones given in Ref. [58, 59]. Up to O(q2), the all order projectors
in Eq. (3.81) can be simplified to be the ones in Eq. (2.15) multiplied by −1, where the factor
−1 comes from different convention of spinors ξ, η [59], which will not change the results of
amplitude square. It is straightforward to write down the similar formula with Eq. (3.80) for
decay case

Tjj̄〈X|Ψ̄jΨj̄|H〉 =
Tr
[
T (/p1

+mQ)P+γ5(/p2
−mQ)

]
−
√

2EQ(EQ +mQ)

〈X|χ̄vγ5ψv|H〉√
2

+
Tr
[
T (/p1

+mQ)P+γ
µ(/p2
−mQ)

]
−
√

2EQ(EQ +mQ)

〈X|χ̄vγ>µψv|H〉√
2

, (3.82)
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where the covariant spin singlet and triplet decay projectors to all order of q expansion are
extracted as

Π0
decay = −

(/p1
+mQ)P+γ5(/p2

−mQ)√
2EQ(EQ +mQ)

(3.83a)

Πµ
decay = −

(/p1
+mQ)P+γ

µ(/p2
−mQ)√

2EQ(EQ +mQ)
. (3.83b)

The decoupling of relative momentum q is simply accomplished by expanding the short
distance part as power series of q. The leading and next-to-leading order of q of expansion
correspond to the S-wave and P-wave parts, respectively. Therefore, up to P-wave, the production
amplitude is given by

Asingle
1 =

〈HX|K[1S
[1]
0 ]|0〉√

2Nc

Tr[T C1Π′0]|q=0 +
〈HX|Kµ[3S

[1]
1 ]|0〉√

2Nc

Tr[T C1Π′µ1 ]|q=0

+〈HX|Ka[1S[8]
0 ]|0〉Tr[T Ca8 Π′0]|q=0 + 〈HX|Kaµ[3S

[8]
1 ]|0〉Tr[T Ca8 Π′µ1 ]|q=0

+
〈HX|Kµν [1P [1]

1 ]|0〉√
2Nc

[ d
dqν

Tr[T C1Π′0]
]
|q=0

+〈HX|Kaµν [1P [8]
1 ]|0〉

[ d
dqν

Tr[T Ca8 Π′0]
]
|q=0

+
〈HX|Kµν [3P [1]

J ]|0〉√
2Nc

[ d
dqν

Tr[T C1Π′µ1 ]
]
|q=0

+〈HX|Kaµν [3P [8]
J ]|0〉

[ d
dqν

Tr[T Ca8 Π′µ1 ]
]
|q=0 +O(q2/m2

Q), (3.84)

where the CS and CO projectors C1, Ca8 are defined in Eq.(2.10), and the spin singlet and triplet
projectors Π′0, Π′α1 are the same with the ones defined in Eq.(2.15). Here and below, we take the
production case as an example, similar results for decay case can be obtained in the same way.

Up to now, we have accomplished the decoupling of color, Dirac indices and relative
momentum q to the next-to-leading order of q expansion. From Eq.(3.84), it can be seen that
there are some color and Dirac indexes are still connected between the long and short distance
parts. To calculate the physical unpolarized cross section as well as achieve the decoupling of
the remaining un-decoupled color and Dirac indexes, we have to do the amplitude square:

|Asingle
1 |2 =

∑
n,n′,X

〈0|K† [n′]|HX〉〈HX|K[n]|0〉
NnNn′

M∗[n′]M[n], (3.85)

where Nn,n′ =
√

2Nc, 1 for CS and CO respectively,M[n] is the amplitude calculated through
the covariant projection method without contracting with polarization vectors or tensors.
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Due to the symmetry of color, spatial rotation, parity and charge conjugation, the first non-
vanishing interference terms are between the 3S1(L = 0) and the 3D1(L = 2) channels, which
is already beyond our considerations. Thus for Asingle quarkonium production or decay, there
are no non-vanishing interferences between different channels up to P-wave. Consequently, Eq.
(3.85) can be expressed as

|Asingle
1 |2 = |Asingle

1 [1S
[1]
0 ]|2 + |Asingle

1 [1S
[8]
0 ]|2 + |Asingle

1 [3S
[1]
1 ]|2 + |Asingle

1 [3S
[8]
1 ]|2

+|Asingle
1 [1P

[1]
1 ]|2 + |Asingle

1 [1P
[8]
1 ]|2 +

∑
J

(
|Asingle

1 [3P
[1]
J ]|2 + |Asingle

1 [3P
[8]
J ]|2

)
. (3.86)

Applying the color symmetry

〈0|K†b[n]PHKa[n]|0〉 = 〈0|K†c[n]PHKc[n]|0〉 δab

N2
c − 1

(3.87)

and the spatial rotation symmetry

〈0|K†µ′ [3S[1]
1 ]PHKµ[3S

[1]
1 ]|0〉 =

1

D − 1
Πµµ′〈OH [3S

[1]
1 ]〉, (3.88a)

〈0|K†µ′ [1P [1]
1 ]PHKµ[1P

[1]
1 ]|0〉 =

1

D − 1
Πµµ′〈OH [1P

[1]
1 ]〉, (3.88b)

〈0|K†µ′ν′ [3P [1]
J ]PHKµν [3P [1]

J ]|0〉 = ε(J)
µν ε

∗(J)
µ′ν′
〈OH [3P

[1]
J ]〉

Npol(3PJ)
(3.88c)

we have

|Asingle
1 [1S

[1]
0 ]|2 =

∑
|M[1S

[1]
0 ]|2 〈O

H [1S
[1]
0 ]〉

2Nc

, (3.89a)

|Asingle
1 [1S

[8]
0 ]|2 =

∑
|M[1S

[8]
0 ]|2 〈O

H [1S
[8]
0 ]〉

N2
c − 1

, (3.89b)

|Asingle
1 [3S

[1]
1 ]|2 =

∑
εµε
∗
µ′M∗µ′ [3S

[1]
1 ]Mµ[3S

[1]
1 ]
〈OH [3S

[1]
1 ]〉

2Nc(D − 1)
, (3.89c)
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|Asingle
1 [3S

[8]
1 ]|2 =

∑
εµε
∗
µ′Ma,∗µ′ [3S

[8]
1 ]Ma,µ[3S

[8]
1 ]

〈OH [3S
[8]
1 ]〉

(N2
c − 1)(D − 1)

, (3.89d)

|Asingle
1 [1P

[1]
1 ]|2 =

∑
εµε
∗
µ′M∗µ′ [1P

[1]
1 ]Mµ[1P

[1]
1 ]
〈OH [1P

[1]
1 ]〉

2Nc(D − 1)
, (3.89e)

|Asingle
1 [1P

[8]
1 ]|2 =

∑
εµε
∗
µ′Ma,∗µ′ [1P

[8]
1 ]Ma,µ[1P

[8]
1 ]

〈OH [1P
[8]
1 ]〉

(N2
c − 1)(D − 1)

, (3.89f)

|Asingle
1 [3P

[1]
J ]|2 =

∑
ε(J)
µν ε

∗(J)
µ′ν′M∗µ′ν′ [3P

[1]
J ]Mµν [3P

[1]
J ]
〈OH [3P

[1]
J ]〉

2NcNpol(3PJ)
, (3.89g)

|Asingle
1 [3P

[8]
J ]|2 =

∑
ε(J)
µν ε

∗(J)
µ′ν′Ma,∗µ′ν′ [3P

[1]
J ]Ma,µν [3P

[1]
J ]

〈OH [3P
[8]
J ]〉

Npol(3PJ)(N2
c − 1)

.

(3.89h)

Similar results can be obtained for single-quarkonium decay cases |Asingle
2 [n]|2 by replacing the

production LDMEs with corresponding decay LDMEs and absorbing the polarization and color
factors Npol(n), 2Nc, N

2
c − 1 into the average sum

∑
for the initial quarkonium state.

Finally, we have accomplished the decoupling of the relative momentum q, color and Dirac
indices (indexes) completely for single quarkonium production and decay processes. Obviously,
Eq.(3.89) and the corresponding decay formulas are identical to the NRQCD factorization
formulas (Eq.(2.1–2.4)) for single quarkonium production and decay.

It is worth to note that in the derivation of the NRQCD factorization for single-quarkonium
processes, we have chosen the quarkonium rest frame, and expressed the short-distance and
long-distance parts in covariant way. This is guaranteed by the Lorentz invariance of the full
QCD amplitude square |A|2. After decoupling all these indices (indexes) and relative momentum,
the short-distance and long-distance parts are scalars, which can be re-expressed in covariant
way. And consequently, we are again free to choose the reference frames for the short-distance
and long-distance part.The conventional LDMEs are defined in the quarkonium rest frame and√

2P 0,
√

(EQ +mQ)/(2EQ) in the long-distance parts are absorbed into the SDCs, therefore,
the absorbed factors

√
2P 0,

√
(EQ +mQ)/(2EQ) in the SDCs must be understood as being

defined in the quarkonium rest frame as well.

3.6.2 Double-quarkonium Processes
The validity of applying the same method used in deriving the NRQCD factorization formulas
for single-quarkonium processes to the double-quarkonium cases must be clarified here, since
there is not quarkonium rest frame for both quarkonia, simultaneously. As it was shown in
Eq. (3.75), the decoupling of color and Dirac indices can be done in covariant way. It is the time
when we decouple the relative momentum q and relate the short-distance part with LDMEs that
we are forced to choose the quarkonium rest frame. Actually, up to P-wave, we can decouple the
relative momentum q in covariant way as well. Considering the relative momentum dependence
in the long-distance part is O(q2) or higher orders, we can directly set q = 0 in the long-distance
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part. Therefore, we can decouple relative momentum q with q expansion in the short-distance
part. The remaining connection of color and Dirac indexes can be decoupled with color and
spatial rotation symmetry given by Eq. (3.87, 3.88). Now the long-distance part are two scalars,
which can be related to the corresponding conventional NRQCD LDMEs by rescaling a factor
of 2P 0 = 4mQ for each quarkonium. For the short-distance part, it can be identified that the
covariant projectors in Eq. (3.81) obtained in the quarkonium rest frame are effectively the same
with corresponding part in Eq. (3.75) to all orders in q expansion. In this way, the NRQCD
factorization formulas for single-quarkonium processes derived in the last section can be directly
extended for double-quarkonium case, at least up to P-wave. Beyond P-wave, a covariant way of
relative momentum q expansion of the long-distance part is needed.

For double quarkonia involved processes, at amplitude level, as it was done in single quarko-
nium case, we express the amplitude as
for inclusive double quarkonia production H1(Q1Q̄1), H2(Q2Q̄2):

Adouble
1 =

∑
n1,n2,X

M[n1, n2]
〈H1H2X|Q[n1, n2]|0〉

Nn1Nn2

, (3.90)

and for inclusive production of quarkonium H1 via decay of quarkonium H2:

Adouble
2 =

∑
n1,n2,X

M[n1, n2]
〈H1X|Q[n1, n

†
2]|H2〉

Nn1Nn2

. (3.91)

The corresponding amplitude squares are

|Adouble
1 |2 =

∑
n1,n2,n′1,n

′
2,X

〈0|Q† [n′1, n′2]|H1H2X〉〈H1H2X|Q[n1, n2]|0〉
Nn1Nn2Nn′1

Nn′2

×M∗[n′1, n
′
2]M[n1, n2]

=
∑

n1,n2,n′1,n
′
2

〈QH1,H2[n1, n2, n
′
1, n

′
2]〉

Nn1Nn2Nn′1
Nn′2

M∗[n′1, n
′
2]M[n1, n2], (3.92)

|Adouble
2 |2 =

∑
n1,n2,n′1,n

′
2,X

〈H2|Q† [n†′1 , n′2]|H1X〉〈H1X|Q[n1, n
†
2]|H2〉

Nn1Nn2Nn′1
Nn′2

×M∗[n′1, n
′
2]M[n1, n2]

=
∑

n1,n2,n′1,n
′
2

〈QH1 [n1, n2, n
′
1, n

′
2]〉H2

Nn1Nn2Nn′1
Nn′2

M∗[n′1, n
′
2]M[n1, n2], (3.93)

where the eight-fermion operators Q[n1, n2], Q[n1, n
†
2] and their conjugate transpose are given

in Eq. (3.46, 3.47), the un-decoupled double-production LDMEs 〈QH1,H2 [n1, n2, n
′
1, n

′
2]〉 and
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decay-production LDMEs 〈QH1 [n1, n2, n
′
1, n

′
2]〉H2 , are defined in Eq. (3.48). For the same

symmetric reasons as single quarkonium case, when n1, n
′
1 or n2, n

′
2 are not identical, the

LDMEs 〈QH1 [n1, n2, n
′
1, n

′
2]〉H2 , 〈QH1,H2 [n1, n2, n

′
1, n

′
2]〉 vanish at Born level. When n1 = n′1,

n2 = n′2, 〈QH1 [n1, n2, n1, n2]〉H2 , 〈QH1,H2 [n1, n2, n1, n2]〉 can be related to single quarkonium
LDMEs

〈QH1,H2 [n1, n2, n1, n2]〉
N2
n1
N2
n2

=
∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)

〈OH1 [n1]〉〈OH2 [n2]〉
Npol(n1)Npol(n2)Ncol1Ncol2

, (3.94)

〈QH1 [n1, n2, n1, n2]〉H2

N2
n1
N2
n2

=
∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)

〈OH1 [n1]〉〈O[n2]〉H2

Npol(n1)Npol(n2)Ncol1Ncol2
, (3.95)

where we have applied the color and spatial symmetry to decouple the color and Dirac indexes.
Thus for symmetric cases, we simply have

|Adouble
1 [n1, n2]|2 =

∑
|M|2 〈OH1 [n1]〉〈OH2 [n2]〉

Npol(n1)Npol(n2)Ncol1Ncol2
(3.96)

|Adouble
2 [n1, n2]|2 =

∑
|M|2 〈O

H1 [n1]〉〈O[n2]〉H2

Npol(n1)Ncol1
, (3.97)

which are same with our naive application of NRQCD factorization for single-quarkonium
production and decay in Section 2.3.

An essence difference between |Adouble
1,2 |2 and |Asingle

1,2 |2 is that even though we consider S-wave
and P-wave contributions only, the interferences between different intermediate states in |Adouble

1,2 |2
may not vanish when the next-leading-order corrections for the LDMEs are included. As it was
shown in Appendix D.2, the un-decoupled double-production LDMEs 〈QH1,H2 [n′1, n

′
2, n1, n2]〉

and decay-production LDMEs 〈QH1 [n′1, n
′
2, n1, n2]〉 with n1, n

′
2 being in S-wave states while

n′1, n2 in P-wave states, can evolve to be the combination of two P-wave single-quarkonium
LDMEs with some extra coefficients, color and Dirac indexes via soft gluon exchange.

