Universitätsklinikum Hamburg-Eppendorf

Institut für Rechtsmedizin

Direktor: Prof. Dr. med. Klaus Püschel

Postmortale Gewebe- und Strukturveränderungen des Abdomens im zeitlichem Verlauf

Dissertation

zur Erlangung des Grades eines Doktors der Medizin

an der Medizinischen Fakultät der Universtität Hamburg.

vorgelegt von:

Henrik Hein

geboren in Hamburg

Hamburg 2018

(wird von der Medizinischen Fakultät ausgefüllt)

Angenommen von der Medizinischen Fakultät der Universität Hamburg am: 06.11.2018

Veröffentlicht mit Genehmigung der Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der/die Vorsitzende: Prof. Dr. Klaus Püschel

Prüfungsausschuss, zweite/r Gutachter/in: Prof. Dr. Gerhard Adam

Inhaltsverzeichnis

1. Einleitung und Fragestellung	3
1.1 Einleitung	3
1.2 Fragestellung	12
1.3 Einflüsse auf die Bildqualität und Messung	13
1.3.3.1 Teilanschnittphänomen oder Partialvolumeneffekt1.3.3.2 Der Starburst-Effekt2. Material und Methoden	13 16 17
2.1 Ausschluss von Leichen	17
2.2 Das Kollektiv	18
2.3 Die Methodik	20
2.3.1 Die technischen Grundlagen.2.3.2 Die Software.2.3.3 Das Messprotokoll.3. Auswertung und Analyse.	20 22 23 45
3.1 Die Kalibrierung der Dichtedaten	45
3.2 Statistische Analyse	47
3.3 Auswertung der statistischen Analyse	49
4. Diskussion und Ausblick	119
4.1 Diskussion und Interpretation der Ergebnisse	119
4.2 Kritische Bewertung der Methodik	133
4.3 Ausblick	134
4.4 Tabellarische Übersicht der Ergebnisse	135
5. Zusammenfassung	137
6. Abstract	138
7. Bildbeilagen	139
7.1 Bildbeilage 1: Körperdurchmesser	139
7.2. Bildbeilage 2: Nebenniere rechts	147
7.3 Bildbeilage 3: Hüftmuskulatur	154
7.4 Bildbeilage 4: Vesica biliaris	158
7.5 Bildbeilage 5: Milzdichte	162
7.6 Bildbeilage 6: Mesorektumdichte	166
7.7 Bildbeilage 7: Caput pancreaticum	170
7.8 Bildbeilage 8: Autochthone Rückenmuskulatur	173
7.9 Bildbeilage 9: Lendenwirbelkörperspongiosa	177

7.10 Bildbeilage 10: Spongiosa Os ilium	181
7.11 Bildbeilage 11: Volumen Mageninhalt	184
7.12 Bildbeilage 12: Gasvolumen des Magens	188
7.13 Bildbeilage 13: Milzvolumen	191
7.14 Bildbeilage 14: Abgrenzbarkeit Ductus pancreaticus	195
7.15 Bildbeilage 15: Abgrenzbarkeit Fascia gerota	199
7.16 Bildbeilage 16 Abgrenzbarkeit der Abdominalmuskulatur	203
7.17 Bildbeilage 17: Abgrenzbarkeit Harnblasenwand und	
Harnblasenwanddurchmesser	207
8. Abkürzungsverzeichnis	211
9. Literaturverzeichnis	213
10. Abbildungsverzeichnis	218
11. Iabellenverzeichnis	231
11. Tabellenverzeichnis 12. Danksagung	231 240
 11. Tabellenverzeichnis 12. Danksagung 13. Lebenslauf 	231 240 241

1. Einleitung und Fragestellung

1.1 Einleitung

Bildgebende Verfahren spielten in der Rechtsmedizin lange Zeit eine untergeordnete Rolle, obwohl neue Techniken meist relativ zügig im Rahmen rechtsmedizinischer Untersuchungen ausprobiert wurden. So wurde schon 1898 ein Röntgenbild einer Leiche angefertigt (Brogdon 1998) und 1977, also fünf Jahre nach der Markteinführung von Computertomographen, erstmalig ein Computertomographischer-Scan einer rechtsmedizinischen Leiche durchgeführt (Wullenweber et al. 1977). Im Vergleich mit anderen medizinischen Feldern ist die Rechtsmedizin jedoch ein sehr konstantes Feld, sodass zwar neue Methoden zur Verbesserung der Aufgabenfelder willkommen sind, aber beispielsweise die klassische Autopsie nach wie vor immer noch der Goldstandard bei der Todesursachenermittlung ist (Bolliger et al. 2008). Während also Röntgenbilder zur Darstellung von Fremdkörpern im Leichnam wie Projektilen, zur Dokumentation von Brüchen bei Lebenden oder Toten, bei Altersfeststellungen von Straftätern oder Geflüchteten durch Erfassung des Zahnstatus oder des Epiphysenverschlusses sowie zur Identitätsfeststellung durch Aufnahmen des Gebisses mittlerweile etabliert sind (Lessig R 2015), wurden die Nutzen anderer bildgebender Verfahren, wie die Magnetresonanzoder Computertomographie, für die Rechtsmedizin lange Zeit nicht erforscht. Auch die 1989 entwickelte Methode der Spiral-Computertomographie (Kalender et al. 1990), mit derer die 3-dimensionale Rekonstruktion von Körpern und Strukturen ermöglicht wurde, fand zuerst nicht die Beachtung, die sie heute bekommt.

In den letzten Jahren ist weltweit ein zunehmendes rechtsmedizinisches Interesse in diesem Gebiet zu beobachten und die Forschung hat einen sprunghaften Anstieg erfahren. Zum einen liegt dies an der immer häufigeren Verfügbarkeit von CT- und MRT-Geräten (Rutty 2007, Pomara et al. 2009), zum anderen ergeben sich aus der postmortalen Bildgebung viele Vorteile.

Die postmortale Bildgebung birgt, durch ihre nicht-invasive Natur, ein deutlich geringeres Expositionsrisiko gegenüber infektiösen Erkrankungen oder toxischen Substanzen für das Personal (Thali et al. 2007). Mögliche Zufallsbefunde, wie z.B. eine Lungentuberkulose können computertomographisch schon vorher entdeckt werden, sodass für eine spätere Obduktion geeignete Schutzmaßnahmen ergriffen werden können. Auch Verletzungen durch scharfe Gegenstände kommen bei der Durchführung einer Post mortem-CT (PM-CT) oder -MRT (PM-MRT) -Untersuchung normalerweise nicht vor, sodass ein Übertragungsrisiko von ansteckenden Krankheiten wie HIV oder Hepatitis minimal und bei regelhaftem Ablauf unwahrscheinlich ist. Die digitale Autopsie bietet zudem die Möglichkeit, trotz des Negativtrends der Autopsieraten in der westlichen Welt (Harrington und Sayre 2010, Brinkmann et al. 2002), dem wissenschaftlichen Interesse nach Todesursache nachzugehen, ohne dabei die Wünsche von Angehörigen zu übergehen. Der Abwärtstrend bei den klinisch-pathologischen Sektionen geht natürlich mit einer niedrigeren Rate an Todesursachenfeststellung einher, wodurch sowohl eine Qualitätskontrolle der klinischen Arbeit fehlt, als auch Todesursachenstatistiken an Repräsentativität abnehmen (Brinkmann et al. 2002). Neben Zeit- und Personalaufwand liegt diese Abnahme nicht zuletzt auch an den Wünschen von Angehörigen, die eine Sektion aus unterschiedlichen Gründen ablehnen (Rutty 2007, Wichmann et al. 2012, Pomara et al. 2009, Thali et al. 2007), obgleich ein Interesse an der Todesursache oder an den Tod begleitenden Umständen vorhanden ist. In Fällen, wo eine Obduktion nicht staatsanwaltschaftlich angeordnet ist, bietet die nicht-invasive, digitale Autopsie eine Alternative im Einklang mit den Interessen der Hinterbliebenen. Außerdem können diese Untersuchungen die Lücke in der Todesursachenfeststellung, bedingt durch die Abnahme der klinisch-pathologischen Sektionen, füllen und darüber hinaus als Qualitätskontrolle für die Kliniker zur Überprüfung der Richtigkeit ihrer Therapie genutzt werden (Persson et al. 2011).

Hinsichtlich der Genauigkeit bei der Feststellung von Todesursachen ließen sich bis dato durchaus positive Ergebnisse erzielen. Wichmann et al. konnten in

4

einer Studie ante mortem gestellte klinische Diagnosen mit einer ähnlich hohen Genauigkeit (88%) im CT ausfindig machen, wie es bei der anschließenden Sektion der Fall war (93%) (Wichmann et al. 2012). Auch mithilfe der MRT sowie der klinischen Vorgeschichte der Patienten konnten bei einer Studie in 87% der Fälle eine Todesursache gestellt werden (Bisset und Thomas 2002).

Durch den technischen Fortschritt seit Einführung der Multislice-Computertomographie und im Bereich der Magnetresonanz-Tomographie ist es möglich, sich mit entsprechender Software die Scans nicht nur zweidimensional, sondern auch dreidimensional darzustellen. Mittels dieser 3D-Rekonstruktion lässt sich der gesamte Leichnam in seinen Proportionen virtuell untersuchen. Neben der Körperoberfläche kann man auch das Körperinnere untersuchen und z.B. Volumina ausmessen. Durch die sogenannte Fensterung ist es möglich, Schwellwerte für die Dichte so einzustellen, dass z.B. nur das knöcherne Skelett zu sehen ist (Pomara et al. 2009). Dadurch lassen sich Frakturen anschaulich darstellen und Verletzungsmuster evtl. in Einklang mit einer Tatwaffe bringen.

Auch bei Opfern von Verkehrsunfällen lassen sich mittels dieser Technik knöcherne Verletzungen hervorragend rekonstruieren und somit Angaben von Zeugen auf ihre Plausibilität prüfen, wie schon mehrfach anschaulich gezeigt wurde (Dirnhofer et al. 2006, Bolliger et al. 2008). Bei Tötungsdelikten lassen sich zudem Wundkanäle durch Schuss- oder Stichverletzungen digital nachvollziehen, ohne dabei gewebsschädigend und evidenz-destruierend vorzugehen (Bolliger et al. 2008, Persson et al. 2011).

Ein weiterer Vorteil von postmortaler Bildgebung ist, dass die Dokumentation objektiv und frei von den Eindrücken des protokollierenden Sekants sind (Persson et al. 2011). Im Gegensatz zur herkömmlichen Sektion, sind die angefertigten Untersuchungsserien jederzeit wieder abrufbar und können dementsprechend, falls nötig, einer Überprüfung durch Dritte unterzogen werden. Dies kann sowohl bei Gerichtsverfahren notwendig sein, aber es kann auch als Instrument zur Qualitätssicherung genutzt werden. Durch die nichtinvasive Vorgehensweise liegt es in der Natur der Sache, dass nicht gewebsschädigend vorgegangen wird, sodass der Körper danach noch weiteren Untersuchungen zur Verfügung steht (Dirnhofer et al. 2006).

Als Beweismittel vor Gericht sind die radiologischen Bilder, im Gegensatz zu Fotografien von der eigentlichen Obduktion, durch die Abwesenheit von Blut und Farbe, einem breiteren Publikum zumutbarer (Swift und Rutty 2006, Persson et al. 2011) und auch anschaulicher, da durch die 3D-Rekonstruktion und Fensterung es möglich ist, sich auf die relevanten Strukturen zu fokussieren sowie diese aus verschiedenen Perspektiven zu betrachten.

Durch eine vorherige tomographische Untersuchung kann das weitere Vorgehen besser geplant werden. Im Scan kann sich schon vorher zeigen, ob Hinweise auf ein Gewaltverbrechen vorhanden sind und somit der Fall zeitnah seziert werden muss oder ob die Befunde für einen natürlichen Tod sprechen, wodurch der Fall an Priorität verliert (Ross et al. 2014). Ein vorhandener Pneumothorax oder eine Luftembolie können schon im Voraus entdeckt werden (Rutty 2007, Thomsen et al. 2009) und lassen sich radiologisch einfacher darstellen. Zusätzlich lässt sich in der 3D-Rekonstruktion das Gasvolumen ermitteln (Bolliger et al. 2008), was bei einer Sektion nicht möglich ist. Insgesamt kann man schon vor der eigentlichen Obduktion den Fokus auf verschiedene Regions of Interest (ROIs) legen und ein Ganzkörperscan offenbart auch mögliche Pathologien in Regionen, die bei einer standardmäßigen Obduktion nicht eröffnet werden (Swift und Rutty 2006). Wie schon eingangs erwähnt, können auch ansteckende Erkrankungen z.T. wie z.B. eine Lungentuberkulose schon vorher entdeckt werden und geeignete Schutzmaßnahmen bei der weiteren Untersuchung ergriffen werden (O'Donnel und Woodford 2008). Auch Fremdkörper lassen sich besser lokalisieren und erleichtern die etwaige spätere Entfernung.

Ein Problem der postmortalen Radiologie ist, dass die notwendigen Gerätschaften nicht überall vorhanden sind und die Anschaffung kostenintensiv ist (Rutty 2007). In kleineren Abteilungen, mit einer geringeren Fallzahl stehen die Nutzen zu den Kosten selten in einer vernünftigen Relation (Thomsen et al. 2009). Dementsprechend sind die Nutzen dieser Technik eher den Instituten in Ballungszentren vorbehalten, während kleinere Krankenhäuser und Abteilungen nicht davon profitieren.

Hinzukommend ist eine zusätzliche bildgebende Untersuchung mit einem höheren Zeit- und Personalaufwand verbunden, was letzten Endes auch erhöhte Kosten mit sich bringt. Zwar ist die Magnetresonanztomographie besser geeignet für die Darstellung von Weichteilen und Organen, aber gerade sie nimmt viel Zeit in Anspruch und ist anfälliger für Störvariablen, wie beispielsweise niedrige Temperaturen (Persson et al. 2011, van der Made et al. 2013). Hinzukommend ist die Installation von einem MRT-Gerät noch aufwendiger, und durch die Magnetfelder können magnetisierbare Fremdkörper im Leichnam ihre Position verändern oder sogar aus dem Körper heraus gezogen werden (Swift und Rutty 2006). Auch bei der Computertomographie treten Artefakte durch metallische Fremdkörper auf, die Einfluss auf die Bildqualität haben (Swift und Rutty 2006). Eine Kombination von beidem, erst PM-CT zur Orientierung und Untersuchung der knöchernen Strukturen sowie zusätzlich PM-MRT bei Fokussierung auf Weichteildefekte oder -Pathologien, wie von Thali et al. vorgeschlagen (Thali et al. 2003), wäre natürlich optimal, ist aber selten realisierbar.

Den Untersuchungsmethoden fehlt zudem die Darstellung von Farbe. Zwar können Computerprogramme in der 3D-Rekonstruktion den Geweben auch Farbe zuordnen, jedoch ist dies nicht wirklich realitätsgetreu. Dadurch fehlen gewisse Details und die Befundung ist in manchen Punkten erschwert. Bleibt man bei der nicht-invasiven Vorgehensweise, so ist eine Kombination mit toxikologischen und histopathologischen Untersuchungen nicht möglich. Gerade dies kann aber auch wichtig bei der Todesursachenfeststellung vor allem bei Verdacht auf Intoxikation sein. Ein möglicher Kompromiss wäre die

7

minimal-invasive CT-gesteuerte Biopsie (Persson et al. 2011) oder die histopathologische Aufarbeitung mithilfe von Micro-CT oder Magnetresonanz-Mikroskopie (Thali et al. 2007). Auch hierfür wäre wieder spezielle Gerätschaft notwendig. Nicht zuletzt deshalb ist die Studienlage dazu bis dato auch nicht ausreichend. Hinzukommend erfordert diese Vorgehensweise auch die Gewebeentnahme, was ein invasives Vorgehen bedeuten würde (Bolliger et al. 2008).

Im Gegensatz zum MRT besteht beim CT die Gefahr der Strahlenexposition für den Untersucher. Deswegen müssen bei CT-Untersuchungen, wie im klinischen Alltag auch, Schutzmaßnahmen für das Personal ergriffen werden (Swift und Rutty 2006).

Ein großes Problem ist, dass beim plötzlichen Tod z.B. durch KHK-bedingte Herzrhythmusstörungen oftmals kein Nachweis dessen in den Untersuchungsserien der postmortalen Bildgebung möglich ist, da dieser Tod nicht immer mit einem Infarkt einhergeht (Bolliger et al. 2008). Zusätzlich zur erschwerten Diagnostik mancher Herztodvarianten können noch weitere Befunde, wie z.B. Fettembolien übersehen werden (Thali et al. 2003). Dem entgegensteuern kann man mit geschultem radiologischen Personal, welches mit post mortem Veränderungen vertraut ist und eine Abgrenzung zu ante mortem entstandenen Vorgängen vornehmen kann (O'Donnel und Woodford 2008). Ansonsten besteht die Gefahr der Missinterpretation von postmortalen Veränderungen als ante mortem entstandene Pathologien oder gar als todesursächliche Faktoren. Diese Möglichkeit der Fehlinterpretation von Befunden ist bei der normalen Leichenschau und Autopsie ebenso gegeben (Tsokos 2005), weshalb die Erforschung, wie sich diese Veränderungen radiologisch darstellen, wichtig für den Erkenntnisgewinn und damit einhergehend für die korrekte Analyse der erzeugten Scans ist.

Vorteilhaft ist, wenn zusätzliches Wissen über den Tod begleitende Umstände vorhanden ist. So geht die postmortale Gasentstehung nicht zwingend auf Verwesungsprozesse zurück, sondern möglicherweise auch auf andere Umstände, wie z.B. Reanimationsmaßnamen. In einer Studie konnte gezeigt werden, dass bei Verstorbenen, bei denen vorher frustrane Reanimationsmaßnahmen mit Herzdruckmassage angewendet wurden, in der überwiegenden Anzahl der Fälle Gas in den Organen im CT nachweisbar war. Die CT-Scans wurden im Schnitt 5,5h nach dem Ableben gefahren, sodass hier nicht von einer Fäulnis-bedingten Gasentstehung ausgegangen werden kann. Zudem zeigten Fälle ohne Reanimationsmaßnahmen auch keinerlei Gasbildung in den Organen, weswegen von einem Zusammenhang zwischen CPR und Gasbildung ausgegangen wird (Zenda et al. 2011).

Grundsätzlich konnten bis dato für Rigor mortis und Algor mortis kein Effekt im PM-CT nachgewiesen werden (Levy et al. 2010). Hingegen haben andere makroskopisch sichtbare Veränderungen, wie unter anderem Livor mortis und Autolyse oder fehlende physiologische Vorgänge, wie Blutzirkulation auch einen radiologischen Effekt.

Letzteres führt dazu, dass in Folge des nicht vorhandenen Blutdrucks, Gefäße ein geringeres Lumen haben oder kollabiert sind. Dementsprechend sind Gefäße nicht immer gleichermaßen als solche zu identifizieren, wie es in einem Scan bei einer lebenden Person ist. Darüber hinaus kommt es postmortal in den Gefäßen zu Blutverklumpungen, welche sich radiologisch nicht eindeutig von thrombo-embolischen Vorgängen abgrenzen lassen (O'Donnel und Woodford 2008). Diese intravasalen Ablagerungen und Flüssigkeitsverschiebungen führen nicht nur in den Gefäßen zu einer Abschwächung der Abgrenzbarkeit des Lumens zu seiner Wand, sondern sind auch im Herzen, den Lungen sowie im Gehirn nachweisbar, wo sie der Gravitation nach zu einer zunehmenden Dichte führen (Levy et al. 2010, Shiotani et al. 2002). Dabei spielt für die Ausprägung der Hypostase im CT anscheinend der Fibrinogengehalt des Blutes eine Rolle, wie schon einmal dargestellt werden konnte (Ishida et al. 2011). Durch Autolyse zersetzen sich Organe unterschiedlich schnell, was natürlich auch in der Radiologie zu beobachten ist. Allen voran ist das Gehirn betroffen, im Abdomen sind es allen voran das Pankreas und die Nebennieren (Charlier et al. 2012), andere Organe wie Leber, Milz und Niere haben ein eher konstantes Erscheinungsbild (Levy et al. 2010).

Vornehmlich befassten sich bis dato Studien zum Thema postmortale Veränderungen beispielsweise mit den Organen Herz (Okuma et al. 2013), Leber (Fischer et al. 2012, Takahashi et al. 2009) oder etwa Gehirn (Schüttfort 2013), seltener mit intrabdominalen Veränderungen (Charlier et al. 2012).

Dabei werden vor allem bis jetzt Veränderungen beschrieben und in Relation zu nicht-radiologischen post mortem Veränderungen gesetzt. In erster Linie gilt dies dem Erkenntnisgewinn und soll vor Fehldiagnosen bewahren.

Bis dato gibt es noch keine Studien zu der Frage, ob es möglich ist, mittels bildgebenden Verfahren Rückschlüsse auf den Zeitpunkt des Todes zu ziehen. Regulär basiert die Todeszeitbestimmung auf verschiedenen Methoden, die einander ergänzen beziehungsweise helfen, den Zeitraum des Todeseintritts genauer abzugrenzen (Swift und Rutty 2006).

Livores sind normalerweise das erste sichere Todeszeichen und gleichzeitig eignen sie sich zur Eingrenzung des Todeszeitraums. Dies basiert zum Einen auf der Wegdrückbarkeit, zum Anderen auf der Verlagerbarkeit der Totenflecke. Dies ist in den ersten 6 Stunden nach Todeseintritt noch vollständig möglich, bis zu 12 Stunden nur noch zum Teil und ab 12 Stunden nicht mehr gegeben (Madea 2015). Rigor Mortis, die Totenstarre, tritt etwas später, im Mittel 3-4 h post mortem beginnend in den kleineren Gelenken, auf. Bei normaler Umgebungstemperatur löst sie sich im Mittel nach 3-4 Tagen, bei niedrigen Temperaturen kann sie mitunter wochenlang erhalten bleiben (Madea 2015). Supravitale Reaktionen, auslösbar durch mechanische oder elektrische Impulse lassen auch Rückschlüsse auf den Zeitpunkt des Todeseintritts zu, aber haben eine schwindende Reaktion mit zunehmender Zeit und sind nach spätestens einem Tag nicht mehr auszulösen. Anders hingegen verhält es sich mit der Pupillenreaktion auf pharmakologische Reize mittels Noradrenalin und Acetylcholin. Die Überempfindlichkeit der Muskelfasern lässt sich mit dem Cannon-Rosenblueth'schen Denervationsgesetz erklären und ermöglicht eine Pupillenreaktion bis 46 h post mortem (Madea 2015).

Die vielleicht aussagekräftigste Methode hinsichtlich der Todeszeit-Eingrenzung ist die Messung der Körperkerntemperatur mittels Rektalthermometer. Unterschiedliche Faktoren beeinflussen, wie schnell die Temperatur abfällt und müssen in die Berechnung mit einbezogen werden. Dennoch kann man von einem anfänglichen Temperaturplateau ausgehen, welches daran liegt, dass erst ein radiäres Konzentrationsgefälle zwischen Körperkern- und Körperoberflächentemperatur aufgebaut werden muss. Zusätzlich haben Faktoren wie Körperstellung, Körperproportionen und Fettanteil Bedeutung für den Abkühlvorgang. Ein weiterer einflussreicher Faktor ist die Umgebungstemperatur des Toten. Zusätzlich hat natürlich auch die Bekleidung oder ob der Körper unter einer Decke liegt weiteren Einfluss auf Konduktion und Konvektion. Zuletzt ist natürlich auch die Körpertemperatur zum Todeszeitpunkt nicht immer gleich und kann z.B. durch eine Sepsis, welche mit Fieber einhergeht, erhöht sein. Zur Auswertung wurde in Normogram entwickelt, welches dem geschulten Personal bei der Auswertung der Faktoren helfen soll (Madea 2015). Hierbei können auch Kofaktoren, wie Wind, feuchte Bekleidung, Sonnenexposition mit einberechnet werden. Insgesamt decken diese Methoden vor allem das früh-postmortale Intervall ab.

Im weiteren Verlauf orientiert sich die Schätzung des Todeszeitpunktes an den Leichenveränderungen wie Fäulnis und an der Besiedelung durch Organismen. Dabei ist zu sagen, dass je länger der Verwesungsprozess stattfindet, desto ungenauer kann der Todeszeitpunkt bestimmt werden (Madea 2015). Es bleibt festzuhalten, dass bei Leichen mit unbekanntem Todeszeitpunkt dieser, unter Zuhilfenahme der oben genannten Methoden, nur eingegrenzt, aber nicht genau bestimmt werden kann. Bei der Beurteilung wird sich also nicht auf eine Methode alleine verlassen. Stattdessen findet eine Bewertung unter Berücksichtigung unterschiedlicher Verfahrensweisen statt. Ob, zusätzlich zu diesen Methoden der Todeszeitbestimmung, eine Ergänzung und gegebenenfalls eine weitere Eingrenzung des Todeseintritts mithilfe der Post Mortem-Computertomographie möglich ist, ist Forschungsgegenstand der vorliegenden Dissertation.

1.2 Fragestellung

Die vorliegende Dissertation befasst sich vornehmlich mit dem Beschreiben der computertomographischen Darstellung von früh-postmortalen Veränderungen im Abdominalbereich. Ferner wird untersucht, ob sich hier Ansätze für eine Todeszeitbestimmung bzw. Abschätzung des postmortalen Intervalls mittels CT finden lassen. Da die Leber schon in anderen Studien im Institut für Rechtsmedizin untersucht wurde, findet sie hier keine weitere Beachtung. Dieses Themengebiet ist bis dato in der Literatur nur nebensächlich behandelt worden, weshalb diese Studie als Grundlagenforschung aufgefasst werden kann.

Dabei wurde der Fokus auf Veränderungen im Abdominalbereich gelegt und verschiedene Parameter, von denen wir unterschiedlich starke Schwankungen im postmortalen Intervall erwarten, mit einbezogen. Diese Parameter umfassen Veränderungen im Volumen, Dichte sowie Durchmesser verschiedener Organe, Gewebe und Körperregionen. Es wurden von den Verstorbenen zu fest definierten Zeitpunkten CT-Scans gemacht und diese Untersuchungsreihen jeweils auf die definierten Parameter untersucht.

Die zentrale Frage dieser Doktorarbeit ist, inwieweit sich postmortale Veränderungen in Geweben und Strukturen in der Computertomographie aufzeigen lassen und ob sich mittels der gemessenen Werte letzten Endes Rückschlüsse auf einen Todeszeitpunkt ziehen lassen, die der gegenwärtigen, etablierten Diagnostik ebenbürtig sind oder diese ergänzen können.

1.3 Einflüsse auf die Bildqualität und Messung

Grundprinzip der CT ist die Berechnung der räumlichen Verteilung des gemessenen linearen Schwächungskoeffizienten. Dieser wird in Relation zur computertomographischen Abschwächung von Wasser sowie Luft gesetzt und in Hounsfield-Units (= HU, zu deutsch Hounsfield-Einheiten = HE) angegeben. Höhere Werte weisen auf eine höhere Dichte und damit einhergehend auf eine höhere Strahlenschwächung hin. Sie erscheinen im CT als hyperdense, aufgehellte Areale. Im Gegensatz dazu stellen sich Strukturen mit einer niedrigeren Dichte dunkler, also hypodens dar.

Die Bildqualität setzt sich aus den vier Hauptkenngrößen Bildpunktrauschen, Kontrast, Ortsauflösung in der Bild- sowie der Körperlängsachsenebene zusammen (Eftimov 2009). Daneben gibt es weitere Einflussvariablen, die Auswirkungen auf die Bildquallität haben können. Diese können Messfehler zur Folge haben und werden dementsprechend hier besprochen.

1.3.3.1 Teilanschnittphänomen oder Partialvolumeneffekt

Jeder Pixel (= Picture Element) repräsentiert in der 2D-Darstellung eigentlich einen Voxel (= Volume Element), da jede Schicht in der Multidetector-Computertomographie (MDCT) eine gewisse Schichtdicke hat. In den für diese Studie relevanten Computertomogrammen verwendeten wir eine Schichtdicke von 1 mm. Jeder Voxel im Computertomogram hat einen bestimmten Dichtewert zugeteilt bekommen, welcher in einer bestimmten Graustufe dargestellt wird. Im Idealfall ist in einem Voxel auch nur eine Gewebestruktur enthalten, sodass die tatsächliche Dichte in Hounsfield-Einheiten angegeben werden kann. Jedoch verlaufen Grenzflächen von Geweben auch durch Voxel und teilen sich somit diesen. Dementsprechend wird für diesen Voxel ein Mittelwert der Dichtewerte der beiden Gewebe ermittelt und in einer anderen Graustufe repräsentiert. Das hat einen Informationsverlust zur Folge und kann Messergebnisse beeinflussen (Hofer 2010).

Abbildung 1: Theoretische Darstellung des Partialvolumeneffekts: Links: tatsächliche Gewebestrukturen – Rechts: durch Teilanschnitte nehmen Voxel den Mittelwert der Graustufen der Gewebe an

Bei größeren Volumen-Bestimmungen ist der Partialvolumeneffekt vernachlässigbar klein, jedoch führte er in dieser Studie dazu, dass die Dichtebestimmung der Nebenniere vernachlässigt werden musste. Die zu messende Fläche, die schon relativ klein war (0,5 cm²), hätte nochmals verkleinert werden müssen, um einen genügend großen Abstand zur Capsula adiposa zu haben, damit nur Nebennierengewebe angeschnitten worden wäre. Zudem ist die Nebenniere ein stark vaskularisiertes Organ, wodurch auch innerhalb des Organs unterschiedliche Gewebe (Kapillaren und Nebenniere) von einem Voxel erfasst werden können. Dies führte letzten Endes zum Ausschluß der Dichtebestimmung der rechten Nebenniere.

Insgesamt dürfte der Partialvolumeneffekt in dieser Dissertation keinen weiteren signifikanten Einfluss gehabt haben, da die Dichtebestimmungen der Organe zum einen nicht in randständigen Bereichen der untersuchten Strukturen

getätigt wurden und zum anderen auch die angrenzenden Schichten auf potentielle Störfaktoren, z.B. Blutgefäße in der Spongiosa bei der Dichtebestimmung im Lendenwirbelkörper, untersucht wurden. Auch bei den Volumenbestimmungen ist der Einfluss des Teilanschnittphänomens als gering zu betrachten, da Volumina ausreichend groß gewählt wurden und die geringe Schichtdicke von 1 mm auch zu einer Verringerung des Einflusses des Effekts führt.

