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Abstract
In this thesis, different aspects of an x-ray free electron laser oscillator (XFELO) are considered.
The focus, however, is clearly on the investigation of the influence of absorbed x-ray power
on the Bragg reflection of diamond crystals. Due to its unique combination of superb thermo-
mechanical and optical properties, diamond is the most promising material for high power x-ray
Bragg mirrors as required to build an XFELO cavity. Because the Bragg reflection is sensitive
to strain in the crystal structure, a numerical study is performed to obtain the strain field
in a diamond crystal caused by the heat load expected to be deposited by a typical XFELO
pulse. Furthermore, the effect of the strain in the diamond crystal on its Bragg reflectivity is
studied as well. Due to the even more outstanding thermal conductivity and thermal expansion
of diamond at cryogenic temperatures it appears favorable to operate the Bragg mirrors at
those temperatures. However, at low temperatures and the spatial dimensions of an XFELO
Bragg mirror, ballistic heat conduction effects, which are difficult to predict theoretically, set in.
These ballistic heat conduction effects question the applicability of the classical heat conduction
equation. For that reason a pump-probe experimental setup has been designed and realized,
capable of simulating the heat load expected to be deposited by an XFELO pulse and measuring
the resulting temperature decay. Additionally, by means of an appropriate data analysis, the
validity of the classical heat equation and the hyperbolic heat equation at cryogenic temperatures
is evaluated.

Zusammenfassung
In dieser Arbeit werden verschiedene Aspekte eines Röntgen-Freie-Elektronen-Laser-Oszillators
(XFELO) betrachtet. Dabei liegt der Fokus jedoch klar auf der Untersuchung des Einflusses
von absorbierter Röntgenstrahlung auf die Bragg-Reflexion von Diamantkristallen. Aufgrund
der einzigartigen Kombination seiner hervorragenden thermo-mechanischen und optischen Ei-
genschaften ist Diamant das vielversprechendste Material für Hochleistungs-Bragg-Spiegel, wie
sie zum Aufbau einer XFELO Kavität benötigt werden. Da die Bragg-Reflexion empfindlich auf
Dehnungen der Kristallstruktur reagiert, wurde eine numerische Studie durchgeführt, um so das
Dehnungsfeld innerhalb des Diamantkristalls zu erhalten, welches durch die Wärmelast verur-
sacht wird, die erwartungsgemäß von einem typischen XFELO Puls deponiert wird. Außerdem
wird die Auswirkung der Dehnung innerhalb des Kristalls auf die Bragg-Reflektivität untersucht.
Aufgrund der sogar noch günstigeren thermischen Leitfähigkeit und thermischen Ausdehnung von
Diamant bei kryogenen Temperaturen erscheint es vorteilhaft, die Bragg-Spiegel bei solchen Tem-
peraturen zu betreiben. Bei niedrigen Temperaturen und den geringen räumlichen Ausmaßen der
XFELO-Bragg-Spiegel treten jedoch ballistische Wärmeleitungseffekte auf, die theoretisch schwer
vorhersagbar sind. Diese ballistischen Wärmeleitungseffekte stellen die Anwendbarkeit der klassi-
schen Wärmeleitungsgleichung in Frage. Aus diesem Grund wird in dieser Arbeit die Entwicklung
und Realisierung eines experimentellen Aufbaus beschrieben, mit dem die erwartete Wärmelast,
die in einem XFELO- Spiegel deponiert wird, simuliert und der anschließende Abkühlvorgang
gemessen werden kann. Zusätzlich wird anhand geeigneter Datenanalyse die Gültigkeit der klas-
sischen Wärmeleitungsgleichung und der hyperbolischen Wärmeleitungsgleichung überprüft.
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1 Introduction

Visible light interacting with matter is the predominant interaction whereby we perceive
our environment. Even though the visible part of the electromagnetic spectrum is the
most familiar for us, other ranges of this spectrum are also suitable for revealing infor-
mation about nature. Since the electromagnetic waves in different wavelength ranges
interact differently with matter, they can be utilized complementary. One important
wavelength range is the x-ray regime. X-radiation has unique properties and is there-
fore widely used in science, industry, security and health care. The major application
of x-rays, due to their ability to penetrate matter, is to image the inside of objects.
Other important applications which are mainly used in science are x-ray spectroscopy
and x-ray diffraction. With x-ray diffraction the structure of solids and molecules can
be investigated on the atomic scale.

For scientific applications the major figure of merit of an x-ray source is the brilliance
– a measure for the photon flux normalized to the solid angle of emission, the source size
and the bandwidth. In order to increase the brilliance, accelerator based x-ray sources
have been developed over more than half a century since the discovery of synchrotron
radiation in 1946. Over that period, the brilliance of the synchrotron radiation sources
could be increased by about 3 orders of magnitude per decade. About two decades
ago, it became clear that Free-Electron Lasers1 (FELs), which were invented by John
Madey in 1971 [Madey, 1971], can be used as x-ray sources. With x-ray FELs (XFELs)
the peak brilliance was increased by further eight orders of magnitude compared to
storage ring facilities. The first soft x-ray FEL FLASH was built at DESY in Hamburg
and started operation for users in 2005 [Ayvazyan et al., 2005]. In the hard x-ray
regime, the Linear Coherent Light Source (LCLS) at Stanford was the first operational
FEL, beginning in 2009 [Emma et al., 2010]. Both FELs are based on the SASE (self-
amplified spontaneous emission) principle2, which enables short pulses with a high peak
brilliance and a high degree of spatial coherence [Kondratenko and Saldin, 1980]. The
drawback of the SASE principle is its relatively broad emission bandwidth and thus its
low temporal coherence and its poor pulse to pulse stability. In the hard x-ray regime

1See chapter 2 for more details about FELs.
2See section 2.1.2 for details about the SASE principle.
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1 Introduction

two different schemes have been proposed to overcome these drawbacks. The proposed
schemes are the “self-seeding” scheme3 and the “oscillator” scheme, which is considered
in this work. Both schemes utilize Bragg-reflecting diamond mirrors to narrow the
bandwidth of the emitted radiation and use that narrow bandwidth radiation to initiate
(seed) the subsequent radiation generation. Bragg mirrors are used because in the x-ray
regime no conventional mirrors are available, which reflect over a wide angle and with
a sufficient reflectance. Because of its unique combination of superb thermo-mechanical
and optical properties, diamond is the best known material for high power x-ray optics.
These outstanding material properties include a high mechanical and radiation hardness,
a high thermal diffusivity, a low thermal expansion and a high Bragg reflectivity of x-rays
[Shvyd’ko et al., 2011].

1.1 Motivation

The recently proposed concept of an XFELO (x-ray free electron laser oscillator) de-
scribed in [Kim et al., 2008; Lindberg et al., 2011] potentially offers performance com-
plementary to a SASE (self-amplified spontaneous emission) based FEL.4 The proposed
XFELO uses a crystal cavity to provide narrow band feedback of the SASE radiation
and has the potential to produce hard x-rays with energies between 5 and 20 keV. Due
to the feedback of the radiation the XFELO only requires an undulator of about 5 - 20 m
length, which is an order of magnitude less than the undulator length required by a SASE
or self-seeded FEL. While the outcoupled peak power of such an XFELO (about 50 MW)
is predicted to be lower by about 3 orders of magnitude compared to SASE-XFELs, the
bandwidth will be of the order of ∆ν/ν ≈ 10-5 - 10-7 which is 2 - 4 orders of magnitude
narrower than the bandwidth of a SASE-XFEL (∆ν/ν ≈ 10-3). The peak brilliance of
an XFELO is predicted to be about 7 · 1034 photons/(s mm2 mrad2 0.5% BW), which is
about one order of magnitude more than the peak brilliance of a SASE based XFEL
[Zemella et al., 2011].
Compared to a self-seeded XFEL the peak power of an XFELO is lower by about

two orders of magnitude and the bandwidth is more narrow by 0.5 - 2 orders of mag-
nitude than the bandwidth of a self-seeded XFEL (∆ν/ν ≈ 5 · 10-5). The pulses of an
XFELO will have a significantly larger longitudinal coherence than SASE-XFELs up to
full longitudinal coherence along the photon pulse and a higher pulse to pulse stability
than self-seeded XFELs and SASE-XFELs. Due to these unique properties an XFELO

3See section 2.1.2 for more details about self-seeding.
4See sections 1.2 and 2.1.3 and figures 1.1 and 1.2 for more details about the concept of an XFELO.
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1.1 Motivation

is a powerful x-ray source for various experiments like high resolution spectroscopy,
Mössbauer spectroscopy, x-ray photoemission spectroscopy and x-ray imaging with nm
resolution. With an appropriate cavity stabilization an XFELO even offers inter-pulse
coherence which would increase the coherence length from picoseconds to microseconds
or longer. This would result in novel experimental techniques in x-ray quantum optics
as well as time and length standards of greatly enhanced precision [Adams and Kim,
2015].

In order to keep the cavity within a manageable size, the electron bunch repetition
rate has to be about 1 MHz or higher. This constraint of a MHz reppetition rate together
with the expected x-ray pulses of about 300 µJ with a beam radius at the mirrors of
about 50 µm impose a high heat load to the mirrors [Zemella et al., 2012]. The heat
load on Bragg mirrors is a major issue because an undistorted Bragg reflection relies on
a constant spacing in the atomic lattice. Due to the thermal expansion of the lattice the
heat load in the mirrors can shift and distort the wavelength range which can be reflected.
Those shifts and distortions inhibit the feedback of the radiation to the undulator and
thus inhibit the whole XFELO process.

In order to increase the tolerable heat load on the mirrors, it was suggested [Sinn, 2007]
to operate the mirrors at cryogenic temperatures. Cryogenic temperatures are expected
to be favorable because at those temperatures, the thermal diffusivity of diamond is
significantly higher and the thermal expansion significantly lower. Both properties are
expected to result in a greatly reduced shift and distortion of the Bragg reflectivity
curve of the mirrors. The thermal expansion of diamond at cryogenic temperatures
has recently been measured with a high precision [Stoupin and Shvyd’ko, 2011]. The
thermal diffusivity – the ratio between the thermal conductivity and the volumetric
heat capacity – is known for diamond at cryogenic temperatures but the prediction
of the actual temperature evolution of a mirror is based on a heat transfer equation.
The usually applied classical heat equation (HE) assumes the mean free path (MFP)
of the heat carriers (phonons in the case of diamond as an insulating material) to be
small compared to the characteristic length scale of the considered system. Since the
MFP of the phonons increases when the temperature is decreased the MFP reaches
the characteristic length scale of the mirrors at cryogenic temperatures. Thus the HE
is expected to fail at cryogenic temperatures. This failure is hard to predict without
the knowledge of the temperature dependent MFP spectrum of the phonons, which is
unknown for diamond. Due to this issues the temperature evolution of a diamond Bragg
mirror for an XFELO at cryogenic temperatures is hard to predict as well.

3



1 Introduction

Bragg reflector

Focusing mirror

Dipole magnet

Undulator

Figure 1.1: Scheme of an XFELO. The red dashed line represents the path of the electron
beam, which comes from the left and is deflected by the dipole magnets (green
triangles) to bypass the focusing mirrors (blue rectangles) of the x-ray cavity.
The yellow line represents the path of the x-ray beam, which traverses the
undulator in the same direction as the electron beam. At the Bragg reflector
(orange rectangle) on the right, a fraction of the x-ray beam is coupled out
of the cavity.

Because the temperature evolution of a Bragg mirror determines its stain, and thus
the wavelength, which can be reflected, this work focuses on the influence of the ab-
sorbed fraction of incident radiation pulses on the condition of diamond crystals used as
Bragg mirrors. A pump-probe experimental setup is developed, capable of simulating
the heat load expected to be deposited by an XFELO pulse and measuring the resulting
temperature decay. Furthermore, numerical studies are presented which reveal the ex-
pected strain generated by the absorbed radiation power and the associated change in
Bragg reflectivity.

1.2 Scheme of an XFELO

An XFELO consists of four major components:

1. The electron accelerator, which provides high brightness electron bunches of several
GeV with a MHz repetition rate.

2. The electron optics, which matches the electron and x-ray beam.

3. The undulator, where the matched electron and x-ray beam interact.

4. The x-ray cavity, in which the generated x-ray pulse circulates.

In figure 1.1, a scheme of an XFELO is shown in which components 2-4 of the list
above are illustrated. The electron optics are illustrated without focusing elements5,
which would be placed before the first dipole magnet on the left of the figure. The

5See section 4.1 and figure 4.1 for more details about the appropriate electron optics.
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1.2 Scheme of an XFELO

electron beam comes from the left and gets focused into the middle of the undulator.
In order to bypass the x-ray focusing elements (elliptical grazing incidence mirrors) the
electron beam passes a chicane. In the undulator, the electron beam starts to generate
spontaneous undulator radiation.6 During the passage of the undulator the undulator
radiation starts to interact with the electron bunch and FEL radiation is generated.7 At
the undulator exit, the FEL radiation is collimated by the first grazing incidence mirror
and directed to the outcoupling mirror. Here, the majority (typically about 90-98%) of
the generated radiation which fulfills the Bragg condition is reflected and the rest of the
radiation is coupled out of the cavity or is absorbed by the Bragg mirror.8 The reflected
radiation is directed to the second Bragg mirror and then to the second grazing incidence
mirror where the radiation is focused into the middle of the undulator. At the entrance
of the undulator, the x-ray pulse is matched to the next electron bunch and initiates
(seeds) the FEL process. Over many cycles, this leads to a strong increase in radiation
power and because only that fraction of the radiation which fulfills the Bragg condition
is fed back into the undulator, the generated radiation has a very narrow bandwidth.

In order to utilize the principle ability of an FELO to tune the wavelength of the
generated radiation continuously over a wide range, the Bragg angle of of the mirrors
has to be changed to maintain the Bragg condition (eq. (1.1)). The cavity shown in
figure 1.1 and 1.2 (top) does not allow practically interesting tuning ranges because the
incidence angle of the focusing grazing incidence mirrors has to be below their critical
angle of about 1 mrad for 10 keV x-rays. This requirement results in a tuning range of
the wavelength of ∆λ/λ ≈ 10−6. Larger tuning ranges can be achieved with a cavity
consisting of four Bragg crystals and two focusing elements shown in figure 1.2 (bottom).
In this cavity the incidence angle on the grazing incidence mirrors is kept constant while
the incidence angle on the Bragg mirrors can be changed. The tuning is done by shifting
the two additional Bragg mirrors in the direction indicated by the black arrow in figure
1.2 (bottom) while the Bragg angle of the mirrors is adjusted [Kim and Shvyd’ko, 2009].
Installed in an accelerator tunnel of the European XFEL where about 4 m for shifting
the mirrors are available, a tuning range of up to 0.5% can be achieved [Zemella, 2013].

6See section 2.2.1 and figure 2.1 for details about undulators and its radiation.
7This process is called SASE (self-amplified spontaneous emission). More derails about SASE can be
found in section 2.1.2.

8See figure 1.4 for the reflectivity curves of different diamond crystals.
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Dipole Magnet

Undulator

Bragg mirror

Focusing mirror

Dipole Magnet

Undulator

Bragg mirror

Focusing mirror

∆

Figure 1.2: Comparison of two different XFELO cavities. The red lines represent the
path of the electron beam which comes from the right and is deflected by the
dipole magnets to bypass the focusing mirrors of the x-ray cavity. The path
of the the x-ray beam is shown in yellow. The top cavity is identical to the
cavity shown in figure 1.1. The bottom cavity consists of four Bragg mirrors
and two grazing incidence mirrors and can be tuned over a wide wavelength
range. The tuning of the cavity is done by shifting the additional Bragg
mirrors in the direction indicated by the black arrow, which is indicated by
the transparent drawn Bragg mirrors and x-ray beam. In the bottom figure,
the color code for the polarity of the dipole magnets is inverted. The figure
is modified from [Zemella, 2013].
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1.2 Scheme of an XFELO

1.2.1 Principle and Characteristics of Bragg Reflection

Bragg diffraction – a special case of Laue diffraction – originates from scattering of x-
rays at a periodic crystal structure. In figure 1.3 the scheme of the Bragg reflection is
shown. The reflection takes place when waves scattered at the different planes of the
periodic crystal structure interfere constructively. This is the case when the so called
Bragg condition

nλB = 2dH(T ) sin (θB) (1.1)

is fulfilled, where n is an integer determining the diffraction order, λB is the radiation
wavelength at which the reflection occurs, dH is the distance between the periodic lattice
planes, T the temperature and θB is the angle at which the reflection occurs. The periodic
lattice planes can be determined by three integers (hkl) – the Miller indices. However,
only reflections with a non-vanishing structure factor can actually be observed [Kittel,
2004, p. 39]. In a cubic lattice like a diamond crystal with a lattice constant a = 3.567 Å
[Kittel, 2004, p. 17], the spacing between the lattice planes is given by

dH(T ) = a(T )√
h2 + k2 + l2

. (1.2)

Higher order diffractions n > 1 are often denoted by n(hkl).9 Due to the thermal
expansion of a crystal the lattice constant and thus the Bragg condition is dependent
on temperature. For that reason the temperature of the XFELO Bragg mirrors should
be kept as constant as possible to ensure stable XFELO operation. Equation (1.1) does
not yield any information about the angular or wavelength range in which the reflection
occurs and no value for the actual reflectivity can be obtained. In order to obtain the
actual reflectivity curves, the dynamical theory of x-ray diffraction has to be applied
[Authier, 2001]. This theory is complex and therefore only the resulting reflectivity
curve for a diamond (444) reflection is shown in figure 1.4.10 The plot on the left shows
the reflectivity and field phase over the change in photon energy of a (444) reflection
for an infinitely thick diamond crystal in backscattering geometry. The plot on the
right shows the reflectivity and transmissivity of a 42 µm thick diamond crystal in the
same scattering geometry. The plot on the left corresponds to a standard cavity mirror
while the plot on the right corresponds to an outcoupling mirror, where the fraction of
outcoupled radiation is determined by the crystal thickness. In both cases the relative
spectral width of the Bragg reflection is very narrow, which means that only a very

9For example a (1 1 1) reflex of the order n = 4 can be denoted as (4 4 4).
10The applied theory assumes a perfect unstrained crystal structure.
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·

θB

dH

Figure 1.3: Scheme of the Bragg reflection. The red lines represent the incident and
reflected radiation. The black dots connected by the black dashed lines
represent the lattice of the crystal. The radiation at the Bragg wavelength
λB is scattered at the different lattice planes and it interferes constructively
at the Bragg angle θB, which causes the Bragg reflection. The figure is taken
from [Zemella, 2013].

narrow part of the undulator and SASE radiation is reflected. The reflection curve of
the 42 µm thick crystal on the right shows fringes (local maxima of lower reflectivity)
on both sides of the principal maximum of the curve. These fringes are caused by the
finite thickness of the crystal and thus the finite number of lattice planes involved in the
scattering process. For the same reason the 42 µm thick crystal transmits only a fraction
of the radiation at the Bragg wavelength. The distance over which the electric field in the
crystal decays by e−1 or the field intensity decays by e−2 is called the extinction length
of the radiation. From the dynamical theory of x-ray diffraction, a relation between
the relative spectral width of the Bragg reflection εB and the extinction length of the
radiation lext can be derived, which yields [Shvyd’ko, 2004, p. 77]

lext ≈
dH
εBπ

. (1.3)

The extinction length of the radiation is an important property because it determines
the distance over which the heat load caused by the absorbed fraction of the radiation is
deposited. According to equation (1.3) and given a relative spectral width of the Bragg
reflection εB ≈ 1.6 ·10−6, the extinction length yields about 41µm.11 Thus, the absorbed
fraction of the incident x-ray pulses causes an initial temperature change of exponential
shape in the cross-plane direction, where the surface temperature change decays by e−2

11This extinction length is calculated from equation (1.3), which is derived from the dynamical theory
of x-ray diffraction of unstrained perfect crystals. For the calculation of the extinction length of
strained or imperfect crystals a more sophisticated theory has to be applied (cf. sec. 4.3).
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1.2 Scheme of an XFELO
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Figure 1.4: Bragg reflection (4 4 4) curve of an infinitely thick and a 42 µm thick diamond
crystal in backscattering geometry (θB = 90°). The 42 µm crystal can be
used to couple a fraction of the XFELO pulse out of the cavity. The energy
in the center of the peaks is about 12067 eV.

within 41µm. Then the heat starts to diffuse into the crystal on a ns time scale.12 The
influence of a certain temperature change ∆T on the Bragg reflection can be estimated
by means of the simple relation

η ≈ β∆T ≈ ∆λB
λB

, (1.4)

where η is the strain of the material and β is the coefficient of thermal expansion.13

When comparing the relative wavelength change of the Bragg reflection ∆λB/λB with
the relative spectral width of the Bragg reflection εB, the influence of strain is negligible
for ∆λB/λB � εB, otherwise it has to be taken into account. Figure 3.2 shows the
temperature dependence of the coefficient of thermal expansion. The comparison of the
coefficients of thermal expansion at 300 K (1.1 · 10−6 K−1) and 50 K (5.4 · 10−9 K−1)
shows that the relative wavelength change per degree Kelvin at 50 K is lower by more
than two orders of magnitude.
Because the XFELO pulses are temporally too short to affect their own Bragg con-

dition, the crystal heating acts only on the subsequent pulses. Therefore, the crystal
temperature upon arrival of the subsequent x-ray pulse is crucial. Figure 5.4 shows the

12See figures 5.4 and 5.5 for the temporal and spatial evolution of the temperature generated by absorbed
radiation for two different heat transfer models. In section 3.4 a detailed description of the heat
transfer in insulators and semiconductors is given.

13See section 3.2 for more details about thermal expansion of crystals and section 3.3 for more details
about thermally induced strain in solids.
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1 Introduction

surface temperature evolution of a diamond crystal heated by a laser pulse at room
temperature and at a cryogenic temperature. Because of the smaller heat capacity
at cryogenic temperatures, the initial temperature jump at those base temperatures is
much higher but due to the higher thermal diffusivity the cooling is much faster and
after some time, the temperature change even falls below the temperature change of
the room temperature crystal. The curves in figure 5.4 are based on the classical heat
equation (based on Fourier’s law) and the hyperbolic heat equation (cf. sec. 3.4.3.1).
To what extent these equations describe the heat transport at cryogenic temperatures
is shown in the course of this work. However, even under the conservative assumption
that the temperature change upon arrival of the subsequent x-ray pulse was identical
for both crystal base temperatures, the shift in the relative Bragg wavelength would be
orders of magnitude lower for the cryogenic cooled crystal because of the considerably
lower coefficient of thermal expansion at those temperatures. This property caused by
the strongly decreased thermal expansion and the strongly increased thermal diffusiv-
ity at cryogenic temperatures call for the operation of the Bragg mirrors at cryogenic
temperatures.
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2 Free-Electron Lasers

A free electron laser (FEL) is a coherent light source which is based on the interaction
of relativistic electrons with electromagnetic radiation in vacuum. FELs can generate
radiation at any wavelength from the microwave to the x-ray regime. Due to their oper-
ating principle FELs are related to conventional vacuum tube devices which are capable
of generating coherent radiation continuously from the km to the mm wavelength range.
The operating principle of the FEL was invented by John Madey [Madey, 1971] and
experimentally demonstrated [Deacon et al., 1977] with an infrared FEL by his group
in the 1970s. Since then, tremendous progress has been made in the FEL development
and today, FELs are firmly established among other light sources. The merits of FEL
radiation are their high degree of polarization, their transverse coherence, a high effi-
ciency for the conversion from electron beam power to radiation power, their wavelength
tunability and their high level of average output power.