Therefore, with the un-decoupled double-quarkonium LDMEs calculated at one-loop level,
the interference contributions can be expressed as

A∗double
1 [n′1, n

′
2]Adouble

1 [n1, n2]

=
Idouble
νσ′ (m1,m2)P1[n′1, n

′
2, n1, n2]

Nn1Nn2Nn′1
Nn′2

M∗[n′1, n
′
2]M[n1, n2], (3.98a)

A∗double
2 [n′1, n

′
2]Adouble

2 [n1, n2]

=
Idouble
νσ′ (m1,m2)P2[n′1, n

′
2, n1, n2]

Nn1Nn2Nn′1
Nn′2

M∗[n′1, n
′
2]M[n1, n2]. (3.98b)
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3.7 Interference Contributions and Infrared Divergences
To illustrate Eq.(3.98) in more details and show how to calculate the interference contributions as
well as the cancellation of the infrared divergences, we present two examples which are discussed
in Chapter 2, namely, e+e− → J/ψ(3P

[8]
J1

) + χcJ2(
3S

[8]
1 ) interfering with e+e− → J/ψ(3S

[1]
1 ) +

cc̄(3P
[1]
J2

) and Υ(3S
[8]
1 )→ χcJc(

3P
[1]
Jc

)+g interfering with Υ(3P
[8]
Jb

)→ χcJc(
3S

[8]
1 )+g. For above

two cases, the interference contributions are given by∑
J1

A∗double
1 [3P

[8]
J1
,3 S

[8]
1 ]Adouble

1 [3S
[1]
1 ,3 P

[1]
J2

]

=
∑
J1

Idouble
νσ′ (mc,mc)P1[3P

[8]
J1
,3 S

[8]
1 ,3 S

[1]
1 ,3 P

[1]
J2

]

2Nc

×M∗a′b′,µ′ν′ρ′ [3P
[8]
J1
,3 S

[8]
1 ]Mµρσ[3S

[1]
1 ,3 P

[1]
J2

]

=
∑
J1

2δa
′b′

CA

∑
pol

ε(J1)
µν ε

∗(J1)
µ′ν′ ε

(J2)
ρσ ε

∗(J2)
ρ′σ′ M∗a′b′,µ′ν′ρ′ [3P

[8]
J1
,3 S

[8]
1 ]Mµρσ[3S

[1]
1 ,3 P

[1]
J2

]

×Idouble
νσ′ (mc,mc)

〈OJ/ψ[3P
[8]
J1

]〉Born〈OχcJ2 [3P
[1]
J2

]]〉Born

2Nc(N2
c − 1)Npol(3PJ1)Npol(3PJ2)

, (3.99a)

∑
Jb

A∗double
2 [3P

[8]
Jb
,3 S

[8]
1 ]Adouble

2 [3S
[8]
1 ,3 P

[1]
Jc

]

=
∑
Jb

Idouble
νσ′ (mc,mb)P2[3P

[8]
Jb
,3 S

[8]
1 ,3 S

[8]
1 ,3 P

[1]
Jc

]√
2Nc

×M∗[3P
[8]
Jb
,3 S

[8]
1 ]M[3S

[8]
1 ,3 P

[1]
Jc

]

=
∑
Jb

daa
′b′

C2
A

∑
pol

ε(Jc)
µν ε

∗(Jc)
µ′ν′ ε

(Jb)
ρσ ε

∗(Jb)
ρ′σ′ M∗a′b′,µ′ν′ρ′ [3P

[8]
Jb
,3 S

[8]
1 ]Ma,µρσ[3S

[8]
1 ,3 P

[1]
Jc

]

×Idouble
νσ′ (mc,mb)

〈O[3P
[8]
Jb

]〉Υ,Born〈OχcJc [3P [1]
Jc

]]〉Born√
2Nc(N2

c − 1)Npol(3PJc)Npol(3PJb)
. (3.99b)

From the above two equations, we can see that the color, Dirac indexes are full contracted hence
the separation of short-distance and long-distance effects is accomplished. It is also straightfor-
ward to check that the above interference contributions indeed reproduce the uncanceled infrared
divergences in e+e− → J/ψ(3P

[8]
J1

) + χcJ2(
3P

[1]
J2

) + g and Υ(3P
[8]
Jb

)→ χcJc(
3P

[1]
Jc

) + gg, which
means these infrared divergences can be canceled through matching procedure.
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Chapter 4

Born Level Calculations

4.1 General Discussions

The first investigation on charmonium production via Υ decay was the leading order Υ →
χcJ +X calculation in Ref. [60] more than two decades ago, where a small gluon mass was used
to regularize the infrared divergences. Since the nowadays calculations are commonly done with
dimensional regularization scheme, it is quite necessary to re-calculate Υ→ χcJ +X with the
same scheme. In Ref. [61], both bb̄, cc̄ color-octet leading order contributions for Υ→ J/ψ+X
were considered, where the author concluded that the bb̄ color-octet contributions were too small
and a branching ratio of 2.5×10−4 (comparing experimental result B(Υ→ J/ψ+X) = (3.14±
0.4)× 10−4 (Direct), see Table. 6.2) was contributed from bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg channel

with 〈OJ/ψ(3S
[8]
1 )〉 = 0.014 Gev3, which was almost one order larger than the extracted values in

varies experimental environment (see Table. (1.1,1.2)). An other branching ratio 2.1× 10−4 was
obtained in Ref. [62] through considering the processes Υ(3S

[1]
1 )→ J/ψ(1S

[8]
0 /3P

[8]
J )+g, where

the results strongly depended on the LDME 〈OJ/ψ(3P
[8]
0 )〉. As we can see from Table. (1.1,1.2),

the extracted values of 〈OJ/ψ(3P
[8]
0 )〉 are dramatically different, even can be negative. In addition,

the calculations in Ref. [61, 62] are not complete at O(α5
s), the next-to-leading order corrections

to the large contribution channel bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + gg have not been included. The color-

singlet contributions for Υ→ J/ψ +X were calculated up to O(α6
s) in Ref. [63, 64]. However,

the color-singlet contributions are much smaller than the experimental data.
Therefore, we calculate all the cc̄ CS and CO channels up toO(α5

s) as well as some important
QED contributions to give a complete analysis. The relevant LDMEs for Υ decay and ηc, hc, χcJ
production are shown in Table.4.1 with corresponding relative velocity scalings. However, the bb̄
color-octet channels are not considered in our work, since CO LDMEs of Υ decay are suppressed
by a factor of v4

b ∼ 0.01 comparing with color-singlet LDME 〈O(3S
[1]
1 )〉Υ, which was confirmed

in Ref. [61].
According to NRQCD factorization [3], at leading order v expansion for Υ, hc, χcJ and

next-to-leading order v expansion for ηc, J/ψ ( the relativistic correction for CS channel are
not considered here, although they may have lower order of v expansion compared with CO
channels), the inclusive decay width of Υ to ηc, J/ψ, hc, χcJ can be expressed as
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Relative scaling Contributing LDMEs

1 〈Oηc(1S
[1]
0 )〉, 〈OJ/ψ(3S

[1]
1 )〉, 〈O(3S

[1]
1 )〉Υ

v2
c 〈Ohc(1P

[1]
1 )〉, 〈Ohc(1S

[8]
0 )〉, 〈Oχc0(3P

[1]
0 )〉, 〈Oχc0(3S

[8]
1 )〉

v3
c or v3

b 〈Oηc(3S
[8]
1 )〉, 〈OJ/ψ(1S

[8]
0 )〉, 〈O(1S

[8]
0 )〉Υ

v4
c 〈Oηc(1S

[8]
0 )〉, 〈Oηc(1P

[8]
1 )〉, 〈OJ/ψ(3S

[8]
1 )〉, 〈OJ/ψ(3P

[8]
0 )〉

v4
b 〈O(3S

[8]
1 )〉Υ, 〈O(3P

[8]
0 )〉Υ

Table 4.1: Relative scaling of contributing LDMEs for ηc, J/ψ, χcJ production and Υ decay.

Γ(Υ→ ηc +X) = 〈O(3S
[1]
1 )〉Υ

[
Γ̂1S

[1]
0
〈ηc(1S

[1]
0 )〉+ Γ̂1S

[8]
0
〈ηc(1S

[8]
0 )〉

+Γ̂3S
[8]
1
〈ηc(3S

[8]
1 )〉+ Γ̂1P

[8]
1
〈ηc(1P

[8]
1 )〉

]
, (4.1)

Γ(Υ→ J/ψ +X) = 〈O(3S
[1]
1 )〉Υ

[
Γ̂3S

[1]
1
〈J/ψ(1S

[1]
0 )〉+ Γ̂1S

[8]
0
〈J/ψ(1S

[8]
0 )〉

+Γ̂3S
[8]
1
〈J/ψ(3S

[8]
1 )〉+

∑
J

Γ̂3P
[8]
J
〈J/ψ(3P

[8]
0 )〉

]
, (4.2)

Γ(Υ→ hc +X) = 〈O(3S
[1]
1 )〉Υ

[
Γ̂1S

[8]
0
〈hc(1S

[8]
0 )〉+ Γ̂1P

[1]
1
〈hc(1P

[1]
1 )〉

]
, (4.3)

Γ(Υ→ χcJ +X) = 〈O(3S
[1]
1 )〉Υ

[
Γ̂3S

[8]
1
〈χcJ (3S

[8]
1 )〉+ Γ̂3P

[1]
J
〈χcJ (3P

[1]
J )〉

]
, (4.4)

where Γ̂2S+1L
[a]
J

are the corresponding SDCs for the processes: bb̄(3S
[1]
1 ) → cc̄(2S+1L

[a]
J ) + X ,

with a = 1, 8 representing color-singlet and color-octet respectively.

In QCD theory, bb̄(3S
[1]
1 ) can only decay through three gluon channel. Thus the QCD

processes start at O(α4
s) for cc̄(3S

[8]
1 ) channel, and O(α5

s) for all the other S-wave and P-wave
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channels. We list all the leading order QCD subprocesses and corresponding order of strong
coupling in Table.4.2.

Born level QCD subprocess order of αs

bb̄(3S
[1]
1 )→ cc̄(1S

[1]
0 ) + ggg/cc̄g α5

s

bb̄(3S
[1]
1 )→ cc̄(1S

[8]
0 ) + g/ggg/cc̄g α5

s

bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + gg α4

s

bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + cc̄g α5

s

bb̄(3S
[1]
1 )→ cc̄(3S

[1]
1 ) + cc̄g α5

s

bb̄(3S
[1]
1 )→ cc̄(1P

[1]
1 ) + cc̄g α5

s

bb̄(3S
[1]
1 )→ cc̄(1P

[8]
1 ) + ggg/cc̄g α5

s

bb̄(3S
[1]
1 )→ cc̄(3P

[1]
J ) + cc̄g α5

s

bb̄(3S
[1]
1 )→ cc̄(3P

[8]
J ) + g/cc̄g α5

s

Table 4.2: Leading order subprocesses and orders of strong coupling.

4.2 bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + gg

There are 6 Feynman diagrams for the subprocess bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 )+gg, which are shown in

Figure.4.1. This is the only subprocess that contributes at O(α4
s) and was calculated in Ref. [61],

which is consistent analytically and numerically with our result. The virtual and real corrections
for this subprocess will be discussed in detail in Chapter.5. The D-dimensional Born level
amplitude square is given by
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cc̄(3S
[8]
1 )

cc̄(3S
[8]
1 )

cc̄(3S
[8]
1 )

Figure 4.1: Representative tree-level Feynman diagrams for the partonic subprocess
bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg.

∑
|M (bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg)|2

=
80 g4

s

27(D − 1)m3
cmb (s− 4m2

b)
2

(u− 4m2
b)

2
(s+ u− 8m2

c)
2

×
(

512(5−D)m8
bm

2
c − sum2

c

[
(2−D)su+ 4m2

c(3D − 8)(s+ u− 4m2
c)
]

+16m6
b

[
(D − 2)2(s2 + u2) + (5D − 16)su− 4m2

c(2D
2 − 7D + 12)(s+ u)

+16m4
c(2D

2 +D − 8)
]
− 4m4

b

[
(s+ u)

(
2(D − 2)2(s2 + u2) + (5D − 16)su

)
−4m2

c

(
3
(
2D2 − 7D + 6

)
(s2 + u2) +

(
8D2 − 31D + 28

)
su
)

+64m4
c(2D

2 − 5D + 1)(s+ u)− 64m6
cD(4D − 9)

]
+m2

b

[
(D − 2)2

(
s2 + su+ u2

)2 − 8m2
c(s+ u)

(
2(D − 2)2(s2 + u2)

+
(
3D2 − 17D + 24

)
su
)

+ 16m4
c

( (
36− 34D + 8D2

)
s2

+
(
92− 77D + 16D2

)
su+ 2

(
18− 17D + 4D2

)
u2
)

−64m6
c(8D

2 − 39D + 48)(s+ u) + 256m8
c(24− 17D + 3D2)

])
. (4.5)

4.3 bb̄(3S
[1]
1 )→ cc̄(1S

[1,8]
0 /1P

[8]
1 ) + ggg

No previous investigations exist for the subprocesses bb̄(3S
[1]
1 ) → cc̄(1S

[1,8]
0 /1P

[8]
1 ) + ggg. In

addition, due to symmetric reasons, the subprocesses bb̄(3S
[1]
1 )→ cc̄(1P

[1]
1 ) + ggg vanishes.

There are 36 Feynman diagrams for each of these subprocesses, where the representative ones
are shown in Figure.4.2. The SDCs of the subprocesses bb̄(3S

[1]
1 )→ cc̄(3P

[1,8]
J ) + ggg contain

infrared divergences, we discuss these subprocesses in detail together with real corrections in
next chapter. The analytic results for these subprocesses are two lengthy to be presented here.

4.4 bb̄(3S
[1]
1 )→ cc̄(1S

[8]
0 /

3P
[8]
J ) + g

These subprocesses have been studied in Ref. [62]. Similar subprocess bb̄(3S
[1]
1 )→ qq̄(1S

[1]
0 /3P

[1]
J )+

γ have also been calculated in Ref. [65]. Their analytical results are consistent with each other.
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[8]
1 /3P

[1,8]
J )

cc̄(1S
[1,8]
0 /1P

[8]
1 /3P

[1,8]
J )

cc̄(1S
[1,8]
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[1,8]
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[8]
1 /3P

[1,8]
J )

cc̄(1S
[1,8]
0 /1P

[8]
1 /3P

[1,8]
J )

Figure 4.2: Representative tree-level Feynman diagrams for the partonic subprocesses
bb̄(3S

[1]
1 ) → cc̄(1S

[1,8]
0 /1P

[8]
1 /3P

[1,8]
J ) + ggg. All the other diagrams can be obtained through

exchanging the final state gluon.

cc̄(1S
[8]
0 /3P

[8]
J )

cc̄(1S
[8]
0 /3P

[8]
J )

cc̄(1S
[8]
0 /3P

[8]
J )

cc̄(1S
[8]
0 /3P

[8]
J )

cc̄(1S
[8]
0 /3P

[8]
J )

cc̄(1S
[8]
0 /3P

[8]
J )

Figure 4.3: Tree-level Feynman diagrams for the subprocesses bb̄(3S
[1]
1 )→ cc̄(1S

[8]
0 /3P

[8]
J ) + g.
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c

cc̄(1S
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0 /3S
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c

cc̄(1S
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J )

c̄

c

cc̄(1S
[1,8]
0 /3S

[1]
1 /1P

[1,8]
1 /3P

[1,8]
J )

c̄

c

cc̄(1S
[1,8]
0 /3S

[1]
1 /1P

[1,8]
1 /3P

[1,8]
J )

c̄

c
cc̄(1S

[1,8]
0 /3S

[1]
1 /1P

[1,8]
1 /3P

[1,8]
J )

c̄

c

Figure 4.4: Tree-level Feynman diagrams for the subprocesses bb̄(3S
[1]
1 )→ cc̄(1S

[1,8]
0 /3S

[1]
1 /

1P
[1,8]
1 /3P

[1,8]
J ) + cc̄g.

