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1 Introduction

1.1 Overview

In this thesis we will investigate some extremal and probabilistic questions, which
we take a closer look at after a brief introduction to these fields. Throughout this
thesis we will consider finite simple undirected graphs and hypergraphs G = (V| E),
where V' is the vertex set and F is the edge set of G. We assume that the reader
is familiar with basic notations and concepts of graph theory, like 6(G) and A(G)
signifying the minimum and maximum degree. For an introduction to graph theory

and any notation not defined in this thesis we refer to the textbooks [10,11,17].

Extremal graph theory and Mantel’s theorem

Extremal graph theory studies the quantitative aspects of the dependence between
structural graph properties and graph invariants. The origin of extremal graph
theory is usually set in 1941 with the well known result by Turan [83], who
investigated the dependence between the edge density and the existence of a clique
of certain order as a subgraph. He showed that among all K, -free n-vertex
graphs the complete (almost) balanced r-partite graph T'(n,r) has the largest
number of edges. The graph T'(n,r) is called Turdn graph.

To study the structural properties of graphs that do not contain a certain
subgraph is a central aspect of extremal graph theory. Turan’s theorem is one
example. Here we want to take a closer look to a special case of this theorem also
known as Mantel’s theorem [57]. In 1907 Mantel proved that any triangle-free
graph on n vertices contains at most |n?/4] edges. The extremal graph is the
complete bipartite graph with partition classes of size |n/2| and [n/2]. This
fundamental statement of extremal graph theory is the result the local density

problem investigated in this thesis traces back to.



Dirac’s theorem and Pésa’s conjecture

Other structural graph properties that are often studied concern the existence of
certain spanning subgraphs, i.e. subgraphs that cover all vertices. Unlike before a
bound on the edge density is usually not very informative, because a graph can
have (g) — (n — 1) edges and still contain an isolated vertex. Instead we could
study which minimum vertex degree conditions imply the existence of a certain
kind of spanning subgraph.

One of the first results of this type was proven by G. A. Dirac [18] in 1952.
He showed that every graph G = (V| E) with |V| > 3 and minimum vertex
degree §(G) = |V|/2 contains a Hamiltonian cycle, that is a cycle containing all
vertices. Since on any set V' of at least three vertices there are graphs G with
minimum degree §(G) = [|V|/2] — 1, which do not contain a Hamiltonian cycle,
this is an optimal result.

Another spanning structure that was studied is the k-th power of a Hamiltonian
cycle. The k-th power of a Hamiltonian cycle C' is obtained from C by adding all
edges between distinct vertices of distance at most k in C.

In 1962 Pésa [23] conjectured that every graph G = (V, E) with |V| = 5 and
minimum degree 6(G) = 2|V|/3 contains the square of a Hamiltonian cycle, that is
the 2-nd power of a Hamiltonian cycle. This conjecture was generalised further by
Seymour to the so-called Pdsa-Seymour conjecture [78], asking for the k-th power
of a Hamiltonian cycle in graphs G with §(G) > £5|V/.

A proof of this generalised conjecture for large graphs was obtained by Komlos,
Sarkozy, and Szemerédi [46]. Their proof is based on the regularity method for
graphs and uses the so-called blow-up lemma [45] that was developed by the same

authors shortly before.

Regularity method

A conjecture of Erdés and Turdn [27] about the upper density of subsets of the
integers which contain no arithmetic progression of fixed length stimulated a lot of
research in various fields of mathematics. First results concerning this conjecture
were obtained by Roth [75,76] for arithmetic progressions of length 3, his result is
a special case of Theorem 1 with ¢ = 3. The case ¢ = 4, that means Szemerédi’s

theorem for arithmetic progressions of length 4, was established by Szemerédi [79]



in 1969. Finally in 1975 Szemerédi [80] solved the conjecture, showing the following

theorem.

Theorem 1 (Szemerédi’s theorem). For every ¢ > 3 and 6 > 0 there ex-
ists ng = no(¢,8) such that if A < [n] = {1,...,n} withn = ny and |A| = on, then

A contains an arithmetic progression of length £.

Later alternative proofs with different mathematical background appeared by
Furstenberg [29], Tao [82], and Gowers [31].

Szemerédi established in his proof a lemma analysing the structure of dense
bipartite graphs that later gave rise to the development of a powerful tool in
extremal graph theory called Szemerédi’s Regularity Lemma [81]. Under appropri-
ate circumstances it can be used to show the existence of a fixed subgraph in a
graph. The lemma shows that the edge set of any graph can be decomposed into
constantly many “blocks” such that almost all are “quasirandom”. We will make
this precise in the following.

For a graph G = (V, E) and two disjoint sets A, B < V, let e(A, B) denote
the number of edges in G with one vertex in A and one in B. Moreover, we
call d(A, B) = e(A, B)/(|A||B|) the density of the bipartite subgraph G[A, B]
of G consisting of all edges in G with one vertex in A and one in B. Given a
graph G = (V. E) and ¢ > 0 we say two non-empty disjoint subsets X,Y < V
are e-regular if

|da(X,Y) —da(X', Y| < e

holds for all subsets X’ < X, Y’ < Y with | X'||Y'] > ¢|X||Y]. Szemerédi’s Lemma

is then stated as follows.

Theorem 2 (Szemerédi’s Regularity Lemma). For everye > 0 and integer to, there
exists integers Ty = To(e,to) and ng = no(e, to) such that for every graph G = (V, E)
with |V| = n = ng the following holds.

There exists a vertex partition Vi u ... 0V, =V, tog <t < Ty, satisfying
(i) Vil <... < |V <|Vi| + 1, and
(ii) all but at most £(3) pairs (V;,V;), 1 <i < j <t, are e-reqular.

Often Szemerédi’s Regularity Lemma is used together with the so-called Counting

Lemma we state in the following.



Theorem 3 (Counting Lemma). For all d > 0, v > 0 and every positive in-
teger £, there exist € > 0 and ng so that whenever G is an (-partite graph
with -partition Vi v ... w Vy, and |Vi| = ... = |V,| = n = ng, satisfying for

alll<i<j</t
(i) da(Vi,V;) =d e, and
(it) (Vi,V;) is e-regular
4
then the number |IC,(G)| of {-cliques in G satisfies |IKCo(G)| = d(2)nf(1 +7)

The joint application of Szemerédi’s Regularity Lemma and the Counting Lemma
is called the regularity method. The original proof of Roth’s theorem about
arithmetic progressions of length 3 by Ruzsa and Szemerédi [77] used Szemerédi’s
precursor of the Regularity Lemma in an iterative way, which can nowadays be
replaced by a single application of the regularity method. They showed that every
graph G,, on n vertices having o(n®) triangles contains a triangle-free subgraph G/,
having only o(n?) edges less. This result is known as the Triangle Removal Lemma
and implies Roth’s theorem.

A k-uniform hypergraph, or short k-graph, H = (V,E) consists of a finite
set V(H) of vertices and a family F = E(H) of k-element subsets of V', which are
called (hyper)edges. A Regularity Lemma for 3-graphs has been developed by Frankl
and Rodl [28] and also extensions to k-graphs were obtained by Gowers [32, 33]
and by Rodl and Skokan [74]. Moreover, a Counting Lemma for k-graphs was
proven by Nagle, Rodl, and Schacht [61]. In Chapter 3 we will use the regularity
method to find an almost spanning squared cycle and therefore we will introduce

the hypergraph regularity method in more detail in Section 3.5.2.

The random graph

The random graph on n vertices, where each edge is included with probability p,
is denoted by G(n,p). In the beginning of probabilistic combinatorics this graph
was only used as a tool in proofs, but later on it evolved to a subject studied
on its own. For comprehensive accounts of random graph theory we refer to the
textbooks [9] and [39]. One of the first uses of G(n,p) is due to Erdés [22], who
used random graphs to show the existence of graphs that contain no short cycle

and have a high chromatic number. In the context of random graphs we will often



say that an event happens asymptotically almost surely, or a.a.s., if it happens with
probability tending to 1 as n — oo. Besides studying the random graph on its own
also randomly perturbed graphs, that are graphs obtained by adding random edges
to a fixed graph, became a subject of research. First research concerning randomly
perturbed graphs can be found in the work of Bohman, Frieze, and Martin [8]. We
will study perturbed hypergraphs and their Hamiltonicity in Section 1.4.

1.2 Local density problems

Remember that Mantel’s theorem asked for the maximum number of edges a
triangle-free graph can have. Generalising this question it has been asked for a
“local” density condition that guarantees the existence of a triangle. We will make
this precise in the following.

We say an n-vertex graph G is («, )-dense if every subset of |an| vertices spans
more than fn? edges. Given « € (0, 1] Erdés, Faudree, Rousseau, and Schelp [20]
asked for the minimum 5 = f(«) such that every (a, 3)-dense graph contains a
triangle. For example, Mantel’s theorem asserts that (1) = 1/4.

For 1/2 < o < 1 the balanced complete bipartite graph gives the lower bound

Bla) > (20 -1),

by taking one of the parts completely and the missing an — n/2 vertices from
the other part (see Figure 1.1). The next graph one considers for obtaining lower
bound on the function 3(-) is the so-called balanced blow-up of a 5-cycle. The

general definition of this concept reads as follows.

Definition 4. A homomorphism from a graph G into a graph F is a mapping
of the vertex sets ¢: V(G) — V(F) with the property {©(z),¢(y)} € E(F) when-
ever {z,y} € E(G). If such a homomorphism exist, we say that G is homomorphic
to F'. Moreover, we say that G is a blow-up of a graph F if there exists a surjective
homomorphism ¢ from G to F', but for any proper supergraph of G on the same
vertex set the mapping o is not a homomorphism into F' anymore. A blow-up is

balanced if the preimages o~ '(v) of all vertices v e V(F) have the same size.

The balanced blow-up of the 5-cycle gives for 2/5 < a < 3/5 the lower bound

Bla) > (50 ~2),



by taking two mutually independent parts of the blow-up completely and the
missing an — 2n/5 vertices from one part, which has only edges to one of the parts
that we already chose. Furthermore, for 3/8 < a < 1/2 the balanced blow up of
the Andrasfai graph F3 (see Figure 1.2) gives the lower bound

5la) > (80 —3),
by taking three mutually independent parts of the blow-up completely and the

missing an — 3n/8 vertices from one part, which has only edges to one of the parts

that we already chose.

Figure 1.1: Balanced complete bipartite graph with r = an — n/2, balanced blow-
up of a 5-cycle and the graph F3 where r = an — 2n/5 in the first case

and r = an — 3n/8 in the second.

Since

1 1
—2a—-1) =2 — -2
120 -1)> (50— 2)

is only true for o > 17/30, Erdoés et al. conjectured that for v = 17/30 the balanced
complete bipartite graph gives the best lower bound for the function 5(«), which
leads to

fla) = i(Qa—l). (1.1)
The same authors verified this conjecture for av > 0.648 and the best result in this
direction is due to Krivelevich [49], who verified it for every o > 3/5. For a < 17/30
balanced blow-ups of the 5-cycle yield a better lower bound for 5(«) and Erdds et

al. conjectured

1
5(0) = (50 - 2) (12)
for av € [53/120,17/30], since
1 1
5s(50—2) > (80— 3)



is only true for a > 53/120.
The special case 5(1/2) = 1/50 was considered before by Erdés [24] (see also [25]

for a monetary bounty for this problem).
Conjecture 5 (Erdés). Fvery (1/2,1/50)-dense graph contains a triangle.

Currently, the best known upper bound on (1/2) is 1/36 and was obtained
by Krivelevich [49]. Besides the balanced blow-up of the 5-cycle Simonovits (see,
e.g., [25]) noted that balanced blow-ups of the Petersen graph yield the same lower
bound for Conjecture 5 and, more generally, for (1.2) in the corresponding range.

Conjecture 5 asserts that every triangle-free n-vertex graph G contains a subset
of |n/2] vertices that spans at most n?/50 edges. Our first result (see Theorem 6
below) verifies this for graphs G that are homomorpic to a triangle-free graph from

a special class.

1.2.1 Andrasfai graphs

A well studied family of triangle-free graphs, which appear in the lower bound
constructions for the function f(«) above, are the so-called Andrdsfai graphs. For

an integer d > 1 the Andrasfai graph Fj is the d-regular graph with vertex set
V(Fy) = {v1,..., 0341},
where {v;,v;} forms an edge if
d<l|i—jl<2d-1. (1.3)

Note that F; = Ky and Fy = C5 (see Figure 1.2). It is easy to check that
Andrasfai graphs are triangle-free and balanced blow-ups of these graphs play a
prominent réle in connection with extremal problems for triangle-free graphs (see,
e.g., [1,15,34,40]).

Our first result validates Conjecture 5 (stated in the contrapositive) for graphs

homomorphic to some Andrasfai graph.

Theorem 6. If a graph G is homomorphic to an Andrdsfai graph Fy for some
integer d = 1, then G is not (1/2,1/50)-dense.
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Figure 1.2: Andrasfai graphs Fy, F3, and Fj.

Since Fy is homomorphic to Fj if and only if d’ > d, Theorem 6 extends recent
work of Norin and Yepremyan [63], who obtained such a result for n-vertex graphs G
homomorphic to F5 with the additional minimum degree assumption §(G) > 5n/14.

Owing to the work of Chen, Jin, and Koh [15], which asserts that every triangle-
free 3-chromatic n-vertex graph G with minimum degree §(G) > n/3 is homomor-
phic to some Andrasfai graph, we deduce from Theorem 6 that Conjecture 5 holds
for all such graphs G. Similarly, combining Theorem 6 with a result of Jin [40],
which asserts that triangle-free graphs G' with §(G) > 10n/29 are homomorphic
to Fy, implies Conjecture 5 for those graphs as well. We summarise these direct

consequences of Theorem 6 in the following corollary.
Corollary 7. Let G be a triangle-free graph on n vertices.
(a) If 6(G) > 10n/29, then G is not (1/2,1/50)-dense.
(b) If 6(G) > n/3 and x(G) < 3, then G is not (1/2,1/50)-dense.

We remark that part (a) slightly improves earlier results of Krivelevich [49] and
of Norin and Yepremyan [63] (see also [44] where an average degree condition was

considered).

1.2.2 Generalised Andrasfai graphs of higher odd-girth

We consider the following straightforward variation of Andrasfai graphs of odd-girth
at least 2k + 1, i.e., graphs without odd cycles of length at most 2k — 1. For
integers k > 2 and d > 1 let F¥ be the d-regular graph with vertex set

V(F(f) = {v,... aU(Qkfl)(dfl)JrQ} )



where {v;,v;} forms an edge if
(k—1)d-1)+1<|i—j|<k(d—-1)+1. (1.4)

In particular, for £ = 2 we recover the definition of the Andrasfai graphs from (1.3)
and for general k > 2 we have F}f = Ky, F¥ = Co,,; and for every d > 2 the
graph F¥ has odd-girth 2k + 1 (see Figure 1.3).

(%1

Ve U3

Us V4

Figure 1.3: Generalised Andrésfai graphs Fy, F3, and F} of odd-girth 7.

Our main result generalises Theorem 6 for graphs of odd-girth at least 2k + 1. In

fact, the constant m appearing in Theorem 8 is best possible as balanced blow-

ups of Co4q show. One can attain this bound by taking k£ mutually independent
parts of the blow-up completely and the missing n/2 — kn/(2k + 1) vertices from

one part, which has only edges to one of the parts that we already chose.

Theorem 8. If a graph G is homomorphic to a generalised Andrdsfai graph F¥

for some integers k = 2 and d = 1, then G is not (%, m)—dense.

Analogous to the relation between Conjecture 5 and Theorem 6 one may wonder

1 __ 1
27 2(2k+1)2

Letzter and Snyder [55] showed that a graph G on n vertices with §(G) > ¢ and

if every ( )-dense graph contains an odd cycle of length at most 2k — 1.

odd-girth at least 7 is homomorphic to F{, for some k. Therefore combining this

result with Theorem 8 we get the following.

Corollary 9. Let G be a graph with odd-girth at least 7 on n vertices. If 0(G) > %,

then G is not (%, o=)-dense.

A similar question for even holes is not interesting, because every dense graph

contains a 4-cycle.



For k = 2 Theorem 8 reduces to Theorem 6 and the rest of this work concerns
the proof of Theorem 8. The proof is given in Section 2.2 and makes use of a
geometric representation of graphs homomorphic to generalised Andrasfai graphs,

which we introduce in Section 2.1.

1.3 Squares of Hamiltonian cycles in 3-uniform
hypergraphs

Recall Pdsa’s conjecture, which asked for a minimum degree condition that implies
the existence of a 2-nd power of a Hamiltonian cycle in a graph. We study an
analogous Podsa-type problem for 3-uniform hypergraphs, i.e., what minimum
pair-degree condition guarantees the existence of a squared Hamiltonian cycle?

A 3-uniform hypergraph H = (V, E) consists of a finite set V(H) of vertices
and a family F = E(H) of 3-element subsets of V, which are called (hyper)edges.
Throughout this section and in Chapter 3 if we talk about hypergraphs we will
always mean 3-uniform hypergraphs. We will write zy and zyz instead of {z,y}
and {x,y, z} for edges and hyperedges. Similarly, we shall say that wzxyz is a
tetrahedron or a K f’) in a hypergraph H if the triples wxy, wrz, wyz, and ryz are
edges of H.

There are at least two concepts of minimum degree and several notions of cycles
like tight, loose and Berge cycles [6] (see also [7]). Here we will only introduce
some of them.

Let H = (V, E) be a hypergraph and v € V' a vertex of H then we denote by
dy(v) =|{e€ E: vee}
the degree of v and by
01(H) = min{dg(v): ve V}

the minimum vertex degree of H taken over all v € V.

Similarly, for two vertices u,v € V' we denote by
dy(u,v) = |Ng(u,v)| = {e € E: u,v € e}
the pair-degree of u and v and by

6>(H) = min{dy(u,v): uve VP}

10



the minimum pair-degree of H taken over all pairs of vertices of H.