1.3.3.2 Der Starburst-Effekt

Der Starburst-Effekt wird durch Metallobjekte im Bild hervor gerufen und zeigt sich typischerweise durch Strahlen, die ausgehend von ihrem Ursprung, dem Fremdkörper, das Bild durchziehen.

Metalle absorbieren Röntgenstrahlen um ein Vielfaches besser als organische Gewebe, wodurch die umliegenden Strukturen fälschlicherweise eine höhere Strahlenabschwächung zugeordnet bekommen. Daraus resultieren letzten Endes falsch hohe HU-Werte und die Aussagekraft der betroffenen Bildreihen reduziert sich.

In der vorliegenden Studie konnte dieser Effekt bei einem Fall beobachtet werden (siehe Abb. 2). Durch eine Hüft-Totalendoprothese links sind die Variablen "Wanddicke Vesica Urina", "Volumen Vesica Urina" sowie "Mesorectum Dichte" zum Teil nicht beurteilbar gewesen. Die gemessene Dichte des Mesorectums ist weder unkalibriert noch kalibriert auffällig. Zwar entsprechen die gemessenen Werten möglicherweise nicht den wahren Werten, aber da hier das Interesse auf dem Verlauf über einen gewissen Zeitraum liegt, wurden die Dichtewerte trotzdem in dieser Studie berücksichtigt.

Abbildung 2: L2616 72 h: Starburst-Effekt durch Material der Hüft-TEP links

2. Material und Methoden

Im Rahmen dieser Studie wurden im Zeitraum Mai bis November 2013 CT-Bildserien von 32 Verstorbenen aus dem Institut für Rechtsmedizin Hamburg (IfR) angefertigt. Das Kollektiv setzt sich aus Todesfällen aus dem Universitätsklinikum Hamburg - Eppendorf (UKE) und aus rechtsmedizinischen Leichen, die standardmäßig zur Untersuchung der Todesumstände ins IfR kommen, zusammen. Bei allen Verstorbenen war der Todeszeitpunkt bekannt. Nach Einlieferung ins IfR erfolgte zeitnah ein Erstscan sowie ein weiterer Scan 6h nach Todeseintritt. In 6-stündigen Abständen erfolgten weitere Scans bis 24 Stunden nach Todeseintritt, zwei weitere Scans erfolgten nach jeweils weiteren 24 Stunden, also 48 Stunden und 72 Stunden nach Todeseintritt. Die Scans wurden im Institut für Rechtsmedizin mit einem Philips Brilliance 16 Zeiler – Computertomographen durchgeführt.

2.1 Ausschluss von Leichen

Von den anfänglichen 32 Verstorbenen wurden nur 24 in diese Studie mit einbezogen. Die Gründe dafür sind vor allem auf eine erschwerte Auswertbarkeit hinsichtlich der erarbeiteten Methodik zurück zu führen. Es gab einen Fall von Minderwuchs, bei dem die Regions of Interest in der überwiegenden Anzahl der Fälle nicht mit dem Messprotokoll in Einklang zu bringen waren. Dies war auch Grund für den Ausschluss einer weiteren Scan-Reihe, bei der ante mortem schon Prozesse stattgefunden haben, die die postmortale Auswertung nach Messprotokoll nicht zuließen. Bei fünf Fällen war die Bildqualität aufgrund von z.B. Aszites so mangelhaft, dass Dichtemessungen in keinem Fall repräsentativ oder annähernd an den wahren Werten gewesen wären. Ein letzter Fall wurde ausgeschlossen, weil zu vier von sieben Messzeitpunkten keine CT-Scans zu Stande gekommen sind.

2.2 Das Kollektiv

Das verbliebene Kollektiv setzt sich aus 18 Männern und sechs Frauen zusammen. Davon waren drei Leichen aus dem UKE und somit klinischpathologische Fälle. Die restlichen 21 Verstorbene waren rechtsmedizinische Leichen, die allesamt vorher von rettungsdienstlichem Personal gesehen worden sind. Elf dieser Leichen wurden vom RTW gebracht und sind dementsprechend an öffentlichen Orten verstorben, die restlichen zehn Fälle sind in Privatwohnungen verstorben und wurden durch den Leichentransportdienst der Polizei ins IfR überführt. Der Grund für die geringe Anzahl an UKE-Leichen liegt u.a. auch daran, dass Angehörige der Verstorbenen noch auf Station Abschied nehmen, bevor der Transportdienst die Verstorbenen in die Rechtsmedizin bringt. Zudem haben sicherlich Patiententransporte den Leichentransporten gegenüber Priorität.

Bei 22 Fällen wurden Wiederbelebungsversuche mit Herzdruck-Massage unterschiedlich lange unternommen, bei zwei Fällen wurden diese Maßnahmen unterlassen.

Das durchschnittliche Sterbealter lag im Mittel bei 65,6 Jahre (Standardabweichung 16,22). Bei den Frauen lag dies bei 76 Jahre (Standardabweichung 13,94), bei Männern bei 62,2 Jahre (Standardabweichung 15,75). Der Bodymass-Index betrug im Durchschnitt 26,3 (m 26,6; f 25,8) mit einem Minimum von 18 und einem Maximum von 36. Der erste Scan erfolgte im Mittel nach 3,7 h (03:42h; Standardabweichung 1,08).

Zehn Leichen des Kollektivs wurden zwischen den Scans in den Kühlfächern des Institut für Rechtsmedizin bei 4°Celsius gelagert, die verbleibenden 14 Leichen wurden zwischen den Scans im CT-Raum gelagert und gelten somit als nicht gekühlt. Bei fünf Verstorbenen wurden Obduktionen durchgeführt. Die ermittelten Todesursachen sind im folgenden aufgeführt:

Leichennummer	Todesursache
L1701-13	Akutes Linksherzversagen bei frischer Koronarthrombose in
	der A. Coronaria sinistra in Kombination mit einem
	wiederkehrenden Herzinfarkt im Bereich der linken
	Kammerhinterwand / Herzscheidewand
L1919-13	Biventrikuläre kardiale Dekompensation bei ischämischer
	Kardiomyopathie
L2616-13	Akute resp. Insuffizienz bei Spontanpneumothorax links mit
	nahezu komplett kollabierter Lunge links. Zusätzlich
	kardiogener Schock bei Status epilepticus.
L2629-13	Vergiftung – Blutalkoholkonzentration 3,6‰
L2658-13	Subarachnoidalblutung durch Schädel-Hirn-Trauma sowie
	innere Blutung in Brustraum bei
	Rippenserienfraktur mit Durchspießung . Zudem multiple
	Frakturen der Brustwirbelkörper. Darüber hinaus Aspiration
	von Blut aus Blutungen im Schädel und Gesichtsbereich

Tabelle 1: Todesursachen nach Sektion

Bei vier Fällen fehlt eine radiologische Diagnose hinsichtlich der Todesursache. Bei den verbleibenden 20 Fällen wurden bei zwölf als Todesursache "Plötzlicher Herztod / Plötzliches Herzversagen / Herzinsuffizienz" angegeben. Diese Diagnose ist oftmals eher eine Ausschlussdiagnose, da, wie in der Einleitung schon dargestellt wurde, die postmortale Bildgebung mittels CT Schwächen bezüglich des plötzlichen Herztods hat, da es hier keine radiologischen Zeichen oder Hinweise gibt. Es ist also mehr von einer Annahme des plötzlichen Herztods, als von einer gesicherten Diagnose auszugehen. Gestützt wird diese Annahme in manchen Fällen durch Notizen auf der vorläufigen Todesbescheinigung oder durch Diagnosen, die auf der Todesbescheinigung bei Verstorbenen des UKE vermerkt worden sind.

Die radiologisch gestellten Todesursachen der anderen acht Fälle schlüsseln sich folgendermaßen auf: innere Blutungen (2x), akute Pankreatitis (1x), Schädelhirntrauma (1x), Herzbeuteltamponade (1x), Herzinsuffizienz mit Pleuraerguss (1x), Spannungspneumothorax (1x), Pneumonie (1x).

Der Intoxikationstodesfall wurde bei der Bildgebung vorher als plötzlicher Herztod definiert und eine Vergiftung wurde nicht in Betracht gezogen.

2.3 Die Methodik

2.3.1 Die technischen Grundlagen

Die CT-Scans wurden mit einem Philips Brilliance 16 Zeiler – Computertomographen im Institut für Rechtsmedizin angefertigt. Die Verstorbenen wurden in Rückenlage mit den Füßen voran durch die Gantry gefahren. Die für diese Studie relevanten Scans wurden von Höhe des Scheitels bis oberes Femurdrittel mit 1,0 /1,0mm (350 mAS) und einer Spannung von 120kV durchgeführt. Dabei wurden die Arme über dem Kopf gelagert, um eine bessere Bildqualität zu erzielen.

Außerdem wurde unter den Verstorbenen auf dem CT-Tisch ein Dichtephantom der Firma Image Analysis Inc gelegt, welches der Kalibrierung der Dichtedaten diente.

Darüber hinaus wurden noch weitere Scans für andere Studien angefertigt, die jedoch keinen Eingang in die vorliegende Dissertation gefunden haben. Diese umfassten einen Thoraxscan von oberer/ unterer Begrenzung der Lunge mit 0,8/ 0,8mm sowie einen Gehirnscan vom Scheitel bis zum 7. Halswirbelkörper mit 0,8/0,8 mm, und bei manchen Scans zusätzlich einen Gehirnscan mit Gantrykippung (cCT ax nativ/Head), bei dem die Hirnaufnahme mit 3mm/ Recon.1,5mm kf und die Schädelbasis 1,5mm/ Recon 0,75 mm kf eingestellt wurde.

Abbildung 3: CT-Raum im Institut für Rechtsmedizin mit Dichtephantom

Sämtliche Leichen dieser Studie wurden in Rückenlage auf Metallwannen mit einem Textiltuch bedeckt gelagert. Leichen der gekühlten Gruppe wurden zwischen den Scans im Kühlfach bei 4°C gelagert, die Leichen der ungekühlten Gruppe verweilten im CT-Raum bei ca. 22°C. Beim Umlagern von der Metallwanne auf den CT-Tisch wurde darauf geachtet, die Körperposition der Verstorbenen nicht zu verändern, sodass Flüssigkeitsverschiebungen möglichst vermieden wurden.

Insgesamt kamen 17 von 168 Messzeitpunkten nicht zustande (10,1 %). Dies lag unter anderem daran, dass manche Leichen schon vor dem letzten Scan abgeholt worden waren oder das CT zu dem Zeitpunkt mit anderen Fällen belegt war, die eine höhere Priorität besaßen.

Zeitpunkt	1. Scan	6h	12h	18h	24h	48h	72h
Anzahl der fehlenden	0	1	1	2	1	3	9
Messungen							

Tabelle 2: Nicht zustande gekommene Messungen

2.3.2 Die Software

Die angefertigten CT-Scans wurden mit der Software OsiriX v.5.9 (64-bit Version) auf einem Apple Macbook Pro mit OS X, 10.9.5 nach einem Messprotokoll mit definierten Parametern ausgewertet (siehe 2.3.4).

2.3.3 Das Messprotokoll

Untersuchte Zielstruktur	Messebene	Maßeinheit
Sagittaldurchmesser auf Xiphoidhöhe	Transversalebene	cm
Frontaldurchmesser auf Xiphoidhöhe	Transversalebene	cm
Sagittaldurchmesser auf Beckenhöhe	Transversalebene	cm
Frontaldurchmesser auf Beckenhöhe	Transversalebene	cm
Nebennierendurchmesser	Frontal- und Transversalebene	mm
Dichtemessung der Vesica biliaris	Transversalebene	HU
Dichtemessung des Caput pancreaticum	Transversalebene	HU
Dichtemessung der Milz	Frontalebene	HU
Dichtemessung des M. gluteus medius	Transversalebene	HU
Dichtemessung des M. Gluteus maximus	Transversalebene	HU
Dichtemessung des M. Iliacus	Transversalebene	HU
Dichtemessung der autochthonen Rückenmuskulatur	Transversalebene	HU
Knochendichtemessung eines Lendenwirbelkörpers	Transversalebene	HU
Knochendichtmessung des Os llium	Transversalebene	HU
Dichtemessung des perirektalen Fettkörpers	Frontalebene	HU
Abgrenzbarkeit des Pankreasgang	Transversalebene	1
Abgrenzbarkeit der Abdominalmuskulatur	Transversalebene	1
Abgrenzbarkeit der Fascia gerota	Transversalebene	1
Abgrenzbarkeit der Harnblase	Sagittalebene	1
Wanddicke der Harnblase	Sagittalebene	cm
Harnblasenvolumen	Sagittalebene	cm³
Volumen des Mageninhalts	Frontal- oder Sagittalebene	CM ³
Volumen der Magenblase	Frontal- oder Sagittalebene	CM ³
Milzvolumen	Transversalebene	CM ³
Dichtemessung des Dichtephantoms	Transversalebene	cm³

Tabelle 3: Übersicht über untersuchte Zielstrukturen

Die Scans wurden, wie eingangs erwähnt, mit der Software Osirix v.5.9 in der 64bit Version ausgewertet. Mittels der Software ist es möglich, sich den Körper in der Sagittal-, Frontal- sowie Transversalebene darzustellen sowie dreidimensional zu rekonstruieren.

Die Ausmessungen wurden mit den ROI-Werkzeugen durchgeführt. Anfangs wurden 25 ROIs im Abdomen, von denen wir vermuteten, dass sie in irgendeiner Weise eine Relevanz für die Fragestellung haben, bestimmt. Im Verlauf der Durchführung der Messungen zeigte sich, dass die Dichtemessung der rechten Nebenniere oftmals nicht durchführbar war. Das lag an der oftmals großen Streubreite der Dichtewerte, die sich aus der relativ kleinen Fläche zur ROI-Markierung, ergab. Somit wurden die Dichtewerte als nicht repräsentativ erachtet und nicht weiter bestimmt.

Den anderen Dichtemessungen wurden definierte Größen für die zu bemessende Fläche zugeteilt. Diese konnten nicht bei jeder Leiche eingehalten werden, da das zu messende Gewebe z.T. durch Atrophie oder anatomisch bedingt zu klein war. Wenn eine abweichende Flächengröße für die Dichtemessung zu wählen war, so wurde diese Flächengröße über alle sieben Messzeitpunkte eingehalten, um ein einheitliches Vorgehen beizubehalten.

Vorab sei erwähnt, dass die Leber als größtes Organ des Abdomens in einer anderen Dissertation über dieses Kollektiv behandelt wird und dementsprechend hier nicht behandelt wird.

Der Sagittaldurchmesser wurde unter anderem auf Höhe des Xiphoids in der Transversalebene gemessen.Bei der ersten Messung einer jeweiligen Untersuchungsreihe wurde das Längen-ROI-Werkzeug mittig durch den Wirbelkanal und durch den unteren, knöchernen Teil des Xiphoids gelegt. Da das Xiphoid in einzelnen Fällen, möglicherweise durch die Gasentstehung, nicht immer an der gleichen Stelle zu finden war, wurde der Fixpunkt für weitere Messungen dorsal, also im Bereich der Brustwirbelsäule bestimmt. Der Frontaldurchmesser, also der Querdurchmesser des Körpers in der Frontalebene, wurde auf Höhe des Xiphoids ebenso wie der Sagittaldurchmesser in der Transversalschnittbildgebung gemessen. Er wurde immer im rechten Winkel zum Längen-ROI aus der Sagittalmessung und durch den Wirbelkanal gelegt.

Abbildung 4: 2725 2 h Sagittal- und Frontaldurchmesser auf Höhe des Xiphoids

Der zweite Sagittaldurchmesser der Hüfte wurde auch in der Transversalebene und immer auf Höhe der Spina Iliaca anterior superior vermessen. Die Fixpunkte waren dabei zum einen zentral durch die Rektussscheide, zum anderen dorsal die knöchernen Anteile des Os sacrums. Auch der Frontaldurchmesser auf Hüfthöhe wurde in der Transversalebene möglichst orthogonal zum Längen-ROI des Sagittaldurchmessers gezogen. Hier wurde darauf geachtet, jeweils die maximale Ausdehnung des Körpers in dieser Ebene zu erfassen.

Abbildung 5: 2725 2 h Sagittal- und Frontaldurchmesser auf Höhe der Spina iliaca anterior superior

Bei der Erfassung der Nebennieren wurde der Fokus ausschließlich auf die rechte Nebenniere gelegt. Vor allem die einfache anatomische Lokalisation unter dem rechten Leberlappen, neben der Vena cava inferior und damit einhergehend die erleichterte Detektion über alle Messzeitpunkte hinweg waren ausschlaggebende Gründe, den Fokus so zu setzen. Im Laufe der ersten Messungen zeigte sich, dass eine statistisch signifikante und repräsentative Röntgendichtebestimmung der Nebenniere nicht mit dem Computertomographen des IfR und der Auflösung möglich sein würde. Das Organ selber ist relativ klein und zusätzlich von der Capsula adiposa der Niere umgeben. Darüber hinaus ist es der hormonellen und blutdruckregulierenden Funktion der Nebennieren geschuldet, dass sie von vielen Gefäßen durchzogen sind. Diese beiden Faktoren haben natürlich Einfluss darauf, wie sich die Dichte der Pixel und Voxel im CT-Bild darstellt. Dies ist auf den Partialvolumeneffekt (s.o.) zurück zu führen, was bei einer geringen Auflösung und kleiner Messfläche weitreichende Folgen hat. Es ließen sich Messergebnisse nur annähernd reproduzieren und über das gesamte Organ ließen sich sehr heterogene Ergebnisse bei der Dichtebestimmung mit einer hohen Standardabweichung erzielen. Dies führte dazu, dass nur die Ausdehnung der Nebenniere in der Transversal- und Frontalebene erfasst wurde und auf ihren zeitlichen Verlauf untersucht wurde.

In der Transversalebene wurde vom unteren zum oberen Nierenpol die Anzahl der Ebenen gezählt, was bei einer Schichtdicke von 1 mm dementsprechend auch gleich die Höhenausdehnung zeigt. Bei der Frontalebene wurde ebenso vorgegangen. Die Abbildungen 6 und 7 zeigen beispielhaft die Erfassung einer Nebenniere in der Frontalansicht von ihrem anteriorem Pol hin zur maximalen Ausdehnung. Gleichermaßen zeigen die Abbildungen 8 und 9 den kranialen Pol der Nebenniere bis hin zu ihrer maximalen Ausdehnung in der Transversalebene.

Abbildung 6: 2725 2 h Nebenniere rechts in Frontalansicht

Abbildung 7: 2725 2 h Nebenniere rechts in Frontalansicht

Abbildung 8: 2725 2 h Nebenniere rechts in Transversalansicht

Abbildung 9: 2725 2 h Nebenniere rechts in Transversalansicht

Die Röntgendichte der Vesica biliaris wurde mittels des Oval-ROI-Werkzeugs ausgewählt. Gemessen wurde in der Transversalebene oder in der 3D-MPR-Ansicht (Multiplanare Rekonstruktion). Die Messung wurde immer in der Ebene ausgeführt, auf der die größtmögliche Fläche der Gallenblase zu sehen war. Die Messfläche wurde auf 2 cm² festgelegt. In Einzelfällen wurde die Messfläche verringert, da die Gallenblase zu klein war. Die angepasste Messfläche wurde dann über alle Messzeitpunkte beibehalten. In einem Fall fand sich zwar keine Gallenblase, jedoch chirurgische Clips kaudal der Leber, was als Zeichen einer stattgefundenen Cholezystektomie gewertet wurde. In Abbildung 10 ist eine regelrechte Messung einer Gallenblasse zu sehen.

Abbildung 10: 2616 5 h Vesica biliaris Röntgendichtemessung

Zur Röntgendichtemessung wurde der Pankreaskopf mittels der 3D-MPR-Ansicht in allen drei Ebenen dargestellt und in der Transversalebene gemessen, wie in Abbildung 11 zu sehen ist. Die Messfläche betrug 1,5 cm², in einer Messreihe aufgrund der anatomischen Bedingungen nur 1 cm². Die 3D-MPR-Ansicht diente der besseren Lokalisierung der Region of Interest.

Abbildung 11: 2665 2 h Caput pancreaticum Röntgendichtemessung in der 3D-MPR-Ansicht

Die Röntgendichte der Milz wurde in der Frontalebene ermittelt. Die Messfläche wurde mittels Oval-ROI-Werkzeug ausgewählt und betrug 5 cm². Es wurden zwei Messungen gemacht, eine am dorsalsten Punkt, wo noch 5cm² ausgewählt werden konnten und eine 30 Schichten = 30 mm ventral davon. Bei manchen Messungen war die Milz zu klein, sodass durchgehend für alle Messzeitpunkte ein Abstand von 20mm zwischen den beiden Messflächen festgesetzt wurde.

Abbildung 12: 3107 12 h Milz Röntgendichtemessung dorsal

Abbildung 13: 3107 12 h Milz Röntgendichtemessung ventral

Die Röntgendichte des Musculus gluteus medius wurde in der Transversalebene auf der gleichen Höhe der Durchmessermessungen der Hüfte bestimmt. In Einzelfällen war dies z.B. aufgrund von Muskelatrophie nicht möglich. Die Messfläche betrug 5 cm² und wurde mittels des Oval-ROI-Werkzeugs ermittelt.

Die Röntgendichte des Musculus gluteus maximus wurde in der Transversalebene auf der gleichen Höhe der Durchmessermessungen der Hüfte bestimmt. In Einzelfällen war dies z.B. aufgrund von Muskelatrophie nicht möglich. Die Messfläche betrug 3 cm² und wurde mittels des Oval-ROI-Werkzeugs ermittelt.

Die Röntgendichte des Musculus Iliacus wurde in der Transversalebene auf der gleichen Höhe der Durchmessermessungen der Hüfte bestimmt. In Einzelfällen war dies z.B. aufgrund von Muskelatrophie nicht möglich. Die Messfläche betrug 2 cm² und wurde mittels des Oval-ROI-Werkzeugs ermittelt. Dabei erfolgte die anatomische Orientierung am Os Ilium.

Wie auch bei anderen Messungen gab es auch hier anatomische Gründe, die nur eine kleinere ROI zuließen.

Abbildung 14: 1742 18 h Gluteal- und Iliacalmuskulatur Röntgendichtemessung in der Transversalebene

Zur Röntgendichtemessung der autochthone Rückenmuskulatur wurde diese in der 3D-MPR-Ansicht dargestellt, um eine einheitliche Messung auf der gleichen Höhe zu gewährleisten. Das Oval-ROI-Werkzeug wurde in der Transversalebene angesetzt. Anatomisch wurde sich am Lendenwirbelkörper 5, in einem Fall am Lendenwirbelkörper 4, orientiert und die Messfläche betrug 2 cm². Abbildung 15 zeigt beispielhaft eine solche Messung in der 3D-MPR-Ansicht.

Abbildung 15: 2725 2 h Autochthone Rückenmuskulatur Röntgendichtemessung in 3D-MPR-Ansicht

Die Röntgendichtebestimmung der Wirbelkörper erfolgte im Lendenwirbelkörper 5. Dies war aufgrund von ausgeprägter Osteoporose oder bei Zustand nach operativen Eingriffen mit Spondylodese nicht immer möglich, sodass in einzelnen Messreihen die Knochendichte mittels des 4. Lendenwirbelkörpers bestimmt wurde. Zuerst wurde die "Knochen-Fensterung" im Reiter WL/WW eingestellt. Bei der Dichtebestimmung wurde darauf geachtet, den Wirbelkörper in der Transversalebene mittig darzustellen. Die Messfläche betrug 2 cm² und durfte keine Wirbelkörpervenen oder andere Artefakte enthalten. In Abbildung 16 ist die Spongiosa-Dichtemessung eines Lendenwirbelkörpers zu sehen.

Abbildung 16: 2725 2 h Spongiosa LWK5 Dichtemessung in der Transversalebene

Die Knochendichtebestimmung im Os Ilium wurde in der Transversalebene mit dem Stift-ROI-Werkzeug freihändig ausgewählt. Auch hier wurde das "Knochen-Fenster" der Software ausgewählt. Die Messfläche betrug 2 cm². Dabei erfolgte die Orientierung an der Spina Iliaca posterior superior.

Abbildung 17: 2725 2 h Spongiosa Os ilium Dichtemessung in der Transversalebene

Die Röntgendichte des perirektalen Fettkörpers wurde in der Frontalebene ermittelt. Die Flächenauswahl von 2 cm² wurde mit dem Oval-ROI-Werkzeug rechtsseitig der Rektumampulle vorgenommen. Die Messfläche wurde bei einigen Messungen auf bis zu 1 cm² verringert, was auf die anatomischen Gegebenheiten zurück zu führen ist. Die festgelegte Messfläche wurde auch hier über alle Messzeitpunkte beibehalten.

Abbildung 18: 2725 2 h Perirektaler Fettkörper Röntgendichtemessung in der Frontalebene

Die Abgrenzbarkeiten des Pankreasgangs, der Abdominalmuskulatur in ihrer Schichtung ("Bauchwandschichten") und der Fascia gerota anterior / posterior wurden alle qualitativ in der Transversalebene beurteilt. Dabei wurde in drei Kategorien unterteilt: gut; bedingt; schwer. Zur Objektivierung wurden jeweils Screenshots gemacht. Abbildung 19 zeigt einen schwer lokalisierbaren und nicht kontinuierlich darstellbaren Pankreasgang. In Abbildung 20 lassen sich die einzelnen Muskelschichten der Bauchwand z.T. voneinander abgrenzen. In Abbildung 21 ist beispielhaft eine gut sichtbare Gerota-Faszie dargestellt.

Abbildung 19: 2725 2 h Abgrenzbarkeit Pankreasgang "schwer" in der Transversalebene

Abbildung 20: 2725 2 h Abgrenzbarkeit der Bauchwandschichten "bedingt" in der Transversalebene

Abbildung 21: 1512 6 h Abgrenzbarkeit der Fascia gerota "gut" in der Transversalebene

Die Bestimmung der Abgrenzbarkeit der Harnblasenwand erfolgte in der Sagittalebene und wurde in die gleichen Kategorien, wie die anderen abzugrenzenden Gewebe unterteilt (gut; bedingt; schwer). Gleichzeitig wurde auch immer die Wanddicke der Harnblase mit dem Längen-ROI-Werkzeug gemessen. Anatomisch wurde sich an der Symphise zwischen den Schambeinen orientiert. Die Längenmessung erfolgte stets am hinteren Pol der Harnblase vom Harnblasenlumen weg zur Excavatio rectovesicalis bzw. zum Spatium vesicovaginale.

Abbildung 22: 3147 6 h Harnblasenwand Abgrenzung und Durchmesser in der Sagittalebene

Das Harnblasenvolumen des Harnblaseninhalts wurde in der Sagittalebene gemessen. Dabei wurde vom lateralsten Punkt, wo noch Harnblaseninhalt zu sehen war, in Abständen von 5 Schichten mittels des Stift-ROI-Werkzeugs der Inhalt umfahren. Die ROIs mussten alle den selben Namen haben. Mit dem Befehl "fehlende ROIs berechnen" ließen sich auch die Schichten, die nicht per Hand vermessen wurden, bestimmen. Eventuell musste mit dem Verdrängerwerkzeug korrigiert werden. Danach ließ sich das Volumen des Harnblaseninhalts mit dem Befehl "Volumen berechnen" bestimmen.

Abbildung 23: 1701 3 h Harnblasenvolumen gemessen in der Sagittalebene

Das Volumen des Mageninhalts wurde entweder in der Frontal- oder Sagittalebene ermittelt. Auch hier wurde wieder von einem lateralsten oder kranialsten Punkt alle 5 Schichten einmal der Inhalt mittels Stift-ROI-Werkzeug bestimmt. Mit dem Befehl "fehlende ROIs berechnen", ließen sich auch die Schichten, die nicht per Hand vermessen wurden, bestimmen. Eventuell musste mit dem Verdrängerwerkzeug korrigiert werden. Danach ließ sich das Volumen mit dem Befehl "Volumen berechnen" bestimmen.

Abbildung 24: 1701 3 h Mageninhalt gemessen in der Frontalebene

Das Volumen der Magenblase wurde entweder in der Frontal- oder Sagittalebene ermittelt.

Dabei wurde das sogenannte "Lungenfenster" im Reiter WL/WW ausgewählt. Unter dem Reiter ROI wurde das Menü "Grow Region (2D /3D Segmentierung)" ausgewählt. Im nachfolgenden Fenster wurden der Untere Schwellwert auf -1200 HU und der obere Schwellwert auf maximal -200 HU gesetzt. Anschließend wurde 3D-Growing Region (ganze Serie) bestätigt und berechnet. Eventuell kam es dabei dazu, dass auch Teile des Duodenums und des Oesophagus mit einbezogen wurden. Diese wurden nachträglich manuell mit dem Verdrängerwerkzeug entfernt. Im Anschluß ließ sich das Volumen mit ROI \rightarrow ROI-Volumen \rightarrow Berechne Volumen errechnen.

Abbildung 25: 1701 3 h Magenblase gemessen in der Frontalebene

Das Milzvolumen wurde in der Transversalebene ermittelt. Auch hier wurde vom kaudalsten bzw. kranialsten Punkt mittels Stift-ROI-Werkzeug das Organ erfasst. Dies wurde alle 5 Schichten bis zum anderen Pol wiederholt. Mittels des Reiters ROI \rightarrow ROI-Volumen \rightarrow Fehlende ROIs erstellen ließen sich die anderen Ebenen auch erfassen. Korrekturen wurden mittels des Verdrängerwerkzeugs vorgenommen. Die Volumenberechnung fand dann wie gehabt statt.

Abbildung 26: 1701 3 h Milzvolumen gemessen in der Transversalebene

Die Dichtemessung des Dichtephantoms fand immer auf ca. halber Höhe des Dichtephantoms in einem Artefakt- und Störungsfreien Bild in der Transversalebene statt. Dabei wurde in allen drei Röhren mit dem Oval-ROI-Werkzeug eine Fläche von 1,5 cm² ausgewählt. In Abbildung 27 ist eine solche Dichtephantom-Dichtemessung zu sehen. Die Hounsfield-Einheiten der drei Röhren sind in Abbildung 28 dargestellt.