There are 6 Feynman diagrams for each of the leading order subprocesses bb̄(3S
[1]
1 ) →

cc̄(1S
[8]
0 /3P

[8]
J ) + g, which are shown in Figure.4.3. Due to symmetric reasons, the contribution

of the leading order subprocesses bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 /1P

[8]
1 ) + g vanish. These leading order

subprocesses contribute at one-loop level. We adopt the helicity projector method described in
Ref. [65] to calculate the one-loop amplitude. For the subprocesses bb̄(3S

[1]
1 )→ cc̄(1S

[8]
0 )+g, we

obtain the same analytical result with Ref. [62]. For the P-wave intermediate states subprocesses,
we use similar method of calculating the virtual corrections described in the next chapter. Our
numerical results are consistent with those in Ref. [62].

4.5 bb̄(3S
[1]
1 )→ cc̄(1S

[1,8]
0 /3S

[1]
1 /

1P
[1,8]
1 /3P

[1,8]
J ) + cc̄g

There are 6 Feynman diagrams for each of the leading order subprocesses bb̄(3S
[1]
1 )→ cc̄(1S

[1,8]
0 /

3S
[1]
1 /1P

[1,8]
1 /3P

[1,8]
J )+cc̄g, which are shown in Figure.4.4. One of the cc̄ associated subprocesses

bb̄(3S
[1]
1 )→ cc̄(3S

[1]
1 ) + cc̄g was calculated in Ref. [63]. Using the input parameters in Ref. [63],

we can reproduce their numerical results. All the other cc̄ associated subprocesses are new
contributions. The analytical results are also too complicated to be listed here.
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Figure 4.5: Representative tree-level Feynman diagrams for the partonic subprocess
bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + cc̄g.

cc̄(3S
[1]
1 )

c

c̄ c

c̄

cc̄(3S
[1]
1 )

Figure 4.6: Tree-level Feynman diagrams for the subprocess bb̄(3S
[1]
1 )→ γ∗ → cc̄(3S

[1]
1 ) + cc̄g.

4.6 bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + cc̄g

Comparing with the cc̄ associated subprocesses discussed in the last subsection, there are 6 extra
Feynman diagrams that contribute to the subprocesses bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + cc̄g due to gluon

fragmentation g∗ → cc̄(3S
[8]
1 ). The corresponding Feynman diagrams are shown in Figure. 4.5.

4.7 QED processes

As mentioned in Ref. [63], the dominate color-singlet QED contribution for inclusive J/ψ
production via Υ(1S) decay comes from the photon fragmentation γ∗ → cc̄(3S

[1]
1 ) (the last

diagram in Figure. 4.7), whose branching ratio is about 1.5× 10−5. The same order subprocess
bb̄(3S

[1]
1 ) → γ∗ → cc̄(3S

[1]
1 ) + cc̄g (Figure. 4.6) only makes contribution of 1.14 × 10−6 for
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[1]
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[1]
1 )

cc̄(3S
[1]
1 )

Figure 4.7: Representative tree-level Feynman diagrams for the partonic subprocess
bb̄(3S

[1]
1 )→ cc̄(3S

[1]
1 ) + gg.

the branching ratio. Our calculation for the ηc case indicates that all the other QED processes
contribute at order of 10−6 or smaller for the branching ratio. Therefore, for simplicity, we
consider only these two QED subprocesses bb̄(3S

[1]
1 )→ γ∗ → cc̄(3S

[1]
1 ) + cc̄g and bb̄(3S

[1]
1 )→

cc̄(3S
[1]
1 ) + gg.
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Chapter 5

Next-to-leading Order Corrections

5.1 Virtual Corrections

Typical Feynman diagrams of virtual corrections are shown in Fig.5.1. They fall into four groups,
which include self-energy diagrams, vertex correction diagrams, counter term diagrams, and
diagrams that generated from tree-level diagrams of Fig.4.1 by attaching one virtual gluon line
in all other possible ways.

Labeling the tree-level amplitude and the amplitude of virtual corrections as MBorn and
Mvirtual respectively, the SDC of virtual corrections can be evaluated as

dΓ̂VC =
1

4mb

1

(N2
c − 1)(D − 1)

dPS1→3

∑
2Re(M∗

BornMvirtual), (5.1)

where dPS1→3 is the three body phase-space and
∑

implies average over the sum of color and
polarization degrees. The identical particle factor 1/2 (two identical gluons) is included in∑

2Re(M∗
BornMvirtual).

5.1.1 Renormalization Scheme

The UV divergences are removed through renormalization. We adopt a mixed renormalization
scheme [10], in which for the heavy quark field ψQ, quark mass mQ and gluon field Aaµ the
corresponding renormalization constants Z2, Zm, and Z3 are defined in the on-shell (OS) scheme,
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Figure 5.1: Representative Feynman diagrams for virtual corrections of subprocess
bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg.

while for the strong coupling gs its renormalization constant Zg is defined in modified-minimal-
subtraction (MS) scheme. At one-loop level the counter terms then read

δZMS
g = −β0

2

αs
4π
Cε

1

εUV
, (5.2)

δZOS
2 = −CF

αs
4π
Cε[

1

εUV
+

2

εIR
+ 3 ln

µ2

m2
+ 4], (5.3)

δZOS
3 =

αs
4π
Cε(β0 − 2CA)[

1

εUV
− 1

εIR
], (5.4)

δZOS
m = −3CF

αs
4π
Cε[

1

εUV
+ ln

µ2

m2
+

4

3
], (5.5)

where Cε = (4πe−γE)ε and µ is the renormalization scale, which implies that the dimensional
regularization with D = 4− 2ε is employed in our calculation. β0 = (11/3)CA − (4/3)TFnf
is the one-loop coefficient of the QCD beta function with nf = 3 active quark flavors in our
calculation. In Eq.(5.3, 5.5), the mass m should be substituted by mc and mb for charm and
bottom quark, respectively.

5.1.2 Strategies of Analytical Calculations

As mentioned previously, the Feynman diagrams are generated by FEYNARTS [49], algebraic
operations such as color, Dirac algebra, are performed with FEYNCALC [48] and FORM [50].
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We apply the covariant projection method before loop integrations, which means the relative
momentum q is set to 0 before loop integration. Thus we have one less mass scale in the
loop integrals, Coulomb singularities do not exist neither. However, the loop integrals become
non-standard because of the linear dependent propagators in the loop integrals. Therefore, we
use Mathematica package $Apart [66] to get linear independent propagators. With the $Apart
package, the linear dependent propagators such as 1

l2(l2−a)(l2−b)(l2−a1a−a2b) can be split as

$Apart
[ 1

l2(l2 − a)(l2 − b)(l2 − a1a− a2b)

]
= (

a2

a1 + a2 − 1
)

1

(l2)2(l2 − a)(l2 − a1a− a2b)

+(
a1

a1 + a2 − 1
)

1

(l2)2(l2 − b)(l2 − a1a− a2b)

−(
1

a1 + a2 − 1
)

1

(l2)2(l2 − a)(l2 − b) . (5.6)

More complicated cases such as loop integrals containing negative or higher power of propagators
can also be done in the same manner. This means this method can apply with P-wave intermediate
states of quarkonium and no tensor reduction is needed since the FIRE [67] package is able to
dealing with negative power of propagators as long as all the propagators are linear independent.
A simple example would be

FIRE
[ ∫ dDl

(2π)D
P1 · l

l2(l2 + P2 · l)
]

=
(s+ u)

4

∫
dDl

(2π)D
1

l2(l2 + P2 · l)

+
(s+ u)

16m2
c

∫
dDl

(2π)D
1

(l2 + P2 · l)
. (5.7)

At the end of the reduction of scalar integrals done with FIRE [67], the analytical results of
virtual corrections are expressed in terms of some master integrals. Among them, the coefficients
of some integrals have extra pole 1

ε
. For instance, the scalar integral

∫
dDl

(2π)D
1

l2(l2−2k3·l)(l2+2k4·l)
will be further reduced by FIRE according to

FIRE
[ ∫ dDl

(2π)D
1

l2(l2 − 2k3 · l)(l2 − 2k4 · l)
]

=
24(D − 3) (4m2

b + 20m2
c + s+ 5u)

(4−D) (16m2
c (−12m2

b + s− 3u) + 64m4
c + (s+ 3u)2)

×
∫

dDl

(2π)D
1

(l2 − 2k3 · l)(l2 + 2k4 · l)

=
24(D − 3) (4m2

b + 20m2
c + s+ 5u)

(4−D) (16m2
c (−12m2

b + s− 3u) + 64m4
c + (s+ 3u)2)

×
∫

dDl

(2π)D
1

l2(l + k3 + k4)2
, (5.8)
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where the extra pole 1
4−D = 1

2ε
arises, which means we must calculate these combined integrals

up to O(ε). Fortunately, only some tadpole and bubble integrals are combined with extra poles,
whose analytical results up to O(ε) are given in Appendix D.

After above procedures, the analytical results are simplified with Mathematica, and trans-
formed to be C++ code for further numerical evaluations.

We extract the divergences analytically and find that they cancel with the divergences in the
real corrections. This can be served as a check point of our analytical computations.

5.2 Real Corrections and bb̄(3S
[1]
1 )→ cc̄(3P

[1,8]
J ) + ggg

Since the real corrections and the two processes bb̄(3S
[1]
1 )→ cc̄(3P

[1,8]
J ) + ggg share the same

kinematic settings (see Appendix A.) and their infrared divergences are subtracted with the same
method, we discuss these processes together in this section.

In our calculation of the real corrections, we choose Feynman gauge with the polarization
sum of the gluon as ∑

pol∗
εµε
∗
ν = −gµν . (5.9)

Consequently, the non-physical degree of freedom of final state gluon should be subtracted by
gluon ghost contribution:

∑
pol

|M(bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + ggg)|2

=
∑
pol∗

[
|M(bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + ggg)|2

−2|M(bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + gugūg)|2

−2|M(bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + uggūg)|2

−2|M(bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + ugūgg)|2

]
, (5.10)

where ug, ūg stand for ghost and anti-ghost.
In this way, we have to calculate (Fig.5.2) bb̄(3S

[1]
1 ) → cc̄(3S

[8]
1 ) + ggg (96 Feynman dia-

grams) and bb̄(3S
[1]
1 ) → cc̄(3S

[8]
1 ) + gugūg/uggūg/ugūgg/qq̄g (6 Feynman diagrams for each

subprocess).

5.2.1 The Two Cutoff Phase Space Slicing Method
Soft, collinear, and soft-collinear divergences are encountered in the final state phase-space
integrations in the real corrections. And soft divergences also present in the two P-wave processes
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Figure 5.2: Representative Feynman diagrams for real corrections of subprocess bb̄(3S
[1]
1 ) →

cc̄(3S
[8]
1 ) + gg.

bb̄(3S
[1]
1 ) → cc̄(3P

[1,8]
J ) + ggg. These divergences are subtracted with the phase space slicing

method [68].
The general idea of the two cutoff phase space slicing method is decomposing the phase

space into two regions which are named as soft (S) and hard (H):

Γ̂ =
1

2M

1

Npol(n)Ncol

∫ ∑
|M|2dPS

=
1

2M

1

Npol(n)Ncol

∫
S

∑
|M|2dPS +

1

2M

1

Npol(n)Ncol

∫
H

∑
|M|2dPS. (5.11)

The decomposition is sufficient for calculating the processes bb̄(3S
[1]
1 )→ cc̄(3P

[1,8]
J )+ggg. As for

the real corrections, there are collinear divergences, thus the hard region is further decomposed
into hard collinear (HC) and hard non-collinear (HNC) regions:

∫
H

∑
|M|2dPS =

∫
HC

∑
|M|2dPS +

∫
HNC

∑
|M|2dPS. (5.12)

For the processes bb̄(3S
[1]
1 ) → cc̄(3P

[1,8]
J ) + qq̄g, there are only collinear divergences (no soft

divergences), therefore decomposing the phase space into collinear and non-collinear regions is
sufficient.

We introduce two slicing parameters δs and δc, with the help of which, the soft regions are
defined as

E3

mc

< δs or
E4

mc

< δs or
E5

mc

< δs, (5.13)

and the collinear regions are defined as

s34 < δcm
2
c or s35 < δcm

2
c or s45 < δcm

2
c , (5.14)
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where E3, E4, E5 are the energy of soft gluons with momentum k3, k4, k5, respectively and
s34 = (k3 + k4)2, s35 = (k3 + k5)2, s45 = (k4 + k5)2. In our case, three identical gluons are in
the final state, we subtract the soft and collinear divergences in one of the soft regions Eq.(5.13)
and collinear regions Eq.(5.14), which means we must choose a reference frame which are
symmetric under exchanging of final state gluons.

5.2.2 Soft region

As an example, let us consider the case when k5 is soft, which indicates E5 < δsmc. In the limit
that gluon is soft, the amplitude of corresponding diagram factorizes into the Born amplitude
without the soft gluon and a eikonal factor, namely the eikonal approximation, which can be
summarized as [69, 70]

|k5 soft〉 = gs
pi · ε∗(k5)

pi · k5

Ti|Born〉, (5.15)

where |k5 soft〉 is the amplitude in the limit that k5 → 0, |Born〉 is the Born level amplitude
without the soft gluon, pi is the four momentum of the parton i with which the soft gluon attached,
Ti is a color operator acting on the Bron amplitude which is defined as

Ti =


T a if the parton i is an incoming anti-quark or outgoing quark,
−T a if the parton i is an incoming quark or outgoing anti-quark,
ifabc if the parton i is a gluon.

(5.16)

The corresponding soft region contribution of real corrections is given by

dΓ̂RC
k5soft =

1

4mb

1

(N2
c − 1)(D − 1)

dPS1→3

∫
soft
dPSk5

∑
|Mk5soft|2, (5.17)

whereMk5soft is obtained by attaching the soft gluon to the Born level amplitude according to
Eq.(5.15), and the phase-space of the k5 soft region

∫
soft dPSk5 is given by

∫
soft
dPSk5 =

∫
soft

µ4−DdD−1k5

2(2π)D−1E5

=
(πµ2)εΓ(1− ε)
(2π)3Γ(1− 2ε)

∫ δsmc

0

E1−2ε
5 dE5

∫ π

0

sin θ1
1−2εdθ1

∫ π

0

sin θ2
−2εdθ2.

(5.18)

Therefore, in the k5 → 0 limit, we have

62



dΓ̂RC
k5soft = dΓ̂LO(bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg

)
×3

2

∫
soft
dPSk5

[ t

(k3 · k5)(k4 · k5)
− 8m2

c

(P2 · k5)2

+
uc

(k4 · k5)(P2 · k5)
+

sc
(k3 · k5)(P2 · k5)

]
, (5.19)

with Γ̂LO(bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + gg) calculated in D-dimension.

To calculate the soft integrals in Eq.(5.19), we have to parameterize the momenta in certain
frame which must be symmetric under exchange of final state gluons since we only calculate
the k5 soft limit. We choose the center of mass frame of P1, −P2, which at the same time is the
center of mass frame of k3, k4 in the k5 → 0 limit:

P1 = (EP1 , 0, |p| sin θ, |p| cos θ) (5.20)
P2 = (EP2 , 0, |p| sin θ, |p| cos θ) (5.21)
k3 = E3(1, 0, 0, 1) (5.22)
k4 = E4(1, 0, 0, −1) (5.23)
k5 = E5(1, sin θ1 sin θ2, sin θ1 cos θ2, cos θ1), (5.24)

where

EP1 =
sb + ub

2
√
t
, EP2 =

sc + uc

2
√
t
, E3 = E4 =

√
t

2
, |p| = a

2
√
t
, cos θ =

u− s
a

,

(5.25)

with a =
√

(s+ u)2 − 64m2
cm

2
b .