We call a hypergraph P a tight path of length ¢, if |V(P)| = ¢ + 2 and there
exists an ordering of the vertices V(P) = {vq,...,vp2} such that a triple e forms a
hyperedge of P iff e = {v;, v;11, v;42} for some i € [(]. A tight cycle C of length { = 4
consists of a path vy ... v, of length £—2 and the additional hyperedges {vy_1, vy, v1}
and {vy, v1,v9}. Moreover, we call a hypergraph P’ a squared path of length { > 2,
if [V (P")| = £+2 and there exists an ordering of the vertices V/(P') = {vq,...,vp2}
such that a triple e forms a hyperedge iff e < {v;, v; 11, Vs 42, Vi1 3} for some i € [(—1].
Similarly, a squared cycle C" of length ¢ = 5 consists of a squared path vy ...v, of
length ¢ — 2 and the additional hyperedges e, which are 3-subsets of at least one
of the sets {vy_o, vp_1, V¢, U1}, {Ve_1, Ve, V1, V2} OF {Vg, V1, Vo, U3}.

Thus an n-vertex hypergraph H contains a spanning squared cycle if its vertices
can be arranged on a circle in such a way that every triple of vertices contained
in an interval of length 4 is an edge of H. Such spanning squared cycles will be
called squared Hamiltonian cycles in this article. Clearly this is a natural analogue
of the concept of squared Hamiltonian cycles in graphs, where any pair contained
in an interval of length 3 is required to be an edge.

The first asymptotically optimal Dirac-type result for 3-uniform hypergraphs was
obtained by Rodl, Ruciriski, and Szemerédi, who proved in [70] that every n-vertex
hypergraph H with d,(H) = (3 + o(1))n contains a Hamiltonian cycle. In [72] they
showed this for large n under the optimal assumption do(H) > |n/2]|. Moreover, it
was proved in [67] that a minimum vertex degree condition of &, (H) = (2 + 0(1))%2
guaranties the existence of a Hamiltonian cycle as well, where the constant 5/9 is
again best possible. We will study which pair-degree condition implies a squared
Hamiltonian cycle in 3-uniform hypergraphs and we will prove the following

theorem in Chapter 3.

Theorem 10. For every a > 0 there exists an integer ng such that every 3-uniform
hypergraph H with n = ng vertices and with minimum pair-degree do(H ) = (% +a)n

contains a squared Hamiltonian cycle.

We will denote by K. f’) the complete 3-uniform hypergraph on 4 vertices. Note
that any four consecutive vertices in a squared Hamiltonian cycle span a copy
of K f). Therefore, if n is divisible by 4, a squared Hamiltonian cycle contains a K 4(3)—

)

tiling, i.e.,  vertex disjoint copies of K f’ . The problem to enforce K f’)—tilings by

11



an appropriate pair-degree condition was studied by Pikhurko [65], who exhibited
for every n divisible by 4 a hypergraph H on n vertices with d(H) = 2n — 3 not
containing a K f’)—tiling. Moreover, he proved that every n-vertex hypergraph H
with d2(H) = (2 + o(1))n contains vertex-disjoint copies of K ) covering all but
at most 14 vertices. We remark that based on Pikhurko’s work [65] the pair-degree
problem for K f) -tilings was solved by Keevash and Mycroft in [43]. They showed
that all 3-uniform hypergraphs H of sufficiently large order n with 4 | n and
minimum pair-degree
3n/4—2 if 8|n,

8 (H) =
3n/4 —1 otherwise

contain a perfect K f)—tiling.

Notice that in view of Pikhurko’s example the constant % occuring in Theorem 10

3

¢ in case 4 | n. In order to extend this

cannot be replaced by anything below
observation to all congruence classes modulo 4 we take a closer look at the
construction from [65]. Partition the vertex set V' = Ay w A; v Ay w A3 such
that |[A;] — [A;|] <1 for 0 <i < j <3. Let H be the hypergraph (see Figure 1.4)

consisting of all the triples that satisfy one of the following properties

e have exactly two vertices in Ay,
e intersect each of Ay, A;, A; for some 1 <1 < j < 3,

e have three vertices inside some A; with 1 < i < 3,

e have two vertices in A; and on vertex in A; for ij € [3]®.

Every K f) intersecting Ay has exactly 2 vertices in Ay, since Ay spans no edge and
if a K f’) would intersect Ay in only one vertex, then its remaining three vertices
must come from Aj, As, A3 (one from each set), but three such vertices do not
span an edge in H. A squared Hamiltonian cycle C' € H needs to contain at least
one K ig) that intersects Ag, but then each K £3) C C needs to intersect Ay in two
vertices. This implies |Ag| = n/2, which contradicts our assumption and shows
that H is indeed not containing a squared Hamiltonian cycle.

The proof of Theorem 10 is based on the absorption method developed by Rodl,
Ruciniski, and Szemerédi in [72]. In Section 3.1 we will discuss the general structure

of the proof.

12
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Figure 1.4: Complement of the hypergraph H, where the existing kinds of edges
are indicated in red, e.g. all tripels with 3 vertices in Ay span an edge

in the complement of H.

1.4 Powers of tight Hamiltonian cycles in

randomly perturbed hypergraphs

1.4.1 Hamiltonian cycles

The study of Hamiltonicity (the existence of a cycle as a spanning subgraph)
has been a central and fruitful area in graph theory. It is likely that good
characterizations of graphs with Hamiltonian cycles do not exist, and it becomes
natural to study sufficient conditions that guarantee Hamiltonicity. Among a large
variety of such results, recall that we already stated the most famous one, Dirac’s
theorem, which shows that every n-vertex graph (n > 3) with minimum degree at
least n/2 is Hamiltonian.

Moreover, recall the binomial random graph G(n,p), which is another well-
studied object in graph theory. Pésa [66] and Korshunov [48] independently
determined the threshold for Hamiltonicity in G(n,p), which is (logn)/n. This
implies that almost all dense graphs are Hamiltonian. In this sense the degree

constraint in Dirac’s theorem is very strong. In fact, Bohman, Frieze, and Martin [8]
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studied the random graph model that starts with a given, dense graph and adds m
random edges. In particular, they showed that for every a > 0 there is ¢ = ¢(«)
such that if we start with a graph with minimum degree at least an and we add cn
random edges, then the resulting graph is Hamiltonian a.a.s.. By considering the
complete bipartite graph with vertex classes of sizes an and (1 — a)n, one sees
that the result above is tight up to the value of c.

It is natural to study Hamiltonicity problems in uniform hypergraphs. Given
a k-graph H with a set S of d vertices (where 1 < d < k—1) we define Ny/(S) to be
the collection of (k—d)-sets T' such that SUT € E(H), and let degy(S) := |Ng(S)|
(the subscript H is omitted whenever H is clear from the context). The mini-
mum d-degree d4(H) of H is the minimum of deg (S) over all d-vertex sets S in H.
We refer to 0,1 (H) as the minimum codegree of H.

In the last two decades, there has been growing interest in extending Dirac’s
theorem to k-graphs. Among other notions of cycles in k-graphs (e.g., Berge
cycles), the following ‘uniform’ cycles have attracted much attention. For inte-
gers 1 </ <k—1and m > 3, a k-graph F with m(k — ) vertices and m edges
is called an ¢-cycle if its vertices can be ordered cyclically so that each of its
edges consists of k consecutive vertices and every two consecutive edges (in the
natural order of the edges) share exactly ¢ vertices. Usually (k — 1)-cycles are also
referred to as tight cycles. We say that a k-graph contains a Hamiltonian ¢-cycle
if it contains an (-cycle as a spanning subgraph. In view of Dirac’s theorem,
minimum d-degree conditions that force Hamiltonian ¢-cycles (for 1 < d, ¢ < k—1)
have been studied intensively [3,4,14,16,30,35-37,42,52,53,67,69-72].

Let G®(n,p) denote the binomial random k-graph on n vertices, where each k-
tuple forms an edge independently with probability p. The threshold for the
existence of Hamiltonian ¢-cycles has been studied by Dudek and Frieze [19,20],
who proved that for £ = 1 the threshold is (logn)/n*~!, and for ¢ > 2 the threshold
is 1/n*=* (they also determined sharp thresholds for every k > 4 and £ = k — 1).

Krivelevich, Kwan, and Sudakov [50] considered randomly perturbed k-graphs,
which are k-graphs obtained by adding random edges to a fixed k-graph. They
proved the following theorem, which mirrors the result of Bohman, Frieze, and

Martin [8] for randomly perturbed graphs mentioned earlier.

Theorem 11. For any k > 2 and a > 0, there is ¢, = cg(a) for which the

following holds. Let H be a k-graph on n € (k — 1)N wertices with 6x_1(H) = an.

14



Ifp = cgn=%=Y then the union HUG™® (n, p) asymptotically almost surely contains

a Hamiltonian 1-cycle.

The authors of [50] also obtained a similar result for perfect matchings. These
results are tight up to the value of ¢, as shown by a simple ‘bipartite’ construc-
tion. McDowell and Mycroft [58] and, subsequently, Han and Zhao [38] extended

Theorem 11 to Hamiltonian ¢-cycles and other degree conditions.

1.4.2 Powers of Hamiltonian cycles

Powers of cycles are natural generalizations of cycles. Given & > 2 and r > 1, we
say that a k-graph with m vertices is an % power of a tight cycle if its vertices
can be ordered cyclically so that each consecutive k& + r — 1 vertices span a copy
of K ,ﬁ’fr,l, the complete k-graph on &+ r — 1 vertices, and there are no other edges
than the ones forced by this condition. This extends the notion of (tight) cycles in
hypergraphs, which corresponds to the case r = 1.

The existence of powers of paths and cycles has also been intensively stud-
ied. For example, the famous Pésa—Seymour conjecture, which was proved by
Komlés, Sarkozy, and Szemerédi [46,47] for sufficiently large graphs, states that
every n-vertex graph with minimum degree at least rn/(r + 1) contains the 78
power of a Hamiltonian cycle. A general result of Riordan [68] implies that,
for » > 3, the threshold for the existence of the 7" power of a Hamiltonian cycle

in G(n, p) is n=Y/"

. The case r = 2 was investigated by Kithn and Osthus [54], who
proved that p = n~1/2*¢ suffices for the existence of the square of a Hamiltonian
cycle in G(n, p), which is sharp up to the n® factor. This was further sharpened
by Nenadov and Skorié [62] to p = C(logn)?/y/n. Moreover, Bennett, Dudek,
and Frieze [5] proved a result for the square of a Hamiltonian cycle in randomly

perturbed graphs, extending the result of Bohman, Frieze, and Martin [8].

Theorem 12. For any a > 0 there is K > 0 such that the following holds. Let G
be a n-vertex graph with §(G) = (1/2+a)n and suppose p = p(n) = Kn~*31log"3 n.

Then the union H v G(n,p) a.a.s. contains the square of a Hamiltonian cycle.

Very recently Dudek, Reiher, Rucinski, and Schacht [21] obtained the following

result.
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Theorem 13. For every a > 0 and k > 1 there exists C' > 0 such that if G is
an n-vertez graph with §(G) = (2 + a)n, then GUG(n, €) a.a.s. contains the k™

power of a Hamiltonian cycle.

Note that in Theorem 12 the randomness that is required is much weaker than
the one needed in the result for the pure random model (which is essentially n=1/2).
The authors of [5] also asked for similar results for higher powers of Hamilton
cycles in randomly perturbed graphs.

Parczyk and Person [64, Theorem 3.7] proved that, for k¥ > 3 and r > 2,
the threshold for the existence of an r*® power of a tight Hamilton cycle in the

k+r—2)*1

random k-graph G (n, p) is n~ (5% Our main result, Theorem 14 below,

shows that if we consider randomly perturbed k-graphs HUG™® (n, p) with &§,_,(H)

k+772)_1

reasonably large, then p = p(n) > n~ () e g enough to guarantee the

existence of an r*" power of a tight Hamilton cycle with high probability.

Theorem 14 (Main result). For all integers k =2 and r = 1 such that k +r >4
and o > 0, there is € > 0 such that the following holds. Suppose H is a k-graph

on n vertices with

5 (H) (L5)

WV
/N
—_
|
N
w
>+
|3
— |
)
N~
+
o
~_—
3

_o\—1
k+r 2) —e

and p = p(n) = n~ (i Then a.a.s. the union H u G®¥)(n,p) contains

the ™ power of a tight Hamiltonian cycle.

We remark that our proof only gives a small ¢, and it would be interesting
to know if one can get a larger gap in comparison with the result in the purely
random model, as in Theorem 12. We remark that the case k > 3 and r = 1
of Theorem 14 was first proved by McDowell and Mycroft [58]. Other results in
randomly perturbed graphs can be found in [2,12,13,38,51].

The core of the proof of Theorem 14 follows the Absorbing Method introduced by
R6dl, Rucinski, and Szemerédi in [70], combined with results concerning binomial

random hypergraphs.
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2 On the local density problem for
graphs of given odd-girth

In this chapter we will prove the following result.

Theorem 15. If a graph G is homomorphic to a generalised Andrdsfai graph F¥

1 1

for some integers k =2 and d > 1, then G is not (3, ORI

)-dense.

In Section 2.1 we show an alternative geometric characterisation of generalised
Andrasfai graph and investigate some properties of this representation. The proof
of Theorem 15 will be based on this geometric characterisation and is part of

Section 2.2.

2.1 A geometric characterisation of generalised

Andrasfai graphs

We consider graphs G that are homomorphic to some generalised Andrésfai
graph F¥. For the proof of Theorem 15 it will be convenient to work with a
geometric representation of such graphs GG. In that representation we will arrange
the vertices of G on the unit circle R/Z and edges between two vertices z and y
may only appear depending on their angle with respect to the centre of the circle
(see Lemma 16). For the proof of Theorem 15 it suffices to consider edge maximal
graphs G that are homomorphic to F¥ for some integers k > 2 and d > 1. In other
words, we may assume G is a blow-up of FF.

For example, let G be a blow-up of F; = C5. One can distribute the vertices
of F, equally spaced on the unit circle (see Figure 2.1). Then we place all vertices
of GG that correspond to the blow-up class of v; into a small e-ball around v; on
the unit circle (cf. green arcs in Figure 2.1). For a sufficiently small ¢, all vertices
in an e-ball around v; have the same neighbours and they can be characterised

by having their smaller angle with respect to the centre bigger than 120° (cf. red
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Figure 2.1: A copy of F;, = C5 and a representation of a blow-up on the unit circle.

and blue lines in Figure 2.1). The following lemma states this fact for blow-ups of

generalised Andrasfai graphs.

Lemma 16. If G is a blow-up of a generalised Andrdsfai graph E¥ for some
integers k = 2 and d > 1, then the vertices of G can be arranged on the unit
circle R/Z: with centre o such that

2k -1

{z,y} € E(Q) — Xzoy > - 3607, (2.1)

where Xxoy denotes the smaller angle between x and y with respect to o.

We remark that conversely every graph G = (V, E) with V' < R/Z satisfying (2.1)
is a blow-up of F} for some appropriate d > 1. However, since this direction is not

utilised here, we omit the formal proof of this observation.

Proof of Lemma 16. For integers k > 2 and d > 1 let G be a blow-up of the
generalised Andrasfai graph F¥ (defined in (1.4)) signified by some graph homo-
morphism ¢: G — F¥ and let m = (2k — 1)(d — 1) + 2 be the number of vertices

of Ff. Set
1

T2k - Um-

For i € [m] we arrange the vertices of G that are contained in ¢! (v;) in the e-ball
around the point % Owing to the symmetry it suffices to check that (2.1) holds
for an arbitrary vertex z € ¢ 1(v;) € V(G).

By definition of F¥ the neighbourhood of v; is

N(Ul) = {U(kfl)(dfl)JrQa e 7Uk(d71)+2} .

18



Note that the choice of ¢ gives

((k—l)(d—1)+1

m

- & k(d_rrlb)ﬂ +5) - (m +e, 2k 1 _‘5)

Lte, 55 —e).

and, consequently, all neighbours y of z are placed in the interval (£=L +¢, SET

2h—1
Since x € ¢ !(vy) itself is placed in (—¢,¢), this implies the forward direction

of (2.1). The converse direction follows from the observation

(G -aS+a)nGr—amgte) =2
for every i € [m] ~ {(k—1)(d—1)+2,...,k(d—1) + 2}. O

We close this section with a few useful estimates on the number of vertices
contained in intervals of R/Z for geometric representations of blow-ups G of
generalised Andrasfai graphs. Let V' be the set of points of the unit circle that are
identified with the vertices of G. For an interval I < R/Z, we write A(I) for the

number of vertices of G contained in [, i.e.,
) =|Vnl. (2.2)

This defines expressions such as A([a,b]), A([a, b)), etc.
Since subsets of |n/2] vertices are of special interest, we denote for every £ € R/Z

by z¢ the vertex from V' with the property

A€ 2]) = In/2]. (2.3)

In the proof of Theorem 15 we shall use the following lemma and, since the proof
will be carried out by contradiction, the graphs G that we shall consider also

satisfy the density assumption for parts (iv) and (v).

Lemma 17. For integers k = 2 and d > 1 let G = (V, E) be a blow-up of the
generalised Andrdsfai graph F¥ having a geometric representation with V < R/Z

satisfying (2.1) and |V| = n. Then the following holds for every interval I < R/Z.:

(i) If I has length at most then V- n I is an independent set in G and

g
M) < aG).
(i) If I has length at most 57—, then MN(I) < (2k — 3)a(G) — (k — 2)n.
(iit) If I has length at least 7, then A(I) = n — 2a(G).
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If in addition G is (3,
for & e R)Z:

() If )\([(S E+ £ . 1]) (@), then A([§,25 — Qkk%ll)) > 20(G) — %n

(v) We have )\((5 — le_l,f + le_l)) > 2k+1 2>\<(f +3 »f 2k 1))

W) dense and 2(2k + 1) | n, then the following holds

Proof. Part (i) follows directly from the definition of the geometric representation

in (2.1). For part (77) we note that

E—1 1
2 -2 .
T G T
Consequently, there exist 2k — 3 consecutive intervals of length that wrap k—2

times around R/Z in such a way that only I is covered k — 1 times. Therefore, (i)
yields
(2k —3)a(G) = (k—2)n+ A(I)

and the desired estimate follows.

