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Kurzfassung

Gequetschte Zustände des Lichts haben in den vergangenen Jahren in einer Vielzahl
von Anwendungen im Bereich der Quantenoptik Verwendung gefunden.
Dazu zählen Graviationswellendetektion [Aas13] [Aba11] [Gro13], Quantenschlüssel-
verteilung [Geh15], Messungen in der Biologie [Tay13], die Radiometrie zur absoluten
Kalibration von Photodioden [Vah16] und die Bestimmung der Linienbreite von Re-
sonatoren [Mik06].
Die Quellen zur Erzeugung von gequetschtem Licht sind in der Vergangenheit aus-
gereifter geworden, wobei immer höhere Quetschfaktoren erzielt wurden [And16].
Nachdem der erste experimentelle Nachweis gequetschten Lichts einen Quetschfak-
tor von 0.3 dB aufwies und mit Hilfe von Vier-Wellen-Mischung in Natrium Atomen
erzielt wurde [Slu85], erreichte ein auf parametrischer Abkonversion basierender Ver-
such kurz danach bereits 3 dB [Wu86]. Über zwanzig Jahre später wurden erstmalig
10 dB nachgewiesen, ebenfalls mit Hilfe von parametrischer Abkonversion [Vah08b].
Heute werden Quetschfaktoren von bis zu 15 dB bei 1064 nm erzielt [Vah16]. Um
die Integration von gequetschtem Licht in experimentelle Aufbauten zu ermöglichen,
wurden entsprechende Regel- und Kontrolltechniken entwickelt [Che07b]. Die vollau-
tomatische Quetschlichtquelle für den Graviationswellendetektor GEO600 wurde auf
einem Breadboard von 1.35 m x 1.13 m gebaut und ist damit die weltweit erste portable
Quelle ([Kha11], p. 45). Alle übrigen genannten Aufbauten und Experimente wurden
in Laboren mit großen optischen Tischen durchgeführt.
Um eine einfachere Anwendung der Quetschlichttechnologie zu ermöglichen, müssen
die Aufbauten weiter verkleinert werden. Insbesondere die Wellenlänge von 1550 nm
ist als Standartwellenlänge in der Telekommunikation interessant. Diese Überlegungen
sind Grundlage und Motivation für die vorliegende Arbeit.
Die im Rahmen dieser Arbeit entworfene und gebaute Quetschlichtquelle wurde auf
einem Breadboard von 80 cm x 80 cm realisiert. Über einen externen Faserlaser wurde
kohärentes Laserlicht bei 1550 nm zum Betrieb der Quelle eingekoppelt. Mit der Quelle
konnte gequetschtes Licht in einem Seitenbandbereich zwischen 1 kHz und 25 MHz
nachgewiesen werden, wodurch die Anwendung des Quetschlichts in mehreren Berei-
chen, zum Beispiel für die Interferometrie, die Radiometrie oder die Quantenschlüssel-
verteilung, realisiert werden kann. Der Resonator zur parametrischen Abkonversion
wurde mit einem Multi-Temperatur-Schema ausgestattet, welches es ermöglicht, unter-
schiedliche Bereiche des Kristalls unterschiedlich stark zu temperieren. Dies ermöglicht
die Einstellung von gleichzeitiger Doppelresonanz und Phasenanpassung im Resonator.
Der hier präsentierte Aufbau stellt einen ersten Schritt in der Entwicklung kompakter
Quetschlichtquellen bei 1550 nm dar.
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Abstract

During the past years, squeezed states of light have become a versatile tool in quantum
optics with various applications.
These applications include gravitational-wave detection [Aas13] [Aba11] [Gro13], quan-
tum key distribution [Geh15], experiments in the field of biology [Tay13], the absolute
calibration of photo diodes [Vah16] and the measurement of cavity parameters [Mik06].
The sources for squeezed vacuum states have also become more and more mature over
time [And16]. The first experimental detection showed a quantum noise reduction
of 0.3 dB from four-wave mixing in Na atoms [Slu85]. The first squeezed-light source
based on parametric down-conversion already reached 3 dB [Wu86]. More than twenty
years later, the milestone of 10 dB was achieved, also based on parametric down-
conversion [Vah08b]. Today, it is possible to generate 15 dB at 1064 nm [Vah16].
Apart from work to increase the squeezing strength, technologies like the coherent
control scheme to control squeezed states have been developed [Che07b] to enable their
integration in experimental setups. The squeezed-light source at 1064 nm for the GEO
600 gravitational-wave detector was the first portable and fully automatic source based
on parametric down-conversion set up on a breadboard of 1.35 m x 1.13 m ([Kha11], p.
45) whilst the other results and applications mentioned were demonstrated on tabletop
experiments.
To enable a more flexible and widespread application of squeezed states, it is important
to reduce the footprint even further and to apply the technology to new wavelengths,
especially the telecommunication wavelength of 1550 nm. These requirements moti-
vated the work presented in this thesis.
The squeezed-light source engineered and presented here was set up on a breadboard
of 80 cm x 80 cm. Coherent laser light at 1550 nm was injected into the setup via
a fiber coupler. This increases the flexibility, since it allows for the usage of the
squeezed-light source with existing laser systems. The source produced squeezing in
a frequency range from 1 kHz to 25 MHz, which enables its usage in many different
applications. In addition, the parametric down-conversion cavity was equipped with
a multi-temperature heating scheme, which facilitates the creation of a temperature
gradient. This is an approach to adjust the operating point at which simultaneous
phase matching and doubly resonance for both the fundamental and second-harmonic
field is reached in the cavity. Thus, the setup presented here can be regarded as a first
step towards a portable and flexible squeezed-light source at 1550 nm.
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1 Introduction

In 1927, Werner Heisenberg introduced the uncertainty relation for the position and
momentum of a particle [Hei27]. The uncertainty principle is a fundamental property
of physics. It states that two hermitian, non-commuting observables cannot be mea-
sured with arbitrary precision at the same time and that the product of the variances
of the measurement results is always equal or larger than a positive nonzero number
([Sch07], p. 100).

In quantum optics, such a pair of observables is given by the operators that describe
the amplitudes of the phase and amplitude quadratures of a quantized electromagnetic
field. Fluctuations in the amplitude and phase of an electromagnetic field can have
technical reasons and can be eliminated by careful design of the source. The remaining
uncertainty, the shot noise, is a fundamental property of nature and cannot be fully
eliminated by technical means ([Lou87], p. 709). Shot noise thus limits the level of
precision at which the phase and amplitude quadrature of any laser can be resolved.
This situation is depicted in figure 1.1. It shows the time dependent oscillation of the
electric field of a laser. The uncertainty of the amplitude quadrature is indicated by
the red arrow.

Figure 1.1: The figure illustrates how the uncertainty of the amplitude quadrature
limits the level of precision of an amplitude measurement of a laser beam.
The uncertainty envelope is indicated by the dashed lines ([Lou87], p. 710).
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The quadrature uncertainties can be observed as shot noise by absorbing the light
with a photoelectric detector. With a balanced homodyne detector, they can even
be observed if the light is in its ground state and does not contain any photons.
These vacuum oscillations result from the zero point fluctuations of the quantized
harmonic oscillator. However, it is possible to reduce (”squeeze”) the uncertainty
of one quadrature below the shot noise level at the expense of an increased (”anti-
squeezed”) variance in the orthogonal quadrature. Quantum optical states with this
property are called squeezed states. For squeezed states, the product of the measured
uncertainties of two orthogonal quadratures has the lowest value that is allowed by
Heisenberg’s uncertainty principle. Squeezing can be observed in either coherent or
vacuum states ([Sch17], p. 14).
Since squeezed states have been described for the first time in theory, several exper-
iments have been performed to probe their existence [And16]. References to various
theoretical works can be found in ([Lou87], p. 710). The first successful demonstration
of squeezed states with a noise reduction of 0.3 dB below the shot noise level by four-
wave mixing was done by Slusher et al. [Slu85]. They used Na atoms as a nonlinear
medium. The squeezing process was enhanced by using cavities for the pump field and
the squeezed field, a technique that was also applied in the experiment presented in
this thesis. Shortly after this result, Wu et al. generated squeezed states with a noise
reduction of more than 3 dB by parametric down-conversion [Wu86]. In this case,
the nonlinear material was a MgO:LiNbO3 crystal. The squeezing was observed at a
wavelength of 1.06µm. Significant technical improvements related to the technique of
squeezing generation from parametric down-conversion have led to very high squeeze
factors of 10 dB in 2008 [Vah08b]. This result was achieved with a laser wavelength of
1064 nm. Further developments have made values of 15 dB at 1064 nm [Vah16] possible
and extended the range of wavelengths at which strong squeezing can be observed to
1550 nm with 12.3 dB [Meh11] and 532 nm with 5.5 dB [Bau15]. Over time, not only
the squeeze factors have been extended to larger values, but also the frequency range
in which squeezing can be observed has been increased from frequencies of a few Hz
[Vah10, Wad15] to GHz [Ast13].
The work on the generation of high squeeze factors, especially at acoustic frequen-
cies, has been driven by their proposed application in gravitational-wave detectors
by Caves [Cav81]. Gravitational-wave detectors perform laser interferometric mea-
surements and have directly observed gravitational waves for the first time in 2015
[Abb16]. A proof of principle experiment has demonstrated that the LIGO detectors
that performed the measurements can be improved with squeezing in the shot noise
limited frequency range from 150 Hz to 5 kHz [Aas13]. Alternatively, the laser power
in the interferometer could be increased to decrease the shot noise spectral density
([Sch17], p. 30). However, higher laser powers introduce other problems, such as the
heating of coatings or substrates, which, in turn, leads to an increased coating ther-
mal noise ([Bas14], p. 242) or thermal lensing in the beam splitter or arm cavities
[Win91]. For that reason, the laser power cannot be increased to arbitrary high levels.
The gravitational-wave detector GEO600 has already been equipped with a squeezed-
light source to improve its sensitivity in 2011 [Aba11] and has used this technology
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during operation ever since [Gro13]. For example, squeezing was applied for 205.2 days
during a time in which the detector generated scientific data from November 2011 till
October 2012. It led to an improved performance above a frequency of 400 Hz, proving
the maturity of the technology in scientific applications. An upgrade of the VIRGO
detector in Italy with a squeezed-light source is in progress [Leo16, Kni18] and a future
upgrade of the LIGO detectors will also include squeezing ([Mü17], p. 71). While all
of these detectors use lasers with a wavelength of 1064 nm, the Einstein Telescope, a
planned European detector, might be operated with interferometers at both 1064 nm
and 1550 nm and will incorporate squeezing at both wavelengths ([Abe11], pp. 230 –
231).
Apart from gravitational-wave detection, several other applications for squeezed states
of light have been identified: Squeezing can enhance the measurement sensitivity in
biological measurements such as laser-based microparticle tracking [Tay13]. In this
case, the shot noise reduction by increasing the light power is not feasible since it would
destroy the probe. Apart from that, squeezed states can be used to measure cavity
parameters of high Q cavities by partially destroying the quantum correlations within
a squeezed laser beam and measuring the resulting squeezing spectrum. Squeezed
states hardly contain any photons. Thus, their optical power is very small. For that
reason, they are optimal to probe high Q cavities. Even for weak coherent states,
the large power built-up in those cavities leads to nonlinear processes and increased
absorption and scattering, which would increase the uncertainty in the corresponding
measurements [Mik06]. Because of their responsivity to losses, squeezed states with
high squeeze factors can be used for the calibration of photo detectors. By careful
characterization of the inefficiencies of the optical setup, the detection efficiency of a
photo detector can be deduced by comparing the measured squeezing with the anti-
squeezing level. This was demonstrated in [Vah16]. Another interesting application
of squeezed states is quantum key distribution. Overlaying two squeezed states on a
beam splitter results in an entangled state, which can be used to distribute a quantum
key, as experimentally shown in [Geh15].
However, the experiments described above were conducted on large optical tables
and the squeezed-light sources were set up on theses tables as well. The source for
GEO600 was the first source for strong squeezing that was built with the intention of
being portable. It was not assembled at the detector site, but in a special laboratory
and brought to the detector after its completion. It was set up on a breadboard of
1.35 m x 1.13 m which has a weight of about 70 kg ([Kha11], p. 45). To allow for a
more widespread use of squeezed-light sources, the footprint and the weight have to
be reduced even further in future.
Thus, the aim of this thesis was to develop a more compact setup and to reduce the
footprint to 80 cm x 80 cm while maintaining strong squeeze factors. The experiment
was performed at the telecommunication wavelength of 1550 nm and designed to pro-
duce squeezed vacuum states at MHz frequencies and in the audioband. Thus, the
squeezed-light laser developed here can serve as a source for quantum key distribution
experiments, can be used to reduce the shot noise in laser interferometric experiments
and can be regarded as a proof-of-concept setup for the application in gravitational-
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wave detectors like the Einstein Telescope that are operated at 1550 nm.
The thesis is structured as follows: Chapter two introduces the theoretical concepts
that underlie the generation of squeezed states of light and the characterization of a
squeezed-light laser. The experimental setup is described in chapter three. Chapter
four presents the measured squeezing at MHz frequencies and chapter five the results
that were achieved in the audioband. The thesis ends with a summary and suggestions
of improvements that can be implemented in future developments.
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2 Theoretical concepts

2.1 Quantum theory of light

In classical physics, the electromagnetic field is described by Maxwell’s equations.
This description explains classical electrodynamics ([Dem06], pp. 136ff.). To describe
squeezed states of light, this classical theory is not sufficient and a quantum mechanical
explanation is required. This quantum mechanical picture will be reviewed in the
following sections.

2.1.1 Quantization of the electromagnetic field

To introduce the quantum theory of light, we follow the procedure described in the
book of C.C. Gerry and P.L. Knight ([Ger05], pp. 10ff.). We assume a cavity of length
L with perfectly conducting walls located at z = 0 and z = L in which the electric
and the corresponding magnetic single mode fields ~E = (Ex, 0, 0) and ~B = (0, By, 0)
with components

Ex (z, t) =

√
2ν2

V ε0
q (t) sin (kz) , (2.1)

By (z, t) =
(µ0ε0

k

)√ 2ν2

V ε0
p (t) cos (kz) (2.2)

are propagating along the z direction. Here, ν is the frequency of the cavity mode
and k = ν

c
the wave number, V is the effective volume of the cavity, ε0 is the electric

permittivity and µ0 is the magnetic permeability of free space. q (t) and p (t) are the
canonical position and momentum with the relationship p (t) = q̇ (t). The Hamiltonian
of this system, which corresponds to the field’s energy, is given by

H =
1

2

∫
dV

[
ε0E

2
x (z, t) +

1

µ0

B2
y (z, t)

]
(2.3)

=
1

2

(
p2 + ν2q2

)
. (2.4)

This Hamiltonian is formally equivalent to the one of a classical harmonic oscillator.
We now quantize the electromagnetic field, introduce the operators q̂ and p̂ with the
commutation relation [q̂, p̂] = i~ and obtain

Ĥ =
1

2

(
p̂2 + ν2q̂2

)
. (2.5)
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Furthermore, we define the creation operator â† and the annihilation operator â:

â =
1√
2~ν

(νq̂ + ip̂) , (2.6)

â† =
1√
2~ν

(νq̂ − ip̂) . (2.7)

With this definition, the Hamiltonian becomes

Ĥ = ~ν
(
â†â+

1

2

)
. (2.8)

It allows us to introduce the number states in the following chapter and to find a
physical interpretation for the annihilation and creation operators.

2.1.2 Number states

We now introduce number states, which are denoted |n〉 ([Wal08], pp. 10ff., [Ger05],
pp. 13ff.) and are eigenstates of the number operator n̂ = â†â. They satisfy the
equation

â†â|n〉 = n̂|n〉 = n|n〉, (2.9)

with n ∈ 0, 1, 2 ...∞. The annihilation and creation operators act on the number
states in the following way:

â|n〉 =
√
n|n− 1〉, (2.10)

â†|n〉 =
√
n+ 1|n+ 1〉. (2.11)

The creation operator increases n by one, while the annihilation operator decreases n
by one. The ground state, corresponding to n = 0, is defined by â|0〉 = 0. From that
ground state, every number state can be generated by applying the creation operator
n times:

|n〉 =

(
â†
)n

√
n!
|0〉. (2.12)

The number states are also eigenstates of the Hamiltonian (2.8):

Ĥ|n〉 = ~ν
(
â†â+

1

2

)
|n〉 = ~ν

(
n+

1

2

)
|n〉 = En|n〉. (2.13)

The eigenvalues En = ~ν
(
n+ 1

2

)
correspond to the energy of the number state |n〉.

The physical meaning of the annihilation and creation operator becomes apparent if
we calculate the eigenvalues of â†|n〉 and â|n〉. They are given by

Ĥâ†|n〉 = ~ν
(
â†â+

1

2

)
â†|n〉 = (En + ~ν) â†|n〉, (2.14)

Ĥâ|n〉 = ~ν
(
â†â+

1

2

)
â|n〉 = (En − ~ν) â|n〉. (2.15)
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As equations (2.10) and (2.11) show, n can be increased or decreased by applying â†

or â. Equations (2.14) and (2.15) imply that changing n by ±1 corresponds to the
creation or destruction of a quanta of energy ~ν, that is to say a photon is created
or annihilated. Thus, n can be interpreted as a number of particles. The ground
state |0〉, also called vacuum state, does not contain any photons. However, it has a
zero point energy of 1

2
~ν. The eigenvalues En = ~ν

(
n+ 1

2

)
can also be understood

as energy levels in a quantized harmonic oscillator of frequency ν. Furthermore, the
number states form an orthogonal, complete set with

〈m|n〉 = δmn, (2.16)
∞∑
n=0

|n〉 〈n| = 1 (2.17)

and can be used as a basis ([Ger05], p. 15). Apart from number states, laser light can
be described by coherent states. They will be introduced in the following section.