Using above parameterization, the results of the soft integrals in Eq.(5.19) are listed in
Appendix F. Then the final result of dΓ̂RC

k5soft reads

dΓ̂RC
k5soft = dΓ̂LO(bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg

)
×3Cε

8π2

[
2

ε2
+

1

ε

(
ln

(
µ4t

4m2
cscucδ

4
s

)
− 1

)
− sc + uc

a
ln

(
sc + uc + a

sc + uc − a

)

+ ln

(
µ2

4m2
cδ

2
s

)(
ln

(
µ2

4m2
cδ

2
s

)
− ln

(
scuc
4m2

ct

)
− 1

)
+

1

2
ln2

(
sc + uc + a

sc + uc − a

)
− π2

2
+

(
1

2
ln2

(
sc + uc − a

2sc

)

+ Li2

(
− s− u+ a

sc + uc − a

)
− Li2

(
s− u− a

2s1

)
+ (s↔ u)

)]
. (5.26)

63



5.2.3 Hard-collinear region
Assuming k4 is collinear to k5, which means s45 < δcm

2
c , and the momenta k4, k5 can be

parameterized as

k4 = (zP2 +
k2
⊥

2zP2

, k⊥, zP2) (5.27)

k5 = ((1− z)P2 +
k2
⊥

2(1− z)P2

,−k⊥, (1− z)P2), (5.28)

where k⊥ is the small transverse momentum. Then, at leading order in k⊥, the 1→ 4 phase-space
factorizes according to

dPS1→4 = dPS1→3 × dPS45
c , (5.29)

with

dPS45
c =

(4πµ2)ε

16π2Γ(1− ε)(z(1− z)s45)−εdzds45. (5.30)

At the same time, the squared matrix element factorizes as∑
|M4′→45(bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + ggg/gqq̄)|2

=
2g2

s

s45

P44′(z, ε)
∑
|M(bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg)|2.

(5.31)

Consequently, the SDC in the k4||k5 limit factorizes as

dΓ̂4′→45,hard(bb̄(
3S

[1]
1 )→ cc̄(3S

[8]
1 ) + ggg/gqq̄)

= (1− δ4,5

2
)dΓLO(bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg)

g2
s

8π2

× (4πµ2)ε

Γ(1− ε)

∫ δcm2
c

0

s−1−ε
45 ds45

∫ zmax

zmin

(z(1− z))−εP44′dz

= (1− δ4,5

2
)dΓLO(bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg)

× g2
s

8π2
(
4πµ2

δcm2
c

)ε
1

Γ(1− ε)(−1

ε
)

∫ zmax

zmin

(z(1− z))−εP44′dz, (5.32)

with the Altarelli-Parisi splitting function P44′ [?] and the integration limits zmax, zmin given by

δ4,5 = 1, zmin =
2δsmc√

t
, zmax = 1− 2δsmc√

t
, (5.33)

P44′(z, ε) = 2CA

[
z

1− z +
1− z
z

+ z (1− z)

]
(5.34)
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for g → gg splitting, and

δ4,5 = 0, zmin = 0, zmax = 1, (5.35)

P44′(z, ε) =
1

2

(
z2 + (1− z)2

)
− z(1− z)ε (5.36)

for g → qq̄ splitting.

In the case of g → gg splitting, hard conditions for the splitting gluons are applied to avoid
double counting of the soft-collinear region.
Thus we get our final results for hard-collinear region:

dΓ̂4′→45,hard(bb̄(
3S

[1]
1 )→ cc̄(3S

[8]
1 ) + ggg)

= dΓ̂LO(bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + gg)

3g2
s

8π2
(
4πµ2e−γE

m2
c

)ε

×
[

1

ε

(
2 ln

(
2δsmc√

t

)
+

11

6

)
−
(

2 ln

(
2δsmc√

t

)
+

11

6

)
ln (δc)

− ln2

(
2δsmc√

t

)
+

67

18
− π2

3

]
(5.37)

for g → gg splitting, and

dΓ̂4′→45,hard(bb̄(
3S

[1]
1 )→ cc̄(3S

[8]
1 ) + g + qq̄)

= dΓ̂LO(bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + gg)

× g2
s

24π2
(
4πµ2e−γE

m2
c

)ε
[
− 1

ε
+ ln (δc)−

5

3

]
(5.38)

for g → qq̄ splitting.
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5.2.4 Hard-non-collinear region

In the hard-non-collinear region, the final state phase-space integration is finite, thus we directly
perform the numerical integration in four-dimension. In the rest frame of P1,−P2, the hard-non-
collinear region conditions are given by

E3 =
s1 + u1 + u2 − t2 − 4m2

b

2
√
s1

> δsmc, (5.39a)

E4 =
s1 − s2

2
√
s1

> δsmc, (5.39b)

E5 =
t2 + s2 − u1 − u2 + 4m2

b

2
√
s1

> δsmc, (5.39c)

s34 = s1 + u1 + u2 − t2 − s2 − 4m2
b > δcm

2
c , (5.39d)

s35 = s2 > δcm
2
c , (5.39e)

s45 = 4m2
b + t2 − u1 − u2 > δcm

2
c . (5.39f)

We express the four body phase-space in covariant form [78] . Therefore, these 6 hard-non-
collinear region conditions can be easily implemented in the numerical integration of the final
state phase-space.

5.3 bb̄(3S
[1]
1 )→ cc̄(3P

[1,8]
J ) + ggg

There are 36 Feynman diagrams (Fig.4.2) for the tree-level subprocess bb̄(3S
[1]
1 )→ cc̄(3P

[1,8]
J ) +

ggg. As expected, infrared divergences appear in the final state phase-space integration. In
NRQCD factorization, such kind of infrared divergences are absorbed into NLO corrections
to the the color-octet matrix element 〈χcJ (3S

[8]
1 )〉. The color-singlet subprocesses bb̄(3S

[1]
1 ) →

cc̄(3P
[1]
J ) + ggg were studied in Ref. [60], where a small mass cut-off regularization was adopted.

Here, we use the same approach in the computation of the real corrections of bb̄(3S
[1]
1 ) →

cc̄(3S
[8]
1 ) + ggg (only one slicing parameter δs is needed in this case) to extract the infrared

divergences. In the k5 soft limit (as an example) and choosing axial gauge for the soft gluon

∑
pol

εβ′(k5)ε∗β(k5)

= −gβ′β +
P2β′k5β + P2βk5β′

P2 · k5

− P 2
2 k5β′k5β

(P2 · k5)2
, (5.40)
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the squared matrix element can be factorized as

|M(bb̄(3S
[1]
1 )→ cc̄(3P

[1/8]
J ) + ggg)|2k5soft

= 4g2
s

εβ
′
(k5)ε∗β(k5)ε

(J)∗
αβ (P2)ε

(J)
α′β′(P2)

(P2 · k5)2

×Mα
Born(Tc − Tc̄)(Tc − Tc̄)M∗α′

Born, (5.41)

where ε∗β(k5), ε
(J)∗
αβ (P2) are polarization vector and tensor for the soft gluon and cc̄ pair re-

spectively. Tc and Tc̄ are color matrices that corresponding soft gluon attaching to charm and
anti-charm quark line respectively. And Mα

Born represents the amplitude for the Born-level
subprocess bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg with the Lorentz index of polarization vector of cc̄ pair

labeled as α and color projectors adopted according to the color states of cc̄(3P
[1/8]
J ).

Therefore, soft region contribution in the case of k5 soft then reads

dΓ̂k5soft =
1

4mb

1

NcolNpol(3PJ)
dPS1→3

∫
soft
dPSk5

×
∑
|M(bb̄(3S

[1]
1 )→ cc̄(3P

[1/8]
J ) + ggg)|2k5soft

=
1

4mb

1

NcolNpol(3PJ)
dPS1→3

∫
soft
dPSk5

4g2
s

(P2 · k5)2

×
(
−gβ′β +

P2β′k5β + P2βk5β′

P2 · k5

− P 2
2 k5β′k5β

(P2 · k5)2

)
×
∑

ε
(J)∗
αβ ε

(J)
α′β′Mα

Born(Tc − Tc̄)(Tc − Tc̄)M∗α′
Born. (5.42)

Now we confront with new type of tensor integral
∫

soft dPSk5
k5βk5β′

(P2·k5)4
. This tensor integral

cannot be reduced to scalar integrals through conventional tensor reduction procedure, since it is
not Lorentz covariant due to the cut-off of soft gluon energy. Therefore, we explicitly evaluate
these tensor integrals such as

∫
soft dPSk5

(k3·k5)(k4·k5)
(P2·k5)4

. As a result, the D-dimensional Born-level

squared matrix element of subprocess bb̄(3S
[1]
1 )→ cc̄(3S

[8]
1 ) + gg cannot be factorized out from

the D-dimensional squared matrix elements of the subprocess bb̄(3S
[1]
1 )→ cc̄(3P

[1,8]
J ) + ggg in

the soft limit, which is different from the case of the real corrections. Nevertheless, this does not
affect the cancellation of infrared divergences, since the divergences appear to be proportional to
the 4-dimensional Born-level squared matrix element of subprocess bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg.
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Chapter 6

Numerical Evaluation and Phenomenologi-
cal Results

We are now in the position to present our numerical analysis of inclusive ηc, J/ψ, hc, χcJ
production in Υ(1S) decay at O(α5

s) ( the results of O(α6
s) J/ψ color-singlet processes are

included [64] ) in the NRQCD factorization framework . The phase-space integrations are
performed numerically with the help of the CUBA [71] package. The numerical values of the
one-loop master integrals are computed using C++ package QCDLOOP [72]

Since there are several natural scales 2mb, mb, 2mc, mc involved in our evaluation, and no
unbiased choices of renormalization scale which can truly represent the scale of the processes,
we adopt the fastest apparent convergence (FAC) scheme [73] to fix the renormalization scale
µFAC and then explore the renormalization scale dependence in the range µFAC/2 < µ < 2µFAC.
In the first section, we describe our strategies of extracting the µ dependence, obtaining µFAC

and reducing the uncertainty due to high order of αs(µ) (α5
s). Our parameter settings and the

experimental data are presented in the second section. And in the next 3 sections, our final results
of inclusive χcJ , J/ψ and hc, ηc production via Υ(1S) decay will be presented separately.

6.1 Approaches of Exploring Renormalization Scale Depen-
dence

To investigate the renormalization scale dependence, we express the SDCs of the relevant
processes (Table.4.2) as

Γ̂
ggg/cc̄g

1S
[1]
0

= f
ggg/cc̄g

1S
[1]
0

α5
s(µ)GeV−5, (6.1a)

Γ̂
g/ggg/cc̄g

1S
[8]
0

= f
g/ggg/cc̄g

1S
[8]
0

α5
s(µ)GeV−5, (6.1b)

Γ̂QED
3S

[1]
1

= fQED
3S

[1]
1

α2
s(µ)GeV−5, (6.1c)
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Γ̂
gg/gggg

3S
[1]
1

= f
gg/gggg

3S
[1]
1

α6
s(µ)GeV−5, (6.1d)

Γ̂cc̄g
3S

[1,8]
1

= f cc̄g
3S

[1,8]
1

α5
s(µ)GeV−5, (6.1e)

Γ̂gg
3S

[8]
1

=
(
f gg,LO
3S

[8]
1

+ f gg,corr
3S

[8]
1

αs(µ)
)
α4
s(µ)GeV−5, (6.1f)

Γ̂
ggg/cc̄g

1P
[1,8]
1

= f
ggg/cc̄g

1P
[1]
1

α5
s(µ)GeV−7, (6.1g)

Γ̂
ggg/cc̄g

3P
[1]
J

= f
ggg/cc̄g

3P
[1]
J

α5
s(µ)GeV−7, (6.1h)

Γ̂
g/ggg/cc̄g

3P
[8]
J

= f
g/ggg/cc̄g

3P
[8]
J

α5
s(µ)GeV−7, (6.1i)

where the label "corr" means the combined contributions of the real and virtual corrections, the
subscripts and superscripts of Γ̂, f label the cc̄ fock states and extra partonsX , respectively. Thus
all the coefficients (fs) are dimensionless numbers after numerical phase-space integrations.
Here the O(α6

s) coefficients are taken from Ref. [64], and Γ̂ggg
3P

[1,8]
J

represent the SDCs after

subtracting the infrared divergences.
Since ηc, J/ψ, hc, χcJ QCD production through Υ CS channels can be viewed as Υ →

ggg(g) followed by g(g) → ηc/J/ψ/hc/χcJ + X , the large uncertainties due to αs and mb

choosing can be largely reduced by normalize the partial decay width to the decay width of
Υ→ ggg [63, 64], which have been calculated up to O(α4

s) and is given by [74]

Γ(Υ→ ggg) = Γ̂ggg〈O(3S
[1]
1 )〉Υ, (6.2)

with

Γ̂ggg =
20α3

s(µ)

243m2
b

(π2 − 9)

(
1 +

αs(µ)

π

(
−19.4 +

3β0

2

(
1.161 + ln (

µ

mb

)

)))
,

(6.3)

In this way, we express the branching ratios as

Bηc/J/ψ/hc/χcJ = ΓNor(Υ→ ηc/J/ψ/hc/χcJ +X)× B(Υ→ ggg),

(6.4)

where

ΓNor(Υ→ ηc/J/ψ/hc/χcJ +X) =
Γ(Υ→ ηc/J/ψ/hc/χcJ +X)

Γ(Υ→ ggg)
, (6.5)

and B(Υ→ ggg) ≡ Bggg = 81.7% [35]. Note that now the theoretical predictions do not depend
on the CS LDME 〈O(3S

[1]
1 )〉Υ.
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Consequently, we express the branching ratios as (we drop all the units of Gev for simplicity,
thus each term of the expressions below should be understood as compensated by certain powers
of Gev to make the branching ratios dimensionless)

Bηc =
[(
f ggg
1S

[1]
0

+ f cc̄g
1S

[1]
0

)
〈Oηc(1S

[1]
0 )〉

+
(
f ggg
1S

[8]
0

+ f cc̄g
1S

[8]
0

+ f g
1S

[8]
0

)
〈Oηc(1S

[8]
0 )〉

+

(
fLO,gg
3S

[8]
1

/αs(µ) + f corr,gg
3S

[8]
1

+ f cc̄g
3S

[8]
1

)
〈Oηc(3S

[8]
1 )〉

+
(
f ggg
1P

[8]
1

+ f cc̄g
1P

[8]
1

)
〈Oηc(1P

[8]
1 )〉

]
α5
s(µ)Bggg/Γ̂ggg, (6.6)

BJ/ψ =
[(
f cc̄g
3S

[1]
1

+ fQED
3S

[1]
1

/α3
s(µ) + f gg

3S
[1]
1

αs(µ) + f gggg
3S

[1]
1

αs(µ)
)
〈OJ/ψ(3S

[1]
1 )〉

+
(
f ggg
1S

[8]
0

+ f cc̄g
1S

[8]
0

+ f g
1S

[8]
0

)
〈OJ/ψ(1S

[8]
0 )〉

+
(
fLO,gg
3S

[8]
1

/αs(µ) + f corr,gg
3S

[8]
1

+ f cc̄g
3S

[8]
1

)
〈OJ/ψ(3S

[8]
1 )〉

+
∑
J

(
f g
3P

[8]
J

+ f ggg
3P

[8]
J

+ f cc̄g
3P

[8]
J

)
〈OJ/ψ(3P

[8]
0 )〉

]
α5
s(µ)Bggg/Γ̂ggg, (6.7)

Bhc =
[(
f ggg
1P

[1]
1

+ f cc̄g
1P

[1]
1

)
〈Ohc(1P

[1]
1 )〉

+
(
f ggg
1S

[8]
0

+ f cc̄g
1S

[8]
0

+ f g
1S

[8]
0

)
〈Ohc(1S

[8]
0 )〉

]
α5
s(µ)Bggg/Γ̂ggg, (6.8)

BχcJ =
[(
f cc̄g
3P

[1]
J

+ f ggg
3P

[1]
J

)
〈OχcJ (3P

[1]
J )〉

+
(
fLO,gg
3S

[8]
1

/αs(µ) + f corr,gg
3S

[8]
1

+ f cc̄g
3S

[8]
1

)
〈OχcJ (3S

[8]
1 )〉

]
α5
s(µ)Bggg/Γ̂ggg. (6.9)

As NLO QCD corrections are included in our calculation, to study the µ dependence, we need to
employ the one-loop and two-loop formulas for αs(µ) running,

α
(1)
s (µ)

4π
=

1

β0L
,
α

(2)
s (µ)

4π
=

1

β0L
− β1 lnL

β3
0L

2
, (6.10)

where L = ln ( µ2

Λ2
QCD

), and β1 = (34/3)C2
A − 4CFTFnf − (20/3)CATFnf is the two-loop

coefficient of the QCD beta function. Here ΛQCD has different values at one-loop and two-loop .
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Figure 6.1: µ dependence of K-factor, LO, virtual plus real corrections, NLO SDCs from
bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg subprocess.