Part (7i1) is also a Consequence of (7) and the observation that there are two
intervals of length at most 57— that together with I cover R/Z once.

In the proofs of parts ( zv) and (v) we make use of the inequality

2
A&z — 529) > 5p — 2M(€+ ) (2.4)

which we show first. For that we note that (2.1) implies

ea([& 2] V) < A([€ 2 — 9577)) - A(E + 5550 2] -

Hence, the additional assumption that G is (3 dense combined with the

2 2(2k+1 z)-
simplest case of the inequality between the arithmetic and geometric mean yields

(2kn+1>2 < 2€G([§7Z§] N V) < 31()‘([5726 2k 1)) + 2>‘((§ Zkkll’zg])>2’

which establishes (2.4).

The remaining parts (iv) and (v) follow from (2.4). In fact, for (iv) the additional
assumption A([¢, € + £=L]) = a(G) yields A((€ + £, 2]) = n/2 — a(G) and,
hence, (iv) follows from (2.4).

For the proof of (v) we will apply (2.4) twice. First we apply it for the

given £ € R/Z and, since by (i) we also have z € (£ + 2=L & + we obtain

2k— 1)

(24) 2n
)

T 2A((E+ 2L %]).  (25)

ML €+ 57)) = M8 2 — 3i=7)

20



The second symmetric application of (2.4) in —R/Z to —¢ yields
(2 1) 2n

/\(<€ 2k— 175]) 2]{‘ +1 - 2)‘([Zé7€ - %)) ) (26)

for z¢ € (2¢,§) with )\([zé, ¢]) = n/2. Consequently, if £ ¢ V' then summing the
inequalities (2.5) and (2.6) yields part (v). However, if £ € V then still the same
conclusion follows, since (2k + 1) | n implies that the right-hand sides of (2.5)

and (2.6) are integers and both inequalities are strict. O

2.2 Blow-ups of generalised Andrasfai graphs

In this section we establish Theorem 15. For that it suffices to show that blow-ups G

1

of generalised Andrasfai graphs F¥ are not (2, SERE

)-dense and we will appeal
to the geometric representation from Lemma 16 of such graphs. The strategy
of our proofs is that we try to find an interval of consecutive vertices spanning
few edges. To this end we distinguish two cases depending on the independence

number a(G) and start with the case that «(G) is not too large.

Proposition 18. If G is a blow-up of a generalised Andrdsfai graph F¥ for

some integers k = 2 and d = 1 with |[V(G)| = n and o(G) < %Hn then G is
not (3, m) -dense.
Proof. Let G be a blow-up of Fj with [V(G)| = n and a(G) < z&5n. Without loss

of generality we may assume that n is divisible by 2(2k + 1). This follows from the

observation, that a graph G is (% 5 )-dense if and only if the balanced blow-up

27 2(2k+1

of G obtained by replacing each vertex by 2(2k + 1) vertices is (2 5 )-dense.

27 2(2k:+1

Suppose for the sake of contradiction that G is (% 5 )-dense. From now on

27 2(2k+1)

consider the geometric representation of G given by Ifemma 16. Let V' be the set
of points of the unit circle that are identified with the vertices of G. Recall that
in (2.2) we defined \(/) as the number of vertices contained in an interval I < R/Z.
It will sometimes be convenient to count vertices on the boundary of an interval
only with weight 1/2. For that we write terms like A((a, b)), A({a, b)), where the
brackets “(” or “)” mark that the left or right end-point of the respective interval
is only counted 1/2 if it is a vertex. Also recall that for £ € R/Z we defined z¢ € V

n (2.3). Since by our assumption «(G) < n/2, we infer from part (i) of Lemma 17

that
2 € (E+ g €+ 57) (2.7)
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which yields together with Lemma 17(7) that

Z ‘Ng(l‘) ) (a:,zg]‘ = Gg([f,zd ) V) ) (2.8)
a:eVm[f,zg—Qkk;_ll)
Moreover, part (7i) of Lemma 17 applied to intervals [z 4 £ m, x—l—m] combined
with the assumption o(G) < mn leads to

(<l’+m7f’3+zk 1 )<A([az‘+%,x+ﬁ])

< (2k — 3)a(G) — (k — 2)n < (2k — 3)

n—(k—2)n=

2k+1 2k +1

for every vertex x € V. Consequently,

Z/( (@ = 55 2)) + A((zw + 575 ))
_x;/( (G2 + 1) = A((w + 5w +21fk_1>)>>n2_2k2+1712:§llz;1n2

and by symmetry we may assume that

1 2k—1
Z)\<xx+2k1) 5-2k+1n2. (2.9)

zeV

In view of (2.9) the following claim seems a bit surprising and, in fact, it will lead

to the desired contradiction. For a simpler notation we set

Ve=V A6 2 — £22) (2.10)

2h—1
for £ € R/Z.

Claim 19. For every € € R/Z we have

1 2k—-1
Z( (<x:n+2k 1)—§-mn)<0.

er§

Proof of Claim 19. Fix some £ € R/Z. Since we assume that G is (

we have

1 _
27 2(2k+1)2

Z Mz + £ %)) = Z !Ng<l’) N (z, 2] 28) eq([§ 2] nV) > SOk 1

xeVe zeVe
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Therefore,
DM@+ 4D = Y (M) =A@+ gt z))

eV eV
n2
< Mz, 2
erVE el) 202k +1)?
2
n
= A& zel) = A6 2)) ) = 55
xe%( ([& z]) = A( )> 2(2k +1)?
3) n
2 o 11
Vel - 5 %H Zu@ (2.11)
We observe
DA ) =D i—3) = TN (2.12)
$GV§ i=1
and combining (2.11) and (2.12) yields
1 2k—-1
ICICRES = 1D_§‘2k+1">
.TEV{
n 1 2k—1 n? Ve |2 1 n\°
<IVel <2 > 2k+1”> 22k + 12 2 2 (’Vf’ 2k+1) 0,
which establishes the claim. O

Now set V* = {¢ € R/Z: & + =% € V}. Starting with an arbitrary z(0) € V*

we define recursively a sequence of members of V* by putting

o(i+ 1) = zo) — 95

for every ¢ € IN. Since V* is finite, this sequence is eventually periodic and thus we
could have chosen z(0) such that x(m) = x(0) holds for some m > 2. Let w e N
denote the number of times we wind around the circle when reaching x(m) from x(0)
by this construction. By Claim 19 we know that

mz_]l Z ( (@ + g 1)—;~§:;1n)<0.

=0 xEVI@)
On the other hand, (2.9) yields

mz_l Z ( (o, z + g5 >_;§Z;1n)

i=0xEVz(i)
1 2k-—-1
Z()\ (x, x+2k 1 )——-771)
= 2 2k+1

e (1 2k=1, 1 2k—1,)
Y\ 1" T2 k1) T
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which is a contradiction and concludes the proof of Proposition 18. O
It is left to consider the case when GG contains a large independent set.

Proposition 20. If G is a blow-up of a generalised Andrdsfai graph F¥ for
some integers k = 2 and d = 1 with |V(G)| = n and o(G) = 55n, then G is

not (% -dense.

2 2(2k+1)2)

Proof. Similarly as in the proof of Proposition 18 we consider the geometric
representation of an n-vertex graph G that is a blow-up of a generalised An-
drasfai graph F and identify the vertex set of G' with some set V < R/Z so
that (2.1) holds. Again we may assume without loss of generality that n is divisible

by 2(2k + 1) and we suppose for a contradiction that G is (% 5 )-dense. In

272 2k+1
particular, a(G) < n/2 and the additional assumptions for part(s (7v) and (v) of
Lemma 17 are satisfied.

Observe that every independent set of G is contained in some interval of R/Z
of 1ength . Therefore, without loss of generality we may assume that [0, Qkk 11]

contains a maximum independent set, i.e.,

k
A[0, 2L]) = a(G) = TR
Recall that in (2.3) we defined a point z with A([0, z0]) = n/2. Let the vertex 2’

be defined similarly by A([2/, 2=1]) = n/2. Then we have

M(zo,2)) = n = A([Z,0)) = A([0, 575]) = M5 20))
=n—(n/2—-a(@)) - a(G) = (n/2 - a(G))
= a(@)

and since zy, 2’ € V the maximality of a(G) discloses that the interval [z, 2’ ]
has at least the length £=L. Hence there is a closed subinterval [by, by] of [zo, 2’ ]
whose length is exactly % . We complete by and by to the vertices of a regu-
lar (2k — 1)-gon, i.e., we COHSldeI' the pomts b; € R/Z for i € {0,...,2k — 2} such
that the intervals [b;, b;11] have length 51~ (see Figure 2.2). Notice that a(G) < n/2
entails

20 € (bk—b bk] . (213)

Below we apply Lemma 17 to obtain several bounds on the numbers )\([bl, bk_l])

and /\([ka, bgk_Q]) that eventually lead to the desired contradiction. Applying

24



bo 0 by

br+1 Al 1bk 1

b, 2%k—1

Figure 2.2: Largest independent set of G is contained in the interval [0, & and

7 2k— 1]

the intervals [0, zo], [2/, 2= ] contain n/2 vertices each. The b; form a

regular (2k — 1)-gon.

Lemma 17 (iv) with £ = 0 gives

M[0.50) = A([0.b = £25)) 27 (10,20 = £25)) = 20(G) — 3

and, by symmetry, we also have

2k —1

A(br-1, 27L]) > 2a(G) — 1"

2k—1

Consequently, we arrive at

A([br, br—1]) = A([0, 3751) = A([0,b1)) — A((be—1, 375])

2k —1 4k — 2

<a(G) -2 (QQ(G) -

In particular, for the case k = 2 this implies

0 < A([bw, b)) < ‘;n ~ 3a(G),

which contradicts our assumption «(G) = 2n/5. Similarly, for £ = 3 inequal-

ity (2.14) combined with Lemma 17 (#i7) gives
10
n —2a(G) < A([b1,b2]) < = 3a(G),

which again contradicts the assumption o(G

> 3n/7 of this case. Consequently,
> 4.

)
for the rest of the proof we can assume that k
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Next we note that both intervals (bg_1,box_2) and (bgi1,b1) have length 2]2%11

and, hence, Lemma 17 (i) implies

)\((bk—b bgk_g)) + )\((bk+17 bl)) < QQ(G)

and, therefore,

A((bis, bar—2)) < 20(G) — A((br-1, b)) = 20(G) — (n — ([b, b,H])) . (2.15)

Finally, below we will verify

n — 20&(G) — )\([bl, bkfl]) < )\((bk‘JrlJ bgkfg)) . (216)
Before we prove (2.16), we note that using (2.15) as an upper bound for the
right-hand side of (2.16) leads to

6k — 4 (2.14) 8k — 4
2k+1n—4o¢(G) <2/\([b1,bk_1]) < %+ 1

n — 6a(G).

This inequality contradicts the assumption a(G) > T]j-l

hence, we conclude the proof by establishing (2.16).

of the proposition and,

For the proof of inequality (2.16) we appeal to Lemma 17 (v) with £ = b; for
every 1 = 2,...,k — 2. We set

]i = (bz - ﬁ7bz + 2k:171> = (bi—labi+1)
and then in view of
(bz + 2kk—_11’ bz - Qkk__ll) = (bi+k—17 bz-‘rk:)
part (v) translates to

ok + 1n — 2)\((bi+k’—1a bz-i—k)) . (217)

Furthermore, we note that for every i € {2,...,k — 2} we have I; < [b, b,—1] and

each of the two families
To={li:ievenand 2<i<k—2} and Z;={l;:ioddand 2 <i<k—2}

consists of mutually disjoint intervals. Moreover, we can add the interval [b;, bs)

to Z; and (by_o, bx_1] either to Z; (when k is even) or to Zy (when k is odd) and
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still each family consists of mutually disjoint intervals all contained in [by, by_1].

As a result we get

2A([b1, be—1]) = A([b1, o)) ZA ((br—2,bk-1]) -

Moreover, using the estimate from Lemma 17 (i1 ) for )\([bl, bg)) and )\((bk,g, bk,l])

and (2.17) for every term in the middle sum, we arrive at

2k +1
4n
2k + 1

= n — 40((G) - 2)\((bk+1, bgk_g)) .

([ bia) > (n - 20(G)) + 3. ( in__ 2)\((bi+k1,bi+k))) £ (n—2a(G))

> 2n —4a(G) + (k—3) - — 2X((brr1, bak—2))

Rearranging the last inequality gives (2.16) and this concludes the proof. O]
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3 Squares of Hamiltonian cycles in

3-uniform hypergraphs

In this chapter we will prove the following result.

Theorem 21. For every a > 0 there exists an integer ng such that every 3-uniform
hypergraph H with n = ng vertices and with minimum pair-degree do(H) = (% +a)n

contains a squared Hamiltonian cycle.

3.1 Building squared Hamiltonian Cycles in
Hypergraphs

In this section we will show the outline of the proof of Theorem 21. We start by
presenting the dependencies of the auxiliary constants we use in the propositions
required for the proof of Thereom 21. We write a » b to indicate that b will be
chosen sufficiently small depending on a and all other constants appearing on the
left of b. In Theorem 21 some a with 1 » a > 0 is given. We fix the auxiliary

constants 9, and an integer M € N, such that
I»a>»1/M>»9,>»1/n.

The connecting lemma stated below plays a crucial role in the proof of Theorem 21.
It asserts that any two disjoint triples of vertices can be connected by many “short”

squared paths.

Proposition 22. (Connecting Lemma) There are an integer M and 9, > 0, such
that for all sufficiently large hypergraphs H = (V, E) with 6o(H) = (4/5 + «)|V|
and all disjoint triples (a,b,c) and (z,y, z) with abe, xyz € E there exists m < M
for which there are at least V,n™ squared paths from abc to xyz with m internal

vertices.
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The proof of the connecting lemma forms the content of Section 3.2. We can
connect any two squared paths by the connecting lemma using their start or
endtriples, but for our constructions it will be important that we do not interfere
with any already constructed subpath. Therefore we put a small reservoir of
vertices aside, such that if we do not connect too many times it is possible to
use vertices of the reservoir set only. The following lemma, which we prove in

Section 3.3, shows the existence of such a set.

Proposition 23. (Reservoir Lemma) Suppose that for a given o > 0 the con-
stants 1/M > 9, are as provided by the connecting lemma and that H = (V, F)
is a sufficiently large hypergraph with |V| = n and d2(H) = (4/5 + a)n. Then
there exists a reservoir set R = V of size |[R| < 9¥2n such that for all R’ < R
with |R'| < ¥in and for all disjoint triples (a,b,c) and (x,y,2) with abc, vyz € E
there exists a connecting squared path in H with less than M internal vertices all
of which belong to R ~R’.

Moreover, we put aside an absorbing path P4, which will absorb an arbitrary
but not too large set X of leftover vertices at the end of the proof, such that we

get a squared Hamiltonian cycle.

Proposition 24 (Absorbing path). Let a » 1/M >» 9, be as usual and
let H= (V,E) be a sufficiently large hypergraph with |V| = n and minimum pair-
degree 6o(H) = (4/5 + a)n. There ezists an (absorbing) squared path Py € H — R
such that

(1) [V(Pa)| < Jun,

(2) for every set X € V NV (Pya) with | X| < 29%n there is a squared path in H
whose set of vertices is V(Pa) U X and whose end-triples are the same as
those of Py.

In Section 3.4 we prove Proposition 24 and in Section 3.5 we will show the

following theorem.

Theorem 25. Given o, > 0, and () € N there exists ng € N such that in every
hypergraph H with v(H) = n = ng and 62(H) = (3/4 + a)n all but at most un

vertices of H can be covered by vertex-disjoint squared paths with () vertices.
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Also in Section 3.5 we use this theorem to prove the existence of an almost

spanning squared cycle that covers all but at most 202n vertices.

Proposition 26. Given a > 0, let v, > 0 and M € N be the constants from
the connecting lemma. There exists ng € N such that in every hypergraph H
with v(H) = n = ng and 6o(H) = (4/5 + a)n all but at most 29%n vertices of H
can be covered by a squared cycle such that some absorbing squared path Py is an

induced subgraph of this cycle.

Combining Proposition 24 and Proposition 26 implies the existence of a squared

Hamiltonian cycle and therefore proves Theorem 21.

3.2 Connecting Lemma

We will show some of our results with the constant % and others for %. Moreover we

fix the auxiliary constants 3, v, 9, and integers K, ¢, M € N obeying the hierarchy

I>»a>»f,71/0>»1/K>1/M>»9,>1/n.

3.2.1 Connecting properties

We prove that the graph properties stated in the following lemma imply a connecting
property and use this lemma later to show that some auxiliary graphs G3 and G,

have this connecting property.

Lemma 27. Let v < 1/16 and let G = (V,E) with |V| = n be a graph
with §(G) = \/yn such that for every partition X wY =V of the vertex set
with | X1, |Y| = \/An we have eq(X,Y) = yn?.

Then for every pair of distinct vertices z,y € V(G) there ezists
some s = s(x,y) < 4/ for which there are at least Q(n*~') many z-y-walks of

length s.

Proof. For an arbitrary vertex x € VV and an integer ¢ > 1 we define

Z! ={z€V: there are at least (y*/4)*n** x-z-walks of length s in G

for some s < i}.
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For i > 2 we have Z! 2 Z!~! and therefore
Z| 2 1Z,| = [Na(z)| 2 6(G) = \/n.

Now we show that for every integer i with 1 < ¢ < 2/ at least one of the

following holds:

VN Z| < \/yn or |ZI N ZE| = % (3.1)

If [V N Z.| = \/yn, then the assumption yields that
ec(ZL,V N ZL) = yn?.

This implies that at least yn/2 vertices in V' \.Z% have at least yn,/2 neighbours in Z_.
For such a vertex u € V \. Z at least a proportion of 1/7 > v/2 of its neighbours
in Z! is connected to z by walks of the same length, which implies v € Z*!. As this
argument applies to yn/2 vertices outside Z! we thus obtain [Zi*1 \ Z¢| = vyn/2,
which concludes the proof of (3.1).

