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1 Introduction

1.1 Overview

In this thesis we will investigate some extremal and probabilistic questions, which
we take a closer look at after a brief introduction to these fields. Throughout this
thesis we will consider finite simple undirected graphs and hypergraphs G “ pV,Eq,
where V is the vertex set and E is the edge set of G. We assume that the reader
is familiar with basic notations and concepts of graph theory, like δpGq and ∆pGq
signifying the minimum and maximum degree. For an introduction to graph theory
and any notation not defined in this thesis we refer to the textbooks [10,11,17].

Extremal graph theory and Mantel’s theorem

Extremal graph theory studies the quantitative aspects of the dependence between
structural graph properties and graph invariants. The origin of extremal graph
theory is usually set in 1941 with the well known result by Turán [83], who
investigated the dependence between the edge density and the existence of a clique
of certain order as a subgraph. He showed that among all Kr`1-free n-vertex
graphs the complete (almost) balanced r-partite graph T pn, rq has the largest
number of edges. The graph T pn, rq is called Turán graph.
To study the structural properties of graphs that do not contain a certain

subgraph is a central aspect of extremal graph theory. Turán’s theorem is one
example. Here we want to take a closer look to a special case of this theorem also
known as Mantel’s theorem [57]. In 1907 Mantel proved that any triangle-free
graph on n vertices contains at most tn2{4u edges. The extremal graph is the
complete bipartite graph with partition classes of size tn{2u and rn{2s. This
fundamental statement of extremal graph theory is the result the local density
problem investigated in this thesis traces back to.
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Dirac’s theorem and Pósa’s conjecture

Other structural graph properties that are often studied concern the existence of
certain spanning subgraphs, i.e. subgraphs that cover all vertices. Unlike before a
bound on the edge density is usually not very informative, because a graph can
have

`

n
2

˘

´ pn ´ 1q edges and still contain an isolated vertex. Instead we could
study which minimum vertex degree conditions imply the existence of a certain
kind of spanning subgraph.
One of the first results of this type was proven by G. A. Dirac [18] in 1952.

He showed that every graph G “ pV,Eq with |V | ě 3 and minimum vertex
degree δpGq ě |V |{2 contains a Hamiltonian cycle, that is a cycle containing all
vertices. Since on any set V of at least three vertices there are graphs G with
minimum degree δpGq “ r|V |{2s´ 1, which do not contain a Hamiltonian cycle,
this is an optimal result.

Another spanning structure that was studied is the k-th power of a Hamiltonian
cycle. The k-th power of a Hamiltonian cycle C is obtained from C by adding all
edges between distinct vertices of distance at most k in C.
In 1962 Pósa [23] conjectured that every graph G “ pV,Eq with |V | ě 5 and

minimum degree δpGq ě 2|V |{3 contains the square of a Hamiltonian cycle, that is
the 2-nd power of a Hamiltonian cycle. This conjecture was generalised further by
Seymour to the so-called Pósa-Seymour conjecture [78], asking for the k-th power
of a Hamiltonian cycle in graphs G with δpGq ě k

k`1 |V |.
A proof of this generalised conjecture for large graphs was obtained by Komlós,

Sárközy, and Szemerédi [46]. Their proof is based on the regularity method for
graphs and uses the so-called blow-up lemma [45] that was developed by the same
authors shortly before.

Regularity method

A conjecture of Erdős and Turán [27] about the upper density of subsets of the
integers which contain no arithmetic progression of fixed length stimulated a lot of
research in various fields of mathematics. First results concerning this conjecture
were obtained by Roth [75, 76] for arithmetic progressions of length 3, his result is
a special case of Theorem 1 with ` “ 3. The case ` “ 4, that means Szemerédi’s
theorem for arithmetic progressions of length 4, was established by Szemerédi [79]
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in 1969. Finally in 1975 Szemerédi [80] solved the conjecture, showing the following
theorem.

Theorem 1 (Szemerédi’s theorem). For every ` ě 3 and δ ą 0 there ex-
ists n0 “ n0p`, δq such that if A Ď rns “ t1, . . . , nu with n ě n0 and |A| ě δn, then
A contains an arithmetic progression of length `.

Later alternative proofs with different mathematical background appeared by
Furstenberg [29], Tao [82], and Gowers [31].
Szemerédi established in his proof a lemma analysing the structure of dense

bipartite graphs that later gave rise to the development of a powerful tool in
extremal graph theory called Szemerédi’s Regularity Lemma [81]. Under appropri-
ate circumstances it can be used to show the existence of a fixed subgraph in a
graph. The lemma shows that the edge set of any graph can be decomposed into
constantly many “blocks” such that almost all are “quasirandom”. We will make
this precise in the following.
For a graph G “ pV,Eq and two disjoint sets A,B Ď V , let epA,Bq denote

the number of edges in G with one vertex in A and one in B. Moreover, we
call dpA,Bq “ epA,Bq{p|A||B|q the density of the bipartite subgraph GrA,Bs

of G consisting of all edges in G with one vertex in A and one in B. Given a
graph G “ pV,Eq and ε ą 0 we say two non-empty disjoint subsets X, Y Ď V

are ε-regular if
|dGpX, Y q ´ dGpX

1, Y 1q| ă ε

holds for all subsets X 1 Ď X, Y 1 Ď Y with |X 1||Y 1| ą ε|X||Y |. Szemerédi’s Lemma
is then stated as follows.

Theorem 2 (Szemerédi’s Regularity Lemma). For every ε ą 0 and integer t0, there
exists integers T0 “ T0pε, t0q and n0 “ n0pε, t0q such that for every graph G “ pV,Eq
with |V | “ n ě n0 the following holds.

There exists a vertex partition V1 Y . . .Y Vt “ V , t0 ď t ď T0, satisfying

(i ) |V1| ď . . . ď |Vt| ď |V1| ` 1, and

(ii ) all but at most ε
`

t
2

˘

pairs pVi, Vjq, 1 ď i ă j ď t, are ε-regular.

Often Szemerédi’s Regularity Lemma is used together with the so-called Counting
Lemma we state in the following.
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Theorem 3 (Counting Lemma). For all d ą 0, γ ą 0 and every positive in-
teger `, there exist ε ą 0 and n0 so that whenever G is an `-partite graph
with `-partition V1 Ÿ . . . Ÿ V`, and |V1| “ . . . “ |V`| “ n ě n0, satisfying for
all 1 ď i ă j ď `

(i ) dGpVi, Vjq “ d˘ ε, and

(ii ) pVi, Vjq is ε-regular

then the number |K`pGq| of `-cliques in G satisfies |K`pGq| “ dp
`
2qn`p1˘ γq

The joint application of Szemerédi’s Regularity Lemma and the Counting Lemma
is called the regularity method. The original proof of Roth’s theorem about
arithmetic progressions of length 3 by Ruzsa and Szemerédi [77] used Szemerédi’s
precursor of the Regularity Lemma in an iterative way, which can nowadays be
replaced by a single application of the regularity method. They showed that every
graph Gn on n vertices having opn3q triangles contains a triangle-free subgraph G1n
having only opn2q edges less. This result is known as the Triangle Removal Lemma
and implies Roth’s theorem.
A k-uniform hypergraph, or short k-graph, H “ pV,Eq consists of a finite

set V pHq of vertices and a family E “ EpHq of k-element subsets of V , which are
called (hyper)edges. A Regularity Lemma for 3-graphs has been developed by Frankl
and Rödl [28] and also extensions to k-graphs were obtained by Gowers [32, 33]
and by Rödl and Skokan [74]. Moreover, a Counting Lemma for k-graphs was
proven by Nagle, Rödl, and Schacht [61]. In Chapter 3 we will use the regularity
method to find an almost spanning squared cycle and therefore we will introduce
the hypergraph regularity method in more detail in Section 3.5.2.

The random graph

The random graph on n vertices, where each edge is included with probability p,
is denoted by Gpn, pq. In the beginning of probabilistic combinatorics this graph
was only used as a tool in proofs, but later on it evolved to a subject studied
on its own. For comprehensive accounts of random graph theory we refer to the
textbooks [9] and [39]. One of the first uses of Gpn, pq is due to Erdős [22], who
used random graphs to show the existence of graphs that contain no short cycle
and have a high chromatic number. In the context of random graphs we will often
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say that an event happens asymptotically almost surely, or a.a.s., if it happens with
probability tending to 1 as nÑ 8. Besides studying the random graph on its own
also randomly perturbed graphs, that are graphs obtained by adding random edges
to a fixed graph, became a subject of research. First research concerning randomly
perturbed graphs can be found in the work of Bohman, Frieze, and Martin [8]. We
will study perturbed hypergraphs and their Hamiltonicity in Section 1.4.

1.2 Local density problems

Remember that Mantel’s theorem asked for the maximum number of edges a
triangle-free graph can have. Generalising this question it has been asked for a
“local” density condition that guarantees the existence of a triangle. We will make
this precise in the following.

We say an n-vertex graph G is pα, βq-dense if every subset of tαnu vertices spans
more than βn2 edges. Given α P p0, 1s Erdős, Faudree, Rousseau, and Schelp [26]
asked for the minimum β “ βpαq such that every pα, βq-dense graph contains a
triangle. For example, Mantel’s theorem asserts that βp1q “ 1{4.
For 1{2 ă α ď 1 the balanced complete bipartite graph gives the lower bound

βpαq ě
1
4p2α ´ 1q ,

by taking one of the parts completely and the missing αn ´ n{2 vertices from
the other part (see Figure 1.1). The next graph one considers for obtaining lower
bound on the function βp¨q is the so-called balanced blow-up of a 5-cycle. The
general definition of this concept reads as follows.

Definition 4. A homomorphism from a graph G into a graph F is a mapping
of the vertex sets ϕ : V pGq Ñ V pF q with the property tϕpxq, ϕpyqu P EpF q when-
ever tx, yu P EpGq. If such a homomorphism exist, we say that G is homomorphic
to F . Moreover, we say that G is a blow-up of a graph F if there exists a surjective
homomorphism ϕ from G to F , but for any proper supergraph of G on the same
vertex set the mapping ϕ is not a homomorphism into F anymore. A blow-up is
balanced if the preimages ϕ´1pvq of all vertices v P V pF q have the same size.

The balanced blow-up of the 5-cycle gives for 2{5 ă α ď 3{5 the lower bound

βpαq ě
1
25p5α ´ 2q ,
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by taking two mutually independent parts of the blow-up completely and the
missing αn´ 2n{5 vertices from one part, which has only edges to one of the parts
that we already chose. Furthermore, for 3{8 ă α ď 1{2 the balanced blow up of
the Andrásfai graph F3 (see Figure 1.2) gives the lower bound

βpαq ě
1
64p8α ´ 3q ,

by taking three mutually independent parts of the blow-up completely and the
missing αn´ 3n{8 vertices from one part, which has only edges to one of the parts
that we already chose.

n{2

r

n{5

n{5 r

n{8
n{8

n{8

r

Figure 1.1: Balanced complete bipartite graph with r “ αn´ n{2, balanced blow-
up of a 5-cycle and the graph F3 where r “ αn´ 2n{5 in the first case
and r “ αn´ 3n{8 in the second.

Since
1
4p2α ´ 1q ě 1

25p5α ´ 2q

is only true for α ě 17{30, Erdős et al. conjectured that for α ě 17{30 the balanced
complete bipartite graph gives the best lower bound for the function βpαq, which
leads to

βpαq “
1
4p2α ´ 1q . (1.1)

The same authors verified this conjecture for α ě 0.648 and the best result in this
direction is due to Krivelevich [49], who verified it for every α ě 3{5. For α ă 17{30
balanced blow-ups of the 5-cycle yield a better lower bound for βpαq and Erdős et
al. conjectured

βpαq “
1
25p5α ´ 2q (1.2)

for α P r53{120, 17{30s, since
1
25p5α ´ 2q ě 1

64p8α ´ 3q
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is only true for α ě 53{120.
The special case βp1{2q “ 1{50 was considered before by Erdős [24] (see also [25]

for a monetary bounty for this problem).

Conjecture 5 (Erdős). Every p1{2, 1{50q-dense graph contains a triangle.

Currently, the best known upper bound on βp1{2q is 1{36 and was obtained
by Krivelevich [49]. Besides the balanced blow-up of the 5-cycle Simonovits (see,
e.g., [25]) noted that balanced blow-ups of the Petersen graph yield the same lower
bound for Conjecture 5 and, more generally, for (1.2) in the corresponding range.

Conjecture 5 asserts that every triangle-free n-vertex graph G contains a subset
of tn{2u vertices that spans at most n2{50 edges. Our first result (see Theorem 6
below) verifies this for graphs G that are homomorpic to a triangle-free graph from
a special class.

1.2.1 Andrásfai graphs

A well studied family of triangle-free graphs, which appear in the lower bound
constructions for the function βpαq above, are the so-called Andrásfai graphs. For
an integer d ě 1 the Andrásfai graph Fd is the d-regular graph with vertex set

V pFdq “ tv1, . . . , v3d´1u ,

where tvi, vju forms an edge if

d ď |i´ j| ď 2d´ 1 . (1.3)

Note that F1 “ K2 and F2 “ C5 (see Figure 1.2). It is easy to check that
Andrásfai graphs are triangle-free and balanced blow-ups of these graphs play a
prominent rôle in connection with extremal problems for triangle-free graphs (see,
e.g., [1, 15,34,40]).

Our first result validates Conjecture 5 (stated in the contrapositive) for graphs
homomorphic to some Andrásfai graph.

Theorem 6. If a graph G is homomorphic to an Andrásfai graph Fd for some
integer d ě 1, then G is not p1{2, 1{50q-dense.
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Figure 1.2: Andrásfai graphs F2, F3, and F4.

Since Fd is homomorphic to Fd1 if and only if d1 ě d, Theorem 6 extends recent
work of Norin and Yepremyan [63], who obtained such a result for n-vertex graphs G
homomorphic to F5 with the additional minimum degree assumption δpGq ě 5n{14.

Owing to the work of Chen, Jin, and Koh [15], which asserts that every triangle-
free 3-chromatic n-vertex graph G with minimum degree δpGq ą n{3 is homomor-
phic to some Andrásfai graph, we deduce from Theorem 6 that Conjecture 5 holds
for all such graphs G. Similarly, combining Theorem 6 with a result of Jin [40],
which asserts that triangle-free graphs G with δpGq ą 10n{29 are homomorphic
to F9, implies Conjecture 5 for those graphs as well. We summarise these direct
consequences of Theorem 6 in the following corollary.

Corollary 7. Let G be a triangle-free graph on n vertices.

(a ) If δpGq ą 10n{29, then G is not p1{2, 1{50q-dense.

(b ) If δpGq ą n{3 and χpGq ď 3, then G is not p1{2, 1{50q-dense.

We remark that part (a ) slightly improves earlier results of Krivelevich [49] and
of Norin and Yepremyan [63] (see also [44] where an average degree condition was
considered).

1.2.2 Generalised Andrásfai graphs of higher odd-girth

We consider the following straightforward variation of Andrásfai graphs of odd-girth
at least 2k ` 1, i.e., graphs without odd cycles of length at most 2k ´ 1. For
integers k ě 2 and d ě 1 let F k

d be the d-regular graph with vertex set

V pF k
d q “ tv1, . . . , vp2k´1qpd´1q`2u ,
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where tvi, vju forms an edge if

pk ´ 1qpd´ 1q ` 1 ď |i´ j| ď kpd´ 1q ` 1 . (1.4)

In particular, for k “ 2 we recover the definition of the Andrásfai graphs from (1.3)
and for general k ě 2 we have F k

1 “ K2, F k
2 “ C2k`1 and for every d ě 2 the

graph F k
d has odd-girth 2k ` 1 (see Figure 1.3).

v1

v2

v3

v4v5

v6

v7

v1 v2

v3

v4

v5

v6v7
v8

v9

v10

v11

v12
v1 v2

v3

v4

v5

v6

v7
v8v9v10

v11

v12

v13

v14

v15

v16
v17

Figure 1.3: Generalised Andrásfai graphs F 3
2 , F 3

3 , and F 3
4 of odd-girth 7.

Our main result generalises Theorem 6 for graphs of odd-girth at least 2k`1. In
fact, the constant 1

2p2k`1q2 appearing in Theorem 8 is best possible as balanced blow-
ups of C2k`1 show. One can attain this bound by taking k mutually independent
parts of the blow-up completely and the missing n{2´ kn{p2k ` 1q vertices from
one part, which has only edges to one of the parts that we already chose.

Theorem 8. If a graph G is homomorphic to a generalised Andrásfai graph F k
d

for some integers k ě 2 and d ě 1, then G is not p1
2 ,

1
2p2k`1q2 q-dense.

Analogous to the relation between Conjecture 5 and Theorem 6 one may wonder
if every p1

2 ,
1

2p2k`1q2 q-dense graph contains an odd cycle of length at most 2k ´ 1.
Letzter and Snyder [55] showed that a graph G on n vertices with δpGq ą n

5 and
odd-girth at least 7 is homomorphic to F 3

k , for some k. Therefore combining this
result with Theorem 8 we get the following.

Corollary 9. Let G be a graph with odd-girth at least 7 on n vertices. If δpGq ą n
5 ,

then G is not p1
2 ,

1
98q-dense.

A similar question for even holes is not interesting, because every dense graph
contains a 4-cycle.
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For k “ 2 Theorem 8 reduces to Theorem 6 and the rest of this work concerns
the proof of Theorem 8. The proof is given in Section 2.2 and makes use of a
geometric representation of graphs homomorphic to generalised Andrásfai graphs,
which we introduce in Section 2.1.

1.3 Squares of Hamiltonian cycles in 3-uniform

hypergraphs

Recall Pósa’s conjecture, which asked for a minimum degree condition that implies
the existence of a 2-nd power of a Hamiltonian cycle in a graph. We study an
analogous Pósa-type problem for 3-uniform hypergraphs, i.e., what minimum
pair-degree condition guarantees the existence of a squared Hamiltonian cycle?
A 3-uniform hypergraph H “ pV,Eq consists of a finite set V pHq of vertices

and a family E “ EpHq of 3-element subsets of V , which are called (hyper)edges.
Throughout this section and in Chapter 3 if we talk about hypergraphs we will
always mean 3-uniform hypergraphs. We will write xy and xyz instead of tx, yu
and tx, y, zu for edges and hyperedges. Similarly, we shall say that wxyz is a
tetrahedron or a Kp3q

4 in a hypergraph H if the triples wxy, wxz, wyz, and xyz are
edges of H.

There are at least two concepts of minimum degree and several notions of cycles
like tight, loose and Berge cycles [6] (see also [7]). Here we will only introduce
some of them.
Let H “ pV,Eq be a hypergraph and v P V a vertex of H then we denote by

dHpvq “ |te P E : v P eu|

the degree of v and by

δ1pHq “ mintdHpvq : v P V u

the minimum vertex degree of H taken over all v P V .
Similarly, for two vertices u, v P V we denote by

dHpu, vq “ |NHpu, vq| “ |te P E : u, v P eu|

the pair-degree of u and v and by

δ2pHq “ mintdHpu, vq : uv P V p2qu

10



the minimum pair-degree of H taken over all pairs of vertices of H.
We call a hypergraph P a tight path of length `, if |V pP q| “ ` ` 2 and there

exists an ordering of the vertices V pP q “ tv1, . . . , v``2u such that a triple e forms a
hyperedge of P iff e “ tvi, vi`1, vi`2u for some i P r`s. A tight cycle C of length ` ě 4
consists of a path v1 . . . v` of length `´2 and the additional hyperedges tv`´1, v`, v1u

and tv`, v1, v2u. Moreover, we call a hypergraph P 1 a squared path of length ` ě 2,
if |V pP 1q| “ ``2 and there exists an ordering of the vertices V pP 1q “ tv1, . . . , v``2u

such that a triple e forms a hyperedge iff e Ă tvi, vi`1, vi`2, vi`3u for some i P r`´1s.
Similarly, a squared cycle C 1 of length ` ě 5 consists of a squared path v1 . . . v` of
length `´ 2 and the additional hyperedges e, which are 3-subsets of at least one
of the sets tv`´2, v`´1, v`, v1u, tv`´1, v`, v1, v2u or tv`, v1, v2, v3u.

Thus an n-vertex hypergraph H contains a spanning squared cycle if its vertices
can be arranged on a circle in such a way that every triple of vertices contained
in an interval of length 4 is an edge of H. Such spanning squared cycles will be
called squared Hamiltonian cycles in this article. Clearly this is a natural analogue
of the concept of squared Hamiltonian cycles in graphs, where any pair contained
in an interval of length 3 is required to be an edge.

The first asymptotically optimal Dirac-type result for 3-uniform hypergraphs was
obtained by Rödl, Ruciński, and Szemerédi, who proved in [70] that every n-vertex
hypergraph H with δ2pHq ě p

1
2 ` op1qqn contains a Hamiltonian cycle. In [72] they

showed this for large n under the optimal assumption δ2pHq ě tn{2u. Moreover, it
was proved in [67] that a minimum vertex degree condition of δ1pHq ě p

5
9 `op1qq

n2

2

guaranties the existence of a Hamiltonian cycle as well, where the constant 5{9 is
again best possible. We will study which pair-degree condition implies a squared
Hamiltonian cycle in 3-uniform hypergraphs and we will prove the following
theorem in Chapter 3.