2.1.3 Coherent states

A laser beam does not contain a well-defined number of photons. For that reason, it
is not adequate to describe it with number states. Coherent states, as introduced in
this section, offer a more suitable formalism ([Ger05], pp. 43ff., [Wal08], pp. 12ff.).
They are generated by the displacement operator, which is defined as

D̂ (α) = eαâ
†−α∗â (2.18)

with α being a complex number. A coherent state |α〉 is generated if the displacement
operator acts on the vacuum state:

|α〉 = D̂ (α) |0〉. (2.19)

The state can be expressed in terms of the number states:

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉. (2.20)

This equation shows that the concept of coherent states accounts for the indefinite pho-
ton number in an actual laser beam ([Wal08], pp. 12ff.). The probability distribution
of the photon number contained in a coherent state is given by

P (n) = |〈n|α〉|2 =
|α|2ne−|α|

2

n!
, (2.21)

which is a Poissonian distribution. The mean photon number is given by

n̄ = 〈α|â†â|α〉 = |α|2. (2.22)

Thus, |α| can be understood as the classical amplitude of a bright laser beam. A
graphical picture of coherent states in phase space that underlines their properties can
be developed after the Wigner function has been introduced in the following section.
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2.1.4 Wigner function

To visualize a quantum state, it is useful to introduce the Wigner function. Defining
the density operator ρ̂ as ρ̂ =

∑∞
n=0 ρn |ψn〉 〈ψn| with ρn being the probability of |ψn〉,

we can write

W
(
q, p
)

=
1

2π~

∫ ∞
−∞

〈
q +

1

2
x
∣∣∣ρ̂∣∣∣q − 1

2
x
〉

e
−ipx

~ dx (2.23)

for the Wigner function ([Fur15], p. 33), which is normalized to unity:∫ ∞
−∞

∫ ∞
−∞

dq dpW
(
q, p
)

= 1. (2.24)

However, it can also take on negative values, for example for the number state |1〉
([Fur15], p. 42). Since classical physics does not allow for negative probabilities, the
Wigner function is not a probability distribution in the classical sense. Probability
densities for q and p of a state |ψ〉 that are non negative for all q and p are given by
the projections of the Wigner function on the corresponding plane ([Ger05], p. 64)∫ ∞

−∞
W
(
q, p
)
dp = |ψ (q)|2 , (2.25)∫ ∞

−∞
W
(
q, p
)
dq = |ϕ (p)|2 . (2.26)

As an example, we show how a vacuum state |0〉 and a coherent state |α〉 are visualized
in phase space with the help of the Wigner function. First, we simplify equations (2.6)
and (2.7) by renormalizing q̂ and p̂ according to q̂ →

√
ν
2~ q̂ and p̂ → 1√

2~ν p̂, which

results in [p̂, q̂] = i
2

for the commutator ([Fur15], pp. 3–4) and get

â = q̂ + ip̂, (2.27)

â† = q̂ − ip̂, (2.28)

and thus

q̂ =
1

2

(
â+ â†

)
, (2.29)

p̂ =
1

2i

(
â− â†

)
. (2.30)

With â |α〉 = α |α〉 and 〈α| â† = 〈α|α∗, the expectation values of q̂ and p̂ of the
coherent state are:

〈α |q̂|α〉 =
α + α∗

2
= < (α) , (2.31)

〈α |p̂|α〉 =
α− α∗

2i
= = (α) . (2.32)
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Here, we also used 〈α|α〉 = 1. For the vacuum state |0〉, we obtain

〈0 |q̂| 0〉 = 0, (2.33)

〈0 |p̂| 0〉 = 0. (2.34)

The Wigner functions of the states are given by ([Fur15], pp. 35–36):

W|α〉 (q, p) =
2

π
e−2(q−q0)2−2(p−p0)2

(2.35)

and

W|0〉 (q, p) =
2

π
e−2(q2+p2). (2.36)

Both distributions are depicted in figure 2.1. Since the expectation values of q̂ and
p̂ are zero for the vacuum state |0〉, its Wigner function corresponds to a gaussian
distribution centered at (0, 0). The coherent state |α〉 = |4 + i4〉 is displaced from the
center to (4, 4), as expected from the calculation of the expectation values (2.31) and
(2.32). The shift results from the coherent amplitude of the state. As we have seen
in equation (2.22), the absolute value of |α〉 is proportional to the square root of the
mean photon number. The distance from the origin to the center of the distribution
is given by |α| and can be thought of as a representation of the amplitude of a bright
laser field containing n̄ photons. In the next section, we will examine the variances of
both states in detail.
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Figure 2.1: Wigner functions of a vacuum state (left) and coherent state |α〉 = |4 + i4〉
(right). The vacuum state is centered at (0, 0), while the center of the
coherent state is moved to (q0, p0) = (4, 4). Those numbers were chosen
as an example, any other values are possible. The shift results from the
coherent amplitude α of the state.
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2.1.5 Minimum uncertainty states

Since the normalized operators p̂ and q̂ do not commute, it is impossible to measure
them simultaneously with arbitrary precision. Non-commuting observables Â and B̂
fulfill the Heisenberg commutation relation ([Sch07], p. 100)

∆2Â∆2B̂ ≥ 1

4

∣∣〈[Â, B̂]〉∣∣2. (2.37)

Thus, a measurement of the observables is always connected with an uncertainty. The
accuracy of the measurement can be calculated from an ensemble of measurements.
Before we calculate the variances, we define the quadrature operators X̂1 and X̂2 by
([Wal08], p. 16)

2â = X̂1 + iX̂2. (2.38)

This definition rescales p̂ and q̂ and normalizes the variance of the vacuum to one, as
we will see in the following. From the definition, we get

X̂1 = â+ â† = 2q̂, (2.39)

X̂2 = i
(
â† − â

)
= 2p̂. (2.40)

Thus, we can calculate the commutator to be[
X̂1, X̂2

]
= X̂1X̂2 − X̂2X̂1

= i
(
â+ â†

) (
â† − â

)
− i
(
â† − â

) (
â+ â†

)
= 2i

(
ââ† − â†â

)
= 2i

[
â, â†

]
= 2i = 4 [q̂, p̂] ,

and the uncertainty relation becomes

∆2X̂1∆2X̂2 ≥ 1. (2.41)

Since no assumption about the actual quantum state that is investigated was made
to calculate the commutator

[
X̂1, X̂2

]
, the result holds for all quantum states. To

determine the individual variance of the two operators for a coherent state and a
vacuum state, we use the fact that the variance ∆2Â of an operator Â can be calculated
as ([Wal08], p. 15)

∆2Â =
〈
Â2
〉
−
〈
Â
〉2
. (2.42)

For the coherent state, we get〈
X̂2

1

〉
=
〈
α
∣∣ (â+ â†

)2 ∣∣α〉
=
〈
α
∣∣â2 + 1 + 2â†â+ â†2

∣∣α〉
= 1 + α2 + 2αα∗ + α∗2,〈

X̂1

〉2
=
(〈
α
∣∣â+ â†

∣∣α〉)2

= α2 + 2αα∗ + α∗2,

∆2X̂1 = 1. (2.43)
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In a similar way, we obtain 〈
X̂2

2

〉
= −α∗2 + 2αα∗ + 1− α2,〈

X̂2

〉2
= −α∗2 + 2αα∗ − α2,

∆2X̂2 = 1.

Apart from that, we see that〈
X̂1

〉2
+
〈
X̂2

〉2
= 4
∣∣α∣∣2

→
∣∣α∣∣ =

1

2

√〈
X̂1

〉2
+
〈
X̂2

〉2
.

For the vacuum state, we calculate〈
X̂2

1

〉
=
〈
0
∣∣ (â+ â†

)2 ∣∣0〉 = 1,〈
X̂1

〉2
=
〈
0
∣∣â+ â†

∣∣0〉2
= 0,

∆2X̂1 = 1

and 〈
X̂2

2

〉
=
〈
0
∣∣ (i (â† − â))2 ∣∣0〉 = 1,〈

X̂2

〉2
=
〈
0
∣∣i (â† − â) ∣∣0〉2

= 0,

∆2X̂2 = 1.

The results are visualized in figure 2.2. The red circles can be understood as projections
of the Wigner functions shown in figure 2.1 on the rescaled (X1,X2) plane. As expected,
the coherent state on the left side is shifted away from the origin due to the coherent
amplitude of the state while the vacuum state is centered at the origin. The variance
in each quadrature of the states is equal to one. Thus both states have the smallest
possible uncertainty product of

∆2X̂1∆2X̂2 = 1. (2.44)

For that reason, the coherent state and the vacuum are minimum uncertainty states.
In the next section, we will introduce a third kind of minimum uncertainty state that
has a variance ∆2X̂1,2 < 1 in one quadrature. However, since the uncertainty principle
still holds, the variance increases in the orthogonal quadrature. These states are called
squeezed states.
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Figure 2.2: Visualization of a coherent and a vacuum state. On the left, the coherent
state is depicted. The actual position in phase space cannot be determined
with absolute precision due to the Heisenberg uncertainty principle, which
is indicated by the red circular area. For example, the uncertainty of a
measurement of X̂1 is given by ∆X̂1. The same holds for the vacuum
state on the right. The coherent state is displaced in phase space and

the distance to the origin is given by |α| = 1
2

√〈
X̂1

〉2

+
〈
X̂2

〉2

. Since a

vacuum has no coherent amplitude, the ball is centered at the origin.

2.1.6 Squeezed states

A special class of minimum uncertainty states are squeezed states. They obey the
Heisenberg uncertainty relation (2.44), but have a variance smaller than one in either
of their quadratures. A squeezed vacuum state is created by the application of the
squeezing operator on the vacuum |0〉. Subsequent application of the displacement
operator (2.18) leads to a squeezed coherent state ([Wal08], p. 17). The squeezing
operator is defined as

Ŝ = exp

[
1

2
ξ∗â2 − 1

2
ξâ†2

]
, (2.45)

with ξ = rei2Θ where r is the squeeze parameter and Θ determines the orientation of
the quadrature in which the variance will be reduced below one and thus the squeezing
will be apparent ([Bac04], p. 242). To simplify the calculations, we assume Θ = 0. To
calculate the effect of the squeezing operator on a vacuum state we use the relations
([Ger05], p. 153)

Ŝ† (ξ) âŜ (ξ) = â cosh r − â† sinh r, (2.46)

Ŝ† (ξ) â†Ŝ (ξ) = â† cosh r − â sinh r. (2.47)
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Using equation (2.42) again, we obtain〈
X̂2

1

〉
=
〈 (
â+ â†

)2 〉
=
〈
Ŝ†âŜŜ†âŜ

〉
+
〈
Ŝ†âŜŜ†â†Ŝ

〉
+
〈
Ŝ†â†ŜŜ†âŜ

〉
+
〈
Ŝ†â†ŜŜ†â†Ŝ

〉
= −2 sinh r cosh r + sinh2 r + cosh2 r,〈

X̂1

〉2
=
〈 (
â+ â†

) 〉2

=
(〈

0
∣∣Ŝ†âŜ∣∣0〉+

〈
0
∣∣Ŝ†â†Ŝ∣∣0〉)2

= 0.

Thus, the variance of X̂1 is squeezed (decreased) with a factor of e−2r:

∆2X̂1 = sinh2 (r) + cosh2 (r)− 2 sinh (r) cosh (r)

= cosh (2r)− sinh (2r)

=
1

2

(
e2r + e−2r

)
− 1

2

(
e2r − e−2r

)
= e−2r.

For X̂2, we get an anti-squeezed (increased) variance of

∆2X̂2 = 2 sinh (r) cosh (r) + sinh2 (r) cosh2 (r)

= sinh (2r) + cosh (2r) = e2r.

Figure 2.3: Phase space representation of an amplitude squeezed vacuum state. The
reduction of the variance in X̂1 leads to an increased variance in X̂2. How-
ever, the uncertainty relation (2.44) is still fullfilled. Thus, the squeezed
state is a minimum uncertainty state.

However, the uncertainty relation (2.44) is still fulfilled since ∆2X̂1∆2X̂2 = e−2re2r =
1. Here, the special properties of squeezed vacuum states become apparent. Our
calculation shows that the variance of the amplitude quadrature can be reduced below
the value that the uncertainty relation (2.41) allows for minimum uncertainty states
with equal variance in both quadratures. This situation is illustrated in figure 2.3.
It shows the projection of the Wigner function of a squeezed vacuum state on the
(X1,X2) plane. However, the variance can be squeezed along an axis different than
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X1. The ellipse can be rotated by changing the squeeze angle Θ. Another special
property of squeezed vacuum states is apparent in their photon number distribution.
The probability to detect m photons is given by ([Ger05], p. 163)

Pm =

(
1
2

tanh (r)
)m

m! cosh (r)

∣∣Hm (0)
∣∣2. (2.48)

A squeezed vacuum state only contains photon pairs and multiples thereof. This
property is depicted in figure 2.4 for a state with 4.3 dB squeezing (r = 0.51) ([Sch17],
p. 19) and 10 dB (r = 1.15).
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Figure 2.4: Photon number distribution of a 4.3 dB and 10 dB squeezed vacuum state.
Squeezed vacuum states only contain even photon numbers, since the
squeezing operator given in equation (2.45) only creates photon pairs. The
stronger the squeezing, the higher the probability for even photon numbers
> 2.

2.2 Cavity-enhanced nonlinear processes

Within this thesis, the nonlinear processes of second-harmonic generation and para-
metric down-conversion as shown in figure 2.5 are of importance. Both effects exploit
the second order optical susceptibility χ(2) of a nonlinear material. The time depen-
dent polarization of the material can be decomposed in a Taylor series that reads
([Boy08], p. 2)

P (t) = ε0
[
χ(1)E (t) + χ(2)E2 (t) + χ(3)E3 (t) + ...

]
(2.49)
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with the permittivity of free space ε0 and the electric field E (t). The nonlinear terms
PNL = χ(2)E2 (t)+χ(3)E3 (t)+ ... give rise to new frequency components of the electric
field ([Boy08], pp. 1–11). In second-harmonic generation, the input pump field at
frequency ν1 is converted to the signal at ν2. Due to energy conservation, ν2 = 2ν1

holds. In parametric down-conversion, the inverse process takes place and can be used
to generate a squeezed vacuum state. Both effects will be explained in detail in the
following sections.

Figure 2.5: Energy level diagrams of the nonlinear processes that are of importance
within this thesis. In second-harmonic generation (SHG), two photons
at 1550 nm are converted to one photon at 775 nm. In parametric down-
conversion (PDC), the inverse process generates two photons at 1550 nm
from one at 775 nm.

2.2.1 Second-harmonic generation

Figure 2.6: Second-harmonic generation within a nonlinear medium. Light with the
frequency ν1 enters a crystal of length L with an effective second order
nonlinearity deff and is converted to ν2 = 2ν1 ([Boy08], p. 97).

To describe the effect of second-harmonic generation, which is exploited to generate
the pump field for the parametric down-conversion cavity from the master laser in
this thesis, we follow the procedure presented in ([Boy08], pp. 96–105). The theory
describes the interaction of the electric fields with a nonlinear medium for a single pass
assuming plane waves and shows how the coupling via the nonlinear polarization re-
sults in new frequency components of the electric field. For each frequency component
ν1, ν2 of the process, the field can be expressed by

Ej (z, t) = Aj (z) eikjze−iνjt + c.c. (2.50)
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with kj =
njνj
c

, where c is the speed of light in vacuum and nj the refractive index of the
nonlinear medium for the corresponding frequency. Aj (z) represents the amplitude
of the field. E1 refers to the pump and E2 to the second-harmonic field. The total
electric field of the process is given by

E (z, t) = E1 (z, t) + E2 (z, t) . (2.51)

The interaction of the fields with the nonlinear medium can be described by the wave
equation

∂2Ej
∂z2

−
n2
j

c2

∂2Ej
∂t2

=
1

ε0c2

∂2PNL
j

∂t2
. (2.52)

The term on the right side acts as the source for the new frequency components at ν2.
It is given by PNL

j = Pj (z) e−iνjt + c.c. with

P1 (z) = 4ε0deffE2E
∗
1

P2 (z) = 2ε0deffE
2
1 .

Here, we introduced the effective second order nonlinearity deff = 1
2
χ(2). From the

wave equation, we can obtain the coupled differential equations describing the field
amplitudes in the nonlinear medium

d

dz
A1 =

2iν2
1deff

k1c2
A2A

∗
1e−i∆kz, (2.53)

d

dz
A2 =

iν2
2deff

k2c2
A2

1ei∆kz, (2.54)

with the phase mismatch ∆k = 2k1 − k2. We now redefine the field amplitudes and
use

A1 =

(
I

2n1ε0c

) 1
2

u1eiφ1 (2.55)

A2 =

(
I

2n2ε0c

) 1
2

u2eiφ2 (2.56)

with the total intensity I = I1 + I2 and Ij = 2njε0c |Aj|2. Within this definition, the
real, normalized field amplitudes u1 and u2 with phases φ1 and φ2 fulfill the condition

u1 (z)2 + u2 (z)2 = 1 (2.57)

and are thus conserved at every point in the nonlinear medium. The relative phase of
the fields is given by Θ = 2φ1− φ2 + ∆kz. We also introduce the normalized distance

parameter ζ = z
l
, with l =

√
2n2

1n2

ε0cI
c

2ν1deff
. With these definitions, the differential
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equations (2.53) and (2.54) become

d

dζ
u1 = u1u2 sin (Θ) , (2.58)

d

dζ
u2 = −u2

1 sin (Θ) , (2.59)

d

dζ
Θ = ∆kl +

cos (Θ)

sin (Θ)

d

dζ
ln
(
u2

1u2

)
. (2.60)

If we assume that no second-harmonic light is incident on the nonlinear medium, we
get the inital conditions u1 (0) = 1 and u2 (0) = 0. We further assume perfect phase
matching, leading to ∆k = 0. In this case, the solution of the differential equations is
given by

u1 (ζ) =
1

cosh (ζ)
, (2.61)

u2 (ζ) = tanh (ζ) . (2.62)

The solutions are depicted in figure 2.7. Since the nonlinear medium is assumed to
be lossless, the second-harmonic power increases with ζ →∞ until the field has com-
pletely been converted. The derivations in this chapter do not take into consideration
that a laser beam has to be described as a gaussian beam. In practice, this is important
because the nonlinear medium is placed in a cavity that is resonant for the fundamen-
tal wavelength to enhance the interaction length and power and the laser is focused
within that cavity to further increase the nonlinear coupling, which is proportional
to E2 (t). High conversion efficiencies of 95 % are possible with such a setup [Ast11].
Furthermore, the assumption that ∆k = 0 is optimal for perfect phase matching is
not valid for focused gaussian beams due to the Gouy phase shift [Las07].
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Figure 2.7: Conversion of the fundamental field at ν1 to the second-harmonic field
at ν2 = 2ν1. The amplitude of the second-harmonic and thus its power
increases with the propagation distance in the nonlinear medium. For a
sufficiently long distance, all the power of the fundamental field is converted
to the second-harmonic.

2.2.2 Squeezing from degenerate parametric down-conversion

There exist several ways to generate squeezed vacuum states of light, for example four-
wave mixing in atomic vapor as well as technologies exploiting optical fibers [And16].
In this thesis, squeezed vacuum states were generated with a second order nonlinear
crystal placed in a cavity to exploit the effect of parametric down-conversion from
775 nm to 1550 nm. The squeezing spectrum that can be expected from such a setup
can be calculated with the input-output theory that is presented in various sources.
Our description in this chapter follows [Col84], [Gar85], [Dru14], [Mey07], [Wal08],
[Bau16] and [NN08]. We will first derive the relations between modes entering and
leaving a cavity. Afterwards, we will apply these relations to model our squeezed-light
source.