It is not possible that the right outcome of (3.1) holds for each positive ¢ < 2/7.
Therefore we have |V N ZI| < /n for j = [2/y]. So for z,y € V at
least n — 2,/yn = n/2 vertices z are contained in the intersection ZJ n ZJ. For
each z € Z] n Z) we get constants s;,5, < j < 2/ such that there are at
least (72/4)*1n*1~1 x-z-walks of length s; and there are at least (72/4)%2n%2~! 2-y-
walks of length sy. Therefore, for s, = s + sy > 2 there are at least (v2/4)%n® 2
x-y-walks of length s, passing through z.

There are at least n/2 vertices this argument applies to and by the box principle
at least 7/ % of them give rise to the same pair (si, s9) and, consequently, the
same value of s,. Moreover, the walks obtained for those vertices are distinct and

hence for some s(x,y) € [2,4/7] there are at least
(7271/8) . (72/4>8(x,y)ns(x,y)*2 > %(72/4)4/’y+1n5(x,y)71

x-y-walks of length s(z,y). O

3.2.2 The auxiliary graph Gj;

The first auxiliary graph we will study is the following.
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Definition 28. For a 3-uniform hypergraph H = (V, E) we define the auziliary
graph Gs (see Fig. 3.1) as the graph with vertex set V(G3) =V and

zy € B(G3) <= x # y and #{(a,b,¢) € V?: abcx and abey are K} = Bn®.

T e L)

v

Figure 3.1: We have an edge iff there are “many” edges abc € F(H)

for which

The main result of this subsection is the following proposition.

Proposition 29. Given a > 0 there exist ng,{ € N such that in every hyper-
graph H with v(H) = n = ng and §2(H) = (3/4 + a)n for every pair of distinct
vertices x,y € V(G) there exists some t = t(x,y) < ¢ for which there are at
least Q(n'~1) x-y-walks of length t in Gs.

The next lemma gives us a lower bound on the minimum degree of Gs.

Lemma 30. Ifn » o~}

pair-degree d3(H) = (3/4 + a)n, then 6(G3) = (1/4 + a)n.

and H is a hypergraph on n wvertices with minimum

Proof. Let x € V and 3 < a/8. We count the ordered quadruples (a,b,c,y) € V4,
such that {a, b, c,y} and {x,a,b, c} induce distinct tetrahedra in H. That is, we

estimate the size of the set
A, ={(a,b,c,y) e V*: z # y and wabc and abcy are Kf’)}.

Due to our assumption about do(H) the number A of triples (a,b, c) € V3, which

form a K f’) with x, can be estimated by

A =#{(a,b,c) e V3: abcz is a Kf)}

> (n— 1)(? + om> (g + 3om)

w

> (3.2)

n
8
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for n sufficiently large. Using the minimum pair-degree condition again we obtain
A,| > A(% +3an —1) > (111 +20) An. (3.3)
On the other hand, the assumption dg,(z) < n/4 + an would imply that
|A,| = Z #{(a,b,c) € V*: abcy and abcr are Kf’)}

yeV~{x}

<n-pn’+ (n/4+an)A.
Together with (3.3) this yields that

(i +2a>An < Bn* + <411 +a>An,

(3.2)
i.e., Bn® = aA =" an®/8. Since < «/8 this is a contradiction and shows that

the minimum degree of G is at least (1/4 + a)n. O

Lemma 31. If 5,7 « a and H is a hypergraph on n wvertices with minimum
pair-degree do(H) = (3/4 + a)n, then for every partition X w'Y =V of the vertex
set with | X1],1Y| = (1/4 + «/2)n we have eq,(X,Y) = yn?.

Proof. W.Lo.g. we can assume that | X| < |Y|. Since |X| = (1/4+ «/2)n, we know
that |Y] < (3/4 — «/2)n. Counting the ordered triples with two vertices in X and

one in Y which induce an edge in H, we get
#{(r, 2, y) e X* xY: za'ye E(H)}
= > |N(zy)nX]|

(z,y)eX XY
> | X[[Y] - (2(H) = [Y])
_ 3, 3an _Sa

=—n".
16 2 32
The number of K ig) including such a triple (z,2’,y) can thus be estimated by

‘{(ac,x',y,y') e X2 xY?: zalyy is a Kf)}‘

+{(z, 2", 2", y) e X? x Y: a2'z"y is a Kf)}‘

9an® n  9a ,

1
Now we will distinguish two cases depending on whether the number of K. f) with

exactly two or exactly three vertices in X is bigger than %n‘l.

9 ,
256"
Define A € X? x Y2 x V to be the set of all quintuples (x,2’,y,v/, z) satisfying

=

Case 1. #{(z,2,y,y) € X*> x Y?: ax'yy is a KV} >
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(i) xa'yy is a Kf');
(i) zxa', zyy € E(H);
(7i7) and at least three of zxy, z2'y/, zzy, za'y are edges in H.

We claim that the size of A can be bounded from below by

902
Alz—n". 3.4
4> (3.4
As we are in Case 1, it suffices to prove that every tetrahedron (z, 2, y,y') € X2xY?
extends to at least 4an members of A.

Writing
1(2) = Koy, oy, o'y, a'y'} o B(L)| + 2l{ae’ .y} o B(L.)]

for every z € V we get

Z f(2) =dy(z,y) +dy(x,y) + du(2',y) + dg (2, ') + 2dg (z,2") + 2dy (y, ')
zeV

> 86,(H) > (6 + 8a)n .

As f(z) < 8 holds for each z € V' it follows that there are at least 4an vertices
with f(z) = 7. For each of them we have (z,2',y,7/,2) € A. Thereby (3.4) is
proved.

To derive an upper bound on |A|, we break the symmetry in (7). Denoting

by A’ the set of quintuples (z,2’,y,,2) € X? x Y? x V satisfying (i), (ii), and
(iv) zy'z,a'yz,2'y'ze E(H)

we have

Al < 44| (3.5)

Moreover

|A"| < Z #{(2',y,2) e X xY x V: xz'y/z and 2'yy'z are Kf)}
(z,y)eX XY

< eq,(XY) - XYV + [X|IY] - pn?

1 1
< Z€G3 (X, Y)TL3 + ZBTTP .
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Therefore with (3.4) and (3.5) it follows that

9a2
eq, (X,Y) = <67—5>n2-
’on 3 . 1o (3) Yo 4
Case 2. #{(x,2', 2", y) e X? x Y: xa/2"y is a K;”'} = 56"

Define A € X? x Y x V to be the set of all quintuples (z,z’, 2", vy, 2) satisfying
(i) xa'z"y is a K,

.. . " / / " 3
Y ) ) Y Y Y Y )
(71) if z € Y at least one of the vertex sets {x, 2", y}, {z, 2, y}, {«', 2", y} induces

a triangle in L;
(7i) if z € X the vertex set {x,z’, 2"} induces a triangle in L, .

We claim that the size of A can be bounded from below by

2707
n’.
256

Al > (3.6)

As we are in Case 2, it suffices to prove that every tetrahedron (x,2’, 2", y) € X?xY
extends to at least 3an members of A.
Writing
f(2) = Hay, xa’, za” 22", 2'y, 2"y} 0 E(L.)|

for every z € V we get

Z f(2) =dy(z,y) + dy(x,2") + dg(x,2") + dg (', 2") + dg (2, y) + du (2", y)
zeV
> 602(H) = (9/2 + 6a)n.

If z €Y is a vertex with (z,2',2",y,2) ¢ A then f(z) <4 and if z € X is a vertex

with (x,2', 2"y, 2) ¢ A then f(z) < 5. Hence we have

(9/2 + 6a)n
<5B|IX[+4)Y[+ [{ze X: (z,2,2",y,2) e A} +2/{z € V: (z,2/,2",y,2) € A}].

Since 5|X| + 4|Y| = 4n + | X| < 9/2n, it follows that

3an < |{z e X: (z,2,2",y,2) e A} + [{z € YV (2,2/,2",y, 2) € A}

)

as claimed.
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Like before in Case 1 we obtain the upper bound
|A] < Bn® + eq, (X, Y)n?

Therefore with (3.6) it follows that

2702 ) )
256
Proof of Proposition 29. Because of Lemma 27, Lemma 30, and Lemma 31 it re-

mains to check that for every partition V' = X wY with \/yn < |X| < (1/4 + a/2)n
we have eq,(X,Y) = yn?. This follows easily from

ec,(X,Y) > ( O

e, (X,Y) = ) df*(x Gs) - | X| — |X|?

xeX
and Lemma 30. OJ

3.2.3 The auxiliary graphs G,
The second kind of auxiliary graphs we will study is the following.

Definition 32. For a 3-uniform hypergraph H = (V, E) and a vertex v e V we
define the auziliary graph G, (see Fig.  3.2) as the graph with wvertex
set V(Gy) =V N {v} and

rye B(G,) < x # y and #{(a,b) € V*: zabv and yabv are Kf’)} > fn?
The main result of this subsection is the following proposition.

Proposition 33. Given a > 0 there exist ng,{ € N such that in every hyper-
graph H with v(H) = n = ny and 05(H) = (3/4 + a)n for every pair of distinct
vertices x,y € V(QG) there exists some t = t(x,y) < { for which there are at

least Q(n'™1) z-y-walks of length t in G,,.
The next lemma gives us a lower bound on the minimum degree of G,.

Lemma 34. If n » o' and H is a hypergraph on n vertices with minimum

pair-degree d5(H) = (3/4 + a)n, then 6(G,) = (1/4 + a)n

Proof. Let x € V \ {v}. We count the triples (a,b,y) € V3, such that {y,a,b, v}
and {z,a,b,v} induce distinct tetrahedra in H. That is, we estimate the size of

the set

A, = {(a,b,y) € V*: x #y +# v and zabv and yabv are KV} .
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Figure 3.2: We have 1y ¢ F/((/,) iff there are “many” pairs (a,b) € V? for
which abx,aby € E(H) and abr. aby span triangles in .

Due to our assumption about do(H) the number A of pairs (a,b) € V2, which form
a K f’) with x and v, can be estimated by

A =#{(a,b) e V*: abxv is a Kf’)}

3n n
= (— + cm) (— + 30m)

4 4
2
n
= —. 3.7
' (37)
Moreover we have
n 1
> Al - —1) = (-
|Ax|/A(4 + 3an 1) > (4+2a)An. (3.8)
On the other hand, the assumption dg,(x) < n/4 + an would imply that
|A,| = Z #{(a,b) € V?: abvy and abvz are Kf’)} <n-Bn*+ (n/d+ an)A.

yeV~{v,xz}
Together with (3.8) this yields that
1 1
(— + Qa)An < Bn® + (— + a)An,
4 4
(3.7)
i.e., Bn? = aA =" an?/8. Since < «/8 this is a contradiction and shows that

the minimum degree of G, is at least (1/4 + a)n. O

Y and H is a hypergraph on n vertices with

Lemma 35. Ifn » 375yt » a”
minimum pair-degree 0o(H) = (3/44 a)n, then for every partition X Y =V~ {v}

of the vertex set with | X|,|Y| > (1/4 + a/2)n we have eq,(X,Y) = yn?.
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Proof. We begin by showing that the set

A, ={(r,y,2) e X xY x (V~{v}): vayz isaKf’) in H},

satisfies
n3
A, 3.9
A= (39)
For the proof of this fact we may assume that | X| < [Y'|. Thus |X| e [}, 5] and
hence
| Al = [XT]- (02(H) — | X]) - (302(H) — 2n)
3
> |X|- (Gn—1x1) -5
n*> n n?
Z == 05
8 4 32
as desired.

It follows that

n3

[Ae 0 (XY X+ Ao 0 (X X YP)| = A = 5

and w.l.o.g. we can assume that [A, N (X x Y x X)| > n?/64. Now we study the

set
A, = {(a,by,2) € X? x Y x (V< {v}): abvy, abvz are K4 and yz € E(L,)}.

Given any triple (a,y,b) € A.n (X xY x X) the quadruple abvy forms a tetrahedron,
there are at least 305(H) — 2n vertices z for which abvz forms a tetrahedron as

well, and for at most n — dy(H) of those the condition yz € E(L,) fails. Hence

|Awu| = [Ax 0 (X x Y x X)| - [(302(H) — 2n) — (n — do(H))]

>4om-|A*m(X><Y><X)|>%n4.

Case 1. |Aw 0 (X2 x Y x X)| = an?/32.

Owing to

om4

— <AL n (X2 xY x X)|
32

N

Z #{(a,b) € X*: abzv and abvy are K4(3)}

(z,y)eX XY
< B?|X|IY] + eq,(X,Y) - n®
<Bn? n*/d+eq,(X,Y) - n?
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z

Figure 3.3: Example of a quintuple in A, where the link graph of v is indicated in

green and hyperedges of H in red.

we have

x> (52

as desired.

Case 2. |Aw 0 (X2 x Y?)| = an'/32

Define A € X? x Y2 x (V ~\ {v}) to be the set of all quintuples (x,2’,y,v/, 2)
satisfying

(i) x2'yy' isa Ky in L,
(7i) at least one of xa’, yy' forms a K f’) with v and z
(7ii) at least one of xy, zy/, 2'y, 2’y forms a Kf’) with v and z.

Notice that condition (i) holds for every (z,2’,y,vy') € A N (X2 x Y?). Let us
now fix some such quadruple (x,z’,y,y). Due to our assumption about do(H) we

have

dg(x,y) + dg(2,y) + du(2’,y) + du (2, y) + 2(du(z, ") + du(y,y))
+2(dp, (z) + dp, (') + dp, (y) + dr, (y')) = 1602(H) > (12 + 16a)n.

So writing

f(2) = {zy, 2y 2y, 2'y'} o E(L)| + 2|{z2’,yy'} n E(L,)]
+ 2|{vx, v’ vy, vy'} n E(L,)|

for every z € V we get

Z f(z) = (12 + 16a)n .

zeV
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If z is a vertex with (z,2,y,vy,2) ¢ A, then f(z) < 12, and hence we have
#H{zeV: (x,2,y,y,2) e A} = 16an/4 = 4an.

Applying this argument to every (z,2’,y,y’) € A N (X? x Y2) we obtain, since
we are in Case 2, that

2

Al = %7# ~dan = %ns. (3.10)

Now let us denote by A, (resp. A,) the number of quintuples (z,2’,y,y/, 2)
in X2 x Y2 x (V ~ {v}) such that

e xz'vz (resp. yy'vz) and x'yvz are Kf).

By symmetry we have

1 (3.10) 2
A, + A, = =|Al = —nb.
vt Ay = Al 32"

Consequently at least one of A,, A, is at least ‘é‘—in? In either case one can prove

that eg,(X,Y) = yn? and below we display the argument assuming A, > ‘g—zn5.
In this case
A, < Z #{(z', v, 2) € V*: x2’2v and ya'zv are Kf’)}
(z,y)eX XY
<n Z #{(2',2) € V?: za'zv and ya'zv are K\}
(z,y)eX XY

< |X||Y|Bn® + eq, (X, Y )n?

yields
a? B
X7 Y = <7 - 7) 27
o (X Y) = (g —3)n

as desired. The case A, > g—Zn5 is similar. O

Proof of Proposition 33. Because of Lemma 34 and the fact that

er(X,Y) = Z dgv(x) = 5(Gv) ’ ’X’ - ‘XP?

reX

Lemma 35 is already true if |X|,[Y| > ,/yn. Therefore the assumptions of
Lemma 27 hold for the graph G, which implies Proposition 33. O]
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3.2.4 Connecting Lemma

For the rest of this section we will use the constant %, i.e., the minimum pair-degree
hypothesis d2(H) = (4/5 + a)n.

Definition 36. For a 3-uniform hypergraph H = (V, E) and vertices v,r,s € V
we write
Ny(r,s) = N(r,s,v) = N(r,v) n N(s,v) n N(r,s).

Notice that our minimum pair-degree condition entails
|Ny(r, 8)| = n/4 (3.11)
for all v,r,;s e V.

1

Definition 37. Given n » o™, a hypergraph H on n vertices with minimum

pair-degree do(H) = (4/5 + a)n and two distinct vertices v,w € V(H) we define
the auxiliary graph Gy, by V(Guyw) = N(v,w) and

wi € E(Gypy) <= ud'vw is a KV .

Due to our assumption about the minimum pair-degree we know that the size n’

of the vertex set satisfies n’ = |V (G,y)| = (4/5 + a)n.

Lemma 38. Let v,w eV and b,z € V(Gyy). There are at least Q(n?) walks of
length 3 from b to x in Gy,.

Proof. For a vertex r € V(G,,) we have

460, () [V (Gow)| = 2(n — ()
_ V(G| |, ()

> Bl 205 oo — 6,(H)
V(Guw)|  562(H) n' 5an 1 )
= Cop 20 (2 .
> T nzot <2+O‘>”

Thus the minimum degree of the auxiliary graph G, can be bounded from
below by §(Gyw) = (1/2 4+ a)n’ and any two vertices of G, have at least 2an/
common neighbours in GG,,. Due to this and the minimum vertex degree condition

in G,,, we can therefore find at least

~

D oan = aln')? = 2
2 2
walks of length 3 from b to x in G,,,. This shows Lemma 38. O
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Lemma 39. If vbc,vxy € E and |N,(b,¢) n Ny(z,y)| = m, then there are at

least Q(m?n?) quadruples (wg, by, cy,w1) such that bewobiciwixy is
o ¢ walk in H and

e a squared walk in L, .

b c b1 c1 x Y

Figure 3.4: Quadruple (wo, by, c1,w;) that fulfills the conditions of Lemma 39,

where the link graph of v is indicated in green and hyperedges of H in
red.

Proof. For every w € N,(b,c¢) n N,(x,y) Lemma 38 states that there are at
least Q(n?) walks in G,,, from c to z of length 3. Let

Xpyey = {w e Ny(b,c) n Ny(z,y): chicrx is a walk in Gy}

for by,c; € V. Thus
2 |Xb101| = Q(mnz)

(b1,c1 )€V2

and therefore the Cauchy-Schwarz inequality yields that

Z |‘va3161|2 = Q(m2n2>'
(b1,01)6V2
If by,cq € V and wg, wy € Xp,¢,, then bcwobycywizy has the desired properties. [
Proposition 40. There is an integer K, such that for all edges abc,xyz € E
and vertices v € N(a,b,c) n N(z,y,z) there are for some k = k(abc,zyz) < K
with k =1 (mod 3) at least Q(n*) many (uy, ..., ux) € V¥ for which abcu, . . . upzyz

18

e a walk in H
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e a squared walk in L, .

