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1 Introduction

In this thesis we study properties of projective special real manifolds and their generalisa-
tions. Projective special real manifolds are hyperbolic centro-affine hypersurfaces and thus
they are objects of study in the fields of both Riemannian geometry and affine differential
geometry. While Riemannian geometry is probably to some extent known to any mathemati-
cian, affine and centro-affine differential geometry is a little less common field of study. In
most generality, affine differential geometry is the study of smooth manifolds M equipped
with a torsion-free connection ∇ in TM → M together with a ∇-parallel volume form ω.
Such a triple (M,∇, ω) is called an equiaffine structure on M [NS]. One is then concerned
with submanifolds of M and their induced geometric data. In particular, if the considered
submanifold N ⊂ M is of co-dimension one, it turns out that this study is closely related
to non-vanishing transversal vector fields along N . The term centro-affine geometry is used
when M = Rn+1, equipped with the flat connection and standard parallel volume form
det(·), and N ⊂ Rn+1 is a submanifold (embedded via the inclusion map), such that the
position vector field X ∈ Γ (TRn+1), Xp = p for all p ∈ Rn+1 with the usual identification
TpRn+1 ∼= Rn+1, is transversal along N . Another well studied subject in the field of affine
differential geometry is the theory of Blaschke structures on hypersurfaces, named after Wil-
helm Blaschke (1885–1962). This in particular includes the study of affine hyperspheres, see
[CY] for a completeness theorem about locally strictly convex affine hyperspheres. For a
history of the developments in the field of affine differential geometry (and also for an exce-
lent textbook about affine differential geometry in general) we refer the reader to the book
“Affine Differential Geometry” by Katsumi Nomizu and Takeshi Sasaki [NS], which contains
a historical review in the introduction.

An n-dimensional projective special real manifold H is a hypersurface in Rn+1 that is
contained in the level set {h = 1} of a cubic homogeneous polynomial h : Rn+1 → R
with the property that the negative Hessian of h restricted to H is positive definite when
viewed as bilinear form [CHM, Def. 1]. Another way to introduce projective special real
manifolds is by defining them to be an open subset of {h = 1} ∩ {hyperbolic points of h},
where p ∈ {h > 0} is called a hyperbolic point of h if −∂2hp has Lorentzian signature.
Note that these two definitions of projective special real manifolds are equivalent. The
aforementioned generalisations of projective special real manifolds that we will also study are
defined analogously with the difference that the homogeneous polynomial h is also allowed to
have degree greater than three, e.g. that h is a quartic or quintic homogeneous polynomial.
We will call the manifolds obtained via this type of generalisation generalised projective
special real manifolds. Both projective special real and generalised projective special real
manifolds, equipped with the (automatically) transversal position vector field of Rn+1 along
them, are affine hypersurfaces of Rn+1. Thus, such manifolds are centro-affine hypersurfaces
of Rn+1. It turns out that their induced centro-affine fundamental form [NS, Def. 3.2] is always
positive definite. Hence, they naturally carry the structure of a Riemannian manifold.

Projective special real manifolds and our considered generalisation were studied under
different points of view in the mathematics and physics literature. Projective special real
curves and surfaces have been classified in [CHM, Thm. 7] and [CDL, Thm. 1, Thm. 2], re-
spectively. Independently of their dimension, projective special real manifolds defined by a
reducible cubic polynomial have also been classified, see [CDJL, Thm. 2, Prop. 8]. In [CNS,
Thm. 2.5] it was shown that for all n ≥ 0, an n-dimensional projective special real manifold
H ⊂ {h = 1} ⊂ Rn+1 equipped with its centro-affine fundamental form gH = −1

3∂
2h|TH×TH

is geodesically complete if and only if it is closed in the ambient space Rn. In [CNS, Def. 2.2
] projective special real manifolds were defined intrinsically as (intrinsic) centro-affine man-
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ifolds (M,∇, g, ν) (cf. [CNS, Def. 1.5]) with the property that their respective cubic form
C := ∇g fulfils

(∇XC) (Y, Z,W ) = g(X, Y )g(Z,W ) + g(X,Z)g(W,Y ) + g(X,W )g(Y, Z)

for all X, Y, Z,W ∈ Γ(TM). It was then shown [CNS, Thm 2.3] that every projective special
real manifold is also an intrinsic projective special real manifold in that sense, and on the
other hand that every intrinsic projective special real manifold is isomorphic (as a centro-
affine manifold) to a projective special real manifold. [CNS, Thm 2.3] is thus an analogue to
the fundamental theorem of affine differential geometry [NS, Thm. 8.1, p. 73] in the setting
of projective special real manifolds. Another connection to affine differential geometry is
based upon the constructions of the supergravity r- and c-map which originate in the the-
ory of supergravity [GST, FS, DV, CHM]. The supergravity r-map associates to a given
n-dimensional projective special real manifold a projective special Kähler manifold of real
dimension 2n+ 2, and the supergravity c-map associates to such a Kähler manifold a quater-
nionic Kähler manifold of real dimension 4n + 8. In [CHM] it was proven that the r- and
c-map preserver geodesic completeness. This fact was used in [CDJL, Thm. 3] to obtain an
explicit series of inhomogeneous complete quaternionic Kähler manifolds with negative scalar
curvature of real dimension 4n + 8 for n ≥ 1. More precisely, manifolds in this series have
the property that their respective isometry group acts with co-homogeneity one. Apart from
the theory of supergravity, another connection of projective special real manifolds and their
generalisations with physics is geometric scattering theory, see the discussion after [CNS,
Thm. 1.18] and [Me]. Projective special real manifolds and related geometric objects have
also been studied in the setting of affine differential geometry, which we will review now.
In order to properly define projective special Kähler manifolds, we need the concept of an
affine special Kähler manifold. An affine special Kähler manifold [F] is a (pseudo-)Kähler
manifold (M, g, J,∇) with Kähler metric g = ω(·, J ·) equipped with a torsionfree, flat con-
nection ∇, such that d∇J = 0. The latter means that d∇J(X, Y ) = (∇XJ)Y − (∇Y )X = 0
for all X, Y ∈ Γ(TM). Note that g is allowed to be indefinite. Simply connected affine
special Kähler manifolds have the property that they can be described by a holomorphic
Lagrangian immersion [ACD, Thm. 4]. They can also be viewed as parabolic (also called
improper) affine hyperspheres [NS, Def. 3.3], as it was shown in [BC1, Thm. 3.1] that for a
given such manifold of real dimension 2n there exists a Blaschke immersion [NS, Def. 3.2]
ϕ : M → R2n+1 with induced Blaschke metric and Blaschke connection [NS, Def. 3.3] co-
inciding with the given metric g and connection ∇, such that ϕ(M) is a parabolic affine
hypersphere. In [ACD] a subclass of affine special Kähler manifolds is introduced and stud-
ied, namely conic affine special Kähler manifolds. A conic affine special Kähler manifold is
an affine special Kähler manifold (M, g, J,∇) equipped with a local holomorphic C∗-action
ϕλ : M → M , λ = reit ∈ C, fulfilling (ϕλ)∗X = r cos(t)X + r sin(t)JX for all ∇-parallel
vector fields X ∈ Γ(TM) (cf. [BC2, Sect. 1.2] and for the setting of the supergravity r-map
also [CHM, Def. 3]). Under the assumption that the action lifts to a global C∗-action on
M , the orbit space M := M/C∗ equipped with the metric, almost complex structure, and
connection induced by the projection M → M is a Kähler manifold and will be called a
projective special Kähler manifold. Under the additional assumption that M is a conic affine
special Kähler domain, cf. [BC2, Sect. 2], the corresponding manifold M is called a projective
special Kähler domain. A conical affine special Kähler domain M is by definition a subset of
Cn and has a globally defined Kähler potential k : M → R of the form

k = 1
2Im

(
n∑
i=1

∂F

∂zi
zi

)
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for some holomorphic function F : M → C which is homogeneous of degree two. The function
F is called the holomorphic prepotential of the associated projective special Kähler domain M
defined by M . With the knowledge of the Kähler potential k : M → R one can study the level
sets Mc := {z ∈ M | |k(z)| = c}, c > 0, which are hypersurfaces in M ⊂ Cn. For any c > 0,
Mc is an S1-principle bundle over M , and for c = 1

2 the projection map πc : (Mc, g)→
(
M, g

)
is a pseudo-Riemannian submersion [BC2, Prop. 1]. Here g denotes the restricted Kähler
metric of M to Mc and g is the induced projective special Kähler metric on M . Hypersurfaces
of the form M 1

2
are also connected to affine differential geometry. In [BC2, Thm. 6] it is

demonstrated that in certain special coordinates, one can view M 1
2
⊂ M ⊂ Cn ∼= R2n as

a proper affine hypersphere M 1
2
⊂ R2n with affine mean curvature sgn(k). Summarising,

for each projective special Kähler manifold M , thus in particular for those obtained via the
supergravity r-map applied to a projective special real manifold, we have its defining conic
affine special Kähler manifold M which (under the assumption that it is simply connected)
can be studied as a parabolic (or improper) affine sphere, and we also have an S1-principle
bundle over M (under the additional assumption that M is a conic affine Kähler domain),
which can be understood as a proper affine hypersphere. The structure of projective real
manifolds and their generalisations also appear in the study of the index cone of Kähler
manifolds [Wi1, Wi2, Ma]. The index coneW of aM of a real 2n-dimensional Kähler manifold
is defined to be the subset of the positive cone {ω ∈ H1,1(M,R) | ωn > 0} that contains all
elements ω, such that the induced quadratic form H1,1(M,R) 3 α 7→ ω2n−2 ∪ α2 ∈ R has
signature (1, h1,1 − 1). Here, ωn denotes the n-fold cup product and h1,1 = dimH1,1(M,R).
In the case of complex 3-dimensional Kähler manifolds, e.g. complex 3-dimensional Calabi-
Yau manifolds, the level set ω3 = 1 in the index cone can thus be interpreted as to be
contained in some projective special real manifold of dimension h1,1 − 1. Historically, real
plane cubic curves have already been studied by Newton [N], for a modern introduction
see [BK]. The relation to projective special real surfaces H is that the boundary of their
respective cone R>0 ·H ⊂ R3, intersected with an affine plane in R3 that does not contain
the origin, is a real plane cubic curve.

Almost all of our studies in this thesis are from a mathematical point of view, although we
will mention possible applications of our results to the theory of supergravity. Our main focus
will be the study of projective special real manifolds and quartic generalised projective special
real manifolds, the latter corresponding to quartic homogeneous polynomials, although some
of our results hold for all generalised special real manifolds. Additionally, we will study
examples and curvature properties of manifolds in the image of the (generalised) supergravity
r-map. Before giving a summary of the contents of this thesis, we will highlight some of our
main results and afterwards mention some of the open problems that we will discuss in this
thesis.

Main results:
One of the subjects of this thesis is the scalar curvature of projective special real manifolds
and their generalisations. Our first main result is Theorem 4.13. We prove that the scalar
curvature of an n ≥ 2-dimensional closed connected projective special real manifold is globally
bounded by constants from above and from below. The corresponding bounds (see equation
(4.15)) depend only on the dimension n and are independent of the specific considered closed
connected projective special real manifold.

The second main result of this thesis, Theorem 5.6, is concerned with properties of the
moduli space of closed connected projective special real manifolds. It says that given a maxi-
mal connected projective special real manifold H ⊂ {h = 1} in standard form (cf. Proposition
3.18, i.e. h = x3 − x〈y, y〉 + P3(y), maximal means that H ⊂ {h = 1} ⊂ Rn+1 coincides
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with a connected component of hyperbolic points of the defining polynomial h), H is closed
in the ambient space Rn+1 if and only if the polynomial h fulfils the maximality condition
max
‖z‖=1

P3(z) ≤ 2
3
√

3 , independent of the dimension of H. This implies in particular that the
moduli space of closed connected projective special real manifolds in any dimension n ∈ N is
generated by a convex compact subset of an affine subset of Sym3 (Rn+1)∗, see Proposition
5.8. This allows us to define a deformation theory of closed connected projective special
real manifolds as described in Section 5. Furthermore, Theorem 5.6 also has applications for
curvature bounds of closed connected projective special real manifolds. We use it in Propo-
sition 5.12 to calculate global bounds of the scalar curvature of closed connected special real
surfaces which are sharp, meaning that they not only improve the bounds in Theorem 4.13
(which we do not expect to be sharp in any dimension) but are also the best possible choices
for such bounds. The results of Proposition 5.8 provide a partial answer to Conjecture 5.14
which is a statement about possible sectional curvature bounds of level sets in the Kähler
cones of Calabi-Yau three-folds formulated by P.M.H. Wilson in [Wi2].

Our third main result, Theorem 7.2, is about quartic generalisations of closed connected
projective special real curves. We classify all quartic generalised projective special real curves
H ⊂ {h = 1} up to linear equivalence and determine in each case the automorphism group
of the corresponding polynomial h. In comparison with the classification of closed connected
projective special real curves found in [CHM, Thm. 8 a),b)], which states that there are pre-
cisely two distinct such curves up to linear equivalence with one being homogeneous under
the action of the respective linear automorphism group, it turned out that in the quartic
case we have up to linear equivalence two homogeneous curves (Thm. 7.2 a) and b)), one
inhomogeneous curve (Thm. 7.2 c)), and a one-parameter family of pairwise inequivalent
inhomogeneous curves (Thm. 7.2 d)).

During the preparation of this thesis we encountered some interesting open problems that
are related to our studies. One of them is Open problem 7.1, that is the question whether all
quartic generalised projective special real manifolds H ⊂ {h = 1} ⊂ Rn+1 of arbitrary dimen-
sion dim(H) = n are geodesically complete with respect to their centro-affine fundamental
form gH = −1

4∂
2h|TH×TH if and only if they are closed as a subset of the ambient space Rn+1.

During the preparation of this thesis, which was mainly motivated by the tasks to better
understand global curvature properties of closed projective special real manifolds, to study
properties of their moduli space, and to find possible generalisations of their properties to
closed generalised projective special real manifolds, we also studied the latter open problem.
Note that the completeness of closed projective special real manifolds has first been proven in
[CNS, Thm. 2.5], and it is described therein after [CNS, Open problem 2.10] why their proof
cannot easily be extended to quartic closed generalised projective special real manifolds. In
Proposition 4.17 and Proposition 5.17 we find two different new ways to show that closed
projective special real manifolds are complete, and in Section 7 we describe properties of
quartic closed generalised projective special real manifolds that illustrate why these two new
proofs also cannot be generalised in any obvious way to quartic closed generalised projec-
tive special real manifolds, see the related discussion in Section 9. Apart from this specific
open problem we also discuss open questions for generalised projective special real manifolds
independent of the corresponding homogeneity-degree τ ≥ 3 of their corresponding defining
polynomial (Open problems 3.37 and 3.38), and in Open problem 8.20 we propose a way to
study the curvature properties of manifolds in the image of the supergravity q-map, which is
the composition of the r- and c-map, by employing our technical tools developed in Section
3.
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Summary of this thesis:
In the preliminaries, that is Section 2, we explain the notation used in this work and give
a short overview of pseudo-Riemannian and centro-affine geometry. We will then introduce
hyperbolic centro-affine hypersurfaces of which projective special real manifolds are a special
case and review some known results about them which we will use later.

In Section 3 we will develop the mathematical machinery that is needed for our study of
(generalised) projective special real manifolds. We will in particular find a “standard form”
for homogeneous polynomials corresponding to such manifolds and use this result to find
formulas for their different curvature tensors. The main results of Section 3 are:

• Proposition 3.18, which allows us to find for any chosen point p ∈ H in a connected
(generalised) projective special real manifold H ⊂ {h = 1} ⊂ Rn+1, h of homogeneity-
degree τ ≥ 3, a linear transformation A ∈ GL(n+ 1) of the ambient space Rn+1, which
maps (1, 0, . . . , 0)T ∈ Rn+1 to p and fulfils

h (A · ( xy )) = xτ − xτ−2〈y, y〉+
τ∑
i=3

xτ−iPi(y).

Here y = (y1, . . . , yn)T and 〈·, ·〉 denotes the Euclidean standard scalar product induced
on Rn via the choice of the y-coordinates, and Pi : Rn → R is a homogeneous polynomial
of degree i for all 3 ≤ i ≤ τ . This result in particular gives a mathematical proof for the
concept of “canonical parametrisation” of h in the context of supergravity theory where
h is a cubic homogeneous polynomial, see the discussion in Remark 3.20. Our result
however holds for all possible degrees τ ≥ 3 of h and furthermore tells us explicitly how
the polynomials Pi, 3 ≤ i ≤ τ , depend on the choice of the reference point p ∈ H.

• Propositions 3.29, 3.30, and Lemma 3.31, which are formulas for the scalar curvature,
the first derivative of the scalar curvature, and the Riemannian, Ricci, and sectional
curvature tensors of (generalised) projective special real manifolds at one particular
point. While having a formula at one point might not appear to be too useful at first,
when combined with the aforementioned Proposition 3.18 and under the assumption
that the considered (generalised) projective special real manifold is closed this will allow
us to find curvature bounds for these manifolds in the next section.

• Proposition 3.34, which yields a necessary and sufficient condition for a (generalised)
projective special real manifold to be a Riemannian homogeneous space under the action
of its linear isometry group and allows us to avoid calculating the said linear isometry
group when we want to show that some (generalised) projective special real manifold
fulfils that condition. To obtain this result we have to study the infinitesimal changes
of the polynomials Pi, 3 ≤ i ≤ τ , as defined in Proposition 3.18, see Definition 3.27.

In Section 4 we restrict our studies to projective special real manifolds. We are concerned
with the scalar and sectional curvature and will determine upper and lower bounds for them
that hold for all closed projective special real manifold of fixed dimension. It turns out that
the technicalities that are needed for these results can also be used to find an alternative proof
(in comparison with [CNS, Thm. 2.5]) that a projective special real manifold H ⊂ {h = 1} ⊂
Rn+1 equipped with its centro-affine fundamental form gH = −1

3∂
2h|TH×TH is geodesically

complete if and only if H ⊂ Rn+1 is closed. The main results of Section 4 are:

• Theorem 4.13, where we show that the scalar curvature of an n ≥ 2-dimensional closed
projective special real manifold H is always bounded from above and from below, where
the upper and lower bound depend only on the dimension dim(H) = n of H.
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• Proposition 4.15, which is an analogous result for the sectional curvature instead of the
scalar curvature.

• Proposition 4.17, in which we give a proof that closed projective special real manifolds
are geodesically complete. This new proof might be useful when studying the still open
question whether a closed generalised projective special real manifold H ⊂ {h = 1} ⊂
Rn+1, h of homogeneity degree τ ≥ 4, is automatically geodesically complete.

In the next section, that is Section 5, we are again concerned with projective special
real manifolds and develop a deformation theory of closed connected projective special real
manifolds. The results characterise the moduli space of n-dimensional closed connected
projective special real manifolds under the action of GL(n+ 1) for all n ≥ 1 and allow us to
find sharp lower and upper bounds for the scalar curvature of closed projective special real
surfaces (for a discussion why the bounds constructed in Theorem 4.13 are not expected to
be sharp see Remark 4.14). In order to obtain these results we study regularity of closed
projective special real manifolds in the sense of [CNS, Def. 1.7], respectively Definition 5.1.
Altogether, this allows us to find a second alternative proof of the statement that closed
projective special real manifolds are complete. The main results of Section 5 are:

• Theorem 5.3, in which we prove that a closed connected projective special real manifold
H ⊂ {h = 1} ⊂ Rn+1 is not singular at infinity (cf. Definition 3.16), that is there exists
no point p ∈ ∂U \ {0}, where U = R>0 ·H ⊂ Rn+1 denotes the cone spanned by H,
such that dhp = 0, if and only if H has regular boundary behaviour in the sense of
Definition 5.1.

• Theorem 5.6, where we show that the connected component H ⊂ {h = 1} ⊂ Rn+1

that contains the point (1, 0, . . . , 0)T ∈ {h = 1} ⊂ Rn+1, h of the form (3.12) found in
Proposition 3.18, that is

h = x3 − x〈y, y〉+ P3(y),

is a closed connected projective special real manifold if and only if the cubic homoge-
neous polynomial P3 : Rn → R fulfils max

‖z‖=1
P3(z) ≤ 2

3
√

3 . Thus, we do not need to check
by hand that every point p ∈ H is a hyperbolic point of h, but instead it suffices to
study the maxima of P3 on Sn−1 = {z ∈ Rn | 〈z, z〉 = 1}.

• Proposition 5.8, which states that the moduli space of n-dimensional closed connected
projective special real manifolds is generated by the convex compact uniformly bounded
subset

Cn =
{
x3 − x〈y, y〉+ P3(y)

∣∣∣∣∣ max
‖z‖=1

P3(z) ≤ 2
3
√

3

}

which is affinely embedded in Sym3 (Rn+1)∗ (when equipped with the topology induced
by the real vector space structure). Furthermore, we find that closed connected pro-
jective special real manifolds which are singular at infinity correspond precisely to the
GL(n + 1)-orbits of ∂Cn. Here, a closed connected projective special real manifold
H ⊂ {h = 1} being singular at infinity means that there exists a point p ∈ ∂ (R>0 ·H)
such that dhp = 0.

• Together, Theorem 5.6 and Proposition 5.8 can be interpreted as a deformation theory
of closed connected projective special real manifolds in the following sense. Whenever
H ⊂ {h = 1} ⊂ Rn+1 is a closed connected projective special real manifold, h is of
the form (3.12), that is h = x3 − x〈y, y〉 + P3(y), (1, 0, . . . , 0)T ∈ H (note: this is
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not a restriction of generality, cf. Proposition 3.18), and V : Rn → R is any given
cubic homogeneous polynomial, we now have a precise answer to the question when the
connected component

Hε ⊂
{
hε := x3 − x〈y, y〉+ P3(y) + εV (y) = 1

}
, (1, 0, . . . , 0)T ∈ Hε,

is also a closed connected projective special real manifold, namely if and only if

max
‖z‖=1

(P3(z) + εV (z)) ≤ 2
3
√

3
.

Furthermore, we have found a way to connect two closed connected projective special
real manifolds with a curve consisting pointwise of closed connected projective special
real manifolds since Cn is a convex and thus in particular path-connected set.

• Proposition 5.12. Here we derive a sharp estimate for the scalar curvature of closed
connected projective special real surfaces. More specifically, we will show that the scalar
curvature SH of a closed connected projective special real surface H equipped with its
centro-affine fundamental form gH is globally bounded by

−9
4 ≤ SH ≤ 0,

independently of which closed connected projective special real surface H is considered.
This estimate being sharp means in this case that there exists precisely one homoge-
neous closed connected projective special real surface with constant scalar curvature
equal to −9

4 (Thm. 2.45 b)), and another homogeneous closed connected projective spe-
cial real surface with constant scalar curvature equal to 0 (Thm. 2.45 a)). Recall that
we do not expect the bounds found in Theorem 4.13 to be sharp, and we will indeed
see that they are not sharp for dimension two. This is an application of Theorem 5.6 to
a low-dimensional question and the proof makes use of the already known classification
of closed connected projective special real surfaces found in [CDL, Thm. 1] (see also
Theorem 2.45 a)-f) for the statement of this classification).

• An application of Proposition 5.12 is Corollary 5.15, where we give a partial answer to
Conjecture 5.14, which is a statement for bounds of the sectional curvatures of level sets
in the Kähler cone of complex 3-dimensional Calabi-Yau manifolds stated by P.M.H.
Wilson in [Wi2].

• Finally, we will use the result of Proposition 5.8 to find another alternative proof of the
statement that closed projective special real manifolds are complete, see Proposition
5.17. This approach might be extendable to generalised projective special real manifolds
with corresponding polynomial h of homogeneity-degree τ ≥ 4, see Section 9 for a
discussion on how such a generalisation might look like (and why it is most likely worth
a try at least for quartic closed connected generalised projective special real manifolds).

In Section 6 we will study two examples of (n − 2)-parameter families of pairwise in-
equivalent n-dimensional closed connected projective special real manifolds for each n ≥ 3.
Pairwise inequivalent means that two distinct elements of one of these families are not related
by a linear transformation of the ambient space Rn+1. Some of the results of this section
are part of [CDJL], namely Theorem 6.1, Corollary 6.5, and in part Corollary 6.7. A one-
parameter family of pairwise inequivalent closed connected projective special real surfaces
corresponding to the Weierstraß cubics has been studied in [CDL], but until the results in
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[CDJL] no pairwise inequivalent multi-parameter family of complete projective special real
manifolds has been known, albeit the existence of such a family in high enough dimension
was expected from the fact that the dimension of the vector space of cubic homogeneous
polynomials in n+ 1 variables grows cubically in n, while the dimension of GL(n+ 1) grows
only quadratically in n. This was the initial motivation for finding such a multi-parameter
family. The main results of Section 6 are:

• Theorem 6.1, the existence of two (n−2)-parameter families of pairwise inequivalent n ≥
3-dimensional closed connected projective special real manifolds. The corresponding
cubic homogeneous polynomials are given in F (6.1) and G (6.2), respectively. (This
result is a part of [CDJL].)

• Corollary 6.5, in which we list the possible automorphism groups for all h ∈ F ∪ G.
(This result is a part of [CDJL].)

• Proposition 6.6, where we show that each closed connected projective special real man-
ifold H(h) corresponding to h ∈ F ∪ G as in equation (6.3) and equation (6.4), respec-
tively, is singular at infinity in the sense that the boundary of the cone U = R>0 ·H(h) ⊂
Rn+1 excluding the origin contains a point p ∈ ∂U \ {0}, such that dhp = 0 (cf. Defini-
tion 3.16).

• Proposition 6.9, where we show that each closed connected projective special real man-
ifold H(h) is inhomogeneous for all h ∈ F ∪ G.

• Lemma 6.10, in which we calculate the scalar curvature of the two homogeneous projec-
tive special real manifolds H1,n ∼= R>0 n Rn−1 (6.44) and H2,n ∼= R>0×SO+(n−1,1)

SO(n−1) (6.45)
for n ≥ 3.

Next, in Section 7 we will switch our focus from projective special real manifolds to quartic
generalised projective special real manifolds. We will give a classification of quartic closed
connected generalised projective special real curves and we will find analogues to some results
from Section 4 to quartic generalised projective special real manifolds. We will also discuss
explicit examples of closed connected generalised projective special real manifolds. The main
results of Section 7 are:

• Theorem 7.2 in which we classify all quartic closed connected generalised projective
special real curves H ⊂ {h = 1} ⊂ R2 up to linear equivalence. Furthermore, we
determine the hyperbolic closed connected components of {h > 0} ⊂ R2 and the
automorphism group of h in each case.

• Proposition 7.8, which can be understood as a quartic analogue to Corollary 4.5. We
show that the Euclidean length of points in the boundary of the set dom(H) as in
Definition 3.22 is bounded from above by

√
6 for all quartic closed connected generalised

projective special real manifolds H.

• Lemma 7.9, which is the quartic analogue to Lemma 4.8. We formulate a necessary
and sufficient condition for a certain connected component of a quartic homogeneous
polynomial of the form (3.12) to be a closed connected quartic generalised projective
special real manifold. The analogous construction for projective special real manifolds
in Lemma 4.8 was a key component in one of the new proofs that closed projective
special real manifolds are geodesically complete (cf. Proposition 4.17).
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In Section 8 we will be concerned with manifolds in the image of the (generalised) su-
pergravity r-map. We will derive a formula for their scalar curvature using our technical
tools from Section 3 and find that it has some properties analogous to the properties of the
scalar curvature of closed connected projective special real manifolds that we have studied
in Section 4. As examples, we will study r-map images of the elements in the two multi-
parameter families of closed connected projective special real manifolds that were studied in
Section 6 and we will in particular show that all manifolds that are obtained in this way are
inhomogeneous. The main results of Section 8 are:

• Proposition 8.8, where we derive a formula for the scalar curvature of manifolds in the
image of the (generalised) supergravity r-map at one point, analogous to Proposition
3.29 in which we found a formula for the scalar curvature of (generalised) projective
special real manifolds at one point.

• Proposition 8.9, in which we determine (not necessarily sharp) upper and lower bounds
for manifolds in the image of the supergravity r-map where the initial projective special
real manifold is assumed to be closed and connected.

• Lemma 8.11, where we find sharp upper and lower bounds for manifolds in the image
of the supergravity r-map under the assumption that the initial projective special real
manifold is closed, connected, and one-dimensional.

• Proposition 8.14, where we determine a formula for the first derivative of the scalar
curvature of manifolds in the image of the (generalised) supergravity r-map at one
point, analogous to Proposition 3.30 which contains a similar formula for (generalised)
projective special real manifolds.

• Proposition 8.15, where we prove that r-map-images of closed connected projective
special real manifolds of the form H(h) for all h ∈ F∪G, cf. Theorem 6.1, are inhomo-
geneous. Recall that H(h) itself was shown to be inhomogeneous for all h ∈ F ∪ G in
Proposition 6.9.

• Lemma 8.16, in which we calculate for each dimension n ≥ 3 the (constant) scalar
curvature of the image under the r-map of the two homogeneous projective special real
manifolds H1,n ∼= R>0 nRn−1 (6.44) and H2,n ∼= R>0×SO+(n−1,1)

SO(n−1) (6.45).

We will conclude this thesis with an outlook in Section 9. We will discuss the still open
question if every quartic closed generalised projective special real manifold is automatically
geodesically complete, and we will also present ideas for a possible proof that have neither
been fully tried nor excluded by our research yet. Another interesting problem we will discuss
is the construction of possible ways to map (generalised) projective special real manifolds
Hτ ⊂ {hτ = 1}, hτ of homogeneity degree τ , to generalised projective special real manifolds
Hτ+1 ⊂ {hτ+1 = 1}, hτ+1 of homogeneity degree τ + 1, for all τ ≥ 3. This question has been
motivated by the proof of Theorem 7.2 and an analogue for projective special real curves (cf.
Remark 7.4), which turned out to provide possibilities for such constructions to map closed
connected projective special real curves to quartic closed connected generalised projective
special real curves.
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2 Preliminaries

2.1 Notation
We will give an overview of the notations and conventions used in this thesis that are either
not frequently used or not standardised.

• Unless stated otherwise, we will always assume that manifolds and maps are smooth.

• For a vector bundle over a manifold E →M we denote its sections by Γ(E). We omit
specifying the corresponding projection map if it is clear from the context.

• In order to omit special notations for vector fields on a manifold M , we will denote the
set of vector fields by Γ(TM) instead of the also commonly used notation X(M). The
term Γ(TM)|U for a subset U ⊂ M denotes the set of vector fields along U that are
obtained by restricting vector fields on M .

• We consider elements in the vector space, respectively manifold, Rn+1 as column vectors.

• We will not use the Einstein sum convention. We will, however, frequently omit sum-
mation ranges if they are clear from the context, e.g. we will write ∑

k
instead of

n∑
k=1

.
This usually makes formulas a little easier to read while still indicating the summation
and the corresponding indices.

• For local coordinates (x1, . . . , xn) on a manifold M we will often abbreviate the induced
local frame fields ∂

∂xi
of TM by either ∂i or ∂xi .

• For the positions vector field ξ ∈ Γ(TRn+1) we will frequently omit the symbol ξ and
canonically identity p and ξp. This makes many equations a lot easier to read.

• We identify homogeneous polynomials of degree τ ≥ 1 in R[x1, . . . , xn] with symmetric
tensors in Symτ (Rn+1)∗ in the sense that for every homogeneous polynomial h : Rn → R
there exists precisely one symmetric (0, τ)-tensor H, such that h(x) = H(x, . . . , x).
Also, instead of writing “h ∈ R[x1, . . . , xn] is homogeneous of degree τ” we will write
h ∈ Symτ (Rn+1)∗.

• Whenever x = (x1, . . . , xn)T denotes linear coordinates of Rn, we will identify dx =
(dx1, . . . , dxn)T . This means for example that for a bilinear form Q(x, x), we will write
dQx = 2Q(x, dx).

• Empty spaces in matrices are always supposed to be zeros. Writing down zeros and
dots would make the corresponding equations more difficult to read.

• The natural numbers N are given by N = {1, 2, 3, . . .}. In particular 0 6∈ N.

We start with some remarks about vector bundles and restriction of corresponding sections
to images of immersions.

Definition 2.1 (Sections along immersions). Let E →M be a vector bundle over a manifold.
For an immersion f : M̃ → M and an open subset U ⊂ M̃ , such that f |U is an embedding
or equivalently f(U) is a submanifold of M , we denote by Γf(U)(E) the sections of E → M
along f(U). These are precisely the sections of the pullback bundle ι∗f(U)E → f(U), which can
be identified with the sections of the corresponding pullback bundle f |∗UE → U . Here ιf(U)
denotes the inclusion map of the submanifold f(U) into M .
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In order to talk about properties of sections along immersions, one has to be careful
whenever f is not an embedding, i.e. whenever f is an immersion but not a homeomorphism
onto its image with the induced subspace topology.

Remark 2.2 (Terminology for sections along immersions). Let E → M be a vector bundle
and let f : M̃ → M be an immersion. We can restrict any section s ∈ Γ(E) to the subset
f(M̃) ⊂M . Since f need not be an embedding, we say that s|

f(M̃) has some property, e.g. is
nowhere vanishing, if that property holds locally around each point. This means that for all
p ∈ f(M̃) and all open sets U ⊂ M̃ with p ∈ U , such that f |U is an embedding and, hence,
f(U) ⊂M a submanifold, s|f(U) has that property.

Remark 2.3 (Induced connection on pullback bundle). If a vector bundle over a manifold
E → M is endowed with a connection ∇ and we consider the (at least locally defined)
associated pullback bundle along an immersion f : M̃ → M , then we will use the same
symbol ∇ for the induced connection in ι∗f(U)E → f(U), respectively f |∗UE → U . An example
would be the induced connection along a curve in a manifold with nowhere vanishing velocity
where ∇ is a connection in TM →M .

2.2 Pseudo-Riemannian geometry and completeness theorems for
Riemannian manifolds

In the following we will quickly review definitions and results from pseudo-Riemannian ge-
ometry, in particular completeness theorems that are used in this thesis.

We start with the most basic definitions.

Definition 2.4 (Pseudo-Riemannian manifold). Let M be a manifold and g a symmetric
(0, 2)-tensor field on M , that is g ∈ Γ(Sym2T ∗M). The tupel (M, g) is called a pseudo-
Riemannian manifold if gp = g|TpM×TpM is a non-degenerate bilinear form for all p ∈ M . If
gp > 0 for all p ∈ M , (M, g) is called a Riemannian manifold. The symmetric tensor field g
is then called pseudo-Riemannian metric, respectively Riemannian metric.

Definition 2.5 (Signature of a pseudo-Riemannian metric). Let (M, g) be a connected
pseudo-Riemannian manifold. The signature of g is defined as the signature (i, j) of the
bilinear form gp for some some p ∈ M , i denoting the number of positive eigenvalues of gp
and j denoting the number of negative eigenvalues of gp. Global non-degeneracy of g and M
being connected implies that the signature is well-defined, that is, independent of p ∈M .

Riemannian manifolds (M, g) of dimension n have signature (n, 0). Another class of
pseudo-Riemannian manifolds are Lorentz manifolds, that is (n + 1)-dimensional pseudo-
Riemannian manifolds with signature (n, 1). Lorentz manifolds are of particular interest in
the theory of general relativity, see for example [O] for an introduction.

Definition 2.6 (Isometry). Two pseudo-Riemannian manifolds (M, g) and (M, g) are called
isometric if there exists a diffeomorphism F : M →M , such that F ∗g = g.

Note that every manifold admits a Riemannian metric. This can be proven with the
help of a partition of unity and adding up locally defined Riemannian metrics. For every
pseudo-Riemannian manifold (M, g) there exists a unique, torsion free connection, such that
g is parallel, called the Levi-Civita connection.

Definition 2.7 (Levi-Civita connection). Let (M, g) be a pseudo-Riemannian manifold.
Then there exists a unique connection ∇ in TM → M , called the Levi-Civita connection,
such that
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(i) ∇XY −∇YX = [X, Y ] ∀X, Y ∈ Γ(TM),

(ii) ∇g = 0,

where in (ii) ∇ denotes the induced connection in Sym2T ∗M →M .

An important formula used to calculate the components of the local 1-forms of the Levi-
Civita connection is the following.

Lemma 2.8 (Koszul formula). The Levi-Civita connection of a pseudo-Riemannian manifold
(M, g) is uniquely determined by the so-called Koszul formula

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X, Y )− g(Y, [X,Z])− g(X, [Y, Z]) + g(Z, [X, Y ])

for all X, Y, Z ∈ Γ(TM).

Proof. See for example [O, p. 61, Thm. 11].

For an n-dimensional pseudo-Riemannian manifold (M, g) and (x1, . . . , xn) local coordi-
nates of M , the Koszul formula shows that in the induced local frame (∂1, . . . , ∂n) of TM we
have

∇∂i∂j = 1
2
∑
k,`

(∂igj` + ∂jgi` − ∂`gij)g`k∂k ∀1 ≤ i, j ≤ n,

where gij = g(∂i, ∂j) and g`k = g−1(dxi, dxj). This leads to the following definition.

Definition 2.9 (Christoffel symbols). Let (M, g) be an n-dimensional pseudo-Riemannian
manifold and (x1, . . . , xn) local coordinates of M with induced local frame (∂1, . . . , ∂n) of TM .
We define the Christoffel symbols Γkij, 1 ≤ i, j, k ≤ n, of (M, g) in the given local coordinates
to be

Γkij = 1
2
∑
`

(∂igj` + ∂jgi` − ∂`gij)g`k.

We will now present the most important invariants of pseudo-Riemannian manifolds,
namely their different curvature tensors. For a reference on this topic see e.g. [KN, O].

Definition 2.10 (Curvature tensor). The pseudo-Riemannian curvature tensor of a pseudo-
Riemannian manifold (M, g) with Levi-Civita connection ∇ is defined as

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z ∀X, Y, Z ∈ Γ(TM).

The Ricci curvature is defined as follows.

Definition 2.11 (Ricci curvature). Let (M, g) be a pseudo-Riemannian manifold and R its
pseudo-Riemannian curvature tensor. The Ricci curvature Ric ∈ Γ(Sym2T ∗M) (also called
Ricci tensor) of (M, g) is defined as

Ric(X, Y ) := tr(R(·, X)Y ) ∀X, Y ∈ Γ(TM).

In the above formula, R(·, X)Y ∈ Γ(End(TM)) for each pair X, Y ∈ Γ(TM) and tr :
Γ(End(TM)) → C∞(M) denotes the trace. In local coordinates (x1, . . . , xn) of M with
induced local frame (∂1, . . . , ∂n) of TM , the components of Ric are of the form

Ricij = Ric(∂i, ∂j) =
∑
a

(
∂aΓaji − ∂jΓaia +

∑
k

(
ΓkijΓaak − ΓkiaΓajk

))
.
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Remark 2.12. The Ricci curvature (also called Ricci tensor) is central in the study of
Einstein manifolds where one is concerned with pseudo-Riemannian manifolds (M, g), such
that Ric = λg for some constant λ. For a reference see [B].

Next we will define the scalar curvature, which is in practice an important tool to check
whether two pseudo-Riemannian manifolds can be isometric or not by studying extremal
points of their respective scalar curvature.

Definition 2.13 (Scalar curvature). The scalar curvature S ∈ C∞(M) of a pseudo-Rieman-
nian manifold (M, g) is defined as

S := trg(Ric) = tr(g−1 ◦ Ric),

where g−1 : T ∗M → TM is understood as a vector bundle isomorphism and Ric : TM → T ∗M
is viewed as a vector bundle homomorphism. In local coordinates (x1, . . . , xn) of M with
induced local frame (∂1, . . . , ∂n) of TM ,

S =
∑
i,j

Ricijgij =
∑
a,i,j

(
∂aΓaji − ∂jΓaia +

∑
k

(
ΓkijΓaak − ΓkiaΓajk

))
gij.

Another important curvature of pseudo-Riemannian manifolds is the sectional curvature.

Definition 2.14 (Sectional curvature). Let (M, g) be a Riemmanian manifold of dimension
at least two. Let p ∈ M be arbitrary, v, w ∈ TpM two linearly independent vectors, and
denote E = span{v, w} ⊂ TpM . Then the sectional curvature of the 2-dimensional vector
subspace E ⊂ TpM is defined as

K(E) = K(v, w) := g(R(v, w)w, v)
g(v, v)g(w,w)− g(v, w)2 .

This definition is independent of the choice of the basis {v, w} of E which justifies the iden-
tification K(E) = K(v, w).

Remark 2.15. One can show that in any local orthogonal frame (e1, . . . , en) of TM ,

S =
∑
i 6=j

K(ei, ej).

Definition 2.16 (Length and velocity of a curve). For a Riemannian manifold (M, g) we
define the length of a curve γ : I →M , I a possibly unbounded interval, as

L(γ) :=
∫
I

√
gγ(γ̇, γ̇)dt.

Notice that L(γ) might be an improper integral and need not converge, so that L(γ) = ∞ is
allowed. In the latter case we say that γ has infinite length. The term

√
gγ(γ̇, γ̇) is called the

velocity of γ.

One main interest in the study of Riemannian manifolds is the question of geodesic com-
pleteness. We will present the necessary definitions to study this subject.

Definition 2.17 (Geodesic). Let γ : I → M be a curve in a pseudo-Riemannian manifold
(M, g) defined on an open interval I and let ∇ denote the Levi-Civita connection of (M, g).
Then γ is called a geodesic of (M, g) if ∇γ̇ γ̇ = 0.
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Remark 2.18. Geodesics have many interesting properties. One can show that the velocity
of a geodesic is constant and for a reparametrisation of the domain I of a geodesic, f : I ′ → I,
one can show that γ ◦ f is a geodesic if and only if f is affine-linear. In local coordinates
(x1, . . . , xn) of a Riemannian manifold (M, g) the geodesic equation ∇γ̇ γ̇ takes the form
γ̈k + ∑

i,j
Γkij γ̇iγ̇j = 0 for all 1 ≤ k ≤ n, where γi = xi(γ) for 1 ≤ i ≤ n. For a reference on

classical results for geodesics see e.g. [O].

Theorem 2.19 (Hopf-Rinow). Let (M, g) be a Riemannian manifold. Then the following
are equivalent:

(i) M is complete as a metric space.

(ii) M is geodesically complete, i.e. all geodesics are defined for all times.

(iii) Closed and bounded subsets of M are compact.

Proof. See for example [Jo, Thm. 1.7.1, p. 35].

Theorem 2.19 justifies to talk simply about completeness of a Riemannian manifold (M, g)
instead of always writing geodesic or metric completeness, respectively. Whenever there are
other connections involved in the discussion of a Riemannian, completeness will always mean
completeness with respect to the Levi-Civita connection.

Completeness is, in general, hard to prove or disprove. One very useful fact in Riemannian
geometry is the following.

Lemma 2.20. A Riemannian manifold (M, g) is complete if and only if every curve in M
that leaves every compact subset of M has infinite length.

Proof. [CHM, Lem. 1].

Lemma 2.20 yields another way to describe complete Riemannian manifolds.

Lemma 2.21. A Riemannian manifold (M, g) is complete if and only if there exists r > 0,
such that for all p ∈ M the closure of the geodesic ball of radius r around p with respect to
g, i.e. the set Bg

r (p), is a compact subset of M .

Proof. Assume that (M, g) is complete. Then Thm. 2.19 (ii) implies that for all r > 0 and
all p ∈M , the geodesic ball Bg

r (p) ⊂M is bounded. Thm. 2.19 (iii) now implies that Bg
r (p)

is compact for all r > 0 and all p ∈M .
For the other direction of the proof assume that (M, g) is incomplete. Then there exists a

geodesic γ : (0, 1)→M of finite length, such that γ leaves every compactum in M . Without
loss of generality assume that γ(t) converges to some p ∈ M as t → 0, and let L(γ) < ∞
denote the length of γ. Then Bg

L(γ)(p) ⊂ M is not compact, since otherwise it would be
contained in some compactum in M which is excluded by the assumption that γ leaves every
compactum in M .

2.3 Centro-affine geometry
Now we will give a short introduction to affine differential geometry and specifically centro-
affine differential geometry. In most generality, one considers the following, cf. [NS, p. 27].
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Definition 2.22 (Distribution along an immersion). For an immersion f : M →M between
two manifolds M,M with dimM > dimM and k ∈ N, a k-dimensional distribution along f
is an assignment M 3 x → Nx ⊂ Tf(x)M , such that around each point p ∈ M we can find
an open neighbourhood U ⊂ M , such that f |U : U → M is an embedding, and k pointwise
linearly independent vector fields {X1, . . . , Xk}, Xi ∈ Γ

(
TM

)∣∣∣
f(U)

for all 1 ≤ i ≤ k, with
the property that for all x ∈ U we have that Nx = span{X1, . . . , Xk}.

Definition 2.23 (Affine immersion). Let (M,∇) and (M,∇) be two manifolds of dimension
dim(M) = m and dim

(
M
)

= n with torsion-free covariant derivatives ∇ in TM → M and
∇ in TM →M . Assume that n > m. An immersion f : M →M is called affine immersion if
there exists a k = (n−m)-dimensional distribution N along f and a N-valued (0, 2)-tensor
field α ∈ Γ(T ∗M ⊗ T ∗M ⊗N), that is α(X, Y )|p ∈ Np for all X, Y ∈ Γ(TM) and all p ∈M ,
such that

(i) Tf(p)M = dfp(TpM)⊕Np,

(ii) ∇X(df(Y )) = df(∇XY ) + α(X, Y )

for all X, Y ∈ Γ(TM) and all p ∈M .

Note that in [NS], f is only assumed to be differentiable. In thesis all considered immer-
sions are smooth. A special case of affine immersions are affine hypersurface immersions,
i.e. affine immersions of co-dimension 1. We are interested in the case where the ambient
manifold M is Rn+1 endowed with the standard flat connection.

Definition 2.24 (Affine hypersurface immersions). An affine hypersurface immersion in Rn+1

is an affine immersion f : M → Rn+1 of an n-dimensional manifold M into Rn+1. The
corresponding 1-dimensional distribution is locally spanned by a non-vanishing vector field ξ
along f that is transversal to f(M) at each point.

On the other hand, one might consider a hypersurface immersion f : M → Rn+1 with a
given transversal 1-dimensional distribution along f and ask for a torsion-free connection in
TM , such that f is an affine immersion. This is the content of the following proposition, cf.
[NS, p. 29].

Proposition 2.25 (Gauß formula for hypersurface immersions). Let f : M → Rn+1 be
a hypersurface immersion, {Ui | i ∈ I} an open covering of M , and ξi ∈ Γf(Ui)(TRn+1)
locally defined transversal vector fields along f that generate a 1-dimensional distribution
along f . Let ∇ denote the standard flat connection in TRn+1. Then there exists a torsion-
free connection ∇ in TM and for each i ∈ I a symmetric (0, 2)-tensor field hi ∈ Γ(S2T ∗M)Ui,
such that

∇X(df(Y )) = df(∇XY ) + hi(X, Y )ξi ∀X, Y ∈ Γ(TM)|Ui ,∀i ∈ I. (2.1)

Equation (2.1) is called (affine) Gauß equation. With this choice of ∇, f : M → Rn+1 is an
affine hypersurface immersion as defined in Definition 2.24. ∇ is called the induced affine
connection. Note that ∇ is independent of i, j ∈ I whenever Ui ∩ Uj 6= ∅.

Next we will see how to differentiate the transversal part of (local) sections in f ∗TRn+1,
cf. [NS, p. 30].
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Proposition 2.26 (Weingarten equation for affine hypersurface immersions). Let f : M →
Rn+1 be an affine hypersurface immersion as in Definition 2.24. Then there is a uniquely
defined (1, 1)-tensor S ∈ Γ(End(TM)) and a collection of 1-forms τi ∈ Γ(T ∗M)|Ui, i ∈ I,
satisfying

∇Xξi = −df(SX) + τi(X)ξi ∀X ∈ Γ(TM),∀i ∈ I. (2.2)

Equation (2.2) is called the (affine) Weingarten equation, the tensor S is called (affine) shape
operator (or affine Weingarten map), and each τi (local) transversal connection 1-form.

Now that we have introduced general concepts of affine differential geometry, we will
consider the special case of centro-affine hypersurface immersions. The main part of this
thesis considers hypersurface immersions or, more precisely, hypersurface embeddings of that
type.

Definition 2.27 (Centro-affine hypersurface immersion). Let f = (f1, . . . , fn+1)T : M →
Rn+1 be a hypersurface immersion. It is called a centro-affine hypersurface immersion if the
position vector field ξ ∈ Γ(TRn+1), ξp = p for all p ∈ Rn+1 under the canonical identification,
is transversal along f , that is

df(TpM)⊕ Rξf(p) = Tf(p)Rn+1 ∀p ∈M,

where Rξf(p) denotes the 1-dimensional vector subspace spanned by ξf(p) of Tf(p)Rn+1. When-
ever f is clear from the context, we will call M a centro-affine hypersurface.

If f is additionally an embedding, it will be called a centro-affine hypersurface embedding.
In the case of centro-affine hypersurface immersions, the Weingarten equation (2.2) takes a
particularly simple form

Lemma 2.28 (Weingarten for centro-affine hypersurface immersions). Let f : M → Rn+1 be
a centro-affine hypersurface immersion. Then the affine shape operator fulfils S = −Id and
all local transversal connection 1-forms vanish identically.

Proof. For any locally defined position vector field ξ defined on f(U) ⊂ Rn+1 and all X ∈
ΓU(TRn+1) we obtain

∇Xξ = ∇X(f) = df(X).

Comparing this result with the Weingarten equation (2.2) in Proposition 2.26 proves our
claim.

The Gauß equation (2.1) in Definition 2.25 for centro-affine hypersurface immersions
f : M → Rn+1 is of the form

∇X(df(Y )) = df(∇XY ) + g(X, Y )ξf , (2.3)

where ξf denotes the position vector field along f . This leads to the following definition.

Definition 2.29 (Centro-affine connection and centro-affine fundamental form). Let f :
M → Rn+1 be a centro-affine hypersuface immersion. The induced connection ∇ in TM
(2.3) is called the centro-affine connection, the symmetric (0, 2)-tensor g ∈ Γ

(
Sym2T ∗M

)
is

called the centro-affine fundamental form.

Depending on the signature of the centro-affine fundamental form, centro-affine hyper-
surfaces are classified as follows.
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Definition 2.30 (Types of centro-affine hypersurface immersions). A centro-affine hyper-
surface immersion f : M → Rn+1 with centro-affine fundamental form g is called

• non-degenerate, if g is non-degenerate,

• definite, if g is definite, i.e. either positive or negative definite,

• elliptic, if g < 0, i.e. negative definite,

• hyperbolic, if g > 0, i.e. positive definite.

In this thesis we are interested in certain hyperbolic cases which we will introduce next.

2.4 Projective special real manifolds and other examples of cen-
tro-affine manifolds

After the introduction centro-affine geometry we will present examples of centro-affine hy-
persurface immersions. We will discuss examples of hyperbolic centro-affine hypersurface
immersions and related questions from Riemannian geometry. In particular, we will intro-
duce projective special real manifolds, which are one of the main objects of our studies in
this thesis.

Proposition 2.31. Let U ⊂ Rn+1, n ∈ N ∪ {0}, be an open set invariant under positive
rescaling, i.e. the R>0-action (r, p) 7→ rp for all r ∈ R>0 and p ∈ U . Let h : U → R be
a homogeneous function of degree k > 1, i.e. h(rp) = rkh(p). Assume that the level set
{p ∈ U | h(p) = 1} is not empty and let H ⊂ {p ∈ U | h(p) = 1} be an open subset. Then
the inclusion map ι : H→ Rn+1 is a centro-affine hypersurface embedding with centro-affine
fundamental form g = − 1

k
ι∗(∇2

h), where ∇ denotes the canonical flat connection in TRn+1

and ∇2 its Hessian.

Proof. For a proof of this statement in a slightly more general setting see [CNS, Prop. 1.3].

If Rn+1 is equipped with linear coordinates, we will write ∂2 instead of ∇2. We will also
omit writing down the map ι for an embedding ι : M → Rn+1, that is we will write M ⊂ Rn+1

instead of ι(M) ⊂ Rn+1, if the context is clear. In this thesis we are interested in hypersurface
embeddings as above where the centro-affine fundamental form g is a Riemannian metric on
an open subset H ⊂ {h = 1} and h is a homogeneous polynomial of degree τ ≥ 3. We will
now introduce concepts needed for our studies of said hypersurfaces.

Remark 2.32 (Euler identity for homogeneous functions). Let U be an open subset of
Rn+1 invariant under multiplication with positive real numbers and let h : U → R be a
homogeneous function of homogeneity-degree τ ∈ R. Then

dhx(x) = τh(x) ∀x ∈ U. (2.4)

Equation (2.4) is called the Euler identity for homogeneous functions.

Definition 2.33 (Hyperbolic point). Let U ⊂ Rn+1 be an open subset that is invariant under
multiplication with positive real numbers, and let h : U → R be a homogeneous function of
degree τ > 1. Then a point p ∈ {h > 0} is called a hyperbolic point (of h) if −∂2hp has
signature (n, 1), i.e. it is of Lorentz type. A function h that has at least one hyperbolic point
is called a hyperbolic homogeneous function.
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Note that this implies that for a hyperbolic point p of h, −∂2hp|ker(dhp)×ker(dhp) > 0, which
follows from −∂2hp(p, p) = −τ(τ − 1)h(p) < 0 and −∂hp(p, ·) = −(τ − 1)dhp.

Definition 2.34 (Hyperbolic centro-affine hypersurface). Let H ⊂ {h = 1} be a centro-affine
hypersurface as in Proposition 2.31. Then H is called a hyperbolic centro-affine hypersurface
if it consists only of hyperbolic points.

Note that the above definition of hyperbolic centro-affine hypersurface coincides with Def-
inition 2.30 for f the inclusion map ι : H → Rn+1. Hyperbolic centro-affine hypersurfaces
equipped with their respective centro-affine fundamental form (H, g) are Riemannian man-
ifolds. Continuity of the determinant implies that a connected non-degenerate centro-affine
hypersurface H is hyperbolic if and only if it contains one hyperbolic point. Note that hy-
perbolicity at a certain point is an open condition in the sense every homogeneous function
h : U → R as in Definition 2.33 with a hyperbolic point p is hyperbolic on some open neigh-
bourhood V ⊂ U of p. This follows from the continuity of the determinant of −∂2h. Hence,
for every hyperbolic homogeneous function h of degree τ > 1 we can choose an open subset
H ⊂ {h = 1} that is a hyperbolic centro-affine hypersurface.

We are in particular interested in the case where h is additionally assumed to be a poly-
nomial. We define the following.

Definition 2.35 (Hyperbolic polynomial). A homogeneous polynomial h : Rn+1 → R of
degree τ ≥ 2 is called a hyperbolic homogeneous polynomial if there exists a p ∈ {h > 0}, such
that p is a hyperbolic point of h.

Note that Definition 2.35 in comparison with the more general Definition 2.33 does not
depend on a chosen domain for a given polynomial h. We will now discuss the easiest example
for a hyperbolic centro-affine hypersurface defined by a hyperbolic polynomial.

Example 2.36 (Two-sheeted hyperboloid). Let h : Rn+1 → R, h = x2
n+1 −

n∑
i=1

x2
i . Then

every point in {h > 0} is a hyperbolic point, which follows from

−∂2h = 2
(
1

−1

)
.

Each of the two components of {h = 1}, namely {h = 1, xn+1 > 0} and {h = 1, xn+1 < 0},
are hyperbolic centro-affine hypersurfaces. For n = 2, the set {h = 1} is called the two-sheeted
hyperboloid (see Figure 1).

A question that might come to mind in this setting is whether there are other hyperbolic
polynomials of degree 2 that define a hyperbolic centro-affine hypersurface. To deal with this
question, we need a notion of when two hyperbolic hypersurfaces contained in the level set
of hyperbolic polynomials are considered equivalent.

Definition 2.37 (Equivalence of hyperbolic polynomials). Two hyperbolic homogeneous poly-
nomials h, h : Rn+1 → R of degree τ ≥ 2 are called equivalent if there exists a linear trans-
formation A ∈ GL(n + 1), such that h ◦ A = h. Two connected hyperbolic centro-affine
hypersurfaces H and H contained in a level set of h, respectively h, are called equivalent if h
and h are equivalent and A(H) ⊂ H or A(H) ⊃ H.

We usually consider the following type of hyperbolic centro-affine hypersurfaces.
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Figure 1: A rendering of a part of the two-sheeted hyperboloid embedded in R3.

Definition 2.38 (Maximal connected hyperbolic centro-affine hypersurfaces). Let H ⊂ {h =
1} ⊂ Rn+1 be a connected hyperbolic centro-affine hypersurface as in Definition 2.34. Then
H is called a maximal (or maximally extended) connected hyperbolic centro-affine hypersurface
if it coincides with a maximal subset of {h = 1} that consists only of hyperbolic points, i.e.
if it is a connected component of the set{

p ∈ Rn+1 | h(p) = 1, p is a hyperbolic point of h
}
.

Note that the continuity of det(−∂2h) and Proposition 2.31 ensure that connected com-
ponent of {p ∈ Rn+1 | h(p) = 1, p is a hyperbolic point of h} are always open in {h = 1}
with respect to the induced subspace topology of {h = 1} ⊂ Rn+1. For maximal connected
hyperbolic centro-affine hypersurfaces, the terms A

(
H
)
⊂ H and A

(
H
)
⊃ H in Definition

2.37 simply become A
(
H
)

= H. Furthermore, we obtain the following lemma.

Lemma 2.39 (Isometry of equivalent hypersurfaces). Any two equivalent maximal con-
nected centro-affine hyperbolic hypersurfaces H and H defined by hyperbolic polynomials
h, h : Rn+1 → R, respectively, are isometric.

Proof. Let A : Rn+1 → Rn+1 be a linear transformation, such that h ◦ A = h. Then the
linearity of A implies

−∂2hp(·, ·) = −∂2hAp(A·, A·) = A∗(−∂2h)p.

In particular, this hold for the restrictions to TH, respectively TH, that is for their respective
centro-affine fundamental forms. This shows that H and H are isometric and one isometry is
given by the respective linear transformation A relating their respective defining polynomial
h and h.

Equivalence classes of bilinear forms on Rn+1 are determined by their signature. Hence,
one easily obtains the following.

Lemma 2.40. Let H ⊂ {h = 1} be a connected maximal hyperbolic centro-affine hypersur-
face and h : Rn+1 → R be a hyperbolic polynomial of degree 2. Then H is equivalent to
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x2
n+1 −

n∑
i=1

x2
i = 1

∣∣∣∣ xn+1 > 0
}

, that is to one sheet of the two-sheeted hyperboloid defined in
Example 2.36.

Note that in the case of the two-sheeted hyperboloid, the centro-affine metric g and the
Riemannian metric of the two-sheeted hyperboloid induced by the embedding into (n + 1)-
dimensional Minkowski space via the inclusion map, that is the second fundamental form
II ∈ Γ(Sym2T ∗H) with respect to a unit normal, coincide for all n ≥ 1.

One central interest of this thesis are so-called projective special real manifolds, which we
will define now.

Definition 2.41 (Projective special real manifold). Let h : Rn+1 → R be a cubic hyperbolic
homogeneous polynomial. An open subset H ⊂ {h = 1} that consists only of hyperbolic points
is called a projective special real manifold, or PSR manifold for short.

We immediately obtain the following properties of PSR manifolds.

Lemma 2.42 (PSR manifolds are hyperbolic centro-affine hypersurfaces). Let H ⊂ {h =
1} ⊂ Rn+1 be a PSR manifold. Then H is a hyperbolic centro-affine hypersurface as defined
in Definition 2.34 and their centro-affine fundamental form as in Definition 2.29 in chosen
linear coordinates of the ambient space Rn+1 is given by

gH = −1
3∂

2h|TH×TH.

Proof. This follows from Proposition 2.31.

Two connected PSR manifolds H ⊂ {h = 1} and H ⊂ {h = 1} are called equivalent
if they are equivalent as in Definition 2.37. A connected PSR manifold H ⊂ {h = 1} is
called maximal (or maximally extended) if it is maximal in the sense of Definition 2.38. In
particular, equivalent maximal connected PSR manifolds are isometric.

We will now discuss known results in the study of PSR manifolds. Since PSR manifolds
are Riemannian manifolds, it is a natural question whether they are always complete or not,
where completeness means geodesically complete with respect to the Levi-Civita connection
of the centro-affine fundamental form. Note that completeness of a given PSR manifold
H ⊂ {h = 1} ⊂ Rn+1 automatically implies that H needs to be closed as a subset of
Rn+1 since otherwise one can extend its centro-affine fundamental form gH = −1

3∂
2h|TH×TH

smoothly to its boundary points. This would imply that there are curves leaving each compact
set in H with finite length which contradicts completeness, cf. Lemma 2.20. Hence, a
necessary condition for completeness of (H, gH) is that H ⊂ Rn+1 is closed. We will call such
a PSR manifold a closed PSR manifold. It has recently been shown in [CNS] that closed
PSR manifolds are always complete.

Theorem 2.43. An n-dimensional PSR manifold H ⊂ {h = 1} ⊂ Rn+1 is complete with
respect to its centro-affine fundamental form gH = −1

3∂
2h|TH×TH if and only if H is closed

as a subset of Rn+1.

Proof. [CNS, Thm. 2.5].

In Propositions 4.17 and 5.17 we give two alternative proofs of Theorem 2.43.

Remark 2.44 (Difficulties in classifying closed connected PSR manifolds). One interesting
questions is to ask if it is possible to classify all closed connected PSR manifolds. In general,
it turns out to be a very difficult question. This problem is equivalent to classifying all cubic
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hyperbolic homogeneous polynomials up to equivalence. One of the encounterd difficulties is
that being hyperbolic as a cubic homogeneous polynomial is an open condition in the sense
that if h ∈ Sym3(Rn+1)∗ is hyperbolic and H ∈ Sym3(Rn+1)∗ is any cubic polynomial, then
there exists an ε > 0, such that for all 0 ≤ k ≤ ε the polynomial h+ kH is hyperbolic. This
follows easily from Sylvester’s law of inertia. Furthermore, the dimension of Sym3(Rn+1)∗
grows cubically in n while the dimension of GL(n+1) grows quadratically in n, so we can not
expect to have only finitely many examples as n grows large. In dimensions n = 1 and n = 2
however, cubic hyperbolic homogeneous polynomials in 2 and 3 variables, respectively, and
the corresponding closed connected PSR manifolds have been classified up to equivalence,
see [CHM] for 1-dimensional PSR manifolds and [CDL] for 2-dimensional PSR manifolds.

The known classification results for projective special real curves and projective special
real surfaces are as follows.

Theorem 2.45 (Classification of closed connected PSR curves and surfaces). Every closed
connected PSR curve H, that is closed connected PSR manifold of dimension one, is equiva-
lent to exactly one of the following closed connected PSR curves:

A) {x2y = 1, x > 0, y > 0},

B) {x (x2 − y2) = 1, x > 0},

where ( xy ) denote linear coordinates of the ambient space R2.
For closed connected PSR surfaces H ⊂ R3, that is closed connected PSR manifold of

dimension two, let
( x
y
z

)
denote the linear coordinates of the ambient space R3. Each such H

is equivalent to exactly one of the following closed connected PSR surfaces:

a) {xyz = 1, x > 0, y > 0},

b) {x(xy − z2) = 1, x > 0},

c) {x(yz + x2) = 1, x < 0, y > 0},

d) {z(x2 + y2 − z2) = 1, z < 0},

e) {x(y2 − z2) + y3 = 1, y < 0, x > 0},

f) {y2z − 4x3 + 3xz2 + bz3 = 1, z < 0, 2x > z} for precisely one b ∈ (−1, 1).

Proof. See [CHM, Thm. 8] for curves, [CDL, Thm. 1] for surfaces.

Aside from the low-dimensional restriction, another restriction to PSR manifolds is to
consider only those that are contained in the level set of a reducible cubic hyperbolic homo-
geneous polynomial. In this case, PSR manifolds are classified in any dimension, cf. [CDJL].
Since 1- and 2-dimensional PSR manifolds are completely classified, only n ≥ 3-dimensional
PSR manifolds with reducible polynomial are considered in the following Theorem.

Theorem 2.46 (Classification of closed connected PSR manifolds corresponding to reducible
polynomials). Every closed connected PSR manifold H ⊂ {h = 1} ⊂ Rn+1 of dimension
n ≥ 3 for which h is reducible is linearly equivalent to exactly one of the following closed
connected PSR manifolds

a)
{
xn+1

(
n−1∑
i=1

x2
i − x2

n

)
= 1, xn+1 < 0, xn > 0

}
,
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b)
{

(x1 + xn+1)
(

n∑
i=1

x2
i − x2

n+1

)
= 1, x1 + xn+1 < 0

}
,

c)
{
x1

(
n∑
i=1

x2
i − x2

n+1

)
= 1, x1 < 0, xn+1 > 0

}
,

d)
{
x1

(
x2

1 −
n+1∑
i=2

x2
i

)
= 1, x1 > 0

}
.

Proof. [CDJL, Thm. 2].

Remark 2.47. Theorem 2.46 is a combined result of [Ju] and [Li]. Results of these two
works are also part of [CDJL, Thm. 2, Prop. 8].

Lastly, there is a classification of PSR manifolds that are homogeneous spaces under the
action of their respective automorphism groups, cf. Definition 3.13, for which we refer the
reader to [DV].
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3 Standard form and curvature of generalized projec-
tive special real manifolds

In this section we will study hyperbolic homogeneous polynomials of degree τ ≥ 3 and the
corresponding hypersurfaces contained in their level sets. These geometric object can be
viewed as a generalisation of PSR manifolds. The “machinery” and results of this section
will be used extensively in the following sections.

Definition 3.1 (GPSR and CCGPSR manifolds). Let n ∈ N∪{0} and H ⊂ {h = 1} ⊂ Rn+1

be an n-dimensional hyperbolic centro-affine hypersurface as in Definition 2.34, contained in
the level set of a hyperbolic homogeneous polynomial of degree τ ≥ 3. Then H will be called
GPSR manifold (for Generalised Projective Special Real manifold). If we further assume that
H is closed and connected as a subset of Rn+1, we will call H a CCGPSR manifold (for
Closed Connected Generalised Projective Special Real manifold) of degree τ . For τ = 3, GPSR
manifolds coincide with PSR manifolds defined in Definition 2.41. If H is a closed connected
PSR manifold and we will call it a CCPSR manifold. As a convention we regard the set of
CCPSR manifolds as a subset of the set of CCGPSR manifolds.

If the degree τ ≥ 3 of a GPSR manifold is not of particular importance, we will omit the
phrase “of degree τ”. Recall that according to Definition 2.37, two CCGPSR manifolds of
the same degree are called equivalent if they are related by a linear change of coordinates of
the ambient space.

Definition 3.2 (Moduli space of CCGPSR manifolds). Let n ∈ N. We define the moduli
space of n-dimensional CCGPSR manifolds of degree τ to be the set of equivalence classes

{[H] | H is a CCGPSR manifold of degree τ, dim(H) = n} ,

where [H̃] = [H] if and only if H̃ and H are equivalent. For τ = 3, we will call the above set
the moduli space of n-dimensional CCPSR manifolds.

Note that for n = 0, there is for each degree τ ≥ 3 precisely one CCGPSR manifold up
to equivalence, which is simply a point.

Remark 3.3. We will consider the moduli space of n-dimensional CCGPSR manifolds in
general without the assumption of any topological data and view it simply as a set. For a
discussion why it is difficult to find a meaningful topology for that space, see Remark 6.14
later in this thesis.

Lemma 3.4 (Centro-affine fundamental form of GPSR manifolds). Let H ⊂ {h = 1} ⊂ Rn+1

be an n-dimensional GPSR manifold of degree τ ≥ 30. Then its centro-affine fundamental
form gH is given by

gH = −1
τ
∂2h|TH×TH, (3.1)

where ∂2 is determined by the chosen linear coordinates on the ambient space Rn+1.

Proof. This follows immediately from Proposition 2.31.

Definition 3.5 (Maximal connected GPSR manifold). Let H ⊂ {h = 1} be a connected
GPSR manifold. We will call H a maximal (or maximally extended) connected GPSR manifold
if it is a maximal connected hyperbolic centro-affine hypersurface in the sense of Definition
2.38. If H ⊂ Rn+1 is furthermore closed, we will call it a maximal (or maximally extended)
CCGPSR manifold.
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Remark 3.6 (CCGPSR manifolds are maximal). Any CCGPSR manifold H ⊂ {h = 1}
coincides by definition with a connected component of {h = 1} and is thus automatically
maximal in the sense of Definition 3.5.

Note that for τ = 3, Theorem 2.43 shows that n-dimensional CCPSR manifolds are
precisely n-dimensional complete connected PSR manfolds. We will now show that we can,
after a possible linear coordinate change of the ambient space Rn+1, assume that the defining
polynomial is of a certain form. To do so we first review two results from [CNS] that apply
in particular to the geometry of CCGPSR manifolds.

Proposition 3.7 (Convexity of the cone spanned by CCGPSR manifolds). Let H ⊂ {h =
1} ⊂ Rn+1 be an n-dimensional CCGPSR manifold. Then

U = R>0 ·H =
{
rp ∈ Rn+1

∣∣∣ r > 0, p ∈ H
}
⊂ Rn+1

is a convex cone and the map

R>0 ×H 3 (r, p) 7→ r · p ∈ U

is a diffeomorphism.

Proof. [CNS, Prop. 1.10] for the special case of CCGPSR manifolds.

Lemma 3.8. Let H be a CCGPSR manifold and let U = R>0 ·H. Then for every p ∈ H,
the intersection

(p+ TpH) ∩ U ⊂ p+ TpH

is open, precompact, and convex. Here (p+ TpH) ⊂ Rn+1 denotes the affinely embedded
tangent space TpH in the ambient vector space Rn+1 equipped with the induced subspace
topology.

Proof. [CNS, Lem. 1.14].

Definition 3.9 (Homogeneous connected GPSR manifolds). Let (H, gH) be a connected
GPSR manifold. We call H a homogeneous connected GPSR manifold if there exists a Lie
group G acting transitively on (H, gH) via isometries.

Note that in Definition 3.9 we do not require the action to be linear. In fact, we consider
connected GPSR manifolds to be homogeneous if they are homogeneous as Riemannian
manifolds.

Remark 3.10 (Completeness of homogeneous connected GPSR manifolds). Recall that ho-
mogeneous Riemannian manifolds are always complete, cf. [KN, Thm. 4.5] or [BEE, Lem. 5.4].
Thus, in particular homogeneous connected GPSR manifolds are complete.

An immediate consequence of Remark 3.10 is the following corollary.

Corollary 3.11 (Homogeneous connected GPSR manifolds are CCGPSR manifolds). Let
H ⊂ {h = 1} ⊂ Rn+1 be a homogeneous connected GPSR manifold. Then H is a CCGPSR
manifold.

Proof. (H, gH) is complete and, hence, closed in Rn+1, cf. [CNS, Prop. 1.8].
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Homogeneous CCGPSR manifolds provide interesting examples of CCGPSR manifolds of
homogeneity degree τ ≥ 4, since in general as of now it is unknown if CCGPSR manifolds
of homogeneity degree τ ≥ 4 are always complete. It has however been shown that every
one-dimensional CCGPSR manifold is complete, hence in particular every homogeneous one-
dimensional CCGPSR manifold is complete [CNS, Thm. 2.9].

Proposition 3.12. Let H ⊂ {h = 1} be an n-dimensional connected GPSR manifold with h
of homogeneity-degree τ ≥ 3. Then

Gh :=
{
M ∈ Mat(n× n,R)

∣∣∣ h(p) = h(Mp) ∀p ∈ Rn+1
}

is a Lie subgroup of GL(n+ 1) with Lie algebra

T1G
h =

{
m ∈ gl(n+ 1)

∣∣∣ dhp(mp) = 0 ∀p ∈ Rn+1
}
. (3.2)

Proof. The set Gh contains 1 ∈ GL(n+1), and M,N ∈ Gh implies h(MNp) = h(Np) = h(p)
for all p ∈ Rn+1. For Gh to be a subgroup of GL(n+ 1) it thus suffices to show that Gh is a
subset of GL(n+1). Suppose that it is not. Then there exists an element M ∈ Gh, such that
rk(M) < n+ 1. By assumption the level set {h = 1} contains the connected GPSR manifold
H, h is a hyperbolic polynomial and there exist a point q ∈ Rn+1 with det (−∂2hq) < 0.
Since h(p) = h(Mp), we obtain the identity

−∂2hq = −MT∂2hMqM.

But then det (−∂2hq) = det(M)2 det (−∂2hq) = 0, which is a contradiction to q being a
hyperbolic point of h. Thus, Gh is a subset of GL(n+1) and we conclude that Gh ⊂ GL(n+1)
is a subgroup. In order to show that Gh is also a Lie subgroup of GL(n + 1), we will use
the closed subgroup theorem, which was first proven in [Ca] (for a modern reference see
[Le, Thm. 20.12]). With p = (p1, . . . , pn+1)T and M = (Mij) ∈ Mat(n × n,R), the equation
h(p)− h(Mp) = 0 is of the form ∑

|I|=τ
fI

n+1∏
i=1

pIii = 0,

where I = (I1, . . . , In+1) denotes a multi-index with Ii ≥ 0 for all 1 ≤ i ≤ n + 1 of length
|I| =

n+1∑
i=1

Ii = τ , and fI denotes a polynomial in the variables Mij, 1 ≤ i, j ≤ n + 1 for all
such multi-indices I. Using this notation, Gh can be written as

Gh =
⋂
|I|=τ
{fI = 0}.

For each considered multi-index I the set {fI = 0} ⊂ Mat(n × n,R) is closed since each fI
and, hence, continuous. Hence, Gh = ⋂

|I|=τ
{fI = 0} is also closed in Mat(n×n,R). But since

we have already shown that Gh is a subset of GL(n + 1), and GL(n + 1) is an open subset
of Mat(n× n,R) and equipped with the subspace topology, we deduce that Gh is also closed
as a subset of GL(n+ 1). The closed subgroup theorem now implies that Gh ⊂ GL(n+ 1) is
indeed a Lie subgroup. The identity (3.2) now easily follows via differentiating both sides of
h(p) = h(exp(tm)p) with respect to the variable t at t = 0.

Using Proposition 3.12, we now define the automorphism group of a hyperbolic homoge-
neous polynomial h corresponding to a connected GPSR manifolds H ⊂ {h = 1}.
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Definition 3.13 (Automorphism group of h). Let H ⊂ {h = 1} be an n-dimensional con-
nected GPSR manifold. The Lie subgroup

Gh = {M ∈ Mat(n× n,R) | h(p) = h(Mp) ∀p ∈ Rn+1
}
⊂ GL(n+ 1) (3.3)

is called the automorphism group of h. We denote by

Gh
0 ⊂ Gh (3.4)

the connected component of Gh that contains the neutral element 1 ∈ Gh. The Lie algebra of
Gh is given by

T1G
h =

{
m ∈ gl(n+ 1)

∣∣∣ dhx(mx) = 0 ∀x ∈ Rn+1
}

with Lie bracket [·, ·] induced by the Lie subalgebra structure T1Gh ⊂ gl(n+ 1).
Lemma 3.14 (Action of Gh

0 on H). The Lie group Gh
0 (3.4) corresponding to a maximal

connected GPSR manifold H ⊂ {h = 1} acts on (H, gH) via isometries.