Cavity input output formalism

To model the squeezed-light source used in this thesis and calculate the output spectra
of the quadratures, we first consider an empty cavity interacting with a heat bath. The
hamiltonian Ĥ = Ĥsys + Ĥbath + Ĥint describes this model. Ĥsys is the system hamilto-

nian and is describing a cavity. Ĥbath describes the heat bath and Ĥint the interaction
of the cavity with the bath. The Hamiltonians for the bath and the interaction are
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given by:

Ĥbath =

∫ ∞
−∞

dω ~ωb̂† (ω, t) b̂ (ω, t) , (2.63)

Ĥint = i~
∫ ∞
−∞

dω κ (ω)
[
â (t) b̂† (ω, t)− â† (t) b̂ (ω, t)

]
. (2.64)

Ĥsys will be defined later when our parametric down-conversion cavity is modeled in
detail. â (t) and â† (t) describe a single mode of this cavity and are thus frequency
independent. The mode is coupled to the continuum of the heat bath, described by the
frequency dependent operators b̂ (ω, t) and b̂† (ω, t), via the coupling constant κ (ω). In
the following, we make the Markovian approximation that the coupling of the cavity
modes to the bath does not depend on the frequency and set κ2 (ω) = γ

2π
[Gar85].

With this assumption, we also introduced the cavity linewidth γ. In equation (2.64),
we integrate over all frequencies ranging from −∞ to ∞, despite the fact that the
physical range is (0,∞). However, quantum optical measurements are performed at a
sideband frequency Ω = ω − ν, this is to say with respect to some very large optical
frequency ν in a rotating frame. As a result, the physical limit becomes (−ν,∞).
Since the optical frequencies are very large compared to the typical bandwidths that
can be obtained in quantum optical experiments, extending the limit to (−∞,∞) is
a valid approximation ([Gar85],[Dru14], pp. 199ff.). The annihilation and creation
operators describing the intracavity field and the external field obey the commutation
relations [

â (t) , â† (t)
]

= 1, (2.65)[
b̂ (ω, t) , b̂† (ω′, t)

]
= δ (ω − ω′) , (2.66)[

â (t) , b̂ (ω, t)
]

= 0. (2.67)

To calculate the dynamics of this system, we make use of the Heisenberg equation of
motion. For a hamiltonian Ĥ and operator Â (t), it is given by ([Fur15], p. 2):

d

dt
Â (t) =

i

~

[
Ĥ, Â (t)

]
(2.68)

For the operator b̂ (ω, t) of the external bath, we obtain

d

dt
b̂ (ω, t) =

i

~

[
Ĥ, b̂ (ω, t)

]
=

i

~

[
Ĥbath, b̂ (ω, t)

]
+

i

~

[
Ĥint, b̂ (ω, t)

]
.

The hamiltonian that describes the cavity gives a zero contribution, since it is inde-
pendent of the modes of the bath. Using the general relation

[
âb̂, ĉ

]
= â
[
b̂, ĉ
]

+
[
â, ĉ
]
b̂,
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we get[
Ĥbath, b̂ (ω, t)

]
=

∫ ∞
−∞

dω′~ω′
[
b̂† (ω′, t) b̂ (ω′, t) , b̂ (ω, t)

]
=

∫ ∞
−∞

dω′~ω′
(
b̂† (ω′, t)

[
b̂ (ω′, t) , b̂ (ω, t)

]
+
[
b̂† (ω′, t) , b̂ (ω, t)

]
b̂ (ω′, t)

)
= −~ωb̂ (ω, t)

and [
Ĥint, b̂ (ω, t)

]
= i~

∫ ∞
−∞

dω′
√

γ

2π

[
â (t) b̂† (ω′, t)− â† (t) b̂ (ω′, t) , b̂ (ω, t)

]
= −i~

√
γ

2π
â (t)

and finally
d

dt
b̂ (ω, t) =

√
γ

2π
â (t)− iωb̂ (ω, t) . (2.69)

The differential equation (2.69) can be solved by integration ([Bau16], p. 81). It
has two solutions, one for given initial conditions at times t0 < t and one for final
conditions at times t < t1 ([Wal08], p. 129). They are given by

b̂ (ω, t) = e−iω(t−t0)b̂ (ω, t0) +

√
γ

2π

∫ t

t0

dt′e−iω(t−t′)â (t′) , (2.70)

b̂ (ω, t) = e−iω(t−t1)b̂ (ω, t1)−
√

γ

2π

∫ t1

t

dt′e−iω(t−t′)â (t′) . (2.71)

We also need to calculate the equation of motion for the internal cavity modes. It is
given by

d

dt
â (t) =

i

~

[
Ĥ, â (t)

]
=

i

~

([
Ĥsys, â (t)

]
+
[
Ĥbath, â (t)

]
+
[
Ĥint, â (t)

])
.

With [
Ĥbath, â (t)

]
= 0

and [
Ĥint, â (t)

]
= i~

∫ ∞
−∞

dω

√
γ

2π

[(
â (t) b̂† (ω, t)− â† (t) b̂ (ω, t)

)
, â (t)

]
= i~

∫ ∞
−∞

dω

√
γ

2π
b̂ (ω, t)
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for the commutators, we get

d

dt
â (t) = − i

~

[
â (t) , Ĥsys

]
−
∫ ∞
−∞

dω

√
γ

2π
b̂ (ω, t) (2.72)

in total. We now define the operators of the fields entering the cavity and leaving it
by

âin (t) = − 1√
2π

∫ ∞
−∞

dω e−iω(t−t0)b̂ (ω, t0) , (2.73)

âout (t) =
1√
2π

∫ ∞
−∞

dω e−iω(t−t1)b̂ (ω, t1) . (2.74)

Here, we used the convention that the incoming fields propagating to the left have a
negative sign while the outgoing ones propagating to the right have a positive sign.
This situation is depicted in figure 2.8. The picture also shows that we assume our
cavity to be single sided: the back mirror is perfectly reflective, thus no light can leave
the cavity through it. This approximation is also valid for the experimental system
presented in this thesis, where the back mirror is highly reflective.

Figure 2.8: Model that is used to describe the coupling of a single sided cavity to an
external bath. The left mirror is assumed to be highly reflective, thus no
modes can enter or leave the cavity from this side. Only the right mirror
is partially transmissive and allows for a coupling of the internal cavity
modes â to the external bath via the input and output modes âin and âout.

To get a relation between the internal cavity modes and the input field at times t0 < t,
we insert equation (2.70) into equation (2.72) and make use of the definition (2.73) to
obtain

d

dt
â (t) =− i

~

[
â (t) , Ĥsys

]
−
∫ ∞
−∞

dω

√
γ

2π

(
e−iω(t−t0)b̂ (ω, t0) +

√
γ

2π

∫ t

t0

dt′e−iω(t−t′)â (t′)

)
=− i

~

[
â (t) , Ĥsys

]
−
√

γ

2π

∫ ∞
−∞

dωe−iω(t−t0)b̂ (ω, t0)−
∫ ∞
−∞

dω
γ

2π

∫ t

t0

dt′e−iω(t−t′)â (t′)

=− i

~

[
â (t) , Ĥsys

]
+
√
γâin (t)− γ

2π

∫ ∞
−∞

dω

∫ t

t0

dt′e−iω(t−t′)â (t′) .
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Using the relation ∫ ∞
−∞

dω e−iω(t−t′) = 2πδ (t− t′) (2.75)

and ∫ t

t0

dt′f (t′) δ (t− t′) =

∫ t1

t

dt′f (t′) δ (t− t′) =
1

2
f (t) (2.76)

which holds for t0 < t < t1, we get

d

dt
â (t) = − i

~

[
â (t) , Ĥsys

]
+
√
γâin (t)− γ

2
â (t) . (2.77)

In a similar way, we can insert equation (2.71) into (2.72) and use (2.74) to get a
connection between the output modes and the internal modes and obtain

d

dt
â (t) = − i

~

[
â (t) , Ĥsys

]
−√γâout (t) +

γ

2
â (t) . (2.78)

Substracting equation (2.78) from (2.77) yields

√
γâ (t) = âin (t) + âout (t) (2.79)

and relates the input of the cavity with the output from it. The connection is given
by the internal cavity modes. In the next chapter, we will use these results to derive
the spectrum of a squeezed vacuum source which consists of a cavity with a nonlinear
medium inside.

Squeezing spectra

The Hamiltonian that describes our squeezing cavity with a nonlinear crystal inside
is given by the sum of a Hamiltonian describing the empty cavity and an interac-
tion Hamiltonian that describes how the pump field interacts with the cavity modes
([Wal08], p. 136)

Ĥsys = ~νâ† (t) â (t) +
i

2
~
[
εâ†2 (t)− ε∗â2 (t)

]
. (2.80)

Here, the pump field ε = |ε| e−i(νpt+φ) with νp = 2ν and phase φ is treated classically.
This approximation is justified by the assumption that the pump is not depleted by
the nonlinear interaction that generates the squeezed vacuum. Using equation (2.77),
we obtain for the commutator

− i

~

[
â (t) , Ĥsys

]
=− i

~

[
â (t) Ĥsys − Ĥsysâ (t)

]
=− i

~

[
â (t)

(
~νâ† (t) â (t) +

i

2
~
(
εâ†2 (t)− ε∗â2 (t)

))
−
(
~νâ† (t) â (t) +

i

2
~
(
εâ†2 (t)− ε∗â2 (t)

))
â (t)

]
=− iνâ (t) + εâ† (t)
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and in total
d

dt
â (t) = −iνâ (t) + εâ† (t)− γ

2
â (t) +

√
γâin (t) . (2.81)

Transforming this equation to a frame rotating with ν yields:

d

dt
â (t) = εâ† (t)− γ

2
â (t) +

√
γâin (t) (2.82)

Since ω = Ω + ν and ν � Ω, we substitute ω → Ω in the rotating frame. We define
the intracavity modes to be ([Bau16], p. 85)

â (t) =
1√
2π

∫ ∞
−∞

dω e−iωtâ (ω) (2.83)

â† (t) =
1√
2π

∫ ∞
−∞

dω eiωtâ† (ω)

=
1√
2π

∫ ∞
−∞

dω e−iωtâ† (−ω) . (2.84)

With this definition, we get[
â (ω) , â† (ω′)

]
=

1

2π

∫ ∞
−∞

∫ ∞
−∞

dt dt′ei(ωt−ω′t′) [â (t) , â† (t′)
]

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

dt dt′ei(ωt−ω′t′)δ (t− t′)

=
1

2π

∫ ∞
−∞

dt ei(ω−ω′)t

= δ (ω − ω′) (2.85)

for the commutator of the modes in frequency space. We used the definition ([Sch06],
p. 137)

1

2π

∫ ∞
−∞

dk eikx = δ (x) (2.86)

for the delta function. Inserting â (t) and â† (t) into equation (2.82) results in

d

dt

1√
2π

∫ ∞
−∞

dω e−iωtâ (ω) =ε
1√
2π

∫ ∞
−∞

dω eiωtâ† (ω)

− γ

2

1√
2π

∫ ∞
−∞

dω e−iωtâ (ω)

+
√
γ

1√
2π

∫ ∞
−∞

dω e−iωtâin (ω) .

Performing the temporal differentiation on the left and comparing the coefficients on
the left and right side of the equation with each other leads to the fourier transformed
differential equation

− iωâ (ω) = εâ† (−ω)− γ

2
â (ω) +

√
γâin (ω)
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The differential equation for the complex conjugate is

iωâ† (ω) = ε∗â (−ω)− γ

2
â† (ω) +

√
γâ†in (ω) .

With the replacement ω → −ω we get

− iωâ† (−ω) = ε∗â (ω)− γ

2
â† (−ω) +

√
γâ†in (−ω)

and can write the combined equations in matrix form [Col84]:

A

(
â (ω)
â† (−ω)

)
=

(
γ
2
− iω −ε
−ε∗ γ

2
− iω

)(
â (ω)
â† (−ω)

)
=
√
γ

(
âin (ω)

â†in (−ω)

)
With the inverse of A, we can calculate the intracavity modes and obtain(

â (ω)
â† (−ω)

)
=
√
γ


γ
2
−iω

( γ2−iω)
2
−|ε|2

ε

( γ2−iω)
2
−|ε|2

ε∗

( γ2−iω)
2
−|ε|2

γ
2
−iω

( γ2−iω)
2
−|ε|2

( âin (ω)

â†in (−ω)

)
. (2.87)

We can now transform equation (2.79) into frequency space:
√
γâ (ω) = âin (ω) + âout (ω) (2.88)

and calculate the output operators in dependence of the input field to be

âout (ω) =
√
γâ (ω)− âin (ω)

=
√
γ

((
γ
2
− iω

)√
γâin (ω)(

γ
2
− iω

)2 − |ε|2
+

ε
√
γâ†in (−ω)(

γ
2
− iω

)2 − |ε|2

)
− âin (ω)

=

(
γ2

4
+ ω2 + |ε|2

)
âin (ω) + εγâ†in (−ω)(

γ
2
− iω

)2 − |ε|2
. (2.89)

The complex conjugate is

â†out (ω) =

(
γ2

4
+ ω2 + |ε|2

)
â†in (ω) + ε∗γâin (−ω)(

γ
2

+ iω
)2 − |ε|2

. (2.90)

The variances of the fields are defined by 〈â, b̂〉 = 〈âb̂〉 − 〈â〉〈b̂〉. The output field that
is described by equation (2.89) and (2.90) only depends on the input field, which is
in a vaccum state in our experiment and thus has zero mean. For that reason, the
variance can be calculated by 〈â, b̂〉 = 〈âb̂〉 ([Col84], [Bau16], p.86).

〈â†out (ω) , âout (ω′)〉 =

〈
(
γ2

4
+ ω2 + |ε|2

)
â†in (ω) + ε∗γâin (−ω)(

γ
2

+ iω
)2 − |ε|2


×


(
γ2

4
+ ω′2 + |ε|2

)
âin (ω′) + εγâ†in (−ω′)(

γ
2
− iω′

)2 − |ε|2

〉
(2.91)
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The terms 〈0
∣∣â†in (ω) âin (ω′)

∣∣0〉, 〈0∣∣â†in (ω) â†in (−ω′)
∣∣0〉 and 〈0

∣∣âin (−ω) âin (ω′)
∣∣0〉 give

a zero contribution since equation (2.10) holds and the input state is in a vacuum.
Thus, only the term 〈0

∣∣âin (−ω) â†in (−ω′)
∣∣0〉 remains and contributes to the variance

via the commutation relation (2.85):

〈â†out (ω) , âout (ω′)〉 =

〈
ε∗γâin (−ω)((
γ
2

+ iω
)2 − |ε|2

) × εγâ†in (−ω′)((
γ
2
− iω′

)2 − |ε|2
)〉

=

〈 |ε|2 γ2
(
δ (ω − ω′) + â†in (−ω) âin (−ω′)

)
((

γ
2

+ iω
)2 − |ε|2

)((
γ
2
− iω′

)2 − |ε|2
) 〉

=
|ε|2 γ2((

γ
2

+ iω
)2 − |ε|2

)((
γ
2
− iω

)2 − |ε|2
)δ (ω − ω′)

=
|ε| γ

2

(
1(

γ
2
− |ε|

)2
+ ω2

− 1(
γ
2

+ |ε|
)2

+ ω2

)
δ (ω − ω′) . (2.92)

In a similar way, we get

〈âout (ω) âout (ω′)〉 =

〈
(
γ2

4
+ ω2 + |ε|2

)
âin (ω) + εγâ†in (−ω)(

γ
2
− iω

)2 − |ε|2


×


(
γ2

4
+ ω′2 + |ε|2

)
âin (ω′) + εγâ†in (−ω′)(

γ
2
− iω′

)2 − |ε|2

〉

=

〈(γ2

4
+ ω2 + |ε|2

)
âin (ω)(

γ
2
− iω

)2 − |ε|2
× εγâ†in (−ω′)(

γ
2
− iω′

)2 − |ε|2

〉

=

(
γ2

4
+ ω2 + |ε|2

)
εγ((

γ
2
− iω

)2 − |ε|2
)((

γ
2

+ iω
)2 − |ε|2

)δ (ω + ω′) .

=
εγ

2

(
1(

γ
2
− |ε|

)2
+ ω2

+
1(

γ
2

+ |ε|
)2

+ ω2

)
δ (ω + ω′) . (2.93)

To calculate the spectrum in the output amplitude and phase quadrature, we introduce
the quadrature operators as before:

X̂1,out = â†out + âout (2.94)

X̂2,out = i
(
â†out − âout

)
. (2.95)
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We are interested in the variances of these quadrature operators, since they can be
directly measured with a spectrum analyzer in the experiment. They are given by〈
X̂1,out (ω) , X̂1,out (ω′)

〉
=
〈(

â†out (ω) + âout (ω)
)(

â†out (ω′) + âout (ω′)
)〉

=
〈
â†out (ω) â†out (ω′) + â†out (ω) âout (ω′) + δ (ω − ω′)

+ â†out (ω) âout (ω′) + âout (ω) âout (ω′)
〉

=
〈

(âout (ω) âout (ω′))
†
〉

+
〈
âout (ω) âout (ω′)

〉
+ 2
〈
â†out (ω) âout (ω′)

〉
+ δ (ω − ω′)

=
|ε| γ

2

(
1(

γ
2
− |ε|

)2
+ ω2

+
1(

γ
2

+ |ε|
)2

+ ω2

)
e−iφδ (ω + ω′)

+
|ε| γ

2

(
1(

γ
2
− |ε|

)2
+ ω2

+
1(

γ
2

+ |ε|
)2

+ ω2

)
eiφδ (ω + ω′)

+ |ε| γ

(
1(

γ
2
− |ε|

)2
+ ω2

− 1(
γ
2

+ |ε|
)2

+ ω2

)
δ (ω − ω′)

+ δ (ω − ω′)

=

(
|ε| γ(

γ
2
− |ε|

)2
+ ω2

+
|ε| γ(

γ
2

+ |ε|
)2

+ ω2

)
cos (φ) δ (ω + ω′)

+ |ε| γ

(
1(

γ
2
− |ε|

)2
+ ω2

− 1(
γ
2

+ |ε|
)2

+ ω2

)
δ (ω − ω′)

+ δ (ω − ω′) .