Abbildung 27: 2653 4 h Dichtephantom gemessen in der Transversalebene

3. Auswertung und Analyse

3.1 Die Kalibrierung der Dichtedaten

Das Dichtephantom der Firma Image Analysis INC ist aus drei Röhren unterschiedlicher Dichte aufgebaut und wird bei dem Scan unter dem Leichnam platziert (siehe Abb. 1). Die wahren Dichtewerte der Röhren sind auf dem Phantom markiert.

Abbildung 28: Dichtephantom mit Beschriftung

Das Dichtephantom wird zur Kontrolle der Dichtewerte genommen. Bei einer großen Differenz zwischen gemessenen und wahren Werten können die gemessen Werte kalibriert und dadurch den wahren Werten angenähert werden.

Bei nicht allen Messungen wurde das Dichtephantom mit gescannt, sodass von 151 Messreihen 40 aus nicht nachvollziehbaren Gründen ohne Dichtephantom liefen. Zusätzlich wichen bei der 72 h-Messung von L2665 die Werte des Dichtephantoms so gravierend von den wahren Werten ab, dass dieser Messzeitpunkt außen vor gelassen wird. Somit gelten nur 110 Messreihen (72,84%) als relevant und aussagekräftig.

Deskriptive Statistik								
	N	Spannwe	Minimu	Maximu	Mitt	elwert	Standard	Varian
		ite	m	m			abweichung	z
	Statistik	Statistik	Statistik	Statistik	Statistik	Standardf	Statistik	Statisti
					,	ehler		k
Dichtephantom	110	30,01	210,73	240,74	224,14	,70	7,34433	53,939
Dichte Links HU								
Dichtephantom	110	34,05	-29,02	5,03	-14,50	,58	6,10946	37,325
Dichte Mitte HU								
Dichtephantom	110	32,16	92,99	125,15	106,43	,60	6,32706	40,032
Dichte Rechts HU								
Gültige Werte	110							
(Listenweise)								

Tabelle 4: Deskriptive Statistik Dichtephantom

Die Methodik zur Kalibrierung basiert auf der Vorgehensweise von Prof. Dr. Glüer von der Klinik für Radiologie und Neuroradiologie des Universitätsklinikums in Kiel, der diese freundlicherweise zur Verfügung stellte. Zuerst wurde die Steigung sowie der Achsenabschnitt aus den jeweiligen gemessenen Dichtewerten der Linken und der rechten Röhre des Phantoms sowie den wahren Werten errechnet. Im folgenden wurde dann der kalibrierte Wert aus dem gemessenem Wert minus des Achsenabschnittes durch die Steigung ermittelt. Dies wurde für jeden Messzeitpunkt neu errechnet, sodass immer auch aus den gemessenen Dichtephantomwerte Steigung und Achsenabschnitt erneut gebildet wurden.

 $Wert_{kallibriert} = \frac{(Wert_{gemessen} - Achsenabschnitt)}{Steigung}$

Die kalibrierten Werte wurden, aufgrund ihrer Unvollständigkeit hinsichtlich der Anzahl der Messungen, nicht übernommen, sondern zusätzlich ausgewertet und hinsichtlich der Unterschiede zu den gemessenen Daten untersucht.

3.2 Statistische Analyse

Für die statistische Auswertung mit der Software SPSS wurde ein allgemeines, lineares Mixed-Modell mit dem Leichnam als zufälliger Effekt sowie den fortlaufenden Messzeitpunkten als wiederholte Messungen angewandt. Mithilfe des Modells wurden die abhängigen Variablen, also Durchmesser, Dichten, Volumina und Abgrenzbarkeiten über die verschiedenen Zeitpunkte hinweg analysiert. Die festen Effekte Gender, Lagerung und Kardiopulmonale Reanimation (CPR) wurden als kategoriale unabhängige Variablen und Zeit (=time1), Alter und Bodymass-Index (BMI) als fortlaufende unabhängige Variablen definiert. Darüber hinaus wurde der Effekt der Interaktion von Zeit und Lagerung nochmals separat getestet.

Für jede einzelne abhängige Variable wurde ein Initialmodell entworfen, welches sämtliche oben genannten festen Effekte beinhaltete. Nicht-signifikante Effekte wurden mittels der Maximum-Likelihood-Methode (von engl. maximale Wahrscheinlichkeit) hierarchisch-rückwärts-eliminiert (nach Kleinbaum & Klein 2010). Mit den übrigen, signifikanten Effekten wurde das Finalmodell gebildet, wo sie erneut geschätzt wurden, dieses Mal jedoch mithilfe der Restricted Maximum-Likelihood-Methode (von engl. eingeschränkte maximale Wahrscheinlichkeit), sodass etwaige Störfaktoren keinen Einfluss mehr auf das Ergebnis haben.

Die dabei ermittelten Werte sind jedoch nicht die deskriptiven Mittelwerte, sondern die geschätzten Randmittelwerte. Dies sind berechnete Werte, die auf Basis der unabhängigen Variablen fußen. So haben beispielsweise Unterschiede zwischen den Geschlechtern einen gleichen Einfluss auf den Mittelwert (Randmittel), obwohl die Kollektive männlich - weiblich in dieser Untersuchung nicht gleichermaßen vertreten sind. Nicht signifikante unabhängige Variablen haben einen vernachlässigbaren Einfluss auf die geschätzten Randmittel.

Zusätzlich wurden die 95%-Konfidenzintervalle für die unterschiedlichen Messzeitpunkte berechnet.

Im Folgenden werden die untersuchten Variablen separiert dargestellt. Zu jeder Variable findet sich zuerst die grafische Darstellung der gemessenen Werte im zeitlichen Verlauf. Diese Grafik zeigt die Daten, bevor die nicht-signifikanten Kovariaten herausgerechnet wurden und gibt somit einen Überblick. Im Verlauf werden zuerst die Mittelwerte vor Eliminierung und danach nach Eliminierung der nicht-signifikanten Einflüsse tabellarisch dargestellt. Diese basieren auf der mit dem linearen Mixed-Modell errechneten Schätzfunktion, die ebenfalls dargestellt ist.

3.3 Auswertung der statistischen Analyse

Sagittaldurchmesser auf Höhe des Xiphoids in cm

Abbildung 29: Zeitlicher Verlauf des Sagittaldurchmessers auf Höhe des Xiphoids in cm

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	23,065	0,414	25,193	22,213	23,918
6	22,979	0,412	24,572	22,130	23,827
12	22,892	0,410	24,111	22,047	23,737
18	22,805	0,409	23,810	21,962	23,649
24	22,719	0,408	23,668	21,876	23,562
48	22,373	0,413	24,711	21,523	23,223
72	22,026	0,427	28,455	21,152	22,901

Tabelle 5: Darstellung der Daten "Sagittaldurchmesser auf Höhe des Xiphoid" nach Durchlaufen des Initialmodells (cm)

	Schätzung	Standardfehler	Signifikanz
Gender	2,317	0,584	0,001
Time1	-0,015	0,003	0,000
BMI	0,579	0,062	0,000

Tabelle 6: Schätzung signifikanter Kovariaten des Sagittaldurchmessers auf Höhe des Xiphoid

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	23,554	0,301	23,486	22,933	24,176
6	23,466	0,297	22,370	22,851	24,082
12	23,378	0,294	21,508	22,767	23,990
18	23,290	0,292	20,901	22,682	23,899
24	23,202	0,291	20,548	22,596	23,809
48	22,850	0,296	21,713	22,237	23,464
72	22,498	0,313	27,353	21,857	23,140

Tabelle 7: Geschätzte Randmittel des Sagittaldurchmessers auf Höhe des Xiphoid nach Durchlaufen des Finalmodells (cm)

Die grafische Darstellung der Messergebnisse zeigt eine abnehmende Tendenz der gemessenen Sagittaldurchmesser auf Xiphoid-Höhe mit Fortschritt der Zeit. Die obere Tabelle zeigt die deskriptive Statistik nach Durchlaufen des Initialmodells. Sie enthält also die geschätzten Randmittel vor dem Hierarchisch-Rückwärts-Eliminieren der nicht-signifikanten Kovariaten. Die zweite Tabelle zeigt die errechneten Schätzer, mit denen die Randmittel der dritten Tabelle errechnet worden sind. Diese letzte Tabelle enthält also die geschätzten Mittelwerte ohne den Einfluss der nicht-signifikanten Kovariaten. Es ist zu beobachten, dass zum Einen der Mittelwert im Finalmodell im Schnitt um 0,483 cm höher ist, zum Anderen ist der Standardfehler der Werte geringer, und zwar im Mittel um 0,115. Der errechnete Schätzer von -0,01467 der Kovariate "Time1" (= fortgeschrittene Zeit in Stunden) bestätigt dass mit fortschreitender Zeit der Sagittaldurchmesser auf Höhe des Xiphoids abnimmt und zwar um 0,015 cm pro Stunde. Diese Erkenntnis deutet sich schon in der nicht-adjustierten Grafik trotz des Einschluss der nicht-signifikanten Kovariaten an und wird durch dieses Ergebnis nun auch bestätigt. Die beiden anderen Faktoren Body-Mass-Index sowie das Geschlecht haben ebenfalls einen Einfluss auf den Sagittaldurchmesser und zwar im Sinne einer Zunahme der untersuchten Variable bei höheren BMI-Werten sowie beim männlichen Phänotyp.

Frontaldurchmesser Xiphoid in cm

Abbildung 30: Zeitlicher Verlauf des Frontaldurchmessers auf Höhe des Xiphoids in cm

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	32,003	0,667	26,035	30,632	33,373
6	32,058	0,661	25,252	30,696	33,419
12	32,113	0,658	24,713	30,758	33,468
18	32,168	0,656	24,416	30,816	33,520
24	32,223	0,655	24,360	30,872	33,574
48	32,444	0,670	26,566	31,068	33,820
72	32,665	0,710	32,847	31,221	34,109

Tabelle 8: Darstellung der Daten "Frontaldurchmesser auf Höhe des Xiphoid" nach Durchlaufen des Initialmodells (cm)

	Schätzung	Standardfehler	Signifikanz
Time1	0,012	0,006	0,032
BMI	0,795	0,097	0,000

Tabelle 9: Schätzung signifikanter Kovariaten des Frontaldurchmessers auf Höhe des Xiphoids

Die mithilfe des Initialmodells erstellte Tabelle ergibt einen im Schnitt um 0,624 cm höheren Mittelwert im Vergleich zur Tabelle des Finalmodells. Der Standardfehler ist, wie zu erwarten, niedriger (-02,54) nach Ausschluss der unbedeutsamen Kovariaten. Der errechnete Schätzer zeigt, dass mit fortschreitender Zeit eine Zunahme des Sagittaldurchmessers auf Xiphoidhöhe um 0,01220 cm pro Stunde einhergeht. Der Ausreißer bei Fall 1495-13 ist darauf zurück zu führen, dass bei den ersten beiden Messungen leider nicht das Messprotokoll eingehalten wurde und die Arme der verstorbenen Person auf der Brust lagen, sodass vermehrte Last auf dem Gewebe lag und dies eine stärkere Ausdehnung in des Frontaldurchmessers zur Folge hatte. Ebenfalls hat der BMI einen positiven Einfluss auf die Variable.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	31,302	0,416	27,448	30,448	32,155
6	31,375	0,407	25,208	30,538	32,212
12	31,448	0,400	23,598	30,623	32,274
18	31,521	0,395	22,614	30,703	32,340
24	31,595	0,394	22,246	30,779	32,410
48	31,887	0,414	27,090	31,037	32,737
72	32,180	0,473	42,623	31,227	33,133

Tabelle 10: Geschätzte Randmittel des Frontaldurchmessers auf Höhe des Xiphoidnach Durchlaufen des Finalmodells (cm)

Sagittaldurchmesser auf Höhe der Spina iliaca anterior superior in cm

Abbildung 31: Zeitlicher Verlauf des Sagittaldurchmessers auf Höhe der Spina iliaca ant. sup.in cm

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	24,660	0,572	25,078	23,482	25,838
6	24,511	0,569	24,621	23,338	25,685
12	24,363	0,567	24,286	23,193	25,533
18	24,214	0,566	24,073	23,047	25,382
24	24,066	0,565	23,981	22,899	25,233
48	23,472	0,570	24,837	22,297	24,647
72	22,878	0,587	27,722	21,675	24,081

Tabelle 11: Darstellung der Daten "Sagittaldurchmesser auf Höhe der Spina iliaca ant. sup. nach Durchlaufen des Initialmodells (cm)

	Schätzung	Standardfehler	Signigikanz
Time1	-0,024	0,003	0,000
BMI	0,886	0,089	0,000

Tabelle 12: Schätzung signifikanter Kovariaten des Sagittaldurchmessers auf Höhe der Spina iliaca ant. sup.

Vergleicht man die Tabellen vor und nach Analyse mittels des Finalmodells, so ist eine Abnahme des Mittelwerts um durchschnittlich 0,302 cm sowie ein um 0,201 geringerer Standardfehler zu beobachten. Der Sagittaldurchmesser des Körpers auf Höhe des Spina Iliaca anterior superior nimmt ebenso wie der Sagittaldurchmesser auf Xiphoidhöhe ab. Der ermittelte Wert der Schätzung ist bei -0,02411 cm pro Stunde und hat dementsprechend den gleichen Trend wie die nicht-adjustierten Werte. Dieser Trend zeichnet sich auch schon klar in der grafischen Darstellung der Rohdaten ab. Auch auf diesen Sagittaldurchmesser hat der BMI einen signifikanten Einfluss im Sinne von einer Zunahme des Durchmessers bei einem höherem BMI.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	24,341	0,373	24,445	23,572	25,110
6	24,196	0,369	23,391	23,434	24,958
12	24,052	0,365	22,591	23,295	24,808
18	23,907	0,363	22,045	23,154	24,660
24	23,762	0,362	21,751	23,012	24,513
48	23,184	0,367	23,135	22,424	23,944
72	22,605	0,389	28,927	21,809	23,402

Tabelle 13: Geschätzte Randmittel des Sagittaldurchmessers auf Höhe der Spina iliaca ant. sup. nach Durchlaufen des Finalmodells (cm)

Frontaldurchmesser des Körpers auf Höhe der Spina iliaca anterior superior in cm

Abbildung 32: Zeitlicher Verlauf des Frontaldurchmessers auf Höhe der Spina iliaca ant. sup. in cm

Parameter	Schätzung	Standardfehler	Signifikanz
Gender	-2,841	1,124	0,020
BMI	0,743	0,120	0,000
Time1	0,005	0,003	0,105

Tabelle 14: Schätzungen der Kovariaten des Frontaldurchmessers auf Höhe der Spina iliaca ant. sup.

Die Analyse des Frontaldurchmessers des Körpers auf Höhe der Spina Iliaca anterior superior in cm zeigte, dass hier die Zeit keinen signifikanten Einfluss hat. Demnach ist hier eher von einer zufälligen Übereinstimmung auszugehen, sodass auf eine tabellarische Darstellung der geschätzten Randmittel verzichtet wurde. Weswegen bei den vorigen Körperdurchmessern der zeitliche Einfluss von signifikanter Bedeutung war und hier nicht mehr, lässt sich nicht ganz heraus arbeiten. Eine mögliche Erklärung ist, dass im Vergleich zu dem weiter kranial gelegenen Messpunkt mehr Weichteilgewebe (Muskulatur, Fettgewebe) das knöcherne Skelett umgibt und somit der untersuchte Durchmesser mehr strukturell bedingten Schwankungen unterliegt. Wie schon bei den vorigen Variablen hat hier der BMI und dieses mal auch wieder das Geschlecht einen signifikanten Einfluss auf die untersuchte Variable. Im Gegensatz zum Sagittaldurchmesser auf Xiphoidhöhe ist hier jedoch ein negativer Einfluss des männlichen Phänotyps zu beobachten.

Länge der rechten Nebenniere in mm in der Transversalebene

Abbildung 33: Zeitlicher Verlauf der rechten Nebennierenlänge in mm in der Transversalebene

Parameter	Schätzung	Standardfehler	Signifikanz		
Time1	0,015	0,013	0,247		
Tabelle 15. Darstellung des Schätzers der Kovarigte					

Tabelle 15: Darstellung des Schätzers der Kovariate Zeit

Die Länge in mm der rechten Nebenniere verhält sich im zeitlichen Verlauf relativ unterschiedlich. So ist beispielsweise bei L1742-13 eine Abnahme von 12 mm in den ersten 48 h auszumachen, bei L1495-13 hingegen eine Zunahme von 10 mm zu beobachten. Dies führte dazu, dass der zeitliche Einfluss nicht als signifikant hinsichtlich der Länge der Nebenniere gewertet werden kann. Des Weiteren ist hier der Einfluss der Bildqualität auch zu beachten. Die untersuchte Struktur ist relativ klein und so können die Pole der Nebenniere durch den Partialvolumeneffekt z.T. länger bzw. kürzer erscheinen. Bei einer Schnittbildhöhe von 1 mm hat dies dementsprechend auch einen größeren Einfluss.

Länge der rechten Nebenniere in mm in der Frontalebene

Abbildung 34: Zeitlicher Verlauf der Länge der rechten Nebenniere in mm in der Frontalebene

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	38,233	3,394	18,141	31,106	45,360
6	37,877	3,387	17,997	30,760	44,994
12	37,521	3,383	17,897	30,412	44,631
18	37,166	3,380	17,839	30,060	44,272
24	36,810	3,380	17,825	29,705	43,915
48	35,387	3,397	18,200	28,256	42,519
72	33,965	3,446	19,277	26,758	41,171

Tabelle 16: Darstellung des Längsdurchmessers der rechten Nebenniere in mm nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	-0,055	0,012	0,000

Tabelle 17: Schätzwert der Kovariate Zeit des Längsdurchmessers der rechten Nebenniere in der Frontalebene

Im Vergleich zur Transversalebene zeigt sich in der Frontalebene ein Trend zur Verringerung des Längsdurchmessers der rechten Nebenniere. Im Modell bestätigt sich dies durch einen Schätzwert von 0,055 mm, die die Nebenniere pro Stunde durchschnittlich in dieser Ebene abnimmt. Nach Eliminieren von nicht-signifikanten Kovariaten ist der Mittelwert der Nebennierenlänge anfangs niedriger, nimmt jedoch ab 48 h wieder zu, was dem allgemeinen Trend zur Verringerung der Nebennierenlänge nicht entgegen wirkt.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	38,113	1,556	18,313	34,849	41,377
6	37,781	1,543	17,740	34,535	41,026
12	37,448	1,534	17,330	34,216	40,680
18	37,115	1,529	17,083	33,892	40,339
24	36,783	1,527	16,997	33,562	40,004
48	35,452	1,555	18,285	32,189	38,715
72	34,122	1,637	22,307	30,728	37,515

Tabelle 18: Geschätzte Randmittel des Längsdurchmessers der rechten Nebenniere in mm in der Frontalebene nach Durchlaufen des Finalmodells

Röntgendichte des M. gluteus medius in HU

Abbildung 35: Zeitlicher Verlauf der Dichte des M. gluteus medius in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	27,459	3,424	25,033	20,408	34,510
6	28,368	3,408	24,583	21,343	35,394
12	29,277	3,398	24,280	22,269	36,286
18	30,186	3,393	24,123	23,186	37,186
24	31,095	3,392	24,112	24,096	38,095
48	34,731	3,441	25,535	27,651	41,811
72	38,367	3,568	29,369	31,074	45,660

Tabelle 19: Darstellung der Daten "Dichte M. gluteus medius" nach Durchlaufen des Initialmodells (HU)

Parameter	Schätzung	Standardfehler	Signifikanz
Gender	11,892	5,262	0,035
CPR	17,706	7,698	0,032
Time1	0,163	0,020	0,000
Alter	-0,318	0,143	0,038

Tabelle 20: Schätzungen signifikanter Kovariaten der Dichte des M. gluteus medius

Im Vergleich zeigen jeweils die geschätzten Randmittel eine Zunahme der Dichte im Verlauf der Zeit, was sich auch schon in der Grafik der Rohdaten abzeichnet. Die Mittelwerte sind nach der Analyse durch das Finalmodell durchschnittlich 0,5 HU höher mit zunehmender Tendenz. Der Standardfehler ist erwartungsgemäß niedriger mit 0,492. Neben dem Faktor Zeit zeigt sich hier auch ein Einfluss des männlichen Geschlechts, des Alters sowie dar kardiopulmonalen Reanimation. Auffällig sind die Dichtewerte der Leiche 2355-13. Insgesamt zeigte dieser Situs in sämtlichen Scans eine schlechte Bildqualität, was auf vermehrte Wassereinlagerungen in Gewebe und Körperhöhlen zurück zu führen ist. Die folgende Tabelle zeigt die geschätzten Randmittel im zeitlichen Verlauf, berechnet mithilfe der Schätzung für die Zeit.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	27,662	3,921	20,619	19,498	35,826
6	28,640	3,909	20,361	20,496	36,785
12	29,618	3,900	20,182	21,487	37,749
18	30,596	3,895	20,082	22,473	38,720
24	31,574	3,894	20,061	23,452	39,697
48	35,487	3,928	20,768	27,311	43,662
72	39,399	4,022	22,769	31,075	47,723

Tabelle 21: Geschätzte Randmittel der Dichtedaten des M. gluteus medius nach Durchlaufen des Finalmodells (HU)

Kalibrierte Röntgendichte des M. gluteus medius in HU

Abbildung 36: Zeitlicher Verlauf der kalibrierten Dichtedaten des M. gluteus medius in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	37,295	3,466	20,851	30,083	44,508
6	37,822	3,450	20,476	30,636	45,009
12	38,349	3,438	20,190	31,182	45,517
18	38,876	3,429	19,992	31,722	46,030
24	39,403	3,425	19,881	32,257	46,549
48	41,511	3,443	20,311	34,337	48,685
72	43,619	3,520	22,164	36,322	50,916

Tabelle 22: Darstellung der Daten "Kalibrierte Dichte M. gluteus medius" nach Durchlaufen des Initialmodells (HU)

Parameter	Schätzung	Standardfehler	Signifikanz
Lagerung	-13,565647	5,530408	,026
Time1	,089839	,018938	,000
Alter	-,638505	,166725	,001

Tabelle 23 Schätzungen signifikanter Kovariaten der kalibrierten Dichtedaten des M. gluteus medius

Nach der Kalibrierung zeigt sich ein deutlicher Unterschied zwischen den geschätzten Randmitteln nach dem Durchlaufen des Initial- und des Finalmodells. Im Mittel weichen die Randmittel um 7,251 HU ab, die Standardfehler sind nach wie vor relativ hoch. Im Vergleich zu den nicht-kalibrierten Daten sind die kalibrierten Dichtewerte durchschnittlich um 14,951 HU höher (Min: 11,564HU ; Max: 16,832HU). Der Standardfehler ist nach Kalibrierung um 1,410 niedriger und hat einen Mittelwert von 2,514. Nach Kalibrierung der gemessenen Dichtedaten zeigt sich im Diagramm ein gelichtetes Bild, was darauf zurück zu führen ist, dass nicht immer ein Dichtephantom bei den Messungen vorhanden war. Außerdem sind im Vergleich zu den nicht-kalibrierten Daten die Kovariaten Gender und CPR nicht mehr bedeutsam, hingegen aber die Lagerung. Letztere sogar mit einem Wert von -13,565647. Der dazugehörige Standardfehler ist relativ hoch, was auf den geringeren Stichprobenumfang nach Kalibrierung zurückzuführen ist.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	44,494	2,514	17,107	39,192	49,797
6	45,033	2,497	16,635	39,757	50,309
12	45,572	2,484	16,302	40,315	50,830
18	46,111	2,476	16,107	40,864	51,358
24	46,650	2,474	16,047	41,407	51,894
48	48,807	2,517	17,176	43,501	54,112
72	50,963	2,638	20,608	45,470	56,455

Tabelle 24: Geschätzte Randmittel der kalibrierten Dichtedaten des M. gluteus medius nach Durchlaufen des Finalmodells (HU)

Röntgendichte des Musculus gluteus maximus in HU

Abbildung 37: Zeitlicher Verlauf der Dichte des M. gluteus maximus in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	18,459	4,028	25,098	10,165	26,754
6	19,203	4,006	24,559	10,944	27,462
12	19,947	3,992	24,199	11,712	28,182
18	20,691	3,984	24,014	12,468	28,913
24	21,434	3,984	24,005	13,212	29,656
48	24,409	4,054	25,742	16,071	32,747
72	27,384	4,233	30,419	18,743	36,025

Tabelle 25: Darstellung der Daten "Dichte M. gluteus maximus" nach Durchlaufen des Initialmodells (HU)

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,135	0,026	0,000
Alter	-0,460	0,155	0,007

Tabelle 26: Schätzungen signifikanter Kovariaten des M. gluteus maximus

Auch bei der Auswertung der Dichte des Musculus gluteus maximus zeigen sich im Finalmodell durchschnittlich um 6,378 HU höhere Randmittel im Vergleich zum Initialmodell. Ebenfalls ist der Standardfehler im Mittel um 1,5 niedriger. Auch zeigt sich eine ähnlich hohe Schätzung für die Zeit wie bei der unkalibrierten Dichtemessung des Musculus gluteus medius. Es ist insgesamt nach Berechnung mit dem Mixed-Modell eine Zunahme des geschätzten Mittelwerts über die Zeit zu beobachten. Diese Zunahme verläuft ähnlich wie schon bei den unkalibrierten Daten des M. gluteus medius. Jedoch ist der Kurvenverlauf beim M. gluteus medius im Vergleich homogener. Der Ausreisser L2355-13 ist auch hier zu beobachten, jedoch mit einem sehr unbeständigen Verlauf. Die Gründe hierfür wurden weiter oben aufgeführt.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	24,543	2,532	24,685	19,326	29,761
6	25,356	2,499	23,457	20,191	30,520
12	26,168	2,476	22,605	21,041	31,295
18	26,980	2,463	22,125	21,874	32,086
24	27,792	2,460	22,011	22,691	32,894
48	31,041	2,547	25,281	25,798	36,285
72	34,291	2,779	34,791	28,647	39,934

Tabelle 27: Geschätzte Randmittel der Dichte des M. gluteus maximus nach Durchlaufen des Finalmodells (HU)

Kalibrierte Röntgendichte des M. gluteus maximus in HU

Abbildung 38: Zeitlicher Verlauf der kalibrierten Dichtedaten des M. gluteus maximus in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	29,238	3,134	22,601	22,749	35,728
6	29,637	3,110	21,949	23,188	36,087
12	30,037	3,091	21,454	23,617	36,456
18	30,436	3,078	21,112	24,038	36,834
24	30,835	3,070	20,924	24,449	37,221
48	32,432	3,098	21,701	26,001	38,862
72	34,028	3,216	24,982	27,404	40,652

Tabelle 28: Darstellung der Daten "Kalibrierte Dichte M. gluteus maximus" nach Durchlaufen des Initialmodells (HU)

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,069	0,022	0,003
Alter	-0,442	0,127	0,003

Tabelle 29: Schätzungen signifikanter Kovariaten der kalibrierten Dichtedaten des M. gluteus maximus

Nach Kalibrierung und Analyse der Dichtedaten des M. gluteus maximus haben die gleichen Kovariaten Zeit und Alter weiterhin einen Einfluss auf die untersuchte Variable. Der positive Trend der geschätzten Randmittel ist weiterhin zu beobachten. Die Dichtewerte sind im Mittel um 5,767 HU höher nach Berechnung mittels des Finalmodells und der Standardfehler ist durchschnittlich um 0,94 geringer. Im Vergleich zur Berechnung der nicht kalibrierten Daten sind die Randmittel nach Analyse mit dem Finalmodell nun durchschnittlich um 8,692 HU höher (Min: 5,626HU ; Max: 10,395HU). Der Standardfehler ist um 0,364 geringer. Im Gegensatz zu den Auswertungen des M. gluteus medius ist die Differenz vor und nach Kalibrierung nicht so hoch. Zudem sind hier nur die Kovariaten Alter und zeitlicher Fortschritt von signifikanter Bedeutung.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	34,938	2,176	19,345	30,388	39,487
6	35,353	2,147	18,386	30,848	39,857
12	35,768	2,126	17,707	31,295	40,240
18	36,182	2,114	17,303	31,729	40,636
24	36,597	2,109	17,170	32,151	41,044
48	38,257	2,175	19,370	33,710	42,804
72	39,917	2,363	26,208	35,061	44,773

Tabelle 30: Geschätzte Randmittel der kalibrierten Dichtedaten des M. gluteus maximus nach Durchlaufen des Finalmodells (HU)

Röntgendichte des Musculus iliacus in HU

Abbildung 39: Zeitlicher Verlauf der Dichte des Musculus iliacus in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	42,788	2,880	25,366	36,861	48,716
6	43,423	2,861	24,713	37,526	49,319
12	44,057	2,849	24,276	38,181	49,933
18	44,691	2,842	24,052	38,826	50,556
24	45,325	2,842	24,040	39,461	51,190
48	47,862	2,902	26,129	41,898	53,827
72	50,399	3,055	31,841	44,175	56,624

Tabelle 31: Darstellung der Daten "Dichte des Musculus iliacus" nach Durchlaufen des Initialmodells (HU)
Parameter	Schätzung	Standardfehler	Signifikanz
CPR	23,655	6,372	0,001
Time1	0,105	0,021	0,000
Alter	-0,278	0,111	0,021

Tabelle 32: Schätzungen signifikanter Kovariaten der Dichte des Musculus iliacus

Die Analyse der Dichtewerte des Musculus iliacus in HU zeigt, dass neben dem zeitlichen Fortschritt auch die kardiopulmonale Reanimation sowie das Alter einen Einfluss auf die untersuchte Variable haben. Im Vergleich zu den errechneten Werten des Initialmodells ist nach Berechnung mittels des Finalmodells ein im Schnitt um 1,3 HU höherer Mittelwert zu beobachten. Interessanterweise ist der Standardfehler des Mittelwerts des Finalmodells um 0,322 höher. Der Aufwärtstrend der grafisch dargestellten gemessenen Werte bestätigt sich mit Durchlaufen des Modells. Der Schätzwert, der die Dichtezunahme in HU pro Stunde angibt ist hier niedriger als in den beiden Variablen, die die unkalibrierte Dichte der Gluteal-Muskulatur untersuchen. Dementsprechend ist die Dichtezunahme im zeitlichen Verlauf nach Durchlaufen des Finalmodells auch nicht so hoch wie beispielsweise die des M. gluteus medius. Die Grafik zeigt bis auf den bekannten Ausreißer ein eher homogeneres Bild.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	44,116	3,208	21,906	37,462	50,770
6	44,744	3,192	21,477	38,115	51,373
12	45,371	3,181	21,182	38,760	51,983
18	45,999	3,175	21,019	39,397	52,601
24	46,627	3,174	20,987	40,026	53,227
48	49,137	3,218	22,183	42,466	55,808
72	51,647	3,338	25,595	44,781	58,514

Tabelle 33: Geschätzte Randmittel der Dichte des Musculus iliacus in HU nach Durchlaufen des Finalmodells (HU)

Kalibrierte Röntgendichte des Musculus iliacus in HU

Abbildung 40: Zeitlicher Verlauf der kalibrierten Dichte des Musculus iliacus

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	50,530	3,153	25,381	44,042	57,018
6	50,912	3,101	23,887	44,511	57,313
12	51,294	3,060	22,749	44,959	57,628
18	51,676	3,031	21,965	45,388	57,963
24	52,058	3,015	21,532	45,797	58,318
48	53,585	3,072	23,313	47,235	59,936
72	55,113	3,315	30,948	48,352	61,875

Tabelle 34: Darstellung der Daten "Kalibrierte Dichte des Musculus iliacus" nach Durchlaufen des Initialmodells (HU)

Parameter	Schätzung	Standardfehler	Signifikanz
CPR	17,094	6,626	,020
Time1	,068	,032	,040
Alter	-,299	,118	,023

Tabelle 35: Schätzungen signifikanter Kovariaten der kalibrierten Dichte des Musculus iliacus

Nach Kalibrierung und Analyse der Dichtedaten des Musculus iliacus sind weiterhin die gleichen Kovariaten signifikant, jedoch ist der Schätzwert der Zeit mit 0,068 geringer als vor der Kalibrierung. Die Differenz der durchschnittlichen errechneten Dichtewerte ist mit 0,679 noch geringer als bei den nichtkalibrierten Daten. Der Standardfehler des Mittelwerts ist nach Durchlaufen des Initialmodells durchschnittlich um 0,261 geringer als nach der Analyse mit dem Finalmodell. Im Vergleich zu den nicht-kalibrierten Daten sind nun die geschätzten Randmittel um 6,04 HU (Min: 4,355 HU ; Max: 6,976 HU) höher. Der Standardfehler des Mittelwertes ist auch nach Kalibrierung der Daten höher und zwar durchschnittlich um 0,156.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	51,092	3,421	19,506	43,945	58,240
6	51,501	3,371	18,464	44,432	58,571
12	51,911	3,331	17,666	44,902	58,919
18	52,320	3,303	17,105	45,355	59,284
24	52,729	3,285	16,778	45,791	59,666
48	54,365	3,327	17,798	47,371	61,360
72	56,002	3,539	22,783	48,676	63,327

Tabelle 36: Geschätzte Randmittel der kalibrierten Dichte des Musculus iliacus nach Durchlaufen des Finalmodells (HU)

Röntgendichte der Vesica biliaris in HU

Abbildung 41: Zeitlicher Verlauf der Dichte der Vesica biliaris in HU

Zeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	16,215	5,489	22,270	4,840	27,590
6	17,557	5,473	22,035	6,207	28,907
12	18,899	5,464	21,902	7,565	30,234
18	20,241	5,460	21,868	8,914	31,569
24	21,584	5,462	21,933	10,254	32,914
48	26,953	5,528	23,201	15,523	38,382
72	32,322	5,682	26,147	20,646	43,997

Tabelle 37: Darstellung der Dichtewerte der Vesica biliaris in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,231	0,029	0,000
	_		

Tabelle 38: Schätzungswert der signifikanten Kovariate Zeit

Zeigt sich bei der grafischen Darstellung ein eher uneinheitliches Bild, lässt sich hingegen mit dem Modell ein klarer Aufwärtstrend der Variable berechnen. Die Dichtewerte nach Analyse mit dem Finalmodell sind durchschnittlich um 7,205 HU höher und ihr Standardfehler ist um 2,098 geringer als zuvor.. Der ermittelte Schätzer liegt bei 0,231, andere Kovariaten wurden aufgrund ihrer nichtvorhanden Signifikanz durch das Modell herausgerechnet.

Zeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	23,223	3,381	22,036	16,211	30,234
6	24,611	3,358	21,471	17,637	31,585
12	25,999	3,343	21,151	19,049	32,949
18	27,387	3,338	21,071	20,447	34,327
24	28,775	3,341	21,230	21,832	35,719
48	34,328	3,441	24,304	27,231	41,425
72	39,881	3,670	31,451	32,399	47,362

Tabelle 39: Geschätzte Randmittel der Dichte der Vesica biliaris in HU nach Durchlaufen des Finalmodells

Kalibrierte Röntgendichte der Vesica biliaris in HU

Abbildung 42: Zeitlicher Verlauf der kalibrierten Dichtedaten der Vesica biliaris in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	26,695	5,558	23,858	15,220	38,170
6	27,816	5,484	22,887	16,469	39,163
12	28,936	5,425	22,112	17,689	40,183
18	30,057	5,381	21,547	18,883	41,230
24	31,177	5,354	21,200	20,050	42,305
48	35,66	5,408	22,093	24,448	46,872
72	40,142	5,712	26,667	28,416	51,868

Tabelle 40: Darstellung der kalibrierten Dichtewerte der Vesica biliaris in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,185	0,051	0,001

Tabelle 41: Schätzungswert der signifikanten Kovariate Zeit

Nach Kalibrierung mit dem Dichtephantom ist der Schätzwert zur weiteren Berechnung mit 0,185 etwas geringer als zuvor. Die geschätzten Mittelwerte sind nun nach Berechnung mittels des Finalmodells durchschnittlich um 6,852 HU höher und haben einen um 1,796 geringeren Standardfehler als die ermittelten Randmittel inklusive sämtlicher Kovariaten. Im Vergleich zu den nicht-kalibrierten Daten sind nun die geschätzten Randmittel des Finalmodells um durchschnittlich 9,178 HU höher (Min: 7,019 HU ; Max: 10,377 HU) , haben aber auch einen im Mittel um 0,268 höheren Standardfehler. Auch bei dieser Variable fehlen jedoch wieder alle Messzeitpunkte aller Probanden, da nicht bei jeder Messung das Dichtephantom vorhanden war.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	33,600	3,744	21,821	25,832	41,368
6	34,708	3,641	20,085	27,116	42,301
12	35,817	3,562	18,723	28,355	43,278
18	36,925	3,507	17,795	29,550	44,300
24	38,033	3,480	17,333	30,702	45,365
48	42,467	3,639	20,589	34,890	50,043
72	46,900	4,173	32,518	38,405	55,394

Tabelle 42: Geschätzte Randmittel der kalibrierten Dichte der Vesica biliaris in HU nach Durchlaufen des Finalmodells

Röntgendichte des ventralen Messpunktes der Milz in HU

Abbildung 43: Zeitlicher Verlauf der Dichte des ventralen Messpunktes der Milz in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	45,014	2,235	25,081	40,412	49,617
6	45,940	2,225	24,622	41,355	50,526
12	46,867	2,217	24,317	42,293	51,440
18	47,793	2,214	24,166	43,225	52,361
24	48,720	2,214	24,167	44,152	53,287
48	52,425	2,249	25,715	47,799	57,051
72	56,130	2,339	29,842	51,353	60,908

Tabelle 43: Darstellung der Dichtewerte des ventralen Milzmesspunktes in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,141	0,015	0,000

Tabelle 44: Schätzungswert der signifikanten Kovariate Zeit

Auch bei der Auswertung der Dichte des ventralen Messpunktes der Milz bleibt nach dem Hierarchisch-Rückwärts-Eliminieren nur die Kovariate Zeit übrig. Die geschätzten Randmittel sind nach diesem Schritt um 2,718 HU im Durchschnitt höher, der Standardfehler des Mittelwertes um 0,876 geringer. Die grafische Darstellung zeigt bis auf einen Ausreißer ein tendentiell homogenes Bild mit einem positiven Dichteanstieg. Der Ausreißer ist in diesem Fall nicht der selbe wie bei der Dichtemessung der Hüftmuskulatur. Insgesamt ist eine Zunahme der Milzdichte sowohl grafisch als auch rechnerisch zu beobachten.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	48,068	1,363	26,145	45,267	50,869
6	48,916	1,345	24,812	46,145	51,686
12	49,764	1,332	23,892	47,015	52,513
18	50,612	1,324	23,377	47,875	53,349
24	51,460	1,323	23,260	48,726	54,194
48	54,852	1,372	26,838	52,036	57,669
72	58,245	1,504	37,317	55,199	61,290

Tabelle 45: Geschätzte Randmittel der Dichte des ventralen Messpunktes der Milz in HU nach Durchlaufen des Finalmodells

Kalibrierte Röntgendichte des ventralen Messpunktes der Milz in HU

Abbildung 44: Zeitlicher Verlauf der kalibrierten Dichtedaten des ventralen Milzmesspunktes in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	50,949	2,757	23,657	45,253	56,644
6	51,690	2,730	22,861	46,040	57,340
12	52,431	2,710	22,254	46,815	58,047
18	53,172	2,695	21,836	47,581	58,764
24	53,913	2,687	21,607	48,336	59,491
48	56,878	2,718	22,590	51,250	62,506
72	59,843	2,847	26,644	53,997	65,688

Tabelle 46: Darstellung der kalibrierten Dichtewerte des ventralen Milzmesspunktes in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz	
Time1	0,123	0,022	0,000	
Tabelle 47: Schätzungswert der signifikanten Kovariate Zeit				

Wie schon bei den nicht-kalibrierten Daten ist auch nach Kalibrierung die verbleibende Kovariate der zeitliche Fortschritt. Zudem ist der Wert mit 0,123 ähnlich hoch. Auch nach Kalibrierung verbleibt in der grafischen Darstellung ein Ausreißer mit höheren Dichtewerten als bei den übrigen Messungen. Ebenfalls sind die Dichtewerte nach Durchlaufen des Finalmodells höher (im Mittel um 2,564 HU) und haben einen geringeren Standardfehler (im Mittel um 0,963). Im Vergleich zu den nicht-kalibrierten Dichtewerten ist die mittlere Dichte nach der kompletten Analyse um 4,987 HU höher (Min: 4,116 HU ; Max: 5,471 HU) und hat einen um 0,406 höheren Standardfehler.

Messzeitpunkt Konfidenzintervall 95% in h Mittelwert Standardfehler Freiheitsgrade Untergrenze Obergrenze 0 53,539 1,775 21,665 49,854 57,223 6 54,274 1,741 20,217 50,645 57,903 12 55,009 1,716 19,191 51,420 58,598 18 55,744 1,701 18,585 52,179 59,310 24 56,480 1,696 18,398 52,922 60,037 48 59,420 1,776 21,914 55,736 63,105 62,361 1,997 58,295 72 32,266 66,427

Tabelle 48: Geschätzte Randmittel der kalibrierten Dichte des ventralen Messpunktes der Milz in HU nach Durchlaufen des Finalmodells

Röntgendichte des dorsalen Messpunktes der Milz in HU

Abbildung 45: Zeitlicher Verlauf der Dichte des dorsalen Messpunktes der Milz in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	45,761	3,077	25,297	39,427	52,096
6	46,584	3,060	24,688	40,277	52,890
12	47,406	3,048	24,268	41,119	53,693
18	48,228	3,042	24,036	41,951	54,505
24	49,050	3,040	23,990	42,774	55,325
48	52,338	3,091	25,697	45,981	58,695
72	55,627	3,224	30,549	49,046	62,207

Tabelle 49: Darstellung der Dichtewerte des dorsalen Milzmesspunktes in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,133	0,021	0,000

Tabelle 50: Schätzungswert der signifikanten Kovariate Zeit

Auch bei der grafischen Darstellung der gemessenen Werte zeigt sich bei der Analyse dieser Variable wieder der gleiche Ausreißer. Weiterhin ist ebenfalls der zeitliche Fortschritt die verbleibende signifikante Kovariate mit einem Schätzer von 0,133. Sowohl nach Durchlaufen des Initial-, als auch des Finalmodells ist eine Zunahme der Dichtewerte zu beobachten. Die finalen geschätzten Randmittel sind durchschnittlich um 2,879 HU höher als zuvor und haben einen um 1,31 höheren Standardfehler.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	48,749	1,777	27,401	45,105	52,393
6	49,546	1,746	25,498	45,953	53,139
12	50,343	1,724	24,136	46,786	53,900
18	51,139	1,710	23,311	47,604	54,675
24	51,936	1,706	23,016	48,408	55,465
48	55,123	1,777	27,248	51,478	58,768
72	58,310	1,976	40,441	54,317	62,303

Tabelle 51: Geschätzte Randmittel der Dichte des dorsalen Messpunktes der Milz in HU nach Durchlaufen des Finalmodells

Kalibrierte Röntgendichte des dorsalen Messpunktes der Milz in HU

Abbildung 46: Zeitlicher Verlauf der kalibrierten Dichtewerte des dorsalen Messpunktes der Milz in HU

Messzeitpunkt				Konfidenzinte	ervall 95%
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	52,188	3,483	22,217	44,968	59,407
6	52,852	3,461	21,678	45,668	60,036
12	53,516	3,444	21,267	46,359	60,673
18	54,180	3,432	20,982	47,042	61,318
24	54,844	3,425	20,824	47,717	61,972
48	57,501	3,451	21,451	50,335	64,668
72	60,158	3,557	24,135	52,819	67,497

Tabelle 52: Darstellung der kalibrierten Dichtewerte des dorsalen Milzmesspunktes in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,108	0,023	0,000

Tabelle 53: Schätzungswert der signifikanten Kovariate Zeit

Bei der Analyse der kalibrierten Dichtedaten des dorsalen Messpunktes der Milz verhält es sich wie mit den Variablen zuvor. Der Ausreißer 2648-13 ist auch in dieser Variable nach Kalibrierung bedeutend höher als die anderen Messpunkte. Der ermittelte Schätzwert ist mit 0,108 geringer als derjenige der unkalibrierten Daten. Die Mittelwerte sind durchschnittlich um 2,175 HU höher nach Durchlaufen des Finalmodells und der Standardfehler ist um 1,323 geringer. Im Vergleich zu den unkalibrierten Daten sind die Mittelwerte nach kompletter Analyse um 5,045 HU höher (Min: 3,902 HU ; Max: 5,680 HU). Der Standardfehler des Mittelwertes ist um 0,368 höher.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	54,429	2,144	20,860	49,968	58,891
6	55,078	2,114	19,753	50,664	59,492
12	55,727	2,093	18,970	51,346	60,107
18	56,375	2,080	18,505	52,014	60,736
24	57,024	2,076	18,356	52,669	61,378
48	59,618	2,146	20,959	55,155	64,081
72	62,212	2,342	28,907	57,421	67,004

Tabelle 54: Geschätzte Randmittel der kalibrierten Dichte des dorsalen Messpunktes der Milz in HU nach Durchlaufen des Finalmodells

Mittelwert der Röntgendichtemessungen der Milz in HU

Abbildung 47: Zeitlicher Verlauf der Mittelwerte der Milzdichtemessungen in HU

Messzeitpunkt				Konfidenzinte	ervall 95%
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	45,488	2,627	24,708	40,075	50,901
6	46,376	2,619	24,416	40,975	51,776
12	47,263	2,614	24,222	41,871	52,655
18	48,150	2,611	24,126	42,763	53,538
24	49,038	2,611	24,126	43,650	54,426
48	52,588	2,637	25,105	47,157	58,018
72	56,138	2,704	27,694	50,596	61,679

Tabelle 55: Darstellung der Mittelwerte der beiden Dichtemessungen der Milz in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signigikanz	
Time1	0,137	0,014	0,000	

Tabelle 56: Schätzungswert der signifikanten Kovariate Zeit

Diese Variable dient der Zusammenfassung des dorsalen sowie des ventraler gelegenen Messpunktes der Milz. Die Daten beruhen auf den mit Osirix erhobenen Werten. Die Ergebnisse ähneln den zuvor erhobenen und errechneten Daten. Nach wie vor ist der zeitliche Fortschritt die einzige signifikante Kovariate. Der Schätzwert von 0,137 entspricht bis zur dritten Nachkommastelle dem Mittelwert der vorher ermittelten Schätzwerte. Ebenfalls ist die Differenz der Mittelwerte zwischen Initialmodell und Finalmodell mit durchschnittlich 2,745 HU ähnlich hoch und der Standardfehler des Mittelwertes beim Finalmodell um 1,101 geringer. Da die Berechnungen auf den gemessenen Werten basieren und dennoch fast die selben Ergebnisse haben, wie wenn man nachträglich, nach Analyse mit dem Mixed-Modell, die Mittelwerte zusammenfassen würde, kann dies als Kriterium für die Validität des Modells herangezogen werden.

Messzeitpunkt				Konfidenzinte	ervall 95%
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	48,518	1,529	25,280	45,371	51,665
6	49,339	1,514	24,324	46,217	52,461
12	50,160	1,504	23,660	47,054	53,265
18	50,981	1,498	23,285	47,885	54,077
24	51,802	1,496	23,194	48,708	54,895
48	55,086	1,536	25,714	51,928	58,244
72	58,369	1,642	33,118	55,030	61,709

Tabelle 57: Geschätzte Randmittel der Mittelwerte beider Milzmesspunkte in HU nach Durchlaufen des Finalmodells

Mittelwert der Röntgendichtemessungen der Milz in HU nach Kalibrierung

Abbildung 48: Zeitlicher Verlauf der Mittelwerte der Milzdichtemessungen nach Kalibrierung in HU

Messzeitpunkt				Konfidenzinte	ervall 95%
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	51,578	3,064	22,257	45,229	57,928
6	52,281	3,044	21,715	45,963	58,598
12	52,983	3,028	21,302	46,691	59,276
18	53,685	3,018	21,016	47,410	59,961
24	54,388	3,012	20,858	48,122	60,653
48	57,197	3,034	21,496	50,895	63,499
72	60,006	3,131	24,205	53,547	66,465

Tabelle 58: Darstellung der Mittelwerte der beiden Dichtemessungen der Milz nach Kalibrierung in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,115	0,020	0,000

Tabelle 59: Schätzungswert der singifikanten Kovariate Zeit

Ebenfalls zeigt die Auswertung der Mittelwerte der beiden Milzmesspunkte nach Kalibrierung keine besonderen Unterschiede zu den nicht kalibrierten Daten. Nach wie vor gibt es den Ausreißer 2648-13, der schon in den vorigen Milzmessungen auffiel. Der ermittelte Schätzwert für die weiteren Berechnungen ist nach Analyse mit dem Modell der gleiche wie nach Berechnung aus den vorigen Variablen "Kalibrierte Dichte des dorsalen Messpunktes der Milz in HU" und "Kalibrierte Dichte des ventralen Messpunktes der Milz in HU". Die Differenz zwischen den geschätzten Randmitteln nach Analyse mittels Initial- und dann Finalmodells ist mit durchschnittlich 2,371 HU und einem Standardfehler von -1,129 ebenfalls im Mittelfeld der beiden genannten Variablen. Die Mittelwerte des Finalmodells sind im Durchschnitt 4,923 HU höher (Min: 3,934 HU ; Max: 5,472 HU) als die errechneten, nichtkalibrierten Mittelwerte der Variable "Mittelwert der Dichtemessungen der Milz in HU". Der Standardfehler des Mittelwertes ist nach Kalibrierung erwärtungsgemäß etwas höher (0,387).

Messzeitpunkt				Konfidenzinte	ervall 95%
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	53,990	1,920	20,702	49,994	57,986
6	54,683	1,894	19,663	50,728	58,638
12	55,376	1,875	18,929	51,450	59,301
18	56,068	1,864	18,496	52,160	59,977
24	56,761	1,860	18,361	52,859	60,664
48	59,532	1,921	20,839	55,535	63,530
72	62,303	2,093	28,354	58,019	66,588

Tabelle 60: Geschätzte Randmittel der Mittelwerte beider Milzmesspunkte nach Kalibrierung in HU nach Durchlaufen des Finalmodells

Röntgendichte des Mesorektums in HU

Abbildung 49: Zeitlicher Verlauf der Dichte des Mesorektums in HU

Messzeitpunkte				Konfidenzinte	ervall 95%
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	-108,016	2,194	25,953	-112,526	-103,506
6	-106,044	2,162	24,540	-110,501	-101,587
12	-104,072	2,141	23,607	-108,495	-99,650
18	-102,100	2,130	23,143	-106,505	-97,695
24	-100,129	2,130	23,141	-104,534	-95,723
48	-92,241	2,236	27,862	-96,822	-87,660
72	-84,354	2,489	40,629	-89,383	-79,325

Tabelle 61: Darstellung der Mittelwerte der Dichtemessungen des Mesorektums in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,320	0,024	0,000

Tabelle 62: Schätzwert der singifikanten Kovariate Zeit

Die Messwerte der Dichte des Mesorektums befinden sich allesamt im negativen Bereich, wie die Grafik veranschaulicht. Die Differenz der geschätzten Randmittel nach Auswertung zuerst mit dem Initial- und im Anschluß mit dem Finalmodell ist sehr gering. Durchschnittlich ist nach dem Durchlaufen des Finalmodells der Mittelwert um 0,782 HU geringer. Der dazugehörige Standardfehler ist auch um 0,795 geringer. Der zur Berechnung herangezogene ermittelte Schätzwert liegt bei 0,32. Insgesamt ist grafisch eine deutliche Zunahme der Dichtewerte zu sehen. Diese Zunahme wird durch die ermittelten Werte bestätigt.

Messzeitpunkte				Konfidenzinte	ervall 95%
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	-108,571	1,408	29,849	-111,447	-105,696
6	-106,652	1,359	26,230	-109,445	-103,860
12	-104,734	1,324	23,776	-107,468	-101,999
18	-102,815	1,305	22,451	-105,518	-100,111
24	-100,896	1,302	22,220	-103,594	-98,197
48	-93,220	1,443	32,654	-96,157	-90,283
72	-85,544	1,773	59,174	-89,092	-81,996

Tabelle 63: Geschätzte Randmittel der Dichte des Mesorektums in HU nach Durchlaufen des Finalmodells

Kalibrierte Röntgendichte des Mesorektums in HU

Abbildung 50: Zeitlicher Verlauf der kalibrierten Dichtedaten des Mesorektums in HU

Messzeitpunkt				Konfidenzinte	ervall 95%
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	-78,511	2,680	28,803	-83,993	-73,028
6	-76,589	2,621	26,782	-81,969	-71,209
12	-74,667	2,575	25,261	-79,969	-69,366
18	-72,745	2,544	24,249	-77,993	-67,498
24	-70,824	2,527	23,747	-76,042	-65,605
48	-63,137	2,607	26,884	-68,488	-57,786
72	-55,450	2,901	38,134	-61,322	-49,578

Tabelle 64: Darstellung der Mittelwerte der kalibrierten Dichtedaten des Mesorektums in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,325	0,033	0,000

Tabelle 65: Schätzungswert der singifikanten Kovariate Zeit

Ähnlich wie bei den nicht-kalibrierten Daten ist hier ein eindeutiger Aufwärtstrend zu beobachten, der sich auch in den errechneten Mittelwerten darstellen lässt. Der ermittelte Schätzwert ist mit 0,325 nach Kalibrierung etwas höher als zuvor. Die Differenz zwischen den Randmitteln vor und nach dem Herausrechnen der nicht-signifikanten Kovariaten ist nun mit durchschnittlich -0,506HU noch geringer als bei den Rohdaten. Der dazugehörige Standardfehler ist insgesamt beim Finalmodell um 1,063 geringer. Im Vergleich zu den nicht-kalibrierten finalen Randmitteln sind die nun ermittelten finalen Werte im Mittel um 29,567 HU höher (Min: -29,822 HU ; Max: -29,424 HU) und der Standardfehler ist um 0,157 höher.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	-79,147	1,570	27,039	-82,368	-75,926
6	-77,195	1,485	22,531	-80,269	-74,120
12	-75,243	1,423	19,432	-78,216	-72,269
18	-73,291	1,387	17,767	-76,207	-70,374
24	-71,338	1,380	17,503	-74,243	-68,434
48	-63,530	1,620	31,189	-66,833	-60,227
72	-55,722	2,151	57,187	-60,028	-51,415

Tabelle 66: Geschätzte Randmittel der kalibrierten Dichtedaten des Mesorektums in HU nach Durchlaufen des Finalmodells

Röntgendichte des Caput pancreaticum in HU

Abbildung 51: Zeitlicher Verlauf der Dichte des Pankreaskopfes in HU

Messzeitpunkt				Konfidenzinte	ervall 95%
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	36,091	3,528	25,186	28,828	43,354
6	36,808	3,512	24,755	29,571	44,046
12	37,525	3,503	24,491	30,304	44,747
18	38,243	3,499	24,391	31,027	45,459
24	38,960	3,502	24,457	31,740	46,180
48	41,829	3,570	26,385	34,496	49,162
72	44,698	3,727	31,077	37,098	52,299

Tabelle 67: Darstellung der Mittelwerte der Dichtemessungen des Pankreaskopfs in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,102	0,025	0,000
Alter	-0,410	0,132	0,005

Tabelle 68: Schätzungswerte der verbleibenden Kovariaten

Bei der Analyse der Dichte des Caput pancreaticum zeigte sich, dass neben dem zeitlichen Fortschreiten auch offenbar das Alter einen Einfluss hat. Dass der ermittelte Schätzer negativ ist, zeigt möglicherweise, dass mit zunehmenden Alter die Dichte des Pankreskopfs abnimmt. Vergleicht man das Initialmodell mit dem Finalmodell, so ist zu sehen, dass die Mittelwerte des Finalmodells durchschnittlich um 2,980 HU höher sind und der dazugehörige Standardfehler im Schnitt um 1,37 geringer. Der Trend der grafischen Darstellung der gemessenen Werte wird im Modell abermals bestätigt.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	39,516	2,163	25,103	35,062	43,971
6	40,130	2,130	23,641	35,730	44,530
12	40,743	2,108	22,662	36,380	45,107
18	41,357	2,096	22,158	37,012	45,702
24	41,970	2,095	22,124	37,626	46,314
48	44,424	2,201	26,811	39,906	48,941
72	46,877	2,458	39,428	41,908	51,847

Tabelle 69: Geschätzte Randmittel der Dichte des Pankreaskopfs in HU nach Durchlaufen des Finalmodells

Kalibrierte Röntgendichte des Caput pancreatium in HU

Abbildung 52: Zeitlicher Verlauf der kalibrierten Dichtedaten des Pankreaskopfes in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	40,342	5,637	18,917	28,541	52,142
6	40,863	5,616	18,650	29,094	52,633
12	41,385	5,602	18,470	29,636	53,134
18	41,907	5,595	18,377	30,169	53,645
24	42,429	5,595	18,371	30,691	54,166
48	44,516	5,660	19,224	32,678	56,353
72	46,603	5,829	21,509	34,499	58,707

Tabelle 70: Darstellung der Mittelwerte der kalibrierten Dichtedaten des Pankreaskopfs in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz	
Time1	0,087	0,033	0,013	
Alter	-0,355	0,144	0,025	
— 1 11 — 1 0 1 ···		11.11 1 7	- - •	

Tabelle 71: Schätzungswerte der verbleibenden Kovariaten

Nach Kalibrierung sind weiterhin die fortgeschrittene Zeit und das Alter eine signifikante Einflussgröße für das Modell. Die Differenz zwischen den Randmitteln vor und nach der Analyse mittels Initialmodell ist jetzt durchschnittlich 5,503 HU mit einem Standardfehler, der 3,10 geringer ist. Vergleicht man nun die Randmittel des Finalmodells vor und nach der Kalibrierung, ist zu sehen, dass diese nach Kalibrierung im Schnitt um 5,936 HU (Min: 5,242 HU ; Max: 6,322 HU) höher sind. Der Standardfehler dieser höheren Randmittel ist jedoch auch höher und zwar durchschnittlich um 0,369. Letzteres ist wieder darauf zurück zu führen, dass nicht bei allen Messungen auch Dichtephantome dabei waren und dementsprechend das Kollektiv kleiner ist.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	45,838	2,531	18,884	40,539	51,138
6	46,362	2,482	17,558	41,137	51,586
12	46,885	2,449	16,660	41,711	52,059
18	47,408	2,431	16,185	42,261	52,556
24	47,932	2,428	16,129	42,787	53,076
48	50,025	2,577	20,229	44,655	55,396
72	52,119	2,938	31,151	46,128	58,109

Tabelle 72: Geschätzte Randmittel der kalibrierten Dichtedaten des Pankreaskopfs in HU nach Durchlaufen des Finalmodells

Röntgendichte der autochthonen Rückenmuskulatur in HU

Abbildung 53: Zeitlicher Verlauf der Dichte der autochthonen Rückenmuskulatur in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	24,808	5,020	24,272	14,453	35,163
6	25,609	5,013	24,141	15,265	35,953
12	26,410	5,009	24,054	16,073	36,746
18	27,210	5,007	24,010	16,877	37,543
24	28,011	5,007	24,010	17,678	38,344
48	31,215	5,029	24,445	20,845	41,585
72	34,419	5,087	25,590	23,954	44,883

Tabelle 73: Darstellung der Mittelwerte der Dichte der autochthonen Rückenmuskulatur in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
CPR	24,013	10,932	0,039
Time1	0,125	0,017	0,000
Alter	-0,672	0,190	0,002

Tabelle 74: Schätzungswerte der verbleibenden Kovariaten

In der Grafik ist ein Aufwärtstrend zu beobachten, der durch die jeweiligen Stufen des Modells bestätigt wird. Auffallend ist der Ausreißer 2355-13. Hier war die autochthone Rückenmuskulatur stark atrophiert und z.T. von Fett durchsetzt, sodass die ermittelte Dichte unter den Werten der anderen Probanden liegt. Verbleibende Kovariaten sind bei dieser Variable die Zeit, das Alter mit einer negativen Korrelation sowie die stattgefundene kardiopulmonale Reanimation. Letztere hat einen beeindruckend hohen Schätzer mit einem sehr hohen Standardfehler. Die Unterschiede zwischen den Randmitteln nach Durchlaufen des Initial- und dann des Finalmodells sind gering. Der Mittelwert ist beim Finalmodell durchschnittlich um 0,474 HU und der Standardfehler des Mittelwerts um 0,432 höher.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	25,494	5,454	21,210	14,158	36,829
6	26,245	5,448	21,113	14,920	37,571
12	26,997	5,444	21,046	15,678	38,316
18	27,749	5,441	21,009	16,433	39,064
24	28,500	5,441	21,003	17,185	39,815
48	31,506	5,459	21,281	20,163	42,849
72	34,512	5,507	22,050	23,092	45,933