Theorem 10. For every α ą 0 there exists an integer n0 such that every 3-uniform
hypergraph H with n ě n0 vertices and with minimum pair-degree δ2pHq ě p

4
5`αqn

contains a squared Hamiltonian cycle.

We will denote by Kp3q
4 the complete 3-uniform hypergraph on 4 vertices. Note

that any four consecutive vertices in a squared Hamiltonian cycle span a copy
ofKp3q

4 . Therefore, if n is divisible by 4, a squared Hamiltonian cycle contains aKp3q
4 -

tiling, i.e., n4 vertex disjoint copies of Kp3q
4 . The problem to enforce Kp3q

4 -tilings by

11



an appropriate pair-degree condition was studied by Pikhurko [65], who exhibited
for every n divisible by 4 a hypergraph H on n vertices with δ2pHq “

3
4n´ 3 not

containing a Kp3q
4 -tiling. Moreover, he proved that every n-vertex hypergraph H

with δ2pHq ě
`3

4 ` op1q
˘

n contains vertex-disjoint copies of Kp3q
4 covering all but

at most 14 vertices. We remark that based on Pikhurko’s work [65] the pair-degree
problem for Kp3q

4 -tilings was solved by Keevash and Mycroft in [43]. They showed
that all 3-uniform hypergraphs H of sufficiently large order n with 4 | n and
minimum pair-degree

δ2pHq ě

$

&

%

3n{4´ 2 if 8 | n,

3n{4´ 1 otherwise

contain a perfect Kp3q
4 -tiling.

Notice that in view of Pikhurko’s example the constant 4
5 occuring in Theorem 10

cannot be replaced by anything below 3
4 in case 4 | n. In order to extend this

observation to all congruence classes modulo 4 we take a closer look at the
construction from [65]. Partition the vertex set V “ A0 Ÿ A1 Ÿ A2 Ÿ A3 such
that

ˇ

ˇ|Ai| ´ |Aj|
ˇ

ˇ ď 1 for 0 ď i ă j ď 3. Let H be the hypergraph (see Figure 1.4)
consisting of all the triples that satisfy one of the following properties

• have exactly two vertices in A0,

• intersect each of A0, Ai, Aj for some 1 ď i ă j ď 3,

• have three vertices inside some Ai with 1 ď i ď 3,

• have two vertices in Aj and on vertex in Ai for ij P r3sp2q.

Every Kp3q
4 intersecting A0 has exactly 2 vertices in A0, since A0 spans no edge and

if a Kp3q
4 would intersect A0 in only one vertex, then its remaining three vertices

must come from A1, A2, A3 (one from each set), but three such vertices do not
span an edge in H. A squared Hamiltonian cycle C Ď H needs to contain at least
one Kp3q

4 that intersects A0, but then each Kp3q
4 Ď C needs to intersect A0 in two

vertices. This implies |A0| ě n{2, which contradicts our assumption and shows
that H is indeed not containing a squared Hamiltonian cycle.

The proof of Theorem 10 is based on the absorption method developed by Rödl,
Ruciński, and Szemerédi in [72]. In Section 3.1 we will discuss the general structure
of the proof.

12



A0

A1

A2

A3

Figure 1.4: Complement of the hypergraph H, where the existing kinds of edges
are indicated in red, e.g. all tripels with 3 vertices in A0 span an edge
in the complement of H.

1.4 Powers of tight Hamiltonian cycles in

randomly perturbed hypergraphs

1.4.1 Hamiltonian cycles

The study of Hamiltonicity (the existence of a cycle as a spanning subgraph)
has been a central and fruitful area in graph theory. It is likely that good
characterizations of graphs with Hamiltonian cycles do not exist, and it becomes
natural to study sufficient conditions that guarantee Hamiltonicity. Among a large
variety of such results, recall that we already stated the most famous one, Dirac’s
theorem, which shows that every n-vertex graph (n ě 3) with minimum degree at
least n{2 is Hamiltonian.
Moreover, recall the binomial random graph Gpn, pq, which is another well-

studied object in graph theory. Pósa [66] and Korshunov [48] independently
determined the threshold for Hamiltonicity in Gpn, pq, which is plog nq{n. This
implies that almost all dense graphs are Hamiltonian. In this sense the degree
constraint in Dirac’s theorem is very strong. In fact, Bohman, Frieze, and Martin [8]

13



studied the random graph model that starts with a given, dense graph and adds m
random edges. In particular, they showed that for every α ą 0 there is c “ cpαq

such that if we start with a graph with minimum degree at least αn and we add cn
random edges, then the resulting graph is Hamiltonian a.a.s.. By considering the
complete bipartite graph with vertex classes of sizes αn and p1 ´ αqn, one sees
that the result above is tight up to the value of c.
It is natural to study Hamiltonicity problems in uniform hypergraphs. Given

a k-graph H with a set S of d vertices (where 1 ď d ď k´1) we define NHpSq to be
the collection of pk´dq-sets T such that SYT P EpHq, and let degHpSq :“ |NHpSq|

(the subscript H is omitted whenever H is clear from the context). The mini-
mum d-degree δdpHq of H is the minimum of degHpSq over all d-vertex sets S in H.
We refer to δk´1pHq as the minimum codegree of H.

In the last two decades, there has been growing interest in extending Dirac’s
theorem to k-graphs. Among other notions of cycles in k-graphs (e.g., Berge
cycles), the following ‘uniform’ cycles have attracted much attention. For inte-
gers 1 ď ` ď k ´ 1 and m ě 3, a k-graph F with mpk ´ `q vertices and m edges
is called an `-cycle if its vertices can be ordered cyclically so that each of its
edges consists of k consecutive vertices and every two consecutive edges (in the
natural order of the edges) share exactly ` vertices. Usually pk ´ 1q-cycles are also
referred to as tight cycles. We say that a k-graph contains a Hamiltonian `-cycle
if it contains an `-cycle as a spanning subgraph. In view of Dirac’s theorem,
minimum d-degree conditions that force Hamiltonian `-cycles (for 1 ď d, ` ď k´1)
have been studied intensively [3, 4, 14,16,30,35–37,42,52,53,67,69–72].

Let Gpkqpn, pq denote the binomial random k-graph on n vertices, where each k-
tuple forms an edge independently with probability p. The threshold for the
existence of Hamiltonian `-cycles has been studied by Dudek and Frieze [19,20],
who proved that for ` “ 1 the threshold is plog nq{nk´1, and for ` ě 2 the threshold
is 1{nk´` (they also determined sharp thresholds for every k ě 4 and ` “ k ´ 1).

Krivelevich, Kwan, and Sudakov [50] considered randomly perturbed k-graphs,
which are k-graphs obtained by adding random edges to a fixed k-graph. They
proved the following theorem, which mirrors the result of Bohman, Frieze, and
Martin [8] for randomly perturbed graphs mentioned earlier.

Theorem 11. For any k ě 2 and α ą 0, there is ck “ ckpαq for which the
following holds. Let H be a k-graph on n P pk ´ 1qN vertices with δk´1pHq ě αn.

14



If p “ ckn
´pk´1q, then the union HYGpkqpn, pq asymptotically almost surely contains

a Hamiltonian 1-cycle.

The authors of [50] also obtained a similar result for perfect matchings. These
results are tight up to the value of ck, as shown by a simple ‘bipartite’ construc-
tion. McDowell and Mycroft [58] and, subsequently, Han and Zhao [38] extended
Theorem 11 to Hamiltonian `-cycles and other degree conditions.

1.4.2 Powers of Hamiltonian cycles

Powers of cycles are natural generalizations of cycles. Given k ě 2 and r ě 1, we
say that a k-graph with m vertices is an rth power of a tight cycle if its vertices
can be ordered cyclically so that each consecutive k ` r ´ 1 vertices span a copy
of Kpkq

k`r´1, the complete k-graph on k` r´ 1 vertices, and there are no other edges
than the ones forced by this condition. This extends the notion of (tight) cycles in
hypergraphs, which corresponds to the case r “ 1.
The existence of powers of paths and cycles has also been intensively stud-

ied. For example, the famous Pósa–Seymour conjecture, which was proved by
Komlós, Sárközy, and Szemerédi [46,47] for sufficiently large graphs, states that
every n-vertex graph with minimum degree at least rn{pr ` 1q contains the rth

power of a Hamiltonian cycle. A general result of Riordan [68] implies that,
for r ě 3, the threshold for the existence of the rth power of a Hamiltonian cycle
in Gpn, pq is n´1{r. The case r “ 2 was investigated by Kühn and Osthus [54], who
proved that p ě n´1{2`ε suffices for the existence of the square of a Hamiltonian
cycle in Gpn, pq, which is sharp up to the nε factor. This was further sharpened
by Nenadov and Škorić [62] to p ě Cplog nq4{

?
n. Moreover, Bennett, Dudek,

and Frieze [5] proved a result for the square of a Hamiltonian cycle in randomly
perturbed graphs, extending the result of Bohman, Frieze, and Martin [8].

Theorem 12. For any α ą 0 there is K ą 0 such that the following holds. Let G
be a n-vertex graph with δpGq ě p1{2`αqn and suppose p “ ppnq ě Kn´2{3 log1{3 n.
Then the union H YGpn, pq a.a.s. contains the square of a Hamiltonian cycle.

Very recently Dudek, Reiher, Ruciński, and Schacht [21] obtained the following
result.
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Theorem 13. For every α ą 0 and k ě 1 there exists C ą 0 such that if G is
an n-vertex graph with δpGq ě pk´1

k
`αqn, then GYGpn, C

n
q a.a.s. contains the kth

power of a Hamiltonian cycle.

Note that in Theorem 12 the randomness that is required is much weaker than
the one needed in the result for the pure random model (which is essentially n´1{2).
The authors of [5] also asked for similar results for higher powers of Hamilton
cycles in randomly perturbed graphs.
Parczyk and Person [64, Theorem 3.7] proved that, for k ě 3 and r ě 2,

the threshold for the existence of an rth power of a tight Hamilton cycle in the
random k-graph Gpkqpn, pq is n´p

k`r´2
k´1 q

´1

. Our main result, Theorem 14 below,
shows that if we consider randomly perturbed k-graphs HYGpkqpn, pq with δk´1pHq

reasonably large, then p “ ppnq ě n´p
k`r´2
k´1 q

´1
´ε is enough to guarantee the

existence of an rth power of a tight Hamilton cycle with high probability.

Theorem 14 (Main result). For all integers k ě 2 and r ě 1 such that k ` r ě 4
and α ą 0, there is ε ą 0 such that the following holds. Suppose H is a k-graph
on n vertices with

δk´1pHq ě

˜

1´
ˆ

k ` r ´ 2
k ´ 1

˙´1

` α

¸

n (1.5)

and p “ ppnq ě n´p
k`r´2
k´1 q

´1
´ε. Then a.a.s. the union H Y Gpkqpn, pq contains

the rth power of a tight Hamiltonian cycle.

We remark that our proof only gives a small ε, and it would be interesting
to know if one can get a larger gap in comparison with the result in the purely
random model, as in Theorem 12. We remark that the case k ě 3 and r “ 1
of Theorem 14 was first proved by McDowell and Mycroft [58]. Other results in
randomly perturbed graphs can be found in [2, 12,13,38,51].

The core of the proof of Theorem 14 follows the Absorbing Method introduced by
Rödl, Ruciński, and Szemerédi in [70], combined with results concerning binomial
random hypergraphs.
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2 On the local density problem for
graphs of given odd-girth

In this chapter we will prove the following result.

Theorem 15. If a graph G is homomorphic to a generalised Andrásfai graph F k
d

for some integers k ě 2 and d ě 1, then G is not p1
2 ,

1
2p2k`1q2 q-dense.

In Section 2.1 we show an alternative geometric characterisation of generalised
Andrásfai graph and investigate some properties of this representation. The proof
of Theorem 15 will be based on this geometric characterisation and is part of
Section 2.2.

2.1 A geometric characterisation of generalised

Andrásfai graphs

We consider graphs G that are homomorphic to some generalised Andrásfai
graph F k

d . For the proof of Theorem 15 it will be convenient to work with a
geometric representation of such graphs G. In that representation we will arrange
the vertices of G on the unit circle R{Z and edges between two vertices x and y
may only appear depending on their angle with respect to the centre of the circle
(see Lemma 16). For the proof of Theorem 15 it suffices to consider edge maximal
graphs G that are homomorphic to F k

d for some integers k ě 2 and d ě 1. In other
words, we may assume G is a blow-up of F k

d .
For example, let G be a blow-up of F2 “ C5. One can distribute the vertices

of F2 equally spaced on the unit circle (see Figure 2.1). Then we place all vertices
of G that correspond to the blow-up class of vi into a small ε-ball around vi on
the unit circle (cf. green arcs in Figure 2.1). For a sufficiently small ε, all vertices
in an ε-ball around vi have the same neighbours and they can be characterised
by having their smaller angle with respect to the centre bigger than 120˝ (cf. red
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v1

v2

v3v4

v5

´ε ε

1{32{3

o

Figure 2.1: A copy of F2 “ C5 and a representation of a blow-up on the unit circle.

and blue lines in Figure 2.1). The following lemma states this fact for blow-ups of
generalised Andrásfai graphs.

Lemma 16. If G is a blow-up of a generalised Andrásfai graph F k
d for some

integers k ě 2 and d ě 1, then the vertices of G can be arranged on the unit
circle R{Z with centre o such that

tx, yu P EpGq ðñ ?xoy ą
k ´ 1
2k ´ 1 ¨ 360˝ , (2.1)

where ?xoy denotes the smaller angle between x and y with respect to o.

We remark that conversely every graphG “ pV,Eq with V Ď R{Z satisfying (2.1)
is a blow-up of F k

d for some appropriate d ě 1. However, since this direction is not
utilised here, we omit the formal proof of this observation.

Proof of Lemma 16. For integers k ě 2 and d ě 1 let G be a blow-up of the
generalised Andrásfai graph F k

d (defined in (1.4)) signified by some graph homo-
morphism ϕ : GÑ F k

d and let m “ p2k ´ 1qpd´ 1q ` 2 be the number of vertices
of F k

d . Set
ε “

1
2p2k ´ 1qm .

For i P rms we arrange the vertices of G that are contained in ϕ´1pviq in the ε-ball
around the point i´1

m
. Owing to the symmetry it suffices to check that (2.1) holds

for an arbitrary vertex x P ϕ´1pv1q Ď V pGq.
By definition of F k

d the neighbourhood of v1 is

Npv1q “ tvpk´1qpd´1q`2, . . . , vkpd´1q`2u .
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Note that the choice of ε gives

`

pk´1qpd´1q`1
m

´ ε, kpd´1q`1
m

` ε
˘

“
`

k´1
2k´1 ` ε,

k
2k´1 ´ ε

˘

and, consequently, all neighbours y of x are placed in the interval p k´1
2k´1`ε,

k
2k´1´εq.

Since x P ϕ´1pv1q itself is placed in p´ε, εq, this implies the forward direction
of (2.1). The converse direction follows from the observation

`

i´1
m
´ ε, i´1

m
` ε

˘

X
`

k´1
2k´1 ´ ε,

k
2k´1 ` ε

˘

“ ∅

for every i P rmsr tpk ´ 1qpd´ 1q ` 2, . . . , kpd´ 1q ` 2u.

We close this section with a few useful estimates on the number of vertices
contained in intervals of R{Z for geometric representations of blow-ups G of
generalised Andrásfai graphs. Let V be the set of points of the unit circle that are
identified with the vertices of G. For an interval I Ď R{Z, we write λpIq for the
number of vertices of G contained in I, i.e.,

λpIq “ |V X I| . (2.2)

This defines expressions such as λ
`

ra, bs
˘

, λ
`

ra, bq
˘

, etc.
Since subsets of tn{2u vertices are of special interest, we denote for every ξ P R{Z

by zξ the vertex from V with the property

λ
`

rξ, zξs
˘

“ tn{2u . (2.3)

In the proof of Theorem 15 we shall use the following lemma and, since the proof
will be carried out by contradiction, the graphs G that we shall consider also
satisfy the density assumption for parts (iv ) and (v ).

Lemma 17. For integers k ě 2 and d ě 1 let G “ pV,Eq be a blow-up of the
generalised Andrásfai graph F k

d having a geometric representation with V Ď R{Z
satisfying (2.1) and |V | “ n. Then the following holds for every interval I Ď R{Z:

(i ) If I has length at most k´1
2k´1 , then V X I is an independent set in G and

λpIq ď αpGq.

(ii ) If I has length at most 1
2k´1 , then λpIq ď p2k ´ 3qαpGq ´ pk ´ 2qn.

(iii ) If I has length at least 1
2k´1 , then λpIq ě n´ 2αpGq.
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If in addition G is p1
2 ,

1
2p2k`1q2 q-dense and 2p2k ` 1q | n, then the following holds

for ξ P R{Z:

(iv ) If λ
`

rξ, ξ ` k´1
2k´1s

˘

“ αpGq, then λ
`

rξ, zξ ´
k´1
2k´1q

˘

ą 2αpGq ´ 2k´1
2k`1n.

(v ) We have λ
`

pξ ´ 1
2k´1 , ξ `

1
2k´1q

˘

ą 4
2k`1n´ 2λ

`

pξ ` k´1
2k´1 , ξ ´

k´1
2k´1q

˘

.

Proof. Part (i ) follows directly from the definition of the geometric representation
in (2.1). For part (ii ) we note that

p2k ´ 3q k ´ 1
2k ´ 1 “ pk ´ 2q ` 1

2k ´ 1 .

Consequently, there exist 2k´3 consecutive intervals of length k´1
2k´1 that wrap k´2

times around R{Z in such a way that only I is covered k ´ 1 times. Therefore, (i )
yields

p2k ´ 3qαpGq ě pk ´ 2qn` λpIq

and the desired estimate follows.
Part (iii ) is also a consequence of (i ) and the observation that there are two

intervals of length at most k´1
2k´1 that together with I cover R{Z once.

In the proofs of parts (iv ) and (v ) we make use of the inequality

λ
`

rξ, zξ ´
k´1
2k´1q

˘

ą
2n

2k ` 1 ´ 2λ
`

pξ ` k´1
2k´1 , zξs

˘

, (2.4)

which we show first. For that we note that (2.1) implies

eG
`

rξ, zξs X V
˘

ď λ
`

rξ, zξ ´
k´1
2k´1q

˘

¨ λ
`

pξ ` k´1
2k´1 , zξs

˘

.

Hence, the additional assumption that G is p1
2 ,

1
2p2k`1q2 q-dense combined with the

simplest case of the inequality between the arithmetic and geometric mean yields
ˆ

n

2k ` 1

˙2

ă 2eG
`

rξ, zξs X V
˘

ď
1
4

´

λ
`

rξ, zξ ´
k´1
2k´1q

˘

` 2λ
`

pξ ` k´1
2k´1 , zξs

˘

¯2
,

which establishes (2.4).
The remaining parts (iv ) and (v ) follow from (2.4). In fact, for (iv ) the additional

assumption λ
`

rξ, ξ ` k´1
2k´1s

˘

“ αpGq yields λ
`

pξ ` k´1
2k´1 , zξs

˘

“ n{2 ´ αpGq and,
hence, (iv ) follows from (2.4).
For the proof of (v ) we will apply (2.4) twice. First we apply it for the

given ξ P R{Z and, since by (i ) we also have zξ P pξ ` k´1
2k´1 , ξ `

k
2k´1q, we obtain

λ
`

rξ, ξ ` 1
2k´1q

˘

ě λ
`

rξ, zξ ´
k´1
2k´1q

˘ (2.4)
ą

2n
2k ` 1 ´ 2λ

`

pξ ` k´1
2k´1 , zξs

˘

. (2.5)
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The second symmetric application of (2.4) in ´R{Z to ´ξ yields

λ
`

pξ ´ 1
2k´1 , ξs

˘ (2.4)
ą

2n
2k ` 1 ´ 2λ

`

rz1ξ, ξ ´
k´1
2k´1q

˘

, (2.6)

for z1ξ P pzξ, ξq with λ
`

rz1ξ, ξs
˘

“ n{2. Consequently, if ξ R V then summing the
inequalities (2.5) and (2.6) yields part (v ). However, if ξ P V then still the same
conclusion follows, since p2k ` 1q | n implies that the right-hand sides of (2.5)
and (2.6) are integers and both inequalities are strict.

2.2 Blow-ups of generalised Andrásfai graphs

In this section we establish Theorem 15. For that it suffices to show that blow-ups G
of generalised Andrásfai graphs F k

d are not p1
2 ,

1
2p2k`1q2 q-dense and we will appeal

to the geometric representation from Lemma 16 of such graphs. The strategy
of our proofs is that we try to find an interval of consecutive vertices spanning
few edges. To this end we distinguish two cases depending on the independence
number αpGq and start with the case that αpGq is not too large.