Here, we made use of the relation δ (x) = δ (−x). Integration over ω′ gives the single
sided spectrum

SX1,X1 (φ, ω) = 1 +
|ε| γ (cos (φ) + 1)(

γ
2
− |ε|

)2
+ ω2

+
|ε| γ (cos (φ)− 1)(

γ
2

+ |ε|
)2

+ ω2
(2.96)

For a pump phase of φ = π , the first term vanishes and we see that the variance of
X̂1 is smaller than one:

SX1,X1 (π, ω) = 1− 2 |ε| γ(
γ
2

+ |ε|
)2

+ ω2
. (2.97)

The quadrature is squeezed compared to the vacuum reference level of one. For φ = 0,
the variance would increase to values larger than one. In a similar fashion, we can
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calculate the variance for X̂2,out (ω) to be〈
X̂2,out (ω) , X̂2,out (ω′)

〉
=
〈
− (âout (ω) âout (ω′))

†
+ 2â†out (ω) âout (ω′)

− âout (ω) âout (ω′) + δ (ω − ω′)
〉

=− |ε| γ cos (φ)

(
1(

γ
2
− |ε|

)2
+ ω2

+
1(

γ
2

+ |ε|
)2

+ ω2

)
δ (ω + ω′)

+ |ε| γ

(
1(

γ
2
− |ε|

)2
+ ω2

− 1(
γ
2

+ |ε|
)2

+ ω2

)
δ (ω − ω′)

+ δ (ω − ω′) .

Integration over ω′ yields:

SX2,X2 (φ, ω) = 1 +
|ε| γ (1− cos (φ))(

γ
2
− |ε|

)2
+ ω2

+
|ε| γ (− cos (φ)− 1)(

γ
2

+ |ε|
)2

+ ω2
. (2.98)

For a pump phase of φ = 0, we see that X̂2 is squeezed, showing the same spectrum
as before:

SX2,X2 (0, ω) = 1− 2 |ε| γ(
γ
2

+ |ε|
)2

+ ω2
. (2.99)

For φ = π, the variance is increased to values larger than one, which means that the
quadrature is anti-squeezed:

SX2,X2 (π, ω) = 1 +
2 |ε| γ(

γ
2
− |ε|

)2
+ ω2

= 1 +
42|ε|
γ(

1− 2|ε|
γ

)2

+ 4
(
ω
γ

)2 (2.100)

Squeezed states are generated in a degenerate parametric down-conversion cavity if
the pump power is smaller than the oscillation threshold. Above this lasing threshold,
a bright coherent field would be produced. The threshold is defined by the anti-
squeezed spectrum converging to infinity at ω = 0. From equation (2.100), we can

deduce that this is the case for 1− 2|ε|
γ
→ 0. Thus, we can set |ε|thr = γ

2
or 1
|ε|thr

= 2
γ
.

Multiplying this equation with |ε| and expressing the pump amplitudes in terms of

powers according to |ε| =
√
P results in

√
P
Pthr

= |ε|
|ε|thr

= 2|ε|
γ

. With this substitution

and ω = 2πf , we see that the spectra for orthogonally squeezed and anti-squeezed
quadratures are

Ssqz,asqz (f) = 1∓
4
√

P
Pthr(

1±
√

P
Pthr

)2

+ 4
(

2πf
γ

)2
. (2.101)
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Here, f is the Fourier frequency, which is directly displayed by a spectrum analyzer.
Spectra of the squeezed and anti-squeezed quadrature are depicted in figure 2.9 for
a cavity with γ

2π
= 100 MHz. The closer the pump power P gets to the threshold

for parametric oscillation, the stronger the squeezing level is. In terms of the photon
number distribution depicted in figure 2.4, this means that the stronger nonlinear
coupling resulting from high pump powers creates more photon pairs, leading to higher
squeezing levels.
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Figure 2.9: Spectra of the squeezed and anti-squeezed quadrature for different pump
powers and a cavity with γ

2π
= 100 MHz. The closer the pump power P is

to the threshold for optical parametric oscillation Pthr, the more squeezing
can be observed.

2.2.3 Effect of optical loss on squeezing

The previously presented theory of squeezed states of light assumes perfect optics
and does not take into account any optical loss. In the experiment, optical loss, for
example from absorption or scattering, leads to a loss of photons and reduces the
amount of detectable squeezing. As described in the preceding sections, a squeezed
state only contains even photon numbers since the nonlinear process of parametric
down-conversion always creates photon pairs. This statistic breaks down if photons
are lost. The higher the losses are, the more the actual state deviates from an ideal
squeezed state. Figure 2.10 shows how optical losses can be modeled with a beam
splitter.
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Figure 2.10: Model of optical loss with a beamsplitter. The losses are characterized
by the efficiency η. When passing the beamsplitter, a fraction of 1 − η
photons are lost from the signal. This part of the signal is replaced by
vacuum. In a squeezing experiment, this incoupling vacuum noise reduces
the observable squeezing.

It transmits the fraction η of the signal’s intensity. Thus, a fraction of 1 − η of the
incoming photons are lost ([Leo97], pp. 94ff.). These losses can also be understood
as vacuum noise coupling into the squeezed state, reducing the squeezing level. Using
the beam splitter relations ([Scu97], p. 126), we see that

Sη,sqz (f) = η

1−
4
√

P
Pthr(

1 +
√

P
Pthr

)2

+ 4
(

2πf
γ

)2

+ (1− η)

= 1− η
4
√

P
Pthr(

1 +
√

P
Pthr

)2

+ 4
(

2πf
γ

)2

For P = 0, the formula reproduces the variance of the vacuum, which is normalized
to one. For anti-squeezing, we get a similar formula. In total, we get

Sη,sqz,asqz (f) = 1∓ η
4
√

P
Pthr(

1±
√

P
Pthr

)2

+ 4
(

2πf
γ

)2
. (2.102)

for a squeezing measurement with losses [Vah16]. Figure 2.11 illustrates the effect of
losses on the squeezing spectrum. For the plot, the values γ

2π
= 100 MHz, P

Pthr
= 80 %

and η = 0.95 were inserted into equation (2.102). The squeezing level is reduced
significantly, while the anti-squeezed variance is hardly affected. Thus, it is important
to reduce the optical losses of a squeezing experiment to achieve high levels of quantum
noise reduction.
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Figure 2.11: Effect of losses on the squeezing spectrum. The plot shows the spectra for
the squeezed and anti-squeezed quadrature according to equation (2.102)
for γ

2π
= 100 MHz and P

Pthr
= 80 % with η = 0.95. The loss mostly

affects the squeezed quadrature and reduces the measurable squeezing
significantly. The effect on the anti-squeezed quadrature is negligible in
this example.
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2.2.4 Phase matching

Figure 2.12: Nonlinear crystal (top picture) and periodically poled nonlinear crystal
(bottom picture). The sign of the effective nonlinearity deff changes pe-
riodically in a quasi phase matched crystal, leading to a builtup of the
signal amplitude across its complete length. In contrast, the sign of deff

is constant in a crystal that is not periodically poled and its birefringence
has to be used for phase matching ([Boy08], p. 85).

For efficient second-harmonic generation and parametric down-conversion, the opti-
mization of phase matching between the pump and signal field is important. The
pump field induces the generation of the signal wave at every point in the nonlinear
material. The signal travels with a speed that is determined by the refractive index
ns. Due to normal dispersion, the pump field travels with a different velocity which
is determined by np. Good phase matching ensures that both fields travel with the
same speed within the nonlinear material. Thus, constructive interference of the newly
generated signal wave with the one that has been generated previously in the crystal
is ensured at every point in the nonlinear medium. This leads to an increasing am-
plitude of the signal field and thus maximum output power ([Dem06], pp. 254–256,
[Fej92]). As introduced in equations (2.53) and (2.54), the phase mismatch for second-
harmonic generation in the plane wave approximation is given by ∆k = 2k1−k2. This
also holds for the degenerate squeezed-light source used in this thesis ([Vah08a], p.
29). The phase matching condition can be rewritten in the following form:

∆k = 2k1 − k2 = 0

⇒ n2ν2

c2

= 2
n1ν1

c1

.

Since ν2 = 2ν1, n1 = n2 has to be satisfied for perfect phase matching. If both refrac-
tive indices are the same, both waves travel with the same speed within the crystal
and constructive interference takes place over its full length. This can be achieved
by exploiting the birefringence of a nonlinear material with different refractive in-
dices for the ordinary and extraordinary polarization ([Boy08], pp. 79ff., [Dem06], pp.
254–256). However, birefringence based methods are rather complicated to implement
experimentally, which is the reason why the technique of quasi phase matching was
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used within this thesis. A nonlinear crystal that is optimized for quasi phase matching
is segmented into several domains across its length and the sign of the effective second
order nonlinearity deff is changed periodically in every domain [Fej92]. This periodical
poling is illustrated in figure 2.12. The upper scheme depicts a domain-free crys-
tal which can only be phase matched exploiting its birefringence. The bottom scheme
shows the domain structure of a crystal that is prepared for quasi-phase matching. The
sign of deff is switched after the coherent builtup length Lcoh, leading to an increasing
signal amplitude across the complete length of the crystal, as shown qualitatively in
figure 2.13. In the experiment, the domain length Lcoh is optimized by heating the
crystal and using its thermal expansion for temperature based fine tuning. This fine
tuning also enables us to optimize the non-zero phase matching values that have to be
taken into account when considering Gaussian beams, as mentioned before [Las07].
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Figure 2.13: Qualitative illustration of the amplitude built-up of the signal field that
is generated in a nonlinear, quasi-phase matched second order process.
Without phasematching, the different velocities of the signal and pump
field in the crystal would lead to an oscillating signal amplitude. Peri-
odically changing the sign of the effective nonlinearity deff results in a
constant built-up of the signal amplitude across the length of the crystal
([Boy08], p. 86).
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3 Experimental setup

Figure 3.1: This figure shows a photograph of the breadboard with the experiment in
the laboratory. The laser is coupled into the experiment in the top right
corner. The angle of view is the same as in the schematics in figure 3.2.

The aim of the experiment presented in this thesis was to set up a source for strongly
squeezed vacuum states of light at 1550 nm with a small footprint to allow for easy
transportation and integration in other experiments. The setup to achieve this goal
is based on experimental techniques that are presented in [Vah08a] and [Kha11] and
led to the development of the squeezed-light source at 1064 nm that is used in the
gravitational wave detector GEO600 [Aba11]. The setup that was developed within
this thesis is depicted in figure 3.2 schematically. A photograph is shown in figure
3.1. It fits on a breadboard of 80 cm x 80 cm. To achieve this small footprint, various
changes were implemented compared to the GEO600 squeezed-light source. In this
experiment, only one external laser was used and coupled to the setup on the bread-
board via a fiber coupler. All fields needed for the generation and characterization
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of squeezed vacuum states were generated from this source. Apart from that, short
linear filter cavities were implemented. These cavities are more compact than the ring
cavities that are used in the GEO600 source and are, for example, described in [Wil98].
A revised design of the second-harmonic generation and parametric down-conversion
cavities was also implemented. It includes double resonance for both 1550 nm and
775 nm as well as a temperature gradient across the nonlinear crystal. The double
resonance feature was already tested in other experiments [Vol13, Bau15], but it was
found difficult to achieve simultaneous phase matching and double resonance for both
fields. The temperature gradient that is generated by heating different parts of the
nonlinear medium to unequal temperatures allows for a fine tuning of phase matching
and simultaneous double resonance. A new approach for the single sideband generation
scheme, comprising another filter cavity and passing an AOM twice, was implemented
in this experiment as well. As shown in 3.2, the setup can be divided up into different
subsections. The green area shows the laser preparation. A linear filter cavity was
placed at the output of the NKT Photonics Koheras Boostik fibre laser to improve
the spatial mode shape. The cavity waist was chosen such that the beam was in a
collimated TEM00 mode for the downstream experiment. The laser preparation stage
is followed by a second-harmonic generator (blue area), which converts the 1550 nm
light from the laser to 775 nm. This wavelength is used to pump the parametric down-
conversion cavity in the following red section. It generates the squeezed vacuum states
that are analyzed with the homodyne detection scheme in the yellow area. To char-
acterize the squeezed-light source at acoustic frequencies, the squeeze angle as well as
the homodyne readout angle have to be stabilized with respect to each other. For that
purpose, the coherent control scheme described in ([Vah08a], pp. 71ff., [Che07b]) was
implemented. The single sideband that is needed for coherent control was generated
and also spatially filtered in the orange section. The locks that stabilize the squeezing
and readout angles were implemented as indicated in the grey areas. In the following,
we describe the elements and techniques that were used in each of the experimental
sections in more detail.
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Figure 3.2: Scheme of the experimental setup. The experiment can be divided up into
different sections, as indicated by the different colors. First, the laser is
prepared for the downstream experiment in the laser preparation stage
(green). The second-harmonic pump field at 775 nm is generated after-
wards (blue) and guided to the parametric down-conversion cavity that
generates squeezed vacuum states (red). The squeezed states are charac-
terized with a homodyne detector (yellow). The squeezed quadrature and
the readout quadrature have to be stabilized with respect to each other for
low frequency squeezing. For that purpose, the single sideband coherent
control scheme was implemented in the experiment (grey). The sideband
is generated by passing an acousto-optic modulator twice (orange).
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3.1 Linear filter cavity

Figure 3.3: Drawing and picture of the linear filter cavity that was used in the exper-
iment. A heating foil was glued to the curved surface on top of the spacer
to compensate for temperature drifts.

The filter cavity, as depicted in figure 3.3, was used in the laser preparation stage
and the single sideband generation section of the experiment. In the laser preparation
stage, the cavity improves the spatial mode shape of the laser beam that is coming
from the fiber. It also supresses technical noise at sideband frequencies exceeding the
cavity’s linewidth. This results in a shot noise limited beam for the measurements in
the downstream experiment at those frequencies. In the single sideband generation
section, a sideband of 80 MHz for the coherent control locking scheme is generated with
an acousto-optic modulator. This beam is used to lock the homodyne readout angle
to the squeezing angle. The spatial beam profile of this beam also has to be improved
to obtain a TEM00 mode for the further application of the single sideband. Apart
from that, the filter cavity suppresses photons at the DC laser frequency from the
frequency-shifted beam, which is important for the measurement of squeezed states at
acoustic frequencies. Details regarding this coherent control scheme will be explained
in section 3.4. The filter cavity is a linear Fabry-Perot cavity with two plano-concave
mirrors that have a radius of curvature of 10 m and a reflectivity or R = 99.93 % on the
curved side and an anti-reflective coating on the plane side. The separation between
the two mirrors is 32.2 mm. These parameters result in a simulated full-width-half-
maximum linewidth of 1.0345 MHz with a Finesse of 4486 and a waist size of 445µm.
The high finesse leads to the small linewidth that ensures the suppression of technical
laser noise at sideband frequencies exceeding 1 MHz. The high radius of curvature
of 10 m leads to the large waist, which ensures that the beam leaving the cavity is
collimated. This makes it easier to handle and mode-match it to the cavities in the
downstream experiment. To compensate for temperature drifts, a heating foil was
attached to the cavity.
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Figure 3.4: Bode plots of the open loop gain measurements of the filter cavities for the
laser and the single sideband. Both cavities show a similar response with
a maximal unity-gain frequency around 3 kHz.

Before the cavity length can be stabilized, the spacer has to be heated up until its
length has increased by one free spectral range. This is the operating point at which
the dissipation of heat to the environment allows for sufficient cooling of the cavity and
thus an active temperature control is possible. The foil heats the mechanical spacer
when the ambient temperature falls. The heating power is reduced when the ambient
temperature rises. As a result, the temperature of the spacer and the distance between
the mirrors remains constant. Temperature drifts occur at small frequencies, usually
in the range of a few millihertz. In contrast to that, acoustics couple into the cavity
at higher frequencies, around a few kilohertz. A piezo-electric actuator was integrated
in the cavity to compensate for these fast disturbances. When a voltage is applied
to the piezo, it expands and thus changes the cavity length. The higher the voltage,
the larger is the expansion. Usually, high voltage amplifiers that reach up to 400 V
are used. However, as slow length changes were compensated for by the heating foil,
the output voltage of operational amplifiers of up to 13 V provided enough dynamical
range to lock the filter cavities of this experiment for hours. The error signals for both
the low frequency temperature control loop and the high frequency loop including the
piezo-electric element were obtained with the Pound-Drever-Hall locking technique
[Dre83, Bla01]. A phase modulation frequency of 25.88 MHz was chosen for that
purpose and a maximal control loop bandwidth around 3 kHz was achieved, as the
open loop gain measurements depicted in figure 3.4 show. In the homodyne detection
section, a shorter version of this cavity was used as the reference for the alignment of
the local oscillator and squeezed field on the balanced beamsplitter. This cavity was
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neither temperature stabilized nor locked since it was only necessary to scan its length
during the alignment.

3.2 Second-harmonic generation and parametric
down-conversion cavities

As described in section 2.2, the nonlinear processes of second-harmonic generation and
parametric down-conversion are used for the generation of squeezed vacuum states at
1550 nm. The efficiency of these processes can be enhanced by placing the nonlinear
material in a cavity. A hemilithic cavity that was resonant for both the fundamen-
tal and second-harmonic wavelengths of 1550 nm and 775 nm was successfully used in
other experiments for second-harmonic and squeezing generation [Vol13]. The nonlin-
ear PPKTP crystal used in these cavities has a curved backside with a highly reflective
coating for both the second-harmonic and fundamental wavelengths. The front side
of the crystal is plane and anti-reflectively coated. In combination with a meniscus
with a reflectivity of 97.5 % at 775 nm and 85 % at 1550 nm that is placed in front of
the plane side, the cavity is formed. However, the remaining experimental challenge
is to achieve simultaneous phase matching and double resonance. This is problematic,
since the Gouy phase of focused Gaussian laser beams [Las07] and dielectric mirror
coatings introduce differential phase shifts. Apart from that, phase shifts are intro-
duced since the crystal length is not an integer multiple of the coherent builtup length
Lcoh. The reason for this is that the poling period cannot be closely monitored dur-
ing polishing and cutting of the crystals. To compensate for these differential phase
shifts, an adjustable dispersive component like a rotatable, anti-reflectively coated
window can be integrated into the cavity [Ste11, Pea99, McK06]. Another alterna-
tive is to use a wedged crystal that can be translated perpendicular to the cavity
axis, which changes the differential optical path length for both fields in the medium
[Ime98, Ste11]. Both approaches have disadvantages. An additional anti-reflectively
coated window increases the intra-cavity losses and thus reduces the squeezing that
can be observed. Moving a wedged crystal is not possible if one side of the crystal is
used as the cavity end-mirror, as in our setup. To solve these issues, a new approach
was tested within this thesis. It comprises the partitioning of the nonlinear, quasi
phase matched crystal into two different regions that can be heated independently to
different temperatures. Thus, the main part of the crystal can be heated to the phase
matching temperature while the remainder can be used to fine tune the cavity length
via the thermal expansion of the material and thus compensate for the differential
phase shifts mentioned above. For that purpose, the heating unit that contains the
crystal was redesigned. This section describes the design of the cavity and the heating
unit in detail. Apart from that, the effect of the temperature gradient on second-
harmonic generation is presented. Both cavities for second-harmonic generation and
parametric down-conversion use the same mechanical design.