Proof. Recall that in Proposition 33 we found an integer ¢ and a
function ¢: V@ — [¢] such that for all distinct 7, s € V' there are Q(n'"*)~1) walks
of length ¢(r, s) from r to s in G,. By the box principle there exists an integer ¢ < ¢
such that the set @ € N, (b, ¢) x Ny(z,y) of all pairs (u,u’) € N,(b,c) x Ny(z,y)
with ¢(u,u’) = t satisfies

[No(b, 0)] - [No(,9)] 1) n®
¢ A

Q| =

For each walk vyv; ... v; in G, there are by Definition 32 at least (8n?)" many (2t)-
tuples (b1, c1, ..., b, ¢;) such that

(’L) biCZ”UEEfOI'i= 1,...,t,
(i) vo € Ny(b1,c1) and v, € N,y(by, ),

(MZ) V; € Nv(bi,ci) N Nv(bi+1,ci+1) for ¢ = ]_, N 1.

Vo (%1 Vt—1 Vt

b c 1 C1 2 C2 + Ct x Yy

Figure 3.5: A (3t + 1)-tuple (vo, vy, ..., v, b1, 15, b, ¢) € V3! satisfying (7),
(i), (iii), and (v ), where the link graph of v is indicated in green and

hyperedges of H in red.

Consequently, there are at least

7’L2

1_66 . Q(nt—l) . (ﬁn2)t _ Q(n?)t—i-l)

(3t + 1)-tuples (vo, vy, ..., v b1, 1, ..., by ) € V3T satisfying (i), (i), (i) as

well as

(iv) vg € Ny(b,c) and v, € Ny(x,y) .
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On the other hand, we can also write the number of these (3t + 1)-tuples as

D@ L@)] ... - L),

vew

where

U ={(br,c1,...,b,¢) e V*: bcwe Efori=1,... 1}

and for fixed v = (by,c1,...,b,¢) €W
o [y(v) = Ny(b,c) n Ny(by,cq)
o [;(v) = Ny(b;,c;) N Ny(biy1,ciq1) fori=1,...t—1
o [;(v) = Ny(b,ct) n Ny(zx,y).

Altogether we have thereby shown that

Z L) [L)] ... - [L(©0)] = Qn*). (3.12)

vel

Due to (3.12) and Lemma 39 there are at least

D 0@n) - .- QL))
> Q) Y (K@) .- L))

eV

(S 1@ 16@))

> Q(n2t+2) vew |\Ij|
2t+2 2 _ 6t+4
> 0(n*+2) ( ) =

(6t + 4)-tuples, which fulfill the conditions of Proposition 40.
Since 6t + 4 =1 (mod 3) this concludes the proof. ]

Q(n3t+1)

nt

Definition 41. We call a sequence of vertices vy ... vy, a squared v-walk from abc

to xyz with h interior vertices if abcvy . ..vpxyz is a walk in H and a squared walk
i L,.

Proposition 42. For all abc,zyz € E and v € N(a,b,c) n N(x,y, z) there are
for some k' = k'(abc, xyz,v) < K + 2 with k' = 0 (mod 3) at least Q(n*") many

squared v-walks with k' interior vertices from abc to xyz.
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Proof. We choose vertices d € N, (b, c) and e € N,(c,d), and with Proposition 40
we find at least Q(nf) many squared wv-walks from cde to wyz,
where k = k(cde,zyz) < K and k =1 (mod 3). Notice that if u; ... uy is such a
walk, then deu ... uy is a squared v-walk from abc to zyz.

Since |N, (b, c)|,|Ny(c,d)| = n/4 holds by (3.11), there are for some k < K
with £ =1 (mod 3) at least % = Q(n?) pairs (d, e) with k(cde, zyz) = k. Now
altogether there are Q(n**2) squared v-walks from abc to xyz with k + 2 interior

vertices. This implies Proposition 42, since k +2 =0 (mod 3). ]

Lemma 43. If abc,zyz € E and |N(a,b,c) n N(x,y,z)| = m, then there is an
integer t = t(abe,xyz) < (K + 2)/3 such that at least Q(m'*'n3") squared walks

from abc to xyz with 4t + 1 interior vertices exist.

Proof. For every w € N(a,b,c) n N(x,y,z) Proposition 42 states that for some
integer k' = k(w) < K + 2 with & = 0 (mod 3) there are at least Q(n*)
many squared w-walks from abc to xyz with k' interior vertices. By the box
principle there exists an integer k" < K + 2 with £/ = 0 (mod 3) such that
the set @ < N(a,b,¢) n N(z,y,z) of all vertices w’ € N(a,b,c) n N(x,y,z2)
with &' (w') = k" satisfies

IN(a,b,c) " N(z,y,2)] m

K +2 K+2

19| =

For P = (uy,...,up) € V¥ let Xp < Q be the set of vertices u € Q such that P is
a squared u-walk from abe to xyz. Since |Q] = m/(K + 2), the average size of Xp

is at least Q(m/(K + 2)) = Q(m) by Proposition 42 and double counting. Since

Q(mk”/3+1)

)

k’”/3+1 ”
k" /3+1
2ipevir Xp = Dipeyvr Xp\F'/3+ >
7 = " =
nk nk

we get

Z X}lg”/3+1 > Q(mF" k")
PevE"
Since k" = 0 (mod 3) and every ordered k”-tuple P of vertices gives rise to XIIZN/ s+l
squared walks from abc to xyz with 4k” /3+1 interior vertices, this implies Lemma 43

with t = k"/3. O

Finally we come to the main result of this section stated earlier as Proposition 22.

45



Proposition 44 (Connecting Lemma). There are an integer M and 9, > 0,
such that for all disjoint triples (a,b,c) and (x,y,z) with abc,zryz € E there
exists m < M for which there are at least ¥4n™ squared paths from abc to xyz

with m internal vertices.

Proof. Recall that in Proposition 29 we found an integer ¢ and a
function ¢: V® — [¢] such that for all distinct 7, s € V there are Q(n'"*)~1) walks
of length ¢(r, s) from r to s in G3. By the box principle there exists an integer ¢ < ¢
such that the set Q@ < N(a,b,c) x N(x,y, z) of pairs (u,u’) € N(a,b,c) x N(z,y, z)
with ¢(u,u’) = t satisfies

’N(aab: C)‘ ) ]N(x,y,z)\ > n’

> = T,
<l l 164

For each path vyv; ... v; in G5 there are by Definition 28 at least (4n?®)! many (3t)-

tuples (ay, by, 1, ..., a4, by, ¢) such that

(i) abjcie Efori=1,...t

(7)) vo € N(ay,by,c1) and v, € N(ay, by, cr)
(#i) v; € N(aj, b;,¢;) N N(aji1,bir1,¢i01) fori=1,...t—1.
Consequently, there are at least

TM . Q(nt—l) . (ﬁn?;)t _ Q(n4t+1)

(4t + 1)-tuples (vg, ..., v, a1,b1,¢1, ..., a, by, ) € VAT satisfying (4), (i1), (i)

as well as
(iv) vo € N(a,b,c) and v, € N(z,y, 2).

On the other hand, we can also write the number of these (4¢ + 1)-tuples as

2 @) L @) - L))

eV

where
Y = {(al,bl,cl,...,at,bt,ct) € VBtI aibicl- € Ffori= 1,,t}

and for fixed v = (ay,b1,¢1, ..., a1, bi,¢0) €V
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Vo U1 Vi1 v

VY OV

Figure 3.6: A (4t + 1)-tuple (vo,...,vs, a1,b1,¢1,..., a4, bp,0) € VAT satisfy-
ing (7), (i), (#7), and (iv), where orange quadruples indicate a copy
of [\'iim’ hyperedges of H are indicated in red, and green pairs are in

the link graph of the corresponding v;.

e [y(v) = N(a,b,c) n N(ay, by, )
o [;(v) = N(a;,b;,¢;) N N(@s1,bi41,¢41) fori=1,...t -1
e [;(v) = N(ag, by, ¢;) N N(z,y,2)

Altogether we have thereby shown that

SN L@ L@ .- | L(@)] = Q).

VeV

Lemma 43 gives us for every v € U some integers
e to(v) = t(abc,arbicy)
o t;(v) = t(abici, a;41bip1¢i41) for i =1,2,... t—1
e and t,(v) = t(abicy, xy2).
By the box principle there are ¥, < W and a (¢t + 1)-tuple (tg,...,1%)

n [1, (K +2)/3]""! such that

N @) L@ - .. |[1L@)] = Q') (3.13)

e,
and ¢;(v) = t; for all i € {0,...,t} and v e U,. Set m = 4t +4>"'_ ; + 1. Due to
Lemma 43 there are at least

> Q@) ) - QL) )

vel,

= Q) B L@ L)

UE‘I’*
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m-~tuples, which up to repeated vertices fulfill the conditions of Proposition 44.

Let T' = max(to,...,t;). Since

(L@ = L@ L) < [LE) T
we get
A TG
vew, i= vew, 1
> Y @) R@ = Y (@) L@
vev, vel,
AZ\P [Lo(v)] ... [L(v)]\ T+1 (3.13) Q(n‘““) T+1
> vEW . |\I/ | > SN .n3t
= ‘\I/*| * = ’I’L3t
> Q( 3t+( t+1)(T+1))
which implies that
322 otz Z u |to+1 . | t@)|tt+1

vew,

> Q( St+(t+1)+30 o ti+330 ) _ Q(nm)

At most O(n™ 1) tuples can fail being paths due to repeated vertices, thus
there are 2(n™) squared paths from abc to zyz. This proves Proposition 44
with M = [40+ 4(¢ + 1) - 552 + 2], since

K +2
3

t
m=4t+4) i+ 1<A+AL+1)-
=0

+1. [l

3.3 Reservoir Set

In all proofs using a reservoir lemma the reservoir set R is obtained by taking
a random subset of V. On a technical level there are several possibilities which

properties of R one actually requires and below we follow closely the approach
of [67].
Proposition 45. Let v, and M be the constants given by the Connecting Lemma.
192
< |R| < 9%n, such that for all dis-
joint triples (a, b, c) and (z,y, 2) with abc, vyz € E there are at least ¥,|R|™@¢v2) /2

connecting squared paths in H all of whose m(abe, xyz) < M internal vertices

belong to R.

48



Proof. Consider a random subset R < V with elements included independently

- (i)

Therefore |R| is binomially distributed and Chernoff’s inequality yields

with probability

P(|R| < 9¥2n/2) = o(1). (3.14)

Since

030 = (4/3)YMpn = (1 + ¢)E[|R]]

for some sufficiently small ¢ = ¢(M) > 0, we have
P(|R| > ¥2n) < P(|R| > (4/3)""pn) = o(1). (3.15)

The Connecting Lemma ensures that for all triples (a, b, ¢) and (z,y, z) there are
at least ¥,n™ squared paths connecting them with m = m(abec, zyz) < M internal
vertices.

Let X = X((a,b,¢), (z,y,2)) be the random variable counting the number of

squared paths from (a,b,c) to (x,y, z) with m internal vertices in R. We get
E[X] = p™dn™. (3.16)

Including or not including a particular vertex into R affects the random variable X
by at most mn™"! wherefore the Azuma-Hoeffding inequality (see, e.g., [39,

Corollary 2.27]) implies

P(X < 20,(m)") "< P(X < 2E[X])

BIXPE
< exp < — 9n(mnm—1)2> = exp(—Q(n)). (3.17)

Since there are at most n% pairs of triples that we have to consider, the union
bound and (3.14), (3.15) tell us that asymptotically almost surely the reservoir R

satisfies
92n

<|R| < (4/3)Mpn < 9%n (3.18)

and

X((a,b,c), (z,y,2)) = =9(pn)™ (3.19)

Wl o
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for all pairs of disjoint edges abc, xyz € E. In particular, there is some R < V

satisfying (3.18) and (3.19). Now it follows that
X((a,b,0),(x,y,2)) = 0R|™/2
holds for all abc, zyz € E as well, meaning that R has the desired properties. [J

Lemma 46. Let R €V be a reservoir set, 9, the constant given by the Connect-
ing Lemma and R' = R an arbitrary subset of size at most Vin. Then for all
triples  (a,b,c) and (x,y,z) there exist a connecting squared path
with m(abe, xyz) < M internal vertices in H whose internal vertices belong to the

set RR'.

192
Proof. Let m = m(abe, zyz). Since |R| = ;n and ¥, « M~ we can arrange
that
v
R < din < ~[R].

Every vertex in R’ is a member of at most m|R|™ ! squared paths with internal
vertices in R. Consequently, there are at least

Uy
4m

/ﬁ* 19*
o [RI" = [RmIR[™™ = ZH[R[™ = =m[R[" >0
such paths with all internal vertices in R ~~ R’. O]

To conclude this section we remark that taken together Proposition 45 and

Lemma 46 entail Proposition 23.

3.4 Absorbing Path

The goal of this section is to establish Proposition 24 which, let us recall, requires
the minimum degree condition dy(H) = (4/5+«)|V (H)|. The common assumptions

of all statements of this section are that we have
e 1»a» M >»d,>»n!such that the connecting lemma holds,
e a hypergraph H = (V, E) with |[V| =n and §(H) = (4/5 + a)n,

e and a reservoir set R € V satisfying, in particular, that |R| < 9¥2n.
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c d

Figure 3.7: Example of a v-absorber, where the link graph of v is indicated in

green and orange or red 4-edges indicate a copy of A f).

Definition 47. Given a vertex v € V and a 6-tuple (a,b,c,d, e, f) € (V ~ {v})8
of distinct vertices, we call such a 6-tuple v-absorber if abcdef and abcvdef are

squared paths in H.

6

Lemma 48. For every v € V there are at least a>n® many v-absorbers in (V~R)S.

Proof. Given v € V' we choose the vertices of the 6-tuple in alphabetic order. For
the first vertex we have n possible choices and for the second we still have more
than 4n/5 possibilities, since we only have the condition that vab € E. For the
third vertex we already have 3 conditions, namely abc, vbc, vac € E. Consequently,
we have more than 2n/5 choices for c¢. For the vertices d, e, f we always have 5
conditions, so we have for each of them at least 5an possible choices. This implies

that for given v € V we find more than
n-4n/5-2n/5 - (5an)® = 40an®

6-tuples meeting all the requirements from the v-absorber definition except that
some of the 7 vertices v, a, ..., f might coincide. There are at most (;) n® = 21n®
such bad 6-tuples and at most 692n® members of V¢ can use a vertex from
the reservoir. Consequently, the number of v-absorbers in (V ~\ R)® is at

least (400% — 2 — 692)nf = o*nS. O
Lemma 49. There is a set F < (V ~R)® with the following properties:

(1) |F| < 8a~30n,
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(2) all vertices of every 6-tuple in F are distinct and the 6-tuples in F are

pairwise disjoint,
(3) if (a,b,c,d,e, f) € F, then abedef is a squared path in H
(4) and for every v eV there are at least 29%n many v-absorbers in F.

Proof. Consider a random selection X < (V' \.R)® containing each 6-tuple indepen-
dently with probability p = yn=°, where v = 492 /a3. Since E[|X|] < pn® = yn,
Markov’s inequality yields

P(|X] > 2yn) < 1/2. (3.20)

We call two distinct 6-tuples from V' overlapping if there is a vertex occurring
in both. There are at most 36n'! ordered pairs of overlapping 6-tuples. Let P be
the random variable giving the number of such pairs both of whose components

are in X. Since E[P] < 36n!'p? = 367?n and 12y < 9., Markov’s inequality yields

P(P > ¥2n) < P(P > 1449%n) < (3.21)

AN

In view of Lemma 48 for each vertex v € V' the set A, containing all v-absorbers
in (V\\R)® has the property E[|A, n X|] = a*n®p = a®yn = 492n. Since |A, N X|
is binomially distributed, Chernoft’s inequality gives for every v € V

1

P(|A, n X| < 392n) < exp(—Q(n)) < e
n

(3.22)

Owing to (3.20), (3.21), and (3.22) there is an “instance” F, of X satisfying the

following;:
o |F.| < 29n,
e F, contains at most 9¥2n ordered pairs of overlapping 6-tuples,
e and for every v € V the number of v-absorbers in F, is at least 392n.

If we delete from F, all the 6-tuples containing some vertex more than once, all
that belong to an overlapping pair, and all violating (3), we get a set F which
fulfills (1), since |F| < |F4|. The properties (2) and (3) hold by construction and
for (4) we recall that v-absorbers satisfy (3) by definition. Therefore the set F has
all the desired properties. O
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We are now ready to prove Proposition 24, which we restate for the reader’s

convenience.

Proposition 50 (Absorbing path). There exists an (absorbing) squared
path Py < H — R such that

(1) [V(Pa)| < Jun,

(2) for every set X < V N\ V(Pya) with | X| < 29%n there is a squared path in H
whose set of vertices is V(Pa) U X and whose end-triples are the same as
those of Py.

Proof. Let F < (V . R)® be as obtained in Lemma 49. Recall that F is a family
of at most 8a~31¥2n vertex-disjoint squared paths with six vertices.

We will prove that there is a path P4 € H — R with the following properties:

(a) P4 contains all members of F as subpaths,
(b) [V(Pa)l < (M +6)F].

Basically we will construct such a path P, starting with any member of F by
applying the connecting lemma |F| — 1 times, attaching on further part from F
each time.

