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(gemäß der PromO vom 24. August 2010)

vorgelegt von

Igor Legkiy

aus Lugansk, Ukraine

Hamburg, den 11. August 2017



i

Thesis Committee:

Vorsitzende: Prof. Dr. Anke Gerber

Erstgutachter: Prof. Dr. Gerd Mühlheußer
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Chapter 1

Introduction

The supply side of many markets is controlled by a single firm. A monopoly position can

be acquired via different channels: luck, technological advantage, law, predation, and many

others. The textbook analysis of monopoly considers a firm that chooses an output and sells

it a uniform market-clearing price. Since the firm does not internalize the negative effect of

increased prices on consumer surplus, the optimal price is set above the marginal cost and

thus creates a deadweight loss of social welfare (Varian, 2014, p. 465). However, this model

is rather simplistic because the firm is allowed to produce arbitrarily large outputs and it

can not charge different prices to different consumers.

Mechanism design theory provides a framework for analyzing much richer monopoly prob-

lems. The theory treats the market as a “communication system” where the monopolist is

a “message center” (Hurwicz, 1960). The center announces a (direct) mechanism and asks

every buyer to report her valuation. Upon collecting these reports, the mechanism deter-

mines an allocation and a vector of payments. The allocation specifies a quantity that the

center should allocate to every buyer, and the vector of payments specifies for every buyer

a total expected payment that she should pay to the center. Of course, real markets oper-

ate differently from such mechanisms because buyers and sellers do not exchange reports.

Does this mean that economists should rather focus on studying arbitrarily sophisticated

mappings from market behavior into market outcomes? Fortunately, the famous Revelation

Principle (Myerson, 1979) states that there is no loss of generality if we restrict attention

to direct truthful mechanisms because they could replicate any strategic behavior within

indirect mechanisms.
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Mechanism design theory offers elegant solutions to the problem of optimal auction design

(Harris and Raviv, 1981; Myerson, 1981; Riley and Samuelson, 1981) and the problem of

optimal nonlinear pricing (Maskin and Riley, 1984; Mussa and Rosen, 1978). The first

problem considers a seller that trades a single object with a group of potential buyers, and

the second problem considers a seller that engages in second-degree price discrimination

by offering a schedule of prices for every quantity or quality. In a truthful mechanism, a

buyer’s information rent is a value function of her monetary payoff. Therefore, as stated in

the famous Myerson’s lemma (Myerson, 1981, p. 63), it is completely determined by the

allocation rule. It is routine to show that the seller seeks to maximize the expectation of

virtual valuations (or simply marginal revenues) of the buyer(s). The optimal mechanism

features a trade-off between allocative efficiency and rent extraction and “shuts down” buyer

types with negative virtual valuations.

Although Myerson’s lemma is extremely useful, it relies on strong assumptions. For exam-

ple, buyers may not communicate or exchange side-payments before an auction. However,

if they conspired to suppress competition by placing at most one bid, they would secure a

lower expected payment to the seller and thus larger information rents. Collusive behavior

of buyers has become the subject of analysis in a small but growing field of literature within

auction theory. Mailath and Zemsky (1991) consider second-price auctions and prove that

there exists a mechanism of collusion that manages to suppress competition without com-

pulsory participation or outside subsidies. Since the seller can no longer rely on competitive

forces to push the selling price up, the presence of collusion results in a larger reserve price.

Chapter 2 of this thesis contributes to the literature on collusion in auctions by relaxing

the assumption of full commitment power. We consider a second-price auction where the

seller promises to keep the object if a reserve price is not met. But when it is not met, the

seller has no incentive to keep the object because he could make a profit by running a new

auction with a lower reserve price. So we assume that the seller can commit to his promise

only for a limited time, captured a discounting factor. Our goal is to understand whether

there exists a mechanism of collusion that maximizes the collusive surplus at every possible

auction without relying on outside subsidies and coercion. In addition, we find sequentially

optimal reserve prices in the presence of such collusion.

Our main result states that buyers can not collude efficiently if they expect to collude

efficiently in the future. To get some intuition, suppose that the cartel somehow manages

to collude efficiently in two consecutive auctions. Since collusion yields larger information
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rents, more buyer types should wait for the later auction to realize these extra rents. As the

time between auctions goes to zero, almost all buyer types should wait for the later auction,

which means that there are no present gains of collusion. However, it is not privately optimal

to pursue this “social goal” unless such waiting is incentivized with a “tax” on premature

bidding. To sum up, the cartel collects a “tax” but fails to offer much in return. A buyer

could therefore reduce her expected payment by leaving the cartel.

The remaining chapters relax another assumption behind Myerson’s lemma, namely ex-

pected payoff maximization. Chapter 3 extends the problem of optimal nonlinear pricing

to intention-based social preferences in the spirit of Rabin (1993). We consider a seller who

may (complete information) or may not (incomplete information) know a buyer’s valuation.

After the seller makes his offer, the buyer evaluates the seller’s kindness by comparing the

payoff that she believes the seller intended to give her against some benchmark of “fair

payoff”. Naturally, the buyer is willing to reward the seller if he is kind towards her and

punish him otherwise. We assume that the buyer’s beliefs about the seller’s intentions are

consistent with the optimal behavior, and the fair payoff is a convex combination of the

lowest and the highest payoffs among the Pareto-efficient outcomes.

Our results say that under complete information, the optimal contract stipulates efficient

quantity and a price below the buyer’s valuation. Also, the price is increasing in the seller’s

cost of production. Under incomplete information, the optimal mechanism is characterized

by no distortion at the top and downward distortion elsewhere. Compared to Maskin and

Riley (1984), the size of distortion is smaller because the seller internalizes a psychological

cost that he imposes on the buyer with his unfair mechanism. The optimal mechanism can

be implemented by a schedule of price-quantity pairs that involve quantity discounts and

lower prices than Maskin and Riley (1984).

Chapter 4 extends the problem of optimal auction design to reference-dependent preferences

in the spirit of Koszegi and Rabin (2006). That is, every buyer holds an expectation about

her payment to the seller and suffers a loss of utility when she has to pay more than ex-

pected. We assume that her reference point may be stochastic and in equilibrium it must

be consistent with the strategies of all buyers. Our findings suggest that first-price auctions

are revenue superior to second-price auctions, and the optimal reserve price is lower with

loss-averse buyers than with loss-neutral buyers. Furthermore, the seller prefers negotiations

with one buyer to an efficient auction with two buyers for a sufficiently large degree of loss

aversion, and he always prefers public reserve prices to secret reserve prices.
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Our contribution to the literature is twofold. In terms of methodology, this thesis shows

that it is possible to adopt standard concepts and techniques to richer environments such as

limited commitment and behavioral preferences. For instance, Chapter 2 uses the revelation

principle and the payoff equivalence principle to characterize the ex-post efficient collusion

for an arbitrary revelation policy. Chapter 3 exploits a shortcut from optimal control theory

to derive a first-order condition on the optimal allocation under incomplete information.

Chapter 4 introduces the concept of imputed values to represent the expected revenue from

a first-price auction as the expectation of “psychological” virtual valuations.

In terms of predictions, our results differ significantly from the standard models. In contrast

to Mailath and Zemsky (1991), Chapter 2 shows that for sufficiently weak commitment

power, efficient collusion is not feasible and the sequentially optimal reserves are lower

under an efficient collusion than under competition. Chapter 3 finds the degree of allocative

inefficiency under second-degree price discrimination as well as optimal prices to be lower

than in Maskin and Riley (1984). Finally, Chapter 4 shows that the optimal reserve is lower

compared to Riley and Samuelson (1981) and may be decreasing in the number of buyers.

Therefore, our messages may enhance the expected revenue in those real-world markets

where our sets of assumptions better capture preferences of buyers.



Chapter 2

Collusion in Sequentially Optimal

Auctions

Abstract

We study collusion among buyers when the seller can not commit to withhold

the object from the market forever when it fails to sell. Our setting is characterized

by second-price auctions, ex-ante symmetric buyers, and full-inclusive rings. We find

that for sufficiently large reserve prices, any ex-post efficient mechanism of collusion

must violate budget balance or voluntary participation. Yet, we show that a “second-

best” allocation can always be implemented by a second-price preauction knockout.

Furthermore, the collusion exerts downward pressure on the optimal reserve prices

because it reduces demand for the object. As the time between auctions goes to zero,

this effect reverses the classical result that the optimal reserve price is larger under

collusion.

Keywords: Bidding Rings, Sequentially Optimal Auctions, Efficient Collusion.
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2.1 Introduction

2.1.1 Motivation

The main focus of auction theory is optimal auction design. Myerson (1981) and Riley and

Samuelson (1981) make use of mechanism design theory to show that an optimal auction

allocates the object to the buyer with the highest virtual value and “shuts down” buyer types

with negative virtual values. Their analysis relies on a number of strong assumptions such as

independently distributed values, risk neutrality, competitive behavior, and many more. The

assumption of competitive behavior is especially restrictive. From the empirical perspective,

it is not consistent with a rich body of evidence that documents collusion between buyers.

For example, 81% of the Sherman Act Section 1 criminal cases filed in the 1980s involved

auctions markets (Hendricks and Porter, 1989).

From a theoretical perspective, this assumption has a strong effect on predictions. If we

instead assume that buyers can also share information and exchange side-payments, then

they are able to form a bidding ring that fully suppresses competition by placing at most

one bid above the reserve price (Mailath and Zemsky, 1991). For any reserve price, the ring

maximizes the collusive surplus, increases every buyer’s payoff and balances the budget.

Since competition is suppressed, the seller can not rely on the second-highest value to push

the selling price above the reserve. Therefore, he chooses a larger reserve price compared to

Riley and Samuelson (1981).

Although models of collusive behavior improve upon the standard framework, they suffer

from all other strong assumptions that they inherit. One of them is full commitment : if the

reserve price is not met, the seller keeps the object forever. However, it is not a sequentially

optimal plan of actions because the seller could earn a profit by re-auctioning the object. In

many real-world auction markets, for instance, objects that fail to sell at a given auction are

sold at a later auction. Examples include auctions for wine and art as well as government

auctions for oil tracts and real estate (McAfee and Vincent, 1997).

Why could there be a loss of generality when we study collusive behavior under the assump-

tion of full commitment? First of all, under limited commitment a bidding ring may fail

to maximize the collusive surplus without outside subsidies or forced participation. To see

this, suppose that the time horizon is limited to two periods, and a bidding ring manages
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to suppress competition in period 2. To realize these extra rents from collusion in period

2, many buyer types should refrain from bidding in period 1. As the time between periods

goes to zero, there is no cost of waiting, so all buyer types should refrain from bidding and

the ring fails to obtain any surplus in period 1. But the ring must discourage its members

from bidding in period 1, so it collects a “tax” on bidding by means of a reserve price or an

entry fee. As a result, a buyer’s expected payment to the ring may be positive, so it may be

optimal to leave the ring.

Second of all, the presence of collusion may reduce the optimal reserve price. As argued

above, an efficient ring postpones the purchase of the object. Because of time discounting,

the seller prefers to sell the object as early as possible. In order to encourage the ring to

purchase the object earlier, the seller should set a lower reserve price. Therefore, the upward

effect on the optimal reserve from Mailath and Zemsky (1991) becomes offset by a downward

effect, and only a formal analysis can show which effect dominates.

2.1.2 Research Question and Results

This paper investigates the impact of limited commitment on the existence of efficient col-

lusion and on the optimal reserve price. We propose a model where a seller auctions off a

single object to a number of buyers using a second-price auction with a reserve price. Buyers

are assumed to be ex-ante symmetric and risk-neutral. We confine attention to bidding rings

that include all buyers. If all bids fail to meet the reserve in a given period, there is another

second-price auction with a reserve price in the next period. The reserve prices must be

sequentially optimal, that is, they maximize the seller’s expected profit from every auction

off and on equilibrium path, conditional on the information about the values that the seller

learns from the event of no-sale.

Our findings suggest that there exist such reserve prices that make it impossible to implement

an efficient collusion with an ex-ante budget balanced and individually rational mechanism.

Yet we construct a second-best allocation and show that it can be implemented for any

reserve price with second-price preauction knockouts in the spirit of Graham and Marshall

(1987). Furthermore, the presence of a ring, whether efficient or second-best, pushes the

optimal reserve prices down because the ring buys the object later. As the time between

auctions goes to zero, the initial reserve price with an efficient ring becomes smaller than

the initial reserve price without a ring.
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The rest of this paper is structured as follows. Section 2 reviews the literature on collusion in

auctions and sequentially optimal mechanisms. Section 3 introduces our assumptions about

auction environment and bidding rings. Section 4 considers the case with two periods and

Section 5 considers the case with infinitely many periods. Section 6 discusses and extends

the model and Section 7 concludes.

2.2 Literature Review

To the best of our knowledge, our paper is the first to study the impact of limited commit-

ment on collusion in auctions. Yet, we draw many insights from the literature on collusion

in auctions and the literature on optimal pricing without commitment. These two fields are

very different so we shall review them separately.

2.2.1 Collusion in Auctions

The literature on collusion in auctions studies three problems that are closely related to

our research question. The first problem, which is collusion in static auctions, extends the

standard independent private values model of Riley and Samuelson (1981) to the possi-

bility of bidding rings. Graham and Marshall (1987) consider a single-object second-price

auction with a reserve price and ex-ante symmetric buyers. They introduce a mechanism

of collusion, called the second-price Preauction Knockout, and show that it is truthful in

dominant strategies, individually rational, ex-ante budget balanced, and ex-post efficient.

In this mechanism, every participant receives a lump-sum transfer equal to her expected

contribution to the ring’s profit, and the right to bid in the auction is allocated using a

second-price auction.

Mailath and Zemsky (1991) generalize this model to the case of ex-ante asymmetric buyers.

Using Payoff Equivalence, they show that since competitive allocation is ex-post efficient,

the expected payoff of any buyer in the ring is different from her payoff in the auction by at

most a constant. Further, they construct a version of the Arrow-d’Aspremont-Gerard-Varet

mechanism to prove that there exists an individually rational, incentive compatible, and

ex-post budget balanced mechanism that implements ex-post efficient collusion. As shown
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by Krishna (2009), this existence result is an implication of a theorem by Krishna and Perry

(1998).

The second problem, which is collusion in repeated auctions, extends the model of tacit

collusion with incomplete information by Athey et al. (2004) to auction markets. Their model

considers a cartel of price-competing firms that are privately informed about their costs. It

uncovers a trade-off between efficiency and information rent which results in rigid prices

and thus inefficient collusion. A similar result is obtained by Skrzypacz and Hopenhayn

(2004) for the case of repeated auctions: if buyers can not communicate and the only source

of information is the identity of winners, the optimal collusion is not efficient. However,

if buyers are allowed to communicate prior to the auction, as studied by Aoyagi (2007),

then efficient collusion can be sustained by using a redistribution scheme that transfers the

winner’s surplus to the loser in the form of a continuation payoff.

The third problem, which is optimal auctions in the presence of collusion, extends the

model of optimal auction design by Myerson (1981) and Riley and Samuelson (1981) to the

possibility of bidding rings. Graham and Marshall (1987) show that the optimal reserve

price is increasing in the ring’s size, and Mailath and Zemsky (1991) derive a similar result

for the case of ex-ante asymmetric buyers. These findings are consistent with the exclusion

principle, obtained by Che and Kim (2009), which states that the optimal prevention of

less-than-full inclusive rings involves a positive probability that each member of the ring

does not receive the object.

2.2.2 Optimal Pricing Without Commitment

The literature on optimal pricing without commitment is inspired by the seminal paper

by Coase (1972) which conjectures that a seller of a durable product fails to exercise his

monopoly power because he can not resist the temptation to sell at lower prices in future. Fu-

denberg et al. (1985) use dynamic programming techniques to characterize a strong-Markov

equilibrium of the corresponding bargaining game, which (unfortunately) does not exist in

general. However, Ausubel and Deneckere (1989) show that for a general class of demand

functions, there exists a weak-Markov equilibrium, and every weak-Markov equilibrium sat-

isfies the Coase conjecture. They also show that it is not optimal to randomize over prices

(except in the initial period), and a similar result, obtained by Skreta (2006), states that

there is no loss of generality if the strategy space of the seller is restricted to posted prices.
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These models of bargaining can be generalized to the case of many buyers. Milgrom (1987)

considers a series of sealed-bid auctions in continuous time where the reserve price must

be optimal at each point in time. He finds that there is a unique symmetric stationary

equilibrium where the reserve price is always equal to the seller’s valuation. Going back

to discrete time, McAfee and Vincent (1997) and Liu et al. (2017) consider a second-price

auction with a reserve price when the seller can not permanently withhold the object from

the market when the reserve is not met. These papers show that there always exists a

symmetric stationary equilibrium, and every such equilibrium satisfies the Coase conjecture.

Under a uniform distribution of values, there is a linear stationary equilibrium where the

initial reserve price is positive, but falls arbitrarily fast as the commitment power vanishes.

Again, there is no loss of generality when we restrict attention to second-price auctions with

reserve prices: as shown by Skreta (2015), they remain optimal mechanisms under ex-ante

symmetry of buyers even with limited commitment.

2.3 Model

2.3.1 Environment

Our auction environment is identical to that in Liu et al. (2017). There is one seller and

n ≥ 2 buyers, N = {1, 2, ..., n}. The seller owns an indivisible object that has no value

to him, but has a value of Xi to each buyer i ∈ N . Each value Xi is independently and

identically distributed on [0, 1] according to the distribution function F with density f ,

such that f(x) > 0 for all x ∈ [0, 1]. The realization of Xi is only observed by buyer i,

while the other players know its distribution F . Let Y denote the highest of n − 1 values,

Y ≡ max{X1, ..., Xn−1}, with the distribution function G ≡ F n−1 and density g = G′.

In period t = 1, the seller conducts a second-price auction where he announces a reserve

price r1 ∈ [0, 1]. Each buyer i ∈ N observes r1 and can place a (sealed) bid bi,1 ∈ [r1, 1]

or wait. If at least one bid is placed, the highest bidder receives the object and pays the

competitive price, defined as

Pi,1 ≡ max
j 6=i
{bj,1, r1}
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and the game ends. Otherwise, the seller retains the object and the game proceeds to period

t = 2, where he conducts a second-price auction with a reserve r2 ∈ [0, 1], as described above.

To account for both finite and infinite time horizon, we separately consider two settings:

1. T = {1, 2}: the game ends after t = 2.

2. T = {1, 2, ...,∞}: the game continues until the object is sold.

Each player is risk-neutral and discounts her payoff in period t by δt−1. The exogenous

parameter δ ∈ (0, 1) is used to reflect the time for which the seller can commit to keep the

object off the market. His commitment power is decreasing in δ, with δ → 0 being the

standard case of full commitment.

For every t ≥ 2, let ht = (r1, ..., rt−1) denote the history of reserve prices when the object

is not sold by period t, and let h1 denote the history when the seller announces an initial

reserve p1; we use Ht to denote the set of all such histories. A pure strategy of the seller

specifies a mapping from the set of histories into the set of reserve prices, pt : Ht → R+

for every period t ∈ T . A pure strategy of buyer i ∈ N specifies a mapping from the set

of histories, the set of valuations, and the set of current reserve prices into the set of bids,

βit : Ht × [0, 1] × [0, 1] → [0, 1] for every period t ∈ T , such that any bid below the current

reserve rt is treated as waiting.

In any period t, the seller can commit to the current reserve rt, but he can not commit to

future reserves. To capture the lack of commitment, we use the solution concept of perfect

Bayesian equilibrium (Osborne and Rubinstein, 1994, p. 233). That is, we look for a profile

of strategies and beliefs that satisfy sequential rationality: every player’s equilibrium strategy

is a best response to the equilibrium strategies of the other players in every information set,

conditional on reaching this set; and consistent beliefs: every player’s beliefs are derived

from the equilibrium strategies using Bayes’ rule, whenever possible.

2.3.2 Bidding Rings

The previous section defines our auction environment under the assumption of competitive

behavior. However, we also allow buyers to collude by forming a bidding ring. There is a

(full-inclusive) bidding ring in a given auction if all buyers agree to place at most one bid
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above the reserve price. If buyer i receives the object in period t, she pays the collusive

price, defined as

P̂i,t ≡ rt

In order to coordinate their bids in the auction, the buyers must select the sole bidder and

determine side-payments beforehand. Following Mailath and Zemsky (1991), we do not

specify the rules by which these tasks are accomplished. Instead, we consider the class of

direct mechanisms where the ring decides on the sole bidder and side-payments based on

vectors of reports sent by its members.

A direct mechanism in period t consists of a selection rule Qt : [0, 1]n → [0, 1]n and a side-

payment rule St : [0, 1]n → Rn. For every vector of reports that buyers may send to the ring

center, the selection rule specifies the probability that buyer i ∈ N is allowed to bid in the

auction1, Qi,t(x), and the side-payment rule specifies i’s payment to the ring, Si,t(x). For a

given incentive compatible mechanism in period t, let si,t : [0, 1] → R denote the expected

side-payment function of buyer i when her report to the ring is some zi ∈ [0, 1],

si,t(zi; rt) =

∫
[0,1]n−1

Si,t(zi,x−i; rt)f−i(x−i)dx−i

In our analysis, we evaluate mechanisms of collusion with standard properties:

1. Incentive compatibility : it is optimal for every buyer to report her true value to the

ring if all other buyers also report their true values.

2. Ex-ante budget balance: the sum of side-payments is equal to zero in expectation.

3. Individual rationality : the equilibrium payoff of every buyer is larger than her payoff

when she competes against a ring with n− 1 buyers.

2.4 Two Periods

Our primary interest lies in the case of infinite time horizon, T = {1, 2, ...,∞}. It involves

a long and somewhat tedious analysis, so it is not easy to develop an intuition behind the

equations. Fortunately, we can obtain qualitatively identical results in a much simpler case

1Of course, the probability of sale is at most one,
∑

i∈N Qi,t(x) ≤ 1 for all x.
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of two periods, T = {1, 2}. Compared to Graham and Marshall (1987), we introduce an

opportunity to auction-off the object at t = 2 in case it does not sell at t = 1. Our goal is to

see whether such opportunity affects the existence and operation of a ring at t = 1 as well as

the difference in optimal reserve prices with and without a ring. For the sake of exposition,

we only consider anonymous mechanisms2 and omit discussion of technical details such as

concavity and absolute continuity.

Of course, ex-post efficient collusion is always feasible at t = 2 because this is a regular

second-price auction with full commitment. But as we show in this section, the existence of

efficient collusion at t = 1 critically depends on the presence of a ring at t = 2. This is why

we separately consider two situations:

1. there is no collusion at t = 2.

2. there is ex-post efficient collusion at t = 2.

2.4.1 No Collusion at t = 2

Suppose that there were no bids in the first auction, so the game proceeds to the second

auction. The seller announces a reserve price r2, followed by competition between the buyers.

For any r2 ∈ [0, 1], it is a weakly dominant strategy for every buyer to bid her true value.