We adopt the fastest apparent convergence (FAC) scheme [73] to fix the renormalization scale
µFAC and then explore the renormalization scale dependence in the range µFAC/2 < µ < 2µFAC.
The value of µFAC can be fixed by the requirement that the LO SDC of the process Υ(3S

[1]
1 )→

χc0(3S
[8]
1 ) +X equals to the NLO ones:

K-factor =
fLO

8,gg

(
α

(1)
s (µ)

)4

(
fLO

8,gg + f corr
8,ggα

(2)
s (µ)

)(
α

(2)
s (µ)

)4 = 1, (6.11)

which gives µFAC = 6.2Gev (Figure.6.1).

6.2 Parameter Settings and Experimental Data
In our numerical analysis, we adopt the values

mc =
mJ/ψ

2
= 1.5 GeV, (6.12a)

mb =
mΥ

2
= 4.75 GeV, (6.12b)

α = 1/128, (6.12c)
µΛ = mc = 1.5GeV, (6.12d)

ΛQCD = 249(389) MeV, nf = 3, for one-loop (two-loop). (6.12e)

Our choices of the LDMEs are given in Table.(1.1, 1.2).
The experimental data are summarized in Table.(6.1, 6.2).

For the real corrections and two infrared divergent P-wave processes, certain soft and collinear
cut conditions Eq.(5.39) are applied for the hard non-collinear region, which means the numerical
results depend on the soft and collinear cuts δs, δc. However the combined numerical results of
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ψ(2S)→ J/ψ +X (59.5± 0.8)%

ψ(2S)→ χc1 + γ (9.2± 0.4)%

ψ(2S)→ χc2 + γ (8.72± 0.34)%

χc1 → J/ψ + γ (34.4± 1.5)%

χc2 → J/ψ + γ (19.5± 0.8)%

hc → ηc + γ (51± 6)%

Table 6.1: Significant feed-down channels

J/ψ +X (5.4± 0.4)× 10−4 (3.41± 0.4)× 10−4 (Direct)

ψ(2S) +X (1.23± 0.20)× 10−4

χc0 +X < 4× 10−3,CL = 90%

χc1 +X (1.90± 0.35)× 10−4 (1.78± 0.35)× 10−4 (Direct)

χc2 +X (2.8± 0.8)× 10−4 (2.69± 0.8)× 10−4 (Direct)

Table 6.2: Experimental data on branching ratios of inclusive J/ψ, ψ(2S), χcJ production via
Υ decay. The direct contributions are obtained through subtracting the central values of the
feed-down contributions in Table. 6.1 from the total branching ratios.

hard non-collinear and soft-collinear regions approach constants as δs, δc becoming smaller. As
addressed in Ref. [68], the collinear cut δc must be much smaller than the soft cut δs due to the
requirement that contributions proportional to ln(δc) ln(δs)−Li2(δc/δs) vanish. In our numerical
analysis we choose δc = δs/100 and start with δs = 0.1. In order to achieve the accuracy of 0.1%
of numerical int egration, we have to limit ourself that δs > 10−4. Because of the cancellation
of hard non-collinear and soft-collinear regions, the final accuracy of our numerical analysis is
about 1%, which is sufficient in the current required accuracy of QCD calculations. The results
of hard non-collinear and soft-collinear regions as well as the combined results as functions of
soft cut δs are plotted in Figure.(6.2, 6.3) for the NLO corrections and infrared divergent CO
P-wave process. From Figure.(6.2, 6.3), it can be seen that the combined results indeed converge
to constants for each process , which is served as a check point of our calculations.

With above numerical settings, we obtain our results of fs and summarize them in Table 6.3.
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f ggg
1S

[1]
0

(10−6) 1.89 f cc̄g
1S

[1]
0

(10−6) 1.07

f ggg
1S

[8]
0

(10−5) 1.50 f cc̄g
1S

[8]
0

(10−6) 2.14

f g
1S

[8]
0

(10−4) 1.15

fQED
3S

[1]
1

(10−8) 1.76 f cc̄g
3S

[1]
1

(10−6) 1.32

f gg
3S

[1]
1

(10−6) 8.46 f gggg
3S

[1]
1

(10−8) 3.4

fLO,gg
3S

[8]
1

(10−4) 2.38 f corr,gg
3S

[8]
1

(10−4) 4.85 + 13.62 ln( µ
mb

)

f cc̄g
3S

[8]
1

(10−5) 1.23 f cc̄g
1P

[1]
1

(10−7) 1.5

f ggg
1P

[8]
1

(10−7) 6.4 f cc̄g
1P

[8]
1

(10−7) 3.0

∑
J

f ggg
3P

[8]
J

(10−4) −2.78
∑
J

f cc̄g
3P

[8]
J

(10−6) 1.3

∑
J

f g
3P

[8]
J

(10−4) 1.97

f ggg
3P

[1]
0

(10−5) −4.18 f cc̄g
3P

[1]
0

(10−7) 1.73

f ggg
3P

[1]
1

(10−5) −2.06 f cc̄g
3P

[1]
1

(10−7) 1.04

f ggg
3P

[1]
2

(10−5) −2.65 f cc̄g
3P

[1]
2

(10−7) 0.35

Table 6.3: The numerical results of fs introduced in Eq.(6.1).
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Figure 6.2: Numerical dependences of the phase-space slicing parameter δs in the NLO
corrections to bb̄(3S1

1)→ cc̄(3S
[8]
1 ) + gg with µ = mb, δc = δs/100 .
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Figure 6.3: Numerical dependences of the phase-space slicing parameter δs for processes
bb̄(3S1

1)→∑
J

cc̄(3P
[8]
J ) + ggg with µΛ = mc.
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Figure 6.4: µ dependence of branching ratios for χc1, χc2 with 〈χc0(3P
[1]
0 )〉 = 0.107GeV5,

〈χc0(3S
[8]
1 )〉 = 0.0027GeV3 (Chao et al.) and 〈χc0(3P

[1]
0 )〉 = 0.0794GeV5, 〈χc0(3S

[8]
1 )〉 =

0.00574GeV3 (Bodwin et al.), to be compared with experimental data.

6.3 χcJ

From the numerical results listed in Table. 6.3, it can be seen that the contributions of cc̄
associated processes are tiny and the contributions from the dominant CS channel bb̄(3S

[1]
1 )→

cc̄(3P
[1]
J ) + ggg are negative with µΛ = mc. Thus the numerical results come out from the

cancellation of color-singlet χcJ(3P
[1]
J ) and color-octet χcJ(3S

[8]
1 ) contributions. Consequently,

the final results strongly depend on the values of the LDMEs 〈χc0(3P
[1]
0 )〉, 〈χc0(3S

[8]
1 )〉.

The are two dramatically different fits of the LDMEs of χcJ production. In Ref. [16, 21],
the CS LDME 〈χc0(3P

[1]
0 )〉 was related to the first derivative of the wave function at origin

|R′1P (0)| = 0.075GeV5, which was obtained using the Buchmüller-Tye potential and gave
〈χc0(3P

[1]
0 )〉 = 0.107GeV5 [75]. With the fixed CS LDME 〈χc0(3P

[1]
0 )〉, slightly different values

for the CO LDMEs 〈χc0(3S
[8]
1 )〉 = (2.2+0.5

−0.3)×10−3GeV3 [16] and 〈χc0(3S
[8]
1 )〉 = (2.21±0.12)×

10−3GeV3 [21] were obtained by fitting χcJ hadroproduction data (see Table. 1.1). In Ref. [76],
an alternative set of χcJ production LDMEs is given through fitting to ATLAS cross-section
data [77] of χc1, χc2 production with the combined NLO SDCs in αs and the LP-fragmentation
contributions, where

〈Oχc0(3S
[8]
1 )〉 = (5.74± 1.31)× 10−3Gev3, (6.13)

〈Oχc0(3P
[1]
0 )〉

m2
c

= (3.53± 1.08)× 10−2Gev3. (6.14)
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Figure 6.5: µ dependence of refitting value for 〈χc0(3S
[8]
1 )〉 with 〈χc0(3P

[1]
0 )〉 = 0.107GeV5 and

〈χc0(3P
[1]
0 )〉 = 0.0794GeV5 .

Combing the CS LDME 〈χc0(3P
[1]
0 )〉 = 0.107GeV5, upper bound value of CO LDMEs

〈χc0(3S
[8]
1 )〉 = 2.7 × 10−3GeV3 given in Ref. [16, 21] and the central values 〈χc0(3P

[1]
0 )〉 =

0.0794GeV5, 〈χc0(3S
[8]
1 )〉 = 5.74× 10−3GeV3 given in Ref. [76] with our numerical values of

fs, we plot the renormalization scale dependence of B(Υ→ χcJ +X) (J = 1, 2) in Fig.6.4,
from which we find that the theoretical predictions with the LDMEs given in Ref. [16, 21]
underestimate the experimental data; while the theoretical predictions with the LDMEs given in
Ref. [76] overshoot the experimental data.

We therefore refit the value of 〈χc0(3S
[8]
1 )〉 to Υ decays to χc1 and χc2 with two different

values of the CS LDME 〈χc0(3P
[1]
0 )〉 = 0.107GeV5 and 〈χc0(3P

[1]
0 )〉 = 0.0794GeV5. With

the condition that B(Υ → χc0 + X) > 0, we thus exclude the range µ < 3.7 GeV with
〈χc0(3P

[1]
0 )〉 = 0.107GeV5. It can be seen from Figure. 6.5 that the value of 〈χc0(3S

[8]
1 )〉 increases

as µ increasing, but is still relative stable. While µ changes from 3.7Gev to 2µFAC, 〈χc0(3S
[8]
1 )〉

goes from (3.7±0.28)×10−3GeV3 to (4.71±0.65)×10−3GeV3 with 〈χc0(3P
[1]
0 )〉 = 0.107GeV5

and from (3.23±0.28)×10−3GeV3 to (4.52±0.65)×10−3GeV3 with 〈χc0(3P
[1]
0 )〉 = 0.0794GeV5,

where the corresponding values at µ = µFAC = 6.2Gev are (4.04 ± 0.47) × 10−3GeV3 and
(3.74 ± 0.47) × 10−3GeV3, respectively, which is about 2 times larger than the central value
obtained in Ref. [16, 21] and roughly agree with the lower bound value given in Ref. [76].

6.4 J/ψ

From Table. 6.1, we can see that all J/ψ intermediate states 3S
[1/8]
1 , 1S

[8]
0 , 3P

[8]
J for J/ψ give

significant contributions as long as their LDMEs are not too small. Especially, there are also
strong cancellations between cc̄(3P

[8]
J )+ggg and cc̄(3P

[8]
J )+g channels, where the former channel

is not considered in previous investigations in the literature. Inserting the numerical results
in Table. 6.3 into Eq.(6.7), we plot the renormalization scale µ dependence of the branching
ratio of inclusive J/ψ production via Υ decay with six different sets of relevant LDMEs in
Table. (1.1, 1.2) (see Figure. 6.6). Here we have applied the conclusion µ > 3.7Gev obtained in
last section.
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Figure 6.6: µ dependence J/ψ branching ratio with different LDME sets from four groups.

From Figure. 6.6, it can be seen that all the six sets of LDMEs can reasonably describe
the experimental data in certain regions of renormalization scale µ. With the condition that
the theoretical predictions are exactly the same with the central value of experimental data, we
summarize the fitted renormalization scale from J/ψ production in Table. 6.4

Set of LDMEs Renormalization Scale µ (Gev)

Butenschön et al. 3.76

Gong et al. 3.87

Bodwin et al. 7.33

Chao et al. (Default) 4.56

Chao et al. (Set 2) 5.09

Chao et al. (Set 3) 4.84

Table 6.4: The fitted renormalization scale µ using different sets of LDMEs with the experi-
mental data.
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Figure 6.7: µ dependence hc branching ratio with 〈hc(1P
[1]
1 )〉 = 3〈χc0(3P

[1]
0 )〉 = 0.321GeV5

and 〈hc(1S
[8]
0 )〉 = 3〈χc0(3S

[8]
1 )〉 = 0.015GeV3 (here we used the upper bound of our fitted value

for 〈χc0(3S
[8]
1 )〉).

6.5 hc, ηc

The LDMEs for ηc, hc production are determined through HQSS relations between the ηc and
J/ψ (hc and χc0), which are given by

〈Oηc(1S
[1]
0 / 1S

[8]
0 )〉 =

1

3
〈OJ/ψ(3S

[1]
1 / 3S

[8]
1 )〉

(
1 +O(v2

c )
)
, (6.15)

〈Oηc(3S
[8]
1 )〉 = 〈OJ/ψ(1S

[8]
0 )〉

(
1 +O(v2

c )
)
, (6.16)

〈Oηc(1P
[8]
1 )〉 = 3 〈OJ/ψ(3P

[8]
0 )〉

(
1 +O(v2

c )
)
, (6.17)

〈Ohc(1P
[1]
1 / 1S

[8]
0 )〉 = 3 〈Oχc0(3P

[1]
0 / 3S

[8]
1 )〉

(
1 +O(v2

c )
)
, (6.18)

where the production LDMEs for J/ψ, χc0 are already given in Table. (1.1, 1.2).
With the numerical results listed in Table. 6.3, we plot our theoretical predictions for the

renormalization scale dependence of B(Υ → hc + X) ( Figure. 6.7 ) and B(Υ → ηc + X)
(Figure. 6.8), where we have added the feed-down contributions from hc to the branching ratios
for ηc production.

Obviously, the branching ratio for inclusive hc production via Υ decay is too small to be
observed in current accumulated experimental data.