Proposition 18. If G is a blow-up of a generalised Andrásfai graph F k
d for

some integers k ě 2 and d ě 1 with |V pGq| “ n and αpGq ă k
2k`1n, then G is

not p1
2 ,

1
2p2k`1q2 q-dense.

Proof. Let G be a blow-up of F k
d with |V pGq| “ n and αpGq ă k

2k`1n. Without loss
of generality we may assume that n is divisible by 2p2k` 1q. This follows from the
observation, that a graph G is p1

2 ,
1

2p2k`1q2 q-dense if and only if the balanced blow-up
of G obtained by replacing each vertex by 2p2k ` 1q vertices is p1

2 ,
1

2p2k`1q2 q-dense.
Suppose for the sake of contradiction that G is p1

2 ,
1

2p2k`1q2 q-dense. From now on
consider the geometric representation of G given by Lemma 16. Let V be the set
of points of the unit circle that are identified with the vertices of G. Recall that
in (2.2) we defined λpIq as the number of vertices contained in an interval I Ď R{Z.
It will sometimes be convenient to count vertices on the boundary of an interval
only with weight 1{2. For that we write terms like λpxa, byq, λpxa, bqq, where the
brackets “x” or “y” mark that the left or right end-point of the respective interval
is only counted 1{2 if it is a vertex. Also recall that for ξ P R{Z we defined zξ P V
in (2.3). Since by our assumption αpGq ă n{2, we infer from part (i ) of Lemma 17
that

zξ P
`

ξ ` k´1
2k´1 , ξ `

k
2k´1

˘

, (2.7)
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which yields together with Lemma 17(i ) that
ÿ

xPVXrξ,zξ´
k´1
2k´1 q

ˇ

ˇNGpxq X px, zξs
ˇ

ˇ “ eG
`

rξ, zξs X V
˘

. (2.8)

Moreover, part (ii ) of Lemma 17 applied to intervals rx` k´1
2k´1 , x`

k
2k´1s combined

with the assumption αpGq ă k
2k`1n leads to

λ
`

xx` k´1
2k´1 , x`

k
2k´1y

˘

ď λ
`

rx` k´1
2k´1 , x`

k
2k´1s

˘

ď p2k ´ 3qαpGq ´ pk ´ 2qn ă p2k ´ 3q k

2k ` 1n´ pk ´ 2qn “ 2
2k ` 1n

for every vertex x P V . Consequently,
ÿ

xPV

´

λ
`

xx´ k´1
2k´1 , xy

˘

` λ
`

xx, x` k´1
2k´1y

˘

¯

“
ÿ

xPV

´

λ
`

xx, x` 1y
˘

´ λ
`

xx` k´1
2k´1 , x`

k
2k´1y

˘

¯

ą n2
´

2
2k ` 1n

2
“

2k ´ 1
2k ` 1n

2

and by symmetry we may assume that
ÿ

xPV

λ
`

xx, x` k´1
2k´1y

˘

ą
1
2 ¨

2k ´ 1
2k ` 1n

2 . (2.9)

In view of (2.9) the following claim seems a bit surprising and, in fact, it will lead
to the desired contradiction. For a simpler notation we set

Vξ “ V X rξ, zξ ´
k´1
2k´1q (2.10)

for ξ P R{Z.

Claim 19. For every ξ P R{Z we have
ÿ

xPVξ

´

λ
`

xx, x` k´1
2k´1y

˘

´
1
2 ¨

2k ´ 1
2k ` 1n

¯

ă 0 .

Proof of Claim 19. Fix some ξ P R{Z. Since we assume thatG is p1
2 ,

1
2p2k`1q2 q-dense,

we have
ÿ

xPVξ

λ
`

px` k´1
2k´1 , zξs

˘

“
ÿ

xPVξ

ˇ

ˇNGpxq X px, zξs
ˇ

ˇ

(2.8)
“ eG

`

rξ, zξs X V
˘

ą
n2

2p2k ` 1q2 .
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Therefore,
ÿ

xPVξ

λ
`

xx, x` k´1
2k´1s

˘

“
ÿ

xPVξ

´

λ
`

xx, zξs
˘

´ λ
`

px` k´1
2k´1 , zξs

˘

¯

ă
ÿ

xPVξ

λ
`

xx, zξs
˘

´
n2

2p2k ` 1q2

“
ÿ

xPVξ

´

λ
`

rξ, zξs
˘

´ λ
`

rξ, xy
˘

¯

´
n2

2p2k ` 1q2

(2.3)
“ |Vξ| ¨

n

2 ´
n2

2p2k ` 1q2 ´
ÿ

xPVξ

λ
`

rξ, xy
˘

. (2.11)

We observe
ÿ

xPVξ

λ
`

rξ, xy
˘

“

|Vξ|
ÿ

i“1
pi´ 1

2q “
|Vξ|

2

2 (2.12)

and combining (2.11) and (2.12) yields
ÿ

xPVξ

´

λ
`

xx, x` k´1
2k´1s

˘

´
1
2 ¨

2k ´ 1
2k ` 1n

¯

ă|Vξ| ¨

ˆ

n

2 ´
1
2 ¨

2k ´ 1
2k ` 1n

˙

´
n2

2p2k ` 1q2 ´
|Vξ|

2

2 “ ´
1
2

ˆ

|Vξ| ´
n

2k ` 1

˙2

ď 0 ,

which establishes the claim.

Now set V ˚ “
 

ξ P R{Z : ξ ` k´1
2k´1 P V

(

. Starting with an arbitrary xp0q P V ˚

we define recursively a sequence of members of V ˚ by putting

xpi` 1q “ zxpiq ´
k´1
2k´1

for every i P N. Since V ˚ is finite, this sequence is eventually periodic and thus we
could have chosen xp0q such that xpmq “ xp0q holds for some m ě 2. Let w P N
denote the number of times we wind around the circle when reaching xpmq from xp0q
by this construction. By Claim 19 we know that

m´1
ÿ

i“0

ÿ

xPVxpiq

´

λ
`

xx, x` k´1
2k´1y

˘

´
1
2 ¨

2k ´ 1
2k ` 1n

¯

ă 0 .

On the other hand, (2.9) yields
m´1
ÿ

i“0

ÿ

xPVxpiq

´

λ
`

xx, x` k´1
2k´1y

˘

´
1
2 ¨

2k ´ 1
2k ` 1n

¯

(2.10)
“ w ¨

ÿ

xPV

´

λ
`

xx, x` k´1
2k´1y

˘

´
1
2 ¨

2k ´ 1
2k ` 1n

¯

(2.9)
ą w ¨

ˆ

1
2 ¨

2k ´ 1
2k ` 1n

2
´

1
2 ¨

2k ´ 1
2k ` 1n

2
˙

“ 0 ,
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which is a contradiction and concludes the proof of Proposition 18.

It is left to consider the case when G contains a large independent set.

Proposition 20. If G is a blow-up of a generalised Andrásfai graph F k
d for

some integers k ě 2 and d ě 1 with |V pGq| “ n and αpGq ě k
2k`1n, then G is

not p1
2 ,

1
2p2k`1q2 q-dense.

Proof. Similarly as in the proof of Proposition 18 we consider the geometric
representation of an n-vertex graph G that is a blow-up of a generalised An-
drásfai graph F k

d and identify the vertex set of G with some set V Ď R{Z so
that (2.1) holds. Again we may assume without loss of generality that n is divisible
by 2p2k ` 1q and we suppose for a contradiction that G is p1

2 ,
1

2p2k`1q2 q-dense. In
particular, αpGq ă n{2 and the additional assumptions for parts (iv ) and (v ) of
Lemma 17 are satisfied.
Observe that every independent set of G is contained in some interval of R{Z

of length k´1
2k´1 . Therefore, without loss of generality we may assume that r0, k´1

2k´1s

contains a maximum independent set, i.e.,

λ
`

r0, k´1
2k´1s

˘

“ αpGq ě
k

2k ` 1n .

Recall that in (2.3) we defined a point z0 with λ
`

r0, z0s
˘

“ n{2. Let the vertex z1

be defined similarly by λ
`

rz1, k´1
2k´1s

˘

“ n{2. Then we have

λ
`

pz0, z
1
q
˘

“ n´ λ
`

rz1, 0q
˘

´ λ
`

r0, k´1
2k´1s

˘

´ λ
`

p k´1
2k´1 , z0s

˘

“ n´ pn{2´ αpGqq ´ αpGq ´ pn{2´ αpGqq

“ αpGq

and since z0, z1 P V the maximality of αpGq discloses that the interval rz0, z
1 s

has at least the length k´1
2k´1 . Hence there is a closed subinterval rbk, b0s of rz0, z

1 s

whose length is exactly k´1
2k´1 . We complete b0 and bk to the vertices of a regu-

lar p2k ´ 1q-gon, i.e., we consider the points bi P R{Z for i P t0, . . . , 2k ´ 2u such
that the intervals rbi, bi`1s have length 1

2k´1 (see Figure 2.2). Notice that αpGq ă n{2
entails

z0 P pbk´1, bks . (2.13)

Below we apply Lemma 17 to obtain several bounds on the numbers λ
`

rb1, bk´1s
˘

and λ
`

rbk`1, b2k´2s
˘

that eventually lead to the desired contradiction. Applying
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0

k´1
2k´1

b0 b1
b2

bk´2

bk´1bk
bk`1

b2k´2
z1

z0

Figure 2.2: Largest independent set of G is contained in the interval r0, k´1
2k´1s and

the intervals r0, z0s, rz1, k´1
2k´1s contain n{2 vertices each. The bi form a

regular p2k ´ 1q-gon.

Lemma 17 (iv ) with ξ “ 0 gives

λ
`

r0, b1q
˘

“ λ
`

r0, bk ´ k´1
2k´1q

˘ (2.13)
ě λ

`

r0, z0 ´
k´1
2k´1q

˘

ą 2αpGq ´ 2k ´ 1
2k ` 1n

and, by symmetry, we also have

λ
`

pbk´1,
k´1
2k´1s

˘

ą 2αpGq ´ 2k ´ 1
2k ` 1n .

Consequently, we arrive at

λ
`

rb1, bk´1s
˘

“ λ
`

r0, k´1
2k´1s

˘

´ λ
`

r0, b1q
˘

´ λ
`

pbk´1,
k´1
2k´1s

˘

ă αpGq ´ 2
ˆ

2αpGq ´ 2k ´ 1
2k ` 1n

˙

“
4k ´ 2
2k ` 1n´ 3αpGq . (2.14)

In particular, for the case k “ 2 this implies

0 ď λ
`

rb1, b1s
˘

ă
6
5n´ 3αpGq ,

which contradicts our assumption αpGq ě 2n{5. Similarly, for k “ 3 inequal-
ity (2.14) combined with Lemma 17 (iii ) gives

n´ 2αpGq ď λ
`

rb1, b2s
˘

ă
10
7 n´ 3αpGq ,

which again contradicts the assumption αpGq ě 3n{7 of this case. Consequently,
for the rest of the proof we can assume that k ě 4.
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Next we note that both intervals pbk´1, b2k´2q and pbk`1, b1q have length k´1
2k´1

and, hence, Lemma 17 (i ) implies

λ
`

pbk´1, b2k´2q
˘

` λ
`

pbk`1, b1q
˘

ď 2αpGq

and, therefore,

λ
`

pbk`1, b2k´2q
˘

ď 2αpGq ´ λ
`

pbk´1, b1q
˘

“ 2αpGq ´
´

n´ λ
`

rb1, bk´1s
˘

¯

. (2.15)

Finally, below we will verify

4k ´ 5
2k ` 1n´ 2αpGq ´ λ

`

rb1, bk´1s
˘

ă λ
`

pbk`1, b2k´2q
˘

. (2.16)

Before we prove (2.16), we note that using (2.15) as an upper bound for the
right-hand side of (2.16) leads to

6k ´ 4
2k ` 1n´ 4αpGq ă 2λ

`

rb1, bk´1s
˘ (2.14)
ă

8k ´ 4
2k ` 1n´ 6αpGq .

This inequality contradicts the assumption αpGq ě k
2k`1 of the proposition and,

hence, we conclude the proof by establishing (2.16).
For the proof of inequality (2.16) we appeal to Lemma 17 (v ) with ξ “ bi for

every i “ 2, . . . , k ´ 2. We set

Ii “ pbi ´
1

2k´1 , bi `
1

2k´1q “ pbi´1, bi`1q

and then in view of

pbi `
k´1
2k´1 , bi ´

k´1
2k´1q “ pbi`k´1, bi`kq

part (v ) translates to

λpIiq ą
4

2k ` 1n´ 2λ
`

pbi`k´1, bi`kq
˘

. (2.17)

Furthermore, we note that for every i P t2, . . . , k ´ 2u we have Ii Ď rb1, bk´1s and
each of the two families

I0 “ tIi : i even and 2 ď i ď k ´ 2u and I1 “ tIi : i odd and 2 ď i ď k ´ 2u

consists of mutually disjoint intervals. Moreover, we can add the interval rb1, b2q

to I1 and pbk´2, bk´1s either to I1 (when k is even) or to I0 (when k is odd) and
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still each family consists of mutually disjoint intervals all contained in rb1, bk´1s.
As a result we get

2λ
`

rb1, bk´1s
˘

ě λ
`

rb1, b2q
˘

`

k´2
ÿ

i“2
λpIiq ` λ

`

pbk´2, bk´1s
˘

.

Moreover, using the estimate from Lemma 17 (iii ) for λ
`

rb1, b2q
˘

and λ
`

pbk´2, bk´1s
˘

and (2.17) for every term in the middle sum, we arrive at

2λ
`

rb1, bk´1s
˘

ą
`

n´ 2αpGq
˘

`

k´2
ÿ

i“2

ˆ

4n
2k ` 1 ´ 2λ

`

pbi`k´1, bi`kq
˘

˙

`
`

n´ 2αpGq
˘

ě 2n´ 4αpGq ` pk ´ 3q ¨ 4n
2k ` 1 ´ 2λ

`

pbk`1, b2k´2q
˘

“
8k ´ 10
2k ` 1 n´ 4αpGq ´ 2λ

`

pbk`1, b2k´2q
˘

.

Rearranging the last inequality gives (2.16) and this concludes the proof.
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3 Squares of Hamiltonian cycles in
3-uniform hypergraphs

In this chapter we will prove the following result.

Theorem 21. For every α ą 0 there exists an integer n0 such that every 3-uniform
hypergraph H with n ě n0 vertices and with minimum pair-degree δ2pHq ě p

4
5`αqn

contains a squared Hamiltonian cycle.

3.1 Building squared Hamiltonian Cycles in

Hypergraphs

In this section we will show the outline of the proof of Theorem 21. We start by
presenting the dependencies of the auxiliary constants we use in the propositions
required for the proof of Thereom 21. We write a " b to indicate that b will be
chosen sufficiently small depending on a and all other constants appearing on the
left of b. In Theorem 21 some α with 1 " α ą 0 is given. We fix the auxiliary
constants ϑ˚ and an integer M P N, such that

1 " α " 1{M " ϑ˚ " 1{n .

The connecting lemma stated below plays a crucial rôle in the proof of Theorem 21.
It asserts that any two disjoint triples of vertices can be connected by many “short”
squared paths.

Proposition 22. (Connecting Lemma) There are an integer M and ϑ˚ ą 0, such
that for all sufficiently large hypergraphs H “ pV,Eq with δ2pHq ě p4{5 ` αq|V |

and all disjoint triples pa, b, cq and px, y, zq with abc, xyz P E there exists m ăM

for which there are at least ϑ˚nm squared paths from abc to xyz with m internal
vertices.
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The proof of the connecting lemma forms the content of Section 3.2. We can
connect any two squared paths by the connecting lemma using their start or
endtriples, but for our constructions it will be important that we do not interfere
with any already constructed subpath. Therefore we put a small reservoir of
vertices aside, such that if we do not connect too many times it is possible to
use vertices of the reservoir set only. The following lemma, which we prove in
Section 3.3, shows the existence of such a set.

Proposition 23. (Reservoir Lemma) Suppose that for a given α ą 0 the con-
stants 1{M " ϑ˚ are as provided by the connecting lemma and that H “ pV,Eq

is a sufficiently large hypergraph with |V | “ n and δ2pHq ě p4{5 ` αqn. Then
there exists a reservoir set R Ď V of size |R| ď ϑ2

˚n such that for all R1 Ď R
with |R1| ď ϑ4

˚n and for all disjoint triples pa, b, cq and px, y, zq with abc, xyz P E
there exists a connecting squared path in H with less than M internal vertices all
of which belong to RrR1.

Moreover, we put aside an absorbing path PA, which will absorb an arbitrary
but not too large set X of leftover vertices at the end of the proof, such that we
get a squared Hamiltonian cycle.

Proposition 24 (Absorbing path). Let α " 1{M " ϑ˚ be as usual and
let H “ pV,Eq be a sufficiently large hypergraph with |V | “ n and minimum pair-
degree δ2pHq ě p4{5` αqn. There exists an (absorbing) squared path PA Ď H ´R
such that

(1) |V pPAq| ď ϑ˚n,

(2) for every set X Ď V r V pPAq with |X| ď 2ϑ2
˚n there is a squared path in H

whose set of vertices is V pPAq YX and whose end-triples are the same as
those of PA.

In Section 3.4 we prove Proposition 24 and in Section 3.5 we will show the
following theorem.

Theorem 25. Given α, µ ą 0, and Q P N there exists n0 P N such that in every
hypergraph H with vpHq “ n ě n0 and δ2pHq ě p3{4 ` αqn all but at most µn
vertices of H can be covered by vertex-disjoint squared paths with Q vertices.
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Also in Section 3.5 we use this theorem to prove the existence of an almost
spanning squared cycle that covers all but at most 2ϑ2

˚n vertices.

Proposition 26. Given α ą 0, let ϑ˚ ą 0 and M P N be the constants from
the connecting lemma. There exists n0 P N such that in every hypergraph H

with vpHq “ n ě n0 and δ2pHq ě p4{5 ` αqn all but at most 2ϑ2
˚n vertices of H

can be covered by a squared cycle such that some absorbing squared path PA is an
induced subgraph of this cycle.

Combining Proposition 24 and Proposition 26 implies the existence of a squared
Hamiltonian cycle and therefore proves Theorem 21.

3.2 Connecting Lemma

We will show some of our results with the constant 3
4 and others for 4

5 . Moreover we
fix the auxiliary constants β, γ, ϑ˚ and integers K, `,M P N obeying the hierarchy

1 " α " β, γ, 1{` " 1{K " 1{M " ϑ˚ " 1{n .

3.2.1 Connecting properties

We prove that the graph properties stated in the following lemma imply a connecting
property and use this lemma later to show that some auxiliary graphs G3 and Gv

have this connecting property.

Lemma 27. Let γ ď 1{16 and let G “ pV,Eq with |V | “ n be a graph
with δpGq ě

?
γn such that for every partition X Ÿ Y “ V of the vertex set

with |X|, |Y | ě ?γn we have eGpX, Y q ě γn2.
Then for every pair of distinct vertices x, y P V pGq there exists

some s “ spx, yq ď 4{γ for which there are at least Ωpns´1q many x-y-walks of
length s.

Proof. For an arbitrary vertex x P V and an integer i ě 1 we define

Zi
x “ tz P V : there are at least pγ2

{4qsns´1 x-z-walks of length s in G

for some s ď iu .
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For i ě 2 we have Zi
x Ě Zi´1

x and therefore

|Zi
x| ě |Z

1
x| “ |NGpxq| ě δpGq ě

?
γn .

Now we show that for every integer i with 1 ď i ď 2{γ at least one of the
following holds:

|V r Zi
x| ă

?
γn or |Zi`1

x r Zi
x| ě

γn

2 . (3.1)

If |V r Zi
x| ě

?
γn, then the assumption yields that

eGpZ
i
x, V r Zi

xq ě γn2 .

This implies that at least γn{2 vertices in VrZi
x have at least γn{2 neighbours in Zi

x.
For such a vertex u P V r Zi

x at least a proportion of 1{i ě γ{2 of its neighbours
in Zi

x is connected to x by walks of the same length, which implies u P Zi`1
x . As this

argument applies to γn{2 vertices outside Zi
x we thus obtain |Zi`1

x r Zi
x| ě γn{2,

which concludes the proof of (3.1).
It is not possible that the right outcome of (3.1) holds for each positive i ď 2{γ.

Therefore we have |V r Zj
x| ă

?
γn for j “ t2{γu. So for x, y P V at

least n´ 2?γn ě n{2 vertices z are contained in the intersection Zj
x X Zj

y . For
each z P Zj

x X Zj
y we get constants s1, s2 ď j ď 2{γ such that there are at

least pγ2{4qs1ns1´1 x-z-walks of length s1 and there are at least pγ2{4qs2ns2´1 z-y-
walks of length s2. Therefore, for sz “ s1 ` s2 ě 2 there are at least pγ2{4qsznsz´2

x-y-walks of length sz passing through z.
There are at least n{2 vertices this argument applies to and by the box principle

at least n
2 {

4
γ2 of them give rise to the same pair ps1, s2q and, consequently, the

same value of sz. Moreover, the walks obtained for those vertices are distinct and
hence for some spx, yq P r2, 4{γs there are at least

pγ2n{8q ¨ pγ2
{4qspx,yqnspx,yq´2

ě 1
2pγ

2
{4q4{γ`1nspx,yq´1

x-y-walks of length spx, yq.