Thus the (unconditional) expected payment of a buyer with value x ≥ r2 is equal to

m2(x; r2) = r2G(r2) +

∫ x

r2

ydG(y)

Since the first auction failed, the seller learnt that each buyer’s value is less than some cut-off,

denoted c. Then the optimal reserve at t = 2, denoted p2(c), maximizes the (unconditional)

expected profit,

Π2(c) = max
r

n×
∫ c

r

m2(x; r)dF (x)

Let us go backwards to t = 1 and study the benchmark case of competition. Suppose that

for any reserve price r1 ∈ [0, 1], there is a symmetric equilibrium characterized by a mapping

from the set of reserve prices into the set of values, µ : [0, 1] → [0, 1]. It says that a buyer

2Roughly speaking, an anonymous mechanism does not condition a buyer’s allocation and payment on
her identity.
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bids her value if it exceeds µ(r1) and does not bid otherwise. The cut-off type µ(r1) must

be indifferent between bidding and waiting,

G(µ)µ−m1(µ; r1) = δ[G(µ)µ−m2(µ; p2(µ))] (2.1)

where m1(x; r1) is the first-period expected payment of a buyer with value x ≥ µ(r1),

m1(x; r1) = r1G(µ(r1)) +

∫ x

µ(r1)

ydG(y)

How should the buyers organize the efficient collusion? Under full commitment, collusion

is (ex-post) efficient when a buyer with value x bids at t = 1 if and only if her value is

the highest, x ≥ Y , and her payoff from the auction is positive, x − r1 ≥ 0. Under limited

commitment, however, the second condition becomes

x− r1 ≥ δ(x−max{Y, r2})

because the buyer with the largest valuation could wait at t = 1 and obtain the payoff of

(x −max{Y, r2}) at t = 2. Since the condition must hold for every Y < x, it also holds in

expectation,

1

G(x)

∫ x

0

(x− r1)dG(y) ≥ δ
1

G(x)

∫ x

0

(x−max{y, r2})dG(y) (2.2)

or simply

G(x)x− m̂1(x; r1) ≥ δ[G(x)x−m2(x; r2)] (2.3)

Let µe(r1) denote the lowest value that satisfies Ineq. (2.3). Then the second-period reserve

will be p2(µe(r1)), and the efficient cut-off µe(r1) is implicitly defined by

G(µe)µe − m̂1(µe; r1) = δ[G(µe)µe −m2(µe; p2(µe))] (2.4)

Note that the expected payment of the cut-off type µe(r1) is not affected by the presence of

a ring because he can win only at the reserve price,

m̂1(µ(r1); r1) = r1G(µ(r1))

= m1(µ(r1); r1)
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It implies that Eq. (2.1) and Eq. (2.4) are identical, so the efficient cut-off is the same as the

competitive cut-off, µe(r1) = µ(r1). Precisely, whether a ring operates or not, a buyer with

value x ≥ µ(r1) wins the object at t = 1 if Y < x. Further, a buyer with value x < µ(r1)

does not win the object but obtains her second-stage equilibrium payoff if Y < µ(r1). Since

the allocation of the object is the same with and without a ring, any efficient mechanism of

collusion can be described by the Payoff Equivalence principle.

Lemma 2.1 (Payoff Equivalence). The equilibrium payoff function with an efficient ring

differs from the equilibrium payoff function without a ring by at most a constant,

Û(x; r1)− U(x; r1) ≡ k(r1), ∀x ∈ [0, 1]

Proof. See Appendix.

As in Graham and Marshall (1987), the efficient collusion can be implemented by a second-

price preauction knockout (PAKT), defined as follows:

• each buyer i ∈ N sends a report zi ∈ [0, 1] to the ring center;

• if buyer i’s report zi is higher than all other reports and the efficient cut-off, zi ≥
maxj 6=i{zj, µ(r1)}, she is advised to bid her report zi and pay the difference of what

she would pay without a ring and what she actually pays to the seller,

τi,1 = Pi,1 − P̂i,1 (2.5)

• otherwise, buyer i is advised not to bid;

• every buyer receives a lump-sum transfer of

k(r1) =

∫ 1

µ(r1)

∫ x

µ(r1)

(y − r1)dG(y)dF (x)

Proposition 2.2. In the two-period model without collusion at t = 2, the PAKT is efficient,

incentive compatible, individually rational, and ex-ante budget balanced for every r1 ∈ [0, 1].

Proof. See Appendix.
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Finally, we compare the optimal reserve prices with and without a ring. When there is no

ring at t = 1, the optimal reserve p1 maximizes the expected profit, given by

max
r

[
n×

∫ 1

µ(r)

m1(x; r)dF (x) + δΠ2(µ(r))

]
If p1 is interior, it satisfies the first-order condition

n×
[∫ 1

µ(p1)

∂

∂r
m1(x; p1)dF (x)− µ′(p1)m1(µ(p1); p1)f(µ(p1))

]
+ δΠ′2(µ(p1))µ′(p1) = 0

But when there is a ring, the optimal reserve p̂1 maximizes

max
r

[
n×

∫ 1

µ(r)

m̂1(x; r)dF (x) + δΠ2(µ(r))

]
(2.6)

Proposition 2.3. In the two-period model without collusion at t = 2, the optimal reserve

at t = 1 is greater when there is a ring, p̂1 ≥ p1.

Proof. The first derivative of (2.6) is

n×
[∫ 1

µ(r)

∂m̂1(x; r)

∂r
dF (x)− µ′(r)m̂1(µ(r); r)f(µ(r))

]
+ δΠ′2(µ(r))µ′(r) (2.7)

Evaluated at p1, it simplifies to

−n×
∫ 1

µ(p1)

∂

∂r
(m1(x; p1)− m̂1(x; p1))dF (x)

Observe that the fact

∂

∂r
(m1(x; p1)− m̂1(x; p1)) = −

∫ 1

µ(p1)

[G(x)−G(p1) +µ′(p1)g(µ(p1))(µ(p1)− p1)]dF (x) < 0

implies that (2.7) is positive at p1. Since (2.6) is assumed to be concave, the proposition

follows.

Propositions 2.2 and 2.3 generalize the findings by Graham and Marshall (1987) to two

periods. It is not surprising because in both models, the efficient collusion does not distort

the allocation and does not affect the continuation payoff. In fact, it only reduces the

expected payment at t = 1, thereby leading to similar results in both models.
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2.4.2 Ex-Post Efficient Collusion at t = 2

Let us suppose again that the first auction failed, so the seller announces a second auction.

For any reserve price r2 ∈ [0, 1], there exists an ex-post efficient, individually rational,

incentive compatible and budget-balanced mechanism of collusion (Mailath and Zemsky,

1991). Then the (unconditional) expected payment of a buyer with value x ≥ r2 is

m̂2(x; r2) = r2G(x)

If the seller believes that each buyer’s value is distributed on [0, c], the optimal second-period

reserve price, denoted p̂2(c), maximizes

Π̂2(c) = max
r

n×
∫ c

r

m̂2(x; r)dF (x)

Now proceed backwards to t = 1. We say that collusion is ex-post efficient if a buyer with

value x is nominated to bid at t = 1 if and only if her value is the largest, x > Y , and she

obtains a larger payoff from winning at t = 1 than at t = 2,

x− r1 ≥ δ(x− r2)

Thus the lowest type who should bid at t = 1, denoted µ̂e(r1), must have the same payoff

from both auctions,

G(µ̂e)µ̂e − m̂1(µ̂e; r1) = δ[G(µ̂e)µ̂e − m̂2(µ̂e; p̂2(µ̂e))] (2.8)

Note that the presence of collusion at t = 2 changes the definition of efficient collusion at

t = 1, µ̂e(r1) 6= µe(r1). This is because the expected payment of the cut-off type µ̂e(r1) at

t = 2 is collusive, m̂2(µ̂e; p̂2(µ̂e)), rather than competitive, m2(µe; p2(µe)).

Consider a mechanism that implements the cut-off µ̂e(r1) for some r1 ∈ [0, 1]. It imposes a

constraint on the side-payment function as follows.

Lemma 2.4. The expected side-payment function of any efficient mechanism is given by

s1(x; r1) = s1(0; r1) +


∫ x

µ̂e(r1)

(y − r1)dG(y) + δs2(µ̂e(r1); p̂2(µ̂e(r1))) if x ≥ µ̂e(r1)

0 if x < µ̂e(r1)

(IC)
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where for all c ∈ [0, 1],

s2(c; p̂2(c)) =

∫ c

p̂2(c)

(y − p̂2(c))dG(y)−
∫ c

p̂2(c)

∫ x

p̂2(c)

(y − p̂2(c))dG(y)dF (x)

Proof. See Appendix.

If the cut-off type µ̂e(r1) leaves the ring to bid her value at t = 1, she wins the object when a

ring with n− 1 buyers does not bid, Y < µ̂e(r1). But if she stays in the ring, she is selected

to bid under the same circumstances, Y < µ̂e(r1). Thus, it is rational for her to stay in the

ring only if her expected side-payment is negative,

s1(µ̂e(r1); r1) ≤ 0 (IR)

Since the mechanism is ex-ante budget-balanced, the expected side-payment is on average

zero,

s1(0; r1) +

∫ 1

µ̂e(r1)

[∫ x

µ̂e(r1)

(y − r1)dG(y) + δs2(µ̂e(r1); p̂2(µ̂e(r1)))

]
dF (x) = 0 (BB)

Using Eq. (BB) and Eq. (IC), we can write Ineq. (IR) as,

∫ 1

µ̂e(r1)

[∫ x

µ̂e(r1)

(y − r1)dG(y) + δs2(µ̂e(r1); p̂2(µ̂e(r1)))

]
dF (x) ≥ δs2(µ̂e(r1); p̂2(µ̂e(r1)))

Under full commitment, δ = 0, the constraint is always satisfied because the left-hand side is

positive and the right-hand side is zero. But for any δ > 0, there is a reserve r1 < 1 such that

no-one should bid at t = 1, that is µ̂e(r1) = 1. Then the constraint fails because the integral

on the left-hand side collapses to zero while the right-hand side is positive. Intuitively, the

cut-off type is better-off bidding for the object on her own because she would pay to the

ring more than she would receive from it. Therefore, the main result of Mailath and Zemsky

(1991) does not extend to limited commitment:

Proposition 2.5. In the two-period model, there are no incentive-compatible, ex-ante budget

balanced, and individually rational mechanisms that implement the ex-post efficient collusion

in each period for all first-period reserve prices.
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2.5 Infinite Horizon

In this section, we analyze the main case of infinite time horizon, T = {1, 2, ...}. As shown

in the previous section, the existence of efficient collusion may be affected by the presence

of a ring in future. To verify that this result survives in the main case, we again separately

consider two assumptions:

1. there is competition in every t > 1.

2. there is collusion in every t > 1.

2.5.1 Competition in every t > 1

Our first setting assumes that if all bids fail to meet the first-period reserve price r1 ∈ [0, 1],

the buyers will compete in all auctions that may occur in future. First, we derive the expected

payment function and the equilibrium payoff function when there is no ring at t = 1. Second,

we derive the efficient cut-off rule and collusive surplus. Third, we characterize efficient

mechanisms and construct an explicit example. Finally, we compare optimal reserve price

with and without a ring at t = 1.

2.5.1.1 Competition at t = 1

Let us begin with the benchmark case where the buyers also compete in the initial period

t = 1. Suppose that there exists a perfect Bayesian equilibrium with Markov strategies

µ : [0, 1]→ [0, 1] and p : [0, 1]→ [0, 1]. The function µ(·), with µ′(r) > 0, is a mapping from

the set of reserve prices into the set of values: in an auction with reserve r, a buyer with

value x bids x if x ≥ µ(r), and does not bid otherwise. The function p(·), with p′(c) > 0, is

a mapping from the set of values into the set of reserve prices: when the seller believes that

values are distributed on [0, c], he announces a reserve p(c).

In any auction with reserve r ≥ 0, a buyer with value x ≥ µ(r) wins the object with

probability G(x). Thus the equilibrium payoff function is

U(x; r) =

G(x)x−m(x; r) if x ≥ µ(r)

δU(x; p(µ(r))) if x < µ(r)
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where m(x; r) denotes the expected payment of a buyer with value x ≥ µ(r),

m(x; r) = G(µ(r))r +

∫ x

µ(r)

ydG(y)

The Revelation Principle suggests that this game can be treated as a direct mechanism

where every buyer is allowed to play her equilibrium strategy of any type. Perfect Bayesian

equilibrium prescribes every buyer to play a best response, so it is optimal to play the

equilibrium strategy of one’s true type. It is thus an incentive compatible mechanism,

whose equilibrium payoff function U must be absolutely continuous (Krishna, 2009, p. 83).

In particular, the cut-off type µ(r) is defined by the indifference between bidding and waiting,

G(µ)µ−m(µ; r) = δ[G(µ)µ−m(µ; p(µ))] (2.9)

To characterize sequentially optimal reserves, consider an auction where (the seller believes

that) each buyer’s value is distributed on [0, c]. Then the optimal reserve p(c) satisfies the

dynamic programming equation

Π(c) = max
r

[
n

∫ c

µ(r)

m(x; r)dF (x) + δΠ(µ(r))

]
Using the Envelope theorem,

Π′(c) = m(c; p(c))f(c)

The optimal reserve p(c) must solve the first-order condition∫ c

µ(p(c))

∂

∂r
m(x; p(c))dF (x) = [m(µ(p(c)); p(c))−δm(µ(p(c)); p(µ(p(c))))]µ′(p(c))f(µ(p(c)))

The definition of the cut-off µ(·) can be used to simplify the right-hand side as∫ c

µ(p(c))

∂

∂r
m(x; p(c))dF (x) = (1− δ)G(µ(p(c)))µ(p(c)f(µ(p(c)))µ′(p(c)) (2.10)

Eq. (2.9) and Eq. (2.10) can be found in McAfee and Vincent (1997) for the case of uniform

distribution, F (x) = x. So our results generalize their setting to any distribution of values

where a strong Markov equilibrium exists.
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2.5.1.2 Efficient Collusion

What collusion at t = 1 should be considered efficient? Of course, a buyer with value x

should be nominated to place a bid only if her value is the highest, x > Y . Besides, a buyer

should not place a bid in case she can achieve a larger payoff in a future auction. Let µe(r1)

denote the lowest type who should place a bid for a given reserve r1 ∈ [0, 1]. If the object

does not sell at t = 1, every player infers that the values are distributed on [0, µe(r)]. Our

previous argument implies that (p(c), µ(r)) are best responses in the continuation game, so

the continuation payoff of a buyer with value x is U(x; p(µe(r))). It follows that the cut-off

type µe(r) must obtain the same payoff from the auction at t = 1 and from the optimal

auction at t = 2,

G(µe)µe − m̂(µe; r1) = δU(µe; p(µe)) (2.11)

where m̂(x; r1) denotes the expected payment of a buyer with value x ≥ µe(r),

m̂(x; r1) = G(x)r1

As in the two-period model, the expected payment of the cut-off type µ(r1) is not affected

by the presence of a ring,

m̂(µ(r1); r1) = G(µ(r1))r1

= m(µ(r1); r1)

Substitute it into Eq. (2.11) to obtain

G(µe)µe −m(µ; r1) = δU(µe; p(µe))

which is the same equation that defines the competitive cut-off µ(r). Hence, the efficient

collusion must replicate the competitive allocation, µe(r1) = µ(r1), ∀r1 ≥ 0.

Finally, note that membership in an efficient ring reduces the expected payment of all bidding

types x ≥ µ(r),

m(x; r1)− m̂(x; r1) =


∫ x

µ(r1)

(y − r1)dG(y) if x ≥ µ(r1)

0 if x < µ(r1)
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Thus, we can define the gains of collusion as the expected value of such reduction,

k(r1) ≡
∫ 1

µ(r1)

[m(x; r1)− m̂(x; r1)]dF (x)

=

∫ 1

µ(r1)

∫ x

µ(r1)

(y − r1)dG(y)dF (x)

2.5.1.3 Characterization of Efficient Mechanisms

How does an efficient ring select its sole bidder and divide the gains of collusion? Consider

a mechanism of collusion that implements the efficient cut-off µ(r1) in a perfect Bayesian

equilibrium. Fix the equilibrium strategies of the other buyers (j 6= i) and the seller.

Suppose that buyer i with value x reports some value z ∈ [0, 1], but plans to bid according

to her true value in all future auctions. Then her expected payoff isG(z)x− m̂(z; r1)− si(z; r1) if z ≥ µ(r1)

−si(z; r1) + δU(x; p(µ(r1))) if z < µ(r1)

Incentive compatibility requires that it be optimal for every type to report her true value to

the ring, z = x. Further, since buyer i’s payoff is absolutely continuous in x, her equilibrium

payoff Ûi is also absolutely continuous (Milgrom and Segal, 2002) and can be written as the

integral of its derivative,

Ûi(x; r1) = Ûi(0; r1) +


G(µ(r1))µ(r1)− m̂(µ(r1); r1) +

∫ x

µ(r1)

G(y)dy if x ≥ µ(r1)

δU(x; p(µ(r1))) if x < µ(r1)

(2.12)

where we used the indifference δU(µ(r1); p(µ(r1))) = G(µ(r1))µ(r1)− m̂(µ(r1); r1).

Lemma 2.6 (Payoff Equivalence). The equilibrium payoff of each buyer i ∈ N with a ring

differs from her equilibrium payoff without a ring by at most a constant,

Ûi(x; r1)− U(x; r1) = −si(0; r1), ∀x ∈ [0, 1]
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Proof. Integrate by parts to re-write the equilibrium payoff under competition as

G(x)x−m(x; r1) = G(x)x−G(µ(r1))r1 −
∫ x

µ(r1)

ydG(y)

= G(x)x−G(µ(r1))r1 −
[
G(x)x−G(µ(r1))µ(r1)−

∫ x

µ(r1)

G(y)dy

]
= G(µ(r1))µ(r1)− m̂(µ(r1); r1) +

∫ x

µ(r1)

G(y)dy

which can be summarized as

U(x; r1) =


G(µ(r1))µ(r1)− m̂(µ(r1); r1) +

∫ x

µ(r1)

G(y)dy if x ≥ µ(r1)

δU(x; p(µ(r1))) if x < µ(r1)

(2.13)

The lemma follows from subtracting Eq. (2.13) from Eq. (2.12) and the fact Ûi(0; r1) =

−si(0; r1).

Payoff Equivalence can be used to show that

Ûi(x; r1)− U(x; r1) = −si(x; r1) + [m(x; r1)− m̂(x; r1)]

= −si(0; r1) (2.14)

By re-arranging the terms, we obtain the expected side-payment function,

si(x; r1) = si(0; r1) + [m(x; r1)− m̂(x; r1)] (2.15)

= si(0; r1) +

∫ x

µ(r1)

(y − r1)dG(y)

Ex-ante budget balance requires that the side-payments sum up to zero in expectation,

∑
i∈N

∫ 1

0

si(x; r1)dF (x) = 0

Using Eq. (2.15), it can be expanded to

∑
i∈N

si(0; r1) + n

∫ 1

µ(r1)

∫ x

µ(r1)

(y − r1)dG(y)dF (x) = 0
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If a buyer leaves the ring, she competes against a ring with n− 1 buyers. That is, she wins

if and only if her bid is larger than max{Y, µ(r1)}. Since it is the same allocation as if there

were no ring at all, she obtains her competitive payoff U(x; r1). Then individual rationality

requires

Ûi(x; r1) ≥ U(x; r1), ∀i ∈ N

Using Eq. (2.14), it simply requires a negative side-payment for buyer type 0,

si(0; r1) ≤ 0, ∀i ∈ N

These findings are reminiscent of the characterization of efficient mechanisms in Mailath and

Zemsky (1991) as follows. To ensure that the object is allocated efficiently, the ring center

must introduce a side-payment rule that replicates the shape of expected payment under

competition. Then the expected profit of the ring can be distributed among its members via

individual transfers −si(0; r1). Of course, they must be positive so that every buyer prefers

to stay in the ring.

2.5.1.4 Implementation of Efficient Collusion

It was shown in the two-period horizon that efficient collusion can be implemented with a

second-price preauction knockout when there is competition in the second period. The next

proposition states that the finding extends to the infinite horizon.

Proposition 2.7. The second-price PAKT, where µ(r) is defined by Eq. (2.9), is efficient,

incentive compatible, individually rational, and ex-ante budget balanced for all r1 ∈ [0, 1].

Proof. To verify incentive compatibility, suppose that all buyers j 6= i report their true

values. If buyer i with value x is selected to bid, the ring will ask her to pay

τi,1 =

Y − r1 if Y > µ(r1)

0 if Y ≤ µ(r1)



Chapter 2. Collusion in Sequentially Optimal Auctions 25

Thus her expected payoff from reporting some value z ∈ [0, 1] is

k(r1) +


G(z)x− m̂(z; r1)−

∫ z

µ(r)

(y − r1)dG(y) if z ≥ µ(r1)

δU(x; p(µ(r1))) if z < µ(r1)

Net of the constant k(r1), it is the same payoff she would obtain without a ring by bidding

as if her value were z. Since it is a best response to bid as if buyer i’s value is x, it is also a

best response to report her true value to the ring.

To verify budget balance, note that a buyer’s expected contribution to the ring is

E[τi,1] =

∫ 1

µ(r1)

∫ x

µ(r1)

(y − r1)dG(y)dF (x)

which is equal to the lump-sum transfer that she receives from the ring, k(r1).

And to verify individual rationality, note that the expected payment of a buyer with value

x < r1 is si(0; r1) = −k(r1). Since k(r1) ≥ 0, we have si(0; r1) ≤ 0, ∀i ∈ N , as required.

2.5.1.5 Optimal Reserve Price

What is an optimal response to the efficient collusion at t = 1? The seller’s instantaneous

profit from announcing some reserve r1 ∈ [0, 1] is equal to

n

∫ 1

µ(r1)

m̂(x; r1)dF (x) (2.16)

It is different from his instantaneous profit under competition in that the expected payment

of each buyer with value x ≥ µ(r) reduces from m(x; r) to m̂(x; r). To reflect the reduction

explicitly, let us re-write Eq. (2.16) using our definition of k(r1),

n

(∫ 1

µ(r1)

m(x; r1)dF (x)− k(r1)

)
In the event of no sale, the seller be facing the same infinite horizon problem as under

competition. Thus, his continuation profit does not differ from his competitive continuation
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profit, Π(µ(r)). Overall, the optimal reserve price with a ring, denoted p̂1, must solve

max
r

[
n

(∫ 1

µ(r)

m(x; r)dF (x)− k(r)

)
+ δΠ(µ(r))

]

The gains of collusion k(·) are a strictly decreasing function because high reserve prices

erode the value of competition [m(x; r1)− m̂(x; r1)]. This gives the seller an incentive to set

a higher reserve, as stated in the next proposition.

Proposition 2.8. The optimal reserve price at t = 1 is greater with a ring, p̂1 ≥ p(1).

Proof. The first derivative of the expected profit with a ring is

∂

∂r

(
n

∫ 1

µ(r)

m(x; r)dF (x) + δΠ(µ(r))

)
− nk′(r) (2.17)

Evaluated at p(1), the first term vanishes. In contrast, the second term is positive because

−k′(p(1)) =

∫ 1

µ(p(1))

[G(x)−G(p(1)) + µ′(p(1))g(µ(p(1)))(µ(p(1))− p(1))]dF (x) ≥ 0

These facts imply that Eq. (3.8) is positive at p(1). Since the expected profit is assumed to

be concave, the proposition follows.

2.5.2 Collusion in every t > 1

In this section, we assume that a bidding ring operates not only at t = 1, but also in all future

auctions, t > 1. First, we characterize individually rational and budget balanced mechanisms

that implement a given cut-off rule. Second, we derive the ex-post efficient allocation and

show that it can not be implemented without outside subsidies or compulsory participation.

Third, we define a “second-best” allocation and show that it can be implemented with pre-

auction knockouts. For both types of collusion, we also find the optimal reserve prices and

compare them to the optimal reserve prices under competition.

2.5.2.1 Incentive Compatibility

Suppose that the ring implements some cut-off rule µ̂ : [0, 1] → [0, 1] as a perfect Bayesian

equilibrium. That is, the ring buys the object in an auction with a reserve r ∈ [0, 1] if and
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only if its highest value exceeds µ̂(r). Let p̂ : [0, 1]→ [0, 1] denote the optimal reserve prices

for a given distribution of values. In such equilibrium, buyer i ∈ N wins the object in a

given auction if and only if xi ≥ maxj 6=i{xj, r}. Also, if an auction with r ≥ 0 fails to sell

the object, each player infers that the values are distributed on [0, µ̂(r)].