Proof. The action of an element M ∈ Gh
0 on H ⊂ Rn+1 is given by the corresponding linear

transformation of coordinates of the ambient space Rn+1. The action of Gh
0 on H is well-

defined for the following reasons. Both Gh
0 and H are (path-)connected and Gh

0 contains the
identity 1. Linear transformations of Rn+1 are by definition of gH (3.1) isometries of (H, gH)
as long as they map H into itself. This is ensured by the path-connectedness of Gh

0 , by the
fact that all points in Gh

0 · p are by definition of Gh
0 automatically hyperbolic points of h for

all p ∈ H, and by the assumption that H is maximally extended that Gh
0 · p is a connected

component of {h = 1} ∩ {p hyperbolic point of h}.
Note that independent of whether a connected GPSR manifold H ⊂ {h = 1} is maximally

extended or not, there is at least always a well-defined local action of Gh
0 on H, i.e. there exists

an open neighbourhood U of 1 ∈ Gh
0 , such that there is a well defined action U ×H → H

via linear transformations of the ambient space Rn+1. This can be shown by considering the
unique maximal connected GPSR manifold H̃ that contains H and the corresponding action
Gh

0 × H̃→ H̃ and observing that the action is continuous.
Remark 3.15 (Classification of homogeneous PSR manifolds with transitive Gh

0-action).
Recall at this point that there is a classification of PSR manifolds H ⊂ {h = 1} that are
homogeneous spaces under the action of Gh

0 , see [DV]. As of now there is no analogous
classification of GPSR manifolds of any homogeneity-degree τ ≥ 4 that are homogeneous
spaces under the action of the respective identity-component of their automorphism group,
that is Gh

0 . We will classify all such GPSR manifolds that are of homogeneity-degree τ = 4
and of dimension one, i.e. quartic GPSR curves, this is one result of Theorem 7.2.

One important class of CCGPSR manifolds is characterised as follows.
Definition 3.16 (Singular at infinity). Let H ⊂ {h = 1} ⊂ Rn+1 be a CCGPSR manifold
and let U = R>0 ·H be the corresponding convex cone. We will call H singular at infinity if
there exists a point p ∈ ∂U \ {0}, such that dhp = 0.
Remark 3.17. Note that there is another meaning of the term “singular” which might be
used in the setting of CCGPSR manifolds. Consider for a CCGPSR manifold H ⊂ {h = 1}
the projective variety {h = 0} for which the term singular is defined as the existence of a
point p ∈ {h = 0}\{0}, such that dhp = 0. In comparison with Definition 3.16, this is a priori
a weaker definition of “singular” since it is not clear if singular in the projective variety sense
automatically implies that one such singular point is contained in the respective ∂dom(H).
If, however, H ⊂ {h = 1} is singular at infinity in the sense of Definition 3.16, then the
projective variety {h = 0} will also always be singular.
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Proposition 3.18 (Standard form). Let H ⊂ {h = 1} ⊂ Rn+1 be an n ≥ 1-dimensional
connected GPSR manifold and h of homogeneity-degree τ ≥ 3. Then for each p ∈ H there
exists a linear change of coordinates on Rn+1 described by A(p) ∈ GL(n+ 1), such that

(i) (h ◦ A(p)) (( xy )) = xτ − xτ−2〈y, y〉+
τ∑
k=3

xτ−kPk(y),

(ii) A(p) ( 1
0 ) = p,

where y =
( y1

...
yn

)
denotes the standard linear coordinates of Rn, ( xy ) denotes the corresponding

coordinates of Rn+1 ∼= R × Rn, ( 1
0 ) denotes the point ( xy ) = ( 1

0 ) ∈ Rn+1, and 〈·, ·〉 denotes
the standard Euclidean scalar product on Rn induced by the y-coordinates. Furthermore, if
H is a CCGPSR manifold then the transformations A(p) can be chosen in such a way that
A : H → GL(n + 1) is smooth. If H is not closed as a subset of Rn+1, we can still find
for each p ∈ H a subset V ⊂ H that contains p and is open in the subspace-topology of
H ⊂ Rn+1, such that A : V → GL(n+ 1) can be chosen so that it is a smooth map.

Proof. First we will show that (i) and (ii) hold for all connected GPSR manifolds. Then we
will prove that in the case of CCGPSR manifolds, A : H → GL(n + 1) can be chosen to be
smooth. In the case of connected GPSR manifolds which are not necessarily closed we will
show that for all p ∈ H there always exists an open neighbourhood V ⊂ H of p, and that
A : V → GL(n+ 1) can be chosen so that it is a smooth map.

Let H ⊂ Rn+1 be a connected GPSR manifold and denote by 〈·, ·〉 the standard Euclidean
scalar product on Rn+1 induced by the choice of the linear coordinates on Rn+1. Let p ∈ H

be arbitrary. We will differentiate between two cases.

Case 1: dhp = r〈p, ·〉 for some r 6= 0.
Note that the property dhp ∈ (R \ {0})·〈r, ·〉 is preserved by changing the linear coordinates of
the ambient Rn+1 by rotations in SO(n+1) and by positive rescaling of the linear coordinates.
We can thus without loss of generality assume that p = (1, 0, . . . , 0)T , and denote the linear
coordinates on Rn+1 by (x, y1, . . . , yn)T . Since h(p) = 1 is a necessary condition for p ∈ H,
we find that h must be of the form

h = xτ + xτ−1L(y) + xτ−2Q(y, y) + (terms of lower order in x),

where L ∈ Lin (Rn,R) is linear in y and Q ∈ Sym2 (Rn)∗ is a symmetric bilinear form. We
can now check that dhp ∈ (R \ {0}) · 〈r, ·〉 implies L ≡ 0. By assumption, p is a hyperbolic
point of H. We calculate

−∂2hp =
(
−τ(τ − 1)

−2Q(·, ·)

)
.

The hyperbolicity of the point p thus shows that Q must be negative definite, i.e. Q < 0.
Hence, after a suitable transformation of the y-coordinates, we find that h is of the desired
form

h = xτ − xτ−2〈y, y〉+
τ∑
k=3

xτ−kPk(y).
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Case 2: dhp 6= r〈p, ·〉 for all r 6= 0.
Note that in this case, r = 0 is automatically excluded by dhp(p) = τ 6= 0. We will find a
linear coordinate-transformation B ∈ GL(n + 1) of the ambient space Rn+1 of H, such that
Bq = p and

dhBq(B·) = r〈q, ·〉, (3.5)

which will take us to the setting of the first case since d(h ◦ B)q = dhBq(B·). Note that
in the above equation (3.5), 〈·, ·〉 denotes the Euclidean scalar product induced by the new
coordinates, that is the standard linear coordinates in the domain of B : Rn+1 → Rn+1. In
order to prove the existence of such a transformation B, let

〈〈·, ·〉〉 := 〈p, p〉〈·, ·〉 − 〈p, ·〉2 + dh2
p.

We claim that 〈〈·, ·〉〉 > 0, i.e. that 〈〈·, ·〉〉 ∈ Sym2 (Rn+1)∗ is a positive definite bilinear form
on. To show this, write v ∈ Rn+1 \ {0} as

v = ap+ w, w ∈ p⊥〈·,·〉 .

Note that a and w are uniquely determined since Rn+1 = Rp⊕ p⊥〈·,·〉 . We obtain

〈〈v, v〉〉 = 〈p, p〉〈w,w〉+ (dhp(ap+ w))2 .

For w 6= 0 we immediately see that 〈〈v, v〉〉 > 0. For w = 0, v 6= 0 implies a 6= 0. In that case
〈〈v, v〉〉 = a2τ 2 > 0. Summarising, this shows that 〈〈·, ·〉〉 is indeed positive definite. Now let
B ∈ GL(n+ 1) be an orthonormal basis1 of 〈〈·, ·〉〉,

B∗〈〈·, ·〉〉 = 〈·, ·〉.

Denote by h̃ = h ◦B the transformed polynomial h and let q = B−1p. Then

dh̃q = dhBq(B·) = dhp(B·)

and

〈q, ·〉 = 〈〈Bq,B·〉〉
= 〈〈p,B·〉〉
= 〈p, p〉〈p,B·〉 − 〈p, p〉〈p,B·〉+ dhp(p)dhp(B·)
= τdhp(B·)
= τdh̃q

Hence, B fulfils (3.5) with r = 1
τ
, and we have dh̃q = 1

τ
〈q, ·〉 with q ∈ B−1H. We are now in

the setting of the first case and can proceed as described therein.
Summarising up to this point, we have shown that for any n ≥ 1-dimensional connected

GPSR manifold H ⊂ {h = 1} and all p ∈ H we can find A ∈ GL(n + 1), such that the
conditions (i) and (ii) are fulfilled. Now we will describe how to construct A explicitly.

We will start with the case where H is a CCGPSR manifold, and first construct the
transformation A(p) explicitly for one arbitrarily chosen point p ∈ H, so that A(p) fulfils (i)
and (ii). We start by choosing initial linear coordinates (x, y1, . . . , yn)T of Rn+1 and a point

1We interpret the columns of B as the basis vectors.
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p = ( pxpy ) ∈ H. After a possible reordering of the coordinates we can assume that ∂xh(p) 6= 0.
This follows from dhp 6= 0, since otherwise τh(p) = dhp(p) = 0. Let

Ã =
 px −∂yh

∂xh

∣∣∣
p

py 1


where ∂xh := ∂h

∂x
and ∂yh :=

n∑
i=1

dh(∂yi)dyi. Ã ∈ GL(n+ 1) follows from

det
(
Ã
)

= det
 px + ∂yh

∂xh

∣∣∣
p

(py) −∂yh
∂xh

∣∣∣
p

0 1


= px + ∂yh

∂xh

∣∣∣∣∣
p

(py)

= 1
∂xh

(∂xhp · px + ∂yhp(py))

= τ

∂xhp
6= 0.

In the above formula we have used the Euler identity for homogeneous functions, and py is
viewed as an n-vector. This shows that Ã describes a linear change of coordinates. Further-
more, Ã ( 1

0 ) = p. We obtain

h

(
Ã

(
x
y

))
= xτh(p)

+ xτ−1dhp

− ∂yh
∂xh

∣∣∣
p

(y)
y


+ xτ−2 1

2∂
2hp

− ∂yh
∂xh

∣∣∣
p

(y)
y

 ,
− ∂yh

∂xh

∣∣∣
p

(y)
y


+ (terms of lower order in x)
= xτ

+ xτ−2 1
2∂

2hp

− ∂yh
∂xh

∣∣∣
p

(y)
y

 ,
− ∂yh

∂xh

∣∣∣
p

(y)
y


+ (terms of lower order in x).

The vanishing of the xτ−1-term follows from dhp

− ∂yh
∂xh

∣∣∣
p

(y)
y

 = 0 for all y ∈ Rn. This is

equivalent to
− ∂yh

∂xh

∣∣∣
p

(y)
y

 ∈ TpH for all y ∈ Rn. Hence,

Rn × Rn 3 (v, w) 7→ −1
2∂

2hp

− ∂yh
∂xh

∣∣∣
p

(v)
v

 ,
− ∂yh

∂xh

∣∣∣
p

(w)
w

 (3.6)

is a positive definite bilinear form since p is, by assumption, a hyperbolic point of h. This
implies that there exists a linear transformation Ẽ ∈ GL(n), such that

h

(
Ã ·

(
1

Ẽ

)(
x
y

))
= xτ − xτ−2〈y, y〉+

τ∑
k=3

xτ−kPk(y).
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Since Ã ·
(

1
Ẽ

)(
1
0

)
= p, we have shown that for one choice of p ∈ H we can find a

linear transformation fulfilling both (i) and (ii), namely Ã ·
(

1
Ẽ

)
.

In order to prove the statement of this proposition for all p ∈ H, we have shown that we
can assume without loss of generality that h is of the form h = xτ−xτ−2〈y, y〉+

τ∑
k=3

xτ−kPk(y)
and that ( 1

0 ) ∈ H ⊂ {h = 1}. For p = ( pxpy ) ∈ H and E(p) ∈ GL(n) consider the matrix

A(p) :=
 px − ∂yh

∂xh

∣∣∣
p
◦ E(p)

py E(p)

 . (3.7)

Firstly we need to ensure that A(p) is well-defined for all p ∈ H and all choices for E(p) ∈
GL(n). This follows from

∂xh|H > 0, (3.8)

which we will prove next. In order to show that (3.8) holds for all n ≥ 1-dimensional
CCGPSR manifolds, it in facts suffices to prove it for all 1-dimensional CCGPSR manifolds.
To see this, suppose that dim(H) > 1 and that there exists a point p =

(
px
py

)
∈ H, such that

∂xh|p = 0. Then the set
H̃ := H ∩ span {( 1

0 ) , p}

is a 1-dimensional CCGPSR manifold which coincides with the connected component of the
level set {

( xy ) ∈ R2
∣∣∣ h (x ( 1

0 ) + y ( 0
v )) = 1

}
(3.9)

containing the point ( 1
0 ) ∈ R2. In (3.9), v ∈ Rn is chosen to fulfil span {( 1

0 ) , p} =
span {( 1

0 ) , ( 0
v )} and 〈v, v〉 = 1. Note that h̃ := h (x ( 1

0 ) + y ( 0
v )) is then automatically of

the form (i). Denote by p̃ =
(
p̃x
p̃y

)
∈ R2 the point fulfilling p̃x ( 1

0 ) + p̃y ( 0
v ) = p and note

that p̃y 6= 0. Then p̃ ∈ H̃ by construction and ∂xh̃|p̃ = 0. It now follows from Lemma 3.8
that there exists R > 0, such that h̃ (p̃+R ( 1

0 )) = 0, since ( 1
0 ) ∈ Tp̃H̃ by assumption. The

convexity of the cone Ũ := R>0 · H̃ ⊂ R2 (cf. Proposition 3.7) implies that

Ũ ⊂ (R>0 · ( 1
0 ) + R · (p̃+R ( 1

0 ))) =: Ṽ .

But p̃ 6∈ Ṽ , and we conclude with H̃ ⊂ Ũ that p̃ 6∈ H̃, which is a contradiction. We have
thus shown that (3.8) holds for every n ≥ 1-dimensional CCGPSR manifold H.

We now show that for all p ∈ H and all choices for E(p) ∈ GL(n), A(p) ∈ GL(n + 1).
The calculation is similar to calculating det(Ã). Since E(p) is invertible, we have with (3.7)

detA(p) =
 px + ∂yh

∂xh

∣∣∣
p

(py) − ∂yh
∂xh

∣∣∣
p
◦ E(p)

0 E(p)


=
px + ∂yh

∂xh

∣∣∣∣∣
p

(py)
 det(E(p))

= 1
∂xh

(∂xhp · px + ∂yhp(py)) detE(p)

= τ

∂xhp
detE(p) 6= 0.
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In order to obtain the conditions for E(p) so that A(p) fulfils condition (i), we calculate

h

(
A(p)

(
x
y

))
= xτh(p)

+ xτ−1dhp

− ∂yh
∂xh

∣∣∣
p

(E(p)y)
E(p)y


+ xτ−2 1

2∂
2hp

− ∂yh
∂xh

∣∣∣
p

(E(p)y)
E(p)y

 ,
− ∂yh

∂xh

∣∣∣
p

(E(p)y)
E(p)y


+ (terms of lower order in x).

By definition, dhp

− ∂yh
∂xh

∣∣∣
p

(E(p)y)
E(p)y

 = 0 for all y ∈ Rn and all E(p) ∈ GL(n), which is

equivalent to
− ∂yh

∂xh

∣∣∣
p

(E(p)y)
E(p)y

 ∈ TpH for all y ∈ Rn and all choices E(p) ∈ GL(n). Thus,

Rn × Rn 3 (v, w) 7→ −1
2∂

2hp

− ∂yh
∂xh

∣∣∣
p

(v)
v

 ,
− ∂yh

∂xh

∣∣∣
p

(w)
w

 (3.10)

is a positive definite bilinear form since, by definition, H ⊂ {h = 1} consists only of hyperbolic
points of the defining polynomial h. We conclude that for all p ∈ H, E(p) ∈ GL(n) can be
chosen in such a way that

− 1
2∂

2hp

((
−∂yh(E(p)y)

∂xh

E(p)y

)
,

(
−∂yh(E(p)y)

∂xh

E(p)y

))
= 〈y, y〉 (3.11)

for all y ∈ Rn.
Summarising, we have shown for each p ∈ H how to explicitly construct a linear change

of coordinates A(p) ∈ GL(n + 1) which fulfils (i) and (ii). It remains to show that the
assignment A : H→ GL(n+1) can be chosen so that it is a smooth map. To see this observe
that

A(p) =
 px − ∂yh

∂xh

∣∣∣
p

py 1

 · ( 1
E(p)

)
.

The matrix
 px − ∂yh

∂xh

∣∣∣
p

py 1

 in the above equation depends smoothly on p ∈ H. Hence, it

suffices to show that E : H → GL(n) can be chosen so that it is a smooth map and fulfils
equation (3.11). This follows from the fact that, as we have seen above,

−1
2∂

2hp

− ∂yh
∂xh

∣∣∣
p

(·)
·

 ,
− ∂yh

∂xh

∣∣∣
p

(·)
·

 : Rn × Rn → R

understood as in (3.10) is positive definite for all p ∈ H, cf. [Le, Lem. 8.13].
It remains to deal with the cases where H ⊂ {h = 1} ⊂ Rn+1 is a connected GPSR

manifold, but is not closed in Rn+1. For p ∈ H arbitrary and fixed, we want to show that
there exists a neighbourhood V ⊂ H of p in H, such that A : V → GL(n+1) can be chosen to
fulfil (i) and (ii) and to be a smooth map. We have already seen in the beginning of the proof
that we can, after a possible linear transformation of the coordinates of Rn+1, assume without
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loss of generality that p = ( 1
0 ), that h is of the form h = xτ − xτ−2〈y, y〉 +

τ∑
k=3

xτ−kPk(y),
and that H is the contained in the connected component of {h = 1} that contains the point
( 1

0 ) ∈ H. Since ∂xh|( 1
0 ) = τ > 0, it immediately follows that we can find a neighbourhood

V of ( 1
0 ) in H, such that ∂xh|q > 0 for all q ∈ V . We can now define A as in equation (3.7)

and proceed as for the case when H was supposed to be closed.

Proposition 3.18 shows in particular that for any CCGPSR manifold H ⊂ {h = 1} we
can assume without loss of generality that h is of the form

h = xτ − xτ−2〈y, y〉+
τ∑
k=3

xτ−kPk(y) (3.12)

and that H is the precisely the connected component of {h = 1} which contains the point
( xy ) = ( 1

0 ) ∈ Rn+1. If H is just assumed to be a connected an not necessarily closed GPSR
manifold, we can still assume without loss of generality that H is a connected open subset
of {h = 1} with h of the form (3.12), and that H contains the point ( 1

0 ) ∈ Rn+1. Also note
that whenever H is a CCGPSR manifold, then the point ( 1

0 ) ∈ H is the unique point in H

that minimises the Euclidean distance of H ⊂ Rn+1 and the origin 0 ∈ Rn+1 (in the chosen
linear coordinates ( xy ) of Rn+1).

Remark 3.19. The polynomials Pi, 3 ≤ i ≤ τ , in equation (3.12) are in general not uniquely
determined for the respective connected GPSR manifold H ⊂ {h = 1}. For example, for
PSR manifolds the Pi’s are never uniquely determined, see Lemma 4.1 in Section 4.

Remark 3.20. The form (3.12) (up to a constant prefactor of the y-coordinates) of h corre-
sponding to a PSR manifold H ⊂ {h = 1} has already been used in physics literature under
the name “canonical parametrization”, see [GST, Eqn. (3.31)] and [DV, Eqn. (1.5)]. However,
the motivation for studying h of the form (3.12) has been of physical origin. We have verified
that we can in fact always assume that h is of said form.

If h is already of the form (3.12), we obtain the following result.

Lemma 3.21. With the assumptions of Proposition 3.18 and the additional assumption that
h is of the form (3.12), we can assume that A (( 1

0 )) = 1.

Proof. It is clear that for every open neighbourhood V ⊂ H of the point ( xy ) = ( 1
0 ) ∈ H and

every smooth map F : V → O(n), all linear transformations of the form

A′(p) := A(p) ·
(

1
F (p)

)

fulfil conditions (i) and (ii) of Proposition 3.18. Furthermore, ∂yh|( 1
0 ) = 0, which implies

E (( 1
0 )) ∈ O(n). Hence, choosing any smooth map F : V → O(n) with F (( 1

0 )) = (E (( 1
0 )))−1

and considering A′ instead of A proves our claim.

For the following considerations it is helpful to consider a certain parametrisation of
connected GPSR manifolds which we will introduce now.

Definition 3.22 (dom(H)). Let H ⊂ {h = 1} ⊂ Rn+1, ( 1
0 ) ∈ H, be a connected GPSR man-

ifold and assume that h is of the form (3.12) for the chosen linear coordinates (x, y1, . . . , yn)T
on Rn+1. We define

dom(H) := prRn
(

(R>0 ·H) ∩
{(

1
y

)
∈ Rn+1

∣∣∣∣∣ y ∈ Rn

})
⊂ Rn (3.13)
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where prRn : Rn+1 → Rn, ( xy ) 7→ y. The set dom(H) is precisely the section of the cone
spanned by H, that is R>0 · H ⊂ Rn+1, and T( 1

0 )H embedded affinely in Rn+1 via v 7→
( 1

0 ) + ( 0
v ).

Independent of whether the connected GPSR manifold H ⊂ {h = 1} ⊂ Rn+1 is closed or
not, dom(H) ⊂ Rn is well-defined, open in Rn, and always contains an open ball Bε(0) ⊂ Rn

with respect to the standard scalar product 〈dy, dy〉 on Rn for ε > 0 small enough. In
order to check that these claims are true, one uses the following facts. Firstly, every ray
R>0 · p for p ∈ H meets H precisely once. This follows from the homogeneity of degree
τ ≥ 3 of the corresponding polynomial h : Rn+1 → R. Secondly, H ⊂ {x ≥ 1} ⊂ Rn+1 and
H ∩ {x = 1} = ( 1

0 ). This follows from the fact that H is locally around each point in H

contained in the boundary of a strictly convex domain of in Rn+1, which in turn follows from
the Sacksteder-van Heijenoort Theorem2 [Wu]. Note that if H is a CCGPSR manifold, then
H is (globally) the boundary of the strictly convex domain R>1 ·H ⊂ Rn+1. Thus, every ray
R>0 · p for p ∈ H has a unique intersection-point with the set dom(H). We see that dom(H)
is bijective to H via

Φ : dom(H)→ H, Φ(z) = 1
τ

√
h (( 1

z ))

(
1
z

)
. (3.14)

One can check that Φ is everywhere a local diffeomorphism. This and H being a hypersurface
of Rn+1 also show that dom(H) ⊂ Rn is open and, hence, that Φ is a diffeomorphism. Note,
however, that the set dom(H) does depend on the chosen linear coordinates of the ambient
space Rn+1.

Lemma 3.8 implies the following property of dom(H) if H is a CCGPSR manifold.
Corollary 3.23 (Properties of dom(H) for CCGPSR manifolds). Let H be a CCGPSR
manifold. Then dom(H) ⊂ Rn is open, precompact, and convex.

Note that the statement of Corollary 3.23 is independent of the linear coordinates of the
ambient space Rn+1 of H.

Now we will demonstrate how to explicitly calculate the standard form (3.12) of a cubic
polynomial h corresponding to a CCPSR manifold H ⊂ {h = 1} as in Proposition 3.18 (i)
with the example of CCPSR surfaces.
Example 3.24 (Standard form of cubics for CCPSR surfaces). Let

( x
y
z

)
denote the standard

linear coordinates on R3. Recall that CCPSR surfaces H ⊂ {h = 1} ⊂ R3 have been classified
up to equivalence in [CDL, Thm. 1], cf. Theorem 2.45 a)–f). In the following we will for
each h corresponding to the cases a)–f) give a choice of A = A(p) ∈ GL(3) corresponding to
a given point p ∈ H, such that A ·

( 1
0
0

)
= p, h

(
A ·

( x
y
z

))
is of the form (3.12), and A−1(H) ⊂

{h ◦ A = 1} is precisely the connected component of {h ◦ A = 1} ⊂ R3 that contains the point( x
y
z

)
=
( 1

0
0

)
.

a) H = {h = xyz = 1, x > 0, y > 0}.
It is clear that p =

( 1
1
1

)
∈ H. One choice for the corresponding linear transformation of the

form (3.7) is

A =


1 − 2√

3 0
1 1√

3 −1
1 1√

3 1

 ,
2To apply said theorem, one first needs to extend the considered local neighbourhood of H to a Euclidean

complete convex hypersurface.
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which brings h to the form

h
(
A ·

( x
y
z

))
= x3 − x(y2 + z2)− 2

3
√

3
y3 + 2√

3
yz2, (3.15)

with corresponding P3 (( yz )) = − 2
3
√

3y
3 + 2√

3yz
2.

b) H = {h = x(xy − z2) = 1, x > 0}.
Similar to the surface in a), consider the point p =

( 1
1
0

)
∈ H and

A =


1 − 1√

3 0
1 2√

3 0
0 0 1

 .
Then

h
(
A ·

( x
y
z

))
= x3 − x(y2 + z2) + 2

3
√

3
y3 + 1√

3
yz2, (3.16)

with P3 (( 1
0 )) = 2

3
√

3 .

c) H = {h = x(yz + x2) = 1, x < 0, y > 0}.
With p =

(
−1
2
−2

)
∈ H and

A =


−1 0 2

√
2√

15
1 1√

2 − 1√
30

−2
√

2
√

2√
15


we obtain

h
(
A ·

( x
y
z

))
= x3 − x(y2 + z2) + 2

√
2√

15
y2z + 14

√
2

15
√

15
z3. (3.17)

d) H = {h = z(x2 + y2 − z2) = 1, z < 0}.
By re-ordering of the coordinates and switching one sign one quickly finds that H is equivalent
to H̃ = {h̃ = x3−x(y2 +z2) = 1, x > 0}, which is precisely the connected component of {h̃ =
1} that contains the point

( x
y
z

)
=
( 1

0
0

)
. The corresponding point in H and transformation

A ∈ GL(3) are given by p =
( 0

0
1

)
∈ H and

A =

0 0 −1
0 1 0
1 0 0

 ,
so that indeed

h
(
A ·

( x
y
z

))
= x3 − x(y2 + z2). (3.18)

The transformation A is not of the form (3.7) since we needed to switch the x- and z-
coordinate so that ∂x(h ◦ A)|( 1

0
0

) 6= 0. Note that in the sense of equation (3.12) this means

that P3 ≡ 0, so one might call h̃ the simplest possible cubic polynomial of the form (3.12)
defining a CCPSR manifold.
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e) H = {h = x(y2 − z2) + y3 = 1, y < 0, x > 0}.
Consider the point p =

( 2
−1
0

)
∈ H and the corresponding linear transformation as in (3.7)

A =


2 1√

3 0
−1 1√

3 −
1√
30

0 0 1√
2

 .
We find

h
(
A ·

( x
y
z

))
= x3 − x(y2 + z2) + 2

3
√

3
y3 − 1

2
√

3
yz2. (3.19)

f) Hb = {h = y2z − 4x3 + 3xz2 + bz3 = 1, z < 0, 2x > z}, b ∈ (−1, 1).
Observe that the point pb = 1

3√1−b

( 1
2
0
−1

)
is contained in Hb for all b ∈ (−1, 1). After switching

the x- and z-coordinate via the transformation
( 1

1
1

)
, we can apply the construction in

equation (3.7) in order to find Ãb ∈ GL(3), such that h ◦
(( 1

1
1

)
· Ãb

)
is of the form (3.12).

We calculate that

Ãb =


− 1

3√1−b 0 0
0 6

√
1− b 0

1
2 3√1−b 0 −

6√1−b√
6

 .
With

Ab :=
( 1

1
1

)
· Ãb =


1

2 3√1−b 0 −
6√1−b√

6
0 6

√
1− b 0

− 1
3√1−b 0 0


we obtain

h
(
Ab ·

( x
y
z

))
= x3 − x(y2 + z2) +

√
2
√

1− b
3
√

3
z3 (3.20)

and have thus shown that h◦Ab is of the form (3.12) and that Ab ·
( 1

0
0

)
= pb for all b ∈ (−1, 1)

as required. Note that equation (3.20) allows us to interpret the one-parameter family of
CCPSR surface Hb as interpolating between the CCPSR curves Theorem 2.45 c) (for b→ 1,
see equation (3.18)) and e) (for b→ 0) of Theorem 2.45. To see the latter, observe that with

Ã =


2− 1

3 4
3 2− 1

3 2
3
√

3 0
2− 1

3 1√
3 2− 1

3 5
3 0

0 0 2− 5
6
√

3

 ,
the polynomial

h̃ := x3 − x(y2 + z2) + 2
3
√

3
y3

transforms to
h̃
(
Ã ·

( x
y
z

))
= x3 − x(y2 + z2) + 2

3
√

3
y3 − 1

2
√

3
yz2

which coincides with equation (3.19). Furthermore one can check that the point Ã ·
( 1

0
0

)
is

contained in the connected component of
{
x3 − x(y2 + z2) + 2

3
√

3y
3 − 1

2
√

3yz
2 = 1

}
that con-

tains the point
( x
y
z

)
=
( 1

0
0

)
, for which we have shown that this is equivalent to the CCPSR
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surface e) in Theorem 2.45. Hence, the connected component of{
x3 − x(y2 + z2) + 2

3
√

3
y3 = 1

}

that contains the point
( x
y
z

)
=
( 1

0
0

)
is in particular also a CCPSR surface which is equivalent

to the surface e).3

We will use the parametrisation (3.14) of H ⊂ {h = 1} to study infinitesimal changes of
the Pk’s in the standard form (3.12) of h when we vary the point p ∈ H in Prop. 3.18 (i)
near ( xy ) = ( 1

0 ) ∈ H. The results are important tools in the following sections. Whenever we
use z-variables in the general considerations in this section, we will be working with dom(H).
The y-variables will be used in when working with the ambient space Rn+1 of H. Note
however that in the examples in Section 6 we will in general not stick to this convention.

For the following calculations we will define the (globally smooth) functions

α : Rn → R, α(z) = ∂xh|( 1
z ) , (3.21)

β : Rn → R, β(z) = h (( 1
z )) . (3.22)

Note that dom(H) coincides with the connected component of {β(z) > 0} that contains
the point z = 0 ∈ Rn, and β|∂dom(H) ≡ 0. Also, as shown in the proof of Proposition
3.18, α|dom(H) > 0 if H is a CCGPSR manifold. If H is not closed, we can at least find a
neighbourhood V of z = 0 ∈ Rn, such that α|V > 0, which also follows from the proof of
Proposition 3.18. Furthermore, it immediately follows from (3.14) that Φ(z) = 1

τ
√
β(z)

( 1
z )

for z ∈ dom(H). While dh does not vanish on H, it might vanish at a point ( xy ) = ( 1
z ) for

z ∈ ∂ dom(H) or, equivalently, on the ray R>0 · ( 1
z ) ⊂ ∂(R>0 ·H). If H is also closed, we

are in this case precisely in the setting of CCGPSR manifolds that are singular at infinity,
cf. Definition 3.16. The following lemma characterises these cases for CCGPSR manifolds in
terms of the functions α and β.

Lemma 3.25. Let H ⊂ {h = 1} be a CCGPSR manifold with ( 1
0 ) ∈ H and h a homogeneous

polynomial of homogeneity-degree τ ≥ 3 of the form (3.12), i.e. h = xτ − xτ−2〈y, y〉 +
τ∑
k=3

xτ−kPk(y). Let α, β be defined as in (3.21), respectively (3.22). Then for all z ∈ ∂dom(H)
the following are equivalent:

(i) dh( 1
z ) = 0,

(ii) α(z) = 0,

(iii) dβz = 0.

Proof. Assume that dh( 1
z ) = 0 for a z ∈ ∂dom(H). By affinely embedding dom(H) into

Rn+1 via z 7→ ( 1
z ) and identifying y and z we obtain

dh( 1
z ) = α(z)dx+ dβz.

Since α(z)dx and dβz are linearly independent we conclude that α(z) = 0 and dβz = 0.
3In order to find the transformation Ã, we have used a technique developed later in this thesis in Theorem

5.6. Specifically we used equations (5.22) and (5.23).
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Now assume that dβz = 0. Then, using the Euler-identity for homogeneous functions,
0 = τβ(z) = dh( 1

z ) ( 1
z ) = α(z) showing that α(z) = 0. Hence, dh( 1

z ) = 0.
Lastly, assume that α(z) = 0. Similar to above, 0 = τβ(z) = dh( 1

z ) ( 1
z ) = dβz(z). We

need to show that this implies dβz = 0. Assume the latter does not hold. Then dh( 1
z ) 6= 0

and, hence, we can use the implicit function theorem and conclude that dom(H) has smooth
boundary near z, and dβz(z) = 0 is equivalent to the statement that z ∈ Tz∂dom(H).
This, however, contradicts the assumption that H is a CCGPSR manifold which implies
that dom(H) is a convex set containing the point 0 ∈ Rn (cf. Lemma 3.8). To see the
contradiction, observe that for each non-singular point z ∈ ∂dom(H), i.e. a point satisfying
dβz 6= 0, the affinely embedded tangent space z + Tz∂dom(H) in Rn intersects the convex
compact set dom(H) (cf. Corollary 3.23) only at its boundary, that is ∂dom(H). But if
z ∈ Tz∂dom(H), the intersection of z + Tz∂dom(H) and dom(H) will always contain 0 ∈ Rn

which is, independently of any coordinate choice of the ambient space Rn+1 of H, always
contained in dom(H) and in particular never contained in ∂dom(H). This follows directly
from the definition of dom(H), see Definition 3.22. This is a contradiction to the convexity
of dom(H), see Corollary 3.23.

Returning to Proposition 3.18, we will now study the infinitesimal changes in the trans-
formations A(p) for p ∈ H near ( xy ) = ( 1

0 ) ∈ H, and in the corresponding polynomials Pi
in the considered polynomial h as in equation (3.12). To do so we use the parametrisation
Φ : dom(H) → H given in equation (3.14). The next result might seem a bit artificial or
overcomplicated at first, but it has useful applications, see e.g. Proposition 3.34.

Proposition 3.26 (Infinitesimal standard form). Let H ⊂ {h = 1} be a connected GPSR
manifold, ( 1

0 ) ∈ H, and let h be of the form h = xτ − xτ−2〈y, y〉 +
τ∑
k=3

xτ−kPk(y) as in
equation (3.12). Furthermore, let V ⊂ H be an open neighbourhood of ( xy ) = ( 1

0 ) and
A : V → GL(n+ 1),

A(p) =
 px − ∂yh

∂xh

∣∣∣
p
◦ E(p)

py E(p)

 ,
as in equation (3.7) so that A(p) fulfils (i) and (ii) in Proposition 3.18. Further assume that
A (( 1

0 )) = 1, cf. Lemma 3.21. Let Φ : dom(H)→ H be the diffeomorphism given in equation
(3.14) and define

A : Φ−1(V )→ GL(n+ 1), A(z) := A(Φ(z)). (3.23)
Then there exists an so(n)-valued linear map dB0 ∈ Lin(Rn, so(n)) of the form

dB0 =
n(n−1)/2∑
k=1

ak〈`k, dz〉,

where {ak, 1 ≤ k ≤ n(n− 1)/2} is a basis of so(n) and `k ∈ Rn for all 1 ≤ k ≤ n(n− 1)/2,
such that for τ ≥ 4

∂z (h (A(z) ( xy )))|z=0

= dh(xy ) (dA0 ( xy ))

= xτ−3
(
−2(τ − 2)

τ
〈y, y〉〈y, dz〉+ 3P3

(
y, y, dB0y + 3

2P3(y, ·, dz)T
)

+ 4P4(y, y, y, dz)
)

+
(
τ−1∑
i=4

xτ−i
(

2(τ − i+ 1)
τ

Pi−1(y)〈y, dz〉
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+ iPi

(
y, . . . , y, dB0y + 3

2P3(y, ·, dz)T
)

+(i+ 1)Pi+1(y, . . . , y, dz)
))

+ 2
τ
Pτ−1(y)〈y, dz〉+ τPτ

(
y, . . . , y, dB0y + 3

2P3(y, ·, dz)T
)

(3.24)

and for τ = 3, that is for connected PSR manifolds,

∂z (h (A(z) ( xy )))|z=0 = dh(xy ) (dA0 ( xy ))

= −2
3〈y, y〉〈y, dz〉+ 3P3

(
y, y, dB0y + 3

2P3(y, ·, dz)T
)
.

In the above equations, P3(y, ·, dz)T is to be understood as the column-vector

1
6∂

2P3|y



dz1

...
dzn

 , ·

T

and dB0 is to be understood as

dB0y =
n(n−1)/2∑
k=1

aky〈`k, dz〉. (3.25)

Proof. Note that z = 0 ∈ Φ−1(V ) for all possible choices for V since Φ−1 (( 1
0 )) = 0. Observe

that for all v ∈ Rn, the function −∂yh(v)
∂xh

defined on R>0 ·H is constant along rays of the form
R>0 · p, p ∈ H. With the notation E(z) = E(Φ(z)) and α, β defined in (3.21), respectively
(3.22),

A(z) =

 1
τ
√
β(z)

−dβz(E(z)·)
α(z)

z
τ
√
β(z)

E(z)


and

A(0) = 1, E(0) = 1, α(0) = τ, ∂2β0 = −2〈dz, dz〉.
We obtain

dA0 =
(

0 2
τ
dzT

dz dE0

)
, (3.26)

where we understand dz as the identity-map on Rn and dE0 as a gl(n)-valued 1-form,
dE0 ∈ Ω1(Rn, gl(n)), both using the identification T0dom(H) ∼= Rn obtained with the affine
embedding dΦ0 as in equation (3.14). With

dh(xy ) =
(
τxτ−1 − (τ − 2)xτ−3〈y, y〉+

τ−1∑
i=3

(τ − i)xτ−i−1Pi(y)
)
dx

− 2xτ−2〈y, dy〉+
τ∑
i=3

xτ−iiPi(y, . . . , y, dy)

we get

dh(xy ) (dA0 ( xy )) = xτ−2 (−2〈y, dE0y〉+ 3P3(y, y, dz))

+ (terms of lower order in x). (3.27)
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The assumption that A fulfils (i) and (ii) in Proposition (3.18) and A(0) = 1 implies that
the xτ−2-term in the above equation (3.27) must vanish, i.e.

−2〈y, dE0y〉+ 3P3(y, y, dz) = 0.

This is true if and only if
dE0(y) = 3

2P3(y, ·, dz)T + dB0y (3.28)

for all y ∈ Rn, with dB0 ∈ Lin(Rn, so(n)) a linear map from Rn to so(n). Here we have
identified Rn with T0dom(H). We will now justify our notation of the endomorphism dB0.
Consider for any smooth map B : Rn → O(n) with B(0) = 1 the map

B · E : Φ−1(V )→ GL(n+ 1), z 7→ B(z) · E(z).

It is clear that if we replace E with (B◦Φ−1)·E in the map A (and correspondingly B ·E in A),
it will still fulfil (i) and (ii) in Proposition (3.18) and A(0) = 1. We can thus choose for any
dB0 ∈ Ω1(Rn, so(n)) a fitting map B : Rn → O(n) and a smooth map Ẽ : Φ−1(V ) → GL(n)
with dẼ0 = 3

2P3(y, ·, dz)T , Ẽ(0) = 1, so that E := B · Ẽ will fulfil equation (3.28). Also note
that the requirement B(0) = 1 implies that the image of B lies in SO(n).

To complete the proof, we only need to replace dE0 in dh(xy ) (dA0 ( xy )) according to
equation (3.28) and obtain the claimed result.

Equation (3.24) in Proposition 3.26 determines precisely the infinitesimal changes of the
Pk’s in the polynomial h as in equation (3.12) when changing coordinates for p ∈ H ⊂
{h = 1} parametrised by Φ : dom(H)→ H (3.14) in the way described by Proposition 3.18.
Rotations in y ∈ Rn ⊂ Rn+1 always preserve (3.12), which is seen in the freedom of choosing
dB0 ∈ Lin(Rn, so(n)). We will now assign symbols to the respective infinitesimal changes of
the Pk’s in order to simplify the considerations to follow.

Definition 3.27 (First variation of the Pk’s). With the assumptions of Proposition 3.26 and
the definition of A as in (3.23), we define for τ ≥ 3 and 3 ≤ k ≤ τ

δPk(y) := 1
(τ − k)!

∂

∂xτ−k
∂

∂z
h (A(z) · ( xy ))

∣∣∣∣∣(xy )=
(

0
y

)
, z=0

=
(

1
(τ − k)!∂

τ−k
x dh(xy ) (dA0 ( xy ))

)∣∣∣∣∣(xy )=
(

0
y

) , (3.29)

where we denote by ∂
∂z

=
n∑
i=1

dzi ⊗ ∂zi the de-Rham differential with respect to the z =
(z1, . . . , zn)T -coordinates. In particular, we have for τ = 3, that is cubic polynomials h,

δP3(y) = −2
3〈y, y〉〈y, dz〉+ 3P3

(
y, y, dB0y + 3

2P3(y, ·, dz)T
)
, (3.30)

and for τ = 4, that is quartic polynomials h,

δP3(y) = −〈y, y〉〈y, dz〉+ 3P3

(
y, y, dB0y + 3

2P3(y, ·, dz)T
)

+ 4P4(y, y, y, dz), (3.31)

δP4(y) = 1
2P3(y)〈y, dz〉+ 4P4

(
y, y, y, dB0y + 3

2P3(y, ·, dz)T
)
. (3.32)
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This means that the δPk(y)’s are precisely the factors depending on y in the summands of

dh(xy ) (dA0 ( xy )) =
τ∑
i=3

xτ−iδPi(y)

that are of order xτ−k, respectively. For each 3 ≤ k ≤ τ we call δPk the first variation of
Pk along H with respect to the chosen dB0 (3.28), respectively dA0 (3.26), and understand
δPk(y) as a linear map δPk(y) : Rn → Symk ((Rn)∗), so that we insert vectors v ∈ Rn into
the dz in each δPk(y) and obtain a homogeneous polynomial in (y1, . . . , yn) of degree k.

The first application for Proposition 3.26 that we will consider is calculating the first
derivative of the scalar curvature of a connected GPSR manifold H equipped with its centro-
affine fundamental form at one certain point. To do so we need a closed form of the scalar
curvature (at at least one point). Its calculation uses the following result.

Lemma 3.28 (Pullback metric on dom(H)). Let H ⊂ {h = 1} be a connected GPSR
manifold with centro-affine fundamental form gH = − 1

τ
∂2h|TH×TH (cf. Lemma 3.4), h of

homogeneity-degree τ ≥ 3 and of the form (3.12), and ( 1
0 ) ∈ H. Let Φ : dom(H) → H be

the diffeomorphism given in equation (3.14) and β as in equation (3.22). Then

(Φ∗gH)z = − ∂2βz
τβ(z) + (τ − 1)dβ2

z

τ 2β2(z) . (3.33)

Proof. This is a special case of [CNS, Cor. 1.13]. To check the claim, one uses the homogeneity
of degree τ−2 ≥ 1 of ∂2hp in p and the first derivative of the diffeomorphism Φ : dom(H)→ H

(3.14), that is

dΦz = 1
τ

√
β(z)

(
0
dz

)
− 1
τβ(τ+1)/τ (z)

(
1
z

)
⊗ dβz.

We will use equation (3.33) to calculate the scalar curvature of (dom(H),Φ∗g) at z = 0 ∈
dom(H).

Proposition 3.29 (Scalar curvature of GPSR manifolds). Let H be an n-dimensional con-
nected GPSR manifold H ⊂ {h = 1}, h of homogeneity-degree τ ≥ 3 and of the form (3.12),
( xy ) = ( 1

0 ) ∈ H, and let gH = − 1
τ
∂2h|TH×TH be the centro-affine fundamental form of H.

Denote by ( xy ) the linear coordinates of the ambient space Rn+1 in accordance with equation
(3.12). Then the scalar curvature SH : H→ R at the point ( 1

0 ) ∈ H is given by

SH (( 1
0 )) = n(1− n) + 9τ

8
∑
`

∑
a6=i

(
−P3(∂a, ∂a, ∂`)P3(∂i, ∂i, ∂`) + P3(∂a, ∂i, ∂`)2

)
, (3.34)

where ∂k = ∂yk for 1 ≤ k ≤ n.

Proof. Note that we identify ∂zi = ∂yi = ∂i when inserting vectors in the Pk-polynomials.
This is justified by the fact that dΦ0 maps T0dom(H) to T( 1

0 )H via dΦ0 : ∂zi 7→ ∂yi for
all 1 ≤ i ≤ n. For the following calculations we will first calculate the scalar curvature
S : dom(H)→ R of (dom(H), g := τΦ∗gH) at z = 0. We work with g instead of gH because
the necessary calculations will then require less symbols. Furthermore, we will for the general
calculations assume that τ ≥ 4. The calculations for τ = 3 are analogous and the formulas
coincide when we set P4 ≡ 0. The metric g has the form

g = −∂
2βz
β(z) + τ − 1

τ

dβ2
z

β2(z) .
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We abbreviate ∂zµ = ∂µ and obtain for the first differential of g in zµ-direction

∂µg = β−3
(−2τ + 2

τ
dβ(∂µ)dβ2

)
+ β−2

(2τ − 2
τ

dβ∂2β(∂µ, ·) + dβ(∂µ)∂2β
)

+ β−1
(
−∂3β(∂µ, ·, ·)

)
.

The second partial derivatives of g read

∂ν∂µg = β−4
(6τ − 6

τ
dβ(∂ν)dβ(∂µ)dβ2

)
+ β−3

(−4τ + 4
τ

(
dβ(∂ν)dβ∂2β(∂µ, ·) + dβ(∂µ)dβ∂2β(∂ν , ·)

)
− 2dβ(∂ν)dβ(∂µ)∂2β + −2τ + 2

τ
∂2(∂ν , ∂µ)dβ2

)
+ β−2

(
dβ(∂ν)∂3β(∂µ, ·, ·) + dβ(∂µ)∂3β(∂ν , ·, ·) + 2τ − 2

τ
dβ∂3β(∂ν , ∂µ, ·)

+ ∂2β(∂ν , ∂mu)∂2β + 2τ − 2
τ

∂2β(∂ν , ·)∂2β(∂µ, ·)
)

+ β−1
(
−∂4β(∂ν , ∂µ, ·, ·)

)
.

Applying the above formulas at z = 0, we obtain

g|0 = 2〈dz, dz〉, (3.35)

g−1|0 = 1
2〈∂z, ∂z〉, (3.36)

∂µg|0 = −∂3β0(∂µ, ·, ·) = −6P3(∂µ, ·, ·),

∂µ(g−1)|0 = −g−1|0∂µg|0g−1|0 = 3
2P3(∂µ, ·, ·),

∂ν∂µg|0 = ∂2β0(∂µ, ∂ν)∂2β0 + 2τ − 2
τ

∂2β0(∂ν , ·)∂2β0(∂µ, ·)− ∂4β0(∂ν , ∂µ, ·, ·)

= 4δνµ〈·, ·〉+ 8τ − 8
τ
〈∂ν , ·〉〈∂µ, ·〉 − 24P4(∂ν , ∂µ, ·, ·),

∂ν∂µgij|0 = 4δνµδ
j
i + 4τ − 4

τ

(
δiνδ

j
µ + δjνδ

i
µ

)
− 24P4(∂ν , ∂µ, ∂i, ∂j),

In order to calculate the scalar curvature of (dom(H), g) ∼= (H, τgH),

S =
∑
a,i,j

(
∂aΓaji − ∂jΓaia +

∑
k

(
ΓkijΓaak − ΓkiaΓajk

))
gij,

at z = 0, we need to calculate the Christoffel symbols and their first derivatives. We have

Γkij = 1
2
∑
`

(∂igj` + ∂jgi` − ∂`gij) g`k,

∂aΓkij = 1
2
∑
`

(
(∂a∂igj` + ∂a∂jgi` − ∂a∂`gij) g`k + (∂igj` + ∂jgi` − ∂`gij) ∂ag`k

)
,

and

Γkij
∣∣∣
0

= −3
2P3(∂i, ∂j, ∂k), (3.37)
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∂aΓkij
∣∣∣
0

= δiaδ
k
j + δjaδ

k
i + τ − 2

τ
δkaδ

j
i − 6P4(∂a, ∂i, ∂j, ∂k)−

9
2
∑
`

P3(∂a, ∂k, ∂`)P3(∂i, ∂j, ∂`).

(3.38)

Since gij|0 = 1
2δ
j
i ,

S(0) = 1
2
∑
a,i

(
∂aΓaii − ∂iΓaia +

∑
k

(
ΓkiiΓaak − ΓkiaΓaik

))∣∣∣∣∣∣
0

.

We obtain

∂aΓaii|0 = τ − 2
τ

+ 2δia − 6P4(∂a, ∂a, ∂i, ∂i)−
9
2
∑
`

P3(∂a, ∂a, ∂`)P3(∂i, ∂i, ∂`),

∂iΓaia|0 = 1 + 2τ − 2
τ

δai − 6P4(∂a, ∂a, ∂i, ∂i)−
9
2
∑
`

P3(∂a, ∂i, ∂`),

ΓkiiΓaak
∣∣∣
0

= 9
4P3(∂a, ∂a, ∂k)P3(∂i, ∂i, ∂k),

ΓkiaΓaik
∣∣∣
0

= 9
4 (P3(∂a, ∂i, ∂k))2 .

Hence,

S(0) = n(1− n)
τ

+ 9
8
∑
a,i,`

(
−P3(∂a, ∂a, ∂`)P3(∂i, ∂i, ∂`) + (P3(∂a, ∂i, ∂`))2

)

= n(1− n)
τ

+ 9
8
∑
`

∑
a6=i

(
−P3(∂a, ∂a, ∂`)P3(∂i, ∂i, ∂`) + (P3(∂a, ∂i, ∂`))2

)
.

Recall that dΦ0 (∂zi) = ∂yi for all 1 ≤ i ≤ n, which one can easily verify. Thus SH (( 1
0 )) =

τS(0) and the above equation prove our claim. Observe that SH (( 1
0 )) only depends on the

dimension n of H, the degree of homogeneity τ , and the cubic polynomial P3. Also note that
SH ≡ 0 for dim(H) = n = 1 is consistent with the formula (3.34).

Note that Proposition 3.29 gives us, at least in theory, a simple way of calculating the
scalar curvature of a connected GPSR manifold H equipped with its centro-affine fundamental
form (and thus of all GPSR manifolds by considering each connected component) at every
point p ∈ H. This, however, requires calculating A(p) as in Proposition 3.18 for each p ∈ H.
This amounts basically to determining an orthonormal basis for some positive definite bilinear
form. This is certainly easier than calculating Christoffel-symbols and their derivatives at
each point, but nevertheless complicated enough to require a (both p- and H-dependent)
case-by-case study and not giving us a closed form of SH(p) for all p ∈ H. An application of
these studies is Proposition 6.9.

Calculating the first derivative of the scalar curvature SH at the point ( xy ) = ( 1
0 ) ∈ H

can of course also be done in a direct way, but the calculations require the (local) calculation
of the third partial derivatives of the metric gH and, hence, are very long and have a huge
potential for human error. One can however also make use of Proposition 3.26 to obtain a
formula for dSH|( 1

0 ).

Proposition 3.30 (First derivative of SH). With the assumptions and notations of Propo-
sition 3.29 and Definition 3.27 and identifying T( 1

0 )H with the affinely embedded hyperplane{(
0
y

) ∣∣∣ y ∈ Rn
}
⊂ Rn+1, we have for τ ≥ 4

dSH|( 1
0 ) =

(∑
a

3(n− 1)(τ − 2)
2 P3(∂a, ∂a, dy)

)
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+
∑
a,i,j

9τ(−P3(∂a, ∂a, ∂j)P4(∂i, ∂i, ∂j, dy) + P3(∂a, ∂i, ∂j)P4(∂a, ∂i, ∂j, dy))


+
∑
a,i,j,`

27τ
8 P3(∂j, ∂`, dy)(−P3(∂a, ∂a, ∂j)P3(∂i, ∂i, ∂`)

− 2P3(∂a, ∂a, ∂i)P3(∂i, ∂j, ∂`) + 3P3(∂a, ∂i, ∂j)P3(∂a, ∂i, ∂`)) (3.39)

and for τ = 3

dSH|( 1
0 ) =

(∑
a

3(n− 1)
2 P3(∂a, ∂a, dy)

)

+
∑
a,i,j,`

81
8 P3(∂j, ∂`, dy)(−P3(∂a, ∂a, ∂j)P3(∂i, ∂i, ∂`)

− 2P3(∂a, ∂a, ∂i)P3(∂i, ∂j, ∂`) + 3P3(∂a, ∂i, ∂j)P3(∂a, ∂i, ∂`)). (3.40)

Proof. In the following calculations we will identify dz and dy, respectively each ∂zi and ∂yi
(and write ∂i instead) via dΦ0, cf. equation (3.14), which has the property that dΦ0 (∂zi) = ∂yi
for all 1 ≤ i ≤ n. We start with the case τ ≥ 4. With the notations of Definition 3.27,
Propositions 3.29 and Proposition 3.26 equation (3.24) imply

dSH|( 1
0 ) = 9τ

4
∑
a,i,`

(−P3(∂a, ∂a, ∂`)δP3(∂i, ∂i, ∂`) + P3(∂a, ∂i, ∂`)δP3(∂a, ∂i, ∂`)) , (3.41)

where

δP3(y) = −2(τ − 2)
τ

〈y, y〉〈y, dz〉+3P3

(
y, y, dB0y + 3

2P3(y, ·, dz)T
)

+4P4(y, y, y, dz). (3.42)

Recall that dB0 ∈ Lin(Rn, so(n)). We thus need to determine a formula for δP3(∂i, ∂j, ∂k) for
all 1 ≤ i, j, k ≤ n. The safest way in the sense that possible errors in the pre-factors do not
occur is to determine ∂2(δP3(y)), where we regard dz in equation (3.42) as a constant vector.
We obtain

d(δP3)y(v) = −4(τ − 2)
τ

〈y, v〉〈y, dz〉+ −2(τ − 2)
τ

〈y, y〉〈v, dz〉

+ 6P3

(
y, v, dB0y + 3

2P3(y, ·, dz)T
)

+ 3P3

(
y, y, dB0v + 3

2P3(v, ·, dz)T
)

+ 12P4(y, y, v, dz) (3.43)

for all y, v ∈ Rn and, hence,

∂2(δP3)y(v, w) = −4(τ − 2)
τ

(〈v, w〉〈y, dz〉+ 〈y, v〉〈w, dz〉+ 〈y, w〉〈v, dz〉)

+ 6P3

(
v, w, dB0y + 3

2P3(y, ·, dz)T
)

+ 6P3

(
y, v, dB0w + 3

2P3(w, ·, dz)T
)

+ 6P3

(
y, w, dB0v + 3

2P3(v, ·, dz)T
)

+ 24P4(y, v, w, dz)

for all y, v, w ∈ Rn. Since δP3(y) is homogeneous of degree 3 in y, we have the identities

d(δP3)y(v) = 3δP3(y, y, v),



44

∂2(δP3)y(v, w) = 6δP3(y, v, w),

when we regard dz as a constant vector and interpret δP3 as a cubic tensor. We use the
above identities and obtain∑

a,i,`

P3(∂a, ∂a, ∂`)δP3(∂i, ∂i, ∂`)

=
∑
a,`

P3(∂a, ∂a, ∂`)
(τ − 2)(−2n− 4)

3τ 〈∂`, dz〉


+
∑
a,i,`

P3(∂a, ∂a, ∂`) (2P3(∂i, ∂`, dB0∂i) + P3(∂i, ∂i, dB0∂`) + 4P4(∂i, ∂i, ∂`, dz))


+
 ∑
a,i,`,j

P3(∂a, ∂a, ∂`)
(

3P3(∂i, ∂`, ∂j)P3(∂i, ∂j, dz) + 3
2P3(∂i, ∂i, ∂j)P3(∂`, ∂j, dz)

)
and ∑

a,i,`

P3(∂a, ∂i, ∂`)δP3(∂a, ∂i, ∂`)

=
∑
a,`

P3(∂a, ∂`, ∂`)
−2(τ − 2)

τ
〈∂a, dz〉


+
∑
a,i,`

P3(∂a, ∂i, ∂`) (3P3(∂a, ∂i, dB0∂`) + 4P4(∂a, ∂i, ∂`, dz))


+
 ∑
a,i,`,j

P3(∂a, ∂i, ∂`)
(9

2P3(∂a, ∂i, ∂j)P3(∂`, ∂j, dz)
) . (3.44)

To see that all terms containing dB0 : Rn → so(n) (understood as in equation (3.25)) vanish,
observe that for all 1 ≤ a, i, ` ≤ n the tensors

P3(∂a, ∂a, ∂`)P3(·, ∂`, ·), P3(∂a, ∂a, ·)P3(∂i, ∂i, ·), P3(∂a, ∂i, ·)P3(∂a, ∂i, ·)

are symmetric in their two arguments. Their trace with respect to the standard Euclidean
scalar product 〈·, ·〉 on Rn when inserting any matrix M ∈ so(n) in one of the arguments
thus vanishes. We can now use the above formulas for ∑

a,i,`
P3(∂a, ∂a, ∂`)δP3(∂i, ∂i, ∂`) and∑

a,i,`
P3(∂a, ∂i, ∂`)δP3(∂a, ∂i, ∂`) in equation (3.41) and, with the identification of dz and dy via

dΦ0 (3.14), obtain our claimed result for τ ≥ 4. For τ = 3, observe that the formulas for δP3
in equations (3.30) and (3.42) coincide when setting P4 ≡ 0. The calculations for the case
τ = 3 thus coincide with the cases τ ≥ 4 and we obtain the claimed result.

The calculations used in Proposition 3.29 can also be used to calculate the Riemannian
curvature tensor, the Ricci curvature, and the sectional curvatures of a connected GPSR
manifold (H, gH).

Lemma 3.31 (Riemannian, Ricci, and sectional curvature of GPSR manifolds). With the
assumptions of Proposition 3.29, let R denote the Riemannian curvature tensor, Ric denote
the Ricci curvature, and K denote the sectional curvature of an n-dimensional connected
GPSR (H, gH), respectively. We again identify dz and dy at ( 1

0 ) ∈ H via dΦ0 (3.14). Then

R( 1
0 )(∂i, ∂j)∂k = 2

τ

(
δki − δkj

)
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+ 9
4
∑
a,`

(−P3(∂i, ∂`, ∂a)P3(∂j, ∂k, ∂a) + P3(∂i, ∂k, ∂a)P3(∂j, ∂`, ∂a)) , (3.45)

Ric( 1
0 )(∂j, ∂k) = 2(1− n)δkj

+ 9τ
4
∑
a,i

(−P3(∂i, ∂i, ∂a)P3(∂j, ∂k, ∂a) + P3(∂i, ∂j, ∂a)P3(∂i, ∂k, ∂a)) , (3.46)

and for dim (span{v, w}) = 2

K( 1
0 )(v, w) = −1 + 9τ

8
∑
`

(
−P3(F∂i, F∂i, F∂`)P3(F∂j, F∂j, F∂`) + P3(F∂i, F∂j, F∂`)2

)
,

(3.47)
where F ∈ O(n) is any orthogonal transformation with the property that span{v, w} =
span{F∂i, F∂j}. Note that such a transformation F always exists for any choices of i 6= j,
and that K(v, w) does in particular not depend on that choice of i, j, and the corresponding
F (cf. Definition 2.14).

Proof. The formulas (3.45) and (3.46) for the Riemannian curvature tensor R and the Ricci
tensor Ric, respectively, follow directly from the formulas for the Christoffel symbols (3.37),
their first derivatives (3.38), and the inverse of gH at the point ( xy ) = ( 1

0 ) (3.36) (up to the
factor τ) given in the proof of Proposition 3.29. Recall that in said proof we work with
g = τΦ∗gH, Φ as in (3.14), hence we also need to rescale the formula for g at 0 (3.36)
at the point where we take the trace with respect gH. For the sectional curvature K, the
formula for K( 1

0 )(∂i, ∂j) for i 6= j follows easily from (3.45) and (3.35) (and by rescaling
with the overall factor τ). To find the general formula K( 1

0 )(v, w) (3.47) for any two linearly
independent vectors v, w ∈ T( 1

0 )H ∼= Rn, choose i 6= j and F ∈ O(n) as described such that
span{v, w} = span{F∂i, F∂j}. Changing the coordinates of the ambient Rn+1 via(

x̃
ỹ

)
=
(

x
F−1y

)

corresponds to rotating H in the y-coordinates and correspondingly changing the defining
cubic h to

h̃ = x̃3 − x̃〈ỹ, ỹ〉+ P̃3(ỹ),

with P̃3(ỹ) = P3(F ỹ). In the
(
x̃
ỹ

)
-coordinates, let K̃ denote the sectional curvature. By

identifying ∂ỹk = ∂yk = ∂k for all 1 ≤ k ≤ n (as the kth unit vector in Rn, not via the map
F ) we have

K( 1
0 )(v, w) = K̃( 1

0 )(∂i, ∂j)

= −1 + 9τ
8
∑
`

(
−P̃3(∂i, ∂i, ∂`)P̃3(∂j, ∂j, ∂`) + P̃3(∂i, ∂j, ∂`)2

)
= −1 + 9τ

8
∑
`

(
−P3(F∂i, F∂i, F∂`)P3(F∂j, F∂j, F∂`) + P3(F∂i, F∂j, F∂`)2

)
.

In the next part of this section, we will determine the second variation of the Pk-
polynomials in (3.12) which we will define analogously to their first variation determined
in Proposition 3.26 and defined in Definition 3.27.
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Definition 3.32 (Second variation of the Pk’s). With the assumptions of Proposition 3.26
we define for τ ≥ 3 and 3 ≤ k ≤ τ

δ2Pk(y) :=
(

1
(τ − k)!∂

τ−k
x

(
∂2
z (h (A(z) · ( xy )))

∣∣∣
z=0

))∣∣∣∣∣(xy )=
(

0
y

) , (3.48)

where ∂2
z (h (A(z) · ( xy ))) denotes the second derivative with respect to the z = (z1, . . . , zn)T -

coordinates, (∂2
z (h (A(z) · ( xy ))))ij = ∂2

∂zi∂zj
(h (A(z) · ( xy ))). For each 3 ≤ k ≤ τ we call

δ2Pk the second variation of Pk along H with respect to the chosen dB0 (3.28), respectively
dA0 (3.26), and understand δ2Pk(y) as a bilinear symmetric map δPk(y) : Rn × Rn →
Symk ((Rn)∗).

Note that with the conventions introduced in Definition 3.48

∂2
z (h (A(z) · ( xy )))

∣∣∣
z=0

=
τ∑
i=3

xτ−iδ2Pi(y).

Proposition 3.33 (δ2Pk’s for τ = 3 and τ = 4). With the assumptions and notations
from Proposition 3.26, δ2P3(y) for connected PSR manifolds is of the form (3.55). For
quartic connected GPSR manifolds, that is connected GPSR manifolds H ⊂ {h = 1} with
corresponding h of homogeneity-degree τ = 4, δ2P3(y) is of the form (3.56) and δ2P4(y) is of
the form (3.57).

Proof. The proof is, up to one step4, just a big calculation. We will however include the
main steps of this calculation, since the general result can most likely not be obtained with
a computer algebra system for arbitrary τ ≥ 3 and arbitrary n ∈ N. Furthermore, as the
calculations become longer, the potential for calculation errors rises. So if one wants to check
the result, intermediate steps will provide cornerstones for checking ones own calculations.
We start with the formulas for the first and second derivatives of h and A. It is easy to
confuse some symmetric tensors with non-symmetric tensors, e.g. consider for any smooth
F : dom(H)→ GL(n) and v, w ∈ T0dom(H) ∼= Rn

(〈dz, dF0·〉) (v, w) = 1
2 (〈v, dF0w〉+ 〈w, dF0v〉) ,

and using wrong pre-factors when forgetting about the factor 1
2 . For this reason we will use

the identification 〈dz, dF0·〉 = 1
2 (〈d1z, d2F0·〉+ 〈d2z, d1F0·〉), where d1z and d2z stand for the

first, respectively second, direction in which we are taking the derivative. We again identify
dz and dy via dΦ0 (3.14) and obtain

dh(xy ) =
(
τxτ−1 − (τ − 2)xτ−3〈y, y〉+

τ−1∑
i=3

(τ − i)xτ−i−1Pi(y)
)
dx

− 2xτ−2〈y, dy〉+
τ∑
i=3

xτ−iiPi(y, . . . , y, dy),

∂2h(xy ) =
(
τ(τ − 1)xτ−2 − (τ − 2)(τ − 3)xτ−4〈y, y〉+

τ−2∑
i=3

(τ − i)(τ − i− 1)xτ−i−2Pi(y)
)
dx2

+ 2
(
−2(τ − 2)xτ−3〈y, dy〉+

τ−1∑
i=3

i(τ − i)xτ−i−1Pi(y, . . . , y, dy)
)
dx

4See implication of equation (3.49).
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− 2xτ−2〈dy, dy〉+
τ∑
i=3

i(i− 1)xτ−iPi(y, . . . , y, dy, dy),

and
dA0 =

(
0 2

τ
dzT

dz dE0

)
,

∂2A0 =
( 2

τ
〈dz, dz〉 2

τ
(〈d1z, d2E0·〉+ 〈d2z, d1E0·〉 − 3P3(d1z, d2z, ·))

0 ∂2E0

)
,

where we, similarly to Proposition 3.26 and using the identification T0dom(H) ∼= Rn, under-
stand dE0 as an element of Lin(Rn, gl(n)) and ∂2E0 as a gl(n)-valued symmetric (0, 2)-tensor,
i.e. ∂2E0 ∈ Sym2 ((Rn)∗)⊗ gl(n).

The following calculations are slightly different for τ = 3, τ = 4, and τ ≥ 5, respectively.
The difference is that certain terms, for example terms of order xτ−5, do not appear for τ = 3
and τ = 4. We will present the calculations for τ ≥ 5 and present the results for the cases
τ = 3 and τ = 4, which are easily obtain by slightly modifying the τ ≥ 5-case. We obtain
with (3.26) and (3.28)

∂2h(xy ) (d1A0( xy ), d2A0( xy ))

= xτ (−2〈d1z, d2z〉)
+ xτ−1 (−2〈d1z, d2E0y〉 − 2〈d2z, d1E0y〉)

+ xτ−2
(−4τ + 12

τ
〈y, d1z〉〈y, d2z〉 − 2〈d1E0y, d2E0y〉

)
+ xτ−3

(
−4(τ − 2)

τ
(〈y, d1E0y〉〈y, d2z〉+ 〈y, d2E0y〉〈y, d1z〉)

)

+ xτ−4
(
−4(τ − 2)(τ − 3)

τ 2 〈y, y〉〈y, d1z〉〈y, d2z〉
)

+
(

τ∑
i=5

xτ−i
4(τ − i+ 2)(τ − i+ 1)

τ 2 Pi−2(y)〈y, d1z〉〈y, d2z〉
)

+
(

τ∑
i=4

xτ−i
2(i− 1)(τ − i+ 1)

τ
(Pi−1(y, . . . , y, d2E0y)〈y, d1z〉

+Pi−1(y, . . . , y, d1E0y)〈y, d2z〉)
)

+
(
τ−1∑
i=3

xτ−i
2i(τ − i)

τ
(Pi(y, . . . , y, d2z)〈y, d1z〉+ Pi(y, . . . , y, d1z)〈y, d2z〉)

)

+
(

τ∑
i=3

xτ−ii(i− 1)Pi(y, . . . , y, d1E0y, d2E0y)
)

+
(
τ−1∑
i=2

xτ−i(i+ 1)i (Pi+1(y, . . . , y, d2E0y, d1z) + Pi+1(y, . . . , y, d1E0y, d2z))
)

+
(
τ−2∑
i=1

xτ−i(i+ 2)(i+ 1)Pi+2(y, . . . , y, d1z, d2z)
)

and

dh(xy )
(
∂2A0 ( xy )

)
= xτ (2〈d1z, d2z〉)
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+ xτ−1 (2(〈d1z, d2E0y〉+ 〈d2z, d1E0y〉)− 6P3(d1z, d2z, y))

+ xτ−2
(
−2(τ − 2)

τ
〈y, y〉〈d1z, d2z〉 − 2〈y, ∂2E0y〉

)

+ xτ−3
(
−2(τ − 2)

τ
〈y, y〉(〈d1z, d2E0y〉+ 〈d2z, d1E0y〉 − 3P3(d1z, d2z, y))

)

+
(

τ∑
i=4

xτ−i
2(τ − i+ 1)

τ
Pi−1(y)(〈d1z, d2E0y〉+ 〈d2z, d1E0y〉 − 3P3(d1z, d2z, y))

)

+
(
τ−1∑
i=3

xτ−i
2(τ − i)

τ
Pi(y)〈d1z, d2z〉

)

+
(

τ∑
i=3

xτ−iiPi(y, . . . , y, ∂2E0y)
)
.

We immediately see that the terms of order xτ and xτ−1 in the sum

∂2h(xy ) (dA0( xy ), dA0( xy )) + dh(xy )
(
∂2A0 ( xy )

)
vanish as expected. Furthermore, the term of order xτ−2 is also required to vanish, which
yields the following equation for ∂2E0:

〈y, ∂2E0y〉 = −2(τ − 2)
τ

〈y, y〉〈d1z, d2z〉+ −4(τ − 3)
τ

〈y, d1z〉〈y, d2z〉 − 2〈d1E0y, d2E0y〉

+ 6(P3(y, d2E0y, d1z) + P3(y, d1E0y, d2z)) + 12P4(y, y, d1z, d2z). (3.49)

Assuming that ∂2E0 fulfils equation (3.49), we obtain

∂2h(xy ) (dA0( xy ), dA0( xy )) + dh(xy )
(
∂2A0 ( xy )

)
= xτ−3

(
−4(τ − 2)

τ
(〈y, d1E0y〉〈y, d2z〉+ 〈y, d2E0y〉〈y, d1z〉)

+ 6(τ − 3)
τ

(P3(y, y, d2z)〈y, d1z〉+ P3(y, y, d1z)〈y, d2z〉)

+ 6P3(y, d1E0y, d2E0y)
+ 12(P4(y, y, d2E0y, d1z) + P4(y, y, d1E0y, d2z))
+ 20P5(y, y, y, d1z, d2z)

+ −2(τ − 2)
τ

〈y, y〉(〈d1z, d2E0y〉+ 〈d2z, d1E0y〉 − 3P3(d1z, d2z, y))

+ 2(τ − 3)
τ

P3(y)〈d1z, d2z〉+ 3P3(y, y, ∂2E0y)
)

+ xτ−4
(
−4(τ − 2)(τ − 3)

τ 2 〈y, y〉〈y, d1z〉〈y, d2z〉

+ 8(τ − 4)
τ

(P4(y, y, y, d2z)〈y, d1z〉+ P4(y, y, y, d1z)〈y, d2z〉)

+ 6(τ − 3)
τ

(P3(y, y, d2E0y)〈y, d1z〉+ P3(y, y, d1E0y)〈y, d2z〉)

+ 12P4(y, y, d1E0y, d2E0y)
+ 20(P5(y, y, y, d2E0y, d1z) + P5(y, y, y, d1E0y, d2z))
+ 30P6(y, y, y, y, d1z, d2z)
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+ 2(τ − 4)
τ

P4(y)〈d1z, d2z〉

+ 2(τ − 3)
τ

P3(y)(〈d1z, d2E0y〉+ 〈d2z, d1E0y〉 − 3P3(d1z, d2z, y)) + 4P4(y, y, y, ∂2E0y)
)

+ x
(24
τ 2Pτ−3(y)〈y, d1z〉〈y, d2z〉

+ 4(τ − 2)
τ

(Pτ−2(y, . . . , y, d2E0y)〈y, d1z〉+ Pτ−2(y, . . . , y, d1E0y)〈y, d2z〉)

+ 4
τ
Pτ−2(y)(〈d1z, d2E0y〉+ 〈d2z, d1E0y〉 − 3P3(d1z, d2z, y))

+ 2(τ − 1)
τ

(Pτ−1(y, . . . , y, d2z)〈y, d1z〉+ Pτ−1(y, . . . , y, d1z)〈y, d2z〉)

+ (τ − 1)(τ − 2)Pτ−1(y, . . . , y, d1E0y, d2E0y)

+ 2
τ
Pτ−1(y)〈d1z, d2z〉+ (τ − 1)Pτ−1(y, . . . , y, ∂2Ey)

+ τ(τ − 1)(Pτ (y, . . . , y, d2E0y, d1z) + Pτ (y, . . . , y, d1E0y, d2z))
)

+
( 8
τ 2Pτ−2(y)〈y, d1z〉〈y, d2z〉

+ 2(τ − 1)
τ

(Pτ−1(y, . . . , y, d2E0y)〈y, d1z〉+ Pτ−1(y, . . . , y, d1E0y)〈y, d2z〉)

+ 2
τ
Pτ−1(y)(〈d1z, d2E0y〉+ 〈d2z, d1E0y〉 − 3P3(d1z, d2z, y))

+ τ(τ − 1)Pτ (y, . . . , y, d1E0y, d2E0y) + τPτ (y, . . . , y, ∂2E0y)
)

+
τ−2∑
i=5

xτ−i
(

4(τ − i+ 2)(τ − i+ 1)
τ 2 Pi−2(y)〈y, d1z〉〈y, d2z〉

+ 2(i− 1)(τ − i+ 1)
τ

(Pi−1(y, . . . , y, d2E0y)〈y, d1z〉+ Pi−1(y, . . . , y, d1E0y)〈y, d2z〉)

+ 2(τ − i+ 1)
τ

Pi−1(y)(〈d1z, d2E0y〉+ 〈d2z, d1E0y〉 − 3P3(d1z, d2z, y))

+ 2i(τ − i)
τ

(Pi(y, . . . , y, d2z)〈y, d1z〉+ Pi(y, . . . , y, d1z)〈y, d2z〉)

+ i(i− 1)Pi(y, . . . , y, d1E0y, d2E0y)

+ 2(τ − i)
τ

Pi(y)〈d1z, d2z〉+ iPi(y, . . . , y, ∂2E0y)

+ (i+ 1)i(Pi+1(y, . . . , y, d2E0y, d1z) + Pi+1(y, . . . , y, d1E0y, d2z))

+ (i+ 2)(i+ 1)Pi+2(y, . . . , y, d1z, d2z)
)
.