Let F. < F be a maximal subset such that some path P; < H — R has the
properties (a) and (b) with F replaced by F.. Obviously P; # @. From (b)

and 1 » a, M~! » 9, we infer
V(PH| < (M + 6)|F| < 2M|F| < 16Ma39%n < 93%n (3.23)

and thus our upper bound on the size of the reservoir leads to

Vst

2M
Assume for the sake of contradiction that F, # F. Let (z,vy, z) be the ending triple

V(P3| +R| < 20%n < (3.24)

of P} and let P be an arbitrary path in F \ F, with starting triple (u, v, w). Then
the connecting lemma tells us that there are at least ¥,n™ connecting squared
paths with m interior vertices, where m = m(xyz, uvw) < M. By (3.24) at least
half of them are disjoint to V(P%) u R. At least one such connection gives us a

path P;* € H — R starting with P}, ending with P and satisfying

V(P = V(PR +m+ [V(P)] < [V(Py)] +m+6 < (M+6)(|F| +1).
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So F. u {P} contradicts the maximality of F, and proves that we have in-

deed F, = F. Therefore there exists a path P4 with the properties (a) and (b).
As proved in (3.23) this path satisfies condition (1) of Proposition 50. To

establish (2) one absorbs the up to at most 292n vertices in X one by one into Pj.

This is possible due to (a) combined with (4) from Lemma 49. O

3.5 Almost spanning cycle

The main work of this section goes into the proof of Theorem 25, which will
occupy the Subsections 3.5.1-3.5.4. Having obtained this result we will deduce
Proposition 26 in Subsection 3.5.5.

The proof of Theorem 25 itself is structured as follows. In Subsection 3.5.1 we
derive an “approximate version” of Pikhurko’s K f’)—factor theorem (see Lemma 51)
by imitating his proof from [65]. This lemma leads to Theorem 25 in the light
of the hypergraph regularity method, which we recall in Subsection 3.5.2. In
Subsection 3.5.3 we explain why “tetrahedra in the reduced hypergraph” correspond
to regular “tetrads” large fractions of which can be covered by long squared paths.
Finally in Subsection 3.5.4 we put everything together and complete the proof of

Theorem 25.

3.5.1 Kf')—tilings

The subsequent lemma will later be applied to a hypergraph obtained by means of

the regularity lemma.

Lemma 51. Lett > 36, 0 < o < 1/4 and 7 <« «a. Given a hypergraph G on t
vertices such that all but at most 7> unordered pairs xy € V) of distinct vertices
satisfy d(z,y) = (3/4 + a)t, it is possible to delete at most 24/Tt + 13 vertices and
find a Kf) -factor afterwards.

The following proof is similar to Pikhurko’s argument establishing [65, Theo-

rem 1].

Proof. Let us call a pair of vertices bad if its pair-degree is smaller than (3/4 + «)t.
Moreover we will call a subhypergraph of G good if it does not contain any bad

pair of vertices.
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Figure 3.8: Example of a tiling 7 with maximal weight, where cood pairs are

indicated by green edges.

First of all we will delete vertices which are in many bad pairs. More precisely
we will successively delete vertices if such a vertex is in at least /7t bad pairs.
Since there are at most 7¢* bad pairs, we are deleting at most /7t vertices and in
the remaining hypergraph G’ = (V’, E’) every vertex is in at most /7t bad pairs.

Let F be a set of hypergraphs. By an F-tiling in G we mean a collection of
vertex-disjoint good subgraphs, each of which is isomorphic to some member of F.
Moreover let wy = 2, w3 = 6, and wy = 11 be weight factors.

In the following we will consider a {K2(3), §3), K f’)}—tﬂing T in G’ that max-
imises the weight function w(7T) = wyly + wsls + wyly, where ¢; denote the number
of copies of K in T.

At most /7t vertices of V' are missed by the tiling 7. Indeed, otherwise we find
a good subgraph isomorphic to K2(3) not in the tiling, since every vertex in V' is in
at most /7t bad pairs. Because wy > 0 this is a contradiction to the maximality
of T.

We say a hypergraph F' € T makes a connection with the vertex z € V' \ V(F)
(denoted by (F,z) € C) if |V(F)| < 3 and V(F) u {z} spans a complete good

hypergraph. Examining the properties of connections, we get the following results.
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o A Ki(?’)—subgraph F €T with i < 3 can only make a connection to a vertex

x that belongs to a K](-?’)—subgraph of T with j > i.

Otherwise moving = to F' would increase the weight of 7, since w4 +wy—2ws = 1,
wy —we — w3z = 3, w3z — 2wy = 2, and all other possible weight changes are positive

as well.

e Each K{Y-subgraph F in 7 makes at least (3} + §)t connections.

3
4

Let {a,b} be the vertex set of Kég)—subgraph F of T. The subgraph F' makes
a connection with a vertex x € V' N\ V(F) if abx € E(G) and ab, ax, bx are good
pairs. Recalling that ab is a good pair due to the definition of tiling, we can relax
the second condition to az, bx being good pairs. There are at least (% +a— /Tt
vertices in V' . V(F') that form an edge with ab in G. Since every vertex in V'
is in at most /7t bad pairs, at most 24/7t vertices, which form an edge with ab
in (G, can fail the second condition. Thus, every Kég)—subgraph F of T makes at

least (2 + a — 34/7)t connections, which due to 7 < %‘—2 is more than (2 + ¢)t.

e Every Kg(,g)—subgraph F in T makes at least (§ + «)¢ connections.

For each K{”-subgraph F of T there are at least (9 + a)t edges that intersect
it in exactly two vertices and consists of no bad pairs. Let ¢ denote the number of
connections made by a K?ES)—subgraph of 7. Thus, we get

9
<1+a>t<36+2(t—3—c),

ie.,

(Z+a)t—2t+6<c.

0£3<3.

Otherwise let FY, Fy, F3, Fy be Kés)—subgraphs in 7. All connections made by
a Fj; belong to a K ig)—subgraph of T by the first bullet above. An upper bound
for the number of K¥ in T is [t/4]. Since

4(}l 4 a)t > 4[t/4],

the vertices of some Kf)—subgraph F of T make at least 5 connections

with Fy, Fy, F3, Fy. Therefore we find two distinct vertices x,y € V(F) and 4, j € [4]
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with ¢ # j, such that (F}, z), (Fj,y) € C. Moving x to F; and y to F; and thereby re-
ducing F to a K5 would increase the weight of T, since 2(w; — ws) + (ws —wy) = 1.
Thus, we get a contradiction to the maximality of 7.

Case 1. 05 >3
Let Fy, Fy, Fy be K$¥-subgraphs in 7.

e There is no K§3)—Subgraph F € T with the property that Fi, F», F3 make

more than 3 connections to F'.

Otherwise we could find distinct vertices x,y € V(F') and i, j € [3] with i # 7,
such that (F}, x), (Fj,y) € C. Moving = to F; and y to F; and thereby eliminating F
would increase the weight of T, since 2(ws — wy) — ws = 2. Thus, we get a

contradiction to the maximality of 7.

e There is no Kf)—subgraph F € T with the property that F, F», F3 make

more than & connections to F'.

Otherwise we could find distinct vertices x1, x2, x3 € V(F'), such that (F;, z;) € C
for every i € [3]. This is because every bipartite graph with nine edges and partition
classes of size 3 and 4 contains a matching of size 3. Moving each z; to F; and
thereby eliminating F' would increase the weight of T, since 3(w3 — wg) — wy = 1.
Thus, we get a contradiction to the maximality of 7.

Finally, by estimating the number of connections created by Fi, Fy, F3 we obtain

3 «
3(1 +§)t< 305 + 80, .

Since (3 < 3 and ¢4 < |t/4], we have

9 3
- 4+ = < 4
<4+2a>t 9+ 8|t/4],

which contradicts ¢ > 36.
Case 2. 05 <2
We have deleted /7t vertices from G to obtain the graph G’, another /7t

vertices can be missed by the tiling 7, and at most 2/, + 3¢5 < 13 vertices
of V(T) are not covered by K. f’) subgraphs. Therefore it is possible to delete at
most 24/7t + 13 vertices and find a K ig)—factor afterwards. ]
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3.5.2 Hypergraph regularity method

We denote by K(X,Y') the complete bipartite graph with vertex partition X v Y.
For a bipartite graph P = (X v Y, E) we say it is (02, ds)-quasirandom if

|e(X7,Y") — dao X'|IY7|| < 02/ X|[Y]

holds for all subsets X’ € X and Y’ < Y, where e(X’,Y’) denotes the num-
ber of edges in P with one vertex in X’ and one in Y’. Given a k-partite
graph P = (X7 v... v Xy, F) with k > 2 we say P is (d2, d2)-quasirandom, if all
naturally induced bipartite subgraphs P[X;, X;] are (02, d2)-quasirandom. More-
over, for a tripartite graph P = (X wY v Z, F) we denote by

Ks(P) = {{x,y,z} cXuYuZ: my,wz,yzeE}

the triples of vertices in P spanning a triangle. For a (02, do)-quasirandom tripartite

graph P = (X wY v Z, E) the so-called triangle counting lemma implies that
&y XY Z] = 30| X[|Y]|Z] < |Ks(P)| < do| X[|Y]|Z] + 30| X[|Y]|Z] . (3.25)

Definition 52. Given a 3-uniform hypergraph H = (V, Ey) and a tripartite
graph P = (X wY v Z,E) with X VY v Z <V we say H is (03, d3)-quasirandom
with respect to P if for every tripartite subgraph () < P we have

|En n Ks(Q)] — ds|K3(Q)]] < d5K5(P)] .

Furthermore, we say H is d3-quasirandom with respect to P, if it is (93, ds3)-

quasirandom for some d3 = 0.

We define the relative density of H with respect to P by

where d(H|P) = 0 if K3(P) = @.
A refined version of the regularity lemma (see [73, Theorem 2.3]) states the

following.

Lemma 53 (Regularity Lemma). For every d3 > 0, every d: N — (0,1],
and every ty € N there exists an integer Ty such that for every n > ty and

every n-vertex 3-uniform hypergraph H = (V, Ey) the following holds.
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There are integers t and ¢ with to <t < Ty and ¢ < Ty and there exists a vertex

partition Vo w Vi w ... wV; =V and for all 1 <1 < j <t there exists a partition
PY =P =(ViwV;,EY): 1<a </}

of the edge set of the complete bipartite graph K(V;,V;) satisfying the following

properties
(1) |Vo| < d3n and |V4| = ... = |V,

(2) for every 1 <i < j <t and a € [{] the bipartite graph P/ is (65((),1/()-

quasirandom, and

(3) H is d3-quasirandom w.r.t P2 for all but at most d3t3¢3 tripartite graphs

aﬁv

P =PI w P o PP = (Viw Vi w Vi, BY v B w BI¥),

afy

with 1 <i<j<k<tanda,/fB,vell.

The tripartite graphs P'7%

w3, Abpearing in (3) are usually called triads. Furthermore

we will use the following version of the embedding lemma from [60].

Lemma 54. For every p € N and &,d3 > 0 there exist 63 > 0 and func-
tions d2: N — (0,1), N: N — N such that the following holds.

Let ¢ € N and let G = U1<i<j<p GY be a p-partite graph with vertex parti-
tion Viw...uV,, where |Vi| = ... = |V, = n = N({), such that
each G = G|V;,V;] is (02(€), 1/0)-quasirandom. Moreover, let H be a 3-uniform
hypergraph  that is (03, dix)-quasirandom — with respect to Gk for
alll < i < j <k < p, where G7% = G[V,,V;,Vi] and diji, = ds. Then the
number |IC,(H)| of complete, 3-uniform hypergraphs on p vertices in H with one

vertex from each V; satisfies

1, (H)| = (1 — €)ds 8 (1/0)3)

3.5.3 Squared paths in quasirandom tetrads

The Embedding Lemma 54 can be utilised to find a squared path in appropri-

ate 4-partite environments.

Lemma 55. Given Q € N and d3 > 0, there exist 63 > 0, and
functions 62: N — (0,1] and N: N — N, such that that the following holds
for every £ € N.
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Let P = (Vi w Vo w V3w Vy, Ep) be a 4-partite graph with |Vi| = ... = |V4| =n
and n = N({) such that PY = (V; w V;, EY) is (02(€), 1/€)-quasirandom for ev-
ery pair ij € [4](2). Suppose H is a 4-partite, 3-uniform hypergraph with ver-
tex classes Vi, ..., Vy, which satisfies for every ijk € [4]® that H is (83, dix)-
quasirandom w.r.t. the tripartite graphs P9% = P P* o Pi* for some d;j = ds.

Then there exists a squared path with () vertices in H.

Proof. Forp = @, { = 1/2 and the current ds let 3 > 0 and functions dy: N — (0, 1),
N: N — N be given by Lemma 54. Moreover, let W1, ..., Wy be disjoint vertex
sets of size n. Choose for every j € [Q] and i € [4] with i = j (mod 4) a bijective
function ¢, : V; — W;. We copy Ep and E(H) onto Wi w...w Wy in the following

way.

o If for 1 < i < j < @ the integers i, 5" € [4] satisfying i = ¢ (mod 4)
and j = j' (mod 4) are distinct, let Eé{, be the bipartite graph on W; w W;
defined by

vy € BT = ¢i(x)¢;(y) € By,

for all z € V;y and y € V.

o If for 1 < i < j < k < @Q the integers ¢,j k' € [4] satisfy-
ingi =14 (mod 4),j=j (mod4),and k =k (mod 4) are distinct, let H"
be the tripartite hypergraph on W; v W; v W;, defined by

vyz € B(H) < ¢i(z);(y)pi(z) € Hi*
forall zeVy ,yeVy, and z € V.

For technical reasons we also need to specify bipartite graphs E;{/ for dis-
tinct 7,5 € [@] that are congruent modulo 4 in order to make Lemma 54 appli-
cable. The precise choice of these graphs is immaterial in the following and
we just take arbitrary (d9(¢), 1/¢)-quasirandom bipartite graphs. E.g., we could
declare all theses graphs to be isomorphic to P'2. Similarly, we need to de-
fine 3-partite hypergraphs Hg/k for distinct 4, j, k € [Q] at least two of which are
congruent modulo 4. This time we may just take the complete 3-partite hyper-
graphs between W;, W;, Wy, which are certainly (d3, 1)-quasirandom with respect
to (W; w W, w Wy, Bif, w Ei v E).
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By Lemma 54 applied to Gw = (Wi w...wWq, Ew), where Ey = U1<z‘<j<Q E;{,
and the hypergraph Hw = |, ;_;1<0 H{IF we find at least (1/2)nQ(1/£)((22)d§?)
squared paths vy ...vg in Hy with v; € W; for every i € [Q)]. Notice that every
squared such path in Hy, corresponds to a squared walk in H via the inverses of
the maps ;. It may happen that vertices get identified under this correspondence

and therefore there might be squared paths in Hy not yielding squared paths

Q

2)nQ_l is a straightforward upper bound on the number of times

in H. However (
this can occur and since for n sufficiently large we have

;nQ(l/f)(g)d;g?) > (g) nQ*l,

we find at least one squared path in H. O

Lemma 56. Given Q € N with Q = 0 (mod 4), d3 > 0, and v > 0. There
exist 03 > 0, 69: N — (0,1), and N: N — N, such that the following holds for
every { € N. Let P = (V; w Vo w V3w Vi, Ep) be a 4-partite graph
with [Vi| = ... = V4| = n = N({) and let PY = (V; v V;, E¥) be (85((),1/0)-
quasirandom for every ij € [4]®. Suppose that H is a 3-uniform hypergraph, which
satisfies for every ijk € [4]®) that H is (s, d;jk)-quasirandom with respect to the
tripartite graph P9% = P P*« PI* for some d;j, = ds. Then all but at most vn
vertices of V1 w ... w Vy can be covered by verter-disjoint squared paths with )

vertices each.

Proof. Let 65 > 0, 05: N — (0,1], N*: N — N be the number and functions
obtained by applying Lemma 55 to ) and dsz/2. Define

(0?2 )7 N(€)=[4N*<€)w

_ (5§V3
N 16’ 1443 v

03 128

, 02(¢) = min (

for each £ € N. Let P = (V} w Vo w V3w V), Ep) and H be as described above for
some ¢ € N. Consider a maximal collection S, ..., S, of vertex-disjoint squared
paths on @ vertices in H. For ¢ € [4] let V/ < V; denote the set of vertices not
belonging to any of these paths. Due to 4 | @ the sets V{, ..., V] have the same size,
say n*. If n* < vn/4 we are done, so assume from now on that n* > vn/4. Then

our choice of d,(¢) implies that the bipartite graphs PY[V/ v V/] are (65*(¢),1/()-

1
963

tion to the maximality of m provided we can show that H is (03, d;;x)-quasirandom

quasirandom, where 65*(¢) = min(d5(¢), 75). So by Lemma 55 we get a contradic-
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w.r.t. the subtriads P/* of PY* induced by V/ u V] U V). This is indeed the case,

since the triangle counting lemma yields that

K5 (P2)] < [V3|[Val| V3| (1/6° + 362(¢))

n*zvn/d 2|V || V3| V3]
< R (10 4 36,(0))

_ 64 Ks(PIVY, VL, VD) - (/€% + 362(0))

v (1/¢3 = 365™(0))
Ks(P*)
ie.,
33| (P*)| < 05 1KC5(P*)],
and the same argument applies to every other triple 77k € [4](3). [

3.5.4 Vertex-disjoint squared paths with () vertices

Next we restate and prove Theorem 25.

Theorem 57. Given a, > 0 and Q) € N there exists ng € N such that in every
hypergraph H with v(H) = n = ng and §2(H) = (3/4 + a)n all but at most un

vertices of H can be covered by vertex-disjoint squared paths with () vertices.

Proof. As we could replace () by 4@ if necessary we may suppose that () is a multi-
ple of 4. Pick sufficiently small d3,v,7 < «a,p and let 5 > 0, do: N — (0,1),
N: N — N be the number and functions obtained by applying Lemma 56
to @, v, and d3. W.l.o.g. 3, 02(:) are sufficiently small, such that 03 « «,7,
and 09(¢) « o, {71, 7. For t, sufficiently large we can use Lemma 53 with 43, do, to
and get an integer T. Finally we let ng be sufficiently large.

Now let H be a 3-uniform hypergraph with v(H) = n > ng and &(H) = (3 +a)n.
Due to Lemma 53 there exists a vertex partition Vo w V4 w... vV, =V and pair
partitions

P = (P9 =(V;uV;,E9): 1 <a</l)

of the complete bipartite graphs K(V;,V;) for 1 < i < j <t satisfying (1)-(3).
We call a triad P;JB]; dense if d(H]P;Jﬁ]fy) > a/10. For every pair i,j, € [t]®
Vi, and Py**

and every A € [(] we denote the set of dense triads involving V;,, Vj,,

)
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Claim 58. For every i.j € [t]® we have |Dy(ix, ji)| = (3 + £)%t.