Tabelle 75: Geschätzte Randmittel der Dichte der autochthonen Rückenmuskulatur in HU nach Durchlaufen des Finalmodells

Kalibrierte Röntgendichte der autochthonen Rückenmuskulatur in HU

Abbildung 54: Zeitlicher Verlauf der kalibrierten Dichtedaten der autochthonen Rückenmuskulatur in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	36,000	4,557	19,956	26,494	45,507
6	36,558	4,545	19,746	27,070	46,045
12	37,115	4,535	19,585	27,642	46,588
18	37,672	4,529	19,474	28,209	47,135
24	38,229	4,525	19,413	28,772	47,686
48	40,458	4,540	19,666	30,978	49,937
72	42,686	4,600	20,721	33,112	52,261

Tabelle 76: Darstellung der Mittelwerte der kalibrierten Dichtedaten der autochthonen Rückenmuskulatur in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,092	0,019	0,000
Alter	-0,601	0,208	0,010

Tabelle 77: Schätzungswerte der verbleibenden Kovariaten

Auch nach Kalibrierung der Dichte ist ein dezenter Aufwärtstrend in der Grafik zu beobachten. Nach wie vor ist der Ausreißer 2355-13 vorhanden. Bei den signifikanten Kovariaten sind nun nur noch die Zeit und das Alter vorhanden. Nach Wegfall der kardiopulmonalen Reanimation sind die Mittelwerte nach Durchlaufen des Finalmodells nun durchschnittlich um 6,841 HU höher und der entsprechende Standardfehler um 1,07 geringer. Im Vergleich zu den nichtkalibrierten Daten sind die errechneten Randmittel des Finalmodells nun im Schnitt um 16,515 HU größer (Min: 14,973 HU ; Max: 17,371 HU) und der Standardfehler um 1,979 geringer.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	42,865	3,477	17,591	35,549	50,182
6	43,417	3,464	17,335	36,120	50,714
12	43,969	3,455	17,155	36,685	51,252
18	44,520	3,449	17,051	37,244	51,796
24	45,072	3,448	17,022	37,798	52,346
48	47,279	3,480	17,661	39,957	54,600
72	49,485	3,571	19,546	42,024	56,946

Tabelle 78: Geschätzte Randmittel der kalibrierten Dichtedaten der autochthonen Rückenmuskulatur in HU nach Durchlaufen des Finalmodells

Röntgendichte der Spongiosa eines Lendenwirbelkörpers in HU

Abbildung 55: Zeitlicher Verlauf der Lendenwirbelkörperdichte in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	108,076	8,547	24,224	90,445	125,708
6	109,145	8,538	24,118	91,529	126,761
12	110,213	8,531	24,045	92,608	127,819
18	111,282	8,527	24,006	93,683	128,881
24	112,351	8,527	23,999	94,752	129,949
48	116,625	8,554	24,304	98,982	134,268
72	120,899	8,628	25,142	103,134	138,665

Tabelle 79: Darstellung der Mittelwerte der Lendenwirbelkörperdichte in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz	
Time1	0,179	0,025	0,000	
Alter	-3,027	0,315	0,000	

Tabelle 80: Schätzungswerte der verbleibenden Kovariaten

Bemerkenswert ist bei der Analyse der Lendenwirbelkörperdichte, dass die gemessenen Werte einen sehr großen Bereich zwischen 10 und 270 HU umfassen. Neben der Zeit hat das Alter einen signifikanten Einfluss und korreliert negativ mit der Dichte. Nach Durchlaufen des Finalmodells sind die Mittelwerte durchschnittlich um 4,983 HU niedriger als zuvor. Der Standardfehler des Mittelwertes ist im Schnitt um 3,508 niedriger.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	103,077	5,044	22,628	92,634	113,521
6	104,150	5,028	22,348	93,732	114,567
12	105,222	5,016	22,148	94,823	115,621
18	106,294	5,009	22,027	95,906	116,682
24	107,367	5,007	21,987	96,982	117,751
48	111,656	5,043	22,626	101,213	122,098
72	115,945	5,151	24,571	105,326	126,563

Tabelle 81: Geschätzte Randmittel der Lendenwirbelkörperdichte in HU nach Durchlaufen des Finalmodells

Kalibrierte Röntgendichte der Spongiosa eines Lendenwirbelkörpers in HU

Abbildung 56: Zeitlicher Verlauf der kalibrierten Dichtedaten der Lendenwirbelkörperspongiosa in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	98,765	7,510	20,958	83,145	114,385
6	99,629	7,476	20,608	84,063	115,195
12	100,493	7,450	20,337	84,969	116,018
18	101,358	7,431	20,144	85,863	116,853
24	102,222	7,420	20,031	86,745	117,699
48	105,680	7,451	20,362	90,155	121,204
72	109,137	7,601	21,968	93,373	124,901

Tabelle 82: Darstellung der Mittelwerte der kalibrierten Lendenwirbelkörperdichte in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz	
Time1	0,149	0,040	0,001	
Alter	-2,563	0,287	0,000	

Tabelle 83: Schätzungswerte der verbleibenden Kovariaten

Die Dichtewerte der Lendenwirbelkörperspongiosa nach Kalibrierung umfassen nach wie vor einen großen Bereich. Im Vergleich zu vorher hat der Schätzer Zeit etwas abgenommen, der des Alters ein wenig zugenommen. Nach Durchlaufen des Finalmodells sind die geschätzten Randmittel im Durchschnitt um 5,67 HU niedriger als zuvor, der Standardfehler ist jedoch auch um 2,627 niedriger. Im Vergleich zu den nicht-kalibrierten Daten hat sich der Standardfehler nur wenig, im Durchschnitt um 0,193 nach unten verändert, die Randmittel sind jedoch im Mittel um 10,874 niedriger (Min: 10,114 HU ; Max: 12,24 HU).

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	92,963	4,867	18,598	82,762	103,164
6	93,858	4,821	17,953	83,727	103,989
12	94,753	4,788	17,480	84,673	104,834
18	95,649	4,766	17,181	85,601	105,696
24	96,544	4,757	17,053	86,510	106,577
48	100,124	4,841	18,277	89,964	110,284
72	103,705	5,110	22,392	93,117	114,292

Tabelle 84: Geschätzte Randmittel der kalibrierten Lendenwirbelkörperdichte in HU nach Durchlaufen des Finalmodells

Röntgendichte der Spongiosa des Os ilium in HU

Abbildung 57: Zeitlicher Verlauf der Dichte der Spongiosa des Os ilium in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	49,237	10,347	24,239	27,893	70,580
6	50,797	10,329	24,073	29,482	72,112
12	52,358	10,317	23,960	31,063	73,653
18	53,919	10,310	23,899	32,635	75,203
24	55,480	10,310	23,891	34,197	76,763
48	61,723	10,362	24,380	40,354	83,092
72	67,966	10,503	25,721	46,366	89,567

Tabelle 85: Darstellung der Mittelwerte der Spongiosadichte des Os ilium in HU nach Durchlaufen des Initialmodells
Parameter	Schätzung	Standardfehler	Signifikanz
Gender	-32,215	15,188	0,047
Time1	0,254	0,038	0,000
Alter	-2,846	0,414	0,000
BMI	3,606	1,501	0,026

Tabelle 86: Schätzungswerte der signifikanten Kovariaten

Die gemessenen Werte umfassen auch hier wieder einen relativ großen Bereich zwischen -40 und 230 HU. Das weibliche Geschlecht hat offenbar einen relevanten Einfluss auf die Dichtewerte, jedoch auch einen sehr hohen Standardfehler. Vergleicht man die Mittelwerte nach Durchlaufen der verschiedenen Stufen des Modells, so zeigt sich, dass die Mittelwerte nach Berechnung mit dem Finalmodell um durchschnittlich 4,088 HU geringer sind mit einem um -3,175 geringeren Standardfehler.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	45,318	7,180	20,572	30,369	60,268
6	46,840	7,154	20,283	31,930	61,749
12	48,361	7,136	20,078	33,479	63,242
18	49,882	7,125	19,956	35,017	64,747
24	51,403	7,122	19,917	36,544	66,262
48	57,488	7,181	20,591	42,536	72,440
72	63,573	7,356	22,636	48,342	78,803

Tabelle 87: Geschätzte Randmittel der Spongiosadichte des Os ilium in HU nach Durchlaufen des Finalmodells

Kalibrierte Röntgendichtedaten der Spongiosa des Os ilium in HU

Abbildung 58: Zeitlicher Verlauf der kalibrierten Dichte der Spongiosa des Os ilium in HU

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	48,748	9,017	20,712	29,980	67,517
6	49,817	8,979	20,377	31,109	68,526
12	50,886	8,950	20,120	32,224	69,548
18	51,955	8,929	19,939	33,325	70,585
24	53,024	8,917	19,835	34,413	71,635
48	57,300	8,956	20,181	38,629	75,970
72	61,575	9,131	21,768	42,627	80,523

Tabelle 88: Darstellung der Mittelwerte der kalibrierten Spongiosadichte des Os ilium in HU nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,176	0,047	0,001
Alter	-2,031	0,354	0,000
BMI	3,874	1,603	0,028

Tabelle 89: Schätzungswerte signifikanter Kovariaten

Nach Kalibrierung ist die Spannweite der Dichtedaten nicht mehr ganz so weit (-13 HU bis 210 HU). Die Differenz der Mittelwerte zwischen den verschiedenen Modellstufen hat zugenommen und liegt nun bei 11,888 HU mit einer Differenz des Standardfehlers von 3 zugunsten des Finalmodells. Im Vergleich zu den nicht-kalibrierten Daten sind die Randmittel des Finalmodells nun um 10,397 HU niedriger (Min: 8,409 HU ; Max: 13,974 HU), der dazugehörige Standardfehler ist um 1,196 geringer.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	36,909	5,993	17,165	24,273	49,545
6	37,967	5,946	16,640	25,401	50,532
12	39,024	5,911	16,263	26,510	51,539
18	40,081	5,889	16,030	27,598	52,565
24	41,139	5,881	15,942	28,668	53,610
48	45,369	5,980	17,036	32,754	57,984
72	49,599	6,280	20,571	36,521	62,676

Tabelle 90: Geschätzte Randmittel der kalibrierten Spongiosadichte des Os ilium in HU nach Durchlaufen des Finalmodells

Wanddicke der Vesica urina in cm

Abbildung 59: Zeitlicher Verlauf der Wanddicke der Vesica urina in cm

Betrachtet man die grafische Darstellung des Verlaufs der Wanddicke der Vesica urina fällt auf, dass einerseits große Unterschiede in den einzelnen Kurven zu sehen sind und andererseits relativ wenig Messungen komplett sind. Bei der ersten Messung nach Todeseintritt ließ sich von 15 Verstorbenen die Wanddicke bestimmen, bei 48 h waren es nur noch 12 und bei 72 h nur noch 8 Verstorbene. Des Weiteren stellte sich beim Hierarchisch-Rückwärts-Eliminieren heraus, dass sämtliche Kovariaten, also auch die Zeit, keinen signifikanten Einfluss auf die Wanddicke haben.

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	-0,001	0,001	0,433

Tabelle 91: Beispielhafte Darstellung des Schätzers von Time1 110

Harnblasenvolumen in cm³

Abbildung 60: Zeitlicher Verlauf des Harnblasenvolumens in cm³

Das Harnblasenvolumen war teilweise sehr unterschiedlich groß. Es wurde jedoch zum Zeitpunkt der ersten Messung nur bei 13 Verstorbenen bestimmt, ab der 12 h-Messung nur noch bei zwölf, nach 48 h nur noch bei zehn und bei 72 h nur noch bei sechs Verstorbenen. Die Gründe hierfür liegen, wie schon erwähnt, an nicht zustande gekommenen Messungen oder nicht ausreichender Bildqualität sowie zu kleinem Volumen. Bei der Analyse mit dem Mixed-Modell stellte sich auch bei dem Harnblasenvolumen heraus, dass es keine signifikante Kovariate gab. Dementsprechend wird auch hier auf eine weitere Auswertung verzichtet.

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	-0,273	0,174	0,130

Tabelle 92: Beispielhafte Darstellung des Schätzers von Time1

Abbildung 61: Zeitlicher Verlauf des Mageninhaltvolumens in cm³

Das Volumen des Mageninhalts verhält sich über die Zeit entweder konstant, teils zunehmend oder eben abnehmend. Leider zeigte sich in der Modellanalyse, dass die Zeit keinen signifikanten Einfluss auf das Volumen hat. Interessant ist jedoch, dass die kardiopulmonale Reanimation offenbar von einer gewissen Signifikanz ist. Der dazugehörige Schätzwert ist tief negativ mit einem sehr hohen Standardfehler.

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,019	0,077	0,809
CPR	-171,307	79,641	0,045

Tabelle 93: Kovariaten CPR und Zeit des Mageninhaltvolumens

Gasvolumen im Magen in cm³

Abbildung 62: Zeitlicher Verlauf des Gasvolumens im Magen in cm³

Bei der Analyse des Gasvolumens des Magens gab es erneut keine signifikante Kovariate, sodass auch anhand der Vermessung der Gasvolumina keine Rückschlüsse auf den Todeszeitpunkt gemacht werden können. In der grafischen Darstellung fällt auf, dass sich das Gasvolumen auf einem eher konstanten bis abnehmenden Niveau bewegt. Bei einzelnen Fällen sind jedoch beachtliche Veränderungen zu sehen. So kommt es z.B. zu einer Verdopplung des Volumens 48h nach Todeseintritt bei 1678-13, nachdem vorher der Anstieg eher dezent war. Auch bei 1584-13 sind hohe Volumenveränderungen zu sehen.

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	1,349	0,791	0,092

Tabelle 94: Beispielhafte Darstellung des Schätzers von Time1 113

Milzvolumen in cm³

Abbildung 63: Zeitlicher Verlauf des Milzvolumens in cm³

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	129,634	26,771	24,038	74,386	184,882
6	129,979	26,765	24,016	74,741	185,217
12	130,324	26,760	23,999	75,094	185,554
18	130,669	26,757	23,987	75,445	185,894
24	131,015	26,755	23,982	75,792	186,237
48	132,396	26,765	24,016	77,157	187,634
72	133,777	26,801	24,142	78,479	189,074

Tabelle 95: Darstellung der Mittelwerte des Milzvolumens in cm³ nach Durchlaufen des Initialmodells

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,073	0,032	0,032

Tabelle 96: Schätzungswert der signifikanten Kovariate

Beim Betrachten der Grafik fällt auf, dass insgesamt keine großen Schwankungen im Verlauf des Milzvolumens zu finden sind. Jedoch sind bei einzelnen Fällen in den ersten 20 h Volumenanstiege zu finden. Das Modell bestätigt eine eher zunehmende Tendenz mit einem recht hohen Standardfehler. Nach Durchlaufen des Finalmodells nimmt dieser Standardfehler durchschnittlich um 10,703 ab, dafür nimmt der Mittelwert der Randmittel durchschnittlich um 25,145 HU zu. Der Schätzer liegt bei 0,073, also vergleichsweise gering, was sich eben auch in der geringen Zunahme der Randmittel über die Zeit widerspiegelt.

Messzeitpunkt				Konfidenzintervall 95%	
in h	Mittelwert	Standardfehler	Freiheitsgrade	Untergrenze	Obergrenze
0	154,385	16,071	23,134	121,150	187,619
6	154,822	16,061	23,079	121,603	188,041
12	155,259	16,054	23,038	122,052	188,466
18	155,697	16,049	23,010	122,497	188,896
24	156,134	16,047	22,996	122,939	189,329
48	157,883	16,060	23,073	124,666	191,101
72	159,632	16,112	23,364	126,331	192,934

Tabelle 97: Geschätzte Randmittel des Milzvolumens in cm³ nach Durchlaufen des Finalmodells

Abgrenzbarkeit des Ductus Pancreaticus

Bei der Auswertung des Ductus Pancreaticus zeigt sich keinerlei signifikanter Zusammenhang zwischen irgendeiner der Kovariaten. Da bei der Abgrenzbarkeit der verschiedenen Strukturen mit abstrakten Zahlen, also einer kategorialen Variable, stellvertretend für die Kriterien "gut abgrenzbar", "bedingt abgrenzbar" und "schwer abgrenzbar" gearbeitet wurde, ist die grafische sowie die tabellarische Darstellung hier und in weiteren untersuchten Variablen nicht hilfreich. Im Folgenden werden die Kovariaten mit ihrer jeweiligen Signifikanz dargestellt. Auch nach dem Hierarchisch-Rückwärts-Eliminieren ergab sich für die Kovariate Zeit kein signifikanter Zusammenhang.

Tests auf feste Effekte, Typ IIIª											
Quelle	Zähler-Freiheitsgrade	Nenner-Freiheitsgrade	F-Wert	Signifikanz							
Gender	1,000	24,164	1,786	0,194							
Lagerung	1,000	39,080	1,700	0,200							
CPR	1,000	23,681	0,548	0,466							
Time1	1,000	59,414	0,157	0,693							
Alter	1,000	24,799	0,220	0,643							
BMI	1,000	24,180	1,039	0,318							
Lagerung * Time1	1,000	59,242	0,228	0,635							

a. Abhängige Variable: Abgrenzbarkeit Ductus Pancreaticus.

Tabelle 98: Darstellung der Signifikanz der jeweiligen Kovariate

Abgrenzbarkeit der Fascia Gerota

Bei der Auswertung der Abgrenzbarkeit der Fascia gerota zeigte sich hingegen ein signifikanter Zusammenhang mit dem zeitlichen Fortschritt und außerdem eine negative Korrelation mit dem BMI. Der herangezogene Schätzwert basiert jedoch ebenfalls auf einer kategorialen Variable, sodass die stündliche Zunahme der Abgrenzbarkeit keinerlei metrischen Einheit widerspiegelt. Des Weiteren sind die abstrakten Zahlen konträr der Einheiten definiert, sodass der positive Schätzer eigentlich eine Abnahme bedeutet. Da die definierten Einheiten "gut abgrenzbar", "bedingt abgrenzbar" und "schwer abgrenzbar" in SPSS in ganzen Zahlen wiedergegeben wurden, lässt sich anhand des Schätzers von 0,006 dennoch sagen, dass nach 167 h die Abgrenzbarkeit um eine Stufe abgenommen hat, beispielsweise von "gut abgrenzbar" zu "bedingt abgrenzbar".

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,006	0,002	0,003
BMI	-0,073	0,031	0,028

Tabelle 99: Darstellung der signifikanten Kovariaten der Abgrenzbarkeit der Fascia gerota

Abgrenzbarkeit der Abdominalmuskulatur

Ebenfalls zeigt die Abgrenzbarkeit der Abdominalmuskulatur eine Zunahme im zeitlichen Verlauf. Nach Auswertung mit dem Mixed-Modell verbleibt hier der zeitliche Fortschritt als einzige signifikante Kovariate. Da bei der Abgrenzbarkeit mit den selben Zahlen wie zuvor gearbeitet wurde, ergibt sich auch hier aus dem Schätzer letzten Endes eine Abnahme der Abgrenzbarkeit.

Parameter	Schätzung	Standardfehler	Signifikanz
Time1	0,006	0,002	0,009

Tabelle 100: Darstellung der signifikanten Kovariaten der Abgrenzbarkeit der Abdominalmuskulatur

Abgrenzbarkeit der Harnblasenwand

			Fälle							
		Gültig		Fehl	end	Gesamt				
		Ν	Prozent	Ν	Prozent	Ν	Prozent			
Abgenzbarkeit	männlich	113	89,7%	13	10,3%	126	100,0%			
Harnblasenwand w	weiblich	37	88,1%	5	11,9%	42	100,0%			

Tabelle 101: Darstellung der verarbeiteten Fälle der Abgrenzbarkeit der Harnblasenwand

Bei der Abgrenzbarkeit der Harnblasenwand zeigten sich zwei Kovariaten als von signifikanten Einfluss. Der zeitliche Fortschritt ist, wie schon zuvor, offenbar von Bedeutung, wenn auch von geringer. Das weibliche Geschlecht sorgt hingegen für eine schlechtere Abgrenzbarkeit insgesamt. Der Standardfehler dieses Schätzwertes ist vergleichsweise hoch, was auch auf die insgesamt eher niedrige Anzahl an weiblichen Leichen in dieser Studie liegt. Ferner kamen von diesen Messungen auch noch Messzeitpunkte nicht zustande, weil hier die CT-Untersuchungen nicht durchgeführt worden sind.

Parameter	Schätzung	Standardfehler	Signifikanz
Gender	-0,770	0,262	0,008
Time1	0,005	0,002	0,003

Tabelle 102: Darstellung der signifikanten Kovariaten der Abgrenzbarkeit der Harnblasenwand

4. Diskussion und Ausblick

4.1 Diskussion und Interpretation der Ergebnisse

Körperdurchmesser

Betrachtet man die Ergebnisse der Körperdurchmesser, fällt in erster Linie auf, dass die Sagittaldurchmesser jeweils abnehmen, die Frontaldurchmesser hingegen zunehmen. Eine Hypothese für dieses Phänomen ist möglicherweise die Autolyse-bedingte nachlassende Gewebespannung. Dies hat zur Folge, dass die Gewebeschichten der Schwerkraft folgen, was logischerweise in Rückenlage eine Höhenminderung zugunsten der Körperbreite zur Folge hat. Ein Beispiel für dieses Phänomen findet sich in Bildbeilage 1. Die Zunahme des kaudalen Frontaldurchmessers läuft jedoch ohne einen signifikanten Zusammenhang ab, sodass hier auch von einem zufälligen Ergebnis ausgegangen werden kann. Hinsichtlich der zentralen Fragestellung lassen sich hier keine Ergebnisse erzielen, die zur Todeszeitbestimmung beitragen. Insgesamt ist die Ab- bzw. Zunahme der Durchmesser, auch wenn eine allgemeine Tendenz zu sehen ist, immer sehr von den individuellen anatomischen Gegebenheiten sowie den unterschiedlichen Autolysephänomenen abhängig, was eine generelle Aussage, in welchem Zeitraum nach dem Ableben eine verstorbene Person sich befindet, nicht möglich macht. Die Kovariaten BMI und zum Teil auch Gender zeigen auch einen signifikanten Einfluss auf die untersuchte Variable. Dies lässt sich dadurch erklären, dass im Mittel die männlichen Leichen sowohl länger waren $(1,78 \text{ m} \circlearrowleft 1,61 \text{ m} \supsetneq)$, als auch einen höheren BMI (26,49 $\circlearrowleft 1,25,76 \supsetneq)$ hatten. Zudem zeigte sich bei der Untersuchung des Frontaldurchmessers auf Beckenhöhe ein negativer Einfluss des männlichen Phänotyps und im Gegensatz dazu bei dem Sagittaldurchmesser auf Xiphoidhöhe eine positive Beeinflussung durch das männliche Geschlecht. Möglicherweise ist dies auf den unterschiedlichen anatomischen Körperbau sowie einen anderen

Fettverteilungstyp der Geschlechter zurückzuführen, der sich hier niederschlägt. Dementsprechend haben die beiden Faktoren BMI und Gender aus anatomischer Perspektive natürlich ebenfalls einen Einfluss auf diese Variablen, jedoch sind sie nicht von Relevanz für die Fragestellung.

Ferner sei hier anzumerken, dass insbesondere diese Ergebnisse, aber ebenso die Folgenden sich auf Verstorbene, die diesen zeitlichen Intervall über in Rückenlage liegen, bezieht. Möglicherweise sind andere untersuchte Variablen auf andere postmortale Liegepositionen übertragbar, jedoch ist insbesondere bei den oben genannten Variablen auch von einem Einfluss der Körperposition auszugehen.

Nebennieren

Hinsichtlich der rechten Nebenniere ist zu sagen, dass sich auch hier keine Rückschlüsse auf den Todeszeitpunkt ziehen lassen. Die Höhe der Nebenniere bzw. Länge in der Transversalebene zeigt keinen signifikanten Trend in Richtung Zu- oder Abnahme, sondern sehr heterogene Ergebnisse. Bei der Tiefe bzw. Länge in der Frontalebene der rechten Nebenniere gibt es zwar eine signifikante Abnahme von 0,06 mm in der Stunde, jedoch sind die Durchmesser auch hier so unterschiedlich groß, dass nicht von einer einheitlichen Tiefe zum Todeszeitpunkt ausgegangen werden kann. Die Bildbeilage 2 zeigt einen beispielhaften Messverlauf. Makroskopisch ist bis auf die Größenveränderung und in Einzelfällen Gaseinlagerung nicht viel zu beobachten. Diese Erkenntnis steht im Einklang mit einer anderen Studie, die dies ebenfalls beschreibt (Charlier et al. 2012).

Gluteal- und Iliacalmuskulatur

Insgesamt lässt sich bei allen drei Variablen eine Zunahme erkennen, sowohl bei den Rohdaten, als auch nach Kalibrierung. Unter Exklusion des Ausreissers 2355-13 zeigte sich bei den Rohdaten eine hohe Spannweite sowie zwischen den Variablen sehr unterschiedliche Röntgendichtemittelwerte. Hinzukommend ist die Standardabweichung ziemlich hoch.

	N	Spannweite	Minimum	Maximum	Mittelwert	Standardabweichung
Gluteus medius Dichte in HU	144	65,68	17,53	83,21	43,836	10,906
Gluteus maximus Dichte HU	144	88,37	-6,01	82,36	29,044	13,296
Musculus iliacus Dichte HU	144	67,35	18,85	86,20	58,149	8,887

Tabelle 103: Deskriptive Statistik der Rohdaten der Hüftmuskulatur unter Exklusion von 2355-13

Im Vergleich dazu sind nach Kalibrierung die Differenzen zwischen Minimum und Maximum nicht mehr so groß und der Standardfehler ist trotz des geringeren Kollektivs, aufgrund des hin und wieder fehlenden Dichtephantoms, ebenfalls niedriger.

	Ν	Spannweite	Minimum	Maximum	Mittelwert	Standardabweichung
Gluteus medius Dichte Kallibriert HU	104	44,35	28,34	72,69	49,364	9,564
Gluteus maximus Dichte Kallibriert HU	104	48,48	13,46	61,94	38,346	9,688
Musculus iliacus Dichte Kalibriert HU	104	44,28	34,18	78,46	61,748	8,033

Tabelle 104: Deskriptive Statistik der kalibrierten Daten der Hüftmuskulatur unter Exklusion von 2355-13

In einer Studie mit größerem Kollektiv und Kalibrierung sämtlicher Dichtedaten ließe sich möglicherweise eine postmortale Anfangsdichte jeder dieser Strukturen herausarbeiten, auf welche dann nach Auffindung und PMCT zurück gerechnet werden könnte. Jedoch ist dieses Kollektiv von 24 Leichen exklusive des Ausreissers 2355-13 zu klein, um für solche Berechnungen herhalten zu können und hat zusätzlich einen sehr hohen Standardfehler. Der hohe Schätzwert von 11,89203 HU beim männlichen Geschlecht in der Messreihe "Dichte des M. gluteus medius in HU" ist durch eine oftmals kräftiger ausgebildete Muskulatur bei Männern zu erklären. Der hohe Standardfehler und die fehlende Signifikanz dieser Kovariate in den weiteren Untersuchungen zur Hüftmuskulatur mindert jedoch die Allgemeingültigkeit dieser Aussage. Ebenso verhält es sich mit einer möglichen Interpretation der Lagerungstemperatur bei der Variable "Kalibrierte Dichte des M. glutes medius in HU". Zwar scheint es in dieser Variable so, dass die Umgebungstemperatur die Dichte der Muskulatur beeinflusst und zwar in dem Sinne, dass bei kälteren Temperaturen die Muskeldichte einen geringeren HU-Wert aufweist, als in wärmerer Umgebung. Jedoch lässt sich diese Annahme in den weiteren Variablen nicht bestätigen.

Der durchgehend negative Schätzwert der Kovariate "Alter" sämtlicher Dichtemessungen der Hüftmuskulatur ist auf die oftmals vorherrschende fortschreitende Muskelatrophie im Alter zurück zu führen. Weiterhin wäre es interessant heraus zu finden, ob bei weiteren Verstorbenen die kardio-pulmonale Reanimation solch einen hohen Einfluss auf die Muskulatur hat und was die Theorie hinter diesem Phänomen ist. Immerhin hat bei einem Drittel der Analysen der Hüftmuskulatur-Variablen die CPR einen signifikanten Einfluss auf die untersuchte Dichte. Die Bildbeilage 3 zeigt beispielhaft einen Messdurchlauf der Hüftmuskulatur.

Röntgendichte der Vesica biliaris

Interessanterweise waren nach Kalibrierung der Dichtewerte der Gallenblase der Standardfehler der errechneten Mittelwerte durchschnittlich um 0,268 höher. Grund dafür ist das kleinere Kollektiv, aus dem sich die Daten speisen. Insgesamt ist bei den meisten Variablen eine Homogenität des Anfangswertes zwischen 5 und 25 HU bei den Rohdaten bzw. zwischen 20 und 40 HU bei den kalibrierten Daten zu beobachten. Da jedoch auch nach Kalibrierung die Anfangswerte sich nicht weiter zu einem Mittelwert hin annähren, ist die Gallenblase basierend auf unseren Daten nicht geeignet, zur Todeszeitberechnung herangezogen zu werden. Die Zunahme der Dichte ist möglicherweise auf eine Sedimentierung des Inhaltes sowie einem, der Schwerkraft folgenden Zufluss aus den Gallengängen, vermehrten Zufluss zurück zu führen. Außerdem könnte ein Wasserverlust durch Diffusion zusätzlich zu einer Zunahme der Röntgendichte führen, da der Wasserverlust zu einer Zunahme der Konzentration Röntgendichter Strukturen führt. Dies gilt selbstverständlich auch für andere untersuchte Gewebe.