38



3.2.1 Nonlinear-cavity design

Figure 3.5: Drawing of the nonlinear cavity and the construction that holds the incou-
pling mirror. The explosion on the right side shows its individual parts.
The position of the inner brass rings defines the air gap between the menis-
cus and the crystal inside the cavity. With the piezo-electric element, the
cavity length can be adjusted. The PEEK isolation decouples the frame
thermally from the rest of the cavity.

A drawing of the nonlinear cavity is shown in figure 3.5. The left side shows the
complete construction, the right side an explosion of the front which contains the
meniscus and a piezo-electric element. This element pushes on the meniscus and can
thus be used to change and scan the cavity length. To assemble the front, the piezo-
electric element is placed on a brass ring first. The circumference of this brass ring is
threaded to fit in the threaded hole in the aluminium frame. Its position in the frame
defines the cavity length. Before the meniscus is placed on top of the piezo-electric
element, a second brass ring is placed in the hole to assist with the alignment of the
meniscus. It ensures that the center of the meniscus is aligned with the center of
the other parts and the hole in the aluminum plate. The mensicus and piezo-electric
element are finally fixed and kept in their position by the tension created by putting
the cover plate on top of the meniscus and screwing it down to the aluminium frame.
In the experiment, the whole frame can be moved in front of the crystal. Its optimal
position is defined by the axis of the cavity that is formed by the meniscus and the
curved backside of the nonlinear crystal. This axis must be in parallel to the optical
table. To find this position, a laser beam is coupled into the cavity through the
meniscus and the power that leaks out of the cavity through its backside is detected
with a photodiode. Slightly moving the aluminium frame while scanning the cavity
length with the help of the piezo-electric element makes it possible to find a position
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in which cavity modes are visible on the photodiode. Once this position is found,
the frame is attached to the rest of the cavity construction with the four screws in
its corners. However, a stable cavity can only be formed if the air gap between the
inner surface of the meniscus and the anti reflectively coated plane side of the crystal
is chosen appropriately. The air gap also affects the size and the position of the waist
of the laser beam inside the cavity. The dependence of both parameters on the air
gap is shown in figure 3.6. The radius of curvature of the highly reflective coated
backside of the crystal is 12 mm and the power reflectivity is > 99.98 % for 1550 nm
and ≈ 99.955 % at 775 nm, according to the manufacturer. The incoupling mirror has
a radius of curvature of 25 mm and a power reflectivity of 85.0 % for 1550 nm and
97.5 % for 775 nm. Those values result in a simulated free spectral range of 3.66 GHz.
The full-width-half-maximum linewidth at 1550 nm is 95.56 MHz and at 775 nm it is
15.36 MHz. The cavity is stable for an air gap within the range of 20 mm to 26 mm. We
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Figure 3.6: Dependence of the waist position and size on the air gap between the
incoupling mirror and the plane side of the nonlinear crystal. The cavity
is stable for air gaps within the range of 20 mm to 26 mm. The waist
position is given as the distance from the plane, anti-reflectively coated
surface. Values between 0 and 9.3 mm indicate that the waist is within the
crystal. For negative values, the waist is outside the crystal and in front
of the plane side.

set the air gap to approximately 24.8 mm for the second-harmonic generation cavity
and 24 mm for the parametric down-conversion cavity. In both cases, the waist lies
within the first two thirds of the crystal, close to the anti-reflectively coated plane
surface. The small waist in the cavity creates a strong electric field that increases
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the nonlinear coupling, as explained in section 2.2.1. Thus, this region of the crystal
should be heated to the phase matching temperature. The last few millimeters of
the crystal can then be heated to a slightly different temperature. Since the beam
has already diverged, the field strength is smaller in this region, which decreases the
nonlinear coupling. The end section of the crystal can thus be used to fine tune the
cavity length. Changing the temperature of this section results in small changes of

Figure 3.7: Construction of the heating unit within the nonlinear cavities. The left
picture shows the cavity without the frame that contains the incoupling
mirror. The nonlinear crystal is visible in the center and held onto the
copper elements with two springs. The copper guides the heat generated
by two peltier elements underneath them into the crystal. As shown in
the bottom right picture, the waist of the beam in the cavity is in the first
two thirds of the crystal. This area is heated up to the phase matching
temperature. The last few millimeters can be heated to a different temper-
ature to adjust the cavity length and improve the simultaneous resonance
of both the fundamental and second-harmonic field.

the cavity length as it is increased by further heating and decreased by cooling. This
feature can be used to optimize the simultaneous resonance of the second-harmonic and
fundamental field, which in turn leads to higher conversion efficiencies due to a better
overlap of the cavity modes for the fundamental and second-harmonic wavelengths in
the first two thirds of the crystal. The construction that creates the two temperatures
within the crystal is depicted in figure 3.7. A photograph is shown in figure 3.8. It
shows the nonlinear cavity without the frame that holds the meniscus. The crystal is
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positioned in the center of the cavity on two copper plates. Two springs keep it in
its position with a force of 1.1 ± 0.4 N. The copper plates conduct the heat, that is
generated by two peltier elements underneath the respective plate, into the crystal.
To improve the heat transfer from the copper into the crystal, thin gold foil was
placed in between them. Gold foil was chosen because it is a soft material with a
high thermal conductivity. Thus, it can even out roughnesses from the manufacturing
process of the copper elements without lowering the thermal conductivity. In the

Figure 3.8: Photograph of the nonlinear cavity that was used in this experiment for
second-harmonic generation and parametric down-conversion. In the cen-
ter, the nonlinear crystal that is placed on two copper elements is visible.
It is fixed in its position with one of the two springs that were used in
total.

experiment, the beam from the linear filter cavity in the laser preparation section
was guided into the second-harmonic generation cavity, as figure 3.2 shows. The
second-harmonic generation cavity converts the beam from 1550 nm to 775 nm. A
characterization of the second-harmonic generation process will be presented in the
next section. The converted beam is sent into the parametric down-conversion cavity
and serves as the pump field to generate the squeezed field. The length of the second-
harmonic generation cavity and parametric down-conversion cavity was stabilized with
the piezo-electric element in the aluminium frame. The error signal was generated by
the Pound-Drever-Hall method in both cases. For that purpose, an electro-optical
modulator was inserted into the experiment and imprinted sidebands at 17.5 MHz
on the 1550 nm field that pumps the second-harmonic generation cavity. The bright
1550 nm field as well as the sidebands are converted. The converted sidebands were
detected and demodulated in transmission of the nonlinear cavities. The advantage of
locking the second-harmonic generation cavity with the 775 nm sidebands is that the
lock is more stable. At 1550 nm, the conversion reduces the power in the sidebands
and the lock becomes unstable. The parametric down-conversion cavity was locked
in the same way with the converted sidebands. The open loop gain measurements of
both cavities are shown in figure 3.9. A control loop bandwidth of around 9 kHz was
achieved for the nonlinear cavities.
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Figure 3.9: Bode plot of the open loop gain of the nonlinear cavities. Both the second-
harmonic generation cavity and the parametric down-conversion cavity
achieved a control loop bandwidth around 9 kHz. This value is higher
than the 2 kHz for the linear filter cavities. In the bode plots for the filter
cavities, a peak around 10 kHz is visible, which limits the control loop
bandwidth. However 2 kHz were sufficient for the filter cavities since the
lock proved to be stable for hours in our experiment.
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3.2.2 Second-harmonic generation

The second-harmonic generator used in this experiment was described in detail in the
previous section. It converts the laser power at 1550 nm to 775 nm. This field is needed
to pump the parametric down-conversion that generates the squeezed vacuum. A high
conversion efficiency is desirable for the experiment since it allows for a reduction of the
input laser power. To calculate the conversion efficiency, we measured the input power
at 1550 nm and the generated output at 775 nm with a powermeter. The conversion
efficiency is given by

ηconv =
P775

P1550

. (3.1)
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Figure 3.10: Conversion efficiency of second-harmonic generation. We achieved a con-
version efficiency of more than 90 %. The values presented were not cor-
rected for any inefficiencies, which means that the input pump power
at 1550 nm was not corrected for the mode matching to the fundamen-
tal mode of the second-harmonic generation cavity. Apart from that, the
power in the 775 nm field was directly measured behind the dichroic beam
splitter shown in figure 3.2. The powermeter had an error of 4 % for both
wavelengths.

The result of our measurement is shown in figure 3.10. We achieved a conversion
efficiency of more than 90 %. The input pump power was not corrected for the mode
matching of the pump field to the fundamental mode of the second-harmonic gener-
ation cavity. Thus, the conversion efficiency takes the total external power and all
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inefficiencies into account. For smaller input powers, the conversion efficiency de-
creases. The reason is the smaller intra cavity power which reduces the nonlinear
coupling. For higher pump powers, the efficiency decreases as well. In this regime, the
high input power at 1550 nm leads to a strong nonlinear coupling and thus a strong
field at 775 nm. The intra cavity power of this field at 775 nm is high enough to initiate
the inverse process, that is to say a parametric down converversion from 775 nm back
to 1550 nm in the same cavity. To suppress this effect, temperature fine tuning was
used to reduce the gain for the conversion to 1550 nm.
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Figure 3.11: Temperature settings that were used to optimize the conversion efficiency
of the SHG. For each input power at 1550 nm, both temperature actuators
were tuned. The phase matching temperature does not vary significantly
with the input power, but to suppress the conversion from 775 nm back to
1550 nm, the cavity length was changed for higher pump powers to reduce
the gain for that back-conversion process. The data were not corrected for
inefficiencies. The temperatures were deduced from measurements with
NTC sensors that were placed in the copper elements of the heating unit.

Figure 3.11 shows the temperature settings that were necessary to achieve optimal
phase matching and the best resonance condition for both fields at 1550 nm and
775 nm. The procedure to optimize the temperatures was as follows: First, we scanned
the cavity length and observed the transmitted 775 nm field on a photodiode. We tuned
both temperatures to maximize the power in the fundamental mode of the second-
harmonic field. Once the best combination was found, the cavity length was stabilized.
While being stabilized, we optimized the temperatures again for maximum output at
775 nm. After that procedure, we took the data presented in figure 3.11. We observed
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that the temperature that adjusts the cavity length varies with the input pump power,
while the phase matching temperature varies only very little by a few tenth of a de-
gree Celsius. As described above, conversion from 775 nm back to a 1550 nm mode of
the second-harmonic generation cavity can set in for large 775 nm intra-cavity powers.
If the gain for that process is high enough, an optical parametric oscillation can be
initiated, as illustrated in figure 3.12.
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Figure 3.12: Conversion from 775 nm back to 1550 nm in the second-harmonic gen-
eration cavity due to an optical parametric oscillation initiated by high
intra-cavity powers at 775 nm. On the left hand side, the 775 nm peak is
slightly flattened, indicating that the 775 nm intra-cavity power is high
enough to initiate the inverse process, a conversion from 775 nm back to
1550 nm. On the right hand side, the 775 nm peak is cutoff. Due to the
high intra-cavity power, an optical parametric oscillation takes place and
converts the light back to 1550 nm.

The picture on the left shows the 775 nm cavity peak in red and the 1550 nm peak in
black. The top of the peak at 775 nm is slightly flattened, indicating that the intra-
cavity power at 775 nm at these points is high enough to initiate an optical parametric
oscillation that is converting power from 775 nm back to 1550 nm. On the right hand
side, the 775 nm intra cavity power is above the oscillation threshold. The 775 nm
peak is cutoff and a plateau is observable, since the power that exceeds the oscillation
threshold is converted to 1550 nm. By slightly changing the cavity length and thus the
overlap of the 775 nm and 1550 nm cavity mode, that effect can be suppressed because
the gain for the oscillation is reduced. Thus, no conversion back to 1550 nm takes
places. However, this procedure reduces the conversion efficiency to less than 90 %
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due to the non-perfect mode overlap of both cavity modes. While the experiments
that are described in this thesis were performed, another multi-temperature scheme for
second-harmonic generation was published in [Zie17]. In contrast to our setup, their
scheme uses three temperature regions instead of two and a partially periodically
poled material with curved and coated end surfaces that form a monolithic resonator.
In addition to the temperatures, a piezo-electric element, that applies pressure to
the crystal, is used to adjust and stabilize the cavity length. With this scheme, it
was also possible to achieve simultaneous phase matching and double resonance for
second-harmonic generation.

3.3 Theory of balanced homodyne detection

Balanced homodyne detection is used to characterize squeezed vacuum states. Squeezed
states of light are characterized by comparing the noise power in the squeezed and
anti-squeezed quadrature with vacuum noise. A reference beam, the local oscillator,
is needed to discriminate between those two quadratures ([Bac04], pp. 206ff.). This
reference beam is overlapped with the squeezed field on a beam splitter, where they in-
terfere with each other. Each of the resulting fields in the two output ports is detected
with a photo diode. Figure 3.13 shows this detection scheme.

Figure 3.13: Homodyne detection scheme. The signal field is overlapped with a local
oscillator (LO) at a beam splitter (BS). The fields at the outputs are
each detected with a photo diode and the resulting photo currents are
subtracted. The signal that is obtained from the subtraction is recorded
with a spectrum analyzer.

The photocurrent of each diode is proportional to the detected intensity and given by
Ic =

〈
ĉ†ĉ
〉

and Id =
〈
d̂†d̂
〉

([Ger05], pp. 167ff.). The modes after passing the beam
splitter are given by ([Scu97], pp. 125ff.)

ĉ =
√
T â+ i

√
1− T b̂ (3.2)

d̂ = i
√

1− T â+
√
T b̂, (3.3)
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with the transmissivity T of the beam splitter that is shown in the detection scheme.
With this definition, we get

ĉ†ĉ =
(√

T â† − i
√

1− T b̂†
)(√

T â+ i
√

1− T b̂
)

= T â†â+ (1− T ) b̂†b̂+ i
√
T (1− T )

(
â†b̂− b̂†â

)
(3.4)

d̂†d̂ =
(
−i
√

1− T â† +
√
T b̂†
)(

i
√

1− T â+
√
T b̂
)

= (1− T ) â†â+ T b̂†b̂− i
√
T (1− T )

(
â†b̂− b̂†â

)
(3.5)

For T = 0.5, which is the case in balanced homodyne detection, we get:

ĉ†ĉ =
1

2
â†â+

1

2
b̂†b̂+ i

1

2

(
â†b̂− b̂†â

)
(3.6)

d̂†d̂ =
1

2
â†â+

1

2
b̂†b̂− i

1

2

(
â†b̂− b̂†â

)
. (3.7)

If we take the difference of the detected intensities and calculate the mean, the advan-
tage of balanced homodyne detection becomes apparent:

Ic − Id =
〈
ĉ†ĉ− d̂†d̂

〉
=
〈1

2
â†â+

1

2
b̂†b̂+ i

1

2

(
â†b̂− b̂†â

)
− 1

2
â†â− 1

2
b̂†b̂+ i

1

2

(
â†b̂− b̂†â

)〉
=i
〈
â†b̂− b̂†â

〉
. (3.8)

Since the terms proportional to â†â and b̂†b̂ have the same sign, they vanish in the
photocurrent that results from the subtraction. Only the interference terms â†b̂ and
b̂†â remain ([Scu97], p. 128). Thus, for T = 0.5, technical noise in the input modes â
and b̂ cancels out ([Leo97], pp. 83ff.). In a squeezing experiment, the local oscillator
can be described as a coherent state. Thus, we can write b̂ = βe−iνt with β = |β|eiψ

and get

Ic − Id = i
〈
â†b̂− b̂†â

〉
= eiπ

2 〈â†|β|eiψe−iνt − â|β|e−iψeiνt〉

= 〈â†|β|ei(ψ+π
2 )e−iνt + â|β|e−i(ψ+π

2 )eiνt〉
= |β|

〈
â†e−iνteiΘ + âe−iΘeiνt

〉
(3.9)

with Θ = ψ + π
2
. Both the local oscillator and the squeezed field have the same

frequency ν since they originate from the same laser and we can write â = â0e−iνt.
With this relation, we get

Ic − Id = |β|
〈
â†0eiΘ + â0e−iΘ

〉
(3.10)
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A generalized quadrature operator can be defined by X̂ (Θ) = â†0eiΘ + â0e−iΘ, which
corresponds to the cavity output operators as defined in equation (2.94) and (2.95)
for Θ = 0 and Θ = π

2
. Thus, the difference current of a balanced homodyne detector

can directly be used to measure the variances of any arbitrary quadrature X̂ (Θ). The
measurement signal is amplified and scales with the amplitude of the local oscillator
|β|. In the experiment, the current is converted to a voltage with a transimpedance
amplifier. This voltage is analyzed with a spectrum analyzer. The resulting noise
power is proportional to the variance of the squeezed state ([Sch17], p. 7).
For the detection scheme, a good spatial overlap of the local oscillator and signal on the
balanced beam splitter is important for the interference of both modes. To simplify the
alignment, a diagnostic cavity as shown in figure 3.2 is used. Both the local oscillator
and signal fields are modematched to this cavity. Since the beam splitter is a common
point in both beam paths, a good modematching to the cavity results in a good spatial
overlap. The detection efficiency of a balanced homodyne detector depends on this
spatial overlap and the quantum efficiency ηPD of its diodes. The spatial overlap is
characterized by the fringe visibility. If the powers in the input ports are equal, it is
given by ([Ste13b], p. 39):

V =
Imax − Imin

Imax + Imin

. (3.11)

Imax and Imin are the maximum and minimum intensities that are measured on one of
the two photo diodes with scanned local oscillator phase. Including the quantum effi-
ciency of the diodes, the overall detection efficiency of a balanced homodyne detector
is given by ([Bac04], p. 210, [Wad16], p. 149)

ηdet = ηPDV
2. (3.12)

3.4 Coherent control locking for low frequency
squeezing

For the detection and application of squeezed vacuum states at audio frequencies,
for example in gravitational wave detection [The11], it is necessary to stabilize the
squeeze angle as well as the homodyne readout angle. For that purpose, the coherent
control scheme was developed and successfully tested in the gravitational wave de-
tector GEO600 [Gro13, Kha12]. The detailed description of this locking technique is
presented in ([Che07b], [Che07a], pp. 161 ff.,[Vah08a], pp. 71 ff.) and will be repro-
duced briefly here. The locking scheme and its integration into the setup is illustrated
with phasor diagrams in figure 3.15. To stabilize and actively control the squeezing
angle as well as the homodyne readout angle with respect to each other, an interac-
tion that establishes a phase relationship between those quantities is required. This
relationship is established with a single sideband that interacts with the nonlinear
crystal in the parametric down-conversion cavity. The single sideband is generated in
the orange section of figure 3.2. A fraction of the power from the fibre laser is sent
towards an acousto-optic modulator that is driven with a 40 MHz modulation and
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thus creates a sideband at 40 MHz. This first-order sideband leaves the acousto-optic
modulator under a different angle than the zero order fundamental beam. Both beams
are separated from each other with a pinhole. The frequency-shifted sideband is redi-
rected towards the acousto-optic modulator and passes it once more. This results in a
total frequency shift of 80 MHz. The 40 MHz sideband that remains after the second
passage through the acousto-optic modulator is separated from the 80 MHz sideband
with another pinhole. Since a quarter waveplate is also passed twice, the polarisation
of the 80 MHz sideband is turned from the original s-polarisation of the fundamental
beam to p-pol. This allows for the separation of the 80 MHz sideband from the funda-
mental beam that comes from the laser. Subsequently, the single sideband is filtered
with a cavity as described in section 3.1. Thus, remaining photons at the fundamental
laser frequency are suppressed since their frequency is larger than the cavity linewidth
of 1 MHz. In the downstream experiment, the filtered single sideband is injected into
the parametric down-conversion cavity through the highly reflective backside. It initi-
ates a parametric down-conversion process, as illustrated in figure 3.14 and a second
sideband at −80 MHz is generated due to the nonlinear interaction in the cavity.