Consider an auction with a reserve price r ≥ 0. If buyer i with value x reports some z ∈ [0, 1]

in the current auction and plans to report her true value x in any future auction, her payoff

is G(z)x− m̂(z; r)− si(z; r) if z ≥ µ̂(r)

−si(z; r) + δÛi(x; p̂(µ̂(r))) if z < µ̂(r)
(2.18)

Incentive compatibility requires that it be optimal to report her true value, z = x. Since

her payoff is maximized at x, we obtain the first-order condition

0 =

g(x)x− m̂′(x; r)− s′i(x; r) if x ≥ µ̂(r)

−s′i(x; r) if x < µ̂(r)

By taking integrals on both sides,

si(x; r) =


si(µ̂(r); r) +

∫ x

µ̂(r)

(y − r)dG(y) if x ≥ µ̂(r)

si(0; r) if x < µ̂(r)

(2.19)

Since buyer i’s payoff in Eq. (2.18) is absolutely continuous in x for all z ≥ µ̂(r), her equi-

librium payoff Ûi is also absolutely continuous. In particular, the cut-off type is indifferent

between reporting her true value and any lower value,

G(µ̂(r))µ̂(r)− m̂(µ̂(r); r)− si(µ̂(r); r) = −si(0; r) + δÛi(µ̂(r); p̂(µ̂(r)))

which pins down the expected side-payment of the cut-off type,

si(µ̂(r); r) = si(0; r) +G(µ̂(r))µ̂(r)− m̂(µ̂(r); r)− δÛi(µ̂(r); p̂(µ̂(r))) (2.20)
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Substitute Eq. (2.20) back into Eq. (2.19) to obtain the expected side-payment function,

si(x; r) = si(0; r)+


∫ x

µ̂(r)

(y − r)dG(y) +G(µ̂(r))(µ̂(r)− r)− δÛi(µ̂(r); p̂(µ̂(r))) if x ≥ µ̂(r)

0 if x < µ̂(r)

(2.21)

To get some intuition for the result, note that the function consists of three separable

terms. The first term, si(0; r), is constant over all types. It can be used by the ring center to

distribute the gains of collusion among its members (e.g. as lump-sum transfers in preauction

knockouts). The second term,
∫ x
µ̂(r)

(y− r)dG(y), is strictly increasing in x, but paid only by

bidding types, x ≥ µ̂(r). It suggests that a buyer’s side-payment is increasing in her chance

of receiving the object, which is used by the ring center to ensure the efficient self-selection

of buyer types. The last term is the size of a jump discontinuity at the cut-off µ̂(r). It is

analogous to a reserve price or an entry fee imposed by the ring center to achieve the desired

level of participation µ̂(r).

2.5.2.2 Individual Rationality and Budget Balance

For every reserve price in every auction, a mechanism of collusion must be individually ra-

tional and budget balanced. Ex-ante budget balance requires that the sum of side-payments

be zero in expectation, ∑
i∈N

1

F (c)

∫ c

0

si(x; r)dF (x) = 0

The function si(x; r) is specified by Eq. (2.21), which implies

∑
i∈N

[
si(0; r) +

1

F (c)

∫ c

µ̂(r)

(
G(µ̂(r))(µ̂(r)− r)− δÛi(µ̂(r); p̂(µ̂(r))) +

∫ x

µ̂(r)

(y − r)dG(y)

)
dF (x)

]
= 0

(2.22)

Suppose that buyer i with value x leaves the ring and bids in the auction as if she were

reporting her value to the ring. That is, she bids her value if x ≥ µ̂(r) and does not bid

otherwise. Then her payoff is
G(x)x− m̂(x; r)−

∫ x

µ̂(r)

(y − r)dG(y) if x ≥ µ̂(r)

δÛi(x; p̂(µ̂(r))) if x < µ̂(r)
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Such deviation is not profitable if and only if the expected side-payment of non-bidding

types and the cut-off type be negative,

si(µ̂(r); r) ≤ 0, ∀i ∈ N (2.23)

si(0; r) ≤ 0, ∀i ∈ N (2.24)

Since it is not necessarily optimal to bid x if and only if x ≥ µ̂(r), Ineq. (2.23) and Ineq.

(2.24) are necessary for individual rationality, but not sufficient. However, they are enough

for us to show the impossibility of the ex-post efficient collusion in the next section.

2.5.3 Efficient Collusion

2.5.3.1 Definition

It is ex-post efficient for the ring to buy the object in the auction that gives its members

the largest sum of payoffs. Suppose that the ring is represented by its member with value x.

If she bids in the current auction with reserve rt, her payoff is x− rt. But if she waits and

bids in the next auction with reserve rt+1, her payoff will be δ(x− rt+1). It is thus efficient

to bid in the current auction only if

x− rt ≥ δ(x− rt+1)

The lowest type who should place a bid is denoted µe(r) and defined by

µ̂e − r = δ(µ̂e − p̂e(µ̂e)) (EF)

Note that Eq. (EF) implies

G(µ̂e(r))µ̂e(r)− m̂(µ̂e(r); r)− δÛ e
i (µ̂e(r); p̂e(µ̂e(r))) = δsei (µ̂

e(r); p̂e(µ̂e(r)))

so the expected side-payment function in any efficient mechanism is

sei (x; r) = sei (0; r) +


∫ x

µ̂e(r)

(y − r)dG(y) + δsei (µ̂
e(r); p̂e(µ̂e(r))) if x ≥ µ̂e(r)

0 if x < µ̂e(r)

(2.25)
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Under full commitment, δ = 0, the term δsei (µ̂
e(r); p̂e(µ̂e(r))) is equal to zero. This is why

the right to bid can be efficiently allocated by an auction without a reserve price. However,

this term is in general not equal to zero under limited commitment, δ > 0. It suggests

that any efficient mechanism entails a feature that works as a reserve price or an entry fee,

thereby creating a jump discontinuity at µ̂(r).

2.5.3.2 Existence

Is it possible to organize the ex-post efficient collusion using an individually rational and

budget balanced mechanism? Let us consider the initial period t = 1 with some reserve

r1 ∈ [0, 1]. Our previous derivations suggest that budget balance requires

∑
i∈N

[
sei (0; r1) +

∫ 1

µ̂e(r1)

(∫ x

µ̂e(r1)

(y − r1)dG(y) + δsei (µ̂
e(r1); p̂e(µ̂e(r1)))

)
dF (x)

]
= 0 (2.26)

and individual rationality requires

sei (0; r1) + δsei (µ̂
e(r1); p̂e(µ̂e(r1))) ≤ 0, ∀i ∈ N (2.27)

Since Ineq. (2.27) holds for each i ∈ N , it also holds for the sum over N ,

∑
i∈N

sei (0; r1) + δ
∑
i∈N

sei (µ̂
e(r1); p̂e(µ̂e(r1))) ≤ 0

The first sum is pinned down by Eq. (2.26), so we can write this inequality as

∑
i∈N

∫ 1

µ̂e(r1)

(∫ x

µ̂e(r1)

(y − r1)dG(y) + δsei (µ̂
e(r1); p̂e(µ̂e(r1)))

)
dF (x) ≥ δ

∑
i∈N

sei (µ̂
e(r1); p̂e(µ̂e(r1)))

(2.28)

The next lemma establishes that the right-hand side is strictly positive.

Lemma 2.9. For all c ∈ [0, 1], ∑
i∈N

sei (c; p̂
e(c)) > 0

Proof. One can also express the expected side-payment (2.25) as

sei (x; r) = sei (c; r)−
∫ c

x

(y − r)dG(y), ∀x ≥ µ̂e(r1)
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Then budget balance can be written as

∑
i∈N

[
sei (0; r)F (µ̂e(r)) +

∫ c

µ̂e(r)

(
sei (c; r)−

∫ c

x

(y − r)dG(y)

)
dF (x)

]
= 0

Re-arrange the terms to obtain

(F (c)− F (µ̂e(r)))
∑
i∈N

sei (c; r) =
∑
i∈N

[∫ c

µ̂e(r)

∫ c

x

(y − r)dG(y)dF (x)− sei (0; r)F (µ̂e(r))

]
(2.29)

Consider the optimal reserve price, r = p̂e(c). As we will show in the next section, the seller

never excludes all types from trade, µ̂e(p̂e(c)) < c, for all c ∈ [0, 1]. Thus, the double integral∫ c

µ̂e(p̂e(c))

∫ c

x

(y − p̂e(c))dG(y)dF (x)

is strictly positive. Recall that Ineq. (2.24) requires sei (0; r) ≤ 0 for all i ∈ N . These

facts imply that the right-hand side of Eq. (2.29) is strictly positive, which completes the

proof.

Consider the first-period reserve r1 < 1 such that it is efficient for the ring to abstain from

bidding, µ̂e(r1) = 1. Then the left-hand side of Eq. (2.28) is equal to zero. But its right-

hand side is strictly positive for all δ > 0, as implied by the above lemma. Thus, Eq. (2.28)

is violated, and the next proposition follows.

Proposition 2.10. There is no incentive compatible, ex-ante budget balanced, and individ-

ually rational mechanism that implements the ex-post efficient cut-off rule µ̂e(r) in every

period for every first-period reserve price.

The result extends Proposition 2.5 to the infinite horizon and also generalizes it to non-

anonymous mechanisms, which leads to a slightly longer proof. Precisely, the infinite hori-

zon requires Lemma 2.9 that verifies a strictly positive side-payment of the cut-off type in

the next period; and non-anonymity requires a summation operator in the budget balance

equation.

The impossibility of efficient collusion can be explained as follows. Consider a buyer who

is supposed to bid, x ≥ µ̂e(r). Whether she reports her true value to ring or leaves the

ring and bids her value, she wins the object with probability G(x) and pays max{Y, µ̂e(r1)}.
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However, membership in the ring also entails a lump-sum transfer of −sei (0; r1) ≥ 0 and an

entry fee of δsei (µ̂
e(r1); p̂e(µ̂e(r1))) > 0. As r1 increases, fewer types compete for the right

to bid, so the ring’s revenue and the lump-sup transfer decrease. For a sufficiently high r1,

the entry fee is larger than the lump-sum transfer, so it is optimal for a buyer x ≥ µ̂e(r) to

leave the ring.

2.5.3.3 Optimal Reserve Prices

Suppose for a moment that the ring finds a way to operate efficiently by receiving subsidies

or forcing participation3. How large is then the collusive price p̂e(c), compared to the

competitive price p(c)? To answer this question, we begin by noting that the strategy p̂e(c)

must satisfy the dynamic programming equation

Π̂e(c) = max
r

[
n

∫ c

µ̂e(r)

m̂(x; r)dF (x) + δΠ̂e(µ̂e(r))

]

It is useful to reformulate the problem in terms of bargaining theory. We can view the ring

as a single buyer with value max{X1, ..., Xn} who can buy the object for a price r,

n

∫ c

µ̂e(r)

m̂(x; r)dF (x) =

∫ c

µ̂e(r)

nrG(x)f(x)dx

= r[F n(c)− F n(µ̂e(r))]

Another useful property is that the ring buys the object if and only if a single buyer would

buy it,

µ̂e(r) =
r − δp̂e(µ̂e(r))

1− δ

These two properties suggest our problem is equivalent to bargaining with a single buyer

whose value is distributed according to F n. Although an equilibrium with Markov strate-

gies does not exist for every distribution of values, it is known to exist and can be found

analytically for the uniform distribution, F (x) = x. For the case of competition, a linear

equilibrium is constructed by McAfee and Vincent (1997). For the case of ex-post efficient

3The latter option is not improbable given the criminal nature of collusion, as noted by Krishna (2009,
p.166).
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collusion, a linear equilibrium p̂e(c) = pc and µ̂e(r) = µr is the solution to

(pµ)−n + δn(pµ) = n+ 1

µ =
1− δ(pµ)

1− δ

Figure 2.1: Optimal first-period reserve prices under efficient collusion (solid) and com-
petition (dotted) with two buyers, n = 2, as functions of the discounting factor δ ∈ (0, 1).

Figure 2.1 compares optimal first-period prices in these equilibria for various values of the

discounting factor. It suggests that the difference of p(1) and p̂e(1) is decreasing in the

discounting factor. Under full commitment, δ = 0, and with two buyers, n = 2, the optimal

reserve is larger with a ring,

p̂e(1) =
1√
3
>

1

2
= p(1)

which is a standard example, found in Krishna (2009, p.166). The result is solely driven by

the fact that the seller facing a ring can not rely on competitive forces to push the price

above a reserve. However, limited commitment creates an opposite effect. An efficient ring

buys the object later, µ̂e(r) > µ(r) for all δ > 0. In other words, the presence of a ring

excludes some types from an auction. The seller prefers to trade with these types early,

which can only be done by setting a lower reserve price. Regardless of the number of buyers,

the second effect comes to dominate the first effect as δ approaches one. Therefore, the

conclusion of Graham and Marshall (1987) and Mailath and Zemsky (1991) fail to hold for

sufficiently low commitment power.
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2.5.4 Second-Best Collusion

In our analysis of ex-post efficient collusion, the source of tension between budget balance

and individual rationality was a discontinuity of the expected side-payment function. It is

then natural to find a “second-best” allocation that smooths the side-payment function and

check whether it can be implemented.

2.5.4.1 Definition

Consider the “second-best” cut-off rule, denoted µ̂∗(r), which is implicitly defined by

G(µ̂∗)µ̂∗ − m̂(µ̂∗; r) = Û∗i (µ̂∗(r); p̂∗(µ̂∗(r))) (2.30)

= δ[G(µ̂∗)µ̂∗ −m(µ̂∗; p̂∗(µ̂∗)) + k∗(p̂∗(µ̂∗))]

where for all r ∈ [0, 1],

k∗(r) =

∫ c

µ̂∗

∫ x

µ̂∗
(y − r)dG(y)dF (x)

Eq. (2.30) states that the cut-off type’s expected payoff from an auction is equal to her

continuation payoff. It is easy to see that the definition of the second-best cut-off µ̂∗ differs

from the definition of the competitive cut-off µ only by the term δk∗(p̂∗(µ̂∗)) on the right-

hand side. It reflects the presence of a ring in the next auction, which allows to reap the gains

of collusion k∗(p̂∗(µ̂∗)) > 0. Thus, the ring leads to a higher level of exclusion, µ̂∗(r) > µ(r).

Note that Eq. (2.30) implies

G(µ̂∗(r))µ̂∗(r)− m̂(µ̂∗(r); r)− δÛ∗i (µ̂∗(r); p̂∗(µ̂∗(r))) = 0

so the expected side-payment function is continuous,

s∗i (x; r) = s∗i (0; r) +


∫ x

µ̂(r)

(y − r)dG(y) if x ≥ µ̂∗(r)

0 if x < µ̂∗(r)

It is routine to verify that the ring pays each buyer a transfer −s∗i (0; r) and asks every

bidding type x ≥ µ̂∗(r) to pay an amount that ensure revenue equivalence with and without
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collusion,

m̂(x; r) + s∗i (x; r) = G(x)r + s∗i (0; r) +

∫ x

µ̂(r)

(y − r)dG(y)

= s∗i (0; r) +G(µ̂(r))r +

∫ x

µ̂(r)

ydG(y)

= m(x; r) + s∗i (0; r)

2.5.4.2 Implementation

Suppose that in every contingency throughout the game, the ring uses the pre-auction

knockout where the cut-off is µ̂∗(r) and the lump-sum transfer is k∗(r).

Proposition 2.11. For any reserve price in every period, the PAKT is incentive compatible,

individually rational, and ex-ante budget balanced.

Proof. Consider an auction with some reserve r ∈ [0, 1]. First, suppose that there is no ring

in the current auction but there is a “second-best” ring in all future auctions. The lowest

type who places a bid in the current auction is µ̂∗(r) because he is indifferent between bidding

and waiting, as argued before.

Second, suppose that there is also a second-best ring in the current auction. To verify

incentive compatibility, suppose that buyers 2, ..., n report their true values. If buyer 1 with

value x reports some z ∈ [0, 1], her payoff is

k∗(r) +


G(z)x− m̂(z; r)−

∫ z

µ̂∗(r)

(y − r)dG(y) if z ≥ µ̂∗(r)

δÛ∗(x; p̂(µ̂∗(r))) if z < µ̂∗(r)

It is different from her payoff without a ring when she bids as if her value is z, by the

constant k∗(r). Since it is optimal to bid as if 1’s value is x, it is optimal to report the true

value.

To verify ex-ante budget balance, note that a buyer’s expected contribution to the ring is

equal to the lump-sum transfer from the ring,∫ c

µ̂∗(r)

∫ x

µ̂∗(r)

(y − r)dG(y)dF (x) = k∗(r)
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To verify individual rationality, consider a buyer who left the ring. She competes against

n− 1 buyers who bid Y if Y > µ̂∗(r) and do not bid otherwise. But it is the same situation

if there were no ring at all. In this case, as shown above, the buyer’s payoff is lower than

her payoff in the ring by k∗(r) > 0. Thus, it is optimal to stay in the ring.

What makes the second-best collusion “work”? In contrast to the ex-post efficient collusion,

implementation of the second-best collusion does not require that the ring announce a reserve

price or an entry fee. In fact, as stated in the last proposition, it is sufficient to sell the right

to bid using a second-price auction without a reserve and distribute the expected revenue

equally among the buyers. If a buyer left the ring, she would win the object with the same

probability and pay the same price. However, she would lose a strictly positive lump-sum

transfer, which is why it is optimal to participate.

2.5.4.3 Optimal Reserve Prices

What reserve prices should the seller announce when he faces the “second-best” collusion?

Similar to the case of ex-post efficient collusion, the optimal price strategy p̂∗(c) satisfies the

dynamic programming equation,

Π̂∗(c) = max
r

[∫ c

µ̂∗(r)

m̂(x; r)dF (x) + δΠ̂∗(µ̂∗(r))

]
(2.31)

Again, the ring can be viewed as a single buyer because it always pays the reserve, m̂(x; r) =

G(x)r. However, the ring follows a different cut-off rule in that it buys the object earlier

than a single buyer would buy, µ̂∗(r) < µ̂e(r).

The first-order condition for Eq. (2.31) requires that r = p̂∗(c) solve∫ c

µ̂∗(r)

∂m̂(x; r)

∂r
dF (x) = [m̂(µ̂∗(r); r)− δm̂(µ̂∗(r); p̂∗(µ̂∗(r)))]

dµ̂∗(r)

dr
f(µ̂∗(r))

which can be transformed using Eq. (2.30) into∫ c

µ̂∗(r)

∂m̂(x; r)

∂r
dF (x) = [(1− δ)G(µ̂∗(r))µ̂∗(r) + δs(µ̂∗(r); p̂∗(µ̂∗(r))))]

dµ̂∗(r)

dr
f(µ̂∗(r))

Although one can not obtain an analytic solution from the first-oder condition, it is probable

that the strategy p̂∗(c) falls in between the cases of ex-post efficient collusion, p̂e(c), and
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competition, p(c). On the one hand, it is similar to efficient collusion in that it reduces

participation in the auction and also prevents the selling price from rising above the reserve.

On the other hand, it is less extreme than efficient collusion in that the seller is able to sell

at positive reserve prices even as the time between periods goes to zero. As a result, we

were unable to say whether the optimal first-period reserve is larger with a second-best ring

or with competition as δ → 1.

2.6 Discussion and Extensions

2.6.1 Transparency Policy

In our analysis, we assume an extreme transparency policy :

1. the ring center does not disclose any information to the buyers (i.e. their reports).

2. the ring center forgets (or commits to ignoring) any reports from the past.

As a result, neither a buyer’s report to a mechanism nor the mechanism itself can not depend

on past reports. In reality, however, nothing prevents the buyers from selecting the sole-

bidder and exchanging side-payments in advance, instead of re-collecting reports after every

failed auction. It is tempting to guess that one may construct a sophisticated transparency

policy which mitigates the tension between efficiency, voluntary participation and budget

balance. To prove the guess wrong, we follow the mechanism design approach and show

that the efficient collusion is impossible for any transparency policy.

First, consider again our main setting with no disclosure, denoted ND. Fix a perfect Bayesian

equilibrium (βND1 (·), ..., βNDn (·)) that implements the efficient cut-off µ̂e(r). Suppose that

buyer i ∈ N with value x observes a first-period reserve r1 ∈ [0, 1] and commits to playing

her equilibrium strategy of type z, that is βNDi (z). Although buyer i is free to “mimic”

any type z ∈ [0, 1], her payoff is maximized by choosing z = x because βNDi (x) is her

equilibrium strategy. Thus, we can treat the situation as a direct incentive-compatible

mechanism4 (Q̂e,SND) with the efficient allocation rule and the expected payment function

of sNDi (x; r1).

4The result is just an illustration of the Revelation Principle, see Myerson (1981).
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Second, consider any other transparency policy, denoted D, that has a perfect Bayesian

equilibrium (βD1 (·), ..., βDn (·)) which also implements the efficient cut-off µ̂e(r). Recall that

when the seller faces a full-inclusive ring, his profit is fully defined by the ring’s cut-off rule

µ̂(r). Since policies ND and D involve the same cut-off µ̂e(r), they thus lead to the same

price strategy p̂e(r). Using the Revelation Principle again, the situation can be seen as a

direct incentive-compatible mechanism (Q̂e,SD) with the same allocation as ND and the

expected payment function sDi (x; r1).

Since both mechanisms are incentive compatible and have the same allocation rule, Revenue

Equivalence implies that the expected payment function of each buyer i ∈ N under ND and

D differs by at most a constant,

sNDi (x; r1)− sDi (x; r1) ≡ ki, ∀x ∈ [0, 1]

Since every mechanism of collusion that may be used under either policy must be ex-ante

budget balanced, the mechanisms (Q̂e,SND) and (Q̂e,SD) are also ex-ante budget balanced,

∑
i∈N

∫ 1

0

sNDi (x; r1)dF (x) =
∑
i∈N

∫ 1

0

sDi (x; r1)dF (x) = 0

Proposition 2.12. For any transparency policy, there are no ex-ante budget balanced and

individually rational mechanisms that implement the ex-post efficient cut-off rule µ̂e(r) in

every period for every first-period reserve price.

Proof. Combine the last two equations to obtain

∑
i∈N

ki =
∑
i∈N

∫ 1

0

kidF (x)

=
∑
i∈N

∫ 1

0

[
sDi (x; r1)− sNDi (x; r1)

]
dF (x)

= 0

from which it follows that

∑
i∈N

(sDi (x; r1)− sNDi (x; r1)) =
∑
i∈N

ki = 0, ∀x ∈ [0, 1]
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Any buyer i ∈ N with value µ̂e(r1) can leave the ring at t = 1 and bid her value in the

auction. For any transparency policy, her belief about the distribution of values is prior

because other buyers could not send reports prior to t = 1. Hence, the outside option at

t = 1 does not depend on transparency policy, and individual rationality requires

UD
i (µ̂e(r1); r1)︸ ︷︷ ︸

collusive payoff of µ̂e(r1)

≥ G(µ̂e(r1))µ̂e(r1)− m̂(µ̂e(r1); r1)︸ ︷︷ ︸
competitive payoff of µ̂e(r1)

, ∀i ∈ N

or simply

sDi (µ̂e(r1); r1) ≤ 0, ∀i ∈ N

By taking a sum over N on both sides, we can write

∑
i∈N

sDi (µ̂e(r1); r1) ≤ 0

Proposition 2.10 shows that there is a price r1 < 1 such that the no-disclosure policy fails

the individual rationality constraint,

∑
i∈N

sNDi (µ̂e(r1); r1) > 0

which implies that any transparency policy also fails the constraint,

∑
i∈N

sDi (µ̂e(r1); r1) =
∑
i∈N

sNDi (µ̂e(r1); r1) ⇒
∑
i∈N

sDi (µ̂e(r1); r1) > 0

The proposition and its proof are similar to Theorem 16 in Milgrom and Weber (1982),

where the mechanism design approach is used to derive the effect of public information on

the expected revenue in first-price auctions. When the values are not correlated, public infor-

mation does not affect the expected revenue because it basically leads to a mechanism with

the same allocation rule. Similarly, transparency policy does not affect the total expected

side-payment because the allocation is always ex-post efficient and the budget is balanced in

expected terms. Therefore, it is not possible to share information in such a way that every

buyer stays in the ring in the initial period for a sufficiently large first-period reserve price.
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2.6.2 Participation Constraints

Mailath and Zemsky (1991) propose two types of participation constraints:

1. if a buyer leaves the ring, it continues to operate with n− 1 buyers;

2. if a buyer leaves the ring, it breaks down completely.