In this proposition we want to determine δ2P3(y) and δ2P4(y), and are thus only interested
in the terms of order xτ−3 and xτ−4. The terms of order xτ−i for 5 ≤ i ≤ τ and related
analogous definitions of δ2Pi(y) can be determined in a similar way.Note that the summation
ranges in the above formula are precisely the reason why we have to be careful in the cases
τ = 3 and τ = 4. At this point we have shown that

δ2P3(y) = −4(τ − 2)
τ

(〈y, d1E0y〉〈y, d2z〉+ 〈y, d2E0y〉〈y, d1z〉)
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+ 6(τ − 3)
τ

(P3(y, y, d2z)〈y, d1z〉+ P3(y, y, d1z)〈y, d2z〉)

+ 6P3(y, d1E0y, d2E0y)
+ 12(P4(y, y, d2E0y, d1z) + P4(y, y, d1E0y, d2z))
+ 20P5(y, y, y, d1z, d2z)

+ −2(τ − 2)
τ

〈y, y〉(〈d1z, d2E0y〉+ 〈d2z, d1E0y〉 − 3P3(d1z, d2z, y))

+ 2(τ − 3)
τ

P3(y)〈d1z, d2z〉+ 3P3(y, y, ∂2E0y). (3.50)

Next we will replace the first and second derivatives of E at z = 0. In Proposition 3.26 we have
already determined that dE0 fulfils dE0(y) = 3

2P3(y, ·, dz)T + dB0y, dB0 ∈ Lin(Rn, so(n)), for
details see equation (3.28) and the discussion following it. We denote by Endsym.(Rn, 〈·, ·〉)
the symmetric endomorphisms of Rn with respect to the standard Euclidean scalar product
and uniquely decompose gl(n) = Endsym.(Rn, 〈·, ·〉)⊕ so(n), so that we can write

∂2E0 = s + a, s ∈ Sym2 (Rn)∗ ⊗ Endsym.(Rn, 〈·, ·〉), a ∈ Sym2 (Rn)∗ ⊗ so(n). (3.51)

Hence, we obtain for the symmetric part s of ∂2E0

〈v, sw〉 = −(τ − 2)
τ

〈v, w〉〈d1z, d2z〉

+ −(τ − 3)
τ

(v, d1z〉〈w, d2z〉+ 〈w, d1z〉〈v, d2z〉)

− 1
2(〈d1E0v, d2E0w〉+ 〈d1E0w, d2E0v〉)

+ 3
2(P3(v, d2E0w, d1z) + P3(w, d2E0v, d1z)

+ P3(v, d1E0w, d2z) + P3(w, d1E0v, d2z))
+ 6P4(v, w, d1z, d2z). (3.52)

The only part in equation (3.50) containing the term ∂2E0 is 3P3(y, y, ∂2E0y). By setting
v = P3(y, y, ·)T and w = y, we can insert equations (3.51) and (3.52) into 3P3(y, y, ∂2E0y):

3P3(y, y, ∂2E0y) = 3P3(y, y, ay)

+ −3(τ − 2)
τ

P3(y)〈d1z, d2z〉

+ −3(τ − 3)
τ

(P3(y, y, d1z)〈y, d2z〉+ P3(y, y, d2z)〈y, d1z〉)

− 3
2
(
P3
(
y, y, 〈d2E0y, d1E0·〉T

)
+ P3

(
y, y, 〈d1E0y, d2E0·〉T

))
+ 9

2
(
P3
(
y, d2E0P3(y, y, ·)T , d1z

)
+ P3

(
P3(y, y, ·)T , d2E0y, d1z

)
+ P3

(
y, d1E0P3(y, y, ·)T , d2z

)
+ P3

(
P3(y, y, ·)T , d1E0y, d2z

))
+ 18P3

(
y, y, P4(y, d1z, d2z, ·)T

)
.

Hence,

δ2P3(y) = −4(τ − 2)
τ

(〈y, d1E0y〉〈y, d2z〉+ 〈y, d2E0y〉〈y, d1z〉)



51

+ 3(τ − 3)
τ

(P3(y, y, d2z)〈y, d1z〉+ P3(y, y, d1z)〈y, d2z〉)

+ 20P5(y, y, y, d1z, d2z)
+ 12(P4(y, y, d2E0y, d1z) + P4(y, y, d1E0y, d2z))
+ 6P3(y, d1E0y, d2E0y)

+ −2(τ − 2)
τ

〈y, y〉(〈d1z, d2E0y〉+ 〈d2z, d1E0y〉 − 3P3(y, d1z, d2z))

+ −(τ − 2)
τ

P3(y)〈d1z, d2z〉

+ P3(y, y, ay)

− 3
2P3

(
y, y, 〈d2E0y, d1E0·〉T + 〈d1E0y, d2E0·〉T

)
+ 18P3

(
y, y, P4(y, d1z, d2z, ·)T

)
+ 9

2
(
P3
(
y, d2E0P3(y, y, ·)T , d1z

)
+ P3

(
P3(y, y, ·)T , d2E0y, d1z

)
+ P3

(
y, d1E0P3(y, y, ·)T , d2z

)
+ P3

(
P3(y, y, ·)T , d1E0y, d2z

))
.

The next step is replacing dE0(y) = 3
2P3(y, ·, dz)T + dB0y, cf. equation (3.28). This yields

δ2P3(y) = −3(τ − 1)
τ

(P3(y, y, d2z)〈y, d1z〉+ P3(y, y, d1z)〈y, d2z〉)

+ 20P5(y, y, y, d1z, d2z)
+ 18

(
P4
(
y, y, P3 (y, ·, d2z)T , d1z

)
+ P4

(
y, y, P3 (y, ·, d1z)T , d2z

)
+P4

(
y, P3 (y, y, ·)T , d1z, d2z

))
+ 27

2 P3
(
y, P3(y, ·, d1z)T , P3(y, ·, d2z)T

)
− 27

8 P3

(
y, y, P3

(
P3(y, ·, d2z)T , ·, d1z

)T
+ P3

(
P3(y, ·, d1z)T , ·, d2z

)T)
+ −(τ − 2)

τ
P3(y)〈d1z, d2z〉

+ 27
4
(
P3
(
y, d1z, P3

(
P3(y, y, ·)T , ·, d2z)T

))
+ P3

(
P3(y, y, ·)T , P3(y, ·, d2z)T , d1z

)
+P3

(
y, d2z, P3

(
P3(y, y, ·)T , ·, d1z)T

))
+ P3

(
P3(y, y, ·)T , P3(y, ·, d1z)T , d2z

))
+ 12(P4(y, y, d2B0y, d1z) + P4(y, y, d1B0y, d2z))
+ 6P3(y, d1B0y, d2B0y)
+ 9

(
P3
(
y, d1B0y, P3(y, ·, d2z)T

)
+ P3

(
y, d2B0y, P3(y, ·, d1z)T

))
+ −2(τ − 2)

τ
〈y, y〉(〈d1z, d2B0y〉+ 〈d2z, d1B0y〉)

+ 3P3(y, y, ay)

− 3
2P3

(
y, y, 〈d2B0y, d1B0·〉T + 〈d1B0y, d2B0·〉T

)
− 9

4
(
P3
(
y, y, P3(d2B0y, ·, d1z)T

)
+ P3

(
y, y, P3(d1B0y, ·, d2z)T

)
+P3

(
y, y, P3(y, d2B0·, d1z)T

)
+ P3

(
y, y, P3(y, d1B0·, d2z)T

))
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+ 9
2
(
−P3

(
y, P3(y, y, d2B0·)T , d1z

)
+ P3

(
P3(y, y, ·)T , d2B0y, d1z

)
−P3

(
y, P3(y, y, d1B0·)T , d2z

)
+ P3

(
P3(y, y, ·)T , d1B0y, d2z

))
. (3.53)

Note that we have used that dB0 has image in so(n), that is dB0 ∈ Lin(Rn, so(n)) or,
equivalently, dBT

0 = −dB0 and, hence,

dB0P3(y, y, ·)T =
(
P3(y, y, ·)dBT

0 ·
)T

= (−P3(y, y, dB0·))T = −P3(y, y, dB0·)T .

The formula for δ2P4(y) is obtained with methods analogous to the ones used for the calcu-
lation of δ2P3(y). We obtain

δ2P4(y) = −4(τ − 2)(τ − 3)
τ 2 〈y, y〉〈y, d1z〉〈y, d2z〉

+ 4(τ − 5)
τ

(P4(y, y, y, d2z)〈y, d1z〉+ P4(y, y, y, d1z)〈y, d2z〉)

+ 9(τ − 3)
τ

(
P3
(
y, y, P3(y, ·, d2z)T

)
〈y, d1z〉+ P3

(
y, y, P3(y, ·, d1z)T

)
〈y, d2z〉

)
+ 18P4

(
y, y, P3(y, ·, d1z)T , P3(y, ·, d2z)T

)
+ 30

(
P5
(
y, y, y, P3(y, ·, d2z)T , d1z

)
+ P5

(
y, y, y, P3(y, ·, d1z)T , d2z

))
+ 30P6(y, y, y, y, d1z, d2z)
− 2P4(y)〈d1z, d2z〉

+ 27
2 P4

(
y, y, y, P3

(
P3(y, ·, d2z)T , ·, d1z

)
+ P3

(
P3(y, ·, d1z)T , ·, d2z

))
+ 24P4

(
y, y, y, P4(y, ·, d1z, d2z)T

)
+ 6(τ − 3)

τ
(P3(y, y, d2B0y)〈y, d1z〉+ P3(y, y, d1B0y)〈y, d2z〉)

+ 18
(
P4
(
y, y, d1B0y, P3(y, ·, d2z)T

)
+ P4

(
y, y, d2B0y, P3(y, ·, d1z)T

))
+ 12P4(y, y, d1B0y, d2B0y)
+ 20(P5(y, y, y, d2B0y, d1z) + P5(y, y, y, d1B0y, d2z))

+ 2(τ − 3)
τ

P3(y)(〈d1z, d2B0y〉+ 〈d2z, d1B0y〉)

+ 4P4(y, y, y, ay)
+ 3P4

(
y, y, y, P3(d2B0y, ·, d1z)T + P3(y, d2B0·, d1z)T

+P3(d1B0y, ·, d2z)T + P3(y, d1B0·, d2z)T
)

− 2P4
(
y, y, y, 〈d2B0y, d1B0·〉T + 〈d1B0y, d2B0·〉T

)
. (3.54)

To obtain ∂2P3(y) for τ = 3, respectively ∂2P3(y) and ∂2P4(y) for τ = 4, it turns out that
we can simply set the Pi’s for i > 3, respectively i > 4, to zero. Also not that we do not
run into any difficulty with Pi’s of the form Pτ−k, which might not be defined, if we are only
interested in ∂2P3(y) and ∂2P4(y). We obtain for τ = 3, that is for cubic polynomials h, (see
equation (3.53))

δ2P3(y) = −2(P3(y, y, d2z)〈y, d1z〉+ P3(y, y, d1z)〈y, d2z〉)

+ 27
2 P3

(
y, P3(y, ·, d1z)T , P3(y, ·, d2z)T

)
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− 27
8 P3

(
y, y, P3

(
P3(y, ·, d2z)T , ·, d1z

)T
+ P3

(
P3(y, ·, d1z)T , ·, d2z

)T)
− 1

3P3(y)〈d1z, d2z〉

+ 27
4
(
P3
(
y, d1z, P3

(
P3(y, y, ·)T , ·, d2z)T

))
+ P3

(
P3(y, y, ·)T , P3(y, ·, d2z)T , d1z

)
+P3

(
y, d2z, P3

(
P3(y, y, ·)T , ·, d1z)T

))
+ P3

(
P3(y, y, ·)T , P3(y, ·, d1z)T , d2z

))
+ 6P3(y, d1B0y, d2B0y)
+ 9

(
P3
(
y, d1B0y, P3(y, ·, d2z)T

)
+ P3

(
y, d2B0y, P3(y, ·, d1z)T

))
− 2

3〈y, y〉(〈d1z, d2B0y〉+ 〈d2z, d1B0y〉)

+ 3P3(y, y, ay)

− 3
2P3

(
y, y, 〈d2B0y, d1B0·〉T + 〈d1B0y, d2B0·〉T

)
− 9

4
(
P3
(
y, y, P3(d2B0y, ·, d1z)T

)
+ P3

(
y, y, P3(d1B0y, ·, d2z)T

)
+P3

(
y, y, P3(y, d2B0·, d1z)T

)
+ P3

(
y, y, P3(y, d1B0·, d2z)T

))
+ 9

2
(
−P3

(
y, P3(y, y, d2B0·)T , d1z

)
+ P3

(
P3(y, y, ·)T , d2B0y, d1z

)
−P3

(
y, P3(y, y, d1B0·)T , d2z

)
+ P3

(
P3(y, y, ·)T , d1B0y, d2z

))
, (3.55)

and for τ = 4, that is for quartic polynomials h (see equations (3.53) and (3.54))

δ2P3(y) = −9
4(P3(y, y, d2z)〈y, d1z〉+ P3(y, y, d1z)〈y, d2z〉)

+ 18
(
P4
(
y, y, P3 (y, ·, d2z)T , d1z

)
+ P4

(
y, y, P3 (y, ·, d1z)T , d2z

)
+P4

(
y, P3 (y, y, ·)T , d1z, d2z

))
+ 27

2 P3
(
y, P3(y, ·, d1z)T , P3(y, ·, d2z)T

)
− 27

8 P3

(
y, y, P3

(
P3(y, ·, d2z)T , ·, d1z

)T
+ P3

(
P3(y, ·, d1z)T , ·, d2z

)T)
− 1

2P3(y)〈d1z, d2z〉

+ 27
4
(
P3
(
y, d1z, P3

(
P3(y, y, ·)T , ·, d2z)T

))
+ P3

(
P3(y, y, ·)T , P3(y, ·, d2z)T , d1z

)
+P3

(
y, d2z, P3

(
P3(y, y, ·)T , ·, d1z)T

))
+ P3

(
P3(y, y, ·)T , P3(y, ·, d1z)T , d2z

))
+ 12(P4(y, y, d2B0y, d1z) + P4(y, y, d1B0y, d2z))
+ 6P3(y, d1B0y, d2B0y)
+ 9

(
P3
(
y, d1B0y, P3(y, ·, d2z)T

)
+ P3

(
y, d2B0y, P3(y, ·, d1z)T

))
− 〈y, y〉(〈d1z, d2B0y〉+ 〈d2z, d1B0y〉)
+ 3P3(y, y, ay)

− 3
2P3

(
y, y, 〈d2B0y, d1B0·〉T + 〈d1B0y, d2B0·〉T

)
− 9

4
(
P3
(
y, y, P3(d2B0y, ·, d1z)T

)
+ P3

(
y, y, P3(d1B0y, ·, d2z)T

)
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+P3
(
y, y, P3(y, d2B0·, d1z)T

)
+ P3

(
y, y, P3(y, d1B0·, d2z)T

))
+ 9

2
(
−P3

(
y, P3(y, y, d2B0·)T , d1z

)
+ P3

(
P3(y, y, ·)T , d2B0y, d1z

)
−P3

(
y, P3(y, y, d1B0·)T , d2z

)
+ P3

(
P3(y, y, ·)T , d1B0y, d2z

))
, (3.56)

δ2P4(y) = −1
2〈y, y〉〈y, d1z〉〈y, d2z〉

− (P4(y, y, y, d2z)〈y, d1z〉+ P4(y, y, y, d1z)〈y, d2z〉)

+ 9
4
(
P3
(
y, y, P3(y, ·, d2z)T

)
〈y, d1z〉+ P3

(
y, y, P3(y, ·, d1z)T

)
〈y, d2z〉

)
+ 12P4

(
y, y, P3(y, ·, d1z)T , P3(y, ·, d2z)T

)
− 2P4(y)〈d1z, d2z〉

+ 27
2 P4

(
y, y, y, P3

(
P3(y, ·, d2z)T , ·, d1z

)
+ P3

(
P3(y, ·, d1z)T , ·, d2z

))
+ 24P4

(
y, y, y, P4(y, ·, d1z, d2z)T

)
+ 3

2(P3(y, y, d2B0y)〈y, d1z〉+ P3(y, y, d1B0y)〈y, d2z〉)

+ 18
(
P4
(
y, y, d1B0y, P3(y, ·, d2z)T

)
+ P4

(
y, y, d2B0y, P3(y, ·, d1z)T

))
+ 12P4(y, y, d1B0y, d2B0y)

+ 1
2P3(y)(〈d1z, d2B0y〉+ 〈d2z, d1B0y〉)

+ 4P4(y, y, y, ay)
+ 3P4

(
y, y, y, P3(d2B0y, ·, d1z)T + P3(y, d2B0·, d1z)T

+P3(d1B0y, ·, d2z)T + P3(y, d1B0·, d2z)T
)

− 2P4
(
y, y, y, 〈d2B0y, d1B0·〉T + 〈d1B0y, d2B0·〉T

)
. (3.57)

This would enable us to calculate the second derivative of the scalar curvature SH of
a connected GPSR manifold (H, gH) with relatively low effort in comparison with a direct
calculation which would require calculating the 4-jet of the metric gH at ( xy ) = ( 1

0 ) ∈ H. As
a motivation why one really does not want to do this, the interested reader is encouraged to
try calculating the 4th derivative of gH at ( xy ) = ( 1

0 ) ∈ H of her or his favourite connected
GPSR manifold H without the help of a computer algebra system.

One for the first variation of the Pi’s as defined in Definition 3.27 is the study of ho-
mogeneous spaces that are CCGPSR manifolds. We will derive a sufficient condition for a
connected GPSR manifold H ⊂ {h = 1} to be a homogeneous space with respect to the ac-
tion of Gh

0 , that is the identity-component of the automorphism group Gh of h, cf. Definition
3.3.

Proposition 3.34 (Sufficient condition for homogeneity of CCGPSR manifolds). Let H ⊂
{h = 1}, ( 1

0 ) ∈ H, h of the form (3.12), that is

h = xτ − xτ−2〈y, y〉+
τ∑
k=3

xτ−kPk(y),

be a maximal connected GPSR manifold of dimension n ≥ 1. Let δPk(y) : Rn → Symk (Rn)∗
as in equation (3.29) depending on dB0 ∈ Lin (Rn, so(n)) (3.28), cf. Proposition 3.26. Then
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the connected component containing the neutral element of the automorphism group of h, that
is Gh

0 , acts transitively on H if and only if there exists a choice for dB0 ∈ Lin (Rn, so(n)),
such that δPk(y) ≡ 0 for all 3 ≤ k ≤ τ . Furthermore, each of the latter two equivalent
statements imply that H is a CCGPSR manifold.

Proof. By Lemma 3.14, the action Gh
0 × H → H is well defined. Assume that Gh

0 acts
transitively on the considered maximally extended GPSR manifold H ⊂ {h = 1}. Then
H is, in particular, a CCGPSR manifold. For p = ( pxpy ) ∈ H let M(p) ∈ Gh

0 , such that
M(p) · ( 1

0 ) = p. We will show that M(p) is necessarily of the form (3.7). It is clear that M(p)
is of the form

M(p) =
(
px vTp
py W (p)

)
for some vp ∈ Rn and W (p) ∈ Mat(n× n,R). We calculate

h (M(p) · ( xy )) = xτ + xτ−1dhp
((
〈vp,y〉
W (p)y

))
+ 2xτ−2∂2hp

((
〈vp,y〉
W (p)y

)
,
(
〈vp,y〉
W (p)y

))
+ (terms of lower order in x).

Since by assumption h ≡ h ◦M(p) it follows that

∂xhp〈vp, y〉+ ∂yhp(W (p)y) = 0 (3.58)

and
2∂2hp

((
〈vp,y〉
W (p)y

)
,
(
〈vp,y〉
W (p)y

))
= −〈y, y〉. (3.59)

Suppose that W (p) 6∈ GL(n). Then there exists y ∈ Rn \ {0}, such that W (p)y = 0. Then
by (3.59)

2∂2
xhp 〈vp, y〉

2 = −〈y, y〉 < 0.
This in particular shows that 〈vp, y〉 6= 0. But then equation (3.58) cannot be fulfilled since
∂yhp(W (p)y) = ∂yhp(0) = 0 and ∂xh|H > 0 is true since H is a CCGPSR manifold, cf.
proof of Proposition 3.18 equation (3.8). We deduce that W (p) ∈ GL(n). Hence, setting
ṽp = W (p)Tv in equation (3.58) implies that ṽp = − ∂yh

∂xh

∣∣∣
p
. This shows that

M(p) =
 px − ∂yh

∂xh

∣∣∣
p
◦W (p)

py W (p)


is of the form (3.7) as claimed. The action Gh

0 × H → H might not be simply transitive,
but near p = ( 1

0 ) ∈ H, that is on some open neighbourhood U ⊂ H of ( 1
0 ), we can choose

a smooth branch of the possible maps W : U → GL(n) by the implicit function theorem.
Then, using the diffeomorphism Φ : dom(H)→ H (3.14), W ◦Φ is locally on Φ−1(U) a valid
choice for A as in equation (3.23) and d(W ◦Φ)0 must fulfil the same equation as E in (3.28)
in the proof of Proposition 3.26. We now use the equality

h (W (Φ(z)) · ( xy )) = h (( xy ))

for all z ∈ Φ−1(U) to conclude with the definition of the δPk’s (3.29) that there exists a
linear map dB0 ∈ Lin(Rn, so(n)), such that the corresponding functions δPk(y) : Rn →
Symk ((Rn)∗) identically vanish for all y ∈ Rn and all 3 ≤ k ≤ τ .

Now assume that there exists dB0 ∈ Lin(Rn, so(n)), such that δPk(y) ≡ 0 for all 3 ≤
k ≤ τ . Consider the corresponding map A : Φ−1(V ) → GL(n + 1) (3.23) for any open
neighbourhood V ⊂ H of the point ( 1

0 ) ∈ H so that A is defined, with

dA0 =
(

0 2
τ
dzT

dz 3
2P3(·, ·, dz)T + dB0

)
, (3.60)
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cf. equations (3.28) and (3.26). Then δPk(y) ≡ 0 for all 3 ≤ k ≤ τ implies that for all
v ∈ T0dom(H) ∼= Rn

dh(xy ) (dA0(v) · ( xy )) ≡ 0,

where dA0(v) denotes the gl(n + 1)-valued 1-form dA at z = 0 applied to v ∈ T0dom(H).
With

ai := dA0 (∂zi)
for 1 ≤ i ≤ n, the set of matrices {a1, . . . , an} is linearly independent. Furthermore
{a1, . . . , an} ⊂ T1G

h = T1G
h
0 , see (3.2). Let µ : Gh

0 → H, µ(a) = a · ( 1
0 ), denote the

action of Gh
0 on the point ( 1

0 ) ∈ H. Then

dµ1(ai) = ∂yi

for all 1 ≤ i ≤ n. Hence, dµ1 : T1Gh
0 → T( 1

0 )H is surjective (recall that with h of the
form (3.12), we view T( 1

0 )H as the vector subspace {( 0
v ) | v ∈ Rn} ⊂ Rn+1). This shows

that there exists an open subset U ⊂ H, such that ( 1
0 ) ∈ U and U ⊂ Gh

0 · ( 1
0 ). We can

without loss of generality assume that U is diffeomorphic to the open ball B1(0) ⊂ Rn with
radius 1 in (Rn, 〈·, ·〉) and that ∂U is diffeomorphic to Sn−1 = {v ∈ Rn | ‖v‖ = 1}. Suppose
that the orbit Gh

0 · ( 1
0 ) ⊂ H is not open in H. Then the set H ∩ ∂

(
Gh

0 · ( 1
0 )
)
∩
(
Gh

0 · ( 1
0 )
)

is non-empty. Let q ∈ H ∩ ∂
(
Gh

0 · ( 1
0 )
)
∩
(
Gh

0 · ( 1
0 )
)

and let a(q) ∈ Gh
0 , such that q =

a(q) · ( 1
0 ). Since q is by assumption an element of ∂

(
Gh

0 · ( 1
0 )
)

and a(q) acts via linear
transformations on Rn+1 restricted to H, there must exist p ∈ ∂U , such that a(q)p = q,
because otherwise q 6∈ a(q) · ∂U and q ∈ a(q) · U would imply that q 6∈ ∂

(
Gh

0 · ( 1
0 )
)
. But

we have by definition of Gh
0 that Gh

0 ⊂ GL(n + 1) and, hence, ( 1
0 ) = a(q)−1q = p, this is

a contradiction to p ∈ ∂U . We conclude that the orbit Gh
0 · ( 1

0 ) ⊂ H is open in H. Since
H ⊂ Rn+1 is maximally extended and being a hyperbolic point of h is an open condition
in Rn+1 it follows that H ∩ ∂H = ∅. This shows that the same also holds for the relative
to H open orbit Gh

0 · ( 1
0 ), i.e. that

(
Gh

0 · ( 1
0 )
)
∩ ∂

(
Gh

0 · ( 1
0 )
)

= ∅ where the boundary of
Gh

0 · ( 1
0 ) is relative to Rn+1. This implies that Gh

0 · ( 1
0 ) is an n-dimensional submanifold of

Rn+1. Furthermore,
(
Gh

0 · ( 1
0 ) , gH|Gh0 ·( 1

0 )
)

is also by construction a homogeneous Riemannian
manifold and, hence, in particular geodesically complete (see Remark 3.10). This implies that
Gh

0 · ( 1
0 ) ⊂ Rn+1 is closed, which can be seen the following way. Suppose that Gh

0 · ( 1
0 ) is

not closed in Rn+1 but geodesically complete with respect to the restriction of gH and let p0
be a point in the boundary ∂

(
Gh

0 · ( 1
0 )
)
. For any other point p ∈ Gh

0 · ( 1
0 ) consider a curve

γ : [0, 1) → Gh
0 · ( 1

0 ) with γ(0) = p and lim
t→1, t<1

γ(t) = p0. Since Gh
0 · ( 1

0 ) ⊂ H ⊂ {h = 1}

and h : Rn+1 → R, we conclude that 1 = lim
t→1, t<1

h(γ(t)) = h
(

lim
t→1, t<1

γ(t)
)

= h(p0). Since
gH = − 1

τ
∂2h|TH×TH it in particular follows from the fact that h(p0) = 1 and that h is

a homogeneous polynomial of homogeneity-degree τ that gH can be smoothly extended to
p0 ∈ Gh

0 · ( 1
0 ). This implies

lim
t→1, t<1

t∫
0

√
gH(γ̇(t), γ̇(t))dt <∞.

This is a contradiction to the geodesic completeness of
(
Gh

0 · ( 1
0 ) , gH|Gh0 ·( 1

0 )
)

by Lemma 2.20.
By assumption, H ⊂ Rn+1 is maximally extended, and we have shown that Gh

0 · ( 1
0 ) ⊂ Rn+1

is closed. We deduce that H = Gh
0 · ( 1

0 ) and that the action of Gh
0 on H is, in fact, transitive.

In particular, H is a CCGPSR manifold.
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It is however not true in general that the Lie group Gh
0 corresponding to a homogeneous

CCGPSR manifold H ⊂ {h = 1} acts transitively on H. We will prove that statement in
the next lemma.

Lemma 3.35 (Homogeneity of CCGPSR curves). Let H ⊂ {h = 1} be a CCGPSR curve, h
of homogeneity-degree τ ≥ 3. Then H is a homogeneous space.

Proof. Every one-dimensional CCGPSR manifold H is complete, independent of the homo-
geneity-degree τ of h, cf. [CNS, Thm. 2.9]. Furthermore, H is diffeomorphic to R since
H ⊂ R2 is closed by assumption. We now choose an arbitrary non-constant maximal unit-
speed geodesic γ : R → H of (H, gH), which is by the connectedness of H automatically a
diffeomorphism with the property

γ∗gH = dt2.

This shows that (H, gH) is isometric to (R, dt2), which is in particular a Lie group with bi-
invariant metric. Hence, H is a homogeneous space when viewed as a Riemannian manifold.

Remark 3.36 (Examples of CCGPSR curves that do not fulfil δPk ≡ 0-criterion, τ = 3 and
τ = 4). One can check that for all τ ∈ {3, 4}, the homogeneous polynomial h : R2 → R,
h = xτ − xτ−2y2, defines a CCPSR curve for τ = 3 and a quartic CCGPSR curve for τ = 4,
in each case given by the connected component of {h = 1} ⊂ R2 that contains the point
( xy ) = ( 1

0 ). In both cases one can now verify that δP3(y) 6= 0.

Open problem 3.37 (“Non-linear” homogeneous CCGPSR manifolds). Are there any ho-
mogeneous CCGPSR manifolds H ⊂ {h = 1} of dimension dim(H) ≥ 2, such that the
corresponding connected component that contains the neutral element of the automorphism
group of h, that is Gh

0 , does not act transitively on H? Note that Proposition 3.34 imme-
diately implies that then the orbits of the action of Gh

0 on H must everywhere locally be of
dimension smaller than dim(H).

The above open problem 3.37 is in particular interesting for homogeneous connected PSR
manifolds H ⊂ {h = 1} which have been classified under the assumption that Gh

0 acts
transitively on H in [DV]. An open problem related to the above open problem 3.37 is the
following question.

Open problem 3.38 (CCGPSR manifolds of constant scalar curvature). Is it possible to
find a classification of CCGPSR manifolds H ⊂ {h = 1} of arbitrary dimension n ∈ N and
arbitrary homogeneity-degree τ ≥ 3 of h that have constant scalar curvature SH? Is such a
classification possible for some fixed τ ≥ 3? Are there such CCGPSR manifolds that are not
homogeneous spaces?

If one manages to classify CCGPSR manifolds with with constant scalar curvature, at least
corresponding to some specific degree of homogeneity τ ≥ 3 of the respective polynomials
h, one would have all possible candidates that might solve the open problem 3.37 for that
specific degree τ .
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4 Curvature bounds of complete projective special real
manifolds

In this section we will study curvature properties of CCPSR manifolds. We will use the
formulas for the curvature tensors obtained in Section 3. Recall that we can assume without
loss of generality that the defining cubic polynomial h : Rn+1 → R of an n-dimensional
CCPSR manifold H ⊂ {h = 1} is of the form

h = x3 − x〈y, y〉+ P3(y)

and that H is precisely the connected component of {h = 1} containing the point ( 1
0 ) ∈ Rn+1,

cf. Proposition 3.18 and equation (3.12). In the case of connected PSR manifolds, the cubic
polynomial P3 : Rn → R is never unique:

Lemma 4.1 (Non-uniqueness of P3 for connected PSR manifolds). The cubic polynomial P3
in equation (3.12) is never unique for any n-dimensional connected PSR manifold, n ≥ 1.

Proof. Assume P3(y) 6≡ 0. then the linear transformation Rn+1 3 ( xy ) 7→ ( x
−y ) ∈ Rn+1

preserves the form (3.12) of h and maps ( 1
0 ) to ( 1

0 ). The induced map for the cubic polynomial
h maps P3 to −P3, which are not equal since P3 does not identically vanish.

Next, assume that P3(y) ≡ 0. It suffices to show that δP3(y) 6= 0, cf. Definition 3.29.
We obtain δP3(y) = −2

3〈y, y〉〈y, dz〉 6≡ 0. Thus, if we move the reference point in H away
from ( 1

0 ) ∈ H for which the procedure of Proposition 3.18 was applied and calculate the
corresponding form (3.12) of h, we will always change P3(y) in a non-trivial way if the initial
P3(y) does vanish identically.

We will now construct bounds for the different curvature tensors for CCPSR manifolds.
To do so, we will investigate for every such manifold and corresponding cubic polynomial
h the properties of the associated cubic tensors P3(·, ·, ·). It will turn out that we can find
bounds for that tensor independent of the CCPSR manifold or any of the other choices
involved in determining equation (3.12) (i.e. the choice of the point p ∈ H for which to
calculate the standard form (3.12) of h and the freedom of transforming the y-coordinates in
the latter equation via transformations in O(n), see proof of Proposition 3.18).

Lemma 4.2. Let H ⊂ {h = 1} be a CCPSR manifold, ( xy ) = ( 1
0 ) ∈ H, and h = x3 −

x〈y, y〉+ P3(y) as in equation (3.12). Then

∀ẑ ∈ {z ∈ Rn | 〈z, z〉 = 1} : |P3(ẑ)| ≤ 2
3
√

3
. (4.1)

Proof. Consider f(t) := β(tẑ) = 1 − t2 + t3P3(ẑ), where β : Rn → R as in equation (3.22).
Since dom(H) is precompact (Lemma 3.8), f must have at least one positive and one negative
real root. We will determine the range for P3(ẑ) such that this holds. The first and second
derivative of f are

ḟ(t) = −2t+ 3t2P3(ẑ), f̈(t) = −2 + 6tP3(ẑ).

Hence, ḟ(t) = 0 if and only if t = 0 or t = 2
3P3(ẑ) . We obtain f̈(0) = −2 and f̈

(
2

3P3(ẑ)

)
= 2.

This implies that f(t) has a local maximum at t = 0 and a local minimum at t = 2
3P3(ẑ) . If

P3(ẑ) = 0, f(t) = 0 if and only if t = ±1, so in this case f(t) has exactly one positive and
one negative real root. Now assume P3(ẑ) > 0. In that case, 2

3P3(ẑ) > 0 and lim
t→−∞

f(t) = −∞.



59

Since f(0) = 1, this implies that f(t) has at least one negative real root (one can show that
it is the only negative real root by showing that ḟ(t) > 0 for all t < 0 if P3(ẑ) > 0). We have
seen that f(t) attains its unique local minimum at t = 2

3P3(ẑ) . Furthermore f(0) = 0, and
lim
t→∞

f(t) =∞. Hence, f(t) has a positive real root if and only if

f

(
2

3P3(ẑ)

)
≤ 0 ⇔ 1− 4

27P3(ẑ)2 ≤ 0 ⇔ P3(ẑ) ≤ 2
3
√

3
.

For P3(ẑ) < 0 we define f̃(t) := 1− t2 + t3(−P3(ẑ)). Similarly as for P3(ẑ) we then obtain

−P3(ẑ) ≤ 2
3
√

3
.

Summarising, we have shown that |P3(ẑ)| ≤ 2
3
√

3 .

Note that the bounds (4.1) for P3(ẑ), ẑ ∈ {z ∈ Rn | 〈z, z〉 = 1}, are independent of the
CCPSR manifold and of its dimension. We will later in this thesis show that these bounds
are in fact sharp in all dimensions, see Theorem 5.6. An immediate consequence of the
calculations in Lemma 4.2 is the following

Corollary 4.3. Let h : Rn+1 → R, h = x3 − x〈y, y〉 + P3(y), be a cubic homogeneous
polynomial and let H denote the connected component of {h = 1} ⊂ Rn+1 that contains the
point ( xy ) = ( 1

0 ). Then the connected component of the set

{h > 0} ∩
{

( 1
z ) ∈ Rn+1

∣∣∣ z ∈ Rn
}
⊂ Rn+1

which contains the point ( xy ) = ( 1
0 ) coincides5 with the set

(R>0 ·H) ∩
{

( 1
z ) ∈ Rn+1

∣∣∣ z ∈ Rn
}
⊂ Rn+1

and is precompact if and only if max
‖z‖=1

|P3(z)| ≤ 2
3
√

3 .

Note that it follows from Lemma 3.8 that the connected component of the set {h >
0} ∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn} that contains the point ( xy ) = ( 1
0 ) being pre-compact is a

necessary condition for the connected component of {h = 1} that contains ( xy ) = ( 1
0 )

to be a CCPSR manifold. Also note that if the connected component H ⊂ {h = 1}
that contains the point ( xy ) = ( 1

0 ) is a CCPSR manifold, then the connected component
of the set {h > 0} ∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn} that contains the point ( xy ) = ( 1
0 ), the set

(R>0 ·H) ∩ {( 1
z ) ∈ Rn+1 | z ∈ Rn}, and {1} × dom(H) coincide. One could ask if we can

find similar bounds for CCGPSR manifolds of homogeneity-degree τ ≥ 4, but unfortunately
this is in general not true as we will see in Lemma 7.9. Lemma 4.2 also means that we
have determined positive and negative bounds for P3(ẑ), ẑ ∈ {z ∈ Rn | 〈z, z〉 = 1}, that
guaranty that the corresponding hypersurface which is the connected component of {h = 1}
containing the point ( 1

0 ) ∈ Rn+1 is closed. However, it does a priori not give us information
about hyperbolicity when we are studying some specific connected PSR manifold and want
to know whether it is a CCPSR manifold or not. It will later turn out that this condition
also shows hyperbolicity of all points contained in the connected component of {h = 1} that
contains the point ( 1

0 ) ∈ Rn+1, see Theorem 5.6.
Next, we will use Lemma 4.2 to determine upper and lower positive bounds for the norm

of points in the boundary of dom(H) ⊂ Rn, that is ∂dom(H), corresponding to a CCPSR
manifold H.

5This holds true by definition.
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Lemma 4.4. In the setting of Lemma 4.2, assume without loss of generality that P3(ẑ) ≥ 0.
Let NP3(ẑ) be the biggest negative real root of f(t) and PP3(ẑ) be the smallest positive real
root of f(t), where f(t) is associated to a CCPSR manifold H as in the previous lemma and
|P3(ẑ)| ≤ 2

3
√

3 . Then

−1 ≤ NP3(ẑ) ≤ −
√

3
2 ,

1 ≤ PP3(ẑ) ≤
√

3.

Proof. Let 0 ≤ A < B ≤ 2
3
√

3 , and define

fA(t) := 1− t2 + t3A, fB(t) := 1− t2 + t3B.

fA(t) and fB(t) have a unique negative real root NA and NB, respectively. Furthermore,
NA < NB. To see this, consider

ḟA(t) = −2t+ 3t2A, ḟB(t) = −2t+ 3t2B.

This implies that

∀t < 0 : ḟA(t) > 0, ḟB(t) > 0.

Since lim
t→−∞

fA(t) = −∞, lim
t→−∞

fB(t) = −∞, and fA(0) = fB(0) = 1 this implies that NA

and NB exist and are the unique negative real roots of fA(t), respectively fB(t). We further
obtain

fB(NA) = 1−N2
A + N3

AB

= fA(NA) + (B − A)N3
A

= (B − A)N3
A < 0.

Using ḟB|t<0 > 0 this shows that
NB > NA. (4.2)

We apply this result to NP3(ẑ) and obtain

−1 = N0 ≤ NP3(ẑ) ≤ N 2
3
√

3
= −
√

3
2 .

N 2
3
√

3
can easily be found by guessing or using a computer algebra system.

Now let PA and PB be the smallest positive root of fA(t) and fB(t), respectively. Then
PA < PB. To see this, note that the existence of PA and PB is ensured by the estimate (4.1)
in Lemma 4.2. We obtain

fA(PB) = 1− P2
B + P3

BA

= fB(PB) + (A−B)P3
B

= (A−B)P3
B < 0.

Since fA(0) = 1 this shows that fA(t) has a positive real root that is smaller than PB, and
in particular that

PA < PB. (4.3)
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Again, we apply this result to PP3(ẑ) and obtain

1 = P0 ≤ PP3(ẑ) ≤ P 2
3
√

3
=
√

3.

In order to show that P 2
3
√

3
=
√

3, consider f 2
3
√

3
(t) = 1− t2 + t3 2

3
√

3 . We obtain f 2
3
√

3
(
√

3) = 0,
ḟ 2

3
√

3
(
√

3) = 0, and f̈ 2
3
√

3
(
√

3) = 2. Hence, f 2
3
√

3
(t) has a local minimum at t = 2

3
√

3 . Further-
more, ḟ 2

3
√

3
(
√

3+s) = 4s+ 2√
3s

2 and, hence, ḟ 2
3
√

3
(
√

3+s) > 0 for all s > 0. Summarising this
shows that P 2

3
√

3
=
√

3 is the only and in particular smallest positive real root of f 2
3
√

3
(t).

Lemma 4.4 implies the following result for the Euclidean norm of points in ∂dom(H).

Corollary 4.5. For a CCPSR manifold H with the assumptions from Lemma 4.2, and cor-
responding dom(H) as in Definition 3.22, the following holds true:

∀z ∈ ∂dom(H) :
√

3
2 ≤ ‖z‖ ≤

√
3, (4.4)

where ‖ · ‖ denotes the norm with respect to the standard Euclidean scalar product 〈·, ·〉 on
Rn in the y-coordinates from equation (3.12).

Hence, with the notation

Br(0) =
{
z ∈ Rn | 〈z, z〉 < r2

}
for r > 0, we have the inclusion B√3

2
(0) ⊂ dom(H) ⊂ B√3(0) for all CCPSR manifolds H.

In particular this is also independent of the point chosen in the process (see Proposition
3.18) of obtaining h in the form (3.12) for any given CCPSR manifold H ⊂ {h = 1}.
Note however that the inclusion B√3

2
(0) ⊂ dom(H) might not be compact in the sense that

∂B√3
2

(0) ∩ ∂dom(H) might not be empty. If we choose any 0 < R <
√

3
2 , BR(0) will always

be compactly embedded via the inclusion in dom(H) since the inclusion BR(0) ⊂ B√3
2

(0) is
a compact embedding.

Another consequence of Lemma 4.4 is the following characterisation of CCPSR manifolds
that are singular at infinity, cf. Definition 3.16.

Lemma 4.6. Let H ⊂ {h = 1} be an n ≥ 1-dimensional CCPSR manifold and assume
without loss of generality that h = x3 − x〈y, y〉 + P3(y) as in (3.12) and ( 1

0 ) ∈ H. Then H

is singular at infinity in the sense of Definition 3.16 if and only if max
‖z‖=1

|P3(z)| = 2
3
√

3 , where
‖ · ‖ is the Euclidean norm induced by the choice of the y-coordinates.

Proof. First note that with our assumptions for H and h, ∂(R>0 ·H) \ {0} = R>0 · ({1} ×
∂dom(H). Since dhp is homogeneous of degree 2 in p, it thus suffices to show that there exists
a z ∈ ∂dom(H), such that dh( 1

z ) = 0 if and only if max
‖z‖=1

|P3(z)| = 2
3
√

3 . In Lemma 3.25 we have

shown that for z ∈ ∂dom(H), dh( 1
z ) = 0 is equivalent to ∂h

∂x
(( 1

z )) = α(z) = 0, which is by the
Euler identity for homogeneous functions equivalent to dβz(z) = 0. Hence, H is singular at
infinity if and only if there exists a point ẑ ∈ {‖z‖ = 1}, such that the 1-dimensional CCPSR
manifold Hẑ defined by restricting h to the 2-dimensional linear subspace

E = span
{(

1
0

)
,

(
0
ẑ

)}
⊂ Rn+1
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is singular at infinity. More precisely, Hẑ is the connected component of{
hẑ := x3 − xt2 + t3P3(ẑ) = 1

}
that contains the point ( xt ) = ( 1

0 ) and {1} × dom
(
Hẑ
)

=
E ∩ ({1} × dom(H)). The corresponding function β ẑ as in (3.22) for hẑ is given by

β ẑ(t) = β(tẑ) = 1− t2 + t3P3(ẑ).

Let t+ and t− denote the smallest positive root and the biggest negative root of β ẑ(t),
respectively. Then ∂dom

(
Hẑ
)

= {t+ẑ, t−ẑ}. We have shown in Lemma 4.4 (with the
notation β ẑ(t) = f|P3(ẑ)|(t)) that ∂tβ ẑ(t+) = 0 or ∂tβ ẑ(t−) = 0 if |P3(ẑ)| = 2

3
√

3 . It remains
to show that |P3(ẑ)| < 2

3
√

3 implies that ∂tβ ẑ(t) does not vanish at neither t+ nor t−. To
do that, assume without loss of generality P3(ẑ) ≥ 0. For P3(ẑ) < 0 we can simply use the
reflection t→ −t and consider β ẑ(−t). For P3(ẑ) = 0 it is easy to check that ∂tβ ẑ(t±) = ∓2.
Now assume P3(ẑ) > 0. We have

∂tβ
ẑ(t) = t(−2 + 3tP3(ẑ)),

hence ∂tβ ẑ(t−) > 0 is always true and ∂tβ
ẑ(t+) = 0 if and only if t+ = 2

3P3(ẑ) . One quickly

finds that β ẑ(t+) = 0 and P3(ẑ) > 0 if and only if P3(ẑ) = 2
3
√

3 . This shows that ∂tβ ẑ

vanishes at a point z ∈ dom
(
Hẑ
)

= {t+ẑ, t−ẑ} (which is equivalent to Hẑ being singular
at infinity) if and only if |P3(ẑ)| = 2

3
√

3 . Summarising, we have shown that there exists a
point z ∈ ∂dom(H), such that dβz(z) = 0 if and only if there exists a point z ∈ ∂dom(H),
such that

∣∣∣P3
(

z
‖z‖

)∣∣∣ = 2
3
√

3 . In Lemma 4.4 we have shown that this is precisely the maximal
possible value for |P3(z)| on {‖z‖ = 1} that does not exclude the property of H being closed
in Rn+1. We conclude that max

‖z‖=1
|P3(z)| = 2

3
√

3 if and only if H is singular at infinity.

Remark 4.7. There exist a CCPSR manifold of dimension n ≥ 1 which is singular at
infinity for all n ≥ 1. For examples consider A) and a) in Theorem 2.45 for n = 1 and n = 2,
respectively, and for n ≥ 3 see Proposition 6.6. For a general description of the set of all
n-dimensional singular-at-infinity CCPSR manifolds see Proposition 5.8.

We will now determine an estimate for the bilinear form P3(z, ·, ·) for all z ∈ dom(H).
It will use the hyperbolicity property of the CCPSR manifold H, which we first need to
reformulate.

Lemma 4.8. Let h : Rn+1 → R be a cubic homogeneous polynomial of the form (3.12), that
is h = x3 − x〈y, y〉+ P3(y), and let H ⊂ {h = 1} be the connected component of the level set
{h = 1} ⊂ Rn+1 that contains the point ( xy ) = ( 1

0 ). Further assume that H is a hypersurface
in Rn+1. Then H is a CCPSR manifold if and only if

∀ ( 1
z ) ∈ (R>0 ·H)∩

{
( 1
z ) ∈ Rn+1

∣∣∣ z ∈ Rn
}

: 3〈dz, dz〉−9P3(z, dz, dz)+〈z, dz〉2 > 0. (4.5)

Proof. Assumption that H is a CCPSR manifold. Then H fulfils the assumptions of this
lemma and (R>0 ·H) ∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn} coincides with dom(H), cf. Definition 3.22.
We will show that condition (4.5) follows from the hyperbolicity of each point in H. For each
p ∈ H ⊂ Rn+1, the tangent space TpH viewed as a the hyperplane ker(dhp) ⊂ Rn+1 and the
line Rp ⊂ Rn+1 are orthogonal with respect to the Lorenzian inner product −∂2hp. Recall
that −∂2hp being Lorenzian precisely means that p is a hyperbolic point, see Definition 2.33.
Since −∂2hp is homogeneous of degree τ − 2 ≥ 1 in p, it follows that the property that H

consists only of hyperbolic points is equivalent to the statement that −∂2h( 1
z ) is Lorenzian for
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all z ∈ dom(H). Since −∂2h( 1
0 ) is always Lorenzian if h is of the form (3.12), −∂2h( 1

z ) being

Lorenzian on dom(H) is equivalent to det
(
−∂2h( 1

z )
)
< 0 for all z ∈ dom(H). Consider

det
(
−∂2h( 1

z )
)

= det
(
−6 2zT
2z 21− 6P3(z, ·, ·)

)

= det
(
−6 2zT
0 21− 6P3(z, ·, ·) + 2

3z ⊗ 〈z, ·〉

)

= −2n+1

3n−1 det (31− 9P3(z, ·, ·) + z ⊗ 〈z, ·〉) . (4.6)

Since (31− 9P3(z, ·, ·) + z ⊗ 〈z, ·〉)|z=0 = 31, it follows that det
(
−∂2h( 1

z )
)
< 0 for all z ∈

dom(H) is equivalent to 3〈dz, dz〉 − 9P3(z, dz, dz) + 〈z, dz〉2 > 0 for all z ∈ dom(H).
For the other direction, the conditions that H is a connected component of {h = 1} implies

that it is closed as a subset of Rn+1. Furthermore, H is a hypersurface by assumption. With
the same argument as before for the homogeneity of −∂2hp in p and the same calculations as
above, it follows that H consists only of hyperbolic points. H is thus a connected and also
closed PSR manifold, and the set (R>0 ·H) ∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn} and dom(H) coincide.

We will use the results from Corollary 4.5 and Lemma 4.8 to find upper and lower bounds
of the eigenvalues of P3(z, dz, dz) (when viewed as a symmetric matrix) for z ∈ dom(H) that
are valid for all CCPSR manifolds H (and thus also for non-connected closed PSR manifolds).

Proposition 4.9 (Bounds for eigenvalues of P3(z, dz, dz) for CCPSR manifolds). Let H ⊂
{h = 1} ⊂ Rn+1 be an n-dimensional CCPSR manifold, ( 1

0 ) ∈ H, and h = x3−x〈y, y〉+P3(y),
cf. Proposition 3.18. Then

∀z ∈ dom(H) : −5
6〈dz, dz〉 < P3(z, dz, dz) < 2

3〈dz, dz〉. (4.7)

This is equivalent to the statement that for all z ∈ dom(H), the eigenvalues λ ∈ R of the rep-
resentation matrix of the symmetric bilinear form P3(z, dz, dz) induced by the z-coordinates
fulfil −5

6 < λ < 2
3 . Furthermore, the upper bound in (4.7) is sharp in the sense that for all

n ≥ 1 there exists a CCPSR manifold H and a point ž, such that the representation matrix
of P3(ž, dz, dz) has one eigenvalue λ = 2

3 .

Proof. We start with the upper bound in (4.7). Equation (4.5) in Lemma 4.8 and equation
(4.4) in Corollary 4.5 imply for all z ∈ dom(H)

P3(z, dz, dz) < 3〈dz, dz〉+ 〈z, dz〉2
9 ≤ 3〈dz, dz〉+ 〈z, z〉〈dz, dz〉

9 <
2
3〈dz, dz〉. (4.8)

Obtaining the alleged lower bound in equation (4.7) for P3(z, dz, dz) needs more work. A
“naive” lower bound can be obtained the following way. For all ž ∈ dom(H) with ‖ž‖ =

√
3

2
(recall that B√3

2
(0) ⊂ dom(H) is always true, see Corollary 4.5), the biggest positive eigen-

value of the representation matrix of P3(ž, dz, dz) is bound from above by 2
3 . Using that

P3(z, dz, dz) is linear in z, we obtain that the smallest eigenvalue of the representation ma-
trix of P3(−2ž, dz, dz) is bounded from below by −4

3 . Since ž ∈ ∂B√3
2

(0) was arbitrary, we
obtain for all z̃ ∈ ∂B√3(0) the estimate P3(z̃, dz, dz) ≥ −4

3〈dz, dz〉. Since for all CCPSR
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manifolds with the assumptions of this lemma dom(H) ⊂ B√3(0), we can use the linear-
ity of P3(z, dz, dz) in z again to conclude that for all z ∈ dom(H) we have the estimate
P3(z, dz, dz) > −4

3〈dz, dz〉. This bound is worse than −5
6〈dz, dz〉, which we will derive now.

The estimate (4.8) shows that for all ž ∈ ∂dom(H), every positive eigenvalue λ+ of the
representation matrix of P3(ž, dz, dz) fulfils

λ+ ≤
3 + ‖ž‖2

9 . (4.9)

Fix ž ∈ ∂dom(H) ⊂ R2 and let λ− be a negative eigenvalue of the representation matrix of
P3(ž, dz, dz). The linearity of P3(z, dz, dz) in z implies that −λ− is a positive eigenvalue of the
representation matrix of P3(−ž, dz, dz). However, −ž might not be an element of dom(H).
In fact, −ž ∈ dom(H) if and only if ‖ž‖ ≤ 1, which holds if and only if P3

(
ž
‖ž‖

)
∈
[
− 2

3
√

3 , 0
]

(cf. Lemma 4.2 and see Figure 2).

Figure 2: The set dom(H) ⊂ R2 corresponding to P3
(
(z1, z2)T

)
= − 1

2
√

3z
3
1 . Observe for example that

for all ž ∈ dom(H) of the form ž = (z1, 0)T , z1 > 0, we have P3

(
ž
‖ž‖

)
∈
[
− 2

3
√

3 , 0
]

and one can see that
−ž ∈ dom(H).

For such a given ž ∈ ∂dom(H) we want to find ť > 0, such that ť(−ž) ∈ ∂dom(H). When
we have determined said ť, the linearity of P3(z, dz, dz) in z implies that ť(−λ−) is a positive
eigenvalue of the representation matrix of P3(ť(−ž), dz, dz). Using the upper bound (4.9),
we can thus estimate

ť(−λ−) ≤ 3 + ť2‖ž‖2

9 ⇔ −λ− ≤
3 + ť2‖ž‖2

9ť
=: F (‖ž‖). (4.10)

Our asserted lower bound −5
6 for λ− is now obtained via showing that the function F :[√

3
2 ,
√

3
]
→ R>0 defined in (4.10) is continuous and by determining its maximal value, where

we recall that the elements in the closed interval
[√

3
2 ,
√

3
]

are precisely all possible values for
‖ž‖ when considering all possible n-dimensional CCPSR manifolds H (cf. Corollary 4.5). To
find a closed formula for ť depending on ‖ž‖, consider the function f(t) = β

(
t ž
‖ž‖

)
= 1− t2 +

P3
(

ž
‖ž‖

)
t3 (compare with equation (3.22)) and assume that f(‖ž‖) = 0. By assumption, H

is a CCPSR manifold, implying that dom(H) ⊂ Rn is precompact and, hence, f(t) must have
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at least one more negative real root in addition to its root t = ‖ž‖ > 0. Hence, (t−‖ž‖) | f(t)
and we obtain with a, b ∈ R

f(t) = (t− ‖ž‖)
(
−1
‖ž‖

+ at+ bt2
)

= 1 +
(
−a‖ž‖ − 1

‖ž‖

)
t+ (a− b‖ž‖) t2 + bt3.

This implies that a = −1
‖ž‖2 and b = 1

‖ž‖ −
1
‖ž‖3 . Note that this determines P3

(
ž
‖ž‖

)
depending

on ‖ž‖, and as we would expect P3
(

ž
‖ž‖

)
= 2

3
√

3 if ‖ž‖ =
√

3, and P3
(

ž
‖ž‖

)
= − 2

3
√

3 if ‖ž‖ =
√

3
2

(see Lemma 4.2 and Corollary 4.5). We define

f̃(t) := f(t)
t− ‖ž‖

= − 1
‖ž‖
− 1
‖ž‖

t+
(

1
‖ž‖
− 1
‖ž‖3

)
t2.

In order to determine ť in dependence of ‖ž‖ we need to find the roots of f̃(t), for (at least)
one of the roots coincides with ť(−‖ž‖). We will differentiate between the three cases ‖ž‖ = 1,
‖ž‖ ∈

(
1,
√

3
]
, and ‖ž‖ ∈

[√
3

2 , 1
)
. We will also use these results to show that F is continuous.

Case 1: ‖ž‖ = 1.
In that case f(t) = 1− t2, so the roots of f(t) are t± = ±1 and the root of f̃(t) = −1− t is
t = −1. Hence, ť = 1 and (4.10) thus yields the estimate −λ− ≤ 4

9 = F (1).

Case 2: ‖ž‖ ∈
[√

3
2 ,
√

3
]
\ {1}.

In this case,

f̃(t±) = 0 ⇔ t± = ‖ž‖
2(‖ž‖2 − 1) ±

√√√√(4‖ž‖2 − 3)‖ž‖2

4(‖ž‖2 − 1)2 .

Note that the sign of ‖ž‖2 − 1 depends on whether ‖ž‖ < 1 or ‖ž‖ > 1. We will treat these
cases separately.

Case 2.1: ‖ž‖ ∈
(
1,
√

3
]
.

In this case, the plot of f(t) is of the form as in Figure 3 (except when ‖ž‖ =
√

3, in which case
f(t) has the unique positive double root

√
3). Also ‖ž‖2 − 1 > 0 and, hence, t− = ť(−‖ž‖).

We obtain

t− = ‖ž‖
2(‖ž‖2 − 1) −

√√√√(4‖ž‖2 − 3)‖ž‖2

4(‖ž‖2 − 1)2

= ‖ž‖
2(‖ž‖2 − 1)

(
1−

√
4‖ž‖2 − 3

)
,

ť = 1
2(‖ž‖2 − 1)

(
−1 +

√
4‖ž‖2 − 3

)
,

and, hence,

F (‖ž‖) =
2‖ž‖4 − 5‖ž‖2 + 3 +

√
4‖ž‖2 − 3(4‖ž‖4 − 7‖ž‖2 + 3)

18(‖ž‖2 − 1)2 .
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||z||t

Figure 3: A typical plot of f(t). Here, P3

(
ž
‖ž‖

)
= 4

5 ·
2

3
√

3 , so that ‖ž‖ ∈
(

1, 2
3
√

3

)
. The unique negative

root of f(t), that is ť(−‖ž‖), and t− coincide in Case 2.1.

It is clear that F |(1,
√

3] is continuous and furthermore smooth. Using L’Hôspital’s rule for
limits twice at ‖ž‖ = 1 yields

lim
‖ž‖→1, ‖ž‖>1

F (‖ž‖) = 4
9 ,

which coincides with F (1) determined in Case 1. This means that F is continuous from the
right at ‖ž‖ = 1. Next we will show that F |(1,

√
3] attains its maximum, namely at ‖ž‖ =

√
3.

To prove that we show that ∂F
∂‖ž‖

∣∣∣(1,
√

3) > 0. The first derivative of F is given by

∂F

∂‖ž‖
(‖ž‖) =

‖ž‖
(
8‖ž‖4 − 18‖ž‖2 + 9 +

√
4‖ž‖2 − 3

)
9
√

4‖ž‖2 − 3(‖ž‖2 − 1)2
,

and ‖ž‖−1 > 0 implies that in order to solve ∂F
∂‖ž‖(‖ž‖) = 0 with the restriction ‖ž‖ ∈

(
1,
√

3
)

we only need to solve 8‖ž‖4 − 18‖ž‖2 + 9 +
√

4‖ž‖2 − 3 = 0. Using MAPLE or any other
computer algebra system one finds that the latter equation has no solutions in

(
1,
√

3
)
. It

thus suffices check the sign of ∂F
∂‖ž‖

∣∣∣(1,
√

3) at one point in the interval, say 1+
√

3
2 , to determine

its global sign. We calculate

∂F

∂‖ž‖

(
1 +
√

3
2

)
= 4

√
1 + 2

√
3 + 2

√
3 + 2

27 > 0.

We conclude that
sup

‖ž‖∈(1,
√

3]
F (‖ž‖) = F

(√
3
)

= 5
6 .

Case 2.2: ‖ž‖ ∈
[√

3
2 , 1

)
.

This case works similarly to Case 2.1. Here, f(t) has the shape as in Figure 4 (except for the
case ‖ž‖ =

√
3

2 , where f(t) has the unique negative double root
√

3
2 ). In this case, f(t) has,

except if ‖ž‖ =
√

3
2 , precisely two negative roots, of which we need to consider the bigger one.

Since ‖ž‖2 − 1 < 0, we see that this is

t+ = ‖ž‖
2(‖ž‖2 − 1)

(
1−

√
4‖ž‖2 − 3

)
,
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||z||t

Figure 4: A plot of f(t) with P3

(
ž
‖ž‖

)
= − 4

5 ·
2

3
√

3 , so that ‖ž‖ ∈
(√

3
2 , 1

)
. In Case 2.2, the biggest negative

root of f(t) which is ť(−‖ž‖) by construction, and t+ coincide.

so that t+ = ť(−‖ž‖) has the form

ť = 1
2(‖ž‖2 − 1)

(
−1 +

√
4‖ž‖2 − 3

)
.

We see that formally the function F for this case and F in Case 2.1 coincide, i.e. we have
for F |[√3

2 ,1
)

F (‖ž‖) =
2‖ž‖4 − 5‖ž‖2 + 3 +

√
4‖ž‖2 − 3(4‖ž‖4 − 7‖ž‖2 + 3)

18(‖ž‖2 − 1)2

and for the derivative ∂F
∂‖ž‖

∣∣∣(√3
2 ,1
)

∂F

∂‖ž‖
(‖ž‖) =

‖ž‖
(
8‖ž‖4 − 18‖ž‖2 + 9 +

√
4‖ž‖2 − 3

)
9
√

4‖ž‖2 − 3(‖ž‖2 − 1)2
.

Proceeding analogously to Case 2.1 we will show that ∂F
∂‖ž‖

∣∣∣(√3
2 ,1
) > 0. Note that the de-

nominator of the formula for the first derivative of F has no zeros in
(√

3
2 , 1

)
, so we will

not run into trouble with possibly singular values. Again, we use MAPLE to show that
8‖ž‖4 − 18‖ž‖2 + 9 +

√
4‖ž‖2 − 3 = 0 has no solutions in

(√
3

2 , 1
)
. Hence, the global sign of

∂F
∂‖ž‖

∣∣∣(√3
2 ,1
) coincides with the sign of

∂F

∂‖ž‖

(
1
2

(√
3

2 + 1
))

= −1220
1089

√
3
√
−5 + 4

√
3 + 5824

3267
√

3− 6376
3267

√
−5 + 4

√
3 + 10112

3267 > 0.

Hence, F[√3
2 ,1
) does not attain its maximum in its domain of definition, but at the limit

‖ž‖ → 1, assuming that limit exists. For the existence we need to check that F is continuous
from the left at ‖ž‖ = 1. This is done in the same way we have shown continuity from the
right, that is by applying L’Hôspital’s rule twice. As expected, we obtain

lim
‖ž‖→1, ‖ž‖<1

F (‖ž‖) = 4
9 ,
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Summarising, we have shown that F :
[√

3
2 ,
√

3
]
→ R>0 is continuous and attains its

maximum at ‖ž‖ =
√

3, F
(√

3
)

= 5
6 . Since the negative eigenvalue λ− of the representation

matrix of P3(ž, dz, dz) was arbitrary, we conclude with (4.10) that for all such negative
eigenvalues λ− we have

λ− ≥ − max
‖ž‖∈

[√
3

2 ,
√

3
]F (‖ž‖) = −5

6 .

The point ž ∈ ∂dom(H) was also arbitrary and, thus, using the linearity of P3(z, dz, dz) we
obtain

∀z ∈ dom(H) : P3(z, dz, dz) > −5
6〈dz, dz〉.

Note that our calculations also show that λ− = −5
6 can only possibly be a negative eigenvalue

of the representation matrix of P3(ž, dz, dz) at a point ž ∈ ∂dom(H) with norm ‖ž‖ =
√

3.
We want to stress again at this point that the obtained lower and upper bounds for

P3(z, dz, dz) hold for all CCPSR manifolds H ⊂ {h = 1} of dimension n ≥ 1 with h of the
form (3.12) and ( 1

0 ) ∈ H.
It remains to show that the upper bound in (4.7) is sharp in the stated sense, and that

the lower bound in (4.7) can never be sharp. For the upper bound, we will give an example of
a CCPSR manifold of dimension n for each n ∈ N. For any n ∈ N, let ( xy ) = (x, y1, . . . , yn)T
denote linear coordinates of Rn+1 as usual and consider the cubic polynomial

h : Rn → R, h = x3 − x〈y, y〉+ 2
3
√

3
y3
n, (4.11)

and the corresponding centro-affine hypersurface H ⊂ {h = 1}, which is the connected
component of {h = 1} that contains the point ( xy ) = ( 1

0 ). Then H is a closed PSR manifold
of dimension n. We will not prove this here, since for n ≥ 3, H is an element of a family
of CCPSR manifolds constructed later in Theorem 6.1 (for this statement, consider also
Proposition 6.6, equation (6.40) with µi =

√
2ηi > 0 for all 1 ≤ i ≤ n − 1.) For n = 1,

one can check that h is equivalent to x2y, which is one of the two 1-dimensional closed
PSR manifolds classified in [CHM, Thm. 7], and for n = 2, h is linearly equivalent to the
polynomial e) in [CDL, Thm. 1] and H is the corresponding described CCPSR manifold.
For each of these cases consider the point ž+ =

(
0, . . . , 0,

√
3
)T
∈ ∂dom(H). We obtain

P3(ž+, dz, dz) = 2
3dz

2
n and the corresponding symmetric matrix has precisely the eigenvalues

λ1 = 0 with eigenspace-dimension n − 1, and λ2 = 2
3 with eigenspace-dimension 1. This

proves our claim.

We will now prove a statement similar to Proposition 4.9 but for points in Sn−1 = {z ∈
Rn | 〈z, z〉 = 1}.

Lemma 4.10 (Bounds of P3(ẑ, dz, dz) for ẑ ∈ Sn−1). In the setting of Proposition 4.9 we
have

∀ẑ ∈ Sn−1 : − 5
6
√

3
〈dz, dz〉 ≤ P3(ẑ, dz, dz) ≤ 5

6
√

3
〈dz, dz〉. (4.12)

Proof. The linearity in z of P3(z, dz, dz) implies that it suffices to find the maximal positive
eigenvalue of the representation matrix of P3(ẑ, dz, dz), ẑ ∈ Sn−1 in order to prove (4.12).
Note that P3(y) being an odd function in the sense that P3(−y) = −P3(y) implies that
Sn−1 ∈ dom(H) if and only if P3(y) ≡ 0, since this is the only case where the solutions of
h = x3 − x〈y, y〉 + P3(y) = 1 that form ∂dom(H) have Euclidean norm 1. This forbids us
to simply maximise the formula for positive eigenvalues (4.9) valid for points in ∂dom(H)
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over Sn−1. Let ž ∈ ∂dom(H) and λ+ be a positive eigenvalue of the representation matrix
P3(ž, dz, dz). Then λ̂+ := 1

‖ž‖λ+ is a positive eigenvalue of the representation matrix of
P3
(

ž
‖ž‖ , dz, dz

)
= 1
‖ž‖P3(ž, dz, dz). The map

∂dom(H) 3 ž 7→ ž

‖ž‖
∈ Sn−1

is continuous and bijective for all CCPSR manifolds H. It is however not necessary smooth
since dh might vanish at some point ( 1

ž ) and does thus allow for ∂dom(H) to be a continuous
non-smooth submanifold of Rn. Using (4.9) we see that

λ̂+ = 1
‖ž‖

λ+ ≤
3 + ‖ž‖2

9‖ž‖ =: ρ(‖ž‖) (4.13)

for all ž ∈ ∂dom(H). Hence, we can obtain an upper bound for λ̂+ by finding

max
‖ž‖∈

[√
3

2 ,
√

3
] ρ(‖ž‖),

see Corollary 4.5. We obtain

ρ

(√
3

2

)
= 5

6
√

3
, ρ

(√
3
)

= 2
3
√

3

(note: 2
3
√

3 <
5

6
√

3), and

∂ρ

∂‖ž‖

∣∣∣∣∣(√3
2 ,
√

3
) = −3 + ‖ž‖

9‖ž‖2 < 0 ∀‖ž‖ ∈
(√

3
2 ,
√

3
)
.

Hence, max
‖ž‖∈

[√
3

2 ,
√

3
] ρ(‖ž‖) = 5

6
√

3 . This shows that the maximal positive eigenvalue possible

of the representation matrix of P3(ẑ, dz, dz) for ẑ ∈ Sn−1 is 5
6
√

3 , and with our remark at the
beginning of the proof the minimal negative eigenvalue is − 5

6
√

3 .

Remark 4.11. The result for negative eigenvalues obtained in Lemma 4.10 can be used to
find the exact same lower bound for P3(ž, dz, dz) for ž ∈ ∂dom(H) that is obtained via the
estimate (4.7) derived in Proposition 4.9. Furthermore, we do not expect the lower bound in
Proposition 4.9, equation 4.7, or equivalently the upper and lower bounds in Lemma (4.10),
equation (4.12), to be sharp. This is motivated by the following Lemma.

Lemma 4.12. For dim(H) = 1, (4.12) is never sharp. Instead we have the estimate

∀ẑ ∈ S0 : − 2
3
√

3
dz2 ≤ P3(ẑ, dz, dz) ≤ 2

3
√

3
dz2, (4.14)

which is sharp.

Proof. We will see in Remark 7.4 that every possible standard form for a cubic polynomial
h : Rn+1 → R (3.12) describing a CCPSR curve H that is precisely the connected component
H ⊂ {h = 1} containing the point ( xy ) = ( 1

0 ), with h given by

h = x3 − xy2 + Ly3, L ∈
[
− 2

3
√

3
,

2
3
√

3

]
,
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see Lemma 4.2. Note that we will also show in Remark 7.4 that two such CCPSR curves
H and H̃ are equivalent if and only if either the respective L, L̃ ∈

(
− 2

3
√

3 ,
2

3
√

3

)
, or L, L̃ ∈{

− 2
3
√

3 ,
2

3
√

3

}
. Alternatively, we know from Lemma 4.2 that for h = x3 − xy2 + Ly3, the con-

dition L ∈
[
− 2

3
√

3 ,
2

3
√

3

]
is a necessary requirement for the corresponding maximal connected

PSR curve H to be a CCPSR curve. In order to show that this is also a sufficient condition,
one checks using formula (3.33) and the function β as in (3.22) that

(Φ∗gH)z = 2
9β2(z)

(
z2 − 9Lz + 3

)
.

for all z ∈ dom(H). One then finds that the equation z2 − 9Lz + 3 = 0 has real solutions
if and only if |L| > 2

3
√

3 (and, hence, that z2 − 9Lz + 3 > 0 for all z ∈ R if |L| ≤ 2
3
√

3),
which implies that for all L ∈

[
− 2

3
√

3 ,
2

3
√

3

]
the pullback of the centro-affine fundamental form

(Φ∗gH)z is positive definite for all points in the connected component of {h (( 1
z )) > 0} that

contains z = 0. Hence, said connected component coincides with dom(H), which shows that
H ⊂ R2 is closed and, hence, a CCPSR curve.

Now, in order to show that the estimate (4.12) is never sharp, we need to check this
estimate for every L ∈

[
− 2

3
√

3 ,
2

3
√

3

]
. Let ž be either the smallest positive root or the biggest

negative root of β(z) = h (( 1
z )) = 1 − z2 + Lz3, which both are precisely the elements of

∂dom(H), and consider the corresponding point ž
‖ž‖ ∈ S0 = {−1, 1} ⊂ R. Observe that

P3(y) = Ly3 and, hence,

P3

(
ž

‖ž‖
, dz, dz

)
= L

ž

‖ž+‖
dz2 = L sgn(ž)dz2.

The sole eigenvalue of the representation matrix of P3( ž
‖ž‖ , dz, dz), namely L sgn(ž), depends

thus on L and the sign of ž, but in particular not on the absolute value of ž. We conclude by
maximising, respectively minimising, over L ∈

[
− 2

3
√

3 ,
2

3
√

3

]
, that for all CCPSR curves H with

our assumptions for the standard form of the corresponding cubic polynomial h : Rn → R
we have the estimate

− 2
3
√

3
dz2 ≤ P3(ẑ, dz, dz) ≤ 2

3
√

3
dz2

for all ẑ ∈ S0. This estimate is sharp for L = ± 2
3
√

3 . One can check that the corresponding
CCPSR curve is equivalent to each of the connected components of the one described in
[CHM, Thm. 8, a)], respectively A) in Theorem 2.45.

For higher dimensions, that is CCPSR manifolds H of dimension dim(H) ≥ 2, the ques-
tion of finding the best possible estimate for P3(ẑ, dz, dz), ẑ ∈ Sn−1, is very difficult. We
would need to classify all cubic polynomials P3 : Rn → R (at least up to rotations in Rn) to
obtain an estimate for P3(ẑ, dz, dz) for all h = x3−x〈y, y〉+P3(y) that define a CCPSR man-
ifold H, dim(H) ≥ 2, as in Proposition 4.9. Equivalently, we would need a classification of all
CCPSR manifolds of dimension n ≥ 2 and for each a corresponding h = x3−x〈y, y〉+P3(y),
but we would still need transformations of the form A(p) for all p ∈ H as in Proposition 3.18
to obtain for each CCPSR manifold H all P3(y)’s depending on p. The explicit classification
of CCPSR manifolds of arbitrary dimensions is a very difficult, and probably unsolvable,
open problem, see Remark 2.44 and also the comment under Theorem 3 in [CDJL]. Even in
dimension 2 where we have a classification [CDL, Thm. 1] we would still need all transforma-
tions A(p) defined in (3.7), which would require (after finding each standard form (3.12) for
the corresponding cubic polynomial h) explicit knowledge of dom(H) in each case.

We will now use Proposition 3.18 and Lemma 4.10 to find a general global estimate for
the scalar curvature of CCPSR manifolds derived in Proposition 3.29.
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Theorem 4.13 (Bounds for the scalar curvature of CCPSR manifolds). The scalar curvature
SH of every n-dimensional CCPSR manifolds H equipped with their respective centro-affine
fundamental form gH = −1

3∂
2h
∣∣∣
TH×TH

is globally bounded by

n(n− 1)
(
−1− 25

16n
)
≤ SH ≤ n(n− 1)

(
−1 + 25

16n
)
. (4.15)

Proof. For 0- and 1-dimensional CCPSR manifolds the estimate is always true since SH

and the bounds vanish. Assume now that n = dim(H) ≥ 2. Proposition 3.18 implies
that we can without loss of generality assume that H is the connected component of {h =
x3 − x〈y, y〉 + P3(y) = 1} that contains the point ( xy ) = ( 1

0 ) ∈ {h = 1} ⊂ Rn+1. If we can
show that (4.15) holds at the point ( 1

0 ) ∈ H independent of which specific form the cubic
polynomial P3 : Rn → R might have, we can, using linear transformations of the form A(p)
as in (3.7) for all other points p ∈ H, conclude that (4.15) holds globally on H. The formula
(3.34) for the scalar curvature of PSR manifolds (h is of homogeneity-degree τ = 3) reads

SH (( 1
0 )) = n(1− n) + 27

8
∑
`

∑
a6=i

(
−P3(∂a, ∂a, ∂`)P3(∂i, ∂i, ∂`) + P3(∂a, ∂i, ∂`)2

)
.

We rewrite

P3(∂a, ∂i, ∂`)2 = 1
16
(
P3(∂a + ∂i, ∂a + ∂i, ∂`)2 + P3(∂a − ∂i, ∂a − ∂i, ∂`)2

− 2P3(∂a + ∂i, ∂a + ∂i, ∂`)P3(∂a − ∂i, ∂a − ∂i, ∂`)
)

(4.16)

for all 1 ≤ a, i ≤ n. Note that for all 1 ≤ ` ≤ n and for a 6= i, the vector ∂` has Euclidean
length 1 and the vectors ∂a ± ∂i always have Euclidean length

√
2. Now, using the estimate

(4.12) in Lemma 4.10 yields

SH (( 1
0 )) ≤ n(1− n) + 27

8
∑
`

∑
a6=i

25
54 = n(n− 1)

(
−1 + 25

16n
)
,

and analogously
SH (( 1

0 )) ≥ n(n− 1)
(
−1− 25

16n
)
.