2.1 Types of Free-Electron Lasers

When a relativistic electron is deflected in the dipole magnet of a synchrotron, the
particle emits the so called synchrotron radiation. The spectrum of synchrotron radiation
ranges from zero to frequencies beyond the critical frequency

ωc = 3cγ
2R , (2.1)

which is a measure to characterize the emitted spectrum.14 Here c represents the speed
of light, γ the Lorentz factor and R represents the bending radius of the magnet. Most
of the power radiated by a relativistic electron is contained in a cone with the opening
angle [Wille, 1992, p. 42]

θcone ≈
2
γ
. (2.2)

The core component of all FELs is the undulator. An undulator consists of an arrange-
ment of short dipole magnets with alternating polarity. This arrangement, shown in
14The critical frequency separates the emitted spectrum in two parts of equal size.
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λu

z

y

x

Figure 2.1: Scheme of a planar undulator and the associated electron trajectory. The
amplitude of the sinusoidal trajectory (black line) is exaggerated and is only
some µm in real undulators. The arrows indicate the direction of the mag-
netization. The generated radiation is represented by the yellowish cone on
the undulator axis. While the opening angle of the cone in the y-direction is
2/γ, the opening angle in the x-direction depends additionally on the undu-
lator parameter K (cf. equation (2.7)) and for K > 1 the opening angle is
given by 2K/γ. If the opening angles are almost equal, which is the case for
K . 1, this kind of magnet arrangement is called undulator, otherwise it is
called wiggler.
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2.1 Types of Free-Electron Lasers

figure 2.1, creates a field which forces a traversing electron on a sinusoidal trajectory
around the undulator axis. After traversing an even number of dipole magnets the
electrons have not gained any overall deflection. Due to the sinusoidal trajectory the
electrons perform oscillations perpendicular to the undulator axis which leads to the
emission of the so called undulator radiation. Compared to the radiation emitted at a
single bending magnet, undulator radiation is much more useful for experiments because
it has a much narrower bandwidth and a lower divergence within this bandwidth. The
wavelength of undulator radiation can be tuned to any desired value by changing the
electron energy. The electrons in an undulator usually radiate independently of each
other which makes the radiation incoherent15 and therefore the intensity of the emitted
radiation is proportional to the number of radiating electrons. To increase the number
of photons per second and decrease the divergence and bandwidth of these photons, an
undulator can be utilized to set up an FEL. In an FEL, the electrons traverse the undu-
lator on the same path as for ordinary undulator radiation but under certain conditions,
the electrons start to interact with the light wave and transfer energy to it. This inter-
action leads to a correlated motion of the electrons on the length scale of the radiation
wavelength, which in turn leads to an exponential growth of the radiation field. The
initial light wave for the FEL process – also called seed radiation – can either be an
external source or the spontaneous undulator radiation, which is always present in an
FEL as a background. Depending on how the seed radiation is provided, FELs can be
grouped into three categories, which are schematically shown in figure 2.2: The FEL
amplifier (2.2 a), the SASE (self-amplified spontaneous emission) FEL (2.2 b) and the
FEL Oscillator (2.2 c).

2.1.1 FEL Amplifier

In an FEL amplifier, an external light source is used to initiate (seed) the FEL process.
The FEL amplifier is a single pass device which usually works in the high gain regime (cf.
sec. 2.2.3). A major feature of the FEL amplifier is that the output signal can be con-
trolled by the seed radiation (input signal) – as in an electronic amplifier. FEL amplifiers
can, in principle, cover all wavelength ranges where appropriate seed sources are avail-
able. Operation of a conventional FEL amplifier has been demonstrated for wavelengths
down to 266 nm, which corresponds to the fourth harmonic of a Nd:YAG Laser [Murphy
and Wang, 2008] and with higher harmonic generation in an argon gas cell seeding at
15Undulator radiation could only be coherent if the electron bunch wold be shorter than radiation

wavelength. From the optical to the x-ray regime this condition can not be fulfilled by today’s
accelerator technology.
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Inp. rad.
Undulator

Electron beam

Output radiation

(a) FEL Amplifier

Electron beam

Undulator
Output radiation

(b) SASE FEL
Mirror

Undulator

Electron beam

Stored radiation
Output radiation

(c) FEL Oscillator

Figure 2.2: Schemes of the different FEL principles. The figure (a) shows an FEL am-
plifier, figure (b) a SASE FEL and figure (c) an FEL oscillator. The figure
is modified from [Zemella, 2013].

38 nm could be demonstrated [Ackermann et al., 2013]. An alternative way to reach
even shorter wavelengths is to combine the FEL amplifier with a harmonic-generation
scheme. With the so called high-gain harmonic generation (HGHG) 20 nm radiation
with unprecedented shot-to-shot wavelength stability and low-intensity fluctuations was
generated [Allaria et al., 2012].

2.1.2 SASE FEL

Another FEL type, shown in figure 2.2 b, is the SASE (self-amplified spontaneous emis-
sion) FEL. A SASE FEL is in principle an FEL amplifier with no external input signal
and – as in an electronic amplifier – without an input signal, only noise is amplified.
In the case of the SASE FEL the noise is generated by the spontaneous undulator ra-
diation, which is always present in an FEL. The amplification of the noise within the
amplification bandwidth of the FEL requires no external seed radiation and therefore,
they can in principle operate at any wavelength. For that reason, SASE FELs are today
used as light sources from wavelengths of about 100 nm to below 1 Å[Emma et al., 2010].
Because the input signal of a SASE FEL is the longitudinally incoherent undulator radi-
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2.1 Types of Free-Electron Lasers

ation, the output exhibits a lack of longitudinal coherence, too. In addition, the resulting
spectrum is relatively broad16 and noisy. To overcome this lack in longitudinal coherence
and spectral width, significant effort has been made which led to the combination of a
SASE FEL with an FEL amplifier separated by a monochromator. This setup is called
a self seeded FEL. For FELs in the hard x-ray range no conventional optical elements
are available and the monochromator is represented by a Bragg-crystal. With this setup
near Fourier-transform-limited x-ray pulses with 0.4-0.5 eV bandwidth at 8-9 keV have
been achieved [Amann et al., 2012]. These results correspond to a reduction in relative
bandwidth of about 40-50 times compared to a SASE FEL at this wavelength.

2.1.3 FEL Oscillator

In an FEL oscillator (FELO) the spontaneous undulator radiation17 of an initiating
electron bunch is trapped in an optical cavity where it circulates with an integer multiple
of the electron bunch repetition rate. With this timing the subsequent radiation pulses
and the electron bunches are matched at the beginning of the undulator and traverse it
in this state. This leads to a seeding of those electron bunches, and if the condition

(1 +G0)R > 1 (2.3)

is satisfied, it leads to a gain of the radiation stored in the undulator. Here G0 is the
initial gain and R is the overall reflectivity of the optical cavity. The losses in the
cavity include absorption in the mirrors, losses due to scattering and the fraction of
the radiation which is coupled out of the cavity for experiments. The FELO will reach
saturation, when

(1 +G)R = 1, (2.4)

where G is the intensity dependent gain. Today FELOs exist emitting in the IR to the
near UV (ultra violet) spectral region. A storage ring FEL currently achieved wave-
lengths below 190 nm [Curbis et al., 2005] and many FELs based on pulsed copper RF
accelerators operate as productive IR user facilities [Van der Wiel and Van Amersfoort,
1993]. In the x-ray region no FELOs exist because no conventional mirrors are available
for this wavelength, which reflect over a wide angle and with a sufficient reflectance. To
overcome this limitation for the hard x-ray region, a cavity, composed of Bragg crys-
tals and some focusing elements, has already been proposed decades ago [Colella and

16It spans over the whole amplification bandwidth of the FEL.
17If the lasing process is seeded by an external source the FEL is called regenerative amplifier.
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2 Free-Electron Lasers

Luccio, 1984] but could not be realized until today. Another technical challenge has
been the accelerator development. In order to keep the cavity length in a technically
handable range, the bunch repetition of the accelerator has to be in the MHz range
while the bunch trains have to be long (hundreds of µs) to reach FEL saturation. Those
inter-bunch time structures are not challenging for circular machines or in the case of a
LINAC (linear accelerator) driving an IR FELO, where only electron energies of 20-60
MeV are needed [Li et al., 2017] but for FELOs operating in the x-ray regime several GeV
high brightness electron beams are required. With today’s understanding of accelerator
physics such bright electron beams required to run an XFEL can only be produced with
a LINAC. The required time structure and electron energy in turn are difficult to achieve
with a conventional copper LINAC at a reasonable acceleration gradient because of the
heat load deposited by the RF power. In order to keep an XFELO (X-ray free electron
laser oscillator) driving LINAC to a manageable size, the constraints of a MHz repetition
rate and long bunch trains impose the requirement for SRF (superconducting radio fre-
quency) accelerator technology. With the commissioning of the European XFEL, such
an accelerator is now available for the first time [Decking and Weise, 2017]. Due to the
technological progress in the development of x-ray optics (among other progresses) today
nearly perfect diamond Bragg crystals with over 99% reflectivity are available [Shvyd’ko
et al., 2011]. Therefore, it seems as if the time has come for the realization of an XFELO
[Kim et al., 2008].

2.2 Basic Physics of Free Electron Lasers

2.2.1 Undulator Radiation

Undulator radiation is a phenomenon that always takes place when an electron with a
high kinetic energy traverses an undulator. In FEL radiation, it is always present as
a background and in a SASE FEL, it is even utilized for seeding the FEL. Therefore,
in the FEL context undulator radiation can be considered an analogon to spontaneous
emission in conventional Lasers. In the following section, a brief overview over the most
important relations regarding undulator radiation is given. This overview only treats
planar undulators as shown in figure 2.1, which produce linearly polarized light. Helical
undulators, which produce circular polarized light, are not considered. The magnetic
field on the undulator axis at y = 0 is

B = −B0 sin(kuz)ey, (2.5)
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2.2 Basic Physics of Free Electron Lasers

where B0 is the peak magnetic field of the undulator, ku is the undulator wave number
and ey is the unit vector in y direction. When an electron enters the undulator, its
magnetic field causes, to second order, the trajectory [Schmueser et al., 2014, p. 14]

x(t) = K

γku
sin(ωut), (2.6a)

z(t) = v̄zt−
K2

8γ2ku
sin(2ωut), (2.6b)

where γ is the Lorentz factor, K the undulator parameter and v̄z the average velocity
of the electron in the z direction and ωuis the angular frequency of the electron in
the undulator defined by ωu = v̄ku ≈ cku. The undulator parameter is an important
parameter which is often used. It is defined as:

K = eB0
mecku

≈ 0.934 ·B0[T] · λu[cm]. (2.7)

The average velocity v̄ used in equation (2.6b) is given by

v̄z =
(

1− 1
2γ2

(
1 + K2

2

))
. (2.8)

The periodic oscillation of the electrons represented by equation (2.6) leads to the emis-
sion of radiation [Wille, 1992, p. 262] with the central wavelength

λl = λu
2γ2

(
1 + K2

2 + γ2θ2
)
, (2.9)

where λu is the undulator period and θ the emission angle relative to the beam axis.
The overall radiation power of the spontaneous undulator radiation is given by

Psp = e2cγ2K2k2
u

12πε0
, (2.10)

where e represents the elementary charge, c the speed of light and ε0 the vacuum per-
mittivity. The line width of the undulator radiation can be estimated as

∆ω ≈ ωl
Nu

, (2.11)
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2 Free-Electron Lasers

where ωl is the center wavelength. The radiation within this bandwidth is emitted in a
cone which has an RMS opening angle of [Wiedemann, 2007, p. 850]

σθ ≈
1
γ

√
1 +K2/2

2Nu
≈ 1
γ

1√
Nu

for K ≈ 1. (2.12)

These radiation characteristics make undulator radiation itself a useful tool – far more
useful than traditional synchrotron radiation from bending magnets.

2.2.2 Low Gain FEL

Since an FEL is, in principle, an amplifier for electromagnetic radiation with a low
bandwidth some radiation is required to initiate the FEL process. As already mentioned
in section 2.1, the seed for the FEL can either be an external light wave, which is typically
a laser pule, or, as will be shown below, by spontaneous undulator radiation. For the
following discussion an external plane wave

Ex(z, t) = E0 cos(klz − ωlt+ ψ0) (2.13)

is assumed as the seed. Here, the amplitude E0 of the light wave is assumed to be
constant during the undulator passage. This approximation is the characteristic feature
of the low gain theory, which decouples the electron motion from the light wave. The
assumption of a constant amplitude is justified in the FELO case as long as the amplitude
only grows by a few percent per undulator passage and usually at the beginning of an
FEL amplifier within the so called lethargy regime, when the amplitude growth is only
about a few percent. A single electron travelling in the field of a plane electromagnetic
wave through an undulator changes its energy according to

dW
dt = v · F = −evx(t)Ex(t) = −ecK

γ
cos(kuz)E0 cos(klz − ωlt+ ψ0)

= −ecKE0
2γ [cos((kl + ku)z − ωlt+ ψ0) + cos((kl − ku)z − ωlt+ ψ0)]

= −ecKE0
2γ cos(ψ)− ecKE0

2γ cos(χ),

(2.14)
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where vx is obtained by the time derivative of equation (2.6)a using ωu = β̄cku ≈ cku.
The phases ψ and χ can be written with z(t) = v̄zt as a function of the single variable t
as

ψ(t) = (kl + ku)z(t)− ωlt+ ψ0 (2.15a)

χ(t) = (kl − ku)z(t)− ωlt+ ψ0, (2.15b)

where ψ is called the ponderomotive phase. To maintain a continuous energy transfer
from the electron to the light wave ψ must be constant and therefore the condition

dψ
dt = (kl + ku)v̄z − klc = 0 (2.16)

has to be fulfilled [Wille, 1992, p. 271]. In this case, it can be shown that the cos(χ)-
term in equation (2.14) carries out two oscillations per undulator period and thus cancels
out. In equation (2.16) the relation z(t) = v̄t was used, which neglects the longitudinal
oscillations of the electrons indicated by equation (2.6b). Combining equation (2.8) with
the condition for sustained energy transfer (eq. (2.16)) leads to the light amplification
wavelength [Madey, 1971; Huang and Kim, 2007]

λl = λu
2γr2

(
1 + K2

2

)
=⇒ γr =

√
λu

2λl2

(
1 + K2

2

)
, (2.17)

which is equivalent to the on axis undulator radiation wavelength (cf. eq. (2.9)). For
that reason, the spontaneous undulator radiation can be used as seed radiation for the
FEL. The γr in equation (2.17) is the Lorentz factor of the resonance electron energy Wr

interconnected by Wr = γrmec2. With this resonance electron energy a relative energy
deviation η can be defined as

η = W −Wr
Wr

= γ − γr
γr

|η| � 1. (2.18)

When η 6= 0, the condition (2.16) is not fulfilled any more and can be written in good
approximation as

dψ
dt = 2kuc η (2.19)
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Figure 2.3: Solution of the FEL pendulum equations for η = 0 and η > 0 respectively. In
both plots, all electrons are uniformly distributed in the initial ψ coordinate
and all possess the same initial η coordinate. The dashed lines represent the
separatrix. In figure (a) it can be seen from the symmetry of the system that
the energy transfer from the electrons to the light wave is zero. In figure (b)
more electrons lose energy to the light wave than gain energy from the light
wave. The comparison between both plots shows that only for initial η > 0
energy transfer from the electrons to the light wave takes place.

For this approximation the fact is used that γ differs only slightly from γr. The change
of η with time can be obtained from equation (2.14) and yields

dη
dt = − eKE0

2mecγ2
r

cos(ψ). (2.20)

The equations (2.19) and (2.20) [Martellucci and Chester, 1983, p. 98] are called the
FEL pendulum equations and they are fundamental in FEL physics. Figure 2.3 shows
the solution of the pendulum equations in the (φ, η) phase space for several electrons
with different initial phases φ, where φ = ψ+π/2. In figure 2.3a the phase space motion
of electrons with initial energy deviation η = 0 is shown and can be compared to 2.3b,
where the phase space motion for electrons with an initial η > 0 is shown. It can be
seen in figure 2.3a that there is no energy exchange between electrons and light wave
in average because the same number of electrons spend energy to the light wave than
gain energy from the light wave. In figure 2.3b it can be seen that the situation is not
symmetric any more when η > 0. In this case, an energy transfer from the electrons to
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2.2 Basic Physics of Free Electron Lasers

the light wave takes place. Almost all electrons shown in figure 2.3 are bounded by the
field of the light wave resulting in oscillatory motion. The so called separatrix (dashed
lines in figure 2.3) divides the phase space area of bounded from the area of unbounded
motion. All electrons outside the separatrix fulfill translations instead of oscillations.
The equation for the separatrix is given by

ηsep(φ) = ±
√

eE0K

kumec2γ2
r

cos
(
φ

2

)
= ±η̂ cos

(
φ

2

)
. (2.21)

The area enclosed by this separatrix is called, in analogy to the RF buckets in a storage
ring, FEL bucket. A measure for the amount of energy transferred from the electron
beam to the light wave is the gain. The gain G of a low gain FEL is defined as the
relative radiation energy increase during an undulator pass (G = ∆Wl/Wl) and it is
given by [Madey, 1979]

G(ξ) = −πe
2K̂2N2

uλ
2
u ne

4ε0mec2γ3
r
· d

dξ

(
sin2 ξ

ξ2

)
(2.22)

where ξ can be written as

ξ = πNu
ωl − ω
ωl

≈ 2πNu
γ − γr
γr

= 2πNuη (2.23)

and K̂ is the modified undulator parameter defined by

K̂ = K

[
J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)]
(2.24)

Here the Jn are the Bessel functions. Equation (2.22) is the so called Madey theorem,
which shows the proportionality between the FEL gain curve and the negative derivative
of the undulator radiation line shape curve. Equation (2.23) shows that the variable ξ can
either be interpreted a variation of the seed wavelength or as a variation of the electron
energy. Figure 2.4 illustrates the Madey theorem. Because of the proportionality of
ξ and η figure 2.4b can be considered as a quantitative description of figure 2.3. For
negative η the light wave transfers energy to the electron beam and vice versa.

2.2.3 High Gain FEL

In the previous section (sec. 2.2.2) the essential physics of the 1D low gain approximation
were presented. Since the low gain FEL theory assumes a constant electric field during
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Figure 2.4: Depiction of the Madey theorem. (a) The line shape curve of undulator
radiation. (b) Gain curve of a low gain FEL. See text for further explanation.

one undulator passage and neglects space charge forces generated by the electrons, all
effects caused by electron-electron or electron-light wave interaction are not accessible
by this theory. In this section, a brief introduction to the 1D high gain FEL theory shall
be given. In the high gain theory, the coupled pendulum equations (2.19) and (2.20) are
derived considering a variable electric field and the influence of a variable space charge
distribution on the phase space motion of the electrons. Therefore, the inhomogeneous
wave equation for an electromagnetic field is coupled to the modulation current in the
electron bunch which in turn is coupled to the ponderomotive phases of all electrons
in the bunch. In the periodic model18 this treatment leads to a system of first order
differential equations [Schmueser et al., 2014, p. 51] of the form

dψn
dz = 2kuηn, (2.25a)

dηn
dz = − e

mec2γr
<
{(

K̂Ẽx
2γr

− iµ0c2

ωl
· j̃1
)

exp(iψn)
}
, (2.25b)

dẼx
dz = −µ0cK̂

4γr
· j̃1, (2.25c)

j̃1 = j0
2
N

N∑

n=1
exp(−iψn), (2.25d)

18The periodic model assumes an infinitely long bunch with a periodic initial electron distribution, which
includes a uniform initial electron distribution. The period of the electron distribution is given by
the light wavelength λl.
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where µ0 is the vacuum permeability, n is the index of a single electron and N the
total number of electrons which are initially contained in an interval of one radiation
wavelength. Here, j0 is the DC component of the current density, j̃1 is the complex
amplitude of the modulation current density and Ẽx is the complex amplitude of the
electric field in x-direction19. This set of 2N + 2 coupled differential and algebraic
equations describe the evolution of the ponderomotive phase ψ and energy deviation
η of each electron as well as the amplitudes of the modulation current density j̃1 and
the electric field Ẽx during one undulator passage. Essentially, the equations (2.25)
describe a system of many interacting charged particles. This represents a classical
many body problem which is well known not to be solveable analytically. By means of
the numerical solution of equation (2.25) the gain process in an FEL amplifier seeded
by a monochromatic wave including the saturation regime can be studied. This includes
the phase space motion of the electrons and the evolution of the light wave amplitude.
In figure 2.5 a numerical solution of the equations (2.25) is shown. In figure (a) the
motion of ten electrons (blue lines) and the motion of the bucket center (red line) are
shown in the (η, φ)-phase space. As in figure 2.3 the ponderomotive phase ψ is replaced
by φ = ψ + π/2. In figure (b) the evolution of the complex electric field amplitude is
plotted as a function of the undulator length in measures of the power gain length Lg0,
which is defined in equation (2.28). It can be seen on 2.5 (b) that after a certain distance
the gain increases exponentially with the undulator length and finally saturates. This
behavior can only be explained by the development of so called micro bunches, which
are formed due to the interaction with the light wave [Huang and Kim, 2007] and they
are slightly visible in figure 2.5 (a). They are shorter than a light wavelength and hence
are able to radiate coherently like a single point charge. The time it takes to initiate
the micro bunch structure is called the lethargy regime (0 ≤ z . 3Lg0). The saturation
of the gain process in turn can be explained by an overbunching of the electrons, which
means that after the bunching reaches a peak, it starts to be diminished by enduring
interaction with the light wave. In the phase space plot 2.5 (a) the micro bunching effect
can hardly be recognized since the growth of light wave amplitude makes the phase
space motion nonuniform and in order to represent the whole phase space motion the
trajectories are quite long. To understand the effect of micro bunching figure 2.3 might
be more helpful.
Under the assumption that the periodic density modulation (micro bunching) remains

small, the equations (2.25) can be simplified to a single third order equation which
can be solved analytically. Because of the assumption of only a small periodic density
19The polarization direction of the light wave. See figure 2.1 for the definition of the coordinate system
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Figure 2.5: Results of the high gain theory. Plot (a) shows the phase space motion of ten
electrons (blue lines) and the motion of the FEL bucket (red line). The phase
space motion was obtained from numerical solution of equation (2.25). Plot
(b) shows the evolution of the complex field amplitude predicted from the
analytic solution of equation (2.26) (dashed lines) and from the numerical
solution of equation (2.25) (solid lines).

modulation, this equation does not cover the FEL saturation regime. For the special
case of an initial η = 0 and neglecting space charge forces, which can be done in case
of a low electron density modulation or electron density and a large electron energy, the
solution to the third order equation yields [Schmueser et al., 2014, p. 59]

Ẽx(z) = Ein
3

[
exp

((
i +
√

3
) Γ

2 z
)

+ exp
((

i−
√

3
) Γ

2 z
)

+ exp (−iΓz)
]
, (2.26)

where Ein is the amplitude of the seeding light wave. This initial amplitude is a real
value because the phase of the light wave at the beginning of the undulator is set to
zero. The Γ is the so called gain parameter, which is defined as

Γ = 3

√
µ0K̂2e2kune

4γ3
rme

. (2.27)

In figure 2.5 (b) this analytic solution is compared to the numeric solution of the equa-
tions (2.25). It can be seen that the analytic solution reproduces the results of the
coupled first order equations (2.25) for 0 < z < 15Lg0. Beyond 15Lg0 the FEL satura-
tion sets in and the assumptions made to obtain the analytic solution start to lose their
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justification. With the gain parameter (2.27) another important quantity – the idealized
1D power gain length – can be defined as

Lg0 = 1√
3Γ

(2.28)

The 1D power gain length characterizes the gain process in the regime of exponential
growth, where the FEL radiation power increases with

P (z) ∝ exp
(√

3Γz
)
≡ exp

(
z

Lg0

)
(2.29)

In the case shown in figure 2.5, this exponential regime is in the range of 3Lg0 < z <

15Lg0. The power gain length Lg0 is just in idealization for the case of η = 0, negligible
space charge forces and no electron beam energy spread. In addition, 3D effects like
betatron oscillations and diffraction of the light wave are disregarded in this parameter.
All these effects usually lead to an increase of the gain length. While the effects of η 6= 0,
space charge forces and electron energy spread can be investigated within 1D FEL theory,
the effects of betatron oscillations and light beam diffraction are not accessible by the
1D FEL theory. As a rule of thumb the 1D FEL theory is applicable if the electron
beam radius rb �

√
Lg0λl. If this is not the case, the more general and more complex

3D FEL theory must be used, which has no analytic solution.
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3 Laser Irradiated Solids

The interaction between the FEL radiation and the Bragg mirrors is the fundamental
limitation in the realization of a cavity for an XFELO. This is because the requirements
for the angular and spatial stability [Stoupin et al., 2010; Maag et al., 2015] of the crystals
as well as for the stability of its lattice constants are very high while the expected
brilliance of an XFELO is also very high. Therefore, light-matter interaction effects
which are generally small or even negligible have to be considered. The effects which are
directly associated with the laser irradiation are:

1. Radiation damage due to ionization [Als-Nielsen et al., 1994]

2. Vibration of the crystal in its mount due to thermal expansion or radiation pres-
sure.

3. Change of the lattice constant due to thermal expansion [Zemella et al., 2012],
whereby a homogeneous change of the lattice constant might be compensable by
changing the Bragg angle.