Under full commitment, these constraints are identical because efficient collusion and compe-

tition have the same allocation rule. But under limited commitment, they are not identical

in general, so our assumption that the ring continues to operate with n − 1 buyers is not

without loss of generality.

There are at least two reasons why it may be satisfactory to ignore the second constraint.

First, a real-world ring may fail to include all buyers even if the participation constraint is

satisfied. This is because of many omitted factors that discourage buyers from colluding,

such as costly communication and fear of prosecution. A ring can hardly be called successful

or durable if it fails to operate when some of its members fall victim to these factors. But

the second constraint entails that the ring breaks down unless it is full, so whenever it is

satisfied, a more important property is violated.

Second, the two constraints are identical in the special but important case of second-best

collusion. In the proof of Proposition 3.7, we show the competitive equilibrium implements

the second-best cut-off. Thus, a buyer who leaves the ring faces the same problem whether

there is a ring with n − 1 buyers or full competition. It suggests that there is no loss of

generality when we ignore the possibility of the ring breaking down.

2.6.3 Reputational Equilibria

Our analysis of optimal reserve prices restricts attention to equilibria with Markov strategies.

Since they satisfy the Coase conjecture, the optimal first-period reserve becomes lower under

efficient collusion as the time between periods goes to zero. However, these equilibria are

generally not unique: Ausubel and Deneckere (1989) construct reputational equilibria where

the initial price is very close to the optimal price under full commitment. But then the

optimal price under collusion should be larger even for small time between periods, which

poses a challenge to our claim.
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We shall justify our restriction to stationary equilibria with an informal argument. Recall

that the main price path of a reputational strategy is described by a very slow rate of sales.

As shown in the proof of Proposition 2.10, a slow rate of sales “destroys” the ring’s revenue

because the latter only comes from bidding types. The cut-off type is asked to pay a positive

entry fee to the ring but receives an arbitrarily small transfer in return. As a result, she is

better-off leaving the ring and bidding for the object on her own. It follows that the main

price path is rather a measure against collusion than a best response to it.

Of course, stationary equilibria are not immune to the tension between budget balance and

individual rationality, either. However, their equilibrium path involves a very fast rate of

sales where the ring secures a high expected revenue. The tension is present only in off-

equilibrium reserve prices, that become increasingly suboptimal as the time between periods

goes to zero. To sum up, reputational equilibria are much less “reasonable” because they

suffer from the impossibility of efficient collusion not only in off-equilibrium, but also in

on-equilibrium histories.

2.7 Conclusions

This paper has identified the impact of limited commitment on collusion among buyers. We

have constructed a model where a seller can always run a second-price auction with a reserve

price until he sells a single and indivisible object. It was crucial that the seller could only

commit to an auction in the current period, but not in the future periods. Our goal was to

understand if there exists a mechanism of collusion that implements efficient collusion and

also satisfies individual rationality and budget balance constraints. Our findings suggest that

such mechanism does not exist for all reserve prices because a bidding ring that discourages

its members from inefficient participation may run a deficit. Furthermore, the best response

against a ring that implements efficient collusion may involve lower reserve prices because

buyers act more patiently when they collude.

Yet the model has a number of limitations that can be improved in further research. First,

we only consider full-inclusive rings. Although it was shown to be the equilibrium size of

the ring with commitment (see Graham and Marshall (1987)), some factors that are often

sacrificed for the sake of tractability can prevent the formation of a full-inclusive ring. As

noted earlier, the cost of coordination or the risk of being exposed may be prohibitively high
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to form a full-inclusive ring. But it is technically difficult to study rings with k < n members

because the buyers outside the ring do not generally bid in the same period as the buyers

in the ring. The distribution of their values becomes a new state variable in the dynamic

programming problem facing the seller; the result is a much less tractable model.

Second, we treat mechanisms of collusion as being proposed by an impartial ring center or

simply exogenously given. As explained by Mailath and Zemsky (1991), this assumption

is justified by the lack of a non-cooperative theory of coalition formation. Although the

problem is also present in the static model, a lack of commitment makes it especially acute.

While our model requires that every auction be sequentially optimal, it does not impose any

requirement of optimality on the mechanisms of collusion. Simply put, a ring center can

commit to any plan of mechanisms throughout the game. But if a bidding ring also becomes

constrained by sequential optimality, it may be unable to implement even the second-best

collusion because it is not efficient (and thus, not optimal). The problem may be overcome

by incorporating a bargaining stage where the buyers must reach an agreement before they

are asked to place bids.

2.8 Appendix

2.8.1 Proof of Lemma 2.1

Without a ring, a buyer with value x who bids as if her value were z ∈ [0, 1], obtains a payoffG(z)x−m1(z; r1) if z ≥ µ(r1)

δU(x; p2(µ(r1))) if z < µ(r1)

With an efficient ring, a buyer with value x who reports some value z ∈ [0, 1], obtains a

payoff G(z)x− m̂1(z; r1)− s(z; r1) if z ≥ µ(r1)

−s(z; r1) + δU(x; p2(µ(r1))) if z < µ(r1)
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The Envelope theorem implies that the shape of the equilibrium payoff is the same in both

cases,

U ′(x; r1) = Û ′(x; r1) =

G(x) if x ≥ µ(r1)

δU ′(x; p2(µ(r1))) if x < µ(r1)

2.8.2 Proof of Lemma 2.4

If a buyer with value x reports z ∈ [0, 1], her payoff isG(z)x− m̂(z; r1)− s1(z; r1) if z ≥ µ(r1)

−s1(z; r1) + δÛ2(z, x; p̂2(µ̂e(r1))) if z < µ(r1)

Incentive compatibility requires that the buyer report z = x. It implies the first-order

condition

0 =

g(x)(x− r1)− s′1(x; r1) if x ≥ µ̂e(r1)

−s′1(x; r1) if x < µ̂e(r1)

Integrate on both sides and re-arrange the terms to obtain

s1(x; r1) =


s1(µ̂e(r1); r1) +

∫ x

µ̂e(r1)

(y − r1)dG(y) if x ≥ µ̂e(r1)

s1(0; r1) if x < µ̂e(r1)

(2.32)

Also, incentive compatibility implies that the equilibrium payoff of each buyer i ∈ N is

absolutely continuous. In particular, the cut-off type must be indifferent between reporting

her true value and any lower value,

G(µ̂e(r1))µ̂e(r1)− m̂1(µ̂e(r1); r1)− s1(µ̂e(r1); r1) =

= −s1(0; r1) + δ[G(µ̂e(r1))µ̂e(r1)− m̂2(µ̂e(r1); p̂2(µ̂e(r1))− s2(µ̂e(r1); p̂2(µ̂e(r1)))]

Using Eq. (2.8), it can be re-written as

s1(µ̂e(r1); r1) = s1(0; r1) + δs2(µ̂e(r1); p̂2(µ̂e(r1))) (2.33)

Finally, substitute Eq. (2.33) into Eq. (2.32) to verify the lemma.
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2.8.3 Proof of Proposition 2.2

To verify incentive compatibility, suppose that all buyers j 6= i report their true values. If

buyer i with value x who reports some value z ∈ [0, 1] to the ring, her payoff is

k(r1) +

G(z)x− m̂1(z; r1)−
∫ z
µ̂∗(r)

(y − r1)dG(y) if z ≥ µ(r1)

δU(x; p2(µ(r1))) if z < µ(r1)

Except for k(r1), it is the same payoff that buyer i would obtain without a ring by bidding

as if her value were z. Since it is a best response to bid as if i’s value were x, it is also a

best response for i to report x.

To verify ex-ante budget balance, note that any buyer receives the transfer of k(r1) from the

ring. It is equal to her expected contribution to the ring, given by∫ 1

µ(r1)

∫ x

µ(r1)

(y − r1)dG(y)dF (x)

To verify individual rationality, note that a buyer’s payoff in the ring is larger than her payoff

outside the ring by a strictly positive constant, k(r1) > 0.



Chapter 3

Fair Nonlinear Pricing

Abstract

We consider a problem of optimal nonlinear pricing where the buyer rewards the

seller for charging fair prices and punishes him for unfair prices. As in Rabin (1993),

the buyer’s perception of fairness is determined by her belief about underlying inten-

tions of the seller. Our findings suggest that under complete information, the buyer

receives an offer to purchase the efficient quantity for a price below her valuation.

Under incomplete information, the optimal truthful mechanism is characterized by no

distortion at the top and downward distortion elsewhere. However, the distortion is

not as large as in the standard model because the seller internalizes a psychological cost

of paying an unfair price. As a result, he is motivated to reduce this cost by improv-

ing allocative efficiency. The optimal mechanism can be implemented by a schedule

that stipulates lower per-unit prices, so our model seems to be more consistent with

behavior of buyers and sellers in controlled experiments.

Keywords: Nonlinear pricing, Quantity Discounts, Intention-Based Social Preferences, Op-

timal Mechanism Design.
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3.1 Introduction

Firms often charge lower prices to consumers who buy large quantities of their product (e.g.

“three for the price of two”). Economic literature usually explains such nonlinear pricing

within the framework of adverse selection. For example, Maskin and Riley (1984) consider

a seller who faces a buyer with unobserved willingness to pay. The seller offers a schedule

that stipulates a price for every quantity that the buyer may choose to purchase. Of course,

the seller’s profit would be maximized if the buyer always purchased the efficient quantity

and earned no surplus from the trade. But the buyer could then purchase a subefficient

quantity and earn a positive surplus, so the first-best solution is not incentive feasible. It

follows that the second-best solution must trade-off allocative efficiency and information

rent, which results in quantity discounts.

Although the model manages to capture the rationale behind quantity discounts, some

predictions are not fully consistent with laboratory evidence. In a recent experiment, Hoppe

and Schmitz (2015) divide subjects into two groups: sellers choose prices for two quantities,

and buyers choose a quantity they wish to purchase. As predicted by the model, sellers tend

to offer both quantities at such prices that buyers with higher willingness to pay purchase a

larger quantity. However, buyers often reject offers, which is ruled out in the model because

of individual rationality, and both quantities are traded at lower prices than predicted. To

explain these inconsistencies, the authors extend the standard model to allow for inequity-

averse buyers in the spirit of Fehr and Schmidt (1999). Using the logit-QRE approach to

estimate the strength of aversion, they show that the extension improves the accuracy of

predictions by only 1-2 percentage points.

In this paper, we modify the standard model of nonlinear pricing with the goal to improve

its predictive power. It is assumed that the buyer’s utility depends not only on her monetary

payoff, but also on her psychological payoff, defined as the product of her kindness and the

seller’s kindness. As in Rabin (1993), an agent is considered kind if and only if she intends

to give the other agent a payoff above some fair payoff, defined as a combination of payoffs

from Pareto-efficient outcomes. Our analysis relies on the mechanism design approach to

obtain the optimal schedule of prices in two information settings: the seller (i) observes the

buyer’s value, and (ii) does not observe her value.

Some of our findings are consistent with Maskin and Riley (1984): there is no quantity

distortion under complete information, while there is a downward quantity distortion for
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inefficient types under incomplete information. However, the degree of distortion is smaller

because the psychological cost is internalized by the seller. In order to reduce this cost,

he chooses to offer a higher quantity so that the buyer earns a larger rent and the seller

becomes kinder. The optimal menu of contracts can be implemented with a schedule that

entails lower prices, which is why our predictions seem to fit the findings of Hoppe and

Schmitz (2015) better.

The rest of this paper is organized as follows. Section 2 reviews the literature on intention-

based social preferences and nonlinear pricing. Section 3 outlines the model and Section 4

derives the optimal contract under complete information. The optimal menu of contracts

under incomplete information is derived in Section 5 for two buyer types and in Section 6

for a continuum of types. Section 7 discusses its implementation and quantity discounts and

Section 8 concludes.

3.2 Literature Review

Economic theory traditionally assumes that agents seek to maximize their monetary payoff.

The last decades, however, have seen the emergence of behavioral theories that challenge

the traditional view on preferences. In particular, theories of social preferences assume that

an economic agent may also care about the payoff of other agents besides their own. It

is common to distinguish between outcome-based (Bolton and Ockenfels, 2000; Fehr and

Schmidt, 1999) and intention-based (Dufwenberg and Kirchsteiger, 2004; Rabin, 1993) so-

cial preferences, depending on whether an agent focuses on consequences of, or motivation

behind, feasible strategies.

Rabin (1993) relies on the concept of psychological games (Geanakoplos et al., 1989) to

model a strategic situation where players wish to reward kind opponents and to hurt mean

ones. It is assumed that a player is believed to be kind if and only if she intends to give the

other player a payoff above the equitable payoff. The latter is defined as a normalized average

of the lowest and the highest payoffs among Pareto-efficient outcomes. In equilibrium, every

player’s strategy maximizes the sum of her monetary payoff and her psychological payoff

given her second-order beliefs, and her second-order beliefs are consistent with the strategies.

Dufwenberg and Kirchsteiger (2004) extend the model to sequential games and propose the
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concept of sequential reciprocity equilibrium that specifies how players update their beliefs

about each other’s intentions over time.

The problem of optimal nonlinear pricing is a classical application of adverse selection theory,

see Laffont and Martimort (2009). It is usually assumed that a monopolist can engage in

second-degree price discrimination by offering a schedule of prices for each quality (Mussa

and Rosen, 1978) or quantity (Maskin and Riley, 1984). By the Revelation Principle, it is

sufficient to find the optimal truthful menu of contracts and propose its implementation by

a schedule of nonlinear prices, see Wilson (1996). Recently, Bierbrauer and Netzer (2016)

extend the mechanism design theory to intention-based social preferences of Rabin (1993).

They show that under complete information about a weight of kindness, any Pareto-efficient

social choice function can be weakly implemented.

The theoretical literature on fair pricing is surprisingly scarce. Rabin (1993) applies his

model to a normal form game where a monopolist chooses a price and a consumer chooses

a “reservation” price. His analysis suggests that the largest equilibrium price lies strictly

below the consumer’s valuation, and moreover, it is increasing in the monopolist’s cost of

production. Rotemberg (2011) considers a market where consumers believe that a firm is

fair if they fail to reject the hypothesis that it is benevolent towards them. According to his

results, the equilibrium price is rather rigid and more responsive to shocks in costs than to

shocks in demand. For a summary of empirical studies on fair pricing, see Xia et al. (2004).

3.3 Model

There are two agents: a seller (he) and a buyer (she). The seller offers a contract (q, t) that

the buyer can accept or reject. A contract stipulates a quantity q to be delivered by the

seller and a monetary transfer t to be paid by the buyer. If the buyer accepts (q, t), her

(monetary) payoff is equal to U = xu(q)− t, where x is her type1, distributed according to

some function F on [0, w]. We assume that u′ > 0, u′′ < 0 and u(0) = 0. Also, the seller’s

profit is equal to Π = t − cq, where c > 0 denotes his marginal cost of production. It is

useful to define social surplus as the sum of the monetary payoff and the profit,

S(q, x) = xu(q)− cq
1Maskin and Riley (1984) consider a more general payoff function U =

∫ q

0
p(y, x)dy − t. Thus our payoff

function can be treated as p(q, x) = xu′(q).
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Let qe(x) denote the socially efficient quantity, defined implicitly by xu′(qe) = c.

In contrast to the standard model, the buyer’s utility function depends on the seller’s kind-

ness towards her as well as her kindness towards the seller. First, the seller’s kindness is

given by the term (US − UF ) where US denotes the payoff that the buyer believes that the

seller believes that the buyer will earn; and UF denotes the payoff that the buyer believes

to be fair. Second, the buyer’s kindness is given by the term (Π − ΠF ), where Π is the

actual profit of the seller and ΠF is the fair profit to give to the seller. Finally, the buyer’s

psychological payoff is given by the product of both kindnesses, that is (Π−ΠF )×(US−UF ).

We assume that the utility function of the buyer is equal to the sum of her material payoff

and her psychological payoff,

V = U + (Π− ΠF )× (US − UF )

Note that her psychological payoff is strictly increasing in Π if and only if the seller is kind,

(US − UF ) > 0. It captures the idea that the buyer is willing to reward a kind seller by

giving him more profit, and to punish an unkind seller by giving him less profit.

A contract is said to be Pareto-efficient if there is no other contract that yields a strictly

larger profit and a strictly larger payoff. Let U l (Uh) denote the lowest (highest) payoffs and

Πl (Πh) denote the lowest (highest) profits in the set of Pareto-efficient contracts. Then the

fair payoff is defined as

UF = θUh + (1− θ)U l

and the fair profit is defined as

ΠF = θΠh + (1− θ)Πl

where θ ∈ [0, 1] is an exogenous parameter.

In what follows we separately consider two information environments. Under complete

information, the seller observes the buyer’s value and offers a single contract. We say that

a contract (q∗, t∗) is optimal if the profit from any contract (q, t) is weakly lower than from

(q∗, t∗), subject to

(i) consistency of second-order beliefs: if it is optimal to accept a contract, the buyer

believes US = U , and if it is optimal to reject a contract, the buyer believes US = 0;
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(ii) consistency of social norms: the fair payoff UF and the fair profit ΠF follow from the

set of contracts that are Pareto-efficient given the optimality of (q∗, t∗).

Under incomplete information, the seller does not observe the buyer’s value and offers a

menu of contracts. Similarly, a menu (q∗(·), t∗(·)) is said to be optimal if the expected profit

from any menu (q(·), t(·)) is weakly lower than from (q∗(·), t∗(·)), subject to

(i) consistency of second-order beliefs: for any menu of contracts, if the buyer’s optimal

choice results in some payoff function U(x), the buyer believes US = E[U(X)];

(ii) consistency of social norms: the fair payoff UF and the fair profit ΠF follow from the

set of menus that are Pareto-efficient given the optimality of (q∗(·), t∗(·)).

3.4 Complete Information

In this section, we examine the case of complete information. That is, the seller observes the

buyer’s value x ∈ [0, w] and offers her a single contract (q, t). We shall proceed by deriving

a set of necessary conditions on the optimal contract, denoted by (q∗, t∗).

3.4.1 Optimization Problem

For a given fair payoff UF , a contract (q, t) is feasible if the buyer prefers to accept (q, t)

given that she believes that the seller intends to give her the payoff of US = U . Thus the

buyer’s utility from acceptance is

V = U + (Π− ΠF )× (U − UF )

and her utility from rejection is

R = 0 + (0− ΠF )× (U − UF )

It is optimal to accept the contract if the difference of these utility levels is positive,

V −R = U + Π× (U − UF )

= xu(q)− t+ (t− cq)× [(xu(q)− t)− UF ] ≥ 0
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which can be re-arranged as

xu(q)− t︸ ︷︷ ︸
monetary payoff

≥ (t− cq)× [UF − (xu(q)− t)]︸ ︷︷ ︸
psychological cost

(PC)

The participation constraints requires that the monetary payoff must compensate for the

“psychological cost” of accepting an unfair contract2. Note that if UF = 0, the set of

feasible contracts is the same as in the standard model. But if UF > 0, some contracts with

sufficiently low payoffs are rejected.

The optimal contract (q∗, t∗) must be the most profitable feasible contract,

max
(q,t)

Π = t− cq, subject to (PC)

Suppose that (q∗, t∗) satisfies Eq. (PC) with strict inequality. Then there is a contract

(q∗, t′) with t′ > t that satisfies Eq. (PC) with equality. Since (q∗, t′) is more profitable

and still feasible, (q∗, t∗) is not optimal, a contradiction. Hence, Eq. (PC) is binding in the

optimum.

Let us consider the payoff variable U = xu(q) − t, so that t = xu(q) − U . Thus the

optimization problem can be stated as

max
(q,U)

S(q, x)− U,

subject to U = (S(q, x)− U)× (UF − U)

The constraint implicitly defines U as a function of q. Differentiate both sides to obtain

dU

dq
=

(
S1(q, x)− dU

dq

)
× (UF − U)− dU

dq
× (S(q, x)− U) (3.1)

The first-order condition for the optimization problem reads

S1(q∗, x) =
dU∗

dq

2Although there exist fair contracts, the optimal contract is unfair and so are local deviations from it.
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Using Eq. (3.1), it can also be written as

S1(q∗, x)︸ ︷︷ ︸
efficiency

= −S1(q∗, x)× (S(q∗, x)− U∗)︸ ︷︷ ︸
psychological cost

It is clear the condition is satisfied at S ′(q∗, x) = 0⇔ q∗ = qe. In order to understand why

the optimal quantity is efficient, consider a deviation, q 6= qe. If the deviation is profitable,

it must reduce the buyer’s payoff, U(q) < U(qe). However, the constraint suggests that the

deviation increases her psychological cost, which must be compensated by a larger payoff,

U(q) > U(qe), a contradiction. Thus, the seller can not profitably deviate from qe.

3.4.2 Fair Payoff

To find the fair payoff UF , first consider the contract (qe, cqe) where the allocation is efficient

and the buyer reaps all surplus from trade. Since the profit of the seller is zero, Eq. (PC)

implies that the contract is feasible. Since it also maximizes the buyer’s payoff, the contract

is Pareto-efficient. It follows that the largest payoff among Pareto-efficient contracts is

Uh = xu(qe)− cqe

= S(qe, x)

Second, consider the optimal contract (qe, t∗). Since any other contract is less profitable, it

is Pareto-efficient. Also, any other Pareto-efficient contract must yield a higher payoff to the

buyer (otherwise it would be Pareto-dominated by the optimal contract). It implies that

the lowest payoff among all Pareto-efficient contracts is

U l = xu(qe(x))− t∗(x)

= U∗

These two results lead to our first lemma:

Lemma 3.1. If the optimal contract is (qe, t∗), the fair payoff is given by

UF = θS(qe, x) + (1− θ)U∗(x)
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In economic terms, the lemma states that the fair payoff is a convex combination of the payoff

under perfect competition, S(qe, x), and the payoff under first-degree price discrimination

with intention-based social preferences, U∗(x).

3.4.3 Optimal Contract

Using q∗(x) = qe(x) and UF = θS(qe(x), x) + (1− θ)U∗(x), the optimal payoff satisfies

U∗(x) = (S(qe(x), x)− U∗(x))× (UF − U∗(x))

= (S(qe(x), x)− U∗(x))× (θS(qe(x), x) + (1− θ)U∗(x)− U∗(x))

= θ(S(qe(x), x)− U∗(x))2

One could argue that the profit from offering the optimal contract may be negative for low

buyer types. Suppose that the seller shuts down all types on [0, µ], so µ denotes the lowest

type whom the seller offers (qe(x), U∗(x)). Then the profit from trading with type µ must

be equal to zero,

0 = S(qe(µ), µ)− U∗(µ)

= S(qe(µ), µ)− θ(S(qe(µ), µ)− U∗(µ))2

= S(qe(µ), µ)

In economics terms, the profit from trading with µ is zero, so the buyer of type µ does not

have any psychological payoff. Thus the social surplus from trading with type µ must be

zero. Our assumptions imply that S(qe(0), 0) = 0 ⇒ µ = 0, so the seller trades with all

types.

Proposition 3.2. The optimal contract for buyer type x is (qe(x), U∗(x)) where U∗(x) solves

U∗(x) = θ(S(qe(x), x)− U∗(x))2 , U∗(x) ≤ S(qe(x), x)

It is easy to identify the effect of reciprocity on the optimal contract. In the standard

model, the seller optimally produces the efficient quantity and reaps all social surplus,

(qFB, UFB) = (qe, 0). Since the quantity is also efficient in our model, reciprocity only
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affects the distribution of social surplus. If θ = 0, the buyer’s payoff is zero, U∗(x) = 0,

but for all θ > 0, the buyer’s payoff is positive, U∗(x) > 0. More precisely, the functional

relationship between θ and U∗(x) is implicitly governed by

dU∗(x)

dθ
=

(S(qe(x), x)− U∗(x))2

1 + θ × 2(S(qe, x)− U∗(x))
> 0

which implies that the seller’s profit [S(qe(x), x)− U∗(x)] is strictly decreasing in θ.