These estimates do not depend on the specific form of P3 as required.
Remark 4.14. We will later in this thesis, in Proposition 5.12, find a sharp estimate for the
scalar curvature of CCPSR surfaces, i.e. CCPSR manifolds H of dimension dim(H) = 2.
This estimate (5.38) does not coincide with the estimate (4.15) in Theorem 4.13 for n =
2. This indicates that the general estimate in Theorem 4.13 is most likely not sharp for
dim(H) = n ≥ 2, to prove this for n ≥ 3 is a task for future studies.

Note that Theorem 4.13 is also true for all closed PSR manifolds with multiple connected
components by simply considering each connected component seperately. Similarly to global
bounds for the scalar curvature SH that hold for all CCPSR manifolds H of fixed dimension,
we can also derive global bounds for their sectional curvatures (3.47), again independent of
the considered CCPSR manifolds of fixed dimension.
Proposition 4.15 (Bounds for the sectional curvature of CCPSR manifolds). The sectional
curvature K of every n ≥ 2-dimensional CCPSR manifold H equipped with their respective
centro-affine fundamental form gH = −1

3∂
2h
∣∣∣
TH×TH

is globally bounded by

− 1− 25
16n ≤ Kp(V ) ≤ −1 + 25

16n (4.17)

for all p ∈ H and all 2-planes V ⊂ TpH.



72

Proof. Proposition 3.18 and Lemma 3.31 imply that it suffices to prove the estimate (4.17)
for

K( 1
0 )(∂i, ∂j) = −1 + 27

8
∑
`

(
−P3(∂i, ∂i, ∂`)P3(∂j, ∂j, ∂`) + P3(∂i, ∂j, ∂`)2

)
(cf. equation (3.47) for τ = 3, F = 1) for all i 6= j and all n-dimensional CCPSR manifolds
H ⊂ {h = x3 − x〈y, y〉+ P3(y) = 1}, ( 1

0 ) ∈ H. We now proceed as in the proof of Theorem
4.13, rewrite (P3(∂i, ∂j, ∂`))2 as in equation (4.16), and obtain

−1− 25
16n ≤ K( 1

0 )(∂i, ∂j) ≤ −1 + 25
16n

which is independent of i and j, i 6= j, as required.

Remark 4.16. The global estimate (4.17) can also be used to obtain a global estimate for
SH. Since ∂i and ∂j are orthogonal at p = ( 1

0 ) for all PSR manifolds H with ( 1
0 ) ∈ H and

corresponding h of the form (3.12),

SH =
∑
i 6=j

K( 1
0 )(∂i, ∂j), (4.18)

see Remark 2.15. Hence, the estimate (4.17) in Proposition 4.15 implies

n(n− 1)
(
−1− 25

16n
)
≤ SH ≤ n(n− 1)

(
−1 + 25

16n
)
,

which coincides with the estimate (4.15) in Theorem 4.13.

Lastly in this section we will give a proof that all closed PSR manifolds H equipped with
their centro-affine fundamental form gH are geodesically complete. This was first shown in
[CNS, Thm. 2.5], in the corresponding proof it was used that the moduli space of closed
PSR curves under the action of GL(2), which consists precisely of two elements, is compact
(cf. [CHM, Cor. 4]). Our proof will instead make use of the estimates (4.7) for P3(z, dz, dz)
and (4.4) for the diameter of ∂dom(H). Note that geodesically complete PSR manifolds are
necessarily closed, since otherwise we could always continuously extend gH to each boundary
point and construct a geodesic in H which reaches said point in finite time, cf. [CNS,
Prop. 2.4].

Proposition 4.17 (Alternative closed PSR manifolds completeness proof №1). Closed PSR
manifolds (H, gH) are geodesically complete.

Proof. Let H be a closed PSR manifold and assume without loss of generality that H is
connected, that is a CCPSR manifold. For dimH = 0 there is nothing to show. Assume that
dimH ≥ 1. We will show that for all p ∈ H the closure of the geodesic ball BgH

11
64
√

3
(p) ⊂ H

with respect to the centro-affine (Riemannian) metric gH is always compact in H. We can
then use Lemma 2.21 to conclude that (H, gH) is geodesically complete.

Let p ∈ H be arbitrary. Proposition 3.18 implies that we can without loss of generality
assume that p = ( 1

0 ) and that H ⊂ {h = x3 − x〈y, y〉 + P3(y) = 1}. Corollary 4.5 implies
that the closure of the Euclidean ball B√3

8
(0) ⊂ dom(H) with respect to (Rn, 〈·, ·〉) is always

compact in dom(H). Hence with Φ : dom(H) → H as in (3.14), Φ
(
B√3

8
(0)
)
⊂ H is also

compact. The upper bound in estimate (4.12) Lemma 4.10 implies that

∀z ∈ ∂B√3
8

(0) : P3(z, dz, dz) ≤
√

3
8 ·

5
6
√

3
〈dz, dz〉 = 5

48〈dz, dz〉. (4.19)
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The linearity of P3(z, dz, dz) in z implies that (4.19) also holds for all z ∈ B√3
8

(0). We use
this and 0 < β(z) ≤ 1 on dom(H) to estimate Φ∗gH (see (3.33) with τ = 3) on B√3

8
(0) and

obtain for all z ∈ B√3
8

(0)

(Φ∗gH)z = −∂
2βz

3β(z) + 2dβ2
z

9β2(z)

≥ −∂
2βz

3β(z) = 1
3β(z)(2〈dz, dz〉 − 6P3(z, dz, dz))

≥ 1
3

(
2− 5

8

)
〈dz, dz〉 = 11

24〈dz, dz〉.

Hence,
BΦ∗gH√

3
8 ·

11
24

(0) = BΦ∗gH
11

64
√

3
(0) ⊂ B√3

8
(0),

which implies that the closure of the geodesic ball around z = 0 with radius 11
64
√

3 is always
compactly embedded in dom(H). Since Φ : (dom(H),Φ∗gH) → (H, gH) is an isometry, it
follows that BgH

11
64
√

3
(0) ⊂ H is compact. This holds independently of the p ∈ H we started

with and, hence, we can now use Lemma 2.21 and conclude that (H, gH) is geodesically
complete.

To summarize this section, we have seen that the condition for the cubic polynomial P3(y)
in h = x3 − x〈y, y〉 + P3(y), cf. equation (3.12) in Proposition 3.18, so that h corresponds
to a CCPSR manifold, yield various new results about the different curvature tensors, and
can also be used to prove the known result about completeness of closed PSR manifolds
in a different way. In particular we did not need to consider any regularity conditions of
the boundary of dom(H) (cf. [CNS, Prop. 2.4] or Definition 5.1 in the following section)
or properties the quotient space of closed PSR curves (cf. [CHM, Cor. 4]). This might
make one hope that a similar way can be used to solve the open problem of completeness of
closed GPSR manifolds (with τ ≥ 4, τ being the degree of homogeneity of the corresponding
polynomials h). Unfortunately, we have not found a way to do that. We will however
illustrate occurring problems in that endeavour for quartic GPSR manifolds (τ = 4), which
in even more generality will appear also for τ > 4, in Section 7 and present partial results.

Next, we will be concerned with the moduli space of CCPSR manifolds. As mentioned
before in Remark 2.44, one cannot expect to classify all CCPSR manifolds in a fixed dimension
without further restrictions (recall that PSR manifolds that are homogeneous spaces under
the action of the respective Lie group Gh

0 as in Definition 3.13 have been classified in [DV]).
We will however present an idea for a deformation theory for CCPSR manifolds. This might
also be of particular interest in physics, i.e. in the theory of supergravity, see [GST, FS, DV,
CHM] and also Section 8.
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5 Deformation theory of projective special real mani-
folds

In this section we will study how one can deform CCPSR manifolds. This is motivated by
the following problem. Let H ⊂ {h = 1} be an n ≥ 1-dimensional CCPSR manifold where
we assume without loss of generality that H is precisely the connected component of the level
set {h = 1} which contains the point ( xy ) = ( 1

0 ) ∈ {h = 1} ⊂ Rn+1 and that h is of the form
h = x3− x〈y, y〉+P3(y) as in equation (3.12). Let V : Rn → R, V ∈ Sym3 (Rn)∗, be another
cubic polynomial. We now want to determine all ε > 0, such that

hε := x3 − x〈y, y〉+ P3(y) + εV (y) (5.1)

also defines a CCPSR manifold Hε in the sense that, as for the initial CCPSR manifold H,
Hε is the connected component of {hε = 1} which contains the point ( xy ) = ( 1

0 ) ∈ {hε =
1} ⊂ Rn+1. It will turn out that the answer to this question and in particular the existence
of one such ε > 0 will only depend on the behaviour of the continuous function

ε 7→ max
‖z‖=1

(P3(z) + εV (z)) . (5.2)

We start with a description of the boundary behaviour of the centro-affine fundamental
form of CCGPSR manifolds.

Definition 5.1 (Regular boundary behaviour). Let H ⊂ {h = 1} be a CCGPSR manifold
of dimension n ≥ 1 and let U = R>0 ·H be the corresponding convex cone (cf. Proposition
3.7). Then H has regular boundary behaviour if

(i) dhp 6= 0 for all p ∈ ∂U \{0}, i.e. H is not singular at infinity in the sense of Definition
3.16,

(ii) −∂2h|T (∂U\{0})×T (∂U\{0}) ≥ 0 and dim ker
(
−∂2h|T (∂U\{0})×T (∂U\{0})

)
= 1 for all p ∈

∂U \ {0}.

Note that Definition 5.1 is equivalent to [CNS, Def. 1.17] restricted to CCGPSR manifolds.
We also want to stress that Definition 5.1 is independent of the chosen linear coordinates of
the ambient space Rn+1.

Remark 5.2. With the functions α and β as in (3.21) and (3.22), Lemma 3.25 shows that
the conditions (i) and (ii) in Definition 5.1 are equivalent to

(i) α(z) 6= 0 (or, equivalently, dβz(z) 6= 0) for all z ∈ ∂dom(H),

(ii) −∂2βz > 0 for all z ∈ ∂dom(H),

respectively. The second equivalence might not be immediately obvious. It follows from the
equality

T( 1
z )(∂U) = R · ( 1

z )⊕ Tz(∂dom(H))

and the property that this decomposition is orthogonal with respect to −∂2h( 1
z ), since

−∂2h( 1
z ) (( 1

z ) , ·) = −(τ − 1)dh( 1
z )(·),

which vanishes on Tz(∂dom(H)) viewed as a linear subspace of Rn+1.
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We will now prove that for CCPSR manifolds, the condition Def. 5.1 (i) always implies
Def. 5.1 (ii). We formulate this as follows.

Theorem 5.3 (Regularity conditions for CCPSR manifolds). CCPSR manifolds of dimen-
sion n ≥ 1 are not singular at infinity in the sense of Definition 3.16 if and only if they have
regular boundary behaviour as defined in Definition 5.1.

Proof. A CCPSR manifold H that has regular boundary behaviour is by definition not sin-
gular at infinity. For the other direction, consider first n = 1. Then Def. 5.1 (ii) is trivially
satisfied.

To prove the statement of this theorem for n ≥ 2, it suffices to prove it for n = 2. To
see this, consider any CCPSR manifold H of dimension n > 2 and assume that Def. 5.1 (i)
holds for H. Assume without loss of generality that ( xy ) = ( 1

0 ) ∈ H and that h is of the
form (3.12). Considering Remark 5.2, Def. 5.1 (ii) holds true if and only if Rem. 5.2 (ii)
holds true. To show the latter we need to show that −∂2βz(v, v) > 0 for all z ∈ ∂dom(H)
and all 0 6= v ∈ Tz(∂dom(H)) ⊂ Rn. Observe that for any 2-dimensional linear subspace
E = span{w1, w2} ⊂ Rn, where w1 and w2 are chosen such that they are orthonormal with
respect to 〈·, ·〉, the restricted polynomial

hE
(( x

t1
t2

))
:= x3 − x(t21 + t22) + P3(t1w1 + t2w2)

defines a 2-dimensional CCPSR manifold HE ⊂
{
hE = 1

}
⊂ R3 as the connected component

containing the point
( x
t1
t2

)
=
( 1

0
0

)
. Furthermore,

dom
(
HE

)
3
(
t1
t2

)
7→ t1w1 + t2w2 ∈ dom(H)

is an embedding. Note that the explicit formula for hE in general depends on the choice of
basis for E. Hence, if we want to show that −∂2βz(v, v) > 0 for some fixed z ∈ ∂dom(H)
and 0 6= v ∈ Tz(∂dom(H)), it suffices to show Rem. 5.2 (ii) for HE and hE, respectively
βE

((
t1
t2

))
= hE

((
1
t1
t2

))
, with E = span{z, v} where we view v as an element of Rn. Hence,

proving the statement of this theorem for all 2-dimensional CCPSR manifolds will also prove
it for these of higher dimension. Since the conditions in Definition 5.1 are independent of
the linear coordinates chosen for the ambient space Rn+1, we can reduce our studies to the
classification of 2-dimensional CCPSR manifolds up to equivalence given in [CDL, Thm. 1]6,
see Theorem 2.45. We will do a case-by-case check for the surfaces a)–e) and the one-
parameter family of surfaces f) in Theorem 2.45. For the cases a)–e) we will study the P3-part
the calculated standard form h̃ = x3−x(y2+z2)+P3 (( yz )) (3.12) of each cubic h corresponding
to a CCPSR surface H ⊂ {h = 1} obtained in Example 3.24 with the property that H is
equivalent to the connected component of

{
h̃ = 1

}
that contains the point

( x
y
z

)
=
( 1

0
0

)
. We

can then use Lemma 4.6, which says that the value of max
‖( yz )‖=1

|P3 (( yz ))| ∈
[
0, 2

3
√

3

]
determines

whether H is singular at infinity or not. In the cases where H is not singular at infinity, that
is fulfils Def. 5.1 (i), we need to show that it also fulfils Def. 5.1 (ii). For the one-parameter
family f) we will use another method and explain why in this case the form (3.12) is not the
best choice to work with in order to prove our claim.

6At the time the article [CDL] was written and published, it was still an open problem to show that a
PSR manifold is closed if and only if it is geodesically complete, which has first been proven in [CNS].
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a) H = {h = xyz = 1, x > 0, y > 0}.
Equation (3.15) implies that P3 (( yz )) = − 2

3
√

3y
3 + 2√

3yz
2. Since H is a CCPSR surface and

P3 (( −1
0 )) = 2

3
√

3 , Lemma 4.6 implies that H is singular at infinity.

b) H = {h = x(xy − z2) = 1, x > 0}.
By equation (3.16), P3 (( yz )) = 2

3
√

3y
3 + 1√

3yz
2 with P3 (( 1

0 )) = 2
3
√

3 . Hence, H is singular at
infinity.

c) H = {h = x(yz + x2) = 1, x < 0, y > 0}.
This case is a little more complicated in comparison with a) and b). Equation (3.17) implies
that P3 (( yz )) = 2

√
2√

15y
2z + 14

√
2

15
√

15z
3. We now need to determine max

‖( yz )‖=1
|P3 (( yz ))|. We find

for v =
( √

3
2
√

2√
5

2
√

2

)
, ‖v‖ = 1, that P3(v) = 2

3
√

3 . Hence, H being closed and connected implies

that max
‖( yz )‖=1

|P3 (( yz ))| = 2
3
√

3 . This shows that H is singular at infinity. Note that v can

be found without the help of a computer algebra system like MAPLE by considering the
equation dP3|( yz ) = r 〈( yz ) , ·〉, r > 0, which is not difficult to solve in this case since P3 (( yz ))
is reducible.

d) H = {h = z(x2 + y2 − z2) = 1, z < 0}.
From equation (3.18) we obtain that in this case P3 (( yz )) ≡ 0. Hence, max

‖( yz )‖=1
|P3 (( yz ))| = 0

and H is thus not singular at infinity. It is immediate that dom
(
H̃
)

= {‖( yz )‖ < 1} and that
for the corresponding function β(y, z) = 1− y2− z2 as in (3.22) we have dβ = −2ydy− 2zdz.
Hence, dβ vanishes at no point in ∂dom

(
H̃
)
, so Lemma 3.25 implies that H̃, and thus also

H, fulfils Def. 5.1 (i). Furthermore

∂2β( yz ) =
(
−2 0
0 −2

)
< 0 ∀

(
y
z

)
∈ ∂dom

(
H̃
)
,

so H̃, and equivalently H, fulfils Def. 5.1 (ii).

e) H = {h = x(y2 − z2) + y3 = 1, y < 0, x > 0}.
From equation (3.19) we know that P3 (( yz )) = 2

3
√

3y
3− 1

2
√

3yz
2. Hence, P3 (( 1

0 )) = 2
3
√

3 , which
shows that H is singular at infinity.

f)7 Hb = {h = y2z − 4x3 + 3xz2 + bz3 = 1, z < 0, 2x > z}, b ∈ (−1, 1).
For all b ∈ (−1, 1), the projective curve C := {h = y2z−4x3 + 3xz2 + bz3 = 0} ⊂ RP2 has no
singularities, cf. [CDL, Prop. 3], which means that dhp 6= 0 for all p ∈ {h = 0} \ {0} ⊂ R3.
Hence, each Hb, b ∈ (−1, 1), is not singular at infinity in the sense of Definition 3.16 and,
hence, fulfils condition Def. 5.1 (i). Note that Hb not being singular at infinity for all

7For this one-parameter family of CCPSR surfaces which are each contained in the level set of the respective
Weierstaß cubic with positive discriminant h, the method used for a)–e) has proven itself to be unsuitable.
This is because the formulas for the corresponding function β as in (3.22) and the derivatives corresponding
to h when brought to the form (3.12) might not depend on b ∈ (−1, 1) in complicated way, but studying the
system of equations v ∈ ker dβ, v ∈ ker ∂2β, β = 0, turned out to be quite difficult. We will thus consider
Definition 5.1 and not the equivalent conditions in Remark 5.2 to prove our claim for this one-parameter
family.
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b ∈ (−1, 1) also follows easily from equation (3.20) in Example 3.24. We need to show
that each Hb, b ∈ (−1, 1), also fulfils Def. 5.1 (ii). In order to prove this, we need to
determine ∂(R>0 ·Hb) ⊂ {h = 0, z ≤ 0, 2x ≥ z} ⊂ R3 for each b ∈ (−1, 1). Observe that
{h = 0, z ≤ 0, 2x ≥ z} ∩ {z = 0} = {x = 0, z = 0}. Hence, the line {x = 0, z = 0}
is contained in {h = 0, z ≤ 0, 2x ≥ z}, but R>0 ·Hb being a convex cone which has the
property described in Lemma 3.8 shows that {x = 0, z = 0} ∩ ∂(R>0 ·Hb) =

{( 0
0
0

)}
. For

z < 0 we will determine the section {z = −1} ∩ ∂(R>0 ·Hb), which can then be used with
the homogeneity of h to obtain the whole set ∂(R>0 ·Hb). We find

h
(( x

y
−1

))
= 0 ⇔ −y2 − 4x3 + 3x− b︸ ︷︷ ︸

=:ρb

= 0, (5.3)

where ρb (( xy )) = h
(( x

y
−1

))
. We consider ρb to be defined for all b ∈ R, not just for b ∈ (−1, 1).

Let
V = span

{( 1
0
0

)
,
( 0

1
0

)}
and observe that Hb not being singular at infinity implies that the tangent space T∂(R>0 ·Hb)
fulfils

Tp∂(R>0 ·Hb) = R · p⊕ (ker dhp ∩ V ) ∀p ∈ {z = −1} ∩ ∂(R>0 ·Hb).
Furthermore, the 1-dimensional linear subspaces R · p and ker dhp ∩ V of Tp∂(R>0 · Hb)
are orthogonal with respect to the positive-semidefinite bilinear form −∂2hp, which follows
from −∂2hp(p, ·) = −2dhp(·). Also note that ker dhp ∩ V is always 1-dimensional since the
position vector p 6= 0 is always an element of ker dhp for all p ∈ R>0 · Hb. Thus, in order
to prove that Def. 5.1 (ii) is fulfilled for each Hb, b ∈ (−1, 1), it suffices to show that
−∂2h|(ker dhp∩V )×(ker dhp∩V ) > 0. We obtain

dh = (−12x2 + 3z2)dx+ 2yzdy + (y2 + 6xz + 3bz2)dz

and

∂2h =

−24x 0 6z
0 2z 2y
6z 2y 6x+ 6bz

 .
Since Hb is not singular at infinity, it follows that at each point p =

( x
y
z

)
∈ {z = −1} ∩

∂(R>0 ·Hb), ker dhp ∩ V is given by

ker dhp ∩ V = span


−∂yhp∂xhp

0


 = span


 2y
−12x2 + 3

0


 .

Hence, −∂2h|(ker dhp∩V )×(ker dhp∩V ) > 0 if and only if

− ∂2hp

(( 2y
−12x2+3

0

)
,
( 2y
−12x2+3

0

))
> 0

⇔ 96xy2 + 288x4 − 144x2 + 18 > 0
⇔ 16xy2 + 48x4 − 24x2 + 3 > 0

⇔ 16xy2 +
(
4
√

3x2 −
√

3
)2
> 0 (5.4)

for all p =
( x
y
z

)
∈ {h = 0, z = −1} ∩ ∂(R>0 ·Hb). We will first check the above inequality

(5.4) for y = 0. In that case, (5.4) can only be false if x = ±1
2 . Then with ρb defined as in

(5.3) we obtain
0 = ρb

((
± 1

2
0

))
= ∓1

2 ±
3
2 − b = ±1− b.
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This is however a contradiction to b ∈ (−1, 1) and, hence, (5.4) holds at all points in {z =
−1, y = 0} ∩ ∂(R>0 · Hb). Now let y 6= 0. We see that then (5.4) is true for all x ≥ 0,
independent of b ∈ (−1, 1). It thus remains to check the inequality (5.4) for points in
{z = −1, x < 0} ∩ ∂(R>0 ·Hb). Note that the latter set might be empty, in fact one can
show that it is empty if and only if 0 < b < 1, but we will not need this information for our
proof. Observe that for all b1, b2 ∈ R with b1 < b2,

ρb1 (( xy )) > ρb2 (( xy ))

for all ( xy ) ∈ R2. Hence, ρb1|{ρb2=0} > 0, which in particular implies that

ρ−1|{ρb=0} > 0 (5.5)

for all b ∈ (−1, 1). With the fact that
( 1

2
0
−1

)
∈ {z = −1} ∩ (R>0 ·Hb), cf. Example

3.24, and ρ−1
(( 1

2
0

))
= 2 > 0 it follows that {z = −1} ∩ (R>0 ·Hb) is a subset of the

connected component of {ρ−1 > 0} × {−1} ⊂ R3 that contains the point
( 1

2
0
−1

)
, see Figure

5. Further observe that ρb
((
− 1

2
y

))
= −y2− 1− b < 0 for all y ∈ R and b ∈ (−1, 1), and that

Figure 5: The connected component of {ρ−1 > 0} that contains the point
( 1

2 , 0,−1
)T is (partly) marked in

grey, its boundary is a part of the set {ρ−1 = 0} which is also shown in {−1 < x < 1} ⊂ R2. The dotted area
in the plot is the connected component of

{
ρ− 1

2
> 0
}

that contains the point
( 1

2 , 0,−1
)T .

Hb ⊂ {z < 0, 2x > z} implies that {z = −1}∩∂(R>0 ·Hb) is contained in
{
z = −1, x > −1

2

}
for all b ∈ (−1, 1). In particular there exists no b ∈ (−1, 1), such that the x-coordinate of an
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element in {z = −1} ∩ ∂(R>0 ·Hb) has the value −1
2 . Hence, (5.4) and (5.5) imply that in

order to prove that Hb fulfils Def. 5.1 (ii) it suffices to show
{

16xy2 +
(
4
√

3x2 −
√

3
)2

= 0
}
∩
{
ρ−1 = 0, x ≥ −1

2

}
∩{x < 0} =

{(
x
y

)
=
(
−1

2
0

)}
, (5.6)

since
(
16xy2 + (4

√
3x2 −

√
3)2
)∣∣∣
{x>− 1

2 , y=0}
> 0, see also Figure 6. We insert ρ−1 = 0, which

Figure 6: The thick black curves represent the set
{

16xy2 +
(
4
√

3x2 −
√

3
)2 = 0

}
∩ {−1 < x < 0}, the

thinner grey curve is the set {ρ−1 = 0} ∩ {−1 < x < 1}.

is equivalent to y2 = −4x3 + 3x+ 1, into 16xy2 +
(
4
√

3x2 −
√

3
)2

= 0 and obtain

F (x) := −16x4 + 24x2 + 16x+ 3 = 0.

One can now use a computer algebra system like MAPLE and find that F (x) = 0 and
−1

2 ≤ x < 0 if and only if x = −1
2 . This proves (5.6) and, hence, shows that each Hb,

b ∈ (−1, 1), fulfils Def. 5.1 (ii).
This finishes the proof of Theorem 5.3.

Lemma 4.6 and Theorem 5.3 show the following.

Corollary 5.4 (Critical values of P3|{‖z‖=1} and regularity of CCPSR manifolds). An n ≥ 1-
dimensional CCPSR manifold H ⊂ {h = x3 − x〈y, y〉 + P3(y) = 1}, ( xy ) = ( 1

0 ) ∈ H, has
regular boundary behaviour if and only if max

‖z‖=1
P3(z) < 2

3
√

3 .
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Proposition 5.5 (Starshape and path-connectedness of the moduli space of CCPSR man-
ifolds). Let H ⊂ {h = 1} ⊂ Rn+1 be an n ≥ 1-dimensional CCPSR manifold and assume
without loss of generality that h = x3 − x〈y, y〉 + P3(y) and ( xy ) = ( 1

0 ) ∈ H (cf. Proposition
3.18). Let ‖ · ‖ denote the norm on Rn induced by the Euclidean standard scalar product
〈·, ·〉 determined by the choice of the coordinates y = (y1, . . . , yn)T . Then for all s ∈ [0, 1],
the connected component Hs ⊂ {hs := x3 − x〈y, y〉 + sP3(y) = 1} that contains the point
( xy ) = ( 1

0 ) is a CCPSR manifold.

Proof. For all s ∈ [0, 1],

max
‖z‖=1

|sP3(z)| ≤ max
‖z‖=1

|P3(z)| ≤ 2
3
√

3
.

Hence Corollary 4.3 shows that for each corresponding Hs, which is by definition closed as a
subset of Rn+1, the necessary condition for Hs to be a CCPSR manifold, namely that the set
(R>0 ·Hs)∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn} ⊂ Rn+1 is precompact, is satisfied. For s = 1, H1 and H

coincide. For s = 0, (4.5) in Lemma 4.8 immediately shows that H0 is a CCPSR manifold.
Now consider s ∈ (0, 1) and let ( 1

z ) ∈ (R>0 ·Hs) ∩ {( 1
z ) ∈ Rn+1 | z ∈ Rn} be arbitrary. For

z = 0, (4.5) in Lemma 4.8 is always true. For z 6= 0, we will differentiate between the cases
P3(z) ≥ 0 and P3(z) < 0. In the first case, that is P3(z) ≥ 0, the estimate (4.3) in Lemma 4.2
for fsP3( z

‖z‖)(t) = hs
(( 1

t z
‖z‖

))
(note: B = P3

(
z
‖z‖

)
and A = sP3

(
z
‖z‖

)
) show that z ∈ dom(H)

for all s ∈ (0, 1). Hence, using the hyperbolicity of H we estimate

3〈dz, dz〉 − 9sP3(z, dz, dz) + 〈z, dz〉2 > s
(
3〈dz, dz〉 − 9P3(z, dz, dz) + 〈z, dz〉2

)
> 0. (5.7)

This shows that all points in (R>0 ·Hs)∩ {( 1
z ) ∈ Rn+1 | z ∈ Rn} with P3(z) ≥ 0 satisfy (4.5)

in Lemma 4.8 for all s ∈ (0, 1).
Next, consider the case P3(z) < 0. This case is a bit more complicated, since the estimate

(4.2)8 in Lemma 4.4 for f−sP3( z
‖z‖)(t) = hs

(( 1
−t z
‖z‖

))
shows that for all s ∈ (0, 1) there exist

points in (R>0 ·Hs) ∩ {( 1
z ) ∈ Rn+1 | z ∈ Rn} that are not contained in the set{

( 1
z ) ∈ Rn+1

∣∣∣ z ∈ dom(H)
}

= (R>0 ·H) ∩
{

( 1
z ) ∈ Rn+1

∣∣∣ z ∈ Rn
}

(see Figure 7 for an example). Consider for z ∈ R>0 · z, such that z ∈ ∂dom(H), and for
t ∈ [0, 1] the function r : [0, 1]→ [1,∞) implicitly defined by

F (r, t) = 1− r2〈z, z〉+ (1− t)r3P3(z) = 0.

The condition that r(t) is a positive function and the uniqueness of the positive real root of
r 7→ F (r, t) for all t ∈ [0, 1] show that F (r, t) = 0 indeed defines r(t) in a unique way, and
furthermore that r(t) is smooth for t ∈ (0, 1) and continuous for t ∈ [0, 1] (note: P3(z) < 0).
The map

Ψ : {1} × ((R>0 · z) ∩ dom(H))→ ({1} × R>0 · z)
∩
(
(R>0 ·Hs) ∩

{
( 1
z ) ∈ Rn+1

∣∣∣ z ∈ Rn
})
,(

1
z̃

)
7→
(

1
r(1−s)z̃

)
,

8With corresponding values B = −P3

(
z
‖z‖

)
and A = −sP3

(
z
‖z‖

)
.
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{

B

Figure 7: The black curve is a plot of f− 2
3

√
3
(t) corresponding to s = 1, that is H1. The grey curve is a

plot of f− 1
10 ·

2
3

√
3
(t) corresponding to s = 1

10 ∈ (0, 1), that is H− 1
10

. The set B is to be understood as points
in that are not contained in dom (H1), but are contained in (a fitting projection of the set) (R>0 ·Hs) ∩{

(1, z)T ∈ Rn+1
∣∣∣ z ∈ Rn

}
.

is thus a diffeomorphism for all s ∈ [0, 1]. Furthermore, Ψ can be continuously extended to
be defined on {1} ×

(
(R>0 · z) ∩ dom(H)

)
for all s ∈ [0, 1], with the property that

Ψ(z) ∈ ∂
(
(R>0 ·Hs) ∩

{
( 1
z ) ∈ Rn+1

∣∣∣ z ∈ Rn
})
.

We obtain for the first t-derivative of r = r(t) for all t ∈ (0, 1)

− 2r(t)ṙ(t)〈z, z〉 − r3(t)P3(z) + 3(1− t)r2(t)ṙ(t)P3(z) = 0

⇔ ṙ(t) = −r2(t)P3(z)
2〈z, z〉 − 3(1− t)r(t)P3(z) . (5.8)

Since P3(z) < 0 and t ∈ (0, 1), this in particular shows that ṙ(t) > 0 for all t ∈ (0, 1).
If the considered point ( 1

z ) ∈ (R>0 ·Hs) ∩ {( 1
z ) ∈ Rn+1 | z ∈ Rn} is also an element of

{1} × dom(H), then we can use estimate (5.7) for all s ∈ (0, 1). For ( 1
z ) ∈ (R>0 ·Hs) ∩

{( 1
z ) ∈ Rn+1 | z ∈ Rn} \ ({1}×dom(H)), we want to show that (4.5) holds for all s ∈ (0, 1),

i.e. that 3〈dz, dz〉 − 9sP3(z, dz, dz) + 〈z, dz〉2 > 0 for all s ∈ (0, 1). Substituting s = 1 − t
and z = Ψ(z̃) = r(t)z̃ with z̃ ∈ dom(H), the latter is equivalent to

3〈dz, dz〉 − 9(1− t)r(t)P3(z̃, dz, dz) + r2(t)〈z̃, dz〉2 > 0. (5.9)

Since H is a CCPSR manifold by assumption, we already know that

3〈dz, dz〉 − 9P3(z̃, dz, dz) + 〈z̃, dz〉2 > 0

for all z̃ ∈ dom(H), cf. Lemma 4.8. Since r2(t) > 1 for all t ∈ (0, 1), proving

3〈dz, dz〉 − 9(1− t)r(t)P3(z̃, dz, dz) + 〈z̃, dz〉2 > 0

for all t ∈ (0, 1) and all z̃ ∈ dom(H) will in particular prove (5.9). Since the estimate
3〈dz, dz〉 + 〈z̃, dz〉2 > 0 holds true for all z̃ ∈ Rn, it suffices to show that (1− t)r(t) ≤ 1 for
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all t ∈ (0, 1). The function (1− t)r(t) is non-negative and continuous on [0, 1], and positive
and smooth on (0, 1). For t = 0, (1− t)r(t)|t=0 = r(0) = 1. Using (5.8) yields

∂

∂t
((1− t)r(t)) = −r(t) + (1− t)ṙ(t) = −2r(t)〈z, z〉+ 2(1− t)r2(t)P3(z)

2〈z, z〉 − 3(1− t)r(t)P3(z) < 0

for all t ∈ (0, 1). Hence, 0 ≤ (1− t)r(t) ≤ 1 for all t ∈ [0, 1]. This thus proves (5.9).
Summarising, we have shown that 3〈dz, dz〉 − 9sP3(z, dz, dz) + 〈z, dz〉2 > 0 for all ( 1

z ) ∈
R>0 ·Hs ∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn} for all s ∈ [0, 1], and thus have proven using Lemma 4.8
that Hs is a CCPSR manifold for all s ∈ [0, 1].

An immediate consequence of Proposition 5.5 is that we can always find a continuous curve
connecting two CCPSR manifolds of the same positive dimension that consists pointwise of
CCPSR manifolds. However, we will prove a stronger result in the following Theorem 5.6,
from which it will in particular follow how such an aforementioned curve can look like (see
Corollary 5.10).

Theorem 5.6 (Convex compact generating set of CCPSR moduli space). Let n ∈ N and
h : Rn+1 → R be a cubic homogeneous polynomial of the form (3.12), that is h = x3−x〈y, y〉+
P3(y). Then the connected component H of the level set {h = 1} ⊂ Rn+1 that contains the
point ( xy ) = ( 1

0 ) is a CCPSR manifold if and only if max
‖z‖=1

P3(z) ≤ 2
3
√

3 .

Proof. Firstly note that P3 : Rn → R being a cubic homogeneous polynomial and, hence, an
odd function implies that max

‖z‖=1
P3(z) = max

‖z‖=1
|P3(z)|. Assume that H is a CCPSR manifold.

Then Lemma 4.2 shows that max
‖z‖=1

P3(z) ≤ 2
3
√

3 .

Now assume that max
‖z‖=1

P3(z) ≤ 2
3
√

3 . Lemma 4.2 only shows that this is a necessary
requirement for H to be a CCPSR manifold. In order to show that it is also a sufficient
condition, we have to show that

3〈v, v〉 − 9P3(z, v, v) + 〈z, v〉2 > 0 (5.10)

for all ( 1
z ) ∈ (R>0 ·H) ∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn} and all v ∈ Rn \ {0}, cf. Lemma 4.8. For
z = 0, (5.10) is always true. For z 6= 0 and v = rz, r 6= 0, (5.10) reads r2(3〈z, z〉 − 9P3(z) +
〈z, z〉2) > 0. Suppose that there exists a point ( 1

z ) ∈ (R>0 ·H) ∩ {( 1
z ) ∈ Rn+1 | z ∈ Rn} \

{( 1
0 )}, such that 3〈z, z〉 − 9P3(z) + 〈z, z〉2 = 0. Observe that max

‖z‖=1
P3(z) ≤ 2

3
√

3 implies

3〈z, z〉 − 9P3(z) + 〈z, z〉2 = ‖z‖2
(

3− 9‖z‖P3

(
z

‖z‖

)
+ ‖z‖2

)
≥ ‖z‖2

(
3− 2

√
3‖z‖+ ‖z‖2

)
.

The map ‖z‖ 7→ 3− 2
√

3‖z‖+ ‖z‖2 is non-negative and its only zero is at ‖z‖ =
√

3. Hence,
for ‖z‖ > 0, ‖z‖2(3 − 2

√
3‖z‖ + ‖z‖2) = 0 if and only if ‖z‖ =

√
3. Since by assumption

( 1
z ) ∈ R>0 ·H ∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn} \ {( 1
0 )}, we have h (( 1

z )) = 1 − 〈z, z〉 + P3(z) > 0.
But with ‖z‖ =

√
3,

h (( 1
z )) = 1− 〈z, z〉+ P3(z) = −2 + 3

√
3P3

(
z

‖z‖

)
≤ −2 + 3

√
3 · 2

3
√

3
= 0,

which is a contradiction. We conclude that whenever z 6= 0 and v 6= 0 are linearly dependent,
the estimate (5.10) holds. Note that this already finishes the proof for n = 1.
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Now assume that dim(H) ≥ 2 and let ( 1
z ) ∈ (R>0 ·H) ∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn} \ {( 1
0 )}

be arbitrary. Let v ∈ Rn \ {0}, such that z and v are linearly independent. In order to show
(5.10), choose an orthonormal basis {e1, e2} of span{z, v} ⊂ Rn with respect to 〈·, ·〉 and
consider the cubic homogeneous polynomial ȟ : R3 → R given by

ȟ(z,v)
(( x

a
b

))
= h (( x

ae1+be2 )) = x3 − x(a2 + b2) + P3(ae1 + be2)︸ ︷︷ ︸
=:P̌3(( ab ))

. (5.11)

Let Ȟ be the connected component of the level set
{
ȟ(z,v) = 1

}
⊂ R3 that contains the point( 1

0
0

)
∈ R3 and observe that

(
R>0 · Ȟ

)
∩
{( 1

a
b

)
∈ R3

∣∣∣ ( ab ) ∈ R2
}

(5.12)
∼= {( 1

w ) | w ∈ span{z, v}} ∩
(
(R>0 ·H) ∩

{
( 1
z ) ∈ Rn+1

∣∣∣ z ∈ Rn
})

via the linear map
( x
a
b

)
7→ ( x

ae1+be2 ). Hence, if we prove that the inequality (4.5) in Lemma 4.8
holds for all cubic homogeneous polynomials ȟ(z,v) of the form (5.11) with corresponding set
(5.12), we will also have proven (4.5) in Lemma 4.8 for our considered h with corresponding
set (R>0 ·H)∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn} (recall that for z and v linearly dependent, (5.10) has
already been shown to hold true). Furthermore note that

0 ≤ max
‖( ab )‖=1

P̌3 (( ab )) ≤ max
‖z‖=1

P3(z) ≤ 2
3
√

3
.

We thus see that it suffices to prove the statement of this theorem for all considered manifolds
H with the additional restriction dim(H) = 2 in order to conclude that it holds true for all
H with dim(H) ≥ 2. In the following, we will use the notation used in [CDL] and consider
R3 with linear coordinates

( x
y
z

)
,

h : R3 → R, h = x3 − x(y2 + z2) + P3 (( yz )) ,

such that
max
‖( yz )‖=1

P3 (( yz )) ≤ 2
3
√

3
.

As before, we consider the centro-affine surface H which is the connected component of the
level set {h = 1} ⊂ R3 that contains the point

( x
y
z

)
=
( 1

0
0

)
, and we want to show that H is a

CCPSR surface (which is equivalent to the condition (4.5) in Lemma 4.8). For P3 ≡ 0, the
condition (4.5) in Lemma 4.8 is immediately seen to be true. For P3 6≡ 0, Proposition 5.5
implies that it suffices to prove that H is a CCPSR surface if max

‖( yz )‖=1
P3 (( yz )) = 2

3
√

3 , since for

all non-vanishing cubic homogeneous polynomials P3 : R2 → R with max
‖( yz )‖=1

P3 (( yz )) < 2
3
√

3

we can always choose a positive real number r > 0, such that max
‖( yz )‖=1

rP3 (( yz )) = 2
3
√

3 .

Consequently assume that max
‖( yz )‖=1

P3 (( yz )) = 2
3
√

3 . We can, after a possible orthogonal

transformation of the ( yz )-coordinates (which does not change the form (3.12) of h), assume
that P3|{‖( yz )‖=1} attains its maximum at ( yz ) = ( 1

0 ), so that P3 is of the form

P3 (( yz )) = 2
3
√

3
y3 + kyz2 + `z3.
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We immediately see that ` ∈ R needs to fulfil |`| ≤ 2
3
√

3 . Furthermore, we can without loss
of generality assume that ` ≥ 0, which can be achieved via z 7→ −z if necessary.

Now we will show that for all ` ∈
[
0, 2

3
√

3

]
, max
‖( yz )‖=1

P3 (( yz )) = 2
3
√

3 implies

k ∈
[
− 2√

3
,

1√
3

]
. (5.13)

It will become clear how to use this information in the step thereafter.
First assume ` = 0, so that P3 (( yz )) = 2

3
√

3y
3 + kyz2. We want to determine the positive

extremal values and corresponding critical points of P3 when restricted to the set {‖( yz )‖ = 1}
aside from 2

3
√

3 , respectively ( yz ) = ( 1
0 ). Suppose that there exists k > 1√

3 or k < − 2√
3 , such

that max
‖( yz )‖=1

P3 (( yz )) = 2
3
√

3 . In order to find the extremal values of P3 on {‖( yz )‖ = 1} we

need to solve dP3|( yz ) = r
〈
( yz ) ,

(
dy
dz

)〉
, r ∈ R, that is

( 2√
3y

2 + kz2

2kyz

)
=
(
ry
rz

)
, y2 + z2 = 1. (5.14)

We already know that ( yz ) = ( 1
0 ) is an extremal point with P3 > 0, so we assume now that

z 6= 0. Then by (5.14) r = 2ky, which implies

z2 = 2
√

3k − 2√
3k

y2. (5.15)

Note that
2
√

3k − 2√
3k

> 0 ∀k ∈ R \
[
− 2√

3
,

1√
3

]
, (5.16)

so (5.15) will always have non-trivial solutions. For k > 1√
3 or k < − 2√

3 consider the two
points

η± =

√√√√ √
3k

3
√

3k − 2

 1
±
√

2
√

3k−2√
3k

 ∈ R2.

One quickly checks that ‖η±‖ = 1 and that η± both solve equation (5.15). We obtain

P3(η±) = 2k
3

√√√√ √
3k

3
√

3k − 2
=: φ(k)

and

∂kφ(k) = 2
3

√√√√ √
3k

3
√

3k − 2

(
1− 1

3
√

3k − 2

)
.

Furthermore,

lim
k→ 1√

3
, k> 1√

3

φ(k) = φ

(
1√
3

)
= 2

3
√

3
, (5.17)

lim
k→− 2√

3
, k<− 2√

3

φ(k) = φ

(
− 2√

3

)
= − 2

3
√

3
, (5.18)

and we see that
∂kφ(k) > 0 ∀k ∈ R \

[
− 2√

3
,

1√
3

]
.
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This shows that for ` = 0 there exists no k ∈ R\
[
− 2√

3 ,
1√
3

]
, such that max

‖( yz )‖=1
P3 (( yz )) = 2

3
√

3 .

It remains to consider the case ` ∈
(
0, 2

3
√

3

]
. For P3 (( yz )) = 2

3
√

3y
3 + kyz2 + `z3 we get

P3(η±) = φ(k)± `
(

2
√

3k − 2
3
√

3k − 2

) 3
2

(note that ‖η±‖ = 1 independent of the chosen `). Since

2
√

3k − 2
3
√

3k − 2
> 0 ∀k ∈ R \

[
− 2√

3
,

1√
3

]
,

it follows that

∂`P3(η+) =
(

2
√

3k − 2
3
√

3k − 2

) 3
2

> 0, (5.19)

∂`P3(η−) = −
(

2
√

3k − 2
3
√

3k − 2

) 3
2

< 0 (5.20)

for all k ∈ R \
[
− 2√

3 ,
1√
3

]
. With

P3(η+)|`=0 >
2

3
√

3
∀k > 1√

3
and

P3(η−)|`=0 < −
2

3
√

3
∀k < − 2√

3
we can now conclude that for all ` > 0, i.e. in particular for all ` ∈

(
0, 2

3
√

3

]
, we have

P3(η+) > 2
3
√

3 and P3(η−) < − 2
3
√

3 .
Summarising, we have shown that for all k ∈ R \

[
− 2√

3 ,
1√
3

]
and all ` ∈

[
0, 2

3
√

3

]
max
‖( yz )‖=1

P3 (( yz )) > 2
3
√

3
,

which in particular implies that for all ` ∈
[
0, 2

3
√

3

]
, max
‖( yz )‖=1

P3 (( yz )) > 2
3
√

3 implies k ∈[
− 2√

3 ,
1√
3

]
as claimed in (5.13).

Next, we will deal with the cases where

k ∈
{
− 2√

3
,

1√
3

}
(5.21)

Equations (5.18) and (5.20) (for the lower limit k = − 2√
3) imply that for k = − 2√

3 and all
` ∈

(
0, 2

3
√

3

]
max
‖( yz )‖=1

P3 (( yz )) > 2
3
√

3
.

Hence, for k = − 2√
3 , ` = 0 is the only allowed value for ` ∈

[
0, 2

3
√

3

]
such that

max
‖( yz )‖=1

P3 (( yz )) = 2
3
√

3
.
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The corresponding connected component H of {h = 1} is linearly equivalent to the CCPSR
surface a) in Theorem 2.45, cf. equation (3.15) after a sign-flip in y and, hence, in particular
a CCPSR manifold. The case k = 1√

3 is a little more complicated since then η± = ( 1
0 ), for

which in particular ∂`P3(η±) vanishes, see (5.19) and (5.20). Instead of η± consider for ` ≥ 0
the point

p = 1√
27l2 + 1

(
1

3
√

3l

)
, ‖p‖ = 1.

One can check that dP3|p ∈ R〈p, ·〉 and

P3(p) = 27`2 + 2
3
√

3
√

27`2 + 1
,

∂`(P3(p)) =
(

3
√

3`√
27`2 + 1

)3

.

For ` = 0 we have P3(p) = 2
3
√

3 and since ∂`(P3(p)) > 0 for all ` > 0 we deduce that

∀` > 0 : P3(p) > 2
3
√

3
.

This proves that for k = 1√
3 , ` = 0 is the only value allowed for ` ∈

[
0, 2

3
√

3

]
. For k = 1√

3 ,
` = 0, the connected component H of {h = 1} is equivalent to the CCPSR surface b) in
Theorem 2.45 which follows from equation (3.16). Hence, H is a CCPSR manifold.

Now, as stated before, we will use (5.13). Considering (4.5) in Lemma 4.8 for points in
the set

(R>0 ·H) ∩
{(

1
y
0

)
∈ R3

∣∣∣∣ y ∈ R
}

=
{(

1
y
0

)
∈ R3

∣∣∣∣ y ∈
(
−
√

3
2 ,
√

3
)}

yields (
3(dy2 + dz2)− 9P3 (( yz ) , ·, ·) + (ydy + zdz)2

)∣∣∣( yz )=( y0 )
= (y2 − 2

√
3y + 3)dy2 + (3− 3ky)dz2

=
(
y −
√

3
)2
dy2 + 3(1− ky)dz2.

With (5.13), that is k ∈
[
− 2√

3 ,
1√
3

]
, and y ∈

(
−
√

3
2 ,
√

3
)

we deduce

(
y −
√

3
)2
dy2 + 3(1− ky)dz2 > 0.

This means that the line segment
{(

1
y
0

)
∈ R3

∣∣∣∣ y ∈ (−√3
2 ,
√

3
)}
⊂ R3 consists only of hyper-

bolic points of h, independently of the choice of k ∈
[
− 2√

3 ,
1√
3

]
. We project the line segment{(

1
y
0

)
∈ R3

∣∣∣∣ y ∈ (−√3
2 ,
√

3
)}
⊂ R3 to H via point-wise multiplication with 1

3
√
h((1,y,0)T )

.

Since being a hyperbolic point of h is an open condition in R3, we are in the setting of Propo-
sition 3.18 and can transform h with linear transformations of the form (3.7) along that set9,

9Note that this subset of H is connected and contains the point (1, 0, 0)T . Furthermore ∂xh = 3x2 − y,
which is positive at all points (1, y, 0)T , y ∈

(
−
√

3
2 ,
√

3
)

. Hence, we can in fact transform h along these
points via transformations of the form (3.7).
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that is along 



1

3

√
h

((
1
y
0

))
y

3

√
h

((
1
y
0

))
0

 ∈ R3

∣∣∣∣∣∣∣∣∣∣∣∣∣
y ∈

(
−
√

3
2 ,
√

3
)

⊂ H.

In order not to confuse coordinates with parametrisation of said subset of H, we replace y in
the above set with the parameter T ∈

(
−
√

3
2 ,
√

3
)
. We start with E = 1 in (3.7) and assign

for T ∈
(
−
√

3
2 ,
√

3
)

A(T ) =


1

3
√

1−T 2+ 2
3
√

3
T 3

2T√
3T+3 0

T

3
√

1−T 2+ 2
3
√

3
T 3

1 0

0 0 1

 ∈ GL(3). (5.22)

We obtain

h
(
A(T ) ·

( x
y
z

))
= x3 − x

3
(
1− T 2 + 2

3
√

3T
3
) 2

3(
T +
√

3
)2 y2 + 1− kT

3
√

1− T 2 + 2
3
√

3T
3
z2


+

2
(
1− T 2 + 2

3
√

3T
3
)

(
T +
√

3
)3 y3 +

(
k − 2T√

3T + 3

)
yz2 + `z3. (5.23)

Note that 1− T 2 + 2
3
√

3T
3 > 0 and 1− kT > 0 for all T ∈

(
−
√

3
2 ,
√

3
)

and all k ∈
[
− 2√

3 ,
1√
3

]
,

which is in accordance with equation (3.10). We have already shown that for k ∈
{
− 2√

3 ,
1√
3

}
,

max
‖( yz )‖=1

P3 (( yz )) = 2
3
√

3 implies ` = 0 and that the corresponding surfaces H are indeed

CCPSR manifolds. We will from here on assume that k ∈
(
− 2√

3 ,
1√
3

)
. Before bringing h in

(5.23) to the standard form (3.12) we will check that we can always solve k− 2T√
3T+3 = 0 (the

left hand side of which can be viewed as the “transformed k”, up to scale) for k ∈
(
− 2√

3 ,
1√
3

)
.

We obtain

k − 2T√
3T + 3

= 0 ⇔ T = 3k
2−
√

3k
=: T (k).

We have to check that for all k ∈
(
− 2√

3 ,
1√
3

)
, T (k) ∈

(
−
√

3
2 ,
√

3
)
. For the limit points

k ∈
{
− 2√

3 ,
1√
3

}
we have

T

(
− 2√

3

)
= −
√

3
2 , T

(
1√
3

)
=
√

3,

and
∂kT (k) = 6

(2−
√

3k)2
> 0

for all k ∈
(
− 2√

3 ,
1√
3

)
. Hence,

∀k ∈
(
− 2√

3
,

1√
3

)
: T (k) ∈

(
−
√

3
2 ,
√

3
)
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as required. Considering (5.23), we rescale y and z with

E(T ) =


T+
√

3
√

3 3
√

1−T 2+ 2
3
√

3
T 3

6
√

1−T 2+ 2
3
√

3
T 3

√
1−kT

 , (5.24)

set T = T (k) to obtain that h is equivalent to

h
(
A(T ) ·

(
1
E(T )

)
·
( x
y
z

))
= x3 − x(y2 + z2) + 2

3
√

3
y3 + `

√
1− T (k)2 + 2

3
√

3T (k)3

(1− kT (k))
3
2

z3. (5.25)

The next question one has to ask is if k ∈
(
− 2√

3 ,
1√
3

)
and max
‖( yz )‖=1

P3 (( yz )) = 2
3
√

3 (for the

P3-term in h, i.e. P3 (( yz )) = 2
3
√

3y
3 + kyz2 + `z3) imply

`

√
1− T (k)2 + 2

3
√

3T (k)3

(1− kT (k))
3
2

≤ 2
3
√

3
(5.26)

which is a necessary requirement for

max
‖( yz )‖=1

 2
3
√

3
y3 + `

√
1− T (k)2 + 2

3
√

3T (k)3

(1− kT (k))
3
2

z3

 = 2
3
√

3

and thus also a necessary requirement that the transformed cubic in (5.25) needs to fulfil
so that the corresponding connected component of its level set

{
h
(
A(T ) · ( 1

E ) ·
( x
y
z

))
= 1

}
which contains the point

( x
y
z

)
=
( 1

0
0

)
can be a CCPSR manifold, cf. Corollary 4.3. Instead of

attempting to calculate the supremum of `

√
1−T (k)2+ 2

3
√

3
T (k)3

(1−kT (k))
3
2

with conditions k ∈
(
− 2√

3 ,
1√
3

)
and max
‖( yz )‖=1

P3 (( yz )) = 2
3
√

3 directly, we will choose another way to prove that (5.26) does, in

fact, hold true.
For k = 0, h is of the form h = x3−x(y2 +z2)+ 2

3
√

3y
3 + `z3. Consider for T ∈

(
−
√

3
2 ,
√

3
)

arbitrary, A(T ) and E(T ) as in (5.22) and (5.24), respectively,

h
(
A(T ) ·

(
1
E(T )

)
·
( x
y
z

))
= x3−x(y2+z2)+ 2

3
√

3
y3− 2T

3 yz2+`z3
√

1− T 2 + 2
3
√

3
T 3. (5.27)

For the following calculations, we define

P(3,`,T ) (( yz )) := 2
3
√

3
y3 − 2T

3 yz2 + `z3
√

1− T 2 + 2
3
√

3
T 3. (5.28)

We will show that

∀` > 2
3
√

3
∀T ∈

(
−
√

3
2 ,
√

3
)

: max
‖( yz )‖=1

P(3,`,T ) ( yz ) > 2
3
√

3
(5.29)

holds true. To do so we will for T ∈
(
−
√

3
2 ,
√

3
)

and ` = 2
3
√

3 study a critical point of

P(
3, 2

3
√

3
,T

) (( yz )) = 2
3
√

3
y3 − 2T

3 yz2 + 2
3
√

3
z3
√

1− T 2 + 2
3
√

3
T 3
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on the set {‖( yz )‖ = 1}, namely the point(
y
z

)
= 1
T +
√

3

( −T√
2
√

3T + 3

)
=: ζ. (5.30)

Note that ζ is well-defined for all T ∈
(
−
√

3
2 ,
√

3
)
, and it is indeed a critical point of

P(
3, 2

3
√

3
,T

) (( yz )). Using the factorisation 1 − T 2 + 2
3
√

3T
3 = 2

3
√

3

(
T −
√

3
)2 (

T +
√

3
2

)
and

T −
√

3 < 0 for all T ∈
(
−
√

3
2 ,
√

3
)
, we find

dP(
3, 2

3
√

3
,T

)∣∣∣∣∣∣
ζ

=
((

2√
3
y2 − 2T

3 z2
)
dy +

(
−4T

3 yz + 2√
3
z2
√

1− T 2 + 2
3
√

3
T 3

)
dz

)∣∣∣∣∣
ζ

= 2√
3
〈
ζ,
(
dy
dz

)〉
.

The corresponding critical value is given by P(
3, 2

3
√

3
,T

)(ζ) = 2
3
√

3 , independent of T ∈(
−
√

3
2 ,
√

3
)
. Note that dz(ζ) > 0 for all T ∈

(
−
√

3
2 ,
√

3
)

and consider the derivative

∂`
(
P(3,`,T ) ( yz )

)
= z3

√
1− T 2 + 2

3
√

3
.

Hence, ∂`
(
P(3,`,T ) ( yz )

)
> 0 for all T ∈

(
−
√

3
2 ,
√

3
)

and all z > 0, in particular for z = dz(ζ).
We conclude that (5.29) holds true.

We can now use (5.29) to show that (5.26) holds true for all k ∈
(
− 2√

3 ,
1√
3

)
. For ` = 0

equation (5.26) is automatically true independently of the chosen k ∈
(
− 2√

3 ,
1√
3

)
. Suppose

that there exist k ∈
(
− 2√

3 ,
1√
3

)
and ` ∈

(
0, 2

3
√

3

]
, with corresponding polynomial h = x3 −

x(y2 + z2) + 2
3
√

3y
3 + kyz2 + `z3, fulfilling

max
‖( yz )‖=1

P3 (( yz )) = max
‖( yz )‖=1

(
2

3
√

3
y3 + kyz2 + `z3

)
= 2

3
√

3
, (5.31)

such that for T = T (k) = 3k
2−
√

3k

`

√
1− T (k)2 + 2

3
√

3T (k)3

(1− kT (k))
3
2

>
2

3
√

3
,

which precisely means that (5.26) does not hold true for the chosen k, `. Combining (5.25)
and (5.27), one obtains that h is equivalent to

h̃ = x3 − x(y2 + z2) + 2
3
√

3
y3 − 2T̃

3 yz2 + `z3

√
1− T (k)2 + 2

3
√

3T (k)3

(1− kT (k))
3
2

√
1− T̃ 2 + 2

3
√

3
T̃ 3

for all T̃ ∈
(
−
√

3
2 ,
√

3
)
. Furthermore, (5.29) implies that for all T̃ ∈

(
−
√

3
2 ,
√

3
)
:

max
‖( yz )‖=1

 2
3
√

3
y3 − 2T̃

3 yz2 + `z3

√
1− T (k)2 + 2

3
√

3T (k)3

(1− kT (k))
3
2

√
1− T̃ 2 + 2

3
√

3
T̃ 3

 >
2

3
√

3
.

(5.32)
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The above estimate (5.32) must thus in particular hold for T̃ = −3k
2 =: T̃ (k) (note that

T̃ (k) ∈
(
−
√

3
2 ,
√

3
)

for all k ∈
(
− 2√

3 ,
1√
3

)
). But

2
3
√

3
y3 − 2T̃ (k)

3 yz2 + `z3

√
1− T (k)2 + 2

3
√

3T (k)3

(1− kT (k))
3
2

√
1− T̃ (k)2 + 2

3
√

3
T̃ (k)3

= 2
3
√

3
y3 + kyz2 + `z3,

which implies that (5.32) for T̃ = T̃ (k) is a contradiction to the assumption (5.31). We
conclude that (5.26) holds true.

In order to complete the proof of this theorem it thus suffices to show that for all ` ∈[
0, 2

3
√

3

]
and corresponding polynomial h` := x3 − x(y2 + z2) + 2

3
√

3y
3 + `z3, the connected

component H` ⊂ {h` = 1} that contains the point
( x
y
z

)
=
( 1

0
0

)
is a CCPSR manifold. Define

the P3-part of h` as P(3,`) := 2
3
√

3y
3 + `z3. One can easily check that

2
3
√

3
≤ max
‖( yz )‖=1

P(3,`) ≤ max
‖( yz )‖=1

2
3
√

3
(
|y|3 + |z|3

)
= max

{
2

3
√

3
,

√
2

3
√

3

}
= 2

3
√

3
,

which shows that max
‖( yz )‖=1

P(3,`) = 2
3
√

3 as required. We use the linear transformation

B =

 1 0 0√
3 1 0

0 0 1

 ∈ GL(3)

and transform h` to

h̆`
(( x

y
z

))
:= h`

(
B ·

( x
y
z

))
= x(y2 − z2) + 2

3
√

3
y3 + `z3.

In the new coordinates, H̆` := B−1 (H`) ⊂
{
h̆ = 1

}
is given by

H̆ =




1− 2
3
√

3
y3−`z3

y2−z2

y
z


∣∣∣∣∣∣∣∣ y < 0, y2 > z2

 .

This follows easily by B ·
(

1
−
√

3
0

)
=

( 1
0
0

)
∈ H` and that x → ∞ for all sequences in

{y < 0, y2 > z2} = {y ≤ 0, y2 ≥ z2} that converge to a point in ∂ {y < 0, y2 > z2} =
{y ≥ 0, y2 = z2}. The latter follows from 2

3
√

3 + ` ≤ 4
3
√

3 < 1 for all ` ∈
[
0, 2

3
√

3

]
. We know

that
(

1
−
√

3
0

)
= B−1 ·

( 1
0
0

)
∈ H̆` is always a hyperbolic point of h̆` for all ` ∈

[
0, 2

3
√

3

]
. Hence,

in order to show that H̆` consists only of hyperbolic points of h̆`, it suffices to show that

det
(
−1

2∂
2h̆`

)
= det

 0 −y z
−y −x− 2√

3y 0
z 0 x− 3`z


= 1
y2 − z2

 2
3
√

3
y5 − `z5 + 3`y4z − 2√

3
yz4 + 4

3
√

3
y3z2 − 2`y2z3

︸ ︷︷ ︸
=:R`(y,z)

−y2 + z2

 < 0



91

for all ( yz ) ∈ {y < 0, y2 > z2}. The prefactor 1
y2−z2 is always positive if y2 > z2, and

the term −y2 + z2 is always negative. Hence, it suffices to show R`(y, z) ≤ 0 for all ( yz ) ∈
{y < 0, y2 > z2}. We calculate

R`(y,±y) = y5
(

2
3
√

3
∓ `± 3`− 2√

3
+ 4

3
√

3
∓ 2`

)
= 0,

which implies that R`(y, z) vanishes on ∂{y < 0, y2 > z2}. Since the set {y < 0, y2 > z2}
is a cone and R`(y, z) is for all ` ∈

[
0, 2

3
√

3

]
a homogeneous polynomial of degree 5, it only

remains to check that

∀s ∈ (−1, 1) ∀` ∈
[
0, 2

3
√

3

]
: R`(−1, s) ≤ 0. (5.33)

We find that s = 1 and s = −1 are roots of R`(−1, s) for all ` ∈
[
0, 2

3
√

3

]
, which allows us to

consider

N`(s) := R`(−1, s)
(s− 1)(s+ 1) = R`(−1, s)

s2 − 1 = −`s3 + 2√
3
s2 − 3`s+ 2

3
√

3
.

The condition (5.33) is equivalent to

∀s ∈ (−1, 1) ∀` ∈
[
0, 2

3
√

3

]
: N`(s) ≥ 0. (5.34)

This motivates checking solutions of N`(s) = 0. We get

N`(s) = 0 ⇔ ` = 2
3
√

3
· 3s2 + 1
s(s2 + 3) .

We will show that M(s) := 3s2+1
s(s2+3) 6∈ [0, 1] for all s ∈ (−1, 1), which implies that there exists

no pair (`, s) ∈
[
0, 2

3
√

3

]
× (−1, 1), such that N`(s) = 0. Since N0(1) = 2√

3 > 0, this will then
shows that N`(s) > 0 for all (`, s) ∈

[
0, 2

3
√

3

]
× (−1, 1) and in particular imply (5.34). We see

that
sgn(M(s)) =

{
1, ∀s > 0,
−1, ∀s < 0,

which implies that we can reduce our studies to s ∈ [0, 1). The first derivative of M(s) is
easily seen to fulfil

∂sM(s) = −3(s4 − 2s2 + 1)
s2(s2 + 3)2 < 0 (5.35)

for all s ∈ (0, 1). Furthermore
lim

s→0, s>0
M(s) =∞. (5.36)

The estimate (5.35) and the limit (5.36) imply

∀s ∈ (0, 1) : M(s) > M(1) = 1.

Hence, the equation M(s) = 1 has no solutions in the half-open interval [0, 1). We conclude
that (5.34) holds true.

Summarising, we have proven that for all ` ∈
[
0, 2

3
√

3

]
, H̆` is a CCPSR manifold of

dimension 2, which implies the same statement for H`. This finishes the proof of Theorem 5.6.
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Remark 5.7 (Direct application of Theorem 5.6). Theorem 5.6 might be a little surprising,
since now we have a relatively easy way of checking if a connected PSR manifolds H ⊂ {h =
1} is closed. We have to transform h to the form h = x3−x〈y, y〉+P3(y) (3.12) as described in
Proposition 3.18 (this involves possibly the task of diagonalising a positive definite quadratic
form), calculate max

‖z‖=1
P3(z) (which should always work with a computer algebra system like

MAPLE since P3 is a cubic polynomial, i.e. the related equations are n quadratic equations
for dim(H) = n), and whenever max

‖z‖=1
P3(z) ≤ 2

3
√

3 we know that H ⊂ Rn+1 is closed and
in particular complete (cf. [CNS, Thm. 2.5] or Proposition 4.17). On the other hand, the
connected component H of the level set {h = 1} for any h of the form (3.12) which contains
the point ( xy ) = ( 1

0 ) is automatically a CCPSR manifold if max
‖z‖=1

P3(z) ≤ 2
3
√

3 .

Together with Theorem 5.3 we have obtained the following characterisation of the moduli
space of CCPSR manifolds of dimension n ≥ 1 under the action of GL(n+ 1), cf. Definition
3.2.

Proposition 5.8 (Characterisation of the moduli space of CCPSR manifolds). For all n ∈ N,
the set of hyperbolic homogeneous cubic polynomials

Cn :=
{
x3 − x〈y, y〉+ P3(y)

∣∣∣∣∣ max
‖z‖=1

P3(z) ≤ 2
3
√

3

}
(5.37)

is a generating set for the moduli space of n-dimensional CCPSR manifolds under the action
of GL(n + 1), i.e. for every CCPSR manifold H of dimension n there exists an element
h̃ ∈ Cn, such that the connected component H̃ ⊂ {h̃ = 1} which contains the point ( xy ) =
( 1

0 ) ∈
{
h̃ = 1

}
⊂ Rn+1 is equivalent to H. The set Cn ⊂ Sym3 (Rn+1)∗ is a uniformly bounded

compact convex subset of the affine n3+3n2+2n
6 -dimensional affine subspace{

x3 − x〈y, y〉+ P3(y)
∣∣∣ P3 ∈ Sym3 (Rn)∗

}
⊂ Sym3

(
Rn+1

)∗
.

The boundary of Cn, that is ∂Cn, is a continuous submanifold of Sym3 (Rn+1)∗. Furthermore,
h̃ ∈ ∂Cn if and only if the initial H does not have regular boundary behaviour.

Proof. The existence of h̃ ∈ Cn follows from Proposition 3.18 and Theorem 5.6. h̃ ∈ ∂Cn ={
x3 − x〈y, y〉+ P3(y)

∣∣∣∣∣ max
‖z‖=1

P3(z) = 2
3
√

3

}
if and only if the initial H does not have reg-

ular boundary behaviour follows from Lemma 4.6 and Theorem 5.3. It remains to show
that Cn ⊂

{
x3 − x〈y, y〉+ P3(y)

∣∣∣ P3 ∈ Sym3 (Rn)∗
}
⊂ Sym3 (Rn+1)∗ is compact and that

∂Cn ⊂ Sym3 (Rn+1)∗ is a continuous submanifold. For compactness we need to show that
the condition max

‖z‖=1
P3(z) ≤ 2

3
√

3 automatically implies that P3(·, ·, ·) viewed as a symmet-
ric 3-tensor is bounded entry-wise, and we need to show that Cn is closed in the subspace
topology10. This is equivalent to showing that all third derivatives of P3(z) are bounded
on {‖z‖ = 1}. This follows from the fact that for all P3 fulfilling max

‖z‖=1
P3(z) = 2

3
√

3 , the

corresponding h = x3 − x〈y, y〉 + P3(y) ∈ Cn defines a CCPSR manifold and, hence, we can
use Lemma 4.10 and conclude that each entry in P3(·, ·, ·) is indeed bounded. Cn being closed
follows from the continuity of max

‖z‖=1
P3(z) with respect to the prefactors of the monomials in

10With respect to the topology induced by the linear homeomorphy of Sym3 (Rn+1)∗ and R
n3+6n2+11n+6

6 .
Note that said topology on Sym3 (Rn+1)∗ does not depend on the choice of the linear homeomorphism.
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P3(y), or equivalently the prefactors in the corresponding symmetric 3-tensor P3(·, ·, ·). We
conclude that Cn ⊂ Sym3 (Rn+1)∗ is compact in the subspace topology. The fact that ∂C
is a continuous hypersurface in Sym3 (Rn+1)∗ also follows from the continuity of the map
P3 7→ max

‖z‖=1
P3(z). However, note that this map is for n ≥ 2 in general not smooth, or even

differentiable. To see this, consider the one-parameter family P t
3(y) = y3

1 + ty3
2, t ∈

[
0, 2

3
√

3

]
,

in Sym3 (Rn+1)∗ and observe that

t 7→ max
‖z‖=1

P t
3(z) = max

‖z‖=1

(
z3

1 + tz3
2

)
=
{

1, 0 ≤ t ≤ 1,
t, 1 ≤ t ≤ 2

3
√

3

does depend only continuously on t and is not continuously differentiable at t = 1.

Remark 5.9 (Comparison of Cn with other bounded generating sets obtained via rescal-
ing of the h’s). Note that for any compact set C ⊂ Sym3 (Rn+1)∗ of dimension dim(C) =
dim

(
Sym3 (Rn+1)∗

)
, such that C contains 0 ∈ Sym3 (Rn+1)∗, and any given CCPSR mani-

fold H ⊂ {h = 1}, we can always choose r > 0, such that rh ∈ C. Then H is equivalent to
r−

1
3 ·H ⊂ {rh = 1}. This shows that one can choose a generating set for the moduli space of

n-dimensional CCPSR manifolds that is contained in a compact set C and, hence, bounded.
It was however until now for n ≥ 2 not known whether one can choose a compact generating
set like Cn in Proposition 5.8. For n = 1 it was already shown in [CHM, Cor. 4] that the
moduli space of CCPSR curves is generated by the set {x2y, x(x2−y2)} ⊂ Sym3 (R2)∗, which
is a compact set. One can show that x2y is equivalent to x3 − xy2 + 2

3
√

3y
3. By comparing

with C1 =
{
x3 − xy2 + Ly3

∣∣∣ |L| ≤ 2
3
√

3

}
, we see that x(x2− y2) = x3−xy2 is an inner point

of C1 and x3 − xy2 + 2
3
√

3y
3 is one of the two points in ∂C1.

Proposition 5.8 allows us to answer the initial question at the beginning of this section.
The polynomial hε = x3 − x〈y, y〉 + P3(y) + εV (y) as in 5.1 defines a CCPSR manifold
Hε ⊂ {hε = 1}, ( 1

0 ) ∈ Hε, if and only if max
‖z‖=1

(P3(z) + εV (z)) ≤ 2
3
√

3 . Additionally to the
answer to that question, Proposition 5.8 yields a geometric result for the moduli space of
n-dimensional CCPSR manifolds (cf. Definition 3.2).

Corollary 5.10 (Path-connectedness and convexity of moduli space of CCPSR manifolds).
For n ∈ N fixed, let h, h̃ ∈ Cn and let H ⊂ {h = x3 − x〈y, y〉 + P3(y) = 1}, respectively
H̃ ⊂ {h̃ = x3 − x〈y, y〉+ P̃3(y) = 1}, denote the corresponding CCPSR manifolds containing
the point ( xy ) = ( 1

0 ). Then the smooth curve

γ : [0, 1]→ Cn ⊂ Sym3
(
Rn+1

)∗
, γ(t) = (1− t)h+ th̃,

defines an n-dimensional CCPSR manifold Ht ⊂
{
γ(t) = (1− t)h+ th̃ = 1

}
as the connected

component containing ( 1
0 ) for all t ∈ [0, 1]. Furthermore, H0 = H and H1 = H̃.

Proof. For all t ∈ [0, 1], γ(t) = x3−x〈y, y〉+ (1− t)P3(y) + tP̃3(y). Theorem 5.6 implies that
it suffice to show max

‖z‖=1

(
(1− t)P3(y) + tP̃3(y)

)
≤ 2

3
√

3 for all t ∈ [0, 1]. We get

max
‖z‖=1

(
(1− t)P3(y) + tP̃3(y)

)
≤ (1− t)

(
max
‖z‖=1

P3(y)
)

+ t

(
max
‖z‖=1

P̃3(y)
)

≤ (1− t) 2
3
√

3
+ t

2
3
√

3
= 2

3
√

3
as required.
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Remark 5.11. Two distinct points in γ([0, 1]) need not be equivalent in general, and they are
also not inequivalent in general. Recall that in general we have seen in Lemma 4.1 that the
representative of a CCPSR manifold H, dim(H) = n, in Cn is never unique. For example for
a CCPSR manifold H ⊂ {h = x3−x〈y, y〉+P3(y) = 1} with max

‖z‖=1
P3(z) = 2

3
√

3 , which is never

equivalent to H̃ ⊂ {h̃ = x3 − x〈y, y〉 = 1} (since H is singular at infinity and H̃ is a CCPSR
manifold that is not singular at infinity), we define γ(t) = x3− x〈y, y〉+ (1− 2t)P3(y). Then
H = H0 ⊂ γ(0) and H1γ(1) are equivalent (via sign-flip in the y-coordinates), but H 1

2
= H̃.

Next we will present an application of the generating set Cn for the scalar curvature of
CCPSR surfaces. Recall that we already have an estimate of the scalar curvature SH of n-
dimensional CCPSR manifolds that does not depend on the considered CCPSR manifold, see
Theorem 4.13. We will now show that (4.15) is indeed not a sharp (Remark 4.11) estimate for
dim(H) = n = 2, that is for CCPSR surfaces, and give a sharp estimate in that dimension.

Proposition 5.12 (Sharp SH-bounds for CCPSR surfaces). The scalar curvature SH of a
CCPSR surface H fulfils the global estimate

− 9
4 ≤ SH ≤ 0. (5.38)

More specifically,

SH ≡ 0 if H ∼= {xyz = 1, x > 0, y > 0}, i.e. Thm. 2.45 a),

SH ≡ −
9
4 if H ∼= {x(xy − z2) = 1, x > 0}, i.e. Thm. 2.45 b),

−9
4 < SH < 0 if H 6∼= {xyz = 1, x > 0, y > 0} and H 6∼= {x(xy − z2) = 1, x > 0}.