Röntgendichtewerte der Milz

Sowohl beim ventralen als auch beim dorsalen Messpunkt der Milz ist ein Anstieg der Dichte über die Zeit zu beobachten. Die Unterschiede hinsichtlich des ausgerechneten Schätzwertes, mit dem die Zunahme der Dichte in HU pro Stunde wiedergegeben wird, sind mit 0,008 HU sehr gering. Bei den kalibrierten Werten ist die Differenz der Schätzer zwischen ventralem und dorsalen Messpunkt mit 0,015 etwas geringer, sodass der dorsale Messpunkt einen etwas geringeren Dichtezuwachs hat. Die Streubreite der Werte zum ersten Messzeitpunkt ist vergleichsweise gering, was sich mittels folgender Tabelle veranschaulichen lässt.

	N	Spannweite	Minimum	Maximum	Mittelwert	Standardabweichung
Milzdichte in HU ventral	24	35,69	35,32	71,01	47,189	6,448
Milzdichte in HU dorsal	24	41,09	32,98	74,07	46,435	7,517
Mittelwert Milzdichte in HU	24	33,43	39,11	72,54	46,814	6,716
Milzdichte kalibriert in HU ventral	16	35,31	40,40	75,71	52,784	7,984
Milzdichte kalibriert in HU dorsal	16	34,51	43,81	78,32	52,324	8,110
Mittelwert Milzdichte kalibriert in HU	16	33,09	43,92	77,01	52,555	7,791

Tabelle 105: Deskriptive Statistik der Milzdichtewerte des ersten Messzeitpunktes

Lässt man bei dieser Statistik den Ausreißer 2648-13 außen vor, so verringert sich die Spannweite im Mittel um 18,53 HU und die Standardabweichung um 2,94.

	Ν	Spannweite	Minimum	Maximum	Mittelwert	Standardabweichung
Milzdichte in HU ventral	23	19,53	35,32	54,85	46,153	4,069
Milzdichte in HU dorsal	23	22,63	32,98	55,61	45,233	4,780
Mittelwert Milzdichte in HU	23	16,12	39,11	55,23	45,696	3,971
Milzdichte kalibriert in HU ventral	15	17,66	40,40	58,06	51,255	5,316
Milzdichte kalibriert in HU dorsal	15	12,91	43,81	56,72	50,591	4,356
Mittelwert Milzdichte kalibriert in HU	15	13,10	43,92	57,02	50,925	4,413

Tabelle 106: Deskriptive Statistik der Milzdichtewerte des ersten Messzeitpunktes ohne Ausreißer

Insgesamt lässt sich hier von einem recht homogenen Anfangswert der Milz zum Todeszeitpunkt sprechen. Dieser könnte ebenfalls, unter Berücksichtigung der Schätzwerte, als Rückrechnungspunkt für Todeszeitpunktschätzungen herhalten, sowohl die Rohdaten, als auch die Kalibrierung. Bei sämtlichen Dichtemessungen der Milz verblieb zudem immer nur der zeitliche Fortschritt als signifikante Kovariate, was die Milz somit relativ unabhängig von anderen Einflüssen macht. Jedoch sind die ermittelten Schätzer der zusammengefassten Milzdichte mit 0,137 HU pro Stunde relativ gering, sodass unter Berücksichtigung der Standardabweichung nach wie vor eine gewisse Ungenauigkeit hinsichtlich der genauen Stunde des Todeseintrittes zu sehen ist.

Die Bildbeilage 5 zeigt beispielhaft den gemessenen Dichteverlauf des ventralen Messpunktes einer Untersuchungsreihe.

Dichte des Mesorektums

Da im Mesorektum neben Lymphbahnen und Gefäßen vor allem auch Fettgewebe vorliegt, ist die gemessene Dichte annähernd derjenigen Dichte, die Fett definitionsgemäß hat und zwar -100 HU. Mit zunehmender Zeit lässt sich eine relativ starke Zunahme der Dichtewerte beobachten. Der ermittelte Schätzwert für die verstrichene Zeit ist bei den Rohdaten 0,320 HU und nach Kalibrierung 0,325 HU und somit annähernd gleich. Bei den kalibrierten Daten ist jedoch der Mittelwert der Dichtemessungen um ca. 30 HU höher. Die Zunahme der Dichte basiert möglicherweise auf beginnender Autolyse und damit einhergehender Sedimentierung von Abbauprodukten. Des Weiteren könnte die Nähe zum Enddarm und den dort erhöhten Vorkommen von Bakterien eine Rolle spielen. Aufgrund der relativen Nähe der gemessenen Dichte zur definierten Dichte von Fettgewebe könnte man hier schon von einem gültigen Anfangswert für die Dichte des Mesorektums ausgehen. Jedoch ist auch hier zu sagen, dass die Zunahme von 0,320 HU pro Stunde bei den gemessenen Werten zu relativ ungenauen vorhersagen führt. So kann beispielsweise ein Verstorbener mit einer Mesorektumdichte von -105 HU sich

im Bereich zwischen "gerade verstorben" und 18h nach Todeseintritt befinden.

Dichte des Caput pancreaticum

Die grafische Darstellung der ermittelten Werte zeigt ein relativ uneinheitliches Bild mit dem Trend zur Dichtezunahme. Die gemessenen Werte haben eine sehr große Streubreite, die sich nach Analyse mit dem Mixed-Modell etwas verringern. Sowohl bei Auswertung der Rohdaten, als auch bei den kalibrierten Werten hat neben der Zeit auch das Lebensalter einen Einfluss auf die Dichte des Pankreaskopfes. Je älter die Person, desto niedriger die Dichte. Dies liegt an einer altersbedingten Funktionsminderung und Verfettung des Pankreas (Saisho et al. 2007), die sich hier gut wiederspiegelt. Aufgrund der Inhomogenität der ersten Messungen empfiehlt sich das Pankreas bzw. im speziellen das Caput pancreaticum nicht für Analysen hinsichtlich des Todeszeitpunktes, da die Qualität der Dichtemessung im Bauchraum von vielen Faktoren abhängig ist und das Pankreas selber auch im Laufe des Lebens vielen verschiedenen Einflüssen ausgesetzt ist und diese Auswirkung auf die Dichte haben.

Dichte der autochthonen Rückenmuskulatur

Die Dichte der autochthonen Rückenmuskulatur zeigt eine stetige Zunahme, bei den gemessenen Daten stärker als bei den kalibrierten Werten. Wie der Ausreißer 2355-13 zeigt, ist die autochthone Rückenmuskulatur zum Todeszeitpunkt unterschiedlich stark ausgeprägt und dementsprechend in ihrer Dichte sehr unterschiedlich. Die Spannweite der gemessenen Werte ist auch unter Exklusion des Ausreißers immer noch sehr hoch (vgl. Tabellen), was die Inhomogenität der Dichte verdeutlicht.

	Ν	Spannweite	Minimum	Maximum	Mittelwert	Standardabweichung
Rohdaten Erste Messung	24	96,83	-35,83	61,00	34,6404	20,92420
Kalibrierte Daten Erste Messung	16	88,34	-20,12	68,22	41,4900	20,74373

Tabelle 107: Deskriptive Statistik der Dichte der autochthonen Rückenmuskulatur zum ersten Messzeitpunkt

	Ν	Spannweite	Minimum	Maximum	Mittelwert	Standardabweichung
Rohdaten Erste Messung	23	57,57	3,43	61,00	37,7043	14,90563
Kalibrierte Daten Erste Messung	15	39,71	28,51	68,22	45,5973	13,10858

Tabelle 108: Deskriptive Statistik der Dichte der autochthonen Rückenmuskulatur zum ersten Messzeitpunkt ohne Ausreißer 2355-13

Ebenfalls fiel bei der Analyse auf, dass bei den Rohdaten die kardiopulmonale Reanimation einen Einfluss hat. Dies war schon bei drei untersuchten Variablen der Hüftmuskulatur so und ist ein möglicher Ansatzpunkt für weitere Untersuchungen. Des Weiteren zeigte sich auch hier der auf die Dichte negative Einfluss des Alters, was ebenfalls bei der Hüftmuskulatur zu beobachten war und den selben Interpretationsansatz hat. Es bleibt festzuhalten, dass es signifikante Veränderungen im Laufe der Zeit gibt, diese jedoch ungeeignet sind, um Rückschlüsse auf den Todeszeitpunkt zu ziehen. In Bildbeilage 8 ist der beispielhafte Verlauf einer Messung dargestellt.

Spongiosadichte

Zur Spongiosadichtebestimmung wurden zwei verschiedene Messpunkte herangezogen. Die Dichte der Lendenwirbelkörper zeigt eine sehr große Spannbreite sowohl im kalibrierten, als auch im nicht-kalibrierten Zustand. Die Standardabweichung der Daten ist ebenfalls hoch.

	Ν	Spannweite	Minimum	Maximum	Mittelwert	Standardabweichung
Spongiosa LWK Dichte in HU	24	233,38	12,21	245,59	104,609	54,902
Spongiosa LWK kalibrierte Dichte in HU	16	198,40	25,36	223,76	91,280	49,919

Tabelle 109: Deskriptive Statistik der Dichtewerte der Lendenwirbelkörperspongiosa zum ersten Messzeitpunkt

Die Dichtezunahme ist bei der Analyse der gemessenen Werte geringfügig höher als bei den kalibrierten. Aufgrund des geringen Schätzwertes ist bei beiden keine Todeszeitbestimmung möglich. Beispielsweise könnte ein gemessener Wert von 110 HU sowohl bei der ersten Messung nach Todeseintritt auftreten, als auch nach 72 Stunden (siehe Tabelle 81). Ebenso verhält es sich bei den kalibrierten Werten und einem beispielhaften Wert von 100 HU. (siehe Tabelle 82).

Sehr ähnliche Ergebnisse sind bei der Auswertung der Spongiosa des Os Ilium zu beobachten. Die Spannweite der gemessenen Werte ist unwesentlich geringer, die Standardabweichung ebenfalls. Die Mittelwerte der Spongiosa sind hier deutlich niedriger, was an der anderen Belastung und Beanspruchung dieser Region liegt.

	Ν	Spannweite	Minimum	Maximum	Mittelwert	Standardabweichung
Spongiosa Os ilium Dichte in HU	24	232,03	-24,46	207,57	37,998	52,623
Spongiosa Os ilium Kalibrierte Dichte in HU	16	197,08	-6,39	190,69	37,672	47,744

Tabelle 110: Deskriptive Statistik der Dichtewerte der Spongiosa des Os ilium zum ersten Messzeitpunkt

Der Einfluss des Bodymassindex bei den Rohdaten und nach Kalibrierung lässt sich damit begründen, dass vermehrtes Gewicht eine höhere Knochenstabilität voraussetzt. Gegensätzlich dazu verhält es sich mit dem Alter. Aufgrund verminderter Beanspruchung sowie Mineralresorption im Darm nimmt die Knochendichte mit steigendem Lebensalter ab. Hinzu kommen weitere Faktoren wie z.B. Langzeittherapien mit Glucocorticoiden, Vitamin-D-Mangelzustände oder Nebenniereninsuffizienz, die allesamt ebenfalls die Dichte der untersuchten ROIs beeinflussen können (Aminorroaya et al. 2005, Li et al. 2016). Bei der Analyse der gemessenen Daten des Os Iliums zeigt sich zudem ein negativer Einfluss des weiblichen Geschlechts auf die Knochendichte. Möglicherweise ist dies mit der höheren Osteoporoserate bei postmenopausalen Frauen zu erklären. Da diese Kovariate jedoch in den anderen Knochendichtemessungen keine Signifikanz besitzt und der Standardfehler mit 15,188 sehr hoch ist, lässt sich diese Hypothese nicht bestätigen.

Wie schon bei der Knochendichte der Lendenwirbelkörper zeigt sich, dass gewisse Dichtewerte zu allen Messzeitpunkten vorkommen können. Daraus resultierend lässt sich die Knochendichte in diesen beiden Messorten nicht für eine Todeszeitbestimmung heranziehen. Die Dichtewerte haben generell eine zu hohe Streubreite, als dass sich daraus eine Methode ableiten ließe. Die Bildbeilagen 9 und 10 zeigen beispielhaft den Messverlauf zweier Messungen.

Wanddicke Vesica urina

Bei der Auswertung der Wanddicke der Vesica urina zeigte sich bei keiner Kovariate ein signifikanter Einfluss auf den Verlauf. Dies liegt vor allem an dem Verhältnis des Durchmessers der Harnblasenwand zur Bildqualität. Zwar ließ sich oftmals der Inhalt zur Harnblasenwand abgrenzen, jedoch waren diese Grenzen im Detail nicht immer messbar, was gerade bei einer Variable im mm-Bereich zu hohen Schwankungen führen kann. Aufgrund dessen wurde anfänglich nur bei 15 Verstorbenen die Wanddicke überhaupt gemessen, 72 h nach Todeseintritt waren es nur noch acht Verstorbene. Mit einer besseren Bildauflösung ließen sich hier möglicherweise andere Ergebnisse erzielen. Jedoch ließ sich bei den vorhandenen Messungen nicht einmal ein Trend ablesen. Dementsprechend lässt sich die Wanddicke der Vesica urina von dieser Datenlage aus nicht als Kriterium für die Todeszeitermittlung mit einbeziehen.

Volumen Vesica urina

Die Analyse des Harnblasenvolumens zeigt grafisch einen Trend zur Abnahme. Jedoch war nur bei vier Verstorbenen mehr als 100 ml in der Harnblase. Bei den anderen Verstorbenen kam es möglicherweise mit dem Erschlaffen der Sphinktermuskulatur zum Urinabgang, sodass hier vorwiegend Restvolumina zu sehen sind. Diese haben einen kleineren Einfluss auf mögliche Flüssigkeitsverschiebungen ins umliegende Gewebe, da volumenbedingt ein geringerer Druck vorherrscht. Die Auswertung mit dem Mixed-Modell zeigte auch keine Anhaltspunkte für eine Signifikanz irgendeiner Kovariate, sodass hier ebenfalls die Variable nicht zur Todeszeiteingrenzung oder -bestimmung genutzt werden kann.

Mageninhalt Volumen

Es zeigte sich kein signifikanter Zusammenhang zwischen der verstrichenen Zeit und dem Volumen des Mageninhalts. Der Modell-Auswertung nach korreliert jedoch die kardiopulmonale Reanimation negativ mit dem Volumen. Der dazugehörige Standardfehler ist jedoch sehr groß, wodurch mögliche Aussagen dazu nicht zwingend eine Gültigkeit besitzen. Rein logisch lässt sich der Zusammenhang durch verschiedene Vorgänge erklären, die höchstwahrscheinlich im Zusammenspiel zu diesem Ergebnis beitragen. Zum einen wird bei der mechanischen Reanimation ein hoher Druck auf den Thorax ausgeübt. Dieser überträgt sich durch das Gewebe auch aufs Abdomen, was hier zu einer Flüssigkeitsverschiebung in weiter distal gelegene Abschnitte des Gastro-Intestinal-Trakts führen kann. Zum anderen ist es auch möglich, dass vor der Intubation Mageninhalt durch das Rettungspersonal abgesaugt wird, um die Intubation selber zu erleichtern. Insgesamt gab es nur zwei Fälle, die nicht reanimiert wurden. Diese beiden Fälle hatten bei der ersten Messung nach Todeseintritt im Verhältnis einen z.T. recht hohen Volumenwert von 496,14 cm³ (1701-13) bzw. 123,54 cm³ (2355-13) bei einem Mittelwert der verbliebenen Volumina von 127,975 cm³. Dass trotz CPR die verbliebenen Volumina durchschnittlich so hoch sind, lässt sich möglicherweise damit erklären, dass wenn das ursprüngliche Volumen sehr hoch ist, die mechanischen Maßnahmen zwar zu einer Verringerung führen, aber eben nach Beenden dieser Maßnahmen eben noch ein vergleichbar höheres Volumen verbleibt.

Gasvolumen des Magens

Keine der untersuchten Kovariaten hat einen signifikanten Einfluss auf das Volumen der Magenblase. Es ist mit fortschreitender Zeit zumeist eine dezente Abnahme zu erkennen, jedoch gibt es auch Fälle mit z.T. beachtlicher Größenzunahme des Volumens. Inwieweit dafür ante mortem eingenommene Mahlzeiten eine Rolle spielen, ist leider nicht mehr zu untersuchen. Die beiden auffälligsten Volumenzunahmen (1678-13, 1584-13) wurden beide im CT-Raum gelagert, was die Entstehung von Faulgasen beschleunigt haben kann. Jedoch findet sich in der Analyse mit dem Mixed-Modell kein Hinweis auf einen Zusammenhang zwischen Lagerung und Volumenexpansion der Magenblase, sodass dies vorerst eine unbestätigte Annahme bleibt. Die Bildbeilage 12 zeigt beispielhaft einen Messverlauf. Anhand der Auswertung lässt sich auch hier kein Rückschluss auf den Todeszeitpunkt anhand des Verlaufes der Volumina ziehen.

Milzvolumen

Das Milzvolumen hat eine geringe Tendenz zur Zunahme nach Todeseintritt. Pro Stunde sind dies nach Berechnung mit dem Mixed-Modell 0,073 cm³ . Diese Zunahme ist verglichen mit der durchschnittlichen Größe von 142,237 cm³ beim ersten Messzeitpunkt sehr gering. Es zeigt sich auch kein Zusammenhang von Milzvolumen und dem BMI, sodass keine Kalibrierung der Volumina anhand des BMIs unternommen werden können. Das Konfidenzintervall des Mixed-Modells hat eine große Spannweite, was eine zeitliche Zuschreibung von gewissen Milzvolumina wie beispielsweise 150 cm³ nicht möglich macht. Die geringe Zunahme des Milzvolumens lässt sich möglicherweise mit Rückständen aus den zu- und abführenden Gefäßen der Milz erklären, die der Schwerkraft folgend in die Milz sickern. Eine Zunahme des Volumens durch Flüssigkeitsübertritt aus dem umliegenden Gewebe dürfte aufgrund der Milzkapsel relativ gering sein. Interessanterweise finden sich bei einigen Fällen in den ersten 20 h eine ausgeprägtere Zunahme des Milzvolumens. Dies hängt möglicherweise mit einer Entspannung kontraktiler Elemente der Milz zusammen. Möglicherweise lässt sich dieses Phänomen in einem größeren Kollektiv reproduzieren und dann auch Hinweise auf eine damit zusammenhängende Todesursache (z.B. Schock) finden. Insgesamt lässt sich jedoch sagen, dass die Milz eher ein konstantes Volumen im zeitlichen Verlauf behält, und sich somit das Volumen nicht eignet für Rückrechnungen auf den Todeseintritt. Die Bildbeilage 13 veranschaulicht beispielhaft eine Messreihe des Milzvolumens.

Abgrenzbarkeit Ductus pancreaticus

Die nicht-vorhandene Signifikanz irgendeiner der Kovariaten mit der Variable "Abgrenzbarkeit des Ductus pancreaticus" lässt sich auf mehrere Ursachen zurück zu führen. Zum einen bestand nicht immer die gleiche Bildqualität bei den Messungen, sodass dies schon zu einer anderen Einteilung geführt haben kann. Daraus ergibt sich auch, dass die Einteilung in "gut abgrenzbar", "bedingt abgrenzbar" und "schwer abgrenzbar" möglicherweise zu grob für die gefahrenen CT ist. Eine Orientierung an objektiveren Kriterien bei besserer Bildauflösung wäre in diesem Fall besser gewesen. Beispielsweise hätte man definieren können, dass "gut abgrenzbar" bedeutet, den Ductus Pancreaticus über mindestens eine Strecke von 3 cm nachvollziehen zu können. Die Bildbeilage 14 ist ein Beispiel für einen Messdurchgang.

Abgrenzbarkeit der Fascia gerota

Der ermittelte Schätzwert ist sehr gering, was Rückschlüsse hinsichtlich der Todeszeitpunkteingrenzung nicht zulässt. Allgemein lässt sich die Abnahme der Abgrenzbarkeit der Fascia gerota feststellen. Diese basiert möglicherweise auf autolytischen Prozessen, die für eine vermehrte Durchlässigkeit der Fascia gerota sorgen. Somit entfällt diese Barriere für postmortale Gewebesedimentierung im Abdomen und die Abgrenzbarkeit mindert sich linear dazu. Ein hoher BMI scheint sich gegensätzlich auf die ursprüngliche Abgrenzbarkeit der Fascia gerota auszuwirken. Wie diese Korrelation zustande kommt, ist nicht ganz klar. Jedoch unterliegt auch das Baufett der Capsula adiposa renalis ebenfalls dem Fettstoffwechsel des Körpers (Shinghal et al. 2016).

Dies führt möglicherweise zu einer kräftiger ausgebildeten Nierenkapsel und könnte somit diese Korrelation erklären. Die Bildbeilage 15 zeigt beispielhaft eine Messreihe dieser Variable.

Abgrenzbarkeit der Abdominalmuskulatur

Auch hier könnten autolytische Prozesse zu der verminderten Abgrenzbarkeit über die Zeit beitragen. Da die autolytischen Prozesse zwar schon direkt nach dem Versterben einsetzen, aber in den ersten Tagen nach Todeseintritt bei kühler bis moderater Umgebungstemperatur nicht exorbitant schnell ablaufen, ist auch dieser Schätzwert sehr gering. Ein Beispiel für diese Messreihe ist in Bildbeilage 16 dargestellt.

Abgrenzbarkeit der Harnblasenwand

Auch die Harnblasenwand hat über die Zeit eine Tendenz zur Abnahme ihrer Abgrenzbarkeit und auch hier spielen vermutlich autolytische Prozesse die wichtigste Rolle. Interessanterweise hat das weibliche Geschlecht einen positiven Einfluss auf die Abgrenzbarkeit. Eine mögliche Erklärung ließ sich hierfür auch nach Rücksprache mit Experten des Anatomischen Instituts des UKE nicht herleiten.

Eine Übersicht über die erarbeiteten Ergebnisse zeigt nachfolgende Tabelle. Die dargestellten Mittelwerte sind die errechneten Werte nach dem Herausrechnen der nicht-signifikanten Kovariaten. Ferner werden die signifikanten Kovariaten und deren Einfluss auf die Messung dargestellt.

4.2 Kritische Bewertung der Methodik

Kritisch anzumerken sei, dass eine strikte Einhaltung des Messprotokolls über sämtliche Messreihen hinweg dazu hätte führen können, dass beispielsweise weniger Störfaktoren aufgetreten wären. Konkret bedeutet dies, dass die Arme der zu scannenden Leiche über dem Kopf zu platzieren sind. Geschieht dies bei einer CT nicht, so ist hier die Bildqualität in zu untersuchenden Bereichen verändert, was Auswirkungen auf Abgrenzbarkeit, aber eben auch auf Dichtemessungen haben kann. Ferner hat das Vergessen des Dichtephantoms bei einigen Messungen dazu geführt, dass die kalibrierten Werte auf einem noch geringeren Kollektiv basierten, sodass diese Ergebnisse ebenfalls anfälliger für Ausreisser sind.

Bei erneuten Untersuchungen dieser Art sollte zudem die Exklusion von Verstorbenen in Erwägung gezogen werden, die ante mortem lange bettlägrig waren. Dies hat natürlich Einfluss auf die Dichte der Muskulatur sowie des Knochens. Üblicherweise sind im Krankenhaus die Todeszeitpunkte bekannt. Aus kriminalistischer Sicht ist jedoch vor allem die Todeszeitermittlung bei Verstorbenen außerhalb von Krankenhäusern interessant. Diese Verstorbenen haben vor ihrem Ableben zumeist einen anderen Habitus sowie damit einhergehend eine vermehrte Beanspruchung von Muskulatur und dementsprechend auch andere Dichtewerte des Bewegungsapparates. Folglich sollte ein untersuchtes Kollektiv auch möglichst diesen Typus repräsentieren. Problematisch hierbei ist, dass nur ein geringer Teil der rechtsmedizinischen Leichen exklusive der Krankenhausleichen über einen bekannten Todeszeitpunkt verfügen, sodass die Kollektiv-Zusammenstellung deutlich erschwert ist.

4.3 Ausblick

Es lassen sich einzelne Zusammenhänge zwischen der postmortalen Liegezeit und Gewebeveränderungen in der CT darstellen. Die aufgezeigten Korrelationen sind jedoch noch nicht für die Todeszeitermittlung verwertbar. Um aussagekräftige Rückrechnungen durchführen zu können bedarf es noch tiefergehender Forschung auf diesem Gebiet und gegebenfalls die erneute Untersuchung einzelner Parameter in einem weitaus größeren Kollektiv. Bei dieser Studie fiel zudem ein Zusammenhang zwischen stattgefundener Reanimation und der Dichte der Muskulatur auf. Interessant wäre heraus zu finden, wie dieser Zusammenhang auslöst. Hier wäre zu klären, ob diese Beeinflussung durch die Thoraxkompression mechanischer Natur ist, durch die Beatmung zu Stande kommt oder ob möglicherweise Medikamente hier einen Einfluss haben.

4.4 Tabellarische Übersicht der Ergebnisse

Parameter	Mittelwert Beginn / 72h	PMI	BMI	Alter	Geschlecht	CPR	Umgebungs- temperatur
Xiphoid Sagittaldurchmesser	23,55 / 22,50 cm	<0,001	<0,001	n.s.	0,001	n.s.	n.s.
Xiphoid Frontaldurchmesser	31,30 / 32,18 cm	0,032	<0,001	n.s.	n.s.	n.s.	n.s.
Becken Sagittaldurchmesser	24,34 / 22,61 cm	<0,001	<0,001	n.s.	n.s.	n.s.	n.s.
Becken Frontaldurchmesser	37,48 / 37,84 cm	n.s.	<0,001	n.s.	0,02	n.s.	n.s.
Nebenniere Transversal- durchmesser	80,81 / 81,97 mm	n.s	n.s.	n.s.	n.s.	n.s.	n.s.
Nebenniere Frontal- durchmesser	38,11 / 34,12 mm	<0,001	n.s.	n.s.	n.s.	n.s.	n.s.
M. gluteus medius Dichte	27,66 / 39,40 HU	<0,001	n.s.	0,038	0,035	0,032	n.s.
- kalibriert	44,49 / 50,96 HU	<0,001	n.s.	0,001	n.s.	n.s.	0,026
M. gluteus maximus Dichte	24,54 / 34,29 HU	<0,001	n.s.	0,007	n.s.	n.s.	n.s.
- kalibriert	34,94 / 39,92 HU	0,003	n.s.	0,003	n.s.	n.s.	n.s.
M. iliacus Dichte	44,12 / 51,65 HU	<0,001	n.s.	0,021	n.s.	0,001	n.s.
- kalibriert	51,09 / 56,00	0,04	n.s.	0,023	n.s.	0,02	n.s.
Gallenblase Dichte	23,22 / 39,88 HU	<0,001	n.s.	n.s.	n.s.	n.s.	n.s.
- kalibriert	33,60 / 46,90 HU	0,001	n.s.	n.s.	n.s.	n.s.	n.s.
Milz Dichte	48,52 / 58,37 HU	<0,001	n.s.	n.s.	n.s.	n.s.	n.s.
- kalibriert	53,99 / 62,30	<0,001	n.s.	n.s.	n.s.	n.s.	n.s.
Mesorektum Dichte	-108,57 / -85,54 HU	<0,001	n.s.	n.s.	n.s.	n.s.	n.s.
- kalibriert	-79,15 / -55,72	<0,001	n.s.	n.s.	n.s.	n.s.	n.s.

Parameter	Mittelwert Beginn / 72h	PMI	BMI	Alter	Geschlecht	CPR	Umgebungs- temperatur
Pankreaskopf Dichte	39,52 / 46,88 HU	<0,001	n.s.	0,005	n.s.	n.s.	n.s.
- kalibriert	45,84 / 52,12 HU	0,0013	n.s.	0,025	n.s.	n.s.	n.s.
M. erector spinae Dichte	25,49 / 34,51 HU	<0,001	n.s.	0,002	n.s.	0,039	n.s.
M. erector spinae Dichte - kalibriert	42,87 / 49,49 HU	<0,001	n.s.	0,01	n.s.	n.s.	n.s.
Lendenwirbelkörper Dichte	103,08 / 115,95 HU	<0,001	n.s.	<0,001	n.s.	n.s.	n.s.
- kalibriert	92,96 / 103,71 HU	0,001	n.s.	<0,001	n.s.	n.s.	n.s.
Os ilium Dichte	45,32 / 63,57 HU	<0,001	0,026	<0,001	0,047	n.s.	n.s.
- kalibriert	36,91 / 50,00	0,001	0,028	<0,001	n.s.	n.s.	n.s.
Harnblase Wanddicke	0,712/ 0,67 cm	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
Harnblase Volumen	194,85 / 175,20 cm³	n.s.	n.s.	n.s.	n.s.	n.s	n.s.
Mageninhalt Volumen	206,88 / 208,24 cm³	n.s.	n.s.	n.s.	n.s.	0,045	n.s.
Gasblase des Magens Volumen	389,41 / 486,53 cm ³	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
Milzvolumen	154,38 / 159,63 cm³	0,032	n.s.	n.s.	n.s.	n.s.	n.s.
Pankreasgang Abgrenzbarkeit	-	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
Fascia gerota Abgrenzbarkeit	-	0,003	0,028	n.s.	n.s.	n.s.	n.s.
Abdominalmuskulatur Abgrenzbarkeit	-	0,009	n.s.	n.s.	n.s.	n.s.	n.s.
Harnblasenwand Abgrenzbarkeit	-	0,003	n.s.	n.s.	0,008	n.s.	n.s.

Tabelle 111: Übersicht der Ergebnisse

5. Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der computertomographischen Darstellung früh-postmortaler Gewebeveränderungen im menschlichen Abdomen und ob diese geeignet sind, Rückschlüsse auf den Todeszeitpunkt ziehen zu können.