Figure 3.14: Energy level diagram of the interaction of the single sideband at 80 MHz
with the nonlinear medium in the parametric down-conversion cavity.
The sideband seeds a down-conversion process. Due to energy conserva-
tion, a second sideband at−80 MHz has to be created from that processes.
The sidebands at +80 MHz and −80 MHz are used to generate the error
signal for the coherent control scheme.

The field leaving the cavity after the interaction is proportional to

Eout (t) ∝ 1 + g√
2g

αΩ cos (νt+ Ωt)− 1− g√
2g

αΩ cos (νt− Ωt− 2φ) (3.13)

with g = e2r and r being the squeeze factor as described earlier. φ is the squeezing
angle, which is related to the 775 nm pump phase and αΩ the amplitude of the single
sideband that is generated by the acousto-optic modulator. This field is detected
behind a R = 92 % mirror with a photo diode, resulting in a photocurrent that is
proportional to the intensity given by

Iout (t) = |Eout|2 ∝
α2

Ω

2g
[(1 + g) cos (νt+ Ωt)− (1− g) cos (νt− Ωt− 2φ)]2 (3.14)
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This intensity is modulated with the beating of the two sidebands. Both sidebands
are separated by 80 MHz from the carrier. Thus, a demodulation frequency of 2Ω =
160 MHz has to be chosen. With the proper demodulation phase and low pass filtering,
an error signal that is proportional to the pump phase can be obtained and the pump
phase can be stabililzed:

εpumpphase ∝
α2

Ω (g2 − 1) sin (2φ)

4g
. (3.15)

The error signal for the homodyne detector readout angle is derived from the beating
of the local oscillator with the sidebands that leave the parametric down-conversion
cavity along the path of the squeezed vacuum. The homodyne detector consists of two
photo diodes. The field on the diodes is given by

EPD1 ∝
1√
2

[
αLOe−i(νt+Θ) +

(
1 + g√

2g
αΩ cos (νt+ Ωt)

− 1− g√
2g

αΩ cos (νt− Ωt− 2φ)

)]
+ c.c. (3.16)

and

EPD2 ∝
1√
2

[
αLOe−i(νt+Θ) −

(
1 + g√

2g
αΩ cos (νt+ Ωt)

− 1− g√
2g

αΩ cos (νt− Ωt− 2φ)

)]
+ c.c.. (3.17)

Here Θ defines the readout angle and determines which quadrature of the signal field
is analyzed. The photocurrents that are generated from these fields are subtracted
from each other in the homodyne detector. The resulting current is proportional to

Idiff =
2
√

2αLOαΩ (−1 + g)
√
g

cos (Ωt+ 2φ+ Θ) . (3.18)

Demodulation of this current with Ω results in the error signal for the local oscillator
readout phase:

εhomodyne =

√
2αLOαΩ (−1 + g)

√
g

sin (2φ+ Θ) . (3.19)

This error signal does not only contain the homodyne readout angle Θ, but also the
pump phase φ. However, the pump phase can be stabilized with the error signal that
has been derived before. With φ being constant, a stable phase relationship between
the squeezing and readout angle can be established, allowing for the detection of
squeezing at acoustic frequencies.

51



Figure 3.15: Illustration of the generation and propagation of the sidebands needed
for the coherent control locking scheme. The single sideband is gener-
ated with an acousto-optic modulator and injected into the parametric
down-conversion cavity through its highly reflective backside. Within the
cavity, a second sideband is generated that leaves the cavity through the
backside as well as the incoupling mirror. The signal leaving the backside
of the cavity is detected with a single photo diode behind a mirror with
a reflectivity of 92 % while the fields that leave the cavity through the
incoupling mirror beat with the local oscillator and are detected with the
homodyne detector.

As described before, the single sideband is injected through the highly reflectively
coated backside of the nonlinear crystal into the parametric down-conversion cavity.
Here, a second sideband is created and leaves the cavity through the backside. Both
sidebands are detected with a photo diode behind a mirror with a reflectivity of 92 %.
Demodulation of the photo current extracts the error signal described by equation
(3.15). The two sidebands also escape from the cavity through the incoupling mir-
ror. They follow the path of the squeezed field, beat with the local oscillator and the
resulting signal is detected with the photo diodes of the homodyne detector. Demod-
ulation of the difference of the photo currents from each diode yields the error signal
given by equation (3.19). The error signals that were generated in the experiment are
depicted in figure 3.16. The top picture shows the error signal for the local oscillator
phase and the bottom one the error signal that was generated for the pump phase
lock. This signal is measured behind a mirror with a reflectivity of 92 %. For that
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reason and because the sideband at −80 MHz escapes the parametric down-conversion
cavity through the highly reflective coated backside, the signal to noise ratio is reduced
compared to the signal from the homodyne detector in the top picture.
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Figure 3.16: Error signals for low frequency locking. The upper plot shows the signal
that is generated by demodulation of the homodyne signal with 80 MHz.
This signal is used to stabilize the local oscillator phase. The one in the
bottom picture results from a demodulation with 160 MHz and is detected
behind the parametric down-conversion cavity, that is to say in reflection
of the highly reflective coated backside. It is used to stabilize the pump
phase.

Figure 3.17 shows the bode plot of the open loop gain functions for the coherent control
scheme as implemented in this experiment. The unity gain frequency is around 70 Hz.
Since the phase margin of the lock is very small around those frequencies, the gain was
reduced and thus the locking bandwidth to a point where the measurements could be
performed when data were taken.
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Figure 3.17: Bode plot of the open Loop gain of the coherent control locks. For the
unity gain frequency around 70 Hz, the phase margin is small. Thus, the
gain was reduced for the measurements to obtain a more stable lock.
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4 Squeezing in the MHz regime

Squeezed vacuum states of light with high squeeze factors at MHz or even GHz side-
band frequencies are an important resource for applications like quantum key distri-
bution [Ast12] [Ast13] [Ebe13]. In this chapter, we present the detection of 13 dB
squeezing at a sideband frequency of 5 MHz and below. The results have been pub-
lished in [Sch18].

4.1 Detection of 13dB squeezed vacuum states
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Figure 4.1: Verification of the linearity of the homodyne detector at a sideband fre-
quency of 5 MHz. Vacuum noise was measured with local oscillator powers
from 2 mW to 12 mW. Doubling the power results in a 3 dB increase of the
noise power, indicating the linearity of the detection system.

For the detection of squeezed vacuum states with strong squeeze factors, a balanced
homodyne detector with a large dark noise clearance and a linear response is needed.
According to equation (3.10), doubling the local oscillator power PLO increases the am-
plification of the signal by a factor of two. This results in an increase of 10 log (2PLO) =
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10 log (PLO) + 3 dB in noise power if the vacuum noise level is measured. Our detector
exhibits this linear scaling for local oscillator powers of up to 12 mW, which is shown
in figure 4.1. The resolution bandwidth of the spectrum analyzer for all traces was
300 kHz and the video bandwidth 300 Hz. These settings were used for every measure-
ment presented in this chapter. Figure 4.2 shows the best zero span measurement of
a squeezd vacuum state in our experiment.
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Figure 4.2: Zero span measurement at a Fourier frequency of 5 MHz. The squeeze
factor is 13.1 ± 0.05 dB and the anti-squeeze factor 25.8 ± 0.05 dB. The
dark noise was 24.9 dB below vacuum noise. The resolution bandwidth
was set to 300 kHz and the video bandwidth to 300 Hz.

The quantum noise of the squeezed quadrature is 13.1 ± 0.05 dB below the vacuum
noise. The noise in the anti-squeezed quadrature is 25.8 ± 0.05 dB larger than the
shot noise. The difference between the detector’s dark noise and the vacuum level was
24.9 dB with a local oscillator power of 12 mW. The dark noise was not subtracted
from the data, thus 13.1 ± 0.05 dB were directly observed. The orange trace shows
a continuous sweep of the local oscillator detection phase from the anti-squeezed to
the squeezed quadrature. The vaccuum level was checked before and after each mea-
surement cycle to ensure a constant reference level. The error bars are a result of the
remaining uncertainty. To record the traces of the squeezed and anti-squeezed quadra-
ture, the local oscillator phase was manually tuned with the help of a piezo-electric
element. The temperature settings were 47.6 ◦C for the phase matching temperature
and 47.0 ◦C for the temperature that optimizes the cavity length for simultaneous
phase matching and double resonance. These values turned out to be ideal to gener-
ate the strong squeeze factor. Varying the temperatures around those values led to
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decreased squeeze factors.

4.2 Spectra and pump power dependence
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Figure 4.3: Linearity of the homodyne detector between 3 MHz and 25 MHz. Each
spectrum of the vacuum noise was normalized to 1 mW local oscillator
power. Since the traces overlay, the detector can be considered to be
linear between 3 MHz and 25 MHz. At 17.5 MHz, a phase modulation
peak that is used for the Pound-Drever-Hall stabilization of the length of
the parametric down-conversion cavity, is visible.

At a sideband frequency of 5 MHz, our homodyne detector exhibits the largest amplifi-
cation of the signal field and the largest darknoise clearance for a given local oscillator
power. However, we also characterized the squeezed vaccum source in the frequency
range from 3 MHz to 25 MHz. To verify the linearity of the detector in this regime, we
measured spectra of vaccum noise for different local oscillator powers from 2 mW to
14 mW. Higher powers were not tested to avoid damage of the photo diodes. All spec-
tra were normalized to 1 mW local oscillator power. For that purpose, the measured
noise power was converted to linear units:

Pnoise [mW] = 10
Pnoise[dBm]

10 [mW] ,

normalized to the local oscillator power:

Pnoise

PLO

=
10

Pnoise[dBm]

10

PLO

,
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Figure 4.4: Spectra showing the dependence of the squeeze and anti-squeeze factors on
the pump parameter. To allow for a comparison with the theory, each spec-
trum was corrected from dark noise. The pump parameters were 85.7 %,
47.6 %, 26.3 % and 8.6 %. From the fits, we infered the linewidth of the
parametric down-conversion cavity to be 109.8 MHz and the overall detec-
tion efficiency to be 0.952. The resolution bandwidth was 300 kHz with a
video bandwidth of 300 Hz. For the ε = 85.7 % spectrum, we reduced the
local oscillator power to 1 mW to ensure that the large anti-squeezed noise
powers remain within the linear regime of the homodyne detector.

and converted back to dBm scaling:

Pnoise

PLO

[dBm] = 10 log
10

Pnoise
10 /PLO

1 [mW]

= Pnoise [dBm]− 10 log
PLO [mW]

1 mW
.

Figure 4.3 shows that the traces for the different local oscillator powers overlay with
each other, indicating that the normalized noise powers are identical and that the ho-
modyne detector is linear in the given regime. Around 17.5 MHz a modulation peak,
resulting from the cavity length stabilization of the parametric down-conversion cav-
ity is visible. The squeezed vaccum state cannot be characterized within that region.
Figure 4.4 shows spectra of the squeeze and anti-squeeze factors in the frequency range
from 3 MHz to 25 MHz. We fitted formula (2.102) to the data, as the solid lines indi-
cate. The data were corrected from dark noise. Each spectrum was recorded with a
different pump power, resulting in different pump parameters ε. We measured values
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of 85.7 %, 47.6 %, 26.3 % and 8.6 %. To extent the linear response of the homodyne
detector to the large anti-squeezed noise powers of the data with ε = 85.7 %, we re-
duced the local oscillator power to 1 mW for this measurement. This was done at
the expense of a lower dark-noise clearance. From fitting, we inferred a full-width at
half-maximum linewidth of the parametric down-conversion cavity of γ

2π
= 109.8 MHz

and an overall detection efficiency of η = 0.952. Datapoints around 17.5 MHz were
deleted from the plot and not included for the fits since they were shifted by the phase
modulation peak for the lock that is shown in figure 4.3. The measured linewidth is
in good agreement with the simulated value of 95.56 MHz. Most likely, the deviation
results from the fact that the optical path length of the cavity cannot be determined
and adjusted exactly enough. The air gap between the incoupling mirror and the
crystal might be shorter than calculated, resulting in an increased linewidth. Each
trace was recorded with a temperature of 47.6 ◦C for phase matching and 47 ◦C for
the optimization of the simultaneous resonance and phase matching conditions. The
independence of the temperature settings from the pump parameter indicates that
heating due to absorption of light in the nonlinear crystal is not influencing our mea-
surements. This is in accordance with the results obtained by Steinlechner et al. in
[Ste13a] and our second-harmonic generation measurements presented in the previous
section. Steinlechner et al. measured an absorption of 84 ± 40 ppm/cm at 1550 nm
and 127 ± 24 ppm/cm at 775 nm, which is negligible for small laser powers. Our
best squeezing values were obtained with only 12 ± 1 mW external pump power at
775 nm. As figure 3.11 indicates, the adjustment of the cavity length temperature due
to absorption induced heating of the crystal is only necessary for significantly higher
powers.

4.3 Loss analysis

As figure 2.9 shows, the squeezing and anti-squeezing levels from an ideal lossless
parametric down-conversion cavity are identical for all sideband frequencies. However,
optical losses in the setup reduce the observable squeeze factor. This is described by
equation (2.102) and illustrated in figure 2.10. Our setup was limited by 4.8 % optical
loss, as we deduced from the fits to the spectra that resulted in a value of η = 0.952
for the propagation efficiency. The limited homodyne visibility contributes most to
the optical losses. We achieved a fringe visibility of ≈ 99 %, resulting in 2 % detection
loss according to equation 3.12. In other experiments, values of up to 99.6 % have
been achieved [Vah16]. We assume that a slight deviation of the spatial mode shape
of the local oscillator from a perfect TEM00 mode is limiting our fringe visibility. As
figure 3.2 shows, the local oscillator is split off from the beam leaving the filter cavity
in the laser preparation section with a polarizing beam splitter. The halfwave-plate
in front of the beam splitter allows for the adjustment of the local oscillator power.
However, imperfections might result in a deformation of the modeshape, limiting the
interference contrast of the local oscillator with the signal at the beam splitter of the
homodyne detector. Another filter cavity in the local oscillator path, as also shown
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in [Vah16], might lead to an improved fringe visibility. However, the limited space of
80 x 80 cm2 did not allow for another component in this section. Another source for
optical losses is the quantum efficiency of the photo diodes. We used custom made
diodes manufactured by Laser Components. Their quantum efficiency is specified to
be ηpd ≈ 0.99. Thus, the diodes contribute 1 % to the total losses. Apart from that,
the transmission through seven anti-reflectively coated surfaces of three lenses and
the parametric down-conversion cavity coupler lead to ηpr ≈ 0.99 and thus 1 % losses.
The remaining 0.8 % losses can be explained by the escape efficiency of the parametric
down-conversion cavity, which describes how efficient the squeezed field is extracted
from the cavity [Wad16]. It is given by [Meh12]

ηesc =
T

T + L
. (4.1)

where T is the transmissivity of the input coupler and L represents the intracavity
losses. For our cavity, the transmissivity of the input coupler was 15 %. From the
measurement protocol of the coating company Laseroptik GmbH, we estimate a value
around 0.1 % for the intracavity losses, which includes losses at the anti-reflectively
coated plane surface of the crystal and the remaining transmissivity through the
highly-reflectively coated curved end face as well as absorption and scattering within
the crystal. Thus, we obtain

ηesc =
15 %

15 % + 0.1 %
= 0.993. (4.2)

The escape efficiency can be improved by reducing the losses or increasing the trans-
missivity of the input coupling mirror. Reducing the losses is difficult, since the main
sources depend on the manufacturing processes of the suppliers or material properties
and cannot be controlled. Increasing the transmissivity is possible, however, it would
lead to a higher threshold for optical parametric oscillation, which results in a higher
pump power that is necessary to achieve the same squeezing strength. Higher pump
powers, in turn, might lead to changing conditions for optimal phase matching and
simultaneous double resonance due to heating of the crystal. However, the squeezed-
light source is easier to operate in a regime where heating of the crystal does not have
an influence on the optimal temperature settings and thus the pump power should be
kept as small as possible. Another source for the degradation of the squeeze strength
is phase noise [Oel16, Dwy13]. It results from fluctuations of the relative phase of
the local oscillator and the squeezed field. Thus, the measurement angle is not con-
stantly aligned with the squeeze angle and noise from the anti-squeezed quadrature is
projected into the squeezed quadrature, reducing the observable squeezing strength.
Assuming that the phase jitter is normally distributed and has a small standard devi-
ation, the effect of phase noise on the squeezing and anti-squeezing spectra given by
equation (2.102) can be described by [Aok06, Vah16]:

Ssqz

(
Θ̃
)

= Ssqz (f) cos2
(
Θ̃
)

+ Sasqz (f) sin2
(
Θ̃
)

(4.3)

Sasqz

(
Θ̃
)

= Sasqz (f) cos2
(
Θ̃
)

+ Ssqz (f) sin2
(
Θ̃
)
. (4.4)
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The phase noise Θ̃ was not included in the fits presented in figure 4.4 since it was found
to be negligible. Figure 4.5 illustrates how significant phase noise would influence our
best spectrum with ε = 85.7 %. The effect of phase noise becomes more crucial if
high squeeze factors are measured and reduces the maximum observable squeezing.
Our simulations show that a deviation from the fit can be observed for values of
Θ̃ > 2× 10−3 rad. Thus, we estimate 2 mrad to be the upper limit for phase noise in
our experiment. This amount does not lead to a degradation of the squeeze strength
in the frequency range between 3 MHz and 25 MHz.
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Figure 4.5: Effect of phase noise on the spectrum with ε = 85.7 %. A deviation from
the fit with zero phase noise occurs for values of Θ̃ > 2× 10−3 rad. This is
the upper limit for phase noise in our experiment in the given frequency
range. The picture shows that the black and yellow traces hardly deviate
from each other. Thus, phase noise does not limit the observable squeezing,
the optical losses are more significant. The anti-squeezing is not affected
by phase noise and all traces overlay.
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5 Squeezing in the audioband

The generation of squeezed vacuum states in the frequency range from a few Hz
to several hundred Hz is especially interesting for gravitational wave detection, as
already mentioned in the introduction. Other potential applications that profit from
squeezing at low frequencies are optomechanical experiments, in which the vibrations
of oscillators are coupled to a laser [Kau13, Saw17]. In this section, we present the
detection system that we used to characterize the squeezed vacuum source in this
frequency range as well as the squeezing measurements.