As for the branching ratio for inclusive ηc production via Υ decay, the results highly depend
on the value of the LDME 〈ηc(3S

[8]
1 )〉. Therefore, we also separate the contributions from

intermediate state ηc(3S
[8]
1 ) (see Fig. 6.9), from which we can conclude that the contributions
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Figure 6.8: µ dependence ηc branching ratio with different LDME sets from four groups.

from ηc(
1S

[1,8]
0 ), ηc(

1P
[8]
1 ) intermediate states as well as feed-down from hc are small, and

the large total branching ratios in Figure. (6.9,6.10) almost entirely come from the ηc(3S
[8]
1 )

intermediate state as long as 〈ηc(3S
[8]
1 )〉 is not too small.

To be concrete, here we give some combined predictions at fitted renormalization scale µ as
well as fastest apparent convergence scale µFAC from different LDME sets in Table.

On the experimental side, there are 102 × 106 Υ(1S) decay events collected by the Belle
detector and ηc can decay into stable hadrons with the fraction of few percent, which means the
inclusive ηc production via Υ decay can be measured if its branching ratio is in the magnitude
of 10−3. On the theoretical side, the measurement of B(Υ → ηc + X) can largely reduce the
uncertainty of the LDMEs 〈ηc(3S

[8]
1 )〉 as well as 〈J/ψ(1S

[8]
0 )〉 with the validity of HQSS. Thus the

discrepancy among those LDME sets in Table. (1.1, 1.2) can be further clarified.
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Figure 6.9: µ dependence of ηc branching ratio with or without contributions from ηc(
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intermediate state using the different LDME sets.
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Figure 6.10: Dependence of ηc branching ratio on the value of the LDME 〈ηc(3S
[8]
1 )〉 with

three different renormalization scales.

Set of LDMEs µ = µFAC = 6.2Gev fix µ by fitting J/ψ data

Butenschön et al. 7.1× 10−4 1.0× 10−3

Gong et al. 2.0× 10−3 3.0× 10−3

Bodwin et al. 2.1× 10−3 1.8× 10−3

Chao et al. (Default) 1.9× 10−3 2.3× 10−3

Chao et al. (Set 2) 1.1× 10−4 3.8× 10−5

Chao et al. (Set 3) 4.0× 10−4 3.9× 10−4

Table 6.5: Predictions of the branching ratios of inclusive ηc production via Υ(1S) decay with
different sets of LDMEs at the fitted renormalization scale in J/ψ branching ratio as well as
µ = µFAC = 6.2Gev.
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Chapter 7

Summary and Outlook

More than four decades have past since the discovery of the J/ψ particle, the mechanism of
quarkonium production somehow still remains mysterious. Despite the NRQCD factorization
have achieved tremendous success in describing both quarkonium decay and production, none of
the CO LDME sets extracted from various experimental environments based on complete NLO
calculations by different groups is able to describe all of the studied J/ψ yield and polarization
data, which challenges the universality of LDMEs.

While there exists giant obstacles in performing higher order (NNLO and NLO with rela-
tivistic corrections), more production observables are proposed to explore the mechanism of
quarkonium production, among which the double quarkonia hadroproduction attracts much
attention. However, we find that for double quarkonia involved processes, the current version of
NRQCD factorization formalism breaks down even at tree level, which is proven by two explicit
examples. To solve this problem, we

1. reformulate NRQCD factorization in covariant formalism;
2. introduce a set of four-fermion operators and double quarkonium LDMEs to describe

double quarkonia production or single quarkonium production via heavier quarkonium decay;
3. calculate the loop corrections for the newly introduced double quarkonium LDMEs and

relate them to the single quarkonium LDMEs;
4. give new NRQCD factorization formulas for double quarkonia involved processes;
5. show how to calculate the contributions from the non-trivial interferences between different

initial and final intermediate states.
The new NRQCD factorization formulas for double quarkonia involved processes are much

more complicated than the NRQCD factorization for single quarkonim involved processes due
to the interferences between different initial and final intermediate states of these two quarkonia.

We have also systematically investigated inclusive production of charmonium (ηc, J/ψ, hc, χcJ )
production via Υ(1S) decay. Our calculation of the SDCs includes all QCD contributions from
1S

[1,8]
0 , 3S

[1,8]
1 , 1P

[1,8]
1 , 3P

[1,8]
J intermediate states for charmonia up to O(α5

s) as well as some
important QED contributions, where the real and virtual corrections for the O(α4

s) process
bb̄(3S

[1]
1 )→ cc̄(3S

[8]
1 ) + gg are calculated. For the intermediate states of Υ decay, only the CS
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channel is considered since the CO contributions are suppressed by a factor of v4
b ' 0.01. With

our numerical results, we
6. find that the existing fitted CO LDME of χcJ production from hadroproduction either

under estimates or overshoots the experimental data of B(Υ→ χc1 +X) and B(Υ→ χc2 +X);
7. refit the CO LDME 〈χc0(3S

[8]
1 )〉, which lies in the intermediate value between existing

fitted values;
8. find that for inclusive J/ψ production via Υ decay, the experimental data can be reasonably

well described with all different sets of LDME in certain region of renormalization scale;
9. obtain the upper bound (< 6 × 10−5) of the branching ratio for hc production, which

indicates that it is too small to be observed in current accumulated Υ decay events;
10. find that the branching ratio of inclusive ηc production almost completely depends on the

value of the LDME 〈ηc(3S
[8]
1 )〉, where most of the LDME sets predict the branching ratio can be

in order of 10−3 provided that the HQSS are valid, which may indicate that the branching ratio
can be measured. In other words, the measured branching ratio of inclusive ηc production via
Υ(1S) decay may give significant constraint to the LDME 〈J/ψ(1S

[8]
0 )〉.

For the phenomenological consequences of interference contributions, there are many pro-
cesses can be investigated such as inclusive J/ψ+J/ψ, J/ψ+χcJ , J/ψ+Υ hadron production
at next-to-leading order and inclusive J/ψ, χcJ production via χbJ decay. All of these processes
are phenomenologically important. For the former case, double-quarkonium hadron production
have been continuously measured in the last few years, for the later case, due to the large
accumulation of Υ(nS) data in B factories, the branching ratios of χbJ → J/ψ/χcJ +X might
be measured.
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Appendix A

Notations and Kinematics

A.1 Notations

Through out our calculation and discussion, the notation v or vi is frequently used. In some cases
v represents a time-like unit vector, which is connected with the total momentum Pi of a quark
pair QiQ̄i through the definition vµi ≡

Pµi
mHi

, where mHi is the mass of quark pair QiQ̄i. In the

other cases, v or vQ represents the relative velocity of quark Q and anti-quarkQ̄ in the rest frame
of QQ̄ pair. We specify the meaning of v where some confusion may exist.

The polarization, color factors Npol(n), Nn, Ncol for intermediate state n are also frequently
used, which are defined as

Npol(
1S0) = Npol(

3P0) = 1, Npol(
3S1) = Npol(

1P1) = D − 1, (A.1)

Npol(
3P1) =

(D − 1)(D − 2)

2
, Npol(

3P2) =
(D + 1)(D − 2)

2
, (A.2)

Nn =
√

2Nc, 1 for CS states and CO states, respectively, (A.3)
Ncol = 1, N2

c − 1 for CS states and CO states, respectively. (A.4)

For the Dirac matrices γµ, γ5, we choose the Dirac basis, where

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1
1 0

)
, (A.5)

We distinguish indice and index, where for color matrix T aij and Dirac matrix γµij , i, j are
color, Dirac indices while a, µ are color, Dirac indexes, respectively.
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A.2 Kinematics
In our calculation of inclusive charmonia production via Υ(1S) decay, the total momenta of
bb̄, cc̄ pairs are always labeled as P1, P2, respectively. The mass of b, c quarks are labeled as
mb, mc, and we define r = mc

mb
. And the kinematics of multi-body decay are summarized as

follows:

1. For 2-body decay bb̄(P1)→ cc̄(P2) + g/γ(k3), we have the 2-body phase space

PS1→2 =
m2
b −m2

c

8πm2
b

. (A.6)

2. For 3-body decay bb̄(P1)→ cc̄(P2) + g(k3) + g(k4), we define

s ≡ (P1 − k4)2, t ≡ (P1 − P2)2, u ≡ (P1 − k3)2, (A.7)

so that s+ u+ t = 4m2
b + 4m2

c . For convenience, we also introduce

sc ≡ s− 4m2
c , sb ≡ 4m2

b − s = 2P1 · k4 = 4m2
bx3,

uc ≡ u− 4m2
c , ub ≡ 4m2

b − u = 2P1 · k3 = 4m2
bx2,

t′ ≡ 4m2
b + 4m2

c − t = s+ u = 2P1 · P2 = 4m2
bx1. (A.8)

Then in D = 4− 2ε dimensions, the 3-body phase space is given by

dPS1→3 =
(8πmb)

2ε

512π3m2
bΓ(2− 2ε)

[
(4m2

b − 4m2
c − sb − ub)

×
(
4m2

b(sb + ub + 4m2
c)− sbub − 16m4

b

)]−ε
dsbdub (A.9)

=
π2εm2−4ε

b

32π3Γ(2− 2ε)

[
(1 + r2 − x1)(a1 + a2 − x2)(x2 + a1 − a2)

]−ε
dx1dx2,

(A.10)

with

a1 =

√
x2

1 − 4r2

2
, a2 =

2− x1

2
. (A.11)

And the corresponding limits of the phase space integration are given by

1 + r2 > x1 > 2r, a2 + a1 > x2 > a2 − a1. (A.12)

3. The phase space for a general 4-body decay process P (M) → k1(m1) + k2(m2) +
k3(m3) + k4(m4) can be written in covariant form [78]:

dPS1→4 =
1

(2π)8

π2

4

∫ (M−m1)2

(m2+m3+m4)2
ds1

∫ (
√
s1−m2)2

(m3+m4)2
ds2

×
∫ u1+

u1−

du1

[λ(M2, s2, s′2)λ(M2,m2
2, u1)]1/2(1− ξ2

2)1/2

×
∫ u2+

u2−

du2

[λ(M2,m2
3, u2)]1/2(1− η2

2)1/2

∫ t2+

t2−

dt2
(1− ζ2

2 )1/2
, (A.13)
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with

s1 = (P − k1)2, s2 = (P − k1 − k3)2, u1 = (P − k3)2, u2 = (P − k4)2,

t2 = (P − k3 − k4)2, s′1 = m2
1, s

′
2 = s2 +M2 +m2

1 +m2
2 − s1 − u1,

t′1 = m2
2, t

′
2 = t2 +M2 +m2

2 +m2
3 − u1 − u2, (A.14)

and

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc, (A.15)

ξ2 =
(M2 + s′2 − s2)(M2 + t′1 − t1)− 2M2(s′2 + t′1 −m2

1)

[λ(M2, s2, s′2)λ(M2, t′1, t1)]1/2
, (A.16)

η2 =
2M2(s2 +m2

3 −m2
4)− (M2 − s′2 + s2)(M2 +m2

3 − u2)

[λ(M2, s2, s′2)λ(M2,m2
3, u2)]1/2

, (A.17)

ω2 =
2M2(t1 +m2

3 − t2)− (M2 + t1 − t′1)(M2 +m2
3 − u2)

[λ(M2,m2
3, u2)λ(M2, t′1, t1)]1/2

, (A.18)

ζ2 = (ω2 − ξ2η2)[(1− ξ2
2)(1− η2

2)]−1/2. (A.19)

The limits of the integrations variables are given by

u1± = M2 +m2
2 −

(s1 +m2
2 − s2)(M2 + s1 − s′1))

2s1

± [λ(M2, s1, s
′
1)λ(s1,m

2
2, s2)]1/2

2s1

, (A.20)

u2± = M2 +m2
3 −

(s2 +m2
3 −m2

4)(M2 + s2 − s′2))

2s2

± [λ(M2, s2, s
′
2)λ(s2,m

2
3,m

2
4)]1/2

2s2

, (A.21)

t2± = t1 +m2
3 −

(M2 +m2
3 − u2)(M2 + t1 − t′1)

2M2

+
[λ(M2,m2

3, u2)λ(M2, t′1, t1)]1/2

2M2
{−ξ2η2 ± [(1− ξ2

2)(1− η2
2)]1/2}. (A.22)

In the case of process bb̄(P1)→ cc̄(P2)+g(k3)+g(k4)+g(k5),M = 2mb, m1 = 2mc, m3 =
m4 = m5 = 0, then we can simplify above expressions as:

dPS1→4 =
1

(2π)8

π2

4

∫ (2mb−2mc)2

0

ds1

∫ s1

0

ds2

×
∫ u1+

u1−

du1

[λ(4m2
b , s2, s′2)]1/2(1− ξ2

2)1/2(4m2
b − u1)

×
∫ u2+

u2−

du2

(1− η2
2)1/2(4m2

b − u2)

∫ t2+

t2−

dt2
(1− ζ2

2 )1/2
(A.23)
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with

s1 = (P1 − P2)2, s2 = (P1 − P2 − k4)2, u1 = (P1 − k4)2,

u2 = (P1 − k5)2, t2 = (P1 − k4 − k5)2, s′1 = 4m2
c ,

s′2 = 4m2
b + 4m2

c + s2 − s1 − u1, t
′
2 = 4m2

b + t2 − u1 − u2, (A.24)

and

ξ2 =
(4m2

b + s′2 − s2)(4m2
b − u1)− 8m2

b(s
′
2 − 4m2

c)

[λ(4m2
b , s2, s′2)]1/2(4m2

b − u1)
, (A.25)

η2 =
8m2

bs2 − (4m2
b − s′2 + s2)(4m2

b − u2)

[λ(4m2
b , s2, s′2)]1/2(4m2

b − u2)
, (A.26)

ω2 =
8m2

b(u1 − t2)− (4m2
b + u1)(4m2

b − u2)

(4m2
b − u1)(4m2

b − u2)
, (A.27)

ζ2 = (ω2 − ξ2η2)[(1− ξ2
2)(1− η2

2)]−1/2. (A.28)

The limits of the integrations variables are given by

u1± = 4m2
b −

(s1 − s2)(4m2
b + s1 − 4m2

c)

2s1

± [λ(4m2
b , s1, 4m

2
c)]

1/2(s1 − s2)

2s1

, (A.29)

u2± = 4m2
b −

(4m2
b + s2 − s′2)

2
± [λ(4m2

b , s2, s
′
2)]1/2

2
, (A.30)

t2± = u1 −
(4m2

b − u2)(4m2
b + u1)

8m2
b

+
(4m2

b − u1)(4m2
b − u2)

8m2
b

×{−ξ2η2 ± [(1− ξ2
2)(1− η2

2)]1/2}. (A.31)
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Appendix B

Definitions of the-Single Quarkonium
LDMEs

B.1 Single-Quarkonium LDMEs in Non-Covariant Form
For the production of quarkonium H:

〈OH(1S
[1]
0 )〉 = 〈0|χ†ψPHψ†χ|0〉, (B.1a)

〈OH(3S
[1]
1 )〉 = 〈0|χ†σiψPHψ†σiχ|0〉, (B.1b)

〈OH(1P
[1]
1 )〉 = 〈0|χ†(− i

2

←→
D )iψPHψ†(− i

2

←→
D )iχ|0〉, (B.1c)

〈OH(3P
[1]
0 )〉 =

1

3
〈0|χ†(− i

2

←→
D · σ)ψPHψ†(− i

2

←→
D · σ)χ|0〉, (B.1d)

〈OH(3P
[1]
1 )〉 =

1

2
〈0|χ†(− i

2

←→
D × σ)iψPHψ†(− i

2

←→
D × σ)iχ|0〉, (B.1e)

〈OH(3P
[1]
2 )〉 = 〈0|χ†(− i

2

←→
D (iσj))ψPHψ†(− i

2

←→
D (iσj))χ|0〉, (B.1f)

and for the decay of quarkonium H:

〈O(1S
[1]
0 )〉H = 〈H|ψ†χχ†ψ|H〉, (B.2a)

〈O(3S
[1]
1 )〉H = 〈H|ψ†σχ · χ†σψ|H〉, (B.2b)

〈O(1P
[1]
1 )〉H = 〈H|ψ†(− i

2

←→
D )χ · χ†(− i

2

←→
D )ψ|H〉, (B.2c)

〈O(3P
[1]
0 )〉H =

1

3
〈H|ψ†(− i

2

←→
D · σ)χχ†(− i

2

←→
D · σ)ψ|H〉, (B.2d)

〈O(3P
[1]
1 )〉H =

1

2
〈H|ψ†(− i

2

←→
D × σ)χ · χ†(− i

2

←→
D × σ)ψ|H〉, (B.2e)

〈O(3P
[1]
2 )〉H = 〈H|ψ†(− i

2

←→
D (iσj))χχ†(− i

2

←→
D (iσj))ψ|H〉, (B.2f)

where ψ is the two component Pauli spinor field that annihilates a heavy quark, χ is the two
component Pauli spinor field that creates a heavy anti-quark, σ is the Pauli and color matrix,

←→
D
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is the difference between the covariant derivative acting on the spinor to the right and on the
spinor to the left: ψ†

←→
Dχ = ψ†(Dχ)− (Dψ)†χ, and

←→
D (iσj) = (

←→
D iσj +

←→
D jσi)/2−

←→
D ·σ

3
and

PH =
∑
X

|HX〉〈XH|. (B.3)

The CO production and decay LDMEs are defined simply by inserting two identical color
matrices T a between the bilinear operators to the corresponding CS ones.