Proof. Notice that Lemma 53(1) yields

< Vil <
; Vil

(3.26)

3

for every k € [t]. Appealing to the (d5(¢), 1/¢)-quasirandomness of Py** we infer

B > (5= 800)) ValVid]

> (L nio) (7B

t
Together with the lower bound on do(H) and |Vy| < d3n it follows that

G-50) (U Cra s Y e sul G2)

t i
SCyEE)\*j*

On the other hand we can derive an upper bound on the right side by counting
the edges in each triad using Ei*j * separately. Due to the triangle counting lemma

and (3.26) each such triad contains at most

(5 +38:0) (3)

triangles. Therefore we have

n

S NGy ol < 2 (0 (5 +300) + 1D gl (5) (5 +35:00)
zyeBF*

Combined with (3.27) this leads because of §3 « o and d, « /3 to
D (i, 35)| = (3/4 + a/2) (%t O

For every f: [t]* — [¢] we define a hypergraph J; on the vertex set [¢] such that
a 3-element set {7, j, k} is an edge of Jy if the triad P}{fj)f(ik)f(jk) is dense and H
is d3-quasirandom w.r.t. this triad.
Claim 59. There is f: [t]® — [¢] such that all but at most Tt pairs ij € [t]®

have at least pair-degree (% + )t in Jy.

Proof. Let Dy be the hypergraph on [t] whose edges are the triples ijk such that
the triad P}](fj) £k (k) 18 dense, and let Ry be the hypergraph consisting of all
sets {i, 7, k} such that H is d3-quasirandom with respect to the triad P}‘ij)f(ik)f(jk).
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Clearly, Js = Dy n Ry. We will show that if we choose f uniformly at random,
then with positive probability E(R;) < 203t* and d2(D;) > (3/4 + «/4)t hold.

The expected value of the number of missing edges in Ry is

since by Lemma 53(3) there are at most d3t3(3 irregular triads. Thus, due to

Markov’s inequality
P(E(R;) > 205t%) < ot _ 1 (3.28)
d T 063 T 2 '

Now fix a pair i,J, € [t]®. Estimating the expected value of dp, (ix, jx), we get
for every A € [/] that

E(de(i*,j*)|f(i*,j*) = )‘)
1 .
= ﬁ de (44, J+)
2 p 02 [ )=

DAl Ji)|
- 62 .

By Claim 58 it follows that
E(dp, (ix, ju)|f (ix, ) = A) = (3/4+ a/2)t .

Moreover, for f: [t]* — [€] with f(iy,js) = X the value of dp, (i, j«) is completely
determined by the 2(¢ — 2) numbers f(i,7) with |{7, 7} N {ix, js}| = 1 and if one
changes one of these 2(¢ — 2) values of f, then dp, (i, j«) can change by at most 1.
Thus, the Azuma-Hoeffding inequality (see, e.g., [39, Corollary 2.27]) leads to

Q(at/4)2> '

P(dp, (is, js) < (3/4+ /)| f(is, js) = A) < exp ( T2 -2)

Therefore,
P(dp, (ix, jx) < (3/4+ /A)t| fix, ju) = ) < €™
for each A € [¢] and hence

P(dp, (is, ) < (3/4 + a/4)t) < e 90, (3.29)

Therefore the probability that some pair has a pair-degree less than (3/4 + a/4)t is
less than t2/e® | which proves that with probability greater then 1/2 the minimum
pair-degree of Dy is at least (3/4 + a/4)t. Together with (3.28) this shows that
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the probability that a function f fulfills F(R;) < 285t* and do(Dy) = (3/4 + a/4)t
is greater than zero.

From now on let f: [t]* — [¢] be a fixed function having these two properties.
Notice that D; n Ry arise from D; by deleting at most 203¢> edges. We can
estimate the number 7t? of pairs, which have afterwards a pair-degree smaller
than (3/4 + «/8)t, by

Tt?at/8 < 655t .

Thus 7 < % and by our choice of d3 « «, 7 it follows that 7 < 7. In other words,
there are indeed at most 7t2 pairs ij € [t]®) whose pair-degree in .J ¢ is smaller

than (2 + 2)t. O

From now on we will denote the bipartite graph P}j(l j simply by P, where f

is the function obtained in Claim 59. Due to Claim 59 we can apply Lemma 51

to J; with o/ = /8 instead of o and find a K (%) _factor missing at most 2/7t + 13

vertices with 7 « /. Since @ = 0 (mod 4), we can apply Lemma 56 to the

“tetrads” corresponding to these K 4(13) in the reduced hypergraph. Therefore all but
at most

Z(Zﬁt+13)+i-u-?+5gn<un

vertices can be covered by vertex-disjoint squared paths with () vertices. [

3.5.5 Almost squared cycle

Finally we establish Proposition 26 by connecting the absorbing path and a
collection of many long squared paths provided by the foregoing theorem, which

yields an almost spanning squared cycle.

Proposition 60. Given a > 0, let ¥, > 0, M € N be the constants from the
connecting lemma and let Py be an absorbing squared path. There exists ng € N
such that in every hypergraph H with v(H) = n = ng and 62(H) = (4/5 + a)n all
but at most 292n wvertices of H can be covered by a squared cycle and Py is an

induced subhypergraph of this cycle.

Proof. Applying Theorem 57 to the hypergraph H \ (P4 U R), where R is the
reservoir set, with o/ = /2 instead of a, with some Q > 2Mv,* divisible by 4,

and pu = ¥2. We get less than n/Q squared paths with @ vertices and miss at
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most pn vertices. We will connect these paths and the absorbing path P4 to a
squared cycle by using Lemma 46, which is applicable each time,
since M(g + 1) < dyn for @ = 2M9,* and n sufficiently large. Therefore
we just used vertices of the reservoir set. Because y < 92 and |R| < 9¥%n we miss

at most un + |R| < 292n vertices. O
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4 Powers of tight Hamilton cycles in

randomly perturbed hypergraphs

In this chapter we will prove the following result.

Theorem 61 (Main result). For all integers k =2 and r = 1 such that k+r >4
and o > 0, there is € > 0 such that the following holds. Suppose H is a k-graph

5o 1 (H) > (1— (k;::?)1+a>n (@1)

_o\—1
k+r 2) —e

and p = p(n) = n~ (i

on n vertices with

Then a.a.s. the union H 0 G®¥)(n,p) contains

the r' power of a tight Hamiltonian cycle.

This chapter is organized as follows. In Section 4.1 we prove some results
concerning random hypergraphs. Section 4.2 contains two essential lemmas in our
approach, namely, Lemma 65 (Connecting Lemma) and Lemma 66 (Absorbing
Lemma). In Section 4.3 we prove our main result, Theorem 61. Some remarks
concerning the hypotheses in Theorem 61 are given in Section 4.4. Throughout

this chapter, we omit floor and ceiling functions.

4.1 Subgraphs of random hypergraphs

In this section we prove some results related to binomial random k-graphs. We will
apply Chebyshev’s inequality and Janson’s inequality to prove some concentration
results that we shall need. For convenience, we state these two inequalities in the
form we need (inequalities (4.2) and (4.3) below follow, respectively, from Janson’s
and Chebyshev’s inequalities; see, e.g., [39, Theorem 2.14, Equation (1.2)]).

We first recall Janson’s inequality. Let I' be a finite set and let I', be a random

subset of I" such that each element of I' is included in I', independently with
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probability p. Let S be a family of non-empty subsets of I' and for each S € S,
let Is be the indicator random variable for the event S < I',. Thus each Ig
is a Bernoulli random variable Be(pll). Let X := Y sIs and A = E(X).
Let Ax := > 7.5 E(IsI7), where the sum is over all ordered pairs S, T € S (note
that the sum includes the pairs (S,.5) with S € §). Then Janson’s inequality says
that, for any 0 <t < A,

t2
PX <A—-1)< — . 4.2
(x<a-0 <o (55 ) (4.2
Next note that Var(X) = E(X?) —E(X)? < Ax. Then, by Chebyshev’s inequality,
P(X > 23) < V) _ Ax (4.3)

A2 A2

Consider the random k-graph G®)(n,p) on an n-vertex set V. Note that we
can view G®(n,p) as [, with T = (Z) For two k-graphs G and H, let G n H
(or G U H) denote the k-graph with vertex set V(G) n V(H) (or V(G) u V(H))
and edge set E(G) n E(H) (or E(G) v E(H)). Finally, let

Gp = Pp(n,p) = min{n"p : H < F and ey > 0}.
The following simple proposition is useful.

Proposition 62. Let F be a k-graph with s wvertices and f edges and
let G :=GW(n,p). Let A be a family of ordered s-subsets of V. = V(G). For
each A € A, let 14 be the indicator random variable of the event that A spans a
labelled copy of F'in G. Let X =%, ,1a. Then Ax < 1225025 p2 D,

Proof. Order the vertices of F arbitrarily. For each ordered s-subset A of V', let a4
be the bijection from V(F) to A following the orders of V(F') and A. Let F4 be
the labelled copy of F' spanned on A. For any T' < V(F') with ep(T) > 0, denote
by Wr the set of all pairs A, B € A such that An B = a4(T). If T has s’ vertices
and F[T] has f’ edges, then for every {A, B} € Wy, Fa U Fp has exactly 2s — ¢
vertices and at least 2f — f’ edges. Therefore, we can bound Ax by
Ax < Z (W |p* =1
TSV (F)

Given integers n and b, let (n), :=n(n—1)(n—2)---(n—b+ 1) =n!l/(n —b)..
Note that there are at most (252,) choices for the vertex set of F)y U F'g, and there
are at most

(25 — §')s - <S/)s! < (25— §')1s12°

S
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ways to label each (2s — s)-set to get {A, B}. Thus we have |[Wr| < s!2°n%*~% and

Ax < )y szl < Y sl /0p < s12np f0p,
TV (F) TSV (F)

because there are at most 2% choices for 7. OJ

The following lemma gives the properties of G*)(n, p) that we will use. Through-
out the rest of the paper, we write & € f « v to mean that ‘we can choose the
positive constants «, 8 and ~ from right to left’. More precisely, there are func-
tions f and g such that, given 7, whenever 5 < f(v) and o < g(8), the subsequent

statement holds. Hierarchies of other lengths are defined similarly.

Lemma 63. Let F be a labelled k-graph with b wvertices and a edges.
Suppose 1/n « 1/C < v,1/a,1/b,1/s. Let V be an n-vertez set, and let Fy,...,F;
be t < n® families of yn® ordered b-sets on V. If p = p(n) is such
that ®p(n,p) = Cn, then the following properties hold for the binomial
random k-graph G = G®(n,p) on V.

(i) With probability at least 1 —exp(—n), every induced subgraph of G' of order yn

contains a copy of F.

(ii) With probability at least 1 — exp(—n), for every i € [t], there are at
least (v/2)n’p® ordered b-sets in F; that span labelled copies of .

iii) With probability at least 1 — 1/+/n, there are at most 2n°p® ordered b-sets o
Y
vertices of G that span labelled copies of F.

(v) With probability at least 1 — 1/y/n, the number of overlapping (i.e., not

vertex-disjoint) pairs of copies of F in G is at most 4b*>n?~1p?e.

Proof. Let A be a family of ordered b-sets of vertices in V. For each A € A, let 14
be the indicator random variable of the event that A spans a labelled copy of F
in G. Let X4 = >, 4 1a. From the hypothesis that ®» > C'n and Proposition 62,

we have
Ax < b12%n®p* /0 p < b12%n*p* /(Cn). (4.4)

Furthermore, let S consist of the edge sets of the labelled copies of F' spanned on A
in the complete k-graph on V for all A € A. Since we can write X4 = > ¢ /s,
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where Ig is the indicator variable for the event S < E(G), we can apply (4.2)
to X 4.

For (7), fix a vertex set W of G with |[W| = yn. Let A be the family of all
labelled b-sets in W. Let X 4 be the random variable that counts the number of
members of A that span a labelled copy of F' and thus E[X 4] = (yn)yp®. By (4.4)
and (4.2) and the fact that 1/C « v,1/b, we have P(X4 = 0) < exp(—2n). By
the union bound, the probability that there exists a vertex set W of size yn such
that X4 = 0 is at most 2" exp(—2n) < exp(—n), which proves (7).

For (i), fix i € [t] and let Xz be the random variable that counts the
members of F; that span F. Note that E[Xz]| = yn’p®. Thus (4.2) implies
that P(Xz < (7/2)n’p?) < exp(—2n). By the union bound and the fact
that n®exp(—2n) < exp(—n), we see that (i) holds.

For (ii7), let X3 be the random variable that counts the number of labelled
copies of I in G. Since E(X3) = (n)yp®, by (4.4) and (4.3), we obtain

Ay b12%n2bp2a/(Cn) 1
P(X5 = 2p"n®) < P(X5 > 2E[X;]) < 5L < —.
( 3 p ) ( 3 [ 3]) E[X3]2 ((n)bpa)2 \/ﬁ

For (iv), let Y be the random variable that denotes the number of overlapping

pairs of copies of F'in G. We first estimate E[Y]. We write Y = >, 5[4, where Q

is the collection of the edge sets of overlapping pairs of labelled copies of F' in the
complete k-graph on n vertices. Note that if two overlapping copies of F' do not
share any edge, then they induce at most 20 — 1 vertices and exactly 2a edges.

Note that for 1 < i < b, there are

(5 )= ()0t = s () 00 < (002

members of @ whose two copies of F' share exactly ¢ vertices. Thus, the number of
choices for the vertex sets of pairs of copies which induce at most 2b — 2 vertices is

at most Y, (n)2y—i(b); < n*~'. By the definition of Ay, and (4.4) we have
n2b—1b2p2a/2 < E[Y] < (n)2b_1b2 . p2a + n?b—l . p2a + AXg < 2b2n2b—1p2a'

We next compute Ay. For each A € Q, let Sy denote the k-graph induced
by A (thus S4 is the union of two overlapping copies of F). For each A, B € Q,
write Sy := Fy; U Fy and Sp := F3 U Fy, where each F; is a copy of F for i € [4]
such that E(Fy) n E(F3) # @. Define Hy := Fy n Fy, Hy := (F} U Fy) n F3
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and Hy := (Fy U Fy U F3) n Fy. Since V(Fy) nV(Fy) # @, V(F3) n V(Fy) # 9,
and E(Fy) n E(F3) # @, we know that vy, > 1 for i = 1,2,3. We claim
that n"#ip®#i > n for ¢+ = 1,2,3. Indeed, since each H; is a subgraph of F|
if ey, = 1, then n"#ip°¥ > ®p > Cn; otherwise ey, = 0 and then we

have nV#ip®Hi = n#i > n' = n. So we have
an1peH1 . n”H2p€H2 .anSpeHS > n3, (45)

Now we define Ay, w1, = X4 g E[Lalp], where the sum is over the pairs {A, B}
with A n B # & that generate Hq, Hy, H3. Observe that the sum contains at most

n
4b — v — — 4 < n4b—(vH1+vH2+vH3) 4b 3b
(4 oy ) (801 = 0y ) ()

terms. Thus, from (4.5), we obtain
At = 3 BLLATs] < (40) o oo pio—tem )
AB
< (4b)3bn4b73p4a.
Let D = D(b, k,r) be the number of choices for Hy, Hy, Hs, thus

3b,,4b—3, 4a
Ay = Z AH17H27H3 < D(4b) n P .
Hy,Hz,H3

Therefore, by (4.3) and the fact that n is large enough, we get

_ Ay D(4b)3nib=3pia 1
P(Y > 40*n? p**) < P(Y = 2E[Y]) < < < —.
( n p ) ( [ ]> E[YP (n2b—1p2a/2)2 \/ﬁ

This verifies (iv). O

For m > k +r — 1, denote by P®" the r'' power of a k-uniform tight path on m
vertices. Similarly, write C*" for the r*® power of a k-uniform tight cycle on m
vertices. For simplicity we say that PX" is an (7, k)-path and C%" is an (r, k)-cycle.
We write P for P%" whenever k is clear from the context. Moreover, the ends
of P! are its first and last k& +r — 1 vertices (with the order in the (r, k)-path). We

ktr—2

-1
end this section by computing ®pr for p = p(n) > n~("¢1°) =% as in Theorem 61.

Forb=k+r—1, let

g(b) := (b— (k — 1><’Z+T— 1)) (k;;iIz)
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Clearly g is an increasing function. Note that the number of edges in P%" is given

by
B = <k+z:_1) +(m—(k+r-1) (k}::g)

B (m_(k k+r—1 ) (k+r—2) _ gl

Proposition 64. Suppose k > >1,b=2k+r—1,k+r >4 and C>0.
Let € be such that 0 < ¢ < mm{ 2g LMY }
r—2 1
Suppose 1/n « 1/C, 1/k, 1/r, 1/b. pr p(n) = n-(U7%) ¢, then ®pr = Cn.

Proof. Let H be a subgraph of P;. Since for any integer k +r — 1 <V < b, any

subgraph of P}, has at most g(b") edges, we have the following observations.
(a) If ey > g(V') for some O’ = k +r — 1, then vy >V + 1;
(b) ifeH>(k)forsomek:—1 i <k+r—1thenvg =i+ 1.

By (a), we have
min n’"p® =  min min n’HpH
g(k+r—1)<eg<g(b) k+r—1<b/<b \ g(b')<em<g(b'+1)

. / /
> min nb +1, g(b +1)'
k4+r—1<b/<b

k+7‘—2)

Since p > A ~°, and g(b' + 1) > 0, the following holds for any b < b:

nb’+1pg(b’+1) S p¥+1 ( —1/(577?) - 6)g(b’ﬂ)

_ n—g(b’-}-1)6n(k—1)(k+7‘—1)/k: > n—g(b)en(k—l)(k+r—1)/k > C’I’L,

where we used (k — 1)(k +7r —1)/k = 3/2 and g(b)e < 1/2. Therefore,

VHpH > () 4.6
PR S L . (4.6)

On the other hand, noting that g(k +r — 1) = (**77"), by (b) we have

min n"HpH = min n"HpH
O<eg<g(k+r—1) k— 1<z<k:+r 1 <e < z+1

z+1
min 2+1

k I<i<k+r-—1
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Since p = n_1/<kz:2)_€, and (”1)5 <1/Bforany k—1<i<k+r—2/ifi> 2,

k
then
ni+1p(i:l) > ni+1n7(1/(k2112)+8)%(kil) > ni+17%7(i21)5 > Chn.