3.4.4 Implementation and Predictive Power

In the optimum, the buyer of type x consumes qe(x) units. By inverting qe(x), we can find

the type xe(q) for whom it is efficient to purchase a given quantity q. Then the seller can

implement his optimal contract by charging the price

T (q) ≡ t∗(xe(q)) = xe(q)u(q)− U∗(xe(q))

= xe(q)u(q)− θ(T (q)− cq)2

Our analysis replicates both results of Rabin (1993). First, the optimal price T (q) lies strictly

below the buyer’s valuation xe(q)u(q). Second, it is increasing in the cost of production,

∂T (q)

∂c
=
θ × 2(T (q)− cq)× q
1 + θ × 2(T (q)− cq)

> 0

Let us compare our predictions to the experimental results of Hoppe and Schmitz (2015).

In a setting with complete information3, their results can be broadly summarized as follows:

(EC.1) Sellers offer a single contract to each type;

(EC.2) No distortion at the top;

(EC.3) No distortion at the bottom;

(EC.4) Selling prices are lower than in the standard model;

(EC.5) Some offers are rejected.

3The authors call this setting SI-I.
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The results (EC.1), (EC.2) and (EC.3) are consistent with the standard model while (EC.4)

and (EC.5) are not. Fortunately, our model predicts the results (EC.1), (EC.2), (EC.3) and

(EC.4) but fails to predict (EC.5). It is nevertheless wrong to say that our model can not

provide an explanation for rejection of contracts. We saw that the buyer rejects “out-of-

equilibrium” contracts that stipulate sufficiently low payoffs. In reality, the seller may not

know how low is sufficiently low because the parameter θ may be unobserved. Hence, his

contract could be rejected when he underestimates the size of θ.

3.5 Incomplete Information: Two Types

The main case of our analysis is a continuous distribution of types. It is however very helpful

to begin with a simple case where the space of types is binary. Suppose that the buyer may

be a high type, denoted x, or a low type, denoted x, with x > x > 0. In contrast to the

previous section, the seller does not observe whether the buyer is x or x, but he knows that

the probability of facing the high type is equal to f ∈ (0, 1).

3.5.1 Incentive and Participation Constraints

The seller offers a menu that consists of two contracts, one for each type. Consider a menu

of contracts {(q, t), (q, t)} and fix a fair payoff UF , a second-order belief US and fair profits

Π
F

and ΠF . The menu is incentive compatible if every buyer type prefers her contract to

the other contract,

xu(q)− t+ (t− cq − Π
F

)× (US − UF ) ≥ xu(q)− t+ (t− cq − Π
F

)× (US − UF )

xu(q)− t+ (t− cq − ΠF )× (US − UF ) ≥ xu(q)− t+ (t− cq − ΠF )× (US − UF )

and individually rational if every buyer type prefers her contract to the outside option,

xu(q)− t+ (t− cq − Π
F

)× (US − UF ) ≥ −Π
F × (US − UF )

xu(q)− t+ (t− cq − ΠF )× (US − UF ) ≥ −ΠF × (US − UF )
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As in the previous section, introduce the payoff variables U = xu(q)− t and U = xu(q)− t.
We can use them to simplify the incentive compatibility constraints as

U + (S(q)− U)(US − UF ) ≥ U + u(q)∆x+ (S(q)− U)(US − UF ) (IC.1)

U + (S(q)− U)(US − UF ) ≥ U − u(q)∆x+ (S(q)− U)(US − UF ) (IC.2)

and the individual rationality constraints as

U + (S(q)− U)(US − UF ) ≥ 0 (IR.1)

U + (S(q)− U)(US − UF ) ≥ 0 (IR.2)

It follows that the fair profits Π
F

and ΠF are again irrelevant to the problem. Also, note

that the seller does not know the buyer’s type at the time of choosing a menu of contracts.

Therefore, his intentions can not be contingent on the buyer’s type, and the buyer believes

that the seller intends to give her the expected payoff,

US = fU + (1− f)U

3.5.2 Optimization Problem

The objective of the seller is to choose a menu of contracts that maximizes his expected

profit subject to the incentive compatibility and individual rationality constraints,

max
{(q,U),(q,U)}

f(S(q)− U) + (1− f)(S(q)− U) ,

subject to (IC.1)− (IR.2)

Luckily, the constraint (IR.1) is not binding, as implied by (IC.1), (IR.2), and x > x,

U + (S(q)− U)(fU + (1− f)U − UF ) ≥ U + u(q)∆x+ (S(q)− U)(fU + (1− f)U − UF )

> U + (S(q)− U)(fU + (1− f)U − UF ) ≥ 0

As in the standard model, it is also reasonable to guess that the constraint (IC.2) is not

binding, either. However, the remaining constraints (IC.1) and (IR.2) must be binding in the
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optimum. If they were not, the seller could extract a slightly larger profit without violating

the constraints.

Therefore, it is sufficient to consider a relaxed problem:

max
{(q,U),(q,U)}

f(S(q)− U) + (1− f)(S(q)− U), subject to

U = (S(q)− U)(UF − (fU + (1− f)U))) + u(q)∆x, (3.2)

U = (S(q)− U)(UF − (fU + (1− f)U))) (3.3)

Multiply Eq. (3.2) by f and Eq. (3.3) by 1− f and sum them up to obtain

fU +(1−f)U = [f(S(q)−U)+(1−f)(S(q)−U)](UF − (fU +(1−f)U))+fu(q)∆x (3.4)

Note that Eq. (3.2) and Eq. (3.3) define U and U as functions of q and q. Differentiate

both sides of Eq. (3.4) with respect to q,

f
∂U

∂q
+ (1− f)

∂U

∂q
= (UF − (fU + (1− f)U))

[
fS
′
(q)−

(
f
∂U

∂q
+ (1− f)

∂U

∂q

)]
−
(
f
∂U

∂q
+ (1− f)

∂U

∂q

)
[f(S(q)− U) + (1− f)(S(q)− U)] (3.5)

and with respect to q,

f
∂U

∂q
+ (1− f)

∂U

∂q
= (UF − (fU + (1− f)U))

[
(1− f)S ′(q)−

(
f
∂U

∂q
+ (1− f)

∂U

∂q

)]
−
(
f
∂U

∂q
+ (1− f)

∂U

∂q

)
[f(S(q)− U) + (1− f)(S(q)− U)] + fu′(q)∆x (3.6)

3.5.3 Solution

Suppose that both quantities are strictly positive in the optimum. Then their first-order

effect on the expected profit must be equal to zero,

fS
′
(q∗) =

(
f
∂U
∗

∂q
+ (1− f)

∂U∗

∂q

)

(1− f)S ′(q∗) =

(
f
∂U
∗

∂q
+ (1− f)

∂U∗

∂q

)
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Using Eq. (3.5) and Eq. (3.6), the FOCs can be rewritten as

fS
′
(q∗) = −fS ′(q∗)[f(S(q∗)− U∗) + (1− f)(S(q∗)− U∗)]

(1− f)S ′(q∗) = −(1− f)S ′(q∗)[f(S(q∗)− U∗) + (1− f)(S(q∗)− U∗)] + fu′(q∗)∆x

or equivalently,

xu′(q∗)− c = 0(
x− f

1− f
∆x

)
u′(q∗)− c︸ ︷︷ ︸

rent extraction-efficiency trade-off

= − (xu′(q∗)− c)[f(S(q∗)− U∗) + (1− f)(S(q∗)− U∗)]︸ ︷︷ ︸
(marginal) psychological cost

(3.7)

One can see that there is no distortion at the top, q∗ = qe, and a downward distortion at

the bottom, q∗ < qe. Furthermore, note that the left-hand side of Eq. (3.7) is equal to 0

at the optimal quantity for type x in the standard model, denoted qSB. In other words, the

first derivative with respect to q is positive at qSB, so the distortion is smaller, q∗ > qSB.

It is routine to verify that the fair payoff is equal to a convex combination of the expected

payoff under perfect competition and second-degree price discrimination,

UF = θ[fS(qe) + (1− f)S(qe)] + (1− θ)[fU∗ + (1− f)U∗]

= θ[fS(qe) + (1− f)S(qe)] + (1− θ)US

Thus the seller’s unkindness in the optimum is equal to

UF − US = θ[fS(qe) + (1− f)S(qe)] + (1− θ)US − US

= θ[fS(qe) + (1− f)S(qe)− US]

= θ[f(S(qe)− U∗) + (1− f)(S(qe)− U∗)]

and Eq. (3.2) and Eq. (3.3) can be written as

U
∗

= θ(S(qe)− U∗)[f(S(qe)− U∗) + (1− f)(S(qe)− U∗)] + u(q∗)∆x

U∗ = θ(S(q∗)− U∗)[f(S(qe)− U∗) + (1− f)(S(qe)− U∗)]

For any θ > 0, even the low type receives a strictly positive payoff. Also, the introduction of

fairness widens the gap between the optimal payoffs because the high type suffers a larger



Chapter 3. Fair Nonlinear Pricing 59

psychological cost, and there is less distortion for the low type. Clearly, it means that the

seller’s profit is strictly lower than in the standard model.

3.5.4 Implementation and Predictive Power

How could the seller implement the optimal contracts (qe, U
∗
) and (q∗, U∗)? It is, in fact,

sufficient to offer two quantities, namely qe and q∗, at prices T (qe) and T (q∗), defined as

T (qe) ≡ t
∗

= xu(qe)− U∗

T (q∗) ≡ t∗ = xu(q∗)− U∗

Let (qSB, U
SB

) = (qe, u(qSB)∆x) and (qSB, USB) = (qSB, 0) denote the solution from the

standard model. The seller then charges T SB(qe) = xu(qe)−USB
for qe units and T SB(qSB) =

xu(qSB) for qSB units. We already argued that the high type receives a larger payoff in our

model, U
∗
> U

SB
, so the price of qe units is lower, T (qe) < T SB(qe).

Naturally, the prices T (q∗) and T SB(qSB) should not be compared because they involve

different quantities, q∗ > qSB. Instead, we shall compare per-unit prices charged to the low

type. Observe that the fact u′′(x) < 0 implies

d

dq

u(q)

q
=

d

dq

1

q

∫ q

0

u′(y)dy

=
1

q
u′(q)− 1

q2

∫ q

0

u′(y)dy

=
1

q2

∫ q

0

∫ q

y

u′′(t)dtdy

< 0

Since q∗ > qSB, we have xu(q∗)/q∗ < xu(qSB)/qSB. In addition, the low type receives a

positive rent, U∗ > 0, so she faces a lower per-unit price, T (q∗)/q∗ < T SB(qSB)/qSB.

Let us compare our predictions to the experimental findings of Hoppe and Schmitz (2015).

In a setting with incomplete information4, they can be summarized as follows:

(EI.1) Sellers offer a schedule of prices;

4The authors call this setting PI-I.
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(EI.2) No distortion at the top;

(EI.3) Downward distortion at the bottom;

(EI.4) Selling prices are lower than in the standard model;

(EI.5) Some offers are rejected.

Recall that the standard model predicts findings (EI.1), (EI.2) and (EI.3), but fails to predict

(EI.4) and (EI.5). In contrast, our model predicts findings (EI.1), (EI.2), (EI.3), and (EI.4).

As in the case of complete information, we fail to predict (EI.5) because a buyer type never

rejects her contract from the optimal menu. Nevertheless, she may reject her contract from

a suboptimal menu if the payoff is sufficiently low. To give more credibility to our model,

we shall argue once again that contracts get rejected because some sellers underestimate the

size of θ.

3.6 Incomplete Information: Mechanism Design

In this section, we consider the main case of a continuous distribution of buyer types. The

seller offers a menu of contracts (q(·), t(·)) where (q(x), t(x)) denotes the contract designed

for type x ∈ [0, w]. Upon receiving a menu, the buyer can select a contract from the menu

or reject all contracts. Our goal is to find the optimal menu of contracts (q∗(·), t∗(·)) using

a number of necessary conditions. First, we derive the set of incentive-compatible and

individually rational menus of contracts. Second, we derive the first-order condition for the

optimization problem of the seller. Third, we find the fair payoff and fourth, we characterize

the optimal mechanism.

3.6.1 Incentive and Participation Constraints

The seller is free to choose any arbitrary menu of contracts. Despite intention-based prefer-

ences, however, it is sufficient to study a small class of incentive-compatible menus. We say

that a menu is incentive compatible if for all x ∈ [0, w], it is optimal to choose the contact

designed for type x,

V (x, x) ≥ V (z, x),∀z ∈ [0, w]
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where V (z, x) denotes the utility of the buyer with type x from the contract for type z.

Proposition 3.3 (Revelation Principle). For a given fair payoff UF ≥ 0, consider an

arbitrary menu and fix an optimal choice of contracts from this menu. Then there exists an

incentive compatible menu with the same allocation and the same transfers as in the original

menu.

Proof. See Appendix.

The incentive compatibility constraint imposes a functional relationship between a menu’s

allocation and transfer rules. To find this relationship, note that

V (z, x) = xu(q(z))− t(z) + (t(z)− cq(z)− ΠF (x))× (US − UF )

where UF ≥ 0 and US ≥ 0 can so far be treated as given because they are not affected by

the buyer’s choice. From the definition of incentive compatibility, we must have for any x

and z that

V (x, x) ≥ V (z, x) and V (z, z) ≥ V (x, z)

By adding up these inequalities, we find that

(x− z)(u(q(x))− u(q(z))) ≥ 0

It implies that the allocation q(·) is increasing and thus almost everywhere differentiable.

Moreover, the payment t(·) is also a.e. differentiable with the same points of non-differentiability.

But following Laffont and Martimort (2009, p. 135), we shall consider only differentiable

menus of contracts.

Let us use R(x) to denote the utility of buyer type x from rejecting all contracts,

R(x) = −ΠF (x)× (US − UF )

Then we can focus on that type’s surplus from trade, defined as the difference of her utility

from accepting the contract of some type z and rejecting all contracts,

V (z, x)−R(x) = xu(q(z))− t(z) + (t(z)− cq(z))× (US − UF )
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It must be optimal to choose z = x, so the first-order condition reads

xu′(q(x))q′(x)− t′(x) + (t′(x)− cq′(x))× (US − UF ) = 0 (3.8)

One can exploit the first-order condition to show that for any x and z

t(x)− t(z) =

∫ x

z

[yu′(q(y))q′(y) + (t′(y)− cq′(y))× (US − UF )]dy

= xu(q(x))− zu(q(z))−
∫ x

z

u(q(y))dy + [(t(x)− cq(x))− (t(z)− cq(z))](US − UF )

which can be re-arranged as

V (x, x)−R(x) = xu(q(x))− t(x) + (t(x)− cq(x))(US − UF )

= xu(q(z))− t(z) + (t(z)− cq(z))(US − UF ) +

∫ x

z

u(q(y))dy − (x− z)u(q(z))

= V (z, x)−R(x) +

∫ x

z

u(q(y))dy − (x− z)u(q(z))

Since q(·) is increasing, the term
∫ x
z
u(q(y))dy−(x−z)u(q(z)) is positive. Thus the constraint

q′(x) ≥ 0 is not only necessary, but also sufficient for incentive compatibility.

Consider once again the payoff variable, U(x) = xu(q(x)) − t(x). Using the first-order

condition, its derivative is equal to

U ′(x) = u(q(x)) + xu′(q(x))q′(x)− t′(x)

= u(q(x))− (t′(x)− cq′(x))× (US − UF )

= u(q(x))− [S1(q(x), x)q′(x) + S2(q(x), x)− U ′(x)]× (US − UF )

For a menu to be individually rational, every type must prefer her contract to the outside

option,

V (x, x)−R(x) = U(x) + [S(q(x), x)− U(x)]× (US − UF ) ≥ 0, ∀x ∈ [0, w]
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If a menu is incentive compatible and individually rational, the payoff of type x is U(x).

Thus the second-order belief US must be equal to the expected payoff,

US =

∫ w

0

U(y)dF (y)

3.6.2 Optimization Problem

By definition, the optimal menu (q∗(·), U∗(·)) maximizes the expected profit of the seller.

For a given UF ≥ 0, it is thus a solution to the optimization problem

max
(q(x),U(x))

∫ w

0

(S(q(x), x)− U(x))dF (x), subject to

U ′(x) = u(q(x)) + [S1(q(x), x)q′(x) + S2(q(x), x)− U ′(x)]

(
UF −

∫ w

0

U(y)dF (y)

)
(IC)

U(x)− [S(q(x), x)− U(x)]

(
UF −

∫ w

0

U(y)dF (y)

)
≥ 0 (PC)

q′(x) ≥ 0 (SOC)

It is helpful to simplify the set of constraints. To begin with, integrate (IC) on [0, x],

U(x) = U(0) +

∫ x

0

u(q(y))dy + [S(q(x), x)− U(x)]

(
UF −

∫ w

0

U(y)dF (y)

)
− [S(q(0), 0)− U(0)]

(
UF −

∫ w

0

U(y)dF (y)

)
This implies that (PC) can be simplified to∫ x

0

u(q(y))dy + U(0)− [S(q(0), 0)− U(0)]

(
UF −

∫ w

0

U(y)dF (y)

)
≥ 0 (3.9)

Since q′(x) ≥ 0, the left-hand side of Ineq. (3.9) is increasing in x. It follows that (PC)

is satisfied if and only if Ineq. (3.9) holds for x = 0. Suppose for a moment that the

optimal menu satisfies Ineq. (3.9) with strict inequality for x = 0. Consider another menu

(q∗(·), Û(·, ε)) such that the left-hand side of Ineq. (3.9) is reduced by ε > 0,

Û(x, ε) =

∫ x

0

u(q∗(y))dy + [S(q∗(x), x)− Û(x, ε)]×
(
UF −

∫ w

0

Û(y, ε)dF (y)

)
+ U∗(0)− (S(q∗(0), 0)− U∗(0))

(
UF −

∫ w

0

U∗(y)dF (y)

)
− ε
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For sufficiently small ε > 0, the menu (q∗(x), Û(x, ε)) satisfies (PC) and (IC). Next, differ-

entiate the equation with respect to ε and evaluate it at ε = 0,

Ûε(x, 0) = −Ûε(x, 0)

(
UF −

∫ w

0

U∗(y)dF (y)

)
−[S(q∗(x), x)−U∗(x)]

∫ w

0

Ûε(y, 0)dF (y)−1

It is easy to verify that Ûε(x, 0) < 0. This means that the seller can reduce the buyer’s rent

by reducing the constant in Ineq. (3.9). But the allocation remains the same, so the seller

receives a larger share of social surplus. As a result, the menu (q∗(·), U∗(·)) is not optimal,

a contradiction. It allows us to simplify (PC) to

U(0) = [S(q(0), 0)− U(0)]

(
UF −

∫ w

0

U(y)dF (y)

)

3.6.3 First-Order Condition

For a moment, ignore (SOC) and consider a relaxed problem:

max
(q(x),U(x))

∫ w

0

(S(q(x), x)− U(x))dF (x) ,

subject to U(x) =

∫ x

0

u(q(y))dy + [S(q(x), x)− U(x)]×
(
UF −

∫ w

0

U(y)dF (y)

)

Let q∗(x) denote an optimal allocation. Fix some function τ(x) and a number α ∈ R to

define a perturbed allocation q(x, α) ≡ q∗(x) + ατ(x). Also, let U(x, α) denote a payoff

function that satisfies the constraint given q(x, α). Then the objective becomes a function

of α alone,

Π(α) ≡
∫ w

0

(S(q(x, α), x)− U(x, α))dF (x)

Now take expectation on both sides of the constraint,∫ w

0

U(x, α)dF (x) =

∫ w

0

∫ x

0

u(q(y, α))dydF (x)

+

∫ w

0

[S(q(x, α), x)− U(x, α)]dF (x)×
(
UF −

∫ w

0

U(x, α)dF (x)

)
=

∫ w

0

1− F (x)

f(x)
u(q(x, α))dF (x) + Π(α)

(
UF −

∫ w

0

U(x, α)dF (x)

)
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Each side of the equation is a function of α. By taking the derivative on each side,∫ w

0

Uα(x, α)dF (x) =

∫ w

0

1− F (x)

f(x)
u′(q(x, α))τ(x)dF (x) (3.10)

+ Π′(α)

(
UF −

∫ w

0

U(x, α)dF (x)

)
− Π(α)

∫ w

0

Uα(x, α)dF (x)

Since q(x, 0) = q∗(x) is an optimal control, the objective Π(α) is maximized at α = 0. This

implies the first-order condition

Π′(0) =

∫ w

0

[
∂

∂q
S(q(x, 0), x)× qα(x, 0)− Uα(x, 0)

]
dF (x)

=

∫ w

0

∂

∂q
S(q∗(x), x)× τ(x)dF (x)−

∫ w

0

Uα(x, 0)dF (x)

= 0

Now we can evaluate Eq. (3.10) at α = 0 and plug it into the first-order condition,∫ w

0

∂

∂q
S(q∗(x), x)× τ(x)dF (x) =

∫ w

0

(
1− F (x)

f(x)
u′(q∗(x))− Π(0)

∂

∂q
S(q∗(x), x)

)
τ(x)dF (x)

Since q∗(x) is optimal for every function τ(x), we obtain the following condition:(
x− 1− F (x)

f(x)

)
u′(q∗(x))− c︸ ︷︷ ︸

rent extraction-efficiency trade-off

= − (xu′(q∗(x))− c)
∫ w

0

(S(q∗(y), y)− U∗(y))dF (y)︸ ︷︷ ︸
(marginal) psychological cost

(3.11)

Similar to the standard model, the equation captures the first-order effect of a small change

to the optimal allocation on the expected profit. Besides the familiar trade-off between

allocative efficiency and information rent, we observe a new effect on the right-hand side. It

states that a small change to the allocation results in a lower psychological cost, internalized

by the seller through the constraint. As a result, a lower cost partially offsets an increase in

information rent and incentives the seller to enhance allocative efficiency.

3.6.4 Second-Order Conditions

So far the second-order condition q′(x) ≥ 0 has been neglected. While this constraint may

be binding in general, there is a class of distributions for which it is slack. Let λ(x) denote
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the hazard rate of F ,

λ(x) =
f(x)

1− F (x)

Lemma 3.4. If the hazard rate is increasing, the optimal allocation q∗(x) is strictly increas-

ing whenever q∗(x) > 0.

Proof. Observe that we can re-write Eq. (4.5) as

G(q, x) ≡ u′(q)

(
x− 1

λ(x)

)
− c+ (xu′(q)− c)Π(0) = 0 (3.12)

By the implicit function theorem,

dq∗(x)

dx
= −Gx(q, x)

Gq(q, x)
(3.13)

where

Gx(q, x) = u′(q)

(
1 +

λ′(x)

λ2(x)
+ Π(0)

)
and

Gq(q, x) = u′′(q)

(
x− 1

λ(x)
+ xΠ(0)

)
Since λ′(x) ≥ 0, we have Gx(q, x) > 0. Also, Eq. (3.12) can be re-arranged as

u′(q)

(
x− 1

λ(x)
+ xΠ(0)

)
= c(1 + Π(0))

which implies x− 1/λ(x) + xΠ(0) > 0, and so Gq(q, x) < 0. We conclude that the optimal

allocation q∗(x) is strictly increasing whenever q∗(x) > 0.