B.2 Single Quarkonium LDMEs in Covariant Form

For the production of quarkonium H:

〈OH(1S
[1]
0 )〉 = 〈0|K† [1S[1]

0 ]PHK[1S
[1]
0 ]|0〉, (B.4a)

〈OH(3S
[1]
1 )〉 =

∑
εµ′ε

∗
µ〈0|K

†µ′ [3S
[1]
1 ]PHKµ[3S

[1]
1 ]|0〉

= 〈0|K†µ[3S
[1]
1 ]PHKµ[3S

[1]
1 ]|0〉, (B.4b)

〈OH(1P
[1]
1 )〉 =

∑
εµ′ε

∗
µ〈0|K

†µ′ [1P
[1]
1 ]PHKµ[1P

[1]
1 ]|0〉

= 〈0|K†µ[1P
[1]
1 ]PHKµ[1P

[1]
1 ]|0〉, (B.4c)

〈OH(3P
[1]
0 )〉 =

∑
ε

(0)
µ′ν′ε

∗(0)
µν 〈0|K

†µ′ν′ [3P
[1]
0 ]PHKµν [3P [1]

0 ]|0〉
= 〈0|K†µν [3P [1]

0 ]PHKµν [3P [1]
0 ]|0〉, (B.4d)

〈OH(3P
[1]
1 )〉 =

∑
ε

(1)
µ′ν′ε

∗(1)
µν 〈0|K

†µ′ν′ [3P
[1]
1 ]PHKµν [3P [1]

1 ]|0〉
= 〈0|K†µν [3P [1]

1 ]PHKµν [3P [1]
1 ]|0〉, (B.4e)

〈OH(3P
[1]
2 )〉 =

∑
ε

(2)
µ′ν′ε

∗(2)
µν 〈0|K

†µ′ν′ [3P
[1]
2 ]PHKµν [3P [1]

2 ]|0〉
= 〈0|K†µν [3P [1]

2 ]PHKµν [3P [1]
2 ]|0〉; (B.4f)
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and for the decay of quarkonium H:

〈O(1S
[1]
0 )〉H = 〈H|K[1S

[1]
0 ]K† [1S[1]

0 ]|H〉, (B.5a)

〈O(3S
[1]
1 )〉H =

∑
εµ′ε

∗
µ〈H|Kµ

′
[3S

[1]
1 ]K†µ[3S

[1]
1 ]|H〉

= 〈H|Kµ[3S
[1]
1 ]K†µ[3S

[1]
1 ]|H〉, (B.5b)

〈O(1P
[1]
1 )〉H =

∑
εµ′ε

∗
µ〈H|Kµ

′
[1P

[1]
1 ]K†µ[1P

[1]
1 ]|H〉

= 〈H|Kµ[1P
[1]
1 ]K†µ[1P

[1]
1 ]|H〉, (B.5c)

〈O(3P
[1]
0 )〉H =

∑
ε

(0)
µ′ν′ε

∗(0)
µν 〈H|Kµ

′ν′ [3P
[1]
0 ]K†µν [3P [1]

0 ]|H〉
= 〈H|Kµν [3P [1]

0 ]K†µν [3P [1]
0 ]|H〉, (B.5d)

〈O(3P
[1]
1 )〉H =

∑
ε

(1)
µ′ν′ε

∗(1)
µν 〈H|Kµ

′ν′ [3P
[1]
1 ]K†µν [3P [1]

1 ]|H〉
= 〈H|Kµν [3P [1]

1 ]K†µν [3P [1]
1 ]|H〉, (B.5e)

〈O(3P
[1]
2 )〉H =

∑
ε

(2)
µ′ν′ε

∗(2)
µν 〈H|Kµ

′ν′ [3P
[1]
2 ]K†µν [3P [1]

2 ]|H〉
= 〈H|Kµν [3P [1]

2 ]K†µν [3P [1]
2 ]|H〉. (B.5f)

The CO production and decay LDMEs are obtained by replacing the CS heavy-quark bilinear K
with the corresponding CO ones Ka, which are defined in Section 3.2.

By choosing v = (1, 0, 0, ), it can be directly proven that the LDMEs define in Eq.(B.4, B.5)
are exactly the same with those defined in Eq.(B.1, B.2).
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Appendix C

Loop Integrals in the Virtual Corrections
of LDMEs

Vanishing Loop Integrals
Since all denominators in the loop integrals presented here are homogeneous about the loop
momentum l, all the loop integrals containing odd powers of l vanish.

There are certain type of loop integrals which do not contain the denominator 1
l2

, where the
Feynman parametrization cannot applied explicitly. However, all these integrals are covariant, so
we can freely choose the reference frames without changing the results. For this type of integrals,
we keep iε explicitly and perform contour integration to integrate out the energy component.
These integrals appear to be zero since we always can choose the contour which avoids all the
poles.

Choosing v = (1, 0, 0, 0), we have

∫
dDl

(2π)D
1

(l · v + iε)α

=

∫
dD−1l

(2π)D

∫
dl0

1

(l0 + iε)α

= 0. (C.1)

Second, we consider
∫

dDl
(2π)D

1
(l·v1+iε)α(l·v2+iε)β

, with α, β being positive integers and v1 6= v2.
Choosing v1 = (1, 0, 0, 0), then l · v2 can be written as λl0 + a, with λ > 0 and a being nonzero
and real.

∫
dDl

(2π)D
1

(l · v1 + iε)α(l · v2 + iε)β

=

∫
dD−1l

(2π)D

∫
dl0

1

(l0 + iε)α(λl0 + a+ iε)β

= 0. (C.2)

93



With Eq. (C.1, C.2), it can be easily seen that the following two integrals also vanish:

∫
dDl

(2π)D
1(

l2 − (l · v)2
)
(l · v + iε)2

=

∫
dD−1l

(2π)D

∫
dl0

1

(l0 + iε)2(−l2)

= 0. (C.3)

∫
dDl

(2π)D
1(

l2 − (l · v1)2
)
(l · v1 + iε)(l · v2 + iε)

=

∫
dD−1l

(2π)D

∫
dl0

1

(l0 + iε)(λl0 + a+ iε)(−l2)

= 0. (C.4)

Non-vanishing Loop Integrals

Let us consider the following integration

1∫
0

dx x−1+2ε(1− x)−1−2ε, (C.5)

which is both ultra-violet (ε > 0) and infrared (ε < 0) divergent. We then split the integral as

1∫
0

dx x−1+2ε(1− x)−1−2ε

=

a∫
0

dx x−1+2ε(1− x)−1−2ε +

1∫
a

dx x−1+2ε(1− x)−1−2ε

=
( 1
a
− 1)−2εUV

2εUV
− ( 1

a
− 1)−2εIR

2εIR

=
1

2

( 1

εUV
− 1

εIR

)
. (C.6)
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Thus we have ( define ω = v1 · v2 )

Iv ≡
∫

dDl

(2π)D
1

l2(l · v)2

=

1∫
0

dx

∫
dDl

(2π)D
4µ2Γ(3) (1− x)

[x l2 + 2µ (1− x) l · v]3

=
−4iΓ(1 + ε)

(4π)
D
2 µ2ε

1∫
0

dx x−1+2ε(1− x)−1−2ε

=
−i
8π2

( 1

εUV
− 1

εIR

)
, (C.7)

and

Iv1v2 ≡
∫

dDl

(2π)D
1

l2(l · v1)(l · v2)

=

1∫
0

dx1

1∫
0

dx2

1∫
0

dx3

∫
dDl

(2π)D
4µ2Γ(3)δ(1− x1 − x2 − x3)

[x1l2 + 2µ(x2l · v1 + x3l · v2)]3

=

1∫
0

dx1

1∫
0

dx2

1∫
0

dx3

∫
dDl

(2π)D
4µ2Γ(3)δ(1− x1 − x2 − x3)

x3
1

[
l2 − µ2

(
x2

2 + x2
3 + 2x2x3ω

)
/x2

1

]3
=

−i21−εΓ(1 + ε)

(4π)
D
2 µ2ε(1− ω)1+ε

1∫
0

dx1

1−x1
2∫

x1−1
2

dx2 x
2ε−1
1

[
x2

2 +
1 + ω

1− ω
(1− x1)2

4

]−1−ε

=
i4Γ(1 + ε)

(4π)
D
2 µ2ε

(
ω2 − 1

)
(ε− 1)ε

[
(ω + 1)

(
ω(ε− 1)− ε+ 2

)
−22F1

(
1,

1

2
− ε;−1

2
;
ω − 1

ω + 1

)] 1∫
0

dx1x
−1+2ε
1 (1− x1)−1−2ε

=
−i
8π2

ln
(√

ω2 − 1 + ω
)

√
ω2 − 1

( 1

εUV
− 1

εIR

)
. (C.8)

We decompose the following tensor integrals as

Iµ
v21v2

≡
∫

dDl

(2π)D
lµ

l2(l · v1)2(l · v2)
= vµ1 I

v1
v21v2

+ vµ2 I
v2
v21v2

, (C.9)

Iµ
v1v22

≡
∫

dDl

(2π)D
lµ

l2(l · v1)(l · v2)2
= vµ1 I

v1
v1v22

+ vµ2 I
v2
v1v22

, (C.10)
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Iµ
v21v

2
2
≡

∫
dDl

(2π)D
lµlν

l2(l · v1)2(l · v2)2

= gµνIg
v21v

2
2

+ (vµ1 v
ν
2 + vν1v

µ
2 )Iv1v2

v21v
2
2

+ vµ1 v
ν
1I

v21
v21v

2
2

+ vµ2 v
ν
2I

v22
v21v

2
2
. (C.11)

Contracting with v1, v2, gµν , results in{
Iv1v2 = Iv1

v21v2
+ ωIv2

v21v2

Iv = Iv2
v21v2

+ ωIv1
v21v2

,
(C.12)

{
Iv1v2 = Iv2

v1v22
+ ωIv1

v1v22

Iv = Iv1
v1v22

+ ωIv2
v1v22

,
(C.13)



0 = 4Ig
v21v

2
2

+ 2ωIv1v2
v21v

2
2

+ I
v21
v21v

2
2

+ I
v22
v21v

2
2

Iv1v2 = ωIg
v21v

2
2

+ (1 + ω2)Iv1v2
v21v

2
2

+ ωI
v21
v21v

2
2

+ ωI
v22
v21v

2
2

Iv = Ig
v21v

2
2

+ 2ωIv1v2
v21v

2
2

+ I
v21
v21v

2
2

+ ω2I
v22
v21v

2
2

Iv = Ig
v21v

2
2

+ 2ωIv1v2
v21v

2
2

+ ω2I
v21
v21v

2
2

+ I
v22
v21v

2
2
,

(C.14)

Solve Eq.(C.12, C.13, C.14), then we get

Iv1
v21v2

= Iv2
v1v22

=
ωIv − Iv1v2
ω2 − 1

, (C.15)

Iv2
v21v2

= Iv1
v1v22

= −Ig
v21v

2
2

=
ωIv1v2 − Iv
ω2 − 1

, (C.16)

I
v21
v21v

2
2

= I
v22
v21v

2
2

=
(ω2 + 2)Iv − 3ωIv1v2

(ω2 − 1)2
, (C.17)

Iv1v2
v21v

2
2

=
(2ω2 + 1)Iv1v2 − 3ωIv

(ω2 − 1)2
. (C.18)
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Appendix D

Summary of One-loop Corrections to the
LDMEs

Since the one-loop corrections to all the LDMEs only differ in color and Dirac structures, we
summarize the color and Dirac algebra we have applied.

Color and Dirac Algebra
The following color algebra

T aT e =
δae

2CA
+

1

2
(daec + ifaec)T c =

δae

2CA
+ 2 Tr(T aT eT c)T c, (D.1)

where

daec = 2 Tr(T aT eT c + T eT aT c), ifaec = 2 Tr(T aT eT c − T eT aT c), (D.2)

color symmetry

〈0|K†b[n]PHKa[n]|0〉 = 〈0|K†c[n]PHKc[n]|0〉 δab

N2
c − 1

, (D.3)

and the spatial rotation symmetry

〈0|K†µ′ [3S[1]
1 ]PHKµ[3S

[1]
1 ]|0〉 =

1

D − 1
Πµµ′〈OH [3S

[1]
1 ]〉, (D.4a)

〈0|K†µ′ [1P [1]
1 ]PHKµ[1P

[1]
1 ]|0〉 =

1

D − 1
Πµµ′〈OH [1P

[1]
1 ]〉, (D.4b)

〈0|K†µ′ν′ [3P [1]
J ]PHKµν [3P [1]

J ]|0〉 = ε(J)
µν ε

∗(J)
µ′ν′
〈OH [3P

[1]
J ]〉

NJ

, (D.4c)

are frequently applied in the decoupling of the color and Dirac indexes.
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When both S-wave states are in CS , which includes CS single-quarkonium and CS-CS
double-quarknium cases, the color structure is simply given by

T e ⊗ T e. (D.5)

When at least one of the S-wave states are in CO, we can decompose the following color
structures as

T aT e ⊗ T e =
1

2CA
(1⊗ T a) + 2 Tr(T aT eT c)(T c ⊗ T e), (D.6a)

T eT a ⊗ T e =
1

2CA
(1⊗ T a) + 2 Tr(T eT aT c)(T c ⊗ T e), (D.6b)

T aT b ⊗ T aT b =
CF
2CA

(1⊗ 1)− 1

CA
(T c ⊗ T c), (D.7a)

T aT b ⊗ T bT a =
CF
2CA

(1⊗ 1) + (
CA
2
− 1

CA
)(T c ⊗ T c), (D.7b)

T aT e ⊗ T b′T e =
δab
′

(2CA)2
(1⊗ 1) +

Tr(T aT b′T c)
CA

(T c ⊗ 1) +
Tr(T b′T aT c)

CA
(1⊗ T c)