Proof. We can for H ⊂ {h = 1},
( x
y
z

)
=

( 1
0
0

)
∈ H, h = x3 − x(y2 + z2) + P3 (( yz )),

max
‖( yz )‖=1

P3 (( yz )) = r 2
3
√

3 , r ∈ [0, 1], which covers all possible CCPSR surfaces (cf. Theo-

rem 5.6), assume after a possible orthogonal transformation in the (y, z)-coordinates assume
that

P3 (( yz )) = r

(
2

3
√

3
y3 + kyz2 + `z3

)
. (5.39)

Note that Proposition 3.18 ensures that we can for any p ∈ H always choose a linear trans-
formation of the form (3.7) which maps

( 1
0
0

)
∈ H ⊂ {h = 1} ⊂ R3 to p, so that we only need

to consider all cubics P3 (( yz )) of the form (5.39) to prove the claim of this proposition. We
use Proposition 3.29, equation (3.34), to obtain

SH (( 1
0 )) = −2 + r

(
3
4k

2 −
√

3
2 k

)
. (5.40)

Observe that SH (( yz )) does not depend on ` ∈ R. Hence, we only need to be concerned with
the domain for k ∈ R. For r = 0, H is equivalent to Thm. 2.45 d) (see the proof of Theorem
5.3, part d)). Hence, H is in particular not equivalent to Thm. 2.45 a) or Thm. 2.45 b). We
obtain

SH (( 1
0 )) = −2 ∈

(
−9

4 , 0
)
. (5.41)

With that in mind we will now assume that r ∈ (0, 1]. Then

max
‖( yz )‖=1

P3 (( yz )) = r
2

3
√

3
⇔ max

‖( yz )‖=1

(
2

3
√

3
y3 + kyz2 + `z3

)
= 2

3
√

3
. (5.42)
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We have shown in the proof of Theorem 5.6 in the part where we have proven (5.13) that k
needs to be an element of

[
− 2√

3 ,
1√
3

]
. The condition for (5.13) is precisely (5.42). We deduce

that for all r ∈ (0, 1], the allowed domain for k is also
[
− 2√

3 ,
1√
3

]
. Consider the function

Θ(k) := 3
4k

2 −
√

3
2 ,

so that SH (( 1
0 )) = −2 + rΘ(k). One can easily verify that

min
k∈[−2/

√
3,1/
√

3]
Θ(k) = Θ

(
1√
3

)
= −1

4 ,

max
k∈[−2/

√
3,1/
√

3]
Θ(k) = Θ

(
− 2√

3

)
= 2.

Hence, with (5.41) we have shown that for all r ∈ [0, 1]

−2− 1
4r︸ ︷︷ ︸

k=1/
√

3

≤ SH (( 1
0 )) ≤ −2 + 2r︸ ︷︷ ︸

k=−2/
√

3

.

For r = 1, k ∈
{
− 2√

3 ,
1√
3

}
implies with (5.42) that ` = 0, see also the proof of Theorem 5.6,

(5.21) and the following discussion. There we have also seen that for r = 1 and ` = 0, H is
equivalent to

Thm. 2.45 a) if k = − 2√
3
,

Thm. 2.45 b) if k = 1√
3
.

For Thm. 2.45 a) respectively r = 1, k = − 2√
3 , and ` = 0, SH (( 1

0 )) = 0. Furthermore in
that case H is a homogeneous space. This can be seen by showing that

xyz ∼= x(y2 − z2) =: h̃,

hence the (flat) Lie group SO(1, 1) × R>0 acts transitively and isometrically on the corre-
sponding CCPSR surface, where the R>0-part acts viaxy

z

→
s
−2x
sy
sz

 , s ∈ R>0,

and SO(1, 1) acts on the quadratic form y2−z2. This shows that for H with r = 1, k = − 2√
3 ,

and ` = 0, SH ≡ 0.
For Thm. 2.45 b), for which the corresponding CCPSR surface is equivalent to the case

r = 1, k = 1√
3 , and ` = 0, H is also a homogeneous space. This is a bit more difficult to find

than for Thm. 2.45 a), but one can show that the Lie group corresponding to the Lie algebra

g := span

A1 =

1 0 0
0 −2 0
0 0 −1

2

 , A2 =

0 0 0
0 0 2
1 0 0


 , [A1, A2] = A1A2 − A2A1 = −3

2A2,
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acts transitively and isometrically on the corresponding CCPSR surface. Note that in the
untransformed coordinates in Thm. 2.45 a), one can show that R>0 × R>0 acts simply
transitively on H via unimodular diagonal matrices, cf. [CHM, Ex. 1]. Hence, for the case
r = 1, k = 1√

3 , and ` = 0, we have shown that SH ≡ −9
4 .

It remains to show that −9
4 < SH < 0 if H is not equivalent to either Thm. 2.45 a)

or Thm. 2.45 b). Observe that for r ∈ [0, 1), −9
4 < SH < 0 follows from k ∈

[
− 2√

3 ,
1√
3

]
,

(5.40), and (5.41). For r = 1, the existence of a point p ∈ H, such that the corresponding
cubic polynomial h can be brought to the form (3.12) with k ∈

{
− 2√

3 ,
1√
3

}
via a linear

transformation of the form (3.7) already implies that H is equivalent to either Thm. 2.45 a)
or Thm. 2.45 b). Hence, H not being equivalent to either Thm. 2.45 a) or Thm. 2.45 b)
implies that with respect to each p ∈ H, the form (3.12) with P3 as in (5.39) implies that
r ∈ [0, 1) or k 6∈

{
− 2√

3 ,
1√
3

}
and, hence, that −9

4 < SH < 0. This finishes the proof.

The newly acquired estimate (5.38) for the scalar curvature SH of CCPSR surfaces is thus
indeed sharp. The general estimate for SH derived in Theorem 4.13, that is (4.15), reads for
CCPSR surfaces

−33
4 ≤ SH ≤

17
4 ,

which is as we have seen not sharp, neither from above nor from below. One might be able
to find a better estimates for CCPSR manifolds H of dimension dim(H) ≥ 3, we leave this
as an open problem for future studies.

Proposition 5.12 also shows that the sectional curvature of CCPSR surfaces, which is
just a smooth function KH = KH(∂y, ∂z) ∈ C∞(H) for CCPSR surfaces, can also be sharply
bounded since KH = 1

2SH, cf. equation (4.18).
One application of Proposition 5.12 lies in the theory of Kähler cones. Since this is not the

focus of this thesis, we refer the reader to [We] and more specifically [Ma]. For the following
remark, see also [CHM, p.8, Ex.]

Remark 5.13 (Relation to geometry of Kähler cones). Let X be a compact Kähler manifold
of complex dimension τ . Then on the Kähler cone K in the (1, 1)-cohomology H1,1(X,R) of
X, one can define a homogeneous polynomial h : K→ R of homogeneity-degree τ by

h(ω) = ω∪n = ω ∪ . . . ∪ ω︸ ︷︷ ︸
τ times

=
∫
X

ω ∧ . . . ∧ ω, (5.43)

where ∪ denotes the cup product. Then

H := {ω ∈ K | h(ω) = 1} ⊂ H1,1(X,R) (5.44)

equipped with gH = − 1
τ
∂2h|TH×TH is a generalised projective special real manifold of dimen-

sion dim (H1,1(X,R))− 1.

One more specific field in this area is the study of Kähler cones of Calabi-Yau manifolds
and their geometry, specifically in complex dimension 3 [Wi1, Wi2, KW]. For complex
manifolds of complex dimension 4, examples have been studied in [T]. One specific conjecture
in this field is the following.

Conjecture 5.14 (P.M.H. Wilson, [Wi2]). Let X be a complex 3-dimensional Calabi-Yau
manifold and let H be as in (5.44). Then the sectional curvatures of

(
H, 1

2gH
)

are bounded
by −9

4 from below and 0 from above.
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Note slightly different conventional factor in gH in comparison with our conventions.
While we have not found a complete answer to the above conjecture, we have found a partial
answer for the case where H is complete and dim (H1,1(X,R)) = 3, i.e. when H is a closed
PSR surface in R3.

Corollary 5.15. Conjecture 5.14 holds true if H is contained in a complete PSR surface.

Proof. This follows immediately from Proposition 5.12, where we note that there exist only
one sectional curvature in the case of surfaces, and keep in mind the conventional factor of 1

2
for the metric used in [Wi2].

At this point, to my knowledge, it is however not clear which complete PSR manifolds
can be realised as in (5.44). Cubics of the form (5.43) are subject of active study [KW].

Lastly in this section we will give a second alternative completeness proof for closed PSR
manifolds, additionally to Proposition 4.17. While the proof is similar in comparison with
the proof of the latter proposition, it makes use of Theorem 5.6, which is a stronger statement
than Lemma 4.10. However, the second alternative proof of CCPSR completeness requires
much less calculating. We will make use of the following lemma.

Lemma 5.16 (Family of compactly embedded geodesic balls). Let M be manifold of di-
mension n ≥ 1 with a locally finite atlas, C ⊂ RN be a compact subset for some N ∈ N,
and g(·) : C → Γ

(
Sym2 (T ∗M)

)
, c 7→ g(c), be a family of Riemannian metrics depending

continuously on c ∈ C in the sense that the map

g : C ×M → Sym2(T ∗M), (c, q) 7→ g(c)q,

is continuous. Let p ∈ M be arbitrary and fixed. We denote by Bg(c)
r (p) ⊂ M the geodesic

ball of radius r > 0 around p ∈ M with respect to the Levi-Civita connection of g(c). Then
the following is true:

inf
c∈C

 sup
B
g(c)
r (p)⊂M compactly embedded

r

 > 0. (5.45)

Proof. Suppose (5.45) is false. Then there exists a sequence {ci, i ∈ N} ⊂ C, such that

lim
i→∞

sup
B
g(ci)
r (p)⊂M compactly embedded

r

︸ ︷︷ ︸
=:ri

= 0.

Since C ⊂ RN is compact, we can restrict to a subsequence if necessary and assume without
loss of generality that {ci, i ∈ N} converges to a point c := lim

i→∞
ci in C. Then, by assumption,

sup
B
g(c)
r (p)⊂M compactly embedded

r = lim
i→∞

ri = 0.

But this is a contradiction to the fact that g (c) is a Riemannian metric and, hence, around
every p ∈ M there exists a positive maximal radius r > 0, such that Bg(c)

r (p) ⊂ M is
compactly embedded (recall that independent of the considered Riemannian metric on M ,
the induced metric topology coincides with the given topology on M). Hence, (5.45) holds
true.

Proposition 5.17 (Alternative closed PSR manifolds completeness proof №2). Closed PSR
manifolds (H, gH) are geodesically complete.
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Proof. Let n = dim (H). Assume without loss of generality that H is connected, i.e. a
CCPSR manifold. Using Theorem 5.6, we can without loss of generality assume that H =
HP3 ⊂ {hP3 = x3 − x〈y, y〉+ P3(y) = 1} is the connected component that contains the point

( xy ) = ( 1
0 ) ∈ {h = 1} and that P3 ∈

{
max
‖z‖=1

P3(z) ≤ 2
3
√

3

}
⊂ Sym3 (Rn)∗, where we view the

set
{

max
‖z‖=1

P3(z) ≤ 2
3
√

3

}
as a compact subset of RN for N = dim Sym3 (Rn)∗ = n3+3n2+2n

6 .

Consider the set
M :=

⋂
P3∈
{

max
‖z‖=1

P3(z)≤ 2
3
√

3

} dom (HP3) .

Lemma 4.4 implies that M =
{
‖z‖ <

√
3

2

}
⊂ Rn, in particular M is a smooth submanifold of

Rn. Recall that with βP3(z) := hP3 (( 1
z )),

(
HP3 , gHP3

)
is isometric to

(
dom (HP3) ,−∂

2βP3

3βP3

+
2dβ2

P3

9β2
P3

)

for all P3 ∈
{

max
‖z‖=1

P3(z) ≤ 2
3
√

3

}
, cf. (3.33). Since M ⊂ dom (HP3) independent of P3 ∈{

max
‖z‖=1

P3(z) ≤ 2
3
√

3

}
, we can consider the family of Riemannian metrics on M

g(·) : P3 7→ −
∂2βP3

3βP3

+
2dβ2

P3

9β2
P3

.

Since g(·) depends continuously on the compact subset
{

max
‖z‖=1

P3(z) ≤ 2
3
√

3

}
⊂ Sym3 (Rn)∗

in the sense of Lemma 5.16 (where we identify Sym3 (Rn)∗ with RN as above and note that
M as an open submanifold of Rn is in particular equipped with a finite atlas consisting of a
single chart), we can use Lemma 5.16 and obtain that there exists r > 0, such that

B
g(P3)
r (0) ⊂M

is compactly embedded. Together with Proposition 3.18 this implies that for all P3 ∈{
max
‖z‖=1

P3(z) ≤ 2
3
√

3

}
and all p ∈ HP3 , B

gHP3
r (p) ⊂ HP3 is compactly embedded. Hence,

Lemma 2.21 shows that
(
HP3 , gHP3

)
is complete for all P3 ∈

{
max
‖z‖=1

P3(z) ≤ 2
3
√

3

}
.

Note that the ideas behind the proofs of Proposition 4.17 and Proposition 5.17 are very
similar, but in the proof of Proposition 4.17 we needed to explicitly construct the compactly
embedded geodesic balls.
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6 Multi-parameter families of projective special real
manifolds

One subject of this thesis is the explicit construction of a multi-parameter family of inequiv-
alent CCPSR manifolds of dimension n ≥ 3, see Theorem 6.1. Until now11, only one one-
parameter family of inequivalent CCPSR manifolds has been known, that is the Weierstraß
cubics and the corresponding CCPSR surfaces in Theorem 2.45 f).

Let n ≥ 3, n ∈ N. We will give two examples of (n−2)-parameter families in Sym3(Rn+1)∗,
each consisting of pairwise inequivalent hyperbolic cubic polynomials, of which each defines
a singular-at-infinity CCPSR manifold of dimension n. We will use this result to find a curve
in Sym3(Rn+1)∗, such that each point in the curve is a hyperbolic polynomial which defines
a CCPSR manifold which is singular at infinity and that the endpoints of that curve are
linearly equivalent to the polynomials a) and b) in Theorem 2.46.

In the following we will denote z = (z1, . . . , zn−1)T and by 〈·, ·〉 the standard Euclidean
scalar product on Rn−1 ⊂ Rn+1 =

{( z
w
x

)∣∣∣ z ∈ Rn−1, w, x ∈ R
}

.

Theorem 6.1. The (n− 2)-parameter families

F :=
{
h = x

(
−w2 + 〈z, z〉

)
+ w

n−1∑
i=1

biz
2
i

∣∣∣∣∣ 1 = b1 ≥ . . . ≥ bn−1 ≥ 0
}

(6.1)

and
G :=

{
h = x

(
−w2 +

n−1∑
i=1

biz
2
i

)
+ w〈z, z〉

∣∣∣∣∣ 1 = b1 ≥ . . . ≥ bn−1 ≥ 0
}

(6.2)

consist of pairwise inequivalent hyperbolic cubic polynomials. The corresponding projective
special real manifolds

H(h) =
{
h = 1

∣∣∣ x < 0, w < 0, w2 > 〈z, z〉
}
, h ∈ F, (6.3)

and
H(h) =

{
h = 1

∣∣∣∣∣ x < 0, w < 0, w2 >
n−1∑
i=1

biz
2
i

}
, h ∈ G, (6.4)

respectively, are complete.

Proof. Let M,N ∈ Mat((n−1)×(n−1),R) be symmetric positive semi-definite matrices, such
that rk(M) = (n− 1) or rk(N) = (n− 1), and denote by M(z, z) = zTMz, N(z, z) = zTNz.
We will show that

h = x
(
−w2 +N(z, z)

)
+ wM(z, z)

is hyperbolic for any such M and N on the set H := {h = 1 | x < 0, w < 0, w2 > N(z, z)}.
Consider the vector fields ∂w and w∂w − x∂x, which are both non-vanishing along H. One
can check that they are orthogonal to each other with respect to

g = −1
2∂

2h = −xN(dz, dz)− wM(dz, dz) + xdw2 − 2M(z, dz)dw − 2N(z, dz)dx+ 2wdwdx,

and that g(∂w, ∂w) = x < 0, g(w∂w − x∂x, w∂w − x∂x) = −xw2 > 0 along H. In the above
formula dz is considered as column vector with components dzi. We will now show that g
is positive definite on the orthogonal complement of spanR{∂w, w∂w − x∂x} along H with

11That is, until [CDJL]. The results related to multi-parameter families of CCPSR manifolds in [CDJL]
are part of this thesis.
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respect to g and thereby prove our claim. One can easily verify that every vector field Y
along H which is perpendicular to spanR{∂w, w∂w − x∂x} can be written as

Y = X + N(z,X)
w

∂w + wM(z,X)− xN(z,X)
w2 ∂x,

where X =
n−1∑
i=1

X i∂zi . Note that Y = 0 if and only if X = 0. We obtain

g(Y, Y ) = 1
w2

(
−xw2N(X,X)− w3M(X,X)− 2wM(z,X)N(z,X) + xN(z,X)2

)
.

If 0 6= X ∈ kerN it follows by assumption that M > 0 and, hence, g(Y, Y ) > 0 along H.
Assume now that N(X,X) 6= 0. Observe that h = 1 is equivalent to −xw2 = 1−wM(z, z)−
xN(z, z). Hence, along H we have

− xw2N(X,X) + xN(z,X)2

= N(X,X)︸ ︷︷ ︸
>0

−x(N(X,X)N(z, z)−N(z,X)2︸ ︷︷ ︸
≥0

)− wM(z, z)N(X,X)

> − wM(z, z)N(X,X).

Using this estimate and w2 > N(z, z), we obtain

g(Y, Y ) > 1
−w

(M(z, z)N(X,X) + 2M(z,X)N(z,X) +M(X,X)N(z, z))

along H. If z ∈ kerN , it follows that g(Y, Y ) > 0. Assume that z /∈ kerN . Consider

Q(z,X, z̃, X̃) := M(z̃, z̃)N(X,X) + 2M(z̃, X̃)N(z,X) +M(X̃, X̃)N(z, z).

One observes that Q(z,X, z̃, X̃) ≥ 0 for all z,X, z̃, X̃ ∈ Rn−1 if M(z̃, z̃)M(X̃, X̃) ≥M(z̃, X̃)2

for all z̃, X̃ ∈ Rn−1. The latter estimate is true since M is positive semi-definite. Hence,
Q(z,X, z,X) ≥ 0 for all z,X ∈ Rn−1, which shows that g(Y, Y ) > 0 for Y 6= 0. This proves
that the pullback of g to H is a Riemannian metric, so that H is a projective special real
manifold.

We will now show that H ⊂ Rn+1 is closed in the subspace topology. Notice that H can
be written as a graph over U := {w < 0, w2 > N(z, z)} ⊂ Rn by rewriting the equation
h = 1 as x = 1−wM(z,z)

−w2+N(z,z) . We need to check that x → −∞ for (w, z) → ∂U . Observe that
∂U = {w ≤ 0, −w2 +N(z, z) = 0}. For (z, w) ∈ U we have

x = 1− wM(z, z)
−w2 +N(z, z) ≤

1
−w2 +N(z, z)

and the right-hand side goes to −∞ for all sequences in {(z(j), w(j)), j ∈ N} ⊂ U with
the property lim

j→∞
(−w(j)2 +N(z(j), z(j))) = 0. This shows that ∂H is empty and, hence,

that H is closed in Rn+1. By [CNS, Thm. 2.5] this implies that the projective special real
manifold H is complete.

Summarising, we have shown that H(h) is a complete projective special real manifold for
all h ∈ F and all h ∈ G. It remains to show that F and G each consist of pairwise inequivalent
polynomials.

We will start with the family F. We define

K := {x(−w2 + 〈z, z〉) + wM(z, z) | 0 6= M ≥ 0}
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and see that for all h ∈ K, H(h) = {h = 1 | h ∈ K, x < 0, w < 0, w2 > 〈z, z〉} is a complete
special real manifold. This follows from setting N(·, ·) = 〈·, ·〉. Furthermore, F ⊂ K. In order
to study equivalence classes of elements of K, it turns out that we have to study the cases
(i) dim kerM 6= 1 and (ii) dim kerM = 1 separately. In both cases we will make use of
properties of the singularity set {dh = 0}. For a given h ∈ K we will determine all possible
A ∈ GL(n+ 1), such that h ◦ A ∈ K. In case (i) we will see that this set of transformations
is independent of the chosen h. In case (ii) it will turn out that this set of transformations
will depend on the chosen h. We will then use the results to show that F ⊂ K consists
of pairwise inequivalent polynomials and that for each polynomial h ∈ K there is a unique
representative in F of the GL(n+ 1)-orbit of h.

For case (i) we will employ the following lemma.
Lemma 6.2. Let h ∈ K and M the corresponding positive semi-definite bilinear form, such
that dim kerM 6= 1. Then for A ∈ GL(n+ 1), h ◦ A ∈ K if and only if A is of the form

A =

 r−
1
2E

r−
1
2

r

 , r > 0, E ∈ O(n− 1).

Proof. (of Lemma 6.2) Observe that for all A ∈ GL(n+1), dhp = 0 if and only if d(h◦A)A−1p =
0, i.e. {d(h◦A) = 0} is precisely the image of {dh = 0} under A−1. First we describe {dh = 0}
explicitly. We have

dh = 2x〈z, dz〉+ 2wM(z, dz) + (−2xw +M(z, z))dw + (−w2 + 〈z, z〉)dx.

To determine the points p = (z, w, x) such that dhp = 0 we distinguish the cases w = 0 and
w 6= 0. If w = 0 then dhp = 0 if and only if z = 0. If w 6= 0 then dhp = 0 if and only if
w2 = 〈z, z〉, z ∈ kerM , and x = 0. To see this it suffices to substitute 2xw = M(z, z) and
w2 = 〈z, z〉 into 2xw〈z, dz〉 + 2w2M(z, dz) = 0 and insert the position vector z on the left
hand side of the latter equation. We have thus determined the set {dh = 0} and see that the
cone {dh = 0} \ {0} has the following components :

{dh = 0} \ {0} = {z = 0, w = 0, x > 0}∪̇{z = 0, w = 0, x < 0}

∪̇{z ∈ kerM \ {0}, w =
√
〈z, z〉, x = 0}

∪̇{z ∈ kerM \ {0}, w = −
√
〈z, z〉, x = 0}.

The latter two sets are either smooth manifolds of dimension dim kerM in the case that
dim kerM 6= 0, or empty if M > 0. By assumption they are not of dimension 1 and,
hence, connected. Since A−1 maps connected components of {dh = 0} \ {0} to connected
components of {d(h ◦ A) = 0} \ {0}, we see that if h̄ = h ◦ A is contained in K and, hence,
associated with some M ≥ 0, then M and M have the same rank and A maps the line
{z = 0, w = 0, x ∈ R} to itself. Note that it is precisely at this point that we have used the
condition dim ker M 6= 1. This means that A has the following form:

A =
(

B
(αT , β) r

)
, B ∈ Mat(n× n, R), α ∈ Rn−1, β ∈ R, r ∈ R \ {0}.

By writing down (h ◦ A)(z, w, x), one can easily verify that r > 0 and B = r−
1
2C, C ∈

O(n−1, 1), are necessary for h◦A to be contained in K. Here O(n−1, 1) is the automorphism
group of the quadratic form −w2 + 〈z, z〉 on Rn. Using the notation C ( zw ) =

(
z̃
w̃

)
we obtain

(h ◦ A)(z, w, x) = x(−w2 + 〈z, z〉) + r−
3
2 ((〈r 1

2α, z〉+ r
1
2βw)(−w2 + 〈z, z〉) + w̃M(z̃, z̃)).
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C is of the form

C =
(

E ξ
ηT µ

)
, E ∈ Mat((n− 1)× (n− 1), R), η, ξ ∈ Rn−1, µ ∈ R,

and fulfils
CT

(
1

−1

)
C =

(
1

−1

)
.

The left hand side of the above equation equals(
ETE − η ⊗ 〈η, ·〉 ET ξ − µη
ξTE − µηT 〈ξ, ξ〉 − µ2

)
,

which in particular implies that µ 6= 0 and rk E = n − 1. To see the latter, suppose that
there exists 0 6= v ∈ kerE. Since ET ξ − µη = 0, it follows that η = µ−1ET ξ. Hence,(

ETE − η ⊗ 〈η, ·〉
)
v = ETEv − µ−2ET ξ〈ET ξ, v〉 = −µ−2ET ξ〈ξ, Ev〉 = 0,

which contradicts the assumption that ETE − η ⊗ 〈η, ·〉 = 1. With κ := r
1
2α and ρ := r

1
2β,

(h ◦ A)(z, w, x) = x(−w2 + 〈z, z〉)
+ r−

3
2 (w3(µM(ξ, ξ)− ρ) (6.5)

+ w2(2µM(Ez, ξ) + 〈η, z〉M(ξ, ξ)− 〈κ, z〉) (6.6)
+ w(µM(Ez,Ez) + 2〈η, z〉M(Ez, ξ) + ρ〈z, z〉)
+ 〈η, z〉M(Ez,Ez) + 〈κ, z〉〈z, z〉). (6.7)

The requirements for h ◦ A to be contained in K are (6.5) = (6.6) = (6.7) = 0 and

µM(Ez,Ez) + 2〈η, z〉M(Ez, ξ) + ρ〈z, z〉 ≥ 0 ∀z ∈ Rn−1. (6.8)

We will show that this implies κ = 0 and ρ = 0 and, consequently, α = 0 and β = 0. Firstly,
we will show that ρ = 0 implies κ = 0, and secondly that a transformation with ρ 6= 0
contradicts the requirement C ∈ O(n− 1, 1).

Assume ρ = 0. Then (6.5) is equivalent to M(ξ, ξ) = 0. Since M ≥ 0, this implies
ξ ∈ kerM . Equation (6.6) is thus equivalent to 〈κ, z〉 = 0 for all z ∈ Rn−1. This shows κ = 0.

Now assume that ρ 6= 0. Then by equation (6.5)

M(ξ, ξ) = µ−1ρ.

Note that this implies µ−1ρ > 0 and in particular ξ /∈ kerM . Inserting the above equation
in (6.6) yields

2µM(Ez, ξ) + 〈η, z〉µ−1ρ = 〈κ, z〉.

Using that, (6.7) becomes

〈η, z〉(M(Ez,Ez) + µ−1ρ〈z, z〉) + 2µM(Ez, ξ)〈z, z〉 = 0.

Since C ∈ O(n− 1, 1), we have η = µ−1ET ξ and, hence,

〈z, ET ξ〉(M(Ez,Ez) + µ−1ρ〈z, z〉︸ ︷︷ ︸
>0 ∀z 6=0

) + 〈z, ETMξ〉 2µ2〈z, z〉︸ ︷︷ ︸
>0 ∀z 6=0

= 0.
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An immediate consequence is that ET ξ and ETMξ are linearly dependent. Since kerET =
{0} and ξ /∈ kerM this is equivalent to ETMξ = sET ξ for some s ∈ R \ {0}, which shows
that Mξ = sξ, that is ξ needs to be an eigenvector of M . This also shows s > 0. Hence,

〈z, ET ξ〉(M(Ez,Ez) + (µ−1ρ+ 2µ2s)〈z, z〉︸ ︷︷ ︸
>0 ∀z 6=0

) = 0.

This shows that ET ξ = 0 which contradicts kerE = {0}. This proves ρ = 0, κ = 0, and
ξ ∈ kerM .

Summarising, we have shown that A needs to be of the form

A =
(
r−

1
2C

r

)
, C ∈ O(n− 1, 1), r > 0.

For such A, equations (6.5) and (6.6) are automatically fulfilled, and equation (6.7) becomes

〈η, z〉M(Ez,Ez) = 0. (6.9)

Since rk E = n − 1 we know that M(Ez,Ez) is a non-vanishing quadratic polynomial.
Hence, (6.9) is true if and only if η = 0. As we have seen before, η = 0 implies ξ = 0 since
C ∈ O(n − 1, 1). Observe that ξ = 0 and C ∈ O(n − 1, 1) also imply −µ2 = −1. The
inequality (6.8) becomes µM(Ez,Ez) ≥ 0, from which we deduce that µ = 1. Hence, all
possible transformations such that h ◦ A ∈ K with

h = x(−w2 + 〈z, z〉) + wM(z, z), M ≥ 0, M 6= 0, dim kerM 6= 1,

can be written as

A =

 r−
1
2E

r−
1
2

r

 , E ∈ O(n− 1), r > 0, (6.10)

independent of the choice of h ∈ K.

Next, we will deal with case (ii).
Lemma 6.3. Let A ∈ GL(n + 1), h ∈ K and M the corresponding positive semi-definite
bilinear form, such that dim kerM = 1. Then h ◦ A ∈ K if and only if M has at least 2
distinct positive eigenvalues and A is of the form (6.10) or, if M has precisely 1 positive
eigenvalue, A can be written as a product of transformations of the form (6.10) and

1

1
2

−1
2 1

−1
2

1
2 1

1
2

1
2 0

 .

Furthermore, in the case when M has precisely 1 positive eigenvalue the two sets

{h ◦ A | A ∈ GL(n+ 1), h ◦ A ∈ K}

and
{h ◦ A | A is of the form (6.10)}

coincide.



104

Proof. (of Lemma 6.3) In case (ii), that is dim kerM = 1, {dh = 0} consists of 3 distinct
lines that intersect at 0 ∈ Rn+1,

{dh = 0} ={z = 0, w = 0, x ∈ R}

∪{z ∈ kerM, w =
√
〈z, z〉, x = 0}

∪{z ∈ kerM, w = −
√
〈z, z〉, x = 0}.

Note that each of the latter two sets is not a line, but their union is a union of two distinct
lines. Contrary to case (i) we can no longer assume that a transformation mapping h =
x(−w2 + 〈z, z〉) + wM(z, z) ∈ K to h = x(−w2 + 〈z, z〉) + wM(z, z) ∈ K preserves the line
{z = 0, w = 0, x ∈ R}, since all connected components of {dh = 0} \ {0} are of dimension
one. Note that we can, after a possible orthogonal transformation of the z-coordinates,
assume that

M =


λ1

. . .
λn−2

0

 , M =


λ1

. . .
λn−2

0

 ,
which in particular implies kerM = kerM . Thus in addition to the transformations (6.10),
considered in case (i), we need to consider transformations of the form

A =

 E ξ v
ηT µ ±‖v‖
αT β 0

 , v ∈ kerM \ {0},

which map {z = 0, w = 0, x ∈ R} to either {z = rv, w = r‖v‖, x = 0 | r ∈ R} or
{z = rv, w = −r‖v‖, x = 0 | r ∈ R}, and are required to preserve {dh = 0} = {dh = 0}. By
calculating (h ◦A)(z, w, x), we obtain the following system of equations, which is equivalent
to h ◦ A = h̄:

∓2‖v‖β〈η, z〉+ 2β〈Ez, v〉 ± 2‖v‖M(Ez, ξ)∓ 2‖v‖µ〈α, z〉+ 2〈ξ, v〉〈α, z〉 = 0 (6.11)
β(−µ2 + 〈ξ, ξ〉) + µM(ξ, ξ) = 0 (6.12)

〈α, z〉(−µ2 + 〈ξ, ξ〉) + 〈η, z〉(−2βµ+M(ξ, ξ)) + 2β〈Ez, ξ〉+ 2µM(Ez, ξ) = 0 (6.13)
−〈α, z〉〈η, z〉2 + 〈α, z〉〈Ez,Ez〉+ 〈η, z〉M(Ez,Ez) = 0 (6.14)

∓2‖v‖βµ+ 2β〈ξ, v〉 ± ‖v‖M(ξ, ξ) = −1 (6.15)
〈α, z〉(∓2‖v‖〈η, z〉+ 2〈Ez, v〉)± ‖v‖M(Ez,Ez) = 〈z, z〉 (6.16)

−2µ〈α, z〉〈η, z〉+ 2〈α, z〉〈Ez, ξ〉 − β〈η, z〉2

+β〈Ez,Ez〉+ 2〈η, z〉M(Ez, ξ) + µM(Ez,Ez) = M(z, z) (6.17)

We will show that such a transformation exists if and only if λ1 = . . . = λn−2.

Claim 1: dim kerE ≤ 1.

Proof. In general, dim ker〈α, ·〉 ≥ n − 2. Suppose dim kerE > 1. Then there exists Y ∈
Rn−1 \ {0}, such that Y ∈ ker〈α, ·〉 ∩ kerE. Hence, by equation (6.16), 0 = 〈Y, Y 〉, which is
a contradiction to Y 6= 0.

Claim 2: dim kerE = 1⇒ kerE 6⊂ ker〈α, ·〉.
Proof. Suppose dim kerE = 1 and kerE ⊂ ker〈α, ·〉, and let 0 6= Y ∈ kerE. Again, equation
(6.16) implies 0 = 〈Y, Y 〉 and, hence, contradicts Y 6= 0.
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Claim 3: dim kerE = 1⇒ kerE ⊂ ker〈η, ·〉.
Proof. Let 0 6= Y ∈ kerE. Equation (6.14) reads

−〈α, Y 〉︸ ︷︷ ︸
6=0

〈η, Y 〉2 = 0,

which shows that Y ∈ ker〈η, ·〉.

Claim 4: dim kerE = 0.

Proof. Suppose that dim kerE 6= 0. We have shown that the only other possible case would
be dim kerE = 1. For 0 6= Y ∈ kerE, we have also shown that Y ∈ ker〈η, ·〉. Now equation
(6.16) implies 0 = 〈Y, Y 〉, which, again, contradicts Y 6= 0. Hence, we have shown that
kerE = {0}, i.e. E ∈ GL(n− 1).

Claim 5: α 6= 0.

Proof. Suppose α = 0. Equation (6.16) is now equivalent to ±‖v‖ETME = 1. Since E ∈
GL(n− 1), this implies that M is invertible, which contradicts the assumption dim kerM =
1.

Claim 6: η = sα, s 6= 0.

Proof. If η 6∈ Rα \ {0} then there exists Y ∈ ker〈η, ·〉, such that 〈α, Y 〉 6= 0. Together with
E ∈ GL(n− 1) this implies 〈α, Y 〉〈EY,EY 〉 6= 0, which contradicts equation (6.14).

Claim 7: A
( 0

0
1

)
=
( v
‖v‖
0

)
.

Proof. Suppose on the contrary that A
( 0

0
1

)
=
( v
−‖v‖

0

)
. Then for all Y ∈ ker〈α, ·〉 equation

(6.16) implies −‖v‖M(EY,EY ) = 〈Y, Y 〉. But M is positive semi-definite, hence this is a
contradiction. Note that this means that in equations (6.11)–(6.17), every “±” needs to be
“+”, and every “∓” needs to be “−”.

Claim 8: ξ ∈ kerM .

Proof. By construction, A is required to map the set {dh = 0} =
{
dh = 0

}
onto itself, that

is it induces a permutation of the three lines R

0
0
1

, R

 v
‖v‖
0

, and R

 v
−‖v‖

0

. We already

know that the first line is mapped to the second. Therefore, either

A

 v
‖v‖
0

 ∈ R

0
0
1

 and A

 v
−‖v‖

0

 ∈ R

 v
−‖v‖

0

 , (a)

or

A

 v
−‖v‖

0

 ∈ R

0
0
1

 and A

 v
‖v‖
0

 ∈ R

 v
−‖v‖

0

 . (b)

In case (a), Ev + ‖v‖ξ = 0, and, hence, using the second equation in (a), Ev − ‖v‖ξ =
−2‖v‖ξ ∈ Rv = kerM . Similarly, in case (b) we have Ev − ‖v‖ξ = 0, showing that Ev +
‖v‖ξ = 2‖v‖ξ ∈ Rv.

In the following we will write ξ = kv, k ∈ R.
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Claim 9: β 6= 0.

Proof. This follows from the previous claim and equation (6.15).

Claim 10: ξ = − 1
4β〈v,v〉v, µ = 1

4β‖v‖ , s = − 1
4β2‖v‖ , α = 4β2ETv.

Proof. We have shown that β 6= 0 and ξ = kv ∈ kerM . Hence, (6.12) implies µ = ±k‖v‖.
Furthermore the previous results imply that (6.15) is equivalent to−2‖v‖βµ+2βk〈v, v〉 = −1.
This shows that µ = −k‖v‖ and, hence,

k = − 1
4β〈v, v〉 , µ = 1

4β‖v‖ .

One can easily check that equation (6.13) is equivalent to 〈α, z〉(−2βµs) + 2β〈Ez, ξ〉 = 0,
which shows that

〈α, z〉 = − 1
s‖v‖

〈Ez, v〉.

Using this, equation (6.11) is equivalent to

s = k‖v‖
β

= − 1
4β2‖v‖

.

Hence, 〈α, z〉 = 4β2〈Ez, v〉.

The restrictions derived from the equations (6.11)–(6.17) in the above series of claims
already imply the equations (6.11), (6.12), (6.13), and (6.15). With the above results, one
can show that the remaining equations (6.14), (6.16), and (6.17) are equivalent to

− 1
〈v, v〉

〈Ez, v〉2 + 〈Ez,Ez〉 − 1
4β2‖v‖

M(Ez,Ez) = 0, (6.18)

16β2〈Ez, v〉2 + ‖v‖M(Ez,Ez) = 〈z, z〉, (6.19)

− β

〈v, v〉
〈Ez, v〉2 + β〈Ez,Ez〉+ 1

4β‖v‖M(Ez,Ez) = M(z, z), (6.20)

respectively.

Claim 11: M(z, z) = 1
2β〈v,v〉〈z, z〉 −

8β
〈v,v〉〈Ez, v〉

2.

Proof. By multiplying both sides of equation (6.18) with −β and adding them to (6.20) we
obtain

1
2β‖v‖M(Ez,Ez) = M(z, z).

By considering equation (6.19) we see that 1
2β‖v‖M(Ez,Ez) = 1

2β〈v,v〉〈z, z〉 −
8β
〈v,v〉〈Ez, v〉

2,
which proves the claim.
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Claim 12: E is of the form E =
(
B
± 1

4β‖v‖

)
, B ∈ GL(n− 2).

Proof. By the assumption M(z, z) = ∑n−2
i=1 λiz

2
i , it follows that either v = ‖v‖∂zn−1 , or

v = −‖v‖∂zn−1 . Note that the sign does not depend on the cases (a) and (b) described in
Claim 8. Using this, one can easily check that Claim 11 restricts E to be of the form

E =
(
∗ ∗
0 ± 1

4β‖v‖

)
.

Recall that by Claim 8, Ev = −‖v‖ξ = 1
4β‖v‖v in case (a), or Ev = ‖v‖ξ = − 1

4β‖v‖v in case
(b). This shows that E needs to be of the form

E =
(
∗ 0
∗ ± 1

4β‖v‖

)
,

where “+” corresponds to case (a) and “−” to case (b). This and the requirement E ∈
GL(n− 1) show that E is of the claimed form.

This shows that under our assumptions the equations (6.11)–(6.17) can only be satisfied
if M has precisely one positive eigenvalue, i.e.

M(z, z) = 1
2β〈v, v〉

n−2∑
i=1

z2
i .

This also shows that β > 0 is a necessary requirement.

Claim 13: E is of the form E = 1
2β‖v‖

(
C
±1

2

)
, C ∈ O(n− 2).

Proof. Observe that Claim 12 shows ETv = Ev, which implies 〈Ez, v〉2 = z2
n−1

16β2 . Hence,
equation (6.19) is equivalent to

‖v‖M(Ez,Ez) =
n−2∑
i=1

z2
i , (6.21)

and equation (6.18) is equivalent to

‖v‖M(Ez,Ez) = 4β2〈v, v〉
〈
B

( z1
...

zn−2

)
, B

( z1
...

zn−2

)〉
. (6.22)

On the right-hand side of (6.22), 〈·, ·〉 denotes the standard scalar product on Rn−2. Note
that, since E is invertible, (6.22) shows that

M(z, z) = 4β2‖v‖
n−2∑
i=1

z2
i ,

so M also has exactly one positive eigenvalue. By comparing (6.21) and (6.22) we see that
B = 1

2β‖v‖C for some C ∈ O(n− 2). This proves that E = 1
2β‖v‖

(
C
± 1

2

)
, C ∈ O(n− 2).
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Since M(z, z) is a positive scalar multiple of
n−2∑
i=1

z2
i , h is invariant under transformations

of the form

Ĉ =


C−1

1
1

1

 , C ∈ O(n− 2).

Replacing A with the matrix ĈA, we can assume without loss of generality that E =
1

2β‖v‖

(
1

± 1
2

)
. Summarising, we have shown that in case (a), depending on the choice of

the sign of v = ±‖v‖∂zn−1 ,

A =


1

2β‖v‖
1

4β‖v‖
∓1

4β‖v‖ ±‖v‖
∓1

4β‖v‖
1

4β‖v‖ ‖v‖
±β β 0

 ,

and in case (b)

A =


1

2β‖v‖
−1

4β‖v‖
∓1

4β‖v‖ ±‖v‖
±1

4β‖v‖
1

4β‖v‖ ‖v‖
∓β β 0

 ,
which again depends on the sign of v = ±‖v‖∂zn−1 .

Since both h and h are invariant under the transformation

K :=


1

−1
1

1

 ,

we see that, up to automorphisms of h and h̄, in each of the four possible cases we only need
to consider

A =


1

2β‖v‖
1

4β‖v‖
−1

4β‖v‖ ‖v‖
−1

4β‖v‖
1

4β‖v‖ ‖v‖
β β 0

 .

We set λ := 4β2‖v‖, so that M(z, z) = λ
n−2∑
i=1

z2
i , M(z, z) = 8β3

λ2

n−2∑
i=1

z2
i , and

A =


2β
λ
1

β
λ

−β
λ

λ
4β2

−β
λ

β
λ

λ
4β2

β β 0

 .

We define

Rr :=


r1

r
r

1
r2

 , Â :=


1

1
2

−1
2 1

−1
2

1
2 1

1
2

1
2 0

 .
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One can now verify that A = R
λ−

1
3
ÂR 2β

λ
2
3

. Note that Â2 = 1 and that Â is an automorphism

of the polynomial h1 := x(−w2 + 〈z, z〉) + w
n−2∑
i=1

z2
i .

Claim 13 shows that the additional transformations obtained in the special case that
h is equivalent to h1 when compared to the other considered cases are all conjugated to a
composition of the additional automorphism Â of h1 and transformations of the form (6.10).
This shows that

{h ◦ A | A ∈ GL(n+ 1), h ◦ A ∈ K} = {h ◦ A | A is of the form (6.10)}.

Hence, for choosing a representative of an h in F when h has the property that the corre-
sponding M has exactly one positive eigenvalue and dim kerM = 1, it suffices to consider
transformations of the form (6.10). This finishes the proof of Lemma 6.3.

With the help of Lemma 6.2 and Lemma 6.3 we will now choose a unique representative
in F for the GL(n+ 1)-orbit of an element h ∈ K. For a given positive semi-definite bilinear
form M there is a unique bilinear form

M̂ =


λ1

. . .
λn−1

 , λ1 ≥ . . . ≥ λn−1 ≥ 0,

such that there exists E ∈ O(n − 1) with the property that ETME = M̂ . The λi are
the eigenvalues of M . M 6= 0 implies that M has at least one positive eigenvalue λ1 > 0.
Applying the corresponding transformation (6.10) with r = λ

2
3
1 , we see that h = x(−w2 +

〈z, z〉) + wM(z, z) is equivalent to

ĥ ∈ F, ĥ = x(−w2 + 〈z, z〉) + w
n−1∑
i=1

biz
2
i , b1 = 1, b1 ≥ . . . ≥ bn−1 ≥ 0,

and the bi’s thus uniquely determined by M . Summarising up to this point, we have shown
that the (n−2)-parameter family F consists of pairwise inequivalent hyperbolic homogeneous
polynomials, all of which define a complete projective special real manifold of dimension n.

We will now consider the family G and proceed similarly as for the family F. Consider
the set of homogeneous cubic polynomials

L := {x(−w2 +N(z, z)) + w〈z, z〉 | 0 6= N ≥ 0}.

It is clear that G ⊂ L and that any element in L is contained in the GL(n+ 1)-orbit of some
element in G. For a given h = x(−w2 +N(z, z)) + w〈z, z〉 we want to determine all possible
A ∈ GL(n+ 1), such that (h ◦A)(z, w, x) ∈ L. We will see that the answer is independent of
the chosen h.

For dim kerN = 0, h is equivalent to some h̃ = x(−w2 + 〈z, z〉) +wM(z, z) ∈ K with the
property M > 0. In this case we know that there is a unique representative of h̃ under the
GL(n+ 1)-action in F of the form

ĥ = x(−w2 + 〈z, z〉) + w
n−1∑
i=1

biz
2
i , b1 = 1, b1 ≥ . . . ≥ bn−1 > 0,

which can easily be checked to be equivalent to

ȟ = x

(
−w2 +

n−1∑
i=1

bn−1

bn−i
z2
i

)
+ w〈z, z〉, 1 = bn−1

bn−1
≥ . . . ≥ bn−1

b1
> 0.
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Hence, ȟ ∈ G. The uniqueness property can be shown the following way. Assume that
h = x

(
−w2 +∑n−1

i=1 ciz
2
i

)
+ w〈z, z〉 ∈ G and h = x

(
−w2 +∑n−1

i=1 ciz
2
i

)
+ w〈z, z〉 ∈ G are

equivalent. The polynomials h and h are equivalent to

h′ = x(−w2 + 〈z, z〉) + w
n−1∑
i=1

cn−1

cn−i
z2
i ∈ F

and
h
′ = x(−w2 + 〈z, z〉) + w

n−1∑
i=1

cn−1

cn−i
z2
i ∈ F,

respectively. We have shown that h′ and h
′ are equivalent if and only if cn−1

cn−i
= cn−1

cn−i
for all

1 ≤ i ≤ n− 1. Since c1 = c1 = 1, this shows that cn−1 = cn−1. Hence, ci = ci must hold for
all 1 ≤ i ≤ n− 1.

Thus, we can reduce this question and assume that the h ∈ L we are starting with has
the property that N ≥ 0, N 6= 0, and dim kerN 6= 0.
Lemma 6.4. Let h ∈ L \ {x(−w2 + N(z, z)) + w〈z, z〉 | N > 0}. Then h ◦ A ∈ L,
A ∈ GL(n+ 1), if and only if

A =

 r
1
4F

r−
1
2

r

 , F ∈ O(n− 1), r > 0.

In particular the possible choices for A do not depend on h.

Proof. Let h = x(−w2 +N(z, z)) + w〈z, z〉. We obtain

dh = 2xN(z, dz) + 2w〈z, dz〉+ (−2wx+ 〈z, z〉)dw + (−w2 +N(z, z))dx.

We will determine the set {dh = 0}. Observe that for w = 0 it follows that 〈z, z〉 = 0 and,
hence, z = 0. Then all entries of dh are 0 for all x ∈ R. For w 6= 0, substitute the equations
2wx = 〈z, z〉 and w2 = N(z, z) into 2wxN(z, ·) + 2w2〈z, ·〉 = 0, which is the first equation
in dh = 0 multiplied by w. We obtain 〈z, z〉N(z, ·) + 2〈z, ·〉N(z, z) = 0, which in particular
implies 3〈z, z〉N(z, z) = 0. This shows that z ∈ kerN . But then w2 = N(z, z) = 0, which is
a contradiction to the assumption w 6= 0. Summarising, we have shown that for all N ≥ 0

{dh = 0} = {z = 0, w = 0, x ∈ R}.

Hence, A needs to be of the form

A =
(

B
(αT , β) r

)
, B ∈ Mat(n× n, R), α ∈ Rn−1, β ∈ R, r ∈ R \ {0}.

Let h = x(−w2 + N(z, z)) + w〈z, z〉 and assume that h
(
A
( z
w
x

))
= h

(( z
w
x

))
. Denote by(

z̃
w̃
x̃

)
= A

( z
w
x

)
. We obtain

h
(
A
( z
w
x

))
= (〈α, z〉+ βw + rx)(−w̃2 +N(z̃, z̃)) + w̃〈z̃, z̃〉.

Since w̃〈z̃, z̃〉 does not depend on the variable x, this shows that

−w̃2 +N(z̃, z̃) = r−1
(
−w2 +N(z, z)

)
.
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Hence, B = r−
1
2C with

CT

(
N
−1

)
C =

(
N
−1

)
, C ∈ GL(n).

For C =
(

E ξ
ηT µ

)
the above equation is equivalent to

(
ETNE − η ⊗ 〈η, ·〉 ETNξ − µη
ξTNE − µηT N(ξ, ξ)− µ2

)
=
(
N
−1

)
.

Note that this shows µ 6= 0. This is equivalent to

µ2 = 1 +N(ξ, ξ), (6.23)
ETNξ = µη, (6.24)

ETNE − η ⊗ 〈η, ·〉 = N. (6.25)

In particular µ 6= 0. Up to this point, we have shown that

A =

 r−
1
2E r−

1
2 ξ

r−
1
2ηT r−

1
2µ

α β r

 .
We calculate

h
(
A
( z
w
x

))
= x

(
−w2 +N(z, z)

)
+ w3

(
−βr−1 + r−

3
2µ〈ξ, ξ〉

)
+ w2

(
−r−1〈α, z〉+ r−

3
2 〈η, z〉〈ξ, ξ〉+ 2r− 3

2µ〈Ez, ξ〉
)

+ w
(
βr−1N(z, z) + r−

3
2µ〈Ez,Ez〉+ 2r− 3

2 〈η, z〉〈Ez, ξ〉
)

+ r−1〈α, z〉N(z, z) + r−
3
2 〈η, z〉〈Ez,Ez〉.

By assumption, the entries of A need to fulfil the equations

−βr−1 + r−
3
2µ〈ξ, ξ〉 = 0, (6.26)

−r−1〈α, z〉+ r−
3
2 〈η, z〉〈ξ, ξ〉+ 2r− 3

2µ〈Ez, ξ〉 = 0, (6.27)
βr−1N(z, z) + r−

3
2µ〈Ez,Ez〉+ 2r− 3

2 〈η, z〉〈Ez, ξ〉 = 〈z, z〉, (6.28)
r−1〈α, z〉N(z, z) + r−

3
2 〈η, z〉〈Ez,Ez〉 = 0. (6.29)

Claim 1: E ∈ GL(n− 1).
Proof. Substituting (6.25) into (6.28) yields

βr−1(N(Ez,Ez)− 〈η, z〉2) + r−
3
2µ〈Ez,Ez〉+ 2r− 3

2 〈η, z〉〈Ez, ξ〉 = 〈z, z〉. (6.30)

We multiply both sides of (6.30) by µ2 and substitute (6.24) to obtain

βr−1(µ2N(Ez,Ez)−N(Ez, ξ)2)+r− 3
2µ3〈Ez,Ez〉+2r− 3

2µN(Ez, ξ)〈Ez, ξ〉 = µ2〈z, z〉. (6.31)

Assume y ∈ kerE. Then (6.31) implies 0 = µ2〈y, y〉. Since µ 6= 0 this implies y = 0. This
proves our claim.
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Claim 2: α = 0.

Proof. Suppose α 6= 0. Substituting (6.25) into (6.29), we obtain

r−1〈α, z〉(N(Ez,Ez)− 〈η, z〉2) + r−
3
2 〈η, z〉〈Ez,Ez〉 = 0. (6.32)

Multiply both sides of (6.32) by rµ2 and substitute (6.24) to obtain

〈α, z〉(µ2N(Ez,Ez)−N(Ez, ξ)2) + r−
1
2µN(Ez, ξ)〈Ez,Ez〉 = 0. (6.33)

Claim 2.1: α 6= 0 ⇒ ETNξ = sα.

Proof. Equation (6.33) and E ∈ GL(n − 1) show that y ∈ ker〈α, ·〉 implies N(Ey, ξ) = 0.
Hence, N(E·, ξ) = s〈α, ·〉.

Claim 2.2: α 6= 0 ⇒ s 6= 0, ξ /∈ kerN .

Proof. Suppose that s = 0. Then (6.33) becomes 〈α, z〉N(Ez,Ez) = 0 for all z ∈ Rn−1. But
E ∈ GL(n − 1), N 6= 0, and α 6= 0, so this is a contradiction. Since ETNξ = sα 6= 0, it
immediately follows that ξ /∈ kerN .

Claim 2.3: ET ξ = tα, t 6= 0.

Proof. Equation (6.27) implies that α, η, and ET ξ are linearly dependent. Since η =
µ−1ETNξ = µ−1sα, it follows that ET ξ = tα. Then t 6= 0 follows from ET ∈ GL(n− 1) and
ξ 6= 0.

Claim 2.4: sgn(µ) = sgn(−s) and dim kerN = 1.

Proof. Observe that Claim 2.1-2.3 and α 6= 0 show that (6.33) is equivalent to

µ2N(Ez,Ez)− s2〈α, z〉2 + r−
1
2µs〈Ez,Ez〉 = 0.

Thus, for all y ∈ ker〈α, ·〉 we have

µ2N(Ey,Ey) + r−
1
2µs〈Ey,Ey〉 = 0.

N ≥ 0 and E ∈ GL(n − 1) imply that µs < 0, which shows sgn(µ) = sgn(−s). Since
〈E·, E·〉|ker〈α,·〉 > 0 it follows that N(E·, E·)|ker〈α,·〉 > 0. Hence, N is of rank n− 2 or n− 1,
the latter being excluded by the assumption that N ≥ 0 but not N > 0.

Claim 2.5: sgn(s) = sgn(t).
Proof. We have α = s−1ETNξ and α = t−1ET ξ. The invertibility of E shows Nξ = st−1ξ.
Since ξ /∈ kerN and N ≥ 0, it follows that sgn(st−1) = 1.

To conclude the proof of Claim 2, multiply both sides of equation (6.27) by rµ and
substitute (6.24) to obtain

− µ〈α, z〉+ r−
1
2 〈ξ, ξ〉N(Ez, ξ) + 2r− 1

2µ2〈Ez, ξ〉 = 0. (6.34)

Claim 2.1-2.3 and α 6= 0 show that (6.34) is equivalent to

− µ+ r−
1
2 〈ξ, ξ〉s+ 2r− 1

2µ2t = 0. (6.35)

We have shown that all terms are non-vanishing and, by Claim 2.4-2.5, have the same sign.
Hence, (6.35) cannot be true. This completes the proof of Claim 2, that is α = 0.
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Claim 3: ξ = η = 0.

Proof. Since α = 0, using (6.23) and (6.24) shows that equation (6.29) is equivalent to
N(E·, ξ) = 0. But E ∈ GL(n− 1), thus it follows that ξ ∈ kerN and η = 0. Equation (6.27)
and E ∈ GL(n− 1) now show that ξ = 0.

Claim 4: β = 0, µ = 1, and E = r
3
4F , F ∈ O(n− 1).

Proof. Equation (6.26), ξ = 0, and r > 0 imply β = 0. Using ξ = 0 we see that equation
(6.31) is equivalent to

r−
3
2µ〈Ez,Ez〉 = 〈z, z〉. (6.36)

Equations (6.23) and (6.36) are satisfied if and only if µ = 1 and r−
3
4E ∈ O(n − 1), that is

E = r
3
4F with F ∈ O(n− 1).

This finishes the proof of Lemma 6.4.

Now one can show in the exact same way as for the family F that each element of L
has a unique representative in G. Hence, the (n− 2)-parameter family G consists of pairwise
inequivalent hyperbolic homogeneous cubic polynomials, each defining a complete projective
special real manifold of dimension n. This concludes the proof of Theorem 6.1.

A consequence of the Lemmata 6.2, 6.3, and 6.4 is the following corollary.

Corollary 6.5. The automorphism groups of elements h ∈ G and h ∈ F, h 6= h1 :=
x(−w2 + 〈z, z〉) + w

n−2∑
i=1

z2
i , are of the form

Aut(h) = O(m1)× . . .×O(mk), 1 ≤ k ≤ n− 1,
k∑
j=1

mk = n− 1.

The automorphism group of h1 is generated by O(n− 2) and Â defined as

Â :=


1

1
2

−1
2 1

−1
2

1
2 1

1
2

1
2 0

 ,

i.e.
Aut(h1) ∼= O(n− 2) o Z2.

In view of Corollary 6.5 also recall that the CCPSR manifolds associated to the polyno-
mials a) and b) in Theorem 2.46 are homogeneous spaces (cf. equations (6.46) and (6.48),
respectively (6.47) and (6.49) for a more detailed description). Next, we will show that the
CCPSR manifolds defined by elements of F and G of the form (6.3) and (6.4), respectively,
are always singular-at-infinity CCPSR manifolds, cf. Definition 3.16.

Proposition 6.6 (Singular-at-infinity property of F and G). Each CCPSR manifold H(h)
for h ∈ F and h ∈ G as in (6.3) and (6.4), respectively, is singular at infinity.
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Proof. Let h = x(−w2 +N(z, z))+wM(z, z), H(h) = {h = 1 | x < 0, w < 0,−w2 +N(z, z) <
0}, where M > 0 or N > 0, and let (z1, . . . , zn−1, w, x)T denote the linear coordinates of Rn+1.
We can assume without loss of generality that M and N are diagonal matrices, i.e.

M =


µ1

. . .
µn−1

 , N =


η1

. . .
ηn−1

 , µi ≥ 0, ηi ≥ 0 ∀1 ≤ i ≤ n− 1. (6.37)

We want to transform h so that it is of the form h̃ = x3 − x〈y, y〉 + P3(y) and that H(h) is
equivalent to the connected component H̃ ⊂

{
h̃ = 1

}
that contains the point ( xy ) = ( 1

0 ). We
start12 with the linear transformation A ∈ GL(n+ 1) of the form

A =


2− 1

3 3 1
21

−2− 1
3 −2 1

6

2 1
6 −2− 1

3

 , A ·

zw
x

 =


2− 1

3 3 1
2 z

−2− 1
3w − 2 1

6x

2 1
6w − 2− 1

3x

 . (6.38)

Then

h
(
A ·

( z
w
x

))
= x3

− x
(
2−13w2 + 2− 1

2 3M(z, z) + 2−13N(z, z)
)

+
(
−2− 1

2w3 + w
(
−2−13M(z, z) + 2− 1

2 3N(z, z)
))

= x3

− x
(

2−13w2 +
n−1∑
i=1

(
2− 1

2 3µi + 2−13ηi
)
z2
i

)

+
(
−2− 1

2w3 + w
n−1∑
i=1

(
−2−13µi + 2− 1

2 3ηi
)
z2
i

)
.

After rescaling and relabelling the coordinates



z1
...

zn−1
w
x

→



(
2− 1

2 3µ1 + 2−13η1
)− 1

2 y1
...(

2− 1
2 3µn−1 + 2−13ηn−1

)− 1
2 yn−1

−2 1
2 3− 1

2yn
x


, (6.39)

we see that h is equivalent to

h̃ = x3 − x〈y, y〉+ P̃3(y)

= x3 − x〈y, y〉+ yn

(
2

3
√

3
y2
n +
√

2√
3

n−1∑
i=1

µi −
√

2ηi√
2µi + ηi

y2
i

)
. (6.40)

Since A maps
( z
w
x

)
=
( 0

0
1

)
∈ H̃ ⊂

{
h̃ = 1

}
to

( 0
−2

1
6

−2−
1
3

)
∈ H(h) (note: the linear map

described in equation (6.39) maps the point (z, w, x)T = (0, 0, 1)T to itself), we see that H(h)
12The matrix A has been obtained with equation (3.7) in Proposition 3.18, up to the ordering and names

of the coordinates.
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is in fact equivalent to H̃ as required. Observe that

max
‖y‖=1

P̃3(y) ≥ P̃3
(

(0, . . . , 0, 1)T︸ ︷︷ ︸
=(y1,...,yn)T

)
= 2

3
√

3

independently of the considered M and N , and since we already know that H̃ is a CCPSR
manifold we conclude that max

‖y‖=1
P̃3(y) = 2

3
√

3 , cf. Lemma 4.2. Now we use Lemma 4.6 and

deduce that H̃ and, hence, H(h) are singular-at-infinity CCPSR manifolds independent of
the considered M and N . In particular this shows that H(h) is singular at infinity for all
h ∈ F ∪ G.

Theorem 6.1 and Proposition 6.6 now imply the following.

Corollary 6.7. For n ≥ 3, n ∈ N, there exists a smooth curve γ : [0, 1] → Sym3 (Rn+1)∗,
such that γ(0) = x(−w2 + 〈z, z〉), that is the polynomial a) in Theorem 2.46, and γ(1) =
x(−w2)+w〈z, z〉, which is equivalent to the polynomial b) in Theorem 2.46, with the property
that for each t ∈ (0, 1), the level set {γ(t) = 1} contains a CCPSR manifold that is singular
at infinity.

The above corollary is also true for n = 1 and n = 2. For n = 1, the polynomials a) and b)
in Theorem 2.46 are equivalent, cf. [CHM, Cor. 4]. Furthermore, the corresponding CCPSR
curve is equivalent to the connected component H ⊂

{
x3 − xy2 + 2

3
√

3y
3 = 1

}
containing

( xy ) = ( 1
0 ). Hence, they are both singular at infinity. For n = 2, one choice for γ is

γ(t) = x
(
−w2 + (1− t)z2

)
+ twz2.

If we compare these polynomials with [CDL, Thm. 1], we see that γ(0) is equivalent to a),
that is xyz, γ(1) is equivalent to b), that is x(xy− z2), and γ(t) for all t ∈ (0, 1) is equivalent
to e), that is x(y2−z2)+y3. The corresponding CCPSR surfaces a), b), and e) are all singular
at infinity, cf. the proof of Theorem 5.3 where this is shown.

Remark 6.8. Note that Proposition 5.8 automatically implies that there exists a continuous
curve of singular-at-infinity CCPSR manifolds connecting the singular-at-infinity CCPSR
manifolds corresponding to Theorem 2.46 a) and b), respectively. However, in Corollary 6.7
we show that such a curve can be chosen such that it is smooth and not only continuous.

Another important question about the structure of CCPSR manifolds defined by elements
of F and G is whether they are homogeneous spaces or not. We will show that they are, in
fact, never homogeneous spaces.

Proposition 6.9 (Inhomogeneity of H(h), h ∈ F ∪ G). Let h ∈ F ∪ G and H(h) be the
corresponding CCPSR manifold as in 6.3, respectively 6.4. Then H(h) is inhomogeneous as
a Riemannian manifold13.

Proof. Recall that for h equivalent to an element in F ∪ G, we have shown In the proof
of Proposition 6.6 that the corresponding CCPSR manifold H(h) = {h = 1 | x < 0, w <

0,−w2 + N(z, z) < 0} is equivalent to the connected component H̃ ⊂
{
h̃ = 1

}
containing

the point ( xy ) = ( 1
0 ) ∈

{
h̃ = 1

}
⊂ Rn+1 with

h̃ = x3 − x〈y, y〉+ yn

(
2

3
√

3
y2
n +
√

2√
3

n−1∑
i=1

µi −
√

2ηi√
2µi + ηi

y2
i

)
, (6.41)

13And H(h) is in particular also inhomogeneous in the sense of Definition 3.9.
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for fittingly chosen µk ≥ 0 and ηk ≥ 0, 1 ≤ k ≤ n − 1, cf. (6.40). Note that the result
corresponding to the formula 6.41 hold also true if h corresponds, up to equivalence, to the
cases M > 0 and N = 0, respectively M = 0 and N > 0. For M > 0 and N = 0, h is
equivalent to

h1,n := x(−w2) + w〈z, z〉,

and its equivalent polynomial of the form (6.40) is given by

h̃1,n := x3 − x〈y, y〉+ yn

(
2

3
√

3
y2
n + 1√

3

n−1∑
i=1

y2
i

)
. (6.42)

For M = 0 and N > 0, h is equivalent to

h2,n := x(−w2 + 〈z, z〉),

and its corresponding form (6.40) is

h̃2,n := x3 − x〈y, y〉+ yn

(
2

3
√

3
y2
n −

2√
3

n−1∑
i=1

y2
i

)
. (6.43)

The CCPSR manifolds
H1,n ⊂

{
h̃1,n = 1

}
, ( 1

0 ) ∈ H1,n, (6.44)
and

H2,n ⊂
{
h̃2,n = 1

}
, ( 1

0 ) ∈ H2,n, (6.45)
are homogeneous spaces. By applying the supergravity q-map to each of them, H1,n yields
a symmetric quaternionic Kähler manifold and H2,n yields a homogeneous non-symmetric
quaternionic Kähler manifold14, see [DV, C]. In fact, one can show with the notation{

h1,n = x(−w2) + w〈z, z〉 = 1, x < 0, w < 0
} ∼= H1,n, (6.46){

h2,n = x(−w2 + 〈z, z〉) = 1, x < 0, w < 0
} ∼= H2,n, (6.47)

that

H1,n ∼= R>0 nRn−1, (6.48)

H2,n ∼=
R>0 × SO+(n− 1, 1)

SO(n− 1) = R>0 ×Hn−1, (6.49)

where (λ, v) ∈ R>0 nRn−1 acts on points in {h1,n = 1, x < 0, w < 0} via

(λ, v) ·

zw
x

 =


1√
λ
(z + wv)
λw

1
λ2 (x+ 〈v, v〉w + 2〈z, v〉)

 ,

(λ1, v1)·(λ2, v2) =
(
λ1λ2, v1 + λ

3
2
1 v2

)
for all (λ1, v1), (λ2, v2) ∈ RnRn−1, and Hn−1 denotes the

(n− 1)-dimensional oriented hyperbolic space. In the following we will use the abbreviation

σk := µk −
√

2ηk√
2µk + ηk

. (6.50)

14We only consider n ≥ 3, the corresponding space T(p) for p = n− 1 ≥ 2 is always not symmetric, cf. [C].
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In particular, the P3-term of h̃ as in (6.41) is of the form

P3(y) = yn

(
2

3
√

3
y2
n +
√

2√
3

n−1∑
i=1

σiy
2
i

)
(6.51)

and fulfils

P3(∂i, ∂j, ∂k) =


√

2
3
√

3σiδ
j
i δ
n
k , 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, 1 ≤ k ≤ n,
0, 1 ≤ i ≤ n− 1, j = k = n,

2
3
√

3 , i = j = k = n.
(6.52)

In order to show that for all h ∈ F ∪ G the CCPSR manifolds H(h) = {h = 1 | x <
0, w < 0,−w2 + N(z, z) < 0} are inhomogeneous as Riemannian manifolds, that is are
never isometric to some Riemannian homogeneous space, we will study the first derivative
of the scalar curvature of the corresponding CCPSR manifolds H̃ at the point ( 1

0 ) ∈ H̃, i.e.
dS

H̃

∣∣∣( 1
0 ). We use Proposition 3.30, equation (3.40), and obtain

dS
H̃

∣∣∣( 1
0 ) (∂i) = 0 (6.53)

for all 1 ≤ i ≤ n− 1, and

dS
H̃

∣∣∣( 1
0 ) (∂n) = n− 1√

3
+ n− 5√

6

(
n−1∑
i=1

σi

)
+ 1

2
√

3

(
n−1∑
i=1

σ2
i

)
+
√

3√
2

(
n−1∑
i=1

σ3
i

)

− 1
2
√

3

 n−1∑
i,j=1

σiσj

− 1√
6

 n−1∑
i,j=1

σiσ
2
j

 . (6.54)

Note that (6.53) and (6.54) also hold for H̃0 and H̃1, and actually vanish identically for H̃0

and H̃1 as one would expect. Next, consider (6.54) as a symbolic equation in the variables
(σ1, . . . , σn−1), so that

∂

∂σk

(
dS

H̃

∣∣∣( 1
0 ) (∂n)

)
=
√

6σ2
k +

− 2√
6
∑
i 6=k

σi

σk + n− 5√
6
− 1√

6
∑
i 6=k

(√
2σi + σ2

i

)
(6.55)

for all 1 ≤ k ≤ n − 1. We will treat the cases N > 0 (corresponding to F) and M > 0
(corresponding to G) separately.

Case 1: N > 0 and M ≥ 0, M 6= 0.
After a possible linear transformation we can assume without loss of generality that N(z, z) =
〈z, z〉. Then h = x(−w2+〈z, z〉)+wM(z, z) is equivalent to hr := x(−w2+〈z, z〉)+rwM(z, z)
for all r > 0. This can be seen by considering the rescalingzw

x

→

r

1
3 z

r
1
3w

r−
2
3x

 . (6.56)

Hence, H(h) is equivalent to H(hr) for all r > 0 (since this is a continuous family of trans-
formations with r = 1 associated to the identity transformation 1). Thus with

h̃r := x3 − x〈y, y〉+ yn

(
2

3
√

3
y2
n +
√

2√
3

n−1∑
i=1

rµi −
√

2
r
√

2µi + 1
y2
i

)
, (6.57)
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(cf. (6.41)) we see that H(h) is equivalent to the CCPSR manifold H̃r ⊂
{
h̃r = 1

}
, ( 1

0 ) ∈ H̃r,
for all r > 0. We define

σ̃k(r) := rµk −
√

2
r
√

2µk + 1
(6.58)

and obtain for all 1 ≤ k ≤ n− 1

∂

∂r
(σ̃k(r))

∣∣∣∣∣
r=0

= 3µk (6.59)

and
∂2

∂r2 (σ̃k(r))
∣∣∣∣∣
r=0

= −6
√

2µ2
k. (6.60)

For the limit r → 0 of h̃r, we obtain h̃0 = h̃2,n, see (6.43), which corresponds to N = 1

and M = 0. Note that equation (6.54) shows that dS
H̃r

∣∣∣( 1
0 ) (∂n) is an analytic function in r

around r = 0. Equation (6.55) at H2,n, that is at r = 0 respectively σ1 = . . . = σn−1 = −
√

2,
reads

∂

∂σk

(
dS

H̃

∣∣∣( 1
0 ) (∂n)

)∣∣∣∣∣
σ1=...=σn−1=−

√
2

=
√

3√
2

(−n+ 5) (6.61)

for all 1 ≤ k ≤ n− 1. Thus, for n 6= 5, µk ≥ 0 for all 1 ≤ k ≤ n− 1 and the existence of at
least one such µk > 0 imply

∂

∂r

(
dS

H̃r

∣∣∣( 1
0 ) (∂n)

)∣∣∣∣∣
r=0

=
n−1∑
k=1

3
√

3√
2

(−n+ 5)µk
{
> 0, n ∈ {3, 4}
< 0, n > 5. (6.62)

Since dSH2,n

∣∣∣( 1
0 ) (∂n) = 0, this shows that for all n 6= 5, n ≥ 3, and for all M ≥ 0, M 6= 0,

M of the form (6.37), we can choose r > 0 small enough, such that dS
H̃r

∣∣∣( 1
0 ) (∂n) 6= 0. Since

H̃r is equivalent to H(h) for all r > 0, we conclude that H(h) is inhomogeneous.
It remains to take care of the cases with dim(H(h)) = n = 5. With the definitions above,

Proposition 3.29 yields

S
H̃

(( 1
0 )) = n(1− n)− 1√

2

(
n−1∑
i=1

σi

)
+ 1

2

(
n−1∑
i=1

σ2
i

)
− 1

4

n−1∑
i,j=1
i 6=j

σiσj. (6.63)

We use the above equation (6.63) and obtain with σk = σ̃k(r) for 1 ≤ k ≤ n − 1 (6.58) and
the equations (6.59) and (6.60) for the first r-derivative

∂

∂r
S
H̃r

(( 1
0 ))
∣∣∣∣∣
r=0

= 3√
2

(n− 5)
n−1∑
i=1

µi
n=5= 0

and for the second r-derivative

∂2

∂r2SH̃r
(( 1

0 ))
∣∣∣∣∣
r=0

= 3(−n+ 11)
(
n−1∑
i=1

µ2
i

)
− 9

4

n−1∑
i,j=1
i 6=j

µiµj

n=5= 9
4
(
8
(
µ2

1 + µ2
2 + µ2

3 + µ2
4

)
− 2 (µ1µ2 + µ1µ3 + µ1µ4 + µ2µ3 + µ2µ4 + µ3µ4)

)
.
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We want to prove ∂2

∂r2SH̃r
(( 1

0 ))
∣∣∣
r=0

> 0. One sees that

∂2

∂r2SH̃r
(( 1

0 ))
∣∣∣∣∣
r=0

= 9
4V

(( µ1
µ2
µ3
µ4

)
,
( µ1
µ2
µ3
µ4

))

with

V =


8 −1 −1 −1
−1 8 −1 −1
−1 −1 8 −1
−1 −1 −1 8


viewed as a bilinear form. It thus suffices to show that all eigenvalues of V are positive,
and indeed one finds that V has precisely one simple eigenvalue λ1 = 5 and an eigenvalue of
multiplicity 3, namely λ2 = 9. Recall that, independent of n ≥ 3, the map r 7→ S

H̃r
(( 1

0 ))
is analytic around r = 0. Since all µ1, . . . , µ4 are non-negative and at least one value of
µ1, . . . , µ4 is positive (M ≥ 0, M 6= 0), we have shown that

∂2

∂r2SH̃r
(( 1

0 ))
∣∣∣∣∣
r=0

= 9
4V

(( µ1
µ2
µ3
µ4

)
,
( µ1
µ2
µ3
µ4

))
> 0.

Hence, there exists ε > 0, such that r 7→ S
H̃r

(( 1
0 )) is strictly monotonously increasing for all

r ∈ (0, ε), and in particular S
H̃r

(( 1
0 )) > SH2,n (( 1

0 )). Since H̃r and H(h) are equivalent for all
r > 0, we have shown that SH(h) is not constant for any allowed initial choices of µ1, . . . , µ4.
This proves that the CCPSR manifold H(h) cannot be homogeneous.

Case 2: M > 0 and N ≥ 0, N 6= 0.
We proceed similarly to Case 1. There is no special case for the dimension of H(h) in
comparison with Case 1 for dim (H(h)) = 5. As in Case 1, we can assume without loss of
generality that M = 1. Then for all r > 0, h = x(−w2 +N(z, z)) +wM(z, z) is equivalent to

hr = x3 − x〈y, y〉+ yn

(
2

3
√

3
y2
n +
√

2√
3

n−1∑
i=1

1− r
√

2ηi√
2 + rηi

y2
i

)
,

and H(r) is equivalent to the CCPSR manifold Hr ⊂
{
hr = 1

}
, ( xy ) = ( 1

0 ) ∈ Hr. Similar to
(6.58) we define for 1 ≤ k ≤ n− 1

σk(r) := 1− r
√

2ηk√
2 + rηk

, (6.64)

so that
∂

∂r
(σk(r))

∣∣∣∣∣
r=0

= −3
2ηk. (6.65)

Equation (6.55) for the limit r → 0, i.e. at H1,n ⊂
{
h0 = h̃1,n = 1

}
respectively σ1 = . . . =

σn−1 = 1√
2 , reads

∂

∂σk

(
dS

H̃

∣∣∣( 1
0 ) (∂n)

)∣∣∣∣∣
σ1=...=σn−1=1/

√
2

=
√

3
2
√

2
(−n+ 2) < 0 ∀n ≥ 3.

Hence,
∂

∂r

(
dSHr

∣∣∣( 1
0 ) (∂n)

)∣∣∣∣∣
r=0

=
n−1∑
k=1

3
√

3
4
√

2
(n− 2)ηk > 0
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since n ≥ 3 and at least one ηk is positive, and the others are always non-negative. Since
dSHr

∣∣∣( 1
0 ) (∂n) is analytic around r = 0, there thus exists r > 0 small enough, such that

dSHr

∣∣∣( 1
0 ) (∂n) 6= 0. This proves that H(h) is inhomogeneous.

Summarising, we have shown that for all h ∈ F ∪ G the corresponding CCPSR manifold
H(h) as in (6.3) respectively (6.4) is inhomogeneous.

Lemma 6.10 (Scalar curvature of H1,n and H2,n). For n ≥ 3,

SH1,n ≡ −
9
8n(n− 1),

SH2,n ≡
(
−3

2n+ 3
)

(n− 1).