5.1 Audioband balanced homodyne detector

For the detection of squeezed light in the acoustic frequency range, a new homodyne
detector was developed since the system that was used for the measurements presented
in chapter 4 was designed for the detection of squeezing in the MHz range in other
experiments of the working group.
The new detector was designed such that the electronic dark noise is as small and as
flat as possible in a frequency range from 10 Hz to 100 kHz. The design and further
information are presented in appendix 1. Figure 5.1 shows the darknoise floor of our
detector in black. It is flat between 300 Hz and 10 kHz. For frequencies below 300 Hz,
the darknoise increases. This behavior most likely results from noise of the operational
amplifier that was used for the electronic transimpedance amplifier that converted the
current resulting from the subtraction of the photocurrents of the two diodes to a
voltage. For frequencies that are higher than 10 kHz, the noise increases as well. It is
possible that this results from other electronic devices in the lab that couple into the
detection system via the mains. However, the detector can be used to detect squeezing
in the range from 10 Hz to 100 kHz if the relation between the local oscillator power
and the respective vacuum noise power is linear.
In the audioband, it is more difficult to achieve such a quantum limited measurement
for several reasons that are also explained in [Vah07, Ste12, McK07]. An important
limitation is technical noise that originates from the laser source. Our filter cavities
have a linewidth of 1 MHz and do not suppress any technical laser noise below this
frequency. This noise couples into the measurement via the local oscillator of the
homodyne detector and can only be suppressed with good balancing of the detection
system. Good balancing means that the optical powers that are detected by both
diodes of the homodyne detector are equal. In that case, the technical laser noise
cancels out because it is common on both diodes. Figure 5.1 shows the noise powers
from a local oscillator beam of 0.07 mW, recorded with each single photo diode of the
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Figure 5.1: The picture illustrates how the balanced homodyne detector cancels out
the technical noise resulting from the laser. The black trace shows the dark
noise that is recorded without any light on the photo diodes. The red and
the blue trace show the noise power that is recorded with each individual
diode with 0.07 mW local oscillator power, which means that 0.035 mW is
impinging on each diode. If both diodes detect that power simultaneously,
the noise power shown in the orange trace results, representing a vacuum
state. The traces were pieced together from five individual measurements
with line widths of 128 Hz, 16 Hz, 8 Hz, 2 Hz, 0.25 Hz. Each trace was
averaged 50 times, 800 FFT lines were recorded.

detector in red and blue and with the balanced setup in orange. Apart from that, the
red and blue trace indicate that the noise from the laser is not flat across the entire
frequency range. However, in the balanced homodyne system, the noise cancels out,
resulting in the flat orange trace that shows the noise of a vacuum state, measured
with a local oscillator power of 0.07 mW.
Figure 5.2 shows more spectra of vacuum noise measurements for different local oscil-
lator powers. The traces were pieced together from five individual measurements with
line widths of 128 Hz, 16 Hz, 8 Hz, 2 Hz, 0.25 Hz. Each trace was averaged 50 times,
800 FFT lines were recorded. Figure 5.3 shows the same measurements. Those traces
were not only normalized to 1 Hz resolution bandwidth, but also to the local oscillator
power according to:

Pnormalized [dBm] = Precorded [dBm]− 10 log

(
RBW [Hz]

1 Hz

)
− 10 log

(
PLO [mW]

1 mW

)
.
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Figure 5.2: Vacuum noise power between 10 Hz and 100 kHz measured with different
local oscillator powers. Doubling the local oscillator power leads to a 3 dB
increase in noise power, indicating the linearity of the detection system.
The traces were pieced together from five measurements taken with line
widths of 128 Hz, 16 Hz, 8 Hz, 2 Hz, 0.25 Hz and normalized to 1 Hz resolu-
tion bandwidth. 800 FFT lines were recorded for every measurement and
the measurements were averaged 50 times.

As already discussed in chapter 4.2, the fact that the traces overlay from 30 Hz to
90 Hz and from 200 Hz to 100 kHz indicates the linearity of the balanced homodyne
system within this region. The peaks between 20 kHz and 100 kHz most likely result
from electronic devices in the lab that couple into the experiment. Between 90 Hz and
200 Hz, further peaks are visible. The peak centered around 100 Hz can arise from a
higher harmonic of the peak that is visible at 50 Hz. It originates from the frequency
of the mains. The irregularity of the traces between 90 Hz and 200 Hz indicates that
noise, potentially coupling in from stray light, is limiting the measurement within this
region. This limitation arises from scattering and parasitic interferences. As described
in [Ste12], light can be scattered out of the beam path by dust particles or surface
imperfections and reenter it later, resulting in an intensity modulation. If the light is
not scattered out of the path, it can travel back and forth between optical components,
for example lenses, leading to parasitic cavities. If the scattering occurs in the local
oscillator path before it impinges on the beam splitter, good balancing can suppress
the resulting disturbances since they will be common on both diodes. Scattering that
occurs after the beamsplitter or in the signal path is more critical.
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Figure 5.3: Same data as in figure 5.2, not only normalized to 1 Hz resolution band-
width, but also to the local oscillator power that was used for the respective
measurement. The fact that the traces overlay also indicates the linearity
of the system. The traces were pieced together from five measurements
taken with line widths of 128 Hz, 16 Hz, 8 Hz, 2 Hz, 0.25 Hz. 800 FFT lines
were recorded for every measurement and the measurements were averaged
50 times.

If the scattering occurs in only one of the two paths after the beam splitter, it is not
common on both diodes and cannot be canceled by the common mode rejection. Stray
light that couples into the signal path and travels back to the homodyne detector is
even more crtical. In a squeezing experiment, where the measured quantum state
only contains very little pairs of correlated photons, every additional photon leads to
a reduced quantum noise suppression. For the measurements presented in figure 5.2
and 5.3, we blocked the path from the beamsplitter to the parametric down-conversion
cavity. If it was not blocked, we measured shot noise spectra as shown in figure 5.4
and it becomes apparent that our setup was limited by stray light that does not leave
the optical path. The red trace was recorded with the path to the parametric down-
conversion cavity being open and the blue trace with the path being blocked. The
additional noise between 10 Hz and 900 Hz results from light that is reflected off the
surfaces of our diodes and the lenses in front of the diodes, travels along the signal path
to the parametric down-conversion cavity and reenters the homodyne detector after
being reflected off the incoupling mirror of the parametric down-conversion cavity.
There are two reasons for the significant scattering. First, the lenses used in this exper-
iment were not superpolished and thus did not have a well specified micro roughness.
Instead, we used standard optics.
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Figure 5.4: The figure illustrates how stray light limits the frequency range in which
the homodyne detector can be used for the characterization of the squeezed
states. The vacuum noise level was determined with 1.154 mW local oscil-
lator power with the path to the parametric down-conversion cavity being
blocked (blue trace) and open (red trace). When the path is opened,
additional noise between 10 Hz and 900 Hz becomes apparent. This noise
results from scattered light that is back reflected to the homodyne detector
by the incoupling mirror of the parametric down-conversion cavity.

Second, the diameter of the active area of the high efficiency photo diodes used for the
low frequency measurements was only 100µm. Thus, it was not possible to tilt the
diodes such that the residual reflections from the anti-reflective coating of the active
area were scattered out of the original beam path. Other issues that can limit the de-
tection of squeezing at small frequencies are acoustics that couple into the experiment
and beam pointing. Acoustic noise in the laboratory, for example from fans or closing
doors, can move mirror mounts and thus couple into the measurement. We observed
noise coupling to the experiment especially when squeezing was measured. Moving
around in the lab or doors to other labs that were closed were visible as peaks in
our spectra. The data were taken when the oscillations due to this acoustic coupling
had declined. Lowering the power of the air conditioning did not lead to a significant
improvement of our experiment, indicating that this was not the most significant noise
source. Moving mirror mounts due to acoustics that couple into the setup can also
result in beam jitter. This can lead to a movement of the focus of the laser beam on
the diodes of the homodyne detector. If the active surface is not homogeneous, the
quantum efficiency depends on where the laser beam impinges on the diodes and the
movement of the beam adds additional noise. Since this noise is not common, it can-
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not be canceled out with good balancing. However, a large spot size can average out
the inhomogeneities. Varying the spot size was not possible in our experiment since a
diameter of 100µm is already very limiting. The homodyne detector was aligned such
that cutting off parts of the beam due to a too large spot and jitter was unlikely.
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5.2 Squeezing from 1 kHz to 100 kHz
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Figure 5.5: Squeezing measurement between 1 kHz and 100 kHz. 8.2 dB of squeezing
were directly observed with 15.1 dB anti-squeezing. The pump power was
8.5 mW and the maximal dark noise clearance 12.1 dB. Each trace was
recorded with a bandwidth of 128 Hz. 800 FFT lines and 50 averages were
taken.

Figure 5.5 shows a squeezing spectrum between 1 kHz and 100 kHz. About 8.1 dB
squeezing with 15.1 dB anti-squeezing were directly observed between 2 kHz and 10 kHz.
Above 10 kHz, the slightly higher dark noise level decreases the observable squeezing.
Figure 5.6 shows the same measurement, but the data were corrected from dark noise
and normalized to the vacuum level. The dark noise corrected squeezing level is
about 10.17 dB and the corresponding anti-squeezing level 15.44 dB. Those values were
obtained from linear fits to the data in the range from 3 kHz to 80 kHz. Data below
3 kHz were omitted to ensure that the stray light does not impact the fits. Above
80 kHz, the dark noise is too close to the measured squeezing and too much noise from
the electronics in the lab couples into the measurement.
The local oscillator power was chosen such that the effects due to incoupling stray
light were minimized and high squeezing levels were still observable. However, in both
figures 5.5 and 5.6, a peak around 1 kHz is still visible that results from stray light.
As for the measurements at MHz frequencies, these data were recorded without using
the coherent control lock but by aligning the relative phases of the squeezed state and
the local oscillator manually. The temperature settings were also not changed. For
the measurements, we used a pump power of 8.5 mW at 775 nm.
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It was not possible to use higher pump powers for the measurements since the dark
noise clearance of 12.1 dB is limiting the squeezing that can be observed. For the direct
observation of higher squeezing levels, the local oscillator power has to be increased.
This, however, increased the amount of stray light coupling into the parametric down-
conversion cavity which made the measurements unstable. As before, the vacuum level
was recorded immediately after the squeezing and anti-squeezing spectra were taken
with the path to the parametric down-conversion cavity being blocked, minimizing the
effect of power fluctuations that could change the vacuum reference level. The traces
were recorded with a bandwidth of 128 Hz. 800 FFT lines and 50 averages were taken.
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Figure 5.6: Dark noise corrected squeezing spectrum of the data presented in figure
5.5. Subtracting the dark noise from the vacuum, the squeezing spectrum
and the anti-squeezing spectrum result in 10.17 dB squeezing with 15.44 dB
anti-squeezing, respectively. Those values were deduced from fits between
3 kHz and 80 kHz.
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5.3 Loss analysis

Figures 5.6, 5.7 and 5.8 show dark noise corrected squeezing measurements that were
obtained for different pump powers. The squeezing and anti-squeezing levels were
deduced from linear fits as explained before. In chapter 2.2.3, we described a model for
squeezing measurements with losses. We recall that the squeezing and anti-squeezing
spectra that include losses can be expressed as:

Sη,sqz (f) = ηSin,sqz (f) + (1− η)Svac (f) , (5.1)

Sη,asqz (f) = ηSin,asqz (f) + (1− η)Svac (f) . (5.2)

Here, Sin,sqz and Sin,asqz describe the initial squeezing and anti-squeezing values that
would be measured if the state did not experience any losses. Recalling that

Sin,sqz (f) =
1

Sin,asqz (f)
,

and inserting it in equation 5.1 we get:

Sη,sqz (f)− (1− η)

η
=

1

Sin,asqz (f)
.
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Figure 5.7: Squeezing measurement with 5.4 mW pump power. This pump power led
to a squeezing strength of 8.54 dB with 11.92 dB anti-squeezing. These
values were obtained from fits between 3 kHz and 80 kHz. 800 FFT lines
and 50 averages were taken with a bandwidth of 128 Hz.
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Figure 5.8: Squeezing measurement with 3.9 mW pump power. This pump power led
to a squeezing strength of 7.74 dB with 9.66 dB anti-squeezing. These
values were obtained from fits between 3 kHz and 80 kHz. 800 FFT lines
and 50 averages were taken with a bandwidth of 128 Hz.

With equation 5.2, we obtain:

η

Sη,sqz (f)− (1− η)
=
Sη,asqz (f)− (1− η)

η
.

From this equation, we get:

η2 = [Sη,asqz (f)− (1− η)] [Sη,sqz (f)− (1− η)]

and finally for the efficiency η:

η =
1 + Sη,sqz (f)Sη,asqz (f)− Sη,sqz (f)− Sη,asqz (f)

2− Sη,sqz (f)− Sη,asqz (f)

= 1− 1− Sη,sqz (f)Sη,asqz (f)

2− Sη,sqz (f)− Sη,asqz (f)
. (5.3)

With this equation, the total detection efficiency can be calculated from the dark
noise corrected squeezing and anti-squeezing values. For the data in figure 5.6, we
get η ≈ 0.93 and for those in figure 5.7 and 5.8, η ≈ 0.91 and η ≈ 0.93, respectively.
Table 5.1 summarizes data obtained from more measurements. The average detection
efficiency is η = 0.928.
Compared to the value of η = 0.952 for the measurements at MHz frequencies, the
losses increased by 2.4%. The quantum efficiency of the new diodes is also specified
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to be around ηPD ≈ 0.99. However, due to the small diameter of the active area of
only 100µm, additional lenses had to be used to focus the beam down to a sufficiently
small spot size, introducing more anti-reflectively coated surfaces and increasing the
losses and scattering. Apart from that, the anti-reflective coating of the active area is
designed such that an efficiency of ηPD ≥ 0.99 is only guaranteed by the manufacturer
for s-polarized light and an angle of incidence of 10 degrees. We positioned the diodes
under a smaller angle to avoid an elliptical beam shape on the active surface and
to ensure that the entire laser spot impinges on the surface. This most likely also
increased the losses, resulting in a the total additional loss of 2.4 %.

Measurement Squeezing [dB] Anti-squeezing [dB] η

1 -10.17 15.44 0.929
2 -10.3 14.44 0.938
3 -8.34 11.3 0.916
4 -8.26 10.67 0.924
5 -10.06 15.46 0.926
6 -8.54 11.92 0.914
7 -7.74 9.66 0.925
8 -10.25 14.66 0.936
9 -10.21 14.83 0.933
10 -10.48 15.18 0.937
11 -10.06 15.24 0.927
12 -10.36 14.77 0.937
13 -10.2 15.39 0.93
14 -10.34 16.12 0.929
15 -10.57 15.94 0.935
16 -10.38 15.97 0.93
17 -10.21 16.23 0.925
18 -10.05 15.89 0.923
19 -10.29 16.28 0.927
20 -10.19 15.77 0.927

Average: 0.928

Table 5.1: Total detection efficiencies that were calculated with equation 5.3 from dif-
ferent measurements. Measurement three, four, six and seven were per-
formed with smaller pump powers. The squeezing and anti-squeezing val-
ues were deduced from fits to the dark noise corrected spectra as described
before.
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5.4 Squeezing below 1 kHz

Squeezing measurements below 1 kHz were limited by stray light, as already indicated
by figure 5.4. Figure 5.9 shows a squeezing measurement that also includes the range
from 50 Hz to 1 kHz. It is possible to observe a noise reduction below the vacuum
level down to a frequency of 500 Hz. Below that frequency, the stray light not only
limits the observable squeezing but also increases the anti-squeezing. Above 3 kHz, we
observed 5.7 dB of squeezing with 11.06 dB of anti-squeezing in this measurment. The
shot noise was measured with the path from the parametric down-conversion cavity
to the homodyne detector being blocked. The traces presented in this section were
recorded with 800 FFT lines and a resolution bandwidth of 8 Hz. The dark noise and
the vacuum were averaged 100 times, the squeezing and anti-squeezing traces 50 times.
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Figure 5.9: Squeezing spectrum between 50 Hz and 6 kHz. Squeezing can be observed
down to frequencies of 500 Hz. Below that frequency, the stray light intro-
duces too much noise. To decrease the coupling of the stray light to the
measurement via parametric amplification, the pump power was reduced.
Above 3 kHz, 5.7 dB squeezing and 11.06 dB anti-squeezing were observed.
The traces were recorded with 800 FFT lines and a resolution bandwidth
of 8 Hz. The dark noise and the vacuum were averaged 100 times, the
squeezing and anti-squeezing traces 50 times.

The corresponding dark noise corrected spectrum is shown in figure 5.10. From linear
fits between 3 kHz and 6 kHz, we inferred an overall detection efficiency of η = 0.843.
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Figure 5.10: The spectrum presented in figure 5.9 with dark noise correction and nor-
malized to the vacuum noise level. From linear fits to the data in the
range from 3 kHz to 6 kHz, we inferred an efficiency of η = 0.843. The
data were taken with the same setup as the measurements above 1 kHz.
Instabilities in the coherent control scheme that was used to lock the
homodyne readout phase as well as the phase of the pump field due to
the stray light that couples into the parametric down-conversion cavity
reduce the observable squeezing. These effects resemble optical losses in
appearance in the spectrum. The traces were recorded with 800 FFT lines
and a resolution bandwidth of 8 Hz. The dark noise and the vacuum were
averaged 100 times, the squeezing and anti-squeezing traces 50 times.