It is not necessarily optimal to choose the interior solution q∗(x). Instead, the seller could

“shut down” buyer types on some interval [0, µ]. In this case, his expected profit is

Π∗(µ) =

∫ w

µ

(S(q∗(x), x)− U∗(x))dF (x)

=

∫ w

µ

[
u(q∗(x))

(
x− 1

λ(x)

)
− cq∗(x)

]
dF (x)− Π∗(µ)

(
UF −

∫ w

µ

U∗(y)dF (y)

)

Lemma 3.5. For a given UF ≥ 0, the optimal cut-off µ∗ satisfies

u(q∗(µ∗))

(
µ∗ − 1

λ(µ∗)

)
− cq∗(µ∗) + Π∗(µ∗)(µ∗u(q∗(µ∗))− cq∗(µ∗)) = 0
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Proof. See Appendix.

3.6.5 Fair Payoff

Given that (q∗(·), t∗(·)) is the optimal menu, what is the fair payoff? First, let us find the

highest payoff among Pareto-efficient menus. Consider such menu that the allocation is ex-

post efficient, q(x) = qe(x), and the profit is zero ex-post, t(x) = cqe(x). The latter property

implies that the buyer’s surplus from trade is equal to her payoff,

U(z, x) = xu(qe(z), x)− cqe(z)

= S(qe(z), x)

Since the allocation is efficient, qe(x) ∈ arg maxS(q, x), the menu is incentive compatible.

Then the buyer’s surplus from trade is equal to the maximized social surplus, S(qe(x), x). It

implies that the menu is also individually rational. Besides, any menu that yields a higher

payoff must result in a negative profit. Thus the highest expected payoff from the set of

Pareto-efficient menus is

Uh =

∫ w

0

S(qe(y), y)dF (y)

Second, let us find the lowest payoff among Pareto-efficient menus. Consider the optimal

menu (q∗(·), t∗(·)). Since any other menu yields a lower expected profit, it is Pareto-efficient.

If there were a Pareto-efficient menu with a lower expected payoff, then it would have a

higher expected profit, a contradiction. Thus, the lowest expected payoff from the set of

Pareto-efficient menus is

U l =

∫ w

µ∗
U∗(y)dF (y)

These findings can be summarized in the following lemma:

Lemma 3.6. If (q∗(·), t∗(·)) is the optimal menu, the fair payoff is equal to

UF = θ

∫ w

0

S(qe(y), y)dF (y) + (1− θ)
∫ w

µ∗
U∗(y)dF (y)
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Similar to the case of complete information, the fair payoff can be interpreted as a convex

combination of the payoff under perfect competition and the payoff under the second-degree

price discrimination with social preferences.

3.6.6 Effects of Reciprocity

Our results about the optimal menu can be summarized as follows:

Proposition 3.7. Suppose that the hazard rate is increasing. Then the optimal mechanism

is (0, 0) for all x < µ∗ and (q∗(x), U∗(x)) for all x ≥ µ∗, which satisfies

U∗(x) =

∫ x

µ∗
u(q∗(y))dy

+ θ × (S(q∗(x), x)− U∗(x))

[∫ w

0

(S(qe(y), y)dF (y)−
∫ w

µ∗
U∗(y))dF (y)

]
and (

x− 1− F (x)

f(x)

)
u′(q∗(x))− c = −(xu′(q∗(x))− c)

∫ w

µ∗
(S(q∗(y), y)− U∗(y))dF (y)

Recall that the optimal mechanism from the standard model, (qs(·), U s(·)), satisfies

qs(x) ∈ arg max
q

(
S(q, x)− u(q)

λ(x)

)
and U s(x) =

∫ x

µs
u(qs(y))dy

where the cut-off µs is given by

S(qs(µs), µs)− u(qs(µs))

λ(µs)
= 0

Evaluate the first derivative of S(q, x)− u(q)/λ(x) at q∗(x),

∂

∂q

(
S(q∗(x), x)− u(q∗(x))

λ(x)

)
= (xu′(q∗(x))− c)− 1− F (x)

f(x)
u′(q∗(x))

= −(xu′(q∗(x))− c)
∫ w

µ∗
(S(q∗(y), y)− U∗(y))dF (y)

< 0
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But this derivative is equal to zero at qs(x), so the optimal allocation with social preferences

is more efficient, q∗(x) > qs(x).

Next, Eq. (4.5) can be used to show the inequality

S(q∗(x), x)− u(q∗(x))

λ(x)
+ Π∗(x)(xu(q∗(x))− cq∗(x)) = max

q

[
S(q, x)− u(q)

λ(x)
+ Π∗(x)(xu(q)− cq)

]
≥ max

q

[
S(q, x)− u(q)

λ(x)

]
= S(qs(x), x)− u(qs(x))

λ(x)

Thus the seller “shuts down” fewer buyer types, µ∗ < µs. Furthermore, each type x ∈ [0, w]

earns a larger payoff,

U∗(x) =

∫ x

µ∗
u(q∗(y))dy + θ(S(q∗(x), x)− U∗(x))×

[∫ w

0

(S(qe(y), y)dF (y)−
∫ w

µ∗
U∗(y))dF (y)

]
≥
∫ x

µ∗
u(q∗(y))dy

>

∫ x

µs
u(qs(y))dy = U s(x)

3.7 Incomplete Information: Nonlinear Pricing

3.7.1 Implementation

We derived the optimal mechanism (q∗(·), U∗(·)), which is equivalent to the menu of contracts

(q∗(x), t∗(x)) where t∗(x) = xu(q∗(x)) − U∗(x). However, the seller must implement this

menu by a schedule of prices T (q). Under the assumption of Proposition 3.7, the function

q∗(x) is strictly increasing and therefore invertible. Let x∗(q) denote its inverse, showing the

type who buys a given quantity q. Then the optimal price is equal to

T (q) ≡ t∗(x∗(q))

= x∗(q)u(q)−
∫ x∗(q)

µ∗
u(q∗(y))dy − (T (q)− cq)(UF − US) (3.14)
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where the seller’s unkindness, (UF − US), can also be written in terms of quantities,

UF − US = θ

[∫ w

0

S(qe(y), y)dF (y)−
∫ w

µ∗
U∗(y)dF (y)

]
= θ

[∫ w

0

(yu(qe(y))− cqe(y))dF (y)−
∫ w

µ∗
(yu(q∗(y))− t∗(y))dF (y)

]
=

∫ qe(w)

0

[(xe(z)u(z)− cz)f(xe(z))− (x∗(z)u(z)− T (z))f(x∗(z))]dz

Let us verify that T (q) does implement the optimal menu. Suppose that the buyer with

value x faces the schedule T (q). Then her optimal choice of quantity, q∗, solves

max
q

[
xu(q)− T (q)− (T (q)− cq)× (UF − US)

]
Thus it must satisfy the first-order condition

xu′(q∗)− T ′(q∗)− (T ′(q∗)− c)× (UF − US) = 0 (3.15)

By differentiating Eq. (3.14) we obtain

T ′(q) = x∗(q)u′(q)− (T ′(q)− c)(UF − US)

Evaluate the last equation at q = q∗ and plug it into Eq. (3.15),

xu′(q∗) = x∗(q∗)u′(q∗)

which is satisfied at q∗ = q∗(x). Thus it is optimal for the buyer with value x ≥ µ∗ to

purchase q∗(x) units.

3.7.2 Per-Unit Prices

Since the buyer pays T (q) for q units, she faces the per-unit price of

p(q) ≡ T (q)

q
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To derive p(q), divide both sides of Eq. (3.14) by q,

p(q) =
1

q

(
x∗(q)u(q)−

∫ x∗(q)

µ∗
u(q∗(y))dy

)
− (p(q)− c)(UF − US)

=
1

q

∫ q

0

x∗(y)u′(y)dy − (p(q)− c)(UF − US) (3.16)

In contrast, the per-unit price in the standard model, denoted ps(q), is given by

ps(q) =
1

q

∫ q

0

xs(y)u′(y)dy

where xs(q) is the inverse of qs(x). But we showed that qs(x) ≤ q∗(x), which implies

xs(q) ≥ x∗(q). Therefore, the introduction of social preferences reduces the per-unit price,

p(q) =
1

q

∫ q

0

x∗(y)u′(y)dy − θ(p(q)− c)(UF − US)

<
1

q

∫ q

0

x∗(y)u′(y)dy

≤ 1

q

∫ q

0

xs(y)u′(y)dy

Now differentiate both sides of Eq. (3.16) with respect to q,

p′(q) =
1

q2

∫ q

0

(x∗(q)u′(q)− x∗(y)u′(y))dy − p′(q)(UF − US) (3.17)

Is it optimal to offer quantity discounts, p′(q) ≤ 0, or quantity premiums, p′(q) ≥ 0? As

shown in the next proposition, the answer is the same as in the standard model.

Proposition 3.8. The per-unit price p(q) is strictly decreasing.

Proof. Let us use x(q) = x∗(q) and q(x) = q∗(x). Then we can write

x(q)u′(q)− x(y)u′(y) =

∫ q

y

d

dt
x(t)u′(t)dt

=

∫ q

y

[x(t)u′′(t) + x′(t)u′(t)]dt

=

∫ q

y

[x(t)u′′(t)q′(x(t)) + u′(t)]x′(t)dt
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Using Eq. (3.13), we obtain

x(q)u′′(q)q′(x(q)) + u′(q) = x(q)u′′(q)
u′(q) (1 + λ′(x(q))/λ2(x(q)) + Π(0))

−u′′(q) (x(q)− 1/λ(x(q)) + x(q)Π(0))
+ u′(q)

= u′(q)

(
−x(q)

1 + λ′(x(q))/λ2(x(q)) + Π(0)

x(q)− 1/λ(x(q)) + x(q)Π(0)
+ 1

)
=

u′(q)

x(q)− 1/λ(x(q)) + x(q)Π(0)

[
x(q)− 1

λ(x(q))
− x(q)

(
1 +

λ′(x(q))

λ2(x(q))

)]
= − u′(q)

x(q)− 1/λ(x(q)) + x(q)Π(0)

[
1

(λ(x(q)))2
(λ(x(q)) + x(q)λ′(x(q)))

]
which is negative because λ(x(q)) > 0, λ′(x(q)) ≥ 0, and x(q) − 1/λ(x(q)) + x(q)Π(0) > 0.

It implies that the integral in Eq. (3.17) is also negative.

Finally, suppose that p′(q) ≥ 0. Then the right-hand side of Eq. (3.17) is strictly negative

while the left-hand side is positive, a contradiction. It implies that the per-unit price is

strictly decreasing, p′(q) < 0.

3.8 Conclusions

This paper has extended the model of nonlinear pricing by Maskin and Riley (1984) such

that the buyer feels a loss of utility from being kind towards a seller whom she believes

to be unkind. Our goal was to find the optimal schedule of prices under complete as well

as incomplete information and to compare its structure against standard predictions and

laboratory evidence. Although our analysis obtains a number of familiar properties such as

a full separation of buyer types, no distortion at the top and downward distortion elsewhere,

we have showed that the size of distortion is smaller because the seller internalizes the buyer’s

psychological cost. As a result, the buyer faces lower prices and weaker quantity discounts,

so our model has helped to bridge the gap between theory and evidence.

It may prove useful to change some features of the model in further research. First, it is

simplistic to specify psychological payoff as the product of two kindness functions. Instead,

one could use a general function that is increasing in the seller’s profit if he is kind and

decreasing otherwise. In this case, the first-order condition of incentive compatibility should

define a different relationship between a menu’s allocation and transfer rules than Eq. (3.8).

Second, it is arbitrary to assign psychological payoff to the buyer but not to the seller. If

both agents care about each other’s intentions, it is reasonable to expect a less efficient
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allocation or even complete shutdown. This is because a seller who faces an unkind buyer

prefers to earn zero profit to sharing the surplus from trade with the buyer.

Third, real-world buyers may be heterogeneous also with respect to the parameter θ, which

is why it could be unobserved by the seller. As mentioned earlier, it could be a reason why

buyers reject some offers in the laboratory setting. Or, the seller might offer a menu of

contracts to screen buyer types with respect to θ. Fourth, our setup can only be interpreted

as a seller trading with a single buyer, not with a population of buyers. In the latter case,

a buyer can not influence the total profit because the measure on her is zero. Compared to

the standard model, the presence of psychological payoff would only affect the constraint of

individual rationality and result in a different distribution of surplus.

3.9 Appendix

3.9.1 Proof of Proposition 4.6

Let us denote an optimal choice of type x under the original menu as β(x). That is, the

contract of type β(x) maximizes the expected utility of buyer type x,

x ∈ arg max

[
U(β(z), x) + (t(β(z))− cq(β(z)))(US − UF )

]
(3.18)

where US is equal to the buyer’s expected payoff,

US =

∫ w

0

U(β(x), x)dF (x)

=

∫ w

0

[xu(q(β(x)))− t(β(x))]dF (x)

Note that we got rid of the term −ΠF (x)(US −UF ) because it is a constant with respect to

z and thus does not affect incentives.

Now consider the menu (qc(x), tc(x)) that is designed to replicate the allocation, qc(x) =

q(β(x)), and the transfers, tc(x) = t(β(x)), from the original menu. For a moment, suppose

that it is incentive compatible. Then the expected payoff and thus the second-order belief
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US are the same as in the original menu,

US =

∫ w

0

[xu(qc(x))− tc(x)]dF (x)

=

∫ w

0

[xu(q(β(x)))− t(β(x))]dF (x)

=

∫ w

0

U(β(x), x)dF (x)

Observe that the expected utility from the contract of type z is then

U(β(z), x) + (t(β(z))− cq(β(z)))(US − UF )

It is the same function as (3.18), so it is also maximized at z = x. This means that the

menu (qc(x), tc(x)) is incentive compatible, so it does replicate the original menu.

3.9.2 Proof of Lemma 3.5

The optimal cut-off µ∗ solves the first-order condition

0 =
d

dµ
Π∗(µ∗)

=
d

dµ

∫ w

µ∗
S(q∗(x), x)dF (x)− d

dµ

∫ w

µ∗
U∗(x)dF (x)

= −f(µ∗)

[
u(q∗(µ∗))

(
µ∗ − 1

λ(µ∗)

)
− cq∗(µ∗)

]
+

∫ w

µ∗

d

dµ

[
u(q∗(x))

(
x− 1

λ(x)

)
− cq∗(x)

]
dF (x)

−
(
UF −

∫ w

µ∗
U∗(y)dF (y)

)
dF (x)

d

dµ
Π∗(µ∗) + Π∗(µ∗)

d

dµ

∫ w

µ∗
U∗(y)dF (y)

In particular, it implies that

d

dµ

∫ w

µ∗
U∗(y)dF (y) =

d

dµ

∫ w

µ∗
S(q∗(x), x)dF (x)

= −f(µ∗)(µ∗u(q∗(µ∗))− cq∗(µ∗)) +

∫ w

µ∗

d

dq
(xu(q∗(x))− cq∗(x))

dq∗(x)

dµ
dF (x)

Therefore the first-order condition simplifies to

0 = − f(µ∗)

[
u(q∗(µ∗))

(
µ∗ − 1

λ(µ∗)

)
− cq∗(µ∗) + Π∗(µ∗)(µ∗u(q∗(µ∗))− cq∗(µ∗))

]
+

∫ w

µ∗

d

dq

[
u(q∗(x))

(
x− 1

λ(x)

)
− cq∗(x) + (xu(q∗(x))− cq∗(x))Π∗(µ∗)

]
dq∗(x)

dµ
dF (x)
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But Eq. (4.5) implies that the integrand in the second line is equal to zero for every x ≥ µ∗.

Thus the second line vanishes and the lemma follows.



Chapter 4

Optimal Auctions with Loss Averse

Buyers

4.1 Introduction

Within the framework of independent private values, Riley and Samuelson (1981) show that

any two auction formats that allocate the object efficiently are revenue equivalent, and the

optimal reserve price must exclude all buyer types with negative virtual valuations. Both

results follow from the fact that every buyer maximizes her expected monetary payoff by

choosing the equilibrium probability of winning. However, the assumption of payoff max-

imization is sometimes fails not consistent with empirical findings, see DellaVigna (2007).

But if the buyers do not seek to maximize their monetary payoff, the analysis of optimal auc-

tions can not rely exclusively on the notions of revenue equivalence and virtual valuations.

Therefore, auction theory may be sending a wrong message to people and organizations that

search for an optimal mechanism to sell their assets.

This paper extends the problem of optimal auction design to reference-dependent preferences

in the spirit of Koszegi and Rabin (2006). It is assumed that every buyer holds an expectation

of her payment to the seller, and she suffers a psychological loss whenever she has to pay more

than expected. In equilibrium, every buyer type maximizes the expectation of her monetary

payoff net of psychological loss, and her expectations are stochastic and consistent with the

equilibrium strategies. Our analysis is confined to the set of first-price and second-price

auctions with reserve prices that can be made public or kept secret.

76
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Our findings suggest that first-price auctions are revenue superior to second-price auctions

for any reserve price. This is because the winner of a second-price auction may suffer a

psychological loss in the event that she expected to win and pay a lower price, so her

willingness-to-pay for the object is lower compared to a first-price auction. Furthermore,

the optimal reserve price in a first-price auction is lower than in Riley and Samuelson (1981).

It follows from the fact that loss aversion enhances the exclusionary effect of reserve prices,

so a given level of exclusion can be achieved with a lower reserve price. These arguments

imply that optimally structured negotiations with one buyer may be revenue superior to an

efficient second-price auction with two buyers, and public reserve prices are always revenue

superior to secret reserve prices.

The rest of this paper is structured as follows. Section 2 reviews the literature on optimal

auction design and reference-dependent preferences and Section 3 outlines the model. Sec-

tion 4 derives symmetric increasing equilibria in first-price and second-price auctions for a

given reserve price. Section 5 finds the optimal auction format and the optimal reserve price

in a first-price auction. Section 6 derives the value of competition and the value of public

information, and Section 7 concludes.

4.2 Literature Review

The problem of optimal auction design with standard preferences is analyzed by Myerson

(1981) and Riley and Samuelson (1981). According to the Revelation Principle, first-price

and second-price auctions may be treated as mechanisms where every buyer chooses her

equilibrium probability of winning. Thus the derivative of the equilibrium payoff function is

simply the equilibrium probability of winning, as can be verified with the Envelope theorem

or the first-order condition. It is routine to demonstrate that this implies the revenue

equivalence of first-price and second-price auctions. Ultimately, an optimal auction should

award the object to the buyer with the highest virtual valuation and exclude buyer types

with negative virtual valuations.

These results have inspired many auxiliary projects. One of them investigates the revenue

effect of increasing the number of buyers. Bulow and Klemperer (1996) draw some analo-

gies between auction theory and monopoly theory to show that virtual valuations can be

interpreted as marginal revenues. By writing the expected revenue from an auction as the
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expected maximum of all marginal revenues, they prove that an efficient auction with n+ 1

buyers is revenue superior to an optimal auction with n buyers. Another project deals with

the revenue effect of keeping reserve prices secret. Riley and Samuelson (1981) argue that

secret reserves are equivalent to public reserves in second-price auctions because buyers bid

truthfully in both cases, and Elyakime et al. (1994) show that they are inferior to public

reserves in first-price auctions because the seller loses his position of a “Stackelberg leader”.

Influenced by the Prospect Theory (Kahneman and Tversky, 1979; Tversky and Kahneman,

1991), several recent papers study auctions with buyers that evaluate an outcome not only

based on its monetary payoff, but also on its relation to some reference point. Rosenkranz

and Schmitz (2007) assume that in case of winning, a buyer derives a psychological payoff

equal to a weighted difference of her payment and her reference payment. Precisely, the

reference payment is given by a convex combination of the reserve price and an exogenous

parameter. They find that first-price and second-price auctions remain revenue equivalent,

but the optimal reserve price is increasing in the number of buyers. Furthermore, the seller

may prefer secret reserves over public reserves, and he may prefer an optimal auction with

n buyers to an efficient auction with n+ 1 buyers.

It may seem restrictive to consider exogenous and deterministic reference points. Koszegi

and Rabin (2006) propose a model of preferences with stochastic reference points. For every

outcome and for every reference point, the utility function is equal to the sum of material

payoff and gain-loss utility. In a personal equilibrium, the optimal choice must maximize

the expectation of the utility function, and the reference point must be consistent with the

optimal choice. Lange and Ratan (2010) incorporate these preferences into the context of

auctions by assuming that every buyer suffers a loss of utility when she consumes less or pays

more than expected, and she forms her expectations after placing her bid. Among other

results, they show that first-price auctions are revenue superior to second-price auctions

when the object is qualitatively different from money.

Besides, Eisenhuth (2010) extends the analysis of Myerson (1981) by using the assumptions

of Lange and Ratan (2010) to prove the optimality of all-pay mechanisms. Ahmad (2015)

extends the analysis of Rosenkranz and Schmitz (2007) to the case where the reference

payment is equal to the expected price. Runco (2013) compares first-price to second-price

auctions with private and common values when the reference point is proportional to the

value of the object. Finally, Ehrhart and Ott (2014) study reference-dependent bidding in

dynamic auctions.
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4.3 Model

There is a single seller and n potential buyers. The seller owns an object that has zero value

to him1 and a value of Xi to each buyer i = 1, ..., n. We assume that each Xi is a random

variable, distributed on [0, w] ⊂ R+ according to the distribution function F which admits

a continuous density f ≡ F ′ with full support. The realization of Xi is private information

of buyer i in the sense that the other buyers and the seller only know the distribution of

Xi. Let us denote the highest value among n − 1 buyers as Y ≡ {X1, ..., Xn−1} with the

distribution function G ≡ F n−1 and continuous density g = G′.

The object can be sold by means of any auction from the set of first- and second-price

auctions with a reserve price. Let bi ≥ 0 denote a sealed bid placed by buyer i and pi ≡
maxj 6=i{bj, r} denote the largest of all other bids, including the reserve price. Also, let

W (bi, pi) denote the price that buyer i has to pay in the event that she wins. That is,

W (bi, pi) = bi in a first-price auction and W (bi, pi) = pi in a second-price auction.

It is assumed that each buyer i = 1, ..., n holds a reference level of every bid in the auction.

Let bri denote buyer i’s reference level of her bid and let pri denote buyer i’s reference level

of the largest of all other bids, including the reserve price. If bri > pri , buyer i expects to

win and pay the price W (bi, p
r
i ). If bri < pri , buyer i expects to lose and pay nothing. Each

buyer suffers a disutility in the event that she has to pay more than expected. Precisely, the

psychological loss of buyer i in the event that she places the highest bid is given bymax{W (bi, pi)−W (bi, p
r
i ), 0} if bri > pri

W (bi, pi) if bri < pri

which means the following. In the event that buyer i expected to win, bri > pri , her psycho-

logical loss is equal to the difference of the price W (bi, pi) and the reference price W (bi, p
r
i ),

whenever it is positive. But in the event that she expected to lose, bri < pri , her psychological

loss is equal to the price W (bi, pi) because she expected to pay zero.

1Later this assumption will be relaxed.
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The utility function of each buyer i = 1, ..., n is given by the difference of her monetary

payoff and her discounted psychological loss,

u(bi, pi;xi, b
r
i , p

r
i ) = (xi −W (bi, pi))1{bi > pi}

−θ× (max{W (bi, pi)−W (bi, p
r
i ), 0}1{bri > pri}+W (bi, pi)1{bri < pri}) 1{bi > pi}

where θ ∈ [0, 1] denotes the degree of loss aversion.

A strategy of buyer i specifies a bid for every value, βi : [0, w]→ R+. For a given vector of

strategies β−i = (β1, ..., βi−1, βi+1, ..., βn), the expected utility of buyer i is defined by

U(bi, xi) = E[u(bi,β−i(X−i);xi, b
r
i , p

r
i )]

A profile of strategies (β1, ..., βn) is said to be an equilibrium if for all xi ∈ [0, w] and for all

i ∈ N ,

U(βi(xi), xi) ≥ U(bi, xi), ∀bi ≥ 0

where

bri = βi(xi) and pri ∼ max
j 6=i
{βj(Xj), r}

Thus, the equilibrium strategy of every buyer must be Bayesian rational given the equilib-

rium strategies of the other players and the distribution of her reference bids. Also, reference

bids may be stochastic and their distribution must be consistent with the equilibrium strate-

gies.