In particular SH1,n < 0 and SH2,n < 0.

Proof. This easily follows from n ≥ 3 and equation (6.63) with σ1 = . . . = σn−1 = 1√
2 for

H1,n, and σ1 = . . . = σn−1 = −
√

2 for H2,n.

Remark 6.11. We have seen in Proposition 6.9 that the limits for r → 0 of Hr and H̃r

are H1,n and H2,n, respectively. For elements h ∈ F ∪ G with rk(M) = rk(N) = n − 1, we
can thus interpret H(h) as an inhomogeneous CCPSR manifold “interpolating” the scalar
curvature between the homogeneous CCPSR manifolds manifolds H1,n and H2,n along the
curve in H(h) generated by the curve

r 7→

 0
−2 1

6 r
1
3

−2− 1
3 r−

2
3

 ∈ H(h),

cf. (6.38) and (6.56).

Remark 6.12 (Candidates for sharp SH-bounds for dim(H) ≥ 3). Note that setting n = 2
in the formulas for SH1,n and SH2,n in Lemma 6.10 yields −9

4 and 0, respectively. Recall
that these are precisely the sharp SH-bounds for CCPSR surfaces H as we have seen in
Proposition 5.12. Thus, the values −9

8n(n − 1) and
(
−3

2n+ 3
)

(n − 1) in Lemma 6.10, or
one of them, might provide general bounds for the scalar curvature of n ≥ 3-dimensional
CCGPSR manifolds, but as mentioned before after the proof of Proposition 5.12 we will
leave this as a problem for future studies.

Recall the definition of Cn in (5.37), and Definition 3.2. With Theorem 5.6, the existence
of the pair-wise inequivalent (n− 2)-parameter families of CCPSR manifolds F, respectively
G, and Propositions 6.6 and 6.9, we have gained following information about the moduli space
of CCPSR manifolds.

Corollary 6.13 (Lower bound of minimal number of parameters of “maximal” parameter
families). For n ≥ 3 there exists an (n−2)-parameter family of pairwise inequivalent singular-
at-infinity inhomogeneous CCPSR manifolds H(t1,...,tn−2) of dimension n. In particular, for
each such H(t1,...,tn−2) there exists P3 ∈ Sym3 (Rn)∗, such that h = x3 − x〈y, y〉+ P3(y) ∈ ∂Cn
and

[
H(t1,...,tn−2)

]
= [H], where H ⊂ {h = 1} is the CCPSR manifold containing the point

( xy ) = ( 1
0 ) ∈ {h = 1} ⊂ Rn+1. This also means that a maximal multi-parameter family of

pairwise inequivalent n ≥ 3-dimensional CCPSR manifolds depending on m ∈ N parameters
in the sense that there exists no multi-parameter family of pairwise inequivalent n ≥ 3-
dimensional CCPSR manifolds that depends on m+ 1 parameters fulfils m ≥ n− 2.
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Remark 6.14 (Implications and for a possible topology on the moduli-space of CCPSR
manifolds in dimension n ≥ 3). We can use the results of this section to describe one problem
in finding a meaningful topology on the moduli space of n ≥ 3-dimensional CCPSR manifolds
as defined in Definition 3.2. Recall that we have always viewed that moduli space as a set,
see Remark 3.3. Consider for r > 0 the cubic polynomial h̃r in (6.57) and the corresponding
CCPSR manifold H̃r ⊂ {h̃r = 1}. Further assume that in (6.57) µi > 0 for all 1 ≤ i ≤ n− 1.
Then, when viewing h̃r as an element of the vector space Sym3 (Rn+1)∗,

lim
r→0

h̃r = h̃2,n, lim
r→∞

h̃r = h̃1,n,

cf. (6.43) and (6.42). However, we have seen in Case 1 in the proof of Proposition 6.9
that all CCPSR manifolds H̃r are equivalent to some H(h) for h ∈ F ∪ G (cf. Theorem
6.1) independent of r > 0, e.g. for h = x (−w2 + 〈z, z〉) + w〈z, z〉 ∈ F ∩ G. Hence, if
one considers the topology on the moduli space of CCGPSR manifolds of dimension n ≥ 3
induced by the equivalence of hyperbolic cubic homogeneous polynomials, then the moduli
space of CCGPSR manifolds of dimension n ≥ 3 would not be a Hausdorff space since the
then constant sequence of equivalence classes{[

h̃ek
]
, k ∈ Z

}
would have two distinct limits, namely

[
h̃2,n

]
for k → −∞ and

[
h̃1,n

]
for k →∞ (recall that

H2,n (6.45) and H1,n (6.44) are not equivalent for n ≥ 3).
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7 Geometry and examples of quartic generalized pro-
jective special real manifolds

In this section we will be concerned with quartic CCGPSR manifolds, i.e. CCGPSR mani-
folds of homogeneity-degree τ = 4. Proposition 3.18 implies that any n-dimensional quartic
CCGPSR manifold H ⊂ Rn+1 can without loss of generality be assumed to be the connected
component of {

h = x4 − x2〈y, y〉+ xP3(y) + P4(y) = 1
}
⊂ Rn+1

that contains the point ( xy ) = ( 1
0 ) ∈ {h = 1} ⊂ Rn+1. Recall that CCPSR manifolds are

complete, which was first shown in [CNS] and for which we found two alternative proofs, see
Proposition 4.17 and Proposition 5.17. An important and still open problem is the following.

Open problem 7.1 (Completeness of quartic CCGPSR manifolds). Let H be a quartic
CCGPSR manifold of dimension n. Is H being closed in the ambient space Rn+1 equivalent
to H being geodesically complete with respect to its centro-affine fundamental form?

For dimension n = 1, that is for quartic CCGPSR curves, we know that they are always
complete, see [CNS, Thm. 2.9]. But for quartic CCGPSR manifolds of dimension n ≥ 2,
the question of geodesic completeness is not solved yet. We will provide partial results to
this question, that is we will give examples of complete quartic CCGPSR manifolds for each
dimension n ∈ N and we will completely classify quartic CCGPSR curves up to equivalence.

Theorem 7.2 (Classification of quartic CCGPSR curves). Any quartic CCGPSR curve is
equivalent to the connected component H of the level set {h = 1} ⊂ R2 which contains the
point ( xy ) = ( 1

0 ) for precisely one of the following polynomials h. The respective level set
{h = 1} contains the following closed connected hyperbolic subsets, and the automorphism
group Gh of h has the following properties:

a) h = x4 − x2y2 + 1
4y

4, {h = 1} has 4 equivalent closed hyperbolic connected components,
and

Gh ∼= SO+(1, 1)× Z4 × Z2,

where the SO+(1, 1)-factor acts by hyperbolic rotations with respect to the metric −2dx2 +
dy2 (7.47),

b) h = x4 − x2y2 + 2
√

2
3
√

3xy
3 − 1

12y
4 = 1, {h = 1} has 2 equivalent closed hyperbolic connected

components, and
Gh ∼= R× Z2,

where the R-factor acts on H as described in equation (7.58),

c) h = x4 − x2y2 + 2
3
√

3xy
3 = 1, {h = 1} has 4 equivalent closed hyperbolic connected

components, and
Gh ∼= Z4,

d) h = x4 − x2y2 +Ky4 = 1 for exactly one K < 1
4 . The set {h = 1} has 4 equivalent closed

hyperbolic connected components if 0 < K < 1
4 with

Gh ∼= Z4 × Z2,

and 2 equivalent closed hyperbolic connected components if K ≤ 0 with

Gh ∼= Z2 × Z2.
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In the cases a) and b) the respective maximal connected subgroup Gh
0 ⊂ Gh acts simply

transitively on the curve H.

Proof. Let H be a maximal quartic (not necessarily closed) connected GPSR curve. Propo-
sition 3.18 implies that we can assume without loss of generality that H = HL,K is the
maximally extended quartic GPSR curve contained in the level set {hL,K = 1} ⊂ R2,

hL,K = x4 − x2y2 + Lxy3 +Ky4 (7.1)

for some (L,K)T ∈ R2, which contains the point ( xy ) = ( 1
0 ). This means that P3(y) = Ly3

and P4(y) = Ky4 in equation (3.12), leading to (7.1). We will say that the polynomial hL,K
“corresponds” to the point (L,K)T ∈ R2. On the other hand, note that for all (L,K)T ∈ R2,
the maximal open connected hyperbolic subset of the connected component of {hL,K = 1}
that contains ( xy ) = ( 1

0 ) is always a connected quartic GPSR curve. This proof primarily
relies on the properties of δP3(y) and δP4(y), defined in Definition 3.27. Since dim (HL,K) = 1,
the term dB0 in equations (3.31) and (3.32) vanishes and we calculate

δP3(y) =
(9

2L
2 + 4K − 1

)
y3dz, (7.2)

δP4(y) = L
(

6K + 1
2

)
y4dz. (7.3)

In the above formulas, z denotes the induced coordinate of dom(HL,K), cf. Definition 3.22.
This motivates the consideration of the vector field V ∈ Γ (TR2) that is given by

V = V( LK ) :=
(9

2L
2 + 4K − 1

)
∂L + L

(
6K + 1

2

)
∂K , (7.4)

see Figure 8 for a plot15 of V. We denote by

{V = 0} :=
{(

L
K

)
∈ R2

∣∣∣∣∣ V( LK ) = 0
}

=
{(

0
1
4

)
,

(
2
√

2
3
√

3
− 1

12

)
,

(
−2
√

2
3
√

3
− 1

12

)}
. (7.5)

V has the property that the polynomials

hγL(t),γK(t) = x4 − x2y2 + γL(t)xy3 + γK(t)y4 (7.6)

associated to each integral curve16 and in particular each maximal integral curve γ of the
restricted vector field V|R2\{V=0},

t 7→ γ(t) =
(
γL(t)
γK(t)

)
∈ R2, Vγ = γ̇, γL(0) = L, γK(0) = K,

for all initial (L,K)T ∈ R2\{V = 0}, are equivalent to hL,K . To see that this is true, let HL,K

be the maximal open connected hyperbolic subset of the connected component of {hL,K = 1}
that contains the point ( xy ) = ( 1

0 ). We will use the techniques of Propositions 3.18 and 3.26.
First, we need to calculate A : dom (HL,K)→ GL(2) as in (3.23) and find

A(T ) =


1

4
√
hL,K(( 1

T ))
2T−3LT 2−4KT 3

4−2T 2+LT 3 r(L,K, T )

T

4
√
hL,K(( 1

T ))
r(L,K, T )


with

15The plot was created with MAPLE, using the option fieldstrength=average(9/16) for better visibility.
16We assume in the following that integral curves are connected and parametrised over an open interval.
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Figure 8: The vector field V (7.4) plotted with MAPLE. The horizontal axis is the L-axis and the vertical
axis is the K-axis.

r(L,K, T ) = 4
√
hL,K (( 1

T ))
(
4− 2T 2 + LT 3

)
·
(
16− 48LT + (−8− 96K)T 2 + 56LT 3 +

(
−8− 42L2 + 128K

)
T 4

+(16− 144LK)T 5 +
(
−14L2 − 8K − 96K2

)
T 6

+
(
6L3 + 8LK

)
T 7 +

(
6L2K + 16K2

)
T 8
)− 1

2 .

Note that in order to see that A(T ) is actually well-defined for all T ∈ dom (HL,K) and not
just in some neighbourhood of 0 ∈ dom (HL,K) as implied by Proposition 3.18, we need to
show that ∂xhL,K |Φ(T ) > 0 for all T ∈ dom (HL,K), where Φ : dom (HL,K) → HL,K ⊂ R2

denotes the diffeomorphism defined as in equation (3.14). To see that this is true, suppose
that there exists a point T ∈ dom (HL,K), such that ∂xhL,K |Φ(T) = 0. We can assume without
loss of generality that T > 0 (after a possible sign-flip in the y-coordinate of the ambient
space R2 ⊃ HL,K) and we can further assume that T is minimal in the sense that for all
t ∈

[
0, T

)
we have ∂xhL,K |Φ(t) > 0 (recall that ∂xhL,K |Φ(0) = 4 for all choices of L and K).

Let prx : R2 → R and pry : R2 → R denote the projections to the x- and y-coordinate of
the ambient space R2, respectively, and write the set Φ

([
0, T

])
⊂ HL,K as the graph of a

function µ :
[
0, pryΦ

(
T
)]
→ R which is uniquely determined by the system of equations

hL,K (( 0
t ) + µ(t) ( 1

0 )) = 1 ∀t ∈
[
0, pryΦ

(
T
)]
, µ(0) = 1.
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The function µ is smooth on
[
0, pryΦ

(
T
))

and fulfils

∂2
t µ(t)∂xhL,K |( 0

t )+µ(t)( 1
0 ) + ∂2hL,K |( 0

t )+µ(t)( 1
0 ) (( 0

1 ) + ∂tµ(t) ( 1
0 ) , ( 0

1 ) + ∂tµ(t) ( 1
0 )) = 0 (7.7)

for all t ∈
[
0, pryΦ

(
T
))

. Note that the hyperbolicity of points in Φ
([

0, T
))

, the property
that ∂xhL,K |Φ(t) > 0 for all t ∈

[
0, T

)
, and equation (7.7) thus imply that ∂2

t µ(t) > 0 for all
t ∈

[
0, T

)
and, hence, show that µ is a strictly convex function. Since the point

Φ
(
T
)

=
( 0

pryΦ(T)
)

+ µ
(
pryΦ

(
T
))

( 1
0 ) ∈ HL,K

is also a hyperbolic point of hL,K and furthermore the vector ( 1
0 ) is tangent to HL,K ⊂ R2

at the point Φ
(
T
)
∈ HL,K by assumption that ∂xhL,K |Φ(T) = 0, there exists a positive real

number R > 0, such that
hL,K

(
Φ
(
T
)

+R ( 1
0 )
)
∈ (0, 1).

With that in mind we now define

µ̃ :
[
0, pryΦ

(
T
)]
→ R, µ̃(t) := t

prxΦ
(
T
)

+R

pryΦ
(
T
) .

It follows that the graphs of µ and µ̃ must have an intersection point
(
µ(t̂)
t̂

)
=
(
µ̃(t̂)
t̂

)
for some t̂ ∈

(
0, pryΦ

(
T
))

. But by construction hL,K

((
µ̃(T)

pry(T)

))
∈ (0, 1), which by the

linearity of µ̃ and the homogeneity of hL,K of degree 4 implies that

hL,K

((
µ̃(t̂)
t̂

))
= hL,K

((
µ(t̂)
t̂

))
∈ (0, 1).

This contradicts the assumption that
(
µ(t̂)
t̂

)
∈ HL,K and, hence, proves the claim that

∂xhL,K |Φ(T ) > 0 for all T ∈ dom (HL,K), which shows that A(T ) is well-defined for all
T ∈ dom (HL,K). With

hL(T ),K(T ) = hL,K ◦A(T ) = x4 − x2y2 + L(T )xy3 +K(T )y4

we then obtain

L(T ) = −2
√

2
√
hL,K (( 1

T ))
·
(
−8L+ (8− 32K)T − 20LT 2 + 20L2T 3 + 40LKT 4

+
(
−2L2 − 8K + 32K2

)
T 5 +

(
L3 + 4LK

)
T 6
)

·
(
8− 24LT + (4− 48K)T 2 − 4LT 3 +

(
3L2 + 8K

)
T 4
)−1

·
(
8− 24LT + (−4− 48K)T 2 + 28LT 3 +

(
−4− 21L2 + 64K

)
T 4

+ (8L− 72LK)T 5 +
(
−7L2 − 4K − 48K2

)
T 6

+
(
3L3 + 4LK

)
T 7 +

(
3L2K + 8K2

)
T 8
)− 1

2 (7.8)

and

K(T ) = 1
4
(
256K + 128LT +

(
−64− 192L2 − 256K

)
T 2 + (128L− 256LK)T 3
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+
(
16− 80L2 + 384K − 256K2

)
T 4 +

(
48L3 − 32L− 512LK

)
T 5

+
(
8L2 + 352L2K − 64K − 256K2

)
T 6 +

(
8L3 + 64LK + 512LK2

)
T 7

+
(
−3L4 − 16L2K + 256K3

)
T 8
)

·
(
8− 24LT + (4− 48K)T 2 − 4LT 3 +

(
3L2 + 8K

)
T 4
)−2

, (7.9)

where L(0) = L, K(0) = K. Note that

∂

∂T

(
L(T )
K(T )

)∣∣∣∣∣
T=0

= V( LK ) (7.10)

as expected. By construction we know that for all T ∈ dom (HL,K), hL(T ),K(T ) and hL,K
are equivalent. Since A depends smoothly on T , the maximal connected open hyperbolic
subsets of the connected component of {hL(T ),K(T ) = 1} that contain the point ( xy ) = ( 1

0 ) are
also equivalent for all T ∈ dom (HL,K). The velocities of the considered integral curve γ of
V|R2\{V=0} and the curve T 7→

(
L(T )
K(T )

)
will in general not identically coincide17, but we will

show now that the image of γ is always contained in the image of T 7→
(
L(T )
K(T )

)
. The constant

(maximally extended) integral curves of V are precisely those with initial data as in {V = 0}
described in equation (7.5). One now checks that for ( LK ) ∈ {V = 0}, L(T ) ≡ L(0) = L and
K(T ) ≡ K(0) = K. Hence, for constant integral curves the maps T 7→ L(T ) in (7.8) and
T 7→ K(T ) in (7.9) are constant and thus the images of γ and (L(T ), K(T ))T in R2 coincide.
For all ( LK ) ∈ R2 \ {V = 0} one can now verify that

dL

V( L(T )
K(T )

) · ∂TK(T ) = dK

V( L(T )
K(T )

) · ∂TL(T )

for all T ∈ dom (HL,K). One further shows that for all ( LK ) ∈ R2 \ {V = 0}

dL

V( L(T )
K(T )

)
∂TL(T ) =

dK

V( L(T )
K(T )

)
∂TK(T ) = 2

√
2hL,K (( 1

T ))√
8− 24LT + (4− 48K)T 2 − 4LT 3 + (3L2 + 8K)T 4

(7.11)

which is well defined and positive for T ∈ dom (HL,K) small enough (a priori we might have
zeros in the denominator of (7.11), hence the restriction). Now suppose that there exists a
maximal integral curve γ = (γL, γK)T : I → R2 \ {V = 0} of V|R2\{V=0}, such that at least
two quartic GPSR curves, and thus also the corresponding polynomials, associated to two
points in the image of γ are not equivalent. Then for any fixed w ∈ γ(I) there exists ε > 0,
such that all polynomials corresponding to elements in

γ
((
γ−1(w)− ε, γ−1(w) + ε

))
(7.12)

are equivalent. This follows from

γ(w) =:
(
Lw
Kw

)
6∈ {V = 0}

and equation (7.11) which shows that the described ratios are locally positive and bounded,
and thus implies that there exists an open interval

IHLw,Kww ⊂ dom (HLw,Kw) , 0 ∈ IHLw,Kww ,

17Exceptions are the constant integral curves of V, although these might not be the only exceptions.
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(recall that being a hyperbolic point is an open condition and, hence, dom (HLw,Kw) is in all
cases an open interval) such that with L(0) = Lw, K(0) = Kw,

γ(w) ∈
{(

L (T )
K (T )

) ∣∣∣∣∣ T ∈ IHLw,Kww

}
⊂ γ(I).

Since the map T 7→ (L(T ), K(T ))T is smooth and, by the assumption (Lw, Kw)T 6∈ {V = 0},
non-constant locally around T = 0 it follows that the set{(

L (T )
K (T )

) ∣∣∣∣∣ T ∈ IHLw,Kww

}
⊂ γ(I)

contains an open neighbourhood18 of γ(w) in the subspace topology of the submanifold
γ(I) ⊂ R2. We can thus choose ε > 0 as in (7.12). This in particular implies that we can
choose a maximal open interval Iw ⊂ I, w ∈ Iw, such that all polynomials corresponding to
points in γ (Iw) are equivalent and for any w ∈ (∂Iw)∩ I, which is by assumption not empty,
hγ(w) and hγ(w) are not equivalent. Also by assumption we have

γ (w) =:
(
Lw
Kw

)
∈ R2 \ {V = 0},

hence we can use the same procedure for w as we used for w and find that there exists a
maximal open interval Iw ⊂ I, w ∈ Iw, such that all polynomials corresponding to elements
in γ (Iw) are equivalent. The constructed intervals Iw and Iw are both open, and since
w ∈ (∂Iw)∩I it follows that Iw∩Iw 6= ∅. But this implies that the polynomials corresponding
to γ(w) and γ(w) are equivalent, which is a contradiction. Summarising, this proves the
claim that for all maximally extended integral curves γ : I → R2 \ {V = 0} of the restricted
vector field V|R2\{V=0} the corresponding polynomials hγL(t),γK(t) defined in (7.6) and the
corresponding maximal quartic connected GPSR curves HγL(t),γK(t) are equivalent for all
t ∈ I.

Observing the complexity of the formulas (7.8) and (7.9), the above discussion suggests
that it might be easier to be concerned with properties of the vector field V|R2\{V=0} ∈
Γ (T (R2 \ {V = 0})) and its integral curves in order to find the desired classification result
instead of studying the equations (7.8) and (7.9) directly. This is precisely what we will
do from this point on in the proof of this theorem. Note that we have not shown that the
set of maximal integral curves of V|R2\{V=0} is in one-to-one correspondence with equivalence
classes of polynomials, but rather that for each hL,K with (L,K)T ∈ R2 \ {V = 0} as in
(7.1) there exists at least one maximal integral curve γ : I → R2 \ {V = 0} of V|R2\{V=0},
such that each polynomial corresponding to a point in γ(I) is equivalent to hL,K . Note that
since we can assume that hL,K corresponds to a point in γ(I) itself, we also get that the
corresponding maximal quartic GPSR curves are equivalent. This leaves us with the task
of checking which maximal integral curves of V|R2\{V=0} do contain points corresponding to
closed quartic GPSR curves, and then checking if pairwise different maximal integral curves
might still contain points corresponding to equivalent closed quartic GPSR curves. The
quartic GPSR curves corresponding to points in {V = 0} need to be treated as well.

In the following we will assume that HL,K is the maximally extended open connected
subset of {hL,K = 1} that consists only of hyperbolic points and contains the point ( xy ) = ( 1

0 ).
Lemma 3.8 implies that it is a necessary requirement for HL,K to be closed and thus possibly
be a quartic CCGPSR curve that the function

fL,K(t) := hL,K (( 1
t )) = 1− t2 + Lt3 +Kt4 (7.13)

18This is precisely the reason why we consider the restriction V|R2\{V=0}.
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has at least one positive and one negative real root in t. This follows from the fact that the
set of these roots must coincide with ∂dom (HL,K) since otherwise the connected component
of {hL,K = 1} that contains the point ( xy ) = ( 1

0 ) would not coincide with HL,K , which would
in turn not be closed. Recall that in the cubic case, that is for CCPSR curves, it turned out
that this was also a sufficient condition, see Lemma 4.2 and Theorem 5.6. This is not true in
the quartic case as we will see. For the following studies we will frequently need the formulas
for fL,K(t) and its first and second derivative:

ḟL,K(t) = −2t+ 3Lt2 + 4Kt3,
f̈L,K(t) = −2 + 6Lt+ 12Kt2.

Consider first L = 0. Then f0,K(t) = 1− t2 +Kt4. For K 6= 0,

f0,K = 0 ⇔ t2 = 1
2K ±

√
1− 4K

4K2 . (7.14)

This shows that f0,K(t) has no real roots for K > 1
4 . It follows that for all K > 1

4 , fL,K(t)
has no positive real root for L > 0 and no negative real root for L < 0. This shows that
K ≤ 1

4 (see Figure 9) is a necessary requirement for HL,K to be a quartic CCGPSR curve.

Figure 9:
{
K ≤ 1

4
}
⊂ R2 marked in grey.

Next, consider K = 1
4 . For that specific value of K,

f0, 1
4
(t) = 0 ⇔ t = ±

√
2.

Since

ḟ0, 1
4

(
±
√

2
)

= 0, f̈0, 1
4

(
±
√

2
)

= 4 > 0,

it follows that t =
√

2 and t = −
√

2 are both double roots and local minima. Hence, for
L > 0 we have fL, 1

4
(t) > 0 for all t > 0 and for L < 0 we have fL, 1

4
(t) > 0 for all t < 0. This

shows that fL, 1
4
(t) has a positive and a negative real root if and only if L = 0.

Now consider K < 1
4 . For L = 0 we have shown above that f0,K(t) has at least one

positive and one negative real root. To analyse the cases L 6= 0 we will study the (possibly
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complex) roots of ḟL,K(t). We will without loss of generality assume that L > 0, since hL,K
and h−L,K are equivalent via y 7→ −y. Then

ḟL,K(t) = 0 ⇔ t = 0 or
{

t = 2
3L , K = 0,

t = − 3L
8K ±

1
8K

√
9L2 + 32K, K 6= 0. (7.15)

We want to stress that for K 6= 0 the latter two of the above roots of ḟL,K(t) might not be
real. As an example of how the corresponding function fL,K(t) looks like when plotted for
specific values of L and K, see the following figures (10a), (10b), and (10c):

(a) f 1
4 ,

1
36

(t), t ∈
(
−3

2 , 3
)
. (b) f 1

4 ,0
(t), t ∈

(
−3

2 , 3
)
. (c) f 1

4 ,−
1

12
(t), t ∈

(
−3

2 , 3
)
.

Figure 10: Example plots of fL,K(t).

We now use MAPLE to symbolically solve the system of equations

fL,K(t) = 0, ḟL,K(t) = 0 (7.16)

for the variable L and, as one of the solutions under the restriction

t = tm := − 3L
8K + 1

8K
√

9L2 + 32K, (7.17)

we obtain for K 6= 0

L =
√

2
3
√

3

√
1− 36K +

√
(1 + 12K)3 =: u(K). (7.18)

We will consider u as a function on the interval
(
− 1

12 ,
1
4

)
, where we note that for K = 0,

L = u(0) = 2
3
√

3 and t = 2
3L =

√
3 solve (7.16). Before explaining the reason why we choose

this particular lower bound for the interval
(
− 1

12 ,
1
4

)
(see equation (7.21)), we will analyse

u(K) further. We will show that u(K) > 0 for all K ∈
(
− 1

12 ,
1
4

)
. We obtain

1− 36K +
√

(1 + 12K)3 = 0 ⇒ (1 + 12K)3 − (1− 36K)2 = 0 ⇒ K ∈
{

0, 1
4

}
.

So the only possible solution of 1 − 36K +
√

(1 + 12K)3 = 0 that is contained in the set(
− 1

12 ,
1
4

)
is K = 0. But u(0) = 2

3
√

3 . We conclude

∀K ∈
(
− 1

12 ,
1
4

)
: u(K) > 0,
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as claimed. Note that for K = 0, u(0) = 2
3
√

3 which coincides with the unique real solution
of ḟL,0 (tm|K=0) = 0, where tm|K=0 := 2

3L , cf. (7.15). Furthermore, for K = 1
4 , u

(
1
4

)
= 0, so

the point
(
(u
(

1
4

)
, 1

4

)T
∈ R2 coincides with one of the fixed points of V. Note that we have

in particular shown that
u :

(
− 1

12 ,
1
4

)
→ R, (7.19)

i.e. that u takes only real values. Next we will show that the graph of u coincides with the
image of a maximal integral curve of the vector field V|R2\{V=0} defined in (7.4) (see Figure
11 for a plot of the graph of u). We know that V has no zeroes in the set{(

u(K)
K

) ∣∣∣∣ K ∈ (− 1
12 ,

1
4

)}
⊂ R2, (7.20)

see equation (7.5).

Figure 11: The graph of u embedded in R2 as in (7.20).

Furthermore dK(V) = L
(
6K + 1

2

)
does not vanish if L 6= 0 and K 6= − 1

12 , so in particular it
does not vanish on the graph of u. Since u converges for the limits K → 1

4 and K → − 1
12 , u

is continuously extensible to the set
[
− 1

12 ,
1
4

]
, which shows that the graph of u is precompact

in R2. One now verifies

∂Ku(K) =
6
(
−2 +

√
1 + 12K

)
√

6− 216K + 6
√

(1 + 12K)3
= dL(V)
dK(V)

∣∣∣∣∣( LK )=
(

u(K)
K

) .

This shows that the image K 7→ (u (K) , K)T , K ∈
(
− 1

12 ,
1
4

)
, is contained in the image of a

maximal integral curve of V|R2\{V=0}. Since

lim
K→ 1

4

(
u(K)
K

)
=
( 0

1
4

)
∈ {V = 0}, lim

K→− 1
12

(
u(K)
K

)
=
(

2
√

2
3
√

3
− 1

12

)
∈ {V = 0}, (7.21)

we conclude that said image coincides with a maximal integral curve of V|R2\{V=0}. Note that
it contains in particular the point

(
2

3
√

3 , 0
)T
∈ R2, which corresponds to the polynomial c).
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We will keep that in mind for now. Equation (7.21) also explains the lower bound − 1
12 of

the domain of definition of u.
Next we will show that for all K ∈

(
− 1

12 ,
1
4

)
and all ` > 0, the corresponding maximal

quartic GPSR curves HL,K corresponding to points of the form

( LK ) =
(

u(K)+`
K

)
∈ R2 \ {V = 0}

are never closed (cf. Figure 12). For K = 0, we need to analyse the functions

Figure 12: Part of the set
{

(u(K) + `,K)T , K ∈
(
− 1

12 ,
1
4
)
, ` > 0

}
marked in grey.

f 2
3
√

3
+`,0(t) = 1− t2 +

(
2

3
√

3
+ `

)
t3

for ` > 0. Similarly to Lemma 4.2, observe that f 2
3
√

3
,0(t) = 1 − t2 + 2

3
√

3t
3 has precisely

one positive root t =
√

3. Since ḟ 2
3
√

3
,0

(√
3
)

= 0 and f̈ 2
3
√

3
,0

(√
3
)

= 2, f 2
3
√

3
,0(t) has a local

minimum at t =
√

3. Furthermore

f 2
3
√

3
+`,0(t) > f 2

3
√

3
,0(t)

for all ` > 0 and all t > 0. We conclude that for all ` > 0, f 2
3
√

3
+`,0(t) has no positive real

root and, hence, the corresponding maximal quartic GPSR curve H 2
3
√

3
+`,0 can not be closed.

See Figure 13 for an example plot of a function of the form f 2
3
√

3
+`,0(t).

For K 6= 0, tm, defined in (7.17) above, is always positive whenever L > 0 and 9L2+32K ≥
0. For ( LK ) =

(
u(K)+`
K

)
, K ∈

(
− 1

12 ,
1
4

)
, we have

9L2 + 32K = 18`u(K) + 9`2︸ ︷︷ ︸
>0

+ 2
3 (1 + 12K)︸ ︷︷ ︸

>0

+ 2
3
√

(1 + 12K)3︸ ︷︷ ︸
>0

> 0. (7.22)

Hence, tm is real and positive along the considered points for all K ∈
(
− 1

12 ,
1
4

)
\ {0} and all

` > 0.
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Figure 13: A plot of fu(K)+`,K(t), t ∈ (−2, 4), for K = 0 and ` = 1
8 .

For K ∈
(
0, 1

4

)
and all ` > 0, the function fu(K)+`,K(t) = 1− t2 + (u(K) + `) t3 +Kt4 has

a local maximum at t = 0 and diverges to +∞ for t → ±∞. Hence, fu(K)+`,K(t) must have
a local minimum at t = tm. For ` = 0, tm is by construction also a root of fu(K),K(t). Since
for all t > 0

fu(K)+`,K(t) > fu(K),K(t)
and as we have seen fu(K),K(t) has precisely one positive real root, we conclude that for all
` > 0, fu(K)+`,K(t) has no positive real root. Hence, the corresponding maximal quartic
GPSR curve Hu(K)+`,K can never be closed.

Next consider K ∈
(
− 1

12 , 0
)
. In these cases fu(K)+`,K(t) will always have at least one

negative and one positive real root for all ` > 0 since its highest-order monomial t4 has a
negative prefactor. Thus in order to prove the claim that Hu(K)+`,K can never be closed we
need to check that there exists at least one point t̃ in the connected component containing
t = 0 of the set

{t ∈ R | fu(K)+`,K(t) > 0
}
,

such that
(

1
t̃

)
is not a hyperbolic point of the corresponding quartic polynomial hu(K)+`,K .

To do so recall that we have already shown that along L = u(K) + ` and K ∈
(
− 1

12 , 0
)
⊂(

− 1
12 ,

1
4

)
\ {0}, the term 9L2 + 32K is positive, see (7.22). Hence, (7.15) implies that for

all ` > 0, fu(K)+`,K(t) has exactly three local extrema, namely at t = 0, tm = −3(u(K)+`)
8K +

1
8K

√
9 (u(K) + `)2 + 32K, and with

tM := − 3L
8K −

1
8K
√

9L2 + 32K, (7.23)

at tM = −3(u(K)+`)
8K − 1

8K

√
9 (u(K) + `)2 + 32K. Since K < 0, it follows that both tm and

tM are positive and (7.22) implies the strict inequality tm < tM . For all K ∈
(
− 1

12 ,
1
4

)
and all ` > 0, the function fu(K)+`,K(t) is a quartic polynomial in t, which implies that
it has at most three distinct local extrema. Hence, we have shown that fu(K)+`,K(t) has
precisely three extrema at the distinct points t = 0, tm, and tM , fu(K)+`,K(t)→ −∞ for both
t→ ±∞ and furthermore that fu(K)+`,K(t) always has a local maximum at t = 0, we deduce
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that fu(K)+`,K(t) will always have a local minimum at tm and a local maximum at tM . We
will now show that for all K ∈

(
− 1

12 , 0
)

and all ` > 0, tm is contained in the connected
component that contains t = 0 of {t ∈ R | fu(K)+`,K(t) > 0

}
and that ( 1

tm ) is indeed not a
hyperbolic point of hu(K)+`,K . To show the first statement, it suffices to show that always
fu(K)+`,K (tm) > 0 since we have seen that for all K ∈

(
− 1

12 , 0
)

and all ` > 0, fu(K)+`,K(t)
has a local maximum at t = 0, a local minimum at tm > 0, and no extremal point at any
t ∈ (0, tm). We view fu(K)+`,K (tm) as a function in the variables K and ` and calculate

∂`
(
fu(K)+`,K (tm)

)
= 1

13824K3

(
−9`−

√
6− 216K + 6

√
(1 + 12K)3

+

√
6 + 72K + 6

√
(1 + 12K)3 + 18`

√
6− 216K + 6

√
(1 + 12K)3 + 81`2

3

.

At ` = 0,

∂`
(
fu(K)+`,K (tm)

)∣∣∣
`=0

= 1
13824K3

(
−
√

6− 216K + 6
√

(1 + 12K)3 +
√

6 + 72K + 6
√

(1 + 12K)3

)
> 0

which is easily seen for all K ∈
(
− 1

12 , 0
)
. Suppose that there exists K ∈

(
− 1

12 , 0
)

and ` > 0,
such that ∂`

(
fu(K)+`,K (tm)

)
= 0. Then

9`+
√

6− 216K + 6
√

(1 + 12K)3

=

√
6 + 72K + 6

√
(1 + 12K)3 + 18`

√
6− 216K + 6

√
(1 + 12K)3 + 81`2

⇒ K = 0,

by taking the square of both sides of the first equation. This is a contradiction to K ∈(
− 1

12 , 0
)
. We conclude that for all K ∈

(
− 1

12 , 0
)

and all ` > 0, ∂`
(
fu(K)+`,K (tm)

)
>

0. Since fu(K),K (tm) = 0 by construction, this shows that tm is in fact contained in the
connected component that contains t = 0 of {t ∈ R | fu(K)+`,K(t) > 0

}
as claimed. In order

to show that ( 1
tm ) is not a hyperbolic point of hu(K)+`,K we will use Lemma 3.28. In the

one-dimensional case, i.e. in our case where dim (HL,K) = 1, the function β : R→ R defined
in (3.22) and fL,K : R → R coincide. Using formula (3.33) yields that the pullback of the
centro-affine metric at t = tm ∈ dom

(
Hu(K)+`,K

)
(
Φ∗gHu(K)+`,K

)
tm

= − f̈u(K)+`,K(tm)
4fu(K)+`,K(tm)dt

2, (7.24)

where here t denotes the coordinate of dom
(
Hu(K)+`,K

)
. But we have shown that fu(K)+`,K(t)

has a local minimum at tm for all K ∈
(
− 1

12 , 0
)

and for all ` > 0, which implies that
−1

4 f̈u(K)+`,K(tm) ≤ 0. Hence, ( 1
tm ) is not a hyperbolic point of hu(K)+`,K as claimed, and we

deduce that for all K ∈
(
− 1

12 , 0
)

and for all ` > 0, the maximally extended connected quartic
GPSR curve Hu(K)+`,K is never closed in R2.

Summarising up to this point, we have determined for each K > − 1
12 a positive lower

bound for L (and by equivalence also a negative upper bound for L), such that the maximally
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extended connected quartic GPSR curve HL,K is not a CCGPSR curve. These points form
precisely the set{

K >
1
4

}
∪
{
K = 1

4 , |L| > 0
}
∪
{
K ∈

(
− 1

12 ,
1
4

)
, |L| > u(K)

}
, (7.25)

see Figure 14.

Figure 14: Part of the set (7.25) marked in grey.

Next we will deal with K = − 1
12 . It turns out that we can use the same strategy as for K ∈(

− 1
12 , 0

)
by considering u(K) at the limit point K = − 1

12 , u
(
− 1

12

)
= 2

√
2

3
√

3 . For all ` > 0 and

the corresponding function f 2
√

2
3
√

3
+`,− 1

12
(t), the points t = 0, tm = 3

2

(
2
√

2√
3 + `−

√
4
√

2
3
√

3`+ `2
)

(7.17), and tM = 3
2

(
2
√

2√
3 + `+

√
4
√

2
3
√

3`+ `2
)

(7.23), still fulfil 0 < tm < tM and are also still

critical points of f 2
√

2
3
√

3
+`,− 1

12
(t). Also, we can show similarly as for the case K ∈

(
− 1

12 , 0
)

that

∂`

(
f 2
√

2
3
√

3
+`,− 1

12
(tm)

)
> 0

for all ` ≥ 0. Since f 2
√

2
3
√

3
+`,− 1

12
(tm)

∣∣∣∣
`=0

= 0 and t = 0, tm, and tM are the unique critical
points of f 2

√
2

3
√

3
+`,− 1

12
(t) for all ` > 0, we conclude that for all ` > 0, tm is contained in the

connected component of the set{
t ∈ R

∣∣∣∣ f 2
√

2
3
√

3
+`,− 1

12
(t) > 0

}

which contains the point t = 0. From equation (7.24) for the limit K = − 1
12 it follows

that ( xy ) = ( 1
tm ) is not a hyperbolic point of h 2

√
2

3
√

3
+`,− 1

12
. Thus, for all ` > 0 the maximally

extended connected quartic GPSR curve H 2
√

2
3
√

3
+`,− 1

12
is not closed in R2, i.e. not a quartic

CCGPSR curve.
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Lastly in this stage of the proof we will study the case K < − 1
12 . For K < 0 and L > 0

the points tm (7.17) and tM (7.23) are both real numbers if and only if 9L2 + 32K ≥ 0, and
coincide if and only if

9L2 + 32K = 0 ⇔ L = 4
√
−2K
3 =: v(K).

The function v is smooth and positive on {K < 0}, but we will consider its restriction

v :
(
−∞,− 1

12

)
→ R>0,

with smooth continuation to v
(
− 1

12

)
= 2

√
2

3
√

3 . Observe that the limits u
(
− 1

12

)
= v

(
− 1

12

)
coincide (see Figure 15), and that the image of (v(K), K)T for K ∈

(
−∞,− 1

12

)
is contained

Figure 15: The respective images of u and (in part) v in R2, and the limit point (L,K)T =
(

2
√

2
3
√

3 ,−
1
12

)T
marked with a black diamond.

in R2 \ {V = 0}. Along points of the form (v(K), K)T ∈ R2, fv(K),K(t) has a saddle point at
tm = tM . We will now show that fv(K),K(tm) > 0 for all K < − 1

12 . We view tm as a function
depending on L,K and obtain along points of the form (v(K), K)T ∈ R2

fv(K),K(tm) = 1 + 12K
12K > 0 (7.26)

for all K < − 1
12 . Since fv(K),K(t) is monotonously decreasing for t > 0, this shows that tm

is contained in the connected component of {fv(K),K(t) > 0} that contains the point t = 0.
But tm is a saddle point of fv(K),K(t), which implies using (3.33) that(

Φ∗gHv(K),K

)
tm

= 0

for all K < − 1
12 . Hence, for all K < − 1

12 the maximally extended connected quartic GPRS
curve Hv(K),K is not closed.

Next we will show that for all K < − 1
12 and all ` > 0, the maximally extended connected

quartic GPRS curve Hv(K)+`,K is not closed. In these cases, tm (7.17) and tM (7.23) are both
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real numbers and fv(K)+`,K(t) always has a local minimum at tm > 0 and a local maximum at
tM > tm. We will show that fv(K)+`,K(tm) > 0. Since fv(K)+`,K(t) → −∞ for t → ±∞, this
means that tm is an element of the connected component of {fv(K)+`,K > 0} that contains
t = 0. This will imply that ( 1

tm ) is not a hyperbolic point of the corresponding hv(K)+`,K and
thus that Hv(K)+`,K is not closed for all K < − 1

12 and all ` > 0. We proceed similarly to the
calculations for fu(K)+`,K(t) with K ∈

(
− 1

12 , 0
)
, ` > 0. Along (L,K)T = (v(K) + `,K)T we

have

tm = −3 (v(K) + `)
8K + 1

8K

√
9 (v(K) + `)2 + 32K

= −4
√
−2K + 3`

8K + 1
8K

√
24
√
−2K`+ 9`2 (7.27)

and
∂`
(
fv(K)+`,K (tm)

)
= ḟv(K)+`,K (tm) · ∂`tm + t3m.

Hence, tm being positive, a critical point of fv(K)+`,K (t), and smooth in `-dependence for
` > 0 implies that

∂`
(
fv(K)+`,K (tm)

)
= t3m > 0

for all ` > 0. We have to be careful with the limit case ` = 0 since the first `-derivative of tm
(7.27) is easily seen to diverge as ` → 0, ` > 0. However, (7.27) also implies that tm can be
continuously extended to ` = 0 for fixed K < − 1

12 (namely, tm and tM viewed as branches
of a bifurcation behave nicely), and hence it follows with fv(K)+`,K (tm)

∣∣∣
`=0

> 0 (7.26) and
∂`
(
fv(K)+`,K (tm)

)
> 0 for all K < − 1

12 and all ` > 0 that

fv(K)+`,K (tm) > 0

for all K < − 1
12 and all ` > 0. We conclude that fv(K)+`,K(t) has precisely one positive

and one negative real root for each pair K < − 1
12 , ` > 0, and that thus tm is indeed

contained in the (unique) connected component of {fv(K)+`,K(t) > 0} that contains t = 0.
Hence, ( 1

tm ) is by the local minimising property of fv(K)+`,K(t) never a hyperbolic point of
the corresponding cubic polynomial hv(K)+`,K and the maximally extended connected quartic
GPSR curve Hv(K)+`,K can never be closed.

Up to this point we have shown for all(
L
K

)
∈
{
K >

1
4

}
∪
{
K ∈

[
− 1

12 ,
1
4

]
, |L| > u(K)

}
∪
{
K < − 1

12 , |L| ≥ v(K)
}
⊂ R2,

where u :
[
− 1

12 ,
1
4

]
→ R is the unique continuous extension of u (7.19), that the maximally

extended connected quartic GPSR curve HL,K is not closed (see Figure 16) . The next step
might seem a little non-canonical at first. We define

w :
(
−∞,− 1

12

)
→ R, w(K) =

√
6− 216K

9 . (7.28)

The function w is positive and can be (uniquely) smoothly extended to K = − 1
12 via

w
(
− 1

12

)
= 2
√

2
3
√

3
= u

(
− 1

12

)
= v

(
− 1

12

)
,

see also Figure 17. The definition of w is motivated by considering (symbolic) solutions of
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Figure 16: A part of the set
{
K > 1

4
}
∪
{
K ∈

[
− 1

12 ,
1
4
]
, |L| > u(K)

}
∪
{
K < − 1

12 , |L| ≥ v(K)
}
⊂ R2

marked in grey. Similar to Figure 15, the points (L,K)T =
(
± 2
√

2
3
√

3 ,−
1
12

)T
are marked with black diamonds.

the system of equations
(
Φ∗gHL,K

)
t

= 0, ∂

∂t

((
Φ∗gHL,K

)
t

)
= 0, (7.29)

which can be obtained with the help of a computer algebra system like MAPLE. It turns out
that the graph of w embedded in R2 via K 7→

(
w(K)
K

)
consists of solutions of (7.29). Observe

that
v(K) = w(K) ⇔ K = − 1

12
when considering their continuous extension to K = − 1

12 , and that v
(
−1

2

)
= 4

3 >
√

114
9 =

w
(
−1

2

)
thus implies

v(K) > w(K) ∀K ∈
(
−∞,− 1

12

)
. (7.30)

We will now show that for each K < − 1
12 the maximally extended connected quartic GPSR

curve HL,K is not closed for all L ∈ [w(K),v(K)) (see Figure 18). The inequality (7.30)
implies that for each such pair (L,K)T ∈ R2 the corresponding function fL,K(t) has precisely
one negative and one positive real root, and furthermore only one critical value at t = 0
(since the corresponding points tm (7.17) and tM (7.23) are not real-valued in these cases).
We start by showing that the graph of w coincides with the image of a maximal integral
curve of V|R2\{V=0}. Firstly note that the graph of w,

{(
w(K)
K

) ∣∣∣∣ K ∈ (−∞,− 1
12

)}
⊂ R2,

is contained in R2 \ {V = 0}. Similarly to the consideration of the graph of u, we note that
dK(V) = L

(
6K + 1

2

)
does not vanish if L 6= 0 and K 6= − 1

12 , hence it does not vanish along
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Figure 17: The images of u, (in part) v, and (in part) w in R2. The graph of w is a dotted line, the limit

point (L,K)T =
(

2
√

2
3
√

3 ,−
1
12

)T
is marked with a black diamond.

the graph of w. Also note that

∂
{(

w(K)
K

) ∣∣∣∣ K ∈ (−∞,− 1
12

)}
=
{

( LK ) =
(

2
√

2
3
√

3
− 1

12

)}
∈ {V = 0}.

We check that
∂Kw(K) = − 12√

6− 216K
= dL(V)
dK(V)

∣∣∣∣∣( LK )=
(

w(K)
K

) .
We conclude that the graph of w does coincide with a maximal integral curve of V|R2\{V=0}.
In order to show that each Hw(K),K , K < − 1

12 , is not closed it thus suffices to check the latter
for one arbitrary K < − 1

12 . This follows from the fact that each pair of maximally extended
quartic GPSR curves Hw(K),K , K < − 1

12 is equivalent as we have shown in the beginning of
this proof. We choose K = −1

6 with w
(
−1

6

)
=
√

42
9 . Now, we solve(

Φ∗gH
w(− 1

6),− 1
6

)
t

= 0 (7.31)

for t and obtain as one solution t0 =
√

21−3√
2 , and we have

fw(− 1
6),− 1

6

(√
21− 3√

2

)
= 6
√

21− 27 > 0. (7.32)

Hence, t0 is contained in the connected component of
{
fw(− 1

6),− 1
6
(t) > 0

}
that contains t = 0.

But
(

Φ∗gH
w(− 1

6),− 1
6

)
t0

= 0 implies that ( 1
t0 ) is not a hyperbolic point of hw(− 1

6),− 1
6
. Hence,

Hw(− 1
6),− 1

6
is not closed. We conclude that for all K < − 1

12 , the maximally extended quartic
GPSR curve Hw(K),K is not closed.

Next, we will consider K < − 1
12 and L ∈ (w(K),v(K)). With the help of MAPLE or

another suited computer algebra system we can solve the equation(
Φ∗gHw(K),K

)
t

= 0 (7.33)
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Figure 18: The area
{

(L,K)T ∈ R2
∣∣ K < − 1

12 , L ∈ [w(K),v(K))
}

between the graphs of w and v marked
in grey.

for t explicitly and obtain as one solution

t0 = t0(K) :=
√

6− 216K − 3
√
−2− 24K

2 .

The point t0 is real and positive for all K < − 1
12 as the equation t0 = 0 has no solutions

for K < − 1
12 and one can check that t0

(
−1

6

)
=
√

21−3√
2 . Thus, at K = −1

6 , t0 coincides with
the point used in equation (7.32). Since w(K) < v(K) for all K < − 1

12 , the corresponding
functions fw(K),K(t) have precisely one negative and one positive real root. We calculate

fw(K),K(t0) = 162K + 3888K2 + 23328K3 +
(3

2 + 45K + 324K2
)√

6− 216K
√
−2− 24K

and obtain (again preferably by using a computer algebra system)

fw(K),K(t0) = 0 ⇔ K = − 1
12 .

Equation (7.32) thus yields that
fw(K),K(t0) > 0 (7.34)

for all K < −1/12 and together with the uniqueness of the positive and negative real roots
of fw(K),K(t) we conclude that for all K < − 1

12 , the point t0 is contained in the connected
component of {fw(K),K(t) > 0} that contains t = 0. This motivates studying the expression

f 2
w(K)+`,K(t0) ·

(
Φ∗gHw(K)+`,K

)
t0

as a function of K < − 1
12 and, depending on K, ` ∈ (0,v(K)−w(K)) via canonically

identifying sections in Sym2 (R∗) → R with smooth functions on R. We obtain with the
latter identification

f 2
w(K)+`,K(t0) ·

(
Φ∗gHw(K)+`,K

)
t0

=
(
−27

8 + 243K + 4374K2
)
`2
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+
(27

16 + 243
4 K

)√
6− 216K

√
−2− 24K`2

+
(
81K + 972K2

)√
6− 216K`

+
(9

2 − 81K − 2916K2
)√
−2− 24K`.

Note that for all K < − 1
12 , f 2

w(K)+`,K(t0) ·
(
Φ∗gHw(K)+`,K

)
t0

is also smooth when considered
for all ` ∈ R. In order to show that Hw(K)+`,K is not closed for any K < − 1

12 and, depending
on K, ` ∈ (0,v(K)−w(K)) it thus suffices to show that f 2

w(K)+`,K(t0) ·
(
Φ∗gHw(K)+`,K

)
t0
< 0

for these points. We will make use of

∂`

(
f 2

w(K)+`,K(t0) ·
(
Φ∗gHw(K)+`,K

)
t0

)
=
(
−27

4 + 486K + 8748K2
)
`

+
(27

8 + 243
2 K

)√
6− 216K

√
−2− 24K`

+
(
81K + 972K2

)√
6− 216K

+
(9

2 − 81K − 2916K2
)√
−2− 24K.

Solving ∂`
(
f 2

w(K)+`,K(t0) ·
(
Φ∗gHw(K)+`,K

)
t0

)
= 0 for `, we obtain

∂`

(
f 2

w(K)+`,K(t0) ·
(
Φ∗gHw(K)+`,K

)
t0

)
= 0

⇔ ` = `0 := 4
3 ·

(−18K − 216K2)
√

6− 216K + (−1 + 18K + 648K2)
√
−2− 24K

−2 + 144K + 2592K2 + (1 + 36K)
√

6− 216K
√
−2− 24K

.

(7.35)

Furthermore, we get
`0 = 0 ⇔ K ∈

{
− 1

12 ,
1
36

}
(7.36)

and
`0 = v(K)−w(K) ⇔ K = − 1

12 .

This shows that `0 is not contained in the boundary of the open interval (0,v(K) −w(K))
for all K < − 1

12 . We check that

`0|K=− 1
6

=
2
√

2
(
3
√

21− 14
)

15
√

21− 69

and further calculate

v
(
−1

6

)
−w

(
−1

6

)
− `0|K=− 1

6
= −21

√
2− 92

√
3 + 60

√
7 + 5

√
42

45
√

21− 207
< 0.

It follows that
∀K < − 1

12 : `0 6∈ (0,v(K)−w(K)) .

Since ∂`
(
f 2

w(K)+`,K(t0) ·
(
Φ∗gHw(K)+`,K

)
t0

)
can be smoothly extended to ` ∈ R as mentioned

before, we now consider ∂`
(
f 2

w(K)+`,K(t0) ·
(
Φ∗gHw(K)+`,K

)
t0

)∣∣∣∣
`=0

. We have seen in (7.35) and



141

(7.36) that the sign of ∂`
(
f 2

w(K)+`,K(t0) ·
(
Φ∗gHw(K)+`,K

)
t0

)∣∣∣∣
`=0

is constant for K < − 1
12 , and

it thus coincides with

sgn
(
∂`

(
f 2

w(K)+`,K(t0) ·
(
Φ∗gHw(K)+`,K

)
t0

)∣∣∣∣
`=0,K=− 1

6

)
= −1.

We deduce that ∂`
(
f 2

w(K)+`,K(t0) ·
(
Φ∗gHw(K)+`,K

)
t0

)
< 0 for all K < − 1

12 and correspond-
ingly for all ` ∈ (0,v(K)−w(K)). Since by construction (7.33)

f 2
w(K)+`,K(t0) ·

(
Φ∗gHw(K)+`,K

)
t0

∣∣∣∣
`=0
≡ 0

for all K < − 1
12 . We conclude with (7.34) that(

Φ∗gHw(K)+`,K

)
t0
< 0

for all K < − 1
12 and correspondingly all ` ∈ (0,v(K) − w(K)). This finally implies that

for all such K and `, the corresponding maximally extended connected quartic GPSR curve
Hw(K)+`,K is not closed and thereby not a quartic CCGPSR curve.

We have now, as it will turn out, identified all (L,K)T ∈ R2, such that the corresponding
maximally extended connected quartic GPSR curve HL,K is not closed, namely(

L
K

)
∈
{
K >

1
4

}
∪
{
K ∈

[
− 1

12 ,
1
4

]
, |L| > u(K)

}
∪
{
K < − 1

12 , |L| ≥ w(K)
}
, (7.37)

see Figure 19. We will now show that every point (L,K)T not contained in the set (7.37)

Figure 19: The set (7.37) marked in grey.

does indeed define a quartic CCGPSR curve HL,K , and we will show that we can choose for
each equivalence class of such a curve a representative which is either a), b), c), or contained
in the one-parameter family of quartic CCGPSR curves d).

We start with the points contained in the image of (u(K), K)T , K ∈
(
− 1

12 ,
1
4

)
, cf. (7.20).

We have shown that this set coincides with the image of a maximal integral curve of V|R2\{V=0}.
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Thus it suffices to show that one point in that set defines a quartic CCGPSR curve to conclude
that all points have that property, and furthermore that the corresponding quartic CCGPSR
curves are all equivalent. We choose to check(

L
K

)
=
(

u(0)
0

)
=
( 2

3
√

3
0

)
.

In this case, the corresponding function β = β(t) as defined in (3.22) coincides with f 2
3
√

3
,0(t)

and has the form β = 1− t2 + 2
3
√

3t
3. In (3.33) we have seen that

(
Φ∗gH 2

3
√

3
,0

)
t

= − ∂2βt
4β(t) + 3dβ2

t

16β2(t) .

Note that the connected component of
{
f 2

3
√

3
,0(t) > 0

}
that contains t = 0 is given by(

−
√

3
2 ,
√

3
)
. The form of β and Theorem 5.6 motivate considering the cubic polynomial

h̃ = x3 − xy2 + 2
3
√

3
y3

with β̃(t) = h̃ (( 1
t )) = β(t), corresponding CCPSR curve H̃, and centro-affine metric

(
Φ∗g

H̃

)
t

= − ∂2βt
3β(t) + 2dβ2

t

9β2(t)

on dom
(
H̃
)

=
(
−
√

3
2 ,
√

3
)
. Now we see that

(
Φ∗gH 2

3
√

3
,0

)
t

= 3
4 ·
(
Φ∗g

H̃

)
t
+ dβ2

t

48β2(t)︸ ︷︷ ︸
≥0

> 0.

Since the PSR curve
(
H̃, g

H̃

)
is equivalent to the curve A) in Theorem 2.45 and, hence, is

in particular a closed PSR curve, this shows that dom
(
H 2

3
√

3
,0

)
= dom

(
H̃
)

=
(
−
√

3
2 ,
√

3
)
,

which coincides with the connected component of
{
f 2

3
√

3
,0(t) > 0

}
that contains t = 0 and,

hence, proves that H 2
3
√

3
,0 is indeed also closed. Thus H 2

3
√

3
,0 is in fact a quartic CCGPSR

curve, which proves the claim that all points in the set described in (7.20) define quartic
CCGPSR curves, each equivalent to H 2

3
√

3
,0. As mentioned once before in this proof, this is

precisely the quartic CCGPSR curve c). It remains to determine the closed hyperbolic con-
nected components of

{
h 2

3
√

3
,0 = x4 − x2y2 + 2

3
√

3xy
3 = 1

}
and show that they are equivalent

as quartic CCGPSR manifolds. To do so we will determine the connected components of{
h 2

3
√

3
> 0

}
⊂ R2. Since the quartic polynomial h 2

3
√

3
,0 is homogeneous, it suffices to study{

h 2
3
√

3
,0

((
1
y

))
> 0

}
and

{
h 2

3
√

3
,0 (( x1 )) > 0

}
. We obtain

y ∈
{
h 2

3
√

3
,0

((
1
y

))
> 0

}
⇔ y ∈

(
−
√

3
2 ,
√

3
)
∪̇
(√

3,∞
)



143

and, using h 2
3
√

3
,0 (( x1 )) = x

(
x+ 2√

3

) (
x− 1√

3

)2
,

x ∈
{
h 2

3
√

3
(( x1 )) > 0

}
⇔ x ∈

(
−∞,− 2√

3

)
∪̇
(

0, 1√
3

)
∪̇
(

1√
3
,∞

)
.

Hence, {
h 2

3
√

3
,0 > 0

}
= R>0 ·

{(
1
y

)
∈ R2

∣∣∣∣∣ y ∈
(
−
√

3
2 ,
√

3
)}

∪̇ R>0 ·
{(

x
1

)
∈ R2

∣∣∣∣∣ x ∈
(

0, 1√
3

)}

∪̇ R>0 ·
{
−
(

1
y

)
∈ R2

∣∣∣∣∣ y ∈
(
−
√

3
2 ,
√

3
)}

∪̇ R>0 ·
{
−
(
x
1

)
∈ R2

∣∣∣∣∣ x ∈
(

0, 1√
3

)}
. (7.38)

The quartic CCGPSR curve c) is contained in the set R>0 ·
{(

1
y

)
∈ R2

∣∣∣ y ∈ (−√3
2 ,
√

3
)}

,
and we see that it is equivalent to the unique quartic CCGPSR curve contained in the set
R>0 ·

{
−
(

1
y

)
∈ R2

∣∣∣ y ∈ (−√3
2 ,
√

3
)}

via ( xy ) 7→ − ( xy ) . We will now show that the remaining

connected components of
{
h 2

3
√

3
,0 > 0

}
also contain a (unique) quartic CCGPSR curve that

is equivalent to c). It suffices to consider the set R>0 ·
{

( x1 ) ∈ R2
∣∣∣ x ∈ (0, 1√

3

)}
. One can

easily check that the point
( 1

4√5
2
√

3
4√5

)
∈
{
h 2

3
√

3
,0 = 1

}
is a hyperbolic point of h. Consider the

linear transformation of the form (3.7)

A

(( 1
4√5

2
√

3
4√5

))
=
 1

4√5
1

4√5
2
√

3
4√5

1√
3 4√5

 ,
mapping ( 1

0 ) ∈ H 2
3
√

3
,0 to said point. Then(

h 2
3
√

3
,0 ◦ A

(( 1
4√5

2
√

3
4√5

)))((
x
y

))
= x4 − x2y2 + 4

27xy
3 + 4

27y
4.

We find that u
(

4
27

)
= 4

27 and deduce that the maximal extension of the quartic GPSR

curve contained in
{
h 2

3
√

3
,0 = 1

}
which contains the point p =

( 1
4√5

2
√

3
4√5

)
is equivalent to the

quartic CCGPSR curve c) and, in particular, closed and connected. Summarising, we have
shown that

{
h 2

3
√

3
,0 = 1

}
has 4 equivalent closed connected hyperbolic components, one of

which is given by the quartic CCGPSR curve H 2
3
√

3
,0 which is precisely the quartic CCGPSR

curve H in c). In order to determine G
h 2

3
√

3
,0 , it remains to show that the only linear map

A ∈ GL(2) mapping H 2
3
√

3
,0 to itself, that is AH 2

3
√

3
,0 = H 2

3
√

3
,0, is the identity transformation

A = 1 ∈ GL(2). Using the condition A · ( 1
0 ) ∈ H 2

3
√

3
,0, one can check that A must be of the

form A = A(p) as in (3.7), where we view E(p) as an element of R\{0}. But then, independent
of the sign ± of E(p), we find with p = 1

4
√
h 2

3
√

3
,0((1,T )T )

( 1
T ), T ∈ dom

(
H 2

3
√

3
,0

)
=
(
−
√

3
2 ,
√

3
)
,

and with the formulas (7.8) and (7.9) and the notation

h 2
3
√

3
,0 (A(p) · ( xy )) = x4 − x2y2 + L(T )xy3 +K(T )y4
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that

K(T ) =
T
(
−T 7 + 4

√
3T 6 + 18T 5 − 84

√
3T 4 + 63T 3 + 432

√
3T 2 − 1404T + 432

√
3
)

12
(
−T 4 + 2

√
3T 3 − 9T 2 + 12

√
3T − 18

)2 .

(7.39)
Using a computer algebra system like MAPLE, one can show that the denominator of K(T )
in the above formula (7.39) does not have any roots in dom

(
H 2

3
√

3
,0

)
=
(
−
√

3
2 ,
√

3
)
, and the

numerator has only one root in dom
(
H 2

3
√

3
,0

)
, namely T = 0. We conclude that the only

linear transformations of the form (3.7) can either be the identity, or (corresponding to a

possible minus sign of E (( 1
0 ))) the linear transformation Ã =

(
1
−1

)
. But we can quickly

check that h 2
3
√

3
,0 ◦ Ã = x4 − x2y2 − 2

3
√

3 6= h 2
3
√

3
,0. We can now use the previous results and

obtain
G
h 2

3
√

3
,0 ∼= Z4.

Now we will study all maximally extended quartic GPSR curves of the form H0,K , K ≤ 1
4 ,

that correspond to points of the form(
L
K

)
∈
{
K ≤ 1

4 , L = 0
}
. (7.40)

We will prove that each of these curves is a quartic CCGPSR curve, and furthermore that
they are pairwise inequivalent. We have seen in (7.14) that the connected component of
{f0,K(t) > 0} that contains the point t = 0 is precompact for all K ≤ 1

4 . For each K ≤ 1
4 , we

have f0,K(t) = β(t) as in (3.22) and, hence, the pullback of the centro-affine metric gH0,K to
dom (H0,K) (3.33) fulfils

f 2
0,K(t)

(
Φ∗gH0,K

)
t

=
(
−f0,K(t)f̈0,K(t)

4 +
3ḟ 2

0,K(t)
16

)
dt2

=
(
K

2 t
4 +

(1
4 − 3K

)
t2 + 1

2

)
dt2 =: g̃K(t)dt2.

First consider K ≤ 0. Then f̈0,K(t) = −2 + 12Kt2 < 0 for all t ∈ R. This immediately
shows that

(
Φ∗gH0,K

)
t
> 0 for all t contained in the connected component of {f0,K(t) > 0}

that contains t = 0, which thus coincides with dom (H0,K). We deduce that for all K ≤ 0,
the corresponding maximally extended quartic GPSR curve H0,K is closed and, hence, a
quartic CCGPSR curve. Next, we will show that for all 0 < K < 1

4 the smooth function
g̃K : R → R has no real roots and is positive. For K = 1

4 , we will show that g̃K(t) = 0 if
and only if f0,K(t) = 0. This will then imply that for all 0 < K ≤ 1

4 the set dom (H0,K) and
the connected component containing t = 0 of {f0,K(t) > 0} coincide, which shows that the
maximally extended quartic GPSR curve H0,K is closed, and thus a quartic CCGPSR curve.
We obtain for 0 < K < 1

4 the (symbolic) equivalence

g̃K(t) = 0 ⇔ t2 = −1 + 12K ±
√

144K2 − 40K + 1
4K .

For t to be real, one of the two possible terms −1 + 12K ±
√

144K2 − 40K + 1 must be real
and non-negative (since 0 < K ≤ 1

4). We find that

144K2 − 40K + 1 ≥ 0 and K ∈
(

0, 1
4

)
⇔ K ∈

(
0, 1

36

]
,



145

and we observe that 1
36 <

1
4 is a root of 144K2− 40K + 1. This shows that g̃K(t) might only

have real roots in the considered domain
(
0, 1

4

)
for K if K ∈

(
0, 1

36

]
. One now verifies that

−1 + 12K −
√

144K2 − 40K + 1 has no real roots. Since 144K2 − 40K + 1 ≥ 0 restricts K
to be an element of

(
0, 1

36

]
, we evaluate

−1 + 12K −
√

144K2 − 40K + 1
∣∣∣
K= 1

72
= −5 +

√
17

6 < 0.

We further obtain

−1 + 12K +
√

144K2 − 40K + 1 = 0 ⇔ K = 0

and deduce that the sign of the term −1+12K+
√

144K2−40K+1
4K is constant for K ∈

(
0, 1

36

]
. We

evaluate
−1 + 12K +

√
144K2 − 40K + 1

∣∣∣
K= 1

72
= −5−

√
17

6 < 0.

We conclude that there exists no K ∈
(
0, 1

4

)
, such that either −1+12K−

√
144K2−40K+1
4K or

−1+12K+
√

144K2−40K+1
4K are positive. This and g̃K(0) = 1

2 proves the claim that for all K ∈(
0, 1

4

)
the function g̃K(t) is positive on R and, hence, that each corresponding maximally

extended quartic GPSR curve H0,K is a quartic CCGPSR curve.
Now consider the case K = 1

4 and note that ( LK ) =
( 0

1
4

)
∈ {V = 0}. We calculate

g̃ 1
4
(t) = 0 ⇔ t = ±

√
2,

which are precisely the roots of f0, 1
4
(t). Again, g̃ 1

4
(0) = 1

2 implies that g̃ 1
4
, restricted to the

connected component
{
f0, 1

4
(t) > 0

}
that contains the point t = 0, is positive. Similarly to

K ∈
(
0, 1

4

)
we conclude that the maximally extended quartic GPSR curve H0, 1

4
is closed

and, hence, a quartic CCGPSR curve. The case K = 1
4 and the cases K < 1

4 correspond
to the polynomial a) and the one-parameter family of polynomials d), respectively. The
quartic CCGPSR curve H0, 1

4
is furthermore a homogeneous space under the action of the

corresponding Lie group G
h0, 1

4
0 , cf. Definition 3.13.This follows from Proposition 3.34 since(

0, 1
4

)T
∈ {V = 0} (7.5). Note that, using [CNS, Prop. 1.8], the homogeneity of H0, 1

4
would

also have been sufficient to prove that H0, 1
4

is closed as a subset of R2, since Riemannian
homogeneous spaces are always complete, cf. Remark 3.10.

It remains to prove the claim that the quartic CCGPSR curves H0,K for K ≤ 1
4 are pair-

wise inequivalent. While proving this statement we will also determine the closed hyperbolic
connected components of {h0,K = 1} and show that these are always equivalent for each fixed
K ≤ 1

4 .
Since

(
0, 1

4

)T
∈ {V = 0} and (0, K)T ∈ R2\{V = 0} for all K < 1

4 , we can use Proposition
3.34 which implies that the connected component of the automorphism group of h0,K acts
transitively on H0,K if and only if K = 1

4 . In particular this shows that H0, 1
4

is not equivalent
to H0,K for any K < 1

4 . It remains to show that for K < 1
4 the quartic CCGPSR curves

H0,K are pairwise inequivalent. For fixed K < 1
4 we want to determine every A ∈ GL(2),

A =
(
a11 a12
a21 a22

)
,
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such that
(h0,K ◦ A) (( xy )) = x4 − x2y2 + K̃y4 = h0,K̃ (7.41)

for some K̃ < 1
4 with the additional restriction that the quartic CCGPSR curves H0,K

and H0,K̃ are required to be equivalent via A : H0,K̃ → H0,K . For A to fulfil (7.41) and
additionally map H0,K̃ to H0,K it is necessary that h (( a11

a21 )) = 1 and furthermore ( a11
a21 ) is

required to be a hyperbolic point of h0,K . We will treat the two cases a11 6= 0 and a11 = 0
separately. We start with assuming that a11 6= 0. Then

(h0,K ◦ A) (( xy )) = dh( a11
a21 ) (( a12

a22 ))x3y + rest,

where the “rest” in the above equation does not contain a non-trivial multiple of the monomial
x3y. Hence, up to a scaling factor r ∈ R \ {0},

(
a12
a22

)
= r

−∂h
∂y

∣∣∣( a11
a21 )

∂h
∂x

∣∣∣( a11
a21 )

 . (7.42)

Then, for a21 = 0,

(h0,K ◦ A) (( xy )) = a4
11x

4 − 16r2a8
11x

2y2 + 256Kr4a1
112y4.

In these cases we thus immediately obtain with (7.42) that A ∈ GL(2) needs to fulfil precisely

A ∈
{
1,−1,

(
−1

1

)
,

(
1
−1

)}
.

to solve (7.41). Note that in these cases K̃ = K. For a21 6= 0 consider

(h ◦ A) (( xy ))
= 64r3a11a21

·
(
−4K3a8

21 +K2
(
4a2

11a
6
21 + a8

21

)
+K

(
4a8

11 − 4a6
11a

2
21 − a2

11a
6
21

)
− a8

11 + a6
11a

2
21

)
xy3

+ rest,

where the “rest” in the above equation does not contain any other xy3-monomial. In order
for (7.41) to be fulfilled, we thus need that (since by assumption a11 6= 0 and a21 6= 0)

− 4K3a8
21 +K2

(
4a2

11a
6
21 + a8

21

)
+K

(
4a8

11 − 4a6
11a

2
21 − a2

11a
6
21

)
− a8

11 + a6
11a

2
21 = 0. (7.43)

Solving equation (7.43) (symbolically) for K, we obtain

(7.43) ⇔ K ∈
{

1
4 ,−

a2
11 (a2

11 − a2
21)

a4
21

,
a4

11
a4

21

}
.

The value K = 1
4 has already been excluded. For K = −a2

11(a2
11−a

2
21)

a4
21

we get

(h0,K ◦ A) (( xy )) ≡ 0,

hence we can also exclude this (symbolic) solution for K. For the last possible solution for
K, that is K = a4

11
a4

21
, consider the condition

h
0,
a4

11
a4

21

(( a11
a21 )) = 1 ⇔ a2

11

(
2a2

11 − a2
21

)
= 1.
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Hence, a2
21 = 2a2

11 − a−2
11 and, consequently,

K = a4
11
a4

21
= a8

11
(2a4

11 − 1)2 .

However
a8

11
(2a4

11 − 1)2 >
1
4

for all a11 6= 0. We deduce that this solution for K also does not fulfil our requirements, in
this case the requirement K < 1

4 . Summarising, we have shown that for a11 6= 0 the only
linear transformations A ∈ GL(2) that fulfil (7.41) for K < 1

4 are given by

A ∈
{
1,−1,

(
−1

1

)
,

(
1
−1

)}
, (7.44)

and that in each case K̃ = K. Next consider the case a11 = 0. In this case, for (7.41) to
be true, h0,K (( 0

a21 )) = Ka4
21 must fulfil Ka4

21 = 1. We see that this can only be the case
for positive K, and thus can already say that for all K ≤ 0 the transformation A solves

(7.41) if and only if A ∈
{
1,−1,

(
−1

1

)
,

(
1
−1

)}
and that in these cases K̃ = K. For

0 < K < 1
4 we obtain

Ka4
21 = 1 ⇔ a21 = ± 1

4
√
K
.

Under the assumption that a11 = 0 and a21 = ± 1
4√
K

we find that

(h0,K ◦ A) (( xy )) = 4Ka3
21a22x

3y + rest = ±4 4
√
Ka22x

3y + rest,

where the above “rest” does not contain any x3y-part. Since the x3y-part of (h0,K ◦A) (( xy ))
must vanish for (7.41) to be fulfilled, we deduce that a22 = 0. So A must be of the form

A =
(

0 a12
a21 0

)
. Now for the final step we check that

(h0,K ◦ A) (( xy )) = −a2
21a

2
12x

2y2 + rest = − a2
21√
K
x2y2 + rest,

the above “rest” not containing any x2y2-part, which shows that a21 = ± 4
√
K. Summarising,

we have shown that the possible A ∈ GL(2) that fulfil (7.41) for 0 < K < 1
4 can only be of

the form

A ∈
{
1,−1,

(
−1

1

)
,

(
1
−1

)
,( 4

√
K

1
4√
K

)
,

(
− 4
√
K

1
4√
K

)
,

( 4
√
K

− 1
4√
K

)
,

(
− 4
√
K

− 1
4√
K

)}
, (7.45)

and one can easily check that these matrices actually solve (7.41) with K̃ = K. We now
conclude that the quartic CCGPSR curves H0,K for K ≤ 1

4 are pairwise inequivalent. Now,
similar to the quartic CCGPSR curve c), equation (7.38), we will determine for each K ≤ 1

4
the connected components of {h0,K > 0} ⊂ R2. We have

h0,K
((

1
y

))
= 1− y2 +Ky4, h0,K (( x1 )) = x4 − x2 +K,
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and obtain

for K = 1
4 :

{
h0, 1

4
> 0

}
= R>0 ·

{(
1
y

)
∈ R2

∣∣∣∣∣ y ∈ (−√2,
√

2
)}

∪̇ R>0 ·
{(

x
1

)
∈ R2

∣∣∣∣∣ x ∈
(
− 1√

2
,

1√
2

)}

∪̇ R>0 ·
{
−
(

1
y

)
∈ R2

∣∣∣∣∣ y ∈ (−√2,
√

2
)}

∪̇ R>0 ·
{
−
(
x
1

)
∈ R2

∣∣∣∣∣ x ∈
(
− 1√

2
,

1√
2

)}
,

(note: for K = 1
4 , h0, 1

4
≤ 0 if and only if h0, 1

4
= 0)

for K ∈
(

0, 1
4

)
:

{h0,K > 0} = R>0 ·


(

1
y

)
∈ R2

∣∣∣∣∣∣∣∣ y ∈
−

√√√√2
(
1−

√
1− K

4

)
K

,

√√√√2
(
1−

√
1− K

4

)
K




∪̇ R>0 ·


(
x
1

)
∈ R2

∣∣∣∣∣∣ x ∈
−

√
1−
√

1− 4K
2 ,

√
1−
√

1− 4K
2


∪̇ R>0 ·

−
(

1
y

)
∈ R2

∣∣∣∣∣∣∣∣ y ∈
−

√√√√2
(
1−

√
1− K

4

)
K

,

√√√√2
(
1−

√
1− K

4

)
K




∪̇ R>0 ·

−
(
x
1

)
∈ R2

∣∣∣∣∣∣ x ∈
−

√
1−
√

1− 4K
2 ,

√
1−
√

1− 4K
2

 ,

for K = 0 : {h0,0 > 0} = R>0 ·
{(

1
y

)
∈ R2

∣∣∣∣∣ y ∈ (−1, 1)
}

∪̇ R>0 ·
{
−
(

1
y

)
∈ R2

∣∣∣∣∣ y ∈ (−1, 1)
}
,

and

for K < 0 : {h0,K > 0}

= R>0 ·


(

1
y

)
∈ R2

∣∣∣∣∣∣∣∣ y ∈
−

√√√√2
(
1 +

√
1− K

4

)
K

,

√√√√2
(
1 +

√
1− K

4

)
K




∪̇ R>0 ·

−
(

1
y

)
∈ R2

∣∣∣∣∣∣∣∣ y ∈
−

√√√√2
(
1 +

√
1− K

4

)
K

,

√√√√2
(
1 +

√
1− K

4

)
K


 .