3.2.2 The auxiliary graph G3

The first auxiliary graph we will study is the following.
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Definition 28. For a 3-uniform hypergraph H “ pV,Eq we define the auxiliary
graph G3 (see Fig. 3.1) as the graph with vertex set V pG3q “ V and

xy P EpG3q ðñ x ‰ y and #tpa, b, cq P V 3 : abcx and abcy are Kp3q
4 u ě βn3 .

a

x

b

c

y

Figure 3.1: We have an edge xy P EpG3q iff there are “many” edges abc P EpHq
for which ab, ac, bc P Lpxq X Lpyq.

The main result of this subsection is the following proposition.

Proposition 29. Given α ą 0 there exist n0, ` P N such that in every hyper-
graph H with vpHq “ n ě n0 and δ2pHq ě p3{4 ` αqn for every pair of distinct
vertices x, y P V pGq there exists some t “ tpx, yq ď ` for which there are at
least Ωpnt´1q x-y-walks of length t in G3.

The next lemma gives us a lower bound on the minimum degree of G3.

Lemma 30. If n " α´1 and H is a hypergraph on n vertices with minimum
pair-degree δ2pHq ě p3{4` αqn, then δpG3q ě p1{4` αqn.

Proof. Let x P V and β ă α{8. We count the ordered quadruples pa, b, c, yq P V 4,
such that ta, b, c, yu and tx, a, b, cu induce distinct tetrahedra in H. That is, we
estimate the size of the set

Ax “ tpa, b, c, yq P V
4 : x ‰ y and xabc and abcy are Kp3q

4 u .

Due to our assumption about δ2pHq the number A of triples pa, b, cq P V 3, which
form a Kp3q

4 with x, can be estimated by

A “ #tpa, b, cq P V 3 : abcx is a Kp3q
4 u

ě pn´ 1q
´3n

4 ` αn
¯´n

4 ` 3αn
¯

ě
n3

8 (3.2)
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for n sufficiently large. Using the minimum pair-degree condition again we obtain

|Ax| ě A
´n

4 ` 3αn´ 1
¯

ě

´1
4 ` 2α

¯

An . (3.3)

On the other hand, the assumption dG3pxq ď n{4` αn would imply that

|Ax| “
ÿ

yPV rtxu

#tpa, b, cq P V 3 : abcy and abcx are Kp3q
4 u

ď n ¨ βn3
` pn{4` αnqA .

Together with (3.3) this yields that
´1

4 ` 2α
¯

An ď βn4
`

´1
4 ` α

¯

An ,

i.e., βn3 ě αA
(3.2)
ě αn3{8. Since β ă α{8 this is a contradiction and shows that

the minimum degree of G3 is at least p1{4` αqn.

Lemma 31. If β, γ ! α and H is a hypergraph on n vertices with minimum
pair-degree δ2pHq ě p3{4` αqn, then for every partition X Ÿ Y “ V of the vertex
set with |X|, |Y | ě p1{4` α{2qn we have eG3pX, Y q ě γn2 .

Proof. W.l.o.g. we can assume that |X| ď |Y |. Since |X| ě p1{4`α{2qn, we know
that |Y | ď p3{4´ α{2qn. Counting the ordered triples with two vertices in X and
one in Y which induce an edge in H, we get

#tpx, x1, yq P X2
ˆ Y : xx1y P EpHqu

“
ÿ

px,yqPXˆY

|Npx, yq XX|

ě |X||Y | ¨ pδ2pHq ´ |Y |q

ě
3
16n

2
¨

3αn
2 “

9α
32n

3 .

The number of Kp3q
4 including such a triple px, x1, yq can thus be estimated by

ˇ

ˇtpx, x1, y, y1q P X2
ˆ Y 2 : xx1yy1 is a Kp3q

4 u
ˇ

ˇ

`
ˇ

ˇtpx, x1, x2, yq P X3
ˆ Y : xx1x2y is a Kp3q

4 u
ˇ

ˇ

ě
9αn3

32 ¨
n

4 “
9α
128n

4 .

Now we will distinguish two cases depending on whether the number of Kp3q
4 with

exactly two or exactly three vertices in X is bigger than 9α
256n

4.

Case 1. #tpx, x1, y, y1q P X2 ˆ Y 2 : xx1yy1 is a Kp3q
4 u ě

9α
256n

4

Define A Ď X2 ˆ Y 2 ˆ V to be the set of all quintuples px, x1, y, y1, zq satisfying
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(i ) xx1yy1 is a Kp3q
4 ;

(ii ) zxx1, zyy1 P EpHq;

(iii ) and at least three of zxy, zx1y1, zxy1, zx1y are edges in H.

We claim that the size of A can be bounded from below by

|A| ě
9α2

64 n
5 . (3.4)

As we are in Case 1, it suffices to prove that every tetrahedron px, x1, y, y1q P X2ˆY 2

extends to at least 4αn members of A.
Writing

fpzq “ |txy, xy1, x1y, x1y1u X EpLzq| ` 2|txx1, yy1u X EpLzq|

for every z P V we get
ÿ

zPV

fpzq “ dHpx, yq ` dHpx, y
1
q ` dHpx

1, yq ` dHpx
1, y1q ` 2dHpx, x1q ` 2dHpy, y1q

ě 8δ2pHq ě p6` 8αqn .

As fpzq ď 8 holds for each z P V it follows that there are at least 4αn vertices
with fpzq ě 7. For each of them we have px, x1, y, y1, zq P A. Thereby (3.4) is
proved.
To derive an upper bound on |A|, we break the symmetry in (iii ). Denoting

by A1 the set of quintuples px, x1, y, y1, zq P X2 ˆ Y 2 ˆ V satisfying (i ), (ii ), and

(iv ) xy1z, x1yz, x1y1z P EpHq

we have
|A| ď 4|A1| . (3.5)

Moreover

|A1| ď
ÿ

px,yqPXˆY

#tpx1, y1, zq P X ˆ Y ˆ V : xx1y1z and x1yy1z are Kp3q
4 u

ď eG3pX, Y q ¨ |X||Y ||V | ` |X||Y | ¨ βn
3

ď
1
4eG3pX, Y qn

3
`

1
4βn

5 .
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Therefore with (3.4) and (3.5) it follows that

eG3pX, Y q ě
´9α2

64 ´ β
¯

n2 .

Case 2. #tpx, x1, x2, yq P X3 ˆ Y : xx1x2y is a Kp3q
4 u ě

9α
256n

4

Define A Ď X3 ˆ Y ˆ V to be the set of all quintuples px, x1, x2, y, zq satisfying

(i ) xx1x2y is a Kp3q
4 ;

(ii ) if z P Y at least one of the vertex sets tx, x2, yu, tx, x1, yu, tx1, x2, yu induces
a triangle in Lz;

(iii ) if z P X the vertex set tx, x1, x2u induces a triangle in Lz .

We claim that the size of A can be bounded from below by

|A| ě
27α2

256 n
5 . (3.6)

As we are in Case 2, it suffices to prove that every tetrahedron px, x1, x2, yq P X3ˆY

extends to at least 3αn members of A.
Writing

fpzq “ |txy, xx1, xx2, x1x2, x1y, x2yu X EpLzq|

for every z P V we get
ÿ

zPV

fpzq “ dHpx, yq ` dHpx, x
1
q ` dHpx, x

2
q ` dHpx

1, x2q ` dHpx
1, yq ` dHpx

2, yq

ě 6δ2pHq ě p9{2` 6αqn .

If z P Y is a vertex with px, x1, x2, y, zq R A then fpzq ď 4 and if z P X is a vertex
with px, x1, x2, y, zq R A then fpzq ď 5. Hence we have

p9{2` 6αqn

ď 5|X| ` 4|Y | `
ˇ

ˇtz P X : px, x1, x2, y, zq P Au
ˇ

ˇ` 2
ˇ

ˇtz P Y : px, x1, x2, y, zq P Au
ˇ

ˇ .

Since 5|X| ` 4|Y | “ 4n` |X| ď 9{2n, it follows that

3αn ď
ˇ

ˇtz P X : px, x1, x2, y, zq P Au
ˇ

ˇ`
ˇ

ˇtz P Y : px, x1, x2, y, zq P Au
ˇ

ˇ ,

as claimed.
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Like before in Case 1 we obtain the upper bound

|A| ď βn5
` eG3pX, Y qn

3 .

Therefore with (3.6) it follows that

eG3pX, Y q ě
´27α2

256 ´ β
¯

n2 .

Proof of Proposition 29. Because of Lemma 27, Lemma 30, and Lemma 31 it re-
mains to check that for every partition V “ X ŸY with?γn ď |X| ď p1{4` α{2qn
we have eG3pX, Y q ě γn2. This follows easily from

eG3pX, Y q “
ÿ

xPX

dG3
Y pxq ě δpG3q ¨ |X| ´ |X|

2

and Lemma 30.

3.2.3 The auxiliary graphs Gv

The second kind of auxiliary graphs we will study is the following.

Definition 32. For a 3-uniform hypergraph H “ pV,Eq and a vertex v P V we
define the auxiliary graph Gv (see Fig. 3.2) as the graph with vertex
set V pGvq “ V r tvu and

xy P EpGvq ðñ x ‰ y and #tpa, bq P V 2 : xabv and yabv are Kp3q
4 u ě βn2 .

The main result of this subsection is the following proposition.

Proposition 33. Given α ą 0 there exist n0, ` P N such that in every hyper-
graph H with vpHq “ n ě n0 and δ2pHq ě p3{4 ` αqn for every pair of distinct
vertices x, y P V pGq there exists some t “ tpx, yq ď ` for which there are at
least Ωpnt´1q x-y-walks of length t in Gv.

The next lemma gives us a lower bound on the minimum degree of Gv.

Lemma 34. If n " α´1 and H is a hypergraph on n vertices with minimum
pair-degree δ2pHq ě p3{4` αqn, then δpGvq ě p1{4` αqn .

Proof. Let x P V r tvu. We count the triples pa, b, yq P V 3, such that ty, a, b, vu
and tx, a, b, vu induce distinct tetrahedra in H. That is, we estimate the size of
the set

Ax “ tpa, b, yq P V
3 : x ‰ y ‰ v and xabv and yabv are Kp3q

4 u .
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a

x

v

b

y

V r tvu

Figure 3.2: We have xy P EpGvq iff there are “many” pairs pa, bq P V 2 for
which abx, aby P EpHq and abx, aby span triangles in Lv.

Due to our assumption about δ2pHq the number A of pairs pa, bq P V 2, which form
a Kp3q

4 with x and v, can be estimated by

A “ #tpa, bq P V 2 : abxv is a Kp3q
4 u

ě

´3n
4 ` αn

¯´n

4 ` 3αn
¯

ě
n2

8 . (3.7)

Moreover we have

|Ax| ě A
´n

4 ` 3αn´ 1
¯

ě

´1
4 ` 2α

¯

An . (3.8)

On the other hand, the assumption dGvpxq ď n{4` αn would imply that

|Ax| “
ÿ

yPV rtv,xu

#tpa, bq P V 2 : abvy and abvx are Kp3q
4 u ď n ¨ βn2

` pn{4` αnqA .

Together with (3.8) this yields that
´1

4 ` 2α
¯

An ď βn3
`

´1
4 ` α

¯

An ,

i.e., βn2 ě αA
(3.7)
ě αn2{8. Since β ă α{8 this is a contradiction and shows that

the minimum degree of Gv is at least p1{4` αqn.

Lemma 35. If n " β´1, γ´1 " α´1 and H is a hypergraph on n vertices with
minimum pair-degree δ2pHq ě p3{4`αqn, then for every partition X ŸY “ V rtvu
of the vertex set with |X|, |Y | ě p1{4` α{2qn we have eGvpX, Y q ě γn2 .
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Proof. We begin by showing that the set

A‹ “ tpx, y, zq P X ˆ Y ˆ pV r tvuq : vxyz is a Kp3q
4 in Hu ,

satisfies
|A‹| ě

n3

32 . (3.9)

For the proof of this fact we may assume that |X| ď |Y |. Thus |X| P rn4 ,
n
2 s and

hence

|A‹| ě |X| ¨ pδ2pHq ´ |X|q ¨ p3δ2pHq ´ 2nq

ě |X| ¨
´3

4n´ |X|
¯

¨
n

4

ě
n2

8 ¨
n

4 “
n3

32 ,

as desired.
It follows that

|A‹ X pX ˆ Y ˆXq| ` |A‹ X pX ˆ Y 2
q| “ |A‹| ě

n3

32
and w.l.o.g. we can assume that |A‹ X pX ˆ Y ˆXq| ě n3{64. Now we study the
set

A‹‹ “ tpa, b, y, zq P X
2
ˆ Y ˆ pV r tvuq : abvy, abvz are Kp3q

4 and yz P EpLvqu .

Given any triple pa, y, bq P A‹XpXˆY ˆXq the quadruple abvy forms a tetrahedron,
there are at least 3δ2pHq ´ 2n vertices z for which abvz forms a tetrahedron as
well, and for at most n´ δ2pHq of those the condition yz P EpLvq fails. Hence

|A‹‹| ě |A‹ X pX ˆ Y ˆXq| ¨ rp3δ2pHq ´ 2nq ´ pn´ δ2pHqqs

ě 4αn ¨ |A‹ X pX ˆ Y ˆXq| ě
α

16n
4 .

Case 1. |A‹‹ X pX2 ˆ Y ˆXq| ě αn4{32.

Owing to

αn4

32 ď |A‹‹ X pX
2
ˆ Y ˆXq|

ď
ÿ

pz,yqPXˆY

#tpa, bq P X2 : abzv and abvy are Kp3q
4 u

ď βn2
|X||Y | ` eGvpX, Y q ¨ n

2

ď βn2
¨ n2
{4` eGvpX, Y q ¨ n2
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x1

x

y

y1

z

Figure 3.3: Example of a quintuple in A, where the link graph of v is indicated in
green and hyperedges of H in red.

we have
eGvpX, Y q ě

´ α

32 ´
β

4

¯

n2 ,

as desired.

Case 2. |A‹‹ X pX2 ˆ Y 2q| ě αn4{32

Define A Ď X2 ˆ Y 2 ˆ pV r tvuq to be the set of all quintuples px, x1, y, y1, zq
satisfying

(i ) xx1yy1 is a K4 in Lv

(ii ) at least one of xx1, yy1 forms a Kp3q
4 with v and z

(iii ) at least one of xy, xy1, x1y, x1y1 forms a Kp3q
4 with v and z.

Notice that condition (i ) holds for every px, x1, y, y1q P A‹‹ X pX2 ˆ Y 2q. Let us
now fix some such quadruple px, x1, y, y1q. Due to our assumption about δ2pHq we
have

dHpx, yq ` dHpx, y
1
q ` dHpx

1, yq ` dHpx
1, y1q ` 2

`

dHpx, x
1
q ` dHpy, y

1
q
˘

`2
`

dLvpxq ` dLvpx
1
q ` dLvpyq ` dLvpy

1
q
˘

ě 16δ2pHq ě p12` 16αqn .

So writing

fpzq “ |txy, xy1,x1y, x1y1u X EpLzq| ` 2|txx1, yy1u X EpLzq|

` 2|tvx, vx1, vy, vy1u X EpLzq|

for every z P V we get
ÿ

zPV

fpzq ě p12` 16αqn .
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If z is a vertex with px, x1, y, y1, zq R A, then fpzq ď 12, and hence we have

#tz P V : px, x1, y, y1, zq P Au ě 16αn{4 “ 4αn .

Applying this argument to every px, x1, y, y1q P A‹‹ X pX2 ˆ Y 2q we obtain, since
we are in Case 2, that

|A| ě
α

32n
4
¨ 4αn “ α2

8 n
5 . (3.10)

Now let us denote by Ax (resp. Ay) the number of quintuples px, x1, y, y1, zq
in X2 ˆ Y 2 ˆ pV r tvuq such that

• xx1vz (resp. yy1vz) and x1yvz are Kp3q
4 .

By symmetry we have

Ax ` Ay ě
1
4 |A|

(3.10)
ě

α2

32n
5 .

Consequently at least one of Ax, Ay is at least α2

64n
5. In either case one can prove

that eGvpX, Y q ě γn2 and below we display the argument assuming Ax ě α2

64n
5.

In this case

Ax ď
ÿ

px,yqPXˆY

#tpx1, y1, zq P V 3 : xx1zv and yx1zv are Kp3q
4 u

ď n
ÿ

px,yqPXˆY

#tpx1, zq P V 2 : xx1zv and yx1zv are Kp3q
4 u

ď |X||Y |βn3
` eGvpX, Y qn

3

yields
eGvpX, Y q ě

´α2

64 ´
β

4

¯

n2 ,

as desired. The case Ay ě α2

64n
5 is similar.

Proof of Proposition 33. Because of Lemma 34 and the fact that

eGvpX, Y q “
ÿ

xPX

dGvY pxq ě δpGvq ¨ |X| ´ |X|
2 ,

Lemma 35 is already true if |X|, |Y | ě ?
γn. Therefore the assumptions of

Lemma 27 hold for the graph Gv, which implies Proposition 33.
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3.2.4 Connecting Lemma

For the rest of this section we will use the constant 4
5 , i.e., the minimum pair-degree

hypothesis δ2pHq ě p4{5` αqn.

Definition 36. For a 3-uniform hypergraph H “ pV,Eq and vertices v, r, s P V
we write

Nvpr, sq “ Npr, s, vq “ Npr, vq XNps, vq XNpr, sq .

Notice that our minimum pair-degree condition entails

|Nvpr, sq| ě n{4 (3.11)

for all v, r, s P V .

Definition 37. Given n " α´1, a hypergraph H on n vertices with minimum
pair-degree δ2pHq ě p4{5 ` αqn and two distinct vertices v, w P V pHq we define
the auxiliary graph Gvw by V pGvwq “ Npv, wq and

uu1 P EpGvwq ðñ uu1vw is a Kp3q
4 .

Due to our assumption about the minimum pair-degree we know that the size n1

of the vertex set satisfies n1 “ |V pGvwq| ě p4{5` αqn.

Lemma 38. Let v, w P V and b, x P V pGvwq. There are at least Ωpn2q walks of
length 3 from b to x in Gvw.

Proof. For a vertex r P V pGvwq we have

dGvwprq ě |V pGvwq| ´ 2pn´ δ2pHqq

ě
|V pGvwq|

2 `
δ2pHq

2 ´ 2pn´ δ2pHqq

“
|V pGvwq|

2 `
5δ2pHq

2 ´ 2n ě n1

2 `
5αn

2 ě

´1
2 ` α

¯

n1 .

Thus the minimum degree of the auxiliary graph Gvw can be bounded from
below by δpGvwq ě p1{2` αqn1 and any two vertices of Gvw have at least 2αn1

common neighbours in Gvw. Due to this and the minimum vertex degree condition
in Gvw we can therefore find at least

n1

2 ¨ 2αn
1
“ αpn1q2 ě

α

2n
2

walks of length 3 from b to x in Gvw. This shows Lemma 38.
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Lemma 39. If vbc, vxy P E and |Nvpb, cq X Nvpx, yq| “ m, then there are at
least Ωpm2n2q quadruples pw0, b1, c1, w1q such that bcw0b1c1w1xy is

• a walk in H and

• a squared walk in Lv .

w1w0

b c b1 c1 x y

Figure 3.4: Quadruple pw0, b1, c1, w1q that fulfills the conditions of Lemma 39,
where the link graph of v is indicated in green and hyperedges of H in
red.

Proof. For every w P Nvpb, cq X Nvpx, yq Lemma 38 states that there are at
least Ωpn2q walks in Gvw from c to x of length 3. Let

Xb1c1 “ tw P Nvpb, cq XNvpx, yq : cb1c1x is a walk in Gvwu

for b1, c1 P V . Thus
ÿ

pb1,c1qPV 2

|Xb1c1 | ě Ωpmn2
q

and therefore the Cauchy-Schwarz inequality yields that
ÿ

pb1,c1qPV 2

|Xb1c1 |
2
ě Ωpm2n2

q .

If b1, c1 P V and w0, w1 P Xb1c1 , then bcw0b1c1w1xy has the desired properties.

Proposition 40. There is an integer K, such that for all edges abc, xyz P E
and vertices v P Npa, b, cq X Npx, y, zq there are for some k “ kpabc, xyzq ď K

with k ” 1 pmod 3q at least Ωpnkq many pu1, . . . , ukq P V
k for which abcu1 . . . ukxyz

is

• a walk in H
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• a squared walk in Lv .

Proof. Recall that in Proposition 33 we found an integer ` and a
function t : V p2q Ñ r`s such that for all distinct r, s P V there are Ωpntpr,sq´1q walks
of length tpr, sq from r to s in Gv. By the box principle there exists an integer t ď `

such that the set Q Ď Nvpb, cq ˆNvpx, yq of all pairs pu, u1q P Nvpb, cq ˆNvpx, yq

with tpu, u1q “ t satisfies

|Q| ě |Nvpb, cq| ¨ |Nvpx, yq|

`

(3.11)
ě

n2

16` .