Our definition of equilibrium is very close to Lange and Ratan (2010). The only difference

comes from the assumption that the probability that buyer i expects to win, that is Pr(bri >

pri ), is formed after buyer i learns her value, but before she places a bid. In other words, a

buyer’s expectations about the probability of winning are lagged2.

4.4 Equilibrium Analysis

This section is devoted to the analysis of equilibria of first-price and second-price auctions

for a given reserve price r ≥ 0. For simplicity, we restrict our attention to symmetric and

2On the other hand, we assume that a buyer expects to pay W (bi, p
r
i ) upon winning, so she forms her

expectation about the price after placing her bid. It is routine to show that if the buyer expects to pay
W (bri , p

r
i ) instead, our propositions remain to be true but proofs become much more technical.
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increasing equilibria. The procedure is broken down into three steps: (i) construct the

expected utility function, (ii) derive the equilibrium from necessary conditions, and (iii) use

an example to graph the equilibrium strategy.

4.4.1 First-Price Auctions

Suppose that there is a symmetric and increasing equilibrium (βI , ..., βI) with βI(x) = 0 if

x < µ and βI(µ) = r for some µ ∈ [0, w]. Recall that the winner of a first-price auction has

to pay her bid, WI(b, p) = b.

First, consider a buyer with value x < µ. Since she does not bid in equilibrium, she always

loses and pays nothing. It follows that this buyer also expects to lose and pay nothing. If she

deviates from her equilibrium strategy by placing a bid b ≥ r and wins, her psychological

loss must be equal to the price, that is b. Thus her utility is

uI(b, p;x, b
r, pr) = (x− b)1{b > p} − θ × b1{b > p}

Her expected utility from placing a bid b for all x < µ is then

UI(b, x) =

G(β−1
I (b))× (x− b)− θG(β−1

I (b))× b if b ≥ r

0 if b < r

Second, consider a buyer with value x ≥ µ. In equilibrium, she wins if and only if βI(x) > p,

so she feels a psychological loss when she expected to lose and pay nothing, βI(x) < pr,

uI(b, p;x, βI(x), pr) = (x− b)1{b > p} − θ × b1{βI(x) < pr}1{b > p}

The probability of the event that she expects to lose and pay nothing is equal to 1−G(x).

Thus, her expected utility from placing a bid b for all x ≥ µ is

UI(b, x) =

G(β−1
I (b))× (x− b)− θG(β−1

I (b))× (1−G(x))b if b ≥ r

0 if b < r
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In equilibrium, every type must prefer her equilibrium bid to any other bid. In particular,

the cut-off type µ must prefer bidding r to bidding 0. In fact, we shall make an educated

guess that she is indifferent between b = r and b = 0,

UI(r, µ) = G(µ)(µ− r)− θG(µ)× r(1−G(µ))

= 0 = UI(0, µ)

which simplifies to

µ = r + θr(1−G(µ)) (4.1)

Now consider the first derivative of UI with respect to b for x ≥ µ,

∂

∂b
UI(b, x) =

g(β−1
I (b))

β′I(β
−1
I (b))

× (x− b)−G(β−1
I (b))−θ(1−G(x))×

[
g(β−1

I (b))

β′I(β
−1
I (b))

b+G(β−1
I (b))

]
Since βI is the equilibrium strategy, it is optimal for a buyer with value x to bid b = βI(x),

βI(x)g(x) +G(x)β′I(x) = g(x)x− θ(1−G(x)) [g(x)βI(x) +G(x)β′I(x)] (4.2)

Using the boundary condition βI(µ) = r, Eq. (4.2) yields the following equilibrium strategy.

Proposition 4.1. For a given reserve price r ∈ [0, w], the profile of strategies (βI , ..., βI)

where

βI(x) =


r
G(µ)

G(x)
+

1

G(x)

∫ x

µ

y

1 + θ(1−G(y))
dG(y) if x ≥ µ

0 if x < µ

and the cut-off µ is defined by Eq. (4.1), is an equilibrium of the first-price auction.

Proof. For simplicity, let us define the function

v(x) =
x

1 + θ(1−G(x))

so that the equilibrium bid of any x ≥ µ can be re-written as

βI(x) = r
G(µ)

G(x)
+

1

G(x)

∫ x

µ

v(y)dG(y)

= v(x)− 1

G(x)

∫ x

µ

v′(y)G(y)dy



Chapter 4. Optimal Auctions with Loss Averse Buyers 83

where the last equality follows from integration by parts and observing that v(µ) = r.

First, consider a buyer type whose equilibrium bid is strictly positive, x ≥ µ. If she places

some bid βI(z) ≥ r, then her expected utility is

UI(βI(z), x) = G(z)(x− βI(z))− θG(z)(1−G(x))βI(z)

= G(z)x−G(z)βI(z)(1 + θ(1−G(x)))

Divide both sides by (1 + θ(1−G(x))) to obtain

1

1 + θ(1−G(x))
UI(βI(z), x) = G(z)v(x)−G(z)βI(z)

= G(z)v(x)−G(z)v(z) +

∫ z

µ

v′(y)G(y)dy

= G(z)(v(x)− v(z)) +

∫ z

µ

v′(y)G(y)dy

Thus the effect of deviation from βI(x) to βI(z) amounts to

1

1 + θ(1−G(x))
[UI(βI(x), x)− UI(βI(z), x)] = G(z)(v(z)− v(x))−

∫ z

x

v′(y)G(y)dy

=

∫ z

x

(G(z)−G(y))v′(y)dy

Since v(·) is increasing, the integral is positive. This implies that placing a bid other than

βI(x) results in a loss,

UI(βI(x), x)− UI(βI(z), x) ≥ 0, ∀βI(z) ≥ r

Our argument also implies that it can not be optimal to abstain from bidding,

UI(βI(x), x) = (1 + θ(1−G(x)))×
∫ x

µ

v′(y)G(y)dy

≥ 0 = UI(0, x)

Second, consider a buyer type who does not bid, x < µ. If she bids an amount βI(z) ≥ r,

her payoff is

UI(βI(z), x) = G(z)× (x− βI(z)− θβI(z))
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Since x < µ and βI(z) ≥ r, we have

UI(βI(z), x) < G(z)× (µ− r − θr)

< G(z)× (µ− r − θr(1−G(µ)))

= 0

= UI(βI(x), x)

Thus, it is optimal for every buyer type x < µ to abstain from bidding.

Let us illustrate our findings with a standard example. Suppose that there are two buyers

with uniformly distributed values on [0, 1], that is F (x) = x. Figure 4.1 graphs the equi-

librium strategy for θ = 0, θ = 0.5 and θ = 1. When θ = 0, the optimal bid is linear,

βI(x) = x/2. For larger values of θ, the optimal bid is lower, but also convex because higher

types suffer a lower psychological loss.

Figure 4.1: The equilibrium bid in a first-price auction with two buyers and uniformly
distributed values for three degrees of loss aversion.

4.4.2 Second-Price Auctions

Similar to the case of first-price auctions, consider a symmetric and increasing equilibrium

(βII , ..., βII) with βII(x) = 0 if x < µ and βII(µ) = r. Recall that the winner of a second-

price auction has to pay the largest of all other bids, WII(b, p) = p.
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First, consider a buyer with value x < µ. In equilibrium, she never wins and thus always

expects to pay nothing. It follows that her utility from bidding b is

uII(b, p;x, b
r, pr) = (x− p)1{b > p} − θ × p1{b > p}

and her expected utility from b ≥ r is then

UII(b, x) = G(β−1
II (b))x−

(
G(µ)r +

∫ β−1
II (b)

µ

βII(y)dG(y)

)
− θ ×

(
G(µ)r +

∫ β−1
II (b)

µ

βII(y)dG(y)

)

Second, consider a buyer with value x ≥ µ. She expects to win if βII(x) > pr and to lose if

βII(x) < pr, so her utility from bidding b ≥ r is

uII(b, p;x, βII(x), pr) = (x− p)1{b > p}

− θ × (max{p− pr, 0}1{βII(x) > pr}+ p{βII(x) < pr})1{b > p}

and her expected utility from b ≥ r is equal to

UII(b, x) = G(β−1
II (b))x−G(µ)r −

∫ β−1
II (b)

µ

βII(y)dG(y) −

θ

(
G(µ)(1−G(x))r +

∫ β−1
II (b)

µ

[
G(y)βII(y)−G(µ)r −

∫ y

µ

βII(y
r)dG(yr) + (1−G(x))βII(y)

]
dG(y)

)

The first line denotes the expected monetary payoff. The second line denotes the expected

psychological loss: in the event that she wins at the reserve r, whose probability is G(µ), she

suffers the loss of r in the event that she expects to lose, whose probability is (1−G(x)); in

the event that she pays the second-highest bid βII(y), she suffers the loss of max{βII(y) −
max{βII(yr), r}, 0} in the event that she expects to win and βII(y) in the event that she

expects to lose, whose probability is (1−G(x)).

Note that the equilibrium utility of the cut-off type µ is the same as in a first-price auction,

UII(r, µ) = G(µ)(µ− r)− θG(µ)× r(1−G(µ))

Thus, the cut-off µ is the same in first-price and second-price auctions.



Chapter 4. Optimal Auctions with Loss Averse Buyers 86

For all x ≥ µ, the first derivative of UII with respect b is

∂

∂b
UII(b, x) = (x− b) g(β−1

II (b))

β′II(β
−1
II (b))

− θ

(
G(β−1

II (b))b−

[
G(µ)r +

∫ β−1
II (b)

µ

βII(y
r)dG(yr)

]
+ (1−G(β−1

II (b)))b

)
g(β−1

II (b))

β′II(β
−1
II (b))

In equilibrium, it is optimal to bid b = βII(x), so the first-order condition is

x−βII(x)− θ
(
G(x)βII(x)−

[
G(µ)r +

∫ x

µ

βII(y
r)dG(yr)

]
+ (1−G(x))βII(x)

)
= 0 (4.3)

Differentiate both sides and re-arrange the terms to obtain

β′II(x) + θ [β′II(x)− βII(x)g(x)] = 1 (4.4)

As shown in the next proposition, the equilibrium strategy can be found by solving this

differential equation and using the boundary condition βII(µ) = r.

Proposition 4.2. For a given reserve price r ∈ [0, w], the profile of strategies (βII , ..., βII)

where

βII(x) =


exp

(
θ

1 + θ
(G(x)−G(µ))

)
r +

1

1 + θ

∫ x

µ

exp

(
θ

1 + θ
(G(x)−G(s))

)
ds if x ≥ µ

0 if x < µ

and the cut-off µ is given by Eq. (4.1) is an equilibrium of a second-price auction.

Proof. Introduce the function v(x, y), defined as

v(x, y) = x− θ
(
G(y)βII(y)−

[
G(µ)r +

∫ y

µ

βII(y
r)dG(yr)

]
+ (1−G(x))βII(y)

)

Since βII is a solution to Eq. (4.4), it also solves Eq. (4.3),

βII(x) = x− θ
(
G(x)βII(x)−

[
G(µ)r +

∫ x

µ

βII(y
r)dG(yr)

]
+ (1−G(x))βII(x)

)
= v(x, x)
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First, consider a buyer with value x ≥ µ who places some bid βII(z) ≥ r. Her expected

utility is equal to

UII(βII(z), x) = G(µ) (x− r − θ(1−G(x))r)

+

∫ z

µ

(
x− βII(y)− θ

[
G(y)βII(y)−

(
G(µ)r +

∫ y

µ

βII(y
r)dG(yr)

)
+ (1−G(x))βII(y)

])
dG(y)

Using the function v(x, y), it can be re-written as

UII(βII(z), x) = G(µ) (x− r − θ(1−G(x))r) +

∫ z

µ

(v(x, y)− v(y, y))dG(y)

It is routine to verify that the function v(x, y) is strictly increasing in x. Thus, we have

v(x, y) − v(y, y) > 0 for all y < x and v(x, y) − v(y, y) < 0 for all y > x. If follows that

the choice z = x maximizes the integral, thereby maximizing the expected utility function.

Also, there is no incentive to abstain from bidding because

UII(βII(x), x) = G(µ) (x− r − θ(1−G(x))r) +

∫ x

µ

(v(x, y)− v(y, y))dG(y)

> G(µ) (µ− r − θ(1−G(µ))r) +

∫ x

µ

(v(x, y)− v(y, y))dG(y)

=

∫ x

µ

(v(x, y)− v(y, y))dG(y)

≥ 0 = UII(0, x)

Second, consider any buyer type who does not bid, x < µ. If she instead places a positive

bid, βII(z) ≥ r, her expected utility is

UII(βII(z), x) = G(z)x−
(
G(µ)r +

∫ z

µ

βII(y)dG(y)

)
(1 + θ)

< G(z)× (µ− r − θr)

< G(z)× (µ− r − θr(1−G(µ)))

= 0 = UII(βII(x), x)

where the first inequality follows from x < µ and βII(z) ≥ r.

Figure 4.2 illustrates Proposition 4.2 for the case of n = 2 and F (x) = x on [0, 1]. For θ = 0,

it is optimal to bid one’s true value, βII(x) = x. For larger values of θ, the optimal bid is
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lower and “almost” linear. This is because higher types suffer a lower loss when they expect

to lose, but they suffer a higher loss when they expect to win.

Figure 4.2: The equilibrium bid in a second-price auction with two buyers and uniformly
distributed values for three degrees of loss aversion.

4.5 Optimal Auction

In this section, we use our results about the existence of symmetric increasing equilibria to

find the optimal auction. First, we treat a buyer’s problem as if she were purchasing some

quantity of a good sold at a nonlinear unit price. With a new concept of imputed values,

first-price auctions are shown to be superior to second-price auctions. Second, we propose a

concept of psychological virtual values in order to find the optimal reserve price and study

its properties.

4.5.1 Optimal Payment Rule

Fix some reserve price r ≥ 0 and consider a first-price auction. Let wI(x) denote the expected

price that a buyer with value x would pay upon winning. In a first-price auction, it is simply

her bid,

wI(x) = βI(x)
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Consider a buyer with value x who places some bid βI(z) ≥ r. Then we can write her

expected utility as

UI(βI(z), x) = G(z)[x− wI(z)− θ(1−G(x))wI(z)]

and the first-order condition as

g(x)x−
[
g(x)wI(x) +G(x)

∂

∂x
wI(x)

]
−θ(1−G(x))

[
g(x)wI(x) +G(x)

∂

∂x
wI(x)

]
= 0 (4.5)

It is clear that loss aversion affects the utility function by creating the new term θ(1 −
G(x))wI(z). Although it reflects non-monetary motivation, the term can be interpreted as a

“value tax” on buying the object. That is, a buyer purchases G(z) units and pays w(z)(1 +

τ(x)) for every unit where τ(x) ≡ θ(1−G(x)) is the average value tax. It is interesting that

the tax rate is regressive because τ(x) is decreasing in the volume of consumption G(x).

In the presence of loss aversion, a buyer’s value x no longer reflects her willingness-to-pay

for the object. So let vI(x) denote the imputed value of a buyer with value x in a first-price

auction. It is defined as the price that makes her indifferent between winning and losing,

x− vI(x)− θ(1−G(x))vI(x) = 0 (4.6)

Re-arrange the terms to see that a buyer’s imputed value is lower than her monetary value,

vI(x) = x− θ(1−G(x))vI(x) (4.7)

Multiply both sides of Eq. (4.6) by g(x) and subtract it from Eq. (4.5),

−
[
g(x)(wI(x)− vI(x)) +G(x)

d

dx
wI(x)

]
−θ(1−G(x))

[
g(x)(wI(x)− vI(x)) +G(x)

d

dx
wI(x)

]
= 0

Divide both sides by G(x) and re-arrange the terms to obtain

d

dx
wI(x) =

g(x)

G(x)
(vI(x)− wI(x)) (4.8)



Chapter 4. Optimal Auctions with Loss Averse Buyers 90

Consider a second-price auction and let wII(x) denote the expected price that a buyer with

value x pays conditional on winning,

wII(x) =
1

G(x)

[
G(µ)r +

∫ x

µ

βII(y)dG(y)

]

If a buyer with value x places some bid βII(z) ≥ r, her expected utility is

UII(βII(z), x) = G(z)

[
x− wII(z)− θ

(
(1−G(x))wII(z) +

1

G(z)

∫ z

µ

G(y)(βII(y)− wII(y)))dG(y)

)]

and the first-order condition is

g(x)x−
[
g(x)wII(x) +G(x)

d

dx
wII(x)

]
−θ
(

(1−G(x))

[
g(x)wII(x) +G(x)

d

dx
wII(x)

]
+G(x)(βII(x)− wII(x))g(x)

)
= 0

As we argued above, the term θ(1 − G(x)) can be interpreted as a regressive value tax.

But the utility function in a second-price auction has another term related to loss aversion,

namely G(y)(βII(y)−wII(y)). In a similar fashion, it can be interpreted as a “quantity tax”

because it is added to the price wII(z) for every “unit” purchased by a buyer.

Let vII(x, y) denote the imputed value of a buyer in a second-price auction when her (mon-

etary) value is x and the largest of all other (monetary) values is y, defined as

x− vII(x, y)− θ ((1−G(x))vII(x, y) +G(y)(vII(x, y)− wII(y))) = 0

or more conveniently,

vII(x, y) = x− θ ((1−G(x))vII(x, y) +G(y)(vII(x, y)− wII(y))) (4.9)

By a similar argument as before, we can write the first-order condition as

d

dx
wII(x) =

g(x)

G(x)
(vII(x, x)− wII(x)) (4.10)

Proposition 4.3. For any θ ≥ 0 and any r ≥ 0, the expected revenue from a first-price

auction is larger than the expected revenue from a second-price auction.
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Proof. Define the difference in expected prices as

∆(x) = wI(x)− wII(x)

Using Eq. (4.8) and Eq. (4.10), we obtain

∆′(x) =
d

dx
wI(x)− d

dx
wII(x)

=
g(x)

G(x)
(vI(x)− vII(x, x)−∆(x))

Subtract Eq. (4.7) from Eq. (4.9) to obtain

(vI(x)− vII(x, x))(1 + θ(1−G(x))) = θG(x)(vII(x, x)− wII(x))

Note that Eq. (4.9) implies vII(x, x) = βII(x), so

vII(x, x)− wII(x) = βII(x)− 1

G(x)

[
G(µ)r +

∫ x

µ

βII(y)dG(y)

]
=

1

G(x)

∫ x

µ

G(y)
d

dy
βII(y)dy

where we used integration by parts. It implies vI(x) − vII(x, x) ≥ 0 for x = µ and vI(x) −
vII(x, x) > 0 for x > µ.

Furthermore, we have ∆′(x) ≥ 0 whenever ∆(x) ≤ 0. Since ∆(µ) = 0, we have ∆′(x) ≥ 0

for all x ≥ µ. Finally, suppose that there is revenue equivalence, ∆(x) = 0 and ∆′(x) = 0

for all x ≥ µ. Then we must observe vI(x) − vII(x, x) = 0 for all x ≥ µ, a contradiction.

Therefore, ∆′(x) > 0 for some x ≥ µ.

Our result is an application of the self-selection approach (Milgrom and Weber, 1982). Each

buyer can be viewed as a population of buyers with values in [0, w]. Then a buyer with

value x buys G(x) units and pays a non-linear price w(x) per unit. If she were to increase

her consumption by ε→ 0, her benefit would increase by ε(v(x)− w(x)), where v(x) is her

willingness-to-pay. But it must not be profitable to consume more, so the price w(x) must

be sufficiently steep to offset the increase in benefit. As we showed, the willingness-to-pay

is lower in a second-price auction because a buyer feels a loss in the event that she expected

to pay a lower price. Thus its per-unit price should be less steep.
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4.5.2 Optimal Reserve Price

We have seen that it is optimal for the seller to choose a first-price auction. But what reserve

price should he announce? For a given r ≥ 0, the expected payment of a buyer with value

x ≥ µ is equal to G(x)wI(x). Note that its derivative can be found by multiplying both

sides of Eq. (4.8) and collecting the terms,

G(x)
d

dx
wI(x) + g(x)wI(x) = g(x)vI(x)

Integrate on both sides and use the boundary condition G(µ)wI(µ) = G(µ)r to obtain

G(x)wI(x) = G(µ)r +

∫ x

µ

vI(y)dG(y)

= G(x)vI(x)−
∫ x

µ

G(y)
d

dy
vI(y)dy

where the last equality follows from integration by parts.

Recall that the cut-off type µ is indifferent between winning and losing at price r. In other

words, her imputed value is equal to the reserve price, vI(µ) = r. Thus the cut-off type can

be written as µ = v−1
I (r), so the expected revenue is equal to

ΠI(r) = n×
∫ w

v−1
I (r)

G(x)wI(x)dF (x)

= n×
∫ w

v−1
I (r)

[
G(x)vI(x)−

∫ x

v−1
I (r)

G(y)
d

dy
vI(y)dy

]
dF (x)

= n×
∫ w

v−1
I (r)

[
vI(x)− 1− F (x)

f(x)

d

dx
vI(x)

]
G(x)dF (x)

=

∫ w

v−1
I (r)

[
vI(x)− 1− F (x)

f(x)

d

dx
vI(x)

]
dF n(x)

where the third equality is obtained by changing the order of integration.

Let λH denote the hazard rate of a given distribution H,

λH(x) =
h(x)

1−H(x)

Similar to the standard model of auctions, the term [vI(x)− v′I(x)/λF (x)] can be referred to

as a “psychological” virtual value of a buyer with monetary value x. Therefore, the expected
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revenue is equal to the expectation of the highest psychological virtual value among all buyers

with imputed values above the reserve price.

Proposition 4.4. If the hazard rate of F is increasing, the optimal reserve price in a first-

price auction is given by r∗ = vI(µ
∗), where µ∗ is implicitly defined by

µ∗ − 1

λF (µ∗)
=

θg(µ∗)

[λF (µ∗)]2
×
[
1 + θg(µ∗)

(
1

λG(µ∗)
− 1

λF (µ∗)

)]−1

(4.11)

Proof. Given the one-to-one and onto mapping from reserve prices into cut-offs, r = vI(µ),

we can instead search for the optimal cut-off,

max
µ∈[0,w]

ΠI(µ) =

∫ w

µ

[
vI(x)− 1− F (x)

f(x)

d

dx
vI(x)

]
dF n(x)

Using the Leibniz integral rule, the first derivative of ΠI is

dΠI(µ)

dµ
= −dF

n(µ)

dµ

(
vI(µ)− 1− F (µ)

f(µ)

dvI(µ)

dµ

)

Thus the first-order condition requires that the psychological virtual value of the cut-off type

be zero,

vI(µ
∗)− 1− F (µ∗)

f(µ∗)

dvI(µ
∗)

dµ
= 0 (4.12)

The last term can be found by totally differentiating Eq. (4.7),

dvI(µ)

dµ
= 1− θ ×

(
(1−G(µ))

dvI(µ)

dµ
− g(µ)vI(µ)

)
= 1− θ × g(µ)

(
1

λG(µ)

dvI(µ)

dµ
− vI(µ)

)
Evaluate it at µ = µ∗ using the first-order condition,

dvI(µ
∗)

dµ
= 1− θ × g(µ∗)

(
1

λG(µ∗)

dvI(µ
∗)

dµ
− 1

λF (µ∗)

dvI(µ
∗)

dµ

)
= 1− θ × g(µ∗)

dvI(µ
∗)

dµ

(
1

λG(µ∗)
− 1

λF (µ∗)

)
To verify the proposition, solve for dvI(µ

∗)/dµ, plug it back into Eq. (4.12) and re-arrange

the terms.

As in the case of loss neutrality, the optimal auction problem can be interpreted in terms of

monopoly theory (Bulow and Roberts, 1989). Suppose that a monopolist faces a continuum
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of buyers, indexed by the set X = [0, w] where the density of x ∈ X is given by f(x). If a

buyer with index x buys one unit, she enjoys a gross surplus of x and pays a value tax of

τ(x) = θ(1 − G(x)). When the monopolist charges some price p ≥ 0, the demand function

is

D(p) = Pr[x ≥ (1 + τ(x))p]

= Pr[p ≤ vI(x)]

= 1− F (v−1
I (p))

Then the inverse demand function is given by p(q) = v(F−1(1− q)), and the revenue by

q × p(q) = q × vI(F−1(1− q))

Differentiate the revenue to obtain the marginal revenue function,

MR(p) ≡ vI(F
−1(1− q))− q × v′I(F−1(1− q))

f(F−1(1− q))

= p− 1− F (v−1
I (p))

f(v−1
I (p))

v′I(v
−1
I (p))

where we used p = vI(F
−1(1 − q)) and q = 1 − F (v−1

I (p). Thus, the optimal reserve price

r∗ = vI(µ
∗) can be thought of such monopoly price that the marginal revenue is zero,

MR(vI(µ
∗)) = vI(µ

∗)− 1− F (µ∗)

f(µ∗)

d

dx
vI(µ

∗) = 0

Let us compare our results to the standard model. As argued earlier, the seller maximizes the

expected highest (psychological) virtual valuation. In the optimum, he chooses to “exclude”

buyer types with negative virtual values, see Eq. (4.12). Because of loss aversion, a given

reserve price has a stronger exclusionary effect, µ = v−1
I (r) > r. Conversely, the seller can

achieve a target level of exclusion with a lower reserve price, r = vI(µ) < µ. Thus it is

reasonable to guess that the optimal reserve price is lower with loss-averse buyers. The next

lemma confirms this intuition for the simple case of two buyers, n = 2.

Lemma 4.5. With two buyers, the optimal reserve in a first-price auction is strictly de-

creasing in the degree of loss aversion.
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Proof. The fact n = 2 implies G = F , so Eq. (4.11) simplifies to

0 = µ∗ − 1

λF (µ∗)
− θf(µ∗)

[λF (µ∗)]2

= µ∗ − 1

λF (µ∗)

[
1 +

θf(µ∗)

λF (µ∗)

]
= µ∗ − 1

λF (µ∗)
[1 + θ(1− F (µ∗))]

Divide both sides by [1 + θ(1− F (µ∗))] to obtain

vI(µ
∗)− 1

λF (µ∗)
= r∗ − 1

λF (v−1
I (r∗))

= 0

By the implicit function theorem,

dr∗

dθ
= − λ′F (v−1

I (r∗))

[λF (v−1
I (r∗))]2

× dv−1
I (r∗)

dθ

/
∂

∂r∗

(
r∗ − 1

λF (v−1
I (r∗))

)
The virtual valuation is assumed to be increasing in µ, so it is also increasing in r∗ and the

denominator is positive. Recall that the function v−1
I (r) specifies the type who is willing to

pay r. As the degree of loss aversion increases, such cut-off type also increases, dv−1
I (r∗)/dθ >

0. This implies that the numerator is negative, and the proposition follows.

Rosenkranz and Schmitz (2007) argue that the optimal reserve price under reference-dependent

preferences is increasing in the number of buyers. In contrast, Lemma 4.5 leads to a different

conclusion. For example, if there is only one buyer, n = 1, then imputed values do not differ

from monetary values, v(x) = x. This implies that the optimal reserve price with one buyer

is not affected by loss aversion. But if there are two buyers, n = 2, the optimal reserve is

lower because of loss aversion. Therefore, the optimal reserve is lower with two buyers than

with one buyer.

Let us again consider the case of uniform distribution, illustrated in Figure 4.3. It is well-

known that the optimal reserve price is equal to 1/2 under standard preferences (Riley and

Samuelson, 1981, p. 386). Under reference-dependent preferences, the expected revenue is

given by the area below the “marginal revenue” curve on [µ∗, 1]. Note that loss aversion

leads to a higher level of exclusion, µ∗ > 1/2. The optimal reserve price, however, is less

than 1/2 because it is equal to the imputed value of the cut-off type, r∗ = vI(µ
∗), rather

than her monetary value.
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Figure 4.3: The expected revenue (shaded area) and the optimal reserve price r∗ in a
first-price auction with two buyers and uniformly distributed values for λ = 0.5.

4.6 Applications

In this section, the starting point of our analysis is a second-price auction with one buyer and

the optimal reserve price that the seller announces publicly. We shall separately consider

two questions of auction design:

1. Value of Competition: does the expected revenue increase when the seller “replaces”

the reserve price with a second buyer?

2. Value of Information: does the expected revenue increase when the seller chooses a

secret reserve price?

4.6.1 Value of Competition

Under standard preferences, Bulow and Klemperer (1996) show that an efficient second-

price auction with n + 1 buyers is more profitable than an optimal second-price auction

with n buyers. However, Rosenkranz and Schmitz (2007) argue that the result fails to hold

with reference-dependent preferences when n is sufficiently large. Below we strengthen their

argument by proving that a second-price auction might be inferior to negotiations in the

extreme case of n = 1.
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First, suppose that the seller chooses not to invite a second buyer. Since G(x) = 1 for all x,

buyer 1 with value x bids for the object if and only if x ≥ r. As argued earlier, the optimal

reserve price is thus the same as in Riley and Samuelson (1981), namely r∗ at θ = 0.

Let pN(x) denote the expected selling price in an optimal auction with buyer 1 when her

value is x. Clearly, pN(x) is either the reserve price or zero,

pN(x) =

r
∗|θ=0 if x ≥ r∗|θ=0

0 if x < r∗|θ=0

Second, suppose that the seller chooses to invite a second buyer. Similarly, let pA(x) denote

the expected selling price in an efficient second-price auction with two buyers when the value

of buyer 1 is x. To compute pA(x), fix some value of buyer 1, X1 = x. If she wins, x > Y ,

the selling price is equal to the bid of buyer 2, βII(Y ). But if she loses, x < Y , it is equal to

the bid of buyer 1, βII(x). Therefore, we have

pA(x) =

∫ x

0

βII(y)dF (y) + (1− F (x))βII(x)

= F (x)wII(x) + (1− F (x))vII(x, x)

= F (x)vII(x, x)−
∫ x

0

F (y)
d

dy
vII(y, y)dy +

∫ x

0

d

dy
vII(y, y)dy − F (x)vII(x, x)

=

∫ x

0

(1− F (y))
d

dy
vII(y, y)dy

Then the value of competition is equal to the expected difference of the selling prices,

∆C =

∫ w

0

(pA(x)− pN(x))dF (x)

It is clear that the value of competition is strictly decreasing in the degree of loss aversion.

This is because the revenue from negotiations is not affected by θ while the revenue from a

second-price auction is strictly decreasing in θ. It is far from clear, however, whether there

exists a sufficiently large degree of loss aversion such that negotiations become optimal. We

shall now demonstrate by an example that it can be the case.

Consider the uniform distribution of values on [0, 1], illustrated in Figure 4.4. The optimal

reserve with one buyer is equal to 1/2, so the revenue from negotiations is 1/4. The revenue

from a second-price auction is equal to 1/3 with loss-neutral buyers, but goes down as θ
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increases. In fact, it is optimal to negotiate with one buyer for θ > θII ≈ 0.44. Although

a first-price auction yields a larger revenue that a second-price auction, it is also inferior to

negotiations for θ > θI ≈ 0.70.

Figure 4.4: The expected revenue from optimal negotiations (solid), a first-price auction
(dotted), and a second-price auction (dashed), as functions of θ.

4.6.2 Value of Information

In the model of Riley and Samuelson (1981), the seller is indifferent between secret and

public reserve prices in a second-price auction because it is a weakly dominant strategy to

bid one’s value for any information policy. However, as shown by Rosenkranz and Schmitz

(2007), the expected revenue under reference-dependent preferences may be larger when

reserve prices are secret. In contrast to both findings, we shall prove below that secret

reserve prices are strictly inferior to public reserve prices in our model.

So far the seller’s value was assumed to be deterministic. Thus his strategy is just a reserve

r ≥ 0. Suppose that the seller keeps his reserve secret and some re is his equilibrium strategy.

In equilibrium, the buyers know with certainty that the reserve is re, so they place the same

bids as if re were public. Therefore, the equilibrium revenue of the seller can be replicated

by choosing the public reserve re.

Following Elyakime et al. (1994), we shall instead assume that the seller’s value is a random

variable S. Precisely, S is distributed on [0, w] according to the distribution function H with
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a continuous density h ≡ H ′. The realization of S is only observed by the seller, and his

strategy is a mapping from values into reserve prices, p : [0, w]→ R+.

4.6.2.1 Equilibrium Analysis

First, fix a strategy of the seller p(·), with p′(·) > 0. The expected utility of the buyer with

value x from placing some bid b ≥ 0 is

U(b, x) =

∫ p−1(b)

0

(x− p(s))dH(s)

− θ
∫ p−1(b)

0

(∫ s

0

(p(s)− p(sr))dH(sr) + (1−H(p−1(β(x))))× p(s)
)
dH(s)

The first line captures the expected monetary payoff: in the event that the buyer wins,

p(s) ≤ b, she has to pay p(s). The second line captures the expected psychological loss: in

the event that the buyer wins, her loss is p(s)− p(sr) in the event that she expected to pay

a lower price, p(sr) < p(s); and her loss is p(s) in the event that she expected to lose, whose

probability is (1−H(p−1(β(x)))).

The first derivative with respect to the bid is

∂

∂b
U(b, x) =

[
x− b− θ

(∫ p−1(b)

0

(b− p(sr))dH(sr) + (1−H(p−1(β(x))))× b

)]
h(p−1(b))

p′(p−1(b))

It must be optimal to bid b = β(x), so the first-order condition reads

β(x) = x− θ

(∫ p−1(β(x))

0

(β(x)− p(s))dH(s) + (1−H(p−1(β(x))))β(x)

)
(4.13)

Second, fix a strategy of the buyer, β(·) with β′(·) > 0. The expected revenue of the seller

with value s from setting some reserve r ≥ 0 is

Π(r, s) = sF (β−1(r)) + r(1− F (β−1(r)))

= sF (β−1(r)) +

∫ 1

β−1(r)

(
β(x)− 1− F (x)

f(x)
β′(x)

)
dF (x)
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The first derivative with respect to the reserve price is

∂Π(r, s)

∂r
=

[
s− r +

1− F (β−1(r))

f(β−1(r))
β′(β−1(r))

]
f(β−1(r))

β′(β−1(r))

In equilibrium, the revenue is maximized by choosing r = p(s), so the first-order condition

reads

p(s) = s+
1− F (β−1(p(s)))

f(β−1(p(s)))
β′(β−1(p(s))) (4.14)

Proposition 4.6. The profile of strategies (β, p) which simultaneously solves Eq. (4.13) and

Eq. (4.14) is an equilibrium of a second-price auction with secret reserve prices.

Proof. See Appendix.

4.6.2.2 Revenue Ranking

Can the seller benefit from using secret reserve prices? First, suppose that the reserve prices

are public. Consider the price strategy p̂(s), defined by

p̂(s) =

β
−1(p(s)) if s ≤ β(w)

w if s > β(w)

Then the probability of sale is the same under public and secret reserve prices. For conve-

nience, let us denote it by

Q(x) ≡ H(p−1(β(x)))

and let q denote its derivative, q(x) ≡ dQ(x)/dx.

Let ŵ(x) denote the expected price paid by the buyer with value x, conditional on winning,

ŵ(x) =
1

H(p̂−1(x))

∫ p̂−1(x)

0

p̂(s)dH(s)

=
1

Q(x)

∫ p−1(β(x))

0

β−1(p(s))dH(s)

Suppose that the buyer with value x commits to bidding as if her value were some z for any

reserve price. Then her expected utility is equal to

Û(β(z), x) = Q(z)× (x− ŵ(z))
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and the first-order condition is

q(x)(x− ŵ(x))−Q(x)
d

dx
ŵ(x) = 0

which can be re-arranged as

d

dx
ŵ(x) =

q(x)

Q(x)
× (x− ŵ(x)) (4.15)

Second, suppose that the reserve prices are secret. As before, let w(x) denote the expected

price paid by the buyer with value x, conditional on winning,

w(x) =
1

Q(x)

∫ p−1(β(x))

0

p(s)dH(s)

If the buyer with value x bids as if her value were some z ∈ [0, w], her expected utility is

U(β(z), x) = Q(z)×
[
x− w(z)− θ

(
(1−Q(x))w(z) +

1

Q(z)

∫ z

0

Q(t)× (β(t)− w(t))dQ(t)

)]
and the first-order condition reads

q(x)(x− w(x))−Q(x)
d

dx
w(x)

− θ
[
(1−Q(x))

(
q(x)w(x)−Q(x)

d

dx
w(x)

)
+Q(x)(β(x)− w(x))q(x)

]
= 0

Let v(x, s) denote the imputed value of the buyer with value x when the seller’s value is s.

Intuitively, it reflects the price at which the buyer is indifferent between winning and losing,

x− v(x, s)− θ[(1−Q(x))v(x, s) +Q(s)(v(x, s)− w(x))] = 0 (4.16)

Multiply Eq. (4.16) by q(x) and subtract it from the first-order condition to obtain

d

dx
w(x) =

q(x)

Q(x)
(v(x, x)− w(x)) (4.17)

Proposition 4.7. For any θ > 0, the expected revenue under public reserve prices is strictly

larger than the expected revenue under secret reserve prices.
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Proof. Let ∆(x) define the effect of public information on the expected price,

∆(x) = ŵ(x)− w(x)

By subtracting Eq. (4.17) from Eq. (4.15), we observe

∆′(x) =
q(x)

Q(x)
(x− v(x, x)−∆(x))

It is straightforward to see that the term x− v(x, x) is strictly positive for all x > 0,

x− v(x, x) = θ[(1−Q(x))v(x, x) +Q(x)(v(x, x)− w(x))] > 0

Using a similar argument as in Proposition 4.3, we conclude that ∆′(x) ≥ 0 for all x and

∆′(x) > 0 for some x ≥ 0.

To understand this result, let us interpret the problem in terms of industrial organization.

The seller (the buyer) can be viewed as a population of sellers (buyers) with values in [0, w].

By choosing her bid, a buyer decides on the range of sellers that she is willing to trade with.

Clearly, it is optimal to trade with a seller of type s as long as his price p(s) is lower than

the buyer’s willingness-to-pay. But if the reserve is secret, a buyer feels a psychological loss

from trading with a seller because she might have expected to pay a lower price or even not

pay at all. Thus, her willingness-to-pay is lower, v(x, s) < x, which implies a lower demand

and thus a lower (expected) revenue.

4.7 Conclusions

This paper has found the optimal auction among first-price and second-price auctions when

buyers are loss averse in the monetary domain. We have assumed that reference points are

formed before bidding, and they must be consistent with the equilibrium strategies. Our

results suggest that it is optimal to choose a first-price auction and announce a reserve

price below the optimal reserve with loss-neutral buyers. Furthermore, optimally structured

negotiations with one buyer may be revenue superior to an efficient auction with two buyers,

and public reserve prices are revenue superior to secret reserve prices.
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However, a number of research questions remain to be addressed. First, loss aversion may

affect the optimal choice of bids when the buyer is able to re-sell the object after winning3.

In this case, the buyer would suffer a loss in the monetary domain when the she fails to

re-sell the object but expected to re-sell it, thereby facing a different optimization problem

in the initial auction. Second, loss aversion may affect the operation of bidding rings.

Collusion reduces the number of serious bids and thus leads to lower uncertainty and lower

psychological loss. By doing so, it should increase the gains of collusion as well as the

selection process within the ring. Third, loss aversion may affect auctions where the seller

can not fully commit to his choice of mechanism. If the buyer chooses to wait for the next

auction, she will face a greater variance of selling prices and thus more psychological loss.

Hence, she may be willing to accept a larger price in the present auction, possibly failing

the Coase conjecture.

4.8 Appendix: Proof of Proposition 4.6

First, introduce the function v(x, s), defined as

v(x, s) = x− θ
(∫ s

0

(p(s)− p(sr))dH(sr) + (1−H(p−1(β(x))))p(s)

)
Since β satisfies Eq. (4.13), it follows that β(x) = v(x, p−1(β(x))).

Suppose that the seller plays his equilibrium strategy and the buyer has value x, but places

some bid β(z) ≥ 0. Her expected utility is then

U(β(z), x) =

∫ p−1(β(z))

0

(
x− p(s)− θ

(∫ s

0

(p(s)− p(sr))dH(sr) + (1−H(p−1(β(x))))× p(s)
))

dH(s)

=

∫ p−1(β(z))

0

(v(x, s)− p(s))dH(s)

It is clear that that the function v(x, s) is strictly increasing in x. Also, the integrand

(v(x, s)− p(s)) is equal to zero at s = p−1(β(x)),

v(x, p−1(β(x)))− p(p−1(β(x))) = v(x, p−1(β(x)))− β(x)

= v(x, p−1(β(x)))− v(x, p−1(β(x))) = 0

3I am grateful to Andreas Lange for pointing out the impact of loss aversion in auctions with re-sale.
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It implies that v(x, s) − p(s) > 0 for all s < p−1(β(x)) and v(x, s) − p(s) < 0 for all s >

p−1(β(x)). Thus, the expected utility is maximized by ensuring that p−1(β(z)) = p−1(β(x)),

or simply z = x. Since the value of the integral is positive, it is optimal to participate in

the auction.

Second, introduce the function φ(·), defined as

φ(x) = β(x)− 1− F (x)

f(x)
β′(x)

Using Eq. (4.14), the equilibrium reserve price satisfies φ(β−1(p(s))) = s, or simply p(s) =

β(φ−1(s)). Suppose that the buyer plays her equilibrium strategy and the seller with value

s chooses some reserve p(t) ≥ 0. Then his expected revenue in excess of s is

Π(p(t), s)− s =

∫ 1

β−1(p(t))

(φ(x)− s)dF (x)

=

∫ 1

φ−1(t)

(φ(x)− s)dF (x)

The term φ(x)− s is equal to zero at x = φ−1(s). Assuming that φ(x) is strictly increasing,

we have φ(x)− s > 0 for all x > φ−1(s) and φ(x)− s < 0 for all x < φ−1(s). It follows that

the revenue-maximizing choice is t = s.
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Appendix A

Summary

Chapter 2: Collusion in Sequentially Optimal Auctions

We study collusion among bidders when the seller can not commit to withhold the object

from the market forever when it fails to sell. Our setting is characterized by second-price

auctions, ex-ante symmetric buyers, and full-inclusive rings. We find that for sufficiently

large reserve prices, any ex-post efficient mechanism of collusion must violate budget bal-

ance or voluntary participation. Yet, we show that a “second-best” allocation can always

be implemented by a second-price preauction knockout. Furthermore, the collusion exerts

downward pressure on the optimal reserve prices because it reduces demand for the object.

As the time between auctions goes to zero, this effect reverses the classical result that the

optimal reserve price is larger under collusion.

Wir betrachten geheime Absprachen zwischen Bietern, wobei der Verkäufer das Objekt

nicht dem Markt dauerhaft vorenthalten kann, wenn es nicht verkauft wird. Unser Um-

feld ist gekennzeichnet durch Zweitpreisauktionen, ex ante symmetrische Käufer und vol-

lumfängliche Ringe. Wir stellen fest, dass für ausreichend große Reservationspreise jeglicher

ex-post effiziente Kollusionsmechanismus die Budgetrestriktion oder die freiwillige Teil-

nahme verletzen muss. Wir zeigen, dass dennoch eine “zweitbeste” Allokation immer durch

einen Knock-out in einer Zweitpreisvorauktion implementiert werden kann. Zudem übt die

geheime Absprache Abwärtsdruck auf die optimalen Mindestpreise aus, weil sie die Nach-

frage für das Objekt verringert. Da die Zeit zwischen Auktionen gegen Null geht, hebt dieser

Effekt das klassische Ergebnis auf, welches besagt der optimale Mindestpreis sei höher bei

geheimen Absprachen.
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Chapter 3: Fair Nonlinear Pricing

We consider a problem of optimal nonlinear pricing where the buyer rewards the seller for

charging fair prices and punishes him for unfair prices. As in Rabin (1993), the buyer’s

perception of fairness is determined by her belief about underlying intentions of the seller.

Our findings suggest that under complete information, the buyer receives an offer to purchase

the efficient quantity for a price below her valuation. Under incomplete information, the

optimal truthful mechanism is characterized by no distortion at the top and downward

distortion elsewhere. However, the distortion is not as large as in the standard model

because the seller internalizes a psychological cost of paying an unfair price. As a result, he

is motivated to reduce this cost by improving allocative efficiency. The optimal mechanism

can be implemented by a schedule that stipulates lower per-unit prices, so our model seems

to be more consistent with behavior of buyers and sellers in controlled experiments.

Wir betrachten ein Problem der optimalen nichtlinearen Preisbildung, bei welcher der Käufer

den Verkäufer für eine faire Preisgestaltung belohnt und ihn für unfaire Preise bestraft. Wie

bei Rabin (1993) ist die Wahrnehmung von Preisfairness aus Käufersicht davon bestimmt

welche tieferen Absichten er von dem Verkäufer vermutet. Unsere Ergebnisse deuten darauf

hin, dass dem Käufer bei vollständiger Information die effiziente Menge für einen Preis unter

seiner Wertschätzung zum Kauf angeboten wird. Bei unvollständiger Information ist der

optimale wahrheitsgemäße Mechanismus gekennzeichnet durch keine Verzerrung am oberen

Ende und ist anderweitig nach unten verzerrt. Die Verzerrung ist jedoch nicht so groß

wie in dem Standard-Modell, weil der Verkäufer die psychologischen Kosten dafür, einen

unfairen Preis zu zahlen, internalisiert. Dies führt dazu, dass er motiviert ist, seine Kosten

durch eine Verbesserung der Allokationseffizienz zu reduzieren. Der optimale Mechanismus

kann mit einem Programmplan umgesetzt werden, in welchem niedrigere Stückpreise festlegt

werden. Daher stimmt unser Modell mehr mit dem Verhalten von Käufern und Verkäufern

in kontrollierten Experimenten überein.

Chapter 4: Optimal Auctions with Loss Averse Buyers

We extend the standard analysis of optimal auctions to allow for reference-dependent pref-

erences: a buyer suffers a psychological disutility in the event that she has to pay more

than her reference payment. The latter is assumed to be stochastic and consistent with the

distribution of her payment in equilibrium. Our findings suggest that a first-price auction

is strictly preferred to a second-price auction, and the optimal reserve price in a first-price
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auction is lower than that under standard preferences. Furthermore, the seller may prefer

optimal negotiations with one buyer to an auction with two buyers for a sufficiently large

degree of loss aversion; and he prefers public reserve prices to secret reserve prices for any

degree of loss aversion.

Wir erweitern die Standardanalyse von optimalen Auktionen um referenzabhängige Präferenzen

zu erlauben: Ein Käufer leidet unter einem psychologischen negativen Nutzen falls er mehr

zahlen muss als seine Referenzzahlung. Letztere wird als stochastisch und vereinbar mit der

Verteilung seiner Zahlung im Gleichgewicht angenommen. Unsere Ergebnisse zeigen, dass

eine Erstpreisauktion gegenüber einer Zweitpreisauktion streng bevorzugt wird und dass der

optimale Mindestpreis in einer Erstpreisauktion niedriger ist als unter Standardpräferenzen.

Zudem kann es sein, dass der Verkäufer optimale Verhandlungen mit einem Käufer gegenüber

einer Auktion mit zwei Käufern für ein ausreichend hohes Maß an Verlustaversion bevorzugt;

und er bevorzugt öffentliche Mindestpreise gegenüber geheimen Mindestpreisen für jeglichen

Grad an Verlustaversion.
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