For K ≤ 0 we see that {h0,K > 0} has exactly 2 connected components, and the corresponding
unique contained quartic CCGPSR curves are equivalent via A = −1, cf. (7.44). For
0 < K < 1

4 , {h0,K > 0} has exactly 4 connected components, and the corresponding unique

contained quartic CCGPSR curves are equivalent via compositions of A =
(
−1

1

)
and
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A =
(

− 4
√
K

1
4√
K

)
, cf. (7.45). In the case K = 1

4 ,
{
h0, 1

4
> 0

}
has exactly 4 connected

components, and one can check that transformations A ∈ GL(2) of the form (7.45) are also
automorphisms of h0, 1

4
as for 0 < K < 1

4 and map the corresponding unique contained quartic
CCGPSR curves bijectively to each other. Now, for the automorphism groups Gh0,K of h0,K
for K ≤ 1

4 , (7.44) and (7.45) imply that

∀K ≤ 0 : Gh0,K ∼= Z2 × Z2

and
∀K ∈

(
0, 1

4

)
: Gh0,K ∼= Z4 × Z2.

In order to explicitly find Gh0, 1
4 , we need to determine G

h0, 1
4

0 . To do so we will derive a suitable
basis for T1G

h0, 1
4

0 as a Lie subalgebra of gl(2). For this we will use the techniques used in
Proposition 3.34 and calculate the derivative of the corresponding map A : dom

(
H0, 1

4

)
→

GL(2) (3.23) at z = 0 ∈ dom
(
H0, 1

4

)
, cf. (3.60). Note that the corresponding dB0 ∈

Lin(R, so(1)) is always zero since dim(so(1)) = 0. We find

dA0(∂z) =
(

0 1
2

1 0

)

and obtain
dh0, 1

4

∣∣∣(xy )

((
0 1

2
1 0

)
·
(
x
y

))
≡ 0

as expected. Let a 1
4

:=
√

2
(

0 1
2

1 0

)
. Then a2

1
4

= 1 and

exp
(
ta 1

4

)
=
∞∑
k=0

tk

k!a
k
1
4

=
( ∞∑
k=0

t2k

(2k)!

)
1 +

( ∞∑
k=0

t2k+1

(2k + 1)!

)
a 1

4
=
(

cosh(t) sinh(t)√
2√

2 sinh(t) cosh(t)

)
(7.46)

for all t ∈ R. Now we have an explicit description of G
h0, 1

4
0 . In order to find a well known

and commonly used Lie group that is isomorphic (as a Lie group) to G
h0, 1

4
0 , observe that

aT1
4

(
−2

1

)
+
(
−2

1

)
a 1

4
= 0. (7.47)

This implies that the Lie algebra T1G
h0, 1

4
0 is isomorphic to so(1, 1), that is the linear au-

tomorphisms of the Lorentz vector space (R,−2dx2 + dy2), and that G
h0, 1

4
0
∼= SO+(1, 1).

Hence,
G
h0, 1

4 ∼= SO+(1, 1)× Z4 × Z2.

With Proposition 3.34 and (7.45) this also shows that

H0, 1
4
∼= SO+(1, 1),

since the only transformations in (7.45) that map H0, 1
4

to itself are A = 1 and A = ( 1
−1 )

and the latter is not contained in SO+(1, 1).
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Now we will consider points(
L
K

)
∈
{
K < − 1

12 , |L| < w(K)
}
⊂ R2

and the corresponding maximally extended quartic GPSR curves HL,K . We will proceed as
follows. We will show that for any such point (L,K)T ∈

{
K < − 1

12 , |L| < w(K)
}

, the image
of the maximal integral curve γ of V|R2\{V=0} with γ(0) = (L,K)T contains a point of the
form

(
0, K̃

)T
∈ R2, K̃ < − 1

12 . This will thus imply that HL,K is equivalent to H0,K̃ , and
since we have already seen that H0,K̃ is a quartic CCGPSR curve for all K̃ ≤ 1

4 this will show
that HL,K is also a quartic CCGPSR curve. We will without loss of generality assume that
0 < L < w(K) for K < − 1

12 fixed, as we have already dealt with the case L = 0 above (7.40)
and since HL,K and H−L,K are always equivalent. Instead of checking the maximal integral
curves of V|R2\{V=0}, respectively their restriction to the set

{
K < − 1

12 , 0 < L < w(K)
}

,
directly, we will first transform this set using a suitable diffeomorphism. Recall that w(K) =√

6−216K
9 > 0 for all K < − 1

12 and consider the smooth map

F :
{
K < − 1

12 , 0 < L < w(K)
}
→
{
ψ < − 1

12 , 0 < ϕ < 1
}
,

F :
(
L
K

)
7→
(

L
w(K)
K

)
,

where
(
ϕ
ψ

)
denote the coordinates of

{
ψ < − 1

12 , 0 < ϕ < 1
}
⊂ R2 (see Figure 20). The

Figure 20: Parts of the domain and co-domain of F , marked in grey.

differential of F is given by

dF =
( 1

w(K)
162L

(1−36K)
√

6−216K
0 1

)

and we see that F is, in fact, a diffeomorphism. We obtain for the inverse of F

F−1
((

ϕ
ψ

))
=
(
ϕw(ψ)
ψ

)
and for the push-forward of the vector field V restricted to {K < −1/12, 0 < L < w(K)}

F∗V = (F∗V)(ϕ
ψ

) = 9 (1− ϕ2) (−1 + 4ψ)√
6− 216ψ ∂ϕ + ϕ(1 + 12ψ)

√
6− 216ψ

18 ∂ψ.



151

Since dψ (F∗V) < 0 for all
(
ϕ
ψ

)
∈
{
ψ < − 1

12 , 0 < ϕ < 1
}

, we can define the smooth function

R :
{
ψ < − 1

12 , 0 < ϕ < 1
}
→ R,

R
((

ϕ
ψ

))
:= dϕ (F∗V)

dψ (F∗V) = 1− ϕ2

ϕ
· 27(1− 4ψ)

(1 + 12ψ)(−1 + 36ψ) .

Instead of studying the images of the maximal integral curves of the vector field

F∗V|{ψ<− 1
12 , 0<ϕ<1},

we can now study the images of the maximal integral curves of the vector field

X := R ∂ϕ + ∂ψ. (7.48)

defined on the set
{
ψ < − 1

12 , 0 < ϕ < 1
}

= F
({
K < − 1

12 , 0 < L < w(K)
})
⊂ R2, since

there is a one-to-one correspondence between them, which follows from dψ (F∗V) 6= 0 on
said set. It turns out that we can, in fact, find the general solution of the equation for
integral curves of X. For t < − 1

12 and some a < − 1
12 , consider with γ :

(
a,− 1

12

)
→{

ψ < − 1
12 , 0 < ϕ < 1

}
, γ(t) =

(
ϕ(t)
t

)
,

Xγ = γ̇

⇔ ϕϕ̇

1− ϕ2 = 27(1− 4t)
(−1 + 36t)(1 + 12t)

⇔ ϕ(t) =

√√√√1−
c
√
−(1 + 12t)3

1− 36t ,

where c ∈ R>0 is chosen in such a way that the initial condition

γ(t0) =
(
ϕ(t0)
t0

)
∈
{
ψ < − 1

12 , 0 < ϕ < 1
}

is met, see Figure 21 for an example of such a curve γ (note: in our construction, the initial
time t0 fulfils t0 < − 1

12). Note that for all t < − 1
12 such that ϕ(t) is defined we always have

ϕ(t) < 1, in particular arbitrarily close to t = − 1
12 . We will now show that ϕ(t) cannot

converge to the value 1 in finite negative time. Solving ϕ(t) = 1, we obtain as the unique
negative solution t = − 1

12 , but this is the upper bound of the domain of definition of γ(t)
and, hence, ϕ(t). This shows that for all t < − 1

12 , for which ϕ(t) is defined, we indeed have
ϕ(t) < 1. Thus, if we can prove that each such curve γ independent of the initial condition
(t0, γ(t0)) converges to a point in the set

{
ψ < − 1

12 , ϕ = 0
}

in finite negative time19 t < − 1
12 ,

then we will have shown using the fact V|{K<−1/12, |L|<w(K)} 6= 0 that each maximal integral
curve of V|{K<−1/12, |L|<w(K)} meets the set

{
K < − 1

12 , L = 0
}

in either finite positive or
finite negative time. This means that we have to solve√√√√1−

c
√
−(1 + 12t)3

1− 36t = 0, t < − 1
12

⇔ 1728c2t3 +
(
432c2 + 1296

)
+
(
36c2 − 72

)
t2 + 1 = 0, t < − 1

12
19All possible integral curves γ move toward

{
ψ = − 1

12
}

in positive time-direction, hence negative time.
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Figure 21: Example of a curve γ (in black) fulfilling Xγ = γ̇ with initial condition ϕ
(
− 1

6
)

=
√

6√
7 (marked

with a small cirlce).

with the restriction that we are interested in the biggest possible negative solution in t.
Replacing t = s− 1

12 and dividing by 16, we observe that

1728c2t3 +
(
432c2 + 1296

)
+
(
36c2 − 72

)
t2 + 1 = 0, t < − 1

12
⇔ 108c2s3 + 81s2 − 18s+ 1 = 0, s < 0. (7.49)

We see that equation (7.49) always has a negative, and in particular uniquely determined
biggest negative, solution20 in s since it takes the value 1 for s = 0. We deduce that each
maximal integral curve of X does meet the set

{
ψ < − 1

12 , ϕ = 0
}

in finite negative time
and, hence, that each maximal integral curve γ of V|R2\{V=0} with initial condition γ(0) ∈{
K < − 1

12 , |L| < w(K)
}

meets the set
{
K < − 1

12 , L = 0
}

in either finite negative or finite
positive time. Hence, for each maximally extended quartic GPSR curve HL,K , (L,K)T ∈{
K < − 1

12 , |L| < w(K)
}

, is equivalent to a maximally extended quartic GPSR curve of the
form H0,K̃ with K̃ < − 1

12 . We have already shown that the quartic CCGPSR curves H0,K ,
K ≤ 1

4 , are pairwise inequivalent. Hence, the value for K̃ is unique. We deduce that HL,K is
closed in R2 and thus a quartic CCGPSR curve as claimed.

Now consider the set
{
K = − 1

12 , |L| < w
(
− 1

12

)
= 2

√
2

3
√

3

}
and the restriction of V to it. It

turns out that this set coincides with the image of a maximal integral curve of V|R2\{V=0}.
This follows from the fact that

{
K = − 1

12 , |L| <
2
√

2
3
√

3

}
⊂ R2 \{V = 0}, and that V is parallel

to
{
K = − 1

12 , |L| <
2
√

2
3
√

3

}
in the sense that

dK

V|{
K=− 1

12 , |L|<
2
√

2
3
√

3

} ≡ 0.

Hence, we only need to consider the point (L,K)T =
(
0,− 1

12

)T
∈
{
K = − 1

12 , |L| <
2
√

2
3
√

3

}
20This solution coincides with the minimal possible value a that was used to denote the domain of definition(
a,− 1

12
)
⊂ R of γ(t), respectively ϕ(t).
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and the corresponding maximally extended quartic GPSR curve H0,− 1
12

, but we have already
seen that it is in fact a quartic CCGPSR curve.

Next, we will show that every maximally extended quartic connected GPSR curve HL,− 1
12

,
( 1

0 ) ∈ HL,− 1
12

, with |L| < u
(
− 1

12

)
= 2

√
2

3
√

3 is equivalent to the quartic CCGPSR curve H0,− 1
12

,
( 1

0 ) ∈ H0,− 1
12

. To do so, we will study the restriction of V to the set
{
K = − 1

12 , |L| <
2
√

2
3
√

3

}
⊂ R2,

which is an embedded open connected intervall in R2. We find that

dK

V|( L
− 1

12

) ≡ 0,

and since furthermore
{
K = − 1

12 , |L| <
2
√

2
3
√

3

}
∩ {V = 0} = ∅ we obtain that for any point

p ∈
{
K = − 1

12 , |L| <
2
√

2
3
√

3

}
, every maximal integral curve of V|R2\{V=0} through p has as im-

age precisely the considered set
{
K = − 1

12 , |L| <
2
√

2
3
√

3

}
. Hence, every considered maximally

extended quartic connected GPSR curve HL,− 1
12

is equivalent to the quartic CCGPSR curve
H0,− 1

12
, ( 1

0 ) ∈ H0,− 1
12

, as claimed and thus also a quartic CCGPSR curve.
Lastly, we have to consider the maximally extended quartic GPSR curves HL,K with(

L
K

)
∈
{
− 1

12 < K <
1
4 , |L| < u(K)

}
⊂ R2,

respectively the restriction of V to said set. Recall that

u(K) =
√

2
3
√

3

√
1− 36K +

√
(1 + 12K)3,

cf. (7.18). We proceed similarly to the case where we considered points of the form ( LK ) ∈{
K < − 1

12 , |L| < w(K)
}

. We will show that any maximal integral curve of the restricted
vector field V|{− 1

12<K<
1
4 , |L|<u(K)} contains a point of the form

(
0
K̃

)
∈
{
− 1

12 < K <
1
4 , |L| < u(K)

}
.

To do so, it suffices to consider points in
{
− 1

12 < K < 1
4 , 0 < L < u(K)

}
which provide the

initial value for said integral curves. We define

F̃ :
{
− 1

12 < K <
1
4 , 0 < L < u(K)

}
→
{
− 1

12 < ψ <
1
4 , 0 < ϕ < 1

}
,

F̃ :
(
L
K

)
7→
(

L
u(K)
K

)
,

see Figure 22. The map F̃ is a diffeomorphism with

dF̃ =


1

u(K)
27
√

3L(2−
√

1+12K)√
2
(

1−36K+
√

(1+12K)3
)3

0 1
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F

Figure 22: Parts of the domain and co-domain of F̃ , marked in grey.

and
F̃−1

((
ϕ
ψ

))
=
(
ϕu(K)
ψ

)
.

Note at this point that the term 1− 36ψ+
√

(1 + 12ψ)3 is positive for all K ∈
(
− 1

12 ,
1
4

)
, and

in fact it vanishes for K > − 1
12 if and only if K = 1

4 . The push-forward F̃∗V then is of the
form

F̃∗V =
(
F̃∗V

)(
ϕ
ψ

) =
3
√

3 (1− ϕ2)
(
−1 + 40ψ − 144ψ2 + (−1− 8ψ + 48ψ2)

√
1 + 12ψ

)
√

2
(
1− 36ψ +

√
(1 + 12ψ)3

)3
∂ϕ

+ 1
3
√

6
ϕ(1 + 12ψ)

√
1− 36ψ +

√
(1 + 12ψ)3∂ψ.

The term dψ
(
F̃∗V

)
is positive for all

(
ϕ
ψ

)
∈
{
− 1

12 < ψ < 1
4 , 0 < ϕ < 1

}
. Thus, the smooth

function

R̃ :
{
− 1

12 < ψ <
1
4 , 0 < ϕ < 1

}
→ R,

R̃
((

ϕ
ψ

))
:=

dϕ
(
F̃∗V

)
dψ

(
F̃∗V

) = 1− ϕ2

ϕ
· −27(1− 4ψ)

(1 + 12ψ)
(
1− 36ψ +

√
(1 + 12ψ)3

)
is well defined. Note that R̃ is positive on its domain of definition. Similarly to the definition
of X (7.48) we define the vector field Y on the set

{
− 1

12 < ψ < 1
4 , 0 < ϕ < 1

}
⊂ R2 as

Y := R̃ ∂ϕ + ∂ψ.

Since dψ
(
F̃∗V

)
and, hence, F̃∗V do not vanish on the set

{
− 1

12 < ψ < 1
4 , 0 < ϕ < 1

}
, it

follows that the images of the maximal integral curves of Y and F̃∗V are in one-to-one cor-
respondence. As for the vector field X we can give a formula for the integral curves of Y

(although not as explicit as for the X-case). For an open interval (a, b) ⊂
(
− 1

12 ,
1
4

)
,

Yγ = γ̇, γ(t) =
(
ϕ(t)
t

)
, γ : (a, b)→

{
− 1

12 < ψ <
1
4 , 0 < ϕ < 1

}
, γ(t0) = ϕ0

⇔ ϕϕ̇

1− ϕ2 = −27(1− 4t)
(1 + 12t)

(
1− 36t+

√
(1 + 12t)3

)
︸ ︷︷ ︸

=:J(t)

⇔ ϕ(t) =

√√√√√1− c exp
−2

t∫
t0

J(s)ds
, (7.50)
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where c > 0 is chosen such that the initial condition γ(t0) = (ϕ(t0), t0)T is met (for an
example of such a γ see Figure 23). Observe that ϕ(t) < 1 for all t ∈ (a, b), and that

Figure 23: Example of a curve γ fulfilling Yγ = γ̇ with initial condition ϕ
( 1

36
)

= 1√
2 .

J :
(
− 1

12 ,
1
4

)
→ R, J(t) = −27(1− 4t)

(1 + 12t)
(
1− 36t+

√
(1 + 12t)3

) , (7.51)

is a well-defined negative function21. We will now show that γ being maximal implies
b < 1

4 and that lim
t→b, t<b

ϕ(t) = 0. This will imply that the corresponding maximal integral

curve of V|{− 1
12<K<

1
4 , 0<L<u(K)} has a limit point in

{
− 1

12 < K < 1
4 , L = 0

}
bounded away

from K = 1
4 and, hence, that each maximal integral curve of V|{− 1

12<K<
1
4 , |L|<u(K)} meets{

− 1
12 < K < 1

4 , L = 0
}

in one point (recall for this step that
{
− 1

12 < K < 1
4 , |L| < u(K)

}
is

contained in R2 \ {V = 0}). To prove b < 1
4 it suffices to show that for all c > 0, the equation

ϕ(t) =

√√√√√1− c exp
−2

t∫
t0

J(s)ds
 = 0 (7.52)

is fulfilled for some t ∈
(
a, 1

4

)
. Since J(s) < 0 for all s ∈

(
− 1

12 ,
1
4

)
and the term −2

t∫
t0
J(s)ds

is thus strictly monotonously increasing in t, it is sufficient to show that for all t0 ∈
(
− 1

12 ,
1
4

)

lim
t→1/4, t<1/4

t∫
t0

J(s)ds = −∞. (7.53)

21Note that we can actually give an explicit formula for γ(t) as in equation (7.50). By setting t0 = 1
36 one

can show that
t∫
t0

J(s)ds = − 3
4 ln(1 + 12t) + 1

2 ln
(

1− 36t+
√

(1 + 12t)3
)

, but we will not need an explicit

formula for this proof.
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Since J is smooth on
(
− 1

12 ,
1
4

)
we can without restriction of generality assume t0 = 0. Observe

that (1 + 12t) ∈ (1, 4) for t ∈
[
0, 1

4

]
implies that (7.53) is equivalent to

lim
t→1/4, t<1/4

t∫
0

1− 4s
1− 36s+

√
(1 + 12s)3

ds =∞. (7.54)

We replace s by −r + 1
4 in (7.54) and see that it is equivalent to

lim
t→0, t>0

1
4∫
t

r

9r − 2 + (−6r + 2)
√

1− 3r
dr =∞. (7.55)

Note that both the numerator and denominator of the integrand in (7.55) are positive and
smooth on the interval

(
0, 1

4

)
and both converge to 0 as r → 0. To prove (7.55) it is enough

to show that there exists ε ∈
(
0, 1

4

)
and A > 0, such that

∀r ∈ (0, ε) : 9r − 2 + (−6r + 2)
√

1− 3r ≤ Ar2. (7.56)

The condition (7.56) on the other hand can be proven by showing that

lim
r→0, r>0

9r − 2 + (−6r + 2)
√

1− 3r
r2 (7.57)

exists and is positive. Using L’Hôpitals rule for limits yields

lim
r→0, r>0

9r − 2 + (−6r + 2)
√

1− 3r
r2 = lim

r→0, r>0

9
(
1−
√

1− 3r
)

2r = 9
2 .

Hence, (7.57) holds true, and since (7.57) ⇒ (7.56) ⇒ (7.55) ⇒ (7.54) ⇒ (7.53), we have
proven that for all initial values ϕ0 ∈ (0, 1) and corresponding c > 0, there exists t = t̃ ∈
(a, b), t̃ > t0, such that equation (7.52) is fulfilled. Summarising, we have shown that each
maximal integral curve of V|R2\{V=0} starting in

{
− 1

12 < K < 1
4 , |L| < u(K)

}
meets the set{

− 1
12 < K < 1

4 , L = 0
}

in one point. We have already shown that the quartic CCGPSR
curves H0,K for K ≤ 1

4 are pairwise inequivalent and can thus deduce that this point is
unique. This proves that every maximally extended quartic GPSR curve HL,K with (L,K)T ∈{
− 1

12 < K < 1
4 , |L| < u(K)

}
is equivalent to a uniquely determined quartic CCGPSR curve

H0,K̃ , K̃ ∈
(
− 1

12 ,
1
4

)
, and thus in particular itself a quartic CCGPSR curve.

We have shown up to this point that the maximally extended quartic GPSR curves
corresponding to a), c), and d) are closed and, hence, quartic CCGPSR curves. The remaining
case b) corresponds to the point(

L
K

)
=
(

2
√

2
3
√

3
− 1

12

)
∈ {V = 0} ⊂ R2,

and we will now show that the corresponding maximally extended quartic GPSR curve
H 2

√
2

3
√

3
,− 1

12
is closed. Note at this point that H 2

√
2

3
√

3
,− 1

12
and H− 2

√
2

3
√

3
,− 1

12
are equivalent, and

so this is indeed the last remaining maximally extended quartic GPSR curve we have to
study. To do so, it suffices to show that H 2

√
2

3
√

3
,− 1

12
is homogeneous in the sense of Definition

3.9. Riemannian homogeneous spaces are automatically geodesically complete and we can
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then use [CNS, Prop. 1.8] to conclude that H 2
√

2
3
√

3
,− 1

12
⊂ R2 is closed and thus a quartic CCG-

PSR curve. In fact,
(

2
√

2
3
√

3 ,−
1
12

)T
∈ {V = 0} and the formulas (7.4), (7.2), and (7.3) show that

for H 2
√

2
3
√

3
,− 1

12
we have δP3 = δP4 ≡ 0, which implies with Proposition 3.34 the homogeneity of

H 2
√

2
3
√

3
,− 1

12
as claimed. It remains to determine the closed hyperbolic connected components of{

h 2
√

2
3
√

3
,− 1

12
= 1

}
and show that they are, as quartic CCGPSR curves, equivalent. To achieve

that we will determine the hyperbolic connected components of
{
h 2
√

2
3
√

3
,− 1

12
> 0

}
. We find

h 2
√

2
3
√

3
,− 1

12

((
1
y

))
= 1

12
(
y −
√

6
)3
(
y +
√

2√
3

)

and
h 2
√

2
3
√

3
,− 1

12
(( x1 )) =

(
x− 1√

6

)3 (
x+
√

3√
2

)
.

Hence, {
h 2
√

2
3
√

3
,− 1

12
> 0

}
= R>0 ·

{(
1
y

)
∈ R2

∣∣∣∣∣ y ∈
(
−
√

2√
3
,
√

6
)}

∪̇ R>0 ·
{
−
(

1
y

)
∈ R2

∣∣∣∣∣ y ∈
(
−
√

2√
3
,
√

6
)}

,

that is
{
h 2
√

2
3
√

3
,− 1

12
> 0

}
has precisely two connected components, both of which only contain

hyperbolic points and each a unique quartic CCGPSR curve. These two curves are the
connected components of

{
h 2
√

2
3
√

3
,− 1

12
= 1

}
, and they are equivalent via ( xy ) 7→ − ( xy ). Note

that H 2
√

2
3
√

3
,− 1

12
⊂ R>0 ·

{(
1
y

)
∈ R2

∣∣∣ y ∈ (−√2√
3 ,
√

6
)}

. In order to find the automorphism

group Gh of h 2
√

2
3
√

3
,− 1

12
, we now only need to determine G

h 2
√

2
3
√

3
,− 1

12
0 and check that there are no

additional discrete symmetries of h 2
√

2
3
√

3
,− 1

12
mapping H 2

√
2

3
√

3
,− 1

12
⊂ R2 to itself. For G

h 2
√

2
3
√

3
,− 1

12
0

consider, similar to h0, 1
4

respectively G
h0, 1

4
0 , Proposition 3.34 and calculate the derivative of

the corresponding map A : dom
(
H 2

√
2

3
√

3
,− 1

12

)
→ GL(2) (3.23) at z = 0 ∈ dom

(
H 2

√
2

3
√

3
,− 1

12

)
,

cf. (3.60). Again, the corresponding linear map dB0 ∈ Lin(R, so(1)) automatically vanishes
since dim(so(1)) = 0. We obtain

dA0(∂z) =
(

0 1
2

1
√

2√
3

)
.

With ã :=
√

2
(

0 1
2

1
√

2√
3

)
, one can check that

dh 2
√

2
3
√

3
,− 1

12

∣∣∣∣(xy )
(ã · ( xy )) ≡ 0

as expected. Let {ci}i∈N be a sequence of real numbers, defined as follows:

c1 = 1, c2 = 2√
3
, ci = ci−2 + 2√

3
ci−1 ∀i ≥ 3.
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If we further set c−1 := 1 and c0 := 0, we get the identity ci = ci−2 + 2√
3ci−1 for all i ≥ 1.

Now for the exponential map of ã ∈ gl(2), one can verify that

exp (tã) =
∞∑
k=0

tk

k! ã
k =

∞∑
k=0

tk

k! (ck−11 + ckã) =
( ∞∑
k=0

tk

k!ck−1

)
1 +

( ∞∑
k=0

tk

k!ck
)
ã. (7.58)

Note that ã, when viewed as an element of gl(2), has eigenvalues
√

3 and − 1√
3 and is thus

(as an endomorphism of R2) equivalent to

â :=
(√

3
− 1√

3

)
,

and

exp (tâ) =
e√3t

e
− t√

3

 .
It is clear that G

h 2
√

2
3
√

3
,− 1

12
0 and (R,+) are isomorphic. More precisely, we find that â can be

written as
â =

( 1√
3

1√
3

)
+
( 2√

3
− 2√

3

)

which shows that we can view the action generated by â as a one-parameter subgroup of
the conformal group CO(1, 1) of the Lorentz vector space (R2, dxdy). The quartic CCGPSR
curve thus fulfils H 2

√
2

3
√

3
,− 1

12

∼= R as Riemannian homogeneous spaces via the corresponding

action of G
h 2
√

2
3
√

3
,− 1

12
0 . Now, again similar to the cases H0,K for K ≤ 1

4 , we need to find all A ∈

G
h 2
√

2
3
√

3
,− 1

12 ⊂ GL(2) which are not contained in G

h 2
√

2
3
√

3
,− 1

12
0 , such that AH 2

√
2

3
√

3
,− 1

12
= H 2

√
2

3
√

3
,− 1

12
.

With
A =

(
a11 a12
a21 a22

)
it is immediate that a11 6= 0, since otherwise

h 2
√

2
3
√

3
,− 1

12
(( a11

a21 )x) = h 2
√

2
3
√

3
,− 1

12
(( 0

a21 )x) = − 1
12a

4
21x

4,

but h 2
√

2
3
√

3
,− 1

12
(( a11

a21 )x) = x4 is a necessary requirement for A to be an automorphism of
h 2
√

2
3
√

3
,− 1

12
. Furthermore, ( 1

0 ) ∈ H 2
√

2
3
√

3
,− 1

12
is mapped to ( a11

a21 ), which is required to be an
element of H 2

√
2

3
√

3
,− 1

12
. The hyperbolicity of H 2

√
2

3
√

3
,− 1

12
⊂ R2 then implies that a11 ≥ 1. Since

( a11
a21 ) ∈ H 2

√
2

3
√

3
,− 1

12
, A must thus be of the form (3.7). With Definition 3.13 and the fact that

G

h 2
√

2
3
√

3
,− 1

12
0 acts transitively on H 2

√
2

3
√

3
,− 1

12
, this shows that A can be written as

A = A0 · Ã

where A0 ∈ G

h 2
√

2
3
√

3
,− 1

12
0 and Ã ∈ G

h 2
√

2
3
√

3
,− 1

12 is contained in the stabilizer of the point ( 1
0 ) ∈

H 2
√

2
3
√

3
,− 1

12
. Hence, we need to determine all Ã ∈ G

h 2
√

2
3
√

3
,− 1

12 , such that Ã · ( 1
0 ) = ( 1

0 ). Ã must
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be of the form

Ã =

1 −
∂yh 2

√
2

3
√

3
,− 1

12
∂xh 2

√
2

3
√

3
,− 1

12

∣∣∣∣∣∣( 1
0 )
· r

0 r

 =
(

1 0
0 r

)

for some r 6= 0. Then

h 2
√

2
3
√

3
,− 1

12

(
Ã · ( xy )

)
= x4 − r2x2y2 + r3 2

√
2

3
√

3
xy3 − r4

12y
4,

which shows that r = 1. Summarising, we have shown that

G
h 2
√

2
3
√

3
,− 1

12 ∼= R× Z2,

where R acts as described in (7.58) and Z2 acts via ( xy ) 7→ − ( xy ).
In order to complete the proof of Theorem 7.2, we still need to prove that the quartic

CCGPSR curves a), b), c), and elements in the family of curves d) are pairwise inequivalent.
We already have seen that this is true if one considers two elements in the one-parameter
family d). Since the quartic CCGPSR curve a), that is H0, 1

4
, has a transitive action of the

corresponding Lie group G
h0, 1

4
0 , cf. Definition 3.13, it might only be equivalent to the quartic

CCGPSR curve H 2
√

2
3
√

3
,− 1

12
, that is b), which also has a transitive G

h 2
√

2
3
√

3
,− 1

12
0 -action. But with

dom
(
H0, 1

4

)
=
(
−
√

2,
√

2
)

and
dom

(
H 2

√
2

3
√

3
,− 1

12

)
=
(
−
√

2√
3
,
√

6
)

we find that
dh0, 1

4

∣∣∣( 1
−
√

2

) = dh0, 1
4

∣∣∣( 1√
2

) = 0

and
dh 2

√
2

3
√

3
,− 1

12

∣∣∣∣( 1
−
√

2√
3

) = 64
27dx+ 32

√
2

9
√

3
dy 6= 0, dh 2

√
2

3
√

3
,− 1

12

∣∣∣∣( 1√
6

) = 0.

This means that dh0, 1
4

vanishes on ∂
(
R>0 ·H0, 1

4

)
, but dh 2

√
2

3
√

3
,− 1

12
vanishes only on one of the

two connected components of ∂
(
R>0 ·H 2

√
2

3
√

3
,− 1

12

)
. Hence, the quartic CCGPSR curves a) and

b) can not be equivalent. Alternatively, we could have used that G
h 2
√

2
3
√

3
,− 1

12 has 2 connected
components, while Gh0, 1

4 has 8 connected components. Now, in order to prove that there
exist no quartic CCGPSR curve H0,K in the one-parameter family d) that is equivalent to
the quartic CCGPSR curve H 2

3
√

3
,0, that is c), we will use a similar argument. We find that

for K < 0, the equation
dh0,K (∂y) = y

(
−2 + 4Ky2

)
has no other solutions than y = 0. For 0 < K < 1

4 ,

dh0,K (∂y) = 0, y 6= 0 ⇔ y = ± 1√
2K

.
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But then
h0,K

(( 1
± 1√

2K

))
= 1− 1

4K < 0 ∀K ∈
(

0, 1
4

)
.

Hence, for 0 < K < 1
4 the points ± 1√

2K are not contained in ∂ (dom (H0,K)). Summarising,
we have shown that for all K < 1

4 , dh0,K |∂(R>0·H0,K) is nowhere zero. But for H 2
3
√

3
,0, we find

dom
(
H 2

3
√

3
,0

)
=
(
−
√

3
2 ,
√

3
)

and

dh 2
3
√

3
,0

∣∣∣∣( 1√
3

) ≡ 0.

Hence, for all K < 1
4 the quartic CCGPSR curves H0,K and H 2

3
√

3
,0 cannot be equivalent.

This finishes the proof of Theorem 7.2.

Remark 7.3. In [CNS, Thm. 2.9] it has been proven that every CCGPSR curve H ⊂ {h = 1}
equipped with its Riemannian centro-affine fundamental form gH is geodesically complete,
independent of the homogeneity-degree τ ≥ 3 of h. This in particular implies that the curves
a)–d) in Theorem 7.2 are geodesically complete.

Remark 7.4 (Comparison with CCPSR curves classification). CCPSR curves have been
classified in [CHM, Cor. 4]. One can also use the methods of Theorem 7.2 to find that
classification. Roughly, it works as follows. We assume without loss of generality that
h = hL := x3 − xy2 + Ly3, L ∈ R. The first step is to find all L, such that the connected
component HL ⊂ {hL = 1} that contains ( xy ) = ( 1

0 ) is a CCPSR curve. It turns out that HL

is a CCPSR curve if and only if |L| ≤ 2
3
√

3 . Then, we would study an analogue to the vector
field V (7.4) which was extensively used in the proof of Theorem 7.2, namely (recall (3.30))

Ṽ ∈ Γ(TR), Ṽ := δP3(y)(∂z)
y3 ∂L =

(9
2L

2 − 2
3

)
∂L. (7.59)

Then we find that
{
Ṽ = 0

}
= {± 2

3
√

3} and that the maximally extended integral curve of
Ṽ|R2\{Ṽ=0} that contains L = 0 has the image

(
− 2

3
√

3 ,
2

3
√

3

)
. Up to equivalence there are

precisely two CCPSR curves, H0 and H 2
3
√

3
, the latter being a homogeneous space with

respect to the action of G
h 2

3
√

3
0 . We can now verify that H0 is exactly the curve b) and H 2

3
√

3

is equivalent to the curve a) in [CHM, Cor. 4]. Note that there exists, up to equivalence, one
more hyperbolic cubic homogeneous polynomial h : R2 → R and a corresponding (maximal)
non-closed PSR curve which is not equivalent to neither H0 nor H 2

3
√

3
. In [CHM, Thm. 7], it

is given by h = x(x2 + y2), and in our approach it is equivalent to hL for all |L| > 2
3
√

3 . Note
that hL and h−L are always equivalent, and that the maximal integral curve of Ṽ|R2\{Ṽ=0}
that contains any point L > 2

3
√

3 has the image
{
L > 2

3
√

3

}
⊂ R.

Remark 7.5 (Comparison of moduli spaces of quartic CCGPSR curves and of CCPSR
curves). It was shown in [CHM, Cor. 4] that the moduli space of CCPSR curves consists of
two points and is thus compact. In Remark 7.4 we have described how to find the equivalence
class of a CCPSR curve when the corresponding cubic polynomial is of the form (3.12) by
parametrising the set of CCPSR curves over the compact interval

[
− 2

3
√

3 ,
2

3
√

3

]
. A similar

parametrisation of quartic CCGPSR curves over a compact set does not exist as we have
seen in Theorem 7.2. Instead, we have identified a suitable non-compact subset of R2 over
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which the set of quartic CCGPSR curves can be parametrised. If we, however, restrict to
quartic CCGPSR curves which are singular at infinity, we find that a corresponding compact
interval continuously embedded in R2 is given by the set{(

±u(K)
K

) ∣∣∣∣ K ∈ [− 1
12 ,

1
4

]}
,

see (7.18) and (7.21). Note that for one-dimensional CCGPSR manifolds, being singular at
infinity as in Definition 3.16 is equivalent to having non-regular boundary behaviour as in
Definition 5.1.

Remark 7.5 leads to the following question.

Open problem 7.6 (Possible compactness of non-regular quartic CCGPSR manifolds gen-
rating set). Can we parametrise the set of quartic CCGPSR manifolds with non-regular
boundary behaviour over a compact set in the sense as described in Proposition 5.8 for CCPSR
manifolds22?

If we find a positive answer to the open problem 7.6, then we could use an argument
similar to the proof of Proposition 5.17 in order to solve the still open question whether
quartic CCGPSR manifolds of dimension n ≥ 2 are always complete or not.

At this point we will present an example for Proposition 3.33, that is for δ2Pk for quartic
GPSR curves.

Example 7.7 (δ2P3(y) and δ2P4(y) for quartic curves). With Proposition 3.33, equations
(3.56) and (3.57), one can show that for hL,K = x4−x2y2+Lxy3+Ky4 (7.1) with P3(y) = Ly3

and P4(y) = Ky4

δ2P3(y) =
(135

4 L3 + 54LK − 11
2 L

)
y3dz2,

δ2P4(y) =
(

54L2K + 9
2L

2 + 24K2 − 4K − 1
2

)
y4dz2.

With L(T ) and K(T ) as in (7.8) and (7.9), respectively, one can similarly to the relations of
V (7.4) and ∂

∂T

(
L(T )
K(T )

)∣∣∣
T=0

as in (7.10) verify that

∂2

∂T 2

(
L(T )
K(T )

)∣∣∣∣∣
T=0

=
(

135
4 L

3 + 54LK − 11
2 L

54L2K + 9
2L

2 + 24K2 − 4K − 1
2

)
=
(
δ2P3(y)/(y3dz2)
δ2P4(y)/(y4dz2)

)

as expected.

Recall that for CCPSR manifolds H ⊂ {h = 1}, h of the form (3.12), and ( 1
0 ) ∈ H, we

have seen in Corollary 4.5 that all points z ∈ ∂dom(H) fulfil the estimate
√

3
2 ≤ ‖z‖ ≤

√
3.

One application of Theorem 7.2 is an analogue of the upper bound for quartic CCGPSR
manifolds of arbitrary dimension. We will also see that there exists no such lower positive
bound for quartic CCGPSR manifolds that holds for any fixed dimension.

Proposition 7.8 (‖z‖ <
√

6). Let H ⊂ {h = 1} be an n ≥ 1-dimensional quartic CCGPSR
manifold, h of the form (3.12), and ( 1

0 ) ∈ H. Then

∀z ∈ ∂dom(H) : ‖z‖ ≤
√

6, (7.60)
22Recall that an n-dimensional CCPSR manifold H ⊂ {h = 1} has non-regular boundary behaviour if and

only if it is equivalent to a CCPSR manifold corresponding to a polynomial in ∂Cn.
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where ‖ · ‖ denotes the norm induced by the Euclidean scalar product on Rn used in (3.12).
On the other hand, there exist no general lower positive bound for the Euclidean norm of
points in ∂dom(H) irrespective of the dimension of H, i.e. for all n ≥ 1 and all δ > 0 we
can find a quartic CCGPSR manifold H with dim(H) = n, such that there exists a point
zδ ∈ ∂dom(H) with ‖zδ‖ ≤ δ.

Proof. First we show the existence of the upper positive bound. For an n ≥ 1-dimensional
quartic CCGPSR manifold H as used in this proposition, consider for v ∈ Rn \ {0}, such
that ‖v‖ = 1, the restriction h|span{( 1

0 ),( 1
v )}. Then with ( xy ) denoting coordinates of R2, we

define h̃ : R2 → R as
h (( xy )) = h (x ( 1

0 ) + y ( 0
v )) .

One can now easily show that h̃ is of the form (3.12). Let H̃ ⊂ h̃ denote the quartic CCGPSR
curve that contains the point ( 1

0 ) ∈ R2. Note that Ĥ being a quartic CCGPSR curve follows
from the fact that the map(

H̃, g
H̃

)
→ (H, gH) ,

(
x
y

)
7→ x

(
1
0

)
+ y

(
0
v

)

is, by construction, an isometric embedding. If we can now show that, independent of the
chosen v ∈ Rn \{0}, for all z ∈ ∂dom

(
H̃
)

the claimed estimate ‖z‖ ≤
√

6 holds, we will have
proven it for all dimensions. Since Ĥ is a quartic CCGPSR curve, we know by the proof of
Theorem 7.2 that H̃ = HL,K ⊂ {hL,K = 1} with ( 1

0 ) as in (7.1), with the following possible
values for L and K: (

L
K

)
=
(

0
1
4

)
,(

L
K

)
=
(

2
√

2
3
√

3
− 1

12

)
,(

L
K

)
∈
{
K ∈

(
− 1

12 ,
1
4

)
, |L| ≤ u(K)

}
,(

L
K

)
∈
{
K < − 1

12 , |L| < w(K)
}
,

u and w as defined in (7.18) and (7.28), respectively.
For (L,K)T =

(
0, 1

4

)T
, dom

(
H0, 1

4

)
=

(
−
√

2,
√

2
)
, and for (L,K)T =

(
2
√

2
3
√

3 ,−
1
12

)T
,

dom
(
H 2

√
2

3
√

3
,− 1

12

)
=
(
−
√

2√
3 ,
√

6
)
. Hence, in these two cases the estimate (7.60) holds.

Now we consider (L,K)T ∈
{
K ∈

(
− 1

12 ,
1
4

)
, |L| ≤ u(K)

}
. We want to determine

sup
(L,K)T∈{K∈(− 1

12 ,
1
4), |L|≤u(K)}

 max
z∈∂dom(HL,K)

‖z‖

 .
In general, denote (whenever defined) dom (HL,K) = (NL,K ,PL,K) and note that

dom (H−L,K) = (−PL,K ,NL,K) .

Hence, we can without loss of generality assume that L ≥ 0. Then we automatically have
PL,K ≥ ‖NL,K‖. Furthermore, for L̃ ≥ L ≥ 0 such that H

L̃,K
and HL,K are both quartic

CCGPSR curves it is easy to see that

L̃ ≥ L̃ ⇒ P
L̃,K
≥ PL,K . (7.61)
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Hence,

sup
(L,K)T∈{K∈(− 1

12 ,
1
4), |L|≤u(K)}

 max
z∈∂dom(HL,K)

‖z‖

 = sup
K∈(− 1

12 ,
1
4)
Pu(K),K .

It turns out that we can find an explicit formula for Pu(K),K , K ∈
(
− 1

12 ,
1
4

)
. Recall that

u(K) =
√

2
3
√

3

√
1− 36K +

√
(1 + 12K)3.

We find that

∂Ku(K) =
√

6
(√

1 + 12K − 2
)

√
1− 36K +

√
(1 + 12K)3

and claim that Pu(K),K = −∂Ku(K) for all K ∈
(
− 1

12 ,
1
4

)
. In order to show this, first note

that −∂Ku(K) > 0 for all K ∈
(
− 1

12 ,
1
4

)
, and one can check that

h (1,−∂Ku(K))u(K),K) = 0 ∀K ∈
(
− 1

12 ,
1
4

)
. (7.62)

We still need to show that −∂Ku(K) is not just some solution of h (1, z)u(K),K) = 0 for z,
but actually coincides with Pu(K),K . For K = 0, −∂Ku(0) =

√
3 = Pu(K),K . For K ∈

(
0, 1

4

)
,

recall that the corresponding function (7.13)

fu(K),K(t) = hu(K),K (( 1
t )) = 1− t2 + u(K)t3 +Kt4

always has precisely one local maximum at t = 0, and two distinct local minima (7.15),
which are given by tm (7.17) and tM (7.23). For (L,K)T = (u(K), K)T , K ∈

(
0, 1

4

)
, we

have tM < 0. Also recall that for (L,K)T = (u(K), K)T , K ∈
(
0, 1

4

)
, the point tm > 0

is a positive root of fu(K),K(t), cf. (7.16) (7.17) (7.18). This shows that fu(K),K(t) has a
unique positive root tm, which coincides by construction with Pu(K),K . One now verifies that,
indeed, for (L,K)T = (u(K), K)T , K ∈

(
0, 1

4

)
, we have that tm = −∂Ku(K). Now we want

to determine
sup

K∈(0, 1
4)
Pu(K),K .

For that we calculate

∂K(−∂Ku)(K) =
3
√

6
(
(1 + 12K)3 + 12(1 + 12K)2 + (−864K2 − 240K − 14)

√
1 + 12K

)
(1 + 12K)2

√
1− 36K +

√
(1 + 12K)3

3 .

The denominator in the above formula is positive for all K ∈
(
− 1

12 ,
1
4

)
. Using a computer

algebra system like MAPLE, we obtain

(1 + 12K)3 + 12(1 + 12K)2 +
(
−864K2 − 240K − 14

)√
1 + 12K = 0 ⇔ K ∈

{
− 1

12 ,
1
4

}
.

At K = 0 we find −∂2
Ku(0) = −3

√
3

2 . This shows that

− ∂2
Ku(K) < 0 ∀K ∈

(
− 1

12 ,
1
4

)
, (7.63)
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hence in particular for all K ∈
(
0, 1

4

)
. With u(0) = 2

3
√

3 this yields

sup
K∈(0, 1

4)
Pu(K),K = lim

K→0,K>0
Pu(K),K = P 2

3
√

3
,0 =
√

3.

Next we need to consider K ∈
(
− 1

12 , 0
)

and show that for these K we also have Pu(K),K =
−∂Ku(K). With equation (7.62) and equations (7.16), (7.17), and (7.18), one only has to
check that tm and −∂Ku(K) coincide, which turns out to be true. We can now use (7.63)
again and obtain with u

(
− 1

12

)
= 2

√
2

3
√

3

sup
K∈(− 1

12 ,0)
Pu(K),K = lim

K→− 1
12 ,K>−

1
12

Pu(K),K = P 2
√

2
3
√

3
,− 1

12
=
√

6.

Next we need to consider points (L,K)T ∈
{
K < − 1

12 , |L| < w(K)
}

and determine

sup
(L,K)T∈{K<− 1

12 , |L|<w(K)}

 max
z∈∂dom(HL,K)

‖z‖

 .
We want to use (7.61) again. However, contrary to points (L,K)T = (u(K), K)T , maximally
extended quartic GPSR curves Hw(K),K) corresponding to points (L,K)T = (w(K), K)T ,
K < − 1

12 , are not quartic CCGPSR curves, cf. (7.31) (7.32). But we can show that for fixed
K < − 1

12 and all 0 ≤ L ≤ w(K), the corresponding function fL,K(t) (7.13) has precisely
one positive and one negative real root. Solving ḟL,K(t) = 0 symbolically, we obtain (7.15).
Hence, ḟL,K(t) = 0 has precisely one real root t = 0 for K < − 1

12 and 0 ≤ L ≤ w(K) if and
only if 9L2 + 32K < 0. Thus if we can show that 9w(K)2 + 32K < 0 for all K < − 1

12 , we
will automatically have proven 9L2 + 32K < 0 for all 0 ≤ L ≤ w(K) and all K < − 1

12 . We
obtain

9w(K)2 + 32K = 2
3 + 8K,

which indeed is negative for all K < − 1
12 . This shows that fL,K(t) has exactly one local

extremum at t = 0 for all 0 ≤ L ≤ w(K) and all K < − 1
12 , and by the sign of the prefactor

of the highest order monomial Kt4 (in t) in fL,K(t) it follows that fL,K(t) (7.13) has precisely
one positive and one negative real root for all 0 ≤ L ≤ w(K) and all K < − 1

12 as claimed.
Now we use that the prefactors of the monomials in t of fL,K(t) depend smoothly on L, K,
and can thus use (7.61) to get

sup
(L,K)T∈{K<− 1

12 , |L|<w(K)}

 max
z∈∂dom(HL,K)

‖z‖

 = sup
K<− 1

12

Pw(K),K ,

where we denote by Pw(K),K the (unique) positive real root of fw(K),K(t). Since this is true
for all K < − 1

12 and the prefactors of the monomials in t of fw(K),K(t) depend smoothly on
K it follows that (

−∞,− 1
12

)
3 K 7→ Pw(K),K ∈ R>0

is smooth. Furthermore we have for all K ∈
(
−∞,− 1

12

)
0 ≡ ∂K

(
fw(K),K

(
Pw(K),K

))
= ∂fw(K),K(t)

∂t

∣∣∣∣∣
Pw(K),K

∂KPw(K),K + P3
w(K),K

(
∂Kw(K) + Pw(K),K

)
. (7.64)
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Note that fw(K),K(t) is strictly decreasing for t > 0 (this follows from the uniqueness of its
local maximum at t = 0), which implies that

∂fw(K),K(t)
∂t

∣∣∣∣∣
Pw(K),K

< 0 ∀K < − 1
12 .

We further find

∂Kw(K) + Pw(K),K = 9(1 + 12K)2

(1− 36K)2 > 0 ∀K < − 1
12 .

Hence, (7.64) implies with Pw(K),K > 0 for all K < − 1
12 that

∂KPw(K),K > 0 ∀K < − 1
12 .

Together with w
(
− 1

12

)
= 2

√
2

3
√

3 , this shows

sup
K<− 1

12

Pw(K),K = lim
K→− 1

12 ,K<−
1

12

Pw(K),K = P 2
√

2
3
√

3
,− 1

12
=
√

6.

This finishes the proof of the estimate (7.60).
It remains to prove the second statement of this proposition. To do so, it suffices to

construct for every n ∈ N a sequence of n-dimensional quartic CCGPSR manifolds Hi,
i ∈ N, such that

min
z∈∂dom(Hi)

‖z‖ < ci,

where {ci, i ∈ N} ⊂ R>0 is any strictly decreasing sequence of positive real numbers. As
usual, Hi ⊂ {hi = 1} is assumed to contain the point ( xy ) = ( 1

0 ) and hi is assumed to be
of the form (3.12). Using the latter assumptions, we define for each n ∈ N a candidate for

hi : Rn+1 → R, where we let ( xy ) =
 x

y1
...
yn

 denote standard linear coordinates on Rn+1 with

standard Euclidean scalar product on Rn denoted by 〈·, ·〉. Let

hi := x4 − x2〈y, y〉 − i〈y, y〉2,

and Hi ⊂ {hi = 1} be the connected component of {hi = 1} that contains the point
( xy ) = ( 1

0 ). Then Hi is a quartic CCGPSR manifold for all i ∈ N. This follows from the fact
that the corresponding function βi (3.22),

βi : Rn → R, βi(z) = hi (( 1
z )) = 1− 〈z, z〉 − i〈z, z〉2,

is strictly concave and, hence, firstly the (unique) connected component of the set

{1} × {βi(z) > 0} = (R>0 ·Hi) ∩
{(

1
z

) ∣∣∣∣∣ z ∈ Rn

}

that contains the point( xy ) = ( 1
0 ) ⊂ {hi = 1} ⊂ Rn+1 is precompact, and secondly the

right hand side of (3.33) coincides with the pullback of −∂2hi and is positive definite on
said connected component, showing that Hi is indeed a quartic CCGPSR manifold and that
dom (Hi) coincides precisely with that set projected to Rn, cf. (3.13). We find that

dom (Hi) =
‖z‖ <

√√
1 + 4i− 1

2i

 ⊂ Rn.
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Now
√√

1+4i−1
2i → 0 as i → ∞ shows that for all δ > 0 there exists an j ∈ N, such that√√

1+4j−1
2j < δ, and we have thus found with the corresponding Hj a suitable n-dimensional

quartic CCGPSR manifold, such that for all z ∈ ∂dom (Hj), ‖z‖ ≤ δ. This finishes the proof
of Proposition 7.8.

We will now use Proposition 7.8 to find a similar statement for quartic CCGPSR manifolds
compared to Lemma 4.8 which describes a property of CCPSR manifolds.

Lemma 7.9 (Hyperbolicity condition for quartic CCGPSR manifolds with knowledge that
‖z‖ <

√
6). Let h : Rn+1 → R be a quartic homogeneous polynomial of the form (3.12),

h = x4 − x2〈y, y〉 + xP3(y) + P4(y). Let H ⊂ {h = 1} be the connected component of
{h = 1} ⊂ Rn+1 that contains the point ( xy ) = ( 1

0 ), and assume that H ⊂ Rn+1 is a
hypersurface. Then H is a quartic CCGPSR manifold if and only if

‖z‖ <
√

6 (7.65)

and

2〈dz, dz〉 − 6P3(z, dz, dz)− 12P4(z, z, dz, dz)

+ 1
2(6− 〈z, z〉)

(
16〈z, dz〉2 − 24〈z, dz〉P3(z, z, dz) + 9P3(z, z, dz)2

)
> 0 (7.66)

for all ( 1
z ) ∈ (R>0 ·H) ∩ {( 1

z ) ∈ Rn+1 | z ∈ Rn}.

Proof. The proof of this lemma is very similar to the proof of Lemma 4.8. The differences
are mostly replacing “PSR” with “GPSR” and adding the label “quartic” when appropriate,
and the calculation of det

(
−∂2h( 1

z )
)

which additionally needs Proposition 7.8 (for PSR
manifolds see formula (4.6) in Lemma 4.8).

Assume that H is a quartic CCGPSR manifold. Then Proposition 7.8 implies that ‖z‖ <√
6 for all z ∈ dom(H) and we calculate

det
(
−∂2h( 1

z )
)

= det
(
−12 + 2〈z, z〉 4zT − 3P3(z, z, ·)

4z − 3P3(z, z, ·)T 21− 6P3(z, ·, ·)− 12P4(z, z, ·, ·)

)
= (−12 + 2〈z, z〉)

· det
(

21− 6P3(z, ·, ·)− 12P4(z, z, ·, ·)

− 1
−12 + 2〈z, z〉

(
4z − 3P3(z, z, ·)T

)
⊗
(
4zT − 3P3(z, z, ·)

))
. (7.67)

Furthermore, the sets dom(H) and (R>0 ·H) ∩ {( 1
z ) ∈ Rn+1 | z ∈ Rn} coincide, cf. (3.13).

Then (7.67) is equivalent to (7.66).
On the other hand, let H be the connected component of {h = 1} that contains the

point ( xy ) = ( 1
0 ), and assume that (7.65) and (7.66) hold. Then the sign of det

(
−∂2h( 1

z )
)

is
constantly −1 for all ( 1

z ) ∈ (R>0 ·H)∩ {( 1
z ) ∈ Rn+1 | z ∈ Rn}, and since the point ( 1

0 ) ∈ H

is automatically a hyperbolic point of h since h is of the form (3.12), it follows that H

consists only of hyperbolic points. Since H is by assumption a connected component of
{h = 1} ⊂ Rn+1, it is also closed. Hence, H is a quartic CCGPSR manifold as claimed.
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Next we will discuss some additional examples of quartic CCGPSR manifolds.

Example 7.10 (“Homogeneous hat”). Consider the quartic homogeneous polynomial

h : Rn+1 → R, h = x4 − x2〈y, y〉+ 1
4〈y, y〉

2,

where ( xy ) denote linear coordinates on Rn+1 and 〈·, ·〉 denotes the standard scalar product on
Rn induced by y = (y1, . . . , yn)T . Then the connected component H ⊂ {h = 1} that contains
the point ( xy ) = ( 1

0 ) ∈ Rn+1 is a quartic CCGPSR manifold for all n ≥ 1. Furthermore Gh
0

(cf. Definition 3.13) acts transitively on H, so that H is a homogeneous space with

H ∼= SO+(n, 1)/SO(n),

where SO+(n, 1)/SO(n) is the oriented n-dimensional hyperbolic space. Here SO+(n, 1) de-
notes the time-orientation preserving component of SO(n, 1). Furthermore, every point p 6= 0
in the boundary of U := R>0 ·H does violate both conditions (i) and (ii) in Definition 5.1,
where in (ii)

dim ker
(
−∂2h

∣∣∣
T (∂U\{0})×T (∂U\{0})

)
= n,

so one might say that H violates Def. 5.1 (i) and (ii) as much as possible.
Note that for n = 1, H and the quartic CCGPSR a) in Theorem 7.2 coincide (see also

Figure 24), and one might think of H for n ≥ 2 as the higher-dimensional analogues of the
curve a).

Proof. In order to show that all of the above claims are true, we check that for any dB0 ∈
Lin (Rn, so(n)) (in (3.60)) both δP3(y) (3.31) and δP4(y) (3.32) identically vanish. Hence,
Proposition 3.34 tells us that H is indeed a quartic CCGPSR manifold with transitively
acting Lie group Gh

0 . We still need to show that H ∼= SO+(n, 1)/SO(n). To do so we will
first transform the linear coordinates ( xy ) via ( xy )→

(
x√
2y

)
and obtain that h transforms to

h̃ = x4 − 2x2〈y, y〉+ 〈y, y〉2 =
(
−x2 + 〈y, y〉

)2
.

Let H̃ ⊂
{
h̃ = 1

}
denote the quartic CCGPSR manifold that is the connected component of{

h̃ = 1
}
⊂ Rn+1 containing ( xy ) = ( 1

0 ), and note that H and H̃ are equivalent. We will now
show that so(n, 1) ⊂ T1G

h̃ and that the corresponding action of SO+(n, 1) on H̃ is transitive.
Let

ai :=
(

dyT

dy

)
(∂yi)

for 1 ≤ i ≤ n (note: in the untransformed coordinates, the ai correspond to dA0 (∂zi) (3.60),
respectively). Then we check that

dh̃(xy ) (ai · ( xy )) ≡ 0,

and that [ai, aj] = aiaj−ajai = δi+1,j+1−δj+1,i+1, where δk,` denotes the (n+1)×(n+1)-matrix
with only non-zero entry a 1 at the kth row, `th column. The set

{ai | 1 ≤ i ≤ n}

is a generating set of the Lie algebra so(n, 1), where a ∈ gl(n+ 1) is an element of so(n, 1) if

aT
(
−1

1

)
+
(
−1

1

)
a = 0. (7.68)
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This shows that h̃ is so(n, 1)-invariant and that we have an isometric action µ : SO+(n, 1)×
H̃→ H̃. In order to see that this action is transitive, observe that(

x
y

)
∈ H̃ ⇔ −x2 + 〈y, y〉 = −1, x > 0,

since by assumption ( 1
0 ) ∈ H̃. With our construction for so(n, 1) (7.68), SO(n, 1)+ acts

transitively on the set {−x2 +〈y, y〉 = −1, x > 0} and, hence, SO(n, 1)+ also acts transitively
on Ĥ. The isotropy group of any point in H̃, e.g. ( xy ) = ( 1

0 ), is given by SO(n) ⊂ SO+(n, 1),
embedded via

SO(n) 3 A 7→
(

1
A

)
∈ SO+(n, 1).

Hence, H̃ ∼= SO+(n, 1)/SO(n).
For the last claim, that is the violation of both Def. 5.1 (i) and (ii), observe that for

U = R>0 ·H we have
∂U = R>0 ·

{
( 1
v ) ∈ Rn+1

∣∣∣ 〈v, v〉 = 2
}
.

Hence,
T( 1

v )(∂U \ {0}) = R · ( 1
v )⊕

{
( 0
w ) ∈ Rn+1

∣∣∣ w ∈ ker(〈v, ·〉)
}

for all ( 1
v ) ∈ ∂U \{0}. One can now easily check that dh|∂U ≡ 0, which shows that H violates

Def. 5.1 (i), and that −∂2h|T∂(∂U\{0})×T∂(∂U\{0}) ≡ 0, showing that H violates Def. 5.1 (ii) in
the stated sense.

Figure 24: Plot of β(z) as in (3.22) corresponding to n = 1, h = x4 − x2y2 + 1
4y

4. It resembles a hat.

Next we will present a family of inhomogeneous n ≥ 1-dimensional quartic CCGPSR
manifolds, which might be thought of as a higher-dimensional analogue of the family of
quartic CCGPSR curves d) in Theorem 7.2 with the additional restriction K ≤ 0.

Example 7.11 (h = x4 − x2〈y, y〉 − (M(y, y))2-family). Let M : Rn ×Rn → R be a bilinear
form. Then with h = x4− x2〈y, y〉 − (M(y, y))2, the connected component H of {h = 1} that
contains the point ( xy ) = ( 1

0 ) ∈ {h = 1} ⊂ Rn+1 is a quartic CCGPSR manifold. This can be
seen by verifying that the corresponding function

β : Rn → R, β(z) = 1− 〈z, z〉 − (M(z, z))2,

as in (3.22) is globally strictly convex for any bilinear form M ∈ Sym ((Rn)∗) and with the
formula (3.33) for the pullback of gH to dom(H).
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The quartic CCGPSR manifolds in Example 7.11 for dim(H) = n ≥ 2 might be though
of as a higher-dimensional analogue to the quartic CCGPSR curves described in Theorem
7.2 d) with corresponding K ≤ 0. It is an interesting question if one can, similarly, generalise
said curves with corresponding K ∈

(
0, 1

4

]
. Possible candidates would be the hypersurfaces

corresponding to polynomials of the form h = x4 − x2〈y, y〉+ (M(y, y))2. However, M must
not have eigenvalues of absolute value bigger than 1

2 , which follows from the considerations
in the proof of Theorem 7.2. At this point it is however unknown if that eigenvalue-condition
for M automatically implies that the corresponding maximal quartic CCGPSR manifold
H ⊂ {h = 1} is closed in Rn+1 for n ≥ 2 (note: examples of such hypersurfaces are studied
in Example 7.10). We leave that question as a problem for future research.
Example 7.12 (Cubics h times x, same dom(H) and even easier metric). Another way to
obtain quartic CCGPSR manifolds is as follows. Let H ⊂ {h = x3 − x〈y, y〉 + P3(y) =
1} ⊂ Rn+1, ( 1

0 ) ∈ H, be a CCPSR manifold of dimension dim(H) = n. Then the connected
component H̃ of the set {x · h = x4 − x2〈y, y〉+ xP3(y) = 1} ⊂ Rn+1 that contains the point
( xy ) = ( 1

0 ) ∈ {x · h = 1} ⊂ Rn+1 is a quartic CCGPSR manifold. In order to see that this is
true, consider the functions β for H and β̃ for H̃, both as in equation (3.22). We find that

β(z) = 1− 〈z, z〉+ P3(z) = β̃(z)

for all z ∈ Rn. This in particular means that the two sets dom(H) ⊂ Rn and dom
(
H̃
)

coin-
cide. Denote by Φh : dom(H)→ H and Φx·h : dom

(
H̃
)
→ H̃ the respective diffeomorphisms,

cf. (3.14). Then we obtain using equation (3.33) that(
Φ∗x·hgH̃

)
z

= − ∂2βz
4β(z) + 3dβ2

z

16β2(z)

= 3
4

(
− ∂2βz

3β(z) + 1dβ2
z

4β2(z)

)

≥ 3
4

(
− ∂2βz

3β(z) + 2dβ2
z

9β2(z)

)
= 3

4 (Φ∗gH)z

for all z ∈ dom
(
H̃
)

= dom(H). This shows that
(
H̃, g

H̃

)
is geodesically complete, and by

using [CNS, Prop. 1.8] we deduce that H̃ is a quartic CCGPSR manifold as claimed.
The construction described in Example 7.12 has, however, one important downside to

it, which is that it does in general not preserve equivalence classes. This is meant in the
sense that equivalent CCPSR manifolds need not be mapped to equivalent quartic CCGPSR
manifolds in that way. See Section 9 for an example and a related discussion.

We will end this section with an open problem, which turned out to be more difficult than
expected during the preparation of this thesis.
Open problem 7.13 (Existence of a quartic CCGPSR surface with ‖z‖ =

√
6). Does there

exist a quartic CCGPSR surface H ⊂ {h = 1}, h of the form (3.12), ( 1
0 ) ∈ H ⊂ {h = 1} ⊂

R2, such that
sup

z∈dom(H)
‖z‖ =

√
6,

or, equivalently, such that there exists z ∈ ∂dom(H) with ‖z‖ =
√

6?
Note that for quartic CCGPSR curves, the curve H in Theorem 7.2 b) fulfils sup

z∈dom(H)
‖z‖ =

√
6, but the existence of a quartic CCGPSR manifold H of dimension H ≥ 2 with that

property is a priori not clear.
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8 Scalar curvature of manifolds in the image of the
generalised supergravity r-map

In this section we will study applications of our previous results to the theory of the gener-
alised supergravity r-map. In particular we are interested in finding a formula for the scalar
curvature and its first derivative of manifolds in the image of the r-map similar to (3.34) in
Proposition 3.29, and (3.39), respectively (3.40), in Proposition 3.30.

Furthermore, we will provide an application of Theorem 5.6 for the theory of the super-
gravity q-map, that is, the composition of the supergravity r- and c- map. To do so we will
first review basic definitions and results from that field. References for this subject are e.g.
[GST], [FS], [DV], [CMMS1], [CMMS2], [CM], [C et al.], [CHM], [CDL], [CDMV], [D].

Definition 8.1 (Pseudo-Kähler manifold). A pseudo-Kähler manifold is a triple (M,J, g),
where M is a complex manifold with complex structure J and equipped with a pseudo-
Hermitian metric g, such that

ω := g(·, J ·) (8.1)
is closed. ω is called the Kähler form of (M,J, g).

Now we will define the generalised supergravity r-map, cf. [CHM, Def. 2].

Definition 8.2 (Generalised supergravity r-map). Let U ⊂ Rn+1 be an open connected subset
that is invariant under multiplication with positive numbers, that is for all p ∈ U and all
r > 0, rp ∈ U . For any23 smooth homogeneous function h : U → R>0 of homogeneity degree
τ ∈ R \ {1, 0}, H = {p ∈ U | h(p) = 1} is a smooth hypersuface contained in U ⊂ Rn+1

is a smooth hypersurface (which follows from the Euler identity for homogeneous functions).
Further assume that

gH := −1
τ
∂2h|TH×TH > 0.

Then
gU := −1

τ
∂2 (ln h) (8.2)

is a Riemmanian metric. Now consider the manifold

M := U × Rn+1. (8.3)

Let (x1, . . . , xn+1)T denote the linear coordinates on U induced by the embedding U ⊂ Rn+1

and let (y1, . . . , yn+1)T denote the standard linear coordinates on Rn+1, so that M is equipped
with the global coordinate system (x1, . . . , xn+1, y1, . . . , yn+1)T . Using the notation

gU =
n+1∑
i,j=1

gijdxidxj,

we equip M with the Riemannian metric

gM := 3
4

n+1∑
i,j=1

gij (dxidxj + dyidyj) .

Then (M, gM) is a Riemannian manifold and the correspondence

(H, gH) 7→ (M, gM)

is called the generalised supergravity r-map. If H is a connected PSR manifold, then it is called
the supergravity r-map. In the following, we will also denote M = r(H).

23No restriction on h to be a polynomial or a rational function.
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Note that the generalised supergravity r-map can by applied in particular to CCPSR
and CCGPSR manifolds. In order to describe manifolds in the image of the generalised
supergravity r-map, we need the notion of projective special Kähler manifolds. Instead of
rigorously introducing these this type of Kähler manifolds here, we refer the reader to [CHM,
Def. 4] and the discussion leading to that definition, since a clean and complete introduction
would go beyond the scope of this thesis. Having the definition of the latter type of Kähler
manifolds in mind, we can now give to following characterisation of manifolds in the image
of the generalised supergravity r-map.

Theorem 8.3 ([CHM] Thm. 4). The generalised supergravity r-map maps complete n ≥ 0-
dimensional Riemannian manifolds (H, gH) to complete Kähler manifolds (M, gM) of real
dimension 2n + 2 with a free isometric action of the vector group Rn+1. The supergravity
r-map maps complete n ≥ 0-dimensional PSR manifolds to complete projective special Kähler
manifolds of real dimension 2n+ 2.

We are interested in the application of Theorem 8.3 to CCGPSR and, in particular,
CCPSR manifolds. Parts of the following discussionhave been taken from the proof of [CHM,
Thm. 4] in [CHM]. For an n ≥ 0-dimensional CCGPSR manifold24 H ⊂ {h = 1} ⊂ Rn+1,
M = r(H) as in (8.3) fulfils

M = U × Rn+1 = (R>0 ·H)× Rn+1

with the usual identification of the connected component U of {h > 0} ⊂ Rn+1 containing H

and R>0 ·H. Hence, H being connected implies that M is also connected. The Kähler (or
projective special Kähler for CCPSR manifolds H) manifold M is in particular a complex
manifold. For chosen linear coordinates (x1, . . . , xn+1)T of the ambient space Rn+1 of H ⊂
Rn+1 and induced coordinates of the open cone U ⊂ Rn+1, U ∼= R>0 · H, together with
the chosen linear coordinates (y1, . . . , yn+1)T of the Rn+1-part in (8.3), the induced complex
coordinates (z1, . . . , zn+1)T on M are given by

(z1, . . . , zn+1)T = (y1 + ix1, . . . , yn+1 + ixn+1)T .

Hence, we can identify M = U ×Rn+1 with Rn+1 + iU ⊂ Cn+1, where we think of the vector
part Rn+1 in (8.3) as the real part, and of the con part U in (8.3) as the imaginary part of
M .

Whenever we are working with our usual standard form of the polynomial h as in Propo-
sition 3.18, equation (3.12), we denote the linear coordinates of the ambient space Rn+1 of the
considered CCGPSR manifold H ⊂ Rn+1 by (x, y1, . . . , yn)T . For images of the generalised
supergravity r-map M = r(H) = U×Rn+1, we will then denote the chosen linear coordinates
of the vector part Rn+1 in (8.3) by (x̃, ỹ1, . . . , ỹn)T so that the induced complex coordinates
of M are of the form (x̃+ ix, ỹ1 + iy1, . . . , ỹn + iyn)T . When considering the induced real
coordinates of M = U × Rn+1, we will use the ordering (x, y1, . . . , yn, x̃, ỹ1, . . . , ỹn)T . In the
following, we will frequently identify ∂i = ∂yi for all 1 ≤ i ≤ n whenever we use linear
coordinates as in equation (3.12).

Remark 8.4 (Standard form analogue for r(H)). Let H ⊂ {h = 1} and H̃ ⊂
{
h̃ = 1

}
be

two equivalent n-dimensional CCGPSR manifolds related by A ∈ GL(n+ 1), that is

h ◦ A = h̃, AH̃ = H.

24Recall that we view CCPSR manifolds as special cases of CCGPSR manifolds.
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Then their respective images in the generalised supergravity r-map

M = r(H) = (R>0 ·H)× Rn+1 ⊂ Rn+1 × Rn+1 ∼= R2n+2

and
M̃ = r

(
H̃
)

=
(
R>0 · H̃

)
× Rn+1 ⊂ Rn+1 × Rn+1 ∼= R2n+2

are isometric via the linear map(
A

A

)
: M̃ →M, (rp, q) 7→ (rAp,Aq),

where r ∈ R>0, p ∈ H̃, Ap ∈ H, q ∈ Rn+1 in the vector part of M̃ , and Aq ∈ Rn+1

in the vector part of M . This means that we can make use of Proposition 3.18 in the
setting of the generalised supergravity r-map. We are particularly interested in the scalar
curvature SM of manifolds M = r(H) in the image of the generalised supergravity r-map,
H ⊂ {h = 1} being a CCGPSR manifold. If we want to know the value of SM at some
point (rp, q) ∈ M = (R>0 ·H) × Rn+1, r ∈ R>0, p ∈ H, q ∈ Rn+1, we use first use the
fact that the vector group Rn+1 acts via isometries on the vector part of M . This implies
that SM(rp, q) = SM(rp, 0) for all q ∈ Rn+1 and all rp ∈ R>0 · H. Then we determine
A(p) ∈ GL(n+ 1) fulfilling Proposition 3.18 (i) and (ii). Together with the isometric action
of R>0 on the R>0 ·H-part of M , this means in order to calculate SM at any point, it suffices
to find a formula for SM (( 1

0 ) , 0) depending on the prefactors of the monomials in P3, . . . , Pτ
assuming h is of the form (3.12) (see Lemma 8.6 for the result). Note the similarity to the
process of determining SH (( 1

0 )), cf. Proposition 3.29.

Lemma 8.5 (Homogeneity of r(H) for homogeneous H). Let H ⊂ {h = 1} be a CCGPSR
manifold and assume that the identity-component of the automorphism group of h, that is Gh

0
(3.4), acts transitively on H. Then the image of H in the generalised supergravity r-map,
r(H), is a homogeneous space.

Proof. [CHM, Prop. 1] implies that
(
r(H), gr(H)

)
is isometric to

R×H × Rn+1,
3
4

dr2 + gH +
n+1∑
i,j=1

gijdyidyj

 ,
where r denotes the standard linear coordinate on R, (x1, . . . , xn+1)T denotes the chosen
linear coordinates of the ambient space Rn+1 of H, (y1, . . . , yn+1)T denotes the chosen lin-
ear coordinates on Rn+1, and gij = gU(∂xi , ∂xj) for 1 ≤ i, j ≤ n + 1 with (8.2) and the
corresponding conventions. It is now easy to see that the product group

R×Gh
0 × Rn+1

acts transitively on R×H×Rn+1 via isometries. Here R and Rn+1 act via translation on the
R- and Rn+1-part of R×H × Rn+1, respectively. Hence, r(H) is a homogeneous space.

Having introduced all necessary concepts, we will now derive an analogue of Proposition
3.29 for manifolds in the image of the generalised supergravity r-map of the form r(H), where
H is a connected GPSR manifold.
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Lemma 8.6 (Scalar curvature of a manifold in image of the generalised supergravity r-map,
[CDL] Corollary 3). Let (M, gM), M = r(H), H ⊂ {h = 1}, be a Kähler manifold in the
image of the generalised supergravity r-map and let SM denote its scalar curvature. Let
τ ∈ R \ {0, 1} denote the homogeneity-degree of the corresponding function h : R>0 ·H→ R.
Then

SM = 4τ
3

(
−(n+ 1)2 + τ − 2

τ − 1(n+ 1)

+ h

det (∂2h)tr
(
∂2h−1 · ∂2

(
det

(
∂2h

)))
− h

det (∂2h)2 tr
(
∂2h−1 · ∂

(
det

(
∂2h

))
⊗
〈
∂
(
det

(
∂2h

))
, ·
〉))

. (8.4)

In the above formula, all derivatives are taken with respect to the linear coordinates on the
R>0 ·H-part of M induced by the chosen linear coordinates of the ambient space Rn+1 ⊃ H.
The matrices inside tr(·) are viewed as endomorphism fields of Rn+1, so that their trace is
just the sum of the respective diagonal entries.