4. Generation of ultrasonic pulses due to the thermal expansion or radiation pressure
[Thomsen et al., 1986; Stoupin et al., 2012].

In this thesis only effects associated with thermal expansion are investigated. Therefore,
in this chapter a good understanding of the processes which perturb the original thermal
equilibrium (before laser irradiation) is to be developed.

3.1 Absorption of Photons in Insulators and Semiconductors

For photons from the visible to the x-ray regime (1.5 - 50000 eV) the major absorption
process is the photoelectric effect [Leo, 2012]. This effect can be divided into the inner
and the outer photoelectric effect. The inner photoelectric effect is the excitation of
electrons by photons from the valence to the conduction band or in case of sufficiently
high photon energies from the atomic inner shells to the conduction band. Figure 3.1
illustrates the carrier dynamics associated with the inner photoelectric effect. Depending
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Modified from [Ziaja et al., 2015]

on the excess energy of the electrons after the transition, secondary processes like the
Auger effect (only for inner shell excitations of light elements [Ziaja et al., 2015]), electron
impact ionization, electron-electron or electron-phonon scattering lead – possibly over
several stages – to a thermalization of the primary electron in the conduction band. The
thermalization dynamics in the conduction band can be divided into two time scales.
On the first time scale the electron-electron thermalization which occurs typically within
10 to 100 fs takes place and on the second time scale the electron-lattice thermalization
which occurs typically within tens of ps takes place.
When an electron reaches the surface of the solid with more energy than the work

function, it is able to escape. This case is referred to as the outer photoelectric effect,
in contrast to the inner photoelectric effect when the electron remains in the solid.
In case of the inner photoelectric effect the electronic states in the conduction band
possess a certain lifetime. Depending on the kind of band gap – direct or indirect – the
electrons recombine after their lifetime primarily by radiative or thermal recombination.
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3.1 Absorption of Photons in Insulators and Semiconductors

In indirect band gap materials, like diamond, the so called trap-assisted recombination
is the major recombination process. Here, the electrons recombine through a localized
state (lattice defect) via the emission of a phonon to allow for the conservation of energy
and crystal momentum. Therefore, the carrier lifetime of indirect band gap materials
strongly depends on the concentration of recombination centers. In diamond, nitrogen is
believed to play an important role as a recombination center. Depending on the nitrogen
content the carrier lifetime in diamond is between 30 ps and 1000 ps [Konorova et al.,
1966]. This implies (assuming a similar electron phonon thermalization time as in the
conduction band) that a diamond crystal reaches a local thermal equilibrium about 0.1
to 1 ns after the irradiation with a fs light pulse. As a result of the above description one
can summarize that the energy of incident photons is primarily absorbed by electrons
and is transferred via different processes and timescales into the phonons of the crystal
lattice.

3.1.1 Implications to the Modeling of XFELO Bragg Mirrors

Bragg reflection – the underlying principle of Bragg mirrors – relies on a well defined
lattice constant. The lattice constant can potentially be perturbed by stress induced by
intense fs XFELO pulses. The carrier thermalization dynamics pointed out in section 3.1
determine the stress generation. According to these carrier dynamics the stress genera-
tion occurs on two timescales. The first timescale is the electron-lattice thermalization
time τ el-latt which is typically of the order of some ps. The second timescale is the elec-
tron recombination time, which is for diamond of the order of hundreds of ps. Thermal
expansion due to electron-lattice thermalization was observed in an fs optical pump and
fs x-ray diffraction probe experiment in the semiconducting material InSb [Chin et al.,
1999]. The dominant mechanism for electron relaxation in InSb is the emission of lon-
gitudinal optical phonons which was assumed to take 2 ps. The observed onset of the
lattice expansion was about 10 ps after the arrival of the pump pulse. The delay of the
onset of lattice expansion of about 7 ps was explained as a signature of non equilibrium
phonon dynamics and the delay was assumed to be the thermalization time of the initial
longitudinal optical phonons.
However, the stress induced within the material by such processes does not instan-

taneously expand the lattice because of the confinement of the surrounding crystal.
Instead, the expansion has to nucleate at a free surface, forming a highly strained layer,
which can than propagate with the speed of sound into the crystal. Due to lateral con-
finement, the lattice expansion occurs primarily normal to the surface [Kojima et al.,
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1994]. In diamond, electron-lattice thermalization has a rapid and a slow component
which can be associated with the relaxation via optical and acoustic phonons respec-
tively. The time needed to reach thermal equilibrium between the carriers and the lattice
was estimated to be 100 ps at 100 K and 30 ps at 300 K [Kozak et al., 2015].
The dynamical thermal expansion of diamond has also been directly observed (at room

temperature) by an optical pump and x-ray diffraction probe experiment [Stoupin et al.,
2012]. At this experiment a temporal resolution of about 500 ps was achieved and within
this temporal resolution the thermal expansion was observed to be instantaneous. For
the functionality of Bragg-mirrors for an XFELO only the condition of the mirrors at the
time when the photon pulse impinges is of relevance. This imposes three timescales for
modeling, which have to be considered. Depending on the timescale, different processes
have to be considered which have the potential to disturb the reflectivity of the mirrors
on arrival of an XFELO pulse.
The first timescale is the duration of an XFELO pulse which is typically < 200 fs.

This time is too short for the crystal to respond on the photon pulse with expansion
and therefore the reflection of a photon pulse is assumed not to be perturbed by the
pulse itself20. Under the assumption that the XFELO pulses do not destroy the crystal
structure, the mirror should relax to its initial condition after a certain time. This
relaxation takes primarily place by heat transfer, but the generation of coherent phonon
pulses, which transport energy, too, has also been observed (s. section 3.3).
The second timescale is the repetition time of the photon pulse which would be 220

ns for an XFELO running at the European XFEL. At an early stage when the lattice-
and the electron-system are not in equilibrium, heat conduction takes place both by
electrons and phonons. This early energy transport can be described by a two temper-
ature model [Shin et al., 2015], where diffusive heat conduction in the lattice- and in
the electron-subsystem is assumed. However, the time scale of 220 ns is long compared
to the carrier thermalization time in diamond, which is about 500 ps. Therefore, the
modeling presented in the following sections assumes an instantaneous electron-lattice
thermalization. In the case of heat conduction this amounts to saying that the thermal
conductivity of the diamond during the electron-lattice thermalization is assumed to be
equal to the lattice thermal conductivity.
The third time scale is the duration of the photon pulse train, which can be assumed

to be between 500 µs and CW (continuous wave). On this timescale, vibrations or static
20This can be assumed for pulse energies below a certain threshold. Ultrafast phase transitions in silicon

for example take place at an electron-hole density of 1022 cm−3. By this process significant changes
in the crystal structure have been observed to take place within tens of fs [Sokolowski-Tinten and
von der Linde, 2004].
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deformations of the whole crystal in its mount due to thermal expansion become an
issue. The thermal load is distributed over the whole crystal and the question of the
heat dissipation from the crystal arises. When considering a heat sink, a low contact
resistance along with a low induced mechanical strain is needed.

3.2 Thermal Expansion of Insulators and Semiconductors

When an insulator crystal is subjected to a temperature change the change in the phonon
spectrum causes the crystal to expand or to shrink because the potentials in which the
atoms are bounded are not purely harmonic and thus their oscillation amplitude and
their oscillation frequency are dependent. The majority of materials have a positive tem-
perature coefficient, which means that they expand upon heating. Thermal expansion is
a well known effect and its physics can be found in various text books about solid state
physics. The derivation of thermal expansion given here can be found in [Ashcroft and
Mermin, 2005a]. The relative change of length with temperature of a cubic crystal is
described by the equation

β = 1
L

(
∂L

∂T

)

P
= 1

3V

(
∂V

∂T

)

P
= 1

3B

(
∂P

∂T

)

V
(3.1)

where β is the linear expansion coefficient, L is the length, V the volume, P the pressure,
T the temperature and B is the bulk modulus of the crystal. The actual length at a
given temperature can be determined by solving equation (3.1) for L(T ), which yields

L(T ) = L(T0) exp
(∫ T

T0
β(T ′) dT ′

)
. (3.2)

For small temperature changes, β can be assumed constant which allows equation (3.2)
to be simplified to

L(T ) = L0 exp (β∆T ). (3.3)

This expression in turn can be expanded into a Taylor series and approximated to first
order as

L ≈ L0(1 + β∆T ) =⇒ ∆L ≈ βL0∆T . (3.4)
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For most practical applications the approximation (3.4) is sufficient and is therefore
widely used. To obtain an expression for β the pressure used in equation (3.1) can be
written as

P =
(
∂F

∂V

)

T
(3.5)

where F represents the Helmholtz free energy which is given by F = U − TS. Here, the
entropy S and the internal energy U are related by

T

(
∂S

∂T

)

V
=
(
∂U

∂T

)

V
. (3.6)

Hence, by using S = 0 at T = 0, the pressure can be expressed without the entropy as

P = − ∂

∂V

[
U − T

∫ T

0

dT ′
T ′

∂

∂T ′
U(T ′, V )

]
. (3.7)

By inserting the Bose-Einstein distribution n0
ω(k) (equation (3.32)) into the expression

for the internal energy of the crystal lattice Ul (equation (3.31)) and inserting Ul into
equation (3.7) the pressure yields

P = − ∂

∂V


U eq

l +
∑

k,p

1
2~ω(k, p)


+

∑

k,p

(
− ∂

∂V
~ω(k, p)

) 1
exp

(
~ω(k,p)
kBT

)
− 1

, (3.8)

where ω(k, p) denotes the angular frequency of the phonon with wave vector k and
polarization index p. In this equation the first term contributes the derivative of the
zero point energy with respect to the volume and at T > 0 the second term contributes
the derivative of the phonon energies with respect to the volume. In this equation
the equilibrium pressure only depends on temperature through the dependence of the
frequencies of the normal modes on the equilibrium volume. In a perfect harmonic
crystal, where the force constants K do not depend on the displacement (s. equation
(3.28)), the frequencies can not depend on the volume. Therefore, just like the thermal
conductivity discussed in section 3.4.2, the thermal expansion is an anharmonic effect
of the crystal lattice. By inserting equation (3.8) into equation (3.1) the coefficient of
thermal expansion is given by

β = 1
3B

∑

k,p

(
− ∂

∂V
~ω(k, p)

)
∂

∂T

1
exp

(
~ω(k,p)
kBT

)
− 1

. (3.9)
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This equation contains the expression for the volumetric heat capacity at constant vol-
ume (cf. equation (3.34)) which can be written as

Cl =
∑

k,p

~ω(k, p)
V

∂

∂T
n0
ω(k) =

∑

k,p

cl(k, p) (3.10)

where cl is the contribution of the normal mode k, p to the heat capacity of the lattice
Cl at constant volume. In practice the so-called Grüneisen parameter γkp for the mode
k, p is often used to obtain an expression for β. It is given by:

γkp = − V

ω(k, p)
∂ω(k, p)
∂V

= −∂(lnω(k, p))
∂(lnV ) . (3.11)

The entire Grüneisen parameter is defined as the weighted average of the γkp as

γ =

∑

k,p

γkpcl(k, p)
∑

k,p

cl(k, p)
, (3.12)

where the contribution to the thermal expansion of each mode is weighted by its con-
tribution to the heat capacity. Using the definition for the entire Grüneisen parameter
equation 3.9 can be written as

β = γCl
3B . (3.13)

In the Debye model (s. discussion in section 3.4.1) the frequencies of the normal modes
scale linearly with the Debye cutoff frequency ωD. In this case the Grüneisen parameter
yields

γ = γkp = −∂(lnωD)
∂(lnV ) (3.14)

In a real crystal the γkp are not equal for all normal modes. Hence, γ is slightly dependent
on temperature. However, an estimation of β(T ) can be obtained from Cl(T ) via equation
(3.13) where γ can be calculated at a known β(T 0). Figure 3.2 shows a comparison
between β(T ) obtained from equation (3.13) and an empirical formula [Stoupin and
Shvyd’ko, 2011] which reproduces measurements of β(T ) with deviations of less than
3× 10−8.
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Figure 3.2: The coefficient of thermal expansion of diamond as a function of temperature.
Comparison between an empirical formula which reproduces measurements
and the theoretical result of equation (3.13). The heat capacity was obtained
by equation (3.37).

3.3 Generation of Strain by absorbed Photon Pulses

The generation process of thermal and mechanical strain outlined in this section follows
primarily the argumentation given by [Thomsen et al., 1986; Carminati et al., 2006a].
The absorption of a photon pulse and the following conversion to thermal phonons as
described in section 3.1 causes the thermal expansion of the material21 as discussed in
section 3.2. To quantify this effect the energy density W (x, t) of the radiation absorbed
within the penetration depth of the material can be calculated by [Carminati et al.,
2006a]

W (x, t) = κν(1−R)Ep
A

e−κνxΓ(t) (3.15)

where κν is the absorption coefficient, R is the reflectivity, Ep is the energy of the
photon pulse and A is the irradiated area. The function Γ(t) represents the Heaviside
step function. This one-dimensional model is a reasonable simplification as long as
the beam diameter is significantly larger than the thickness of the considered material.

21In this discussion the contribution of the photoexcited carriers to the thermal expansion is neglected
because in the considered case the acoustic pulse duration is long compared to the carrier lifetime.
See [Thomsen et al., 1986] and [Matsuda et al., 2015] for further explanation.
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Furthermore, when the photon pulse duration is assumed to be short compared to the
time constant of the corresponding heat transfer problem, the temperature rise due to
the absorbed energy is given by

∆T (x, t) = W (x, t)
ρCp

(3.16)

where Cp is the specific heat capacity and ρ is the mass density. Assuming an isotropic
material, this heterogeneous temperature distribution results in a thermal expansion
∆L ≈ βL0∆T which in turn generates thermal stress σth. In the tensor notation, where
the indices i, j, k, l are integers, which label a component of the respective tensor, the
thermal stress is

σth
ij = −

∑

kl

Cijklβkl∆T (x, t) = −β∆T (x, t)
∑

kl

Cijklδkl, (3.17)

where Cijkl is the elasticity tensor, β is the thermal expansion coefficient and δ is the
Kronecker delta. For cubic crystals like diamond it can be shown that the elasticity
tensor has only three independent elements and it can therefore be reduced to a matrix
Cij . In this simplified model introduced above, a temperature gradient only exists in the
x direction. Hence, σ11 is the only nonzero element of the thermal stress tensor which
can then be written as

σth
11(x, t) = σth(x, t) = −β∆T (x, t)(C11 + 2C12) = −3βB∆T (x, t)

= −3βBκν(1−R)Ep
ρCpA

e−κνxΓ(t) = −ρvs
2η0e−κνxΓ(t) (3.18)

where B = (C11 + 2C12)/3 is the bulk modulus and vs is the speed of sound, related to
the elastic tensor Cij via ρvs2 = C11. The dimensionless parameter η0 is defined as

η0 = 3βBκν(1−R)Ep
ρvs2CpA

. (3.19)

It determines the strain at the crystal surface, induced by the short laser pulse. The
strain η11(x, t), induced in the material can be related to the displacement u1 by η11 =
∂u1/∂x. Hereinafter, the stress and strain indices 11 and the index 1 of the displacement
are omitted for simplicity. The associated stress field in the material can then be written
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Figure 3.3: Strain profile in a diamond crystal at two different times after generation
of the strain. The exponentially decaying strain on the left corresponds
to thermal strain and the running pulse to the elastic mechanical strain.
The mechanical pulse was generated by an optical pulse with a penetration
depth of 20 µm and an energy density of 160 µJ/mm2. This absorbed energy
density corresponds to an absorbed peak energy density of a Gaussian beam
with σ = 50 µm and an absorbed energy of 2.5 µJ.

as the sum of the mechanical stress σm
11 = C11∂u1/∂x = σm and the thermal stress σth,

which yields

σ(x, t) = σm(x, t) + σth(x, t) = ρvs
2∂u

∂x
− ρvs

2η0e−κνxΓ(t). (3.20)

Using Cauchy’s equation and neglecting body forces22 leads to the equation of motion
of the problem:

ρ
∂2u

∂t2
= ∂σ

∂x
. (3.21)

Inserting equation (3.20) into equation (3.21) gives the equation of propagation for the
displacement in the x direction u of the problem:

∂2u

∂x2 −
1
vs2

∂2u

∂t2
= −η0κνe−κνxΓ(t). (3.22)

22Forces which act throughout the volume of a body – like gravity for example.
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3.3 Generation of Strain by absorbed Photon Pulses

This equation is a wave equation for u(x, t) with a source term and it can also be
formulated as an equation for η by applying ∂/∂x to equation (3.22) since η = ∂u/∂x.
Solving equation (3.22) or the respective equation for the strain directly results in the
strain profile given by

η(x, t) = η0
2
[
(2− e−κνvst)e−κνx − sgn(x− vst)e−κν |x−vst|

]
, (3.23)

where a semi infinite crystal with a stress free surface was assumed as boundary condi-
tions. Figure 3.3 shows the strain distribution of equation (3.23) for 3 ns and 13 ns after
the arrival of a 12 keV x-ray pulse in a diamond crystal. The values for the calculation
are given in table 3.1. The exponential decay starting at x = 0 represents the thermal
strain which caused the running pulse of the mechanical (elastic) strain. This pulse is
composed of two opposed exponential functions. The shape of the running pulse can be
understood by means of the d’Alembert solution of the wave equation which yields for
∂η(x, 0)/∂t = 0 the solution23

η(x, t) = F (x− vst) + F (x+ vst)
2 , (3.24)

where F (x, 0) is a function, which describes the original distortion of the medium, causing
the generation of the wave. Thus the thermal strain at the surface of the medium, which
has an exponential shape due to the absorption characteristic of the radiation, generates
two copies propagating in opposite directions. Because the pulses are generated at
the stress free surface, the pulse propagating in the negative x direction experiences
a reflection with a reflection coefficient for the strain of −1. This results in the pulse
shape shown in figure 3.3. In the present model heat conduction is neglected, which
causes the thermal strain to be static. In section 3.4 an introduction to heat transfer
is given. If the thermal strain changes while the ultrasonic pulse propagates over the
thermally strained area, the pulse shape of the ultrasonic pulse would be distorted. As
explained above, the absorption length of the radiation primarily determines the length
of the pulse, which in turn determines the exited phonon frequencies. If the center of
the propagating strain pulse is taken as x = 0 and the strain pulse is also taken as far

23This solution is only valid for homogeneous (without a source term) wave equations in one spatial
dimension.
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Figure 3.4: Spectral acoustic absorption coefficient of diamond and normalized ampli-
tude spectrum of the laser-excited strain pulse shown in figure 3.3. The am-
plitude spectrum of the strain pulse was calculated from equation (3.25) and
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tions (3.26) and (3.27) using the numerical values shown in table 3.1 The
measurement data are taken from [Telichko et al., 2015]
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3.4 Heat Transfer in Insulators and Semiconductors

from the surface of the crystal, then the temporal Fourier transform of the propagating
strain pulse yields [Matsuda et al., 2015]

∫ ∞

−∞
η(x, t)eiωt dt = η0

iω
ω2 + κ2

νv
2
s
. (3.25)

The relaxation times of the phonons depend on their frequencies and thus the absorption
length 1/κν of the photon radiation also has an influence on the damping of the acoustic
pulse. The attenuation of sound waves in dielectric crystals can be determined by the
Boltzmann transport equation (BTE), where the attenuation is described by phonon -
phonon scattering [Woodruff and Ehrenreich, 1961]. The spectral acoustic absorption
coefficient κac(ω) [Kaviany, 2014a] is given by

κac(ω) = τcvγ
2Tω2

2v3
s (1 + 2ω2τ2) , (3.26)

where τ is the phonon relaxation time, cv the specific heat at constant volume and γ the
Grüneisen parameter (s. equation (3.13)). The phonon relaxation time can be estimated
at

τ = 3λth

ρcvv2
s
, (3.27)

where λth is the thermal conductivity and ρ is the mass density. Figure 3.4 shows the
normalized amplitude spectrum of the laser excited strain pulse shown in figure 3.3 and
the spectral acoustic absorption coefficient κac(ω) of diamond. The amplitude spectrum
was obtained from equation (3.25) and the spectral acoustic absorption coefficient was
obtained from equation (3.26) using the respective parameters given in table 3.1. The
values given in table 3.1 apply to the typical scenario of an XFELO with diamond
mirrors.
Due to this final thermalization of the coherent phonon pulse which has its origin in

the thermal expansion of the material these strain pulses can be considered as a second
channel of highly ballistic thermal energy transport.24

3.4 Heat Transfer in Insulators and Semiconductors

The heat transfer in a solid is based on the transport of energy carriers. The principal
carriers in a solid are the photon, the electron and the phonon. Depending on the
material properties and the environmental conditions (e.g. the temperature or external
24See section 3.4.3.2 for more details about ballistic heat transport by phonons.

39



3 Laser Irradiated Solids

Table 3.1: Input parameters of the calculations shown in figures 3.3 and 3.4.

Parameter Abbr. Unit Value
Thermal conductivity λth W/(m K) 1.73 · 103

Specific heat cv J/(kg K) 5.11 · 102

Mass density ρ kg/m2 3.51 · 103

Sound velocity vs m/s 1.75 · 104

Absorption coefficient κν 1/m 5.00 · 104

Grüneisen parameter γ – 7.90 · 10−1

Temperature T K 3.00 · 102

Th. expansion coefficient β 1/K 1.08 · 10−6

Bulk modulus B Pa 4.42 · 1011

Pulse energy Ep J 2.50 · 10−4

Reflectance R – 9.90 · 10−1

Irradiated area A m2 1.57 · 10−8

heat sources which perturb the local thermal equilibrium) the influence of the different
carriers to the overall energy transport can vary. The heat current carried by photons
can usually be neglected at room temperatures and below [Stein et al., 1981]. In metals
the prevailing amount of heat is carried by electrons whereas in semiconductors and
insulators the heat is mainly carried by phonons [Majumdar, 1993]. The reason for
the different transfer mechanisms are the different electronic band structures which lead
to a huge number of free electrons in metals and in semiconductors and insulators (at
room temperature and below) to primarily bounded electrons.25 Since the experiments
presented in chapter 5 are conducted with diamond which is an insulator, this chapter
will focus on phonon heat transport.

The phonon modes which exist in a particular crystal depend on its lattice system.
Diamond for example has a Bravais lattice with a two-point basis. Owing to the lin-
earization of the distance dependent intermolecular forces the different distances between
the carbon atoms can be modeled by different spring constants. In one dimension the
diamond structure can therefore be represented as a chain of identical masses separated

25In the case of pulsed laser irradiation the assumption of primarily bounded electrons is only valid
after recombination. Because the time constant of the cooling cycles considered in this work are
long compared to the lifetime of free electrons in diamond, as discussed in section 3.1.1, primarily
bounded electrons can be assumed.
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Figure 3.5: Dispersion relation of the phonons in a 1D harmonic FCC crystal lattice with
a two point basis (diamond structure).

by springs with two alternating spring constants. The equations of motion for this one
dimensional chain are given by

M
d2un
dt2 = −K1(un − vn)−K2(un − vn−1) (3.28a)

M
d2vn
dt2 = −K1(vn − un)−K2(vn − un+1) (3.28b)

whereM represents the mass of the individual atom, un and vn denote the displacement
of the first and second atom of the primitive cell n and K1, K2 represent the spring
constants 1 and 2. The angular frequency ω of the solution as a function of the wavevector
k, also known as the dispersion relation, can be obtained by taking exp(−iωt) as an
ansatz for the time dependence of the solution. By assuming K1 < K2 the dispersion
relation for the one dimensional crystal yields:

ω2 = K1 +K2
M

± 1
M

√
K2

1 +K2
2 + 2K1K2 cos(ka) (3.29)
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The phonon dispersion relation ω(k) is shown in fig. 3.5. It is periodic over the so called
Brillouin zones and therefore only plotted for the first Brillouin zone from −π/a to π/a.
Wavevectors outside of the first Brillouin zone correspond to wavelengths of less than the
lattice constant a. Because of the periodicity of the dispersion relation, these solutions
are not unique and hence equivalent to the solutions within the first Brillouin zone. The
most important information which can be extracted from the dispersion relation is the
velocity

vω = ∂ω

∂k
(3.30)

of the phonons with the angular frequency26 ω. The dispersion relation shown in fig.
3.5 possesses two branches – an optical and an acoustic branch. The name acoustic
refers to the linear dispersion relation ω = vsk of this branch from acoustic to ultrasonic
frequencies where vs represents the well known speed of sound. The term optical however
refers to the high frequencies of these phonons which allow photons at or near the visible
spectrum to interact with them. Due to their different propagation speeds acoustic
phonons carry the majority of energy so that the contribution of the optical phonons is
usually neglected when considering transport properties. However, if the specific heat is
considered, both the optical and acoustic branches have to be taken into account. In the
three dimensional case the dispersion relation is very similar to the one dimensional case
considered here. The effects observed in the one dimensional case hold generally true for
the 3D case, but in the 3D case the branches split into three polarization directions and
become dependent on the crystal orientation which in turn depends on the respective
crystal symmetry.

3.4.1 The Heat Capacity of the Lattice

In the previous sections the term phonon was already used as the quantum of crystal
vibrations. This can be justified post hoc by introducing the equation for the internal
energy [Ashcroft and Mermin, 2005a, p. 577]

Ul = U eq
l +

∑

k,p

[
n0
ω(k) + 1

2

]
~ω(k, p), (3.31)

26If transport properties are discussed phonons are considered to be localized. One single phonon with
one single wave vector can not be localized. To obtain a localized displacement of the atoms in a
crystal, phonons resp. eigenmodes with wavevector k ± ∆k have to be exited. The resulting wave
packet is in analogy to localized electrons also called phonon and localized on the order of ∆x ≈ 1/∆k
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which is composed of 3N quantum mechanical harmonic oscillators. Here, n0
ω is the mean

number of phonons at thermal equilibrium, N is the number of atoms in the crystal and
p is an index for the respective phonon polarization. The constant U eq

l represents the
contribution to the potential energy of the static equilibrium distribution of the atoms
in the crystal lattice. The oscillators in equation (3.31) are not coupled because coupled
harmonic oscillators in real space decouple in reciprocal space. Like a single harmonic
oscillator, this system has quantized allowable energy levels for a respective eigenmode.
In the particle terminology the mean number of phonons with a certain energy represent
the amplitude of the respective mode. The allowable energy levels of vibrational modes
in a crystal are equivalent to the allowable energy levels of electromagnetic modes in a
cavity, which are (n0

ω + 1/2)~ω. Therefore, the term phonon is used in analogy to the
quantum field theory of electromagnetic fields to describe the vibrational normal modes
of a crystal. Because both phonons and photons are bosons, their mean number at a
thermal equilibrium temperature T is described by the Bose-Einstein distribution which
is given by

n0
ω(k) = 1

exp
(
~ω(k,p)
kBT

)
− 1

, (3.32)

where ~ is the reduced Planck constant and kB is the Boltzmann constant. In the limiting
case of a large crystal the equation (3.31) can be simplified by replacing the sum over
k by an integral over ω. The specific internal energy of the lattice vibrations27 is then
given by

ul =
∑

p

∫
D(ω)n0

ω~ω dω (3.33)

where D represents the phonon density of states. The heat capacity of the lattice can
now be obtained by applying their thermodynamic definition to equation (3.33) [Kittel,
2004, p. 113] which yields

Cl = ∂ul
∂T

= ∂

∂T

[∑

p

∫
D(ω)n0

ω~ω dω
]
. (3.34)

To obtain the phonon density of states the two different models of Debye and Einstein
are commonly used. Figure 3.6 shows a comparison between experimental results for
the heat capacity of diamond, the classical Dulong-Petit law and the results based on
the two quantum mechanical models of Einstein and Debye. In the high temperature
limit the models of Einstein and Debye converge to the classical Dulong-Petit result for

27omitting the contribution Ueq
l of the static lattice
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the heat capacity of 3kBN = 24.94 J/(mol K). A simple approach, made by Einstein,
assumes a flat dispersion relation, where all N harmonic oscillators oscillate at the same
frequency ω(k) = ω0. The density of states of the Einstein model is therefore given by:

D(ω) = Nδ(ω − ω0). (3.35)

For crystals with a diamond structure the Einstein model provides reasonable results
because of the presence of optical phonons in diamond structures which are adequately
represented by a constant dispersion relation. At low temperatures the model fails
because statistically only low frequency phonons are excited which have a density of
states of zero in the Einstein model. The more complex Debye model assumes a linear
dispersion relation ω(k) = vsk. In the Debye model the density of states is given by
[Kaviany, 2014b]

D(ω) = V

2π2vs3ω
2 (3.36)

where V represents the volume of the crystal. Inserting equation (3.36) and equation
(3.32) into equation (3.34) and introducing the Debye cut-off frequency ωD the heat
capacity yields

Cl(T ) = 3V ~2

2π2vs3kBT 2

∫ ωD

0
ω4

exp
(

~ω
kBT

)

[
exp

(
~ω
kBT

)
− 1

]2 dω. (3.37)

A very common measure in literature is the Debye temperature θD which can directly
be derived from the Debye cut-off frequency by

kBθD = ~ωD =⇒ θD = ~ωD

kB
. (3.38)

The Debye temperature is a measure for the highest possible phonon frequency in the
crystal and denotes the temperature at which all modes are just excited. For temper-
atures below 800 K the Debye model is in good agreement with the measured heat
capacity of diamond (s. Fig. 3.6) because the vast majority of the phonons excited at
those temperatures are low frequency phonons which obey a linear dispersion relation.
In the context of this work, only the diamond heat capacity at room temperature and
below are of interest and therefore the results produced by the Debye model are suffi-
ciently accurate for all considerations. When required, the accuracy could be increased
by combining the Einstein and the Debye model so that the Debye model is only applied

44



3.4 Heat Transfer in Insulators and Semiconductors

0 200 400 600 800 1000 120010−5

10−4

10−3

10−2

10−1

100

101

Temperature (K)

C
v

(J
/
m

ol
K

)

Debye M.
Einstein M.
Classical M.
Measurem.

Figure 3.6: Comparison of the heat capacity of diamond with the respective results based
on the Debye model, the Einstein model and the classical Dulong-Petit law.
The parameters used for the Einstein and Debye model are the Einstein
temperature of 1320 K and the Debye Temperature of 1860 K respectively.

to the acoustical branches of the dispersion relation and the Einstein model only to the
optical branches.

3.4.2 The Thermal Conductivity of the Lattice

If transport properties are discussed, phonons are considered as localized. One single
phonon with one single wave vector can not be localized. To obtain a localized displace-
ment of the atoms in a crystal, phonons respectively eigenmodes with wavevector k±∆k
have to be exited. The resulting wave packet is, in analogy to localized electrons, also
called phonon and localized on the order of ∆x ≈ 1/∆k. An important equation for
the understanding of phonon thermal transport was originally derived from the kinetic
theory of gases, but it is also applicable to energy carriers in solids when treated as
particles [Kittel, 2004, p. 122]. The equation states:

λth = 1
3Clvsl (3.39)
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Figure 3.7: Effective mean free path of the phonons in diamond with two different abun-
dances of 13C. The red curve represents natural diamond and the blue curve
represents an isotopically purified Diamond with an abundances of 13C of
1.1% and 0.07% respectively.

Here, λth represents the thermal conductivity, Cl the heat capacity per unit volume
and vs represents the average group velocity in the direction of the thermal gradient.28

The expression l represents the average mean free path of the phonons between two
collisions, which do not conserve momentum. Collisions with momentum conservation
cannot attenuate the phonon flux directly. As shown in figure 3.7 the equation (3.39) can
be used for a rough estimation of the mean free path of the phonons by using measured
values of λth, Cl and vs. When using the average mean free path approximation it should
be kept in mind that the mean free path of phonons has a strong ω-dependence which
usually spans several orders of magnitude [Minnich et al., 2011; Wilson and Cahill, 2015]
and therefore using this approximation can be very misleading.
The phonon mean free path is in principle determined by two different processes: Ge-

ometrical scattering at crystal boundaries, lattice defects and impurities, and carrier
scattering, where phonon-phonon scattering is the dominateing carrier scattering pro-
cess. In a perfect harmonic crystal29 as described by equation (3.28) a single lattice wave
is not attenuated and cannot interact with other waves. Hence, the heat conductivity of
28To obtain a value for vs the speed of sound of the one longitudinal mode vl and the speed of sound

of the two transverse modes vt can be averaged. For diamond with vl = 17500 m/s and vt = 12800
m/s the average group velocity can be estimated at vs ≈ 1/3(vl + 2vt) ≈ 14400 m/s

29A crystal with a perfect structure in which only forces linear in the displacement act on the atoms.
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Figure 3.8: Comparison between the U and N scattering process. The gray squares
represent the first Brillouin zone and the black dots represents a point of the
reciprocal lattice. See text for further explanation.

such a crystal would be infinite. To explain the effect of phonon scattering, anharmonic
terms must be introduced in the interatomic displacements. These anharmonic terms
impose a displacement dependency of the elastic constants on the crystal. The presence
of one phonon then results in a temporal and spatial modulation of the elastic constants.
For a second phonon this modulation acts as a moving grating where it is scattered. As
a result a third phonon is created:

k1 + k2 = kN
3 (3.40)

This scattering mechanism in general would still not suffice to establish a local ther-
mal equilibrium and thus a temperature gradient or a thermal resistance in the crystal
because the over-all phonon momentum ~k would be conserved. This situation is compa-
rable with a flowing gas in a tube with frictionless walls. There, the over-all momentum
or energy flux of the gas molecules is conserved because in each collision among the
molecules the velocity of the gas center of mass and the averaged energy of all molecules
stays constant. For a phonon gas this kind of scattering is referred to as normal process
or N process. If only N processes were present in a crystal, the heat transport would be
radiative in nature rather than diffusive. To be able to explain the thermal resistance of
a crystal, another process, originally discovered by Peierls, exists – the so called umklapp
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Figure 3.9: Thermal conductivity of diamond with two different abundances of 13C. The
red curve represents natural diamond and the blue curve represents an iso-
topically purified Diamond with an abundances of 13C of 1.1% and 0.07%,
respectively. The measurement data are taken from [Graebner, 1995].

process or U process [Ziman, 1960b]. In contrast to the N process described by equation
(3.40), the U process

k1 + k2 = kU
3 +H (3.41)

does not conserve the phonon wave vector k. Here, H is the reciprocal lattice vector.
Equation (3.41) is often referred to as the conservation of quasi-momentum. Because
in a crystal only phonons which wavevectors lying in the first Brillouin zone can exist,
any k produced in a collision ranging out of the first Brillouin zone must be brought
back by addition of H. Figure 3.8 shows an illustration and a comparison of the N
and U processes. The kU

3 generated in the U process of equation (3.41) travels in the
opposite direction of the kN

3 generated in the N process of equation (3.40) and therefore
creates a thermal resistance. Because the U processes only take place when k1 + k2 lies
outside of the first Brillouin zone, the probability for the occurrence of a U process is,
according to equation (3.32), very temperature dependent. As a result, the mean free
pass l for U processes declines sharply with increasing temperatures. Figure 3.9 shows
the thermal conductivity for two diamond crystals with different purity. Both show the
same temperature dependence. The steep increase of the thermal conductivity at low
temperatures originates from the increasing heat capacity (s. Fig. 3.6 and equation
(3.39)) at those temperatures. As the temperature increases the U processes set in,
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start to compensate and eventually overcompensate for the increasing heat capacity. At
temperatures above the Debye temperature of θD = 1860 K the heat capacity converges
to a constant value, all allowed modes are exited and the overall phonon population
increase with temperature. In this temperature region the phonon-phonon mean free
path scales according to

lpp ∝
1
T
, (3.42)

which results in an inverse T proportionality of the thermal conductivity at high tem-
peratures (T > θD), where the heat capacity is constant. Lattice defects and impurities
also limit the mean free path of the phonons. Nitrogen for example is the most common
chemical impurity in natural diamond. The two curves in Fig. 3.9 show the effect of
the 13C content on thermal conductivity of diamond. Here the random distribution of
isotopic mass differences disturb the periodicity of the lattice seen by the phonons. How-
ever, the expected decrease of the thermal conductivity due to the Rayleigh scattering
on the 13C isotopes is only about 1 to 2% and hence cannot explain the large decrease
alone. The discrepancy has been attributed to the presence of N processes as to serve to
exchange energy between low and high energy modes [Wei et al., 1993; Berman, 1992].
Because the Rayleigh scattering has a strong frequency dependence, the N processes
can decrease the mean free path indirectly by increasing the Rayleigh scattering. This
normally small effect becomes particularly important for high purity single crystals near
the conductivity peak at about 80 K [Wei et al., 1993].
The effects discussed in this section are important basics for the understanding of the

heat transfer in the cryogenically cooled cavity mirrors of an XFELO because at low
temperatures the mean free path of the principal heat carriers – the phonons – reach
the characteristic length scales of the mirrors. In this case the simplifying assumption of
purely diffusive heat transport is no longer applicable and thus the heat transfer has to
be considered on a microscopic scale. In section 3.4.3 the modeling of the heat transfer
on a microscopic scale is discussed.

3.4.3 Modeling the Heat Transfer

To obtain a quantitative description of the heat transfer on the microscopic scale three
different methods are commonly used:

1. Continuum models

2. The Bolzmann transport equation [Majumdar, 1998]
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3. Molecular approaches, such as lattice dynamics, molecular dynamics and Monte
Carlo simulations. [Klitsner et al., 1988; Chou et al., 1999; Tamura et al., 1999]

The continuum models are the simplest approach because they describe the problem
on a macroscopic scale. To also take microscale heat transfer effects into account the
models can be modified and they are typically applicable as long as meaningful local
temperatures can be established. Their advantage are their relatively simple application
to real problems due to their usage of macroscopic material constants30, which can be
measured directly. When the Boltzmann transport equation is used, no local thermal
equilibrium is needed anymore because instead of a local temperature the equation only
depends on the statistical distributions of the energy carriers. The accuracy of the
Boltzmann transport equation is however limited by the estimation of its collisional
term because its modeling is very difficult and the assumptions to be made lead to
an uncertainty. The molecular approaches are conceptually the most fundamental but
they suffer from their computational expense and their ultimate limitation due to the
uncertain knowledge about the intermolecular forces between the atoms.
Because of the relatively easy application of the continuum models and the question-

able added value of the other approaches in the context of this thesis, continuum models
and their limitations will be discussed in the following.

3.4.3.1 Derivation of the Heat Equation

In this section it will be shown that, under certain assumptions, the heat equation HE
and the hyperbolic heat equation HHE (cf. eq. (3.55)) can be derived from the more
general phonon Boltzmann transport equation (BTE).31 The general form of the phonon
BTE states [Carminati et al., 2006b, p. 80]:

∂nω
∂t

+ vωs · ∇nω = dn0
ω

dt

∣∣∣∣∣
col
≈ n0

ω − nω
τω

(3.43)

Where nω is the average number of phonons with angular frequency ω moving in the
direction of the unit vector s, vω is the group velocity of the phonons and n0

ω is the
equilibrium distribution of the phonons. The right hand side of the the equation is
the so called collisional term, which describes the rates of creation and destruction of
phonons during collisions. Usually, the collisional term is approximated by the so called
30The usually needed material constants heat capacity and thermal conductivity are not very constant

with temperature when T < θD, which is shown in Figs. 3.6 and 3.9. This temperature dependence
has to be considered when relatively large temperature differences exist in the thermal problem.

31A more detailed derivation of the heat equation from the BTE can be found in [Yilbas et al., 2011].
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relaxation time approximation because an exact expression is difficult to obtain. In this
approximation τω represents the mean free time between collisions of the phonon with
angular frequency ω. On length scales larger than the coherence length (typically of the
order of some nm), phonons behave like classical particles carrying the energy of ~ω.
Therefore, in analogy to thermal radiation of photons, a spectral radiative intensity

Iω(r, t, s) =
∑

p

D(ω)nω(r, t, s)~ωvω (3.44)

can be defined for phonons [Joshi and Majumdar, 1993]. Here, the sum is over the three
polarization branches and D is the density of states. When multiplying equation (3.43)
by D~ω the BTE for radiative transfer

1
vω

∂Iω
∂t

+ s · ∇Iω = 1
τωvω

(I0
ω − Iω) (3.45)

can be obtained. The heat flux is then given by

q(r, t) =
∫ ωmax

0

∫

4π
Iω(r, t, s)s dΩ dω (3.46)

where the first integral is carried out over a sphere. Hence dΩ represents the solid angle
around s. Simplifying this equation by considering the heat current in x-direction and
assuming a constant phonon velocity vs yields

qx(x, t) = 2π
∫ 1

−1

∫ ωD

0
Iω(x, t, µ)µ dω dµ (3.47)

where the x-component of vs is expressed by vx = vsµ and µ = cos(φ). Here φ is the
angle between the x-axis and the direction of the radiation. Assuming the relaxation
time τω as independent of the angular frequency of the phonons, multiplying equation
(3.45) by 2πµ and performing the same integration as in equation (3.47) on both sides
yields [Yilbas et al., 2011]

2π
vs

∂

∂t

∫ 1

−1

∫ ωD

0
Iωµ dω dµ+ 2π

∫ 1

−1

∫ ωD

0

∂Iω
∂x

µ2 dω dµ

= 2π
τvs

∫ 1

−1

∫ ωD

0
µI0

ω dω dµ− 2π
τvs

∫ 1

−1

∫ ωD

0
Iωµ dω dµ. (3.48)

When the mean free path of the heat carriers τvs is small compared to the characteristic
length scales L of the medium (i.e. temperature profiles or dimensions of the medium),
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the heat transfer is diffusive. In the diffusive regime the intensity can be expanded into
a Taylor series

Iω = I0 + τvs
L
I1 +

(
τvs
L

)2
I2 + · · · (3.49)

which allows to first order for the approximation [Kittel, 2004]

∂Iω(x, t)
∂x

≈ ∂I0
ω(T (x, t))
∂x

= ∂I0
ω(T (x, t))
∂T

dT
dx . (3.50)

Using the relations vx = vsµ and v2 = v2
x+v2

y +v2
z ≈ 3v2

z and using approximation (3.50)
by inserting into the second term on the left hand side of equation (3.48) yields

1
vsτ

dT
dx

2π
3

∫ 1

−1

∫ ωD

0
τvs

∂I0
ω

∂T
dω dµ = 1

vsτ

dT
dx λth (3.51)

where λth is defined as the thermal conductivity. Inserting equation (3.47) into the first
term on the left hand side and into the second term on the right hand side of equation
(3.48) and using relation (3.51) derived for the second term on the left hand side of
equation (3.48), then equation (3.48) can be written as

τ
∂qx
∂t

+ qx = −λth
dT
dx . (3.52)

The first term on the right hand side of (3.48) is equal to zero because it is an asymmet-
ric function integrated over a symmetric interval. Equation (3.52) is called Catteneo’s
equation [Cattaneo, 1958; Joseph and Preziosi, 1989]. When the time scale of interest is
much larger than the mean phonon relaxation time τ , the first term of equation (3.52)
can be neglected and the remaining part of the equation is equivalent to Fourier’s law.
Introducing the energy conservation relation

Cl
∂T

∂t
+ ∂qx
∂x

= 0 (3.53)

where Cl is the volumetric specific heat, differentiating equation (3.52) with respect to
x and substituting the last expression of that derivative into equation (3.53) yields

Cl
∂T

∂t
− λth

d2T

dx2 − τ
∂2qx
∂x∂t

= 0. (3.54)
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By differentiating equation (3.53) with respect to t, rearranging the terms and inserting
it into equation (3.54), the so called hyperbolic heat equation (HHE)

τ
∂2T

∂t2
+ ∂T

∂t
= λth

Cl

d2T

dx2 (3.55)

can be obtained [Majumdar, 1993]. Here again, when the mean phonon relaxation time
τ is much shorter than the timescale of interest, the first term of equation (3.55) can be
neglected and the HHE reduces to the ordinary heat equation (HE).

3.4.3.2 Ballistic limits of the Heat Equation

The classical heat equation is widely used in analyzing heat conduction experiments like
transient thermal gratings or frequency and time-domain thermoreflectance, respectively
[Käding et al., 1995; Cahill et al., 2002]. The reason for that is its simple applicability and
its computational efficiency compared to rigorous approaches such as the BTE, which
can be computationally too demanding for routine analysis of experiments [Maassen and
Lundstrom, 2016].
So far, the bulk thermal properties have been discussed. In this discussion an infi-

nite crystal was implied through the definition of transport coefficients (i.e. thermal
conductivity) which are independent of shape and size of the specimen. Although the
microscopic description of the heat transport is very complex, it can be described on
a macroscopic scale on the basis of relatively simple diffusion equations32 using these
transport coefficients. This diffusion equation relies on the mathematical law of large
numbers in that way as it represents the large-scale long-time approximation of a mi-
croscopic random walk under a temperature gradient. Therefore, the applicability of
diffusion equations is only unrestricted as long as the considered distances cover many
mean free path lengths and the considered intervals endure many relaxation times. For
practical purposes this condition is already satisfied within only a few mean free paths
and relaxation times, respectively [Ziman, 1960a]. The well known Fourier diffusion
equation is usually applied to describe heat conduction in solids. At room temperature,
Fourier theory has been successfully applied down to µm length scales and ns time scales
[Wilson and Cahill, 2015]. However, at length and time scales comparable to the mean
free path and relaxation time, respectively, the transport regime of the phonons be-
comes quasi-ballistic and the Fourier equation begins to fail [Minnich et al., 2011]. Since
the mean free path of the phonons has a strong temperature dependence, at low tem-
32The Fourier equation and Cattaneo’s equation and the associated heat equations (the HE and the

HHE).
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Figure 3.10: Illustration of the boundary scattering effect. The circle depicts the undis-
turbed average mean free path of the phonons and the color gradient rep-
resents a temperature gradient. See text for further explanation.

peratures quasi-ballistic heat transport can already occur on mm length scales. When
heat transport in a crystal becomes quasi-ballistic, two different size effects arise, which
diminish the predictive power of Fourier theory.

The first effect, illustrated in figure 3.10, is the boundary scattering of the phonons
[Casimir, 1938]. Boundary scattering occurs when the mean free path becomes com-
parable to the crystal dimensions. Due to the freeze-out of umklapp processes at low
temperature, for example, scattering occurs less in the bulk and more at the crystal
boundaries. This scattering leads to a reduction of the mean free path compared to the
bulk value and hence (usually) to a reduction of the thermal conductivity of the crys-
tal. As a result, the thermal conductivity becomes dependent on the crystal dimensions
which contradicts the assumption of Fourier theory that the thermal conductivity is a
material constant. Several approaches were presented33 to consider this size effect by
introducing an effective thermal conductivity λeff. A measure for the degree of ballis-
tic transport is the Knudsen number Kn = lb/L, where L represents the characteristic
length scale34 of the system and lb the bulk mean free path. Assuming diffusive scat-
tering at the boundary and Kn−1 � 1, a relatively simple expression under the gray
approximation35 could be derived [Flik and Tien, 1990; Majumdar, 1993], viz

λeff

λb
= 1

1 + Kn
α

, (3.56)

33[Zhang, 2007; Flik and Tien, 1990; Majumdar, 1993; McGaughey et al., 2011]
34In the case of a thin crystal L would represent the thickness of the crystal whereas in case of a wire

L would represent its diameter.
35A single, mode independent phonon velocity and relaxation time.
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Figure 3.11: Temperature gradient in a crystal after pulsed laser heating. The graphs
at the top and the side illustrate the temperature profile in the respective
direction of the crystal.

where α is a parameter which depends on the geometry of the sample and the direction
of heat flow. For a thin layer, [Majumdar, 1993] found α to be 8/3 and 3/4 for the in-
plane and cross-plane direction, respectively. For simple geometries these gray models
provide convenient algebraic expressions but they tend to over-predict the rate at which
λeff approaches λb when Kn approaches zero [McGaughey et al., 2011]. The reason for
that is that gray models neglect the influence of the mode dependent mean free path of
the phonons which can span orders of magnitude [Sellan et al., 2010]. Making an exact
prediction of the boundary scattering effect is difficult because the exact mean free path
spectrum of a material is usually not available and the condition of the boundary36 is
usually also unknown. Because the mean free path can span orders of magnitude, it
is hard to predict whether a certain phonon is reflected specularly or diffusely. This
effect has an additional temperature dependence because the phonon distribution in the
crystal strongly depends on temperature. For that reason, an accurate modeling of the
boundary effect is hard to achieve [Maldovan, 2012; McGaughey et al., 2011].
The second size effect which reduces the predictive power of Fourier’s law is the “gra-

dient effect” of the temperature field. This effect occurs, as presented in figure 3.11 and
3.12, when the gradient of the temperature field in the crystal varies rapidly over length
scales which are of the order of the mean free path of the phonons [Ashcroft and Mermin,
2005b; Wilson and Cahill, 2015]. This rapidly varying temperature gradient causes the
heat conduction to become ballistic, but due to the mean free path spectrum, which
spans over orders of magnitude, this effect does not cause an abrupt failure of Fourier
theory. As presented in figure 3.12, Fourier theory fails because its prediction of the heat
current in the ballistic and quasi ballistic case is wrong. The reason for that is the first
36The boundary can be “black”, diffusely or specular, reflecting or something in between. Whether a

boundary reflects specular or diffusive depends on their roughness compared to the respective phonon
wavelength.
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order Tailor-series approximation where Fourier’s law relies on. This approximation fails
in cases where the temperature gradient varies fast compared to the phonon mean free
path. To model the heat transfer in this regime, a ballistic/diffusive model was intro-
duced [Wilson and Cahill, 2014]. The model is based on the idea that high wavevector
phonons contribute the vast majority to the material’s heat capacity while their mean
free path is usually short (compared to low wavevector phonons) so that they can be
assumed to be diffusive (lpp(k0) � L) whereas the low wavevector phonons (k < k0)
are ballistic. As a result, the mean occupation of the high wavevector phonons can
be described by a single temperature field. This resulting thermal reservoir transports
heat diffusive for (k > k0) and ballistic for (k < k0).37 In this ballistic/diffusive model
[Wilson and Cahill, 2014] the heat current is expressed as

q(r) = −λ0
th∇T (r) +

∑

p

∑

k<k0

qNL(lpp(k), r), (3.57)

where λ0
th represents the fraction of thermal conductivity contributed by the diffusive

phonons (k > k0), qNL is the non-local heat current due to ballistic phonons with
(k < k0) and k0 is the wavevector which separates the high and low wavevector phonons.
When the timescale of interest is much longer than the relaxation time of the phonons,
for the one dimensional case, the nonlocal heat current yields,

qNL(k) = vk
2 Cl(k)∆Tavg(k), (3.58)

where Tavg represents the average temperature difference between phonons with MFP
lpp(k) traveling in positive and negative direction. As shown in figure 3.12 this average
temperature can be expressed in the gray approximation (lpp = const.) as

∆Tavg(x, lpp) = T (x− lpp)− T (x+ lpp), (3.59)

since on average the phonons which scatter at x have scattered at x± lpp before. When
the variation of the temperature gradient is slow compared to the phonon MFP, then
equation (3.59) can be approximated as

∆Tavg(x, lpp) ≈ −2lpp∇T (3.60)

37The definition of high- and low-wavevector phonons depends on the considered problem. The value
of k0 has to be chosen so that the high-wavevector phonons have a mean free path, which is much
shorter than the length scales of the temperature profile. Typical values for k0 are 0.4kmax - 0.25kmax.
See [Wilson and Cahill, 2014] for more details.
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(a) (b)

(c) (d)

Figure 3.12: Illustration of the gradient effect. The figures show different characteristic
temperature profiles. The blue dimension lines represent the first order ap-
proximation for ∆T and the black dimension lines represent the true ∆T .
The dashed line depicts the point where the heat current is evaluated and
the two incoming phonons scatter. The temperature difference is evaluated
at the average origin of the two incoming phonons scattering at the dashed
line. (a) Example for a temperature profile where the first order approxima-
tion for ∆T is adequate. (b,c) Typical in-plane and cross-plane temperature
profiles of a laser irradiated solid. The exponential shape of the tempera-
ture profile (cross-plane) in (b) is caused by the absorption characteristic
of the radiation and the Gaussian (in-plane) temperature profile in (c) is
caused by the intensity profile of the radiation, which is typically Gaussian.
Here the the first order approximation is invalid. (d) Cross-plane tempera-
ture profile where the phonon is reflected at the surface of the crystal. The
dotted line represents the temperature profile mirrored at the surface of the
crystal. Here, the first order approximation is also invalid. The figure is
modified from [Wilson and Cahill, 2014].
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and equation (3.58) reduces to Fourier’s law. This implies that within the ballistic/diffu-
sive model Fourier’s law predicts the correct heat current when equation (3.60) represents
an appropriate approximation.

An alternative approach to treat ballistic heat transport was recently proposed by
[Maassen and Lundstrom, 2014, 2015] and in a similar way by [Regner et al., 2014].
Maassen and Lundstrom used the so called McKelvey-Schockley flux method (MSM),
which was originally developed for the description of electron transport, and adapted it to
phonon heat transport.The McKelvey-Schockley flux equations can be derived from the
Boltzmann transport equation (BTE) [Rhew and Lundstrom, 2002] and hence they are
applicable on all length and time scales where the BTE is valid. As opposed to the BTE
the MSM discretises the phonon flux into a forward and a backward stream instead
of accounting for phonons traveling in all directions. This simplification significantly
reduces the computational expense and enables analytic solutions. With F±(x, t, ε)
being the phonon flux in the positive and negative direction, respectively, the McKelvey-
Schockley flux equations yield

1
vx

dF+

dt + dF+

dx = −F
+

lx
+ F−

lx
(3.61a)

− 1
vx

dF−
dt + dF−

dx = −F
+

lx
+ F−

lx
(3.61b)

where vx(ε) represents the average x-projected phonon velocity, lx(ε) is the MFP for
backscattering along the x-direction and ε is the phonon energy. The equations (3.61)
are of first order in the spatial and time coordinates and therefore, they can be solved by
specifying one initial and one boundary condition. In this case the boundary condition
corresponds to specifying the injected phonon flux at the (crystal) boundaries and the
initial condition corresponds to specifying the phonon flux at a given time. The resulting
solutions cover ballistic effects and show good agreement with the solutions of the phonon
BTE while requiring significantly less computation. Besides these considerations the
probably most interesting result of [Maassen and Lundstrom, 2014, 2015] is that the
McKelvey-Schockley flux equations (3.61) can be rewritten without approximation, as
the Cattaneo equation (eq. (3.52)) and the HHE (eq. (3.55)) and in the steady state
case as Fourier’s law and the HE, respectively.

All of these equations were derived from the BTE in section 3.4.3.1 under the as-
sumption of diffusive heat transfer. In the derivation of the HE and the HHE from the
MSM it is shown that no such assumptions are needed which explains why diffusion

58



3.5 Conclusion

equations work well in some situations when ballistic effects are present. By considering
the equivalence between the McKelvey-Schockley flux equations and the diffusion equa-
tions it turns out that the key to capturing ballistic effect is to also use the (physical
correct) boundary conditions of the McKelvey-Schockley flux equations for the diffu-
sion equations. In this case both the diffusion equations and the McKelvey-Schockley
flux equations yield the same results. Therefore, [Maassen and Lundstrom, 2016] con-
clude that the range of problems that can be addressed with diffusion equations is much
broader than has been generally understood.

To summarize, in this section an overview of the current state of research in the field
of ballistic phonon transport was given. The focus of this overview was on methods
which are computationally relatively cheap and which can be used to analyze raw data
to extract thermal properties of specimens. This focus was chosen because the measure-
ments presented it chapter 5 impose the requirement for routine analysis of transient
experimental data.

3.5 Conclusion

As outlined in this chapter the effects caused by the pulsed Laser irradiation are com-
plex and only understood to some extent. Especially the thermalization dynamics of
the involved carriers is a field where quantitative predictions from theory are only reli-
able for routine applications (well known materials at usual conditions). In the case of
an XFELO cavity the question of the maximum acceptable heat load is a major issue
where phonon thermalization plays the most important role. In order to maximize the
acceptable heat load, thin diamond plates at about 50 K are considered as the most
promising mirror material. Predicting the thermalization dynamics of a thin diamond
plate at 50 K is not a routine application of the theory and can therefore not reliably
be done. As described in section 3.4.2 and 3.4.3.2 the main unknowns that cause the
leak in reliability are the unknown mean free path spectrum of the phonons and how
this unknown spectrum of phonons interact with the surface of the crystal, which is also
not in a perfectly known condition.38 In order to determine a reliable threshold for the
acceptable heat load on the mirrors, a measurement under conditions, which are as close
as possible to the real conditions in an XFELO, is necessary. Based on this information
numerical simulations can be confirmed and used for further development of the mirrors
and additionally, prototypes of mirrors can directly be tested and improved. A mea-
surement setup, which is used not only for a single measurement but for development
38Primarily the roughness of the surface determines the interaction with phonons.
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purposes, should ideally involve only standard laboratory equipment and no devices like
an XFEL or a synchrotron radiation source, where beam time is very rare. In chapter 5
the development of such a measurement setup along with the related first measurements
is presented.
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4 Numerical Studies

Building an XFELO requires components which have to perform on the edge of today’s
technological feasibility, including the production and acceleration of high-brightness
electron beams, the optimization of radiation generation in the undulator and the elec-
tron and x-ray beam guidance so as to overlap the electron bunch with the x-ray pulse to
obtain optimal FEL gain. In this chapter various numerical studies addressed to some of
these aspects are presented. The goal of these studies is to investigate the feasibility of
an XFELO in terms of technical challenges and physical limitations. In section 4.1 the
required electron optics to match the x-ray and electron beam is considered. In section
4.2 the influence of angular, positional and, above all, arrival time jitter of the electron
beam is investigated. In section 4.3 the influence of absorbed radiation on the Bragg
reflection is considered. Section 4.1 and 4.2 have already been published as a conference
paper [Maag et al., 2012, 2015].

4.1 Electron Optics

In an XFELO the optical axis has to coincide with the undulator axis. Hence, depending
on the design of the XFELO cavity some or all optical elements are located on the
undulator axis. In order to bypass the x-ray optical elements with the electron beam
and match it with the Gaussian x-ray beam in the undulator, a magnetic chicane or the
like and a focusing section are required. To obtain the requirements for the magnets and
the dimensions of such a system a respective magnetic chicane and focusing section are
considered below.
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Quadrupole

Dipole

Undulator

Cavity Mirror

Focussing Mirror

Figure 4.1: The scheme of the beamline. The black line represents the electron beam
and the dotted line represents the x-ray beam. The shown mirrors are a part
of the cavity. See figures 1.1 and 1.2 for an overview of the whole XFELO
setup.
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Table 4.1: Beam Parameters

Parameter Value
Electron energy 17.5GeV
Bunch charge 1 nC
Bunch length (FWHM) 178 fs
Slice emittance (normalized) 1µm
Slice energy spread 0.45MeV

4.1.1 Layout of the optical system for the Electron Beam

The layout of the chicane and the focusing section is mainly determined by the required
offset of the electron beam and by the desired Twiss-parameters inside the undulator.
The offset has to be sufficient for the electrons to pass by the mirrors of the FELO cavity.
Due to the relatively small diameters of the x-ray and electron beam, both in the range
of tens of µm, and the arrangement of the x-ray optics, an offset of 10 mm is sufficient.
That allowed to design a chicane of 21 m length with a deflection angle of 0.1◦ without
any focusing elements in between. Because of the symmetry of the chicane the dispersion
is compensated automatically. In order to overlap the Gaussian x-ray and the electron
beam inside the undulator properly, a round electron beam with the waist in the middle
of the undulator is required. In addition it is desired to keep the beta functions small to
reduce beam distortions due to field errors of the magnets. It was investigated if these
requirements are met by the scheme shown in Fig. 4.1. The focusing into the undulator
is performed by quadrupoles before and after the chicane. With the deflection angle θ
of 1.74 mrad (0.1◦) and a correlated relative energy spread ∆E/E of the electrons of
about 3 ·10−4 (see figure 4.4) the path length difference ∆L experienced by high and low
energy electrons when traversing the chicane, can be approximated as [Jaeschke et al.,
2015, p. 106]

∆L ≈ Lθ2∆E/E, (4.1)

where L is the total length of the chicane. Evaluating equation (4.1) yields a path length
difference of about 20 nm. Comparing the path length difference of about 20 nm with
the total bunch length of about 40 µm shows, that compression effects of the bunches
are negligible for this chicane.
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Figure 4.2: The beta functions and the dispersion of the beamline. In the upper part the
undulator and the x-ray mirrors are shown. In the lower part the arrange-
ment of the quadrupole (bold) and dipole magnets (normal) are shown.

4.1.2 Simulations

The calculation of the electron optics were performed by using the code Elegant [Borland,
2004]. The underlying beam parameters are shown in table 4.1. The initial α- and β-
values were taken from the European XFEL lattice design at a position, suitable to
install an XFELO. In order to get the required beam profile inside the undulator an
optimization problem with the quadrupole strengths as the variables had to be solved.
The conditions of the optimization were constrained in the middle of the undulator
to: αx = αy = 0, βx = βy = 6m. This choice of Twiss-parameters represent an
optimum trade-off between an appropriate electron density throughout the undulator
and a reasonable x-ray energy density on the Bragg mirrors. In order to simplify the
optimization process the contribution of the natural focusing of the undulator to the
overall focusing strength was determined by [Wiedemann, 2007, p. 139]

1
fy

= K2

2γ2k
2
uLu, (4.2)

where fy is the focal length of the undulator in the direction normal the plain of the
sinusoidal motion of the electrons, K is the undulator parameter (cf. eq. (2.7)), ku the
undulator wave number, γ the Lorentz factor of the electrons and Lu the length of the
undulator. Given an undulator parameter of 2, an undulator wave number of 2π/0.03
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Figure 4.3: One-σ phase space ellipses of the electron beam in the transversal phase
space at the entrance of the undulator. For the electron beam parameters,
see table 4.1

m−1 and an undulator length of 15 m the focal length of the undulator yields about
890 m. Because this focal length is much bigger than the distance of 7.5 m between the
undulator entrance and the electron beam waist the natural focusing of the undulator was
neglected and the undulator was assumed as a drift space in the optimization procedure.
The simplification of replacing the the undulator by a drift space was also validated
by numerical simulations [Zemella et al., 2012]. Figure 4.2 shows the result of the
optimization. It can be seen that the beam is transformed into a round shape at the
entrance of the undulator and has the beam waist in the middle of the undulator. This
beam profile also meets the requirement defined above to overlap the electron beam
with the Gaussian x-ray beam. It can also be seen that the dispersion returns to zero
after the chicane. It is important to enter the undulator without dispersion to keep the
beam diameter small and hence overlap the electron beam with the x-ray beam properly.
Furthermore, Fig. 4.2 shows in the upper part the dimensions of the undulator and the
x-ray optics and in the lower part the arrangement of the magnets along the beamline.
After setting up the electron optics, 500000 particles were tracked through the beamline.
Figure 4.3 shows the 1σ ellipses in the transversal phase space for the x- and y-direction
at the entrance of the undulator, respectively. As shown, the ellipses are identical as it
could be anticipated from Fig. 4.2. Figure 4.4 shows the 1σ ellipse of the longitudinal
phase space distribution for the beginning of the beamline and for the entrance of the
undulator. It can be seen that the two ellipses are identical. That shows that the bunch
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Figure 4.4: One-σ phase space ellipses in the longitudinal phase space at the beginning
of the beamline and at the entrance of the undulator.

compression effect of the chicane is negligible. In Fig. 4.3 and 4.4 the ellipses were shown
for the entrance of the undulator because at this point further simulations need to be
conducted by specialized software. [Wiedemann, 2007, p. 139]

4.1.3 Conclusion

The considered magnetic chicane and focusing section are suitable to couple the corre-
sponding electron beam into the cavity of the XFELO that is under consideration for
the European XFEL. Figure 4.2 shows that the requirement of a round beam with a
beam waist in the middle of the undulator was met. Furthermore it shows, that ac-
cording to field quality specifications of the European XFEL quadrupole magnets, the
maximum beta function is small enough to neglect distortion of the beam due to field
errors of the magnets. Figure 4.2 shows also that due to the symmetry of the chicane
the dispersion is compensated. Furthermore it was shown by evaluating equation (4.1)
that bunch compression effects are negligible because of the relatively small deflection
angle of the bending magnets. This result was confirmed by the results of the particle
tracking shown in figure 4.4, where no bunch compression effects can be recognized.

4.2 Simulation of Arrival Time Jitter

In this section the influence of a lack of overlap between the electron bunches and the
x-ray pulses is studied, whereby the focus rests on the arrival time jitter between electron
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Table 4.2: Input parameters of the simulations

Parameter unit Setup 1 Setup 2
Electron energy GeV 14.5 14.5
Bunch charge nC 1 0.1
Bunch length (FWHM) fs 178 18.8
Peak current kA 4.9 5
Normalized emittance µm 1 0.3
Slice energy spread MeV 1.5 2.04
Beta function at waist m 7.5 7.5
Radiation wavelength Å 1.027 1.027
Undulator length m 15 15
Undulator period m 0.03 0.03
Cavity length m 66.62 66.62
Outcoupled radiation % 4 4
Cavity losses % 8 8

bunch and x-ray pulse. The currently lowest arrival time jitter of 30 fs was achieved with
a synchronization system reported in [Schulz et al., 2015] using 60 fs (RMS) long electron
bunches. At the European XFEL a synchronization system similar to that is planned to
be implemented [Altarelli et al., 2007] and it is assumed that the arrival time jitter will
decrease for bunches shorter than 60 fs. At the European XFEL electron bunches with
a length between 180 fs and 2 fs are planned to be generated. Due to the fact that the
arrival time jitter of the electron bunches at the European XFEL will be of the order of
the bunch length, some impact on the XFELO operation can be expected. To quantify
the impact of the arrival time jitter on the XFELO operation, simulations using the code
GENESIS 1.3 [Reiche, 2004] have been performed. The simulations have been performed
for bunch lengths of 178 fs and 18.8 fs (FWHM), respectively, with four levels of arrival
time jitter each. Since not only the arrival time is subjected to jitter, exemplarily a
simulation has been performed that incorporates bunch position and angular jitter as
well. The jitter levels used in this simulation are the levels expected for the European
XFEL Linac.

4.2.1 Simulations

The simulations were performed with the single pass FEL code GENESIS 1.3 together
with an oscillator extension code [Zemella, 2013], which calculates the propagation of the
output radiation field in the cavity of one GENESIS run and uses it as the seed radiation
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for a subsequent GENESIS run. The calculation of the field propagation inside the cavity
comprises the free space propagation, the spectral filtering due to the Bragg reflection,
the transformation due to the focusing elements and the outcoupling of a fraction of the
radiation at one of the crystal mirrors. The spectral bandpass filter that is applied to
the radiation to simulate the Bragg reflection (4 4 4) at a Diamond crystal has a width
of ∆λ/λ ≈ 1.66 · 10-6 (FWHM) which corresponds to a Fourier-limited pulse duration of
about 180 fs (FWHM). For the generation of the arrival time jitter a script was written
that shifts the radiation pulse by the deviation in the arrival time relative to a reference
point within the simulated time window. The value of the deviation in the arrival time
is generated by a random number generator that generates Gaussian distributed random
numbers. Since GENESIS has input variables for angular and positional deviations of
the electron beam the implementation of this kind of jitter could be done in a different
way. Hence a script was written generating uniformly distributed random numbers and
writing these numbers into the GENESIS input file. Both scripts have to be executed
for each cavity round trip to generate the respective jitter. The input parameter of
the simulations are shown in Table 4.2. One run of a jitter simulation presented here
starts with a first electron bunch that generates an x-ray pulse via the SASE process and
continues until the XFELO has reached saturation. Since jitter is a statistical process
the simulations presented here consist of 25 runs, allowing to calculate the mean and
variance of the results.

4.2.2 Results

The arrival time jitter simulations have been performed for two different setups shown in
Table 4.2. The essential difference in these two setups is the electron bunch length of 178
fs and 18.8 fs, respectively. The results of the simulations are shown in Figure 4.5. The
top row shows the results of setup 1. The first plot of the top row shows the mean pulse
energy versus the number of undulator passes and the center plot in the top row shows
the corresponding deviation of the mean for the jitter levels (RMS) of 0 fs (blue), 30 fs
(red), 60 fs (brown) and 120 fs (black). For the jitter levels of 30 fs and 60 fs the impact
on the gain process is quite low whereas at 120 fs the impact is significant. This result
is in good agreement with the expectation that a jitter significantly shorter than the
bunch length should only have a low effect on the gain process. In the plot of the energy
deviation from the mean pulse energy it is noticeable that the deviation of the mean has
a maximum roughly at the point where the gain is maximum. The reason for this is
that at high gain levels a relatively small disturbance gets amplified and thus broadens
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the relative uncertainty. At saturation, lower pulse energies get amplified more than
higher pulse energies and this leads to a narrowing of the relative uncertainty. The right
picture in the top row shows the pulse duration versus the number of undulator passes.
The pulse duration has a minimum about the point of the maximum gain. The reason
for this could be that the amplitude of the electrical field in the center of the x-ray pulse
is higher than at the head or the tail. If an electron bunch meets the circulating x-ray
pulse it should therefore take longer for the microbunching to form at positions where
the amplitude of the electrical field is lower compared to positions where the amplitude
is higher. This should lead to a higher gain in the center of of the x-ray pulse until
saturation is reached. Intensifying the center of the pulse more than the tails should
thus shorten the over-all pulse duration. Furthermore the plot shows that the pulse
duration increases with increasing jitter and that the fluctuation of the pulse duration
increases with increasing jitter as well. The reason for the increase in the pulse duration
is that due to the jitter the circulating pulse in the cavity and the electron bunch do not
overlap completely, which leads to an asymmetrical growth of the x-ray pulse and thus
the pulse duration increases. The plots in the bottom row show the results of setup 2
(see Table 4.2). It should be noticed that in the bottom row the assumed jitter levels,
if compared to the bunch length, are much bigger than in the top row. However, as the
first and second plot (bottom row) show, the gain process at the same jitter levels is
almost as stable as in the simulations using 178 fs long electron bunches. The reason
for this is the constant length of the circulating x-ray pulse. As mentioned above the
Fourier-limited pulse length is due to the Bragg-reflection about 180 fs (FWHM). If a
shorter pulse is generated only that fraction of the pulse within the bandwidth of the
Bragg-reflection will be reflected. That leads to a circulating pulse much longer than
the pulse generated in the undulator. Taking the circulating x-ray pulse of about 180 fs
into account it becomes clear that the jitter sensitivity of an XFELO run with 18.8 fs
electron bunches is almost the same as for an XFELO run with 178 fs electron bunches.
Apart from this interesting fact the first two plots in the bottom row show the same
characteristic like the first two plots in the top row. The right plot in the bottom row
shows the mean pulse duration versus the number of undulator passes. All curves show
a slight increase in pule duration and depending on the jitter level the pulse duration
fluctuates more or less.
The results of the simultaneous simulation of arrival time jitter, angular jitter and

positional jitter are shown in Figure 4.6. For the simulation the setup 2 (see Table 4.2)
has been used. The jitter levels are with 30 fs for the arrival time jitter, 100 nrad for the
angular jitter and 1 µm for the positional jitter chosen like expected for the European

68



4.2 Simulation of Arrival Time Jitter

0 20 40 60 80

10−7
10−6
10−5
10−4
10−3

en
er

gy
(J

)

0 20 40 60 80
0

1

2
re

l.
un

ce
rt

ai
nt

y

0 20 40 60 80
100

150

200

250

pu
lse

du
ra

tio
n

(fs
)

0 20 40 60
10−7

10−6

10−5

10−4

undulator passes

en
er

gy
(J

)

0 20 40 60
0

1

2

undulator passes

re
l.

un
ce

rt
ai

nt
y

0 20 40 60
16.2

16.4

16.6

16.8

17

undulator passes

pu
lse

du
ra

tio
n

(fs
)

Figure 4.5: Effect of the arrival time jitter on the XFELO process at the undulator
output for jitter levels of 0 fs (blue), 6.3 fs (green), 30 fs (red), 60 fs (brown),
and 120 fs (black). In the top row the results of the simulation with 178
fs long electron bunches are shown. In the bottom row the results of the
simulation with 18.8 fs long electron bunches are shown. The plots on the
left show the mean pulse energy versus the number of undulator passes for
the different jitter levels. The centered plots show the relative deviation
of the mean pulse energy and the plots on the right show the mean pulse
duration (FWHM) of the x-ray pulses.
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Figure 4.6: Performance of an XFELO at the undulator output considering the arrival
time jitter (30 fs), angular jitter (100 nrad) and positional jitter (1 µm)
expected for the European XFEL Linac. The left plot shows an exemplary
pulse at saturation. The center plot shows the mean pule energy as a function
of the number of undulator passes and the right plot shows the mean pulse
duration (FWHM) as a function of the number of undulator passes.

XFEL Linac. The first plot shows an exemplary x-ray pulse at saturation. The pulse
has an almost Gaussian shape with only some spikes on top which indicates a high level
of longitudinal coherence. Even though it cannot be recognized very well it should be
noticed that the 17 fs (FWHM) pulse has the weak circulating pulse of 180 fs (FWHM) as
a background. The plot in the center shows the mean pulse energy versus the number of
undulator passes. The curve has some small spikes and saturates at a mean pulse energy
of about 300 µJ. The plot on the right shows the mean pulse duration as a function of
the undulator passes. It can be seen that the mean pulse duration increases during the
gain process and after saturation it stabilizes at about 16.8 fs. Overall this simulation
shows a very similar characteristic to the simulation of setup 2 only taking arrival time
jitter into account (see Figure 4.5).

4.2.3 Conclusion

In this section the influence of electron beam jitter on the XFELO gain process was
studied. An interesting result of the simulations is that for bunch lengths below the
Fourier-limited pulse length of the mirrors the sensitivity to arrival time jitter does
not significantly increase when the bunch length decreases. Therefore it turned out
that the levels of arrival time jitter which can be achieved with today’s technology
are low enough to allow stable XFELO operation for all electron bunch lengths. At
arrival time jitter levels significantly below the duration of the circulating pulse the jitter
has only a weak impact on the mean gain, the mean saturation energy, and the mean
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pulse duration. However the fluctuation of these quantities increase noticeable. The
simultaneous simulation of arrival time jitter, angular jitter and positional jitter have
shown that it should be possible to run an XFELO under jitter conditions expected for
the European XFEL Linac. Even though the fluctuations of the pulse energy and pulse
duration are noticeably increased by the jitter the operation can be considered stable.

4.3 Influence of Generated Strain on the Bragg Reflection

In this section the influence of thermal and mechanical strain in the crossplane direction
caused by pulsed laser irradiation will be studied. As discussed in chapter 3 a laser pulse
irradiating a solid causes a thermal expansion of the solid and the thermal expansion
in turn causes an elastic strain pulse propagating in the solid. Because Bragg reflection
relies on a constant lattice spacing the laser pulse induced strain can distort the reflection
characteristics of a Bragg mirror. In earlier studies [Zemella et al., 2012] the laser induced
strain was assumed to be constant in the crossplane direction and the elastic strain pulse
propagating in the crystal was not considered. With the assumption of a constant strain
profile the standard dynamical theory of x-ray diffraction could be applied. Within this
theory the absorption of pulse energy only causes a shift of the Bragg energy but the
shape of the reflectivity curve is conserved. However the justification of this assumption is
questionable because the penetration depth of the x-rays determines the thermal strain
profile to be of the same order as the penetration depth of the x-rays. Additionally
unstrained regions deep in the crystal can still reflect radiation at the original energy
band especially in diamond with its very low absorption for x-rays around 12 keV.
Therefore in this study a more realistic thermal and elastic strain profile is obtained
by solving equation (3.21) numerically including a source therm which considers the
thermal diffusion in the crystal. The resulting Bragg reflection was then calculated by
means of the dynamical x-ray diffraction theory of multilayers [Stepanov et al., 1998],
where strain profiles can be incorporated by discretizing the strain and assigning each
discrete strain level to a certain layer in the multilayer system.

4.3.1 Simulation Details

In section 3.3 the train generation by a short laser pulse has already been discussed
neglecting the influence of thermal conduction in the solid. In that case an analytic
solution could be derived (c.f equation (3.23)). In this study the thermal conduction
was considered, which disables an analytic solution of the thermomechanical problem.
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When thermal conduction is considered the stress field in crossplane direction can be
written as

σ(x, t) = σm(x, t) + σth(x, t) = ρvs
2η(x, t)− 3βB∆T (x, t), (4.3)

where σm and σth are the thermal and mechanical strain contributions, respectively, ρ
is the mass density, vs the sound velocity, η the strain in crossplane direction, β the
thermal expansion coefficient and B the bulk modulus. When equation (4.3) is inserted
into Cauchy’s equation (3.21) a wave equation can be derived in the same way as already
shown in section 3.3. The resulting wave equation was solved under the assumption that
the temperature field is decoupled from the strain field. Under this assumption the
temperature field can be calculated separately from the strain field. The temperature
field was calculated using an axisymmetric 2D code based on Fourier’s law [Zemella,
2013, pp. 38–42]. The resulting strain field was then calculated numerically utilizing the
finite-difference method with the central differencing scheme which yields a second order
accuracy. The Bragg reflectivity curves were then obtained by using the strain field at
subsequent time steps as an input to the program GID_sl [Stepanov, 2017] which solves
dynamical diffraction problems of multilayers by means of the recursion matrix method
[Stepanov et al., 1998]. In this calculation the strain fields at the different instances
of time are assumed to be static, which neglects the small Doppler shift of the x-rays
reflected from the propagating strain pulse.39 The parameters of the simulation are
shown in table 4.3. They represent the expected conditions in an XFELO cavity with
a reduced saturation energy of the XFELO of about 200 µJ. The simulations were
performed with two different crystals thicknesses. The first crystal has a thickness of
42 µm. Such a crystal could be used to couple out a fraction of the FEL radiation
because the penetration depth of 12 keV x-rays at the diamond (4 4 4) reflection enables
a fraction of the radiation to traverse the crystal before the radiation is scattered back.
The second crystal has a thickness of 200 µm. This thickness represents an example of
a thick crystal, which does not transmit any notable radiation and would therefore act
as a standard cavity mirror.

4.3.2 Results of the Simulation

The first time steps of the simulation are shown in figure 4.7 for the 42 µm crystal and in
figure 4.8 for the 200 µm crystal, respectively. The arrival of the x-ray pulse is at x = 0
39More details about this effect, which can be interpreted as coherent Brillouin scattering, can be found

in [Reis et al., 2001] and [Lindenberg et al., 2000].
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Table 4.3: Input parameters of the simulations shown in figure 4.7 and 4.8.

Parameter Abbr. Unit Value
Thermal conductivity λth W/(m K) 1.73 · 103

Specific heat cv J/(kg K) 5.11 · 102

Mass density ρ kg/m2 3.51 · 103

Sound velocity vs m/s 1.75 · 104

Absorption coefficient κν 1/m 5.00 · 104

Temperature T K 3.00 · 102

Th. expansion coefficient β 1/K 1.08 · 10−6

Bulk modulus B Pa 4.42 · 1011

Absorbed pulse energy Ep J 2.00 · 10−6

Reflectance R – 9.90 · 10−1

Angle of incidence α degree 9.00 · 101

Beam radius σ m 5.00 · 10−5

Bragg reflection (h k l) – (4 4 4)

at t = 0. The plots on the left show the strain profile on the beam axis for different
instances of time. The plots on the right show the associated Bragg reflectivity curve at
the respective time step. The reflection curve of both the 42 and the 200 µm thick crystal
show fringes (lower reflectivety local maxima) on both sides of the principal maximum
of the curve. This fringes are caused by the finite thickness of the crystals and thus the
finite number of lattice planes involved in the scattering process.40 The time steps shown
represent one transition of the strain pulse through the crystal. Because the strain pulses
are reflected at the boundaries the pulses move back and forth. Therefore the further
behavior of the strain can be obtained by reading the plots back and forth (excluding the
plot at t = 0). However it should be kept in mind that the strain changes slightly with
time because of thermal conduction and ultrasonic absorption (cf. fig. 3.4). As discussed
in section 3.1.1, the condition of the Bragg mirrors is most important just before the
arrival of the next x-ray pulse. At the European XFEL the electron bunch separation
time will be about 220 ns. After that time the thermal strain is decayed to about 50%
of its original value. The elastic strain pulse however remains almost constant with
about 99% of its original value after 220 ns.41 The results for the two different crystal
thicknesses differ because of their different ratio between the penetration depth of the
radiation and their thickness. In figure 4.7 (thin crystal) two strain pulses, one on each

40See fig. 1.4 where the Bragg reflectivity curves of an infinitely thick crystal is compared to that of a
42 µm thick crystal.

41This statement is based on the data shown in figure 3.4.
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Figure 4.7: Strain field and the respective (4 4 4) Bragg reflectivity curve at 90◦ of a
42 µm thin diamond crystal. Both, the plots on the left and the right show
snapshots at the time labeled in the upper right corner of the plots on the
right. The strain was generated by a Gaussian beam with an RMS radius of
σ = 50 µm and an absorbed energy of 2 µJ. The penetration depth of the
radiation was 20 µm. The photon energy in the left plot is normalized to the
FWHM of the reflectivity curve of the unstrained crystal of about 26.5 meV.
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Figure 4.9: Comparison of the strain profile and the related Bragg reflectivity between
a 42 and the 200 µm thick crystal 220 ns after the arrival of a short x-ray
pulse. Both plots show a snapshot after 220 ns when the generated strain
pulse has circulated several times within the crystal. The left plot shows
the crossplane strain profile and the right plot shows the respective Bragg
reflectivity curve for the 42 and a 200 µm thick crystal. The parameters of
the simulation are shown in table 4.3.

surface of the crystal are generated and start to propagate in opposite directions into the
crystal. The small strain front at the back of the crystal is generated by the fraction of
radiation transmitting the mirror. In the thin crystal, basically exist two strain states,
the unstrained state where η ≈ 0 and the strained state, where η ≈ 4 · 10−6. It can be
seen, that one of the two different Bragg peaks develop depending on the dominating
stress state. The 200 µm crystal (results shown in figure 4.8) has a strain profile very
similar to that of the analytic solution of the problem discussed in section 3.3. The
Bragg reflectivity curve shows rather a broadening instead of the flipping behavior as in
the case of the thin crystal. Because of the larger thickness compared to the penetration
depth of the x-rays there is always a region in the crystal with low strain. Hence the
reflectivity curve of the unstrained crystal is always present as a component in the over
all reflectivity curve.
Because of the importance of the mirror condition just before the arrival of the next

x-ray pulse the conditions of both the 42 and the 200 µm crystal are shown separately in
figure 4.9 at t = 220 ns. It can be seen that the thermal strain is decreased by about 50%
of its original value whereas the elastic strain remained constant. Furthermore it can be
seen, that the heat diffused deeper in the crystal, which resulted in a spatial spread of
the thermal strain. The Bragg reflectivity curves are broadened by a factor of about two
and their shape is severely distorted compared to the curve of an unstrained crystal. In
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addition, the peak reflectivity of both curves is deteriorated. This is especially true for
the 42 µm crystal, which peak reflectivity is reduced from 93% to 70%.

4.3.3 Discussion of the Strain Generation at Cryogenic Temperatures

A good measure for the generated strain is the initial surface strain η0 defined by equation
(3.19) in combination with the absorption coefficient κν defined by equation (3.15).42

In this context the absorption coefficient is determined by the inverse of the extinction
length of the respective Bragg reflection. The extinction length has only a weak tem-
perature dependence, described by the Debye-Waller factor, and can therefore assumed
to be constant. The initial surface strain η0 depends among others on the coefficient of
thermal expansion β and the specific heat Cp. Both have a strong temperature depen-
dence and both change about orders of magnitude between 1 and 300 K. Therefore one
could argue, that in general also the strain generated from a certain amount of absorbed
energy will probably change over orders of magnitude from 1 to 300 K. This issue can
be resolved in a very general way when equation (3.13) from the section about thermal
expansion is inserted into the equation for η0 (eq. (3.19)), which yields

η0 = γκν(1−R)Ep
vs2A

, (4.4)

where A represents the irradiated area, Ep the laser pulse energy, R the fraction of
reflected energy and γ the Grüneisen parameter. Since γ is a material constant, which has
only a slight temperature dependence, η0 can be assumed as approximately temperature
independent. This is an important result when considering the ideal base temperature
for an XFELO mirror. In case of the thermal strain it is favorable to go to cryogenic
base temperatures because of the high thermal diffusivity and low thermal expansion at
cryogenic temperatures. This leads to a fast decay of the temperature and the remaining
temperature offset does only have a small effect on the strain because of the low thermal
expansion. As stated by equation (3.26) the damping of the elastic strain is even lower
at low temperatures. According to that equation the acoustic absorption coefficient for
a pulse considered here is lower by about four order of magnitude at 50 K compared to
300 K. That means, that going to cryogenic temperatures is not favorable in terms of the
influence of the elastic strain on the Bragg reflection upon the arrival of the subsequent
x-ray pulse.

42See section 3.3 for further details.
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Note that equation (4.4) assumes an instantaneous and localized conversion from
electromagnetic to thermal energy (a local thermal equilibrium of the phonons). However
when the mean free path of the heat carriers become of the order of the absorption length
of the radiation this assumption is not justified anymore. The prediction of this effect
is difficult because in the conversion process electrons with their own energy dependent
mean free path distribution and phonons are involved establishing the local thermal
equilibrium. In chapter 5 measurements are presented, which addresses this issue among
others.

4.3.4 Conclusion

In this study it could be shown, that the application of the strain generation model dis-
cussed in section 4.3.1 and section 3.3 yields results, considerably different from previous
studies [Zemella et al., 2012], where only a constant thermal and no elastic strain was
assumed. The model of the previous studies only predicted an energy shift of the un-
strained reflectivity curves as the response on pulsed laser irradiation (cf. fig. 4.7 and 4.8
at 0 ns for the unstrained reflectivity curve). On the considered timescale these results
do not only differ from the previous ones in the initial phase of the simulation and then
converge to the results of the previous study. As shown in figure 4.9 the Bragg reflectiv-
ity curve just before the arrival of the subsequent x-ray pulse differs significantly from an
unstrained and only energy-shifted curve. The results of this study imply also that all
FEL simulations which model the effect of strain generation by just energy-shifting the
reflectivity curve of an unstrained crystal should be questioned. Therefore new simula-
tions are required which incorporate the thermomechanical behaviour of diamond Bragg
mirrors.
Furthermore it could be shown that (as long as the applied model is valid) going to

cryogenic temperatures does not weaken the strain generation, and because of the lower
damping at lower temperatures the elastic strain component takes even longer at low
temperatures to be damped. While thick diamond crystals could theoretically be cut
in a way that the strain pulses are deflected away, these results especially questions the
concept of a thin crystal to couple out the radiation. Therefore the alternative out-
coupling of the radiation by means of a “three-beam-case” [Authier, 2001, pp. 225–236]
should be studied concerning the effect of strain generation.
If the predicted mechanical strain pulses cannot be diminished technically the satu-

ration energy of an XFELO assumed to be acceptable must be reduced considerably to
maintain the nominal bandwidth and pulse to pulse stability expected for an XFELO
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with ideal Bragg mirrors. However, as discussed at the end of section 4.3.3, the pre-
diction of the generated strain at cryogenic temperatures is questionable. Because of
the significant implications of this issue measurements are required, which elucidate the
generation and dissipation of mechanical strain in diamond crystals due to pulsed laser
irradiation. In chapter 5 measurements are presented, which among others addresses the
strain generation.
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As outlined in section 3.5 a reliable prediction of the thermalization dynamics in a
solid under ballistic heat transport is only possible for well known materials under well
known conditions (e.g. temperature, geometry, surface conditions). Since the material of
interest in this work – diamond at cryogenic temperatures – is not well known in terms of
its heat carrier thermalization dynamics a measurement scheme was developed, in which
the thermal load of a Bragg-mirror used in an XFELO can be simulated. The main
objective of this chapter is to describe the measurement scheme developed, present the
results of the first measurements performed with this setup and to evaluate the results
in terms of the applicability of diamond crystals as future Bragg mirrors for an XFELO.

Another objective of this chapter is to experimentally verify two different heat equa-
tions with regard to the future modeling of XFELO mirrors – the classical heat equation
(HE) and the hyperbolic heat equation (HHE). Both equations are generally understood
to correctly describe transient heat transfer problems in the regime of diffusive heat
transport and to fail in the regime of ballistic heat transport [Maassen and Lundstrom,
2016]. In section 3.4.3.1 both the HE and HHE are derived from the Boltzmann trans-
port equation under the assumption of diffusive heat transfer. There, the HE was shown
to be a special case of the HHE which assumes the mean phonon relaxation time to
be much shorter than the timescale of interest. Hence the HHE can be regarded as a
modified version of the HE, which captures finite phonon propagation velocity instead
of the unphysical infinite phonon velocity assumed by the HE.
Due to the mechanism described in section 3.4.3.2 and illustrated in figure 3.12 the

HE is assumed to fail when the characteristic length scale of the transient heat trans-
fer problem approaches the average mean free path of the phonons [Wilson and Cahill,
2014, 2015]. Because the HE is the standard tool for analyzing heat transfer problems,
in this chapter it is intended to show whether and, if so, how the HE fails to describe the
thermalization dynamics in the case of an XFELO Bragg mirror at room and cryogenic
temperatures. As a measure for this failure the apparent thermal conductivity normal-
ized to the bulk thermal conductivity is used. The apparent thermal conductivity is the
conductivity a system appears to possess when a certain model, which has the thermal
conductivity as a free parameter, is used to describe the behavior of the system. If the
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thermal model fails, the apparent thermal conductivity differs from the bulk thermal
conductivity.
As discussed in section 3.4.3.2 it was recently shown, that the HHE can be rewritten

as the McKelvey-Schockley flux equations. The McKelvey-Schockley flux equations were
originally developed to treat electron transport and recently they were reformulated to
describe phonon- and thus heat-transport in insulators and semiconductors [Maassen
and Lundstrom, 2015]. Without restricting to diffusive heat transport the McKelvey-
Schockley flux equations can be derived under certain simplifying assumptions from the
Boltzmann transport equation. For that reason the McKelvey-Schockley flux equations
and the equivalent hyperbolic heat equation are valid on all length and time scales
where the Boltzmann transport equation is applicable (cf. sec 3.4.3). Due to these re-
cent theoretical results, the hyperbolic heat equation is used for analyzing the measured
data to verify experimentally its predictive power from the diffusive to the ballistic heat
conduction regime. In this analysis the required (average) phonon mean free path was
obtained by its relation (eq. (3.39)) to the thermal conductivity. Although the results
of the McKelvey-Schockley flux equations were validated by results of the Boltzmann
transport equation [Maassen and Lundstrom, 2015], it remains to be demonstrated ex-
perimentally if the assumption of a constant phonon velocity and mean free path is valid
for diamond at cryogenic temperatures and if extracting the phonon mean free path from
the bulk thermal conductivity yields correct results for different problems. Here again it
is taken as a measure of the equations validity how well the bulk thermal conductivity
is reproduced when fitting the model based on the HHE to the measured data.

5.1 Method of the Measurement

The measurement method developed in this work is based on the time domain thermore-
flectance method. The thermoreflectance method utilizes the temperature dependence
of the optical reflectivity (∆R/∆T ), which is typically of the order of (10−2...10−5)R.
In a typical thermoreflectance experiment in the time domain [Cahill et al., 2002] a

short laser pulse of about 1 ps is split into a pump and a probe beam which can be shifted
against each other in time. Then the pump pulse excites the sample and the probe pulse
samples the excitation at different times by delaying the probe pulse relative to the pump
pulse. Typically the pump pulse is modulated leading to a modulation of the probe pulse,
which can then be detected with a photo diode connected to a log-in amplifier. With this
data acquisition scheme good signal-to-noise ratios are routinely achieved. The thermal
properties of a sample being measured can be obtained by fitting a heat transfer model
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to the data, where the thermal conductivity, heat capacity or interface conductance are
treated as free parameters. When probing transparent materials the sample is usually
coated with a thin metal film (70-80 nm) which acts as a transducer from optical to
thermal energy. The usage of a transducer usually imposes more free parameters to the
heat transfer model because the interface conductance and the thermal conductivity of
the transducer is usually unknown. Furthermore ballistic effects can also occur in the
transducer which can lead to a corruption of the heat transfer model and thus wrong
results, even if the material of interest is modeled properly [Wilson et al., 2013; Wilson
and Cahill, 2014].

Since the experimental results of this work are intended to be applicable to the Bragg-
mirrors in an XFELO the typical time domain thermoreflectance scheme, described
above, is not appropriate. There are two reasons for this: firstly, in order to simulate
the heat load of an x-ray pulse the absorption length of the laser radiation in the crystal
should be as close as possible to the extinction length of a Bragg reflection43, which is
about 20 µm for a diamond (4 4 4)-reflection near normal incidence. For that reason no
transducer could be used and in order to obtain the right absorption characteristics in
the diamond crystal an UV laser was chosen as the pump laser.
Secondly, as discussed in section 3.1.1 the condition of the Bragg-mirrors at the arrival

of the subsequent x-ray pulse is essential for the reflectance of that subsequent pulse.
Therefore the temporal range in which the temperature change can be measured should
at least cover one full pulse cycle, which is about 220 ns in the case of an XFELO driven
by the Europen XFEL LINAC. This required 220 ns delay would result in a delay line
of about 66 m which is hard to achieve especially with UV lasers. As the solution to
this problem a second 532 nm CW laser was included into the setup as the probe laser.
This could be done because the required temporal resolution of about 1 ns (discussed in
section 3.1.1) is relatively low and hence fast photo diodes are adequate to resolve the
reflectivity change of the CW signal.
With this setup a fast oscilloscope, triggered by a fraction of the pump beam, can

sample a whole pulse cycle. In order to achieve a reasonable signal-to-noise ratio many
pulse cycles are averaged to compose the final measurement result.

5.1.1 Optical Measurement of Crystal Properties

As outlined in chapter 3 the absorption of laser pulses causes a time dependent distortion
of the temperature and strain field inside a solid. Since the optical properties of a solid are
43As discussed in section 3.4.3.2 the temperature gradient in the crystal can influence the predictive

power of the heat equation.
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influenced by its temperature and its strain profile, the temperature or strain of a solid
can be investigated by measuring the optical properties of this solid. A measure for the
optical properties of a solid is the complex dielectric function ε̃ and the complex refractive
index ñ, respectively. They are related by ñ2 = ε̃. If a crystal plate is considered which
has a gradient of temperature or strain only in the x-direction (cross-plane) the optical
functions ε̃ and ñ can be expressed as

ε̃(x, t) = ε̃+ ∆ε̃(x, t) = [ñ+ ∆ñ(x, t)]2 , ∆ñ(x, t) = ∂ñ

∂Z
Z(x, t), (5.1)

where Z represents the change in temperature or the strain field in the crystal and ∂ñ/∂Z
is the thermo-optical or acousto-optical constant. In this work the optical functions are
probed by means of a reflectivity measurement. With this method a change in reflectivity
can be related by

∆R
R

= 4(n′2 − n′′2 − 1)∆n′ + 8n′n′′∆n′′
[(n′ + 1)2 + n′′2][(n′ − 1)2 + n′′2] ≈

( 1
R

∂R

∂Z

)
Z = κZZ (5.2)

to a change in the refractive index (in the case of normal incidence) and thus to a change
of the temperature or strain. Here the n′ and n′′ are defined as ñ = n′ + in′′. Equation
(5.2) is derived from the Fresnel equations. The relationship between ∆R/R and Z is
usually quite linear so that the linear approximation in equation (5.2) is usually quite
accurate for temperature changes of only some degree. With the knowledge of κZ the
value of Z at a certain position of a sample can then be determined by measuring the
reflectivity at that position. The interest in this work focuses on samples, which have
characteristic length scales of some µm to hundreds of µm. In particular the focus is on
the thermalization dynamics of absorbed short laser pulses on that length scales. Under
such conditions very fast transients occur which can hardly be measured by other means
than optical techniques. In general the light reflected from a sample which has a cross-
plane temperature gradient and thus a gradient in ñ, consists of two components. The
light reflected at the sample interface and the internal reflected light, which originates
from the gradient in ñ. As pointed out in section 3.3, a short laser pulse absorbed in a
sample always generates a heated region in the sample and a running strain pulse caused
by the thermal expansion of the heated region. This causes a strain profile, shown in
figure 3.3, and thus a respective modulation of ñ. Following a method suggested by
[Thomsen et al., 1986] the reflected light can be calculated from the temperature and
strain profile in the sample. This calculations show that in the case of the heated area
the internal light reflection is inhibited because the temperature gradients are small
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compared to the light wavelength. The running strain pulse in turn causes a Doppler
shifted internal reflection, which interferes with the light, reflected at the interface, and
thus causes a beat in the overall reflected signal with a frequency of about 160 GHz.
In the measurements presented in this chapter a 532 nm CW laser is used to probe
thin diamond plates. Because diamond is transparent at that wavelength the internal
reflection of the light at the running strain pulse is present for its whole lifetime. However
the detection of the reflected light is done by a photo diode and a connected oscilloscope
which have a system bandwidth of about 2 GHz. This detection scheme results in a
low pass filtering of the signal which in turn smoothes out the 160 GHz beat caused by
the interference of the internal reflection with the interface reflection. For that reason
the change of reflectivity measured with the oscilloscope is directly proportional to the
temperature at the surface (interface) of the sample.

5.2 Experimental Setup

The measurements presented in this chapter are so-called optical pump-probe measure-
ments. The experimental setup is shown in figure 5.1 and the parameters of the laser
system can be found in table 5.1. A UV pump laser emits pulses with a duration of 1
ns. A small fraction of the pump beam is coupled out and directed on to a fast photo
diode to trigger the measurement while the major part of the pump beam is focused on
the sample (diamond crystal). The pulses are then absorbed by the sample within an
absorption length of about 3.5 µm. The absorbed radiation energy is then converted to
thermal energy as described in section 3.1. The resulting local temperature jump and
the subsequent exponential temperature decay to the base temperature can be measured
by the CW probe laser. This can be done by measuring the change in reflected power
over time, which is proportional to the change in temperature. To increase the signal to
noise ratio, the probe beam is split into a reference beam and an actual probe beam. The
probe beam is reflected at the sample’s point of interest and both, the reference and the
probe beam are detected with a balanced detector, where the two signals are subtracted
and thus the noise of the laser source itself is canceled out. By means of a delay line the
reference beam can be shifted against the actual probe beam to synchronize the beams
and thus optimize the noise cancellation. The entrance of the balanced detector is cov-
ered with a band pass filter, which only transmits the probe wavelength to ensure the
stray light of the pump laser not to distort the measurement signal. The measurement
signal generated at the balanced detector is detected with a fast oscilloscope which is
triggered by the signal of the fast photo diode. Because the relative signal change is
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Figure 5.1: Scheme of the experimental setup developed to measure the thermal response
of diamond to pulsed laser irradiation. The initial pump beam is split into a
small fraction which triggers the measurement and the actual pump beam.
The actual pump beam can be attenuated by the arrangement of a λ/2
waveplate and a linear polarizer and is then focused on the sample. The
probe beam is variably split into an actual probe beam and a reference beam.
The actual probe beam is then focused on the sample and subtracted from
the reference beam by the balanced detector. The variable beam splitter and
the delay line are adjusted in a way that the balanced detector receives a
copy of the unperturbed (without the influence of the pump beam) probe
beam.
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Table 5.1: Parameters of the laser system

Parameter Unit Value
Pump wavelength m 213 · 10−9

Pump spot radius (2σ) m 200 · 10−6

Pump pulse duration s 1.00 · 10−9

Pump pulse energy J 1.00 · 10−6

Pump pulse rep. rate Hz 1.00 · 103

Probe wavelength m 532 · 10−9

Probe spot radius (2σ) m 40.0 · 10−6

only of the order of 10−5 the measured signal has to be averaged over tens of thousands
of pump pulses to yield a reasonable signal to noise ratio. In order to investigate the
properties of the sample at cryogenic temperatures the sample is placed into a vacuum
vessel. The vacuum is necessary to inhibit convective and conductive heat transport
thought the air and to minimize adsorption of water, oil or other contaminations at the
sample surface.

5.3 Analysis of the Data

During the first analysis of the data the probe signal turned out to consist of two com-
ponents. A fast decaying and a slow decaying component. The first and fast decaying
component represents the signal of interest, proportional to the temperature and the
second component is caused by some long lifetime electronic states which are exited by
the UV pump laser [Thomsen et al., 1986]. These states originate from lattice defects
or impurities such as nitrogen [Khan et al., 2009]. Because of the long lifetime of these
electronic states this two components can be separated from each other without any
appreciable degradation of the temperature signal quality. In figure 5.2 the raw signal
is shown over 200 µs. At t = 0 the pump pulse arrives and a fast decay of hundreds of
nanoseconds is superimposed by a slowly decaying signal. In the analysis of the data
this slowly decaying signal Uel is modeled as an exponential function with an offset of
the form

Uel(t) = U (0)
el + U (1)

el · exp
(
t

τel

)
. (5.3)

The parameters of the electronic component of the probe signal U (0)
el , U (1)

el and τel can be
measured by performing a fit of the model (5.3) to the long term signal shown in fig. 5.2.
To exclude the influence of the thermal component from that fit and hence to obtain
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Figure 5.2: Decay of the background signal.

the proper values for U (0)
el , U (1)

el and τel only the data t & 2 µs are used for the fit. This
could be done because under the existing conditions even with a thermal conductivity
much worse than that of diamond at room temperature the thermal component of the
probe signal is almost completely decayed at about 2 µs and hence can be neglected
afterwards. When Uel(t) is known, it can be incorporated into the final model Upr(t) for
the probe signal. The probe signal can then be modeled as

Upr(t) = Uel(t) + Uth(t), (5.4)

where Uth represents the model function for the thermal component of the probe signal.
The thermal component of the probe signal in turn is a function of the applied thermal
model Tmod. In this thermal model the apparent thermal conductivity λap is left as a
free parameter because this is the quantity of interest in the measurements presented in
this chapter. The model function for the probe signal can then be expressed as

Upr(κth, λap, t) = Uel(t) + Uth(κth, Tmod(λap, t)), (5.5)

where κth is the thermoreflectance calibration coefficient. By fitting the model Upr to
the measured probe data a value for λap can be obtained. In this work two different
model functions, which are presented below in section 5.3.1, are used to fit to the data.
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Figure 5.3: Peak signal as a function of the pump pulse energy absorbed at the surface.
The error bar shown applies to all data points. The linear fit displays the
linear relationship between thermal component of the signal and the pump
laser pulse energy. The green interpolating line is plotted to guide the eye.

To show the proportionality between the pump energy and the probe signal and thus
to validate the measurement method the relation between input (pump) and output
(probe) was measured and is shown in figure 5.3. The pump pulse energy was varied
and the resulting probe signal jump (the peak signal) was measured. Here again the
influence of the two signal components can be seen. Below 1 µJ/mm2 the signal increase
is dominated by the long lifetime signal. Above 1 µJ/mm2 the long lifetime signal starts
to saturate and above 2 µJ/mm2 the signal increase is dominated by the thermal short
lifetime signal. A linear fit starting above 2 µJ/mm2 was done, which is indicated by
the blue line in figure 5.3. Comparing the line with the data above 2 µJ/mm2 shows a
good proportionality of the thermal component between pump and probe beam, when
the y-intercept of the line (the long lifetime component) is subtracted from the data.

5.3.1 Thermal Models

There are two thermal models used to analyze the measured data. The first model is
based on the classical heat equation (HE) and the second is based on the hyperbolic heat
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equation.44 It is generally understood that both the HE and the HHE are only valid for
diffusive heat transport. The reason for the first model to be used is to investigate the
assumed failure of the classical heat equation in case of ballistic phonon heat transport
(cf. sec. 3.4.3.2). The reason for the second model to be used is to experimentally
demonstrate the validity of the hyperbolic heat equation for transient ballistic thermal
transport. Even though the HHE is known for decades [Cattaneo, 1958] this issue still
remains to be investigated because only recently it was shown theoretically [Maassen and
Lundstrom, 2015], that the HHE covers ballistic to diffusive transient heat transport.
Both models represent a solution of the HE and HHE respectively in time and one spatial
dimension. In both cases the spatial dimension is the cross-plane direction of the sample,
which is assumed to be semi-infinite. The simplification to the one spatial dimension
and to the semi-infinite sample in this dimension is valid because in the experiment the
penetration depth of the radiation is much less than the pump beam radius and the
thickness of the used sample. Furthermore the thickness of the sample is required to be
large compared to the mean free path of the phonons.

The first model used is an entirely analytic solution of the classical heat equation
[Yilbas and Al-Aqeeli, 2004]. With the mass density ρ, the specific heat Cp, the thermal
diffusivity α and the absorption coefficient of the laser radiation κν the model is given
by

T (0, t) = I1κν
ρCp

{
(γ − β) exp(ακ2

νt)
(β + ακ2

ν) (γ + ακ2
ν) erfc

(
κν
√
αt
)
−
[exp (−βt)
β + ακ2

ν

− exp (−γt)
γ + ακ2

ν

]

+2κν
√

α

πβ

F(
√
βt)

β + ακ2
ν

− 2κν
√
α

πγ

F(
√
γt)

γ + ακ2
ν

}
. (5.6)

Here F(x) is the Dawson’s integral and β, γ, I1 and κν are parameters characterizing
the volumetric heat source, which determines the absorbed radiation power of the laser
pulse. The respective heat source is described by

PV (x, t) = I1κν [exp(−βt)− exp(−γt)] exp(−κνx), (5.7)

where PV is the absorbed volumetric radiation power density of the laser pulse.45

44Both heat equations are derived from the BTE in section 3.4.3.1 and the difference between the HE
and the HHE is shown in equation (3.55).

45The expression (5.7) describes the temporal end spatial distribution of the absorbed power in the
crystal, as assumed by the model (5.6). The expression in the square brackets is proportional to
the power of the laser pulse and the exponential function outside the square brackets represents the
absorption characteristic of the laser radiation as a function of the distance x from the surface.
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Figure 5.4: Surface temperature of a laser irradiated diamond crystal at 100 K (left)
and 300 K (right) as predicted by the HE and HHE. The respective laser
parameters are taken to be the same as in the experimental setup and can
be found in table 5.1.

The second model represents a semi-analytic solution of the hyperbolic heat equation
[Yilbas et al., 2011], which is given by

U(s, t) =
√

2
π

I1κν
(κ2
ν + s2)(Aβ2 −Bβ + s2) ·

[
exp(−βt)− exp

(
−Bt2A

)

cosh
(
t
√
B2 − 4As2

2A

)
+ 2Aβ −B√

B2 − 4As2 exp
(
−Bt2A

)
sinh

(
t
√
B2 − 4As2

2A

)]
, (5.8)

where the constants A and B and the volumetric heat source are defined by

A = 1
v2
x

, B = ρCp
λth

= 1
α
, PV (x, t) = I1κν exp(−βt) exp(−κνx). (5.9)

Here the nomenclature is identical to that of the first model. The only additional param-
eter is the angle averaged phonon velocity in x-direction vx. In contrast to the classical
use of the HHE, vx is related to the sound velocity by vx = vs/2 instead of v2

x = v2
s /3

as in the classical case. The final solution can be obtained by an inverse Fourier-cos
transform, which yields

T (x, t) =
√

2
π

∫ ∞

0
U(s, t) cos(sx) ds. (5.10)

For this integral no analytic expression can be found and hence numerical methods were
applied to solve that equation.
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In figure 5.4 the solution of the classical heat equation and the hyperbolic heat equation
at 100 K and 300 K is compared. The figures compare the predicted temperature
evolution at the surface of a diamond crystal irradiated by a laser pulse. It can be seen
that the equations yield almost the same results at 300 K. The reason for this is that
the HE can be considered as a special case of the HHE. The difference between both
equations is the τ(∂2T/∂t2) term (cf. eq. (3.55)), which becomes very small when the
phonon relaxation time τ approaches zero (cf. sec. 3.4.3.1). This is practically the
case46 at room temperature. At 100 K, where the phonon relaxation time is of the
order of the time scale of interest, the HE deviates significantly from the HHE only in
the early phase after arrival of the laser pulse. After the initial deviation the solution
of the HHE converges to the solution of the HE. This happens because the (∂2T/∂t2)
term of the HHE starts to approach zero after some time and thus the two solutions
start to become equivalent. In figure 5.5 the solution of the HE and HHE is shown as
a function of the distance from the surface. The different plots represent the cases for
100 K and 300 K at two different points in time each. Here again at 300 K the solutions
of HE and HHE are almost identical. At 100 K the HHE shows a wavefront which
propagates with vs/2 into the crystal. The reason for this unphysical wavefront is the
assumed angle discretisation of the phonons into a forward and backward stream with
a single x-projected phonon velocity and mean free path (cf. eq. (3.61)). In a solution
of the full phonon Boltzmann transport equation this wavefront would be smoothed out
because of the different phonon angles, which would result in different x-projected mean
free paths. At 100 K and 3 ns the HE shows an unphysical fast phonon propagation.
This unphysical behavior is always present but in most cases negligible. Resolving this
issue was the original reason to derive the HHE [Cattaneo, 1958], which reduces the
infinite heat propagation velocity to the more realistic average x-projected velocity of
the phonons.

5.4 Results of the Measurement

The pump-probe measurements were performed with a single crystal CVD diamond plate
of type IIa [Element Six, 2017] with a thickness of 300 µm at different temperatures
ranging from 340 K down to 100 K. The measurement data represent an average of
thousands of single pump-probe measurements, taken with the setup described in section
5.2. The averaging is required to achieve a reasonable signal to noise ratio, which is
proportional to the square-root of the number of single measurements. In figure 5.6
46In relation to the time scale of interest.
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Figure 5.5: Comparison of the HE and HHE applied to a laser irradiated diamond crystal
at 100 K (bottom row) and 300 K (top row). The x-axis represents the
distance from the surface of the crystal. The respective laser parameter are
taken to be the same as in the experimental setup and can be found in table
5.1.
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Figure 5.6: Comparison of a pump-probe measurement at 150 K (left) and 297 K (right).
The fit to the data is based on the classical heat equation.

measurements47 at 150 K and 297 K are compared. The fit to the data also shown is
based on the classical heat equation (Model (5.6)). It can be seen that the temperature
decay at the crystal surface is considerably more rapid at 150 K than at 297 K. The
reason for this is the increased thermal diffusivity α at lower temperatures48, which in
turn is attributed to the increased thermal conductivity and the decreased specific heat
at lower temperatures (cf. sec. 3.4.1 and 3.4.2).

5.4.1 Failure of the Classical Heat Equation

As described above the apparent thermal conductivity of a system can be obtained by
fitting a thermal model, which has the (apparent) thermal conductivity as a free param-
eter, to a respective set of data. This was done for the whole data set which included
pump-probe measurements at temperatures ranging from 340 K down to 100 K. The
thermal model (5.6) based on the classical heat equation was used in this section to fit
the data. Figure 5.7 shows a comparison of the extracted (apparent) thermal conductiv-
ity and the literature bulk thermal conductivity of a single crystal CVD diamond sample.
The literature values and the fit to the literature values are taken from [Element Six,
2017] and [Wiedemann, 2017]. It can be seen that at temperatures from 340 K down to
250 K the bulk values are almost equal to the measured apparent thermal conductivity.
From 250 K towards lower temperatures the apparent thermal conductivity starts to
47Shown is only the thermal component of the signal (see section 5.3 for details).
48See equation (5.9) for the definition of α.
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Figure 5.7: Bulk thermal conductivity compared to measured (apparent) thermal con-
ductivity of diamond. The apparent thermal conductivity was obtained by
fitting the model (5.6), which is based on the classical heat equation, to the
measured data. The bulk thermal conductivity and the respective fit to the
data are taken from literature [Element Six, 2017; Wiedemann, 2017].

differ more and more from the bulk values. At 100 K the apparent thermal conductivity
is only about 20% of its bulk value. In figure 5.8 (left) the same issue is depicted in
a different way. The figure shows the apparent thermal conductivity normalized to the
bulk values as a function of temperature. Here the normalized apparent thermal con-
ductivity is used as a measure for the degree of deviation from the bulk values. This
deviation occurs because of a failure of the classical heat equation (where the applied fit
model is based on) and therefore the normalized apparent thermal conductivity can be
interpreted as a measure for the validity of the classical heat equation or as a measure for
the degree of ballistic heat conduction effects. The classical heat equation is valid and
the heat conduction is purely diffusive, if the normalized apparent thermal conductivity
is about 1, otherwise it is not. The reason for the failure at low temperatures is the
increasing mean free path (MFP) of the phonons with decreasing temperature (cf. fig.
3.7), which causes the classical heat equation to fail when the MFP reaches the order
of the characteristic length scale of the system. In the present case the characteristic
length scale is the absorption length of the pump laser radiation, which is about 3.5 µm.
The failure mechanism is most likely the so called gradient effect described in section
3.4.3.2 and illustrated in figures 3.11 and 3.12. A good evidence for the gradient effect
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Figure 5.8: Apparent thermal conductivity normalized on the bulk values as a function
of temperature (left). Apparent thermal conductivity normalized to the bulk
values as a function of the phonon mean free path normalized to the char-
acteristic length scale of the system (right). In this case the characteristic
length scale of the system is identified as the absorption length of the pump
radiation, which is about 3.5 µm. The interpolating lines are plotted to guide
the eye.

as the failure mechanism is shown in figure 5.8 (right), which shows the normalized ap-
parent thermal conductivity versus the absorption length of the pump laser radiation
normalized to the average MFP of the phonons.49 It can be seen that the classical heat
equation starts to fail when the MFP of the phonons reach the absorption length of
the crystal. This result confirms the original hypotheses in terms of the failure of the
classical heat equation in diamond and quantizes its failure.

5.4.2 Fitting the HHE to the Data

The results reported in this section are obtained by applying the same procedure as in
the previous section to the same set of data but in the present case the model (5.8),
which is based on the hyperbolic heat equation was used to fit to the data. Figure
5.9 shows – like figure 5.7 – a comparison between the bulk thermal conductivity and
the measured (apparent) thermal conductivity. The bulk thermal conductivity and the
respective fit to the data shown in figure 5.9 are taken from literature [Element Six,
2017; Wiedemann, 2017]. Even though the data set is identical to the results presented
49The mean free path as a function of temperature was calculated from equation (3.39) and is shown

for two different diamond crystals in figure 3.7.
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Figure 5.9: Bulk thermal conductivity compared to measured (apparent) thermal con-
ductivity of diamond. The apparent thermal conductivity was obtained by
fitting the model (5.8), which is based on the hyperbolic heat equation, to
the measured data. The bulk thermal conductivity and the respective fit to
the data are taken from literature [Element Six, 2017; Wiedemann, 2017].

in figure 5.7 the uncertainty of the measurement (the error bars) is significantly larger.
The reason for this is that the model based on the HHE is more sensitive to changes in
the (apparent) thermal conductivity because the thermal conductivity also determines
the relaxation time τ of the phonons – a parameter which is not existent in the clas-
sical heat eqation. In figure 5.9 it is also shown, that within the uncertainty of the
measurement the bulk thermal conductivity is completely reproduced by the measured
(apparent) thermal conductivity. Following the argumentation of the previous sections
this means, that the applied thermal model is valid for the investigated heat transfer
problem from the ballistic to the diffusive regime. Even though it was recently shown,
that the HHE can be written as a simplification of the Boltzmann transport equation
(BTE) this is not an obvious result because here the HHE is additionally just used in the
gray approximation.50 The gray approximation was required because the temperature
dependent mean free path spectrum of diamond is unknown. Thus the measurements
also show, that the severe simplifications made (compared to the full BTE) are still not
oversimplifying the present problem.

50A single, mode independent phonon velocity and relaxation time.
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5.4.3 Revaluation of the Strain Generation at Cryogenic Temperatures

In section 4.3.3 it was shown, that under the assumption of an instantaneous and lo-
calized conversion from electromagnetic to thermal energy the generated initial surface
strain does only have a weak dependence on the base temperature (the initial Tem-
perature before the radiation was absorbed). However in the previous section 5.4.2 it
could be shown, that the hyperbolic heat equation reproduces the measurements at all
base temperatures. Comparing the left and right plot of figure 5.4 shows that in the
ballistic heat conduction regime the temperature rise predicted by the HHE is much less
and delayed compared to the temperature rise predicted by the classical heat equation.
Therefore according to the measurements the peak temperature and thus the generated
peak strain at cryogenic temperatures are considerably less than predicted by equation
(3.19) and (4.4), which do not even consider heat conduction.

5.5 Conclusion

In this chapter the development of a measurement setup, which can serve as a basis for
future XFELO diamond optics development, was presented. In addition first measure-
ment results were shown and the data have been used to evaluate two different heat
transfer models – the classical heat equation and the hyperbolic heat equation. The
evaluation of the classical heat transfer model (based on Fourier’s law) resulted in a con-
firmation of its failure in a particular situation and a quantification of that failure. The
assumed failure mechanism could be supported by comparing the temperature depen-
dent average mean free path of the phonons with the degree of failure. The evaluation
of the model based on the hyperbolic heat equation showed, that this model reproduces
the measurements for all temperatures. Both model evaluations are very valuable for
future modeling of XFELO mirrors. However the hyperbolic heat equation should be
tested in various situations – as close as possible to the real XFELO conditions and with
a lower measurement uncertainty – before used routinely for the modeling of ballistic
heat conduction effects in an XFELO cavity mirror. For example the effect of bound-
ary scattering, described in section 3.4.3.2, was not investigated in this study but can
in principle also be covered by the hyperbolic heat equation. The boundary scattering
becomes potentially important for thin crystals at low temperature. Those crystals can
be used to couple the radiation out of the cavity.
Another important result is that the heat transfer equation applied in earlier heat

transfer simulations [Zemella et al., 2012] could be validated for the considered problem
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by the measurement results. Even though the simplifying assumption of an uniform
radiation absorption in the crystal is questionable the applied heat equation was shown
to be appropriate on the considered timescale. The earlier studies were based on the
classical heat equation and addressed the effect of accumulating x-ray pulses within a
bunch train. The simulations focused on the moment just before the absorption of the
subsequent x-ray pulse, which implies a time scale of hundreds of ns. Since the validated
hyperbolic heat equation converges after a fraction of that time scale to the classical heat
equation (cf. fig. 5.4 and 5.5) the applied heat equation in the simulations by [Zemella
et al., 2012] which focus on the moment just before the absorption of the subsequent
x-ray pulse can be assumed to be validated as well.
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6 Conclusion

In this work different aspects of an XFELO were considered, but the focus was clearly
on the investigation of the influence of absorbed x-ray power on the Bragg reflection.

In section 4.1 a magnetic chicane was developed to couple the electron beam into the
XFELO cavity. The results show that an appropriate chicane and focusing section can
be built within a beam line length of about 35 m using normal conducting standard
magnets already used in the linear accelerator of the European XFEL.
In section 4.2 the influence of electron bunch arrival time jitter on the XFELO process

was studied. It turned out that the levels of arrival time jitter which can be achieved
with today’s technology are low enough to allow stable XFELO operation for all electron
bunch lengths. Furthermore, by means of the simultaneous simulation of arrival time
jitter, angular jitter and positional jitter it was shown that it should be possible to run
an XFELO under electron bunch jitter conditions expected for the European XFEL.
In section 4.3 the thermal and elastic strain generated by a typical XFELO laser pulse

in a diamond Bragg mirror was simulated. In addition the effect of the obtained time-
dependent strain profile on the Bragg reflection was simulated. In this study it could
be shown, that a typical XFELO pulse considerably distorts, broadens and shifts the
Bragg reflectivity curve. The current results are considerably different from the results of
previous studies, which used a model apparently oversimplifying the problem, because in
the previous studies only a constant thermal and no elastic strain was assumed. Another
important outcome is, that the strain generated by a laser pulse is independent (to first
order) of the crystal base temperature, if heat conduction effects can be neglected.
In chapter 5 the development of a pump-probe measurement setup, which can serve

as a basis for future XFELO diamond optics development, was presented. First mea-
surements were shown, which confirmed the method of the measurement. A method for
analyzing the data was developed which enabled the extraction of the apparent thermal
conductivity from the data. Pump-probe Measurements at crystal base temperatures
from 100 K to 340 K were performed and the apparent thermal conductivity for two
different heat transport equations – the classical heat equation and the hyperbolic heat
equation – were extracted. By comparing the apparent thermal conductivity with the
bulk thermal conductivity it could be shown that the classical heat equation fails below
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6 Conclusion

about 200 K. Furthermore it could be shown that the apparent thermal conductivity
extracted from the hyperbolic heat equation reproduce (within the uncertainty of the
measurement) the bulk thermal conductivity for all temperatures from 100 K to 340 K.
This means that the hyperbolic heat equation has been validated for the whole temper-
ature range of the measurement for the given heat transfer problem, which makes that
equation a promising candidate for future heat transfer modeling of cryogenic XFELO
mirrors.

6.1 Outlook

The results presented in this work constitute a solid basis for future development in the
field of pulsed heat load subjected Bragg mirrors. The results are valuable for both, the
refinement of numerical simulations and further experimental studies.
On the basis of the numerical studies presented in section 4.3 the effect of the cu-

mulated absorption of several laser pulses on the Bragg reflection should be studied, in
extension to the single pulse case considered in section 4.3. Furthermore the Doppler
shift of the x-rays reflected from the running strain pulse should be considered in future
simulations. In addition it should be studied if the running strain pulse in the crystal can
be technically damped or deflected away from the zone, where the x-ray beam interacts
with the crystal.
The experimental results presented in chapter 5 should be reproduced with a better

signal-to-noise ratio to reduce the uncertainty of the measurement. This is especially im-
portant for the fit of the model, based on the hyperbolic heat equation, to the data. The
signal-to-noise ratio can be improved by averaging over more single measurements, as it
was done so far. Moreover, with the experimental setup further ballistic heat conduc-
tion effects can be studied, including the boundary scattering effect and the transversal
gradient effect, which occurs when the mean free path of the phonons is of the order of
the laser beam radius. In addition to these heat conduction studies the experimental
setup can probably be modified to detect the generated elastic train pulses as well. This
could be done by adding a spectrometer with a sufficient resolution in front of the bal-
anced detector. With this setup the signal of the running strain in the crystal could be
separated from the signal of the thermal strain due do the Doppler shift of the radiation
reflected at the running strain pulse.
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Acronyms

BTE . . . . . . . . . . . . Boltzmann transport equation

CVD . . . . . . . . . . . . Chemical vapor deposition

CW . . . . . . . . . . . . Continuous wave

DC . . . . . . . . . . . . .Direct current

DESY . . . . . . . . . . .Deutsches Elektronen-Synchrotron

FEL . . . . . . . . . . . . Free electron laser

FELO . . . . . . . . . . . Free electron laser oscillator

FLASH . . . . . . . . . . Free-Electron LASer in Hamburg

HE . . . . . . . . . . . . . Heat equation

HGHG . . . . . . . . . . High-gain harmonic generation

HHE . . . . . . . . . . . . Hyperbolic heat equation

IR . . . . . . . . . . . . . Infrared

laser . . . . . . . . . . . . Light amplification by stimulated emission of radiation

LCLS . . . . . . . . . . . Linear Coherent Light Source

LINAC . . . . . . . . . . Linear accelerator

MFP . . . . . . . . . . . .Mean free path

MSM . . . . . . . . . . .McKelvey-Schockley flux method

RF . . . . . . . . . . . . . Radio frequency

RMS . . . . . . . . . . . . Root-mean-square
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Acronyms

SASE . . . . . . . . . . . Self-amplified spontaneous emission

SRF . . . . . . . . . . . . Superconducting radio frequency

UV . . . . . . . . . . . . . Ultra violet

XFEL . . . . . . . . . . . X-ray free electron laser

XFELO . . . . . . . . . . X-ray free electron laser oscillator
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a . . . . . . . . . . . . . . Lattice constant

A . . . . . . . . . . . . . . Irradiated area

B . . . . . . . . . . . . .Magnetic induction

B0 . . . . . . . . . . . . . Peak magnetic field of undulator

B . . . . . . . . . . . . . Incompressibility modulus

c . . . . . . . . . . . . . . Speed of light

cl . . . . . . . . . . . . . . Contribution of the normal mode k,p to the heat capacity

cv . . . . . . . . . . . . . Specific heat at constant volume

Cl . . . . . . . . . . . . . Lattice heat capacity

Cp . . . . . . . . . . . . . Specific heat capacity

C . . . . . . . . . . . . . Elasticity tensor

dH . . . . . . . . . . . . .Distance between lattice planes

d . . . . . . . . . . . . . .Differential

D . . . . . . . . . . . . . Number of modes per unit volume

ey . . . . . . . . . . . . . Unit vector in y direction

e . . . . . . . . . . . . . . Elementary charge

E . . . . . . . . . . . . .Magnitude of the electric field

Ep . . . . . . . . . . . . . Laser pulse energy

F . . . . . . . . . . . . . Force
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F . . . . . . . . . . . . . Phonon flux along ±x

G . . . . . . . . . . . . .Gain

~ . . . . . . . . . . . . . . Reduced Planck constant

H . . . . . . . . . . . . . Reciprocal lattice vector

i . . . . . . . . . . . . . . Imaginary unit

Iω . . . . . . . . . . . . . Radiative intensity of the mode ω

I0
ω . . . . . . . . . . . . . Radiative intensity at thermal equilibrium

J . . . . . . . . . . . . . . Bessel functions

ku . . . . . . . . . . . . . Undulator wave number

kl . . . . . . . . . . . . .Wave number of FEL radiation

k . . . . . . . . . . . . . .Wavevector

kB . . . . . . . . . . . . . Boltzmann constant

K . . . . . . . . . . . . . Undulator parameter

K̂ . . . . . . . . . . . . .Modified undulator parameter

K . . . . . . . . . . . . . Spring constants

Kn . . . . . . . . . . . . .Knudsen number

k . . . . . . . . . . . . . .Magnitude of the medium wave vector

lext . . . . . . . . . . . . . Extinction length of the radiation

l . . . . . . . . . . . . . .Mean free path between collisions

lpp . . . . . . . . . . . . .Mean free path between phonon - phonon collisions

lb . . . . . . . . . . . . . Bulk mean free path

lx . . . . . . . . . . . . .Mean free path for back-scattering along x

Lg0 . . . . . . . . . . . . . Power gain length (idealized for 1D)

L . . . . . . . . . . . . . . Characteristic size of a medium
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me . . . . . . . . . . . . . Electron mass

M . . . . . . . . . . . . .Mass of individual atom

ne . . . . . . . . . . . . . Electron density

n0
ω . . . . . . . . . . . . . Equilibrium distribution of Ph. with angular frequency ω

nω . . . . . . . . . . . . . Average number of phonons with angular frequency ω

ñ . . . . . . . . . . . . . . Complex index of refraction

n′ . . . . . . . . . . . . . Real part of complex index of refraction

n′′ . . . . . . . . . . . . . Imaginary part of complex index of refraction

Nu . . . . . . . . . . . . . Number of undulator periods

N . . . . . . . . . . . . . Number of atoms in a crystal

p . . . . . . . . . . . . . . Polarization index of the mode

Psp . . . . . . . . . . . . . Total power of spontaneous und. radiation

P . . . . . . . . . . . . . Power

P . . . . . . . . . . . . . Pressure

q . . . . . . . . . . . . . . Heat current

qx . . . . . . . . . . . . . x-component of heat current

qNL . . . . . . . . . . . . Nonlocal heat current

rb . . . . . . . . . . . . . Electron beam radius

r . . . . . . . . . . . . . . Position vector in real space

R . . . . . . . . . . . . . Radius of curvature

R . . . . . . . . . . . . . Reflectance

< . . . . . . . . . . . . . . Real part of a complex number

s . . . . . . . . . . . . . . Unit vector

t . . . . . . . . . . . . . . Time
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T . . . . . . . . . . . . . . Temperature

Tavg . . . . . . . . . . . . Average temperatu

Tmod . . . . . . . . . . . . Thermal model

u . . . . . . . . . . . . . .Mechanical displacement

ul . . . . . . . . . . . . . Specific internal energy

Ul . . . . . . . . . . . . . Total internal energy

U eq
l . . . . . . . . . . . . Potential energy of the static equilibrium position

Uel . . . . . . . . . . . . . Electronic contribution of the probe signal

U (0)
el . . . . . . . . . . . . Constant electronic contribution of the probe signal

U (1)
el . . . . . . . . . . . . Amplitude of electronic contribution of the probe signal

Upr . . . . . . . . . . . . . Probe signal

Uth . . . . . . . . . . . . . Thermal signal

v̄ . . . . . . . . . . . . . .Magnitude of average velocity

v . . . . . . . . . . . . . . Velocity

v . . . . . . . . . . . . . .Magnitude of the velocity

vs . . . . . . . . . . . . . Speed of sound

vω . . . . . . . . . . . . .Group velocity of phonons with angular frequency ω

vk . . . . . . . . . . . . .Group velocity of phonons with wavevektor k

vx . . . . . . . . . . . . .Group velocity of phonons along x

V . . . . . . . . . . . . . Volume

W . . . . . . . . . . . . . Energy

Wr . . . . . . . . . . . . . Resonance electron energy

Wl . . . . . . . . . . . . . Energy of light wave

x . . . . . . . . . . . . . . x-component of coordinate system
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y . . . . . . . . . . . . . . y-component of coordinate system

z . . . . . . . . . . . . . . z-component of coordinate system

α . . . . . . . . . . . . . . Thermal diffusivety

β . . . . . . . . . . . . . . Thermal expansion coefficient

δ . . . . . . . . . . . . . .Kronecker delta

εB . . . . . . . . . . . . . Rel. spectral width of the Bragg reflection

η . . . . . . . . . . . . . .Mechanical strain

ε0 . . . . . . . . . . . . . Vacuum permittivity

η0 . . . . . . . . . . . . . Amplitude of induced strain

ε . . . . . . . . . . . . . . Phonon energy

ε̃ . . . . . . . . . . . . . . Complex dielectric function

γ . . . . . . . . . . . . . . Lorentz factor

γr . . . . . . . . . . . . . Lorentz factor of resonance electron energy

γ . . . . . . . . . . . . . .Grüneisen parameter

γkp . . . . . . . . . . . . .Grueneisen parameter for the mode k,p

Γ . . . . . . . . . . . . . . FEL gain parameter

Γ . . . . . . . . . . . . . . Heaviside step function

κν . . . . . . . . . . . . .Optical absorption coefficient

κac . . . . . . . . . . . . . Acoustic absorption coefficient

κth . . . . . . . . . . . . . Thermoreflectance calibration coefficient

λB . . . . . . . . . . . . . Bragg wavelength

λu . . . . . . . . . . . . . undulator period

λl . . . . . . . . . . . . .Wavelength of undulator / FEL radiation

λth . . . . . . . . . . . . . Heat conductivity
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λeff . . . . . . . . . . . . . Effective heat conductivity

λb . . . . . . . . . . . . . Bulk heat conductivity

λ0
th . . . . . . . . . . . . . Heat conductivity of diffusive phonons

λap . . . . . . . . . . . . . Apparent thermal conductivity

µ0 . . . . . . . . . . . . . Vacuum permeability

µ . . . . . . . . . . . . . . Cosine between ray and x-axis

ωc . . . . . . . . . . . . . Critical frequency

ωu . . . . . . . . . . . . . Undulator angular frequency

ω . . . . . . . . . . . . . . Angular frequency

ωl . . . . . . . . . . . . . Angular frequency of light

ωD . . . . . . . . . . . . .Debye angular frequency

π . . . . . . . . . . . . . . Circular constant

ψ0 . . . . . . . . . . . . . Zero phase

ψ . . . . . . . . . . . . . . Pondermotive phase

φ . . . . . . . . . . . . . . Angle between ray and x-axis

ρ . . . . . . . . . . . . . .Mass density

σθ . . . . . . . . . . . . . RMS opening angle of emission cone

σ . . . . . . . . . . . . . .Mechanical stress

τ . . . . . . . . . . . . . . Time constant

τω . . . . . . . . . . . . . Average time between collisions

τel . . . . . . . . . . . . . Time constant of electronic probe contribution

θB . . . . . . . . . . . . . Bragg angle

θcone . . . . . . . . . . . .Opening angle of radiation emission

θ . . . . . . . . . . . . . . Emission angle of the radiation
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θD . . . . . . . . . . . . .Debye temperature

ξ . . . . . . . . . . . . . . Frequency deviation
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