For each walk v0v1 . . . vt in Gv there are by Definition 32 at least pβn2qt many p2tq-
tuples pb1, c1, . . . , bt, ctq such that

(i ) biciv P E for i “ 1, . . . , t,

(ii ) v0 P Nvpb1, c1q and vt P Nvpbt, ctq,

(iii ) vi P Nvpbi, ciq XNvpbi`1, ci`1q for i “ 1, . . . , t´ 1 .

vtvt´1v1v0

b c b1 c1 b2 c2 bt ct x y

Figure 3.5: A p3t ` 1q-tuple pv0, v1, . . . , vt, b1, c1, . . . , bt, ctq P V
3t`1 satisfying (i ),

(ii ), (iii ), and (iv ), where the link graph of v is indicated in green and
hyperedges of H in red.

Consequently, there are at least

n2

16` ¨ Ωpn
t´1
q ¨ pβn2

q
t
“ Ωpn3t`1

q

p3t ` 1q-tuples pv0, v1, . . . , vt, b1, c1, . . . , bt, ctq P V
3t`1 satisfying (i ), (ii ), (iii ) as

well as

(iv ) v0 P Nvpb, cq and vt P Nvpx, yq .
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On the other hand, we can also write the number of these p3t` 1q-tuples as
ÿ

á
vPΨ

|I0p
á
vq| ¨ |I1p

á
vq| ¨ . . . ¨ |Itp

á
vq| ,

where
Ψ “ tpb1, c1, . . . , bt, ctq P V

2t : biciv P E for i “ 1, . . . , tu

and for fixed á
v “ pb1, c1, . . . , bt, ctq P Ψ

• I0p
á
vq “ Nvpb, cq XNvpb1, c1q

• Iip
á
vq “ Nvpbi, ciq XNvpbi`1, ci`1q for i “ 1, . . . , t´ 1

• Itp
á
vq “ Nvpbt, ctq XNvpx, yq .

Altogether we have thereby shown that
ÿ

á
vPΨ

|I0p
á
vq| ¨ |I1p

á
vq| ¨ . . . ¨ |Itp

á
vq| ě Ωpn3t`1

q . (3.12)

Due to (3.12) and Lemma 39 there are at least
ÿ

á
vPΨ

Ωp|I0p
á
vq|2n2

q ¨ . . . ¨ Ωp|Itpávq|2n2
q

ě Ωpn2t`2
q
ÿ

á
vPΨ

p|I0p
á
vq| ¨ . . . ¨ |Itp

á
vq|q2

ě Ωpn2t`2
q

´

ř

á
vPΨ
|I0p

á
vq| ¨ . . . ¨ |Itp

á
vq|

¯2

|Ψ|

ě Ωpn2t`2
q

´Ωpn3t`1q

nt

¯2
“ Ωpn6t`4

q

p6t` 4q-tuples, which fulfill the conditions of Proposition 40.
Since 6t` 4 ” 1 pmod 3q this concludes the proof.

Definition 41. We call a sequence of vertices v1 . . . vh a squared v-walk from abc

to xyz with h interior vertices if abcv1 . . . vhxyz is a walk in H and a squared walk
in Lv.

Proposition 42. For all abc, xyz P E and v P Npa, b, cq X Npx, y, zq there are
for some k1 “ k1pabc, xyz, vq ď K ` 2 with k1 ” 0 pmod 3q at least Ωpnk1q many
squared v-walks with k1 interior vertices from abc to xyz.

44



Proof. We choose vertices d P Nvpb, cq and e P Nvpc, dq, and with Proposition 40
we find at least Ωpnkq many squared v-walks from cde to xyz,
where k “ kpcde, xyzq ď K and k ” 1 pmod 3q. Notice that if u1 . . . uk is such a
walk, then deu1 . . . uk is a squared v-walk from abc to xyz.

Since |Nvpb, cq|, |Nvpc, dq| ě n{4 holds by (3.11), there are for some k ď K

with k ” 1 pmod 3q at least n2{16
K

“ Ωpn2q pairs pd, eq with kpcde, xyzq “ k. Now
altogether there are Ωpnk`2q squared v-walks from abc to xyz with k ` 2 interior
vertices. This implies Proposition 42, since k ` 2 ” 0 pmod 3q.

Lemma 43. If abc, xyz P E and |Npa, b, cq X Npx, y, zq| “ m, then there is an
integer t “ tpabc, xyzq ď pK ` 2q{3 such that at least Ωpmt`1n3tq squared walks
from abc to xyz with 4t` 1 interior vertices exist.

Proof. For every w P Npa, b, cq X Npx, y, zq Proposition 42 states that for some
integer k1 “ k1pwq ď K ` 2 with k1 ” 0 pmod 3q there are at least Ωpnk1q
many squared w-walks from abc to xyz with k1 interior vertices. By the box
principle there exists an integer k2 ď K ` 2 with k2 ” 0 pmod 3q such that
the set Q Ď Npa, b, cq X Npx, y, zq of all vertices w1 P Npa, b, cq X Npx, y, zq

with k1pw1q “ k2 satisfies

|Q| ě |Npa, b, cq XNpx, y, zq|
K ` 2 “

m

K ` 2 .

For P “ pu1, . . . , uk2q P V
k2 let XP Ď Q be the set of vertices u P Q such that P is

a squared u-walk from abc to xyz. Since |Q| ě m{pK ` 2q, the average size of XP

is at least Ωpm{pK ` 2qq “ Ωpmq by Proposition 42 and double counting. Since
ř

PPV k2 X
k2{3`1
P

nk2
ě

´

ř

PPV k2 XP

nk2

¯k2{3`1
ě Ωpmk2{3`1

q ,

we get
ÿ

PPV k2

X
k2{3`1
P ě Ωpmk2{3`1nk

2

q .

Since k2 ” 0 pmod 3q and every ordered k2-tuple P of vertices gives rise to Xk2{3`1
P

squared walks from abc to xyz with 4k2{3`1 interior vertices, this implies Lemma 43
with t “ k2{3.

Finally we come to the main result of this section stated earlier as Proposition 22.
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Proposition 44 (Connecting Lemma). There are an integer M and ϑ˚ ą 0,
such that for all disjoint triples pa, b, cq and px, y, zq with abc, xyz P E there
exists m ă M for which there are at least ϑ˚nm squared paths from abc to xyz
with m internal vertices.

Proof. Recall that in Proposition 29 we found an integer ` and a
function t : V p2q Ñ r`s such that for all distinct r, s P V there are Ωpntpr,sq´1q walks
of length tpr, sq from r to s in G3. By the box principle there exists an integer t ď `

such that the set Q Ď Npa, b, cqˆNpx, y, zq of pairs pu, u1q P Npa, b, cqˆNpx, y, zq
with tpu, u1q “ t satisfies

|Q| ě |Npa, b, cq| ¨ |Npx, y, zq|
`

ě
n2

16` .

For each path v0v1 . . . vt in G3 there are by Definition 28 at least pβn3qt many p3tq-
tuples pa1, b1, c1, . . . , at, bt, ctq such that

(i ) aibici P E for i “ 1, . . . , t

(ii ) v0 P Npa1, b1, c1q and vt P Npat, bt, ctq

(iii ) vi P Npai, bi, ciq XNpai`1, bi`1, ci`1q for i “ 1, . . . , t´ 1 .

Consequently, there are at least

n2

16` ¨ Ωpn
t´1
q ¨ pβn3

q
t
“ Ωpn4t`1

q

p4t ` 1q-tuples pv0, . . . , vt, a1, b1, c1, . . . , at, bt, ctq P V
4t`1 satisfying (i ), (ii ), (iii )

as well as

(iv ) v0 P Npa, b, cq and vt P Npx, y, zq .

On the other hand, we can also write the number of these p4t` 1q-tuples as
ÿ

á
vPΨ

|I0p
á
vq| ¨ |I1p

á
vq| ¨ . . . ¨ |Itp

á
vq| ,

where

Ψ “ tpa1, b1, c1, . . . , at, bt, ctq P V
3t : aibici P E for i “ 1, . . . , tu

and for fixed á
v “ pa1, b1, c1, . . . , at, bt, ctq P Ψ
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vtvt´1v1v0

a

b

c a1

b1

c1 a2

b2

c2 at

bt

ct x

y

z

Figure 3.6: A p4t ` 1q-tuple pv0, . . . , vt, a1, b1, c1, . . . , at, bt, ctq P V 4t`1 satisfy-
ing (i ), (ii ), (iii ), and (iv ), where orange quadruples indicate a copy
of Kp3q

4 , hyperedges of H are indicated in red, and green pairs are in
the link graph of the corresponding vi.

• I0p
á
vq “ Npa, b, cq XNpa1, b1, c1q

• Iip
á
vq “ Npai, bi, ciq XNpai`1, bi`1, ci`1q for i “ 1, . . . , t´ 1

• Itp
á
vq “ Npat, bt, ctq XNpx, y, zq

Altogether we have thereby shown that
ÿ

á
vPΨ

|I0p
á
vq| ¨ |I1p

á
vq| ¨ . . . ¨ |Itp

á
vq| ě Ωpn4t`1

q .

Lemma 43 gives us for every á
v P Ψ some integers

• t0p
á
vq “ tpabc, a1b1c1q

• tip
á
vq “ tpaibici, ai`1bi`1ci`1q for i “ 1, 2, . . . , t´ 1

• and ttpávq “ tpatbtct, xyzq.

By the box principle there are Ψ‹ Ď Ψ and a pt ` 1q-tuple pt0, . . . , ttq

in r1, pK ` 2q{3st`1 such that
ÿ

á
vPΨ‹

|I0p
á
vq| ¨ |I1p

á
vq| ¨ . . . ¨ |Itp

á
vq| ě Ωpn4t`1

q (3.13)

and tipávq “ ti for all i P t0, . . . , tu and á
v P Ψ˚. Set m “ 4t` 4

řt
i“0 ti ` 1. Due to

Lemma 43 there are at least
ÿ

á
vPΨ‹

Ωp|I0p
á
vq|t0`1n3t0q ¨ . . . ¨ Ωp|Itpávq|tt`1n3ttq

“ Ωpn3
řt
i“0 tiq

ÿ

á
vPΨ‹

|I0p
á
vq|t0`1

¨ . . . ¨ |Itp
á
vq|tt`1
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m-tuples, which up to repeated vertices fulfill the conditions of Proposition 44.
Let T “ maxpt0, . . . , ttq. Since

|Iip
á
vq|T`1

“ |Iip
á
vq|ti`1

¨ |Iip
á
vq|T´ti ď |Iip

á
vq|ti`1

¨ nT´ti ,

we get

nT pt`1q´
řt
i“0 ti

ÿ

á
vPΨ‹

t
ź

i“0
|Iip

á
vq|ti`1

“
ÿ

á
vPΨ‹

t
ź

i“0
nT´ti |Iip

á
vq|ti`1

ě
ÿ

á
vPΨ‹

|I0p
á
vq|T`1

¨ . . . ¨ |Itp
á
vq|T`1

“
ÿ

á
vPΨ‹

p|I0p
á
vq| ¨ . . . ¨ |Itp

á
vq|qT`1

ě

˜

ř

á
vPΨ‹

|I0p
á
vq| ¨ . . . ¨ |Itp

á
vq|

|Ψ‹|

¸T`1

¨ |Ψ‹|
(3.13)
ě

´Ωpn4t`1q

n3t

¯T`1
¨ n3t

ě Ωpn3t`pt`1qpT`1q
q ,

which implies that

Ωpn3
řt
i“0 tiq

ÿ

á
vPΨ‹

|I0p
á
vq|t0`1

¨ . . . ¨ |Itp
á
vq|tt`1

ě Ωpn3t`pt`1q`
řt
i“0 ti`3

řt
i“0 tiq “ Ωpnmq .

At most Opnm´1q tuples can fail being paths due to repeated vertices, thus
there are Ωpnmq squared paths from abc to xyz. This proves Proposition 44
with M “ r4`` 4p`` 1q ¨ K`2

3 ` 2s, since

m “ 4t` 4
t
ÿ

i“0
ti ` 1 ď 4`` 4p`` 1q ¨ K ` 2

3 ` 1 .

3.3 Reservoir Set

In all proofs using a reservoir lemma the reservoir set R is obtained by taking
a random subset of V . On a technical level there are several possibilities which
properties of R one actually requires and below we follow closely the approach
of [67].

Proposition 45. Let ϑ˚ and M be the constants given by the Connecting Lemma.

Then there exists a reservoir set R Ď V with ϑ
2
˚n

2 ď |R| ď ϑ2
˚n, such that for all dis-

joint triples pa, b, cq and px, y, zq with abc, xyz P E there are at least ϑ˚|R|mpabc,xyzq{2
connecting squared paths in H all of whose mpabc, xyzq ă M internal vertices
belong to R.
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Proof. Consider a random subset R Ď V with elements included independently
with probability

p “
´

1´ 3
10M

¯

ϑ2
˚ .

Therefore |R| is binomially distributed and Chernoff’s inequality yields

Pp|R| ă ϑ2
˚n{2q “ op1q . (3.14)

Since
ϑ2
˚n ě p4{3q1{Mpn ě p1` cqEr|R|s

for some sufficiently small c “ cpMq ą 0, we have

Pp|R| ą ϑ2
˚nq ď P

`

|R| ą p4{3q1{Mpn
˘

“ op1q . (3.15)

The Connecting Lemma ensures that for all triples pa, b, cq and px, y, zq there are
at least ϑ˚nm squared paths connecting them with m “ mpabc, xyzq ăM internal
vertices.

Let X “ Xppa, b, cq, px, y, zqq be the random variable counting the number of
squared paths from pa, b, cq to px, y, zq with m internal vertices in R. We get

ErXs ě pmϑ˚n
m . (3.16)

Including or not including a particular vertex into R affects the random variable X
by at most mnm´1, wherefore the Azuma-Hoeffding inequality (see, e.g., [39,
Corollary 2.27]) implies

P
`

X ď 2
3ϑ˚ppnq

m
˘ (3.16)
ď P

`

X ď 2
3ErXs

˘

ď exp
˜

´
2ErXs2

9npmnm´1q2

¸

“ expp´Ωpnqq . (3.17)

Since there are at most n6 pairs of triples that we have to consider, the union
bound and (3.14), (3.15) tell us that asymptotically almost surely the reservoir R
satisfies

ϑ2
˚n

2 ď |R| ď p4{3q1{Mpn ď ϑ2
˚n (3.18)

and
Xppa, b, cq, px, y, zqq ě

2
3ϑ˚ppnq

m (3.19)
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for all pairs of disjoint edges abc, xyz P E. In particular, there is some R Ď V

satisfying (3.18) and (3.19). Now it follows that

Xppa, b, cq, px, y, zqq ě ϑ˚|R|m{2

holds for all abc, xyz P E as well, meaning that R has the desired properties.

Lemma 46. Let R Ď V be a reservoir set, ϑ˚ the constant given by the Connect-
ing Lemma and R1 Ď R an arbitrary subset of size at most ϑ4

˚n. Then for all
triples pa, b, cq and px, y, zq there exist a connecting squared path
with mpabc, xyzq ăM internal vertices in H whose internal vertices belong to the
set RrR1.

Proof. Let m “ mpabc, xyzq. Since |R| ě ϑ2
˚n

2 and ϑ˚ ! M´1, we can arrange
that

|R1| ď ϑ4
˚n ď

ϑ˚
4m |R| .

Every vertex in R1 is a member of at most m|R|m´1 squared paths with internal
vertices in R. Consequently, there are at least

ϑ˚
2 |R|

m
´ |R1|m|R|m´1

ě
ϑ˚
2 |R|

m
´
ϑ˚
4mm|R|m ą 0

such paths with all internal vertices in RrR1.

To conclude this section we remark that taken together Proposition 45 and
Lemma 46 entail Proposition 23.

3.4 Absorbing Path

The goal of this section is to establish Proposition 24 which, let us recall, requires
the minimum degree condition δ2pHq ě p4{5`αq|V pHq|. The common assumptions
of all statements of this section are that we have

• 1 " α "M´1 " ϑ˚ " n´1 such that the connecting lemma holds,

• a hypergraph H “ pV,Eq with |V | “ n and δ2pHq ě p4{5` αqn,

• and a reservoir set R Ď V satisfying, in particular, that |R| ď ϑ2
˚n.
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e

f

Figure 3.7: Example of a v-absorber, where the link graph of v is indicated in
green and orange or red 4-edges indicate a copy of Kp3q

4 .

Definition 47. Given a vertex v P V and a 6-tuple pa, b, c, d, e, fq P pV r tvuq6

of distinct vertices, we call such a 6-tuple v-absorber if abcdef and abcvdef are
squared paths in H.

Lemma 48. For every v P V there are at least α3n6 many v-absorbers in pV rRq6.

Proof. Given v P V we choose the vertices of the 6-tuple in alphabetic order. For
the first vertex we have n possible choices and for the second we still have more
than 4n{5 possibilities, since we only have the condition that vab P E. For the
third vertex we already have 3 conditions, namely abc, vbc, vac P E. Consequently,
we have more than 2n{5 choices for c. For the vertices d, e, f we always have 5
conditions, so we have for each of them at least 5αn possible choices. This implies
that for given v P V we find more than

n ¨ 4n{5 ¨ 2n{5 ¨ p5αnq3 “ 40α3n6

6-tuples meeting all the requirements from the v-absorber definition except that
some of the 7 vertices v, a, . . . , f might coincide. There are at most

`7
2

˘

n5 “ 21n5

such bad 6-tuples and at most 6ϑ2
˚n

6 members of V 6 can use a vertex from
the reservoir. Consequently, the number of v-absorbers in pV r Rq6 is at
least

`

40α3 ´ 21
n
´ 6ϑ2

˚

˘

n6 ě α3n6.

Lemma 49. There is a set F Ď pV rRq6 with the following properties:

(1) |F | ď 8α´3ϑ2
˚n,
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(2) all vertices of every 6-tuple in F are distinct and the 6-tuples in F are
pairwise disjoint,

(3) if pa, b, c, d, e, fq P F , then abcdef is a squared path in H

(4) and for every v P V there are at least 2ϑ2
˚n many v-absorbers in F .

Proof. Consider a random selection X Ď pV rRq6 containing each 6-tuple indepen-
dently with probability p “ γn´5, where γ “ 4ϑ2

˚{α
3. Since Er|X |s ď pn6 “ γn,

Markov’s inequality yields

Pp|X | ą 2γnq ď 1{2 . (3.20)

We call two distinct 6-tuples from V 6 overlapping if there is a vertex occurring
in both. There are at most 36n11 ordered pairs of overlapping 6-tuples. Let P be
the random variable giving the number of such pairs both of whose components
are in X . Since ErP s ď 36n11p2 “ 36γ2n and 12γ ď ϑ˚, Markov’s inequality yields

PpP ą ϑ2
˚nq ď PpP ą 144γ2nq ď

1
4 . (3.21)

In view of Lemma 48 for each vertex v P V the set Av containing all v-absorbers
in pV rRq6 has the property Er|AvXX |s ě α3n6p “ α3γn “ 4ϑ2

˚n. Since |AvXX |
is binomially distributed, Chernoff’s inequality gives for every v P V

Pp|Av X X | ď 3ϑ2
˚nq ď expp´Ωpnqq ă 1

5n . (3.22)

Owing to (3.20), (3.21), and (3.22) there is an “instance” F‹ of X satisfying the
following:

• |F‹| ď 2γn,

• F‹ contains at most ϑ2
˚n ordered pairs of overlapping 6-tuples,

• and for every v P V the number of v-absorbers in F‹ is at least 3ϑ2
˚n.

If we delete from F‹ all the 6-tuples containing some vertex more than once, all
that belong to an overlapping pair, and all violating (3), we get a set F which
fulfills (1), since |F | ď |F‹|. The properties (2) and (3) hold by construction and
for (4) we recall that v-absorbers satisfy (3) by definition. Therefore the set F has
all the desired properties.
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We are now ready to prove Proposition 24, which we restate for the reader’s
convenience.

Proposition 50 (Absorbing path). There exists an (absorbing) squared
path PA Ď H ´R such that

(1) |V pPAq| ď ϑ˚n,

(2) for every set X Ď V r V pPAq with |X| ď 2ϑ2
˚n there is a squared path in H

whose set of vertices is V pPAq YX and whose end-triples are the same as
those of PA.

Proof. Let F Ď pV rRq6 be as obtained in Lemma 49. Recall that F is a family
of at most 8α´3ϑ2

˚n vertex-disjoint squared paths with six vertices.
We will prove that there is a path PA Ď H ´R with the following properties:

(a) PA contains all members of F as subpaths,

(b) |V pPAq| ď pM ` 6q|F |.

Basically we will construct such a path PA starting with any member of F by
applying the connecting lemma |F | ´ 1 times, attaching on further part from F
each time.
Let F˚ Ď F be a maximal subset such that some path P ˚A Ď H ´R has the

properties (a) and (b) with F replaced by F˚. Obviously P ˚A ‰ ∅. From (b)
and 1 " α,M´1 " ϑ˚ we infer

|V pP ˚Aq| ď pM ` 6q|F˚| ď 2M |F | ď 16Mα´3ϑ2
˚n ď ϑ3{2

˚ n (3.23)

and thus our upper bound on the size of the reservoir leads to

|V pP ˚Aq| ` |R| ď 2ϑ3{2
˚ n ď

ϑ˚n

2M . (3.24)

Assume for the sake of contradiction that F˚ ‰ F . Let px, y, zq be the ending triple
of P ˚A and let P be an arbitrary path in F rF˚ with starting triple pu, v, wq. Then
the connecting lemma tells us that there are at least ϑ˚nm connecting squared
paths with m interior vertices, where m “ mpxyz, uvwq ăM . By (3.24) at least
half of them are disjoint to V pP ˚Aq YR. At least one such connection gives us a
path P ˚˚A Ď H ´R starting with P ˚A, ending with P and satisfying

|V pP ˚˚A q| “ |V pP
˚
Aq| `m` |V pP q| ď |V pP

˚
Aq| `m` 6 ď pM ` 6qp|F˚| ` 1q .
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So F˚ Y tP u contradicts the maximality of F˚ and proves that we have in-
deed F˚ “ F . Therefore there exists a path PA with the properties (a) and (b).
As proved in (3.23) this path satisfies condition (1) of Proposition 50. To

establish (2) one absorbs the up to at most 2ϑ2
˚n vertices in X one by one into PA.

This is possible due to (a) combined with (4) from Lemma 49.

3.5 Almost spanning cycle

The main work of this section goes into the proof of Theorem 25, which will
occupy the Subsections 3.5.1–3.5.4. Having obtained this result we will deduce
Proposition 26 in Subsection 3.5.5.
The proof of Theorem 25 itself is structured as follows. In Subsection 3.5.1 we

derive an “approximate version” of Pikhurko’s Kp3q
4 -factor theorem (see Lemma 51)

by imitating his proof from [65]. This lemma leads to Theorem 25 in the light
of the hypergraph regularity method, which we recall in Subsection 3.5.2. In
Subsection 3.5.3 we explain why “tetrahedra in the reduced hypergraph” correspond
to regular “tetrads” large fractions of which can be covered by long squared paths.
Finally in Subsection 3.5.4 we put everything together and complete the proof of
Theorem 25.

3.5.1 K
p3q
4 -tilings

The subsequent lemma will later be applied to a hypergraph obtained by means of
the regularity lemma.

Lemma 51. Let t ě 36, 0 ă α ă 1{4 and τ ! α. Given a hypergraph G on t

vertices such that all but at most τt2 unordered pairs xy P V p2q of distinct vertices
satisfy dpx, yq ě p3{4` αqt, it is possible to delete at most 2

?
τt` 13 vertices and

find a Kp3q
4 -factor afterwards.

The following proof is similar to Pikhurko’s argument establishing [65, Theo-
rem 1].

Proof. Let us call a pair of vertices bad if its pair-degree is smaller than p3{4`αqt.
Moreover we will call a subhypergraph of G good if it does not contain any bad
pair of vertices.
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G

TV r V 1 V 1 r V pT q

ď
?
τtď

?
τt

Figure 3.8: Example of a tiling T with maximal weight, where good pairs are
indicated by green edges.

First of all we will delete vertices which are in many bad pairs. More precisely
we will successively delete vertices if such a vertex is in at least

?
τt bad pairs.

Since there are at most τt2 bad pairs, we are deleting at most
?
τt vertices and in

the remaining hypergraph G1 “ pV 1, E 1q every vertex is in at most
?
τt bad pairs.

Let F be a set of hypergraphs. By an F-tiling in G we mean a collection of
vertex-disjoint good subgraphs, each of which is isomorphic to some member of F .
Moreover let w2 “ 2, w3 “ 6, and w4 “ 11 be weight factors.
In the following we will consider a

 

K
p3q
2 , K

p3q
3 , K

p3q
4
(

-tiling T in G1 that max-
imises the weight function wpT q “ w2`2`w3`3`w4`4, where `i denote the number
of copies of Kp3q

i in T .
At most

?
τt vertices of V 1 are missed by the tiling T . Indeed, otherwise we find

a good subgraph isomorphic to Kp3q
2 not in the tiling, since every vertex in V 1 is in

at most
?
τt bad pairs. Because w2 ą 0 this is a contradiction to the maximality

of T .
We say a hypergraph F P T makes a connection with the vertex x P V 1 r V pF q

(denoted by pF, xq P C) if |V pF q| ď 3 and V pF q Y txu spans a complete good
hypergraph. Examining the properties of connections, we get the following results.
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• A K
p3q
i -subgraph F P T with i ď 3 can only make a connection to a vertex

x that belongs to a Kp3q
j -subgraph of T with j ą i.

Otherwise moving x to F would increase the weight of T , since w4`w2´2w3 “ 1,
w4´w2´w3 “ 3, w3´ 2w2 “ 2, and all other possible weight changes are positive
as well.

• Each Kp3q
2 -subgraph F in T makes at least p3

4 `
α
2 qt connections.

Let ta, bu be the vertex set of Kp3q
2 -subgraph F of T . The subgraph F makes

a connection with a vertex x P V 1 r V pF q if abx P EpGq and ab, ax, bx are good
pairs. Recalling that ab is a good pair due to the definition of tiling, we can relax
the second condition to ax, bx being good pairs. There are at least p3

4 ` α ´
?
τqt

vertices in V 1 r V pF q that form an edge with ab in G. Since every vertex in V 1

is in at most
?
τt bad pairs, at most 2

?
τt vertices, which form an edge with ab

in G, can fail the second condition. Thus, every Kp3q
2 -subgraph F of T makes at

least p3
4 ` α ´ 3

?
τqt connections, which due to τ ă α2

36 is more than p3
4 `

α
2 qt.

• Every Kp3q
3 -subgraph F in T makes at least p1

4 ` αqt connections.

For each Kp3q
3 -subgraph F of T there are at least p9

4 ` αqt edges that intersect
it in exactly two vertices and consists of no bad pairs. Let c denote the number of
connections made by a Kp3q

3 -subgraph of T . Thus, we get
´9

4 ` α
¯

t ď 3c` 2pt´ 3´ cq ,

i.e.,
´9

4 ` α
¯

t´ 2t` 6 ď c .

• `3 ď 3.

Otherwise let F1, F2, F3, F4 be Kp3q
3 -subgraphs in T . All connections made by

a Fi belong to a Kp3q
4 -subgraph of T by the first bullet above. An upper bound

for the number of Kp3q
4 in T is tt{4u. Since

4
´1

4 ` α
¯

t ą 4tt{4u ,

the vertices of some K
p3q
4 -subgraph F of T make at least 5 connections

with F1, F2, F3, F4. Therefore we find two distinct vertices x, y P V pF q and i, j P r4s
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with i ‰ j, such that pFi, xq, pFj, yq P C. Moving x to Fi and y to Fj and thereby re-
ducing F to a Kp3q

2 would increase the weight of T , since 2pw4´w3q`pw2´w4q “ 1.
Thus, we get a contradiction to the maximality of T .

Case 1. `2 ě 3

Let F1, F2, F3 be Kp3q
2 -subgraphs in T .

• There is no Kp3q
3 -subgraph F P T with the property that F1, F2, F3 make

more than 3 connections to F .

Otherwise we could find distinct vertices x, y P V pF q and i, j P r3s with i ‰ j,
such that pFi, xq, pFj, yq P C. Moving x to Fi and y to Fj and thereby eliminating F
would increase the weight of T , since 2pw3 ´ w2q ´ w3 “ 2. Thus, we get a
contradiction to the maximality of T .

• There is no Kp3q
4 -subgraph F P T with the property that F1, F2, F3 make

more than 8 connections to F .

Otherwise we could find distinct vertices x1, x2, x3 P V pF q, such that pFi, xiq P C
for every i P r3s. This is because every bipartite graph with nine edges and partition
classes of size 3 and 4 contains a matching of size 3. Moving each xi to Fi and
thereby eliminating F would increase the weight of T , since 3pw3 ´ w2q ´ w4 “ 1.
Thus, we get a contradiction to the maximality of T .

Finally, by estimating the number of connections created by F1, F2, F3 we obtain

3
´3

4 `
α

2

¯

t ď 3`3 ` 8`4 .

Since `3 ď 3 and `4 ď tt{4u, we have
´9

4 `
3
2α

¯

t ď 9` 8tt{4u ,

which contradicts t ě 36.

Case 2. `2 ď 2

We have deleted
?
τt vertices from G to obtain the graph G1, another

?
τt

vertices can be missed by the tiling T , and at most 2`2 ` 3`3 ď 13 vertices
of V pT q are not covered by Kp3q

4 subgraphs. Therefore it is possible to delete at
most 2

?
τt` 13 vertices and find a Kp3q

4 -factor afterwards.
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3.5.2 Hypergraph regularity method

We denote by KpX, Y q the complete bipartite graph with vertex partition X Ÿ Y .
For a bipartite graph P “ pX Ÿ Y,Eq we say it is pδ2, d2q-quasirandom if

ˇ

ˇepX 1, Y 1q ´ d2|X
1
||Y 1|

ˇ

ˇ ď δ2|X||Y |

holds for all subsets X 1 Ď X and Y 1 Ď Y , where epX 1, Y 1q denotes the num-
ber of edges in P with one vertex in X 1 and one in Y 1. Given a k-partite
graph P “ pX1 Ÿ . . . ŸXk, Eq with k ě 2 we say P is pδ2, d2q-quasirandom, if all
naturally induced bipartite subgraphs P rXi, Xjs are pδ2, d2q-quasirandom. More-
over, for a tripartite graph P “ pX Ÿ Y Ÿ Z,Eq we denote by

K3pP q “
 

tx, y, zu Ď X Y Y Y Z : xy, xz, yz P E
(

the triples of vertices in P spanning a triangle. For a pδ2, d2q-quasirandom tripartite
graph P “ pX Ÿ Y Ÿ Z,Eq the so-called triangle counting lemma implies that

d3
2|X||Y ||Z| ´ 3δ2|X||Y ||Z| ď |K3pP q| ď d3

2|X||Y ||Z| ` 3δ2|X||Y ||Z| . (3.25)

Definition 52. Given a 3-uniform hypergraph H “ pV,EHq and a tripartite
graph P “ pX Ÿ Y Ÿ Z,Eq with X YY YZ Ď V we say H is pδ3, d3q-quasirandom
with respect to P if for every tripartite subgraph Q Ď P we have

ˇ

ˇ|EH XK3pQq| ´ d3|K3pQq|
ˇ

ˇ ď δ3|K3pP q| .

Furthermore, we say H is δ3-quasirandom with respect to P , if it is pδ3, d3q-
quasirandom for some d3 ě 0.

We define the relative density of H with respect to P by

dpH|P q “
|EH XK3pP q|

|K3pP q|
,

where dpH|P q “ 0 if K3pP q “ ∅.
A refined version of the regularity lemma (see [73, Theorem 2.3]) states the

following.

Lemma 53 (Regularity Lemma). For every δ3 ą 0, every δ2 : N Ñ p0, 1s,
and every t0 P N there exists an integer T0 such that for every n ě t0 and
every n-vertex 3-uniform hypergraph H “ pV,EHq the following holds.
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There are integers t and ` with t0 ď t ď T0 and ` ď T0 and there exists a vertex
partition V0 Ÿ V1 Ÿ . . . Ÿ Vt “ V and for all 1 ď i ă j ď t there exists a partition

P ij “ tP ij
α “ pVi Ÿ Vj, E

ij
α q : 1 ď α ď `u

of the edge set of the complete bipartite graph KpVi, Vjq satisfying the following
properties

(1) |V0| ď δ3n and |V1| “ . . . “ |Vt|,

(2) for every 1 ď i ă j ď t and α P r`s the bipartite graph P ij
α is pδ2p`q, 1{`q-

quasirandom, and

(3) H is δ3-quasirandom w.r.t P ijk
αβγ for all but at most δ3t

3`3 tripartite graphs

P ijk
αβγ “ P ij

α Ÿ P
ik
β Ÿ P

jk
γ “ pVi Ÿ Vj Ÿ Vk, E

ij
α Ÿ E

ik
β Ÿ E

jk
γ q ,

with 1 ď i ă j ă k ď t and α, β, γ P r`s.

The tripartite graphs P ijk
αβγ appearing in (3) are usually called triads. Furthermore

we will use the following version of the embedding lemma from [60].

Lemma 54. For every p P N and ξ, d3 ą 0 there exist δ3 ą 0 and func-
tions δ2 : NÑ p0, 1q, N : NÑ N such that the following holds.

Let ` P N and let G “
Ť

¨ 1ďiăjďpG
ij be a p-partite graph with vertex parti-

tion V1 Ÿ . . . Ÿ Vp, where |V1| “ . . . “ |Vp| “ n ě Np`q, such that
each Gij “ GrVi, Vjs is pδ2p`q, 1{`q-quasirandom. Moreover, let H be a 3-uniform
hypergraph that is pδ3, dijkq-quasirandom with respect to Gijk for
all 1 ď i ă j ă k ď p, where Gijk “ GrVi, Vj, Vks and dijk ě d3. Then the
number |KppHq| of complete, 3-uniform hypergraphs on p vertices in H with one
vertex from each Vi satisfies

|KppHq| ě p1´ ξqd3
pp3qp1{`qp

p
2qnp .

3.5.3 Squared paths in quasirandom tetrads

The Embedding Lemma 54 can be utilised to find a squared path in appropri-
ate 4-partite environments.

Lemma 55. Given Q P N and d3 ą 0, there exist δ3 ą 0, and
functions δ2 : N Ñ p0, 1s and N : N Ñ N, such that that the following holds
for every ` P N.
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Let P “ pV1 Ÿ V2 Ÿ V3 Ÿ V4, EP q be a 4-partite graph with |V1| “ . . . “ |V4| “ n

and n ě Np`q such that P ij “ pVi Ÿ Vj, E
ijq is pδ2p`q, 1{`q-quasirandom for ev-

ery pair ij P r4sp2q. Suppose H is a 4-partite, 3-uniform hypergraph with ver-
tex classes V1, . . . , V4, which satisfies for every ijk P r4sp3q that H is pδ3, dijkq-
quasirandom w.r.t. the tripartite graphs P ijk “ P ij ŸP ik ŸP jk for some dijk ě d3.
Then there exists a squared path with Q vertices in H.

Proof. For p “ Q, ξ “ 1{2 and the current d3 let δ3 ą 0 and functions δ2 : NÑ p0, 1q,
N : NÑ N be given by Lemma 54. Moreover, let W1, . . . ,WQ be disjoint vertex
sets of size n. Choose for every j P rQs and i P r4s with i ” j pmod 4q a bijective
function ϕj : Vi Ñ Wj . We copy EP and EpHq onto W1 Ÿ . . . ŸWQ in the following
way.

• If for 1 ď i ă j ď Q the integers i1, j1 P r4s satisfying i ” i1 pmod 4q
and j ” j1 pmod 4q are distinct, let Eij

W be the bipartite graph on Wi ŸWj

defined by
xy P Ei1j1

ðñ ϕipxqϕjpyq P E
ij
W

for all x P Vi1 and y P Vj1 .

• If for 1 ď i ă j ă k ď Q the integers i1, j1, k1 P r4s satisfy-
ing i ” i1 pmod 4q, j ” j1 pmod 4q, and k ” k1 pmod 4q are distinct, let H ijk

W

be the tripartite hypergraph on Wi ŸWj ŸWk defined by

xyz P EpHq ðñ ϕipxqϕjpyqϕkpzq P H
ijk
W

for all x P Vi1 , y P Vj1 , and z P Vk1 .

For technical reasons we also need to specify bipartite graphs Eij
W for dis-

tinct i, j P rQs that are congruent modulo 4 in order to make Lemma 54 appli-
cable. The precise choice of these graphs is immaterial in the following and
we just take arbitrary pδ2p`q, 1{`q-quasirandom bipartite graphs. E.g., we could
declare all theses graphs to be isomorphic to P 12. Similarly, we need to de-
fine 3-partite hypergraphs H ijk

W for distinct i, j, k P rQs at least two of which are
congruent modulo 4. This time we may just take the complete 3-partite hyper-
graphs between Wi,Wj,Wk, which are certainly pδ3, 1q-quasirandom with respect
to pWi ŸWj ŸWk, E

ij
W Ÿ E

ik
W Ÿ E

jk
W q.
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By Lemma 54 applied to GW “ pW1Ÿ. . .ŸWQ, EW q, where EW “
Ť

¨ 1ďiăjďQE
ij
W

and the hypergraph HW “
Ť

¨ 1ďiăjăkďQH
ijk
W we find at least p1{2qnQp1{`qp

Q
2qd
pQ3q
3

squared paths v1 . . . vQ in HW with vi P Wi for every i P rQs. Notice that every
squared such path in HW corresponds to a squared walk in H via the inverses of
the maps ϕi. It may happen that vertices get identified under this correspondence
and therefore there might be squared paths in HW not yielding squared paths
in H. However

`

Q
2

˘

nQ´1 is a straightforward upper bound on the number of times
this can occur and since for n sufficiently large we have

1
2n

Q
p1{`qp

Q
2qd
pQ3q
3 ą

ˆ

Q

2

˙

nQ´1 ,

we find at least one squared path in H.

Lemma 56. Given Q P N with Q ” 0 pmod 4q, d3 ą 0, and ν ą 0. There
exist δ3 ą 0, δ2 : N Ñ p0, 1q, and N : N Ñ N, such that the following holds for
every ` P N. Let P “ pV1 Ÿ V2 Ÿ V3 Ÿ V4, EP q be a 4-partite graph
with |V1| “ . . . “ |V4| “ n ě Np`q and let P ij “ pVi Ÿ Vj, E

ijq be pδ2p`q, 1{`q-
quasirandom for every ij P r4sp2q. Suppose that H is a 3-uniform hypergraph, which
satisfies for every ijk P r4sp3q that H is pδ3, dijkq-quasirandom with respect to the
tripartite graph P ijk “ P ij ŸP ik ŸP jk for some dijk ě d3. Then all but at most νn
vertices of V1 Ÿ . . . Ÿ V4 can be covered by vertex-disjoint squared paths with Q
vertices each.

Proof. Let δ˚3 ą 0, δ˚2 : N Ñ p0, 1s, N˚ : N Ñ N be the number and functions
obtained by applying Lemma 55 to Q and d3{2. Define

δ3 “
δ˚3ν

3

128 , δ2p`q “ min
´δ˚2 p`qν

2

16 ,
ν2

144`3

¯

, Np`q “
Q4N˚p`q

ν

U

for each ` P N. Let P “ pV1 Ÿ V2 Ÿ V3 Ÿ V4, EP q and H be as described above for
some ` P N. Consider a maximal collection S1, . . . , Sm of vertex-disjoint squared
paths on Q vertices in H. For i P r4s let V 1i Ď Vi denote the set of vertices not
belonging to any of these paths. Due to 4 | Q the sets V 11 , . . . , V 14 have the same size,
say n˚. If n˚ ă νn{4 we are done, so assume from now on that n˚ ě νn{4. Then
our choice of δ2p`q implies that the bipartite graphs P ijrV 1i Ÿ V

1
j s are pδ˚˚2 p`q, 1{`q-

quasirandom, where δ˚˚2 p`q “ minpδ˚2 p`q, 1
9`3 q. So by Lemma 55 we get a contradic-

tion to the maximality of m provided we can show that H is pδ˚3 , dijkq-quasirandom
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w.r.t. the subtriads P ijk
˚ of P ijk induced by V 1i Y V 1j Y V 1k . This is indeed the case,

since the triangle counting lemma yields that

|K3pP
123
q| ď |V1||V2||V3|

`

1{`3
` 3δ2p`q

˘

n˚ěνn{4
ď

43|V 11 ||V
1

2 ||V
1

3 |

ν3 p1{`3
` 3δ2p`qq

ď
64 ¨K3pP rV

1
1 , V

1
2 , V

1
3sq

ν3 ¨
p1{`3 ` 3δ2p`qq

p1{`3 ´ 3δ˚˚2 p`qq

ď 128 ¨ K3pP
123
˚ q

ν3 ,

i.e.,
δ3|K3pP

123
q| ď δ˚3 |K3pP

123
˚ q| ,

and the same argument applies to every other triple ijk P r4sp3q.

3.5.4 Vertex-disjoint squared paths with Q vertices

Next we restate and prove Theorem 25.

Theorem 57. Given α, µ ą 0 and Q P N there exists n0 P N such that in every
hypergraph H with vpHq “ n ě n0 and δ2pHq ě p3{4 ` αqn all but at most µn
vertices of H can be covered by vertex-disjoint squared paths with Q vertices.

Proof. As we could replace Q by 4Q if necessary we may suppose that Q is a multi-
ple of 4. Pick sufficiently small d3, ν, τ ! α, µ and let δ3 ą 0, δ2 : NÑ p0, 1q,
N : N Ñ N be the number and functions obtained by applying Lemma 56
to Q, ν, and d3. W.l.o.g. δ3, δ2p¨q are sufficiently small, such that δ3 ! α, τ ,
and δ2p`q ! α, `´1, τ . For t0 sufficiently large we can use Lemma 53 with δ3, δ2, t0

and get an integer T0. Finally we let n0 be sufficiently large.
Now let H be a 3-uniform hypergraph with vpHq “ n ě n0 and δ2pHq ě p

3
4`αqn.

Due to Lemma 53 there exists a vertex partition V0 Ÿ V1 Ÿ . . . Ÿ Vt “ V and pair
partitions

P ij “ tP ij
α “ pVi Ÿ Vj, E

ij
α q : 1 ď α ď `u

of the complete bipartite graphs KpVi, Vjq for 1 ď i ă j ď t satisfying (1)-(3).
We call a triad P ijk

αβγ dense if dpH|P ijk
αβγq ě α{10. For every pair i˚j˚ P rtsp2q

and every λ P r`s we denote the set of dense triads involving Vi˚ , Vj˚ , and P
i˚j˚
λ

by Dλpi˚, j˚q.
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Claim 58. For every i˚j˚ P rtsp2q we have |Dλpi˚, j˚q| ě p3
4 `

α
2 q`

2t.

Proof. Notice that Lemma 53(1) yields

np1´ δ3q

t
ď |Vk| ď

n

t
(3.26)

for every k P rts. Appealing to the pδ2p`q, 1{`q-quasirandomness of P i˚j˚
λ we infer

|Ei˚j˚
λ | ě

´1
`
´ δ2p`q

¯

|Vi˚ ||Vj˚ |

ě

´1
`
´ δ2p`q

¯´

p1´ δ3qn

t

¯2
.

Together with the lower bound on δ2pHq and |V0| ď δ3n it follows that
´1
`
´ δ2p`q

¯´

p1´ δ3qn

t

¯2´3
4 ` α ´ δ3

¯

n ď
ÿ

xyPE
i˚j˚
λ

|Npx, yqr V0| . (3.27)

On the other hand we can derive an upper bound on the right side by counting
the edges in each triad using Ei˚j˚

λ separately. Due to the triangle counting lemma
and (3.26) each such triad contains at most

´ 1
`3 ` 3δ2p`q

¯´n

t

¯3

triangles. Therefore we have
ÿ

xyPE
i˚j˚
λ

|Npx, yqrV0| ď t`2 α

10

´n

t

¯3´ 1
`3 `3δ2p`q

¯

`|Dλpi˚, j˚q|
´n

t

¯3´ 1
`3 `3δ2p`q

¯

.

Combined with (3.27) this leads because of δ3 ! α and δ2 ! α{`3 to

|Dλpi˚, j˚q| ě p3{4` α{2q`2t .

For every f : rts2 Ñ r`s we define a hypergraph Jf on the vertex set rts such that
a 3-element set ti, j, ku is an edge of Jf if the triad P ijk

fpijqfpikqfpjkq is dense and H
is δ3-quasirandom w.r.t. this triad.

Claim 59. There is f : rtsp2q Ñ r`s such that all but at most τt2 pairs ij P rtsp2q

have at least pair-degree p3
4 `

α
8 qt in Jf .

Proof. Let Df be the hypergraph on rts whose edges are the triples ijk such that
the triad P ijk

fpijqfpikqfpjkq is dense, and let Rf be the hypergraph consisting of all
sets ti, j, ku such that H is δ3-quasirandom with respect to the triad P ijk

fpijqfpikqfpjkq.
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Clearly, Jf “ Df X Rf . We will show that if we choose f uniformly at random,
then with positive probability EpRf q ď 2δ3t

3 and δ2pDf q ě p3{4` α{4qt hold.
The expected value of the number of missing edges in Rf is

EpEpRf qq ď
1
`3 ¨ δ3t

3`3
“ δ3t

3 ,

since by Lemma 53(3) there are at most δ3t
3`3 irregular triads. Thus, due to

Markov’s inequality
PpEpRf q ą 2δ3t

3
q ă

δ3t
3

2δ3t3
“

1
2 . (3.28)

Now fix a pair i˚j˚ P rtsp2q. Estimating the expected value of dDf pi˚, j˚q, we get
for every λ P r`s that

E
`

dDf pi˚, j˚q|fpi˚, j˚q “ λ
˘

“
1

`p
t
2q´1

ÿ

f : rts2Ñr`s,fpi˚,j˚q“λ

dDf pi˚, j˚q

“
|Dλpi˚, j˚q|

`2 .

By Claim 58 it follows that

E
`

dDf pi˚, j˚q|fpi˚, j˚q “ λ
˘

ě p3{4` α{2qt .

Moreover, for f : rts2 Ñ r`s with fpi˚, j˚q “ λ the value of dDf pi˚, j˚q is completely
determined by the 2pt ´ 2q numbers fpi, jq with |ti, ju X ti˚, j˚u| “ 1 and if one
changes one of these 2pt´ 2q values of f , then dDf pi˚, j˚q can change by at most 1.
Thus, the Azuma-Hoeffding inequality (see, e.g., [39, Corollary 2.27]) leads to

P
`

dDf pi˚, j˚q ă p3{4` α{4qt
ˇ

ˇfpi˚, j˚q “ λq ă exp
´

´
2pαt{4q2
2pt´ 2q

¯

.

Therefore,
P
`

dDf pi˚, j˚q ă p3{4` α{4qt
ˇ

ˇfpi˚, j˚q “ λ
˘

ă e´Ωptq

for each λ P r`s and hence

PpdDf pi˚, j˚q ă p3{4` α{4qtq ă e´Ωptq . (3.29)

Therefore the probability that some pair has a pair-degree less than p3{4`α{4qt is
less than t2{eΩptq, which proves that with probability greater then 1{2 the minimum
pair-degree of Df is at least p3{4 ` α{4qt. Together with (3.28) this shows that
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the probability that a function f fulfills EpRf q ď 2δ3t
3 and δ2pDf q ě p3{4` α{4qt

is greater than zero.
From now on let f : rts2 Ñ r`s be a fixed function having these two properties.

Notice that Df X Rf arise from Df by deleting at most 2δ3t
3 edges. We can

estimate the number τt2 of pairs, which have afterwards a pair-degree smaller
than p3{4` α{8qt, by

τt2αt{8 ď 6δ3t
3 .

Thus τ ď 48δ3
α

and by our choice of δ3 ! α, τ it follows that τ ď τ . In other words,
there are indeed at most τt2 pairs ij P rtsp2q whose pair-degree in Jf is smaller
than p3

4 `
α
8 qt.

From now on we will denote the bipartite graph P ij
fpi,jq simply by P ij, where f

is the function obtained in Claim 59. Due to Claim 59 we can apply Lemma 51
to Jf with α1 “ α{8 instead of α and find a Kp3q

4 -factor missing at most 2
?
τt` 13

vertices with τ ! α1. Since Q ” 0 pmod 4q, we can apply Lemma 56 to the
“tetrads” corresponding to these Kp3q

4 in the reduced hypergraph. Therefore all but
at most

n

t
p2
?
τt` 13q ` t

4 ¨ ν ¨
n

t
` δ3n ď µn

vertices can be covered by vertex-disjoint squared paths with Q vertices.

3.5.5 Almost squared cycle

Finally we establish Proposition 26 by connecting the absorbing path and a
collection of many long squared paths provided by the foregoing theorem, which
yields an almost spanning squared cycle.

Proposition 60. Given α ą 0, let ϑ˚ ą 0, M P N be the constants from the
connecting lemma and let PA be an absorbing squared path. There exists n0 P N
such that in every hypergraph H with vpHq “ n ě n0 and δ2pHq ě p4{5` αqn all
but at most 2ϑ2

˚n vertices of H can be covered by a squared cycle and PA is an
induced subhypergraph of this cycle.

Proof. Applying Theorem 57 to the hypergraph H r pPA YRq, where R is the
reservoir set, with α1 “ α{2 instead of α, with some Q ě 2Mϑ´4

˚ divisible by 4,
and µ “ ϑ2

˚. We get less than n{Q squared paths with Q vertices and miss at
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most µn vertices. We will connect these paths and the absorbing path PA to a
squared cycle by using Lemma 46, which is applicable each time,
since Mp n

Q
` 1q ď ϑ4

˚n for Q ě 2Mϑ´4
˚ and n sufficiently large. Therefore

we just used vertices of the reservoir set. Because µ ď ϑ2
˚ and |R| ď ϑ2

˚n we miss
at most µn` |R| ď 2ϑ2

˚n vertices.
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4 Powers of tight Hamilton cycles in
randomly perturbed hypergraphs

In this chapter we will prove the following result.

Theorem 61 (Main result). For all integers k ě 2 and r ě 1 such that k ` r ě 4
and α ą 0, there is ε ą 0 such that the following holds. Suppose H is a k-graph
on n vertices with

δk´1pHq ě

˜

1´
ˆ

k ` r ´ 2
k ´ 1

˙´1

` α

¸

n (4.1)

and p “ ppnq ě n´p
k`r´2
k´1 q

´1
´ε. Then a.a.s. the union H Y Gpkqpn, pq contains

the rth power of a tight Hamiltonian cycle.

This chapter is organized as follows. In Section 4.1 we prove some results
concerning random hypergraphs. Section 4.2 contains two essential lemmas in our
approach, namely, Lemma 65 (Connecting Lemma) and Lemma 66 (Absorbing
Lemma). In Section 4.3 we prove our main result, Theorem 61. Some remarks
concerning the hypotheses in Theorem 61 are given in Section 4.4. Throughout
this chapter, we omit floor and ceiling functions.

4.1 Subgraphs of random hypergraphs

In this section we prove some results related to binomial random k-graphs. We will
apply Chebyshev’s inequality and Janson’s inequality to prove some concentration
results that we shall need. For convenience, we state these two inequalities in the
form we need (inequalities (4.2) and (4.3) below follow, respectively, from Janson’s
and Chebyshev’s inequalities; see, e.g., [39, Theorem 2.14, Equation (1.2)]).

We first recall Janson’s inequality. Let Γ be a finite set and let Γp be a random
subset of Γ such that each element of Γ is included in Γp independently with
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probability p. Let S be a family of non-empty subsets of Γ and for each S P S,
let IS be the indicator random variable for the event S Ď Γp. Thus each IS

is a Bernoulli random variable Bepp|S|q. Let X :“
ř

SPS IS and λ :“ EpXq.
Let ∆X :“

ř

SXT‰∅ EpISIT q, where the sum is over all ordered pairs S, T P S (note
that the sum includes the pairs pS, Sq with S P S). Then Janson’s inequality says
that, for any 0 ď t ď λ,

PpX ď λ´ tq ď exp
ˆ

´
t2

2∆X

˙

. (4.2)

Next note that VarpXq “ EpX2q´EpXq2 ď ∆X . Then, by Chebyshev’s inequality,

PpX ě 2λq ď VarpXq
λ2 ď

∆X

λ2 . (4.3)

Consider the random k-graph Gpkqpn, pq on an n-vertex set V . Note that we
can view Gpkqpn, pq as Γp with Γ “

`

V
k

˘

. For two k-graphs G and H, let G XH

(or GYH) denote the k-graph with vertex set V pGq X V pHq (or V pGq Y V pHq)
and edge set EpGq X EpHq (or EpGq Y EpHq). Finally, let

ΦF “ ΦF pn, pq “ mintnvHpeH : H Ď F and eH ą 0u.

The following simple proposition is useful.

Proposition 62. Let F be a k-graph with s vertices and f edges and
let G :“ Gpkqpn, pq. Let A be a family of ordered s-subsets of V “ V pGq. For
each A P A, let IA be the indicator random variable of the event that A spans a
labelled copy of F in G. Let X “

ř

APA IA. Then ∆X ď s!22sn2sp2f{ΦF .

Proof. Order the vertices of F arbitrarily. For each ordered s-subset A of V , let αA
be the bijection from V pF q to A following the orders of V pF q and A. Let FA be
the labelled copy of F spanned on A. For any T Ď V pF q with eF pT q ą 0, denote
by WT the set of all pairs A, B P A such that AXB “ αApT q. If T has s1 vertices
and F rT s has f 1 edges, then for every tA,Bu P WT , FA Y FB has exactly 2s´ s1

vertices and at least 2f ´ f 1 edges. Therefore, we can bound ∆X by

∆X ď
ÿ

TĎV pF q

|WT |p
2f´f 1 .

Given integers n and b, let pnqb :“ npn´ 1qpn´ 2q ¨ ¨ ¨ pn´ b` 1q “ n!{pn´ bq!.
Note that there are at most

`

n
2s´s1

˘

choices for the vertex set of FAYFB, and there
are at most

p2s´ s1qs ¨
ˆ

s

s1

˙

s! ď p2s´ s1q!s!2s
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ways to label each p2s´ s1q-set to get tA,Bu. Thus we have |WT | ď s!2sn2s´s1 and

∆X ď
ÿ

TĎV pF q

s!2sn2s´s1p2f´f 1
ď

ÿ

TĎV pF q

s!2sn2sp2f
{ΦF ď s!22sn2sp2f

{ΦF ,

because there are at most 2s choices for T .

The following lemma gives the properties of Gpkqpn, pq that we will use. Through-
out the rest of the paper, we write α ! β ! γ to mean that ‘we can choose the
positive constants α, β and γ from right to left’. More precisely, there are func-
tions f and g such that, given γ, whenever β ď fpγq and α ď gpβq, the subsequent
statement holds. Hierarchies of other lengths are defined similarly.

Lemma 63. Let F be a labelled k-graph with b vertices and a edges.
Suppose 1{n ! 1{C ! γ, 1{a, 1{b, 1{s. Let V be an n-vertex set, and let F1, . . . ,Ft
be t ď ns families of γnb ordered b-sets on V . If p “ ppnq is such
that ΦF pn, pq ě Cn, then the following properties hold for the binomial
random k-graph G “ Gpkqpn, pq on V .

(i ) With probability at least 1´expp´nq, every induced subgraph of G of order γn
contains a copy of F .

(ii ) With probability at least 1 ´ expp´nq, for every i P rts, there are at
least pγ{2qnbpa ordered b-sets in Fi that span labelled copies of F .

(iii ) With probability at least 1´ 1{
?
n, there are at most 2nbpa ordered b-sets of

vertices of G that span labelled copies of F .

(iv ) With probability at least 1 ´ 1{
?
n, the number of overlapping (i.e., not

vertex-disjoint) pairs of copies of F in G is at most 4b2n2b´1p2a.

Proof. Let A be a family of ordered b-sets of vertices in V . For each A P A, let IA
be the indicator random variable of the event that A spans a labelled copy of F
in G. Let XA “

ř

APA IA. From the hypothesis that ΦF ě Cn and Proposition 62,
we have

∆X ď b!22bn2bp2a
{ΦF ď b!22bn2bp2a

{pCnq. (4.4)

Furthermore, let S consist of the edge sets of the labelled copies of F spanned on A
in the complete k-graph on V for all A P A. Since we can write XA “

ř

SPS IS,
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where IS is the indicator variable for the event S Ď EpGq, we can apply (4.2)
to XA.
For (i ), fix a vertex set W of G with |W | “ γn. Let A be the family of all

labelled b-sets in W . Let XA be the random variable that counts the number of
members of A that span a labelled copy of F and thus ErXAs “ pγnqbp

a. By (4.4)
and (4.2) and the fact that 1{C ! γ, 1{b, we have PpXA “ 0q ď expp´2nq. By
the union bound, the probability that there exists a vertex set W of size γn such
that XA “ 0 is at most 2n expp´2nq ď expp´nq, which proves (i ).
For (ii ), fix i P rts and let XFi be the random variable that counts the

members of Fi that span F . Note that ErXFis “ γnbpa. Thus (4.2) implies
that P

`

XFi ď pγ{2qnbpa
˘

ď expp´2nq. By the union bound and the fact
that ns expp´2nq ď expp´nq, we see that (ii ) holds.
For (iii ), let X3 be the random variable that counts the number of labelled

copies of F in G. Since EpX3q “ pnqbp
a, by (4.4) and (4.3), we obtain

PpX3 ě 2panbq ď PpX3 ě 2ErX3sq ď
∆X3

ErX3s2
ď
b!22bn2bp2a{pCnq

ppnqbpaq2
ď

1
?
n
.

For (iv ), let Y be the random variable that denotes the number of overlapping
pairs of copies of F in G. We first estimate ErY s. We write Y “

ř

APQ IA, where Q
is the collection of the edge sets of overlapping pairs of labelled copies of F in the
complete k-graph on n vertices. Note that if two overlapping copies of F do not
share any edge, then they induce at most 2b ´ 1 vertices and exactly 2a edges.
Note that for 1 ď i ď b, there are

ˆ

n

2b´ i

˙

p2b´ iqb
ˆ

b

i

˙

b! “ pnq2b´i
ˆ

b

i

˙

pbqi ď pnq2b´ipbq
2
i

members of Q whose two copies of F share exactly i vertices. Thus, the number of
choices for the vertex sets of pairs of copies which induce at most 2b´ 2 vertices is
at most

ř

2ďiďbpnq2b´ipbq
2
i ď n2b´1. By the definition of ∆X3 and (4.4) we have

n2b´1b2p2a
{2 ď ErY s ď pnq2b´1b

2
¨ p2a

` n2b´1
¨ p2a

`∆X3 ď 2b2n2b´1p2a.

We next compute ∆Y . For each A P Q, let SA denote the k-graph induced
by A (thus SA is the union of two overlapping copies of F ). For each A,B P Q,
write SA :“ F1 Y F2 and SB :“ F3 Y F4, where each Fi is a copy of F for i P r4s
such that EpF1q X EpF3q ‰ ∅. Define H1 :“ F1 X F2, H2 :“ pF1 Y F2q X F3
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and H3 :“ pF1 Y F2 Y F3q X F4. Since V pF1q X V pF2q ‰ ∅, V pF3q X V pF4q ‰ ∅,
and EpF1q X EpF3q ‰ ∅, we know that vHi ě 1 for i “ 1, 2, 3. We claim
that nvHipeHi ě n for i “ 1, 2, 3. Indeed, since each Hi is a subgraph of F ,
if eHi ě 1, then nvHipeHi ě ΦF ě Cn; otherwise eHi “ 0 and then we
have nvHipeHi “ nvHi ě n1 “ n. So we have

nvH1peH1 ¨ nvH2peH2 ¨ nvH3peH3 ě n3. (4.5)

Now we define ∆H1,H2,H3 “
ř

A,B ErIAIBs, where the sum is over the pairs tA,Bu
with AXB ‰ ∅ that generate H1, H2, H3. Observe that the sum contains at most

ˆ

n

4b´ vH1 ´ vH2 ´ vH3

˙

p4b´ vH1 ´ vH2 ´ vH3q
4
b ă n4b´pvH1`vH2`vH3 qp4bq3b

terms. Thus, from (4.5), we obtain

∆H1,H2,H3 “
ÿ

A,B

ErIAIBs ď p4bq3bn4b´pvH1`vH2`vH3 qp4a´peH1`eH2`eH3 q

ď p4bq3bn4b´3p4a.

Let D “ Dpb, k, rq be the number of choices for H1, H2, H3, thus

∆Y “
ÿ

H1,H2,H3

∆H1,H2,H3 ď Dp4bq3bn4b´3p4a.

Therefore, by (4.3) and the fact that n is large enough, we get

P
`

Y ě 4b2n2b´1p2a
q ď P

`

Y ě 2ErY sq ď ∆Y

ErY s2
ď
Dp4bq3bn4b´3p4a

pn2b´1p2a{2q2 ď
1
?
n
.

This verifies (iv ).

For m ě k` r´ 1, denote by P k,r
m the rth power of a k-uniform tight path on m

vertices. Similarly, write Ck,r
m for the rth power of a k-uniform tight cycle on m

vertices. For simplicity we say that P k,r
m is an pr, kq-path and Ck,r

m is an pr, kq-cycle.
We write P r

m for P k,r
m whenever k is clear from the context. Moreover, the ends

of P r
m are its first and last k` r´ 1 vertices (with the order in the pr, kq-path). We

end this section by computing ΦP r
b
for p “ ppnq ě n´p

k`r´2
k´1 q

´1
´ε as in Theorem 61.

For b ě k ` r ´ 1, let

gpbq :“
ˆ

b´
pk ´ 1qpk ` r ´ 1q

k

˙ˆ

k ` r ´ 2
k ´ 1

˙

.
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Clearly g is an increasing function. Note that the number of edges in P k,r
m is given

by

ˇ

ˇE
`

P k,r
m

˘
ˇ

ˇ “

ˆ

k ` r ´ 1
k

˙

` pm´ pk ` r ´ 1qq
ˆ

k ` r ´ 2
k ´ 1

˙

“

ˆ

m´
pk ´ 1qpk ` r ´ 1q

k

˙ˆ

k ` r ´ 2
k ´ 1

˙

“ gpmq.

Proposition 64. Suppose k ě 2, r ě 1, b ě k ` r ´ 1, k ` r ě 4 and C ą 0.
Let ε be such that 0 ă ε ă min

 

p2gpbqq´1,
`

3
`

k`r´1
k

˘˘´1(.
Suppose 1{n ! 1{C, 1{k, 1{r, 1{b. If p “ ppnq ě n´p

k`r´2
k´1 q

´1
´ε, then ΦP r

b
ě Cn.

Proof. Let H be a subgraph of P r
b . Since for any integer k ` r ´ 1 ď b1 ď b, any

subgraph of P r
b1 has at most gpb1q edges, we have the following observations.

(a) If eH ą gpb1q for some b1 ě k ` r ´ 1, then vH ě b1 ` 1;

(b) if eH ą
`

i
k

˘

for some k ´ 1 ď i ă k ` r ´ 1, then vH ě i` 1.

By (a), we have

min
gpk`r´1qăeHďgpbq

nvHpeH “ min
k`r´1ďb1ăb

ˆ

min
gpb1qăeHďgpb1`1q

nvHpeH
˙

ě min
k`r´1ďb1ăb

nb
1`1pgpb

1`1q.

Since p ě n´1{pk`r´2
k´1 q´ε, and gpb1 ` 1q ą 0, the following holds for any b1 ă b:

nb
1`1pgpb

1`1q
ě nb

1`1
´

n´1{pk`r´2
k´1 q´ε

¯gpb1`1q

“ n´gpb
1`1qεnpk´1qpk`r´1q{k

ě n´gpbqεnpk´1qpk`r´1q{k
ě Cn,

where we used pk ´ 1qpk ` r ´ 1q{k ě 3{2 and gpbqε ă 1{2. Therefore,

min
gpk`r´1qăeHďgpbq

nvHpeH ě Cn. (4.6)

On the other hand, noting that gpk ` r ´ 1q “
`

k`r´1
k

˘

, by (b) we have

min
0ăeHďgpk`r´1q

nvHpeH “ min
k´1ďiăk`r´1

˜

min
pikqăeHďp

i`1
k q
nvHpeH

¸

ě min
k´1ďiăk`r´1

ni`1pp
i`1
k q.
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Since p ě n´1{pk`r´2
k´1 q´ε, and

`

i`1
k

˘

ε ď 1{3 for any k ´ 1 ď i ď k ` r ´ 2, if i ě 2,
then

ni`1pp
i`1
k q ě ni`1n´p1{p

k`r´2
k´1 q`εq

i`1
k p

i
k´1q ě ni`1´ i`1

k
´pi`1

k qε ě Cn.

Otherwise i “ 1 and thus k “ 2, in which case we have ni`1pp
i`1
k q “ n2p ě Cn.

Therefore,
min

0ăeHďgpk`r´1q
nvHpeH ě Cn. (4.7)

From (4.6) and (4.7), we have ΦP r
b
ě Cn, as desired.

4.2 The Connecting and Absorbing Lemmas

For brevity, throughout the rest of this paper, we write

h :“ k ` r ´ 1, t :“ gp2hq, c :“
ˆ

k ` r ´ 2
k ´ 1

˙´1

.

Recall that the ends of an pr, kq-path are ordered h-sets that span a copy of Kpkq
h

in H.

4.2.1 The Connecting Lemma

Given a k-graph H and two ordered h-sets of vertices A and B each spanning a
copy of Kpkq

h in H, we say that an ordered 2h-set of vertices C connects A and B
if C X A “ C XB “ ∅ and the concatenation ACB spans a labelled copy of P r

4h.
We are now ready to state our connecting lemma.

Lemma 65 (Connecting Lemma). Suppose 1{n ! ε ! β ! α1 ! 1{k, 1{r. Let H be
an n-vertex k-graph with δk´1pHq ě p1´ c` α1qn and suppose p “ ppnq ě n´c´ε.
Then a.a.s. H Y Gpkqpn, pq contains a set C of vertex-disjoint copies of P r

2h

with |C| ď βn such that, for every pair of disjoint ordered h-sets spanning a copy
of Kpkq

h in H, there are at least β2n{p2hq2 ordered copies of P r
2h in C that connect

them.

Proof. Let S be the set of pairs of disjoint ordered h-sets that each span a copy
of Kpkq

h in H. Fix tS, S 1u P S and write S :“ pv1, . . . , vhq and S 1 :“ pwh, . . . , w1q.
Since δk´1pHq ě p1´ c` α1qn, we can extend S to an pr, kq-path with ver-
tices pv1, . . . , v2hq such that the vertices of this pr, kq-path are disjoint

73



with twh, . . . , w1u and there are at least pα1n{2qh choices for the ordered
set pvh`1, . . . , v2hq. Similarly, we can extend S 1 to an pr, kq-path pw2h, . . . , w1q

such that the vertices of this pr, kq-path are disjoint with tv1, . . . , v2hu and there
are at least pα1n{2qh choices for the ordered set pw2h, . . . , wh`1q.
Therefore there are at least pα1n{2q2h ě 24βn2h possible choices for the

ordered 2h-sets pvh`1, . . . , v2h, w2h, . . . , wh`1q. Let CS,S1 be a collection of ex-
actly 24βn2h such ordered 2h-sets of vertices. Clearly if an ordered set C in CS,S1
spans a copy of P r

2h, then C connects S and S 1.
Now we will use the edges of G “ Gpkqpn, pq to obtain the desired copies of P r

2h

that connect the pairs in S. Let T be the set of all labelled copies of P r
2h in G.

We claim that the following properties hold with probability at least 1´ 3{
?
n:

(a) |T | ď 2ptn2h;

(b) for every tS, S 1u P S, at least 12βptn2h members of T connect S and S 1;

(c) the number of overlapping pairs of members of T is at most 4p2hq2p2tn4h´1.

To see that the claim above holds, note that by Proposition 64, we can apply
Lemma 63 with F “ P r

2h, γ “ 24β and CS,S1 in place of Fi. Items (a), (b) and (c)
follow, respectively, from Lemma 63 (iii ), (ii ) and (iv ).
Next we select a random collection C 1 by including each member of T in-

dependently with probability q :“ β{p2p2hq2n2h´1ptq. We remark that q ă 1,
since n2h´1pt ě C due to Proposition 64. By using Chernoff’s inequality (for (i)
and (ii) below) and Markov’s inequality (for (iii) below), we know that there is a
choice of C 1 that satisfies the following properties:

(i) |C 1| ď 2q|T | ď βn;

(ii) for every tS, S 1u P S, there are at least 12βpq{2qn2hpt “ 3β2n{p2hq2 members
of C 1 that connect S and S 1;

(iii) the number of overlapping pairs of members of C 1 is at
most 8p2hq2q2n4h´1p2t “ 2β2n{p2hq2.

Deleting one member from each overlapping pair, we obtain a collection C of vertex
disjoint copies of P r

2h with |C| ď βn, and such that, for every pair of disjoint or-
dered h-sets each spanning a K

pkq
h in H, there are at

least 3β2n{p2hq2´2β2n{p2hq2 “ β2n{p2hq2 sets of 2h vertices connecting them.
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4.2.2 The Absorbing Lemma

In this subsection we prove our absorbing lemma.

Lemma 66 (Absorbing Lemma). Suppose 1{n ! ε ! ζ ! α ! 1{k, 1{r. Let H be
an n-vertex k-graph with δk´1pHq ě p1´ c` αqn and suppose p “ ppnq ě n´c´ε.
Then a.a.s. H Y Gpkqpn, pq contains an pr, kq-path Pabs of order at most 6hζn
such that, for every set X Ď V pHq r V pPabsq with |X| ď ζ2n{p2hq2, there is
an pr, kq-path in H on V pPabsq YX that has the same ends as Pabs.

We call the pr, kq-path Pabs in Lemma 66 an absorbing path. We now define
absorbers.

Definition 67. Let v be a vertex of a k-graph. An ordered 2h-set of
vertices pw1, . . . , w2hq is a v-absorber if pw1, . . . , w2hq spans a labelled copy of P r

2h

and pw1, . . . , wh, v, wh`1, . . . , w2hq spans a labelled copy of P r
2h`1.

Proof of Lemma 66. Suppose 1{n ! ε ! ζ ! β ! α ! 1{k, 1{r. We split the proof
into two parts. We first find a set F of absorbers and then connect them to an pr, kq-
path by using Lemma 65 (Connecting Lemma). We will expose G “ Gpkqpn, pq
in two rounds: G “ G1 Y G2 with G1 and G2 independent copies of Gpkqpn, p1q,
where p1´ p1q2 “ 1´ p.

Fix a vertex v. By the codegree condition of H, we can extend v to a labelled
copy of P r

2h`1 in the form pw1, . . . , wh, v, wh`1, . . . , w2hq such that there are at
least pαn{2q2h ě 24ζn2h choices for the ordered 2h-set pw1, . . . , w2hq. Let Av be
a collection of exactly 24ζn2h such ordered 2h-sets. By definition, if an ordered
set A in Av spans a labelled copy of P r

2h, then A is a v-absorber.
Now consider G1 “ Gpkqpn, p1q and let T be the set of all labelled copies of P r

2h

in G1. By Proposition 64, we can apply Lemma 63 with F “ P r
2h and Av in place

of Fi. Using the union bound we conclude that the following properties hold with
probability at least 1´ 3{

?
n:

(a) |T | ď 2ptn2h;

(b) for every vertex v in H, at least 12ζptn2h members of T are v-absorbers;

(c) the number of overlapping pairs of members of T is at most 4p2hq2p2tn4h´1.
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Next we select a random collection F 1 by including each member of T indepen-
dently with probability q “ ζ{p2p2hq2ptn2h´1q ă 1. In view of the properties above,
by using Chernoff’s inequality (for (i) and (ii) below) and Markov’s inequality
(for (iii) below), we know that there is a choice of F 1 that satisfies the following
properties:

(i) |F 1| ď ζn;

(ii) for every vertex v, at least 12ζpq{2qptn2h “ 3ζ2n{p2hq2 members of F 1

are v-absorbers;

(iii) there are at most 8p2hq2q2n4h´1p2t “ 2ζ2n{p2hq2 overlapping pairs of mem-
bers of F 1.

By deleting from F 1 one member from each overlapping pair and all members
that are not in T , we obtain a collection F of vertex-disjoint copies of P r

2h

such that |F | ď ζn, and for every vertex v, there are at least

3ζ2n{p2hq2 ´ 2ζ2n{p2hq2 “ ζ2n{p2hq2

v-absorbers.
Now we connect these absorbers using Lemma 65. Let V 1 “ V pHq r V pFq

and n1 “ |V 1|. In particular, n1 ě n{2 is sufficiently large. Now considerH 1 “ HrV 1s

and G1 “ G2rV
1s “ Gpkqpn1, p1q. Since |V pFq| ď 2h ¨ ζn ď α2n, we

have δk´1pH
1q ě p1´ c` α{2qn. We apply Lemma 65 to H 1 and G1 with α1 “ α{2

and β, and conclude that a.a.s. H 1 YG1 contains a set C of vertex-disjoint copies
of P r

2h such that |C| ď βn and for every pair of ordered h-sets in V 1, there are at
least β2n members of C connecting them.
For each copy of P r

2h in F , we greedily extend its two ends by h vertices
such that all new paths are pairwise vertex disjoint and also vertex disjoint
from V pCq. This is possible because of the codegree condition of H0 and the
fact that |V pFq| ` 2h|F | ` |V pCq| ď 2hζn ` 2hζn ` 2h ¨ βn ă αn{4. Note that
both ends of these pr, kq-paths P r

4h are in V 1 r V pCq. Since ζn ď β2n1{p2hq2,
we can greedily connect these P r

4h. Let Pabs be the resulting pr, kq-path. By
construction, |V pPabsq| ď p4h`2hq¨ζn “ 6hζn. Moreover, for anyX Ď V rV pPabsq

such that |X| ď ζ2n{p2hq2, since each vertex v has at least ζ2n{p2hq2 v-absorbers
in F , we can absorb them greedily and conclude that there is an pr, kq-path
on V pPabsq YX that has the same ends as Pabs.
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4.3 Proof of Theorem 61

We now combine Lemmas 65 and 66 to prove Theorem 61.

Proof of Theorem 61. Suppose 1{n ! ε ! β ! ζ ! α, 1{k, 1{r. Furthermore,
recall that c :“

`

k`r´2
k´1

˘´1 and suppose that H YGpkqpn, pq is an n-vertex k-graph
with δk´1pHq ě p1´ c` αqn and p “ ppnq ě n´c´ε. We will exposeG :“ Gpkqpn, pq
in three rounds: G “ G1 YG2 YG3 with G1, G2 and G3 three independent copies
of Gpkqpn, p1q, where p1´ p1q3 “ 1´ p. Note that p1 ą p{3 ą n´c´2ε.

By Lemma 66 with 2ε in place of ε, a.a.s. the k-graph HYG1 contains an absorb-
ing pr, kq-path Pabs of order at most 6hζn, that is, for every setX Ď V pHqr V pPabsq

such that |X| ď ζ2n{p2hq2, there is an pr, kq-path in H on V pPabsq Y X which
has the same ends as Pabs. Let V 1 “ V pHq r V pPabsq and n1 “ |V 1|. In partic-
ular, n1 ě p1 ´ 6hζqn and, since ζ is small enough, we have pn1qc`ε ě nc`ε{2.
Thus p1 ą p{2 ě n´c´ε{2 ě pn1q´c´ε{4 ě pn1q´c´2ε.

Now consider H 1 “ HrV 1s and let G12 :“ Gpkqpn1, p1q be the subgraph of G2

induced by V 1. Note that δk´1pH
1q ě δk´1pHq ´ |V pPabsq| ě p1´ c` α{2qn1. By

Lemma 65, a.a.s. the k-graph H 1 YG12 contains a set C of vertex-disjoint copies
of P r

2h such that |C| ď βn and for every pair of disjoint ordered h-sets in V 1 that
each spans a copy of Kpkq

h , there are at least β2n1{p2hq2 members of C connecting
them. Since |V pCq| ` |V pPabsq| ď 2h ¨ βn` 6hζn ď αn{2, we can greedily extend
the two ends of Pabs by h vertices so that the two new ends E1, E2 are in V 1rV pCq.
Let m :“ g´1p1{p2εqq. Note that m ě 1{

?
ε because ε is small enough and g

is linear. By Proposition 64, we can apply Lemma 63 (i ) with b “ m to G3

and conclude that a.a.s. every induced subgraph of G3 of order βn contains
a copy of P r

m. Thus we can greedily find at most
?
εn vertex-disjoint copies

of P r
m in V 1 r pV pCq Y E1 Y E2q, which together covers all but at most βn

vertices of V 1 r V pCq. Since
?
εn ` 1 ď β2n1{p2hq2, we can greedily connect

these pr, kq-paths P r
m and Pabs to an pr, kq-cycle Qr. Let R :“ V pHq r V pQrq

and note that |R| ď |V pCq| ` βn ď p2h ` 1q2βn ď ζ2n{p2hq2. Since Pabs is an
absorber, there is an pr, kq-path on V pPabsq YR which has the same ends as Pabs.
So we can replace Pabs by this pr, kq-path in Qr and obtain the rth power of a tight
Hamiltonian cycle.

Moreover, since all previous steps can be achieved a.a.s., by the union bound,H YG
a.a.s. contains the desired rth power of a tight Hamiltonian cycle.
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4.4 Concluding remarks

Let us briefly discuss the hypotheses in Theorem 61. Note that, for r “ 1, the
condition in (4.1) is simply δk´1pHq ě αn, with α any arbitrary positive constant.
Thus, in this case, our theorem is in the spirit of the original Bohman, Frieze, and
Martin [8] set-up, in the sense that we have a similar minimum degree condition on
the deterministic graph H. However, if r ą 1, then our minimum condition (4.1)
is of the form δk´1pHq ě pσ ` αqn for some σ “ σpk, rq ą 0 (and arbitrarily
small α ą 0). Thus, for r ą 1, our result is more in line with Theorem 12 of
Bennett, Dudek, and Frieze [5] (in fact, we have σp2, 2q “ 1{2 in our result, which
matches the minimum degree condition in Theorem 12). It is natural to ask
whether one can weaken the condition in (4.1) to δk´1pHq ě αn, that is, whether
one can have σ “ 0. This problem was settled positively by Böttcher, Montgomery,
Parczyk, and Person for graphs [13]. They showed that for each k ě 2 and α ą 0,
there is some η ą 0, such that if Gα is an n-vertex graph with minimum degree at
least αn, then Gα YGpn, n´1{k´ηq a.a.s. contains the kth power of a Hamiltonian
cycle. However, the problem remains open for k-graphs (k ě 3).

Question 4.4.1. Let integers k ě 3 and r ě 2 and α ą 0 be given. Is
there ε ą 0 such that, if H is a k-graph on n vertices with δk´1pHq ě αn

and p “ ppnq ě n´p
k`r´2
k´1 q

´1
´ε, then a.a.s. H YGpkqpn, pq contains the rth power of

a tight Hamiltonian cycle?

Some remarks on the value of σ “ σpk, rq in our degree condition (4.1) follow.
These remarks show that, even though σ ą 0 if r ą 1, the value of σ is (in the
cases considered) below the value that guarantees that H on its own contains
the rth power of a tight Hamilton cycle.
Let us first consider the case k “ 2, that is, the case of graphs. In this

case, σ “ 1´ 1{r and condition (4.1) is δpHq ě p1´ 1{r ` αqn. We observe that
this condition does not guarantee thatH contains the rth power of a Hamilton cycle;
the minimum degree condition that does is δpHq ě p1´ 1{pr ` 1qqn “ rn{pr ` 1q,
and this value is optimal.
Let us now consider the case k “ 3 and 4 | n. In this case, a construction

of Pikhurko [65] shows that the condition δ2pHq ě 3n{4 does not guarantee the
existence of the square of a tight Hamilton cycle in H (in fact, his construction
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is stronger and shows that this condition does not guarantee a Kp3q
4 -factor in H).

Our minimum degree condition for k “ 3 and r “ 2 is δ2pHq ě p2{3` αqn.
Moreover, Lo and Zhao [56] showed that in an r-graph H the minimum code-

gree δr´1pHq has to be at least
´

1´Θ
` ln t
tr´1

˘

¯

n to ensure the existence of a Kprq
t .

Finally, a simple calculation shows that the expected number of P r
n in Gpkqpn, pq

is op1q if p ď n´p
k`r´2
k´1 q

´1

and ε ą 0. Thus, for such a p, a.a.s. Gpkqpn, pq does not
contain the rth power of a tight Hamiltonian cycle.
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Appendix

Summary/Zusammenfassung

We present three results concerning different aspects of extremal and probabilistic
combinatorics and their proofs. In the first part we study the local density
conditions of graphs homomorphic to a generalised Andrásfai graph. This is
motivated by the conjecture of Erdős that every n-vertex graph with the property
that any tn{2u vertices span more than n2{50 edges contains a triangle.
The second part of this thesis is dedicated to a Hamiltonian cycle problem

in 3-uniform hypergraphs. We study which minimum pair-degree condition suffices
to ensure the existence of a squared Hamiltonian cycle in a 3-uniform hypergraph.
This is motivated by Pósa’s conjecture which asked for a minimum degree condition
that implies the existence of a second power of a Hamiltonian cycle in a graph.

In the third part we continue the study of Hamiltonian cycle problems, but this
time in randomly perturbed k-uniform hypergraphs H Y Gpkqpn, pq. We investi-
gate which conditions on the parameters δk´1pHq and p ensure the existence of
an rth power of a tight Hamiltonian cycle.

Wir stellen drei Resultate, die verschiedene Aspekte der extremalen und prob-
abilistischen Kombinatorik betreffen, und deren Beweise vor. Im ersten Teil
untersuchen wir lokale Dichtebedingungen von Graphen, die homomorph zu einem
generalisierten Andrásfai-Graphen sind. Diese Arbeit ist durch eine Vermutung
von Erdős motiviert, welche besagt, dass jeder Graph auf n Ecken, in dem jede
Eckenmenge der Größe tn{2u mindestens n2{50 Kanten aufspannt, ein Dreieck
enthält.

Der zweite Teil dieser Arbeit widmet sich Hamiltonkreisproblemen in 3-uniformen
Hypergraphen. Wir untersuchen, welche minimale Paargradbedingung ausreichend
ist, um die Existenz eines Quadrathamiltonkreises in 3-uniformen Hypergraphen
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zu gewährleisten. Dies ist motiviert durch Pósa’s Vermutung, welche nach einer
Minimalgradbedingungen fragt, die die Existenz eines Quadrathamiltonkreises in
Graphen sicherstellt.

Im dritten Teil werden ebenfalls Hamiltonkreisprobleme untersucht. Dieses Mal
jedoch in k-uniformen Hypergraphen der Form H YGpkqpn, pq, wobei H für einen
vorgegebenen (deterministischen) k-uniformen Hypergraphen steht und Gpkqpn, pq
für das binomiale Modell eines zufälligen k-uniformen Hypergraphen mit Kanten-
wahrscheinlichkeit p. Wir untersuchen, welche Bedingungen an δk´1pHq und p die
Existenz einer r-ten Potenz eines Hamiltonkreises gewährleisten.
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