Proof. Up to the prefactor 4τ
3 and a different notation, this is precisely one of the state-

ments in [CDL, Cor. 3]. The prefactor 2 comes from a slightly modified convention for the
scalar curvature that was used in [CDL], and the prefactor 2τ

3 comes from a different met-
ric of the base manifold H that was used in [CDL, Ch. 5], namely −∂2h|TH×TH instead of
− 1
τ
∂2h|TH×TH, and a different metric used on M , namely

n+1∑
i,j=1

gij (dxidxj + dyidyj) instead of

gM = 3
4

n+1∑
i,j=1

gij (dxidxj + dyidyj).

Lemma 8.7 (Properties of the scalar curvature of manifolds in the image of the generalised
supergravity r-map). Let (M, gM) be a Kähler manifold in the image of the supergravity r-
map, such that M = r (H) for a connected GPSR manifold H. Then the scalar curvature SM
of (M, gM) is invariant under translations in the vector-part Rn+1 of M = R>0 ·H × Rn+1.
Furthermore, for any chosen linear coordinates (x1, . . . , xn+1)T of the cone R>0 ·H ⊂ Rn+1

which are induced by a choice of the linear coordinates of the ambient space Rn+1 ⊃ H,
the scalar curvature SM is a homogeneous rational function of degree zero in the variables
x1, . . . , xn+1.

Proof. This follows from Lemma 8.6, which follows from [CDL, Thm. 3] or, equivalently, from
[CDL, Cor. 3]. All one needs to check is that entry-wise, for any chosen linear coordinates
(x1, . . . , xn+1)T of the ambient space Rn+1 ⊃ H, the inverse of the symmetric matrix ∂2h
(which is by assumption of Lorentz type at any point p ∈ R>0 ·H) is a rational function in
the variables x1, . . . , xn+1, which follows from the general formula for inverse matrices(

∂2h
)−1

= 1
det (∂2h)adj

(
∂2h

)
,

where adj (∂2h) denotes the adjunct matrix of ∂2h.

Proposition 8.8 (Scalar curvature of manifolds in the image of the r-map). Let H ⊂ {h =
1} ⊂ Rn+1 be an n ≥ 1-dimensional connected GPSR manifold and h of homogeneity-degree
τ ≥ 3. Assume that h is of the form (3.12), that is h = xτ − xτ−2〈y, y〉 +

τ∑
k=3

xτ−kPk(y),

and that H contains the point ( xy ) = ( 1
0 ), where ( xy ) =

 x
y1
...
yn

 denote the standard linear



174

coordinates on Rn+1. Let M = r(H) ∼= (R>0 ·H)× Rn+1 be the Kähler manifold obtained by
applying the generalised supergravity r-map to H and let (x, y1, . . . , yn, x̃, ỹ1, . . . , ỹn)T denote
the induces (real) coordinates on M , where (x, y1, . . . , yn)T denotes the coordinates on the
R>0 · H-part and (x̃, ỹ1, . . . , ỹn)T denote the coordinates on the Rn+1-part of M . Let SM
denote the scalar curvature of M . Then at the point

p := (x, y1, . . . , yn, x̃, ỹ1, . . . , ỹn)T = (1, 0, . . . , 0, 0, 0, . . . , 0)T ∈M,

SM takes the value

SM (p) = 4τ
3

− n2 − 2n− 2
τ

+ 9
2

∑
i,j,k

P3(∂i, ∂j, ∂k)2

+ 6
∑
i,j

P4(∂i, ∂i, ∂j, ∂j)
 . (8.5)

For τ = 3, the P4-part in (8.5) is omitted.

Proof. In order to obtain the above formula for SM we will use (8.4). Recall that for h =
xτ − xτ−2〈y, y〉+

τ∑
k=3

xτ−kPk(y) we have

∂2h =
(
τ(τ − 1)xτ−2 − (τ − 2)(τ − 3)xτ−4〈y, y〉

+
τ−2∑
k=3

(τ − k)(τ − k − 1)xτ−k−2Pk(y)
)
dx2

+ 2
(
−2(τ − 2)xτ−3〈y, dy〉+

τ−1∑
k=3

k(τ − k)xτ−k−1Pk(y, . . . , y, dy)
)
dx

− 2xτ−2〈dy, dy〉+
τ∑
k=3

k(k − 1)xτ−kPk(y, . . . , y, dy, dy).

Thus, written as a symmetric matrix, we get at ( xy ) = ( 1
0 )

∂2h|( 1
0 ) =

(
τ(τ − 1)

−21

)
, det

(
∂2h

)∣∣∣( 1
0 ) = (−1)n2nτ(τ − 1)

and
∂2h−1|( 1

0 ) =
( 1

τ(τ−1)
−1

21

)
.

For µ ∈ {x, y1, . . . , yn}, recall that

∂µ det
(
∂2h

)
= det

(
∂2h

)
tr
(
∂2h−1 · ∂µ∂2h

)
. (8.6)

We obtain

∂x∂
2h =


τ(τ−1)(τ−2)xτ−3−(τ−2)(τ−3)(τ−4)xτ−5〈y,y〉

+
τ−3∑
k=3

(τ−k)(τ−k−1)(τ−k−2)xτ−k−3Pk(y)

−2(τ−2)(τ−3)xτ−4〈y,·〉

+
τ−2∑
k=3

k(τ−k)(τ−k−1)xτ−k−2Pk(y,...,y,·)

−2(τ−2)(τ−3)xτ−4y

+
τ−2∑
k=3

k(τ−k)(τ−k−1)xτ−k−2Pk(y,...,y,·)T

−2(τ−2)xτ−1
1

+
τ−1∑
k=3

k(k−1)(τ−k)xτ−k−1Pk(y,...,y,·,·)


and, hence,

∂x∂
2h|( 1

0 ) =
(
τ(τ − 1)(τ − 2)

−2(τ − 2)1

)
.
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This implies with (8.6)

∂x det
(
∂2h

)∣∣∣( 1
0 ) = (−1)n2nτ(τ − 1)(n+ 1)(τ − 2).

As before, e.g. similar to Proposition 3.29, abbreviate ∂yi = ∂i for 1 ≤ i ≤ n. We then have

∂i∂
2h =


−2(τ−2)(τ−3)xτ−4yi

+
τ−2∑
k=3

k(τ−k)(τ−k−1)xτ−k−2Pk(y,...,y,∂i)

−2(τ−2)xτ−3〈∂i,·〉

+
τ−1∑
k=3

k(k−1)(τ−k)xτ−k−1Pk(y,...,y,∂i,·)

−2(τ−2)xτ−3∂i

+
τ−1∑
k=3

k(k−1)(τ−k)xτ−k−1Pk(y,...,y,∂i,·)T
τ∑
k=3

k(k−1)(k−2)xτ−kPk(y,...,y,∂i,·,·)


and

∂i∂
2h|( 1

0 ) =
(

0 −2(τ − 2)〈∂i, ·〉
−2(τ − 2)∂i 6P3(∂i, ·, ·)

)
.

Hence, (8.6) yields

∂i det
(
∂2h

)∣∣∣( 1
0 ) = (−1)n2nτ(τ − 1)

−3
n∑
j=1

P3(∂i, ∂j, ∂j)


for all 1 ≤ i ≤ n. Observe that ∂2h−1|( 1
0 ) is diagonal, which in particular means that for the

h
det(∂2h)tr (∂2h−1 · ∂2 (det (∂2h)))-part of (8.4) we only need to calculate

∂2
µ det

(
∂2h

)
= det

(
∂2h

) (
tr
(
∂2h−1 · ∂µ∂2h

))2

+ det
(
∂2h

)
tr
(
−∂2h−1 · ∂µ∂2h · ∂2h−1 · ∂µ∂2h+ ∂2h−1∂µ∂µ∂

2h
)

(8.7)

at ( xy ) = ( 1
0 ) for all µ ∈ {x, y1, . . . , yn}. We find

∂2
x∂

2h =

τ(τ−1)(τ−2)(τ−3)xτ−4

−(τ−2)(τ−3)(τ−4(τ−5)xτ−6〈y,y〉

+
τ−4∑
k=3

k(τ−k)(τ−k−1)(τ−k−2)(τ−k−3)xτ−k−4Pk(y)

−2(τ−2)(τ−3)(τ−4)xτ−5〈y,·〉

+
τ−3∑
k=3

k(τ−k)(τ−k−1)(τ−k−2)xτ−k−3Pk(y,...,y,dy)

−2(τ−2)(τ−3)(τ−4)xτ−5y

+
τ−3∑
k=3

k(τ−k)(τ−k−1)(τ−k−2)xτ−k−3Pk(y,...,y,dy)T

−2(τ−2)(τ−3)xτ−4
1

τ−2∑
k=3

k(k−1)(τ−k)(τ−k−1)xτ−k−2Pk(y,...,y,·,·)


and

∂2
i ∂

2h =
−2(τ−2)(τ−3)xτ−4

+
τ−2∑
k=3

k(k−1)(τ−k)(τ−k−1)xτ−k−2Pk(y,...,y,∂i,∂i)

τ−1∑
k=3

k(k−1)(k−2)(τ−k)xτ−k−1Pk(y,...,y,∂i,∂i,·)

τ−1∑
k=3

k(k−1)(k−2)(τ−k)xτ−k−1Pk(y,...,y,∂i,∂i,·)T
τ∑
k=4

k(k−1)(k−2)(k−3)xτ−kPk(y,...,y,∂i,∂i,·,·)


for all 1 ≤ i ≤ n. Hence,

∂2
x∂

2h|( 1
0 ) =

(
τ(τ − 1)(τ − 2)(τ − 3)

−2(τ − 2)(τ − 3)1

)

and
∂2
i ∂

2h|( 1
0 ) =

(
−2(τ − 2)(τ − 3) 6(τ − 3)P3(∂i, ∂i, ·)

6(τ − 3)P3(∂i, ∂i, ·)T 24P4(∂i, ∂i, ·, ·)

)
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for all 1 ≤ i ≤ n. Observe that for τ = 3, the P4-term in ∂2
i ∂

2h|( 1
0 ) is omitted, and

furthermore ∂2
x∂

2h|( 1
0 ) ≡ ∂2

i ∂
2h|( 1

0 ) ≡ 0 for τ = 3 as expected. Thus we find with (8.7)

∂2
x det

(
∂2h

)∣∣∣( 1
0 ) = (−1)n2nτ(τ − 1)(n+ 1)(τ − 2)(n(τ − 2) + (τ − 3))

and

∂2
i det

(
∂2h

)∣∣∣( 1
0 ) = (−1)n2nτ(τ − 1)

(
4(τ − 2)2 − 2(τ − 2)(τ − 3)

τ(τ − 1)

+
9

∑
j,k

P3(∂i, ∂j, ∂j)P3(∂i, ∂k, ∂k)


+
−9

∑
j,k

P3(∂i, ∂j, ∂k)2


+
−12

∑
j

P4(∂i, ∂i, ∂j, ∂j)
 .

We can now use our calculations to determine the

− h

det (∂2h)2 tr
(
∂2h−1 · ∂

(
det

(
∂2h

))
⊗
〈
∂
(
det

(
∂2h

))
, ·
〉)

-part

of SM (8.4):

− h

det (∂2h)2 tr
(
∂2h−1 · ∂

(
det

(
∂2h

))
⊗
〈
∂
(
det

(
∂2h

))
, ·
〉)∣∣∣∣∣( 1

0 )

= − h

det (∂2h)2∂
(
det

(
∂2h

))T
· ∂2h−1 · ∂

(
det

(
∂2h

))∣∣∣∣∣( 1
0 )

= −(n+ 1)2(τ − 2)2

τ(τ − 1) + 9
2
∑
i,j,k

P3(∂i, ∂j, ∂j)P3(∂i, ∂k, ∂k).

For the h
det(∂2h)tr (∂2h−1 · ∂2 (det (∂2h)))-part of SM (8.4) we find

h

det (∂2h)tr
(
∂2h−1 · ∂2

(
det

(
∂2h

)))∣∣∣∣∣( 1
0 )

= n(n− 1)(τ − 2)2 + (2n+ 1)(τ − 2)(τ − 3)
τ(τ − 1)

+ 9
2

∑
i,j,k

(
−P3(∂i, ∂j, ∂j)P3(∂i, ∂k, ∂k) + P3(∂i, ∂j, ∂k)2

)
+ 6

∑
i,j

P4(∂i, ∂i, ∂j, ∂j).

Summarising, we obtain

SM (p) = 4τ
3

− n2 − 2n− 2
τ

+ 9
2

∑
i,j,k

P3(∂i, ∂j, ∂k)2

+ 6
∑
i,j

P4(∂i, ∂i, ∂j, ∂j)


which is precisely the formula (8.5).
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Note that, in comparison with SH at ( xy ) = ( 1
0 ) in Proposition 3.29, the scalar curvature

SM = Sr(H) at (x, y1, . . . , yn, x̃, ỹ1, . . . , ỹn)T = (1, 0, . . . , 0, 0, 0, . . . , 0)T (for connected GPSR
manifolds H with the corresponding assumptions) does depend on P4 for τ ≥ 4 and not just
on P3.

We can now for fixed n ∈ N, similar to Theorem 4.13, show that the scalar curvature of
manifolds in the image of the supergravity r-map M = r(H) is globally bounded by constants
depending only on n whenever H is a n-dimensional CCPSR manifold.

Proposition 8.9 ((Non-sharp) Sr(H) bounds for n-dimensional CCGPSR manifolds H). Let
H ⊂ {h = 1} be an n ≥ 1-dimensional CCPSR manifold and M = r(H) be the corresponding
projective special Kähler manifold after applying the supergravity r-map to H. Then the scalar
curvature of (M, gM) is globally bounded by

− 25
6 n

3 − 86
9 n

2 − 28
3 n−

4
3 ≤ SM ≤

25
6 n

3 + 14
9 n

2 − 28
3 n−

4
3 , (8.8)

independent of the considered n-dimensional CCPSR manifold H.

Proof. We can without loss of generality assume that h is of the form (3.12) and that H ⊂
{h = 1} coincided with the connected component that contains the point ( xy ) = ( 1

0 ). Then
(with τ = 3) SM at pT = (x, y1, . . . , yn, x̃, ỹ1, . . . , ỹn)T = (1, 0, . . . , 0, 0, 0, . . . , 0)T is of the
form

SM (p) = 4
−n2 − 2n− 2

3 + 9
2
∑
i,j,k

P3(∂i, ∂j, ∂k)2

 .
Using (4.16) and the estimate (4.12), we obtain

4
(
−25

24n
3 − n2 − 2n− 2

3

)
≤ SM (p) ≤ 4

(25
24n

3 − n2 − 2n− 2
3

)
.

Now we use Lemma 8.7 and Remark 8.4 and conclude that

4
(
−25

24n
3 − n2 − 2n− 2

3

)
≤ SM (p) ≤ 4

(25
24n

3 − n2 − 2n− 2
3

)
(8.9)

for all p ∈ M = r(H). In particular, (8.9) is depends only on the dimension n = dim(H) of
H, not on the choice of the particular CCPSR manifold H.

One consequence of Proposition (8.9) is the following.

Corollary 8.10 (Negativity of Sr(H) for dim(H) = 1). Let H be CCPSR curve. Then its
corresponding image in the supergravity r-map, M = r(H), has negative scalar curvature.

Proof. For n = dim(H) = 1, the upper bound in (8.8) reads

25
24 − 1− 2− 2

3 = −63
24 < 0.

We can, however, improve Corollary 8.10 and find a sharp estimate for SM , M = r(H),
for dim (H) = 1 independent of the considered CCPSR curve H.
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Lemma 8.11 (Global sharp estimate for Sr(H), dim(H) = 1). Let H be CCPSR curve. Then
the scalar curvature SM of its image in the supergravity r-map M = r(H) is globally bounded
by

− 44
3 ≤ SM ≤ −12. (8.10)

This estimate is sharp in the sense that for all s ∈
[
−44

3 ,−12
]

there exists a CCPSR curve
Hs and a point ps ∈ Hs, such that for ps := ( ps0 ) ∈Ms = r (Hs), we have SMs (ps) = s.

Proof. We can without loss of generality assume that hL = x3−xy2 +Ly3 and that H is the
connected component of the level set ⊂ {hL = 1} ⊂ R2 that contains the point ( xy ) = ( 1

0 ),
cf. Proposition 3.18. Theorem 5.6 implies that H is a CCPSR curve if and only if |L| ≤ 2

3
√

3 .
Hence, we can use equation (8.5) and find for pT = (1, 0, 0, 0)T ∈ M = r(H) that SM(p) =
4
(
−11

3 + 9
2L

2
)

and, hence,

min
|L|≤ 2

3
√

3

SM(p) = −44
3 ≤ SM(p) ≤ max

|L|≤ 2
3
√

3

SM(p) = −12.

With Remark 8.4 we conclude that (8.10) holds true globally. To prove that the estimate
in this lemma is sharp in the stated sence, we choose for s = −44

3 the CCPSR curve H− 44
3

associated to h0, and for s = −12 the CCPSR curve H−12 associated to h 2
3
√

3
and find that

at pT = (1, 0, 0, 0)T (which is, by construction, contained in both CCPSR curves H− 44
3

and
H−12)

S
r
(
H− 44

3

)(p) = −44
3

and
Sr(H−12)(p) = −12.

Since Sr(H)(p) =, H ⊂ {hL = 1}, depends continuously on L ∈
[
− 2

3
√

3 ,
2

3
√

3

]
, we conclude

that the estimate (8.10) is indeed sharp in the stated sense. This finishes the proof.

What one might ask for next is an analogue of Proposition 5.12 for the scalar curvature of
manifoldsM = r(H) in the image of the r-map for CCPSR surfaces H, that is for dim(H) = 2.
We will formulate this as an open problem, since it turns out that this is the setting of
Proposition 5.12) with P3 (( yz )) = r

(
2

3
√

3y
3 + kyz2 + `z3

)
and pt = (1, 0, 0, 0, 0, 0)T ∈ M =

r(H),
SM(p) = −104

3 + r2
(8

3 + 6k2 + 18`2
)
,

which, in comparison with SH (( 1
0 )) = −2 + r

(
3
4k

2 −
√

3
2 k
)
, contains a non-trivial `-term.

This unfortunately prevents an “easy” analogue for global SM -bounds when one tries to use
the proof of Proposition 5.12.

Open problem 8.12 (Sharp Sr(H)-bounds for dim(H) = 2). For CCPSR surfaces H and
their corresponding special real Kähler manifolds in the image of the supergravity r-map M =
r(H), find sharp global bounds for the scalar curvature SM analogous to Proposition 5.12.

Remark 8.13. In [CDL, Prop. 9], the image of the scalar curvature Sr(H) for H as in Theorem
2.45 a)–d) has been precisely determined. For e) it was shown that Sr(H) is not constant. In
order to solve Open problem 8.12, it would thus be sufficient to consider only the cases e)
and the one-parameter family f) in Theorem 2.45, calculate the image of the corresponding
scalar curvature, and then compare the results with [CDL, Prop. 9].
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Next we will derive an analogue of Proposition 3.30 for the scalar curvature manifolds in
the image of the generalised supergravity r-map. Recall equation (3.24) in Proposition 3.26
and Definition 3.27.

Proposition 8.14 (First derivative of Sr(H)). Let H ⊂ {h = 1} be a connected GPSR
manifold with h of the form (3.12) and ( xy ) = ( 1

0 ) ∈ H. Then the first derivative of the scalar
curvature SM of the Kähler manifold M = r(H) obtained via the generalised supergravity r-
map at the point p = (x, y1, . . . , yn, x̃, ỹ1, . . . , ỹn)T = (1, 0, . . . , 0, 0, 0, . . . , 0)T ∈M fulfils

dSM |p = 4τ
3

− 6
(∑

i

P3(∂i, ∂i, dy)
)

+ 81
2

 ∑
i,j,k,`

P3(∂i, ∂j, ∂k)P3(∂i, ∂k, ∂`)P3(∂j, ∂`, dy)


+ 36
∑
i,j,k

P3(∂i, ∂j, ∂k)P4(∂i, ∂j, ∂k, dy)


+ 36
∑
i,j,k

P3(∂j, ∂k, dy)P4(∂i, ∂i, ∂j, ∂k)


+ 30
∑

i,j

P5(∂i, ∂i, ∂j, ∂j, dy)
 . (8.11)

For τ = 3, the P4- and P5-parts in (8.11) are to be left out. For τ = 4, one omits the P5-part
in (8.11).

Proof. Equation (8.5) and Definition 3.27 imply that

dSM |p = 4τ
3

9
∑
i,j,k

P3(∂i, ∂j, ∂k)δP3(∂i, ∂j, ∂k)
+ 6

∑
i,j

δP4(∂i, ∂i, ∂j, ∂j)
 . (8.12)

From equation (3.24) in Proposition 3.26 obtain that

δP3(y) = −2(τ − 2)
τ

〈y, y〉〈y, dy〉+ 3P3

(
y, y, dB0y + 3

2P3(y, ·, dy)T
)

+ 4P4(y, y, y, dy)

and

δP4(y) = 2(τ − 3)
τ

P3(y)〈y, dy〉+ 4P4

(
y, y, y, dB0y + 3

2P3(y, ·, dy)T
)

+ 5P5(y, y, y, y, dy),

where we recall that dB0 ∈ Lin(Rn; so(n)), cf. (3.25), and omit the identification T( 1
0 )H ∼=

T0dom (H) so that we can use dy instead of dz. Up to a slightly different notation and
different names for the indices, we have seen in (3.44) that

∑
i,j,k

P3(∂i, ∂j, ∂k)δP3(∂i, ∂j, ∂k) = −2(τ − 2)
τ

(∑
i

P3(∂i, ∂i, dy)
)

+ 9
2

 ∑
i,j,k,`

P3(∂i, ∂j, ∂k)P3(∂i, ∂k, ∂`)P3(∂j, ∂`, dy)


+ 4
∑
i,j,k

P3(∂i, ∂j, ∂k)P4(∂i, ∂j, ∂k, dy).
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Using ∂2 (δP4)y (v, w) = 12δP4(y, y, v, w), we get

δP4(∂i, ∂i, ∂j, ∂j) = τ − 3
τ

(P3(∂i, ∂j, ∂j)dyi + P3(∂i, ∂i, ∂j)dyj)

+ 2P4

(
∂i, ∂j, ∂j, dB0∂i + 3

2P3(∂i, ·, dy)T
)

+ 2P4

(
∂i, ∂i, ∂j, dB0∂j + 3

2P3(∂j, ·, dy)T
)

+ 5P5(∂i, ∂i, ∂j, ∂j, dy)

and, hence,

∑
i,j

δP4(∂i, ∂i, ∂j, ∂j) = 2(τ − 3)
τ

(∑
i

P3(∂i, ∂i, dy)
)

+ 6
∑
i,j,k

P3(∂j, ∂k, dy)P4(∂i, ∂i, ∂j, ∂k)


+ 5
∑
ij

P5(∂i, ∂i, ∂j, ∂j, dy).

Summarising we obtain with (8.12) the formula (8.11) as claimed. One now verifies that for
τ = 3, the prefactor of the ∑

i
P3(∂i, ∂i, dy)-part in dSM |p (8.11) is −24 which is the correct

values and, hence, the formula for dSM |p is indeed consistent for all τ ≥ 3 when leaving out
the P4- and P5-part if appropriate.

As an application of Proposition 8.14 we will present an r-map analogue of Proposition 6.9.
In order to omit confusion with the letter “M” used in the definition of the multi-parameter
families in Theorem 6.1 we will not use the notation M = r(H) in the following proposition
and instead simply use r(H) for a manifold in the image of the supergravity r-map.

Proposition 8.15 (Inhomogeneity of elements of r (F ∪ G)). Let h ∈ F ∪ G and H(h) be the
corresponding CCPSR manifold as in 6.3, respectively 6.4, and let r(H) be their respective
projective special Kähler manifold in the image of the supergravity r-map. Then r(H) is
inhomogeneous.

Proof. We will proceed very similar to the proof of Proposition (6.9) and we will use the
same terminology. For connected PSR manifolds H (that is for τ = 3), dS|r(H) at the point
p = (x, y1, . . . , yn, x̃, ỹ1, . . . , ỹn)T = (1, 0, . . . , 0, 0, 0, . . . , 0)T ∈ r(H) is of the form

dSr(H)

∣∣∣
p

= 36
∑
i,j,k

P3(∂i, ∂j, ∂k)δP3(∂i, ∂j, ∂k)

= −24
(∑

i

P3(∂i, ∂i, dy)
)

+ 162
∑
i,j,k,`

P3(∂i, ∂j, ∂k)P3(∂i, ∂k, ∂`)P3(∂j, ∂`, dy),

cf. (8.11) and (8.12). Recall that for h ∈ F ∪ G, the corresponding CCPSR manifold H(h)
as in 6.3, respectively 6.4, is equivalent to the connected component H̃ ⊂

{
h̃ = 1

}
, h̃ =

x3−x〈y, y〉+yn
(

2
3
√

3y
2
n +

√
2√
3

n−1∑
i=1

µi−
√

2ηi√
2µi+ηi

y2
i

)
, that contains the point ( xy ) = ( 1

0 ) ∈ Rn+1. Here,

µ1, . . . , µn−1, η1, . . . , ηn−1 ≥ 0, and furthermore
n−1∑
i=1

µidy
2
i > 0 for h ∈ G and

n−1∑
i=1

ηidy
2
i > 0 for
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h ∈ F, cf. Proposition 6.6. With σk = µk−
√

2ηk√
2µk+ηk

(6.50) and P3(y) = yn

(
2

3
√

3y
2
n +

√
2√
3

n−1∑
i=1

σiy
2
i

)
(6.51), we have h̃ = x3 − x〈y, y〉+ P3(y) and we recall that

P3(∂i, ∂j, ∂k) =


√

2
3
√

3σiδ
j
i δ
n
k , 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, 1 ≤ k ≤ n,
0, 1 ≤ i ≤ n− 1, j = k = n,

2
3
√

3 , i = j = k = n.
,

see (6.52). We now calculate and find

dSr(H̃)

∣∣∣
p

(∂i) = 0 ∀1 ≤ i ≤ n− 1

and
dSr(H̃)

∣∣∣
p

(∂n) = 8√
3

(
−
√

2
(
n−1∑
i=1

σi

)
+
(
n−1∑
i=1

σ2
i

)
+
√

2
(
n−1∑
i=1

σ3
i

))
.

Hence,
∂

∂σk

(
dSr(H̃)

∣∣∣
p

(∂n)
)

= 8√
3
(
−
√

2 + 2σk + 3
√

2σ2
k

)
.

Note that
∂

∂σk

(
dSr(H̃)

∣∣∣
p

(∂n)
)∣∣∣∣∣
σk=−

√
2

= 8
√

6 > 0 (8.13)

and
∂

∂σk

(
dSr(H̃)

∣∣∣
p

(∂n)
)∣∣∣∣∣
σk= 1√

2

= 4
√

6 > 0. (8.14)

For h ∈ F, we have η1, . . . , ηn−1 > 0, µ1, . . . , µn−1 ≥ 0, and there exists at least one k ∈
{1, . . . , n− 1}, such that µk > 0. We have seen in (6.57) that

H̃ ⊂
{
h̃ = x3 − x〈y, y〉+ yn

(
2

3
√

3
y2
n +
√

2√
3

n−1∑
i=1

µi −
√

2√
2µi + 1

y2
i

)
= 1

}

is equivalent to

H̃r ⊂
{
h̃r := x3 − x〈y, y〉+ yn

(
2

3
√

3
y2
n +
√

2√
3

n−1∑
i=1

rµi −
√

2
r
√

2µi + 1
y2
i

)
= 1

}

for all r > 0. The polynomial h̃r corresponds to the choices σk = σ̃k(r) = rµk−
√

2
r
√

2µk+1 (6.58) for
all 1 ≤ k ≤ n− 1 with ∂

∂r
(σ̃k(r))

∣∣∣
r=0

= 3µk ≥ 0 (6.59) for all 1 ≤ k ≤ n− 1. Since

dSr(H̃r)

∣∣∣
p

(∂n) = 8√
3

(
−
√

2
(
n−1∑
i=1

σ̃i(r)
)

+
(
n−1∑
i=1

σ̃2
i (r)

)
+
√

2
(
n−1∑
i=1

σ̃3
i (r)

))

is analytic near r = 0 (since ηk is positive for all 1 ≤ k ≤ n−1), we can use (8.13) and obtain

∂

∂r

(
dSr(H̃r)

∣∣∣
p

(∂n)
)∣∣∣∣∣
r=0

= 8
√

6
n−1∑
i=1

3µi > 0,

by the existence of at least one positive µk, 1 ≤ k ≤ n−1. Since all H̃r, r > 0, are equivalent
to H̃, this shows that dSr(H̃)

∣∣∣
p

(∂n) does not identically vanish on r
(
H̃
)

and, hence, that
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Sr(H̃) is not constant. By construction, H̃ is equivalent to H and, hence, this proves that

r(H(h)) (which is by definition of the supergravity r-map isometric to r
(
H̃
)
, see Remark

8.4) is not a homogeneous space for all h ∈ F.
For h ∈ G, the proof of inhomogeneity of r(H(h)) has the same steps. In that case we

use σk = σk(r) = 1−r
√

2ηk√
2+rηk

(6.64) for 1 ≤ k ≤ n − 1 with ∂
∂r

(σk(r))
∣∣∣
r=0

= −3
2ηk 6.65 for 1 ≤

k ≤ n− 1. Furthermore, by assumption of h ∈ G there exists at least one k ∈ {1, . . . , n− 1},
such that ηk > 0. This, together with (8.14) and the notation analogous to H̃r,

Hr ⊂
{
hr = x3 − x〈y, y〉+ yn

(
2

3
√

3
y2
n +
√

2√
3

n−1∑
i=1

1− r
√

2ηi√
2 + rηi

y2
i

)
= 1

}

implies
∂

∂r

(
dSr(Hr)

∣∣∣
p

(∂n)
)∣∣∣∣∣
r=0

= −2
√

6
n−1∑
i=1

3ηi < 0,

showing that dSr(Hr) is not constant which, as before, shows that r
(
H̃
)

is not a homogeneous
space. Hence, r (H(h)) is not a homogeneous space for all h ∈ G.

We will now use Proposition 8.8 to determine the scalar curvature of the r-map-images
of the homogeneous CCPSR manifolds H1,n (6.44) and H2,n (6.45).

Lemma 8.16 (Scalar curvature of r (H1,n) and r (H2,n)). Let H1,n and H2,n be the n ≥ 3-
dimensional CCPSR manifolds as in Proposition 6.9, equation (6.44) and (6.45), respectively.
Then the scalar curvature of their respective image under the supergravity r-map is constant
and given by

Sr(H1,n) ≡ −4n2 − 6n− 2

and
Sr(H2,n) ≡ −4n2 − 8.

Proof. The CCPSR manifolds H1,n and H2,n are homogeneous spaces [DV, C]. Hence, Lemma
8.5 implies that r (H1,n) and r (H2,n) are also homogeneous spaces and have thus constant
scalar curvature. With the convention (6.50) from Proposition 6.9 we have

for H1,n : σk = 1√
2
∀1 ≤ k ≤ n− 1

and
for H2,n : σk = −

√
2 ∀1 ≤ k ≤ n− 1.

We obtain with (8.5) for the CCPSR manifolds H̃ corresponding to general values of σk as
in Proposition 6.9, (6.52), at the point

p = (x, y1, . . . , yn, x̃, ỹ1, . . . , ỹn)T = (1, 0, . . . , 0, 0, 0, . . . , 0)T ∈ r
(
H̃
)

for the value of Sr(H)

Sr(H)(p) = 4
(
−n2 − 2n+

n−1∑
i=1

σ2
i

)
.

We can now check that indeed Sr(H1,n) ≡ −4n2−6n−2 and Sr(H2,n) ≡ −4n2−8 as claimed.
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We have seen in Proposition 8.15 and Lemma 8.16 that the results of Proposition 3.18
have applications to the geometry of the (generalised) supergravity r-map, in particular in
the sense that one does not need to calculate SM (8.4) in full generality for some given h just
to prove inhomogeneity or check the value of the scalar curvature of manifolds that are in
the image of the supergravity r-map and homogeneous. However, before working with this
“machinery” of Proposition 8.15, we have calculated the scalar curvature of the r-map image
of CCPSR manifolds H(h) as in (6.3) for all h ∈ F (6.1) and for h corresponding to H2,n
using the conventions that were used in Theorem 6.1. Similar calculations should be possible
for h ∈ G (6.2). These calculations could be of interest in theoretical physics as indicated in
[MMT] since the manifolds H(h) can be interpreted as a deformation of H2,n which has a
reducible prepotential h, and hence we will present them here. Recall that CCPSR manifolds
of dimension n ≥ 3 with reducible prepotential have been classified in [CDJL], see Theorem
2.46.

Lemma 8.17 (Sr(H(h)), h ∈ F, alternative form). Let

h ∈ F =
{
h = x(−w2 + 〈z, z〉) + w

n−1∑
i=1

biz
2
i

∣∣∣∣∣ 1 = b1 ≥ . . . ≥ bn−1 ≥ 0
}

as in Theorem 6.1 equation (6.1) and let H(h) be the corresponding CCPSR manifold of
dimension n ≥ 3, cf. Theorem 6.1 equation (6.3). Let25 g = −1

2∂
2h and let cij, 1 ≤ i, j ≤

n + 1, denote the entries of the cofactor matrix of g, where the index n corresponds to the
coordinate w and the index n+ 1 corresponds to the coordinate x. Then the scalar curvature
of the supergravity r-map image of H(h), that is r(H(h)), is given by

Sr(H(h)) = −4n2 − 6n− 2

+ 2h
(det g)3

n−1∑
i=1

n−1∑
j=1

3cij (bibj(2cnicnj + cnncij) + bi(4cn+1icnj + 2cn+1ncij)

+ (2cn+1icn+1j + cn+1n+1cij))


+
(
n−1∑
i=1

3cni((bi(−4cnncn+1i − 2cn+1ncni) + (−4cn+1ncn+1i − 2cn+1n+1cni))
)

+ 3cnn
(
2cn+1n

2 + cn+1n+1cnn
) . (8.15)

The values of cij are given by

cn+1i =


n−1∑
j=1

(bi − bj)bjz2
j zi

∏
k 6=i
k 6=j

(−x− bkw)

+ (x− biw)zi
∏
k 6=i

(−x− bkw),

cn+1n =
n−1∑
i=1

biz
2
i

∏
k 6=i

(−x− bkw)
− w n−1∏

k=1
(−x− bkw),

cn+1n+1 =
n−1∑
i=1

(−b2
i z

2
i )
∏
k 6=i

(−x− bkw)
+ x

n−1∏
k=1

(−x− bkw),

25Note that the prefactor − 1
2 was chosen so that the calculations contain less symbols.
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cni =


n−1∑
j=1

(bj − bi)z2
j zi

∏
k 6=i
k 6=j

(−x− bkw)

− wzi ∏
k 6=i

(−x− bkw),

cnn =
n−1∑
i=1

(−z2
i )
∏
k 6=i

(−x− bkw),

(the above formulas for cn+1i and cni hold for all 1 ≤ i ≤ n− 1, respectively) and

cij = δij
det

(
−1

2∂
2h
)

−x− bjw

+
n−1∑
µ=1

(bµbi + bµbj − b2
µ − bibj)z2

µzizj

(−x− bµw)(−x− biw)(−x− bjw) + (x− biw − bjw)zizj
(−x− biw)(−x− bjw)

 n−1∏
k=1

(−x− bkw)

for all 1 ≤ i, j ≤ n− 1.

Proof. Recall formula (8.4) for Sr(H(h)), which reads with τ = deg(h) = 3

Sr(H(h)) = 4
(
−(n+ 1)2 + 2

3(n+ 1)

+ h

det (∂2h)tr
(
∂2h−1 · ∂2

(
det

(
∂2h

)))
− h

det (∂2h)2 tr
(
∂2h−1 · ∂

(
det

(
∂2h

))
⊗
〈
∂
(
det

(
∂2h

))
, ·
〉))

.

With the terminology g = −1
2∂

2h, we can rewrite Sr(H(h)) and obtain

1
4Sr(H(h)) =− n2 − 3

2n−
1
2

− h

2 det g tr
(
g−1∂2 det g

)
+ h

2(det g)2 tr
(
g−1∂ det g ⊗ (∂ det g)T

)
,

where g = −1
2∂

2h and ∂ det g ⊗ (∂ det g)T denotes the symmetric (n+ 1)× (n+ 1)-matrix(
∂ det g
∂s

∂ det g
∂t

)
st

, s, t ∈ {z1, . . . , zn−1, w, x}.

In order to simplify the above expression for h : Rn+1 → R of the form

h = x(−w2 + 〈z, z〉) + w
n−1∑
i=1

biz
2
i , bi ≥ 0 ∀i ∈ {1, . . . , n− 1}

with

g = −1
2∂

2h =



−x− b1w −b1z1 −z1
. . . ... ...
−x− bn−1w −bn−1zn−1 −zn−1

−b1z1 . . . −bn−1zn−1 x w
−z1 . . . −zn−1 w 0

 ,
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we will use that ∂g
∂s

is a sparse matrix for all s ∈ {z1, . . . , zn−1, w, x}. Observe that

∂ det g = det g tr
(
g−1∂g

)
and

∂2 det g = det g
(
tr
(
g−1∂g

))2
+ det g tr

(
∂(g−1)∂g + g−1∂2g

)
= det g

((
tr
(
g−1∂g

))2
− tr

(
g−1∂gg−1∂g

))
,

where we used that ∂2g has only zero entries. Hence,

1
4Sr(H(h)) = −n2 − 3

2n−
1
2

− h

2 tr
(
g−1

(
tr
(
g−1∂g

))2
− g−1 tr

(
g−1∂gg−1∂g

))
+ h

2 tr
(
g−1

(
tr
(
g−1∂g

))2
)

= −n2 − 3
2n−

1
2

+ h

2 tr
(
g−1 tr

(
g−1∂gg−1∂g

))
.

Note that

tr
(
g−1∂gg−1∂g

)
=
(

tr
(
g−1∂g

∂s
g−1∂g

∂t

))
st

, s, t ∈ {z1, . . . , zn−1, w, x},

is a symmetric (n + 1)× (n + 1)-matrix. This follows from the fact that for any two square
matrices A and B one has tr(AB) = tr(BA). We further obtain

∂g

∂zη
=



0 0
... ...
0 0
−bη −1

0 0
... ...
0 0

0 ... 0 −bη 0 ... 0
0 ... 0 −1 0 ... 0


,

∂g

∂w
=


−b1

...
−bn−1

0 1
1 0

 , ∂g

∂x
=


−1

...
−1

1 0
0 0

 ,

where the only non-zero entries in ∂g
∂zη

are contained in the η th row and η th column. In
order to calculate g−1 recall that for any invertible matrix F = (Fij) ∈ Mat(m ×m,R), its
inverse F−1 is given by

F−1 = 1
detF


cof(F, 1, 1) . . . cof(F, 1,m)

... . . . ...
cof(F,m, 1) . . . cof(F,m,m)


T

.

Here, cof(F, i, j) denotes the (i, j)-cofactor of F :

cof(F, i, j) = (−1)i+j det[F ]ij,

where [F ]ij denotes the (m − 1) × (m − 1)-matrix obtained by deleting the i-th row and
the j-th column of F . In our case cof (g, i, j) = cof (g, j, i) since g is symmetric. We define
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(cof(g))ij = cij := (cof(g, i, j)), 1 ≤ i, j ≤ n + 1, to minimise the necessary symbols in the
following calculations. With this notation we have g = cof(g)

det g and
1
4Sr(H(h)) = −n2 − 3

2n−
1
2

+ h

2(det g)3 tr (cof(g) tr (cof(g)∂g cof(g)∂g)) .

We can now calculate 1
4Sr(H(h)) in terms of the cofactors of g. We obtain

cof(g) ∂g
∂zη

=


0 . . . 0 −bηcn1 − cn+1 1 0 . . . 0 −bηcη1 −cη1
... ... ... ... ... ... ...
0 . . . 0 −bηcnn+1 − cn+1n+1 0 . . . 0 −bηcηn+1 −cηn+1

 ,
where the first non-trivial column is the η-th column,

cof(g) ∂g
∂w

=


−b1c11 . . . −bn−1c1n−1 c1n+1 c1n

... ... ... ...
−b1cn+1 1 . . . −bn−1cn+1n−1 cn+1n+1 cn+1n

 ,
and

cof(g)∂g
∂x

=


−c11 . . . −c1n−1 c1n 0

... ... ... ...
−cn+1 1 . . . −cn+1n−1 cn+1n 0

 .
The calculation of tr(cof(g)∂g cof(g)∂g) requires only the diagonal values of the matrix

cof(g)∂g cof(g)∂g,
which are given by (

cof(g) ∂g
∂zi

cof(g) ∂g
∂zj

)
νν

=

for ν = j :


bibj(cnicnj + cnncij)

+ bi(cn+1icnj + cn+1ncij) + bj(cnicn+1j + cn+1ncij)
+ (cn+1icn+1j + cn+1n+1cij),

for ν = n :
{

bibj(cnicnj + cnncij)
+ bj(cn+1ncij + cnicn+1j),

for ν = n+ 1 :
{

bi(cn+1icnj + cn+1ncij)
+ (cn+1icn+1j + cn+1n+1cij),

for ν /∈ {j, n, n+ 1} : 0.
Thus we obtain

(tr(cof(g)∂g cof(g)∂g))ij = tr
(

cof(g) ∂g
∂zi

cof(g) ∂g
∂zj

)

=


bibj(2cnicnj + 2cnncij)

+ bi(2cn+1icnj + 2cn+1ncij)
+ bj(2cnicn+1j + 2cn+1ncij)
+ (2cn+1icn+1j + 2cn+1n+1cij).
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Similar calculations show (
cof(g) ∂g

∂w
cof(g) ∂g

∂zi

)
νν

=

for ν = i :



(
n−1∑
µ=1

(bibµ(cnµciµ) + bµ(cn+1µciµ))
)

+ bi(−cnncn+1i − cn+1ncni)
+ (−cn+1n+1cni − cn+1ncn+1i),

for ν = n :


(
n−1∑
µ=1

bibµ(cnµciµ)
)

+ bi(−cn+1ncni − cnncn+1i),

for ν = n+ 1 :


(
n−1∑
µ=1

bµ(cn+1µciµ)
)

+ (−cn+1ncn+1i − cn+1n+1cni),

for ν /∈ {i, n, n+ 1} : 0,

and
(tr(cof(g)∂g cof(g)∂g))in = tr

(
cof(g) ∂g

∂w
cof(g) ∂g

∂zi

)

=



(
n−1∑
µ=1

(bibµ(2cnµciµ) + bµ(2cn+1µciµ))
)

+ bi(−2cn+1ncni − 2cnncn+1i)
+ (−2cn+1ncn+1i − 2cn+1n+1cni).

We continue and obtain (
cof(g)∂g

∂x
cof(g) ∂g

∂zi

)
νν

=

for ν = i :



(
n−1∑
µ=1

(bi(cnµciµ) + (cn+1µciµ))
)

+ bi(−cnncni)
+ (−cn+1ncni),

for ν = n :


(
n−1∑
µ=1

bi(cnµciµ)
)

+ bi(−cnncni),

for ν = n+ 1 :


(
n−1∑
µ=1

cn+1µciµ

)
+ (−cn+1ncni),

for ν /∈ {i, n, n+ 1} : 0,
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and
(tr(cof(g)∂g cof(g)∂g))in+1 = tr

(
cof(g)∂g

∂x
cof(g) ∂g

∂zi

)

=



(
n−1∑
µ=1

(bi(2cnµciµ) + (2cn+1µciµ))
)

+ bi(−2cnncni)
+ (−2cn+1ncni).

We further calculate (
cof(g) ∂g

∂w
cof(g) ∂g

∂w

)
νν

=

for 1 ≤ ν ≤ n− 1 :


(
n−1∑
µ=1

bνbµ(cνµ2)
)

+ bν(−2cn+1νcnν),

for ν = n :


(
n−1∑
µ=1

bµ(−cn+1µcnµ)
)

+ (cn+1n+1cnn + cn+1n
2),

for ν = n+ 1 :


(
n−1∑
µ=1

bµ(−cn+1µcnµ)
)

+ (cn+1n+1cnn + cn+1n
2),

and
(tr(cof(g)∂g cof(g)∂g))nn = tr

(
cof(g) ∂g

∂w
cof(g) ∂g

∂w

)

=



(
n−1∑
ν=1

n−1∑
µ=1

bνbµ(cνµ2)
)

+
(
n−1∑
µ=1

bµ(−4cn+1µcnµ)
)

+ (2cn+1n+1cnn + 2cn+1n
2).

Note that in the last equation we once relabelled ν as µ. This swapping of indices will be of
importance and used frequently from here on.(

cof(g) ∂g
∂w

cof(g)∂g
∂x

)
νν

=

for 1 ≤ ν ≤ n− 1 :


(
n−1∑
µ=1

bµ(cνµ2)
)

+ (−2cn+1νcnν),

for ν = n :


(
n−1∑
µ=1

bµ(−cnµ2)
)

+ (2cn+1ncnn),

for ν = n+ 1 : 0,
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and
(tr(cof(g)∂g cof(g)∂g))nn+1 = tr

(
cof(g) ∂g

∂w
cof(g)∂g

∂x

)

=



(
n−1∑
ν=1

n−1∑
µ=1

bµ(cνµ2)
)

+
(
n−1∑
µ=1

(bµ(−cnµ2) + (−2cn+1µcnµ))
)

+ (2cn+1ncnn).
Lastly, we compute (

cof(g)∂g
∂x

cof(g)∂g
∂x

)
νν

=

for 1 ≤ ν ≤ n− 1 :


(
n−1∑
µ=1

cνµ
2
)

+ (−cnν2),

for ν = n :


(
n−1∑
µ=1

(−cnµ2)
)

+ (cnn2),

for ν = n+ 1 : 0,

and

(tr(cof(g)∂g cof(g)∂g))n+1n+1 = tr
(

cof(g)∂g
∂x

cof(g)∂g
∂x

)
=



(
n−1∑
ν=1

n−1∑
µ=1

cνµ
2
)

+
(
n−1∑
µ=1

(−2cnµ2)
)

+ (cnn2).

.

Summarising, we have shown that

tr(cof(g)∂g cof(g)∂g) =

bibj(2cnicnj+2cnncij)
+bi(2cn+1icnj+2cn+1ncij)
+bj(2cnicn+1j+2cn+1ncij)

+(2cn+1icn+1j+2cn+1n+1cij)

∗ ∗

(
n−1∑
µ=1

(bjbµ(2cnµcjµ)+bµ(2cn+1µcjµ))
)

bj(−2cn+1ncnj−2cnncn+1j)
+(−2cn+1ncn+1j−2cn+1n+1cnj)

(
n−1∑
ν=1

n−1∑
µ=1

bνbµ(cνµ2)
)

+
(
n−1∑
µ=1

bµ(−4cn+1µcnµ)
)

+(2cn+1n+1cnn+2cn+1n2)

∗

(
n−1∑
µ=1

(bj(2cnµcjµ)+(2cn+1µcjµ))
)

+bj(−2cnncnj)
+(−2cn+1ncnj)

(
n−1∑
ν=1

n−1∑
µ=1

bµ(cνµ2)
)

+
(
n−1∑
µ=1

(bµ(−cnµ2)+(−2cn+1µcnµ))
)

+(2cn+1ncnn)

(
n−1∑
ν=1

n−1∑
µ=1

cνµ2

)
+
(
n−1∑
µ=1

(−2cnµ2)
)

+(cnn2)



.

In the matrix above, i denotes the number of the row and j denotes the columns number
and ∗ is meant to be replaced accordingly to the matrix’ symmetry. We use this result and
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obtain

1
4Sr(H(h)) = −n2 − 3

2n−
1
2

+ h

2(det g)3 tr (cof(g) tr (cof(g)∂g cof(g)∂g))

= −n2 − 3
2n−

1
2

+ h

2(det g)3

n−1∑
i=1

n−1∑
j=1

3cij
(
bibj(2cnicnj + cnncij) + bi(4cn+1icnj + 2cn+1ncij)

+ (2cn+1icn+1j + cn+1n+1cij)
)

+
(
n−1∑
i=1

3cni
(
bi(−4cnncn+1i − 2cn+1ncni) + (−4cn+1ncn+1i − 2cn+1n+1cni)

))

+ 3cnn
(

2cn+1n
2 + cn+1n+1cnn

) .
It remains to calculate det g and the cofactor matrix cof(g). Using the Laplace expansion for
det g, we obtain

det g = −w det

N̄ :=︷ ︸︸ ︷
−x−b1w −z1

... ...
−x−bn−1 −zn−1

−b1z1 ... −bn−1zn−1 w



+
n−1∑
i=1

(−1)(n+1)+i(−zi) det

Ni:=︷ ︸︸ ︷

−x−b1w −b1z1 −z1
... ... ...
−x−bi−1w 0 −bi−1zi−1 −zi−1

0 0 −bizi −zi
0 −x−bi+1w −bi+1zi+1 −zi+1

... ... ...
−x−bn−1w −bn−1zn−1 −zn−1

−b1z1 ... −bi−1zi−1 −bi+1zi+1 ... −bn−1zn−1 x w


.

We will use the Laplace expansion again to calculate detNi for 1 ≤ i ≤ n− 1, and det N̄ .

detNi =
( i−1∑
j=1

(−1)n+j(−bjzj)

· det



−x−b1w −b1z1 −z1
... ... ...
−x−bj−1w 0 −bj−1zj−1 −zj−1

0 0 −bjzj −zj
0 −x−bj+1w −bj+1zj+1 −zj+1

... ... ...
−x−bi−1w 0 −bi−1zi−1 −zi−1

0 0 −bizi −zi
0 −x−bi+1w −bi+1zi+1 −zi+1

... ... ...
−x−bn−1w −bn−1zn−1 −zn−1



)

+
( n−1∑
j=i+1

(−1)n+j−1(−bjzj)
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· det



−x−b1w −b1z1 −z1
... ... ...
−x−bi−1w 0 −bi−1zi−1 −zi−1

0 0 −bizi −zi
0 −x−bi+1w −bi+1zi+1 −zi+1

... ... ...
−x−bj−1w 0 −bj−1zj−1 −zj−1

0 0 −bjzj −zj
0 −x−bj+1w −bj+1zj+1 −zj+1

... ... ...
−x−bn−1w −bn−1zn−1 −zn−1



)

− x det



−x−b1w −z1
... ...
−x−bi−1w 0 −zi−1

0 0 −zi
0 −x−bi+1w −zi+1

... ...
−x−bn−1w −zn−1



+ w det



−x−b1w −b1z1
... ...
−x−bi−1w 0 −bi−1zi−1

0 0 −bizi
0 −x−bi+1w −bi+1zi+1

... ...
−x−bn−1w −bn−1zn−1

 .

Observe that

det



−x−b1w −b1z1 −z1
... ... ...
−x−bj−1w 0 −bj−1zj−1 −zj−1

0 0 −bjzj −zj
0 −x−bj+1w −bj+1zj+1 −zj+1

... ... ...
−x−bi−1w 0 −bi−1zi−1 −zi−1

0 0 −bizi −zi
0 −x−bi+1w −bi+1zi+1 −zi+1

... ... ...
−x−bn−1w −bn−1zn−1 −zn−1



= (−1)i+j det



−x−b1w

...
−x−bj−1w

−zj −bjzj
−x−bj+1w

...
−x−bi−1w

−zi −bizi
−x−bi+1w

...
−x−bn−1w


= (−1)i+j(bi − bj)zizj

∏
k 6=i
k 6=j

(−x− bkw).

Using this, one finds

detNi = (−1)n+i



n−1∑
j=1

(bj − bi)bjz2
j zi

∏
k 6=i
k 6=j

(−x− bkw)

+ (−x+ biw)zi
∏
k 6=i

(−x− bkw)

 .



192

For the matrix N̄ we obtain

det N̄ =
(
w
n−1∏
k=1

(−x− bkw)
)

+
n−1∑
i=1

(−1)n+i(−bizi) det



−x−b1w −z1
... ...
−x−bi−1w 0 −zi−1

0 0 −zi
0 −x−bi+1w −zi+1

... ...
−x−bn−1w −zn−1


=
n−1∑
i=1

(−biz2
i )
∏
k 6=i

(−x− bkw)
+ w

n−1∏
k=1

(−x− bkw).

Hence,

det g =
(
n−1∑
i=1

(−1)n+izi detNi

)
− w detM

=


n−1∑
i=1

n−1∑
j=1

(bj − bi)bjz2
j z

2
i

∏
k 6=i
k 6=j

(−x− bkw)


+
n−1∑
i=1

(−x+ biw)z2
i

∏
k 6=i

(−x− bkw)


+
n−1∑
i=1

wbiz
2
i

∏
k 6=i

(−x− bkw)
− w2

n−1∏
k=1

(−x− bkw)

=

∑
i>j

(bi − bj)2z2
i z

2
j

∏
k 6=i
k 6=j

(−x− bkw)


+
n−1∑
i=1

(−x+ 2biw)z2
i

∏
k 6=i

(−x− bkw)
− w2

n−1∏
k=1

(−x− bkw)

=
(
n−1∏
k=1

(−x− bkw)
)∑

i>j

(bi − bj)2z2
i z

2
j

(−x− biw)(−x− bjw)

+
n−1∑
i=1

(−x+ 2biw)z2
i

−x− biw
− w2

 .
For the cofactors of g we obtain

cn+1i = (−1)(n+1)+i detNi

=


n−1∑
j=1

(bi − bj)bjz2
j zi

∏
k 6=i
k 6=j

(−x− bkw)

+ (x− biw)zi
∏
k 6=i

(−x− bkw),

cn+1n = − det Ñ

=
n−1∑
i=1

biz
2
i

∏
k 6=i

(−x− bkw)
− w n−1∏

k=1
(−x− bkw),

cn+1n+1 = det


−x−b1w −b1z1

... ...
−x−bn−1w −bn−1zn−1

−b1z1 ... −bn−1zn−1 x
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=
(
x
n−1∏
k=1

(−x− bkw)
)

+
n−1∑
i=1

(−1)n+i(−bizi) det



−x−b1w −b1z1
... ...
−x−bi−1w 0 −bi−1zi−1

0 0 −bizi
0 −x−bi+1w −bi+1zi+1

... ...
−x−bn−1w −bn−1zn−1


=
n−1∑
i=1

(−b2
i z

2
i )
∏
k 6=i

(−x− bkw)
+ x

n−1∏
k=1

(−x− bkw).

The (n, i)-cofactors require similar calculations as above. For 1 ≤ i ≤ n − 1 we recall the
calculation of detNi and obtain

cni = (−1)n+i det



−x−b1w −b1z1 −z1
... ... ...
−x−bi−1w 0 −bi−1zi−1 −zi−1

0 0 −bizi −zi
0 −x−bi+1w −bi+1zi+1 −zi+1

... ... ...
−x−bn−1w −bn−1zn−1 −zn−1

−z1 ... −zi−1 −zi+1 ... −zn−1 w 0



=


n−1∑
j=1

(bj − bi)z2
j zi

∏
k 6=i
k 6=j

(−x− bkw)

− wzi ∏
k 6=i

(−x− bkw).

For i = n,

cnn = det

 −x−b1w −z1
... ...
−x−bn−1w −zn−1

−z1 ... −zn−1 0



=
n−1∑
i=1

(−1)n+i(−zi) det



−x−b1w −z1
... ...
−x−bi−1w 0 −zi−1

0 0 −zi
0 −x−bi+1w −zi+1

... ...
−x−bn−1w −zn−1


=

n−1∑
i=1

(−z2
i )
∏
k 6=i

(−x− bkw).

It remains to calculate cij for 1 ≤ i, j ≤ n− 1. Do do so, observe that
1

. . .
1

 =


−x−b1w −b1z1 −z1

... ... ...
−x−bn−1w −bn−1zn−1 −zn−1

−b1z1 ... −bn−1zn−1 x w
−z1 ... −zn−1 w 0

 · 1
det g

( c11 ... c1n+1
... ... ...

cn+1 1 ... cn+1n+1

)
,

and, hence,

cij = 1
−x− bjw

(
δij det

(
−1

2∂
2h
)

+ bjzjcof
(
−1

2∂
2h, n, i

)
+ zjcof

(
−1

2∂
2h, n+ 1, i

))

= δij
det

(
−1

2∂
2h
)

−x− bjw
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+
n−1∑

µ=1

(bµbi + bµbj − b2
µ − bibj)z2

µzizj

(−x− bµw)(−x− biw)(−x− bjw)

+ (x− biw − bjw)zizj
(−x− biw)(−x− bjw)


·
n−1∏
k=1

(−x− bkw)

for all 1 ≤ i, j ≤ n− 1.

Remark 8.18 (Limit case b1 = . . . = bn−1 = 0). In the case b1 = . . . = bn−1 = 0, that is
h = x(−w2+〈z, z〉), one can check that the steps used to acquire the formula (8.15) for Sr(H(h))
are still valid. Hence, we can use (8.15) to calculate the scalar curvature of H2,n (Proposition
6.9 equation (6.45)), which is equivalent to H(h) corresponding to b1 = . . . = bn−1 = 0. In
that case we obtain for the determinant of g = −1

2∂
2h and the cofactors cij of g

det g = (−1)n−1xn−2h,

cn+1i = (−1)nxn−1zi,

cn+1n = (−1)nxn−1w,

cn+1n+1 = (−1)n+1xn,

cni = (−1)n−1xn−2wzi,

cnn = (−1)n−1xn−2〈z, z〉,
cij = δji (−1)nxn−3h+ (−1)n−1xn−2zizj

for all 1 ≤ i, j ≤ n−1. One can now verify that Sr(H(h)) calculated via (8.15) is constant with
value Sr(H(h)) ≡ −4n2 − 8, which coincides with the result for Sr(H2,n) obtained in Lemma
8.16 as expected.

Another important construction originating in the physics literature [FS] is the super-
gravity c-map. Since we did not work directly with this construction, we refer the reader for
an introduction to Section 3 of [CHM]. From [CHM, Thm. 5] we obtain the following.

Lemma 8.19 (Properties of manifolds in the supergravity q-map). The composition of the
supergravity r-map and c-map maps CCPSR manifolds H of dimension dim (H) = n to
complete quaternionic Kähler manifolds of real dimension 4n + 8 that have negative scalar
curvature.

Lastly, we will briefly discuss applications and open questions in physics related to our
research.

The composition of the supergravity r- and c-maps is called the supegravity q-map. Note
also that until now, there is no known generalisation of the supergravity c-map to CCGPSR
manifolds with corresponding homogeneity-degree τ ≥ 4.

The reasons for mentioning this field of research are the following. Mathematically, we
can use Theorem 5.6 and obtain a method of deforming the Kähler manifolds in the image
of the supgravity r- and q-map. Furthermore, we now know that these manifolds can be
parametrised over a compact convex set as described in Theorem 5.6. In [D], the curvature
properties of manifolds in the image of the supergravity c-map (and, in particular, q-map)
have been studies. Thus, for future research, it is an interesting question how to use the
information we obtained for CCPSR manifolds in Theorem 5.6 in combination with the results
of [D], for example to find curvature bounds of manifolds in the image of the supergravity
q-map or to study the following question using our results and the results specifically from
[D, Ch. 7]. One task is the following.
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Open problem 8.20 (‖R‖2 and d‖R‖2 in standard form for QK manifolds in image of
q-map). Find a closed formula for the squared pointwise norm of the curvature tensor R of
manifolds in the image of the supergravity q-map using the notation from (3.12). Further-
more, in low dimensions try to solve d‖R‖2 = 0 using computer algebra software to obtain
all candidates for homogeneous spaces in the image of the supergravity q-map.

From a physics standpoint, Theorem 5.6 allows one to deform supergravity theories with
scalar-fields defined for all time corresponding to CCPSR manifolds and their images in the
supergravity r- and c-map. There has been no research in this direction from our part so
far, but trying to interpret the physical implications might be an interesting task for future
studies.
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9 Outlook
In the last part of this thesis we will discuss some open questions, possible ways to solve
them, and general ideas that came up during the its preparation.

One of the driving forces for our studies in this thesis has been the open question of
completeness for quartic CCGPSR manifolds, cf. Open problem 7.1. Different ideas and
tries to solve this question ultimately let to a better understanding of GPSR manifolds and
in particular CCPSR manifolds. If one tries to obtain similar results for quartic CCGPSR
manifolds as for CCPSR manifolds as in sections 4 and 5, it will quickly be obvious that
quartic CCGPSR manifolds are a lot more complicated to work with. As an example, the
proof of Theorem 7.2 where we were able to classify one-dimensional quartic CCGPSR curves
needs far more technicalities than an analogous proof for the classification of CCPSR curves,
cf. Remark 7.4. However, we expect that the following open questions might be solvable:

• Determine if a statement as in Theorem 5.3 also holds for quartic CCGPSR manifolds,
i.e. check if Def. 5.1 (i) always implies Def. 5.1 (ii) for quartic CCGPSR manifolds.

• Classify quartic CCGPSR surfaces up to equivalence.

In the proof of Theorem 5.3 we have used the known classification of CCPSR surfaces [CDL],
but one might want to try to solve an analogous result for quartic CCGPSR manifolds without
classifying quartic CCGPSR surfaces. The latter is probably even more complicated than
the classification of quartic CCGPSR curves in Theorem 7.2, but might not be impossible
to manage. If one manages to solve one of the above open questions, one might use them to
solve another interesting question.

• Can the set of quartic CCGPSR manifolds with non-regular boundary behaviour (Def-
inition 5.1) be parametrised over a compact subset of Sym3 (Rn)∗⊕ Sym4 (Rn)∗ similar
to the statement of Proposition 5.8 (cf. Open problem 7.6)?

If the answer to the above question is positive, then one could prove completeness for all
quartic CCGPSR manifolds using a method as for the proof of Proposition 5.17. Note this
is in particular motivated by the following consequence of Theorem 7.2. A quartic CCGPSR
curve HL,K ⊂ {hL,K = x4 − x2y2 + Lxy3 +Ky4 = 1} ⊂ R2, ( xy ) = ( 1

0 ) ∈ HL,K , is singular
at infinity in the sense of Definition 3.16 if and only if L = ±u(K), K ∈

[
− 1

12 ,
1
4

]
, cf.

equation (7.18), which shows that the set of singular-at-infinity quartic CCGPSR curves can
be parametrised over a compact subset of R2, namely{(

L
K

) ∣∣∣∣∣ L = ±u(K), K ∈
[
− 1

12 ,
1
4

]}
.

However, the one-parameter family d) of quartic CCGPSR curves in Theorem 7.2 also shows
that the set of all quartic CCGPSR curves can not be parametrised over a compact set in
that way.

We want to stress that there might exist incomplete quartic CCGPSR manifolds of di-
mension n ≥ 2, so one could also try to solve the following problems.

• Find an incomplete quartic CCGPSR manifold. Or, more generally:

• Find an incomplete CCGPSR manifold.
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Another open question is the classification of homogeneous quartic CCGPSR manifolds H ⊂
{h = 1} of dimension dim(H) ≥ 2 with transitive action of the identity component Gh

0 of
the corresponding automorphism group Gh. One ansatz would be to generalise the proof
in [DV] where homogeneous CCPSR manifolds with with transitive action of the identity
component of the corresponding automorphism group have been classified. At least for low
dimensions, one could use Proposition 3.34 and use a computer algebra system to answer that
question. The involved equations (3.31) and (3.32) are quartic equations in the prefactors of
the monomials in P3 and P4, so they should be solvable with any computer algebra system
for low dimensions. One would however still have to check (most likely by hand) which of
the obtained solutions are equivalent as quartic CCGPSR manifolds.

Apart from the open questions in the setting of known results, there is another idea for
a way to compare CCGPSR manifolds of different homogeneity-degree which came up while
working on a way of an alternative proof of the classification of CCPSR curves similar to
the proof of Theorem 7.2, cf. Remark 7.4. Recall Example 7.12. There we described how to
obtain an n-dimensional quartic CCGPSR manifold H4 from a given n-dimensional CCPSR
manifold H3 ⊂ {h = 1} with our usual assumptions h of the form (3.12) and ( 1

0 ) ∈ H3,
where H4 was defined to be the connected component of {xh = 1} that contains the point
( 1

0 ) ∈ {xh = 1}. Furthermore we have shown that quartic CCGPSR manifolds obtained
in this way are complete. This construction has however the flaw that it does not respect
equivalence classes, that is equivalent CCPSR manifolds might yield inequivalent quartic
CCGPSR manifolds. To see this, consider CCPSR and quartic CCGPSR curves. We can
without loss of generality assume that a CCPSR curve H3 = H3

L is the connected component
of the level set {hL = x3 − xy2 + Ly3 = 1} that contains the point ( 1

0 ) ∈ {hL = 1} ⊂ R2

with L ∈
[
− 2

3
√

3 ,
2

3
√

3

]
. Then

xhL = x4 − x2y2 + Lxy3 =: hL,0, (9.1)

where we chose the notation hL,0 in accordance with the proof of Theorem 7.2 and we denote
the corresponding quartic CCGPSR curve by H4

L,K . We know that two CCPSR curves
H3
L and H3

L′ are equivalent if either L,L′ ∈
(
− 2

3
√

3 ,
2

3
√

3

)
or L,L′ ∈

{
− 2

3
√

3 ,
2

3
√

3

}
. But the

corresponding quartic CCGPSR curves H4
L,0 and H4

L′,0 are equivalent if and only if |L| = |L′|.
To see that this is true and in particular that H4

L,0 and H4
L′,0 are inequivalent if |L| 6= |L′|,

recall that for |L| = |L′| = 2
3
√

3 , H4
L,0 and H4

L′,0 are both equivalent to the quartic CCGPSR
curve c) in Theorem 7.2. Suppose that there exist L,L′ ∈

(
− 2

3
√

3 ,
2

3
√

3

)
with |L| 6= |L′|,

such that H4
L,0 and H4

L′,0 are equivalent. We have seen in the proof of Theorem 7.2 that the
considered vector field V ∈ Γ (TR2) (7.4) is transversal to the set{(

L
0

)
∈ R2

∣∣∣∣∣ L ∈
(
− 2

3
√

3
,

2
3
√

3

)}

at all points. This and the smoothness of V already show that not every quartic CCGPSR
curves H4

L,0 and H4
L′,0 with L,L′ ∈

(
− 2

3
√

3 ,
2

3
√

3

)
can be equivalent. We have also shown that

every maximal integral curve of V|R2\{V=0} starting at a point in the set{(
L
K

)
∈ R2

∣∣∣∣∣ − 1
12 < K <

1
4 , |L| < u(K)

}
,

with u(K) as in (7.18), meets the set{(
0
K

)
∈ R2

∣∣∣∣∣ − 1
12 < K <

1
4

}
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in precisely one point. But we know that (cf. the one-parameter family of curves d) in
Theorem 7.2) two quartic CCGPSR surfaces H4

0,K ⊂ {h0,K = x4 − x2y2 +Ky4 = 1} and
H4

0,K ⊂ {h0,K′ = x4 − x2y2 +K ′y4 = 1}, ( 1
0 ) ∈ H4

0,K and ( 1
0 ) ∈ H4

0,K′ , are equivalent if
and only if K = K ′. Together with the fact that V vanishes at no point in the set{

( LK ) ∈ R2
∣∣∣ − 1

12 < K < 1
4 , |L| < u(K)

}
⊃
{

( L0 ) ∈ R2
∣∣∣ |L| < u(0) = 2

3
√

3

}
, we deduce with

the symmetry dL (V−L,K) = dL (VL,K) and dK (V−L,K) = −dK (VL,K) that H4
L,0 and H4

L′,0

with L,L′ ∈
(
− 2

3
√

3 ,
2

3
√

3

)
are equivalent if and only if |L| = |L′| as claimed.

In comparison, consider the following assignment. To a CCPSR curve H3
L, |L| ≤ 2

3
√

3 , as
before we assign the quartic CCGPSR curve

H4√
2L,− 1

12
⊂
{
h√2L,− 1

12
= x4 − x2y2 +

√
2Lxy3 − 1

12y
4 = 1

}
with ( 1

0 ) ∈ H4√
2L,− 1

12
. The vector field V is tangent to the set

{(√
2L
− 1

12

)
∈ R2

∣∣∣∣∣ |L| < 2
3
√

3

}

and vanishes at the points
(
± 2
√

2
3
√

3
− 1

12

)
∈ R2 which correspond to L = ± 2

3
√

3 , respectively. Hence,

two such quartic CCGPSR curves H4√
2L,− 1

12
and H4√

2L′,− 1
12

, L,L′ ∈
[

2
3
√

3 ,
2

3
√

3

]
are equivalent

if either |L| = |L′| = 2
3
√

3 (cf. Thm. 7.2 b)) or if L,L′ ∈
(

2
3
√

3 ,
2

3
√

3

)
(cf. Thm. 7.2 c)).

These are precisely the conditions for the corresponding CCPSR curves H3
L and H3

L′ to be
equivalent. Thus, the correspondence

H3
L → H4√

2L,− 1
12
, (9.2)

or, when considering the corresponding polynomials,

hL → h√2L,− 1
12
,

has the advantage over the previous construction (9.1), that is H3
L → H4

L,0, that it respects
equivalence classes in the sense that for all L,L′ ∈

[
− 2

3
√

3 ,
2

3
√

3

]
, the CCPSR curves H3

L

and H3
L′ are equivalent if and only if the quartic CCGPSR curves H4√

2L,− 1
12

and H4√
2L′,− 1

12

are equivalent. Furthermore, note that H3
L is singular at infinity if and only if H4√

2L,− 1
12

is
singular at infinity in the sense of Definition 3.16.

Recall the definition of Cn in Proposition 5.8 and note that the assignment H3
L → H4√

2L,− 1
12

when considered on the level of C1 =
{
x3 − xy2 + P3(y)

∣∣∣∣∣ max
‖z‖=1

P3(z) ≤ 2
3
√

3

}
∼=
[
− 2

3
√

3 ,
2

3
√

3

]
is given by the affine linear map

Ξ : L 7→
(√

2L
− 1

12

)
. (9.3)

There are, however, other possible ways to assign to each CCPSR curve a quartic CCGPSR
curve, such that equivalence classes and the property of being either singular at infinity or
not singular at infinity are conserved. For example, consider with u and w as in (7.18) and
(7.28), respectively, for a chosen point(

L0
K0

)
∈
{
− 1

12 < K <
1
4 , |L| < u(K)

}
∪
{
K < − 1

12 , |L| < w(K)
}
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the maximal integral curve γL0,K0 : I → R2, 0 ∈ I, of V|R2\{V=0} that fulfils the initial
condition γL0,K0(0) =

(
L0
K0

)
. At this point, we will assume that the following statement is

true in general. Independent of the initial values L0 and K0 as above with I = (I−, I+) (note:
I− ∈ R<0 ∪ {−∞} and I+ ∈ R>0 ∪ {∞}), γL0,K0 fulfils

lim
t→I+, t<I+

γL0,K0(t) =
(
−2
√

2
3
√

3
− 1

12

)

and
lim

t→I−, t>I−
γL0,K0(t) =

(
2
√

2
3
√

3
− 1

12

)
.

We expect that this holds from checking it specific values with MAPLE. The proof of the
latter statement is most likely obtainable with some modifications to the techniques used in
the proof of Theorem 7.2. We can now choose any smooth diffeomorphism

F :
[
− 2

3
√

3
,

2
3
√

3

]
→ γL0,K0(I), F (L) =

(
F1(L)
F2(L)

)

and obtain in comparison with (9.3) another way to construct a quartic CCGPSR curve from
a CCPSR curve via

H3
L → H4

F1(L),F2(L). (9.4)
The above construction (9.4) respects equivalence classes and the (non-)singular-at-infinity
property for all L ∈

[
− 2

3
√

3 ,
2

3
√

3

]
. For future research of this topic, there are two main goals:

• Find a construction associating to each n-dimensional CCPSR manifold H3 an n-
dimensional quartic CCGPSR manifold H4,

H3 → H4,

such that equivalence classes and the (non-)singular-at-infinity property are preserved.

• More generally, find for all τ ≥ 3 a way to map n-dimensional CCGPSR manifolds
of homogeneity-degree τ , Hτ , to n-dimensional CCGPSR manifolds of homogeneity-
degree τ + 1, such that equivalence classes and the (non-)singular-at-infinity property
are preserved. This would yield a sequence of constructions

H3 → H4 → H5 → H6 → . . . .

To obtain such results, extensive study of the corresponding δPk’s as in Definition 3.27 will
probably be necessary. For example for the construction (9.2), one can check that with the
affine linear map Ξ (9.3) (cf. Figure 25) and the vector fields V (7.4) and Ṽ (7.59) (recall
the correspondence of V and Ṽ with δP3(y) as in (7.59), respectively δP3(y) and δP4(y) as in
(7.2) and (7.3)) we obtain

(
Ξ∗Ṽ

)(
L
− 1

12

) = 1√
2

(9
2L

2 − 4
3

)
∂L = 1√

2
V( L
− 1

12

).
Apart from purely mathematical open questions, one open task is how to interpret and

use our results in the theory of supergravity. In particular, we have shown in Proposition
5.8 that we can “parametrise” theories obtained from complete PSR manifolds over a certain



200

Figure 25: The graph of Ξ marked with a line consisting of small circles.

convex compact set. This might allow to find a physically meaningful way to construct a
measure in the space of theories obtained this way. Furthermore, the results for the curvature
of CCPSR manifolds, that is Theorem 4.13 and Proposition 5.12, might be interesting for
physicists to consider in their studies.

Our more general results for CCGPSR manifolds, in particular the classification of quartic
CCGPSR curves in Theorem 7.2, might be useful in scattering theory, cf. the discussion below
Theorem 1.18 in [CNS] and also [Me, Ch. 8].
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(1981), Birkhäuser Verlag, Boston).

[C] V. Cortés, Alekseevskian spaces, Differential Geom. Appl. 6 (1996), no. 2, 129–168.

[C et al.] V. Cortés (editor) et al., Handbook of Pseudo-Riemannian Geometry and Super-
symmetry, EMS IRMA Lectures in Mathematics and Theoretical Physics Vol. 16
(2010).

[CDL] V. Cortés, M. Dyckmanns, and D. Lindemann, Classification of complete projective
special real surfaces, Proc. London Math. Soc. 109 (2014), no. 2, 423–445.
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[Ju] M. Jüngling, Some classes of projective special real manifolds of dimension 3 and
higher (2014), master thesis.

[KN] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry Volume I (1963),
Wiley Classics Library.

[KW] A. Kanazawa, P.M.H. Wilson, Trilinear forms and Chern classes of Calabi-Yau
threefolds, Osaka J. Math. 51 (2014) 203–213.

[Le] J. M. Lee, Introduction to Smooth Manifolds (2003), Springer-Verlag New York.

[Li] D. Lindemann, Completeness of projective special real manifolds generated by re-
ducible polynomials (2014), master thesis.
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