Otherwise i = 1 and thus k = 2, in which case we have n'*! (%) = n*p = Cn.

Therefore,
I YHpt > Cn. 4.7
0<€H$%E+T—l)n p " ( )
From (4.6) and (4.7), we have ®pr > Cn, as desired. O

4.2 The Connecting and Absorbing Lemmas

For brevity, throughout the rest of this paper, we write

k+r—2\""
E—1 '

h:=k+r—1, t:=g(2h), c::(

Recall that the ends of an (r, k)-path are ordered h-sets that span a copy of K ,(lk)
in H.

4.2.1 The Connecting Lemma

Given a k-graph H and two ordered h-sets of vertices A and B each spanning a
copy of K ,(lk) in H, we say that an ordered 2h-set of vertices C' connects A and B
it CnA=Cn B =@ and the concatenation ACB spans a labelled copy of Pj,.

We are now ready to state our connecting lemma.

Lemma 65 (Connecting Lemma). Suppose 1/n « ¢ « § < o « 1/k,1/r. Let H be
an n-vertex k-graph with d,_1(H) = (1 — ¢ + /) n and suppose p = p(n) = n"°"=.
Then a.a.s. H U G®(n,p) contains a set C of vertex-disjoint copies of Py,
with |C| < n such that, for every pair of disjoint ordered h-sets spanning a copy
of K}(Lk) in H, there are at least 3°n/(2h)* ordered copies of Py, in C that connect

them.

Proof. Let § be the set of pairs of disjoint ordered h-sets that each span a copy
of K in H. Fix {S,5} € S and write S := (vy,...,v) and S := (wy, ..., wy).
Since 0;_1(H) = (1 —c+a')n, we can extend S to an (r,k)-path with ver-

tices (v1,...,vs) such that the vertices of this (r, k)-path are disjoint
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with {wp,...,w;} and there are at least (a/n/2)" choices for the ordered
set (Upg1,...,02,). Similarly, we can extend S’ to an (7, k)-path (wap, ..., w;)
such that the vertices of this (r, k)-path are disjoint with {vy,...,ve,} and there
are at least (a’n/2)" choices for the ordered set (wap, ..., whyi1).

Therefore there are at least (a/n/2)** > 248n*' possible choices for the
ordered 2h-sets (Upt1,.-.,U2n, Wap, ..., Whe1). Let Cgs be a collection of ex-
actly 243n?" such ordered 2h-sets of vertices. Clearly if an ordered set C' in Cgg
spans a copy of Pj,, then C' connects S and §’.

Now we will use the edges of G = G¥)(n, p) to obtain the desired copies of Pj,
that connect the pairs in S. Let T be the set of all labelled copies of P, in G.
We claim that the following properties hold with probability at least 1 — 3/4/n:

(a) |T] < 2p'n?;

(b) for every {S, S’} € S, at least 128p'n*" members of T connect S and S';

(¢) the number of overlapping pairs of members of T is at most 4(2h)%p*nh=1.

To see that the claim above holds, note that by Proposition 64, we can apply
Lemma 63 with F' = Pj,, v = 245 and Cg ¢ in place of F;. Items (a), (b) and (c)
follow, respectively, from Lemma 63 (7 ), (i7) and (iv).

Next we select a random collection C’ by including each member of 7 in-
dependently with probability ¢ := £/(2(2h)*n?"~1p!). We remark that ¢ < 1,

since n?h—1pt

> C due to Proposition 64. By using Chernoff’s inequality (for (i)
and (ii) below) and Markov’s inequality (for (iii) below), we know that there is a

choice of C’ that satisfies the following properties:
(i) [C'] < 2q|T] < Bn;

(i) for every {S, S’} € S, there are at least 123(q/2)n?"p' = 33?n/(2h)? members
of C’ that connect S and S’;

iii) the number of overlappin airs of members of (€' is at
(iii) pping p

most 8(2h)%2¢?n*—1p? = 23%n/(2h)2.

Deleting one member from each overlapping pair, we obtain a collection C of vertex
disjoint copies of P}, with |C| < fn, and such that, for every pair of disjoint or-
dered  h-sets each spanning a K ,Sk) in H, there are at
least 33%n/(2h)*—23%n/(2h)* = 3°n/(2h)* sets of 2h vertices connecting them. [
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4.2.2 The Absorbing Lemma

In this subsection we prove our absorbing lemma.

Lemma 66 (Absorbing Lemma). Suppose 1/n « ¢ « ( « o < 1/k,1/r. Let H be
an n-vertex k-graph with 6y_1(H) = (1 — ¢+ «) n and suppose p = p(n) = n=°"=.
Then a.a.s. H 0 G®(n,p) contains an (r,k)-path Pys of order at most 6h(n
such that, for every set X < V(H) \ V(Pas) with |X| < (*n/(2h)?, there is

an (r, k)-path in H on V(Pays) U X that has the same ends as Pys.

We call the (r, k)-path P, in Lemma 66 an absorbing path. We now define

absorbers.

Definition 67. Let v be a wvertexr of a k-graph. An ordered 2h-set of
vertices (wy, . .., way) is a v-absorber if (wy, ..., wsp) spans a labelled copy of Py,

and (wy, ..., Wy, V, Why1, ..., W) spans a labelled copy of Py .

Proof of Lemma 66. Suppose 1/n « ¢ « ( « § « a < 1/k, 1/r. We split the proof
into two parts. We first find a set F of absorbers and then connect them to an (r, k)-
path by using Lemma 65 (Connecting Lemma). We will expose G = G (n, p)
in two rounds: G' = G U Gy with G; and G independent copies of G*)(n, p'),
where (1 —p)2=1—p.

Fix a vertex v. By the codegree condition of H, we can extend v to a labelled
copy of Py, in the form (ws,...,wn, v, Why1, ..., we,) such that there are at
least (an/2)** = 24¢(n*" choices for the ordered 2h-set (wy, ..., woy). Let A, be
a collection of exactly 24¢n?" such ordered 2h-sets. By definition, if an ordered
set A in A, spans a labelled copy of Py, then A is a v-absorber.

Now consider G; = G®™(n,p’) and let T be the set of all labelled copies of Py,
in G;. By Proposition 64, we can apply Lemma 63 with /' = Pj, and A, in place
of F;. Using the union bound we conclude that the following properties hold with
probability at least 1 — 3/4/n:

(a) |T] < 2p'n;

2h

(b) for every vertex v in H, at least 12{p'n*" members of T are v-absorbers;

(c) the number of overlapping pairs of members of T is at most 4(2h)?p?nih=1,
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Next we select a random collection F’ by including each member of 7 indepen-
dently with probability ¢ = (/(2(2h)?p'n?"~1) < 1. In view of the properties above,
by using Chernoff’s inequality (for (i) and (ii) below) and Markov’s inequality
(for (iii) below), we know that there is a choice of F’ that satisfies the following

properties:
(i) [F<¢n

(ii) for every vertex v, at least 12¢(q/2)p'n*" = 3¢(?n/(2h)?* members of F’

are v-absorbers;

(iii) there are at most 8(2h)?¢*n*"~1p?* = 2¢*n/(2h)? overlapping pairs of mem-
bers of F'.

By deleting from F’' one member from each overlapping pair and all members
that are not in 7, we obtain a collection F of vertex-disjoint copies of Pj,

such that |F| < (n, and for every vertex v, there are at least

3¢%n/(2h)* — 2C%n/(2h)* = ¢*n/(2h)*

v-absorbers.

Now we connect these absorbers using Lemma 65. Let V' = V(H) \ V(F)
and n' = |V’|. In particular, n’ = n/2 is sufficiently large. Now consider H' = H[V"]
and G' = Go[V'] = G@ )(n ,p').  Since |V(F)| < 2h-(n < a’n, we
have 0,1 (H') = (1 — ¢ + a/2) n. We apply Lemma 65 to H' and G’ with o = /2
and (3, and conclude that a.a.s. H' U G’ contains a set C of vertex-disjoint copies
of Pj, such that |C| < fn and for every pair of ordered h-sets in V', there are at
least 3%n members of C connecting them.

For each copy of Py, in F, we greedily extend its two ends by h vertices
such that all new paths are pairwise vertex disjoint and also vertex disjoint
from V(C). This is possible because of the codegree condition of Hy and the
fact that |V (F)| + 2h|F| + |V(C)| < 2h{n + 2h¢n + 2h - fn < an/4. Note that
both ends of these (r,k)-paths Pj, are in V' \ V(C). Since (n < (3*n//(2h)?,
we can greedily connect these Pj,. Let P, be the resulting (r, k)-path. By
construction, |V (Paps)| < (4h+2h)-(n = 6h{n. Moreover, for any X < V\V(P,ps)
such that | X| < ¢?n/(2h)?, since each vertex v has at least (*n/(2h)? v-absorbers
in F, we can absorb them greedily and conclude that there is an (r, k)-path
on V(P.ps) U X that has the same ends as Pyys. O
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4.3 Proof of Theorem 61

We now combine Lemmas 65 and 66 to prove Theorem 61.

Proof of Theorem 61. Suppose 1/n « ¢ « f « ( « «,1/k,1/r. Furthermore,
recall that ¢ := (k;':2)_1 and suppose that H U G® (n, p) is an n-vertex k-graph
with &, _1(H) = (1 —c+ a)nand p = p(n) = n~°"=. We will expose G := G*)(n, p)
in three rounds: G = G7 U G5 U G3 with Gy, G5 and (3 three independent copies
of G®(n,p'), where (1 —p')> = 1 — p. Note that p’ > p/3 > n=°"%,

By Lemma 66 with 2¢ in place of ¢, a.a.s. the k-graph H UG contains an absorb-
ing (r, k)-path P,ps of order at most 6h¢n, that is, for every set X € V/(H) \ V(Paps)
such that |X| < ¢(*n/(2h)?, there is an (r,k)-path in H on V(P,ps) U X which
has the same ends as Pu,s. Let V! = V(H) N\ V(P,s) and n’ = |V'|. In partic-
ular, n’ > (1 — 6h¢)n and, since (¢ is small enough, we have (n’)“*¢ > n°*¢/2.
Thus p' > p/2 > n"“¢/2> (n')"“¢/4 = (n)"“ 2.

Now consider H' = H[V'] and let G} := G®(n’,p’) be the subgraph of G,
induced by V’. Note that d;_1(H') = 6p_1(H) — |V (Pars)| = (1 —c+ a/2)n’. By
Lemma 65, a.a.s. the k-graph H' U G, contains a set C of vertex-disjoint copies
of Py, such that |C| < fn and for every pair of disjoint ordered h-sets in V' that
each spans a copy of K ,(f), there are at least 3%n//(2h)? members of C connecting
them. Since |V(C)| + |V (Pabs)| < 2h - fn + 6h(n < an/2, we can greedily extend
the two ends of P,y,s by h vertices so that the two new ends Ey, By are in V'~ V(C).

Let m := g~ (1/(2¢)). Note that m > 1/,/¢ because ¢ is small enough and ¢
is linear. By Proposition 64, we can apply Lemma 63 (7) with b = m to Gj
and conclude that a.a.s. every induced subgraph of G3 of order n contains
a copy of PI. Thus we can greedily find at most y/en vertex-disjoint copies
of P in V'~ (V(C) u Ey U Es), which together covers all but at most fn
vertices of V' . V(C). Since y/en + 1 < °n//(2h)?, we can greedily connect
these (r, k)-paths P! and P, to an (r,k)-cycle Q". Let R := V(H) \ V(Q")
and note that |R| < |[V(C)| + Bn < (2h + 1)28n < (?n/(2h)%. Since P, is an
absorber, there is an (r, k)-path on V(P,s) U R which has the same ends as Pyps.
So we can replace P, by this (r, k)-path in Q" and obtain the " power of a tight
Hamiltonian cycle.

Moreover, since all previous steps can be achieved a.a.s., by the union bound, H v G

a.a.s. contains the desired r** power of a tight Hamiltonian cycle. O]
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4.4 Concluding remarks

Let us briefly discuss the hypotheses in Theorem 61. Note that, for r = 1, the
condition in (4.1) is simply 01 (H) = an, with « any arbitrary positive constant.
Thus, in this case, our theorem is in the spirit of the original Bohman, Frieze, and
Martin [8] set-up, in the sense that we have a similar minimum degree condition on
the deterministic graph H. However, if r > 1, then our minimum condition (4.1)
is of the form é,_1(H) > (0 + a)n for some ¢ = o(k,r) > 0 (and arbitrarily
small a > 0). Thus, for r > 1, our result is more in line with Theorem 12 of
Bennett, Dudek, and Frieze [5] (in fact, we have o(2,2) = 1/2 in our result, which
matches the minimum degree condition in Theorem 12). It is natural to ask
whether one can weaken the condition in (4.1) to dx_1(H) = an, that is, whether
one can have o = 0. This problem was settled positively by Béttcher, Montgomery,
Parczyk, and Person for graphs [13]. They showed that for each £ > 2 and o > 0,
there is some n > 0, such that if GG, is an n-vertex graph with minimum degree at
least an, then G U G(n,n~ /7" a.a.s. contains the k™ power of a Hamiltonian

cycle. However, the problem remains open for k-graphs (k > 3).

Question 4.4.1. Let integers k > 3 and r > 2 and o > 0 be given. Is
there ¢ > 0 such that, if H is a k-graph on n vertices with d,_1(H) = an
k+r—2

-1
and p = p(n) = n~(I7%) ¢, then a.a.s. H U G® (n,p) contains the r™ power of

a tight Hamiltonian cycle?

Some remarks on the value of o = o(k,r) in our degree condition (4.1) follow.
These remarks show that, even though o > 0 if r > 1, the value of ¢ is (in the
cases considered) below the value that guarantees that H on its own contains
the " power of a tight Hamilton cycle.

Let us first consider the case k = 2, that is, the case of graphs. In this
case, 0 = 1 — 1/r and condition (4.1) is 6(H) = (1 — 1/r + a)n. We observe that
this condition does not guarantee that H contains the 7" power of a Hamilton cycle;
the minimum degree condition that does is 6(H) = (1 —1/(r + 1))n = rn/(r + 1),
and this value is optimal.

Let us now consider the case k = 3 and 4 | n. In this case, a construction
of Pikhurko [65] shows that the condition dy(H) = 3n/4 does not guarantee the

existence of the square of a tight Hamilton cycle in H (in fact, his construction
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is stronger and shows that this condition does not guarantee a K f')—factor in H).
Our minimum degree condition for £ = 3 and r = 2 is 62(H) = (2/3 + a)n.

Moreover, Lo and Zhao [56] showed that in an r-graph H the minimum code-

Int .
gree 0,_1(H) has to be at least (1 - @(%))n to ensure the existence of a K.
Finally, a simple calculation shows that the expected number of P7 in G*) (n, p)

k+r—2

—1
is o(1) if p < () and e > 0. Thus, for such a p, a.a.s. G®(n,p) does not

contain the r** power of a tight Hamiltonian cycle.
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Appendix

Summary/Zusammenfassung

We present three results concerning different aspects of extremal and probabilistic
combinatorics and their proofs. In the first part we study the local density
conditions of graphs homomorphic to a generalised Andrasfai graph. This is
motivated by the conjecture of Erdos that every n-vertex graph with the property
that any |n/2] vertices span more than n?/50 edges contains a triangle.

The second part of this thesis is dedicated to a Hamiltonian cycle problem
in 3-uniform hypergraphs. We study which minimum pair-degree condition suffices
to ensure the existence of a squared Hamiltonian cycle in a 3-uniform hypergraph.
This is motivated by Pésa’s conjecture which asked for a minimum degree condition
that implies the existence of a second power of a Hamiltonian cycle in a graph.

In the third part we continue the study of Hamiltonian cycle problems, but this
time in randomly perturbed k-uniform hypergraphs H U G*) (n,p). We investi-
gate which conditions on the parameters d;_1(H) and p ensure the existence of

an r'" power of a tight Hamiltonian cycle.

Wir stellen drei Resultate, die verschiedene Aspekte der extremalen und prob-
abilistischen Kombinatorik betreffen, und deren Beweise vor. Im ersten Teil
untersuchen wir lokale Dichtebedingungen von Graphen, die homomorph zu einem
generalisierten Andrasfai-Graphen sind. Diese Arbeit ist durch eine Vermutung
von Erdés motiviert, welche besagt, dass jeder Graph auf n Ecken, in dem jede
Eckenmenge der Grofie [n/2] mindestens n?/50 Kanten aufspannt, ein Dreieck
enthalt.

Der zweite Teil dieser Arbeit widmet sich Hamiltonkreisproblemen in 3-uniformen
Hypergraphen. Wir untersuchen, welche minimale Paargradbedingung ausreichend

ist, um die Existenz eines Quadrathamiltonkreises in 3-uniformen Hypergraphen
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zu gewahrleisten. Dies ist motiviert durch Pésa’s Vermutung, welche nach einer
Minimalgradbedingungen fragt, die die Existenz eines Quadrathamiltonkreises in
Graphen sicherstellt.

Im dritten Teil werden ebenfalls Hamiltonkreisprobleme untersucht. Dieses Mal
jedoch in k-uniformen Hypergraphen der Form H U G*)(n,p), wobei H fiir einen
vorgegebenen (deterministischen) k-uniformen Hypergraphen steht und G*)(n, p)
fiir das binomiale Modell eines zuféilligen k-uniformen Hypergraphen mit Kanten-
wahrscheinlichkeit p. Wir untersuchen, welche Bedingungen an d;_1(H) und p die

Existenz einer r-ten Potenz eines Hamiltonkreises gewahrleisten.
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