+4 Tr(T aT eT c)Tr(T b
′
T eT c

′
)(T c ⊗ T c′), (D.8a)

T aT e ⊗ T eT b′ =
δab
′

(2CA)2
(1⊗ 1) +

Tr(T aT b′T c)
CA

(T c ⊗ 1) +
Tr(T aT b′T c)

CA
(1⊗ T c)

+4 Tr(T aT eT c)Tr(T eT b
′
T c
′
)(T c ⊗ T c′), (D.8b)

T eT a ⊗ T b′T e =
δab
′

(2CA)2
(1⊗ 1) +

Tr(T b′T aT c)
CA

(T c ⊗ 1) +
Tr(T b′T aT c)

CA
(1⊗ T c)

+4 Tr(T eT aT c)Tr(T b
′
T eT c

′
)(T c ⊗ T c′), (D.8c)

T eT a ⊗ T eT b′ =
δab
′

(2CA)2
(1⊗ 1) +

Tr(T b′T aT c)
CA

(T c ⊗ 1) +
Tr(T aT b′T c)

CA
(1⊗ T c)

+4 Tr(T eT aT c)Tr(T eT b
′
T c
′
)(T c ⊗ T c′). (D.8d)

Therefore, we have

1. for CS single-quarkonium and CS-CS double-quarkonium LDMEs

4× (T e ⊗ T e), (D.9)
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2. for CO single-quarkonium LDMEs

(T aT b + T bT a)⊗ (T aT b + T bT a) = 2
[CF
CA

(1⊗ 1) + (
CA
2
− 2

CA
)(T a ⊗ T a)

]
,

(D.10)

3. for CO-CS and CS-CO double-quarkonium LDMEs

(T eT a + T aT e)⊗ (2 T e) =
2

CA
(1⊗ T a) + 2 daec(T c ⊗ T e), (D.11)

(2 T e)⊗ (T eT a + T aT e) =
2

CA
(T a ⊗ 1) + 2 daec(T e ⊗ T c), (D.12)

4. for CO-CO double-quarkonium LDMEs

(T aT e + T eT a)⊗ (T eT b
′
+ T b

′
T e) =

δab
′

C2
A

(1⊗ 1) +
dab
′c

CA
(T c ⊗ 1 + 1⊗ T c)

+daecdb
′ec′(T c ⊗ T c′). (D.13)

D.1 Single-Quarkonium and Symmetric Double-quarkonium
LDMEs

Although the one-loop corrections to the single-quarkonium LDMEs were well known long
time ago, we list these results of production LDMEs here to make our discussion more com-
plete. All the results of single-quarkonium decay LDMEs can be obtained simply by replacing
corresponding production LDMEs with decay LDMEs.

〈OH [3S
[8]
1 ]〉ren = 〈OH [3S

[8]
1 ]〉Born −

2αs
3πm2

Q

(4πµ2

µ2
Λ

e−γE
)ε 1

εIR

×
J=2∑
J=0

[CF
CA
〈OH [3P

[1]
J ]〉Born + (

CA
2
− 2

CA
)〈OH [3P

[8]
J ]〉Born

]
,

(D.14)

〈OH [1S
[8]
0 ]〉ren = 〈OH [1S

[8]
0 ]〉Born −

2αs
3πm2

Q

(4πµ2

µ2
Λ

e−γE
)ε 1

εIR

×
[CF
CA
〈OH [1P

[1]
1 ]〉Born + (

CA
2
− 2

CA
)〈OH [1P

[8]
1 ]〉Born

]
, (D.15)

〈OH [3S
[1]
1 ]〉ren = 〈OH [3S

[1]
1 ]〉Born −

4αs
3πm2

Q

(4πµ2

µ2
Λ

e−γE
)ε 1

εIR

J=2∑
J=0

〈OH [3P
[8]
J ]〉Born,

(D.16)
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〈OH [1S
[1]
0 ]〉ren = 〈OH [1S

[1]
0 ]〉Born −

4αs
3πm2

Q

(4πµ2

µ2
Λ

e−γE
)ε 1

εIR
〈OH [1P

[8]
1 ]〉Born. (D.17)

For the symmetric double-quarkonium LDMEs 〈QH1,H2 [n′1, n
′
2, n1, n2]〉, with n1 = n′1, n2 =

n′2 and 〈QH1 [n′1, n
′
2, n1, n2]〉, we have

〈OH1 [n1, n2, n1, n2]〉H2,ren

= 〈OH1 [n1]〉ren〈O[n2]〉H2,Born + 〈OH1 [n1]〉Born〈O[n2]〉H2,ren, (D.18)

〈OH1,H2 [n1, n2, n1, n2]〉ren

= 〈OH1 [n1]〉ren〈OH2 [n2]〉Born + 〈OH1 [n1]〉Born〈OH2 [n2]〉ren, (D.19)

whose one-loop corrections are given by the one-loop correction of one of the single-quarkonium
LDME times the Born level LDME of the other.

D.2 Interference Contributions of Double-quarkonium LDMEs
For the un-decoupled double-quarkonium LDMEs defined in Subsection 3.5.1, whose one-loop
corrections have been calculated in Subsection 3.5.2, we can express the results as

〈QH1,H2 [n′1, n
′
2, n1, n2]〉ren = Idouble

νσ′ (m1,m2)P1[n′1, n
′
2, n1, n2], (D.20)

〈QH1 [n′1, n
′
2, n1, n2]〉H2,ren = Idouble

νσ′ (m1,m2)P2[n′1, n
′
2, n1, n2], (D.21)

where

Idouble
νσ′ (m1,m2) = − αs

πm1m2

(4πµ2

µ2
Λ

e−γE
)ε 1

εIR
(c1gνσ′ + c2v1σ′v2ν), (D.22)

with c1, c2 given in Eq. (3.58).
And consequently, the interference contributions can be expressed as

A∗double
1 [n′1, n

′
2]Adouble

1 [n1, n2]

=
Idouble
νσ′ (m1,m2)P1[n′1, n

′
2, n1, n2]

Nn1Nn2Nn′1
Nn′2

M∗[n′1, n
′
2]M[n1, n2], (D.23a)

A∗double
2 [n′1, n

′
2]A∗double

2 [n1, n2]

=
Idouble
νσ′ (m1,m2)P2[n′1, n

′
2, n1, n2]

Nn1Nn2Nn′1
Nn′2

M∗[n′1, n
′
2]M[n1, n2], (D.23b)
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with

σ[n′1, n
′
2, n1, n2] =

1

2s

∫
A∗double

1 [n′1, n
′
2]A∗double

1 [n1, n2]dPS, (D.24a)

Γ[n′1, n
′
2, n1, n2] =

1

2mH

∫
A∗double

2 [n′1, n
′
2]A∗double

2 [n1, n2]dPS. (D.24b)

Note: Here in our discussion, n1, n
′
2 are always S-wave states, while n′1, n2 are the cor-

responding P-wave states that n1, n
′
2 changed to be. For instance, 1S

[1]
0 flips to be 1P

[8]
1 and

3S
[8]
1 flips to be 3P

[1/8]
J . The color and Dirac indexes a, µ belong to the state n1; b, ρσ belong

to the state n2; a′, µ′ν ′ belong to the state n′1; b′, ρ′ belong to the state n′2; e, νσ′ are com-
mon indexes that two quarkonium share due to soft gluon exchange. The short-distance part
isM[n1, n2]M∗[n′1, n

′
2]/(Nn1Nn2Nn′1

Nn′2
) and carries the same color, Dirac indexes with the

un-decoupled double-quarkonium LDME.

CO (n′1)– CS (n′2) – CS (n1) – CO (n2)

P1[n′1, n
′
2, n1, n2] = 4δa

′b
∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)
〈OH1 [n′1]〉Born〈OH2 [n2]〉Born

(N2
c − 1)2Npol(n′1)Npol(n2)

.

(D.25)

Here and below, the polarization sum must be done for n′1 and n2 states, which means

ε1ε
∗
1 =

{
ενε
∗
ν′ , n′1 = 1P

[1/8]
1

ε
(J1)
µν ε

∗(J1)
µ′ν′ , n′1 = 3P

[1/8]
J1

(D.26)

and

ε2ε
∗
2 =

{
εσε
∗
σ′ , n2 = 1P

[1/8]
1

ε
(J2)
ρσ ε

∗(J2)
ρ′σ′ , n2 = 3P

[1/8]
J2

.
(D.27)

CS – CS – CO – CO

P1[n′1, n
′
2, n1, n2] =

2δab

CA

∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)
〈OH1 [n′1]〉Born〈OH2 [n2]〉Born

(N2
c − 1)Npol(n′1)Npol(n2)

.

(D.28)

CO – CS – CO – CO

P1[n′1, n
′
2, n1, n2] = 2 daa

′b
∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)
〈OH1 [n′1]〉Born〈OH2 [n2]〉Born

(N2
c − 1)2NJ1NJ2

.

(D.29)
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CO – CO – CS – CS

P1[n′1, n
′
2, n1, n2] =

2δa
′b′

CA

∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)
〈OH1 [n′1]〉Born〈OH2 [n2]〉Born

(N2
c − 1)Npol(n′1)Npol(n2)

.

(D.30)

CO – CO – CS – CO

P1[n′1, n
′
2, n1, n2] = 2 da

′bb′
∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)
〈OH1 [n′1]〉Born〈OH2 [n2]〉Born

(N2
c − 1)2Npol(n′1)Npol(n2)

.

(D.31)

CS – CO – CO – CS

P1[n′1, n
′
2, n1, n2] =

δab
′

C2
A

∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)
〈OH1 [n′1]〉Born〈OH2 [n2]〉Born

Npol(n′1)Npol(n2)
.

(D.32)

CO – CO – CO – CS

P1[n′1, n
′
2, n1, n2] =

daa
′b′

CA

∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)
〈OH1 [n′1]〉Born〈OH2 [n2]〉Born

(N2
c − 1)Npol(n′1)Npol(n2)

.

(D.33)

CS – CO – CO – CO

P1[n′1, n
′
2, n1, n2] =

dabb
′

CA

∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)
〈OH1 [n′1]〉Born〈OH2 [n2]〉Born

(N2
c − 1)Npol(n′1)Npol(n2)

.

(D.34)

CO – CO – CO – CO

P1[n′1, n
′
2, n1, n2] = daea

′
dbeb

′∑
pol

(ε1ε
∗
1)(ε2ε

∗
2)
〈OH1 [n′1]〉Born〈OH2 [n2]〉Born

(N2
c − 1)2Npol(n′1)Npol(n2)

.

(D.35)
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Appendix E

Master Integrals in Virtual Corrections at
O(ε)

Note: we neglect all imaginary parts, since only the real parts contribute to the NLO corrections.
We follow the notation of Ref. [79]

ID1 (m2
1) =

µ4−D

iπ
D
2 rΓ

∫
dDl

1

(l2 −m2
1 + iε)

, (E.1)

ID2 (p2
1;m2

1,m
2
2) =

µ4−D

iπ
D
2 rΓ

∫
dDl

1

(l2 −m2
1 + iε) ((l + q1)2 −m2

2 + iε)
, (E.2)

where rΓ ≡ Γ2(1−ε)Γ(1+ε)
Γ(1−2ε)

= 1− εγE + ε2
[
γ2E
2
− π2

12

]
+O(ε3).

The tadpole integral reads

ID1 (m2) = m2

(
µ2

m2

)ε(
1

ε
+ 1 + ε

(
1 +

π2

6

))
. (E.3)

The bubble integral with two vanishing masses reads

ID2 (s; 0, 0) =

(
µ2

s

)ε(
1

ε
+ 2 + ε

(
4− π2

2

))
. (E.4)

The bubble integral with one vanishing mass is given by

ID2 (s; 0,m2) =

(
µ2

m2

)ε(
1

ε
− d1 + ε

(
d2

2
+
π2

6

))
, (E.5)

where

d1 =
s−m2

s
ln

( |m2 − s|
m2

)
− 2, (E.6)
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and

d2 = 2

(
s−m2

s

)(
ln

(
m2 − s
m2

)
ln

(
m2 − s
|s|

)
− 2 ln

(
m2 − s
m2

)

−Li2

(
m2 − s
m2

)
+
π2

6

)
+ 8 (E.7)

for s < m2;

d2 =

(
s−m2

s

)(
ln2

(
s−m2

m2

)
+ ln2

(
s−m2

s

)
− 4 ln

(
s−m2

m2

)

+2 Li2

(
s−m2

s

)
− 5π2

3

)
+ 8. (E.8)

for s > m2.
The bubble integral with two different masses is given by

ID2 (t/4;m2
c ,m

2
b) =

(
µ2

(t/4)

)ε(
1

ε
− c1 + ε

(
c2

2
+
π2

6

))
, (E.9)

with

c1 = −1

t

(
− a ln

(
s+ u− a
8mcmb

)
+ 2

(
m2
b −m2

c

)
ln

(
m2
c

m2
b

)
+ t ln

(
t

4mcmb

))
− 2,

(E.10)

c2 =
2a

t

(
ln

(
s+ u+ a

8m2
c

)(
ln

(
a− sb − ub

2a

)
+ ln

(
t

4m2
b

)
+ 2

)

+
1

2
ln2

(
s+ u+ a

8m2
c

)
+ Li2

(
sb + ub + a

2a

)
− Li2

(−sc − uc + a

2a

))

+
sc + uc + a

t
ln

(
m2
c

m2
b

)(
ln

(
t

4mcmb

)
+ 2

)
+

(
ln

(
t

4m2
b

)
+ 2

)2

+ 4.

(E.11)
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Appendix F

Soft Integrals

To extract the infrared divergences in k5 → 0 limit in real corrections, we need the results of
following integrals∫

soft

dPSk5
(P2 · k5)2

=
Cε

32π2m2
c

[
− 1

ε
− sc + uc

a
ln

(
sc + uc + a

sc + uc − a

)
− ln

(
µ2

4δ2
sm

2
c

)]
,

(F.1)

∫
soft

dPSk5
(k3 · k5)(k4 · k5)

=
Cε

4π2t

[
1

ε2
+

1

ε
ln

(
µ2

4δ2
sm

2
c

)
+

1

2
ln2

(
µ2

4δ2
sm

2
c

)
− π2

4

]
, (F.2)

∫
soft

dPSk5
(P2 · k5)(k3 · k5)

=
Cε

8π2sc

[
1

ε2
+

1

ε
ln

(
µ2t

s2
cδ

2
s

)
+ ln2

(
sc + uc − a

2sc

)
+

1

2
ln2

(
µ2

4δ2
sm

2
c

)

− ln

(
s2
c

4m2
ct

)
ln

(
µ2

4δ2
sm

2
c

)
− 1

2
ln2

(
sc + uc + a

sc + uc − a

)

+2 Li2

(
− s− u+ a

sc + uc − a

)
− 2 Li2

(
s− u− a

2s1

)
− π2

4

]
, (F.3)

∫
soft

dPSk5
(P2 · k5)(k4 · k5)

=
Cε

8π2uc

[ 1

ε2
+

1

ε
ln

(
µ2t

u2
cδ

2
s

)
+ ln2

(
sc + uc − a

2uc

)
+

1

2
ln2

(
µ2

4δ2
sm

2
c

)

− ln

(
u2
c

4m2
ct

)
ln

(
µ2

4δ2
sm

2
c

)
− 1

2
ln2

(
sc + uc + a

sc + uc − a

)

+2 Li2

(
− u− s+ a

sc + uc − a

)
− 2 Li2

(
u− s− a

2uc

)
− π2

4

]
. (F.4)
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