Das Kollektiv der Studie setzt sich aus 24 Leichen mit bekanntem Todeszeitpunkt und einer postmortalen Liegedauer von weniger als sechs Stunden (Mean = 3,71 h) zusammen. Es wurden zu fest definierten Zeitpunkten nach Todeseintritt CT-Scans der Verstorbenen mit einem Philips Brilliance 16 Zeiler Computertomographen gefahren und mithilfe der Software OsiriX v.5.9 ausgewertet. Das Messprotokoll umfasst insgesamt 25 Regions of Interest (ROI), die Röntgendichte, Durchmesser, Volumina sowie Abgrenzbarkeit unterschiedlicher Strukturen im Bauchraum erfassen. Die Auswertung der ROIs erfolgte unter Anwendung eines linearen Mixed-Modells mit der Statistik-Software SPSS. Hinsichtlich der zentralen Fragestellung zur Todeszeitbestimmung ist festzustellen, dass insbesondere die ROIs der Hüftmuskulatur- sowie der Milzdichte einen signifikanten Zusammenhang zwischen der fortschreitenden Zeit und einer Zunahme der Röntgendichte aufweisen. Ebenfalls scheinen Hypostaseeffekte einen signifikanten Einfluss auf Dichtemessungen im dorsalen Drittel des Körpers in Rückenlage zu haben, was beispielsweise die Zunahme der Röntgendichte des Mesorektums erklären könnte. Darüber hinaus ließen sich andere, bekannte postmortale Veränderungen in dieser Studie nochmals bestätigen, wie beispielsweise das Verhältnis von Röntgendichte des Pankreas und Lebensalter. Insgesamt lässt sich feststellen, dass bei vielen Variablen deutliche Veränderungen post mortem eintreten und diese auch messbar sind, jedoch sind die wenigsten hiervon geeignet für eine Eingrenzung des Todeszeitpunktes. Eine Untersuchung mit einem größeren Kollektiv könnte bei einzelnen Variablen jedoch möglicherweise einen Zusammenhang zum postmortalem Intervall aufzeigen oder Erklärungen für andere gemessene Phänomene liefern.

6. Abstract

The thesis at hand deals with the visualization of early postmortal tissue alterations in the human abdomen using computer tomography and if these are suitable to draw conclusions to the time of death.

The collective of the study is comprised of 24 deceased with known times of death and retention times of less than six hours (mean = 3,71 h).

CT scans were performed on the deceased at specific times after death using a Philips Brilliance 16 slice computer tomograph. The scan results were evaluated using the software OsiriX v.5.9. The measurement protocol covers 25 regions of interest (ROI) consisting of radio-densities, diameters, volumes as well as the identifiability of different structures in the abdomen. The evaluation of the ROIs was performed using a linear mixed-model with the statistic software SPSS to eliminate non-significant factors.

With regard to the central issue of determining the time of death, it can be stated that especially in the ROIs of hip musculature and the spleen, there is a positive correlation between elapsed time and changes of tissue radio-density. Hypostasis effects would also appear to have a significant influence on radiodensity measurements in the dorsal third of the body in the supine position, which offers a possible explanation for the increase radio-density of the mesorectum. In addition, the study was able to confirm other known post mortal alterations, such as the relation between the radio-density of the pancreas and age. Overall it can be stated that many variables show measurable post-mortal alterations. However only very few are suitable for the determination of the time of death.

A study with a larger collective could possibly provide correlations to postmortem intervall for certain variables or provide explanations for other observed phenomena.

7. Bildbeilagen

7.1 Bildbeilage 1: Körperdurchmesser

Abbildung 64: 2725 2 h: Xiphoidhöhe Sagittaldurchmesser 25,25 cm – Frontaldurchmesser 33,22 cm

Abbildung 65: 2725 6 h: Xiphoidhöhe Sagittaldurchmesser 25,29 cm – Frontaldurchmesser 35,12 cm

Abbildung 66: 2725 12 h: Xiphoidhöhe Sagittaldurchmesser 24,80 cm – Frontaldurchmesser 33,32 cm

Abbildung 67: 2725 18 h: Xiphoidhöhe Sagittaldurchmesser 24,35 cm – Frontaldurchmesser 33,44 cm

Abbildung 68: 2725 24 h: Xiphoidhöhe Sagittaldurchmesser 24,87 cm – Frontaldurchmesser 33,06 cm

Abbildung 69: 2725 48 h: Xiphoidhöhe Sagittaldurchmesser 23,52 cm – Frontaldurchmesser 35,98 cm

Abbildung 70: 2725 72 h: Xiphoidhöhe Sagittaldurchmesser 23,27 cm – Frontaldurchmesser 36,00 cm

Abbildung 71: 2725 2 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 27,04 cm – Frontaldurchmesser 36,77 cm

Abbildung 72: 2725 6 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 26,30 cm – Frontaldurchmesser 36,70 cm

Abbildung 73: 2725 12 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 26,47 cm – Frontaldurchmesser 36,40 cm

Abbildung 74: 2725 18 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 25,97 cm – Frontaldurchmesser 36,65 cm

Abbildung 75: 2725 24 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 25,93 cm – Frontaldurchmesser 37,84 cm

Abbildung 76: 2725 48 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 24,89 cm – Frontaldurchmesser 37,77 cm

Abbildung 77: 2725 72 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 24,67 cm – Frontaldurchmesser 37,40 cm

7.2. Bildbeilage 2: Nebenniere rechts

Abbildung 78: 2616 5 h: Nebenniere rechts in der Transversalebene

Abbildung 79: 2616 6 h: Nebenniere rechts in der Transversalebene

Abbildung 80: 2616 12 h: Nebenniere rechts in der Transversalebene

Abbildung 81: 2616 18 h: Nebenniere rechts in der Transversalebene

Abbildung 82: 2616 24 h: Nebenniere rechts in der Transversalebene

Abbildung 83: 2616 48 h: Nebenniere rechts in der Transversalebene

Abbildung 84: 2616 72 h: Nebenniere rechts in der Transversalebene

Abbildung 85: 2616 5 h: Nebenniere rechts in der Frontalebene

Abbildung 86: 2616 6 h: Nebenniere rechts in der Frontalebene

Abbildung 87: 2616 12 h: Nebenniere rechts in der Frontalebene

Abbildung 88: 2616 18 h: Nebenniere rechts in der Frontalebene

Abbildung 89: 2616 24 h: Nebenniere rechts in der Frontalebene

Abbildung 90: 2616 48 h: Nebenniere rechts in der Frontalebene

Abbildung 91: 2616 72 h: Nebenniere rechts in der Frontalebene

7.3 Bildbeilage 3: Hüftmuskulatur

Abbildung 92: 1701 3 h: Muskulaturdichte - M. gluteus medius 43,70 HU; M. gluteus maximus 21,27 HU; M. iliacus 45,07 HU

Abbildung 93: 1701 6 h: Muskulaturdichte - M. gluteus medius 48,27 HU; M. gluteus maximus 32,89 HU; M. iliacus 54,42 HU

Abbildung 94: 1701 12 h: Muskulaturdichte - M. gluteus medius 49,14 HU; M. gluteus maximus 37,58 HU; M. iliacus 52,46 HU

Abbildung 95: 1701 18 h: Muskulaturdichte - M. gluteus medius 47,71 HU; M. gluteus maximus 37,08 HU; M. iliacus 50,95 HU

Abbildung 96: 1701 24 h: Muskulaturdichte - M. gluteus medius 51,70 HU; M. gluteus maximus 30,31 HU; M. iliacus 52,62 HU

Abbildung 97: 1701 48 h: Muskulaturdichte - M. gluteus medius 54,55 HU; M. gluteus maximus 24,01 HU; M. iliacus 57,75 HU

Abbildung 98: 1701 72 h: Muskulaturdichte - M. gluteus medius 57,31 HU; M. gluteus maximus 35,66 HU; M. iliacus 59,21 HU

7.4 Bildbeilage 4: Vesica biliaris

Abbildung 99: 1701 3 h: Dichte der Vesica biliaris 5,74 HU

Abbildung 100: 1701 6 h: Dichte der Vesica biliaris 10,70 HU

Abbildung 101: 1701 12 h: Dichte der Vesica biliaris 8,88 HU

Abbildung 102: 1701 18 h: Dichte der Vesica biliaris 11,74 HU

Abbildung 103: 1701 24 h: Dichte der Vesica biliaris 12,45 HU

Abbildung 104: 1701 48 h: Dichte der Vesica biliaris 16,54 HU

Abbildung 105: 1701 72 h: Dichte der Vesica biliaris 18,15 HU

7.5 Bildbeilage 5: Milzdichte

Abbildung 106: 2532 4 h: Ventraler Messpunkt Milzdichte 47,77 HU

Abbildung 107: 2532 6 h: Ventraler Messpunkt Milzdichte 45,84 HU

Abbildung 108: 2532 12 h: Ventraler Messpunkt Milzdichte 55,56 HU

Abbildung 109: 2532 18 h: Ventraler Messpunkt Milzdichte 53,28 HU

Abbildung 110: 2532 24 h: Ventraler Messpunkt Milzdichte 59,09 HU

Abbildung 111: 2532 48 h: Ventraler Messpunkt Milzdichte 61,94 HU

Abbildung 112: 2532 72 h: Ventraler Messpunkt Milzdichte 62,68 HU

7.6 Bildbeilage 6: Mesorektumdichte

Abbildung 113: 1701 3 h: Mesorektumdichte 118,34 HU

Abbildung 114: 1701 6 h: Mesorektumdichte 112,26 HU

Abbildung 115: 1701 12 h: Mesorektumdichte 105,93 HU

Abbildung 116: 1701 18 h: Mesorektumdichte 110,13 HU

Abbildung 117: 1701 24 h: Mesorektumdichte 101,01 HU

Abbildung 118: 1701 48 h: Mesorektumdichte 100,85 HU

Abbildung 119: 1701 72 h: Mesorektumdichte 98,77 HU

7.7 Bildbeilage 7: Caput pancreaticum

Abbildung 120: 2726 2 h: Dichte des Pankreaskopfes 45,39 HU

Abbildung 121: 2726 6 h: Dichte des Pankreaskopfes 48,64 HU

Abbildung 122: 2726 12 h: Dichte des Pankreaskopfes 54,60 HU

Abbildung 123: 2726 18 h: Dichte des Pankreaskopfes 51,48 HU

Abbildung 124: 2726 24 h: Dichte des Pankreaskopfes 49,98 HU

Abbildung 125: 2726 48 h: Dichte des Pankreaskopfes 52,36 HU

Abbildung 126: 2726 72 h: Dichte des Pankreaskopfes 55,86 HU

7.8 Bildbeilage 8: Autochthone Rückenmuskulatur

Abbildung 127: 2616 5 h: Dichte der autochthonen Rückenmuskulatur 21,61 HU

Abbildung 128: 2616 6 h: Dichte der autochthonen Rückenmuskulatur 22,73 HU

Abbildung 129: 2616 12 h: Dichte der autochthonen Rückenmuskulatur 28,35 HU

Abbildung 130: 2616 18 h: Dichte der autochthonen Rückenmuskulatur 23,81 HU

Abbildung 131: 2616 24 h: Dichte der autochthonen Rückenmuskulatur 29,81 HU

Abbildung 132: 2616 48 h: Dichte der autochthonen Rückenmuskulatur 28,98 HU

Abbildung 133: 2616 72 h: Dichte der autochthonen Rückenmuskulatur 26,91 HU

7.9 Bildbeilage 9: Lendenwirbelkörperspongiosa

Abbildung 134: 2726 2 h: Lendenwirbelkörper Spongiosadichte 144,78 HU

Abbildung 135: 2726 6 h: Lendenwirbelkörper Spongiosadichte 148,94 HU

Abbildung 136: 2726 12 h: Lendenwirbelkörper Spongiosadichte 148,99 HU

Abbildung 137: 2726 18 h: Lendenwirbelkörper Spongiosadichte 154,56 HU

Abbildung 138: 2726 24 h: Lendenwirbelkörper Spongiosadichte 154,95 HU

Abbildung 139: 2726 48 h: Lendenwirbelkörper Spongiosadichte 164,15 HU

Abbildung 140: 2726 72 h: Lendenwirbelkörper Spongiosadichte 172,27 HU

7.10 Bildbeilage 10: Spongiosa Os ilium

Abbildung 141: 1510 2 h: Os ilium Spongiosadichte 94,20 HU

Abbildung 142: 1510 6 h: Os ilium Spongiosadichte 97,63 HU

Abbildung 143: 1510 12 h: Os ilium Spongiosadichte 104,00 HU

Abbildung 144: 1510 18 h: Os ilium Spongiosadichte 101,64 HU

Abbildung 145: 1510 24 h: Os ilium Spongiosadichte 95,92 HU

Abbildung 146: 1510 48 h: Os ilium Spongiosadichte 99,38 HU

Abbildung 147: 1510 72 h: Os ilium Spongiosadichte 107,86 HU

7.11 Bildbeilage 11: Volumen Mageninhalt

Abbildung 148: 2648 4 h: Volumen des Mageninhalts 85,51 cm³

Abbildung 149: 2648 6 h: Volumen des Mageninhalts 85,67 cm³

Abbildung 150: 2648 12 h: Volumen des Mageninhalts 82,98 cm³

Abbildung 151: 2648 18 h: Volumen des Mageninhalts 80,58 cm³

Abbildung 152: 2648 24 h: Volumen des Mageninhalts 80,43 cm³

Abbildung 153: 2648 48 h: Volumen des Mageninhalts 90,00 cm³

Abbildung 154: 2648 72 h: Volumen des Mageninhalts 81,33 cm³

7.12 Bildbeilage 12: Gasvolumen des Magens

Abbildung 155: 3147 3 h: Gasvolumen des Magens 40,39 cm³

Abbildung 156: 3147 6 h: Gasvolumen des Magens 39,73 cm³

Abbildung 157: 3147 12 h: Gasvolumen des Magens 39,87 cm³

Abbildung 158: 3147 18 h: Gasvolumen des Magens 38,84 cm³

Abbildung 159: 3147 24 h: Gasvolumen des Magens 39,51 cm³

Abbildung 160: 3147 48 h: Gasvolumen des Magens 38,97 cm³

Abbildung 161: 3147 72 h: Gasvolumen des Magens 37,86 cm³

Abbildung 162: 2653 4 h: Milzvolumen 148,77 cm³

7.13 Bildbeilage 13: Milzvolumen

Abbildung 163: 2653 6 h: Milzvolumen 152,68 cm³

Abbildung 164: 2653 12 h: Milzvolumen 157,93 cm³

Abbildung 165: 2653 18 h: Milzvolumen 155,04 cm³

Abbildung 166: 2653 24 h: Milzvolumen 153,42 cm³

Abbildung 167: 2653 48 h: Milzvolumen 156,25 cm³

Abbildung 168: 2653 72 h: Milzvolumen 152,75 cm³

7.14 Bildbeilage 14: Abgrenzbarkeit Ductus pancreaticus

Abbildung 169: 1548 3 h: Abgrenzbarkeit Ductus pancreaticus "gut"

Abbildung 170: 1548 6 h: Abgrenzbarkeit Ductus pancreaticus "schwer"

Abbildung 171: 1548 12 h: Abgrenzbarkeit Ductus pancreaticus "schwer"

Abbildung 172: 1548 18 h: Abgrenzbarkeit Ductus pancreaticus "schwer"

Abbildung 173: 1548 24 h: Abgrenzbarkeit Ductus pancreaticus "schwer"

Abbildung 174: 1548 48 h: Abgrenzbarkeit Ductus pancreaticus "bedingt"

Abbildung 175: 1548 72 h: Abgrenzbarkeit Ductus pancreaticus "bedingt"

7.15 Bildbeilage 15: Abgrenzbarkeit Fascia gerota

Abbildung 176: 1584 3 h: Fascia gerota "gut abgrenzbar"

Abbildung 177: 1584 6 h: Fascia gerota "bedingt abgrenzbar"

Abbildung 178: 1584 12 h: Fascia gerota "bedingt abgrenzbar"

Abbildung 179: 1584 18 h: Fascia gerota "schwer abgrenzbar"

Abbildung 180: 1584 24 h: Fascia gerota "bedingt abgrenzbar"

Abbildung 181: 1584 48 h: Fascia gerota "bedingt abgrenzbar"

Abbildung 182: 1584 72 h: Fascia gerota "schwer abgrenzbar"

7.16 Bildbeilage 16 Abgrenzbarkeit der Abdominalmuskulatur

Abbildung 184: 3147 6 h: Abdominalmuskulatur "gut abgrenzbar"

Abbildung 185: 3147 12 h: Abdominalmuskulatur "gut abgrenzbar"

Abbildung 186: 3147 18 h: Abdominalmuskulatur "gut abgrenzbar"

Abbildung 187: 3147 24 h: Abdominalmuskulatur "gut abgrenzbar"

Abbildung 188: 3147 48 h: Abdominalmuskulatur "gut abgrenzbar"

Abbildung 189: 3147 72 h: Abdominalmuskulatur "bedingt abgrenzbar"

7.17 Bildbeilage 17: Abgrenzbarkeit Harnblasenwand und Harnblasenwanddurchmesser

Abbildung 190: 1584 3 h: Harnblasenwand "gut abgrenzbar" - Harnblasenwanddicke 1,02 cm

Abbildung 191: 1584 6 h: Harnblasenwand "gut abgrenzbar" - Harnblasenwanddicke 1,16 cm

Abbildung 192: 1584 12 h: Harnblasenwand "gut abgrenzbar" - Harnblasenwanddicke 0,79 cm

Abbildung 193: 1584 18 h: Harnblasenwand "gut abgrenzbar" - Harnblasenwanddicke 0,82 cm

Abbildung 194: 1584 24 h: Harnblasenwand "bedingt abgrenzbar" - Harnblasenwanddicke 0,95 cm

Abbildung 195: 1584 48 h: Harnblasenwand "bedingt abgrenzbar" - Harnblasenwanddicke 0,51 cm

Abbildung 196: 1584 72 h: Harnblasenwand "schwer abgrenzbar" - Harnblasenwanddicke 0,88 cm

8. Abkürzungsverzeichnis

- CT, die Computertomographie
- CT, das Computertomogramm
- MRT, die Magnetresonanz-Tomographie
- PM-CT Post-mortem-Computertomographie
- PM-MRT Post-mortem-Magnetresonanz-Tomographie
- et al. et alii / et aliae / et alia
- z.B. zum Beispiel
- 2D zweidimensional
- 3D dreidimensional
- ROI Region of Interest
- z.T. zum Teil
- KHK Koronare Herzkrankheit
- h Stunde
- HU Hounsfield-Units
- HE Hounsfield-Einheiten
- MDCT Multidetector-Computertomographie
- cm centimeter
- mm millimeter
- Pixel Picture Element
- Voxel Volume Element
- UKE Universitätsklinikum Eppendorf
- IfR Institut für Rechtsmedizin
- RTW Rettungstransportwagen
- mAS milliampere second
- cCT, das craniales Computertomogramm
- cCT, die craniale Computertomographie
- s.o. siehe oben
- MPR Multiplanare Rekonstruktion
- CPR Cardiopulmonary Resuscitation

- BMI Bodymass-Index
- M. Musculus

9. Literaturverzeichnis

Aminorroaya A, Kelleher S, Conway AJ, Ly LP, Handelsman DJ (2005) Adequacy of androgen replacement influences bone density response to testosterone in androgen-deficient men. Eur J Endocrinol. 152; 881-886.

Bisset RA, Thomas NB (2002) Postmortem examinations using magnetic resonance imaging: four year review of a working service. BMJ. 324; 1423-1424.

Bolliger SA, Thali MJ, Ross S, Buck U, Naether S, Vock P (2008) Virtual autopsy using imaging: bridging radiologic and forensic sciences. A review of the virtopsy and similar projects. Eur Radiol. 18(2); 273-282.

Brinkmann B, Du Chesne A, Vennemann B (2002) Recent data for frequency of autopsy in Germany. Dtsch Med Wochenschr. 127; 719-795.

Brogdon (1998) Forensic Radiology. 1. Auflage, CRC Press, Boca Raton, Florida, 155-156.

Charlier P, Carlier R, Roffi F, Ezra J, Chaillot PF, Duchat F, Huynh-Charlier I, Lorin de la Grandmaison G (2012) Postmortem abdominal CT: Assessing normal cadaveric modifications and pathological processes. Eur J Radiol. 81; 639-647.

Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ (2006) VIRTOPSY: minimally invasive, imaging-guided virtual autopsy. Radiographics. 26; 1305– 1333.

Eftimov L (2009) Kraniale Computertomographie mit 64-, 16-, 4- und 1-Schicht Computertomographen - Evaluation der Bildqualität, der Darstellung zerebraler Strukturen und des Artefaktvorkommens. Med. Dissertation. LudwigMaximilians-Universität München.

Fischer F, Grimm J, Kirchhoff C, Reiser MF, Graw M, Kirchhoff S (2012) Postmortem 24-h interval computed tomography findings on intrahepatic gas development and changes of liver parenchyma radiopacity. Forensic Sci Int. 214; 118-123.

Harrington DE, Sayre EA (2010) Managed care and measuring medical outcomes: did the rise of HMOs contribute to the fall in the autopsy rate?. Soc Sci Med. 70(2); 191-198.

Hofer M (2010) CT-Kursbuch: Ein Arbeitsbuch für den Einstieg in die Computertomographie. 5. Auflage, Didamed, Düsseldorf, .

Ishida M, Gonoi W, Hagiwara K, Takazawa Y, Akahane M, Fukuyama M, Ohtomo K (2011) Hypostasis in the heart and great vessels of non-traumitc inhospital death cases on postmortem computed tomgraphy: Relationship to antemortem blood tests. Leg Med. 13; 280-285.

Kalender WA, Seissler W, Klotz E, Vock P (1990) Spiralvolumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology. 176; 181-183.

Lessig R (2015) Forensische Odontostomatologie. In: Rechtsmedizin -Befunderhebung, Rekonstruktion, Begutachtung. Madea B, 3. Auflage, Springer, Berlin Heidelberg, 140-149.

Levy AD, Harcke HT, Mallak CT (2010) Post mortem imaging - MDCT features of post mortem change and decomposition. Am J Forensic Med Pathol. 31(1); 12-17.

Li SS, Gao LH, Zhang XY, He JW, Fu WZ, Liu YJ, Hu YQ, Zhang ZL (2016) Genetically low vitamin D levels, bone mineral density, and bone metabolism
markers: a mendelian randomisation study. Sci Rep. 6; 33202.

Madea B (2015) Leichenerscheinungen und supravitale Reaktionen -Todeszeitbestimmung. In: Rechtsmedizin - Befunderhebung, Rekonstruktion, Begutachtung. Madea B, 3. Auflage, Springer, Berlin Heidelberg, 60-86.

O'Donnell C, Woodford N (2008) Post-mortem radiology - a new subspeciality?. Clin Radiol. 63; 1189-1194.

Okuma H, Gonoi W, Ishida M, Shintani Y, Takazawa Y, Fukuyama M, Ohtomo K (2013) Heart wall is thicker on postmortem computed tomography than on ante mortem computed tomography: The first longitudinal study. PLoS One. 8(9); e76026.

Persson A, Lindblom M, Jackowski C (2011) A state-of-the-art pipeline for postmortem CT and MRI visualization: from data acquisition to interactive image interpretation at autopsy. Acta Radiol. 52; 522-536.

Pomara C, Fineschi V, Scalzo G, Guglielmi G (2009) Virtopsy versus digital autopsy: virtuous autopsy. Radiol Med. 114; 1367-1382.

Ross SG, Bolliger SA, Ampanozi G, Oesterhelweg L, Thali MJ, Flach PM (2014) Postmortem CT angiography: capabilities and limitations in traumatic and natural causes of death. Radiographics. 34; 830-846.

Rutty GN (2007) Are autopsies necessary? The role of computed tomography as a possible alternative to invasive autopsies. Rechtsmedizin. 17; 21-28.

Saisho Y, Butler AE, Meier JJ, Monchamp T, Allen-Auerbach M, Rizza RA, Butler PC (2007) Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat. 20(8); 933-942.

Schüttfort M (2013) Früh-postmortale Veränderungen des Gehirns und der

Nasennebenhöhlen in der Computertomographie. Med. Dissertation. Universitätsklinikum Hamburg-Eppendorf.

Shiotani S, Kohno M, Ohashi N, Yamazaki K, Itai Y (2002) Postmortem intravascular high-density fluid level (hypostasis): CT findings. Comput Assist Tomogr. 26; 829-893.

Singhal V, Maffazioli GD, Ackerman KE,Lee H, Elia EF, Woolley R, et al (2016) Effect of chronic athletic activity on brown fat in young women. PLoS ONE. 11(5); e0156353.

Swift B, Rutty GN (2006) Recent advances in postmortem forensics radiology – computed tomography and magnetic resonance imaging applications. In: Forensic Pathology Reviews. Tsokos M, 4. Auflage, Humana Press, Totawa, New Jersey, 355-404.

Takahashi N, Higuchi T, Shiotani M, Maeda H, Hirose Y (2009) Intrahepatic gas at postmortem multislice computed tomography in cases of nontraumatic death. Jpn J Radiol. 27; 264-268.

Thali JM, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C, Schroth G, Ith M, Sonnenschein M, Doernhoefer T, Scheurer E, Plattner T, Dirnhofer R (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) – a feasibility study. J Forensic Sci. 48(2); 386-403.

Thali MJ, Jackowski C, Oesterhelweg L, Ross SG, Dirnhofer R (2007) VIRTOPSY - The Swiss virtual autopsy approach. Leg Med. 9; 100-104.

Thomsen AH, Jurik AG, Uhrenholt L, Vesterby A (2009) An alternative approach to computerized tomography in forensic pathology. Forensic Sci Int. 183; 87-90.

Tsokos M (2005) Postmortem changes and artifacts occuring during the early

postmortem interval. In: Forensic Pathology Reviews. Tsokos M, 3. Auflage, Humana Press, Totawa, New Jersey, 183-237.

van der Made AD, Maas M, Beenen LF, Oostra RJ, Kerkhoffs GM (2013) Postmortem imaging exposed: an aid in MR imaging of musculoskeletal structures. Skeletal Radiol. 42; 467-472.

Wichmann D, Obbelode F, Vogel H, Hoepker WW, Nierhaus A, Braune S, Sauter G, Pueschel K, Kluge S (2012) Virtual autopsy as an alternative to traditional medical autopsy in the intensive care unit: a prospective cohort study. Ann Intern Med. 156; 123-130.

Wullenweber R, Schneider V, Grumme T (1977) A computer-tomographical examination of cranial bullet wounds. Z Rechtsmedizin. 80(3); 227-246.

Zenda T, Takayama T, Miyamoto M, Yamaguchi S, Endo T, Inaba H (2011) Intravascular gas in multiple organs detected by postmortem computed tomography: effect of prolonged cardiopulmonary resuscitation on organ damage in patients with cardiopulmonary arrest. Jpn J Radiol. 29; 148–151.