Compared to the average detection efficiency calculated in table 5.1, the efficiency de-
creased by 0.085. Compared to measurements number 3,4 and 6 presented in the table,
we also see that we observed less squeezing with similar anti-squeezing values in this
measurement. The anti-squeezing values are similar because equal pump powers were
chosen for these three measurements and the data presented in this subsection. How-
ever, we used the coherent control locking loop to record the data below 1 kHz. Most
likely, the stray light that couples into the cavity introduced noise into the locking
loop, which influences its stability. Thus, the noise was fed back to the measurement,
reducing the observable squeezing. Apart from that, the stray light can initiate an
optical parametric amplification in the cavity, introducing more noise into the mea-
surement [McK04]. We minimized the effect of optical parametric amplification in the
cavity by reducing the pump power at 775 nm to the value of measurement number 3,4
and 6 in table 5.1. To further mitigate the issues that are introduced by stray light,
a Farady isolator can be placed between the homodyne detector and the parametric
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down-conversion cavity, as described in [McK04]. This way, the stray light can be
suppressed at the expense of additional losses from the isolator. Unfortunately, the
limited space in our compact setup did not allow for the integration of an isolator for
comparison without rearranging other major components.
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6 Outlook

The analysis and characterization of the squeezing source developed within this thesis
point out steps that can be implemented to improve the squeezing strength, further
reduce the footprint and simplify the setup. Within this chapter, these steps will be
presented for future developments.

6.1 Digital locking scheme for squeezed vacuum states

The implementation of the coherent control scheme not only enables squeezing mea-
surements below 1 kHz, but also the stable application of the quantum state in down-
stream experiments, for example laser interferometers. As already described, the pump
phase determines the quadrature that is squeezed. By locking the pump phase, this
quadrature can be chosen and fixed over time. By locking the local oscillator phase,
the quadrature that is read out is chosen and can be aligned with the squeezed quadra-
ture. Within this thesis, the squeezed vacuum states were not applied to a downstream
experiment, but the compact and transportable setup can be used for that purpose.
An alternative to the coherent control scheme to choose the correct quadrature is de-
picted in figure 6.1. The acousto-optic modulator that generates the single sideband
has been removed and the phase shifter used to adjust the pump phase has been re-
placed by a phase shifter in the path that guides the squeezed state from the parametric
down-conversion cavity to the homodyne detector. To align the squeezed quadrature
with the homodyne readout quadrature or a downstream experiment, it is sufficient to
adjust the phase of the squeezed state. The pump phase does not have to be stabilized
if squeezed vacuum is generated. Thus, for applications that require squeezing in only
one quadrature across the entire bandwidth of the parametric down-conversion cavity,
it is only necessary to lock the phase of the squeezed field.
This can be done without a single sideband, which significantly reduces the footprint
of the squeezed-light source. Instead, digital locking techniques can be applied, further
simplifying the setup. Digital locking techniques have been investigated recently and
are of interest because of their flexibility and low cost. In [Spa11], a locking scheme
based on the Pound-Drever-Hall method is described. Here, the error signal is gener-
ated using phase modulation sidebands imprinted on the field that interacts with the
cavity to be locked, but processing of this error signal is done digitally with a field
programmable gate array and a LabView software. In [Hua14], a microcontroller is
used to lock a Mach-Zehnder interferometer, a cavity with a finesse of 100 and a cavity
with a finesse of 1000.
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Figure 6.1: Illustration how a digital locking algorithm can further reduce the footprint
of the experimental setup and enable locking the squeezed quadrature to
a downstream experiment. Compared with figure 3.2, the single sideband
generation section as well as the analog locking loops for the pump phase
and the local oscillator phase have been removed. Instead, only the phase
of the squeezed field is adjusted with a phase shifter. The phase shifts of
the local oscillator and pump field are due to temperature drifts. Since
these drifts are slow, it is sufficient to align the phase of the squeezed
quadrature with the local oscillator to enable the detection or application
of the squeezed state.

The techniques described in this publication do not rely on the Pound-Drever-Hall
method to generate an error signal, reducing the number of required optical com-
ponents even further while retaining comparable results. The lock is based on an
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algorithm that searches the maximum or minimum of a time dependent signal in-
stead. A similar procedure can be used to lock the squeezed quadrature of a squeezed
vacuum state to an experiment or, as depicted in figure 6.1, to a homodyne detector.
The working principle of such a lock is illustrated in figure 6.2. It combines the mea-
surement principle of a spectrum analyzer as described in [Rau11] with the searching
algorithm described in [Hua14]. To determine the noise power of a signal at the fre-
quency fLO, the input signal is multiplied with an electronic local oscillator with a
frequency fLO. Mathematically, this multiplication results in a signal given by:

δαsig sin (2πfsigt)αLO sin (2πfLOt) ∝
δαsigαLO [cos (2π (fsig − fLO) t)− cos (2π (fsig + fLO) t)]

with δαsig and δαLO representing the noise of the signal and the local oscillator, re-
spectively. For the locking scheme, the term proportional to cos (2π (fsig + fLO) t) is
filtered out with a low pass. The remaining term δαsigδαLO cos (2π (fsig − fLO) t) pro-
vides the input signal for the algorithm that searches the minimal noise power at fLO

since it contains information about the fluctuation of the signal.
For fLO < fsig, the noise at fLO is mixed down to a smaller intermediate frequency. For
example, a signal at a few MHz can be multiplied with a local oscillator with a smaller
frequency. The resulting difference frequency is easier to analyze electronically since
it is much smaller than fLO, avoiding limitations due to finite electronic bandwidths.
For fLO = fsig, we obtain a constant signal that contains information about both the
amplitudes of the local oscillator and the signal.
The power of the electronic local oscillator noise δαLO is not time dependent and does
not change. However, the noise power of the signal δαsig does vary when the phase
of the squeezed field changes. It is minimal when the homodyne detector measures
the squeezed quadrature and maximal when it measures the anti-squeezed quadrature.
This fact can be used for the locking algorithm.
Two implementations are possible. First, the voltage that results from the multipli-
cation with fLO is low pass filtered and measured multiple times. Afterwards, the
variance of this data stream is calculated. It is the smallest when the phase of the
optical local oscillator of the homodyne detector is aligned with the squeezing angle,
resulting in the minimal variance. Slightly changing the phase of the squeezed field,
repeating the measurement and the calculation of the variance and comparing the old
value with the new one gives an error signal. If the change of the squeezing phase
results in a smaller variance and thus a smaller noise power than before, the same step
has to be repeated. If the variance increases, the step has to be reversed. This way, it
is possible to lock the phase of the squeezed field to the local oscillator and perform a
long term squeezing measurement or lock the squeezed state to a downstream experi-
ment. However, it is important to perform only small variations on the phase of the
squeezed field. If the steps are too large, the lock adds additional phase noise to the
squeezed state, reducing the maximal detectable squeezing. A first implementation of
this principle was demonstrated in [Abd17] to lock two squeezed fields on two balanced
homodyne detectors orthogonally to each other, that is to say one detector measured
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the squeezed quadrature while the other one measured the anti-squeezed quadrature.
The local oscillator frequency used to demodulate the signal that was obtained from
the homodyne detectors was chosen to be fLO = 5 MHz.

Figure 6.2: Illustration of the algorithm that can be used to lock the phase of the
squeezed state. The signal of the homodyne detector, or alternatively the
signal coming from a downstream experiment, is electronically mixed with
a frequency at which strong squeezing can be expected. The signal that
has been mixed down can either be low pass filtered (b, tested in [Abd17])
or band pass filtered (a). Depending on the phase of the squeezed field,
the values shown in the yellow trace in the upper scheme are recorded. An
algorithm, equivalent to the one described in [Hua14], can search for the
minimum of this trace, representing the squeezed quadrature and lock the
phase of the squeezed field correspondingly.

Secondly, instead of low pass filtering the signal that results from mixing the homodyne
signal with 5 MHz, it can be bandpass filtered. The center frequency of the bandpass
fcenter can be chosen such that it is within the bandwidth of the data acquisition
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system used for the lock. If fcenter = fsig−fLO holds, the local oscillator can be chosen
such that the signal that is mixed down to fcenter corresponds to the noise level at, for
example, 5 MHz. This version of the locking scheme has not been tested yet, but the
results obtained in [Abd17] indicate that it can successfully be integrated in a compact
squeezed-light source.

6.2 Reduction of the external pump power for the
generation of squeezed states

In the previous sections, we already described ways to reduce the optical losses and
the influence of stray light and thus increase the squeezing strength. 13 dB squeezing
were measured with only 12±1 mW of optical pump power at 775 nm in this setup. A
modification of the cavity incoupling mirror can reduce this pump power even further.
As already described in [Sch18], the buildup factor of the power in the parametric
down-conversion cavity is given by:

Pcav

PPump

=
(1−R1)(

1−
√
R1R2V

)2 . (6.1)

R1 is the power reflectivity of the incoupling mirror and R2 the power reflectivity
of the second cavity mirror, which is the highly reflectively coated backside of the
nonlinear crystal in our setup. The propagation efficiency per half cavity roundtrip
is given by V and includes all losses from absorption and scattering. From our own
measurements and the measurement protocols of the coating company Laseroptik
GmbH, we deduce values of R1 = 97.5 ± 0.3 %, R2 = 99.955 ± 0.004 % and a total
transmission of V = 99.935±0.05 % with a contribution of VAR = 99.95±0.05 % form
the antireflective coating of the plane side of the crystal and VKTP = 99.985± 0.005 %
resulting from the nonlinear material [Ste13a]. These values result in a power buildup
factor of 140, as illustrated in figure 6.3. The blue curve shows how the buildup factor
can be increased for larger values of R1. With R1 = 99.8 %, the buildup factor would
already increase to 570. Thus, for the same intracavity power, an external pump power
that is reduced by a factor of 570/140 ≈ 4 is sufficient. This means that it is feasible to
achieve 13 dB squeezing with only 3 mW optical pump power. Optimizing the coatings
in our setup even further to values of R1 = 99.9 %, R2 = 99.98 % and VAR = 99.98 %,
resulting in V = 99.965 % increases the buildup factor to 1100, allowing for a reduction
of the pump power at 775 nm to a value of only 1.5 mW. The red curve in figure 6.3
illustrates this result.
The traces in figure 4.4 were recorded with a local oscillator power of 12 mW at
1550 nm, except for the yellow trace, where we had to reduce the local oscillator
power to 1 mW to keep the large anti-squeezing values within the linear regime of the
homodyne detector. However, this shows that the required power at 1550 nm is limited
by the homodyne detection scheme if the optical pump power for the parametric down-
conversion cavity is reduced to 1.5 mW. The local oscillator power can be reduced by
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developing electronics with a smaller dark noise level. Our low frequency homodyne
detector exhibits a dark noise clearance of more than 20 dB with only 1.15 mW local
oscillator power. With further development work, a similar result can be achieved for
the MHz regime.
Due to the high conversion efficiency of our second-harmonic generation cavity and
the potential to replace the coherent control scheme with a digital locking scheme in
combination with further developments regarding the homodyne detector electronics,
a compact squeezed-light source that is powered with only 15 mW at 1550 nm seams
feasible.
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Figure 6.3: The figure illustrates the dependence of the intracavity power buildup of
our parametric down-conversion cavity on the power reflectivity of the
incoupling mirror for our current setup in blue and a future setup in red.
Our setup required 12± 1 mW external pump power and produced 13 dB
of squeezing with a buildup factor of 140. Simply increasing the power
reflectivity of the incoupler already yields a buildup factor of 570, reducing
the pump power to 3 mW. Increasing R1 even further and reducing the
intracavity losses with improved coatings increases the buildup factor to
1100 and thus decreases the pump power to only 1.5 mW, as the red curve
shows.
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7 Summary

Within the past years, sources for squeezed states of light became more and more
mature and many different applications have been identified. The first portable and
fully automatic source has been designed for the gravitational-wave detector GEO
600 and has successfully been implemented in the detector [Aba11]. Apart from that,
squeezing levels of 15 dB have already been achieved [Vah16]. Both of these milestones
in squeezing technology were achieved at the wavelength of 1064 nm.
The squeezed-light laser engineered within this project builds on these results and adds
to the development of the squeezing technology. To the best of our knowledge, it is the
first portable source at 1550 nm. With a footprint of 80 cm x 80 cm, it is the smallest
source based on parametric down-conversion that has been built so far. The source
is powered with coherent light coupled into the setup via a fiber connector, allowing
for a flexible usage with already existing, highly stable laser systems and an easy
integration in existing experimental setups. The squeezing level of 13 dB (at 5 MHz)
is the strongest squeezing level that has been observed at a telecom wavelength. Apart
from that, a multi-temperature scheme was developed and implemented in the second-
harmonic generation cavity and the parametric down-conversion cavity for squeezed-
light generation. This scheme demonstrates an approach for achieving simultaneous
phase matching and double resonance for both the fundamental and second-harmonic
wavelength in a linear cavity. A multi-temperature scheme was also developed in
parallel by Zielińska and coworkers [Zie17, Zie18].
The squeezing generated with this source can be used for various applications. Squeez-
ing of more than 12 dB can be observed up to a frequency of 10 MHz. This squeezing
strength and frequency range allows for the usage of the squeezed-light for quan-
tum key distribution experiments. However, these experiments need entangled states,
which can be obtained by combining the squeezed states of two sources on a balanced
beam splitter. Apart from that, the source can be used to improve the sensitivity of
shot noise limited interferometers or optomechanical experiments in a frequency range
from 1 kHz to a few MHz.
Future developments should further improve the technology presented in this thesis.
The performance at low frequencies can be improved with higher quality optics, sig-
nificantly reducing the influence of stray light in the optical paths. Another possibility
to reduce the stray light is to increase the electronic gain of the homodyne detector,
which reduces the optical local oscillator power that is needed for large dark noise
clearance and also reduces the amount of stray light. After these measures have been
taken, stray light that leaves the optical path and is scattered back can be reduced by
using beam tubes and shields on the breadboard. By increasing the reflectivity for the
775 nm pump field of the incoupler of the squeezing source, the optical pump power
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that is needed for the parametric down-conversion cavity that generates the squeezed
states can also be reduced, allowing for a setup that works with even less power at
1550 nm. Thus, the experiment can be equipped with low power laser systems, which
reduces the cost for squeezed-light sources. The implementation of a digital lock-
ing scheme for the phase of the squeezed-light field could reduce the footprint of the
source even further. Replacing the acousto-optic modulator and the coherent control
scheme by digital locking techniques reduces the number of optical components on the
breadboard and enhances the portability and flexibility.
Additional applications of the source could arise from the implementation of these
improvements. A better performance at low frequencies could facilitate the application
for gravitational-wave detectors that are operated at 1550 nm. In this sense, the setup
can be regarded as a proof-of-principle experiment for the integration of squeezing
at this wavelength in gravitational-wave detectors that are operated at 1550 nm like
the Einstein Telescope. Apart from that, precise reflectivity measurements of the
optical components which guide the squeezed state along its path leads to an accurate
assignment of the optical losses to each optical surface. Within this thesis, we relied
on the specifications of the manufacturer. However, actual measurements allow for an
even more accurate loss estimation. With this estimation, the losses which result from
the photo diodes can be determined, enabling their absolute calibration at 1550 nm.
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Appendix

1 Low frequency homodyne detector

In the following, the schematics of the low frequency homodyne detector that was
used for the measurements presented in chapter 5 are depicted. It was developed
in cooperation with Fabian Thies during his master thesis. It is combining designs
by Henning Vahlbruch and Tobias Gehring. At Hz and kHz frequencies, the resistor
that is used for the transimpedance amplifier can couple noise into the measurement.
Different resistors were characterized in ([Sei09], p. 74). For our setup, we tried various
resistors, but figured that they do not have an influence on the dark noise, especially
not at frequencies below 100 Hz. We assume that the increasing noise in this frequency
range, visible for example in figure 5.2, results from the operational amplifier.
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Figure 1: Project schematics (sheet 1)

4 HomodynMixer-documentation.tex (2018-05-27, 18:57) – 9 pages
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Figure 2: Project schematics (sheet 2)

HomodynMixer-documentation.tex (2018-05-27, 18:57) – 9 pages 5
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Figure 3: Project schematics (sheet 3)
Parts with undefined values are highlighted in orange

6 HomodynMixer-documentation.tex (2018-05-27, 18:57) – 9 pages
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Figure 4: Board top view showing placeplan with component names
Components with undefined values are shown in red

Figure 5: Board top view showing placeplan with component values
Components with undefined values are shown in red

Figure 6: Board bottom view showing placeplan with component names
Components with undefined values are shown in blue

HomodynMixer-documentation.tex (2018-05-27, 18:57) – 9 pages 7
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Figure 7: Board bottom view showing placeplan with component values
Components with undefined values are shown in blue

Figure 8: Board top view showing connectors, test points, vias and wired components

Figure 9: Board bottom view showing connectors, test points, vias and wired components

Figure 10: Board bottom view showing drills with 0.9 mm (0.035 in) diameter

8 HomodynMixer-documentation.tex (2018-05-27, 18:57) – 9 pages
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Figure 11: Board bottom view showing drills with 1.0 mm (0.039 in) diameter

Figure 12: Board bottom view showing drills with 1.3 mm (0.051 in) diameter

HomodynMixer-documentation.tex (2018-05-27, 18:57) – 9 pages 9
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Resources

The work presented in this thesis was done with the help of different computer pro-
grams. Three dimensional and technical drawings of custom made mechanical com-
ponents like the linear filter cavities were made with Autodesk Inventor. Different
versions from 2012 – 2016 were used. Electronics were designed with Eagle 6.6.0
and earlier versions using the component library of Andreas Weidner from the Albert
Einstein Institute in Hannover. Simulations and calculations for this project were per-
formed with Wolfram Mathematica 9 and Matlab R2014a. Apart from that, Python
3.5.2, which was run on the development environment Spyder 2.3.9 and in combination
with jupyter, was used. Simulations regarding the optical design of the setup were
done with N.L.C.S by Nico Lastzka [Las10] and Finesse by Andreas Freise [Fre18].
JamMT version 0.24, programmed by André Thüring and Nico Lastzka [Las10], was
used for mode matching simulations. Microsoft Excel 2010 was also made use of.
The schematic drawings in this thesis were done with Inkscape 0.91 and the compo-
nent library designed by Alexander Franzen and Jan Gniesmer. Plots were generated
with Gnuplot 5.0 and the thesis was written using MiKTeX 2.9 in conjunction with
TeXnicCenter 2.02.
Electronic designs for standard components of a quantum optical experiment such as
photodiodes, servos, high-voltage amplifiers, frequency generators, temperature con-
trollers and peltier drivers, electro-optic modulators and drivers for the acousto-optic
modulator existed within the group. They were made by Henning Vahlbruch, Sebas-
tian Steinlechner, Tobias Gehring and Andreas Weidner. The electronic components
on these boards were adapted to the needs of the experimental setup presented here.
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