10. Abbildungsverzeichnis

Abbildung 1: Theoretische Darstellung des Partialvolumeneffekts: Links:
tatsächliche Gewebestrukturen – Rechts: durch Teilanschnitte nehmen Voxel
den Mittelwert der Graustufen der Gewebe an14
Abbildung 2: L2616 72 h: Starburst-Effekt durch Material der Hüft-TEP links16
Abbildung 3: CT-Raum im Institut für Rechtsmedizin mit Dichtephantom21
Abbildung 4: 2725 2 h Sagittal- und Frontaldurchmesser auf Höhe des Xiphoids
Abbildung 5: 2725 2 h Sagittal- und Frontaldurchmesser auf Höhe der Spina
iliaca anterior superior26
Abbildung 6: 2725 2 h Nebenniere rechts in Frontalansicht
Abbildung 7: 2725 2 h Nebenniere rechts in Frontalansicht
Abbildung 8: 2725 2 h Nebenniere rechts in Transversalansicht29
Abbildung 9: 2725 2 h Nebenniere rechts in Transversalansicht29
Abbildung 10: 2616 5 h Vesica biliaris Röntgendichtemessung
Abbildung 11: 2665 2 h Caput pancreaticum Röntgendichtemessung in der 3D-
MPR-Ansicht
Abbildung 12: 3107 12 h Milz Röntgendichtemessung dorsal32
Abbildung 13: 3107 12 h Milz Röntgendichtemessung ventral32
Abbildung 14: 1742 18 h Gluteal- und Iliacalmuskulatur Röntgendichtemessung
in der Transversalebene

Abbildung 15: 2725 2 h Autochthone Rückenmuskulatur

Röntgendichtemessung in 3D-MPR-Ansicht	.34
Abbildung 16: 2725 2 h Spongiosa LWK5 Dichtemessung in der Transversalebene	.35
Abbildung 17: 2725 2 h Spongiosa Os ilium Dichtemessung in der Transversalebene	.35
Abbildung 18: 2725 2 h Perirektaler Fettkörper Röntgendichtemessung in der Frontalebene	36
Abbildung 19: 2725 2 h Abgrenzbarkeit Pankreasgang "schwer" in der Transversalebene	.37
Abbildung 20: 2725 2 h Abgrenzbarkeit der Bauchwandschichten "bedingt" in der Transversalebene	.37
Abbildung 21: 1512 6 h Abgrenzbarkeit der Fascia gerota "gut" in der Transversalebene	.38
Abbildung 22: 3147 6 h Harnblasenwand Abgrenzung und Durchmesser in de Sagittalebene	er 39
Abbildung 23: 1701 3 h Harnblasenvolumen gemessen in der Sagittalebene.	.40
Abbildung 24: 1701 3 h Mageninhalt gemessen in der Frontalebene	.41
Abbildung 25: 1701 3 h Magenblase gemessen in der Frontalebene	.42
Abbildung 26: 1701 3 h Milzvolumen gemessen in der Transversalebene	.43
Abbildung 27: 2653 4 h Dichtephantom gemessen in der Transversalebene	.44
Abbildung 28: Dichtephantom mit Beschriftung	.45
Abbildung 29: Zeitlicher Verlauf des Sagittaldurchmessers auf Höhe des Xiphoids in cm	.49

Abbildung 30: Zeitlicher Verlauf des Frontaldurchmessers auf Höhe des Xiphoids in cm
Abbildung 31: Zeitlicher Verlauf des Sagittaldurchmessers auf Höhe der Spina iliaca ant. sup.in cm
Abbildung 32: Zeitlicher Verlauf des Frontaldurchmessers auf Höhe der Spina iliaca ant. sup. in cm
Abbildung 33: Zeitlicher Verlauf der rechten Nebennierenlänge in mm in der Transversalebene
Abbildung 34: Zeitlicher Verlauf der Länge der rechten Nebenniere in mm in der Frontalebene60
Abbildung 35: Zeitlicher Verlauf der Dichte des M. gluteus medius in HU62
Abbildung 36: Zeitlicher Verlauf der kalibrierten Dichtedaten des M. gluteus medius in HU64
Abbildung 37: Zeitlicher Verlauf der Dichte des M. gluteus maximus in HU66
Abbildung 38: Zeitlicher Verlauf der kalibrierten Dichtedaten des M. gluteus maximus in HU68
Abbildung 39: Zeitlicher Verlauf der Dichte des Musculus iliacus in HU70
Abbildung 40: Zeitlicher Verlauf der kalibrierten Dichte des Musculus iliacus72
Abbildung 41: Zeitlicher Verlauf der Dichte der Vesica biliaris in HU74
Abbildung 42: Zeitlicher Verlauf der kalibrierten Dichtedaten der Vesica biliaris in HU76
Abbildung 43: Zeitlicher Verlauf der Dichte des ventralen Messpunktes der Milz in HU

Abbildung 44: Zeitlicher Verlauf der kalibrierten Dichtedaten des ventralen Milzmesspunktes in HU
Abbildung 45: Zeitlicher Verlauf der Dichte des dorsalen Messpunktes der Milz in HU
Abbildung 46: Zeitlicher Verlauf der kalibrierten Dichtewerte des dorsalen Messpunktes der Milz in HU84
Abbildung 47: Zeitlicher Verlauf der Mittelwerte der Milzdichtemessungen in HU
Abbildung 48: Zeitlicher Verlauf der Mittelwerte der Milzdichtemessungen nach Kalibrierung in HU
Abbildung 49: Zeitlicher Verlauf der Dichte des Mesorektums in HU90
Abbildung 50: Zeitlicher Verlauf der kalibrierten Dichtedaten des Mesorektums in HU92
Abbildung 51: Zeitlicher Verlauf der Dichte des Pankreaskopfes in HU94
Abbildung 52: Zeitlicher Verlauf der kalibrierten Dichtedaten des Pankreaskopfes in HU96
Abbildung 53: Zeitlicher Verlauf der Dichte der autochthonen Rückenmuskulatur in HU98
Abbildung 54: Zeitlicher Verlauf der kalibrierten Dichtedaten der autochthonen Rückenmuskulatur in HU100
Abbildung 55: Zeitlicher Verlauf der Lendenwirbelkörperdichte in HU102
Abbildung 56: Zeitlicher Verlauf der kalibrierten Dichtedaten der Lendenwirbelkörperspongiosa in HU104
Abbildung 57: Zeitlicher Verlauf der Dichte der Spongiosa des Os ilium in HU

Abbildung 58: Zeitlicher Verlauf der kalibrierten Dichte der Spongiosa des Os ilium in HU108
Abbildung 59: Zeitlicher Verlauf der Wanddicke der Vesica urina in cm110
Abbildung 60: Zeitlicher Verlauf des Harnblasenvolumens in cm ³ 111
Abbildung 61: Zeitlicher Verlauf des Mageninhaltvolumens in cm ³ 112
Abbildung 62: Zeitlicher Verlauf des Gasvolumens im Magen in cm ³ 113
Abbildung 63: Zeitlicher Verlauf des Milzvolumens in cm ³ 114
Abbildung 64: 2725 2 h: Xiphoidhöhe Sagittaldurchmesser 25,25 cm – Frontaldurchmesser 33,22 cm139
Abbildung 65: 2725 6 h: Xiphoidhöhe Sagittaldurchmesser 25,29 cm – Frontaldurchmesser 35,12 cm140
Abbildung 66: 2725 12 h: Xiphoidhöhe Sagittaldurchmesser 24,80 cm – Frontaldurchmesser 33,32 cm140
Abbildung 67: 2725 18 h: Xiphoidhöhe Sagittaldurchmesser 24,35 cm – Frontaldurchmesser 33,44 cm141
Abbildung 68: 2725 24 h: Xiphoidhöhe Sagittaldurchmesser 24,87 cm – Frontaldurchmesser 33,06 cm141
Abbildung 69: 2725 48 h: Xiphoidhöhe Sagittaldurchmesser 23,52 cm – Frontaldurchmesser 35,98 cm142
Abbildung 70: 2725 72 h: Xiphoidhöhe Sagittaldurchmesser 23,27 cm – Frontaldurchmesser 36,00 cm142
Abbildung 71: 2725 2 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 27,04

cm – Frontaldurchmesser 36,77 cm	.143
Abbildung 72: 2725 6 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 26 cm – Frontaldurchmesser 36,70 cm	,30 .143
Abbildung 73: 2725 12 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 26,47 cm – Frontaldurchmesser 36,40 cm	.144
Abbildung 74: 2725 18 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 25,97 cm – Frontaldurchmesser 36,65 cm	.145
Abbildung 75: 2725 24 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 25,93 cm – Frontaldurchmesser 37,84 cm	.145
Abbildung 76: 2725 48 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 24,89 cm – Frontaldurchmesser 37,77 cm	.146
Abbildung 77: 2725 72 h: Höhe Spina iliaca ant. sup. Sagittaldurchmesser 24,67 cm – Frontaldurchmesser 37,40 cm	.146
Abbildung 78: 2616 5 h: Nebenniere rechts in der Transversalebene	.147
Abbildung 79: 2616 6 h: Nebenniere rechts in der Transversalebene	.147
Abbildung 80: 2616 12 h: Nebenniere rechts in der Transversalebene	.148
Abbildung 81: 2616 18 h: Nebenniere rechts in der Transversalebene	.148
Abbildung 82: 2616 24 h: Nebenniere rechts in der Transversalebene	.149
Abbildung 83: 2616 48 h: Nebenniere rechts in der Transversalebene	.149
Abbildung 84: 2616 72 h: Nebenniere rechts in der Transversalebene	.150
Abbildung 85: 2616 5 h: Nebenniere rechts in der Frontalebene	.150
Abbildung 86: 2616 6 h: Nebenniere rechts in der Frontalebene	.151

Abbildung 87: 2616 12 h: Nebenniere rechts in der Frontalebene	151
Abbildung 88: 2616 18 h: Nebenniere rechts in der Frontalebene	152
Abbildung 89: 2616 24 h: Nebenniere rechts in der Frontalebene	152
Abbildung 90: 2616 48 h: Nebenniere rechts in der Frontalebene	153
Abbildung 91: 2616 72 h: Nebenniere rechts in der Frontalebene	153
Abbildung 92: 1701 3 h: Muskulaturdichte - M. gluteus medius 43,70 HU; M gluteus maximus 21,27 HU; M. iliacus 45,07 HU	154
Abbildung 93: 1701 6 h: Muskulaturdichte - M. gluteus medius 48,27 HU; M gluteus maximus 32,89 HU; M. iliacus 54,42 HU	154
Abbildung 94: 1701 12 h: Muskulaturdichte - M. gluteus medius 49,14 HU; M gluteus maximus 37,58 HU; M. iliacus 52,46 HU	И. 155
Abbildung 95: 1701 18 h: Muskulaturdichte - M. gluteus medius 47,71 HU; M gluteus maximus 37,08 HU; M. iliacus 50,95 HU	И. 155
Abbildung 96: 1701 24 h: Muskulaturdichte - M. gluteus medius 51,70 HU; M gluteus maximus 30,31 HU; M. iliacus 52,62 HU	И. 156
Abbildung 97: 1701 48 h: Muskulaturdichte - M. gluteus medius 54,55 HU; M gluteus maximus 24,01 HU; M. iliacus 57,75 HU	И. 156
Abbildung 98: 1701 72 h: Muskulaturdichte - M. gluteus medius 57,31 HU; M gluteus maximus 35,66 HU; M. iliacus 59,21 HU	И. 157
Abbildung 99: 1701 3 h: Dichte der Vesica biliaris 5,74 HU	158
Abbildung 100: 1701 6 h: Dichte der Vesica biliaris 10,70 HU	158
Abbildung 101: 1701 12 h: Dichte der Vesica biliaris 8,88 HU	159
Abbildung 102: 1701 18 h: Dichte der Vesica biliaris 11,74 HU	159

Abbildung 103: 1701 24 h: Dichte der Vesica biliaris 12,45 HU......160 Abbildung 104: 1701 48 h: Dichte der Vesica biliaris 16,54 HU......160 Abbildung 105: 1701 72 h: Dichte der Vesica biliaris 18,15 HU......161 Abbildung 106: 2532 4 h: Ventraler Messpunkt Milzdichte 47,77 HU......162 Abbildung 107: 2532 6 h: Ventraler Messpunkt Milzdichte 45,84 HU......162 Abbildung 108: 2532 12 h: Ventraler Messpunkt Milzdichte 55,56 HU......163 Abbildung 109: 2532 18 h: Ventraler Messpunkt Milzdichte 53,28 HU......163 Abbildung 110: 2532 24 h: Ventraler Messpunkt Milzdichte 59,09 HU......164 Abbildung 111: 2532 48 h: Ventraler Messpunkt Milzdichte 61,94 HU......164 Abbildung 112: 2532 72 h: Ventraler Messpunkt Milzdichte 62,68 HU......165 Abbildung 114: 1701 6 h: Mesorektumdichte 112,26 HU......166 Abbildung 115: 1701 12 h: Mesorektumdichte 105,93 HU.......167 Abbildung 116: 1701 18 h: Mesorektumdichte 110,13 HU.......167 Abbildung 117: 1701 24 h: Mesorektumdichte 101,01 HU......168 Abbildung 118: 1701 48 h: Mesorektumdichte 100,85 HU......168 Abbildung 119: 1701 72 h: Mesorektumdichte 98,77 HU......169 Abbildung 120: 2726 2 h: Dichte des Pankreaskopfes 45,39 HU......170 Abbildung 121: 2726 6 h: Dichte des Pankreaskopfes 48,64 HU......170 Abbildung 122: 2726 12 h: Dichte des Pankreaskopfes 54,60 HU.....171

Abbildung 123: 2726 18 h: Dichte des Pankreaskopfes 51,48 HU171
Abbildung 124: 2726 24 h: Dichte des Pankreaskopfes 49,98 HU172
Abbildung 125: 2726 48 h: Dichte des Pankreaskopfes 52,36 HU172
Abbildung 126: 2726 72 h: Dichte des Pankreaskopfes 55,86 HU173
Abbildung 127: 2616 5 h: Dichte der autochthonen Rückenmuskulatur 21,61 HU
Abbildung 128: 2616 6 h: Dichte der autochthonen Rückenmuskulatur 22,73 HU174
Abbildung 129: 2616 12 h: Dichte der autochthonen Rückenmuskulatur 28,35 HU174
Abbildung 130: 2616 18 h: Dichte der autochthonen Rückenmuskulatur 23,81 HU175
Abbildung 131: 2616 24 h: Dichte der autochthonen Rückenmuskulatur 29,81 HU175
Abbildung 132: 2616 48 h: Dichte der autochthonen Rückenmuskulatur 28,98 HU176
Abbildung 133: 2616 72 h: Dichte der autochthonen Rückenmuskulatur 26,91 HU176
Abbildung 134: 2726 2 h: Lendenwirbelkörper Spongiosadichte 144,78 HU177
Abbildung 135: 2726 6 h: Lendenwirbelkörper Spongiosadichte 148,94 HU177
Abbildung 136: 2726 12 h: Lendenwirbelkörper Spongiosadichte 148,99 HU.178
Abbildung 137: 2726 18 h: Lendenwirbelkörper Spongiosadichte 154,56 HU.178
Abbildung 138: 2726 24 h: Lendenwirbelkörper Spongiosadichte 154,95 HU.179

Abbildung 139: 2726 48 h: Lendenwirbelkörper Spongiosadichte 164,15 HU.179 Abbildung 140: 2726 72 h: Lendenwirbelkörper Spongiosadichte 172,27 HU.180 Abbildung 141: 1510 2 h: Os ilium Spongiosadichte 94,20 HU......181 Abbildung 142: 1510 6 h: Os ilium Spongiosadichte 97,63 HU......181 Abbildung 143: 1510 12 h: Os ilium Spongiosadichte 104,00 HU......182 Abbildung 144: 1510 18 h: Os ilium Spongiosadichte 101,64 HU......182 Abbildung 145: 1510 24 h: Os ilium Spongiosadichte 95,92 HU......183 Abbildung 147: 1510 72 h: Os ilium Spongiosadichte 107,86 HU......184 Abbildung 148: 2648 4 h: Volumen des Mageninhalts 85,51 cm³......184 Abbildung 149: 2648 6 h: Volumen des Mageninhalts 85,67 cm³......185 Abbildung 150: 2648 12 h: Volumen des Mageninhalts 82,98 cm³......185 Abbildung 151: 2648 18 h: Volumen des Mageninhalts 80,58 cm³......186 Abbildung 152: 2648 24 h: Volumen des Mageninhalts 80,43 cm³......186 Abbildung 153: 2648 48 h: Volumen des Mageninhalts 90,00 cm³......187 Abbildung 154: 2648 72 h: Volumen des Mageninhalts 81,33 cm³......187 Abbildung 155: 3147 3 h: Gasvolumen des Magens 40,39 cm³......188 Abbildung 156: 3147 6 h: Gasvolumen des Magens 39,73 cm³......188 Abbildung 157: 3147 12 h: Gasvolumen des Magens 39,87 cm³......189 Abbildung 158: 3147 18 h: Gasvolumen des Magens 38,84 cm³......189

Abbildung 159: 3147 24 h: Gasvolumen des Magens 39,51 cm ³ 190	0
Abbildung 160: 3147 48 h: Gasvolumen des Magens 38,97 cm ³ 190	0
Abbildung 161: 3147 72 h: Gasvolumen des Magens 37,86 cm ³ 19	1
Abbildung 162: 2653 4 h: Milzvolumen 148,77 cm ³ 19	1
Abbildung 163: 2653 6 h: Milzvolumen 152,68 cm ³ 192	2
Abbildung 164: 2653 12 h: Milzvolumen 157,93 cm ³ 192	2
Abbildung 165: 2653 18 h: Milzvolumen 155,04 cm ³ 193	3
Abbildung 166: 2653 24 h: Milzvolumen 153,42 cm ³ 193	3
Abbildung 167: 2653 48 h: Milzvolumen 156,25 cm ³ 194	4
Abbildung 168: 2653 72 h: Milzvolumen 152,75 cm ³ 194	4
Abbildung 169: 1548 3 h: Abgrenzbarkeit Ductus pancreaticus "gut"19	5
Abbildung 170: 1548 6 h: Abgrenzbarkeit Ductus pancreaticus "schwer"19	5
Abbildung 171: 1548 12 h: Abgrenzbarkeit Ductus pancreaticus "schwer"19	6
Abbildung 172: 1548 18 h: Abgrenzbarkeit Ductus pancreaticus "schwer"19	6
Abbildung 173: 1548 24 h: Abgrenzbarkeit Ductus pancreaticus "schwer"19	7
Abbildung 174: 1548 48 h: Abgrenzbarkeit Ductus pancreaticus "bedingt"19	7
Abbildung 175: 1548 72 h: Abgrenzbarkeit Ductus pancreaticus "bedingt"198	8
Abbildung 176: 1584 3 h: Fascia gerota "gut abgrenzbar"199	9
Abbildung 177: 1584 6 h: Fascia gerota "bedingt abgrenzbar"20	0
Abbildung 178: 1584 12 h: Fascia gerota "bedingt abgrenzbar"20	0

)1
)1
)2
)2
)3
)3
)4
)4
)5
)5
)6
)7
)7
)8
)8
)9

Abbildung 195: 1584 48 h: Harnblasenwand "bedingt abgrenzbar" -

Harnblasenwanddicke 0,51 cm	.209
Abbildung 196: 1584 72 h: Harnblasenwand "schwer abgrenzbar" -	
Harnblasenwanddicke 0,88 cm	.210

11. Tabellenverzeichnis

Tabelle 1: Todesursachen nach Sektion	19
Tabelle 2: Nicht zustande gekommene Messungen	22
Tabelle 3: Übersicht über untersuchte Zielstrukturen	23
Tabelle 4: Deskriptive Statistik Dichtephantom	46
Tabelle 5: Darstellung der Daten "Sagittaldurchmesser auf Höhe des Xiphoid nach Durchlaufen des Initialmodells (cm)	" 50
Tabelle 6: Schätzung signifikanter Kovariaten des Sagittaldurchmessers auf Höhe des Xiphoid	50
Tabelle 7: Geschätzte Randmittel des Sagittaldurchmessers auf Höhe des Xiphoid nach Durchlaufen des Finalmodells (cm)	50
Tabelle 8: Darstellung der Daten "Frontaldurchmesser auf Höhe des Xiphoid' nach Durchlaufen des Initialmodells (cm)	' 52
Tabelle 9: Schätzung signifikanter Kovariaten des Frontaldurchmessers auf Höhe des Xiphoids	53
Tabelle 10: Geschätzte Randmittel des Frontaldurchmessers auf Höhe des Xiphoid nach Durchlaufen des Finalmodells (cm)	53
Tabelle 11: Darstellung der Daten "Sagittaldurchmesser auf Höhe der Spina iliaca ant. sup. nach Durchlaufen des Initialmodells (cm)	54
Tabelle 12: Schätzung signifikanter Kovariaten des Sagittaldurchmessers auf Höhe der Spina iliaca ant. sup	f 55
Tabelle 13: Geschätzte Randmittel des Sagittaldurchmessers auf Höhe der Spina iliaca ant. sup. nach Durchlaufen des Finalmodells (cm)	55

Tabelle 14: Schätzungen der Kovariaten des Frontaldurchmessers auf Höhe de Spina iliaca ant. sup	er 56
Tabelle 15: Darstellung des Schätzers der Kovariate Zeit	58
Tabelle 16: Darstellung des Längsdurchmessers der rechten Nebenniere in mr nach Durchlaufen des Initialmodells	n 60
Tabelle 17: Schätzwert der Kovariate Zeit des Längsdurchmessers der rechten Nebenniere in der Frontalebene	า 61
Tabelle 18: Geschätzte Randmittel des Längsdurchmessers der rechten Nebenniere in mm in der Frontalebene nach Durchlaufen des Finalmodells6	61
Tabelle 19: Darstellung der Daten "Dichte M. gluteus medius" nach Durchlaufe des Initialmodells (HU)	n 62
Tabelle 20: Schätzungen signifikanter Kovariaten der Dichte des M. gluteus medius	63
Tabelle 21: Geschätzte Randmittel der Dichtedaten des M. gluteus medius nac Durchlaufen des Finalmodells (HU)	:h 63
Tabelle 22: Darstellung der Daten "Kalibrierte Dichte M. gluteus medius" nach Durchlaufen des Initialmodells (HU)	64
Tabelle 23 Schätzungen signifikanter Kovariaten der kalibrierten Dichtedaten des M. gluteus medius6	65
Tabelle 24: Geschätzte Randmittel der kalibrierten Dichtedaten des M. gluteus medius nach Durchlaufen des Finalmodells (HU)6	65
Tabelle 25: Darstellung der Daten "Dichte M. gluteus maximus" nach Durchlaufen des Initialmodells (HU)6	66
Tabelle 26: Schätzungen signifikanter Kovariaten des M. gluteus maximus6	67

Tabelle 27: Geschätzte Randmittel der Dichte des M. gluteus maximus nach
Durchlaufen des Finalmodells (HU)67
Tabelle 28: Darstellung der Daten "Kalibrierte Dichte M. gluteus maximus" nach
Durchlaufen des Initialmodells (HU)68
Tabelle 29: Schätzungen signifikanter Kovariaten der kalibrierten Dichtedaten
des M. gluteus maximus69
Tabelle 30: Geschätzte Randmittel der kalibrierten Dichtedaten des M. gluteus
maximus nach Durchlaufen des Finalmodells (HU)69
Tabelle 31: Darstellung der Daten "Dichte des Musculus iliacus" nach
Durchlaufen des Initialmodells (HU)70
Tabelle 32: Schätzungen signifikanter Kovariaten der Dichte des Musculus
iliacus
Tabelle 33: Geschätzte Randmittel der Dichte des Musculus iliacus in HU nach
Durchlaufen des Finalmodells (HU)71
Tabelle 34: Darstellung der Daten "Kalibrierte Dichte des Musculus iliacus" nach
Durchlaufen des Initialmodells (HU)
Taballa 25: Sabätzungan aignifikantar Kavariatan dar kalibriartan Diabta daa
Musculus iliacus
Tabelle 36: Geschätzte Randmittel der kalibrierten Dichte des Musculus iliacus nach Durchlaufen des Einalmodells (HLI) 73
Tabelle 37: Darstellung der Dichtewerte der Vesica biliaris in HU nach Durchlaufen des Initialmedelle
Durchiauren des Initiaimodells
Tabelle 38: Schätzungswert der signifikanten Kovariate Zeit
Tabelle 39: Geschätzte Randmittel der Dichte der Vesica biliaris in HU nach

Durchlaufen des Finalmodells	75
Tabelle 40: Darstellung der kalibrierten Dichtewerte der Vesica biliaris in HU nach Durchlaufen des Initialmodells	76
Tabelle 41: Schätzungswert der signifikanten Kovariate Zeit	77
Tabelle 42: Geschätzte Randmittel der kalibrierten Dichte der Vesica biliaris in HU nach Durchlaufen des Finalmodells	n 77
Tabelle 43: Darstellung der Dichtewerte des ventralen Milzmesspunktes in Hl nach Durchlaufen des Initialmodells	U 78
Tabelle 44: Schätzungswert der signifikanten Kovariate Zeit	79
Tabelle 45: Geschätzte Randmittel der Dichte des ventralen Messpunktes de Milz in HU nach Durchlaufen des Finalmodells	r 79
Tabelle 46: Darstellung der kalibrierten Dichtewerte des ventralen Milzmesspunktes in HU nach Durchlaufen des Initialmodells	80
Tabelle 47: Schätzungswert der signifikanten Kovariate Zeit	81
Tabelle 48: Geschätzte Randmittel der kalibrierten Dichte des ventralen Messpunktes der Milz in HU nach Durchlaufen des Finalmodells	81
Tabelle 49: Darstellung der Dichtewerte des dorsalen Milzmesspunktes in HL nach Durchlaufen des Initialmodells	J 82
Tabelle 50: Schätzungswert der signifikanten Kovariate Zeit	83
Tabelle 51: Geschätzte Randmittel der Dichte des dorsalen Messpunktes der Milz in HU nach Durchlaufen des Finalmodells	83
Tabelle 52: Darstellung der kalibrierten Dichtewerte des dorsalen	0.4
IVIIIZMESSPUNKTES IN HU NACH DURCHIAUTEN DES INITIAIMODEIIS	84

Tabelle 53: Schätzungswert der signifikanten Kovariate Zeit	85
Tabelle 54: Geschätzte Randmittel der kalibrierten Dichte des dorsalen	
Messpunktes der Milz in HU nach Durchlaufen des Finalmodells	85
Tabelle 55: Darstellung der Mittelwerte der beiden Dichtemessungen der Milz HU nach Durchlaufen des Initialmodells	z in 86
Tabelle 56: Schätzungswert der signifikanten Kovariate Zeit	87
Tabelle 57: Geschätzte Randmittel der Mittelwerte beider Milzmesspunkte in nach Durchlaufen des Finalmodells	HU 87
Tabelle 58: Darstellung der Mittelwerte der beiden Dichtemessungen der Milz nach Kalibrierung in HU nach Durchlaufen des Initialmodells	<u>z</u> 88
Tabelle 59: Schätzungswert der singifikanten Kovariate Zeit	89
Tabelle 60: Geschätzte Randmittel der Mittelwerte beider Milzmesspunkte na Kalibrierung in HU nach Durchlaufen des Finalmodells	ich 89
Tabelle 61: Darstellung der Mittelwerte der Dichtemessungen des Mesorektu in HU nach Durchlaufen des Initialmodells	ms 90
Tabelle 62: Schätzwert der singifikanten Kovariate Zeit	91
Tabelle 63: Geschätzte Randmittel der Dichte des Mesorektums in HU nach Durchlaufen des Finalmodells	91
Tabelle 64: Darstellung der Mittelwerte der kalibrierten Dichtedaten des	
Mesorektums in HU nach Durchlaufen des Initialmodells	92
Tabelle 65: Schätzungswert der singifikanten Kovariate Zeit	92
Tabelle 66: Geschätzte Randmittel der kalibrierten Dichtedaten des	
Mesorektums in HU nach Durchlaufen des Finalmodells	93

Tabelle 67: Darstellung der Mittelwerte der Dichtemessungen des	
Pankreaskopfs in HU nach Durchlaufen des Initialmodells	94
Tabelle 68: Schätzungswerte der verbleibenden Kovariaten	95
Tabelle 69: Geschätzte Randmittel der Dichte des Pankreaskopfs in HU nach Durchlaufen des Finalmodells	ו 95
Tabelle 70: Darstellung der Mittelwerte der kalibrierten Dichtedaten des Pankreaskopfs in HU nach Durchlaufen des Initialmodells	96
Tabelle 71: Schätzungswerte der verbleibenden Kovariaten	97
Tabelle 72: Geschätzte Randmittel der kalibrierten Dichtedaten des Pankreaskopfs in HU nach Durchlaufen des Finalmodells	97
Tabelle 73: Darstellung der Mittelwerte der Dichte der autochthonen Rückenmuskulatur in HU nach Durchlaufen des Initialmodells	98
Tabelle 74: Schätzungswerte der verbleibenden Kovariaten	99
Tabelle 75: Geschätzte Randmittel der Dichte der autochthonen Rückenmuskulatur in HU nach Durchlaufen des Finalmodells	99
Tabelle 76: Darstellung der Mittelwerte der kalibrierten Dichtedaten der autochthonen Rückenmuskulatur in HU nach Durchlaufen des Initialmodells.	100
Tabelle 77: Schätzungswerte der verbleibenden Kovariaten	101
Tabelle 78: Geschätzte Randmittel der kalibrierten Dichtedaten der autochthonen Rückenmuskulatur in HU nach Durchlaufen des Finalmodells.	101
Tabelle 79: Darstellung der Mittelwerte der Lendenwirbelkörperdichte in HU nach Durchlaufen des Initialmodells	102
Tabelle 80: Schätzungswerte der verbleibenden Kovariaten	103

Tabelle 81: Geschätzte Randmittel der Lendenwirbelkörperdichte in HU nach
Durchlaufen des Finalmodells103
Tabelle 82: Darstellung der Mittelwerte der kalibrierten
Lendenwirbelkörperdichte in HU nach Durchlaufen des Initialmodells104
Tabelle 83: Schätzungswerte der verbleibenden Kovariaten
Tabelle 84: Geschätzte Randmittel der kalibrierten Lendenwirbelkörperdichte in
HU nach Durchlaufen des Finalmodells105
Tabelle 85: Darstellung der Mittelwerte der Spongiosadichte des Os ilium in HU
nach Durchlaufen des Initialmodells106
Tabelle 86: Schätzungswerte der signifikanten Kovariaten107
Tabelle 87: Geschätzte Randmittel der Spongiosadichte des Os ilium in HU
nach Durchlaufen des Finalmodells107
Tabelle 88: Darstellung der Mittelwerte der kalibrierten Spongiosadichte des Os
ilium in HU nach Durchlaufen des Initialmodells
Tabelle 89: Schätzungswerte signifikanter Kovariaten109
Tabelle 90: Geschätzte Randmittel der kalibrierten Spongiosadichte des Os
ilium in HU nach Durchlaufen des Finalmodells109
Tabelle 91: Beispielhafte Darstellung des Schätzers von Time1110
Tabelle 92: Beispielhafte Darstellung des Schätzers von Time1111
Tabelle 93: Kovariaten CPR und Zeit des Mageninhaltvolumens112
Tabelle 94: Beispielhafte Darstellung des Schätzers von Time1113
Tabelle 95: Darstellung der Mittelwerte des Milzvolumens in cm³ nach Durchlaufen des Initialmodells

Tabelle 96: Schätzungswert der signifikanten Kovariate1	15
Tabelle 97: Geschätzte Randmittel des Milzvolumens in cm ³ nach Durchlaufer des Finalmodells1	า I15
Tabelle 98: Darstellung der Signifikanz der jeweiligen Kovariate1	116
Tabelle 99: Darstellung der signifikanten Kovariaten der Abgrenzbarkeit der Fascia gerota1	117
Tabelle 100: Darstellung der signifikanten Kovariaten der Abgrenzbarkeit der Abdominalmuskulatur1	117
Tabelle 101: Darstellung der verarbeiteten Fälle der Abgrenzbarkeit der Harnblasenwand1	117
Tabelle 102: Darstellung der signifikanten Kovariaten der Abgrenzbarkeit derHarnblasenwand1	118
Tabelle 103: Deskriptive Statistik der Rohdaten der Hüftmuskulatur unter Exklusion von 2355-131	21
Tabelle 104: Deskriptive Statistik der kalibrierten Daten der Hüftmuskulaturunter Exklusion von 2355-131	21
Tabelle 105: Deskriptive Statistik der Milzdichtewerte des erstenMesszeitpunktes1	23
Tabelle 106: Deskriptive Statistik der Milzdichtewerte des erstenMesszeitpunktes ohne Ausreißer1	23
Tabelle 107: Deskriptive Statistik der Dichte der autochthonen Rückenmuskulatur zum ersten Messzeitpunkt1	26
Tabelle 108: Deskriptive Statistik der Dichte der autochthonen Rückenmuskulatur zum ersten Messzeitpunkt ohne Ausreißer 2355-131	26

Tabelle 109: Deskriptive Statistik der Dichtewerte der	
Lendenwirbelkörperspongiosa zum ersten Messzeitpunkt12	26
Tabelle 110: Deskriptive Statistik der Dichtewerte der Spongiosa des Os ilium	
zum ersten Messzeitpunkt12	27
Tabelle 111: Übersicht der Ergebnisse13	36

12. Danksagung

Vielen Dank an meinen Betreuer Dr. med. Axel Heinemann für die Bereitstellung des Themas, der Hilfe bei fachlichen sowie technischen Fragen sowie der Beratung im Allgemeinen.

Zudem möchte ich mich recht herzlich bei Prof. Dr. med. Klaus Püschel für die Betreuung und Begutachtung meiner Arbeit bedanken.

Herrn Hans Pinnschmidt vom Institut für Medizinische Biometrie und Epidimiologie danke ich für die Hilfestellungen bei der Ausarbeitung des statistischen Modells sowie die Geduld bei Rückfragen meinerseits.

Ein ganz besonderer Dank gilt meinen Eltern, die mir mit Rat und Tat zur Seite standen. Insbesondere danke ich meinem Vater Dr. Holger Hein für die hilfreichen Anmerkungen und den fachlichen Rat.

13. Lebenslauf

14. Eidesstattliche Versicherung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe. Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe. Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten überprüft werden kann.

Unterschrift: